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The Traffic Congestion Problem

Traffic congestion and road jams
Frustrating travel delays
Economical losses
Environmental damage

Countermeasures are needed
Infrastructure improvement
Prohibiting/favoring specific routes

Based on the analysis of drivers’
behavior
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How is Road Traffic Monitored?

Traffic counters/recorders
Expensive
Partially deployed
Count traffic on their local section

Consequences:
Incomplete vision of traffic
A valuable information is missed: vehicles’ identities
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Main Motivation: Trajectory Analysis as a Complement?

Why not collect the trajectories of vehicles moving on the road
network...

Many fleet management companies already do this
Commuters can contribute their trajectories
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Main Motivation: Trajectory Analysis as a Complement?

... and analyze them to discover
Groups of vehicles that followed the same routes
Groups of roads that are often traveled together during a
considerable number of commutes
Etc.
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But...

Modern devices can sample their positions at high rates
At such rates, the data are inherently redundant

Transmitting and storing the entirety of the trajectories are
impractical

Important space requirements
Computational overheads

We have to intelligently reduce the size of the data
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Research Problems Explored in this Thesis

Main objective:

Clustering Trajectory Data in Road Network Environments

How to discover meaningful groupings of “similar” trajectories and
road segments in the specific context of road networks?

But first, a small detour:

Sampling Trajectory Data Streams

How to reduce the size of trajectory data streams while trying to
preserve the most of their spatiotemporal features?
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Anatomy of a Trajectory Data Stream

(Raw) Trajectory

A trajectory T is a series of discrete, timestamped positions:

T = 〈id , {P1(t1, x1, y1),P2(t2, x2, y2), ...,Pi (ti , xi , yi ), ...}〉

id : identifier
ti : timestamp (time of capture)
(xi , yi ): coordinates (in the Euclidean space)

Interpolation is used to approximate missing positions

P1(t1, x1, y1) 

P2(t2, x2, y2) 
P3(t3, x3, y3) 

P4(t4, x4, y4) 

P5(t5, x5, y5) 

P6(t6, x6, y6) 

P7(t7, x7, y7) 

Figure : Illustration of a raw trajectory
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Problem Formulation, Objectives, and Constraints

Compressed (Sampled) Trajectory

Given a trajectory T , a compressed trajectory TC of T is a subset
of the original points forming T , such as:

TC covers T from start to finish
∀Pi ∈ TC,Pi ∈ T

Objectives
Reduce data size (obviously)
Small, preferably configurable approximation errors

Constraints
On-the-fly processing
Low computational complexity
Low in-memory complexity
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Previous Work

Classic sampling techniques are inadequate
They overlook the spatiotemporal properties of the trajectories

Two types of trajectory oriented sampling techniques
Configurable approximation errors but high complexity
Low complexity but no guarantees for approximation errors

To the best of our knowledge: no approaches combining low
complexity and configurable approximation errors
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The Spatiotemporal Stream Sampling (STSS) Algorithm
[El Mahrsi et al., 2010]

Intuition: use linear prediction to guess forthcoming positions
The accuracy of the prediction (w.r.t. a threshold dThres)
guides the sampling process

Pi(ti,xi,yi) Pj(tj,xj,yj) 

Pk(tk,xk,yk) 

Pk (tk,xk ,yk ) 

Distance(Pk, Pk ) 

Figure : Linear prediction of incoming positions
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STSS: How it Works

P1 

Legend:           real trajectory            sampled trajectory            prediction 

Figure : Illustration of the functioning of the STSS algorithm
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STSS: How it Works
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Figure : Illustration of the functioning of the STSS algorithm
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STSS: How it Works
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STSS: How it Works
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Figure : Illustration of the functioning of the STSS algorithm
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STSS: How it Works
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STSS: How it Works
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Figure : Illustration of the functioning of the STSS algorithm
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STSS in Action
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(a) Original trajectory
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(b) Tolerated error: 10m
(117 points|comp. ratio: 1.9:1)
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(c) Tolerated error: 50m
(72 points|comp. ratio: 3.2:1)
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(d) Tolerated error: 100m
(49 points|comp. ratio: 4.6:1)
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(e) Tolerated error: 150m
(40 points|comp. ratio: 5.7:1)
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(f) Tolerated error: 200m
(32 points|comp. ratio: 7.1:1)

