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iiiRésuméLe transport turbulent de partiules est un phénomène important qui inter-vient dans de nombreux proessus naturels et industriels. Comprendre sespropriétés et, en partiulier, la réation de grandes �utuations de densité,est fondamental pour améliorer les modèles et a�ner les prévisions. Celareprésente de nombreux enjeux éonomiques, environnementaux et de santé.Une étude Lagrangienne de la séparation de paires de traeurs a été menée ens'appuyant sur l'analyse des données de simulations numériques à très hauterésolution. Elle a permis de souligner les défaillanes des approhes de typehamp moyen qui sont à la base des modèles les plus ouramment utilisés.Pour la séparation, on onstate que la transition entre le régime balistique deBathelor et le régime explosif de Rihardson a lieu à des temps données parle temps moyen de dissipation de l'énergie inétique turbulente. Aussi, il estmontré que la loi de Rihardson peut s'interpréter omme un omportementdi�usif des di�érenes de vitesse. Des arguments phénoménologiques perme-ttent d'interpréter et e�et par la déorrélation de di�érenes d'aélérationet la stationnarité aux temps longs du taux loal de transfert d'énergie iné-tique. Les moments d'ordres élevés de la séparation et de la vitesse sontaussi étudiés pour aborder la question des �événements violents� dans la dis-tribution des distanes. En�n, un modèle d'éjetion de masse est proposéet utilisé pour examiner les �utuations de la densité de partiules lourdestransportées dans un environnement aléatoire.SummaryThe turbulent transport of partiles is an important phenomena whih ap-pears in many natural and industrial proesses. Understanding its properties,and, in partiular, the reation of strong density �utuations, is fundamentalto improve models and re�ne foreasts. This an lead to signi�ant bene�tsin issues related to eonomis, the environmental and health. A Lagrangianstudy of the traer pair separation was arried out with the help of highresolution data analysis. This allowed us to point out the weaknesses of themean-�eld approahes on whih most models are based. For the separation,it is found that the transition from the regime of Bathelor (or ballisti) tothat of Rihardson (or explosive) ours at times given by those typial ofthe turbulent kineti energy dissipation. It is also found that Rihardson'slaw an be reinterpreted in terms of di�usive behaviour of the veloity di�er-enes. Phenomenologial arguments allow us to explain this e�et throughthe deorrelation of the aeleration di�erenes and the stationarity of the



ivkineti energy transfer ratio at large times. The high-order moments of bothseparation and veloity are also investigated to address the question of �vio-lent events" in the distribution of the distanes. Finally, a one-dimensionalmass ejetion model is proposed and used to examine the density �utuationsof heavy partiles transported by the random environment.
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Chapter 1IntrodutionAlmost all natural and industrial �uid �ows are usually in a turbulent state.Their study has always attrated muh attention in order to understand, forexample, the hydro or aerodynamial properties of objets, to model windsin meteorology or �uxes in fatory devies, and to quantify the timesalesat whih transported speies are mixed and dispersed. During the lasttwo deades turbulent transport has gathered a growing interest in the si-enti� ommunity. This is due to the development of new soietal on-erns related to pollution and limate hange and, at the same time, tothe emergene of the sienti� paradigm of Lagrangian turbulene. Tur-bulent transport is indeed ubiquitous in atmospheri physis, oeanographyand astrophysis [Csanady, 1973, Seinfeld & Pandis, 2006, Battaner, 1996℄.It plays a ruial role in modeling the dispersion of volani ashes [Peterson& Dean, 2008℄ or of pollutants [Arya, 1999,Cooper & Alley, 2002℄, the dy-namis of plankton populations in seas [Lewis & Bala, 2006℄, the formationof louds [Pinsky & Khain, 1997℄, the initiation of rain [Shaw, 2003℄ or theearly stages of planet formation [De Pater & Lissauer, 2001,Charnoz et al.,2011℄. Illustrations of suh appliations are shown in Fig. 1.1. The phenom-ena ourring in the atmosphere are the objet of intense studies beause, inaddition to important eonomial and eologial impliations, their preiseunderstanding is needed to design e�ient and reliable models in meteorol-ogy and limate sienes. In parallel to suh a growth of interest, the lastdeades witnessed the development of new theoretial approahes for theproblem of turbulent transport, or of Lagrangian turbulene. Suh funda-mental ontributions have used tools taken from statistial physis and �eldtheory [Shraiman et al., 2000,Falkovih et al., 2001,Cardy et al., 2008℄ andled to important results related, for instane, to the anomalous saling of pas-sive traers [Bernard et al., 1996℄, to the improvement of ollision kernels forwarm louds [Falkovih et al., 2002℄, and to the statistial properties of vor-1



2 1. Introdutiontiity ontours in two-dimensional turbulene [Bernard et al., 2006℄. Theseadvanes were intriately onneted to simultaneous experimental develop-ments. Reent optial and eletroni tehnologies have been used to improveLagrangian measurement tehniques and to trak transported partiles inhighly turbulent �ows. Breakthroughs were then made on the determinationof �uid element aelerations [La Porta et al., 2001℄, on the study of rela-tive dispersion [Ott & Mann, 2000,Bourgoin et al., 2006℄ and on the salingproperties of Lagrangian veloity inrements [Arnéodo et al., 2008℄.The work presented in this thesis manusript has the long-term objetiveto ontribute to the study of atmospheri dispersion, with a partiular em-phasis on the transport of partiulate pollutants. Suh pollutants originateeither from natural soures (suspension of dust by wind erosion, of salt byseawater evaporation, dispersion of pollen, of volan ash, . . . ) or from hu-man ativities (ombustion of organi ompounds, dispersion of insetiidesused in agriulture, emission of industrial and nulear wastes, . . . ) [Harrison& Perry, 1986℄. These partiulate atmospheri pollutants are often alledaerosols, as they are solid partiles suspended in the air. They have diretand indiret e�ets on limate, whih are still ontroversial and the soureof many unertainties [Pilewskie, 2007,Stevens & Feingold, 2009℄. Also, thepartiulate pollutants represent a hazard for health. Their harmfulness oftendepends on their size [Valavanidis et al., 2008℄. As we will see in more detailslater, very small partiles (with sizes of the order of 1µm or smaller) areextremely dangerous beause they an reah and settle into the pulmonaryalveoli, ausing serious respiratory diseases. These partiles are so small that,in good approximation, size e�ets do not enter their dynamis. They fol-low the �uid �ow as trae markers and are usually referred to as Lagrangiantraers. In addition, when they are su�iently dilute, these small partilesdo not in�uene the �uid motion and one then talks of passive traers.Turbulent transport enhanes the dispersion of speies. In addition tomoleular di�usion and advetion by a mean �ow, the �uid �ow �utuationsprovide another mehanism of mixing, usually alled turbulent dispersion,whih is orders of magnitude more e�ient. If we onsider, for instane,the smoke of a igarette in a room, experiene suggests that few seonds areenough to �di�use� its smell everywhere. However, even with the most a-urate estimations on smoke di�usivity and on the onvetion e�ets due totemperature di�erenes between smoke and air, one would obtain a di�usiontime of the order of hours. Suh a disrepany ours when one negletsthe e�ets of turbulene. Sine the pioneering work of Reynolds in 1883,there have been many e�orts to understand and model how turbulent mix-ing interfere with both the large-sale advetion by a mean �ow and thesmall-sale moleular di�usivity. In a developed turbulent �ow, the sales



3

(a) Ash and dust plume ar-ried away from Etna volanoin Siily. (b) Radioative leak after thereent disaster in FukushimaDaiihi nulear omplex. () Artist view of a pro-toplanetary disk gravitat-ing around a young star.Credit: NASA/JPL-Calteh

(d) Phytoplankton bloom inthe bay of Bisay. Credit: NASA (e) Clouds formation in thehigh atmosphere. (f) Pollution due to indus-trial ativities.Figure 1.1: Examples of situations involving turbulent partile transport.assoiated to these two proesses are generally widely separated and the tur-bulene spans all the intermediate range between them. This led Ekart in1948 to deompose the proess of turbulent dispersion in three main steps.The �rst onerns large sales, where partiles are entrained, the seond isresponsible for the mixing proess that happens at intermediate sales, andthe last step is at small sales where strething by the �uid strain reateslarge onentration gradients and di�usion beomes important.The study of Lagrangian transport aims at desribing the proesses o-urring in the intermediate range of length sales where turbulene is at play.Muh work has been devoted to the study of traer dynamis in turbulent�ows. However, beause of the large span of sales overed by turbulene(from millimeters to hundreds of meters in the atmosphere), the predition



4 1. Introdution

(a) (b)Figure 1.2: (a) Shemati illustration of trapping events in turbulent �ow.A partile �nds along its path several vorties (here indiated by squares)that at like traps and interrupt the trajetory. (b) Gaussian vs meanderingplume. The snapshot shows the positions of traer partiles (blak dots)downstream a soure. The plume ontains regions with loal high densitythan annot be predited from the solution of the mean �eld approximation(olor bakground).tools, whih are expeted to be operative in onrete situations, have to relyon modeling. Many approahes have thus been investigated in order to designe�ient and reliable models for turbulent traer dispersion and onsequentlythe time evolution of their onentration �elds (see, for instane, [Monin &Yaglom, 1971,Csanady, 1973,Majda & Kramer, 1999,Pope, 2000℄). Despitethe evident progresses that have been ahieved, most of the models urrentlyused to predit for instane air quality, provide pollutant onentration fore-asts that are rather rough sine they are simply based on the estimations ofthe average onentration �elds. Transport is indeed usually treated via theso-alled mean-�eld approahes [Opper & Saad, 2001℄. They onsist in ap-proximating the transport through a ombination of advetion by the meanwind veloity and di�usion to model the e�ets of air�ow turbulent �utua-tions. These tehniques give aeptable results on long-term averages. Theresulting estimations are su�ient in many appliations, as for instane wheninterested in the mean exposure to a given pollutant. In addition, they donot require sophistiated modeling as the balane between auray and ef-�ieny is generally satisfatory. This partly explains the gap that urrently



5exists between state-of-the-art models and pratial implementations.However, in some ases, one ould be interested in estimating the �u-tuations that originate from the omplex struture of the turbulent �ow.An instane is the risk that a loal pollutant onentration exeeds a giventhreshold. Often, loal unexpeted onentration �utuations an indeedprodue serious damages on health and prediting them would give greatbene�ts for safety monitoring. The reent eruption of the Ielandi volanoEyjafjallajökull in 2010 is another instane where suh shortomings hadan important eonomial impat. The inability of meteorologial models topredit the likelihood that an airraft meets a onentrated ash pu� led toompletely lose the North-European air tra�. Thus the importane of thestrong �utuations of mass onentration �elds in monitoring and predit-ing atmospheri dispersion annot be underestimated. In suh situations,the relevant sales are then muh smaller than those typially resolved bymodels. In addition, the information on an average value is not su�ient todiretly determine the amplitude and the nature of the �utuations. Highonentrations are assoiated to the values of the tails of the probability dis-tribution rather than to its ore. A typial situation that an be enounteredin turbulent transport is shown in Fig. 1.2(b), whih represents the averageonentration (olored bakground), together with the instantaneous posi-tions of traers emitted from a time-ontinuous soure in a two-dimensional�ow. The plume ontains regions with loal high density than annot bepredited from the average onentration, whih is a solution to the mean�eld approximation.The reation of strong �utuations in the distribution of transported par-tiles an essentially be explained by two mehanisms. The �rst one is in-trinsially related to the nature of the turbulent transport itself. It is knownthat for traers adveted by turbulent �ows, the probability distribution ofonentration has tails that are dereasing muh slower than a Gaussian dis-tribution [Warhaft, 2000℄. Hene a Gaussian di�usive model is not suitableto desribe them. The disrepany an be explained by onsidering the ed-dies of the underlying turbulent �ow as sort of traps in whih trajetoriesspend more time than expeted (see Fig. 1.2(a) for a shemati illustration).Suh trapping events will then give high probabilities of �nding high on-entrations. Beause this mehanism is intrinsi to the �uid �ow, it wouldbe important to identify and investigate the harateristis that are favoringor preventing it. It is still not lear whether this behavior is universal ordepends on the features of the �ow. Also the funtional form of the resultingtails in the onentration probability distribution is unknown.The seond ause of strong �utuations in the onentration �eld of trans-ported speies is the presene of inertia in the dynamis of ertain suspended



6 1. Introdutionpartiles. When the transport does not onern traers but �nite-size par-tiles, heavier than the surrounding air, several e�ets our. A �rst e�etis due to gravity. Indeed, beause of their weight, the partiles settle andthis proess generally ours with a preferential sweeping of their trajeto-ries in the diretion of the regions of downward air�ow [Wang & Maxey,1993℄. This ampli�es the formation of �utuations in their distribution.Another important e�et is due to the entrifugal inertial fores that atwhen heavy partiles are inside vorties. Suh partiles are then ejeted andthis favors their onentration in the high-strain regions. This phenomenonof formation of voids and high-density �utuations is known as preferentialonentration [Squires & Eaton, 1991℄. High onentration �utuations havemarked impats on the monitoring of pollutant dispersion at small salesand, for this reason, quantifying the orrelations between the �ow turbulentstrutures and the partile onentration is important.This thesis enompasses fundamental studies of transport properties indisordered environments. The objetive is to provide new tools in order toqualify and quantify the �utuations that are present in atmospheri turbu-lent transport. For that, I have mainly foused on the study of two problemsthat unveils some aspets of the two onentration mehanisms desribedabove. The �rst onerns the relative motion of Lagrangian traers in turbu-lent �ows and relates to seond-order statistis of a passively adveted on-entration �eld. The seond onerns the e�ets of preferential onentrationon the �utuations in the density of heavy partiles and uses a statistial for-malism that relates them to mass ejetion models in random sale-invariantenvironments. Both studies make use of notions and tehniques borrowedfrom statistial physis, and ombine them with the phenomenology of �uidmehanis and the development of numerial tools. The thread runningthroughout this thesis is to haraterize with whih universality the �utu-ations of the turbulent �ows, or more generally of a random medium, areresponsible for the variability of the transport properties.The rest of this dissertation is organized as follows.The next two hapters give some bakground on turbulent transport.Chapter 2 ontains a brief introdution to the main onepts on the dy-namial and statistial properties of turbulene. It summarizes the salingtheories of turbulent veloity �elds, relates them to kineti energy transfers,and brie�y disusses intermitteny. Chapter 3 is foused on partile trans-port by turbulent �ows. After introduing the equations that desribe thedynamis of minute partiles, it fouses on stohasti approahes for traer



7dispersion and disusses with some details the mehanisms leading to on-entration �utuations.Chapters 4 and 5 are dediated to the problem of traer relative disper-sion in turbulent �ow and report work that was the subjet of an artilepublished on Physial Review E [Bitane et al., 2012b℄ and of another artilesubmitted to Journal of Turbulene [Bitane et al., 2012a℄. In Chapter 4,I �rst introdue the key onepts, suh as Rihardson's di�usive approahand Bathelor's ballisti regime. Then the rest of the hapter reports anoriginal work on the study of the various timesales involved in this prob-lem. The arguments that involve a sale-dependent e�etive di�usivity isrevisited to explain the explosive separation of traers aording to the el-ebrated t3/2 Rihardson law. For that, state-of-the-art numeris are used.The Lagrangian orrelation time of veloity di�erenes is found to inreasetoo quikly for validating this approah, but aeleration di�erenes deorre-late on dissipative timesales. This results in an asymptoti di�usion ∝ t1/2of veloity di�erenes, so that the long-time behavior of distanes is that ofthe integral of Brownian motion. The time of onvergene to this regime isshown to be that of deviations from Bathelor's initial ballisti regime, givenby a sale-dependent energy dissipation time rather than the usual turnovertime. In Chapter 4, I also report the �nding that the mixed moment, de�nedby the ratio between the ube of the longitudinal veloity di�erene and thedistane, attains a statistially stationary regime on very short timesales.All these onsiderations are then put together and used to introdue a newone-dimensional stohasti model, whih is studied and whose relevane todispersion in real �ows is disussed.Chapter 5 reports thesis work on the study of violent events that ourin pair dispersion and provides a statistial and geometrial harateriza-tion of them. Evidene is obtained that the distribution of distanes attainsan almost self-similar regime haraterized by a very weak intermitteny.Conversely the veloity di�erenes between traers are displaying a stronglyanomalous behavior whose saling properties are very lose to that of La-grangian struture funtions. Suh violent �utuations are interpreted geo-metrially and are shown to be responsible for a long-term memory of theinitial separation. These results are brought together to address the questionof violent events in the distribution of distanes. It is found that distanesmuh larger than the average are reahed by pairs that have always sepa-rated faster sine the initial time. They ontribute a strethed exponentialbehavior in the tail of the inter-traer distane probability distribution. Thetail approahes a pure exponential at large times, ontraditing Rihardson'sdi�usive approah. At the same time, the distane distribution displays a



8 1. Introdutiontime-dependent power-law behavior at very small values, whih is interpretedin terms of fratal geometry. It is argued and demonstrated numerially thatthe exponent onverges to one at large time, again in on�it with Rihard-son's distribution. Finally, at the end of Chapter 5 some perspetives on thestudy of the spei� problem of turbulent pair dispersion are reported.In Chapter 6, I make use of statistial physis tools for haraterizing�utuations in the density of heavy inertial partiles. This problem is re-lated to random walks in random environments. A mass ejetion model ina time-dependent random environment with both temporal and spatial or-relations is then introdued. When the environment has a �nite orrelationlength, individual partile trajetories are found to di�use at large times witha displaement distribution that approahes a Gaussian. The olletive dy-namis of di�using partiles reahes a statistially stationary state, whih isharaterized in terms of a �utuating mass density �eld. The probability dis-tribution of density is studied numerially for both smooth and non-smoothsale-invariant random environments. A ompetition between trapping inthe regions where the ejetion rate of the environment vanishes and mixingdue to its temporal dependene leads to large �utuations of mass. Thesemehanisms are found to result in the presene of intermediate power-lawtails in the probability distribution of the mass density. For spatially di�er-entiable environments, the exponent of the right tail is shown to be universaland equal to −3/2. However, at small values, it is found to depend on theenvironment. Finally, spatial saling properties of the mass distribution areinvestigated. The distribution of the oarse-grained density is shown to pos-sess some resaling properties that depend on the sale, the amplitude of theejetion rate, and the Hölder exponent of the environment. This work wasthe subjet of a publiation in the New Journal of Physis [Krstulovi et al.,2012℄.Finally, Chapter 7 draws general onlusions on this thesis work. Thestress is put on the perspetives and on the impliations of the reportedresults on quantifying �utuations in atmospheri transport.



Chapter 2Basi onepts in turbuleneTurbulene is the largest unsolved problem in �uid dynamis and, more gen-erally, in lassial physis. If we onsider that Leonardo Da Vini was alreadystudying turbulene in the 16th entury, we an understand how ompliatedis this problem as �ve hundred years were not enough to solve it. His skethes(see Fig. 2.1), that are famous in the whole world, apture well the omplex�uid motion involving a wide range of spatial sales. Suh sale separationsand haotiity are typial of turbulent �ows. The problem in �solving turbu-lene� basially omes from the presene of nonlinear terms in the Navier-Stokes equation, whih governs the time evolution of an inompressible �uid.As a onsequene, there is no simple general solutions for the �uid �ow.The apparent paradox that a phenomenon desribed by the deterministiNavier-Stokes equation does not have a deterministi and unique solutionwas explained by Lorentz. He showed in 1963 that some nonlinear systemshave a strong dependene on initial onditions, so that even undetetabledi�erenes of initial parameters an give extremely di�erent solutions.2.1 Phenomenology of turbulent �owsThe onept of turbulene, whih is present in everyday life (from a of-fee up to blowing wind), is well known to everybody. Despite this fat,the e�et of turbulene on the global features of the �uid is far from beingfully understood. In �uid dynamis, the level of turbulene in a �uid �owis haraterized and measured by a dimensionless parameter, the Reynoldsnumber
Re =

UL

ν
, (2.1)where U is the typial veloity of the �ow, L its typial lengthsale and ν thekinemati visosity. The Reynolds number omes from a dominant-balane9
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Figure 2.1: The �rst doumented sienti� study of turbulene is due toLeonardo Da Vini in the sixteenth entury. Here it is shown one of hisdrafts of a free water jet exiting from a square hole of a ontainer into apool.analysis of the various terms in the Navier�Stokes equation and representsthe ratio between the inertial and the visous fores in the �uid.When its value is larger than a ertain threshold (whih is somewhere be-tween 40 and 75, [Frish, 1996℄), the regularity of motion is broken by the riseof vortial strutures. In that ase, the vorties that initially appear at thelargest sale reate regions where shearing is strong, whih beome unstableand are responsible (for instane by Kelvin�Helmholtz instability) for the for-mation of smaller vorties. Again, these strutures reate shear, destabilizeand give rise to smaller eddies. This proess is repeated as long as the loalReynolds number (de�ned with the iterated lengthsale and its assoiatedtypial veloity) is large enough. This proess ends at small sales where ki-neti energy dissipation by visous damping beomes important. When thelarge-sale Reynolds number Re has a su�iently large value, this proessrepeats many times and one usually talks of fully-developed turbulene. Inthis regime, the various symmetry properties of the Navier-Stokes equationare broken beause of the presene of �ow strutures at every sales. Howeverthese symmetries are expeted to be reovered in a statistial sense.2.1.1 Kolmogorov 1941 theoryThis onjeture led Kolmogorov to design a statistial theory of turbulene[Kolmogorov, 1941a,Kolmogorov, 1941b,Kolmogorov, 1941℄, whih is om-
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Figure 2.2: Shemati representation of the Rihardson's asade (from[Frish, 1996℄).monly referred to as K41 theory. The basi idea is to lassify all sales inthree di�eret ranges. The range ontaining the largest sales, whih is of theorder of the domain size, is alled the injetive range, as energy is injetedthere. The smallest sales, where dominant visous e�ets prevent the for-mation of additional vorties, is named the dissipative range, as it is the plaewhere kineti energy is dissipated. In between these two regions, there is anintermediate range in whih energy is simply transported from the largest tothe smallest sales. It is alled the inertial range. This intermediate asymp-toti region is very important beause is the only one in whih the symmetryof the Navier-Stokes equation are reovered in a statistial sense.The proess of energy transfer by the formation of eddies, whih is atplay in three-dimansional turbulent �ows, is known as the energy asade.It is also sometimes referred to as the Rihardson asade, sine the oneptwas �rst introdued by the meteorologist L.F. Rihardson in 1922. The pathof kineti energy in turbulent �ows is shematially shown in Fig. 2.2. Onenoties that in three-dimansional turbulene is in priniple a dissipative phe-nomenon and to keep it ative, it is neessary to provide some injetion ofenergy at the largest sales of motion. This is usually done in theoretial,experimental, and natural situations by either boundary onditions or volu-mi foring. The basis of K41 theory is that the rate ε at whih energy istransferred through the di�erent eddy sizes is onstant and independent ofthe �uid visosity. By dimensional analysis, this implies that it is equal to



12 2. Basi onepts in turbulenethe ratio between the kineti energy and the typial timesale given by theadvetion (namely L/U). It thus reads
ε ∼ U3

L
. (2.2)Another important notion in K41 theory is the size of eddies where energyis no more transferred but just dissipated. This sale, that we denote η, isalled the dissipative or Kolmogorov sale and depends, this time, on the�uid visosity. Again from dimensional onsiderations, an estimation of suha sale omes out by imposing that the amount of energy transferred and ofenergy dissipated are equal. One then obtains

η ∼
(

ν3

ε

)
1

4 (2.3)where ν is the kinemati visosity.2.1.2 Similarity and sale invarianeA very important onept, on whih K41 theory is based, is that of similarity[Frish, 1996,Pope, 2000℄. Essentially it states that for high value of Re thestatistial properties of the turbulent �uid veloity �eld are universal at saleswithin the inertial range and only depend on the sale ℓ at whih they aremeasured and on the rate of energy dissipation ε. In the dissipative rangewhen ℓ . η, they additionally depend on the visosity ν. When Re�∞ with
L �xed, the inertial range extends to all sales ℓ ≪ L and the statistialproperties beome independent of ν. At very large Reynolds numbers, theinertial range is very wide and the energy asade very long. As during theturbulent energy transfer eddies lose more and more memory about the initialon�guration, it is easily omprehensible that the smallest strutures presentin any turbulent �uid display universal features.For high Reynolds numbers the proesses of energy injetion and of vis-ous dissipation do not a�et the inertial ranges. Under suh hypotheses,one an demonstrate that the �uid veloity �eld is a solution to the inom-pressible Euler equation and it thus satis�es the saling transformations

t 7→ λ1−ht ℓ 7→ λℓ u 7→ λhu (2.4)where λ is an arbitrary saling fator and h any real exponent. When thevisous term is present, the only way Navier-Stokes equation is invariant by



2.2 Energy budgets and transfers in turbulene 13suh transformations is to impose h = −1. Indeed, with suh a hoie of h,the saling transformation does not hange the Reynolds number:
Re =

UL

ν
7→ λ−1UλL

ν
=

UL

ν
(2.5)However in the inertial range where the visous term is negligible, any valueof h is possible. To onstrain this saling exponent, one an make atually useof the only exat statistial relation that exists for turbulent veloity �elds,namely Kolmogorov's 1941 four-�fths law. For that we introdue the longitu-dinal veloity struture funtion (or simply struture funtion) as the momentof the longitudinal veloity di�erene δ‖ℓu between two points separated by adistane ℓ. Under isotropy and homogeneity onditions, Kolmogorov showedthat

S3(ℓ) = 〈δ‖ℓu3〉 = −4

5
εℓ. (2.6)If veloity �utuations are self-similar, one has

δ
‖
ℓu ∼ λhδ

‖
λℓu, (2.7)and this implies that

Sp(ℓ) = 〈δ‖ℓup〉 ∼ ℓhp, when η ≪ ℓ ≪ L. (2.8)To omply with Kolmogorov 4/5 law (2.6) when p = 3, one has to impose
h = 1/3. As we will see later, deviations to suh a self-similar behaviorare observed in experimental and numerial measurements. Qualifying thesaling properties of the struture funtions is still an open issue whih is ofrelevane sine these statistial quantities provide information related to theenergy transfer in the inertial range. Also, it worth stressing that, despite thefat the four-�fths law is an exat onsequene of the Navier-Stokes equation,it is very hard to observe it experimentally or in diret numerial simulation.The disrepany between theory and results is often due to ontaminationof inertial range by the di�usive e�ets or also to veloity �elds sarelyisotropi and homogeneous [Biferale & Proaia, 2005℄.2.2 Energy budgets and transfers in turbuleneAll the physis of turbulent �ows and of the energy transport in the inertialrange, so far represented from a phenomenologial point of view, is ontainedin the inompressible Navier-Stokes equation

ρ
∂u
∂t

+ ρ (u · ∇)u = −∇p+ µ∇2u + ρ f, (2.9)
∇ · u = 0.



