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THÈSE

présentée par

Anastasios BELLAS

pour obtenir le grade de

DOCTEUR EN MATHÉMATIQUES APPLIQUÉES
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Abstract

The subject of this Thesis is to study anomaly detection in high-dimensional data streams with a
specific application to aircraft engine Health Monitoring. In this work, we consider the problem
of anomaly detection as an unsupervised learning problem. Modern data, especially those is-
sued from industrial systems, are often streams of high-dimensional data samples, since multiple
measurements can be taken at a high frequency and at a possibly infinite time horizon. More-
over, data can contain anomalies (malfunctions, failures) of the system being monitored. Most
existing unsupervised learning methods cannot handle data which possess these features. We
first introduce an offline subspace clustering algorithm for high-dimensional data based on the
expectation-maximization (EM) algorithm, which is also robust to anomalies through the use of
the trimming technique. We then address the problem of online clustering of high-dimensional
data streams by developing an online inference algorithm for the popular mixture of probabilistic
principal component analyzers (MPPCA) model. We show the efficiency of both methods on
synthetic and real datasets, including aircraft engine data with anomalies. Finally, we develop
a comprehensive application for the aircraft engine Health Monitoring domain, which aims at
detecting anomalies in aircraft engine data in a dynamic manner and introduces novel anomaly
detection visualization techniques based on Self-Organizing Maps. Detection results are pre-
sented and anomaly identification is also discussed.

Keywords : Classification, anomaly detection, high-dimensional data, data streams, trimming,
online clustering, online mixture of PPCA, Self-Organizing Maps, aircraft engine, Health Moni-
toring.

Résumé

Le thème principal de cette thèse est d’étudier la détection d’anomalies dans des flux de données
de grande dimension avec une application spécifique au Health Monitoring des moteurs d’avion.
Dans ce travail, on considère que le problème de la détection d’anomalies est un problème
d’apprentissage non supervisée. Les données modernes, notamment celles issues de la surveil-
lance des systèmes industriels sont souvent des flux d’observations de grande dimension, puisque
plusieurs mesures sont prises à de hautes fréquences et à un horizon de temps qui peut être infini.
De plus, les données peuvent contenir des anomalies (pannes) du système surveillé. La plupart
des algorithmes existants ne peuvent pas traiter des données qui ont ces caractéristiques. Nous
introduisons d’abord un algorithme de clustering probabiliste offline dans des sous-espaces pour
des données de grande dimension qui repose sur l’algorithme d’espérance-maximisation (EM) et
qui est, en plus, robuste aux anomalies grâce à la technique du trimming. Ensuite, nous nous
intéressons à la question du clustering probabiliste online de flux de données de grande dimension
en développant l’inférence online du modèle de mélange d’analyse en composantes principales
probabiliste. Pour les deux méthodes proposées, nous montrons leur efficacité sur des données
simulées et réelles, issues par exemple des moteurs d’avion. Enfin, nous développons une applica-
tion intégrée pour le Health Monitoring des moteurs d’avion dans le but de détecter des anomalies
de façon dynamique. Le système proposé introduit des techniques originales de détection et de
visualisation d’anomalies reposant sur les cartes auto-organisatrices. Des résultats de détection
sont présentés et la question de l’identification des anomalies est aussi discutée.

Mots-clefs : Classification, détection d’anomalies, données de grande dimension, flux de
données, trimming, clustering online, mélange de PPCA online, cartes auto-organisatrices, mo-
teurs d’avions, Health Monitoring.
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Chapter 1
Introduction

Statistical Learning, also known as Machine Learning, is a research domain situated on
the frontier between Mathematics, in particular, Statistics, and Computer Science. The
goal is to automate procedures that human beings perform in order to take complex deci-
sions. For example, e-mail spam detection is currently carried out by Machine Learning
algorithms which, informally, learn to distinguish between an ordinary and a spam mes-
sage based on samples of both. An example of a more complex task is the monitoring of
critical industrial systems or components, such as aircraft engine. Malfunction detection
in modern aircraft engines is being carried out by Statistical Learning systems.

More of a theoretically posed problem in the 70’s and the 80’s, Statistical Learning
has found a widespread use in practical applications in the last 20 years, driven by
developments in the field but also in computational power and resources.

1.1 Anomaly detection in high-dimensional datastreams

The goal of this Thesis is to study anomaly detection in high-dimensional datastreams
with a specific application to aircraft engine health monitoring data. In this work, we
consider the problem of anomaly detection as an unsupervised learning problem.

Due to advances in measurement technology (for instance, networks of remote sensors),
data issued from real-world domains often have a large number of attributes, i.e. they
are high-dimensional. As we will see, this can cause well-established methods to fail
due to a phenomenon known under the name of the curse of dimensionality. Moreover,
when real-world phenomena or procedures are being monitored, data are arriving at a
constant rate, at a possibly infinite time horizon. Unfortunately, most existing methods
have been designed for use in a static context, where learning is carried out on a fixed
dataset.

In addition, data can contain anomalies, i.e. atypical data samples. For instance, in
the monitoring of industrial systems, such data samples can correspond to a malfunction
or damage of the system. Most general unsupervised classification methods have been
designed with the implicit assumption of data clean of anomalies. For many of these
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methods, one single anomaly would be enough to arbitrarily corrupt their results.

1.2 Contributions

This Thesis makes the following contributions: the introduction of a novel robust un-
supervised classifier for high-dimensional data, the proposal of a novel algorithm for
clustering high-dimensional datastreams and an integrated system for processing air-
craft engine health monitoring data and detecting anomalies therein.

Robust unsupervised classifier for high-dimensional data

We develop an offline unsupervised classifier for high-dimensional data which is robust
to anomalies. We use a subspace clustering algorithm to cope with dimensionality issues.
This type of methods cluster the data in lower-dimensional subspaces, based on the fact
that high-dimensional data often live in lower-dimensional subspaces. In order to make
the classifier robust to anomalies, we plug in the well-established trimming technique,
which trims the less likely data samples from the dataset. The goal is to ”clean” the
dataset of any anomalous data samples so that the clustering will not be corrupted.

The online Mixture of Probabilistic PCA for high-dimensional online clustering

The well-known Mixture of Probabilistic PCA (MPPCA) model is a probabilistic sub-
space clustering method. This means that the model can cope with high-dimensional
datasets but not datastreams, since it is a batch method. In this Thesis, we develop
the online Mixture of Probabilistic PCA (MPPCA). A number of works has already
proposed various methods to perform incremental Principal Component Analysis in
a non-probabilistic setting. We extend an existing incremental PCA method to the
probabilistic setting. This allows us to develop online MPPCA, a datastream subspace
clustering algorithm, which can efficiently cluster high-dimensional datastreams.

Anomaly detection in aircraft engine Health Monitoring data

We develop an integrated anomaly detection system for aircraft engine data. Proba-
bilistic subspace clustering is used to cluster data into groups following environmental
conditions. A simple linear model per class is used to correct data from environmen-
tal influence. Self-Organizing Maps are then used to detect and visualize anomalies.
Preliminary work on anomaly identification is also presented.

1.3 Applications

Anomaly detection methods can be applied to numerous fields including control of critical
industrial systems, medical diagnosis, network intrusion detection and security. In this
Thesis we apply the proposed methods to the following domains.

7



Aircraft engine Health Monitoring

Snecma, the french aircraft engine constructor, monitors the condition of its engines
either in a test cell environment or by analyzing, post-flight, data collected during the
flight. Data are collected using multiple sensors placed on the test cell, the aircraft or the
engine itself. In addition, they are often composed of a large number of attributes. We
show the capacity of the proposed methods to detect abnormal data in high-dimensional
aircraft engine data and we also conduct experiments on visualization and identification
of anomalies in this data.

Breast cancer diagnosis

We apply one of the proposed methods to the UCI breast cancer dataset, containing
measurements from patients with tumors, both benign and malignant. The goal is to
make a diagnosis, that is, classify correctly the patients based on whether they have
benign or malignant tumors. This is essentially a classification task and supervised
methods have mostly been employed to carry it out. We illustrate the use of the robust
offline unsupervised classifier as an one-class robust classifier in a binary classification
problem.

1.4 Organisation of the Thesis

In chapter 3, we present a large survey which is divided into two major parts: unsuper-
vised approaches for Anomaly Detection and unsupervised online clustering. As a sort
of introduction, we first give basic notions of classification and probabilistic clustering
and we discuss such issues as theoretical principles, inference and model selection for
probabilistic clustering.

Chapter 4 focuses on the problem of clustering high-dimensional data with anomalies.
Existing methods for subspace clustering are presented and an introduction to robust
clustering with trimming (clustering data with anomalies) is given by discussing of recent
advances in the field. A novel method is then proposed to cluster high-dimensional data
with anomalies. The proposed High-Dimensional Robust Clustering (HDRC) algorithm
combines the subspace clustering approach and trimming to carry out this task. We also
present an application of HDRC to the UCI breast cancer dataset.

In chapter 5, we propose an online inference algorithm for the mixture of probabilistic
PCA model for clustering high-dimensional datastreams. The probabilistic PPCA model
is a subspace clustering model and can, thus, handle high-dimensional data efficiently.
The proposed algorithm relies on an EM-based procedure and on a probabilistic and
incremental version of PCA. Model selection is also considered in the online setting
through parallel computing. We run numerical experiments on simulated and real data
and demonstrate the effectiveness of our approach by comparing it with state-of-the-art
online EM-based algorithms.

In chapter 6, we develop an application of the proposed methods for the task of
anomaly detection and visualization in aircraft engine Health Monitoring data issued
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from real flights. Our system is composed of many components, including a classification
component, an anomaly detection component and a visualization stage. The goal is to
develop a comprehensive system that would be able to detect anomalies dynamically,
providing the experts with tools to monitor them. As an introduction to the subject,
we first give a review of related articles.

Finally, chapter 7 discusses the conclusions of our research and experimental work as
well as directions for future work.
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Chapter 2
Introduction

L’apprentissage statistique, ou Machine Learning, est un domaine de recherche qui se
situe sur la frontière entre les Mathématiques, la Statistique en particulier, et l’Infor-
matique. Le but est d’automatiser des procédures que l’humain réalise au quotidien pour
prendre des décisions complexes. Par exemple, la détection de messages non sollicités
(spam) se fait aujourd’hui par le biais d’algorithmes d’apprentissage statistique, qui
apprennent à distinguer entre des messages ordinaires et non sollicités en utilisant des
échantillons de deux sortes. Un exemple d’une tâche plus complexe est la surveillance
des systèmes critiques industriels ou de leurs composantes, comme les moteurs d’avion.
La détection d’anomalies dans les moteurs d’avion modernes se fait par le biais des
algorithmes d’apprentissage statistique.

Dans les années ’70 et ’80, il s’agissait de travaux théoriques, mais dans les 20 dernières
années, l’apprentissage statistique a trouvé de nombreux champs d’application, poussée
par les avancées dans le domaine mais aussi le progrès réalisé en matière de ressources
computationnelles et de puissance de calcul.

2.1 Détection d’anomalies dans des flux de données de grande

dimension

Le thème principal de cette thèse est d’étudier la détection d’anomalies dans des flux
de données de grande dimension avec une application spécifique au Health Monitoring
des moteurs d’avion. Dans ce travail, on considère que le problème de la détection
d’anomalies est un problème d’apprentissage non supervisée.

Grâce aux avancées dans la technologie des capteurs (par exemple, des réseaux de
capteurs distants), les données issues d’applications réelles ont souvent un grand nombre
de variables, i.e. elles sont de grande dimension. On verra que ceci peut faire échouer
des méthodes bien établies à cause du phénomène connu sous le nom de fléau de la
dimension.

De plus, quand des systèmes réels sont surveillés, les données arrivent de façon dy-
namique dans un horizon temporel qui peut être infini. Les données arrivent donc en
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flux, alors que la plupart des méthodes existantes sont conçues pour être utilisées dans
un contexte statique, où l’apprentissage se fait sur un ensemble de données qui est fixe
et disponible tout au long de l’expérience.

Enfin, les données peuvent contenir des anomalies,i.e. des observations atypiques. Par
exemple, dans la surveillance des systèmes industriels, ces observations peuvent indiquer
l’existence d’une panne. La plupart des algorithmes d’apprentissage non supervisée
génériques ont été conçus avec l’hypothèse implicite des données sans anomalies. Pour
plusieurs d’entre eux, une seule anomalie suffirait pour affecter de façon négative leurs
résultats.

2.2 Contributions

Cette thèse apporte les contributions suivants: l’introduction d’un nouveau classifieur
robuste et non supervisé pour des données de grande dimension, la proposition d’un
nouvel algorithme pour l’inférence online du modèle de mélanges de PCA probabiliste
pour faire du clustering des flux de données de grande dimension et un système intégré
pour le traitement des données de moteurs d’avion et la détection d’anomalies.

Classifieur non supervisé robuste pour des données de grande dimension

Nous développons un classifieur non supervisé et offline pour des données de grande
dimension qui est, en plus, robuste aux anomalies. Nous utilisons un algorithme de
clustering dans des sous-espaces pour faire face aux problèmes liés à la grande dimension.
Ces méthodes font un clustering des données dans des sous-espaces de faible dimension,
basés sur le fait que les données de grande dimension vivent souvent dans des sous-
espaces de plus faible dimension. Pour rendre le classifieur robuste aux anomalies, nous
rajoutons la technique populaire de trimming (rogner ou tronquer), qui tronque les
données les moins vraisemblables. Le but est de ”nettoyer” les données des observations
atypiques avant le clustering, pour que ce dernier n’en soit pas corrompu.

Le mélange de PCA probabiliste online

Le modèle populaire de mélange de PCA probabiliste (MPPCA) est une méthode de
clustering probabiliste dans des sous-espaces. Donc, il peut traiter des données de grande
dimension mais pas des flux de données, puisqu’il s’agit d’une méthode offline. Dans
cette thèse, nous développons le MPPCA online. Plusieurs travaux ont déjà proposé
des méthodes pour faire du PCA incrémental dans un contexte non probabiliste. Nous
adaptons une méthode de PCA existante dans le contexte probabiliste, ce qui nous
permet de développer un algorithme qui peut faire du clustering de flux de données de
grande dimension.

Détection d’anomalies dans des données de moteurs d’avion

Nous développons un système intégré pour détecter des anomalies dans des données
de moteurs d’avion. Une technique de clustering probabiliste est utilisée pour classi-
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fier les données dans des classes d’environnement. Un modèle linéaire par classe est
utilisé pour corriger les données de l’influence de l’environnement. Enfin, des cartes
auto-organisatrices permettent de détecter et de visualiser les anomalies. Des résultats
préliminaires sur l’identification d’anomalies sont aussi présentés.

2.3 Applications

La détection d’anomalies trouve des applications dans de nombreux domaines comme
la surveillance des systèmes industriels, le diagnostic médical, la sécurité des réseaux et
des systèmes. Dans cette thèse, nous appliquons les méthodes proposées aux domaines
suivants.

Données de moteurs d’avion

Snecma, le constructeur français de moteurs d’avion, surveille l’état de ses moteurs, soit
dans un environnement de banc d’essai, soit en analysant, après un vol, des données
qui sont recueillies pendant le vol. Les données sont collectées par le biais de plusieurs
capteurs qui sont placés sur le banc, l’avion ou le moteur lui-même. De plus, ces données
ont souvent autant de variables qu’il y a des capteurs et même plus. Nous montrons la
capacité des méthodes proposées à détecter des anomalies dans des données de grande
dimension provenant de moteurs d’avion et nous menons, de plus, des expériences sur la
visualisation et l’identification d’anomalies dans ce genre de données.

Diagnostic du cancer du sein

Nous appliquons les méthodes proposées aux données UCI sur le cancer du sein, com-
posées de diverses mesures sur des patients ayant des tumeurs, bénignes ou malignes. Le
but est de faire un diagnostic, à savoir de classer correctement les patients suivant qu’ils
ont des tumeurs bénignes ou malignes. A priori, il s’agit d’une tâche de classification et
des méthodes supervisées ont été utilisées pour la traiter. Nous illustrons l’utilisation
du classifieur non supervisé et robuste en tant que classifieur robuste ’one-class’ dans un
problème de classification binaire.

2.4 Organisation de la thèse

Dans le chapitre 3, nous présentons une recherche bibliographique détaillée en deux par-
ties: la première partie fait référence à des méthodes non supervisées pour la détection
d’anomalies et la seconde présente des approches de clustering online pour des flux de
données. Comme introduction, nous donnons d’abord des notions de base sur la clas-
sification et le clustering probabiliste et discutons des questions telles que les principes
théoriques, l’inférence et la sélection de modèles.

Dans le chapitre 4, nous considérons le problème de clustering de données de grande di-
mension avec des anomalies. Des méthodes existantes de clustering dans des sous-espaces
sont présentées et une introduction au clustering robuste avec trimming est donnée avec
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une discussion sur les avancées récentes dans le domaine. Ensuite, une nouvelle méthode
est proposée pour le clustering des données de grande dimension avec des anomalies. La
méthode proposée, appelée High-Dimensional Robust Clustering (HDRC) combine une
approche de clustering probabiliste dans des sous-espaces avec le trimming pour faire du
clustering de ce genre de données.

Dans le chapitre 5, nous proposons un algorithme d’inférence online pour le modèle
de mélange de PCA probabiliste (MPPCA) dans le but de faire du clustering des flux
de données de grande dimension. Le modèle de MPPCA est une approche de clus-
tering dans des sous-espaces et il peut donc traiter des données de grande dimension.
L’algorithme proposé repose sur l’algorithme EM et sur une version incrémentale et prob-
abiliste de PCA. La sélection de modèles est considérée au moyen du calcul parallèle.
Nous menons des expériences numériques sur des données simulées et réelles et nous
illustrons l’efficacité de notre approche en la comparant à d’autres algorithmes basés sur
EM.

Dans le chapitre 6, nous développons une application des méthodes proposées pour
la tâche de détection et visualisation d’anomalies dans les données de moteurs d’avion
issues de vols réels. Notre système est composé de plusieurs modules: classification,
détection d’anomalies et visualisation. Le but a été de développer un système intégré
pour détecter les anomalies de manière dynamique et fournir aux experts des outils pour
surveiller ces données atypiques. Nous donnons d’abord une petite introduction aux
travaux similaires.

Enfin, le chapitre 7 conclut cette thèse et discute de perspectives de recherche.
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Chapter 3
Related work

In this chapter we give a broad overview of the topic of this Thesis. The goal is to
introduce basic notions of the areas that the topic of this Thesis encompasses and present
existing works related to the Thesis’ topic. With this aim, the rest of the chapter is
divided in three parts: the first part contains an introduction to clustering, the second
presents existing works on Anomaly Detection, whereas the third refers to existing works
on estimation issues and probabilistic clustering algorithms for the online setting, where
streams of data arrive in a possible infinite horizon. The two latter parts reflect the
two aspects of the problem that this Thesis tries to solve: adaptive, real-time anomaly
detection.

3.1 Clustering

In this section, we introduce the task of clustering, in particular, probabilistic clustering.
We discuss various aspects of the problem including inference and model selection for
probabilistic clustering methods.

3.1.1 Probabilistic clustering

The task of classification consists in organizing data into classes, i.e. groups of data
sharing common features in a certain sense. When we dispose of the data and the class
information, then we speak of supervised classification. When the class information is
missing, we refer to unsupervised classification or clustering. The methods proposed in
this work are all clustering methods.

Clustering can be cast into a probabilistic framework with the aim of taking advantage
of the fact that the probability theory is well-founded and in particular, the fact that
probabilities can be used to express uncertainty over a decision in a natural way. We then
refer to probabilistic or model-based clustering. We present this probabilistic framework
in detail in the following paragraphs.
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Figure 3.1: The maximum a posteriori rule for a one-dimensional mixture of two com-
ponents. See the text for more details.

3.1.2 Model-based clustering and inference

We assume that data X = {x1, . . . ,xn} ∈ R
p are independent realizations of a random

vector X ∈ R
p whereas the class labels {z1, ..., zn} are assumed to be independent

realizations of an unobserved (latent) random variable Z with Z(Ω) = {1, ...,K}. As
we have already seen, clustering is trying to organize data into homogeneous groups.
We can, however, deduce a partition of the dataset from the posterior probability of the
classes using the following rule

arg max
k=1,...K

P (Z = k | X = x), (3.1)

which is called MAP rule, for maximum a posteriori. Note that the posterior probability
P (Z = k | X = x) is not given and has to be calculated by the data. We illustrate it in
Figure 3.1 for a one-dimensional mixture with 2 components. The blue and red curves
correspond to the posterior probability that a data sample x belongs to class 1 and to
class 2, respectively. As we can see, for x < 0, data samples will be affected to class 2,
since the corresponding probability is higher and vice versa for x > 0.

Based on the above, we want to cluster X into K homogeneous groups, i.e. determine
for each data sample xi the value of its unobserved label zi such that zi = k if xi

belongs to the k-th cluster. To this extent, model-based clustering (Fraley and Raftery,
2002; McLachlan and Peel, 2000) considers the overall population as a mixture of the
groups and each component of this mixture is modeled through its conditional probability
distribution. The set of pairs {(xi, zi)}

n
i=1 is usually referred to as the complete data

set. By denoting f(·) the probabilistic density function of X, the density of the finite
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mixture model is:

f(x) =
K
∑

k=1

πkφk(x),

where πk (such that πk ≥ 0 and
∑K

k=1 πk = 1) and φk represent the mixture proportion
and the conditional density function of the k-th mixture component, respectively. Fur-
thermore, the clusters are often modeled by the same parametric density function (with
different parameters). In this case, the density of the finite mixture model is:

f(x) =
K
∑

k=1

πkφ(x, θk),

where θk is the parameter vector for the k-th mixture component. Among the possi-
ble probability distributions for the mixture components, the Gaussian distribution is
certainly the one most frequently used for both theoretical and computational reasons.
Moreover, it is a fairly ”realistic” distribution, since it is has been found that it can model
various real-world phenomena. In this case the density φ is supposed to be Gaussian
N (µk,Σk) of mean µk and covariance matrix Σk

φ(x, θk) =
1

(2π)p/2(det Σk)1/2
exp

(

−
1

2
(x− µk)

TΣ−1
k (x− µk)

)

Here, the parameter vector θk contains the group mean vector µk and the group covari-
ance matrix Σk. This specific mixture model is usually referred to in the literature as the
Gaussian mixture model (GMM). Figure 3.2 gives an example of a univariate Gaussian
mixture model with two mixture components. The density of the components is given
by the two dashed curves, while the density of the mixture is given by the solid curve.

