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Abstract

In this thesis, we explore two problems related to managing and mining
moving object trajectories.

First, we study the problem of sampling trajectory data streams. Modern
location-aware devices are capable of capturing and transmitting their position
at very high rates. Storing the entirety of the trajectories provided by such
devices can entail severe storage and processing overheads. Therefore, adapted
sampling techniques are necessary in order to discard unneeded positions and
reduce the size of the trajectories while still preserving their key spatiotemporal
features. In streaming environments, this process needs to be conducted “on-
the-fly” since the data are transient and arrive continuously. To this end, we
introduce a new sampling algorithm called Spatiotemporal Stream Sampling
(STSS). This algorithm is computationally-efficient and guarantees an upper
bound for the approximation error introduced during the sampling process.
Experimental results show that STSS achieves good performances and can
compete with more sophisticated and costly approaches.

The second problem we study is clustering trajectory data in road network
environments. Most of prior work assumed that moving objects can move freely
in an Euclidean space and did not consider the presence of an underlying road
network and its influence on evaluating the similarity between trajectories. We
present three approaches to clustering such data: the first approach discovers
clusters of trajectories that traveled along the same parts of the road network;
the second approach is segment-oriented and aims to group together road
segments based on trajectories that they have in common; the third approach
combines both aspects and simultaneously clusters trajectories and road seg-
ments. Through extensive case studies, we show how these approaches can be
used to reveal useful knowledge about flow dynamics and characterize traffic in
road networks. We also provide experimental results where we evaluate the
performances of our propositions.

Keywords: moving objects, trajectories, road network, spatiotemporal, sam-
pling, data streams, similarity, clustering.
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Résumé

Dans cette thèse, nous explorons deux problèmes de recherche liés à la
gestion et à la fouille de données de trajectoires d’objets mobiles.

Dans un premier temps, nous étudions l’échantillonnage de flux de trajec-
toires. Les appareils de géo-localisation modernes sont capables d’enregistrer et
de transmettre leurs coordonnées géographiques à un taux très élevé. Garder
l’intégralité des trajectoires capturées grâce à ces terminaux peut s’avérer
coûteux tant en espace de stockage qu’en temps de calcul. L’élaboration de
techniques d’échantillonnage adaptées devient alors primordiale afin de réduire
la volumétrie des données en supprimant certaines positions (jugées inutiles ou
redondantes) tout en veillant à préserver le maximum des caractéristiques spa-
tiotemporelles des trajectoires originales. Dans le contexte de flux de données,
ces techniques doivent en plus être exécutées « à la volée » et s’adapter au carac-
tère à la fois continu et éphémère des données. Afin de répondre à ces besoins,
nous proposons l’algorithme STSS (Spatiotemporal Stream Sampling). STSS
bénéficie d’une faible complexité temporelle et garantit une borne supérieure
pour les erreurs commises lors de l’échantillonnage. Nous présentons également
une étude expérimentale à travers laquelle nous montrons les performances de
notre proposition tout en la comparant à d’autres approches proposées dans la
littérature.

La deuxième problématique étudiée dans le cadre de ce travail est celle de
la classification non supervisée (ou clustering) de trajectoires contraintes par
un réseau routier. La majorité des travaux traitant du clustering de trajectoires
se sont intéressés au cas où ces dernières évoluent librement dans un espace
Euclidien. Ces travaux n’ont donc pas pris en considération l’éventuelle présence
d’un réseau sous-jacent au mouvement, dont les contraintes jouent un rôle
primordial dans l’évaluation de la similarité entre trajectoires. Nous proposons
trois approches pour traiter ce cas. La première approche se focalise sur la
découverte de groupes de trajectoires ayant parcouru les mêmes parties du
réseau routier. La deuxième approche vise à grouper des segments routiers visités
très fréquemment par les mêmes trajectoires. Quant à la troisième approche,
elle combine les deux aspects afin d’effectuer un co-clustering simultané des
trajectoires et des segments routiers. Nous illustrons nos approches à travers
divers cas d’étude afin de démontrer comment elles peuvent servir à caractériser
le trafic routier et les dynamiques de mouvement dans le réseau routier. Nous
réalisons des études expérimentales afin d’évaluer les performances de nos
propositions.

Mots-clés : objets mobiles, trajectoires, réseau routier, échantillonnage, spa-
tiotemporel, flux de données, similarité, classification non supervisée.
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Résumé de la thèse

Grâce aux avancées technologiques réalisées dans les domaines de la télématique
et de la géo-localisation, il est désormais possible de suivre les déplacements
de divers objets mobiles (voitures équipées de GPS, piétons utilisant leurs
smartphones ou PDAs, animaux identifiés grâce à des capteurs RFID, etc.).
Les différentes positions de ces objets mobiles engendrent des trajectoires
qui peuvent être collectées aisément et sauvegardées en vue d’effectuer des
traitements et des tâches d’analyse et de fouille de données par la suite. Les
connaissances extraites grâce à ces traitements et analyses peuvent apporter une
valeur ajoutée considérable dans divers domaines applicatifs tels que : (i) l’étude
de la migration animale, où la correlation des données récoltées avec d’autres
données géographiques peut révéler les tendances migratoires de certaines
espèces et aider à étudier l’impact de certains phénomènes (déforestation,
construction de nouvelles routes, etc.) sur ces tendances ; (ii) la météorologie,
où l’étude des chemins empruntés par certains phénomènes récurrents (cyclones,
tornades, etc.) permet d’améliorer la prédiction de leurs zones d’impact ; (iii) la
gestion du trafic routier, où l’analyse des trajectoires des automobilistes peut
contribuer à l’évaluation de l’adéquation du réseau routier à l’usage qui en est
fait ; etc.

À cause de la nature spatiotemporelle particulière et complexe des données
de mobilité, les systèmes de gestion de bases de données (SGBD) classiques ne
sont pas adéquats pour les manipuler. Des efforts considérables ont donc été
entrepris afin de concevoir et développer des systèmes alternatifs plus adaptés,
offrant la possibilité de modéliser, stocker et interroger des bases de données
d’objets mobiles (Moving Object Databases) [4]. Les données de mobilité ont
également motivé un grand nombre de travaux de recherche couvrant divers
aspects de leur traitement, tels que l’indexation, la compression, la détection
de schémas, la classification supervisée et non supervisée, etc.

La présente thèse traite deux problèmes de recherche reliés à la thématique
de la mobilité :

− l’échantillonnage de flux de données de trajectoires, qui vise à réduire le
volume des données « à la volée » (au fur et à mesure qu’elles sont reçues)
tout en essayant de conserver leurs caractéristiques spatiotemporelles ;

− la classification non supervisée des données de trajectoires dans le contexte
des réseaux routiers, dont le but est de découvrir des groupes d’obser-
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vations similaires telles que des trajectoires qui empruntent les mêmes
routes dans le réseau ou encore des portions routières souvent visitées
par les mêmes véhicules.

Les contributions principales de nos travaux autour de ces deux problèmes
sont les suivantes :

− nous proposons l’algorithme STSS (SpatioTemporal Stream Sampling), qui
est une technique d’échantillonnage spatiotemporel adaptée au contexte
de flux de données. STSS bénéficie d’une faible complexité (en temps
et en mémoire vive) et fournit une borne supérieure pour les erreurs
d’approximation commises lors de l’échantillonnage. Cette borne est
configurable par l’utilisateur, ce qui permet de contrôler la dégradation
de la qualité résultant de l’application de l’algorithme ;

− nous proposons une approche de classification non supervisée qui permet
de retrouver des groupes de trajectoires similaires dans les réseaux rou-
tiers. L’approche compare les trajectoires en se basant sur les segments
routiers qu’elles partagent et exploite cette information pour construire
un graphe de similarité modélisant les interactions entre trajectoires. Une
approche de détection de communautés est ensuite utilisée pour extraire
une hiérarchie de groupes de trajectoires qui peut être explorée à différents
niveaux de détail afin de comprendre les tendances de mobilité dans le
réseau routier ;

− nous proposons une approche complémentaire qui effectue la classification
de segments routiers en se basant sur les visites qu’ils reçoivent de la part
des trajectoires. Le même principe est appliqué pour construire un graphe
modélisant les relations de similarité entretenues par les segments et la
même méthode de détection de communautés est utilisée. Les groupes
de segments découverts par cette deuxième approche peuvent servir
à comprendre les situations de congestion routière et à en prédire la
propagation ;

− enfin, nous proposons une approche qui combine les deux aspects sus-
mentionnés et qui effectue une classification simultanée de trajectoires et
de segments de routes en se basant sur l’homogénéité de la densité des
visites que les segments reçoivent de la part des trajectoires. L’approche
peut être utilisée pour révéler des structures intéressantes dans le réseau
routier telles que la présence de « hubs routiers » empruntés par plusieurs
groupes de trajectoires qui ont des destinations et des zones de départ
différentes. Cette dernière contribution est le fruit d’une collaboration
avec Romain Guigourès et Marc Boullé (Orange Labs).

Ce résumé vise à présenter une vue d’ensemble des travaux réalisés au cours
de cette thèse et qui seront décrits plus en détail à travers le reste du manuscrit.
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Échantillonnage de trajectoires d’objets mobiles

Les terminaux de géo-localisation modernes sont capables de déterminer et de
communiquer leur position avec une très fine granularité, pouvant aller jusqu’à
une position par seconde (voire plus). Par conséquent, conserver l’intégralité
des données récoltées à partir d’un nombre important d’objets mobiles risque
d’être incommode et très coûteux, tant au niveau de l’espace de stockage qui
doit être prévu à cet effet que du temps de calcul que les tâches d’analyse
et de visualisation, effectuées par la suite, vont requérir. Des techniques de
compression de données doivent donc être appliquées afin de réduire la taille
des données. L’échantillonnage est une technique intuitive et simple à mettre
en œuvre, qui peut être utilisée à cet effet : en supprimant, de façon intelligente,
certaines positions de la trajectoire d’origine (ex. les points redondants résultant
d’un véhicule qui communique plusieurs fois la même position alors qu’il est
à l’arrêt au feu rouge), l’échantillonnage va permettre de réduire la taille
des données tout en essayant de préserver au mieux leurs caractéristiques
spatiotemporelles d’origine.

Nous nous sommes intéressés au problème d’échantillonnage de trajectoires
d’objets mobiles dans le contexte particulier des systèmes de gestion de flux
de données [24]. Dans de tels systèmes, les données arrivent en continu sous
forme d’une séquence ordonnée et potentiellement infinie d’éléments (un élé-
ment dans le cas étudié ici correspond à une position transmise par un objet
mobile donné). Un paradigme data-push est donc adopté au lieu du paradigme
data-pull des systèmes de gestion de bases de données classiques : les requêtes
(appelées « requêtes continues » [30]) sont enregistrées au préalable et s’exé-
cutent en permanence pendant une durée déterminée. Chaque nouvel élément
est évalué par rapport à ces requêtes dès qu’il se présente, puis il est effacé
immédiatement ou gardé en mémoire pour une courte durée. Cette incapacité
à stocker l’intégralité du contenu d’un flux soulève la nécessité de construire
des résumés concis [33] qui fournissent une vue approximative de l’historique
du flux. L’échantillonnage peut être utilisé pour construire ces résumés, comme
il peut être utilisé simplement comme un mécanisme de réduction de charge
(ou load-shedding) quand le système de gestion de flux fait face à une forte
affluence des données.

Nous supposons, pour cette partie, qu’une trajectoire T est représentée
sous sa forme géométrique comme étant la suite ordonnée des positions datées,
occupées par l’objet mobile qui l’a engendrée :

T = (id, 〈P1(t1, x1, y1), P2(t2, x2, y2), ..., Pi(ti, xi, yi), ...〉) ,

où id représente l’identifiant de la trajectoire. Chaque point Pi est composé
de l’estampille temporelle ti qui représente sa date de capture et de la position
elle même, ici exprimée sous la forme de la paire (xi, yi) qui représente les
coordonnées de l’objet mobile à la date ti sur le plan Euclidien. Échantillonner
la trajectoire T revient à ne garder qu’un sous-ensemble de ses points de départ.
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Ce sous-ensemble (appelé trajectoire compressée ou trajectoire échantillonnée
et noté TC) doit couvrir l’intégralité de T (c-à-d contenir le tout premier et
le tout dernier point de T ) et ne doit pas contenir de points artificiels. Le
processus d’échantillonnage doit obéir à certaines règles [23] et doit notamment
permettre d’obtenir (i) une réduction durable de la taille des données et (ii)
des données compressées qui contiennent de faibles erreurs d’approximation
qui sont, de préférence, paramétrables. Dans le contexte particulier des flux de
données, d’autres contraintes viennent s’ajouter à ces règles : le traitement (i)
doit être effectué « à la volée » au fur et à mesure que les données arrivent au
lieu d’attendre que l’intégralité d’une trajectoire soit disponible et (ii) doit avoir
une faible complexité (temporelle et en espace mémoire) afin de s’accommoder
avec le taux d’arrivée élevé des données et les ressources potentiellement limitées
du système.

Les techniques d’échantillonnage traditionnelles (ex. l’échantillonnage uni-
forme, l’échantillonnage réservoir [40], etc.) ne sont pas adaptées pour échan-
tillonner des données de trajectoires étant donné qu’elles ne tiennent pas compte
de l’aspect spatiotemporel de ces dernières. Par conséquent, d’autres techniques
ont été proposées pour le cas spécifique des trajectoires [23, 42, 45, 46]. Ces
techniques sont principalement inspirées par les domaines de la simplification
de polylignes, la généralisation cartographique et la compression de séries
temporelles. En comparant ces approches par rapport aux critères évoqués
auparavant, nous distinguons deux familles :

1. les algorithmes qui garantissent des bornes supérieures pour les erreurs
d’approximation introduites lors de l’échantillonnage mais qui ont, en
contre partie, des complexités élevées. Parmi ces algorithmes, nous citons
l’algorithme TD-TR [23] (qui ne peut pas être utilisé dans un contexte de
flux de données puisqu’il nécessite la présence de la totalité des données
au préalable) et l’algorithme OPW-TR [23] (qui utilise le principe de
fenêtres ouvrantes pour échantillonner les trajectoires à la volée) ;

2. les algorithmes avec faibles complexités mais qui n’offrent pas de garanties
vis-à-vis des erreurs d’approximation. Ceci est notamment le cas des
algorithmes de la famille Threshold et de l’algorithme STTrace, proposés
par Potamias et al. [45]. L’utilisation de tels algorithmes ne permet pas de
se prononcer sur la qualité des réponses fournies aux requêtes et analyses
appliquées aux trajectoires échantillonnées.

Nous proposons l’algorithme STSS comme une alternative qui permet
d’obtenir à la fois des garanties sur les erreurs d’approximation et de faibles
complexités temporelle et en espace mémoire.

L’algorithme STSS (SpatioTemporal Stream Sampling)

STSS (SpatioTemporal Stream Sampling) est un algorithme d’échantillonnage à
la volée pour les flux de trajectoires. Il est basée sur l’idée de prédiction linéaire

xvi



Résumé de la thèse

(similairement à [45]) : l’algorithme essaye de capturer le comportement actuel
de l’objet mobile et l’utilise pour prédire ses positions futures. La capacité
de l’algorithme à prédire ces positions « correctement » guidera le processus
d’échantillonnage et sera utilisée comme critère pour décider si les points doivent
être gardés ou supprimés.

Le comportement actuel de l’objet mobile est capturé grâce à une « fonction
de mouvement » comme suit : étant donné deux points Pk = (tk, xk, yk) et
Pj = (tj, xj, yj) (avec tk < tj), nous supposons que l’objet mobile continuera à
se déplacer dans la même direction et avec la vitesse moyenne observées entre
Pk et Pj. Par conséquent, pour tout instant antérieur t (t > tj), la position de
l’objet mobile peut être prédite conformément à la formule suivante :

(x, y) = (axt+ bx, ayt+ by) .

Avec :

ax =
xj − xk

tj − tk
,

bx = xk − axtk = xj − axtj ,

ay =
yj − yk
tj − tk

,

by = yk − aytk = yj − aytj .

En réalité, la fonction de mouvement correspond à une extrapolation de la
distance Euclidienne synchrone (Synchronous Euclidean Distance) introduite
dans [42]. La fonction est initialisée avec les deux premiers points de la trajectoire
T . Ces deux points sont insérés immédiatement dans la trajectoire échantillonnée
TC . Ensuite, pour chaque nouveau point Pi, une prédiction P ′

i est calculée (en
applicant la fonction de mouvement). Si la distance entre Pi et P ′

i est inférieure
au seuil d’erreur dThres précisé par l’utilisateur, le point est considéré comme
étant bien prédit et il remplace le dernier point de TC . Dans le cas contraire
(c-à-d lorsqu’une mauvaise prédiction se produit), le point Pi est ajouté à la fin
de TC et la fonction de mouvement est recalculée en utilisant Pi et Pi−1.

La figure 1 illustre ce principe de fonctionnement. Afin de couvrir l’intégra-
lité de la trajectoire d’origine, le point P1 est immédiatement inséré dans la
trajectoire échantillonnée TC . Lorsque le point P2 arrive, une première fonction
de mouvement est calculée et le point est inséré dans TC . L’arrivée de P3

déclenche le calcul d’une prédiction P ′
3. Le point étant bien prédit, il remplace

P2 dans TC . À ce niveau du traitement, TC = 〈P1, P3〉. Puisque P4 et P5 sont
également bien prédits, ils viennent remplacer, chacun à son tour, le dernier
point de TC . Par contre, une mauvaise prédiction se produit à l’arrivée de P6,
signalant un changement dans le comportement de l’objet mobile. La fonction
de mouvement est donc mise à jour à partir de P5 et P6 et ce dernier est
ajouté à TC . À ce niveau, TC = 〈P1, P5, P6〉. L’algorithme continue en suivant
ce principe pour échantillonner les points restants de la trajectoire. La figure 2
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montre un exemple d’une trajectoire réelle, échantillonnée par l’algorithme
STSS avec différentes valeurs du seuil d’erreur dThres.
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Figure 1 – Principe de fonctionnement de l’algorithme STSS.

STSS traite chaque point en un temps constant, ce qui résulte en une
complexité de O(n) pour traiter une trajectoire contenant n points. L’algorithme
permet aussi de contrôler l’erreur d’approximation résultant de l’échantillonnage.
En effet, quand STSS est configuré avec une valeur donnée pour dThres, l’erreur
d’approximation pour tout point non retenu par l’algorithme est inférieure à
2dThres (une preuve formelle est fournie dans la section 2.3.2).

Nous avons comparé STSS avec les algorithmes TD-TR et OPW-TR [23].
Ces deux algorithmes permettent d’avoir des erreurs d’approximation bornées
mais présentent un coût algorithmique plus élevé puisqu’ils ont une complexité
quadratique (c-à-d O(n2) pour traiter une trajectoire de n points). Notre étude
expérimentale a montré que notre approche, bien que produisant de bons
résultats, est moins efficace que TD-TR et OPW-TR. Ce résultat s’explique par
le fait que STSS décide immédiatement si un point donné doit être gardé dans
la trajectoire échantillonnée ou non (afin de réduire la complexité algorithmique
du traitement), alors que les deux autres algorithmes prennent leurs décisions en
se basant sur un nombre plus conséquent de points (ceux inclus dans la fenêtre
ouvrante maintenue par OPW-TR ou la totalité des points de la trajectoire
pour TD-TR).

Nous avons également conduit une étude comparative avec l’algorithme
STTrace [45] dans laquelle STSS a surpassé STTrace et a fourni des trajectoires
échantillonnées de qualité supérieure pour le même nombre de points. Ce
résultat est prévisible puisque STTrace permet de contrôler l’espace de stockage
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(a) Trajectoire d’origine (228 positions)
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(b) dThres = 5m (117 positions)
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(c) dThres = 25m (72 positions)
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(d) dThres = 50m (49 positions)
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(e) dThres = 75m (40 positions)
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Figure 2 – Exemple d’une trajectoire échantillonnée en utilisant l’algorithme
STSS avec différentes valeurs du seuil d’erreur de prédiction dThres.
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occupé par les trajectoires échantillonnées au détriment de la qualité de celles-ci.
Nous soulignons donc l’importance de fournir des garanties et des bornes pour
les erreurs d’approximation introduites lors de l’échantillonnage. Ces erreurs
risquent, en effet, d’impacter les résultats fournis en réponse aux requêtes et
analyses conduites sur les données par la suite.

Nos travaux sur l’échantillonnage de flux de trajectoires sont décrits en
détail dans le chapitre 2 de cette thèse.

Classification non supervisée de trajectoires
contraintes par un réseau routier

Le monitoring du trafic routier est effectué, dans la majorité des cas, grâce à des
capteurs dédiés qui permettent d’estimer le nombre de véhicules traversant la
portion routière sur laquelle ils sont installés. Les coûts prohibitifs d’installation
et de maintenance pour ce genre de capteurs limitent leur déploiement au
réseau routier primaire (c-à-d les autoroutes et les grandes artères seulement).
Par conséquent, ce genre de solutions produit une information incomplète sur
l’état du réseau routier, ce qui complique l’extraction de connaissances sur
la dynamique des mouvements dans ce réseau et sur l’adéquation entre le
réseau et son usage. Afin de combler ce manque d’information, une approche
complémentaire peut consister à exploiter des traces GPS d’objets mobiles
recueillies par des dispositifs ad hoc (par exemple des smartphones). Ces traces
peuvent être obtenues lors de campagnes d’acquisition spécifiques (bus, taxis,
flotte d’entreprise, etc.) ou par des mécanismes de crowdsourcing en proposant
à des utilisateurs de soumettre leurs propres trajets. On peut ainsi obtenir un
volume important de données couvrant le réseau de façon beaucoup plus com-
plète que les capteurs dédiés. Ces données peuvent ensuite être échantillonnées
(par les approches évoquées auparavant) puis explorées grâce à des méthodes
d’apprentissage et de fouille de données.

Le clustering (ou classification non supervisée) figure parmi les techniques
les plus utiles à de telles fins exploratoires. Il consiste à partitionner un ensemble
d’observations X = {x1, x2, ..., xn} en un ensemble de groupes (dits classes
ou clusters) C = {C1, C2, ..., Ck} de façon à regrouper au sein d’une même
classe les observations similaires au sens d’un critère bien défini. Le deuxième
problème de recherche auquel nous nous sommes intéressés dans le cadre de
cette thèse est celui du clustering de trajectoires dans le cas où celles-ci sont
contraintes par un réseau sous-jacent limitant leur mouvement (en particulier
le réseau routier).

Les travaux liés au clustering de trajectoires peuvent être classés en deux
grandes catégories : (i) l’étude de similarité entre trajectoires et (ii) la concep-
tion d’algorithmes de clustering adaptés aux trajectoires. Plusieurs distances
sont proposées pour comparer des trajectoires en mouvement libre entre elles
[61, 63, 64, 60, 65]. Toutes ces distances sont inadaptées au cas de trajectoires
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contraintes par un réseau puisqu’elles se basent sur la distance euclidienne
et ignorent les restrictions topologiques imposées par le réseau. Dans [68],
Hwang et al. introduisent l’une des premières mesures de similarité adaptées
au mouvement contraint. Les trajectoires sont filtrées en appliquant une simi-
larité spatiale sur le réseau (passage par des points d’intérêt prédéfinis) puis
le résultat est raffiné en appliquant un critère temporel. D’autres distances
spatiotemporelles sont également présentées par Tiakas et al. [71] et Chang et
al. [21].

Plusieurs approches de clustering sont proposées pour le cas particulier
des trajectoires d’objets mobiles. Ces approches diffèrent, généralement, selon
le choix de la représentation des données (géométrique ou symbolique), les
dimensions prises en compte (spatiale, temporelle ou les deux) et la granularité
du clustering (trajectoires entières, portions de trajectoires, etc.). Nanni et
Pedreschi [89] adaptent l’algorithme OPTICS [76] au cas des trajectoires : la
variante T-OPTICS regroupe des trajectoires entières, alors que la variante
TF-OPTICS regroupe des sous-trajectoires. Dans [51], les auteurs introduisent
la notion de flock patterns qui consistent en des groupes d’objets mobiles
se déplaçant ensemble dans un disque de rayon donné. La notion de convoy

pattern est introduite dans [55] et utilise l’algorithme DBSCAN [75] pour
regrouper des objets mobiles sur plusieurs instants temporels consécutifs. Lee
et al. [58] proposent l’algorithme TRACLUS : les trajectoires sont d’abord
simplifiées avec un algorithme de type MDL (Minimal Description Length)
puis des sous-trajectoires sont regroupées ensemble avec une adaptation de
l’algorithme DBSCAN. Tous ces algorithmes font l’hypothèse d’un mouvement
libre et utilisent des distances euclidiennes pour les comparaisons.

Dans [8], les auteurs proposent un algorithme pour découvrir des chemins
denses résultant des déplacements sur un réseau routier en exploitant le principe
de densité introduit par DBSCAN. La méthode est étendue dans [11] qui
ajoute la prise en compte du temps. Roh et Hwang [10] proposent l’algorithme
NNCluster qui exploite les calculs de plus court chemin dans le réseau routier
pour évaluer la distance entre les trajectoires et les partitionner.

Une nouvelle tendance dans le clustering de trajectoires a vu le jour très
récemment. Elle consiste à utiliser des techniques issues de l’analyse et du
clustering de graphes en les adaptant au contexte des trajectoires. Dans [85],
les auteurs construisent un graphe modélisant le nombre de « rencontres » entre
les trajectoires et calculent différentes statistiques sur la structure obtenue. Une
autre approche de ce genre est proposée par Guo et al. [59] où un graphe est
construit avec comme sommets les points constituant les trajectoires et comme
arcs le nombre de trajectoires ayant passé à la fois par les deux points reliés.
Ce graphe est partitionné pour découvrir des zones d’intérêt regroupant des
points souvent visités conjointement. Bien que les auteurs de ces travaux citent
des applications dans le cas contraint, leurs méthodes exploitent des calculs de
distance euclidienne entre points de trajectoires non contraints.

Pour cette partie, nous avons repris le modèle symbolique, qui est largement
utilisé dans la littérature [7, 8, 9, 10] et qui est plus adapté pour représenter
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des trajectoires dans le contexte des réseaux routiers. Dans ce modèle, le réseau
routier est représenté en tant qu’un graphe orienté G = (V ,S). L’ensemble des
sommets V représente les intersections et les points terminaux des routes, tandis
que l’ensemble des arcs S représente les segments routiers qui les relient. Une
trajectoire T effectuée par un objet mobile donné sur ce réseau est modélisée
par la séquence de segments routiers traversés :

T = (id, 〈s1, s2, ..., sl〉) ,

où id est l’identifiant unique de T , l sa longueur (nombre de segments
qu’elle contient) et ∀1 ≤ i < l, si et si+1 des segments connectés appartenant à
S. La figure 3 illustre trois trajectoires contraintes. Conformément au modèle
symbolique, celles-ci sont représentées comme suit : T1 = 〈s1, s7, s11, s12, s13〉,
T2 = 〈s1, s4, s3〉 et T3 = 〈s10, s11, s8, s5, s6〉.
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Figure 3 – Exemple de trois trajectoires contraintes par un réseau routier.

Clustering de trajectoires contraintes par optimisation

de la modularité

Dans un premier temps, nous nous sommes intéressés à regrouper des trajec-
toires similaires. Pour évaluer la similarité de celles-ci, nous nous basons sur
les segments routiers qu’elles ont visités. Ainsi, nous considérons que deux
trajectoires sont similaires si elles partagent un grand nombre de segments
routiers. Plus ce nombre augmente, plus elles sont similaires (jusqu’à devenir
identiques si elles contiennent exactement les mêmes segments) et, vice versa,
plus ce nombre décroit, plus elles deviennent dissimilaires (jusqu’à devenir
totalement différentes si elles ne contiennent aucun segment en commun). Cette
façon de faire est inspirée par les travaux existants dans le domaine de la
recherche d’information où chaque document est considéré comme un sac de
mots (ou bag-of-words) et où les documents sont comparés par rapport aux
mots qu’ils partagent (tout en négligeant l’ordre d’apparition de ces mots).
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Formellement, en inspectant une trajectoire donnée T nous affectons à
chaque segment routier s qu’elle contient un poids ωs,T :

ωs,T =
ns,T · length(s)

∑

s′∈T ns′,T · length(s′)
× log

|T |

|{Ti : s ∈ Ti}|
.

Avec ns,T le nombre de fois que la trajectoire T a visité le segment s
(généralement 1), length(s) la longueur spatiale de s, |T | le nombre total
de trajectoires dans le jeu de données T et |{Ti : s ∈ Ti}| le nombre de
trajectoires qui ont visité le segment s. La première partie de ωs,T correspond
à la contribution du segment à la longueur totale de la trajectoire inspectée :
plus le segment contribue à une trajectoire, plus il devient important pour
comparer celle-ci avec d’autres trajectoires et vice versa. La seconde partie,
quant à elle, permet de pénaliser les segments routiers très fréquents (qui sont
visités souvent par les trajectoires) et qui ne sont donc pas particulièrement
pertinents pour la formation de clusters de trajectoires. Cette méthode de
pondération est une adaptation de la méthode tf–idf (term frequency – inverse

document frequency), souvent utilisée dans la recherche d’information, au cas
de trajectoires routières.

Enfin, nous mesurons la similarité entre deux trajectoires Ti et Tj en utilisant
une similarité cosinus dont les valeurs varient entre 0 et 1 (0 indique deux
trajectoires totalement indépendantes et 1 indique deux trajectoires identiques) :

similarity(Ti, Tj) =

∑

s∈S ωs,Ti
· ωs,Tj

√

∑

s∈S ω
2
s,Ti
·
√

∑

s∈S ω
2
s,Tj

.

Afin d’effectuer le clustering des trajectoires étudiées, nous commençons
par représenter les relations de similarité qu’elles entretiennent sous forme d’un
graphe non-orienté et pondéré GT = (T , ET ,WT ) appelé graphe de similarité
entre trajectoires (cf. figure 4). Chaque trajectoire est représentée sous forme
d’un sommet dans ce graphe. Une arête relie deux trajectoires Ti et Tj si et
seulement si elles partagent au moins un segment routier en commun (c-à-d
elles ont une similarité cosinus non nulle), auquel cas l’arête est pondérée avec
la valeur de leur similarité.

Hormis le fait qu’elle soit simple à comprendre, nous avons opté pour cette
représentation des interactions entre trajectoires sous forme d’un graphe parce
qu’elle met l’accent sur le fait que des trajectoires totalement différentes ne
doivent, a priori, pas être regroupées du fait de l’absence d’une arête qui les
relie directement.

Plusieurs approches de clustering de graphes existent dans la littérature [97,
98]. Dans le cadre des travaux qui ont été menés pendant cette thèse, nous avons
opté pour l’utilisation de la détection de communautés par maximisation de la
modularité [101], et ce en raison de sa popularité et des résultats prometteurs
obtenus par les approches qui s’y apparentent en pratique. Étant donné un
graphe G = (V , E ,W) constitué de l’ensemble de sommets V = {v1, v2, ..., vn}
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Figure 4 – Exemple d’un graphe de similarité induit par cinq trajectoires.

et de l’ensemble d’arêtes pondérées E avec ωij ≥ 0 et ωij = ωji et étant donnée
une partition des sommets de ce graphe en K clusters (appelés dans ce contexte
« communautés ») C1, ..., CK , la modularité de la partition est exprimée comme
suit :

Q =
1

2m

K
∑

k=1

∑

i,j∈Ck

(

ωij −
didj
2m

)

.

Où di =
∑

j 6=i ωij et m = 1
2

∑

i di. La modularité mesure donc la qualité
du clustering en inspectant la disposition des arêtes au sein des communautés
de sommets : une modularité élevée indique que les arêtes à l’intérieur des
communautés sont plus nombreuses (ou possèdent des poids plus élevés) que
dans le cas d’un graphe où les arêtes sont distribuées de façon aléatoire.

Pour effectuer le clustering du graphe de similarité entre trajectoires GT ,
nous utilisons l’algorithme décrit dans [102]. L’algorithme prend en entrée le
graphe GT et se charge de trouver une partition optimale (c-à-d une partition
qui maximise la mesure de modularité). Cette partition est validée en mesurant
sa « significativité » (en comparant sa modularité à la modularité obtenue sur
les partitions optimales de graphes aléatoires ayant une structure similaire
à celle du graphe GT ). Si la partition est valide, l’algorithme est repris de
façon récursive sur chacune des communautés (autrement dit, le sous-graphe
formé par les sommets de la communauté et leurs arêtes internes est isolé et le
clustering est effectué sur celui-ci). La récursivité s’arrête lorsqu’aucune des
sous-partitions ne peut être partitionnée davantage.

Le résultat est une hiérarchie de clusters de trajectoires imbriqués qui s’étale
sur plusieurs niveaux. Ceci est un atout majeur lors de l’analyse de grands jeux
de données susceptibles de contenir un nombre élevé de clusters : l’utilisateur
peut commencer, au niveau le plus haut de l’hiérarchie, avec un nombre limité
de clusters avec une simplification grossière pour comprendre rapidement les
tendances générales de mouvement puis accéder, par zooms successifs, à plus
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de détails dans les clusters qui l’intéressent. La figure 5 représente un jeu
de données composé de 10000 trajectoires engendrées avec le générateur de
Brinkhoff [6] sur le réseau routier d’Oldenburg, tandis que la figure 6 montre
les huit clusters de trajectoires appartenant au premier niveau de la hiérarchie
de clusters obtenue par application de notre approche.

Figure 5 – Jeu de données composé de 10000 trajectoires en mobilité sur le
réseau routier de la ville d’Oldenburg. Les segments routiers sont coloriés en
fonction de leur taux d’utilisation (nombre de trajectoires les ayant fréquentés) :
une couleur jaune pale indique un segment peu fréquenté, alors qu’une couleur
rouge foncée indique un segment très fréquenté.

Afin d’évaluer notre approche, nous l’avons comparée à la version de base
de l’approche NNCluster proposée par Roh et Hwang [10] sur une multitude de
jeux de données étiquetés (c-à-d qui contiennent des clusters pré-déterminés) de
petite taille que nous avons générés ainsi que sur le grand jeu de données évoqué
auparavant et illustré dans la figure 5. La comparaison des deux méthodes a été
basée sur un ensemble de critères de qualité internes (taux de chevauchement
intra-clusters) et externes (pureté et entropie [105] et indice de Rand ajusté
[106]). Les résultats obtenus montrent que notre approche produit des clusters
plus pertinents par rapport aux critères susmentionnés.