14 2. Basi onepts in turbuleneThis equation is nothing but the Newton's seond law written in ase ofan inompressible �uid with onstant density ρ and dynamial visosity µ.The two terms in the left-hand side represent the inertial fores, while termsin the right-hand side are instead the pressure fore, the visous fore andthe last one represent the external (and not onservative) fore. Gravity,if relevant, an be inserted in the pressure term. This equation desribesthe time evolution of eah �uid element veloity and its terms have thedimension of a fore per unit volume. The term (u · ∇u) is the nonlinearterm responsible for a unstable haoti �uid motion and thus for the reationof turbulene. It indues the generation of eddies at all sales and drives theenergy transport through them. The pressure term is present to maintainthe inompressibility ondition ∇ · u = 0. One easily sees that all terms inthe Navier�Stokes equation onserve the divergene-free nature of u, exeptthe non-linear term, whih has a gradient omponent. The pressure is thereto anel it. It is given by the Poisson equation
∇2p = −∇ · (u · ∇u), (2.10)whih is obtained by taking the divergene of Eq. (2.9). The pressure termdepends thus non-loally on the veloity �eld and this is the ause of manydi�ulties enountered in the study of turbulene. This non-loality is absentfrom the visous term. Despite its apparent simpliity, this term plays anessential role as it dissipates the energy injeted by the external foring andkeeps the system in energy balane. As we already saw, the dimensionalratio between the non-linear term and this visous term measures the levelof turbulene via the Reynold dimensionless number.The evolution equation for the total kineti energyK =

∫

V
ρ|u|2 dv, wherethe integration is over the whole spatial domain V , an be obtained multi-plying Eq. (2.9) by u

∂K

∂t
=

∫

V

ρ f · u dv − µ

∫

V

|∇u|2dv (2.11)The loal rate of kineti energy dissipation is de�ned as ε(x, t) = ν|∇u|2,where ν = µ/ρ is the kinemati visosity of the �uid. Equation (2.11) anthus be also written in the form
∂K

∂t
=

∫

V

ρf · u dv − ρ

∫

V

ε dv (2.12)From this expression it is lear that kineti energy does not depend neither onthe onvetive motion in the �uid nor on the pressure sine the orrespondingterms are no more present in Eq. (2.12). In fat, as already seen, they



2.2 Energy budgets and transfers in turbulene 15onserve kineti energy and only onern its transport through all sales.It is also important to point out that by de�nition, the loal rate of energydissipation is always positive and this means that in Eq. (2.12) there is a termthat is ontinuously subtrated. Without the external fore, the energy wouldbe slowly dissipated till have a �uid with null veloity. Like the pressure, thedissipative term belongs to the paradigms of turbulene. Despite what ouldbe naively thought, even when the Reynolds number goes to extremely highvalues, the dissipative e�ets do not disappear. In fat, even if the kinemativisosity ν goes to 0, the veloity gradients inrease in suh a way that εremains onstant. This e�et is sometimes alled the �dissipative anomaly�and its proof is still one of the main open questions of turbulene. Thisonept is at the base of K41 theory. Indeed, to maintain ε onstant when
ν → 0, the former has to be independent of visosity. It implies that theveloity gradients have to inrease like ε1/2ν−1/2. This gives the salings ofKolmogorov dissipative sales introdued in previous setion.2.2.1 Diret and inverse asadesAlthough the arguments so far disussed about turbulene are of general va-lidity for all �uids with similar harateristis, it is needed to underline whatatually depends on the spae dimension. Important mehanisms in turbu-lene are related to the reation or not of vortiity. The latter is de�ned as
ω = ∇ × u and is generially di�erent from zero for a �utuating veloity�elds. Its dynamis is however very di�erent in two and three spae dimen-sions. To see that let us onsider again the Navier-Stokes equation (2.9).Taking its url and realling that µ/ρ = ν, one obtains the equation for thetransport of vortiity by the veloity �eld u

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∇2ω +∇× f (2.13)The vortiity �eld gives an information about turbulene that is omple-mentary to the veloity. In fat, while veloity annot be loalized in spaebeause the pressure distributes it over the whole domain, the vortiity tendsto loalize in ertain regions and it is transported aross spae by advetionand di�usion. However, the �rst term in the right-hand side of Eq. (2.13) anbe responsible for the reation of vortiity, depending on the spae dimension.In three dimensions, this term is generially di�erent from zero and it isoften alled the vortex strething (or also twisting). It strethes and squeezesthe vortial strutures and ontributes, in dominant manner, to the overallvariations of vortiity. When a vortex tube is strethed, for instane inits axial diretion, the onservation of angular momentum implies that its
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Figure 2.3: Qualitative sketh of the strething vortex tube e�et.vortiity has to inrease (see Figure 2.3). Suh a mehanism is able to amplifyvortiity through the veloity gradients without any external soure. Theinrease in the parallel diretion of the vortiity implies an derease of theross setion area of the vortex. This means that the vortex tube has a smallersize beause of this proess. Thanks to the twisting term, large vorties arestrongly strethed until their size reahes the sales at whih the vortiitydi�usion beomes strong enough to dissipate rotational energy. Although theterm (ω ·∇)u an in priniple inrease or derease vortiity, it an be shownthat in a three dimensional �uid strething ours statistially more oftenthan ompression and, as a onsequene, vortiity is in average ampli�ed andonentrated at sales smaller and smaller. This materializes by a positivesign of the average strething term. This is one of the explanation of theasade of energy from large to small sales in three-dimensional turbuleneand numerial simulations have on�rmed this piture.The situation drastially hanges in two dimensions. The strething termalways vanishes and the vortiity equation (2.13) beomes simply
∂ω

∂t
+ (u · ∇)ω = ν∇2ω +∇× f. (2.14)If one neglets both the visous and the external foring terms, the vortiityremains onstant in time along eah �uid partile trajetory and just expe-rienes pure advetion. For this reason it is easy to understand that notonly vortiity but all its moments will be onserved. Of partiular interestis the seond power of vortiity Ω(t) = ω2(t), whih is a sort of energy re-lated to vortiity, more ommonly known as enstrophy. Suh a onservation



2.2 Energy budgets and transfers in turbulene 17determines the deep di�erenes between two- and tree-dimensional turbulentdynamis and in partiular in the ways energy is transferred among sales. Ina three-dimensional �ow there is a single de�nite-positive onserved quantityin the inertial range: the kineti energy, whih is transferred from larger tosmaller sales. In two dimensions, both the kineti energy and the enstrophyare onserved and this implies, as we will see, that energy transfer has not apreferential diretion toward small sales or toward large sales. These phe-nomena are easily pitured by introduing the kineti energy spetral density
E(k), whih is roughly the kineti energy ontent of a shell in Fourier spaeof radius k ∼ 1/ℓ. At the initial time there is a ertain energy distributionentered on the mean wave number k̃(t0). The distribution hanges whentime goes on and the mean wave number takes either larger or smaller val-ues. One an show that the time derivative of k̃(t) is always negative in twodimensions, beause both kineti energy and enstrophy are onserved. Thismeans that the mean wave number beomes preferentially smaller than itsinitial value, so that the energy transfer takes plae from smaller to largersales.

Figure 2.4: Diret and inverse asade in two dimensional turbulene.
This energy transfer, whih is proper to two dimensions, is usually referredto as the inverse asade. It is usually aompanied by a diret asade ofthe other onserved quantity, the enstrophy, from large to small sales (seeFig. 2.4 for a qualitative sketh).
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Figure 2.5: Left: snapshot of the vortiity ontour surfaes in the diretnumerial simulation of a three-dimensional turbulent �ow (from [Ishiharaet al., 2009℄). Right: Kolmogorov energy spetra for very high Reynoldsnumber (from [Frish, 1996℄).2.2.2 Energy and enstrophy spetraAs for struture funtions, dimensional analysis and K41 approah predithow the kineti energy is distributed among the di�erent wave lengths. Inthree dimensions it leads to the well-known power-law Kolmogorov's spe-trum, whih is represented in Fig. 2.5 (Right) and widely observed and mea-sured in experimental data, valid for Re ≫ 1 and (1/η) ≪ k ≪ (1/L)

E(k) ≃ CK ε
2

3 k− 5

3 , (2.15)where ε is the average dissipation rate and CK is a positive universal onstantoften alled the Kolmogorov onstant.In two dimensions, as �rst pointed out by Kraihnan [Kraihnan, 1971℄in the invisid limit ase, the situation is di�erent. The onservation of bothenergy and enstrophy implies a universal harateristi feature for the energyspetrum. The rate at whih energy is transferred toward the large sales isdi�erent from that at whih enstrophy is toward the small sales. The twoasades are separated at the wave number k0 at whih the energy and theenstrophy are injeted. Calling ΨE the rate at whih energy is tranferred atsales k < k0 and ΨΩ that at whih enstrophy is transferred for k > k0, onean hek that they an be written as
ΨE ∝ k(5+3α)/2 and ΨΩ ∝ k(9+3α)/2. (2.16)
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Figure 2.6: Left: snapshot of the veloity �eld in a two-dimensional di-ret numerial simulation of Navier�Stokes equation (from [Bo�etta & Eke,2012℄). Right: two-dimensional turbulent energy spetra from diret simu-lations and for di�erent resolutions, showing both the k−5/3 inverse and k−3diret asade regimes (from [Bo�etta & Musahio, 2010℄).
Clearly there are two partiular values of α, −5/3 and −3, for whih eitherthe energy and the enstrophy transfer is onstant. When α = −5/3, theenergy transfer is independent of sales and enstrophy is not transferred.This �rst ase orresponds to the inverse asade and ours when k < k0.When α = −3 the enstrophy transfer is independent of sales and energyis not transferred. This seond ase holds for k > k0 and is referred to asKraihnan's spetrum

E(k) ≃ C ′
Kε

2

3

Ωk
−3, (2.17)with possible logarithmi orretions and where εΩ is the average enstrophydissipation rate. Remarkably the enstrophy asade in two dimensions isvery similar to that of energy in three dimensions. The dual asade senariois harateristi of two-dimensional �ows and has been learly observed innumerial simulations (see Fig. 2.6). In experiments the shapes of thesepower laws is not so regular beause, on the one hand, the range of possiblewavenumber is limited and, on the other hand, they are ontaminated byother physial mehanisms, suh as frition between the two-dimensional�uid layer and its surrounding.



20 2. Basi onepts in turbulene2.2.3 IntermittenyFor the sake of ompleteness, it is neessary to reall that, although there is aommon agreement that K41 theory, and in partiular the k−5/3 Kolmogorovspetrum fairly desribes veloity �utuations in turbulent �ows, there aremany observations of disrepanies between suh theoretial previsions andexperiments. The K41 approah is surely the simplest theory that is able toath the main features of turbulene but it still has several limits. Theoryneeds further developments in order to provide a more preise understandingof turbulene [Frish, 1996℄. Disrepanies from K41 are very small wheninterested in seond-order moments of veloity �utuations, as for instane inthe ase of spetral analysis. However, as pointed out by several experimentaland numerial measurements (see, e.g., [Van Atta & Chen, 1970,Anselmetet al., 1984,Yoshimatsu et al., 2009℄), larger and larger disrepanies appearwhen the order of moments inreases. The saling exponents of the struturefuntions behave learly not linearly as a funtion of the moment, as it wouldbe the ase if K41 theory was valid.Another observation is that the probability distribution funtions of ve-loity inrements are far from Gaussian. Experimental data give evidenethat, even if Gaussianity an barely be seen at large sales (lose to theintegral sale), the tails at separations within the inertial range are muhfatter [Castaing et al., 1990,Gagne et al., 1990℄. This means that the proba-bility of violent events (basially strong eddies in a loalized region of spae)is muh larger than expeted. As a onsequene the on�gurations thatontribute the most to struture funtions depend on the order. Thereforethe high-order statistis annot trivially be related to those at lower orders,as it would be the ase with a Gaussian distribution. Suh an anomalousbehavior, whih relates to the presene of periods with strong �utuationsalternating with relatively quiet regions, takes the name of intermitteny.This a feature is not aptured by K41 theory, as it ontradits the hypoth-esis of self-similarity of the veloity (that is independene of the statistialproperties from the sale at whih they are observed). To aount for in-termitteny, the representation of Rihardson's asade has to be orretedonsidering that only the total energy transfer rate is onstant while loallyit an present �utuations (see the sketh in Fig. 2.7 Left). This approahwas proposed by Kolmogorov [Kolmogorov, 1962℄ and is named the re�nedself-similarity hypothesis. It allows for the presene of regions with high a-tivity and others with less. Another approah onsists in formalizing thisusing a multifratal desription of veloity inrements statistis (see [Frish,1996℄ for more details).A useful tool to observe and measure intermitteny is the fourth-order
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Figure 2.7: Left: sketh of the intermittent energy asade (orrespondingto the β multifratal model; from [Frish, 1996℄). Right: Skewness S and�atness F of three-dimensional turbulent veloity inrements (from [Tabelinget al., 1996℄).struture funtion. One usually de�nes the �atness of the veloity inrementsprobability distribution as
Fℓ =

〈δ‖ℓu4〉
〈δ‖ℓu2〉2

. (2.18)Fourth-order statistis give more weight to the tails of the probability den-sity funtion and therefore measures how frequently events larger than thestandard deviation our. For Gaussian, the �atness is always equal to 3.Deviations from this value are usually alled the kurtosis of the distribution.As seen from the experimental data shown in Fig. 2.7 (Right) veloity in-rement �atness approahes the value 3 at large sales. However, notieabledeviations from 3 are visible for smaller separations within the inertial range.For value lose to the Kolmogorov sale η, the �atness is above 10. This in-diates that the probability distribution of veloity gradients has tails thatare muh fatter than a Gaussian.2.3 Mixing in a turbulent �owWe have seen that in the ideal ase of homogeneous and isotropi turbulene,a �ow is haraterized by the presene of vortial strutures that span all itsspatial sales. When one is onsidering speies transported by this �ow, itis expeted that turbulene will enhane the mixing properties with a �highrate of di�usivity� that an be two or three orders of magnitude larger thanthe moleular one. From onsiderations that are similar to the K41 approah



22 2. Basi onepts in turbuleneand the introdution of the Kolmogorov dissipative sale, one an estimatethe sale below whih moleular di�usion dominates. This sale is known asthe Bathelor length and reads
ℓB ∼

(

νD2

ε

)
1

4

, (2.19)where D is the moleular di�usivity, ν is the kinemati visosity of the �owand ε the mean rate of kineti energy dissipation. The large veloity �u-tuations are able to e�etively transport all passive salar quantities suhas heat and onentration. The transport due to the �utuations is usuallymodeled in terms of an e�etive di�usion oe�ient, whih is known as eddydi�usivity. As in the ase of veloity, the impreditability of turbulent �owsimplies that the instantaneous value of a passive salar at a given loation inspae is not enough to predit the expeted value at the same point but aftera brief time interval. For that reason a statistial approah is well adaptedto address the issue of mixing by turbulent �ows.As already seen in the Introdution, the e�ient mixing and di�usion byturbulent �ows has many appliations. For instane, turbulene is apable todilute and spread strong onentrations of ontaminants in the environment[Shraiman et al., 2000, Smyth et al., 2001℄. Without a sustained level ofturbulene, the transport and mixing mehanisms of the various regions ofthe �uid would be muh slower than they normally are. This was �rst shownexperimentally by Reynolds in 1883 through his studies on the dispersionof a dye injeted in a turbulent pipe �ow (the experimental equipment isshematially illustrated in Figure 2.8). The e�eny of the mehanismis due to a peuliar feature of turbulent transport, whih is urrently notfully understood, that tends to separate very quikly two initially lose �uidelements. Suh a separation depends on the initial distane between the �uidelements only for a short time but the large-time separation is explosive in thesense that suh a dependene on initial onditions disappears. Reently muhwork has been devoted to understand better the nature of this phenomena,and in partiular on how fast the initial separation is forgotten [Ott & Mann,2000, Biferale et al., 2005, Bourgoin et al., 2006℄. Suh an investment hasled to several new results that larify many aspets of turbulent mixing.However, a systemati desription of this problem is still an open hallengingtheoretial and modeling question.Normally the transported material self-generates loal fores that havea signi�ant in�uene bak on the �uid but thankfully these two problems,transport indued by turbulent �ow and loal fores indued by partiles,an be treated separately. In 1948 C. Ekart gave his desription of the
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Figure 2.8: Skethes of the pipe �ow used by Reynolds in 1883 to study thedispersion of a dye injeted as a funtion of the level of turbulene in the�ow (from [Aheson, 1990℄).turbulent mixing proess by dividing it in three main and separate stagesinvolving all spatial and temporal sales of the �ow [Ekart, 1948℄. The �rststage, the so-alled entrainment, relates to the large-sale mass movementsthat our beause of eddies. After this, follows the seond stage, stirring oralso dispersion, whih is responsible for the reation, at intermediate sales,of large interfaial surfaes whih enhane the mixing [Ottino, 1989℄. Fluidelements are then deformed with a onsequent inrease of the onentrationgradients. This leads in turn to a loal inrease of moleular di�usion. Thelast mixing stage happens at very small sales where the gradients are almostonstant and moleular di�usion takes plae.From a onventional point of view, it is possible to distinguish, dependingon the omplexity of the system onerned, di�erent �levels of mixing� [Di-motakis, 2005℄. The ases of pollutants, of small-size partile louds or ingeneral simple passive traers are inluded in the Level-1 mixing (the leastintriate one). In this level, also alled one-way oupling, the in�uene ofmixing on the �uid dynamis is not onsidered. Infat to have a good de-sription of mixing it is then neessary to understand arefully the turbuleneof the �ow but, on the ontrary, depiting orretly the �uid dynamis doesnot require onsidering mixing with a high degree of auray. Levels 2 and3 are onerned with more ompliated ases in whih mixing and �uid dy-namis are oupled with subsequent hanges in properties of the �uid itself.Suh levels enompass what is also alled two-way or four-way oupling.In the following hapter we will see with more details, the main har-ateristis of traer partiles, of their di�usion and the turbulent transport



24 2. Basi onepts in turbuleneproperties. A partiular emphasis will be given to the two-partile relativedispersion problem and the issue of the statistis of �utuations onentra-tion. We do not take into aount mixing aused by ombined fores butwe only onsider the ase of simple turbulent di�usion due to the irregularturbulent veloity �eld �utuations.



Chapter 3Partile TransportUnderstanding the dynamis of partiles transported by a fully-developedturbulent �ow is very important for many fundamental physial proesses.One typially distinguishes, depending on their size, several lasses of par-tiles, eah of whih having di�erent interations with the arrier �uid andthus behaving in a di�erent way. A further level of di�ulty an of oursearise when interested in polydisperse systems omposed of several speies ofpartiles. Suh a situation, whih ours naturally in appliations, is notonsidered here.Preise studies of partile transport dynamis are neessary to validateand ameliorate the models used to desribe and foresee partile onen-trations and in partiular their irregular �utuations. This is a matter ofenormous importane not only for engineering, but also for the problem ofmodeling pollution by partiulate matter. Suh an issue a�ets both theenvironment and human health. The atmospheri partiulate pollutants areusually lassi�ed aording to their size. The larger partiles (superoarse)are those whose diameter is larger than 10µm. They settle quikly beauseof their massive size and thus have a short lifetime in the atmosphere. Also,their size is so large that they do not penetrate deeply the respiratory systemand thus do not have an important e�et on health. They are usually notinluded in standard models. The partiles whose aerodynami diametersare less than 10µm are denoted PM10. They are respirable and thus deservemuh more attention. The lass PM10 enompasses the oarse partiles (withdiameters larger than 2.5µm), and the �ne partiles (whose size is less than
2.5µm). The most dangerous partiles for health are the smallest ones asthey are able to penetrate deeply in the respiratory system and to possiblysettle in the pulmonary alveoli. In addition to that importane, it is verydi�ult to measure and monitor them beause of their small size, so thatan important e�ort is required in their modeling. The size e�ets in the25



26 3. Partile Transportdynamis of suh partiles an generally be disregarded. In this hapter wemainly fous on desribing the turbulent transport of suh partiles, whoseindividual trajetories are more ommonly referred to as Lagrangian traersand whose onentration �eld is a passive salar.3.1 Dynamis of tiny partiles in turbulent �ows3.1.1 Equations of motionThe dynamis of �nite-size partiles transported in a turbulent �ow is anintrinsially ompliated model as it requires to solve the full Navier�Stokesequation with the proper boundary ondition at the possibly rough partilesurfae. As we have seen in previous Chapter, unsteady solutions for thedynamis of a �uid in a turbulent state are still unknown and display veryunstable properties. For this reason, one usually restrits the problem tovery small partiles whose veloity di�erene with the �uid is su�ientlysmall. More preisely, let us assume, in a turbulent �ow, that the partile isspherial, with a radius amuh smaller than the Kolmogorov dissipative sale
η and that the partile Reynolds number, de�ned as Rep = W a/ν where Wis the partile slip veloity, is muh less than one. One an then neglet non-linear terms in the Navier�Stokes equation, integrate the Stokes equation inthe viinity of the partiles and use mathed-asymptotis tehniques to writea Newton equation for the partile position
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.Here Xp(t) is the partile position, u(Xp, t) the �uid veloity at the partileloation, ρ is the �uid mass density, mp the partile mass, mf the mass of�uid displaed by the partile, and g is the aeleration of gravity. The�rst fore on the right-hand side of Eq. (3.1) is the Stokes visous drag.The seond term is the fore exerted on the undisturbed �uid. The third isbuoyany, the fourth added mass and the last term is the Basset-Boussinesqhistory fore, whih omes from the interation between the partile andits own wake. A �rst version of this equation was written in [Stokes, 1850℄and was then re�ned in [Boussinesq, 1885℄ and in [Basset, 1888℄. Furtherdevelopment were performed in [Faxén, 1922℄ and perfeted in [Maxey &Riley, 1983℄ and [Gatignol, 1983℄, to express the orretions due to �uidveloity variations on lengths of the order of the partile size.



3.1 Dynamis of tiny partiles in turbulent �ows 27The omplexity of the terms appearing in Eq. (3.1), and in partiular ofthe last one that makes this equation integro-di�erential, motivated many�uid dynamiists to perform further simpli�ations. In the limit when, inaddition to small size and moderate veloity di�erene with the �uid, oneassumes that the partiles are muh denser than the �uid, the dynamissimpli�es to
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(Xp, t) + (1− β) g, (3.2)where τs = a2/(3βν), β = 3mf/(mf + 2mp) ≪ 1. Suh an approah is forinstane relevant to desribe partiulate pollutants. Note that this modelis sometimes used for partiles that are lighter than the �uid. However,for suh �nite values of β, negleting the history term requires additionalassumptions, as for instane, presribing a small response time τs.Beause of the Stokes visous drag, the dynamis desribed by (3.2) isdissipative in the phase spae. This is true even if the arrier �ow is inom-pressible. As we will see in Se. 3.2.2 this is responsible for the formationof strong �utuations in the partile spatial distribution. This aspet is fur-ther disussed in Chapter 6. In an inompressible turbulent �ow, the degreeof dissipation in the partile dynamis is measured by the Stokes number
St = τs/τη whih is de�ned as the ratio between the partile response timeand the turnover time assoiated to Kolmogorov dissipative sale. When
St → ∞, the partiles do not feel the underlying �uid and the visous dragdoes not at on them. On the ontrary, when St → 0 the veloity di�erenebetween the partile and the �ow is instantaneously dissipated.In the ase of a vanishing Stokes number, the partile dynamis beomesin�nitely dissipative. However, in this singular limit, they distribute uni-formly in spae. The full dynamis of partiles takes plae in the position-veloity phase spae, whih is six-dimensional. For �nite values of St thesix-dimensional partile trajetories onentrate in phase-spae on an attra-tor beause of a dissipative dynamis. When St → 0, there is a redutionof dimensionality of the partile dynamis: the partile veloity is assignedto be equal to that of the �uid. This implies that in this limit the attratorbeomes the full position spae and the partile dynamis beomes to leadingorder

dXp

dt
= u(Xp, t). (3.3)The partiles are then alled traers of the turbulent �ow. When the �ow isinompressible, they distribute uniformly in spae.Note that we have here negleted the moleular thermal di�usion thatats in priniple on the partiles and omes from the mirosopi ollisions



28 3. Partile Transportof the onsidered maro-partile with the moleules that onstitute the sur-rounding �uid. This e�et is responsible for an additional Brownian motionof the partile that has to be added to the full dynamis (3.1). Suh a terman be disregarded when the partile is large enough. However, in manysituation when the partiles is so small that they an be onsidered as tra-ers, moleular di�usion beomes important. In that ase the traer equationbeomes
dXp

dt
= u(Xp, t) +

√
2κ η(t), (3.4)where η is the standard three-dimensional white noise (de�ned in next sub-setion) and κ is the di�usion onstant (related to mass, temperature, andthe response time τs by Einstein's formula, see, e.g., [Csanady, 1973℄). Theoverall behavior of suh traer partiles is mainly due to the ombined e�etof transport, that is the physial displaement aused by the mean veloity ofthe �ow, mixing by its turbulent �utuations and �nally moleular di�usivity,whih tends to smooth out an initially onentrated �eld.3.1.2 Generalities on stohasti proessesThe use of mathematial models appeared in the study of physial problemsbeause of the di�ulty to know by diret measurements the spatial andtemporal distributions of the variables we are interested in. Although ex-at theoretial results an be derived from them, these models provide onlya oarse approximation of real situations; one hene frequently enounterspreditions that are in disagreement with measurements. In many ases, thetime evolution of the variable of interest depends on many fators that themodels are not able to ath with the same auray. This is why there aremany models, eah of them being more or less e�ient depending on theonsidered problem. The paradigmati mathematial approah assoiated tothe problem of partile transport by turbulent �ow is stohasti (or statisti-al) modeling that makes probabilisti preditions for the future onsideringthe values that the variable has taken in the past [Van Kampen, 2007℄.The funtion that de�nes the value taken by a random variable at eahinstant of time is alled a stohasti proess. When a proess has no memory,that is when the future does not depend on the past but only on the present,one talks about a Markovian proess [Gillespie, 1992℄. In high-Reynolds-number �ows, we will see in next subsetion that the larger timesale is givenby the Lagrangian integral time TL, whih is de�ned as the time integral of theveloity two-times orrelation along traer trajetories (see [Monin & Yaglom,1971℄). When interested in proesses that our on timesale muh largerthan TL, we an in general deompose the dynamis as a sum of deorrelated



3.1 Dynamis of tiny partiles in turbulent �ows 29events. In that ase, the onsidered problem an be approximated by aMarkovian proess.Let us onsider a given stohasti proess X(t). If we onsider that thisproess has the value x at time t, we an write that at the time t+ dt

X(t+ dt) = x+ dX(dt; x, t) (3.5)where we have introdued the stohasti proess dX(dt; x, t) that gives thetransition of the proess X(t) between time t and t + dt knowing that theproess was in x at time t. Through a number of mathematial steps [Gille-spie, 1992℄ it is possible to show that, for all proesses that are ontinuouswith respet to t, the inrement dX an be written as
dX = a(X, t) dt+ b(X, t) dWt, (3.6)where Wt is the standard Wiener proess, that is the Gaussian proess withzero mean and orrelation 〈WtWs〉 = min(t, s) and dWt = W (t+dt)−W (t).Note that we have adopted here the It	o formalism as we have deided toexpress dX as a funtion of x, that is the value of the proess at time t. TheStratonovih formulation would have onsisted in using the value ofX at time

t+dt/2 (see, e.g., [Gardiner, 1985℄). Equation (3.6) deomposes the variationof a stohasti proess as the sum of a deterministi part due to a(X, t) dt,whih is alled the drift term, and a random part, whih is the produt ofa di�usion oe�ient b(X, t) by the inrement of the Wiener proess. Thisnoise hanges quikly in time. It relates to the white noise proess (thatan be informally written as η(t) = dWt/dt), whih is a stohasti proessharaterized by being ompletely deorrelated in time, with zero mean anda onstant variane.The stohasti equation (3.6) gives us a framework to model the par-tile motion when assuming that their dynamis is a Markovian proess.Suh an approah, whih onsists in following partiles along their path,belongs to the lass of Lagrangian desriptions. Equivalently, one an alsoobtain an equation for the time evolution of the transition probability den-sity p(x, t|x0, t0) assoiated to the proess X(t). It is de�ned suh that theprobability that x ≤ X(t) ≤ x + dx, knowing that X(t0) = x0, is equal to
p(x, t|x0, t0) dx. Thus not only one but all partiles that are at the position
x0 at time t0 are involved and we therefore swith from an individual de-sription to a olletive desription, whih is typial of Eulerian approahes.The proess X is ompletely determined by this transition probability den-sity funtion. One an show that this quantity satisfy the Fokker-Plank (orforward-Kolmogorov) equation
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30 3. Partile TransportThis equation desribes a forward evolution as it is assoiated to the initialondition p(x, t0|x0, t0) = δ(x − x0) at time t = t0. This formulation ispartiularly useful when the initial ondition for the partiles is �xed andthe question is to know were the partiles are after a given time. An exampleof suh settings is when interested in the forward-in-time evolution of a spotof pollutant.Similarly, one an also write an equation for the reversed-time evolutionof the transition probability density. This equation is usually alled thebakward-Kolmogorov equation and reads
∂t0p− a(x0, t0) ∂x0

p =
1

2
b2(x0, t0) ∂

2
x0
p, (3.8)whih is this time assoiated to the �nal ondition p(x, t|x0, t) = δ(x−x0) attime t0 = t. This bakward approah is relevant to desribe situations wherethe �nal ondition is presribed for instane by a measurement. An instaneis the ase in whih one wants to know where a given observed onentrationof pollutant is oming from.The Markovian stohasti proesses an be equivalently desribed in termsof individual solutions to a stohasti equation or in terms of �elds by theFokker-Plank equation. These two approahes are just di�erent ways to por-tray the same phenomenon. However both have their own advantages anddisadvantages. Considering individual trajetories requires to perform statis-tis by multiplying the number of individual realizations of the noise. Thisis referred to as a Monte-Carlo approah , whih an be rather involved. A�eld approah in terms of Fokker�Plak equation does not have suh a pitfallbut requires understanding the evolution of the full probability transition forall possible values of the initial and �nal positions. This is often impossiblenumerially. Nevertheless, depending on the type of question that one wantsto address, one or the other method an be hosen. All these approahes arewidely used to study partile transport and di�usion and belong to what isalled Lagrangian stohasti models.The partiular ase of simple di�usionsTo �nish this setion, we reall some results on di�usions. They orrespond tothe ase where the drift term vanishes a(x, t) = 0 and the di�usion oe�ientis onstant b(x, t) = √

