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Abstract

The main objective of this thesis is the automatic modeling, understanding and segmentation of

diffusively infiltrative tumors known as Diffuse Low-Grade Gliomas. Two approaches exploiting

anatomical and spatial prior knowledge have been proposed.

We first present the construction of a tumor specific probabilistic atlas describing the tumors’

preferential locations in the brain. The proposed atlas constitutes an excellent tool for the study

of the mechanisms behind the genesis of the tumors and provides strong spatial cues on where

they are expected to appear. The latter characteristic is exploited in a Markov Random Field based

segmentation method where the atlas guides the segmentation process as well as characterizes the

tumor’s preferential location.

Second, we introduce a concurrent tumor segmentation and registration with missing corre-

spondences method. The anatomical knowledge introduced by the registration process increases

the segmentation quality, while progressively acknowledging the presence of the tumor ensures

that the registration is not violated by the missing correspondences without the introduction of a

bias. The method is designed as a hierarchical grid-based Markov Random Field model where

the segmentation and registration parameters are estimated simultaneously on the grid’s control

point. The last contribution of this thesis is an uncertainty-driven adaptive sampling approach for

such grid-based models in order to ensure precision and accuracy while maintaining robustness and

computational efficiency.

The potentials of both methods have been demonstrated on a large data-set of heterogeneous

-in appearance, size and shape- Diffuse Low-Grade Gliomas. The proposed methods go beyond the

scope of the presented clinical context due to their strong modularity and could easily be adapted

to other clinical or computer vision problems.

Keywords: Markov Random Fields, Registration, Segmentation, Brain Atlas, Diffuse Low-Grade
Gliomas
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Résumé

L’objectif principal de cette thèse est la modélisation, compréhension et segmentation automatique

de tumeurs diffuses et infiltrantes appelées Gliomes Diffus de Bas Grade. Deux approches ex-

ploitant des connaissances a priori de l’ordre spatial et anatomique ont été proposées. Dans un

premier temps, la construction d’un atlas probabiliste qui illustre les positions préférentielles des

tumeurs dans le cerveau est présentée. Cet atlas représente un excellent outil pour l’étude des

mécanismes associés à la genèse des tumeurs et fournit des indications sur la position probable

des tumeurs. Cette information est exploitée dans une méthode de segmentation basée sur des

champs de Markov aléatoires, dans laquelle l’atlas guide la segmentation et caractérise la position

préférentielle de la tumeur.

Dans un second temps, nous présentons une méthode pour la segmentation de tumeur et le

recalage avec absence de correspondances simultanés. Le recalage introduit des informations

anatomiques qui améliorent les résultats de segmentation tandis que la détection progressive de

la tumeur permet de surmonter l’absence de correspondances sans l’introduction d’un à priori. La

méthode est modélisée comme un champ de Markov aléatoire hiérarchique et à base de grille sur

laquelle les paramètres de segmentation et recalage sont estimés simultanément. Notre dernière

contribution est une méthode d’échantillonnage adaptatif guidé par les incertitudes pour de tels

modèles discrets. Ceci permet d’avoir une grande précision tout en maintenant la robustesse et ra-

pidité de la méthode. Le potentiel des deux méthodes est démontré sur de grandes bases de données

de gliomes diffus de bas grade hétérogènes (en taille, forme et apparence). De par leur modularité,

les méthodes proposées ne se limitent pas au contexte clinique présenté et pourraient facilement

être adaptées à d’autres problèmes cliniques ou de vision par ordinateur.

Keywords: Champs de Markov Aléatoires, Recalage, Segmentation, Atlas du Cerveau, Gliomes
Diffus de Bas Grade

7



8



Contents

1 Introduction 19

1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.1 Diffuse Low-Grade Gliomas: Introduction . . . . . . . . . . . . . . . . . . 20

1.1.2 Therapy and Functional Reshaping . . . . . . . . . . . . . . . . . . . . . 20

1.1.3 Follow-up: Tumor Segmentation . . . . . . . . . . . . . . . . . . . . . . . 21

1.1.4 Low-Grade Gliomas’ Localization in the Brain . . . . . . . . . . . . . . . 23

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Brain Tumor Segmentation 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Brain Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Imaging modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Surface Based Segmentation: Deformable models . . . . . . . . . . . . . . . . . . 32

2.4 Region-Based Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Classification methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 Graph based Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Atlas based Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.1 Medical Image Registration . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.2 Brain Atlases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5.3 Atlas based Tumor Segmentation . . . . . . . . . . . . . . . . . . . . . . 54

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 A Probabilistic Atlas of Diffuse WHO Grade II Gliomas’ Preferential Locations 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Spatial Position Mapping of Diffuse Low-Grade Gliomas . . . . . . . . . . . . . . 60

3.2.1 Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.2 Graph Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.3 Clustering Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Tumor Characterization and Segmentation with Spatial Position Priors . . . . . . . 68

9



10 CONTENTS

3.3.1 Tumor Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.2 Coupled Markov Random Field Model . . . . . . . . . . . . . . . . . . . 72

3.4 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.1 Data-set and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.2 Sparse Graph Validation and Robustness . . . . . . . . . . . . . . . . . . 77

3.4.3 Segmentation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Joint Tumor Segmentation and Dense Deformable Registration 89

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Registration with Missing Correspondences . . . . . . . . . . . . . . . . . 91

4.2.2 Joint Registration and Segmentation . . . . . . . . . . . . . . . . . . . . . 94

4.3 Concurrent Deformable Registration and Tumor Segmentation . . . . . . . . . . . 97

4.3.1 Discrete MRF Model for Deformable Registration . . . . . . . . . . . . . 97

4.3.2 Coupled Tumor Segmentation and Registration . . . . . . . . . . . . . . . 100

4.4 Uncertainty Driven Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.1 Local Registration and Segmentation Uncertainties . . . . . . . . . . . . . 103

4.4.2 Min Marginals Computation using Dynamic Graph Cuts . . . . . . . . . . 105

4.4.3 Content Driven Adaptive Resampling . . . . . . . . . . . . . . . . . . . . 105

4.5 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.1 Data-Set Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Conclusion 119

5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A Concurrent Segmentation and Registration Application: Registration of Preoperative

and Intraoperative Images with Tumor Resection 125

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.3 Probabilistic Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.4 Likelihood term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.4.1 Resection Cavity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.4.2 Background area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



CONTENTS 11

A.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



12 CONTENTS



List of Figures

1.1 Preoperative functional mapping. The functional areas are reorganized around the

tumor’s boundaries. [Duffau 2006] . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Intraoperative brain mapping. (a) Preoperative MRI, (b) Intraoperative Mapping.

Each tag correspond to a functional area that is identified through cortical stimula-

tion, (c) Postoperative MRI. Images extracted from [Duffau 2006] . . . . . . . . . 22

1.3 Modeling of the LGG’s growth rate. (a) Linear growth rates of 27 patients, dis-

playing a mean growth rate of 4mm/year. (b) Growth rate evolution of a patient

after anaplastic transformation. Figures extracted from [Mandonnet 2003] and

[Mandonnet 2008] respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Examples of different DLGG appearances on FLAIR T2 MRIs. . . . . . . . . . . . 26

2.2 Impact of an magnetic field B0 on the spins’ magnetization. (a) Random spins

orientation, (b) alignment with the external field, (c) spin precession around B0.

Images taken from [Puddephat 2002] . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Impact of TE and TR on the NMR signal [Buxton 2009]. (a) NMR signal, ampli-

tude dependent on T2, (b) Impact of TR on the initial amplitude of the signal, (c)

longitudinal magnetization dependent on TR and T1. . . . . . . . . . . . . . . . . 30

2.4 Contrast enhancement of High grade gliomas. (a) T1 weighted image, (b) contrast

enhanced T1 weighted image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Images sequences for the visualization of a Low grade glioma. (a) T1, (b) T1

contrast enhanced (no enhancement of the tumor), (c) T2, (d) FLAIR images. . . . 32

2.6 Level set of an implicit function u and corresponding curve C [Leventon 2000]. . . 33

2.7 Figure extracted from [Droske 2001]. Adaptive grid sampling, progressively con-

structed as the front progresses. The colors indicates the arrival time of the propata-

tion (from blue (early) to red) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Illustration of the kNN clustering approach. We aim at classifying the black sample

as either a blue square or red circle. Setting k=5 selects the circle class, while k=8

(dashed circle) selects the other class. . . . . . . . . . . . . . . . . . . . . . . . . 37

2.9 Illustration of the SVM approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10 Illustration of the SWA algorithm extracted from [Corso 2008]. . . . . . . . . . . . 41

13



14 LIST OF FIGURES

2.11 Evolution of the joint histogram between an image and iself as one image is pro-

gressively rotated (0,2, 5 and 10 degrees). Below the histogram are the joint entropy

values. Example taken from [Pluim 2003] . . . . . . . . . . . . . . . . . . . . . . 50

2.12 Different types of transformation models. (a) original image, (b) rigid transforma-

tion, (c) affine transformation, (d) non-linear transformation. . . . . . . . . . . . . 50

2.13 Schematic illustrating the AC-PC line and axes of the Talairach space. Example

taken from http://airto.ccn.ucla.edu/. . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.14 MNI-ICBM-152 probabilistic atlas. From left to right: T1, T2 and Proton Density

weighted images ; Gray Matter, White Matter and CSF probability maps. Figure

extracted from [Fonov 2011] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.15 Modified MNI-305 atlas for integration of tumor and edema probability [Prastawa 2003].

Top row: healthy probability (White Matter, Grey Matter, CSF). Bottom row: tu-

mor(left) and edema (right) probabilities. . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Illustration of the block matching process. The floating image is on the left and

target on the right. Figure extracted from [Ourselin 2000] . . . . . . . . . . . . . . 62

3.2 Visualization of the complete graph superimposed to the mean registered image.

For visibility reasons, edges of weight larger than 35 are not shown. Short distances

appear red and thick while large distance values are thin and blue. . . . . . . . . . 63

3.3 Probability maps of three different clusters superimposed to the mean registered

image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Visual examples of features used for boosting training: (a) median filter, (b) stan-

dard deviation, (c) entropy, (d) symmetry, (e,f) Gabor features. . . . . . . . . . . . 73

3.5 Image courtesy of [Komodakis 2008b]. (a) Primal-Dual principle: the optimal cost

always lies between bTy and cTx for any pair (x,y) of feasible solutions. If both

values are close, the approximated solution to the primal problem is close to the

optimal solution too. (b) Primal-Dual schema: iteratively generate pairs (xk,yk)
of feasible solution until they are close enough (their ratio is below f∗) to obtain

an f∗-approximation of the solution . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Distribution of tumors sizes in the data set (number of tumors vs tumor size in cm3) 77

3.7 Visualization of the complete clustered graph superimposed to the mean registered

image. The numbers correspond to the number of nodes in each cluster. . . . . . . 78

3.8 Schematics of the brain structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.9 Cluster validity indices with respect to the value of α (a,b,c,d) and the number of

clusters (e). Dunn index (a), Davies Bouldin index (b), Silhouette index (c) and

combined indices (d,e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.10 Errorbars of the indices computed for the cross validation experiments with respect

to the value of α (a) and the number of clusters (b). . . . . . . . . . . . . . . . . . 81

3.11 Illustration of the graph matching results. (a) Complete match, (b,c) Partial match.

Positive matches correspond to blue edges and mismatched samples to red edges. . 82



LIST OF FIGURES 15

3.12 Boxplots of the Dice score (a), True Positive rate (b), False positive rate (c), and

MAD score (d) between the automatic and manual tumor segmentation for the three

different methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.13 3D visualization of an example segmentation result. (a) manual segmentation, (b)

automatic segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.14 Positions of the cluster centers on the ICBM atlas after registration. A strong sym-

metry can be observed between clusters in columns (a) and (b) of the same image

row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.15 Visual Segmentation results. (a) boosting score, (b) Boosting classification (thresh-

olding), (c) Pairwise MRF, (d) MRF with spatial prior. . . . . . . . . . . . . . . . 87

4.1 Overview of the Joint Registration and Segmentation method . . . . . . . . . . . . 90

4.2 Summary of different steps of the ORBIT algorithm. Figure extracted from [Zacharaki 2008]. 95

4.3 Modified ICBM probabilistic atlas by the tumor growth model. From left to right:

tumor, edema, CSF, gray matter and white matter probabilities. Figure extracted

from [Gooya 2012] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Registration uncertainty and displacement set resampling for one control point: (a)

Min marginal values per displacement label (blue: low, red: high energy) asso-

ciated covariance matrix centered at the optimal label, (b) Min marginals visual-

ization on a 2D slice, (c) Original isotropic displacement set and (d) Uncertainty

driven displacement set, following the brain boundaries. . . . . . . . . . . . . . . 106

4.5 Visual representation of the grid refinement from level j (left) to level j+1 (right).

Grid resampling: the nodes that have direct correspondences appear in white, and

the new nodes and edges are red. The edges connecting the 2 grids represent the

nodes’ neighborhood. The grid is shown in 2D for increased visibility. . . . . . . . 107

4.6 The 4 levels of the incremental approach. . . . . . . . . . . . . . . . . . . . . . . 110

4.7 The two displacement sampling strategies, centered around the node’s initial posi-

tion: (a) Dense displacement sampling, (b) Sparse displacement sampling. The red

dots correspond to the possible displacements. . . . . . . . . . . . . . . . . . . . . 111

4.8 Mean percentage of activated nodes per resolution level. . . . . . . . . . . . . . . 112

4.9 Visual examples of the activated nodes for the 4 levels of the incremental approach.

The nodes are superimposed to the target image. . . . . . . . . . . . . . . . . . . . 114

4.10 Quantitative Segmentation Results: Error bars (mean and standard deviation) of

the Dice score, False Positive (FP) and True Positive (TP) rates and MAD score for

the joint framework with low (JSRLow) and high resolution (JSRHigh), the MAP-

MRF segmentation framework (SegMRF) and the uncertainty based approach (Ucy).115

4.11 Quantitative Registration Results: Error bar graphs of the Dice, True Positives

(TP), False Positives (TP) and MAD scores obtained for the joint framework with

low (JSRLow) and high resolution (JSRHigh), the individual registration frame-

work with masked pathology (RegMask) and the uncertainty based approach (Ucy). 115



16 LIST OF FIGURES

4.12 Visual examples of Registration results. (a) Target image, deformed image ob-

tained using (b) the individual framework with masked pathology, (c) the Joint

framework, high resolution, (d) the Joint framework, with adaptive sampling. . . . 116

4.13 Visual examples of Segmentation results. (a) Boosting Score, (b) MAP-MRF

framework, (c) Joint framework, high resolution, (d) Joint framework, with adap-

tive sampling. Automatic segmentations (blue) are compared to the manual seg-

mentation (red) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.1 Gaussian Mixture Model of the resection cavity intensity. (a) Intensity histogram,

(b) Modeled intensity distribution, (c) Gaussians constituting the GMM. . . . . . . 132

A.2 Log probabilities associated to the resection cavity coupled with the spatial prior. . 133

A.3 Difference Image after affine registration (a) and after non-rigid registration (b). . . 137

A.4 Visual registration and segmentation results. (a) Preoperative image after affine

registration, (b) non-rigidly deformed preoperative image, (c) intraoperative image

segmented. Resection cavity segmentation: automatic (blue) and manual (red);

Residual tumor segmentation: manual (magenta) and registered preoperative tumor

(yellow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



List of Tables

3.1 Anatomical localization of the different clusters . . . . . . . . . . . . . . . . . . . 79

3.2 Mean and median (in parentheses) values of the different scores and methods for

tumor segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

17



18 LIST OF TABLES



Chapter 1

Introduction

This thesis introduces methods for the study and monitoring of brain tumors and in particular the

diffuse WHO grade II gliomas or Diffuse Low-Grade Gliomas (DLGG). This is carried out by

focusing on two challenging and important problems in medical imaging: Image Segmentation
and Image Registration. The segmentation task consists of contouring an object of interest in an

image in order to provide its exact position. The task becomes increasingly difficult as the object

of interest’s appearance gets more heterogeneous and has irregular boundaries. The complemenary

task of image registration aims at aligning two or more images by finding corresponding structures

between them. The difficulty resides in the relative appearance of the images and fuzziness of the

structures’ edges.

This chapter features a presentation of the clinical context associated to DLGGs and the moti-

vation and main objectives of this thesis, followed by an overview of the thesis organization.

1.1 Context and Motivation

Primary brain tumors constitute a heterogeneous set of tumors associated with variable behaviors,

symptoms, origins and malignancy. They are characterized by the type of cell from which they

arise and are dominated by gliomas, arising from glial cells. Gliomas are classified by the World

Heatlh Organisation (WHO) into 4 grades of malignancy based on their histological properties

[Louis 2007].

Grade I gliomas (mainly pilocytic astrocytomas) are benign tumors, as they are well delineated

and non infiltrative. They have an excellent prognosis after complete surgical resection. Diffuse

grade II gliomas are slow-growing infiltrative tumors with continuous growth [Mandonnet 2003].

They inevitably progress into a malignant tumor. Grade III gliomas (or anaplastic gliomas) are

fast growing malignant tumors while grade IV gliomas (glioblastomas multiforme) are the most

aggressive tumors with a low treatment success rate. They are unfortunately the most common

type of glioma.
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1.1.1 Diffuse Low-Grade Gliomas: Introduction

DLGGs are diffusely infiltrative primary brain tumors. They represent about 15 % of primary

brain tumors [Rigau 2011, Dolecek 2012], and affect younger patients (slightly more males than

females) than the most common glioblastomas (mean age about 38 years old) [Capelle 2013]. They

are classified into 3 histological subtypes according to their predominant cell type: astrocytomas,

oligodendrogliomas and oligoastrocytomas.

Most of the time, DLGGs are revealed by seizures that occur in about 80 % of the cases.

Some mild symtoms such as headaches, nausea, speech disturbance can appear depending on the

size and location of the tumor. This absence of symptoms rendered the treatment of the tumors

very controversial as a surgical tumor resection could cause functional deficits that could be more

important than the ones produced by the tumor itself. In the past years, a “wait and see” pol-

icy was predominantly considered, where the tumors’ growth was simply followed by successive

MRIs [Whittle 2010]. It has been observed however, that during their natural course, the tumors

inevitably progress into higher grade fast growing tumors (anaplastic transformation into WHO

grade III gliomas) which lead to strong neurological deficits and ultimately to the patient’s death

(median survival is about 10 years). Therefore, a LGG has to be monitored closely in order to adapt

the treatment to its growth rate and corresponding prognosis.

1.1.2 Therapy and Functional Reshaping

Nowadays, a consensus has been reached that maximal safe surgical resection is the first therapeutic

option for DLGG [Soffietti 2010]. Indeed, several studies reported an improvement in the prog-

nosis of progression-free and overall survival of patients after surgery [Sanai 2008, Capelle 2013,

Jakola 2012]. Tumors localized in or near an important functional area used to be considered in-

operable. However, it has been shown that some patients could recover without permanent deficit

after damages of eloquent areas [Duffau 2003, Duffau 2006]. Other studies show that functional

recovery is better in cases of slow growing lesions (like the LGG) than in cases of fast growing

lesions (such as strokes) [Desmurget 2007]. It is inferred that this is due to a functional reshaping

of the brain induced by the slow growing lesions, which has no time to occur when the damage is

rapid. This phenomenon is also known as brain plasticity. Different patterns of functional orga-

nization with respect to the tumor can be considered. Firstly, the function can persist within the

tumor (36% of patients present intra tumoral activity in [Desmurget 2007]). In that case, it is quasi

impossible to completely remove the tumor without sequelae. Another possibility is the redistribu-

tion of eloquent areas immediately around the tumor. A near total resection is possible then, but

yields transient deficit after the surgery. Thirdly, regions implicated in the functional network in the

same hemisphere but remote to the damaged area can be recruited. Finally, the other hemisphere

can be solicited. This reshaping would explain the absence of symptoms even when the tumor is

located in eloquent areas.

Functional imaging is routinely used for surgery planning in order to evaluate the relationship

between the tumor’s location and the brain’s functional areas and determine the extent of resection
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Figure 1.1: Preoperative functional mapping. The functional areas are reorganized around the
tumor’s boundaries. [Duffau 2006]

possible. However, it is not sufficient in order to evaluate if the eloquent area is essential or com-

pensable, while precision decreases around the lesion [Holodny 2000]. A solution is to perform

brain mapping during the tumor surgery. Direct stimuli are sent on the surface of the brain, which

enables the mapping of the motor functions and the cognitive areas (if the patient is awake). If any

functional disturbance is noticed, the resection is stopped immediately in that area. The tumor is

then removed according to the functional boundaries. Radiotherapy and chemotherapy can be used

after surgery for patients with large or fast growing residual tumors.

1.1.3 Follow-up: Tumor Segmentation

In addition to surgery planning, medical imaging plays a key role in DLGG therapy planning

and evaluation. Since the tumors are mostly asymptomatic, their growth is monitored by se-

rial MRI exams (usually every 3 months). The best way to follow the tumor’s progression is

to observe its mean diameter that is expected to follow a linear law [Mandonnet 2008]. Cur-

rently, two methods exist for evaluating the mean diameter. The simplest approach consists in

manually measuring the tumor’s three biggest diameters (in the sagittal, coronal and axial planes)

and approximating the tumor’s volume as an ellipsoid. The alternative is to compute the tumor’s

volume using manual segmentation. The mean diameter is finally obtained from the volume as
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Figure 1.2: Intraoperative brain mapping. (a) Preoperative MRI, (b) Intraoperative Mapping.
Each tag correspond to a functional area that is identified through cortical stimulation, (c) Postop-
erative MRI. Images extracted from [Duffau 2006]

Dmean = (2V )1/3 [Mandonnet 2003, Mandonnet 2008]. Despite being fast and convenient, the

three diameters method often overestimates the volume of the tumor, especially in cases of irregu-

lar contours (which is often the case for low grade gliomas due to their infiltration properties). It

can yield inexact results (especially during follow ups after resection, when the shape of the tumor

is very different from an ellipse). Therefore, the 3D manual segmentation is currently the gold

standard to evaluate the mean diameter. It is, however, tedious and time consuming and suffers

from a high intra and inter operator variability [Kaus 2001].

Typically, the mean diameter progresses according to a linear law. The slope is constant (mean

value 4 mm/year) until anaplastic transformation, where there is an abrupt change of speed (av-

erage of 8 mm/year). The evaluation of the growth rate is essential for LGG management as it

is directly associated to the patient’s prognosis and risk of anaplastic transformation. Pallud et

al. [Pallud 2012] proposed to systematically evaluate the growth rate and adapt the treatment ac-

cordingly. Such evaluation was based on measuring the growth rate between two temporal MRIs

separated by 4 months. A growth rate higher than 2mm/year triggers a surgical treatment. An al-

ternative was to use Chang’s score [Chang 2009] that is based on 4 risks factors: 1) tumor located

in an eloquent area, 2) Karnosky Performance Status ≤ 80 (measure of functional impairment, a

score higher than 80 implies no impairment), 3) age > 50 years old, 4) tumor’s maximum diameter

> 4cm. If the patient obtains a score of 3 − 4 a second MRI is performed after 6 weeks. A mean

tumor diameter growth larger than 1 mm suggests a growth rate greater than 8.7 mm/year implicat-

ing a behavior similar to the one of a high grade glioma. For a score lower than 3, the second MRI

is to be performed after 3 months and the mean diameter is measured. The treatment is adapted

accordingly.

This strong dependence on the growth diameter as well as the limitations of manual segmenta-

tion and ellipsoid approximation methods highlight the need for a fast and robust (i.e. independent

of the observer) automatic segmentation method, that is the main objective of this thesis.
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(a) (b)

Figure 1.3: Modeling of the LGG’s growth rate. (a) Linear growth rates of 27 patients, displaying
a mean growth rate of 4mm/year. (b) Growth rate evolution of a patient after anaplastic transfor-
mation. Figures extracted from [Mandonnet 2003] and [Mandonnet 2008] respectively.

1.1.4 Low-Grade Gliomas’ Localization in the Brain

As stated earlier, the treatment of low-grade gliomas strongly depends on their localization. It was

inferred in [Duffau 2004] that they tend to appear in preferential locations that correspond essen-

tially to functional areas with a predominance in the sensory-motor area and the insula (that studies

tend to associate with language functions [Ackermann 2004]). This observation is the starting point

of the second objective of this thesis, which is the construction of a statistical atlas mapping the

low-grade gliomas preferential locations. Such an atlas offers diverse possibilities of understand-

ing the tumors better. First, the position of the tumors could be correlated with extrinsic factors in

order to identify risk factors associated to the DLGG. Second, comparison with functional areas

would allow to study the mechanisms of brain plasticity associated to the slow growing tumors.

Eventually, we will show that mapping the tumors in the brain provides a useful tool for tumor

detection and segmentation.

1.2 Thesis Overview

This thesis is divided into 3 main chapters. Chapter 2 presents an overview of the different brain

tumor segmentation methods existing in the literature, coupled with an introduction to the image

registration problem for atlas-based segmentation.

In chapter 3, the construction of a low-grade gliomas probabilistic atlas is presented. The atlas

enables to identify the tumors’ preferential locations in the brain while describing their spatial

extension in each preferential location. The second part of this chapter presents an application of

the atlas for brain tumor segmentation, using it as a spatial prior on where the tumor is expected to

be.

Chapter 4 introduces a concurrent registration and segmentation method that simultaneously
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segments the brain tumor, and registers a healthy subject to the diseased subject with a tumor

while taking into account the missing correspondences area represented by the tumor. The chap-

ter presents an alternative method for tumor segmentation that exploits anatomical cues via the

registration process, as well as a more precise registration scheme for a future instance of the prob-

abilistic atlas. An extension of the method for the registration of preoperative and intraoperative

MRIs during a brain tumor surgical resection is be presented in appendix A.

Chapter 5 concludes the thesis with a discussion on the presented work and its implications,

and suggests future research directions with respect to the presented methods.



Chapter 2

Brain Tumor Segmentation

2.1 Introduction

Image segmentation is one of the most important and active research area in the medical imaging

domain. It can be defined as the delineation of one or several structures of interest within the image.

Automated methods are sought in order to avoid the time consuming burden of manually contour-

ing the structures. The problem is particularly difficult in the context of brain tumors. Indeed,

most tumors have heterogeneous appearances and their intensity range overlap with the healthy

tissues’. The presence of a necrotic core is frequent (especially for glioblastomas, but it also occurs

for DLGGs) resulting on a strong contrast with the “active” tumor. Prior information regarding the

shape of the tumor cannot be used as they have variable sizes and shapes. DLGGs in particular,

have very fuzzy and irregular boundaries due to their infiltrative nature. Edema (swelling of brain

tissue around the tumor) and mass effect (tissue displacement induced by the tumor) are quite un-

common due to the slow-growing nature of the DLGGs [Sanai 2011]. In this context, the simplest

segmentation methods such as thresholding or region growing are insufficient [Gibbs 1996]. De-

spite extensive and promising work in the tumor segmentation field, obtaining accurate and reliable

segmentations of brain tumors remains a difficult task.

Segmentation methods can be grouped in two categories: surface and region-based approaches.

The objective of surface based methods is to find the organ or tumor’s boundary by propagation a

curve/surface with a flow that is determined according to curvature and image constraints (generally

the image gradient). Snakes and level sets are typically used in this context. The former defines

the object’s boundary explicitly as a parametric curve, while the latter defines the contour via an

implicit function allowing for more complex geometries and topological changes.

Region based methods consider the segmentation problem from a different angle. Here, the

goal is to identify all voxels belonging to the object and separate them from the rest of the image.

Early work relied on fuzzy clustering to regroup similar voxels but quickly showed limitations.

Supervised statistical pattern classification techniques have been the basis of the majority of recent

region based tumor segmentation methods. The voxels are separated by a classification score or

25



26 CHAPTER 2. BRAIN TUMOR SEGMENTATION

Figure 2.1: Examples of different DLGG appearances on FLAIR T2 MRIs.

probability, the ultimate goal being to label each pixel of the image as tumor or background. The

tumor is frequently separated into active tumor, necrosis and an additional class is introduced in

the context of fast growing tumors for the induced edema around the tumor. The obtained segmen-

tations are refined by the use of graph based methods that model spatial dependencies and prior

anatomical knowledge.

The remainder of this chapter is organized as follows: section 2.2 consists of an overview

of the different medical imaging modalities used for brain imaging on which the segmentation

algorithms are applied, followed by a review the different existing tumor segmentation methods

(including, but not limited to DLGG segmentation methods) in the remaining sections. Section

2.3 will be dedicated to surface based methods while Section 2.4 will present the region based

methods for tumor segmentation. Section 2.5 will focus on Atlas based tumor segmentation, a

method that relies on the registration of a healthy anatomical or probabilistic reference image to

incorporate prior anatomical knowledge in the segmentation process and has been getting more and

more attention in the recent years.

2.2 Brain Imaging

There exists a variety of different imaging modalities that enable the study of the brain. This section

presents a brief overview of the different imaging methods, then focus on Magnetic Resonance

Imaging (MRI) which is the most common modality for brain tumor observation.