Notre approche de clustering de trajectoires par optimisation de la modula-
rité est exposée en détail dans la section 3.3 dans laquelle nous discutons, en
plus des généralités qui ont été présentées ici, de plusieurs aspects tels que la
complexité de l’approche, l’extraction de trajectoires représentatives à partir
des clusters, etc.
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(a) Cluster 1
(1843 trajectoires)

(b) Cluster 2
(674 trajectoires)

(c) Cluster 3
(901 trajectoires)

(d) Cluster 4
(458 trajectoires)

(e) Cluster 5
(1487 trajectoires)

(f) Cluster 6
(971 trajectoires)

(g) Cluster 7
(2429 trajectoires)

(h) Cluster 8
(1237 trajectoires)

Figure 6 – Les huit clusters de trajectoires dans le premier niveau de la
hiérarchie de clusters. Les segments routiers sont coloriés suivant le même
principe que dans Figure 5.
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Clustering de segments routiers par optimisation de la

modularité

Une approche alternative pour effectuer le clustering de données de trajectoires
contraintes par un réseau routier consiste à considérer que les observations
qu’on désire regrouper sont les segments routiers plutôt que les trajectoires.
Nous proposons une extension de l’approche que nous venons de présenter, qui
permet d’effectuer le clustering de segments routiers.

Afin d’évaluer la similarité entre segments routiers, nous procédons par
analogie au cas des trajectoires et considérons chaque segment comme le « sac
des trajectoires » qui l’ont parcouru. Intuitivement, deux segments routiers sont
similaires s’ils sont parcourus souvent par les mêmes trajectoires et sont dissi-
milaires dans le cas contraire. Plus formellement, nous utilisons une similarité
cosinus pondérée pour comparer deux segments si et sj :

similarity(si, sj) =

∑

T∈T ωT,si · ωT,sj
√

∑

T∈T ω2
T,si
·
√

∑

T∈T ω2
T,sj

.

Ici, ωT,s est le poids attribué à une trajectoire T afin de caractériser son
importance pour un segment s donné en fonction de son nombre de passages
sur le segment en question et le nombre total de segments qu’elle a visités :

ωT,s =
ns,T

∑

T ′∈T ns,T ′

· log
|S|

|s′ ∈ S : s′ ∈ T |
.

Les valeurs de similarité entre toutes les paires de segments routiers sont uti-
lisées pour construire un graphe de similarité entre segments GS = (S, ES ,WS).
Ici, chaque sommet dans le graphe correspond à un segment routier (et non
pas à une trajectoire comme c’était le cas de l’approche précédente). Une arête
relie deux segments si et sj si et seulement s’ils ont une similarité non nulle
(c-à-d il existe au moins une trajectoire qui les a visités tous les deux). Dans
ce cas, l’arête est pondérée avec la valeur de cette similarité. Un graphe de
similarité entre segments routiers est illustré dans la figure 7.

Afin de partitionner le graphe de similarité entre segments routiers, nous
utilisons le même algorithme de détection de communautés [102, 103] que nous
avons utilisé auparavant. Le résultat est une hiérarchie de clusters de segments
routiers fortement corrélés. Ces clusters peuvent être analysés, par exemple,
pour détecter d’éventuels goulots d’étranglement et localiser les zones mal
desservies dans le réseau routier. Ils peuvent également être croisés avec les
clusters de trajectoires découverts grâce à l’approche que nous avons présentée
dans la section précédente afin de caractériser le rôle que certaines portions de
routes jouent dans le traffic. À titre d’exemple, la figure 8 montre un groupe de
segments routiers jouant le rôle d’un « hub routier », à savoir une portion de
route que des clusters de trajectoires qui diffèrent dans leurs zones de départ
et/ou d’arrivée empruntent.
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Figure 7 – Exemple d’un graphe de similarité entre segments routiers induit
par les visites que huit segments ont reçues de la part de cinq trajectoires.

(a) Cluster de segments rou-
tiers constituant un hub

(b) Premier cluster de trajec-
toires traversant le hub

(c) Deuxième cluster de trajec-
toires traversant le hub

Figure 8 – Exemple d’un cluster de segments routiers (a) qui forment un hub
traversé par deux clusters de trajectoires (b) et (c) originaires de deux zones
différentes et qui l’empruntent pour se rendre à deux destinations différentes.

L’approche de clustering de segments routiers par optimisation de la modu-
larité ainsi que l’ensemble d’expérimentations que nous avons conduites à ce
sujet sont décrites en détail dans la section 3.4 du manuscrit.

Co-clustering simultané de trajectoires et de segments

routiers

L’une des limitations de nos approches de clustering par optimisation de la
modularité est que chacune d’elles est découplée de l’autre : le partitionnement
des trajectoires (resp. segments routiers) est effectué uniquement en se basant
sur leurs interactions sans essayer de caractériser la nature de leurs relations
avec les segments routiers (resp. trajectoires). Il incombe donc à l’utilisateur
d’effectuer séparément le clustering des trajectoires et celui des segments
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routiers, puis de les croiser manuellement pour essayer d’expliquer les clusters
de segments routiers en fonction des clusters de trajectoires et vice versa.

Afin de lever cette limitation, nous proposons une troisième approche qui
permet d’effectuer le clustering des trajectoires et des segments routiers de
façon simultanée. Cette nouvelle approche se base sur la représentation non
pas sous la forme de graphes simples comme c’était le cas auparavant mais
sous forme d’un graphe biparti G = (T ,S, E) décrivant les relations entre les
trajectoires et les segments routiers. Ce graphe biparti est composé de deux
types de sommets : (i) l’ensemble de sommets T = {T1, T2, ..., Tn} correspond
aux trajectoires, tandis que (ii) l’ensemble de sommets S = {s1, s2, ..., sm}
correspond à l’ensemble de segments composant le réseau routier qui ont été
visités au moins par une trajectoire. Une arête e ∈ E relie une trajectoire T
et un segment routier s si T a visité le segment s au moins une fois. Cette
représentation sous forme de graphe biparti est illustrée dans la figure 9.
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Figure 9 – Exemple d’un graphe biparti modélisant les interactions entre cinq
trajectoires et les huit segments routiers qu’elles ont visités.

Nous proposons d’étudier le clustering du graphe biparti en appliquant une
approche de co-clustering sur sa matrice d’adjacence. Dans cette matrice, les
segments sont représentés en colonnes, les trajectoires en lignes et l’intersection
d’une ligne et d’une colonne indique le nombre de passages d’une trajectoire sur
un segment. Le but d’un co-clustering est de réordonner les lignes et les colonnes
de manière à faire apparaitre et à extraire des blocs de densités homogènes
dans la matrice d’adjacence du graphe biparti G. Une fois ces blocs extraits,
on en déduit deux partitions obtenues simultanément, une de segments et une
de trajectoires.

Une structure de co-clustering, que nous notons M, est définie par un
ensemble de paramètres de modélisations décrits dans le tableau 1. Le but d’un
algorithme de co-clustering est d’inférer la meilleure partition du graphe.

En appliquant ce type d’approches, les trajectoires sont regroupées si elles
parcourent des segments communs et les segments sont regroupés s’ils sont
parcourus par des trajectoires communes. L’avantage de cette technique est
qu’elle ne requière ni pré-traitement sur les données, ni définition de mesure
de similarité entre trajectoires ou entre segments (comme dans les approches
précédentes).
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Graphe biparti G Modèle de co-clustering M

T : ensemble des trajectoires CT : ensemble des clusters de trajec-
toires

S : ensemble des segments CS : ensemble des clusters de segments
E = T ∩S : ensemble des passages des
trajectoires sur les segments

CE : co-clusters de trajectoires et de
segments

Table 1 – Notations.

Nous avons choisi, dans le cadre de cette thèse, d’utiliser l’approche MODL
[125] afin d’inférer la structure de co-clustering. MODL est non-paramétrique
et a des capacités de passage à l’échelle nous permettant de l’utiliser pour
analyser de grands jeux de données de trajectories. Un critère est construit
suivant une approche MAP (Maximum A Posteriori) :

M∗ = argmax
M

P (M)P (D|M) .

D’abord, une probabilité a priori P (M) dépendant des données est définie.
Elle spécifie les paramètres de modélisation en attribuant à chacun d’eux une
pénalisation correspondant à leur longueur de codage minimale. Ainsi, plus
une structure de co-clustering sera parcimonieuse, moins elle sera coûteuse.
Ensuite, la vraisemblance des données connaissant le modèle P (D|M) est
définie. Elle mesure le coût de recodage des données D avec les paramètres du
modèleM. Le modèle de co-clustering le plus probable est le modèle le plus
fidèle aux données initiales. En d’autres termes, la vraisemblance favorise les
structures informatives. La définition du critère global est donc un compromis
entre une structure de co-clustering simple et synthétique, et une structure fine
et informative.

D’un point de vue algorithmique, l’optimisation est réalisée à l’aide d’une
heuristique gloutonne ascendante, initialisée avec le modèle le plus fin, c’est-à-
dire avec un segment et une trajectoire par cluster. Elle considère toutes les
fusions entre les clusters et réalise la meilleure d’entre elles si cette dernière
permet de faire décroitre le critère optimisé. Cette heuristique est améliorée avec
une étape de post-optimisation, pendant laquelle on effectue des permutations
au sein des clusters. Le tout est englobé dans une métaheuristique de type VNS
(Variable Neighborhood Search [130]) qui tire profit de plusieurs lancements
de l’algorithme avec des initialisations aléatoires différentes. L’algorithme est
détaillé et évalué dans [125].

Les co-clusters découverts peuvent être analysés afin de caractériser le traf-
fic routier et le rôle des différentes portions de routes dans celui-ci. On peut
notamment étudier la contribution des co-clusters à l’information mutuelle. L’in-
formation mutuelle, qui est une mesure fréquemment utilisée en co-clustering,
permet de quantifier les dépendances entre les partitions de segments et de
trajectoires. Elle est toujours positive et est d’autant plus importante que
les clusters de trajectoires parcourent des clusters de segments uniques. La
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contribution à l’information mutuelle, notée mi(cS, cT ), permet quant à elle
de quantifier l’apport d’un co-cluster formé d’un cluster de trajectoire cT et
d’un cluster de segments cS à l’information mutuelle du modèle. Elle est définie
comme suit :

mi(cS, cT ) = P (cS, cT ) log
P (cS, cT )

P (cS)P (cT )
,

où P (cS, cT ) désigne la probabilité pour un passage d’appartenir à une
trajectoire de cT et de couvrir un segment de cS, P (cS) la probabilité de
parcourir un segment du cluster cS et P (cT ) la probabilité d’être sur une
trajectoire de cT . Une visualisation des contributions à l’information mutuelle
des différents co-clusters que nous avons découverts en analysant un jeu de
données de trajectoires est montrée dans la figure 10.

Figure 10 – Visualisation des contributions à l’information mutuelle des
co-clusters découverts dans un jeu de données de trajectoires. Les clusters
de trajectoires sont répertoriés sur la verticale, tandis que les clusters de
segments sont répertoriés horizontalement. Chaque intersection entre un cluster
de trajectoires et un cluster de segments représente un co-cluster. La couleur de
la cellule qui correspond à ce dernier indique l’importance de sa contribution à
l’information mutuelle.

Deux interactions distinctes entre clusters de segments et clusters de trajec-
toires peuvent être caractérisées :

− certains clusters de segments interagissent uniquement avec un seul cluster
de trajectoires. Les segments routiers correspondent souvent dans ce cas à
des axes secondaires et aux zones de départ et/ou d’arrivée des trajectoires
(figure 11) ;

− d’autres clusters de segments sont parcourus par plusieurs clusters de
trajectoires. Dans ce cas, les segments forment un « hub routier » (à
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l’image de celui déjà montré dans la figure 8) auxquels les trajectoires
convergent à partir de zones différentes ou divergent pour aller à des
destinations différentes. La détection de la présence de ces hubs peut être
très utile dans le contexte de la gestion du traffic routier : si des situations
de congestion se produisent fréquemment au niveau d’un hub routier, des
solutions peuvent être développées en fonction de la nature des groupes
de trajectoires qui le parcourent (en proposant, par exemple, un trajet
alternatif à l’un de ces groupes afin d’alléger la charge du hub).

(a) 34 segments (b) 40 segments (c) 77 segments

Figure 11 – Exemples d’axes routiers secondaires conduisant vers les zones
périphériques du réseau routier.

Notre approche de co-clustering, qui est le fruit d’une collaboration avec
Romain Guigourès et Marc Boullé d’Orange Labs, est décrite dans le chapitre 4.
Un cas d’étude et une étude expérimentale visant à comparer nos trois approches
sont également présentés dans ce même chapitre.

Conclusion et perspectives

Les travaux effectués pendant cette thèse ont porté sur deux axes de recherche
liés à l’analyse de données de mobilité : (i) l’échantillonnage de flux de trajec-
toires et (ii) la classification non supervisée (clustering) de trajectoires dans les
réseaux routiers.

Nous avons proposé l’algorithme STSS qui permet d’effectuer l’échantillon-
nage spatiotemporel à la volée des données de trajectoires transmises en flux
continu. L’algorithme est efficace en terme de temps de calcul et offre une
borne supérieure paramétrable pour les erreurs d’approximation introduites
par l’échantillonnage. Il est adapté à une utilisation non seulement pour la
construction de résumés historiques des trajectoires collectées mais également
en tant que mécanisme de réduction de charge si le système fait face à un fort
taux d’arrivée des données.

Nous avons également proposé trois approches pour effectuer le clustering
de données de trajectoires dans le cas où elles sont contraintes par un réseau
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sous-jacent, particulièrement le réseau routier. L’utilisation de ces approches
permet d’extraire des connaissances utiles pour comprendre le traffic routier
et le caractériser. Elles permettent, par exemple, d’extraire des groupes de
trajectoires qui effectuent les mêmes trajets, de retrouver des segments routiers
souvent visités ensemble, de caractériser les rôles que différentes portions
routières remplissent, etc.

Plusieurs perspectives et extensions sont possibles à l’issue de ce travail.
Parmi celles-ci nous citons les trois suivantes (nous en citons d’autres dans le
chapitre 5) :

− compression multi-trajectoires : les différentes approches d’échantillonnage
que nous avons explorées effectuent l’échantillonnage de chaque trajectoire
séparément. Une approche alternative peut consister à inspecter toutes
les trajectoires simultanément et exploiter certaines redondances qu’elles
peuvent présenter (ex. passages par les mêmes points) afin de réduire la
taille des données en mutualisant certaines informations (ex. garder une
seule trajectoire pour représenter un groupe de trajectoires qui se sont
déplacées ensemble). Cette piste est intéressante dans la mesure où elle
se situe à la jonction des deux problèmes de recherche que nous avons
étudiés séparément dans le cadre de ce travail ;

− gestion du temps dans le clustering : les approches de clustering que nous
avons proposées évaluent la similarité entre les observations (trajectoires
et segments) d’un point de vue purement spatial. Il serait intéressant
d’intégrer la dimension temporelle dans ce processus d’autant que celle-ci
joue un rôle très important dans le contexte de détection et d’analyse de
congestions routières ;

− inférence de relations sociales à partir de données de mobilité : beaucoup
de données de mobilité sont engendrées par une activité sociale qui leur
est sous-jacente (plusieurs amis peuvent se déplacer naturellement en
groupe en jouant à un jeu en réalité augmentée ou pour se rendre à un
événement donné, etc.). Il serait intéressant d’explorer la possibilité de
caractériser les relations sociales entre individus (ex. présence de liens
d’amitié par exemple) en analysant les corrélations entre leurs données
de mobilité.
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General Introduction

General Context

In the last couple of decades, outstanding advancements have been achieved
in the fields of telecommunications and geo-positioning. Such advancements
are reflected by instances like the transition from the use of “dumb” mobile
phones to smartphones that are constantly connected and perfectly capable of
locating their owners, or the increasing number of vehicles equipped with GPS
(Global Positioning System) navigation devices. The progress witnessed by
these fields granted us the possibility of monitoring the whereabouts of “moving
objects” of different natures (e.g. GPS-equipped vehicles, pedestrians using
their smartphones and PDAs, RFID-tagged animals, etc.), but also the ability
to transmit these positions and store them in view of future analysis and usage.

Fundamentally, any entity whose different position changes can be tracked
and registered may be considered as a moving object. When these position
changes are correlated, they induce a “trajectory” describing the journey of the
moving object from one place to another throughout time. This new type of
data was received with great enthusiasm and many companies are constantly
racing to offer their customers the best of what LBS (Location-Based Services)
can provide. This can be perceived through the great number of commercially-
available products whose core added-value stems from the use of location data.
Examples of such products include Waze [1], a crowdsourced turn-by-turn
navigation tool that offers real-time routing and traffic jam avoidance based
on positioning information collected from the users; OpenStreetMap [2], by
far the most complete publicly-available map of the world, built mainly from
trajectories that contributors collected using their location-aware devices; and
the list goes on. Very recently, mobility data were even used to provide a new
gaming experience with the augmented reality game Ingress [3].

Since classic Database Management Systems (DBMS) are not well adapted
to the constantly evolving, spatiotemporal nature of mobility data, considerable
efforts have been made by the research community in order to develop more
suitable alternatives. These alternatives are generally known as Moving Object
Databases (MOD) [4] and aim to offer the possibility of modeling, storing,
and querying trajectory data efficiently. With such operations made possible,
researchers moved to studying more complex problems related to the analysis
and data mining of trajectory data in order to extract insightful knowledge
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about moving objects of different natures. This was mainly motivated by the
great potential of these tasks and their usefulness in a multitude of domains as
they open the door to a wide variety of applications, such as:

• Study of animal migration: the trajectories of different animal species
can be collected using RFID (radio-frequency identification) tags then
analyzed in order to reveal their migratory patterns. The data can also
be correlated with other geographic information in order to study, for
example, the repercussions of phenomena such as deforestation or road
planning on these patterns.

• Meteorology: studying the past paths followed by reoccurring meteo-
rological phenomena, such as hurricanes, can enhance the accuracy of
predicting their future landfall locations. This can greatly contribute to
reducing their damage and saving human lives.

• Fraud detection: fleet management companies can analyze the trajectories
of their vehicle fleets in order to detect outliers and suspicious behav-
iors (e.g. a cab driver who is deliberately taking unusual and lengthy
routes, a delivery truck making excessively frequent stops, etc.) and react
accordingly.

• Carpooling: by correlating the daily commutes of different drivers, we
can detect opportunities for commuters to share their rides and reduce
their travel costs.

One particular domain that can benefit greatly from moving object tra-
jectory data is traffic analysis and monitoring. Recent reports, such as the
Texas A&M Transportation Institute’s 2012 Urban Mobility Report [5], paint
a gloomy picture of road traffic as they show alarming and concerning figures
about economical losses and environmental damage caused by road conges-
tions and traffic jams. Collecting trajectories from vehicles commuting on
the road network can complement traditional traffic monitoring approaches
(mainly conducted using dedicated sensors) and can contribute greatly to our
understanding of flow dynamics in the road network. For example, detecting
patterns in the collected data can reveal the presence of exceptionally dense
and congested areas, the tendency of vehicles to take a particular path to
visit a given area, underserved areas that do not benefit from sufficient roads,
etc. Such patterns can reveal the inadequacies between the road network’s
capacity and its real usage and can consequently be used for more informed
decision-making in future road planning.

The work described in this thesis is positioned within this general context
since we are interested in studying two research problems related to moving
object trajectories.
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Studied Research Problems

Research on moving object trajectories and moving object databases covers a
wide variety of subjects [4] like spatiotemporal indexing techniques, compression
techniques, privacy preservation, analytical tasks (pattern mining, clustering,
supervised classification, outlier detection), etc. In this thesis, we study two
problems related to mobility data: (i) sampling moving object trajectories in
data stream environments, and (ii) clustering trajectory data in the particular
context of road networks.

Sampling Moving Object Trajectory Data Streams

Modern GPS devices are capable of logging their positions at a high rate (one
position per second). Collecting and storing the entirety of such trajectories,
especially when they are generated by a large number of moving objects, is
therefore impractical and, in many contexts, infeasible as it entails severe
computational and storage overheads. Moreover, trajectories logged at such
high rates often contain redundancies (e.g. when a vehicle is at a red light
and keeps reporting the same position). Consequently, adapted compression
techniques are needed in order to reduce the size of the data. Among these
techniques, sampling is a natural and appealing choice which consists in deleting
unnecessary and redundant positions in a given trajectory. Since sampling is
a lossy compression process, one of its main challenges is to propose adapted
algorithms that preserve most of the spatiotemporal features of the trajectory
and provide guaranteed (and preferably controllable) bounds for the resulting
compression errors.

We study the trajectory sampling problem in the particular context of
streaming environments in which data are transient and need to be processed
on-the-fly (as soon as they arrive). This introduces additional restrictions since
proposed techniques are interdicted from backtracking on the data indefinitely
and need to be efficient in order to cope with high arrival rates.

Clustering Moving Object Trajectory Data in Road Network
Environments

Cluster analysis is a popular unsupervised learning task often used for ex-
ploratory purposes. Given a set of observations, clustering’s main objective
is to discover groups (called clusters) of “similar” observations w.r.t. a given
criterion. Applying this technique to trajectory data can help uncover valuable
knowledge about the behavior of moving objects and their general mobility
trends and patterns.

While the problem was studied extensively in the case of static data,
clustering of moving object trajectories attracted attention only recently and
is still at an early stage. The complex and particular nature of trajectory data
brings additional research challenges since it requires defining new similarity

3



General Introduction

and distance measures suitable for comparing trajectories. Additionally, moving
objects in real applications often evolve on networks (e.g. road networks for
vehicles, air corridors for airplanes, etc.). These networks underly and restrict
the motion of the moving objects. Such restrictions must consequently be
accounted for during the clustering process in order for the discovered clusters
to be meaningful.

The biggest part of the work we present in this thesis is dedicated to
studying different formulations of the moving object trajectory data clustering
problem in the particular context of road network environments.

Contributions

The main contributions of this work can be summarized as follows:

• We propose the STSS (Spatiotemporal Stream Sampling) algorithm: a
technique that addresses the needs of trajectory sampling in streaming
environments. STSS combines the two desirable properties we mentioned
earlier: (i) it benefits from a low, linear time complexity, and (ii) it
guarantees an upper bound for the compression error. Moreover, this
error bound is directly configurable by the user.

• We propose a network-constrained trajectory clustering approach based
on community detection in graphs. Often in road network environments,
trajectories are depicted as series of traveled road segments. We take
advantage of this representation and define a similarity measure that eval-
uates the resemblance between trajectories by intelligently comparing the
common road segments they visited. The similarities between trajectories
are used to build a trajectory interaction graph that we cluster using a
well-known quality criterion in order to discover relevant and meaningful
groups of trajectories with similar behaviors. Contrary to “flat” clustering
approaches, ours provides the user with a hierarchy of nested clusters
that can be explored progressively with increasing levels of detail, which
can be practical when analyzing clusters discovered in large datasets.

• We also propose an approach to clustering road segments based on the
visits they receive from trajectories. This approach is defined analogically
to the trajectory clustering approach we mentioned earlier: we use a
graph representation to depict similarities between pairs of road segments
then we use community detection to discover a hierarchy of road segment
clusters. A cluster in this case corresponds to a group of segments that
are frequently visited together, an information that can potentially be
used to understand and predict the propagation of traffic jams.

• Finally, we propose a co-clustering approach in order to partition trajecto-
ries and road segments simultaneously (instead of the separate approaches
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we just described). This approach produces co-clusters that contain both
trajectories and road segments regrouped based on the homogeneity of
the visits the segments receive from the trajectories. These co-clusters can
be used to characterize the road traffic and discover interesting structures
such as hubs (i.e. portions of the road network used by multiple groups
of vehicles traveling to different areas), etc. This last contribution is the
result of a collaboration with Romain Guigourès and Marc Boullé from
Orange Labs.

Outline of the Thesis

This thesis is composed of five chapters. In Chapter 1, we start by discussing
how trajectory data can be represented and present the data models we will
be using for our work. We briefly talk about how trajectories can be acquired
in real life, and, since we will be testing some of our approaches on synthetic
datasets, we also discuss how moving object trajectories can be generated
artificially.

Sampling moving object trajectories in streaming environments is treated
in Chapter 2. We start by giving our formal definition of the problem and state
its main objectives then move on to discuss existing work in both data stream
processing and trajectory sampling. Guided by the shortcomings we noticed
in related work, we present the STSS (Spatiotemporal Stream Sampling) to
address the need for both efficiency and quality requirements for sampling
trajectory streams. We also provide an experimental study consisting in a
performance comparison between STSS and other existing algorithms and
conclude on general remarks about the pros and cons of our approach.

We study clustering trajectory data in road network environments using
graph-based approaches in Chapter 3. We start by formalizing two problems: (i)
the network-constrained trajectory clustering problem, and (ii) the road segment
clustering problem. We present a survey of existing work on trajectory similarity
and clustering algorithms, and give a brief glimpse into graph clustering. In light
of the observations we made about existing trajectory clustering techniques,
we present our approach to clustering network-constrained trajectories based
on modeling their similarities using a graph representation and clustering this
graph in order to discover meaningful clusters corresponding to natural group
structures. We demonstrate our approach through a comprehensive case study
and evaluate its quality using multiple synthetic datasets. In the second portion
of Chapter 3, we extend this approach to the road segment clustering problem.
We also test this second approach on synthetic datasets and conclude with
remarks on both propositions.

We continue studying the network-constrained trajectory data clustering
problem in Chapter 4 in which we try to exploit the duality we noticed between
the two original problems we defined in Chapter 3. To do so, we try to
combine both problems and study the co-clustering of both trajectories and
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road segments simultaneously. We formalize an alternative model that uses
a bipartite graph to describe interactions between both entities and partition
the adjacency matrix of this graph to extract co-clusters implicating highly
interrelated groups of trajectories and groups of segments. We then point out,
through experimental studies, some key differences between this co-clustering
approach and the approaches presented in Chapter 3.

We conclude this thesis in Chapter 5 in which we revisit and summarize
the main contributions of this work and present possible extensions and open
issues.
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Chapter 1

Representation, Acquisition, and

Generation of Moving Object

Trajectories

With the widespread use and availability of location-aware devices (such as
GPS, smartphones, etc.), modeling, managing, and mining moving trajectories
became very active research areas and received a considerable amount of interest
in the last few years. To put it simply, a moving object can be intuitively defined
as an object whose position changes over time. Pedestrians and vehicles are
obvious examples of moving objects but the concept extends to any entity whose
trajectory can be tracked and recorded (e.g. migratory animals, hurricanes,
etc.).

When in presence of a new type of data (in this case, mobility data), one
of the first questions that need to be answered is: “how can the data be
represented?” Choosing an appropriate data model is of paramount importance
and has a considerable impact on practically any task that will be conducted
on the data later on. Two other questions are: “how is the data acquired?” and
“if no real data are available, how can we still test and experiment with new
approaches and techniques?”

In this chapter, we discuss the aforementioned questions and seize the
opportunity to introduce the basic concepts, data models, and tools that will
be used in the rest of this thesis. In Section 1.1, we present two trajectory data
models: (i) the geometric data model used to represent trajectories with no
restrictions on their motion, and (ii) the symbolic data model used to express
trajectories that must adhere to constraints dictated by the presence of an
underlying network (e.g. the road network). In Section 1.2, we talk about how
trajectory data can be acquired and, if not available, generated using tools like
the Brinkhoff generator [6]. We also present, in this same section, a simple
data generation strategy that we defined to answer specific needs of some of
the experimental studies that we report later in this thesis.
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Moving Object Trajectories

1.1 Representing Trajectory Data

In this section, we present the two data models that will be used throughout this
thesis to represent trajectory data. Section 1.1.1 presents the geometric model
in which trajectories are modeled based on their real spatial and temporal
features. Section 1.1.2 presents the data model used to symbolically represent
vehicle trajectories in road network environments. Alternative models can be
found in [4].

1.1.1 Geometric Model

Ideally, a trajectory of a moving object would be acquired as a smooth, con-
tinuous curve described through a function from time to geographical space.
However, due to inherent limitations of acquisition devices, this is far from
reality. In reality, trajectories are acquired as series of discrete and possibly
noisy sample positions that need to be interpolated in order to have an estimate
of the missing parts.

In the “geometric” model, trajectories are represented as sets of timestamped
positions in Euclidean space (generally in the two or three dimensional space)
without accounting for any additional details or constraints related to the
surroundings of these trajectories. Formally, and without loss of generality,
a two-dimensional moving object trajectory in the geometric model can be
defined as follows:

Definition 1 (Two-Dimensional Trajectory). The trajectory T of an object o
moving over a two-dimensional Euclidean space is an ordered series of time-
stamped positions (1.1):

T = (id, 〈P1(t1, x1, y1), P2(t2, x2, y2), ..., Pi(ti, xi, yi), ...〉) . (1.1)

id is a unique identifier assigned to the trajectory T and its positions.
For each reported position Pi, the pair (xi, yi) represents the coordinates of o
captured at the date (or timestamp) ti.

As mentioned before, interpolation is needed to “link the dots” and ap-
proximate the positions of the moving object at missing timestamps. The
most commonly used approach is piecewise linear interpolation: for a given
timestamp t belonging to a time interval [ti, ti+1] represented by the two sample
points Pi and Pi+1, the position (t, x, y) of the moving object o can be estimated
according to Formula (1.2):

(t, x, y) = (ti, xi, yi) +
t− ti

ti+1 − ti
(ti+1 − ti, xi+1 − xi, yi+1 − yi) . (1.2)

Piecewise linear interpolation makes a number of strong assumptions: (i)
the moving object is supposed to move in a single, straight direction in-between
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successive sample points while (ii) having a constant speed (the minimal average
speed to travel from (xi, yi) to (xi+1, yi+1)). This results in abrupt changes
in speed and direction between transitions. However, linearly-interpolated
trajectories are fast to compute and easier to handle than those interpolated
with more sophisticated techniques.

Alternatively, interpolation with Bezier curves can be used to model the
spatial coordinates as three-degree polynomials of the time coordinates. While
Bezier curves result in smoother transitions, the interpolated trajectories they
yield are harder to manipulate (e.g. with operations such as intersections
calculation) than their linearly-interpolated counterparts.

As stated in [4], “all these interpolation methods have one thing in common.
The more sample points there are (i.e. the closer they are in time) the more
accurate the trajectories will be.” This observation leads to an inevitable
trade-off between accuracy and computation and storage space requirements:
more positions mean more accuracy but also more space and more processing
time, and vice versa. Therefore, compression techniques are needed in order to
intelligently reduce the size of trajectories while preserving their characteristic
features. This aspect is discussed in more detail in Chapter 2 where we present
the STSS trajectory sampling algorithm.

One of the concepts underlying the geometric model is the concept of routes.
Projecting a trajectory on the Euclidean space yields its route, defined as
follows:

Definition 2 (Route). The route TR of a trajectory T is its projection on the
X −Y plane. In other words, TR is the purely spatial component of T deprived
from its temporal information.

It is therefore possible for two or more different trajectories to share the
exact same route if they pass by the exact same places but at totally different
times. An example of a trajectory and its route is shown in Figure 1.1.

1.1.2 Symbolic Model

In most realistic applications, moving objects do not move freely and are subject
to constraints and limitations imposed by their surroundings. For instance,
vehicles move along the highways and roads of the road network, airplanes must
stay within well-defined air corridors during their flight, etc. Such trajectories
are called “network-constrained trajectories.” It is advisable, in such situations,
to include the constraints of the underlying network in the data model.

In this thesis, we are interested in analyzing trajectories of vehicles evolving
in road networks. Consequently, we present the data model used in this
particular context. The model, however, can be easily adapted to other network-
constrained trajectories.

Existing work involving trajectories in road network environments [7, 8,
9, 10] implicitly agree on the use of a symbolic data model in which a road
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Figure 1.1 – Example of a trajectory obtained through piecewise linear interpo-
lation of sampled positions and its corresponding route.

network is represented as a graph depicting intersections and road portions.
This representation is formalized through Definition 3.

Definition 3 (Road Network). The road network is represented as a directed
graph G = (V ,S). The set of vertices V represents intersections and terminal
points of roads, whereas the set of directed edges S represents the road segments
interconnecting them. A directed edge s = (vi, vj) indicates that a road segment
links the two vertices vi and vj and that it can be traveled from vi in the direction
of vj but not the other way around (unless otherwise stated by another edge).

An example of a simple road network and its graph representation is depicted
in Figure 1.2.

Given the graph representation in Definition 3, vehicles traveling along
the road network produce trajectories that can be modeled conformably to
Definition 4.

Definition 4 (Network-Constrained Trajectory). A constrained trajectory T
that travels along the road network G can be modeled as a sequence of visited
segments:

T = (id, 〈s1, s2, ..., sl〉) . (1.3)

id being the identifier of the trajectory, l its length (i.e. number of visited
road segments) and ∀1 ≤ i < l, si and si+1 are connected segments belonging
to S.

Figure 1.3 depicts three trajectories (T1, T2, and T3) evolving in a road
network composed of fourteen unidirectional road segments. The trajectories
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Figure 1.2 – A road network composed of five intersections and eight roads
(one of which is bidirectional). The road network is represented as a directed
graph where vertices represent intersections and edges represent road segments
with their travel direction (therefore, both directions on the road linking v1
and v5 are represented with two separate edges).

are expressed in the symbolic model as follows: T1 = 〈s1, s7, s11, s12, s13〉,
T2 = 〈s1, s4, s3〉, and T3 = 〈s10, s11, s8, s5, s6〉.

s
1 

s
2 s

3 

s
4 

s
5 

 

s
6 

s
7 s

8 
s

9 

s
10 

s
11 

s
12 

s
13 

s
14 

T
1 

T
2 

T
3 

Figure 1.3 – Three trajectories traveling on a road network (we make the
assumption that road segments are unidirectional). In the symbolic model
as presented in Definition 3, each trajectory is represented as the series of
visited road segments. Therefore: T1 = 〈s1, s7, s11, s12, s13〉, T2 = 〈s1, s4, s3〉,
and T3 = 〈s10, s11, s8, s5, s6〉.