2D. The ase when D = 1/2 and X(0) = 0 oinideswith the Wiener proess, i.e. X(t) = W (t). Suh simple di�usions have zeromean and a variane
〈X2(t)〉 = 2D t. (3.9)
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Figure 3.1: Example of the time-evolution of random walks in one dimension.Eah olor represents a di�erent initial ondition for the random walks.All simple di�usions an be written as X(t) = X(0)+
√
2DW (t). The prob-ability distribution of W (t) is Gaussian and its inrements are independentof eah other. Its in�nitesimal inrements an be written as dW (t) = η(t) dt,where η is the white-noise proess. Hene the Wiener proess an be seen asthe ontinuous limit of a Random Walk, whih is a disrete stohasti pro-ess. These two proesses are related to eah other and the onvergene ofthe seond one towards the �rst, after a large number of steps, is guaranteedby the entral-limit theorem 1.Random walks onsist of a set of trajetories on a lattie that jump arandom length in a random diretion at eah time step, in a way that isindependent from the previous steps. For that reason the random walk is aMarkovian proess. A good review on the topi is given in the third hapter ofthe book [Feller, 1971℄. Classial examples of random walk are the drunkard'swalk and the more partiular ase of Lévy �ight, in whih the jump lengthshave a ertain probability distribution. The Wiener proess is obtained whenthe distribution of jumps do not have too fat tails. Random walks displaybasially two peuliar features that are independent of the mirosopi as-pets (in other words at sales where the single steps are indistinguishable,1The entral limit theorem states that, independently of the initial distribution, a sumof n independent random variables, distributed with mean µ and variane σ2, tends tohave a normal distribution as n goes to in�nity



32 3. Partile Transportall random walks behave in a similar way). The �rst harateristi is thatthey satisfy the di�usion equation and the seond one is that after a timelapse long enough every random walk beomes sale invariant. Denoting by
ℓ the average step-length and by N the number of steps, one has that theaverage squared distane overed by the trajetory satis�es

〈X2
N〉 = ℓ2N. (3.10)In Chapter 6 we will onsider with more details the problem of randomwalks on a one-dimensional lattie but with a random, time- and spae-dependent distribution of jumps. Suh settings are usually referred to asrandom walks in random environments. As we will see suh models arerelevant to desribe the di�usive properties of heavy inertial partiles in aturbulent �ow.3.1.3 Single-partile di�usion in turbulent �owThere are two di�erent ases where traer transport an be exatly relatedto a stohasti equation.The �rst ase is when the randomness omes from the moleular di�usion,but the realization of the �uid veloity �eld u(x, t) is �xed. In that ase, wehave seen in Subsetion 3.1.1 that, when the moleular di�usivity is equal to

κ, the partile trajetories are solutions to (3.4), whih through the stohastiequation mathematial formalism an be written as
dXp = u(Xp, t) dt+

√
2κ dWt. (3.11)In suh ase, the drift is given by the partiular realization of the veloityand the di�usion oe�ient is onstant. All the tools of stohasti equationsintrodued in previous subsetion an be applied. In partiular, the e�etof moleular di�usion on the traer motion an be desribed in terms of atransition probability density.A seond ase where stohasti formalism applies to traer motion on-erns the use of eddy di�usivity. As already antiipated in previous subse-tion, suh approahes are of partiular relevane to desribe the turbulenttransport on very large timesales. This fat has been �rst stressed in [Tay-lor, 1921℄ and is nowadays widely used in both industrial and environmentalsituations. To understand the key onepts of suh approahes, let us negletthe moleular di�usivity and write the equation for a Lagrangian traer (3.4)in its integral form: Xp(t) = Xp(0) +

∫ t

0

u(Xp(s), s) ds. (3.12)



3.1 Dynamis of tiny partiles in turbulent �ows 33From this formulation, one an write the omponent-wise mean-squared dis-plaement as
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′), s′)〉 ds ds′. (3.13)Contrarily to the previous ase, the average 〈·〉 is now with respet to therealizations of the veloity �eld. With this formulation, the observation ofTaylor is rather simple. Let us assume that the veloity is statistially sta-tionary and introdue the Lagrangian integral time, de�ned as
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i (x, t)〉. It is then easily seen that in the limit of large times
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rms t. (3.15)This is true as soon as t is larger than the Lagrangian orrelation time of u. Inturbulene, this orrelation time is of the order of TL. The expression (3.15)tells us that the long-term mean-squared displaement of traer partiles isproportional to time. This means that the traers have a behavior similarto that of simple di�usions with D = TL u

2
rms/2. This quantity is usuallyreferred to as eddy di�usivity.In addition to this average behavior, one an see from Eq. (3.12) that thedisplaement on times larger than TL an be written as a sum of independentrandom variables. Indeed, it is su�ient to deompose the integral in a sumof integrals over time intervals of length TL. Eah of them is identiallydistributed and independent as the Lagrangian orrelation time is of theorder of TL. This implies that we an apply the entral-limit theorem toshow that the probability distribution of the displaement is Gaussian withzero mean, when the mean veloity is zero, and a variane given by (3.15).This approah is widely used in several appliations where one is on-erned with modeling the di�usion over timesales muh larger than those ofthe underlying turbulene. An instane is the ase of atmospheri transportin meteorologial models. Typially the mesh size in suh models is severalkilometers, while the integral sale is of the order of one hundred meters.This sale separation implies that modeling is required and that Taylor'sdi�usive approah works. The transport of pollutants is then modeled by adi�usion. However the mean veloity in the grid is not zero and this gives aresulting drift term. The partile trajetories an then be approximated bythe solutions to

dXp = U(Xp, t) dt+
√

TL urms dWt, (3.16)



34 3. Partile Transportwhere U denotes the mean veloity of wind. This formulation of turbulenttransport in terms of an eddy di�usivity is only exat when interested in verylarge time sales (larger than the Lagrangian orrelation time of the veloity).However, the onept of eddy di�usivity is also largely used in appliationsto model traer onentrations on spatial and temporal sales within theinertial range (see, e.g., [Pope, 2000℄). Usually, suh approahes are designedto study the time evolution of average onentration �elds. They provide ingeneral satisfatory results but require to �t some parameters.There are many other appliations of turbulent transport where suh anapproah has shortomings. This is the ase when one needs to ontrol notonly the mean but also the �utuations in the onentration of a transportedspeie. As we will see in next setion, suh problematis require to studydispersion properties on timesales not larger than TL but rather within theinertial range of turbulene. Moreover, they neessitate understanding therelative motion of several traer partiles.3.2 Conentration properties3.2.1 Flutuations of an adveted passive salarWe have seen in previous setion that the motion of traer partiles in aturbulent �ow an be desribed either by a Lagrangian approah, whih on-sists in following their individual traks, or by an Eulerian approah, whereone onsiders the transition probability density. Now, if we are interestedin desribing not traers but rather their onentration �eld θ(x, t), it isgenerally more onvenient to adopt an Eulerian approah and to write theadvetion-di�usion equation
∂tθ + u · ∇θ = κ∇2θ. (3.17)This formulation in terms of onentration arries less information than thedetermination of the full transition probability density (where, in that ase,randomness is due to the moleular di�usion). Indeed, Eq. (3.17) has to beassoiated to a given initial ondition θ(x, t0) = θ0(x), while the transitiondensity p(x, t|x0, t0) allows one to onsider an arbitrary initial ondition fortraers. In other terms, p is the Green funtion assoiated to the advetion-di�usion operator. All solutions to Eq. (3.17) an be written as

θ(x, t) = ∫∫∫

θ0(x0) p(x, t|x0, t0) dx0. (3.18)Note that the formulation that we have used here is that orresponding tothe transport of a density (or onentration) �eld. The formulation will be
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Figure 3.2: Slies of a passive salar in a turbulent shear layer at two di�erenttimes. Initially, the lower half plane is red (θ = 0) and the upper is blue(θ = 1). Left: After a small time, strething and bending reate �utuationsat small sales. Right: Later, di�usion beomes important and makes the�eld uniform. This �gure is taken from [Koohesfahani & Dimotakis, 1986℄(see also [Dimotakis, 2005℄).di�erent if θ was a passive salar in a ompressible �ow (see [Falkovih et al.,2001℄ or Chap. 2 of [Cardy et al., 2008℄ for more preisions). However, as wefous on inompressible �ows, a density �eld and a passive salar obey thesame advetion equation.Inompressible �ow preserve volumes. This implies that an initial on-entration that is uniform in spae (i.e. θ0(x) = 1 in the whole domain) re-mains uniform at any later time. However onentration �utuations appearwhen the initial ondition is not uniform. In the terminology of atmospheritransport, the problem of advetion-di�usion with a given initial ondition isusually referred to as the problem of an instantaneous soure and is relevantwhen interested, for instane, in the dispersion of a spot of pollutant. Ifwe assume for instane that θ0 is loalized in spae (say θ0(x) = 1 withina given domain and 0 otherwise), turbulent mixing will streth and bendprogressively the lines of onstant onentration under the ation of the non-uniform veloity �eld (see Fig. 3.2 Left). After a short time interval, suha mehanism will reate small-sale variations in the onentration �eld andthe veloity at whih mixing ours will be dramatially inreased. Loalonentration gradients beome stronger and stronger until they are dissi-pated by the moleular di�usivity (see Fig. 3.2 Right). It very importantto stress that the transport as well as the mixing rate are independent of



36 3. Partile Transportmoleular di�usivity in the ase of fully-developed turbulent �ow. Howeverit is well known that, even if it is very weak, the di�usivity will dominate theturbulent advetion in the long run as smaller and smaller-sale variationsof θ are reated. This makes the proess of turbulent mixing irreversible asthe system annot reover its initial state by in�nitesimal bakwards hangeswithout some energy ost. An exhaustive review of these basi onepts onturbulent mixing is given in [Monin & Yaglom, 1971℄ and in [Dimotakis,2005℄.Through dimensional analysis it is possible to portray in quite detail thetypial timesales of mixing. Nevertheless suh a simple phenomenologialdesription is not su�ient to understand the statistis of the large �u-tuations that appear in the onentration �eld. For instane, dimensionalarguments are not able to explain the deviations from a Gaussian behaviorof the probability density funtions of θ that are observed experimentallyand numerially. This was for instane evidened in the experiment reportedin [Jayesh & Warhaft, 1991℄ where the �utuations of a passive salar re-leased upstream in a turbulent wind tunnel were measured in several loationsdownstream (see Fig. 3.3 Left). It is generally believed that suh deviationsfrom a Gaussian distribution are due to the reation by turbulene of stronggradients in the onentration �eld.Historially, suh probability distribution funtions were not immediatelyonsidered a useful statistial tool, unlike the spetrum or the struture fun-tions. It was widely believed that in homogeneous �ows the onentrationis always distributed aording to the normal law, beause the turbulentmixing would at as a sum of independent small-sale strething events andthe entral-limit theorem would then applies. Later, several experimental evi-denes showed that the probability distributions are not neessarily Gaussianand their study started to gather an inreasing interest. Through either sim-ple phenomenologial and rigorous theoretial models it was on�rmed thatthe probability distribution funtion of a salar �eld displays exponentialtails when a mean salar gradient is present [Pumir et al., 1991,Shraiman &Siggia, 1994℄ (for a omplete argumentation on passive salars see [Sreeni-vasan, 1991℄). These tails are due to some rare events during whih thetraers travel distanes muh larger than those expeted in the ase the of arandom di�usive motion. Suh violent �utuations are responsible for whatis alled anomalous mixing (see [Shraiman & Siggia, 1994℄). The exponentialbehavior in the probability distribution of a passive salar an be observedexperimentally in large-Reynold-number �ows with a su�iently wide inertialrange [Jayesh & Warhaft, 1991,Gollub et al., 1991℄.Large �utuations of a passive salar an also be observed when interestedin problems of time-ontinuous soures rather than instantaneous soures.
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Figure 3.3: Left: normalized probability density funtions of a passive salar
θ obtained from the experiment in [Jayesh & Warhaft, 1991℄ in a wind tun-nel inreasing (from bottom to top) the distane downstream the loationwhere it is injeted; the solid line is a Gaussian distribution. Right: typialsnapshot of a passive salar in a developed turbulent three-dimensional �ow;high onentrations are shown in red/yellow and low ones in blue/magenta(ourtesy of G. Krstulovi).This is the ase when a pollutant is emitted with a given onstant rate at a�xed loation (for instane at the nozzle of a himney or above a highway).To model that, a foring term φ(x, t) has to be added to Eq. (3.17). Due tothe linearity of the advetion-di�usion operator, the solution an then stillbe written in terms of the Green funtion. When the foring is statistiallystationary, the passive salar attains also a statistial steady state and anbe written as

θ(x, t) = ∫ t

−∞

∫∫∫

φ(x0, t0) p(x, t|x0, t0) dx0 dt0. (3.19)As seen in Fig. 3.3 (Right), suh a �eld develops very strong �utuations, evenif the fore is very smooth in spae and time. The strong variations are due tothe fat that trajetories with very di�erent histories, and thus experieningdi�erent forings, an in priniple arrive very lose to eah other at a giventime. This mehanism is responsible for the presene of fronts or li�s in theonentration where its value has strong variations over very small sales.These strutures are responsible for strongly intermittent salar statistis.



38 3. Partile TransportFor instane, the saling exponents ξp of the salar struture funtions, i.e.suh that Sθ
p(r) = 〈[θ(x + r) − θ(x)]p〉 ∼ |r|ξp, saturate to a onstant forsu�iently high orders [Celani et al., 2000℄.The p-th order struture funtion relates to p-th order orrelations ofthe onentration �eld. This is for instane evident for p = 2 where, for astatistially homogenous distribution,

Sθ
2(r) = 〈[θ(x+ r)− θ(x)]2〉 = 2〈θ2(x)〉 − 2〈θ(x+ r) θ(x)〉

= 2[C2(0)− C2(r)], (3.20)where C2(r) = 〈θ(x+r, t) θ(x, t)〉 is the seond-order orrelation of the passivesalar �eld. This quantity relates to the two-point motion of the traers. Ingeneral, the p-th order struture funtion an be determined by studying thejoint motion of p traer trajetories. This an be seen for p = 2 from therelationship (3.18) between the transition probability and the solutions tothe advetion-di�usion equation (assuming for instane that the problem isnot fored). Considering that
θ(x1, t) θ(x2, t) =

∫∫

θ0(x0
1) θ0(x0

2) p(x1, t|x0
1, t0) p(x2, t|x0

2, t0) dx0
1 dx0

2,one an take the average with respet to the �ow realization to write theorrelation C2 as
C2(r) =

∫∫

θ0(x0
1) θ0(x0

2) p2(x+ r,x, t|x0
1,x0

2, t0)dx0
1 dx0

2, (3.21)where
p2(x1,x2, t|x0

1,x0
2, t0) = 〈p(x1, t|x0

1, t0) p(x2, t|x0
2, t0)〉. (3.22)The latter is the joint transition probability of two trajetories, that is thedensity probability that two traers, whih were initially in x0

1 and x0
2 at time

t0, are loated in x1 and x2 at time t. If in addition the �ow is statistiallystationary and homogeneous, p2 depends only on r = x1 − x2, on r0 =x0
1−x0

2 and on t− t0. Note that in Eq. (3.22), p2 is de�ned as the average ofthe produt of one-point transition probabilities. This is di�erent from theprodut of averages, so that the two-point motion annot be trivially deduedfrom single-point dispersion and deserves its own study. The relationshipbetween onentration orrelations and two-point dynamis motivates thestudy of the relative dispersion of traers in a turbulent �ow. As we will seein Chap. 4, the question is then to understand the evolution as a funtion oftime of the separation r between two traers that were initially separated byr0.



3.2 Conentration properties 393.2.2 Preferential onentration of inertial partilesWe have seen in previous subsetion that the �utuations that appear in theonentration of passive traers are due to an ampli�ation of the spatialinhomogeneities of the soure (the initial ondition or the foring) by theturbulent �ow. The situation is very di�erent when the transported partilesannot be onsidered as traers but have inertia. In that ase, the partile dy-namis itself is not volume-preserving and onentration �utuations appeareven if the initial ondition is homogeneous and the �uid is inompressible.As we have seen in Subsetion 3.1.1, when the partiles have a too largesize, their dynamis annot be approximated by that of traers. When inaddition, they are heavier than the �uid, their dynamis is desribed byEq. (3.2) and they do not follow the �uid motion exatly and have a delayon it. Suh an inertia is responsible for the presene of orrelations betweenthe partile positions and the struture of the underlying �ow that ause theformation of partile lusters. These onentrations are at the enter of manystudies beause quantifying them is ruial for many appliations in planetformation [De Pater & Lissauer, 2001℄, in loud physis [Shaw, 2003℄, andin engineering [Post & Abraham, 2002℄. In all these ases, the transportedpartiles are dust or droplets in a gas. They are heavier and have a toolarge size to be simply traers. The strong inhomogeneities appearing intheir distribution play an important role as they will alter the interationsamong suh partiles. Modeling reation rates, ollisions, and gravitationalinterations thus requires quantifying lustering. Moreover it is importantto stress that light partiles also distribute in a non uniform manner. Thisis for instane the ase of bubbles in �uids, whih settle, merge, or dissolvedi�erently depending on their lustering properties.The mehanisms that are responsible for lustering are often heuristi-ally explained in terms of the interations between an inertial partile anda vortex of the �ow [Maxey, 1987℄. It is indeed well known that, while lightpartiles tend to onentrate inside the vortial strutures, heavy partilesare ejeted out (see Fig. 3.4). These properties have frequently been used tovisualize �uid �ows. Small bubbles were for instane used in order to give evi-dene for the presene of vortex �laments in turbulene [Douady et al., 1991℄(see Fig. 3.4 Right). The mehanism leading to ejetion or onentrationin the vorties an be easily understood in terms of the entrifugal or en-tripetal fores that at on the partile. This phenomenon is usually referredto as preferential onentration [Squires & Eaton, 1991℄. It is responsible for�utuations of the partile density at all sales spanned by the eddies of theturbulent �ow. In addition to this mehanism, the dissipative dynamis ofinertial partiles is responsible for small-sale onentration properties. As
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Figure 3.4: Left: snapshot of the position of heavy inertial partiles (in red)in a slie of a three-dimensional developed turbulent �ow (from [Homannet al., 2009℄). The green strutures are vortiity iso-surfaes and show thestrong vorties of the �ow. Right: instantaneous piture of bubbles onen-trating in the ore of a vortex �lament in a Von Karman �ow [Douady et al.,1991℄.we an see from Fig. 3.4 (Left), the �utuations in the distribution of heavypartiles do not onsist only in an anti-orrelation between their positionand the �uid vorties. In the regions where partiles are present, their dis-tribution atually resembles a folded fratal set. This an be explained bytheir dissipative dynamis that makes trajetories onverge to a strange at-trator [Be, 2003℄. In a turbulent �ow, this attrator moves due to veloity�utuations but its small-sale properties are stationary in a statistial sense.These properties determine the small-sale interations among partiles andan be measured and sometimes derived analytially as a funtion of theStokes number St introdued in Subsetion 3.1.1.The large-sale properties of partile distribution are understood in a lesssystemati manner. The density �utuations inside the inertial range are dueto a umulative e�et of ejetion/onentration by the vortial strutures thatspan all the spatial sales of the turbulent �ow. If the turbulent veloity isassumed to be sale-invariant, it an be shown that partile lustering at agiven sale ℓ depends only on a sale-dependent Stokes number St(ℓ) = τs/τℓ,in whih the partile response time τs is non-dimensionalized by the turnovertime τℓ [Be et al., 2007a,Be et al., 2007b℄. Also, it is observed there thatthe probability distribution of the oarse-grained density of partiles behaves



3.2 Conentration properties 41as a power law at small values and has a tail fatter than Gaussian at largevalues. Suh properties are reprodued by simple mass ejetion models on alattie [Be & Chétrite, 2007℄. As we will see in Chap. 6, a part of the workdeveloped in this thesis onsisted in extending this last work to settingswhere the rate at whih partiles are ejeted depends ontinuously on spaeand time and displays sale-invariane properties.
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Chapter 4
Di�usivity in turbulent pairdispersion
Relative dispersion in a turbulent �ow gives rise to a onsiderable interestsine, as seen in previous hapter, it is one of the main key to desribeseond-order statistis in turbulent transport and mixing. It is importantto understand the physial mehanisms behind pair dispersion in order toimprove the models used for instane to predit pollutant dispersion in theatmosphere as well as in the seas. The time evolution of the separation be-tween two traer partiles was �rst studied in [Rihardson, 1926℄. Sine then,muh work has been devoted to understand the statistis of pair dispersion(see for instane [Bathelor, 1952,Kraihnan, 1966,Monin & Yaglom, 1971℄and for reent reviews [Falkovih et al., 2001,Sawford, 2001,Salazar & Collins,2009℄). However several questions remain today without a de�nite answer.For example, the dependene on the initial separation of the probabilitydensity funtion of the distane between two partiles is still the matter ofsome debate [Bourgoin et al., 2006,Rast & Pinton, 2011,Satamahia et al.,2012℄. To address this issue, one has to onsider in addition to the initialseparation, the in�uene of the initial ondition of the veloity and aelera-tion di�erenes and to possibly identify di�erent regimes of separation. Thishapter reports thesis work on the time evolution of the mean square dis-tane between two traers. This study is the subjet of an artile publishedon Physial Review E [Bitane et al., 2012b℄. The results of this study open theway to new possible explanations of the mehanisms leading to Rihardson�Obukhov law, whih are an alternative to the ommonly-aepted senariobased on a sale-dependent e�etive di�usivity.43



44 4. Di�usivity in turbulent pair dispersion4.1 The regimes of traer separationTurbulene has the feature of strongly enhaning the dispersion and mixingof the speies it transports. Also, as explained in Chap. 3, traers transportedby a turbulent �ow approah a di�use behavior on time sales muh longerthan the Lagrangian orrelation time of the �ow [Taylor, 1921℄. These ideasare now ommonly used in appliations, as for instane in air quality ontrol,to model e�etive mixing properties in terms of an eddy di�usivity. Suhmodels give a good handle on long-term averages and are suessfully usedto determine, for instane, possible health hazards linked to a long exposuredownstream a pollutant soure. However they are unable to apture strongloal �utuations stemming from the omplex struture of the turbulent �ow.Suh events annot be diretly predited from the averaged onentration�eld as they relate to higher-order moments. Aessing these �utuationsis ruial in order to quantify for instane the likeliness of �nding a loalonentration exeeding a high threshold.As we have seen in Se. 3.2.1, seond-order statistis, suh as the varianeof a transported onentration �eld and more generally the spatial orrelationof a passive salar, are statistially related to the relative motion of traers. Inturbulene, the distane |R(t)| between two Lagrangian trajetories followsthe Rihardson�Obukhov superdi�usive law
〈|R(t)|2〉 ∼ ε t3, (4.1)where ε is the mean rate of kineti energy dissipation and the average isperformed over all the realizations. The long-term behavior of suh a sep-aration beomes independent of the initial separation |R(0)| = r0, whenethe designation of explosive pair separation. This superdi�usive separationis muh faster and less preditable than in any haoti system. Some in-ertitudes remain on the validity and the possible onvergene to this law,beause suh an explosive behavior is very arduous to observe both in nu-meris and in experiments. This is basially due to the di�ulty to havea huge sale separation between the dissipative lengths, the initial separa-tion of traers, the observation range and the integral sale of the �ow (thereader an refer to [Sawford, 2001℄ and [Salazar & Collins, 2009℄ for reviewson that questions). Muh e�ort has been devoted to test the universal-ity of this law, whih was atually retrieved in various turbulent settings,suh as the two-dimensional inverse asade [Jullien et al., 1999,Bo�etta &Sokolov, 2002b℄, buoyany-driven �ows [Shumaher, 2008℄, and magneto-hydrodynamis [Busse & Müller, 2008℄.



4.1 The regimes of traer separation 454.1.1 Rihardson's di�usive approahIn the ommonly aepted sense, studying turbulent relative dispersion on-sists in onsidering the evolution of the separation
R(t) = X1(t)−X2(t) (4.2)between two traers X1(t) and X2(t). In these settings the initial distane

r0 = |R(0)| is �xed. Rihardson's original arguments [Rihardson, 1926℄ anbe reinterpreted by assuming that the veloity di�erene V (t), de�ned as
V (t) = u(X1, t)− u(X2, t), (4.3)between the two traers has a short orrelation time. This means that theentral-limit theorem applies and that, for su�iently large timesales, onehas

dR

dt
= V ≃

√

2 τL(R) U(R) ξ(t), (4.4)where ξ is the standard three-dimensional white noise, U is the Eulerianveloity di�erene orrelation tensor (suh that UTU = 〈δu ⊗ δu〉, where
δu is the Eulerian veloity inrement omputed over a separation R= |R|),and τL the Lagrangian orrelation time of veloity di�erenes between pairseparated by R. Note that the produt is here understood in the Stratonovihsense. This formulation in terms of a stohasti equation an equivalentlybe written for the two-point transition probability density p2(r, t|r0, 0) (seeSe. 3.1.2 for details on these notions). The density p2 is thus a solution tothe Fokker�Plank equation

∂tp2 = ∂ri
[

τL U
T U∂rjp2

]

, (4.5)where τL and U are evaluated at the separation r.As stressed in [Obukhov, 1941℄, when assuming Kolmogorov 1941 salingwe an approximate
τL ∼ r2/3, U ∼ r1/3, (4.6)where r = |r|. In addition, beause of isotropy and when integrating overangles, the transition probability depends only on r and r0. The Fokker�Plank equation an then be rewritten as

∂tp2 =
1

r2
∂r

[

r2K(r) ∂rp2
]

, (4.7)where K is the sale-dependent di�usivity of the separation di�usive proess.For separations r within the inertial range of turbulene one has
K(r) ∝ ε1/3r4/3. (4.8)



46 4. Di�usivity in turbulent pair dispersionEquation (4.7) exatly orresponds to that derived by Rihardson for thetransition probability density p(r, t | r0, 0) at large times
p2(r, t | r0, 0) ∝

r2

〈|R(t)|2〉3/2 exp

[

− Ar2/3

〈|R(t)|2〉1/3
]

, (4.9)where A is a positive onstant. The transition probability density is thusentirely determined by the seond-order moment of the separation |R(t)|that, aording to Eq.(4.7), is satisfying at large times
〈|R(t)|2〉 ≃ g ǫ t3, (4.10)where g is a positive onstant (usually alled the Rihardson onstant) relatedto A. The average is here taken over all pairs that are initially at a distane

|R(0)| = r0.The key hypothesis in order to derive a Fokker�Plank equation of theform in Eq. (4.5) for the separation R is that veloity di�erenes V (t) be-tween traers are orrelated over timesales muh smaller than those of inter-est, so that τL(r) ≪ t. As notied for instane in [Falkovih et al., 2001℄, thisassumption an hardly be invoked. It is indeed expeted that the Lagrangianturnover time τL will be of the order of the orrelation for eddies of size r.It is known in turbulene that suh eddies are orrelated over a time of theorder of their turnover time given by
τr =

r

δru
∼ ε−1/3r2/3. (4.11)Hene for separations that, aording to Eq. (4.10), grow like r ∼ (εt3)1/2,one has τL ∼ τr ∼ t, so that the dominant �ow strutures in the separationdynamis are in priniple orrelated over timesales of the order of the obser-vation time. This implies that the entral limit theorem annot be appliedand that the approximation in Eq. (4.4) does not hold. This is an issue injustifying the stohasti approah that we have just mentioned.Despite suh shortomings, the di�usive approah proposed by Rihard-son and in partiular the expliit form in Eq. (4.9) for the transition prob-ability density, have proven being relevant in some asymptotis [Ott &Mann, 2000, Biferale et al., 2005, Ouellette et al., 2006, Salazar & Collins,2009,Eyink, 2011℄. Also, muh work on relative dispersion has used it as abasis. For instane, improvements of Eq. (4.9) were proposed using modi�edversions of the eddy di�usivity K(r), adding a time dependene [Bathelor,1952,Kraihnan, 1966℄ or, more reently, inluding �nite Reynolds numbere�ets [Satamahia et al., 2012℄. All of these improvements strongly alterthe funtional form of the large-r tail of the transition probability density.