Parametric mixture models and the MAP rule

In the context of parametric mixture models, Bayes’ theorem allows us to write

P (Z = k | X = x, θ) =
πkφ(x, θk)

K
∑

k=1

πkφ(x, θk)

We can then write the decision rule of (3.1) as

arg max
k=1,...,K

{πkφ(x, θk)}

As we can see, in order to get a partition of the dataset in the context of parametric
mixture models, we simply have to estimate the parameters of the model.
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Figure 3.2: An example of a univariate Gaussian mixture model with two mixture com-
ponents. The density of the components is given by the two dashed curves,
while the density of the mixture is given by the solid curve.

Families of submodels derived from the most general model

In model-based clustering, one can derive different families of submodels from the most
general model by imposing constraints on the covariance matrix and other parameters
of the model. For example, we derive the submodel of common class covariance matrices
by setting that they be all equal. Submodels can also be considered as forms of the
(most general) model (see the paragraph on model selection in model-based clustering
later on in this chapter for more on this).

3.1.3 Parameter estimation of a Gaussian mixture model via EM

We will now introduce the maximum likelihood principle for estimating parameters of
statistical models. As we will see, this principle cannot be applied in the context of
model-based clustering, since the class labels Z are unknown and are considered as
missing data. In this context, we speak of incomplete data, since we only observe X. We
present below the popular expectation-maximization (EM) algorithm (Dempster et al.,
1977) that estimates parameters in the presence of incomplete data.
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Estimation by the maximum likelihood principle

A standard way to estimate model parameters in parametric mixture models is to max-
imize the (observed) log-likelihood of the data

L(x; θ) =

n
∑

i=1

log

K
∑

k=1

πkφ(xi, θk)

Note that we prefer the log-likelihood over the likelihood, as it is much more convenient
to work with the former from a mathematical point of view. The maximum likelihood
method then proposes to estimate the parameters of the model θ by θ̂MV :

θ̂MV = argmax
θ

L(x; θ)

As we saw earlier, complete data {(x1, z1), (x2, z2), . . . , (xn, zn)} are composed of pairs
of data x and class information z. The complete log-likelihood Lc(x, z; θ) is the log-
likelihood calculated from the complete data:

Lc(x, z; θ) =

n
∑

i=1

K
∑

k=1

sik log (πk (φ(xi, θk)))

Here, we have defined s as the indicator variable of the classes, so that if zi = k for a
data sample i, then sik = 1 and sij = 0,∀j 6= k.

Unfortunately, inference cannot be done in a straightforward manner by maximizing
the likelihood, since the class labels {z1, ..., zn} are unknown. To overcome this problem,
we can use the popular EM algorithm.

Estimation via Expectation-Maximization

The main idea behind the expectation-maximization (EM) algorithm is that it is eas-
ier to maximize the complete log-likelihood Lc(x, z; θ), a conclusion based on the fol-
lowing relationship between the complete log-likelihood Lc(x, z; θ) and the (observed)
log-likelihood L(x; θ)

L(x; θ) = Lc(x, z; θ)− log f(z;x, θ)

However, as mentioned earlier, the class labels are unknown, so we cannot maximize
directly the complete likelihood. However, we can maximize its conditional expectation
Q(θ, θ′) given the data x and the current parameter estimate θ′

Q(θ, θ′) = E
[

Lc(x, z; θ) | x, θ
′
]

By noting tik = E[Z = k | X = xi, θ
′], we can write

Q(θ, θ′) =
n
∑

i=1

K
∑

k=1

tik log(πkφ(xi, θk)) (3.2)
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The EM algorithm is maximizing iteratively Q(θ, θ′) in order to obtain the optimal pa-
rameter estimate.A detailed view of the EM algorithm for GMMs is given in Algorithm 1.
From an initial solution θ(0), the EM algorithm alternates two steps until convergence:
the E-step and the M-step.

At iteration q, the expectation step (E-step) computes the expectation of the complete

log-likelihood E
[

Lc (x, z; θ) |x, θ̂
(q−1)

]

conditionally to the current value of the param-

eter set θ′ = θ̂(q−1). In practice, one just has to calculate the posterior probability tik
(where we omit the iteration superscript q when it is not needed).

tik = P
(

Z = k | X = xi, θ̂
(q−1)

)

Then, the maximization step (M-step) consists in maximizing the same conditional ex-
pectation of the complete likelihood over θ to obtain a new parameter estimate

θ̂(q) = argmax
θ

E
[

Lc (x, z; θ) | x, θ̂
(q−1)

]

Convergence is being determined by some stopping criterion, which can simply be
‖L (x; θ)(q)−L (x; θ)(q−1) ‖ < ε, i.e. the absolute difference between two successive likeli-
hood values. It would also be possible to use the Aitken’s acceleration criterion (Lindsay,
1995) which estimates the asymptotic maximum of the likelihood. Alternatively, we can
set a maximum number of iterations after which the algorithm stops if it has not yet
converged.

The algorithm forms a sequence
(

θ(q)
)

q
which is guaranteed to converge toward a

local optimum of the likelihood (Wu, 1983). For further details on the EM algorithm,
the reader may refer to (McLachlan and Krishnan, 1997).

Once the EM algorithm has converged, a partition of the data can be deduced from
the posterior probabilities tik = P (Z = k|X = xi, θ̂) by using the maximum a posteriori
(MAP) rule which assigns the observation xi to the group with the highest posterior
probability.

The EM algorithm has some known limitations. The first one is that the parameter
estimate at convergence is highly dependent on the initialization of the algorithm. One
of the solutions that that practitioners use for this issue is to initialize the algorithm
with parameter estimates θ obtained by running multiple EM algorithms with different
random initializations for a few iterations and then choosing the one which yields the
maximum likelihood. Another solution is proposed by (McLachlan and Peel, 2000) in
the Gaussian case. They initialize EM by setting all mixture proportions to be equal,
initializing the means by simulating samples from a Gaussian distribution N (m, S),
where m and S are the mean and covariance matrix for the whole dataset, respectively.
Finally, they set all class covariance matrices equal to S.

The second issue of EM is that it can be slow as far as convergence is concerned, since
it can get stuck in local maxima and saddle points where the likelihood function is flat.
In order to face this issue, (Celeux and Diebolt, 1985; Celeux et al., 1988) have proposed
Stochastic EM (SEM) which is a stochastic variant of the standard EM algorithm.
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Algorithm 1 Expectation-Maximization for GMM

Input: Data {x1, . . . ,xn} ∈ R
p, number of groups K, threshold ε, maximum iteration number

maxit
Output: Estimated parameters θ̂
1: Initialize to acquire an initial estimate θ̂0.
2: Iteration index q = 1
3: while | L(q) − L(q−1) |≥ ε OR q < maxit do
4: E-step: Compute the expected log-likelihood of the complete data conditionally to the

current value of the parameters

tik = P
(

Z = k | X = xi, θ̂
(q−1)

)

5: M-step: Maximize E
[

Lc (x, z; θ) | θ̂(q−1)
]

over θ to obtain θ̂(q) = (π̂k, µ̂k, Σ̂k)

π̂k =
nk

n

µ̂k =
1

nk

n
∑

i=1

tikxi

Σ̂k =
1

nk

n
∑

i=1

tik(xi − µk)(xi − µk)
T

where nk =
∑n

i=1 tik and n =
∑K

k=1 nk.
6: Evaluate the likelihood function L(q).
7: q = q + 1
8: end while

3.1.4 Model Selection in model-based clustering

A known problem in model-based clustering is choosing the model form m as well as
its complexity K, i.e. the number of groups of the mixture. The form of the model
is determined by assumptions made on the structure of the covariance matrices. For
some meaningful assumptions, the reader can refer to (Banfield and Raftery, 1993)
and (Celeux et al., 1996). Unfortunately, neither of m or K can be estimated by the
maximum likelihood principle since the likelihood of the mixture depends on both. In-
stead, there have been model selection criteria that were derived to tackle this issue.
We briefly discuss their derivation below. Note that we followed the introduction given
by (Biernacki et al., 2000), where a Bayesian treatment is used.

A solution to the aforementioned issue would be to maximize the integrated or marginal
likelihood L′(x;m,K)

(m̂, K̂) = argmax
m,K

L′(x;m,K)

where

L′(x;m,K) =

∫

Θm,K

L′(x;m,K, θ) ξ(θ | m,K)dθ, (3.3)
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Here, θ = (πk,µk,Σk), ∀k ∈ {1, . . . ,K} is the vector of parameters of the mixture and Θ
is the parameter space. By ξ(θ | m,K) we denote the prior on the mixture parameters
given the model.

The integral in (3.3) is intractable. The well-known Bayesian Information Criterion
(BIC, see (Schwarz, 1978)) approximates (3.3) by

logL′(x;m,K) ≈ logL′(x;m,K, θ̂)−
vm,K

2
log n (3.4)

where θ̂ is the maximum likelihood estimate of the parameters and vm,K is the number
of free parameters in the model with form m and K groups.

As (Biernacki et al., 2000) point out, regularity conditions necessary for applying the
BIC criterion do not always hold in a classification/clustering setting. They propose
instead to maximize the integrated likelihood of the complete data, also known as clas-
sification likelihood (CL)

L′
c(x, z;m,K, θ) =

∫

Θm,K

L′
c(x, z;m,K, θ) ξ(θ | m,K) dθ (3.5)

Given certain assumptions, (Biernacki et al., 2000) derive the Integrated Classification
Criterion (ICL), which is better suited for a clustering task.

Note that (Akaike, 1973) has also proposed a criterion for model selection, known
under the name of Akaike Information Criterion (AIC). However, it does not penalize
sufficiently model complexity and therefore, tends to select models with a non optimal
number of parameters.

3.1.5 The curse of dimensionality

We have already seen that modern data are often high-dimensional. This holds especially
for data issued from real-world systems, since modern technology allows for a multitude
of measurements to be taken simultaneously. We can cite, for instance, aircraft engine
health monitoring data, collected using a large number of sensors placed on the engine
or the test chamber.

Intuitively, one could expect that classification would be facilitated by adding more
variables (measures), since more information would be available. Unfortunately, it has
been shown that the number of data samples needed for a given task, e.g. classification
grows exponentially with the dimension (number of variables). Bellman, who first used
the term curse of dimensionality (Bellman, 1957, 1961), observed this phenomenon while
trying to optimize exhaustively a function in a discrete space. Moreover, (Silverman,
1986) made the same observation in approximating an arbitrary Gaussian distribution
with fixed Gaussian kernels.

Indeed, humans are used to the three-dimensional space of the real world, but there
can be some unintuitive phenomena in a high-dimensional space. Perhaps the most
illustrative example is the ”empty space phenomenon” (Scott and Thompson, 1983),
which is often presented using the example of the volume of a hypersphere. Let us
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Figure 3.3: The fraction of the volume of a sphere in p-dimensional space that lies in the
shell between r = 1 − ε and r = 1 for various values of ε and p. Here, r is
the radius of the sphere. As we can see, the fraction approaches 1 even for
lower-dimensional spaces (small values of p).

consider a sphere of radius r = 1 in the p-dimensional space. What is the fraction of
its volume that lies in the shell between radius r = 1 − ε and r = 1? The volume of a
sphere of radius r in the p-dimensional space is given by

Vp(r) =
4πrp

p
= Kpr

p

where Kp depends only on p. Thus the fraction we are searching should be

Vp(1)− Vp(1 − ε)

Vp(1)
= 1− (1− ε)p (3.6)

Figure 3.3 shows (3.6) as a function of ε, for different values of p. As we can see, this
fraction is close to 1 even for small values of p. This would mean that in high-dimensional
spaces, the entire volume of a sphere is concentrated near its surface. This is a rather
surprising conclusion which goes on the contrary of human intuition and illustrates a
type of unintuitive behavior one can have in high-dimensional spaces.

In the context of generative models, the curse of dimensionality manifests itself through
the number of model parameters that have to be estimated. Generally speaking, in
generative methods, we have to estimate a number of parameters that scales with the
square of the dimension. In the Gaussian case this is primarily due to the estimation
of the covariance matrix. Indeed, if n, the number of data samples, is smaller than
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the dimension p, the estimation of the covariance matrix will be singular and it will be
impossible to invert it (Bouveyron et al., 2007a).

3.2 Anomaly Detection

The field of Anomaly Detection has received a great deal of attention in the last decade.
The interested reader can find some detailed survey papers covering many related topics
in (Chandola et al., 2009; Markou, 2003a,b). As (Chandola et al., 2009) point out, we
find in the literature different terms for the notion of anomalies depending on the context
and the application: novelties, outliers, discordant observations, exceptions, aberrations,
surprises, peculiarities or contaminants.

Some characteristics of the research conducted in the field, as pointed out by the
survey papers above and based on our experience, are the following:

• Research in the field has very often been motivated by application-specific needs
and thus, it has been conducted in a rather ”unorganized” manner.

• An important problem is the lack of standard, established benchmarks, namely
datasets on which proposed methods could be evaluated and compared to others.

• Although a definition encompassing any type of anomalies can be given, in practice,
this depends on the application at hand.

In the literature, we can find a variety of type of techniques for the problem of Anomaly
Detection: statistical (parametric and non-parametric) and clustering methods, neural-
network based and classification (supervised) methods, as well as nearest-neighbor based,
graph-based, information-theoretic and rule-based methods.

In this work, we focus on unsupervised learning methods for anomaly detection. and
we will thus present the state of the art for these particular families of methods. We
have built up this chapter based on existing surveys (Chandola et al., 2009; Markou,
2003a,b), updating them as necessary, since the most recent one dates from 2009.

(Chandola et al., 2009) have written a broad survey on anomaly detection, covering
various techniques and applications found in the literature. (Markou, 2003a,b) have
divided their survey in two distinct parts: the first part presents statistical approaches for
Novelty Detection, while the second one is dedicated to Neural Network based techniques.
In these works, there is a focus on the methods themselves rather than the applications.

3.2.1 Statistical approaches

We begin by presenting statistical parametric approaches for Anomaly Detection. This
type of methods makes an assumption that the data follow a given distribution.
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Parametric approaches

A simple method for determining if a data sample is anomalous, given the assumption
that the underlying distribution of the population is Gaussian, is to flag as anomalous
all data which are farther than a 3σ distance from the mean µ, where σ is the standard
deviation. The range [µ− 3σ, µ + 3σ] contains 99, 7% of the data.

Assuming that the data are generated from a Gaussian distribution, another option
for detecting anomalies is the Grubb’s test (Grubbs, 1969). For a data sample x, we
calculate its z-score:

z =
|x− x̄|

s

where x̄ is the sample mean and s the sample standard deviation. We can set a threshold
by taking the value of a Student’s t-distribution at a given confidence level α. If the
z-score of a data x is above this threshold, then we declare x an anomaly. Thus, by
controlling α, we control the threshold and the number of data that will be labeled as
anomalies. Laurikalla (Laurikkala et al., 2000) apply the Grub’s test to multivariate
data by transforming them to a scalar using the Mahalanobis distance.

(Ye and Chen, 2001) use a χ2 statistic to detect anomalies:

χ2 =

p
∑

j=1

(X(j) − E(j))2

E(j)

where p is the number of variables, X(j) is the j-th variable of a test data sample and
E(j) is the expected value for the j-th variable given by its mean in the training data.
Anomalies are characterized by large values of χ2.

A more sophisticated (parametric) approach is to consider that the normal (anomaly-
free) data has been generated by a Gaussian mixture model (GMM) and estimate the
parameters using the EM algorithm. Once a GMM has been fitted to the training data,
we assign each previously unseen test observation to its most probable class. Then, one
can consider that if a novel test data sample falls in low-probability regions of the model,
it is more likely to be abnormal than if it falls in high probability regions. A recurrent
problem with this approach is that, at some point, a heuristic threshold must be set in
order to distinguish between a normal and an abnormal observation. The quantity that
one thresholds generally depends on the algorithm used, but common practices are to
threshold the posterior class probability for a test sample, or its distance from the class
mean.

(Roberts and Tarassenko, 1994) propose a method that gradually grows a GMM. The
number of the classes is not fixed in advance but grows in the training phase based on
an automatic criterion. In the training phase, distances of Mahalanobis are calculated
between data and all mixture components. If, for a given training data sample, its
Mahalanobis distance to its closest component is less than a given threshold ǫt, then a
new Gaussian component, centered on the observation, is added to the mixture. The
threshold ǫt reduces over time until it becomes smaller than a user-defined ǫmax which
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corresponds to the desired precision. After the training phase, the mixture is no longer
being grown. For a test observation, we calculate its Mahalanobis distance to all compo-
nents and compare the smallest one to ǫmax. If the distance is greater than the threshold,
then the example is flagged as an anomaly.

(Tarassenko et al., 1995) estimate the density of normal data by the means of the
marginal probability of the training data P (X). They assume that anomalies are dis-
tributed uniformly outside the normal region. If a test observation falls in a region of the
normal (anomaly-free) data space with a density lower than a certain threshold, then it
is flagged as an anomaly. The authors set local thresholds (per class) by partitioning
the normal data space using k-means and estimating the density independently in each
partition using GMM.

(Roberts, 1999, 2000) advocate the use of Extreme Value Theory (EVT) as a principled
approach to Anomaly Detection as opposed to (heuristic) thresholds widely used in
the literature. EVT models the tails (extreme values) of distributions. Theoretical
results from (Fisher and Tippett, 1928) show that one of the forms that can take a
non-degenerate limit distribution for normalized maxima is the Gumbel distribution.
The authors first estimate data density using GMM and then use the corresponding
EVT probability to detect anomalies. In fact, they do use a threshold, but it is a
rather ”natural” (data-driven) one: they consider that any observation falling out of the
P > 0.95 boundary of the EVT probability is abnormal.

(Lauer, 2001) tries to fit a two-component GMM to the data. One of the components
aims at capturing the normal data and the other one the anomalies. Thus, contrary to
other methods, this work does not suppose that the (training) dataset is anomaly-free.
This type of methods has the benefit of not having to set a threshold. Assuming that
data has been generated by a Gaussian distribution, the authors fit a GMM to normal
data, with an extra fixed Gaussian component of large variance to capture anomalies.
Then, an observation is declared to be abnormal if its probability of belonging to the
anomaly distribution is greater than that of belonging to the distribution of normal data.

In a similar way, (Byers and Raftery, 1998) fit a mixture of two Poisson distributions
to a dataset containing anomalies. One of the two Poisson components is used to cap-
ture anomalies. (Eskin, 2000) fits a GMM on the normal data with an extra uniform
component to capture anomalies.

(Song et al., 2007) propose an approach in which anomalies are looked for in the in-
dicators (endogenous variables) but the environment is considered as well. For example,
in an aircraft engine context, environmental variables can be the ambient temperature
and the air pressure, while the indicators are the engine rotation speed, the oil pres-
sure inside the engine etc. In their approach, there are two GMMs: one to model the
environment and another one to model the indicators. The key point is that the au-
thors assume that a vector each component of the environmental GMM, generates or
maps itself into a component of the indicator GMM with a certain probability. This
probability can be seen as a transition probability from the environment GMM to the
GMM of the indicators. It is not known in advance but it is estimated like the rest of
the parameters of the two GMMs. Anomalies in the training set are detected by sorting
the data according to their likelihood under the model in an increasing order and then
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taking the first c = ǫn data to be anomalies, where ǫ is the expected anomaly rate in the
training data, specified by the user, and n the number of training data. For a test data
sample, the method calculates its likelihood and compares it to the likelihood of the c-th
(based on the sorting) training data sample that was deemed abnormal. In other words,
if the new data sample is less probable under the model than the most probable (”less
anomalous”) among the anomalies, then it is tagged as an anomaly.

Non-parametric approaches

The above methods using GMM have one thing in common: they are parametric, that
is they assume that data has been generated by a family of known distributions, for in-
stance, the Gaussian distribution. This allows to estimate (model) the underlying density
for the data. However, density estimation can also be performed in a non parametric
manner, that is without assuming a specific distribution for the data.

One of the simplest parametric techniques is the box-plot rule, which is a statistical
method to detect anomalies for univariate data. We can use boxplots for multivariate
data, plotting a box for each of the variables.

Another simple non parametric technique is the histogram. For the anomaly detection
task, we first build a histogram using normal data. Then, for a test observation, we check
if it falls in one of the bins of the histogram, in which case it is normal, otherwise it is
flagged as an anomaly. Moreover, the height of the bins can be used to obtain anomaly
scores. Clearly, the choice of the size of the bins is critical, since small bins might result in
high false alarm rates due to data falling in low-height bins. The histogram is essentially
a technique for univariate data. To extend this to multivariate data, one can build a
histogram per variable and then aggregate the different anomaly scores (Ho et al., 1999;
Manson et al., 2000).

(Yeung and Chow, 2002) use Parzen windows (Parzen, 1962) with a Gaussian kernel
to model data density. The choice of the Gaussian kernel is made for convenience and
is not an assumption on the nature of the data. They then formulate the anomaly
detection problem as a hypothesis testing problem, with the null hypothesis being that
a data sample is normal. We can control the false alarm rate of the method by adjusting
appropriately the confidence level of the test.

3.2.2 Clustering Approaches

(Ester et al., 1996) propose a density-based clustering algorithm for data with anomalies,
based on the notion of the local density of a data sample, calculated by its neighbors.
(Guha et al., 2000b) propose a robust, i.e. resistant to anomalies in the data, hierarchical
clustering algorithm using links between data samples instead of distances. A user-
defined threshold is used to detect anomalies. (Ertöz et al., 2003) define a similarity
measure for two data samples based on the number of the nearest neighbors they share.
Anomalies can be detected by setting an appropriate threshold.

(Eskin et al., 2002; Chan et al., 2003; He et al., 2003) used fixed-width clustering,
where all clusters are of fixed width w and they can thus overlap. If a data instance falls
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outside of the ”region” of all existing clusters, then a new cluster is created. (He et al.,
2003) define CBLOF (Cluster-Based Local Outlier Factor), an anomaly score which takes
into consideration the size of the cluster as well as the distance to its closest cluster. The
threshold on these quantities has to be set empirically.

3.2.3 Robust clustering

Another way to perform clustering on data contaminated with anomalies (robust clus-
tering) is by trimming outlying (abnormal) data samples in a straightforward manner.

Early works include the least trimmed squares (LTS) and least median squares (LMS)
for regression (Rousseeuw and Leroy, 2005), as well as the Minimum Covariance De-
terminant (MCD) and Minimum Volume Ellipsoid (Rousseeuw, 1985), which are both
location-scatter estimators (single-class case) using the trimming principle.