2.2.1 Imaging modalities

Brain Imaging modalities can be grouped in two categories according to the information being

captured by them: structural and functional imaging. The structural or anatomical modalities aim

at visualizing the different structures and tissues of the brain. Among them, the most popular for

Neuroimaging studies are the Computed Tomography (CT) and MRI. CT imaging relies on X-ray

technology that is based on the absorption of X-rays beams as they pass through the different tissues

of a patient’s body. CT scans are constructed by using a series of X-ray beams that rotate around
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the patient’s head. Each beam yields a 2D image at a specific angle that are used to construct a 3D

volume by tomographic reconstruction. CT scans are well contrasted and high resolution images.

The main drawback of this technique is the the fact that it uses ionizing radiation.

MRI relies on the magnetic property of the hydrogen nuclei present in large quantity in the

human body. It is the modality of choice for brain studies due to its high tissue contrast and details

and non ionizing property. In the recent years, new techniques have developed such as Diffusion

Tensor Imaging (DTI). This modality enables the reconstruction of the white matter tracts connect-

ing the different parts of the neural networks in the brain by measuring the anisotropic diffusion of

water inside the tissues. The presence of a tumor could have a direct impact on the fibers structures

by causing disruption, displacement or infiltration of the fibers [Wei 2007]. Modalities such as MR

spectroscopy (measurement of major metabolites in tumor tissue) and Perfusion MRI (measure-

ment of the relative cerebral blood volume using a contrast agent) provide additional informations

for the diagnosis and study of brain tumors [Soffietti 2010].

The goal of functional imaging is to study the human brain’s function based on physiological

changes caused by the brain’s activity. Electroencephalography (EEG) and Magnetoencephalogra-

phy (MEG) are techniques that offer means of directly measuring the brain activity. EEG detects

the electrical impulses in the brain due to the neuronal activity via electrodes placed on the scalp.

MEG measures the magnetic flux changes using sensors positioned closed to the scalp. The meth-

ods are popular due to their simplicity, the fact that they are non invasive and their very high

temporal resolution. Determining precisely the spatial origin of the observed signal is however

difficult.

Position Emission Tomography (PET) and Single Photon Emission Computed Tomography

(SPECT) are nuclear imaging techniques that measure changes in the cerebral blood flow and

tissue metabolism and how it is altered by brain disorders. A biological molecule is marked with a

radioactive isotope and injected in the bloodstream and accumulated in areas where the molecule

has affinity. The advantage of this method is that the radioactive tracer can be designed specifically

to target specific organs or processes related to an illness. For instance, a radioactive isotope

typically used is the Fluorodeoxyglucose (FDG) that behaves like glucose molecules and therefore

is able to trace the brain’s metabolic activity. However, the technique is invasive and potentially

harmful due to the use of radioactive tracers while at the same time producing the isotopes is costly

and difficult. Nowadays, CT and PET technologies are being combined in one device, allowing to

combine the anatomical information recovered from the CT scans with the metabolic information

given by the PET scans.

Functional MRI (fMRI) exploits the Blood Oxygen Level Dependent (BOLD) contrast [Ogawa 1990]

to detect changes in the neuronal activity induced by sensorimotor or cognitive tasks. Neuronal

activation causes an increase of the blood flow to compensate the oxygen consumption and there-

fore reduces the amount of deoxygenated hemoglobin molecules. The detection of changes in

hemoglobin oxygenation relies on the paramagnetic properties of the deoxygenated hemoglobin

which impacts the measured NMR signal. fMRI is often used for tumor surgery planning in order

to identify the spatial relationship between the lesion and the functional area and evaluate the cor-

responding risks. Time constraints in the acquisition of the signal cause the fMRI images to be of
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lower quality than the structural MRI.

Functional imaging is particularly important for brain tumor surgery planning. It enables to

establish a relationship between the lesion and the functional area and plan the surgery accordingly

(extent of resection, awake craniotomy...).

2.2.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging is one of the most popular medical imaging modalities. It has the

advantage of being a non invasive and non ionizing technique that produces images with excellent

tissue contrast, making it the modality of choice for brain (and more specifically brain tumors)

study. MRI is based on the principle of Nuclear Magnetic Resonance (NMR), that is commonly

used in spectroscopy to study the physical and chemical properties of molecules.

2.2.2.1 Physical principles

MRI relies on the magnetic properties (nuclear spin) of the hydrogen nuclei present in high quan-

tities in the human body. The hydrogen nuclei spins around its axis, leading to the creation of an

electromagnetic field. In natural condition, the spins’ orientation is random and therefore, the total

magnetic field is null. When placed into a large magnetic field B0, the nucleis’ spins align along

(positive spin) or against (negative spin) the external field. The spins precess around the magnetic

field’s axis with a precession frequency or Lamor frequency ω0 proportional to the external field:

ω0 = γB0 (2.1)

The magnetic vector of spinning nuclei can be expressed through the longitudinal component (Mz ,

parallel to B0) and the transverse component (Mxy , perpendicular to B0). In practice, the num-

ber of positive spins is slightly higher than the number of negative spins, yielding a longitudinal

magnetization Mz . Since the spins do not precess in phase, the transverse magnetization is null.

When a radiofrequency (RF) pulse B1 is introduced at the resonance frequency ω0, there is

an exchange of energy between the nuclei and the RF pulse which affects the spin equilibrium

(phenomenon known as resonance). This causes the net magnetization vector to tilt away from the

longitudinal axis and the creation of a transverse magnetization that can be measured by a receiver

coil. In practice, the pulse B1 is perpendicular to B0, which causes the longitudinal component to

be null at resonance and the transverse signal to be the strongest possible.

When the RF pulse is turned off, the nuclei progressively returns to equilibrium (relaxation

phenomenon). During relaxation, the absorbed electromagnetic energy is retransmitted and consti-

tute the NMR signal. Two different kinds of relaxation processes are observed: longitudinal and

transverse. The longitudinal relaxation corresponds to the spin-lattice (surrounding tissue) inter-

action. The spin returns to its equilibrium state (alignment with the magnetic field B0) by giving

energy to the lattice. The recovery of the longitudinal magnetism follows an exponential curve

and is characterized by a tissue specific time constant T1 after which 63 % of the final value is
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(a) (b) (c)

Figure 2.2: Impact of an magnetic field B0 on the spins’ magnetization. (a) Random spins ori-
entation, (b) alignment with the external field, (c) spin precession around B0. Images taken from
[Puddephat 2002]

recovered.

Mz = M0(1− exp(−
t

T1
)) (2.2)

M0 is the net magnetization at equilibrium that depends on the proton density and the strength of

the external magnetic field. The transverse relaxation describes the spin-spin interaction and cor-

responds to the spins getting out of phase. This yields an exponential diminution of the transverse

component characterized by a tissue specific time constant T2.

Mxy = Mxy0 exp(−
t

T2
) (2.3)

Mxy0 is the amplitude of the transverse signal following the RF pulse. When the RF pulse is

perpendicular to B0, Mxy0 is equal to M0. In practice, T2 is always smaller than T1. The two

constants are the key for the image contrast and definition of the different MRI sequences.

2.2.2.2 Image Sequences and DLGGs Imaging

An MRI sequence is characterized by two parameters. The Echo Time (TE) is the time between

the RF pulse and the signal measurement, and the Repetition Time (TR) is the time between two

RF pulses. After each RF pulse, the received NMR signal shows the evolution of the transverse

component during relaxation. The signal oscillates at the resonance frequency and its envelope

decays following an exponential rule. The initial amplitude corresponds to the magnitude of the

longitudinal component and impacts its recovery status. The signal will be strong if the longitudinal

component has been well recovered.

TR defines the time between two pulses and therefore the time allowed for longitudinal recov-

ery. If TR is short, the longitudinal magnetization of tissues with a long T1 will not have time to

recover completely and their initial signal will be weaker, while the signal of tissues with a small
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(a)

Time

(b) (c)

Figure 2.3: Impact of TE and TR on the NMR signal [Buxton 2009]. (a) NMR signal, amplitude
dependent on T2, (b) Impact of TR on the initial amplitude of the signal, (c) longitudinal magneti-
zation dependent on TR and T1.

T1 will be higher (large magnetization). This defines the T1-weighted modality, where the image

contrast between tissues is defined by their T1 constant value. The image contrast no longer de-

pends on TR when TR is set long enough so that complete longitudinal recovery is achieved for all

tissues (same initial magnitude M0). A long TE renders the image dependent on the transverse re-

laxation time T2. The signal will be weaker for tissues that have faster transversal decays (small T2

value). The T2-weighted images are obtained in this manner. Eventually, T1 and T2 are no longer

discriminant parameters when TR is long and TE is short. This yields the Proton Density weighted

image, where the strength of the signal depends on the strength of the acquired magnetization M0

(dependent on proton density).

Brain tumor segmentation algorithms often exploit the different modalities to include maximal

information. Visualization of brain tumor on T1 or T2 images alone is far from ideal. The tumors

appear hypointense or normal on T1 images, and are therefore hard to detect and delineate. Better

detection can be achieved by the injection of contrast agents, the most common being gadolinium

contrast agents. It results in a tumor that is hyperintense in T1 images. However, complete en-
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(a) (b)

Figure 2.4: Contrast enhancement of High grade gliomas. (a) T1 weighted image, (b) contrast
enhanced T1 weighted image.

hancement is far from systematic especially in the context of DLGGs. About 20 % of DLGGs

display a patchy and faint contrast enhancement. Contrast enhancement can also be associated

to anapestic transformation. Therefore, methods that depend on contrast enhancement can only

segment a subset of tumors and very few DLGGs. Contrarily to T1 images, the tumor appears

hyperintense on T2 images and can be well visualized. The contrast is poor though, due to the high

signal intensity of fluids which can be similar to the tumor’s intensity.

Another popular sequence for the observation of brain tumors is the T2 FLAIR (Fluid Attenu-

ated Inversion Recovery) sequence. This sequence is constructed by initially flipping the longitudi-

nal magnetic field Mz in the opposite direction using an additional electromagnetic pulse oriented

at 180◦ from the original field B0. This pulse is followed by a longitudinal relaxation to return to

the equilibrium, passing through the null value. An additional time constraint TI (Inversion Time)

determines when the perpendicular RF pulse is added. It is possible to suppress certain tissues’ sig-

nal by choosing TI so that it corresponds to the time when the signal magnitude is null. In FLAIR

sequences, TI is set in order to suppress the high cerebrospinal fluid (CSF) signal in T2 images.

The FLAIR sequence is one of the best contrasted modalities to visualize brain tumors and is the

gold standard for DLGG observation [Bynevelt 2001].

An additional difficulty inherent to MR images is the problem of intensity inhomogeneity. The

problem, caused by imperfections in the image acquisition process (instrumentation limitations or

patient motion), is observed from one acquisition to the next and even within the same acquisition

(bias field corruption)[Sled 1998]. This phenomenon can cause strong misclassifications when the

segmentation technique relies on the observed intensity and/or on training data. Many algorithms

have been developed in order to correct those inhomogeneities [Nyúl 1999, Vovk 2007], but the

problem becomes even more difficult in the presence of a pathology since it can have similar visual
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(a) (b) (c) (d)

Figure 2.5: Images sequences for the visualization of a Low grade glioma. (a) T1, (b) T1 contrast
enhanced (no enhancement of the tumor), (c) T2, (d) FLAIR images.

behavior as bias field corruption.

2.3 Surface Based Segmentation: Deformable models

Deformable models have their origins on Snakes or Active Contours in [Kass 1988]. The object

contour is represented as an explicit parametric surface S : R → R
3 that evolves from an initial

configuration towards the optimal solution according to internal and external energy forces. The

internal energy imposes smoothness and regularity of the curve while the external energy is based

on the image features, guiding the curve towards locations of large gradient (object boundaries).

The optimal contour is obtained by minimizing the energy functional. Despite the appeal and

popularity of the concept, it suffers from several drawbacks, notably its sensitivity to initialization

and tendency to get trapped in local minima, and inability to handle topological changes between

the initial and the final configuration due to the explicit representation.

The level set method [Osher 1988] was introduced in medical imaging in [Malladi 1995]. It

constitutes an elegant way of dealing with the inherent limitations of point-based snakes representa-

tions and in particular the handling of topological changes. It consists of an implicit representation

of the object contour as the zero level set of a function Φ(x, t) of higher dimension. The implicit

function is designed so that it is positive outside the contour and negative inside, and commonly

set as the signed distance from the contour.

S = {x|Φ(x, t = 0) = 0} (2.4)

This yields an attractive formulation for shape modeling [Leventon 2000, Chen 2002, Rousson 2002]

and image segmentation that handles topological changes as well as complex geometries and does

not depend on the contour’s parametrization. The evolution of the surface follows the surface’s

normal direction with a speed F, and is governed by a Partial Differential Equation:

∂Φ

∂t
= F (t)|∇Φ| (2.5)
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Figure 2.6: Level set of an implicit function u and corresponding curve C [Leventon 2000].

The design of the speed function F is an essential aspect of the framework and one of the strongest

challenges of the method. Such a speed function can be either the natural outcome of a minimiza-

tion process or can be directly introduced depending on the nature of problem being considered. In

the most general case it is the sum of two terms: an image term FIm and a curvature term.

F (t) = Fim + γ∇
∇Φ

|∇Φ|
(2.6)

The mean curvature term is a smoothness term which aim is to prevent leakage of the level set

in noisy and indistinct areas. The parameter γ determines the amount of smoothing and is of key

importance as a value too high would lead to under segmentation.

Despite extensive work in the medical imaging domain, the use of level sets for the segmen-

tation of brain tumors is limited. The main drawbacks of the level set framework is its sensitivity

to initialization and parameter setting as well as the computational burden of solving the partial

derivative equation. In order to enable interactive parameter tuning, Droske et al. [Droske 2001]

proposed an adaptive multi grid framework allowing for almost real time feedback on the curva-

ture terms and front evolution speed. They adopt the Fast Marching Algorithm [Sethian 1996].

Assuming the speed function is always positive and the surface is initialized inside the tumor, the

evolution of the contour will always be outwards. This allows to compute the arrival time T (x) of

the front on a voxel x. This converts the problem into solving the so-called Eikonal equation:

|∇T |F = 1 (2.7)

The method is accelerated by considering an adaptively sampled grid (the highest resolution cor-

responding to the voxel level) based on the local image homogeneity evaluated using the image

gradient. Similarly, Lefohn et al. [Lefohn 2003] used GPU programming to reduce the running

time, enabling interactive handling of the free parameters. Both methods used simple image terms

based on image gradient and contrast that are sensitive to image noise and unclear boundaries,

which enforces the need for expert supervision.
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Figure 2.7: Figure extracted from [Droske 2001]. Adaptive grid sampling, progressively con-
structed as the front progresses. The colors indicates the arrival time of the propatation (from blue
(early) to red)

Ho et al. [Ho 2002] proposed an fully automatic 3D level sets framework that relies on region

based methods [Zhu 1996, Chan 2001, Paragios 2002]to avoid manual initialization and parameter

tuning. An initial separation of the (enhanced) tumor and background pixels is performed by

fuzzy classification, used for initialization of the surface. Classification is performed by fitting two

distributions to the histogram of the pre and post gadolinium enhanced T1 weighted MRI images

difference.The derived probabilities are then used to guide the evolution of the level set function in

a region competition manner:

Fim = α(Ptum(x)− Pbg(x)) (2.8)

The method was applied to glioblastomas and meningiomas. The performance of the method

depends heavily on the quality of the classification and while it also requires contrast enhancement.

A similar region competition level set framework was presented in [Popuri 2012]. A series of

features are extracted from the images (multi modal intensities, Gabor features for texture infor-

mation and brain hemispheres symmetry) and used to perform an initial classification of the image

using K-means clustering [MacQueen 1967] (see section 3.2.2). The contour evolution is guided

by the clusters value probabilities combined with a Dirichlet prior which role is to penalize clus-

ters that are predominant in the healthy brain and wrongly assigned to the tumor region. A post

processing step to remove CSF and skull misclassification was added. The method was tested on

15 multi modal MRIs (T1, T1 contrast enhanced (T1CE), and T2).

Taheri et al. [Taheri 2010] combined adaptive image thresholding with level sets segmentation.

The level set was initialized inside the tumor area, leading to an initial guess of the threshold value.

The threshold value was then iteratively updated based on the current segmentation. The contour

evolves based on the signed intensity difference with respect to the threshold value, and stops when

the variation of the threshold from one iteration to the next is lower than a predefined parameter.

This approach assumes relatively strong intensity difference between tumor and background.

Deformable models are attractive methods that have proven to handle complex geometries and

produce smooth and precise segmentations. They suffer however from several drawbacks that

reduce their interest for the difficult problem of tumor segmentation. Their main weakness is their
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sensitivity to initialization and parameter selection. Interactive parameter tuning and initialization

is promising, but implies extensive user work and is dependent on the user’s knowledge. The

combination with region based approaches enables automation but renders the final segmentation

strongly dependent on the quality of the classification scores.

2.4 Region-Based Segmentation

Region-based segmentation methods aim at directly identifying the tumor voxels instead of finding

the tumor’s surface. We distinguish unsupervised classification that is solely based on the image’s

appearance and properties, from supervised classification where the separation criteria are learned

from a labeled training set. Both approaches have been considered for tumor segmentation and will

be reviewed in this section.

2.4.1 Classification methods

2.4.1.1 Unsupervised Classification and Knowledge based Methods

Unsupervised classification relies on intrinsic properties of the samples. Those methods were

among the first considered due to their simplicity and the fact that classification is performed solely

based on the observed samples without the need for labeled training data. The concept of cluster-

ing is to regroup observations into groups (clusters) with similar properties. Early work in tumor

segmentation relied on clustering to classify the image into different categories. We distinguish

hard clustering where each sample belongs to only one cluster from fuzzy clustering, where each

sample is assigned a membership score for each cluster.

Phillips et al. [Phillips 1995] proposed fuzzy clustering to perform automated glioblastoma

segmentation. The method adopted is the Fuzzy-C-means (FCM) algorithm [Dunn 1973, Bezdek 1981].

This is an unsupervised clustering technique derived from the well known hard clustering K-means

algorithm, with the difference that the cluster membership is probabilistic. Fuzzy partitioning is

carried out by minimizing of the sum of weighted distances between the samples and the cluster

centers:

Jm =
n∑

1

K∑

1

umij‖xi − cj‖
2 (2.9)

where K is the desired number of clusters (tissue classes), cj is the center of cluster j and uij is the

degree of membership of sample xi in cluster j that verifies:

C∑

i=1

umij = 1 ∀j

n∑

j=1

umij > 0 ∀i

(2.10)
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After initialization of the memberships, the clustering is obtained via an iterative process, alternat-

ing between computation of the cluster centers (as the mean of all points weighted by their mem-

bership) and of the cluster memberships. The samples were clustered based on their multispectral

intensities values (T1, T2 and Proton Density). Numerous misclassifications were observed, which

revealed the strong intensity overlap between the healthy tissue and the tumor as well as the insuf-

ficiency of the algorithm alone to perform meaningful segmentation.

Clark et al. [Clark 1998] proposed a knowledge based automated segmentation method on

multispectral MRI data for the 2D segmentation of enhanced glioblastomas. After learning an

ensemble of rules on a training set of 17 slices, an initial segmentation of each slice is performed

using Fuzzy C-Means clustering. The predefined rules enable to identify the abnormal slices to

be further processed. After adaptive histogram thresholding based on the pixels mutli spectral

intensities, the obtained segmentations are post processed based on the different heuristics. A

similar system was developed in [Fletcher-Heath 2001] for non enhancing tumors by defining a

different set of heuristics.

The quality of the segmentation depends strongly on the definition of the knowledge system,

which should be general yet precise enough to obtain good segmentations for a broad range of

tumors. The need for important expert guidance to define the system as well as the limited success

on noisy or heterogeneous tumor have reduced the appeal of such approaches and highlighted the

need for more elaborate methods.

2.4.1.2 Supervised Classification

Despite the theoretical and practical value of unsupervised classification, it has quickly shown

limitations in the separation of object with complicated and heterogeneous appearances such as

tumors. As a result, supervised classification techniques have become increasingly popular in

the segmentation field. The idea is to learn a classifier from a set of pre labeled data and an

ensemble of image features. Consider an ensemble of training pairs {xi, yi} where xi corresponds

to an observation (typically an image voxel) and yi to a label ({−1, 1} in the context of binary

classification). Each pair is associated to a feature vector f(xi). Based on these training samples,

a mapping function is learned and constitutes what is called a classifier. In its simplest form, the

set of image features can the image intensities. Supervised classification involves a training phase

during which the classifier is learned based on the labeled training set, followed by a testing phase

during which a new unlabeled sample is assigned a label based on its features and the classifier’s

rules.

Vinitski et al. [Vinitski 1997] used multispectral (T1,T2 and Proton density) k Nearest Neigh-

bor (kNN) classification for the segmentation of benign and malignant brain tumors. Each voxel

is associated with a 3 dimensional vector corresponding to the intensities observed in the 3 differ-

ent modalities. The training set consists of samples from the scan to be segmented (voxels) that

are manually selected and labeled by an operator. A probability per class is then assigned to each

unlabeled voxel based on the classes of its k closest samples, the k parameter being set manually.

This relatively simple method requires manual selection of samples on every image to segment and
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Figure 2.8: Illustration of the kNN clustering approach. We aim at classifying the black sample as
either a blue square or red circle. Setting k=5 selects the circle class, while k=8 (dashed circle)
selects the other class.

assumes homogeneity of the classes. Furthermore, it is sensitive to the choice of k, as illustrated in

Fig. [2.8].

The most popular supervised classification method for brain tumor segmentation has undoubt-

edly been the Support Vector Machines (SVM) [García 2004, Verma 2008, Zhang 2004]. Intro-

duced in [Boser 1992] for linear binary classification, it has become main stream in machine learn-

ing and pattern recognition. Given a set of training samples {xi, yi}, the SVM method seeks a

hyperplane {x| < w,x > +b = 0} defined by its normal vector w and the offset b, that separates

the two different classes. The optimal hyperplane is chosen so that it maximizes the margin be-

tween the plane and the closest samples. The Support Vectors are the samples that are the closest

to the hyperplane and therefore determine its position. In practice, the data is rarely linearly sep-

arable. Non linear separation is performed by mapping the data into a higher dimensional feature

space x → Φ(x). The optimal hyperplane is then found by minimizing the following objective

function:

min
w,ξ,b

1

2
‖w‖2 + C

n∑

1

ξi

s.t. yi(w · Φ(xi)− b) ≥ 1− ξi

(2.11)

where ξi are slack variables introduced to allow mislabeled samples, perfect separation being rarely

possible when dealing with noisy data such as medical images. This optimization problem is

solved using the Lagrangian formulation, where unknown variables αi (lagrange multipliers) are

introduced for each constraint. The support vectors are the samples that have non zero weights αi.

Ln =
∑

i

αi −
1

2

∑

i

∑

j

αiαjyiyjΦ(xi)Φ(xj) (2.12)

Finding the appropriate mapping can be difficult, while the complexity of the algorithm aug-

ments with the size of the feature space. It becomes unnecessary when defining a kernel function
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Figure 2.9: Illustration of the SVM approach.

K(xi,xj) = Φ(xi)Φ(xj) that directly computes the dot product of the feature vectors. Using such

a formulation, the problem becomes solely dependent on the number of samples, it is therefore pos-

sible to operate with a feature space of infinite dimension. Eventually, the classification decision

of a new sample is recovered as:

h(x) =
∑

i

αiyiK(xi,x) + b (2.13)

The SVMs being by definition binary classifiers, extension to multiclass classification is not straight-

forward. Current methods either use a hierarchical approach or a one vs all approach [Duan 2005].

Another popular classification algorithm is the AdaBoost algorithm. Boosting is a general

machine learning method which goal is to improve the accuracy of any learning algorithm. Ad-

aBoost (short for Adaptive Boosting) is the most popular boosting algorithm and was introduced

in [Freund 1997]. It relies on the concept that a classifier with high discriminative performance

(strong classifier) can be constructed as a weighted linear combination of weak classifiers. The

most commonly used weak classifiers’ structures are decision stumps or tree structured classifiers.

The simplest classifier is preferred to maintain the speed of the algorithm. The weak prediction

rules are learned iteratively by minimizing the classification error with an increased focus on mis-

classified samples at each new iteration. Several variants of the Adaboost algorithm have been

developed, among them the Gentle Adaboost algorithm [Friedman 2000] that will be further de-

tailed in section 3.3.1. The popularity of the algorithm can be explained by its simplicity, flexi-

bility and speed. An example of AdaBoost being applied for tumor segmentation can be found in

[Xuan 2007].

Recent work on Decision Forests (or Randomized Forests) showed strong promises [Zikic 2012,

Geremia 2012]. The concept was introduced in [Breiman 2001] and corresponds to a collection of
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tree structured classifiers (decision trees). A decision tree consists of a set of binary rules that pro-

gressively split the data into smaller sets based on their features values. Starting at the root node,

the complete training data X is split and assigned to either the left XL or right XR child node. The

split is chosen among a randomly selected set of possible splits regarding the feature values so that

it maximizes the information gain:

I = −
XR

X
H(XR)−

XL

X
H(XL) (2.14)

where H(.) is the entropy calculated from a histogram of class values. The same process is repeated

until the tree reaches a predefined depth d. Each leaf node (terminal node of the tree) is associated

with a probability that corresponds to the fraction of the data of class c that has been assigned to the

node. Several decision trees are learned in a similar fashion and the forest consists of the ensemble

of those trees. During testing, the test data is pushed through all the decision trees by applying the

different separation rules. Each tree yields a probability per sample and class based on the reached

leaf node. The forest probability in then computed as the average probability over all the trees.

Decision forests are inherently multi-class classifiers, robust to overfitting and fast, making them

an appreciated classification approach.

A key element of the SVM, Adaboost or Decision forest algorithms is the design of the fea-

ture vector that should discriminate between healthy and diseased samples. The most straight-

forward features are intensity based, such as the multi modal intensities, intensity patches around

the sample (to incorporate neighborhood information) on which first order statistical moments

are often computed (mean, variance or entropy to name a few). Features related to the image

texture have also been popular, among them the Haralick features [Haralick 1973], or the Gabor

features [Manjunath 1996]. Xuan et al. [Xuan 2007] exploit the symmetry between the brain hemi-

spheres by computing the intensity difference between the left and right hemisphere. Zikic et al.

[Zikic 2012] use preliminary classification results obtained by modeling the data as a mixture of

Gaussians and context aware features such as the intensity range along a 3D line. In the specific

case of SVMs, kernel mapping can be used instead of (or combined with) the feature vector.

Despite the promises of supervised pattern classification methods, they are constrained by the

i.i.d (independent and identically distributed) assumption that treats all samples independently.

This leads to noisy and irregular segmentations that could be barely compensated by the introduc-

tion of neighborhood or context aware information in the feature vector or post processing with

morphological operators. Those limitations have motivated the use of more elaborated models that

take into account the spatial interaction between neighboring pixels. Graph based approaches offer

an elegant and flexible way of doing so, modeling the spatial interactions as edges connecting the

pixels.

2.4.2 Graph based Segmentation

The main idea behind graph based segmentation is to consider the image as an undirected graph

G = (V, E), that consists of a set of nodes V = {1, 2, .., N}, corresponding to each voxel of the
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image, and a set of edges E = (i, j) ∈ V , that represent the dependencies between the nodes.

Typically, the edges only connect the adjacent nodes (4-neighborhood in 2D, and 6-neighborhood

in 3D).

2.4.2.1 Affinity based Segmentation

The most natural way of exploiting such a graphical formulation is to partition the graph into

connected components of similar properties. In such methods, the edges encode an affinity measure

wi,j that represent the similarity between the connected nodes i and j. The problem of graph

partitioning can be seen as the search for m disjoint sub graphs {V1, ..,Vm}, m being the number

of sought classes, that verify V = ∪mi=1Vi and ∩mi=1Vi = ∅. The subgraphs are constructed by

cutting the edges between them and constitute ensembles of vertices with strong affinities.

Considering the binary case, the cost of partitioning the graph into subsets A and B can be

computed as the total affinity of the removed edges, called the cut of the graph:

cut(A,B) =
∑

i∈A,j∈B

wi,j (2.15)

The optimal bipartition of the graph minimizes this cut value. The minimum cut method was used

in [Wu 1993] for image segmentation as a clustering problem, seeking the smallest k − 1 cuts

among all possible cuts to form k disjoint subgraphs. Despite promising results, it highlighted the

tendency of the method to favor smaller subgraphs leading to inadequate segmentations. This led

to the introduction of Normalized Cuts [Shi 2000] that compute the cost of a cut as a fraction of

the total edges connections to all nodes in the graph:

Ncut(A,B) =
cut(A,B)

assoc(A,V)
+

cut(A,B)

assoc(B,V)
(2.16)

where assoc(A,V ) =
∑

i∈A,j∈V wi,j is the sum of the connection weights from all nodes in A

to all the nodes in the graph. The optimal Ncut can be approximated by eigenspectrum analysis

[Shi 2000].

Affinity based segmentation has drawn limited interest for tumor segmentation. [Moonis 2002,

Liu 2005] proposed interactive affinity based segmentation methods that rely on fuzzy theory. After

manual selection and labeling of seeds, the affinity between neighboring voxels is computed. The

smallest affinity value represents the strength of connectivity of a path from voxel i to voxel j.

Eventually, the strength of connectivity between both voxels is set as the largest path among all

possible paths from i to j. The tumor is segmented as the voxels that are connected to the tumor

seeds with a strength larger than an empirically chosen threshold.

