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Chapter 1

Aperçu de la thèse

Introduction générale a la théorie des chemins rugueux

La théorie des chemins rugueux (ou rough path) initiée par Terry Lyons dans [START_REF] Terry | Differential equations driven by rough signals[END_REF] il y a maintenant une quinzaine d'années a été introduite afin d'étudier le système différentiel suivant

dy i t = n i=1 f (y i t )dx i t , y 0 = a ∈ R d (1.1) 
où x ∈ C([0, T ], R n ) est un "bruit irrégulier" et (f i ) i=1,...,n un champ de vecteurs lisses. Dans le cas où x est un chemin différentiable ou même Lipschitzien, l'équation (1.1) est assez bien comprise dans le sens où on sait qu'il existe une unique solution globale, de plus le flot Φ : x → y est continu. Légitimement on pourrait s'interroger sur ce qui ce passe lorsque x n'est plus une fonction assez régulière. Un exemple typique serait une trajectoire d'un mouvement Brownien qui est presque sûrement nul part dérivable et a totale variation infinie. Dans ce cas particulier une réponse a été donnée par le calcul stochastique en interprétant (1.1) comme l'équation intégrale :

y i t = a + t 0 f (y i s )dx i s (1.2)
où l'intégrale qui apparaît ici est dite intégrale d'Itô et est construite en utilisant essentiellement la propriété de martingale du mouvement Brownien. Cependant il faudrait remarques deux choses : premièrement cette approche est inapproprié pour l'étude de la continuité du flot Φ ( [START_REF] Lejay | Yet another introduction to rough paths[END_REF]) et deuxièmement on rencontre des difficultés à étendre cette théorie à des processus Gaussiens plus généraux tels que le mouvement Brownien fractionnaire de paramètre d'Hurst H = 1/2 qui n'est plus une semimartingale (ie : H = 1/2 correspond au cas du Brownien standard). C'est dans ce cadre où entre en jeu la théorie des chemins rugueux. Un développement formel de l'équation intégrale permet de voir que la présumée solution y va s'écrire comme une série d'intégrales itérées en x et plus précisément de la famille X définie de la manière récursive suivante :

X 1 st = x t -x s , X n+1 st = t s
X n su ⊗ dx u où ⊗ est le produit tensoriel sur R n . L'idée de Lyons est alors de porter l'analyse de la dépendance fonctionnel de y par rapport à x à la famille X. Plus précisément étant donné un chemin x a p-variation finie tel qu'on peut construire la famille (X n ) {n≤⌊p⌋} de manière convenable à ce qu'elles satisfassent certaines relations algébriques. On peut alors donner un sens à l'équation (1.2) et construire une solution globale Y de sorte que l'application Φ : X → Y est continue pour une topologie métrisable. Cette théorie a été par la suite reprise par Gubinelli dans [START_REF] Gubinelli | Controlling rough paths[END_REF] pour des bruits x qui sont Hölderiens. Un des avantages de cette approche est de pouvoir définir l'intégrale rugueuse donnée par : t s y σ dx σ pour une classe d'intégrands y dite classe des chemins contrôlés qui est plus large que celle donnée par les compositions de fonctions régulières avec x. De plus cette souplesse a permis l'application de la théorie des chemins rugueux pour des EDPS, tel que les travaux de M.Gubinelli, S.Tindel et A.Deya [START_REF] Deya | Non-linear rough heat equations[END_REF] portant sur l'équation de la chaleur avec un bruit multiplicatif qui est blanc en temps et plus régulier en espace. Une autre application plus exotique est celle de Martin Hairer, donneé en [START_REF] Hairer | Rough stochastic PDEs[END_REF] où il utilise la notion de chemin contrôlé en espace afin d'étudier l'équation de Burgers unidimensionnelle en présence d'un bruit blanc dans un domaine périodique. Une majeure contribution de la théorie a été de donner un sens rigoureux au terme non linéaire de l'équation de Kardar-Parisi-Zhang (KPZ) dans le cas périodique [START_REF]Solving the KPZ equation[END_REF] et de prouver l'existence d'une solution locale via une méthode de point fixe. Cependant cette théorie présentait la contrainte d'être lié à la dimension une jusqu'aux deux superbes généralisations effectuées pendant ces deux dernières années. La première a été proposée par M.Gubinelli, N.Perkowsky et P.Imkeller dans [START_REF] Gubinelli | Paraproducts, rough paths and controlled distributions[END_REF]. Ils usent de l'analyse de Fourier microlocale et plus particulièrement du paraproduit de Bony [5,[START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] pour traiter l'équation de Burgers stochastique en dimension supérieure ou encore l'équation parabolique d'Anderson en dimension 2. Une autre approche a été développée par Martin Hairer dans [START_REF] Hairer | A theory of regularity structures[END_REF] et qui est basée sur l'analyse par ondelettes a permis d'avoir un cadre d'étude pour une large classe d'EDPS parabolique tel que l'équation de KPZ généralisé, l'équation parabolique d'Anderson en dimension 2 ou 3 ou encore l'équation de la quantisation stochastique en dimension 3.

Le but de cette thèse est de donner certaines applications de la théorie des chemins rugueux contrôlés dans diverses problématiques telle que le calcul stochastique à 2 paramètres, l'étude d'EDPs dispersives en milieu non homogène ou encore l'obtention d'une "bonne" notion de solution pour l'équation de la quantisation stochastique en dimension 3.

État de l'art et résultats du Chapitre 2

Le calcul stochastique à deux paramètres est un sujet assez complex et ceci pour plusieurs raisons parmi lesquelles, sûrement deux majeures :

1. Perte de la structure temporelle ce qui complique la généralisation de la notion de filtration comme on peut voir dans les travaux de Carioli-Walsh [START_REF] Cairoli | Stochastic integrals in the plane[END_REF] 2. Une formule de changement de variable bien compliqué même pour des draps réguliers : Avant d'énoncer les résultats principaux de ce chapitre nous allons introduire les objets probabilistes qui nous intéressent et nous illustrerons certaines approches introduites dans le passé pour étudier ce genre de problème.

1.2.1 Drap Brownien fractionnaire et bruit blanc À l'instar du mouvement Brownien fractionnaire le drap Brownien fractionnaire à deux paramètres est un processus stochastique intéressant à étudier de par ses propriétés d'autosimilarité et de stationnarité des incréments. Nous donnons d'abord la définition rigoureuse de celui-ci et puis nous présenterons certaines de ces propriétés.

Définition 1.2.1. Soit (Ω, F, P) un espace de probabilité. Un processus stochastique (x st ) s,t≥0 est dit un drap fractionnaire de paramètre d'Hurst γ = (γ 1 , γ 2 ) ∈ [0, 1] 2 si 1. x est Gaussien de moyenne nulle.

2. Sa fonction de covariance est donnée par :

R s 1 s 2 t 1 t 2 = E[x s 1 t 1 x s 2 t 2 ] = 1 4 (s γ 1 1 + s γ 1 2 + |s 2 -s 1 | γ 1 )(t γ 2 1 + t γ 2 2 + |t 2 -t 1 | γ 2 )
pour tout s 1 , s 2 , t 1 , t 2 ≥ 0. Dans le cas où γ 1 = γ 2 = 1/2 on dira simplement que x est un Drap Brownien.

Une observation importante est de voire que pour t > 0 fixé le processus (t -γ 2 /2 x st ) s≥0 est un mouvement Brownien fractionnaire d'indice d'Hurst γ 1 . Nous avons de plus les propriétés suivantes : Proposition 1.2.2. Soit x un drap Brownien fractionnaire d'indice d'Hurst γ = (γ 1 , γ 2 ) alors on a les propriétés suivantes :

1. x admet une modification à trajectoires presque sûrement continues.

2. {x as,bt , s, t ≥ 0} loi = {a γ 1 b γ 2 x st , s, t ≥ 0} pour tout a, b ≥ 0 (auto-similarité).

3. {x s+h,t+kx s+h,tx s,t+k + x st , h, k ≥ 0} loi = {x hk , h, k ≥ 0} pour tout s, t ≥ 0 (stationnarité des increments) Avant de continuer dans l'étude de certaines particularités du drap Brownien fractionnaire nous allons nous concentrer sur le cas particulier γ 1 = γ 2 = 1/2 où x présente une particularité d'indépendance intéressante. Plus précisément on sait que pour un mouvement Brownien B on a indépendance des accroissements au sens où les variables aléatoires B t 1 , B t 2 -B t 1 , ..., B tn -B t n-1 sont indépendantes. Cela on peut le montrer avec un simple changement de base sur la matrice de covariance du vecteur Gaussien (B t 1 , B t 2 -B t 1 , ..., B tn -B t n-1 ). Maintenant il n'est pas difficile de voir que ce résultat se généralise bien au drap Brownien, en effet on a que pour une famille de rectangles (A i ) i≤n , indépendance des incréments du drap Brownien sur ces rectangles et de manière plus explicite on voit que les variables aléatoires δx A 1 , ..., δx An sont indépendantes, où on a introduit ici la notation suivante :

δx A = x s 2 t 2 -x s 1 t 2 -x s 1 t 2 + x s 1 t 1 pour un rectangle A = [s 1 , s 2 ] × [t 1 , t 2 ] du plan.
De retour au cas général où γ 1 , γ 2 ∈ [0, 1] nous allons nous concentrer plus sur la régularité d'un tel processus. En effet si l'on considère le cas unidimensionnel d'un mouvement Brownien fractionnaire (B H t ) t≥0 d'indice d'Hurst H il est bien connue que B a une modification a trajectoire presque sûrement α-Hölderienne pour α < H dû au critère de Kolmogorov (voir [START_REF]Grundlehren der mathematischen Wissenschaften[END_REF]) ou plus précisément

|B H t -B H s | ≤ C T,H,α |t -s| α
pour tout T > 0, s, t ∈ [0, T ] presque sûrement où C T,H,α est une constante aléatoire positive finie (et même intégrable). On pourrait alors se poser la question de ce qu'en est-il avec le drap Brownien fractionnaire, peut-on espérer une régularité du même type ? Le résultat suivant, qui est une application et en même temps une généralisation du Lemme de Garsia-Rodemich-Rumsey (voir [START_REF] Garsia | A real variable lemma and the continuity of paths of some Gaussian processes[END_REF]) fournit une piste pour répondre à cette question.

Lemma 1.2.3. Soit z une fonction continue sur [0, T ] × [0, S] a valeur réel alors l'inégalité suivante : 

|δz s 1 s 2 t 1 t 2 | ≤ C S,T,α,β,p |s 1 -s 1 | α |t 2 -t 1 | β T 0 S 0 |δz u 1 u 2 v 1 v 2 | p |u 1 -u 2 | αp+2 |v 2 -v 1 |
E[|δx u 1 u 2 v 1 v 2 | p ] |u 1 -u 2 | αp+2 |v 2 -v 1 | βp+2 du 1 du 2 dv 1 dv 2 ≤ C p S,T,α,β,p [0,S]×[0,T ] |u 2 -u 1 | (γ 1 -α)p-2 |v 2 -v 1 | (γ 2 -β)p-2 du 1 du 2 dv 1 dv 2
< +∞ pour α < γ 1 et β < γ 2 et pourvue que p soit assez grand. Ce dernier calcul nous prouve en particulier que pour un drap Brownien fractionnaire (x st ) s∈[0,S],t∈[0,T ] d'indice d'Hurst γ = (γ 1 , γ 2 ) on a l'estimation suivante ;

|δx s 1 s 2 t 1 t 2 | ≤ C α,β,γ,S,T (ω)|s 2 -s 1 | α |t 2 -t 1 | β , pour tout (s 1 , s 2 , t 1 , t 2 ) ∈ [0, S] 2 × [0, T ] 2
avec probabilité un, où C α,β,γ,S,T (ω) une constante aléatoire positive et intégrable. Une remarque est que cette dernière propriété nous implique que (x st ) st est r-Hölderien au sens usuelle avec r < min(γ 1 , γ 2 ). Nous allons maintenant essayer de donner une représentation agréable à manipuler pour le drap Brownien fractionnaire et pour cela on rappelle la proposition suivante : Proposition 1.2.4. Soit H un espace d'Hilbert séparable réel alors il existe un processus Gaussien réel {Z(h), h ∈ H} de moyenne nul tel que 1. h → Z(h) est lineaire.

E[Z(h)Z(k)] = h, k H

Cette proposition va nous permettre de définir un objet important dans la théorie des équations a dérivées partielle stochastique, à savoir le bruit blanc. Définition 1.2.5. Soit N ∈ N et on note par B(R N ) la tribue Borélienne sur R N alors le processus Gaussien (W (A)) A∈B(R N ) est appelé un bruit blanc sur R N si il est de moyenne nulle et que E [W (A)W (B)] = |A ∩ B| pour tout A, B ∈ B(R N ), où |A| désigne la mesure de Lebesgue de l'ensemble A.

L'existence d'un tel processus est assurée par la Proposition (1.2.4) de plus on peut voir que W (h) est bien définie pour h ∈ L 2 (R N ). Une propriété importante du bruit blanc W est la suivante : pour deux ensembles A, B ∈ B(R N ) disjoints (ie : A ∩ B = ∅), les variables aléatoires W (A) et W (B) sont indépendantes. De plus A → W (A) est une mesure signée de L 2 (P), plus précisément on a que W (∅) = 0 et que

W i∈N A i = i W (A i )
Dans L 2 (P), pour toute famille (A i ) i de Borelien de R N dont les éléments sont deux à deux disjoints et tel que la somme i W (A i ) soit bien définie. Avant de conclure cette sous-section en donnant une représentation en loi du drap Brownien fractionnaire nous introduisant la transformée de Fourier du bruit blanc. Définition 1.2.6. Soit W un bruit blanc sur R N alors sa transformée de Fourier noté Ŵ est le processus Gaussien défini par : Ŵ (h) = W ( ĥ)

pour tout h ∈ L 2 (R N ) où ĥ est la transformée de Fourier usuelle de h.

Proposition 1.2.7 (Voire [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF]). Soit γ 1 , γ 2 ∈ [0, 1] et on se donne W un bruit blanc sur R 2 alors il existe une constante C γ 1 ,γ 2 tel que le processus

C γ 1 ,γ 2 Ŵ (Q st ), s, t ≥ 0 , Q st (x, y) = e isx -1 |x| γ 1 +1/2 e ity -1 |y| γ 2 +1/2
est un drap Brownien fractionnaire d'indice d'Hurst γ = (γ 1 , γ 2 )

Nous finissons cette partie par remarquer que si W est un bruit blanc sur R 2 alors le processus V st = W ([0, s] × [0, t]) est un drap Brownien.

Théorie des mesures-martingales

Nous présentons ici une méthode introduite par Walsh dans [START_REF] Walsh | An introduction to stochastic partial differential equations, école d'été de probabilités de Saint-Flour[END_REF] et qui a permis de définir l'intégrale stochastique sur le plan pour un drap Brownien. Bien que ce ne soit pas la seule façon d'introduire le calcul stochastique à deux paramètres (a titre d'exemple on peut citer [START_REF] Cairoli | Stochastic integrals in the plane[END_REF][START_REF] Hajek | Stochastic equations of hyperbolic type and a two-parameter Stratonovich calculus[END_REF][START_REF] Norris | Twisted sheets[END_REF][START_REF] Wong | Differentiation formulas for stochastic integrals in the plane[END_REF]) on a choisi cette approche pour sa simplicité.

Ètant donné un espace de probabilité filtré complet (Ω, F, (F t ) t≥0 , P) et B(R) la tribu Borelienne sur R on a la définition suivante : Définition 1.2.8. On dit qu'un processus (M t (A)) t≥0,A∈B(R) est une mesure martingale par rapport à la filtration (F t ) t≥0 si les trois conditions suivantes :

1. M 0 (A) = 0 presque sûrement pour tout A ∈ B(R) 2. Pour tout t > 0 M t est une mesure signée à valeurs dans L 2 (P).

3. Pour tout A ∈ B(R) le processus (M t (A)) t≥0 est une (F t ) t≥0 -martingale de moyenne nulle. sont satisfaites.

Un exemple connu de tels processus est donné par :

W t (A) = W ([0, t] × A)
où W est un bruit blanc sur R 2 . Maintenant pour une mesure martingale M nous nous proposons de définir une intégrale du type sous certaines conditions sur le processus f . Pour cela nous allons procéder d'une manière assez canonique à savoir se donner une classe d'intégrants pour lequel l'intégrale s'exprime de manière raisonnable puis l'étendre par des arguments de densité.

Définition 1.2.9. Une fonction

f = R + × R × Ω → R est dite élémentaire si f (t, x, ω) = X(ω)1 (a,b] (t)1 A (x)
pour A ∈ B(R) et X une variable aléatoire F a -mesurable et borné. Une combinaison linéaire finie de fonction élémentaire est dite simple et on dénote par R l'ensemble des fonctions simples .

Si maintenant f (t, x, ω) = X(ω)1 (a,b] 1 A (x) est une fonction simple et M une mesure martingale on définit alors l'intégral f • M t (B) par :

f • M t (B) = t 0 B f (s, x, ω)M (ds, dx) := X(ω)(M min(t,b) (A ∩ B) -M min(t,a) (A ∩ B))
et on prolonge aux fonctions de R par linéarité. Maintenant on peut remarquer que cette définition est bien valide et ne dépend pas de la représentation de f et que (M t • f (A)) t,A définit bien une mesure martingale. Dans la suite on se limitera aux cas où M est la mesure martingale donnée par le bruit blanc et il facile de voir dans ce cas que pour A fixé de mesure non nul que le processus (|A| -1/2 M t (A)) t est un mouvement Brownien et donc on obtient par un simple calcul que

M • (A), M • (B) t = t|A ∩ B|
où le terme de gauche dans cette équation est tout simplement la variation quadratique du processus, ainsi un calcul direct nous donne que

E t 0 B
f (s, x, .)W (ds, dx)

2 = t 0 B E[|f (s, x, .)| 2 ]dsdx
pour f ∈ R. Ainsi on étend la formule d'intégrale aussi tôt par densité à l'ensemble des processus f (s, x, ω) adapté en temps et tel que :

t 0 B
E[|f (s, x, .)| 2 ]dsdx < +∞ à noter que cette approche est sous certaines conditions encore valide pour les mesure martingale (voire par exemple [START_REF] Walsh | An introduction to stochastic partial differential equations, école d'été de probabilités de Saint-Flour[END_REF]). Ceci dit cette construction de l'intégrale présente la particularité d'être rattaché fortement à la notion de martingale tout comme le calcule stochastique développé dans [START_REF] Cairoli | Stochastic integrals in the plane[END_REF] ce qui empêche l'étude du cas du drap Brownien fractionnaire ou d'autres processus Gaussien qui n'ont pas cette propriété. Dans le prochain paragraphe nous verrons une autre approche qui est basée essentiellement sur le calcul de Malliavin et qui va permettre l'étude de tels processus.

Calcul de Malliavin pour le drap Brownien fractionnaire

Dans cette partie nous exposons brièvement les travaux de C.Tudor et F.Viens [START_REF] Tudor | Itô formula and local time for the fractional Brownian sheet[END_REF][START_REF]Itô formula for the two-parameter fractional Brownian motion using the extended divergence operator[END_REF] qui seront repris dans le deuxième chapitre de cette thèse. Dans [START_REF] Tudor | Itô formula and local time for the fractional Brownian sheet[END_REF] les auteurs développent un calcul de Malliavin pour un drap fractionnaire x de paramètres d'Hurst γ 1 , γ 2 > 1/2 en interprétant les intégrales

t 0 s 0 f ′ (x uv )d ⋄ x uv , s 0 t 0 f ′′ (x uv )d ⋄ 1 x uv d ⋄ 2 x uv (1.4) 
aux sens de Skorohod. Plus précisément il montre que (u, v) → f ′ (x uv )1 [0,s]×[0,t] est bien dans le domaine de l'opérateur de divergence δ ⋄ associé à x, ce qui leur permet de définir l'intégrale de gauche (voire plus loin dans la section (2.7.2)) et aboutir à la représentation en somme de Riemann suivante :

t 0 s 0 f ′ (x uv )d ⋄ x uv = lim n,m→+∞ n,m i,j
f ′ (x s i t j ) ⋄ δx s i s i+1 t j t j+1 pour deux subdivisions π 1 = (s i ) i≤n et π 2 = (t j ) j≤m dont le pas tend vers zéro et où ⋄ désigne le produit de Wick. Pour la seconde intégrale de (1.4) ils remarquent le fait suivant :

s 0 t 0 f ′′ (x uv )d ⋄ 1 x uv d ⋄ 2 x uv = s 0 t 0 u 0 v 0 f ′′ (x uv )d ⋄ x uv ′ d ⋄ x u ′ v
ainsi ils interprètent cette dernière comme δ 2,⋄ (N (f (x))) où δ 2,⋄ étant le second opérateur de divergence et

N (f "(x))((u, v ′ ); (u, v)) = f "(x uv )1 [0,s]×[0,v] (u, v ′ )1 [0,u]×[0,t] (u ′ , v)
On pourra encore se référer à la section (2.7.2) pour une définition plus rigoureuse. Puis ils obtiennent finalement une représentation en somme de Riemann donné par :

s 0 t 0 f ′′ (x uv )d ⋄ 1 x uv d ⋄ 2 x uv = lim n,m→+∞ i,j
f ′′ (x s i t j ) ⋄ (x s i+1 t jx s i t j ) ⋄ (x s i t j+1x s i t j )

Utilisant ces représentations et on prenant en considération les différentes contractions entre les produits de Wick les auteurs de [START_REF] Tudor | Itô formula and local time for the fractional Brownian sheet[END_REF] obtiennent la formule suivante :

f (x st ) = f (0) + t 0 s 0 f (1) (x uv )d ⋄ x uv + 2γ 1 γ 2 t 0 s 0 f (2) (x uv )u 2γ 1 -1 v 2γ 2 -1 dudv + t 0 s 0 f (2) (x uv )d ⋄ 1 x uv d ⋄ 2 x uv + γ 1 t 0 s 0 f (3) (x uv ) u 2γ 1 -1 v 2γ 2 dud 2 x uv (1.5) + γ 2 t 0 s 0 f (3) (x uv ) u 2γ 1 v 2γ 2 -1 d 1 x uv dv + γ 1 γ 2 t 0 s 0 f (4) (x uv ) u 4γ 1 -1 v 4γ 2 -1 dudv.
pour f une fonction suffisamment "régulière" (en fait comme il est indiqué dans le second chapitre il faut une condition supplémentaire qui assure le fait que f (X) ait de bonnes propriétés d'intégrabilité). Dans [START_REF]Itô formula for the two-parameter fractional Brownian motion using the extended divergence operator[END_REF] les auteurs généralisent ce travail au cas ou γ 1 , γ 2 ∈ (0, 1) mais en interprétant les intégrales au sens de la divergence étendue, qui a des propriétés plus restrictives que la divergence usuelle et qui en revanche a un domaine plus large ce qui facilite sa manipulation.

Résultats du chapitre 2

Dans le second chapitre nous allons présenter le travail que j'ai effectué pendant la première partie de ma thèse conjointement avec Massimiliano Gubinelli puis avec Samy Tindel et qui a aboutit aux deux prépublications [START_REF] Chouk | Rough sheets[END_REF][START_REF] Chouk | Skorohod and Stratonovich integration in the plane[END_REF]. Avant de donner les principaux résultats du second chapitre il seraient judicieux d'exposer une partie du travail de Gubinelli dans [START_REF] Gubinelli | Controlling rough paths[END_REF] pour le cas unidimensionnel.

Etant donné k ∈ N et une fonction γ-Hölderienne x sur [0, T ] à valeur dans R k pour un γ > 1/3 et x n une régularisation de x alors on a trivialement le développement suivant : dx ⊗ dx) sera appelé rough path. La manière de Gubinelli de trouver ce résultat sera exposé dans le second chapitre à la section (2.2). L'approche de [START_REF] Chouk | Rough sheets[END_REF] fût alors de tensoriser le travail effectué dans [START_REF] Gubinelli | Controlling rough paths[END_REF] afin d'obtenir une généralisation de l'intégrale pour des draps irréguliers. Plus précisément on se donne un drap x de [0, T ] 2 valeur scalaire tel que : Donc pour continuer notre étude nous avons besoin de contrôler les intégrales de bord suivantes :

|δx s 1 s 2 t 1 t 2 | ≤ C|s 2 -s 1 | γ 1 |t 2 -t 1 | γ 2 , |δ 1 x s 1 s 2 t 1 | ≤ C 1 |s 2 -s 1 | γ 1 , |δ 2 x s 1 t 1 t 2 | ≤ C 2 |t 2 -
s 2 s 1 (f (x n st 1 ) -f (x n s 1 t 1 )) t 2 t 1 d st x n st , s 2 s 1 (f (x n st 1 ) -f (x n s 1 t 1 )) t 2 t 1 d s x n st d t x n st s 2 s 1 t 2 t 1 ( s s 1 f ′ (x n ut 1 ) -f ′ (x n s 1 t 1 ) t t 1 d uv x n uv )d st x n st et s 2 s 1 t 2 t 1 ( s s 1 f ′′ (x n ut 1 ) -f ′′ (x n s 1 t 1 ) t t 1 d u x n uv d v x n uv )d st x n st
Pour cela on remarque que seule la théorie des chemins rugueux a un paramètre est nécessaire. Afin de s'en convaincre on va considérer l'exemple suivant :

s 2 s 1 (f (x n st 1 ) -f (x n s 1 t 1 )) t 2 t 1 d st x n st = f ′ (x n s 1 s 2 ) t 1 s 1 δ 1 x n s 1 st 1 t 2 t 1
d st x n st + r n où r n 1 un terme de reste dans la première direction, ainsi dès que (δ 1 x n , 1 d 1 x n 2 dx n ) converge vers (δx, 1 d 1 x 2 dx) dans un espace Hölderien adéquat on aura que r n 1 converge aussi vers un terme de reste r 1 et donc on peut donner la définition suivante : 

s 2 s 1 f (x st 1 ) t 2 t 1 d st x st : = f (x s 1 t 1 )δx s 1 s 2 t 1 t 2 + f ′ (x s 1 t 1 ) s 2 s 1 δ 1 x s
δ a f (x) â dx + a δ a f ′ (x) â dxdx + a δ a f ′′ (x) â d 1 xd 2 xdx + r
avec r un terme de reste et la convention que si a = 1 alors â = 2 et inversement.

