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CERN
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Par ailleurs, je suis très reconnaissant à la Division Théorique du CERN qui
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leur disponibilité m’ont permis de diversifier mes connaissances. Je remercie tout
particulièrement Neil Lambert et Sir John Ellis pour les discussions stimulantes
que j’ai pu mener avec eux. De plus, tout au long de mon séjour, j’ai bénéficié
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Résumé

Cette thèse est dédiée à l’étude d’une classe de couplages dans l’action effective
de la théorie des cordes qui se trouvent au croisement entre la théorie des cordes
topologique et les théories de jauge supersymétriques. Ces couplages généralisent
un ensemble de couplages gravitationnels qui calculent la fonction de partition
de la théorie des cordes topologique. Dans la limite de théorie des champs, ces
derniers reproduisent la fonction de partition de la théorie de jauge dans le fond
Ω lorsque l’un des paramètres de ce dernier, ǫ+, est égal à zéro. Cela suggère
naturellement l’existence d’une généralisation dénommée la corde topologique raf-
finée. Les couplages étudiés dans ce manuscrit sont caractérisés par un multiplet
vectoriel supplémentaire et sont calculés, en théorie des cordes, aux niveaux per-
turbatif et non-perturbatif. De plus, leur limite de théorie des champs donne la
fonction de partition de la théorie des champs dans un fond Ω général. Ainsi, ces
couplages ouvrent de nouvelles perspectives pour la définition, au niveau de la
surface d’univers, de la théorie des cordes topologiques raffinée.

Mots-Clefs : Amplitudes de Théorie des Cordes, Couplages Gravitationnels,
Théorie des Cordes Topologique, Fond Oméga, Théories de Jauge Supersymétriques,
Calcul d’Instantons, Corde Topologique Raffinée, Dualités.
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Abstract

In this thesis, we study a class of higher derivative couplings in the string effec-
tive action arising at the junction of topological string theory and supersymmetric
gauge theories in the Ω-background. They generalise a series of gravitational
couplings involving gravitons and graviphotons, which reproduces the topological
string theory partition function. The latter reduces, in the field theory limit, to
the partition function of the gauge theory in the Ω-background when one if its
parameters, say ǫ+, is set to zero. This suggests the existence of a one-parameter
extension called the refined topological string. The couplings considered in this
work involve an additional vector multiplet and are evaluated, perturbatively and
non-perturbatively, at the string level. In the field theory limit, they correctly
reproduce the partition function of the gauge theory in a general Ω-background.
Hence, these couplings provide new perspectives toward a worldsheet definition of
the refined topological string.

Keywords: String Amplitudes, Gravitational Couplings, Topological String The-
ory, Omega-Background, Supersymmetric Gauge Theories, Instanton Calculus, Re-
fined Topological String, Dualities.
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Summary

Since its early days, string theory has constantly been the source of multiple de-
velopments in our understanding of quantum gravity. Yet, not only has it been
applied to explore the ultra-violet properties of quantum field theories in the pres-
ence of gravity, its unified framework has also shed light on the non-perturbative
structure of gauge theories. Indeed, the spectrum of string theory contains certain
extended objects, like D-branes, which are non-perturbative in the string coupling.
They can be used at weak coupling to probe non-perturbative regimes in the low
energy field theory. However, at the string level, a full understanding of the non-
perturbative sectors is lacking and one is led to consider sub-sectors of string theory
in which one can control the weak and strong coupling regimes using, for instance,
supersymmetry. In this context, topological string theory can be viewed as a toy
model where both regimes are well understood.

The structure of topological string theory is that of a topological field theory
which is a quantum field theory whose correlation functions of physical observables
are closed differential forms on the moduli space of space-time metrics considered
up to diffeomorphisms. More specifically, coupling a twisted (topological) two-
dimensionalN = 2 supersymmetric sigma-model to gravity leads to the topological
string.

The interplay between string theory and the topological string has led to fas-
cinating developments in mathematics as well as in physics. For example, from
the mathematical point of view, the observables of topological string theory can
usually be understood as topological invariants of the space on which the theory is
defined. Furthermore, these quantities acquire a clear physical meaning in string
theory since the topological string can be viewed as a ‘twisted’ version of string the-
ory. In particular, the topological string captures properties of string theory that
only depend on its topological, BPS sector1. The good understanding of these
objects has also been used to test various string dualities, to study micro-state
counting of BPS black holes or even wall-crossing.

On the other hand, one of the uses of topological string theory is to ‘geometri-
cally engineer’ supersymmetric gauge theories in four dimensions [41, 42]. This can
be seen by supplementing the four-dimensional space-time with an internal Calabi-
Yau manifold and consider the topological string defined on the resulting space.
In this picture, gauge theory instantons are nothing but tree-level worldsheet in-
stantons, and higher genus instantons can be viewed as ‘gravitational’ corrections

1A Bogomol’nyi-Prasad-Sommerfield (BPS) sector is a set of states called BPS that are invariant under
a non-trivial subalgebra of the full supersymmetry algebra.
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which are encoded in terms of higher derivative couplings in the string effective
action. Since the latter only depend on the topological sector of string theory due
to the decoupling of the string oscillators, they can be calculated exactly at the
string level.

The typical example is the N = 2, SU(2) gauge theory studied by Seiberg and
Witten [81, 82]. Due to supersymmetry, the low energy energy effective action de-
pends only on a holomorphic function called the prepotential which was calculated
by Seiberg and Witten to the full non-perturbative level. In fact, the perturbative
expansion stops at one-loop order and the prepotential reads

FSW(a,Λ) =
i

2π
a2 ln

a2

Λ2
+
∑

k≥1

Fk
(

Λ

a

)4k

a2 , (0.0.1)

where a is the complex scalar of theN = 2 vector multiplet, k is the instanton num-
ber and Λ is the dynamically generated scale of the theory. The Seiberg-Witten
solution gives precisely an ansatz for the instanton coefficients Fk. The string
compactification giving rise to this gauge theory is a Type IIA on an elliptically
fibered K3 over P1, in which one studies an A1 singularity in K3 corresponding
to a vanishing P1. This is referred to as the local P1 × P1 model, since only the
local description of the singularity is sufficient to recover the N = 2 gauge theory
in four dimensions. In particular, this compactification has been used to gener-
alise the Seiberg-Witten prepotential in the presence of gravity [58, 59]. Indeed,
decoupling the gravity/string modes leads to an N = 2 SU(2) gauge theory. More
specifically, the genus g partition function of the local P

1×P
1 is denoted Fg and it

has been shown that F0, in the field theory limit, agrees with the Seiberg-Witten
solution, with the Coulomb branch parameter a being identified with the Kähler
structure of the internal manifold. For g > 1, Fg can be interpreted as gravitational
corrections.

For this, recall that the topological string is a sub-sector of string theory since
it is obtained from the latter by performing the topological twist [86]. It turns
out that Fg computes the (moduli dependent) coupling coefficients of a class of
higher derivative F-terms in the string effective action [7] coupling, at genus g, two
gravitons and 2g − 2 graviphotons of definite self-duality, say anti-self-dual:

Fg R
2
− F

2g−2
G . (0.0.2)

Here, R denotes the anti-self-dual Riemann tensor and FG is the anti-self-dual
part of the graviphoton field strength. Due to supersymmetry, these couplings
receive contributions from BPS states only so that they are protected against any
perturbative and non-perturbative corrections. They have been used, for instance,
to test the dualities between Type II, Heterotic and Type I string theories. From
the gauge theory point of view, it is rather surprising that these gravitational
corrections survive the point particle limit. Their interpretation from the low en-
ergy effective action point of view goes beyond the Seiberg-Witten theory and
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becomes clear when one introduces the Ω-background [67, 64]. In fact, one may
wonder whether it is possible to calculate the instanton coefficients Fk by evalu-
ating the path integral over the instanton moduli space. However, the latter is
not well-defined because of the non-compactness of the moduli space, and the Ω-
background acts as an appropriate regulator. It can most easily be seen as arising
from a dimensional reduction of an N = 1 gauge theory in six dimensions on a T 2

torus fibration over R4, such that going around the cycles of T 2 is accompanied by
a rotation in R

4 parametrised by two complex parameters, ǫ1,2, and an R-symmetry
rotation proportional to ǫ1+ǫ2. The latter is crucial in order to preserve supersym-
metry. The integral over the instanton moduli space becomes well-behaved and,
for instance, the effective volume of space-time is equal to 1/ǫ1ǫ2. Moreover, the
prepotential of this ‘deformed’ gauge theory can be evaluated and takes the form

FNek(a,Λ, ǫ1, ǫ2)

ǫ1ǫ2
. (0.0.3)

In the limit ǫ1,2 → 0, it reduces to FSW(a,Λ)/ǫ1ǫ2, and this can be seen as a non-
trivial check of the Seiberg-Witten solution. Moreover, for ǫ1 = −ǫ2, it is given by
the field theory limit of the topological string partition function:

∞∑

g=0

g2g−2
s Fg

∣∣
field theory

=
FNek(a,Λ, ǫ1, ǫ2)

ǫ1ǫ2

∣∣∣∣
ǫ1=−ǫ2

, (0.0.4)

and ~ ≡ ǫ1 = −ǫ2 is identified with the topological string coupling gs. This limit
is therefore referred to as the ‘topological string limit’. From the point of view of
the string effective action, the Ω-background can be identified, at the string level
and for ǫ1 = −ǫ2, with a constant anti-self-dual background of graviphotons as in
(0.0.2). From this perspective, one may wonder about the physical significance,
in string theory, of a general Ω-background. In other words, one would like to
find, if any, a coupling in the string effective action in the form of (0.0.2) with an
additional physical field F ,

Fg,nR
2 F 2g−2

G F 2n , (0.0.5)

such that Fg,n coincides, in the field theory limit, with the partition function of
the Ω-deformed gauge theory:

FNek(a,Λ, ǫ1, ǫ2) =
∑

g,n

ǫ2g− ǫ
2n
+ Fg,n

∣∣
field theory

. (0.0.6)

Here, we have defined ǫ± = ǫ1±ǫ2
2

. This task is quite tedious because of the
non-trivial R-symmetry rotation in gauge theory. From the construction of the
Ω-background, ǫ± parametrise rotations in the two independent planes of R4, re-
spectively. By decomposing the Lorentz group accordingly as

SU(2)− × SU(2)+ , (0.0.7)
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this means that the graviphoton background couples only to SU(2)−, consistently
with its definite self-duality. Therefore, the additional physical field F must couple
to SU(2)+ or, equivalently, be a self-dual field strength background.

Such a coupling would provide a physical realisation of the Ω-background which,
from the gauge theory point of view, can simply be regarded as a regulator of the
instanton path integral. The natural question is whether the couplings Fg,n are
the partition functions of some topological string theory that one would call the
refined topological string. If that is the case, then the Fg,n would be a worldsheet
realisation of the latter. The aim of the present work is to achieve a first step in this
direction by identifying, in string theory, a relevant self-dual field strength F giving
rise, in the field theory limit, to the Ω-deformed gauge theory partition function.
More specifically, we explore the connection of the topological string to the BPS-
saturated couplings (0.0.2) and study a natural supersymmetric generalisation
thereof. The additional insertion is then identified with a particular (universal)
vector multiplet.

The plan of this work is the following. In Section 1, we briefly review the quan-
tisation of superstring theory. This sets the notation and provides with the basics
needed in the subsequent parts of the manuscript. In Sections (2-5), we present the
main ingredients of topological string theory and discuss its known connection to
higher derivative couplings in the string effective action. In Sections (7-9), based
on [12], we identify the vector multiplet associated to F and calculate, perturba-
tively, the corresponding coupling coefficients. In particular, it is shown that the
field theory limit of the latter reproduces the perturbative part of the Ω-deformed
N = 2 gauge theory partition function introduced in Section 6. Finally, in Section
10, we use a D-brane realisation of gauge theory instantons in order to calculate
non-perturbative corrections to the generalised couplings and prove the precise
matching with the non-perturbative part of the gauge theory partition function,
as discussed in [13]. The relation between these couplings and the refined topo-
logical string is discussed in Section 10.4. Some complementary technical material
used throughout the manuscript is gathered in a number of appendices.

xx



Part I

Introduction
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1 Elements of String Theory and Conformal
Field Theory

The basic idea of string theory is to replace point particles by a one-dimensional
object, or a string, embedded in a target space. The world-line becomes a two-
dimensional surface, the worldsheet, describing the evolution of the string. Hence,
the natural theory to study is a sigma-model in two dimensions describing the
dynamics of a relativistic string. Of course, the latter can have different shapes: it
can be closed or open, oriented or unoriented. Many of the discussions below are
valid for any type of strings, and we point out some of the peculiarities of each of
them. Similarly, a Feynman diagram describing an interaction of point particles
is replaced by a surface. However, locally, the latter is simply the worldsheet of
a string. In particular, there is no notion of vertex points and interactions seem
to be purely geometric: an interaction term is solely fixed by the choice of the
external string states, at each order in perturbation theory which is represented
as a genus expansion or a sum over worldsheet topologies. Finally, in the limit
where the string length is sent to zero, one expects to recover the usual properties
of a quantum field theory. In what follows, we briefly review the quantisation of
the bosonic string, then we present some properties of superstring (perturbation)
theory which is necessary in order to describe space-time fermions. Most of the
material presented in this part of the manuscript can be found e.g. in [51, 60, 77, 78].
For a more recent discussion of string perturbation theory, we refer the reader to
[91].

1.1 The Bosonic String

A free bosonic string propagating in a D-dimensional target space (or space-time)
can be described by using a collection of bosonic fields Xµ(ξa), where µ = 0 · · ·D−
1, a = 1, 2 and ξ1 = σ, ξ2 = τ parametrise the worldsheet of the string. The latter
take value in [0, 2π]×R for closed strings and [0, π]×R for open strings. Physical
quantities should not depend on a particular parametrisation of the worldsheet, so
the sigma-model has to be ξ-reparametrisation invariant. The simplest choice is
the Nambu-Goto action that calculates the surface of the worldsheet:

SNG = −T
∫
d2ξ
√
− det(gab) , (1.1.1)
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1 Elements of String Theory and Conformal Field Theory

where T = 1
2πα′ is the string tension and gab = Gµν(X) ∂aX

µ ∂bX
ν is the pull-back

of the space-time metric Gµν on the worldsheet. The constant α′ has the units of
(space-time) length-squared and is called the Regge slope. This non-linear action is
difficult to quantise. Fortunately, by introducing an auxiliary field hab having the
meaning of a two-dimensional metric, one can linearise the Nambu-Goto action:

SP = − 1

4πα′

∫
d2ξ
√
−hhab ∂aXµ ∂bX

ν Gµν(X) . (1.1.2)

This is the Polyakov action. The space-time coordinates Xµ are scalars on the
worldsheet coupled to two-dimensional gravity. The action (1.1.2) is manifestly in-
variant under (global) general coordinate transformations which reduce to Poincaré
in the case where the space-time metric is flat, Gµν(X) = ηµν (which we assume in
the quantisation of the sigma-model below). Moreover, (1.1.2) also enjoys (local)
diffeomorphism invariance. In fact, one can write a more general action respecting
these symmetries:

S = − 1

4πα′

∫
d2ξ
√
−h
(
hab ∂aX

µ ∂bX
ν Gµν(X)

+ εab ∂aX
µ ∂bX

ν Bµν(X) + α′φ(X)R(2)
)
, (1.1.3)

where ε is the Levi-Civita symbol, Bµν is an anti-symmetric tensor (Kalb-Ramond
field), φ is a scalar field identified with the dilaton and R(2) is the two-dimensional
Ricci scalar. G, B, φ are usually referred to as the string background fields. Notice
that for a constant dilaton background, the last term in (1.1.3) is somehow trivial
and, in particular, does not introduce any classical dynamics. This is due to the
fact that in two dimensions, any Einstein-Hilbert term satisfies Einstein’s equation
Rab− 1

2
habR = 0 because Rabcd ∝ hachbd−hadhbc. On the other hand, the Polyakov

action (1.1.2) enjoys an additional local symmetry, Weyl rescalings, which is very
peculiar to two dimensional sigma-models and is fundamental for the theory to
be well-defined. Its action is defined as an arbitrary rescaling of the worldsheet
metric:

hab → e2ω(ξ)hab . (1.1.4)

Notice that Weyl invariance forbids any potential term
∫
d2ξ
√
−hV (X) or a cos-

mological constant. Moreover, the dilaton term in (1.1.3) breaks, in general this
symmetry: √

−hR(2) →
√
−hR(2) − 2 �ω(ξ) , (1.1.5)

with � =
√
−hhab∇a∇b = ∂a(

√
−hhab∇b). Hence, for a constant dilaton and a

worldsheet without boundaries, the Ricci scalar term preserves, classically, Weyl in-
variance. For a surface with boundaries, an additional term involving the geodesic
curvature k of the boundary is necessary to restore this symmetry:

1

2π

∫

boundary

ds φ k . (1.1.6)
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1.1 The Bosonic String

In general, for a constant dilaton, the Weyl-invariant φ-term in the action gives
the Euler characteristic χ of the worldsheet Σ through the Gauss-Bonnet theorem:

1

4π

∫

Σ

d2ξ
√
−h φR(2) +

1

2π

∫

∂Σ

ds φ k = χ(Σ)φ . (1.1.7)

Gauge fixing

As usual, we can use the local symmetries on the worldsheet to fix some of the
degrees of freedom, for example, by using ξ-diffeormorphims we can bring the
worldsheet metric to a conformally flat form:

hab = e2̺(ξ)ηab . (1.1.8)

Moreover, using a Weyl transformation, the remaining component can be fixed and
the metric becomes flat. Notice that this can always be done locally, which can be
seen e.g. from (1.1.5). The residual symmetry preserving the unit metric on the
worldsheet is a subgroup of the (Diffeomorphism x Weyl) group and corresponds
to conformal transformations. Therefore, the gauge-fixed two-dimensional string
theory is a conformal field theory (CFT) which we now briefly present.

In two dimensions, the conformal group (CG) is infinite. It is generated by
infinitesimal holomorphic and anti-holomorphic coordinate transformations:

z → z + ǫ(z) , (1.1.9)

z̄ → z̄ + ǭ(z̄) . (1.1.10)

By writing the Laurent expansion of ǫ(z) and ǭ(z̄), we can define the generators
ln = −zn+2∂ and l̄n = −z̄n+2∂̄ that factorise the CG into a left- and a right-moving
part. The generators ln satisfy the classical Virasoro or Witt algebra

[ln, lm] = (m− n)lm+n . (1.1.11)

Notice that l−1, l0, l1 together with their right-moving counterparts generate a
globally defined subalgebra corresponding to SL(2,R)×SL(2,R) (or SL(2,C)/Z2

for a Euclidean signature). We denote this subalgebra CG0. A conformal theory
has a conserved, traceless energy-momentum (EM) tensor T :

∂ Tz̄z̄ = 0 = ∂̄ Tzz (1.1.12)

Tzz̄ = 0 = Tz̄z . (1.1.13)

From the point of view of the CFT on the worldsheet, these relations should hold
at the quantum level in order for the theory to be well-defined.

Let us pause for a moment and consider, in string theory, a cylinder describing
the worldsheet of a propagating closed string, parametrised by the complex coor-
dinate w = τ − iσ. Under the conformal transformation z = ew, the cylinder is
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1 Elements of String Theory and Conformal Field Theory

mapped to the Riemann sphere C ∪ {∞}. We mostly work in the z-coordinate
system keeping in mind the map to the canonical picture. Note that in the z-
frame, time flows radially and the origin represents the infinite past. Similarly, the
simplest open string worldsheet, the strip, is mapped to the upper-half plane H.

Back to the CG, the EM tensor can be expanded in Laurent modes as well,

Tzz(z) ≡ T (z) =
∑

n∈Z

Ln
zn+2

, (1.1.14)

where Ln = 1
2iπ

∮
dz zn+1 Tzz(z) are the Virasoro generators. Finally, an essential

ingredient is the operator product expansion (OPE) which expresses, to arbitrary
accuracy, a product of two operators coming close to each other as a sum of local
operators:

Oi(z, z̄)Oj(w, w̄) =
∑

k

Ck
ij(z − w, z̄ − w̄)Ok(w, w̄) . (1.1.15)

Conformal invariance puts stringent constraints on the form of the OPE. It is
convenient to define a basis of local operators φ called primary fields which are
(h, h̄)-tensors for the full CG, i.e.

φ(z, z̄)→
(
∂z′

∂z

)−h(
∂̄z̄′

∂̄z̄

)−h̄

φ(z, z̄). (1.1.16)

h, h̄ are called the conformal weights of φ. One also defines ∆ ≡ h+h̄ and s ≡ h−h̄,
the canonical dimension and spin of the operator. One can then show that the
OPE of the EM tensor with a primary field (which can be used as a definition of
a primary field) is

T (z)φ(w, w̄) =
h

(z − w)2
+
∂φ(w, w̄)

z − w + · · · , (1.1.17)

where the dots denote regular terms. However, the EM tensor is not a primary
field but rather a quasi-primary meaning that it transforms as a tensor only under
the finite conformal subgroup CG0. The OPE of the EM tensor with itself is

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w + · · · . (1.1.18)

c is called the central charge of the conformal algebra and appears in the quantum
Virasoro algebra for the modes Ln:

[Ln, Lm] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n . (1.1.19)

The Green functions of primary fields are constrained by conformal invariance.
For instance, one can completely determine (up to a constant) two- and three-
point functions using CG0. Recall from (1.1.13) that the EM tensor is, classically,
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1.1 The Bosonic String

conserved and traceless. However, this is in general not true at the quantum level
due the to presence of the central charge. One can show that

〈Tzz̄〉 =
c

12
hzz̄ R

(2) , (1.1.20)

and similarly for Tz̄z. Hence, if the worldsheet is curved, the EM tensor is anoma-
lous unless c = c̄ = 0. This is the Weyl anomaly. In order for the string theory to
be well-defined, the latter must cancel.

Consider a general (free, exact) CFT. Using the conformal map to the cylinder,
one can define a Hamiltonian density

H = Tww + Tw̄w̄ =
1

z2
Tzz + c+

1

z̄2
Tz̄z̄ + c̄ . (1.1.21)

By unitarity, Ln = L†
−n. Moreover, the states of the theory are the irreducible rep-

resentations of the Virasoro algebra. Firstly, construct the vacuum as a minimal-
energy and CG0-invariant state. Then define the primary states of conformal
weight (h, h̄), L0|φ〉 = h|φ〉. The Virasoro generators Ln>0 and Ln<0 act as annihi-
lation and creation operators. Acting with the creation operators on the primary
states generates the descendants of the primaries that form, all together, the Verma
module. Thus, the spectrum of the CFT is determined by its primaries. In fact,
one can show that there is a one-to-one correspondence between the states and
the operators of the CFT. In this sense, CFT plays a crucial role in string theory
as we shall see below.

Let us apply the previous ideas by considering the gauge-fixed action (1.1.3) for
a flat background. This is a CFT of D free scalar fields whose EM momentum
tensor is T (z) = − 1

α′ : ∂X
µ ∂Xµ : , where : : is the normal product. By calculating

the OPE of the EM tensor with itself, one finds that this CFT has central charges
c = c̄ = D. Moreover, Xµ is not a primary field but ∂Xµ and ∂̄Xµ are. They
carry conformal weights (1, 0) and (0, 1) respectively. The ‘coherent’ states eipX(z,z̄)

are also primaries of weight (α
′p2

4
, α

′p2

4
). Finally, for later reference, the two-point

function is given by

〈Xµ(z, z̄)Xν(w, w̄)〉 = −α
′

2
ηµν log |z − w|2 . (1.1.22)

Another important class of CFTs is the bc-ghost system where b and c are
anti-commuting fields whose action is

Sbc =
1

2π

∫
d2z b∂̄c . (1.1.23)

For b and c carrying weights (λ, 0) and (1 − λ, 0), this defines a CFT with EM
tensor

T =: ∂b c : − λ ∂ : b c : (1.1.24)
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1 Elements of String Theory and Conformal Field Theory

and central charges c = −3(2λ − 1)2 + 1 and c̄ = 0. The b-c OPE is simply
b(z)c(w) ∼ (z − w)−1. For λ = 2, this system describes the Fadeev-Popov ghosts
arising in the gauge-fixing of the Polyakov action as we describe below. For λ = 1

2
,

it describes a theory of worldsheet fermions relevant for superstring theory.
We would now like to perform the path integral for the Polyakov action

Z =
1

V

∫
DX Dhe−SP [X,h] . (1.1.25)

First of all, we locally fix the metric to ĥab = δab (using Euclidean signature) so
that we are left with a residual symmetry ǫ:

hǫab(ξ
′) = e2̺(ξ)

∂ξc

∂ξ′a
∂ξd

∂ξ′b
ĥcd . (1.1.26)

In other words, we integrate only over physically inequivalent field configurations.
This amounts to inserting the Fadeev-Popov gauge-invariant determinant J [h],
corresponding to the Jacobian of the coordinate transformation (1.1.26), in the
path integral:

Z =
1

V

∫
DXDhDǫ δ(hǫ − h) J [h] e−SP [X,h] =

∫
DX J [ĥ] e−SP [X,ĥ] , (1.1.27)

where we have used the gauge invariance of the Jacobian and the action, and the
integral over ǫ cancels the volume factor. The Fadeev-Popov determinant can be
represented by a Grassmann integral of ghost fields b, c of conformal dimensions
2, -1 respectively:

Z =

∫
DX e−SP [X,ĥ]−Sgh[b,c,ĥ] . (1.1.28)

The ghost action is Sgh = 1
2πα′

∫
d2z (b∂̄c+ b̄∂c̄). The total EM tensor is the sum of

the EM tensor of the X and bc CFTs. The new total central charge is thus given
by the sum of the central charges

ctot = cX + cgh = D − 26 . (1.1.29)

Hence, the vanishing of the total central charge, or the decoupling of the scale
factor of the metric ̺(ξ) at the quantum level requires the target space dimension
to be D = 26. More precisely, one can show that under a Weyl transformation,
the path integral transforms in the conformal gauge as

Z → exp

[
ctot
24π

∫
d2ξ
√
−h(hab∂a̺ ∂b̺+R(h)̺)

]
Z . (1.1.30)

Finally, let us simply mention that the condition for the gravitational anomalies
to cancel, c = c̄, is automatically satisfied.
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1.1 The Bosonic String

Curving the background

So far, we have dealt with a flat space-time background. However, one is interested
in studying more general curved backgrounds (1.1.3). Again, one has to ensure
that the theory is consistent by requiring anomaly cancellation. Here, one is
forced to work perturbatively in a derivative expansion in space-time, and this
corresponds to considering the limit where α′

R
≪ 1, with R being the order of the

space-time curvature. The statement of quantum conformal invariance boils down
to the tracelessness of the EM tensor, and this can be expressed in terms of the
β-functions of the background fields:

T aa = −β
φ

12
R(2) − 1

2α′
(βGµν h

ab + βBµν ε
ab)∂aX

µ ∂bX
ν , (1.1.31)

with the β-functions calculated perturbatively as

βφ = ctot +
3

2
α′

(
4(∇φ)2 − 4�φ−R(D) − 1

12
HµνρH

µνρ +O(α′)

)
, (1.1.32)

βBµν = −α′∇ρ(e−2φHµνρ) +O(α′) , (1.1.33)

βGµν = α′

(
Rµν −

1

4
HµρσHν

ρσ + 2DµDνφ+O(α′)

)
. (1.1.34)

Here, H = dB is the three-form flux associated to the Kalb-Ramond field. The
vanishing of the β-functions can be viewed as a set of equations of motion for the
background fields which can be used to write down a space-time effective action:

Seff =
1

2κ2

∫
dDX

√
Ge−2φ(R(D) + 4(∇φ)2 − 1

2
H2 − 2ctot

3α′
) +O(α′) . (1.1.35)

BRST symmetry and physical states

We have heretofore quantised the bosonic string using a particular gauge fixing.
More generally, one can implement an arbitrary gauge-fixing FA by introducing
new Lagrange multipliers in the path integral. This amounts to adding a new
action Sgf = −

∫
i BAF

A. The full action including the ghosts and the worldsheet
fields enjoys a global symmetry, called the BRST symmetry:

δBRST(Xµ, hab) = −i η c δgauge(X
µ, hab) , (1.1.36)

δBRST(c) = i η c ∂ c , (1.1.37)

δBRST(bA) = η BA , (1.1.38)

δBRST(BA) = 0 . (1.1.39)

The corresponding Noether current is

jBRST = c TX +
1

2
c Tgh +

3

2
∂2c . (1.1.40)
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1 Elements of String Theory and Conformal Field Theory

By making a variation of the gauge-fixing functional FA, the path integral should
remain invariant. This implies that a physical state must be BRST-invariant:

QBRST|Ophys〉 = 0 , (1.1.41)

with QBRST =
∮

dz
2iπ

jBRST. In fact, there is an additional constraint coming from
kinematics that one needs to impose on physical states, that is a mass-shell condi-
tion

b0|Ophys〉 = 0 . (1.1.42)

Using the fact that L0 = {QBRST, b0}, this leads to L0|Ophys〉 = 0. In the absence
of conformal anomalies, the BRST charge QBRST is nilpotent, Q2

BRST = 0. In
particular, any state of the form QBRST|Φ〉 is annihilated by the BRST-charge,
but is orthogonal to any physical state. Therefore, the Hilbert space of physical
states is in one-to-one correspondence with the QBRST-cohomology:

Hphys ≃ HQBRST
. (1.1.43)

Spectrum

Let us go back to the free bosonic string described by (1.1.2) in a flat background.
A primary field φ of weight h can be expanded as

φ(z) =
∑

n∈Z

z−n−h φn . (1.1.44)

Using the fact that ∂Xµ are weight 1 primaries, one can write down the mode
expansion for the free scalars. Alternatively, we derive it canonically from their
equation of motion supplemented with the appropriate boundary conditions. The
solution can be decomposed into a left-moving free boson and a right-moving one,
and the mode expansions read

Xµ
L(z) =

xµ

2
− iα

′pµL
2

ln(z) + i

√
α′

2

∑

n 6=0

αµn
n
z−n , (1.1.45)

Xµ
R(z̄) =

xµ

2
− iα

′pµR
2

ln(z̄) + i

√
α′

2

∑

n 6=0

α̃µn
n
z̄−n . (1.1.46)

Again, one can see from the zero-modes that Xµ is not a primary field. Reality of
Xµ imposes the reality of the zero-modes xµ, pµL , p

µ
R , and the conditions (αµn)

∗ =
αµ−n and (α̃µn)

∗ = α̃µ−n on the oscillators. We first focus on the case of closed oriented
strings for which Xµ are periodic, Xµ(τ, σ+2π) = Xµ(τ, σ). In this case, pµL = pµR
and it represents the center-of-mass momentum of the string. In the quantum
theory, the oscillators αµ−n and α̃µ−n for n positive are creation operators and the
spectrum of the theory is built by acting with them on the vacuum. The levels
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1.1 The Bosonic String

N, Ñ of a given state is defined by the number of oscillators (on the left, right) one
acts with on the ground states, or, equivalently, the eigenvalues of the operators∑

n≥1 α−n·αn and
∑

n≥1 α̃−n· α̃n. Moreover, a given state in the theory must be

gauge-invariant, and this imposes, in particular, the level matching condition1

N = Ñ , (1.1.47)

which can be equivalently formulated as L0 = L̃0.
The above mode expansions correspond to tree-level solutions (cylinder) and one

can generalise them for higher genera (see subsequent sections for more details).
Let us now consider the case of open strings where one needs to impose boundary
conditions on their endpoints. Here, the left- and right-movers are no longer
independent. There are two possibilities that one can combine:

1. Neumann (N) boundary condition: ∂σX
µ|boundary = 0, the endpoint is free.

2. Dirichlet (D) boundary condition: ∂τX
µ|boundary = 0, the endpoint is fixed.

This breaks Poincaré invariance.

Depending on the choice for each endpoint, we can have N-N, D-D, N-D or D-N
boundary conditions and we now list the mode expansions for open strings in each
case:

1. N-N

Xµ(z, z̄) = xµ − iα′pµ ln |z|2 + i

√
α′

2

∑

n 6=0

αµn
n

(z−n + z̄−n) .

2. D-D

Xµ(z, z̄) = xµ − iα′pµ ln
z

z̄
+ i

√
α′

2

∑

n 6=0

αµn
n

(z−n − z̄−n) .

3. D-N

Xµ(z, z̄) = xµ + i

√
α′

2

∑

n∈Z+ 1
2

αµn
n

(z−n − z̄−n) .

In the case where one imposes Dirichlet boundary conditions, no momentum is
allowed (the pµ-term only depends on σ).

As mentioned above, a state in the Hilbert space can be thought of as a (vertex)
operator of the underlying CFT. In the closed string case (we set α′ = 2 for
convenience), it is constrained by conformal invariance to be a primary field of
weight (1, 1) integrated2 over the worldsheet,

∫
d2z V (z, z̄). In order to find the

1The zero-point energies must also match.
2In some specific cases, one uses unintegrated vertex operators by attaching a c (c̄) ghost to the primary

operator. This happens, for instance, in tree-level amplitudes as we discuss in Section 6. In fact, it
turns out that in some cases, there is an equivalence between the formalism using integrated vertex
operators and the one with unintegrated ones, see Section 2.5 of [91].
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vertex operators for the lowest mass states of the theory, recall that the vacuum
carrying momentum pµ is annihilated by all positive-mode oscillators. The mass
operator is

M2 = 2

(
∑

n 6=0

α−m.αm − 1

)
. (1.1.48)

Consequently, the ground state has mass m2 = −2 and is tachyonic. It is a
problematic aspect of the bosonic string as it signals an instability in the theory.
In fact, it is one of the motivations for superstring theory. The tachyon corresponds
to the vertex operator ei p·X , with the on-shell condition p2 = 2. The first excited
state is constructed by acting with one oscillator on the left and another one on
the right, and it corresponds to massless states whose vertex operator is

∂Xµ ∂̄Xν ei p·X . (1.1.49)

The latter can be decomposed into a symmetric traceless tensor Gµν identified
with the graviton, an antisymmetric tensor Bµν and a scalar φ corresponding to
the dilaton. Even though the initial sigma-model (1.1.2) did not include these
fields, string theory generates them automatically.

In the open string case, one can make the same arguments showing that the
ground state is again tachyonic and the first excited state is a massless gauge boson.
One already sees that the closed string probes gravity while the open string carries
the gauge degrees of freedom. The latter can be implemented by attaching an
internal index to the string endpoints which, by definition, have trivial worldsheet
dynamics. They are called Chan-Paton (CP) labels and are natural degrees of
freedom one introduces for such distinguished points in a quantum system. Any
state in the theory carries two additional indices i, j taking values from 1 to n.
One can view the index i as being in the fundamental representation of U(n). If
the string is oriented, then the index at the other endpoint, j, must transform in
the anti-fundamental. Therefore, a given state at level N

|N ; p, ij〉 (1.1.50)

transforms as an adjoint representation of U(n). In fact, if we define the basis of
states

|N ; p, a〉 =
∑

ij

λaij|N ; p, ij〉 , (1.1.51)

then the matrices λa, called the Chan-Paton matrices3, are elements of U(n).
Hence, the oriented open string theory acquires a U(n) gauge symmetry. For
the unoriented string, one must impose the orientifold parity Ω reversing the
orientation of the string:

Ω : Xµ(τ, σ)→ Xµ(π − σ, τ) , (1.1.52)

3a should be viewed as a colour index.
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1.1 The Bosonic String

which translates on the oscillators in the open string sector as

Ωαµn Ω−1 = (−1)n αµn . (1.1.53)

Including the Chan-Paton indices, the states transform as

Ω|N ; p, ij〉 = ω|N ; p, ji〉 , (1.1.54)

with ω = ±1 depending on the level of the state or, equivalently, on its mass.
Consequently, the CP matrices have to be either symmetric or antisymmetric
in order for the corresponding state |N ; p, a〉 to be invariant under Ω. The CP
matrices are then Sp(n) or SO(n) respectively4. For instance, the massless gauge
bosons that are Ω-odd are in the adjoint of SO(n) so we would have an SO(n)
gauge theory.

When dealing with open string amplitudes, we have to take into account the
CP matrices which are not dynamical fields. Hence, adjacent states should have
their corresponding CP matrices contracted (the right endpoint index of one should
correspond to the left endpoint index of the other) as the CP labels are not affected
by the propagation of the string, and the full amplitude simply includes a trace of
the CP matrices of the scattering states.

Amplitudes

The simplest amplitudes one can consider are tree-level ones. They correspond to
scattering of physical states or, equivalently, to CFT correlators of vertex opera-
tors. Naively, one would consider the correlation function of a number of vertex
operators and integrate over their positions. However, this is divergent since we
must only integrate over inequivalent classes with respect to CG0. In other words,
CG0 allows one to fix three of the vertex operators to arbitrary positions. This
leads to (in the closed string case, for the open string it’s very similar)

S(V1, · · · , VN) =

∫ |∏N
i=1 dzi|2
dVCKG

〈
N∏

i=1

Vi(zi, z̄i)〉 . (1.1.55)

The correlator is to be evaluated in the free CFT action considered above. For
instance, if we fix the positions of the vertices V1, V2 and VN , then

dVCKG =
dz1 dz2 dzN

(z1 − z2)(z1 − zN)(z2 − zN)
. (1.1.56)

Let us now turn to the more rich one-loop case and derive the partition function,
or vacuum-vacuum amplitude, for the scalar and ghost CFTs. This is a quantity
of interest not only as the simplest one-loop amplitude but also because it encodes

4The notation Sp(n
2
) is also used in the literature.

13



1 Elements of String Theory and Conformal Field Theory

the spectrum of the theory. Consider first the closed string case. The worldsheet
is either a torus (oriented string) or a Klein bottle (unoriented string). In the
path integral formalism, one must integrate over the space of metrics. On a genus
g Riemann surface, the metric can always be locally brought to a conformally
flat form. However, this is not true globally due to the presence of inequivalent
classes of metrics. Indeed, there exist n conformal Killing vectors parametrising
the transformations leaving the conformally flat metric invariant and m moduli
parametrising the conformally inequivalent metrics. Moreover, one can show that
the conformal Killing vectors correspond to the c zero modes whereas the moduli
of the large gauge transformations are given by the b zero modes. For a general
bc-system as in (1.1.23), the Riemann-Roch theorem states that

N0(b)−N0(c) = (2λ− 1)χ(g) , (1.1.57)

where χ(g) is the Euler characteristic of the genus g Riemann surface and N0

counts the zero modes. In particular, for the case of interest λ = 2, it yields
m−n = 3χ(g). Hence, the moduli space over which we integrate is the quotient of
the space of metrics by the group of diffeomorphisms, Weyl transformations and
large coordinate transformations that connect conformally inequivalent metrics. In
the case of the two-torus, the latter is the modular group SL(2,Z)/Z2 ≡ PSL(2,Z)
and the moduli space is the fundamental domain pictured in Fig. 1.1. It is
parametrised by a complex parameter τ , the complex structure of the torus. More
generally, for a genus g > 1 Riemann surface, there are 3g − 3 complex moduli
(and no conformal Killing vectors).

The partition function can be canonically calculated by picturing the torus
through its fundamental parallelogram: it is a cylinder of height τ2 whose bound-
ary circles are identified after a twist by τ1. The identification produces a trace
with the insertion of the generator of the translations for the cylinder given by the
Hamiltonian density H = L0 − c

24
+ L̄0 − c̄

24
. Hence, the partition function for the

free scalars is (after performing a Wick rotation)

ZX
T = Tr[e−2πτ2(L0−

c
24

+L̄0−
c̄
24

)+2iπτ1(L0−L̄0)] = Tr[qL0−
c
24 q̄L̄0−

c̄
24 ] , (1.1.58)

where q = e2iπτ and τ = τ1 + iτ2. From this form, one can think of the partition
function as a Fourier expansion, i.e. a qq̄-expansion whose exponents label the
states in the spectrum with the integer coefficients being the corresponding degen-

eracies. Using the fact that the generator L0 = p2

2
+
∑

n≥0 α−n·αn and separating
out the zero modes p, the partition function becomes

ZX
T =

VD
(qq̄)D/24

∫
dDp

(2π)D
e−2πτ2 p2 Tr’

[
D∏

i=1

∏

n≥1

qα
i
−n α

i
n q̄α̃

i
−n α̃

i
n

]
, (1.1.59)

where the prime ’ denotes the fact that the trace excludes the zero modes. Per-
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τ 1
-1 1-1/2 1/2

Figure 1.1: A fundamental domain F of the two-torus.

forming the trace yields (after a Wick rotation back)

ZX
T =

iVD
(8π2τ2)D/2

1

(η(τ)η̄(τ̄)D
, (1.1.60)

η(τ) being the Dedekind eta function (C.2.10). Using the properties of the latter,
it is easy to show that the partition function (1.1.60) is modular invariant, i.e.
invariant under the group PSL(2,Z) of the torus, as expected from the consistency
of the theory. In fact, the precise choice of the central charge c is crucial for this
to hold. In order to obtain the full vacuum amplitude, one should calculate the
contribution of the ghost system (or, alternatively, choose a particular gauge-fixing
in the previous calculation). Essentially, the ghosts removes the two transverse
degrees of freedom so that they contribute

Zbc
T = |η(τ)|4 (1.1.61)

to the torus partition function. Putting all the pieces together, the torus vacuum
amplitude is the integral of the modular invariant partition function

ZT =
iV26

4(8π2)13

∫

F

d2τ

τ 2
2

1

(
√
τ2 η(τ)η̄(τ̄))24

. (1.1.62)

Notice that the fundamental domain provides a natural regularisation for the field
theory UV-divergences that would arise had we integrated the partition function

15



1 Elements of String Theory and Conformal Field Theory

around zero. One can do the same analysis for the Klein bottle. This is done by
inserting the orientifold operator Ω in the partition function. The contributions
are from those states whose left- and right-movers are in the same state. The fun-
damental domain of the Klein bottle is parametrised by one positive real number.
Without going into the details, the result is

ZK =
iV26

4(8π2)13

∫ ∞

0

dt

t2
1

(
√
t η(2it))24

. (1.1.63)

Contrary to the case of the torus, here the integral is divergent around t = 0. In
the open string case, one must implement the appropriate left-right identifications.
The relevant worldsheets are the cylinder and the Möbius strip. The results, very
similar to (1.1.63), are

ZC =
iV26 n

2

2(16π2)13

∫ ∞

0

dt

t2
1

(
√
t η(it))24

, (1.1.64)

ZM =
∓iV26 n

4(16π2)13

∫ ∞

0

dt

t2
1

(
√
t ϑ3(0, 2it) η(2it))12

. (1.1.65)

Here, n is the number of Chan-Paton degrees of freedom and the sign refers to
the SO(n) or Sp(n) gauge groups, and ϑ3 is defined in (C.2.2). Once again, these
quantities are divergent around t = 0. For the theory to be well-defined (at least
at one-loop), one can try to choose a gauge group such that the divergence in the
sum of the vacuum amplitudes cancels out. Using the asymptotics of the partition
functions (1.1.64, 1.1.63, 1.1.65), it is easy to show that their behaviour is the same
and the only difference is in the prefactor. The total divergence is dressed with a
factor of (we reinstate the dimension D of space-time)

n2 − 2n 2D/2 + 2D = (n∓ 2D/2)2 . (1.1.66)

Therefore, the bosonic open string theory is consistent only for an SO(213) gauge
group. There is a useful diagrammatic way of representing (1.1.66). Indeed, the
limit t → 0 means that the string worldsheet develops a very long tube and the
sum of the cylinder, Möbius and Klein bottle contributions is represented in Fig.
1.2 below where a cross represents a cross-cap, i.e. an identification of the circle
under the orientifold Ω. The consistency of Type I is thus reinterpreted as a
tadpole cancellation or, equivalently, the absence of gauge anomalies in the low
energy effective action5.

The natural question is whether one can define an all-genus partition function

Z =
∑

χ(g)

g−χ(g)
s Zg , (1.1.67)

5In fact, tadpole cancellation is stronger than the condition of absence of gauge anomalies.
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+ + +

= +( )²
Figure 1.2: Tadpole cancellation in Type I: the sum of the cylinder, Möbius and Klein

bottle worldsheets is the square of the sum of two tadpoles in the limit t→ 0.

where Fg is the genus g partition function and gs is the vacuum expectation value
(v.e.v) of the dilaton φ defining the string coupling constant. From the previous
discussion, in order to have a sensible path integral, it is necessary to take into
account the local and global worldsheet degrees of freedom that manifest them-
selves through the presence of zero-modes in the measure. For definiteness, let us
focus on the closed string. On a genus g Riemann surface Σg, there are 3g − 3
zero modes for the b-ghosts. Hence, one must insert 3g − 3 b-ghosts in the path
integral, and these can be folded with the same number of Beltrami differentials
parametrising deformations of the moduli space of genus g Riemann surfaces Mg

to form anMg-invariant measure. The genus g partition function then reads

Zg =

∫

Mg

〈
3g−3∏

a=1

b·µa
3g−3∏

a=1

b̄· µ̄a〉 , (1.1.68)

with b·µa =
∫
Σg
d2z bzz(µa)z̄

z .

1.2 Superstring Theory

The bosonic string theory, as it stands, has two main drawbacks. Firstly, its ground
state is tachyonic so the theory is not viable or, at least, is not expanded around
the right vacuum. Secondly, it lacks space-time fermions which are essential to
describe matter. In fact, both problems are related as we now readily show.

Fermions in two dimensions

Fermions on the worldsheet can be easily described by a bc-system as in (1.1.23)
with spin λ = 1

2
. They can also carry a space-time index and the action is

SF =
T

2

∫
d2ξ χ̄µ γa∂a χµ = −T

∫
d2ξ (ψµ ∂̄ ψµ + ψ̄µ ∂ ψ̄µ) , (1.2.1)

17



1 Elements of String Theory and Conformal Field Theory

where γa are Pauli matrices and χ =

(
ψ
ψ̄

)
is a Majorana-Weyl fermion. The

equations of motion of the fermions ψ and ψ̄ imply that they are holomorphic and
anti-holomorphic respectively. Viewed as a bc-system, (1.2.1) defines a CFT with
EM tensor T (z) = −1

2
ψµ ∂ ψµ and central charge c = 1

2
. On a closed string world-

sheet, invariance of the action (1.2.1) imposes two possible boundary conditions
for the fermions:

1. Periodic or Ramond (R) boundary condition: ψµ(τ, σ + 2π) = ψµ(τ, σ) ,

2. Anti-periodic or Neveu-Schwarz (NS) boundary condition: ψµ(τ, σ + 2π) =
−ψµ(τ, σ) .

On the complex plane, this implies the following mode expansions

ψµ =
∑

n∈Z+ν

ψµn z
−n−1/2 , (1.2.2)

(1.2.3)

with (νR, νNS) = (0, 1
2
), and the modes satisfy the algebra

{ψµm, ψνn} = δm+n,0 η
µν = {ψ̄µm, ψ̄νn} . (1.2.4)

Notice that the periodicities are exchanged when one goes from the cylinder to
the complex plane so that a Ramond fermion becomes anti-periodic (when going
around the origin of the complex plane) while an NS fermion becomes periodic.
This stems from the fact that they carry conformal weight 1/2. The states of the
Hilbert space can be constructed as |ψ〉 = limz→0 ψ(z)|0〉. In the Ramond sector,
this implies that ψn≥0 act as annihilation operators since they lower the energy of
the states:

[L0, ψ
µ
n] = −nψµn , (1.2.5)

except for ψµ0 which is a zero mode. Therefore, the vacuum is degenerate and
corresponds to a state |α〉 with 2D/2 components generating a Clifford algebra in
D dimensions. This is precisely what is required to have space-time fermions.

In the NS sector, there are no zero modes because of the 1/2-integer shift and
ψµn≥1/2 act as annihilation operators. Combining left- and right movers, it is clear

that space-time fermions arise from the R⊗NS and NS ⊗R sectors whereas the
R⊗ R and NS ⊗NS sectors can only generate space-time bosons.