It is obvious that Definition 4 describes network-constrained trajectories
from a purely spatial point of view. The definition can be extended to include
time by following the proposition in [11]:
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Definition 5. A spatiotemporal constrained trajectory T that travels along
the road network G can be modeled as follows:

T = (id, 〈(t1, s1), (t2, s2), ..., (tl, sl)〉) . (1.4)

id is the identifier of the trajectory and l its length. A couple (ti, si) is
registered for each segment with si being its identifier and ti the date of entry1

of T on the segment. Again ∀1 ≤ i < l, si and si+1 are connected segments
belonging to S.

Definition 5 can be further extended to include a finer granularity with the
specification of the position of the trajectory on the visited segments [12, 13]:

Definition 6. A spatiotemporal constrained trajectory T that travels along
the road network G can alternatively be modeled according to (1.5):

T = (id, 〈(t1, s1, o1), (t2, s2, o2), ..., (tl, sl, ol)〉) . (1.5)

For each triplet (ti, si, oi), ti indicates the timestamp at which the position
is registered and oi the offset (distance) from the starting point of the segment
si. ∀1 ≤ i < l, si and si+1 designate either the same segment or two connected
segments belonging to S.

Notice that, in reality, trajectories are acquired as GPS logs containing
latitude and longitude coordinates at various dates (among other information)
and are fairly easy to convert to the geometric model presented in Section 1.1.1
using projections. In order to convert these trajectories to the symbolic data
model, an additional step, called map-matching [7, 9], is required in order to
map the data points to the road network’s graph and deduce the sequence of
visited road segments. Map-matching techniques must be capable of handling
trajectories efficiently and effectively even in the presence of noisy GPS data
points or when the sampling rate is low. Map-matching is beyond the scope of
this work.

Clustering trajectory data in road network environments is the main subject
of Chapter 3 and Chapter 4 in which we will, consequently, use the symbolic
data model. In these chapters, we choose to use Definition 4 to represent
trajectories.

1.2 Acquiring and Generating Trajectory Data

We first discuss how trajectory data can be acquired in Section 1.2.1. In many
situations, real data are not made available (e.g. due to privacy considerations
when individuals are involved). In such situations, synthetic datasets can be
used instead. Therefore, we briefly talk about trajectory data generation in
Section 1.2.2.

1As represented in this model, the date at which the trajectory exits the last road segment
is unknown.
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1.2.1 Acquiring Trajectory Data

The most common way of harvesting trajectory data is through dedicated
data acquisition campaigns that make use of “probes” (e.g. fleets of taxis,
buses, or vehicles belonging to a given company; animals tagged with GPS
chips; etc.). Many academic research projects used data acquired using this
strategy. For example, the famous GeoPKDD (Geographic Privacy-aware
Knowledge Discovery and Delivery) project [14], which was one of the first
projects involving moving object trajectory data, used the Milan dataset which
is composed of traces collected over a month from GPS-equipped taxis (the
dataset was not made publicly available which gave the GeoPKDD project a
certain edge over other work at the time). A good amount of such acquired
trajectory datasets are publicly available. These include: (i) the trucks and
buses datasets [15] which consist of traces of school buses and trucks in the
metropolitan area of Athens2, (ii) the GeoLife GPS trajectories dataset [16],
(iii) The Cook and Dupage counties data [17], and many others.

In recent years and thanks to the democratization of ad-hoc location-aware
devices, practically any kind of moving object can play the role of a probe.
This includes pedestrians and cyclists equipped with smartphones and PDAs
as well as any vehicle fitted with a GPS. This opens the door to a new way
of collecting trajectory data by adopting a crowdsourced approach in which
volunteers contribute their trajectory logs. The power of crowdsourcing can be
witnessed through products like Waze [1] and OpenStreetMap [2]. Waze is a free
GPS navigation tool in which the map of the road network is constructed and
constantly updated based on GPS logs tracing the trajectories of volunteer users.
The application constantly learns from the behavior of the users’ routes and
travel times in order to provide real-time traffic updates and alternative routing.
Created back in 2004, OpenStreetMap is a collaborative mapping project that
aims to produce a free, complete and editable map of the world. The site is
nourished with the contributions of more than three hundred thousand members
(as estimated in 2012) who collect GPS data and aerial photography. The
data is made available for mappers who are volunteers in charge of integrating
the data into the map. We believe that crowdsourcing is undeniably a very
interesting way of acquiring rich and extensive trajectory data especially in
contexts such as road network environments (as will be discussed in Chapter 3).

As underlined previously, GPS logs (with their multitude of formats such as
NMEA, GPX, etc.) are essentially series of timestamped positions described in
longitude, latitude, and (potentially) altitude, often expressed using the WGS84
world geodesic system [18]. Coordinates in this system can be easily mapped to
Euclidean space using projections such as UTM (Universal Transverse Mercator)
to conform with the geometric model presented in Section 1.1.1. However,
in road network environments, it is more complicated to represent such data
using the symbolic model (Section 1.1.2) as it requires prior knowledge of
the road network’s graph and the use of map-matching algorithms (which

2We use the trucks dataset in the experimental study presented in Chapter 2.
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are often proprietary). Moreover, collecting trajectory data also gives rise to
issues related to precision and quality due to imperfections inherent to GPS
receivers. Such problems are out of the scope of this work in which we make
the hypothesis that the data we deal with represent the ground-truth.

1.2.2 Generating Trajectory Data

In almost all domains, using real datasets for validation and experimentation
is suitable. However, in some cases, such data can be simply unavailable or
unusable (e.g. due to their inadequacy with the projected experimental study).
This holds true in the case of analysis of trajectory data. For instance:

• Collecting data about the whereabouts of individuals poses serious privacy
concerns (this matter of privacy is discussed in [4]) and projects collecting
such data are rarely inclined to share them publicly.

• Analysis of trajectories in road network environments using the model
in Section 1.1.2 supposes not only the availability of the trajectories of
vehicles moving along the roads but also disposing of the road network’s
graph and a powerful and precise map matching algorithm.

• To validate the robustness and scaling capabilities of various techniques
(such as indexing and access methods, clustering algorithms, etc.), large
datasets are needed as smaller datasets are useless and do not allow
drawing reliable conclusions.

• Etc.

Therefore, synthetic datasets generated through simulation of moving ob-
jects’ behavior are viable alternatives to real data in such situations. In
Chapter 3 and Chapter 4, we will study the problem of clustering trajectory
data in road network environments. Due to the lack of a reliable map-matching
algorithm, we will be conducting our experiments using synthetic data. Existing
trajectory data generators include: (i) The Brinkhoff generator [6]; (ii) Oporto
[19] for generating interacting moving objects that have few or no restrictions
on motion; (iii) TSF (Traffic Simulation Framework), used for the ICDM 2010
traffic prediction for intelligent GPS navigation challenge; (iv) SUMO [20],
an open-source simulation tool for urban mobility based on realistic motion
models; etc. In our study, we used the Brinkhoff generator (Section 1.2.2.1) as
well as a simple network-constrained trajectory clusters generator (described in
Section 1.2.2.2) that we developed to answer some of our experimental needs.

1.2.2.1 Brinkhoff Generator

The Brinkhoff generator [6] was the first generator to be conceived to simulate
“network-based” moving object trajectories. We give a very brief and simplified
presentation of this tool in what follows.
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In the Brinkhoff generator, the road network is represented using a graph
much like in the model we described in Section 1.1.2. Each edge (i.e. road
segment) belongs to a given class that defines its maximum authorized speed
and its maximum capacity. If the number of moving objects present on the
edge at a given time exceeds its maximum capacity, the maximum speed is
further decreased (as to model a traffic jam). These edge classes model the
characteristics of roads (highways, urban areas, rural areas, etc.) in real life.
Much like edges, moving objects belong to classes defining their maximum speed
and other characteristics. The generator also has the capability of generating
“external objects” that can be used to model phenomena such as weather and
their influence on traffic.

The first step of generating the trajectory of a moving object is to choose
its departure point (vertex) in the road network’s graph. This can be done
with one of three strategies:

• The data-space oriented approach, in which a point (x, y) is calculated
by using a distribution function over the space covered by the network
and its nearest vertex is chosen as the starting point.

• The region-based approach, in which a tessellation is used to separate
vertices of the network into regions and the density of each region is used
to determine the starting point.

• The network-based approach, which assumes a uniform distribution in
which each vertex has the same probability of being selected.

The latter strategy is a natural way of correlating the distribution of starting
vertices to the network’s density. The destination vertex, on the other hand, is
calculated not only by applying one of the aforementioned strategies but also
by accounting for preferences concerning desired route lengths and time (the
behavior of the generator can be changed by rewriting parts of its code).

Once departure and destination are fixed, the route of the moving object
is calculated (the route is a near-match of the fastest path) and the moving
object starts traveling along it. The route is reassessed periodically and on
certain triggers (e.g. detection of a drastic change in speed w.r.t. the expected
speed on the traversed edge) to mimic road jams and external events. During
the simulation, moving objects can report their exact geographic position
periodically or they can report their positions only as vertex traversals. The
latter reporting option is very useful since the symbolic counterparts of the
trajectories can be deduced very easily without the need for map-matching.

We chose to use the Brinkhoff generator in our experimental studies mainly
for its simplicity of use, its good performances and capacity of generating large
trajectory datasets efficiently, and its popularity amongst existing work on
trajectory analysis [21, 8, 11, 22].

15



Chapter 1. Representation, Acquisition, and Generation of

Moving Object Trajectories

1.2.2.2 Generating Network-Constrained Trajectory Clusters

In Chapter 3 and Chapter 4, we study the problem of clustering network-
constrained trajectory data in which we are interested, among other things,
in discovering groups of similar trajectories that moved on the same parts
of a given road network. We desired to test the approaches we propose in
this context on labeled datasets in which such groups are pre-established and
known in advance. The standard behavior of the Brinkhoff generator is to
generate each trajectory “independently” of the others (i.e. the start and end
vertices for each moving object are fixed with the strategies we presented
in Section 1.2.2.1 while disregarding the start and end vertices of the other
objects). This means that no such prior classes are known. Consequently, we
imagined and implemented a basic and simple strategy for generating network-
constrained trajectory clusters. The main idea behind this strategy is the
following. We desire to have a dataset composed of groups of trajectories where
each group travels from one area in the road network to another different area
while following more or less the same route. We also desire for these generated
groups to present some kind of patterns such as to depict real life scenarios
(e.g. two or more groups of individuals converge to the same destination to
attend a sports event, commutes of a group of people in-between a residential
area and an industrial area, etc.).

The road network in our generator is represented as a directed graph using
the symbolic model we presented earlier. Since we use the same *.node and
*.edge network description files provided with the Brinkhoff generator, we also
integrate the characteristics of the road segments (edges) in order to handle
routing.

In order to generate a trajectory cluster, a set of vertices that will be used
as the start area of the cluster and a set of vertices to be used as its destination
area must be fixed. In order to define the set of start vertices, a vertex in
the road network’s graph is drawn randomly (similarly to the network-based
strategy in the Brinkhoff generator). This vertex plays the role of a “kernel”
to build the set of start vertices: all vertices that are reachable3 from the
kernel within a user-defined maximum distance are fetched and included in the
start set. The set of destination vertices is built in the same manner with the
exception that the user can define a “desired” minimum length for the routes
in the cluster. In this case, the generator repeatedly draws the kernel vertex of
the destination set until the shortest path between both the start kernel and
the destination kernel exceeds the threshold.

Once both the start and destination sets are determined, the cluster can
be generated. For each trajectory in the cluster, a vertex is randomly drawn
from the start (resp. destination) vertex set and is chosen to be its departure
(resp. arrival) vertex. The trajectory is then generated as the set of road
segments corresponding to the shortest commute time (calculated using the

3Reachability here uses shortest path calculations based on the spatial length of the road
segments.
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spatial length and maximum speed properties of the edges) between the two
vertices. The number of trajectories within clusters is randomly fixed between
two bounds defined by the user.

Besides generating simple clusters, our generator is also programmed to
produce the following patterns:

• Inverted clusters, which are two clusters where the start vertex set of
one cluster is the end vertex set of the other (Figure 1.4). This pattern
depicts behaviors such as vehicles moving from a residential area to an
industrial area in the morning then going back in the evening.

• Converging clusters, which are clusters that depart from different start
areas and converge to a common destination (Figure 1.5). This pattern
depicts flocking to an area of interest (on special occasions such as
attending a sport event, etc.).

• Diverging clusters, in which groups depart from the same area then
diverge into separate paths leading to different areas (Figure 1.6). Among
real scenarios where this pattern can be observed is the situation when
different groups of vehicles return to their respective residential areas
after having attended a given event.
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Figure 1.4 – Example of two inverted clusters of trajectories. The departure
area of one cluster (depicted in green) is the destination area of the other
cluster (in red) and vice versa.

While the aforementioned patterns are intentionally created by the generator,
they also do occur naturally along with other types of patterns. For example,
Figure 1.7 depicts a situation in which a combination of the converging clusters
and diverging clusters occurs simultaneously as two groups of trajectories depart
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Figure 1.5 – Example of two converging clusters of trajectories. Here, the two
groups start at different areas and converge to a common destination while
potentially partially sharing their routes.
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Figure 1.6 – Example of two diverging clusters of trajectories. Here, the two
groups start at the same part of the road network but diverge to separate
destinations.
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from different areas, join routes together then diverge into their separate ways
to reach their destinations.
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Figure 1.7 – Example of two trajectory clusters that start at different parts of
the road network, converge and share a portion of their route then separate
and diverge to different areas.

As underlined before, the main objective behind this basic tool is to be able
to test the performances of our approaches in simple yet non trivial scenarios
and assess their capabilities to identify the presence of interacting groups of
trajectories. Datasets produced with the help of the strategy we just described
will be used in Chapter 3 and Chapter 4.

1.3 Conclusions

In this chapter, we introduced the data models that we will use to represent
trajectory data all along this thesis. We also briefly discussed some examples
of how trajectory data can normally be collected in real life. Given that in
parts of this work we will have recourse to synthetic datasets, we presented the
two generators that we used to produce the concerned data.

We present the contributions of this thesis starting from the next chap-
ter where we explore the problem of sampling trajectory data in streaming
environments in order to reduce their size and facilitate their storage.
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Chapter 2

Sampling Moving Object

Trajectory Streams

In this chapter, we address the problem of moving object trajectory sampling.
Current location-aware devices are capable of calculating and reporting their
position at a very high rate (up to one data point per second). However,
when interested in continuously harvesting the trajectories of thousands (and
even hundreds of thousands) of moving objects, keeping a permanent record
of every single one of these positions can lead to undesirable overheads both
storage-wise (requiring potentially infinite storage) and computationally (as the
very large volume of data can seriously hinder visualization and mining tasks
conducted afterwards). Therefore, compression techniques (such as wavelets,
histograms, etc.) are needed in order to reduce the size of the data. Sampling is
a natural and intuitive technique that is often used to this effect. By discarding
inherently redundant data points (e.g. a vehicle standing by at a red light and
reporting the same position), trajectory sampling can help shrink the volume
of the stored data by reasonably trading off precision for conciseness.

We are interested in the trajectory sampling problem in the particular
context of data streaming environments. In such systems, data arrive contin-
uously as an infinite, ordered sequence of items (an item, here, being a new
position reported by a given moving object). Consequently, processing must be
performed on-the-fly and the use of blocking offline algorithms (i.e. algorithms
that require the entirety of the data to be available) is impossible. Additionally,
the used algorithms must have low time complexities in order to be able to
withstand the high load of incoming data.

The remainder of this chapter is structured as follows. First, we state our
formulation of the moving object trajectory sampling problem and we break
down its objectives in Section 2.1. In Section 2.2, we give a brief introduction
to data stream processing and we review existing trajectory-dedicated sampling
techniques. Our contribution is detailed in Section 2.3 where we present our
SpatioTemporal Stream Sampling (STSS) algorithm. An experimental study is
provided in Section 2.4. Finally, conclusions are drawn in Section 2.5.

21



Chapter 2. Sampling Moving Object Trajectory Streams

2.1 Problem Statement

Trajectory data are acquired from moving objects in the form of a series of
discrete GPS coordinates (commonly in the WGS84 world geodesic system
[18] which can be projected into an Euclidean space afterwards). As such, the
geometric model (presented in Section 1.1.1) is more intuitive to represent such
trajectories. Consequently, we consider raw trajectories that are represented in
compliance with Definition 1 (page 8).

As already mentioned in Section 1.1.1, the more location points available,
the more accurately the trajectory can be interpolated. Unfortunately, due to
storage and computational limitations, keeping the integrity of the positions
of all the monitored moving objects, even if feasible, is impractical. Hence,
trajectory compression is needed in order to reduce the size of stored trajectories.
Informally speaking, compressing a trajectory means replacing its original
series of location points with another, more compact one. We formally define a
compressed trajectory as follows.

Definition 7 (Compressed Trajectory). A compressed (or sampled) trajectory
TC of a trajectory T is a subset of the series of original points forming T . TC is
obtained through down-sampling of T by discarding unnecessary points and
yet preserving its essential movement features. It also must cover the integrity
of the original trajectory from start to finish (i.e. it must imperatively include
the first and last positions in T ). No artificial new points are to be created
during this compression process.

We interchangeably use both the terms compression and sampling to desig-
nate this process of reducing the number of points needed to represent a given
trajectory.

The objectives of this compression process are, as stated by Meratnia and
de By [23]:

• To obtain a lasting reduction in data size.

• To obtain a data series that still allows various computations at acceptable
(low) complexity.

• To obtain a data series with known, small margins of error, which are
preferably parametrically adjustable.

Reducing the size of the data helps speed up various time-consuming
computations such as analytical and mining tasks. Since sampling is a lossy
compression technique, however, this data reduction comes at the cost of
introducing further approximation errors into the data (as it already contains
some due to GPS inaccuracies). Therefore, it is advisable to use algorithms
that can control these errors (by giving some error bound guarantees depending
on their parameters). This way, the error can be controlled depending on the
precision required for the application domain at hand (e.g. a fleet management
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application can decide to tolerate an inaccuracy of up to 100m while an
application for monitoring animal migration may deem that a 1km error is
tolerable).

In addition to the aforementioned objectives, we define the following re-
quirements which are inherently related to processing data streams:

• Online processing: compression algorithms can be classified as either
offline (batch) or online (incremental) algorithms based on whether they
require the availability of the whole data series or not. Offline algorithms
do, online algorithms don’t. Only the latter can be used to compress
data streams on-the-fly, in real-time as they arrive.

• Low computational complexity: single-pass algorithms where each new
incoming data point is processed only once and in constant time are the
most adequate (with regard to time) to compress very large data streams.

• Low in-memory complexity: which designates the amount of memory
used by the algorithm when it’s executed and can be perceived as the
size of the window that the algorithm maintains over the data stream.
Preferably, only a small set of data is kept in memory.

In the next section, we give a brief presentation of data stream processing
and we present a survey of existing work on moving object trajectory sampling.

2.2 Related Work

We first give a general presentation of data stream processing (Section 2.2.1)
then we discuss related work on trajectory sampling (Section 2.2.2).

2.2.1 Data Stream Processing

In [24], Golab and Özsu define a data stream as a structured, infinite, and
ordered series of items. The structure of the stream is described through a
schema detailing for each attribute its name and type. The main difference
between these items and tuples stored in a classic database is this concept of
order, usually made explicit through a timestamp or date attribute.

Data streams are widely adopted in many domains where large volumes
of data are generated and exchanged continuously (e.g. telecommunications,
financial analysis, sensor networks, etc.). Simply put, Data Stream Management
Systems (DSMS) are systems capable of handling multiple data streams while
disposing of limited resources w.r.t. CPU time and in-memory storage. Whether
these DSMS are generic (e.g. STREAM [25], TelegraphCQ [26], and Aurora
[27]) or tailored for a specific need (e.g. Gigascope [28] and NiagaraCQ [29]),
they represent a shift from the classic data-pull paradigm adopted by Database
Management Systems to a data-push paradigm.

23



Chapter 2. Sampling Moving Object Trajectory Streams

In the classic data-pull model, data are stored permanently on disk and
queries are formulated and executed only once (i.e. punctually in time). The
result of a query is immediately calculated based on the whole stored information
and returned to the user. By contrast, in the data-push model, data are “pushed”
into the system from various sources (e.g. sensors, GPS devices, etc.). Once
defined, queries are run continuously for a given period of time on the arriving
data. Therefore, the answers to these continuous queries [30] may vary over
their lifespan as new items arrive. Compared to classic queries, continuous
queries present a number of particularities mainly inherent to the dynamic
nature of data streams [24, 31, 32]:

• Due to the high arrival rate of data streams, queries must be processed in
real-time (on-the-fly). Backtracking over the data is generally impossible
and each element is processed only once in a single pass (unless temporary
storage is considered).

• A buffer can be allocated in order to temporarily store some elements of
the stream. However, the space intended to this effect must be limited.

• Due to the infinite nature of streams, blocking operators (i.e. operators,
such as joins, that require the presence of all the data) are unfeasible.
Instead, such operators can use a limited window that covers the recent
elements of the stream.

• Due to the fluctuations and high arrival rates of streams, load shedding
mechanisms must be provided in order to protect the system’s performance
and prevent it from degradation.

As previously mentioned, once an item is processed, it’s either discarded
immediately or retained in a window for a limited amount of time. This inability
to store the entirety of a stream suggests the use of approximate summary
structures [33] (also called synopses). Summaries are constructed using data
reduction techniques in order to store a concise, approximate representation of
the content of the stream. These summaries can be used: (i) to answer newly
defined queries concerning the old parts of the stream, (ii) to give approximate
answers to queries that include blocking operators such as joins, (iii) to conduct
data mining tasks that require a historical view that spans over a considerable
amount of time, etc.

Existing summary techniques include sketches [34, 35, 36], histograms
[37, 38], wavelets [39], etc. Among these, sampling techniques are the most
intuitive and easy to grasp. In [40], Vitter presents a random sampling technique
using a reservoir that can be applied to data streams. In order to construct a
sample containing k data points, the approach starts by automatically inserting
the k first elements of the stream into the sample. Then, for each element that
has the order i in the stream, the element is inserted in the sample with a
probability k

i+1
(in which case a randomly selected element is removed from
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the sample). Another stream sampling technique is the StreamSamp algorithm
[41]. StreamSamp uses a combination of random sampling and tilted windows
to construct a summary where the quality of the data decays over time. At
their arrival, new elements are inserted into a sample of order 0 (the one with
the highest quality) based on a fixed random sampling rate α. Once all the
samples of a given order l are filled (the number of samples per order as well
as their size are user-defined), the oldest two samples of l are resampled and
merged in a single sample and moved to the order l + 1. In this way, as the
stream continues flowing, its old elements are represented with fewer samples
of lesser quality.

These sampling techniques are, however, generic techniques that can be
applied to streams of different natures. In this regard, they are insensitive to the
spatiotemporal properties of trajectory data and are consequently ineffective
for sampling such streams. In the following section, we review some approaches
that were specifically tailored to spatiotemporal trajectory sampling.

2.2.2 Moving Object Trajectory Sampling

Existing work in trajectory compression is mainly inspired by advances in
the fields of line simplification, cartographic generalization, and time series
compression. As already mentioned in Section 2.1, the proposed compression
techniques can be classified either as: (i) online techniques, capable of processing
trajectories in real-time as they are streamed into the system; or (ii) offline
(batch) techniques that require all the data points of a trajectory to be present
in order to compress it.

Another classification can be established based on the operating mode
of these techniques. Under this perspective, a given trajectory compression
approach can fall under one of the following classes [23]:

• Top-Down approaches: the whole set of data points composing the
trajectory is recursively partitioned until a given condition is met. These
are offline approaches by nature.

• Bottom-Up approaches: neighbor individual data points are merged
together until a given criterion is met.

• Windows-based approaches: a window is moved along the data points of
the trajectory (from one end to the other) and the content of this window
is compressed.

Generally, the halting condition is either: (i) error-related (e.g. the ap-
proximation error for one of the points exceeded a user-defined value), or (ii)
space-related (e.g. the number of retained points reaches a given threshold).

In the following, we study some of the representatives of each of the afore-
mentioned categories.
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2.2.2.1 Top-Down Approaches

In [42, 23], Meratnia and de By present two top-down algorithms for trajectory
compression. Both algorithms are based on the Douglas-Peuker (DP) algorithm
[43]. The DP algorithm (depicted in Figure 2.1) is a linear simplification
technique that considers a whole trajectory and tries to construct a simplified
version of it by retaining only a subset of its original points. Initially, the
algorithm considers the compressed trajectory formed by a single segment
linking the first and last points of the original trajectory. For each intermediate
point, its distance to its orthogonal projection on the compressed trajectory is
calculated. If the maximum distance is superior to a user-defined threshold, then
the point that caused the maximum distance is inserted into the compressed
trajectory. The algorithm carries on recursively on each of the two parts of the
compressed trajectory (i.e. the segment formed by the first trajectory point
and the newly retained point and the segment formed by the newly retained
point and the last trajectory point) until the distance threshold is no longer
exceeded by any of the unretained points.

Original data point 

Compressed data point 

Figure 2.1 – The Douglas-Peuker algorithm [43]. Figure adapted from [23].

The first variation presented by Meratnia and de By, called Top-Down
Speed-Based (TD-SP), replaces the distance to the orthogonal projection (a
purely spatial criterion) with a speed-based criterion: the retained point is the
point where the highest speed variation was observed (which corresponds to a
drastic acceleration or deceleration). The speed variation is calculated for a
point Pi based on its previous and following points using Formula (2.1).

Speed variation(Pi) =

∣

∣

∣

∣

distance(Pi+1, Pi)

ti+1 − ti
−

distance(Pi, Pi−1)

ti − ti−1

∣

∣

∣

∣

. (2.1)

For the second variation, named Top-Down Time-Ratio (TD-TR), the
authors introduce the concept of Synchronous Euclidean Distance (SED).
Instead of using Pi’s orthogonal projection on a segment PsPe, the timestamp
of Pi is used to calculate a time-aware estimated position P ′

i (x
′
i, y

′
i) according

to Formula (2.2). The SED corresponds to the distance between Pi and its
estimation P ′

i as depicted in Figure 2.2.
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x′
i = xs +

ti − ts
te − ts

· (xe − xs) ;

y′i = ys +
ti − ts
te − ts

· (ye − ys) .
(2.2)

Pe (te, xe, ye) Ps (ts, xs, ys) 

Pi (ti, xi, yi) 

P’i (ti, x’i, y’i) 

Figure 2.2 – The Synchronous Euclidean Distance. Figure adapted from [23].

The aforementioned algorithms have a time complexity of O(n2) where n is
the number of data points in the original trajectory (this complexity can be
reduced to O(n log n) as discussed in [44]). They require a O(n) in-memory
space since the whole trajectory must be maintained in memory. They also offer
a guaranteed error bound (which varies depending on the retained variation).
However, since these are offline approaches, they cannot be used for real-time
processing and sampling of trajectory streams.

2.2.2.2 Opening-Window Approaches

Another approach to sampling trajectory data is by means of window-based
techniques. The opening-window approach (OPW) is one of these techniques.
An opening window keeps growing and accepting new data points until a given
criterion is met. At this point the content of the window is compressed and
the process is resumed from the last seen point. The OPW algorithm starts by
considering the segment defined by the first point in the trajectory (called the
anchor) and its third point (called the float). As long as the distance between
all the intermediate points and their orthogonal projections on the segment
are below a user-defined distance threshold, the algorithm tries to advance the
float further to the next point in the series (the distances are re-evaluated each
time). When the threshold is exceeded, the window’s content is compressed
using one of two strategies:

• Normal Opening Window (NOPW): the point causing the violation of
the threshold is inserted into the sample (Figure 2.3).

• Before Opening Window (BOPW): the point preceding the float is inserted
into the sample (Figure 2.4).
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In both cases, the point inserted into the sample becomes the new anchor
and the process is resumed.

Original data point 

Compressed data point 

Figure 2.3 – Normal Opening Window compression. The first window opened up
to the 6th point, at which point the 4th point (the one exceeding the threshold)
is inserted into the sample. The second window opened up to the 10th point
and the 8th point was inserted in the sample. The algorithm continues in the
same fashion and also inserts the 12th and 16th points. Figure adapted from
[23].

Original data point 

Compressed data point 

Figure 2.4 – Before Opening Window compression. The first window also
opened up to the 6th point (the 4th point violating the threshold) and the 5th

point (the one before the float) is inserted into the sample. The second window
opened up to the 11th point and the 10th point was inserted into the sample,
etc. Figure adapted from [23].

Meratnia and de By [42, 23] enhance the OPW technique using the same
distances they defined for TD-TR and TD-SP. Their OPW-SP technique uses
the speed variation as an indicator of when to compress the content of the
window, whereas their OPW-TR technique uses the SED distance instead of
orthogonal projections.

Opening window techniques are computationally intensive as they have
a time complexity of O(n2) to compress a trajectory containing n points.
Moreover, in worst case scenarios (which occur in situations where none of the
trajectory’s data points causes a violation of the threshold) the window can
open up to include the whole trajectory, which requires an in-memory space of
O(n). OPW-TR and OPW-SP provide the user with guarantees and control
over the approximation errors. They are online algorithms that are perfectly
capable of sampling trajectories on-the-fly and can be used in a streaming
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context under the condition that their in-memory space requirement can be
afforded.

2.2.2.3 Bottom-Up Approaches

The bottom-up family of algorithms includes, among others, the thresholds
algorithms [45], STTrace [45], and the AmTree approach [46].

The threshold approaches [45] are a family of predictive heuristics for
sampling trajectories. Given a moving object, they try to predict its future
positions based on the previously seen ones. The positions that the algorithms
predict successfully are considered as redundant and are discarded, whereas
those that the algorithms fail to predict are retained in the sampled trajectory.
The prediction is based on two thresholds: the speed threshold (dv, expressed
in percentage) and the orientation threshold (dϕ, expressed in degrees).

The Sample-Based Threshold algorithm bases its prediction on the last two
points inserted into the sample (Figure 2.5). These points, the timestamp of
the point that the algorithm is trying to predict, and both dv and dϕ are all
used by the algorithm to determine a “safe area.” If the inspected point is
outside of this area, then it’s considered as miss-predicted and is consequently
inserted into the sample.

r + r - 

B 

C 

UBC 

D 

E 

F 

G 

SAS(D) 

SAS(E) 
SAS(F) SAS(G) 

Figure 2.5 – Sample-Based Threshold compression. Using the last two points
in the sample (B and C) and the user-provided thresholds (dv and dϕ), a safe
area (SAS(D)) is calculated for the inspected point D. If the point is within the
perimeters of this area, then it is considered as well-predicted and is discarded.
Otherwise, the point is inserted into the sample. Figure adapted from [45].

The Trajectory-Based Threshold algorithm (Figure 2.6) applies the exact
same principle but using the last two positions in the real trajectory (instead
of those in the sample) to conduct the prediction.

Both variations are prone to error propagation as the moving object can
drift significantly without the algorithms being able to detect it (this situation
is depicted in Figure 2.6). Therefore, a third approach, called Combined-
Threshold, is proposed. This approach calculates two confidence zones (one
based on the sample, the other on the trajectory) and a position is considered
as well-predicted only if it belongs to the intersection of both zones.
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Figure 2.6 – Trajectory-Based Threshold compression. Here, the prediction
uses the last two points in the real trajectory instead of the sample. This,
however, makes the approach vulnerable to error propagation as the moving
object can drift slowly without being noticed. Figure adapted from [45].

The threshold algorithms are online-capable and are very efficient as they
can process each new position on-the-fly in O(1) time, thus yielding a O(n)
complexity for compressing a trajectory containing n data points. However,
one of their major drawbacks is their lack of approximation error guarantees
which makes them unreliable w.r.t. compression quality. Furthermore, the
configuration of the two thresholds dv and dϕ can be problematic as sampling
results can vary significantly depending even on slight changes of their values.

The STTrace algorithm (also presented in [45]) attempts to address the
requirement for limited storage space as it tries to build a sample containing
at most M data points (M being user-defined) of the trajectory to which it is
applied. The idea is quite intuitive: the first M points of the trajectory are
immediately inserted into the sample. For each point in the sample, its SED is
calculated based on its immediate neighbors. Afterwards, when a new point
arrives, a probing SED is calculated for it (based on the last two points in the
sample) and compared to the minimum SED from the points in the sample
(i.e. the SED of the point that, if deleted, causes the least distortion in the
sample). If the probing SED exceeds the minimum SED in the sample, then
the point with the minimum SED is deleted and the new point is inserted into
the sample instead. STTrace is capable of online processing and has a time
complexity of O( 1

n
log( n

M
logM)) per incoming position (cf. [45] for the proof).

But like the thresholds algorithms, it suffers from the lack of approximation
error guarantees.

The AmTree [46] is based on the insightful idea of amnesic storage [47]
and aims to keep a sample of a given trajectory where the quality decays over
time (i.e. as the data points get older, they are represented with lesser details).
AmTree is basically a tree structure that is built and maintained in a bottom-up
fashion. At their arrival, the new data points are inserted into the lower level
of the tree and, as insertions go on, the oldest points are merged together and
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moved to the upper level of the tree (potentially triggering further updates
that can span up to the highest level of the tree). The merging, however,
is conducted naively and is not based on the spatiotemporal features of the
merged data points. The AmTree can be used online and can be updated
rapidly (in O(1) per new point) but does not guarantee an error bound.

2.2.2.4 Synthesis

The characteristics of the aforementioned techniques (except for the AmTree,
which we exclude for being a naive approach) w.r.t. the criteria we defined in
Section 2.1 are summarized in Table 2.1. From this table, we can observe the
following trends:

• Algorithms (whether offline or online) that offer guaranteed error bounds
tend to have high computational and in-memory costs.

• Efficient algorithms (w.r.t. time and in-memory space) do not generally
offer guaranteed error bounds. Therefore, the resulting compressed
trajectories can be unreliable and can produce erroneous results when
queried.

• A duality exists between storage space and compression errors. The algo-
rithms that control the compression errors do not control the space that is
needed to store the sampled trajectory (which will depend essentially on
the complexity of the movement pattern exhibited by the moving object)
and vice versa. Therefore, the trade-off between the sample’s quality and
its size is inevitable.

Table 2.1 – Characteristics of different trajectory compression techniques.