Figure : Example of a trajectory sampled with different error tolerances
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STSS: Properties

Single-pass, on-the-fly algorithm
Linear computational complexity
Constant in-memory complexity
Easy to configure (only one parameter)
Guaranteed upper bound for compression errors
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Experimental Results: Comparison with TD-TR and
OPW-TR [Meratnia and de By, 2004]

Dataset
5263 trajectories
367691 data points (1 position/15 sec)

The competition
TD-TR: offline, recursive partitioning, quadratic complexity
OPW-TR: on-the-fly, opening window, quadratic complexity

Evaluation criteria
Percentage of retained data = size of the output data

size of the input data
Approximation error (distance between real points and their
approximation)
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Experimental Results: Percentage of Retained Data
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Figure : Percentages of retained data achieved by STSS, TD-TR and
OPW-TR for different error tolerances
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Experimental Results: Approximation Errors

Figure : Distribution of the approximation errors resulting from applying
STSS, TD-TR and OPW-TR for different error tolerances
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Existing Work on Trajectory Clustering

Two main research areas
Distance and similarity measures
Clustering algorithms

In both areas
For trajectories moving freely in a Euclidean space
For network-constrained trajectories

Observations on existing trajectory clustering techniques
Density-based clustering
Flat clustering
A promising new trend: graph-based analysis [Guo et al., 2010]

T1 

T2 

T3 

Figure : Effect of the underlying network on trajectory similarity
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Data Representation: Road Network

Road Network
The road network is represented as a directed graph G = (V,S)

Vertices (V): intersections and terminal points
Edges (S): road segments (with travel direction)
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Figure : A road network and its graph representation
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Data Representation: Trajectories

(Network-Constrained) Trajectory

A trajectory T is represented symbolically, as the sequence of
traveled road segments:

T = 〈id , {s1, s2, ..., sl}〉

∀1 ≤ i < l , si and si+1 are connected

s1 

s2 s3 

s4 s5 

 

s6 

s7 s8 s9 

s10 s11 
s12 s13 

s14 

T1 

T2 

T3 

T1 = {s1, s7, s11, s12, s13} 

T2 = {s1, s4, s3} 

T3 = {s10, s11, s8, s5, s6} 

Figure : Example of three trajectories moving on a road network
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Measuring the Similarity Between Trajectories
[El Mahrsi and Rossi, 2012a, El Mahrsi and Rossi, 2012c]

Cosine similarity is used to measure the resemblance between
trajectories

Similarity(Ti ,Tj) =
Ti · Tj

||Ti || ||Tj ||
=

∑
s∈S ωs,Ti × ωs,Tj√∑

s∈S ω
2
s,Ti
×
√∑

s∈S ω
2
s,Tj

Road segments are weighted based on:
Their spatial length
Their frequency in the set of trajectories T

ωs,T =
ns,T × length(s)∑

s′∈T ns′,T × length(s ′)
× log

|T |
|{Ti : s ∈ Ti}|
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Trajectory Similarity Graph

A weighted graph GT (T , ET ,WT ) is used to model
relationships between trajectories
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Figure : Example of a trajectory similarity graph
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Clustering the Similarity Graph

We used an implementation of the algorithm in
[Noack and Rotta, 2009]

Based on modularity optimization [Newman, 2006]
Greedy hierarchical agglomerative clustering
Combined with multi-level refinement

Input: trajectory similarity graph
Output: a hierarchy of nested vertex (trajectory) clusters
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Case Study: The Data

(a) 14 trajectories (b) 19 trajectories (c) 20 trajectories

(d) 20 trajectories (e) 12 trajectories

Figure : The case study dataset is formed of 85 artificial trajectories
divided into 5 pre-established and interacting clusters
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Case Study: Hierarchy of Trajectory Clusters