RNS superstring

Let us apply these ideas to construct the Ramond-Neveu-Schwarz (RNS) super-
string. The starting point is a two-dimensional sigma-model with a flat target
space, described by the supersymmetric version of Polyakov’s action
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1.2 Superstring Theory

SSPol = − 1

4πα′

∫
d2ξ
√
−h(hab∂aXµ ∂bXµ − iψ̄µ γa∂a ψµ

+ 2χ̄a γ
bγa ψµ ∂bXµ −

i

2
ψ̄µψµ χ̄aγ

bγaχb) , (1.2.6)

where χ is the gravitino of the worldsheet gravitational multiplet. On top of the
symmetries of (1.1.2) (space-time Lorentz, local reparametrisations and Weyl),
this action has N = 1 supergravity and super-Weyl invariance

δλχa = iλ γa , (1.2.7)

δλX
µ = δλψ

µ = δλh = 0 . (1.2.8)

Using these symmetries, one can locally bring the metric to a flat form and set
χa = 0 so that the resulting action (α′ = 2)

S =
1

4π

∫
d2z (∂Xµ ∂̄Xµ + ψµ∂̄ψµ + ψ̄µ∂ψ̄µ) , (1.2.9)

represents a superconformal field theory (SCFT) generated by the EM tensor

T (z) = −1

2
(∂Xµ ∂Xµ + ψµ∂ψµ) (1.2.10)

and its superpartner, the worldsheet supercurrent, which has conformal weight 3/2

TF = iψµ ∂Xµ . (1.2.11)

These conserved currents satisfy the following OPEs:

T (z)T (w) =
c/2

(z − w)2
+

2T (w)

(z − w)2
+
∂T (w)

z − w , (1.2.12)

T (z)TF (w) =
3/2

(z − w)2
+
∂TF (w)

z − w , (1.2.13)

TF (z)TF (w) =
D

(z − w)3
+

2T (w)

z − w . (1.2.14)

Here, the central charge c can be obtained by counting the contribution of D free
scalars and fermions Xµ, ψµ as c = D + 1

2
D = 3D

2
. Using the mode expansions of

the worldsheet fields (1.1.45, 1.1.46, 1.2.2), the EM tensor and the supercurrent
can be expanded as

T (z) =
∑

n∈Z

Ln z
−n−2 , (1.2.15)

TF (z) =
∑

r∈Z+ν

Gr z
−n−3/2 . (1.2.16)
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The modes are defined as

Lm =
1

2

∑

n∈Z

: αµm−n αµn : +
1

4

∑

r∈Z+ν

(2r −m) : ψµm−r ψµ r : + aR,NS δm,0 , (1.2.17)

Gr =
∑

n∈Z

αµn ψµ r−n , (1.2.18)

where aR = 1/16 and aNS = 0 are the zero-point energies corresponding to the
conformal weights of the ground state in the R and NS sectors.

In the Fadeev-Popov procedure, we implement the gauge-fixing by introducing
the appropriate ghosts corresponding to the generators of the gauge symmetry.
Here, on top of the b and c ghosts of the bosonic string, we introduce another
couple of bosonic ghosts β, γ which can be viewed as the superpartners of the b,c
ghosts, and are themselves a (commuting) bc-system (1.1.23) with λ = 3/2, so that
β, γ carry conformal weights 3/2,−1/2. They introduce 11 units of central charge
implying that the total central charge of the SCFT is ctot = 3

2
D− 26+ 11 = 3

2
D−

15. Consequently, the consistency of superstring theory requires the space-time
dimension to be D = 10. For future reference, let us write down the contribution
of the ghost and superghost sectors to the EM tensor and the supercurrent:

T gh = −2: b∂c : +: c∂b : − 3

2
: β∂γ : − 1

2
: γ∂β : , (1.2.19)

T gh
F = −2: bγ : +: c∂β : +

3

2
: β∂c : . (1.2.20)

As in the case of the bosonic string, a BRST symmetry survives the gauge fixing
and its charge is given by

QBRST =

∮
dz

2iπ
[cT + γTF +

1

2
(cT gh + γT gh

F )] . (1.2.21)

The BRST charge is again nilpotent when the total central charge of the SCFT
vanishes, and physical states are classified by its cohomology. Moreover, one must
impose a mass-shell condition L0|Ophys〉 = 0 but also its fermionic counterpart in
the R sector

G0|Ophys〉 = {QBRST, β0}|Ophys〉 = 0 . (1.2.22)

Before closing this section, we give the mode expansions for the ghosts and su-

20
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perghosts

b(z) =
∑

n∈Z

bn z
−n−2 , (1.2.23)

c(z) =
∑

n∈Z

cn z
−n+1 , (1.2.24)

β(z) =
∑

n∈Z+ν

βn z
−n−3/2 , (1.2.25)

γ(z) =
∑

n∈Z+ν

γn z
−n+1/2 , (1.2.26)

with ν being 0 in the R sector and 1/2 in the NS sector.

Bosonisation

One of the surprising yet very useful results of two-dimensional CFTs is the equiv-
alence of field theories with different fields and actions, known as bosonisation,
which we now present. Consider a bc-system as in (1.1.23). We would like to find
a bosonic system equivalent to this fermionic one. A scalar field H has the OPE

H(z)H(w) ∼ − ln(z − w) . (1.2.27)

In order to recover the OPE of the bc-system, one can ‘exponentiate’ (1.2.27).
Indeed, the coherent states e±iH(z) have the desired OPEs:

eiH(z)e−iH(w) ∼ 1

z
, (1.2.28)

the other ones being regular. One is thus led to assume the equivalence

b(z) ∼= eiH(z) , (1.2.29)

c(z) ∼= e−iH(z) . (1.2.30)

However, a general bc-system contains a background charge Q = 2λ− 1, λ being
the conformal weight of the b-field, that a free scalar H does not capture. This
can be cured by shifting the EM tensor of the bosonic theory as

TH − i(λ−
1

2
)∂2H . (1.2.31)

In other words, the equivalent bosonic CFT is that of a linear dilaton with V =
−i(λ − 1

2
). Indeed, using the fact that eiqH(z) has conformal weight q2/2 + iqV ,

one can easily check that the conformal weights of b,c match precisely those of
eiH ,e−iH . Finally, the fermion or ghost number jbc = −bc is equivalent to −i∂H .
This applies in particular to the case of free fermions (λ = 1/2), or the b,c ghost
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system (λ = 2) for which the bosonic operators are denoted e−ρ, e ρ. Note that
for the superstring, one needs five free scalars Ha, a = 1, . . . , 5 for the worldsheet
fermions and one, ρ, for the b,c ghosts.

For the βγ CFT, the bosonisation employs two decoupled CFTs, a bc-like CFT
denoted ηξ and a free scalar one ϕ. The equivalence is then formulated as

β(z) ∼= e−ϕ(z)∂ξ(z) , (1.2.32)

γ(z) ∼= eϕ(z)η(z) . (1.2.33)

Once again, the conformal weights match since the operator eqϕ has weight −1
2
q(q+

2). The EM tensor of the βγ-system is identified with the sum of the ϕ and ηξ
ones. Notice that the superghost number is given by ∂ϕ. In addition, one can
further bosonise the ηξ CFT in terms of a free scalar χ as η ∼= e−χ and ξ ∼= eχ,
hence obtaining

β(z) ∼= e−ϕ(z)+χ(z)∂χ(z) , (1.2.34)

γ(z) ∼= eϕ(z)−χ(z) . (1.2.35)

Spectrum, GSO projection

The vacuum |0〉 of the SCFT corresponds to the identity operator. This is most
easily seen by imposing regularity of c(z)|0〉 at the origin. Hence, cn≥2|0〉 = 0.
However, c1 is a lowering operator so that |0〉 is not the ground state of the
theory. The latter is obtained by acting with c1 as can be derived from the anti-
commutation relations of the b,c ghosts. Therefore, the ground state for the ghost
CFT is c1|0〉 which can also be written as c(0)|0〉.

The situation is similar for the superghost CFT where, in the NS sector, γ1/2

does not annihilate the identity operator. However, the commuting nature of the
superghosts renders the problem more complicated because the ground state is
degenerate. The operator α(z) one needs to insert should have a regular OPE
with γ(z) giving a simple zero (and a simple pole with β(z)). With the help of
bosonisation, one can show that the operator e−ϕ has precisely these properties so
that the ground state for the βγ CFT is, in the NS sector, |0〉NS ≡ e−ϕ|0〉.

In the R sector, there are no branch cuts but the ground state is degenerate
because of the fermionic zero modes. Consistency of the theory imposes having
branch cuts in the OPE of the superghosts with the R ground state leading to
|0〉R ≡ e−

ϕ
2 Θs|0〉, Θs being the spin-field introducing a branch cut in the OPE

with the worldsheet fermions. It can be bosonised in terms of the free scalars Ha:

Θs = eis
aHa , (1.2.36)

with sa = ±1/2. Let us give a more detailed, alternative derivation of this state-
ment. Recall that in the R sector, the fermion zero modes ψµ0 generate a Clifford
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algebra {γµ, γν} = −2δµν , with γµ ≡ i
√

2ψµ0 . Now define the complexified basis

Γ0
± =

1

2
(γ1 ± γ0) , (1.2.37)

Γi± =
1

2
(γi ± iγ2i+1) , (1.2.38)

with i = 1, . . . , 4. Γ± play the role of creation and annihilation operators. The R
ground state is then defined in terms of a spin field s:

|s〉 =
4∏

a=0

(Γa+)sa+ 1
2 |0〉 . (1.2.39)

|0〉 is to be thought of as carrying a spin | ↓, ↓, ↓, ↓, ↓〉 and each Γ+ flips the
corresponding spin. Recall that the 32 Dirac representation is reducible with
respect to the chirality matrix

Γ11 = 32

4∏

a=0

(Γa+Γa− −
1

2
) . (1.2.40)

Indeed, if one defines |α〉 as being the state with even number of sa = 1/2 and |α′〉
as carrying an odd number of them, then these two representations are irreducible
and correspond to the 32 = 16 ⊕ 16′ decomposition. In particular, Γ11|α〉 = |α〉
and Γ11|α′〉 = −|α′〉. The R ground state can thus be written as

|0〉R = |α〉+ |α′〉 . (1.2.41)

The operator e−
ϕ
2 Θs is nothing but the vertex operator representing the R ground

state.
In order to construct the spectrum of the superstring, we must include the right-

movers and consider the four possible combinations of NS and R sectors. As we
have seen previously only R⊗NS and NS ⊗R generate space-time fermions, the
other two sectors giving rise to space-time bosons.

First, consider the NS-NS sector. By taking into account the momentum de-
generacy of the ground state, its vertex operator is (the c-ghost insertions are
omitted)

e−ϕe−ϕ̄ eip·X . (1.2.42)

Using the mass-shell condition, one can show that this state is tachyonic (m2 =
−1). The first excited state is obtained by acting with the oscillators ψµ−1/2 and

corresponds to the vertex operator

e−ϕψµ e−ϕ̄ψ̄ν eip·X . (1.2.43)

It is a massless state generating a graviton, a B-field and a dilaton. Higher excita-
tions are massive and we do not consider them here.
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In the R-R sector, the ground state is a massless spinor (from the left and the
right) and corresponds to the vertex operator

e−
ϕ
2 Θs e

− ϕ̄
2 Θ̄s e

ip·X . (1.2.44)

Finally, in the R-NS sector, the ground state is constrained by level matching
(1.1.47) to be

e−
ϕ
2 Θs e

−ϕ̄ψ̄µ eip·X . (1.2.45)

This is a massless state decomposing into a spin-3/2 field, the gravitino, and a
spin-1/2 field, the dilatino.

Notice that the ground states we obtain form a representation of N = 1 space-
time supersymmetry which can be attributed [17] to the N = 2 SCFT on the
worldsheet6. On the other hand, the presence of the tachyon is undesirable and
it turns out that it is eliminated from the spectrum by the Gliozzi-Scherk-Olive
(GSO) projection as we now briefly discuss.

The idea is to introduce a parity symmetry which selects only part of the spec-
trum that does not include the tachyon. This might seem ad hoc, even though one
can show that it is rooted in the consistency of the superstring7. Let us first focus
on the NS sector in which the fermion number operator is

F =
∑

r≥1/2

ψµ−r ψ
i
r . (1.2.46)

The fermion parity operator (−)F counts the number of fermionic oscillators of
each state (modulo 2). Clearly, the NS ground state is even:

(−)F |0〉NS = |0〉NS . (1.2.47)

The natural projection is then to select only the states that are even under GNS ≡
(−)F+1. In the R sector, the ground state is massless and, naively, one is not forced
to impose any projection. However, this would render the theory inconsistent as
it would break one-loop modular invariance. Here, the relevant fermion parity is8

GR ≡ (−)F Γ11 under which one of the irreducible spinor representations, denoted
S (for spinor), is even and the other one, C (for conjugate spinor) is odd:

GR|S〉 = |S〉 , (1.2.48)

GR|C〉 = −|C〉 . (1.2.49)

One has the freedom to choose either projection. This implies various projections
when one includes the right-movers as well, leading to different consistent theories
presented in the next subsections.

6The local N = 1 SCFT is in fact enhanced to a global N = 2 one.
7It is related to the conformal invariance of the worldsheet theory which shows up in particular at

one-loop as the strong constraint of modular invariance of the partition function.
8The chirality matrix Γ11 comes from the fermion zero modes present only in the R sector.
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1.2 Superstring Theory

Partition Functions

As in the bosonic string case, it is useful to calculate the contributions of the
fermionic degrees of freedom of the SCFT to the one-loop partition function and
we restrict our attention to the closed string case. Consider a free complex fermion
ψ on a two-torus whose action is given by

S = − 1

2π

∫
d2z ψ ∂̄ ψ . (1.2.50)

ψ can have two different boundary conditions on each cycle of the torus (periodic
or anti-periodic) and we parametrise them by two Z2-valued integers a,b such that

ψ(ξ1 + 2π, ξ2) = eiπ(1−a)ψ(ξ1, ξ2) , (1.2.51)

ψ(ξ1, ξ2 + 2π) = eiπ(1−b)ψ(ξ1, ξ2) . (1.2.52)

The choice of a couple (a, b) is called a spin structure. On a genus g Riemann
surface, there are 2g cycles so that the number of spin structures is 22g. Mathe-
matically, a fermion is a section of a line bundle η such that η⊗η = K, K being the
canonical line bundle, i.e. the bundle of holomorphic one-forms on the Riemann
surface9. There are 22g ways of taking the ‘square-root’, each one corresponding
to a topologically inequivalent way of putting a spinor on the Riemann surface.

For a particular spin structure (a, b), the partition function is

Zψ[
a
b ] = Tr[eiπbF qH(a)] , (1.2.53)

with the boundary condition a shifting the zero-point energy in the Hamiltonian
and F being the fermion number. The canonical calculation of the trace is straight-
forward. However, we present here an alternative derivation using the path integral∫
dψ e−S[ψ]. The integral is Gaussian and gives the determinant of the operator ∂̄

which is an infinite product of its eigenvalues m+ a
2
+(n+ b

2
)τ , τ being the complex

structure of the torus. Using ζ-function regularisation as in Appendix D.1, one
obtains

Zψ[ab ] =
ϑ[ab ](τ, 0)

η(τ)
. (1.2.54)

The general theta-function with characteristics is defined in (C.2.1). Notice that
for periodic boundary conditions (a, b) = (0, 0), the partition function is zero as
expected due to the presence of zero-modes.

The βγ CFT can be calculated in a similar fashion. From its bosonic nature,
one expects the partition function to be proportional to (Zψ)−1. The relative
phase is essentially fixed by the eigenvalue of the ground states under GNS or GR

9Roughly speaking, a fermion transforms as dz1/2 so that it ‘squares’ to a one-form.
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1 Elements of String Theory and Conformal Field Theory

which depends not only on the boundary conditions (a, b) but also on the choice
of chirality for the R ground state which we parametrise by a Z2 integer µ:

Zβγ[
a
b ] = (−)b+µab

η(τ)

ϑ[ab ](τ, 0)
. (1.2.55)

Notice that the partition function of the βγ CFT cancels the one of a complex
fermion. This is to be expected in the full superstring theory from the gauge-
fixing procedure since the superghosts eliminate the two (unphysical) longitudinal
degrees of freedom of the worldsheet fermions. Finally, the full partition function
is obtained by including the right-movers (and also the partition functions (1.1.60,
1.1.61)), implementing the GSO projection by inserting 1+G

2
and summing over all

spin structures.

Type II superstring

The choice of boundary conditions for the fermions ν and GSO projection (G) for

the left- and right-movers gives rise to 16 different sectors labeled by ((ν,G), (ν̃, G̃)),
and only particular combinations of them lead to consistent superstring theories.
First of all, notice that the sector (NS,−) which contains the tachyon, can only

be paired with (ÑS,−) due to level matching. Hence, there are only 10 possible
sectors. In addition, we only focus on theories projecting out the tachyonic ground
state. This is the Type II superstring which can be either chiral (IIB) or non-chiral
(IIA) and these are the only inequivalent theories one can construct in this way.
In what follows, we present the massless spectrum of each of them.

Type IIA

The ground state of the NS-NS sector is a massless space-time vector from the left
and the right, i.e. an 8v ⊗ 8v representation of the little group SO(8) of SO(1, 9).
It decomposes as

8v ⊗ 8v = 1⊕ 28⊕ 35 (1.2.56)

in terms of a dilaton (1), a two-form (28) and a symmetric traceless tensor (35).
This is the string background as in the Polyakov action (1.1.3). In the R-R sector,
only the relative chirality matters and we choose the left GSO projection to be a
spinor S so that the right one is a conjugate spinor C̃. This gives rise to a vector
and a three-form as can be seen from the decomposition

8s ⊗ 8c = 8v ⊕ 56v . (1.2.57)

The fermionic states arise from the NS-R and R-NS sectors from which one obtains
a dilatino (spin 1/2) and a gravitino (spin 3/2) according to the group-theoretic
relation

8v ⊗ 8c,s = 8s,c ⊕ 56s,c . (1.2.58)

That is, space-time supports an N = 2 theory in a ten-dimensional space-time.
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1.2 Superstring Theory

Type IIB

The GSO projection is chosen such that the R ground state is a spinor. The
massless spectrum is the same as in Type IIA apart from the states coming from
the R-R sector (the theory is chiral). The latter gives rise to a scalar (or zero-form),
a two-form and a self-dual four-form:

8s ⊗ 8s = 1⊕ 28⊕ 56 . (1.2.59)

Hence, N = 2 supergravity in ten dimensions arises as the massless or effective
field theory of the Type IIB superstring.

Type I superstring

One can make the same analysis for the open string sector. In fact, an open
superstring theory must also include closed strings because open and closed strings
can interact, see Fig. 1.3. First of all, one must impose the orientifold projection
Ω and then the appropriate GSO. In this case, the GSO has to be chiral as in
Type IIB in order to be consistent with the orientifold projection (or else we break
Poincaré invariance). In this sense, the theory one obtains is a Type IIB orientifold
called the Type I superstring. The massless spectrum is thus very similar to the
Type IIB and the Ω-projection eliminates the B-field from the NS-NS sector and
the zero- and four-forms from the R-R sector. The resulting effective field theory
is an N = 1 supergravity.

Figure 1.3: Interaction between open and closed strings.

In the previous section, we have seen that anomalies can appear as divergences
in the partition function. In order for the theory to be well-defined, the latter
must cancel and this occurs only when n = 32, i.e. when the Type I superstring
supports an SO(32) gauge theory, as can be seen from (1.1.66). In fact, one can
separate out two tadpoles, one coming from the RR sector and the other one
from the NS-NS sector which are, however, equal because of supersymmetry. By
Poincaré invariance, the RR tadpole corresponds to a term in the effective action
sourced by a ten-form (in the NS-NS sector the source is given by the dilaton or
the graviton):

Qtot

∫
d10xC10 . (1.2.60)

In ten space-time dimensions, a ten-form is non-dynamical and appears in the
action only through (1.2.60). Integrating it out yields the constraint

Qtot = 0 , (1.2.61)
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precisely as computed by (1.1.66).

Heterotic superstring

There is a different hybrid superstring theory one can construct by using the fact
that a closed string theory has independent left- and right-movers. The Heterotic
string is obtained by combining a SCFT on the left-moving side with a bosonic
string on the right-moving one. The resulting worldsheet has N = (1, 0) super-
symmetry.

From the left-moving sector, the absence of conformal anomalies implies that
the space-time dimension is 10. However, from the right-moving sector, the theory
is inconsistent because the total central charge is non vanishing, c̃tot = c̃X + c̃gh =
10−26 = −16. One is forced to introduce additional degrees of freedom which can
either be bosonic or fermionic. In the first case, sixteen internal (compact) bosons
are enough to cancel the total central charge and one can show that, due to modular
invariance, they must live on a Euclidean even self-dual lattice. In the second case,
one must add thirty-two free internal real fermions (i.e. without a space-time
index) with the appropriate boundary conditions. In fact, both approaches are
equivalent through bosonisation. Here, we focus on the fermionic approach.

The additional fermionic degrees of freedom are denoted λ̃A, A = 1, . . . , 32. In
the right-moving sector, the CFT has an additional global symmetry associated
to the new index A, which depends on the choice of boundary conditions. Notice
that the vacuum structure is very different from the usual SCFT case because of
the absence of superghosts. The simplest choice is to assign the same boundary
conditions to all the fermions (NS or R). This implies that λ̃A transforms as an
SO(32) vector. The other possibility is to give NS boundary conditions to n
fermions and R to the 32− n remaining ones. In this case, one can show that the
only consistent choice is n = 16 so that the relevant internal group is SO(16) ×
SO(16). One way to see this is to calculate the zero-point energy

ã =
8

24
+

n

48
− 32− n

24
=

n

16
− 1 . (1.2.62)

Level-matching with the left-moving sector requires the mass-squared to be integer,
M2 = N − a = N − ã, and one sees that the only possible choice is n = 16.

In the SO(32) theory, the GSO projection in the supersymmetric (left-moving)
sector is such that the R ground state is a spinor |S〉 and the NS ground state is
a space-time vector ψµ−1/2|0, p〉. On the bosonic (right-moving) side, one imposes

either NS or R boundary conditions in all internal directions A. In the first case,
the vacuum and the first excited states λ̃A−1/2|0, p〉 are tachyonic and only at level

Ñ = 2 one obtains massless states λ̃A−1/2 λ̃
B
−1/2|0, p〉 and α̃µ−1|0, p〉. In the R sector,

there are fermionic zero-modes λ̃A0 forming an SO(32) Clifford algebra, and the
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1.2 Superstring Theory

ground state is a massive spinor |A〉. Modular invariance forces a GSO projection
that projects the latter onto its positive chirality component |A+〉.

The massless spectrum is then as follows. The states

ψµ−1/2|0, p〉 ⊗ α̃
µ
−1|0, p〉 (1.2.63)

give rise to the dilaton, the B-field and the graviton. Together with the gravitino
and the dilatino in

|S〉 ⊗ α̃µ−1|0, p〉 , (1.2.64)

they form the N = 1 gravitational multiplet in ten dimensions. The gauge degrees
of freedom arise from the states

ψµ−1/2|0, p〉 ⊗ λ̃A−1/2 λ̃
B
−1/2|0, p〉 , (1.2.65)

|S〉 ⊗ λ̃A−1/2 λ̃
B
−1/2|0, p〉 . (1.2.66)

(1.2.65) is a space-time SO(32) gauge boson which, together with the Majorana-
Weyl spinor (1.2.66), form an N = 1 vector multiplet. Hence, the effective field
theory of this Heterotic superstring is an N = 1 theory with gauge group SO(32).

Let us turn to the SO(16)×SO(16) theory. The gravitational sector is unchanged
and the massless gauge degrees of freedom arise from the NS-NS and R-NS/NS-R
sectors (here, we are referring to the boundary conditions of the internal fermions
in the right-moving sector only). The index A is decomposed accordingly as (a, ā)
with a = 1, . . . , 16 and ā = 17, . . . , 32. In the NS-NS sector, the relevant states are

λ̃a−1/2 λ̃
b
−1/2|0, p〉 , (1.2.67)

λ̃ā−1/2 λ̃
b̄
−1/2|0, p〉 , (1.2.68)

λ̃a−1/2 λ̃
b̄
−1/2|0, p〉 . (1.2.69)

Tensoring with |S〉 produces spinors χab, χāb̄ in the adjoint of each of the SO(16),
(120, 1) and (1, 120) respectively, and a mixed (16, 16) spinor χa,ā. The tensor
product with ψµ−1/2|0, p〉 gives the corresponding space-time gauge boson. However,

the mixed states (16, 16) are eliminated by the GSO projection. From the R-NS
sector, the relevant right-moving massless state is a spinor of the first SO(16)
and, together with the left-moving contribution, give a space-time spinor and a
space-time vector (1, 128). Finally, the NS-R sector produces the same state with
respect to the second SO(16).

The Heterotic SO(16) × SO(16) has thus a gauge boson that transforms in
the adjoint of the 120 ⊕ 128 = 248 representation which is the adjoint of the
exceptional group E8, and similarly for the other SO(16). Consequently, space-
time supports an N = 1, E8 × E8 gauge theory.
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1.3 Compactification

We have so far described superstring theory with a target space having ten non-
compact dimensions. Of course, one has to make contact with the low energy the-
ory described by the Standard Model which is four-dimensional, non-supersymmetric
and has been tested experimentally to a considerable accuracy. Moreover, the ex-
perimental bounds on possible extra dimensions are stringent (see e.g. [1]). Hence,
one is led to consider compactification of superstring theory, i.e. making the six-
dimensional internal space compact with its size being controlled by the Planck
or the string scale. There are various ways of achieving this and we now point to
some of them. For example, one can introduce an intersecting brane background
breaking supersymmetry and implementing the SM gauge group at low energies.
Another way is to turn on fluxes in the internal compact dimensions, leading to
flux compactifications. However, these two possibilities can only be studied effec-
tively, at the level of supergravity and we do not discuss them further. Instead,
we consider string compactifications in which the internal space needs only be con-
sistent, in the sense that the internal (S)CFT has vanishing central charge. The
most promising candidates are orbifolds and Calabi-Yau spaces.

In what follows, we first present toroidal compactifications as the simplest yet
unrealistic example and then briefly review the orbifold and Calabi-Yau ones, show-
ing how both are in fact related.

Toroidal compactification

As a warm-up exercise, consider a closed string theory in which one of the target
space directions, say 9, is a compact circle of radius R. Then the periodicity
condition changes since the closed string can wind an arbitrary number of times
around the compact circle. From the worldsheet point of view, these configurations
correspond to topological solitons. For the compact boson, that is

X9(τ, σ + 2π) = X9(τ, σ) + 2πnR . (1.3.1)

n is called the winding number. The solution to the wave equation is still encoded
in the mode expansions (1.1.45, 1.1.46), the difference being only through the

boundary conditions. The momentum of the string
p9L+p9R

2
= m

R
is quantised and

the boundary condition (1.3.1) gives
p9L−p9R

2
= nR

α′ so that the expressions for the
left- and right-moving momenta are

p9
L,R =

m

R
± nR

α′
. (1.3.2)
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Notice that the solution acquires an extra symmetry

R→ α′

R
,

m↔ n . (1.3.3)

This perturbative symmetry is called T-duality. Effectively, it turns ∂σ into ∂τ so
that Neumann and Dirichlet boundary conditions are exchanged. In particular,
X9 = XL +XR becomes X̃9 = XL −XR.

The level-matching condition (1.1.47) now reads N − Ñ = mn and the mass
operator is M2 = (p9

L)
2 + (p9

R)2 + 2
α′ (N + Ñ − 2). The vacuum of the theory has

additional labels given by the momentum and winding numbers, |0, p, n,m〉. The
spectrum is essentially the same for m = n = 0. For n = 0 or m = 0, one has
additional scalar fields with masses

− 4

α′
+
( n
R

)2

, − 4

α′
+

(
mR

α′

)2

. (1.3.4)

For n = ±m = ±1, acting on the ground state with α9
−1, α

µ6=9
−1 we obtain scalars

and vectors with masses

M2 =
1

R2
+
R2

α′2
− 2

α′
= (

1

R
− R

α′
)2 . (1.3.5)

Hence, at the self-dual radius R∗ =
√
α′, the above vectors become massless and we

have an enhanced space-time gauge symmetry: the abelian U(1)×U(1) symmetry
arising from the Kaluza-Klein reduction turns into a non-abelian SU(2)× SU(2).
This is an inherently stringy regime. Notice that going away from the self-dual
radius breaks the gauge symmetry as in the Higgs mechanism.

Moreover, the mass operator is invariant under T-duality (1.3.3) so that the
latter is a symmetry of the spectrum. In fact, one can show that it is preserved
quantum mechanically through the OPE: T-duality is also a symmetry of the
interactions, i.e. valid to all orders in perturbation theory. Note that the self-
dual radius R∗ is the smallest radius one can probe, and is indeed given by the
string length. In the limit R ≫ R∗, the winding states become very massive and,
hence, decouple from the theory, whereas the momentum states (or Kaluza-Klein
states) become very dense and one readily recovers the non-compact limit with a
continuous momentum.

The partition function of the compact scalar can be written as in the non-
compact case, the only difference being that the momentum integration is replaced
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by a sum over p9
L,R:

ZX9(τ, τ̄) =
1

|η(τ)|2
∑

n,m∈Z

q
α′(p9

L)2

4 q̄
α′(p9

R)2

4

=
1

|η(τ)|2
∑

n,m∈Z

e−πτ2(α′m2

R2 + n2R2

α′ )e2iπτ1nm . (1.3.6)

This is the Hamiltonian representation of the partition function in which modular
invariance is not manifest. In order to make it manifest, we go to the Lagrangian
representation, which is the representation we would obtain had we calculated
the partition function using the path integral. This is done by using the Poisson
summation formula10 (C.2.26):

ZX9(τ, τ̄) =
2πR√
4π2α′τ2

1

|η(τ)|2
∑

n,m̃∈Z

e
− πR2

α′τ2
|m̃−nτ |2

. (1.3.7)

The previous results can be generalised to the case where the internal space is a
d-dimensional torus T d with the same philosophy. For this, consider the Kaluza-
Klein ansatz for the metric element

ds2 = gµνdx
µdxν + gij(dx

i + Aiµ dx
µ)(dxj + Ajµ dx

µ) , (1.3.8)

with Ai being commuting gauge fields parametrising Wilson lines along the cycles
of T d. The metric of the latter g = e†e is invariant under SO(d,R) transformations
e→Me, with M ∈ SO(d,R) and e the vielbein. Using the Iwasawa decomposition

GL(d,R) = SO(d,R)× (R+)d ×Nd , (1.3.9)

with Nd being the unipotent group11, e is accordingly written as e = K·A·N .
Gauge-fixing the orthogonal matrix K to the identity leaves e as a product of a
diagonal matrix with positive elements A and a unipotent matrix. In fact, A con-
tains the radii of the torus whereas N depends on the gauge fields. The moduli
space of the toroidal compactification is thus parametrised by general linear trans-
formations modded out by ‘gauge transformations’ SO(d,R) together with the
group of invariance SL(d,Z) of the torus. Recalling that GL(R) ∼= R+ × SL(R),
the moduli space is

R
+ × [SO(d,R)\SL(d,R)/SL(d,Z)] , (1.3.10)

with the notation \, / for left, right coset. In fact, for the closed string background,
the correct moduli space is

R
+ × [SO(d,R)× SO(d,R)\SO(d, d,R)/SO(d, d,Z)] , (1.3.11)

10It is often referred to as Poisson resummation.
11It consists of upper triangular matrices with unit element on the diagonal.

32



1.3 Compactification

The partition function easily generalises to d compact dimensions:

Zd =
1

|η(τ)|2d
∑

pL,R∈Γ

q p
2
L/2 q̄ p

2
R/2 , (1.3.12)

with Γ some 2d-dimensional lattice. Modular invariance of (1.3.12) requires the
latter to be even self-dual12 with (d, d) signature, i.e.

∀p = (pL, pR) ∈ Γ, p ◦ p ∈ 2Z , (1.3.13)

with the lattice product ◦ being

p ◦ p′ ≡ pL· p′L − pR· p′R . (1.3.14)

The resulting lattice, denoted Γd,d is the Narain lattice. Notice that it is invariant
under the action of O(d,R) × O(d,R) that rotates the left- and right-momenta
separately as can be seen from (1.3.14). However, the larger group O(d, d,R)
produces inequivalent lattices. Moreover, the lattice is invariant under discrete
orthogonal transformations O(d, d,Z) that map the lattice points to themselves.
Therefore, the moduli space of Narain compactifications is

[O(d,R)× O(d,R)]\O(d, d,R)/O(d, d,Z) . (1.3.15)

This coset has dimension d2 and O(d, d,Z) is the T-duality group. It contains,
in particular, the inversion of radii of T d as in (1.3.3), but generates a richer
symmetry group. The lattice momenta depend on the moduli arising from the
compactification. In particular, for d > 1, the B-field also gives rise to scalar fields
and enter in the expression of the momenta

pL,R =

√
α′

2
(mi +

1

α′
(Bij ± gij)nj) . (1.3.16)

On the other hand, the number of moduli, i.e. the number of components of gij
and Bij is d(d+1)

2
+ d(d−1)

2
= d2 and matches, as expected, the dimension of the

coset space (1.3.15). Finally, the mass and level-matching conditions are

M2 = pL· pL + pR· pR +
2

α′
(N + Ñ − 2) , (1.3.17)

p ◦ p = N − Ñ , (1.3.18)

and can be used to probe gauge symmetry enhancements as in the one-dimensional
case.

12The dual lattice is the set of all points in R
2d such that the product in (1.3.14) with all points in Γ is

integer.
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T-duality and D-branes

As an explicit example, consider the Type I superstring or, equivalently, a Type IIB
orientifold compactified on a circle S1

R of radius R. One can show that T-duality
turns a spinor S into a conjugate spinor C and flips the sign of the GSO projection.

Hence, the T-dual theory is a Type IIA orientifold on S1
eR
, R̃ being the dual radius.

However, the dual orientifold Ω̃ is a composition of the worldsheet parity Ω and a
Z2 action on the circle coordinate x9 since, by T-duality, X̃9 = X9

L − X9
R and Ω

exchanges left- and right-movers. The Z2 action has two fixed points x9 = 0, πR̃
and any closed string state at a generic position x9 should have an image with
respect to the fixed point with opposite momentum (and orientation). From the

space-time point of view, x9 = 0, πR̃ are hyperplanes where closed strings are of
both orientations and play a special role in string compactifications. They have
eight space dimensions and are called orientifold planes, O8-planes for short.

In the open string sector, under T-duality, N and D boundary conditions are
exchanged so thatX9 is now a DD direction. This implies that the string endpoints
cannot move away from x9 = 0 and this, again, defines a hyperplane called Dirichlet
membrane, D8-brane for short. In fact, there are as many D8-branes as CP labels
(N). One might suspect that O-planes and D-branes are the same objects. This
is however not the case. To see this, consider the original Type IIB orientifold
and turn on N = 32 non-trivial Wilson lines along the circle, Aa9 = − θa

2πR
, with

a = 1, . . . , N . Because of the orientifold, one imposes θa+16 = −θa so that there
are only 16 independent parameters. The coupling to the Wilson lines is given by

− θa − θb
2πR

∫
dτ ∂τX

9 , (1.3.19)

which implies that the masses and the center of mass momentum are shifted ac-
cording to their CP labels. For an ab open string, that is

p9
ab =

m

R
+
θa − θb
2πR

. (1.3.20)

Notice that the presence of Wilson lines breaks the gauge symmetry to U(1)16.
Setting M Wilson lines to equal values away from the fixed points of Z2 induces a
U(M) enhancement whereas setting them to a fixed point yields an SO(2M) one.
Intuitively, only strings attached to coincident branes can give rise to massless
states and this can be seen from (1.3.20) (recall that the mass operator contains
a p2 term). Performing a T-duality exchanges momenta and windings and the
latter are now shifted due to the presence of the Wilson lines. Alternatively, the
boundary conditions for X9 are modified and the open string endpoints are now

fixed at θaR̃, i.e. there are N D8-branes sitting generically at different positions

x9 = θaR̃.
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By T-duality, the ten-form C10 becomes a nine-form C9. Clearly, a disc diagram
is localised at a D8-brane whereas a cross-cap diagram, because of the orientifold,
sits on an O8-plane. Therefore, a disc and a cross-cap tadpole as in Fig. 1.2 mea-
sure the charges of D8-branes and O8-planes respectively. This provides another
interpretation of tadpole cancellation as Gauss’s law, i.e. the vanishing of the
total charge of the RR form in the compact dimension. The calculation in (1.1.66)
above shows that the O8- and D8-charges are related:

QO8 = −16QD8 . (1.3.21)

Tadpole cancellation requires the presence of thirty-two D8-branes because of the
two O8-planes.

This interpretation can be straightforwardly generalised to the case of d ≡ 9− p
compact dimensions with a Z2 action13. The fixed points of the reflection symmetry
lead to 2d Op-planes and a number of Dp-branes for the open string DD boundary
conditions in the compact directions. Under the corresponding RR p-form, their
charges are related by

QOp = −2p−4QDp . (1.3.22)

In this language, the Type I superstring in ten dimensions can be viewed as having
a space-time filling O9-plane and sixteen D9-branes (plus their sixteen images)
required by tadpole cancellation. Notice that, contrary to D-branes, orientifold
planes are non-dynamical objects (they cannot fluctuate) and, therefore, only carry
charges, in particular under the corresponding RR potential. The coupling of a
Dp-brane to the RR (p+1)-form can naturally be realised as the minimal coupling

µp

∫
Cp+1 , (1.3.23)

where the integral is over the Dp-brane world-volume and µp is the RR charge. In
ten space-time dimensions, for p = 9, there is no kinetic term since the correspond-
ing field strength is trivial. Therefore, the field equations for C10 yield µ9 = 0. In
other words, the total RR charge must be zero in an anomaly-free theory. In fact,
the presence of a RR charge implies that, at tree-level, a propagating closed string
contributes µ2

9/0 where the zero in the denominator is due to the trivial dynamics
of the ten-form (its propagator vanishes). This is precisely the divergence one
obtains in the Type I one-loop calculation. Hence, tadpole cancellation can be
equivalently regarded as:

1. Gauss’s law for p-forms,

2. Consistency of the field equations for the RR potentials.

13In Type IIA, d ∈ 2Z + 1 whereas in Type IIB, d ∈ 2Z.
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In general, one might consistently study the simultaneous presence of branes of
different dimensions. Each Dp-brane carries a RR charge giving rise to a tadpole
that must be cancelled by objects carrying negative RR charge, for instance Op-
planes. To illustrate this, consider a Type I theory compactified on T 4/Z2 (see
next section for more details). The orientifold group is generated by the worldsheet
parity Ω together with the Z2-action g. As in the previous sections, one can carry
out the calculation of the one-loop divergences when one inserts 1+Ω

2
1+g
2

in the
partition function. The Klein bottle contribution (proportional to Ω in the closed
string sector) gives rise to a divergence with the prefactor

V6(V4 +
1

V4
) , (1.3.24)

where V4 is the volume of the internal T 4. The first term in (1.3.24) is the same
as the one found in (1.1.63) and necessitates the introduction of D9-branes. The
second term, however, is proportional to the inverse volume of T 4 and this opera-
tion takes a D9- to a D5-brane. Therefore, this theory is consistent only with the
presence of sixteen D5-branes [20, 80, 3], the second term in (1.3.24) originating
from sixteen O5-planes. This is the tadpole cancellation constraint for D5-branes.
Notice that in the decompactification limit V4 →∞, the D5-brane contribution in
(1.3.24) is trivial and there is no constraint on the number of D5-branes14. This is
consistent with the fact that, due to the non-compactness of the transverse space
(identified with C2/Z2), the flux lines of the six-form can escape to infinity (Gauss’s
law applies for compact spaces only). Alternatively, the corresponding equations
of motion can be solved in the presence of a non-trivial RR charge.

Finally, let us mention that D-branes are non-perturbative objects in string
theory. By calculating the exchange of a closed string between two Dp-branes, one
can show that the Dp-brane tension is

Tp =
1

(2π)p(α′)
p+1
2 gs

. (1.3.25)

Notice that the behaviour as 1/gs differs from the usual one of solitons in field
theory whose mass scales as 1/g2 (recall that in field theory instanton effects are

of order e−1/g2), and this stems from the stringy nature of D-branes. On the
other hand, RR gauge fields can be represented in terms of vertex operators which
depend only on the field strength of the (p+ 1)-form potential [75]:

VRR = e−
ϕ
2 Θs Γµ1...µp+2 e−

ϕ̃
2 Θ̃s Fµ1...µp+2 , (1.3.26)

e−
ϕ
2 Θs being the vertex operator of the RR ground state. Hence, all perturba-

tive states are neutral with respect to RR gauge fields. However, dualities in

14The generalisation to the general p < 9 case is straightforward.
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string theories exchanging NSNS and RR states suggest that there should be (non-
perturbative) states carrying RR charges. These are precisely the D-branes pre-
sented above and they play an important role in probing non-perturbative aspects
of string theory and gauge theory using the language of perturbation theory. In
particular, in the weak coupling regime, gs ≪ 1, D-branes are heavy and can be
studied semi-classically as rigid planes. For instance, gauge theory instantons can
be realised as D-branes bound states as discussed in Section 6. In addition, one
can show that they are BPS states15 (having equal mass and charge) and, there-
fore, preserve a subset of supersymmetries. For example, in Type I, due to the
left-right identifications (and DD boundary conditions), only a linear combination
of the supercharges QL,R is preserved:

Q = ǫLQL + ǫRQR , (1.3.27)

ǫL,R being arbitrary spinors in space-time. For a Dp-brane, the condition is

ǫL = (

p∏

i=0

Γi)ǫR . (1.3.28)

For instance, for Type IIB orientifolds in ten dimensions (p = 9), this is given by
the chirality matrix Γ10 producing a preserved combination as can be seen from
the orientifold action.

Orbifolds

Toroidal compactifications correspond to models having maximal space-time su-
persymmetry, since all the gravitini of the spectrum are preserved. For exam-
ple, in Type II one obtains an N = (4, 4) theory whereas in Heterotic, the four-
dimensional theory is N = 4 supersymmetric. In order to construct more realistic
models in which the number of space-time (super)-symmetries is reduced, one
must project out some of the states and one way to perform this is to gauge some
discrete subgroup H of the CFT symmetries. The resulting (compact) space can
thus be viewed as an orbit space M6/H , called orbifold16. It may have singular
points but the necessary condition is, once again, the consistency of the internal
CFT. The action of H is usually taken to be left-right symmetric, even though it
is possible to construct asymmetric orbifolds [71], at least at specific points in the
moduli space of the compactification.

To illustrate this, consider the case of an S1/Z2 compactification in which the
Z2-action is defined on the compact coordinate by

X9 → −X9 . (1.3.29)

15Orientifold planes are also BPS objects.
16Mathematically, an orbifold is a more general topological space, generalising the notion of manifolds,

which looks only locally like a quotient of a Euclidean space with the action of a finite group.
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Under the Z2-quotient, the circle becomes a line segment [0, πR] with the boundary
points 0, πR being fixed by the action (1.3.29). This is the simplest example of a
Z2-orbifold. This theory contains a new class of states in the spectrum which obey
anti-periodic boundary conditions:

X9(τ, σ + 2π) = −X9(τ, σ) . (1.3.30)

We refer to them as twisted states and they belong to the so-called twisted sector
of the spectrum. In the untwisted (periodic) sector, one must enforce (1.3.29) by
projecting onto invariant states. From the mode expansions (1.1.45, 1.1.46), one
sees that the orbifold action reverses the sign of the zero-modes and oscillators so
that

Z2 : |N, Ñ, p, n,m〉 → (−)N+Ñ |N, Ñ, p,−n,−m〉 . (1.3.31)

Hence, only states having an even number of oscillators are preserved. For instance,
the Kaluza-Klein vectors are projected out. In the twisted sector, the mode ex-
pansion is different. As in the case of NS-fermions, it has a half-integer moding
and no (momentum) zero-modes:

X9
t (z, z̄) = i

√
α′

2

∑

n∈Z+1/2

1

n
(α9

n z
−n + α̃9

n z̄
−n) . (1.3.32)

In particular, the position can only have small fluctuations around the fixed points
of the orbifold. By calculating the zero-point energy, one can show that the ground
states of this sector, called twist fields, are primary fields of dimension 1/16.

The partition function of this orbifold is obtained by calculating the contribu-
tions of the twisted and untwisted sectors and, in each of them, projecting onto
invariant states by inserting the operator 1+g

2
, with g ∈ Z2. If we label the sector

by a Z2-index h, then the partition function is given by

ZS1/Z2 =
∑

h∈Z2

Trh

[
1 + g

2
qL0−1/24 q̄L̄0−1/24

]
. (1.3.33)

h = 0 corresponds, conventionally, to the untwisted sector. There are four separate
terms labeled by g and h. For h = g = 0, this is the same contribution as in the
toroidal case (1.3.12), with a 1/2 factor due to the projection. The second term of
the untwisted sector, g = 1, corresponds to the insertions of g in the trace over the
Hilbert space which changes the signs of the oscillator sum due to (1.3.29). The
result is ∣∣∣∣

η(τ)

ϑ[10](τ, 0)

∣∣∣∣ . (1.3.34)

Finally, the twisted sector has a half-integer moding and its contributions can be
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obtained in a similar fashion. The total result is

Z
S1/Z2

X9 =
1

2
Z1(R, τ) +

∣∣∣∣
η(τ)

ϑ[10](τ, 0)

∣∣∣∣+
∣∣∣∣

η(τ)

ϑ[01](τ, 0)

∣∣∣∣+
∣∣∣∣

η(τ)

ϑ[11](τ, 0)

∣∣∣∣

=
1

2
Z1(R, τ) +

∑

(h,g)6=(0,0)

∣∣∣∣∣
η(τ)

ϑ[1+h1+g ](τ, 0)

∣∣∣∣∣ . (1.3.35)

Notice that only the ‘toroidal’ part Z1 of the partition function depends on the
unique modulus R of S1 and is, by itself, modular invariant. This is in fact also
true in more complicated compactifications. In addition, the other three terms are
all together modular invariant as can be seen using the identities in Appendix C.2.
Indeed, under modular transformations, they get exchanged. In other words, the
inclusion of the twisted sector is crucial for the consistency of the theory. From the
path integral point of view, the partition function can be obtained by integrating
over the compact boson with the following boundary conditions around the cycles
of the internal T 2:

X9(ξ1 + 2π, ξ2) = (−)1−hX9(ξ1, ξ2) , (1.3.36)

X9(ξ1, ξ2 + 2π) = (−)1−gX9(ξ1, ξ2) . (1.3.37)

In general, in order to preserve the superconformal invariance on the worldsheet,
the internal fermions must also transform under the orbifold action. In the Z2

case, for a complex fermion ψ with spin structure [ab ] (recall (1.2.51, 1.2.52)), that
is

ψ(ξ1 + 2π, ξ2) = (−)1−a−hψ(ξ1, ξ2) , (1.3.38)

ψ(ξ1, ξ2 + 2π) = (−)1−b−gψ(ξ1, ξ2) . (1.3.39)

Hence, the partition function (1.2.53) is slightly modified:

Z
S1/Z2

ψ [a,hb,g ] =
ϑ[a+hb+g ](τ, 0)

η(τ)
. (1.3.40)

For a general orbifold, the logic is the same. The action of the discrete group
H generates |H| twisted sector, where |H| is the order of H . The projection onto
H-invariant states is realised via the insertion of

1

|H|
∑

g∈H

g . (1.3.41)

Including twisted sectors ensures modular invariance and, in particular, the par-
tition function is a sum over two parameters h, g = 0, . . . , |H| labelling the un-
twisted/twisted sectors and the projection over invariant states. They can also be
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viewed as twists of the boundary conditions of the worldsheet fields. Of course, in
a specific superstring theory, only particular orbifolds are consistent, c.f. [85] for
more details.

Before closing this section, we apply the procedure above to write the full parti-
tion function for Heterotic string theory compactified on the orbifold T 4/Z2 × T 2

with gauge group E8 × E8. In this case, the orbifold breaks one of the E8 factors
down to E7 × SU(2), and the result is

Z =
1

η2η̄18

1

2

∑

h,g=0,1

[
1

2

∑

a,b=0,1

(−)a+b
ϑ2[ab ]

η2

ϑ[a+hb+g ]

η

ϑ[a−hb−g ]

η

]
ZT 4/Z2 [hg ] Z2(T, U)

× ZE8 ZE7×SU(2) , (1.3.42)

where T, U parametrise the moduli of the T 2 and depend on its radii. The partition
function of the orbifold T 4/Z2 depends, as in the previous case, on the parameters
h, g. In the h = g = 0 sector, it depends on the T 4 moduli parametrised by G,B
(the 1/2 averaging factor is already taken into account):

ZT 4/Z2 [00] = Z4(G,B) , (1.3.43)

whereas in the sectors (h, g) 6= (0, 0) it is independent of the moduli:

ZT 4/Z2 [hg ] =

∣∣∣∣∣
2η(τ)

ϑ[1+h1+g ](τ, 0)

∣∣∣∣∣

4

. (1.3.44)

The expressions of the gauge lattices ZE8 and ZE7×SU(2) are given in Section 8.
Notice that in (1.3.42), we have cancelled the ghost and superghost contributions.
In the left-moving (supersymmetric) sector, every complex fermion contributes ϑ

η
,

and the bosons in the space-time directions contribute 1
η

each. Including the right-

moving fields, one verifies that (1.3.42) contains all the degrees of freedom of the
theory.