Une remarque avant de continuer est qu'on a exactement le même résultat pour une intégrale de type f (x)d 1 xd 2 x. Maintenant une application de ce résultat est de construire une intégrale du type Stratonovich pour le drap Brownien fractionnaire et d'obtenir une formule de changement de variable dans ce cas. Théoreme 1.2.11. Soit x un drap Brownien fractionnaire d'indice d'Hurst γ 1 , γ 2 > 1/3 on rappelle que x a la représentation harmonisable suivante

x st = C γ 1 ,γ 2 R 2 Q st (x, y) Ŵ (dx, dy), Q st (x, y) = e isx -1 |x| γ 1 +1/2 e ity -1 |y| γ 2 +1/2
et on définie le processus x n par

x n st = C γ 1 ,γ 2 |x|,|y|≤n
Q st (x, y) Ŵ (dx, dy)

On a alors que le rough sheet associé à x n noté par X n converge dans L p (Ω, H α,β ) pour tout α < γ 1 et β < γ 2 , ce qui permet de définir le rough sheet associé à x comme la limite X de X n . De plus si f ∈ C 10 (R) est une fonction satisfaisant la condition (GC)(voir (2.6.6) ) alors on a que

δf (x) = f ′ (x)dx + f ′′ (x)d 1 xd 2 x
Dans [START_REF] Chouk | Skorohod and Stratonovich integration in the plane[END_REF] avec S.Tindel nous avons essayé de relayer ce travail avec celui effectué par C.Tudor et F.Viens dans [START_REF] Tudor | Itô formula and local time for the fractional Brownian sheet[END_REF] pour cela nous avons pris du recule et essayé de mieux de comprendre le cas où le drap Brownien fractionnaire est d'indices d'Hurst γ 1 , γ 2 > 1/2. Dans ce cadre l'intégrale rugueuse à deux paramètres se résume seulement à une intégrale d'Young dans le plan (voire par exemple [START_REF] Towghi | Multidimensional extension of L. C. Young's inequality[END_REF] pour plus d'informations sur ce sujet ou la section (2.4) du second chapitre) et on a remarqué que ces deux notions d'intégration se généralisaient bien à d'autres processus Gaussiens dont la fonction de covariance satisfait une certaine propriété de factorisation. Plus précisément on a le résultat suivant : Théoreme 1.2.12. . Soit x un processus Gaussian [0, 1] 2 de fonction de covariance satisfaisant l'hypothèse (2.7.4), et on considère une fonction f ∈ C 4 (R) satisfaisant la condition (GC). Alors on a que :

z 1,⋄ s 1 s 2 t 1 t 2 = s 2 s 1 t 2 t 1 f ′ (x uv )d ⋄ 12 x uv , et z 2,⋄ s 1 s 2 t 1 t 2 = s 2 s 1 t 2 t 1 f ′′ (x uv )d ⋄ 1 xd ⋄ 2 x uv , (1.6) 
sont bien définies dans le sens de Skorohod pour le calcul de Malliavin. De plus on a : (i) Convergence de somme de Riemann : si π f ′′ (x σ i ;τ j ) ⋄ δ 2 x s i ;t j t j+1 ⋄ δ 1 x s i s i+1 ;t j = z 2,⋄ s 1 s 2 ;t 1 t 2 , (

où ⋄ dénote le produit de Wick, et où toutes les convergences ont lieu dans L 2 (Ω).

(ii) Une formule de changement de variable pour y = f (x) :

δf (x) s 1 s 2 t 1 t 2 = z 1,⋄ s 1 s 2 t 1 t 2 + z 2,⋄ s 1 s 2 t 1 t 2 + 1 2 s 2 s 1 t 2 t 1 f ′′ (x uv )d 1 R 1 u d 2 R 2 v + 1 2 s 2 s 1 t 2 t 1 f (3) (x uv )R 1 u d 2 R 2 v d ⋄ 1 x uv + 1 2 s 2 s 1 t 2 t 1 f (3) (x uv )R 2 v d 1 R 1 u d ⋄ 2 x uv + 1 4 s 2 s 1 t 2 t 1 f (4) (x uv )R 1 u R 2 v d 1 R 1 u d 2 R 2 v .
(1.9) (iii) Des termes de corrections explicites entre z 1 , z 2 et z 1,⋄ , z 2,⋄ peuvent être calculés (voire les relations (2.111) et (2.119)) avec

z 1 = f ′ (x)dx, z 2 = f ′′ (x)d 1 xd 2 x
où ces intégrales sont aux sens de Young introduit dans la proposition (2.4.1).

On peut voir que le drap Brownien fractionnaire de paramètre d'Hurst γ 1 , γ 2 > 1/2 entre bien dans le cadre de ce théorème. Pour généraliser ce résultat au cas rugueux γ 1 , γ 2 > 1/3 on procède par régularisation en considérant l'approximation x n introduite dans le théorème (1.2.10) et en remarquant que x n satisfait bien les conditions du théorème (1.2.12), un passage à la limite nous donne le résultat suivant : Théoreme 1.2.13. Soit x un drap Brownien fractionnaire sur [0, 1] 2 , avec indice d'Hurst γ j > 1/3 pour j = 1, 2. alors les incréments z 1,⋄ , z 2,⋄ de l'équation (1.6) sont bien définies aux sens de Skorohod de plus on a que : (i) z 1,⋄ and z 2,⋄ peuvent être vu comme limite respective de z n,1,⋄ et z n,2,⋄ qui sont donner par le Théorème 2.7.5 pour le processus régulariser x n . (ii) Pour tout f ∈ C 10 (R), la formule de changement de variable suivante f (x s;t ) = f (0) + z 1,⋄ 0s,0t + z 2,⋄ 0s,0t

+ 2γ 1 γ 2 s 0 t 0 f ′′ (x uv )u 2γ 1 -1 v 2γ 2 -1 dudv + γ 2 s 0 t 0 f (3) (x uv )u 2γ 1 v 2γ 2 -1 d ⋄ 1 x u;v dv + γ 1 s 0 t 0 f (3) (x uv )u 2γ 1 -1 v 2γ 2 d ⋄ 2 x uv du + γ 1 γ 2 s 0 t 0 f (4) (x uv )u 4γ 1 -1 v 4γ 2 -1 dudv. (1.10) 
(iii) Des termes de corrections explicite entre z 1 , z 2 et z 1,⋄ , z 2,⋄ peuvent être calculés (voire les relations (2.136) et (2.144)) avec

z 1 = f ′ (x)dx, z 2 = f ′′ (x)d 1 xd 2 x
où ces intégrales sont comprises aux sens des rough-sheet introduit dans le théorème (1.2.10).

État de l'art et résultats du Chapitre 3

Dans le troisième chapitre de cette thèse on expose un travail que j'ai effectué avec Massimiliano Gubinelli et qui a consisté à étudier une classe d'EDP dispersive perturbées par des modulations non homogènes et irrégulières. Plus précisément on s'est intéresser au problème de Cauchy suivant :

   du t dt = Au t dw t dt + N (u t ) u(0, x) = u 0 (x) ∈ H α (T ) (1.11) 
où H α (T ) étant l'espace de Sobolev réel ou périodique (ie : T = R, T), A un opérateur qui engendre un groupe U t = e tA , N (φ) une non-linéarité polynômiale et w une modulation qui va être une fonction "irrégulière" telle qu'une trajectoire d'un mouvement Brownien fractionnaire. Pour être plus précis on va s'intéresser aux cas suivants :

1. A = ∂ 3 , N (φ) = ∂φ 2 , T = R, T avec T étant le Tore a une dimension (équation de KdV modulé). 2. A = ∂ 3 , N (φ) = ∂φ 3 , T = T avec T (équation mKdV modulé). 3. A = i∆, N (φ) = i|φ| 2 φ, T = R n , T, n = 1, 2 (équation NLS cubique modulé) 4. A = i∂ 2 , N (φ) = i∂((|φ| 2 -|φ| H 0 )φ), T = T, (équation dNLS modulé)
où ∂ (respectivement ∆) dénote la dérivée en espace (respectivement le Laplacien spatial). Avant de nous pencher sur les équations du type (1.11) pour des modulations "irrégulière" nous rappelons que dans le cas homogène (ie : w t = t) ces équations ont donné naissance à beaucoup de travaux mathématique dont on essayera d'exposer certains dans la sous-section suivante.

1.3.1 EDP dispersive en milieu homogène : théorie d'éxistence et unicité La théorie d'existence de solution pour les équations de type KdV ou NLS a été étudiée de manière intensive ces trente dernières années dans de nombreux travaux mathématiques dont on peut citer a titre d'exemple [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I,II[END_REF][START_REF] Christ | Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations[END_REF][START_REF] Kenig | The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices[END_REF]. Nous allons essayer de présenter ici d'une manière abregée certains outils mathématiques qui ont permis l'étude de telles équations. L'équation qui nous intéresse dans cette section est donnée par :

∂ t φ t = Aφ t + N (φ t )
où ∂ t désigne la dérivée temporelle, A = ih(∂/i) pour un polynôme réel h et N (φ) une certaine nonlinéarité. L'approche remarquable introduite par Bourgain dans [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I,II[END_REF] à consisté à regarder en un premier lieu l'équation linéaire donné par :

∂ t φ t = Aφ t
et de remarquer que si φ(τ, k) est la transformée de Fourier en espace de temps de la solution φ alors elle est supportée par l'hypersurface {(τ, k) ∈ R; τ = h(k)}, de même que si on procède à une localisation de φ en temps (en la multipliant par un cut-off η à support compact) alors la fonction ηφ aura un support contenu dans l'ensemble

{(τ, k) ∈ R; τ = h(k) + O(1)}.
En un second lieu il a été observé de manière surprenante que ce phénomène persiste pour l'équation non-linéaire pour une large classe de donné initiale irrégulière. Une manière de capturer ce phénomène de régularisation par dispersion se fait via les espaces X α,b (R 2 ) ou plus communément appelé espace de Bourgain dont la définition est la suivante

Définition 1.3.1. Soit α, b ∈ R alors X α,b (R 2
) est définie comme l'espace des distributions de Schwartz u ∈ S ′ (R 2 ) tel que :

||u|| 2 X α,b = R 2 (1 + |k|) 2α (1 + |τ -h(k)|) 2b |û(τ, k)| 2 dτ dk < +∞
bien sur dans les cas qui nous intéressent il suffit de prendre h(k) = k 3 dans le cas de KdV (A = ∂ 3 ) et h(k) = -k 2 dans le cas de Schrödinger (A = i∂ 2 ).

L'obtention d'estimées multilinéaires dans ces espaces a permis à plusieurs auteurs (voire par exemple [START_REF] Kenig | The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices[END_REF]) de fonder une théorie d'existence locale et même globale pour (KdV) et (NLS) assez robuste. À titre d'exemple on peut énoncer le proposition suivante donné dans [START_REF] Kenig | The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices[END_REF] et qui est due à Kenig, Ponce et Vega

Proposition 1.3.2 (Kenig, Ponce, Vega). Pour tout α ∈ (-3/4, 0] il existe b ∈ (1/2, 1) tel que la distribution B(F, F ) = 1/2∂(F 2 )
bien définie pour tout F ∈ X α,b , de plus on a que

||B(F, F )|| X α,b-1 (R 2 ) ||F || 2 X α,b (R 2 )
Ce résultat leur a permis de montrer que l'équation de (KdV) sur R possédaient une unique solution locale via une méthode de point fixe dans l'espace X α,b pour toute condition initiale de H α (R) pour α > -3/4 et que dans ce cas il avait une continuité du flot par rapport à la donnée initiale. L'existence globale pour ce type d'équation dans les espaces de Sobolev d'index positive est due à certaines lois de conservation et à un certain phénomène de persistance de la régularité ce qui n'est pas le cas dans la basse régularité, en effet cette dernière a été démontré dans le cas de (KdV) usant de la I-méthode introduite dans [START_REF] Colliander | Sharp global well-posedness for the KDV and modified KDV on R and T[END_REF]. Cependant cette l'approche basée sur les espaces de Bourgain est reliée profondément à la structure de l'équation linéaire. Cela pose un problème dans notre cas. Pour contourner cette difficulté nous allons présenter une approche plus récente basée sur les chemins contrôlés due à Gubinelli [START_REF]Rough solutions for the periodic Korteweg-de Vries equation[END_REF] et qui lui a permis d'étudier l'équation KdV dans un domaine périodique. En effet en partant de la formulation mild et en utilisant la propriété de groupe on peut écrire l'équation de KdV dans la forme suivante :

v t = u 0 + t 0 U -1 s ∂((U s v s ) 2 )ds (1.12)
où v t = e t∂ 3 u t , u étant la solution du problème de Cauchy associé à KdV et u 0 la condition initiale du problème. Ainsi un développement du second ordre nous donne que :

v t -v s = X st (v s , v s ) + X 2 st (v s , v s , v s ) + r st (1.13)
avec r un terme de reste et :

X st (ψ 1 , ψ 2 ) = t s U -1 σ ∂(U σ ψ 1 U σ ψ 2 )ds, X 2 st (ψ 1 , ψ 1 , ψ 3 ) = 2 t s σ s U -1 σ ∂(U σ ψ 1 U -1 σ 1 ∂(U σ 1 ψ 2 U σ 1 ψ 3 ))dσ 1 dσ
pour des fonction test ψ 1 , ψ 2 , ψ 3 . Une étude plus approfondie de ces deux derniers opérateurs dans [START_REF]Rough solutions for the periodic Korteweg-de Vries equation[END_REF] a conduit l'auteur aux estimations suivantes

|X st | L 2 (H α (T)) |t -s| γ , |X 2 st | L 3 (H α (T)) |t -s| 2γ pour tout α > -1/2 avec L 2 (H α (T)) (respectivement L 3 (H α (T)
)) étant l'espace des opérateurs bilinéaires (respectivement tri-linéaires) de H α munis de sa norme usuelle et γ > 1/3 une constante ne dépendant que de α. Ainsi on définit l'espace des chemins contrôlés par les fonctions θ qui ont la forme :

θ t -θ s = X st (θ ′ s ) + θ ♯ s pour un certain couple (θ ′ , θ ♯ ) ∈ C γ 1 (H α (T)) × C 2γ 2 (H α (T)), tel que les espaces C γ 1 et C 2γ
2 sont définies de la manière suivante :

C γ 1 (H α ) = f ∈ C([0, T ], H α (T)), ||f || γ = sup s =t∈[0,T ] |f t -f s | |t -s| γ < +∞ et C 2γ 2 (H α ) = g ∈ C([0, T ] 2 , H α (T)), g tt = 0, t ∈ [0, T ]; ||f || 2γ = sup s =t∈[0,T ] |g st | |t -s| 2γ < +∞
Maintenant la théorie des chemins contrôlés développée par Gubinelli [START_REF] Gubinelli | Controlling rough paths[END_REF] nous dit que si v est un chemin contrôlé et que si de plus v satisfait la relation (1.13) avec un terme de reste r ∈ C 3γ 3 alors dans ce cas r sera complètement déterminé par la donnée de X, X 2 , v ′ et v ♯ de plus il va s'écrire comme une fonctionnelle multiplicative de ces derniers termes. Par la suite il est possible interprèter l'eq (1.12) comme l'équation de point fixe suivante :

v t -v s = X st (v s , v s ) + X 2 st (v s , v s , v s ) + r st , v 0 =
u 0 formulée dans l'espace des chemins contrôlés munis d'une structure topologique adéquate. Cette approche à permis à Gubinelli de construire une solution locale v associée à l'équation mild de KdV et d'obtenir le résultat suivant

Théoreme 1.3.3 (Gubinelli). Soit u 0 ∈ H α (T) pour α > -1/2 alors il existe T ⋆ > 0 et un unique v ∈ C γ 1 (H α (T)) tel que v t = v s + X st (v s , v s ) + X 2 st (v s , v s , v s ) + O(|t -s| 3γ
). Si on défini u t = U t v t et si Π N u désigne le projecteur de Dirichlet sur les mode de Fourier plus petits que N , alors il existe une distribution espace-temps

N (u) ∈ S ′ ([0, T ] × T) tel que 1/2∂(Π N u) 2 converge vers N (u) (pour la topologie de S ′ ([0, T ] × T)). De plus u satisfait l'équation ∂ t u t + ∂ 3 u + N (u) = 0 au sens des distributions.
Cette dernière approche sera reprise dans le troisième chapitre de cette thèse pour étudier les équations (KdV), (NLS) et aussi d'autres équations avec une dispersion modulée.

Cadre stochastique

Les équations dispersives ont suscité l'intérêt des probabilistes pendant ces vingt dernières années étant données qu'on pouvait considérer ces mêmes modèles dans des environnements aléatoires, les exemples que nous avons en tête sont les travaux effectués par A.Debussche, A.De Bouard et Y.Tsutsumi dans [START_REF] De Bouard | Periodic solutions of the Korteweg-de Vries equation driven by white noise[END_REF] où ils considèrent l'équation de KdV perturbé par un bruit stochastique de la manière suivante :

∂ t u + ∂ 3 x u + 1/2∂ x u 2 =
ξ où ξ est un bruit Gaussien qui est blanc en temps et plus régulier en espace, et ils arrivent à donner un sens à cette équation usant du calcul stochastique puis à obtenir l'existence et unicité de solution dans un espace de Bourgain modifié. Dans le même esprit on pourrait aussi citer un travail de même nature effectué dans [START_REF] De Bouard | On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation[END_REF] pour l'équation non linéaire de Schrödinger. Plus récemment les auteurs de [START_REF] De Bouard | The nonlinear Schrödinger equation with white noise dispersion[END_REF][START_REF] Debussche | 1D quintic nonlinear Schrà ¶dinger equation with white noise dispersion[END_REF] étudient (NLS) pour une dispersion stochastique et plus exactement ils s'intéressent à l'équation : 

du t dt = i∆u t • dW t + i|u| 2σ u où W
tel que u ∈ L r loc (0, ∞, L p (R d )) presque sûre- ment avec p = 2σ + 2 ≤ r < 4(σ + 1)/(dσ), de plus u ∈ C(R + , L 2 (R d )) et si u 0 ∈ H 1 (R d ) alors u ∈ C(R + , H 1 (R d )).
Une étude plus poussée de ces équations effectuée dans [START_REF] Debussche | 1D quintic nonlinear Schrà ¶dinger equation with white noise dispersion[END_REF] a permis d'affiner les estimées obtenue dans [START_REF] De Bouard | The nonlinear Schrödinger equation with white noise dispersion[END_REF] et de traiter le cas de NLS "quintic" (d = 1,σ = 2) et d'avoir le théorème suivant :

Théoreme 1.3.5 (A.Debussche, Y.Tsutsumi). Soit u 0 ∈ L 2 (R) (presque sûrement) qui soit F 0 mesu- rable, et σ = 2 alors il existe une solution u pour l'équation (1.14) tel que u ∈ L 5 loc (R + , L 5 10(R)) (p.s), de plus u ∈ C(R + , L 2 (R)). Maintenant si u 0 ∈ H 1 (R) alors u ∈ C(R + , H 1 (R)).
Nous verrons que dans le troisième chapitre que l'étude de ces équations peut se généraliser pour le mouvement Brownien fractionnaire et qu'aucune hypothèse de mesurabilité n'est nécessaire.

Résultats du chapitre 3

Nous présentons ici les principaux résultats du troisième chapitre obtenu en collaboration avec M.Gubinelli dans [START_REF] Chouk | Nonlinear PDEs with modulated dispersion[END_REF]. Pour cela nous allons commencer par rappeler un résultat d'intégration qui est en fait juste une généralisation de l'intégrale de Young dans un cas non linéaire. Soit V un espace d'Hilbert et on note par L n (V, V ) l'espace des opérateurs n-linéaire de V ⊗n à valeur dans V dont ont le muni de sa norme d'opérateur. Soit T > 0 et C γ V = C γ ([0, T ], V ) l'espace des fonctions γ-Hölder continues de [0, T ] a valeurs dans V équipé de sa semi-norme

f C γ V = sup 0≤s<t≤T f (t) -f (s) v |t -s| γ .
Maintenant si V est un espace de Banach alors Lip M (V ) dénote l'espace de Banach des fonctions localement Lipschitz sur V de croissance polynomiale d'ordre M ≥ 0, et plus précisément des fonctions

f : V → V tel que f Lip M (V ) = sup x,y∈V f (x) -f (y) V x -y V (1 + x V + y V ) M < +∞.
Ainsi on a le résultat suivant :

Proposition 1.3.6. [Young] Soit f ∈ C γ Lip M (V ) et g ∈ C ρ V tel que γ + ρ > 1 alors la limite des sommes de Riemann I t = t 0 f du (g u ) = lim |Π|→0 i f t i+1 (g t i ) -f t i (g t i )
existe dans V où Π est une subdivision de [0, t] et |Π| son pas, et elle indépendante de la subdivision. De plus on a que

I t -I s -(f t -f s )(g s ) V ≤ (1 -2 1-γ-ρ ) -1 g C ρ V (1 + g C 0 V ) M |t -s| γ+ρ .
Démonstration. Une preuve plus directe est donnée dans le troisième chapitre dans la démonstration du Théorème (3.3.1), ici nous proposons une preuve courte qui fait appel à l'existence de l'application de la couturiere (sewing-map) Λ définie dans la Proposition (2.2.1), en effet si f n est une régularisation de f et g n celle de g tel que

sup n ||g n || ρ ||g|| ρ < +∞ et sup n ||f n || C γ Lip M (V ) f C γ Lip M (V )
< +∞ alors il est facile de voir que par definition de Λ on a que :

I n t -I n s = t s f n dσ (g n σ ) = (f n t -f n s )(g s ) + Λ(u n ) st où u n sut = (f n t -f n u )(g n u ) -(f n t -f n s )(g n s ) pour 0 ≤ s < u < t ≤ T et ainsi on voit que sup n |u n sut | V ρ,γ |t -u| ρ |u -s| γ ||g|| ρ ||f || C γ Lip M (V )
de plus on a que u n converge vers u dans C δ 3 V (voir la (2.2) pour la définition de cet espace) avec

u sut = (f t -f u )(g u ) -(f t -f s )(g s ) et ceci pour tout 1 < δ < γ + ρ ainsi
la continuité du sewing-map Λ (voir la (2.2.1) pour plus de détail) nous assure que Λ(u n ) converge vers Λ(u) dans C δ 2 V d'où la convergence de la suite I n vers I dans l'espace C γ ′ (V ) pour tout γ ′ < γ où I est définie par la formule suivante :

I t = I s + (f t -f s )(g s ) + Λ[u] st I 0 = 0.
Maintenant en tenant compte encore une fois de la continuité du sewing-map Λ et de la régularité de u on obtient que Λ(u) ∈ C γ+ρ 2 ce qui nous permet d'avoir la convergence suivante :

I t = t 0 f du (g u ) = lim |Π|→0 i f t i+1 (g t i ) -f t i (g t i )
L'estimation donnée dans le théorème provient encore de la continuité du sewing map, ce qui finit la preuve.

Maintenant en regardant d'un peu plus près la formulation mild des équations (1.11) on voit qu'elles ont la forme :

u t = U w t u 0 + t 0 U w t (U w s ) -1 N (u s )ds
avec U w t = e Awt , une remarque importante dans ce cas est que cette formulation ne fait plus apparaitre la dérivée de la modulation w et donc celle-ci n'a pas besoin d'être differentiable pour étudier cette dernière équation de plus en tenant compte du fait U w est un groupe on aboutit à l'équation intégrale suivante :

θ t = u 0 + t 0 (U w s ) -1 N (U w s θ s )ds (1.15) avec θ t = (U w t ) -1 u t . Soit l'operateur X t (φ) = t 0 (U w s ) -1 N (U w s φ
)ds on voit alors de manière formelle que :

t 0 (U w s ) -1 N (U w s θ s )ds = t 0 dX σ dσ (θ σ ) = lim |Π|→0 Π X t i ;t i+1 (θ t i )
où la limite est prise sur les subdivisions Π de [0, t] dont le pas tend vers 0, et X s;t = X t -X s . Une manière de donner un sens à ce calcule formel est de passer par la proposition (1.3.6) et donc sous l'hypothèse que X ∈ C γ Lip M (V ) avec γ > 1/2 on donne sens à l'équation (1.15) dans C 1/2 V , puis on arrive à la résoudre par une méthode de point fixe. Donnons-nous maintenant un exemple concret pour comprendre mieux l'hypothèse faite sur X, en effet dans le cas de KdV (ie : A = ∂ 3 , N (u) = ∂u 2 ) on a par un simple calcul que :

Xst (φ 1 , φ 2 ) = ik k 1 +k 2 =k φ1 (k 1 ) φ2 (k 2 )Φ w st (3kk 1 k 2 ) où Φ w st (a) =
t s e iawσ dσ et X la transformée de Fourier de l'opérateur X, et donc pour contrôler la norme de l'opérateur X il faut savoir contrôler la quantité Φ w , une réponse a été donnée par R.Catellier et M.Gubinelli dans [START_REF] Catellier | On the regularization of ODEs via irregular perturbations[END_REF] pour le mouvement Brownien fractionnaire.

Théoreme 1.3.7 (R.Catellier, M.Gubinelli). Soit W un mBf d'indice d'Hurst H ∈ (0, 1) et introduisant la quantité :

||Φ W || W γ,ρ T = sup a∈R sup 0≤s<t≤T |a| ρ |Φ W st (a)| |t -s| γ pour 0 < γ < 1 et ρ > 0 alors il existe δ > 1/2 tel que pour tout ρ < 1/(2H) on a que : ||Φ W || W γ,ρ T < +∞ presque surement, pour tout T > 0.
En fait le théorème tel qu'il est énoncé dans [START_REF] Catellier | On the regularization of ODEs via irregular perturbations[END_REF] nous donne même l'integrabilité exponentielle de Φ W dans le cas du mBf. Ce résultat cela nous pousse à introduire la définition suivante :

Définition 1.3.8. Soit ρ > 0 et γ > 0. On dit qu'une fonction w ∈ C([0, T ]; R) est (ρ, γ)-irrégulière si pour tout T > 0 : Φ w W ρ,γ T = sup a∈R sup 0≤s<t≤T a ρ Φ w s,t (a) |s -t| γ < +∞ où Φ w s,t (a) =
t s e iawr dr. De plus on dit que w is ρ-irréguliér si il existe γ > 1/2 tel que w est (ρ, γ)irreguliére.

Maintenant on va introduire l'espace des chemins contrôlés qui va être l'espace sur lequel l'unicité de nos solutions est garantie.

Définition 1.3.9. On dit qu'une fonction φ ∈ C([0, T ], V ) est contrôlé par w si θ t = (U w t ) -1 φ t ∈ C 1/2 V , et on note D w (V ) cet espace.
Alors sous l'hypothèse que w est (ρ, γ)-irrégulier avec γ > 1/2 on obtient les résultats principaux du troisième chapitre qui sont les suivants : Une remarque importante est que ce résultat présente un certain phénomène de régularisation par perturbation de la dispersion par des modulations irrégulières. En effet un résultat de [START_REF] Christ | Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations[END_REF] nous dit que le flot de l'équation de KdV sans perturbation ne peut être uniformément continu pour α < -1/2 ce qui n'est pas le cas si on considère des modulations w assez irrégulières. Pour l'équation de NLS cubique on a le résultat : Théoreme 1.3.11. Soit ρ > 1/2. alors l'équation de NLS cubique sur T ou sur R a une solution globale H α pour tout α ≥ 0. De plus il'y a unicité dans D w (H α ) et le flot est localement continument-Lipschitz dans D w (H α ).

On peut remarquer que ce résultat présente deux faits nouveaux par rapport au théorème (1.3.4) est que il permet de voire que l'équation (NLS) modulé est globalement bien posé sur le Tore ce qui n'est pas évident dû au fait que les estimations de Strichartz sont en générale fausse sur le Tore et aussi l'obtention de l'existence globale pour des conditions initiale u 0 ∈ H α avec α ∈ [0, 1). Théoreme 1.3.12. Soit ρ > 1/2. On a alors les résultats d'existence suivant :

1. L'équation NLS cubique avec modulation sur R 2 a une unique solution locale dans H α pour α ≥ 1/2 ; 2. L'équation dNLS avec modulation sur T a une unique solution locale dans

H α pour α ≥ 1/2 et ρ > 1 ;
3. L'équation mKdV avec modulation sur T a une unique solution locale dans H α pour α ≥ 1/2.

Au début de ce chapitre on a vus d'une manière formelle comment avoir l'existence local de solution dans ces théorèmes, pour être plus complet on va discuter un peu de la manière d'obtention de certaines existences globales notamment pour le cas de KdV sur le Tore avec modulation. En effet si X est l'opérateur associé a l'équation de KdV modulée sur le Tore alors un simple calcul d'intégrale nous montre que

X st (φ, φ), φ L 2 (T) = t s dσ T (U w σ ) -1 ∂((U w σ φ) 2 )φ = t s T ∂((U w σ φ) 2 )U w σ φ = 0
et donc si θ est la solution locale de KdV modulée sur le Tore avec un temps de vie T > 0 alors par un simple calcul on a que :

||θ t || 2 L 2 = ||θ s || 2 L 2 + 2 θ s , R st L 2 + ||θ t -θ s || 2 L 2 où on rappel que θ est γ-Hölderienne pour un γ > 1/2 et que le reste R vérifie |R st | |t -s| 2γ , ainsi il s'ensuit que ||θ t || 2 L 2 -||θ s || 2 L 2 |t -s| 2γ
pour s, t ≤ T , et donc cela nous donne :

||θ t || L 2 = ||u 0 || L 2
ce qui nous donne l'existence de solutions globales pour des données initiaux dans L 2 et se généralise à H α (T) pour α > 0 en observant que le terme non linéaire de l'équation de KdV se comporte mieux que la solution elle même ce qui donne une sorte de persistance de la régularité. Le cas d'une donnée initiale de basse régularité est plus fin à gérer et nous pousse à adapter la dite I-méthode introduite dans [START_REF] Colliander | Sharp global well-posedness for the KDV and modified KDV on R and T[END_REF] à notre cas.