Corso et al. [Corso 2008] proposed a hybrid approach between Bayesian classification and

graph partitioning for segmentation of glioblastomas. The affinities are defined in a probabilistic

fashion so that they are class dependent:

P (Xij |i, j) =
∑

ci

∑

cj

P (Xij |i, j, ci, cj)P (i|ci)P (j|cj)P (i, j) (2.17)
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Figure 2.10: Illustration of the SWA algorithm extracted from [Corso 2008].

where Xij is the binary event describing if nodes i and j are assigned to the same class. The

likelihood probabilities P (i|ci) are learned as mixtures of Gaussians and lower the affinity if the

class assignment is unlikely. The first term P (Xij |i, j, ci, cj) is the affinity function weighted by

a class dependent parameter learned over a training set. Graph partitioning relies on the Segmen-

tation by Weighted Aggregation (SWA) algorithm, a multilevel hierarchical approach proposed in

[Sharon 2006] for Normalized cuts partitioning. An initial high resolution graph G0 (one node per

voxel) is progressively coarsened by aggregating nodes that have strong affinities. Weights are up-

dated by interpolation and edges are constructed if the weights are positive. The algorithm stops

when the coarsened graph is made of one single node or if there are no connections between the

remaining nodes. At each level, structures of different scales are extracted. In [Sharon 2006] they

are recovered by associating each voxel with the most salient segment (lowest normalized cut) of

which it is a part in the pyramid. This segment recovery method has been that successful in the

context of medical images. Corso et al. [Corso 2008] proposed computing the maximum likeli-

hood at each level weighted by the inter-level interpolation weights. The method was tested for the

segmentation of multi spectral glioblastoma images (T1 pre and post contrast, T2 and FLAIR) into

4 classes (tumor, edema, brain and background).

2.4.2.2 Markov Random Fields

MRFs where first introduced into vision in [Geman 1984] for image restoration, and have since

been one of the most popular undirected graphical model in the domain. They have been success-

fully applied to a broad range of applications [Kolmogorov 2002, Boykov 2006, Komodakis 2007b,

Glocker 2008a].

Let X = {X1, ....,Xn} be a set of random variables defined on V , each variable Xi taking a

value li in a label space L. A joint event {X1 = l1, ...,Xn = ln} is called a configuration and
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abbreviated as X = l, where l = {l1, ..., ln}. We denote P (X = l), , abbreviated as P (l), the joint

probability of a configuration. A random field is a Markov Random Field on a graph G if the two

following conditions are satisfied:

Positivity: P (l) ≥ 0 ∀l ∈ L

Markov Property: P (li|lV−{i}) = P (li|lN (i))
(2.18)

N (i) is the neighborhood system defined as: N (i) = {j|i, j ∈ E}. The Markov property imposes

that the conditional distribution of a variable is only dependent on its neighbors. The problem of

image segmentation is reformulated as a labeling problem, where the goal is to assign a label to

each node (voxel). The labels correspond to the different image classes. For binary classification,

the label set is defined asL = {0, 1}. The optimal labeling should maximize the joint configuration

probability:

l̂ = argmax
l

P (l) (2.19)

The Hammersley-Clifford theorem [Besag 1974] establishes the equivalence between an MRF and

a Gibbs distribution, allowing to link the local conditional probability to a global probability on the

whole distribution:

P (l) =
1

Z
exp

(

−
1

T

∑

C

VC(lC)

)

(2.20)

Where T is a constant called the temperature (holdover from the formulation’s origins in statistical

physics) typically set to 1 and Z is a normalizing constant called the partition function:

Z =
∑

L

exp

(

−
1

T

∑

C

VC(lC)

)

(2.21)

C denotes a clique that is a fully connected subgraph and VC(.) is an energy function defined on

the subset defined by the clique, called the clique potential. The estimation of the partition function

is computationally intractable. It is not critical for inference, but becomes important for learning

since it depends on the model’s parameters. It can be avoided for inference by working in the

energy domain and minimizing the energy function:

E(l) =
∑

C

VC(lC) (2.22)

Considering cliques of size up to two leads to the well known pairwise MRF energy:

E(l) =
∑

i∈V

Vi(li) +
∑

i∈V

∑

j∈N (i)

Vi,j(li, lj) (2.23)
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MAP-MRF Framework

The MAP-MRF framework relates to Bayesian statistics, where one seeks an optimal labeling

given an observed image I by maximizing the Maximum a Posteriori probability P (l|I). Following

Bayes rule, the posterior probability is linked to the joint probability as:

l̂ = argmax
l

P (l|I) ∝ P (I, l) = P (I|l)P (l) (2.24)

where the prior probability P (l) is modeled as an MRF. Typically, only pairwise cliques are

considered, but higher order cliques can also be considered to incorporate more elaborate prior

knowledge. Conditional independence of the voxels is assumed given their label class ( P (I|l) =
∏

i(P (I(i)|li)) [Besag 1986]. The MAP estimate of the posterior probability is equivalent to min-

imizing the corresponding energy function:

E(l) =
∑

i

−log(P (I(i)|li)) +
∑

i

∑

j∈N (i)

Vi,j(li, lj) (2.25)

The singleton potential is the data term or likelihood potential that measures the cost of assigning a

label. The pairwise potential is a regularization prior ensuring local consistency and smoothness of

the labeling. The MRF formulation allows flexibility in the design of the energy potentials, which

are the key aspects of the model. One of the most simple and popular spatial interaction model

is the homogeneous and isotropic Potts model (or Ising model for binary labelings) that penalizes

different segmentation labels between neighbors:

Vi,j(li, lj) = β(1− δ(li, lj)) (2.26)

where δ(., .) is the Kronecker delta function and the parameter β determines the amount of regu-

larization. The likelihood potential is usually modeled using pattern classification techniques, the

role of the MRF prior being to counterpart the i.i.d assumption of those approaches. Conditional

Random Fields (CRF) [Lafferty 2001] differ from MRFs by the fact that they are globally condi-

tioned on the observation I. They are thus discriminative models that directly model the conditional

posterior probability, allowing to incorporate information from the observed variables with more

flexibility. Notably, it allows the definition of a pairwise regularization term that is dependent on

the observation.
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MRF Optimization

Inference of MRFs/CRFs is a challenging task and many algorithms have been developed to

tackle the problem. Among the earliest methods, we can cite the Iterated Conditional Modes (ICM)

[Besag 1986] and simulated annealing (SA) [Kirkpatrick 1983]. ICM performs iterative local op-

timization of the posterior probability. This makes a relatively efficient algorithm that is however

strongly sensitive to initialization. Simulated annealing methods are, on the contrary, more likely

to reach global optima but computationally intractable methods. Nowadays, efficient methods have

been developed that can be separated in two categories: graph cuts based approaches and message

passing methods.

Graph cuts convert the problem of pairwise MRF optimization for binary labeling into a graph

partitioning one by the construction of a directed graph (the s-t graph) where two terminal nodes

(source s and sink t) corresponding to the two different labels have been introduced. An s-t cut

separates the graph into two disjoint sets S and T, each connected to one terminal node. Nodes are

assigned the label associated to the terminal node they are connected to. The graph is constructed

so that the cost of an s-t cut (sum of removed edges’ weights) is equal to the MRF energy given

the corresponding configuration l. The problem is rendered equivalent to the min-cut problem

introduced in section 2.4.2.1. The theorem of Ford and Fulkerson [Ford 1962] is an important

result that states that finding the min-cut is equivalent to finding the maximum flow from the source

s to the sink t (max-flow problem). The max-flow saturates a set of edges that corresponds to the

min-cut. Low complexity methods have been proposed to solve the min-cut/max-flow problem,

among which augmenting path methods [Ford 1962] and push-relabel methods [Goldberg 1988].

A review and comparison of both approaches can be found in [Boykov 2004]. Two limitations of

the method are the restriction to binary labels and the requirement that the pairwise potentials are

submodular in order to reach a global optimum:

Vpq(0, 0) + Vpq(1, 1) ≤ Vpq(0, 1) + Vpq(1, 0) (2.27)

For non submodular functions, a method referred to as Quadratic Pseudo-Boolean Optimization

(QPBO) was considered [Kolmogorov 2007]. QPBO constructs an s-t graph where each node in

the original MRF is represented by two complementary nodes xi and x̄i = 1 − xi. Solving the

graph’s min-cut/max-flow problem yields three types of label: 0,1 or unknown if the label of nodes

xi and x̄i is inconsistent. QPBO provides a partial solution with guarantee that the labeled variables

correspond to the optimal solution.

Extensions to the multi label case were proposed in [Boykov 2001]. They proposed the α-

expansion and α − β swap methods that iteratively optimize the MRF energy by defining a set of

possible moves based on the initial MRF configuration at each iteration, and select the configuration

that locally minimizes the energy. α-expansion allows any node to change its label to α and only

α. α−β swap only allows nodes labeled α to change their label to β and vice versa. Each iteration

corresponds to a binary s-t cut computation. The local minimum recovered by α-expansion is

guaranteed to be within a known factor of the global optimum.
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In [Komodakis 2007b, Komodakis 2008b] a linear programming based method called Fast-PD

was proposed for optimization of MRFs. It relies on linear programming relaxation and primal-

dual gap minimization. The method can be seen as a generalization of the α-expansion method

and is substantially faster. The algorithm is used for MRF optimization throughout this thesis and

a short review of the method will be provided in the next chapter.

Message passing techniques propagate messages across the nodes to evaluate the optimal con-

figuration. Belief Propagation (BP) [Pearl 1988] is an iterative algorithm where at each iteration, a

node p sends a message mpq(l) to node q ∈ N (p) describing how likely the assignment of label

l to node q is. The message is computed based on the messages node p previously received and

the local energy costs. Two kinds of BP algorithms exist: the max-product that estimates the MAP

configuration and the sum-product that computes the marginal probabilities. BP is exact for tree

structured graph where messages are passed from the leafs to the roofs. It is approximate where

the graph contains loops (loopy belief propagation) and there is no guarantee of convergence.

Sequential Tree Reweighted message passing (TRW-S) [Kolmogorov 2006] is a message pass-

ing algorithm strongly related to linear programming relaxation. Here, the solution is sought by

maximizing the dual problem (lower bound) of the relaxed linear integer program. This is done

by splitting the problem into convex subproblems defined as trees. Then, the algorithm consid-

ers each node sequentially and performs belief propagation in each tree it belongs to followed by

an averaging step. In [Komodakis 2007a] a new message passing method was proposed based on

dual decomposition. It relies on decoupling the Lagrangian dual problem into several subproblems

through Lagrangian relaxation. The decoupled subproblems (the “slaves”, defined as subtrees of

the MRF graph) are easily solved using the max-product BP algorithm. The method iterates be-

tween solving the simple subproblems and sending the obtained minimizers to the “master” which

role is to update the slaves parameters (using the projected subgradient method) so that the dual is

maximized.

Applications to Tumor Segmentation

An interactive hierarchical MRF model was presented in [Gering 2002]. An initial inten-

sity based segmentation at the voxel level is progressively refined by incorporating higher level

knowledge. The voxel based segmentation relies on estimation of the MRI bias field using the

Expectation-Maximization (EM) algorithm [Wells III 1996b]. The EM algorithm [Dempster 1977]

is an iterative procedure for the estimation of the maximum likelihood of probabilistic models in

the presence of missing data (also called latent variables). In this work, the missing data are the

tissue classes. The healthy classes intensities (likelihood) are modeled as Gaussian distributions,

while the tumor class is modeled as a deviation from normalcy (minimum intensity distance from

all other classes). The bias field is modeled as a zero-mean additive Gaussian distribution. The EM

algorithm iteratively alternates between two steps: the E-step corresponds to the estimation of the

posterior probabilities given the currently estimated parameters (bias field and Gaussian parameters

here) while the M-step is a MAP estimation of the bias field given the estimated tissue probabilities.

Initialization of the Gaussian parameters is done by the user by selecting representative voxels of
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each class.

The next level refines the obtained classification using an MRF model, whose parameters are

learned from training data. Additional multi level MRF models are then used to refine the classifi-

cation results based on structure size (expected distance from the structures boundaries) and inter

structure distances.

In [Wels 2008], the likelihood term was constructed by Probabilistic Boosting Trees classifica-

tion (PBT) [Tu 2005] and smoothed with an Ising prior weighted by the relative voxels’ intensities.

The idea of PBT is to progressively diminish the complexity of the learning process through a

recursive construction of the classification tree. At each tree node, a strong classifier is learned

using the AdaBoost algorithm. The data is then split and assigned to two child nodes based on

their classification results. This progressively reduces the heterogeneity of the data at each node

and simplifies the classification task. The method was optimized using Graph Cuts and tested for

3D segmentation of 6 multi spectral (T1, T1CE, T2) pediatric MR images.

Lee et al. [Lee 2005] proposed to combine SVM classification with CRF smoothing for tumor

segmentation. The smoothing term was modeled as a penalizing constant between neighboring

nodes weighted by the nodes’ feature vector computed for the SVMs:

Vi,j(li, lj ,x)) = liljν
Tγi,j(x) (2.28)

where γi,j(.) is the weighting function describing the similarity between nodes i and j, and νT is a

node dependent parameter that has to be inferred. The idea is to encourage discontinuities between

neighboring nodes if they display different properties. After learning of the CRF parameters, the

optimization was performed using the ICM approach. The method was tested on 7 patients using

patient specific training for the classifier (the training set consists of extracted slices of the image to

be segmented). To cope with the difficult and time consuming task of learning a CRF’s parameters

(that requires the computation of the partition function), the same group proposed the Pseudo Con-

ditional Random Fields (PCRFs) [Lee 2008]. A logistic regression classifier’s output is smoothed

using two parameter free pairwise potential functions (one for label interaction and the second for

voxel interaction). The learning task is thus reduced to learning the logistic regression’s parameter.

Inference was performed using graph cuts. The system was tested for multispectral (T1, T1CE, T2)

2D segmentation of 11 contrast enhancing tumors and showed similar results with their previous

CRF formulation with the benefit of substantial decrease on the learning time.

Bauer et al. [Bauer 2011] also coupled SVM classification with CRF smoothing. They use a

two stage smoothing, first a 3D regularization that is orientation dependent (weaker in the z axis

due to anisotropic data) to separate tumor from background and second a stronger 2D regularization

on a highly connected neighborhood (8 neighbors in 2D) to perform a 6 classes classification (CSF,

White Matter, Grey Matter, Necrosis, Active Tumor and Edema). They exploited recent advances

in MRF/CRF optimization using the Fast-PD algorithm, yielding a very fast algorithm. The method

was tested on 10 brain tumor patients using multi spectral data (T1, T1CE, T2 and FLAIR).

To conclude, graph based segmentation methods are attractive due to their ability to recover

good optima as well as their modularity and scalability. Markov Random Field models in particu-

lar enable to couple inter node interaction with individual node classification properties. Further-
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more, they are computationally efficient thanks to the recent advances in discrete MRF optimization

techniques. Although prior knowledge can easily be introduced in an MRF formulation, current

methods are limited to local priors that model the dependencies between neighboring nodes. Hi-

erarchical models and position dependent smoothing (CRFs) offer better flexibility and stronger

knowledge but still lack global structural information on the brain.

2.5 Atlas based Segmentation

Atlas based segmentation methods have gained a lot of attention in the recent years for automatic

segmentation of medical images mostly due to the progress made in the field of deformable reg-

istration [Sotiras 2013]. They allow the introduction of prior anatomical knowledge in the seg-

mentation process by registering (i.e. align) an annotated anatomical template or a probabilistic

atlas to the volume to be segmented (target volume). The method is particularly interesting for

the segmentation of brains due to their relatively limited inter patient variability compared to other

organs. When the structures to be segmented are present both in the atlas and target volume, the

task of segmentation is converted into a registration task (the segmentation by registration method)

[Bondiau 2005]. A different approach has to be adopted when the object to segment is a tumor that

is not present in the atlas.

This section will first introduce the problem of medical image registration that is the basis of

atlas construction and atlas based segmentation, followed by a review of the different reference

atlases used for brain segmentation and their construction. Eventually, the existing applications

of atlas registration to tumor segmentation will be reviewed. A more detailed review of some

key deformable registration methods, applied to the context of brain tumors, will be presented in

chapter 4.

2.5.1 Medical Image Registration

Medical Image Registration is, concurrently to image segmentation, among the most active re-

search areas in the domain. It is defined as the process of aligning two (or more) images by

establishing point to point correspondences. Given a floating image J and a fixed image I defined

on a domain Ω, the aim is to find the transformation T that will map the floating image to the fixed

image:

I(x) = J ◦ T (x) (2.29)

We differentiate monomodal (same image modality) and multimodal (two different modalities)

registration, as well as intra-patient (the two images belong to the same patient) and inter-patient

registration. Intra-patient monomodal registration is used for temporal follow up. The objective is

to compare the patient’s image taken at different times and evaluate changes, particularly the evo-

lution of a pathology with or without treatment. Registration can be necessary due to the patient’s

motion or changes in the image acquisition process. The different imaging modalities display

complementary informations but are obtained in different reference systems. Aligning multimodal
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images renders direct comparison possible such as the association of structural with functional in-

formation. Inter-patient registration refers to atlas construction and alignment to a new patient for

segmentation or population studies.

The registration process is typically carried out by minimizing a similarity criterion that evalu-

ates the differences between the images to match:

T = argmin
T

Sim(I, J ◦ T ) (2.30)

The problem is characterized by 3 key elements: the image features to match and correspond-

ing matching criteria Sim(., .), the transformation model that describes how the image will be

deformed, and the optimization technique used to recover the optimal transformation.

2.5.1.1 Matching Criteria

When trying to align two images, we rely on the concept that both images have the same structures

and try to find their correspondences. Two kinds of approaches can be considered to match the

structures: geometric and iconic registration. Geometric approaches define a set of key points

in the image corresponding to structural or geometrical landmarks, or extract surfaces from the

pre segmented structures’ boundaries. The matching criteria to be minimized is defined as the

distance between corresponding points or surfaces in both images. Geometric methods have the

advantage of relying on the anatomical structures and yield transformations that are more faithful

and preserving of the anatomy. On the other hand, the registration is as good as the landmarks

whose automatic selection is not trivial.

Iconic (or intensity based) approaches seek to optimize a similarity measure based on the vox-

els’ intensity values. The measure is dependent on the intensity relationship between the two im-

ages The underlying principle is that when the images are matched, their intensities should verify a

certain relationship. The simplest relationship is the identity. The images’ intensities are assumed

to have the same or similar intensities in corresponding structures. This relationship is considered

when dealing with monomodal images and allows direct comparisons of the images intensities.

The most popular measures are the Sum of Absolute Differences (SAD) and the Sum of Squared

Differences (SSD).

A more sophisticated approach for monomodal registration is to assume an affine relationship

between the images intensities to acknowledge the potential relative intensity changes between

the images to be registered. In this setting, the criterion of choice is the correlation coefficient

[Brown 1992, Kim 2004]:

CC =
Cov(I, J ◦ T )

√

V ar(I)
√

V ar(J ◦ T )
(2.31)

Those monomodal similarity criteria directly compare the intensities of the two images. How-

ever, as it is the case for image classification, intensity alone is not that discriminative and can lead

to ambiguous matchings and convergence to bad local minima solutions. This issue has motivated

the work of Shen et al. [Shen 2002], where they proposed to use feature or attribute vectors that
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encompass neighborhood information and local anatomical information based on pre established

tissue segmentations.

The definition of a matching criterion becomes more difficult when dealing with multimodal

images. Given the impossibility to estimate the relationship between multimodal intensities, it was

suggested in [Roche 1998] to assume an unknown functional relationship I ≈ f(J ◦ T ). Given

this functional assumption, they proposed to use the Correlation Ratio as a similarity measure:

CR =
V ar(E(I|J ◦ T ))

V ar(I)
(2.32)

Information Theoretic approaches assume no existing relationship between the intensities,

making them more general and very popular. Since its introduction, the Mutual Information (MI)

[Wells III 1996a, Viola 1997, Collignon 1995, Maes 1997] has been widely used (see [Pluim 2003]

for a review of MI based registration methods) and is probably the most commonly used multi-

modal registration criterion. The objective of this measure is to maximize the mutual information

of two images which is a combination of their joint and individual entropies. The Shannon entropy

of a distribution p can be interpreted as a measure of the distribution’s dispersion and is defined as:

H(x) = −
∑

x

p(x)log(p(x)) (2.33)

The joint probability distribution p(I, J ◦ T ) of two images is estimated from the normalized

joint histogram of the images intensity values, while the marginal distributions p(I), p(J ◦ T ) are

obtained by summing over the rows and columns of the joint histogram. When the images are

aligned, the joint histogram will be sharp and focused, while its dispersion augments as they get

misaligned. As a result, minimizing the joint entropy corresponds to aligning the images. This is

the idea behind the mutual information defined as:

MI(I, J ◦ T ) = H(I) +H(J ◦ T )−H(I, J ◦ T ) (2.34)

Given this definition, the term −H(I, J ◦T ) implies that maximizing the mutual information is re-

lated to minimizing the joint entropy. The presence of the individual entropies makes it more robust

than direct minimization of the joint entropy: transformations that reduce the amount of informa-

tion in an image are penalized. The Normalized Mutual Information (NMI) was later introduced

as a measure less sensitive to the amount of overlap between the images:

NMI(I, J ◦ T ) =
H(I) +H(J ◦ T )

H(I, J ◦ T )
(2.35)

Multimodal registration remains a difficult problem that is actively studied. Aside from infor-

mation theoretic methods, a second kind of approach consists of transforming the problem into

the simpler monomodal problem. This can be achieved by simulating one modality into the other

[Roche 2001, Wein 2008], or mapping both images into a new space where they are directly com-

parable [Maintz 2001, Lee 2009, Bronstein 2010].
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Figure 2.11: Evolution of the joint histogram between an image and iself as one image is progres-
sively rotated (0,2, 5 and 10 degrees). Below the histogram are the joint entropy values. Example
taken from [Pluim 2003]

(a) (b) (c) (d)

Figure 2.12: Different types of transformation models. (a) original image, (b) rigid transformation,
(c) affine transformation, (d) non-linear transformation.

2.5.1.2 Transformation Model

The transformation model describes how the image will be deformed and the amount of deforma-

tion allowed. The computational complexity as well as the precision of the deformation are dictated

by the transformation model. The rigid transformation is the simplest transformation model. It only

allows rotation and translation that, in the 3D case, amounts to 6 parameters (degrees of freedom)

that need to be estimated. Similarity/Affine registration allow scaling and shearing additionally to

translation and rotation (parallel lines are preserved), which corresponds to 12 degrees of freedom

in 3D. Rigid and affine transformations are essentially used for same subject registration of organs

that display limited movements or deformation in time such as the healthy brain. When stronger

deformations are observed, they are often used as preprocessing prior to a dense registration.

If no constraints are imposed on the transformation, the registration problem is referred to as

non-linear, dense, curved or deformable registration. The problem is ill-posed with unstable and

non smooth solutions. To tackle this issue, a priori knowledge is introduced in the minimization
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problem in the form of a regularization term:

E(T (x) = Sim(F,G ◦ T (x)) + λReg(T (x)) (2.36)

The parameter λ is a constant that weights the influence of the regularization over the similarity

measure. The regularization term ensures smoothness of the deformation field and preservation

of the anatomical properties. Two kinds of deformation models can be considered in this setting:

parametric transformations and physics based transformations. In both cases, the transformation is

usually defined at each pixel position as an additive displacement: T (x) = x+ u(x).
Parametric models represent the transformation as a linear combination of basis functions.

Those methods are interpolation based: the transformation is calculated on an ensemble of control

points that are then used to produce a dense interpolated flow for the entire image. Their interest

reside in the fact that the model’s complexity (correlated to the number of control points) can

be considerably reduced while the richness of the transformation is preserved. The most popular

parametric transformation model is the Free Form Deformation model (FFD) [Sederberg 1986,

Rueckert 1999]. Here, the control points are placed uniformly across the image with uniform

spacing δ and the basis functions used are cubic B-splines. The deformation field is computed as:

u(x) =

3∑

l=0

3∑

m=0

3∑

n=0

Bl(u)Bm(v)Bn(w)di+l,j+m,k+n (2.37)

where i = [x/δx]− 1, j = [y/δy]− 1, k = [z/δz ]− 1, u = x/δx − [x/δx], v = y/δy − [y/δy] and

w = z/δz − [z/δz ]. Bl represents the lth basis function of the B-spline and di+l,j+m,k+n is the

displacement at the corresponding control point. It has been proven [Choi 2000] that the obtained

transformation is diffeomorphic if the maximum displacement is limited to 0.4δ.

Physics based deformation models rely on a physical process guided by a force that is associ-

ated to the image matching criterion. The deformation model is described by a partial differential

equation that is associated to the kind of physical model employed. Among the different physical

models used for deformable registration, we can cite elastic registration (stretching of an elas-

tic material) [Bajcsy 1989], viscous fluid models [Christensen 1994] and more famously diffusion

models governed by:

∆u+ F = 0 (2.38)

The use of registration through diffusion models was introduced in [Thirion 1998] as an analogy

to a thermodynamic concept (Maxwell’s demons). Demons are mathematical entities located at

the boundary of an object in the image that is modeled as a membrane. Demons apply forces

to push the deformable model in the normal direction of the membrane according to local image

characteristics. For instance, a demon can be placed at each location in the image where it is

not constant. In this case, the corresponding membrane is an isosurface. The demons forces are

inspired from optical flow equations but are normalized in order to handle instabilities due to small

images gradients. This yields the displacement field gradient or velocity as:

v =
(I − J ◦ T )∇I

‖∇I‖2 + α(I − J ◦ T )2
(2.39)
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The method is iterative and alternates between computation of the forces with regularization by

Gaussian smoothing. This resulted in a computationally efficient algorithm that lacked a proper

theoretical formalism. The first successful attempt to provide theoretical grounds of support for

demons can be found in [Pennec 1999], casting the problem as a gradient descent based energy

minimization process. In order to recover the algorithm’s efficient two step optimization process,

it was suggested in [Cachier 2003] to introduce hidden variables that decouple the problem in a

matching and regularization step. An extension of Thirion’s algorithm to diffeomorphism using

this approach was later introduced in [Vercauteren 2008].

Another physics based registration approach that has proven relevant in the presence of brain

tumors is the use of biomechanical models to describe the transformation. Such models describe

the elastic deformation properties of the different tissues using Finite Element Methods. The main

difficulty resides in finding the appropriate model for the anatomical tissues which is far from triv-

ial. It should also be noted that inter subject registration (and by extension, population based atlas

construction) is not possible since the deformations from one subject to the next are not natural.

Registration methods in the presence of tumors using biomechanical models will be reviewed in

chapter 4.

2.5.1.3 Optimization procedure

The optimization procedure is closely related to the design of the transformation model and simi-

larity metric. Continuous methods seek real valued registration parameters Θ. The optimal set of

parameters is determined in an iterative fashion given an initial estimate as:

Θ(t+1) = Θ(t) + α(t)d(t) (2.40)

d(t) is the search direction at iteration t, and α(t) is the step size along the search direction. Plethora

of optimization methods have been proposed that differ in the definition of α(t) and d. Notably,

a comparative study of continuous registration strategies can be found in [Klein 2007]. The most

famous and simple is the Gradient Descent method that defines the search direction as the deriva-

tive of the energy evaluated given the currently estimated parameters. More elaborated strategies

involve a combination of the gradient and search direction with the ones at the previous itera-

tion (Conjugate Gradient methods) [Hestenes 1952], computing an approximation of the gradient

(Stochastic Gradient Descent) [Kushner 2003] or using higher order derivatives in the search di-

rection (Quasi-Newton methods) [Dennis 1977]. Continuous methods are tuned to the specific

registration method and similarity measure for which they are used.

The use of discrete optimization methods has gained a lot of attention in the past years. Contrar-

ily to continuous methods, they perform a global search which makes them robust to initialization

while benefiting from fast convergence rates. Another strong advantage of using such an approach

is the modularity with respect to the similarity criterion and regularization term. The use of dis-

crete methods is associated to the modeling of the registration problem as a discrete pairwise MRF.

Given a predefined discrete displacement set, the registration problem is reformulated as a label-

ing problem where each node (control point given a parametric transformation model) is assigned
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a label that corresponds to a displacement. The MRF energy is defined so that the unary terms

correspond to the similarity criterion, while the pairwise term plays the part of the regularization.

The optimization problem then boils down to an MRF optimization. Among the many MRF opti-

mization methods developed, Fast-PD and TRW-S have proven successful in the context of image

registration [Shekhovtsov 2008, Glocker 2008a]. The main limitation of discrete methods is the

trade off between a precise sampling of the search space and control points and computational

efficiency. The issue will be addressed in chapter 4.