Calabi-Yau compactifications

It is interesting to analyse the constraints arising from imposing N = 1 super-
symmetry in the four-dimensional space-time. This is relevant in a realistic model
since it is believed that supersymmetry might arise at low energies, e.g. at the TeV
scale. First of all, the target space must allow the existence of spinors. Secondly,
the vacuum has to preserve supersymmetry. Let us consider the (D = 10, N = 1)
supergravity (α′ → 0) limit of (Heterotic) superstring theory. In order for the
theory to preserve a fraction of supersymmetry, it is sufficient that the supersym-
metry variations of the fermionic fields vanish. The reason for this is that if the
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1.3 Compactification

theory is Lorentz invariant, then the vevs of vector and Fermi fields vanish, and
the ones of the scalars can be at most constant:

〈Aµ〉 = 〈ψα〉 = ∂µ〈φ〉 = 0 . (1.3.45)

Using the N = 1 supersymmetry transformations, this implies that a configuration
preserves supersymmetry if δ〈ψα〉 = 0, meaning that the supersymmetry variations
of the fermionic fields vanish classically. For the gravitino, dilatino and gaugino
these are

δǫ ΨM = DM ǫ , (1.3.46)

δǫ λ =
(
− 1

2
ΓM∂Mφ+

1

24
ΓMNPHMNP

)
ǫ , (1.3.47)

δǫ χ = ΓMNFMN ǫ , (1.3.48)

where the spinor indices have not been displayed, H is the three-form flux, F is
the gauge field strength and DM is the covariant derivative (with respect to the
spin connection and H). In addition, assume that the target space factorises as

M4 ×M6 , (1.3.49)

with M4 being maximally symmetric, i.e. Rµνρσ = R
12

(gµρgνσ − gµσgνρ). The
ten-dimensional index is accordingly decomposed, M = µ,m. The possible non-
vanishing bosonic fields are the dilaton φ, Hmnp and Fmn. Moreover, we choose the
dilaton to be constant and set the torsion Hmnp to zero17. In this case, the dilatino
variation (1.3.47) vanishes and the covariant derivative Dm only contains the spin
connection. There are also additional constraints on the gauge field strength from
(1.3.48), but we do not consider them here for simplicity. Hence, in order for super-
symmetry to be preserved by the vacuum, (1.3.46) implies that ǫ is a covariantly
constant (or Killing) spinor. The existence of such a spinor is very restrictive.
Applying (1.3.46) twice yields

[DM , DN ]ǫ ≡ RMNPQΓPQǫ = 0 , (1.3.50)

with RMNPQ being the Riemann tensor viewed as a Lie algebra-valued two-form.
It generates the holonomy group of the target space18. The condition (1.3.50)
implies that M4 is flat. However, the internal space M6 need not be flat. Recall
that the gravitino is a 16 spinor representation of the Lorentz (or holonomy) group
SO(1, 9)→ SO(1, 3)× SO(6) and is decomposed as (2, 4)⊕ (2̄, 4̄). Furthermore,
the 4 of SO(6) ∼= SU(4) decomposes under SU(3) as 4 = 1 ⊕ 3. Notice that

17This is not the only possibility, but is the one compatible with the ansatz for the cohomology constraint
(1.3.62) in Heterotic, see below.

18In fact, if the space is not simply connected then it generates only the identity component of the
holonomy group.
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only the singlet part of the latter which is invariant under SU(3) can give rise to a
Killing spinor which can be group-theoretically written as (2, 1)⊕(2̄, 1). Therefore,
a covariantly constant spinor exists if and only if the holonomy group is contained
in SU(3). In fact, from (1.3.50), one can show that this is equivalent to Ricci-
flatness, i.e. Rmn = 0, of the internal space. The covariantly constant spinor can
be used to construct a Kähler form. A compact 2n-dimensional Kähler manifold
with holonomy in SU(n) is called a Calabi-Yau n-fold (CYn).

In the previous discussion, we have restricted our attention to the lowest order
contributions in α′. In order for the full sigma-model to be well-defined, one has
to study the fate of α′ corrections in the supersymmetry transformations and the
β-functions. In particular, the β-functions receive higher order corrections and
it has been shown in [74] that, for a CY3, they can be made to vanish so that
the underlying sigma-model is conformally invariant (to all orders in superstring
perturbation theory) but its metric now differs from the Ricci-flat one19 (though the
internal space remains Kähler). Moreover, the Ricci-flat condition gets modified.
For instance, the lowest order correction is of the form α′3R4, R being the Ricci
curvature. This additional term, however, does not affect the cohomology class of
the Ricci form (see also [44, 45, 37, 66]).

We are interested in studying the massless spectrum of superstring theory com-
pactified on a CY3 which, in general, is composed of the graviton and a set of
p-form potentials Cp satisfying ∆10Cp = 0 with ∆10 being the ten-dimensional
Laplacian. The latter can be split as ∆4 + ∆6 because the metric does. From the
four-dimensional point of view, the massless spectrum is thus classified by the zero
modes of ∆6 (a non-zero eigenvalue would give rise to a mass term). They are
given by the cohomologies of the internal space whose dimensions define the Hodge
numbers20 hp,q. These topological numbers give an incomplete characterisation of
the Calabi-Yau manifold since different CYs can have the same Hodge numbers.
In addition, they are not all independent, and are usually displayed in the Hodge
diamond. For a CY3 (p, q = 0, . . . , 3), that is

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3 .
h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

By complex conjugation, hp,q = hq,p and Poincaré duality implies hp,q = h3−p,3−q.
One can perform a thorough analysis of the cohomologies of the CY3 showing that

19In some cases, the metric can be made Ricci-flat by a field redefinition.
20The dimension hp,q of the Dolbeault cohomology Hp,q

∂̄
is related to the dimension bp of the de Rham

cohomology group Hp through bp =
Pp

k=0 h
k,p−k. bp are the Betti numbers.
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only h1,1 and h2,1 are undetermined:

1
0 0

0 h1,1 0
1 h2,1 h2,1 1 .

0 h1,1 0
0 0

1

The Euler characteristic χ can be calculated as the alternating sum of the Betti
numbers. In terms of the Hodge numbers, χ = 2(h1,1 − h2,1). In addition, notice
that a CY3 compactification cannot support continuous isometries because h1,0 =
0.

A CY can equivalently be defined as a compact Kähler manifold with vanishing
first Chern class. By the Calabi-Yau theorem proven by Yau, this is equivalent to
the definition above using Ricci flatness. More precisely, given a compact Kähler
manifold, any representative of the first Chern class is the Ricci form of a unique
Kähler metric. Even though no explicit CY metric has ever been constructed in
the compact case, many of its properties can be used to study the physics of the
superstring target space. Moreover, in some cases, one can approximate the CY
by an orbifold. This is referred to as the orbifold limit and is discussed at the end
of this section.

We now give some examples of CY manifolds. For n = 1, the only compact
CY is the two-torus T 2 (we do not consider non-compact CYs). In two complex
dimensions, the only CYs are T 4 and K3 surfaces. The Hodge diamond of the
latter is

1
0 0

1 20 1 .
0 0

1

In complex dimensions higher than two, many more examples are known but the
complete classification is an open problem. In fact, it is not even known whether
the number of CY3 is finite. The holonomy group of a CY is a subgroup of SU(n).
If we restrict to spaces having SU(n) holonomy only, then the torii having trivial
holonomies are excluded, and this is the condition to have the minimal amount of
preserved supersymmetry in four dimensions (N = 1 for Heterotic and N = (1, 1)
for Type II).

As in the simple toroidal case, CY compactifications give rise to a number of
moduli that parametrise smooth deformations of a given CY or, equivalently, of
its shape and size. In this sense, a Hodge diamond defines a continuous family of
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CYs, but we refer to it simply as CY keeping in mind the abuse of terminology.
Consider first deforming the CY3 metric without spoiling the Ricci flatness of the
space. That is

RMN(g + δg) = 0 = RMN(g) . (1.3.51)

The internal index is decomposed in terms of SU(3) indices, m = (i, ı̄). Using the
gauge fixing conditionDMδgMN = 0 in order to eliminate deformations parametris-
ing coordinate transformations, the equation for the mixed (holomorphic-anti-
holomorphic) indices reduces to

(∆δg)i̄ = 0 , (1.3.52)

meaning that δgi̄ is a harmonic (1, 1)-form parametrising changes in the Kähler
structure. There are h1,1 such forms called Kähler moduli and they have to be
chosen such that the metric is still positive definite. As for the other indices
(holomorphic-holomorphic or anti-holomorphic-anti-holomorphic), the metric van-
ishes but one can still deform it by changing the complex structure (because a
holomorphic change of coordinates would be irrelevant). These deformations are
parametrised by the h2,1 (2, 1)-forms and are referred to as complex structure mod-
uli. Finally, deforming the B-field and its internal part Bi̄ yields h1,1 moduli which,
combined with the h1,1 metric moduli form the complexified Kähler moduli whose
real part corresponds to δBi̄ and imaginary part to δgi̄. The moduli space of the
CY compactifications is, by definition, parametrised by the scalar fields arising
from the compactifications. Since Kähler and complex structure moduli do not
mix (at least in the N = 1 case), the moduli space is factorised21:

MCY =MC ×MK . (1.3.53)

We now discuss the implications of CY3 compactifications on the superstring
spectrum. First, consider Type IIA in which the massless spectrum contains the
graviton GMN , the B-field BMN , the dilaton φ, a vector CM and a three-form
potential CMNP (plus their fermionic partners). The reduction on a CY3 using
SU(3) covariant indices (i, ı̄) yields

GMN →Gµν , Gij , Gi̄ , (1.3.54)

BMN →Bµν , Bi̄ , (1.3.55)

CM →Cµ , (1.3.56)

CMNP →Cµνρ , Cµi̄ , Cijk̄ , Cijk . (1.3.57)

Notice that CM does not give rise to an internal field Ci since it can be viewed
as a (1, 0)-form and we have seen that h1,0 = 0. The scalar field C0 dual to
Bµν and the dilaton combine into the axion-dilaton complex field S = C0 + ie−φ.

21It can be shown that the vector multiplet moduli space is special Kähler and the hypermultiplet one
is quaternionic Kähler (but not Kähler).

44



1.3 Compactification

Taking into account the gravitini and dilatini, we obtain a gravitational multiplet
(Gµν , Cµ), h

1,1 vector multiplets (Cµi̄, Gi̄, Bi̄), h
2,1 hypermultiplets (Cijk̄, Gij)

and the dilaton hypermultiplet (φ, Bµν , Cijk). The latter is singled out because
it corresponds to the string universal S multiplet containing the dilaton. The
vector field of the gravitational multiplet is the graviphoton. All together, we have
the gravitational multiplet, h1,1 vector multiplets and h2,1 + 1 hypermultiplets.
The complex structure moduli belong to the hypermultiplets whereas the Kähler
moduli are part of the vector multiplets. Therefore, the corresponding moduli
spaces have real dimensions 4(h2,1 + 1) and 2h1,1 respectively22.

In Type IIB, the massless spectrum contains in the R-R sector, instead, a zero-
form C, a two-form CMN and a self-dual four-form CMNPQ, and the reduction
leads to

GMN →Gµν , Gij , Gi̄ , (1.3.58)

BMN →Bµν , Bi̄ , (1.3.59)

CMN →Cµν , Ci̄ , (1.3.60)

CMNPQ→Cµνi̄ , Cµijk , Cµijk̄ , Cijkl . (1.3.61)

The resulting four-dimensional structure is made of the gravitational multiplet
(Gµν , Cµijk), h

2,1 vector multiplets (Cµijk̄, Gij), h
1,1 hypermultiplets (Cµνi̄, Gi̄,

Bi̄, Ci̄) and the universal dilaton multiplet. In total, there are h2,1 vector mul-
tiplets and h1,1 + 1 hypermultiplets. The complex structure moduli belong to
the vector multiplets and the Kähler moduli to the hypermultiplets. Thus, the
corresponding moduli spaces have dimensions 2h2,1 and 4(h1,1 + 1) respectively.

Notice that the dilaton, which controls string perturbation theory, lies in a hy-
permultiplet in both Type II theories. This means that the hypermultiplet moduli
space receives perturbative and non-perturbative corrections, whereas the vector
multiplet moduli space is protected due to N = 2 supergravity (or the non-mixing
between vector multiplets and hypermultiplets). We come back to this point in
subsequent chapters.

Let us now turn to the Heterotic superstring and, for definiteness, we focus on
the E8 ×E8 case. The massless spectrum contains a three-form flux H such that

dH = trR∧R− trF ∧ F , (1.3.62)

with R being the space-time curvature and F the field strength of the gauge group
connection. Since dH is a closed four-form, both trR ∧ R and trF ∧ F should
represent the same cohomology class. This is known as the cohomology constraint.
One way to achieve this is to embed the spin connection in the gauge group as
follows. Recall that R is an SU(3) (holonomy) Lie algebra-valued two-form and F
is, instead, E8×E8-valued. In order to satisfy the cohomology constraint, one can
impose to have F taking values in the internal space because trR∧R is non-trivial.

22The additional 2 in the former comes from the axion-dilaton.
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Choose an SU(3) subgroup of one of the E8 factors and give the corresponding
field strength the same background value as the curvature while setting the others
(with respect to the rest of the gauge group) to zero. In other words, we identify
the potential A of F with the spin connection (whose curvature is R). Thus, one of
the E8’s is broken down to E6×SU(3)23 and the unbroken gauge group is E6×E8.
Under this breaking, the 248 adjoint representation of E8 decomposes as

248 = (78, 1)⊕ (1, 8)⊕ (27, 3)⊕ (27, 3) . (1.3.63)

On top of the gravitational multiplet and vector multiplets in the adjoint of E6×E8,
there are h1,1 Kähler moduli and h2,1 complex structure moduli all belonging to
N = 1 chiral multiplets. One way to see this is to perform the reduction of the
gauge potential

AM → Aµ , Ai , Aı̄ , (1.3.64)

where i is an SU(3) holonomy index. The embedding of the spin connection into
one of the E8’s means that Ai can carry an index with respect to the (27, 3), with
3 ∈ SU(3) of the gauge group. Hence, Ai ≡ Ai,ᾱ̄ can be viewed as a (1, 1)-form
taking values in the 27 of E6 and has h1,1 zero modes corresponding to Kähler
moduli. Similarly, taking Ai to have an index in the (27, 3) gives rise to h2,1

complex structure moduli. By supersymmetry, these moduli have fermions in the
27 that are chiral.

As mentioned above, it is not known how to explicitly construct a compact CY
metric. However, the CY moduli space contains singularities at which the classi-
cal effective description breaks down due to the appearance of (non-perturbative)
massless states. In particular, there exist points in the moduli space at which
certain CYs can be described by orbifolds. Consider for instance a T 4/Z2 orbifold
for which the Z2 action on the T 4 coordinates zi is

zi → −zi . (1.3.65)

This orbifold has sixteen singularities due to the sixteen fixed points of the Z2

action, given by [
0,

1

2
,
i

2
,
1 + i

2

]
⊗
[
0,

1

2
,
i

2
,
1 + i

2

]
. (1.3.66)

In order to get a smooth space, one can blow up the singularities by replacing each
of them with a smooth space [40]. More precisely, one cuts away a ball around
each singularity whose boundary is S3/Z2

∼= RP 3 and replace it with an Eguchi-
Hanson space [33]. The metric on the latter must be constructed in such a way
that it matches across the sixteen boundaries. This can be done approximately
by using the flat metric on T 4 and the Eguchi-Hanson metric on the RP 3’s. The
Eguchi-Hanson metric contains an additional parameter, say a, such that when

23For the SU(2) holonomy case, e.g. when the internal space isK3×T 2, E8 is broken down to E7×SU(2),
see (1.3.42).
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a → 0 one recovers the orbifold. One can show that the resulting smooth space
has the topology of K3, but not its geometry. For this to be possible, one needs
to smoothen up the metric everywhere and this is not known yet. On the other
hand, K3 contains sixteen two-cycles [34]. By going to a point in the moduli space
in which the size of these cycles goes to zero, one obtains a singular space having
sixteen singularities, which is precisely T 4/Z2. Of course, one can take different
limits of K3 corresponding to T 4/G, G being a discrete subgroup of SU(2), and
the construction above can be generalised [85]. For G = ZN , N can take the values
2, 3, 4 and 6.

In practice, one is often interested in studying properties of superstring theories
that do not depend on the specific details of the internal manifold. In this case,
one can take a singular limit of the CY in which it is easier to perform the analysis.
For instance, it is in the orbifold limit described above that the partition function
(1.3.42) is derived.

1.4 Dualities

So far we have described five different perturbative consistent string vacua in ten
dimensions and some compactifications thereof. It turns out that they are not
all independent. Instead, they seem to emerge as distinct vacua of the same
underlying eleven-dimensional theory, usually referred to as M-theory, which are
connected through perturbative and non-perturbative string dualities. The precise
description of M-theory is, however, unknown.

Beyond their conceptual interest, string dualities are of practical use since, in
some cases, they connect weak and strong coupling regimes. For instance, results
obtained in a weakly coupled theory can be reinterpreted in terms of the degrees
of freedom of the dual, strongly coupled theory, if the latter exists. Of course,
one must have proved in advance such a duality and this is a difficult task, since
strongly coupled theories are hard to solve. Nevertheless, supersymmetry comes
to our rescue as some quantities such as BPS states and couplings turn out to be
protected against quantum corrections. In this sense, for lack of a full proof, the
knowledge of BPS spectra is crucial to obtain strong arguments in favour of string
dualities.

In fact, we have already encountered one such duality, namely T-duality, which
is perturbative because it does not transform the string coupling. It relates, for
example, Type IIA/B theories as a simple realisation of mirror symmetry [48]. In
what follows, we briefly present the dualities relating the aforementioned string
vacua after compactification, together with some of their strong coupling limits.

Let us first focus on the ten dimensional theories. In Type IIB, the axion-dilaton
field enjoys an SL(2,Z) symmetry24 in the quantum theory, which includes S-
duality (strong-weak symmetry as the inversion of the string coupling). In this

24Together with T-duality in the compactified theory, they form the U-duality group.

47



1 Elements of String Theory and Conformal Field Theory

sense, the full Type IIB theory (including its strong coupling regime) is SL(2,Z)
self-dual. On the other hand, the perturbative Type IIA theory can be reached
as an S1 compactification of M-theory and the string coupling is given by the
(small) S1 radius, RS1 = ls gs. If one considers, instead, a Z2 orbifold of the M-
theory circle [47], then the resulting theory is the E8 × E8 Heterotic string, with
the strong/weak coupling regime being controlled by the size of the circle. Now
T-duality relates the E8 × E8 Heterotic theory to the SO(32) one25 from which,
by S-duality, one ends up in the Type I superstring [76]. This web of dualities is
a strong hint towards the uniqueness of string theory and offers a framework for
exploring a number of its fundamental aspects.

When studying topological amplitudes in string theory, we make extensive use
of four-dimensional string dualities relating Type II, Heterotic and Type I super-
strings.

Type II/Heterotic duality

Heterotic string theory compactified on T 6 is dual to Type IIA on K3×T 2. Indeed,
one can show that both compactifications share the same moduli spaces. In par-
ticular, the duality map exchanges the axion-dilaton S and the Kähler structure T
of the T 2, and, for instance, the string coupling in Heterotic becomes the volume
of T 2 in Type IIA. Hence, T-duality in Type II becomes S-duality in Heterotic.

In fact, this duality can be extended to the case where the Type II theory is
compactified on a CY3 which is a K3 fibration26. The dual theory is Heterotic on
K3×T 2, as it has been argued in many examples [57]. As we discuss in Section 5,
the study of BPS-saturated couplings provides a non-trivial check of this duality
[7]. An important feature in this context is that the dilaton, in Heterotic, belongs
to a vector multiplet, whereas in Type II, it sits in a hypermultiplet. This leads to
non-renormalisation theorems because of a non-mixing between hyper- and vector
multiplets in N = 2 supergravity.

Heterotic/Type I duality

The Heterotic and Type I superstrings, upon compactification onK3×T 2, are dual.
Even though the ten-dimensional duality is non-perturbative, in four dimensions
there are weakly coupled regimes in both theories. In addition, the axion-dilatons
are mapped to one another [9, 10]. On the other hand, the complex structure
modulus U of T 2 is unchanged and the Kähler modulus T in Heterotic is mapped
to another dilaton-like field denoted S ′. Indeed, the presence of two dilatons
in Type I is not surprising since the theory contains D9- and D5-branes whose
coupling constants are given by the imaginary part of two different fields, namely
S and S ′ respectively. This dictionary is summarised in the table below.

25This can be seen upon compactification of both theories on a circle.
26A K3 fibration is a CY3 which is locally a direct product of K3 and a two-dimensional surface.
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Heterotic Type I

S S
T S’
U U

Table 1.1: Mapping of the universal fields under Heterotic/Type I duality in four dimen-
sions.

On the Type I side, the four dimensional dilaton contains hyper- and vector
multiplet components so that both moduli spaces receive quantum corrections.
This is in contrast with the dual Heterotic theory where the dilaton belongs to a
vector multiplet and the hypermultiplet moduli space is protected. We come back
to these issues later.
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N=2 Topological String Theory and
Gauge Theory: an Overview
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In this section, we present a short review of N = 2 topological string theory (TST).
First of all, we discuss general aspects of topological sigma models which are the
building blocks for the definition of topological string theory once we couple the
theory to two-dimensional gravity. Secondly, after defining the genus g topological
string partition function and its holomorphicity properties, we introduce a series of
gravitational amplitudes in the ‘physical’ string theory which turn out to reproduce
the partition function of the ‘twisted’ theory. In this sense, the topological string
arises as a sub-sector of the superstring.

More specifically, we calculate the coupling, at genus g in Type II, of two gravi-
tons and 2g−2 graviphotons and show that it reproduces the genus g TST partition
function. These gravitational couplings satisfy a non-renormalisation theorem due
to their BPS nature. Moreover, it is shown that in the dual Heterotic theory they
start receiving contributions at one-loop, opening up an interesting framework for
explicit calculations.

On the other hand, the field theory limit of these gravitational couplings lead to
corrections to the Seiberg-Witten prepotential encoded in the partition function of
the N = 2 gauge theory in the Ω-background. We briefly review the construction
of the latter and show how the gauge instantons can be realised in string theory
using particular D-brane bound states.
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Topological field theories (TFT) have been of extensive interest in the past few
decades from the mathematical as well as the physical point of view. In fact, these
theories have brought physicists and mathematicians to a common playground,
though for different motivations.

From the mathematical point of view, a topological theory is important in order
to count certain quantities called ‘topological invariants’1. The word ‘topological’
refers to an object that does not depend on the particular characteristics or moduli
of the space it lives in. In order to distinguish topologically inequivalent spaces,
it is crucial to have a complete classification of all their topological invariants. In
general, this is a tedious task but becomes simpler in the case of compact and con-
nected spaces. In particular, for spaces of dimension lower than three, this is possi-
ble. For instance, in the two-dimensional case (the zero- and one-dimensional cases
are rather trivial), there exists a complete classification: topologically inequivalent
compact and connected surfaces have a different number of boundaries (b), han-
dles (h) or crosscaps (c) (i.e. different orientability). An example of a topological
invariant for two dimensional surfaces is the Euler characteristic χ = 2−2h−b−c.
Conversely, the knowledge of the full set of topological invariants is important to
decide whether two spaces are homeomorphic or not. In dimensions higher than
two, this is an open question, and it is not known whether the set of topological
invariants is even countable.

On the other hand, modern physics has been mainly based on the study of
quantum field theory (QFT) which has rich yet very complex dynamics. In order
to have a better understanding of the latter, one is led to consider more simplified
models, and TFTs can be viewed as toy models for real, physical theories. In fact,
TFTs are better to be thought of as subsectors of physical field theories so that
one expects that they also calculate physical quantities that are inherited from the
full theory, thus shedding light on complex aspects of the latter. This is in the
core of the present work and is discussed in detail in the subsequent sections.

In this chapter, we review the basic elements of topological field theories, in
particular the ones underlying topological string theory (TST). We first present the
main features of a TFT and then illustrate them with two classes of TFT: Chern-
Simons theory in three dimensions and cohomological field theories (CohFT). The
latter contain the salient features needed for the construction of TSTs. We only
mention the main aspects and many of the technical details and mathematical

1A topological invariant is a property of a topological space which is invariant under homeomorphisms.
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proofs are omitted, as these can be found in the various references we point to.

2.1 Generalities

Consider a generic QFT defined on a certain background given by a metric, cou-
pling constants, complex structures, etc. This theory has a set of observables or
physical operators Oi inserted at positions xi, whose correlation functions are the
quantities of interest:

〈O1(x1) · · ·On(xn)〉 ,
and implicitly depend on the background of the theory. Physically speaking, this
theory is said to be topological if all the above correlation functions of observables
are independent of the choice of a background metric2. Of course, the background
in which they are calculated may involve other quantities on which they could still
depend. The theories we consider usually have general coordinate invariance. One
can then show that in a topological theory, the physical correlation functions do
not depend on the insertion points of the physical operators.

The class of TFTs is of course very special and one can split it into two categories
[24]:

1. Schwarz-type theories: defined without the use of a metric in the Lagrangian
nor the observables,

2. Witten-type theories: defined with a metric.

In what follows, we present an example of each category.

2.2 Chern-Simons Theory

Perhaps the most direct way of obtaining a TFT is to define a theory without
the use of a metric in its Lagrangian. Of course, this only guarantees that the
theory is classically topological and one has to ensure the absence of anomalies
in order to preserve this property at the quantum level. Chern-Simons theory in
three dimensions, on a generic manifold M and with gauge group G, is such an
example. The Chern-Simons action is given by

S =
k

4π

∫

M

Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
, (2.2.1)

where k is the coupling constant3 and A a gauge connection. In order to show
that this theory is topological, one should verify that the topological nature is not

2In contrast with the case of TST, the metric is not integrated over.
3Gauge invariance constrains k to be an integer.
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spoiled by possible anomalies of the measure in the path integral. This is quite
subtle and Witten [87] showed that there are no anomalies at the quantum level4.

The observables of this theory are the Wilson loop operators Wγ(A) defined as
the trace of the holonomy of A around a closed loop γ ⊂M:

Wγ(A) = TrP exp

∮

γ

A . (2.2.2)

These operators are gauge invariant. As mentioned above, the topological nature
of the theory implies that the correlators of the latter are independent of their
location in M. In other words, one can continuously deform the closed loops
without changing the correlation functions. Therefore, these topological properties
count knot invariants, and are given in terms of polynomials depending on the
coupling constant k and the gauge group. The simplest example is the Jones
polynomial which arises in the case of SU(2) gauge group.

2.3 Cohomological Field Theories

The TFTs of Witten type or CohFT are even richer in terms of topological in-
variants and are relevant for the study of TST. As its name suggests, a CohFT is
based on the existence of a fermionic symmetry δ represented through the Noether
procedure by a nilpotent operator Q:

Q2 = 0.

We also assume that the vacuum is preserved by this symmetry. The latter acts
on bosonic and fermionic fields as a commutator and anti-commutator with Q
respectively:

δOB = [Q,OB] ,

δOF = {Q,OF} , (2.3.1)

even though we generically use the curly brackets {, }. Q is to be thought of as the
BRST-charge of ordinary QFT or the supercharge of the supersymmetry algebra5.
The observables of the theory are defined as the Q-closed operators:

{Q,Ophys} = 0 . (2.3.2)

In fact, the physical states are classified by the cohomology of δ since any correla-
tion function of physical operators Oi is invariant under

Oi −→ Oi + {Q,Ω} . (2.3.3)

4More precisely, the partition function counts a topological invariant of M that also depends on a
choice of trivialisation of the tangent bundle TM⊕ TM.

5When one has more than one such charge, an appropriate linear combination has to be taken.
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This is due to the fact that the vacuum is preserved by δ and can be seen as follows:

〈0|· · · {Q,Ω} · · ·|0〉 = 〈0|· · · (QΩ− ΩQ) · · ·|0〉
= 〈0|Q · · ·Ω|0〉 − 〈0|· · ·Ω · · ·Q|0〉
= 0. (2.3.4)

Here we have used the physical condition (2.3.2) to pass the charge over the phys-
ical operators (there are possible additional signs that can arise in the second step
when Q passes the physical operators, but this does not affect the final result). In
a CohFT, given a local operator, one can construct a series of non-local ones using
the so-called descent equations. More precisely, starting from an observable O(0)

lying in the cohomology of δ and a series of n-forms O(n) such that

dO(n) = δO(n+1) , (2.3.5)

for n ∈ [[1, m]], m being the dimension ofM6, then one can define a set of non-local
observables

Yγn =

∫

γn

O(n) , (2.3.6)

γn being an element of the nth homology group ofM. It is easy to show that Yγn

is indeed an observable of the topological theory:

δYγn =

∫

γn

δO(n) =

∫

γn

dO(n−1) =

∫

∂γn

O(n−1) = 0 . (2.3.7)

Therefore, provided we construct a solution for the descent equations (2.3.5), for
every ‘scalar’ physical observable there exists a number of non-local physical op-
erators that are in one-to-one correspondence with the homology classes of M.
Finally, we require the energy-momentum tensor to be Q-exact:

T =
δS

δh
= {Q,G} , (2.3.8)

for some operator G, a background metric h and an action S. Recall that the inte-
grals of the energy-momentum tensor over space-like hypersurfaces are conserved
charges that must commute with the (internal) symmetries of the theory. If the
theory is local, one may impose the same requirement on the energy-momentum
tensor itself. Therefore, the condition (2.3.8) is simply a stronger version of this
constraint.

In a CohFT, starting from (2.3.8), one can construct a solution to the descent
equations using the momentum operator P = δ ·H ≡ {Q,H}, where H =

∫
G is

a space-like integral of the operator G in (2.3.8). Indeed, the operator

O(1) ≡ iH· O(0) (2.3.9)

6M should be thought of as space-time when the TFT is described by a sigma-model, see next section.
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is a solution to (2.3.5) and all the others can be generated recursively. In particular,
the non-local observables constructed from the top-form operators Yγm = ta

∫
Om
a

are relevant deformations of the action that do not spoil the topological symmetry
of the CohFT and play an important role in TST (see Section 4.2).

Using the conditions above, we can prove that the theory is topological. For this
consider a generic correlation function of physical operators Oi and differentiate
with respect to the metric hαβ

7

δ

δhαβ
〈O1 · · ·On〉 =

∫
D[Φ]

δ

δhαβ

(
O1 · · ·On eiS[Φ]

)
. (2.3.10)

Assuming that the operators do not depend on the metric, the differentiation
brings down a factor of the energy-momentum tensor in the correlator function.
Using the conditions (2.3.8, 2.3.2), this correlator is vanishing8:

δ

δhαβ
〈O1 · · ·On〉 ∼ 〈δ(O1 · · ·OnGαβ)〉 = 0 . (2.3.11)

Let us mention that in order to obtain (2.3.8), we may assume the stronger con-
dition that the action is itself Q-exact. In this case, the theory is even simpler
because the correlation functions are then independent of the coupling constant
and, hence, can be be calculated in the classical limit9.

Before closing this section, we discuss some specific properties arising in the two
dimensional case. The CohFT now lives on an arbitrary Riemann surface (of genus
g) Σg, and the correlation functions of physical operators are factorisable:

〈
O1 · · ·On

〉
Σg

=
〈
O1 · · ·OkOi

〉
Σg1
ηij
〈
OjOk+1 · · ·On

〉
Σg2

, (2.3.12)

with g = g1+g2. In general, a correlation function can be thought of as performing
a path integral with a certain assignment of boundary conditions and insertions
of the physical operators at various points of the Riemann surface. In the case
where the boundary is a circle, a boundary condition for a state |φi〉 is given by a
path integral over a hemisphere with the operator φi inserted in its ‘neck’ (one can
infinitely stretch the hemisphere to define an ‘asymptotic state’ but in a topolog-
ical theory this is irrelevant). In this picture, a path integral can be pictured by
starting with a hemisphere and evolving it with possible insertions of other opera-
tors until the other hemisphere (or asymptotic state) is reached. This generalises
straightforwardly to the case where the boundary is made of many circles giving
rise to a path integral over higher genera Riemann surfaces. The factorisation
property (2.3.12) can now be pictured by starting with a genus g Riemann and a

7The ordering of the operators in the path integral formalism is somewhat irrelevant because the
correlation functions do not depend on the insertion points.

8We neglect possible contributions from boundary terms that would spoil this property.
9Recall that the coupling constant g appears in the action as exp{ i

g
S}.
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number of operator insertions. Then one uses topological invariance to deform the
Riemann surface, developing a very long tube in which states labelled by a, b can
propagate. In the limit where the tube is of infinite length, the genus g Riemann
surface factorises into two lower genera ones with an additional operator insertion
corresponding to the state propagating in the tube. In principal, one must insert
all possible operators in the theory, but it is easy to show that only the physical
ones can lead to a non vanishing contribution. Notice the insertion of the ‘metric’
ηij which can be defined by applying (2.3.12) in the n = 2 case:

〈
OiOj

〉
Σg

=
〈
OiOk

〉
Σg1
ηkl
〈
OlOj

〉
Σg2

. (2.3.13)

Hence, ηij is the inverse of the metric given by the two point function10. An
important consequence of the factorisation property is that all the correlation
functions of the theory are essentially determined by the three-point functions
Cij

k on the sphere. This can be shown by using (2.3.12) and stretching off a
sphere with two of the operator insertions.

After this brief overview of TFTs, we now turn to topological sigma-models
which are the building blocks for TST when one includes the coupling to gravity.

10In fact, the metric ηij is given by the three point function
˙

OiOj 1
¸

on the sphere. When the unit
operator 1 belongs to the ring of observables, η defines a complex metric over the latter. This is the
case for CohFTs.
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3.1 N = (2, 2) Supersymmetric Sigma Models

We are now ready to explicitly construct a theory that has topological invariance.
Since we are interested in studying topological sectors of string theory, we focus
on two-dimensional (global) N = (2, 2) sigma-models. As we discuss below, the
natural target space is a Kähler manifold.

Consider a two-dimensional worldsheet given by R2 endowed with the flat Eu-
clidean metric. A supersymmetry generator is a 1

2
-representation of the Lorentz

group. In our case, the latter is SO(2) and this representation is reducible. Irre-
ducible representations are obtained by splitting the spinor into its two components
having opposite Lorentz charges. Therefore, a theory with two fundamental su-
percharges has N = (2, 2) supersymmetry and the irreducible supercharges are
denoted Q+, Q−, Q̄+, Q̄−. Together with the usual Poincaré generators given by
the translations (H,P ) and rotations (M) Noether charges, and two internal U(1)
currents of axial and vector R-rotations FA,V

1, they for the N = (2, 2) supersym-
metry algebra (all the other relations are trivial):

{Q±, Q±} = {Q̄±, Q̄±} = 0 , (3.1.1)

{Q±, Q̄±} = H ± P , (3.1.2)

{Q+, Q−} = {Q̄+, Q̄−} = 0 , (3.1.3)

{Q−, Q̄+} = {Q+, Q̄−} = 0 , (3.1.4)

[M,Q±] = ±Q± , [M, Q̄±] = ±Q̄± , (3.1.5)

[FV , Q±] = Q± , [FV , Q̄±] = −Q̄± , (3.1.6)

[FA, Q±] = ±Q± , [FA, Q̄±] = ∓Q̄± . (3.1.7)

In fact, one can relax the relations (3.1.3, 3.1.4) by introducing central charges:

{Q+, Q−} = Z̄ , {Q̄+, Q̄−} = Z , (3.1.8)

{Q−, Q̄+} = Z̃ , {Q+, Q̄−} = ¯̃Z . (3.1.9)

However, the central charges Z and Z̃ must commute with all the operators of the
theory. For generic central charges, the axial and vector currents are not conserved,
unless Z = 0 (Z̃ = 0) in which case FV (FA) is conserved.

1They are defined in terms of the internal left- and right-moving internal currents, FV,A = FL ± FR.
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The supercharges of the theory generate supersymmetry transformations that
are represented by an operator δ, and depend on four parameters ǫα, ǭα, where
α = +,−:

δ ≡ ǫαβ(ǫαQβ + ǭαQ̄β) . (3.1.10)

In order to work in a theory that manifestly preserves supersymmetry, it is conve-
nient to use the language of the N = (2, 2) superspace (in two dimensions) which
is very similar to the N = 1 standard superspace (in four dimensions). We denote
(z, z̄) the complexified (bosonic) coordinates on C ∼= R2 and supplement them
with four fermionic coordinates (θ+, θ−, θ̄+, θ̄−) that transform as spinors under
Lorentz transformations with + or − chirality. This set of coordinates defines the
superspace R2|4. In terms of the superspace coordinates, the supercharges can be
represented as differential operators:

Qα =
∂

∂θα
+ iθ̄α∂α ,

Q̄α = − ∂

∂θ̄α
− iθα∂α , (3.1.11)

where ∂± are z, z̄-derivatives. We define another set of differential operators that
anti-commute with the supercharges:

Dα =
∂

∂θα
− iθ̄α∂α ,

D̄α = − ∂

∂θ̄α
+ iθα∂α . (3.1.12)

A superfield is a function defined on the superspace, F (z, z̄, θ±, θ̄±) which can
be expanded in the fermionic coordinates, leading to (at most) sixteen bosonic
components. It is instructive to write down the action of the R-rotations on a
general superfield which might possess non-trivial R-charges qA and qV :

eiαFV F (z, z̄, θ±, θ̄±) = eiαqV F (z, z̄, e−iαθ±, eiαθ̄±) ,

eiαFAF (z, z̄, θ±, θ̄±) = eiαqAF (z, z̄, e∓iαθ±, e±iαθ̄±) . (3.1.13)

In subsequent discussions, we mainly restrict our attention to chiral superfields
defined through the constraint

D̄αΦ = 0 . (3.1.14)

They can therefore be expanded as2

Φ(zα, θα, θ̄α) = φ(yα) + θβψβ(y
α) +

1

2
ǫβγθ

βθγF (yα) , (3.1.15)

2For convenience, we use the notation z+ = z and z− = z̄.
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with yα = zα − iθαθ̄α. The complex conjugate of a chiral superfield is called an
anti-chiral superfield. The supersymmetric transformation of a chiral superfield is
again a chiral superfield and one can write the transformation on the components
of the superfield as

δφ = ǫ+ψ− − ǫ−ψ+ , (3.1.16)

δψ± = −2iǭ∓∂z±φ+ ǫ±F , (3.1.17)

and similarly for an anti-chiral superfield. For completeness, let us mention another
class of superfields called twisted chiral superfields U defined by the condition

D̄+U = D−U = 0 . (3.1.18)

With these definitions in mind, we now recall the construction of supersymmetric
actions given by the so-called F-terms and D-terms. The latter are defined as
functionals of superfields integrated over the full superspace:

∫
d2zd4θK(F I) . (3.1.19)

The integration measure d4θ is simply dθ+dθ−dθ̄−dθ̄+. This term is invariant
under the supersymmetry δ. In the particular case where the function K depends
on chiral and anti-chiral superfields only, it is naturally interpreted as a Kähler
potential. Indeed, performing the θ-integrals and picking only the components
depending on the scalar field φI of ΦI , one finds

−
∫
d2z gIJ̄ η

αβ ∂αφ
I∂βφ̄

J , (3.1.20)

where η is the Euclidean worldsheet metric and gIJ̄ = ∂2K
∂φI∂φ̄J . One recognises

the action for a bosonic string (with gauge-fixed worldsheet metric) and a Kähler
manifold target space.

On the other hand, an F-term is defined as an integral, over half of the super-
space, of a function of chiral superfields only:

∫
d2zd2θ W (ΦI)

∣∣
θ̄α=0

, (3.1.21)

where d2θ = dθ+dθ−. Using the action of δ and the properties of chiral superfields,
one can show that F-terms are also invariant. This class of supersymmetric terms
turns out to be important in studying topological amplitudes in string theory.

So far we have only dealt with sigma-models on flat manifolds, even though
our aim is to study string theory amplitudes defined in perturbation theory as
a topological expansion over Riemann surfaces of arbitrary geometry. In other
words, we would like to couple the supersymmetric sigma-model to gravity by
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3 Topological Sigma Models

using curved manifolds. In a bosonic theory, this is quite straightforward whereas
in a supersymmetric theory, one must appropriately choose a spin structure in
order to be able to put spinors on the worldsheet. However, the action would then
break supersymmetry. One way to see this is to write down the supersymmetric
variation of the action on a generic genus g Riemann surface Σg as

δS =

∫

Σg

ǫαβ∇µ(ǫ[αG
µ
β] − ǭ[αḠ

µ
β]). (3.1.22)

In order for this to vanish for a generic Σg, we must impose ∇µǫα = 0 = ∇µǭα,
meaning that ǫα and ǭα are covariantly constant spinors. Therefore, the absence
of such spinors on a curved Riemann surface implies that supersymmetry is bro-
ken. In the case of bosonic symmetries, this problem does not arise because an
infinitesimal parameter of the latter is a number which can be viewed as a section
of a trivial bundle C×Σ over the worldsheet Σ and so it can always be chosen to
be constant. In this sense, in order to restore a fermionic symmetry, on may try to
twist the theory so that the supercharges become sections of a trivial bundle (in-
stead of a spin bundle). Of course, this is at the cost of violating the spin-statistics
theorem as we would obtain a scalar, Grassmann charge. In what follows, we show
how this is performed.

3.2 Topological Twist

As we argued previously, in order to obtain a fermionic symmetry of the sigma-
model on an arbitrary Riemann surface, one is led to twist the original theory
by changing its Lorentz charges. This is done by redefining the SO(2) ∼= U(1)
Lorentz generator M using the axial or vector internal symmetries and there are
two possible choices:

1. A-twist: MA ≡M − FV ,

2. B-twist: MB ≡ M + FA.

The resulting theories are said to be of type-A and type-B. Of course, this assumes
that one of the internal currents is conserved. It turns out that all other possible
twistings are equivalent to these two ones. Consequently, the twisted theory is
obtained by gauging the new diagonal subgroup Ũ(1)A,B of U(1) × U(1)V,A (or,
equivalently, by defining covariant derivatives with respect to this new Lorentz
group) implying that the spin of the fields get modified. In order to see this,
notice that the equations (3.1.5) become

[MA, Q+] = 0 ,

[MA, Q−] = −2Q− ,

[MA, Q̄+] = 2Q+ ,

[MA, Q̄−] = 0 , (3.2.1)
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3.2 Topological Twist

for the type-A theory, and

[MB, Q±] = ±Q± ,

[MB, Q̄±] = 0 , (3.2.2)

for the type-B one. From these relations, one can easily read off the new Lorentz
charges of the supercharges, and these are listed in Table 3.1 below. Similarly,
using the transformation law (3.1.13), one can deduce the new charges of the
components of chiral and anti-chiral superfields which we list in Table 3.2.

Ũ(1)A Bundle Ũ(1)B Bundle

Q+ 0 C 2 K

Q− -2 K -2 K

Q̄+ 2 K 0 C

Q̄+ 0 C 0 C

Table 3.1: Twisted Lorentz charges of the supercharges and the complex line bundles
of which they are sections. Here, C is the trivial bundle whereas K is the
canonical one.

U(1) U(1)V U(1)A Ũ(1)A Ũ(1)B

φ 0 0 0 0 0

ψ+ -1 +1 +1 -2 0

ψ− +1 +1 -1 0 0

ψ̄+ -1 -1 -1 0 -2

ψ̄− +1 -1 +1 2 2

Table 3.2: Lorentz and internal charges of the components of chiral and anti-chiral su-
perfields.

Consequently, after the twisting, two supercharges are scalar operators and can
serve as a definition of a fermionic symmetry on an arbitrary Riemann surface,
whereas the other two can be combined into a vector-valued supercharge. The
scalar supercharges define the topological charge

QA = Q+ + Q̄− ,

QB = Q̄+ + Q̄− . (3.2.3)

65



3 Topological Sigma Models

The vector supercharge is usually denoted GA,B
µ and is defined in the type-A and

type-B theories as

GA
z = Q̄+ , G

A
z̄ = Q− , (3.2.4)

GB
z = Q+ , G

B
z̄ = Q− . (3.2.5)

Using the supersymmetry algebra, it is easy to show that the topological charge
is nilpotent,

Q2 = 0 , (3.2.6)

and that the Hamiltonian and momentum operators are Q-exact,

{Q, Gµ} = Pµ , (3.2.7)

where P0 = H , P1 = P , G0 = 1
2
(Gz + Gz̄) and G1 = 1

2
(Gz − Gz̄). Of course, this

does not prove that the energy-momentum tensor of the theory is Q-exact, but
this turns out to be true in most of the cases of interest. Moreover, notice that
the full Hilbert space of the theory is not altered by the topological twist but only
the subset of physical states is affected.

3.3 Type-A Model

In the A-twisted sigma-models, the fermions ψI− and ψ̄I+ become scalars and, for
convenience, we relabel them as

ψĪ− = χĪ

ψ̄I+ = χI . (3.3.1)

We also rename ψI+ and ψ̄I− according to their new quantum numbers (they become
one-forms):

ψĪ+ = ρĪz

ψ̄I− = ρIz̄ . (3.3.2)

As in a CohFT, the set of physical operators are Q-cohomology representatives
and can be identified with differential forms on the complex manifold target space.
Indeed, given a non-trivial (p, q)-form φ in Hp,q(M),

ω(p,q) = ωI1···Ip J̄1···J̄q
(z) dzI1 ∧ · · · ∧ dzIp ∧ dz̄J1 ∧ · · · ∧ dz̄Jq , (3.3.3)

the following operator belongs to the Q-cohomology:

Oω = ωI1···Ip J̄1···J̄q
(φ)χI1 · · ·χIp χJ̄1 · · ·χJ̄q . (3.3.4)

Notice that we do not use the ρ-fields in (3.3.4) since we would need to insert the
worldsheet metric, thus spoiling the topological invariance. The correspondence
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3.3 Type-A Model

is achieved through the identification of zI , dzI , dz̄J with φI , χI , χJ̄ respectively.
Indeed, since the action of the supercharges (3.1.16) on the fields is changed,

{Q, φ} = χ (3.3.5)

{Q, χ} = 0 , (3.3.6)

the topological charge can only act non trivially on φ,

{Q,Oω} = ∂φa(ωI1···Ip J̄1···J̄q
(φ))χa χI1 · · ·χIp χJ̄1 · · ·χJ̄q , (3.3.7)

with a summed over two indices Ip+1, J̄q+1. This implies that Q is identified with
the de Rham differential operator ∂ + ∂̄ = d and the Hilbert space of physical
operators is indeed isomorphic to HdR(M). The operator Oφ is said to be of
degree (p, q).

Consider the correlator of the topological sigma-model on an arbitrary Riemann
surface Σg of genus g

〈O1 · · ·On〉Σg , (3.3.8)

which can be decomposed over a basis of homology classes β of φ(Σg) in H2(M,Z).
In order for this correlation function to be non-vanishing, one has to ensure that
any possible anomalies coming from the global U(1) symmetries are cancelled. In
the case at hand, the axial U(1)A is a ghost number symmetry, i.e. it is anomalous,
and one is forced to cancel the corresponding ghost charge so that (3.3.8) gives
a sensible contribution. In other words, one must soak up the fermionic zero-
modes on Σg. For a fixed homology cycle and genus, this anomaly is given by the
Riemann-Roch theorem:

N0(χ)−N0(ρ)|β,g = 2 c1(M)· β + 2m(1− g) , (3.3.9)

where N0 counts the zero modes, c1(M) is the first Chern class of M and m its
complex dimension. This means that under the action of an axial R-rotation eiαFA ,
the path integral measure picks up a factor of eiα(N0(χ)−N0(ρ))β,g . Using the U(1)A
charges of the χ fields (see Table 3.2), we deduce the following selection rule for
(3.3.8) to be non-vanishing:

n∑

i=1

(pi + qi) = 2c1(M)· β + 2m(1− g) . (3.3.10)

Similarly, U(1)V is not anomalous and the selection rule is simply

n∑

i=1

pi =
n∑

i=1

qi . (3.3.11)

This leads to very stringent constraints on the correlation functions of type-A
topological sigma-models. In particular, if c1(M) = 0, that is the target space is
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3 Topological Sigma Models

a Calabi-Yau manifold, all correlation functions vanish at genus g > 1, whereas
at genus one the partition function survives. This issue can be circumvented by
coupling the sigma-model to gravity (see next chapter). At tree-level, the non-
trivial correlation functions are the ones involving insertions of top-forms, and
they count holomorphic maps from the worldsheet to space-time (or worldsheet
instantons) (see e.g. [86]).

3.4 Type-B Model

In the case of a B-twist, the labelling of the fields is different [88]:

ηĪ = ψĪ+ + ψĪ−

θI = gIJ̄(ψ
J̄
+ − ψJ̄−) ,

ρIz = 2ψ̄I+

ρIz̄ = 2ψ̄I− . (3.4.1)

Here, the topological observables are defined, using elements of the Dolbeault
cohomology Hp

∂̄
(M,∧qTM)

ω(p,q) = ωĪ1···Īp
J1···Jq(z, z̄) dz̄I1 ∧ · · · ∧ dz̄Ip ∂

∂zJ1
∧ · · · ∧ ∂

∂zJq
, (3.4.2)

by
Oω = ωĪ1···Īp

J1···Jq (φ, φ̄) ηĪ1 · · · ηĪp θJ1 · · · θJq , (3.4.3)

with the identifications:

η ←→ dz̄ ,

θ ←→ ∂

∂z
. (3.4.4)

As in the type-A model, one can show, by acting with the topological charge on
O, that the identification (3.4.4) provides an isomorphism between the Hilbert
space of local topological observables and the ∂̄-cohomology group. Moreover, the
correlation functions have simpler selection rules because the target space must be
a Calabi-Yau in order for the theory to be well-defined:

∑
pi =

∑
qi = m(1− g) . (3.4.5)

In addition, the action is also Q-exact and the semi-classical approximation is
exact. However, the only worldsheet instantons are constant maps so that the
path integral reduces to an integral overM.
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4 Topological String Theory

4.1 Coupling to Topological Gravity

As mentioned previously, the type-A and type-B topological sigma-models are
trivial for g > 1 and one is forced to introduce the degrees of freedom of an arbitrary
Riemann surface rather than simply use a background metric. In other words, in
order to capture non-trivial information on an arbitrary Riemann surface in the
twisted sigma-models, one should couple the latter to gravity, and perform the
integral over the space of all possible metrics. Naively, one might think that this is
trivial since the quantities we are calculating are metric independent. However, one
should keep in mind that there exist metric configurations that are not connected
by continuous deformations and that the volume of the corresponding space is
infinite.