Error Time In-memory Control over
Technique Online bound complexity complexity storage space

TD-TR, TD-SP [23] no yes O(n2) O(n) no
OPW-TR, OPW-SP [23] yes yes O(n2) O(n) no
Thresholds [45] yes no O(n) O(1) no
STTrace [45] yes no O(log n

M
logM) O(1) yes

In the following section, we address the first two observations by proposing
the STSS algorithm: a computationally and in-memory efficient algorithm that
also provides a guaranteed and configurable compression error bound.
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2.3 The SpatioTemporal Stream Sampling
Algorithm

We now present the SpatioTemporal Stream Sampling (STSS) algorithm, an
online sampling technique tailored for compressing streamed moving object
trajectories based on both their spatial and temporal features.

2.3.1 The STSS Algorithm

STSS is based on the intuitive idea of linear prediction (similarly to the threshold
family of algorithms): the algorithm tries to capture the currently observed
motion pattern of the moving object and uses it to predict its future positions.
As long as these positions are predicted correctly, they can be safely excluded
from the compressed trajectory.

In order to keep track of the current motion trend and predict forthcoming
positions, STSS calculates and keeps up-to-date a simple function (called the
motion function) using two data points, say Pk = (tk, xk, yk) and Pj = (tj, xj, yj)
with tk < tj, that are deemed to be representatives of the current behavior of
the moving object. For a given ensuing time instant t (t > tj), this motion
function yields a predicted position calculated as follows (Formula (2.3)):

(x, y) = (axt+ bx, ayt+ by) . (2.3)

The slopes (ax and ay) and intercepts (bx and by) on both the X and Y
axes are calculated using Pk and Pj conformally to Formula (2.4):

ax =
xj − xk

tj − tk
,

bx = xk − axtk = xj − axtj ,

ay =
yj − yk
tj − tk

,

by = yk − aytk = yj − aytj .

(2.4)

In reality, the motion function is an extrapolation of the Synchronous
Euclidean Distance. While the latter is defined only for data points that belong
to the segment PkPj, the former is used for time instants that come after (i.e.
for data points subsequent to Pj).

Initially, the motion function is determined from the first two points in the
streamed trajectory and the first point is immediately inserted into the sampled
trajectory. For each new data point Pi, a predicted point P ′

i is calculated
by applying the motion function to its timestamp. If the distance between
Pi and P ′

i is below a user-defined threshold dThres, then Pi is considered as
well-predicted. On the other hand, a miss-prediction occurs when the distance
between a point Pi and its prediction exceeds dThres. In this situation, the
motion function is reassessed using Pi and its predecessor Pi−1.

32



2.3. The SpatioTemporal Stream Sampling Algorithm

The sampling strategy is quite simple: the first two points are inserted
into the sample. Thereafter, a correctly-predicted point replaces the last point
inserted into the sample (the latter can be discarded safely with a deterministic
error bound guarantee as will be discussed later in Section 2.3.2). On the
other hand, a miss-predicted point is appended to the sample without replacing
its last point. This sampling strategy is done incrementally in a single pass
and insures that, even while the trajectory is still being streamed, the sample
is up-to-date and reflects the state of the entirety of the points seen so far
(i.e. it covers the trajectory from its first point up to the last seen one). The
pseudo-code of STSS is shown in Algorithm 1.

Algorithm 1 SpatioTemporal Stream Sampling
Input: a streamed trajectory T , a distance threshold dThres.
Output: the compressed (down-sampled) trajectory TC.
1: insert P1 into TC ⊲ immediately insert the first position into the sample
2: initialize the motion function using P1 and P2

3: insert P2 in TC

4: for all incoming position Pi = (ti, xi, yi) ∈ T do ⊲ with i > 2
5: calculate P ′

i ⊲ predicted position
6: if distance(Pi, P

′
i ) > dThres then ⊲ miss-prediction

7: recalculate the motion function using Pi−1 and Pi

8: insert Pi into TC

9: else
10: replace the last position in TC with Pi

11: end if
12: end for

Figure 2.7 showcases how STSS works. In order for the compressed trajectory
TC to cover the entirety of the original trajectory, the first point P1 is stored
immediately. Once the second data point P2 arrives, a first motion function is
calculated. P2 is also stored in the compressed trajectory. Upon arrival of P3,
its prediction P ′

3 is calculated. Since the point is well-predicted, it replaces the
last point of the compressed trajectory. Therefore, at this point: TC = 〈P1, P3〉.
Since P4 is also well-predicted, it replaces P3 in TC. The same goes for P5 which,
once it arrives, takes the place of P4. P6, on the other hand, is miss-predicted,
which signals a change in the motion pattern. The motion function is updated
accordingly (using P5 and P6) and P6 is inserted into TC. Up to this point:
TC = 〈P1, P5, P6〉. The process carries on in the same fashion for P7 and P8

which are both well-predicted and P9 which (being miss-predicted) triggers a
second update of the motion function (using P8 and P9 this time). A trajectory
(sampled at a rate of one position per second) as well as its STSS compressed
counterparts for different values of the distance threshold dThres are shown in
Figure 2.8.

The time and in-memory complexities of STSS are stated in the following
properties:
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Figure 2.7 – Example of the execution of the STSS algorithm.

Property 1 (Time Complexity). The time complexity of STSS is O(1) per
incoming position. Hence, a trajectory containing n points is processed in O(n)
time.

Property 2 (In-Memory Space Requirement). For each moving object, only
the latest position is kept in memory and is either stored on disk or pruned as
soon as the next position is acquired. Thus, the in-memory space requirement
for sampling each trajectory is O(1).

The size of the obtained sampled trajectory is not configurable. This is due
to the fact that while the parameter of the algorithm has an influence on the
size (increasing the value of dThres results in smaller samples), the latter mainly
depends on the complexity of the original trajectory: a trajectory with frequent
abrupt changes in direction and a simpler, smoother trajectory containing the
same number of points will not produce samples of equal size if sampled with
the same value of dThres.

2.3.2 Sampling Error Bound

One of the attractive features of the STSS algorithm is the fact that it provides
a guaranteed, theoretically-proven error bound. Moreover, this error bound
is directly adjustable by the user since it’s inherently related to dThres (the
distance threshold used to control the sampling process). The error bound
guarantee is stated as follows:
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(b) dThres = 5m (117 data points)
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(c) dThres = 25m (72 data points)
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(d) dThres = 50m (49 data points)
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(e) dThres = 75m (40 data points)
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(f) dThres = 100m (32 data points)

Figure 2.8 – A trajectory and its sampled counterparts for different values of
dThres.
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Property 3 (Error Bound). The STSS algorithm guarantees a deterministic
error bound. For a given distance threshold dThres, the maximum approximation
error resulting from the compression is equal to 2dThres.

Proof. Consider the situation depicted in Figure 2.9. Ps and P2 were used
to calculate the motion function. Pe is the last well-predicted point (i.e. the
point immediately after it was miss-predicted). Consequently, the set of points
in-between Ps and Pe were all pruned from the sample.
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Figure 2.9 – Proof of the error bound.

For each intermediate point Pi, its prediction P ′
i is expressed as follows

(2.5):

P ′
i (ti, x

′
i, y

′
i) =

(

ti,
(x′

e − xs)ti + xste − x′
ets

te − ts
,
(y′e − ys)ti + yste − y′ets

te − ts

)

.

(2.5)
The interpolated position P ′′

i of Pi on the segment PsPe (calculated using
the Synchronous Euclidean Distance) is expressed in Formula (2.6):

P ′′
i (ti, x

′′
i , y

′′
i ) =

(

ti,
(xe − xs)ti + xste − xets

te − ts
,
(ye − ys)ti + yste − yets

te − ts

)

.

(2.6)
Therefore, using (2.5) and (2.6), the distance between P ′

i and P ′′
i is expressed

as follows (2.7):

distance2(P ′
i , P

′′
i ) =

(

(xe − x′
e)

2 + (ye − y′e)
2

(te − ts)2

)

(ti − ts)
2 . (2.7)
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On the segment PePs, this distance reaches its maximum value for the point
Pe, therefore:

max(distance(P ′
i , P

′′
i )) = distance(P ′

e, P
′′
e ) = distance(P ′

e, Pe) . (2.8)

Since the Euclidean distance is a metric, we can apply the triangle inequality.
Therefore, an upper bound for the approximation error (i.e. the distance
between the real point Pi and its interpolation P ′′

i ) does exist and is expressed
as follows (2.9):

distance(Pi, P
′′
i ) ≤ distance(Pi, P

′
i ) + distance(P ′

i , P
′′
i ) . (2.9)

(2.8) and (2.9) yield the following:

distance(Pi, P
′′
i ) ≤ distance(Pi, P

′
i ) + distance(Pe, P

′
e) . (2.10)

Pi being a well-predicted point:

distance(Pi, P
′
i ) ≤ dThres . (2.11)

The same goes for Pe as stated earlier, therefore:

distance(Pe, P
′
e) ≤ dThres . (2.12)

Combining (2.10), (2.11), and (2.12) yields the final result:

distance(Pi, P
′′
i ) ≤ 2dThres . (2.13)

2.4 Experimental Results

We now present our experimental study where we compare our STSS algorithm
to some existing trajectory sampling algorithms. The retained algorithms
are TD-TR, OPW-TR [23], and STTrace [45]. Despite being unusable in a
streaming context, we still retained the TD-TR algorithm in order to have
some sort of a baseline of what is achievable if offline processing were permitted.
We excluded the Thresholds algorithms because their configuration is prob-
lematic since it requires fine tuning of two thresholds. We implemented the
aforementioned algorithms in Java based on the instructions and pseudo-codes
given in the corresponding papers.

We start by comparing STSS to TD-TR and OPW-TR in Section 2.4.1.
This comparison is conducted using a dataset composed of 5263 trajectories
collected from 10 rented cars evolving in La Martinique (which is an overseas
region of France). These trajectories are sampled at a rate of one position
per 15 seconds and contain a total of 367691 data points. In Section 2.4.2,
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we compare STSS to the STTrace algorithm using the original Athens trucks
dataset [15] (available online at [48]). The dataset is composed of 276 real
trajectories of trucks moving along the Athens road network. The trajectories
have various lengths, accounting for a total of 112203 data points uniformly
sampled at a rate of one position per 30 seconds.

The performance criteria as well as the obtained results are detailed in what
follows.

2.4.1 Comparison with OPW-TR and TD-TR

TD-TR, OPW-TR, and STSS are all algorithms that give the user the possibility
to directly control the tolerable approximation error resulting from the sampling
process. In the case of both TD-TR and OPW-TR, configuring the algorithm
with a distance threshold dThres yields approximation errors that are at most
equal to this very same threshold. However, in the case of STSS configuring
the algorithm with a distance threshold dThres results in errors that have an
upper bound of 2dThres (as shown in Section 2.3.2).

We compare the three algorithms based on their theoretical error bounds:
if we set the distance threshold of TD-TR and OPW-TR to a given value, we
set the distance threshold for STSS to half this value. We vary this theoretical
error bound from 10m to 100m with a step of 10m and we observe, for each
value, the distribution of the real errors (i.e. the distances between real points
and their approximations on the compressed trajectories) resulting from the
use of each algorithm as well as the compression ratio that it achieved. The
compression rate is expressed in Formula (2.14).

Compression Ratio =
number of data points in the compressed dataset

number of data points in the original dataset
.

(2.14)
Figure 2.10 shows the compression ratios achieved by the three algorithms.

As expected, the compression ratio decreases monotonically as the error thresh-
old is set to higher values, resulting in a smaller, more concise dataset. The best
compression ratios were unanimously achieved by TD-TR. This predictable
result comes from the fact that, contrary to the other algorithms, TD-TR
has a global vision of the entirety of the trajectory to be compressed and
can, therefore, make wiser choices on which points are to be kept and which
points can be deleted. For small theoretical error values (up to 30m), STSS
performed better than OPW-TR. This trend was reversed for higher values
where OPW-TR outperformed STSS. This suggests that, as the error threshold
is set to higher values, OPW-TR tends to keep an increasingly larger window on
the data, thus gaining a “more global” vision of the trajectory. This, combined
with OPW-TR’s backtracking capability makes it capable of making better
choices on points to retain. No matter what the value of this error threshold is,
STSS is still bound to make its decisions based only on the last seen position
which hinders it from achieving better compression ratios.
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Figure 2.10 – Compression ratios delivered by TD-TR, OPW-TR, and STSS
for different values of the theoretical error bound.

The distributions of the real approximation errors for the various values of
the theoretical error bound are charted in Figure 2.11. In the case of TD-TR
and OPW-TR, the real errors are uniformly distributed on the whole range
of values up to the theoretical error bound (the slightly higher error values
for TD-TR result from the lower compression ratios it achieved). In the case
of STSS, the approximation errors seem to be, for the larger part, comprised
in the first half of this value range with only a very small number of points
(considered as outliers in the boxplots) within the second half. This indicates
that the theoretical error bound guarantee provided by STSS (cf. Section 2.3.2)
is rather pessimistic: if STSS is configured with a distance threshold dThres, the
vast majority of data points tend to be well-represented and have errors that
do not exceed dThres but a small portion does exceed it while still being under
the 2dThres bound.
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Figure 2.11 – Distributions of approximation error values resulting from appli-
cation of TD-TR, OPW-TR, and STSS sampling.

2.4.2 Comparison with STTrace

Contrary to STSS, STTrace offers no means to control the approximation error
resulting from the compression process. On the other hand, its configuration
requires knowledge of the storage size M (number of data points that the user
wishes to retain). In order to be able to compare both algorithms, we devised
the following approach. For the different compression ratios achieved by STSS,
we configured STTrace to use the same amount of space for each trajectory
(i.e. each trajectory is compressed with STTrace using the same number of
points of its STSS counterpart). We then compared the average and maximum
approximation errors achieved by both approaches. The rationale behind this
test case scenario is to try to answer the question: “given the same storage
space that STTS used, does STTrace compression achieve a better quality?”

The average approximation error is calculated based on Formula (2.15) and
the maximum approximation error based on Formula (2.16).
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Average Approximation Error =
1

∑

T∈T |T |
·
∑

T∈T

∑

Pi∈T

distance(Pi, P
′′
i ) . (2.15)

Maximum Approximation Error = max
T∈T

(max
Pi∈T

(distance(Pi, P
′′
i ))) . (2.16)

T is the dataset including all the trajectories. For a data point Pi belonging
to a trajectory T , P ′′

i is its approximation on the compressed trajectory TC

obtained by sampling from T . |T | is the number of points in T .
Figure 2.12 shows the evolution of the average approximation error for

both algorithms at different compression ratios. Again, the approximation
error increases as the dataset is more compressed (i.e. as the compression
ratio decreases). For high compression ratios, the two algorithms behave quite
similarly w.r.t. the average approximation error, which indicates that, in general,
the majority of points still retain a comparable quality for both STTrace and
STSS. However, for lower compression ratios the quality of STTrace sampling
degrades drastically and the difference between the error values for STSS and
STTrace can reach one order of magnitude.
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Figure 2.12 – Average approximation errors resulting from STSS and STTrace
compressions.

Maximum approximation errors are illustrated in Figure 2.13 which shows
that, when using STTrace, some data points can suffer from severe degradation
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of their quality even at high compression ratios. This degradation is mainly
due to two factors: (i) the point insertion mechanism used to accept new points
into the sample, which makes it harder for new points to get inserted in the
sample as time goes by (the allowed distortion threshold keeps increasing to
a point where new points are hardly accepted); and (ii) discarding a point
from the sample is based on its local information (the SED deduced from its
immediate predecessor and successor points), which makes it vulnerable to
error propagation: a point can be deleted because it is deemed unimportant
based solely on its neighbors but once these neighbors get deleted at a later
stage, the original point can become very miss-represented.
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Figure 2.13 – Maximum approximation errors resulting from STSS and STTrace
compressions.

Using the same amount of space to compress trajectories, STTrace is
outperformed by STSS. The latter achieves a better compression with lower
errors especially when severe compression is required. Contrary to STSS,
STTrace offers no guarantees on quality degradation and can consequently be
unreliable to sample moving object trajectories especially if the compressed
trajectories are to be used later on for analysis and mining tasks that require
precision.

2.5 Conclusions

In this chapter, we explored the problem of trajectory sampling in streaming
environments. We observed that existing trajectory compression techniques

42



2.5. Conclusions

are either (i) computationally expensive but allow the user to control the
approximation error; or (ii) computationally efficient but offer no guarantee
whatsoever w.r.t. the quality degradation resulting from the compression. To
address this shortcoming, we proposed the Spatiotemporal Stream Sampling
(STSS) algorithm. STSS combines time and in-memory efficiency with guaran-
teed compression error bounds. Its sampling process is intelligently guided by
both the spatial and temporal features of the trajectory stream to which it’s
applied. Moreover, STSS is very simple to configure with only one parameter
(the distance threshold dThres) to set. Furthermore, this parameter is directly
related to the compression error which can help guide the practitioner set it to
a suitable value based on his knowledge of the domain of application and the
approximation quality he desires to achieve.

Like other trajectory sampling algorithms presented in this chapter, STSS
can be vulnerable to the presence of noise in the original trajectories. In this
case, the algorithm is susceptible of interpreting noisy positions as changes in
the motion pattern of the moving object, thus retaining more data points and
resulting in poor compression. STSS also makes the hypothesis that it disposes
of infinite storage to store the produced sample and does not offer a means to
control the sample size. In fact, the compression ratio achieved by STSS can
be perceived as a rough indicator of the complexity of the movement in the
original trajectory. Finally, STSS trades off compression ratio for the sake of
time-efficiency. This makes it less effective (compression-wise) compared to
higher complexity algorithms. In situations where the computational efficiency
is not an issue, we do recommend using algorithms such as OPW-TR over
STSS in order to achieve a better compression.

As a concluding remark, since STSS is resource-efficient, it can be used
either to construct summaries of trajectory streams that are kept for later
processing and analysis tasks or simply as a load shedding mechanism to help
reduce the charge of the system in case of high arrival rates. However, we
believe that it makes more sense to implement and run STSS on the moving
object’s side rather on the DSMS side. The advantage of this is twofold: (i)
the moving object can, based on the quality of the GPS positions it calculates,
decide if these positions should be included in the compression process or if they
should be discarded (which might help with STSS’s vulnerability to noise); and
(ii) streaming only the sampled trajectory can help reduce the communication
costs and the load of the central DSMS. Companies such as Masternaut [49]
(which is one of Europe’s leading telematics providers) do implement similar
sampling approaches as part of their fleet management solutions.
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Chapter 3

Clustering Network-Constrained

Trajectory Data Using Community

Detection in Graphs

Traffic congestion has become a major problem that affects many human
activities on a daily basis, resulting in both serious transportation delays
and environmental damage. According to the Texas A&M Transportation
Institute’s 2012 Urban Mobility Report [5], travel delays in the United States
were estimated to 5.5 billion hours in 2011 compared to roughly 1.1 billion
hours back in 1982. The national congestion problem cost 5.5 billion gallons
of wasted fuel (1.1 billion gallons in 1982) and caused economical losses as
elevated as 121 billion 2011 dollars (only 24 billion 2011 dollars in 1982). The
alarming increase in these indicators is mainly the result of the ever increasing
number of commuters traveling along the road networks on a daily basis. This
brings forth the need for tools for efficient extraction of useful knowledge about
traffic and flow dynamics in road networks.

Monitoring the state of the road network is commonly conducted by using
dedicated sensors that register the number of vehicles passing by the section
where they are installed. The prohibitive cost of deploying and maintaining such
sensors limits their deployment to the highways and the road network’s main
arteries. Furthermore, vehicles cannot be identified uniquely across such sensors
and their trajectories along with their motion patterns cannot be deduced.
Consequently, the collected data portray a partial and incomplete state of the
road network which complicates data mining tasks that aim to extract useful
knowledge about flow dynamics and the behavior of drivers moving along the
network.

To address these shortcomings, an alternative approach may consist in
analyzing GPS logs collected using location-aware devices (e.g. classic GPS,
smartphones, PDAs, etc.). These logs can be acquired through probing vehicles,
dedicated data acquisition campaigns (using buses, taxis, or an enterprise’s
fleet of vehicles), or even by means of a crowdsourced approach where different
individuals willingly contribute by uploading their commute logs. Therefore,
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it is perfectly feasible to collect large amounts of trajectory data, selectively
reduce their size and eliminate redundancies with sampling techniques such as
STSS (Chapter 2), and store them in dedicated databases (known as Moving
Object Databases [4]). These data offer a better coverage of the road network
and trajectories flowing in it and can be, later on, explored using data mining
and statistical learning techniques.

Clustering is one of such techniques. Given a set of observations, cluster
analysis consists in partitioning these observations into groups (called clusters)
in such fashion that objects belonging to the same group are more similar to
each other (w.r.t. a given criterion) than to objects from other groups. Existing
work on trajectory clustering mainly focused on the case of free-form trajectories
where moving objects can move unrestrictedly in an Euclidean space. Notable
formulations of this problem include flock patterns [50, 51, 52, 53, 54], convoy
patterns [55, 56, 57] as well as the well-known partition-and-group framework
[58]. Such approaches neglect the presence, in the case of car trajectories as well
as in other cases, of an underlying network that constrains the movement. The
network’s constraints, however, do play a paramount role in determining the
similarity between the trajectories to be clustered. Clustering moving object
trajectories under road network constraints gained interest only recently with
the publication of work such as [8, 11, 10].

In the present chapter, we explore the problem of clustering network-
constrained trajectory data. More precisely, we define two clustering problems:
(i) the network-constrained trajectory clustering problem which aims at discov-
ering groups of trajectories with similar behavior when moving along the road
network, and (ii) the road segment clustering problem which tries to unravel
clusters of segments that are frequently visited together by the same moving
objects. In order to address these problems, we build upon the interesting idea
of using graph-clustering techniques in the context of trajectories, recently intro-
duced in [59]: we transpose our two clustering problems into graph-clustering
problems that we try to solve afterwards using a community-detection approach.
The result is a hierarchy of nested trajectory (or road segment) clusters that
are suitable for exploration at various levels of detail.

The content of this chapter is organized as follows. In Section 3.1, we
present our formal definition of the two clustering problems we are trying
to solve. Related work is discussed in Section 3.2 where we survey existing
techniques for clustering and measuring the similarity of trajectory data as well
as work on graph clustering which is relevant to our work. In Section 3.3, we
present a graph-based approach to clustering moving object trajectories while
accounting for the presence of an underlying road network. We present our
experimental study as well as some directives on how the discovered trajectory
clusters can be explored in this same section. We extend our approach to cover
the case of road segment clustering in Section 3.4. Finally, conclusions are
drawn in Section 3.5.
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3.1 Problem Formulation

Since we are interested in the trajectory clustering problem in the particular
context of road networks, we opt for the symbolic data representation (already
presented in Section 1.1.2) : the road network is represented as an oriented
graph depicting its intersections and road segments (Definition 3, page 10) and
each trajectory that traveled along this road network is represented as the
ordered sequence of visited road segments (Definition 4, page 10).

In a real-case scenario, trajectories are collected as GPS logs (sequences of
latitude and longitude points) on which a map-matching technique (e.g. [7, 9])
is applied in order to produce the sequence of traveled segments. The map
matching step is out of the scope of this work: we make the hypothesis that
the trajectories are already and correctly map-matched to the corresponding
road segments.

Given both Definition 3 and Definition 4, we observe that two entities can
be potentially interesting: (i) the moving object trajectories that traveled the
road network, and (ii) the road segments that were visited by those trajectories.
Therefore, we define two inter-related clustering problems.

For instance, the practitioner can be interested in discovering groups of
moving objects that behaved similarly by visiting the same parts of the road
network. Studying such groups as well as their interactions (e.g. two groups that
converge to a common waypoint and move together afterwards) can produce
beneficial knowledge about the flow dynamics and help measure the road
network’s adequacy to its real usage. We formalize this problem of clustering
trajectories as follows:

Definition 8 (Network-Constrained Trajectory Clustering Problem). Given
a road network represented by a graph G = (V ,S) and a set of network-
constrained trajectories T = {T1, T2, ..., Tn} that traveled along it, trajectory
clustering aims to partition the set of trajectories T into a set of disjoint clusters
CT = {C1, C2, ..., CK} in such fashion that:

• Trajectories that behaved similarly and visited the same parts of the
road network (i.e. that share a considerable number of common road
segments) should be regrouped together in the same cluster Ci.

• Trajectories that are separated into different clusters Ci and Cj should
be as dissimilar as possible and should share the least possible number of
common road segments.

Alternatively, we can be interested in grouping similar road segments that
are often visited together. The rationale behind this is that segments within a
same cluster are expected to behave similarly, so if, for instance, a congestion
occurs in a subset of these segments, one can reasonably presume that the
congestion will spread and affect the other members of the cluster. Our
formulation of this road segment clustering problem is given in the following
definition.
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Definition 9 (Road Segment Clustering Problem). Given a road network
represented by a graph G = (V ,S) and a set of network-constrained trajectories
T = {T1, T2, ..., Tn} that traveled along it, road segment clustering aims to
partition the set of road segments S = {s1, s2, ..., sm} into a set of disjoint
clusters CS = {C1, C2, ..., CK} in such fashion that:

• Segments grouped in the same cluster Ci are visited by a considerable
amount of common trajectories (i.e. a trajectory T that visits a segment
s ∈ Ci also visits a fair amount of segments in this same cluster).

• Segments belonging to two different clusters Ci and Cj are visited by as
few common trajectories as possible (i.e. they are unlikely to be part of
a same trajectory).

Before presenting our approaches to the clustering problems we just defined,
we review related work in the following section.

3.2 Related Work

Existing work on trajectory clustering can be divided into two main axes:
(i) the study of trajectory similarity and distance measures (Section 3.2.1),
and (ii) the development of trajectory clustering algorithms and approaches
(Section 3.2.2).

Another aspect that is relevant to our work is graph clustering. We briefly
present essential concepts related to this area in Section 3.2.3.

Notice that we deliberately omit mathematical details of the discussed
approaches when those are irrelevant in order to relieve the reader from unnec-
essary details. Those details can be easily retrieved by referring to the cited
papers.

3.2.1 Trajectory Similarity and Distance Measures

We distinguish between similarity and distance measures proposed in the
context of geometric (or free flow) trajectories and those proposed in the
network-constrained context.

3.2.1.1 Comparing Free Moving Trajectories

In terms of similarity-based trajectory retrieval [60], one is interested in the
movement shape of the studied trajectories; sequences of sampled vectors
are important in measuring the similarity between two trajectories and time
components can be ignored. Given this definition, trajectories are compared
exclusively based on their spatial features. Similarity and distance measures,
in this case, should account for two main aspects: (i) the presence of noise and
shifts in data (commonly due to signal disturbances and GPS failures), and (ii)
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time shifting resulting from trajectories being sampled at different rates and at
different time instants.

The most straightforward way to compare two free moving trajectories T
and T ′ is by using the classic Euclidean distance. However, the use of Euclidean
distance is reserved to comparing two trajectories having exactly the same
number of points since it is not capable of handling time shifting. Moreover,
the Euclidean distance is very sensitive to the presence of noise and outlier
data points.

Dynamic Time Warping (DTW) [61, 62] was largely used for comparing
time series and can be easily applied to trajectories. DTW tries to find the best
matching between the sequences of points in both trajectories T and T ′ (i.e.
the one minimizing the sum of Euclidean distances between paired points). In
order to handle time warping, data points can be replicated at will. However,
each data point of T must be paired with a data point of T ′ which makes DTW
vulnerable to noise.

In [63], Vlachos et al. use the concept of Longest Common Subsequence
(LCSS) to propose a set of distances and similarity measures for trajectories.
LCSS proceeds in a similar fashion to DTW as it tries to find the best matching
of the points of both trajectories. But in order to offer robustness to noise, data
points can be overlooked (i.e. not matched). LCSS concentrates on similar
parts of the compared trajectories and totally neglects their dissimilar parts.
Consequently, it only gives a rough and coarse estimation of the similarity
between trajectories.

Edit distance with Real Penalty (ERP) [64] and Edit Distance on Real
sequence (EDR) [60] are adaptations of the string edit distance to moving object
trajectories. Both calculate the minimum number of operations required to
transform the trajectory T into T ′ (with two possible operations: replacement
of a data point with another and time warping). Unlike ERP, EDR is robust
to the presence of noise. Chen et al. claim that both ERP and EDR achieve
better results than the coarse LCSS-based measures proposed in [63].

Other work on free moving trajectory similarity includes the One-Way
Distance [65] (which is also based on the spatial shape of trajectories) as well
as [66, 67] where the proposed distance measures are both shape and time
dependant.

When it comes to comparing trajectories in the presence of a road net-
work, the aforementioned propositions are inappropriate. This inadequacy
is illustrated in Figure 3.1 which depicts three trajectories TA, TB, and TC

moving along a portion of a road network: when only geometric features of the
trajectories are considered, TC is more similar to TB than TA. However, if we
account for the underlying road network’s constraints, it is clearly visible that
TA is closer to TB than TC is.

Moreover, these distances and similarity measures are often computationally-
expensive. Therefore, mechanisms (such as dimensionality reduction, pruning
techniques, etc.) are often used to enhance retrieval time.
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Figure 3.1 – Measuring trajectory similarity on road networks. Figure adapted
from [10].

3.2.1.2 Measuring the Similarity of Network-Constrained
Trajectories

To the best of our knowledge, the first attempt to measure the similarity of
network-constrained trajectories is the one described in [68]. The authors
proceed in two steps: (i) a filtering step based on spatial similarity, and
(ii) a refinement step based on temporal distance. During the filtering step,
trajectories are compared to a set of pre-established Points of Interest (POI)
that can represent important road intersections and places. Only trajectories
that pass by all the POI are retained for further refinement. The temporal
distance between two trajectories T and T ′ is simply an Lp distance based on
the time differences between the dates at which T and T ′ visited each POI.
The closer in time these visits are, the more the two trajectories are considered
similar (3.1):

distt(T, T
′) = (

k
∑

i=1

|t(T, pi)− t(T ′, pi)|
p)

1

p . (3.1)

P = {p1, p2, ..., pk} designates the set of POI and t(T, pi) the date (time-
stamp) when trajectory T visited the POI pi.

In [69], the authors introduce the additional concept of Times of Interest
(TOI), which can represent congestion times, important events, etc. They
complement the approach introduced in [68] by proposing two additional
methods: the first is based on temporal filtering and spatial refinement (inversely
to the previously described method) while the second uses a spatio-temporal
similarity and distance in both the filtering and refinement steps. Approaches
presented in [68, 69] cannot be used in an unsupervised clustering context since
they require POI and TOI to be defined in advance. A similar approach is
presented by Zhao et al. in [70].

Other approaches define cost functions to evaluate the cost of traveling along
the road network and use them as a basis for comparison between trajectories.
In most cases, the cost function (that we will denote c) is based on shortest path
computations (potentially using information such as transit time, the spatial
length of the borrowed path, etc.). One example of such cost-based approaches
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is the one presented by Tiakas et al. in [71]. The authors adopt the same road
network model as presented in Definition 3. A trajectory T moving on the
network, on the other hand, is modeled as the set of timestamped vertices (and
not segments) traversed by the moving object:

T = 〈(v1, t1), (v2, t2), ..., (vn, tn)〉 . (3.2)

Tiakas et al. propose a spatial distance and a temporal one. The spatial
distance between two trajectories T and T ′ of equal lengths is calculated based
on the network’s graph as follows:

Dnet(T, T
′) =

1

n

n
∑

i=1

d(vi, v
′
i) . (3.3)

Where d(vi, v
′
i) is the distance between vertices vi and v′i, calculated using

any valid travel cost function c (e.g. shortest path calculation):

d(vi, v
′
i) =

{

0 if c(vi, v′i) = c(v′i, vi) = 0 ;
min(c(vi,v

′
i),c(v

′
i,vi))

max(c(vi,v′i),c(v
′
i,vi))

otherwise .
(3.4)

The proposed temporal distance attempts to measure the resemblance
between trajectories w.r.t. the time required to travel in-between vertices. In
order to evaluate the overall distance between trajectories, the authors suggest to
either (i) calculate the weighted sum of both the spatial and temporal distances,
or (ii) use both separately in combination with user-defined thresholds. In both
cases, it is hard to apply the proposition in a clustering context since it would
require fine tuning of the thresholds (or weights) to appropriate values.

Another approach to measuring network-constrained trajectory similarity is
described by Chang et al. in [21]. The authors use the same model as defined in
definitions 3 and 4 but additionally suppose that lifespans (start time and end
time) of trajectories are also known. A spatial distance between road segments
is defined as the average of the network distance (which is naturally based on
shortest path calculation) between their start vertices and end vertices. Given
two segments s = (v1, v2) and s′ = (v′1, v

′
2), this distance is expressed as follows:

Dedge(s, s
′) =

c(v1, v
′
1) + c(v2, v

′
2)

2
. (3.5)

With c, here again, being a function that calculates the cost of moving
between a source and a destination vertex. Given two trajectories T and T ′, a
matching algorithm is applied in order to find the best pairing between road
segments in T and those in T ′: each segment in T is matched with its closest
segment in the remaining segments of T ′ (i.e. segments are not reused). The
spatial distance between T and T ′ is the sum of distances between the pairs of
matched segments.

Chang et al. also propose a temporal distance in [21]. Based on its lifespan,
each trajectory is assigned a time triplet: time range of a day (R), day of a week
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(D), and week (W). The temporal distance between T and T ′ is calculated using
a varying combination of the differences between their time triplets. The spatial
distance and temporal distance can both be combined (either by addition or
multiplication) and used as a spatiotemporal distance to compare trajectories.

Xia et al. [22] define Jaccard-inspired temporal and spatial similarities to
compare network-constrained trajectories:

Sim(T, T ′) =
Lc(T, T

′)

L(T ) + L(T ′)− Lc(T, T ′)
. (3.6)

Where Lc(T, T
′) is the spatial or temporal length of common parts between

T and T ′, and L(T ) the total (spatial or temporal) length of T . The spatial
and temporal similarities can be combined by multiplication in order to obtain
a spatiotemporal similarity that accounts for both dimensions.

Distance measures that are based on cost functions (e.g. shortest path
calculation) using the road network’s graph are natural and quite intuitive.
However, depending on the graph’s size and the complexity of the implemented
cost function, they can sustain severe overheads, which limits their applicability
in the context of clustering big trajectory datasets.

3.2.2 Trajectory Clustering

Cluster analysis was studied extensively in the context of static data. A
considerable number of approaches were proposed in the literature, such as
partitioning approaches (e.g. k-means [72]), hierarchical approaches (AGNES,
DIANA [73], BIRCH [74], etc.), density-based approaches (e.g. DBSCAN [75]
and OPTICS [76]), etc. Prior and ongoing research on trajectory clustering
consisted mainly in adapting those existing techniques to the new context of
moving object data.