2.5.2 Brain Atlases

The investigation of the brain’s structural and functional organization has motivated the construc-

tion of numerous maps of the brain. Brain atlases have been built to create standardized reference

coordinate systems in which individual brain maps can be mapped and compared. One of the first

reference system (the stereotaxic or Talairach coordinates) was proposed by [Talairach 1988] and

became the standard reference in brain mapping. The stereotaxic coordinates are defined based

on two landmarks in the brain: the Anterior (origin of the coordinates) and Posterior commissures

(AC and PC respectively). They were defined in order to horizontally orient the line connecting the

two landmarks and vertically orient the interhemispheric plane. Alongside with the definition of

the atlas, a piecewise affine transformation method (the brain is divided into 6 associated blocks)

has been proposed to register a volume to the Talairach atlas. Despite the success of the Talairach

atlas, it suffered from severe limitations. It was constructed from the single post mortem brain of a

60 year old French woman that was far from representative of the population, had a variable slice

thickness and inconsistent data from orthogonal planes. The developments in medical imaging

paved the way for the construction of more representative and detailed atlases. Among them, a

3D T1-weighted MR based atlas (the Harvard Brain Atlas) was constructed by the Surgical Plan-

ning Laboratory, using the scan of a 25 years old healthy subject that was enhanced by anisotropic

filtering [Kikinis 1996]. It was hand-labeled into 150 different structures. To cope with the lack

of contrast and high signal to noise ratio, The Montreal Neurological Institute (MNI) constructed

a single subject atlas by averaging 27 high resolution T1-weighted scans of the same individual.

[Holmes 1998]

Despite offering precise structural information, single subject atlases are not always represen-

tative of the population and can introduce a bias. This has motivated the construction of population

atlases that are based on an ensemble of scans that are registered and averaged. The reference

population atlases have been constructed by the MNI and Laboratory of Neuro Imaging of UCLA

(members of the International Consortium for Brain Mapping (ICBM) project). Their first pop-

ulation atlas was the MNI-305 [Evans 1993, Collins 1994], constructed from 239 males and 66

females around 23 years old. All images where registered to the Talairach space and their inten-

sities were normalized. The atlas was a voxel wise average of the intensities over all volumes.

Two improved atlases where constructed using the same procedure with 152 (MNI-ICBM152)

[Fonov 2009, Fonov 2011] and 452 (ICBM 452) [Mazziotta 2001] subjects. The resulting volumes

are blurred where structures vary among subjects and are therefore not suited for structural stud-
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Figure 2.13: Schematic illustrating the AC-PC line and axes of the Talairach space. Example
taken from http://airto.ccn.ucla.edu/.

ies but offer good templates for registration with limited bias. Similar atlases where constructed

for T2-weighted, PD-weighted and Diffusion weighted images. Last but not least, probabilistic

interpretation of those atlases were constructed by segmenting the different subjects tissues (white

matter, grey matter and CSF) after registration. The probabilistic maps are constructed by averag-

ing the labels over all the subjects. Those atlases describe the spatial distribution of tissue classes

over large populations and can be exploited as global anatomical priors. Extended reviews of brain

mapping and atlases can be found in [Toga 2001, Cabezas 2011].

2.5.3 Atlas based Tumor Segmentation

The segmentation of brain tumors cannot be mapped into a registration process due to the absence

of a tumor in the atlas to be registered. Existing methods exploit the information brought by the

atlas as a spatial prior on healthy brain structures. Kaus et al. [Kaus 1999, Kaus 2001] extended

an atlas based segmentation method (the ATM SVC algorithm) [Warfield 2000] for meningioma

and low-grade glioma segmentation. The method alternates between supervised kNN classification

and registration of a manually segmented anatomical template (single subject) based on the current

segmentation. The atlas is initially rigidly registered to the volume to be segmented. The features

for kNN classification are the voxel intensities as well as spatial features obtained from the aligned

atlas. The spatial features are computed by converting each of the tissue classes into a distance map.

Using distance maps allows to have a non optimal registration result since it doesn’t rely on hard

boundaries but on the distance from where the labels are quite certain. The classification is then

followed by an elastic deformable registration on the basis of the segmented image [Dengler 1988].

During the registration steps, the tumor is labeled as healthy tissue. A spatial template for tumor

is defined at the next iteration based on the tumor segmentation obtained at the previous iteration.

The different brain structures (background, skin, brain, ventricles and tumor) were segmented hier-
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Figure 2.14: MNI-ICBM-152 probabilistic atlas. From left to right: T1, T2 and Proton Density
weighted images ; Gray Matter, White Matter and CSF probability maps. Figure extracted from
[Fonov 2011]

archically. The method was tested on 20 T1CE images: 7 meningiomas and 14 low grade gliomas.

The method inherits the drawbacks of kNN classification and implies strong homogeneity of the

tumor appearance and limited spectral overlap with the healthy tissue. The successive applications

of registration and classification also make the algorithm slow.

Cobzas et al. [Cobzas 2007] integrated atlas priors in a combined statistical learning/level set

framework. The level set is defined in a region competition manner and evolves based on pre

estimated probabilities. After registration, the atlas prior was integrated in a high dimensional

feature set for supervised statistical learning of the two classes probabilities.

The classification decisions were smoothed by an MRF prior designed as a Potts model. The

optimal parameters (distributions mean and covariance, bias field parameters and MRF parame-

ters) and tissue classes were estimated using the EM algorithm. Automation of the method was

achieved using a probabilistic brain atlas (ICBM152). After affine registration of the atlas to the

subject, the probabilities were used as a rough prior estimation of the classification at every voxel.

Furthermore, the atlas probabilities values were used as a spatial prior to increase the quality of

the classification.[Moon 2002, Prastawa 2003] built on this work and adapted it to the presence of

tumor and edema. For each patient, the probabilistic atlas is modified to include prior probabili-

ties on the tumor and edema positions. The tumor prior probability map is constructed based on

contrast enhancement. A difference image between T1 and T1CE images is constructed. A mix-

ture of distributions is fitted to the difference image’s histogram: two Gaussian distributions that

correspond to noise and errors in registration and a Gamma distribution for contrast enhancement.
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Figure 2.15: Modified MNI-305 atlas for integration of tumor and edema probability
[Prastawa 2003]. Top row: healthy probability (White Matter, Grey Matter, CSF). Bottom row:
tumor(left) and edema (right) probabilities.

The probability that corresponds to contrast enhancement is used to convert the difference image

into a tumor prior probability.To remove contrast enhanced areas that do not correspond to the tu-

mor, a smoothing regularization process is included using the region competition level set method

developed by [Ho 2002].The edema prior class is introduced similarly as a fraction (20 %) of the

white matter prior probability. The method was applied to 5 glioblastoma and meningioma cases

and used T1 and T2 images for classification.

Another approach, similar to the work of [Gering 2002], was to detect the tumor voxels as

outliers with respect to the normal voxels. The concept was proposed by Van Leemput et al.

[Van Leemput 2001] as an extension of their previous work by including an outlier class for mul-

tiple sclerosis segmentation. Each class probability is here defined as a mixture of a normal distri-

bution and a uniform distribution δ corresponding to the outlier class:

pk(I(xi)|Φi) = (1− ǫ)N (µk,Σk) + ǫδ (2.41)

Where ǫ ∈ [0, 1] represents the portion of outliers. After computation of the parameters and class

memberships, a voxel will be assigned to the outlier class if its membership score is below a

threshold for all classes. The intensity model employed here for multiple sclerosis is too simple for

a direct application to tumor segmentation.

The same idea (model lesions as outliers) guided the work of Prastawa et al. [Prastawa 2004].
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They presented a more general framework in comparison to their previous work [Prastawa 2003]

that was limited to enhanced tumors featuring edema. The method consists of three steps: first

the tumor and edema are detected as outliers from the healthy classes given their intensity profile,

then the presence of an edema is detected while the last step refines the segmentation output using

spatial and geometric constraints. Affine registration of a probabilistic atlas (ICBM atlas) allows

the random selection of a set of training samples representative of each healthy class (high atlas

probability for White Matter, Grey Matter and CSF) but that are contaminated with tumor and

edema samples (the abnormal class). The healthy multimodal (T1 and T2) intensity distributions

are assumed to be Gaussian. The minimum covariance determinant [Rousseeuw 1999] is used to

estimate the classes mean and covariances due to its robustness to the presence of outliers. The

abnormal class is then formed by rejecting samples that are three standard deviation away from

their class distribution. Once the samples are correctly classified, the problem is defined as a MAP

problem. The likelihoods are estimated using Parzen kernel density estimation [Duda 2001]:

P (I(x)|C) =
1

N

N∑

i=1

Kλ (I(x)− I(pi)) (2.42)

where Kλ is the Gaussian kernel, λ is its standard deviation or kernel bandwidth that determines

the amount of smoothing on the estimated probability and pi is a training sample. The spatial pri-

ors for healthy classes are extracted from the atlas, and a fraction of the sum of the white and grey

matter probabilities are used as prior for the abnormal class. In an EM style approach, this classifi-

cation process was jointly considered with the bias field correction method of [Van Leemput 1999].

Tumor and edema classes are separated by clustering based on their T2 intensity and spatial con-

straints are enforced using a region competition level set.

Menze et al. [Menze 2010] proposed an algorithm for tumor segmentation that strongly ex-

ploits the fact that the tumor has different visibility in multi-channel images. They propose a

generative model in which each modality is modeled and segmented independently. Each class

(including the tumor class) and modality is modeled as a Gaussian distribution combined with a

smoothing MRF prior. A vector of tumor appearance describes the observation of a tumor at each

voxel for each modality. An EM style approach is adopted to alternatively estimate the classifica-

tion probabilities from which are derived the multi channel classifications, and the Gaussian distri-

bution’s parameters. The global segmentation is obtained by averaging the classification decisions

over all channels. The method is initialized by segmenting the image into 4 classes (White Matter,

Grey Matter, CSF and outlier) using the method of Van Leemput et al. [Van Leemput 2001]. The

outlier class is defined as being more than three standard deviations away from the centroid of

any normal class. The method was tested on 25 glioma patients using T1, T1CE, T2 and FLAIR

volumes.

Atlas based tumor segmentation methods have a strong dependency on the quality of the reg-

istration. Despite numerous efforts to make the segmentation robust to errors in registration, the

methods will fail if the brain is deformed by the tumor. Detection as an outlier also implies that

the tumor’s appearance varies significantly from the one of the healthy tissue, an assumption that
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does not always hold given the frequent intensity overlaps. Nevertheless, the use of anatomical and

probabilistic atlases is a powerful tool for incorporation of prior spatial information on the expected

localization of the tumors.

2.6 Summary

Despite an extensive amount of work dedicated to brain tumor segmentation, the problem remains

difficult and segmentation results are often not satisfactory. Generalization of the existing methods

to several kinds of tumors (or pathologies) is often difficult. Furthermore, few methods have been

adapted to heterogeneous DLGG segmentation. The focus of early methods was on contrast en-

hanced and homogeneous tumors and while glioblastomas have been mostly studied in the recent

years. Additionally, many methods are based on the use of different image modalities which are not

systematically available in a clinical setting. Despite the need of a prior training phase, machine

learning methods offer a flexible and efficient way of capturing the tumor’s properties that are not

limited to intensity values. Coupled with MRF models, the i.i.d assumption is relaxed and smooth

solutions can be obtained very fast due to recent advances in MRF optimization techniques. An ad-

ditional advantage of MRF modeling is the natural inclusion of prior knowledge in the formulation.

Such prior knowledge can be obtained via the use of anatomical or probabilistic atlases.

Next chapter will present a DLGG segmentation method that introduces prior atlas based

knowledge in an MRF framework. Instead of detecting the tumor as an outlier with respect to

the healthy tissue distribution, a tumor specific atlas is constructed describing the most likely posi-

tion of tumor voxels.



Chapter 3

A Probabilistic Atlas of Diffuse WHO

Grade II Gliomas’ Preferential

Locations

3.1 Introduction

Brain atlases are excellent tools for the study of the brain’s anatomy and the variations within pop-

ulations. Futhermore, they offer a reference template for registration and atlas based segmentation

tasks. They are however, not representative of diseased populations since the pathology tends to

alter or deform the brain’s structures. Several atlases are available with repositories of annotated

images for a diversity of pathologies. Such images are a rich source of information but not in the

same coordinate space and therefore not directly comparable.

This has motivated the construction of disease specific atlases that reflect the particular clinical

subpopulation affected by the disease and how it alters the brain. Such atlases enable to study the

evolution and origin of the disease as well as the variations from one patient to another. Aside

from aligning all volumes in the same coordinates system, the difficulty resides in obtaining a

statistical interpretation of the inter subject variability. The construction of disease specific atlases

has notably been one of the focuses of UCLA’s Laboratory of Neuro Imaging. Among notable

disease specific atlases, Thompson et al. [Thompson 2000] have constructed atlases dedicated to

the impact of schizophrenia and Alzheimer’s disease on the brain. Maps of anatomical variability

are constructed by comparing the deformation fields obtained by deformable registration of all

volumes.

In the context of Diffuse Low Grade Gliomas (DLGG), the construction of an atlas mapping

the tumors appearances in the brain was motivated by the fact that the management of brain tumors

is highly dependent on their location. The impact of the tumor is dependent on the eloquence of the

region in which it is. Several studies have reported a functional reorganization of the brain induced

by the slow growing tumors [Desmurget 2007, Duffau 2005] while it was inferred in [Ius 2011] that

59
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certain areas have low compensatory abilities. These observations are directly linked to surgery

planning for tumor resection, where the eloquence of the region and its compensatory ability can

determine the safety of the surgery and amount of resection possible. Furthermore, tumors could

have a location dependent behavior due to local differences in their molecular biology [Gozé 2009,

Ren 2012].

An interesting observation was made in [Duffau 2004], inferring that DLGGs tend to ap-

pear in preferential locations. This assumption was explored for all gliomas in [Larjavaara 2007,

Gooya 2012] where it was observed that the distribution of gliomas in the brain is non-uniform.

Following this observation, this chapter introduces a probabilistic atlas that maps the DLGGs ap-

pearances in the brain and provides their preferential locations. This is carried out via the construc-

tion of a complete graph, where each node represents a tumor and the edges represent the spatial

proximity between them. The tumors’ preferential locations are then identified by extraction of a

sparse subgraph, where each cluster corresponds to a preferential location. This results in a DLGG

atlas where the central position (cluster center) and spatial extension (position of tumor voxels in

the cluster) of each preferential location is represented. An application of this atlas is proposed in

the second part of this chapter for the segmentation and characterization (integration in the atlas)

of a new patient’s tumor with spatial priors. This is carried out via a two-level Markov Random

Field formulation based on position priors inferred from the atlas. The tumor is characterized and

segmented based on a prior tumor detection through statistical classification, while the knowledge

on the tumors’ spatial extension in the clusters is used as a prior knowledge on the position of the

voxels of the tumor to be segmented.

The remainder of this chapter is organized as follows: first the methodology for the construc-

tion of the low-grade glioma atlas is presented in section 3.2, while section 3.3 presents a direct

application of the atlas for tumor segmentation. The experimental validation is part of section 3.4

and discussion concludes the chapter.

3.2 Spatial Position Mapping of Diffuse Low-Grade Gliomas

To construct the atlas, we assume the existence of a database of patients MRIs featuring a DLGG.

The position of each tumor is known through binary maps obtained by experts’ manual segmenta-

tion. To allow position comparison, all volumes are to be aligned to the same reference template

of a healthy brain. This section presents the construction of the complete graph (registration and

proximity measure between the tumors) followed by the estimation of its optimal clustering.

3.2.1 Graph Construction

3.2.1.1 Registration to a Common Reference Space

The mapping of all annotated volumes to the same reference space could be done through de-

formable registration. However, the presence of tumors violates the correspondence hypothesis,

which can cause displacements errors and a shift in the position of the tumor. Discarding the
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pathology during registration was considered in [Parisot 2011] but as will be shown in chapter 4,

such an approach can still lead to errors in registration at the vicinity of the tumor. Despite being

less precise, affine registration is the most common choice in atlas construction, because it handles

properly linear variations and therefore roughly conserves the anatomy so that the form and loca-

tion of the tumor is preserved and comparable. The use of affine registration reflects the diversity

of the anatomy, which makes the atlas more adapted for the integration and tumor segmentation of

a new, unsegmented patient.

We adopt the block matching method of [Ourselin 2000] to affinely register our data set to the

same reference template using the MedInria software (http://med.inria.fr/). Instead of

globally minimizing an objective function, the idea of block matching is to perform registration in

a sequential manner by minimizing a local objective function between image regions (blocks).

For rigid or affine registration, the registration is performed in a multiscale iterative manner

where two successive tasks are carried out at each iteration. First, the displacement field is com-

puted between the images by maximizing a local similarity measure. This is done by moving a

block of the floating image I and comparing it to blocks in the reference target image J that have

coincident positions. The size of the blocks and extent of the search space are constant at a given

scale level. The Normalized Mutual Information similarity metric is used in MedInria.

The block that maximizes the similarity measure is chosen, which yields a correspondence

between the centers of the blocks (ai, bi). Inadequate displacement fields that correspond to a

similarity measure below a given threshold (uniform blocks or absence of correspondences) are

not considered in the subsequent step. The transformation T that best fit the obtained displacement

field is computed by least trimmed square regression:

argmin
T

h∑

i=1

‖ai − T (bi)‖
2

h =
⌊n

2

⌋
(3.1)

where n is the number of displacement vectors. An illustration of the block matching search

process is shown in Fig. [3.1]

All volumes in the data set are registered to the same reference template that is an arbitrarily

chosen healthy subject, following this scheme. The obtained displacement fields are then applied

to the segmentation binary maps. The next step consists in measuring the proximity between the

different aligned tumor segmentation maps.

3.2.1.2 Proximity Between Tumors

When measuring the proximity between tumors, there are two issues to be considered: (i) the

registration errors and (ii) the different sizes of the tumors. Here, we are not interested in the

size and extent of the tumor, but solely on its position in the brain reference space. Measuring

the distance between tumors as surfaces or point clouds could penalize small tumors that would

be further away from its neighbors than a large tumor. Furthermore, considering surfaces makes

http://med.inria.fr/
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Figure 3.1: Illustration of the block matching process. The floating image is on the left and target
on the right. Figure extracted from [Ourselin 2000]

the distance measure more sensitive to the registration and miscorrespondences that are bound

to happen with the simple affine registration scheme. This has motivated the use of the tumors’

center of gravity as a reference position, computed by averaging all tumor pixels coordinates. The

proximity between the tumors is then computed as the Euclidean distance between the centers 1.

The distance is computed between each pair of images. This constitutes an adjacency matrix

that is used to construct a complete graph GLGG = (VLGG, ELGG) where each node corresponds

to a patient/tumor and is spatially associated to the center of gravity of the tumor, while the edges

connect all pairs of nodes (p,q) ∈ VLGG and are weighted by the euclidean distance between

tumors centers d(p,q). The obtained complete graph can be observed in Fig.[3.2], where the color

and thickness of the edges represent their strength (from red and thick to blue and thin). From this

complete representation, the existence of high and low density areas for tumors can be observed,

most notably around the temporal lobes.

3.2.2 Graph Clustering

The next step towards identifying the DLGGs’ preferential locations is to regroup nearby nodes

based on their proximity. This can be done by performing clustering on the graph. The concept of

clustering, as introduced in section 2.4, is to regroup the data into segments so that samples within

the same cluster are similar to each other and dissimilar with respect to the elements associated

with other clusters. In this section, we will only consider “hard” clustering, where each sample

is assigned to a single cluster. In our context, nodes in the same cluster should be close and

present in the same anatomical area. The clusters made of the highest number of nodes would

1The aforementioned arguments are also supported from experimental evidence. Different distance metrics have

been used, including for example the Mahalanobis distance between tumors. The distance between the tumors’ centers

of gravity has been proven to be more robust.
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(a) (b)

(c) (d)

Figure 3.2: Visualization of the complete graph superimposed to the mean registered image. For
visibility reasons, edges of weight larger than 35 are not shown. Short distances appear red and
thick while large distance values are thin and blue.

then correspond to the preferential locations, while an absence of cluster in a region suggests an

extremely rare location for tumor appearance. Obtaining compact and well separated clusters, as

well as cluster free areas would confirm the existence of preferential locations.

Clustering has been a well studied problem over the past decades, in a number of fields. Early

popular clustering algorithms refer to hierarchical methods [Johnson 1967]. Hierarchical or ag-

glomerative clustering initially considers all samples as clusters. The clusters are then progres-

sively obtained by merging neighboring clusters together. The process continues until there is

only one cluster left. This results in a dendogram, a tree that represents the progressive clusters

merging. The clustering is chosen by selecting a number of clusters and cutting the grouping tree

accordingly. There are two issues with such a method, the first refers to the absence of “cluster

center” representing each population while the second to the choise of the number of clusters be-

ing retained. More adapted to our problem, Centroid based clustering methods group the data by

selecting cluster centers and assign the nodes to their closest center. Each cluster center is then
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representative of the cluster’s properties. The most popular centroid based clustering method is the

K-means algorithm [MacQueen 1967].

K-means clustering is an instance of the EM algorithm where the objective is to minimize the

square distance between the samples and the cluster center:

J =

K∑

k=1

∑

p∈VLGG

‖p− c̄k‖
2 (3.2)

Given the expected number of clusters K, and an initialization of the centers {c̄1, .., c̄K}, the K-

means algorithm alternates between assigning the samples to the closest center and reevaluating

the centers as the mean coordinates of all samples within the cluster. The K-means algorithm is

sensitive to initialization which can be a drawback when there is no pre assumption on the position

of the clusters. Furthermore, the cluster centers are constructed as the mean value of the samples

in the clusters, which can be sensitive to the presence of outliers and not represent the cluster

appropriately since there is no guarantee that the mean lives on the same manifold as the one

of the samples. These issues are often addressed by considering different initializations both in

terms of the number of populations as well as their centers (this is done by randomly sampling the

population) and then adopting criteria from information theory to determine the optimal result.

We adopt a more robust method [Komodakis 2008a] that has been shown to outperform the K-

means algorithm. The method simultaneously estimates (i) the number of clusters K (ii) the cluster

centers {c̄1, .., c̄K} ∈ VLGG, and (iii) the remaining nodes’ assignments to the different clusters

Ap ∈ {C1, ..., CK}. The objective function aims at minimizing the distance between nodes and

their assigned cluster center:

min
K

min
c̄k

min
Ap

K∑

k=1

∑

p∈VLGG

δ(Ck, Ap)d(p, c̄k) + α

K∑

k=1

Vpen(c̄k) (3.3)

where δ(.) is the Kronecker delta function and α is a constant parameter that balances the impor-

tance of the two terms. The first term of the objective function assigns nodes to the cluster of which

center they are the closest according to a given distance on the manifold of the samples’ space. The

second term is introduced in order to avoid the trivial solution of defining each node as a cluster

center. This can be seen as a regularization term that measures the stability of a node in order to

determine which nodes should be selected as centers. In the context of seeking preferential loca-

tions, we aim at selecting nodes that are at the center of high density areas. We define the penalty

term as the mean distance over all samples in the graph in order to identify such nodes:

Vpen(p) =
1

N

∑

q∈VLGG

d(p,q) (3.4)

The idea behind this term is that nodes should be selected as center if they are close to many other

nodes, i.e. if its distance value with an important set of nodes is low. Contrarily to the K-means
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algorithm, it should be noted that the centers are among the samples of the population on which

clustering is to be performed and that they are chosen as the ones situated on dense (statistical

interpretation) manifold areas. This makes the center selection more robust to outliers and more

faithful to the actual cluster structure. The additional advantages of this clustering approach is

that it is modular with respect to the distance metric between samples while the optimization also

recovers the optimal number of clusters.

Similarly to the Fast-PD algorithm for MRF optimization, the near optimal clustering is recov-

ered using linear programming by minimizing the gap between the primal and dual problems. The

problem is reformulated as the following relaxed linear integer program:

PRIMAL-IP ≡ min
x

∑

i

Vpen(i)xi +
∑

j,i

d(i, j)xji (3.5)

s.t.
∑

i

xji = 1 (3.6)

xji ≤ xi (3.7)

xji, xi ∈ {0, 1} (3.8)

The binary variable xji indicates whether the sample j has been assigned to node i or not, while

the binary variable xi indicates if node i has been selected as a cluster center. The constraints of

equation 3.6 simply express the fact that each observation should be assigned to one central node,

while the constraints of equation 3.7 impose that if observation j has been assigned to node i then

node i must obviously be chosen as a cluster center. The most important issue for such an integer

program optimization is the correct assignment of the variables xi, i.e., deciding which nodes will

be chosen as the clusters centers. The center selection process is guided by the nodes’ stability.

Once the central nodes are computed then each observation can be trivially assigned to its nearest

central node. This process repeats until no more stable nodes can be found. The resulting method

does not require any initialization and provides near-optimal clustering results both in terms of

number of clusters as well as in terms of central nodes and remaining nodes assignments.

3.2.3 Clustering Selection

The parameter α weighting the cost of introducing new clusters versus the overall assignment

distance error plays a critical role in the obtained clustering. We seek to find the clustering that

is the most representative of the data. To this end, we rely on cluster validity indices that provide

a quantitative measure of how good the obtained result is. Two kinds of validity criteria exist:

external and internal indices. The external indices imply prior knowledge about the data and the

expected clustering. They are used to compare the obtained clustering structure with the a priori

knowledge. In practice, external criteria are mostly used to evaluate a clustering method as the

partition is rarely known and internal criteria are the most useful. In this work, we make use of

three widely used internal cluster validity measures: the Dunn index [Dunn 1974], the Davies-

Bouldin index [Davies 1979] and the Silhouette index [Rousseeuw 1987].
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The Dunn index is among the simplest clustering quality measures. Its goal is to determine if

the clusters are compact and well separated. The index, introduced in [Dunn 1974] is defined as

the ratio between the minimum distance between clusters dCi,Cj
and the maximum cluster diameter

diam(Ck):

D = min
i=1,...,K

min
j=1,...,K

dCi,Cj

maxk=1,...,K diam(Ck)
(3.9)

In [Dunn 1974], the distance inter cluster is defined as the minimum distance between any sam-

ples in the two different clusters while the cluster diameter is the maximum distance between two

samples of the same cluster:

dCi,Cj
= min

p∈Ci,q∈Cj

d(p,q) (3.10)

diam(Ck) = max
p,q∈Ck

d(p,q) (3.11)

Compact and well separated clusters yield a large Dunn index (large distance inter cluster and

small cluster diameter). The Dunn index suffers from several shortcomings, the most important

being its severe sensitivity to noise and outliers as they can strongly impact the diameter and inter

cluster distance. In order to obtain more robust measurements, several Dunn-like indices can be

considered with different definitions of the diameter and cluster distance.

A graph theoretic formulation was notably proposed in [Pal 1997]. Each cluster was repre-

sented using graphs of known structure (Minimum Spanning Tree (MST), Gabriel Graph or Rel-

ative Neighborhood Graph) and the cluster diameter was defined as the maximum edge value in

the graph. We will review the MST based Dunn index that is used in this chapter. Given the set

of nodes VCk
that belong to cluster Ck and the corresponding complete graph GCK

that connects

all pairs of nodes, a spanning tree is the minimal subgraph that connects all nodes together. The

weight of the spanning tree is defined as the sum of the weights (i.e. distances between nodes) of

all the edges in the tree. The Minimal Spanning Tree GMST
CK

= (VCk
, EMST

Ck
) is the weighted graph

that has the smallest weight. Having constructed such a graph per cluster, the diameter is then

defined as the edge of the MST that has the maximum weight diam(Ck) = maxp,q∈EMST
Ck

d(p,q).

For increased robustness, the inter cluster distance is modified and defined as the distance between

the clusters centers dCi,Cj
= d(c̄i, c̄j).

Similarly to the Dunn index, the Davies-Bouldin index aims at identifying compact and well

separated clusters. A similarity measure Rij between the clusters Ci and Cj is computed based on

a cluster dispersion measure Si and compared to an inter cluster dissimilarity measure Dij . The

similarity measure should verify the following conditions:

Rij > 0

Rij = Rji

if Si = 0 andSj = 0 then Rij = 0

if Sj > Sk andDij = Dik then Rij > Rik

if Sj = Sk andDij < Dik then Rij > Rik

(3.12)
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x Usually, the similarity, dispersion and dissimilarity measures are defined as follows:

Si =
1

|Ci|

∑

p∈Ci

d(p, c̄i)

Dij = d(c̄i, c̄j)

Rij =
Si + Sj

Dij

(3.13)

The dissimilarity measure corresponds therefore to the ratio of the mean intra-cluster distance

(distance of all nodes to their cluster center) for clusters Ci and Cj with the inter-cluster distance

(distance between cluster centers). The Davies-Bouldin index is then calculated as the average

maximum similarity measure over all clusters:

DB =
1

K

K∑

j=1

max
i=1,...,K,i 6=j

Rij (3.14)

The optimal clustering corresponds to a low value of the DB index, i.e. to a low similarity between

the clusters. This index is more robust than the Dunn index due to the fact that it relies on average

values and distances to the center of the cluster.

The last index considered, the Silhouette index, takes a different approach. Computed for each

sample p, it evaluates how adequate the sample’s cluster assignation is via a score of confidence

s(p):

s(p) =
b(p)− a(p)

max(a(p), b(p))
(3.15)

a(p) is the average distance between sample p and all the remaining elements assigned to the

same cluster (dissimilarity to all other samples in the same cluster). For each cluster Ck the node

hasn’t been assigned to, the same dissimilarity measure dp,Ck
is computed between node p and all

the nodes in the cluster. We define b(p) = mink=1,...,K dp,Ck
, which can be seen as the average

distance between p and all the elements in the closest cluster. The Silhouette index takes values

between -1 and 1. If the value is close to 1, the node has been assigned correctly. A value close to

zero suggests that the node is equally far away from 2 clusters, while a silhouette index close to -1

infers that the node has been misclassified. To evaluate the quality of the clustering, we compute

the global silhouette index:

GS =
1

K

K∑

j=1

1

nj

∑

p∈Cj

s(p) (3.16)

where nj is the number of samples in cluster Cj . The highest global silhouette index corresponds

to the best clustering, where the individual Silhouette indexes are closest to 1. The silhouette index

gets its name from the fact that it offers a visualization tool of the quality of the clustering. The

so-called silhouette of the cluster can be plotted, displaying which samples are well classified and

the relative quality of clusters, narrow silhouettes indicating better clusters.
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In order to select the best fitting clustering, the three different indices are computed for sev-

eral values of α and the parameter that yields the maximum combined index is selected. In the

remainder of this chapter, we will consider the optimal clustered graph made of K clusters.