(Cuesta-Albertos et al., 1997) developed a trimmed k-means algorithm. (Gallegos,
2002; Gallegos and Ritter, 2005) have developed a probabilistic clustering model for het-
erogeneous clustering called ”spurious-outliers” model. In this method, the underlying
optimization problem is ill-posed. Thus, (Gallegos, 2002) proposed a method based on
unit group covariance matrices to constrain the optimization, while (Gallegos and Ritter,
2005) assume that groups share a common covariance structure.

In the same line of reasoning, (Garćıa-Escudero et al., 2008) propose TCLUST, a
GMM-based trimming method imposing a constraint on the ratio of the largest to the
smallest eigenvalue among eigendecomposition matrices of all group covariance matrices.
(Fritz et al., 2012a) have recently proposed a faster variant of the TCLUST algorithm.
A comprehensive review of the above works is given in (Garćıa-Escudero et al., 2010).

In a similar work, (Neykov et al., 2007) propose the use of the Weighted Trimming
Likelihood Estimator (WTLE). Recently, (Punzo and McNicholas, 2013) proposed a
method of robust GMM clustering that estimates the trimming parameter via the
Expectation-Conditional Maximization algorithm (Meng and Rubin, 1993).

3.2.4 Nearest Neighbor Approaches

A broad category of approaches is based on the nearest neighbor schema. In its original
form, the algorithm of k-nearest neighbors is a classification algorithm. Assuming that
we have a training labeled set, the class of a previously unseen data sample is obtained
by a majority vote of the classes of its k-nearest neighbors in the training set. Note here
that no proper training step is being executed.

In the context of anomaly detection, the nearest neighbor technique is used in an
unsupervised manner. We are not interested in the class of the test data sample, but
rather in its distance to its k-nearest neighbors in the training set or the sum of these
distances ( (Guttormsson et al., 1999), (Eskin et al., 2002)). This distance can be used
as an anomaly score. We can then set a threshold to detect anomalies. Intuitively,
anomalies will tend to appear ”far” from their nearest neighbors.

Another category of approaches is based on the fact that nearest neighbor approaches
can function as data density estimators, since they calculate distances between data at

28



Figure 3.5: Traditional nearest neighbor methods for anomaly detection will only con-
sider o1 as an anomaly, but LOF (Breunig et al., 2000) will also flag o2 as
anomalous, since the nearest cluster C2 is very dense and thus, o2 is an
anomaly with respect to its local neihborhood.

a given region of the space (Chandola et al., 2009).
(Breunig et al., 1999, 2000) introduce a measure called ”Local Outlier Factor” (LOF).

For a given data sample, its LOF score is equal to the ratio of the average local density
of its k nearest neighbors and the local density of the sample itself. The local density
of a data sample is simply the inverse of the average of the reachability distances in
the sample’s neighborhood, with the reachability distance being a measure which is
relatively small for samples lying in a dense neighborhood and bigger for samples lying
far away from this neighborhood. Thus, for normal data lying in dense regions, their
local density will be similar to that of their neighbors, while for an anomalous sample,
the local density will be lower than that of its nearest neighbors, and hence, its LOF
score will be higher. There has been several improvements to LOF (Tang et al., 2002;
Hautamaki et al., 2004; Papadimitriou et al., 2003).

(Guttormsson et al., 1999) are testing a variety of non-parametric techniques for an
anomaly detection task. In particular, they are fitting surface boundaries ”around”
normal data and then compare the distance of each unseen data instance to this boundary
to determine if a data sample is abnormal. They use surfaces such as a hypersphere, an
ellipse and a box, making use of nearest neighbors.

(Tax and Duin, 1998, 2000) estimate the density of the normal data with a GMM.
For a test observation, they calculate the quotient between the distance to its nearest
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neighbor in the training set, as well as the distance of the latter to its nearest neighbor.
If this quotient is much greater than 1, then the observation is flagged as anomalous.
They also propose an anomaly detection method based on the instability of multiple
classification, obtained by bootstrapping the training data. They then set appropriate
thresholds on these measures.

3.2.5 SOM-based approaches

A self-organizing map (SOM) (Kohonen, 2001) is a network of inter-connected units that
are positioned following a certain topology (for instance, a grid-like topology). For each
of these units, a neighborhood of a given radius is defined by the set of units of the
network being in a distance less or equal to the radius. Each unit is represented by a
prototype vector. For each data sample, its closest prototype vector, say m, is being
found and the sample is affected to the corresponding class, i.e. to the set of samples
whose closest prototype vector is m. Thus, SOM defines a partitioning (clustering) of
the data. Then, this prototype vector but also its neighbors are updated so that they
come closer to the data sample. In this way, there is a an organisation of the units (the
map) that respects the topology and neighborhoods of the original data space. Note
that the method is unsupervised and does not require knowledge of the true labels of
the data.

(Harris, 1993) train a SOM on normal data. Then, for each test data sample, he
calculates its distance from its closest prototype vector. If it is over a certain threshold,
then it is flagged as anomalous. Abnormal test data samples are generally expected to
have larger distances from the map than normal ones. (Ypma and Duin, 1997) propose
a similar approach .

(Emamian et al., 2000; Labib and Vemuri, 2002) train a SOM with normal data, not-
ing their trajectories on the map, that is the indexes of the cells to which normal data
has been affected. For a test data sample, we determine its closest prototype vector
and we affect it to the corresponding class. It is generally expected that abnormal test
samples will be affected to different classes than normal ones.

(Marsland et al., 2000) use a SOM complemented with a habituation mechanism which
”forgets” normal data seen often and concentrates on abnormal ones.

3.2.6 Random projection anomaly detection

Recently, a series of works have used random projections to project a high-dimensional
dataset onto a lower dimensional subspace. The theoretical foundation of the random
projection framework lies on the Johnson Lindenstrauss Theorem (Johnson and Lindenstrauss,
1984), which claims that the pairwise distances are well preserved through random pro-
jection (see also results in (Achlioptas, 2001, 2003)).

(Ding and Kolaczyk, 2011) propose an anomaly detection method based on the well-
known principal component analysis (PCA) and the random projection technique. Let
X = (x1, . . . ,xn), xi ∈ R

p ∀i be a dataset. By doing PCA on X and using the first
k principal vectors, we obtain X̂ , which is an approximation of X. Then the l2-norm
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of the residual of the projection is Q = (X − X̂)T (X − X̂). Assuming now that we

have a random projection matrix Φ. Then let Y = l−
1
2ΦTX be its projection to a

subspace of dimension l, l < p. The authors assume that only the projection Y of
the data is observed and not the data X itself. PCA on Y will give us Ŷ with the
squared l2-norm of the residual being Q∗ = (Y − Ŷ )T (Y − Ŷ ). The residual can then
be used to detect anomalies. The contribution of this work is that it shows that, under
certain conditions on the covariance matrix of X, it is possible to apply PCA on Y
yielding Q∗ and nevertheless obtain anomaly detection comparable to that which would
have been obtained by using Q, with the discrepancy between the two made precise.
(Fowler and Du, 2012) also use random projections for anomaly detection.

3.3 Datastream clustering

We saw earlier that the parameters of a GMM are most of the times estimated using the
EM algorithm. Modern data are often arriving sequentially in a possibly infinite time
horizon; for instance, data coming from sensors installed on an object whose behavior
we want to monitor. We usually refer to this data as data streams (or datastreams).

Mining datastreams poses new challenges for standard estimation/optimization algo-
rithms:

• Datastreams are most of the times non-stationary, that is, the distribution that
generates the data changes over time.

• Datastreams can be of infinite (time) horizon. Thus, it is infeasible to keep all
of the past data in memory. This also poses the question of how ’forgetting’ the
contribution of past data should be implemented.

• Many applications require a short response time, as the rate of arrival of the data
is high and critical decisions could be based on the output of the algorithm.

• There are real-world applications (e.g., sensor networks) where limited computa-
tional resources are available.

Thus, in the GMM context, an algorithm should incrementally estimate the parame-
ters by integrating the contribution of each novel data sample in a time-efficient manner
without refitting the mixture on the whole data. In its standard, ’batch’ version, the EM
algorithm iterates through data multiple times until convergence to a local maximum of
the likelihood function.

Online variants of the EM algorithm and methods for the incremental learning of
GMMs have been developed to tackle these issues. The first category of methods focuses
on online parameter estimation, developing online EM algorithms, which can be used in
more general settings (not only Gaussian). In the second category of works, the focus is
given on learning incrementally a GMM. The aim here is to develop methods that can
update parameters as well as the model complexity (number of mixture components) in
an online manner.
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Figure 3.6: Convergence rates for the standard EM (solid line) and the incremental EM
(dotted line) algorithms (Neal and Hinton, 1998). The horizontal axis shows
the number of passes over the data, whereas the vertical axis shows the values
of the log-likelihood.

3.3.1 Online EM

A pionering work is the one of (Titterington, 1984) who derived equations for online
updating of the parameters of models with incomplete data using stochastic approxima-
tion. The method is proposed for the most general case, but it can be adapted to the
standard EM setting. At some point, given posterior probabilities and estimates θ̂(n) of
the parameters after having seen n data samples, a new sample xn+1 is arriving. Then,
its posterior is calculated and the parameters of the model are updated through appro-
priate update equations. The latter were derived using a stochastic gradient descent
technique on the Fisher Information Matrix.

Since this work from (Titterington, 1984), two different types of online expectation-
maximization methods have appeared in the literature: the incremental EM of (Neal and Hinton,
1998) and the online EM (Sato and Ishii, 2000; Cappé and Moulines, 2009).

(Neal and Hinton, 1998) proposed a view of EM that justifies incremental variants of
EM. They reformulate standard EM as a procedure in which we perform a maximization
of a function at both steps. They show that we can think of the EM process as contin-
ually updating the sufficient statistics. In this view, when we process a data sample at
each iteration, we remove the contribution of the previous data sample to the sufficient
statistics and replace it with the contribution of the new sample. The algorithm makes
multiple passes over the data. An inconvenience is that the matrix of sufficient statistics
has to be kept in memory for all past data. In other words, the memory requirements
grow linearly with the number of data. As for time requirements, multiple iterations
of the algorithm will sometimes take only slightly more time than one iteration of the
standard algorithm according to the authors.

(Sato and Ishii, 2000) proposed an online EMmethod, later generalized by (Cappé and Moulines,
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2009), based on a convex combination of old and updated sufficient statistics. This
means that new data is being gradually incorporated into the model through their suf-
ficient statistics, while forgetting older contributions. The proposed method uses a
time-decaying learning rate parameter to control this process.

(Samé et al., 2007) develop an online classification expectation-maximization (CEM)
algorithm . The standard (batch) CEM (Celeux and Govaert, 1992) is simply a classi-
fication version of the standard EM, where a ”hard” clustering step is added between
the expectation and the maximization step. (Samé et al., 2007) reformulate CEM so
that a stochastic version can be derived and they then adapt the update equations given
by (Titterington, 1984) for the M-step to the CEM context.

3.3.2 Incremental Learning of GMMs

The works in this category focus on incrementally learning a GMM, that is, adapting
the model parameters and the number of groups incrementally. Note that a number
of works among those presented below, there are some which operate incrementally in
building the GMM but implicitly assume that the dataset is fixed, that is, they are batch
methods and cannot be applied in an online context. However, we present them as well
because they have introduced criteria and techniques for updating the model complexity.

(Ueda et al., 2000) propose an EM which splits components in areas with high pop-
ulation and merges components in areas with low population, in order to avoid local
maxima of standard EM algorithm. It is a batch method. They begin by performing
standard EM until convergence to obtain an initial mixture. They then choose which
mixture components to split and/or merge. For splitting, they use a Kullback-Leibner
divergence based criterion, while for merging, a posterior probability dot product cri-
terion. They iterate this procedure until they find a model of higher likelihood via
the split-and-merge operations. It has to be noted that split and merge operations are
performed simultaneously and thus, the total number of mixture components does not
change.

(Vlassis and Likas, 2002; Verbeek et al., 2003) propose a scheme for greedy learning of
GMMs. Initially, at iteration t = 1, they start with the optimal one-component mixture.
At each iteration, the algorithm is searching for the optimal (t+ 1)-component mixture
by plugging in a new component with weight α. The overall new mixture is then a
convex combination of the existing mixture (weighted by 1−α) and the new component
(weighted by α). Clearly, this is an optimization problem, which is solved by launching
multiple partial EMs (for a few iterations) with different initializations, keeping the one
which gives the largest log-likelihood. This procedure is being iterated until a stopping
criterion is met.

(Hall et al., 2005) propose a method for learning GMMs incrementally. Initially, they
merge two existing GMMs (that is, the existing GMM and the new data modeled by
a GMM) by trivially combining their parameters. Next, they simplify their model by
merging components based on weights calculated using links of groups between them by
setting a threshold on the matrix of Chernov bounds.
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(Yang and Zwolinski, 2001) start with a large number of components and gradually
fit a mixture to the data based on mutual information theory. If a mixture component
has a low mutual information, then it is assumed to be statistically independent of
the other components of the system and cannot be removed. On the contrary, if its
mutual information is large, then it is assumed that it is statistically dependent and
can be removed without significant loss of information. Components are being removed
iteratively until the mutual information of the system becomes non-positive. Then, the
mixture constructed from this optimal set of components will accurately estimate the
true mixture.

(Song and Wang, 2005) propose a method for online learning of GMMs. They suppose
that data arrive in blocks and maintain only sufficient statistics. They perform an EM
on the newly arrived data. They merge statistically equal components, based on W and
Hotelling’s T 2 statistics to check for covariance matrices and means equality, respectively.
Performances are equivalent to those of standard EM.

(Dang et al., 2009) have developed an EM-based algorithm for data streams, i.e. data
arriving sequentially. They suppose that data arrive in time slots and they model data
points in each time slot by a GMM. They keep only data belonging the b last time slots
and in particular, sufficient statistics for each of them, from which they derive update
equations for the M-step. After each EM run, split and merge operations are performed.
More specifically, two components are merged if they are small and are close enough,
while a component is split across a specific dimension if it is large and has high variance.
After these operations are performed, the algorithm ’forgets’ the oldest time slot by
subtracting its sufficient statistics from the model.

(Arandjelovic and Cipolla, 2006) make an assumption of temporal coherence for the
data, i.e. that data points which are close (in a temporal sense) will be in general highly
correlated. In practice, this leads to simple update equations for the mixture parameters.
It also means that no ’old’ data has to be kept in memory. Actually, at each time step,
only two GMMs are kept, the so-called ’historical’ GMM and the current GMM, with the
latter being the former updated with the novel data point. It is a three-stage procedure:
the at the first stage, the historical mixture is updated with the novel data sample. In
the second stage, all components are being split in a particular manner, and in the third
stage components are merged following a MDL-based criterion.

(Declercq and Piater, 2008) propose an approach for online learning of GMMs. Data
arrive in blocks. On the first level, there is what they call a ’precise’ mixture model
which is essentially a GMM, aiming at modeling data with high precision. On the top
of this, there is an ’uncertain’ mixture model, which is a distribution with a weighted
sum of Gaussian and uniform components. Two components of the uncertain model
are merged following a statistical measure called fidelity, which measures how close is
a distribution to being Gaussian. If at some point, data modeling is oversimplified
(following the fidelity measure) due to successive merges, components of the uncertain
model are split according to their underlying precise model.

(Engel and Heinen, 2011) propose an incremental method for learning GMMs. The
method is operating on data streams, processing data samples one by one. It begins with
one single component centered on the first data point with a user-specified variance. A
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new mixture component is added if the likelihood of a new data point is smaller than
a novelty threshold, which depends on another user-defined parameter. The criterion
defines the minimun acceptable likelihood of a data point as a fraction of the maximum
value of the likelihood function. If it is not the case, the mixture is refitted on the
data including the new data point by EM. The authors derive update equations for the
M-step.

Finally, several works have treated the problem of clustering datastreams in a non
probabilistic setting (Babcock et al., 2003; Domingos et al., 2001; Guha et al., 2000a;
O’callaghan et al., 2002). In a number of these works, some extensions of the popular
k-means or k-median algorithms are developed in order to cluster data streams. A rather
different approach is adopted in (Aggarwal et al., 2004), where an online k-means-like
clustering component is combined with an offline one, in order to better capture the
evolution of the data stream. (Yang, 2003) cluster streams and not raw data based on
a weighted distance between streams. For a broad presentation of heuristic clustering
algorithms for data streams, see (Gaber et al., 2005).

Other works have extended existing anomaly detection algorithms to the online set-
ting. (Pokrajac et al., 2007) have extended the LOF algorithm of (Breunig et al., 2000)
and (Kriegel et al., 2011) the PreDeCon algorithm of (Bohm et al., 2004).

3.4 Conclusion

The main core of the chapter was dedicated to a survey on anomaly detection and
clustering of data streams. We have also presented notions of model-based clustering,
where we addressed, among others, the questions of inference and model selection.

In this Thesis, our goal is to use model-based clustering methods in order to detect
anomalies in data streams. In the next chapter, we start with the simpler problem of
detecting anomalies in an offline batch mode, that is, on a fixed dataset and with no
online estimation of the parameters being involved. To this extent, we present a robust
model-based clustering method for high-dimensional data which makes use of trimming
to detect anomalies.
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Chapter 4
Robust model-based clustering of

high-dimensional data

In Chapter 3 we introduced model-based clustering principles. We also saw that a
characteristic of modern data is that they contain many variables, i.e. they are high-
dimensional. If we apply model-based clustering algorithms to high-dimensional data in
a straightforward manner, then we will see that they perform poorly due to problems
related to the curse of dimensionality and in particular, the over-parametrization of the
models.

Moreover, modern data, especially those composed of measurements issued from real-
world systems, can also contain anomalies due to defects or failures of their mechanical
components or measurement instruments. Unfortunately, most model-based clustering
methods are not robust to anomalies. Indeed, their estimates tend to be corrupted by
the presence of anomalous data samples.

In this Chapter, we introduce the High-Dimensional Robust Clustering (HDRC) al-
gorithm, which was designed to cope with high-dimensional data containing anomalies.
The proposed algorithm combines subspace clustering with robustness to anomalies,
achieved by the use of the trimming technique. Mathematical details of the algorithm
are given and experiments on simulated and real-world data are presented.

As a sort of introduction to high-dimensional clustering and robust clustering, we
briefly review advancements in those fields in sections 4.1 and 4.2. Section 4.1 also
contains details on a specific subspace clustering algorithm on which we were based to
construct HDRC.

4.1 Subspace clustering

Since data often live in subspaces of a dimension lower than this of their original, high-
dimensional space, dimension reduction methods are frequently used in practice to reduce
the dimension of the data before the clustering step. Feature extraction methods, such
as principal component analysis (PCA), or feature selection methods are very popular.
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However, dimension reduction techniques usually provide a sub-optimal data represen-
tation for the clustering step since they imply an information loss which could have been
discriminant.

To avoid the drawbacks of dimension reduction, several recent subspace clustering ap-
proaches have been proposed to allow model-based methods to cluster high-dimensional
data efficiently. We present below some of the methods belonging to this category.

4.1.1 Related work

(Banfield and Raftery, 1993) proposed a spectral decomposition of the group covariance
matrices as follows

Σk = λkDkAkDk
T , (4.1)

where Dk is the matrix of the eigenvectors of Σk, Ak is a diagonal matrix with the
normalized eigenvalues of Σk, sorted in decreasing order and λk = det(Σk)

1/p, with p
being the dimension of the data. These terms control the volume (λk), the orientation
(Qk) and the form of the class density (Ak), respectively. This decomposition has been
motivated by a need for parsimony, that is, having models with fewer parameters to
estimate and thus, overcome problems related to the curse of dimensionality. This
formulation allows for defining a family of models by imposing constraints on λk,Dk, Ak.

Subspace clustering methods are searching to model the data in subspaces of much
lower dimension and, thereby, avoid numerical problems and boost clustering perfor-
mance. To begin with, the standard factor analysis (FA) model (Basilevsky, 2009;
Bartholomew et al., 2011) links linearly the p-dimensional random vector X to a d-
dimensional latent vector Y :

X = UY + µ+ ǫ (4.2)

The p× d factor matrix U relates the two random vectors and µ ∈ R
p is a fixed location

parameter. It is also assumed that the error term is distributed according to ǫ ∼ N (0,Ψ)
where Ψ is a diagonal covariance matrix. When d < p, X provides us with a parsimonious
representation of X. In this context, d is interpreted as the intrinsic dimension of X.

The mixture of factor analyzers (MFA) may be considered as the earliest and the
most general subspace clustering method. MFA both clusters the data and locally re-
duces the dimensionality of each cluster.The MFA model differs from the FA model in
that it allows for different local factor models, in different regions of the input space,
unlike FA, which assumes a common factor model for the entire space. MFA is an ex-
tension of factor analysis to a mixture of K factor analyzers. This approach, introduced
by (Ghahramani et al., 1996), was generalized a few years later by (McLachlan et al.,
2003), which removed in particular the constraint on the variance of the noise. The MFA
model was also extended by (Baek et al., 2010), which introduces the mixture of factor
analyzers with common factor loadings (MCFA) by adding restrictions on the means
and the covariance matrices.

A general framework for the MFAmodel, which includes the works of (Ghahramani et al.,
1996) and (McLachlan et al., 2003), was also proposed by (McNicholas and Murphy,
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2008). The authors propose a family of models known as the expanded parsimonious
Gaussian mixture model (EPGMM) family. They derive 12 EPGMM models by con-
straining the terms of the covariance matrix to be equal or not, considering an isotropic
variance for the noise term or re-parametrizing the factor analysis covariance structure.

Recently, (Bouveyron and Brunet, 2012) have proposed the Discriminative Latent
Model (DLM), which is a family of mixture models which fit the data into a common
discriminative subspace. DLM differs from the FA-based models in that, in the former,
the latent subspace is common to all groups and is assumed to be the most discriminative
subspace of dimension d. Moreover, the FA-based models choose the latent subspace(s)
maximizing the projected variance whereas the DLM model chooses the latent subspace
which maximizes the separation between the groups. Let us note that the inference of
the DLM models is not possible with the EM algorithm and (Bouveyron and Brunet,
2012) have proposed an alternative inference algorithm, called the Fisher-EM algorithm.

4.1.2 High-Dimensional Data Clustering

(Bouveyron et al., 2007a,b) proposed a family of 28 parsimonious and flexible Gaus-
sian models to deal with high-dimensional data. Their approach combines dimension
reduction, parsimony and regularization in order to cluster efficiently high-dimensional
data.

