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Abstract

We consider the problem of learning the parameters of a structured output prediction

model, that is, learning to predict elements of a complex interdependent output space

that correspond to a given input. Unlike many of the existing approaches, we focus

on the weakly supervised setting, where most (or all) of the training samples have only

been partially annotated. Given such a weakly supervised dataset, our goal is to estimate

accurate parameters of the model by minimizing the regularized empirical risk, where

the risk is measured by a user-specified loss function. This task has previously been

addressed by the well-known latent support vector machine (latent svm) framework. We

argue that, while latent svm offers a computational efficient solution to loss-based weakly

supervised learning, it suffers from the following three drawbacks: (i) the optimization

problem corresponding to latent svm is a difference-of-convex program, which is non-

convex, and hence susceptible to bad local minimum solutions; (ii) the prediction rule

of latent svm only relies on the most likely value of the latent variables, and not the

uncertainty in the latent variable values; and (iii) the loss function used to measure the

risk is restricted to be independent of true (unknown) value of the latent variables.

We address the the aforementioned drawbacks using three novel contributions. First,

inspired by human learning, we design an automatic self-paced learning algorithm for

latent svm, which builds on the intuition that the learner should be presented in the

training samples in a meaningful order that facilitates learning: starting frome easy

samples and gradually moving to harder samples. Our algorithm simultaneously selects

the easy samples and updates the parameters at each iteration by solving a biconvex

optimization problem. Second, we propose a new family of lvms called max-margin

min-entropy (m3e) models, which includes latent svm as a special case. Given an in-

put, an m3e model predicts the output with the smallest corresponding Rényi entropy

of generalized distribution, which relies not only on the probability of the output but

also the uncertainty of the latent variable values. Third, we propose a novel learn-

ing framework for learning with general loss functions that may depend on the latent

variables. Specifically, our framework simultaneously estimates two distributions: (i)

a conditional distribution to model the uncertainty of the latent variables for a given

input-output pair; and (ii) a delta distribution to predict the output and the latent

variables for a given input. During learning, we encourage agreement between the two

distributions by minimizing a loss-based dissimilarity coefficient. We demonstrate the

efficacy of our contributions on standard machine learning applications using publicly

available datasets.
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Chapter 1

Introduction

1.1 Structured Output Prediction

Structured output prediction [53] refers to the task of predicting elements of a com-

plex interdependent output space that correspond to a given input. Recent years have

witnessed its increasing popularity in machine learning due to its ability to provide an

elegant formulation for several applications in computer vision [9, 28, 40, 54], medical

image analysis [2, 3, 68], natural language processing [39, 44] and many other areas of

research.

A central problem in structured output prediction is to learn the parameters of the

prediction model. Broadly speaking, there are two paradigms for parameter estimation:

empirical risk minimization and probabilistic modeling. In empirical risk minimization,

the parameters are learned by minimizing the regularized empirical risk, where the risk

is measured by a user-specified loss function. In probabilistic modeling, a parameter

estimate is made by means of the marginal likelihood function of the observed data;

the model is typically represented by means of a parameter point estimate [8, 33] or an

approximation to the posterior distribution over the model parameters [8, 10, 48, 49]. In

this thesis, we will focus on the former paradigm, that is, empirical risk minimization.

Most of the research has focused on developing supervised learning techniques for struc-

tured prediction. Specifically, it is typically assumed that each sample of the training

has a fully observed ground-truth annotation. A well-known example of such a learner is

the structured output support vector machine (or svm for short) [63, 65], whose param-

eters can be estimated efficiently by solving a convex quadratic program [32, 58, 63, 65].

Despite this progress and the practical relevance of the considered applications, fully

supervised learning has made limited impact. This lack of success is due to the fact that

1
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collecting annotated datasets is often prohibitively expensive, especially for complex

models that require millions of training samples before their performance gets satu-

rated. In fact, one might argue that for many applications it is impossible to obtain

supervised annotations. For example, consider the task of region-based semantic seg-

mentation [21, 37, 43], that is, grouping image pixels into coherent regions such that the

semantic classes of the regions can be predicted accurately. The choice of regions will

depend on the high-dimensional feature vector being employed, and a human annotator

would be incapable of providing a reasonable guess for the optimal pixel-to-region as-

signment based on the description of the features. The lack of full supervision is even

more common in applications related to medical image analysis and computational bi-

ology, where the ground-truth annotations cannot be provided by even the experts of

the field.

In order to address the deficiencies of supervised learning, recent research has started

focusing on learning from weakly supervised datasets, where a majority (or all) of the

training samples are only partially annotated. Such datasets can be constructed at a

reasonable cost using freely available data on the Internet, together with crowd sourcing

solutions like Amazon’s Mechanical Turk to obtain partial annotations. However, the

convenience of using a large, inexpensive, weakly supervised dataset comes at the cost

of solving a significantly more challenging machine learning problem. Specifically, the

task of learning a structured output predictor from weakly supervised datasets can be

interpreted as learning the parameters of a latent variable model (lvm), that is, a model

that contains latent (or hidden) variables whose values are not observed during training.

For example, consider the well-known lvm known as latent support vector machine (or

latent svm for short) [17, 60, 66], which is of particular interest to us in this thesis.

Latent svm extends the svm formulation by modeling the missing information in the

annotations of the training samples as latent variables. It modifies the prediction task

to consider both the output space and the latent space, which allows it to formulate

the problem of parameter estimation as minimizing a regularized upper bound on the

empirical prediction risk. Similar to an svm, the risk is measured by a user-specified loss

function. While latent svm offers a computational efficient solution to loss-based weakly

supervised learning, it suffers from the following three drawbacks: (i) the optimization

problem corresponding to latent svm is a difference-of-convex program, which is non-

convex, and hence susceptible to bad local minimum solutions; (ii) the prediction rule

of latent svm only relies on the most likely value of the latent variables, and not the

uncertainty in the latent variable values; and (iii) the loss function used to measure the

risk is restricted to be independent of true (unknown) value of the latent variables.

In this work, we overcome the aforementioned drawbacks of existing loss-based weakly

supervised learning frameworks with the help of the following three contributions.
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• We propose a novel iterative self-paced learning algorithm for solving the opti-

mization problem corresponding to latent svm, which builds on the intuition that

the learner should be presented in the training samples in a meaningful order that

facilitates learning: starting from easy samples and gradually moving to harder

samples. Our algorithm simultaneously selects the easy samples and updates the

parameters at each iteration by solving a biconvex optimization problem.

• We propose a new family of lvms called max-margin min-entropy (m3e) mod-

els, which includes latent svm as a special case. Given an input, an m3e model

predicts the output with the smallest corresponding Rényi entropy of generalized

distribution [56], which relies not only on the probability of the output but also

the uncertainty of the latent variable values. Similar to latent svm, the parame-

ters of an m3e model are learned by minimizing a regularized upper bound on the

empirical risk, which is measured using a loss function that is independent of the

true value of the latent variables.

• We propose a novel learning framework that simultaneously estimates two dis-

tributions: (i) a conditional distribution to model the uncertainty of the latent

variables for a given input-output pair; and (ii) a delta distribution to predict the

output and the latent variables for a given input. During learning, we encourage

agreement between the two distributions by minimizing a loss-based dissimilarity

coefficient [55]. Our approach generalizes latent svm in two important ways: (i)

it models the uncertainty over latent variables instead of relying on a pointwise

estimate; and (ii) it allows the use of loss functions that depend on latent variables,

which greatly increases its applicability.

Before presenting our work in detail, we briefly describe the svm and latent svm frame-

works in the remainder of this chapter. This will allow us to set up the notation that

will be used throughout the thesis, as well as help put our contributions in context.

1.2 Structured Output Support Vector Machine

Given an input vector x ∈ X , a structured output support vector machine (henceforth

referred to as simply svm) provides a linear prediction rule for the structured output

y ∈ Y. In more detail, we denote the joint feature vector of an input x and an output

y by Ψ(x,y). The joint feature vector captures the relationship between the input and

the output. For example, consider the application of detecting a car in an image. For

simplicity, let us assume that an image can contain at most one car. In this case, the

input x is the image, the output y is the bounding box of the car for a positive image
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(that is, an image containing a car) and φ (null) for a negative image (that is, an image

not containing a car). The joint feature vector Ψ(x,y) can be the hog descriptor [13]

of the bounding box specified by y for positive images, and 0 (that is, a vector of

appropriate dimensions whose elements are all equal to 0) for negative images.

Given an svm, parameterized byw, the prediction rule can be formulated as the following

optimization problem:

y(w) = argmax
y∈Y

w⊤Ψ(x,y). (1.1)

We refer to the quantity w⊤Ψ(x,y) as the score of an output y for a given input x.

In the above car detection example, given an image x, the svm will either return a

bounding box y if there exists a bounding box with a score greater than 0, or it will

return φ.

1.2.1 Learning an SVM

The problem of learning an svm is to estimate the parameter w from a training dataset.

In this section, we will assume that the training dataset is fully supervised, that is,

the complete ground-truth annotation of each training sample is known. Formally, we

denote the training dataset by D = {si = (xi,yi), i = 1, · · · , n}, that is, the training

dataset consists of n samples, each of which is an input-output pair. Furthermore, we

assume a user-specified loss function ∆ : Y × Y → R
+, which is used to measure the

risk of prediction. Specifically, ∆(y1,y2) measures the difference between the outputs

y1 and y2. The value of the loss is assumed to be non-negative and equal to 0 if and

only if y1 = y2. For example, consider the task of learning an svm for car detection.

In this application, an appropriate loss function might be one that returns 0 if both the

outputs belong to the same class (either both consider the image x to be positive, or

both consider x to be negative), and 1 otherwise.

The parameters w are learned by minimizing a regularized upper bound on the empirical

risk, where the empirical risk is defined as

min
w

∑

i

∆(yi,yi(w)). (1.2)

Here, yi(w) refers to the prediction made using the parameters w as specified in equa-

tion (1.1). Formally, learning involves solving the following convex quadratic program:

min
w,ξi≥0

1

2
||w||2 +

C

n

n
∑

i=1

ξi,

s.t. w⊤ (Ψ(xi,yi)−Ψ(xi, ŷi)) ≥ ∆(yi, ŷi)− ξi, ∀ŷi ∈ Y, i = 1, · · · , n, (1.3)
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where C ≥ 0 is a user-specified constant, and ξi is the slack variable corresponding to

the sample si. Note that in this thesis we limit our discussion to the margin rescaling

formulation of svm (shown above). However, all of our methods can be trivially modified

for the slack rescaling formulation [65]. Intuitively, the above problem introduces a

margin between the score of the ground-truth output and the score of any other output.

The desired margin is proportional to the loss value between the ground-truth and the

corresponding output.

1.2.2 Optimization

Although the above problem appears to be a difficult optimization task due to a large

number of constraints, there exist several polynomial-time algorithms that obtain a

solution up to an arbitrary precision ǫ [32, 58, 63, 65]. In our work, we will use the

1-slack reformulation based cutting plane algorithm [32] for small datasets, and the

stochastic subgradient algorithm [58] for large datasets. For completeness, we provide

a brief description of the two methods in Algorithm 1 and Algorithm 2 respectively.

We refer the interested reader to [32, 58] for details. Note that the key step in both

the methods is the same, namely solving an optimization problem that maximizes the

sum of the score of the output and the loss function (equation (1.4) and equation (1.6)).

Henceforth, we will refer to this step as loss augmented inference. Intuitively, loss

augmented inference requires us to find the most violated constraint of problem (1.3)

for a given w, that is, an output ŷi for each sample si that has a large score and a large

loss value.

1.3 Latent Support Vector Machine

As mentioned earlier, in many applications it is onerous, or even impossible, to obtain

a fully supervised training dataset. In order to estimate the parameters in a weakly

supervised setting, it is common practice to use a latent variable model known as the

latent support vector machine (henceforth referred to as simply latent svm). Latent svm

extends the svm framework by modeling the missing information in the annotations as

latent (or hidden) variables h ∈ H. We denote the joint vector vector of an input x,

an output y and a latent variable h as Ψ(x,y,h). For example, let us consider the car

detection example, where the input x is an image. Unlike the supervised setting, the

output y only specifies whether the image is positive (y = 1) or negative (y = 0). The

missing information in the output, that is, the bounding box of the car is modeled as a

latent variable h. Specifically, h is the bounding box of the car when y = 1 and φ (null)
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Algorithm 1 The 1-slack cutting plane algorithm for learning an svm.

input D = {si = (xi,yi), i = 1, · · · , n}, C, ǫ.
1: Initialize w← 0, W ← {}.
2: repeat
3: Update the solution as

(w, ξ)← argmin
w,ξ≥0

1

2
||w||2 + Cξ

s.t.
1

n
w⊤

(

∑

i

Ψ(xi,yi)−Ψ(xi, ŷi)

)

≥
1

n

∑

i

∆(yi, ŷi)− ξ,

∀ (ŷ1, · · · , ŷn) ∈ W,

4: for i = 1 to n do
5: Solve the following loss augmented inference problem

ŷi = argmax
y∈Y

∆(yi,y) +w⊤Ψ(xi,y). (1.4)

6: end for
7: W ←W ∪ {(ŷ1, · · · , ŷn)}.
8: until 1

n

∑

i

(

∆(yi, ŷi) +w⊤Ψ(xi, ŷi)−w⊤Ψ(xi,yi)
)

≤ ξ + ǫ.

Algorithm 2 The stochastic subgradient descent algorithm for learning an svm.

input D = {si = (xi,yi), i = 1, · · · , n}, C, maximum number of iterations T .
1: Initialize w← 0, t = 0.
2: repeat
3: t← t+ 1.
4: Choose a random subset St ⊆ D.
5: Compute the stochastic subgradient gt over St as

gt =
1

|St|

∑

i∈St

(Ψ(xi, ŷi)−Ψ(xi,yi)) . (1.5)

Here ŷi is obtained by solving the following loss augmented inference problem:

ŷi = argmax
y∈Y

∆(yi,y) +w⊤Ψ(xi,y). (1.6)

6: Update w← (1− 1/t)w − Cgt/t.
7: until t = T.

otherwise. The joint feature vector Ψ(x,y,h) is the hog descriptor [13] of the bounding

box h when y = 1 and 0 otherwise.