Dataset 
(85 trajectories) 

Cluster 1 
(39 trajectories) 

Cluster 2 
(14 trajectories) 

Cluster 3 
(32 trajectories) 

Cluster 4 
(12 trajectories) 

Cluster 5 
(19 trajectories) 

Cluster 6 
(8 trajectories) 

Cluster 7 
(7 trajectories) 

Cluster 8 
(3 trajectories) 

Cluster 9 
(4 trajectories) 

Cluster 10 
(12 trajectories) 

Cluster 11 
(20 trajectories) 

Cluster 12 
(3 trajectories) 

Cluster 13 
(9 trajectories) 

Figure : Hierarchy of trajectory clusters discovered through graph-based
clustering
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Case Study: High Level Trajectory Clusters

(a) Cluster 1
(39 trajectories)

(b) Cluster 2
(14 trajectories)

(c) Cluster 3
(32 trajectories)

Figure : Trajectory clusters in the highest level of hierarchy
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Case Study: Refinement of Trajectory Clusters

(a) Cluster 1
(39 trajectories)

(b) Cluster 4
(12 trajectories)

(c) Cluster 5
(19 trajectories)

(d) Cluster 6
(8 trajectories)

Figure : Refinement of cluster 1 into its three sub-clusters
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Comparison with NNCluster [Roh and Hwang, 2010]

Experimental setting
9 artificial datasets containing labeled clusters
Clusters can present interactions with each other

Evaluation based on external criteria
Adjusted Rand Index [Hubert and Arabie, 1985]
Purity and entropy [Zhao and Karypis, 2002]

Table : Characteristics of the labeled datasets
Dataset Clusters Trajectories Road network

1 9 158 Oldenburg
2 10 163 Oldenburg
3 11 141 Oldenburg
4 6 86 Oldenburg
5 6 91 Oldenburg
6 6 110 Oldenburg
7 12 205 San Joaquin
8 11 190 San Joaquin
9 12 203 San Joaquin
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Comparison with NNCluster [Roh and Hwang, 2010]

Table : Adjusted Rand Index
Discovered Adjusted Rand Index

Dataset clusters NNCluster Baseline Modularity
1 9 (9) 0.902 1
2 10 (10) 0.881 1
3 11 (11) 0.764 0.873
4 6 (6) 1 1
5 6 (6) 1 1
6 6 (6) 1 1
7 14 (12) 0.618 0.961
8 12 (11) 0.921 0.971
9 10 (12) 0.752 0.889

Table : Purity and entropy
Discovered Purity Entropy

Dataset clusters NNCluster Baseline Modularity NNCluster Baseline Modularity
1 9 (9) 0.924 1 0.062 0
2 10 (10) 0.902 1 0.059 0
3 11 (11) 0.823 0.915 0.113 0.064
4 6 (6) 1 1 0 0
5 6 (6) 1 1 0 0
6 6 (6) 1 1 0 0
7 14 (12) 0.712 1 0.185 0
8 12 (11) 0.942 1 0.038 0
9 10 (12) 0.778 0.872 0.136 0.075
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Extension to Road Segment Clustering

Clustering road segments is equally important
Motivations:

Characterize the roles they play in the road network
Predict how traffic congestion propagates

(a) Cluster 4
(12 trajectories)

(b) Cluster 5
(19 trajectories)

(c) Cluster 6
(8 trajectories)

Figure : Trajectory clusters are clearly “supported” by groups of road
segments
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Road Segment Clustering
[El Mahrsi and Rossi, 2012b, El Mahrsi and Rossi, 2013]

We proceed by analogy to the trajectory case
Cosine similarity is used to measure segment resemblances
A weighted graph GS(S, ES ,WS) depicts segment interactions
The same clustering algorithm is used to cluster the graph
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Figure : Example of a road segment similarity graph
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How to Interpret Road Segment Clusters?

We did discover clusters, but...