Given a set of data samples (x1, . . . ,xn) ∈ R
p, HDDC assumes that the density of the

data is given by a mixture of K Gaussian distributions

f(x) =

K
∑

k=1

πkφ(x;µk,Σk)

where µk,Σk are the mean vector and the covariance matrix for the k-th group, respec-
tively. The eigendecomposition of Σk gives

Σk = QkΛkQk
T

where Qk is a p×p orthogonal matrix which contains the eigenvectors of Σk and Λk is a
p× p diagonal matrix containing the associated eigenvalues (sorted in decreasing order).
The key idea is to re-parametrize the matrix Λk, such as Σk has only dk + 1 distinct
eigenvalues, with dk < p:

Λk =





















ak1 0
. . .

0 akdk

0

0

bk 0
. . .

0 bk



























dk















(p− dk)

(4.3)

where the dk first values ak1, . . . , akdk parametrize the variance in the group-specific
subspace and the p − dk last terms (bk) model the variance of the noise. Therefore,
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Figure 4.1: Two-dimensional subspaces, E1 and E2, for each of the two groups of a GMM
of three-dimensional data. Variance in each group-specific subspace is given
by the parameters a, while the noise variance is given by the parameters b.
The noise variance for each group is contained in a subspace orthogonal to
the subspace of the group (Bouveyron et al., 2007b).

dk is the intrinsic dimension of the data for the group k. The matrices Qk define
the orientation of the k-th group. Figure 4.1 illustrates the role of the parameters
akj and bk graphically. With this parametrization, these parsimonious models assume
that, conditionally to the groups, the noise variance of each cluster k is isotropic and
is contained in a subspace which is orthogonal to the subspace of the kth group (see
Figure 4.1).

The parameters of the model are µk, Σk, Qk, akj and bk, with j = 1, . . . , dk and
k ∈ {1, . . . ,K}. Parameter estimates can be obtained using the EM algorithm. In the
E-step, we calculate the posterior probabilities of the classes given the current estimate
of the parameter values and in the M-step we estimate the parameters given the posterior
probabilities. The intrinsic dimension dk is determined using the empirical scree test of
Cattell (Cattell, 1966), which searches for a changepoint in the eigenvalues.

By imposing appropriate constraints on the model parameters Qk, akj, bk and the
intrinsic dimension dk, one can obtain a family of different models. For instance, if we set
dk = d , ∀k = {1, . . . ,K}, then we obtain the popular Mixture of Probabilistic Principal
Component Analyzers (MPPCA) model of (Tipping and Bishop, 1999a,b). For a full list
of models, the reader can refer to (Bouveyron et al., 2007a). Figure 4.2 shows the form
of different models in an illustrative two-dimensional example. Note that the notation
proposed in (Celeux et al., 1996) is used to distinguish between the models. Thus, the
most general one is written as [akjbkQkdk], which means that no constraints are imposed
on the parameters. Similarly, the MPPCA model can be written as [akjbkQkd].
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Figure 4.2: The influence of parameters on the class densities (Bouveyron, 2006).

We saw earlier that in order to cluster data in the model-based setting, one uses the
MAP rule on the posterior probabilities. The aforementioned rule assigns each data sam-
ple to the class with the highest posterior probability. It can be shown (Bouveyron et al.,
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Figure 4.3: Subspaces Ek and E
⊥
k associated with the k-th group (Bouveyron et al.,

2007b). Here, Pk(x) is the projection of the data sample x on the subspace
associated with group k.

2007a) that the classification step of the EM algorithm estimating the parameters of the
model can be expressed through a classification cost function Γk(x). Naturally, its exact
expression depends on the form of the model. For instance, for the most general model
[akjbkQkdk], we have

Γk(x) = −2 log(f(x,θk))

= ‖µk − Pk(x)‖
2
Ak

+
1

bk
‖x− Pk(x)‖

2 +

dk
∑

j=1

log(akj) + (4.4)

(p− dk) log(bk)− 2 log(πk)

with ‖x‖2Ak
= xtAkx,Ak = QkΛ

−1
k Qt

k and Pk(x) = QkQ
t
k(x−µk)+µk is the projection

of the data to the subspace of the k-th group. Cost functions for the other models are
given in (Bouveyron et al., 2007a).

Figure 4.3 illustrates the utility of the cost function for the clustering task. As we see
in Equation (4.4), its value depends on two distances: ‖µk − Pk(x)‖Ak

which depends
on Ak and 1

bk
‖x−Pk(x)‖

2, which is the Euclidean distance of x to its projection on the
subspace of the group to which it was assigned. Thus, the classification function Γ(x)
(Equation 4.4) will assign a data sample to the class whose subspace is nearest to this
sample and the projection of which is the nearest to the center of the class.

We remark that by using the above formulation, we do not have to explicitly inverse
the group covariance matrices, a procedure which tends to be complicated when the
matrix is ill-conditioned. Indeed, the variance of the classes enters the model through
the parameters a and b and not the covariance matrix itself. Moreover, the projection
of the data on the subspace orthogonal to the group specific subspace does not appear
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Algorithm 3 Pseudo-code for the HDDC algorithm

Input: Data {x1, . . . ,xn} ∈ R
p, number of groups K, threshold ε, maximum iteration number

maxit
Output: Estimated parameters θ̂
1: Initialize to acquire an initial estimate θ̂0.
2: q = 1
3: while | L(q) − L(q−1) |≥ ε OR q < maxit do

4: E-step

tik = P
(

Z = k | X = xi, θ̂
(q−1)

)

5: M-step Update the estimates to obtain θ̂(q) =
(

π̂k, µ̂k, âkj , b̂k, Q̂k, dk

)

dk : Cattell’s test to find a changepoint in the eigenvalues

π̂k =
nk

n

µ̂k =
1

nk

n
∑

i=1

tikxi

âkj = λkj

b̂k =
1

p− dk



tr(Sk)−
dk
∑

j=1

λkj





Q̂k : the eigenvectors associated with the dk largest eigenvalues of Sk

where nk =
∑n

i=1 tik, n =
∑K

k=1 nk and Sk = 1
nk

∑n

i=1 tik(xi − µ̂k)(xi − µ̂k)
T
.

6: Evaluate the likelihood function L(q).
7: q = q + 1
8: end while

in the function. This means that we do not have to calculate the p− dk last columns of
the group orientation matrices Qk, k = {1, . . . ,K}.

The detailed EM algorithm for [akjbkQkdk], the most general model, is given as an
example (Algorithm 3). Naturally, different models have different update equations
(M-step) which can be found in (Bouveyron et al., 2007a).

4.2 High-Dimensional Robust Clustering

In the previous section, we saw how subspace clustering methods, like HDDC, can cope
with high dimensionality. However, if the data contain anomalies, parameters estimates
of model-based clustering methods will be corrupted. Indeed, this is a problem that
most traditional clustering algorithms face. For instance, the popular k-means algo-
rithm (MacQueen et al., 1967), is very sensitive to anomalies and will, thus, behave
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poorly when confronted to such data. A solution to this shortcoming is to robustify
clustering by trimming outlying (abnormal) data samples in a straightforward manner.
In this section, we first give a short introduction to robust clustering by presenting rela-
tive existing works. We then introduce the High-Dimensional Robust Clustering (HDRC)
algorithm that can cope with high-dimensional data with anomalies. In the last part of
the section, we present experiments using HDDC and relative results.

4.2.1 Introduction to robust clustering with trimming

The simplest trimming example is the trimmed mean which removes a proportion α/2
of the largest and the smallest data samples before calculating the sample mean.

Early works include the least trimmed squares (LTS) and least median squares (LMS)
for regression (Rousseeuw and Leroy, 2005), as well as the Minimum Covariance De-
terminant (MCD) and Minimum Volume Ellipsoid (Rousseeuw, 1985), which are both
location-scatter estimators (single-class case) using the trimming principle.

(Cuesta-Albertos et al., 1997) developed a trimmed k-means. While standard k-
means (MacQueen et al., 1967) optimizes the criterion

arg min
m1,...,mK

n
∑

i

min
j=1,...,K

‖xi −mj‖
2

where (m1, . . . ,mK) are the centers of the K clusters and n the number of data sam-
ples, the trimmed k-means of (Cuesta-Albertos et al., 1997) solves a double optimization
problem

argY min
m1,...,mK

n
∑

xi∈Y

min
j=1,...,K

‖xi −mj‖
2

where Y ranges on the class of subsets of size [n(1 − α)], i.e. of all possible nor-
mal datasets among the data and α is the proportion of the data to be trimmed.
(Garćıa-Escudero et al., 1999) present results on robustness properties of the trimmed
k-means compared to the standard k-means.

A well-known limitation of standard k-means is that it cannot handle heterogeneous
clusters since it assumes that the covariance matrices for all clusters are equal to
Σ1 = . . . = Σk = σ2I, where I is the identity matrix. (Gallegos, 2002; Gallegos and Ritter,
2005) have developed a probabilistic clustering model for heterogeneous clustering called
”spurious-outliers” model, which maximizes the log-likelihood of the ”normal” data
whose indexes, for each cluster j = 1, . . . ,K are in Rj

max
K
∑

j=1

∑

i∈Rj

log φ(xi;µj,Σj), (4.5)

under the constraint # ∪K
j=1 Rj = [(1− α)n]. Here φ(·) is the Gaussian density.

Unfortunately, the maximization in (4.5) is an ill-posed problem since the function
is unbounded. If one of the determinants of the group covariance matrices goes to 0,
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Figure 4.4: TCLUST (Garćıa-Escudero et al., 2008) on a simulated 2D dataset with
α = 0.1. Black circles are the data samples that TCLUST trimmed.

the function goes to ∞. Therefore, it is necessary to impose constraints on the group
covariance matrices to eliminate this inconvenience.

In this direction, (Gallegos, 2002) proposed a method based on unit group covari-
ance matrices, while (Gallegos and Ritter, 2005) assume that groups share a common
covariance structure. (Garćıa-Escudero et al., 2008) propose TCLUST, a GMM-based
trimming method imposing a constraint on the ratio of the largest to the smallest eigen-
value among eigendecomposition matrices of all group covariance matrices. (Fritz et al.,
2012a) have recently proposed a faster variant of the TCLUST algorithm. A compre-
hensive review of the above works is given in (Garćıa-Escudero et al., 2010).

(Neykov et al., 2007) propose the use of the Weighted Trimming Likelihood Estimator
(WTLE). The goal is to estimate parameters and the data samples to trim so that a
weighted version of the negative log-likelihood of the model is minimized. This problem
is infeasible for large data sets and a general method to approximate its solution is given
in (Müller and Neykov, 2003).

A problem with trimming methods is that the proportion of data samples to trim, α,
has to be defined by the user. In practice, this is never known in advance. Moreover, the
data samples that will be actually trimmed depend on the clustering done. For TCLUST
to trim the true outliers, an assumption of ”well-clusterized” data is needed. The only
free parameter related to clustering is K, the number of groups or classes. Thus, α and
K have to be chosen simultaneously. For TCLUST, there is also the parameter c that
determines the strength of the constraint on the eigenvalue ratio. However, it may be
set following domain or expert knowledge.
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The ”forward search” (Atkinson et al., 2006) which is based on random starts is a ro-
bust criterion for choosing K. (Gallegos and Ritter, 2009) propose to use BIC (Schwarz,
1978) corrected by goodness-of-fit χ2 tests on the mixture groups in order to determine
the value of K. (Neykov et al., 2007) propose a graphical tool to select values of the
trimming parameter α and number of groups K, by monitoring the value of the BIC
criterion calculated using the trimmed likelihood of the model. (Garćıa-Escudero et al.,
2008) propose an exploratory graphical method to choose K and α based on the trimmed
log-likelihood of the model.

Recently, (Punzo and McNicholas, 2013) proposed a robust GMM clustering method
that estimates α via the Expectation-Conditional Maximization algorithm (Meng and Rubin,
1993). They use mixtures of contaminated Gaussian distributions, which are themselves
a mixture of two components: one that corresponds to normal data and another one
for the anomalies. The latter has the same mean as the former but with an inflated
variance. Thus, the authors assume a two-level mixture model. They use ECM to es-
timate the parameters. In the E-step, they calculate the posterior probabilities of the
groups for each data sample, as well as the distribution of the binary variable vki, which
is 0 if observation i in group k is ”normal” and 0, otherwise. In the first conditional
maximization step the means, covariance matrices, the parameter α and the mixture
proportions for the second-level of the GMM are being estimated for each contaminated
Gaussian. In the second conditional maximization step, the inflation parameter of the
anomaly component in each contaminated Gaussian is estimated. Note that there is an
α per class, that is, αk, k = {1, . . . ,K} instead of a global one as in all previous works.

4.2.2 High-Dimensional Robust Clustering

From the overview given in the previous section, it is clear that those methods cannot
handle high-dimensional data. Indeed, the curse of dimensionality will result in estimates
being corrupted.

We introduce a novel algorithm, called High-Dimensional Robust Clustering (HDRC),
which combines HDDC and the trimming technique, therefore resulting in a robust
clustering algorithm which is efficient for high-dimensional data.

In particular, we extend HDDC by adding an intermediate trimming step (T-step)
between the E step and the M step of the EM part of the algorithm:

• At iteration q, the E step computes the posterior probabilities

t
(q)
ik = P(Z = k|X = xi)

for i = 1, . . . , n and k = 1, . . . ,K through the formula

t
(q)
ik =

1
K
∑

ℓ=1

exp
(

1
2(Γ

(q)
k (x) − Γ

(q)
ℓ (x))

)
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where the classification function Γ
(q)
k has the following form when akj = ak, k =

1, ...,K, j = 1, ..., dk , that is, for the model [akbkQkdk]:

Γ
(q)
k (x) =

1

ak
‖µk − Pk(x)‖

2 +
1

bk
‖x− Pk(x)‖

2

+dk log(ak) + (p− dk) log(bk)− 2 log(πk)

Here, Pk is the projection operator on the subspace of the k-th group and model
parameters are estimated in the M-step at iteration q − 1.

• The T step trims a proportion α of the data samples with smallest values for

max
k=1,...,K

π
(q)
k φ (x;µk,Σk)

It can be shown that this is equivalent to trimming the data samples with the
largest values for

min
k=1,...,K

Γ
(q)
k (x)

Let R(q) be the set of the trimmed data samples.

• The M step then updates the estimates of model parameters by maximizing the
expectation of the trimmed complete likelihood conditionally to the posterior prob-

abilities t
(q)
ik for the data samples xi /∈ R(q). Update formulas for the parameters

can be found in (Bouveyron et al., 2007a). As an example, we give the update
equations for the [akbkQkdk] model, where the variance in each subspace is the
same for all its dimensions

π̂k =
nk

n(1− α)

µ̂k =
1

nk

n(1−α)
∑

i=1

tikxi

âk =
1

dk

dk
∑

j=1

λkj

b̂k =
1

p− dk



tr(Sk)−

dk
∑

j=1

λkj





Sk =
1

nk

n(1−α)
∑

i=1

tik(xi − µ̂k)(xi − µ̂k)
T

Qk : the eigenvectors of Sk associated with the dk largest eigenvalues

dk : scree test of Cattell

where Sk is the empirical covariance matrix for group k, nk =
∑n(1−α)

i=1 t
(q)
ik .
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4.2.3 Model selection and hyperparameter calibration

As we mentioned earlier, K, the number of mixture groups, and α, the anomaly propor-
tion in the data, are interdependent. More precisely, the clustering given by a robust
clustering algorithm and the data samples that it will trim depend one on another. A
change in K can lead the trimming algorithm to consider that an up-to-here normal data
sample is no longer well explained by the model and can be abnormal, or the other way
around. Moreover, if we change α then this can immediately alter the clustering given
by the algorithm, since it is possible that it trims some other data samples. Therefore, as
we saw earlier, some authors (Garćıa-Escudero et al., 2008; Neykov et al., 2007) suggest
that K and α be chosen simultaneously. Two empirical techniques have been proposed
for this purpose in the aforementioned works. They are based on a trimmed BIC cri-
terion (Neykov et al., 2007) and a trimmed likelihood criterion (Garćıa-Escudero et al.,
2008).

Trimmed BIC

In order to present the technique proposed by (Neykov et al., 2007), we are going to use
the example they use in their work. For each possible combination of K = 1, . . . , 5 and
α = 0, . . . , 0.45, they run their algorithm multiple times on the data. They use a dataset
used by (McLachlan and Peel, 2000), composed of 3 bivariate Gaussian components. For
each one of these executions, they calculate the value of the BICt criterion, i.e. BIC
after trimming :

BICt = −2 logLt + v log nt. (4.6)

where Lt is the maximized likelihood for the nt non-trimmed data samples and v is the
number of parameters of the model. For each combination of K and α, the authors keep
the median BICt value over all the executions of the algorithm. These median values
can be found in Figure 4.5a.

Then, they take the minimum of each column (each value of α), denoted in italics
in the table and plot it versus its respective α value (Figure 4.5b). Thus, each point
in Figure 4.5b is the minimum BICt value over all possible values of K for a given α.
The dashed line shows the changepoint around α = 30%. The values of BICt seem
to be stabilizing after α = 30% and for K = 3. Therefore, according to the proposed
technique, the authors choose K = 3 and α = 0.3. As they state, the real anomaly
proportion in this specific dataset is slightly higher but some of the anomalies fit the
mixture.

Trimmed classification likelihood

A similar technique has been proposed in (Fritz et al., 2012b), where use of TCLUST
algorithm is being made. The difference with (Neykov et al., 2007) is that on the one
hand, (Fritz et al., 2012b) use an underlying clustering algorithm (TCLUST) which is
more sophisticated and on the other hand, their technique is based on the trimmed
log-likelihood rather than BIC.

47



(a)

(b)

Figure 4.5: (a) Table of BICt for different values of K and α ((Neykov et al., 2007)). See
the text for more details. (b) Minimum BICt values for each α. The dashed
line shows the changepoint of the curve.

The authors generate a dataset of K = 2 classes with the true anomaly proportion at
α = 5%. They run TCLUST with all possible combinations of values for K and α in a
given, user-defined range. Note that they do not replicate the experiment multiple times
for each combination, as with the trimmed BIC technique. They then plot the trimmed
likelihood versus the values of α for each K = 1, 2, 3, 4 (Figure 4.6). Thus, there is as
many curves as different values of K.

Figure 4.6 shows that right after α = 0.05, the curves for K = 2, K = 3 and K = 4
”converge”. Formally, for α ≥ 0.05, one observes that

L
(3)
t − L

(2)
t ≈ 0 ≈ L

(4)
t − L

(3)
t (4.7)

where L
(2)
t is the trimmed likelihood function value for K = 2 and so on. The authors

choose the smallest value of α for which (4.7) holds. In this case, it is α = 0.05 which
is, indeed, the true proportion of anomalies among the data. As for K, they choose the
smallest value among all values of K for which (4.7) holds for the given value of α. In
this case, that would be K = 2, which is, indeed, the true number of groups.

Note, however, that for the experiments with this technique in the following sections
we use HDRC instead of TCLUST.

48



Figure 4.6: Example of the trimmed classification likelihood curves versus the values of
the trimming parameter α, as proposed in (Garćıa-Escudero et al., 2008).
Each curve corresponds to a different value of K = 1, 2, 3, 4. Curves for
K = 2, 3, 4 become superposed starting from α = 0.05, leading to the choice
K = 2 and α = 0.05, which are the true values of the parameters for this
example.

4.3 Experiments

We run some experiments to test HDRC on simulated high-dimensional data and real
data: breast cancer data from the UCI machine learning repository1 and industrial data
from the domain of aircraft engine health monitoring supplied by Snecma, the french
aircraft engine constructor.

4.3.1 Evaluation measures

In our experiments, we are interested in measuring the performance of a classifier on
high-dimensional data and in particular: clustering performance on ”normal” data, as
well as anomaly detection and false positive rates. Therefore, we calculate the clustering
accuracy acc (up to label switching) as the ratio of correct cluster assignments to the
size of the dataset

acc =
number of data samples correctly classified

number of data samples

1Obtained by the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. Original
paper using the data (Mangasarian et al., 1995).
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Figure 4.7: Clustering accuracy acc (black solid boxes) and tpr of the anomalies (red
dashed boxes) for the simulated dataset, plotted versus the dimension of the
data. Black circles correspond to extreme observations for the clustering
accuracy, and red crosses to those for the tpr of the anomalies. For K-means
with K=3 the tpr is artificially set to zero (see the text for details).

the true positive rate for the anomalies (tpr), i.e., the anomaly detection rate

tpr =
number of detected anomalies

number of anomalies
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Figure 4.8: Clustering accuracy acc (black solid boxes) and tpr of the anomalies (red
dashed boxes) for the simulated dataset, plotted versus the dimension of the
data. Black circles correspond to extreme observations for the clustering
accuracy, and red crosses to those for the tpr of the anomalies.

as the ratio of data points correctly detected as anomalies to the true number of anoma-
lies, as well as the false positive rate (fpr)

fpr =
number of ”normal” data samples flagged as anomalies

number of ”normal” data samples

as the ratio of ”normal” (non anomalous) data flagged as anomalies by the classifier to
the total number of normal data.
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Figure 4.9: Boxplots of the variables of the breast cancer data.

4.3.2 Application to simulated data

For the simulated dataset, we generated 3 multivariate Gaussians with a total of 1000
data points according to the HDDC model in the p-dimensional space, where
p = 10, . . . , 100. The means and covariance matrices were chosen such that the task
would not be too challenging for the algorithms tested. In particular, we set the param-
eters as follows: a1j = 150 and b1 = 15, a2j = 75 and b2 = 10, a3j = 50 and b3 = 5,
respectively, for the three Gaussians, where j = 1, . . . , dk. The intrinsic dimensions dk
were d1 = 10, d2 = 5 and d3 = 2 for the three groups. We added a quantity of anomalies
equal to 5% ofthe dataset size, uniformly distributed on the interval [−40, 40] for each
of the p variables.

In the experiments, we tested K-means with K = 3 and K = 4, TCLUST and HDRC.
K-means was used as a baseline; we wanted to examine its behavior when it has no
knowledge of the existence of anomalies (K = 3) and when this knowledge is given
explicitly by adding an extra group (K = 4). We proceed to this experiment since it
could be argued that by adding an extra cluster, k-means would succeed in detecting
the anomalies, in fact, that it would actually put all anomalies in this extra cluster.