3.3 Tumor Characterization and Segmentation with Spatial Position

Priors

Given the possibility to recover properties of the tumors with respect to their localization, it is of

high interest to integrate a new, non segmented patient to the atlas and determine which preferential

location the tumor belongs to. In parallel, the atlas offers powerful insight on the expected positions

and expansion of the tumors and can be used as a spatial prior for segmentation.

This section presents an application of the DLGG atlas for characterization of the tumor’s

location with respect to the atlas and for segmentation via the use of spatial position priors. For

each cluster Ci of the atlas, we build a probability map P (x|Ci), i ∈ [1 : K] that describes the rate

of tumor appearance per voxel x. This is carried out in a similar fashion as the construction of the

probabilistic ICBM atlases by averaging the binary segmentation maps of the different tumors in

the same cluster. In order to ensure smoothness of the probability maps for clusters with a small

number of samples, all probability maps are smoothed by Gaussian filtering. Fig. [3.3] shows

examples of probability maps for different clusters, superimposed to the average volume.

We consider an image I defined on a domain Ω featuring a DLGG. An initial tumor detection,

performed via statistical classification, is used within a coupled MRF framework for simultaneous

characterization and segmentation of the tumor. The approach is guided by the appropriate cluster’s

prior probability map. The method differs from existing atlas-based tumor segmentation methods

since our atlas describes the expected position of the tumor (instead of detecting the tumor with

respect to the healthy structures [Gering 2002, Prastawa 2004, Menze 2010]) and independent from

the observed image (contrarily to the work of [Prastawa 2003] that modifies a healthy atlas based

on the observation).

3.3.1 Tumor Detection

The first step towards tumor segmentation and characterization is an initial detection of the tumor to

roughly estimate its position. We rely on boosting due to the simplicity of the Adaboost algorithm

[Freund 1997], and its computational efficiency once the classifier is learned.

3.3.1.1 Adaboost Algorithm

Consider an ensemble of labeled volumes X featuring a brain tumor. N voxels are extracted from

the different volumes to construct a training set that consists of pairs {xi, yi}, i ∈ [1 : N ] where

xi ∈ X is an observed image voxel and yi is its corresponding label (-1 for background, 1 for

tumor). Each pair is associated to a feature vector f(xi) and a weight Di. The idea of boosting
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Figure 3.3: Probability maps of three different clusters superimposed to the mean registered image.

is to construct a strong classifier H as a linear combination weakly discriminative classifiers (the

weak learners). It is an iterative process, where a new weak learner is constructed at each iteration.

The weights Di determine the importance of their corresponding sample assignment during clas-

sification. In each step of the process, a each weak learner is built, and the samples’ weights are

updated so that the focus is on the misclassified and more difficult samples at the next iteration.

Initially, all weights are set uniformly: D0
i = 1/N while the user specified the number of

iterations T and the kind of weak learner used. At each iteration t, a new weak learner ht : X →
{−1, 1} is constructed based on a value in the feature vector in order to minimize the classification

error

ǫt =
N∑

i=1

Dt
i |ht(xi)− yi| (3.17)
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Once the classifier has been chosen, its importance with respect to the strong classifier is computed

via the weighting parameter αt and the weights are updated in order to enhance the focus on

misclassified samples:

αt =
1

N
log(

1− ǫt
ǫt

) (3.18)

Dt
i =

1

Zi
Dt−1

i exp(−αtyiht(xi)) (3.19)

where Zi is a normalizing constant. Eventually, the strong classifier is computed as:

H(x) =
T∑

t=1

αtht(x) (3.20)

Among nice properties of the AdaBoost algorithm, it was shown in [Freund 1997] that the clas-

sification error rate decreases exponentially fast while [Friedman 2000] showed that the boosting

score could be converted to probabilities as:

P (y = 1|x) =
eH(x)

e−H(x) + eH(x)

P (y = −1|x) =
e−H(x)

e−H(x) + eH(x)

(3.21)

In [Friedman 2000], a variant of the AdaBoost algorithm called Gentle Adaboost was intro-

duced. The idea was to provide a method that is less sensitive to outliers and noise. Indeed, the use

of log-ratios in the evaluation of αt can be numerically unstable and lead to an excessive focus on

outliers. The Gentle Adaboost algorithm has been shown to yield more robust results and proceeds

as follows:

1. Initialize weights Di = 1/N, i ∈ [1 : N ] and classifier H(x) = 0

2. Repeat for t = 1, ..., T

(a) Find a weak classifier that minimizes ǫt =
∑N

i=1Di(yi − ht(xi))
2

(b) Update H(x)← H(x) + ht(x)

(c) Update Di ←
1
Zi
Di exp(−yiht(xi))

3. Output classification result: sign
(
∑T

t=1 ht(x)
)

In this thesis, the Gentle Adaboost algorithm is used while the weak learners are defined as

decision stumps.



3.3. TUMOR CHARACTERIZATION AND SEGMENTATION WITH SPATIAL POSITION PRIORS71

3.3.1.2 Feature Vector

One of the key elements for a good separation between the tumor and background classes is the

design of the feature vector that has to be discriminative. We consider iconic, texture and symmetry

information.

• Iconic features rely on the intensity values of the image and the fact that the tumor has a

different appearance than the background. In order to integrate neighborhood information,

9 × 9× 5 intensity patches centered on the voxel of interest are added to the feature vector.

The patches are constructed by selecting one voxel out of two in the image for increased

neighborhood exploration. Rotation invariant statistics (median, standard deviation and en-

tropy) on patches of size k × k × 3 where k = [3, 5, 7] are also included. The smaller patch

size in the z axis is due to the lower resolution in this direction.

• Texture information is added via the computation of Gabor filters [Manjunath 1996]. Gabor

filters have been used in various medical image analysis problems in order to detect the

texture patterns in the image. A 2-D Gabor function is a sinusoidal plane wave of a certain

frequency λ and orientation θ (the carrier) modulated by a Gaussian envelope of scale σ =
(σx, σy):

G(x, y) =
1

2πσxσy
exp

(

−
1

2

(
x′2

σ2
x

+
y′2

σ2
y

)

+ i
2π

λ
(x′ + y′)

)

where x′ = x cos θ and y′ = y cos θ

(3.22)

Convolution of the Gabor function to an image yields a high response when the local image

structure is similar to the Gabor function based on its scale, wavelength and orientation. A

set of Gabor functions Gσ,θn(x, y) (filter bank) can be constructed by selecting a number of

scales S and orientations K so that it thoroughly paves the frequency space. In practice, 3D

computation of the Gabor filters is very slow. We adopt the method proposed in [Zhan 2003]

that approximates the 3D filter by computing two orthogonal 2D filter banks. We use the fast

rotation and scale invariant implementation used in [Michel 2011].

It was observed that texture features have little discriminative power with respect to the

tumor. However, they are very efficient towards determining the brain’s main structures and

consequently reducing the risk of false detections. The filters are computed on 2 scales and

10 orientations. The image response to each obtained filter at voxel x constitutes one element

of the feature vector f(x).

• The last feature used is specific to the brain and exploits the approximative symmetry be-

tween the two hemispheres. The idea is that the presence of the tumor will introduce a

notion of dissymmetry. Assuming that an approximate symmetry plane Π is known, the

symmetry measure evaluates the difference between the intensity of a voxel x in the left part

of the image and its symmetric xΠ. To compensate the approximation in the selection of
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the symmetry plane, the mean intensity of a patch around x and xΠ is computed instead of

using the single intensity value. The symmetry feature is thus computed as follows:

S(x) =
1

N

∑

y∈P(x)

I(y) −
1

N

∑

yΠ∈P(xΠ)

I(yΠ)

S(xΠ) = −S(x)

(3.23)

where P(x) corresponds to the patch centered around x and N is the number of voxels in

P(x). Given that the volumes to be segmented are registered to the same reference space

where the atlas was built, estimating an approximate symmetry plane is straighforward.

Visual examples of the different elements constituting the feature vector can be seen in Fig. [3.4]

while examples of boosting classification results are shown in Fig.[3.15a]

3.3.2 Coupled Markov Random Field Model

We will now proceed with the presentation of the Markov Random Field model that couples tu-

mor characterization and segmentation with spatial priors. We formulate the problem of tumor

segmentation and characterization as a labeling problem where we want to assign a global volume

wise characterization label c(x) and a voxel wise segmentation label s(x) to each image voxel.

The characterization label corresponds to assigning the patient/tumor to one of the atlas’ K clusters

c(x) ∈ C1, ..., CK , i.e. determining which preferential location the tumor is situated in. Given the

assumption that the patient has only one tumor, the same label has to be assigned to all the voxels.

The segmentation label s(x) ∈ {0, 1} simply characterizes the voxel as being part of the tumor

(s(x) = 1) or the background (s(x) = 0).

We adopt a pairwise MRF model on a graph G = (V, E) where each node x ∈ V corresponds

to an image voxel while the edges constitute the neighborhood N (x) by connecting node x to its

6 immediate neighbors in 3D. A node x is to be assigned a label lx ∈ L = {1, · · · ,K} × {0, 1}
that jointly characterizes and segments the tumor. We map this label space into one dimension as

follows:
c(x) = clx = Ck where k = lx (mod K)

s(x) = slx =

⌈
lx
K

⌉
(3.24)

The optimal labeling l = {lx|x ∈ V} is recovered by minimizing the MRF energy defined as:

E(l) =
∑

x∈V

Vx(lx) +
∑

x∈V

∑

y∈N (x)

Vxy(lx, ly) (3.25)

3.3.2.1 Pairwise Term

The pairwise term acts as a smoothing prior. Its role is two-fold: it imposes local spatial consistency

of the voxel wise segmentation and ensures that the same characterization label is assigned to the
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Figure 3.4: Visual examples of features used for boosting training: (a) median filter, (b) standard
deviation, (c) entropy, (d) symmetry, (e,f) Gabor features.

whole volume. It is designed following the Potts model, by penalizing neighboring nodes that have

been assigned different labels:

Vxy(lx, ly) =







0, if lx = ly

β, if slx 6= sly and clx = cly

γ, otherwise

(3.26)

Where β is a constant parameter that describes the strength of the penalization imposed on the

segmentation field and β ≪ γ.
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3.3.2.2 Unary Terms

We define the MRF unary term as a sum of three potentials :

Vx(lx) = VS(s
lx) + γVC(c

lx) + µVS,C(s
lx , clx) (3.27)

The first two terms VS and VC are observation dependent and focus on the segmentation and char-

acterization space respectively, the third term VS,C couples the two, while γ and µ are constant

parameters that balance the relative importance of the different potentials.

For the segmentation term VS(s
lx), we make use of the classification likelihoods Ptm(I(x))

and Pbg(I(x)) recovered through Gentle AdaBoost learning. This terms seeks the label config-

uration that yields the maximum likelihood probability. Inspired by the MAP-MRF formulation

and following the approach of [Boykov 2006], we use the log probabilities and define the term as

follows:

VS(s
lx) = −slx logPtm(I(x))− (1− slx) log Pbg(I(x)) (3.28)

The characterization term’s role is to identify which cluster the tumor to be segmented belongs

to. Even though the precise position of the tumor is unknown, the boosting classification score

H(x) gives a rough estimate of the position of the tumor pixels. The closest cluster is identify

by measuring the amount of non overlap between the binary map associated to the center of each

cluster and the voxels with a high boosting classification score.

VC(c
lx) = max(0,HT (I(x)) − M̄clx (x)) (3.29)

Where M̄Ci
(.) is the binary segmentation map of the tumor that is the center of the cluster Ci, and

HT (.) is a binary map representing voxels with a high classification score, obtained by thresholding

(with threshold T) of the boosting classifier output:

HT (I(x))

{

1, if H(I(x)) > T

0, otherwise
(3.30)

This potential counts the number of voxels that are classified as tumor by boosting and do not

overlap with the tumor volume of the cluster center. The closest cluster corresponds to the one that

has the highest overlap with the most probable tumor voxels.

Last but not least, the coupling term VS,C(s
lx , clx) links the segmentation and characterization

labels via the DLGG atlas and plays an essential role in the segmentation process. Let us recall that

each cluster Ci is associated to a probability map P (x|Ci) that describes the spatial distribution of

tumor voxels in the cluster. Given a characterization label (cluster assignment), the corresponding

probability map gives insight on where the tumor is expected to be and not to be. This is used

as a spatial prior that will encourage or discourage segmentation decisions based on the voxel’s

localization:

VS,C(s
lx , clx) = −slx log P (x|clx)− (1− slx) log

(

1− P (x|clx)
)

(3.31)

Spatial consistency is enforced between the segmentation label and the expected spatial distribution

of the tumors of the corresponding cluster.
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(a) (b)

Figure 3.5: Image courtesy of [Komodakis 2008b]. (a) Primal-Dual principle: the optimal cost
always lies between bTy and cTx for any pair (x,y) of feasible solutions. If both values are
close, the approximated solution to the primal problem is close to the optimal solution too. (b)
Primal-Dual schema: iteratively generate pairs (xk,yk) of feasible solution until they are close
enough (their ratio is below f∗) to obtain an f∗-approximation of the solution

3.3.2.3 MRF Optimization Using Linear Programming

The MRF energy is minimized using Fast-PD [Komodakis 2007b, Komodakis 2008b]. The algo-

rithm relies on linear programming and primal-dual strategies. Considering a pair of primal and

dual linear programs:

PRIMAL : min cTx DUAL : maxbTy

s.t. Ax = b,x ≥ 0 s.t. ATy ≤ c
(3.32)

It is possible to obtain an f-approximation of the solution to the Primal problem by minimizing the

cost gap between the primal and dual problems so that their ratio is inferior to f . This is carried

out by iteratively generating pairs of primal-dual solutions {xt,yt} until the elements of the last

generated pair are both feasible and have a primal dual gap inferior to f :

cTxt ≤ f.bTyt (3.33)

This strategy is applied to the MRF energy by reformulating the problem as the following

integer program:

min
∑

p∈V

∑

l∈L

Vp(l)xp(l) +
∑

p,q∈E

∑

l,l′∈L

Vpq(l, l
′)xpq(l, l

′) (3.34)

s.t.
∑

l

xp(l) = 1 ∀p ∈ V (3.35)

∑

l

xpq(l, l
′) = xq(l

′) ∀l′ ∈ L, (p,q) ∈ E (3.36)

∑

l′

xpq(l, l
′) = xp(l) ∀l ∈ L, (p,q) ∈ E (3.37)

xpq, xp ∈ {0, 1} (3.38)
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The binary variables xp(l) and xpq(l, l
′) characterize the label assignments. xp(l) = 1 implies that

label l has been assigned to node p while xpq(l, l
′) = 1 indicates that nodes p and q are assigned

label l and l′ respectively. Constraint 3.35 imposes that the node is only assigned one label and

constraints 3.36 and 3.37 impose consistency between the unary and pairwise binary variables.

The linear programming relaxation of the integer program consists in relaxing constraint 3.38 to

the constraints xp(.) ≥ 0 and xpq(., .) ≥ 0. The primal-dual scheme is then applied to the relaxed

integer program and its corresponding Dual problem:

max
∑

p∈V

yp (3.39)

s.t. yp ≤ min
l∈L

hp(l) ∀p ∈ V (3.40)

ypq(l) + yqp(l
′) ≤ Vpq(l, l

′ ∀(l, l′) ∈ L, (p,q) ∈ E (3.41)

(3.42)

where hp(.) = Vp(.)+
∑

q,(p,q)∈E yp,q(.) is called the height variable. For MRF optimization, each

iteration (generation of primal-dual pairs) corresponds to a max-flow optimization of a capacitated

graph constructed based on the current pair of primal-dual variables.

The method has several advantages among which its generality (the pairwise potentials only

have to be positive), optimality guarantee (f-approximation of the optimum) and computational

efficiency.

3.4 Experimental Validation

3.4.1 Data-set and Preprocessing

The database used to build the statistical atlas consists of 210 carefully selected patients. All of

them were over 18 years old and treated in the same institution. A histological diagnosis has been

performed and FLAIR volumes as well as molecular analysis where available prior to any treat-

ment. The tumor size was limited to 180cm3 so that the center of the tumor remains representative

of where the tumor initially appeared: the tumor expansion would shift its center of gravity. The

distribution of tumors’ sizes is shown in Fig. [3.6]. The database consisted of 97 females and 113

males of mean age 38 years old and mean tumor volume 45 cm3. The tumor size ranged from 0.1

to 180 cm3.

The patients’ MRIs considered for the construction of the atlas were 3D FLAIR volumes that

were all manually segmented. The image size varied from 144 to 576 in the (x,y) plane et 12 to

213 in the z plane, and the voxel resolution from 0.4x0.4 to 1x1 mm2 in the (x,y) plane and 0.9 to

10 mm in the z plane.

The reference pose used for registration is a 256x256x24 FLAIR image of a healthy brain,

with resolution 0.9x0.9x5.5. Because of the strong slice thickness, the segmentation maps were no

longer binary after registration due to interpolation tasks. The same threshold of 0.2 determined
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Figure 3.6: Distribution of tumors sizes in the data set (number of tumors vs tumor size in cm3)

experimentally as the most faithful segmentation of the registered tumor is used on all the data and

in the remainder of this thesis to convert the registered maps to binary maps.

The boosting features rely heavily on the images intensities that need to be comparable between

volumes. The intervolume intensity inhomogeneity inherent to the MRI modality is dealt with

using a simple method, in order to maintain the contrast between the tumor and the background.

All images are set to a similar intensity range by setting them to the same median and interquartile

range:

Ireg =
I −med(I)

IQR(I)
(3.43)

where med(I) and IQR(I) are respectively the median and interquartile range of image I, computed

without taking into account the background area (lowest intensity values). The median was used

instead of the mean value due to the presence of the tumor that can impact the mean intensity value,

especially if the tumor’s size is significant. No correction was done on the image’s bias field.

3.4.2 Sparse Graph Validation and Robustness

In order to select the best parameter α for clustering, we clustered the complete graph for different

values of α ranging from 0.3 to 7 which yields 5 to 49 clusters. For each experiment, we computed

the value of the three indices (Dunn, Davies-Bouldin and Silhouette). All indices showed a peak

corresponding to 11 clusters. The indices have been normalized and combined using their product:

Ic = (D.(1−DB).GS)1/3 with the underlying idea that if an index has a low value, the combined

value should also be low. The combined index value showed a strong maximum for α = 2.1 which

corresponds to a 11 clusters graph. The different indices values as well as their combined value

with respect to parameter α and the number of clusters can be seen in Fig. [3.10]. The clustered

graph is shown in Fig. [3.7]. The positions of the centers of the clusters were transferred to the

ICBM atlas via non rigid registration of the reference pose [Glocker 2008b] and can be seen in
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(a) (b)

(c)

Figure 3.7: Visualization of the complete clustered graph superimposed to the mean registered
image. The numbers correspond to the number of nodes in each cluster.

Fig. [3.14], highlighting a strong symmetry between the hemispheres. We observe, as summarized

in table 3.1, a strong predominance of tumor appearances in the Insula (more than a third of the

tumors) and towards the frontal lobe, while there are no clusters in the occipital lobe. Schematics

of the brain structure are shown in Fig. [3.8]

Next, we evaluated the robustness of the graph by performing Leave One Out Cross Validation.

We carried out 210 experiments where one sample p was removed from the data set. For each ex-

periment, we learned the graph topology on the 209 remaining samples by selecting the clustering

that yielded the maximum value of the three indices. An 11 clusters graph was obtained for 207

experiments (98.5 % of the data). A 10 clusters graph was obtained for 3 samples. Those samples

were the center or close to the center of the same loose cluster that was merged with its closest

neighbor when the sample was removed.

We then studied the robustness of the graph by analyzing the influence of each sample. For
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Anatomical localization Number of clusters Percentage of data

Parietal lobe 2 (symmetric) 12 %

Supplementary Motor Area (frontal lobe) 1 9 %

Temporal lobe 2 (symmetric) 18 %

Frontal lobe 1 9 %

Anterior frontal (frontal lobe) 2 (symmetric) 15 %

Insula 3 (2 symmetric clusters) 37 %

Table 3.1: Anatomical localization of the different clusters

Figure 3.8: Schematics of the brain structure.

each learned clustered graph obtained by cross validation, we evaluated the impact of the 210th

sample on the structure of the graph and the quality of the clusters. In order to determine how

well the graph represents the data, we tried to assign the 210th sample to a cluster based on two

measures: the distance from the center of the cluster and the silhouette index. To assign a sample

to a cluster, three criteria have to be verified:

1. Distance from the center of the cluster. The sample has to be assigned to its closest cluster

and its distance to the center should follow the distance distribution within the cluster. We

determine if the sample is an outlier based on the distribution’s quartiles :

d(p, c̄k) = min
j∈[1:K]

d(p, c̄j) and d(p, c̄k) ≤ Q3(Ck) + 1.5(IQR(Ck)) (3.44)

where Q3(Ck) and IQR(Ck) are respectively the third quartile and interquartile range of the

distance distribution in cluster Ck.

2. Individual Silhouette index. The global silhouette index is indicative of the quality of the

clustering. The individual index tells how well the sample fits in its cluster. For each cluster

k, we compute the corresponding silhouette index. If the index is close to 1, there is no

doubt about the fact that the sample belongs to this cluster. A value close to zero does not
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Figure 3.9: Cluster validity indices with respect to the value of α (a,b,c,d) and the number of
clusters (e). Dunn index (a), Davies Bouldin index (b), Silhouette index (c) and combined indices
(d,e).

necessarily mean that the clustering is bad. Indeed, the main drawback of the silhouette

is that it can penalize loose clusters (large diameter) when compared to smaller ones. The

sample should be assigned to a cluster if it maximizes the silhouette index and fits in the

silhouette of the cluster. Similarly to the first criterion, we make use of the quartile values:

sk(p) = max
j∈[1:K]

sj(p) and sk(p) ≥ Q1(Ck)− 1.5(IQR(Ck)) (3.45)

where Q1(Ck) and IQR(Ck) are respectively the first quartile and interquartile range of the

silhouette index distribution in cluster Ck and sk(p) is the silhouette index of sample p with

respect to cluster Ck.

3. The last criterion verifies that the same cluster is selected by criteria 1 and 2:

argmin
k

d(p, c̄k) = argmax
k

sk(p) (3.46)
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Figure 3.10: Errorbars of the indices computed for the cross validation experiments with respect
to the value of α (a) and the number of clusters (b).

Using those criteria, we successfully classify 88% of the whole data-set.

Last, we evaluated topology correspondences between the 207 eleven-components clusters

graphs and the graph obtained from the whole database. To this end, we use the graph match-

ing algorithm presented in [Torresani 2008]. Complete match of the graphs was obtained in 70%
of the cases and only one node differed in 26% of the cases. The rest of the samples had 2 (9 sam-

ples) or 4 (1 sample) different nodes. For the cases where the cluster centers were different, they

were still situated in the same area in the brain and the centers were close. The maximum distance

between two different centers is 12.6 which corresponds to the mean intra cluster distance of tight

clusters. Complete and partial matching are illustrated in Fig. [3.11] that highlights the proximity

of mismatched centers. The worst case with 4 non matched samples is shown in Fig. [3.11c].

3.4.3 Segmentation Results

Segmentation was performed on the 210 volumes via Leave One Out Cross Validation. The atlas

was constructed on the 209 remaining samples according to the optimal value of α. For boosting

learning, 210 classifiers were learned by randomly selecting 35 volumes among the 209 samples

used for graph construction. For the symmetry feature, we rely on the fact that all images are

registered and use an approximate symmetry plane estimated on the reference pose. Estimating

an exact symmetry plane is out of the scope of this work and has been the subject of elaborated

methods [Prima 2002].

We evaluated the segmentation quality with respect to the manual segmentations by computing

the Dice Score (D), False (FP) and True positive (TP) rates and Mean Absolute Distance between

contours (MAD). Given a manual segmentation M and an automatic segmentation A, the different
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Figure 3.11: Illustration of the graph matching results. (a) Complete match, (b,c) Partial match.
Positive matches correspond to blue edges and mismatched samples to red edges.

scores are defined as follows:

D =
2‖A ∩M‖

‖A ∪M‖+ ‖A ∩M‖

TP =
‖A ∩M‖

‖M‖

FP =
‖A‖ − ‖A ∩M‖

‖A‖

MAD =
1

2

(

1

nA

∑

x∈A

dmin(x,M) +
1

nM

∑

x∈M

dmin(A, x)

)

(3.47)

where nA and nM are the number of voxels in A and M respectively and dmin(x,M) = inf(d(x, y)|y ∈
M) is the smallest distance of a point x to any point in M . The distance d(., .) used here is the

euclidean distance. Basically, the MAD score characterizes how close the two contours are.

The method was compared to sole boosting classification and pairwise MAP-MRF segmen-

tation using the boosting probabilities as likelihood and an Ising model as pairwise cost. The

parameter β determining the amount of smoothing of the segmentation field was set to 1 with prior

and 3 without prior (MAP-MRF). Parameters γ and µ were set to 1 and 10000 respectively. The

high value of µ was necessary for small tumors that caused very little variation in the value of the

potential VC(.). The threshold parameter T driving the construction of the binary boosting score is

set to 1.5. The parameters µ and T were determined so that the maximum number of images were

assigned to their right cluster (inferred from the complete graph construction).

Using our framework, we observed an increase in the quality of the segmentation and a sig-

nificant drop of false detections. The different mean and median scores for the three methods are

shown in table 3.2 and boxplots of the scores over all images are shown in Fig. [3.12]. We observe

an increase of the Dice score (+ 3% mean and median) and strong reduction of the false positive

rate (- 9-10 % mean and median). The increase in quality is highlighted by the MAD score, as illus-
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Figure 3.12: Boxplots of the Dice score (a), True Positive rate (b), False positive rate (c), and MAD
score (d) between the automatic and manual tumor segmentation for the three different methods.

trated in the boxplot in Fig. [3.12d]. Visual segmentation results shown in Fig.[3.15] also highlight

the impact of the spatial prior, where erroneous boosting detections are corrected. A reduction of

the true positive rate is observed (-4 %), mainly due to mischaracterized tumors and outliers as

well as the limited number of samples in certain clusters. This phenomenon could be reduced by

an increase in the size of the data set and detecting outlier tumors (as tumors equally distant from

two cluster for instance) that should not be assigned to any cluster. Wrong clusters assignments

are directly connected to the quality of the detection step and principally concern small tumors.

Increasing the characterization quality would mostly depend on an increase of the quality of the

detection. The discrepancy between the mean and median Dice values (69% and 77%) was due to

those small tumors, that were poorly detected by the classifier and therefore poorly segmented.
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Method Dice True Positive False Positive MAD

Boosting 50 (55) % 77 (83) % 59 (58) % 22 (22) mm

MAP-MRF 66 (74) % 70 (78) % 29 (21) % 9.5 (6) mm

Atlas Prior 69 (77) % 66 (74) % 20 (12) % 6 (3.5) mm

Table 3.2: Mean and median (in parentheses) values of the different scores and methods for tumor
segmentation.

(a) (b)

Figure 3.13: 3D visualization of an example segmentation result. (a) manual segmentation, (b)
automatic segmentation

3.5 Discussion

In this chapter, the construction of a probabilistic atlas mapping the preferential locations of DLGGs

has been presented. The atlas was constructed through a complete graph where each node repre-

sents a tumor and the edges represent the proximity between the tumors, evaluated as the Euclidean

distance between their center of gravity. The DLGGs’ preferential locations were then identified by

regrouping nearby tumors in clusters where each cluster corresponds to a preferential location. The

optimal clustering was determined using well-established cluster validity indices. To each cluster

is associated a probability map representing the spatial extension of tumors within the cluster.

A natural application of this tumor specific atlas was in the context of tumor segmentation as

a spatial prior. Such an application was presented in the second part of this chapter. The atlas was

integrated in a coupled MRF framework where the tumor is concurrently characterized (assigned

to one of the atlas’ clusters) and segmented. An initial statistical classification based detection

enables assignment to the cluster as well as segmentation with spatial smoothing (similarly to

MAP-MRF approaches). The two problems (characterization and segmentation) are coupled via
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a spatial prior term dependent on the characterization and segmentation labels. This term makes

use of the cluster’s probability maps to enforce spatial consistency with the segmentation and the

expected localization of tumor pixels within a given cluster.

Aside from the obvious appeal of tumor segmentation, the atlas enables the study of the tumor

behavior with respect to its localization which could be correlated with the patient’s characteris-

tics (age, sex...) or the tumor’s characteristics (histological type, molecular biology...). This could

potentially unravel behaviors (growth rate, anaplastic transformation) dependent on specific pa-

rameters and enable to adapt treatments to the patient. Going further, the interaction between the

tumors and their surrounding tissue and functional areas as well as their growth patterns could be

studied with respect to the cluster they’re in. This could lead to models of tumor growth and their

impact on brain functional reorganization.