(a) (b) (c)

(d) (e) (f)

Figure : Examples of road segment clusters discovered through
graph-based segment clustering

Graph-Based Clustering of Network-Constrained Trajectory Data 31 / 41



Observations

Duality between trajectory clustering and segment clustering
Road segment clusters are hard to interpret “on their own”

Due to lack of context
Easier to interpret in the light of trajectory clusters
Left to the initiative of the user

Instead of considering trajectories and road segments
separately, consider clustering both at the same time
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Co-Clustering Network-Constrained Trajectory Data
Joint work w/ Romain Guigourès and Marc Boullé (Orange Labs) [El Mahrsi et al., 2013]

Objective: cluster trajectories and road segments
simultaneously
Equivalent to considering a bipartite graph G(T ,S, E)
representing interactions between trajectories and segments
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Figure : Bipartite graph of interactions between trajectories and road
segments
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MODL Co-Clustering [Boullé, 2011]

MODL co-clustering is applied to the adjacency matrix of the
bipartite graph

Based on Bayesian model selection with a hierarchical prior
Rearrange rows and columns into homogeneously dense blocks

Output: a set of co-clusters, each is the intersection of
A trajectory cluster
A road segment cluster
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Back to the Case Study

Trajectories

S
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(a) Modularity-based approach

Trajectories
S

eg
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en
ts

(b) Co-clustering approach

Figure : Adjacency matrix of the bipartite graph, rearranged based on the
clusters discovered by both approaches
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Characterizing Traffic Using Trajectory/Segment Co-Clusters

We use the discovered co-clusters’ contribution to mutual
information to guide the interpretation

Figure : Contribution to mutual information of the co-clusters discovered
in the case study dataset. Trajectory clusters (7 clusters) are depicted on
the rows and road segment clusters (12 clusters) on the columns
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Characterizing Traffic: Peripheral Road Segments

(a) 34 segments (b) 40 segments (c) 77 segments

Figure : Examples of “secondary” road segment clusters leading to
peripheral areas of the road network and visited exclusively by single
groups of trajectories
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Characterizing Traffic: Hub Road Segments

(a) Hub segment cluster
(11 segments)

(b) Trajectory cluster
(20 trajectories)

(c) Trajectory cluster
(12 trajectories)

Figure : A hub road segment traveled by two different trajectory clusters
with different departures and destinations
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Main Contributions

STSS, a fast on-the-fly algorithm for sampling trajectory
streams with configurable approximation errors
[El Mahrsi et al., 2010]

Graph-based approaches to clustering trajectories in road
networks
[El Mahrsi and Rossi, 2012c, El Mahrsi and Rossi, 2012a,

El Mahrsi and Rossi, 2012b, El Mahrsi and Rossi, 2013]

An approach to simultaneous co-clustering of trajectories and
road segments
[El Mahrsi et al., 2013]
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Future Work and Open Issues: Trajectory Sampling

Noise sensitivity
Presence of the road network
Effect on querying
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Future Work and Open Issues: Trajectory Clustering

Better evaluation of the approaches
On real datasets
With more realistic data generators

Effect of varying the clustering algorithms
Integration of time in the clustering process
“Social-oriented” clustering of mobility data
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STSS Vs. STTrace [Potamias et al., 2006]

Athens trucks dataset
276 trajectories
112203 data points (1 position/30 sec)

STTrace: on-the-fly, no error guarantees (but storage space
guarantee)
Comparison for the same percentage of retained data
Evaluation criteria

Average approximation error

Average Approximation Error =
1∑

T∈T |T |
×

∑
T∈T

∑
Pi∈T

distance(Pi ,P′
i )

Maximum approximation error

Maximum Approximation Error = max
T∈T

(max
Pi∈T

(distance(Pi ,P′
i )))



STSS Vs. STTrace: Average Approximation Error
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Figure : Average Approximation Errors resulting from STSS and STTrace
sampling



STSS Vs. STTrace: Maximum Approximation Error
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Figure : Maximum Approximation Errors resulting from STSS and
STTrace sampling



Why Modularity-Based Community Detection?