On the other hand, recall that when one includes the degrees of freedom of a
metric in the sigma-model, the worldsheet theory becomes a (super-)conformal
field theory (SCFT) whose symmetry group is very big. Therefore, by using these
symmetries, one can reduce the metric path integral to a finite dimensional one
over conformally inequivalent metric, i.e. over complex structures. Obviously,
one must ensure that conformal anomalies are absent and the guiding principle is
string theory since the structure of twisted sigma-models is extremely similar to
the one of the bosonic string [27, 89, 19]. In particular, we would like to study
N = 1 space-time compactifications in which case the worldsheet theory is an
N = (2, 2) SCFT [17]. The topological charge we have studied so far behaves very
much like the BRST charge. Hence, the strategy to construct a TST is to twist the
underlying N = (2, 2) SCFT which is spanned by the energy momentum tensor
(T ), two supercharges (G±) and an internal U(1) current (J). Of course, these
operators are supplemented with their right moving counterparts (T̃ , G̃±, J̃). The
conformal weights and U(1) charges are listed in Table 4.1 below.

The (left-moving) superconformal algebra is given by the following OPEs, c
being the central charge of the algebra:
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4 Topological String Theory

Conformal weight U(1) charge

T 2 0

G± 3/2 ±1

J 1 0

Table 4.1: Conformal weights and U(1) charges of the operators spanning the supercon-
formal algebra.

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w , (4.1.1)

T (z)G±(w) ∼
3
2
G±(w)

(z − w)2
± ∂wG

±(w)

z − w , (4.1.2)

T (z)J(w) ∼ J(w)

(z − w)2
+
∂wJ(w)

z − w , (4.1.3)

G+(z)G−(z)∼ 2c/3

(z − w)3
+

2J(w)

(z − w)2
+
∂wJ(w) + 2T (w)

z − w , (4.1.4)

J(z)G±(w) ∼ ± G±(w)

z − w , (4.1.5)

J(z)J(w) ∼ c/3

(z − w)2
. (4.1.6)

The other OPEs are trivial. In particular, G± are nilpotent and can potentially
serve as BRST operators had they had the correct conformal dimension. Now
perform the topological twist by shifting the energy-momentum tensor using the
U(1) current J

T −→ T − 1

2
J , (4.1.7)

so that the new central charge vanishes, and (4.1.4) becomes

G+(z)G−(z) =
2J(w)

(z − w)2
+

2T (w)

z − w . (4.1.8)

Contrary to the case of the untwisted theory, the vanishing of the central charge
implies that there is no constraint on the dimension of space-time and topological
string theory is consistent on a target space of arbitrary dimension. However,
Calabi-Yau threefolds play a very special role as we discuss below. Moreover,
(4.1.7) has the direct consequence of shifting the conformal weights of the operators
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4.1 Coupling to Topological Gravity

Conformal weight U(1) charge

T 2 0

G+ 1 +1

G− 2 −1

J 1 0

Table 4.2: Conformal weights and U(1) charges of the operators spanning the twisted
superconformal algebra.

in the theory with their U(1) charges. The new weights are listed for the generators
of the superconformal algebra in Table 4.2.

Consequently, G+ can be identified, after the twist, with the BRST operator:

Q =

∮
G+ . (4.1.9)

Using (4.1.8), we find that the energy-momentum tensor is Q-exact,

{Q, G−} = T , (4.1.10)

which shows that this theory has all the ingredients of a topological theory. More-
over, the physical states of the theory are the chiral primaries φ which have con-
formal weight 1

2
and +1 charge. They satisfy [G+, φ] = 0 and acquire dimension

0 after the twist. Therefore, they span the Q-cohomology or the Hilbert space of
physical states. The anti-chiral primaries, operators of conformal dimension 1

2
and

-1 charge before the twist, have dimension 1 after the twist and are unphysical.
Hence, they should decouple from theory, and this is true only up to an anomaly
(see Section 4.2). On the other hand, G− can be identified with the reparametri-
sation ghost b. Finally, the worldsheet theory also contains a right-moving SCFT
that one has to twist, leading to the definition of two different topological string
theories, namely, the A- and B-model:

A-model: T̃ −→ T̃ +
1

2
J̃ , (4.1.11)

B-model: T̃ −→ T̃ − 1

2
J̃ . (4.1.12)

As the notation suggests, one can show that the relative sign between the A- and
B-twist precisely corresponds to twisting the Lorentz generator with the axial
or vector R-currents as in Section 3.2. The identification of the right-moving
reparametrisation ghost (and BRST charge) is also different:

A-model: b̃ −→ G̃+ , (4.1.13)

B-model: b̃ −→ G̃− . (4.1.14)
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4 Topological String Theory

Since the central charge of TST is zero, the integration over conformally equiv-
alent metrics is well-defined and one is only left with an integral over the moduli
space Mg of conformally inequivalent metrics parametrised by 3(g − 1) complex
parameters on a genus g > 1 Riemann surface1. In order to understand the role
of these complex parameters, recall that, in two dimensions, a conformal map is a
holomorphic one so that an element of the tangent bundle over Mg describes an
infinitesimal change in the complex structure:

δǫdz
α = ǫ(µa)ᾱ

α dzᾱ , (4.1.15)

with a = 1, . . . , 3(g − 1). µa is called a Beltrami differential. Together with the

reparametrisation ghosts, we can build a (1, 1) form G−
αβ(µa)ᾱ

βdzαdzᾱ ≡ G−(µa)

that we can integrate over the Riemann surface. This provides theMg-invariant2

measure necessary to construct the genus g partition function of the A- and B-
models (ma, m̄a form a basis of moduli):

FA,B
g =

∫

Mg

〈
3g−3∏

a=1

dma dm̄a

∫

Σg

G−(µa)

∫

Σg

G̃±(µ̄a)〉 . (4.1.16)

Naively, one might think that FB
g vanishes because of the non-conservation of the

U(1) charge. However, recall that the U(1) current J is anomalous, c.f. (4.1.6),
and provides, at genus g, a background charge of ĉ(g− 1), with ĉ ≡ 2

3
c. Therefore,

for g 6= 1, the genus g topological string partition function is non-vanishing only
for ĉ = 3, i.e. for a Calabi-Yau threefold. Apart from their phenomenological
applications in string compactifications, this gives Calabi-Yau threefolds a very
special role.

4.2 Holomorphic Anomaly Equations

In Section 2.3, we have seen that for every physical operator in the theory, it
is easy to construct a set of non-local observables using the descent equations
(2.3.5). In particular, the top-form operators one obtains can be considered as
deformations of the theory that do not spoil the topological invariance. In our
case, these operators are integrated two-form operators that can be constructed
by starting from a ‘scalar’ operator O(0) and acting with the vector supercharge
Gα (3.2.4, 3.2.5):

O(2)
αβ = i{Gα,O(1)

β } = −{Gα, [Gβ,O(0)]} . (4.2.1)

1For g=0,1, this number is 0,1. In fact, 3(g − 1) is the virtual dimension of Mg and is the actual
dimension only for g > 1.

2Strictly speaking, we integrate over the Deligne-Mumford compactification of the moduli Mg of the
moduli space of genus g Riemann surfaces.
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One can show (see e.g. [84]) that this physical operator is Q̄-exact. By unitarity, if

we deform the theory with ta
∫
Σg
O(2)
a , we must also include the complex conjugate

operator

t̄a
∫

Σg

Ō(2)
a , (4.2.2)

with (t̄a)∗ = ta. This operator is Q-exact, i.e. it corresponds to an unphysical
state in the sense of CohFT:

Ō(2) =

∮
G+

∮
G̃±· Ô(2) , (4.2.3)

for some chiral primary Ô(2), and the sign refers to the A- or B-model. Therefore,
by topological invariance, any physical correlation function should only depend
holomorphically on t: the unphysical states should decouple, for example, from
the topological string partition function. It turns out that this is true only up to
an anomaly [18, 19]. Naively, differentiating the partition function with respect
to t̄a brings down a Q-exact operator in the path integral so that by ‘integrating
by parts’, one obtains a vanishing result unless there are contributions from the
boundaries of the moduli space Mg. The latter can be obtained in two ways as
illustrated in Fig. 4.1. They correspond to the limit of degeneration of one of
the cycles of the Riemann surface. Stretching the resulting ‘tube’ to infinity, the
degenerate cycle is replaced by two punctures.

Figure 4.1: The boundaries of a Riemann surface in the moduli space are obtained either
through a dividing geodesic (1) or by pinching a handle (2).

Concretely, for the B-model, we have

∂Fg
∂t̄a

=

∫

Mg

[Dm]

〈∫
d2z

∮
G+

∮
G̃+· Ô(2)(z)

3g−3∏

a=1

∫
G−(µa)

∫
G̃−(µ̄a)

〉

=

∫

Mg

[Dm]

〈∫
Ô(2)

3g−3∑

c,d=1

∫
T (µc)

∫
T̃ (µd)

∏

a6=c,d

∫
G−(µa)

∫
G̃−(µ̄a)

〉
,

(4.2.4)

where we deformed the contour integrals of G+ and G̃+ away and used the topolog-
ical property (4.1.10) of the energy-momentum tensor. Recall that the Beltrami
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differentials parametrise deformations of the worldsheet metric h under a change
in the moduli ma, m̄a. Hence, ∂S

∂ma = ∂S
∂h

∂h
∂ma implies that

T (µa) =
∂S

∂ma
. (4.2.5)

Consequently, the insertions of the energy-momentum tensor can be recast as
derivatives with respect to the worldsheet moduli:

∂Fg
∂t̄a

=

∫

Mg

[Dm]

3g−3∑

c,d=1

∂2

∂mc∂m̄d

〈∫
Ô(2)

∏

a6=c,d

∫
G−(µa)

∫
G̃−(µ̄a)

〉
, (4.2.6)

and the integral reduces to one on the boundary of the moduli space which, as dis-
cussed previously, has two contributions. A thorough analysis of each contribution
leads to the BCOV holomorphic anomaly equations [19]:

∂Fg
∂t̄a

=
1

2
Cā

bc

(
DbDcFg−1 +

g−1∑

k=1

DbFkDcFg−k

)
. (4.2.7)

Da are Kähler covariant derivatives with respect to the chiral primaries and Cā
bc

are defined using the tree-level three point function of chiral primaries Cabc, the
Kähler metric3 Gaā and its Kähler potential K:

Cā
bc = Cāb̄c̄ e

2KGbb̄Gcc̄ . (4.2.8)

These objects can be defined and studied using special geometry and we refer the
reader to [19] for more details.

3This metric is called the Zamolodchikov metric.
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5 Topological Amplitudes and Higher
Derivative Couplings

5.1 TST Partition Function from Type II Amplitudes

Consider a generic CY3 compactification of Type II string theory. The ‘twisted’
or topological theory is obtained by performing the topological twist on the un-
derlying SCFT as described above. A natural question is whether the resulting
TST is related in some sense to the parent, ‘untwisted’ theory. In other words, we
would like to understand if the quantities calculated in TST can be reinterpreted
in terms of physical ones in the original compactification.

Recall that the TST partition function is non-vanishing because of the 3(g − 1)
background charge acquired, after the twist, by the U(1) current J . The latter
can be bosonised in terms of a free field H ,

J = i
√

3 ∂H . (5.1.1)

In the original Type II theory, the background charge of J can be obtained, at genus
g, by coupling H to the two-dimensional scalar curvature through the worldsheet
sigma-model deformation

δS =
i
√

3

2

∫

Σg

R(2)H . (5.1.2)

Choosing a set of punctures {xi, i = 1, . . . , 2g − 2} on Σg, one can select a metric
on the latter such that (recall that χg = −(2g − 2))

R(2) = −
2g−2∑

i=1

δ(2)(x− xi) . (5.1.3)

Hence, the sigma-model deformation becomes

δS = −i
√

3

2

2g−2∑

i=1

H(xi) , (5.1.4)

which amounts to the insertion of

2g−2∏

i=1

e−
i
√

3
2
H(xi) (5.1.5)
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in the partition function of the untwisted theory. The operator in (5.1.5) is the
internal part of the graviphoton vertex operator written in the (−1

2
,−1

2
)-picture,

and this requires the insertion of (g − 1) PCOs in order to cancel the total back-
ground charge of the superghost. Together with the (2g − 2) PCOs necessary to
soak up the (β, γ) zero-modes at genus g, we have a total number of 3g− 3 PCOs
to be inserted in (5.1.5), which necessarily contribute their G− (or TF ) part, as
expected from the TST partition function. We are thus led to consider a genus g
scattering amplitude, in the untwisted theory, involving 2g − 2 graviphotons. In
fact, the latter must be of definite self-duality which we choose to be anti-self-
dual (see Appendix A). In addition, one must insert two Riemann tensors, or else
the amplitude would vanish by supersymmetry (or, equivalently, by the lack of
zero-modes). This is also consistent with the supersymmetric term in the effective
action calculated by this amplitude as presented in the next section.

We now prove this explicitly following [6]. Namely, we calculate the genus g
scattering amplitude of two Riemann tensors and 2g − 2 graviphotons and show
that it reproduces the TST partition function. For simplicity, we work in Type IIB
and take the orbifold limit of the CY3, even though the result is valid for a generic
CY3 compactification. The orbifold acts on the complexified bosonic coordinates
as

Za → e2iπha Za , (5.1.6)

with h3 + h4 + h5 = 0 due to supersymmetry. Moreover, the complexified ten-
dimensional space-time index, M = 1, . . . , 5, is decomposed in terms of a space-
time, ℓ = 1, 2, and an internal one, a = 1, 2, 3. The amplitude of interest is

〈
(VR−)2 (VG−)2g−2

〉
, (5.1.7)

where R− and FG
− are the anti-self-dual graviton and graviphoton. Their vertex

operators are

VR(p)= hµν(∂X
µ + i(p·ψ)ψµ)(∂̄Xν + i(p· ψ̃)ψ̃ν)eip·X , (5.1.8)

VG(p)= ǫµpν e
− 1

2
(ϕ+ϕ̃)

(
Sα(σµν)α

βS̃β Σ Σ̃ + Sα̇(σ
µν)α̇β̇S̃

β̇ Σ̄ ¯̃Σ
)
eip·X . (5.1.9)

Here, because of anti-self-duality, we only use the first term of the graviphoton
vertex operator, and the symmetric traceless polarisation of the graviton hµν is
also chosen accordingly. Moreover, the polarisations satisfy the transversality con-
ditions

ǫ· p = 0 = pµhµν . (5.1.10)

Upon bosonisation of the worldsheet fermions,

ψM = e iφM , (5.1.11)
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5.1 TST Partition Function from Type II Amplitudes

the (anti)-chiral space-time spin fields can be expressed as

S1,2 = e±
i
2
(φ1+φ2) , (5.1.12)

S 1̇,2̇ = e±
i
2
(φ1−φ2) , (5.1.13)

whereas the internal one is

Σ = e
i
2
(φ3+φ4+φ5) . (5.1.14)

It is convenient to work in a particular kinematic configuration in which the anti-
self-duality constraints are satisfied1, which we choose to be p1 6= 0 for the first
graviton and p̄1 6= 0 for the second one, all the other momenta being set to zero.
The contributions of the vertex operators are summarised in Table 5.1. Notice
that in order to cancel the background charge of the superghost, the PCOs can
only contribute eϕ TF . All the other contributions can be deduced by charge
conservation. For this, the positions rI , I = 1, . . . , 3g − 3 are split into three
different sets rai.

Field Pos. Num. φ1 φ2 φ3 φ4 φ5 ϕ

R− z 1 1 1 0 0 0 0

w 1 −1 −1 0 0 0 0

G− xi g − 1 +1
2 +1

2 +1
2 +1

2 +1
2 −1

2

yi g − 1 −1
2 −1

2 +1
2 +1

2 +1
2 −1

2

PCO r3i g − 1 0 0 −1 0 0 1

r4i g − 1 0 0 0 −1 0 1

r5i g − 1 0 0 0 0 −1 1

Table 5.1: Contributions of the vertex operators to the amplitude.

Factoring out the polarisations and the power of momenta corresponding to the

effective coupling of interest p2
1 p̄

2
1

∏
i p

(i)
1 p̄

(i)
1 , the amplitude becomes2

1Different kinematics can be obtained by Lorentz transformations.
2The bosonic part of the gravitons does not contribute, see discussion below. In addition, an integral

over the positions of the physical vertex operators is understood.

77



5 Topological Amplitudes and Higher Derivative Couplings

F̃g =

∫

Mg

〈
ψ1 ψ2 ψ̃1 ψ̃2(z, z̄) ψ̄1 ψ̄2

¯̃ψ1
¯̃ψ2(w, w̄)

∏

i

e−
1
2
(ϕ+ϕ̃) S1 S̃1 Σ Σ̃(xi, x̄i)

×
∏

i

e−
1
2
(ϕ+ϕ̃) S2 S̃2 Σ Σ̃(yi, ȳi)

∏

I

eϕ TF e
ϕ̃ T̃F (rI , r̄I)

〉
, (5.1.15)

where the correlator is to be calculated at genus g and a sum over the 22g spin
structures is understood. Correlation functions on an arbitrary genus g Riemann
surface have been studied, for instance, in [83, 35, 32]. Consider, an arbitrary
spin-λ bc-system (1.1.23) which has a background charge Q = 2λ − 1. At genus
g, the Riemann-Roch theorem implies that the number of b zero-modes minus the
number of c zero-modes is Ig,Q = Q(g − 1). Hence, a non-vanishing correlation
function of b,c fields is such that the number of b-insertions minus the number of
c-insertions is equal to Ig,Q. For a generic spin structure s, that is [83, 35]

〈N+Ig,Q∏

i=1

b(zi)
N∏

k=1

c(wk)
〉
g,s

=

ϑs (
∑
zi −

∑
wk −Q∆)

Z
1/2
1

×
∏

i<j E
λ(1−λ)(zi, zj)

∏
k<lE

λ(1−λ)(wk, wl)∏
i,k E

λ(1−λ)(zi, wk)

∏
i σ

Q(zi)∏
k σ

Q(wk)
,

(5.1.16)

where ϑs is the genus g theta function, E the prime form, σ a g/2-differential,
Z1 the chiral determinant of the spin (1, 0) system, which can be thought of as
the partition function of a chiral scalar field3, and ∆ the Riemann class, c.f. Ap-
pendix C.1. Using this identity, we calculate (5.1.15) by factorising the space-time,
internal and superghost correlators.

In the space-time directions, one obtains

∏

ℓ=1,2

〈
e iφℓ(z)

∏

i

e
i
2
φℓ(xi) e−iφℓ(z)

∏

i

e−
i
2
φℓ(yi)

〉
=

ϑ2
s

(
1
2

∑
i(xi − yi) + z − w

)

Z1
×
∏

i<j E
1/2(xi, xj)E

1/2(yi, yj)
∏

iE(xi, z)E(yi, w)∏
i,j E

1/2(xi, yj)E(z, w)2
∏

iE(xi, w)E(yi, z)
,

(5.1.17)

3In fact, the partition function of a chiral scalar field is equal to Z
−1/2
1 .
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whereas in the internal space, the contributions are

∏

a

〈∏

i

e
i
2
φa(xi) e

i
2
φa(yi) e−iφa(rai)

〉
=
∏

a

ϑs,ha(
∑

i
1
2
(xi + yi)− rai)
Z

1/2
1

×
∏

a,i

∂Xa(rai)×
∏

i,j E
3/4(xi, yj)

∏
i<j E

3/4(xi, xj)E
3/4(yi, yj)

∏
a,i<j E(rai, raj)∏

a

∏
i,j E

1/2(xi, raj)E1/2(yi, raj)
.

(5.1.18)

Finally, the superghost yield the correlation function

〈∏

i

e−
1
2
ϕ(xi) e−

1
2
ϕ(yi)

∏

a

eϕ(rai)
〉

=
Z

1/2
1

ϑs
(

1
2

∑
i(xi + yi)−

∑
I rI + 2∆

)

×
∏

a,i,j E
1/2(xi, raj)E

1/2(yi, raj)∏
i,j E

1/4(xi, yj)
∏

i<j E
1/4(xi, xj)E1/4(yi, yj)

∏
I<J E(rI , rJ)

×
∏

i σ(xi)σ(yi)∏
I σ

2(rI)
,

(5.1.19)

and the integral over the zero-modes of the space-time bosons gives

〈∣∣∏

ℓ

∂Xℓ
0

∣∣2
〉

=
1

(det Imτ)2
, (5.1.20)

τ being the period matrix of the Riemann surface. Joining all contributions, the
effective coupling is

F̃g =

∫

Mg

∣∣∣
∑

s

ϑ2
s

(
1
2

∑
i(xi − yi) + z − w

)∏
a ϑs,ha(

∑
i

1
2
(xi + yi)− rai)

Z2
1 det(Im τ)ϑs

(
1
2

∑
i(xi + yi)−

∑
I rI + 2∆

)

×
∏

i<j E(xi, xj)E(yi, yj)
∏

iE(xi, z)E(yi, w)
∏

a,i<j E(rai, raj)

E(z, w)2
∏

iE(xi, w)E(yi, z)
∏

I<J E(rI , rJ)

×
∏

i σ(xi)σ(yi)∏
I σ

2(rI)

∏

a,i

∂Xa(rai)ǫa1...a3g−3

∏

I

∫
µI(haI

)
∣∣∣
2

. (5.1.21)

The last term stems from the b-ghost zero-modes, with µI being the Beltrami
differentials and haI

the quadratic differentials, and serves as a measure over the
moduli spaceMg. In order to be able to perform the sum over the spin structures
using the Riemann summation identity (C.1.15), it is convenient to fix the positions
of the PCOs such that

− z + w +
∑

i

yi + 2∆ =
∑

I

rI , (5.1.22)

and the theta function in the denominator cancels out. In addition, the theta
functions above are monodromy-invariant and one can readily perform the spin
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structure sum without any additional phase4:

∑

s

[
ϑs(

1

2

∑

i

(xi − yi) + z − w)

5∏

a=3

ϑs,ha(
∑

i

1

2
(xi + yi)− rai)

]

= ϑ(
∑

i

xi + z − w −∆)
5∏

a=3

ϑ−ha(
∑

i

rai −∆) .

(5.1.23)

Furthermore, the amplitude can be further simplified using the bosonisation
identities of [83, 2, 35]. More specifically, we identify a superghost system with
background charge Q = 3,

Z
1/2
1

ϑ(−∑ rI + 3∆)
∏

I<J E(zI , zJ)
∏

I σ
3(rI)

= Z−1
2 det−1 hI(zJ) , (5.1.24)

and a bc-system with Q = 1,

5∏

a=3

Z−1/2ϑ−ha(
∑

rai −∆)
∏

i<j

E(rai, raj)
∏

i

σ(rai) =

5∏

a=3

Z1 det ω−ha,i(raj) .

(5.1.25)

Similarly, the remaining parts of the amplitude can be recognised as the following
chiral determinants:

ϑ(
∑
xi + z − w −∆)

Z
1/2
1

∏
i<j E(xi, xj)

∏
iE(xi, z)σ(xi)

E(z, w)
∏

iE(xi, w)
= Z1 det ωi(x̂j) , (5.1.26)

ϑ(
∑
yi − z + w −∆)

Z
1/2
1

∏
i<j E(yi, yj)

∏
iE(yi, w)σ(yi)

E(z, w)
∏

iE(yi, z)
= Z1 det ωi(ŷj) . (5.1.27)

Here, we have defined for simplicity

x̂i ≡ xi, z , (5.1.28)

ŷi ≡ yi, w . (5.1.29)

The total amplitude can now be compactly expressed in terms of the chiral deter-
minants above:

F̃g =

∫ ∣∣∣det ωi(x̂j) det ωi(ŷj)
∏

a det(∂Xa ω−ha,i(raj))

det(Imτ) det hI(rJ)
ǫa1...a3g−3

∏

I

∫
µI · haI

∣∣∣
2

.

(5.1.30)

4Had we chosen the bosonic part of the graviton vertex operator, the result would have vanished after
performing the spin-structure sum due to the Riemann vanishing theorem.
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Using the definition of the period matrix, it is easy to show that

∫

x̂

det ωi(x̂j) = g! det Imτ . (5.1.31)

Moreover, summing over all the possible partitions of the positions rai cancels the
remaining determinants, which leads to

F̃g = (g!)2

∫

Mg

〈∣∣∣det

∫

Σg

µI · hJ
∣∣∣
2〉

= (g!)2 Fg . (5.1.32)

Hence, the coupling of two anti-self-dual gravitons and 2g−2 anti-self-dual gravipho-
tons in Type II computes the genus g topological string partition function5.

One can repeat the calculation above at higher genus by considering the same
scattering amplitude (with 2g−2 graviphotons) at genus g′ > g. It is easy to show
that it vanishes identically due to a lack of fermionic zero-modes. In fact, in turns
out that this class of couplings is super-protected: it receives neither perturbative
nor non-perturbative corrections, as discussed in the following section.

5.2 Effective Field Theory

Following Gopakumar and Vafa [41, 42], the generating function of the A-model
partition function on a CY3 is obtained by integrating out all massive BPS states
corresponding to D-branes wrapping two-cycles of the CY3 in the background of
a constant anti-self dual graviphoton field strength. Due to the anti-self duality,
the latter only couples to the spin of the D-brane states along a particular SU(2)
of the four-dimensional Lorentz group. Specifically, in terms of the Ω-supergravity
background [67, 64], this means that the topological partition function only de-
pends on one deformation parameter, ǫ−, that is identified with the topological
string coupling. Thus, from the point of view of the string effective action, we are
naturally led to study N = 2 higher derivative F-terms including the anti-self-dual
graviphoton field strength tensor.

Consider the following series of effective couplings in the standard four-dimensional
superspace R4|8 ∼ {xµ, θiα, θ̄α̇i } [6]:

Ig =

∫
d4x

∫
d4θFg(X) (W ij

µνW
µν
ij )g for g ≥ 1 , (5.2.1)

which is a 1
2
-BPS F-term since it is invariant under half of the supercharges. In addi-

tion, W ij
µν is the supergravity multiplet and we have introduced (anti-symmetrised)

5In the last step, we have used the definition G− = ∂ Xa ψa in the twisted theory and the bosonisation
identities of [83] in (4.1.16).
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indices i, j = 1, 2 for the SU(2)R R-symmetry group. W ij
µν contains the gravipho-

ton field-strength FG, the field strength tensor Bi
µν of an SU(2) doublet of gravitini

and the Riemann tensor:

W ij
µν = FG,ij

(−),µν + θ[iB
j]
(−),µν − (θiσρτθj)R(−),µνρτ + · · · (5.2.2)

The subscript (−) denotes the anti-self-dual part of the corresponding field strength
tensor. The coupling function Fg in (5.2.1) only depends on holomorphic vector
multiplets, which contain a complex scalar φ, an SU(2)R doublet of chiral spinors
λiα as well as an anti-self-dual field-strength tensor of a space-time vector F µν

(−):

XI = φI + θiλIi + 1
2
F I

(−)µνǫij(θ
iσµνθj) + · · · (5.2.3)

We have added an additional label I to indicate that there are several vector
multiplets. In fact one of them, denoted X0, is not physical but rather serves as
a compensator of degrees of freedom in the formulation of N = 2 supergravity
[25, 26]. The physical moduli are then the lowest components of the projective
multiplets:

X̂I :=
XI

X0
. (5.2.4)

Upon explicitly performing the integral over the Grassmann variables, (5.2.1) in-
duces a component term that was calculated in the previous section:

Ig =

∫
d4xFg(φ)R(−)µνρτR

µνρτ
(−)

[
FG

(−) λσF
Gλσ
(−)

]g−1
+ · · · (5.2.5)

Recall that the Weyl multiplet W has conformal weight 1. Since the integrand in
(5.2.1) must have weight 2, the coupling Fg(X) is a homogeneous function of degree
2− 2g. Moreover, upon fixing the superconformal gauge, the compensator field φ0

can be expressed in terms of the Kähler potential K and the string coupling:

φ0 = g−1
s eK/2 . (5.2.6)

Therefore, the coupling function can be written in terms of the physical moduli
and, to the lowest order in the Grassmann variables,

Fg(φ) = (φ0)2−2gFg(φ̂) = g2(g−1)
s e(1−g)K Fg(φ̂) . (5.2.7)

The Kähler potential depends only on vector multiplets and, in Type II, the dilaton
belongs to a hypermultiplet. Moreover, due to the absence of mixing between
vector and hypermultiplets in N = 2 supergravity, the Kähler potential cannot
depend on gs. Consequently6, the couplings Fg calculated in the previous section

6Recall that string loops are counted by the power of gs.
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appear, as expected, at loop order g. In fact, they do not receive any further
perturbative or non-perturbative corrections.

One way to see this is to analyse the dependence of the gravitational fields on gs.
The term (5.2.5) in the effective action is written in the string frame. One can reach
the Einstein frame by reabsorbing the dilaton dependence of the Einstein-Hilbert
term: √

det GRg−2
s →

√
det GR , (5.2.8)

which is obtained by rescaling the metric as G → Gg2
s . On the other hand, the

graviphoton, as a RR field, contains a single power of gs such that R2 (FG)2g−2 has
a power of g2g−2

s . Going to the Einstein frame, there are additional powers of the
dilaton arising from the metric factors that contract the Riemann tensors and the

graviphotons, leading to a power of g
2(2−2g)
s . All in all, including the loop factor

of g2g−2
s , the total dilaton dependence vanishes and the couplings Fg are indeed

super-protected.

5.3 Heterotic Dual

The gravitational couplings (5.2.5) can be used to test string dualities. For instance,
as discussed in Section 1.4, Heterotic string theory on K3 × T 2 is dual to Type
II on a K3 fibration. Hence, in the latter case, it is interesting to calculate the
gravitational couplings above in the dual Heterotic theory. However, the non-
renormalisation theorem above does not carry over through the duality map since
the Heterotic dilaton belongs to a vector multiplet7. In fact, the Kähler potential
possesses a dilaton dependence of ln g2

s so that, using (5.2.7), Fg already appears
at genus one8. Consequently, in the weak coupling regime,

FHet
g |1-loop = FType II

g |ImS→∞ . (5.3.1)

One can check this explicitly by calculating the one-loop effective coupling of two
gravitons and two anti-self-dual graviphotons [7]. Notice that since this is a one-
loop amplitude, upon evaluating the correlation function of the vertex operators,
one can perform the integral over the fundamental domain of the torus, using, for
example, the techniques developed in [4, 5], and obtain an explicit expression for
the perturbative part of Fg. The derivation of the Fg’s in Heterotic is, however,
not shown in this section since the more general setup of ‘refined couplings’ is
discussed in detail in Section 8.

In a word, we have seen the TST partition function is calculated, in Type II, by
gravitational coupling which are super-protected due to N = 2 supergravity, and
arise as higher derivative F-terms in the effective action. In addition, when the

7Under Heterotic-Type II duality, the heterotic dilaton is mapped to the volume modulus of the K3
fibration base.

8This is true for g > 1. For g = 0, 1, there are additional tree-level contributions.
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Type II compactification admits a Heterotic dual, these couplings start receiving
contributions at one-loop. This renders an explicit evaluation possible at the
perturbative level and gives a way to generalise them in a natural way as described
in Section 8.

From the low energy field theory point of view, F0 is nothing but a generalisation
of the Seiberg-Witten prepotential in the presence of gravity. In addition, the
terms Fg>0 are R2 corrections to the latter. In terms of the underlying N = 2
gauge theory, they arise as a deformation of the Seiberg-Witten theory using the
Ω-background and which we briefly present in the following section.
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6 N=2 Gauge Theory from String Theory

As mentioned previously, a full-fledged non-perturbative definition of superstring
theory is lacking. However, one can still probe some effects beyond perturbation
theory using D-branes. The latter can be used to describe field theory instantons
but also purely stringy, or exotic ones.

Recall that in field theory, instantons are finite action solutions of the equations
of motion. We are interested in four-dimensional gauge theories in which they are
given by gauge fields whose field strength is self-dual1:

Fµν = (∗F )µν ≡
1

2
ǫµν

ρσFρσ . (6.0.1)

Consider the (Euclidean) Yang-Mills action with gauge group G and a theta angle

SYM =
1

g2

∫
Tr(F ∧ ∗F )− iθ

8π2

∫
Tr(F ∧ F ) . (6.0.2)

A finite action solution is a pure gauge because the field strength must vanish at
infinity:

Aµ(x) ∼ Ū(x)∂µU(x) , (6.0.3)

with x ∈ S3. Since U defines a map from S3 to G, non-trivial instanton configu-
rations are classified by the third homotopy group of G. In most cases of interest,
the latter is a simple group so that

π3(G) = Z . (6.0.4)

Therefore, an instanton is characterised by a topological quantity, its winding
number k ∈ Z given by2

k =
1

8π2

∫

R4

F ∧ F , (6.0.5)

and the corresponding (positive) action is

Sk =

(
8π2

g2
+ iθ

)
|k| . (6.0.6)

Notice that the factor e−Sk breaks the perturbative U(1) symmetry of the theta
angle to a discrete one.

1Anti-instantons are solutions with opposite self-duality.
2For instantons, k > 0, whereas for anti-instantons k < 0.
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6.1 D-brane bound states

String theory must also contain the same instanton configurations since its low
energy limit is a gauge/field theory. Intuitively, they correspond, from the four-
dimensional space-time point of view, to point-like objects that can be extended
in some internal dimensions. The simplest such objects are (Euclidean) strings
wrapping an internal two-cycle, but these are perturbative objects from the string
theory point of view3. In order to obtain stringy non-perturbative objects, we must
consider, instead, D-branes wrapping some cycles in the internal space, and they
are sometimes referred to as Euclidean branes (E-branes) or D-instantons. The
action of this configuration is given by the Dp-brane couplings and, in the absence
of background fields, that is

T =
µp
gs

∫
dp+1ξ

√
G+ iµp

∫
Cp+1 . (6.1.1)

The first term gives the volume of the cycle wrapped by the Dp-brane and T can
be regarded as a complexified modulus4 generalising (6.0.6). Moreover, the second
term breaks the continuous shift symmetry of the RR scalar ap+1 ∼

∫
Cp+1 to a

discrete subgroup generated by ap+1 → ap+1 + 2π.
The gauge theory can be realised in terms of a stack of D-branes extending in

the four-dimensional space-time and, possibly, in some internal dimensions. One
can show that gauge theory instantons arise as Dp-D(p+4) bound states [90, 31].
For more general brane configurations, one obtains exotic instantons. In fact, the
D(p+4)-brane effective action contains the following term:

µp+4

∫
Cp+1 ∧ Tr(F ∧ F ) . (6.1.2)

Hence, an instanton configuration on a D(p+4)-brane carries a charge under Cp+1:
it is a Dp-brane. Usually, one considers a stack of N D(p+4)-branes in order to
realise, for example, an (S)O(N) gauge theory (or a subgroup thereof), together
with k Dp-branes to probe k-instantons. Of course, in a consistent string theory,
tadpole cancellation restricts N to a particular value and this is implicitly under-
stood throughout the manuscript. Moreover, as shown in [90], the k Dp-brane,
when collapsing to the same point, generate an Sp(k) gauge group5.

In the open string sector, there are different kind of states depending on the
location of the string endpoints. When the latter are on the D(p+4)-branes6,
the corresponding states are vector multiplets whose scalars Xp+4 parametrise the
position of the branes in the transverse space. On the other hand, mixed states

3They are, however, non-perturbative in α′.
4In Type IIA/B, it is a complex structure/Kähler modulus.
5For U(N), Sp(N) gauge theories, the instanton group is U(k), O(k) respectively.
6We focus on the N = 2 case.
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arising from open strings stretching between Dp- and D(p+4)-branes belong to
hypermultiplets. If Xp denotes the position of the Dp-branes in the transverse
space to the D(p+4)-branes, then Xp+4 = Xp is a configuration where the D-
instantons are ‘stuck’ to the gauge branes: this is the Higgs branch of the moduli
space, and the instanton has a finite size parametrised by the hypermultiplets. On
the other hand, Xp+4 6= Xp is the Coulomb branch and the instanton is a point-like
configuration located away from the D(p+4)-branes.

6.2 ADHM instantons

In this section we briefly review the Atiyah-Drinfeld-Hitchin-Manin (ADHM) con-
struction [15] of gauge theory instantons and show, quantitavely, how the instan-
ton effective action arises, in string theory, from the degrees of freedom of a Dp-
D(p+4) system. In addition, for later purposes, we also implement a non-trivial
Ω-background [72] as a U(1)2-deformation of the ADHM instantons. Our notation
follows [15] (see e.g. [30] for a review). At the core of the (undeformed) ADHM
construction is a specific ansatz for the gauge connection. Requiring this ansatz
to be a solution of the Yang-Mills equations of motion gives rise to a number of
constraints that can be encoded in an action principle. To obtain a deformation
of this ADHM action, we implement a particular space-time U(1)2 rotation, with
parameters ǫ1,2 (the Ω background).7

To be more specific, consider the following ansatz for the SU(N) gauge connec-
tion

(Aµ)uv = Ūa
u∂µUav , with Ūa

uUa,v = δuv . (6.2.1)

Here we have introduced the ADHM index a = 1, . . . , 2k +N and u, v = 1 . . . , N ,
with k being the instanton number.8 The ansatz (6.2.1) is a solution of the Yang-
Mills equations, DF = 0, with D being the covariant derivative (with respect to
the gauge connection), if the corresponding field-strength is self-dual, i.e. F = ∗F .
This can most easily seen by using the Bianchi identity as follows:

0 = D ∗ F = DF = 0 . (6.2.2)

To find a solution for the matrix U which has this property, we first notice that
the operator Pa

b ≡ Ua Ū
b is a projector preserving U , i.e. P 2 = P and PU = U .

The field strength of Aµ can be written in terms of P as

Fµν = ∂[µŪ
a(δa

b − Pab)∂ν]Ub . (6.2.3)

One is thus led to write the ansatz 11 − P = ∆ f ∆̄, where the [N + 2k] × [2k]
matrix ∆ is called the ADHM matrix, while f is an arbitrary Hermitian matrix.

7We also use the notation ǫ± = ǫ1±ǫ2
2

.
8In the following we mostly suppress the indices u, v to keep the notation simple.

87



6 N=2 Gauge Theory from String Theory

If we assume that ∆ is linear in the space-time coordinates,

∆aiα̇ = aaiα̇ + bαai xαα̇ , (6.2.4)

and that the matrix f is ‘diagonalised’ as

fij
α̇
β̇ = fijδ

α̇
β̇ , (6.2.5)

then the field strength (6.2.3) is self-dual, being proportional to the matrix σµν .
Here, the space-time coordinates xµ are written with spinor indices, i.e. xαα̇ =
xµ(σ

µ)αα̇ and we have introduced the instanton index i = 1, . . . , k. Notice that f
can be written in terms of the ADHM matrix as

∆̄∆ = f−111 . (6.2.6)

In this way, the construction of the ADHM solution is reduced to finding a con-
sistent set of matrices a and b. The symmetries of the problem allow us to write
[30]

a =

(
w

a′

)
, b =

(
0[N ]×[2k]

11[2k]×[2k]

)
, (6.2.7)

where w and a′αα̇ are [N ] × [2k] and [2k] × [2k] matrices respectively. They are
usually parametrised as follows:

w =
(
J I†

)
, (6.2.8)

a′ =

(
B1 −B†

2

B2 B†
1

)
. (6.2.9)

Here B1,2 are [k]× [k] and J, I† are [N ]× [k]. In terms of the symmetry group U(k)
of the instantons, I, J transform in the fundamental, anti-fundamental representa-
tion, whereas B1,2 transform in the adjoint. The condition (6.2.6) now translates
into the ADHM equations

µC =IJ + [B1, B2] = 0 ,

µR =II† − J†J +
∑

l=1,2

[Bl, B
†
l ] = 0 . (6.2.10)

The equations (6.2.10) are invariant under the action of U(k) × SU(n), where
SU(n) acts as a global gauge transformation and U(k) reflects the residual symme-
try of the ADHM data. In fact, it is important to quotient the space one obtains
after implementing (6.2.10) by this U(k) in order to obtain the ADHM manifold
Mk of dimension 4Nk:

Mk =
M

U(k)
. (6.2.11)
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6.2 ADHM instantons

In addition, one can also include an equivariant U(1)2 action parametrising rota-
tions in space-time with angles ǫ1,2. The total resulting action can be written on
the ADHM data as

Bl → eiφBl e
−iφeiǫl , (6.2.12)

I → eiφ I e−iae−iǫ+ , (6.2.13)

J → eia J e−iφe−iǫ+ , (6.2.14)

where a = diag(a1, . . . , aN) is the U(1)N−1 ⊂ SU(N) parameter of the gauge
transformation eia, and, similarly, eiφ ∈ U(k). Physically, a corresponds to the vev
of the gauge theory vector multiplet and φ is the adjoint complex scalar (Higgs
field). In the context of N = 2 gauge theory, the previous bosonic moduli are
supplemented with their fermionic superpartners appearing in the action below.
The ADHM instanton action can finally be written in the form of a total BRST
variation:

S = Q[χ·m + Ψ· V (φ̄)] . (6.2.15)

Here χ acts as a Lagrange multiplier reinforcing (6.2.10) as formulated with the
ansatz (6.2.7), while φ can be interpreted as a gauge connection implementing an
equivariant U(1)2 action on the instantons. In addition, we have defined

m ≡
(
µR

µC

)
. (6.2.16)

The action of Q and the definition of the vector field V are [72]

QBl = ΨBl
, QΨBl

= [φ,Bl] + ǫlBl ,

QI = ΨI , QΨI = φI − Ia− ǫ+I ,

QJ = ΨJ , QΨJ = −Jφ + aJ − ǫ+J ,

QχR = HR , QHR = [φ, χR] ,

QχC = HC , QHC = [φ, χC] + 2ǫ+ χC ,

Qφ = 0 , Qφ̄ = [φ, φ̄] ,

Ψ· V (φ̄) = Tr
[∑

l=0,1 ΨBl
[φ̄, B†

l ] + Ψ̄Bl
[φ̄, Bl]− Ψ̄I φ̄I + I†φ̄ΨI − Jφ̄Ψ̄J + ΨJ φ̄J

†
]
.

Here, l = 1, 2 and

H ≡
(
HR

HC

)
(6.2.17)
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implements the fermionic constraints as a ‘superpartner’ of m. Moreover, the
corresponding ‘scalar product’ is

χ·m = Tr

[
χR µR +

1

2
(χ†

C
µC + χC µ

†
C
)

]
. (6.2.18)

Finally, defining A = (Bl, I, J) and Gk to be the instanton group, the path integral
leading to Nekrasov’s partition function is [72]

ZNek
k (a, ǫ1, ǫ2) =

1

Vol(Gk)

∫
DφDφ̄DηDχDHDADΨ e−Q(χ·m+Ψ·V (φ̄)+η[φ,φ̄]) .

(6.2.19)

6.3 String theory realisation of ADHM instantons

As discussed previously, a Dp-D(p+4) system is a string theory realisation of
gauge theory instantons. Hence, one should be able to reproduce the aforemen-
tioned ADHM action by identifying the relevant massless fields arising from such
a construction, at least in the absence of the Ω-background (ǫ1,2 = 0)9. For defi-
niteness, we focus on the D(-1)-D3 case [31], though it is easy to generalise it to
any Dp-D(p+4) system. For instance, the D5/D9 system used in Chapter 10 is
related to the latter by T-duality.

Consider a system of N D3-branes and k D(-1)-branes in a Type IIB orientifold.
In the simplest case of toroidal compactification on T 6, this leads to the maximally
supersymmetric case of N = 4 SU(N) gauge theory. For a Z2 orbifold as in
Chapter 10, the amount of supersymmetry is reduces by half. In addition, we have
already seen that the D-brane charge is usually constrained, at the quantum level,
by tadpole cancellation, though for the purpose of classical dimensional reduction
this is not relevant. With this remark in mind, we keep N generic. The Euclidean
Lorentz group is broken,

SO(10)→ SO(4)× SO(6) (6.3.1)

whose covering group is G = SU(2)L×SU(2)R×SU(4). Here SU(4) plays the role
of the R-symmetry for the N = 4 theory. The ten-dimensional index M ∈ J0, 9K is
decomposed into longitudinal and transverse directions with respect to the space-
time-filling D3s:

M → (µ, a) ∈ J0, 3K× J4, 9K . (6.3.2)

The string coordinates obey Neumann boundary conditions only along the longi-
tudinal directions of the D3-branes. In particular, the boundary conditions for
an open string can be NN, ND or DD depending on the location of its endpoints.

9This case is studied in Chapter 10.
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6.3 String theory realisation of ADHM instantons

The ten-dimensional spin field preserved by the GSO projection is decomposed by
(6.3.1) as

S → (SαSA, S
α̇SA) , (6.3.3)

where α, α̇ denote chiral, anti-chiral spinors in four dimensions and the upper,
lower A index refers to fundamental, anti-fundamental representations of SO(6),
see Appendix A for more details. The vertex operators for the supersymmetry
currents are

jαA = e−
ϕ
2 SαSA ,

jα̇A = e−
ϕ
2 Sα̇SA , (6.3.4)

and similarly for the right-movers. The supercharges Q are simply the integrals of
these currents. Each set of D-branes preserves different supercharges according to
(1.3.27). In particular, due to the left-right identifications, these are combinations
of the form

QαA ± Q̃αA , Qα̇A ± Q̃α̇A . (6.3.5)

For Dp-branes, the boundary conditions for the spin fields is of the form

S = (

p∏

i=0

Γi)S̃ (6.3.6)

at the boundary (z = z̄). More precisely, for the D(-1)-branes, that is

SαSA = S̃αS̃A , (6.3.7)

Sα̇SA = S̃α̇S̃A , (6.3.8)

so that the preserved supercharges are QαA − Q̃αA and Qα̇A − Q̃α̇A. For the D3-
branes, the boundary conditions are10

SαSA = −S̃αS̃A , (6.3.9)

Sα̇SA = S̃α̇S̃A . (6.3.10)

Hence, the D3 boundary preserves QαA+Q̃αA and Qα̇A−Q̃α̇A. Notice that only the
latter is preserved by both sets of branes. In other words, N = 4 supersymmetry
of the gauge theory is broken down to N = 2 by the instantons.

Let us now discuss the massless spectrum obtained from the open string sector
and which come from the reduction of the ten-dimensional N = 1 multiplets. The
endpoints of the open string can be located on the D3- or the D(-1)-branes, and
this leads to three different sectors denoted by 3-3, 3-(-1)/(-1)-3 and (-1)-(-1).

10In fact, one could choose the opposite sign with respect to the D(-1) boundary conditions, and this
configuration would correspond to anti-instantons.
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1. 3-3 sector
The massless excitations consist of a number of N = 4 vector multiplets,
each of which containing a vector field Aµ, six real scalars φa, as well as two
gaugini (ΛαA,Λα̇A) which transform in the (2, 1, 4)⊕ (1, 2, 4̄) representation
of G. The bosonic degrees of freedom stem from the NS sector, while the
fermionic ones from the R sector. This sector taken separately realises an
N = 4 super-Yang-Mills theory living on the four-dimensional space-time.

2. (-1)-(-1) sector
These states are moduli (i.e. non dynamical fields) from a string perspective,
due to the instantonic nature of the corresponding D(-1)-branes. Indeed, the
states in this sector cannot carry any momentum because of the Dirichlet
boundary conditions in all directions. From the NS sector, we have ten
bosonic moduli, which we write as a real vector aµ and six scalars χa. From
the point of view of the gauge theory living on the world-volume of the D3-
branes, aµ corresponds to the position of gauge theory instantons. In the
Ramond sector, there are sixteen fermionic moduli, which are conveniently
written as MαA, λα̇A.

3. (-1)-3 and 3-(-1) sectors
Also this sector contains moduli from a string point of view. From the NS
sector, the fermionic coordinates have integer-moded expansions whose zero-
modes give rise to two Weyl spinors of SO(4) and are usually called (ωα̇, ω̄α̇).
Notice that these fields all have the same chirality, which in our case is
anti-chiral, owing to the specific choice of boundary conditions above. The
opposite choice in order to describe anti-instantons would have lead to chiral
fields instead11. In fact this can be derived by imposing locality of the OPE
of these fields with the conserved supersymmetry currents (see below). From
a SYM point of view, these fields control the size of the instanton [30]. In the
R sector, fields are half-integer moded leading to two Weyl fermions (µA, µ̄A)
transforming in the fundamental representation of SO(6).