Several classifications can be established for trajectory clustering techniques
based on the many aspects they involve. These aspects are the following:

• Data representation: depending on the context, trajectories can be repre-
sented geometrically (as a set of positions in Euclidean space) or symbol-
ically (as a set of visited points of interest).

• Dimensionality: similarity between trajectories can be evaluated based
on: (i) their spatial features only, (ii) their temporal features only, or (iii)
both their spatial and temporal features at the same time.

• Granularity: clustering can involve (i) trajectories in their entirety, (ii)
sub-trajectories (or segments), (iii) separate data points, etc.

• Integration of an underlying network’s constraints: in contexts such
as road networks, moving objects abide by the rules of an underlying
network that constrains their movements. Some approaches choose to
integrate the network’s constraints while evaluating trajectory similarity
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whereas others neglect them. This aspect is intimately related to data
representation.

The most known trajectory data clustering approaches are reviewed in
what follows. These include (in order of appearance): (i) work on managing
moving clusters, (ii) flock patterns, (iii) convoy patterns, (iv) the partition-
and-group framework, (v) work on trajectory clustering and analysis with
graph-based approaches, and finally (vi) clustering in the particular case of
network-constrained trajectories.

3.2.2.1 Moving Clusters

In [77], Li et al. introduce the notion of Moving Micro-Clusters (MMC) which
is an extension of the concept of micro-clusters proposed in [74] for clustering
static data. An MMC, according to [77], “denotes a group of moving objects
that are not only close to each other at current time, but also likely to move
together for a while.” Formally, an MMC is a group of n similar objects. Each
object oi is represented under the form (xi, yi, vxi, vyi, t) with (xi, yi) being
the position of oi and (vxi, vyi) its velocity at instant t (i = 1, 2, ..., n). A
profile (x, y, vx, vy, t) = (

∑n

i=1 xi,
∑n

i=1 yi,
∑n

i=1 vxi,
∑n

i=1 vyi)/n is maintained
for each MMC. This makes it possible to treat MMC in the same fashion as
simple moving objects and establish a hierarchy of nested MMCs with various
levels of abstraction. In a similar fashion to what is proposed in the BIRCH
algorithm [74], Li et al. also keep a Clustering Feature (CF) to describe each
MMC. The CF can be updated incrementally to account for MMC merging
and splitting operations. Initially, the MMCs are generated using the k-means
algorithm in combination with a distance that accounts for both the position
and velocity of the moving objects. Once these MMCs are discovered, their
collisions (resp. expansions) over time are managed using Minimum Bounding
Rectangles (MBR) resulting into merging (resp. splitting) operations.

A very similar approach to [77] is presented by Jensen et al. in [78]:
the Moving-Object Clustering approach is a direct adaptation of the BIRCH
algorithm [74] to trajectory clustering. The similarity between moving objects,
at a given time instant, is evaluated using a weighted Euclidean distance and a
modified version of BIRCH is used to manage appearances and disappearances
of moving objects as well as to handle moving cluster merges and splits (and
updates of their cluster features).

A different vision of moving object clustering is presented in [79] where
Kalnis et al. define a moving cluster as a sequence of spatial snapshot clusters
MC = {c1, c2, ..., ck} such as, for each two consecutive snapshot clusters, the
ratio of common members between both clusters to their overall members does
not get below an integrity threshold θ (∀1 ≤ i < k, |ci∩ci+1|

|ci∪ci+1|
≥ θ). An example

of a moving cluster according to this definition is depicted in Figure 3.2. The
fundamental difference between this definition and the techniques that will
be explored in later sections is that membership in the moving cluster is not
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mandatory during the whole lifespan of the cluster: moving objects can freely
leave or join the moving cluster at anytime as long as the integrity constraint
is respected.
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Figure 3.2 – Example of a moving cluster according to the definition in [79]
(for θ = 0.5). At each snapshot (S1, S2, and S3), DBSCAN is used to regroup
moving objects based on density. At the first time instant (represented by the
snapshot S1), the moving cluster is formed by the snapshot cluster c1 regrouping
four moving objects (o1, o2, o3, and o4). At the second time instant, the moving
cluster is compared to the detected snapshot clusters. Here, the moving cluster
is successfully extended using the snapshot cluster c2 since the ratio of common
objects is superior to the defined threshold θ. The same goes for c3 in the
third snapshot (S3). Notice that objects o5 and o6 joined the moving cluster
and o1 left it midway which is a fundamental difference in comparison to other
formulations that will be seen later on. Figure adapted from [79].

The straightforward approach to discovering moving clusters [79] consists
in applying DBSCAN [75] at each time instant in order to discover separate
snapshot clusters then calculate intersections of these snapshot clusters and
report moving clusters incrementally. Two heuristics are also provided in [79]
in order to enhance processing time.

3.2.2.2 Flock Patterns

Flock patterns were first described by Laube et al. in [50]. Originally, a
flock pattern is defined as a set of moving objects that happen to belong, at
a particular time instant, to a disk of radius ǫ while traveling in the same
direction. Benkert et al. [51] criticize this definition and argue that the moving
objects should also be correlated over a given duration for the flock pattern
to be relevant. We retain their definition (also adopted by Vieira et al. in
[52]): a Flock(ǫ,minPts,Dur) is a group of at least minPts moving objects
that stayed in proximity with each other (i.e. within a same disk of radius
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ǫ) for exactly Dur consecutive time instants. Figure 3.3 illustrates two flocks
f1 = {T1, T2, T3} (spanning between time instants t1 and t3 and containing the
disks c11, c

2
1, and c31) and f2 = {T4, T5, T6} (from t2 to t4 with disks c22, c

3
2, and

c42).
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Figure 3.3 – Example of two flock patterns (according to the definition in
[51, 52]). At each timestamp (here t1, t2, t3, and t4) trajectories are regrouped
with circular disks cji . The disks are compared across successive time instants
to extract flocks. Here, two flocks f1 and f2 are extracted. f1 is formed by the
three discs c11, c

2
1, and c31 that were discovered in the time instants t1, t2, and

t3 respectively. f1 regroups three moving objects represented by trajectories
T1, T2, and T3. f2, on the other hand, spans over timestamps t2, t3, and t4 and
contains trajectories T4, T5, and T6 since they were contained in the disks c22,
c32, and c42. Figure adapted from [52].

A straightforward approach to discovering flock patterns is described in [52].
It proceeds as follows: at each time instant ti, all the disks containing minPts
objects are generated. These disks are then intersected with potential flocks that
were retained at the previous time instant ti−1. If the intersection between a
potential flock f and a disk c still contains more than minPts objects, then the
result is retained for the next iteration. When a flock f is successfully extended
over a period of Dur timestamps, it is reported immediately. Heuristics are
also provided [52] in order to reduce the time complexity of flock discovery.

Variants of the flock pattern include the maximum duration flock pattern
proposed in [53, 54] which consists in trying to extend the flock patterns beyond
the Dur consecutive time instants instead of reporting them immediately.
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3.2.2.3 Convoy Patterns

Jeung et al. [55, 56] criticize the disk constraint in flock patterns and qualify
it as very constraining and counter-intuitive since it can easily ban moving
objects from groups they naturally belong to (cf. Figure 3.4). Instead, the
authors argue that moving objects should be regrouped based on a density
criterion.

A Convoy(ǫ,minPts,minDur) is a group of moving objects that stay
density-connected (w.r.t. the two parameters ǫ and minPts) for at least
minDur consecutive timestamps. The groups of density-connected moving
objects can be discovered using a density-based algorithm such as DBSCAN
[75].
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Figure 3.4 – Example of a lossy flock. It is clear that moving objects o1, o2, o3,
and o4 should naturally be regrouped together. This can be easily achieved by
a density-based approach (i.e. using DBSCAN). However, the moving object
o4 is excluded from the flock pattern composed by o1, o2, and o3 due to the
restriction on the disk shape used as the grouping criterion. Figure adapted
from [56].

A convoy pattern query consists in retrieving and reporting maximum length
convoys in a dataset of trajectories T . This can be achieved naively by applying
the CMC (Coherent Moving Cluster) [56] algorithm: at each timestamp ti, the
DBSCAN algorithm is applied to the positions of all moving objects at ti in
order to build spatial snapshot clusters. All combinations of snapshot clusters
are then inspected in order to find and report the present convoys. The authors
also present the CuTS (Convoy Discovery using Trajectory Simplification)
family of heuristics. These heuristics use line simplification algorithms (e.g.
DP and TD-TR) in order to reduce the number of points to be processed and
enhance processing time.

The convoy discovery algorithms originally proposed in [56] suffered from
accuracy problems, resulting in some valid convoys being skipped and false
convoys being reported. The issue was addressed later in [57] where more
precise algorithms are described.
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3.2.2.4 The Partition-and-Group Framework

The Partition-and-Group Framework [58] is one of the most known work on
trajectory clustering. The TraClus (Trajectory Clustering) algorithm imple-
menting this framework proceeds in two steps (Figure 3.5): (i) a partitioning
step where trajectories are down-sampled, then (ii) a grouping step during
which clusters of sub-trajectories are discovered.
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Figure 3.5 – Outline of the Partition-and-Group Framework. Figure adapted
from [58].

During the partitioning phase, each trajectory is compressed using a MDL
(Minimal Description Length) [80] algorithm: only a subset of points (called
characteristic points) are retained and the trajectory is represented as the set
of partitions (i.e. segments) linking these characteristic points. This phase is
merely the application of a sampling technique such as the ones we reviewed in
Chapter 2.

In the grouping phase, the similarity between partitions is evaluated using
a three-component distance (which is a combination of a perpendicular, a
parallel, and an angular distance), and a modified version of the DBSCAN [75]
algorithm is applied in order to discover clusters of density-connected partitions.
For each cluster, an artificial representative trajectory is built based on the
member partitions.

The Partition-and-Group framework is a purely spatial approach since
it does not consider the temporal features of the studied trajectories. The
framework is extended in [81] where it is used for trajectory outlier detection and
combined to region-based hierarchical clustering in [82] and used for trajectory
classification. It also inspired work on micro clusters in [83].
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3.2.2.5 Trajectory Clustering and Analysis using Graph-Based
Approaches

Guo et al. [59] were, to the best of our knowledge, the first to use the insightful
idea of applying graph-based clustering to trajectory data in an attempt
to establish topological relationships among trajectories and locations they
visited. The authors consider geometrically-represented trajectories (i.e. sets
of GPS points). First, GPS points are smoothed with the help of a Delaunay
triangulation. The result is a reduced set of representative GPS points (which
helps eliminate data redundancies). Trajectories are then mapped to these
representative points (based on their original GPS points) using a modified
shortest paths algorithm.

In the second step, a graph is used to model relationships between GPS
points: each GPS point is represented as a vertex in the graph and edges are
drawn between these points based on trajectories they have in common (vertices
that share the exact same trajectories are merged and considered as a single
vertex). The graph is then clustered using the spatially-constrained graph
partitioning method described in [84] in order to discover a hierarchy of regions
of interest. These regions represent interesting patterns since they stand for
areas to which a considerable number of trajectories are migrating. They are
also used by the authors to generalize and regroup trajectories (each trajectory
is assigned to the region that covers it the most) for a better understanding of
motion patterns.

In [85], Brilhante et al. build graphs depicting relationships between moving
object trajectories based on their interactions: each trajectory in the dataset
T is represented as a vertex in the graph and edges are created between
trajectories based on the frequency of their encounters (i.e. the number of
intersections between their polygons). The authors extract features such as
clustering coefficient and average shortest path length from the trajectory
networks that they build and use them to study properties such as the presence
of a power law distribution and the small world effect. However, no attempt is
made to cluster the proposed trajectory graphs.

All of the propositions reviewed so far dealt with the case of free moving
trajectories. Therefore, the used distances and similarity measures focus on
the geometric properties of the data and do not account for the presence of
any network-related constraints. Existing work in this context also includes
[86] where the authors use DBSCAN to discover interesting places in trajec-
tories based on their time dimension, discovery of frequently-traveled paths
[87], fuzzy trajectory clustering [88], T-OPTICS and TF-OPTICS [89] which
are adaptations of the OPTICS [76] algorithm to trajectory clustering, trajec-
tory clustering using regression models and Expectation-Maximization (EM)
algorithms [90], etc.
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3.2.2.6 Clustering Network-Constrained Trajectories

Kharrat et al. present a density-based technique for clustering network-
constrained trajectories in [8]. Using the same data model described in defini-
tions 3 and 4, the authors start by building a transitions matrix containing the
number of trajectories transiting between pairs of consecutive road segments.
The matrix is clustered using the NETSCAN algorithm (which is a density-
based algorithm inspired by DBSCAN) in order to discover dense paths in the
road network. A dense path is a sequence of consecutive road segments with
small variations of the density of trajectories (transitions) traveling in-between
them. Once dense paths are discovered, a second phase consists in clustering
the trajectories: each trajectory is compared to all dense paths it interacts
with. If the similarity (based on the length of common parts) is above a
user-defined threshold, then the trajectory is added to the cluster represented
by the concerned dense path.

This approach is extended in [11] with the integration of time. The network-
constrained trajectories are timestamped with the date of entry on each road
segment. The new approach proceeds in two steps. First, the time interval
covered by the dataset of trajectories is divided into sub-intervals and the
NETSCAN algorithm is applied on the transitions matrix of each sub-interval
in order to discover dense paths. Then, dense paths belonging to different
sub-intervals are correlated using the DENSITYLINK algorithm in order to
characterize their temporal evolution, represented as an evolution graph where
vertices represent dense paths and edges represent their transitions over time.

The NNCluster algorithm for network-constrained trajectory clustering is
presented in [10]. The authors first define a network-based distance based on
shortest path calculations in a very similar fashion to distances proposed in
[71, 21] (therefore, we omit the mathematical details and refer the reader to
[10]). A baseline clustering algorithm is presented: trajectories are clustered
using classic agglomerative hierarchical clustering [73] with the exception that
cluster-merging operations are conducted using a custom linkage based on
representative trajectories. The representative trajectory of a cluster Ci is the
one that minimizes its average distance to other participants in the cluster
(3.7):

rt(Ci) = argmin
T∈Ci

1

|Ci|

∑

T ′∈Ci

distance(T, T ′) . (3.7)

For each merging operation, the algorithm finds the two clusters with the
closest representative trajectories (distance-wise) and fuses them together. Once
the dendrogram of nested trajectory clusters is retrieved, the Davies-Bouldin
(DB) Index [91] of each level is evaluated and only the level with the best
value is reported as the final result. NNCluster is a variation over this baseline
algorithm where a k-NN based heuristic is first applied in order to retrieve
initial clusters, thus reducing distance computations and enhancing processing
time.
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The work presented by Liu et al. in [92] can be seen as an extension of
moving clusters (cf. Section 3.2.2.1) to the case of constrained trajectories.
The authors maintain a set of Cluster Units (CU) [93] representing sets of
moving objects moving closely together on the same road segments. The CUs
are inspected on each passing of a new road intersection in order to decide
whether they should be split or merged with other CUs moving on adjacent
road segments.

Other efforts on clustering trajectories in a constrained context also include
[94, 95, 96].

3.2.2.7 Synthesis

A synthesis of the characteristics of major work on trajectory clustering (in
both the free moving and network-constrained cases) is presented in Table 3.1.

Table 3.1 – Characteristics of major proposals in trajectory clustering.

Dimensions Clustering Clustering Network-
Approach Time Space granularity type constrained

Li et al. [77] yes yes moving objects partitionning no
Jensen et al. [78] yes yes moving objects hierarchical no
Kalnis et al. [79] yes yes moving objects density-based no
Vieira et al. [52] yes yes moving objects - no
Jeung et al. [55, 56] yes yes moving objects density-based no
Lee et al. [58, 82, 81] no yes segments density-based no
Guo et al. [59] no yes data points graph-based no
Nanni et al. [89] yes yes trajectories density-based no
Pelekis et al. [88] no yes trajectories fuzzy-clustering no
Kharrat et al. [8] no yes road segments density-based yes
Kharrat et al. [11] yes yes road segments density-based yes
Roh et al. [10] no yes trajectories hierarchical yes

From what we exposed so far, we draw the following observations:

• The majority of prior work focused on the case of free trajectories at the
expense of the (more realistic) network-constrained case. However, this
tendency was inverted in the latest years.

• A considerable portion of existing approaches consists in adaptations of
density-based algorithms (DBSCAN and OPTICS). Such algorithms are
somewhat hard to configure and require fine tuning of their parameters
(ǫ and minPts in the case of DBSCAN). Moreover, such approaches
suppose that trajectories regrouped together have a homogeneous density,
which is not always verified (cf. [10]).

• Proposed approaches are based on flat clustering. Even in rare occurrences
where hierarchical clustering is used (e.g. [10]), only one level is reported
as the end result. We argue that flat clustering can produce a high number
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of clusters when analyzing large datasets, which can be a drawback for
the user.

Considering these observations, we find that the approach presented by
Guo et al. in [59] is conceptually promising. Conserving all the levels from a
hierarchical clustering in order to analyze the trajectory data at various levels of
abstraction can be very helpful. The authors’ use of graph-based clustering in
order to solve the trajectory data clustering problem is also very insightful and
can provide a serious alternative to the predominant density-based approaches.
Consequently, we maintain these ideas and build upon them in our work.

3.2.3 Graph Clustering

Graphs (or networks) are used extensively to model relationships and interac-
tions between various types of entities in many domains (e.g. social networks,
biology, mobile phone networks, etc.). Graph clustering is also an active area
of research. In graph clustering (a.k.a. graph partitioning or community de-
tection in graphs), we are interested in identifying clusters (commonly called
communities) of highly connected components: we wish for as few as possible
edges (with small weights) in-between communities and for edges within the
same group to be numbered and have high weights.

Many approaches to graph partitioning were proposed in the literature1

(complete surveys of which can be found in [97, 98]). For example, label-
propagation graph clustering [99] works by labeling the vertices with unique
labels and then updating the labels by majority voting in the neighborhood of
the vertex. Another famous graph partitioning technique is spectral clustering
[100]. Spectral clustering is, at its core, a relaxed version of the graph cut
problem in which the aim is to retrieve a partition of the graph into K sets of
vertices while minimizing the number (or weights) of the edges that traverse
the cuts (i.e. edges between different vertex sets). The K sets can be retrieved
either by a multiway approach (i.e. the graph is directly split into K clusters)
or by a recursive bipartitionning approach (i.e. the vertices are recursively split
into two clusters at a time until K clusters are retrieved).

Recently, modularity-based community-detection [101] gained a considerable
popularity and was widely adopted, despite its limitations, as a method of
choice to partitioning graphs [98]. Again, given a graph G = (V , E ,W), with
vertices V = {v1, v2, ..., vn}, weighted edges E such as ωij ≥ 0 and ωij = ωji,
and given a partition of the vertices into K clusters (or communities) C1, ..., CK ,
the modularity of the partition is expressed according to Formula (3.8):

Q =
1

2m

K
∑

k=1

∑

i,j∈Ck

(

ωij −
didj
2m

)

. (3.8)

1The approaches discussed here are inherently different from blockmodeling techniques
that will be presented later in Chapter 4.
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With di =
∑

j 6=i ωij and m = 1
2

∑

i di. The modularity measures the qual-
ity of the clustering by inspecting the arrangement of the edges within the
communities of vertices. A high modularity is an indicator that the edges
within the communities outnumber (or have higher weights than) those in a
similar randomly-generated graph (i.e. one that does not present a commu-
nity structure), and communities discovered using modularity optimization
have a structure that is similar to the structure of cliques. We will be using
modularity-based clustering in the context of our proposals.

3.3 A Graph-Based Approach to Clustering
Network-Constrained Trajectories

We now study the network-constrained trajectory clustering problem. In order
to do so, we propose an approach based on community detection in graphs.
The outline of the approach is the following. First, we evaluate the resemblance
between pairs of trajectories using a similarity measure that is inspired by infor-
mation retrieval and weighting techniques (Section 3.3.1). Then, the calculated
similarity values are used to build a graph depicting the relationships between
trajectories (Section 3.3.2). The final step consists in using a modularity-based
community detection algorithm in order to discover a hierarchy of nested
trajectory clusters that are suitable for multi-level exploration and analysis
(Section 3.3.3).

Additionally, we discuss various aspects related to our framework (such as
cluster exploration, extraction of cluster representatives, and time complexity)
in Section 3.3.4. Experimental results are also presented in Section 3.3.5.

3.3.1 Similarity Measure for Network-Constrained

Trajectories

To a certain extent, comparing symbolically-represented trajectories bears
a striking resemblance to comparing documents (or texts) for information
retrieval. In document classification, each document is regarded as a bag-of-
words and is represented as a collection of words while totally disregarding word
order and phrase structure, which is imposed by grammar. Two documents are
compared based on the words they share: the more words they have in common,
the more similar they are. A wide range of similarity measures and distances
can be used to achieve this end (such as the Jaccard index, Sørensen–Dice
coefficient, cosine similarity, etc.).

By analogy, we consider that a trajectory is a bag-of-segments (i.e. an
unordered collection of visited segments) and use this paradigm for measuring
the similarity between trajectories. Comparison between two trajectories is
conducted on a segment basis where the presence of each segment is checked
individually without accounting for the segment’s order in the trajectory or
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the presence of other segments. This simplification is justified by the following
observations:

• Much like grammar imposes a well-defined phrase structure, the road
network’s graph imposes that trajectories travel along connected segments.

• Even if the order is unaccounted for explicitly, the underlying network
model is a directed graph. Consequently, the direction of travel is implic-
itly respected since the visited edges are not the same for each direction.

• Congestion situations occur first in singular isolated segments and spread
afterward to adjacent segments. Considering individual segments as the
basis for comparison is the most natural and intuitive choice.

When comparing documents, not all words have the same relevance. Func-
tion words (articles, pronouns, particles, etc.) are very common across all the
documents and are consequently inefficient to assess the resemblance and form
clusters of similar documents. Content words, on the other hand, carry the
content and the meaning of a sentence and play a much more important role
in identifying similar documents. Weighting techniques, such as the widely
adopted tf–idf (term frequency–inverse document frequency), are used in order
to assign weights to words based on their frequencies in the analyzed document
corpus. Low values are assigned to widespread words, making their contribution
to similarity calculations less important, and vice versa.

The same observation holds for the symbolic trajectories as all segments do
not have the same discriminative power. Segments that are frequently traveled
by the majority of trajectories are not very relevant to cluster formations. On
the contrary, segments that are traveled by a small portion of trajectories
play a key role in the formation of the cluster containing those trajectories.
To account for this observation, we devise a segment weighting strategy by
adapting the tf–idf weighting to the case of trajectory data.

We define the spatial segment frequency (ssf) to measure the importance of
a road segment s in a trajectory T :

ssfs,T =
ns,T · length(s)

∑

s′∈T ns′,T · length(s′)
. (3.9)

ns,T being the number of occurrences of s in T (ns,T = 1 most of the time
as trajectories rarely visit a segment more than once) and length(s) its spatial
length.

The inverse trajectory frequency (itf) measures the frequency of the segment
s in the whole set of trajectories T :

itfs = log
|T |

|{Ti : s ∈ Ti}|
. (3.10)

|T | is the total number of trajectories in the set T , and |{Ti : s ∈ Ti}| the
number of trajectories containing the segment s.
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While inspecting the trajectory T , the weight attributed to the road segment
s is the combination of both its ssf in the trajectory and its itf:

ωs,T = ssfs,T · itfs . (3.11)

Finally, to compare two trajectories Ti and Tj, we calculate their cosine
similarity:

similarity(Ti, Tj) =

∑

s∈S ωs,Ti
· ωs,Tj

√

∑

s∈S ω
2
s,Ti
·
√

∑

s∈S ω
2
s,Tj

. (3.12)

The values of this similarity vary from 0 to 1 with 0 indicating totally inde-
pendent trajectories and values close to 1 indicating very similar trajectories.

3.3.2 Trajectory Similarity Graph

We model the similarity relationships between trajectories using an undirected,
weighted graph GT = (T , ET ,WT ). Each trajectory in T is mapped to a vertex
in GT . An edge between a pair of trajectories Ti and Tj exists if and only if
similarity(Ti, Tj) > 0 (i.e. if there is at least one common road segment that
both trajectories crossed), in which case the similarity is assigned as a weight to
that edge. This concept of similarity graph is depicted in Figure 3.6, whereas
the pseudo-code for generating the graph is given in Algorithm 2.

s2 

s1 s3 

 

s4 

s6 
s8 

s5 
s7 s9 

T4 

T2 

T3 

T1 

T1 

T2 

T3 

T4 

T5 

T5 

Similarity(T1, T3) 

Figure 3.6 – Example of a trajectory similarity graph induced by five trajectories
traveling on a road network. Each trajectory is represented by a vertex in
the graph. An edge e links two trajectories if they share at least one road
segment in common. Each edge is weighted with the similarity between the
two trajectories it links together.

The main advantage of using this graph representation, besides being natural
and easy to understand, is that it does not define an “artificial” similarity
between totally incompatible trajectories. On the contrary, it emphasizes the
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Algorithm 2 Generating the similarity graph.
Input: G = (V ,S): road network graph; T : trajectory set.
Output: trajectory similarity graph GT
1: create an empty undirected weighted graph GT
2: for all T ∈ T do
3: insert T as a vertex in GT
4: end for
5: for all Ti, Tj ∈ T , i 6= j do ⊲ each pair of trajectories is considered only

once
6: if similarity(Ti, Tj) > 0 then
7: create an undirected edge e = (Ti, Tj) in GT
8: assign weight ωe = similarity(Ti, Tj) to e
9: end if

10: end for

fact that trajectories which do not share common road segments are independent
and should not be “immediately” grouped in the same cluster since there is
no similarity edge linking them. Note that this is the same principle used in
spectral clustering where similarities between originally non-graph entities of
different kinds are represented using graphs.

3.3.3 Clustering the Similarity Graph

To cluster the trajectory similarity graph, we use the implementation of hi-
erarchical modularity-based clustering described in [102] (which is based on
the observations and directives in [103]). A simplified pseudo-code of this
implementation is given in Algorithm 3. First, the algorithm retrieves a parti-
tion of the vertices through modularity optimization2 (line 1): the Partition

procedure starts by considering the trivial partition where each vertex is in
its own community and merges communities in a greedy fashion (i.e. each
time, it merges the two communities that produce the maximum increase of
modularity). The merging operation stops when no possible merge can be
done without a degradation of the modularity, in which case the Partition

procedure proceeds to a multi-level refinement step where members of different
communities are interchanged in an attempt to further improve the modularity
of the partition.

Once the initial partition is retrieved, the algorithm proceeds recursively
to construct the hierarchy of communities (lines 4 through 14). For each
community at a given level, the subgraph containing only the vertices of the
community and the edges connecting them is isolated (line 7). This subgraph is
partitioned separately (by invoking Partition as shown in line 8). The TestSig

evaluates the significance of the found partition (by comparing its modularity

2Note that exact modularity maximization is NP-hard and is conducted mainly using
heuristic algorithms [103].
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to the modularity of partitions obtained on similar randomly generated graphs).
If the partition is significant indeed, its communities are considered for further
partitioning (lines 9-12); otherwise, it’s rejected and the original community is
retained. The recursion stops when none of the communities at level l yield
a significant partition (line 14). The use of recursion to produce a hierarchy
of clusters is mainly used to address the resolution issue in modularity-based
clustering which tends to favor the formation of big clusters at the expense of
smaller ones. However, as we will demonstrate later on, having a hierarchy of
nested clusters when analyzing large trajectory datasets can be very helpful
(Section 3.3.4.2).

Modularity-based graph clustering approaches are very popular and achieve
good results in practice [98]. Nevertheless, we do not exclude the use of other
graph clustering alternatives (e.g. spectral clustering [100]) if such techniques
could yield better results.

Algorithm 3 Hierarchical modularity-based clustering.
Input: an undirected, weighted graph G = (V , E ,W)
Output: hierarchy of nested clusters of vertices
1: C

(1)
1 , ...C

(1)
K ← Partition(G) ⊲ initial partition

2: KT ← K ⊲ clusters counter
3: l ← 1 ⊲ hierarchy level
4: repeat
5: l ← l + 1
6: for all cluster C ∈ C

(l−1)
1 , ..., C

(l−1)
K do

7: extract the sub-graph GC of vertices belonging to C
8: CC

1 , ...C
C
k ← Partition(GC)

9: if TestSig(CC
1 , ...C

C
k ) then

10: C
(l)
KT+1, ..., C

(l)
KT+k ← CC

1 , ...C
C
k

11: KT ← KT + k
12: end if
13: end for
14: until no significant subdivision of level l can be found

3.3.4 Discussion

Here, we discuss various aspects (such as cluster representatives and exploration,
etc.) related to our approach.

3.3.4.1 About Cluster Representatives

One common practice in cluster analysis is to appoint a representative for
each of the discovered clusters. This helps provide the user with a means to
quickly understand the general trend exhibited by the instances of the cluster
he is exploring. In most cases, cluster representatives are either (i) elected
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amongst the real members of the cluster (e.g. the instance that bears the most
average resemblance to the other instances, which is the case in the NNCluster
approach [10]), or (ii) artificially created by combining the features of all the
members of the cluster (this is the case in the Partition-and-Group framework
[58]).

In our work, we do not explore the various aspects of defining and exploiting
trajectory cluster representatives in full detail. Nevertheless, it is fairly easy to
define representatives of the trajectory clusters discovered using our framework.
One way to do so is to opt for an approach similar to the one presented in [10]
and choose the trajectory that is the most similar to the other members of its
cluster to be the representative.

Definition 10 (Representative Trajectory). Given a cluster C of trajectories,
the representative trajectory of C, denoted RT (C), is defined as follows:

RT (C) = argmax
T∈C

1

|C|

∑

T ′∈C

similarity(T, T ′) . (3.13)

Where |C| is the number of trajectories in C.

Since we are establishing a hierarchy of nested clusters, the quality of the
inspected cluster varies depending on its level in the hierarchy. Clusters in
the higher levels tend to be coarse (especially when analyzing large datasets)
while those in lower levels tend to be more refined. Thereupon, representative
trajectories also tend to behave similarly and give a very coarse approximation
of the movement pattern in high-level clusters and become more descriptive of
the clusters’ behavior at the lower levels. An example of a trajectory cluster
and its representative trajectory is depicted in Figure 3.7.

(a) Trajectory cluster (b) Representative trajectory

Figure 3.7 – Example of a cluster (a) and its representative trajectory (b).
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3.3.4.2 Exploring the Trajectory Clusters

In order to illustrate how the discovered hierarchy of trajectory clusters can
be explored in practice, we present a case study conducted on a synthetic
dataset generated using the Brinkhoff generator. The dataset is illustrated
in Figure 3.8 and is composed of 10000 trajectories of varying lengths that
traveled along the Oldenburg road network (this dataset will also be used in our
experimental study presented in Section 3.3.5). It is obvious that visualizing the
data isn’t sufficient to discover meaningful knowledge about the flow dynamics
and drivers’ behavior. By regrouping similar individuals, clustering can make
such trends and patterns clearly visible.

Figure 3.8 – Case study dataset composed of 10000 trajectories evolving in
the Oldenburg road network. The road segments are color-coded in order to
indicate their usage, varying from pale yellow (for less used segments) to dark
red (for frequently traveled segments).

Applying our approach to this dataset results in a hierarchy of nested clusters
that spans over seven levels. The most coarse level contains eight clusters only,
whereas the most refined level contains 921 clusters. The hierarchical tree of
the first two levels is depicted in Figure 3.9.

The eight trajectory clusters in the highest level of hierarchy are presented
in Figure 3.10. Since these are very coarse clusters regrouping a considerable
number of trajectories, most of them (e.g. clusters 1, 5, and 7) cover large
areas of the road network and define some sort of “geographical clusters.”
Nevertheless, even at this level of detail, some trends and patterns start to
be visible, which is the case in clusters 2 (Figure 3.10(b)), 3 (Figure 3.10(c)),
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Cluster 9 (388 trajectories) 

Cluster 10 (131 trajectories) 

Cluster 11 (103 trajectories) 

Cluster 12 (327 trajectories) 
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Cluster 16 (199 trajectories) 
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Figure 3.9 – The first two levels of the produced hierarchy of trajectory clusters.
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and 4 (Figure 3.10(d)). These clusters seem to be more space-confined and
color-coding of the visited road segments reveals heavy usage of particular parts
of the road network.

(a) Cluster 1
(1843 trajectories)

(b) Cluster 2
(674 trajectories)

(c) Cluster 3
(901 trajectories)

(d) Cluster 4
(458 trajectories)

(e) Cluster 5
(1487 trajectories)

(f) Cluster 6
(971 trajectories)

(g) Cluster 7
(2429 trajectories)

(h) Cluster 8
(1237 trajectories)

Figure 3.10 – The eight trajectory clusters retrieved in the most coarse level of
the hierarchy.

By looking at Figure 3.10, we can notice that some clusters look very similar.
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This is the case of clusters 2 (Figure 3.10(b)) and 3 (Figure 3.10(c)) as well as
clusters 6 (Figure 3.10(f)) and 8 (Figure 3.10(h)). Let us analyze clusters 2
and 3 to try to understand why these clusters were not merged together and
considered as one cluster. Figure 3.11 depicts the departure and arrival points
of both clusters and shows that trajectories in cluster 2 moved from south
to north, whereas trajectories regrouped in cluster 3 did the exact opposite.
Therefore, the approach successfully separated the trajectories based on their
travel direction, which supports the claim we made in Section 3.3.1. This is
the same reason for which clusters 6 and 8 are also separated.
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(b) Cluster 3

Figure 3.11 – Departure (green) and arrival (red) points of trajectories in
clusters 2 and 3.

When dealing with large datasets, “flat” clustering (i.e. clustering that
produces only one level of clusters) can result in an overwhelming number of
clusters. Imagine for one instant the tedious task of analyzing the 921 clusters
produced at the most refined level from the get-go. Our choice of using a
hierarchical clustering algorithm was, in part, to counter this and provide
a more convenient way of analyzing the data. The user can start with the
highest level of hierarchy (containing a small number of clusters) to quickly
understand the macro organization and the global movement patterns then
focus on particular clusters he deems interesting and gradually reveal more
details as he goes down the hierarchy.