Given a latent svm, parameterized by w, the prediction rule is extended to optimize

over both the output space and the latent space as follows:

(y∗,h∗) = argmax
y∈Y,h∈H

w⊤Ψ(x,y,h). (1.7)
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In our car detection example, given an image x, the latent svm will either label the

image as positive and return a bounding box h if there exists a bounding box with a

score that is greater than 0, or it will label the image as negative.

1.3.1 Learning a Latent SVM

Given a training dataset D = {si = (xi,yi), i = 1, · · · , n}, the parameters of a latent

svm are estimated by minimizing a regularized upper bound on the empirical risk, where

the risk is measured using a loss function ∆(y1,y2). In our car detection example, the

loss function can be defined similar to the supervised case, that is, it is 0 if both the

outputs belong to the same class, and 1 otherwise.

Formally, learning a latent svm involves solving the following optimization problem:

min
w,ξi≥0

1

2
||w||2 +

C

n

n
∑

i=1

ξi,

s.t. max
hi∈H

w⊤Ψ(xi,yi,hi)−w⊤Ψ(xi, ŷi, ĥi) ≥ ∆(yi, ŷi)− ξi,

∀ŷi ∈ Y, ∀ĥi ∈ H, i = 1, · · · , n. (1.8)

Intuitively, the above problem introduces a margin between the score of the ground-

truth output together with the best value of the latent variable and any other pair of

output and latent variables. The desired margin is proportional to the loss between the

ground-truth and the corresponding output. Note that in a latent svm formulation, the

loss function can also depend on the value of the latent variable ĥi. However, in all our

applications, the loss function will only depend on the values of the outputs. We refer

the interested reader to [66] for details.

1.3.2 Optimization

Problem (1.8) can be viewed as minimizing the sum of a convex and a concave func-

tion. This observation leads to a concave-convex procedure (cccp) [67] outlined in

Algorithm 3, which has been shown to converge to a local minimum or saddle point

solution [61]. The algorithm has two main steps. First, imputing the latent variables

(step 3), that is, finding the best values of the latent variables that are consistent with

the given annotation. Henceforth, we will refer to this step as annotation consistent

inference. In the context of cccp, annotation consistent inference corresponds to ap-

proximating the concave function by a linear upper bound. Second, updating the value

of the parameter using the values of the hidden variables. Note that updating the



Chapter 1. Introduction 8

parameters requires us to solve an svm learning problem where the output yi is now

concatenated with the hidden variable h∗
i . See [17, 60, 66] for more details.

Algorithm 3 The cccp algorithm for learning latent svm.

input D = {si = (xi,yi), i = 1, · · · , n}, w0, C, ǫ.
1: t← 0
2: repeat
3: Update h∗i = argmaxhi∈Hw⊤

t Ψ(xi,yi,hi).
4: Update wt+1 by fixing the hidden variables for output yi to h∗

i and solving the
corresponding svm problem.

5: t← t+ 1.
6: until Objective function cannot be decreased below tolerance ǫ.

1.4 Outline of the Thesis

The rest of the thesis is organized as follows. In chapter 2, we present the self-paced

learning algorithm for estimating the parameters of a latent svm. In chapter 3, we

describe the max-margin min-entropy family of latent variable models that generalizes

latent svm for the case where the loss function is independent of the true value of the

latent variables. In chapter 4, we consider a general loss function (which can dependent

on both the output and the latent variables) and present a dissimilarity coefficient based

learning framework. Chapter 5 discusses interesting directions for future research.

1.5 Relevant Publications

The work described in this thesis has appeared in the following publications.

• M. Pawan Kumar, B. Packer and D. Koller. Self-Paced Learning for Latent Vari-

able Models. In Proceedings of Advances in Neural Information Processing Sys-

tems (NIPS), 2010

• M. Pawan Kumar, H. Turki, D. Preston and D. Koller. Learning Specific-Class

Segmentation from Diverse Data. In Proceedings of International Conference on

Computer Vision (ICCV), 2011

• K. Miller, M. Pawan Kumar, B. Packer, D. Goodman and D. Koller. Max-Margin

Min-Entropy Models. In Proceedings of Conference on Artificial Intelligence and

Statistics (AISTATS), 2012

• M. Pawan Kumar, B. Packer and D. Koller. Modeling Latent Variable Uncertainty

for Loss-based Learning. In Proceedings of International Conference on Machine

Learning (ICML), 2012



Chapter 2

Self-Paced Learning for Latent

Support Vector Machine

2.1 Introduction

As seen in the previous chapter, by extending svm to handle latent variables, the latent

svm framework significantly increases the scope of loss-based learning for structured out-

put prediction. For example, in computer vision, we may wish to learn a model of a car

from many positive and negative samples, that is, images containing and not containing

cars respectively. However, the exact location of the cars may be unknown and could be

modeled as latent variables. In medical diagnosis, learning to diagnose a disease based on

symptoms can be improved by treating unknown or unobserved diseases as latent vari-

ables (to deal with confounding factors). Unlike the original svm, parameter learning in

latent svm requires solving a non-convex optimization problem. Although [17, 60, 66]

provide a concave-convex procedure (cccp) for solving this problem, it is prone to get-

ting stuck in a bad local minimum (with high training and generalization error).

Machine learning literature is filled with scenarios in which one is required to solve

a non-convex optimization task, for example learning the parameters of a probabilistic

latent variable model using expectation-maximization [50, 57, 62], or (weakly) supervised

learning for perceptrons or deep belief nets [25, 26, 42]. A common approach for avoiding

a bad local minimum in these cases is to use multiple runs with random initializations

and pick the best solution amongst them (as determined, for example, by testing on a

validation set). However, this approach is adhoc and computationally expensive as one

may be required to use several runs to obtain an accurate solution. Bengio et al. [5]

recently proposed an alternative method for training with non-convex objectives, called

curriculum learning. The idea is inspired by the way children are taught: start with

9
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easier concepts (for example, recognizing objects in simple scenes where an object is

clearly visible) and build up to more complex ones (for example, cluttered images with

occlusions). Curriculum learning suggests using the easy samples first and gradually

introducing the learning algorithm to more complex ones. The main challenge in using

the curriculum learning strategy is that it requires the identification of easy and hard

samples in a given training dataset. However, in many real-world applications, such a

ranking of training samples may be onerous or conceptually difficult for a human to

provide — even if this additional human supervision can be provided, what is intuitively

“easy” for a human may not match what is easy for the algorithm in the feature and

hypothesis space employed for the given application.

To alleviate this deficiency, we introduce self-paced learning. In the context of human

education, self-paced learning refers to a system where the curriculum is determined by

the pupil’s abilities rather than being fixed by a teacher. We build on this intuition

for learning a latent svm by designing an iterative approach that simultaneously se-

lects easy samples and updates the parameters at each iteration by solving a biconvex

optimization problem. The number of samples selected at any stage is determined by

a weight that is gradually annealed such that subsequent iterations consider more and

more samples. The algorithm converges when all samples have been considered and the

objective function cannot be decreased further (up to a certain tolerance). While we

focus on the latent svm framework, our method can be generalized to other learning

settings (such as maximum likelihood estimation using em) for which the learning ob-

jective decomposes into a linear sum of terms for each sample. It is worth noting that,

in the above algorithm, the characterization of what is “easy” applies not to individual

samples, but to sets of samples; a set of samples is easy if it admits a good fit in the

model space.

We empirically demonstrate that our self-paced learning approach outperforms the state

of the art algorithm on five standard machine learning applications using publicly avail-

able datasets.

2.2 Related Work

Self-paced learning is related to curriculum learning in that both regimes suggest pro-

cessing the samples in a meaningful order. Bengio et al. [5] noted that curriculum

learning can be seen as a type of continuation method [1]. However, in their work, they

circumvented the challenge of obtaining such an ordering by using datasets where there

is a clear distinction between easy and hard samples (for example, classifying equilateral
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triangles vs. squares is easier than classifying general triangles vs. general quadrilater-

als). Such datasets are rarely available in real world applications, so it is not surprising

that the experiments in [5] were mostly restricted to small toy examples.

Our approach also has a similar flavor to active learning, which chooses a sample to

learn from at each iteration. Different active learning approaches use different criteria

for selecting the sample. For example, Tong and Koller [64] suggest choosing a sample

that is close to the margin, that is, a hard sample, corresponding to anti-curriculum

learning. In a similar flavor, Cohn et al. [12] advocate the use of the most uncertain

sample (where uncertainty is measured using the variance in the prediction by the current

classifier). However, unlike our setting, in active learning the labels of all the samples

are not known when the samples are chosen.

Another related learning regime is co-training, which works by alternately training clas-

sifiers such that the most confidently labeled samples from one classifier are used to

train the other [11, 52]. Our approach differs from co-training in that in our setting

the latent variables are simply used to assist in predicting the target labels, which are

always observed, whereas co-training deals with a semi-supervised setting in which some

labels are missing.

2.3 Self-Paced Learning for Latent SVM

We now describe our self-paced learning strategy for learning a latent svm, that is, for

optimizing the following difference-of-convex problem:

min
w,ξi≥0

1

2
||w||2 +

C

n

n
∑

i=1

ξi,

s.t. max
hi∈H

w⊤Ψ(xi,yi,hi)−w⊤Ψ(xi, ŷi, ĥi) ≥ ∆(yi, ŷi)− ξi,

∀ŷi ∈ Y, ∀ĥi ∈ H, i = 1, · · · , n. (2.1)

Recall that the main difficulty that one faces is the lack of a readily computable measure

of the easiness of a sample. In the context of latent svm, for a given weight w, this

easiness can be defined in two ways: (i) a sample is easy if we are confident about the

value of a latent variable; or (ii) a sample is easy if it is easy to predict its true output

(that is, it lies far away from the margin). The two definitions are somewhat related:

if we are more certain about the latent variable, we may be more certain about the

prediction. They are different in that certainty does not imply correctness, and the

latent variables may not be directly relevant to what makes the output of an example
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easy to predict. We therefore focus on the second definition: easy samples are ones

whose correct output can be predicted easily.

In the above argument, we have assumed a given w. However, in order to operationalize

self-paced learning, we need a strategy for simultaneously selecting the easy samples

and learning the parameter w at each iteration. To this end, we introduce the binary

variable vi, which indicates whether the ith sample is easy or not. If the sample is not

easy, then its slack variable is not added to the value of the objective function. In other

words, the problem minimizes the upper bound on the risk of only the easy samples.

We formulate this as the following mixed-integer problem:

min
w,v,ξi≥0

1

2
||w||2 +

C

n

n
∑

i=1

viξi −
1

K

n
∑

i=1

vi,

s.t. v ∈ {0, 1}n,

w⊤Ψ(xi,yi,h
∗
i )−w⊤Ψ(xi, ŷi, ĥi) ≥ ∆(yi, ŷi)− ξi,

∀ŷi ∈ Y, ĥi ∈ H, i = 1, · · · , n, (2.2)

where h∗
i is the current imputed latent value of the ith sample (that is, the output of

annotation consistent inference). The weight K determines the number of samples to

be considered: if K is small, the above problem prefers to include more samples; if K

is large, it only considers a few samples for which it can find small slack values — that

is, those that are “easy.” Importantly, however, the samples are tied together in the

objective through the parameter w. Therefore, no sample is considered independently

easy; rather, a set of samples is easy if a w can be fit to it such that the corresponding

slack values are small. We iteratively decrease the value of K in order to estimate the

parameters of a latent svm via self-paced learning. In other words, we begin with only

a few easy examples, and gradually introduce more and more samples until the entire

training dataset is used.

Problem (2.2) can be relaxed such that vi take values between 0 and 1 (instead of just

binary values), resulting in a biconvex optimization problem. Recall that a biconvex

problem is one where the variables z can be divided into two sets z1 and z2 such that for

a fixed value of each set, the optimal value of the other set can be obtained by solving

a convex optimization problem. In our case, the two sets of variables are (w, ξi) and v.

It is worth noting that the biconvex relaxation does not change the optimal solution of

problem (2.2); we still obtain an integer v. This is easy to prove: for any given (w, ξi), vi

should be greater than 0 if and only if Cξi/n ≤ 1/K (otherwise it would add a positive

term to the objective function). If this is the case, then the objective function would be

minimized at vi = 1 (which would add the negative value Cξi/n− 1/K to the objective

function).
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The advantage of the biconvex reformulation is that it allows us to tap into the vast

literature that exists on solving such problems [4, 19]. For this work, we choose the

alternate convex search (acs) [4] procedure, which alternately optimizes over each set

of variables, keeping the other set fixed. In our setting, we optimize the vi’s given the

weights w and vice versa. The acs procedure is provably convergent, although it may

not converge to the globally optimal solution. But it is efficient and easy to implement,

and worked well in practice in our experiments.

Algorithm 4 The self-paced learning algorithm for parameter estimation of latent svm.

input D = {(x1,y1), · · · , (xn,yn)}, w0, K0, ǫ.
1: t← 0, K ← K0.
2: repeat
3: Update h∗

i = argmaxhi∈Hw⊤
t Ψ(xi,yi,hi).

4: Update wt+1 by solving the biconvex reformulation of problem (2.2)
5: t← t+ 1, K ← K/µ.
6: until Objective function of problem (2.1) cannot be decreased below tolerance ǫ.

Algorithm 4 outlines the overall self-paced learning algorithm for latent svm. Similar to

the original cccp method, our algorithm consists of two steps: (i) annotation consistent

inference, where we impute the value of the latent variables using the current estimate of

the parameters; and (ii) parameter update. In contrast to cccp, the parameter update

involves solving a biconvex optimization problem instead of a convex problem. At each

iteration, the weight K is reduced by a factor of µ > 1 thereby introducing more and

more (difficult) samples from one iteration to the next. The algorithm is said to con-

verge when it considers all samples but is unable to decrease the value of the objective

function for latent svm below a certain tolerance ǫ. We note that our algorithm provides

the same guarantees as cccp, that is:

Property: Algorithm 4 converges to a local minimum or saddle point solution of prob-

lem (2.1).

This follows from the fact that the last iteration of Algorithm 4 is simply the original

cccp algorithm.