Nous remarquons maintenant qu'une limitation de la technique présentée jusqu'à maintenant est de seulement pouvoir traiter les cas de non-linéarité polynomiale due aux simplifications algébriques engendrées par celle-ci dans les calculs. Une autre approche qu'on va aussi exploiter dans le troisième chapitre est une généralisation des travaux effectués dans [START_REF] Debussche | 1D quintic nonlinear Schrà ¶dinger equation with white noise dispersion[END_REF] pour une modulation w qui soit (γ, ρ)irrégulière (cette fois-ci γ > 0 seulement), et cette approche nous a permis d'avoir les estimés de Strichartz suivante :

Théoreme 1.3.13. Soit A = i∂ 2 x , T > 0, p ∈ (2, 5], ρ > min( 3 2 -2 p , 1) alors il existe une constante C w,T > 0 et γ ⋆ (p) > 0 tel que l'inégalité suivante : . 0 U w . (U w s ) -1 ψ s ds L p ([0,T ],L 2p (R)) ≤ C w T γ ⋆ (p) ||ψ|| L 1 ([0,T ],L 2 (R)) soit satisfaite pour tout ψ ∈ L 1 ([0, T ], L 2 (R)).
Une application de ce résultat est l'obtention de solution globale pour l'équation NLS modulé avec une non-linéarité de type N (φ) = |φ| µ φ :

Théoreme 1.3.14. Soit µ ∈ (1, 4], p = µ + 1, ρ > min(1, 3/2 -2 p ) et u 0 ∈ L 2 (R) alors il existe T ⋆ = T ⋆ (||u 0 || L 2 (R) ) > 0 et un unique u ∈ L p ([0, T ], L 2p (R))
tel qu'on a l'égalité suivante :

u t = U w t u 0 + i t 0 U w t (U w s ) -1 (|u s | µ u s )ds pour tout t ∈ [0, T ⋆ ]. De plus on a que ||u t || L 2 (R) = ||u 0 || L 2 (R) et donc on a une unique solution global u ∈ L p loc ([0, +∞), L 2p (R)) et u ∈ C([0, +∞), L 2 (R)). Si maintenant u 0 ∈ H 1 (R) alors u ∈ C([0, ∞), H 1 (R)).

État de l'art et résultats du chapitre 4

Nous portant notre intérêt dans le quatrième chapitre de cette thèse à un travail que j'ai effectué en collaboration avec Rémi Catellier et qui consiste dans l'étude de l'équation de la quantisation stochastique et plus précisément du problème de Cauchy suivant :

∂ t u = ∆ T 3 u -u 3 + ξ u(0, x) = u 0 (x) (1.16)
où ∆ T 3 désigne le Laplacien sur le Tore tridimensionnelle T 3 , u 0 une condition initiale à prendre dans un espace adéquat et ξ un bruit blanc en espace-temps. Avant d'entrer dans les détails techniques et les difficultés posés par cette équation nous mettons juste l'accent sur le fait que la présumée solution n'est pas nécessairement une fonction (en fait nous verrons par la suite que c'est une distribution) due à la forte irrégularité du bruit blanc en dimension 3 et que ceci pose problème dans la définition du terme non linéaire u 3 . Maintenant nous rappelons que l'existence d'une solution en dimension 2 a été déjà prouvée dans [START_REF] Da | Strong solutions to the stochastic quantization equations[END_REF]. Plus récemment une généralisation de la théorie des rough-path appeler théorie des structures de régularité donnée par Martin Hairer dans [START_REF] Hairer | A theory of regularity structures[END_REF] et qui est basée sur l'analyse par ondelettes a permis l'étude de l'équation en dimension 3 et de prouver l'existence d'une solution locale. Nous nous proposons dans cette partie de retrouver ce résultat par une autre approche basée sur le paraproduit de Bony (voir [5]) et la notion de distributions contrôlées introduite dans [START_REF] Gubinelli | Paraproducts, rough paths and controlled distributions[END_REF].

Espace de Besov et Paraproduit de Bony

Dans cette sous-section nous essayerons de présenter dans un cadre simple la théorie des espaces de Besov et nous nous limiterons aux notions qui nous intéressent pour l'étude de l'équation (1.16) (pour plus de lecture sur le sujet voire [5,[START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF]). Pour cela on commence par introduire quelques notations. 

∂ a = ∂ a 1 +a 2 +...an ∂ a 1 x 1 ∂ a 2 x 2 . . . ∂ a d x d et finalement Ff où f désigne la transformée de Fourier de la distribution f ∈ S ′ (R d ).
Maintenant on se donne deux fonctions de classe C ∞ (R d ) radial h, θ tel que 1. Le support de h est inclus dans une boule B de R d et le support de χ dans un annaux A

2. supp(h)∩supp(θ(2 -i .))=∅ pour i ≥ 1 et supp(θ(2 -j .))∩supp(θ(2 -i .))=∅ pour |i -j| > 1 3. h(x) + i≥0 θ(2 -i x) = 1 pour tout x ∈ R d
L'existence de telle fonctions est bien connue voir par exemple [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF]. Ainsi on peut définir les bloques (∆ i ) i≥-1 de Littlewood-Paley par :

F(∆ -1 f ) = h f , F(∆ i f ) = θ(2 -i .) f ; i ≥ 0 pour f ∈ S ′ (R d ).
On introduit alors les espaces de Besov non homogène par :

B α p,q = f ∈ S ′ (R d ), ||f || B α p,q = (2 iα ||∆ i f || L p (R d ) ) i≥-1 l q < +∞ pour α ∈ R, 1 ≤ p, q ≤ +∞.
Une remarque importante est que ces espaces sont des Banach et que leurs topologies en tant qu'espace vectoriel normé ne dépend pas du choix des fonctions h et χ, Une attention particulière sera donnée dans la suite à l'espace C α = B α ∞,∞ qui n'est autre que l'espace des fonctions α-Hölder sur R d lorsque α ∈ (0, 1). L'étude d'un tel espace s'avère assez confortable et pratique due a la bonne localisation de la transformée de Fourier des bloques de Littlewood-Paley. En effet on a le résultat suivant :

Proposition 1.4.2 (voire [6]). Il existe une constante C telle que si B est une boule de R d , p, q ∈ [1, +∞] tel que p ≤ q, λ > 0, k ∈ N et f ∈ S ′ (R d
) dont le support de sa transformée de Fourier f est contenu dans λB alors on a que :

sup |a|=k ||∂ a f || L q ≤ C k+1 λ k+d(1/p-1/q) ||f || L p
Démonstration. Pour prouver ce résultat il suffit de traiter le cas λ = 1 et ensuite de généraliser en usant d'une dilatation de taille λ > 0. Soit φ une fonction indéfiniment dérivable sur R d tel que φ ≡ 1 dans un voisinage de B. Ainsi il suffit de remarquer que

∂ a f = ∂ a h ⋆ f ; h = F -1 (φ)
D'où une application directe de l'inégalité de Young nous donne que

||∂ a f || L q ≤ ||f || L p ||∂h|| L r avec 1/p + 1/q = 1 + 1/r. Maintenant en utilisant l'inégalité suivante : ||∂ a h|| L r ≤ ||∂ a h|| L 1 + ||∂ a h|| L ∞ ≤ C||(1 + |x| 2 ) d ∂ a h|| L ∞ avec C = 1 + R d dx(1 + |x| 2 ) -d , on obtient que ||∂ a h|| L r ≤ C||(Id -∆ R d ) d ((.) a φ) || L 1 ≤ C k+1
ce qui finit la preuve.

Une application directe de ce résultat nous donne immédiatement que

||∆ i f || ∞ 2 -id/q ||∆f || L q 2 id/q-iα ||u|| B α q,q d'où ||u|| C α-d/q ||u|| B α q,q (1.17) 
Ce qui donne une inclusion fort utile lorsque qu'on veut travailler avec des processus stochastiques. Nous introduisont a ce stade le parproduit de Bony (voire [5]) qui permet dans un sens de définir le produit f g entre deux distributions de Besov, en fait d'une manière assez formel on voit que :

f g = i,j ∆ i f ∆ j g = π < (f, g) + π 0 (f, g) + π > (f, g) (1.18) où π < (f, g) = i≥-1;j≥i+1 ∆ i f ∆ j g = π > (g, f ), π 0 (f, g) = |i-j|≤1 ∆ i f ∆ j g
Le théorème suivant nous précise un cadre dans lequel cas la décomposition (1.18) a un sens

Théoreme 1.4.3 (voir[6]). Soit f ∈ L ∞ et g ∈ C α , α ∈ R alors on a que π < (f, g) est bien définie et de plus |π < (f, g)| C α α,β |f | ∞ |g| C α maintenant si f ∈ C β et g ∈ C α pour β ∈ R et α < 0 alors π > (f, g) est bien définie et on a |π > (f, g)| C α+β α,β |f | C β |g| C α et finalement si f ∈ C β , g ∈ C α avec α + β > 0 alors π 0 (f, g
) est bien définie de plus on a que :

|π 0 (f, g)| C α+β α,β |f | C β |g| C α
Pour être plus complet dans notre étude nous rappelons le résultat suivant qui nous donne une sorte de développement de Taylor à l'ordre 1 pour un terme de type f (u) où u est une fonction de Besov et f une fonction assez lisse. Théoreme 1.4.4 (voir [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF]). Soit α, ρ > 0 tel que ρ ne soit pas un entier,

u ∈ C α ∩ C ρ et f ∈ C 2 b . alors on a que f (u) = π < (f ′ (u), u) + u ♯ avec |u ♯ | C α+ρ f ′′ ,||u||∞ |u| C ρ |u| C α
À ce nivaux nous allons essayer de relayer les notions vues dans cette sous-section avec la théorie des chemins rugueux. Pour cela nous allons nous donner l'exercice très simple de construire f (x)Dx

pour une fonction x ∈ C γ (R d ) avec 1/3 ≤ γ < 1 et f ∈ C 2
b , bien sur pour faire une telle chose un moyen possible serait de construire les différents paraproduits associés à f (x)Dx ainsi nous avons la décomposition formelle suivante :

f (x)Dx = π < (f (x), Dx) + π 0 (f (x), Dx) + π > (f (x), Dx)
Le théorème (1.4.3) nous indique que le premier et troisième terme de cette équation sont toujours bien définis, et de régularité respective γ -1 et 2γ -1. Nous allons maintenant nous concentrer sur le second terme qui s'avère un peu délicat. Le théorème (1.4.4) nous dit que

f (x) = π < (f ′ (x), Dx) + f (x) ♯ avec f (x) ♯ ∈ C 2γ .
Injectant cette identité dans le terme diagonal on trouve que :

π 0 (f (x), Dx) = π 0 (π<(f ′ (x), x), Dx) + π 0 (f (x) ♯ , Dx)
et maintenant on remarque que le second terme de cette équation est bien définie dès que 3γ -1 > 0. Pour étudier le terme π 0 (π < (f ′ (x), x), Dx) on pourrait essayer de commuter les paraproduits et c'est ce qui a amené les auteurs de [START_REF] Gubinelli | Paraproducts, rough paths and controlled distributions[END_REF] à obtenir le résultat suivant : Proposition 1.4.5 (N.Perkowsky, P.Imkeller, M.Gubinelli). Soit α, β, γ ∈ R tel que 0 < α < 1,

α + β + γ > 0 et β + γ < 0 alors R(f, x, y) = π 0 (π < (f, x), y) -f π 0 (x, y) est bien définie si f ∈ C α , x ∈ C β and y ∈ C γ et plus précisément ||R(f, x, y)|| α+β+γ ||f || α ||x|| β ||y|| γ
Ainsi en utilisant ce résultat on obtient que

π 0 (π < (f ′ (x), x), Dx) = f ′ (x)π 0 (x, Dx) + R(f ′ (x), x, Dx)
on voit ainsi qu'on peut définir f (x)Dx sous la condition qu'on arrive à construire de manière raisonnable "l'aire de Besov" π 0 (x, Dx) ∈ C 2γ-1 , ce qui est un résultat similaire a celui de la théorie des chemins rugueux qui dit que l'intégrale :

f (x)dx
est bien définie dès que l'aire de Lévy dxdx est "constructible" et satisfait certaines propriétés de régularité. Nous finirons cette sous-section par les deux lemmes suivants, le premier nous renseigne sur la régularité du bruit blanc vis-à-vis des espaces présentés dans cette partie et le second de la manière dont agis le semi-groupe de la chaleur (P t ) t≥0 = (e t∆ ) t≥0 sur les paraproduits ce qui sera utile pour la suite . 

E[|∆ i ξ(a)| 2 ] = |k|∼2 i θ(2 -i k) 2 id
d'où en utilisant l'hypercontractivité Gaussienne (voir [START_REF] Janson | Gaussian Hilbert Spaces[END_REF]) on obtient que 

E[|∆ i ξ| p L p (T d ) ] = T d E[|∆ i ξ(a)| 2 ] p/2
||P t f || α+2θ t -θ ||f || α ; ||(P t-s -1)|| α-2ε |t -s| ε ||f || α sont satisfaites pour tout f ∈ C α . De plus si α < 1 et β ∈ R alors on a que ||P t π < (f, g) -π < (f, P t g)|| α+β+2θ t -θ ||f || α ||g|| β pour tout f ∈ C α et g ∈ C β .
Nous finiront par remarquer que la commutation entre le paraproduit et le semi-groupe de la chaleur est peu connu pour cela on renvoi au quatrième chapitre pour une preuve de ce fait.

Résultats du chapitre 4

Dans le quatrième et dernier chapitre de cette thèse nous allons nous intéresser au problème de Cauchy suivant :

∂ t u = ∆ T 3 u -u 3 + ξ u(0, x) = u 0 (x) ∈ C α (T 3 ) (1.19)
ou ξ étant un bruit blanc espace-temps, pour simplifier la compréhension nous allons considéré le cas où u 0 = 0 et donc dans ce cas la formulation mild de notre équation devient 

u = X + I(u 3 ) (1.
E Xt (k) Xs (k ′ ) = δ k,k ′ e -|k| 2 |t-s| |k| 2
avec X(0) = 0 et δ i,j = 1 si i = j et δ i,j = 0 sinon. Ainsi avec cette définition on voit par un simple calcul que X ∈ C

1/2-δ T := C([0, T ], C -1/2-δ ) pour tout δ > 0.
Maintenant on regardant de plus prés notre équation on peut se convaincre que la solution ne va pas être plus régulière que processus X et ceci pose problème même dans la définition du terme u 3 , une approche classique et "naïve" serait de remplacer ξ par

ξ ε = k f (εk) ξ(k)e k
avec f est une fonction régulière à support compact tel que f (0) = 1 et (e k ) la base de Fourier de L 2 (T 3 ) et dans ce cas on sait qu'il existe une unique solution (locale) u ε de l'équation

∂ t u ε = ∆ T 3 u ε -(u ε ) 3 + ξ ε
Maintenant on pourrait espérer contrôler (u ε ) 3 uniformément en ε dans un espace de Besov de régularité négative et c'est ici où on a un gros problème, en effet intuitivement on pourrait ce dire que pour avoir un tel contrôle il faudrait estimé (X ε ) 3 ou plus modestement (X ε ) 2 mais malheureusement un simple calcul nous montre que :

E (X ε t ) 2 = k∈Z 3 k 1 +k 2 =k f (εk 1 )f (εk 2 ) 1 |k 1 | 2 δ k 1 +k 2 =0 = k∈Z 3 |f (εk)| 2 |k| 2 ∼ 0 1 ε R 3 f (x)(1 + |x|) -2 dx
et ceci nous ôte tout espoir d'avoir une limite non triviale pour u ε . Pour éviter ce genre de problème nous allons considère l'équation :

∂ t u = ∆ T 3 u ε -(u ε ) 3 + C ε u ε + ξ ε
et nous verrons que pour un bon choix de C ε il est possible de contrôler u ε uniformément en ε et d'avoir une limite non triviale u qui satisfait une équation au point fixe de type :

u = X + I(u ♦3 )
où u ♦3 est une "redéfinition" ou "renormalisation" du cube.

Remark 1.4.8. Il est judicieux d'observer que ♦ ne désigne pas nécessairement le produit de Wick.

Maintenant à l'instar de la théorie des rough path la stratégie adoptée pour montrer cette convergence est tout de d'abord de donner un sens à l'équation "abstraite" satisfaite par u sous la condition qu'on peut construire de manière "convenable" une certaine distribution rugueuse X associer à X et qui va jouer ici le rôle du rough path, puis résoudre cette équation par une méthode de point fixe et ainsi avoir la continuité de la solution par rapport à X, et finalement prouver que si X est le processus de O.U et X ε est une régularisation de X alors X ε la distribution rugueuse associer à X ε converge bien vers une limite X. Développement de la solution, distribution rugueuse et distributions contrôlés : Nous allons maintenant revenir à notre équation mild initiale donnée par :

u = X + I(u 3 )
ainsi même si le terme Φ = I(u 3 ) n'est pas à ce stade bien compris on peut voir formellement que Φ ∈ C([0, T ], C 1/2-δ ) dû au fait que moralement u a pour régularité spatiale -1/2-et à la régularisation faite par le noyau de la chaleur et de plus il satisfait l'équation :

Φ = I(X 3 ) + 3I(ΦX 2 ) + 3I(Φ 2 X) + I(Φ 3 )
Une première remarque est que comme on l'a vu précédemment dans le cas d'un processus de (O U) le terme X 2 est mal définie au sens où (X ε ) 2 ne converge pas à proprement parler mais en revanche nous verrons par la suite que

(X ε ) ♦2 = (X ε ) 2 -E[(X ε ) 2 ] converge vers un processus X ♦2 , de même I((X ε ) 3 ) ne converge pas mais par contre I((X ε ) ♦3 ) = I((X ε ) 3 -3E[(X ε ) 2 ]
) converge ce qui nous pousse a "modifier" notre équation de la manière suivante :

Φ = I(X ♦3 ) + 3I(ΦX ♦2 ) + 3I(Φ 2 X) + I(Φ 3 ) (1.21) avec lim ε→0 I((X ε ) ♦3 ) = I(X ♦3
). À ce stade on remarque que notre stratagème pour donner un sens a l'équation et la résoudre nécessite plus que la donnée du chemin X mais aussi de X ♦2 , I(X ♦3 ) et bien d'autres objets, nous allons de manière prématurée préciser la nature supplémentaire que devra satisfaire la distribution X.

Définition 1.4.9. Soit T > 0, ν, ρ > 0 et on note par

C ν,ρ T la fermeture de C ∞ ([0, T ], R) par la semi-norme ||ϕ|| ν,ρ = sup t∈[0,T ] t ν |ϕ t | + sup t,s∈[0,T ];s =t s ν |ϕ t -ϕ s | |t -s| ρ
Maintenant pour 0 < 4δ ′ < δ on définie l'espace normé

W T,K = C δ ′ ,-1/2-δ T × C δ ′ ,-1-δ T × C δ ′ ,1/2-δ T × C δ ′ ,-δ T × C δ ′ ,-δ T × C δ ′ ,-1/2-δ T × C ν,ρ T avec K = (δ, δ ′ , ν, ρ) équipé de sa topologie produit d'espace métrique. Maintenant on définit pour (X, ϕ) ∈ C([0, T ], C(T 3 )) × C ∞ ([0, T ]), et (a, b) ∈ R 2 l'element R a,b X ∈ W T,K par R ϕ a,b X =(X, X 2 -a, I(X 3 -3aX), π 0 (I(X 3 -3aX), X), π 0 (I(X 2 -a), (X 2 -a)) -b -ϕ, π 0 (I(X 3 -3aX), (X 2 -a)) -3bX -3ϕX, ϕ)
et on définit ainsi l'ensemble des distributions rugueuses X T,K comme étant la fermeture de

R ϕ a,b X, (X, ϕ) ∈ C([0, T ], C(T 3 )) × C ∞ ([0, T ]), (a, b) ∈ R 2
dans W T,K . Nous dirons dans la suite que X donne lieu à une distribution rugueuse X ∈ X T,K si la première composante de X est X.

Ainsi on a la notation suivante :

Notation 1.4.10. Soit X ∈ X T,K , on note alors ses composantes de la manière suivante :

X = (X, X ♦2 , I(X ♦3 ), π 0♦ (I(X ♦3 ), X), π 0♦ (I(X ♦2 ), X ♦2 ) -ϕ, π 0♦ (I(X ♦3 ), X ♦2 ) -3ϕX, ϕ)
Or, étant donné X ∈ C([0, T ], C -1/2-δ ) tel qu'il donne lieu à une distribution rugueuse X ∈ X T,K nous allons voir comment se comporte de manière formelle la présumée solution Φ de l'équation (1.21) dont on rappelle la forme :

Φ = I(X ♦3 ) + I(ΦX ♦2 ) + I(Φ 2 X) + I(Φ 3 )
On peut voir que le premier terme par hypothèse est bien définie et satisfait bien I(X ♦3 ) ∈ C 1/2-δ , de même que le dernier terme l'est aussi et a pour régularité 5/2δ dû au fait que Φ ∈ C 1/2-δ T . En revanche le second et troisième terme sont encore mal définis à ce stade mais devraient avoirs pour régularités respectives 1δ et 3/2δ. Nous allons maintenant regarder d'un peu plus près le terme I(ΦX ♦2 ). Une décomposition en paraproduit de ce dernier nous donne que :

I(ΦX ♦2 ) = B < (Φ, X ♦2 ) + C 3/2-δ T avec B < (f, g) = I(π < (f, g)).
Ce qui nous pousse a introduire la définition suivante : Définition 1.4.11. On définit l'espace des distributions contrôlées D δ X,T par

D δ X,T = (Φ, Φ ′ ) ∈ C([0, T ], C 1/2-δ ) 2 ; Φ ♯ = Φ -I(X ♦3 ) -B < (Φ ′ , X ♦2 ) ∈ C 3/2-δ T
une remarque est D δ X,T est un espace affine muni de sa semi-norme

||Φ|| δ D X,T = ||Φ ′ || C 1/2-δ T + ||Φ ′ || C δ,1/2-3δ T + ||Φ ♯ || C 3/2-δ T et d'une distance d donné par : d δ,T (Φ 1 , Φ 2 ) = ||Φ 1 -Φ 2 || D δ X,T
ce qui le munis d'une structure d'espace métrique complet.

Remark 1.4.12. D'un point de vue analytique cette définition diffère de celle donné dans le quatrième chapitre dû au fait qu'on veut étudier l'équation pour des conditions initiales u 0 assez générales.

Maintenant ce que nous affirmons c'est que si X ∈ X T,K et que si Φ ∈ D δ X,T pour δ > 0 assez petit alors on peut définir les termes I(Φ 2 X) et I(ΦX ♦2 ) de manière convenable. En effet nous commençons par voire que

I(Φ 2 X) = I(I(X ♦3 ) 2 X) + 2I(θ ♯ I(X ♦3 )X) + I((θ ♯ ) 2 X) avec θ ♯ = B < (Φ ′ , X ♦2 ) + Φ ♯ ∈ C 1-δ
T , ainsi le terme I(θ ♯ X) est bien définie, de plus due à l'hypothèse que X ∈ X T,K on voit que I(X ♦3 )X ∈ C -1/2-δ T et donc le second terme de notre équation est aussi bien défini. En revanche le premier terme requière un peu plus d'attention, en effet ce qui pose problème dans ce terme étant sa partie diagonale π 0 (I(X ♦3 ) 2 , X) qui peut être décomposé de la manière suivante

π 0 (I(X ♦3 ) 2 , X) = 2π 0 (π < (I(X ♦3 ), I(X ♦3 )), X) + π 0 (C 1-δ T , X)
Ainsi due au fait que X ∈ C -1/2-δ on peut voir que le second terme est bien définie et ne pose plus de problème. Pour le premier terme on va utiliser le lemme du commutateur (1.4.5) qui nous donne que :

π 0 (π < (I(X ♦3 ), I(X ♦3 )), X) = I(X ♦3 )π 0 (I(X ♦3 ), X) + C 1/2-δ T
Ainsi le premier terme est bien définie grâce au fait que π 0 (I(X ♦3 ), X) ∈ C -δ , ce qui conclut l'étude de I(Φ 2 X). Nous allons maintenant nous concentrer sur le terme I(ΦX ♦2 ) qui requière un peu plus de vigilance, en effet un simple calcule nous donne que

I(ΦX ♦2 ) = I(I(X ♦3 )X ♦2 ) + I(B < (Φ ′ , X ♦2 )X ♦2 ) + I(Φ ♯ X ♦2 )
on voit qu'ici le troisième terme de cette équation est bien défini dû au fait que

Φ ♯ ∈ C 3/2-δ T et X ♦2 ∈ C -1-δ T
. Avant d'étudier le premier nous allons regarder de plus prés le second terme de cette équation et pour celui-ci on remarque que seulement le terme diagonal pose problème, en effet :

B 0 (B < (Φ ′ , X ♦2 ), X ♦2 ) = I(π 0 (I(π < (Φ ′ , X ♦2 )), X ♦2 ))
ainsi une combinaison des Lemmes de commutation (1.4.7) et (1.4.5) nous permette d'avoir la relation suivante

B 0 (B < (Φ ′ , X ♦2 ), X ♦2 ) = I(Φ ′ π 0 (I(X ♦2 ), X ♦2 )) + C 3/2-δ
Dans le cas où X est le processus (O.U) on verra dans la suite que π 0 (I((X ε ) ♦2 ), (X ε ) ♦2 ) ne converge pas mais par contre π 0 (I(X ε ) ♦2 , I((X ε ) ♦2 )) -C ε 2 avec C ε 2 une seconde constante de renormalisation, ce qui justifie l'introduction de la notation π 0♦ (I(X 2♦ ), X 2♦ ) au lieu de π 0 (I(X ♦2 ), X ♦2 ) et donc on voit que le terme

B 0♦ (B < (Φ ′ , X ♦2 ), X ♦2 ) = I(Φ ′ π 0♦ (I(X ♦2 ), X ♦2 )) + C 3/2-δ
est bien définie due à la régularité de Φ ′ et le fait que X ∈ X T,K . Maintenant de même que pour π 0 (I((X ε ) ♦2 ), (X ε ) ♦2 ) le terme I(I(X ♦3 )X ♦2 ) nécessite une certaine modification d'où le choix de le noter plus par I(I(X ♦3 )♦X ♦2 ) ce qui conclut l'étude du terme I(ΦX ♦2 ) qui sera noté par la suite I(Φ♦X 2♦ ). Ainsi on voit que tous les termes de l'équation :

Φ = X ♦2 + I(Φ♦X ♦2 ) + I(Φ 2 X) + I(Φ 3 )
sont bien définie dès que X ∈ X T,K et Φ ∈ D δ X,T , ce qui a permet de la résoudre et ainsi de voire que u := X + Φ sera la limite de u ε dans le cas où X est le processus de (O.U). Ainsi on a le résultat suivant Théoreme 1.4.13.

