P. Du, L. Par-l-'interprete, and .. , 270 6.4.2. Génération de Techno en direct, p.274

G. Albini and S. Antonini, Hamiltonian Cycles in the Topological Dual of the Tonnetz, Mathematics and Computation in Music, vol.36, issue.1, pp.1-10, 2009.
DOI : 10.2307/843911

B. Alspach and T. Parsons, A construction for vertex-transitive graphs, Journal canadien de math??matiques, vol.34, issue.2, pp.307-318, 1982.
DOI : 10.4153/CJM-1982-020-8

E. Amiot, About the number of generators of a musical scale, 2009.

E. Amiot, Eine Kleine Fourier Musik, Mathematics and Computation in Music, pp.469-476, 2009.
DOI : 10.1007/978-3-642-04579-0_47

E. Amiot, Une distance fondée sur les phases de certains coefficients de Fourier Communications personelle Ircam, 2011.

E. Amiot, T. Noll, C. Agon, and M. Andreatta, Fourier Oracles for Computer- Aided Improvisation, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01161058

M. Andreatta, Méthodes algébriques en musique et musicologie du XXe siècle: aspects théoriques, analytiques et compositionnels, 2003.

M. Andreatta, Visions scientifiques-Art & science-Geometrie d'un Prelude, Pour la Science, issue.349, pp.96-97, 2006.

M. Andreatta, 10.06) [La musique est-elle purement mathématique ?]. Interview Radiophonique, 2011.

J. Anger-weller, Clés pour l'harmonie: à l'usage de l'analyse, l'improvisation, la composition, 1990.

J. Bair, Cyclic Patterns in John Coltrane's Melodic Vocabulary as Influenced by Nicolas Slonimsky's Thesaurus of Scales and Melodic Patterns: An Analysis of Selected Improvisations, 2003.

G. J. Balzano, The Group-Theoretic Description of 12-Fold and Microtonal Pitch Systems, Computer Music Journal, vol.4, issue.4, pp.66-84, 1980.
DOI : 10.2307/3679467

G. Baroin, De Newton à Riemann, Graphes et Graphisme: Interactions Mathématico-Musico-Plastiques. Litter@incognita 3, 2010.

G. Baroin and L. Ferré, Representation of musical pitch space using graphs, spectrum and hyperspaces, proceedings of 8FCC Combinatorical Conference, 2010.

G. Baroin, The Planet-4D Model: An Original Hypersymmetric Music Space Based on Graph Theory, Mathematics and Computation in Music, pp.326-329, 2011.
DOI : 10.1007/978-3-642-21590-2_25

G. Baroin, From Circle to Hyperspheres, when Tonnetze go 4D [Film d'animation], www, 2011.

J. Bertin, La graphique et le traitement graphique de l'information: Flammarion, 1977.

P. Boulez, J. Nattiez, and J. Goldman, Leçons de musique deux décennies d'enseignement au Collège de France (1976-1995) textes réunis et établis par, 2005.

M. Broué, Les tonalités musicales vues par un mathématicien. Le temps des savoirs, 2002.

E. Buch, Le cas Schönberg: naissance de l'avant-garde musicale: Gallimard, 2006.

J. A. Burgoyne and L. K. Saul, Visualization of low-dimensional structure in tonal pitch space, 2005.

E. Chew, Towards a mathematical model of tonality, 2000.

J. M. Chouvel, Représentation harmonique hexagonale toroïde. Musimédiane, Revue audiovisuelle et multimédia d'analyse musicale, 2005.

J. M. Chouvel, Analyse musicale. Sémiologie et cognition des formes temporelles, Collection Art&Sciences de l'Art, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01106225

F. R. Chung, Spectral graph theory: Published for the Conference Board of the mathematical sciences by the, 1997.
DOI : 10.1090/cbms/092

F. R. Chung and P. Tetali, Isoperimetric Inequalities for Cartesian Products of Graphs, Combinatorics, Probability and Computing, vol.7, issue.2, pp.141-148, 1998.
DOI : 10.1017/S0963548397003350

R. Cohn, The Dramatization of Hypermetric Conflicts in the Scherzo of Beethoven's Ninth Symphony. 19th-century Music, pp.188-206, 1992.