This field content is compiled in Table 6.1 below.
The vertex operators for the fields in the 3-3 and (-1)-(-1) sectors can be obtained

by dimensional reduction. In the former, these are

VA(z) =
Aµ(p)√

2
ψµ(z) eip·X(z) e−ϕ(z) , Vφ(z) =

φa(p)√
2
ψa(z) eip·X(z) e−ϕ(z) ,

(6.3.11)

VΛ(z) = ΛαASα(z)SA(z) eip·X(z) e−
1
2
ϕ(z) , VΛ̄(z) = Λα̇AS

α̇(z)SA(z) eip·X(z) e−
1
2
ϕ(z) ,

(6.3.12)

11Recall that instantons and anti-instantons have, by definition, opposite self-duality which translates
into an opposite chirality of the corresponding field strengths when expressed in a spinor basis using
sigma matrices.
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6.3 String theory realisation of ADHM instantons

Sector Field Statistic R / NS

3-3 Aµ boson NS

ΛαA fermion R

Λα̇A fermion R

φa boson NS

(-1)-(-1) aµ boson NS

χa boson NS

MαA fermion R

λα̇A fermion R

(-1)-3/3-(-1) ωα̇, ω̄α̇ boson NS

µA fermion R

Table 6.1: Overview of the massless spectrum of the D(-1)/D3 system. The last two
columns denote whether the field is bosonic or fermionic and the sector it
stems from.

whereas in the (-1)-(-1), we have

Va(z) = g0 aµψ
µ(z)e−ϕ(z) , Vχ(z) =

χa√
2
ψa(z)e−ϕ(z) , (6.3.13)

VM(z) =
g0√
2
MαASα(z)SA(z)e−

1
2
ϕ(z) , Vλ(z) = λα̇A S

α̇(z)SA(z) e−
1
2
ϕ(z) .

(6.3.14)

Here, g0 is the D(-1)-brane coupling constant. For a Dp-brane, it is defined as

g2
p+1 = 4π(2π

√
α′)p−3 gs . (6.3.15)

Moreover, we have set 2πα′ = 1. In order to recover the usual dimensions, one

must rescale the fields with (2πα′)
3−2ν

4 and, as usual, νR,NS = 0, 1
2
. The vertex
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operators for the mixed sectors contain the so-called twist operators that implement
a change in the coordinates boundary conditions from D to N and vice-versa. These
are bosonic fields denoted ∆, ∆̄ and carry conformal dimension 1/4. The vertex
operators are [43]

Vω(z) =
g0√
2
ωα̇∆(z)Sα̇(z)e−ϕ(z) , Vω̄(z) =

g0√
2
ω̄α̇∆̄(z)Sα̇(z)e−ϕ(z) (6.3.16)

Vµ(z) =
g0√
2
µA∆(z)SA(z)e−

1
2
ϕ(z) , Vµ̄(z) =

g0√
2
µ̄A∆̄(z)SA(z)e−

1
2
ϕ(z) . (6.3.17)

Consider the OPE of (6.3.16) with the supersymmetry currents (6.3.4) which
can be easily derived as follows:

jα̇A(z)Vω(w) ∼ ωα̇

z − w SA(w) ∆(w) e−
3
2
ϕ(w) , (6.3.18)

jαA(z)Vω(w) ∼ ωα̇(σµ)
α̇
α√

2(z − w)
1
2

SA(w) ∆(w)ψµ(w) e−
3
2
ϕ(w) . (6.3.19)

Hence, the anti-chiral moduli ω, ω̄ are compatible with the preserved supersymme-
tries in the D(-1)/D3 system since the OPE (6.3.18) of their vertex operators with
the corresponding supersymmetry currents are local. However, notice that the
OPE (6.3.19) is non-local because of the branch-cut, but this is not problematic
because the corresponding supercharges are broken. On the other hand, the situa-
tion is reversed for chiral mixed moduli: the OPE of the latter with the preserved
supersymmetry currents is non-local and, therefore, is inconsistent. This justifies
the fact that the mixed bosonic moduli have a definite chirality stemming from
the choice of boundary conditions for the spin fields.

We would like to describe the gauge theory interactions between the various
states arising in the construction above, and compare with the action obtained in
the ADHM construction. In the string theory language, these are tree-level open
string interactions and are described by disc amplitudes [43]. In addition, one
must take the limit α′ → 0 in order to project out the string theory corrections.
Let us first focus on 3-3 sector describing the perturbative gauge theory degrees
of freedom. The disc diagrams have their boundary lying on the D3-branes only.
Consider, for instance, the interaction term of two gaugini ΛαA and a scalar field
φa, that is

DΛφΛ = 〈〈VΛ Vφ VΛ〉〉

≡ N4

∫
dz1dz2dz3

dV123
〈VΛ(z1)Vφ(z2)VΛ(z3)〉 , (6.3.20)

where N4 is the normalisation for D3-branes disc amplitudes, dVabc is the volume
of the conformal Killing group (1.1.56) and 〈· · · 〉 denotes a disc CFT correlator.
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6.3 String theory realisation of ADHM instantons

For a Dp-brane, the normalisation factor Np+1 is [21]

Np+1 =
1

2π2α′2

1

Cp+1g2
p+1

, (6.3.21)

with Cp+1 being the Casimir invariant of the fundamental representation F of the
Dp-branes gauge group:

TrF(T a T b) = Cp+1 δ
ab . (6.3.22)

In our current case, the generators are normalised such that C0 = 1 and C4 = 1
2
.

At tree-level, the total superghost picture must be -2, and the vertex operators
(6.3.11, 6.3.12) are already expressed in convenient pictures. Using the results
listed in Appendix B, the correlator in (6.3.20) can be evaluated, to the leading
order in α′, as

〈VΛ(z1)Vφ(z2)VΛ(z3)〉 =
1√
2
ΛαA φa ΛβB〈e− 1

2
ϕ(z1) e−ϕ(z2) e−

1
2
ϕ(z3)〉

× 〈Sα(z1)Sβ(z3)〉〈SA(z1)ψ
a(z2)SB(z3)〉

=
i

2
ǫαβ (Σ̄a)AB ΛαA φa ΛβB (z12 z13 z23)

−1 . (6.3.23)

Including all the normalisation factors, this yields

DΛφΛ =
2i

g2
4

(Σ̄a)AB ΛαA φa Λα
B . (6.3.24)

Finally, in order to obtain the full coupling, one must also calculate the inequiva-
lently ordered term DΛΛφ which gives through a similar calculation the same result
with the opposite sign due to the different ordering of the fields:

DΛφΛ = −2i

g2
4

(Σ̄a)AB ΛαA Λα
B φa . (6.3.25)

Hence, the term in the effective action is

2i

g2
4

(Σ̄a)AB ΛαA[φa ,Λα
B] . (6.3.26)

Computing all possible tree-level diagrams involving the vector multiplet compo-
nents, taking the field theory limit and identifying g4 with the Yang-Mills coupling
gYM, one recovers the tree-level super-Yang-Mills (SYM) effective Lagrangian:

LSYM =
1

g2
YM

Tr

{
1

2
F 2 − 2Λ̄α̇A /̄D

α̇β
Λβ

A +Dµφ
aDµφ̄a −

1

2
[φa, φb]

2

+ 2i(Σa)ABΛ̄α̇A[φa, Λ̄
α̇
B] + 2i(Σ̄a)ABΛαA[φa,Λα

B]
}
. (6.3.27)
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Therefore, the stack of D3-branes supports, as expected, an N = 4 SU(N) gauge
theory on their world-volume. We now show that, in this picture, the D-instantons
provide a good description of the corresponding gauge instantons.

The instanton effective action is obtained similarly by calculating all tree-level
disc diagrams involving the moduli above, and these reduce, in the field theory
limit, to three- and four-point amplitudes only. There are two types of disc dia-
grams as depicted in Fig. 6.1, mixed and unmixed ones. The latter are the ones in
which the full boundary of the disc lies on the D(-1)-branes, whereas the former
correspond to the case where the disc boundary is split between the D3- and the
D(-1)-branes. This means that there are insertions of (-1)/3 and 3/(-1) moduli
which are responsible, through the twist fields, for the jump of the boundary con-
ditions from N to D and vice-versa. Consequently, mixed diagrams always contain
an even number of such moduli.

(a) (b)

VV(-1)-(-1)

V(-1)-(-1) V3-(-1)

V(-1)-3

V(-1)-(-1)

V(-1)-(-1)

V3-3

Figure 6.1: Mixed and unmixed disc diagrams with boundary insertions only. Diagram
(a) involves four boundary insertions from the (-1)-(-1) sector, whereas dia-
gram (b) two insertions from the 3-(-1) and (-1)-3 sectors. While the whole
boundary of diagram (a) lies on the D(-1)-branes, diagram (b) lies partly
on the D3- and partly on the D(-1)-branes. Notice that the latter mixed
boundary conditions are only relevant in the space-time directions.

Let us first focus on the cubic interactions in the (-1)-(-1) sector which, by
dimensional analysis, involve one NS and two R moduli. For instance, consider
the following correlation function:

DMχM = 〈〈VM Vχ VM〉〉

≡ N0

∫
dz1dz2dz3

dV123

〈VM(z1)Vχ(z2)VM(z3)〉 . (6.3.28)
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This correlator has exactly the same structure as the one in (6.3.20) and leads,
similarly, to

〈VM(z1)Vχ(z2)VM(z3)〉 =
ig2

0

4
ǫαβ (Σ̄a)ABM

αA χaM
βB (z12 z13 z23)

−1 , (6.3.29)

so that the interaction term (6.3.28) is

DMχM =
i

2
(Σ̄a)ABM

αA χaMα
B . (6.3.30)

Including the other ordering of the polarisations (containing the CP degrees of
freedom) yields the term

i

2
(Σ̄a)ABM

αA[χa ,Mα
B] . (6.3.31)

All other three-point interactions can be derived similarly. Let us turn to the more
involved case of four-point diagrams in which one of the positions of the vertex
operators is integrated, and we focus on the amplitude

Daaaa = 〈〈Va Va Va Va〉〉

≡ N0

∫
dz1dz3dz4

dV134

〈Va(z1)Va(z2)Va(z3)Va(z4)〉 , (6.3.32)

where we choose the position z2 to be the integrated one. Naively, the zero-picture
vertex operator is ∂Xµ. However, in order to regularise the worldsheet integrals,
we need to turn on some momenta in the internal directions12. In principle, the
Dirichlet boundary conditions due to the D(-1)-branes forbid the presence of mo-
menta in any direction. Nevertheless, changing pictures for zero momentum vertex
operators is quite subtle and one may formally define this procedure by allowing
momenta in some directions and then taking the zero momentum limit [79]:

V (0)(p = 0) = lim
p→0

VPCO V
(−1)(p) . (6.3.33)

Here, the superscript displays the picture of the vertex operator. The limit of
vanishing momenta is then taken after evaluating the correlation functions and
the worldsheet integrals. Alternatively, one may work in the dual D5/D9 system
which is obtained by performing a T-duality along all the internal directions. In
this case, the boundary conditions in the latter do not forbid any momenta13.
Here, it is important to notice that momenta are never allowed in the space-time
directions (where the gauge theory lives). In general, the vertex operator at non-
zero momentum is of the form

(∂Xµ − i(p·ψ)ψµ)eip·X . (6.3.34)

12See Section 2.5 of [91] for a recent discussion of integrated vertex operators in string theory.
13One must also take the decompactification limit of the T 6 in order for this to be possible.
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One of the zero-picture vertices in (6.3.32) is at fixed position, i.e. it has conformal
dimension zero, and this amounts to attaching to it a c-ghost. In fact, this naive
step is incorrect since the resulting vertex operator would not lie in the BRST
cohomology:

QBRST

[
c (∂Xµ − i(p·ψ)ψµ)eip·X

]
6= 0 . (6.3.35)

The correct physical zero-picture vertex operator of dimension zero is

[c (∂Xµ − i(p·ψ)ψµ)− γ ψµ] eip·X , (6.3.36)

as one can readily check by evaluating the action of the BRST charge on (6.3.36)
(γ is the superconformal ghost). (6.3.32) now becomes

Daaaa = N0 lim
pi→0

i=1,...,4

∫
dz2〈Ṽ (0)

a (z1, p1)V
(0)
a (z2, p2) Ṽ

(−1)
a (z3, p3) Ṽ

(−1)
a (z4, p4)〉 ,

(6.3.37)
where the tilded vertex operators are the unintegrated ones:

Ṽ (0)
a (z, p) = g0 aµ [c (∂Xµ − i(paψa)ψµ)− γ ψµ] eipaXa

(z) , (6.3.38)

Ṽ (−1)
a (z, p) = g0 aµ c e

−ϕ ψµ eipaXa

(z) (6.3.39)

V (0)
a (z, p) = g0 aµ(∂X

µ − i(paψa)ψµ)eipaXa

(z) . (6.3.40)

Consider the contribution of γ ψµ to (6.3.37) for which only the fermionic part of
(6.3.40) can give rise to a non-trivial correlation function between the fermions
in the space-time directions. However, ψa cannot contract with any other field,
and this yields a vanishing contribution. Similarly, the terms ∂Xµ, (paψ

a)ψµ in
(6.3.38) can only contract with the corresponding ones in (6.3.40) resulting in the
two following terms:

A1 = 〈∂Xµ(z1)∂X
ν(z2)〉〈ψρ(z3)ψλ(z4)〉 = − δµνδρλ

(z12)2z34
, (6.3.41)

A2 = −p1a p2b〈ψa(z1)ψb(z2)〉〈ψµ(z1)ψν(z2)ψρ(z3)ψλ(z4)〉

= −p1· p2

z12

[
δµνδρλ

z12z34
− δµρδνλ

z13z24
+
δµλδνρ

z14z23

]
. (6.3.42)

Both A1 and A2 are multiplied by the contributions of the c-ghost, superghosts
and the exponentials in the momenta:

A0 = 〈c(z1)c(z3)c(z4)〉〈e−ϕ(z3) e−ϕ(z4)〉〈
4∏

i=1

eipiaXa(zi)〉

= z13z14
∏

1≤i<j≤4

(zij)
pi·pj . (6.3.43)
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6.3 String theory realisation of ADHM instantons

Focusing on the ordering 1234, the total correlation function is

〈Ṽ (0)
a (z1, p1)V

(0)
a (z2, p2) Ṽ

(−1)
a (z3, p3) Ṽ

(−1)
a (z4, p4)〉 = g4

0 Tr[aµ aν aρ aλ]A0(A1+A2) .
(6.3.44)

In this case, the range of integration of z2 is ]z1, z3[. Notice that only the prod-
uct p1· p2 appears above and we can already set p3 and p4 to zero. The term
proportional to A1 yields

− z14
z34

δµνδρλ . (6.3.45)

This contribution cancels against the same one coming from the ordering 4321 so
that only the term proportional to A2 can lead to a non-trivial result. This occurs
when the integral over z2 gives a pole in p1· p2. Clearly, the first term in (6.3.42)
cannot result in such a pole. Integrating the other two terms over z2 and taking
the limit of vanishing momenta, one obtains

− δµρδνλ + δµλδνρ . (6.3.46)

Including the polarisations, the final result, after some simple manipulations, can
be recast as

Daaaa = −g
2
0

4
[aµ, aν ]

2 . (6.3.47)

Summarising the above results, the total instanton effective action in the (-1)-(-1)
sector is

S(−1)
ADHM =iTr

{
λα̇A[aα̇β,Mβ

A] +
1

2
(Σa)AB λα̇A[χa, λ

α̇
B] +

1

2
(Σ̄a)ABM

αA[χa,Mα
B]

}

− Tr

{
g2
0

4
[aµ, aν ]

2 +
1

2
[aµ, χa]

2 +
1

4g2
0

[χa, χb]
2

}
, (6.3.48)

where we have used the notation aα̇β ≡ aµ(σ̄
µ)α̇β. Notice that for instanton num-

ber k = 1, this action vanishes and, as we show below, only the effective action
involving the moduli of the mixed sectors survives.

As explained above, the mixed disc diagrams contain an even number of twist
fields. Thus, by dimensional analysis, the only mixed diagrams surviving the field
theory limit are the ones involving two mixed moduli and either a (-1)-(-1) modulus
or an NS field from the 3-3 sector. In the latter case, it corresponds to a vacuum
expectation value (vev) for the scalars φa of the vector multiplet. Consider, for
example, the following amplitude:

Dµ̄ωλ = 〈〈Vµ̄ Vω Vλ〉〉

≡ N0

∫
dz1dz2dz3

dV123

〈Vµ̄(z1)Vω(z2)Vλ(z3)〉 . (6.3.49)
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6 N=2 Gauge Theory from String Theory

Notice that the normalisation is the same as in the unmixed sector. The correlator
in (6.3.49) can be evaluated as before:

〈Vµ̄(z1)Vω(z2)Vλ(z3)〉 = −g
2
0

2
µ̄A ωα̇ λβ̇B〈∆̄(z1)∆(z2)〉〈Sα̇(z2)S β̇(z3)〉〈SA(z1)S

B(z3)〉

× 〈e− 1
2
ϕ(z1)e−ϕ(z2)e−

1
2
ϕ(z3)〉

= −ig
2
0

2
µ̄A ωα̇ λβ̇B ǫ

α̇β̇ δBA (z12 z13 z23)
−1 . (6.3.50)

Hence, this disc amplitude yields the following effective coupling:

Dµ̄ωλ = i µ̄A ωα̇ λ
α̇
B . (6.3.51)

Finally, calculating all the other mixed diagrams including the vev for the gauge
multiplet, we obtain the instanton effective action for the mixed moduli:

Sm
ADHM = iTr

{
(µ̄A ωα̇ + ω̄α̇ µ

A)λα̇A +
1

2
(Σ̄a)AB µ̄

A µB χa −DcW
c +

i

2
χa ω̄

α̇ ωα̇ χ
a

}
,

(6.3.52)

and the total action for the instanton moduli is

SADHM = S(−1)
ADHM + Sm

ADHM . (6.3.53)

In (6.3.52), we have introduced W c ≡ ωα̇(τ
c)α̇β̇ ω̄

β̇, together with a set of three

auxiliary fields Dc (c = 1, 2, 3). In fact, integrating out the latter yields the ADHM
equations (6.2.10) as shown e.g. in [21].

In order to compare with the instanton effective action used in gauge theory, we
need to define a clear mapping between the ADHM moduli and the ones arising
from the brane construction. We merely perform this for the bosonic moduli since
the rest follows by supersymmetry. Furthermore, we focus in this manuscript
on N = 2 theories which can be obtained, in the string theory construction, by
compactifying on a T 2 × T 4/Z2 orbifold. In this case, some of the states are
projected out from the spectrum. In particular, only two of the bosonic moduli
χa are preserved, namely χ4, χ5. The latter are complexified and readily identified
with the ADHM moduli φ, φ̄:

φ =
χ4 − iχ5√

2
, φ̄ =

χ4 + iχ5√
2

. (6.3.54)

In addition, the moduli aµ and Bl are mapped to each other as follows:

Bl = (−)l a2l−1 − i a2l−2 , with l = 1, 2 , (6.3.55)

with the inverse map being

a2l−2 =
1

2
(−)l(Bl +B†

l ) , a2l−1 =
i

2
(Bl − B†

l ) . (6.3.56)

100



6.4 N=2 gauge theory in the Ω-background

We then plug these identifications in (6.3.48) or (6.2.15), for example

Tr
∑

l=1,2

[φ,Bl][φ̄, B
†
l ] = Tr

∑

l=1,2

(
[φ, a2l−1][φ̄, a2l−1] + [φ, a2l−2][φ̄, a2l−2]

)

=
1

2
Tr [χ4 − iχ5, aµ][χ4 + iχ5, a

µ]

=
1

2
Tr [χa, aµ][χ

a, aµ] , (6.3.57)

which appears in (6.3.48). Hence, to the leading order in the coupling constant,
the terms of the effective action (6.3.48) precisely match the ones coupling the
moduli Bl and their fermionic superpartners in (6.2.15).

We now turn to the mixed sector in which the identifications are

I = ω1̇ , I
† = ω̄2̇ , (6.3.58)

J = ω̄1̇ , J
†= ω2̇ , (6.3.59)

which are used to map (6.3.52) to the terms of (6.2.15) involving the moduli I, J
and their fermionic superpartners. As an illustration, recalling that spinor indices
are raised and lowered using the Levi-Civita symbol, we obtain

Tr
[
χa ω̄

α̇ ωα̇ χ
a
]

= Tr
[
φ ω̄α̇ ωα̇ φ̄+ φ̄ ω̄α̇ ωα̇ φ

]

= Tr
[
φ I† I φ̄+ φ J J† φ̄+ h.c.

]
. (6.3.60)

Consequently, the Dp-D(p+4) brane setup is a consistent string theory description
of the gauge theory instantons. Moreover, one can show that the BRST symmetry
Q appearing in (6.2.15) arises as a common supercharge preserved by the D-branes.

6.4 N=2 gauge theory in the Ω-background

In this section, we briefly present the classical description of the gauge theory in
the Ω-background, whose instanton corrections were discussed above. A standard
way of obtaining the action for a pure N = 2 gauge theory in four dimensions is
to start from an N = 1 theory in six dimensions whose action is

S6D,N=1
YM =

1

g2
6

∫
Tr

{
−1

4
FMNF

MN +
i

2
Ψ̄A /∇ΨA

}
+

θ

8π2

∫
Tr (F ∧ F ) , (6.4.1)

with /∇ ≡ γM∇M , and dimensionally reduce it on R1,3 × T 2 with a flat metric

ds2
6 = gµνdx

µdxν + dzdz̄ . (6.4.2)

Here, z is a complex coordinate for T 2. Upon shrinking the cycles of the torus to
zero, one recovers a four dimensional gauge theory with eight supercharges since
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6 N=2 Gauge Theory from String Theory

the reduction on the torus is maximally supersymmetric. The four dimensional
action is reached as follows. Consider the bosonic terms in (6.4.1) and reduce it
on (6.4.2) :

− 1

4
FMNF

MN = −1

4
FµνF

µν − 1

4
FµzF

µ
z̄ −

1

4
Fzz̄F

zz̄ . (6.4.3)

The z, z̄ components of the field strength define a complex scalar φ such that

Fµz = 2∇µφ and Fzz̄ =
√

2[φ, φ̄] . (6.4.4)

One can perform the same analysis for the symplectic Majorana spinor Ψ and this
leads to the N = 2 Yang-Mills action in four dimensions

S4D,N=2
YM =

1

g2
4

∫
Tr

{
−1

4
FµνF

µν − |∇µφ|2 −
1

2
[φ, φ̄]2

+ iψA /∇ψ̄A −
i√
2
ψA[φ̄, ψA] +

i√
2
ψ̄A[φ, ψA]

}

+
θ

8π2

∫
Tr (F ∧ F ) . (6.4.5)

This is the unique renormalisable N = 2 action in four dimensions up to two
derivatives. However, we are interested in studying the gauge theory deformed by
the Ω-background. For this, instead of the flat metric (6.4.2), we choose the torus
to be fibered over space-time:

ds2
6 = gµν(dx

µ + Ωµ
ρ x

ρdz + Ω̄µ
ρ x

ρdz̄)(dxν + Ων
ρ x

ρdz + Ω̄ν
ρ x

ρdz̄) + dzdz̄ , (6.4.6)

such that going around the cycles of the torus is accompanied with a rotation in
space-time parametrised by the matrices Ω and Ω̄:

Ωµν =




0 ǫ1 0 0

−ǫ1 0 0 0

0 0 0 ǫ2

0 0 −ǫ2 0



, Ω̄µν =




0 ǭ1 0 0

−ǭ1 0 0 0

0 0 0 ǭ2

0 0 −ǭ2 0



. (6.4.7)

Since the background is now curved, all supersymmetries are broken. Neverthe-
less, one can preserve a fraction of the latter by using the SU(2) R-symmetry of the
N = 2 algebra. This procedure is similar to the topological twist [72] introduced
in Section 3.2. In addition, it is essential in order to define a nilpotent charge Q as
in (6.2.19) and calculate the corresponding partition function using localisation.

Similarly to the pure gauge theory case, the partition function of the N = 2
gauge theory in the Ω-background factorises as

ZNek = ZNek
Pert × ZNek

NP , (6.4.8)

102



6.4 N=2 gauge theory in the Ω-background

with ZNek
Pert arising at one-loop only as in the Seiberg-Witten theory. Moreover, the

non-perturbative part is a sum over the instanton sectors labelled by the instanton
number k,

ZNek
NP (ǫ1, ǫ2, a, q) =

∑

k≥0

qkZNek
k (ǫ1, ǫ2, a) , (6.4.9)

with ZNek
k defined in (6.2.19). Using localisation [64, 67, 72, 73], it was shown that

the leading order expansion of the Ω-deformed prepotential

FNek(ǫ1, ǫ2, a, q) ≡ logZNek (6.4.10)

matches the Seiberg-Witten prepotential:

FNek(ǫ1, ǫ2, a, q) =
1

ǫ1ǫ2
FSW(a, q) +O(1) . (6.4.11)

In the case ǫ1 = −ǫ2, the higher order corrections in ǫ1,2 can be interpreted as
gravitational corrections and arise as the field theory limit of the topological string
partition function

∞∑

g=0

g2g−2
s Fg|field theory = FNek(ǫ+ = 0, ǫ− = gs) , (6.4.12)

with the parameter ǫ1 = −ǫ2 identified with the topological string coupling gs.
Hence, they encode the class of higher derivative couplings in the string effective
action presented in Section 5. The case of a general Ω-background is analysed in
the following sections.

Finally, for future reference, the perturbative part of the Nekrasov partition
function in the case of an SU(2) gauge theory is

FNek
Pert (ǫ−, ǫ+, a) = −1

2

∫ ∞

0

dt

t

cos (2ǫ+t)

sin (ǫ− − ǫ+) t sin (ǫ− + ǫ+) t
e−at , (6.4.13)

where a is the vev of the scalar of the gauge multiplet and a proper regularisation
of the Schwinger integral around zero is understood. It is important to mention
that the partition function of the N = 2 gauge theory in the Ω-background is
holomorphic, i.e. it does not depend on Ω̄ since ǭ1,2 deformations are Q-exact [72].
Hence, in the subsequent discussions, we only consider Ω-deformations and set Ω̄
to zero.
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Part III

Refined Amplitudes as Generalized
F-terms
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In the last decade, our understanding of topological string theory has dramati-
cally increased both from a physical and a mathematical point of view. A more
recent development, inspired through the work on the partition function of super-
symmetric gauge theories [67, 64, 72, 73], is the realisation that an interesting
one-parameter extension exists, known as the refined topological string. Indeed,
the field theory limit of the genus g topological string partition function F ft

g for
a Calabi-Yau manifold X is related to Nekrasov’s partition function of a gauge
theory on R4 × S1 through [72, 65, 73, 52, 53]:

∞∑

g=0

g2g−2
s F ft

g = logZNek(ǫ+ = 0, ǫ− = gs) , (6.4.14)

where ǫ± are equivariant rotation parameters of C2 ∼ R4 (see Section 6). Thus, the
‘unrefined’ topological string only captures one parameter, ǫ−, which is identified
with the topological string coupling gs. The refinement then consists in adding a
deformation that also captures the second parameter, ǫ+.

Most descriptions of the refinement do not follow along with the lines of the
worldsheet approach towards the topological string (see e.g. [86, 19]). For instance,
the refined A-model is defined via a lift to M-theory on X × S1 × TN, where
the Taub-NUT space TN is twisted along S1 to give rise to the two parameters
ǫ±. The refined partition function is related to the BPS spectrum of M-theory
on X [41, 42, 46] and is equivalent to the BPS index of M2-branes wrapping 2-
cycles of the Calabi-Yau manifold X [28]. Explicitly it can be computed using
a generalisation of the topological vertex formalism [16, 54]. Moreover, a non-
perturbative definition of the refined topological string was recently proposed in
[63]. However, what is still lacking is a convincing worldsheet description in terms
of some twisted two-dimensional theory. There is a number of properties one would
expect from such a description:

(i) Unrefined limit : Upon switching off the deformation, one expects to recover
the worldsheet description of the ‘unrefined’ topological string theory.

(ii) (Exact) σ-model description: We expect the refined topological string to be
described by an exactly solvable σ-model. Strictly speaking, such a model is
not guaranteed to exist, however, it is strongly desirable for purely practical
purposes.
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(iii) Field theory limit : Near a point of enhanced gauge symmetry the worldsheet
expression should precisely reduce to the Nekrasov partition function of N =
2 gauge theories.

To date, attempts to formulate a worldsheet description that possesses these prop-
erties have been inspired by the connection of the unrefined topological string to
BPS-saturated amplitudes in string theory [6–8]. Indeed, it has been proposed to
consider perturbative string theory amplitudes as a definition of the worldsheet par-
tition function of the refined topological string. Two different proposals have been
brought forward so far [11, 70]. Both consider one-loop BPS-saturated amplitudes
in Heterotic string theory compactified on K3 × T 2 (and their dual incarnations
in Type II theory compactified on K3-fibered Calabi-Yau manifolds) of the form:

Fg,n ∼ 〈R2
(−)(F

G
(−))

2g−2V 2n
(+)〉 , with g ≥ 1 , (6.4.15)

where R stands for insertions of graviton vertices and FG for vertices of the
graviphoton field strength tensor. For both fields the (−) subscript indicates that
only the anti-self-dual part of these tensors is used. To be precise, upon writing
the four-dimensional Lorentz group as SO(4) ∼ SU(2) × SU(2), these insertions
are only sensitive to one of the SU(2) Lorentz subgroups which, from the point of
view of the Ω-background, implies that they only couple to one of the deformation
parameters, say ǫ−. In fact, in the absence of self-dual insertions V(+), i.e. for
n = 0, the amplitude Fg,0 in (6.4.15) reduces to the class of amplitudes presented
in Section 5. Thereby, property (i) above is automatically manifest in all ampli-
tudes of the form (6.4.15). Coupling to the second deformation parameter (or
sensitivity to the second SU(2)) is achieved through the additional insertions V(+).
The main difference between the works [11] and [70] lies precisely in the choice of
the V(+) insertions. In [11], based on the work [68], it was proposed to use inser-
tions of the self-dual field-strength of the vector partner of the Heterotic dilaton,
whereas the authors of [70] instead considered insertions of the field strengths of
the vector partners of the Kähler and complex structure moduli of the internal T 2

as well as the U(1) current of the superconformal algebra. Unfortunately, neither
of these two proposals satisfies all of the properties outlined above, with each of
them only meeting two out of the three requirements. More specifically, while the
amplitudes in [11] fail to exactly reproduce the Nekrasov partition function – the
match is exact up to an ǫ+-dependent phase factor – the ones in [70] cannot be
exactly evaluated at the string level due to higher order corrections in the σ-model.
Conversely, while the former can be computed exactly as string amplitudes, the
latter reproduce the correct phase factor of the Nekrasov partition function in the
field theory limit.

In the following, we consider a class of N = 2 scattering amplitudes in Heterotic
and Type I string theory compactified on K3 × T 2, involving the vector super-
partner of the Kähler modulus T̄ of the T 2 torus as the additional insertions V(+)
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introduced in (6.4.15):

Fg,n ∼ 〈R2
(−)(F

G
(−))

2g−2(F T̄
(+))

2n〉 , with g ≥ 1 , n ≥ 0 . (6.4.16)

We show that these amplitudes can be calculated exactly14 within string perturba-
tion theory. Moreover, they precisely reproduce the expected gauge theory result
of Nekrasov in the field theory limit around a point of enhanced gauge symme-
try in the moduli space of the Heterotic compactification, where the torus Wilson
lines take special values. We emphasise, however, that unlike [70], exact agreement
with Nekrasov’s partition function is achieved despite the fact that we do not turn
on any R-symmetry current. In particular, we show that the additional vertices
V(+) correspond to insertions of an N = 2 chiral superfield Υ, defined as a chiral
projection of the anti-chiral vector superfield T̄ .

After introducing a series of generalised F-terms defining a class of higher deriva-
tive couplings, we compute the latter at the one-loop level in a Heterotic theory
compactified on K3 × T 2. In particular, we show that, in the field theory limit
around an SU(2) gauge group enhancement point, they reproduce the pertur-
bative part of the Nekrasov partition function and the radius deformation of the
Nekrasov-Okounkov formula [73], associated to the Ω-background. Finally, we pro-
vide a further check of the universality of our ansatz by computing the couplings
(6.4.16) at the one-loop level in the context of Type I superstring theory compact-
ified on K3× T 2 and reproduce the same results in the field theory limit. In fact,
the Type I setup is a natural framework to study non-perturbative corrections to
the refined couplings and this is discussed in detail in Section 10.

14The term ‘exact’ is used here to stress that these particular one-loop couplings are evaluated exactly
to all orders in α′.
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7 Generalised Supersymmetric Effective
Couplings

In order to achieve a refinement corresponding to the second parameter ǫ+ of the
Ω-background (i.e. a coupling to the spin of the second SU(2) in the Gopakumar-
Vafa picture), it is necessary to generalise (5.2.1) by including self-dual field
strength tensors of vector multiplet fields. To this end, we introduce the fol-
lowing superfields which are defined as chiral projections of an arbitrary function
h(X̂I , (X̂I)†) of (anti-chiral) vector superfields:

Υ := Π
h(X̂I , (X̂I)†)

(X0)2
. (7.0.1)

The projection operator Π is defined in terms of the spinor derivatives of the N = 2
superconformal algebra:

Π := (ǫijD̄
iσ̄µνD̄

j)2 , (7.0.2)

such that we have the following action on the vector superfields:

ΠX̂I = 0 and Π(X̂I)† = 96�X̂I . (7.0.3)

In terms of the Υ superfields, the following effective coupling was considered in
[68]:

Ig,n =

∫
d4x

∫
d4θ F̃g,n(X) (W ij

µνW
µν
ij )gΥn , (7.0.4)

where F̃g,n is a function of chiral vector multiplets. Once expressed in components,
Ig,n contains particularly the terms

Ig,n =

∫
d4xFg,n(ϕ, ϕ†)

[(
R(−)µνρτR

µνρτ
(−)

) (
FG

(−) λσF
Gλσ
(−)

)
+
(
Bi α

(−)µνB
µν
(−) i α

)2
]

×
[
FG

(−) λσF
Gλσ
(−)

]g−2
[
F(+) ρσF

ρσ
(+)

]n
+ . . . (7.0.5)

Here, we have explicitly displayed a term involving two Riemann tensors as well as
the (supersymmetrically related) term with four gravitino field-strengths.1 Con-
cerning the precise nature of the vector field F(+) appearing in (7.0.5), there are a
priori several different possibilities. As we have already mentioned in (6.4.16), we
identify F(+) with the vector superpartner of the T̄ -modulus of the T 2 compactifi-
cation.

1We implicitly assume g ≥ 2, even though we expect our results to remain valid also for g = 1.
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8 Heterotic Realisation of the Refinement

In this section we compute the coupling (7.0.5) in Heterotic string theory compact-
ified on K3 × T 2 in the presence of a Wilson line. Since our one-loop Heterotic
calculations only capture the perturbative part of the refined amplitudes, we keep
in mind that a study of the dual Type II theory would eventually be required in
order to probe non-perturbative effects. On the other hand, our results are exact
to all orders in α′, which we henceforth conveniently set to α′ = 1.

As mentioned in the previous section, instead of directly computing (6.4.16),
we consider the amplitude obtained by replacing two Riemann tensors and two
graviphotons with four gravitini insertions (for simplicity, we omit all indices)

〈R2
(−)(F

G
(−))

2g−2(F T̄
(+))

2n〉het
1-loop −→ 〈B4

(−)(F
G
(−))

2N(F T̄
(+))

2M〉het
1-loop . (8.0.1)

In the following, we first introduce our notation and setup of the relevant vertex
operator insertions and proceed to evaluate the one-loop amplitude (8.0.1), using
an exact CFT realisation of K3 in terms of a T 4/Z2 orbifold. In order to make
contact with gauge theory, we then expand around a point of SU(2) gauge sym-
metry enhancement, parametrised by Wilson lines wrapping the T 2. This should
be contrasted with [11], where the amplitude is expanded around the SU(2) en-
hancement point at T = U . In Section 8.3, we show that our ansatz (8.0.1) indeed
reproduces the expected singularity structure, which is characterised by two BPS
states becoming massless at the enhancement point (defined in (8.3.5)), and then
proceed to discuss radius deformations in Section 8.4.

8.1 Setup and Generating Functions

In addition to the worldsheet coordinates (σ, t), we introduce a ten-dimensional
basis of complex bosonic coordinates (Z1, Z2, X, Z4, Z5) for the target space1. Here
Z1,2, X and Z4,5 parametrise the four-dimensional space-time, the torus T 2 and
K3 of theE8×E8 Heterotic string compactification, respectively. The (left-moving)
superpartners of the coordinates mentioned above are denoted by (χ1, χ2, ψ, χ4, χ5).
We can realise K3 as a T 4/Zk orbifold with k = 2, 3, 4, 6 and standard embedding,

1The reason for using a notation that singles out the T 2 super-coordinates (X,ψ) lies in the fact that,
for the special amplitudes we consider and with our chosen kinematics, (X,ψ) turns out to contribute
to the correlators only through their zero modes.
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8 Heterotic Realisation of the Refinement

acting on K3 coordinates as:

(Z4, χ4) −→ e2iπg/k(Z4, χ4) , (8.1.1)

(Z5, χ5) −→ e−2iπg/k(Z5, χ5) , (8.1.2)

where g ∈ Zk. For simplicity, we explicitly work with the Z2 realisation, even
though our results are valid for general Zk orbifold realisations and are even ex-
pected to hold for generic K3 compactifications. It is convenient to bosonise the
fermions in terms of free chiral bosons φi by writing

ψ = eiφ3 , and χj = eiφj for j = 1, 2, 4, 5 . (8.1.3)

In a similar fashion, the superghost is also bosonised via a free boson ϕ.
We now present the vertex operators relevant to our amplitude. It is important

to separate these into self-dual and anti-self-dual parts with respect to the four-
dimensional space-time. Indeed, anti-self-dual gauge fields carry U(1) R-charge
+1 and their charges with respect to the two SU(2) subgroups of the Lorentz
group acting on the two planes are (+1,+1). Similarly, the vertices for self-dual
vector partners carry U(1) R-charge +1 and Lorentz charges (+1,−1). Using these
conventions, the gravitino vertex operator in the (−1

2
)-picture is given by

Vψ±(ξµα, p) = ξµαe
−ϕ/2Sαeiφ3/2Σ± ∂̄Zµeip·Z , (8.1.4)

and is parametrised by a four-momentum p and a polarisation tensor ξµα. Here
Sα and Σ± are the space-time and internal spin fields respectively:

S1 = ei(φ1+φ2)/2 , S2 = e−i(φ1+φ2)/2 , Σ± = e±i(φ4+φ5)/2 . (8.1.5)

The vertex operators of the graviphotons and T̄ -vectors are respectively given by

V G(p, ǫ) = ǫµ (∂X − i(p · χ)ψ) ∂̄Zµeip·Z ,

V T̄ (p, ǫ) = ǫµ (∂Zµ − i(p · χ)χµ) ∂̄Xeip·Z , (8.1.6)

where p is the four-momentum and ǫµ the polarisation vector, satisfying ǫ · p = 0.
As in [11], we choose a convenient kinematic configuration such that the amplitude
can be written as
〈
(Vψ+(x1) · Vψ+(x2)) (Vψ−(y1) · Vψ−(y2)) (V G(ǫ1, p2)V

G(ǫ1̄, p2̄))
N (V T̄ (ǫ1, p2̄)V

T̄ (ǫ1̄, p2))
M
〉
.

We consider the case where 2m ≤ 2M of the V T̄ vertex operators contribute the
fermion-bilinear piece and the structure of the different vertices is conveniently
summarised in Table 8.1. The bosonic part of the amplitude takes the form:

〈(Z1∂̄Z2)N+2(Z̄1∂̄Z̄2)N+2(Z1∂Z̄2)M−m(Z̄1∂Z2)M−m(∂X)2N+2(∂̄X)2M〉 . (8.1.7)
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This correlator can be computed with the help of the generating function

Gbos(ǫ−, ǫ+) =

〈
exp

[
− ǫ−

∫
d2z ∂X(Z1∂̄Z2 + Z̄2∂̄Z̄1)− ǫ+

∫
d2z (Z1∂Z̄2 + Z2∂Z̄1)∂̄X

]〉
.

(8.1.8)

Field Pos. Number φ1 φ2 φ3 φ4 φ5 Bosonic

gravitino x1 1 +1
2 +1

2 +1
2 +1

2 +1
2 Z1∂̄Z2

x2 1 −1
2 −1

2 +1
2 +1

2 +1
2 Z̄1∂̄Z̄2

y1 1 +1
2 +1

2 +1
2 −1

2 −1
2 Z1∂̄Z2

y2 1 −1
2 −1

2 +1
2 −1

2 −1
2 Z̄1∂̄Z̄2

FG z N 0 0 0 0 0 ∂X Z1∂̄Z2

z′ N 0 0 0 0 0 ∂X Z̄1∂̄Z̄2

F T̄ u m +1 −1 0 0 0 ∂̄X

u′ m −1 +1 0 0 0 ∂̄X

t M −m 0 0 0 0 0 ∂̄X Z1∂Z̄2

t′ M −m 0 0 0 0 0 ∂̄X Z̄1∂Z2

PCO P 2 0 0 −1 0 0 ∂X

Table 8.1: Overview of the vertex contributions for the Heterotic amplitude.

Notice that since no X̄ appears in the correlator, the T 2 currents ∂X and ∂̄X
only contribute zero-modes. On the other hand, it is straightforward to perform
the fermionic contractions and the corresponding correlator is expressed in terms
of prime forms, cf. Appendix C:

Gferm
s,(m) =

θs
(
x1−x2+y1−y2

2
+ u− u′

)
θs
(
x1−x2+y1−y2

2
− u+ u′

)
E2(u, u)E2(u′, u′)

E(x1, y2)E(x2, y1)E2(u, u′)

× θh,s
(
x1 + x2 − y1 − y2

2

)
θ−h,s

(
x1 + x2 − y1 − y2

2

)
, (8.1.9)

where we have already cancelled the contribution of the superghosts against the
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8 Heterotic Realisation of the Refinement

contribution of the torus fermions. Moreover, we use the shorthand

E(u, u) :=

m1∏

i<j

E(ui, uj) , E(u′, u′) :=

m2∏

i<j

E(u′i, u
′
j) , E(u, u′) :=

m1∏

i=1

m2∏

j=1

E(ui, u
′
j) .

(8.1.10)

The sum over spin structures can now be performed using the Riemann summation
identity (C.1.15) and the result can be further recast as a product of correlators:

Gferm
(m) =

θ1(x1 − y2) θ1(x2 − y1) θh(u− u′) θ−h(u− u′) E2(u, u)E2(u′u′)

E(x1, y2)E(x2, y1)E2(u, u′)

=
〈
χ1(x1)χ̄

1(y2)χ
2(x2)χ̄

2(y1)
〉
〈

m∏

i=1

χ4χ5(ui) χ̄
4χ̄5(u′i)

〉

h

, (8.1.11)

with both correlators evaluated in the odd spin structure. The first correlator
involving χ1,2, χ̄1,2 yields a factor of η4, since all fermions simply soak up the
space-time zero modes. On the other hand, the fermionic correlators associated to
K3 can be evaluated through the generating function

Gferm

[
h

g

]
(ǫ+) =

〈
e−ǫ+

R

(χ4χ5−χ̄4χ̄5)∂̄X
〉
h,g

. (8.1.12)

Summing the full correlator over h, g ∈ Z2 gives the contribution of the orbifold
sectors and enforces the orbifold projections, respectively. In what follows, the
bosonic and fermionic correlators (8.1.8) and (8.1.12) are calculated by directly
evaluating the corresponding path integrals.

8.2 Evaluation of the Couplings

We are now ready to evaluate the generating functions (8.1.8) and (8.1.12) using a
worldsheet path integral approach. In the case of the bosonic space-time directions,
the worldsheet action receives a deformation of the form:

Sbos
def = ǫ̃−

∫
d2z
(
Z1∂̄Z2 + Z̄2∂̄Z̄1

)
+ ǫ̌+

∫
d2z
(
Z1∂Z̄2 + Z2∂Z̄1

)
, (8.2.1)

where we have absorbed the zero-mode contribution of the T 2 currents into the
deformation parameters

ǫ̃± ≡ 〈∂X〉 ǫ± = λi(M + τ̄N)i ǫ± , ǫ̌± ≡ 〈∂̄X〉 ǫ± = λ̄i(M + τN)i ǫ± .
(8.2.2)
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Here, λ = (1, Ū)/(U − Ū) is the appropriate moduli-dependent vector picking
the direction associated to X. One needs to keep in mind that in the path inte-
gral derivation, the T 2-lattice originally appears in its Lagrangian representation,
with winding numbers M i, N i ∈ Z. Upon Poisson resummation, λi(M + τ̄N)i

and λ̄i(M+τN)i are effectively replaced by τ2PL/

√
(T − T̄ )(U − Ū)− 1

2
(~Y − ~̄Y )2

and τ2PR/

√
(T − T̄ )(U − Ū)− 1

2
(~Y − ~̄Y )2, respectively, with PL and PR being the

lattice momenta of the Heterotic K3× T 2 compactification:

PL =
m2 − Um1 − ~Y · ~Q+ Tn1 + (TU − 1

2
~Y 2)n2√

(T − T̄ )(U − Ū)− 1
2
(~Y − ~̄Y )2

, (8.2.3)

PR =
m2 − Um1 − ~Y · ~Q+ (T̄ + 1

2
(~Y − ~̄Y ) · Y1)n1 + (T̄U + 1

2
(~Y − ~̄Y ) · ~Y2 − 1

2
~Y · ~̄Y )n2√

(T − T̄ )(U − Ū)− 1
2
(~Y − ~̄Y )2

.

(8.2.4)

Here, ~Y ≡ ~Y2−U ~Y1 is the complexified Wilson line. This observation is important,
in order to properly check modular invariance at each stage of the calculation.
Hence, under τ → − 1

τ
, the effective deformation parameters transform as

ǫ̃± →
ǫ̃±
τ̄

, ǫ̌± →
ǫ̌±
τ
. (8.2.5)

The path integral over the bosonic modes Z1, Z̄1, Z2, Z̄2 can be straightforwardly
performed and the resulting generating function can be conveniently factorised
into an (almost) anti-holomorphic and a non-holomorphic piece:

Gbos(ǫ−, ǫ+) =Gahol(ǫ−, ǫ+)×Gnon-hol(ǫ−, ǫ+) , (8.2.6)

where the explicit expressions for the functional determinants Gahol and Gnon-hol

are given in Appendix D.2.1. Using standard ζ-function regularisation techniques
[7, 11] as explained in Appendix D.1, the almost anti-holomorphic factor is simply
given by

Gahol(ǫ−, ǫ+) =
(2π)2(ǫ2− − ǫ2+) η̄(τ̄)6

θ̄1(ǫ̃− − ǫ̃+; τ̄) θ̄1(ǫ̃− + ǫ̃+; τ̄ )
e
− π

τ2
(ǫ̃2−+ǫ̃2+)

, (8.2.7)

Moreover, as shown in Appendix D.2.1, the non-holomorphic factor Gnon-hol of
(8.2.6) also admits a well-defined regularisation and, in fact, becomes trivial in the
τ2 →∞ limit at a point2 where PL = PR :

Gnon-hol(ǫ−, ǫ+)
τ2→∞−→ 1 . (8.2.8)

2Note that in the next section we expand around a Wilson line enhancement point, where PL = PR → 0.
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8 Heterotic Realisation of the Refinement

We can now treat the fermionic generating function (8.1.12) in a similar fashion
by directly performing the path integral and using ζ-function regularisation:

Gferm[hg ](ǫ̌+) =
θ[1+h1+g ](ǫ̌+; τ)θ[1−h1−g ](ǫ̌+; τ)

η2
e

π
τ2
ǫ̌2+ . (8.2.9)

The full amplitude can then be written by including also the internal and gauge
degrees of freedom:

F(ǫ−, ǫ+) =
∑

g,n≥0

ǫ2g− ǫ
2n
+ Fg,n

=

∫

F

d2τ

τ2
Gbos(ǫ−, ǫ+)

1

η4η̄24

1

2

1∑

h,g=0

Gferm[hg ](ǫ̌+)Z[hg ] Γ(2,2+8)(T, U, Y ) ,

(8.2.10)

where the explicit expressions for the gauge and internal lattices are given in the
following section. The overall holomorphic Dedekind η−4 factor in (8.2.10) is the
result of a factor η−4 arising from the bosons in the space-time directions, a factor
η−2 from the T 2 bosons, a factor η−4 from the K3 bosons, a factor of η4 from the
correlator of the fermions in the space-time direction (in the odd spin structure)
and, finally, a contribution of η2 by the bosonic bc - ghost system. The superghost
cancels the relevant η-contribution of the T 2 fermions. This counting is consistent
with the definitions of the K3 and T 2 lattices (8.3.3), (8.3.4) of the following
section. Expanding the various functional determinants in ǫ± and extracting the
power ǫ2g− ǫ

2n
+ yields

Fg,n =

∫

F

d2τ

τ2
Gg,n(τ, τ̄)

∑

mi,ni,Qa∈Z

(
τ2PL
ξ

)2g−2(
τ2PR
ξ

)2n

q|PL|2 q̄|PR|2+ 1
2

P

(Qa−Y a
i n

i)2 .

(8.2.11)

Here, Gg,n is a modular series of weights (2n, 2g− 2). The latter can be expressed
by using (D.2.15) and the lattices in (8.2.10).

As a check, notice that upon taking the limit ǫ+ = 0, the non-holomorphic
generating function trivialises, Gnon-hol(ǫ−, 0) = 1, the fermionic correlator Gferm

cancels against the twisted K3 lattice and one readily recovers the result of [7].