Soit F : C 1 (T 3 ) × C(R + , C 0 (T 3 )) × R 2 → C(R + , C 1 ) le flot de l'équation      ∂ t u t = ∆u t -u 3 t + 3au t + 9bu t + ξ t , t ∈ [0, T C (u 0 , X, ϕ, (a, b))[ ∂ t u t = 0, t ≥ T C (u 0 , X, (a, b)) u(0, x) = u 0 (x) ∈ C 1 (T 3 ) où ξ ∈ C(R + , C 0 (T 3 )) et T C (u 0 , ξ) > 0 un temps pour lequel la solution u satisfait l'equation. Soit maintenant z ∈ (1/2, 2/3) alors il existe TCD : C -z × X → R + qui soit semi-continu inférieurement, F : C -z × X → C(R + , C -z (T 3 )) qui est continue en (u 0 , X) ∈ C -z (T 3 ) × X et tel que ( F , T ) étend (F, T ) dans le sens suivant : T C (u 0 , ξ, (a, b)) ≥ TCD (u 0 , R ϕ a,b X) et F (u 0 , ξ, a, b)(t) = F (u 0 , R ϕ a,b X)(t), pour tout t ≤ TC (u 0 , R ϕ a,b X) pour tout (u 0 , ξ, ϕ) ∈ C 1 (T 3 ) × C(R + , C 0 (T 3 )) × C ∞ ([0, T ]), (a, b) ∈ R 2 avec X t = t 0 dsP t-s ξ et R ϕ a,b
X étant le chemin associé à X dans la définition (1.4.9).

Maintenant on a le résultat suivant pour le processus de (O.U) Théoreme 1.4.14. Soit X un processus de O.U et T > 0, alors il existe deux constantes

C ε 1 et C ε 2 tel que C ε 1 , C ε 2 → ε→0 +∞ et une fonction ϕ ε ∈ C ∞ (R + ) tel que (R ϕ ε C ε 1 ,C ε 2 X ε
) ε converge en probabilité dans X T,K vers un processus X ∈ X de plus la première composante de X est X.

ainsi la combinaison de ces deux résultat nous donne que la solution Corollary 1.4.15. Soit u ε la solution de l'equation :

     ∂ t u ε = ∆u ε -(u ε ) 3 + C ε 1 u + C ε 2 u + ξ ε ; t ∈ [0, T ε [ ∂ t u ε t = 0; t ≥ T ε u ε (0, x) = (u 0 ) ε (x)
avec ξ ε une régularisation du bruit blanc ξ, et T ε le temps d'existence de u ε alors u ε converge en probabilité dans C(R + , C -z ) vers u := F (u 0 , X) Chapter 2

Rough Sheet Vs Malliavin calculus

Résumé

Dans ce chapitre on étudie certains aspects du calcul stochastique à deux paramètres. Plus spécifiquement on se pose pour but d'exposer la manière d'obtenir une formule de changement de variable pour un drap x : [0, 1] → R ayant certaines propriétés Hölderienne d'exposant plus grand que 1/3 puis de donner une certaine formule de changement de variable pour l'intégrale de Skorohod a deux paramètres pour une large classe de processus Gaussien et enfin de comparer ces deux formules de changement de variable et calculer explicitement lorsque c'est possible les différents termes de contractions entre les deux types d'intégrales.

Abstract

In this chapter we gives an account on various aspects of stochastic calculus in the plane. Specifically, our aim is 3-fold: (i) Derive a pathwise change of variable formula for a path x : [0, 1] 2 → R satisfying some Hölder regularity conditions with a Hölder exponent greater than 1/3. (ii) Get some Skorohod change of variable formulas for a large class of Gaussian processes defined on [0, 1] 2 . (iii) Compare the bidimensional integrals obtained with those two methods, computing explicit correction terms whenever possible. As a byproduct, we also give explicit forms of corrections in the respective change of variable formulas.

Introduction

Stochastic calculus for processes indexed by the plane (or higher order objects) is notoriously a cumbersome topic. In order to get an idea of this fact, let us start from the simplest situation of a smooth function x indexed by [0, 1] 2 and a regular function ϕ ∈ C 2 (R). Then some elementary computations show that

[δϕ(x)] s 1 s 2 ;t 1 t 2 = [s 1 ,s 2 ]×[t 1 ,t 2 ]
ϕ (1) 

(x u;v )d uv x u;v + [s 1 ,s 2 ]×[t 1 ,t 2 ] ϕ (2) (x u;v )d u x u;v d v x u;v , (2.1) 
for all 0 ≤ s 1 < s 2 ≤ 1 and 0 ≤ t 1 < t 2 ≤ 1, where we have set [δy] s 1 s 2 ;t 1 t 2 for the rectangular increment of y) in the rectangle [s 1 , s 2 ] × [t 1 , t 2 ]. This simple formula already exhibits the extra term ϕ (2) (x u;v )d u xd v x with respect to integration in R, and the mixed differential term d u xd v x is one of the main source of complications when one tries to extend (2.1) to more complex situations.

Moving to stochastic calculus in the plane, generalizations of (2.1) to a random process x obviously starts with change of variables formulas involving the Brownian sheet or martingales indexed by the plane. Relevant references include [START_REF] Cairoli | Stochastic integrals in the plane[END_REF][START_REF] Nualart | Une formule d'Itô pour les martingales continues à deux indices et quelques applications[END_REF][START_REF] Wong | Differentiation formulas for stochastic integrals in the plane[END_REF], and some common features of the formulas produced in these articles are the following:

-Higher order derivatives of f showing up.

-Mixed differentials involving partial derivatives of x and quadratic variation type elements.

-Huge number of terms in the formula due to boundary effects. This non compact form of stochastic calculus in the plane has certainly been an obstacle to its development, and we shall go back to this problem later on. Some recent advances in generalized stochastic calculus have also paved the way to change of variables formulas in the plane beyond the martingale case. One has to distinguish two type of contributions in this direction:

(a) Stochastic Calculus in the plane for a planare Martingal are developed in [START_REF] Cairoli | Stochastic integrals in the plane[END_REF] and an Itô formula it obtained in this case.

(b) Skorohod type formulas for the fractional Brownian sheet (abbreviated as fBs in the sequel) with Hurst parameters greater than 1/2 have been obtained in [START_REF] Tudor | Itô formula and local time for the fractional Brownian sheet[END_REF] thanks to a combination of differential calculus in the plane and stochastic analysis tools inspired by [START_REF] Alòs | Stochastic calculus with respect to Gaussian processes[END_REF]. A subsequent generalization to Hurst parameters smaller than 1/2 is available in [START_REF]Itô formula for the two-parameter fractional Brownian motion using the extended divergence operator[END_REF], invoking the notion of extended divergence introduced in [START_REF] León | An extension of the divergence operator for Gaussian processes[END_REF]. Notice however that the extended divergence leads to a rather weak notion of integral, and might not be necessary when the Hurst parameters of the fBs are greater than 1/4.

Our first goal in this chapter is to show how we can define rough sheets which is the basic objects underlying multi-parameter integration suitable to build a theory of path-wise integration over the fractional Brownian sheet and then we construct the 2d rough integral. At this stage our first main result of this chapter can be resumed in the following theorem Theorem 2.1.1. Let γ 1 , γ 2 > 1/3, then there exist a complete metric space R γ 1 ,γ 2 and two continuous application

I a : C 8 b (R) × R γ 1 ,γ 2 → CC γ 1 ,γ 2 2,2
(see the equation (2.30) for the exact definition of CC γ 1 ,γ 2 2,2 ), a = 1, 2 such that : 4 and for every smooth sheet x with X is the rough sheet associated. Moreover if x is a fractional Brownian sheet with Hust parameter γ 1 , γ 2 > 1/3 then it can be enhanced in a rough sheet X and then we obtain in this case the following Stratonovich formula :

I 1 (ϕ, X) s 1 s 2 ;t 1 t 2 = s 2 s 1 t 2 t 1 ϕ(x st )∂ s ∂ t x st dsdt and I 2 (ϕ, X) s 1 s 2 ;t 1 t 2 = s 2 s 1 t 2 t 1 ϕ(x st )∂ s x st ∂ t x st dsdt for all (s 1 , s 2 , t 1 , t 2 ) ∈ [0, 1]
δϕ(x) = I 1 (ϕ ′ , X) + I 2 (ϕ ′′ , X).
And the second aim of this chapter is to point out the link with the work of C.Tudor and F.Viens in [START_REF] Tudor | Itô formula and local time for the fractional Brownian sheet[END_REF][START_REF]Itô formula for the two-parameter fractional Brownian motion using the extended divergence operator[END_REF] where he construct the stochastic integral for the fraction Brownian sheet in the Skorohod meaning and obtain in that case a change of variable formula. The two main result of this part are given in the Theorem (2.7.5) and (2.7.13), for sake of comprehension we don't expose these result in the introduction.

Plan. This note is structured as follows. In Sec. 2.2 we recall the basic setup of [START_REF] Gubinelli | Controlling rough paths[END_REF] which allows to embed the theory of rough paths in a theory of integration of "generalized differentials", called kincrements. In Sec. 2.3 we introduce and study a complex of 2d increments (or biincrements) suitable to analyze 2d integrals and show the existence of a 2d Λ-map and of an abstract integration theory (in the sense of convergence of Riemann sums of particular biincrements).

In Sec. 2.4 we use the theory outlined in Sec. 2.3 to generalize Young theory of integration to two dimensions. Like in the one-dimensional setting this should be seen as a first (mostly pedagogical) step towards a full theory of rough sheets.

In Sec. 2.5 we proceed to the dissection of a 2d integral with the purpose of exposing the constituent elements of the would-be rough sheet. All the computations will be done in the smooth setting, emphasizing the algebraic aspects and the respective rôles of the various objects.

In Sec. 2.5.1 the definition of the rough sheet will be given, and on 2.5.1 a space of sheets controlled by a rough sheet, will be introduced and we will show how to obtain an integration theory for them.

In Sec 2.5.2 we show that for a smooth function ϕ that ϕ(x) is controlled by x if x is a rough sheet and then obtain some continuity result for the integral constructed in this case using the procedure developed in 2.5.1.

In Sec 2.6 we show that the fractional Brownian motion can be enhanced in a rough sheet and then we obtain a Stratonovich change of variable formula in this case.

In Sec 2.7 we obtain a Skorohod change of variable formula and we describe explicitly the correction term between the different type of Stratonovich-rough integral in the plane and the 2d-Skorhohd integral.

Algebraic integration in one dimension

The integration theory introduced in [START_REF] Gubinelli | Controlling rough paths[END_REF] is based on an algebraic structure, which turns out to be useful for computational purposes, but has also its own interest. Since this setting is quite nonstandard, compared with the one developed in [START_REF] Lyons | Differential equations driven by rough paths[END_REF], and since it lay at the base of our approach to 2d integrals we will recall briefly here its main features.

Increments

Let T > 0 be an arbitrary positive real number. For any vector space V we introduce a cochain complex (C * (V ), δ) as follows. a k-increment with values in V is a function g : [0, T ] k → V , such that g t 1 •••t k = 0 whenever t i = t i+1 for some i = 1, . . . , k. Denote with C k (V ) the corresponding set. On k-increments, define a the following coboundary operator δ:

δ : C k (V ) → C k+1 (V ) (δg) t 1 •••t k+1 = k+1 i=1 (-1) i+1 g t 1 ••• ti •••t k+1 (2.2)
where ti means that this particular argument is omitted. It is easy to verify that δδ = 0. We will denote ZC k (V ) = C k (V ) ∩ Kerδ and BC k (V ) := C k (V ) ∩ Imδ, respectively the spaces of k-cocycles and of k-coboundaries following standard conventions of homological algebra. We will write C k when the underlying vector space is R.

Some simple examples of actions of δ are obtained by letting g ∈ C 1 (V ) and h ∈ C 2 (V ). Then, for any t, u, s ∈ [0, T ], we have (δg) ts = g tg s , and (δh) tus = h tsh tuh us .

(2.

3)

The complex (C * (V ), δ) is acyclic, i.e. ZC k+1 (V ) = BC k (V ) for any k ≥ 0 or otherwise stated, the sequence

0 → R → C 1 (V ) δ -→ C 2 (V ) δ -→ C 3 (V ) δ -→ C 4 (V ) → • • • (2.4)
is exact. This exactness implies that all the elements h ∈ C 2 (V ) such that δh = 0 can be written as h = δf for some (non unique) f ∈ C 1 (V ). Thus we get a heuristic interpretation of δ| C 1 (V ) : it measures how much a given 1-increment is far from being an exact increment of a function (i.e. a finite difference).

For our discussion only k-increments with k ≤ 3 will be relevant. When V is a Banach space with norm | • | we measure the size of these increments by Hölder norms defined in the following way: for

f ∈ C 2 (V ) let f µ ≡ sup s,t∈[0,T ] |f st | |t -s| µ , and C µ 2 (V ) = {f ∈ C 2 (V ); f µ < ∞} .
In the same way for h ∈ C 3 (V ) set

h γ,ρ = sup s,u,t∈[0,T ] |h sut | |u -s| γ |t -u| ρ
(2.5)

h µ ≡ inf i h i ρ i ,µ-ρ i ; h = i h i , 0 < ρ i < µ ,
where the last infimum is taken over all sequences {h i ∈ C 3 (V )} such that h = i h i and for all choices of the numbers ρ i ∈ (0, z). Then • µ is easily seen to be a norm on C 3 (V ), and we set

C µ 3 (V ) := {h ∈ C 3 (V ); h µ < ∞} . Let C 1+ 3 (V ) = ∪ µ>1 C µ 3 (V )
. Analogous meaning should be given to ZC µ 2 (V ), . . . . From now on V will be a generic Banach space. The following proposition is a basic result which is at the core of our approach to path-wise integration: Proposition 2.2.1 (The Λ-map). There exists a unique linear map Λ :

ZC 1+ 3 (V ) → C 1+ 2 (V ) such that δΛ = 1 ZC 3 (V )
. Furthermore, for any µ > 1 this map is continuous from ZC µ 2 (V ) to C µ 1 (V ) and we have

Λh µ ≤ 1 2 µ -2 h µ , h ∈ ZC 1+ 2 (V ) (2.6)
Proof. This result first appeared in [START_REF] Gubinelli | Controlling rough paths[END_REF]. For a substantially simpler proof look at [START_REF] Gubinelli | Rough evolution equations[END_REF].

Let R µ (V ) = {g ∈ C 2 (V ) : δg ∈ C µ 3 (V )}.
When µ > 1 this is the subspace of 1-increments whose coboundary is small enough to be in the domain of Λ. R 1+ (V ) is defined as the union of all R µ (V ) for µ > 1.

An immediate implication of Prop. 2.2.1 is the following algorithm for a canonical decomposition of the elements of R 1+ (V ): Corollary 2.2.2. Take an element g ∈ R µ (V ) for µ > 1. Then g can be decomposed in a unique way as g = δf + Λδg, where f ∈ C 1 (V ). If moreover g ∈ C 1+ 2 (V ) then f = 0 and g = Λδg: the coboundary δ is invertible (as a linear map) in C 1+ 1 (V ).

Proof. By assumption there are no ambiguity to define Λδg and by definition we have that δ(g -Λδg) = 0 and then there exist f ∈ C 1 (V ) such that δf = g -Λδg. In the case when g ∈ C 1+ 2 we see that f is a γ-Hölder function for some γ > 1 and then f t = f 0 which gives our result.

At this point the relation of the structure we introduced with the problem of integration of irregular functions can be still quite obscure to the non-initiated reader. However something interesting is already going on and the previous corollary has a very nice consequence which is the subject of the next corollary.

Corollary 2.2.3 (Integration of small increments). For any 1-increment

g ∈ C 2 (V ), such that δg ∈ C 1+ 1 set δf = (1 -Λδ)g, then (δf ) ts = lim |Πts|→0 n i=0 g t i t i+1
where the limit is over all partitions Π ts = {t 0 = t, . . . , t n = s} of [t, s] as the size of the partition goes to zero. The 1-increment δf is the indefinite integral of the 1-increment g.

Even if the result is already in [START_REF] Gubinelli | Controlling rough paths[END_REF] we would like to repeat the proof since it is quite illuminating and it will be source of inspiration when proving a similar statement in the 2d setting.

Proof. Just consider the equation g = δf + Λδg and write

S Π = n i=0 g t i t i+1 = n i=0 (δf ) t i t i+1 + n i=0 (Λδg) t i t i+1 = (δf ) ts + n i=0 (Λδg) t i t i+1
and observe that, due to the fact that Λδg ∈ C 1+ 1 (V ) the last sum converges to zero.

Computations in C *

If V is an associative algebra the complex (C * , δ) is an (associative, non-commutative) graded algebra once endowed with the following product: for g ∈ C n (V ) and h ∈ C m (V ) let gh ∈ C n+m-1 (V ) the element defined by (gh) t 1 ,...,t m+n+1 = g t 1 ,...,tn h tn,...,t m+n-1 , t 1 , . . . , t m+n ∈ [0, T ].

(2.7)

The coboundary δ act as a graded derivation with respect to the algebra structure. In particular we have the following useful properties. Proposition 2.2.4. The following differentiation rules hold:

1. Let g, h be two elements of C 1 (V ). Then δ(gh) = δg h + g δh.

(2.8)

2. Let g ∈ C 1 (V ) and h ∈ C 2 (V ). Then δ(gh) = -δg h + g δh, δ(hg) = δh g + h δg.
Proof. We will just prove (2.8), the other relations being equally trivial: if g, h ∈ C 1 (V ), then

[δ(gh)] ts = g t h t -g s h s = g t (h t -h s ) + (g t -g s ) h s = g t (δh) ts + (δh) ts g s ,
which proves our claim.

The iterated integrals of smooth functions on [0, T ] are of course particular cases of elements of C which will be of interest for us. Let us recall some basic rules for these objects: consider f, g ∈ C ∞ 1 , where C ∞ 1 is the set of smooth functions from [0, T ] to R. Then the integral f dg, that we will denote by J (f dg), can be considered as an element of C ∞ 2 . That is, for s, t ∈ [0, T ], we set

J ts (f dg) = f dg ts = t s f u dg u .
The multiple integrals can also be defined in the following way: given a smooth element h ∈ C ∞ 2 and s, t ∈ [0, T ], we set

J ts (hdg) ≡ hdg ts = t s h us dg u .
In particular, the double integral J ts (f

1 df 2 df 3 ) is defined, for f 1 , f 2 , f 3 ∈ C ∞ 0 , as J ts (f 1 df 2 df 3 ) = f 1 df 2 df 3 ts = t s J us f 1 df 2 df 3 u .
Now, suppose that the nth order iterated integral of f 1 df 2 • • • df n , still denoted by the expression

J (f 1 df 2 • • • df n ), has been defined for f 1 , f 2 , • • • , f n ∈ C ∞ 1 . Then, if f n+1 ∈ C ∞ 1 , we set J ts (f 1 df 2 • • • df n df n+1 ) = t s J us f 1 df 2 • • • df n df n+1 u , (2.9) 
which defines the iterated integrals of smooth functions recursively. Observe that a nth order integral J (df 1 df 2 • • • df n ) could be defined along the same lines.

The following relations between multiple integrals and the operator δ will also be useful in the remainder of the paper: Proposition 2.2.5. Let f, g be two elements of C ∞ 1 . Then, recalling the convention (2.7); it holds that δf = J (df ), δ (J (f dg)) = 0, δ (J (dgdf )) = (δg)(δf ) = J (dg)J (df ), and, in general,

δ J (df n • • • df 1 ) = n-1 i=1 J df n • • • df i+1 J df i • • • df 1 .
(2.10)

Proof. Here again, the proof is elementary, and we will just show the third of these relations: we have, for s, t ∈ [0, T ],

J ts (dgdf ) = t s dg u (f u -f s ) = t s dg u f u -K ts ,
with K ts = (g tg s )f s . The first term of the right hand side is easily seen to be in ker δ Σ * 2 . Thus

δ (J (dgdf )) tus = (δK) tus = [g t -g u ][f u -f s ],
which gives the announced result.

Dissection of an integral

To grasp the algorithm underling the rough-path approach to integrals over irregular functions we will exercise ourselves on the deconstruction of a "classic" integral.

With the notations of Sec. 2.2.1 in mind, we will split the integral ϕ(x)dx = J (ϕ(x)dx) for a smooth function x ∈ C 1 into "more elementary" components. This decomposition suggest the right structure for the 1d rough paths. A similar exercise for 2d integrals will be very important in understanding the correct structure of the rough sheets.

The first idea one can have in mind in order to analyze J (ϕ(x)dx) is to perform an expansion around the increment dx. By Taylor expansion we have J (ϕ(x)dx) = ϕ(x)J (dx) + J (dϕ(x)dx) .

(2.11)

The first term in the r.h.s will be considered "elementary" and not elaborated further. Note that it is defined independently of the regularity of x since ϕ(x)J (dx) = ϕ(x)δx. Moreover, as a 1-increment it is easy to see that the second term in the r.h.s. of eq. (2.11) is smaller than the first but more problematic and we proceed to its dissection by the application of δ: invoking Proposition 2.2.5, we get that δ (J (dϕ(x)dx)) = δ(ϕ(x))δx, (2.12) Now the r.h.s. is well defined independently of the regularity of x since

[δ(ϕ(x))δx] tus = (ϕ(x t ) -ϕ(x u ))(x u -x s ).
Since x is smooth and assuming that ϕ is differentiable, then J (dϕ(x)dx) ∈ C 1+ 1 (since actually it belongs to C 2 1 by easy bounds on the iterated integral). Then as a consequence of Corollary 2.2.2 we have that

J (dϕ(x)dx) = Λδ [J (dϕ(x)dx)] = -Λ[δ(ϕ(x))δx]. (2.13)
and, as a result, the following expression for the original integral holds

J (ϕ(x)dx) = ϕ(x)δx -Λ ( δ(ϕ(x))δx) = (1 -Λδ)[ϕ(x)δx]. (2.14) 
Eq. (2.14) shows that the ordinary integral on the l.h.s. is equivalent to an expression in the r.h.s which does not depend any more on any differentiability assumptions on x, indeed the r.h.s makes sense, for example, when ϕ ∈ Lip and x ∈ C γ 0 for any γ > 1/2: the only thing we have to check is that δ(ϕ(x))δx ∈ C 1+ 2 but under these assumptions we have

|(ϕ(x t ) -ϕ(x u ))(x u -x s )| ≤ L ϕ x 2 γ ϕ(x) γ |t -u| γ |u -s| γ
where • γ is the ordinary γ-Hölder norm on functions and L ϕ is the Lipshitz norm of ϕ. In this case we can define the integral in the l.h.s. as being equivalent to the well-defined r.h.s. and this new integral is essentially the integral introduced by Young in [START_REF] Young | An inequality of the Hölder type, connected with Stieltjes integration[END_REF]. What is really relevant to our discussion is to note that the integral can, in this case, be completely recovered from the 1-increment ϕ(x)δx. However, the procedure can be continued further on by the next step in the Taylor expansion of the integral (2.11), which reads, for s, t ∈ [0, T ],

t s [d u ϕ(x u )] = t s ϕ ′ (x u )dx u = ϕ ′ (x s )[x t -x s ] + t s u s ϕ ′ (x v )dx v dx u ,
or according to the notations of Section 2.2.1,

δϕ(x) = J (dϕ(x)) = J ϕ ′ (x)dx = ϕ ′ (x)J (dx) + J dϕ ′ (x)dx .
(2.15)

Injecting this equality in equation (2.11), thanks to (2.9), we obtain

J (ϕ(x)dx) = ϕ(x)J (dx) + ϕ ′ (x)J (dxdx) + J dϕ ′ (x)dxdx . (2.16) 
In the two first terms in the r.h.s of eq. (2.16) the function ϕ(x) has "pop out" form the integral, so we consider them elementary (in a sense we will discuss below). Again, the last term in the r.h.s. can be seen to belong to C 1+ 1 (since actually, in this smooth setting, it belongs to C 3 1 ). Then in analogy with eq. (2.13) we can represent it in terms of its image under δ as

J dϕ ′ (x)dxdx = -ΛδJ dϕ ′ (x)dxdx = -Λ[J (dϕ ′ (x))J (dxdx) + J (dϕ ′ (x)dx)J (dx)]
(2.17)

where we acted with δ upon the triple iterated integral according to Prop. 2.2.5. Concerning the argument of Λ in this last equation, we note the following two facts: J (dϕ ′ (x)) = δϕ ′ (x) while the double iterated integral J (dϕ ′ (x)dx) appears in the Taylor expansion for δϕ(x):

δϕ(x) = J (dϕ(x)) = J (ϕ ′ (x)dx) = ϕ ′ (x)J (dx) + J (dϕ ′ (x)dx) so J (dϕ ′ (x)dx) = δϕ(x) -ϕ ′ (x)δx. (2.18)
Then we can rewrite eq. (2.17) as

J dϕ ′ (x)dxdx = -Λ[δϕ ′ (x)J (dxdx) + (δϕ(x) -ϕ ′ (x)δx)J (dx)] (2.19)
and finally we have obtained another expression for the integral J (ϕ(x)dx):

J (ϕ(x)dx) = ϕ(x)δx + ϕ ′ (x)J (dxdx) -Λ[δϕ ′ (x)J (dxdx) + (δϕ(x) -ϕ ′ (x)δx)J (dx)] = (1 -Λδ)[ϕ(x)δx + ϕ ′ (x)J (dxdx)] (2.20) 
where to go from the first equation to the second we used the algebraic relation δJ (dxdx) = J (dx)J (dx).

(2.21)

Up to this point all we got are another equivalent expression for the classic integral in the r.h.s. of eq. (2.19).

It is a very remarkable basic result of rough path theory that the r.h.s. of eq. (2.19) makes sense for paths x which are very irregular like the sample paths of Brownian motion (which a.s. are not Hölder continuous for any index greater than 1/2), once we have at our disposal also a 1-increment J (dxdx) which is sufficiently small and satisfy eq. (2.21). Heuristically, in this situation the formula says that the 1-increment ϕ(x)δx can be "corrected" or "renormalized" by adding the correction ϕ ′ (x)J (dxdx) so that it becomes integrable (in the sense of Corollary 2.2.3).

In the cases where this correction belongs to C 1+ 1 we have (1 -Λδ)[ϕ ′ (x)J (dxdx)] = 0 so eq. (2.19) becomes again eq. (2.13) and we reobtain the Young integral.

It is worth noticing at that point that the integral, as defined by eq. (2.19), has now to be understood as an integral over the (step-2) rough path (x, J (dx dx)) [START_REF] Gubinelli | Controlling rough paths[END_REF] and it coincide with the notion of integral over a rough path given by Lyons in [START_REF] Terry | Differential equations driven by rough signals[END_REF].

This algorithm has an obvious extension to higher orders if we assume that a reasonable definition of the iterated integrals J (dx dx • • • dx) can be given. To proceed further however we need the notion of geometric rough path (for more details on this notion see [START_REF] Terry | Differential equations driven by rough signals[END_REF]) which must be exploited crucially to show that some terms are small and belongs to the domain of Λ.

Note that we have worked in the scalar setting (i.e. all the object we considered are real-valued). Willing to add some notational burden it is easy to see that this section has an equivalent formulation in the vector case (when x takes values on R n and ϕ is a (smooth) differential from on R n ). Indeed all the theory is interesting and useful especially in the vector case. This explain the fact that we do not considered techniques like the Doss-Sussmann approach to define one dimensional integrals since they are essentially limited to the scalar setting (where every reasonable differential form ϕ is exact) and do not have a vectorial counterpart.

The increment complex in two dimensions

In this paper we are interested in particular two-dimensional integrals which can take two basic forms which in general are not equivalent. If f, g : R 2 → R are regular enough we can define the two dimensional integral of f wrt. g as

(s 2 ,t 2 ) (s 1 ,t 1 ) f dg := s 2 s 1 ds t 2 t 1 dtf (s, t)∂ 1 ∂ 2 g(s, t) (2.22)
where ∂ 1 and ∂ 2 are the partial derivatives wrt. the first and the second coordinate, respectively. Another possible and nonequivalent basic integral in two-dimension is given, for a triple of functions f, g, h, by

(s 2 ,t 2 ) (s 1 ,t 1 ) f d 1 gd 2 h := (s 2 ,t 2 ) (s 1 ,t 1 ) f (s, t)∂ 1 g(s, t)∂ 2 h(s, t) dsdt Then (s 2 ,t 2 ) (s 1 ,t 1 ) dg =: (δg)(s 1 , t 1 , s 2 , t 2 ) (2.23)
defines the coboundary map δ for functions of two parameters:

(δg)(s 1 , t 1 , s 2 , t 2 ) = g(s 2 , t 2 ) -g(s 1 , t 2 ) -g(s 2 , t 1 ) + g(s 1 , t 1 ) = [g(s 2 , t 2 ) -g(s 1 , t 2 )] -[g(s 2 , t 1 ) -g(s 1 , t 1 )] (2.24)
which is just the composition of two finite-difference operator in the two directions. These integrals are to be considered as continuous functions of two points (s 1 , t 1 ) and (s 2 , t 2 ) on the plane which vanishes whenever s 1 = s 2 or t 1 = t 2 . This preliminary observation leads to the following general construction for a 2d cochain complex suitable for the analysis of these two-parameter integrals.