For TCLUST, we restrict the maximum value for the ratio of the maximum to the
minimum eigenvalues among all group covariance matrices to be c = 50 for the dimension
p > 10. For HDRC we used a random initialization. For TCLUST and HDRC, we set
the number of groups to K = 3 and gave both the true anomaly proportion, that is
α = 0.05. For all the algorithms, the number of initializations was set to 25 and the
maximum number of iterations to 60. For each value of p, we replicated the experiment
25 times.
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tpr (%) fpr %

hdrc 92, 6 3, 3
tclust 92, 2 3, 5

Table 4.1: Mean values for tpr and fpr over all replications of the experiment for HDRC
and TCLUST.

Figures 4.7-4.8 present the clustering accuracy and the true positive rate for the
anomalies for our experiments. We observe that k-means with K = 3 fails in clus-
tering correctly the data. Indeed, the clustering is corrupted by the anomalies. Note
that K = 3 indicates that k-means ”naively” tries to cluster data with anomalies without
being aware of their presence and that is why we did not evaluate the tpr (artificially
set to zero). We also observe that even when an extra group is added with the aim of
modeling anomalies (K = 4), k-means does not do much better. As expected, TCLUST
succeeds in detecting the anomalies in all cases but appears to be sensitive in high di-
mension. The way we simulated data, the anomalies have a large variance and thus, it
should have been easy to detect them correctly. This means that the mediocre perfor-
mance of TCLUST in clustering is, to a great extent, due to the high dimensionality of
the data. Finally, we see that HDRC successfully manages to cluster the data correctly
and detect the anomalies even in high dimension.

4.3.3 Application to breast cancer diagnosis

The breast cancer data contain measurements taken from patients presenting some kind
of breast tumor (benign or malignant). The dataset is composed of 699 data samples of 9
attributes each. The attributes are the following: clump thickness, uniformity of cell size,
uniformity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland
chromatin, normal nucleoli, mitoses. All attributes are integer-valued. Data belong to
two classes: benign (coded by 2) and malignant (coded by 4). There are 458 (65.5%)
data samples belonging to the benign class and 241 (34.5%) to the malignant class.
We have removed 17 data samples with missing values, obtaining a dataset of 682 data
samples.

In this case, we used HDRC as a one-class classifier, since the algorithm was asked to
cluster data into the ’benign’ class and to trim data samples corresponding to the

’malignant’ case. To achieve this, we ran HDRC with K = 1 and we set α = 34.5%,
i.e., to the true proportion of the ’malignant’ class in the data.We initialized the algo-
rithm 25 times.

Table 4.1 shows the anomaly detection rates (tpr) and false detection rates (fpr) over
30 replications for HDRC and TCLUST. We can see that HDRC performs well for a
real dataset attaining a mean of 92, 6% of detection with a fairly low false positive rate.
HDRC performs equally well to TCLUST, which is the actual reference algorithm in the
field of robust model-based clustering. Figure 4.10 shows breast cancer data on the two
first principal components with clustering given by HDRC (Figure 4.10a) and groudtruth
clustering (Figure 4.10b).
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Figure 4.10: Breast cancer data on the first two principal components. Black circles
are the ’benign’ class and red triangles are the samples trimmed (’malig-
nant’) according to (top) HDRC (bottom) groundtruth class assignment.
Proportion of explained variance: 65, 6% (Comp. 1) and 8, 6% (Comp. 2).

4.3.4 Application to aircraft engine health monitoring data

In this section, we present experiments on real-world data from the health monitoring
of aircraft engines. We also discuss how to select hyperparameters K and α.

Introduction to the aircraft engine data

In the aircraft engine domain, the task of engine health monitoring is of crucial impor-
tance. Snecma, the French aircraft engine constructor, performs such tests in a test
bench environment. During a bench test, the engine as well as the test cell itself are
monitored using a wide set of sensors, which can attain even 1000 in numbers.

The measurements taken include performance measurements (pressures, temperatures,
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Figure 4.11: Aircraft engine data of dimension p = 173 from a test cell on the two first
principal components. Proportion of explained variance: 81, 5% (Comp. 1)
and 6, 2% (Comp. 2).

flows, gauges etc.) up to 100Hz, high frequency dynamic measurements (tip timing, ac-
celerometers, microphones) up to 50kHz, and some context information that describes
the test procedure. Snecma’s test cells are monitored with a specific SPC (Statistic Pro-
cess Control) tool that is able to register each sensor at different acquisition frequencies
and output real time graphs with alert bounds. This SPC software also uploads all
data to databases in real-time. A PHM (Prognostic and Health Monitoring) application
is connected to the control system. Data is transfered from the control system to the
monitoring system in real-time. The PHM system then makes use of the stored infor-
mation in the database (Lacaille et al., 2010). We can see an illustration of this schema
in Figure 4.12.

Aircraft engine anomaly detection

Some of the parameters measured are related to the environment of the test defined by
external conditions and the test’s pilot actions (aircraft speed), while others are internal
parameters of the engine (inside temperature and pressure, rotation speed). The former
are called exogenous or environmental variables, while the latter endogenous. For the
anomaly detection task, we are typically interested in the endogenous variables. The
goal of anomaly detection in the aircraft engine health monitoring domain is to be able
to issue a warning whenever there is a malfunction (anomaly) of the engine or the test
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Figure 4.12: Snecma Test System Deployment (Lacaille et al., 2010)

cell, before significant damage occurs to any of the two.
The dataset we consider here consists of 46 830 observations and 173 variables of test

cell data. Each test is a sequence of alternating stationary and non-stationary phases at
different levels. Data on the first two principal components can be seen in Figure 4.11.
The abrupt test stoppage at around t = 45000, designated by the red rectangle in
Figure 4.13a, illustrates a case where the test pilot tried to change the flight phase but
failed due to a malfunction, so he was forced to stop the test abrupty. A zoom-in on
this area is given in Figure 4.13b.

We run HDRC to check if it will correctly detect the outlying data samples (anomalies).
We empirically set K = 6 and gave HDRC α = 4 × 10−5. The value of the trimming
parameter α was set sufficiently small so that there would be no false alarms.

As we can see in Figure 4.13, HDRC succeeds in detecting the anomalies, which
concentrate around the small ”bump” at aproximately t = 45 700 in Figure 4.13b. Note
that the clustering was performed in the p-dimensional space, where p = 173, and that
we plotted only one of the variables in Figure 4.13 for visual clarity. This illustrates the
ability of HDRC to cope with high-dimensional datasets.

4.3.5 Model selection and hyperparameter calibration on aircraft engine

data

As we saw in Section 4.2, empirical methods of determining α andK have been proposed.
We would like to test these methods to real data and in particular, the aforementioned
aircraft engine Snecma data of original dimension p = 173, where we inject some artificial
anomalies. However, Snecma experts do not just process all the 173 variables at once.
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Figure 4.13: (top) Engine rotation speed. Red rectangle shows the area where the anomalies
occured. (bottom) Zoom-in on the anomaly area: the litte ”bump” corresponds
to an engine malfunction. HDRC with K = 6 and α = 4 × 10−5 detects suc-
cessfully the anomalies (red crosses). Note that clustering was performed on the
p-dimensional space with p = 173.

Instead, they focus on some variables of interest, where anomalies can appear, and which
they first correct of the influence of factors that could deteriorate anomaly detection.
Following this work methodology, we conducted this experiment in a slightly different
manner.

In particular, we pick some variables of interest (endogenous) and we correct them
from any environmental influence (due to context or environmental variables). To do this,
we use a simple linear model, regressing the endogenous variables on the environmental
ones. Then, the residuals are, in fact, the corrected endogenous variables. Variables of
both categories were selected following advice from Snecma experts. Table 4.2 lists the
variables used. Note that variables have been anonymized due to confidentiality reasons.
In total, we used 10 variables, 6 of which are environmental and 4 endogenous. This
means that our corrected dataset is of dimension d = 4.
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K = 14 -370015.3 -375094.8 -385357.8 -389337.8 -386513.7 -360908.8

Figure 4.14: Trimmed BIC method on Snecma data. Minimum BICt values plot (top) and
corresponding table of median BICt values (bottom). The vertical red solid line
in the plot shows the true anomaly proportion in the data. In the table, smaller
values for each column are marked in italics. The experiment is non concluding
since there is not a single, clear changepoint in the curve. This can also be verified
at looking at the table.

Environmental variables Endogenous variables

P1 (pressure) T1 (temperature)
MOV1 (shift) VIB2 (vibrations)
MOV2 (shift) VIB3 (vibrations)
MOV3 (shift) LOAD (load)
VIB1 (vibrations)
N2 (rotation speed)

Table 4.2: Environmental and endogenous variables used in the experiment.

Setting X(1) = P1, X(2) = MOV1, X(3) = MOV2, X(4) = MOV3, X(5) = VIB1,
X(6) = N2 we can write the linear model, for each of the endogenous variables in
Y = [T1, VIB2, VIB3, LOAD] as

Yi = β + γ1X
(1)
i + γ2X

(2)
i + γ3X

(3)
i + γ4X

(4)
i + γ5X

(5)
i + γ6X

(6)
i + εi

where i = 1, . . . , n is the index of the data samples and β is the intercept term.
We inject artificial anomalies to the variable T1, so that the proportion of anomalies

in the data reaches 20%. We launch HDDC 25 times for all possible combinations of
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Figure 4.15: Trimmed log-likelihood method on Snecma data. Each curve corresponds
to a particular value for K. The vertical solid line shows the true anomaly
proportion in the data. The experiment is non concluding since there is no
distinct and persistent curve superposition like for the synthetic data (see
Figure 4.6).

K = 4, 5, . . . , 14 and α = 0.05, 0.1, . . . , 0.5.
For the trimmed BIC technique, we can see the graphical result in Figure 4.14. Neither

the form of the curve of minimum BICt values, nor the Table of median BICt values,
allows us to reach to a safe conclusion regarding K and α. When we look at the median
BICt values in the table of Figure 4.14, we can see a changepoint after α = 25%, for
K = 14, but it is not the only one and it is not as clear as the one for the simulated
data back in Figure 4.5). Note here that we ran tests for K = 4, . . . , 14, but we only
present results from K = 12 to K = 14, since they systematically contain the smallest
BICt median values. The experiment is thus non concluding.

The result for the trimmed classification likelihood technique on the same dataset can
be found in Figure 4.15. The experiment is also non concluding, since we cannot locate
a distinct curve superposition as the authors did for simulated data back in Figure 4.6.

4.4 Conclusion and future work

In this chapter, we introduced the High-dimensional robust clustering (HDRC) algo-
rithm, a robust subspace clustering algorithm which can cope with high-dimensional
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data with anomalies. The proposed algorithm is based on the EM algorithm and ro-
bustness is added via the trimming technique, which simply trims, at each iteration, the
less likely data samples, until convergence.

We have shown the effectiveness of HDRC on high-dimensional synthetic data of di-
mension up to p = 100. HDRC also succeeded in detecting abnormal behavior in real
data of dimension p = 173 from the aircraft engine health monitoring domain. We also
showed its use as a one-class classifier on the UCI breast cancer dataset.

Concerning the choice of the trimming parameter α, we experimented with two graph-
ical methods designed for selecting the number of groups K and the trimming parameter
α simultaneously. Unfortunately, both experiments were non-concluding, since it was
not possible to safely choose values for the two parameters. We think that the so-
lution of (Punzo and McNicholas, 2013) (see the introduction to robust clustering in
Section 4.2) is able to solve the issue of choosing α in an elegant way. We are planning
to run experiments to compare HDRC to this work in the near future.

Finally, HDRC is clearly an offline method, that is, it operates on a fixed dataset. The
goal of this Thesis is to address the problem of online anomaly detection. In the next
chapter, we take the first step in this direction, by developing an online (non robust)
subspace clustering algorithm.
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Chapter 5
Online mixture of PPCA

Recent advances in sensor technology, networks, databases and computational and stor-
age power have made it possible to install and maintain complex systems for monitoring
physical or industrial procedures. These systems emit measurements of interest at a
high frequency for infinite (in practice, large) periods of time, forming long series of
data, which are called data streams, or datastreams. In a typical example of such a sys-
tem, there will be p sensors that emit simultaneously at time t a measurement, therefore
giving us a vector of dimension p. We suppose that there are N such emissions yielding
a datastream of length N (number of data samples) and dimension p.

In fact, a great deal of modern data are essentially datastreams issued from industrial
process monitoring. Even if storing such long streams of data can be possible given
modern storage capacities, it is rather impractical. Even if we suppose that an entire
datastream could be stored in a database, mining algorithms would need large amounts
of time to process such a great volume of data, a behavior which is, most of the times, not
desirable in a real-time system where critical decisions have to be taken instantaneously.
In addition, since the number of sensors can be large, datastreams are not only long but
also high-dimensional.

Therefore, mining such data pose two challenges: develop tools for the online execution
of mining algorithms that can efficiently process high-dimensional data.

For this purpose, we propose an online inference algorithm for the mixture of prob-
abilistic PCA model, which is a subspace clustering model and can thus handle high-
dimensional data efficiently. The proposed algorithm relies on an EM-based procedure
and on a probabilistic and incremental version of PCA. Model selection is also consid-
ered in the online setting through parallel computing. We run numerical experiments on
simulated and real data and demonstrate the effectiveness of our approach by comparing
it with state-of-the-art online EM-based algorithms.

62



5.1 Online mixture of PPCA

In this section, we restrict ourselves to the mixture of probabilistic PCA (MPPCA)
model and consider its online inference. Model selection and visualization of the data
into low-dimensional subspaces are also discussed.

5.1.1 Mixture of probabilistic PCAs

The mixture of PPCA model (Tipping and Bishop, 1999b) is a constrained version of
the mixture of factor analysis (MFA) model (Ghahramani et al., 1996). Once again,
we consider that we dispose of a datastream X = {x1, . . . ,xN} ∈ R

p, where the x

are independent realizations of a random vector X ∈ R
p. In addition, {z1, ..., zn} are

assumed to be independent realizations of an unobserved (latent) random variable Z
with Z(Ω) = {1, ...,K}. The MPPCA model assumes that the observed random vector
X ∈ R

p is, conditionally to Z, linked to a d-dimensional latent random vector Y ∈ R
d

through a linear transformation of the form:

X|Z=k = UkY + µk + ǫ,

where Uk is the p × d orthogonal transformation matrix, µk ∈ R
p is the mean vector of

the k-th factor analyzer and ǫ ∈ R
p is a noise term. The dimension d of the latent vector

is such that d < p and assumed to be known (the choice of d is discussed in Section 3.3).
Moreover, ǫ is assumed to be, conditionally to Z, a centered Gaussian noise term with
a diagonal covariance matrix Ψk = bkIp:

ǫ|Z=k ∼ N (0, bkIp).

Besides, the unobserved latent factor Y ∈ R
d is assumed to be, conditionally to Z,

distributed according to a Gaussian density function such as:

Y|Z=k ∼ N (0, Id).

This implies that the conditional distribution of X is also Gaussian:

X|Y,Z=k ∼ N (UkY + µk, bkIp), (5.1)

and its marginal distribution is therefore a mixture of Gaussians:

f(x) =

K
∑

k=1

πkφ (x;µk,Σk)

where πk is the mixture proportion for the k-th component, φ is the multivariate Gaus-
sian density function and Σk = U t

kUk + bkIp.
In order to facilitate the description of our online inference procedure, let us slightly

re-parametrize the above model. Let us first introduce the orthonormal transformation
matrix Qk which is such that its j-th column qkj = ukj/ ‖ ukj ‖ where ukj is the
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corresponding column of Uk. If the transformation matrix Qk is orthonormal, it is then
necessary to report the variance of the latent factor within the distribution of the latent
factor. We therefore now assume that:

Y|Z=k ∼ N (0,∆k),

where ∆k = diag(λk1, . . . , λkd). The marginal distribution of X is then still a mixture
of Gaussians but with covariance matrices Σk = Qt

k∆kQk + bkIp. By denoting by
Wk = [Qk, Q̃k] the p×p matrix made of Qk and an orthonormal complementary Q̃k, the
projected covariance matrix WkΣkW

t
k has the following form:

WkΣkW
t
k =





















ak1 0
. . .

0 akd

0

0

bk 0
. . .

0 bk



























d















(p− d)

where akj = λkj + bk and akj > bk , for k = 1, . . . ,K and j = 1, ..., d. With these
notations, the mixture of PPCA model is fully parametrized by the set of parameters
θ = {πk,µk, Qk, akj, bk, d; k = 1, ...,K}.

It can be shown (Bouveyron et al., 2007a; Tipping and Bishop, 1999a) that, conversely
to the MFA model, the MPPCAmodel is identifiable and its inference can be done using a
simple EM algorithm. In particular, the update formula in the M step for the orientation
matrices Qk and the variance parameters akj and bk are as follows:

• the d columns of Qk are estimated by the eigenvectors associated with the d largest
eigenvalues of the empirical covariance matrix Sk of the k-th group,

• the empirical covariance matrix of the k-th group is Sk = 1
nk

∑n
i=1 tik(xi−µk)(xi − µk)

T

• akj is estimated by the jth largest eigenvalues of Sk,

• bk is estimated by:

b̂k =
1

p− d



tr(Sk)−
d
∑

j=1

âkj



 .

In addition, these update formulas illustrate the strong link between MPPCA and the
principal component analysis (PCA) method, since they both consider eigenvectors cor-
responding to the largest eigenvalues of the covariance matrix eigendecomposition.

5.1.2 Online inference of mixture of PPCA

In order to extend MPPCA to the online setting, we develop hereafter an online EM-
based algorithm which incorporates a probabilistic version of the incremental PCA (Hall et al.,
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1998). We consider here a setting where data samples are arriving in an online manner
and each data sample is being discarded after being processed.

Let us assume that we initially have observed a dataset of n0 data samples(x1, ...,xn0) ∈
R
p and that we have obtained an initial estimate θ̂(n0) of these data. In practice, we

obtain an initial estimation of the model parameters with a standard MPPCA on this ini-
tial dataset. Let us set n = n0 and consider the arrival of a new data sample xn+1 ∈ R

p.
The objective is therefore to update the estimate of θ from the sole knowledge of θ̂(n)

and xn+1. This is a two-step procedure which involves an expectation step (E-step) and
a maximization step (M-step).

The E-step

Before updating the estimate of θ, it is necessary to compute the expectation of the

complete log-likelihood E
[

Lc (x, z; θ) |θ̂
(n)
]

conditionally to the current estimate θ̂(n).

This quantity will be maximized in the second step to obtain the new estimate θ̂(n+1)

of θ. As with all mixture models, the computation of the conditional expectation of the
complete log-likelihood reduces, in the context of the MPPCA model, to the computation

of the probabilities t
(n+1)
k = P (Z = k|X = xn+1), k = 1, ...,K, that the new data sample

belongs to the k-th mixture component. These probabilities can be computed as follows:

t
(n+1)
k =

πkφ
(

xn+1; θ̂
(n)
k

)

K
∑

ℓ=1

πℓφ
(

xn+1; θ̂
(n)
ℓ

)

= 1

/

K
∑

ℓ=1

exp

(

1

2
(Γ

(n)
k (xn+1)− Γ

(n)
ℓ (xn+1))

)

, (5.2)

where the classification function Γk has the following form:

Γk(x) = ‖µk − Pk(x)‖
2
Ak

+
1

bk
‖x− Pk(x)‖

2 +

d
∑

j=1

log(akj) + (p − d) log(bk)− 2 log(πk).

with ‖x‖2Ak
= xtAkx,Ak = Qk∆

−1
k Qt

k, Ak = QkΛ
−1
k Qt

k and Pk(x) = QkQ
t
k(x−µk)+µk.

The M-step

Once the posterior probabilities t
(n+1)
k have been computed, we update the model param-

eters so that they maximize E
[

Lc (x, z; θ) |θ
(n)
]

. In order to derive an online inference
strategy which does not keep all past data samples, it is necessary to make use of the
following approximation:

E
[

Lc (x, z; θ) |θ
(n+1)

]

≃ E
[

Lc (x, z; θ) |θ
(n)
]

+

K
∑

k=1

t
(n+1)
k log (πkφ (xn+1; θk)) .
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Then, it is straightforward to show that the update formulas for the mixture proportions
πk and the component means µk, for every component k = 1, ...,K, are:

π̂
(n+1)
k = π̂

(n)
k +

1

n+ 1

(

t
(n+1)
k − π̂

(n)
k

)

, (5.3)

µ̂
(n+1)
k =

1

n
(n+1)
k

(

n
(n)
k µ̂

(n)
k − t

(n+1)
k xn+1

)

, (5.4)

where n
(n+1)
k = n

(n)
k + t

(n+1)
k and n =

K
∑

k=1

n
(n)
k .

We then want to estimate the parameters Qk, akj and bk, for k = 1, ...,K and j =

1, ..., d. We have already seen that the maximization of E
[

Lc (x, z; θ) |θ̂
(n)
]

with respect

to these parameters is equivalent to the eigendecomposition of the empirical covariance
matrix Sk for each component k = 1, ...,K. The problem that we seek to solve can be

therefore stated as follows: having already calculated eigenvectors Q
(n)
k and eigenvalues

Λ
(n)
k from the n first data samples, we want to update those parameters on the arrival

of a (n + 1)-th data sample. In particular, on the arrival of the new data sample xn+1,
the new eigenproblem that we need to solve is:

Σ
(n+1)
k Q

(n+1)
k = Q

(n+1)
k Λ

(n+1)
k , (5.5)

where Λ
(n+1)
k = diag{λk1, ..., λkp} and this for k = 1, . . . ,K.