Our algorithm requires an initial parameter w0 (similar to cccp). In our experiments,

we obtained an estimate of w0 by initially setting vi = 1 for all samples and running

the original cccp algorithm for a fixed, small number of iterations T0. As our results

indicate, this simple strategy was sufficient to obtain an accurate set of parameters using

self-paced learning.
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2.4 Experiments

We now demonstrate the benefit of self-paced learning by comparing to CCCP on five

standard machine learning applications. Unless otherwise stated, the initial weight K0 is

set such that the first iteration selects more than half the samples (as there are typically

more easy samples than difficult ones), a factor of µ = 1.3 is used to increase the number

of samples over the iterations and the parameters are initialized using T0 = 2 iterations

of the original cccp algorithm.

2.4.1 Noun Phrase Coreference

Problem Formulation. Given the occurrence of all the nouns in a document, the goal

of noun phrase coreference is to provide a clustering of the nouns such that each cluster

refers to a single object. This task was formulated within the svm framework in [18] and

later extended to include latent variables in [66]. Formally, the input vector x consists

of the pairwise features xij suggested in [51] between all pairs of noun phrases i and j in

the document. The output y represents a clustering of the nouns. A latent variable h

specifies a forest over the nouns such that each tree in the forest consists of all the nouns

of one cluster. Similar to [66], we employ two different loss functions: one corresponding

to the pairwise score and one corresponding to the mitre score. Annotation consistent

inference involves finding the maximum spanning forest (which can be solved by, for

example, Kruskal or Prims algorithm). In order to update the parameters during each

iteration of cccp and self-paced learning, we solve the corresponding svm problem using

the 1-slack reformulation based cutting plane algorithm. Similar to annotation consistent

inference, loss augmented inference (required to compute the most violated constraint)

can be formulated as a minimum spanning tree problem for both types of loss functions

employed in our experiments.

Dataset. We use the publicly available MUC6 noun phrase coreference dataset, which

consists of 60 documents. We use the same split of 30 training and 30 test documents

as [66].

Results. We tested cccp and our self-paced learning method on different values of

C; the average training times over all 40 experiments (20 different values of C and two

different loss functions) for the two methods were 1183 and 1080 seconds respectively.

Fig. 2.1 compares the two methods in terms of the value of the objective function (which

is the main focus of this work), the loss over the training data and the loss over the test
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(a) (b) (c)

Figure 2.1: Results for the noun phrase coreference experiment. Top: mitre score.
Bottom: Pairwise score. (a) The relative objective value computed as (objcccp −
objspl)/objcccp, where objcccp and objspl are the objective values of cccp and self-paced
learning respectively. A significant improvement (greater than tolerance Cǫ) is indi-
cated by a green circle, while a significant declination is shown by a red circle. The
black dashed line corresponds to no difference in the objective values. (b) Loss over the
training data. Red line corresponds to cccp, blue corresponds to self-paced learning.
Minimum mitre loss: 14.48 and 14.02 for cccp and self-paced learning respectively;
Minimum pairwise loss: 31.10 and 31.03. (c) Loss over the test data. Minimum mitre

loss: 15.38 and 14.91; Minimum pairwise loss: 34.10 and 33.93.

data. Note that self-paced learning significantly improves the objective function value

in 11 of the 40 experiments (compared to only once when cccp outperforms self-paced

learning; see Fig. 2.1(a)). It also provides a better training and testing loss for both

mitre and pairwise scores when using the optimal value of C (see Fig. 2.1(b)-(c)).

2.4.2 Motif Finding

Problem Formulation. We consider the problem of binary classification of dna se-

quences, which was cast as a latent svm in [66]. Specifically, the input vector x consists

of a dna sequence of length l (where each element of the sequence is a nucleotide of

type A, G, T or C) and the output space Y = {+1,−1}. In our experiments, the classes

correspond to two different types of genes: those that bind to a protein of interest with

high affinity and those that do not. The positive sequences are assumed to contain

particular patterns, called motifs, of length m that are believed to be useful for clas-

sification. However, the starting position of the motif within a gene sequence is often

not known beforehand. Hence, this position is treated as the latent variable h. For this

problem, we use the joint feature vector suggested by [66]. Specifically,

Ψ(x,y,h) =















(ΨM (xM (h)); ΨBG(xBG(h))) if y = +1,

(0; ΨBG(x)) if y = −1,

(2.3)

where the operator (; ) denotes vector concatenation and 0 is a vector of zeroes of the

appropriate length. The term xM (h) denotes the motif in the sequence x as specified by
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h and xBG(h) denotes the remaining background sequence. We extract different types of

features for the motif (ΨM ) and the background (ΨBG). The motif is represented using

a binary vector of length 4m. The (4(i−1)+ j)th element of the vector denotes whether

the ith position of the motif contains the jth type of nucleotide. The vector ΨBG is the

feature count for the background model (a Markov model of order k). When y = −1,

the entire sequence is consider background. The loss function ∆ is the standard 0-1

classification loss. Here, annotation consistent inference simply involves a linear search

for the starting position of the motif. The svm problem corresponding to the parameter

update step at each iteration is solved using the 1-slack reformulation based cutting plane

algorithm. The cutting planes are computed by solving the loss augmented inference

using a brute-force search over all possible values of output and latent variables (which

can be carried out efficiently in a time linear to the length of the sequence, similar to

annotation consistent inference).

Dataset. We use the publicly available UniProbe dataset [6] that provides positive

and negative dna sequences for 177 proteins. For this work, we chose five proteins at

random. The total number of sequences per protein is roughly 40, 000. For all the

sequences, the motif length m is known (provided with the UniProbe dataset) and the

background Markov model is assumed to be of order k = 3. In order to specify a

classification task for a particular protein, we randomly split the sequences into roughly

50% for training and 50% for testing.

(a) Objective function value
cccp 92.77± 0.99 106.50± 0.38 94.00± 0.53 116.63± 18.78 75.51± 1.97
spl 92.37± 0.65∗ 106.60± 0.30 93.51± 0.29∗ 107.18± 1.48 74.23± 0.59∗

(b) Training error (%)
cccp 27.10± 0.44 32.03± 0.31 26.90± 0.28 34.89± 8.53 20.09± 0.81
spl 26.94± 0.26∗ 32.04± 0.23 26.81± 0.19 30.31± 1.14 19.52± 0.34∗

(c) Test error (%)
cccp 27.10± 0.36 32.15± 0.31 27.10± 0.37 35.42± 8.19 20.25± 0.65
spl 27.08± 0.38 32.24± 0.25 27.03± 0.13 30.84± 1.38 19.65± 0.39∗

Table 2.1: Mean and standard deviations for the motif finding experiments using
the original cccp algorithm (top row) and the proposed self-paced learning approach
(bottom row). The better mean value is highlighted in bold font. Note that self-paced
learning provides significant improvement for 3 out of 5 proteins in the objective value
(which is the primary concern of this work). The improvement in objective value also
translates to significant improvement in training (for 2 proteins) and test errors (for 1

protein).

Results. We used five different folds for each protein, randomly initializing the motif

positions for all training samples using four different seed values (fixed for both methods).
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Figure 2.2: Average Hamming distance between the motifs found in all selected sam-
ples at each iteration. Our approach starts with easy samples (small Hamming distance)
and gradually introduces more difficult samples (large Hamming distance) until it starts
to consider all samples of the training set. The figure shows results for three different
protein-fold pairs. The average Hamming distance (over all proteins and folds) of the
motifs obtained at convergence are 0.6155 for cccp and 0.6099 for self-paced learning.

We report results for each method using the best seed (chosen according to the value of

the objective function). For all experiments we use C = 150 and ǫ = 0.001 (the large

size of the dataset made cross-validation highly time consuming). The average time

over all 100 runs for cccp and self-paced learning are 824 and 1287 seconds respectively.

Although our approach is slower than cccp for this application, as table 2.1 shows, it

learns a better set of parameters. While improvements for most folds are small, for the

fourth protein, cccp gets stuck in a bad local minimum despite using multiple random

initializations (this is indicated by the large mean and standard deviation values). This

behavior is to be expected: in many cases, the objective function landscape is such that

CCCP avoids local optima; but in some cases, CCCP gets stuck in poor local optima.

Indeed, over all the 100 runs (5 proteins, 5 folds and 4 seed values) cccp got stuck in

a bad local minimum 18 times (where a bad local minimum is one that gave 50% test

error) compared to 1 run where self-paced learning got stuck.

Fig. 2.2 shows the average Hamming distance between the motifs of the selected samples

at each iteration of the self-paced learning algorithm. Note that initially the algorithm

selects samples whose motifs have a low Hamming distance (which intuitively correspond

to the easy samples for this application). It then gradually introduces more difficult

samples (as indicated by the rise in the average Hamming distance). Finally, it considers

all samples and attempts to find the most discriminative motif across the entire dataset.

Note that the motifs found over the entire dataset using self-paced learning provide a

smaller average Hamming distance than those found using the original cccp algorithm,

indicating a greater coherence for the resulting output.

2.4.3 Handwritten Digit Recognition

Problem Formulation. Handwritten digit recognition is a special case of multi-label

classification, and hence can be formulated within the svm framework. Specifically,
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given an input vector x, which consists of m grayscale values that represent an image of

a handwritten digit, our aim is to predict the digit. In other words, Y = {0, 1, · · · , 9}. It

is well-known that the accuracy of digit recognition can be greatly improved by explicitly

modeling the deformations present in each image, for example see [59]. For simplicity,

we assume that the deformations are restricted to an arbitrary rotation of the image,

where the angle of rotation is not known beforehand. This angle (which takes a value

from a finite discrete set) is modeled as the latent variable h. We specify the joint

feature vector as Ψ(x,y,h) = (0y(m+1); θh(x) 1;0(9−y)(m+1)), where θh(x) rotates the

image represented by x by the angle corresponding to h and converts it to a vector.

In words, the joint feature vector is the rotated image of the digit which is padded in

the front and back with the appropriate number of zeroes. Similar to the motif finding

experiment, we use the standard 0-1 classification loss. Annotation consistent inference

simply involves a search over a discrete set of angles. The svm problem for parameter

update at each iteration is solved using the 1-slack reformulation based cutting plane

algorithm, where loss augmented inference is performed by searching over all possible

values of the output and latent variables.

Dataset. We use the standard mnist dataset [41], which represents each handwritten

digit as a vector of length 784 (that is, an image of size 28× 28). For efficiency, we use

pca to reduce the dimensionality of each sample to 10. We perform binary classification

on four difficult digit pairs (1 vs 7, 2 vs 7, 3 vs 8, and 8 vs 9), as in [69]. The training

standard dataset size for each digit ranges from 5, 851 to 6, 742, and the test sets range

from 974 to 1, 135 digits. The rotation modeled by the latent variable can take one of

11 discrete values, evenly spaced between −60 and 60 degrees.

Results. For each digit pair, we use C values ranging from 25 to 300, set ǫ = 0.001,

and set K = 104

C . Modeling rotation as a latent variable significantly improves classifica-

tion performance, allowing the images to be better aligned with each other. Across all

experiments for both learning methods, using latent variables achieves better test error;

the improvement over using no latent variables is 12%, 8%, 11%, and 22%, respectively,

for the four digit pairs. cccp learning took an average of 18 minutes across all runs,

while self-paced learning took an average of 53 minutes.

Figure 2.3 compares the training and test errors and objective values between cccp

and self-paced learning. Those runs for which the objective value difference between

self-paced learning and cccp is greater than the convergence criteria range (Cǫ) are

highlighted in blue. Self-paced learning achieves significantly better values in 15 runs,

and is worse in 4 runs, demonstrating that it helps find better solutions to the opti-

mization problems. Though the training and test errors do not necessarily correlate to
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Figure 2.3: Results for four digit pairs from the mnist dataset. Relative primal
objective is the difference between the self-paced learning and cccp objective divided by
the cccp objective. Positive values indicate superior results for self-paced learning. The
dotted black lines delineate where the difference is greater than the convergence criteria

range (Cǫ), and differences outside of this range are highlighted in blue.

objective values, the best test error across C values is better for self-paced learning for

one of the digit pairs (1 vs 7), and is the same for the other three.

2.4.4 Object Localization

Problem Formulation. Given a set of images along with labels that indicate the

presence of a particular object category in the image (for example, a mammal), our goal

is to learn discriminative object models for all object categories (that is, models that

can distinguish between one object, say bison, from another, say elephant). In practice,

although it is easy to mine such images from free photo-sharing websites such as Flickr,

it is burdensome to obtain ground truth annotations of the exact location of the object

in each image. To avoid requiring these human annotations, we model the location of

objects as latent variables. Formally, for a given image x, object class y and location

h, the score is modeled as w⊤Ψ(x,y,h) = w⊤
yΨh(x), where wy are the parameters

that corresponds to the class y and Ψh(·) is the hog [13, 17] feature extracted from

the image at position h (the size of the object is assumed to be the same for all images

— a reasonable assumption for our datasets). The loss function ∆(y, ŷ)) is again the

standard 0-1 classification loss. For the above problem, annotation consistent inference

involves a simple search over possible locations in a given image. In each iteration, the

parameters are updated using the 1-slack reformulation based cutting plane algorithm.

Loss augmented inference is performed by searching over all possible values of the output

and the latent variables.
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Dataset. We use images of 6 different mammals (approximately 45 images per mam-

mal) that have been previously employed for object localization [24]. We split images of

each category into approximately 90% for training and 10% for testing.

Results. We split the images into five different folds to compare our method with

the state of the art cccp algorithm. For each fold, we randomly initialized the initial

location of the object in each image (the initialization was fixed for the two methods).

We used a value of C = 10 and ǫ = 0.001. The average training time over all folds were

362 seconds and 482 seconds for cccp and self-paced learning respectively. Table 2.2

shows the mean and standard deviation of three terms: the objective value, the training

loss and the testing loss. Self-paced learning provided a significantly lower (more than

tolerance) objective value than cccp for all folds. The better objective function value

resulted in a substantial improvement in the training (for 4 folds) and testing loss (an

improvement of approximately 4% for achieved for 2 folds). In these experiments, cccp

never outperformed self-paced learning for any of the three measures of performance.