Fix a positive real T and let CC k,l (V ) the space of continuous functions from [0, T ] k × [0, T ] l → V , V some vector space such that g (s 1 ,...,s k )(t 1 ,...,t l ) = 0 whenever s i = s i+1 or t i = t i+1 . We will write CC k,l = CC k,l (R).

For CC k (V ) = CC k,k (V ) we will use the natural identification with the space of continuous functions from ([0, T ] 2 ) k → V . These will play the rôle of 2d k-increments: they are functions of k points in the square [0, T ] 2 such that they become zero whenever two contiguous arguments have one coordinate in common.

Note that CC k,l = C k ⊗ C l and in general

CC k,l (V ) = C k ⊗ C l ⊗ V (2.25)
We will call the elements of CC k,l (V ) (k, l)-biincrements and the elements of CC k (V ) k-biincrements.

Moreover we introduce one-dimensional coboundaries δ 1 , δ 2 which acts as described in Sec. 2.2 on the biincrements view as functions of the first set, or of the second set of arguments, i.e. they acts on the first or second C * factor according to factorization of eq. (2.25). To be concrete

δ 1 : CC k,l (V ) → CC k+1,l (V ) δ 2 : CC k,l (V ) → CC k,l+1 (V )
and for example, if g ∈ CC k,l (V ) then

(δ 1 g) (s 1 ,••• ,s k+1 ),(t 1 ,••• ,t l ) = k+1 i=1 (-1) i+1 g (s 1 ,••• ,ŝ i ,••• ,s k+1 ),(t 1 ,••• ,t l )
where, as usual, the notation ŝi means that the corresponding argument is omitted. It is easy to see that δ 1 and δ 2 commute and that

δ = δ 1 δ 2 : CC k (V ) → CC k+1 (V )
is a coboundary, i.e. satisfy the equation δδ = 0. Moreover, if g ∈ CC k,l (V ) we have

(δg) (s 1 ,••• ,s k+1 ),(t 1 ,••• ,t l+1 ) = k+1 i=1 l+1 j=1 (-1) i+j g (s 1 ,••• ,ŝ i ,••• ,s k+1 ),(t 1 ,••• , tj ,••• ,t j+1 )
Then (CC * (V ), δ) is a cochain complex. It will be important to note that its cohomology is not trivial and that it will play a rôle in our subsequent results.

Cohomology of (CC * , δ)

The complex (CC * (V ), δ) is the diagonal of the following commutative diagram

CC 1,1 (V ) δ 1 ----→ CC 2,1 (V ) δ 1 ----→ CC 3,1 (V ) δ 1 ----→ • • • δ 2   δ 2   δ 2   CC 1,2 (V ) δ 1 ----→ CC 2,2 (V ) δ 1 ----→ CC 3,2 (V ) δ 1 ----→ • • • δ 2   δ 2   δ 2   CC 1,3 (V ) δ 1 ----→ CC 2,3 (V ) δ 1 ----→ CC 3,3 (V ) δ 1 ----→ • • • δ 2   δ 2   δ 2   (2.26)
We are mainly interested in the first cohomology group

H 1 (CC, δ) = ZCC 1 (V ) BCC 1 (V )
where as before we denote

ZCC k (V ) = Kerδ| CC k (V ) and BCC k (V ) = Imδ| CC k-1 (V )
, the spaces of kbicocycles and k -1-bicoboundaries, respectively.

To compute the cohomology consider applications

σ 1 : CC k,l (V ) → CC k-1,l (V ) (for k ≥ 1) and σ 2 : CC k,l (V ) → CC k,l-1 (V ) (for l ≥ 1)
which fix the first argument on each direction to the (arbitrary) value 0. For example:

(σ 1 g) (s 1 ,...,s k-1 )(t 1 ,...,t l ) = g (0,s 1 ,...,s k-1 )(t 1 ,...,t l )

and a similar equation for σ 2 . Then we have the homotopy formulas

σ i δ i -δ i σ i = 1, for i=1,2
which are at the origin of the exactness of the one-dimensional complexes forming the rows and the columns of the diagram (2.26

). Let k ≥ 1. Take a ∈ ZCC k (V ) and let b = a -σ 1 δ 1 a -σ 2 δ 2 a
and, using the homotopy formulas, verify that

δ 1 b = δ 1 a -δ 1 a -δ 1 σ 2 δ 2 a = -σ 2 δa = 0 since δ 1 commutes with σ 2 . Similarly δ 2 b = 0. Then b ∈ Kerδ 1 ∩ Kerδ 2 which means that we can write b = δ 1 s 1 b = δ 1 σ 1 δ 2 σ 2 b
but since operators with different indexes commutes we can always rewrite this as

b = δ 1 δ 2 σ 1 σ 2 b = δσ 1 σ 2 b so that b ∈ BCC k (V ). Next, note that σ 1 δ 1 a ∈ Kerδ 2 , since δ 2 σ 1 δ 1 a = σ 1 δa = 0 so σ 1 δ 1 a = δ 2 σ 2 σ 1 δ 1 a.
Then for any a ∈ ZCC k (V ) we have the decomposition

a = δq + δ 1 σδ 2 a + δ 2 σδ 1 a (2.27)
for some q ∈ CC k-1 (V ) where we let σ = σ 1 σ 2 = σ 2 σ 1 .

Computations in CC * , *

For a ∈ CC n,m , b ∈ CC k,l we can define the (noncommutative, associative) product ab ∈ CC n+k-1,m+l-1 as ab (s 1 ,...,s n+k-1 )(t 1 ,...,t m+l-1 ) = a (s 1 ,...,sn)(t 1 ,...,tm) b (sn,...,s n+k-1 )(tm,...,t l+m-1 ) .

For example for a ∈ CC 2,1 , b ∈ CC 1,2 we have (ab

) (s 1 ,s 2 )(t 1 ,t 2 ) = a (s 1 ,s 2 )t 1 b s 2 (t 1 ,t 2 )
. This definition is suited to work well with the action of δ 1 , δ 2 , for example we have that, if a, b ∈ CC 1, * :

δ 1 (aδ 1 b) = δ 1 aδ 1 b, δ 1 (δ 1 ba) = -δ 1 bδ 1 a If a, b ∈ CC 1 : δ 2 (aδ 1 b) = δ 2 aδ 1 b + aδb, δ(δ 1 aδ 2 b) = δ 1 ((δ 2 δ 1 a)δ 2 b) + δ 1 a(δ 2 δ 2 b)) = δ 1 (δaδ 2 b) = -δaδb and δ(δ 2 bδ 1 a) = -δbδa, δ(aδb) = δ(δab) = δaδb
as can be easily checked by a direct computation. In the two parameters setting we will improve our algebraic structure by adding a new type of product for f ∈ CC m,n and g ∈ CC m,l we define

f • 1 g ∈ CC m,n+l by f • 1 g (s 1 s 2 ...sm)(t 1 t 2 ...t n+l-1 ) = f (s 1 s 2 ...sm)(t 1 t 2 ...tn) g (s 1 s 2 ...sn)(tn,t n+1 ...t n+l-1 )
and an analogue definition in the second direction .

For a two-dimensional quantity like the basic integral in eq.(2.22) we can write down the following relation

(s 2 ,t 2 ) (s 1 ,t 1 ) (s,t) (s 1 ,t 1 ) df (u, v) dg(s, t) = (s 2 ,t 2 ) (s 1 ,t 1 ) [f (s, t) -f (s 1 , t) -f (s, t 1 ) + f (s 1 , t 1 )]dg(s, t) = (s 2 ,t 2 ) (s 1 ,t 1 ) f (s, t)dg(s, t) + f (s 1 , t 1 )(δg)(s 1 , t 1 , s 2 , t 2 ) - t 2 t 1 f (s 1 , t)d 2 [g(s 2 , t) -g(s 1 , t)] - s 2 s 1 f (s, t 1 )d 1 [g(s, t 2 ) -g(s, t 1 )]
(2.28) which will play the same rôle as eq. (2.11) in the one-dimensional setting.

As an example of the formalism set up up to now we can consider the decomposition of eq. (2.28) for the (two-dimensional) iterated integral df dg of two smooth elements f, g ∈ CC 1 . In compact notation it reads:

f dg = -f δg + f d 1 δ 2 g + f d 2 δ 1 g + df dg
where we understand the integrals as functions of both the extremes of integration. Note that

δ df dg = δ(f δg) = δf δg so f dg -f d 1 δ 2 g -f d 2 δ 1 g ∈ ker δ. (2.29)
Actually the three factors in eq. ( 2.29) corresponds exactly to the decomposition (2.27) since

f dg = δ * , * f dg, f d 1 δ 2 g = δ 1 * f d 1 δ 2 g, f d 2 δ 1 g = δ 2 * f d 2 δ 1 g
where the star in the integral sign denote that the lower integration point has been fixed arbitrarily (e.g. to 0 ∈ [0, T ]).

Another relevant remark is to note that the antisymmetric element

ω a = δ 1 f δ 2 g -δ 2 f δ 1 g satisfy δω a = 0. Indeed δ 1 ω a = -δ 1 f δg -δf δ 1 g, δω a = -δf δg + δf δg = 0
according to the rules established above. For the symmetric counterpart In what follows it will be useful to introduce a one-dimensional splitting map S which sends products

ω s = δ 1 f δ 2 g + δ 2 f δ 1 g we have δ 1 ω s = -δ 1 f δg + δf δ 1 g, δω s = -δf δg -δf δg = -2δf δg
ab ∈ C 2 (V ) for a ∈ C 1 (V ) and b ∈ C 1 (V ) to the elementary tensor S(ab) = a⊗b ∈ C 1 (V ) V ⊗ C 1 (V )
where the tensor product is over the algebra V . The map is the extended by linearity to the subspace M 2 of C 2 generated by the linear combinations of products of two elements of C 1 . Elements of C 1 (V ) V ⊗ C 1 (V ) are just functions (t, u, v, s) → c tuvs of four arguments which are 1-increments in the couple (t, u) and in the couple (v, s) but which may be non-zero for u = v. The multiplication map µ :

C 1 (V ) V ⊗ C 1 (V ) → C 2 (V ) just sends each c to the 2-increment (t, u, s) → a tuus and is the inverse of S: µ • S(a) = a for any a ∈ M 2 . We will denote S 1 : CC 2,k (V ) → C 1 (C k (V )) C k (V ) ⊗ 1 C 1 (C k (V )) and S 2 : CC k,2 (V ) → C 1 (C k (V )) C k (V ) ⊗ 2 C 1 (C k (V )
) the splitting maps according to the first or the second direction. These are understood according to the above isomorphism

C k,m (V ) ≃ C k (C m (V )) ≃ C m (C k (V )
) and the index 1, 2 on the tensor product remember in which of the two directions the splitting has taken place.

Abstract integration in CC *

From now on we assume that V is a Banach space with norm | • |. When they appears tensor product will be understood according to the projective topology.

Let us introduce the following norms, for any g ∈ CC 2 (V )

g z 1 ,z 2 := sup s,t∈[0,T ] 2 |g (s 1 ,t 1 )(s 2 ,t 2 ) | |s 1 -t 1 | z 1 |s 2 -t 2 | z 2 (2.30)
and for h ∈ CC 3 (V )

h γ 1 ,γ 2 ,ρ 1 ,ρ 2 := sup s,u,t∈[0,T ] 2 |h (s 1 ,u 1 ,t 1 )(s 2 ,u 2 ,t 2 ) | i=1,2 |s i -u i | γ i |u i -t i | ρ i and h z 1 ,z 2 := inf i h i γ 1,i ,γ 2,i ,z 1 -γ 1,i ,z 2 -γ 2,i h = i h i , γ j,i ∈ (0, z i ), j = 1, 2
and the corresponding subspaces

CC z 1 ,z 2 2 (V ), CC γ 1 ,γ 2 ,ρ 1 ,ρ 2 3 (V ) and CC z 1 ,z 2 3 (V ). Moreover we say that f ∈ CC ρ 1 ,ρ 2 1 if N ρ 1 ,ρ 2 (f ) = ||δf || ρ 1 ,ρ 2 + ||δ 1 f || ρ 1 ,0 + ||δ 2 f || 0,ρ 2 + ||f || ∞ < +∞ (2.31)
with

||δ 1 f || ρ 1 ,0 = sup (s 1 ,s 2 ,t 1 )∈[0,T ] 3 |δ 1 f s 1 s 2 t 1 | |s 2 -s 1 | ρ 1
and similar definition in the second direction. The main feature of the space

CC z 1 ,z 2 2 is that CC z 1 ,z 2 2 ∩ ker δ 1 = {0} if z 1 > 1 and CC z 1 ,z 2 2 ∩ ker δ 2 = {0} if z 2 > 1. This implies that the equation δa = 0 has only a trivial solution a = 0 if we require a ∈ CC z 1 ,z 2 1 with z 1 , z 2 > 1. Let CC 1+ i (V ) = ∪ z 1 >1,z 2 >1 CC z 1 ,z 2 i (V ), i = 1, 2. Note that we have the isomorphism CC z 1 ,z 2 a,b (V ) ≃ C z 1 a (C z 2 b (V )) ≃ C z 2 b (C z 1 a (V )) for a, b = 0, 1, 2 and z 1 , z 2 ≥ 0.
Before stating the main result of this section we introduce two versions of the one-dimensional Λ map of Prop. 2.2.1, acting on the two different coordinates.

Lemma 2.3.1. Λ 1 : B 2 CC w 1 ,z 2 3,a (V ) → CC w 1 ,z 2 2,a (V ) for a = 1, 2, 3 with w 1 > 1 such that δ 1 Λ 1 = 1 and Λ 1 h z 1 ,w 2 ≤ C z 1 h z 1 ,w 2 (2.32)
and an analogous bound for Λ 2 .

Proof.

If we fix s 2 , u 2 , t 2 ∈ [0, T ] we can consider h s 2 u 2 t 2 ∈ C 2 (V ) such that (s 1 , u 1 , t 1 ) → h s 2 ,u 2 ,t 2 s 1 ,u 1 ,t 1 = h (s 2 ,u 2 ,t 2 ) (s 1 ,u 1 ,t 1 )
and note that h

s 2 u 2 t 2 ∈ BC z 1 2 (V ) since δh s 1 u 1 t 1 = 0 so that it is in the range of the one-dimensional Λ of Prop. 2.2.1 and |(Λh s 2 ,u 2 ,t 2 ) s 1 t 1 | ≤ C z 1 h s 2 ,u 2 ,t 2 z 1 |s 1 -t 1 | z 1 . (2.33) Then define Λ 1 as (Λ 1 h) (t 1 ,s 1 ),(t 2 ,u 2 ,s 2 ) := (Λh s 2 ,u 2 ,t 2 ) s 1 t 1
and note that the bound (2.33) implies eq. (2.32). Proceeding similarly one can prove a similar statement about Λ 2 .

Then it holds the analogous of the one-dimensional result:

Proposition 2.3.2. There exists a unique map Λ :

BCC 1+ 2 (V ) → CC 1+ 1 (V ) such that δΛ = 1. Moreover if z 1 , z 2 > 1, h ∈ BCC z 1 ,z 2 2 (V ) then Λh z 1 ,z 2 ≤ 1 2 z 1 -2 1 2 z 2 -2 h z 1 ,z 2 . Proof. Since h ∈ Imgδ we have δ 1 h = δ 2 h = 0. Then let Λh = Λ 1 Λ 2 h which is meaningful since the δ 1 Λ 2 h = Λ 2 δ 1 h = 0
(by linearity) and the requirement on the regularity is satisfied. Then

δΛh = δ 2 δ 1 Λ 1 Λ 2 h = δ 2 Λ 2 h = h and Λh z 1 ,z 2 = Λ 1 Λ 2 h z 1 ,z 2 ≤ C z 1 Λ 2 h z 1 ,z 2 ≤ C z 1 C z 2 h z 1 ,z 2 .
Uniqueness depends on the fact that z 1 , z 2 > 1. Using the uniqueness it is easy to deduce that Λ = Λ 2 Λ 1 , i.e. the one-dimensional maps commute (when they can be both applied).

We can already state an interesting result about integration of "small" biincrements.

Corollary 2.3.3 (2d integration). Let a ∈ CC 2,2 (V ) such that δ 1 a ∈ CC z 1 , * 3,2 , δ 2 a ∈ CC * ,z 2 2,3 , δa ∈ CC z 1 ,z 2 2,2 with z 1 , z 1 > 1. There exists f ∈ CC 1,1 (V ) such that δf = (1 -Λ 1 δ 1 )(1 -Λ 2 δ 2 )a and lim |Π|→0 i,j a (t 1 i+1 ,t 1 i )(t 2 j+1 ,t 2 j ) = (δf ) (t 1 ,s 1 ),(t 2 ,s 2 )
where the limit is taken over partitions

Π = {(t 1 i , t 2 j ) i,j } of the square [t 1 , t 2 ] × [s 1 , s 2
] into boxes whose maximum size |Π| goes to zero.

Proof. The required conditions on a ensure that the 1-biincrement

h = (1 -Λ 1 δ 1 )(1 -Λ 2 δ 2 )a = a -Λ 1 δ 1 a -Λ 2 δ 2 a + Λδa
is well defined. By direct computation we have that

δ 1 h = δ 1 (1 -Λ 1 δ 1 )(1 -Λ 2 δ 2 )a = (δ 1 -δ 1 )(1 -Λ 2 δ 2 )a = 0
and δ 2 h = 0. So h must be in the image of δ, i.e. there exists f such that h = δf . This proves the first claim.

To prove the convergence of the sums consider the above decomposition

a = δf + Λ 2 δ 2 a + Λ 1 δ 1 a -Λδa
written as a = δf + r 1 + r 2 + r where

r 1 = (1 -Λ 1 δ 1 )Λ 2 δ 2 a, r 2 = (1 -Λ 2 δ 2 )Λ 1 δ 1 a r = Λδa. Note that r 1 ∈ CC * ,z 2 2,2 , δ 1 r 1 = 0 and r 2 ∈ CC z 1 , * 2,2 and δ 2 r 2 = 0.
Then let

S Π = i,j a (t 1 i+1 ,t 1 i )(t 2 j+1 ,t 2 j ) = i,j (δf ) (t 1 i+1 ,t 1 i )(t 2 j+1 ,t 2 j ) + i,j (r 1 ) (t 1 i+1 ,t 1 i )(t 2 j+1 ,t 2 j ) + i,j (r 2 ) (t 1 i+1 ,t 1 i )(t 2 j+1 ,t 2 j ) + i,j (r) (t 1 i+1 ,t 1 i )(t 2 j+1 ,t 2 j )
and note that, using the fact that δf is an exact biincrement

i,j (δf ) (t 1 i+1 ,t 1 i )(t 2 j+1 ,t 2 j ) = (δf ) (t 1 ,s 1 )(t 2 ,s 2 ) and i,j (r 1 ) (t 1 i+1 ,t 1 i )(t 2 j+1 ,t 2 j ) = j (r 1 ) (t 1 ,s 1 )(t 2 j+1 ,t 2 j )
since δ 1 r 1 = 0 (i.e. r 1 is an exact increment in the direction 1). In the same way

i,j (r 2 ) (t 1 i+1 ,t 1 i )(t 2 j+1 ,t 2 j ) = i (r 2 ) (t 1 i+1 ,t 1 i )(t 2 ,s 2 ) Then j (r 1 ) (t 1 ,s 1 )(t 2 j+1 ,t 2 j ) ≤ r 1 j |t 2 j+1 -t 2 j | z 2 → 0 and i (r 2 ) (t 1 i+1 ,t 1 i )(t 2 ,s 2 ) ≤ r 2 i |t 1 i+1 -t 1 i | z 1 → 0 and finally i,j (r) (t 1 i+1 ,t 1 i )(t 2 j+1 ,t 2 j ) ≤ r i,j |t 1 i+1 -t 1 i | z 1 |t 2 j+1 -t 2 j | z 2 → 0
as |Π| → 0 which proves our claim.

Two-dimensional Young theory

Proposition

2.4.1. Let f ∈ CC γ 1 ,γ 2 1,1 , g ∈ CC ρ 1 ,ρ 2 1,1 with γ 1 + ρ 1 = z 1 > 1, γ 2 + ρ 2 = z 2 > 1. Then δf δg ∈ CC z 1 ,z 2 2
∩ Img δ and the integral f dg can be defined as

f dg = (1 -Λ 1 δ 1 )(1 -Λ 2 δ 2 )(f δg) = -f δg + Λ(δf δg) + f d 1 δ 2 g + f d 2 δ 1 g (2.34)
where f d 1 δ 2 g, f d 2 δ 1 g are standard Young integrals. Moreover we can define also the integral

d 1 f d 2 g as d 1 f d 2 g = (1 -Λ 1 δ 1 )(1 -Λ 2 δ 2 )(δ 1 f δ 2 g). (2.35)
and for ρ 1 , ρ 2 > 1/2 we can define

f d 1 gd 2 g = (1 -Λ 1 δ 1 )(1 -Λ 2 δ 2 )(f δ 1 gδ 2 g) (2.36) Corollary 2.4.2.
Under the hypothesis of the previous proposition, the two-dimensional sums of the increments f δg converge:

lim |Πz,w|→0 i,j (f δg) x i x i+1 ;y j y j+1 = f dg z,w . (2.37)
where the partition Π z,w is taken on the square (z, w),

z i ∈ R 2 .
Proposition 2.4.3. Under the assumption of the Proposition (2.4.1) we have that:

f d 1 gd 2 g = (1 -Λ 1 δ 1 )(1 -Λ 2 δ 2 )(f δ 2 gδ 1 g) = (1 -Λ 1 δ 1 )(1 -Λ 2 δ 2 )(f δ 1 g • δ 2 g) (2.38)
where (δ

1 g • δ 2 g) s 1 s 2 t 1 t 2 = δ 1 g s 1 s 2 t 1 δ 2 g s 1 t 1 t 2 Proof. Let a = f δ 2 g • δ 1 g. By a simple computation we have that δ 1 a ∈ CC γ 1 +ρ 1 , * 3,2 , δ 2 a ∈ CC * ,γ 2 ,ρ 2 2,3
and

δa ∈ CC γ 1 +ρ 1 ,γ 2 +ρ 2 3,3
then the Corollary (2.3.3) gives

(1 -Λ 1 δ 1 )(1 -Λ 2 δ 2 )(f δ 2 g • δ 1 g) s 1 s 2 t 1 t 2 = lim |Π|→0 Π f s i t j δ 2 g s i t j t j+1 δ 1 g s i s i+1 t j = lim |Π|→0 Π f s i t j δ 1 g s i s i+1 t j δ 2 g s i+1 t j t j+1 -f s i t j δ 1 g s i s i+1 t j δg s i s i+1 t j t j+1 (2.39) 
where 

Π := {(s i , t j )} i,j is a partition of [s 1 , s 2 ]×[t 1 ,
f s i t j δ 1 g s i s i+1 t j δ 2 g s i+1 t j t j+1 = ( f d 1 gd 2 g) s 1 s 2 t 1 t 2
and then the one dimensional Young theory of integration gives lim

|Π 2 |→0 Π 2 f s i t j δ 1 g s i s i+1 t j δg s i s i+1 t j t j+1 = t 2 t 1 f s i t δ 1 g s i s i+1 t d t δ 1 g s i s i+1 t
where

t 2 t 1 f s i t δ 1 g s i s i+1 t d t δ 1 g s i s i+1 t (s i+1 -s i ) 2ρ 1 (t 2 -t 1 ) ρ 2 . Finally using the fact that ρ 1 , ρ 2 > 1/2 gives: lim |Π 1 |→0 lim |Π 2 |→0 |Π| f s i t j δ 1 g s i s i+1 t j δg s i s i+1 t j t j+1 = 0
Putting all these last equation together give us the second line of our proposition, the first part is given by the same argument.

Proposition 2.4.4. Let x ∈ CC α,β 1,1 and ϕ ∈ C 4 (R) then for α, β > 1/2 the following change of variable formula :

δϕ(x) = ϕ ′ (x)dx + ϕ ′′ (x)d 1 xd 2 x hold. Proof. Let Π 1 = (s i ) i a partition of [s 1 , s 2 ] and Π 2 = (t j ) j of [t 1 , t 2 ] then δϕ(x) s 1 s 2 t 1 t 2 = Π 1 Π 2 δϕ(x) s i s i+1 t j t j+1 = Π 1 Π 2 δ 2 1 ϕ ′ (x)d 1 x s i s i+1 t j t j+1 = Π 1 Π 2 s i+1 s i δ 2 ϕ ′ (x) st j t j+1 d s x st j+1 + s i+1 s i ϕ ′ (x st j )d s δ 2 x st j t j+1 = Π 1 Π 2 a ij + b ij
where we have used the one dimensional change of variable formula for the Young integral. Now let us treat the first term of our sum

a ij = s i+1 s i δ 2 ϕ ′ (x) st j t j+1 d s x st j+1 = δ 2 ϕ ′ (x) s i t j t j+1 δ 1 x s i s i+1 t j+1 + Λ 1 (δϕ ′ (x)δ 1 x) s i s i+1 t j t j+1 = t j+1 t j ϕ ′′ (x s i t )d t x s i t δ 1 x s i s i+1 t j+1 + Λ 2 δ 2 (1 -Λ 1 δ 1 )(δ 2 ϕ ′ (x)δ 1 x) s i s i+1 t j t j+1 -Λδ(δ 2 ϕ ′ (x)δ 1 x) s i s i+1 t j t j+1
Is not difficult to see that

lim |Π|→0 Π 1 Π 2 Λ 2 δ 2 (1 -Λ 1 δ 1 )(δ 2 ϕ ′ (x)δ 1 x) s i s i+1 t j t j+1 = 0 (2.40)
and lim

|Π|→0 Π 1 Π 2 Λδ(δ 2 ϕ ′ (x)δ 1 x) s i s i+1 t j t j+1 = 0 (2.41)
then is remind to treat the term

t j+1 t j ϕ ′′ (x s i t )d t x s i t δ 1 x s i s i+1 t j+1
and for that we have the following expansion :

t j+1 t j ϕ ′′ (x s i t )d t x s i t δ 1 x s i s i+1 t j+1 = ϕ ′′ (x s i t j )δ 2 x s i t j t j+1 δ 1 x s i s i+1 t j + r ♭ s i t j t j+1 δ 1 x s i s i+1 t j (2.42)
where

r ♭ = δ 2 ϕ ′ (x) -ϕ ′′ (x)δ 2 x ∈ CC * ,2β 1,2 such that δ 1 r ♭ ∈ CC α,2β 2 
,2 which gives :

lim |Π 1 |→0 Π 1 r ♭ s i t j t j+1 δ 1 x s i s i+1 t j = s 2 s 1 r ♭ st j t j+1 d s x st j+1
where the limit satisfy the upper bound |

s 2 s 1 r ♭ st j t j+1 d s x st j+1 | α,β (s 2 -s 1 ) α (t 2 -t 1 )
2β these allow us to conclude that : lim

|Π 2 |→0 lim |Π 1 |→0 Π 1 Π 2 r ♭ s i t j t j+1 δ 1 x s i s i+1 t j = 0. (2.43)
Then putting together equation (2.40) , (2.41) , (2.42) and (2.43) we obtain that :

ϕ ′′ (x)d 1 xd 2 x s 1 s 2 t 1 t 2 = lim |Π 2 |→0 lim |Π 1 |→0 Π 1 Π 2 a ij the second sum Π 1 Π 2 b ij is more simple to compute indeed : Π 1 Π 2 b ij = Π 1 Π 2 s i+1 s i ϕ ′ (x st j )d s δ 2 x st j t j+1 = Π 1 Π 2 ϕ ′ (x s i t j )δx s i s i+1 t j t j+1 + Λ 2 δ 2 (1 -Λ 1 δ1)(ϕ ′ (x)δx) -Λδ(ϕ ′ (x)δx)
and then

lim |Π|→0 Π 1 Π 2 b ij = lim |Π|→0 Π 1 Π 2 ϕ ′ (x s i t j )δx s i s i+1 t j t j+1 = ϕ ′ (x)dx s 1 s 2 t 1 t 2
and this gives the needed result.