4.1 The regimes of traer separation 47Nevertheless, the physial mehanisms leading to the de-orrelation of ve-loity di�erenes and to models based on eddy di�usivity are still unlearand many questions remain open. In this hapter, we mainly fous on themehanisms that justify a onvergene to the Rihardson�Obukhov law. Inpartiular we address the questions of the speed at whih suh a onvergeneours and of the form of subleading terms, whih is still not known. Inthis light, we will ome bak in next hapter on the problem of the formof the transition probability density, with a fous on the mehanisms givingextreme �utuations.4.1.2 Bathelor's ballisti regimeThe �rst work dealing with the way pair separation onverges to the Rihard-son superdi�usive behavior is due to G.K. Bathelor [Bathelor, 1950℄. Heargued that the explosive t3 law is preeded by a ballisti phase during whihthe traers keep their initial veloity and separate as
〈|R(t)−R(0)|2〉 ≃ t2S2(r0), (4.12)where S2(r) = 〈|δru|2〉 is the Eulerian seond-order struture funtion overa separation r, omputed with absolute values. This regime holds till a timesale that is a funtion of the initial separation r0, known as Bathelor'stime [Biferale et al., 2005,Bourgoin et al., 2006℄
tB(r0) = τr0 ∼ ε−1/3r

2/3
0 , (4.13)whih is equal to the eddy turnover time assoiated to the initial separa-tion r0. After this time, there is a transition to the Rihardson regime andthe dynamis loses all memory on the initial ondition. In this Bathelor±regime, the veloity remains strongly orrelated, so that it an learly not bedesribed by an eddy-di�usivity approah.Various stohasti models have been designed to ath both Bathelor'sand Rihardson's regimes. Most of them are based on the observation thatthe aeleration di�erene between the two traers is shortly orrelated butthey do not assume that veloity di�erenes get unorrelated. The pairseparation and the veloity di�erene an then be approximated as oupledMarkovian di�usive proesses (see [Kurbanmuradov, 1997,Sawford, 2001℄ forreviews). The usual path for designing suh models requires imposing someonstraints on the drift and the di�usion terms. Thomson argued that theyshould satisfy the well-mixed ondition [Thomson, 1987℄: when averagingover uniformly separated pairs inside the whole inertial range, the statistis



48 4. Di�usivity in turbulent pair dispersionof veloity di�erenes between the two traers has to reover Eulerian two-point statistis. De�nitively, devising an admissible model requires an inputfrom Eulerian statistis [Borgas & Yeung, 2004℄. We have seen in Chap. 2that, in turbulene, the distribution of veloity di�erenes is neither self-similar nor Gaussian. Beause of that, suh models beome so ompliatedthat they an hardly be used to improve the understanding of the underlyingphenomenology and, at the same time, they are not easily amenable for ananalytial treatment.To larify when and where Rihardson's approah might be valid, it isimportant to understand the timesale of onvergene to the explosive t3law. Muh work has reently been devoted to this issue: it was for instaneproposed to make use of frational di�usion with memory [Ilyin et al., 2010℄,to introdue random delay times of onvergene to Rihardson saling [Rast& Pinton, 2011℄, or to estimate the in�uene of extreme events in partileseparation [Satamahia et al., 2012℄. The last point will be studied indetail in the next hapter. All these approahes onsider as granted that the�nal behavior of separations is given by Rihardson's di�usive approah. Aswe will see here, many aspets of the onvergene to Rihardson's law forpair dispersion an be lari�ed in terms of a di�usive behavior of veloitydi�erenes.4.2 Timesales of two-partile dispersionWe fous in this setion on determining the various timesales that are in-volved in the problem of traer relative dispersion.4.2.1 Settings of the numerial simulationsTo investigate suh issues, we have used the data from diret numerial simu-lations of the inompressible Navier�Stokes equation in the three-dimensional
2π-periodi domain. These simulations were performed with the ode LaTudeveloped by H. Homann [Homann et al., 2007℄. This ode uses a standardpseudo-Fourier-spetral solver for alulating the spatial derivatives in thevarious terms of Navier�Stokes equation, together with a third-order Runge�Kutta sheme for the temporal evolution. Suh a method is well adaptedto inompressible homogeneous and isotropi turbulene at high Reynoldsnumbers with an extended inertial range of sales. It has the advantages ofombining a high degree of auray with very good performanes on mas-sive parallel superomputers suh as BlueGene systems and large Intel/AMD



4.2 Timesales of two-partile dispersion 49Table 4.1: Parameters of the numerial simulations
N Rλ δx δt ν ε urms η τη L τL

2048
3

460 3.7·10−3
6·10−4

2.5·10−5
3.6·10−3

0.19 1.4·10−3
0.083 1.85 9.9

4096
3

730 1.53·10−3
1.2·10−3

1.0·10−5
3.8·10−3

0.19 7.2·10−4
0.05 1.85 9.6

N is the number of grid points, Rλ the Taylor-based Reynolds number, δxthe grid spaing, δt the time step, ν the kinemati visosity, ε the averagedenergy dissipation rate, urms the root-mean square veloity, η=(ν3/ε)1/4 theKolmogorov dissipative sale, τη = (ν/ε)1/2 the assoiated turnover time,
L = u3

rms/ε the integral sale and τL = L/urms the assoiated large-saleturnover time.lusters. One of the main advantages of the ode LaTu is that it uses apenil representation of the domain. While traditionally in pseudo-spetralodes the domain is divided in two-dimensional slabs, a deomposition inone-dimensional elements is here used. This allows one to use a maximumnumber of proessors, whih is given by the square number of grid-points inone diretion, instead of this number itself when using slab deompositions.For instane, while in a 10243 simulation traditional odes an usually use amaximum of 1024 proesses where two-dimensional fast Fourier transformsare performed, the ode LaTu an use up to 10242 proesses in whih one-dimensional transforms are arried out. The ode is parallelized using MPIand, beause of its penil representation of the domain, an run on massivelyparallel omputers using up to several tens of thousands proessors.We have used two sets of simulations whose parameters are summarized inTable 4.1 (more details on these spei� simulations an be found in [Graueret al., 2012℄). In both simulations, the resolution is suh that kmax η =
(N/3) η ≈ 1. As we are interested in inertial-range quantities, we do notneed a very high resolution of the dissipative sales. To maintain a statistialsteady state, the �ow is fored by keeping onstant the energy ontent of thetwo �rst shells of wavenumbers in Fourier spae. This implies that in bothsimulations the foring sale is Lf = π. The Eulerian seond-order struturefuntion measured from these two simulations are represented in Fig. 4.1.As seen there, the largest one develops a signi�ant saling range wheredeviations from Kolmogorov 1941 saling start to be visible. For eah valueof the Reynolds number, the �ow is seeded with 107 traer partiles whosemotion is integrated using tri-linear interpolation. Positions, veloities, andaelerations of traers have been stored with enough frequeny for studying
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Figure 4.1: Seond-order Eulerian absolute-value struture funtion S2(r) =
〈|u(x + r, t) − u(x, t)|2〉 for the two values of the Reynolds number inves-tigated in this thesis. The dashed line represents Kolmogorov 1941 saling
S2(r) ≃ (11/3)C2(ε r)

2/3 with C2 = 2.13. The solid line orresponds to She-Lévêque anomalous saling with ζ2 ≈ 0.696 (see [She & Lévêque, 1994℄). Thevertial and horizontal olored dashed lines indiate the integral sale L andthe large-sale veloity, respetively.relative motion. These simulations were performed on the BlueGene mahineJuGene of the German omputer Center of Jülih in the framework of theXXL projet HBO28. They required more than ten millions of CPU hours.All the statistial studies reported in this hapter and in the next one havebeen done using these datasets.To provide a �rst insight on the numerial simulations that we have usedand on the typial values of the timesales and lengthsales that are usedthroughout this and next hapter, let us shortly report some measurements onrelative dispersion. One of the major di�ulties enountered when approah-ing numerially this problem is that it requires a huge timesale separation.Indeed, to observe Rihardson�Obukhov t3 superdi�usive regime, one needsat least to follow partile pairs on a time t muh longer than the Kolmogorovdissipative time τη = (ν/ǫ)1/2 and muh shorter than the eddy turnover time
τL assoiated to the integral sale L. Also, in order to observe possibly uni-versal mehanisms of onvergene to Rihardson's explosive behavior, it is inpriniple required that the initial distane r0 belongs to the inertial range. Inpartiular, a possible proper resaling in terms of r0 of transients to the t3 law
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2/3
0 assoiated to the initial separation |R(0)| = r0, whihitself has to be longer than τη. We should thus have τη ≪ τr0 ≪ t ≪ τL.To give a onrete idea, if we require that these timesales are separated byat least a deade, this implies that one should have a Taylor-based Reynoldsnumber Rλ =

√
15 (τL/τη) & 4000. Suh a high level of turbulene is stillfar from present-day experimental setups where aurate partile trakingtehniques an be used (see [Salazar & Collins, 2009,Toshi & Bodenshatz,2009℄ for reent reviews). Also, suh large values of the Reynolds number areunreahable by state-of-the-art diret numerial simulations. At the momentthere is no simulations of lagrangian traers in homogeneous isotropi turbu-lene with more than 40963 grid points. As we have seen in Table. 4.1, withsuh a resolution, we have attained Rλ = 730 as it was deided to resolvewell the dissipative sales. Dereasing suh a preision an help in reahingat maximum Rλ ≈ 1100, with the risk of missing violent small-sale intermit-tent strutures [Ishihara et al., 2009℄. For this reason, there is an importantneed for understanding the full proess of onvergene to the t3 law in orderto predit and detet for instane possible subleading orretions. This is thespirit whereby this thesis work is presented.After a time su�iently long to have onverged to a statistial steadystate (around one large-sale turnover time), we start the analysis of thedispersion of traer pairs. For this, we label at a �xed initial time (that weset here to be t = 0) all ouples whose distane |R(0)| = |X1(0) − X2(0)|



52 4. Di�usivity in turbulent pair dispersionis equal to r0 ± η for r0 ≤ 16 η and equal to r0 (1 ± 2%) for r0 > 16 η with
r0 = 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, and 192η. This bining was ho-sen suh that eah family indexed by r0 ontains a few hundreds of thousandsof pairs. We then trak forward in time all indexed pairs and perform statis-tis onditioned on their initial separation r0. Figure 4.2 shows for the twosimulations the time evolution of the mean squared distane 〈|R(t)|2〉 for var-ious values of the initial separation r0. Time and spae are there representedin dissipative-sale units. After a transient (whih roughly orresponds toBathelor's ballisti regime), the mean-squared distane approahes the ex-plosive Rihardson�Obukhov regime 〈|R(t)|2〉 ≃ g ε t3 written in Eq. (4.10).We observe for both values of the Reynolds number a Rihardson�Obukhovonstant g ≈ 0.52 ± 0.05. In the next two subsetions, we will see how toharaterize the time at whih the onvergene to this regime ours.4.2.2 Timesale of departure from Bathelor's regimeAs already motivated in Se. 4.1, the objetive is here to understand betterthe timesale at whih the average separation between traers onverges tothe t3 Rihardson saling observed in previous subsetion. Let us beginwith rewriting the initial ballisti behavior Eq. (4.12) of the average squaredseparation, together with its subleading term. For that we follow the samealgebrai steps as in [Ouellette et al., 2006℄. A Taylor expansion at shorttimes of the separation leads to

〈

|R(t)−R(0)|2
〉

r0
= t2〈|δr0u|2〉+ t3 〈δr0u · δr0a〉+O(t4). (4.14)We have here denoted by 〈·〉r0 the average over all traer pairs that are ini-tially at a distane r0 from eah other. This notation is useful to distinguishthis Lagrangian average from the Eulerian average, whih is denoted by thesimple brakets 〈·〉. We have also used δru to designate the Eulerian inre-ment u(x+r, t)−u(x, t), where r = |r|. Finally, δra is the Eulerian inrementof the �uid aeleration, de�ned as δra = [∂tu+ u · ∇u](x+ r, t)− [∂tu+u ·

∇u](x, t).As long as the �rst term (proportional to t2) in the right-hand side ofEq. (4.14) is dominant, the traers separate ballistially. Clearly the expan-sion fails when the seond subleading term in the right-hand side beomesof the same order as that giving the ballisti separation. This happens whenthe time is of the order of
t ≈ t0 =

S2(r0)

| 〈δr0u · δr0a〉 | , where S2(r0) = 〈|δr0u|2〉. (4.15)



4.2 Timesales of two-partile dispersion 53It is known [Ott & Mann, 2000,Falkovih et al., 2001℄ that in a turbulent �owand for separations inside the inertial range, i.e. η ≪ r0 ≪ L, the orrelationbetween veloity and aeleration di�erenes relates exatly to the averageenergy dissipation rate, namely
〈δr0u · δr0a〉 ≃ −2ε. (4.16)This relation, whih is exat and does not rely on K41 theory, an be seenas a Lagrangian version of the elebrated 4/5 law (see Chap. 2). It impliesthat for initial separations r0 within the inertial range, the ballisti regimeends at a time of the order of

t0 ≃
S2(r0)

2ε
. (4.17)This timesale an be interpreted as the time required to dissipate the typialkineti energy ontained at the sale r0 with the average rate ε. It is expetedto be of the order of the orrelation time of the initial veloity di�erenebetween traers.The de�nition of this timesale is atually di�erent from that of theturnover time τr0 assoiated to the sale r0. The latter is de�ned as theratio between the initial separation r0 and the typial turbulent veloity atthat length sale. Using for instane as a typial veloity at sale r0 theroot-mean-squared value of the inrement modulus |δr0u|, one an write

τr0 =
r0

S2(r0)1/2
. (4.18)When Kolmogorov 1941 saling is assumed, the two time sales t0 and τr0have the same dependeny on r0. However, using standard estimates of theKolmogorov onstant C2, one obtains that the ratio between these two timesis of the order of

t0
τr0

≈ 1

2

[

11

3
C2

]3/2

≈ 11. (4.19)Also, we an note that intermitteny orretions to the saling behavior of
S2(r0) should in priniple derease this ratio. Indeed, let us assume that

S2(r0) ∝ (ε r0)
2/3

(r0
L

)ζ2−2/3

, (4.20)where ζ2 is the anomalous saling exponent of seond order. One then has
t0
τr0

∝
(r0
L

)(3/2)ζ2−1

. (4.21)
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Figure 4.3: �Dissipation time� t0 as a funtion of r0 in dissipative-sale units.Here the blue solid line is obtained by Eulerian averages, while the greenross marks are the atual Lagrangian measurements. The red dashed lineshows the turnover time τ(r0) = r0/[S2(r0)]
1/2. Here and in the sequel wehave used the Lagrangian data to estimate seond-order struture funtion

S2(r0) and t0. The two vertial and horizontal dotted lines show the largesale L and its assoiated turnover time τL (obtained from K41).We know from experimental and numerial measurements in turbulent �ows(see, e.g., Fig. 4.1), that ζ2 ≈ 0.7 > 2/3. This implies that the ratio betweenthe �dissipation time� t0 and the turnover time in Eq. (4.21) inreases as afuntion of r0.The two timesales are shown in Fig. 4.3 for the simulation with Rλ = 730(N = 40963 grid points). One learly sees a disrepany between the twode�nitions. This di�erene inreases when r0 inreases and dereases at salesof the order of the integral sale L. In the sequel, to measure t0 as a funtionof r0, we have not used its Eulerian estimate but rather a Lagrangian averagewhere the seond-order struture funtion S2(r0) is obtained by taking themean of δu over all pairs that are labeled at a distane r0.Turning bak to our alulation of the subleading terms in Bathelor'sballisti regimes, we introdue in Eq. (4.14) the time sale t0. For times tmuh smaller than t0, we an then write
〈

|R(t)−R(0)|2
〉

r0
= t20 S2(r0)

[

t

t0

]2 [

1− t

t0

]

+ h.o.t., (4.22)where h.o.t. stands for higher-order terms. Figure (4.4) shows the time evo-
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Figure 4.4: Resaled mean-square separation between two trajetories asa funtion of time for Rλ = 730 and di�erent initial separations r0. Thedashed line represents the two leading terms of the ballisti behavior (4.22).The solid line is a �t to the Rihardson's regime, Eq. (4.23), with g = 0.525and C = 2.5.lution of the mean-squared displaement for various values of the initial sep-aration r0. Here and in the sequel the �gures are shown for Rλ = 730, unlessspei�ed. It is learly visible that, one that the time t has been resaled by
t0 and the squared distanes by t20 S2(r0), all measurements ollapse almostperfetly onto a single urve when r0 is far enough in the inertial range. Fur-ther, data are in rather good agreement with the departure from the ballistiregime predited by Eq. (4.22).4.2.3 Convergene to the super-di�usive behaviorIt is important to note that the data ollapse observed in Fig. 4.4 extends totimes larger than t0 when the mean squared separation tends to Rihardson
t3 regime. Suh unexpeted fat implies that t0 is not only the timesale ofdeparture from the ballisti regime, but also that of onvergene to Rihard-son's law. In partiular, numerial data suggest that the large-time behaviortakes the form

〈

|R(t)−R(0)|2
〉

r0
= g ε t3

[

1 + C
t0
t

]

+ h.o.t. (4.23)
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Figure 4.5: Compensated mean-squared displaement 〈|R(t)−R(0)|2〉/(ε t3)as a funtion of t/t0, with t0 = S2(r0)/(2ε), for various initial separations and
Rλ = 730 (◦) and Rλ = 460 (+). The two urves show behaviors of the form
〈|R(t)−R(0)|2〉 ≃ g ε t3+A t2, with A = S2(r0), given by Bathelor's ballistiregime (blak dotted line), and A = 2.5 g /t20 (grey dashed line).The term C appearing here does not strongly depend on the Reynolds numberand atually, for both values of the Reynolds number, we obtain the sameresults, up to statistial errors. This is evidened in Fig. 4.5, whih shows theompensated mean squared inrease of the distane 〈|R(t) − R(0)|2〉/(ε t3)for the two investigated values of the Reynolds number. In this �gure, thetime has been again resaled by t0 = S2(r0)/(2ε). Data on�rm that thesubdominant terms in Rihardson explosive regime are ∝ t2, as postulatedin Eq. (4.23). One also observes that the onstant C is independent of r0when r0 ≫ η. The subleading terms, appearing at large times from theompensated plot in Fig. 4.5, are learly di�erent from those oming from asubleading ballisti regime. We indeed see on the �gure that the two blaklines do not oinide. The dotted line, whih orresponds to Bathelor'sregime, gives a good approximation to the data up to a few hundredth of
t0. On the ontrary, the dashed line orresponds to the proposed formula ofEq. (4.23) with C ≈ 2.5 and is valid only for t ≫ t0.Systemati measurements of the onstant C as a funtion of the initialseparations have been performed and are shown in Fig. 4.6. This was done
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Rλ = 460Figure 4.6: Measured value of the onstant g C in front of the subleadingterm as a funtion of the initial separation. It stabilizes to C ≈ 1.3/g ≈ 2.5for r0 ≫ η; this value is represented as a dashed line.by estimating numerially the produt of the onstants g and C in the om-pensated mean-squared displaement. We �nd that C is negative when r0is of the order of the Kolmogorov sale η. In this ase, the onvergene tothe Rihardson law ours from below and it is thus ontaminated by traerpairs that spend long times lose together before sampling the inertial range.This is also onsistent with the reent �ndings of [Satamahia et al., 2012℄.The onvergene to Rihardson's law from below for suh values of r0 leadsto an intermediate time range where the mean squared distane grows evenfaster than the explosive t3 law, as for instane observed in [Biferale et al.,2005℄. When r0 is instead far-enough in the inertial range (r0 & 8η), we �ndthat C ≈ 1.3/g ≈ 2.5 beomes independent on the initial separation and, onthe ontrary, the onvergene to Rihardson law is from above. Moreover,when the initial separation r0 approximates the value of 4η we have that C =
0, independently of the Reynolds number. The only subleading terms presentin Eq. (4.23) are then of lower order (i.e. ∝ t instead of t2). As a onsequene,the mean-squared separation onverges muh faster to the Rihardson regimefor suh an initial separation than for others. This observation indiates thatthe initial separation r0 ≈ 4η ould be an �optimal hoie� for hoosing setupsin order to observe the t3 behavior in experiments. However, suh smallvalues of r0 are learly not representative of the inertial-range behavior. Wean note in Fig. 4.6 that the overlap between the onstants C obtained fromthe two values of Reynolds number is not observed for r0 = 4η. As in that



58 4. Di�usivity in turbulent pair dispersionase C is very small, this is ertainly due to the fat that the �tting form usedthere eases to give a good representation of the data. A better estimate of
C would require aounting for next-order subleading terms.4.3 Statistis of veloity di�erenes4.3.1 A di�usive behavior?In this setion, we are interested in the behavior of the veloity di�erene
V (t) = u(X1(t), t) − u(X2(t), t) between two traers as a funtion of time.Rihardson's t3 law for separations implies that the mean-squared veloitydi�erenes should behave at large times as

〈|V (t)|2〉r0 ≃ h ǫ t, (4.24)where h is a positive onstant that annot be straightforwardly expressedas a funtion of the Rihardson onstant g that appears in Eq. (4.10). Aswe have seen in Chap. 3, a behavior ∝ t of a mean-square quantity is a keyfeature of purely di�usive stohasti proesses. In the rest of this hapter, wegive some evidene that the large-time veloity di�erene between two traersan indeed be understood as a di�usion. Before presenting our argumentsfor that, we report the results of numerial simulations on this quantity.Initially, the statistis of V (0) are exatly given by the Eulerian statistisof veloity inrements at a separation r0. We have used suh an argumentto derive the ballisti regime behavior of Eq. (4.14). At large times, thebehavior is expeted to be given by Eq. (4.24). A naive piture would onsistin interpolating between these two behaviors by assuming that
〈|V (t)|2〉r0 ≃ S2(r0) + h ǫ t. (4.25)Assuming suh a form, it an be expeted that one of the two regimes isdominant when t is muh smaller or muh longer than t0 = S2(r0)/(2 ǫ). Asseen from Fig. 4.7 suh a form with h = 2.4 (represented as a dashed line)seems to be a good �rst-order approximation. However, this piture is notompletely satisfatory. When zooming loser to the initial times (see inset),one observes that the averaged pair kineti energy 〈|V (t)|2〉r0 �rst starts bydereasing for a time of the order of a few tens of t0. We indeed know thatinitially

V (t) = V (0) + tA(0) +O(t2), (4.26)where A(0) = (∂tu+u ·∇u)(X1(0), 0)− (∂tu+u ·∇u)(X2(0), 0) denotes theinitial di�erene of �uid aeleration between the two traer positions. This
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1/2. Thisabrupt evolution an be interpreted phenomenologially. With some �niteprobability, one of the two traers is within a vortex �lament at time t0. Thetypial energy ontent of this �lament will ontribute to the value of S2(r0).However, after a time t of the order of τη, the trajetory of this traer willhave turned around this �lament, so that its veloity will have ompletelyhanged orientation (without hanging muh its amplitude). This will resultin |V (t)−V (0)| ∼ |V (t)|, explaining the observed behavior. As a resultof this sudden kinemati variations of veloity di�erenes, 〈|V (t)−V (0)|2〉r0behaves in a very similar manner to 〈|V (t)|2〉r0 for times t ≫ τη (ompare thedashed lines in Fig. 4.7 and Fig. 4.8). Let us also notie that the onvergeneto this behavior is again from below, irrespetive of the initial separation r0.