Objective Train Loss (%) Test Loss (%)
4.70 ± 0.11 0.33 ± 0.18 16.92 ± 5.16

Objective Train Loss (%) Test Loss (%)
4.53 ± 0.15 0.0 ± 0.0 15.38 ± 3.85

Table 2.2: Results for the object localization experiment. Left: cccp. Right: Self-
paced learning. Note that self-paced learning provides better results for all measures of

performance.

Fig. 2.4 shows the imputed bounding boxes for two images during various iterations of

the two algorithms. The proposed self-paced learning algorithm does not use the hard

image during the initial iterations (as indicated by the red bounding box). In contrast,

cccp considers all images at each iteration. Note that self-paced learning provides a

more accurate bounding box for the hard image at convergence, thereby illustrating

the importance of learning in a meaningful order. In our experience, this was a typical

behavior of the two algorithms.

2.4.5 Semantic Segmentation

Problem Formulation. Given a set of partially annotated images, our goal is to learn

a semantic segmentation model, that is, a model that labels each pixel of an image using

its semantic class (such as road, car or person). Specifically, we are interested in learning

the parameters of the region-based semantic segmentation model [21]. Briefly, the model

groups the pixels of an image into coherent, contiguous regions and assigns each label to



Chapter 2. Self-Paced Learning for Latent SVM 21

Figure 2.4: The top row shows the imputed bounding boxes of an easy and a hard
image using the cccp algorithm over different iterations. Note that for the hard image
(one with deer) the bounding box obtained at convergence does not localize the object
accurately. In contrast, the self-paced learning approach (bottom row) does not use the
hard image during initial iterations (indicated by the red color of the bounding box). In
subsequent iterations, it is able to impute an accurate bounding box for both the easy

and the hard image.

a semantic class. The joint feature vector of the image and the segmentation depends on

the features extracted from each region, and each pair of neighboring regions (where two

regions are considered neighboring if they share at least one boundary pixel). We refer

the interested reader to [21] for details regarding the region-based model. In our work,

we are interested in three types of partial annotations: (i) where pixels can be labeled

using a generic background or foreground class, instead of a specific semantic class;

(ii) where the bounding box of an object is specified, without any pixelwise labeling;

and (iii) where the presence of absence of an object class is specified, without any

bounding box information or pixelwise labeling. The loss function is the standard overlap

score [16] between two segmentations. Note that this implies that the loss function

depends on the true (unknown) value of the hidden variables. In order to handle this, we

use an iterative strategy, where the segmentations of all training images are estimated

for the current set of parameters, and then the parameters are updated by solving

a latent svm problem that treats the estimated segmentations as ground-truth. The

entire approach is repeated until convergence. We refer the interested reader to [38]

for details. Annotation consistent inference and loss augmented inference (required

for the parameter update step using stochastic subgradient descent) are performed by

suitably modifying the linear programming relaxation based approach reported in our

earlier work [37]. Both cccp and self-paced learning are initialized using the parameters

learned by a method specifically designed to estimate the parameters of the region-based

model, known as closed loop learning (cll) [21].

Dataset. We use four datasets: (i) the voc2009 segmentation dataset [16], which

provides us with annotations consisting of 20 specific foreground classes and a generic

background for 2249 images; (ii) sbd [21], which provides us with annotations consisting

of 7 specific background classes and a generic foreground for 715 images; (iii) a subset

of the voc2010 detection dataset [16], which provides us with bounding box annotations
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for 1564 images; and (iv) a subset of the ImageNet dataset [15], which provides us

with image-level labels for 1000 images. We use 225 voc2009 and 53 sbd images for

validation, and 750 voc2009 and 90 sbd images for testing.

Figure 2.5: Accuracies for the voc2009 test set. First row shows the results obtained
using cll [21] with a combination of voc2009 and sbd training images. The second
row shows the results obtained using self-paced learning for latent svm with the same
training set of the training images. The third row shows the results obtained using an
additional 1564 bounding box annotations. The fourth row shows the results obtained
by further augmenting the training dataset with 1000 image-level annotations. The best
accuracy for each class is underlined. The fifth row shows the results obtained when the

latent svm is learned using cccp on the entire dataset.

Figure 2.6: Accuracies for the sbd test set. See caption of Fig. 2.5 for an explanation
of the various methods.

Results. Figures 2.5 and 2.6 (rows 1 and 2) show the accuracies obtained for sbd and

voc2009 test images respectively, when the training images are restricted to the first

two datasets (which provide generic class annotations). The accuracies are measured

using the overlap score. Note that the latent svm is trained using the self-paced learning

algorithm. While both cll and latent svm produce specific-class segmentations of all the

test images, we use generic classes while measuring the performance due to the lack of

specific-class ground-truth annotations. Note that latent svm provides better accuracies

for nearly all the object classes in voc2009 (17 of 21 classes). For sbd, latent svm

provides a significant boost in performance for ‘sky’, ‘road’, ‘grass’ and ‘foreground’.

With the exception of ‘building’, the accuracies for other classes is comparable. The

reason for poor performance in the ‘mountain’ class is that several ‘mountain’ pixels
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are labeled as ‘tree’ in sbd (which confuses both the learning algorithms). Our results

convincingly demonstrate the advantage of using latent svm.

Figures 2.5 and 2.6 (row 3) show the accuracies obtained by using the additional image

provide by the third dataset (that is, the bounding box annotations), together with the

self-paced learning algorithm. Once again, we observe an improvement in the accuracies

for nearly all the voc2009 classes (18 of 21 classes) compared to the latent svm trained

using only generic class annotations. For sbd, we obtain a significant boost for ‘tree’,

‘water’ and ‘foreground’, while the accuracies of ‘road’, ‘grass’ and ‘mountain’ remain

(almost) unchanged.

Image cll Our

Figure 2.7: The first two rows show the results obtained for images from the voc2009
test set. Note that, unlike our approach that learns the parameters using latent svm

on a large dataset, cll mislabels background pixels into the wrong specific classes. The
last two rows show images from the sbd test set. While our approach is able to identify

most of the foreground pixels correctly, cll mislabels them as background.

Figures 2.5 and 2.6 (row 4) show the accuracies obtained by using the additional im-

ages provide by the fourth dataset (that is, image-level annotations), together with the

self-paced learning algorithm. For the voc2009 segmentation test set, the final model

learned from all the training images provides the best accuracy for 12 of the 21 classes.
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Compared to the model learned using generic class labels and bounding boxes, we ob-

tain a significant improvement for 13 classes by incorporating image-level annotations.

Of the remaining 8 classes, the accuracies are comparable for ‘bird’, ‘boat’, ‘chair’ and

‘train’. For the sbd test set, the model trained using all the data obtains the highest

accuracy for 5 of the 8 classes. Figure 2.7 shows examples of the specific-class segmenta-

tion obtained using our method. Note that the parameters learned using our approach

on a large dataset are able to correctly identify the specific classes of pixels.

Figures 2.5 and 2.6 (row 5) show the accuracies obtained using cccp for voc2009 and

sbd respectively. Note that cccp does not provide any improvement over cll, which

is trained using only the strongly supervised images, in terms the average overlap score

for voc2009 . While the overlap score improves for the sbd dataset, the improvement is

significantly better when using self-paced learning (row 4). These results convincingly

demonstrate that, unlike cccp, self-paced learning is able to handle the noise inherent

in the problem of learning with diverse data (for example, see Figure 2.8).

Image Annotation Iteration 1 Iteration 3 Iteration 6

(a)

Image + Box Inference Iteration 1 Iteration 2 Iteration 4

(b)

Figure 2.8: Labelings obtained using annotation-consistent inference during different
iterations of self-paced learning. (a) Images annotated with generic classes. Column
2 shows the annotation (where the checkered patterns indicate generic classes). In
columns 3 − 5, pixels labeled using the correct specific-class by annotation-consistent
inference are shown in white, while pixel labeled using the wrong specific-class are shown
in black (we labeled these images with specific-class annotations only for the purpose of
illustration; these annotations were not used during training). A blue surrounding box
on the labeling implies that the example was selected as easy by self-paced learning, while
a red surrounding box indicates that is wasn’t selected during the specified iteration. Note
that self-paced learning discards the image where the cow (row 2) is incorrectly labeled.
(b) Images annotated using bounding boxes. Column 2 shows the annotation obtained
using bounding box inference. Note that the objects have been accurately segmented.
Furthermore, self-paced learning discards the image where the sky (row 2) is incorrectly

labeled.
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2.5 Discussion

We proposed an automatic self-paced learning regime in the context of parameter esti-

mation for latent svm. Our method works by iteratively solving a biconvex optimization

problem that simultaneously selects easy samples and updates the parameters. Using

four standard datasets from disparate domains (natural language processing, computa-

tional biology and computer vision) we showed that our method outperforms the state

of the art approach.

In the current work, we solve the biconvex optimization problem using an alternate

convex search strategy, which only provides us with a local minimum solution. Although

our results indicate that such a strategy is more accurate than cccp, it is worth noting

that the biconvex problem can also be solved using a global optimization procedure, for

example the one described in [19]. This is a valuable direction for future work.

We note that while we have defined our self-paced learning problem in the context of

latent svm, our approach generalizes to other learning settings in which the objective

decomposes into a linear sum of terms for each sample. If this criterion is met, the

variables vi can multiply each such term, the resulting objective will be convex in v given

the remaining parameters, and the convex relaxation will result in integer solutions for

v. For example, we can easily apply this to (hard or soft) em for maximum likelihood

estimation, using a simple change to the M-step. We believe that our approach provides

an elegant mathematical formulation for self-paced learning, which allows it to be applied

easily and effectively to a broad range of non-convex learning tasks.
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Max-Margin Min-Entropy Models

3.1 Introduction

As we have seen in the previous chapter, latent variable models (lvm) such as latent

svm provide an elegant formulation for weakly supervised learning. They are widely

applicable to many areas of machine learning including computer vision, natural lan-

guage processing and computational biology. Formally, an lvm consists of three types

of variables: (i) the observed variables, or input, whose values are known during both

training and testing; (ii) the unobserved variables, or output, whose values are known

only during training; and (iii) the latent variables, whose values are unknown during

both training and testing. An lvm can be interpreted as the distribution of the output

and the latent variables conditioned on, or jointly with, the input. Modeling the condi-

tional distribution results in discriminative lvms, while modeling the joint distribution

results in generative lvms. Given an input, the output is typically predicted by either (i)

computing the most probable assignment of the output and the latent variables accord-

ing to the aforementioned distribution [17, 60, 66]; or (ii) computing the most probable

assignment of the output by marginalizing out the latent variables [14]. Both these

prediction criteria ignore an important factor: how certain are we about the values of

the latent variables for the predicted output? Since the underlying assumption of lvm

is that the latent variables provide useful cues for predicting the output, we argue that

minimizing the confusion in their values will help improve the accuracy of the model.

More importantly, in many cases, we would like to obtain an estimate of the latent

variables with high certainty. For example, using an lvm for a ‘car’ we would like not

only to classify an image as containing a car or not, but also predict the location of the

car if present.

26
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We propose a novel family of discriminative lvms, called max-margin min-entropy (m3e)

models, that predicts the output by minimizing the Rényi entropy [56] of the correspond-

ing generalized distribution (that is, the unnormalized part of the distribution that mod-

els the output under consideration). This amounts to minimizing a score that consists

of two terms: (i) the negative log-likelihood of the output obtained by marginalizing the

latent variables; and (ii) the Rényi entropy of the normalized conditional probability

of the latent variables given the input and the output. In other words, the predicted

output not only has a high probability, but also minimizes the uncertainty in the values

of the latent variables.

Given a training dataset, the parameters of an m3e model are learned by maximizing the

margin between the Rényi entropies of the generalized distributions corresponding to the

ground-truth output and all other outputs. Intuitively, this ensures that the output of

a training sample is correctly predicted by the model. We show that the corresponding

optimization problem amounts to minimizing an upper bound on a user-defined loss over

the training dataset. Furthermore, we show that the m3e family includes, as a special

case, the latent support vector machine (or latent svm for short) formulation [17, 60, 66].

In order to use the m3e family of models in practice, we propose an efficient trust region

style algorithm for learning their parameters. Our approach relies only on a solver for

structured support vector machine (or structured svm for short) problems [63, 65], of

which there are several reported in the literature [32, 58]. Our algorithm is directly

applicable for problems where the space of latent variables is tractable (for example,

small number of latent variables with a small number of putative values, or when the

underlying graphical model is a tree). When faced with an intractable latent space,

similar to other lvms, we can resort to approximate inference schemes in order to obtain

an estimate of the Rényi entropy.

We demonstrate the efficacy of m3e models on two standard machine learning applica-

tions using publicly available datasets: discriminative motif finding and image classifi-

cation.

3.2 Related Work

The most commonly used method for learning the parameters of an lvm is the expectation-

maximization (em) algorithm [14, 62], or its many variants [20, 50], including discrimi-

native em [57]. The em algorithm attempts to maximize the expected likelihood of the

training data, where the expectation is taken over a distribution of the latent variables.

Once the parameters are learned, the output of the test sample is typically predicted by
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marginalizing out the latent variables (corresponding to the objective optimized by soft

em) or by maximizing the joint probability of the output and the latent variables (cor-

responding to the objective optimized by hard em, which approximates the expectation

by a pointwise estimate). As argued earlier, predicting the output in this manner does

not take into account any measure of uncertainty in the values of the latent variables.

Recently, Smola et al. [60], Felzenszwalb et al. [17] and Yu and Joachims [66] indepen-

dently proposed the latent svm framework, that extends the structured svm [63, 65] to

handle latent variables. The parameters of a latent svm are learned by minimizing an

upper bound on a user-defined loss, a process that is closely related to hard em. The

latent svm formulation has steadily gained popularity, not least because its parameter

learning problem only requires a maximum a posteriori inference algorithm—a well-

studied problem with several accurate approximate (and in some cases, exact) methods.

In section 3.5, we will show that latent svm can be viewed as a special case of the m3e

family.

Finally, we note that there have been several works reported in the literature based on the

principle of maximum entropy [29], including classification [27] and feature selection [31].

Maximum entropy classification has also been extended to handle latent variables [30].