To begin with, let us define:

g
(n+1)
k =

(

Q
(n)
k

)T (

t
(n+1)
k xn+1 − µ

(n)
k

)

,

h
(n+1)
k =

(

t
(n+1)
k xn+1 − µ

(n)
k

)

−Q
(n)
k gk,

where g
(n+1)
k is the projection of the data sample on the subspace defined by the eigen-

vectors and h
(n+1)
k is the residue of the retro-projection on the original space. With these

notations, the new eigenvectors Q
(n+1)
k correspond to a rotation of the old ones plus the

unit residue vector h̃
(n+1)
k :

h̃
(n+1)
k =







h
(n+1)
k

∥

∥

∥
h
(n+1)
k

∥

∥

∥

2

, if
∥

∥

∥h
(n+1)
k

∥

∥

∥

2
6= 0,

0, otherwise

and thus we have:
Q̂

(n+1)
k =

[

Q
(n)
k , h̃

(n+1)
k

]

R
(n+1)
k (5.6)

where R
(n+1)
k is a rotation matrix of size (d + 1) × (d + 1). Note that Q

(n)
k is a p × d

matrix, since we have discarded the p−d less significant eigenvalues. The new covariance

matrix Σ
(n+1)
k for the class k is given by:

Σ
(n+1)
k =

n
(n)
k

n
(n+1)
k

Σ
(n)
k +

n
(n)
k

(

n
(n+1)
k

)2 x̄x̄
T (5.7)
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where we have set x̄ = t
(n+1)
k xn+1−µ

(n+1)
k . Then, by substituting Equations 5.6 and 5.7

into Equation 5.5, we get:

[

Q
(n)
k , h̃

(n+1)
k

]T







n
(n)
k

n
(n+1)
k

Σ
(n)
k +

n
(n)
k

(

n
(n+1)
k

)2 x̄x̄
T







[

Q
(n)
k , h̃

(n+1)
k

]

R
(n+1)
k = R

(n+1)
k Λ

(n+1)
k

The above problem can be written as:






n
(n)
k

n
(n+1)
k

[

Λ
(n)
k 0
0 0

]

+
n
(n)
k

(

n
(n+1)
k

)2

[

gkg
T
k γkgk

γkg
T
k γ2

k

]






R

(n+1)
k = R

(n+1)
k Λ

(n+1)
k (5.8)

where we have set γ
(n+1)
k =

(

h̃
(n+1)
k

)T
x̄. The solution to this new eigenproblem yields

the rotation matrix R
(n+1)
k and the new eigenvalues Λ

(n+1)
k directly. Then, the new

eigenvectors can be obtained using Equation 5.6. Note that both R
(n+1)
k and Λ

(n+1)
k are

square matrices of dimension (d+ 1), that is, we only need to solve an eigenproblem of
dimension (d+ 1) and not p. The update formulas for the variance parameters akj and
bk are then:

â
(n+1)
kj = Λ

(n+1)
kj ,

b̂
(n+1)
k =

1

p− d



tr(Sk)−
d
∑

j=1

â
(n+1)
kj



 ,

where tr(Sk) is the trace of the empirical covariance matrix for group k.

Algorithm and classification step

The online MPPCA algorithm that we proposed above is summarized in Algorithm 4.
Even though, in the first place, the online MPPCA algorithm aims to infer the MPPCA
model in the online setting, in this work, we are also interested in obtaining a partition
of the data after having processed the last data sample. To do so, it is necessary to add
a classification step at the end of the online MPPCA algorithm to provide the expected
clustering. In the model-based clustering framework, data samples are usually assigned
to a group using the maximum a posteriori (MAP) rule, which assigns a data sample
x ∈ R

p to the group for which it has the highest posterior probability P (Z = k|X = x)
at the end of the algorithm. Therefore, this final classification step simply consists in

assigning the data sample xi to the group with the highest t
(i)
k , for k = 1, ...,K and

i = 1, ..., N .

5.1.3 Model selection in the online framework

The online MPPCA algorithm, as presented above, performs an almost automatic in-
ference of the MPPCA model, except for the hyper-parameters K and d. Indeed, those
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Algorithm 4 The online MPPCA algorithm

1. Initialization: run a classical MPPCA on the n0 first data samples to provide an
initial set θ̂(n0) of parameter estimates.

2. For each new data sample xi:

• E-step: compute probabilities t
(i)
k , for k = 1, ...,K, using Equation (5.2),

• M-step: update parameter estimates using Equations (5.3-5.4). Update Q̂k,
âkj and b̂k for k = 1, . . . ,K and j = 1, . . . , d by solving the incremental
eigenproblem (5.8).

3. After the last data sample xN , return:

• set θ̂(N) of model parameter estimates,

• data partition which can be deduced from the probabilities t
(i)
k , i = 1, ..., N

and k = 1, ...,K using the MAP rule.

parameters cannot be determined by maximizing the conditional expectation of the
complete likelihood since they both control the model complexity. A popular and well-
established way to determine the appropriate value for bothK and d for the data at hand
is to consider it as a model selection problem. Thus, the use of either the AIC (Akaike,
1981), BIC (Schwarz, 1978) or ICL (Biernacki et al., 2000) criteria allows to find the
appropriate values for K and d. However, since in the online setting that we consider
in this work, past data samples are not kept in memory, it is necessary to solve the
model selection problem in an online manner as well. This is made possible nowadays
by parallel computing. In our context, this consists in running several online MPPCA
algorithms with different values for the hyper-parameters in parallel and selecting at the
end the solution associated with the highest value of the model selection criterion.

5.1.4 Low-dimensional visualizations of the data

A final advantage of our online MPPCA algorithms is that it allows to provide low-
dimensional visualizations of the whole data set, even though the high-dimensional data
samples are not kept. The low-dimensional visualizations are the projections of the data
into theK estimated subspaces of the groups. If d is small compared to p, it is reasonable
to keep in memory these low-dimensional representations of the data since the necessary
memory size after n data samples is md = K×n×d instead of mp = n×p. However, this
requires to be able to update the low-dimensional projections into the group subspaces
at the arrival of each new data sample. At iteration n + 1, this can be done after the
M-step as follows:

y
(n+1)
i = y

(n)
i R

(n+1)
k ,
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Figure 5.1: Simulated data from K = 3 classes (represented by the three colors) of
original dimension p = 30, projected on the PCA axis. We can see that it is
a challenging dataset for a clustering algorithm.

where y ∈ R
d and R

(n+1)
k contains the eigenvectors of the eigenproblem (5.8), for k =

1, ...,K and i = 1, ..., n.

5.2 Experiments

In this section, we present and discuss the results of the experiments that we performed
on simulated and real data, with the aim of validating the performance of online MPPCA
and of comparing it with other online algorithms.

5.2.1 An introductory example

We begin by an introductory experiment on simulated data. We have generated a dataset
of n = 12 000 data samples (x1, . . . ,xn) ∈ R

p based on the assumption that data live in
low-dimensional subspaces, with p = 30 and K = 3. Hereafter, we refer to this dataset
as X30. The mixture proportions are π1 = 0.4 and π2 = π3 = 0.3. For simplicity, we
have considered that for each class, the variance is common across all dimensions, that
is akj = ak, for k = 1, . . . ,K and j = 1, . . . , d. We have set a1 = 150, a2 = 75, a3 = 50,
b1 = b2 = b3 = 5 and µ1 = 0, µ2 = {0, . . . , 5, . . . , 0} and µ3 = {0, . . . ,−5, . . . , 0}, with
µ1,µ2,µ3 ∈ R

p. We have set the intrinsic dimension (dimension of the subspaces) at
d = 2. Figure 5.1 shows the projection of the simulated dataset of p = 30 on the PCA
axis. We can see that it is a challenging dataset for a clustering algorithm.

Note that we have initialized online MPPCA with n0 = 100 data samples. The
algorithm was given the true values for K and d. In practice, one has to run it with
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different values of K and d and keep the values giving the best model (according to a
criterion, i.e. BIC (Schwarz, 1978)).

Figure 5.2 show the results obtained by online MPPCA for the dataset X30. Fig-
ure 5.2a shows the evolution of the estimation of MPPCA parameters ak for k = 1, . . . ,K
versus the number of the data samples. The horizontal line correspond to the true values
of the parameters. We can see that as the number of data samples grows, online MPPCA
converges towards the true value of the parameters.

Figure 5.2b shows the evolution of clustering accuracy versus the number of data
samples for online MPPCA. We can see that clustering accuracy given by online MPPCA
constantly increases as new data samples are arriving, converging to the accuracy given
by a standard MPPCA model which passes over data multiple times.

Finally, let us note that an interesting feature of the proposed algorithm is its speed.
It tooks online MPPCA only 65 seconds to process the dataset of n = 12 000 data
samples.

5.2.2 Comparison with online EM and online CEM

In this second experiment, we compare online MPPCA with two other online algorithms,
online EM (Titterington, 1984) and online CEM (Samé et al., 2007). Note that these
latter have not been designed to handle high-dimensional data. In this experiment,
we have used X30, the high-dimensional simulated dataset presented above, as well as
a second simulated dataset of lower dimension (p = 10) , generated with the same
parameters as the former. We will refer to this new dataset as X10. Our goal was
to study the behavior of the three algorithms in low dimension and then illustrate the
capability of online MPPCA to cluster efficiently even in high dimension.

We have evaluated the three algorithms on the quality of their estimation of the class
means and on the accuracy of the clustering produced. The quality of the estimation
of the means was taken to be the square of the distance of the estimated means to the
true ones, averaged over all K = 3 classes, a measure known as the Mean Square Error
(MSE) in statistics

MSEµ =
1

K

K
∑

k=1





1

p

p
∑

j=1

(

µ̂kj − µkj

)2





Online MPPCA, online EM and online CEM were initialized 30 times by a standard
MPPCA, an EM and a CEM, respectively, of which the initialization giving the highest
BIC value was kept. Figure 5.3 and Figure 5.4 show the comparative performance (MSEµ

and clustering accuracy) of online MPPCA (black), online EM (red) and online CEM
(blue) for the datasets X10 and X30, respectively.

For the dataset X10 it is clear, both from the clustering accuracy and the MSEµ

that online MPPCA converges faster than the other two algorithms. Online CEM
converges faster than online EM, a result which is compatible with conclusions made
in (Samé et al., 2007).
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(a)

(b)

Figure 5.2: (a) Evolution of the estimated parameters ak of the 3 groups (k = 1, 2, 3) for the
dataset X30 versus the number of data samples for online MPPCA. Horizontal lines
correspond to the true values of the parameters. (b) Clustering accuracy evolution
for the dataset X30 versus the number of data samples for online MPPCA. The solid
horizontal line corresponds to the clustering accuracy given by a standard MPPCA,
which passes multiple times over data.
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(a)

(b)

Figure 5.3: (a) Evolution of MSEµ for the dataset X10 versus the number of data samples
for online MPPCA (black solid), online EM (red dashed) and online CEM (blue
dotted). (b) Clustering accuracy evolution for the dataset X10 versus the number
of data samples for the three algorithms.
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(a)

(b)

Figure 5.4: (a) Evolution of MSEµ for the dataset X30 versus the number of data samples
for online MPPCA (black solid), online EM (red dashed) and online CEM (blue
dotted) (b) Clustering accuracy evolution for the dataset X30 versus the number of
data samples for the three algorithms.
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Figure 5.5: BIC values versus the data indexes for the 8 hyperparameter value combina-
tions that gave the highest BIC in the last packet.

For the dataset X30, we can see that online MPPCA clearly outperforms the other
two algorithms, even in high dimension p = 30. As expected, high dimensionality affects
the clustering performance of both online EM and online CEM. Note here that we have
not compared the three algorithms in p > 30 because online CEM in particular cannot
handle such a dimensionality due to numerical problems.

Model selection with parallel computation

As we have already seen, our model has two hyperparameters, the intrinsic dimension
d and the number of groups of the mixture K. Selecting the optimal values for those
hyperparameters is selecting the best model, since different values of K and d will give
different models. In practice, this means that an instance of online MPPCA must be
launched for each possible combination of the range of interest for K and d.

However, in an online setting, past data samples are not being stored and thus, tradi-
tional model selection methods, for instance, evaluation of BIC over the whole dataset,
cannot be applied. Nonetheless, in real applications it can be acceptable to keep a small
number of the most recent data samples.

Moreover, in an online setting, model selection has to be done in a timely manner.
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Parameters BIC

K=3, d=2 −69679.14
K=2, d=2 −70020.14
K=4, d=2 −70213.18
K=5, d=2 −70731.57
K=3, d=3 −71048.07
K=2, d=4 −71068.52
K=2, d=3 −71263.18
K=2, d=5 −71532.53

Table 5.1: Hyperparameter values and respective BIC for the last packet (data samples
with indexes 11524− 12000) in decreasing order. We can see that the highest
BIC value corresponds to the true value of the parameters K = 3 and d = 2.

Launching as many algorithms as there are possible combinations of K and d for each
novel data sample is clearly not an option, since we would need a great amount of
time. However, parallel computation can greatly reduce the necessary time for such a
procedure.

Based on the above, we launch online MPPCA in parallel for all values K and d and
for each one of them, we evaluate BIC in packets of data. We use the X30 dataset which
is of dimension p = 30, composed of n = 12 000 data samples issued from K = 3 classes
and where the intrinsic dimension is d = 2. We evaluate BIC

BIC = −2Lw + v log nw.

for packets of nw = 476 data samples for all possible combinations of K = 2, . . . , 6 and
d = 2, . . . , 10. Here, Lw is the log-likelihood of the maximum likelihood estimates for
the data packet and v is the number of the model parameters.

Figure 5.5 shows the 8 combinations that gave the higher BIC value. We can see
that after an initial period that the algorithm needs to converge, the BIC value of the
true pair of parameters (K = 3, d = 2) is higher than the rest. Table 5.1 shows the
corresponding BIC values for the last packet of data.

Finally, let us note that the overall procedure, that is 45 parallel runs of online MPPCA
in 20 Intel(R) Xeon(R) 3.07GHz processors, needed a total runtime of only 10 minutes.
This experiment proves that by keeping a small amount of past data, one can select the
proper model in a timely manner using the benefits of parallel computation.

5.2.3 Application to aircraft engine health monitoring

In this section, we test the proposed method to real data issued from the aircraft engine
Health Monitoring domain. The data were obtained by Snecma, the french aircraft
engine constructor.

Typically, there exists different phases during a flight, called flight modes: taking off,
cruising, landing etc. Each test is actually a sequence of alternating stationary and
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Subspace of cluster 1 Subspace of cluster 2 Subspace of cluster 3

Subspace of cluster 4 Subspace of cluster 5 Subspace of cluster 6

Subspace of cluster 7 Subspace of cluster 8 Subspace of cluster 9

Subspace of cluster 10 Subspace of cluster 11 Subspace of cluster 12

Figure 5.6: Projection of aircraft engine data on each of the class-specific subspaces of
dimension d = 2. Colors correspond to different classes according to the
clustering produced by online MPPCA. The projections give an interesting
insight into the classes.

non-stationary phases at different levels. The stationary phases correspond in general
to such flight modes, while the non-stationary ones reflect the transition between two
such phases. Nevertheless, a flight mode can include multiple stationary phases, that is,
a stationarity control on the data is not enough to detect the flight modes.

Aircraft engineers can identify these modes by looking at the data but this can be
extremely time-consuming. Moreover, due to the high dimensionality of data, there can
be relations that humans cannot perceive. Note that by knowing, at any given time, in
which flight mode the engine currently is, tasks like anomaly detection can be performed
much more reliably, since the ’local’ context of the data is also taken into account.

Here, we initially consider a streaming dataset of n = 4683 data samples and p = 173
variables issued from an engine cell test. Expert advice provided us with a configuration
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of 4 endogenous variables and 6 exogenous. Therefore, we consider only those p = 10
variables out of 173. We then treat them in order to remove the influence of the exogenous
variables to the endogenous ones. In the end, we have a dataset of p = 4 endogenous
variables, clean of exogenous influence.

We use this dataset to illustrate that online MPPCA can facilitate the detection of
homogeneous groups of aircraft engine data. Such a group can coincide with a flight
mode, subsume multiple flight modes or correspond to a part of a flight mode. Expert
analysis is then needed to analyze these groups and relate them to the engine or to actual
events (if any) that occurred during a test sequence.

We launched online MPPCA with K = 12 and d = 2. In fact, we tested different
combinations of the values of these two parameters and we kept the one giving the
greatest BIC value. The initial dataset size was set at n0 = 300.

Figure 5.6 shows the projection of the data onto each one of the class-specific subspaces
given by online MPPCA, after having processed all the data samples. Colors correspond
to different classes according to the clustering produced by online MPPCA. We can see
that the projections give an interesting insight into the clustering induced by online
MPPCA. Clusterings in each subspace can provide aircraft engineers with a much richer
information on a possible inherent substructure of the data.

5.3 Conclusion

We have proposed an online inference algorithm for the MPPCAmodel which relies on an
EM-based procedure and a probabilistic and incremental version of PCA. The proposed
strategy allows to incrementally update the estimates of the MPPCA parameters at the
arrival of a new data sample. It allows also to provide low-dimensional visualizations
of the data based on sufficient information. Model selection is also considered in the
online setting through parallel computing. Numerical experiments on simulated and real
data have shown that the online MPPCA algorithm performs better in high-dimensional
spaces compared to existing online EM-based algorithms.

Among the possible extensions for this work, it could be interesting to consider the
re-computation of the posterior probabilities for all data samples (including past data
samples) in the E-step based on the kept projected data. In addition, a deeper analy-
sis of initialization strategies should be considered for the algorithm, since not all the
classes are represented in the initial part of a datastream used for initialization of the
algorithm. A possible solution to this problem would be to adopt a dynamic model se-
lection procedure, where classes could be added or removed. Finally, another extension
of our work could be to make an online MPPCA which will be robust to anomalies,
possibly using works on robust PCA, which could be adapted appropriately in order to
develop an online robust MPPCA.
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Chapter 6
Application to aircraft engine Health

Monitoring

In this chapter, we develop an application of the proposed methods for the task of
anomaly detection and visualization of aircraft engine anomalies. The data that we
apply our method to are flight data supplied by Snecma, the French aircraft engine
constructor. The objective is to develop a comprehensive system that would be able to
detect anomalies online, providing the experts with tools to monitor them. As a small
introduction to the subject, we first give a small review of related articles.

6.1 Related work

Health monitoring is a vast domain and giving a detailed survey of articles on the matter
is out of the scope of this Thesis. Even if we constrain ourselves to Statistical Learning
approaches, the volume of the articles that need to be reviewed remains considerable.
Moreover, since the methodology we will follow to treat data and apply methods that we
proposed in the previous chapters is, as expected, based on a well-established methodol-
ogy that experts in Snecma have been using for years, such a large survey would prove
impractical. Instead, we will only briefly present works on Health Monitoring carried
out by Snecma but, also, works that have appeared during the last 5 years in the con-
text of successive research projects between Snecma and SAMM1, the author’s affiliated
research laboratory.

(Lacaille et al., 2010) propose Continuous empirical score (CES), an algorithm for
Health Monitoring for a test cell environment based on three components: a clustering
algorithm based on EM, a scoring component and a decision procedure.

The clustering component starts by replacing original exogenous variables by indi-
cators. Indicators are generated from original data using various transformations. For
instance, a possible transformation consists in calculating trends in the signal, another

1http://samm.univ-paris1.fr/
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one in looking for changepoints or still, generic signal compressions based on signatures
obtained by a Principal Component Analysis on the data. The transformed data are
then used in detecting context classes using EM. The number of classes to look for is
determined using the BIC criterion.

Data clustered in context classes are then used to calibrate the scoring component.
To begin with, data in each context class are transformed locally in a two-phase proce-
dure: first, data are normalized so that small, insignificant variations can be eliminated
and second, a Gaussian score is being calculated. In particular, data normalization is
being done using a L1-penalized regression (LASSO criterion (Tibshirani, 1996)) that
encourages sparsity and provides a natural way for choosing meaningful indicators. The
sparsity hyperparameter is being chosen via cross-validation. Then, the residuals of the
regression are used to calculate a score based on a Mahalanobis distance. This score
should follow a χ2 distribution under certain assumptions.

Finally, the decision component operates by comparing the scores of a neighborhood
of points to a threshold α. A high-level decision voting scheme is adopted to issue or
not a detection alert. Insertion of artificial anomalies into the data can lead to a reliable
estimate for the threshold.

In (Lacaille and Gerez, 2011; Côme et al., 2010a; Lacaille et al., 2011), a similar me-
thodology is being applied to detect changepoints in Aircraft communication, adressing
and reporting System (ACARS) data, which are basically messages transmitted from the
aircaft to the ground containing on-flight measurements of various quantities relative to
the engine and the aircraft. Data are classified in context classes and then a piecewise
linear L1-penalized regression model is used to detect changepoints in an online fashion.
By changepoints we usually mean abrupt changes of the signal. There is however a need
for detecting slower variations of a signal as well. A recursive linear regression (RLS)
model is used to detect such variations. Finally, engine state trajectories are being
projected on a 2D Kohonen map (see also (Lacaille and Côme, 2011)), allowing for
expert validation, analysis and identification of possible malfunctions based on known
defects. This is made possible by monitoring the position of successive data samples of
the same engine on the map. These successive positions define a trajectory on the map.
Engines working properly will present similar trajectories, whereas engines with possible
defects will tend to deviate from ”normal” trajectories at a given time instant.

Further insight in normal states and/or further regrouping of similar states can be done
by clustering the trajectories. Hierarchical clustering algorithms with an edit distance
metric can be used to this extent (Côme et al., 2011).

An interesting point is made by (Côme et al., 2010b) on visualisation using a Kohonen
map. In particular, the authors point out that Kohonen maps with classical architectures
can be unintuitive for Health Monitoring purposes, since it is possible that the normal
state of an engine is found near the edge of the map. Generally speaking, there is no
Kohonen prototype (class) that takes a central position in the map. They propose a
novel star architecture for Kohonen maps, composed of a star center and a predefined
number of rays of predetermined size departing from this center. The idea here is
that the center of the star will capture the normal state of an engine with some rays
regrouping normal behaviours which have drifted away from the center state and other
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rays capturing possible engine defects.
Finally, (Ricordeau and Lacaille, 2010) is an interesting article with a preliminary

application of Random Forests (Breiman, 2001) to Health Monitoring. The authors
examine ways to use the properties of Random Forests to perform Health Monitoring
providing the experts with interactive and intuitive analysis tools.

6.2 Overview of the proposed methodology

Flight data consist of a series of measures acquired by sensors positioned on the engine
or the body of the aircraft, as well as other information such as the name of the aircraft,
the serial number of its engine(s) etc. Data may be issued from a single or multiple
engines. We distinguish between measures related to the environment, such as ambient
temperature and aircraft speed and those referring to the engine such as rotation speed
and pressure measured inside the engine. We will refer to the former as exogenous or
environmental and to the latter as endogenous measures or variables. Indeed, we expect
engine-related anomalies to manifest themselves in the endogenous measures.

Typically, environmental measures influence endogenous ones. Therefore, data pre-
processing is essential in order to erase this effect. In particular, we can first classify
exogenous data and then remove, for each class, the effect of the environmental measures
on the endogenous ones. For instance, we can do this with a linear regression model. In
this way, we can work with the residuals, that is, with endogenous data corrected from
the influence of the environment.

The entire procedure of pre-processing, detection and visualization of anomalies has
two main phases. We give a graphical overview in Figure 6.1. The procedure can be
described as follows:

1. The first phase is the training or learning phase. It is being assumed that we
have access at some anomaly-free data, based on which the system can ”learn” the
normal, incident-free functioning of an engine. The first step is to classify data
into classes of environmental conditions, by using only environmental variables.
Afterwards, the influence of the environment on endogenous measures is being
removed using a linear model, thus obtaining the corrected data (residuals). Next,
a SOM is being learned based on the corrected data. The final step of the learning
phase is to calibrate an anomaly detection component based on the corrected data.