We have also this immediate generalization for the Young integral.

Proposition 2.4.5. Let y ∈ CC γ 1 ,γ 2 1,1 ,x ∈ CC ρ 1 ,ρ 2 1,1 and z ∈ CC β 1 ,β 2 1,1 such that γ i + ρ i > 1,β i + γ i > 1 and β i + ρ i > 1 for i = 1, 2 then we can define yd 1 xd 2 z = (1 -Λ 1 δ 1 )(1 -Λ 2 δ 2 )(yδ 1 xδ 2 z) yd 2 zd 1 x = (1 -Λ 1 δ 1 )(1 -Λ 2 δ 2 )(yδ 2 zδ 1 x) and yd 1 x • d 2 z = (1 -Λ 1 δ 1 )(1 -Λ 2 δ 2 )(yδ 1 x • δ 2 z)
and we have the following identity

yd 1 xd 2 z = yd 2 zd 1 x = yd 1 x • d 2 z
Moreover we have the following Riemann sums representation for our integrals

s 2 s 1 t 2 t 1 y st d s x st d t z st = lim |π|→0 i,j y s i t j δ 1 x s i s i+1 t j δ 2 z s i+1 t j t j+1 = lim |π|→0 i,j y s i t j δ 1 x s i s i+1 t j δ 2 z s i t j t j+1 = lim |π|→0 i,j y s i t j δ 2 z s i t j t j+1 δ 1 x s i s i+1 t j+1 Proof. Let a 1 = yδ 1 xδ 2 z, a 2 = yδ 2 zδ 1 x and a 3 = yδ 1 x • δ 2 z then by a simple computation we have that δ 1 a 1 = -δ 1 yδ 1 xδ 2 z -yδ 1 xδz ∈ CC min(γ 1 +ρ 1 ,ρ 1 +β 1 ),β 2 3,2 δ 2 a 1 = -δ 2 yδ 1 xδ 2 z -yδxδ 2 z ∈ CC ρ 1 ,min(γ 2 +β 2 ,ρ 2 +β 2 ) 2,3
and

δa 1 = δyδ 1 xδ 2 z + δ 1 yδxδ 2 z + δ 2 yδ 1 xδz + yδxδz ∈ CC min(γ 1 +ρ 1 ,ρ 1 +β 1 ),min(γ 2 +β 2 ,ρ 2 +β 2 ) 3,3
then a 1 satisfies the assumption of the Corollary (2.3.3) which also true for a 2 and a 3 by a similar computation. Then the integral yd 1 xd 2 z, yd 2 zd 1 x and yd 1 x • d 2 z are well defined and we have that

( yd 2 zd 1 x) s 1 s 2 t 1 t 2 = lim |π|→0 i,j y s i t j δ 1 x s i s i+1 t j δ 2 z s i+1 t j t j+1 ( yd 2 zd 1 x) s 1 s 2 t 1 t 2 = lim |π|→0 i,j y s i t j δ 2 z s i t j t j+1 δ 1 x s i s i+1 t j+1
and

( yd 1 x • d 2 z) s 1 s 2 t 1 t 2 = lim |π|→0 i,j y s i t j δ 1 x s i s i+1 t j δ 2 z s i t j t j+1
To prove that this last integral coincide is suffices to show that the difference between the Riemann sum vanish when the mesh of the partition go to zero. In fact we have that

lim |π 2 |→0 i,j (a 1 -a 3 ) s i s i+1 t j t j+1 = lim |π 2 |→0 i,j y s i t j δ 1 x s i s i+1 t j δz s i s i+1 t j t j+1 = i t 2 t 1 y s i t δ 1 x s i s i+1 t d t δ 1 z s i s i+1 t (2.44)
Using the fact that |

t 2 t 1 y s i t δ 1 x s i s i+1 t d t z s i s i+1 t | (s i+1 -s i ) ρ 1 +β 1 we obtain that : lim |π 1 |→0 lim |π 2 |→0 i,j (a 1 -a 3 ) s i s i+1 t j t j+1 = 0
which gives the following equality

yd 1 xd 2 z = yd 1 x • d 2 z.
The other identity is obtained by exactly the same computations.

Analysis of a two-parameter integral

Following the informal approach of sec. 2.2.1 we would like to get inspired for a general construction from the analysis of a concrete two-dimensional integral. Then consider ϕ(x)dx for a smooth surface x : R 2 → R and a smooth function ϕ : R → R. The decomposition of eq.(2.28) gives

ϕ(x)dx = -ϕ(x) dx + 1 ϕ(x) 2 dx + 2 ϕ(x) 1 dx + dϕ(x)dx
where, for example, we used the notation 1 ϕ(x) 2 dx to mean

1 ϕ(x) 2 dx (s 1 ,s 2 ;t 1 ,t 2 ) := t 1 s 1 ϕ(x u 1 ,s 2 ) t 2 s 2 ∂ 1 ∂ 2 x(u 1 , u 2 )du 1 du 2
and the others analogous expressions. This decomposition is at the origin of Prop.2.4.1 when the demanded regularity is satisfied since the iterated integral is given by the formula

dϕ(x)dx = -Λ [δϕ(x)δx] .
To proceed further we note that

dϕ(x) = ϕ ′ (x)dx + ϕ ′′ (x)(d 1 xd 2 x) (2.45) (recall that d = d 1 d 2 is not a derivation).
Take the first term in the r.h.s. and use again eq.(2.28) to write

ϕ ′ (x)dx = -ϕ ′ (x) dx + 1 ϕ ′ (x) 2 dx + 2 ϕ ′ (x) 1 dx + dϕ ′ (x)dx (2.46)
and a similar equation for the term

ϕ ′′ (x)d 1 xd 2 x. Then dϕ(x)dx = ϕ ′ (x)dxdx + ϕ ′′ (x)(d 1 xd 2 x)dx. (2.47) 
For simplicity we treat explicitly the first term in the r.h.s, the analysis of the second being similar. Using eq.(2.46) and the definition of iterated integral, we have

ϕ ′ (x)dxdx = -ϕ ′ (x) dxdx + 1 ϕ ′ (x) 2 dxdx + 2 ϕ ′ (x) 1 dxdx + dϕ ′ (x)dxdx (2.48)
This expression seems complicated, however it shows that, in order to control the l.h.s. we need two ingredients:

1) Being able to define essentially one-dimensional integrals like

1 ϕ(x) 2 dx, 1 ϕ ′ (x) 2 dxdx, 1 ϕ ′′ (x) 2 d 1 xd 2 dx, . . . (2.49)
2) Control the remainders given by the three-fold iterated integrals

R := dϕ ′ (x)dxdx R := dϕ ′′ (x)d 1 xd 2 xdx.

The boundary integrals

We call integrals like those appearing in eq.(2.49) boundary integrals to emphasize their onedimensional nature (which, we hope, will be clear from what follows). Their appearance is characteristic of the multidimensional setting and it is linked to the cohomological structure of the complex (CC * , δ) studied in Sec. 2.3. Take the first of them and expand it according to the (one-dimensional) eq.(2.11):

1 ϕ ′ (x) 2 dxdx = ϕ ′ (x) dxdx + 1 d 1 ϕ ′ (x) 2 dxdx (2.50)
Next, apply δ 1 to the second term in the r.h.s.:

-

δ 1 1 d 1 ϕ ′ (x) 2 dxdx = 1 d 1 ϕ ′ (x) 1 2 dxdx + 1 d 1 ϕ ′ (x) 2 dx 1 dx (2.51)
The first term in the r.h.s. is simple since it is equivalent to δ 1 ϕ ′ (x) dxdx, and can be controlled with some regularity of ϕ ′ and the a-priori knowledge of dxdx. The second needs to be further expanded as

1 d 1 ϕ ′ (x) 2 dx 1 dx = 1 ϕ ′′ (x)d 1 x 2 dx 1 dx = ϕ ′′ (x) 1 d 1 x 2 dx 1 dx + 1 d 1 ϕ ′′ (x)d 1 x 2 dx 1 dx (2.52)
Again, the first term in the r.h.s do not pose any further problem so we continue to study only the last one. Set

A 1 := 1 d 1 ϕ ′′ (x)d 1 x 2 dx 1 dx
We apply to A 1 the splitting operator S 1 obtaining

S 1 A 1 = 1 d 1 ϕ ′′ (x)d 1 x 2 dx ⊗ 1 1 dx (2.53)
Let us clarify the meaning of this last term: in the first direction is the tensor product of two 1increments, while in the second direction is a 1-increment. Taking four points (u 1 , u 2 , u 3 , u 4 ) in direction 1 and two (v 1 , v 2 ) in direction 2, its value is given by the expression

u 4 u 3 v 2 v 1 u 2 u 1 v v 1 u u 1 a u 1 d b ϕ"(x bv 1 )d a x av 1 d uv x uv d st x st
As the reader can easily check, by setting u 2 = u 3 we reobtain A 1 . Denote with δ 1 ⊗ 1 1 the action of the δ 1 operator on the first factor of an element of C 1 ⊗ C 1 , where again the 1 as index of the tensor operation denote that it acts on tensor products according to the first direction. Apply δ 1 ⊗ 1 1 to the r.h.s of eq. (2.53) last term in the r.h.s to obtain

-(δ 1 ⊗ 1 1) 1 d 1 ϕ ′′ (x)d 1 x 2 dx ⊗ 1 1 dx = -δ 1 1 d 1 ϕ ′′ (x)d 1 x 2 dx ⊗ 1 1 dx = 1 d 1 ϕ ′′ (x) 1 d 1 x 2 dx ⊗ 1 1 dx + 1 d 1 ϕ ′′ (x)d 1 x 1 2 dx ⊗ 1 1 dx Hence let AA 1 := 1 d 1 ϕ ′′ (x) 1 d 1 x 2 dx ⊗ 1 1 dx = δ 1 ϕ ′′ (x) 1 d 1 x 2 dx ⊗ 1 1
dx and (cfr. eq. (2.18))

AB 1 := 1 d 1 ϕ ′′ (x)d 1 x 1 2 dx ⊗ 1 1 dx = δ 1 ϕ ′′ (x) -ϕ ′′ (x)δ 1 x 1 2 dx ⊗ 1 1 dx
which depend only on the function ϕ ′′ (x) and on the "splitted" iterated integrals

1 d 1 x 2 dx ⊗ 1 1 dx, 1 2 dx ⊗ 1 1 dx
Since we are working under smoothness conditions is possible to recover A 1 by applying Λ 1 ⊗ 1 1:

A 1 = -(Λ 1 ⊗ 1 1)(AA 1 + AB 1 ). Moreover C 1 := 1 d 1 ϕ ′′ (x)d 1 x = ϕ ′′ (x) 1 d 1 x 2 dx 1 dx + µ 1 A 1
where recall that µ 1 is the multiplication in the first direction which is the inverse operation of the splitting S 1 . Then we can recover also the term 1 d 1 ϕ ′ (x) 2 dx 1 dx by eq.(2.50) and an application of Λ 1 . Finally we have obtained the following expression for the boundary term:

1 ϕ ′ (x) 2 dxdx = ϕ ′ (x) dxdx -Λ 1 δ 1 ϕ ′ (x) 1 2 dxdx + C 1
where the r.h.s. depends only on a finite number of iterated integrals of x.

The remainders R, R

The three-fold iterated integral dϕ ′ (x)dxdx will be analyzed in terms of its image under δ:

δ dϕ ′ (x)dxdx = dϕ ′ (x) dxdx + dϕ ′ (x)dx dx + dϕ ′ (x) 1 dx 2 dx + dϕ ′ (x) 2 dx 1 dx (2.54) 
The first term is readily controlled in the same spirit as above. Consider the fourth (the third is similar) which we will write as

dϕ ′ (x) 2 dx 1 dx = 1 d 1 [δ 2 ϕ ′ (x)] 2 dx 1 dx = 1 δ 2 [ϕ ′′ (x)d 1 x] 2 dx 1 dx = 1 δ 2 [ϕ ′′ (x)]d 1 x 2 dx 1 dx + 1 ϕ ′′ (x)d 1 δ 2 x 2 dx 1 dx = D 1 + E 1 (2.55) Expanding the integral of δ 2 [ϕ ′′ (x)]d 1 x we get D 1 = 1 δ 2 [ϕ ′′ (x)]d 1 x 2 dx 1 dx = δ 2 [ϕ ′′ (x)] 1 d 1 x 2 dx 1 dx + 1 d 1 δ 2 [ϕ ′′ (x)]d 1 x 2 dx 1 dx (2.56)
Again we apply (δ 1 ⊗ 1 1)S 1 to the second term:

-(δ 1 ⊗ 1 1)S 1 1 d 1 δ 2 [ϕ ′′ (x)]d 1 x 2 dx 1 dx = 1 d 1 δ 2 [ϕ ′′ (x)] 1 d 1 x 2 dx ⊗ 1 1 dx + 1 d 1 δ 2 [ϕ ′′ (x)]d 1 x 1 2 dx ⊗ 1 1 dx =: DA 1 + DB 1 (2.57)
From which we get:

D 1 = δ 2 [ϕ ′′ (x)] 1 d 1 x 2 dx 1 dx -µ 1 [Λ 1 ⊗ 1 1](DA 1 + DB 1 ) (2.58)
And in the same way:

E 1 = ϕ ′′ (x) 1 d 1 δ 2 x 2 dx 1 dx -µ 1 [Λ 1 ⊗ 1 1](EA 1 + EB 1 ) (2.59) 
with

EA 1 := δ 1 [ϕ ′′ (x)] 1 d 1 δ 2 x 2 dx ⊗ 1 1 dx
and

EB 1 := 1 d 1 ϕ ′′ (x)d 1 δ 2 x 1 2 dx ⊗ 1 1 dx.
Note that

F 1 := DB 1 + EB 1 = δ 2 1 d 1 ϕ ′′ (x)d 1 x 1 2 dx ⊗ 1 1 dx = δ 2 δ 1 ϕ ′ (x) -ϕ ′′ (x)δ 1 x 1 2 dx ⊗ 1 1 dx. (2.60) 
Together eq.(2.55), (2.60) (2.61) (2.60) imply the representation:

dϕ ′ (x) 2 dx 1 dx = δ 2 [ϕ ′′ (x)] 1 d 1 x 2 dx 1 dx + ϕ ′′ (x) 1 d 1 δ 2 x 2 dx 1 dx -µ 1 [Λ 1 ⊗ 1 1](DA 1 + EA 1 + F 1 ).
(2.61)

The only term, appearing in R which is left is the second term in eq.(2.54): dϕ ′ (x)dx dx. This term can be handled together a similar term appearing in the expansion of R which reads:

dϕ ′′ (x)d 1 xd 2 x dx
(all the other terms in R are handled as above). Indeed we have that the sum of dϕ ′ (x)dx and dϕ ′′ (x)d 1 xd 2 x which are nontrivial two-dimensional iterated integrals, appear in the expansion for δϕ(x):

δϕ(x) = -ϕ ′ (x) dx + 1 ϕ ′ (x) 2 dx + 2 ϕ ′ (x) 1 dx -ϕ ′′ (x) d 1 xd 2 x + 1 ϕ ′′ (x) 2 d 1 xd 2 x + 2 ϕ ′′ (x) 1 d 1 xd 2 x + dϕ ′ (x)dx + dϕ ′′ (x)d 1 xd 2 x (2.62)
In this expression all the terms, except the last two can be expressed, following the approach we used for the boundary integrals above, as functional of a small number of integrals of x.

Rough sheet

We have shown in this section how the 2-dimensional integral ϕ(x)dx admits to be expressed as a well behaved functional F of a family X of iterated integrals of x and of ϕ(x). This functional can then be extended to more irregular functions x, not necessarily smooth, in two ways: a) Algebraic approach. We are given a family X of biincrements which satisfy algebraic conditions analogous to that which allowed us to perform the computations in this section. In this case, the integral can be defined by the same functional F . The algebraic relations are then needed to show that such a definition is consistent with our notion of integral (e.g. that this integral is in the kernel of both δ 1 and δ 2 ). b) Geometric approach. We are able to show that, there exists a sequence of families X n obtained by iterated integrals over smooth 2-dimensional functions x n , which converges, under suitable topologies on the biincrements, to a limiting family X. Then by the continuity of the map F we are able to identify the limit of ϕ(x n )dx n and to consider it as an extension of the integral over smooth 2-parameter functions. This is analogous to the geometric theory of rough paths. Already in the one-dimensional theory the two approaches can give different notions of integrals.

Algebraic assumption and Boundary integrals Hypothesis 2.5.1. If a = 1, 2 then â = 2, 1. Assume that α, β > 1/3 . Now as in the one parameter case we assume the existence of some algebraic object

A x , A ω ∈ CC α,β 2,2 ; B xx 1 , B xω 1 ∈ CC 2α,β 2,2 ; B xx 2 , B xω 2 ∈ CC α,2β 2,2 C xx , C ωx , C xω , C ωω ∈ CC 2α,2β 1,1 ; D xx 1 , D ωx 1 , D ωω 1 ∈ (C α 2 ⊗ 1 C α 2 )(C 2β 1 ), D xx 2 , D ωx 2 , D ωω 2 ∈ (C β 2 ⊗ 2 C β 2 )(C 2α 1 ) E xxx 1 , E xωx 1 , E xxω 1 , E xωω 1 ∈ (C 2α 2 ⊗ 1 C α 1 )(C 2β 1 ); F xxx 1 , F xωx 1 , F xωω 1 , F xxω 1 ∈ (C 2α 2 ⊗ 1 C α 2 )(C 3β 1 ) E xxx 2 , E xωx 2 , E xxω 2 , E xωω 2 ∈ (C 2β 2 ⊗ 2 C β 1 )(C 2α 1 ); F xxx 2 , F xωx 2 , F xωω 2 , F xxω 2 ∈ (C 2β 2 ⊗ 2 C β 2 )(C 3α 1 ) satisfying the following equations 1. A x = δx , 2. δ a B xx a = (δ a x)A x , δ âB xx a = -µ âD xx â 3. δ a C xx = µ a D xx a 4. (1 ⊗ a δ a )D xx a = 0, δ âD xx a = A x ⊗ a A x , 5. (1 ⊗ a δ a )E xxx a = 0, (δ a ⊗ a 1)E xxx = δ a x ⊗ D xx a , δ âE xxx a = F xxx a + B xx a ⊗ a A x , 6. δ a A ω = 0 7. δ a B xω a = (δ a x)A ω , δ âB xω a = µ âD xω a 8. δ a C ωx = µ a D ωx a 9. (1 ⊗ a δ a )D ωx a = 0, δ âD ωx a = A ω ⊗ a A x 10. (1 ⊗ a δ a )E xωx a = 0, (δ a ⊗ 1)E xωx = δ a x ⊗ a D ωx a , δ âE xωx a = F xωx a + B xω a ⊗ a A ω 11. δ a C xω = µ a D xω a 12. (1 ⊗ a δ a )D xω a = 0, δ âD xω a = A x ⊗ a A ω , 13. (1 ⊗ a δ a )E xxω a = 0, (δ a ⊗ a 1)E xxω = δ a x ⊗ D xω a , δ âE xxω a = F xxω a + B xx a ⊗ a A ω , 14. δ a C ωω = µ a D ωω a 15. (1 ⊗ a δ a )D ωω a = 0, δ âD ωω a = A ω ⊗ a A ω , 16. (1 ⊗ a δ a )E xωω a = 0, (δ a ⊗ a 1)E xωω = δ a x ⊗ D ωω a , δ âE xωω a = F xωω a + B xω a ⊗ a A ω , Remark 2.5.2.
When x is a smooth sheet we can choose this algebraic object as the following iterated integral :

1. (A x ) s 1 s 2 t 1 t 2 = ( dx) s 1 s 2 t 1 t 2 = δx s 1 s 2 t 1 t 2 2. (A ω ) s 1 s 2 t 1 t 2 = ( dω) s 1 s 2 t 1 t 2 = s 2 s 1 t 2 t 1 d s x st d t x st 3. (B xx 1 ) s 1 s 2 t 1 t 2 = ( 1 d 1 x 2 dx) s 1 s 2 t 1 t 2 = s 2 s 1 t 2 t 1 δ 1 x s 1 st 1 d st x st 4. (B xω 1 ) s 1 s 2 t 1 t 2 = ( 1 d 1 x 2 dω) s 1 s 2 t 1 t 2 = s 2 s 1 t 2 t 1 δ 1 x s 1 st 1 d s x st d t x st 5. (C xx ) s 1 s 2 t 1 t 2 = ( dxdx) s 1 s 2 t 1 t 2 = (s 2 ,t 2 ) (s 1 ,t 1 ) (s,t) (s 1 ,t 1 ) d rr ′ x rr ′ d st x st 6. (C ωx ) s 1 s 2 t 1 t 2 = ( dωdx) s 1 s 2 t 1 t 2 = (s 2 ,t 2 ) (s 1 ,t 1 ) (s,t) (s 1 ,t 1 ) d r x rr ′ d r ′ x rr ′ d st x st 7. (D xx 1 ) s 1 s 2 s 3 s 4 t 1 t 2 = ( 2 1 dx ⊗ 1 1 dx) s 1 s 2 s 3 s 4 t 1 t 2 = (s 4 ,t 2 ) (s 3 ,t 1 ) (s 2 ,t) (s 1 ,t 1 ) d rr ′ x rr ′ d st x st 8. (E xxx 1 ) s 1 s 2 s 3 s 4 t 1 t 2 = ( 1 d 1 x 2 dx ⊗ 1 1 dx) s 1 s 2 s 3 s 4 t 1 t 2 = (s 4 ,t 2 ) (s 3 ,t 1 ) (s 2 ,t) (s 1 ,t 1 ) δ 1 x s 1 rt 1 d rr ′ x rr ′ d st x st 9. (F xxx 1 ) s 1 s 2 s 3 s 4 t 1 t 2 t 3 = ( dx 2 dx ⊗ 1 1 dx) s 1 s 2 s 3 s 4 t 1 t 2 t 3 = - (s 4 ,t 3 ) (s 3 ,t 2 ) ( (s 2 ,t) (s 1 ,t 2 ) ( (r,t 2 ) (s 1 ,t 1 ) d ab x ab )d rr ′ x rr ′ )d st x st
In this section we assume the previous hypothesis to be true and we will give a "reasonable" construction of the following boundary integrals :

a y â dx, a y â dxdx, a y â dω, a y
â dωdx, which allow us to construct the space of two parameters controlled sheet and integrate them. We begin by recalling the notion of a one dimensional controlled path which the space of the sheet y satisfying the following assumption :

δ a y = y xa δ a x + y ♯a , y xa ∈ CC α,β 1,1 , (y ♯1 , y ♯2 ) ∈ CC 2α,β 2,1 × CC α,2β 1,2
where x ∈ C α,β 1,1 , a ∈ {1, 2} and we denoted by Q α,β x this space. Now we will set out a permutation lemma that is useful to conduct the computation in the following.

Lemma 2.5.3. We have for h ∈ (C 2 ⊗ a C 2 )(C 2 ) the following identity:

δ a µ a h = µ a (δ a ⊗ a 1)h -µ a (1 ⊗ a δ a )h.
(2.63)

And then we have the following construction for the Boundary integral :

Proposition 2.5.4. Assume that the hypothesis 2.5.1 to be true, and let y ∈ Q α,β x . Then we define the boundary integral by :

1. a y â dx := yA x + y xa B xx a + Λ a [y ♯a A x + δ a y xa B xx a ], 2. a y â dxdx := yC xx + Λ a [δ a yC xx + y x µ a E xxx a + µ a (Λ a ⊗ a 1)(y ♯a D xx a + δ a y xa E xxx a )], 3. a y â dω := yA ω + y xa B xω a + Λ a [y ♯a A ω + y x B xω a ] 4. a y â dωdx := yC ωx + Λ a [δ a yC ωx + y x µ a E xωx a + µ a (Λ a ⊗ a 1)(y ♯a D ωx a + δ a y xa E xωx a )] 5. a y â dxdω := yC xω + Λ a [δ a yC xω + y x µ a E xxω a + µ a (Λ a ⊗ a 1)(y ♯a D xω a + δ a y xa E xxω a )] 6. a y â dωdω := yC ωω + Λ a [δ a yC ωω + y x µ a E xωω a + µ a (Λ a ⊗ a 1)(y ♯a D ωω a + δ a y xa E xωω a )]
Moreover all these formulas have meaning and when x is differentiable we can choose the rough sheet so that they coincide well with their definition in the Riemann-Stieltjes case, which justifies the notation.