However, unlike m3e, maximum entropy methods measure the entropy of the input and

the output, and not the entropy of the latent variables (which are, in fact, marginalized

out).

3.3 Preliminaries

Notation. As usual, we denote the input by x ∈ X , the output by y ∈ Y and the

latent variables by h ∈ H. As mentioned earlier, the value of input x is known during

both training and testing, the value of the output y is only known during training

and the value of the latent variables h is not known during either training or testing.

We denote the parameters of our model by w. For simplicity, we assume a discrete

setting. In this case, the conditional probability of the output and the latent variables,

given the input, can be viewed as a set Px = {Pr(y,h|x;w), ∀(y,h) ∈ Y × H}, whose

elements are non-negative and sum to one. Furthermore, we denote the conditional

probability of the latent variables, given the input and a particular output y, as the

set Py
x = {Pr(h|y,x;w), ∀h ∈ H}. A generalized distribution refers to a subset of the

distribution Px [56]. Of particular interest to us are those subsets that correspond to a

particular output y, that is, Qy
x = {Pr(y,h|x;w), ∀h ∈ H}, where we use Q instead of

P to indicate the fact that generalized distributions need not sum to one.
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Rényi Entropy. Throughout the chapter, we will employ the concept of Rényi en-

tropy [56], which is a family of measures for the uncertainty in a distribution. The

entire family of Rényi entropy measures is parameterized by a single positive scalar α.

Formally, the Rényi entropy of a generalized distribution Qy
x is given by

Hα(Q
y
x;w) =

1

1− α
log

(∑

h Pr(y,h|x;w)α
∑

h Pr(y,h|x;w)

)

. (3.1)

Some interesting special cases of Rényi entropy include the well-known Shannon entropy

(corresponding to taking the limit α→ 1) and the minimum entropy (corresponding to

taking the limit α→∞),

H1(Q
y
x;w) =

−
∑

h Pr(y,h|x;w) log Pr(y,h|x;w)
∑

h Pr(y,h|x;w)
,

H∞(Qy
x;w) = − logmax

h
Pr(y,h|x;w). (3.2)

The Rényi entropy family is complete in that no other function can satisfy all the pos-

tulates of an uncertainty measure. We refer the reader to [56] for details.

3.4 M3E Models

We wish to develop an lvm such that, given an input x, the best output y∗ is predicted

by optimizing an appropriate measure such that (i) y∗ has a high probability; and (ii)

y∗ minimizes the confusion in the values of the latent variables. Using this lvm will not

only allow us to accurately predict the output (for example, whether the image contains

a ‘car’ or not) but also the latent variables (the location of the car in the image) with

high certainty, which is important in many applications. The key observation of this

work is that the readily available Rényi entropy of generalized distributions is just such

a measure. Specifically, it can be verified that for any output y, the following holds true:

Hα(Q
y
x;w) = − log Pr(y|x;w) +Hα(P

y
x ;w). (3.3)

In other words, the Rényi entropy of the generalized distribution of an output y is the

sum of the negative log-likelihood of y (corresponding to point (i)) and the Rényi entropy

of the normalized conditional probability of the latent variables given y (corresponding

to point (ii)). We now provide a formal description of the family of lvms, which we refer

to as the max-margin min-entropy (m3e) models, that uses Rényi entropy for prediction.

Given an input x ∈ X , an m3e model defines a conditional distribution over all possible

outputs y ∈ Y and latent variables h ∈ H. For simplicity of the description, and

computational tractability of the corresponding learning and inference algorithms, we



Chapter 3. Max-Margin Min-Entropy Models 30

focus on log-linear models. Specifically, for a given set of parameters w, the distribution

is given by

Pr(y,h|x;w) =
1

Z(x;w)
exp

(

w⊤Ψ(x,y,h)
)

, (3.4)

where Ψ(x,y,h) refers to the joint feature vector of the input, output and latent vari-

ables, and Z(x;w) is the partition function that normalizes the distribution to sum to

one. Given an input x, the corresponding output is predicted by minimizing the Rényi

entropy of the corresponding generalized distribution, that is,

y∗ = argmin
y

Hα(Q
y
x;w). (3.5)

3.5 Learning M3E Models

Given a training dataset D = {(xi,yi), i = 1, · · · , n}, we would like to learn the param-

eters w of an m3e model such that it predicts the correct output of a given instance. To

this end, we propose a parameter estimation approach that tries to introduce a margin

between the Rényi entropy of the ground-truth output and all other outputs. The desired

margin is specified by a user-defined loss function ∆(yi,y) that measures the difference

between the two outputs y and yi. Similar to previous max-margin formulations, we

assume that ∆(y,y) = 0 for all y ∈ Y.

Formally, our parameter estimation approach is specified by the following optimization

problem:

min
w,ξ≥0

1

2
||w||2 +

C

n

n
∑

i=1

ξi (3.6)

Hα(Q
y
i ;w)−Hα(Q

yi

i ;w) ≥ ∆(yi,y)− ξi,

∀y 6= yi, ∀(xi,yi) ∈ D,

where we use Qy
i instead of Qy

xi
for conciseness. The objective function of the above

problem consists of two terms. The first term corresponds to regularizing the parameters

by minimizing its ℓ2 norm. The second term encourages the Rényi entropy for the

ground-truth output to be smaller than the Rényi entropy of all other outputs by the

desired margin. As can be seen from the constraints of the above problem, the greater

the difference between yi and y (as specified by the loss function ∆(·, ·)), the more the

desired margin. The fixed term C > 0 is the relative weight of these two terms.

Problem (3.6) can also be seen as minimizing a regularized upper bound on the user-

defined loss ∆(yi,yi(w)) over the training dataset, where yi(w) denotes the predicted



Chapter 3. Max-Margin Min-Entropy Models 31

output of the ith training sample using the parameters w. More precisely, the following

proposition holds true.

Proposition 1. ∆(yi,yi(w)) ≤ ξi, where ξi are as defined in problem (3.6).

Proof. Since yi(w) is the predicted output using them3emodel, yi(w) = argminŷ Hα(Q
ŷ
i ;w).

Using this observation, we obtain the following:

∆(yi,yi(w))−Hα(Q
yi

i ;w)

≤ ∆(yi,yi(w))−Hα(Q
yi(w)
i ;w)

≤ max
ŷ

(

∆(yi, ŷ)−Hα(Q
ŷ
i ;w)

)

= ξi −Hα(Q
yi

i ;w). (3.7)

Canceling the common term Hα(Q
yi

i ;w) in the first and last expressions of the above

inequalities proves the proposition.

The above proposition raises the question of the relationship between m3e models and

the recently proposed latent svm formulation [17, 60, 66], which was also shown to

minimize an upper bound on the loss function [66]. Our next proposition provides an

answer to this question by showing that the m3e model corresponding to the minimum

entropy (that is, α→∞) is equivalent to latent svm.

Proposition 2. When α =∞, problem (3.6) is equivalent to latent svm.

The proof is omitted since it follows simply by substituting the minimum entropy H∞

(see equation (3.2)) in problem (3.6).

3.6 Optimization

While problem (3.6) is not convex, it has a tractable form that allows us to obtain an

accurate set of parameters. Specifically, the following proposition holds true.

Proposition 3. Problem (3.6) is a difference-of-convex program for all values of α 6= 1.

Proof Sketch. The objective function of problem (3.6) is clearly convex is w and

slack variables ξi. The non-convexity arises due to the constraints. Specifically, the
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constraints can be simplified as

1

1− α
log
∑

h

exp(αw⊤Ψ(xi,y,h))

−
1

1− α
log
∑

h

exp(w⊤Ψ(xi,y,h))

−
1

1− α
log
∑

h

exp(αw⊤Ψ(xi,yi,h))

+
1

1− α
log
∑

h

exp(w⊤Ψ(xi,yi,h))

≥ ∆(yi,y)− ξi. (3.8)

Since each term in the lhs of the above constraint has the so-called log-sum-of-exponentials

form that is known to be convex, it follows that problem (3.6) is a difference-of-convex

program. In other words, each of its constraints can be written in the form fi(w) −

gi(w) ≤ 0, where both fi(w) and gi(w) are convex.

An approximate solution to difference-of-convex programs can be obtained using the

concave-convex procedure (cccp) [67]. Briefly, starting with an initial estimate w0,

cccp approximates the convex function gi(w) using a linear function g′i(w) whose slope

is defined by the tangent of gi(w) at the current estimate wt. Replacing gi(w) by g′i(w)

in the constraints results in a convex program, which is solved optimally to obtain a

new estimate wt+1. The entire process is repeated until the objective function of the

problem cannot be reduced below a user-specified tolerance.

The cccp algorithm is guaranteed to provide a saddle point or local minimum solution

to problem (3.6) [61]. However, it requires solving a series of optimization problems

whose constraints are in the log-sum-of-exponentials form. While these constraints are

convex, and the resulting problem can be solved in polynomial time, the typical runtime

of the standard solvers is prohibitively large for real world applications. In § 3.6.2

we propose a novel trust region style algorithm that provides an approximate solution

to problem (3.6) by solving a series of structured svm problems. However, we begin

by describing an important exception, corresponding to the minimum entropy (that is,

α→∞), where the cccp algorithm itself reduces to a series of structured svm problems.

3.6.1 Learning with the Minimum Entropy

While Proposition 2 demonstrates that the minimum entropy m3e model and the latent

svm are equivalent, there is a subtle but important difference in their respective opti-

mization using cccp. Consider the cccp algorithm for the minimum entropy m3emodel,

described in Algorithm 5. The m3e model specifies a margin between the ground-truth
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Algorithm 5 The cccp algorithm for parameter estimation of the minimum entropy
m3e model.

input D = {(x1,y1), · · · , (xn,yn)}, w0, ǫ.
1: t← 0
2: repeat
3: Update h∗

i = argmaxhi∈H
w⊤

t Φ(xi,yi,hi).
4: Update wt+1 by fixing the latent variables to h∗

i and solving the following convex
problem:

min
w,ξi≥0

1

2
||w||2 +

C

n

∑

i

ξi, (3.9)

w⊤(Ψ(xi,yi,h
∗
i )−Ψ(xi,y,h))

≥ ∆(yi,y)− ξi,

∀y 6= yi, ∀h ∈ H, ∀(xi,yi) ∈ D.

5: t← t+ 1.
6: until Objective function cannot be decreased below tolerance ǫ.

output yi and all other incorrect outputs y 6= yi. In order to ensure that the prob-

lem defines a valid upper bound, it constrains the slack variables to be non-negative,

that is, ξi ≥ 0. During cccp, this results in a succession of the convex optimization

problems (3.9). In contrast, latent svm simply specifies a margin between the ground-

truth output and all outputs including the ground-truth (which ensures ξi ≥ 0 since

∆(yi,yi) = 0) [66]. During cccp, this results in the following additional set of con-

straints:

w⊤(Φ(xi,yi,h
∗
i )− Φ(xi,yi,h)) ≥ −ξi, ξi ≥ 0,

∀h ∈ H, ∀(xi,yi) ∈ D. (3.10)

The additional constraints of latent svm encourage the most likely estimates of the latent

variables to remain unchanged during the parameter update step (step 4), since they try

to maximize the margin between the log probability of (yi,h
∗
i ) and the log probabilities

of (yi,h). Intuitively, this is a bad idea since it could make the algorithm converge

earlier than desired. In our experiments we show that the minimum entropy m3e model

provides better results than latent svm.

3.6.2 Learning with General Entropies

As mentioned earlier, when α 6= ∞, the cccp algorithm requires us to solve a series

of convex problem whose constraints contain terms in the log-sum-of-exponentials form.

This limits the ability of cccp for learning the parameters of a general m3e model

using large datasets. To make m3e practically useful, we propose a novel optimization
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Algorithm 6 The algorithm for parameter estimation of the m3e model with general α.

input D = {(x1,y1), · · · , (xn,yn)}, w0, ǫ.
1: t← 0
2: repeat
3: For each input (xi) and output y ∈ Y, compute the following terms

Gα(Q
y
i ;wt) = ∇wHα(Q

y
i ;w)|wt

, (3.11)

Cα(Q
y
i ;wt) = Hα(Q

y
i ;wt)−w⊤

t Gα(Q
y
i ;wt).

The above terms can be used to approximate the Rényi entropy Hα(Q
y
i ;w) using

the first-order Taylor’s series approximation as

Hα(Q
y
i ;w) ≈ H ′

α(Q
y
i ;w) (3.12)

= w⊤Gα(Q
y
i ;wt) + Cα(Q

y
i ;wt)

4: Update wt+1 by solving the following convex problem:

min
w,ξi≥0

1

2
||w||2 +

C

n

∑

i

ξi, (3.13)

H ′
α(Q

y
i ;w)−H ′

α(Q
yi

i ;w)

≥ ∆(yi,y)− ξi,

∀y 6= yi, ∀(xi,yi) ∈ D,

||w −wt||
2 ≤ µ.

The term µ specifies a trust region where H ′
α(·) accurately approximates H ′

α(·).
5: t← t+ 1.
6: until Objective function cannot be decreased below tolerance ǫ.

approach for problem (3.6), which is outlined in Algorithm 6. Our approach consists of

two main steps: (i) linearization (step 3); and (ii) parameter update (step 4). During

linearization, we obtain an approximation of the Rényi entropy for a general α using

a first-order Taylor’s series expansion around the current parameter estimate wt. This

approximation, denoted by H ′
α(·;w), is a linear function in w. Hence, the parameter

update step reduces to solving the structured svm problem (3.13). Since linearization

provides a good approximation for the Rényi entropy near wt, but a poor approximation

far from wt, we restrict the update step to search for new parameters only around

wt (analogous to defining a trust region for non-convex problems [7]) by specifying

the constraint ||w − wt||
2 ≤ µ. It is worth noting that this constraint can be easily

incorporated into any standard structured svm solver [32, 58, 63, 65], which makes

Algorithm 6 computationally tractable.