2. The learning phase is followed by the test phase, where novel, unknown data
are taken into account. Indeed, it is being assumed that novel data can arrive
over time; data which has not been ”seen” during the learning phase. A novel
data sample is first being classified in one of the environment classes using the
classification model learned in the training phase. Afterwards, it is being corrected
of the environment influence using the linear model estimated earlier. The test
sample is then projected to the Kohonen map constructed in the training phase
and finally, the calibrated anomaly detection component determines if the sample
is normal or not.
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We have used HDDC (chapter 4) for the classification step and the SOM algorithm (Kohonen,
2001) for data visualization, utilizing its properties for the anomaly detection task.

The rest of the chapter is organized as follows: in Section 6.3, the different components
of the system proposed are being described in detail, giving emphasis to algorithms and
techniques used. Section 6.4 presents the data the we used in this application in detail
and describes preliminary data analyses and exploration that we conducted aiming at
understanding more deeply the nature of the data. Finally, section 6.5 presents the
experiments that we carried out and their results.

6.3 Algorithms and methodologies

In this section we introduce algorithms and techniques that were used to build this
application. We start with basic notions of classification. Then, a short introduction to
Self-Organizing Maps (SOM) is given. We use SOMs to visualize data and calibrate the
anomaly detection component. We also detail the method we used for adding anomalies
to the data, since data with real anomalies. Finally, we propose a statistical method to
detect anomalies.

6.3.1 Hierarchical clustering

We present below some basic notions of classification and we introduce the Hierarchical
Clustering Algorithm (HAC) that we will use later on.

Classication

Assuming there are n data samples (x1,x2, . . . ,xn) distributed inK classes C1, C2, . . . , CK ,
obtained by an arbitrary classification technique. These K classes form a partition:

Ω = C1 ∩C2 ∩ . . . ∩ CK

with

∀i 6= j, Ci ∪ Cj 6= ∅

We denote nk the cardinality of class Ck and thus, we have n =
K
∑

k=1

nk. We denote x̄ =

1
n

∑n
i=1 xi the center of gravity of all data samples and x̄k = 1

nk

∑

xi∈Ck
xi, k = 1, . . . ,K,

the centers of gravities of all K classes.
Once we have a classification of the data, we can define the following terms:

The total sum of squares

ST (C1, C2, . . . , CK) =

K
∑

k=1

nk
∑

j=1

‖xkj − x̄‖22 (6.1)
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(a) Dendrogram

(b) Sum of squares versus the number of classes

Figure 6.2: An example of a dendrogram obtained by a hierarchical classification. In-
dexes on the x-axis are those of the data samples. In the beginning, there
are 14 classes containing one single data sample. Successive regroupings are
then being performed (red lines joining two classes), until we are left up with
a single class of n data samples (root of the dendrogram).The horizontal
line marks the height at which we have ”cut” the tree, in order to have the
desired number of classes, which is here K = 3.
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Note that it does not depend on the classes and that it characterizes the dispersion of
the data. One can also define the within-class sum of squares:

SW (C1, C2, . . . , CK) =

K
∑

k=1

nk
∑

j=1

‖xkj − x̄k‖
2
2 (6.2)

There is also the between-class sum-of-squares

SB(C1, C2, . . . , CK) =
K
∑

k=1

nk ‖x̄k − x̄‖22 (6.3)

One can show that the following relation holds between the three terms

ST = SW + SB (6.4)

Hierarchical Ascending Classification

In a hierarchical ascending classification (HAC), data are being gradually aggregated
until the desired number of classes is obtained. To do this, we group together at each
step the two nearest classes.

Generally speaking, the number of classes is not fixed beforehand. In the beginning,
we have n classes of a single element, ending with a single classes of n data samples.
In fact, HAC gives a series of nested partitions of the dataset. Note that after being
grouped together, two classes will remain in the same group until the end. For HAC,
the choice of the distance to use to assess proximity is of essence and the result depends
on the distance considered.

We begin by calculation pairwise distances between all data classes of 1 element and
then grouping together the two nearest classes. We iterate this procedure until the
granularity (number of classes) we want to have. There is a variety of distances to use.
We often examine the increase of the within-class inertia SCW , going from 0 (for K
classes of a single element) up to SCT (for one class containing all data samples), while
simultaneously, between-class variance SCB decreases from SCT to 0 as the regroupings
continue. We would like the variation of these two terms to be as smooth as possible.
This leads us to choosing Ward’s distance. For two classes Ca, Cb and a 6= b, Ward’s
distance is given by

nanb

na + nb
‖x̄a − x̄b‖

2

where x̄a, x̄b are the centers of gravity for the classes Ca and Cb, respectively. We can
visualize the evolution of the classification with a dendrogram (Figure 6.2a). The initial
classes are located on the dendrogram leaves and subsequent regroupings are given by
the red vertical lines connecting two classes. An example is given in Figure 6.2a. We can
”cut” the dendrogram at a given height to obtain the desired number of classes. The red
horizontal line in Figure 6.2a marks the height at which we have cut the dendrogram
to obtain 3 classes.
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Figure 6.3: Example of an organized map, colored based on the distribution of one of
the variables present in the data. Dark-coloured regions correspond to high-
valued data samples, while the white ones correspond at low values. The
smoothness in the coloring shows that the map has been well organized.

In Figure 6.2b, we can see the within- and between-classes normalized curves (Equa-
tions 6.2 and 6.3) versus the number of classes. For K = n = 14 classes, the within-class
sum of squares is naturally SCW = 0 and thus, the between-class sum of squares is
equal to the total sum of squares, SCB = SCT . On the other hand, for K = 1, the
between-class sum of squares is equal to SCB = 0.

6.3.2 Self-Organizing Maps

In this section, we present the Self-Organizing Maps (Kohonen, 2001), following the in-
troduction given in (Cottrell et al., 1998; Cottrell and Letrémy, 2005). Given a network
of connected units, called Kohonen network or Self-Organizing Maps, with L ordered
units according to a given topology. These L units are equipped with a homogeneous
neighboring system in the space. For each unit l of the network, we define a neighbor-
hood of radius r, which is, generally speaking, decreasing with time and which we denote
Vr(l). It is formed by the set of units which are located at a distance less or equal to r
on the network.

Every unit l is represented in the space R
p by a vector ml, called prototype vector of

unit l. Here, p is the data dimension. The state of the network at time t is given by
m(t) = (m1(t),m2(t), . . . ,ml(t)).

Note that, to distinguish Kohonen classes from the classification environmental classes
of the first step of the procedure, we use numbers l = 1, . . . , L to refer to the former.

For a given state m and a given data sample x, the winning class l∗(m,x) is the one
whose prototype vector ml∗ is the nearest to the data sample in the sense of a defined
distance measure. The winning unit is called Best Matching Unit (BMU) for the data
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sample x. We thus have

BMU(x) = l∗(m,x) = argl min ‖x−ml‖
2

Class l is composed of the data samples whose nearest prototype vector is ml. Every
class is being represented by its corresponding prototype vector. Every data sample is
being represented by its nearest prototype vector.

Thus, for a given state m, the network defines an application Φm : Rp → {1, . . . , L}
which associates each data sample x with its corresponding winning unit, that is, the
Kohonen class number. The application Φm respects the topology of the input space
after convergence of the Kohonen algorithm, meaning that neighboring data samples in
the original Rp space are associated with the same or to neighboring units.

The SOM algorithm is an iterative algorithm. Here, we are presenting its stochastic
version. The initialization part randomly associates each class with a p-dimensional pro-
totype vector. Then, at each iteration, we choose a data sample randomly, we compare
it to each prototype vector and determine its winning class, that is, the class whose pro-
totype vector is closest to the data sample, given a selected distance measure. Having
determined the winning class, we bring the prototype vectors of the latter and those of
the neighboring classes closer to the data sample. This procedure is controlled by the
parameter η, which is positive and can be constant or time-decaying.

The stochastic SOM algorithm is defined in an iterative manner as follows:

• At time 0, the L prototype vectors are initialized randomly (we can, for instance,
draw randomly L data samples).

• At time t, the state of the network is m(t) and we present a data sample x(t+ 1)
following a probability law P :







BMU(x(t+ 1)) = l∗ (m(t),x(t + 1)) = argmin{‖x(t+ 1)−ml‖ , 1 ≤ l ≤ L}
ml(t+ 1) = ml(t)− η(t) (ml(t)− x(t+ 1)) , ∀l ∈ Vr(t)(l

∗)

ml(t+ 1) = ml(t), ∀l /∈ Vr(t)(l
∗)

The output of the algorithm is a set of prototype vectors that define an ”organized” map,
that is, a map that respects the topology of the data in the input space. We can then
color the map according to the distribution of the data for each variable. In this way,
we can visually detect regions in the map where low or high values of a given variable
are located. Figure 6.3 shows an organized map. High values are located in regions in
black, while low values are located in regions in white. The smooth coloring of the map
indicates that it has been well organized.

6.3.3 Corrupting data

In order to test the proposed system’s capacity to detect anomalies, we need data with
anomalies. However, it is difficult to fabricate such data in a test cell environment, since
we would actually had to damage the engine or the cell, something prohibitive due to the
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Figure 6.4: An example of an anomaly of the FF variable of the cruise flight data (a) Su-
perposition of the healthy data (solid black lines) and the data with anoma-
lies (dashed red line) (b) Superposition of the corrected (from environmental
influence) data obtained from the healthy data and corrected data obtained
from corrupted data.

important cost of this equipment. Therefore, we create artificial anomalies by corrupting
some of the data based on experts’ specifications that have been established following
well-known malfunctions of aircraft engines.

Corrupting the data with anomalies is carried out according to a signature that de-
scribes the defect. A signature is a vector s ∈ R

p where p is the dimension of the data
that we want to corrupt. For each variable j that we want to corrupt, sj is strictly posi-
tive, while for the rest of the variables, s is null. Values of s can either be absolute values
or percentages of the mean value of the variable. In any case, following s, a corruption
term is added to the nominal value of the signal. For a given engine, we randomly pick
a data sample with index t0 between the 1st quartile and the median. We then corrupt
every data sample of this engine after xt0 .

Figure 6.4a gives an example of the corruption of the FF variable for one of the
engines. Figure 6.4b shows the corrupted variable of the corrected data, that is, after
having removed the influence of the environmental variables. We can see that even a
rather small anomaly on the original (before correction) data becomes large enough in
the corrected data.

6.3.4 Anomaly detection

In this subsection, we present two anomaly detection methods that are based on confi-
dence intervals. These intervals provide us with a ”normality” interval of healthy data,
which we can then use in the test phase to determine if a novel data sample is healthy
or not.

We have already seen that Kohonen’s algorithm associates each data sample with
the nearest prototype vector, given a selected distance measure. Often, the Euclidean
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distance is selected. We calculate, for each data sample xi, its distance to the map,
namely the distance to its nearest prototype vector:

d(xi) = min
l

‖xi −ml‖
2 (6.5)

where i = 1, . . . , n.
The confidence intervals that we use here are calculated using distances of training

data from the map. In the first method, we calculate a confidence interval based on
the distances of the training data to their nearest prototype vector. We calculate, thus,
d(xi), ∀i. In the second method, we calculate a confidence interval for each Kohonen
class l, where l = 1, . . . , L, that is, d(xi) with xi in class l. Therefore, the first method
has a global flavor whereas the second a local one. The main idea here is that the distance
of a data sample from the data samples of a class, thus from its prototype vector will be
”small”. So, a ”large” distance would be the indication of an anomaly. In the following
sections, we compare the global and the local methods in terms of detection ability.

Global detection

During the training phase, we calculate the distance d(xi), ∀i (Equation 6.5). We can
thus construct a confidence interval by taking the 99-th percentile of the distances,
P99({d(xi), ∀i}), as the upper limit. The lower limit is equal to 0 since a distance is
strictly positive. We define thus the confidence interval I

I = [0, P99({d(xi), ∀i})] (6.6)

For a novel data sample x, we establish the following decision rule:
{

The novel data sample is considered to be ”normal”, if d(x) ∈ I
The novel data sample is considered to be an anomaly, if d(x) /∈ I

(6.7)

Local Detection

In a similar manner, in the training phase, we can build a confidence interval for every
class l. In this way, we obtain L confidence intervals Il, l = 1, . . . , L by taking the 99-th
percentile of the per class distances as the upper limit

Il = [0, P99 ({d(xi) : xiin classl})] (6.8)

Therefore, to build the interval, we take the distance dl(xi) for the data xi affected to
the class l. For a novel data sample x (in the test phase), we establish the following
decision rule:
{

The novel data sample,affected to class l, is considered to be ”normal”, if d(x) ∈ Il
The novel data sample, affected to class l, is considered to be an anomaly if d(x) /∈ Il

(6.9)

6.4 Aircraft flight cruise data

In this section, we present the data that we used for our experiments as well as the
preliminary analyses that we carried out on it.
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Name Description

Endogenous variables

EXH Exhaustion gas temperature
N2 Core speed
Temp1 Temperature at the entrance of the fan
Pres Static pressure before combustion
Temp2 Temperature before combustion
FF Fuel flow
Environmental variables

ALT Altitude
Temp3 Ambient temperature
SP Aircraft speed
N1 Fan speed
Other variables

ENG Engine index
AGE Engine’s age

Table 6.1: Description of the variables of the cruise phase data.

6.4.1 Data preprocessing

Data samples in this dataset are snapshots taken from the cruise phase of a flight. Each
data sample is a vector of endogenous and environmental variables, as well as categorical
variables. Data samples are issued from 16 distinct engines of the same type. For each
time instant, there are two snapshots, one for the engine on the left and another one for
the engine on the right. Thus, engines appear always in pairs. Note that snapshots in
this dataset are rather disparate, i.e. they are not continuous. The reader can find a
list of variables in Table 6.1. The dataset we used here contains n = 2472 data samples
and 12 variables.

We have chosen to divide the dataset into a training set and a test set. This configura-
tion is closer to a realistic scenario where an anomaly detection system is first calibrated
on some data and then tested on novel data arriving with time.

In order to build the training set, we picked randomly 2000 data samples among the
2472 that we dispose of in total. The test set is composed of the 472 remaining data
samples. We have verified that all engines are represented in both sets.

We have sorted data based on the engine ID (primary key of the sort) and for a given
engine, based on the timestamp of the snapshot.

6.4.2 Preliminary data analysis

We present methodology and results of some necessary preliminary analysis of the cruise
phase dataset. In particular, we examine the number of classes in the data, we perform
variance analysis of the variables and we correct data from environmental influence.
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Figure 6.5: Explained variance ((SS)K) for HAC (black triangles) and HDDC (red
squeres) for various values of K, the number of classes in classification.

Preliminary remarks

To begin with, we introduce some notation. We use n for the size of the training set,
n = 2000. The matrix Y designates the endogenous variables, whether in training or in
test phase. It is thus a matrix of size n × p, where p = 6 is the number of endogenous
variables. The matrix X designates the exogenous variables and is n × q, where q = 4
is the number of exogenous variables. The matrix Z = [X,Y,AGE] is used to designate
all quantitative variables and is n× (p + q + 1). Variable AGE is the engine’s age.

We have chosen to normalize the data (center and scale) because the scales of the
variables were very different. We normalize the training sets, keeping the normaliza-
tion coefficients. When a novel data sample arrives, we normalize it using these stored
coefficients calculated in the training phase.

Let us note that preliminary analysis described in the following sections were carried
out on the training set.

Selection of the number of classes in classification

We remind the reader that classification is carried out on X (exogenous variables).
HDDC (Bouveyron et al., 2007a) is a clustering algorithm, efficient for high-dimensional
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Figure 6.6: (a) Training data (all variables) on the first two principal components of a
Principal Component Analysis (b) The correlation circle for the variables.

data, but it is less relevant when the dimension is small. We have thus thought to
compare HDDC to a classical classification algorithm. We have chosen the Hierarchical
Ascending Classification (HAC) algorithm. An advantage of HAC is that by examining
the tree that it builds, we can have a straightforward graphical representation of the
explained variance, allowing us to choose the number of classes for the classification.

The first experiment we conduct is to represent graphically, for HDDC and for HAC,
the proportion of the explained variance by varying the number of classes from K = 1
to K = 16

(SSK) =
SB

ST
,∀K ∈ {1, . . . , 16}

where nk is the size of class k, x̄k is the mean for class k and x̄ the global mean of the
data. The goal is to compare HDDC and HAC in terms of explained variance and choose
the number of the classes following the shape of the curve.

Figure 6.5 shows (SS)K for both algorithms and for different values of K.
This Figure should be read as follows: if the number of classes K = n, where n is the

size of the dataset, (n >> 16, that is why we do not see it in the Figure), the curve is
at 100%. On the other hand, if K = 1, the percentage of the explained variance falls
to zero. Thus, reducing the number of classes K, we lose in explained variance but we
gain in interpretation. Therefore, we are actually searching for a compromise between
the two.

In Figure 6.5, we see that for K = 5, there is a changepoint for both curves. We
can thus choose K = 5 (5 classes) for our application. Looking at the same Figure,
it is clear that HAC manages to explain more variance than HDDC, something due to
the small dimension which penalizes HDDC. We note, however, that for K ≤ 5, the
two curves are virtually equal. In this work, our goal was to develop a more general
methodology that could process data of all kinds. Consequently, we are particularly
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Figure 6.7: Training data on the first two principal components of a Principal Component
Analysis (a) endogenous and (c) exogenous variables. The correlation circle
for the (b) endogenous and (d) exogenous variables.

interested in methods based on subspaces such as HDDC, since they can provide us
with a parsimonious representation of high-dimensional data. Thus, we will use HDDC
for the environment classification, despite its less good performance for low-dimensional
data.

Analysis of variables

After choosing the number of classes, we analyze the quantitative variables. To begin
with, we project data on the first two principal axes in Figure 6.6. We can also see the
correlation circle for the variables in the same Figure. The closer an arrow is to the
perimeter of the circle, the better is the representation of the corresponding variable on
the two-dimensional plane.

Looking at the Figure 6.6, well-known aspects of a functional aircraft engine can be
found. Variables N2, SP, EXH (their corresponding arrows, more precisely) form a
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group, something which is expected since an increase of the aircraft speed, SP, needs an
increase of the engine’s core speed, N2. This increase in speed increases the temperature
of the exhaustion gas (EXH).

Moreover, variables ALT (altitude) and {Temp3 (ambient temperature), Pres (pres-
sure before combustion)} vary in opposite directions. This can be explained by the fact
that, in high altitudes, temperature and pressure are lower than in lower altitudes.

In Figures 6.7, we find the same type of graphic but only for the endogenous (a-b)
and exogenous variables (c-d). In a similar manner, one can interpret the projection.
For example, in Figure 6.7b, core speed, N2, varies in the same way as the fuel flow FF
and the exhaustion gas temperature EXH. This behaviour can be explained as follows:
to fly faster, more fuel is being burnt and this increases the temperature of exhaustion
gases.

Analysis of variance

We also carry out an analysis of variance for each of the K = 5 classes to check if
classifying the data into environment classes has some sense and to measure the relative
discriminant weight for each environmental variable. To this extent, we consider the
following model for each of the variables in X (environmental variables)

Xkj = ak + εkj

with k = 1, . . . ,K, j = 1, . . . , nk,
∑

k

nk = n et εkj ∼ N (0, σ2).

The test of Fisher allows to test for the hypothesis H0 : αk = α, ∀k = 1, . . . ,K, that
is, if the means of all the classes are equal or not. This hypothesis is called the null
hypothesis. If the null hypothesis holds, then we should reconsider classification of the
data, since according to the test, all means are equal and thus, data belong to one single
class. Otherwise, the choice to classify the data is founded.

In particular, we test the following hypotheses:

{

H0 : αk = α ∀k = 1, . . . ,K
H1 : ∃(l,m) s.t. αl 6= am

We then need to calculate the (observed) test statistic Fobs:

Fobs =

(

K
∑

k

(Xk· −X··)
2

)

/

(K − 1)

(

K
∑

k

nk
∑

j
(Xkj −Xk·)2

)

/

(n−K)

where k = 1, . . . ,K is the class index, nk is the size of class k and j = 1, . . . , nk is
the index of data affected to class k. The mean of class k is Xk· and the global mean
of the data is X··. The test statistic follows the F-distribution with p1 and p2 degrees of
freedom under the null hypothesis, where p1 = K − 1 = 4 and p2 = n− p1 − 1 = 1995.
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The values of the test statistic Fobs for the 4 exogenous variables are: 379, 4 for N1,
330, 3 for ALT, 306, 6 for SP and 291, 4 for Temp3. If Fobs falls is in the so-called critical
region, then we can reject the null hypothesis H0. The critical region depends on the
significance level α we want the test to have, that is, a threshold on the probability that
we reject the null hypothesis when it is, in fact, true. This threshold is set prior to the
test and we set it at α = 0.01.

We can then see, from a probability table for the Fisher distribution, that for 5 and
1995 degrees of freedom and α = 0.01, the lower limit of the critical region is given by
the critical value of the statistic Fα ≈ 3.03. The value of the test statistic Fobs for all
variables are larger than Fα, and so we can reject the null hypothesis. This means that
the choice of classifying exogenous data is justified. The larger the value Fobs is for a
variable, more discriminant that variable is, meaning, informally, that is more ”useful”
for classification. Thus, we see that N1 and altitude ALT are the most significant ones,
with the other two following not so far behind.

Correcting the endogenous data from environmental influence

In the flight data that we dispose of, anomalies will manifest themselves in the en-
dogenous variables. At the same time, as expected, environmental conditions play an
important role in the functioning of the engine and have an effect on endogenous mea-
sures.

Consequently, we are correcting the data using a two-stage procedure: first, we classify
exogenous data into environment classes and then, for each of these classes, we have
corrected data from environmental influence using a linear model of exogenous and some
qualitative variables.

In the following equation, we give, for a given endogenous variable Y , the model used
to correct the data. We first set X(1) = N1, X(2) = Temp3, X(3) = SP, X(4) = ALT et
X(5) = AGE.

We obtain thus:

Yrkj = µ+ αr + βk + γ1kX
(1)
rkj + γ2kX

(2)
rkj + γ3kX

(3)
rkj+

γ4kX
(4)
rkj + γ5X

(5)
rkj + εrkj (6.10)

where r ∈ {1, . . . , 16} is the engine index, k ∈ {1, . . . , 5} is the class number, j ∈
{1, . . . , nrk} is the observation index. Moreover, µ is the intercept, αr is the effect of the
engine and βk the effect of the class.