R. Cohn, Maximally Smooth Cycles, Hexatonic Systems, and the Analysis of Late-Romantic Triadic Progressions, Music Analysis, vol.15, issue.1, pp.9-40, 1996.
DOI : 10.2307/854168

R. Cohn, Neo-Riemannian Operations, Parsimonious Trichords, and Their "Tonnetz" Representations, Journal of Music Theory, vol.41, issue.1, pp.1-66, 1997.
DOI : 10.2307/843761

R. Cohn, Introduction to Neo-Riemannian Theory: A Survey and a Historical Perspective, Journal of Music Theory, vol.42, issue.2, pp.167-180, 1998.
DOI : 10.2307/843871

R. Cohn, Weitzmann's Regions, My Cycles, and Douthett's Dancing Cubes. Music Theory Spectrum, pp.89-103, 2000.

H. S. Coxeter, Introduction to geometry, 1989.

C. Dauphin, Les grandes méthodes pédagogiques du XXe siècle, Musiques, une encyclopédie pour le XXe siecle (p. 833): Actes sud, 2004.

C. Delorme and M. C. Heydemann, Graphes de Cayley, Paris: L.R.I, 2002.

D. Demsey, Chromatic Third Relations in the Music of John Coltrane, Annual Review of Jazz Studies, vol.5, pp.145-180, 1991.

J. Douthett and P. Steinbach, Parsimonious Graphs: A Study in Parsimony, Contextual Transformations, and Modes of Limited Transposition, Journal of Music Theory, vol.42, issue.2, pp.241-263, 1998.
DOI : 10.2307/843877

M. C. Escher, The graphic work of, 1984.

L. Euler, Tentamen novae theoriae musicae ex certissimis harmoniae principiis dilucide expositae, 1739.

L. Euler, De harmoniae veris principiis per speculum musicum repraesentatis, Opera Omnia, vol.3, issue.1, pp.568-586, 1774.

M. R. Fellows, Encoding graphs in graphs: University of California, 1985.

T. Fiore, Beethoven and the Torus, 2004.

T. Fiore and T. Noll, Commuting Groups and the Topos of Triads, Mathematics and Computation in Music, pp.69-83, 2011.
DOI : 10.1007/978-3-642-21590-2_6

A. Forte, The structure of atonal music, 1973.

Y. Gentilhomme, Interf??rences de vocabulaire entre deux sciences, linguistique et math??matique, Langue fran??aise, vol.17, issue.1, pp.44-58, 1973.
DOI : 10.3406/lfr.1973.5620

E. Gollin, Combinatorial and Transformational Aspects of Euler???s Speculum Musicum, Mathematics and Computation in Music, pp.406-411, 2009.
DOI : 10.1007/978-3-642-04579-0_40

N. Hakim and M. B. Dufourcet, Guide pratique d'analyse musicale: cours, lexique illustré, tableaux, 1995.

B. Hayden, An Arrangement of Musical Notes for Musical Instruments. UK patent office, p.2131592, 1982.

R. Honti, Principles of pitch organization in Bartók's Duke Bluebeard's Castle, 2007.

J. Hook, Exploring musical space, Science, issue.5783, pp.313-362, 2006.

B. Hyer, Reimag(in)ing Riemann, Journal of Music Theory, vol.39, issue.1, pp.101-138, 1995.
DOI : 10.2307/843900

W. Imrich, S. Klav?ar, and B. Gorenec, Product graphs: structure and recognition, 2000.

P. Janko, Eine neue Klaviatur, 1886.

K. Koh, D. Rogers, H. Teo, and K. Yap, Graceful graphs: some further results and problems, Congr. Numer, vol.29, pp.559-571, 1980.