The parameter µ governs the size of the trust region, and therefore, influences the trade-

off between the speed and the accuracy of our algorithm. Specifically, a large µ will allow

us to search over a large space thereby increasing the speed, but may converge to an

inaccurate solution due to the poor approximation provided by the linearization step over
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Figure 3.1: The average (over all proteins and folds) test errors for the motif finding
experiment across varying values of C and α. Left: All values of C and α that were
used in our experiments. Right: Zoomed-in version to highlight the difference in per-
formance among the various methods. For each (protein,fold) pair, the model with the
best train error out of 4 random initializations was chosen. Further results are provided
in Table 3.1. As can be seen, lower values of α achieve the best test errors, and larger
values of α approach the performance of latent svm, which solves the same problem
as an m3e with α = ∞ with a slightly different optimization procedure. Note that the
results for α = 1 become unstable for larger values of C due to numerical instability

during parameter estimation. Best viewed in color.

the entire trust region. A small µ will restrict us to a region where the approximation

provided by the linearization is accurate, but will slow down the algorithm. In practice,

we found that the following simple strategy provided a desirable trade-off. We start

with a large value µ = µmax, obtain the solution w′ and compute the objective of

problem (3.6). If the objective function has decreased above the tolerance ǫ since the

previous iteration, then we set wt+1 = w′. Otherwise, we anneal µ ← µ/λ and solve

problem (3.13) to obtain a new w′. Algorithm 6 is said to converge when the difference

in the objective of problem (3.6) computed at wt+1 and wt is below tolerance ǫ.

3.7 Experiments

We now demonstrate the efficacy of m3e models using two standard machine learning

applications that were addressed using the latent svm formulation in the previous chap-

ter: motif finding and image classification. Specifically, we show how the more general

m3e formulation can be used to significantly improve the results compared to latent

svm.

3.7.1 Motif Finding

Problem Formulation. We consider the problem of binary classification of dna se-

quences. Specifically, the input vector x consists of a dna sequence of length l (where
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each element of the sequence is a nucleotide of type A, G, T or C) and the output space

Y = {0, 1}. In our experiments, the classes correspond to two different types of genes:

those that bind to a protein of interest with high affinity and those that do not. The

positive sequences are assumed to contain particular patterns, called motifs, of length

m that are believed to be useful for classification. However, the starting position of

the motif within a gene sequence is often not known. Hence, this position is treated

as the latent variable h. Given an input x, an output y and a latent variable h, we

use the joint feature vector suggested by [66]. The loss function ∆ is the standard 0-1

classification loss. The number of possible values of the latent variables is small (of the

order of the size of the dna sequence), which makes this problem tractable within the

m3e formulation without having to resort to approximate inference schemes.

Dataset. We use the publicly available UniProbe dataset [6] that provides positive

and negative dna sequences for 177 proteins. For this work, we chose five proteins at

random. The total number of sequences per protein is roughly 40, 000. For all the

sequences, the motif length m is known. In order to specify a classification task for a

particular protein, we randomly split the sequences into roughly 50% for training and

50% for testing. We report results using 5 folds.

Results. Figure 3.1 shows the test errors for latent svm and various m3e models

across different values of C. The values are averaged over all 25 (protein, fold) pairs.

For each protein and each fold, we initialize the methods using four different random

seeds, and report the test error corresponding to the seed with the best training error

(with ties broken by training objective value). As the results indicate, using high values

of α provides similar results to latent svm. Recall that while the objective for an m3e

model with α = ∞ is equivalent to that of latent svm, the optimizations for each are

different, thereby yielding different results. The m3e models with low values of α achieve

significantly better performance than latent svm, indicating that these values are more

suitable for predicting whether a dna sequence has a high affinity towards binding to a

particular protein. Table 3.1 shows the average test error for the best C and α values.

The best m3e model achieves 2.2% lower test error than the best latent svm model.

3.7.2 Image Classification

Problem Formulation. Given a set of images along with labels that indicate the

presence of a particular object category in the image (for example, a mammal), our goal

is to learn discriminative object models. Specifically, we consider two types of problems:
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Latent svm m3e

Protein 052 C = 5000 C = 7500, α = 0.25
Train Error 28.6% 26.9%
Test Error 29.2% 27.4%
Protein 074 C = 5000 C = 10000, α = 0.25
Train Error 26.7% 23.6%
Test Error 27.6% 24.2%
Protein 108 C = 500 C = 10000, α = 0.25
Train Error 26.8% 25.0%
Test Error 27.1% 25.3%
Protein 131 C = 750 C = 750, α = 0.25
Train Error 28.8% 27.3%
Test Error 29.2% 27.6%
Protein 146 C = 1000 C = 5000, α = 0.25
Train Error 22.2% 19.9%
Test Error 22.5% 20.1%
Average

Train Error 26.6% 24.5%
Test Error 27.1% 24.9%

Table 3.1: Average training and test errors for 5 randomly chosen proteins, split into
5 random folds. For each protein, the parameters that achieved the best mean training
error across folds were chosen, and those parameters are shown. The m3e models
outperform latent svm on each protein, and overall yield an improvement of over 2%

in terms of both the training error and the test error.

(i) given an image containing an instance of an object category from a fixed set of c cat-

egories, predict the correct category (that is, a multi-class classification problem, where

the set of outputs Y = {0, 1, · · · , c−1}); (ii) given an image, predict whether it contains

an instance of an object category of interest or not (that is, a binary classification prob-

lem, where Y = {0, 1}). In practice, although it is easy to mine such images from free

photo-sharing websites such as Flickr, it is burdensome to obtain ground truth annota-

tions of the exact location of the object in each image. To avoid requiring these human

annotations, we model the location of objects as latent variables. Formally, for a given

image x, label y ∈ Y and location h, the score is modeled as w⊤Φ(x,y,h) = w⊤
yΦh(x),

wherewy are the parameters that corresponds to the label y and Φh(·) is the hog [13, 17]

feature extracted from the image at position h (the size of the object is assumed to be

the same for all images—a reasonable assumption for our datasets). The number of

possible values of the latent variables is of the order of the number of pixels in an image,

which makes m3e learning tractable without resorting to approximate inference. For

both the settings (multi-class classification and binary classification), the loss function

∆(y, ŷ) is the standard 0-1 classification loss.

Dataset. We use images of 6 different mammals (approximately 45 images per mam-

mal) that have been previously employed for object localization [24]. We split the images
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Figure 3.2: Test errors for the multi-class classification setting. Latent svm performs
poorly compared to the m3e models, which attain the best test error of 12.3% for all

α ≥ 1000.0 in our experiments.

of each category into approximately 90% for training and 10% for testing. We report

results for 5 such randomized folds.

Results. As in the motif finding application, we initialize each method using four

different random seeds, and report the test error corresponding to the seed with the

best training error (with ties broken by training objective value). Fig. 3.2 shows the

results of the multi-class classification setting, averaged over all 5 folds. As can be

seen, latent svm performs poorly compared to the m3e models. All m3e models with

α ≥ 1000.0 (including α = ∞) provide the best test error of 12.3%. Fig. 3.3 shows the

average (over 5 folds) test errors for all 6 binary classification problems. For the “deer”

class, m3e models achieve the same performance as latent svm. For the “bison” class,

similar to the multi-class classification setting, α =∞ provides the best results. For the

other four classes (“elephant”, “giraffe”, “llama” and “rhino”), the best performing m3e

models use a smaller value of α (between 2.0 and 8.0). This illustrates the importance

of selecting the right value of α for the problem at hand, instead of relying solely on the

minimum entropy, as is the case with latent svm. Overall, the average test classification

errors across all six mammals are 5.7% for latent svm, 5.4% for the minimum entropy

m3e model, and 4.2% for the best m3e model.

3.8 Discussion

We presented a new family of lvms, called m3e models, that predict the output of a

given input as the one that results in the minimum Rényi entropy of the corresponding
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Figure 3.3: Image classification test errors for all six mammal classes. Each number
is averaged across 5 random folds; in each fold, the model with the best training error out
of 4 random initializations was chosen. For each mammal, the m3e model that achieved
the best test error is shown with the corresponding α value indicated, along with latent
svm and the minimum entropy m3e model (α = ∞). The average test classification
errors across all six mammals are 5.7% for latent svm, 5.4% for the minimum entropy

m3e model, and 4.2% for the best m3e model. Best viewed in color.

generalized distribution. The upshot of this is that the predicted output (i) has a high

probability; and (ii) minimizes the uncertainty in the latent variables. We showed how

the parameters of an m3e model are learned using a max-margin formulation can that

be viewed as minimizing an upper bound on a user-defined loss. Included as a special

case in our family of models is the latent svm framework. Empirically, we demonstrated

that the more general m3e models can outperform latent svm.

Similar to other lvms, when the latent variable space is small, or when the underlying

distribution is tractable (for example, a small tree-width distribution), the parameters

of an m3e model can be learned accurately. Specifically, in this case, parameter learning

is equivalent to solving a difference-of-convex optimization problem using cccp [67] or

the self-paced learning algorithm described in the previous chapter. When the latent

variables lie in an exponentially large space, m3e can lend itself to approximate opti-

mization. For example, we could design an appropriate variational inference procedure

that best approximates a Rényi entropy of interest. This offers an interesting direction

for future work.

The introduction of m3e models throws up several interesting questions. For example, is

it possible to determine the best value of α for a type of latent variable? Given a problem

that requires different types of latent variables (say, learning an image segmentation

model using partially segmented images, or bounding box annotations, or image-level

labels), should we employ different α values for them? Can these values themselves be
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learned? Answers to these questions would not only be of great practical importance,

but would also reveal interesting theoretical properties of the m3e family of models.

Finally, we note that while the method described in this chapter employs Rényi entropy,

other forms of entropy, such as the generalized Rényi entropy [46], the Havrada-Charvat

entropy [23] or Rao’s quadratic entropy [55], are also readily applicable within our max-

margin learning framework. In addition, the generalized Rényi entropy can be easily

optimized using our trust region style algorithm. Designing efficient optimization tech-

niques for learning m3e models with other entropies remains an open challenge.



Chapter 4

Dissimilarity Coefficient Learning

with General Loss Functions

4.1 Introduction

In the previous chapters, we have consider the problem of learning latent variable models

(lvm) when the loss function does not depend on the latent variables. In other words,

we have looked at applications that do not require an accurate prediction of the latent

variables at test time. As is typical for an lvm, we have employed a single distribution

over the input, the output and the latent variables. In this setting, a natural framework

would be to model the uncertainty in the value of the latent variables and learn an lvm

by marginalizing them out (for example, in the case of the expectation-maximization, or

em, algorithm or m3e models). However, such an approach is unsuited for applications

where the accuracy of the latent variable prediction is crucial during test time. For

example, consider the problem of learning an object detector from images that have

been labeled as either positive (contains an instance of the object category) or negative

(does not contain an instance of the object category). In this case, the bounding box of

the object in the positive images would have to be modeled as latent variables. However,

at test time, the accuracy would rely not only on our ability to label a previously unseen

image as positive or negative, but by accurately localizing the object instance in the

positive image as well.

As an alternative to marginalizing the latent variables, we can use a delta distribution

(which is 0 everywhere except for one value) that provides a pointwise estimate of the

output and the latent variables (for example, in the case of the latent svm, framework).

However, discarding the uncertainty in latent variables can make such an approach

41
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prone to error due to noise (for example, background clutter that can be confused with

an object in feature space).

The above argument illustrates the deficiency of using a single joint distribution over

the output and the latent variables to address two separate tasks: (i) modeling the

uncertainty over latent variables during training; and (ii) making accurate predictions

during testing. We address this deficiency by proposing a novel framework that consists

of two distributions: (i) a conditional distribution to model the uncertainty of the latent

variables for a given input-output pair; and (ii) a delta distribution to predict the output

and the latent variables for a given input. In order to learn the distributions from a

training dataset, we build on the intuition that they should agree with each other, that

is, (i) the output predicted by the delta distribution should match the ground-truth

output; and (ii) the latent variables predicted by the delta distribution should have a high

probability according to the conditional distribution. Due to the limited representational

power of any model we may not be able to achieve complete agreement (that is, all

outputs are predicted correctly, and all predicted latent variables have probability 1).

In order to make the two distributions as similar as possible, we minimize a regularized

upper bound on a loss-based dissimilarity measure [55] between the distributions.

Unlike previous loss-based learning frameworks for lvms, such as latent svm, we consider

a general loss function that not only depends on the output but also the latent variables.

Such a loss function is essential when solving problems that require the accurate pre-

diction of latent variables (for example, the aforementioned object detection problem).

By not restricting the form of the loss function, our framework greatly enhances the

applicability of loss-based learning with latent variables. In fact, our framework can be

viewed as a strict generalization of latent svm in the sense that, when the loss function

is independent of the true (unknown) value of the latent variables, it reduces to an latent

svm.

Throughout this chapter, we will assume that the latent variables are helpful in pre-

dicting the correct output of a sample. For example, if we want to distinguish between

images of deers and elephants, we would expect that the background clutter to have

similar appearance for both categories, and an accurate object localization to be essen-

tial for correct prediction. There may be cases where this assumption does not hold.

For example, images of deers and cars could be distinguished by detecting roads, or

other objects that are more commonly found in urban environments. However, even in

such cases, we may be able to learn to detect the object by providing fully supervised

annotations for a small fraction of training images, which would help guide the learner

towards the correct object locations in other weakly supervised training images.
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4.2 Related Work

The most commonly used method for learning the parameters of an lvm is the em

algorithm [14, 62], or its many variants [20]. While the em algorithm has an elegant

probabilistic interpretation of maximizing the likelihood of the ground-truth output, it

marginalizes out the latent variables, which makes it unsuited to problems that require

the accurate prediction of latent variables. Furthermore, it does not employ a user-

specified loss function, which captures the user’s assessment of the quality of the solution.

The most related works to our approach are latent svm [17, 60, 66] and its recently

proposed generalization called max-margin min-entropy models (or m3e for short) [47].

The parameters of an latent svm or anm3e are learned by minimizing a regularized upper

bound of the training loss. However, the loss function is restricted to be independent of

the true (unknown) value of the latent variables. While such loss functions are useful,

and in fact have been successfully employed in practice [9, 17, 60, 66], they cannot

model several important problems, including the two employed in our experiments—

object detection and action detection. In contrast, our framework allows the use of

a general loss function. In section 4.4 we will show that, for loss functions that are

independent of the true value of the latent variable, our framework reduces to an latent

svm.