Finally, we note that we have decided to use this model taking into consideration both
its precision (in terms of sum-of-squares of its residuals) and the fact that we want a
relatively small number of parameters, since the number of the data at our disposal is
rather limited.
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Figure 6.8: Training phase residuals versus the predicted values Ŷ for the p = 6 endoge-
nous variables.
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the classification of HDDC.

6.5 Experiments and results

In this section, we describe experiments on snapshot data and the results that we ob-
tain. Both the training and the test phase will be described in detail, insisting on each
component of the proposed methodology.

6.5.1 Training phase

In the training phase, the goal is to learn the normal state of an engine based on training
data which we suppose are anomaly-free.

We begin by classifying data into K = 5 environmental classes. Figure 6.9 shows
exogenous data on the first two principal axes with the classification given by HDDC
annotated in color.

Once we have classified data into environment classes, we can correct data from the
influence of the environment following the model of Equation 6.10.Figure 6.8 shows the
regression residuals plotted versus the predicted values for each of the endogenous vari-
ables. It is clear that the model succeeds in capturing the influence of the environment
on the endogenous measures, since the magnitude of the residuals is rather small. The
residuals will therefore capture behaviors of the engine which are not due to environ-
mental conditions. For variables Pres and FF, we see that there is a curve and not a sort
of ”homogeneous band” like for the rest of the variables. This means that we can indeed
refine our model, possibly by adding interactions between certain variables or second or
higher degree terms to the model. However, we have chosen to keep the model rather
simple, judging that its power is satisfying for the purpose it is intended.
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Figure 6.10: The upper limits of the local confidence intervals for the Kohonen classes.
The lower limit is 0 for all intervals.

The residuals are expected to be centered, i.e. to have a mean equal to 0. However,
they are not necessarily scaled, as they can have a variance larger than 1. We choose to
rescale them, keeping the rescaling coefficients in order to rescale in a similar way the
test phase residuals.

Moreover, we notice that data are characterized by small variations, i.e. they are not
smooth. We thus choose to smoothen them with a moving average. We have used a
smoothing window of width w = 7 (central element plus 3 elements on the left plus 3
elements on the right). We note that by smoothing, we lose ⌊w2 ⌋ data samples from the
beginning and the end. Therefore, in this case, we end up with a set of 1994 residual
samples instead of the 2000 that we had initially.

Next, we construct a Kohonen map from the training phase residuals (Figure 6.11).
We have used existing MATLAB code of the SAMANTA software for the Kohonen maps,
enhancing the code to suit our needs. Figure 6.17 shows the size of environment classes
for each Kohonen class.

We can now calibrate the anomaly detection component by determining the global
and local confidence intervals based on the distances of the data to the map.

For the global case, according to Equation 6.6, we have:

I = [0, 4.1707]

For the local case, the upper limits of the local confidence intervals on the cell of the
corresponding Kohonen class can be found in the Figure 6.10. We note that the lower
limit of all intervals is set to 0, since they are all built from distances, which are strictly
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Figure 6.11: SOM built from the corrected training residuals for each of the p = 6
endogenous variables. Black cells contain high values of the variable while
white ones contain low values.

positive.

6.5.2 Test phase

In the test phase, we assume that novel data samples are being made available. We first
corrupt this data following the technique proposed in Section 6.3.3. Thus, some of the
data is corrupted, but this is not known by our system.

The following step is to apply the same processing chain that we calibrated on using
the training data. We start by normalizing test data with the coefficients we used to
normalize training data earlier. We then classify data into environment classes using
the model parameters we estimated on the training data earlier. For HDDC, this means
that we just execute the classification step (E step) of the algorithm. Thus, we do not
relearn the model. Next, we correct data from environmental influence using the model
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we built on the training data. In this way, we obtain the test residuals, that we rescale
with the same scaling coefficient used to rescale training residuals.

Given the fact that residuals are, in general, not smooth, we apply a smoothing
transformation using a moving average, exactly like we did for training residuals. We
use the same window size, i.e. w = 7. Smoothing causes some of the data to be lost, so
we end up with 466 test residuals instead of the 472 we had initially.

Finally, we apply the decision rule, either the global decision rule of (6.7) or the local
decision rule of (6.9) and we project data onto the Kohonen map that we built in the
training phase.

Snecma experts provided us with descriptions of 12 known defects (anomalies), that
we added to the data. For data confidentiality reasons, we are obliged to carry out an
anonymization the defects and not to give any detail of their signatures (which variables
they affect and to which extent). We will thus refer to these defects as ”Defect 1”,
”Defect 2” etc.

Since the defects were added artificially, we know if a data sample is abnormal or not.
In order to evaluate our system, we calculate the detection rate (tpr) and the false alarms
rate (pfa). We have already defined these measures but we repeat their definition for
convenience:

tpr =
number of detected anomalies

total number of anomalies

pfa =
number of non-expected detections

number of detections

6.5.3 Results

In Table 6.2, we can see detection results for all 12 defects and for both detection methods
(global and local).It is clear that both methods succeed in detecting the defects, almost
without a single miss. The global method has a lower false alarm rate than the local
one. The high false alarm rate for the local method is mainly due to the small number of
data that we dispose of for the specific map size. In other words, during training, each
Kohonen class gets few data samples and thus, confidence intervals cannot be calculated
reliably.

Figure 6.12 shows the distance d of each data sample (samples on the horizontal axis)
to their nearest prototype vector (Equation 6.5). The light blue band shows the global
confidence interval I that we calculated in the training phase.

Similarly, Figure 6.13 shows the distance d of the test data to their nearest prototype
vectors (Equation 6.5). The light blue band corresponds to the local confidence intervals
Il, with l = 1, . . . , L being the index of the Kohonen classes, that we aggregated on the
same graphique, meaning that for each data sample, we plotted the upper limit of the
confidence interval of the Kohonen class to which it was affected. This is what gives a
variable band in the graphic.
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Global detection Local detection

Defect tpr pfa tpr pfa

Defect 1 100% 18,9% 100% 45,4%

Defect 2 100% 11,4% 100% 42,6%

Defect 3 100% 16,7% 100% 47,9%

Defect 4 100% 15,1% 100% 45,1%

Defect 5 96,7% 14,7% 100% 43,4%

Defect 6 100% 13,9% 100% 43,6%

Defect 7 96,7% 12,1% 96,7% 44,2%

Defect 8 100% 26,3% 100% 50%

Defect 9 100% 15,8% 100% 43,9%

Defect 10 100% 26,7% 100% 55,1%

Defect 11 100% 17,1% 100% 46,3%

Defect 12 100% 21% 100% 46,4%

Table 6.2: Detection rate (tpr) and false alarm rate (pfa) for different types of defects
and for both anomaly detection methods (global and local).

In order to give a visual overview of the performance of the anomaly detection com-
ponent, we annotate the detection on the above graphics. Thus, red crosses designate
the false alarms and green stars designate the correct detections.

Moreover, we have developed a new visualization tool to monitor the trajectory of an
engine with a defect on the map. The tool was built using SAMANTA, the proprietary
Health Monitoring software of Snecma.

Using this tool, we visualize the distribution of the corrupted data in the cells of the
map. In general, we want that anomalies appear to regions of the map where extreme
data exist (black or white regions). Note that, for a given engine, data are corrupted
after a certain data sample xt0 and up to the last data sample of this engine. Therefore,
this visualization has a green circle for anomaly-free data samples and a red circle for
anomalies. At each time, it is only the most recent data sample that is being colored
red or green. Here, ”anomaly-free” refers to the groundtruth and not to the decision of
our system.

Figures 6.18-6.23 show snapshots of the trajectory of an engine with Defect 1. The
background of the maps is the exhaustion gas temperature (EXH). We can see that in the
first graphics, anomaly-free data (green circles) appear in map regions with intermediate
values for the given variable. Then, for defects (red circles), that is after t = 15, data
appear abruptly in a region of the map with high values for the given variable and stay
there until the end.

This experiment shows that our system makes a representative visualization of anomaly-
free data, since anomalies tend to concentrate on high-valued regions.
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Figure 6.12: Distances of the test data to their nearest prototype vector and the global
confidence interval (in light blue), calculated using anomaly-free data during
the training phase. Red crosses show the false alarms and green stars show
successful detections. We annotate to each graphic the tpr and the pfa.

6.5.4 Comparison of the SOM-based anomaly detector with HDRC

An interesting point is to examine if we have gained something by using the SOM-based
anomaly detector which relies on the calculation of ”normality” intervals. To this extent,
we compare the performances of the SOM-based detector (Table 6.2) with the detection
and false alarm rates that HDRC would give on the same test data.
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Figure 6.13: Distances of test residuals to their nearest prototype vector and local con-
fidence intervals (for each Kohonen class) in light blue, aggregated in one
single graphic. This Figure can be read as the one for the global interval
above.

Therefore, for each defect type, we run HDRC 30 times with a random initialization
and we calculate the mean tpr and mean pfa. We give HDRC the true value of the
anomaly proportion in the data α = 0.064. Remember that we correct endogenous data
so that we eliminate the influence of the environment. This gives us (corrected) data
where anomalies are detected due to their having far larger values than ”normal” data.
Therefore, it seems that, naturally, there are two kinds of data in the corrected data:
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Defect tpr pfa

Defect 1 93,3% 6,67%

Defect 2 83,9% 16,1%

Defect 3 88% 12%

Defect 4 89,3% 10,7%

Defect 5 90% 10%

Defect 6 87,1% 12,9%

Defect 7 83,3% 16,7%

Defect 8 89,3% 10,7%

Defect 9 90,6% 9,4%

Defect 10 86,4% 13,6%

Defect 11 89,7% 10,3%

Defect 12 90% 10%

Table 6.3: Detection rate (tpr), false alarm rate (pfa) obtained by HDRC for different
types of defects. Rates are mean values over 30 replications. Comparing these
rates with those in Table 6.2, it is clear that the SOM-based anomaly detector
clearly does better than a simple, straightforward application of HDRC.

healthy data and anomalies. This is why we set K = 1, so that the algorithm will
concentrate on anomalies (given that it clusters correctly healthy data into the single
cluster).

Detection rate (tpr) and false alarm rate (pfa) obtained by HDRC for different types
of defects are shown in Table 6.3. Rates are mean values over 30 replications. Comparing
these rates with those of the SOM-based detector in Table 6.2, it is clear that the SOM-
based anomaly detector clearly does better than a simple application of HDRC. The false
alarm rates of HDRC are slightly lower in some cases but not in a significant manner
that could counterbalance the loss in detection.

6.5.5 Anomaly Identification

In this application, we have used Self-Organizing Maps as a means to visualize anomalies
and calibrate the anomaly detection component of our system. An interesting point
would be to see if SOMs could facilitate anomaly identification. Intuitively, we expect
similar types of anomalies to be located at nearby regions on the map. Moreover, we
would like that these regions are not the same regions where anomaly-free data are
located. If this was true, we could have yet another method for detecting anomalies. In
addition, if similar anomalies appear frequently in the same region of a SOM, then this
would provide us with a means of identifying them. We proceeded to some experiments
to see if these facts hold.

SOMs actually provide a natural way of monitoring changes by following the trajectory
of successive data samples on the map. Their trajectory is defined by the index of the
class to which each data sample was assigned, i.e. the cell corresponding to the closest
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prototype vector. Since the data that we dispose of are aircraft engine data, we speak
of engine trajectories. Therefore, we would like to see if similar anomalies on an engine
would gives us similar trajectories. In addition, we would like to compare a trajectory
of an engine without any incidents (anomalies) to that of an engine with anomalies.
Moreover, an interesting point would be to see if different anomalies on different engines
produce different trajectories (similar per anomaly category).

Trajectory of a single-engine anomaly of a single type

We begin by generating 100 engine anomaly signatures of type ”Defect 1” for a given
engine and plotting their trajectories on the SOM that we constructed earlier in Fig-
ure 6.14. Each trajectory is represented by a different color in Figure 6.14a. The symbols
(triangles, circles etc.) mark the endpoint of each trajectory. We see that all trajectories
are not identical but they tend to end in two distinct regions of the map (upper left
and lower right corner). Moreover, these are regions where high values of tha exam-
ined variable are located. Figure 6.14b shows only the endpoints of each trajectory and
corroborates the above conclusion. Thus, variations of a similar anomaly on the same
engine will produce trajectories that are not identical but are similar in the sense that
they concentrate over particular regions of the map.

Comparison of trajectories of healthy and non-healthy engines

The next experiment that we conduct is to compare the trajectory of a normal engine
to that of an engine with an anomaly. We thus generate an anomaly signature of type
Defect 8 and compare it to the trajectory of the same engine without any anomalies.
Figure 6.15 illustrates this comparison. In green, there is the trajectory of the healthy
engine. The trajectory of the engine with anomalies is in blue (healthy part) and red
(part where the anomalies occur). We remind the reader that the blue part precedes
the red part temporally speaking. We can see that the healthy engine traverses virtually
the entire map, while the damaged engine is heading to a region of the map where high
values of the examined variable are concentrated.

Trajectories of multiple-engine anomalies of various types

Finally, we would like to see if each type of anomaly has a specific region to which it is
concentrated on the map. To this extent, we generate 400 signatures of 4 different types
of anomalies (100 signatures of each) and we plot the ending points of their trajectories
on the map. In particular, we generated anomalies of types ”Defect 1”, ”Defect 7”,
”Defect 8” and ”Defect 9”. This time though, anomalies are not injected to a single
engine but to multiple engines. The ending points can be found in Figure 6.16. Each
color-symbol represents a different type of anomalies. In particular, green crosses were
used for anomalies of type ”Defect 1”, magenta triangles for ”Defect 7”, yellow squares
for ”Defect 8” and blue diamonds for ”Defect 9”.

We can see that different anomalies tend to concentrate on different regions of the
map, though the separation is not always clear. Note that types ”Defect 1” and ”Defect
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9” describe similar anomaly signatures and that ”Defect 7” describes an anomaly which
is hard to detect. That being said, we can see that anomaly signatures of type ”Defect 1”
and ”Defect 9” concentrate on the same regions of the map, while ”Defect 8” is located
in a distinct area of the map. Anomaly signatures of type ”Defect 7” seem to be more
dispersed due to the fact that it is a challenging type of aircraft engine anomaly.

6.5.6 Dynamic Anomaly Detection

The Anomaly Detection system presented earlier is dynamic in the sense that once the
training phase has been completed, each new data sample can be treated rapidly since
the classification rule has been learned, the regression model has been estimated, the
weights of the SOM have already been calculated and the anomaly intervals have been
set. Thus, for a novel data sample we just perform five constant-time (O(1)) operations:
apply the MAP rule for classification, calculate its residual from the regression model,
find its closest prototype vector in the SOM, calculate its distance to the map and
compare with the confidence interval.

To go further and have a fully online system, where there will be no training or test
phase, one has to execute classification, regression and SOM learning incrementally. For
the classification part, the online MPPCA algorithm that we introduced in this work
can be used.
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(a)

(b)

Figure 6.14: (a) Trajectories of a single engine with 100 different signatures of Defect
1. Each trajectory is represented by a different color. (b) Endpoints of
trajectories. Each endpoint is represented by a different color and symbol.
The background of the map is the exhaustion gas temperature (EXH).
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Figure 6.15: Trajectories of a healthy engine (green) and of the same engine with an
anomaly of type Defect 8 (blue for the healthy part and red for the anoma-
lous part). The background of the map corresponds to the N2 variable
.
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Figure 6.16: Ending points of trajectories of 400 anomaly signatures of 4 different
anomaly types. Each type is represented by a different color-symbol:
anomalies of type ”Defect 1”, magenta triangles for ”Defect 7”, yellow
squares for ”Defect 8” and blue diamonds for ”Defect 9”. Note that types
Defect 1 and 9 describe similar anomaly signatures and that Defect 7 de-
scribes an anomaly which is hard to detect. We can see that different
anomalies tend to concentrate on different regions of the map. The back-
ground of the map is the exhaustion gas temperature variable (EXH).
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Figure 6.17: Distribution of training residuals to the K = 5 environment classes
(C1, . . . , CK , see Section 6.3), superposed on the map. The background
of the map is the exhaustion gas temperature (EXH). For example, for the
cell (1, 1) (top left), we have 2 data samples of C1, 6 of C2, 1 of C3, 17 of
C4 and 12 of C5.
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(a) t=1 (b) t=3

(c) t=5 (d) t=7

Figure 6.18: Trajectory of an engine with defects. The background of the map is the
exhaustion gas temperature (EXH). See the text (p. 100) for more details.
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(a) t=9 (b) t=11

(c) t=13 (d) t=15

Figure 6.19
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(a) t=17 (b) t=19

(c) t=21 (d) t=23

Figure 6.20
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(a) t=25 (b) t=27

(c) t=29 (d) t=31

Figure 6.21
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(a) t=33 (b) t=35

(c) t=37 (d) t=39

Figure 6.22
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(a) t=41 (b) t=43

Figure 6.23
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Chapter 7
Conclusions and future work

In this chapter, we give a synthesis of the contributions of this Thesis, of the proposed
methods and of the results of the experiments that we conducted (section 7.1). We also
discuss perspectives for future work on the subject (section 7.2).

7.1 Synthesis of our work

The main subject of this Thesis is anomaly detection in high-dimensional datastreams
with a specific application to aircraft engine health monitoring data. Below, we give a
summary of the contributions of this Thesis.

Robust offline clustering with trimming for high-dimensional data

We have presented a robust offline clustering algorithm for high-dimensional data (HDRC),
combining a subspace clustering algorithm (HDDC) and the trimming technique. We
have shown its efficiency on noisy high-dimensional simulated datasets and on two real-
world datasets with anomalies. In particular, HDRC manages to detect anomalies in
high-dimensional (up to 173) real-world aircraft engine data, provided by Snecma, the
french aircraft engine constructor. HDRC was also successful in breast cancer diagnosis
using the breast cancer dataset of the UCI repository.

Online mixture of probabilistic PCA for clustering of high-dimensional datastreams

We have also proposed an online inference algorithm for the MPPCA model which relies
on an EM-based procedure and a probabilistic, incremental version of PCA. The pro-
posed strategy allows to incrementally update the estimates of the MPPCA parameters,
at the arrival of a new data sample. It also provides low-dimensional visualizations of the
data. Model selection is also considered in the online setting through parallel comput-
ing. Numerical experiments on simulated and real data from the aircraft engine Health
Monitoring domain have shown that the online MPPCA algorithm performs better than
existing online EM-based algorithms in high-dimensional spaces.
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An integrated anomaly detection methodology with an application to Health

Monitoring

In this Thesis, we have developed an integrated methodology for the analysis, detection
and visualization of anomalies of aircraft engines, that includes the following stages:
classification of the data in environment classes, data correction from the influence of
the environmental conditions, construction of a self-organizing map from the corrected
data and anomaly detection. There is a training phase in which the components of the
overall system are calibrated using healthy data. Once training is completed, there is
a test phase, where the system is fully operational and can process data that was not
seen during training. In this phase, the same chain of processing as in the training
phase is applied to each novel data sample. For the anomaly detection component, we
have developed a statistical technique that builds intervals of ”normal” functioning of an
engine based on distances of healthy data from the map. Then, for a novel data sample,
its distance from the map is calculated and compared with the interval in order to issue
an alert or not.

We have tested this methodology on real data from the aircraft engine Health Moni-
toring Domain, supplied by Snecma. We have injected artificial anomalies of 12 different
types, as they were established by Snecma experts. We have shown that the proposed
system succeeds in detecting anomalies attaining even 100% of detection for most of the
anomaly types. The false alarm rate varied from 11% − 26% for the global detection
anomaly component. Note that this method does better in anomaly detection than a
straightforward application of HDRC to corrected endogenous data.

7.2 Future work

HDRC, as trimming-based robust clustering methods in general, assume that the true
anomaly proportion among the data is known. In practice, this is rarely true. Moreover,
the data that are trimmed depend on the number of groups K of the underlying GMM
and vice versa, since the final clustering depends on the trimming parameter α. We
are planning to compare our work with that of (Punzo and McNicholas, 2013), which
estimates the trimming parameter.

Regarding online MPPCA, it could be interesting to consider the re-computation of
the posterior probabilities for all (past and present) observations in the E-step based on
the low-dimensional projection that we keep for each data sample.

In addition, a deeper analysis of initialization strategies should be considered for the
algorithm. In fact, initialization on some set of initial data implicitly assumes that
all classes are represented therein. However, this may not always be the case, since
datastreams are often issued from real-world procedures where classes are not all equally
represented in the initial part of the stream. In this case, preliminary experiments show
that online MPPCA tends to grow arbitrarily a single class, while the rest of the classes
contain only a few data samples from the initial part of the stream.

A possible solution to this problem would be to adopt a dynamic model selection
procedure, where classes could be added or removed. One way to do this, as we saw in
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the anomaly detection survey in chapter 3, would be to use split and merge operations
on the classes following some criteria. Nevertheless, these criteria should be easy to
evaluate and not need all of the past data in order to operate.

Another extension of our work could be to make an online MPPCA which will be
robust to anomalies. Trimming cannot be applied in a straightforward manner in the
online context, since, by default, this technique needs all of the data to operate efficiently.
There is a literature on robust PCA analysis (Chen et al., 1996; Wan and Karhunen,
1996; Croux et al., 2013; Skocaj et al., 2002; Hubert and Engelen, 2004; Croux et al.,
2013), which could be adapted appropriately in order to develop an online robust MP-
PCA.

Finally, concerning the application we have given on aircraft engine data, an extension
would be make it dynamic, as we have already discussed in the relative section. A
naive solution would be to recalibrate the components of the system with each novel
data sample, but it would be very time-consuming. Instead, one can try to make each
component to operate in a dynamic manner. For the classification component, one could
use online MPPCA.

Anomaly identification can also be further investigated through the use of supervised
or unsupervised classification methods based on engine trajectories’ ending points on
the map. Data would then be composed of the indexes of the cells in which each trajec-
tory ended. Powerful supervised classification techniques like boosting or even simpler
clustering algorithms could then be applied to classify anomalies following their type.
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Kriegel, H.-P., Kröger, P., Ntoutsi, I., and Zimek, A. (2011). Density based subspace
clustering over dynamic data. In Scientific and Statistical Database Management,
pages 387–404. Springer.

Labib, K. and Vemuri, R. (2002). Nsom: A real-time network-based intrusion detection
system using self-organizing maps.
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