The latter applications are however limited by the use of affine registration. Consequently,

the interaction between the tumors and surrounding structures would strongly lack precision. A

deformable registration could handle these issues, where the presence of the tumor has to be taken

into account in order to obtain realistic transformations. Integration of anatomical information

would also increase the quality of segmentation results that, in our approach, is strongly dependent

on the adequacy of the selected cluster. An outlier tumor or a poorly detected tumor can be assigned

to a cluster that does not correspond to its location. Anatomical information would reduce the

impact of bad assignments as it offers a second means of integrating spatial prior knowledge.

The development of such a deformable registration method, coupled with tumor segmentation,

will be the subject of the next chapter.
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(a) (b)

Figure 3.14: Positions of the cluster centers on the ICBM atlas after registration. A strong sym-
metry can be observed between clusters in columns (a) and (b) of the same image row.
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(a) (b) (c) (d)

Figure 3.15: Visual Segmentation results. (a) boosting score, (b) Boosting classification (thresh-
olding), (c) Pairwise MRF, (d) MRF with spatial prior.
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Chapter 4

Joint Tumor Segmentation and Dense

Deformable Registration

4.1 Introduction

In the previous chapter, a DLGG specific atlas was constructed in order to study the tumor ap-

pearances in the brain and their behavior. The methodology was designed to be robust to errors in

registration, relying on the tumors center of gravity instead of surfaces. In general, the presence

of tumors violates common registration procedures and therefore, a global affine registration was

used to map all images in the same reference coordinate system. Interesting and promising results

where obtained with respect to the mapping of DLGGs in the brain and their preferential locations.

Nevertheless, an improvement on the precision is expected to be obtained via the use of deformable

registration that would also provide the possibility of associating the presence of the tumor with the

surrounding structures and in particular measure the impact of tumors on them. Generally speak-

ing, when constructing pathology related atlases, the registration method should take into account

the presence of the pathology and the absence of correspondence in the atlas.

In parallel to atlas construction, the task of atlas based segmentation of tumor bearing images

has gained a lot of interest. A healthy reference atlas is registered to a pathological subject in order

to segment its healthy structures and/or the tumor. For tumor segmentation (see chapter 2), a simple

registration scheme is usually proposed (affine registration [Prastawa 2004], or segmentation based

registration with the tumor labeled healthy [Kaus 2001]) and subsequently, a segmentation method

is designed in order to cope with registration errors. However, such methods fail when the registra-

tion error is significant (i.e. when the brain is deformed by the tumor). If the healthy structures are

to be segmented based on the atlas’ structures segmentation, affine registration cannot match the

different anatomies. Those issues highlight the need for a non-rigid registration scheme for tumor

bearing images in order to obtain robust and precise segmentations.

Most of the existing methods for registration with missing correspondences consider that the

tumor has been determined by a prior segmentation. The coupled segmentation/registration task

89
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Hierarchical MRF model with

content-driven adaptive sampling

Concurrent tumor Segmentation

and template Registration

Tumor patient

Anatomical template

Segmented tumor

Registered template

Figure 4.1: Overview of the Joint Registration and Segmentation method

is thus treated sequentially. Such methods do not exploit the inherent link between segmenta-

tion and registration, where the segmentation benefits from a good registration (atlas anatomical

information) and the registration benefits from the segmentation by taking into account the area

without correspondences. This chapter presents a concurrent registration and segmentation frame-

work where the segmentation map and deformation field are estimated simultaneously leading to

better solutions for both problems. A Markov Random Field model is adopted, seeking to assign

to each graph node a label that corresponds to a displacement and a segmentation label. Statistical

classification is used to provide tumor vs background prior likelihoods along with conventional

registration similarity metrics. In the missing correspondences area (tumor), the registration term

is relaxed and the area is implicitly deformed by interpolation.

The remainder of this chapter is organized as follows: section 4.2 present the related work

on brain registration in the presence of a pathology and concurrent registration and segmentation.

Section 4.3 introduces the joint MRF framework while section 4.4 present a stochastic approach to

account for the main drawback of discrete MRF based registration, which is the trade off between

complexity and sampling precision. Experimental validation will be part of section 4.4 and a

discussion concludes this chapter. A short graphical overview of the method is shown in Fig. [4.1]

4.2 Related work

The following notations will be used in this section: I is the fixed or target image and J is the

moving or source image defined on a domain Ω. T is the transformation that maps the source

image to the target image.
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4.2.1 Registration with Missing Correspondences

For the task of non rigid registration in the presence of brain tumors, we can divide prior art into

two groups of methods. The first class of methods masks the pathology and does not take it into

account during the estimation of the matching criterion. The deformation in and around the tumor

is carried out by interpolation via a regularization term. The second group simulate a tumor in

the healthy atlas to create correspondences. This is typically designed as an atlas seeding process

where the origin of the tumor in the atlas (the seed) is determined, followed by the growth of the

artificial tumor carried out using growth models.

4.2.1.1 Pathology Masking

A simple approach for pathology masking was proposed in [Brett 2001] and tested on a variety of

brain lesions (infarction, metastasis and aneurysm). They used the registration method proposed

in [Friston 1995] (distributed in the Statistical Parametric Mapping (SPM) package). An affine

registration is followed by a parametric non linear registration. The transformation model is based

on a discrete cosine transform (the basis functions are cosine function) and while the Sum of

Square Differences was used as matching criterion. The lesion is manually segmented and its

corresponding area is masked so that it is not taken into account for the evaluation of the optimal

displacement.

In the work of Stefanescu et al. [Stefanescu 2004], the registration problem was designed via

two regularization processes. The following objective function is to be minimized:

E = SSD(I, J ◦ T ) + β

∫

Ω
k(x)

∥
∥
∥
∥
∇
∂T

∂t

∥
∥
∥
∥

2

+ γ

∫

Ω
D(x)‖∇T (x)‖2 dx (4.1)

The first term is the similarity criterion, defined as the Sum of Square Differences (SSD). The

second term is a fluid regularization of the deformation field that allows large local displacements,

while the third term is an elastic regularization which role is to preserve anatomical coherence. The

space varying weighting parameter D(x) varies with respect to the anatomical tissues deformabil-

ity, simulating the behavior of a biomechanical model. The parameter that accounts for the pres-

ence of the tumor is the fluid regularization weighting parameter k(x) ∈ [0, 1]. This parameter is a

confidence score on the reliability of the matching criterion. If k(x) is close to zero, the smooth-

ness of the deformation is heavily imposed and almost interpolated from neighboring values. In

healthy structures, the value of k depends on the image gradient. It is set to zero in the tumor area,

and therefore the deformation field is interpolated. The optimal displacement is recovered through

a four steps iterative process. First the velocity field v(x) is recovered by gradient descent of

the SSD criterion (which amounts to approximating the demons algorithm forces [Pennec 1999]).

Second, a weighted fluid regularization of this field is performed as ∂v
∂t (x) = k(x)∆v(x). Even-

tually, the deformation field is updated T t+1 = T t ◦ v and smoothed by elastic regularization
∂T
∂t (x) = ∇(D(x)∇T (x)). An extension of the method was presented in [Commowick 2005] to

construct an anisotropic weighting field D(x) based on image statistics.
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The method was more recently adapted to the diffeomorphic demons framework [Vercauteren 2008]

in [Lamecker 2010]. Thirion’s algorithm was cast as a well posed energy minimization problem via

the introduction of hidden variables called correspondences. The idea is that instead of requiring

point to point correspondences to be exact, local errors are allowed [Cachier 2003]. This translates

in the following energy:

E(C,T ) =
1

σ2
i

Sim(I, J ◦ C) +
1

σ2
c

dist(T , C) +
1

σ2
r

Reg(T ) (4.2)

Where σc and σr are weights depending on the spatial uncertainty of the correspondences and

on the irregularity of the deformation respectively. Typically, the different terms are defined as

Sim(I, J ◦C) = ‖I−J ◦C‖2, dist(T , C) = ‖C−T ‖2 and Reg(T ) = ‖∇T ‖2. This formulation

enables to decouple the problem into two iterative optimization steps:

Correspondence step: Ct = argmin
C

1

σ2
i

Sim(I, J ◦ C) +
1

σ2
c

dist(T t, C)

Regularization step: T t+1 = argmin
T

1

σ2
c

dist(T , Ct) +
1

σ2
r

Reg(T )
(4.3)

In order to deal with the presence of the pathology, [Lamecker 2010] introduced a third step called

the inpainting step. This step overwrites the computed displacement field in the tumor area with

the solution of the Laplace equation ∆T = 0. Since no information is given about the image in

this area, the deformation is simply interpolated from the boundary of the tumor.

4.2.1.2 Atlas Seeding

Aside from pathology masking, a series of methods specifically designed for brain tumors have

been developed. The common idea is to simulate the presence and growth of the tumor in the

healthy atlas. A simple method was proposed by Dawant et al. [Dawant 1999]. First, a strongly

regularized demons registration brings the atlas and patient images into approximate alignment.

The strong regularization limits the amount of displacements allowed which preserves the brain

anatomy and prevents errors due to the presence of the tumor. Tumor voxels in the patient’s image

are manually segmented and assigned a constant intensity value. A subset of the synthetic lesion

voxels (selected by erosion of the segmentation map) are then artificially introduced in the healthy

atlas (the atlas is said to be seeded). A second weakly regularized registration is carried out where

the seed will trigger demon forces that will simulate the tumor growth in the atlas to match the

patient’s tumor. This implies however a sizable seed that can mask key anatomical information in

the atlas.

The work of [Bach Cuadra 2004, Pollo 2005] was a natural extension of this seeding approach.

Automatic segmentation of the tumor is carried out using the statistical classification based ATM-

SVC algorithm [Warfield 2000, Kaus 2001] (see section 2.5.3 for an overview of the method).

Here, the seed (a single voxel in the atlas) is manually chosen by an expert. The registration method

follows the demons algorithm but treats the voxels differently if they are inside or outside the tumor.
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The displacement field inside the tumor follow a growth model that assumes a radial growth from

the seed. The classical demon forces are computed outside the tumor. The displacement field is

adaptively regularized using a Gaussian filter of variable standard deviation σ. The tumor area

is not regularized (σ = 0), a small value is used at the tumor boundary (σ = 0.5) and smaller

deformations are allowed in the rest of the brain (σ = 0.8). A variant was proposed later in

[Bach Cuadra 2006] using a Mutual Information flow based registration scheme in the healthy

region. The drawbacks of the method include expert seeding and a limitation to homogeneous and

uniformly growing meningiomas in terms of growth model and automatic segmentation.

A second group of methods relied on biomechanical models to simulate the deformations in-

duced by the tumor. The work of Kyriacou et al. [Kyriacou 1999] was the first using biomechanical

modeling for atlas to patient registration in the presence of a tumor. A Finite Element (FE) model

is used to model the brain’s deformations. The FE method is a numerical approach to approximate

the solution of partial differential equations with boundary conditions by discrete meshing of the

domain. Here, the brain boundaries are defined manually and used to construct a triangular mesh

of the brain. The different brain structures are modeled as elastic materials with tissue specific pa-

rameters. Similarly to [Bach Cuadra 2004], the tumor growth is assumed to be radial and uniform.

Given a circular seed of diameter Ds, the grown tumor would have a diameter of Dt = Ds(e0+1),
where e0 is a parameter that specifies the growth rate. Because of boundary constraints defined

from the surrounding tissues, the resulting growth of the tumor will tend not to be uniform. First

the model shrinks the tumor to an almost inexistent tumor. A normal registration is then carried out

between the healthy atlas and simulated healthy patient. The third step simulates the growth of the

tumor in the registered atlas via a regression procedure to estimate the seed location in the atlas.

This methods inherits a high computational cost and was limited to 2D models.

Mohamed et al. [Mohamed 2006] proposed a registration framework that decomposed the de-

formation field between the healthy atlas and diseased patient into a tumor induced deformation

(the mass-effect) and an inter-subject anatomical differences deformation. They used a more so-

phisticated finite elements biomechanical model of tumor growth [Mohamed 2005]. Tumor and

edema are modeled as concentric spheres following the idea of [Kyriacou 1999]. The mass effect

induced by the tumor is modeled by a constant outwards pressure P from the tumor’s boundary,

while an isotropic expansion in white matter is assumed for the edema. In order to reduce the

computational complexity inherited from the biomechanical model, a PCA based statistical model

was used to learn the deformations induced by the tumors for different subjects and parameters

(tumor and edema center and radii, and pressure P). Given such a model, an initial guess of the

deformation field obtained by normal registration is projected onto the tumor induced deformation

space. This enables the estimation of the optimal tumor growth parameters via a maximum like-

lihood framework and the simulation of the tumor in the atlas. The final step registers the tumor

bearing atlas to the patient.

Zacharaki et al. [Zacharaki 2008] built upon this work using a more elaborated registration

scheme and method for the evaluation of the tumor growth parameter. Their framework, called

ORBIT, adapts the HAMMER algorithm [Shen 2002] to the presence of tumors. The HAMMER

algorithm is a hierarchical registration framework that was proposed in order to reduce the ambi-
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guities of intensity matching driving the registration process to local minima. The main idea was

to compute a similarity metric between attribute vectors instead of relying solely on the intensity

values. The attribute vectors are computed at each image voxel and consist of edge information,

normalized intensities and tissue specific geometric moments invariants (computed on a spheri-

cal neighborhood at different scales). In ORBIT, two tumor based attributes were introduced: the

signed distance from the tumor boundary and the angular location with respect to its center. The

similarity measure between two voxels is defined as a weighted sum of a criterion matching the

healthy structures SimB and a tumor criterion SimT that matches the tumors’ geometry:

Sim(x,y) = (1− w(x,y))SimB(x,y) + w(x,y)SimT (x,y) (4.4)

w(x,y) is a weighting factor that is equal to one in the tumor area and decreases proportionally

with respect to the distances to both tumors (one simulated in the atlas and the target’s image

tumor). SimB matches the healthy attributes (edges, intensity, geometric moments) while the

tumor attributes are matched by SimT . The registration process starts by selecting the voxels

with the most salient features (the driving voxels) that are then hierarchically enriched by new

ones to increase the registration accuracy. The biomechanical model parameters are estimated by

minimizing an objective function based on the assumption that a poor modeling of the tumor will

produce important and unrealistic deformations. The objective function evaluates the quality of the

obtained registration using 3 terms: (i) the segmentation overlap of the registered images, (ii) the

similarity metric, and (iii) the laplacian of the deformation field which measures its smoothness. A

new registration process is then carried out with the optimally estimated parameters. A summary

of the iterative approach can be seen in Fig.[4.2]. The method was improved in [Zacharaki 2009]

with a computationally efficient biomechanical model [Hogea 2007] that does not require statistical

training.

The appeal of growth models is undeniable, as they offer means to obtain anatomically realistic

deformations induced by the tumor. However, the quality of the registration depends on the accu-

racy of the model and of its parameters. Simple radial growths are far from adapted to the many

types of tumors while the biomechanical models suffer from their computational cost in modeling

and seeking the optimal parameters. They are also prone to errors when dealing with infiltrative

tumors, mistaking infiltrated tissue with new tissue. Despite its simplicity, pathology masking is

more adapted to the diffusively infiltrative tumors that are DLGGs and could also be used in other

clinical contexts since no assumption is made on the pathology nor its progression. A common

drawback for both approaches is their dependency on an accurate pre-segmentation of the tumor.

4.2.2 Joint Registration and Segmentation

4.2.2.1 Healthy Volumes

Coupling registration and segmentation is not a new problem and several attempts have been made

in the context of healthy structures. The key idea of these methods is that the structures to be

segmented are present in both images. Yezzi et al. [Yezzi 2003] proposed an active contour based
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Figure 4.2: Summary of different steps of the ORBIT algorithm. Figure extracted from
[Zacharaki 2008].

framework where the goal is to segment the same object in two different images I and J. The

goal is to find the contour CI of the object in I and the transformation T that maps I to J so that

CJ = T (CI). An active contour energy is defined on each image as a sum of region terms.

EI =

∫

InCurve
fin(CI) +

∫

OutsideCurve
fout(CI) (4.5)

where the functional fin and fout are the difference between the observed intensity and mean

intensity in their corresponding region. A rather similar concept was used in [Paragios 2005] where

the aim was joint segmentation and sense optical flow estimation. The link between contours CI
and CJ enables to define a coupled objective function as the sum of both energies E(T , C) =
EI(CI)+EJ (T (CI)). The type of transformations where limited to rigid and affine transformations

that have a finite number of parameters to evaluate. This idea was extended in the context of dense

optical flow in [Karantzalos 2005].

Wyatt and Noble [Wyatt 2003] cast the problem of joint segmentation and rigid registration as

a MAP estimation one regarding the optimal segmentation maps SI ,SJ and deformation field T .

Assuming independence between observations I and J, the joint probability is written as:

P (SI ,SJ ,T |I, J) ∝ P (I|SI)P (SI)P (J |SJ )P (SJ )P (T ) (4.6)

A MAP-MRF formulation is used for the segmentation terms. The pairwise term follows the

Potts model while the likelihood terms are mixtures of Gaussians. The rigid registration uses

the mutual information similarity determined according to the joint class histogram obtained from

the segmentation. The method alternates between estimating the optimal segmentation fields for

both images by maximizing the segmentation posterior probability and estimating the registration

parameters by minimizing the similarity measure.
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Ashburner et al. [Ashburner 2005] presented a probabilistic framework for simultaneous tissue

classification, atlas registration and bias field correction. The model is based on classifying the

image using a mixture of Gaussians. Bias field correction is included in the model by locally

adjusting the mean and standard deviation values of the Gaussian distributions. The local variations

are governed by an additional parameter β that accounts for smooth intensity variations across

the image. Spatial priors are introduced as the ICBM probabilistic atlas values. After an initial

affine registration, the matching between the atlas and the image to be segmented is refined by the

introduction of a parameter α that allows local deformation of the atlas. Instead of weighting the

Gaussians by a constant parameter P (S(x) = k|γ) = γk, they are weighted by a spatially varying

prior:

P (S(x) = k|γ, α) =
γkΠk(α(x))

∑K
i=1 γiΠi(α(x))

(4.7)

where Πk is the atlas probability value for class k and K the number of classes. The transforma-

tion is parametrized as a linear combination of cosine transforms. Smoothing priors for the bias

field vector and deformation field are added as multivariate Gaussians of zero mean. The optimal

parameters are obtained by minimizing the following objective function using the ICM algorithm

[Besag 1986]:

E(Φ, β, α) = −
K∑

i=1

log

(

N

(
µk

ρ(β)
,
σk
ρ(β)

)

P (S(x) = k|γ, α)

)

− logP (α) − log P (β) (4.8)

where Φ corresponds to the set of Gaussian parameters.

An Expectation Maximization framework was proposed by Pohl et al. [Pohl 2006] for the es-

timation of the transformation, structures segmentation and bias field correction parameters. The

method follows the segmentation and bias field estimation method of Wells et al. [Wells III 1996b]

but integrates affine registration and atlas prior information. The E-step estimates the classes pos-

terior probabilities based on the current bias field and aligned spatial priors (probabilistic atlas

maps). The M-step updates the registration and bias field parameters based on the classes proba-

bilities. The registration parameters are computed based on the current segmentation and minimize

the Kullback Leibler divergence between the computed segmentation posterior probabilities and

the probabilistic atlas prior probabilities. In other words, we seek the best possible agreement

between both probability distributions.

Last but not least, Mahapatra and Sun [Mahapatra 2012] introduced a 2D MRF based concur-

rent registration and segmentation method. Each voxel is assigned a label that corresponds to a

displacement vector and segmentation label. The unary term is the sum of a conventional regis-

tration similarity measure and a term that computes the agreement between the source and target

images intensity based classes likelihoods. The pairwise term ensures smoothness of the defor-

mation field by forcing pixels of the same class to have similar displacements and limiting the

maximum displacement between voxels of different classes. The MRF is optimized using graph

cuts.
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4.2.2.2 Tumor Bearing Images

Joint segmentation and registration methods for healthy volumes exploit the fact that the same ob-

jects are present in both volumes. The problem becomes far more difficult in the presence of a tu-

mor where the object sought to segment is absent in one of the volumes. Gooya et al. [Gooya 2012]

proposed a Bayesian approach to tackle it, inspired from the work of [Zacharaki 2009] and [Pohl 2006].

They simulate a tumor in the atlas using a diffusion-reaction growth model coupled with an elastic

modeling of the brain to simulate the mass effect [Hogea 2008]. An example of modified atlas

is shown in Fig. 4.3. The optimal registration and growth model parameters as well as segmen-

tation classes are inferred using the EM algorithm guided by the modified atlas. This joint seg-

mentation and registration work is an extension of their growth model-EM registration framework

[Gooya 2011], where only the registration and growth model parameters were inferred through

SVM classification. Here, they work on multispectral images (T1, T1CE, T2, and FLAIR) and

model the different classes as multivariate Gaussian distributions weighted by the atlas probability

maps. The EM E-step computes the classification posterior probability given the current estimates

of the Gaussian, growth model and registration parameters that are updated in the M-step.The

method suffers from the drawbacks of growth model approaches, that is computational cost and

lack of adaptability.

Related work in the context of surgical resection will be introduced in appendix A.

4.3 Concurrent Deformable Registration and Tumor Segmentation

Efficient coupled registration and segmentation frameworks, should inherit reasonable computa-

tional complexity while being modular with respect to the different components of the algorithm

(similarity criterion for registration, tumor detection method, and even clinical context). In such a

context, the model of choice was an MRF model that coupled with discrete optimization algorithms

inherits such properties. In order to account for the presence of the tumor, we selected pathology

masking instead of growth models since it didn’t require prior knowledge on the evolution of the

tumor and could easily be introduced in an MRF model. Furthermore, the deformation induced

by DLGGs tends to be limited due to their infiltrative nature. Contrarily to pathology masking

methods that require an initial segmentation and can introduce a bias in the registration process,

in our approach the mask is progressively determined during registration and becomes more and

more precise as the images get registered.

4.3.1 Discrete MRF Model for Deformable Registration

The formulation of the registration problem as an MRF optimization problem was introduced in

[Glocker 2008a]. The problem’s complexity was remarkably reduced by the use of a parametric

deformation model as well as a discretized solution space. Consider a moving image A defined

on a domain Ω and a fixed image I. We seek the transformation T that will map the moving
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Figure 4.3: Modified ICBM probabilistic atlas by the tumor growth model. From left to right: tu-
mor, edema, CSF, gray matter and white matter probabilities. Figure extracted from [Gooya 2012]

image to the fixed image. In the context of parametric transformation models, Free Form Deforma-

tion models [Sederberg 1986] assume a uniform sparse grid superimposed to the moving volume

[Rueckert 1999]. The grid’s control points constitute a graph G = (V, E), where the nodes cor-

respond to the control points and the edges constitute a neighborhood system N . We define a

predefined discrete displacement set ∆ = {d1, ...,dn} and a set of labels L = {1, ..., n}. Each

graph node p is to be assigned a label lp ∈ L that is associated to a displacement dlp ∈ ∆. The

complete deformation field is then estimated by interpolation:

T (x) = x+
∑

p∈G

η(‖x− p‖)dlp (4.9)

where η(‖x − p‖) is the projection function that describes the influence of control point p over

image voxel x. When the FFD model is adopted, the projection function is defined as cubic B-

splines.

Let us recall that the form of a deformable registration energy to be minimized is the following:

E(T ) = Sim(I,A ◦ T ) + λReg(T ) (4.10)
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The optimal labeling l = {lp,p ∈ G} is recovered by minimizing the MRF energy

E(l) =
∑

p∈G

Vp(lp) +
∑

p∈G

∑

q∈N (p)

Vpq(lp, lq) (4.11)

The parallel between an MRF energy and the deformable registration’s energy is clearly visible.

The pairwise costs play correspond to registration regularization inherent to non-rigid registration

methods. The unary costs correspond to the similarity criterion that is to be minimized to match

the images. In the work of Glocker et al., it is defined as a point wise criterion:

Sim(I,A ◦ T ) =

∫

Ω
Sim(I(x), A(T (x))) dx (4.12)

Because of the parametric formulation, the energy could be expressed through terms acting on

the grid’s control points. To this end, we need to back project the voxel wise similarity measure on

the control points:

Sim(I,A ◦ T ) =
1

|G|

∑

p∈G

∫

Ω
η̂(‖x − p‖)Sim(I(x), A(T (x)) dx (4.13)

where η̂(‖x−p‖) is the back projection function that describes the influence of voxel x on control

point p. For a voxel wise similarity measure, it is defined as:

η̂(‖x− p‖) =
η(‖x− p‖)

∫

Ω η(‖y − p‖)dy
(4.14)

The unary costs are defined according to the similarity criterion as:

Vp(lp) ≈
1

|G|

∫

Ω
η̂(‖x− p‖)Sim(I(x), A(T (x))) dx (4.15)

A key hypothesis of the MRF formulation is that the unary term Vp(lp) depends only on its

corresponding node p. However, the formulation of the unary cost proposed in equation 4.15

does depend on the neighboring nodes because of the interpolation term in T (x). It was shown

in [Glocker 2008b] that to preserve independence, the unary costs can approximate the similarity

value as:

Vp(lp) =
1

|G|

∫

Ω
η̂(‖x− p‖)Sim(I(x), A(x + dlp)) dx (4.16)

Considering that the fixed volume I features a pathology, the MRF registration method has to

be adapted. Following the pathology masking methods, a natural approach would be to ignore the

similarity criterion in the tumor area, which will be deformed by interpolation due to the regular-

ization term. Two issues arise from such an approach. First, it is required that the tumor’s position

is known which implies the need for an initial segmentation. Second, masking the pathology can

introduce an initial bias and prevent the correct registration of healthy structures that are close to

the tumor. Errors get even more likely when the automatic segmentation of the tumor is not that

precise.
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4.3.2 Coupled Tumor Segmentation and Registration

Consider a moving image or reference brain atlas A defined on a domain Ω and a fixed tumor bear-

ing brain image I . The objective here is twofold: register the healthy atlas to the diseased subject

and segment the tumor. Given the strong dependencies between the two problems, we aim at simul-

taneously finding the deformation field T and the segmentation map S . Aside from increasing the

registration quality, coupling segmentation with registration also benefits the segmentation output

as it introduces anatomical knowledge in the segmentation process and reduces the risks of false

positives.

We consider a sparse grid G superimposed to the atlas, a predefined set of n discrete displace-

ments ∆ = {d1, ..,dn} and a discrete label set Lc = {1, .., 2n}. The problem of concurrent tumor

segmentation and registration is converted into a discrete labeling problem. Assigning a label lp to

a grid node p corresponds to assigning a pair segmentation/displacement {dlp , slp} ∈ ∆ × {0, 1}
where :

dlp = dk where k = lp (mod n)

slp =

⌈
lp
n

⌉
(4.17)

As a result, when a grid node is assigned a label, it is simultaneously assigned a displacement

(selected from the predefined discrete set) and labeled as a tumor or background node. The dis-

placements and classification decisions are then propagated on the whole volume by interpolation:

T (x) = x+
∑

p∈G

η(‖x − p‖)dlp

S(x) =
∑

p∈G

η(‖x − p‖)slp
(4.18)

The MRF energy to minimize is designed as an association of segmentation and registration

terms:

Ec =
∑

p∈G

αVR(lp) + (1− α)VS(lp)
︸ ︷︷ ︸

Registration and segmentation
unary terms

+
∑

p∈G

∑

q∈N (p)

αVpq,R(lp, lq)
︸ ︷︷ ︸

Registration
pairwise cost

+(1− α)Vpq,S(lp, lq)
︸ ︷︷ ︸

Segmentation
pairwise cost

(4.19)

Where α is a parameter that balances the importance of the registration and segmentation term. The

focus is on registration when α is high, and on segmentation when α is low. Linear programming

is used to recovered the optimal labeling via the Fast-PD algorithm [Komodakis 2008b].

4.3.2.1 Unary terms

The registration term seeks for optimal correspondences between the fixed and moving image. Cor-

respondences are sought in the healthy areas by computing a similarity measure Sim(.) between

the fixed and deformed image. However, they do not exist in the tumor area (characterized by
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slp = 1) where the similarity measure becomes unreliable. We use a constant cost Ctm instead

whose role is two-fold: first it provides a unary cost independent of the displacement so that the

deformation is solely guided by the pairwise regularization term. Second, It identifies regions that

are potentially tumors due to a high dissimilarity between the two images:

VR(lp) =

∫

Ω
η̂(‖x− p‖)







slpCtm
︸ ︷︷ ︸

Tumor case:
Constant cost

+(1− slp)Sim
(

I(x), A(x + dlp)
)

︸ ︷︷ ︸

Background case: Similarity criterion







dx (4.20)

The segmentation term corresponds to the prior likelihood probability of the fixed volume I:

p(I(x)|slp). It refers to voxel wise classes probabilities computed using standard classification

techniques. This term ensures that the nodes with a high probability of being tumor are labeled

accordingly. Since the node is segmented and displaced simultaneously, the segmentation term is

dependent on the node’s displacement dlp :

VS(lp) =

∫

Ω
η̂(‖x−p‖)

(

−slp log p
(

I(x+ dlp)|slp = 1
)

− (1− slp) log p
(

I(x+ dlp)|slp = 0
))

dx

(4.21)

For both unary terms, the back projection function η̂(.) is used to back project the voxel wise

information (class probabilities and similarity criterion) on the control points.