In our earlier work [38], we proposed an iterative latent svm strategy (or ilsvm for

short) with the aim of using a general loss function. In section 4.5, we show that ilsvm

corresponds to using delta functions to model the conditional distribution of the latent

variables given the input and the output. In our experiments, we show that using a

non-delta conditional distribution significantly outperforms ilsvm.

4.3 Preliminaries

Notation. As usual, we denote the input by x ∈ X , the output by y ∈ Y and the

latent variables by h ∈ H. The training dataset D = {si = (xi,yi), i = 1, · · · , n} consists

of n input-output pairs (or samples) si.

We denote the parameters of the delta distribution, which predicts the output and the

latent variables for a given input, as w. The parameters of the conditional distribution

of the latent variables given the input and the output are denoted by θ.

We assume that the user specifies a loss function ∆(y1,h1,y2,h2) that measures the

difference between (y1,h1) and (y2,h2). Similar to previous approaches, we assume

that ∆(y1,h1,y2,h2) = 0 if y1 = y2 and h1 = h2. Otherwise, ∆(y1,h1,y2,h2) ≥ 0.
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Rao’s Dissimilarity Coefficient. We provide a brief description of the dissimilarity

measure used in our framework, which was first introduced by Rao [55]. Given a loss

function ∆(z1, z2), where z1, z2 ∈ Z, the diversity coefficient of two distributions Pi(z)

and Pj(z) is defined as the expected loss between two samples drawn randomly from

the two distributions respectively, that is,

H(Pi,Pj) =
∑

z1∈Z

∑

z2∈Z

∆(z1, z2) Pi(z1) Pj(z2). (4.1)

Using the diversity coefficient, the dissimilarity coefficient between the two distributions

can be defined as the following Jensen difference:

D(Pi,Pj) = H(Pi,Pj)− βH(Pi,Pi)− (1− β)H(Pj ,Pj), (4.2)

where β ∈ (0, 1). Note that, in [55], the value of β was fixed to 0.5 in order to ensure

that the dissimilarity coefficient is symmetric for Pi and Pj . However, dissimilarity coef-

ficients do not necessarily have to be symmetric (for example, the well-known Kullback-

Liebler divergence is non-symmetric); hence we use the more general version shown in

equation (4.2). Rao [55] showed that the above formulation generalizes other commonly

used dissimilarity coefficients such as the Mahalanobis distance and the Gini-Simpson

index. We refer the reader to [55] for details.

4.4 Loss-based Learning Framework

Using the above notation and definitions, we now provide the details of our learning

framework. We begin by describing the distributions represented by the lvm.

4.4.1 Distributions

We wish to address two separate tasks: (i) to accurately model the distribution of the

latent variables for a given input-output pair; and (ii) to accurately predict the output

and latent variables for a given input (where accuracy is measured by a user-defined

loss). Instead of addressing these two tasks with a single distribution as in previous

works, we define two separate distributions, each focused on a single task.

Given an input x, we define a delta distribution parameterized by w that predicts the

output and the latent variables according to the following rule:

(y(w),h(w)) = argmax
(y,h)

w⊤Ψ(x,y,h). (4.3)
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Here, Ψ(x,y,h) is a joint feature vector of the input x, the output y and the latent

variables h. Note that, although for simplicity we defined a linear rule in w, we can

also employ a non-linear kernel within our framework. Formally, the delta distribution

is given by

Pw(y,h|x) =

{

1 if y = y(w),h = h(w),

0 otherwise.
(4.4)

As mentioned earlier, since the true value of the latent variables is unknown, we would

like to model the uncertainty in their values. To this end, we define a separate conditional

distribution parameterized by θ such that

Pθ(hi|si) =
1

Z(si;θ)
exp

(

θ
⊤Φ(xi,yi,hi)

)

, (4.5)

where Z(si;θ) is the partition function, which ensures that the distribution sums to one

and Φ(xi,yi,hi) is a joint feature vector of the input xi, the output yi and the latent

variables hi. This feature vector can be different than the joint feature vector used to

specify the delta distribution Pw(·). Once again, a log-linear distribution is used only to

simplify the description. Our framework is valid for any general form of the distribution

Pθ(·). Using the above conditional distribution, we also specify a joint distribution as

follows:

P′

θ
(y,hi|xi) =

{

Pθ(hi|si) if y = yi,

0 otherwise.
(4.6)

As will be seen shortly, this joint distribution would allow us to employ Rao’s dissimi-

larity coefficient in our learning framework.

4.4.2 The Learning Objective

Given a dataset D and a loss function ∆(·), we propose to learn the parameters w

and θ such that it minimizes the corresponding dissimilarity coefficient over all training

samples. Before delving into the details, we give a broad overview of our objective

function.

For a fixed w, if the predicted output yi(w) is similar to the ground-truth output yi,

our objective encourages the probability of the corresponding latent variables, that is

Pθ(hi(w)|si), and other similar latent variables, to be high. If the predicted output

yi(w) is dissimilar to the ground-truth output yi, our objective encourages the diversity

coefficient of the corresponding distribution, that is Pθ(·|si), to be high. In other words,

for a correctly predicting sample, the conditional distribution is peaky, while for an

incorrectly predicted sample, the conditional distribution is flat.
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For a fixed θ, our objective minimizes the expected loss of the prediction (yi(w),hi(w)))

over all the training samples si. This is a key point of our formulation, as the expected

loss incorporates the uncertainty of the latent variable values while learning the param-

eters w. Formally, the expected loss of a pair of output and latent variables (y,h) for

the sample si, measured with respect to Pθ(·|si), is defined as

∆i(y,h;θ) =
∑

hi

∆(yi,hi,y,h) Pθ(hi|si), (4.7)

that is, it is the expectation of the loss between (y,h) and (yi,hi), where the expectation

is taken over the distribution of the unknown latent variables hi.

We now provide a mathematical description of our learning framework. However,

throughout this section and the next, we will reiterate the above intuition at the appro-

priate places. Our training objective is the sum of the dissimilarity coefficient between

Pw(·) and P′

θ
(·) over all training samples. Using the definition of dissimilarity coefficient

in equation (4.2), the objective can be written in terms of expected loss as

D(w,θ) =
1

n

(

n
∑

i=1

Hi(w,θ)− βHi(θ)

)

,

Hi(w,θ) = ∆i(yi(w),hi(w);θ),

Hi(θ) =
∑

h′

i

Pθ(h
′
i|si)∆i(yi,h

′
i;θ). (4.8)

Note that the diversity coefficient of Pw(·) is 0 since it is a delta distribution. Hence,

the term Hi(w) vanishes from the above objective.

Minimizing the objective (4.8) encourages two desirable properties: (i) the predicted

output yi(w) should be similar to the ground-truth output yi; and (ii) the predicted

latent variable hi(w) should be similar to the latent variables with high probabilities

Pθ(hi|xi,yi). Importantly, the similarity (or, to be more precise, the dissimilarity) of

the outputs and the latent variables is specified by the loss function ∆(·). Hence, during

learning, the parameters w and θ are tuned according to the user’s domain knowledge

regarding the quality of a solution. This ability to learn loss-specific parameters is absent

in traditional frameworks such as em and its variants.

4.4.3 Upper Bound on the Learning Objective

While the objective (4.8) is smooth and differentiable in θ, for most commonly used

choices of the loss function it is highly non-smooth in w. The non-smoothness of the

objective results in a difficult optimization problem, which makes the learner prone to
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bad local minimum solutions. In order to overcome this deficiency, we minimize an

upper bound on the objective, similar to the latent svm formulation [60, 66].

Specifically, we upper bound the term Hi(w,θ), which depends on w, using ξi(w,θ)

defined as follows.

ξi(w,θ) ≤ maxy,h
{

w⊤Ψ(xi,y,h) + ∆i(y,h;θ)
}

−maxhw
⊤Ψ(xi,yi,h) (4.9)

Using the above inequalities, the objective D(w,θ) can be upper bounded as

U(w,θ) =
1

n

(

n
∑

i=1

ξi(w,θ)− βHi(θ)

)

. (4.10)

However, if we learn the parameters w and θ by minimizing the above upper bound

(or indeed the original objective function), we run the risk of overfitting to the training

data. In order to prevent this, we introduce regularization terms for the parameters. For

this work, we use ℓ2 norms, though other norms may also be employed. To summarize,

the parameters are learned by solving the following optimization problem:

(w∗,θ∗) = argmin
(w,θ)

1

2
||w||2 +

J

2
||θ||2 + CU(w,θ), (4.11)

where the hyperparameters J and C are the relative weights for the regularization of θ

and the upper bound of the dissimilarity coefficient respectively. Note that the upper

bound derivation and the resulting optimization problem are similar to the latent svm

framework. In fact, the problem can be shown to be a strict generalization of latent

svm.

Observation 1. When the loss function does not depend on the value of the latent

variables, problem (4.11) is equivalent to the problem of learning an latent svm.

This observation follows from the fact that, when the loss function is independent of the

latent variables, Hi(θ) = ∆i(yi;θ)
∑

h′

i

Pθ(h
′
i|si) = 0. Hence, the optimization problem

is equivalent to minimizing the sum of the regularization of w and ξi(w,θ) (which are

equivalent to the slack variables that model the upper bound of the loss function for the

sample si in latent svm). In fact, even if the loss function does depend on the predicted

latent variable hi(w), the optimization problem (4.11) still generalizes latent svm. This

follows from the fact that, in this case, the latent svm problem is equivalent to using

delta distributions to model Pθ(·). Formal proofs are omitted.
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4.5 Optimization

While the upper bound derived in the previous section still results in a non-smooth

and non-convex optimization problem, we obtain an approximate solution using block

coordinate descent. Specifically, starting with some initial estimate of parameters, we

alternately fix one of the two sets of parameters (either w or θ) while optimizing prob-

lem (4.11) over the other set of parameters. The process is said to terminate when the

decrease in the objective falls below Cǫ, where C is the hyperparameter in problem (4.11)

and ǫ is a user specified tolerance. The following subsections provide the details of the

optimization over each set of parameters.

4.5.1 Optimization over w

For a fixed θ, problem (4.11) can be interpreted as minimizing a regularized upper bound

on the expected loss induced by w, that is,

∑

i

∆i(yi(w),hi(w);θ), (4.12)

since the term Hi(θ) is a constant for all samples si. The expected loss is an intuitive

objective: it gives more weight to the loss corresponding to the latent variables that

have a high probability and less weight to those corresponding to the latent variables

with low probability. Formally, for a fixed θ, the optimization problem (4.11) reduces

to the following:

min
w

1
2 ||w||

2 + C
n

∑

i ξi

s.t. ξi = maxy,h
{

w⊤Ψ(xi,y,h) + ∆i(y,h;θ)
}

−maxhw
⊤Ψ(xi,yi,h). (4.13)

The following observation provides us with an efficient algorithm for the above optimiza-

tion problem.

Observation 2. Problem (4.13) is a difference-of-convex program.

The regularization term ||w||2 is convex. The term ξi(w,θ) is a difference of two func-

tions that are the pointwise maximum of a set of linear functions. Since the pointwise

maximum of convex functions is convex, the observation follows. Similar to latent svm, a

local minimum or saddle point solution of problem (4.13) can be found using the concave-

convex procedure (cccp) [60, 66]. The main steps of cccp are outlined in Algorithm 7.
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It iteratively estimates the value of the latent variables using the current estimate of w,

and updates the parameters by solving a convex optimization problem (4.14). There are

several efficient algorithms for problem (4.14), for example [32, 58]. In this chapter, we

use the 1-slack reformulation method proposed in [32]. We can also solve problem (4.13)

using the self-paced learning algorithm (see chapter 2), which can potentially improve

the performance of our framework. However, in this chapter, we restrict ourselves to

the simpler and more efficient cccp algorithm.

Algorithm 7 The cccp algorithm for optimizing w.

input Dataset D, initial estimate w0, tolerance ǫ.
1: t← 0.
2: repeat
3: Update h∗

i = argmaxhi
w⊤

t Ψ(xi,yi,hi).
4: Estimate the updated parameter wt+1 by solving the following convex optimiza-

tion problem:

min
w

1
2 ||w||

2 + C
n

∑

i ξi

s.t. ξi ≥ w⊤Ψ(xi,y,h) + ∆i(y,h;θ)

−w⊤Ψ(xi,yi,h
∗
i ), ∀y,h. (4.14)

5: t← t+ 1.
6: until Objective cannot be decreased below Cǫ.

Problem (4.13) requires the computation of the expected loss ∆i(y,h;θ) as defined

in equation (4.7), which can be found in O(|H|) time for each pair of (y,h) (where

H is the space of all latent variables). For a sufficiently small H this operation is

computationally feasible. For a large latent variable space H, we have two options.

First, we can choose the joint feature vector Φ(x,y,h) for the conditional distribution

Pθ(·) to be decomposable in such a manner as to facilitate efficient computation of

sufficient statistics (for example, a low tree-width model). Note that this still allows us

to use a more complex joint feature vector Ψ(x,y,h) to make predictions for a given test

sample. Second, if the problem requires a complex Φ(x,y,h) to encode the conditional

distribution, then we can resort to using one of several inference techniques to compute

the approximate sufficient statistics. However, we note that several important problems

in machine learning can be formulated using latent variables whose space is sufficiently

small to allow for exact computations of the expected loss, including motif finding [66],

image classification (chapter 2), digit recognition (chapter 2), and the two problems used

in our experiments, namely object detection and action detection.
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4.5.2 Optimization over θ

For a fixed w, problem (4.11) can be interpreted as a regularized upper bound on the

following objective

1

n

(

n
∑

i=1

Hi(w,θ)− βHi(θ)

)

, (4.15)

where the divergence coefficients Hi(w,θ) and Hi(θ) are defined in equation (4.8). To

gain an understanding of the above objective, let us consider a simple 0/1 loss (that

is, the loss is 0 if both the outputs are equal and both the latent variables are equal,

otherwise 1). If yi(w) = yi, that is, w predicts the correct output for the sample si, then

the first term of the above objective dominates the second. In this case, the parameter

θ is encouraged to assign a high probability to the predicted latent variables hi(w), and

other similar latent variables, in order to minimize the objective. If yi(w) 6= yi, the first

term is a constant. Thus, the parameter θ is encouraged to maximize the diversity of

the conditional distribution Pθ(·). In other words, for a correct prediction of output,

we learn a peaky distribution and for an incorrect prediction of output, we learn a flat

distribution. Formally, for a fixed w, the optimization problem (4.11) reduces to the

following:

min
θ

J

2
||θ||2 + CU(w,θ), (4.16)

where U(w,θ) is defined in equation (4.10). We obtain an approximate solution to the

above problem using stochastic subgradient descent (ssd). The main steps of ssd are

outlined in Algorithm 8.