4.3 Statistis of veloity di�erenes 61There is hene an abrupt hange (ourring on timesales of the order of
τη) that prevent from determining an e�etive initial veloity di�erene andthus from observing a lear di�usive behavior of V (t). However, data suggestthat the timesale of onvergene to this behavior is, as for separations, of theorder of t0. To understand further this question, we next turn to investigatingthe behavior of the longitudinal veloity di�erene between the traers.4.3.2 Geometry of longitudinal veloitiesWe are here interested in the evolution of the longitudinal omponent V ‖(t) =
R(t) ·V (t)/|R(t)| of the veloity di�erene as a funtion of time. This quan-tity is important to haraterize pair separation as d|R|/dt = V ‖. Initially,the averaged longitudinal veloity vanishes, i.e. 〈V ‖(0)〉r0 = 0; this is due tothe statistial stationarity of the �uid �ow. For times t ≪ t0 in the Bath-elor's ballisti regime, the pairs are keeping their initial veloity di�ereneand one an easily hek that

〈V ‖(t)〉r0 ≃ t
〈|V ⊥(0)|2〉r0

r0
, (4.28)where V ⊥ denotes the omponents of V that are transverse to R. It is thuslear that the average veloity at whih traer trajetories separate immedi-ately beomes positive. Figure 4.9, whih represents the time evolution of

〈V ‖(t)〉r0, shows without doubt this initial linear growth.This inrease of the longitudinal veloity di�erene has an interestinggeometrial interpretation. If all pairs were to maintain inde�nitely theirinitial veloity di�erenes V (0), it is lear that they would eventually allseparate at large times. Indeed, they will reah a minimal distane at a�nite time
t∗ = − [R(0)·V (0)]

|V (0)|2 = − r0V
‖(0)

|V (0)|2 , (4.29)whih is positive for partiles that are initially approahing. After suh time
t∗, the distane between partiles inreases and V ‖ beomes positive. Thisleads to an inrease of 〈V ‖〉r0 that omes from kinemati onsiderations andis obviously not due to any dynamis imposed by the turbulent �ow. To esti-mate the typial value of the minimal distane at time t∗, we have performedstatistis on pair separation onditioned not only on the initial distane r0,but also on the initial longitudinal veloity di�erene by binning pairs with
V ‖(0) = v0 ± δv0. From these statistis we have de�ned the averaged time
t∗ = −r0v0/〈|V (0)|2 | v0〉r0 at whih trajetories, with a given initial longitu-dinal veloity di�erene v0, are at a minimal distane. The data are shown in
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〈V ‖(t)〉r0 for various initial separations, as labeled, and for Rλ = 730. Thedashed line to the left has slope 1 and the dashed line to the right has a slope
1/2.Fig. 4.10 for various values of r0 and as a funtion of v0. We observe that for
r0 ≫ η this time approximatively takes the form t∗ ≃ t0 f(v0/〈|V (0)|2〉1/2r0 ),where the funtion f(x) attains its maximum (roughly equal to 0.05) at
x ≈ 1. This on�rms the observation made in Fig. 4.9 that the initial growthof 〈V ‖〉r0 ours on a time length of the order of a few hundredths of t0.In addition to the hange in the mean longitudinal veloity di�erene dis-ussed above, numerial measurements show that the full distribution of V ‖loses its symmetry and develops fatter tails when time inreases. Figures 4.11and 4.12 represent the skewness S and the �atness F of V ‖ as a funtion oftime and for the same initial separations as in Fig. 4.9. These observables arefrequently used in turbulene to quantify the shape of the veloity inrementdistribution. For two-partile Lagrangian statistis, they are de�ned as
S(t) =

〈

[V ‖(t)− 〈V ‖(t)〉r0]3
〉

r0

〈[V ‖(t)− 〈V ‖(t)〉r0]2〉3/2r0

and F(t) =

〈

[V ‖(t)− 〈V ‖(t)〉r0 ]4
〉

r0

〈[V ‖(t)− 〈V ‖(t)〉r0 ]2〉2r0
.(4.30)As already observed for instane in [Yeung & Borgas, 2004℄, these quantitiesstrongly vary as a funtion of time and maintain a marked dependene uponthe initial separation r0 for rather long times.Figure 4.11 shows that the skewness of V ‖(t) starts from negative values(to be in agreement with the Eulerian 4/5 law) and beomes positive at timeslarger than ≈ 0.01 t0. This initial hange of sign an also be interpreted
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Figure 4.10: Averaged time t∗ = −r0v0/〈|V (0)|2 | V ‖(0) = v0〉r0 when traje-tories with a given initial longitudinal veloity di�erene v0 reah a minimaldistane.geometrially in terms of the time t∗ when initially ballistially approahingpairs begin to move away. However, after this, the urves separate and eahof them attains a maximum at times of the order of t0 or slightly smaller.This maximal value of the skewness strongly depends on the initial sep-aration: less is r0, higher it is. After this maximum, the skewness dereaseswithout attaining an asymptoti regime that would be independent of r0.This ould be either due to the fat that there is a persistent memory of
r0 in suh quantities or to a ontamination by �nite Reynolds number (and�nite size) e�ets. The same kind of behavior is observed for the �atness
F of the distribution of V ‖ as seen in Fig. 4.12. However, the inrease ofits maximal value when dereasing r0 is even more pronouned. Anothernotieable di�erene is that the initial value of F itself depends on r0 andrelates to the sale dependene of the Eulerian �atness.The strong dependene on r0 of the skewness and of the �atness an beinterpreted phenomenologially in terms of the intermittent nature of velo-ity inrements. A large positive value of S orresponds to a large probabilityof having pairs separating faster than the average. Suh events will also beresponsible for a large value of the �atness F . It is lear that those partilesthat separate the faster are typially those whih are the most separated.Also, in a turbulent �ow, the typial value of the veloity inreases withsale, so that the partiles whih get quikly separated are likely to on-tinue separating faster than the average. This is evidened in Fig. 4.13 and
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3/2
2 .4.14, whih represent the mean squared distane and the averaged squaredamplitude of the veloity di�erene onditioned on the initial value of thelongitudinal veloity di�erene for r0 = 24η. One observes that there is upto the latest time (of the order of 5 t0), a notieable memory on the initialvalue of V ‖. Besides this onsideration, one also remarks in Fig. 4.14 that thepairs having an initially large negative longitudinal veloity di�erene (theblue urves) dissipate muh more kineti energy than the others. However,this does not prevent them from separating at large times faster than thepairs having initially a smaller veloity di�erene.We now turn bak to the explanation of the long-term dependene on

r0 of the skewness and �atness of V ‖. Reall that, in a turbulent �ow,violent veloity di�erenes are more probable at small sales than at largersales. This implies that pairs with a small initial separation are more likelyto experiene a large (positive or negative) initial veloity di�erene. Thiswill make them separate faster and thus experiene even larger values ofthe veloity. The rapid and strong inrease of �utuations in their veloitydi�erenes is thus due to a kind of snowball e�et.4.4 �Loal dissipation� and veloity di�usionWe fous in this setion on providing arguments that evidene a purely dif-fusive behavior of veloity di�erenes at large times. These arguments arebased on two key ingredients. First, as we will see in Subse. 4.4.1, the ube
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Figure 4.15: Time evolution of the mixed moment 〈[V ‖(t)]3/|R(t)|〉r0 fordi�erent initial separations and the two values of the Reynolds number: Rλ =
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A(t) = (∂tu + u · ∇u)(X1(t), t)− (∂tu+ u · ∇u)(X2(t), t) (4.31)between two traers. Its Lagrangian autoorrelation funtion is representedin Fig. 4.18. We learly see that this quantity get unorrelated on timesof the order of τη. This suggests that for separations in the inertial rangeand on timesales muh longer than the Kolmogorov eddy turnover time,the di�erene of aeleration between two traers an be approximated by adelta-orrelated-in-time random proess, so that

A ≃
√

τ locη A(R,V )η(t), (4.32)where η(t) is the three-dimensional standard white noise. The matrix A isde�ned as
A

T
A = 〈A(t)⊗A(t) |R,V 〉r0 . (4.33)Here we have made use of the entral-limit theorem to write Eq. (4.32). Thisimplies that the produt is there understood in the Stratonovih sense.Dimensional arguments indiate that, as they are small-sale quantities,the �loal Kolmogorov time� τ locη and the aeleration amplitude A = |A|depend only on the visosity ν and on the loal energy dissipation rate εloc.
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Figure 4.18: Lagrangian time autoorrelation of the aeleration di�erene
〈Ai(t)Ai(0)〉r0 for various r0 and Rλ = 730.loal Kolmogorov time and the aeleration amplitude an be written as

τ locη ∼ ν1/2 ε
−1/2
loc and A ∼ ν−1/4 ε

3/4
loc . (4.34)This leads to write the di�usion oe�ient in Eq. (4.32) as

[ τ locη ]1/2A ∼ ε
1/2
loc . (4.35)It is interesting to note that this quantity is independent on ν and is thusexpeted to have a �nite limit at in�nite Reynolds numbers. The loal dissi-pation is a funtion of the urrent values of the veloity di�erene V and ofthe separation R. Dimensional arguments suggest that εloc ∼ V 3/R. How-ever, when V = 0, the loal dissipation is not expeted to vanish and shouldome from an averaged ontribution of larger eddies, leading to εloc ≃ ε, themean dissipation rate. In summary, we expet to have

εloc(t) ∼ ε+ α
[V ‖(t)]3

|R(t)| , (4.36)where α is an adjustable parameter. We have again used here the longitudinalveloity di�erene between two traers V ‖ = R · V /|R|.All these estimations have been tested against numerial simulations. Fig-ure 4.19 shows the variane of the aeleration di�erenes onditioned on thelongitudinal veloity di�erene for various values of the initial separation r0.
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4.4 �Loal dissipation� and veloity di�usion 73priniple, we an then apply the entral-limit theorem to design a model forthe joint time evolution of the separation and of the veloity di�erene. How-ever, we found an expression for the amplitude of the aeleration, but not forits full tensorial struture. We thus fous here on writing a one-dimensionalmodel that is expeted to reprodue the most important features of turbulentpair dispersion.We work here in non-dimensional units. Let us introdue the followingstohasti model for the joint evolution of the separation R(t) and the (lon-gitudinal) veloity di�erene V (t)

dR = V dt, dV = −b
|V |
R

V dt+

[

1 + c
|V |3
R

]1/2

dWt, (4.37)where W (t) denotes the one-dimensional Wiener proess (see Chap. 3). Themultipliation by the noise is here understood in the It	o sense. This for-mulation an be seen as an appliation of the entral-limit theorem to thetime integral of the aeleration di�erene, whih an be written as a sum ofindependent integrals over time intervals of length τη. The drift term is dueto the hange from Stratonovih's to It	o's de�nition of the stohasti inte-gral. However, the onstants b and c are not diretly related as their ratiois supposed to ome from tensorial onsiderations and from the presriptionof inompressibility to the Lagrangian dynamis. This drift term, whih isnon-linear, introdues a �orrelation time� equal to the turnover time R/|V |.Despite its dependene on V , this timesale an be seen as a �response time�of the pair dynamis whih depends on both the sale and the strength ofthe struture under onsideration.While its form is relatively simple, the model de�ned by Eq. (4.37) annotbe integrated expliitly, neither under its stohasti form, nor with the helpof its equivalent Fokker�Plank form. This is mainly due to the presene ofnon-linear terms in both the drift and the di�usion oe�ient. However, wean make the following remarks. Let us write the Fokker�Plank equationfor the transition probability density p(r, v, t|r0, v0, 0) to be separated by rwith a veloity di�erene v at time t onditioned on the initial onditions,namely
∂tp+ v∂rp− ∂v

[

b
|v| v
r

p

]

= ∂2
v

[(

1 + c
|v|3
r

)

p

]

. (4.38)One an then easily hek that Eq. (4.38) admits saling solutions of theform p(r, v, t) = tαΨ(r/t3/2, v/t1/2). This saling exatly orresponds to thatgiven by Rihardson's explosive behavior (namely r ∼ t3/2 and v ∼ t1/2).
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(α+2)Ψ+ ∂ξ

[(

µ− 3

2
ξ

)

Ψ

]

= ∂µ

[(

b
|µ|µ
ξ

+
1

2
µ

)

Ψ+ ∂µ

[(

1 + c
|µ|3
ξ

)

Ψ

]]

.The hoie α = −2 allows one to get ride of the term ∝ Ψ. This equationthen redues to a stationary Fokker�Plank equation. However the tradi-tional tehniques used to solve suh problems, as for instane the assump-tion of onstant probability �ux, do not work in that ase and one annotstraightforwardly write a saling solution for the transition probability den-sity.The di�ulties enountered in solving the Fokker�Plank equation asso-iated to the stohasti model of Eq. (4.37) led us to investigate its solutionsand statistial properties by Monte�Carlo numerial simulations. We reportin the rest of this subsetion the results of suh an approah. Let us �rstgive some additional informations on the numerial settings. First, as thedynamis beomes sti� when R → 0, we had to presribe a uto� at smalldistanes. For that, a minimal sale η has been introdued and, below η,partiles are evolved with a linear veloity di�erene that is hosen suh thatthey separate in average (this is done in order to mimi a positive Lyapunovexponent at dissipative sales). The inverse of the rate at whih the partilesare separated de�nes a timesale τη. All results are reported in units of ηand τη. Also, we have not spanned the full parameter spae by varying sys-tematially b and c. On the ontrary, we have just foused on some spei�values and most of the results reported here are for b = 0.1 and c = 0.1.Figure 4.20 (Top) shows the evolution of the mean-squared displaement
〈[R(t)−R(0)]2〉 as a funtion of time. One learly observes for the model thetwo regimes that are proper to turbulent pair dispersion, namely a ballistiregime ∝ t2 at small times that is followed by an explosive growth of theseparation where 〈R2(t)〉 ∝ t3. With our hoie of units, ε = 1 and theonstant of proportionality is of the order of 0.1 for c = b = 0.1. One alsonoties that this large time asymptoti regime is independent of the initialseparation R(0). This indiates an explosive regime, as in the ase of atualturbulent pair dispersion. Also, the extension of the ballisti regime learlydepends on R(0). Figure 4.20 (Bottom) shows the time evolution of themean-squared veloity di�erene. The data reveal a lear di�usive behaviorat large times where 〈V 2(t)〉 ∝ t. This law is preeded by a short inrease ofthe pair kineti energy and of a derease. While the �rst is absent from thedata orresponding to turbulent �ow, the seond has been observed there.To understand better the reasons why the veloity di�erene beomesdi�usive at large times, we have also measured the time evolution of the av-eraged �loal dissipation� 〈V 3(t)/R(t)〉. The results are shown in Fig. 4.21.
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Figure 4.20: Top: time evolution of the average squared displaement for thestohasti model, Eq. (4.37), with c = b = 0.1 for pairs suh that R(0) = 100η(blak) and R(0) = 1000η (red). The two blue lines stand for the ballisti
∝ t2 regime (on the left) and the explosive ∝ t3 law (on the right). Bottom:Time evolution of the mean squared veloity di�erene for the same settings.The blue line is the di�usive behavior ∝ t.
Contrarily to what was observed in real turbulent �ows (see Subse. 4.4.1),there is no rapid variation of this quantity on very short timesales. Sur-prisingly, this quantity, whih is zero at small times by onstrution in the
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Figure 4.21: Time evolution of the mean �loal dissipation� 〈V 3(t)/R(t)〉along the solutions to the stohasti model with c = b = 0.1 and for pairssuh that R(0) = 100η (blak) and R(0) = 1000η (red).stohasti ase, beomes relatively quikly negative. This is related to thederease of 〈V 2(t)〉 observed in Fig. 4.20 (Bottom). At larger times, this de-rease is then followed by an inrease. Later, similarly to what was observedin real �ows, the average �loal dissipation� stabilizes to a �nite value. Inthe stohasti model for c = b = 0.1, this limit is of the order of 1. Asseen in Fig. 4.21 this limit seems independent of the initial separation R(0).However, onversely to what observed in real turbulent �ows, the timesaleof onvergene to this limit depends on R(0).To omplete our understanding of the behavior of the �loal dissipation�along pair trajetories, we show in Fig. 4.22 their probability density fun-tions estimated at various times. As seen in Subse. 4.4.1 in the ase ofdeveloped turbulent �ow, the various urves ollapse together at large timesto an asymptoti distribution with fat tails. In ontrast to the real-�ow ase,the left tails seem here less developed than the right ones. The fat thatthe averaged �loal dissipation� 〈V 3(t)/R(t)〉 tends to a positive onstant israther due to a shift of the maximum of the distribution than to a di�er-ene in the tails. Note however that the observed �utuations of V 3/R areanyway muh larger than the measured average value. Events assoiated tolarge value of the �loal dissipation� are more frequent for approahing pairs(V < 0) than for those that separate. This an be due to the fat that thedynamis assoiated to the model is ompressible. However, by hangingappropriately the values of the parameters b and c, one an ertainly �ndvalues where this tendeny is inverted. Anyway, the important suggestion
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Figure 4.22: Probability density funtions of the �loal dissipation�
V 3(t)/R(t) along the solutions to the stohasti model with c = b = 0.1and for pairs suh that R(0) = 100η. The various olors orrespond to dif-ferent times, as labeled. Note that the data are not resaled here.made by these measurements is the apparent onvergene at large times toa saling regime of the distribution of separations and veloity di�erenes.This onvergene of the �loal dissipation�, together with the long-timebehaviors observed earlier in this subsetion for the squared average quanti-ties, are very similar to those obtained for traer relative dispersion in turbu-lent �ows. Also, they give evidene that the saling regime disussed abovein the framework of the Fokker�Plank equation ould be attained by themodel at large times. This asymptoti behavior is evidened by looking atthe probability distributions of the displaement and the veloity di�erenesthemselves. As seen in Fig. 4.23, one resaled by their standard deviations,both of them onverge at large times to asymptoti distributions, on�rmingwhat expeted. The veloity probability density funtion, whih was hosenGaussian at the initial time, quikly develops fat tails. This is ertainly dueto the non-linear nature of the multipliative noise in the stohasti model.The separation distribution is also developing a fat tail at large values. Asseen in Fig. 4.23 (Top), these tails beome more strethed than an expo-nential in the large-time asymptoti saling distribution. However, we werenot able to math them with Rihardson's di�usive distribution disussed inSubse. 4.1.1.
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Figure 4.23: Top: probability density funtion of the separation R betweentwo trajetories obtained from the stohasti model with b = c = 0.1 and
R(0) = 100. The di�erent olors orrespond to the di�erent times shown inFig. 4.22. Bottom: same for the veloity di�erene V .

The probability distribution of the separation is also developing tails atsmall values. This is lear in Fig. 4.24 where they are represented not resaledand in log-log oordinates. One observes there that the probability densityfuntion of the separation p(R) develops at small values a power-law behavior
p(R) ∝ Rα where the exponent α depends on time. Initially it is equal to
+∞ as the distribution is entered on R = R(0) and it onverges to anasymptoti value ≈ −0.5 at large times. This value depends on the hoie
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Figure 4.24: Probability density funtion of the separation R between twotrajetories obtained from the stohasti model with R(0) = 100η. Thedi�erent olors orrespond to the same times as in Fig. 4.22. Note that thistime the distributions are not resales and are shown in log-log oordinatesto evidene the behavior at small separations.of the parameters b and c. The fat that it is negative is a lear signatureof the ompressibility of the one-dimensional stohasti model studied here.However, the intermediate time variations of α are muh more relevant. Also,as seen in Fig. 4.24, one observes that at intermediate times, the exponent αis smaller than its asymptoti value, so that its behavior is non-monotoni.At suh intermediate times, the pair distribution is thus more onentrated atsmall distanes than at later times. This behavior is indiating the presene ofstrong �utuations in the statistis of pair dispersion. Suh extreme eventsare important as they relate to the probability of a slow dispersion of thetransported speies. As we will see in the next hapter, this behavior analso be observed for relative dispersion in atual developed turbulent �ows.To onlude, let us stress again that, so far, we have only investigated asimple one-dimensional version of the proposed model Eq. (4.37). We believethat extensions to higher dimensions will make this kind of approah morerelevant to atual turbulent pair dispersion. However, the main issue willthen be to aount for inompressibility via the tensorial struture of theaeleration variane. This goes beyond the aim of the present study and itwill be investigated in a future work.
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Chapter 5Geometry and violent events inturbulent relative motionHere we arry on our study of the statistis of Lagrangian pair dispersionin a homogeneous isotropi �ow. Again, we mostly use the results of high-resolution diret numerial simulations. In previous hapter, we have seenthat the squared average quantities are well desribed by Rihardson's eddy-di�usivity approah. An example is the t3 behavior for the mean-squareddistane between traers, whih seems rather robust. We however disussedthe fat that the main assumption in this approah is hard to justify. Theveloity di�erene is indeed orrelated on times that are always longer orof the order of the onsidered timesales. For this reason, we have givena reinterpretation of the t3 in terms of a di�usive behavior of the veloitydi�erenes. This hypothesis has been justi�ed by investigating the orrelationof aeleration di�erenes.In this hapter, the fous is again on the deviations from Rihardson'seddy-di�usivity model. Our attention is on the strong �utuations that areexperiened by traers. For that we �rst investigate in Se. 5.1 the high-ordermoments of separation and veloity di�erenes. Evidene is obtained that thedistribution of distanes attains an almost self-similar regime haraterizedby a very weak intermitteny. The timesale of onvergene to this behavioris found to be given by the kineti energy dissipation time t0 measured at thesale of the initial separation and whih was introdued in previous hapter.Conversely the veloity di�erenes between traers are displaying a stronglyanomalous behavior whose saling properties are very lose to that of La-grangian struture funtions. We then give a geometrial interpretation ofthese violent �utuations and show that they are responsible for a long-termmemory of the initial separation.These results are then brought together to address the question of violent81



82 5. Geometry and violent events in turbulent relative motionevents in the distribution of distanes. We report in Se. 5.2 our �ndingsthat distanes muh larger than the average are reahed by pairs that havealways separated faster sine the initial time. They are responsible for thepresene of a strethed exponential behavior in the tail of the inter-traerdistane probability distribution. The tail approahes a pure exponential atlarge times, ontraditing Rihardson's di�usive approah. At the same time,as we show in Se. 5.3, the distane distribution displays a time-dependentpower-law behavior at very small values, whih is interpreted in terms offratal geometry. It is argued and demonstrated numerially that the ex-ponent onverges to one at large time, again in on�it with Rihardson'sdistribution.5.1 High-order statistis5.1.1 Saling regime in the statistis of distanesWe have seen in the previous hapter (Se. 4.2) that the mean squared dis-plaement 〈|R(t) − R(0)|2〉r0 between two traers that were initially at adistane |R(0)| = r0, behaves ballistially as t2 for small times and explo-sively as t3 at large times. We reall that R(t) = X2(t) − X1(t) denotesthe separation between two traers. We showed that the transition betweenthe two aforementioned regimes ours at a time t0 = S2(r0)/(2ε), where
S2(r0) is the absolute-value seond-order Eulerian struture funtion of the�uid veloity over a distane r0 and ε is the average turbulent rate of kinetienergy dissipation. In this setion, we turn to investigating the large-timebehavior of higher-order moments of the separation. Figures 5.1 (a) and (b)show the time evolution of 〈|R(t) − R(0)|4〉r0 and of 〈|R(t) − R(0)|6〉r0,respetively. At times smaller than t0 the separation grows ballistially,so that 〈|R(t) − R(0)|p〉r0 ≃ tp 〈|V (0)|p〉r0 where we reall that V (t) =u(X2, t) − u(X1, t) denotes the veloity di�erene between the two traers.The fat that we have hosen to resale time by t0 (whih depends on seond-order statistis of the initial veloity di�erene) implies that the moments donot ollapse in this regime beause of Eulerian multisaling. However theollapse ours for t ≫ t0 where these two moments grow like t6 and t9,respetively, with possible minute deviations. The measured power-laws giveevidene that, at su�iently long times, inter-traer distanes follow a sale-invariant law. Also the observed ollapses indiate that t0 ould be again thetime of onvergene to suh a behavior.The presene of a sale-invariant regime is also lear when making use ofideas borrowed from extended self-similarity and representing these two mo-



5.1 High-order statistis 83

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−10

10
−5

10
0

10
5

10
10

t / t
0

<
|R

(t
)−

R
(0

)|4 >
 / 

(ε
2  t 06 )

(a)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

10
5

10
10

10
15

t / t
0

<
|R

(t
)−

R
(0

)|6 >
 / 

(ε
3  t 09 )

(b)

 

 

r
0
 = 4η

r
0
 = 6η

r
0
 = 8η

r
0
 = 12η

r
0
 = 16η

r
0
 = 24η

r
0
 = 32η

r
0
 = 48η

r
0
 = 64η

r
0
 = 96ηFigure 5.1: (a) Fourth-order moment 〈|R(t)−R(0)|4〉r0 and (b) sixth-ordermoment 〈|R(t) − R(0)|6〉r0 as funtion of t/t0 for Rλ = 730. Both urvesare normalized suh that their expeted long-time behavior is ∝ (t/t0)

6 and
∝ (t/t0)

9, respetively. The blak dashed lines represent suh behaviors.ments as a funtion of 〈|R(t)−R(0)|2〉r0 (see Fig. 5.2). This time, for a �xed
r0, the smallest separations orrespond to the ballisti regime. There, we triv-ially have 〈|R(t)−R(0)|p〉r0/〈|R(t)−R(0)|2〉p/2r0 ≃ 〈|V (0)|p〉r0/〈|V (0)|2〉p/2r0 ,whih has a weak dependene on r0, beause of an intermittent distributionof Eulerian veloity inrements, but does not depend on time. This normalsaling an be observed for t ≪ t0 in the insets of Fig. 5.2, whih representthe logarithmi derivatives of the high-order moments with respet to theseond order. At times of the order of t0, notieable deviations to normalsaling an be observed. Finally, at muh larger sales, data orrespondingto di�erent values of the initial separation r0 ollapse but the urves startto bend down. One observes in the insets that the assoiated loal slopesapproah values learly smaller than those orresponding to normal saling.
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d log〈|R(t)−R(0)|p〉r0/d log〈|R(t)−R(0)|2〉r0 , together with the normal sal-ings represented as dashed lines.This gives evidene of a rather weak intermitteny in the distribution oftraer separations. Note that the presented measurements were performedfor Rλ = 730 but the same behavior has been observed for Rλ = 460. Werefer the reader to Subse. 4.2.1 for further details on the parameters of thenumerial simulations.To our knowledge, the most onvining observation of an intermittentbehavior in pair dispersion has been based on an exit-time analysis [Bo�etta& Sokolov, 2002a,Biferale et al., 2005℄. However, the relation of suh �xed-sale statistis to the usual �xed-time measurements we report here requires
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Figure 5.3: Probability density funtion of the distane r at time t = 2.5 t0(a) and t = 5 t0 (b) and for various values of the initial separation. We havehere normalized it by 4πr2 and represented on a log y axis as a funtion of
r/〈|R(t)|2〉1/2r0 . With suh a hoie, Rihardson's di�usive density distribution(4.9) appears as a straight line (represented here as a blak dashed line).to onsider pair separation veloities. As we will see in the next subsetion,the veloity di�erene between two traers displays statistis that are muhmore intermittent than those for pair separation. This implies that there isno ontradition between an almost normal saling for distanes as a funtionof time and an anomalous behavior of exit times as a funtion of distane.To investigate further this weak intermitteny in the separation distribu-tion, we have represented in Fig. 5.3 the probability density funtion (PDF)



86 5. Geometry and violent events in turbulent relative motionof the distane |R(t)| for various initial separation and at times where weexpet to have almost onverged to the explosive regime, namely at t = 2.5 t0(a) and t = 5 t0 (b). Suh measurements are ompared to Rihardson's dif-fusive law Eq. (4.9). Data suggest that a large part of the PDF's ore (for
0.4 . |R(t)|/〈|R(t)|2〉1/2r0 . 4 at time t = 5 t0) is very well desribed byRihardson's approah. However, deviations are observed in the far tails, atboth small and large values of the separation. Suh an observation is onsis-tent with previous numerial observations [Bo�etta & Sokolov, 2002a,Biferaleet al., 2005, Satamahia et al., 2012℄. Apparently, these deviations a�etonly weakly the moments we have onsidered above. We will ome bak toinvestigating and haraterizing them in Se. 5.2.5.1.2 Intermittent distributions of veloity di�erenesAll the onsiderations on the dependene of the veloity di�erene betweentraers upon the initial separation, whih were disussed in the previoushapter, are also visible in the probability distribution of the longitudinalveloity V ‖ = R · V /|R|. Figure 5.4 (a) shows the entered PDF of V ‖normalized to unit variane for various times and r0 = 12η. The data learlyshow that at times later than 0.01 t0, there is a hange in the sign of theskewness. Also, one sees that the time dependene of the skewness and ofthe �atness omes from the right tails assoiated to large veloity di�erenes,supporting the arguments disussed above. The left tails, whih orrespondto approahing pairs, seem on the ontrary to ollapse. The right tail has avery rih behavior. It starts with broadening at times t < t0, in agreementwith the inrease of �atness. For t > t0, it then dereases and possiblygoes bak asymptotially to its initial form. This aspet suggests that thedistribution of veloity di�erenes will keep in memory the initial separationat any later time.This is also evidened from Fig. 5.4 (b), whih shows the same PDFs forvarious separations and a time t = 5 t0 �xed. Again we observe a rather goodollapse of the tails assoiated to negative longitudinal veloity di�erenes,but the right tails display very strong dependene on the initial separation.Clearly, the behavior of this tail is a strethed exponential for r0 . 8η andis faster than exponential for larger initial separations. The atual level ofstatistis do not allow us to relate systematially this behavior to that of theinitial veloity di�erene distribution.Finally another way to address the question of intermitteny of the velo-ity di�erene onsists in �nding how moments of its longitudinal omponentdepend on time. For that we follow, as in the ase of the moments of dis-tanes, an approah similar to that of extended self-similarity. Figures 5.5 (a)
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Figure 5.5: Fourth-order (a) and sixth-order (b) moments of the longitudi-nal veloity di�erene as a funtion of its seond-order moment for varioustimes and initial separations. The two dashed lines orrespond to a salingompatible with that of Lagrangian struture funtions proposed in [Biferaleet al., 2004℄, namely ζL4 /ζ
L
2 = 1.71 and ζL6 /ζ

L
2 = 2.16. The insets show thelogarithmi derivative d log〈[V ‖(t)]p〉r0/d log〈[V ‖(t)]2〉r0 for (a) p = 4 and (b)

p = 6 as a funtion of t/t0; there the bold dashed lines show the Lagrangianmultifratal saling and the thin lines what is expeted from a self-similarbehavior.jetories to She�Lévêque multifratal spetrum for the Eulerian �eld. Thetwo dashed lines in Fig. 5.5 (a) and (b) orrespond to the predited values
ζL4 /ζ

L
2 = 1.71 and ζL6 /ζ

L
2 = 2.16. Con�rming further that this math wouldrequire muh better statistis.



5.2 Memory in large-distane statistis 895.2 Memory in large-distane statistisIn this setion and in the following we turn bak to the statistis of the dis-tane |R(t)| between two traers. Our goal is to explain the mehanismsleading to very large or very small values of this distane in the light of thevarious observations made in previous setions and in previous hapter. Con-sidering the relative dispersion of traers onditioned on their initial distane
r0 an be geometrially interpreted in terms of the time evolution of an ini-tially spherial surfae of radius r0 that is entered on a referene trajetory.The transport of this surfae by a turbulent �ow is generally very omplex.Inompressibility implies that the volume of the sphere is onserved but theveloity �eld roughness will be responsible for strong distorsions of its sur-fae. This is represented in Fig. 5.6 that shows for Rλ = 460 at three varioustimes the shape de�ned by the instantaneous position of 60 trajetories thatare all initially at a distane 24η from a referene traer.