Proof. We will only prove the first two formula, for the others we have identical proofs. Let now x a smooth sheet and y ∈ Q α,β x , then we have easily the following expansion

1 y 2 dx s 1 s 2 t 1 t 2 := (s 2 ,t 2 ) (s 1 ,t 1 ) y st 1 d st x st = s 2 s 1 y st 1 d 1 δ 2 x st 1 t 2 = y s 1 t 1 (A x ) s 1 s 2 t 1 t 2 + y x s 1 t 1 (B xx 1 ) s 1 s 2 t 1 t 2 + s 2 s 1 y ♯1 s 1 st 1 d s δ 2 x st 1 t 2 where A x = δx and (B xx 1 ) s 1 s 2 t 1 t 2 = s 2 s 1 t 2 t 1 δ 1 x s 1 st 1 d st x st . Now is easy to check that r s 1 s 2 t 1 t 2 := s 2 s 1 y ♯1 s 1 st 1 d s δ 2 x st 1 t 2 ∈ C 3α,β 2,2 and δ 1 r = y ♯1 δx + δ 1 y x 1 B xx 1 ∈ CC 3α,β 3,2
. So finally we obtain :

r = Λ 1 [y ♯1 δx + δ 1 y x 1 B xx 1 ]
and thus

1 y 2 dx := yA x + y x 1 B xx 1 + Λ 1 [y ♯1 A x + δ 1 y x 1 B xx 1 ]
Now we remark that this formula is still valid when x satisfy only the assumption (2.5.1). Now we will focus on the second equation which requires a different work. then a quick computation gives :

1 y 2 dxdx s 1 s 2 t 1 t 2 := (s 2 ,t 2 ) (s 1 ,t 1 ) (s,t) (s 1 ,t 1 )
y rt 1 d rr ′ x rr ′ d st x st = y s 1 t 1 (C xx ) s 1 s 2 t 1 t 2 + (s 2 ,t 2 ) (s 1 ,t 1 ) (s,t) (s 1 ,t 1 ) δ 1 y s 1 rt 1 d rr ′ x rr ′ d st x st
The first term of this last equation is well understood, we will focus on the second term denoted by H in the sequel. Now we observed that H ∈ CC 3α,2β 2,2

and then:

δ 1 H s 1 s 2 s 3 t 1 t 2 = δ 1 y s 1 s 2 t 1 C xx s 2 t 1 s 3 t 2 + y x s 1 t 1 (s 3 ,t 2 ) (s 2 ,t 1 ) (s 2 ,t) (s 1 ,t 1 ) δ 1 x s 1 rt 1 d rr ′ x rr ′ d st x st + (s 3 ,t) (s 2 ,t 1 ) (s 2 ,t) (s 1 ,t 1 ) y ♯1 s 1 rt 1 d rr ′ x rr ′ d st x st now if we put A s 1 s 2 s 3 t 1 t 2 := (s 3 ,t) (s 2 ,t 1 ) (s 2 ,t) (s 1 ,t 1 ) y ♯1 s 1 rt 1 d rr ′ x rr ′ d st x st
we obtain

(δ 1 ⊗ 1 1)S 1 (A 1 ) s 1 s 2 vs 3 s 4 t 1 t 2 = (s 4 ,t 2 ) (s 3 ,t 1 ) (v,t) (s 2 ,t 1 ) y ♯ s 1 rt 1 -y ♯1 s 2 rt 1 d rr ′ x rr ′ d st x st = y ♯1 s 1 s 2 t 1 (s 4 ,t 2 ) (s 3 ,t 1 ) (v,t) (s 2 ,t 1 ) d rr ′ x rr ′ d st x st + (s 4 ,t 2 ) (s 3 ,t 1 ) (v,t) (s 2 ,t 1 ) δ 1 y ♯1 s 1 s 2 rt 1 d rr ′ x rr ′ d st x st = y ♯1 s 1 s 2 t 1 (s 4 ,t 2 ) (s 3 ,t 1 ) (v,t) (s 2 ,t 1 ) d rr ′ x rr ′ d st x st + δ 1 y x s 1 s 2 t 1 (s 4 ,t 2 ) (s 3 ,t 1 ) (v,t) (s 2 ,t 1 ) δ 1 x s 2 rt 1 d rr ′ x rr ′ d st x st
Then if we recall that the two last iterated integrals are denoted respectively by D xx 1 and E xxx 1 we obtain:

S 1 A 1 = (Λ 1 ⊗ 1 1)[y ♯1 D xx 1 + δ 1 y x 1 E xxx 1 ] then H = Λ 1 [δ 1 yC xx + y x 1 µ 1 E xxx 1 + µ 1 (Λ 1 ⊗ 1 1)(y ♯1 D xx 1 + δ 1 y x 1 E xxx 1 )
] This last equation give us the second formula when x is a smooth sheet, in the general case when x satisfies only the Hypothesis 2.5.1. It's easy to see that all terms or we apply Λ 1 enjoy the regularity and thanks to the Lemma 2.5.3 it also satisfy the required algebraic conditions (i.e. :

δ 1 [yC xx + y x 1 µ 1 E xxx 1 + µ 1 (Λ 1 ⊗ 1 1)(y ♯1 D xx 1 + δ 1 y x 1 E xxx 1 )] = 0
) and this finishes the proof Controlled Sheet Definition 2.5.5. Let x ∈ CC 1,1 such that δx ∈ CC α,β 2,2 , and assume the algebraic hypothesis 2.5.1 to be true then we define the space of the two parameter controlled sheet

K α,β x by y ∈ K α,β x if : 1. δy = -y x A x -y ω A ω + a=1,2 ( a y x â dx + a y ω â dω) + y ♯ 2. y, y x , y ω ∈ Q α,β x Theorem 2.5.6. For α, β > 1/3, x ∈ CC 1,1 such that δx ∈ CC α,β
2,2 and assume that the hypothesis (2.5.1) is true then for y ∈ K α,β x we define the increment ydx ∈ CC α,β 2,2 and ydω ∈ CC α,β 2,2 by:

ydx := -yA x + y x C xx + y ω C ωx + a=1,2 a y â dx + a y x â dxdx + a y ω â dωdx + r ♭ where r ♭,ω = Λ   δyA x -δ   -y x C xx -y ω C ωx + a=1,2 ( a y x â dxdx + a y ω â dωdx     and ydω := -yA ω + y x C xω + y ω C ωω + a=1,2 a y â dω + a y x â dxdω + a y ω â dωdω + r ♭,ω with r ♭ = Λ   δyA ω -δ   -y x C xω -y ω C ωω + a=1,2 ( a y x â dxdω + a y ω â dωdω    
Theses two formula are well defined moreover if x is a smooth sheet then this two definition coincide with that given by the Riemann-Stieltjes theory of integration.

Proof. Let x a differentiable sheet then

ydx = -yδx + a=1,2 a y â dx + dydx.
Now using the fact that y ∈ K α,β

x we have

dydx = -y x C xx -y ω C ωx a=1,2 a y x â dxdx + a y ω â dωdx + y ♯ dx.
Finally if we remark that

y ♯ dx ∈ CC 3α,3β 2,2
we obtain

y ♯ dx := Λ   δ dydx -δ   -y x C xx -y ω C ωx a=1,2 ( a y x â dxdx + a y ω â dωdx)    
This give us the formula when x is smooth. Now we have to check that last formula have meaning in general case in other word we must show that we can apply Λ for r := δ dydxδ(-y x C xxy ω C ωx a=1,2 ( a y x â dxdx + a y ω â dωdx)) , for this we will make some preliminary computation.

δ dydx = δyδx δ (y x C xx ) = δ 2 (-δ 1 y x C xx + y x δ 1 C xx ) = δy x C xx + y x δxδx -δ 1 y x δ 2 C xx -δ 2 y x δ 1 C xx δ a d a y x â dxdx = δ â δ a y x C xx + y xxa µ a E xxx a + (Λ a ⊗ a 1) δ a y xxa E xxx a + y x♯a D xx a = -δy x C xx + δ a y x δ âC xx -δ ây xxa µ a E xxx a + y xxa (B xx a δx + µ a F xxx a ) + µ a (Λ a ⊗ a 1)[y x♯a δx ⊗ a δx + δ a y xxa B xx a ⊗ a δx -δ ây x♯a D xx a + δ a y xxa F xxx a -δy xxa E xxx a ] = -δy x C xx + δ a y x δ âC xx -δ ây xxa µ a E xxx a + y xxa µ a F xxx a + ( a d a y x â dx)δx + (Λ a ⊗ a 1) -δ ây x♯a D xx a + δ a y xxa F xxx a -δy xxa E xxx a
Is easy to see that we have a similar equation if we replace dx by dω := d 1 xd 2 x. Finally we obtain

r =y ♯ δx + δy x C xx + δy ω C ωx + a=1,2 (δ ây xxa µ a E xxx a -y xxa µ a F xxx a + δ ây ωxa µ a E xωx a -y ωxa µ a F xωx a + (Λ a ⊗ a 1)[δ ây x♯a D xx a -δ a y xxa F xxx a + δy xxa E xxx a + δ ây ω♯a D ωx a -δ a y ωxa F xωx a + δy ωxa E xωx a ])
and this allow us to say that r ∈ CC 3α,3β 3,3

which finishes the proof.

Remark 2.5.7. We observe that this definition of the two parametric integral are not consistent with the definition of the controlled sheet, indeed if y ∈ K α,β

x then the element z ∈ CC 1,1 defined by z 0t = z s0 = 0 and δz = ydx is not in general a controlled sheet.

Stability under mapping by regular functions

In this section we show that ϕ(x) ∈ K α,β x under more algebraic and geometric assumptions. To prove this result we will proceed by linear approximation the problem is that the terms which contain d 1 xd 2 x does not approximate well to bypass this difficulty we will start by giving an alternative expression for the space K α,β x Hypothesis 2.5.8. Let α, β > 1/3 and a = 1, 2. Assume that there exist

G xx a ∈ C α,β 2,2 , H xx a ∈ C âα,aβ 2,2 , I xx a ∈ C âα,aβ 2,2 , J xx a ∈ C 2α,2β 2,2 ,
with the convention if a = 1 then â = 2 and conversely. And we assume that this object satisfy the following relation:

1. δ a G xx a = δ a I xx â = 0 2. δ a H xx a = G xx a δ a x 3. δ a J xx a = I xx â δ a x 4. I xx a = B xx a + C xx 5. A ω = 1/2δx 2 - xdx = G xx a -I xx a 6. B xω a = H xx a -J xx a
Remark 2.5.9. In regular case this last iterated integral are given by :

1. (G xx 1 ) s 1 s 2 t 1 t 2 = s 2 s 1 δ 2 x st 1 t 2 d s x st 2 2. (H xx 1 ) s 1 s 2 t 1 t 2 = s 2 s 1 δ 1 x s 1 st 1 δ 2 x st 1 t 2 d s x st 2 3. (I xx 2 ) s 1 s 2 t 1 t 2 = (s 2 ,t 2 ) (s 1 ,t 1 ) δ 2 x st 1 t d st x st 4. (J xx 1 ) s 1 s 2 t 1 t 2 = s 2 s 1 δ 1 x s 1 st 1 t 2 t 1 δ 2 x st 1 t d st x st
Now under these assumption we give an alternative expression for the space K α,β x .

Proposition 2.5.10. Assume the Hypothesis 2.5.8 and 2.5.1 are true then for y ∈ Q α,β

x we have :

1. a yδ âxd a x := yG xx a + y xa H xx a + Λ a [y ♯a G xx a + δ a y xa H xx a ] 2. a y â δ âxdx := yI xx â + y xa J xx a + Λ a [y ♯a I xx â + δ a y xa J xx a ] 3. a y â dω = a yδ âxd a x -a y â δ âxdx
where 1 an 2 are well defined, moreover we can choose G a , H a and J a such that the rough-integral 1and 2 coincide with their definition in the Riemann-Stieltjes case.

Proof. We well only proof the first assertion (the proof of second assertion is similar). We assume that x is smooth then we have :

1 yδ 2 xd a x s 1 s 2 t 1 t 2 := s 2 s 1 y st 1 δ 2 x st 1 t 2 d s x st = y s 1 t 1 (G xx 1 ) s 1 s 2 t 1 t 2 + y x1 (H xx 1 ) s 1 s 2 t 1 t 2 + r s 1 s 2 t 1 t 2
where

r s 1 s 2 t 1 t 2 := s 2 s 1 y ♯1 st 1 t 2 δ 2 x st 1 t 2 d s x st 2
Now is clear that r ∈ C 3α,β 2,2 and :

δ 1 r = y ♯1 G xx 1 + δ 1 y x1 H xx 1 ∈ C 3α,β 3,2
and we get

r = Λ 1 [y ♯1 G xx 1 + δ 1 y x1 H xx 1 ]
This give us the proof of the first assertion. The proof of the last assertion is immediate consequence of the assumption five and six of the hypothesis 2.5.8. This proposition allow us to tell that y ∈ K α,β x if and only if :

1. y ∈ Q α,β x 2. δy = -y x δx -y ω 1/2δx 2 -xδx + a=1,2 a y x â dx + a y ω δ âxd a x + y ♯ where y x , y ω ∈ Q α,β
x , y ♯ ∈ C α,β 2,2 Now let us describe our strategy to prove that ϕ(x) ∈ K α,β x . Let introduce the approximation:

x 1 st = x 0t + s(x 1t -x 0t ) , x 2 st = x s0 + t(x s1 -x s0 )
x 12 st = x 00 + s(x 10x 00 ) + t(x 01x 00 ) + stδx where the is the unit square. Now is clear if ϕ ∈ C 4 (R, R) then we have

δϕ(x 12 ) = -ϕ ′ (x 12 )δx -ϕ ′′ (x 12 )(1/2δ(x 12 ) 2 -x 12 δx 12 ) + a=1,2 a ϕ ′ (x 12 ) â dx 12 + a ϕ ′′ (x 12 )δ âx 12 d a x 12 + R 12 (2.64)
where

R 12 = ϕ ′′ (x 12 )dx 12 dx 12 + ϕ ′′′ (x 12 )d 1 x 12 d 2 x 12 dx 12 + ϕ ′′′ (x 12 )dx 12 d 1 x 12 d 2 x 12 + ϕ (iv) (x 12 )d 1 x 12 d 2 x 12 d 1 x 12 d 2 x 12 -ϕ ′′ (x 12 ) dx 12 dx 12 - a∈{1,2} a d a ϕ ′′ (x 12 ) â δ âx 12 dx 12 (2.65)
Now our goal is to give similar formula for x a and to compare them with the same expansion for x.

To do that we need to give a meaning for the boundary integral appearing in the expansion of x a and for that we construct

B x âx â a , G x âx â a and H x âx â a
. But by formal computation we see that

(B x 1 x 1 2 ) s 1 s 2 t 1 t 2 = (s 2 -s 1 ) t 2 t 1 δ 2 x 0t 1 t d t δ 1 x 01t + s 1 t 2 t 1 δx 01t 1 t d t δ 1 x 01t
Then we define B x 1 x 1 2 by the following formula :

(B x 1 x 1 2 ) s 1 s 2 t 1 t 2 := (s 2 -s 1 ) (B xx 2 + s 1 (K xx 2 ) 01t 1 t 2 )
where

(K xx 2 ) s 1 s 2 t 1 t 2 := t 2 t 1 δx s 1 s 2 t 1 t d t δ 1 x s 1 s 2 t δ 2 (K xx 2 ) s 1 s 2 t 1 t 2 t 3 = δx s 1 s 2 t 1 t 2 δx s 1 s 2 t 1 t 3 Similar computation allow us to define (G x 1 ,x 1 2
) and H x 1 x 1 2 in the following way :

(G x 1 x 1 2 ) s 1 s 2 t 1 t 2 = (s 2 -s 1 )((G xx 2 ) 01t 1 t 2 + (s 2 -1)(L xx 2 ) 01t 1 t 2 ) (H x 1 x 1 2 ) s 1 s 2 t 1 t 2 = (s 2 -s 1 )(H xx 2 ) 01t 1 t 2 + (s 2 -1)(M xx 2 ) 01t 1 t 2 + s 1 ((N xx 2 ) 01t 1 t 2 + (s 2 -1)(O xx 2 ) 01t 1 t 2 )) where (L xx 2 ) s 1 s 2 t 1 t 2 := t 2 t 1 δ 1 x s 1 s 2 t d t δ 1 x s 1 s 2 t , (M xx 2 ) s 1 s 2 t 1 t 2 := t 2 t 1 δx s 1 s 2 t 1 t δ 1 x s 1 s 2 t d t x s 2 t
and

(O xxx 2 ) s 1 s 2 t 1 t 2 := t 2 t 1 δx s 1 s 2 t 1 t δ 1 x s 1 s 2 t d t δ 1 x s 1 s 2 t
and this of course push us to give a more algebraic assumption on the sheet x:

Hypothesis 2.5.11. Let α, β > 1/3, a = 1, 2 and and assume the existence of :

K xx a , M xx a ∈ CC 2α,2β 2,2 , L xx a ∈ CC aα,âβ 2,2 , O xxx 2 ∈ CC 3α,2β 2,2 , O xxx 1 ∈ CC 2α,3β 2,2
which satisfies the algebraic relation

1. δ 2 (K xx 2 ) s 1 s 2 t 1 t 2 t 3 = δx s 1 s 2 t 1 t 2 δx s 1 s 2 t 1 t 3 2. δ 2 L xx 2 = 0 3. δ 2 (M xx 2 ) s 1 s 2 t 1 t 2 t 3 = δ 2 x s 1 t 1 t 2 (L xx 2 ) s 1 s 2 t 2 t 3 4. δ 2 (N xx 2 ) s 1 s 2 t 1 t 2 t 3 = δx s 1 s 2 t 1 t 2 (G xx 2 ) s 1 s 2 t 1 t 2 5. δ 2 (O xxx 2 ) s 1 s 2 t 1 t 2 = δx s 1 s 2 t 1 t 2 (L xx 2 ) s 1 s 2 t 2 t 3 and same relation for K xx 1 , M xx 1 , N xx 1 and N xx 1 .
Remark 2.5.12. Now under this new hypothesis we have some fact :

1. δ 2 B x 1 x 1 2 = δx 1 δ 2 x 2 2. δ 2 G x 1 x 1 2 = 0 3. δ 2 H x 1 x 1 2 = G x 1 x 1 2 δ 2 x 2
Now under this new hypothesis we are able to define

R 1 = δϕ(x 1 ) --ϕ ′ (x 1 )δx 1 -ϕ ′′ (x 1 )(1/2δ(x 1 ) 2 -x 1 δx 1 ) + a=1,2 a ϕ ′ (x 1 ) â dx 1 + a ϕ ′′ (x 1 )δ âx 1 d a x 1 (2.66)
and an analogue formula for R 2 . Then we have the following relation between the remainder terms Proposition 2.5.13. Let R 1 , R 2 and R 12 given respectively by the equations (2.66)and (2.64) and assume that hypothesis 2.5.11 , 2.5.8 and 2.5.1 are true then we have

R = R 1 + R 2 -R 12 where R = ϕ(x) -   -ϕ ′ (x)δx -ϕ ′′ (x)(1/2δx 2 -xδx) + a∈{1,2} a ϕ ′ (x) â dx + a ϕ ′′ (x)δ âxd a x  
Proof. The fact that x 1 and x 2 are respectively smooth in the first and second direction gives

1 ϕ ′ (x 1 ) 2 dx 1 = 1 ϕ ′ (x 12 ) 2 dx 12 , x l ab = x 12 ab 2 ϕ ′ (x 2 ) 1 dx = 2 ϕ ′ (x 12 ) 1 dx 12 
For (a, b) ∈ {0, 1} 2 and l = 1, 2. And of course similar equation for the boundary integrals given by

1 ϕ ′′ (x 1 )δ 2 x 1 d 2 x 1 .
On the other side we have by the definition of the functional Λ 1 that :

2 ϕ ′ (x) 1 dx = (1 -Λ 1 δ 1 )(ϕ ′ (x)δx + ϕ ′′ (x)B xx 2 ) = (1 -Λ 1d δ 1d )(ϕ ′ (x 0. )δx 01.. + ϕ ′′ (x 0. )(B xx 2 ) 01.. ) 01 = (1 -Λ 1d δ 1d )(ϕ ′ (x 1 0. )δx 01.. + ϕ ′′ (x 1 0. )(B x 1 x1 2 ) 01.. ) 01 = 2 ϕ ′ (x 1 ) 1 dx 1
and by similar argument we have also that

2 ϕ ′′ (x)δ 1 xd 2 x = 2 ϕ ′′ (x 1 )δ 1 x 1 d 2 x1
Then putting these equation together we obtain the needed identity.

Now to show that R ∈ C 2α,2β 2,2
we have to gives a estimates for the remainder terms R 1 and R 2 . At this point we give three technical lemma which help us to do this. Lemma 2.5.14. Let x ∈ CC 2,2 and ϕ ∈ C 3 (R), and we define ν 1 (x) by :

ν 1 (x) = -ϕ ′ (x 00 )δx 0101 -ϕ ′′ (x 00 ) 1/2δx 2 0101 -x 00 δx 0101 + 1 0 ϕ ′ (x 00 + sδ 1 x 010 )ds δx 0101 + 1 0 ϕ ′′ (x 00 + sδ 1 x 010 )ds δ 2 x 001 δ 1 x 011 + 1 0 ϕ ′′ (x 00 + sδ 1 x 010 )sds δx 0101 δ 1 x 011 -ϕ ′ (x 10 ) -ϕ ′ (x 00 ) -ϕ ′′ (x 00 )δ 1 x 010 δ 2 x 101
then the following inequality hold

|ν 1 (x)| sup s∈[0,1] |ϕ ′′ (x s0 )|(δx 0101 ) 2 + sup s∈[0,1] |ϕ ′′′ (x s0 )||δ 1 x 010 δ 2 x 001 δx 0101 |
Proof. We begin by remark that

( 1 0 ϕ ′′ (x 00 + sδ 1 x 010 )sds)δx 0101 δ 1 x 011 = 1 0 ϕ ′′ (x 00 + sδ 1 x 010 )sds (δx 0101 ) 2 + 1 0 ϕ ′′ (x 00 + sδ 1 x 010 sds δ 1 x 010 )δx 0101 = 1 0 ϕ ′′ (x 00 + sδ 1 x 010 )sds (δx 0101 ) 2 + ϕ ′ (x 10 )δx 0101 - 1 0 ϕ ′ (x 00 + sδ 1 x 010 )ds δx 0101
and δx 2 0101 = 2x 00 δx 0101 + 2δ 1 x 010 δ 2 x 101 + 2δ 2 x 001 δx 0101 + (δx 0101 ) 2 injecting these two equality in the definition of ν 1 (x) gives :

ν 1 (x) = -(ϕ ′ (x 10 ) -ϕ ′ (x 00 ))δ 2 x 001 + ( 1 0 ϕ ′′ (x 00 + sδ 1 x 010 )ds)δ 1 x 011 δ 2 x 001 -ϕ ′′ (x 00 )δ 2 x 001 δy 0101 + ( 1 0 ϕ ′′ (x 00 + sδ 1 x 010 )sds)(δx 0101 ) 2 -1/2ϕ ′′ (x 00 )(δy 0101 ) 2 = ( 1 0 1 0 ϕ ′′′ (x 00 + ss ′ δ 1 x 010 )sds ′ ds)δ 1 x 010 δ 2 x 001 δx 0101 + ( 1 0 ϕ ′′ (x 00 + sδ 1 x 010 )sds)(δx 0101 ) 2 -1/2ϕ ′′ (x 00 )(δx 0101 ) 2
Then the desired inequality is a simple consequence of this equality. Lemma 2.5.15. Let y ∈ CC 1,1 and α, β > 1/3 such that δ 2 y ∈ CC α,β 1,2 , δy ∈ CC α,β 2,2 moreover we assume that y is smooth in the first direction and that there exists

2 2 d 2 yd 2 y ∈ CC α.2β 1,2 , 2 dyd 2 y ∈ CC α,2β 2,2 ,H yy 2 = 2 δ 2 yδ 1 yd 2 y ∈ CC 1,2β 2,2 ,G yy 2 = 2 δ 1 yd 2 y ∈ CC 1,β 2,2 and B yy 2 = 2 d 2 y 1 dy ∈ CC 1,2β
2,2 satisfying the algebraic relation :

1. δ 2 G yy 2 = 0 2. δH yy 2 = G yy 2 δ 2 y 3. δ 1 2 2 d 2 yd 2 y = B yy 2 + 2 dyd 2 y 4. δ 2 B yy 2 = δ 2 yδy 5. δ 2 2 d 2 yd 2 y = δ 2 yδ 2 y 6. δ 2 2 dyd 2 y = δyδ 2 y 7. δ 1 y 2 2 d 2 yd 2 y = δ 1 y • 1 2 dyd 2 y -2 δ 2 y • 2 δyd 2 y + H yy 2 8. δ 1 yδ 2 y = G yy 2 -2 dyd 2 y.
Then for ϕ ∈ C 5 (R) the following equality holds :

δϕ ′ (y) = 2 ϕ ′ (y) 1 dy + 2 ϕ ′′ (y)δ 1 yd 2 y + ϕ ′ (y) ♯1 δ 2 y + r 1 (y)
where

r 1 (y) =ϕ ′′ (y) ♯1 2 2 d 2 yd 2 y + ϕ ′′′ (y)(δ 1 y • 1 2 dyd 2 y) + Λ 2 [(δ 2 ϕ ′ (y) ♯1 -ϕ ′′ (y) ♯1 δ 2 y -ϕ ′′′ (y)δ 1 y • 1 δy)δ 2 y + δ 2 ϕ ′′ (y) ♯1 2 2 d 2 yd 2 y + ϕ ′′′ (y)(δy • 1 2 dyd 2 y) + δ 2 ϕ ′′′ (y)(δ 1 y • 1 2 dyd 2 y]
Proof. By the one dimensional change of variable formula we have

δ 2 ϕ(y) = 2 ϕ ′ (y)d 2 y = (1 -Λ 2 δ 2 )(ϕ(y)δ 2 y + ϕ ′′ (y) 2 2 d 2 yd 2 y) (2.67)
Then if we apply δ 1 to this equation we get

δϕ(y) = (1 -Λ 2 δ 2 )(ϕ ′ (y)δy + ϕ ′′ (y)B yy 2 + δ 1 ϕ ′ (y)δ 2 y + δ 1 ϕ ′′ (y) 2 2 d 2 yd 2 y + ϕ ′′ (y) 2 dyd 2 y) = 2 ϕ ′ (y) 1 dy + (1 -Λ 2 δ 2 )(δ 1 ϕ ′ (y)δ 2 y + δ 1 ϕ ′′ (y) 2 2 d 2 yd 2 y + ϕ ′′ (y) 2 dyd 2 y) (2.68)
Expanding the two terms δ 1 ϕ ′ (y)δ 2 y, δ 1 ϕ ′′ (y) 2 2 d 2 yd 2 y and using the algebraic assumption gives 

δ 1 ϕ ′′ (y)δ 2 y + ϕ ′′ (y) 2 dyd 2 y + δ 1 ϕ ′′ (y) 2 dyd 2 y = ϕ ′′ (y)G yy 2 + ϕ ′′′ (y)H yy 2 -ϕ ′′′ (y) 2 δ 2 y • 2 δyd 2 y + (ϕ ′ (y) ♯1 δ 2 y + ϕ ′′ (y) ♯1 2 2 d 2 yd 2 y+ ϕ ′′′ (y)(δ 1 y • 1 2 dyd 2 y) (2.69) Now if we combine the fact that (1 -Λ 2 δ 2 ) 2 δ 2 y • 2 δyd 2 y = 0 (ie: 2 δ 2 y • 2 δyd 2 y ∈ CC 1,3β 2,2 , δ 2 2 δ 2 y • 2 δyd 2 y ∈ CC
δϕ(y) = 2 ϕ ′ (y) 1 dy + 2 ϕ ′′ (y)δ 1 yd 2 y + (1 -Λ 2 δ 2 )(ϕ ′ (y) ♯1 δ 2 y + ϕ ′′ (y) ♯1 2 2 d 2 yd 2 y + ϕ ′′′ (y)(δ 1 y • 1 2 dyd 2 y)
then to obtain the needed result it suffice to expand the last term of this equality Lemma 2.5.16. Let y ∈ CC 1,1 satisfying the assumption of lemma 2.5.15 and ϕ ∈ C 5 (R) then we have the formula :

(δ2ϕ ′ (y) ♯1 -ϕ ′′ (y) ♯1 δ2y -ϕ ′′′ (y)δ1y •1 δy)s 1 s 2 t 1 t 2 = [0,1] 2 kϕ ′′′ (ys 1 t 1 + kδ1ys 1 s 2 t 1 )dkdk ′ (δys 1 s 2 t 1 t 2 ) 2 + [0,1] 2 kϕ (iv) (ys 1 t 1 + kk ′ δ1ys 1 s 2 t 1 )(δ2ys 1 s 2 t 1 + kk ′ δys 1 s 2 t 1 t 2 )dkdk ′ (2δ1ys 1 s 2 t 1 δys 1 s 2 t 1 t 2 + (δys 1 s 2 t 1 t 2 ) 2 ) + [0,1] 3 kϕ (v) (ys 1 t 1 + kδ1ys 1 s 2 t 1 + k ′′ δ2ys 1 t 1 t 2 + kk ′′ δys 1 s 2 t 1 t 2 )(δ2ys 1 s 2 t 1 + kk ′ δys 1 s 2 t 1 t 2 ) 2 dkdk ′ dk ′′ (δ1ys 1 s 2 t 2 ) 2 (2.70) where k = kk ′ and k = k(1 -k ′′ ) in particular this give us that r 1 (y) ∈ CC 2α,β 2,2
Proof. By the usual Taylor formula we have that

δ 2 ϕ ′ (y) ♯1 s 1 s 2 t 1 t 1 = [0,1] 2 k(ϕ ′′′ (y s 1 t 2 + kδ 1 y s 1 s 2 t 2 ) -ϕ ′′′ (y s 1 t 1 + kδ 1 y s 1 s 2 t 1 ))dkdk ′ (δ 1 y s 1 s 2 t 2 ) 2 + 2 [0,1] 2 kϕ ′′′ (y s 1 t 1 + kδ 1 y s 1 s 2 t 1 )dkdk ′ δ 1 y s 1 s 2 t 1 δy s 1 s 2 t 1 t 2 + [0,1] 2 kϕ ′′′ (y s 1 t 1 + kδ 1 y s 1 s 2 t 1 )dkdk ′ (δy s 1 s 2 t 1 t 2 ) 2 (2.71)
Let denoted by a s 1 s 2 t 1 t 2 the first term in the r.h.s of this equation. Then if we remark that (δ