8.3 Field Theory Limit and the Nekrasov Partition Function

In order to make contact with N = 2 gauge theory, we now turn to the field
theory limit of the Heterotic amplitude (8.0.1). We first recall that Nekrasov’s
partition function (6.2.19) was derived by starting from an N = 1 theory in six
dimensions and compactifying it on a two-torus fibered over space-time with the
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Ω-twist. In particular, the latter is accompanied by an R-symmetry rotation which
is necessary in order to preserve a fraction of supersymmetry. In the limit where
the volume of the two-torus goes to zero, one reaches a four-dimensional N = 2
gauge theory in the Ω-background. In this section, we start by considering the
four-dimensional field theory limit of our amplitude at a point of enhanced gauge
symmetry, where the contribution of the BPS states becoming massless dominates,
and we recover Nekrasov’s partition function. Then, in Section 8.4, we provide a
higher dimensional extension of the latter, by keeping track of the contribution of
the full tower of Kaluza-Klein states, thus obtaining a β-deformation thereof.

We now focus on the contribution of the full amplitude in the field theory limit
τ2 → ∞ at a Wilson line enhancement point. We recall the modular invariant
partition function of the Heterotic string compactified on K3× T 2 at the orbifold
point:

Z =
1

η12η̄24

1

2

∑

h,g=0,1

[
1

2

∑

a,b=0,1

(−)a+bθ2[ab ]θ[
a+h
b+g ]θ[a−hb−g ]

]
Z[hg ] Γ(2,2+8)(T, U, Y ) ,

(8.3.1)

where

Z[hg ] = ΓK3[
h
g ]

1

2

∑

k,ℓ=0,1

θ̄6[kℓ ]θ̄[
k+h
ℓ+g ]θ̄[k−hℓ−g ] , (8.3.2)

is the orbifold block of the K3-lattice together with the partition function of E7×
SU(2), as a result of the breaking of one of the E8-group factors by the Z2-orbifold
action. Furthermore, the K3-lattice is given explicitly by

ΓK3[
h
g ] =

{ Γ(4,4)(G,B) , (h, g) = (0, 0)∣∣∣∣
2η3

θ[1+h
1+g ]

∣∣∣∣
4

, (h, g) 6= (0, 0)
. (8.3.3)

Notice that we have combined the T 2- and E8- lattices3 into Γ(2,2+8), as this is
convenient for incorporating non-trivial Wilson lines:

Γ(2,2+8) =
∑

mi,ni,Qa∈Z

q|PL|2 q̄|PR|2+ 1
2

P

(Qa−Y a
i n

i)2 , (8.3.4)

with the sum running over the momenta mi, the windings ni and the U(1) Cartan
charge vectors Qa of E8. The index i = 1, 2 parametrises the two T 2-directions,
while a = 1, . . . , 8 runs over the Cartan subalgebra of E8. We now expand the full
amplitude (8.2.10) around an SU(2) Wilson line enhancement point Y → Y ⋆:

Y a⋆
1 = Y a⋆

2 = (1
2
, 1

2
, y3, . . . , y8) , (mi, n

i)⋆ = 0 , Qa⋆ = ±(1,−1, 0, . . . , 0) ,
(8.3.5)

3Conventionally, we do not include Dedekind η-function factors corresponding to oscillator contributions
in the definition of the lattices.
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at which both left- and right- moving momenta vanish:

PL = PR ≡ P =
a2 − Ua1√

(T − T̄ )(U − Ū)− 1
2
(~Y − ~̄Y )2

−→ 0 . (8.3.6)

Here we have used the shorthand notation ai ≡ ~Yi · ~Q. It is easy to see that only the
untwisted sector is relevant for the enhancement, so that it is sufficient to focus on
h = 0. Furthermore, since Z[0g] = 1+O(e−2πτ2) we can effectively replace Z[0g]→ 1
in (8.2.10). Using the behaviour of Jacobi theta functions in the large-τ2 limit
(C.2.15), we extract the q-expansion of the Z2-projected fermionic K3 correlator
Gferm :

1

2

∑

g=0,1

θ[ 1
1+g](ǫ̌+; τ) θ[ 1

1−g](ǫ̌+; τ) = −2 cos(2πǫ̌+)q1/4 +O(q5/4) , (8.3.7)

where q = e2πiτ . We now take the τ2 →∞ limit of the bosonic correlator:

Gbos(ǫ−, ǫ+)
τ2→∞−→ π2(ǫ̃2− − ǫ̃2+)

sin(ǫ̃− − ǫ̃+) sin(ǫ̃− + ǫ̃+)
+O(e−2πτ2) . (8.3.8)

Adding all pieces together and, taking into account the remaining η−6 factor, the
field theory limit of (8.2.10) at the Wilson-line enhancement point (PL = PR =
P ∼ 0) is:

F (ǫ−, ǫ+) ∼ (ǫ2− − ǫ2+)

∫ ∞

0

dt

t

−2 cos (2ǫ+t)

sin (ǫ− − ǫ+) t sin (ǫ− + ǫ+) t
e−µt , (8.3.9)

after an appropriate rescaling by the BPS mass parameter:

µ ∼
√

(T − T̄ )(U − Ū)− 1
2
(~Y − ~̄Y )2 P̄ = a2 − Ūa1 , (8.3.10)

in order to exhibit the singularity behaviour of the amplitude. The leading singu-
larity for the Fg,n-term, which is given by the coefficient of ǫ2g− ǫ

2n
+ in the expansion

of (8.3.9), is parametrised by µ2−2g−2n. Hence, the Heterotic amplitude (8.0.1)
around the SU(2) enhancement point (8.3.5) reproduces precisely the perturbative
part of Nekrasov’s partition function for an SU(2) gauge theory without flavours,
given in (A.7) of [73].

Notice that, similarly to [11], (8.3.9) is still anti-holomorphic in the relevant
modulus, which is here identified with the complexified Wilson line Y , even though
our vertices for the graviphoton and T̄ field strengths involve both ∂X and ∂̄X
and, hence, contribute both PL and PR to the correlation functions. This is to
be expected, since at the Wilson line enhancement point, PL = PR = P . In
addition, the invariance under ǫ± → −ǫ± is a consequence of the fact that ǫ− and
ǫ+ couple to anti-self-dual and self-dual field strengths and Lorentz invariance of
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the string effective action requires the presence of even numbers of self-dual and
anti-self-dual tensors. On the other hand, contrary to [11], the generating function
(8.3.9) is not symmetric under the exchange ǫ− ↔ ǫ+, due to the presence of the
ǫ+-dependent phase. This asymmetry can be traced back to the fact that our setup
for the vertex operators involving graviphotons and T̄ -vectors breaks the exchange
symmetry between the two Lorentz SU(2)’s.

8.4 Radius Deformations and the Nekrasov-Okounkov Formula

Let us now compare our amplitude with the partition function of a five-dimensional
gauge theory with eight supercharges, compactified on a circle of radius β with
an Ω-twist in the four non-compact dimensions, which is derived in Section 7 of
[73]. To exhibit the connection, we first decouple the winding modes by taking
the T 2-volume to be sufficiently larger than the string scale, T2 = Vol(T 2) ≫ 1.
In this case, the Kaluza-Klein spectrum is dense and we have to retain the sum
over the momentum modes. However, it is interesting to first consider the case
where the modulus U of the two-torus is held fixed and obtain a deformed version
of Nekrasov’s (four-dimensional) partition function (6.4.13):

F ∼
∫
dτ2
τ2

∑

mi∈Z

−ǫ1ǫ2 e−2πτ2|P |2

sin(πǫ1τ2P/ξ) sin(πǫ2τ2P/ξ)
e−iπ(ǫ1+ǫ2)τ2P/ξ + (ǫi → −ǫi) ,

(8.4.1)

where ξ ≡ 2i
√
T2U2 − 1

2
(Im~Y )2 and

P =
1

ξ

(
m2 + a2 − U(m1 + a1)

)
. (8.4.2)

Note that the second exponential of the cosine (8.3.7) has been taken care of in
(8.4.1) by symmetrising with respect to ǫi → −ǫi. Expanding in the ǫi-parameters,
Poisson resumming the momenta mi and performing the τ2-integral, the volume
dependence T2 drops out and the result can be expressed as

F
ǫ1ǫ2
∼

∑

g1,g2≥0
g1+g2=0(mod 2)

Bg1Bg2

g1!g2!
ǫg1−1
1 ǫg2−1

2

( iπ
U2

)g1+g2−2

×
∑

mi

′
e2πi(a·m) (m1 + Um2)

g1+g2−2 U2

|m1 + Um2|2

=1
2

∑

mi

′ U2

|m1 + Um2|2
e2πi(a1m1+a2m2)

(
eiπǫ1(m1+Um2)/U2 − 1

)(
eiπǫ2(m1+Um2)/U2 − 1

) + (ǫi → −ǫi) .

(8.4.3)
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Notice that F/(ǫ1ǫ2) is invariant under the T-duality transformation U → −1/U
and Y → Y/U , provided one also assigns an appropriate transformation to the ǫ
parameters, ǫi → ǫi/Ū . Hence, (8.4.3) is a U -deformation of the Nekrasov partition
function (6.4.13), describing a compactification of a six-dimensional theory on T 2.

In order to recover the result of [73] as arising from a circle compactification of
a five-dimensional theory, we choose a rectangular torus T = iR1R2, U = iR2/R1

and send one of the radii to zero4, R2 → 0, a2/R2 → 0. In this limit, the sum
over m2 can be approximated by an integral and one easily recovers the partition
function5

γǫ1,ǫ2(x|β) =
∞∑

n=1

1

n

e−βx

(eβnǫ1 − 1)(eβnǫ2 − 1)
(8.4.4)

appearing in (A.12) of [73], arising from the compactification of a five-dimensional
theory on a circle of circumference β = 2πR1, with the identifications (i/R2)ǫi → ǫi
and x = −ia1/R1.

4Since we have already taken the limit α′ → 0, we are implicitly assuming
√
α′ ≪ R2 ≪ R1.

5Here we are only concerned with the cut-off independent finite part.
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9 Type I Refined Amplitudes

In this section, we calculate the coupling (7.0.5) at the one-loop level in Type I
string theory compactified on K3 × T 2. We first outline our conventions (which
essentially follow [39]) and introduce the vertex operators for all relevant fields. In
Section 9.3 we then evaluate a particular amplitude involving insertions V(+) of
vector superpartners of the T 2 torus T̄ -moduli.

As before, we realise K3 as a T 4/Z2 orientifold, admitting both D9- and D5-
branes. The starting point, in the absence of Wilson lines along the T 2, is the
U(16)× U(16) BSGP model [20], obtained by setting all D5-branes to one of the
T 4/Z2 fixed points. The first U(16) factor, associated to the D9-branes, can be
further broken down to U(1) × U(1) × U(14) by turning on appropriate Wilson
lines for the D9-brane charges:

Y =




aσ3 0 0

0 bσ3 0

0 0 cσ3 ⊗ 114


 , (9.0.1)

where σ3 is the Pauli matrix. We can now continuously vary the Wilson line to
a point a → b 6= c where a U(1) gauge symmetry is enhanced to SU(2) ⊂ U(2).
Similarly to the Heterotic calculation of Section 8, we are interested in studying
the field theory limit of the amplitude (7.0.5) around this SU(2) enhancement
point1. There, the BPS states becoming massless belong to vector multiplets only
and, hence, the dominant contribution arises from the 9-9 sector of the annulus
amplitude.

9.1 Vertex Operators

Following the discussion of the previous paragraph, we restrict our attention to
the 9-9 sector of the annulus diagram. We represent the cylinder as a torus acted
upon by the Z2 involution

Ω : (σ, t) 7→ (−σ, t) . (9.1.1)

1Of course, one may consider more general constructions and expand around different enhancement
points, as discussed above eq.(9.3.21). We refer to [80], [20],[3] for further details on the construction
of consistent orientifold models.
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9 Type I Refined Amplitudes

A point on the worldsheet is then parametrised by z = σ+ τt, with the worldsheet
modulus τ = iτ2 being purely imaginary. The Z2 image of z is accordingly given
by ẑ = −σ + τt. By choosing this coordinate system we have fixed the analytic
transformations of z up to rigid translations and, hence, the formulae we obtain
are not manifestly invariant under analytic transformations.

We employ the same notation for the worldsheet super-coordinates as in Section
8. Using the ‘doubled picture’ of a toroidal worldsheet, the right-moving super-
partners are denoted by a tilde (χ̃1, χ̃2, ψ̃, χ̃4, χ̃5). They correspond to the images
of the worldsheet fermions (ψ, χi) under Ω and, in a similar fashion, we bosonise
the superghost via a free boson ϕ, its mirror being ϕ̃.

We are now ready to discuss the worldsheet emission vertex operators of physical
fields in the N = 2 Type I compactification. In particular, we focus only on those
states that are relevant for later explicit computations, namely gravitini (V grav),
graviphotons (V G) as well as the vector partners of the dilaton (V S̄), the complex
structure modulus of T 2 (V U) and the D5-gauge coupling (V S̄′

) respectively, see
Table 1.1. Using similar conventions as in the Heterotic case, the anti-self-dual
vertex operators for the graviphoton and the vector partner of the U -modulus
take the form:

V U(p, ǫ) = V (a = +1; p, ǫ) , V G(p, ǫ) = V (a = −1; p, ǫ) , (9.1.2)

where V (a; p, ǫ) is given by:

V (a; p, ǫ) = ǫµ

[
(∂X + i(p · χ)ψ)

(
∂̄Zµ + i(p · χ̃)χ̃µ

)

+a e−
1
2
(ϕ+ϕ̃)pνS

α(σµν)α
βS̃β e

i
2
(φ3+φ̃3) Σ+Σ̃−

]
eip·Z + [left↔ right] .

(9.1.3)

They are parametrised by a momentum vector pµ and a polarisation vector ǫµ
satisfying the transversality condition ǫ · p = 0. Moreover, we have introduced the
space-time spin fields, for which we choose the explicit representation:

Sα(σ12)α
β
S̃β = e

i
2
(φ1+φ2) × e i

2
(φ̃1+φ̃2) ,

Sα(σ1̄2̄)α
β
S̃β = e−

i
2
(φ1+φ2) × e− i

2
(φ̃1+φ̃2) , (9.1.4)

and, similarly, for the spin fields of the internal K3:

Σ± = e±
i
2
(φ4+φ5) , Σ̂± = e±

i
2
(φ4−φ5) . (9.1.5)

The two terms in the square bracket of (9.1.3) come with different powers of
the superghosts eϕ+ϕ̃ and correspond to the NS and R contributions, respectively.
Notice that the difference between V G and V U lies in the relative sign between
these two contributions, labeled by the parameter a = ±1. 2

2Note that this convention is compatible with space-time supersymmetry (or Heterotic/Type I duality).
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9.2 Amplitude and Spin-Structure Sum

Similarly, the vertices for self-dual vector partners of S̄ and S̄ ′ are

V S̄′
(p, ǫ) = V (b = +1; p, ǫ) , V S̄(p, ǫ) = V (b = −1; p, ǫ) , (9.1.6)

where we have introduced

V (b; p, ǫ) = ǫµ

[
(∂X + i(p · χ)ψ)

(
∂̄Zµ + i(p · χ̃)χ̃µ

)

+b e−
1
2
(ϕ+ϕ̃)pνSα̇(σ̄

µν)α̇β̇S̃
β̇ e

i
2
(φ3+φ̃3) Σ̂+ ˆ̃Σ−

]
eip·Z + [left↔ right] ,

(9.1.7)

with the following convention for the space-time spin fields:

Sα̇(σ̄
12̄)α̇β̇S̃

β̇ = e
i
2
(φ1−φ2) × e i

2
(φ̃1−φ̃2) ,

Sα̇(σ̄
1̄2)α̇β̇S̃

β̇ = e−
i
2
(φ1−φ2) × e− i

2
(φ̃1−φ̃2) . (9.1.8)

Once again, the relative sign between the NS and R sectors distinguishes between
the two fields. To make this distinction more visible in explicit calculations, we
denoted this relative sign through a parameter b = ±1, where b = 1 corresponds
to FS̄′ and b = −1 corresponds to FS̄.

At a technical level, fixing the relative signs between different spin structures
turns out to be a non-trivial problem, even at the one-loop level since the absence
of modular invariance does not allow one to fix all signs unambiguously. We
circumvent this problem by inserting at least one fermion vertex operator into our
amplitude. In this case monodromy invariance of the final answer allows us to fix
all relative signs. Hence, as in Section 8, instead of two gravitons — as written
schematically in (6.4.15) — we use four gravitini. As discussed in Section 7 this
is possible since both of these fields are part of the supergravity multiplet and the
two terms (7.0.5) in the string effective action are related by supersymmetry. The
vertex operator for the gravitino can be written as:

V grav
± (ξµα, p) = ξµαe

−ϕ/2Sαeiφ3/2Σ±
[
∂̄Zµ + i(p · χ̃)χ̃µ

]
eip·Z + [left↔ right] ,

(9.1.9)

which is parametrised by the four-momentum pµ and the polarisation tensor ξµα.

9.2 Amplitude and Spin-Structure Sum

We are now ready to compute the effective coupling (7.0.5). To simplify the com-
putation, we choose a particular kinematic configuration for all external fields.
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9 Type I Refined Amplitudes

Specifically, we consider a setting of the form (N = g − 2):

FM,N =

〈
V grav

+ (ξ21, p1)V
grav
− (ξ2̄1, p1)V

grav
+ (ξ22, p1̄)V

grav
− (ξ2̄2, p1̄)

×
[
V G(ǫ2, p1)V

G(ǫ2̄, p1̄)
]N [

V S̄′,S̄(ǫ2̄, p1)V
S̄′,S̄(ǫ2, p1̄)

]M 〉
, (9.2.1)

where, for the moment, we consider inserting vector partners of either S̄ or S̄ ′.
A major difficulty in computing this amplitude lies in the fact that all vertices
contribute in all possible ways, some of them providing the R-R part while the rest
the NS-NS part and, out of the NS-NS part, some contribute the bosonic Lorentz
current and the others the fermionic one. To see this, let us consider a typical term
with (n1, n2, m1, m2) numbers of fermionic Lorentz currents at positions (z, z′, u, u′)
with kinematics (ǫ2, p1), (ǫ2̄, p1̄), (ǫ2̄, p1), (ǫ2, p1̄), respectively, and (n3, n4, m3, m4)
R-R vertices at positions (w,w′, v, v′) with kinematics (ǫ2, p1), (ǫ2̄, p1̄), (ǫ2̄, p1),
(ǫ2, p1̄) respectively. The positions have indices, e.g. zi where i = 1, ..., n1 etc.,
but we suppress these in the following to simplify the notation. Concerning the
gravitini, we have to consider two different possibilities:

(i) the gravitini only contribute bosonic Lorentz currents ,

(ii) the gravitini also contribute fermionic currents ,3

which we discuss in parallel and denote their worldsheet positions by (x1, x2, y1, y2).
For convenience, we have compiled an overview of the vertex operators in Tables 9.1
and 9.2, respectively. In both cases Lorentz charge conservation implies

n1 − n2 + n3 − n4 = 0 , m1 −m2 +m3 −m4 = 0 . (9.2.2)

As mentioned above, we have used the trick of doubling the cylinder and the right-
moving part of the vertex at the image point is indicated through hatted variables.4

To balance the ghost charges, we also insert mPCO = (n3 + n4 + m3 + m4 + 2)
picture-changing operators (PCO) at some positions P . Moreover, we note that
the total (i.e. left plus right) U(1) charge in the T 2 fermion sector (ψ, ψ̄) can only
be cancelled if all PCOs contribute the supercurrent of T 2,

VPCO = eϕ∂Xψ̄ + eϕ̃∂̄X ˜̄ψ + . . . , (9.2.3)

as indicated in Tables 9.1 and 9.2. Since in the vertices of the physical states,
as well as in the PCOs, only the holomorphic torus coordinate X (but not X̄)

3We only discuss in detail the case where all of them contribute the fermionic currents.
4Note for example that an R-R vertex of the type SL ×S′

R(w) is the same as SL(w)×S′
L(ŵ). Since our

vertices are symmetrised between left and right sectors this amounts to integrating the worldsheet
coordinates over the entire doubled cylinder (ie. σ ∈ [−1/2, 1/2]).
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9.2 Amplitude and Spin-Structure Sum

appears, the latter only contributes momentum zero modes:

P3 =
τ√

(T − T̄ )(U − Ū)− 1
2
(~Y − ~̄Y )2

(
m2 − Um1 + ~Y · ~Q

)
. (9.2.4)

Here, ~Y = ~Y2 −U ~Y1 is the (complexified) Wilson line vector associated to the D9-

brane gauge group along the two directions of T 2 and ~Q is the associated charge
vector of the open string states. Since we do not turn on a Ramond-Ramond B
field on the T 2, the modulus T is purely imaginary, T = iVol(T 2).

Field Pos. # φ1 φ2 φ3 φ4 φ5 φ̃1 φ̃2 φ̃3 φ̃4 φ̃5 Bosonic

grav x1 1 +1
2 +1

2 +1
2 +1

2 +1
2 0 0 0 0 0 Z1∂̄Z2

x2 1 +1
2 +1

2 +1
2 −1

2 −1
2 0 0 0 0 0 Z1∂̄Z2

y1 1 −1
2 −1

2 +1
2 +1

2 +1
2 0 0 0 0 0 Z̄1∂̄Z̄2

y2 1 −1
2 −1

2 +1
2 −1

2 −1
2 0 0 0 0 0 Z̄1∂̄Z̄2

FG,U z n1 +1 +1 0 0 0 0 0 0 0
0

∂X

z′ n2 −1 −1 0 0 0 0 0 0 0
0

∂X

w n3 +1
2 +1

2 +1
2 +1

2 +1
2 +1

2 +1
2 +1

2 −1
2 −1

2 ∂X

w′ n4 −1
2 −1

2 +1
2 +1

2 +1
2 −1

2 −1
2 +1

2 −1
2 −1

2 ∂X

F S̄,S̄
′ u m1 +1 −1 0 0 0 0 0 0 0 0 ∂X

u′ m2 −1 +1 0 0 0 0 0 0 0 0 ∂X

v m3 +1
2 −1

2 +1
2 +1

2 −1
2 +1

2 −1
2 +1

2 −1
2 +1

2 ∂X

v′ m4 −1
2 +1

2 +1
2 +1

2 −1
2 −1

2 +1
2 +1

2 −1
2 +1

2 ∂X

PCO P mPCO 0 0 −1 0 0 0 0 0 0 0 ∂X

Table 9.1: Overview of the vertex contributions for the Type I amplitude in case (i), i.e.

the gravitini only contribute bosonic Lorentz currents.

Having fixed the precise setup of vertex operators, we now proceed to compute
all possible contractions. Since this is a rather technical and tedious task, we
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9 Type I Refined Amplitudes

only point out the salient features. First of all, one can check that the spin-
structure dependent part of the T 2-contribution of (ψ, ψ̃) precisely cancels that of
the superghosts. Therefore, the positions of the picture-changing operators P drop
out of the expression, as expected from physical consistency, and the contribution
of the fermions takes the form:

G(i)[s] = θs
(

1
2
(x1 + x2 − y1 − y2 + w − w′ + ŵ − ŵ′ + v − v′ + v̂ − v̂′) + z − z′ + u− u′

)

× θs
(

1
2
(x1 + x2 − y1 − y2 + w − w′ + ŵ − ŵ′ − v + v′ − v̂ + v̂′) + z − z′ − u+ u′

)

× θh,s
(

1
2
(x1 − x2 + y1 − y2 + w + w′ − ŵ − ŵ′ + v + v′ − v̂ − v̂′)

)

× θ−h,s
(

1
2
(x1 − x2 + y1 − y2 + w + w′ − ŵ − ŵ′ − v − v′ + v̂ + v̂′)

)

× B(i)(x1, x2, y1, y2, u, u
′, v, v′, w, w′, z, z′, ŵ, ŵ′, v̂, v̂′) , (9.2.5)

G(ii)[s] = θs
(

1
2
(x1 + x2 − y1 − y2 + w − w′ + ŵ − ŵ′ + v − v′ + v̂ − v̂′) + z − z′

+ u− u′ + x̂1 + x̂2 − ŷ1 − ŷ2

)

× θs
(

1
2
(x1 + x2 − y1 − y2 + w − w′ + ŵ − ŵ′ − v + v′ − v̂ + v̂′) + z − z′

− u+ u′ + x̂1 + x̂2 − ŷ1 − ŷ2

)

× θh,s
(

1
2
(x1 − x2 + y1 − y2 + w + w′ − ŵ − ŵ′ + v + v′ − v̂ − v̂′)

)

× θ−h,s
(

1
2
(x1 − x2 + y1 − y2 + w + w′ − ŵ − ŵ′ − v − v′ + v̂ + v̂′)

)

× B(ii)(x1, x2, y1, y2, u, u
′, v, v′, w, w′, z, z′, ŵ, ŵ′, v̂, v̂′) , (9.2.6)

where B is independent of the spin structures and is essentially a quotient of
prime forms, depending on the various worldsheet positions. In order to keep the
discussion simple, we refrain from displaying their explicit expression.

Summing over all different spin structures and using various bosonisation iden-
tities (cf. [83]) the result becomes:

G(i) =〈χ1(x1)χ
2(x2) χ̄

2(y1) χ̄
1(y2)χ

1χ2(z) χ̄1χ̄2(z′)χ1χ̃2(w) χ̄1 ˜̄χ2(w′)

× χ4χ5(u) χ̄4χ̄5(u′)χ4χ̃5(v) χ̄4 ˜̄χ5(v′)〉odd , (9.2.7)

G(ii) =〈χ1χ̃1χ̃2(x1)χ
2χ̃1χ̃2(x2) χ̄

2 ˜̄χ1 ˜̄χ2(y1) χ̄
1 ˜̄χ1 ˜̄χ2(y2)χ

1χ2(z) χ̄1χ̄2(z′)

× χ1χ̃2(w) χ̄1 ˜̄χ2(w′)χ4χ5(u) χ̄4χ̄5(u′)χ4χ̃5(v) χ̄4 ˜̄χ5(v′)〉odd , (9.2.8)

which is to be evaluated in the odd-spin structure. Some more details on how to
perform this sum can be found in Appendix C.3.
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9.2 Amplitude and Spin-Structure Sum

Field Pos. # φ1 φ2 φ3 φ4 φ5 φ̃1 φ̃2 φ̃3 φ̃4 φ̃5 Bosonic

grav x1 1 +1
2 +1

2 +1
2 +1

2 +1
2 +1 +1 0 0 0 —

x2 1 +1
2 +1

2 +1
2 −1

2 −1
2 +1 +1 0 0 0 —

y1 1 −1
2 −1

2 +1
2 +1

2 +1
2 −1 −1 0 0 0 —

y2 1 −1
2 −1

2 +1
2 −1

2 −1
2 −1 −1 0 0 0 —

FG,U z n1 +1 +1 0 0 0 0 0 0 0 0 ∂X

z′ n2 −1 −1 0 0 0 0 0 0 0 0 ∂X

w n3 +1
2 +1

2 +1
2 +1

2 +1
2 +1

2 +1
2 +1

2 −1
2 −1

2 ∂X

w′ n4 −1
2 −1

2 +1
2 +1

2 +1
2 −1

2 −1
2 +1

2 −1
2 −1

2 ∂X

F S̄,S̄
′ u m1 +1 −1 0 0 0 0 0 0 0 0 ∂X

u′ m2 −1 +1 0 0 0 0 0 0 0 0 ∂X

v m3 +1
2 −1

2 +1
2 +1

2 −1
2 +1

2 −1
2 +1

2 −1
2 +1

2 ∂X

v′ m4 −1
2 +1

2 +1
2 +1

2 −1
2 −1

2 +1
2 +1

2 −1
2 +1

2 ∂X

PCO P mPCO 0 0 −1 0 0 0 0 0 0 0 ∂X

Table 9.2: Overview of the vertex contributions for the Type I amplitude in case (ii), i.e.

the gravitini contribute fermionic currents.

Thus, summarising the above computation, after putting together all the combi-
nations the result is equivalent to computing the correlation function in the odd
spin structure with the following identification of operators:

V G,U(ǫ2, p1) → P3[J
B
++ + (χ1 + aχ̃1)(χ2 + aχ̃2)] ,

V G,U(ǫ2̄, p1̄) → P3[J
B
−− + (χ̄1 + a ¯̃χ1)(χ̄2 + a ¯̃χ2)] ,

V S̄′,S̄(ǫ2̄, p1) → P3[J
B
+− + (χ4 + bχ̃4)(χ5 + bχ̃5)] ,

V S̄′,S̄(ǫ2, p1̄) → P3[J
B
−+ + (χ̄4 + b ¯̃χ4)(χ̄5 + b ¯̃χ5)] . (9.2.9)

We remind that a = ±1 and b = ±1 correspond to the two relative signs in V G,U

and V S̄′,S̄, respectively. JB are the total (i.e. left- plus right- moving) bosonic
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9 Type I Refined Amplitudes

Lorentz currents5 with appropriate charges:

JB++ =Z1∂̄Z2 + (left↔ right) , JB−− = Z̄1∂̄Z̄2 + (left↔ right) ,

JB+− =Z1∂̄Z̄2 + (left↔ right) , JB−+ = Z̄1∂̄Z2 + (left↔ right) , (9.2.10)

and P3 is the complex T 2-momentum, defined in (9.2.4). For convenience, we
introduce

J total
++ = JB++ + (χ1 − χ̃1)(χ2 − χ̃2) , J total

−− = JB−− + (χ̄1 − ¯̃χ1)(χ̄2 − ¯̃χ2) .
(9.2.11)

Similarly, the gravitini vertices can be recast in a convenient form. Indeed, as we
can see from (9.2.7) and (9.2.8), the vertices are replaced by:

V grav
+ (ξ21, p1; x1) → χ1(JB++,R + χ̃1χ̃2) + χ̃1(JB++,L + χ1χ2)

= χ1JB++,R + χ̃1JB++,L − χ1χ̃1(χ2 − χ̃2) ,

V grav
− (ξ2̄1, p1; x2) → χ2(JB++,R + χ̃1χ̃2) + χ̃2(JB++,L + χ1χ2)

= χ2JB++,R + χ̃2JB++,L + χ2χ̃2(χ1 − χ̃1) ,

V grav
+ (ξ22, p1̄; y1) → χ̄2(JB−−,R + ˜̄χ1 ˜̄χ2) + ˜̄χ2(JB−−,L + χ̄1χ̄2)

= χ̄2JB−−,R + ˜̄χ2JB−−,L + χ̄2 ˜̄χ2(χ̄1 − ˜̄χ1) ,

V grav
− (ξ2̄2, p1̄; y2) → χ̄1(JB−−,R + ˜̄χ1 ˜̄χ2) + ˜̄χ1(JB−−,L + χ̄1χ̄2)

= χ̄1JB−−,R + ˜̄χ1JB−−,L − χ̄1 ˜̄χ1(χ̄2 − ˜̄χ2) , (9.2.12)

where the subscripts L and R in JB denote the left- and right- moving parts of the
bosonic Lorentz current. Notice that the zero modes of (χ1, χ2, χ̄1, χ̄2) can only
be soaked up by the operators at (x1, x2, y2, y1) respectively. We denote this by
putting a superscript zero (χi)0 as follows:

V grav
+ (ξ21, p1; x1)→ (χ1)0J total

++ , V grav
− (ξ2̄1, p1; x2)→ (χ2)0J total

++ ,

V grav
+ (ξ22, p1̄; y1)→ (χ̄2)0J total

−− , V grav
− (ξ2̄2, p1̄; y2)→ (χ̄1)0J total

−− . (9.2.13)

Now using the replacement rules (9.2.9) and (9.2.13) we can write the following
generating function for the correlation functions introduced in eq. (9.2.1):

F(ǫ−, ǫ+) =

∫

Mcylinder

dτ

τ

〈∑

P3

τ 2 e−iπ
|P3|2

τ

P 2
3

[eP3SI − 1− P 2
3

τ 2
ǫ2− J total

++ J total
−− ]

〉′
,

(9.2.14)

5For a = −1, corresponding to graviphoton insertions, we see that the combinations that enter in the
first two lines in (9.2.10) are χ1 − χ̃1 and χ2 − χ̃2. These combinations cannot soak the fermion
zero modes in the odd spin structure, since for the zero modes one has χ = χ̃. This is consistent with
the fact that the graviphoton is the lowest component of the Weyl multiplet. On the other hand for
a = +1 the vertices V U represent a higher component of the vector multiplet.
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9.3 Path Integral Evaluation of The Amplitudes

where the prime 〈 〉′ denotes the soaking of the space-time fermionic zero modes.
Moreover, the T 2 correlators as well as the ghosts have disappeared as their non-
zero mode determinants cancel each other. Hence, only the zero mode part of T 2

appears in the lattice sum above. The action deformation SI is given by:

SI =
ǫ−
τ

∫
(J total

++ + J total
−− ) +

ǫ+
τ

∫
(JB+− + JB−+ + JK3

b ) , (9.2.15)

where the integral is over the worldsheet cylinder and

JK3
b = (χ4 + bχ̃4)(χ5 + bχ̃5) + (χ̄4 + b ¯̃χ4)(χ̄5 + b ¯̃χ5) . (9.2.16)

Before proceeding with the actual computation of the generating function, let us
make a few remarks. First of all, the operators in SI do not have a well-defined
conformal dimension but are to be computed in a specific worldsheet coordinate
system where conformal transformations are completely fixed, modulo rigid trans-
lations. Secondly, the right-hand side of (9.2.14) starts at order P 2

3 . This is to be
expected since for N = M = 0 the correlation function behaves as P 2

3 due to the
two picture-changing operators needed to balance the ghost charges of the four
gravitini vertices. Finally, only even powers of ǫ− and ǫ+ survive in (9.2.14) as a
result of the structure of the non-zero mode correlators, i.e. χ1 has a non-zero
correlator only with χ̄1 and similarly for the rest.

9.3 Path Integral Evaluation of The Amplitudes

In this section, we explicitly evaluate the generating function (9.2.14) using a
worldsheet path integral approach. The path integrals can be performed exactly,
since every term in SI in (9.2.15) is quadratic in the field variables. There are
three major contributions, namely the bosonic and fermionic space-time parts as
well as the contribution of the K3 fermions. In what follows, we separately deal
with all three. We begin with the contribution of the space-time bosons:

〈
eP3SI

〉
bos

=

〈
exp

[
ǫ̂−
τ

∫
d2σ

(
Z1(∂̄ − ∂)Z2 + Z̄1(∂̄ − ∂)Z̄2

)

+
ǫ̂+
τ

∫
d2σ

(
Z1(∂̄ − ∂)Z̄2 + Z̄1(∂̄ − ∂)Z2

)
]〉

, (9.3.1)

where we defined ǫ̂± ≡ ǫ±P3/

√
(T − T̄ )(U − Ū)− 1

2
(~Y − ~̄Y )2. Plugging in the

appropriate mode expansions:

Z i =
∑

n,m

Z i
n,m cos(2πnσ)e2πimt , Z̄ i =

∑

n,m

Z̄ i
n,m cos(2πnσ)e2πimt , (9.3.2)
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9 Type I Refined Amplitudes

with i = 1, 2, corresponding to NN boundary conditions ∂1Z|σ1=0, 1
2

= 0 and care-

fully performing the path integral over the modes, we can express the space-time
bosonic correlator in the form:

〈
eP3SI

〉
bos

=
[
H1

(
ǫ̂−−ǫ̂+

2
; 0; τ

2

)
H1

(
ǫ̂−+ǫ̂+

2
; 0; τ

2

)]−1 π2(ǫ̂− − ǫ̂+)(ǫ̂− + ǫ̂+)

sin π(ǫ̂− − ǫ̂+) sin π(ǫ̂− + ǫ̂+)
,

(9.3.3)

where the function Hs(z;
g
2
; τ) is defined as:

Hs(z;
g
2
; τ) ≡ θ1(z + g

2
; τ)

2η3(τ) sin π(z + g
2
)

∏

m∈Z

n>0

(
1− z2

|m+ g
2

+ z − nτ |2s
)
, (9.3.4)

and is normalised such that Hs(0; 0; τ) = 1. In Appendix D.2.2, it is shown that,
in the full correlator, the functions Hs(z;

g
2
; τ) trivialise in the limit τ2 → ∞, so

that the contribution surviving in the field theory limit comes precisely from the
integration of the n = 0 modes6:

〈
eP3SI

〉
bos

τ2→∞−→ π2(ǫ̂− − ǫ̂+)(ǫ̂− + ǫ̂+)

sin π(ǫ̂− − ǫ̂+) sin π(ǫ̂− + ǫ̂+)
. (9.3.5)

Let us now compute the correlators of space-time fermions χ1,2, χ̄1,2, generated by

〈
eP3SI

〉s-t
ferm

=

〈
exp

[
ǫ̂−
τ

∫
d2σ

[
(χ1 − χ̃1)(χ2 − χ̃2) + (χ̄1 − ˜̄χ1)(χ̄2 − ˜̄χ2)

]
]〉

.

(9.3.6)

The relevant mode expansions are those for complex fermions in the Ramond sector
with NN boundary conditions:

χi =
∑

n,m

χin,m e
2πi(nσ+mt) , χ̃i =

∑

n,m

χin,m e
2πi(−nσ+mt) , (9.3.7)

χ̄i =
∑

n,m

χ̄in,m e
2πi(nσ+mt) , ˜̄χi =

∑

n,m

χ̄in,m e
2πi(−nσ+mt) . (9.3.8)

Notice that the n = 0 modes cancel out in the deformation (9.3.6) and, hence,
their contribution is ǫ−-independent. Path integration over the n 6= 0 modes,
on the other hand, yields a non-trivial contribution so that the correlator of the
space-time fermions can be compactly written as:

〈
eP3SI

〉s-t
ferm

=
[
H1(

ǫ̂−
2

; 0; τ
2
)
]2 τ2→∞−→ 1 . (9.3.9)

6The fact that the n = 0 mode in (9.3.2) corresponds to the field theory limit is natural from a physical
point of view, since it is precisely associated to the vibrations of the open string stretched between
the two boundaries of the annulus.
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9.3 Path Integral Evaluation of The Amplitudes

Hence, the net effect of the absence of ǫ−-dependent n = 0 mode contributions in
the deformed action is to render the space-time fermionic correlator trivial in the
field theory limit.

Finally, we turn to the contribution of the worldsheet fermions in the K3 direc-
tions χ4,5, χ̄4,5 which are sensitive to the sign parameter b = ±1:

〈
eP3SI

〉K3,b

ferm
=

〈
exp

[
ǫ̂+
τ

∫
d2σ

[
(χ4 + bχ̃4)(χ5 + bχ̃5) + (χ̄4 + b ˜̄χ4)(χ̄5 + b ˜̄χ5)

]
]〉

.

(9.3.10)

Using similar mode expansions as previously for the fermions in the K3 direction,
the path integral can be readily computed and the result cast in the following
form:

〈
eP3SI

〉K3,b

ferm
= −4 sin2(πg

2
)H1(

ǫ̂+
2

; g
2
; τ

2
)H1(

ǫ̂+
2

;−g
2
; τ

2
)
(

cos2 πǫ̂+ − cot2(πg
2

) sin2 πǫ̂+

)(1+b)/2

.

(9.3.11)

Here g ∈ Z2 is the orbifold projection parameter that twists the K3 fermions.
When τ2 →∞, the function Hs → 1 and therefore

〈
eP3SI

〉K3,b=−1

ferm

τ2→∞−→ 1 . (9.3.12)

This is consistent with the fact that — as for the correlators involving the fermions
in the space-time directions χ1,2, χ̄1,2 — setting b = −1 results in a cancellation
of the n = 0 modes in (9.3.10) which leads to a trivial field theory limit. The
case b = +1, however, is much more interesting, since the n = 0 modes give rise
to a non-trivial g-dependent contribution that survives in the field theory limit.
Indeed, from (9.3.11) we find

〈
eP3SI

〉K3,b=+1

ferm

τ2→∞−→ − 4
(

sin2(πg
2

) cos2 πǫ̂+ − cos2(πg
2

) sin2 πǫ̂+

)
. (9.3.13)

Putting all the pieces together, the full correlator becomes:

A[0g] = (−4 sin2 πg
2

)
(

cos2 πǫ̂+ − cot2(πg
2

) sin2 πǫ̂+

)(1+b)/2

ZK3[
0
g]

× π2(ǫ̂− − ǫ̂+)(ǫ̂− + ǫ̂+)

sin π(ǫ̂− − ǫ̂+) sin π(ǫ̂− + ǫ̂+)

[
H1(

ǫ̂−
2

; 0; τ
2
)
]2
H1(

ǫ̂+
2

; g
2
; τ

2
) H1(

ǫ̂+
2

;−g
2
; τ

2
)

H1(
ǫ̂−−ǫ̂+

2
; 0; τ

2
) H1(

ǫ̂−+ǫ̂+
2

; 0; τ
2
)

,

(9.3.14)

where ZK3[
0
g] is the bosonicK3 lattice partition function, with ZK3[

0
1] = 4η6( τ

2
)/θ2

2(
τ
2
).

Since its q-expansion begins with a constant term, ZK3[
0
g] = 1 + O(q), and since

we are interested in extracting the field theory limit around a point of enhanced
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9 Type I Refined Amplitudes

gauge symmetry, the ZK3 lattice does not play any substantial role in our subse-
quent analysis and, henceforth, we omit it.

The correlator (9.3.14) should now be weighted by appropriate Chan-Paton fac-
tors, together with the T 2-lattice accordingly Poisson-resummed to its Hamiltonian
representation and with its momentum quantum numbers properly shifted by the
Wilson line insertions, ai. An overall factor of 1/4 is also required from the in-
sertion of the orientifold projections into the traces. Furthermore, this should be
supplemented by the 5-5 and 9-5 correlators of the annulus and the 9-9 and 5-5
correlators of the Möbius diagram. However, as argued above, only the 9-9 sector
of the annulus diagram is relevant for the field theory limit in the vicinity of the
SU(2) enhancement point we consider, where the only extra massless states belong
to vector multiplets. It is then straightforward to show that the net contribution
of the extra massless vectors is:

nV
A[00] +A[01]

2
e−πτ2M

2
V , (9.3.15)

where nV is the number of extra vectors becoming massless at the enhancement
point andM2

V is their (physical) BPS mass squared.
Before extracting the field theory limit, it is useful to consider the case ǫ+ = 0

in (9.3.15). Indeed, independently of the choice of sign b, the non-zero mode n 6= 0
contributions of the fermionic and bosonic determinants cancel each other and one
obtains:

∫
dτ2
τ2

[
ǫ−µ̄τ2

sin(ǫ−µ̄τ2)

]2

e−|µ|2τ2 =
∞∑

g=1

(2g − 1)

2g
B2gǫ

2g
− µ

−2g , (9.3.16)

where B2g are the Bernoulli numbers and

µ ∼ a2 − Ua1 , (9.3.17)

is the BPS mass parameter of the extra massless charged states. Indeed, (9.3.16)
agrees with the singularity structure of the higher derivative F -terms FgW

2g near
a conifold singularity, which were computed in a similar setup in [39] by consid-
ering the solitonic state becoming massless as an open string stretched between
intersecting D5-branes. Notice, however, that in our setup, the singularity arises
at a Wilson line enhancement point, µ→ 0.

Now we resume our analysis of the refined case ǫ+ 6= 0. First recall that the
case b = −1 corresponds to a scattering of vector partners of S̄-moduli so that
one expects to reproduce the results of [11], where the corresponding amplitude
involving S̄-vectors was computed in a Heterotic setup. Indeed, it is easy to show
that in the field theory limit (9.3.15) reduces to

A[00] +A[01]

2

∣∣∣∣∣
b=−1

τ2→∞−→ 2
π (ǫ̂− − ǫ̂+)

sin π(ǫ̂− − ǫ̂+)

π (ǫ̂− + ǫ̂+)

sin π(ǫ̂− + ǫ̂+)
, (9.3.18)
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in perfect agreement with [11]. Turning to the more interesting case b = +1, cor-
responding to scattering vector partners of S̄ ′-moduli, the non-trivial n = 0 mode
contributions play an important role. Extracting the field theory limit around an
SU(2) enhancement point yields:

A[00] +A[01]

2

∣∣∣∣∣
b=+1

τ2→∞−→ − 2 cos(2πǫ+)
π (ǫ̂− − ǫ̂+)

sin π(ǫ̂− − ǫ̂+)

π (ǫ̂− + ǫ̂+)

sin π(ǫ̂− + ǫ̂+)
. (9.3.19)

After the appropriate rescaling, the field theory limit of our Type I amplitude
around the SU(2) Wilson-line enhancement point permits one to extract the lead-
ing singularity for FN,M as the ǫ2N− ǫ2M− term in the expansion of the generating
function:

F (ǫ−, ǫ+) ∼ nV (ǫ2− − ǫ2+)

∫ ∞

0

dt

t

−2 cos (2ǫ+t)

sin (ǫ− − ǫ+) t sin (ǫ− + ǫ+) t
e−µt . (9.3.20)

This precisely reproduces the perturbative part of the free energy of the pure
N = 2, SU(2) Yang-Mills theory in the Ω-background (6.4.13). Notice that both
(9.3.18) and (9.3.19) are symmetric with respect to ǫ± → −ǫ±. Unlike (9.3.18),
however, the generating function (9.3.19) is no longer symmetric with respect to
the exchange ǫ− ↔ ǫ+. This asymmetry can be traced back to the different choice
of vertices a = −1, b = +1, selecting the graviphotons and S̄ ′-vectors, respectively.

Finally, let us mention that the above discussion generalises in a straightforward
fashion when expansions around more general enhancement points are considered.
In particular, if there are nV , nH extra massless vector multiplets and hypermulti-
plets, respectively, the dominant contribution in the field theory limit becomes:

F ∼ (ǫ2− − ǫ2+)

∫ ∞

0

dt

t

2
(
nH − nV cos (2ǫ+t)

)

sin (ǫ− − ǫ+) t sin (ǫ− + ǫ+) t
e−µt , (9.3.21)

in accordance with the results of [42, 54]. It is worth noting that the relative
coefficient between hyper- and vector multiplets agrees with the fact that in the
unrefined limit ǫ+ = 0, in the N = 4 theory, where nH = nV , the amplitude must
vanish.

Before ending this section, we give an alternative, more physical, derivation of
the contributions −2nV cos(2ǫ+t) and 2nH of vectors and hypers in the numerator
of (9.3.21) using the operator formalism.7 We first discuss the case where the end
points of the open string are lying on two D9-branes or two D5-branes and restrict
our attention to the field theory limit, hence keeping only the constant modes of
the K3 fermions χ4

0, χ
5
0, χ̄

4
0, χ̄

5
0 with respect to the σ-direction. For zero modes,

there is no difference between left- and right- movers (χ0 = χ̃0) and, thus, only for

7Beyond the field theory limit, the operator formalism becomes rather complicated and it is actually
simpler to use the path-integral approach as described above.
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9 Type I Refined Amplitudes

b = +1 does the deformation (9.3.10) survive. Neglecting the oscillator part of the
deformed Hamiltonian

H = ǫ+(χ4
0χ

5
0 + c.c.) + osc. , (9.3.22)

we are led to evaluate

Tr H (−)F e−2πτ2H , (9.3.23)

over the finite-dimensional Hilbert space H of the periodic K3-fermion zero modes
(corresponding to the odd spin structure in the doubled annulus picture), which
satisfy the standard anti-commutation relations. One may pick the vacuum |0〉
to be annihilated by χ4

0 and χ5
0. The Hilbert space H is spanned by exactly four

states, which can be chosen as follows:

State Zn-action

|0〉 1

|1〉 = χ̄4
0|0〉 e−2πi/n

|2〉 = χ̄5
0|0〉 e2πi/n

|3〉 = χ̄4
0χ̄

5
0|0〉 1

(9.3.24)

where the second column displays their transformation under the Zn-orbifold ac-
tion. It is then easy to see that H can be decomposed into subspaces according to
their Zn-action:

H = H0 ⊕H− ⊕H+ , (9.3.25)

where H0 is the Zn-invariant subspace spanned by |0〉 and |3〉, whereas one-
dimensional subspaces H− and H+ are spanned by vectors |1〉 and |2〉, respectively.
N = 2 vector multiplets are built by fermionic oscillators invariant under Zn and
lie in H0, whereas hypermultiplets, whose oscillators transform with e±2πi/n under
Zn, belong to H−⊕H+. While the Hamiltonian (9.3.22) annihilates states |1〉 and
|2〉, it mixes the two states of H0, namely |0〉 and |3〉. Diagonalising the Hamilto-
nian in each subspace and taking the trace, immediately yields the contributions
of vectors and hypers appearing in the numerator of (9.3.21). The relative minus
sign in the latter comes from the fact that we are evaluating the trace with the
(−1)F insertion, whose eigenvalues are +1 on H0 and −1 on H±.

For the case where the two end points of the open string lie on D9- and D5-
branes respectively, the massless states are hypermultiplets. In this case there is a
half integer shift in the moding of the worldsheet bosonic and fermionic fields along
the K3 directions. This implies that in the Ramond sector, the massless space-
time fermions are singlets under the SO(4) tangent group of K3 and, therefore,
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9.3 Path Integral Evaluation of The Amplitudes

the Hamiltonian obtained from the deformation (9.3.10) (which now involves half-
integer mode oscillators) annihilates the ground state. Consequently, we see that
the contribution of hypers appears without an ǫ+-dependent phase.