4.3.2.2 Pairwise terms

The role of the pairwise terms is to enforce smoothness of the segmentation and deformation field.

If the resolution of the grid is low (large spacing between the nodes), it makes little sense to impose

similar labels to the neighboring nodes. Furthermore, cubic B-spline interpolation on a large reso-

lution grid produces a satisfactory smoothing effect. The pairwise costs are therefore strengthened

as the resolution decreases. The segmentation pairwise cost is designed as a simple Potts model

weighted by the distance between the nodes:

Vpq,S(lp, lq) =
|slp − slq |

‖p− q‖
(4.22)

The registration pairwise cost is defined in a similar fashion and imposes local consistency of the

displacement field:

Vpq,reg(lp, lq) = λ

(
dlp − dlq

)2

‖p− q‖
(4.23)

where λ describes the influence of the registration regularization. The registration pairwise cost

plays a key role in the tumor area as it drives the deformation (due to the constant registration

unary cost) and determines the amount of admissible deformation. In healthy areas, λ should be

high enough to preserve the anatomical structures. It should however be weakened around the

tumor area where strong deformations can occur due to the tumor’s growth.
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4.3.2.3 Incremental implementation

The main limitation of such discrete models resides in the definition of the displacement search

space and of the grid’s resolution. On one hand, we want the algorithm to handle large and yet

precise displacements which requires a large and thorough displacement set as well as a important

grid resolution. On the other hand, they are both to be constrained in order to maintain the compu-

tational burden manageable. Adding segmentation labels in the process increases the difficulty as

almost voxel wise labelings are required, especially given the arbitrary shapes of the tumor.

Those drawbacks can be handled by adopting a coarse to fine hierarchical approach. This

enables to recover large deformation (low grid resolution) as well as precise displacements and

segmentation at high resolution while defining small discrete displacement sets [Glocker 2008a].

Additionally, the propagation of segmentation decisions from low resolution to high resolution

makes the segmentation less sensitive to noise and the tumor’s heterogeneous appearance. In this

setting, grids of increasing resolutions are considered: {Gr, r ∈ [1, L]}, where L corresponds to

the number of resolution levels. For increased precision, several iterations (MRF optimizations)

are performed at each grid level r during which the displacement set ∆t is progressively refined

around the optimal displacement obtained at iteration t − 1. At each iteration, the updated MRF

energy is computed between the fixed image and the deformed image A ◦ T t−1 on the basis of the

deformation field estimated at the previous iteration:

ltopt = argmin
l

Et
c(l |I,A ◦ T

t−1) (4.24)

The newly obtained deformation field after optimization is then composed with T t−1.

Three challenges arise from such a formulation for concurrent registration and segmentation.

First, the segmentation decisions obtained at resolution r − 1 should be propagated to the next

level. The idea is that images at a low resolution should not suffer from local non homogeneity in

tumor appearances resulting in a smoother segmentation than what would be obtained for a voxel

wise segmentation. The finer the resolution becomes, the more focus should be paid on the tumor’s

boundaries. In [Parisot 2012b], we introduced into the MRF energy a cost penalizing classification

decisions that are not in accordance with the segmentation map of the previous level:

V t
pen(lp) =

∫

Ω
η̄(‖x− p‖)slpSt−1(x)

2

exp(r)
dx (4.25)

However, such a cost is manually set and has to be adapted to the clinical context and potentially,

to each patient. Furthermore, erroneous segmentation can be propagated from one level to the next

that is not a desired behavior since only the most certain labels should be propagated.

Second, the grid resolution levels have to be specified: the first and last resolution as well as the

refinement process from one level to the next. This is the key aspect of the incremental approach

in terms of efficiency and quality of registration/segmentation. While fine resolutions could lead

to precise detection of the tumor’s boundary and displacements, they also suffer from a decrease

of robustness and increase substantially the computational burden. Typically, the grid is refined
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by doubling the number of nodes at each level, which limits the final level’s resolution. Ideally,

high resolutions should only be considered in areas with discontinuities. This is the idea behind

the work of Shi et al. [Shi 2012], who proposed the Sparse Free Form Deformations, based on the

assumption that it is possible to embed a realistic transformation in a sparse representation using

a multi level FFD framework. Indeed, the B-spline coefficients (control points displacements) are

often close to zero for the majority of control points. Given a set of m FFD grids of different

resolutions, they aim at simultaneously estimating the control points’ displacements of the m lev-

els. This is achieved by adding a sparsity constraint on the estimated solution to the registration

objective function. This results in a sparse representation of the deformation field across multiple

resolutions, where importance is given to control points at different resolutions according to the

observed images properties.

The third challenge is the definition and resampling of the displacement set at each iteration. In

[Glocker 2008a], the displacement set is defined as an isotropic regular sampling around the control

point’s initial position. It is refined at each iteration by simply diminishing the maximum displace-

ment allowed. While it allows additional precision, it fails to take into account the local anisotropy

of the regions to be registered. An uncertainty based sampling was proposed in [Glocker 2008b]

for MRF based registration. The impact of a label swap (different displacement) on the overall en-

ergy is evaluated by computing the min-marginal energies [Kohli 2008]. The uncertain directions

are estimated as directions where there are small energy variations and the displacements are then

sampled according to those directions.

Inspired by this work, we consider local uncertainties to design a content driven adaptive frame-

work that handles the three main issues of the hierarchical approach. The resampling of the dis-

placement sets and grid resolution is guided by the segmentation and registration uncertainties that

are computed from the min marginal energies. A segmentation propagation term is also derived

from the uncertainties, assuring propagation of reliable segmentations from the lower resolution

levels.

4.4 Uncertainty Driven Resampling

4.4.1 Local Registration and Segmentation Uncertainties

The local segmentation and registration uncertainties are estimated using the min-marginal en-

ergies. The use of the min-marginal energies of an MRF to compute the likelihood of a label

assignment was suggested in [Kohli 2008] for segmentation and adapted later in [Glocker 2008b]

for registration. More recently, new methods for estimation of such min-marginals/uncertainties

have been proposed [Tarlow 2012]. By definition, a min-marginal is a function that evaluates the

minimum value of the MRF energy under different constraints. In order to evaluate the local un-

certainties, the influence of a label selection on the overall energy has to be evaluated. At a given

iteration t (associated with resolution r), the min marginal marginal energy associated to a control

point p ∈ Gr and a label k ∈ L computes the minimum value of the energy Et
c with the value of lp
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fixed to k:

Ψp,k,t = min
l,lp=k

Et
c(l |I,A ◦ T

t−1) (4.26)

Recall that an MRF energy is associated with the probability of a configuration P (l) as:

P t(l) =
1

Z
exp(−Et

c(l)) (4.27)

Where Z is the partition function. The max marginals µp,k,t (evaluated via message passing algo-

rithms) give the value of the maximum probability given the constraint lp = k:

µp,k,t = max
l,lp=k

P t(l) =
1

Z
exp(−Ψp,k,t) (4.28)

By computing the min marginal energies for all possible labels, we can evaluate the influence of

a label swap on the energy with respect to the optimal minimum energy. A measure of confidence

can be derived from the max marginals by normalizing over all possible labels:

Cp,k,t(l) =
µp,k,t

∑

i∈Lt µp,i,t
=

exp(−Ψp,k,t)
∑

i∈L exp(−Ψp,i,t)
(4.29)

Note that the computation of the max marginals’ partition function Z is unnecessary since it cancels

out when the confidence measure is computed.

In the context of concurrent segmentation and registration, the label information is the product

of two label spaces, the displacement and the segmentation space. Considering that label k is

different from the optimal label loptp and that the segmentation label is constant (sk = sl
opt
p ), the

label swap correspond to a local perturbation from the optimal displacement. A substantial energy

increase means that the chosen displacement is quite certain in the direction dk−d
l
opt
p

‖dk−d
l
opt
p ‖

while a

weak energy variation implies that the direction is uncertain and that both labels are almost as

likely. A registration confidence measure is computed by normalizing the max marginals over all

possible displacements, for a given segmentation label:

Ct
R(p, k) =

exp(−Ψp,k,t)
∑

i∈L,si=sl
opt
p

exp(−Ψp,i,t)
(4.30)

A segmentation confidence measure can be similarly derived from the max marginals by mea-

suring the variations of the energy when the segmentation label changes sk 6= sl
opt
p . The confidence

of a segmentation label S can be measured by normalizing over all labels:

Ct
S(p, S) =

∑

i∈L,si=S exp(−Ψp,i,t)
∑

i∈L exp(−Ψp,i,t)
(4.31)
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4.4.2 Min Marginals Computation using Dynamic Graph Cuts

While using Fast-PD to compute the min-marginals would be the most straightforward method,

it would imply performing an optimization for each fixed label which would considerably slow

down the algorithm. We compute an approximation of the min marginals using dynamic graph

cuts, following the method proposed by [Kohli 2007]. We recall here that graph cuts rewrite the

labeling problem as a graph partitioning one. Each node is connected to a source and sink node,

each terminal node corresponding to a label. The optimal labeling is found by solving the min-

cut/max-flow problem, that is, finding a partition of the graph by removing the edges of minimal

weights. This is equivalent to finding the maximum flow from the source edge to the terminal

edge with respect to the edges capacities. Dynamic graph cuts minimize similar functions but with

slightly different energy terms. The maximum flow computed for the original problem is recorded

and used as initialization for the new, slightly modified problem.

The min-marginals Ψp,k,t are computed from the graph’s source/sink (depending on the fixed

label) flow potentials that compute the maximum amount of flow that can arrive/leave the node p.

[Kohli 2008] show that they are computed as:

Ψp,k,t = fmax + f
T (k)
p (4.32)

where T (k) is the terminal node corresponding to label k, fmax is the maximal flow computed

by minimizing the complete MRF energy Et
c and f

T (k)
p is the flow potential. The flow potentials

are computed using dynamic graph cuts by adding an edge of infinite cost between node p and

the terminal node T (k) to the residual graph to force the label assignment, and then computing

the updated graph’s min-cut. While exact solutions can be obtained for binary label sets, the min

marginals can only be approximated for mutli-label configurations. They are approximated in the

multi-label setting by defining 2n binary energies (one per label) where the energy k is computed

between the optimal labeling and label k.

4.4.3 Content Driven Adaptive Resampling

Given the segmentation and registration confidence scores, we use this information to design an

image driven displacement set and grid resolution dependent on the local image properties. The

displacement set construction is guided by the local registration uncertainties, while the grid reso-

lution depends on the homogeneity of the regions covered by the nodes and the associated segmen-

tations confidences.

4.4.3.1 Displacement Sampling

Consider that the current displacement set ∆t is a dense discretization of the displacement search

space defined by a maximum displacement and a sampling rate. Each min-marginal energy Ψp,k,t

(and its corresponding confidence measure) is associated with a spatial location in the Euclidean

space centered at node p’s initial position. This spatial location is defined by the position of the
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Figure 4.4: Registration uncertainty and displacement set resampling for one control point: (a)
Min marginal values per displacement label (blue: low, red: high energy) associated covariance
matrix centered at the optimal label, (b) Min marginals visualization on a 2D slice, (c) Original
isotropic displacement set and (d) Uncertainty driven displacement set, following the brain bound-
aries.

node after a displacement of dk. This yields a confidence map describing which displacements

are most likely. We follow the methodology of [Glocker 2008b] and approximate this map as a

Gaussian distribution centered at the node’s optimal displacement. The distribution’s covariance

matrix illustrates the directions towards which the displacements are uncertain (small energy vari-

ation) and is used to intelligently sample the displacement set ∆t+1 according to the covariance’s

scale and main axes. Note that we do not carry out this process for the tumor label and when the

focus is on segmentation (low α) since the registration is mostly driven by the pairwise cost that

yields a spherical covariance matrix. An example of adaptive displacement sampling can be seen

in Fig.[4.4].

4.4.3.2 Grid Refinement and Segmentation Propagation

We define a uniform grid Gr,max of resolution M×N×P and an activation functionAr : Gr,max →
{0, 1} that describes the resolution of the current grid Gr ⊂ Gr,max. A node cr ∈ Gr,max is a part

of Gr if Ar(cr) = 1. In the remainder of this chapter, the nodes characterized by Ar(cr) = 1 will

be referred to as activated nodes. After optimization, the min-marginal energies are estimated for

the activated nodes in Gj .

At the next resolution level r + 1, Gr,max is refined as a uniform grid Gr+1,max of resolution

2M −1×2N −1×2P −1 by splitting the edges of Gr,max in two. The new level’s grid resolution

Gr+1 is determined by activating selected nodes that are likely to increase the precision of the

segmentation and registration. There are three possible ways of activating a node at level r + 1.

First, a node p ∈ Gr+1,max will be activated if it has the same spatial coordinates with a node

cr ∈ Gr,max that is activated (Ar(cr) = 1) at the previous level. Because of the way Gr+1,max

is defined with respect to Gr,max, all low resolution nodes have a direct spatial correspondent in

the higher resolution grid. The activation of the remaining nodes depends on the min-marginal

energies evaluated at the low resolution level. A node p can either be activated for registration



4.4. UNCERTAINTY DRIVEN RESAMPLING 107

Figure 4.5: Visual representation of the grid refinement from level j (left) to level j+1 (right). Grid
resampling: the nodes that have direct correspondences appear in white, and the new nodes and
edges are red. The edges connecting the 2 grids represent the nodes’ neighborhood. The grid is
shown in 2D for increased visibility.

or for increased precision of the segmentation. The registration and segmentation activations are

governed by two activation terms AR(p) and AS(p) respectively. In order to propagate the max

marginals confidence scores and activation information between levels, we construct an inter-level

3D neighborhood Ni(.) that connects the node cr ∈ Gr,max to its 27 closest neighbors in Gr+1,max,

where the proximity is evaluated based on the nodes’ spatial coordinates. A 2D representation of

the neighborhood can be seen in Fig. [4.5].

The registration activation term (AR(p)) aims at identifying the presence of structures and

discontinuities in the region surrounding the node. The idea is that precise displacements (and

therefore a higher resolution) are necessary at boundaries while no increased focus is necessary

in homogeneous regions. As a result, a node should be activated if it is at the boundary between

different structures. If discontinuities are present, strong variations of the min-marginal energies

are expected with respect to the displacement label, due to the different structures’ properties. The

registration activation criterion of a node p is defined based on the min-marginal energy range of

its neighbors in Gj given their optimal segmentation label:

AR(p) = H




∑

cr∈Ni(p)

1

N

(

max
k∈L,sk=sl

opt
cr

Ψcr,k,t − min
k∈L,sk=sl

opt
cr

Ψcr,k,t

)

− µr



 (4.33)

where H(.) is the Heaviside step function, N is the number of nodes in the neighborhood of p and

µr is the mean energy range over all nodes in Gr. In other words, a node p will be activated if

the mean min-marginal energy range between its neighbors in Gr is larger than the overall mean

energy range µr.

Similarly, the segmentation activation term (AS(p)) exploits the information of the min-marginal

energies. A confidence score Ct
S(cr, S) is computed for each node in Gr given a label S by nor-

malizing the min marginals. This allows to evaluate how reliable a node’s segmentation is. In the

case of a binary segmentation, the confidence score can be converted into a node wise uncertainty
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measure independent of the label:

U t(cr) = 1− |Ct
S(cr, S)− 0.5| (4.34)

This term measures the degree of uncertainty associated to the chosen segmentation label. A low

value of U t(cr) is desirable as it corresponds to highly reliable segmentation decisions. We use this

information to propagate the recovered optimal segmentation labels to next levels based on their

reliability. This is done by adding an inter-level potential to the MRF energy defined as:

Vucy(l
opt
cr , lp) =

{

0 if slp = sl
opt
cr

−log(U(cr)) Otherwise
(4.35)

This potential is a penalty cost that penalizes nodes whose the segmentation labels do not agree

with their neighbors’. The strength of the penalty depends on the confidence score of the estimated

segmentations.

The segmentation activation criterion can easily be derived from this propagation potential:

nodes should be activated if their inter-level penalty is low. It is defined as:

AS(p) = 1−H





∣
∣
∣
∣
∣
∣

∑

cr∈Ni(p)

(−1)s
lp
Vucy(l

opt
cr , lp)

∣
∣
∣
∣
∣
∣

− tsh



 (4.36)

Where N is the number of nodes in N (p), tsh is a constant parameter that evaluates the strength

of the penalty and H(.) is the Heaviside step function. The neighborhood system is designed so

that a node in Gr+1,max is connected to several nodes in Gr,max. As a results, the penalty of a node

is low in two cases. The first and most straightforward case is when the segmentation labels of

all the node’s neighbors are uncertain. The second case occurs when the neighbors have highly

reliable but different labels. This can occur if the node is at the tumor’s boundary. In that case, the

node will be equally penalized for both labels and the penalty will have almost no impact on the

labeling. The segmentation activation criterion measures the strength of the penalty imposed on

node p. The case where the labels are equally confident is taken into account by subtracting the

penalties associated to different labels. A node will be activated if its penalty strength is smaller

than a predefined threshold tsh.

Eventually, the complete MRF energy computed at resolution r and iteration t is written as

follows:

Et
c(l|V,A ◦ T

t−1,Gr) =
1

|Gr|

∑

p∈Gr

Vp(lp|V,A ◦ T
t−1)

+
∑

p∈Gr

∑

q∈N (p)

Vpq,(lp, lq) +
∑

p∈Gr

∑

c∈Ni(p)

1

N
Vucy(l

opt
c , lp)

(4.37)

where N is the number of nodes in Gr−1 that are connected to node p ∈ Gr.
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To summarize, at each iteration t, a new grid Gr and energy are defined based on the defor-

mation field and min-marginals estimated at iteration t − 1. The first two terms of the energy

correspond to the MRF unary and pairwise term. The third term is an inter-level pairwise potential

that propagates the previous level’s segmentation decisions based on their confidence determined

according to their min-marginals. The energy is then minimized and the min-marginals are com-

puted for the next iteration t+ 1.

4.5 Experimental Validation

4.5.1 Data-Set Preprocessing

The healthy reference subject was a 3D FLAIR volume of size 256×256×24 and resolution 0.9×
0.9×5.5mm3. The method was tested on a data-set of 110 3D FLAIR volumes of patients featuring

DLGGs. All tumors have been manually segmented by experts. The preprocessing step follows

the methodology of chapter 3 by regularizing the volumes intensities to the same median and

interquartile range as the reference pose. An initial rigid registration of all volumes to the reference

pose is performed using the block matching method described in section 3.2.1.1. Eventually, all

volumes where skullstripped prior to the registration.

The data-set was split in a training set of 36 volumes randomly selected and a testing set of 74

volumes. The tumor likelihood probabilities are obtained by boosting learning on the 36 volumes.

The same features as the ones used in chapter 3 are used, that is, intensity patches and statistics,

Gabor features and brain symmetry. The rigid registration step provides a common approximate

symmetry plane for all volumes based on the reference pose. To evaluate the potential of our

method, the joint framework was compared to a sequential approach. The tumor is first segmented

using a pairwise MAP-MRF model, where the likelihood corresponds to the boosting probabilities

and an Ising model is used as pairwise cost. Second, a discrete MRF deformable registration

is performed by masking the pathology using the obtained segmentation map. Additionally, the

potential of the uncertainty driven method is tested by comparing the segmentation and registration

results to the ones obtained without uncertainties using a user defined segmentation propagation

penalty cost. The results obtained with a maximum resolution and a uniform grid of the same final

resolution as the adaptively sampled grid’s final resolution are considered.

4.5.2 Implementation

All methods were compared using the set of parameters that yielded the best results. The coarse

to fine hierarchical approach consists of 4 grid levels and 3 image levels. The image resolution in-

creases as the grid resolution increases via a Gaussian pyramid, and remains constant at the fourth

grid level (see Fig. [4.6]. The resolution increases from 9 × 9 × 5 to 65 × 65 × 37 (maximum).

B-splines were used as a projection function, while the inverse projection η̂ was defined as a linear

one as suggested in [Glocker 2008b] to limit the impact of the approximation of the unary term.

Because of the interpolation, the obtained segmentation field is not binary and was thresholded
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Figure 4.6: The 4 levels of the incremental approach.

at 0.5. The registration similarity criterion was the Sum of Absolute Differences. The parameter

α is initially set to 1 and is progressively diminished to 0.015. The idea is to give an increasing

importance of the presence of the tumor on the registration to avoid an initial bias, while the focus

is on segmentation at the highest resolution level that is not necessary for increased registration

quality. Only the segmentation labels are considered at this level. The constant cost for registration

increases with the grid and image resolution from 5 and 6 times the mean similarity cost value with

and without uncertainties respectively. The parameter λ describing the influence of the registration

regularization was set to 20 and relaxed in the tumor area to allow for substantial deformations due

to the tumor presence. Lastly, the threshold tsh for node activation was set to 1.6, correspond-

ing to a mean uncertainty measure of 0.2 (if neighboring labels have the same value). The same

parameters where used for all volumes.

At each grid level, 3 iterations were performed. If the min-marginals are not computed, the

displacement sampling is sparse and amounts to 31 labels sampled along the main axes. The

sampling is refined at each iteration by reducing the maximum displacement. A dense sampling

is adopted to compute the uncertainties at the first iteration, which correspond to 1331 labels in

3D uniformly sampled. Once computed, a sparse sampling is used for the last two iterations.

The labels are sampled along the min marginals covariance matrix main axes. The registration

uncertainties are not computed at the last two grid levels when α is low and the anisotropy cannot

be captured. At these levels, a sparse sampling is used for all iterations. To prevent inadequate

displacements towards the tumor area, a small pairwise penalty cost is added to the corresponding

labels of nodes at the tumor boundary. The two sampling strategies can be visualized in Fig.[4.7]

Given the boosting score likelihoods, the selected parameters yield a run time of about 40 seconds

with uniform and sparse sampling and about 3-4 minutes with dense/sparse sampling.

4.5.3 Results

In order to evaluate the use of uncertainties for adaptive sampling, we computed the percentage of

activated nodes with respect to the maximal resolution. The mean percentage over all nodes for all

levels can be seen in Fig. [4.8] and we can see that a significant portion of nodes is inactive. The
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Figure 4.7: The two displacement sampling strategies, centered around the node’s initial position:
(a) Dense displacement sampling, (b) Sparse displacement sampling. The red dots correspond to
the possible displacements.

complexity of the framework is considerably reduced, notably at the last, most computationally ex-

pensive levels where only 32% and 20 % of the nodes are activated. The relevance of the selected

nodes is evaluated visually and several examples can be seen in Fig. [4.9] for different resolution

levels. Nodes are activated around the brain’s structures and the tumor, where the registration and

segmentation have to be precise. This demonstrates the adequacy of the registration and segmen-

tation activation terms. The impact on the run time and memory consumption can be evaluated

through a complexity analysis (excluding the time required to build the data term potentials). We

consider an MRF with L, E and N being respectively the number of labels, edges and nodes.

• Computational cost: O
(
L×O

(
E ×N2

))
∼ O

(
L× E ×N2

)
per iteration

• Memory cost: O (L×O (N + E))

Reducing the number of nodes to approximately 20% at the finer resolution scale leads to:

• Computational cost: O
(
L×O

(
0.2E × (0.2N)2

))
∼ O

(
0.008L × E ×N2

)
. When tak-

ing into account the number of iterations, we can obtain a complexity that is approximately

3-4 orders of magnitude lower.

• Memory cost: O (L×O (0.2(N + E))), approximately one order of magnitude lower.

The quality of the segmentation was evaluated using the Dice Score, False Positive Rate (FP),

True Positive Rate (TP) and Mean Absolute Distance between contours (MAD) with respect to the

manual segmentation. We compared the segmentations obtained by simple MAP-MRF segmenta-

tion, concurrent segmentation and registration at high and low resolution, and uncertainty driven

concurrent segmentation and registration. The joint framework shows increased performance in
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Figure 4.8: Mean percentage of activated nodes per resolution level.

the segmentation of tumors, notably reducing the number of false positives which is highlighted

by the lowest FP rate and MAD score (false detections outside the tumor region can strongly im-

pact the MAD score). Equivalent results are obtained with high resolution uniform sampling and

adaptive sampling, while segmentations of poor quality are obtained with the low resolution uni-

form sampling. The quantitative results can be seen in Fig.[A.4], while visual results are shown in

Fig.[4.13].

The registration quality is evaluated mostly qualitatively. The individual registration method

with masked pathology (MAP-MRF segmentation) is compared to the joint framework without un-

certainties at different resolutions as well as with the graphical model endowed with uncertainties.

For quantitative evaluation, the ventricles where segmented on 33 volumes where the tumor was

close to the ventricles. The Dice and MAD scores, FP and TP rates were computed between the seg-

mented and registered ventricles using the different methods outside the tumor area. Quantitative

results show equivalent performance between the individual and joint framework. The performance

is preserved with the adaptive sampling while the quality diminishes when an equivalent (in term

of nodes) uniform low resolution sampling. The quantitative results are shown in Fig.[4.11], while

qualitative results are shown in Fig.[4.12]. We observe higher performance around the tumor area

where the individual framework can fail.

4.6 Discussion

This chapter introduced a concurrent tumor segmentation and registration framework that directly

exploits the dependencies between both problems. We adopt a discrete Markov Random field

model, where the tumor is detected by boosting classification as well as a segmentation through

registration term that detect areas with high dissimilarities. The registration similarity criterion is

relaxed in the tumor area and as a byproduct of that, this area is deformed by interpolation with
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the displacement at the boundary. The principal shortcomings of discrete methods are addressed

via the evaluation of the local segmentation and registration uncertainties and their exploitation

for adaptive displacement set and sparse grid sampling. Segmentation results show a notable im-

provement towards eliminating false positives and an increased robustness due to the hierarchical

approach, while the registration is smoother and preserves the deformed image’s anatomy in the

tumor area. The content driven grid sampling strongly reduces the complexity of the model with a

maintained performance.

The choice of pathology masking for registration (justified by the infiltrative nature of DLGGs),

along with the discrete formulation, results in a fast and versatile algorithm. Indeed, the method

is modular with respect to the registration similarity criterion and the tumor detection method. No

assumption is made on the pathology nor its progression, which makes the method easily adaptable

to other pathologies and clinical contexts where correspondences are missing. It should be noted

that in the context of fast growing, space occupying lesions, integrating tumor growth information

would be necessary. Such tumors can impact the brain structures where a relaxation of the pairwise

cost at the tumor boundary wouldn’t be sufficient.

Several improvements of the algorithm could be considered. Our current implementation of

the adaptive sampling simply discards the inactive nodes in the evaluation of the optimal labeling

and associates them with infinite costs to changes of labels. This evaluates the impact of reducing

the grid’s complexity on the quality of the results but does not yet impact the run time. A direct

construction of the non-uniform grid would strongly decrease the run time (both in terms of opti-

mization and data term construction) and increase the robustness and quality of the results as active

nodes would have direct edges connecting them.

The tumor segmentation results remain dependent on the initial boosting detection and partial

segmentations will be obtained if the tumor is poorly detected. A first step in order to obtain

better segmentation would be to focus on the detection step. The two most straightforward ways

of improving the quality of the detection are the addition of multimodal information such as T1

and T2 volumes that can be easily introduced in the classification feature vector, and assigning the

different parts of the tumor (notably necrosis and active tumor) to different classes. The discrete

labeling formulation makes the extension to multi-class segmentation straightforward.

The algorithm presented is modular with respect to the registration similarity criterion, but op-

timal interdependency between segmentation and registration can only be obtained using intensity

based similarity measures, that can roughly detect the tumor area via the sole registration unary

term. The algorithm is therefore better suited to monomodal registration. An extension of the

method to multimodal registration in the context of tumor resection is presented in appendix A.
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Figure 4.9: Visual examples of the activated nodes for the 4 levels of the incremental approach.
The nodes are superimposed to the target image.
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Figure 4.10: Quantitative Segmentation Results: Error bars (mean and standard deviation) of the
Dice score, False Positive (FP) and True Positive (TP) rates and MAD score for the joint frame-
work with low (JSRLow) and high resolution (JSRHigh), the MAP-MRF segmentation framework
(SegMRF) and the uncertainty based approach (Ucy).
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Figure 4.11: Quantitative Registration Results: Error bar graphs of the Dice, True Positives (TP),
False Positives (TP) and MAD scores obtained for the joint framework with low (JSRLow) and high
resolution (JSRHigh), the individual registration framework with masked pathology (RegMask) and
the uncertainty based approach (Ucy).
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(a) (b) (c) (d)

Figure 4.12: Visual examples of Registration results. (a) Target image, deformed image obtained
using (b) the individual framework with masked pathology, (c) the Joint framework, high resolution,
(d) the Joint framework, with adaptive sampling.
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Figure 4.13: Visual examples of Segmentation results. (a) Boosting Score, (b) MAP-MRF frame-
work, (c) Joint framework, high resolution, (d) Joint framework, with adaptive sampling. Automatic
segmentations (blue) are compared to the manual segmentation (red)
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Chapter 5

Conclusion

The main objective of this thesis was the development of methods for tumor segmentation through

atlas based prior knowledge. Two approaches have been proposed: one that exploits a tumor spe-

cific atlas as a spatial prior, and a second exploiting anatomical knowledge. The presented contribu-

tions are not limited to tumor segmentation as we proposed tools for the study of diffuse low-grade

gliomas, registration with missing correspondences, concurrent registration and segmentation, and

adaptive sampling for hierarchical grid based segmentation and registration.