To demonstrate this point, let us suppose that we are interested in explor-
ing cluster 6 since we noticed that it presents an interesting pattern where
trajectories seem to migrate from the west part to the north-eastern part of
the road network (Figure 3.12). Consequently, we proceed to expanding this
cluster into its children. The expansion results in three more refined clusters
(Figure 3.13). In cluster 35 (Figure 3.13(a)), the start points of the trajectories
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seem to be more concentrated in the central part of the road network and
the arrival points more concentrated on the north-most part (Figure 3.13(b)).
The original trend that we noticed in cluster 6 seems to come mainly from
cluster 36 (Figure 3.13(c)) since departures in the latter are more located to the
west and arrivals are scattered over the north-east (Figure 3.13(d)). The last
child (cluster 37) seems to be less relevant than the other two (Figure 3.13(e)).
However, it does regroup trajectories that are mostly concentrated in the north
w.r.t. both their start and end points (Figure 3.13(f)). Each of these three
clusters can be further refined and so forth. For conciseness’s sake, we make
do with what we already presented and do not proceed to further refinements.

Notice that in classical hierarchical clustering approaches that produce the
whole dendrogram of the cluster merging operations, the choice of where to cut
the dendrogram is left up to the user. However, contrary to these approaches,
the algorithm used in our clustering step determines those cuts automatically,
thus providing the user with a hierarchy containing a limited and reasonable
number of levels to be explored. While this makes the exploration of clusters
easier, it also limits the possible refinements to those considered as significant
w.r.t. modularity.

(a) Road usage
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(b) Departure and arrival points

Figure 3.12 – Trajectory cluster 6, considered for further refinement.

3.3.4.3 Time Complexity

Let n be the number of trajectories in the dataset T and m the number of
segments in the road network. In order to calculate the road segments’ weights,
a sequential, single pass over the trajectories is sufficient. Therefore, the
complexity of the weight calculation step is, in the worst case scenario, O(mn).
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(a) Cluster 35 (road usage)
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(b) Cluster 35 (departure and ar-
rival points)

(c) Cluster 36 (road usage)
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(d) Cluster 36 (departure and ar-
rival points)

(e) Cluster 37 (road usage)
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(f) Cluster 37 (departure and arrival
points)

Figure 3.13 – Child clusters obtained through refinement of cluster 6.
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Chapter 3. Clustering Network-Constrained Trajectory Data

Trajectories can be represented using the Vector Space Model [104] (i.e. each
trajectory is a vector of size m representing the number of crossings on each road
segment). Calculating the cosine similarity between two trajectories Ti and Tj

is achieved, theoretically, in O(m) time complexity. This complexity, however,
is attained in the very improbable case where one of the two trajectories visited
every single road segment in the network. In practice, calculating the similarity
between the two trajectories Ti and Tj is achieved in O(max(|Ti|, |Tj|)), |T |
being the number of segments in T .

Building the trajectory similarity graph requires n(n−1)
2

similarity calcu-
lations and is consequently done in O(mn2) time complexity. The resulting
graph contains n vertices and at most n(n−1)

2
undirected edges. Therefore, the

theoretical maximal complexity of the community detection algorithm used
in our clustering phase is O(n3) (cf. [98]). Again, this is rarely observed in
practice where the complexity is somewhere near O(n2 log n).

3.3.4.4 Positioning With Respect to Existing Approaches

Similarly to [22], the similarity measure we proposed is founded on concepts
borrowed from information retrieval and document clustering. However, instead
of using a spatial adaptation of the Jaccard Index where all road segments
contribute equally to the similarity calculation, we adopt a weighting strategy
where each segment’s relevance varies depending on its frequency in the analyzed
trajectory dataset. Earlier experiments we conducted showed that the weighting
technique enhanced clustering results.

We intentionally refrained from adopting distances that use cost functions in
the road network (like in [71, 21, 10]) for the following reasons: (i) network-based
distances can incur severe computational overheads especially when comparing
trajectories on a segment per segment basis, and, more importantly, (ii) we
wanted to emphasize on the fact that trajectories that do not share at least
one road segment should be considered as completely irrelevant. Cost-based
measures still assign a distance value to such trajectories.

The work on trajectory clustering that resembles our approach the most is
the one presented in [59]. Although our approach and [59] both use graph-based
clustering and propose a hierarchy of nested clusters for multi-level exploration,
there are some key differences between the two approaches:

• The work in [59] is applied to free moving trajectories and considers the
latter as sets of GPS points. The authors do not rely on an underlying
network as a basis of similarity calculations (although their first filtering
step can be seen as an attempt at discovering the structure of this
network). By contrast, in our work we suppose that the underlying road
network’s structure is known in advance and we use it as a basis for
trajectory representation and comparison.

• In [59], the clustering is applied to a set of characteristic GPS points
in order to discover clusters representing regions of interest to which
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3.3. Graph-Based Approach to Clustering Network-Constrained Trajectories

trajectories are mapped in a later step. In our approach, the clustering
is applied directly to the network-constrained trajectories in order to
discover clusters of trajectories with similar behavior.

Finally, the framework we presented is based on a purely spatial similarity.
Therefore, trajectories that move on the same road segments at different times
are regrouped together in the same cluster. Earlier attempts at proposing
spatiotemporal similarities for network-constrained trajectories [71, 21] felt
counter-intuitive. This is mainly due to the fact that combining a spatial
and a temporal similarity by means of addition or multiplication is somewhat
unnatural. We believe that a more attractive approach to including time is the
one proposed in [11]: the time epoch covered by the trajectories dataset can
be divided into sub-epochs (in a fashion that portrays periods of interest such
as morning departures and evening returns for example) and clustering can be
conducted separately on these epochs.

3.3.5 Experimental Results

We present the experiments that we conducted on our trajectory clustering
approach in this section.

3.3.5.1 Datasets

In order to test our approach and compare it to other algorithms, we used
various synthetic datasets that we generated using the Oldenburg and San
Joaquin road networks. The road network of Oldenburg is composed of 6105
vertices and 7035 undirected edges. The road network of San Joaquin is larger
as it contains 18496 vertices and 24123 undirected edges. Both networks are
depicted in Figure 3.14.

(a) Oldenburg (b) San Joaquin

Figure 3.14 – Road networks of (a) Oldenburg and (b) San Joaquin.
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Chapter 3. Clustering Network-Constrained Trajectory Data

We use two types of datasets: (i) a large dataset, containing 10000 unlabeled
trajectories moving along the Oldenburg road network, generated using the
Binkhoff generator [6]; and (ii) nine labeled datasets containing randomly
generated clusters of trajectories. As a reminder, the strategy (described in
detail in Section 1.2.2.2) that we used to generate the latter works as follows.
For each cluster of trajectories to be generated, a vertex is chosen randomly
in the road network’s graph. vertices that are reachable from the selected
vertex within a given maximal distance are chosen to play the role of source
vertices of the cluster. The same principle is applied to randomly choose
target vertices. For each trajectory to be generated in the cluster, a source
(respectively target) vertex is chosen among the source (respectively target)
vertices. The trajectory is then generated following a near-shortest path linking
the source to the target. The number of trajectories in each cluster is fixed
randomly (between an upper and a lower bounds). We generate clusters to
depict many scenarios of interactions such as clusters converging to a common
destination, diverging from a common source, or inverted clusters (i.e. one
cluster’s departure is the arrival of the second cluster and vice versa). Such
movement patterns and interactions among clusters may also appear randomly
and naturally. Table 3.2 summarizes the characteristics of our nine labeled
datasets. Each cluster of trajectories contains from 10 to 25 trajectories. We
favor the use of the Oldenburg road network (used in 6 out of the 9 datasets)
since its small size favors interactions and overlaps between clusters, which
makes these clusters less trivial to discover.

Table 3.2 – Characteristics of the labeled datasets.

Dataset Clusters Trajectories Road network
1 9 158 Oldenburg
2 10 163 Oldenburg
3 11 141 Oldenburg
4 6 86 Oldenburg
5 6 91 Oldenburg
6 6 110 Oldenburg
7 12 205 San Joaquin
8 11 190 San Joaquin
9 12 203 San Joaquin

3.3.5.2 Performance Criteria

When experimenting on the dataset generated using the Brinkhoff generator (the
one containing 10000 trajectories moving along the Oldenburg road network), no
ground-truth clustering for the trajectories is known beforehand (i.e. they are
not labeled). Therefore, we try to compare the tested approaches by assessing
the resemblance of the trajectories they regrouped into each cluster. To this
end, we define the notion of intra-cluster overlaps. Given a set of trajectory
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3.3. Graph-Based Approach to Clustering Network-Constrained Trajectories

clusters CT = {C1, ...CK}, the sum of average intra-cluster overlaps of CT is
expressed according to Formula (3.14).

Q(CT ) =
∑

C∈CT

1

|C|

∑

Ti,Tj∈C

overlap(Ti, Tj) . (3.14)

Where:

overlap(Ti, Tj) =

∑

s∈Ti,s∈Tj
length(s)

∑

s∈Ti
length(s)

. (3.15)

The higher the value of the sum of intra-cluster overlaps, the better the
formed clusters are since this internal criterion (i.e. a criterion based solely on
the information provided to the clustering algorithm) indicates that trajectories
regrouped together overlap and share more common road segments.

The trajectories in the other datasets are labeled. Consequently, we can
evaluate the quality of the results using external criteria (i.e. criteria that use
the information about the a priori knowledge of class labels) such as the purity
and entropy [105] as well as the Adjusted Rand Index [106] of the clusters
produced by the various approaches (a survey of other internal and external
metrics that can be used to compare clusterings can be found in [107]).

Let X be a set (of size |X|) of observations and C = {C1, C2, ..., Ck} and
C ′ = {C ′

1, C
′
2, ..., C

′
l} two partitions of X into sets of non-empty, disjoint clusters

(without loss of generality, we suppose that C ′ denotes the ground-truth clusters
that we will refer to hereafter as classes).

The purity of a given cluster Ci is the number of instances that are assigned
to the most frequent class in the cluster, divided by the size of the cluster,
formally expressed as in Formula (3.16).

P (Ci) =
1

|Ci|
max
1≤j≤l

|Ci ∩ C ′
j| . (3.16)

Where |Ci| designates the number of members in the cluster Ci and |Ci∩C
′
j|

the number of common members between the cluster Ci and the class C ′
j . The

purity of the partition C is the weighted sum of its individual clusters’ purities:

purity =
k

∑

i=1

|Ci|

|X|
P (Ci) . (3.17)

Purity can be perceived informally as a measure of the precision of the
discovered clusters. In general, a bad clustering results in a low value of purity
(close to 0), whereas a perfect clustering results in a purity equal to 1.

Entropy measures the distribution of the original classes across the discov-
ered clusters. The entropy of a cluster Ci is defined as follows:

E(Ci) = −
1

log l

l
∑

j=1

|Ci ∩ C ′
j|

|Ci|
log
|Ci ∩ C ′

j|

|Ci|
. (3.18)
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Chapter 3. Clustering Network-Constrained Trajectory Data

The entropy of C is the sum of the weighted entropies of its clusters:

entropy =
k

∑

i=1

|Ci|

|X|
E(Ci) . (3.19)

It is desirable to have clusters containing members belonging to a single class
only (in which case the resulting entropy is equal to zero). A good clustering
will produce low values of entropy and, vice versa, high values of entropy are
generally an indicator of bad clustering.

The classic Rand Index [108] is also a commonly used measure to calculate
the fraction of correctly classified (or misclassified) elements among all the
elements with the exception that instead of counting single elements, it counts
pairs of correctly classified ones. Hubert and Arabie [106] made an adjustment
to this index by assuming a generalized hypergeometric distribution as a null
hypothesis. The Adjusted Rand Index is the normalized difference between the
original Rand Index and its expected value under the null hypothesis:

Radj(C, C
′) =

∑k

i=1

∑l

j=1

(|Ci∩C
′
j |

2

)

− t3
1
2
(t1 + t2)− t3

. (3.20)

Where t1 =
∑k

i=1

(

|Ci|
2

)

, t2 =
∑l

j=1

(|C′
j |

2

)

, and t3 =
2t1t2

|X|(|X|−1)
.

The Adjusted Rand Index has a value of 1 in case of identical partitions
and 0 in presence of two totally independent partitions.

3.3.5.3 Characteristics of the Generated Trajectory Similarity
Graphs

Applying our approach to the Brinkhoff dataset results in a trajectory simi-
larity graph composed of 10000 vertices and 3272543 edges. The graph has a
density of 0.065 which makes it quite sparse, yet it has a diameter of 4 which
suggests the presence of a small world effect (similarly to what was observed in
other types of trajectory networks in the study presented in [85]). The least
connected trajectory (i.e. vertex) in this graph has only two edges linking it to
other trajectories while the most connected has a degree of 2524. The degree
distribution in this graph is depicted in Figure 3.15 which shows a complex
and non-standard distribution that does not seem to abide by a particular law
especially those (such as the power law) that favor the use of modularity-based
clustering over other graph clustering approaches.

The characteristics of the trajectory similarity graphs generated over the
labeled datasets are regrouped in Table 3.3. Here the graphs are more dense
since they are composed solely of well-defined (ground-truth) clusters and since,
additionally, some of the clusters overlap. All the graphs have a rather small
diameter except the graph obtained on the third dataset in whose case the
clusters are mostly separated and do not overlap as frequently as in other
datasets.
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Figure 3.15 – Degree distribution in the trajectory similarity graph generated
from the Brinkhoff dataset: each point represents the number of vertices having
a given degree. The distribution does not seem to follow any particular law.

3.3.5.4 Comparison with the NNCluster Baseline Algorithm

We now compare our approach to the baseline algorithm proposed in [10],
which consists in using agglomerative hierarchical clustering in combination
with a network-based distance measure to cluster trajectories (for simplicity, we
refer to this approach as NNCluster baseline from now on). However, our own
implementation of the NNCluster baseline algorithm differs from the original
one described in [10] on the following points:

• In [10], the authors use a custom linkage strategy: a representative
trajectory is elected for each cluster (the representative trajectory is the
one minimizing the sum of distances to the other members) then the
two clusters with the most similar representatives are merged. Instead
of this custom linkage, we use the “more standard” average linkage as
the cluster-merging criterion (partially in order to avoid implementation
errors) which should, we believe, produce fairly similar results.

• After generating the dendrogram of clusters, the algorithm in [10] uses the
Davies-Bouldin (DB) Index [91] to report only a single clustering result
(the level minimizing the DB index). However, in our experimental study
we keep the entire dendrogram in order to be able to compare results
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Table 3.3 – Characteristics of the generated trajectory similarity graphs resulting
from the labeled datasets.

Number Number Vertex degrees
Dataset of vertices of edges min. avg. max. Density Diameter

1 158 3334 23 42.2 65 0.27 4
2 163 2714 15 33.3 62 0.21 3
3 141 1767 12 25.06 47 0.18 10
4 86 1309 13 30.44 49 0.36 3
5 91 1134 4 24.92 36 0.28 3
6 110 2096 16 38.11 73 0.35 2
7 205 6053 17 59.05 111 0.29 5
8 190 5622 18 59.18 89 0.31 5
9 203 7963 42 78.45 151 0.39 3

reached by both our approach and the NNCluster baseline algorithm for
the same number of clusters.

We point out that the reason for which we do not compare our approach
directly with the NNCluster algorithm is that the latter introduces a parameter
k which requires fine tuning upon which clustering quality depends.

We start by comparing the performances of both approaches on the Brinkhoff
dataset. On this dataset, our approach discovered a hierarchy of clusters that
spans over seven levels. The highest level contains only eight clusters while the
down-most level contains up to 921 clusters. This further confirms our claim in
Section 3.3.4 about exploring large datasets of trajectories where flat clustering
can still produce an important number of clusters that can be hard to explore.

We compared the sums of intra-cluster overlaps scored by the two approaches
for each of those levels, the results are shown in Table 3.4. As expected, the
overlap increases, for both approaches, as we go down the hierarchy of clusters
since the trajectories initially regrouped in fewer, more coarse clusters get
separated in more precise clusters. The results also show that our algorithm
outperforms the NNCluster baseline algorithm and produces more compact
clusters where the trajectories are more similar and overlapping.

We next evaluate both approaches on our labeled datasets. First, we
compare performances achieved at the highest level of aggregation: we split the
NNCluster’s dendrogram at the level that contains the same number of clusters
as the first level of hierarchy discovered by our approach (which is considered
as the optimal level w.r.t modularity).

As can be seen from the results reported in Table 3.5 and Table 3.6, in
almost all cases our approach resulted in a number of clusters that is inferior
to the number of ground-truth clusters. The main reason behind this is the
presence of significant cluster interactions (e.g. in case of clusters converging
to a common destination through the same parts of the network) that the
approach was capable of detecting. This behavior can also be due to one of the
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Table 3.4 – Modularity-based clustering vs. NNCluster baseline : Sum of
average intra-cluster overlaps.

Hierarchical Number Intra-cluster overlaps
level of clusters NNCluster Baseline Modularity

1 8 144 665
2 41 446 1843
3 143 847 3239
4 413 1678 4543
5 759 2307 5359
6 903 2529 5576
7 921 2554 5596

limitations of modularity-based clustering algorithms which tend to favor the
discovery of big communities at the expense of smaller ones [109]. Nevertheless,
we do overcome this limitation since we are using a hierarchical algorithm,
and ground-truth clusters are often retrieved in the subsequent levels of the
hierarchy. The obtained results also show that our approach outperformed the
NNCluster baseline algorithm in most of the datasets, suggesting that in case
of “over-merging” clusters, it produces better, more relevant clusters.

We also compare both approaches for the best match possible: in the
hierarchy of clusters produced by our modularity-based approach, we chose the
level that resembles the most the original clusters in the dataset and we compare
both approaches for this same number of clusters. As shown in Table 3.7 and
Table 3.8, our approach succeeds in retrieving the same original clusters in five
out of the nine datasets while the NNCluster baseline retrieves only three. Our
approach also scores better on the other datasets where the exact clusters are
not retrieved.

3.3.5.5 Comparison with Spectral Clustering

We now study the effect of varying the graph clustering algorithm. To do so,
we compare the modularity-based algorithm we used in our clustering step to
spectral clustering [100]. In the spectral clustering implementation we used,
eigenvectors are extracted from the graph’s Laplacian and are used to conduct
a k-means clustering in order to partition the graph’s vertices.

We compare the values of external indicators (i.e. purity, entropy, and
adjusted Rand index) achieved by both algorithms on the 9 labeled datasets
described earlier. The comparison is based on the first level of hierarchy as well
as the best-match level (w.r.t. the original classes) reported by modularity-
based clustering. The number of clusters discovered by the modularity-based
algorithm is used as the k parameter in spectral clustering. Since the spectral
clustering implementation we used is based on k-means (whose results vary

81



Chapter 3. Clustering Network-Constrained Trajectory Data

Table 3.5 – Modularity-based clustering vs. NNCluster baseline : Adjusted
Rand Index for the top-most level of the hierarchy of clusters.

Discovered Adjusted Rand Index
Dataset clusters NNCluster Baseline Modularity

1 6 (9) 0.697 0.732
2 8 (10) 0.818 0.832
3 8 (11) 0.681 0.682
4 5 (6) 0.725 0.725
5 5 (6) 0.764 0.764
6 6 (6) 1 1
7 6 (12) 0.588 0.505
8 8 (11) 0.758 0.763
9 5 (12) 0.370 0.502

Table 3.6 – Modularity-based clustering vs. NNCluster baseline : Entropy and
Purity for the top-most level of the hierarchy of clusters.

Discovered Purity Entropy
Dataset clusters NNCluster Baseline Modularity NNCluster Baseline Modularity

1 6 (9) 0.753 0.722 0.208 0.193

2 8 (10) 0.816 0.840 0.116 0.109

3 8 (11) 0.677 0.738 0.206 0.186

4 5 (6) 0.802 0.802 0.166 0.166

5 5 (6) 0.835 0.835 0.150 0.150

6 6 (6) 1 1 0 0

7 6 (12) 0.585 0.600 0.288 0.321
8 8 (11) 0.763 0.768 0.153 0.153

9 5 (12) 0.483 0.493 0.424 0.362

Table 3.7 – Modularity-based clustering vs. NNCluster baseline : Adjusted
Rand Index for the best-match level of the hierarchy of clusters.

Discovered Adjusted Rand Index
Dataset clusters NNCluster Baseline Modularity

1 9 (9) 0.902 1
2 10 (10) 0.881 1
3 11 (11) 0.764 0.873
4 6 (6) 1 1
5 6 (6) 1 1
6 6 (6) 1 1
7 14 (12) 0.618 0.961
8 12 (11) 0.921 0.971
9 10 (12) 0.752 0.889
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Table 3.8 – Modularity-based clustering vs. NNCluster baseline : Purity and
entropy for the best-match level of the hierarchy of clusters.

Discovered Purity Entropy
Dataset clusters NNCluster Baseline Modularity NNCluster Baseline Modularity

1 9 (9) 0.924 1 0.062 0

2 10 (10) 0.902 1 0.059 0

3 11 (11) 0.823 0.915 0.113 0.064

4 6 (6) 1 1 0 0

5 6 (6) 1 1 0 0

6 6 (6) 1 1 0 0

7 14 (12) 0.712 1 0.185 0

8 12 (11) 0.942 1 0.038 0

9 10 (12) 0.778 0.872 0.136 0.075

depending on the initialization of cluster centers), we configure it to report the
best execution among 100 random starts.

Results for the top-level of hierarchy are reported in Table 3.9 and Table 3.10
whereas those for the best-match level are reported in Table 3.11 and Table 3.12.
As can be seen from those results, both spectral clustering and modularity-based
clustering performed equally on the majority of the datasets with identical
clustering results on six out of the nine datasets in both levels. However, on the
remaining datasets, modularity-based clustering had a slight edge over spectral
clustering and yielded better results.

Contrary to the modularity-based algorithm we use in our clustering step,
spectral clustering produces a one-level flat clustering where the number of
clusters is fixed manually. Consequently, it is up to the user to define the
suitable number of clusters (e.g. using classic approaches such as the elbow
method). In our case, the number of clusters in each level of the hierarchy of
nested clusters is automatically determined based on the modularity criterion.

Table 3.9 – Modularity-based clustering vs. spectral clustering : Adjusted
Rand Index for the top-most level of the hierarchy of clusters.

Discovered Adjusted Rand Index

Dataset clusters Spectral Modularity

1 6 (9) 0.732 0.732

2 8 (10) 0.714 0.832

3 8 (11) 0.682 0.682

4 5 (6) 0.725 0.725

5 5 (6) 0.730 0.764

6 6 (6) 1 1

7 6 (12) 0.505 0.505

8 8 (11) 0.763 0.763

9 5 (12) 0.464 0.502

83



Chapter 3. Clustering Network-Constrained Trajectory Data

Table 3.10 – Modularity-based clustering vs. spectral clustering : Purity and
entropy for the top-most level of the hierarchy of clusters.

Discovered Purity Entropy
Dataset clusters Spectral Modularity Spectral Modularity

1 6 (9) 0.722 0.722 0.193 0.193
2 8 (10) 0.810 0.840 0.148 0.109
3 8 (11) 0.738 0.738 0.186 0.186
4 5 (6) 0.802 0.802 0.166 0.166
5 5 (6) 0.824 0.835 0.178 0.150
6 6 (6) 1 1 0 0
7 6 (12) 0.600 0.600 0.321 0.321
8 8 (11) 0.768 0.768 0.153 0.153
9 5 (12) 0.473 0.493 0.378 0.362

Table 3.11 – Modularity-based clustering vs. spectral clustering : Adjusted
Rand Index for the best-match level of the hierarchy of clusters.

Discovered Adjusted Rand Index

Dataset clusters Spectral Modularity

1 9 (9) 1 1

2 10 (10) 1 1

3 11 (11) 0.802 0.873

4 6 (6) 1 1

5 6 (6) 0.974 1

6 6 (6) 1 1

7 14 (12) 0.961 0.961

8 12 (11) 0.942 0.971

9 10 (12) 0.889 0.889

Table 3.12 – Modularity-based clustering vs. spectral clustering : Entropy and
purity for the best-match level of the hierarchy of clusters.

Discovered Purity Entropy

Dataset clusters Spectral Modularity Spectral Modularity

1 9 (9) 1 1 0 0

2 10 (10) 1 1 0 0

3 11 (11) 0.837 0.915 0.106 0.064

4 6 (6) 1 1 0 0

5 6 (6) 0.989 1 0.0233 0

6 6 (6) 1 1 0 0

7 14 (12) 1 1 0 0

8 12 (11) 0.963 1 0.021 0

9 10 (12) 0.872 0.872 0.075 0.075
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3.4 Clustering Road Segments

In this section, we move on to study the road segment clustering problem that
we introduced in Section 3.1. To do so, we extend our trajectory clustering
approach to the case of segments: we define a similarity measure to evaluate the
resemblance between road segments (Section 3.4.1) and, using the calculated
similarities, we build a segment similarity graph that we cluster using the same
clustering algorithm that we used earlier (Section 3.4.2).

The approach’s time complexity as well as some pointers on how to explore
road segment clusters are discussed in Section 3.4.3 whereas our experiments
on segment clustering are reported in Section 3.4.4.

3.4.1 Road Segment Similarity

This time, we consider each road segment as the bag-of-trajectories that visited
it (i.e. ∀s ∈ S, s ≡ {T ∈ T : s ∈ T}). In order to compare two road segments
si and sj, one can simply observe how often they co-appear in trajectories (i.e.
calculate |{T ∈ T : si ∈ T ∧ sj ∈ T}|). The larger the number of concomitant
appearances of both segments is, the more they are considered similar. However,
different trajectories do not hold the same discriminative power when it comes
to characterizing the similarity between road segments they visit: a lengthy
trajectory that travels along a considerable number of road segments is not very
informative when measuring the similarity between two segments in particular
and, vice versa, short trajectories are highly relevant to the formation of the
cluster that contains the segments they visit.

We account for this observation by devising a weighting strategy (inspired
by tf-idf) where the contribution of each trajectory is proportional to its length.
The weight ωT,s assigned to trajectory T while inspecting a road segment s is
expressed in Formula (3.21):

ωT,s =
ns,T

∑

T ′∈T ns,T ′

· log
|S|

|s′ ∈ S : s′ ∈ T |
. (3.21)

The first part in this weight calculates the contribution of T to the segment
s by calculating the ratio between the number of appearances ns,T of s in T
and the total number of appearances of s in the whole dataset of trajectories
T . Since multiple visits of a same road segment are very rare, this part is often
equal to 1

|{T∈T :s∈T}|
. The second part evaluates the importance of the trajectory

across the whole set of road segments: the more segments a trajectory visits,
the less important it becomes and vice versa.

We use a cosine similarity to measure the similarity between two road
segments si and sj as expressed in Formula (3.22):

similarity(si, sj) =

∑

T∈T ωT,si · ωT,sj
√

∑

T∈T ω2
T,si
·
√

∑

T∈T ω2
T,sj

. (3.22)
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3.4.2 Building and Clustering the Road Segment

Similarity Graph

Similarly to what we did with trajectories, we model the similarity relationships
between road segments using an undirected, weighted graph GS = (S, ES ,WS).
Each road segment in S is mapped to a vertex in GS . An edge between a pair
of segments si and sj exists if and only if similarity(si, sj) > 0 (i.e. if there
is at least one common trajectory that crossed both segments). In this case,
the similarity is assigned as a weight to that edge. An example of a segment
similarity graph is depicted in Figure 3.16.

s2 

s1 s3 

 

s4 

s6 
s8 

s5 
s7 s9 

T4 

T2 

T3 

T1 

s1 

T5 

Similarity(s1, s3) 

s2 

s3 

s8 s4 

s5 s7 

s6 

Figure 3.16 – Example of a segment similarity graph resulting from eight road
segments being visited by five trajectories. Vertices represent the studied
road segments while weighted edges indicate the presence and strength of the
similarity between pairs of segments.

To cluster the segment similarity graph and produce a hierarchy of nested
segment clusters, we use the exact same algorithm that we described in Sec-
tion 3.3.3.

3.4.3 Discussion

We discuss the exploration of road segment clusters in Section 3.4.3.1 then we
give the algorithmic complexity of our approach in Section 3.4.3.2.

3.4.3.1 Exploring Road Segment Clusters with the Help of
Trajectory Clusters

Segment clusters are not as easy to grasp and understand as trajectory clusters.
Even though it is possible to try and explore these clusters as standalone
clusters, we recommend involving the trajectory clusters in the process. Cross-
comparing both types of clusters can reveal interesting information about flow
dynamics and yield a better interpretation of the clusters. To show how this
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can be done, we use a small synthetic dataset containing 85 trajectories that
moved along the Oldenburg road network and visited a total of 485 distinct road
segments. We manually partitioned the trajectories into five clusters (depicted
in Figure 3.17) that we consider hereafter as the ground-truth clusters.

(a) Cluster 1 (14 trajectories) (b) Cluster 2 (19 trajectories)

(c) Cluster 3 (20 trajectories) (d) Cluster 4 (20 trajectories)

(e) Cluster 5 (12 trajectories)

Figure 3.17 – Ground-truth trajectory clusters in the dataset.
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We applied both trajectory and road segment clustering to this dataset. The
resulting trajectory clusters’ hierarchy contains only three trajectory clusters
(ground-truth clusters 2 and 3 were considered as part of a same cluster because
of their strong resemblance; the same occurs with clusters 4 and 5). Nevertheless,
all the ground-truth clusters are retrieved correctly (some of them are even
refined) in the following levels. Road segment clustering, on the other hand,
resulted in a hierarchy of six levels with only 4 segment clusters in the highest
level and 41 clusters in the most detailed level.

In order to give segment clusters more context, a segment cluster can be
interpreted based on the trajectory groups that interacted with it. Figure 3.18
shows the crossed matrix of the second level trajectory clusters (reported on the
rows) and the second level road segment clusters (on the columns) and gives
an idea about the sizes of the clusters and how clusters of one type interact
with those of the other type.

1 2 3 4 5 6 7 8 9 10 11 12 13

Road segment clusters

T
ra

je
ct

o
ry

 c
lu

st
er

s

Figure 3.18 – Crossed matrix of the trajectory clusters (rows) and road segment
clusters (columns). Each cell gives an idea about the interaction between
the corresponding trajectory and segment clusters: the more black dots the
cell contains, the more trajectories in the trajectory cluster cross segments
belonging to the segment cluster.

The crossed matrix does indeed reveal some interesting patterns and in-
teractions. For instance, the fourth segment cluster is explored exclusively by
two trajectory clusters. Visualizing both this segment cluster and its visiting
trajectory clusters (Figure 3.19) shows that the segment cluster plays the role of
a hub for these two groups of trajectories that converge to it from two different
areas in order to travel to two different destinations.

Crossing trajectory clusters and segment clusters is flexible and can be done
at various levels of the hierarchies of both cluster types. However, it is totally
up to the user to decide the relevance of the crossed clusters. The case of the
eleventh segment cluster (cf. Figure 3.18) illustrates this point: this segment
cluster is very interesting since it interacts with six trajectory clusters. However,
it is obvious that the segment cluster contains a lot of “noise” segments which
is expressed by the considerable amount of white space in the six first rows
(representing the trajectory clusters) in the column representing the cluster in
the crossed matrix. Consequently, drawn conclusions about the interactions
between the clusters will not be very reliable. A wiser alternative would be to
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(a) Hub segment cluster (b) Trajectory cluster 7 (c) Trajectory cluster 8

Figure 3.19 – A segment cluster (a) playing the role of a hub for two different
trajectory clusters ((b) and (c)) that borrow it to travel to two separate
destinations.

study the interactions between the (more refined) subclusters of this segment
cluster with the six trajectory clusters it interacts with. This whole idea of
studying interactions between trajectory and road segment clusters is the main
motivation behind the work we present in Chapter 4.

3.4.3.2 Time Complexity

The complexity of our road segment clustering approach can be deduced by
analogy to our trajectory clustering. With n being the number of trajectories
in T and m the number of road segments in S, the complexity of building
the similarity graph is O(nm2) and clustering it is theoretically done in O(m3)
(O(m2 logm) in practice). The complexity is therefore mainly dependent on
the road network’s size, which can be prohibitive when dealing with very large
road networks.

3.4.4 Experimental Results

In this experimental study, we compare modularity-based clustering and spectral
clustering in the case of road segments.

3.4.4.1 Experimental Setting

We compare the performances of both algorithms on five synthetic datasets
(cf. Table 3.13) produced with the Brinkhoff generator [6] using the Oldenburg
road network. Each dataset contains 100 trajectories visiting a varying number
of road segments.

Since no ground-truth clustering can be determined for the road segments
in the used datasets, external metrics such as purity and entropy cannot be
used to evaluate the results. Therefore, we evaluate the performance of each
algorithm by measuring the sum of average intra-cluster overlaps of the road
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Table 3.13 – Characteristics of the five synthetic datasets.

Number of Number of edges in
Dataset segments the similarity graph

1 2562 79811
2 2394 100270
3 2587 110095
4 2477 87023
5 2348 80659

segment partition CS it produces. In the case of road segment clustering, the
sum of average intra-cluster overlaps is expressed according to Formula (3.23):

Q(CS) =
∑

C∈CS

1

|C|

∑

si,sj∈C

|{T ∈ T : si ∈ T ∧ sj ∈ T}|

|{T ∈ T : si ∈ T ∨ sj ∈ T}|
. (3.23)

|C| is the number of segments in cluster C, |{T ∈ T : si ∈ T ∧ sj ∈ T}|
is the number of trajectories that visited both road segments si and sj while
|{T ∈ T : si ∈ T ∨ sj ∈ T}| is the number of trajectories that traveled along at
least one of them.

3.4.4.2 Characteristics of the Generated Road Segment Similarity
Graphs

The main characteristics of the road segment similarity graphs generated from
our five datasets are charted in Table 3.14. All the graphs are very sparse
yet have rather small diameters. The degree distributions of these graphs are
represented in Figure 3.20. Here again, the distribution is quite complex and
no particular law is apparent.

Table 3.14 – Characteristics of the generated road segment similarity graphs.