We would like to emphasise that in this computation, we have not inserted any
R-symmetry currents, yet the result correctly reproduces the Nekrasov-Okounkov
partition function. This may seem surprising, since one usually attributes different
phase factors for hypers and vectors to the fact that they transform as different
SU(2)R-representations (while gauginos are doublets, hyperinos are singlets). Even
though in our amplitudes all vertices are SU(2)R neutral, after the spin structure
sum one effectively finds an SU(2)R current in the Hamiltonian H (9.3.22). This
is also the case in the Heterotic computation as can be seen from (8.1.12).
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10 Deformed ADHM Instantons and the
Topological String

As discussed in Section 6, gauge theory instantons have a natural description as
bound states of D-branes in string theory [90, 31]. For instance, four-dimensional
super-Yang-Mills theory can be realised on a stack of D3-branes in Type IIB string
theory, with additional D(−1)-branes playing the role of instantons. Their correc-
tions to the Yang-Mills action are captured by string disc diagrams with boundary
field insertions. In [22], the effect of a non-trivial constant string background in
this setup was considered, by including additional bulk vertices in the tree-level
amplitudes. It was shown that the insertion of anti-self-dual graviphoton field
strength tensors, in the point particle limit, correctly reproduces the ADHM ac-
tion on an Ω-background with one of its deformation parameters switched off (e.g.
ǫ+ = 0). Using localisation techniques [67, 64, 72, 73, 65, 52, 53] this allows one
to compute the non-perturbative Nekrasov partition function ZNek(ǫ+ = 0, ǫ−).

Obtaining the partition function for a gauge theory on a generic Ω-background
(with ǫ+ 6= 0) from string theory remains an interesting question. Phrased dif-
ferently, one would like to find a modification of the anti-self-dual graviphoton
background, considered in [22], giving rise to the fully deformed ADHM action
in the point-particle limit of the appropriate disc diagrams. A hint for answering
this question comes from the series of higher derivative one-loop couplings in the
effective action of the Heterotic string compactified on K3 × T 2, considered in
Section 8. In the field theory limit, these one-loop amplitudes precisely reproduce
the perturbative contribution of the N = 2 gauge theory partition function on the
full Ω-background, i.e. with ǫ−, ǫ+ 6= 0. We therefore expect that, including F T̄

(+)

also as a background field in the instanton computation described above, allows us
to extract the fully deformed ADHM action from string theory. In what follows,
we show that this is indeed the case.

We work in Type I string theory compactified onK3×T 2 and consider D9-branes
together with D5-instantons wrapping K3× T 2. As discussed in Section 1.4, this
setting is dual to Heterotic string theory on K3× T 2 and the corresponding back-
ground is given by anti-self-dual graviphotons and self-dual field strength tensors
of the vector partner of S̄ ′, which we refer to as S̄ ′-vectors in the remainder of this
section. We compute all tree-level diagrams with boundary insertions in this back-
ground which, in the field theory limit, correctly reproduce the fully Ω-deformed
version of the ADHM action, which was used to compute Nekrasov’s partition
function [72, 73].
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This result can also be interpreted as computing gauge theory instanton correc-
tions to the higher derivative couplings discussed in Section 9. The fact that we
reproduce precisely the full Nekrasov partition function can also be seen as further
evidence for the proposal that these couplings furnish a worldsheet description of
the refined topological string. Indeed, our results show that the background intro-
duced in [12] can be understood as a physical realisation of the Ω-background in
string theory.

We would like to mention that various RR backgrounds were discussed in [55,
56] where the Ω-deformed ADHM action was recovered using the language of D-
instantons. However, contrary to our present work, the instanton calculation is
performed without NS-NS field strengths. In addition, the interpretation in terms
of a string effective coupling was lacking.

In what follows, we calculate the tree-level (disc) diagrams with bulk insertions
of S̄ ′-vectors. Contrary to [55, 56, 43, 21, 22], we do not use auxiliary fields
since correlation functions involving the latter are in general not well-defined1.
In addition, we show that, in a particular factorisation limit corresponding to
a specific choice of ghost pictures, the OPE of two physical operators can be
effectively interpreted in terms of an auxiliary field.

10.1 String Theory Setup

Gauge instantons in a theory living on a configuration2 of N D9-branes are the
D5-instantons wrapping K3×T 2. For concreteness, we summarise the brane setup
in the following table.

brane num. X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

D9 N • • • • • • • • • •
D5 k • • • • • •

︸ ︷︷ ︸
space-time∼R4

︸ ︷︷ ︸
T 2

︸ ︷︷ ︸
K3∼T 4/Z2

This configuration describes instantons of winding number k in a gauge theory with
SU(N) gauge group. In order to see this, let us describe the massless spectrum of
the theory. The notation used here is summarised in Appendix A. More precisely,
it is natural to decompose the ten-dimensional Lorentz group into

SO(10)→ SO(4)ST × SO(6)int→ SO(4)ST × SO(2)T 2 × SO(4)K3 , (10.1.1)

1Auxiliary fields are not BRST-closed objects.
2Before considering the effect of D5 instantons, one may start from a consistent string vacuum, e.g.

the model discussed in [20] with gauge group U(16) × U(16), where the total number of D5 branes
(wrapping the space-time and T 2 directions) and D9 branes is fixed to be 16 by tadpole cancellation.
The stack of 16 D9 branes may be further higgsed to N < 16 by turning on appropriate Wilson lines
along T 2, so that one may keep N generic for the purposes of our analysis.
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reflecting the product structure of our geometry. In this way I, J = 1, . . . , 10
denote indices of the full SO(10), µ, ν are indices of the space-time SO(4)ST ,

with α, β (α̇, β̇) the corresponding (anti-)chiral spinor indices, while a, b denote
internal SO(6)int indices. For SO(4)K3 ∼ SU(2)+ × SU(2)−, we introduce indices
A,B = 1, 2 for fields transforming in the (2, 1) representation (positive chirality)

and Â, B̂ = 3, 4 for fields in the (1, 2) representation (negative chirality). Following
[43, 22], we associate upstairs indices of SU(2)+ (resp. SU(2)−) with charge +1/2
(resp. −1/2) of SO(2)T 2 and downstairs indices with charge −1/2 (resp. +1/2)
respectively. In this way, internal indices cannot be raised and lowered with the
help of ǫ-tensors, but we have to keep track of their position.

In this setting, there are three kinds of open string sectors which are relevant for
our subsequent discussion. They can be characterised according to the location of
their endpoints and are very similar to the ones studied in the Section 6.

1. 9-9 sector
The massless excitations consist of a number of N = 2 vector multiplets,
each of which containing a vector field Aµ, a complex scalar φ as well as four
gaugini (ΛαA,Λα̇A) in the (2, 1) representation of SU(2)+ × SU(2)− with
SO(2)T 2 charges (1/2,−1/2) respectively. The bosonic degrees of freedom
stem from the NS sector, while the fermionic ones from the R sector. These
fields separately realise a Yang-Mills theory living on the four-dimensional
space-time.

2. 5-5 sector
These states are moduli (i.e. non dynamical fields) from a string perspective,
due to the instantonic nature of the corresponding D5-branes. Indeed, the
states in this sector cannot carry any momentum because of the Dirichlet
boundary conditions in all directions except along K3×T 2. From the Neveu-
Schwarz (NS) sector, we have six bosonic moduli, which we write as a real
vector aµ and a complex scalar χ. From the point of view of the SYM theory
living on the world-volume of the D9-branes, aµ corresponds to the position
of gauge theory instantons. From the Ramond sector, we have eight fermionic
moduli, which we denote as MαA, λα̇A.

3. 5-9 and 9-5 sectors
Also this sector contains moduli from a string point of view. From the NS
sector, the fermionic coordinates have integer modes giving rise to two Weyl
spinors of SO(4)ST which we call (ωα̇, ω̄α̇). Notice that, as in the D(-1)/D3
case, these fields all have the same chirality, which in our case is anti-chiral.
From a SYM point of view, these fields control the size of the instanton.
In the R sector, fields are half-integer moded giving rise to two fermions
(µA, µ̄A) transforming in the (2, 1) representation of SU(2)+ with positive
charge under SO(2)T 2.
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For the reader’s convenience, the field content is compiled in Table 10.1. A similar

sector field SO(4)ST cT 2 SU(2)+ × SU(2)− statistic R / NS

9-9 Aµ (1/2,1/2) 0 (1,1) boson NS

ΛαA (1/2,0) 1/2 (2,1) fermion R

Λα̇A (0,1/2) −1/2 (2,1) fermion R

φ (0,0) −1 (1,1) boson NS

5-5 aµ (1/2,1/2) 0 (1,1) boson NS

χ (0,0) −1 (1,1) boson NS

MαA (1/2,0) 1/2 (2,1) fermion R

λα̇A (0,1/2) −1/2 (2,1) fermion R

5-9 ωα̇ (0,1/2) 0 (1,1) boson NS

µA (0,0) 1/2 (2,1) fermion R

Table 10.1: Overview of the massless open string spectrum relevant for the disc am-
plitude computation. We display the transformation properties under the
groups SO(4)ST × SU(2)+ × SU(2)−, while the column cT 2 denotes the
charge under SO(2)T 2 . The last two columns denote whether the field is
bosonic or fermionic and the sector it stems from.

analysis to the one in Section 6 shows that the string tree-level effective action
involving only the vector multiplets of the 9-9 sector exactly reproduces, in the
field theory limit, the pure N = 2 super-Yang-Mills theory with SU(N) gauge
group. Inclusion of the remaining moduli fields gives rise to the ADHM action
describing instantonic corrections with instanton3 number k.

Furthermore, by coupling the theory to a constant anti-self-dual graviphoton
background [22], the resulting effective action coincides with the ADHM action in
the Ω-background used in [72] in the case where one of the deformation parameters
vanishes (say, ǫ+ = 0). While the ADHM action is exact under a nilpotent Q-
symmetry, the latter is still present after the deformation with ǫ+. Hence, one can
use localisation techniques in order to compute the instanton partition function
[72].

From a practical perspective, this deformation is obtained by computing string
disc diagrams with bulk insertions of the anti-self-dual graviphoton. Due to its
anti-self-duality, the only instanton contributions come from the diagrams with

3When taking the field theory limit, one should pay attention to the dimensionality of the various fields.
In particular, a rescaling of the ADHM moduli is necessary in order for the field theory limit to be
well-defined as an appropriate double scaling limit in which gYM is held fixed.
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insertions from the 5-5 sector and no mixed diagrams4 contribute.

(a) (b)

F
G

F
G

VV
5-5

V
5-5

V
9-5

V
5-9

V
5-5

V
5-5

Figure 10.1: Four-point disc diagrams with graviphoton bulk-insertion. Diagram (a) in-
volves two boundary insertions from the 5-5 sector, whereas diagram (b)
two insertions from the 5-9 sector. While the whole boundary of diagram
(a) lies on the D5-branes, diagram (b) lies partly on the D9- and partly
on the D5-branes. The latter mixed boundary diagrams vanish due to the
anti-self-duality of the graviphoton.

In the following section, we generalise this construction to the case where the
background includes, in addition to the anti-self-dual graviphoton field strength,
the self-dual field strength of the S̄ ′-vector. We show that this generalised back-
ground, discussed in Section 9 as a string theory uplift of the Ω-background in
Type I, reproduces the ADHM action in the presence of a general Ω-background,
therefore providing a non-perturbative check of the latter proposal.

10.2 Refined Instanton Effective Action

10.2.1 Vertex Operators

We denote the ten-dimensional bosonic and fermionic worldsheet fields collectively
as XI and ψI respectively, with I = 1, . . . , 10. More precisely, we use (Xµ, ψµ),
(Z,Ψ) and (Y i, χi) for worldsheet fields along the four-dimensional space-time, T 2

and K3 directions respectively. In the following, for simplicity, we consider an
orbifold representation of K3 as T 4/Z2. However, we expect our results to be
valid also for a generic (compact) K3. The vertex operators relevant for the disc
amplitudes involve the ADHM moduli appearing in the massless spectrum. From

4Recall that by mixed diagrams we refer to disc diagrams whose boundary lies on both D9- and D5-
branes.
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the 5-5 sector, we need

Va(z) = g6 aµψ
µ(z)e−ϕ(z) , (10.2.1)

Vχ(z) =
χ√
2
Ψ̄(z)e−ϕ(z) , (10.2.2)

VM(z) =
g6√
2
MαASα(z)SA(z)e−

1
2
ϕ(z) . (10.2.3)

From the 5-9 and 9-5 sectors, we use

Vω(z) =
g6√
2
ωα̇∆(z)Sα̇(z)e−ϕ(z) , (10.2.4)

Vω̄(z) =
g6√
2
ω̄α̇∆̄(z)Sα̇(z)e−ϕ(z) . (10.2.5)

Here ∆(z), ∆̄(z) are twist and anti-twist fields with conformal weight 1/4, which
act by changing the boundary conditions and g6 is the D5-instanton coupling
constant. Finally, we turn to the closed string background defined in Section 6.
The vertex operator of the anti-self-dual graviphoton in the (−1)-ghost picture at
zero momentum is given by:

V FG

(y, ȳ) =
1

8π
√

2
FG
µν

[
ψµψν(y)e−ϕ(ȳ)Ψ̄(ȳ) + e−ϕ(y)Ψ̄(y)ψµψν(ȳ)

− i
2
e−

1
2
(ϕ(y)+ϕ(ȳ))Sα(y)(σ

µν)αβSβ(ȳ) ǫ
AB SA(y)SB(ȳ)

]
. (10.2.6)

The vertex operator for the self-dual field strength tensor of the S̄ ′-vector in the
(−1)-ghost picture and at zero momentum is given as a sum of an NS-NS part
(first line) and a R-R part (second line):

V F S̄′
(y, ȳ) =

1

8π
√

2
F S̄′
µν

[
ψµψν(y)e−ϕ(ȳ)Ψ̄(ȳ) + e−ϕ(y)Ψ̄(y)ψµψν(ȳ)

+
i

2
e−

1
2
(ϕ(y)+ϕ(ȳ))Sα̇(y)(σ̄

µν)α̇β̇Sβ̇(ȳ) ǫÂB̂ S
Â(y)SB̂(ȳ)

]
. (10.2.7)

The disc diagrams involving the bulk insertions of the RR part of the anti-self-dual
graviphoton (10.2.6) have already been extensively studied in the literature (see,
for example, [22]). Following the analysis performed below, one can show that the
NS-NS part also gives the same contribution leading to the ǫ−-dependent part of
the Ω-deformed ADHM action. Here, we focus on the more interesting case of the
self-dual insertions of S̄ ′-field strengths. The relevant disc diagrams correspond
to the following correlators and involve the bosonic instanton moduli only5, and

5One can show that the insertions of fermionic moduli leads to vanishing disc amplitudes.
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these are

Daaχ†F S̄′ (x1, x2, x3, z, z̄) =
〈
Va(x1)Va(x2)Vχ†(x3)VF S̄′ (z, z̄)

〉
Disc

, (10.2.8)

Dωω̄χ†F S̄′ (x1, x2, x3, z, z̄) =
〈
Vω(x1)Vω̄(x2)Vχ†(x3)VF S̄′ (z, z̄)

〉
Disc

. (10.2.9)

We emphasise that a crucial requirement for all our scattering amplitudes is that
the external fields involved be physical, i.e. that they be annihilated by the BRST
operator QBRST =

∮
JBRST (1.2.21). This turns out to be important in order to

determine the precise structure of the various vertex operators in different pic-
tures. In addition, as we show below, these amplitudes take the form of contact
terms pi.pj/pi.pj where pi are the momenta of the various vertex operator inser-
tions. These contact terms give non-trivial results in the limit pi → 0. To be
able to compute them in a well-defined manner, we keep pi generic in all inter-
mediate steps, which also acts as a regularisation of the worldsheet integrals, and
take the limit only at the end of the calculation. However, due to the nature of
our vertex insertions, we cannot switch on momenta in an arbitrary fashion: since
the four-dimensional space-time corresponds to directions with Dirichlet boundary
conditions for the D5-instantons, none of the ADHM moduli can carry momenta
along Xµ. Similarly, the S̄ ′-vector insertions cannot carry momenta along T 2 once
we impose BRST invariance (i.e. transversality and decoupling of longitudinal
modes). As a way out, we take all vertices to carry momenta along the K3 di-
rections and complexify them, if necessary, to make all integrals well-defined. In
fact, technically, we first replace K3 by R4 and compute an effective action term
on the D-instanton world-volume T 2 × R4. Since the relevant fields that appear
in these couplings survive the orbifold projection (or more generally on a smooth
K3 manifold they give rise to zero-modes), the corresponding couplings exist also
in the case where R4 is replaced by K3.

10.2.2 D5 − D5 disc diagrams

We start by evaluating the amplitude (10.2.8), depicted in Fig. 10.2, corresponding
to a disc diagram whose boundary lies entirely on the stack of D5-branes and with
the S̄ ′-modulus inserted in its bulk. Since the vertex operator for F S̄′

consists of
two parts (NS and R), we can split the correlator (10.2.8) accordingly

Daaχ†F S̄′ (x1, x2, x3, z, z̄) = DNS
aaχ†F S̄′ (x1, x2, x3, z, z̄) +DR

aaχ†F S̄′ (x1, x2, x3, z, z̄) ,

(10.2.10)

with

DNS
aaχ†F S̄′ = 〈V (0)

a (x1)V
(−1)
a (x2)V

(0)

χ† (x3)V
(−1,−1)

F S̄′ (z, z̄)VPCO(y)〉 , (10.2.11)

DR
aaχ†F S̄′ = 〈V (0)

a (x1)V
(−1)
a (x2)V

(0)

χ† (x3)V
(− 1

2
,− 1

2
)

F S̄′ (z, z̄)〉 . (10.2.12)
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F
S'

V
a

Vχ

V
a

_

†

Figure 10.2: Four-point disc diagram with bulk-insertion of the S̄′ field strength tensor
and three boundary insertions stemming from the 5-5 sector of the string
setup.

Here V
(−1,−1)

F S̄′ is the NS-NS part of the closed string F S̄′
field strength tensor

introduced in (10.2.7), V
(− 1

2
,− 1

2
)

F S̄′ is its R-R part and VPCO is the picture changing

operator, recall (1.2.32,1.2.33),

VPCO = QBRST ξ . (10.2.13)

In (10.2.11) we have kept the PCO insertion at a fixed position y, even though the
final result should not depend on y [38]. Setting y to z, z̄ or x2, converts the ghost
picture of the corresponding vertex operators to 6

DNS
aaχ†F S̄′

∣∣
y=z

= 〈V (0)
a (x1)V

(−1)
a (x2)V

(0)

χ† (x3)V
(0,−1)

F S̄′ (z, z̄)〉 , (10.2.14)

DNS
aaχ†F S̄′

∣∣
y=z̄

= 〈V (0)
a (x1)V

(−1)
a (x2)V

(0)

χ† (x3)V
(−1,0)

F S̄′ (z, z̄)〉 , (10.2.15)

DNS
aaχ†F S̄′

∣∣
y=x2

= 〈V (0)
a (x1)V

(0)
a (x2)V

(0)

χ† (x3)V
(−1,−1)

F S̄′ (z, z̄)〉 , (10.2.16)

respectively. Using the doubling trick, we can convert the disc into the full plane
with a Z2-involution, and the four-point amplitude (10.2.8) becomes a five-point
function with vertices at (x1, x2, x3, z, z̄). Here we split

V
(−1,−1)

F S̄′ (z, z̄) = VF S̄′ (z)VF S̄′ (z̄) , (10.2.17)

where the left-right symmetrisation is implicit. SL(2,R) invariance implies that
we can fix three real positions, which is related to the existence of three c-ghost
zero modes on the sphere. The latter are soaked up by attaching c to three
dimension one vertices such that the resulting operators are BRST closed. The

6In (10.2.8) an insertion of ξ at an arbitrary position is understood, in order to soak up the ξ zero
mode.
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dimension of these vertices becomes zero and they remain unintegrated. Since the
last two terms in (1.2.21) annihilate any operator in the (−1)-picture, any physical
operator with dimension one and negative ghost picture becomes BRST invariant
in this manner.7 However, recall from (6.3.36) that for a zero-picture operator, the
correct dimension zero BRST invariant combination is cV (0) + γV (−1). Therefore,
for simplicity, we choose the zero-picture vertices to be of dimension one (such that
their positions are integrated), and all the (−1)-picture vertices to be of dimension
zero (such that their positions remain unintegrated).

Let us first consider the NS-NS contributions (10.2.11), for which the vertex
operators are

Va(x1) = g6 aµ(∂X
µ − 2ip1 · χψµ)e2ip1·Y (x1) , (10.2.18)

Va(x2) = g6 aν ce
−ϕψνe2ip2·Y (x2) , (10.2.19)

Vχ†(x3) =
χ†

√
2

(∂Z − 2ip3 · χΨ)e2ip3·Y (x3) , (10.2.20)

VF S̄′ (z) = ce−ϕΨ̄ei(PµXµ+P ·Y )(z) , (10.2.21)

VF S̄′ (z̄) = − iǫλ

8π
√

2
ce−ϕψλei(−PµXµ+P ·Y )(z̄) , (10.2.22)

with F S̄′
µν ≡ ǫ[µPν], and the only relevant terms in VPCO are (since the total back-

ground charge of the superghost is −2)

eϕ TF (y) = ieϕ(ψµ∂Xµ + Ψ∂Z̄ + Ψ̄∂Z + χi∂Y i)(y) . (10.2.23)

Here, Y i ∈ {X6, X7, X8, X9} parametrise the internal R
4 (which we eventually

replace by K3). The momenta pi are along these directions, while the momentum
of VF S̄′ is written as (Pµ, P ), where Pµ is the space-time part and P is along the
Y i directions. Note that after using the doubling trick, the Neumann directions
(Z, Z̄, Y i) are mapped onto themselves, whereas the Dirichlet ones pick an addi-
tional minus sign Xµ → −Xµ. This is consistent with the fact that the momenta
along Neumann directions are conserved

∑
i pi + P = 0, which follows from inte-

grating the zero modes of Y i. On the other hand, integrating over the zero modes
of the Dirichlet directions Xµ does not give any conservation law for Pµ.

The three open string vertices contain Chan-Paton labels which need to be suit-
ably ordered. For instance, if we are interested in computing the term Tr(aµ aν χ

†),
the range of integration is the following:

{
for x1 > x2 , x3 ∈]x2, x1[ ,

for x2 > x1 , x3 ∈]−∞, x1[∪]x2,∞[ .
(10.2.24)

7Indeed, the first two terms in (1.2.21) combined together annihilate cV for any V corresponding to a
dimension one Virasoro primary operator, irrespective of the ghost picture of V .
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For the other inequivalent ordering Tr(aµ χ
† aν), the range of the x3-integration is

opposite. It is easy to show that the sum of these two orderings vanishes so that
the amplitude is of the form Tr(aµ[χ

†, aν ]).
For definiteness, let us focus on the term Tr(aµ aν χ

†). The contraction of ϕ and
c and the contraction of the exponentials in momenta yield

A0 =

{
− ig

2
6

16π
Tr(aµ aν χ

†)ǫλ

}
|y − z|2(y − x2)

×
∏

1≤i<j≤3

(xi − xj)4pi·pj

3∏

k=1

|xk − z|4pk·P (z − z̄)−PµPµ+PiPi . (10.2.25)

This is a common factor that multiplies each of the remaining contractions. Now
let us consider the contribution of ∂Z(x3) to the amplitude. This must contract
with ∂Z̄(y) in VPCO and then Ψ(y) contracts with Ψ̄(z). Then ψλ(z̄) necessarily
contracts with ψν(x2) and from x1 only ∂Xµ(x1) can contribute. The result is

A1 =
iδνλP µ(z − z̄)

(y − x3)2(y − z)(x2 − z̄)|x1 − z|2
. (10.2.26)

Next consider the contribution of the second term in (10.2.20). Here, there are
two separate contributions. If p3 · χ(x3) contracts with p1 · χ(x1), then ψµ(x1),
ψν(x2), ψ

λ(z̄) and a space-time fermion ψσ(y) from the picture changing operator
must contract, leaving ∂Xσ(y) which can only contract with the momentum parts
of vertices at z and z̄ resulting in a term proportional to Pσ. Notice that the term
arising from the contraction of ψµ with ψν is killed by the transversality condition
(a necessary condition for the operator to be in the kernel of QBRST). The total
result is

A2 =
4ip1 · p3 (z − z̄)

(x3 − z)(x3 − x1)|y − z|2
[

δνλP µ

(x2 − z̄)(y − x1)
− δµλP ν

(x1 − z̄)(y − x2)

]
.

(10.2.27)
On the other hand, if p3 ·χ(x3) contracts with χ(y) in VPCO, then ∂Y (y) contracts
with momentum dependent parts of the vertices. Thus, ψλ(z̄) must contract with
ψν(x2) and only ∂Xµ at x1 can contribute so that one obtains

A3 =
4iδνλP µ(z − z̄)

(x3 − z)(y − x3)(x2 − z̄)|x1 − z|2
[
p3 · p1

y − x1
+
p3 · p2

y − x2
+

p3 · P
2(y − z) +

p3 · P
2(y − z̄)

]
.

(10.2.28)
The total correlation function is thus

DNS
aaχ†F S̄′ = A0(A1 + A2 + A3) , (10.2.29)

which must be integrated over x1 and x3. Note that all the terms in A1, A2 and
A3 come with one power of space-time momentum P µ which is exactly what is
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required to obtain a coupling to the field strength of the closed string gauge field.
However, both A2 and A3 are quadratic in the momenta along the Y i directions
and they can only contribute to the amplitude in the zero-momentum limit if the
integration over x1 and x3 gives a pole of the form 1/(pa· pb). Clearly, A0·A3 cannot
provide such a pole (we are assuming a generic value of y in the complex plane
i.e. Im(y) 6= 0). On the other hand, the integral over x3 for A0·A2 gives a pole of
the form 1/(p1· p3). Performing the x3 integral in both the regions (10.2.24) yields
precisely the same result, hence, the x1 integral over the entire real line reads

A0A2 =
g2
6

8π
Tr
[
aµ aν χ

†
] ∫ ∞

−∞

dx1
(z − z̄)
|x1 − z|2

ǫλ

[
(x1 − z̄)(y − x2)

(x2 − z̄)(y − x1)
P µδνλ − P νδµλ

]
,

(10.2.30)
where we have set all the momenta along the Y i directions to zero since there are
no singularities in the remaining x1 integral. Notice that A0·A2 alone does not
lead to a gauge invariant answer. As for the A0A1 term the x3 and x1 integrals
have no singularities and therefore the momenta along the Y i directions can be
set to zero. The resulting x3 integral for both regions (10.2.24) gives precisely the
same result:

A0A1 = − g
2
6

8π
Tr
[
aµ aν χ

†
] ∫ ∞

−∞

dx1
(z − z̄)
|x1 − z|2

ǫλ
(y − z̄)(x1 − x2)

(x2 − z̄)(y − x1)
P µδνλ . (10.2.31)

Adding the two terms (10.2.30) and (10.2.31), we see that the result is gauge
invariant. Performing the x1 integration yields8:

〈〈
Va Va Vχ† V NS

F S̄′
〉〉

=
8π2

g2
YM

∫
DNS
aaχ†F S̄′

= −2iTr
[
aµ aν χ

†
]
ǫλ(P

µδνλ − P νδµλ) . (10.2.32)

Here, we have used 2/(2πα′g6)
2 = 8π2/g2

YM and restored the dimensionality of the
fields in terms of 2πα′.

Finally, let us consider the R-R contributions (10.2.12). The vertex operators
are the same as above, except for the S̄ ′-vector part which is given by

V
(− 1

2
,− 1

2
)

F S̄′ (z, z̄) =
i

16π
√

2
F ρλ

S̄′ c e
−ϕ

2 Sα̇ S
Â ei(P ·X+P ·Y )(z)

× ǫÂB̂(σ̄ρλ)
α̇
β̇ c e

−ϕ
2 S β̇ SB̂ ei(−P ·X+P ·Y )(z̄) . (10.2.33)

Since the total superghost charge of the vertices is−2, there is no need for a picture
changing operator. The total charge in the torus plane implies that only p3 ·χΨ(x3)
in (10.2.20) contributes so that only p1 · χψµ(x1) in (10.2.18) contributes. This
term is proportional to p1· p3. Once again the integral over x3 gives a pole 1/(p1· p3)

8Notice the additional factor of 2 due to the left-right symmetrisation in the closed string vertex.
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in the channel x3 → x1. Performing the integrals over x1 and x3 as above leads to
the same result:

〈〈
Va Va Vχ† V NS

F S̄′
〉〉

=
〈〈
Va Va Vχ† V R

F S̄′
〉〉

. (10.2.34)

Summing over the inequivalent orderings of the open vertex operators yields
〈〈
Va Va Vχ† VF S̄′

〉〉
= −4iTr

[
χ†, aµ

]
aν F

µν

S̄′ . (10.2.35)

In [68, 11], a different string background was studied, which involved the self-
dual field strength of the vector partner of the dilaton S. However, repeating the
computation of the above disc diagrams with the insertion of the latter leads to a
vanishing result. This indicates that the background [68, 11] does not give rise to
the deformed ADHM action on a general Ω-background.

10.2.3 D5 − D9 disc diagrams

F
S'

Vω

Vχ

Vω

_

†

_

Figure 10.3: Four-point disc diagram with bulk-insertion of the S̄′ field strength tensor
and three boundary insertions stemming from the 5-9, 9-5 and 5-5 sectors
of the string setup.

Let us consider the RR part of the physical amplitude depicted in Fig. 10.3
〈
V (0)
ω (x1)V

(−1)
ω̄ (x2)V

(0)

χ† (x3)V
(−1/2,−1/2)
FS̄′ (z, z̄)

〉
(10.2.36)

The vertex operators for the 5-9 and 9-5 states are

V (0)
ω (x1) =

g6√
2
ωδ̇
(
∆̃µ (σ̄µ)

δ̇δSδ + ip1 · χ∆S δ̇
)
eip1·Y (x1) ,

V
(−1)
ω̄ (x2) =

g6√
2
ω̄γ̇ ce

−ϕ ∆̄S γ̇ eip2·Y (x2) , (10.2.37)

where ∆̃µ are dimension 3/4 operators defined as

∆̃µ(x1) = lim
x→x1

(x− x1)
1
2 ∂Xµ(x)∆(x1) (10.2.38)
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Finally, we recall the vertex operator for the 5-5 state:

Vχ†(x3) =
χ†

√
2

(∂Z − 2ip3 · χΨ)e2ip3·Y (x3) . (10.2.39)

Once again φ3 charge conservation implies that only p3 · χΨ(x3) term contributes

from V
(0)
χ (x3) and can only contract with p1 ·χ(x1) in the vertex at x1. Thus, after

taking the limit of vanishing K3 momenta, we obtain

〈〈
Vω Vω̄ Vχ† V NS

F S̄′
〉〉

= −p1 · p3

4π
ωα̇ ω̄β̇ χ

† F β̇α̇

S̄′

∫
dx1dx3

(z − z̄)(x1 − x3)
4p1·p3−1

|x1 − z||x3 − z|
∣∣∣
pi=0

=
i

4
ωα̇ ω̄β̇ χ

† F β̇α̇

S̄′ , (10.2.40)

where we have used the notation F α̇β̇ = (σ̄µν)
α̇β̇ F µν .

We now turn to the NS-NS part of the bulk vertex operator which we choose to
be in the (−1, 0)-picture:

V NS
F S̄′ (z, z̄) =

ǫλ

8π
√

2
e−ϕ Ψ̄ ei(P ·X+P ·Y )(z)(−∂Xλ− i(P ·ψ−P ·χ)ψλ)ei(−P ·X+P ·Y )(z̄) .

(10.2.41)
Here, we are using the D5-brane map for the right-moving part of the vertex
operators to the lower half plane (X̃µ, ψ̃µ) → (−Xµ(z̄),−ψµ(z̄)). Recall that, in
the present case, the boundary between x1 and x2 where x3 sits, is on a D5-brane
while the remaining part of the boundary is on a D9-brane. The above choice
means that we are taking the branch cut (due to the twist fields at x1 and x2) to
be on the D9 part of the boundary.

Once again Ψ̄(z) can only contract with the p3 · χΨ(x3) part of the vertex at
x3. However, p3 · χ(x3) can either contract with p1 · χ(x1) from vertex at x1 or
with P · χψλ(z̄). In the first case, from the operator at z̄, ∂Xλ(z̄) cannot con-
tribute. Indeed, since

〈
∆(x1) ∆̄(x2) ∂X

λ(z̄)
〉

= 0, the only possibility is to bring
down a P · X term from the momentum part of the vertex at z or z̄. In this
case

〈
∆(x1) ∆̄(x2) ∂X

λ(z̄)P ·X(z, z̄)
〉
∝ P λ and, hence, vanishes by the transver-

sality condition9. Consequently, only the fermionic part of the operator at z̄ can
contribute, leading to

〈〈
Vω Vω̄ Vχ† V R

F S̄′
〉〉

=
p1 · p3

4π
ωα̇ ω̄β̇ χ

† F β̇α̇
S̄′

∫
dx1dx3

(z − z̄)(x1 − x3)
4p1·p3−1

(x3 − z)(x1 − z̄)
∣∣∣
pi=0

=
i

4
ωα̇ ω̄β̇ χ

† F β̇α̇

S̄′ . (10.2.42)

where only the term P · ψ ψλ(z̄) in (10.2.41) contribute. Notice the additional
factor of 2 due to the left-right symmetrisation in the NS-NS vertex operator.

9We only consider a single power in P as required by the structure of the coupling we are evaluating.
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In the second case, the resulting term vanishes as we now show. Such a term
is proportional to p3.P

x3−z̄
. The correlator of the space-time fermion ψλ(z̄) with

Sδ(x1)S
γ̇(x2) gives a kinematic factor (σλ)

δγ̇ . Finally, as above, bringing down
a single power of P.X from eiP ·X(z) or e−iP ·X(z̄) yields the total correlation func-
tion (apart from the contraction of the momentum parts of the vertex):

p3·P (σ̄µλ)
δ̇γ̇ z − z̄
|x3 − z|2

(x2 − z̄)
1
2

(x1 − z̄)
1
2

[〈
∆̃µ(x1)P ·X(z)∆̄(x2)

〉
±
〈
∆̃µ(x1)P ·X(z̄)∆̄(x2)

〉]
,

(10.2.43)
where we have used the transversality condition, and the ± sign depends on the
choice of the branch cut 10. In order to obtain a non-zero result in the limit of
vanishing K3 momenta, we need a 1/p · p pole. Since there is no singularity in

x3 integral, the amplitude is non-vanishing only if
〈
∆̃µ(x1)P ·X(z, z̄)∆̄(x2)

〉
has

a first order pole in (x1 − x2) which can be deduced from the OPE of ∆µ(x1)
and ∆̄(x2). The right hand side of the OPE can only have untwisted operators,
i.e. operators involving products of derivatives of ∂X, with X being the spatial
coordinates. These operators are of non-negative integer dimensions. Since the
dimensions of ∆̃µ(x1) and ∆̄(x2) are 3/4 and 1/4 respectively, the OPE must be

∆µ(x1)∆̄(x2) ∼
∞∑

n=0

(x1 − x2)
n−1 cni Oin(x2) (10.2.44)

where n denotes the dimension, i counts the degeneracy of the operators O and
cni are the structure constants. Notice that

〈
∆µ(x1)∆̄(x2)

〉
= 0 implies11 that the

term n = 0 is absent in (10.2.44). In addition, the n = 1 term is non-vanishing
and corresponds to O1 ≡ ∂Xµ. This can be more explicitly seen by considering
the four-point correlation function

F (x1, y, w, x2) =
〈
∆(x1)∂X

µ(y)∂Xν(w)∆̄(x2)
〉

= −δ
µν

2

1

(x1 − x2)
1
2 (y − w)2

.
(y − x1)(w − x2) + (y − x2)(w − x1)
(
(y − x1)(y − x2)(w − x1)(w − x2)

) 1
2

,

(10.2.45)

which can be easily deduced from the OPEs

∆(x1)∆̄(x2) ∼
1√

x1 − x2
, (10.2.46)

and

∂Xµ(y)∂Xν(w) ∼ − δµν

(y − w)2
. (10.2.47)

10The + sign, which corresponds to D9 boundary conditions, means that the branch cut is on the D5
boundary, the − sign means that the branch cut lies on the D9 one.

11For n = 0 there is a unique ground state in the untwisted sector.
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Using the definition (10.2.44), we find that
〈
∆̃µ(x1)∂X(w)∆̄(x2)

〉
=

1

(w − x2)
1
2 (w − x1)

3
2

. (10.2.48)

Consequently, in the limit x1 → x2, ∆̃µ(x1)∆̄(x2)→ ∂Xµ(x2), and

〈
∆̃µ(x1)P ·X(w)∆̄(x2)

〉
−→
x1→x2

−P µ 1

x2 − w
. (10.2.49)

Hence, the absence of poles in (x1 − x2) implies that, in the limit of vanishing K3

momenta, this contribution is zero.
Summarising our result, the D5-D9 diagram in the presence of the S̄ ′-vector

leads to the following coupling in the instanton effective action:

〈〈
Vω Vω̄ Vχ† VF S̄′

〉〉
=
i

2
Tr
{
ω̄α̇ χ

† ωβ̇(σ̄
µν)α̇β̇F S̄′

µν

}
(10.2.50)

These diagrams are sufficient to compute the tree-level string effective action
involving D5-instanton. In the following section, we consider the field theory limit
and compare the result to the ADHM action on a general Ω-background.

10.2.4 ADHM Action and Nekrasov Partition Function

In this section we compare our results with the deformed ADHM action appearing
in (6.2.19). The latter describes instantons in a gauge theory with SU(N) gauge
group on a general Ω-background. Recall that the ADHM instanton action can be
expressed as

SADHM = −Tr
{

[χ†, aαβ̇ ]
(
[χ, aβ̇α] + ǫ−(aτ3)

β̇α
)
− χ† ω̄α̇

(
ωα̇χ− ã ωα̇

)
− (χω̄α̇ − ω̄α̇ ã)ωα̇ χ†

+ǫ+
[
χ†, aαβ̇

]
(τ3a)

β̇α − ǫ+ ω̄α̇ (τ3)
α̇
β̇ χ

† ωβ̇
}
. (10.2.51)

where we only display the part relevant for our discussion. Here, we have intro-
duced the vev ã of the N = 2 vector multiplet that higgses the SU(N) gauge
group. The terms in the second line correspond to the ǫ+-dependent deformation
of the ADHM action and which we want to compare to the effective couplings of
F S̄′

to the ADHM moduli. To this end, we parametrise the vev of the S̄ ′ field
strength using the self-dual ’t Hooft symbols (see (A.0.10)):

F S̄′
µν ≡ η̄cµν F

S̄′
c ≡ η̄cµν δ3c

ǫ+
2
. (10.2.52)

The contribution of the diagram (10.2.35) becomes

〈〈
Va Va Vχ† VF S̄′

〉〉
= −4iTr

{ [
χ†, aµ

]
aν F

µν
S̄′

}
= −ǫ+ Tr

{ [
χ†, aαβ̇

]
aγ̇α (τ 3)β̇ γ̇

}
.

(10.2.53)
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Similarly, the contribution (10.2.50) of the mixed diagrams can be recast as

〈〈
Vω Vω̄ Vχ† VF S̄′

〉〉
=
i

2
Tr
{
ω̄α̇ χ

† ωβ̇(σ̄
µν)α̇β̇F S̄′

µν

}
= ǫ+ Tr

{
ω̄α̇ χ

† (τ3)
α̇
β̇ ω

β̇
}
.

(10.2.54)

Therefore, the D5-instanton world-volume theory in our background gives a six-
dimensional field theory on K3×T 2 that contains the deformed ADHM couplings.
In the limit where the world-volume of the D5-instantons becomes small (i.e. of
order α′ or smaller), we can reduce the six-dimensional field theory to a zero-
dimensional one which exactly reproduces the deformed ADHM action for the
four-dimensional gauge theory.

The ADHM action is a key ingredient to compute the non-perturbative part
(6.2.19) of the Nekrasov partition function ZNek of the supersymmetric gauge the-
ory. Recall that it can be factorised in the following form:

ZNek(ǫ+, ǫ−) = ZNek
pert(ǫ+, ǫ−)ZNek

n.p. (ǫ+, ǫ−) . (10.2.55)

While the perturbative piece ZNek
pert does not receive contributions beyond the one-

loop order, the non-perturbative part ZNek
n.p. is defined as a path integral over the

instanton moduli space, with the integral measure given by the deformed ADHM
action SADHM [72, 73].

10.3 Channel Factorisation and Auxiliary Fields

In this section, we show that the same results derived above can be recovered by
using auxiliary fields which linearise the superalgebra. These are given by

VY (z) =
√

2 g6 YµΨ̄(z)ψµ(z) , VY †(z) =
√

2 g6 Y
†
µΨ(z)ψµ(z) , (10.3.1)

VX(z) = g6Xα̇∆(z)Sα̇Ψ̄(z) , VX†(z) = g6X
†
α̇∆(z)Sα̇Ψ(z) , (10.3.2)

VX̄(z) = g6 X̄α̇∆̄(z)Sα̇Ψ̄(z) , VX̄†(z) = g6 X̄
†
α̇∆̄(z)Sα̇Ψ(z) . (10.3.3)

Of course, auxiliary fields are not BRST-closed and inserting them in a correlation
function does not lead, in general, to a sensible result. For instance, as discussed
in [13], changing the ghost pictures of the vertex operators in the presence of
auxiliary fields leads to different results, hence rendering the correlation function
ambiguous. However, here, we prove that in a particular factorisation limit, the
result can be understood as a correlator involving an auxiliary field. This gives a
rigorous justification to the use of auxiliary fields in [55, 56, 43, 21, 22]. Similar
arguments, though in a different context, have been made in [14]. Consider the
NS-NS contribution (10.2.11) and take the limit where y goes to the points z̄, z
and x2, respectively, corresponding to using different pictures for the associated
operators. The three cases below are illustrated in Fig. 10.4.
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1. y → z̄

In this case A0A1 = 0, whereas A0A3 still cannot produce any pole in the
momenta. On the other hand, A0A2 simplifies to

4ip1 · p3

x3 − x1

z − z̄
(x3 − z)(x1 − z̄)

(δνλP µ − δµλP ν) . (10.3.4)

Notice that the longitudinal mode manifestly decouples. Looking at the
vertices (10.2.18) and (10.2.20), we recognise that p3 · p1/(x3 − x1) appears
from contracting p1 · χ(x1) with p3 · χ(x3). The pole 1/p1 · p3 appears from
x3 → x1. Therefore, in this limit, the result is effectively reproduced by
the OPE of the vertices at x1 and x3, resulting in an effective vertex Ψψµ

at x1. This is why in the (−1, 0)-picture for the NS-NS part of VF S̄′ , the
auxiliary vertex (10.3.1) gives the correct effective coupling calculated as the
three-point function 〈〈VY † Va VF S̄′ 〉〉.

2. y → x2

In this case again A0A1 vanishes. From A0A2, only the kinematic structure
δµλP ν survives, with the same answer as above. However the p3 ·p2/(x3−x2)
factor in A0A3 contributes to the other kinematic structure, δνλP µ. The
final result is of course the same but the total result comes from two different
factorisation limits x3 → x1 and x3 → x2 for the two different kinematic
structures.

3. y → z

In this case A0A3 vanishes, but both the remaining terms contribute. In
particular it is not clear if the A0A1 term can even be thought of as a contact
term.

Hence, only for y → z̄ can the result be understood as the factorisation in a single
channel, such that it can be effectively reproduced by replacing Va(x1) and Vχ(x3)
by their OPE, which is simply the auxiliary vertex (10.3.1).

Finally, in the R-R contributions (10.2.12), the ‘contact term’ appears only from
the channel x3 → x1 and the result can be obtained by a three-point function
involving the vertices at x2, z, z̄ and an auxiliary vertex Ψψµ at x1. The analysis
of the mixed D5-D9 diagrams is very similar and leads to the same conclusion,
that is, in the (−1, 0)-picture for the NS-NS part and (−1/2,−1/2)-picture for the
RR part of VF S̄′ , the entire result comes from contact terms in a single channel
and the result can be reproduced by a three-point function involving the auxiliary
vertex (10.3.3).

As mentioned above, even though the calculations are performed on the target
space R4×T 2×R4, the couplings we have obtained are non-vanishing for non-trivial
momenta only along the first R4 (space-time). When we compactify R4×T 2×R4 →
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R4×T 2×K3, these couplings are unchanged up to possible α′ corrections. However,
the latter are irrelevant in the field theory limit that we take in order to compare
with the non-perturbative part of the Ω-deformed gauge theory partition function.
In addition, we have focused on the gauge theory coming from D9-branes for which
the relevant D-instanton is the D5-brane wrapping the internal space. However, it
is straightforward to extend our calculation to other setups by applying T-duality.
For example, for a gauge theory realised by D5-branes wrapping T 2, the relevant
D-instanton is the D1-brane wrapped on T 2. The corresponding couplings can be
obtained from the above calculations by performing four T-dualities along the Y i

directions.
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Figure 10.4: Factorisation channels of the disc. The diagram at the top illustrates the
four-point function of physical vertices with an insertion of a PCO. The
diagrams at the bottom depict various choices for the position of the latter.
In case (1), the result takes the form of a contact term, leading to an
effective auxiliary field vertex operator insertion on the boundary of the
disc. Similarly, case (2) can be re-expressed as a sum of two contact terms,
while in case (3) no such interpretation is possible.
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10.4 Interpretation and the Refined Topological String

In Section 8, we have put forward a promising proposal in terms of a particular
class of higher derivative terms in the string effective action. At the component
level, it involves terms of the form

Ig,n =

∫
d4xFg,nR(−)µνρτR

µνρτ
(−)

[
FG

(−) λσF
Gλσ
(−)

]g−1
[
F(+) ρσF

ρσ
(+)

]n
, (10.4.1)

for g ≥ 1 and n ≥ 0. Here, R(−) denotes the anti-self-dual Riemann tensor, FG
(−) the

anti-self-dual field strength tensor of the graviphoton and F(+) the self-dual field
strength tensor of an additional vector multiplet gauge field. In Heterotic N = 2
compactifications on K3×T 2, the latter is identified with the super-partner of the
Kähler modulus of T 2, while in the dual Type I setting, it is mapped to the vector
partner of the S̄ ′ modulus.

For n = 0, the Ig,n in (10.4.1) are BPS-saturated and were first discussed in [6].
The Fg = Fg,n=0 are exact at the g-loop level in Type II string theory compacti-
fied on an elliptically fibered Calabi-Yau threefold and compute the corresponding
genus g partition function of topological string theory, see Section 5. In the dual
heterotic theory, Fg starts receiving contributions at the one-loop level [7] and,
in the point particle limit, is related to the perturbative part of Nekrasov’s par-
tition function for a gauge theory on an Ω-background with only one non-trivial
deformation parameter. The latter is then identified with the topological string
coupling.

For n > 0 the leading contribution to Fg,n is still given by a one-loop amplitude
in the heterotic theory and was computed to all orders in α′ in Section 8. The
coupling functions Fg,n in (10.4.1) can be compactly expressed in the form of a
generating functional

F(ǫ−, ǫ+) =
∑

g,n≥0

ǫ2g− ǫ
2n
+ Fg,n . (10.4.2)

In the point particle limit, the one-loop contribution to F(ǫ−, ǫ+) captures the
perturbative part of the Nekrasov partition function (10.2.55) on a generic Ω-
background, whose deformation parameters are identified with the expansion pa-
rameters ǫ± in (10.4.2). Thus, the Fg,n are one-parameter extensions of the topo-
logical amplitudes Fg which are (perturbatively) compatible with a refinement in
the gauge theory limit.

The instanton computations performed in the previous sections are indeed evi-
dence for this proposal. As we showed, also the non-perturbative contributions to
the Fg,n in the point particle limit are compatible with the structure expected from
gauge theory and capture precisely the non-perturbative part of the full Nekrasov
partition function ZNek

n.p. (ǫ+, ǫ−). This proves that the couplings (10.4.1) indeed pro-
vide a string theoretic realisation of the full Ω-background in gauge theory. This
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is precisely what one would expect from a worldsheet realisation of the refined
topological string.
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Part IV

Towards a Worldsheet Definition of
the Refined Topological String
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11 Concluding Remarks

In this work, we analysed some of the intricate connections between topological
string theory, the string effective action and supersymmetric gauge theories in the
Ω-background.

In the first part of the manuscript, we briefly reviewed the basics of string theory
and the underlying conformal field theory. In particular, we discussed some aspects
of the compactification of superstring theory and its dualities.