Algorithm 8 The ssd algorithm for optimizing θ.

input Dataset D, initial estimate θ0, T > 0.
1: t← 0. λ← J/C.
2: repeat
3: Choose a sample si randomly from D.
4: Compute the stochastic subgradient gt as

gt = θt +∇θHi(w,θ) +∇θHi(θ). (4.17)

5: t← t+ 1.
6: Update θt+1 ← θt −

1
λtgt.

7: until Number of iterations t = T .

Each iteration of ssd takes O(|H|2) time (since the subgradient gt requires a quadratic

sum to compute Hi(θ)). Similar to the expected loss, this can be performed exactly

for a sufficiently small space of latent variables, or the appropriate choice of the joint

feature vector Φ(x,y,h). For a large latent variable space and a complex joint feature

vector, we would have to resort to approximate inference.
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4.5.3 Comparison with ilsvm

Our overall approach is similar in flavor to the ilsvm algorithm [38], which iterates over

the following two steps until convergence: (i) obtain the value of the latent variables

for all training samples using the current estimate of the parameters; (ii) update the

parameters by solving an latent svm, where the loss function is measured using the

latent variables estimated in the first step instead of the true latent variables. The

following observation shows that ilsvm is a special case of our framework.

Observation 3. The first step of ilsvm minimizes the objective (4.15) when Pθ(·)

are restricted to be delta distributions. The second step of ilsvm solves an latent svm

problem similar to the one described in the previous subsection for optimizing over w.

The observation regarding the second step is straightforward. For the first step, it follows

from the fact that ilsvm minimizes Hi(w,θ). As the second divergence coefficient

Hi(θ) vanishes when using delta conditional distributions, ilsvm effectively minimizes

objective (4.15) for a fixed w. A formal proof is omitted.

4.6 Experiments

We now demonstrate the efficacy of our framework on two challenging machine learning

applications: object detection and action detection. Specifically, we show how our ap-

proach, which models the uncertainty in the values of the latent variables during training,

outperforms the previous loss-based learning frameworks, namely latent svm and ilsvm,

which only estimate the most likely assignment of the latent variables. All three methods

used in our experiments share a common hyperparameter C (the relative weight for the

upper bounds ξi), which we vary to take values from the set {10−4, 10−3, · · · , 102}. In

addition, our framework introduces two more hyperparameters: J (the relative weight

for the regularization of θ) and β (the hyperparameter for Rao’s dissimilarity coeffi-

cient). In all our experiments, we set J = 0.1 and β = 0.1. However, we may obtain

better results by carefully tuning these hyperparameters. The tolerance value for all the

methods was set to ǫ = 10−3.

4.6.1 Object Detection

Problem Formulation. The aim of this application is to learn discriminative object

models that predict the category (for example, ‘deer’ or ‘elephant’) and the location of

the object present in an image. In a fully supervised setting, we would be required to



Chapter 4. Dissimilarity Coefficient Learning 52

specify a tight bounding box around the object present in each of the training samples.

As the collection of such annotations is onerous and expensive, we would like to learn the

object models using image-level labels (that is, labels indicating the presence or absence

of an object category in an image), which are considerably easier to obtain. Formally,

for each sample, the input x is an image. The output y ∈ {0, 1, · · · , c − 1}, where c

is the number of object categories. The latent variable h models the tight bounding

box around the object in the image. Similar to previous chapters, the joint feature

vectors Ψ(x,y,h) and Φ(x,y,h) are defined using the hog descriptor [13, 17] extracted

using the pixels of the bounding box. In our experiments, we consider non-overlapping

putative bounding boxes that are 8 pixels apart, which results in a maximum of 350

bounding boxes for each image in our dataset. This allows us to compute the exact

expected loss and the exact subgradients during learning. We employ two different loss

functions, 0/1 loss and overlap loss, which are defined below.

∆0/1(y1,h1,y2,h2) =

{

0 if y1 = y2,h1 = h2,

1 otherwise,

∆O(y1,h1,y2,h2) =

{

1−O(h1,h2) if y1 = y2,

1 otherwise,

where O(h1,h2) ∈ [0, 1] is the ratio of the area of the intersection and the area of the

union of the two bounding boxes [16]. Both the loss functions not only encourage the

models to predict the right category but also the right location of the object. We note

that a similar experimental setup was also used in [9].

Dataset. We use images of 6 different mammals (approximately 45 images per mam-

mal) that have been employed in the previous chapters. We split the images of each

category into approximately 60% for training and 40% for testing. We report results

using 5 folds.

Results. Figure 4.1 shows the test loss for latent svm, ilsvm and our method using

the 7 different C values. The test loss is computed using the ground-truth labels and

bounding boxes for the test samples. Recall that, during training, only the ground-

truth labels were assumed to be known, while the bounding boxes were modeled as

latent variables.

While latent svm was initially proposed for loss functions that do not depend on the

value of the true latent variable, we adopted a similar approach to the cccp algorithm

for latent svm to solve the object detection problem. Briefly, we iterate over two steps:

estimating the value of the latent variables and solving a convex structured svm problem
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until the objective function could not be decreased below a user-specified tolerance. In

our experiments, this approach provided similar results to the ilsvm method.

By incorporating the uncertainty in latent variables, our approach outperformed both

latent svm and ilsvm. Specifically, for the 0/1 loss, the best test loss (over all C values)

for latent svm, ilsvm and our method is 64.82 ± 4.96, 68.53 ± 5.52 and 47.76 ± 2.53

respectively (where the loss has been scaled to lie between 0 and 100). For the overlap

loss, the best test loss is 44.93± 1.84, 47.26± 3.87 and 42.27± 3.64 respectively. While

the improvement in the overlap loss is not statistically significant according to paired

t-test, the improvement in the 0/1 loss is statistically significant with p < 10−4.

Figure 4.1: The average test loss over five folds (y-axis) of the object detection ap-
plication for different values of C (x-axis, shown in log-scale). Left: 0/1 loss; Right:
Overlap loss. Our framework outperforms both latent svm and ilsvm and provides

statistically significant improvements for the 0/1 loss (see text for details).

4.6.2 Action Detection

Problem Formulation. The aim of this application is to learn human action models

that predict the action class (for example, ‘running’ or ‘jumping’) and the location of

the person present in an image. Similar to object detection, a fully supervised dataset

would require annotating each training image with the person bounding box. Instead,

we use image-level labels that indicate which action is being performed by a person

in the image. Formally, for each sample, the input x is an image. The output y ∈

{0, 1, · · · , c− 1}, where c is the number of action classes. The latent variable h models

the tight bounding box around the person in the image. The joint feature vectors are

the Poselet descriptor [45] of the bounding box. We consider approximately 20 putative

bounding boxes for each image, which are obtained automatically using a standard

person detector [17]. The small search space for the latent variables avoids the need for

approximate inference. Once again, we report results using both 0/1 loss and overlap

loss.
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Dataset. We use the pascal voc 2011 ‘trainval’ dataset [16], which consists of ap-

proximately 2500 images of 10 different action classes. We split the images of each class

into approximately 60% for training and 40% for testing, and report results using 5 folds.

In addition to the detected persons, we introduce the largest ground-truth bounding box

into the latent variable space.

Results. Figure 4.2 shows the test loss for the three methods, computed using ground-

truth labels and bounding boxes. For 0/1 loss, the best test loss over all C values

for latent svm, ilsvm and our method is 93.18 ± 1.95, 92.89 ± 3.70 and 76.10 ± 0.71

respectively. For overlap loss, the best test loss is 70.66±0.76, 71.33±1.14 and 67.16±0.32

respectively. Our method significantly outperforms both latent svm and ilsvm, as

confirmed by the paired t-test with p < 10−3.

Figure 4.2: The average test loss over five folds (y-axis) of the action detection ap-
plication for different values of C (x-axis, shown in log-scale). Left: 0/1 loss; Right:
Overlap loss. Our framework outperforms both latent svm and ilsvm and provides

statistically significant improvements for both types of loss (see text for details).

4.7 Discussion

We proposed a novel framework for parameter estimation using weakly supervised datasets.

Our framework consists of two distributions: a conditional distribution that captures the

uncertainty in the latent variables, and a delta distribution that predicts the output and

latent variable values. The parameters of the distributions are learned by minimizing a

loss-based dissimilarity coefficient between the two distributions for all samples in the

training dataset. We empirically demonstrate the benefit of our approach over previ-

ous loss-based learning frameworks using publicly available datasets of two challenging

problems—object detection and action detection.

The proposed optimization requires the computation of the expected loss ∆i(y,h|θ)

(shown in equation (4.7)) when learning the delta distribution and the loss-dependent
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subgradient gt (shown in equation (4.17)) when learning the conditional distribution.

In special cases (for example, low tree-width models), these terms can be computed

exactly. In general, we would have to resort to one of several existing approximate infer-

ence techniques or to design customized algorithms to compute the sufficient statistics.

Note that, since the conditional distribution is not used during testing, an approximate

estimate of its parameters, which is able to accurately model the uncertainty in the

latent variables, would suffice in practice.
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Discussion

5.1 Conclusion

In this thesis, we considered the problem of learning the parameters of a structured

output prediction model using weakly supervised datasets. The main advantage of

weakly supervised learning is that it makes it possible to construct large datasets in a

cost effective manner. However, it results in a far more challenging machine learning

problem compared to fully supervised learning. In order to address these challenges

in the context of empirical risk minimization, we presented the following three novel

contributions.

• We proposed a novel iterative self-paced learning algorithm for solving the opti-

mization problem corresponding to latent svm, which builds on the intuition that

the learner should be presented in the training samples in a meaningful order that

facilitates learning: starting forme easy samples and gradually moving to harder

samples. Our algorithm simultaneously selects the easy samples and updates the

parameters at each iteration by solving a biconvex optimization problem.

• We proposed a new family of lvms called max-margin min-entropy (m3e) mod-

els, which includes latent svm as a special case. Given an input, an m3e model

predicts the output with the smallest corresponding Rényi entropy of generalized

distribution [56], which relies not only on the probability of the output but also

the uncertainty of the latent variable values. Similar to latent svm, the parame-

ters of an m3e model are learned by minimizing a regularized upper bound on the

empirical risk, which is measured using a loss function that is independent of the

true value of the latent variables.

56
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• We proposed a novel learning framework that simultaneously estimates two dis-

tributions: (i) a conditional distribution to model the uncertainty of the latent

variables for a given input-output pair; and (ii) a delta distribution to predict the

output and the latent variables for a given input. During learning, we encourage

agreement between the two distributions by minimizing a loss-based dissimilarity

coefficient [55]. Our approach generalizes latent svm in two important ways: (i)

it models the uncertainty over latent variables instead of relying on a pointwise

estimate; and (ii) it allows the use of loss functions that depend on latent variables,

which greatly increases its applicability.

We demonstrated the efficacy of our approaches on standard machine learning applica-

tions using publicly available datasets.

5.2 Future Work

We now discuss some interesting directions of future research.

Self-Paced Learning. In our past work, we have developed a simple version of self-

paced learning for parameter estimation that gradually increases the complexity of the

training samples. While it has obtained encouraging initial results, it fails to exploit the

self-paced learning strategy to the fullest. We believe that the ability and applicability of

self-paced learning can be greatly enhanced by introducing the idea of pacing the model

complexity and the problem complexity within the learning framework. Specifically, in

the initial iterations, the learner will solve simpler problems (for example, distinguish

between a car and a deer) using a simple parameterization (such as those specified by

linear kernels). In the later iterations, the learner will tackle more complex problems (for

example, distinguish between a car and a van, or a deer and a dog) and solve them using

more complex parameterizations (such as those specified by nonlinear kernels). The

complexity of the samples, the model and the problem could be determined automatically

by the learner such that it optimizes a suitable criterion for avoiding bad local minimum

solutions (for example, the generalization bound of the learned parameters).

Active Learning. In order to reduce the ambiguity inherent in weakly supervised

learning without substantially increasing the cost, it would be convenient to develop a

unified framework for combining self-paced learning and active learning [12, 64], where

a user can be queried to obtain the ground-truth value of latent variables. This would

involve designing an appropriate criterion for selecting the samples to present to the
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user in such a way that the number of queries required to obtain an accurate model

is minimized. A successful unified framework should be able to capture the intuition

that easy non-confusing samples should be used to update the learner (as specified by

self-paced learning), while the hard confusing samples should be presented to the user

for annotation.

Dynamic Dual Decomposition. The above extensions will result in a challenging,

large-scale optimization problem. In order to make the learning framework practically

useful, we would require efficient algorithms for solving the optimization problem. One

potential solution to this would be to build on the decomposition techniques that allow

us to make use of parallel computation in order to deal with large-scale problems [7,

22, 34–36]. In effect, decomposition methods can enable learning on large cloud-based

architectures such as Azure.

A decomposition technique is an iterative algorithm, where each iteration consists of the

following steps: (i) divide the original problem into a set of smaller subproblems; (ii)

solve each subproblem independently; and (iii) pass messages among the subproblems

in order to encourage them to agree on their optimal solution. One of the most im-

portant factors that determines the efficiency of dual decomposition is the specification

of the subproblems. If the subproblems are defined in a way that they agree on the

value of an optimization variable, then the entire procedure would converge quickly. In

contrast, if two subproblems disagree, this will adversely affect convergence. Despite

the importance of the decomposition, all current methods use the same subproblems

through all iterations. Their performance could potentially be improved using a dy-

namic dual decomposition techniques that change the decomposition iteratively based

on the disagreements between the subproblems of the current decomposition. Such an

approach would need to take into account the efficiency of the individual subproblems,

the inter-node communication cost for parallel computation, as well as the overhead cost

of re-decomposition itself.
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