Figure 5.6: Quasi-Lagrangian evolution of the set of traers that are initiallyat a distane r0 = 24η of a referene trajetory.We an qualitatively dedue from these snapshots that the large exur-sions of the inter-trajetory distane go together with strong pinhes of thesurfae. We also see that the intense strethings are ourring in a time-orrelated manner: the surfae angles that are visible at late time haveformed at very early stages. As we will now see, the most-separated pairshave been so for long times and arry a reminisent dependene on the initialseparation.We �rst onsider in this setion the events related to distanes that aremuh larger than their average. It was argued in Se. 5.1.1 that the large-value tail of the separation PDF is not well desribed by Rihardson's dis-tribution. As seen in Fig. 5.3 (b) for t = 5 t0, the tail is indeed broader than



90 5. Geometry and violent events in turbulent relative motion
exp(−C |R|2/3) for r0 . 8η and narrower otherwise. It seems to tend to aGaussian when either r0 or t are su�iently large. We have heked thatthese behaviors are not due to a ontamination by pairs that have reahedthe large sales of the turbulent �ow, as the onsidered distanes are still wellbelow L, exept maybe for the largest initial separation r0 = 24η. These ob-servations suggest that for suh extreme events, there is a long-term memoryof the initial separation.To qualify further the history of pairs that are well separated at largetimes, we have performed the following analysis. Fixing a �nal time tf suf-�iently large to have reahed the explosive Rihardson�Obukhov regime,we have arried out statistis onditioned on pairs that are far separated at
t = tf , say suh that their distane is |R(tf)| ≥ 2 〈|R(tf)|〉r0. In order tonot be ontaminated by �nite inertial subrange e�ets, we have restritedthis analysis to Rλ = 730 and to initial separations 2 η ≤ r0 ≤ 24 η, andwe have hosen the largest ompatible value of tf , namely tf = 5 t0. Letus denote by 〈·〉+ the resulting onditional ensemble average, i.e. 〈·〉+ =
〈· | {|R(tf)| ≥ 〈|R(tf)|〉r0}〉r0 . Figure 5.7 (a) represents the relative inrease
〈|R(t)−R(0)|2〉+/〈|R(t)−R(0)|2〉r0 of the mean-squared displaement. Thevarious urves, whih are assoiated to di�erent initial separations r0, havea maximum at t = tf = 5 t0 represented by a dashed line. The value of thismaximum is beoming larger when r0 dereases and approahes the dissipa-tive sales. This is a signature of the dependene of the large-positive valuetail upon r0. On the right-hand side of the maximum, the various urves tendbak to 1. This indiates that separations that are large at a given interme-diate time relax in average to an ordinary behavior at later times. This anbe regarded as a onsequene of the weakening of large-distane probabilitytails as a funtion of time. The situation is rather di�erent when interestedin the left-hand side of the maximum. The urves do not onverge to 1, andthus to an average behavior when t → 0. This means that pairs that are wellseparated at a given time are likely to have been so at any previous times.This asymmetry when going forward or bakward in time ould already begrasped in Fig. 5.6. The trajetories that are far away from the referenetraer at the latest time (as, e.g., those de�ning the left and top orners)are visibly also well separated at the intermediate time. Conversely the rightorner at the intermediate time have later stopped separating faster than theaverage.Figure 5.7 (b) shows the time evolution of the averaged longitudinal velo-ity di�erene 〈V ‖(t)〉+ onditioned on having a separation twie the averageat time tf = 5 t0. A �rst remark that annot be seen from the log-log plot isthat the initial value of this average is stritly positive. The inset representsthe variation of 〈V ‖(0)〉+ as a funtion of the initial separation. This implies
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Figure 5.7: Conditional statistis over pairs that are at a distane atleast twie the average at time tf = 5t0 (onditional average on |R(5t0)| ≥
2 〈|R(5t0)|〉r0 is denoted by 〈·〉+). (a) Relative inrease in the mean squaredhange of separation 〈|R(t)−R(0)|2〉r0 as a funtion of time. (b) Averagedlongitudinal veloity di�erene onditioned on the separation at time tf = 5t0(+) and without onditioning (solid line). Inset: initial value of the ondi-tioned longitudinal veloity di�erene as a funtion of the initial separation;the solide line is ∝ r

−2/3
0 .that the pairs that are well separated at a late time are preferentially sepa-rating from the very beginning. The initial longitudinal veloity �utuationthat is neessary for the pairs to be far apart at time tf beomes weakerwhen r0 inreases. Data suggest that 〈V ‖(0)〉+/[S2(r0)]

1/2 ∝ r
−2/3
0 as seen in



92 5. Geometry and violent events in turbulent relative motion

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

t/t
0

E
xp

on
en

t α

 

 
Gaussian

Exponential

Richardson

r
0
 = 2 η

r
0
 = 3 η

r
0
 = 4 η

r
0
 = 6 η

r
0
 = 8 η

r
0
 = 12 η

r
0
 = 16 η

r
0
 = 24 η

r
0
 = 32 η

r
0
 = 48 η

r
0
 = 64 η

r
0
 = 96 η

r
0
 = 128 ηFigure 5.8: Exponent α of the right tail of the PDF of distanes |R(t)|as a funtion of time and for various initial separations. The exponent wasobtained by �tting − log p(|R|) to a power-law for 〈|R(t)|〉r0 < |R(t)| <

0.5L.the inset. This initial separation makes the seleted pairs reah an almostdi�usive regime at time muh shorter than the end of the average ballistiregime. For large-enough initial separations we indeed have 〈V ‖(t)〉+ ∼ t1/2for 0.1 t0 . t . t0. The pair distane enountered a �nal aeleration beforeattaining the onditioning. After that, the longitudinal veloity di�erenerelaxes slowly to the average regime. Again here, as in the ase of the av-erage separation, we observe that the imposing of having a large distaneat a large time selets pair histories. The main ontribution to statistis isindeed given by ouples enountering an initially violent separation that isthen followed by a rapid onvergene to an explosive regime.In order to give a more quantitative handle on the far tail of the sepa-ration PDF, we have estimated and �tted its funtional shape and studiedits variations. For that, following the observations made in Se. 5.1.1, wehave assumed that p(|R|) ∝ exp(−C |R|α) and measured how the exponent
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5.3 �Fratal distribution� at small distanes 93exponential) for t ≈ 0.1 t0, and reahes a minimal value that depends onthe initial separation r0. For the smallest r0, this minimal value is belowRihardson's predition, as previously notied. For larger separations, thisminimum inreases and when r0 ≫ η the urves seem to saturate to the value
α = 1. Also, we annot exlude that all urves onverge to the exponentialvalue when t → ∞. The inrease at the last stage an hardly be blamedon an integral-sale e�et. We have indeed exluded here all pairs that areseparated by a distane larger than L/2.5.3 �Fratal distribution� at small distanesMuh more violent and intermittent events take plae for partile pairs thatseparate muh less than the average. As already stressed and observed inFig. 5.6, the large exursions of inter-trajetory distanes go together withstrong pinhes of separations.This is evidened from Fig. 5.9 that represents the probability distribu-tion of |R| at various times and for two inertial-range values of the initialseparation. One observes that at very short times, the PDF is peaked around
r0. When time inreases, its maximum, whih roughly orresponds to thevalue of 〈|R(t)|〉r0, shifts to larger values and the distribution broadens si-multaneously at large and small values. This leads to the development for
r0 ≪ |R| ≪ 〈|R|〉r0 of an intermediate range of pairs whose separations lagbehind the average evolution. In this subrange, the PDF behaves as a powerlaw p(|R|) ∝ |R|β, where the exponent β evolves as a funtion of time and
r0. The power-law behavior is substantiated when measuring the umulativeprobability P<(r) = Prob[|R| < r] =

∫ r

0
p(r′) dr′ ∝ rβ+1 of inter-trajetorydistanes. One expets from Rihardson's arguments that β = 2, so that

P<(r) ∝ r3. The exponent β an be interpreted in terms of fratal geometry.If all the trajetories were uniformly and independently distributed in spae,the fration of pairs at a distane less than r would be ∝ rd, where d = 3is the spae dimension. Also one would expet this fration to be ∝ rd−1 ifthe trajetories were all on�ned on a surfae, and ∝ rd−2 if they were on aurve. In general, the exponent β + 1 = limr→0[logP
<(r)]/[log r] measuresthe orrelation dimension of a fratal set. Rihardson's r2 behavior thus or-responds to the idea that, at su�iently long times, trajetories forget abouttheir initial separation and distribute homogeneously in spae.As we have previously disussed, pair dispersion an be geometrially in-terpreted as the average Lagrangian evolution of an initially spherial surfaeof radius r0 entered on a referene trajetory. At time t = 0, it is lear that

P<(r) is a Heaviside funtion entered on r = r0, so that β = ∞. At later
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5.4 Summary and perspetives on the problem of pair dispersion 975.4 Summary and perspetives on the problemof pair dispersionIn this setion, we draw some onlusions on the work of this thesis relatedto turbulent pair dispersion that were reported in Chapters 4 and 5. Wehere fous on rather spei� questions from a purely Lagrangian turbulenepoint of view. We believe that the problem of relative Lagrangian motion, inaddition to its numerous appliations to turbulent transport, an shed somenew lights on basi aspets of the physis of turbulent �ows.In Chapter 4, we reported results on the timesales of onvergene ofturbulent pair dispersion to an asymptoti regime. We have seen that low andmedium-order moments of the partile separation approah an asymptotiregime on times of the order of t0 = S2(r0)/(2ǫ), where S2(r0) denotes the(absolute value) struture funtion assoiated to the initial separation r0and ǫ is the mean rate of kineti energy dissipation. This timesale hasbeen shown to be relevant to desribe also the initial kinemati hange ofsign of the longitudinal veloity di�erene V ‖ and the tails of the distanedistribution at small values. However, we have seen that t0 is not relevant todesribe the onvergene of the veloity di�erene statistis to an asymptotiregime. We have observed that up to the largest time, the skewness, the�atness, and more generally the shape of the veloity di�erene distributionstill depend on the initial separation, even when time is resaled by t0. Thisleads to a behavior that is by far more intermittent than that of separations.Also, it has been demonstrated that the Rihardson explosive regime
〈|R|2〉 ∝ t3 for the separation between two traers in a turbulent �ow origi-nates from a di�usive behavior of their veloity di�erene rather than froma sale-dependent eddy di�usivity for their distane, as ommonly believed.This leads on to reinterpret the t3 law as that of the integral of Brownianmotion. Suh an argument is mainly supported by two observations. First ofall, the aeleration di�erene has a short orrelation time, of the order of theKolmogorov timesale, and this allow us to approximate it as a white noise.Seond, the amplitude of this noise solely depends on the loal dissipationrate 〈[V ‖]3/R〉r0, whih stabilizes to a stationary behavior with a onstantmean also on short timesales. This behavior, whih, to our knowledge, hasnever been observed before, gives very strong onstraints for the develop-ment and validation of stohasti Markovian models for turbulent relativedispersion.A entral question that deserves being raised onerns the physial meh-anisms leading to this fast onvergene of the �loal dissipation� to a sta-tistially stationary behavior. At the moment, an even phenomenologial



98 5. Geometry and violent events in turbulent relative motionexplanation is still missing. We have understood that kinemati onsidera-tions an be used to explain why 〈[V ‖]3/|R|〉r0, whih is initially negative,beomes quikly positive. This is due to the fat that initially approahingtrajetories will always eventually separate. However, there is no lear ideaof why this average should onverge to a time-independent value. Possibleideas ould onsist in �nding other mixed moments that are stritly (and notasymptotially) onserved by the two-point turbulent Lagrangian �ow. Suhonsiderations are kept for future work.The interpretation of Rihardson's law in terms of di�usion of veloitydi�erenes strongly questions possible e�ets of �uid-�ow intermitteny ontrajetory separation. Indeed, onsiderations on veloity saling, whih areprimordial in approahes based on eddy di�usivity, are absent from the argu-ments leading to a di�usive behavior of V . Hene, we expet the separation
R to almost follow a self-similar evolution in time, independently on theorder of the statistis. This has been evidened in Chap. 5. Intermittenywill however a�et diretly the time of onvergene to suh a regime. Morefrequent violent events, suh as traer pairs approahing or �eeing away in astrongly anomalous manner, will result in longer times for being absorbed bythe average. Suh arguments do not rule out the possibility of having inter-mitteny orretions when interested in other observables than moments ofthe separation, as it is for instane the ase for exit times [Bo�etta & Sokolov,2002a℄. Suh issues will ertainly gain muh from a systemati study of multi-dimensional generalizations of the stohasti model that was introdued inChap. 4.In Chap.5, we obtained evidene that the far tail distribution of the sep-aration (at distanes muh larger than the average) is keeping a nontrivialmemory on r0 up to the largest times. Also the tail assoiated to small separa-tions is keeping memory of the onditioning on the initial separation and thisis reinterpreted in terms of fratal set geometry. In all these studies, we madean important use of geometrial onsiderations to explain phenomenologiallythe statistial events leading to extreme �utuations. In partiular, we ar-gued and obtained numerial evidene that, at su�iently large times, theprobability distribution p(r) of inter-traer distanes is ∝ r for r ≪ 〈|R|〉r0and deays as exp(−C r) when r ≫ 〈|R|〉r0. These two observations stronglyontradits Rihardson's eddy di�usivity approah, whih seems neverthelessto give a good approximation of the ore of the distribution.Another possible extension of the urrent study is to apply the developedunderstanding of the geometry of relative dispersion to more ompliatedturbulent transport situations involving more than two trajetories. This isfor instane the ase for the forward-in-time dynamis of triangles or tetra-hedrons studied in [Pumir et al., 2000℄. The quality of today numerial data



5.4 Summary and perspetives on the problem of pair dispersion 99would be very useful to revisit suh questions with an emphasize on extremeevents. Another situation that is muh loser to appliations is that of thetransport by turbulene of pollutant pathes. We have seen in this hapterthat relative dispersion relates to the distorsion of a sphere by the Lagrangian�ow. We related the small-sale behavior of separation statistis to the frataldimension of this objet. Suh geometrial onsiderations ould be general-ized to understand and quantify the large onentration �utuations in thedispersion of a pollutant spot. We will ome bak to suh onsiderations inChap. 7 for the general onlusion of the thesis.Finally, the mehanisms that we have desribed in these two Chapters andthat are responsible for large �utuations in dispersion are purely turbulentand onern traers. In real situations, additional e�ets due to the non-idealdynamis of the transported partiles an interfere with these phenomena.For instane, the turbulene of the arrier �ow will tend to separate thetrajetories in an explosive manner while at the same time, the partile inertiamight be responsible for preferential onentration. How these two e�et thatare ating in reverse manner interat is still an open question. In the nexthapter, we will try to shed some light on suh problems by reinterpretingthe dispersion of heavy inertial partiles in a turbulent �ow as a di�usion ina self-similar �utuating environment.
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Chapter 6Mass �utuations and di�usionsin random environmentsWhen interested in dissipative transport (as for instane in ompressible �owsor for inertial partiles) the dynamis tends to reate very strong spatialinhomogeneities. This is usually due to a strong orrelation at small salesbetween the transported density and the loal struture of the �ow. At salesmuh larger than the orrelation length of the �ow, suh inhomogeneitiesgenerally disappear as the transport beomes di�usive. However, in betweenthese two asymptotis, �utuations appear in the density �eld. They omefrom a mesosopi average of the small-sale lustering mehanisms.In nature there are many other situations where small-sale mehanismsontribute only through an averaged e�et to the proesses at larger sales.This is generally modeled as a �utuating environment whose time sales ofvariation are muh smaller than those typial of the proess that we want tounderstand. This is for instane the ase for di�usion in settings that are notat thermal equilibrium or for wave propagation in non-uniform media. Instatistial physis, suh phenomena are onsidered as systems with the pres-ene of a disordered state that is not in thermodynamial equilibrium and isalled quenhed disorder. This name is due to the fat that the behavior ofthese systems is de�ned by random and time invariant variables. Classialases of quenhed disorders are the direted polymers [Imbrie & Spener,1988, Halpin-Healy & Zhang, 1995℄, the wave propagation in random me-dia [Howe, 1971℄, the heat transport in open-ell foams [Wang & Pan, 2008℄,and the visous permeability in porous materials [Sahimi, 2011℄. The maingoal is usually to derive an e�etive di�usivity, ondutivity, or permeabilityof the medium [Dean et al., 2007℄. In order to desribe these kind of environ-ments, several models introduing some random disorder have been developedto derive the e�etive properties of the medium. Among all we reall, for in-101



102 6. Mass �utuations and di�usions in random environmentsstane, the Kraihnan veloity ensemble for turbulent transport [Kraihnan,1968℄ and the Sherrington�Kirkpatrik model for spin-glasses (i.e. magnetidisorder) [Parisi, 1979,Mezard et al., 1987,Sherrington & Kirkpatrik, 1975℄.In this hapter we motivate the study of �utuations in the transport ofheavy partiles in terms of mass ejetion models. We will then onsider one-dimensional di�usive proesses in quenhed random media. In partiular weare interested in disrete versions, better known as random walks in randomenvironment. For the sake of simpliity from now on, it will referred to asRWRE. The work reported here is the subjet of a publiation in the NewJournal of Physis [Krstulovi et al., 2012℄.6.1 Flutuations in heavy partile density as anejetion proessIn this setion, we give some motivations for studying the �utuations in thespatial distribution of heavy partiles in terms of ertain types of randomwalks in random environments. Let us �rst reall what we intend as �heavyinertial partile�. We have seen in Se. 3.2.2 that partiles whose size is muhsmaller than the Kolmogorov sale, with a Reynolds number (de�ned withtheir slip veloity) muh less than unity, and a mass density muh larger thanthe arrier �uid have a dynamis given by
dx

dt
= v,

dv

dt
= − 1

τs
[v − u(x, t)], (6.1)where the response time τs depends on the partile size and density. Inthe limit τs → 0, the partiles respond instantaneously to the �ow and onereovers the dynamis of traers. It is known sine the work of Maxey [Maxey,1987℄ that suh heavy partiles tend to be ejeted from the rotating struturesof the �ow and to onentrate in the straining regions. This is evidened inFig. 6.1 (Left) whih shows a snapshot of the distribution of heavy partiles,together with the underlying strutures of the �uid �ow. What is shown is theresult of a small numerial simulation of the two-dimensional Navier�Stokesequation.To understand this ejetion phenomenon, let us onsider a linear rotating�ow in two dimensions, namely

u(x, t) = Ω

[

x2

−x1

]

= Ω

[

0 1
−1 0

]

x, (6.2)where Ω is the vortiity that measures the strength of the vortex. The partile
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r

w

Figure 6.1: Left: snapshot of the positions of heavy partiles (gray dots)and of the vortiity �eld (url of veloity) of a two-dimensional turbulent�ow (olored bakground). Blue and red strutures are �ow vorties. Notethe strong anti-orrelation between the spatial distribution of partiles andthat of eddies (ourtesy of J. Be). Right: sketh of the entrifugal ejetionproess for heavy partiles (blak trajetories) in a rotating �ow (in blue).dynamis is then linear and an be integrated. In the position-veloity phase-spae, the four eigenvalues are then
λ±,± =

−1±√
1± 4iτsΩ

2τs
. (6.3)Two of them (λ+.− and λ+,+) always have a positive real part. This impliesthat partile trajetories are always moving away from the origin exponen-tially in time. If we now assume that the rotating struture of strength Ωhas a �nite size r (see Fig. 6.1 Right), it is lear that the amount of partileswithin a distane r from the origin will derease exponentially in time.Indeed, one an easily hek that the number of partiles at a distane rfrom the origin will be given by

N(t) = N(0) (1− γ)with γ = 1− exp

[

− t

τs

(

−1 +
1

2

√

2
√

1 + 16τ 2sΩ
2 + 2

)]

, (6.4)whih explains ejetion from the rotating strutures of the �ow.One observes in Fig. 6.1 (Left), that the �utuations in the distributionof partiles extend to sales muh larger than the typial size of eddies.Despite the fat that rotating or straining regions are di�erened only at



104 6. Mass �utuations and di�usions in random environmentssmall spatial sales, their averaged olletive e�et an lead to the formationof lusters and voids on muh larger sales. The mehanisms explaining thisare due to the �utuations of the vortiity �eld itself. Suh idea led Beand Chétrite [Be & Chétrite, 2007℄ to introdue a mass ejetion model todesribe the meso-sale �utuations of the density of inertial partiles. Hereit is given a generalization of this model that justi�es the study made in thefollowing Chapter.Consider that the two-dimensional domain is divided in regular squareells of size ∆x = r (indexed by (i, j)), eah of them ontaining between time
tn and time tn+1 = tn+∆t a given ejeting struture of strength Ωi,j(n). Thepartiles in eah ell will then be ejeted to the four diret neighbors witha rate γi,j(n) given by replaing Ω by Ωi,j(n) and t by ∆t in Eq. (6.4). Thedensity ρi,j of partiles in the ell (i, j) then evolves aording to
ρi,j(n+ 1) = [1− γi,j(n)] ρi,j(n) + [γi−1,j(n) ρi−1,j(n) + γi+1,j(n) ρi+1,j(n)

+γi,j−1(n) ρi,j−1(n) + γi,j+1(n) ρi,j+1(n)]/4. (6.5)As argued in Se. 6.3, one reognizes in the right-hand side the two-dimensionaldisrete Laplaian of γi,j(n)ρi,j(n). This means that the ontinous limit(when ∆x → 0 and ∆t → 0 with ∆x2/∆t onstant) of Eq. (6.5) is
∂tρ =

1

4
∇2(γ̄(x, t) ρ), (6.6)where γ̄(i∆x, j∆x, n∆t) = γi,j(n). As we an see from this model, the �u-tuations of the small-sale proesses are now enoded in the spatial and timedependene of the ontinuous ejetion rate γ̄. Its statistial properties are inpriniple presribed by those of the �uid veloity gradients. This approahhene justi�es the use of a mass ejetion model with a random rate to desribethe meso-sale distribution of heavy partiles in an inompressible �ow.6.2 Generality on random walksRandom walks, whose name has been introduted by the British mathemati-ian K. Pearson [Pearson, 1905℄, have been studied and used to explain thebehavior of stohasti proesses in various �elds of siene as well as in eon-omy and other domains. The environment in whih a random walk evolvesis haraterized by the transition law that says how the walker steps fromthe urrent position to the next one. Clearly the environment an be givenby any law. As already seen in Se. 3.1.2, there are di�erent types of randomwalks and their level of omplexity makes them more suitable to desribe a



6.2 Generality on random walks 105proess rathen than another. In ase of di�usive proesses in quenhed ran-dom media, one usually applies RWRE tehniques. Many mathematiiansand physiists have largely investigated RWRE in their disrete version forsimple reasons of handability in theoretial studies [Hughes, 1996℄.Generally one onsiders a lattie with a �xed random probability of tran-sition from a site to another and on this setting the behavior of a randomwalk is studied. A lassi referene for random walks on the integer lattie isthe book [Spitzer, 1976℄. Muh work has been dediated to a deliate point,that is to determine the assumptions under whih RWRE are transient orreurrent. In other words, to establish whether they esape to in�nity orinde�nitely ome bak to their starting position. For a time-independentrandom environment with no spae orrelations, it has been shown that therandomization of the environment slowdowns the di�usive properties of therandom walk [Solomon, 1975℄. Furthermore, under some preise assump-tions, Y. G. Sinai [Sinai, 1982℄ proved that one-dimensional nearest-neighborsymmetri random walks (whih onsist in walkers that an only step be-tween the urrent position and a point in its neighbors, with a symmetritransition probability, i.e. p(x, y) = p(y, x), where x and y are two di�erentpositions) in an unorrelated environment are sub-di�usive and that, at verylarge time, the position goes like
Xt ∼ log2 t, for t → ∞, (6.7)where Xt denotes the position of the walker at time t. In the same yearB, Derrida and Y. Pomeau have demonstrated that when the assumption ofsymmetry is relaxed, the evolution of the position for a random walk followsa power law in time [Derrida & Pomeau, 1982℄

Xt ∼ tα, (6.8)where the exponent α is greater than zero and smaller than one. Morereently it was showed that the upper ritial dimension for random walks ina time-independent random environment is equal to 2. Namely, in dimensionsgreater than 2, RWRE are always purely di�usive [Brimont & Kupiainen,1991℄. In the last deade important e�orts have been also devoted to proveentral-limit theorems or large-deviations priniples for quenhed disorders[Sznitman, 2004, Zeitouni, 2004, Varadhan, 2004℄. Generally, it is assumedthat the environment is independent of time and unorrelated in spae, or atleast with very short spatial orrelations.On the ontrary, muh less is known in ase of time-dependent environ-ments. One then deals with annealed statistis (that is a disordered systemdesribed by random time-dependent variables) where the averages must be



106 6. Mass �utuations and di�usions in random environmentsperformed over the �utuations of the random medium. In suh settings andunder some rather general assumptions, it was shown that random walksare always di�usive and that entral limit theorems generally hold [Bérard,2004,Dolgopyat et al., 2008℄.In this part of my thesis the interest is foused on situations where bothtemporal and spatial sales of di�usion are omparable, or longer, than thoseat whih the environment �utuates. This is equivalent to have a time-dependent random medium whose temporal and spatial orrelations annotbe negleted. An instane where suh settings are relevant is turbulent trans-port. As we have seen in previous setion, the �utuations of the density inheavy inertial partile suspensions an be aptured, at least qualitatively, bydi�usions in a time-varying random environment. However, also in the aseof simple traers, suh an approah an be relevant. In that ase, most of themodels that are lassially used, for example in meteorology and engineering,are based on an eddy-di�usivity approah [Frish, 1996℄, whih in general re-quires a large time-sale separation between the turbulent �utuations andthe large-sale variations of the averaged veloity �eld. Advaned homoge-nization tehniques an be applied to show that the mean onentration �eldsatis�es an e�etive advetion-di�usion equation, with an adveting veloityand a di�usion oe�ient tensor that are dependent on the slow variables de-sribing the evolution in time and spae of the average veloity �eld [Goudon& Poupaud, 2004℄. The mixing at large sale, originating from �utuationsat small sales, ats only through the di�usive term. At the same time, asthe solutions to a di�usion equation obey a maximum priniple, the di�usiveterm annot be responsible for the reation of large onentrations. There-fore the onentrations observed in ompressible �ows an only ome fromthe e�etive advetion term. As we have seen in Se. 6.1 and as we willfurther disuss in this hapter, the situation an be somewhat di�erent wheninterested in other types of ompressible transport, as for instane for inertialpartiles.6.3 Desription of the modelWe onsider the dynamis desribed by the It	o stohasti di�erential equa-tion, de�ned by
dXt =

√
2Γσ(Xt, t) dWt, (6.9)where Wt is the lassial d-dimensional Wiener proess, already disussedin Se. 3.1.2. We suppose here that the di�usion oe�ient σ(Xt, t) is arandom, spae-time dependent �eld, whose statistis are independent of Wt



6.3 Desription of the model 107as we will see afterwards. Before speifying the settings onsidered, it mightbe useful to motivate suh model by onsidering, for instane, two interestingphysial problems where Eq. (6.9) arises as a limiting proess.As a �rst example let us onsider partiles whose dynamis is dissipativein the entire phase spae and assume that their trajetories obey the Newtonequation
Ẋt = Vt, V̇t = −µVt +

1√
ε
f

(

Xt, t,
t

ε

)

, (6.10)where µ is the Stokes visous damping oe�ient and ε is a small parameter.Here the vetorial notation is negleted but still all onsiderations in whatfollows an be easily generalized to any dimension. Equation (6.11) desribes,for instane, the dynamis of a heavy inertial partiles in a veloity �eld thatvaries over two di�erent time sales that are separated by a fator ε. Inthis equation the fores ating on the partile are the visous drag and theexternal fore f , whih depends on spae and on two di�erent time sales (tand t/ǫ). If we imagine to have a large partile embedded in a time and spaedependent thermal bath, the fast timesale ε an be interpreted as the typialtime of momentum exhange between the partile and its environment. Asin the Einstein original work on Brownian motion, the timesale ε is muhsmaller than the visous damping time 1/µ. In the limit when εµ vanishes,the fore f an be onsidered as a Gaussian noise with orrelation
C(t, t′) =

(

1

ε

)〈

f

(

Xt, t,
t

ε

)

f

(

Xt′ , t
′,
t′

ε

)〉

ε

≃ 2Γµ2σ2(Xt, t)δ(t− t′),where the average 〈·〉ε is done with respet to the fast time variable. Thespae-time variations of σ2 an be interpreted as a non-homogenous temper-ature �eld in the thermal bath assoiated to the δ-orrelation in time. Theresulting dynamis is thus
Ẋt = Vt, V̇t = −µ

[

Vt −
√
2Γ σ(Xt, t) η(t)

]

, (6.11)where η is the standard white noise.We next onsider the limit when the response time 1/µ is muh shorterthan the slow time sale. This introdues a new fast time sale O(1/µ) overwhih the partile veloity �utuates. The veloity orrelation is then givenby
〈Vt Vt′〉ε =

t
∫

−∞

t′
∫

−∞

C(s, s′)eµ(s+s′−t−t′)ds ds′ =

min{t,t′}
∫

−∞

2Γµ2σ2(Xs, s)e
µ(2s−t−t′)ds



108 6. Mass �utuations and di�usions in random environmentsTherefore, integrating by parts and negleting exponentially small terms, weobtain
〈Vt Vt′〉ε ≈ Γµ σ2(Xmin{t,t′},min{t, t′}) e−µ|t−t′|. (6.12)Finally, taking the limit µ → ∞ in Eq. (6.12) we have

〈Vt Vt′〉 = 2Γ σ2(Xt, t)δ(t− t′). (6.13)The partile position thus satis�es the stohasti equation (6.9). The modelthat we are onsidering is thus relevant in studying of Langevin dynamis ina �utuating environment.The seond situation where Eq. (6.9) appears is in the ontinuous limitof a mass-ejetion model, as we have already forseen in Se. 6.1. To addressthis issue let us onsider a d-dimensional periodi lattie of internode length
∆x and period L = N∆x. Naturally, also the time is disrete and it isexpressed in units of ∆t. Suh a lattie de�nes a tiling on whih our disrete-time dynamis is onsidered. Basially, the generi ell indexed by i (with
i = 1, 2, . . . , N) ontains at time n∆t a given mass ρi(n). Between twoonseutive times n∆t and (n + 1)∆t, a fration γi(n) (ranging from 0 to
1/(2d)) of suh mass is ejeted from the ell i to one of its 2d neighbors.Clearly the periodi boundary onditions ensure that the total mass M =
∑N

i=1 ρi is onserved. For a given set of ejetion rates {γi(n)}i∈{1,...,N}d thevariables {ρi(n)}i∈{1,...,N}d de�ne a Markov hain whose master equation isgiven by
ρi(n+ 1) = [1− 2d γi(n)] ρi(n) +

∑

j∈Ni

γj(n)ρj(n), (6.14)where Ni is the number of the neighboring ells of i-th ell and d is a generidimension. Equation (6.14) desribes a mass-ejetion proess in a time-dependent and non-homogeneous environment determined by the ejetionrates γi(n). It states that the amount of mass ontained in the i-th ell isgiven by the sum of the mass ontained at the previous time, the fration
γi(n) of mass ejeted and the fration of mass oming from the neighboringells. As already mentioned, a similar model has been studied by [Be &Chétrite, 2007℄ in the partiular ase where the environment γi(n) takes onlytwo values, γ or 0, unorrelated in both spae and time.We now take the ejetion model in Eq. (6.14) and swith from the disreteto the ontinuous ase onsiderin the limits ∆x → 0 and ∆t → 0 and, doingthis, we suppose that the ratio ∆x2/∆t = c is kept �xed. We denote theontinous limit of the ejetion rate by

Γσ2(x, t) = lim
∆x→0

c γx/∆x(c t/∆x2).