Number Number Vertex degrees
Dataset of vertices of edges min. avg. max. Density Diameter

1 2562 79811 6 62.3 254 0.02 11
2 2394 100270 2 83.77 434 0.04 8
3 2587 110095 5 85.11 408 0.03 8
4 2477 87023 4 70.26 319 0.03 10
5 2348 80659 4 68.7 310 0.03 9

3.4.4.3 Results of the Comparison Between Modularity-Based
Clustering and Spectral Clustering

Since the highest level of hierarchy produced by modularity-based cluster-
ing is considered as the optimal clustering (w.r.t. modularity), we compare
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(a) Dataset 1
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(b) Dataset 2
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(c) Dataset 3
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(d) Dataset 4
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(e) Dataset 5

Figure 3.20 – Distribution of vertex degrees in the road segment similarity
graphs.

both algorithms based on the same number of clusters contained at this level.
Table 3.15 shows that spectral clustering outperformed modularity-based clus-
tering. We suspect that this is mainly due to the complex nature of the degree
distributions in the road segment similarity graphs which results in situations
where modularity-based is not advantaged compared to other approaches. The
results consequently suggest that, contrary to the case of trajectory clustering,
it might be preferable to use spectral clustering to cluster the graph of road
segment similarity. However, as discussed earlier in Section 3.4.3.1, the biggest
drawback when it comes to road segment clustering is the lack of context of the
produced clusters. This is especially true since, contrary to approaches such as
[8], segments regrouped together are not necessarily contiguous and can belong
to different parts of the road network. Therefore, the relevance of relying solely
on interior indexes (such as the sum of average intra-cluster overlaps used here)
in order to evaluate the produced partitions’ quality is yet to be proven.

Since the results that we obtained on road segment clustering are not as
promising as those in the case of trajectories and since they do not benefit
from the same ease of interpretation, we refrain from further experimentations
and proceed, in the following chapter, to the presentation of an alternative
approach based on simultaneous co-clustering of trajectories and road segments
in order to retrieve automatically-correlated clusters of both types.
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Table 3.15 – Results achieved by modularity-based clustering and spectral
clustering on the road segment datasets.

Number of Intra-cluster overlaps
Dataset discovered clusters Spectral Modularity

1 23 685.82 657.20
2 21 556.22 524.46
3 20 623.21 561.09
4 22 647.56 594.76
5 26 684.81 666.24

3.5 Conclusions

In this chapter, we explored the problem of clustering network-constrained
trajectory data. Clustering trajectories of moving objects which are freely
moving in an Euclidean space was studied comprehensively with different
proposals and formulations. However, in most real applications, moving objects
(such as vehicles, airplanes, etc.) are restricted by an underlying network (road
network, aerial corridors, etc.). The constraints imposed by the presence of
such networks play an essential and key role in determining the resemblance
between moving objects. This case of clustering trajectory data in the presence
of network constraints attracted attention only recently and was understudied
in comparison with the free movement case.

We formalized two clustering problems based on trajectory data in road net-
work environments: (i) the network-constrained trajectories clustering problem
where we aim to retrieve groups of trajectories with similar motion patterns,
and (ii) the road segment clustering problem where we desire to retrieve clusters
of segments that are frequently visited by the same moving objects.

We then studied the constrained trajectories clustering problems. To do
so, we started by defining a new similarity measure to compare trajectories
based on co-occurrences of road segments. We then modeled interactions
between trajectories in the form of a similarity graph that we partitioned using
modularity-based community detection in order to discover clusters of similar
trajectories.

This graph-based approach presents a set of attractive features. First, the
approach is non-parametric and, consequently, does not require fine tuning
contrary to existing approaches that use density-based clustering (e.g. [79, 58,
55, 8]) where the quality of the resulting partitions varies greatly depending on
parameter values. Secondly, instead of reporting one flat level of clusters, our
approach reports a hierarchy of nested trajectory clusters. This hierarchy can
be very useful when exploring clusters identified in large trajectory datasets:
the user can start with a limited set of coarse clusters to rapidly understand
the general movement trends then proceed to inspect more refined clusters by
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means of successive zooms and cluster expansions. Our proposal, however, is
not flawless. One of its drawbacks is sensitivity to noise since the clustering
algorithm we used does not filter outlier trajectories. The sensitivity to noise
was not studied in the scope of this work and can be considered in future work.

Results achieved in our experimental study were promising and encouraged
us to extend our approach to the road segment clustering problem. Surprisingly,
the achieved results in this second case were less convincing than the trajectory
case. The retrieved road segment clusters lacked context and were hard to
interpret on their own. One potential solution to this issue is to also include
trajectory clusters and use them to interpret segment clusters they interact
with. However, this cross-analysis is left up to the user who should manually
decide on the relevance of the crossed clusters and the obtained results.

This last drawback is the main motivation for the work we will present in
the next chapter where we will study the problem of co-clustering network-
constrained trajectory data simultaneously based on trajectories and road
segments.
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Chapter 4

Co-Clustering

Network-Constrained Trajectory

Data

In the previous chapter, we made a first attempt at clustering network-
constrained trajectory data by adopting a graph-based approach. We started by
defining two separate problems. First we defined network-constrained trajectory
clustering as the problem of regrouping trajectories based on their movement
pattern: the more two trajectories visit the same road segments, the more
they are considered similar. The logic at work here is that detecting mobility
profiles can help grasp a better knowledge of how the road network is put to
use. Secondly, we tried to study the road segment clustering problem in which
we are rather interested in discovering clusters of road segments that are often
visited together. The motivation behind this is that doing so can help predict
the propagation of traffic jams: if a congestion is detected for some members of
a given segment cluster, then one can rationally presume that it may potentially
spread to the other members of the same group. We approached both problems
using the same logic. We used a graph representation to model the interactions
between entities of interest (i.e. trajectories or road segments) and we used
a modularity-based hierarchical community detection algorithm to retrieve
hierarchies of nested clusters.

Our experiments with the trajectory clustering approach yielded promising
results. We showed how trajectory clusters can be explored with various
levels of detail, how cluster representatives can be potentially extracted if
they are needed, etc. Road segment clustering, on the other hand, was more
problematic. Applying the same techniques to solve this problem resulted
in segment clusters that are hard to interpret due primarily to their lack of
context. One way to overcome this is to analyze road segment clusters in the
light of trajectory clusters. However, it is up to the user to manually do so
by choosing the appropriate levels in the hierarchies of trajectory clusters and
segment clusters, and interpreting the interactions between pairs of clusters
accordingly. Moreover, there certainly is a duality between the two problems
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we defined: clustering trajectories somewhat yields a segment partition and
vice versa, so why not merge the two problems together and try to extract both
partitions simultaneously?

To address these observations and shortcomings, we propose in this chapter
an alternative approach to partitioning trajectory data which is based on the use
of co-clustering. Co-clustering is a technique that aims to partition observations
in a given dataset based on all of their descriptive variables simultaneously. For
instance, if we consider that our observations are visits to road segments where
each visit is described using two variables (the trajectory’s id and the visited
road segment’s id), co-clustering will try to find groups of visits emanating
from the same trajectories to the same road segments. One of the attractive
features of co-clustering is the fact that it takes advantage of interactions and
correlations between variables in order to retrieve more complex patterns and
trends (in comparison with those discovered by simpler clustering techniques).
The contribution we present here is a joint work with Romain Guigourès and
Marc Boullé from Orange Labs with whom we collaborated in order to apply
their algorithms to trajectory data we provided.

The chapter is structured as follows. Since the work presented here is based
on co-clustering, we give a brief insight regarding this aspect in Section 4.1.
Our data model and methodology are explained in Section 4.2. In Section 4.3,
we present a case study where we apply the new approach to a dataset (the one
we already used in Section 3.4.3.1) in order to showcase its use to characterize
traffic in the road network and make the comparison with the techniques
we presented in the previous chapter. Experimental results are presented in
Section 4.4. Finally, concluding remarks are exposed in Section 4.5.

4.1 Related Work

Co-clustering (or biclustering) can be defined as the “simultaneous clustering
of both row and column sets in a data matrix” [110]. Since this technique
aims to extract features based on interrelations between rows and columns
simultaneously, it can be used to reveal more complex patterns than those
retrieved by more conventional partitioning techniques. Co-clustering (like
normal clustering) works on conventional data that are expressed as a set of
unlabeled observations described through a number of variables.

The first attempt at co-clustering is often accredited to Hartigan [111].
Although the term “biclustering” (introduced later on in [110]) was not used
explicitly, Hartigan proposed to extract sub-matrices (dubbed clusters) from a
given data matrix. The rows of this data matrix correspond to the observations
(or cases), whereas the columns correspond to the variables. Each case has
a response to each variable. In order to build the clusters, a suitable model
needs to be defined. Hartigan explores the equal-response model where it is
desirable to have clusters in which the cases had the same response w.r.t. the
variables. Consequently, a matrix A∗ is used to model the average interactions
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between case clusters and variable clusters in the data matrix A. A∗ is none
other than the ideal data matrix closest to A under the equal-response model.
The deviation of the original data matrix A w.r.t. the ideal case A∗ is measured
using the sum of squared deviations SSQ =

∑

i,j(Aij − A∗
ij)

2 and is used as
a quality criterion to guide the clustering process which is conducted using a
heuristic hierarchical divisive algorithm. Initially, all the cells of A∗ are equal to
the average of the values in A. At each step, the algorithm tries to retrieve the
best split of the matrix into two sub-matrices (which is the partition maximizing
the SSQ reduction). The process is reiterated1 until the SSQ reduction is less
than the SSQ reduction expected by chance (i.e. obtained by random splits).
This results not only in a direct partition of cases and variables but also in
two hierarchies of nested case clusters and nested variable clusters. A similar
technique that uses cluster inertia as the quality criterion is presented in [112],
whereas approaches to optimally partition a data matrix into sub-matrices are
described in [113, 114].

Stochastic co-clustering techniques make the hypothesis that the analyzed
data stem from a mixture of underlying distributions and well-defined statistical
models. Approaches to estimate the parameters of these models include Ex-
pectation Maximization (EM) based techniques [115, 116], bayesian techniques
such as the Latent Dirichlet Allocation generative model [117], etc. The latter
was applied to clustering documents and words concurrently.

Dhillon proposed a spectral approach to co-clustering words and documents
in [118]. In its philosophy, the approach is very close to what we are trying to
achieve since a bipartite graph model is presented to render the interactions
between words and documents. In [118], a data matrix A is used to count the
occurrences of words (columns) in the documents (rows). A is first normalized

into An = D
− 1

2

1 AD
− 1

2

2 (D1 and D2 are diagonal matrices representing the
frequencies of words and documents: D1(i, i) =

∑

j Aij and D2(j, j) =
∑

i Aij).
Then, instead of using the eigenvectors like in normal spectral clustering [100],
the second singular vectors of An are calculated and used in combination with
k-means to retrieve the co-clusters of words and documents. An extension of
this approach for the co-clustering of gene expression data can be retrieved in
[119].

Other approaches are inspired by information retrieval theory and use
mutual information [120] as the quality criterion for clustering. For example,
if we are interested in the two-dimension case where a dataset D is described
through two variables X1 and X2, such approaches would search for the optimal
biclustering model M (defined by the partitioning π of X1 and X2 into two
partitioned variables Xπ

1 and Xπ
2 ) that minimizes the loss of mutual information,

which is expressed as follows (4.1):

M∗ = argmin
M

(I(X1, X2)− I(Xπ
1 , X

π
2 )) . (4.1)

1Obviously, if the algorithm degenerates, it ends up in the situation where each cluster
contains only one response (i.e. one case and one observation) in which case A∗ = A.
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Dhillon et al. [121] use this criterion in combination with a monotonically-
decreasing algorithm in order to retrieve a locally-optimal biclustering of words
and documents. A generalization of the mutual information biclustering model
can be found in [122].

Blockmodeling approaches [123, 124] may also be considered as co-clustering
techniques. These approaches operate by rearranging the rows and columns of
the data matrix in order to extract uniform and similar blocks (by employing
a χ2 test, a density-based criterion, etc.). One blockmodeling technique of
particular interest in the context of this work is the MODL [125] approach.
MODL is based on Bayesian model selection and was originally proposed
for supervised discretization and value grouping, then generalized later on to
supervised multivariate classification and unsupervised co-clustering. Since
what we are trying to achieve in this chapter is a clustering of categorical
bivariate data, we briefly present MODL only under this specific perspective.

In order to describe the joint distribution of the data, MODL investigates a
family of unsupervised bivariate value grouping models. A modelM in this
family can be described through the following parameters [125]:

• The number of groups J1 and J2 for each of the input variables Y1 and
Y2.

• The repartition of the values, for each variable, into groups of values.

• The distribution of the N instances of the data sample D = {D1, D2, ..., DN}
among the G cells of the resulting data grid (G = J1J2).

• For each variable and each group, the distribution of the instances of the
group on the values of the group.

These parameters are either (i) parameters describing the partition of values
into groups of values (4.2), (ii) parameters of the multinomial distribution of
the instances on the data grid cells (4.3), or (iii) parameters of the multinomial
distribution of the instances of each group on the values of the group (4.4).

J1, J2, {j1(v1)}1≤v1≤V1
, {j2(v2)}1≤v2≤V2

. (4.2)

{Nj1j2}1≤j1≤J1,1≤j2≤J2 . (4.3)

{nv1}1≤v1≤V1
, {nv2}1≤v2≤V2

. (4.4)

V1 and V2 are the number of values for each variable. j1(v1) (resp. j2(v2))
stands for the index of the group containing value v1 (resp. v2), nv1 (resp. nv2)
is the number of instances for value v1 (resp. v2), and Nj1j2 is the number of
instances in the cell (j1, j2) of the data grid.

In order to evaluate each model, a Bayesian prior is defined. According to
this prior, parameters are chosen hierarchically and uniformly at each level
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with the hypothesis of totally-independent and equiprobable distributions (cf.
Figure 4.1). Then, the Bayes optimal model w.r.t. the prior is selected. This
model is the one minimizing the following criterion (4.5):

log V1 + log V2 + logB(V1, J1) + logB(V2, J2)

+ log

(

N +G− 1

G− 1

)

+

J1
∑

j1=1

log

(

Nj1 +mj1 − 1

mj1 − 1

)

+

J2
∑

j2=1

log

(

Nj2 +mj2 − 1

mj2 − 1

)

+ logN !−

J1
∑

j1=1

J2
∑

j2=1

logNj1j2 ! (4.5)

+

J1
∑

j1=1

logNj1 ! +

J2
∑

j2=1

logNj2 !−

V1
∑

v1=1

log nv1 !−

V2
∑

v2=1

log nv2 ! .

B(V, J) is the number of divisions of V values into J groups, mj1 (resp.
mj2) is the number of values in group j1 (resp. j2), and Nj1 (resp. Nj2) is the
number of instances of group j1 (resp. j2) of variable Y1 (resp. Y2). The first
line in the formula depends on the prior distribution of group numbers and the
partitioning of values into these groups. The second line is composed of the
specification of the parameters of the multinomial distribution of instances on
the cells of the data grid and the specification of the multinomial distribution
of instances of each group on the values of said group. The likelihood of the
distribution of instances on the grid cells is expressed in the third line, whereas
the likelihoods of local distributions for each variable are described in the fourth
line.

In the particular case of co-clustering of bivariate categorical data, the
MODL criterion converges asymptotically towards the mutual information
criterion as defined in [121] (the demonstration can be found in [126]). A
general overview of the algorithmic aspect of co-clustering using the MODL
criterion will be exposed in Section 4.2.2.

Finally, to the best of our knowledge, there were little to no attempts to
co-cluster moving object trajectory data (especially in the network-constrained
case). Among the few attempts that we are aware of in this respect is the
one presented in [127] where a dual hierarchical Dirichlet process (Dual-HDP)
is used for trajectory analysis based on semantic region modeling in video
surveillance settings.

For a more in-depth survey on co-clustering techniques, we refer the inter-
ested reader to the one presented in [128].

4.2 Data Model and Methodology

We now present our proposition for co-clustering network-constrained trajectory
data. As far as the road network and trajectories are concerned, we use the
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Description of the data:
- Number of observations: N

- Number of values for Y1 and Y2: {V1, V2}

Choice of the number of groups per variable {J1, J2}:

- P (J1|V1) =
1

V1

- P (J2|V2) =
1

V2

Choice of the distribution of the V1 and V2 categorical values
in the J1 and J2 groups:

- P ({j1(v1)}1≤v1≤V1
|J1) =

1

B(V1, J1)

- P ({j2(v2)}1≤v2≤V2
|J2) =

1

B(V2, J2)

Distribution of the N instances on the G cells of the data grid:

- P ({Nj1j2
}1≤j1≤J1,1≤j2≤J2

|G, N) =
1

3

N + G − 1

G − 1

4

For each group of values of each variable, the distribution of
the N instances in the group on the values in the group:

- P ({nv1
}1≤v1≤V1

|{j1(v1)}1≤v1≤V1
) =

J1
Ÿ

j1=1

1
3

Nj1
+ mj1

− 1

mj1
− 1

4

- P ({nv2
}1≤v2≤V2

|{j2(v2)}1≤v2≤V2
) =

J2
Ÿ

j2=1

1
3

Nj2
+ mj2

− 1

mj2
− 1

4

Figure 4.1 – Hierarchy of parameters established by the prior.

same symbolic data model that we used in Chapter 3, in which the road
network is represented as an oriented graph depicting its intersections and road
segments, and where trajectories are expressed as sequences of traveled road
segments (cf. Section 1.1.2 for the full details of the symbolic model). The
problem at hand can be defined as follows:

Definition 11 (Network-Constrained Trajectory Co-Clustering Problem).
Given a set of trajectories T = {T1, T2, ..., Tn} and the set of all the road
segments S = {s1, s2, ..., sm} they visited, we aim to simultaneously partition
both the trajectory set T and the segment set S in order to discover meaningful
non-overlapping co-cluster structures. Each co-cluster involves a trajectory
cluster and a segment cluster that are regrouped based on the uniformity of
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the visits the road segments receive from the trajectories. Desirably, in a given
co-cluster, each road segment is visited by most of the trajectories in the same
co-cluster and, vice versa, each trajectory visits most of the segments in the
co-cluster.

We present our data model for trajectory/segment interactions in Sec-
tion 4.2.1 then we explain our approach to partitioning the data in Section 4.2.2

4.2.1 Modeling Trajectory/Segment Interactions Using

Bipartite Graphs

In the context of co-clustering network-constrained trajectory data, we are
interested in modeling mutual interactions between trajectories and road seg-
ments (instead of modeling interactions solely between trajectories or between
segments). We do so by adopting a bipartite graph structure. A bipartite graph
is a graph whose vertices can be divided into two separate and independent
sets. An edge can only link a vertex from the first set to a vertex from the
second (i.e. no edges are tolerated between vertices of the same type).

We model interactions between trajectories and road segments as a bipartite
graph G = (T ,S, E). T = {T1, T2, ..., Tn} is the set of trajectories, S =
{s1, s2, ..., sm} is the set of all the segments composing the road network that
registered at least one visit, and E is the set of edges modeling visits (i.e.
interactions) from trajectories to road segments. An edge e exists between a
trajectory T and a road segment s if and only if T visited s at least once. This
representation is illustrated through the example in Figure 4.2.
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Figure 4.2 – Example of five trajectories visiting eight road segments in the
network and the equivalent trajectory/segment interactions bipartite graph.

Notice that this representation can be considered as a natural extension
to the graph models we presented in the previous chapter. In fact, projecting
the bipartite graph on its set of trajectory vertices T will yield a simple graph
that is very similar to the trajectory similarity graph described in Section 3.3.2
whereas projecting it on its segment vertices S will produce a graph similar to
the segment similarity graph in Section 3.4.2 (the only difference is the weights
assigned to the edges).
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4.2.2 Co-Clustering the Bipartite Graph

In order to partition the bipartite graph G, we apply a co-clustering approach
to its adjacency matrix. In the adjacency matrix, trajectories are represented in
the rows while road segments are represented on the columns. The intersection
of row i with column j indicates the number of times trajectory Ti visited the
road segment sj (which is often equal to 1 in our context since each trajectory
does not normally visit the same segment more than once). The co-clustering
structure that we aim to achieve (referred to asM hereafter) is defined through
the set of modeling parameters described in Table 4.1.

Table 4.1 – Notations.

Bipartite graph G Co-clustering model M
T : set of trajectories CT : set of trajectory clusters
S: set of road segments CS : set of road segment clusters
E : set of visits from trajectories in
T to road segments in S

CE : co-clusters of trajectory and
road segments

The main advantage of co-clustering techniques is that they do not require
preprocessing nor do they require the definition of an “artificial” similarity
between trajectories or between segments. Nonetheless, they do present the
drawback of being computationally expensive since interesting formulations of
the problem are known to be NP -complete [128].

As we hinted before, we opt for the MODL [125] approach to conduct the co-
clustering of G. We made this choice because this approach (i) is non-parametric
and does not require user intervention or fine-tuning, (ii) is easily scalable and
can consequently be used to analyze large datasets, and (iii) was already and
successfully applied to geo-tagged data [129]. MODL co-clustering is conducted
using an agglomerative greedy heuristic. Initially, the trivial, most refined model
is considered. This model contains only one trajectory and one road segment
per cluster. Then, all cluster merging operations are evaluated and the best
merge (w.r.t. the quality criterion) is applied. Once no more merging operations
are possible, the result of the heuristic is refined using a post-optimization
step in which some elements swap their cluster memberships. The whole
process is encapsulated within a Variable Neighborhood Search (VNS) [130]
metaheuristic that restarts the algorithm several times with different random
cluster initializations. The algorithm has a complexity of O(|E|

√

|E| log(|E|))
[125] where |E| indicates the total number of edges in the bipartite graph G
(which, in our case, translates to the overall number of road segment traversals).

In practice, we use the Khiops [131] tool developed by Orange Labs to
conduct the MODL co-clustering. Khiops provides the best co-clustering model
(w.r.t. the MODL criterion) as well as two separate hierarchies of nested clusters,
one for the trajectories and one for the road segments. These hierarchies are
the result of a post-processing step in which an agglomerative hierarchical
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clustering is conducted using the degradation of the MODL criterion as a
dissimilarity measure. Starting from the optimal co-clustering, at each step
a decision is made about whether to merge two trajectory clusters or two
segment clusters based on which one produces the smallest degradation. The
process stops when all the data is merged within a single co-cluster containing
one trajectory cluster and one segment cluster. The levels in the hierarchy of
trajectory (resp. segment) clusters trace all the merging operations going from
the trajectory (resp. segment) clusters in the optimal level up to one single
cluster containing all the trajectories (resp. road segments). Consequently, the
same ability of multi-level exploration in the case of the approaches in Chapter 3
is also possible here: if the optimal co-clustering contains an overwhelming
number of clusters, the user can decide to trade-off some quality and analyze
fewer clusters of lower resolution. Khiops also offers the possibility to visualize
useful information (such as mutual information and frequencies in the retrieved
co-clusters) that help guide the analysis and interpretation of the results. These
aspects will be showcased throughout Section 4.3 and Section 4.4.2.

4.3 Case Study

In this section, we present a case study through which we showcase our propo-
sition. We also point out some key differences between the present approach
and the ones we already proposed in Chapter 3.

4.3.1 Test Case Data

For our case study, we will reuse the dataset that we already introduced in
Section 3.4.3.1. We remind that the dataset is synthetic and is composed of
85 trajectories divided into five ground-truth clusters. The trajectories visited
a total of 485 road segments in the road network of Oldenburg. In order to
distinguish between the original clusters and those discovered by means of
clustering, the former will be called “classes” from now on. As explained in
Section 3.4.3.1, these classes interact among themselves and are consequently
not easy to separate. For the convenience of the reader, the illustration of the
five trajectory classes (already presented in Figure 3.17) is replicated here in
Figure 4.3.

4.3.2 Analysis of the Trajectory Clusters

Recall that when we applied our modularity-based trajectory clustering to
the dataset, the approach started by discovering three trajectory clusters only.
The reason behind this is that the approach picked up on the interactions
between trajectory classes and partitioned the data accordingly. Further
exploration of the three discovered clusters (using the second level of the
produced cluster hierarchy) yielded eight more refined clusters, three among
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(a) Class 1 (14 trajectories) (b) Class 2 (19 trajectories)

(c) Class 3 (20 trajectories) (d) Class 4 (20 trajectories)

(e) Class 5 (12 trajectories)

Figure 4.3 – Classes (ground-truth trajectory clusters) in the dataset.
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which are perfect matches of ground-truth clusters. The remaining five clusters
were pure clusters (as they contained only trajectories from one class) resulting
from over-partitioning some classes where the algorithm detected a considerable
variability. The confusion matrix between original classes and clusters of the
second level of hierarchy is shown in Table 4.2.

Table 4.2 – Confusion matrix of the original classes present in the data (rows)
and the clusters discovered by applying modularity-based community detection
(columns).

1 2 3 4 5 6 7 8
1 0 0 0 7 3 4 0 0
2 0 19 0 0 0 0 0 0
3 12 0 8 0 0 0 0 0
4 0 0 0 0 0 0 0 20
5 0 0 0 0 0 0 12 0

MODL co-clustering, on the other hand, was not “fooled” by the interactions
in-between classes and directly retrieved a partition that is more faithful to
the original data (cf. Table 4.3). Here again, two original classes were over-
partitioned and three classes were retrieved correctly.

Table 4.3 – Confusion matrix of the original classes present in the data (rows)
and the clusters discovered by applying MODL co-clustering to the bipartite
graph’s adjacency matrix (columns).

1 2 3 4 5 6 7
1 0 0 7 7 0 0 0
2 0 0 0 0 19 0 0
3 0 0 0 0 0 12 8
4 20 0 0 0 0 0 0
5 0 12 0 0 0 0 0

The confusion matrix between trajectory clusters discovered by both ap-
proaches is depicted in Table 4.4 and shows that the correctly-discovered classes
are the same in both cases and indicates that the two approaches only disagreed
on the clustering of the remaining two “ambiguous” classes.

Unlike our modularity-based techniques, MODL does not require a prepro-
cessing step and the concoction of a measure of similarity between observations.
Instead, MODL is applied directly to the raw data. Moreover, MODL works
on both variables describing the data (trajectories and road segments) simulta-
neously, whereas in modularity-based clustering only one variable is considered
at a time. Therefore, and in view of the similar results achieved by both
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Table 4.4 – Confusion matrix between trajectory clusters discovered by MODL
(rows) and trajectory clusters discovered by modularity optimization (columns).

1 2 3 4 5 6 7 8
1 0 0 0 0 0 0 0 20
2 0 0 0 0 0 0 12 0
3 0 0 0 7 0 0 0 0
4 0 0 0 0 3 4 0 0
5 0 19 0 0 0 0 0 0
6 12 0 0 0 0 0 0 0
7 0 0 8 0 0 0 0 0

approaches w.r.t. the produced trajectory clusters, it is more tempting to apply
MODL even if the user is only interested in clustering trajectories.

4.3.3 Mutual Analysis of Trajectory and Road Segment

Clusters

We now include the road segment clusters in our case study. The co-clusters
discovered using MODL involve twelve segment clusters. On the other hand,
modularity-based clustering results in a hierarchy of six levels (with four segment
clusters in the most coarse level and 41 clusters in the most detailed one as
we mentioned before in Section 3.4.3.1). The second level of this hierarchy
contains 13 segment clusters and is the one that resembles the most the clusters
discovered using MODL. Therefore, we will mainly consider this level for our
study.

4.3.3.1 Differences Between Co-Clustering and Separate
Trajectory and Segment Clustering

Table 4.5 depicts the confusion matrix between road segment clusters discovered
by both approaches and indicates that they handle segment clustering in
drastically different fashions. In order to understand the reasons underlying the
differences between the two approaches, we propose studying the case of the
11th column of Table 4.5 which corresponds to a segment cluster (Figure 4.4)
discovered by the modularity-based approach that the co-clustering approach
decided to split into three different clusters (Figure 4.5).

MODL co-clustering decided that the segments belong to three different
clusters for the following reasons:

• Traffic on the segment cluster depicted in Figure 4.5(c) comes uniquely
from one trajectory cluster (corresponding to the ground-truth class
depicted earlier in Figure 4.3(b)).
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Table 4.5 – Confusion matrix between road segment clusters discovered us-
ing MODL co-clustering (rows) and those discovered using modularity-based
clustering (columns).

1 2 3 4 5 6 7 8 9 10 11 12 13
1 0 0 0 0 0 0 0 0 0 0 0 34 0
2 0 0 0 0 0 0 0 0 0 0 0 0 37
3 0 0 0 11 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 11 0 0
5 0 0 0 0 0 40 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 35 0 2
7 0 0 0 0 0 0 0 16 49 12 0 0 0
8 0 0 0 0 15 0 6 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 14

10 0 0 0 0 0 0 0 0 0 0 60 0 0
11 43 27 15 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 6 0 25 0 0 0 0 0 0

• Traffic on the segment cluster in Figure 4.5(b) comes not from one but
two groups of trajectories (the ones in Figure 4.3(b) and Figure 4.3(c)).

• Traffic on the cluster in Figure 4.5(a) emanates from three trajectory
classes (Figures 4.3(a), 4.3(b) and 4.3(c)).

This last cluster is very important as it reveals the presence of an interesting
hub structure (as discussed later in Section 4.3.3.2) that multiple groups of
moving objects coming from different areas borrow to go to different destinations.
This valuable information was detected and revealed immediately by the co-
clustering approach since it took into account the provenance (trajectories) of
the visits on the road segments.

In order to analyze the situation from the modularity-based approach’s
perspective, we plot the adjacency matrix of the segment similarity sub-graph
(illustrated in Figure 4.6) corresponding to the cluster in Figure 4.4. We
re-ordered the rows and columns of the matrix in order to group together
the segments based on their membership to the three clusters discovered by
co-clustering (Figure 4.5). The segments in the first two tiers of the matrix
(which correspond to the clusters in Figure 4.5(a) and Figure 4.5(b)) are
considered very similar w.r.t. the similarity measure we defined in Section 3.4.1.
Consequently, the fact that modularity-based clustering regrouped them in the
same cluster is very logical. Segments in the remaining tier (which obviously
are the ones in Figure 4.5(c)) are less similar to the two others and should
have been isolated. However, the approach decided to keep it in the same
cluster at this level of hierarchy. Thereupon, it is up to the user to “guess” that
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Figure 4.4 – A road segment cluster (regrouping 106 segments) discovered by
modularity-based clustering.

(a) Cluster 4 (11 segments) (b) Cluster 6 (37 segments) (c) Cluster 10 (60 segments)

Figure 4.5 – The three road segment clusters discovered by co-clustering instead
of the unique cluster depicted in Figure 4.4.

the concerned segment cluster needs further refinement in order to potentially
retrieve that same information that co-clustering retrieved.

For the segment cluster at hand, our modularity-based approach failed to
detect the hub structure and overlooked it completely even at the finest level
of detail (i.e. the bottommost level of hierarchy). In fact, analyzing this level
reveals the tendency of the modularity-based approach to over-cluster the data
as can be witnessed in Figure 4.7. This behavior can handicap the analysis of
large datasets as it can result in an overwhelming number of segment clusters
(cf. Section 4.4.3.1).

Curiously, the 11th row of Table 4.5 corresponds to the inverse situation
of the one we just studied: a single segment cluster detected by co-clustering
was split into three clusters by modularity-based clustering (these clusters are
not illustrated here for conciseness’s sake). The traffic on the concerned road
segments originates uniquely from a single trajectory class (Figure 4.3(e)) that
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Figure 4.6 – Adjacency matrix of the segment similarity sub-graph of the cluster
depicted in Figure 4.4. Color coding indicates the intensity of the similarity
between the segments and varies from white (no similarity) to red (as the
similarity approaches to 1).

(a) 51 segments (b) 9 segments (c) 6 segments

(d) 5 segments (e) 9 segments (f) 3 segments

Figure 4.7 – Some of the most refined child clusters of the segment cluster
depicted in Figure 4.4. Notice how even at this most detailed level, the hub
structure in Figure 4.5(a) is not detected. Instead, over-fitting is observed since
the core of the cluster in Figure 4.4 remains intact (a) but the approach starts
separating peripheral segments into small clusters of no particular relevance
((b) through (f)).
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both approaches retrieved correctly. While co-clustering successfully regrouped
all these segments together, modularity-based clustering decided to spread
them on multiple clusters. This is due to the same over-clustering problem we
just mentioned: since the cluster was obvious to detect, the modularity-based
approach started over-clustering it immediately and isolated the first segments
and the last segments of the involved trajectories from the main segment cluster
and into two separate clusters.

The difference in handling road segment clustering is also visible when
studying the adjacency matrix of the original bipartite graph G. In Figure 4.8,
we re-ordered the rows and columns of the matrix in order to bring together
trajectories and segments belonging to the same clusters. We observe in the
case of the modularity-based approaches (Figure 4.8(a)) that road segments
are regrouped together based on common trajectories without accounting for
the traffic’s volume. Therefore, road segments that are rarely visited can
be attached to segments that are visited frequently. This translates, when
looking at the adjacency matrix, into the presence of blocks with heterogeneous
distributions in which some segments are traveled by all the trajectories in
the cluster, whereas others are only visited by a limited subset of trajectories.
In co-clustering, on the other hand, segments are correlated based on usage,
which results in blocks of homogeneous densities (Figure 4.8(b)).
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(a) Modularity

Trajectories
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ts

(b) Co-clustering

Figure 4.8 – Crossed matrices of trajectory clusters (columns) and road segment
clusters (rows) retrieved through (a) modularity-based clustering and (b) co-
clustering.
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4.3.3.2 Using Trajectory/Segment Co-Clusters for Traffic
Characterization

By inspecting trajectory clusters and road segment clusters simultaneously, it
is possible to characterize road segments based on the roles they play in traffic.
This makes it possible to identify hubs that are frequently traveled by multiple
groups of vehicles driving to different regions (Figure 4.9 and Figure 4.10),
secondary roads (Figure 4.11), and even rarely frequented alleys. Therefore,
our methodology makes it possible to characterize the topological structure
of the underlying road network based on trajectories contributing their usage
information.

(a) Segment cluster 3
(11 segments)

(b) Trajectory cluster 1
(20 trajectories)

(c) Trajectory cluster 2
(12 trajectories)

Figure 4.9 – A hub road segment traveled by two different trajectory clusters
with different departures and destinations.