5.1 Contributions

The first contribution of this thesis is the construction of a probabilistic atlas from 210 different

patients mapping the preferential locations of DLGGs. This is carried out through a graph struc-

ture encoding the spatial proximity between tumors over 210 affinely registered volumes. The

preferential locations are obtained by regrouping nearby tumors in clusters. This yields an eleven-

components graph where each cluster corresponds to a preferential location and potential position

dependent behavior. This atlas paves the way for studies on the genesis and natural history of

the tumors. Understanding the tumors better is key towards optimizing their treatment for a given

patient.

A direct application of the atlas was proposed for tumor segmentation and characterization via

a coupled Markov Random Field model. The method simultaneously assigns a new tumor to one

of the atlas’ clusters and labels the tumor voxels. The atlas plays the role of a prior on the tumor

voxels’ localization based on the spatial repartition of tumors voxels in the cluster. This can be seen

as the association of local and global information where determining the tumor’s global category

(cluster) allows a more refined local segmentation based on the knowledge of its position and

expected spatial extension directions. It is clear that this method is not limited to atlas based low-

grade glioma segmentation but can be considered in any segmentation process where the objects to

be segmented tend to appear in predefined locations or follow a repetitive structural pattern.

The second important contribution of the thesis is the design of a concurrent segmentation and
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registration method with missing correspondences. The method is among the first to tackle the

problem of simultaneous registration and segmentation when the object to be segmented is absent

from one of the images. The deformation and segmentation fields are estimated concurrently on

a sparse grid using an MRF model where both solution spaces are interconnected. The proposed

method is characterized by its modularity and scalability. It is indeed, designed in a very general

way. Almost no assumptions are made on the pathology and on the object detection method, as well

as the registration criterion. This modularity is notably highlighted in appendix A where a direct

application of the concurrent registration and segmentation method is proposed in the context of

surgical resection. A strong asset of the method is its speed, which justifies its extension to surgical

interventions.

In the context of concurrent registration and segmentation, we proposed a technique in order to

address one of the most important shortcomings of discrete and hierarchical registration and seg-

mentation methods that is the trade off between precision and complexity. We proposed an adaptive

sampling approach based on local uncertainties. The precision (higher resolution) is determined

based on the reliability of the evaluated segmentation/registration labels. This leads to a consid-

erable decrease of the complexity at high resolutions with a focus on areas with discontinuities

and tumors boundaries. Furthermore, it provides a qualitative manner for the interpretation of the

obtained results. The combined registration and segmentation method is designed in a way that

allows its application to the sole problem of registration or segmentation.

5.2 Future Work

The most straightforward future development is the association of the two proposed segmenta-

tion methods in one single framework. Using manual segmentations as detection probabilities, the

concurrent segmentation and registration (CSR) framework could be used for the construction of

a deformable low-grade glioma atlas on the preferential locations of the tumors. The use of de-

formable registration would increase the precision as well as allow studies on the impact of the

tumors on the brain structures and functional areas. This deformable atlas could then be incor-

porated as a spatial prior in the CSR method, while cluster assignment could be based on initial

detections in the hierarchical framework.

Throughout this thesis, a single subject anatomical template has been used as a reference pose.

This introduces a bias in the construction of the atlas as well as increases the difficulty of the regis-

tration problem when the patient and reference have strong anatomical differences. The construc-

tion and use of an averaged population template of the FLAIR modality would be more accurate

and adapted to the latter problem. As it encompasses the inter subject variability, deformations

would be more natural. Such an atlas would also reduce the bias on the former problem. Further-

more, atlas construction has raised a lot of interest as there has been many attempts at eliminating

this bias [Zollei 2005, Bhatia 2004, Joshi 2004]. A notable approach for MRF based registration

[Sotiras 2009] could be considered in our context.

The use of growth models [Jbabdi 2005, Konukoglu 2010, Rekik 2013] could be considered in
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order to increase the quality of both the atlas construction and CSR framework. Indeed, growth

models would enable a more precise localization of the origin point of the tumor which could

differ from the center of gravity [Rekik 2013], while including growth models in the registra-

tion/segmentation framework could prove useful in the context of heavily deformed brains.

Multimodality would most likely bring useful additional information for both segmentation

and registration. The different tumor appearances on multimodal images would make the tumor

detection step more accurate and consequently increase the quality of the overall segmentation

results. Diffusion Tensor Imaging is a very promising modality that could be relied upon for

registration and segmentation. While providing structural information for increased robustness

and anatomical structures preservation, it can constitute a strong cue on the tumor’s (or resection

cavity) position as the tumor tends to displace or disrupt the fibers’ natural organization. Integration

of this knowledge in the CSR framework could have a strong positive impact on the results.

Last but not least, the use of recent parallelized message passing optimization techniques

[Alchatzidis 2011] would further speed up the methods towards real time as well as provide min-

marginals computation in a single optimization step.
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Appendix A

Concurrent Segmentation and

Registration Application: Registration

of Preoperative and Intraoperative

Images with Tumor Resection

A.1 Introduction

The treatment of DLGGs has long been controversial. Based on several retrospective studies,

the positive impact of surgical resection on the patient’s progression free and overall survival is

undeniable and maximal safe tumor resection is now considered as the first therapeutic option

for DLGGs. As a result, the surgical resection task is very frequent and an essential part of the

treatment of the tumor. The process is very challenging as the surgeon seeks to remove as much

tumor as possible while preserving the critical tissue associated to functional areas.

Medical images are heavily used for surgery planning. Structural imaging enables to identify

the position and extent of the tumor, while functional images allows mapping of the functional

areas with respect to the tumor. Such data allows to estimate the volume of possible resection.

During surgery, the preoperative data is often used in order to guide the surgeon and provide addi-

tional information on the brain’s functional and structural organization. However, the preoperative

image is generally aligned using rigid or affine registration which could be highly unreliable due to

important deformations of the brain during surgery (mainly due to brain shift and tissue collapse).

Those deformations are due to the resection as well as a brain shift during surgery caused notably

by gravity, tumor mass effet, edema and CSF leakage [Hartkens 2003].

The development of intra operative MR imaging enabled to obtain anatomical data and in-

creased the efficiency of the procedure through reliable anatomical guiding. However, surgical

planning (mainly, the expected amount of tumor resection) as well as additional functional and

structural information (fMRI, DTI for instance) acquired prior to the surgery. Such modalities
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provide important information for neurosurgical guidance. Direct acquisition of such data during

surgery is currently not an option due to long acquisition and processing times, and the presence of

strong distortions.

For those reasons, aligning the preoperative data to the intraoperative image via non-rigid reg-

istration is highly desirable, while the segmentation of the resected area would enable direct evalu-

ation of a potential residual tumor. Similarly to the lacking correspondences induced by the tumor

with respect to a healthy subject, the registration task is here violated by the presence of a resected

area that is not part of the preoperative image. Specific methods have to be designed in order to

accommodate for the presence of this cavity.

Chapter 4 introduced a concurrent tumor segmentation and registration method in the presence

of DLGGs that is easily adaptable to other clinical contexts. This chapter presents an extension of

the method for the context of surgical brain tumor resection. We propose a concurrent preoperative

to intraoperative registration method that is coupled with a segmentation of the resection cavity.

A probabilistic formulation is proposed, where the registration task relies on the intensity joint

histogram and the resected area is detected based on its intensity profile as a mixture of Gaussians.

The knowledge on the position of the tumor in the preoperative image is exploited as a spatial prior

on the position of the resection cavity.

The remainder of this chapter is organized as follows: section A.2 presents an overview of

the non-rigid registration methods in the presence of a tumor resection, including methods that are

coupled with a segmentation of the resection area. Section A.3 presents a MAP-MRF probabilistic

interpretation of the concurrent segmentation and registration method while section A.4 describes

the definition of the segmentation and matching terms. Experimental validation is part of section

A.5 and Discussion concludes the chapter.

A.2 Related work

This section presents prior work on non-rigid registration with tumor resection. The general case

of pathology masking presented in section 4.2 could also be applied in this context. Aside from

the related work on registration with missing correspondences, there has been little focus on tumor

resection and most specifically preoperative to intraoperative non-rigid registration.

Clatz et al. [Clatz 2005] presented a block matching method coupled with a biomechanical

modeling of the brain. The block matching method, introduced in chapter 3, seeks correspon-

dences between images blocks by minimizing local similarity measures. This results in a sparse

estimation of the deformation field that is in a second step estimated on the whole volume. With

the objective to have as little computational overhead as possible during surgery, several prepro-

cessing steps are carried out based on the preoperative image. The brain, ventricles and tumor are

segmented on the preoperative image and those segmentations are used to build a biomechanical

model of the brain based on the Finite Elements model. In order to avoid comparing homogeneous

and ambiguous blocks, a block rejection step is also carried out preoperatively, by measuring the

block intensity variance and selecting only the blocks with the highest variance. A prohibited
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connectivity criterion is included to prevent selected blocks to have overlapping structures. Even-

tually, blocks are selected outside the tumor area to prevent matchings with the resection cavity.

Last but not least, they construct a structure tensor that measures the smoothness of the intensity

distribution and provide a measure of confidence of the block’s displacement. During surgery, the

matchings between blocks are estimated using the Cross Correlation. The dense deformation field

is then estimated using the biomechanical model. The influence of a block on the deformation field

depends on the value of the similarity metric and the direction of the displacement with respect

to the tensor structure (the matching should be colinear with the intensity gradient direction in the

block). Similarly to the method of [Ourselin 2000], an additional block rejection step using least

trimmed squares is included to reject resection blocks. The method was tested “offline” on 6 pre

and intraoperative T1 images, and more thoroughly in [Archip 2007] on 11 patients during surgery.

In [Archip 2007], the data was also fused with fMRI and DTI data.

Risholm et al. [Risholm 2009, Risholm 2010] proposed a registration framework based on the

bijective demons algorithm. They adopt a fluid anisotropic regularization, where the amount of

regularization differs from one direction to the next. The resected area was detected using level-

sets. The speed function α defining the evolution of the front along its normal direction is defined

based on the intensity disagreement between the source and target image:

α(x) = |J(x) − (I ◦ T )(x)|e−
|∇I|
σ − L (A.1)

I and J are the preoperative and intraoperative images respectively, T is the transformation and L

is a threshold parameter. Given this definition, the front expands when the intensity disagreement

is strong and retracts when it is small, based on threshdold L, while the exponential term’s role

is to eliminate the propagation of the front at large gradients. The estimated resection area is

exploited for registration as a diffusion sink. The idea is that instead of propagating the computed

demon velocities over the whole image, the forces computed inside the resection area (that are

not reliable) do not propagate beyond the boundary. In other words, diffusion is allowed towards

the resection cavity’s boundary, but not from it. This diffusion sink is simply defined by setting

the anisotropic regularization parameters to 0 in the appropriate direction. The algorithm alternates

between performing the registration given the segmented resected area and diffusion sink constraint

and evaluating the resection area. Experiments were performed on 2D data in [Risholm 2009] and

3D in [Risholm 2010].

An Expectation-Maximization framework was introduced in [Liu 2010]. They proposed a point

based registration framework inspired from the method of [Chui 2003]. Given an initial set of

points extracted from the source and target image (canny edge detection) and an estimation of

the resected area M t, the method estimates the correspondences between the points as a normal

distribution on the intensity difference between both sets of points. It also registers the images by

minimizing the distance between the matched points (E-step). The points within the resected area

are not taken into account (i.e. they are removed from the set of points in the source and target

image). The deformation field on the whole image is recovered through biomechanical modeling

and the Finite Element method. The M-step reestimates the resected area using the deformed mesh
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and a segmentation of the brain. Elements in the mesh that are contained in the background and

constitute the largest connected mesh with the currently estimated resection mesh M t are added to

the updated resection mesh M t+1. Points of the source image that belong to this mesh are removed

from the set.

Chitphakdithai et al. [Chitphakdithai 2010] adopted a Bayesian formulation inspired from the

work of [Pohl 2006] for the registration of preoperative and intraoperative images, as well as the

segmentation of the brain and the resection cavity. The registration problem is posed as a marginal-

ized MAP estimation of the deformation field:

T opt = argmax
T

log
∑

S

p(T ,S|I, J) (A.2)

The problem is solved using the EM algorithm, where iteratively, the E-step estimates the segmen-

tation map S given the current estimation of the transformation T t and the M-step updates the

transformation T t+1 given the estimated segmentation map. The M-step is written as follows:

T t+1 = argmax
T

∑

x

∑

l

log p(S = l|I, J,T k) (log p(I(T (x))|J,S = l, T ) + log p(J(x)|S(x) = l)) + log p(T )

(A.3)

where the label “l” can correspond to three classes: background, brain or resection. The term

p(I(T (x))|J,S = l) corresponds to the similarity criterion for registration. In areas with cor-

respondences (background and brain), it is modeled as a normal distribution with respect to the

intensity difference between both images, with a class specific standard deviation. It is set as a

constant in the resection area. The term p(J(x)|S(x) = l) is an intensity-based prior on the intra-

operative image’s intensity given a class. It is set as a uniform distribution in the classes that have

correspondences and defined as a Maximum Likelihood estimate in the resection area based on a

set of training data. Last, the transformation prior p(T ) is a smoothness term acting on the defor-

mation field, expressed through Free Form Deformations. The E-step computes the segmentation

posterior probabilities. The method was tested in synthetic data and 6 pairs of 3D clinical data

using Leave One Out cross validation for resection probability learning. The method was extended

in [Chitphakdithai 2011] by the introduction of an MRF smoothing prior on the segmentation field.

A.3 Probabilistic Formulation

This section proposes a probabilistic adaptation of the concurrent segmentation and registration

MRF framework. Let us consider the source preoperative image I of a subject with a tumor defined

on a domain Ω, and the intraoperative target image J of the same subject during the resection of the

tumor. We assume that the tumor in the preoperative image has been segmented prior to the surgery

where SI is the segmentation map. We seek the transformation T that maps the preoperative

image to the intraoperative image as well as the resection cavity segmentation map R. A sparse

grid G is superimposed to the source volume I, and each grid node p is to be assigned a label
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lp ∈ L = {1, .., 2n}. Each label corresponds to a pair segmentation/displacement {dlp , slp} where

the displacements are selected among a predefined discrete set ∆ = {d1, ...,dn}. Once the grid

nodes’ labels are obtained, the transformation and segmentation fields are computed on the whole

image by interpolation:

T (x) = x+
∑

p

η(‖x − p‖)dlp

R(x) =
∑

p

η(‖x− p‖)slp
(A.4)

Where η(.) is the projection function.

The problem can be cast as a MAP-MRF estimation of the posterior probability P (l|I, J) on

the labeling l = {lp}p∈V given the observed images :

l̂ = argmax
l∈L

P (l|I, J) ∝ P (I, J |l)P (l) (A.5)

The prior probability P (l) is modeled as a pairwise MRF defined on the sparse grid G:

P (l) = exp



−




∑

p∈G

Vp(lp) +
∑

p∈G

∑

q∈N (p)

Vp, q(lp, lq)







 (A.6)

Following the methodology of chapter 4, the pairwise term is defined as the sum of a registration

and segmentation smoothing prior weighted by the distance between the nodes:

Vp,q(lp, lq) = λs
|slp − slq |

‖p− q‖
+ λr

(
dlp − dlq

)2

‖p− q‖
(A.7)

The unary term Vp(lp) is a spatial prior that exploits the fact that the localization of the tumor

in the preoperative image gives insight on where the resection cavity is going to be. Indeed, the

resection area is expected to be in the preoperative tumor area or within its close vicinity. The

preoperative tumor segmentation is used to define the area where the resection cavity is expected to

be and not to be. To allow segmentation outside the tumor area, the segmentation map is smoothed

by Gaussian filtering.

Vp(lp) =

{

−
∫

Ω η̄(‖x − p‖) log SI,s(x+ dlp)dx if slp = 1

−
∫

Ω η̄(‖x − p‖) log(1− SI,s(x+ dlp))dx otherwise
(A.8)

where SI,s is the smoothed tumor segmentation map, and η̄(.) is the back projection function that

describes the influence of voxel x on control point p. We recall that the transformation T (x)
is approximated in the unary terms as x + dlp in order to preserve the independency asumption

inherent to MRF models.
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Assuming independency between the observations and the projection of the likelihood proba-

bility on the grid control points leads to a MAP estimation problem that aims at minimizing the

following objective function, defined on the sparse grid G:

E(l) =
∑

p∈G

(

Vp(lp)−

∫

Ω
η̄(‖x− p‖) log P (I(x), J(x)|lp)dx

)

+
∑

p∈G

∑

q∈N (p)

Vp, q(lp, lq) (A.9)

The obtained MRF energy is minimized using the Fast-PD algorithm.

A.4 Likelihood term

The next step consists in defining the likelihood term P (I(x), J(x)|lp) that will play an essential

part in the concurrent registration and segmentation framework. Two cases have to be distin-

guished: if we are in the background (slp = 0) we want the joint probability to be maximized when

the images are aligned while in the resection cavity area (slp = 1) no correspondences should be

sought. The likelihood must enable the detection of the resection cavity as well as the matching of

both images.

A.4.1 Resection Cavity Detection

The intensity profile associated to a resection cavity is simpler than the one associated to brain

tumors. The detection is therefore easier and simple classification methods can be used in order to

separate it from the rest of the image. The resection cavity likelihood term is defined based on the

observation that it is made of two possible elements: air and fluid (CSF or blood). When working

on T2 images, the air appears as the darkest intensity class while fluid is the brightest. The resection

area can be isolated from the rest of the image by modeling the intensity of the area delineated by

the spatial prior (that includes the resected area) as a mixture of Gaussians and selecting the ones

that correspond to its intensity profile.

A.4.1.1 Gaussian Mixture Models

The Gaussian Mixture Model (GMM) is a popular classification technique that models the intensity

distribution as a mixture Gaussian distributions. By choosing a sufficient number of Gaussians, it

is possible to capture the intensity distribution of different image classes. The Gaussian mixture

distribution is written as follows:

p(x) =

K∑

k=1

πkN (x|µk,Σk) (A.10)

where K is the number of Gaussians, and (µk,Σk) are their respective mean and standard deviation.

πk is a mixture coefficient describing the influence of the Gaussian on the overall distribution. The

mixture coefficients must satisfy 0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1.



A.4. LIKELIHOOD TERM 131

The classification can be performed in a supervised or unsupervised setting. In the supervised

setting, a class dependent GMM is learned on the intensity distribution over all training samples

of the same class. This yields a per class probability dependent on the image intensities. The

unsupervised setting learns a GMM on the whole image’s intensity distribution and a class can

be associated to one or several learned Gaussians. In both cases, the Gaussians parameters are

estimated from the set of samples X = {x1, ...,xn} by maximizing the log likelihood function

using the Expectation-Maximization algorithm:

log p(X|π, µ,Σ) =
N∑

n=1

log

(
K∑

k=1

πkN (xn|µk,Σk)

)

(A.11)

A.4.1.2 Expectation Maximization Algorithm

The Expectation-Maximization algorithm [Dempster 1977] is an iterative procedure for maximum

likelihood estimates in the presence of missing data. Consider X the observed data and Z the

missing data. Their joint distribution p(X,Z|θ) is governed by a set of parameters θ and its maxi-

mization is supposed to be straightforward (complete log likelihood). Since Z is not observed, we

need to maximize the incomplete log likelihood function:

log p(X|θ) = log

(
∑

Z

p(X,Z|θ)

)

(A.12)

Unfortunately, the optimization is not trivial due to the presence of the sum that results in com-

plicated expressions. The problem can be approached by acknowledging that for any distribution

q(Z) defined over the missing data, we have:

log p(X|θ) = L(q, θ) +KL(q‖p)

where L(q, θ) =
∑

Z

q(Z) log

(
p(X,Z|θ)

q(Z)

)

KL(q‖p) = −
∑

Z

q(Z) log

(
p(Z|X, θ)

q(Z)

)
(A.13)

KL is the Kullback-Leibler divergence between distributions q(Z) and p(Z|X, θ) and is therefore

always positive, and null when q(Z) = p(Z|X, θ). L(q, θ) constitutes thus a lower bound on

log p(X|θ). The EM algorithm aims at maximizing this lower bound and consists of two steps

that are repeated iteratively. Given a prior estimation of the parameters θ(t), the Expectation step

(E-step) maximizes the lower bound L(q, θ) with respect to q(Z) while holding θ fixed. Following

equation A.13, this maximum is obtained when q(Z) = p(Z|X, θ(t)).
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Figure A.1: Gaussian Mixture Model of the resection cavity intensity. (a) Intensity histogram, (b)
Modeled intensity distribution, (c) Gaussians constituting the GMM.

The Maximization step (M-step) maximizes L(q, θ) with respect to θ given the current estima-

tion of q(Z):

L(q, θ) =
∑

Z

p(Z|X, θ(t)) log p(X,Z|θ)−
∑

Z

p(Z|X, θ(t)) log p(X,Z|θ(t))

= Q(θ, θ(t)) + cst

(A.14)

Q(θ, θ(t)) is defined as the expectation of the complete log likelihood and is what is maximized

during the M-step. In summary, the EM algorithm alternates between computing a lower bound of

the log likelihood for the current parameters, and maximizing this lower bound to obtain the new

parameter values.

E-step q(t+1)(Z) =p(Z|X, θ(t))

M-step θ(t+1) =argmax
θ

Q(θ, θ(t))
(A.15)

A.4.1.3 EM for Gaussian Mixture Models

For Gaussian Mixture Models, we can introduce a K-dimensional binary random variable z that

corresponds to the hidden data [Bishop 2006]. Each observed variable xn is associated with a hid-

den variable zn that defines which probabilty distribution the sample follows. Taking into account

this variable, the mixture coefficients can be redefined as πk = p(zk = 1) and can be seen as

the prior probability of zk = 1. Estimating the Gaussians parameters amounts to estimating the

hidden variable’s posterior probability or responsibility γ(znk) during the E-step given the current
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Figure A.2: Log probabilities associated to the resection cavity coupled with the spatial prior.

parameters:

p(znk = 1|xn, µ
t
k,Σ

t
k, π

t
k) = γ(znk)

=
p(znk = 1)p(xn|znk = 1)

p(znk = 1)
∑

j p(xn|znj = 1)

=
πt
kN (x|µt

k,Σ
t
k)

∑K
j=1 π

t
jN (x|µt

j ,Σ
t
j)

(A.16)

The M-step then updates the Gaussian parameters given the computed responsibilities:

µt+1
k =

∑

n γ(znk)xn
∑

n γ(znk)
(A.17)

Σt+1
k =

∑

n γ(znk)(xn − µt+1
k )(xn − µt+1

k )T
∑

n γ(znk)
(A.18)

πt+1
k =

1

N

∑

n

γ(znk) (A.19)

The term
∑

n γ(znk) can be interpreted as the number of samples that have been assigned to the

distribution k.

In this chapter, the approximate resection cavity area (delineated by the spatial prior SI,s) is

modeled very simply as a mixture of 4 Gaussians: two classes for residual tumor and brain, and

two classes for the cavity. The cavity is then isolated by selecting the Gaussian with the brightest

and darkest means. This results in a probability likelihood for the resection cavity defined as:

P (I(x), J(x)|lp, s
lp = 1) =

1

2
N (J(x+dlp)|µmin,Σmin)+

1

2
N (J(x+dlp)|µmax,Σmax) (A.20)

GMM modeling is illustrated in Fig. [A.1] and the corresponding probability score is shown in

Fig. [A.2]
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A.4.2 Background area

In the background area, the likelihood term plays the part of the similarity measure that will

map the preoperative image to the intraoperative image. The likelihood registration term should

take the form of a probabilistic measure that is directly comparable with the resection detection

probability. Because of the strong differences in the acquisition process, images of the same

modality still have very different intensity profiles. Intensity based similarity measures cannot

be used in this situation. A natural probabilistic measure of the differences between the source

and target image is to compute the joint intensity histogram between both images. The intensity

values of the source and target image are partitioned in a number N of predefined bins BI =
{BI(i)}i∈1,..,N , BJ = {BJ(i)}i∈1,..,N , each bin corresponding to an intensity range. The joint

histogram H(BI(i), BJ (j)) is computed by counting the number of voxels in I and J that have a

value corresponding to the range defined by bins BI(i) and BJ(j). When normalized, the joint

histogram yields a probability distribution for pairs of intensities:

p(I(x), J(x)) =
H(BI(ix), BJ (jx))

NIJ
(A.21)

where NIJ is the number of intensity pairs counted in the histogram, ix and jx are the bin indices

associated to intensity values I(x) and J(x) respectively. A sharp histogram is characteristic of

well registered images, as the matching intensities for a tissue remain concentrated in a small

histogram location. Mutual information and joint entropy measures aim at directly minimizing the

histogram dispersion. Maximizing the joint histogram yields the same effect. The source image is

deformed so that its intensity pairs with the target image correspond to bin values that have a high

probability. In other words, it reduces the histogram’s dispersion.

A.5 Experiments

A.5.1 Implementation Details

We adopted a coarse to fine incremental hierarchical approach. We use 4 grid levels and 3 images

levels, with 3 iterations at each level. The grid resolution ranged from 8×8×6 to 57×57×37. At

each iteration, the joint histogram is re-estimated, exploiting the fact that the images should have

stronger correspondences as they get registered. In order to avoid introducing a bias due to the high

number of voxels in the background, we do not take the background into account when evaluating

the joint histogram. The method was tested using the implementation proposed in chapter 4 that

does not include computation of registration and segmentation uncertainties. We therefore use

a sparse sampling for all iterations and resolution levels, as well as a manually set penalty term

defined as V t
pen =

∫

Ω η̄(‖x − p‖)0.2R(x)slpe−l where t is the iteration and l the resolution level.

This penalty term had to be manually edited to the different context, which highlights the interest

of the uncertainty based propagation.

The number of bins was set at N = 64 at the coarsest resolution level and doubled at each

subsequent level of the image resolution, so that we have N = 256 at the last two grid levels
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(maximal image resolution). The last resolution level was dedicated to segmentation as the label

set was limited to the segmentation labels. Such a high resolution was not necessary for increased

quality of the registration. The smoothing prior weights λs and λr were set to 1 and 2 respectively.

The projection function was defined as cubic B-splines.

Using those parameters, the algorithm runs for about 4 minutes.

A.5.2 Results

We present preliminary results on a pair of preoperative/intraoperative T2 images. The preopera-

tive tumor, the resection cavity and residual tumor were manually segmented. Both volumes were

skullstripped. In order to ensure high correspondences and overlap during the initial estimation of

the joint histogram, the preoperative image was affinely registered to the intraoperative image prior

to the non-rigid registration using block matching. The preoperative tumor, residual tumor and

resection cavity were manually segmented. We compare the automatic resection cavity segmenta-

tion obtained with the manual segmentation, and the deformed preoperative tumor to the residual

tumor plus resection cavity. Visually, we observe high correspondences between the segmented

regions as shown in Fig. [A.4]. Quantitatively, we obtain a dice score of 85 % for residual tumor

and 80 % for resection cavity. Strong visual correspondences are observed between the registered

preoperative image and the intraoperative image as shown in Fig. [A.3].

A.6 Discussion

This chapter illustrates the adaptability and modularity of the Joint registration and segmentation

method introduced in the previous chapter. A probabilistic interpretation of the method is proposed

towards registration of preoperative and intraoperative images with tumor resection. The resection

cavity is detected through modeling the intensity profile in the resection area as a mixture of Gaus-

sians while a probabilistic similarity criterion for registration is designed based on the images’ joint

intensity histogram. The method registers the preoperative image to the intraoperative image while

segmenting the resection cavity and preserving the surrounding tumor area. This scheme enables

direct comparison of the preoperative surgery plan with the current surgery status and gives a di-

rect estimate of the amount of tumor removed and the residual tumor. The speed of the method

makes it easily exploitable in a surgery setting, especially given that many preprocessing steps

(skullstripping, affine registration) could be carried out preoperatively or at the beginning of the

surgery.

Being tailored for the specific application of tumor resection, the proposed method is less mod-

ular in the sense that the matching criterion has to be probabilistic. It is however more adapted to

multimodal registration due to the use of the information theoretic based joint histogram as simi-

larity criterion. Given the limited dataset, a training step was not included and the GMM was used

to directly model the image’s intensity profile and extract Gaussians corresponding to the resection

cavity. Learning a GMM directly on a training set of resection cavity voxels would certainly yield
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more accurate results, especially in the areas filled with air. Additionally, the method would have

to be tested on a larger dataset to thoroughly assess its potential and the possible improvements.
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(a) (b)

Figure A.3: Difference Image after affine registration (a) and after non-rigid registration (b).



138APPENDIX A. CONCURRENT SEGMENTATION AND REGISTRATION APPLICATION

(a) (b) (c)

Figure A.4: Visual registration and segmentation results. (a) Preoperative image after affine reg-
istration, (b) non-rigidly deformed preoperative image, (c) intraoperative image segmented. Re-
section cavity segmentation: automatic (blue) and manual (red); Residual tumor segmentation:
manual (magenta) and registered preoperative tumor (yellow).
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