6.4 Statistial properties of the random environment 109We hoose here σ of the order of unity, so that the oe�ient Γ denotes thetypial amplitude of the ejetion rate. The dimensionless funtion σ(x, t) isassumed to be time and spae ontinuous. In this limit, Eq. (6.14) beomes
∂ρ(x, t)

∂t
= Γ∇2

[

σ2(x, t)ρ(x, t)
]

. (6.15)This is the Fokker-Plank equation assoiated to the It	o stohasti di�erentialEq. (6.9). For a time t > s, we de�ne the forward transition probabilitydensity
p(x, t |y, s) = 〈δ(Xt − x) |Xs = y〉 , (6.16)where 〈·〉 designates averages with respet to the realizations of the Wienerproess Wt. Then the solutions to Eq. (6.15), for all times t greater than s,trivially satisfy
ρ(x, t) =

∫

p(x, t |y, s) ρ(y, s)dy. (6.17)The model desribed by the di�usion equation Eq. (6.15) an thus be rein-terpreted in terms of a RWRE. Indeed, the disrete version of the proessde�ned by Eq. (6.9) orresponds to a random walk on a d-dimensional lattie,with a probability equal to 2d γi(n) to hop from the i-th site to one of itsneighbors.6.4 Statistial properties of the random envi-ronment6.4.1 De�nition of the random ejetion rateIn the following we speify the statistial properties of the random envi-ronment σ that is used in our model. We onsider d-dimensional periodisettings in a domain of size L = 2π. The environment σ(x, t) is then entirelydetermined in terms of its Fourier series, whih an be written as
σ(x, t) =

∑

|k|

ak χk

(

t

τk

)

eik·x, (6.18)where the ak's are positive real amplitudes and the τk's are sale-dependentharateristi times. The Fourier modes χk are suh that
χ−k(t) = χk(t) and χ0 ≡ 0.They are independent Gaussian proesses with unit variane and unit or-relation time. The modes χk are hosen as omplex Ornstein�Uhlenbek



110 6. Mass �utuations and di�usions in random environmentsproesses that solve the stohasti di�erential equation [Uhlenbek & Orn-stein, 1930℄
dχk(s) = −χkds+

√
2 dBk(s), (6.19)where the Bk's are independent, one-dimensional omplex Wiener proesses.We now presribe some sale-invariane properties for the randommedium.Our interest is in environments that satisfy, in a given statistial sense,

|σ(x+ r, t)− σ(x, t)| ∼ |r|h, (6.20)where h is the loal Hölder exponent of σ and ontrols, in our ase, theregularity of the ejetion rate. In general h an take any values but it is equalto 0 at points of disontinuity, 1 at di�erentiable points where σ′ 6= 0 andit is non-negative only if the funtion is bounded around x. This exponentan be also seen as a sort of �loal sale� in the sense of fratal geometry(see [Mandelbrot, 1983℄). Some other onsiderations on the Hölder exponentare reported at the end of this paragraph. We request that the exponent hbeing positive and less than 1. We assume that the Fourier mode amplitudesbehave as
ak =

1

2
|k|− 1

2
−h. (6.21)This orresponds to presribing that (6.20) is satis�ed for the seond-ordermoment of the environment inrements.The temporal sale invariane is setted by taking τk = |k|−β with β >

0. This latter exponent β relates the time dependene to the spatial saleinvariane; in partiular when β = 0 the funtion σ has a single orrelation-time, while when β → ∞ one has a white-noise. As we shall see below, when
h < 1 dimensional analysis will lead to hoose β = 2− 2h.6.4.2 Numerial methodsIn the numerial results that are presented hereafter, the averages are per-formed by summing over several realizations of the environment. These re-alizations are obtained by integrating the stohasti equation (6.19) for theevolution of the mode amplitudes by a standard stohasti Euler sheme.The time evolution of the mass distribution is obtained in two di�erent man-ners, depending on the nature of the question we want to address. A �rstapproah onsists in using an Eulerian sheme that integrates the partialdi�erential equation (6.15) for the time evolution of the density �eld ρ. Forthat we implemented a seond-order �nite-di�erene disretization for theLaplaian operator and a semi-impliit Euler temporal sheme. This numer-ial sheme ensures the onservation of the total mass with a high auray.
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Figure 6.2: Left: spae-time plot of the density ρ(x, t) in one dimensionfor h = 1. Colors yellow and blak orrespond to highest and lowest valuesof density, respetively. Right: evolution of the ejetion rate σ2(x, t). Sameode olor as before. Both left and right pannels refer to the same realization.The numerial resolutions vary in one dimension from N = 512 to N = 8192olloation points and the time-step is hosen small enough to resolve withpreision the fastest time sale ourring in the problem. The seond methodwe use is a Lagrangian Monte�Carlo approah, whih onsists in integratingthe stohasti di�erential equation (6.9) for di�erent realizations of the noise,and using again a standard stohasti Euler sheme. In both ases, we expetthe error made on the solution to at as a numerial di�usion with a onstantdi�usivity proportional to the time step.Figure 6.2 represents the temporal evolution of the density ρ(x, t) (leftpanel) and of the ejetion rate σ2(x, t) (right panel) for a typial realizationin one dimension. One observes strong orrelations between the maxima ofdensity (yellow urves on the left panel) and the zeros of the environment(blak urves on the right panel). Figure 6.3 shows simultaneously a snapshotof the random environment σ and the position of a set of di�usive partiles.The partile positions are given by the stohasti equation (6.9) in two di-mension. As seen in Fig. 6.3, the high density zones of partiles are loatedin the viinity of the zeros of the environment.The zeros of the random ejetion rate play an important role on the statis-



112 6. Mass �utuations and di�usions in random environments

Figure 6.3: Snapshot of σ2(x, t) in two dimension and of the partile positions(green dots) that obey Eq. (6.9). Colors yellow and blak orrespond tohighest and lowest values of σ, respetively; thin white lines represent theontour orrisponding to σ = 0.tial properties of the mass density and on the partiles di�usion properties;this will be further disussed throughout this hapter.6.4.3 Phenomenology and dimensionless parametersThe important role of zeros an be heuristially understood in the followingway. In ontrast with the standard di�usion equation oming from Fik's �rstlaw, the di�erential operator ∇2[σ2(x, t) ·], appearing in the right-hand sideof Eq. (6.15), is not positive de�nite. In suh a ase the maximum prinipleis not valid and the solution is expeted to behave very di�erently from thoseof lassial di�usion equations. Indeed, the mass gradually aumulates onthe zeros of σ. Suppose that in one dimension σ(x, t) ≃ Cx in the viinityof x = 0, where C is a given onstant. At leading order, the �ux then reads
J = −Γ∂x(σ

2ρ) ≃ −2ΓC2xρ,whih is positive for x < 0 and negative for x > 0. Thus, there is a permanent�ux of mass towards the point x = 0. This justi�es the importane ofharaterizing the zeros, their densities and their lifetimes.



6.4 Statistial properties of the random environment 113The distribution and time-evolution of the zeros of σ strongly depend onthe dimensionality and on the parameter h. It is lear from the right panelof Fig. 6.2 that the zeros follow random paths in dimension one. We an alsoobserve that for suh a large value of h, that is for a smooth environment,the zeros typially appear in pairs and then di�use and separate until theymerge together or with another zero. The di�usive behavior of the zeros inone dimension an be explained heuristially. For this, let us assume withoutloss of generality that the ejetion rate has only two modes and takes thesimple form
σ(x, t) = σr(t) cos x− σi(t) sin x, (6.22)with σr +i σi = 2χ1 (where χ1 denotes the �rst Fourier mode). Using the It	oformula it is possible to show that σ an be equivalently rewritten as

σ(x, t) = At sin (x− Φt) , (6.23)where the proesses At and Φt satisfy the stohasti equations
dAt = −

(

At −
1

At

)

dt+
√
2 dBA

t , dΦt =

√
2

At

dBΦ
t . (6.24)Here BA

t and BΦ
t are unorrelated Wiener proesses. It is lear that theamplitude At �utuates around the value A = 1 and that its orrelation timeis of order one. From Eq. (6.24) it follows that, for typial values of At, thephase Φt and the position of the zeros of σ di�use on a timesale of the orderof unity. This aspet will be used later to quantify the mass distribution.As mentioned before, in the partiular ase in whih h < 1, the randomenvironment presents saling properties and thus one expets a very di�erentbehavior. Indeed, we have that the seond-order struture funtion of σ, byonstrution, behaves as
δσ2

ℓ = |σ(x, t)− σ(x+ ℓ, t)|2 ∼
(

ℓ

L

)2h

. (6.25)The over-line stands for the ensemble average with respet to the �utuationsof the environment, i.e. with respet to the Ornstein�Uhlenbek proesses χk.In this study it has been hoosen to relate the spae and time orrelationsthrough a dimensional argument. The harateristi time τk introdued inEq. (6.18), behaves as a power law, so that the orrelation time of σ at sale
ℓ is

τc(ℓ) =

(

ℓ

L

)β

.



114 6. Mass �utuations and di�usions in random environmentsAording to Eq. (6.25) the di�usion timesale assoiated to suh spatialsale ℓ behaves as
τd(ℓ) =

ℓ2

Γδσ2
ℓ

∼ Γ−1L2hℓ2−2h.The ratio between these two times de�nes a dimensionless spae-dependentparameter that is usually alled the Kubo number
Ku(ℓ) =

τC(ℓ)

τD(ℓ)
≃ ΓL−(2h+β)ℓβ+2h−2. (6.26)When Ku(ℓ) ≫ 1, the environment an be onsidered as �frozen� whilstfor Ku(ℓ) ≪ 1 it �utuates in an almost time-unorrelated manner. In thease in whih β 6= 2− 2h, the Kubo number depends on the sale ℓ and thisbreaks any possibility of sale invariane of the mass distribution. Only when

β = 2− 2h one has that Ku(ℓ) = Ku = Γ/L2 and hene the sale invarianeis possible. Here, the fous is on this latter ase and we will see the massonentration properties in terms of the dimensionless parameter Ku ∝ Γ.Note that the hoie of having a sale-independent Kubo number is ommonin the framework of turbulene and is expeted to be relevant to problems ofinertial partile di�usion in turbulent �ows.Before moving to next setion on the di�usion properties, let us do someother remarks on the dependene upon the Hölder exponent h of the envi-ronment. Using Parseval's theorem, it is possible to show that
‖σ‖2L2 = ζ(1 + 2h) and ‖∂xσ‖2L2 = ζ(−1 + 2h), (6.27)where ζ(s) is the Riemann zeta funtion. Thus one has that ‖σ‖L2 < ∞when h > 0 and that ‖∂xσ‖L2 < ∞ when h > 1. Note that at eah �xedtime, σ(x, t) is a Gaussian �eld whose inrements have a variane given byEq. (6.25). Therefore σ(·, t) is a frational Brownian motion of exponent

h [Mandelbrot & Ness, 1968℄. For h = 1/2 it orresponds to the standardBrownian motion. For h > 1/2 the inrements of σ are not independent,their ovariane is positive and the zeros of σ are �nite and isolated. Onthe ontrary, when h < 1/2 the ovariane of the inrements is negative,therefore we expet that the number of zeros beome in�nite and that theyaumulate. As we will see in the next setions, these di�erent behaviors ofthe random environment will a�et the general properties of the di�usion.Finally, as the Ornstein�Uhlenbek proesses χk are stationary, the �u-tuations of the ejetion rate σ2 are a stationary and homogeneous random�eld. Hene one expets that, at su�iently large times, the density distribu-tion reahes a statistially stationary state and indeed numerial simulationsindiate that this is the ase. The results reported here (most of whih are in



6.5 Di�usive properties 115one dimension) mainly onern the statistial properties of the density �eldin this large-time asymptotis.6.5 Di�usive propertiesFrom now on we will onsider a one-dimensional situation. This setiononerns the study of the individual trajetories of the It	o stohasti di�usionequation (6.9) in the ases of smooth and non-smooth environments. As wewill see, when the environment σ has a �nite orrelation length, partiles arefound to have standard di�usion properties at large times with a displaementdistribution that approahes that Gaussian.By solving impliitly Eq. (6.9) one obtains
X(t) = X(0) +

√
2Γ

∫ t

0

σ(X(s), s) dWs, (6.28)so that
〈

[X(t)−X(0)]2
〉

= 2Γ

∫ t

0

〈

σ2(X(s), s)
〉

ds, (6.29)where the angular brakets denote average over all trajetories (that are re-alizations of the Wiener proess). At times muh larger than the orrelationtime of σ2 along partile trajetories, the integral beomes a sum of indepen-dent random variables, so that the law of large numbers an be applied. Ifthe stohasti �ow de�ned by Eq. (6.9) is ergodi, one then has
〈[X(t)−X(0)]2〉 ∼ 2D(Γ, h) t,with

D(Γ, h) = Γ〈σ2(X(t), t)〉 = Γ

L

∫ L

0

σ2(x, t)ρ(x, t) dx. (6.30)The over-line denotes here the average with respet to the environment. Thee�etive di�usion onstant D(Γ, h) involves an average of the environmentalong partile trajetories, whih is equivalent in the ase of an ergodi dy-namis to a spatial average weighted by the density ρ. As we have antiipated,the trajetories might spend a long time near the zeros of σ. We thus expetthe Lagrangian average of σ2 to be less than the full Eulerian spatial average.The displaement �utuations of order less than √
t are expeted to begiven by the entral-limit theorem. However, larger �utuations should obeya large-deviation priniple with a rate funtion that might not be purelyquadrati as it is non-trivially related to the Lagrangian properties of theenvironment. To study these �utuations, a Monte-Carlo simulations ofEq. (6.9) is performed.
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Γ for a smooth environment (h = 2) of the e�etive di�usion onstant Dde�ned in Eq. (6.30).6.5.1 Di�usion oe�ientWe �rst onsider the ase where the ejetion rate σ2 is a smooth funtion ofspae, namely when the Hölder exponent is greater that 1. In this on�gu-ration there is a �nite and small number of isolated zeros of σ separated bya distane of the order of L/2 = π. A number of simulations of Eq. (6.9)has been performed (using 32 modes) for di�erent values of the amplitude
Γ and h = 2. Figure 6.4 shows the mean-square displaement of partilesaveraged over 1000 realizations of the di�usion and 20 000 realizations of theenvironment.As expeted from Eq. (6.30), a linear growth is observed at large times inFig. 6.4. Moreover, as we an see in the inset of Fig. 6.4, the di�usion oe�-ient depends in a non-trivial way on Γ. Suh a non-monotoni behavior of
D(Γ)/Γ an be explained by two ompeting phenomena. From one hand, inthe limit of Γ → 0 (or equivalently Ku → 0) the environment hanges fairlyfast ompared to the harateristi time of di�usion given by 1/Γ. There-



6.5 Di�usive properties 117fore we an imagine that the partile trajetories sample homogeneously theenvironment, so that the Lagrangian average an be replaed by the spatialEulerian average. This leads to
D(Γ, h) ≃ Γ

L

∫

σ(x, t)2 dx = Γζ(1 + 2h) when Γ → 0. (6.31)For the ase h = 2, we obtain D(Γ, 2)/Γ ≃ 1.03 at small values of Γ, whih isin agreement with the value observed in the inset of Fig. 6.4. As Γ inreases,the trajetories spend a longer time at the zeros of σ dereasing the valueof D(Γ)/Γ. From the other hand, in the limit of Γ → ∞ (or equivalently
Ku → ∞), the environment an be onsidered ompletely frozen so that themass density, solving Eq. (6.15), is expeted to be approximately given by
ρ(x, t) ∼ 1/σ2(x, t). From Eq. (6.30) one �nds that

D(Γ, h) =
Γ

L

∫

σ2ρ dx ≈ Γ

L

∫

dx = Γ, (6.32)whih explains why D(Γ)/Γ = 1 at Γ → ∞ (see inset of Fig. 6.4). For suhasymptoti values of Γ the mass is ompletely onentrated at the zeros ofthe ejetion rate and the di�usion is arried out by the di�usive motionsof the latter. We have indeed seen earlier that in one dimension the zerosdi�use on timesales of the order of unit sine their dynamis is similar toEq (6.24).6.5.2 PDF of displaementTo omplete this desription on the di�usive properties in the ase h = 2, letus onsider the normalized probability distribution funtions (PDFs) of thedisplaements. They are shown in Fig. 6.5. The three panels refer to di�erentvalues of Γ (0.1, 1, and 10) and for eah of them the PDFs for di�erent timesare plotted.At early times and for low values of Γ (panel (a)), the PDF's presentexponential tails. The same observation an be done at intermediate times,for larger values of Γ (blue urves in panels (b) and ()). In all ases, itis lear that the PDFs approah the Gaussian distribution at the largesttimes. Note that for su�iently large values of Γ, some osillations an beobserved in the PDF tails at intermediate times. As we shall see, this is dueto a �trapping e�et� rising in the zeros of σ(x, t). To larify this point, itis useful to ompare the PDF of the displaement for di�erent values of Γhosen at the time t∗ suh that
〈(X(t∗)−X(0))2〉 = (L/2)2 = π2.
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(b)Figure 6.6: (a) Time evolution of the normalized moments Cp, de�ned inEq. (6.33), for di�erent values of p. For eah order the ases Γ = 0.1 (solidlines), Γ = 1 (dashed lines), and Γ = 10 (dotted lines) are shown. (b)Behavior of the funtion A(Γ), whih gives the dependene of Cp on Γ andwhih is de�ned in Eq. (6.34).
t∗ is the time that partiles need to travel a distane approximately equalto the distane that separes two zeros, whih is around L/2 for smooth en-vironments. The probability density funtion of the displaement (X(t∗) −
X(0))/(L/2) at that time is displayed in Fig. 6.5 (d) for various values of Γ.One learly observes that, for large Γ's, the bumps appear at values that aremultiple of L/2. A possible explanation is that partiles are lose to somezero of σ with a high probability. If they travel away, there is still a highprobability that they are trapped by another zero, and so on. This pituremight thus explain the multimodal distribution in Fig. 6.5 (d).To better quantify the large-time behavior of the displaement, the orre-sponding higher-order moments are omputed and ompared to those typialof a Gaussian distribution. For even orders p, we an thus de�ne a p-th orderdeviation from a Gaussian distribution Cp as

Cp =
〈(X(t)−X(0))p〉

〈(X(t)−X(0))2〉p/2 − 2p/2√
π
Γ

[

p+ 1

2

]

. (6.33)Here Γ[z] denotes the Gamma funtion (whih is the fatorial funtion whoseargument is generalized to non-integer values and shifted down by 1, i.e.
Γ[z] = (z − 1)! [Davis, 1959℄). If the quantity [X(t) − X(0)℄ is a Gaussianvariable then for all p ≥ 2 we have Cp = 0. More generally, the moment
Cp is by onstrution equal to zero for p = 2, while in the ase p = 4 it
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Cp ≃
A(Γ)λp/2

t
, (6.34)where λ is a positive onstant. The temporal evolution of Cp/A(Γ) for di�er-ent values of Γ and p, and the funtion A(Γ) are displayed in Fig. 6.6(a) and6.6(b), respetively. As seen in Fig. 6.6(a), the data for di�erent Γ and for

p �xed ollapse at large times. The limiting lines assoiated with di�erentorders are equally spaed, on�rming the dependene in λp/2 of the onstant.The value of λ was found to be λ ≈ 15.Di�erent simulations have been performed for various values of the expo-nent h and a behavior similar to the smooth ase was found. For instane, thepartiles di�use at large times and their statistis beome Gaussian. Thisis evident from the resaled PDFs of the displaement shown in Fig. 6.7,for h = 0.2 (a) and h = 0.6 (b), whih both orrespond to Γ = 1. Also,it has been found that the averaged squared displaement 〈(X(t)−X(0))2〉presents a linear growth onsistent with Eq. (6.30) (the data is not shownhere). Finally, the di�usion oe�ient D(Γ, h) was measured as a funtionof the exponent h and the result is reported in Fig. 6.8. In this plot, whihrefers to the ase Γ = 1, the divergent behavior of D(Γ, h) at small h is due
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Figure 6.8: Behavior of the di�usion oe�ient D(Γ, h) as a funtion ofthe exponent h, for Γ = 1. The inset shows the same data normalized by
D0 = ‖σ‖2L2.to the divergene of the L2 − norm of σ(x, t) when h → 0. The inset ofFig. 6.8 shows the trend of the di�usion oe�ient normalized by the square
L2 − norm of the environment σ

D0 = Γ ‖σ‖2L2 = Γ ζ(1 + 2h).

D(Γ, h)/D0 measures the deviations of the di�usion oe�ient with respetto uniformly distributed partiles. The ase D(Γ, h)/D0 ≪ 1 orresponds toan important ontribution from the zeros of σ2 in the integration along thepartile paths. As seen from the inset of Fig. 6.8, for a �xed value of Γ, thein�uene of the zeros inreases when h dereases.6.6 Density �utuationsAs previously observed, the spatial �utuations of mass density are orrelatedto the distribution of the zeros of the random environment σ(x, t). More pre-isely, from the di�usion-like equation (6.15) (whih desribes the evolutionof ρ) we observe that the �ux of mass is
J(x, t) = Γ σ(x, t) [2∂xσ(x, t)ρ(x, t) + σ(x, t)∂xρ(x, t)] . (6.35)



122 6. Mass �utuations and di�usions in random environmentsThis means that the �ux of mass vanishes at the zeros of σ, and hene thatsuh zeros would at like sinks onentrating all of the mass if they werenot moving. However, sine the zeros undergo di�usion, they are not able toinde�nitely onentrate mass and the density saturates in their neighborhood.At the same time, as the total mass is onserved, this onentration proessauses the reation of voids in the regions where σ is of the order of 1.Under some homogeneity and ergodiity assumptions for the dynamis,the probability density funtion of the mass density an be written as
P (ρ̄) =

d

dρ̄
(measure({(x, t) | ρ(x, t) ≤ ρ̄}))

= lim
T→∞

1

2πT

T
∫

0

2π
∫

0

δ (ρ(x, t)− ρ̄) dx dt ≡ lim
T→∞

PT (ρ̄), (6.36)where PT (ρ) indiates the time-averaged distribution of ρ over a time intervalof length T . Understanding this quantity will be the main subjet of nextsetions. As we will see, it strongly depends on the parameters Γ and h. ThePDF of density de�ned in Eq. (6.36) in terms of a spae-time average willbe a preious tool to examine �rst the stationary ase and later to proposea phenomenologial approah to treat the non-stationary ase.6.6.1 Smooth random environmentsWe onsider �rst the limit when the Kubo number Ku goes to in�nity, whihorresponds to an ejetion rate amplitude Γ in�nitely larger than the inverseof the di�usion time of the zeros of σ. This also orresponds to the di�usionin a time-stationary environment beause the fastest timesale is that of themotion of mass. Note that, in the limit of a time-independent environment,no stationary state an be ahieved. Mass will then onentrate in the zerosand at t = ∞ the density will beome atomi, in the sense that it will beonentrated in points that are exatly the zeros of σ(x). For su�ientlylarge but �nite times, as almost all the mass is onentrated around thezeros of σ, the ejetion rate an be rewritten through a Taylor expansion inthe viinity of these points.Without loss of generality, let us assume that a zero appears at the origin
x = 0 at the initial time t = 0 and does not move. In this limit Eq. (6.15)redues to

∂tρ = ΓC2∂2
x(x

2ρ), (6.37)where C = dσ/dx|x=0. The hange of time sales t 7→ s = tΓC2 allows usto set ΓC2 = 1. Moreover we onsider an in�nite domain and an initial



6.6 Density �utuations 123ondition whih is bounded in spae.
ρ(x, 0) =

{

1 for |x| ≤ 1

0 elsewhere .Equation (6.37) an be integrated analytially using the method of hara-teristis. For x > 0 the hange of variable u(y, t) = e2tρ(x = ey−3t, t) leads tothe homogeneous heat equation that an be easily solved by using the orre-sponding Green funtion (the solution for x < 0 is obtained by symmetry).One then has
ρ(x, t) =

e2t√
4πt

∫ ∞

0

exp

[

−(z − log |x| − 3t)2

4t

]

dz

=
1

2
e2t erfc

[

ln |x|+ 3t

2
√
t

]

, (6.38)where erfc(z) = 2/
√
π
∫∞

z
e−s2ds is the omplementary error funtion.The time-averaged distribution PT (ρ̄) de�ned in Eq. (6.36) an then bealulated. One has

PT (ρ̄) =
1

2πT

T
∫

0

2π
∫

0

δ(x− xρ̄(t))

|∂xρ(x(t), t)|
dx dt, (6.39)where xρ̄(t) is the spae-time ontour line of the density orresponding to

ρ(xρ̄(t), t) = ρ̄. As the omplementary error funtion is bounded, it is learfrom Eq. (6.38) that this line exists only for t > ln ρ̄/2. The ontour lines of
ρ(x, t) are displayed on Fig. 6.9. One observes that, after transients, all themass is onentrated around the point x = 0.The high-density areas are onentrated in a narrow region of spae. Thiswill justify the saddle-point approximation used below. Changing variable
t 7→ λ = 2t/ ln ρ̄ and introduing µ(λ; ρ̄) = − ln xρ̄(t)/ ln ρ̄, after some alge-bra, Eq. (6.39) beomes