M. Koob and M. Grellert, Das jüdische Viertel von Worms [Film d'animation], 2001.

C. L. Krumhansl and E. J. Kessler, Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys., Psychological Review, vol.89, issue.4, p.334, 1982.
DOI : 10.1037/0033-295X.89.4.334

T. Lara, Matrices Circulantes, Divulgaciones Matemáticas, vol.9, issue.1, pp.85-102, 2001.

L. M. Lederman and C. T. Hill, Symmetry and the beautiful universe, 2004.

B. Lehman, Bach's extraordinary temperament: our Rosetta Stone--2. early music, pp.211-231, 2005.

D. Lewin, Generalized musical intervals and transformations, 1987.
DOI : 10.1093/acprof:oso/9780195317138.001.0001

J. Ley, E. Ghys, and A. Alvarez, Dimensions : A walk through mathematics! [Film d'animation]. www.dimensions-math, 2008.

A. Mardirossian and E. Chew, Visualizing music: Tonal progressions and distributions, 2007.

F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman, Averaging Quaternions, Journal of Guidance, Control, and Dynamics, vol.30, issue.4, p.1193, 2007.
DOI : 10.2514/1.28949

G. Mazzola, The topos of music, 2002.
DOI : 10.1007/978-3-0348-8141-8

G. Mazzola, Le Principe Anthropique en Musique, 2005.

O. Messiaen, Technique de mon langage musical, 1944.

D. Muzzulini, Musical Modulation by Symmetries, Journal of Music Theory, vol.39, issue.2, pp.311-327, 1995.
DOI : 10.2307/843970

E. Noether, Invariante Variationsprobleme, pp.235-257, 1918.
DOI : 10.1007/978-3-642-39990-9_13

T. Noll, Geometry of chords, Electronic Bulletin of the Sociedad Matematica Mexicana, vol.1, 2001.

A. Pêcher, Des multiples facettes des graphes circulants, 2008.

A. Pêcher and A. K. Wagler, Almost all webs are not rank-perfect, Mathematical Programming, vol.2, issue.2-3, pp.311-328, 2006.
DOI : 10.1007/s10107-005-0655-7

H. Purwins, Profiles of Pitch Classes Circularity of Relative Pitch and Key? Experiments, Models, Computational Music Analysis, and Perspectives, 2005.

A. Quilliot, Homomorphismes, points fixes, rétractions et jeux de poursuite dans les graphes, 1983.

J. C. Risset, (1 6) Pitch and rhythm paradoxes: Comments on ''Auditory paradox based on fractal waveform''. The Journal of the, p.961

D. Rivolta, Mémoire sur les transpositions limitées Intemporel, Société Nationale de Musique, vol.25, 1998.

S. Roberts, King of infinite space: Donald Coxeter, the man who saved geometry, 2006.

J. M. Rocard, Newton versus relativity, 1992.

G. Sabidussi, Graph multiplication, Mathematische Zeitschrift, vol.83, issue.1, pp.446-457, 1959.
DOI : 10.1007/BF01162967

R. S. Sanders, Products of Circulant Graphs Are Metacirculant, Journal of Combinatorial Theory, Series B, vol.85, issue.2, pp.197-206, 2002.
DOI : 10.1006/jctb.2001.2095

A. Schoenberg and L. Stein, Structural functions of harmony, 1969.

B. Shell, H. S. Donald, and . Coxeter, Le plus grand géomètre classique du 20ème siècle" Société de Recherche "Great Canadian Scientits, 2001.

R. N. Shepard, Circularity in Judgments of Relative Pitch, The Journal of the Acoustical Society of America, vol.36, issue.12, p.2346, 1964.
DOI : 10.1121/1.1919362

D. Tymoczko, The Geometry of Musical Chords, Science, vol.313, issue.5783, pp.313-72, 2006.
DOI : 10.1126/science.1126287

D. Tymoczko, A Geometry of Music. Oxford Studies in Music Theory, 2011.

G. Weber, Versuch einer geordneten Theorie der Tonsetzkunst: B. Schott's Söhne, 1832.

K. F. Weitzmann, Der übermässige Dreiklang: Verlag der T, Trautweischen Buch-und Musikallenhandlung (J. Guttentag), 1853.

K. F. Weitzmann and E. M. Bowman, Bowman's-Weitzman's manual of musical theory: A concise, comprehensive and practical text-book on the science of music, 1879.

D. B. West, Introduction to graph theory, 2001.

M. White, Isaac Newton: the last sorcerer, 1999.

K. Wicki, Tastatur für musikinstrumente. Swiss patent, 1896.

S. Zacharias and D. Velichova, Projection from 4D to 3D, Journal for Geometry and Graphics, vol.4, issue.1, pp.55-69, 2000.