Efficiency and effectiveness observed in practice
Non-parametric
Robustness to the presence of high degrees
The implementation we used produces a hierarchy of nested
clusters

Recursive descent based on the statistical significance of the
partitions



How Do We Generate Our Labeled Datasets?

When generating a cluster
A set of neighbor vertices is selected as the starting area
A set of neighbor vertices is selected as the destination area
For each trajectory, a vertex is chosen randomly in each set and
the trajectory is generated as the shortest path between them

Clusters are generated based on patterns we considered as
relevant



Cluster Patterns: Inverted Clusters

The starting area of one cluster is the destination area of the
other
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Figure : Example of inverted clusters



Cluster Patterns: Converging Clusters

The clusters depart from different areas and arrive to the same
destination area
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Figure : Example of converging clusters



Cluster Patterns: Diverging Clusters

The clusters depart from the same area and arrive to different
destinations
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Figure : Example of diverging clusters



Modularity Vs. Spectral Clustering (Trajectory Case)

Table : Adjusted Rand Index
Discovered Adjusted Rand Index

Dataset clusters Spectral Modularity
1 9 (9) 1 1
2 10 (10) 1 1
3 11 (11) 0.802 0.873
4 6 (6) 1 1
5 6 (6) 0.974 1
6 6 (6) 1 1
7 14 (12) 0.961 0.961
8 12 (11) 0.942 0.971
9 10 (12) 0.889 0.889

Table : Entropy and Purity
Discovered Purity Entropy

Dataset clusters Spectral Modularity Spectral Modularity
1 9 (9) 1 1 0 0
2 10 (10) 1 1 0 0
3 11 (11) 0.837 0.915 0.106 0.064
4 6 (6) 1 1 0 0
5 6 (6) 0.989 1 0.0233 0
6 6 (6) 1 1 0 0
7 14 (12) 1 1 0 0
8 12 (11) 0.963 1 0.021 0
9 10 (12) 0.872 0.872 0.075 0.075



Internal Quality Criteria

Inspired by Intra-Cluster Inertia
Sum of average trajectory intra-cluster overlaps

Q(CT ) =
∑

C∈CT

1
|C |

∑
Ti ,Tj∈C

∑
s∈Ti ,s∈Tj

length(s)∑
s∈Ti

length(s)

Sum of average road segment intra-cluster overlaps

Q(CS) =
∑

C∈CS

1
|C |

∑
si ,sj∈C

|{T ∈ T : si ∈ T ∧ sj ∈ T}|
|{T ∈ T : si ∈ T ∨ sj ∈ T}|



Similarity Between Road Segments

Road segments are considered as bags-of-trajectories
Weights are assigned to trajectories based on the number of
segments they visit

ωT ,s =
ns,T∑

T ′∈T ns,T ′
× log

|S|
|s ′ ∈ S : s ′ ∈ T |

Segment resemblance is measured through cosine similarity

Similarity(si , sj) =

∑
T∈T ωT ,si × ωT ,sj√∑

T∈T ω2
T ,si
×
√∑

T∈T ω2
T ,sj



Modularity Vs. Spectral Clustering (Segment Case)

Comparison on 5 artificial datasets (composed of 100
trajectories each)
Based on the sum of average road segment intra-cluster
overlaps

Q(CS) =
∑

C∈CS

1
|C |

∑
si ,sj∈C

|{T ∈ T : si ∈ T ∧ sj ∈ T}|
|{T ∈ T : si ∈ T ∨ sj ∈ T}|

Table : Characteristics of the five synthetic datasets

Number of Number of edges in
Dataset segments the similarity graph

1 2562 79811
2 2394 100270
3 2587 110095
4 2477 87023
5 2348 80659



Modularity Vs. Spectral Clustering (Segment Case)

Table : Sum of average segment intra-cluster overlaps

Number of Intra-cluster overlaps
Dataset discovered clusters Spectral Modularity

1 23 685.82 657.20
2 21 556.22 524.46
3 20 623.21 561.09
4 22 647.56 594.76
5 26 684.81 666.24
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