PT (ρ̄) =
1

T

√

ln3 ρ̄

4π

2T
ln ρ̄
∫

1

√
λ e− ln ρ̄F (λ;ρ̄)dλ, (6.40)where

F (λ; ρ̄) = λ+ µ(λ; ρ̄)− 1

2λ

(

3

2
λ− µ(λ; ρ̄)

)2
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Figure 6.9: Graphi representation of the ontour lines of the solution forthe density ρ(x, t). Its analyti solution is reported in Eq. (6.38).and
µ(λ; ρ̄) =

3

2
λ−

√

2λ

ln ρ̄
erfc−1

(

2

ρ̄λ−1

)

≈ 3

2
λ−

√

2λ(λ− 1).In the last equation the asymptoti of erfc−1(z) ≈
√

log (1/z) for z ≈ 0has been used to obtain the right-most term (reall that we are onsidering
λ > 1). By applying the saddle-point approximation for ln ρ̄ ≫ 1 to theintegral in Eq. (6.40), one obtains to leading order (for simpliity, hereafterthe bar over ρ is omitted)

PT (ρ) ∼
1

ρα
=

1

ρ2
, sine α = inf

λ
F (λ) = 2 . (6.41)Suh a saling is in perfet agreement with what is observed in Fig. 6.10. Inthat �gure, the data orrespond to solutions to Eq. (6.15) integrated withthe stationary environment σ(x, t) = sin x.We also observe in the same �gure that another lear power-law salingis present for small values of the mass density. To explain this seond salingwe onsider a ell of length ∆x, loated at x0, far away from a zero of σ(x),and where the density reahes its minimum value. At leading order the massejeted from this ell between the time t and t + dt is proportional to

J ≃ ρ(x, t) Γ ∂xσ
2(x)|x=x0



6.6 Density �utuations 125

10
−4

10
−2

10
0

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

ρ

P
D

F

ρ−1

ρ−2

Figure 6.10: Probability distribution funtion of the density ρ given inEq. (6.36). The PDF seems to display two di�erent saling for large and smallvalues of ρ that are in agreement with Eqs. (6.41) and (6.42), respetively.Dashed lines highlight these salings.as ∂xρ ≈ 0 at the point x = x0. Considering that ∂xσ2(x) is onstant near x0yields an exponential deay of the mass in the ell. Introduing in Eq. (6.36) adensity of mass of the form ρ(x, t) ∼ ρ0 e
−σ2

0
t (where σ2

0 would be an e�etiveejetion rate) leads to
PT (ρ) ∼

1

ρ
, (6.42)whih is in agreement with the left-hand saling in Fig. 6.10.The situation is rather di�erent in the non-stationary ase in whih themotion of the zeros of the ejetion rate limits the proess of mass onentra-tion. As already seen in Se. 6.4, the oe�ients σr(t) and σi(t) of Eq. (6.22)are the Ornstein�Uhlenbek proesses de�ned in Eqs. (6.18) and (6.19). Theprobability density funtion of ρ in the non-stationary ase, for an environ-ment with a single mode K = 1 and di�erent values of Γ, is displayed inFig. 6.11.The time needed for the density to aumulate near the zero of the ejetionrate σ2 is of the order of Γ−1. Hene, for small values of Γ (i.e. Ku ≪ 1)the temporal variations of σ(x, t) are very rapid and, as a onsequene, thesystem does not have muh time to umulate mass. In this ase it is apparentthat most of the mass is distributed around the mean value 〈ρ〉 = 1 (see
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Figure 6.11: Log-log plot of the probability density funtion of the density
ρ in the non-stationary ase for K = 1. Di�erent olors refer to di�erentvalues of Γ. The inset displays the same �gure but on a log-lin sale.orange urve for Γ = 0.1 in Fig. 6.11). However, for large but �nite valuesof the Kubo number Ku, the aumulation proess is fast enough and theresulting ρ−3/2 saling is observed. This saling an be derived by onsideringthat for large Kubo numbers the system quikly relaxes to a quasi-stationarysolution, in a time of the order of Γ−1, and stays in suh a state for a timeomparable to the orrelation time of σ.Depending on how distant we are from a zero, we an have two ases.Far from a zero, the environment behaves as σ(x) ≃ C x, therefore we anoverlook its temporal evolution. In this region, the density onverges to aquasi-stationary solution. The time derivative of ρ is there negligible, so that,to leading order, ∂2

x(σ
2ρ) ≈ 0. Hene one has ρ ≈ σ−2 ∝ 1/x2. In anotherregion, loser to the zero, the time variations of its loation beome fasterthan the onentration of mass and the density saturates to a �nite value

ρmax (see the sketh in Fig. 6.12(Left)). The transition between these tworegimes ours at a distane ∆x from the zero that, by ontinuity, satis�esthe relation
∆x ∼ ρ−1/2

max .The length ∆x is of the order of the distane travelled by the zero during atimesale equal to that of mass onentration. Hene, if we assume that thezero di�uses, we have that ∆x ∼ Γ−1/2 and the typial value of ρmax is of theorder of Γ. The distribution of the density has thus a rossover at ρ ∼ Γ. Inthe ase ρ ≪ Γ, whih ours for values muh below the plateau at ρ ≈ ρmax,the behavior is dominated by the divergene of the quasi-stationary density
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Figure 6.12: Left: sketh of the density �eld in the viinity of a zero ofthe ejetion rate σ2 at x = 0. The density grows as x−2 and, at a distane
∆x ∼ ρ

−1/2
max of the zero, it reahes its saturation value ρmax. Right: sketh ofthe di�usive time evolution of the position of a zero of σ2. Looking bakwardbefore the referene time t = 0, the zero stays at a distane less than ∆x fora lapse of time T .pro�le. Replaing ρ(x) ∼ 1/x2 in Eq. (6.36) one �nally obtains

P (ρ) ∼ ρ−3/2 for 1 ≪ ρ ≪ Γ. (6.43)Remarkably, this value of the exponent of the power-law in the intermediatelarge density tail is very robust. It is not shown here but the same behaviorhas also been observed for a larger number of modes and with a di�erentenvironment, that is of the form σ(x, t) =
√
Γ cos (x− ct).The behavior of the PDF of density when ρ ≫ Γ is related to the large�utuations of ρmax and thus to the events when the zero does not movemuh for a lapse of time larger than Γ−1. More preisely, if at a �xed timewe observe a large value of ρmax, it means that the zero has not moved by adistane larger than ρ

−1/2
max during an interval of time T ; the latter is largerthan Γ−1 as illustrated by the sketh in Fig. 6.12(Right). When the zerosdi�use, this probability is equal to the probability of the �rst exit time ofa di�usive proess. The time T is indeed de�ned as the �rst time whenthe Brownian motion (representing the displaement of the zero) touhes abarrier situated at a distane ∆x from its initial loation. The probabilitydensity of the �rst time T at whih the Wiener proess exits the interval

|x| < ∆x is ∼ exp(−CT/∆x2) (see, e.g., [Feller, 1971℄). We thus obtain
Prob (ρmax > ρ) ∼

∫ ∞

Γ−1

e−C T ρ dT. (6.44)For ρ ≫ Γ the leading-order behavior is given by T = Γ−1. This leads to the
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(b)Figure 6.13: Log-log plot of the PDF of the density ρ in the ase of non-smoooth environment, for Γ = 0.1 (a) and Γ = 10 (b) and di�erent values of
h.following exponential uto� for the PDF of mass density

P (ρ) ∼ e−C Γ−1 ρ for ρ ≫ Γ. (6.45)This exponential behavior is on�rmed numerially as an been seen in theinset of Fig. 6.11.6.6.2 Non-smooth random environmentWe ontinue here to analyse the probability density funtion of the densitybut in the ase of a time-dependent non-smooth ejetion rate σ. Figure 6.13shows the PDF of ρ for di�erent values of the exponent h and two values of
Γ, 0.1 and 10. Remark that for large Γ a power-law behavior is observed atsmall masses. The behavior of these tails an be interpreted on the basis ofphenomenologial arguments similar to those used in [Be & Chétrite, 2007℄.In this regard, let us onsider an extreme event ausing a very low densityin a ell. We assume that for a long time, mass has only been ejeted fromthis ell. The quantity of matter ejeted per unit time is proportional to themass. This implies that the density is expeted to display an exponentialdeay and thus to take smal value in a time of the order of T ∝ −Γ−1 ln ρ.Now, let p < 1 be the probability of having suh a on�guration, with pthat depends only on the properties of the environment. As the environment
σ de-orrelates in a time of the order of 1, the number n of independent
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Figure 6.14: Fit of the exponent β of the power-law left tails of the PDFsshown in Fig.6.13(b), whih orresponds to the ase Γ = 10.realizations of σ required for the full proess to take plae during a time
T is proportional to T itself. Hene one has n ≃ −C Γ−1 ln ρ, where C isa onstant that depends on h. Therefore, the probability of this ompleteevent is

p−C Γ−1 lnρ =
(

eln p
)−C Γ−1 lnρ

= e− ln pC Γ−1 lnρ = ρ−C Γ−1 ln p,and we obtain that the probability of suh an extreme event is ρβ, with
β = −C ln p/Γ > 0. Note that this is atually a lower bound to the smallmass tail that is valid as long as p 6= 0 and C 6= 0. Having an analytiexpression of the exponent β is a hallenging problem that goes beyond theaim of this study. The exponent β an be ahieved by �tting the left tailsof the mass density PDFs within the range where the power-law is observed.These �ts are presented in dashed lines in the inset of Fig. 6.13(b) and thedependene of β on the Hölder exponent h is displayed in Fig. 6.14 for thevalue Γ = 10.Note that the breadths of the PDFs in Fig. 6.13 learly depend on thevalue of the Hölder exponent h as it is apparent on Fig. 6.15 that representsthe variane of the density δρ2 = 〈(ρ − 〈ρ〉)2〉. The fat that both theexponent β and the standard deviation δρ do not have a monotoni behavioras a funtion of h, an be qualitatively explained in the following way. Whenthe value of h dereases, the number of zeros of σ(x, t) inreases. However
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Figure 6.15: Variane of the density δρ2 = 〈(ρ− 〈ρ〉)2〉 as a funtion of theexponent h for Γ = 0.1, 1 and 10.
the spatial distribution of the zeros also depends on the Hölder exponent
h. On the one hand, for h > 1/2 the spae inrements of σ are positivelyorrelated. This implies that there is no aumulation of zeros and the massis transported from the zones with non-vanishing values of σ(x, t) to thenearest zeros. Therefore dereasing h from 1 to 1/2, more and more zerosappear reating zones with high mass onentration and, at the same time,void regions. This inreases the density �utuations. On the other hand,for h < 1/2 the ovariane of inrements is negative and some �nite-sizeregions with a large number of zeros appear. In suh zones σ(x, t) vanishesmany times and thus the di�usion is very weak. The mass is trapped and itstransfer beomes ine�ient, reduing thus the probability to have extremelylarge or low mass onentrations. In other words, a large number of zerosinreases the density �utuations as long as these zeros are not too dense.The expeted transition between these two behaviors happens near h = 1/2.This is in agreement with the observed variations of β and δρ2 shown inFigs. 6.14 and 6.15. This behavior is espeially evident for the largest valueof Γ where the properties of the system are supposed to depend more stronglyon the distribution of zeros of the ejetion rate.
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(d) h = 0.5 , various Γ'sFigure 6.16: (a) (b) and () PDFs of the oarse-grained density ρℓ for Γ = 1and three values of the exponent h. Colors orrespond to di�erent oarse-graining sales ℓ hosen of the form ℓ = L/2k with k = 1, . . . 13. In eah panel,the narrowest urve orresponds to the largest sale L/2 and the widest urveorresponds to the smallest L/213. The width of the PDF inreases mono-tonially when the sale dereases. (d) PDF of the oarse-grained density
ρℓ for h = 1/2 and di�erent ombinations of Γ and ℓ hosen suh that thee�etive rate de�ned in Eq. (6.48) is onstant.6.7 Sale invariane of the mass density �eldWe �nally study the saling properties of the density �eld. In Se. 6.4,we have presribed some sale invariane properties of the ejetion rate σ.



132 6. Mass �utuations and di�usions in random environmentsThe question we want to adress is whether or not and to whih extent suhproperties translate to the distribution of mass.For that we onsider the oarse-grained mass density, whih is de�ned as
ρℓ(x, t) =

1

ℓ

∫ x+ℓ/2

x−ℓ/2

ρ(y, t) dy. (6.46)By homogeneity we have that 〈ρ〉 = 〈ρℓ〉. The probability density funtionof the oarse-grained density ρℓ, omputed using the de�nition in Eq. (6.36),is displayed in Fig. 6.16 for di�erent values of h and for Γ = 1. In eah panelthe PDFs monotonially inrease their width when the sale dereases. Thenarrowest PDF and the widest PDF orrespond to the largest sale L/2 andthe smallest L/213, respetively.Comparing the panels, we an see that in ases of spatially smooth envi-ronments, the oarse-grained PDF of mass density beomes gradually invari-ant with respet to the sale when h inreases and this is partiularly evidentin Fig. 6.16(a) for h = 2. This indiates that the density �eld is spatiallysmooth and that the zeros are isolated. Moreover the ollapse is faster forsmall densities beause the aumulation of mass is weak and ours only onfew small lusters while the rest of the domain mainly onsists of large voidzones. These large voids dominate the oarse-grained density statistis up totheir typial size, whih is ℓ ≃ L/8, as seen in Fig. 6.16(a). Indeed all urvesorresponding to ℓ < L/8 ollapse in the left-hand side of this �gure. On theontrary, the typial size of mass lusters ℓclust is rather small. Averaging oversales larger than ℓclust implies the redution of the largest mass �utuations.Indeed, the oarse-grained density annot exeed mclust/ℓ, where mclust is themass aptured by the luster. This uto� dereases with ℓ, as an be seen inFig. 6.16(a), allowing less and less �utuations of the oarse-grained density.Suh arguments annot be applied for non-smooth environments wherethe distribution of zeros is more ompliated. The sale invariane is thenbroken, as shown in Figs. 6.16(b) and 6.16(). This is what an also beseen in Fig. 6.17, whih displays the variane of the oarse-grained density
δρ2ℓ = 〈(ρℓ − 〈ρ〉)2〉 as a funtion of the sale ℓ for di�erent values of h.For h > 1 and ℓ ≪ L the variane δρ2ℓ does not depend on the sale ℓ.However, one observes that for h < 1 and ℓ ≪ L the variane presentsa power-law saling δρ2ℓ ∼ ℓ−ζ that suggests a self-similar behavior of thedensity. The trend of the power-law exponent ζ(h; Γ) is displayed in theinset of Fig. 6.16().To understand the saling invariane of the density �eld we should looklosely to what happens in the neighborhood of the zeros of σ. If we assumethat the ejetion rate vanishes at x = x0, then in the neighborhood of x0, we
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Figure 6.17: Variane of the oarse-grained density 〈δρ2ℓ〉 = 〈(ρℓ − 〈ρ〉)2〉 asa funtion of ℓ for di�erent values of h, as labeled. Inset: exponent ζ(h; Γ)of the power-law of the variane 〈δρ2ℓ〉 ∼ ℓ−ζ(h;Γ) for Γ = 1.have σ(x, t)2 = |σ(x0+x, t)|2 ∼ x2h. Supposing now that the density behavesas a power law in the viinity of x0 and resaling the spae as x̃ = λx, onean easily see that the resaled density ρ̃ = ρ(x̃) is a solution of
∂tρ̃(x̃, t) = Γλ2−2h∂2

x̃

[

σ2(x̃, t)ρ̃(x̃, t)
]

. (6.47)Hene, we expet that if the oarse-grained density ρℓ presents a self-similarproperty then the PDF of ρℓ, for a �xed value of Γ, will oinide at largevalues with the PDF of ρλℓ, whih orresponds to an e�etive ejetion rateof amplitude
Γeff = Γλ2−2h. (6.48)This sale invariane is in agremeent with the ollapse at large values of thedensity seen in Fig. 6.16(d), where di�erent PDF's of ρℓ, with ℓ suh that

Γeff = const (for di�erent values of Γ), are onfronted for h = 1/2.6.8 Brief summary and onlusionsWe give here a short outline of the results obtained in this Chapter. We haveintrodued a di�usion model that an be either derived from asymptoti



134 6. Mass �utuations and di�usions in random environmentsonsiderations or obtained as the hydrodynamial limit of a simple disretemass ejetion proess where the ejetion rates are random variables withtemporal and spatial orrelations. The model an be interpreted in termsof random walks in a time-dependent random environment. However thesettings are suh that, while the mass is onserved, it does obey a maximumpriniple and the density an beome arbitrarily large. We have motivatedthis model to study �utuations in turbulent transport.We have onsidered spae-periodi environments where the temporal de-pendene of eah Fourier mode is given by independent Ornstein�Uhlenbekproesses and both the amplitude of the modes and their orrelation timespresent some presribed spatial saling properties. This allowed us to on-sider smooth and non-smooth environments with fast and slow temporaldependene. No other assumptions were made on the environments and weexpet them to display generi properties and to be representative of su�-iently general situations.The model was studied analytially and numerially. The orrespondingpartile dynamis is given by an It	o di�erential equation with a multiplia-tive noise and no drift. We observed that random trajetories di�use atlarge times. Also, the probability distribution of their displaements tendsto a Gaussian at large times and the deviations to this asymptoti behaviorderease as t−1. To take into aount the �utuations of mass due to the ran-domness of the environment we have introdued and studied the probabilitydistribution of the density. We obtained some analytial results on it in thease of a stationary environment and we showed that it displays a power-lawtail at large masses with exponent −2. In the general ase, we observeda ompetition between a trapping e�et due to vanishing ejetion rates ofthe random environment and the mixing due to its temporal dependenethat leads to large �utuations of the density of mass. These �utuationswere studied for both smooth and non-smooth random environment. In thesmooth ase, we showed that the PDF has an intermediate power-law be-havior, like in the stationary ase but with an exponent −3/2 followed by anexponential uto�. Finally, we studied the spatial saling properties of themass distribution by introduing a oarse-grained density �eld. For smoothrandom environments the oarse-grained density was found to be sale in-variant. We showed that at large masses, it possesses some saling propertiesthat depend on the oarse-graining size, the ejetion rate typial amplitude,and the Hölder exponent of the environment.The overall dynamis of the model proposed in this hapter ontains sev-eral spae and time sales. Mass rapidly aumulates near the regions witha vanishing ejetion rate and slowly moves following the di�usion of the ze-ros. Depending on the properties of the environment, there is also a lear



6.8 Brief summary and onlusions 135separation of length sales: small mass �utuations at small sales and largemass at the sale between the distane of two vanishing ejetion rates. Thissale separation strongly suggests trying to determine, by standard homoge-nization tehniques, a large-sale e�etive di�usion tensor and eventually ane�etive transport term. This issue is kept for future work.Extending our approah to dimensions higher than one is another possiblediretion for future. The ejetion rate will then vanish on ompliated setsthat, depending on its regularity, might display fratal properties. Varyingthe Hölder exponent of the random environment, its amplitude and the ob-servation sales ould then lead to a rather rih olletion of di�erent regimes.For instane, a partiular attention should be paid to understand whether ornot a power-law is still present in the mass density probability distribution.To onlude, let us stress again that the zeros of the environment play aruial role on both the di�usive properties and the mass density statistis.They are responsible for mass aumulation but, at the same time, onstitutebarriers to transport. This duality implies that the �ne statistial details ofsuh systems ruially depend on the features of the zeros and speially onthe loal struture of the ejetion rate in their viinity. In partiular thepresene of an extra drift in the dynamis would ompletely alter the roleof the zeros and would prevent mass aumulation. In this thesis work, wehave deided to fous on ejetion rates that an be written as the square ofa generi Gaussian random funtion. However this hoie annot be alwaysrelevant and, for instane, it might be sometimes more appropriate to writethe ejetion rate rather as the exponential of a random funtion. This wouldhange drastially most of the results showed.
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Chapter 7Conlusions and perspetivesIn this hapter we shortly ome bak to the main results obtained during thisthesis and plae them in the prospet of applying them to onrete problemsof atmospheri transport. We naturally distinguish between questions relatedto traer and passive salar dynamis and issues where partile inertia playsa role.Flutuations of an adveted onentrationWe have related in Chap. 4 the statistis of a passive salar, and in partiularits spatial orrelations, to the study of the two-point motion of Lagrangiantraers. Several questions remain open on the work that was presented onthis topi.Firstly, we have studied in Se. 4.4.1 what we alled the �loal dissipation�,whih is de�ned as the ratio [V ‖]3/R between the ube of the longitudinalveloity di�erene and the distane between two traers. We have obtainedunexpeted evidene that this quantity attains a saling regime after a shorttime: its statistial properties beome quikly independent of both time andinitial separations. This suggests that the �loal dissipation� is, to leadingorder, statistially onserved by the Lagrangian two-point dynamis. How-ever, we have not been able to understand the physial mehanisms leadingto this behavior. Its average 〈[V ‖]3/R〉r0 over all pairs that are initially at adistane r0 is initially negative beause of Kolmogorov's 4/5 law. We foundgeometrial arguments that explain why during Bathelor's ballisti regime,this average rapidly hanges sign and beomes positive. Its onvergene to aonstant positive value remains unexplained. Identifying the reasons for suha behavior will have important impats on the phenomenon of relative disper-sion and in partiular on a possible reinterpretation of Rihardson's explosiveseparation in terms of a purely di�usive behavior of veloity di�erenes.Other works onerned the dedution of a model for relative dispersion137



138 7. Conlusions and perspetivesfrom the observation that aeleration di�erenes are orrelated over shorttime sales. As explained in Subse. 4.4.3, the main tool used in this deriva-tion is the entral limit theorem that allowed us to write the time derivativeof veloity di�erenes as a stohasti proess with multipliative noise. In-terestingly and despite its non-linearity, we argued that the model reahesat large times a self-similar behavior ompatible with Rihardson's saling.However, one of the main shortomings of this approah is the fat that itmixes phenomenologial and rigorous arguments in suh a way that the ten-sorial struture of aeleration orrelations is not taken into onsiderationand, for the moment, the model is still purely one-dimensional. Extendingit to higher dimensions represents a real hallenge. This would allow us val-idating it more systematially against numerial data and omparing thisapproah with other realisti stohasti models. Also, we expet suh devel-opments to give an alternative way to understand the mehanisms leading toa statistially stationary behavior of the �loal dissipation�.We now turn to the appliations of pair dispersion to the study of �utu-ations in turbulent transport. The results obtained in Ses. 5.2 and 5.3 givesome geometrial interpretations of the extreme events that an be observedin the statistis of distanes between two traers. Suh approahes an beextended to the relative motion of more than two trajetories and in partiu-lar to the time evolution of a blob of Lagrangian traers. This would have beof straightforward relevane to haraterize the dispersion by turbulene ofa spot of pollutants. We used in Se. 5.3 fratal geometry onsiderations toquantify the probability that a ouple of traers remain at small distanes.One of the plans is to extend this approah to blobs. This would allow oneto quantify better the probability that a blob keeps a small size or folds toreate onentrations that are muh higher than those predited by eddy-di�usivity approahes. On the ontrary, extremely large separations relateto low onentrations. As we have stressed in Se. 5.2, a violent growth ofthe inter-partile distane is explained by a long-time memory of the initialseparation. An extension of these results to the ase of blobs of traers isagain of interest. We indeed expet that suh a study will give lues on howto haraterize the dispersion properties as a funtion of the initial loal �u-tuations of the turbulent �ow. A ertainly too-optimisti objetive ould beto design a ontrol proess for instantaneous pollutant emissions that wouldhoose release times as a funtion of �ow strutures in order to optimizedispersion.Finally, let us disuss to what extent our work applies to pollutant disper-sion in situations that are more generi than the forward-in-time evolutionof pollutant spots. In many interesting ases one is onerned with time-ontinuous soures. In priniple, beause of the linearity of the advetion-



139di�usion equation, suh settings an equivalently be treated as the sum ofseveral instantaneous releases. This superposition priniple an be used todetermine the evolution of average onentrations from the dynamis of asingle blob. However, when interested in �utuations, that is statistis witha non-linear dependene on the onentration (as, e.g., its variane), theseideas annot be applied. Quantifying �utuations then requires a knowledgeof multi-sale multi-time orrelations. As a onsequene, the problem of tur-bulent relative dispersion has to be in priniple generalized to the full studyof the Lagrangian �ow. However, depending on the question of interest, therequired information an be more tratable. For instane, let us onsidertraers that are emitted from a point soure with a onstant rate. Wheninterested in the seond-order statistis of the onentration �eld, one aneasily see that they relate to the probability that a partile emitted at atime t1 < t is at time t nearby another partile, whih was emitted at atime t2 < t. This probability is di�erent from the transition density usedfor relative dispersion, as it requires that the two partiles were at the sameloation but at di�erent times in the past. Clearly, some of the notions thatwere developed and used in this thesis for the lassial situation of relativedispersion have their equivalent in this analogous problem. However suhextensions would require some e�orts.Universality of heavy partile onentrationsA natural question that arises on the extensions of this thesis work on rela-tive dispersion onerns its validity in the ase of non-ideal partiles. Whenthe transported speies have inertia, preferential onentration will ompetewith Rihardson's dispersion. Previous experimental and numerial worksuggests that in that ase the explosive law for separation is reovered atsu�iently large times [Be et al., 2010,Gibert et al., 2010℄. However, littleis known about the e�et of inertia on the extreme events of the inter-partiledistane. Clearly, the small-sale lustering of heavy partiles will enhanethe probability that partiles remain lose together and will strongly a�etthe fratality observed for small separations between traers. For large sep-arations, we have seen that for traers, a large initial veloity di�erene isrequired for them to separate at all times faster than the average. It isknown that suh large veloity di�erenes are even more probable for heavypartiles. This is due to the �sling e�et� that they are experiening whenejeted from vorties [Falkovih & Pumir, 2007℄. One expets �utuations tobe again enhaned by inertia, as these large veloity di�erenes will triggerpartile separation. However, this e�et might be very sensitive to the valueof the Stokes number as the dissipative dynamis of partiles will introduea deorrelation of their veloities on times larger than their response time.



140 7. Conlusions and perspetivesAll these extensions of relative dispersion to the ase of inertial partiles re-quire analyzing the data of numerial simulations varying the partile Stokesnumber and the initial separation in the inertial range.We now give some ideas on the impliation of the results of Chap. 6 on theonentration properties of heavy partiles. We have motivated the introdu-tion of a random mass ejetion model to desribe the statistial properties ofthe distribution of partiles inside the inertial range. We have shown that forsuh models the high onentrations are strongly a�eted by the zeros of theejetion rate. In partiular, the latter are responsible for the presene of apower-law range in the probability distribution of the density. Suh a regimehas not been observed in diret numerial simulations of heavy partiles inturbulent �ows [Be et al., 2007a℄. This an be explained by the followingshortoming of the settings in Se. 6.4. Indeed, we have seen in Se. 6.1 thata phenomenologial estimation of the ejetion rate involves exponentials thatnever vanish. In the model studied later, we have rather written the positiveejetion rate as the square of a funtion that generially has zeros. It wouldthus be worth extending the results on density �utuations that are reportedin Se. 6.6 to di�erent kinds of ejetion rates. This would be partiularlyuseful to assess whether or not mass ejetion models (or equivalently ran-dom walks in �utuating random environments) an be divided in di�erentuniversality lasses and, if this is the ase, to understand to whih of theminertial partile dynamis belongs. To �nish, it is important to stress thatmass ejetion models an provide a new framework to haraterize partileonentration in the inertial range of turbulent �ows. Classially, lusteringproperties are quanti�ed in terms of deviations from the Poisson distributionthat uniformly spread partiles would follow. These deviations, whih arevery useful in estimating how wrong it is to neglet preferential onentra-tion, do not give muh information on the nature of the inertial-range partiledistribution. Designing new observables from simple statistial physis mod-els might be helpful. Also, it would be of interest to apply to suh modelsthe approah in terms of a analysis of the Voronoï mesh that was developedin [Obligado et al., 2011℄. This ould be useful to understand whether forsuh observables, heavy partiles belong or not to the same universality lassas random di�usions in random environments.
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