In a second part, we recalled the construction of topological string theory through
the topological twist on the superconformal algebra. This leads to a theory pos-
sessing a topological symmetry and which can be viewed as a sub-sector of string
theory. For instance, the genus g partition function of the topological string is
calculated by a coupling Fg in the string effective action involving, at genus g in
Type II, two anti-self-dual gravitons and 2g − 2 anti-self-dual graviphotons. The
topological nature of these quantities manifests itself through the fact that they
receive contributions from BPS states only. Moreover, when the Type II com-
pactification admits a Heterotic dual, this coupling starts receiving corrections at
genus one in Heterotic. Hence, this renders possible an explicit calculation of the
coupling at the perturbative level. On the other hand, the field limit of the latter
is given by the partition function of the N = 2 gauge theory in the Ω-background,
in the limit where one of the parameters of the Ω-background, ǫ+, is set to zero.
The other parameter, ǫ−, is identified with the constant background of the anti-
self-dual graviphoton. Thus, the natural question is to identify, in string theory,
the signification of the parameter ǫ+. Alternatively, the gauge theory in the Ω-
background suggests the existence of the refined topological string whose partition
function reduces to the gauge theory one in the field theory limit. A worldsheet
definition of the refined topological string using string amplitudes was a central
question in this work.

The third part of the manuscript was dedicated to answering the first question.
Namely, we showed that the parameter ǫ+ can be identified with the self-dual back-
ground of a particular vector multiplet. In Heterotic string theory compactified
on K3 × T 2, it is given by the self-dual vector partner of the T̄ -modulus. We
calculated the coupling Fg,n of two anti-self-dual gravitons, 2g − 2 anti-self-dual
graviphotons and 2n self-dual T̄ field strengths exactly at one loop. In the field
theory limit around a Wilson line enhancement point, it precisely reduces to the
perturbative part of the Nekrasov partition function. On the other hand, the same
conclusion was reached in the dual Type I theory in which the additional inser-
tion corresponds to the self-dual field strength of the S̄ ′-vector. Furthermore, by
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realising gauge instantons in Type I using D-brane bound states, we computed
non-perturbative corrections to the couplings Fg,n. More precisely, we derived the
instanton effective action in the presence of the anti-self-dual graviphotons and
self-dual S̄ ′-vectors by calculating all disc diagrams with boundary insertions of
the instanton moduli. The resulting action matched the instanton measure of
the path integral leading to the Nekrasov partition function. Therefore, we proved
that the couplings Fg,n agree with the latter perturbatively and non-perturbatively,
and the proposed background is a good string theory uplift of the Ω-background.
Even though the topological nature of our background is not yet fully understood,
our findings provide promising perspectives towards a worldsheet definition of the
refined topological string.

From the space-time point of view, our A-model understanding of the refined
topological string relies on a definition of its partition function in terms of an
index counting BPS states. In particular, by going to M-theory, the latter are M2-
branes carrying left and right spins with respect to the SO(4) Lorentz group [46,
28]. The refined partition function can be calculated using the refined topological
vertex which extends the topological vertex techniques. However, similarly to
the instanton calculus in gauge theory, this formalism is applicable only in the
asymptotic region of the moduli space. In this context, a worldsheet, B-model
realisation of the refined topological string is crucial in order for it to be defined
at any point in the moduli space.

On the other hand, since the refined partition function is an index, one might
expect it to be calculated by some string amplitude. Our findings suggest that
this is indeed possible since the amplitude studied in this manuscript reproduces
the only independent explicit result, namely the partition function of the N = 2
gauge theory in the Ω-background. Nevertheless, its BPS, topological properties
remain to be unveiled. In order to achieve this, one can study the dual Type
II theory compactified on an elliptically fibered Calabi-Yau, in which the refined
partition function is expected to be captured by a higher genus amplitude. By
identifiying the additional insertion in the dual setup, one can write down the
Type II amplitude and, using the methods described in Section 5, re-express the
amplitude in terms of a correlation function in the twisted, topological theory. This
would provide a worldsheet definition of the refined topological string partition
function.

It is worth mentioning that, in this work, the string theory setup was based on
a compact Calabi-Yau threefold, even though it is widely believed that the refined
topological string makes sense only on a non-compact Calabi-Yau manifold. More
specifically, the latter is necessary in order to turn on an SU(2) R-symmetry
current and define a refined BPS index. However, our setup should be viewed as
a convenient framework in which we successfully interpreted the Ω-background in
terms of physical fields. In addition, we did not introduce any R-symmetry current
but rather generated it effectively in the path integral. Hence, one might take
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an appropriate non-compact limit of the internal space and analyse the possible
topological properties that our refined couplings might acquire.

Besides, it would be interesting to analyse the holomorphicity properties of the
refined couplings studied above. Indeed, the refined topological string partition
function is expected to satisfy a recursion relation [61, 49] generalising the holo-
morphic anomaly equation presented in Section 4.2. A possible agreement would
then furnish additional evidence in favour of the generalised holomorphic anomaly
equations and also of our proposal for the refinement.

Exploring these ideas would increase our understanding of the interesting con-
nections between topological amplitudes and supersymmetric gauge theories and,
I believe, shed light on the deep structure of the refined topological string
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A Spinors, Gamma Matrices

Let us begin by discussing our conventions for various index structures. Raising
and lowering of SO(4)ST spinor indices is achieved with the help of the epsilon-

tensors ǫ12 = ǫ12 = +1, and ǫ1̇2̇ = ǫ1̇2̇ = −1, i.e.

ψα = +ǫαβψβ , ψα = −ǫαβψβ , ψα̇ = −ǫα̇β̇ψβ̇ , ψα̇ = +ǫα̇β̇ψ
β̇ . (A.0.1)

Furthermore we introduce the σ-matrices (σµ)αα̇ and (σ̄µ)α̇α of SO(4)ST

(σµ)αα̇ = (11,−iσ) , (σ̄µ)α̇α = (11,+iσ) , (A.0.2)

which are related to one-another by raising and lowering of the spinor indices

(σµ)ββ̇ ≡ ǫβα(σµ)αα̇ǫ
α̇β̇ = (σ̄µ)β̇β , (σ̄µ)β̇β ≡ ǫβ̇α̇(σ̄

µ)α̇αǫαβ = (σµ)ββ̇ . (A.0.3)

In addition, we introduce the Lorentz generators σµν , σ̄µν of SO(4)ST

(σµν)α
β ≡ 1

2

(
σµσ̄ν − σν σ̄µ

)
α

β
, (σ̄µν)

α̇
β̇ ≡

1

2

(
σ̄µσν − σ̄νσµ

)α̇
β̇
, (A.0.4)

which are symmetric in the spinor indices (σµν)αβ = +(σµν)βα and (σ̄µν)α̇β̇ =
+(σµν)β̇α̇. They are (anti-)self-dual in the sense

(σµν)αβ = +
1

2
ǫµνρσ(σρσ)αβ , (σ̄µν)α̇β̇ = −1

2
ǫµνρσ(σ̄ρσ)α̇β̇ . (A.0.5)

Therefore, we can use them to define (anti-)self-dual tensors. In particular we

write for the self-dual F
(+)
µν and anti-self-dual F

(−)
µν part of the field strength tensor

of a given gauge field

F
(+)

α̇β̇
≡ (σ̄µν)α̇β̇F

(+)
µν , F

(−)
αβ ≡ (σµν)αβF

(−)
µν . (A.0.6)

since, indeed, F
(±)
µν = ∓1

2
ǫµνρσ(F

(±))ρσ. Also, note the following identities:

(σµν)αβ(σ
ρσ)αβ = 2(δµρδνσ − δµσδνρ + ǫµνρσ) , (A.0.7)

(σ̄µν)α̇β̇(σ̄
ρσ)α̇β̇ = 2(δµρδνσ − δµσδνρ − ǫµνρσ) . (A.0.8)

Using the above relations, one may invert (A.0.6) to obtain

F (+)
µν =

1

8
(σ̄µν)

α̇β̇F
(+)

α̇β̇
, F (−)

µν =
1

8
(σµν)

αβF
(−)
αβ . (A.0.9)
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Finally, we define the (anti-)self-dual ’t Hooft symbols by decomposing the sigma-
matrices:

(σ̄µν)
α̇
β̇ ≡ i η̄cµν (τc)

α̇
β̇ , (σµν)α

β ≡ i ηcµν (τc)α
β . (A.0.10)

The notation we use closely follows [22]. Self-dual spin-fields of SO(4)ST are de-
noted Sα̇ and the anti-self-dual ones Sα. In this notation, the graviphoton field G
is anti-self-dual and the S̄ ′ field strength is self-dual.

Concerning the convention for the internal manifold, we denote spin fields by

SA, SA, SÂ, SÂ. As already mentioned, while indices (A, Â) are indices of SO(2)±
respectively, covariant and contravariant indices also reflect charges ±1/2 with

respect to SO(2)T 2 according to the decomposition (10.1.1). Thus, indices (A, Â)
cannot be raised or lowered, but care has to be taken regarding their position. Our
conventions for internal spin fields are summarised below.

Spin field SO(2) SO(4)

SA − (−−), (++)

SA + (++), (−−)

SÂ + (−+), (+−)

SÂ − (+−), (−+)

(A.0.11)
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We start by recalling the OPEs of fermionic fields using the notation explained in
the previous section. In the general case of an O(2N) current algebra, the OPEs
of the fermions ψM and the spin fields SA are

ψM(z)SA(w) ∼ 1√
2

(ΓM)AB S
B(w)

(z − w)1/2
, (B.0.1)

JMN(z)SA(w)∼ − i

2

(ΓMN)AB S
B(w)

z − w , (B.0.2)

SA(z)SB(w) ∼ CAB

(z − w)N/4
+

1√
2

(ΓM)ABψM(w)

(z − w)N/4−1/2
+
i

2

(ΓMN)ABψMψN (w)

(z − w)N/4−1
,

(B.0.3)

where CAB is the charge conjugation matrix and JMN ≡ ψ[MψN ]. Applying these
formulas to the ten-dimensional case of interest and decomposing the spinor indices
as in the previous sections, we obtain the OPEs for the fermionic fields in the space-
time directions

Sα̇(z)Sβ(w) ∼ 1√
2

(σ̄µ)α̇βψµ(w) , Sα(z)S
β̇(w) ∼ 1√

2
(σµ)α

β̇ψµ(w) , (B.0.4)

Sα̇(z)S β̇(w) ∼ − ǫα̇β̇

(z − w)1/2
, Sα(z)Sβ(w) ∼ ǫαβ

(z − w)1/2
, (B.0.5)

ψµ(z)Sα̇(w) ∼ 1√
2

(σ̄µ)α̇βSβ(w)

(z − w)1/2
, ψµ(z)Sα(w) ∼ 1√

2

(σµ)αβ̇S
β̇(w)

(z − w)1/2
, (B.0.6)

Jµν(z)Sα̇(w)∼ − 1

2

(σ̄µν)α̇β̇S
β̇(w)

z − w , Jµν(z)Sα(w) ∼ −1

2

(σµν)α
βSβ(w)

z − w , (B.0.7)

and in the internal ones

SA(z)SB(w) ∼ iδAB
(z − w)3/4

, SA(z)SB(w) ∼ iδA
B

(z − w)3/4
(B.0.8)

SA(z)SB(w) ∼ i√
2

(Σm)ABψm
(z − w)1/4

, SA(z)SB(w) ∼ − i√
2

(Σm)ABψm
(z − w)1/4

, (B.0.9)

ψm(z)SA(w) ∼ 1√
2

(Σ̄m)ABS
B(w)

(z − w)1/2
, ψm(z)SA(w) ∼ − 1√

2

(Σm)ABSB(w)

(z − w)1/2
,

(B.0.10)
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Jmn(z)SA(w)∼ 1

2

(Σ̄mn)ABS
B(w)

z − w , Jmn(z)SA(w) ∼ 1

2

(Σmn)A
BSB(w)

z − w . (B.0.11)

Using the above relations and further decomposing the internal index m, e.g.
with respect to a K3×T 2 compactification, we obtain the following disc correlation
functions:

〈
Ψ(z1)Ψ̄(z2)

〉
= z−1

12 ,
〈
Ψ(z1)S

Â(z2)S
B̂(z3)

〉
= − i ǫÂB̂ z−1/2

12 z
−1/2
13 z

−1/4
23 ,

〈
ψµ(z1)ψ

ν(z2)ψ
ρ(z3)ψ

σ(z4)
〉

= δµνδρσ z−1
12 z

−1
34 − δµρδνσ z−1

13 z
−1
24

+ δµσδνρ z−1
14 z

−1
23 ,

〈
Sα̇(z1)S

β̇(z2)S
γ̇(z3)S

δ̇(z4)
〉

=
ǫα̇β̇ǫγ̇δ̇ z14z23 − ǫα̇δ̇ǫβ̇γ̇ z12z34

(z12z13z14z23z24z34)1/2
,

〈
ψµ(z1)ψ

ν(z2)S
α̇(z3)S

β̇(z4)
〉

= − 1

2

z13z24 + z23z14
z12(z13z14z23z24z34)1/2

δµνǫα̇β̇

− 1

2

z
1/2
34

(z13z14z23z24)1/2
(σ̄µν)α̇β̇ . (B.0.12)

In addition, we give the useful correlators of twist fields and superghosts:
〈
∆̄(z1)∆(z2)

〉
= −z−1/2

12 ,
〈
e−ϕ(z1)e−

1
2
ϕ(z2)e−

1
2
ϕ(z3)

〉
= z

−1/2
12 z

−1/2
13 z

−1/4
23 . (B.0.13)
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C.1 Theta Functions and Prime Forms

Consider a (closed) Riemann surface Σg of genus g and define the canonical basis
for the homology cycles δI = ai, bi:

ai ∩ aj = 0 , (C.1.1)

bi ∩ bj = 0 , (C.1.2)

ai ∩ bj = δij , (C.1.3)

with i = 1, . . . , g and I = 1, . . . , 2g. In addition, one can choose a basis of one-
forms ωi such that

∮

ai

ωj = δij ,

∮

bi

ωj = τij . (C.1.4)

Here, τ is a symmetric matrix with positive definite imaginary part called the
period matrix of the Riemann surface. The periods ΠI ∈ Cg defined as

ΠI =

(∫

δI

ωj

)

j=1,...,g

(C.1.5)

are linearly independent vectors and, thus, form a lattice Λ in C
g. It can be used

to construct the Jacobian variety J (Σg) of Σg:

J (Σg) = C
g/Λ = C

g/(Zg + τZg) . (C.1.6)

Coordinates on a genus g Riemann surface are naturally defined as follows. Choose
a base point p0 on Σg and cut the latter open along its homology cycles. The
coordinates of a point p different than p0 is given by the Jacobi map

Σg → J (Σg)

µ : p 7→
(∫ p

p0

ωi

)

i=1,...,g

. (C.1.7)

More generally, the Jacobi map can be defined on a degree zero divisor on Σg as

Div0(Σg)→ J (Σg)

µ :
∑

pi − qi 7→
(
∑

i

∫ pi

qi

ωj

)

j=1,...,g

, (C.1.8)
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with
∑∫ p

q
ω being the Abelian sums. In most cases, we drop the distinction

between points on a Riemann surface and its coordinates via the Jacobi map.
The Riemann (or genus g) theta function on Σg is

ϑ(z, τ) =
∑

n∈Zg

e iπn
T τ n+2iπnT z , (C.1.9)

with z ∈ J (Σg). It satisfies

ϑ(z + τ n+m, τ) = e−iπ(nT τ n+2nT z)ϑ(z, τ) , (C.1.10)

under shifts in the lattice Λ. One of the important results in the theory of Riemann
theta functions is the Riemann vanishing theorem. It states that there exists a
vector ∆ ∈ Cg such that for all z ∈ Cg, ϑ(z, τ) = 0 if and only if there exist g − 1
points p1, . . . , pg−1 on Σg such that

z = ∆−
g−1∑

k=1

pk . (C.1.11)

∆ is called the Riemann class and is an equivalence class of divisors of degree
g − 1 for Σg. The Riemann theta function can be generalised by including a spin
structure s = (s1, s2) ∈ (1

2
Z/Z)2g:

ϑs(z, τ) = e iπ(sT
1 τs1+2sT

1 (z+s2))ϑ(z + τs1 + s2, τ) . (C.1.12)

Consider the function fs(z, w) ≡ ϑs(z − w, τ) which has a simple zero at z = w.
Differentiating with respect to w around the latter defines a one-form called gs(z)
whose ‘square-root’ is a holomorphic 1

2
-differential denoted hs(z). The prime form

E(z, w) is then defined as

E(z, w) =
fs(z, w)

hs(z)hs(w)
. (C.1.13)

One can show that the prime form is independent of the spin structure and that
it has a simple zero at z = w:

E(z, w) = z − w +O(1) . (C.1.14)

Most of the identities derived for theta functions are deduced from Riemann
theta identities [69]. Here, we only state the specific Riemann identity of interest:

2−g
∑

s

ϑs(u)ϑs(v)ϑs(x)ϑs(y) =

ϑ(
u+ v + x+ y

2
)ϑ(

u+ v − x− y
2

)ϑ(
u− v + x− y

2
)ϑ(

u− v − x+ y

2
) .

(C.1.15)
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C.2 The Genus One Case

In this section, we focus on the modular forms appearing at genus one which are
relevant for the various one-loop amplitudes considered in this manuscript.

From (C.1.12), the genus one ϑ-function with characteristics is given by

ϑ[ab ](z, τ) =
∑

n∈Z

eiπτ(n−
a
2
)2e2πi(z−

b
2
)(n− a

2
) , (C.2.1)

with a, b ∈ R and τ ∈ C+. Equivalently, we also use the following notation:

ϑ1(z, τ) = ϑ[11](z, τ) , ϑ2(z, τ) = ϑ[10](z, τ) ,

ϑ3(z, τ) = ϑ[00](z, τ) , ϑ4(z, τ) = ϑ[01](z, τ) . (C.2.2)

From the definition (C.2.1), it is easy to derive the z-periodicity property (see also
(C.1.10))

ϑ[ab ](z + ατ + β, τ) = e−iπτα
2−iπα(2z−b)−2iπαβϑ[a−2α

b−2β ](z, τ) . (C.2.3)

Moreover, for a, b ∈ Z,

ϑ[a+2
b ](z; τ) = ϑ[ab ](z, τ) , ϑ[ a

b+2](z; τ) = (−)aϑ[ab ](z, τ) , (C.2.4)

ϑ[−a−b ](z, τ) = ϑ[ab ](−z, τ) , ϑ[ab ](−z, τ) = (−)abϑ[ab ](z, τ) . (C.2.5)

In order to check modular invariance, we use the behaviour of ϑ under the S- and
T -modular transformations

T : τ → τ + 1 , (C.2.6)

S : τ → −1

τ
, (C.2.7)

that is,

ϑ[ab ](z, τ + 1)= e−
iπ
4
a(a−2) ϑ[ a

a+b−1](z, τ) , (C.2.8)

ϑ[ab ](
z
τ
,− 1

τ
) =

√
−iτ e iπ

2
(ab+2 z2/τ) ϑ[ b−a](z, τ) . (C.2.9)

The z-derivative of the ϑ-function is related to another function, the Dedekind
η-function

η(τ) = q
1
24

∏

n≥1

(1− qn) , (C.2.10)

through
∂ ϑ1(z, τ)

∂z

∣∣∣
z=0

= 2π η3(τ) . (C.2.11)
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Here, we have defined q = e2iπτ . The η-function transforms under S and T as

η(− 1
τ
) =

√
−iτ η(τ) , (C.2.12)

η(τ + 1)= η(τ) . (C.2.13)

The ϑ-function satisfy a useful identity known as the product formula (a, b ∈ Z2):

ϑ[ab ](z, τ) =(1 + a) cosπa(z − b
2
)

× q a2

8

∏

n≥1

(1− qn)(1 + qn+ a−1
2 e2iπ(z− b

2
))(1 + qn+ a−1

2 e−2iπ(z− b
2
)) ,

(C.2.14)

from which one can extract the asymptotic limit τ2 →∞, known as the C-identity:

ϑ[ab ](z, τ)
τ2→∞−→ (1 + a) cosπa(z − b

2
) q

a2

8 . (C.2.15)

An important Riemann theta identity satisfied by a product of four ϑ-functions is
the Abstrusa identity

1

2

∑

a,b∈Z2

(−)a+b
4∏

i=1

ϑ[a+hi
b+gi

](zi, τ) = e−iπh1

4∏

i=1

ϑ[1+h̃i
1+g̃i

](z̃i, τ) , (C.2.16)

with
∑
hi = 0. The tilded quantities are defined via the matrix




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 , (C.2.17)

using the change of basis (X = z, h, g)

X̃ =
1

2
MX . (C.2.18)

A modular form F (τ) of weight w is a holomorphic function on the upper-half
plane such that it is holomorphic at the cusp z → i∞ and transforms under the
modular group

SL(2,Z) =

{(
a b
c d

)
, a, b, c, d ∈ Z , ad− bc = 1

}
(C.2.19)

as

F (aτ+b
cτ+d

) = (cτ + d)w F (τ) . (C.2.20)
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A typical example is the holomorphic Eisenstein series which is a modular form
of weight 2k:

E2k =
∑

(m,n)∈(Z2)∗

(m+ nτ)−2k , (C.2.21)

with k > 1. For k = 1, one defines the quasi-modular form1

Ê2 = E2 −
3

πτ2
. (C.2.22)

The real analytic Eisenstein series

E(τ, s) =
1

2

∑

(c,d)=1

τ s2
|cτ + d|2s (C.2.23)

is invariant under modular transformations. However, it is rather a Maass form
since it is not holomorphic. It is defined for Re(s) > 1 and admits an analytic
continuation in s to a meromorphic function on the full complex plane with a
unique pole at s = 1.

One can define modular series of weight (w, w̄), w̄ being the modular weight
under τ̄ . For instance, the more general Eisenstein series used in this manuscript,

Φα,β(τ, τ̄) =
∑

(m,n)6=(0,0)

τα2
|m+ nτ |2α(m+ nτ)β−2α

, (C.2.24)

carries weight (β−2α, 0). In particular, for β = 2α, it reduces to the real Eisenstein
series:

Φα,2α = 2ζ(2α)E(τ, α) . (C.2.25)

Finally, many useful properties of modular series can be derived using the Pois-
son summation formula

∑

mi∈Z

e−π Aijmimj+π Bimi = (detA)−1/2
∑

mi∈Z

e−π(mi+iBi/2)(A−1)ij(mj+iBj/2) , (C.2.26)

which can be obtained by applying the identity

∑

n∈Z

f(n) =
∑

n∈Z

F [f ](n) (C.2.27)

relating a function f to its Fourier transform F [f ], to a Gaussian function.

1There are no non-trivial modular forms of weight 2.
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C.3 Application of Theta Function Identities

Modular invariance puts stringent constraints on one-loop amplitudes in (closed)
string theory. However, some quantities like the sign between the odd and even
spin structures remain independent of this property. This is important in order to
perform the sum over the spin structures. In Section 9, in order to fix that sign, we
inserted a number of fermionic vertices and then imposed monodoromy invariance
of the resulting amplitude. We now present the details of this derivation using the
properties of the ϑ-functions.

For simplicity, we mostly suppress the τ -dependence in the argument of the ϑ-
functions. The latter satisfy the following shift identities under x → x + 1 as a
consequence of (C.2.3):

ϑ1(
x
2

+ y)→ ϑ2(
x
2

+ y) , ϑ2(
x
2

+ y)→ −ϑ1(
x
2

+ y) ,

ϑ3(
x
2

+ y)→ ϑ4(
x
2

+ y) , ϑ4(
x
2

+ y)→ ϑ3(
x
2

+ y) . (C.3.1)

On the other hand, under x→ x+ τ one obtains:

ϑ3(
x
2

+ y) → + q−
1
8 e−iπ(

x
2

+y) ϑ2(
x
2

+ y) ,

ϑ4(
x
2

+ y) → + q−
1
8 e−iπ(

x
2

+y−
1
2
) ϑ1(

x
2

+ y) ,

ϑ2(
x
2

+ y) → + q−
1
8 e−iπ(

x
2

+y) ϑ3(
x
2

+ y) ,

ϑ1(
x
2

+ y) → + q−
1
8 e−iπ(

x
2

+y−
1
2
) ϑ4(

x
2

+ y) ,

ϑ1(x− y) → − q−
1
2 e−2iπ(x−y) ϑ1(x− y) . (C.3.2)

We can use these identities to explicitly perform the sum over spin structures in
(9.2.5) and (9.2.6). The idea is to impose monodromy invariance under the shift
of one of the insertion points. For instance, if we are interested in the monodromy
properties with respect to just one of the gravitini – say, the one at position x1,
the relevant contribution of the prime forms with argument x1 to Bi is of the form:

∏n1

i=1 ϑ1(x1 − zi)
∏n3

j=1 ϑ1(x1 − wj)
ϑ1(x1 − y2)

∏n2

k=1 ϑ1(x1 − z′k)
∏n4

l=1 ϑ1(x1 − ŵ′
l)
. (C.3.3)

Here we have put back the indices for the positions, since we need to know how
many prime forms involve x1. Using the constraint (9.2.2), we see that there is one
extra prime form in the denominator. Using the theta-function identities above,
we can now show that the combination

G ≡ G[3]−G[4]−G[2] +G[1] , (C.3.4)

is invariant under monodromies x1 → x1 + 1 and x1 → x1 + τ . This combination
corresponds to taking the difference between the SO(8) Vector and Spinor conju-
gacy classes, with the weights (k1, k2, k3, k4) of the Vector class determined by the
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condition

ki ∈ Z , with

4∑

i=1

ki ∈ Zodd . (C.3.5)

Similarly, the Spinor class is defined by the condition:

ki ∈ Z +
1

2
, with

4∑

i=1

ki ∈ Zodd . (C.3.6)

The triality map leaving the Spinor class invariant while exchanging Vector and
Conjugate Spinor classes is:

(k1, k2, k3, k4)→ (k1+k2+k3+k4
2

, k1+k2−k3−k4
2

, k1−k2+k3−k4
2

, k1−k2−k3+k4
2

) . (C.3.7)

Therefore, we can express the result of the spin structure sum in (9.2.6) in the
following form:

G(i) =ϑ1(x1 − y2 + z − z′ + w − ŵ′)ϑ1(x2 − y1 + z − z′ − w′ + ŵ)

× ϑh(u− u′ + v − v̂′)ϑ−h(u− u′ − v′ + v̂) B(i) , (C.3.8)

G(ii) =ϑ1(x1 − y2 + z − z′ + w − ŵ′ + x̂1 + x̂2 − ŷ1 − ŷ2)

× ϑ1(x2 − y1 + z − z′ − w′ + ŵ + x̂1 + x̂2 − ŷ1 − ŷ2)

× ϑh(u− u′ + v − v̂′)ϑ−h(u− u′ − v′ + v̂) B(ii) . (C.3.9)

Taking into account B as well as the bosonisation identities of [83], these can then
be re-written in terms of fermionic correlators, as in (9.2.8).
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D On Regularisation of Functional
Determinants

D.1 Zeta-Function Regularisation

In this section, we present the regularisation method used in order to compute some
of the functional determinants. For definiteness, we focus on the case ∆f ≡ ∆+∆−

with

∆± =
∏

(m,n)6=(0,0)

(m− nτ) (m− nτ ∓ 2iǫ) , (D.1.1)

τ being an arbitrary complex number.
Using ζ-function regularisation and a Sommerfeld-Watson transformation, we

rewrite ∆+ as

log ∆+ =− ∂

∂s

∑

(m,n)6=(0,0)

[(m− nτ) (m− nτ − 2iǫ) +M ]−s

∣∣∣∣∣
s,M=0

=− ∂

∂s

∑

(m,n)∈Z2

[(m− z0) (m− z+)]−s + logM

∣∣∣∣∣
s,M=0

=− ∂

∂s

∑

n∈Z

∮

C

dzI (z) [(z − z0) (z − z+)]−s + logM

∣∣∣∣∣
s,M=0

(D.1.2)

where we have added an infrared regulator M and defined

z+ ≡ nτ + 2iǫ+
iM

2ǫ
+O (M) ≡ nτ1 + it+ , (D.1.3)

z0 ≡ nτ − iM

2ǫ
+O (M) ≡ nτ1 + it0 . (D.1.4)

Also, we choose ǫ to be real and positive and M to be real and negative (and of
course smaller than ǫ). The contour C goes all around the real axis from −∞+ to
∞+ then from ∞− to −∞−, and the interpolating function I (z) is defined as

I (z) ≡ eiπz

eiπz − e−iπz −
1

2
= − e−iπz

e−iπz − eiπz +
1

2
. (D.1.5)
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For this choice, we have two different branch cut structures. First notice that

[(z − z0) (z − z+)]−s (D.1.6)

has three branch points so that we need to link all of them (having thus two branch
cuts). Moreover, we have to avoid crossing the real axis with the branch cuts in
our case. Hence, for n ≥ 0, because both roots are in the upper half-plane, we
choose to have a branch cut going from z0 up to z+ and then from z+ to i∞. One
important thing to keep in mind is that when we go from a point above z+ at
the right of the branch cut to a point above z+ but on the other side, we pick up
a double phase e4iπs instead of only one (you can see this easily by choosing one
branch cut from z+ to i∞ and the other one from z− to i∞ by slightly going at the
left of the first branch cut, and then look at the monodromies of the integrand). For
n < 0, both are in the lower half-plane and we choose similar branch cuts going to
−i∞. Now the standard procedure is to deform the contour all the way to complex
infinity avoiding the branch cuts so that the only remaining contributions are the
line integrals over the branch cuts (see Fig. D.1).

z+

z0

Figure D.1: Contour deformation for ∆+ with n ≥ 0. The dots represent poles and
the dashed line is a choice of branch cut, with the dots on the latter being
branch points.

Taking into account this branch cut structure, (D.1.2) becomes

log ∆+ = 2
∂

∂s
sin (πs)

∑

n≥0

∫ t+

t0

dtI (nτ1 + it) [(t− t0) (t− t+)]−s

+ 2
∂

∂s
sin (πs)

∑

n≤−1

∫ t0

t+

dtI (nτ1 + it) [(t− t0) (t− t+)]−s
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+ 2
∂

∂s
sin (πs)

∑

n≥0

∫ ∞

t+

dtI (nτ1 + it) [(t− t0) (t− t+)]−s

+ 2
∂

∂s
sin (πs)

∑

n≤−1

∫ −∞

t0

dtI (nτ1 + it) [(t− t0) (t− t+)]−s + logM

∣∣∣∣∣
s,M=0

.

(D.1.7)

For the non-constant part of the interpolating function, the result converges for
s > 0 and gives a non zero result only if the derivative hits the sine function. Thus,
we rewrite the determinant as

log ∆+ = − ∂

∂s
sin (πs)

∑

n≥0

∫ t+

t0

dt [(t− t0) (t− t+)]−s +
∂

∂s
sin (πs)

∑

n≤−1

∫ t0

t+

dt [(t− t0) (t− t+)]−s

− ∂

∂s
sin (2πs)

∑

n≥0

∫ ∞

t+

dt [(t− t0) (t− t+)]−s +
∂

∂s
sin (2πs)

∑

n≤−1

∫ −∞

t0

dt [(t− t0) (t− t+)]−s

+ 2π
∑

n≥0

∫ t+

t0

dt
eiπnτ1−πt

eiπnτ1−πt − e−iπnτ1+πt
− 2π

∑

n≤−1

∫ t0

t+

dt
e−iπnτ1+πt

e−iπnτ1+πt − eiπnτ1−πt

+ 4π
∑

n≥0

∫ ∞

t+

dt
eiπnτ1−πt

eiπnτ1−πt − e−iπnτ1+πt
− 4π

∑

n≤−1

∫ −∞

t0

dt
e−iπnτ1+πt

e−iπnτ1+πt − eiπnτ1−πt

+ logM

∣∣∣∣∣
s,M=0

. (D.1.8)

Performing the integrals yields

log ∆+ = − ∂

∂s
sin (πs)B (2s− 1, 1− s)

(
1− (−)1−2s)

[
∑

n≥0

(t0 − t+)1−2s −
∑

n≤−1

(t+ − t0)1−2s

]

− ∂

∂s
sin (2πs)B (2s− 1, 1− s)

[
∑

n≥0

(t0 − t+)1−2s −
∑

n≤−1

(t+ − t0)1−2s

]

+
∑

n≥0

log
(
1− e2iπnτ1−2πt+

) (
1− e2iπnτ1−2πt0

)

+
∑

n≤−1

log
(
1− e−2iπnτ1+2πt+

) (
1− e−2iπnτ1+2πt0

)

+ logM

∣∣∣∣∣
s,M=0

. (D.1.9)

B (x, y) denotes the Euler integral of the first kind. The n = 0 term in the
denominator of the first logarithm cancels the regulator term so that we can set

183



D On Regularisation of Functional Determinants

it to zero in the rest of the expression. Using the definition of t+ and t0 in (D.1.3)
and (D.1.4), (D.1.9) reads:

log ∆+ = − ∂

∂s
sin (πs)B (2s− 1, 1− s)

(
1− (−)1−2s)∑

n≥0

(t0 − t+)1−2s

∣∣∣∣∣
s,M=0

+
∂

∂s
sin (πs)B (2s− 1, 1− s)

(
1− (−)1−2s) ∑

n≤−1

(t+ − t0)1−2s

∣∣∣∣∣
s,M=0

− ∂

∂s
sin (2πs)B (2s− 1, 1− s)

∑

n≥0

(t0 − t+)1−2s

∣∣∣∣∣
s,M=0

+
∂

∂s
sin (2πs)B (2s− 1, 1− s)

∑

n≤−1

(t+ − t0)1−2s

∣∣∣∣∣
s,M=0

+ log
(1− e−4πǫ)

∏
n≥1 (1− qne−4πǫ) (1− qne4πǫ) (1− qn)2

πǫ
. (D.1.10)

Finally, we compute the first four terms by noting that t0 − t+ = −2ǫ. Both have
a very similar structure. By summing of n in both cases and taking directly the
limit of s going to zero, we show that the first term cancels against the second one
and the third term against the fourth one. Thus, the only remaining piece is

log ∆+ = log

[
(1− e−4πǫ)

∏
n≥1 (1− qne−4πǫ) (1− qne4πǫ) (1− qn)2

πǫ

]
. (D.1.11)

Exponentiating the previous result gives ∆+ which turns out to be analytic in ǫ.
However, to be more careful (the choice of lambda in the regularisation should be
the same for all the factors), we carry out the same analysis for log ∆− rather than
going through the previous argument. In this case, we have two main differences.
The pole structure looks the same if we use the same regularisation except for the
fact that both poles are exchanged, i.e. z− has a smaller imaginary part than z′0:

z− ≡ nτ − 2iǫ− iM

2ǫ
+O (M) ≡ nτ1 + it− , (D.1.12)

z′0 ≡ nτ +
iM

2ǫ
+O (M) ≡ nτ1 + it′0 . (D.1.13)

Moreover, for the same reason, the zero mode part is now included in the negative
mode sum rather than the positive one. Hence, going through the same steps, we
obtain exactly the same result as for ∆+ even for the zero-mode part. Normalising
the result to 1 at ǫ = 0 yields

∆f =

[
ϑ1(2iǫ, τ)

4πiǫ η(τ)3

]2

e
4π
τ2
ǫ2
. (D.1.14)
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D.2 Functional Determinants

D.2.1 Heterotic Functional Determinants and Poincaré Series

In this appendix we discuss a modular-invariant regularisation of the bosonic de-
terminant (8.2.6), using properties of Poincaré series in order to extract the corre-
sponding Fourier expansion. Our analysis closely follows [4, 5]. The factorisation
of the modular invariant determinant (8.2.6) is defined in terms of the following
functions:

Gahol(ǫ−, ǫ+) ≡
∏

(m,n)6=(0,0)

[(
2π

τ 2
2

)2(
AĀ+ (ǫ̃− − ǫ̃+)A

)(
AĀ+ (ǫ̃− + ǫ̃+)A

)]−1

,

(D.2.1)

Gnon-hol(ǫ−, ǫ+) ≡
∏

(m,n)6=(0,0)

[(
1 +

ǫ̃+A− ǫ̌+Ā
A(Ā + ǫ̃− − ǫ̃+)

)(
1 +

ǫ̃+A− ǫ̌+Ā
A(Ā− ǫ̃− − ǫ̃+)

)]−1

,

(D.2.2)

where we use the shorthand notation

A ≡ m− τn and Ā ≡ m− τ̄n . (D.2.3)

The explicit representation of the almost holomorphic piece (D.2.1) in terms of
elliptic functions has already been calculated in (8.2.7) using the method of Section
D.1. An alternative, more efficient way of obtaining the same result is the following.
First of all, we take the logarithm of (D.2.1):

logGahol = − lim
s→0

∂

∂s

∑

(m,n)∈(Z2)∗

τ s2
[|m+ nτ |2 + (ǫ̃− − ǫ̃+)(m+ nτ)]s

+ (ǫ− → −ǫ−)

= − lim
s→0

∂

∂s

∑

k>0

(−s
k

)(
ǫ̃− − ǫ̃+
τ2

)k
Φ∗
s,2s+k + (ǫ− → −ǫ−) . (D.2.4)

Here, Φ is the modular series defined in (C.2.24) which regularises (D.2.1) for large
s. It is related to the usual Eisenstein series

E(s, w) =
1

2

∑

(c,d)=1

τ
s−w/2
2

|cτ + d|2s−w (cτ + d)−w (D.2.5)

through
Φα,β = 2ζ(β)E(β/2, β − 2α) . (D.2.6)
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Notice that the terms with odd k are identically zero. Moreover, the term k = 0
gives

− log
√
τ2ηη̄ , (D.2.7)

which is already taken into account in the full result (8.2.10), since we normalise
the functional determinants to one when ǫ± are set to zero and simply weigh the
ǫ±-deformed part of the amplitude with the partition function. Hence, we restrict
the summation to k ≥ 2. For k ≥ 4, Φ is a well-defined modular series even for
s = 0 and leads to the anti-holomorphic Eisenstein series Ēk. For k = 2, one
can show that in the limit s → 0, Φ∗

s+2,2s+2 reduces to the quasi-modular form
ˆ̄E2. Indeed, since Φ∗

s+2,2s+2 has a simple pole in s and using the expansion of the
binomial coefficient (−s

k

)
= (−)k

s

k
+O(s2) , (D.2.8)

the pole vanishes upon acting with the derivative with respect to s. The constant

term in the expansion of Φ∗
s+2,2s+2 is 2ζ(2)τ 2

2
ˆ̄E2. Therefore, taking the exponential

yields

Gahol(ǫ−, ǫ+) = − exp

{
∑

k≥1

ζ(2k)

k
(ǫ̃− − ǫ̃+)2n ˆ̄E2k

}
exp

{
∑

k≥1

ζ(2k)

k
(ǫ̃− + ǫ̃+)2n ˆ̄E2k

}
,

(D.2.9)

with the notation Ê2k = E2k for k ≥ 2. Using the formula

2πλη3

ϑ1(λ, τ)
e

πλ2

2τ2 = exp

{
∑

k≥1

ζ(2k)

k
λ2nÊ2k

}
, (D.2.10)

we recover the result of Eq. (8.2.7).
We now focus on the non-holomorphic piece (D.2.2). One way to see that the

field theory limit of (D.2.2) trivialises at the Wilson line enhancement point (8.3.5)
is to compute the n = 0 contribution. Indeed, as can be seen by performing
a Sommerfeld-Watson transformation, n labels the oscillator number and thus
corresponds to the mass excitation level. Consequently, the latter is exponentially
suppressed except for the n = 0 term. Now using the identity

∏

m6=0

(
1 +

α

m+ β

)
=

πβ

sin πβ

sin π(α+ β)

π(α + β)
, (D.2.11)

it is straightforward to show that the n = 0 term in (D.2.2) reads

[
sinc π(ǫ̃− − ǫ̌+)

sinc π(ǫ̃− − ǫ̃+)

sinc π(ǫ̃− + ǫ̌+)

sinc π(ǫ̃− + ǫ̃+)

]−1

, (D.2.12)
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with sinc(x) ≡ sin(x)/x. At the enhancement point, ǫ̃± = ǫ̌± (because PL = PR)
and, hence, (D.2.12) trivialises.

We now prove this statement by regularising the full infinite product (8.2.6) at
the string level in a modular-invariant fashion. We start by taking the logarithm:

log[Gbos(ǫ−, ǫ+)] = −
∑

(m,n)6=(0,0)

log
(
AĀ+ ǫ̃−A− ǫ̌+Ā

)
+ (ǫ̌+ → −ǫ̌+)

= lim
s→0

∂

∂s

∑

(m,n)6=(0,0)

∑

k≥0

(−s
k

)
(AĀ)−s

(
ǫ̃−
Ā
− ǫ̌+
A

)k
+ (ǫ̌+ → −ǫ̌+)

= lim
s→0

∂

∂s

∑

k≥0
k∈2Z

∑

0≤ℓ≤k
l∈2Z

(−s
k

)(
k

ℓ

)
ǫ̃ ℓ− ǫ̌

k−ℓ
+ τ ℓ−k−s2 Φ∗

k−l+s,k+2s ,

(D.2.13)

with Φα,β being the modular series of weights (0, β − 2α) defined in (C.2.24). It
is absolutely convergent for β > 2. Notice that in (D.2.13) β = k + 2s and, hence,
the limit s → 0 is well-defined for k ≥ 4. The cases where k = 2 are discussed
separately below1.

1. For l = 2, similarly to the analysis for Gahol, Φs,2s+2 precisely reproduces the

quasi-holomorphic Eisenstein series 2ζ(2)Ê2 upon taking the limit s→ 0.

2. For l = 0, using the identity

Φα,β(τ, τ̄) = τ 2α−β
2

[
Φβ−α,β(τ, τ̄)

]∗
, (D.2.14)

it is easy to see that one similarly obtains 2ζ(2)τ 2
2

ˆ̄E2.

As a result, the Eisenstein series appearing in (D.2.13) are well-defined in the limit
where the regulator s is set to zero:

log[Gbos(ǫ−, ǫ+)] = ζ(2)(ǫ̃ 2
−

ˆ̄E2 + ǫ̌ 2
+ Ê2)

+ 2
∑

k≥4
k∈2Z

∑

0≤ℓ≤k
l∈2Z

(
k

ℓ

)
ζ(k)

k
ǫ̃ ℓ− ǫ̌

k−ℓ
+ τ ℓ−k2 Ē(k/2, 2ℓ− k) . (D.2.15)

In order to derive the asymptotic behaviour of Gbos, we study the properties of
the modular series in the expansion (D.2.13). Indeed, the Fourier expansion of
the modular series (C.2.24) is organised into an ‘asymptotic’ contribution and an

1The term k = 0 is taken into account in the normalisation of the full amplitude (8.2.10).
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‘oscillator’ part:

τ−α2 Φα,β(τ, τ̄ ) = 2ζ(β) + 2τ 1−β
2

{
Cα,β

0 +
∑

n>0

[
Cα,β
n (τ2) q

n + Iα,βn (τ2) q̄
n
]}

.

(D.2.16)

The coefficients C0, Cn, In are given by:




Cα,β
n (τ2) =

(2π)β(−i)β−2α

Γ(β − α)
(nτ2)

β−1 σ1−β(n) (4πnτ2)
−β

2 e2πnτ2 Wβ
2
−α, β−1

2
(4πnτ2)

Iα,βn (τ2) =
(2π)β(−i)β−2α

Γ(α)
(nτ2)

β−1 σ1−β(n) (4πnτ2)
−β

2 e2πnτ2 Wα−β
2
,β−1

2
(4πnτ2)

Cα,β
0 = 22−βπ(−i)β−2αΓ(β − 1)ζ(β − 1)

Γ(α)Γ(β − α)
(D.2.17)

where Wλ,µ(z) is the Whittaker W -function and σs(n) =
∑
d|n

ds is the divisor func-

tion.
Using the asymptotic properties of the Whittaker function, it is easy to show that

the oscillator modes in (D.2.16),
∑

n(Cnq
n + Inq̄

n), are exponentially suppressed
in the limit, τ2 → ∞. In addition, the zero-frequency term in the curly brackets
decays polynomially in the same limit. Hence, the dominant contribution in the
field theory limit comes from the ‘asymptotic’ part:

τ−α2 Φα,β
τ2→∞−→ 2ζ(β) . (D.2.18)

Consequently, in the limit τ2 →∞, we obtain

lim
τ2→∞

log[Gbos(ǫ−, ǫ+)] = ζ(2)(ǫ̃ 2
− + ǫ̌ 2

+)

+
∑

k≥2

ζ(2k)

k
(ǫ̃− − ǫ̌+)2k + (ǫ̌+ → −ǫ̌+)

=
∑

k≥1

ζ(2k)

k
(ǫ̃− − ǫ̌+)2k + (ǫ̌+ → −ǫ̌+) . (D.2.19)

Using the definition of the Riemann zeta function, the sum over k can be performed
and leads to the expected field theory limit:

lim
τ2→∞

log[Gbos(ǫ−, ǫ+)] =
∑

n,k≥1

1

k

(
ǫ̃− − ǫ̌+

n

)2k

+ (ǫ̌+ → −ǫ̌+)

= −
∑

n≥1

log

[
1−

(
ǫ̃− − ǫ̌+

n

)2
]

+ (ǫ̌+ → −ǫ̌+)

= − log [sinc π(ǫ̃− − ǫ̌+)sinc π(ǫ̃− + ǫ̌+)] . (D.2.20)
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D.2.2 Type I Functional Determinants

In this appendix we discuss the regularisation of the infinite products appearing
in the functions Hs(

ǫ
2
; g

2
; τ), introduced in (9.3.4). We start by choosing the regu-

larisation parameter s such that Re(s) > 1 so that we are considering instead the
exponential of

f sg (ǫ) =
∑

m∈Z

n>0

log

(
1− (ǫ/2)2

|m+ g
2

+ ǫ
2
− nτ

2
|2s
)

= −
∞∑

k=1

(ǫ/2)2k

k

∑

m∈Z

n>0

1

|m+ g
2

+ ǫ
2
− nτ

2
|2sk .

For sufficiently large s, the sums are absolutely convergent. The series in m,n
can be viewed as a limit of a deformed real Eisenstein series E(s; τ). In order to
study its behaviour in the the large-τ2 limit, we obtain an expansion in q = e−πτ2 .
Using techniques similar to the ones used in extracting the Fourier expansion of
Poincaré series (cf. [4, 5] for more details), we can obtain the analogue of the
Chowla-Selberg formula:

f sg (ǫ) = −
∞∑

k=1

(ǫ/2)2k

k

(τ2
2

)1−2sk∑

n>0

1

n2sk

∑

m∈(Z/nZ)

∑

c∈Z

e2πi
c
n

(m+ g+ǫ
2

)

∞∫

−∞

dt e−πictτ2(t2 + 1)−sk .

(D.2.21)

This integral can be explicitly performed [4] as

∞∫

−∞

dt e−πictτ2(t2 + 1)−sk =

{
22−2skπΓ(2sk−1)

[Γ(sk)]2
, for c = 0

(2π)2sk(cτ2/2)2sk−1

[Γ(sk)]2
e−π|c|τ2σ(2π|c|τ2; sk) , for c 6= 0

,

(D.2.22)

where σ(z; s) is a dressed Bessel function, stripped off its asymptotic behaviour:

σ(z; s) = π− 1
2 Γ(s)z

1
2
−sez/2Ks− 1

2
( z

2
) . (D.2.23)

Indeed, for z → ∞, it converges to σ(z; s) → 1. As a result, the ‘mode ex-
pansion’ (D.2.21) is exponentially suppressed in the limit τ2 → ∞ for the non-
vanishing ‘frequencies’, c 6= 0. Special care is required in the treatment of the
c = 0 term which is potentially divergent. Ordinary (completed) Eisenstein series
E⋆(s; τ) ≡ ζ⋆(2s)E(s; τ) have a meromorphic continuation to the full s-plane, ex-
cept for simple poles at s = 0, 1. In our case, this problematic behaviour may arise
from the k = 1 term, as we try to remove the regulator, s → 1. However, this
naive divergence cancels out between the bosonic and fermionic determinants.

Indeed, let us pick the c = 0 mode contribution in the above sum:

−
∑

k=1

(ǫ/2)2k

k

(τ2
2

)1−2sk 22−2skπΓ(2sk − 1)ζ(2sk − 1)

[Γ(sk)]2
. (D.2.24)
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It is clear from the properties of the Riemann ζ-function that the k = 1 term
has a simple pole at s = 1. However, there is only an overall multiplicative ǫ-
dependence for this term. Taking the logarithm of the full ratio of fermionic and
bosonic determinants appearing in (9.3.14), regularising each sum by introducing
the s-parameter and extracting the c = 0 term we observe that the dangerous
k = 1 terms cancel:

−
(
τ2
2

)1−2s22−2sπΓ(2s− 1)ζ(2s− 1)

[Γ(s)]2

×
[
2
(ǫ−

2

)2

+ 2
(ǫ+

2

)2

−
(
ǫ− − ǫ+

2

)2

−
(
ǫ− + ǫ+

2

)2
]

= 0 . (D.2.25)

Notice the relative factors of 2 in the first two terms in the square brackets, arising
due to the fact that the fermionic products contain positive and negative n 6= 0
contributions, whereas the bosonic ones are restricted to n > 0 only.

As a result, we can remove the regulator s → 1 and obtain a well-defined ex-
pansion. In particular, in order to study the field theory limit, the relevant terms
are those with c = 0, k > 1. It is easy to see that they decay power-like as τ 1−2k

2 .
Hence, taking the exponential, the ratio of the infinite products (and, hence, the
ratio of H-functions) goes to 1 in the limit τ2 →∞.
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