Mutual information is frequently used in co-clustering to quantify the
correlations between partitions of the studied variables. These are, in our
case, trajectories and road segments. Mutual information is always positive.
High values of this index usually indicate that trajectory clusters visit rather
exclusive and unique segment clusters. We use mutual information in our study
to quantify the relationship between pairs of trajectory and segment clusters as
well as their contribution to the model’s mutual information. Given a cluster of
trajectories cT ∈ CT and a cluster of road segments cS ∈ CS , the contribution
of the pair to mutual information, denoted mi(cS, cT ), is calculated as follows
(4.6):

mi(cS, cT ) = P (cS, cT ) log
P (cS, cT )

P (cS)P (cT )
. (4.6)

Where P (cS, cT ) is the probability of a segment traversal to belong to a
trajectory in cT and concern a road segment that belongs to cS, P (cS) is the
probability of visiting a segment belonging to cS, and P (cT ) is the probability
of having a trajectory belonging to cT .
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(a) Segment cluster 4
(11 segments)

(b) Trajectory cluster 3
(7 trajectories)

(c) Trajectory cluster 4
(7 trajectories)

(d) Trajectory cluster 5
(19 trajectories)

(e) Trajectory cluster 6
(12 trajectories)

(f) Trajectory cluster 7
(8 trajectories)

Figure 4.10 – A second hub road segment traveled by five different trajectory
clusters with different departures and destinations.

(a) Cluster 1 (34 segments) (b) Cluster 5 (40 segments) (c) Cluster 7 (77 segments)

Figure 4.11 – Examples of “secondary” road segment clusters leading to pe-
ripheral areas of the road network and visited exclusively by single groups of
trajectories.

A positive contribution to mutual information indicates that the number of
visits of trajectories in cT to road segments in cS is higher than what is expected
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in case the two clusters were completely independent from one another. Vice
versa, a negative contribution is an indicator that quantity of traffic is inferior
to normal. Finally, a null contribution to mutual information indicates that
traffic either conforms to what is expected or is very low.

Figure 4.12(b) presents the contribution to mutual information for each
pair of co-clusters discovered in the dataset at hand. For instance, if we take
the left, topmost co-cluster, we can notice that the segments (already depicted
in Figure 4.11(c)) are exclusively traveled by members of a single trajectory
cluster (already depicted in Figure 4.9(b)). In this case, the trajectory cluster
comprises 21.6% of the studied trajectories and the road segments cluster 17.3%
of segments in the dataset. If we suppose that both clusters are independent,
then we can expect no more than observing 21, 6%× 17.3% = 3.7% of the total
road segment traversals to be originating from both clusters. Here, however,
we observe that no less than 17.3% from the total traversals belong to this
co-cluster, which largely exceeds the expected traffic in case of unrelated and
independent clusters.

(a) Frequency (b) Mutual information

Figure 4.12 – Frequency and mutual information of the retrieved co-clusters.

Notice that the mutual information (Figure 4.12(b)) contributes with an
information that is different from the frequency matrix (Figure 4.12(a)). We
can observe that some road segment clusters are significantly traversed by
members belonging to multiple trajectory clusters. This behavior is quite
characteristic of hubs that vehicles coming from different regions cross in order
to attend different destinations. Some of these clusters have very small contrast
w.r.t. mutual information, which indicates that traffic on the hub is rather
balanced.

4.4 Experimental Results

We now proceed to the evaluation of our co-clustering approach on a larger
scale. To do so, we compare it to the modularity-based trajectory clustering
and segment clustering approaches we presented in the previous chapter. We
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first describe our experimental setting in Section 4.4.1. We present some of
the results co-clustering achieved in Section 4.4.2. The comparison with our
previous techniques is reported in Section 4.4.3.

4.4.1 Experimental Setting

For this experimental study, we use five synthetic datasets generated with the
Brinkhoff generator [6] using the Oldenburg road network. Each dataset is
composed of 1000 moving object trajectories that visited over 8000 distinct
road segments. The characteristics of each dataset are detailed in Table 4.6
along with the characteristics of the different graphs induced by our approaches.

Table 4.6 – Characteristics of the used datasets and the different similarity
graphs they induce.

Edges in Edges in
Number of Number of the trajectory the segment Edges in the

Dataset trajectories visited segments similarity graph similarity graph bipartite graph
1 1000 8336 30447 667556 41849
2 1000 8441 32123 662191 43182
3 1000 8477 30265 682737 42241
4 1000 8345 30961 652122 41771
5 1000 8269 29342 639676 41006

One straightforward observation that we can already make here concerns the
size of the graphs produced by the different approaches. As it is made clear by
Table 4.6, trajectory clustering produces similarity graphs that contain around
30000 edges. Co-clustering stays reasonably close to this with bipartite graphs
that contain a little more than 40000 edges. Road segment clustering, on the
other hand, produces far bigger graphs with no less than 600000 edges. This
can be quite problematic when handling larger datasets that potentially involve
larger road networks, especially considering the elevated time complexity of
the approach (cf. Section 3.4.3).

We are mainly interested in studying the behavioral differences between
clustering trajectories and road segments separately, and co-clustering both
variables simultaneously. Therefore, we will compare both approaches under
this angle. To do so, we use the following indices:

• The sum of average trajectory intra-cluster overlaps (cf. Section 3.3.5)
achieved by both simple trajectory clustering and co-clustering.

• The sum of average road segment intra-cluster overlaps (cf. Section 3.4.4)
achieved by both simple road segment clustering and co-clustering.

• The Adjusted Rand Index (ARI) between trajectory partitions and be-
tween road segment partitions discovered by both approaches (cf. Sec-
tion 3.3.5).
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• The Normalized Mutual Information (NMI) between trajectory partitions
and between road segment partitions retrieved by both approaches.

Given two partitions C = {C1, C2, ..., Ck} and C ′ = {C ′
1, C

′
2, ..., C

′
k′} of a

dataset containing N observations, the normalized mutual information between
these partitions is calculated using Formula (4.7).

NMI(C, C ′) =
−2

∑k

i=1

∑k′

j=1 |Ci ∩ C ′
j| log

|Ci∩C
′
j |N

|Ci||C′
j |

∑k

i=1 |Ci| log
|Ci|
N

+
∑k′

j=1 |C
′
j| log

|C′
j |

N

. (4.7)

Where |Ci ∩C
′
j| stands for the number of common observations between Ci

and C ′
j , and |Ci| and |C ′

j| the number of observations in Ci and C ′
j respectively.

4.4.2 Examples of Results Produced by Co-Clustering

Figure 4.13 depicts the matrices of mutual information between trajectory and
segment clusters obtained by application of MODL co-clustering on the five
datasets (each block in the matrix corresponds to a co-cluster composed of
a trajectory cluster and a road segment cluster). In all cases, the resulting
matrices are very sparse as, expectedly, each trajectory cluster interacts with
only a limited number of segment clusters (and vice versa). This kind of visual
aid can be used to quickly spot meaningful co-clusters (and simple clusters)
and prune those that are not very relevant. For example, a trajectory cluster
that does not have a strong interaction with any of the produced road segment
clusters can either be a trajectory cluster that travels exclusively on hub road
segments or an irrelevant, malformed cluster; a considerable interaction between
a road segment cluster and multiple trajectory clusters is generally an indicator
of a hub that is used by multiple groups of moving objects traveling in-between
different areas (cf. Figure 4.14); etc.

Like we mentioned in Section 4.2.2, it is possible to study the clustering
results at lower resolutions with the help of the hierarchies of trajectory clusters
and road segment clusters generated by Khiops. The tool also offers the
possibility of visualizing the various indicators, such as mutual information, for
these resolutions as depicted in Figure 4.15. As is the case in our modularity-
based approaches, this can be very convenient when analyzing large datasets as
the user can choose to trade-off some quality to reduce the number of co-clusters
to analyze to a reasonable level. The user can then expand, refine, and explore
co-clusters of interest. This can also be used to explore just the hierarchy of
trajectory clusters or the hierarchy of segment clusters. An example of cluster
refinement, in the case of trajectory clusters, is illustrated in Figure 4.16:
we started with the cluster of 66 trajectories shown in Figure 4.16(a). By
expanding this cluster using the hierarchy provided by Khiops, we obtained two
more specialized clusters with more apparent trends as the first (Figure 4.16(b))
moves in the central part of the network, whereas the second (Figure 4.16(c))
moves more on the east peripheral side. Further refinement helps make the
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

(e) Dataset 5

Figure 4.13 – Mutual information matrices of the co-clusters discovered in the
datasets. Trajectory clusters are depicted in the rows and road segment clusters
on the columns.
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(a) Hub road segment cluster (47 segments) (b) Trajectory cluster 1 (10 trajectories)

(c) Trajectory cluster 2 (7 trajectories) (d) Trajectory cluster 3 (8 trajectories)

Figure 4.14 – Example of a hub road segment cluster identified in dataset 1
and the three trajectory clusters it interacts with.

trend apparent in Figure 4.16(c) even more apparent (cf. Figure 4.16(d)) and
isolate yet another trend in a separate cluster (Figure 4.16(e)). The hierarchy
of the aforementioned clusters is depicted in Figure 4.17.

4.4.3 Comparison with Modularity-Based Clustering

We now compare the characteristics and quality of the clusters produced by
our co-clustering approach and the approaches presented in Chapter 3.

4.4.3.1 Characteristics of the Discovered Clusters

Table 4.7 depicts the number of clusters obtained with co-clustering and those
obtained with modularity-based clustering on both ends of the hierarchy it
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(a) 15 trajectory clusters and 15 segment
clusters

(b) 30 trajectory clusters and 29 segment
clusters

(c) 60 trajectory clusters and 52 segment
clusters

(d) Optimal level (113 trajectory clusters and
80 segment clusters)

Figure 4.15 – Mutual information matrices of the co-clusters discovered in
dataset 1 at various resolutions.

produces. The evolution of the number of discovered clusters w.r.t. the level in
the hierarchy in the case of modularity-based clustering is further detailed in
Figure 4.18 (for the trajectory case) and Figure 4.19 (for the road segment case).
The behavior of both approaches w.r.t. trajectory clustering is coherent as far
as the number of discovered clusters is concerned. The two approaches behave
differently when it comes to segment clusters. MODL co-clustering generates a
low number of segment clusters. Modularity-based clustering, however, quickly
degenerates and produces a much higher number of clusters as can be witnessed
from Figure 4.19. This is due to the behavior we described in Section 4.3.3.1:
once significant segment clusters are identified, the approach starts refining
them by ejecting their peripheral segments and isolating them into very small
clusters.
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(a) Trajectory cluster 1
(66 trajectories)

(b) Trajectory cluster 2
(42 trajectories)

(c) Trajectory cluster 3
(24 trajectories)

(d) Trajectory cluster 4
(11 trajectories)

(e) Trajectory cluster 5
(13 trajectories)

Figure 4.16 – Example of trajectory cluster refinement by successive zooms
and expansions of the cluster hierarchy.
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… 

 

 

 

 

Cluster 4 (11 trajectories) 

Cluster 5 (13 trajectories) 

 

 

Cluster 2 (42 trajectories) 

 

 

 

 

Cluster 3 (24 trajectories) 

 

 

Cluster 1 (66 trajectories) 

Figure 4.17 – Hierarchy of the trajectory clusters depicted in Figure 4.16.

Table 4.7 – Number of clusters retrieved by the different approaches on the
trajectory datasets.

Modularity-based clustering
Co-Clustering Traj. clusters Seg. clusters

Dataset Traj. clusters Seg. clusters High.level Low. level High. level Low. level
1 113 80 10 105 15 1142
2 122 79 10 106 18 1196
3 128 76 11 129 15 1154
4 119 74 9 99 14 1154
5 122 72 10 98 19 1153
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Figure 4.18 – Number of trajectory clusters vs. the level in the hierarchy
discovered by modularity-based clustering.
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Figure 4.19 – Number of road segment clusters vs. the level in the hierarchy
discovered by modularity-based clustering.

4.4.3.2 Comparison of the Clustering Quality

Since the number of trajectory clusters in the most refined level of the hierarchy
of clusters produced by the modularity-based approach is close to the one
produced by co-clustering, we choose to compare both approaches w.r.t. this
level. Table 4.8 charts the values of the sum of average intra-cluster over-
laps, Normalized Mutual Information (NMI), and Adjusted Rand Index (ARI)
achieved by both approaches on each of the datasets.

Modularity-based trajectory clustering outperformed MODL co-clustering
for the sum of average intra-cluster overlaps which indicates that, even while
producing a slightly lower number of trajectory clusters, the latter are more
compact and present more overlapping trajectories within the same clusters. We
believe that this is mainly caused by the weighting technique we adopted while
conducting simple trajectory clustering: in the modularity-based approach, the
segments were weighted depending on their contribution to each trajectory and
their global relevance w.r.t. the entirety of the dataset, which helped guide
the clustering process. In MODL co-clustering, all road segments are treated
equally without taking these factors in consideration.

For all the datasets, cross-comparing trajectory partitions produced by both
approaches resulted in high values for the normalized mutual information (with
an average of 0.74). This indicates that both partitions are highly correlated and
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overlap considerably. The Adjusted Rand Index is a more precise indicator since
it penalizes the differences in cluster memberships, cluster sizes, and number of
clusters and since it’s adjusted-for-chance. The results show low Adjusted Rand
Index values (averaging only 0.27), which highlights a strong disagreement in
cluster composition on both sides and indicates that the clustering is conducted
very differently from one approach to the other.

Table 4.8 – Trajectory clusters’ quality for modularity-based clustering and
co-clustering with MODL. The number of trajectory clusters considered for
each approach is specified in parentheses under their respective intra-cluster
overlaps columns.

Intra-cluster overlaps
Dataset Modularity Co-clustering NMI ARI

1 371.75 (105) 352.35 (113) 0.74 0.29
2 368.74 (106) 359.99 (122) 0.73 0.25
3 412.41 (129) 368.13 (128) 0.76 0.27
4 361.38 (99) 354.65 (119) 0.73 0.25
5 349.31 (98) 354.24 (122) 0.74 0.29

We do the same comparison for the road segment partitions. However, since
the number of clusters discovered in the case of modularity-based clustering
increases considerably after its second level of hierarchy we select this level as
the basis of comparison. This decision is further backed up by the fact that
the number of clusters in this level is close to the number of segment clusters
produced by the co-clustering technique.

The results (average sum of intra-cluster overlaps, NMI, and ARI) are shown
in Table 4.9. The same observations that we made in the case of trajectory
clusters still hold true here. Modularity-based clustering of road segments
yields clusters that are more compact than their co-clustering counterparts.
The high values of NMI and low values of ARI across all datasets allege that
while the partitions are correlated, they show a considerable difference in cluster
memberships.

The results we presented are somewhat expected. When conducting trajec-
tory clustering separately, the modularity-based approach (Section 3.3) focuses
only on the similarities between trajectories. The approach is further guided
by the weighting technique (Section 3.3.1) that indicates irrelevant segments
to neglect while assessing trajectory similarities. Analogically, our modularity-
based segment clustering (Section 3.4) concentrates solely on the similarity
relationships between road segments. In other words, these approaches try, by
design, to maximize the overlaps within the produced clusters. In contrast, the
co-clustering approach tries to characterize the interactions between trajecto-
ries and road segments. Consequently, it tries to optimize a totally different
criterion that does not necessarily lead to compact clusters on each side.
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Table 4.9 – Road segment clusters’ quality for modularity-based clustering and
co-clustering with MODL.

Intra-cluster overlaps
Dataset Modularity Co-clustering NMI ARI

1 646.23 (106) 474.75 (80) 0.71 0.36
2 645.83 (106) 460.93 (79) 0.71 0.35
3 621.18 (101) 452.59 (76) 0.70 0.35
4 605.23 (101) 424.59 (74) 0.69 0.33
5 662.82 (110) 424.44 (72) 0.71 0.37

The work we described here is a work in progress and more experiments
(probably involving varying the co-clustering algorithm) are needed to draw
better-grounded conclusions.

4.5 Conclusions

In this chapter, we presented our last contribution which consisted in sketching
an approach to co-clustering network-constrained trajectory data. By extending
our graph modeling paradigm, we represented interactions between trajectories
and the road segments they visited as a bipartite graph. We then used a
blockmodeling technique to co-cluster the adjacency matrix of this bipartite
graph and simultaneously extract clusters of trajectories and clusters of segments
that highly interact. Through a case study, we illustrated how this approach can
be used to characterize traffic in road networks and through our experimental
study, we compared results with the approaches we already defined in Chapter 3.

We emphasize that the work we presented here is still in progress. In future
work, we intend to conduct more extensive experimentations in order to study
effects of changing the co-clustering algorithm and consider the application of
weighting techniques to the edges of our bipartite graph structure.

We conclude this thesis in the following chapter where we will summarize
the contributions of this work and give a brief glimpse of perspectives that we
deem interesting w.r.t. our approaches and to the domain in general.
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Chapter 5

General Conclusions

In this final chapter, we revisit the main contributions of the work presented in
this thesis and discuss some prospects on possible extensions and on moving
object trajectory analysis in general.

5.1 Contributions and Main Results

In this thesis, we addressed two main problems: (i) sampling moving object
trajectory data streams, and (ii) clustering trajectory data in road network
environments.

Sampling trajectories must be handled intelligently in order to reduce the
size of the data while still preserving the maximum of their features and
spatiotemporal characteristics. This problem comes with extra challenges in
streaming environments since the proposed techniques must be capable of
handling the data on-the-fly and have a sufficiently low complexity in order
to handle the data load efficiently. If conducted efficiently and effectively,
sampling can help alleviate storage and calculation time requirements.

Clustering is an unsupervised learning task often used to discover the pres-
ence of groups of observations that behaved similarly within a given population.
Application of clustering on trajectory data in road network environments
can lead to the extraction of useful knowledge about mobility trends and the
characterization of traffic in the network. One of the main challenges of this
problem is to incorporate the constraints of the underlying road network in the
similarity assessment and the clustering process.

Our contributions and main results w.r.t. these problems are summarized
in what follows.

STSS, a Lightweight Algorithm for Sampling Trajectory

Streams with Deterministic Error Bounds

To address the first problem, we proposed the SpatioTemporal Stream Sampling
(STSS) algorithm, a lightweight trajectory sampling algorithm based on linear
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prediction (Chapter 2). The main idea behind STSS is to try to capture the
moving object’s current behavior and use it for predicting its forthcoming
positions. As long as these positions adhere to the registered trend, they can
be discarded without considerably altering the features of the original data
(Section 2.3.1).

Besides from benefiting from a low time complexity, the algorithm also
guarantees an upper bound for the errors resulting from the lossy compression
process (Section 2.3.2). Moreover, this error bound is directly controllable by
the user through the only parameter required by the algorithm. All of the
above qualities make STSS suitable for use in streaming environments where it
can serve not only to summarize and keep a compressed history of incoming
trajectories but also as a load shedding mechanism to help the system deal
with the high arrival rate of the data. Alternatively, STSS can be deployed
directly on the moving objects’ side in order to alleviate the charge of the
central system.

Through experimental results, we showed that STSS achieves decent re-
sults but is slightly outperformed by higher complexity trajectory sampling
algorithms like TD-TR and OPW-TR (Section 2.4).

Clustering Network-Constrained Trajectories Using a

Graph-Based Approach

For the second problem, we started by formalizing the network-constrained
trajectory clustering problem in which we are interested in partitioning trajec-
tories evolving in a road network environment into disjoint groups that behaved
similarly (Section 3.1).

The first challenge was to define a suitable similarity measure for this
particular context. Noticing the similarity between symbolically-represented
trajectories and the model used for representing documents as bags-of-words
in information retrieval, we defined our similarity based on the use of a cosine
similarity in combination with a modified version of tf-idf weighting. Our
measure compares trajectories based not only on their shared road segments
but also based on the relevance of the latter w.r.t. the analyzed dataset in its
entirety (Section 3.3.1).

Representing interactions and similarities between entities using graphs is a
very interesting idea adopted in approaches such as spectral clustering [100]
and successfully tested in the case of trajectories with no motion restrictions
in [59]. We borrowed this paradigm to define a graph model for depicting the
similarities of network-constrained trajectories (Section 3.3.2). By doing so,
we transposed the network-constrained trajectory clustering problem into a
graph clustering one. We used a non-parametric modularity-based community
detection algorithm to conduct the partitioning of the trajectory similarity
graph (Section 3.3.3). The result of the clustering process is a hierarchy of
nested trajectory clusters that offer the possibility of exploring the data with
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successive layers of refinement. The user of the approach can start with a
limited set of coarse trajectory clusters to grasp a quick and general knowledge
of the detected trends in the data then proceed to expanding clusters of interest
in order to reveal more polished and precise patterns.

We also demonstrated some of the attractive features of this approach
through a comprehensive case study (Section 3.3.4.2), evaluated its performance,
and compared it with a similar trajectory clustering approach (Section 3.3.5).

Extending the Graph-Based Approach to Road Segment

Clustering

By studying the network-constrained trajectory clustering problem, it became
clear that road segments are of equal importance as trajectories. Therefore,
we also defined the road segment clustering problem in which we desire to
detect groups of road segments that are frequently visited together by the same
trajectories (Section 3.1). Our intuition behind this is that such clusters can
help predict the spreading of traffic jams, detect the presence of hub structures
in the road network, etc.

In order to solve this problem, we proceeded by analogy to our trajectory
clustering approach (Section 3.4). We used a graph to depict interactions
between road segments and used the same clustering algorithm to discover
the road segment clusters (Section 3.4.2). We also observed that such clusters
are hard to interpret directly and proposed to overcome this shortcoming by
analyzing the segment clusters in the light of trajectory clusters (Section 3.4.3.1).

Interestingly, our experimental results showed that modularity-based clus-
tering is probably not the best choice to cluster the road segment similarity
graph as it was outperformed by spectral clustering (Section 3.4.4).

Our main objective in the previous two contributions was to prove the
interestingness of adopting a graph-based approach to clustering network-
constrained trajectory data. Consequently, we consider that the modularity-
based algorithm we used in our clustering phase can potentially be interchanged
with other graph clustering approaches (we re-discuss this point in the Future
Work and Open Issues section of this chapter).

Simultaneous Co-Clustering of Trajectories and Road

Segments

The final contribution reported in this thesis is the result of a collaboration
with Romain Guigourès and Marc Boullé from Orange Labs. It consists in an
approach to simultaneously cluster trajectories and road segments to produce
co-clusters involving both entities (Chapter 4). This work was triggered by
the observation of the duality between the original trajectory clustering and
segment clustering problems we defined earlier. In fact, partitioning trajectories
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implicitly induces a road segment partition and, vice versa, partitioning road
segments induces a trajectory partition.

Instead of using two separate similarity graphs, we proposed a bipartite
graph representation of interactions between trajectories and road segments
(Section 4.2). We used a blockmodeling method to co-cluster the adjacency
matrix of this bipartite graph (Section 4.2.2).

We also illustrated how the approach can be used concretely to study in-
teractions between trajectories and road segments, and how the traffic can be
characterized accordingly (Section 4.3). Through our experimental study (Sec-
tion 4.4.2), we compared clusters produced by co-clustering to those obtained
by the univariate approaches we introduced in Chapter 3. This experimental
study also revealed that the cluster structures discovered by both approaches
are quite different from one another which is mainly due to the fundamental
difference between their functioning.

5.2 Future Work and Open Issues

We now discuss possible extensions and open issues that we would like to
address in future work.

Multi-Trajectory Compression Techniques

In Chapter 2 we focused on sampling trajectories on an individual basis (each
trajectory is sampled separately). It would be interesting to investigate multi-
trajectory compression in which the incoming trajectories are cross-compared
in order to detect redundancies or nearby moving objects and take advantage
of this information to reduce the size of the data (for example, when several
moving objects are close at a given time, only one position is kept to summarize
their whereabouts). Of course, such techniques should preferably guarantee
deterministic bounds for the resulting compression errors and must be efficient
if they are conceived with streaming environments in mind.

Experimentation with Synthetic Datasets Generated

Using More Sophisticated Models

It is worth noting that experimenting with synthetic data is of particular
interest in road planning. In fact, rather than proceeding by trial and error,
the planned road network’s graph can be used to generate trajectories to which
clustering can be applied in order to reveal the presence of potential problems
(such as congestion zones). The results can then be used to alter the initial
plan and re-test it before construction even begins.

The synthetic datasets we used to test our approaches were generated using
either the Brinkhoff generator [6] or our trajectory cluster generation strategy
(described in Chapter 1) both of which use rather simple movement models.
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In future work, we will consider the use of the SUMO [20] simulator since it
seems to implement more realistic motion models.

Experimentation on Real Data

One of the obvious extensions to our work on clustering trajectory data is
to test and evaluate the performances of our propositions on real datasets.
Although not reported here, an attempt was made in this direction during the
course of this work. We retrieved the Beijing taxis dataset1 proposed as part
of the GeoLife project. We then implemented the map-matching algorithm
described in [9] and tried to match the data to a graph representation of the
Beijing road network that we extracted from OpenStreetMap data. However,
this attempt resulted in poorly-matched trajectories and had to be dropped.

Studying the Effects of Varying the Clustering

Algorithms

The main contribution of this thesis is on the methodological level since we tried
to show the interestingness of studying various network-constrained trajectory
data clustering problems under a graph perspective. We chose modularity-based
clustering for the approaches presented in Chapter 3 based on its popularity and
the good results it yields in practice [98]. We chose the MODL blockmodeling
approach in Chapter 4 because it was applied successfully in the context of
spatiotemporal data [129] and to take advantage of the visual aid provided by
the Khiops tool [131].

In the future, we intend to experiment with other graph clustering and
co-clustering algorithms in order to test their effect on the discovered parti-
tions. Potential candidates in the case of co-clustering include the approaches
presented in [118, 117] since they were originally proposed in the context of
word/document clustering which bears close resemblances to trajectory/segment
clustering.

Integration of Time in the Clustering Process

Our clustering approaches are solely based on the spatial features of the analyzed
trajectories. Consequently, one possible extension is to include support of the
temporal dimension. In the case of approaches presented in Chapter 3, this
can be undertaken by redefining the similarity measures in order to include
time. This was attempted in [71, 21] where the spatial similarity and temporal
similarity between two trajectories are calculated independently then combined
together into one spatiotemporal similarity (using a weighted sum or a product).

1The dataset can be found here: http://research.microsoft.com/en-us/downloads/
b16d359d-d164-469e-9fd4-daa38f2b2e13/default.aspx.
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The key difficulty in such approaches is to find a good accord between the
spatial and the temporal part of the similarity measure.

We believe that a better approach to including time in this context is by
following on the idea presented in [11] in which the total lifespan of the analyzed
trajectory dataset is divided into periods, and clustering is conducted on each
period separately. This idea is in fact particularly attractive for traffic analysis
since some periods (e.g. early morning when people commute to work and late
evening when they commute back home) are more important than others.

In the context of co-clustering, including time can be handled quite dif-
ferently. In fact, time can be simply integrated as an additional variable
(besides trajectories and road segments) and tri-clustering (using MODL or
other alternatives) can be applied similarly to the work described in [129].

Dynamic Road Network Models

The graph model used to schematize the road network in most existing work
(including ours) is quite simplistic. For instance, it supposes that the road
network is static and does not change over the course of time. In reality, this
is hardly the case. As a counterexample, reversible direction lanes (which are
lanes that can be traveled in one direction or the other depending on certain
conditions) are often used to regulate traffic during rush hours. Granted, such
lanes can be represented by two separate edges in the road network’s graph
but it might be interesting to investigate alternative models, probably using
dynamically evolving graphs, where the road network’s graph evolves in time
(as to depict certain roads being temporarily closed or changes in the travel
direction on some portions, etc.). It might also be interesting to study the
impact of such dynamic models on the clustering process and if they can be
directly integrated in it.

Evaluation and Comparison of Trajectory Clustering

Algorithms

One of the challenges encountered during this work was to come up with a
way to evaluate the clustering quality of our approaches and compare them to
existing methods. In fact, in a considerable number of existing approaches, the
authors start by presenting a baseline naive approach then present enhancements
(consisting mainly in the use of heuristics) to reduce their computational cost.
The experimental studies presented in such cases mainly revolved around this
aspect and the evaluation of the quality of the produced clusters is rarely
addressed. Moreover, existing methods are rarely cross-compared mainly due
to the fact that they are based on different formulations of a problem that is
fundamentally the same.

The sum of average intra-cluster overlaps we defined for both trajectory
clusters and segment clusters (which are inspired by the traditional intra-
clusters inertia in the clustering of static data) were an attempt that we made
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5.2. Future Work and Open Issues

in this direction. We believe that this area must receive more attention in the
future in order to come up with robust criteria that allow objective evaluation
of trajectory clustering algorithms.

Predicting Social Relationships Using Trajectory Data

Analysis

Novel location-based services and applications are being invented every day.
Today, almost every single social network offers its users the possibility to share
their position with their friends and acquaintances. Some social networks, such
as Foursquare, are even solely based on location-sharing. The mechanism at
hand here is quite simple: you have an existing list of friends that you already
know and with whom you share information about your whereabouts (if you
want to, that is).

Recently, Niantic Labs (an internal startup within Google) launched Ingress
[3], a location-based augmented reality massively multiplayer online game. In
Ingress, two factions (the Enlightened and the Resistance) compete to capture
portals and link them to form control fields (basically, a portal corresponds to
a point of interest, generally a statue, a well-known monument, etc.). Players
must be within immediate physical proximity of a given portal in order to
interact with it which makes the game location-oriented. When the game was
launched, people started playing individually by exploring their district and
maintaining their own “turf.” However, the game’s logic quickly pushed players
into playing as groups and moving together for extended periods. Over the
course of time, perfect strangers socialized and started forming friendships
(and even couples) and sharing other social activities that are unrelated to the
game. Some players that interacted heavily with others even gained a certain
notoriety and became local leaders of their factions. In other words, social
relationships in this case were formed based on sharing the same location-based
activity and moving together (as clusters) frequently.

To the data analyst, this is an opportunity to define a whole set of research
problems at the junction of sociology and trajectory data analysis. For instance,
if we suppose that the trajectories of Ingress players can be collected (either
as complete GPS logs or simply as interactions with portals), can we predict
the formation of social relationships based on mining this data and discovering
groups of individuals that interacted with the same portals at very close
intervals? Are we able to tell if a given player can potentially become the
leader of his faction at the local scale by detecting that he heavily interacts
with several groups of other members of the same faction? These are questions
among many others that may arise in the light of this new tendency.
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Analyse et fouille de données de trajectoires d’objets mobiles

Mohamed Khalil EL MAHRSI

RÉSUMÉ : Dans cette thèse, nous explorons deux problèmes de recherche liés à la gestion et à la fouille de données de
trajectoires d’objets mobiles.

Dans un premier temps, nous étudions l’échantillonnage de flux de trajectoires. Les appareils de géo-localisation modernes sont
capables d’enregistrer et de transmettre leurs coordonnées géographiques à un taux très élevé. Garder l’intégralité des trajectoires
capturées grâce à ces terminaux peut s’avérer coûteux tant en espace de stockage qu’en temps de calcul. L’élaboration de techniques
d’échantillonnage adaptées devient alors primordiale afin de réduire la volumétrie des données en supprimant certaines positions
(jugées inutiles ou redondantes) tout en veillant à préserver le maximum des caractéristiques spatiotemporelles des trajectoires
originales. Dans le contexte de flux de données, ces techniques doivent en plus être exécutées « à la volée » et s’adapter au caractère
à la fois continu et éphémère des données. Afin de répondre à ces besoins, nous proposons l’algorithme STSS (Spatiotemporal

Stream Sampling). STSS bénéficie d’une faible complexité temporelle et garantit une borne supérieure pour les erreurs commises
lors de l’échantillonnage. Nous présentons également une étude expérimentale à travers laquelle nous montrons les performances
de notre proposition tout en la comparant à d’autres approches proposées dans la littérature.

La deuxième problématique étudiée dans le cadre de ce travail est celle de la classification non supervisée (ou clustering) de
trajectoires contraintes par un réseau routier. La majorité des travaux traitant du clustering de trajectoires se sont intéressés au
cas où ces dernières évoluent librement dans un espace Euclidien. Ces travaux n’ont donc pas pris en considération l’éventuelle
présence d’un réseau sous-jacent au mouvement, dont les contraintes jouent un rôle primordial dans l’évaluation de la similarité entre
trajectoires. Nous proposons trois approches pour traiter ce cas. La première approche se focalise sur la découverte de groupes de
trajectoires ayant parcouru les mêmes parties du réseau routier. La deuxième approche vise à grouper des segments routiers visités
très fréquemment par les mêmes trajectoires. Quant à la troisième approche, elle combine les deux aspects afin d’effectuer un co-
clustering simultané des trajectoires et des segments routiers. Nous illustrons nos approches à travers divers cas d’étude afin de
démontrer comment elles peuvent servir à caractériser le trafic routier et les dynamiques de mouvement dans le réseau routier. Nous
réalisons des études expérimentales afin d’évaluer les performances de nos propositions.

MOTS-CLÉS : objets mobiles, trajectoires, réseau routier, échantillonnage, spatiotemporel, flux de données, similarité, classifi-
cation non supervisée.

ABSTRACT: In this thesis, we explore two problems related to managing and mining moving object trajectories.
First, we study the problem of sampling trajectory data streams. Modern location-aware devices are capable of

capturing and transmitting their position at very high rates. Storing the entirety of the trajectories provided by such
devices can entail severe storage and processing overheads. Therefore, adapted sampling techniques are necessary
in order to discard unneeded positions and reduce the size of the trajectories while still preserving their key spa-
tiotemporal features. In streaming environments, this process needs to be conducted “on-the-fly” since the data are
transient and arrive continuously. To this end, we introduce a new sampling algorithm called Spatiotemporal Stream
Sampling (STSS). This algorithm is computationally-efficient and guarantees an upper bound for the approximation
error introduced during the sampling process. Experimental results show that STSS achieves good performances and
can compete with more sophisticated and costly approaches.

The second problem we study is clustering trajectory data in road network environments. Most of prior work
assumed that moving objects can move freely in an Euclidean space and did not consider the presence of an underlying
road network and its influence on evaluating the similarity between trajectories. We present three approaches to
clustering such data: the first approach discovers clusters of trajectories that traveled along the same parts of the road
network; the second approach is segment-oriented and aims to group together road segments based on trajectories
that they have in common; the third approach combines both aspects and simultaneously clusters trajectories and road
segments. Through extensive case studies, we show how these approaches can be used to reveal useful knowledge
about flow dynamics and characterize traffic in road networks. We also provide experimental results where we evaluate
the performances of our propositions.

KEY-WORDS: moving objects, trajectories, road network, spatiotemporal, sampling, data streams, similarity,
clustering.
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