1 y s 1 s 2 t 2 ) 2 = (δ 1 y s 1 s 2 t 1 ) 2 + 2δ 1 y s 1 s 2 t 1 δy s 1 s 2 t 1 t 1 + (δy s 1 s 2 t 1 t 1 )
2 and using Taylor formula once again we obtain

a s 1 t 1 s 2 t 2 = [0,1] 2 kϕ (iv) (y s 1 t 1 + kk ′ δ 1 y s 1 s 2 t 1 )dkdk ′ δ 2 y s 1 t 1 t 2 (δ 1 y s 1 s 2 t 1 ) 2 + [0,1] 2 k 2 k ′ ϕ (iv) (y s 1 t 1 + kk ′ δ 1 y s 1 s 2 t 1 )dkdk ′ (δ 1 y s 1 s 2 t 1 ) 2 δy s 1 s 2 t 1 t 2 + [0,1] 3 kϕ (v) (y s 1 t 1 + kδ 1 y s 1 s 2 t 1 + k ′′ δ 2 y s 1 t 1 t 2 + kk ′′ δy s 1 s 2 t 1 t 2 )(δ 2 y s 1 s 2 t 1 + kk ′ δy s 1 s 2 t 1 t 2 ) 2 dkdk ′ dk ′′ × (δ 1 y s 1 s 2 t 2 ) 2 + [0,1] 2 kϕ (iv) (y s 1 t 1 + kk ′ δ 1 y s 1 s 2 t 1 )(δ 2 y s 1 s 2 t 1 + kk ′ δy s 1 s 2 t 1 t 2 )dkdk ′ (2δ 1 y s 1 s 2 t 1 δy s 1 s 2 t 1 t 2 + (δy s 1 s 2 t 1 t 2 ) 2 ) (2.72)
The two last terms in the r.h.s of this equation lie in the space CC 2α,2β

2,2 then we will focus on the two first denoted respectively by a 1 s 1 s 2 t 1 t 2 and a 2 s 1 s 2 t 1 t 2 . By integration by part formula we get

1 0 k 2 k ′ ϕ (iv) (y s 1 t 1 +kk ′ δ 1 y s 1 s 2 t 1 )dkδ 1 y s 1 s 2 t 1 = ϕ ′′′ (y s 1 t 1 +k ′ δ 1 y s 1 s 2 t 1 )-2 1 0 kϕ ′′′ (y s 1 t 1 +kk ′ δ 1 y s 1 s 2 t 1 )dk
multiplying this equation by δ 1 y s 1 s 2 t 1 δy s 1 s 2 t 1 t 2 and integrating over k ′ give us

a 2 s 1 s 2 t 1 t 2 = 1 0 ϕ ′′′ (y s 1 t 1 + k ′ δ 1 y s 1 s 2 t 1 )dk ′ δ 1 y s 1 s 2 t 1 δy s 1 s 2 t 1 t 2 -2 [0,1] 2 kϕ ′′′ (y s 1 t 1 + kδ 1 y s 1 s 2 t 1 )dkdk ′ δ 1 y s 1 s 2 t 1 δy s 1 s 2 t 1 t 2 (2.73)
on the other hand 

a 1 s 1 s 2 t 1 t 2 = [0,1] 2 ϕ (iv) (y s 1 t 1 + kk ′ δ 1 y s 1 s 2 t 1 )dkdk ′ (δ 1 y s 1 s 2 t 1 ) 2 δ 2 y s 2 t 1 t 2 - [0,1] ϕ ′′′ (y s 1 t 1 + kδ 1 y s 1 s 2 t 1 )dkδ 1 y s 1 s 2 t 1 δy s 1 s 2 t 1 t 2 = (ϕ ′′ (y) ♯1 δ 2 y) s 1 s 2 t 1 t 2 - [0,1] (ϕ ′′′ (y s 1 t 1 + kδ 1 y s 1 s 2 t 1 ) -ϕ ′′′ (y s 1 t 1 ))dkδ 1 y s 1 s 2 t 1 δy s 1 s 2 t
= δ a xδ a x 2. δ âP xx a = B xx a + Q xx a 3. δ 2 Q xx a = δxδ a x 4. δ âxP xx a = δ âxQ xx a + H xx a -a δ a x • a δxd a x 5. δ âxδ a x = G xx a -Q xx a where a δ a x• a δxd a x = Λ a ((δ a x• a δx)δ a x+ δ a xQ xx a + δxP xx a -δx• â Q xx a
) and B xx a , H xx a are the iterated integrals given respectively in the hypothesis 2.5.1 and 2.5.11.

With this hypothesis we define

2 2 d 2 x 1 d 2 x 1 s 1 s 2 t 1 t 2 = (P xx 2 ) 0t 1 t 2 + s((B xx 2 ) 01t 1 t 2 + (Q xx 2 ) 01t 1 t 2 + (s -1)(K xx 2 ) 01t 1 t 2 )
and

2 dx 1 d 2 x 1 s 1 s 2 t 1 t 2 = (s 2 -s 1 )((P xx 2 ) 01t 1 t 2 + (s 2 -1)(K xx 2 ) 01t 1 t 2 )
Now all the ingredients are ready to prove our main result Theorem 2.5.18. Let x ∈ CC α,β 1,1 and ϕ ∈ C 5 (R) such that hypothesis 2.5.1, 2.5.8, 2.5.11 and 2.5.17 are satisfied then ϕ(x) ∈ K α,β x Proof. Let R 1 the remainder terms given by 2.66 then if we put y = x 1 in the lemma 2.5.15 we obtain

R 1 = 2 ϕ ′ (x 1 ) 1 dx 1 + 2 ϕ ′′ (x 1 )δ 1 x 1 d 2 x 1 + ϕ ′ (x 1 ) ♯1 δ 2 x 1 + r 1 (x 1 )
Now if we observe that :

(ϕ ′ (x 1 )δ 2 x 1 ) = 1 ϕ ′ (x 1 ) 2 dx 1 + 1 ϕ ′′ (x 1 )δ 2 x 1 dx 1 -ν 1 (x)
where ν 1 (x) is given in the lemma 2.5.14 we get that R 1 = r 1 (x 1 )ν 1 (x) and R 2 = (r 2 (x 2 )ν 2 (x)) then by the proposition we obtain that R = r 1 (x 1 )ν 1 (x) + r 2 (x 2 )ν 2 (x) -R 12 of course this relation give us the needed regularity of R on the unite square but if we take X st = x s 1 +s(s 2 -s 1 );t 1 +t(t 2 -t 1 ) for (s, t) ∈ [0, 1] 2 then is easy to see that X satisfy all the algebraic assumption and that R x s 1 s 2 t 1 t 2 = R X which give us the result for any rectangle.

Now to simplify the notation we introduce the following definition.

Definition 2.5.19. Let x ∈ CC 1,1 a sheet satisfying the Hypothesis 2.5.1 ,2.5.8 ,2.5.11 and 2.5.17 then we denote by X the collection of all iterated integrals giving in these Hypothesis and we call it Rough-Sheet associated to x and then we define H α,β the space which contain the rough sheet as the product of the Hölder space giving in these Hypothesis equipped with the product topology.

Now we have the following lemma

Lemma 2.5.20. Let ρ 1 , ρ 2 ∈ (0, 1), x 1 , x 2 two increments lying in CC ρ 1 ,ρ 2 1,1 , and ϕ ∈ C 3 (R). Then we have:

||δ 1 ϕ(x 1 )|| ρ 1 ,0 sup s,t∈[0,1] 2 |ϕ(x 1 st )| ||δx 1 || ρ 1 ,0 (2.75) 
and

N ρ 1 ,ρ 2 (ϕ(x 1 ) -ϕ(x 2 )) c x 1 ,x 2 N ρ 1 ,ρ 2 (x 1 -x 2 ) 1 + N ρ 1 ,ρ 2 (x 1 ) + N ρ 1 ,ρ 2 (x 2 ) 2 (2.76)
where we recall that N ρ 1 ,ρ 2 (.) has been defined at equation (2.31). In the relation above we have also set

c x 1 ,x 2 = 3 i=1 sup (s,t)∈[0,1] 2 |ϕ (i) (x 1 st )| + sup (s,t)∈[0,1] 2 |ϕ (i) (x 2 st )|
Now using the concrete expression of the remainder term obtained previously, the continuity of the sewing map and this lemma we get easily the following continuity theorem. Theorem 2.5.21. Let x ∈ CC α,β 1,1 and x ∈ CC α,β 1,1 satisfying the hypothesis (2.5.1) ,(2.5.8) ,(2.5.11) and (2.5.17) and ϕ ∈ C 8 (R) then there exist a polynomial function

K ∈ C([0, +∞[, [0, +∞[) such that ||ϕ(x) ♯ -ϕ(x) ♯ || 2α,2β α,β CK(||X|| H α,β + ||X|| H α,β )||X -X|| H α,β and then ϕ(x)dx - ϕ(x)dx α,β + ϕ(x)dω(x) - ϕ(x)dω(x) α,β α,β CK(||X|| H α,β + ||X|| H α,β ) × ||X -X|| H α,β
where dω(x

) := d 1 xd 2 x, ω(x) := d 1 xd 2 x and C = k∈{1,...,8} ||ϕ (k) || ∞,M and M = ||x|| ∞ + ||x|| ∞

Enhancement of the fractional Brownian Sheet and Stratonovich formula

Let (Ω, F, P) a probability space, in this section we construct the rough-sheet associated to the fractional Brownian sheet x. Before staring with probabilistic computation let us recall the definition of such process. Definition 2.6.1. The process (x st ) (s,t)∈[0,1] 2 defined on the probability space (Ω, F, P) is called fractional Brownian sheet with hurst parameter α, β

∈ [0, 1] if x is a Gaussian process with covariance function R s 1 s 2 t 1 t 2 = 1/4(|s 1 | α + |s 2 | α + |s 2 -s 1 | α )(|t 1 | β + |t 2 | β + |t 2 -t 1 | β ) (2.77)
With this definition we recall the following harmonisable representation for the fractional Brownian sheet

x st law = R 2 e isξ -1 |ξ| α+1/2 e itη -1 |η| β+1/2 Ŵ (dξ, dη) (2.78)
where Ŵ is the Fourier transform of the white noise W . Let us now state some extension of Garsia-Rodemich-Rumsey Lemma (see [START_REF] Garsia | A real variable lemma and the continuity of paths of some Gaussian processes[END_REF]) which will be useful to estimate the Hölder norm of our subject.

Lemma 2.6.2. For p > 1 and α, β ∈ ( 1 3 , 1 2 ] there exist two non negative constants C 1 = C 1 (α, β, p) and C 2 = C 2 (α, p) such as for every y ∈ CC 2 and R ∈ C 2 we have :

||δy|| α,β ≤ C 1 U 2 α+ 2 p ,β+ 2 p ,p (δy) 
and 4 then by the Garsia-Rodemich-Rumsey Lemma we have that :

||R|| α ≤ C 2 (U 1 α+ 2 p ,p (R) + ||δ 1d R|| α ) where U n α 1 ,α 2 ,...,αn,p (V ) := [0,1] 2n |V s 1 1 s 1 2 ...s n 1 s n 2 | p Π i=n i=1 |s i 2 -s i 1 | α i ds 1 1 ds 1 2 ...ds n 1 ds n 2 1 p for V ∈ C ⊗n 2 Proof. Let (s 1 , s 2 , t 1 t 2 ) ∈ [0, 1]
|δy (s 1 ,s 2 ),(t 1 ,t 2 ) | p = |δ 1 y (s 1 ,s 2 )t 2 -δ 1 y (s 1 ,s 2 )t 1 | p α,β,p |t 2 -t 2 | βp [0,1] 2 |δ 1 y (s 1 ,s 2 )v 2 -y (s 1 ,s 2 )v 1 | p |v 2 -v 1 | βp+2 dv 1 dv 2
Now we remark that :

|δy (s 1 ,s 2 ),(t 1 ,t 2 ) | = |δ 1 y (s 1 ,s 2 )t 2 -δ 1 y (s 1 ,s 2 )t 1 | = |δ 2 y s 2 (t 1 ,t 2 ) -δ 2 y s 1 (t 1 ,t 2 ) |
Then if we apply the Garsia-Rodemich-Rumsey again we obtain:

|δy (s 1 ,s 2 ),(t 1 ,t 2 ) | p α,β,p |s 1 -s 2 | αp |t 2 -t 2 | βp [0,1] 4 |δy (u 1 ,u 2 )(v 1 ,v 2 ) | p |u 1 -u 2 | αp+2 |v 2 -v 2 | βp+2 du 1 du 2 dv 1 dv 2
For the proof of second inequality we refer the reader to [START_REF] Gubinelli | Controlling rough paths[END_REF]. Now our strategy is to regularize x in the following way: ∀N ∈ N we put

x N st := K α,β {|ξ|,|η|≤N } e isξ -1 |ξ| α+1/2 e itη -1 |η| β+1/2 Ŵ (dξ, dη) (2.79)
so we are able to define

∂ 1 ∂ 2 x N st := K α,β {|ξ|,|η|≤N } iξe isξ |ξ| α+1/2 iηe isη |η| β+1/2 Ŵ (dξ, dη)
And this allows us to construct rough sheet associated to x N denoted in the following by X N Now we will set out the main theorem of this section which will allow us to say that the fractional Brownian sheet can be enhanced in a rough sheet.

Theorem 2.6.3. Let x N the process given by the equation (2.79) and X N the associated rough sheet then there exists a random variable

X ∈ H h,h ′ such that X N converges to X in L p (Ω, H h,h ′ ) for all (h, h ′ , p) ∈ ( 1 3 , α) × ( 1 3 , β) × [1, +∞).
To prove the theorem 2.6.3 we will need the following lemma Lemma 2.6.4. Let α > 1/3 and the function defined on R 2 by :

Q(ξ, η) := 1 0 dse isξ s 0 dve ivη then Q satisfies 1. Q(ξ, -ξ) = (1-cos(ξ))+i(ξ-sin(ξ)) |ξ| 2 . 2. Q(ξ 1 , ξ 2 ) 1 |x i | . 3. Q(ξ 1 , ξ 2 ) 1 |x 1 ||x 2 | + 1 |x 1 +x 2 ||x i | . 4. Q(ξ 1 , ξ 2 ) 1. 5. R 2 |Q(ξ,η)| 2 |ξ| 2α-1 |η| 2α-1 dξdη < +∞ where i ∈ {1, 2}.
Proof. The properties 1,2,3,4 are easy to establish by a direct computation only the prove of the last assertion claim a bit more work. Indeed we begin by decomposing the plane in three region D, U and V given by :

1. D = (ξ, η) ∈ R 2 ; |ξ + η| ≤ min(|ξ|,|η|) 2 2. U = (ξ, η) ∈ R 2 ; |ξ + η| ≥ max(|ξ|,|η|) 2 3. V = (D ∪ V ) c
Now when (ξ, η) ∈ D we have that 2/3|ξ| ≤ |η| ≤ 3/2|ξ| which leads us by the third property given in Lemma to obtain the following bound :

|Q(ξ, η)| 1 |ξ||ξ + η| and then D∩{|ξ+η|≥1} |Q(ξ, η)| 2 |ξ| 2α-1 |η| 2α-1 dξdη |{ξ+η|≥1;|ξ|≥2|ξ+η|} 1 |ξ| 4α |ξ + η| 2 dξdη +∞ 1 dv 1 v 2 +∞ 2v du 1 u 4α < +∞ Now if |ξ + η| ≤ 1
we can estimate the integrand in the following way :

|Q(ξ, η)| 2 |ξ| 2α-1 |η| 2α-1 1 |ξ| 4α-2γ
where γ ∈ [0, 1] and then we get :

D∩{|ξ+η|≤1} |Q(ξ, η)| 2 |ξ| 2α-1 |η| 2α-1 dξdη 1 0 dv +∞ 2v du 1 u 4α-2γ < +∞
as soon as γ ∈ (2α -1, 2α -1/2) which shows that the integral is finite on D. Now on U and V we have that |ξ|, |η| |ξ + η| and hence we can estimate Q by:

|Q(ξ, η)| 1 |ξ||η| then we obtain (U ∪V )∩{|ξ|>1,|η|>1} |Q(ξ, η)| 2 |ξ| 2α-1 |η| 2α-1 dξdη [1,+∞) 2 |ξη| -4α-1 dξdη < +∞
In the region of U and V where |ξ|, |η| ≤ 1 we bound the integrand in the following manner.

|Q(ξ, η)| 2 |ξ| 2α-1 |η| 2α-1 |ξη| 1-2α then (U ∪V )∩{|ξ|≤1,|η|≤1} |Q(ξ, η)| 2 |ξ| 2α-1 |η| 2α-1 dξdη ( {|ξ|≤1} |ξ| 1-2α dξ) 2
The same bound for the region

(U ∪ V ) ∩ {|y| ≤ 1, |x| ≥ 1} combined with the fact that Q(ξ, η) min(|ξ| -1 , |η| -1 ) gives |Q(ξ, η)| 2 |ξ| 2α-1 |η| 2α-1 |ξ| -1-2α |η| -2α+1
This shows that our kernel is integrable on (U ∪ V ) ∩ {|ξ| ≤ 1, |η| ≥ 1} and by symmetry we obtain the integrability in the remaining area which completes the proof.

Proof of theorem (2.6.3)

Proof. We will decompose the proof of the theorem in two step. In a first step we give the bound for the rough sheet X N in L 2 (Ω) for fixed parameters and in the second step we will use a variant of Garsia-Rodemich-Rumsey inequality to proof that our sheet is a Cauchy sequence in L p (Ω, H h,h ′ ).

Step 1: Estimation. Let A N M x := A N x -A M x = δ(x Nx M ) for M ≤ N and similar notation for all other terms of the rough sheet. Now is not difficult to see that

E[|A N M x (s 1 ,s 2 )(t 1 ,t 2 ) | 2 ] = {||(ξ,η)||∞∈[M,N ]} |e is 2 ξ -e is 1 ξ | 2 |ξ| 1+2α |e it 2 η -e it 1 η | 2 |η| 1+2β dξdη (s 2 -s 1 ) 2α (t 2 -t 1 ) 2β (I M A ) (s 1 ,s 2 )(t 1 ,t 2 )
where

(I M A ) (s 1 ,s 2 )(t 1 ,t 2 ) = {||((t 2 -t 1 )x,(s 2 -s 1 )y)||∞≥M (s 2 -s 1 )(t 2 -t 1 )} |x| -1-2α |e ix -1| 2 |y| -1-2β |e iy -1| 2 dxdy
And let us remark that for (α, β) ∈ (1/3, 1/2] we have :

R 2 |ξ| -1-2α |e iξ -1| 2 |η| -1-2β |e iη -1|dξdη < +∞ these imply sup M ∈N,(s 1 ,s 2 ,t 1 ,t 2 )∈[0,1] 4 |(I M A ) (s 1 ,s 2 )(t 1 ,t 2 ) | < +∞ and lim M →∞ (I M A ) (s 1 ,s 2 )(t 1 ,t 2 ) = 0 for s 1 = s 2 and t 1 = t 2 .
Now in what follows we prove similar bound for the other component of the rough sheet. By Wick theorem

E[|C N xx (s 1 ,s 2 )(t 1 ,t 2 ) | 2 ] = | R 2 (K N M (s 1 ,s 2 )(t 1 ,t 2 ) )(ξ, -ξ)dξ| 2 + R 4 |(K N M (s 1 ,s 2 )(t 1 ,t 2 ) )(ξ, η)| 2 dξdη + | R 4 (K N M (s 1 ,s 2 )(t 1 ,t 2 ) )(ξ, η)(K N M (s 1 ,s 2 )(t 1 ,t 2 ) )(η, ξ)dξdη| (2.80)
where

(K N M (s 1 ,s 2 )(t 1 ,t 2 ) )(ξ, η) := iξiη |ξ| α+1/2 |η| α+1/2 Q s 1 s 2 (ξ, η) iξ ′ iη ′ |ξ ′ | β+1/2 |η ′ | β+1/2 Q t 1 t 2 (ξ ′ , η ′ )χ {||(ξ,ξ ′ ,η,η ′ )||∞∈[M,N ]} for ξ := (ξ, ξ ′ ) ∈ R 2 et η = (η, η ′ ) ∈ R 2 and Q s 1 s 2 (ξ, η) := e is 1 (ξ+η) (s 2 -s 1 ) 2 Q((s 2 -s 1 )ξ, (s 2 -s 1 )η)
with Q is the function defined in the Lemma (2.6.4), which gives us by change of variable formula that

R 4 |(K N M (s 1 ,s 2 )(t 1 ,t 2 ) )(ξ, η)| 2 dξdη (s 2 -s 1 ) 4α (t 2 -t 1 ) 4β (I 1,M C ) (s 1 ,s 2 )(t 1 ,t 2 )
where

(I 1,M C ) (s 1 ,s 2 )(t 1 ,t 2 ) := R 4 χ {||(s 2 -s 1 )ξ,(s 2 -s 1 )η,(t 2 -t 1 )ξ ′ ,(t 2 -t 1 )η ′ )||∞≥M } |Q(ξ, η)| 2 |ξη| 2α-1 |Q(ξ ′ , η ′ )| 2 |ξ ′ η ′ | 2β-1 dξdη
Now the Lemma 2.6.4 gives :

R 4 |Q(ξ, η)| 2 |ξη| 2α-1 |Q(ξ ′ , η ′ )| 2 |ξ ′ η ′ | 2β-1 dξdη < +∞ and then sup M ∈N,(s 1 ,s 2 ,t 1 ,t 2 )∈[0,1] 4 (I 1,M C ) (s 1 ,s 2 )(t 1 ,t 2 ) < +∞ and lim M →∞ (I 1,M C ) (s 1 ,s 2 )(t 1 ,t 2 )
= 0 for s 2 = s 1 and t 2 = t 1 and by Cauchy-Schwartz inequality we have :

| R 4 (K N M (s 1 ,s 2 )(t 1 ,t 2 ) )(ξ, η)(K N M (s 1 ,s 2 )(t 1 ,t 2 ) )(η, ξ)dξdη| ≤ R 4 |(K N M (s 1 ,s 2 )(t 1 ,t 2 ) )(ξ, η)| 2 dξdη
Then is remind to bound the first term appearing in the sum of the equation (2.80), indeed

| R 2 (K N M (s 1 ,s 2 )(t 1 ,t 2 ) )(ξ, -ξ)dξ| 2 (s 2 -s 1 ) 2α (t 2 -t 1 ) 2β (I 2,M C ) (s 1 ,s 2 )(t 1 ,t 2 )
where

(I 2,M C ) (s 1 ,s 2 )(t 1 ,t 2 ) = R 2 χ {||(s 2 -s 1 )ξ,(t 2 -t 1 )ξ ′ ||∞≥M } |ξ| -1-2α |ξ ′ | 1-2β (1 -cos(ξ))(1 -cos(ξ ′ ))dξdξ ′ then is no difficult to see that I 2,M C satisfies the same property that I 1,M C .Now if we put I M C := I 2,M C + I 1,M C is easy to see that : E[|C N M xx (s 1 ,s 2 )(t 1 ,t 2 ) | 2 ] (s 2 -s 1 ) 2α (t 2 -t 1 ) 2β (I M C ) (s 1 ,s 2 )(t 1 ,t 2 )
when (I M C ) satisfy : sup

M ∈N,(s 1 ,s 2 ,t 1 ,t 2 )∈[0,1] 4 (I M C ) (s 1 ,s 2 )(t 1 ,t 2 ) < +∞ lim M →∞ (I M C ) (s 1 ,s 2 )(t 1 ,t 2 ) = 0
for s 2 = s 1 and t 2 = t 1 . All the other term of X N can be estimate by the same argument and satisfy the same type of bound to see these let us treat a more complex term of the rough sheet.

E[|(E N M xxx 1 ) (s 1 ,s 2 ,s 3 ,s 3 )(t 1 ,t 2 ) | 2 ] = 15 l=1 I l
where (I l ) l is the different Wick-contraction given by:

1. I 1 = R 6 |(G N M (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 ) )(a, b, c)| 2 dadbdc 2. I 2 = R 2 | R 2 (G N M (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 ) )(a, b, -a)da| 2 db 3. I 3 = R 2 | R 2 (G N M (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 ) )(a, -a, b)da| 2 db 4. I 4 = R 2 | R 2 (G N M (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 ) )(a, b, -b)db| 2 da 5. I 5 = R 6 (G N M (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 ) )(a, b, -a)(G N M (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 ) )(b, c, -c)dadbdc 6. I 6 = R 6 (G N M (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 ) )(a, b, -a)(G N M (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 ) )(c, -c, b)dadbdc 7. I 7 = R 6 (G N M (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 ) )(a, -a, b)(G N M (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 ) )(a, c, -c)dadbdc 8. I 8 = I 5 , I 9 = I 6 , I 10 = I 7 9. I k = R 6 (G N M (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 ) )(a, b, c)(G N M (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 ) )(σ k (a), σ k (b), σ k
)dadbdc where σ k , k ∈ {11, 12, 13, 14, 15} is a permutation of three elements different of identity and for a = (a, a ′ ), b = (b, b ′ ), c = (c, c ′ ) ∈ R 2 the kernel is given by :

(G N M (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 ) )(a, b, c) := iaib |a| α+1/2 |b| |α+1/2 Q s 1 s 2 (a, b) ia ′ ic ′ |b ′ | β+1/2 |z ′ | β+1/2 Q t 1 t 2 (b ′ , c ′ ) × e is 4 c -e is 3 c |c| α+1/2 e it 1 a ′ -1 |a ′ | β+1/2 χ {||(a,a ′ ,b,b ′ ,c,c ′ )||∞∈[M,N ]}
The study of theses integral is confined to study the first four term in fact if k ∈ {11, 12, 13, 14, 15} then by Cauchy-Schwartz we have

|I k | ≤ I 1 , |I 5 | 2 ≤ I 2 I 4 , |I 6 | 2 ≤ I 2 I 3 and |I 7 | 2 ≤ I 3 I 4 .
By variable change formula we have that

|I 1 | (s 2 -s 1 ) 4α (s 4 -s 3 ) 2α (t 2 -t 1 ) 4β t 2β 1 (I M E 1 ) (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 )
where

(I M E 1 ) (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 ) := R 6 χ D M s 1 s 2 s 3 s 4 t 1 t 2 |Q(a, b)| 2 |ab| 2α-1 |Q(b ′ , c ′ )| 2 |a ′ b ′ | 2β-1 |e ic -1| 2 |c| 2α+1 |e ic -1| 2 |c| 2β+1 dada ′ dbdb ′ dcdc ′
where X is the Indicator function and D M s 1 s 2 s 3 s 4 t 1 t 2 is decreasing to the empty set when M tend to infinity for s 1 = s 2 ,t 1 = t 2 and s 3 = s 4 these statement with the fact that :

R 6 |Q(a, b)| 2 |ab| 2α-1 |Q(b ′ , c ′ )| 2 |a ′ b ′ | 2β-1 |e ic -1| 2 |c| 2α-1 |e iz -1| 2 |z| 2β-1 dada ′ dbdb ′ dcdc ′ < +∞ give us that sup M ∈N,(s 1 ,s 2 ,s 3 ,s 4 ,t 1 ,t 2 )∈[0,1] 6 (I M E 1 ) (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 ) < +∞ and lim M →+∞ (I M E 1 ) (s 1 ,s 2 ,s 3 ,s 4 )(t 1 ,t 2 ) = 0
Now by Cauchy-Schwartz we have :

I 2 R 4 |(K N M (s 1 ,s 2 )(t 1 ,t 2 ) (a, b)| 2 dadb) R |a| -1-2α |e -is 4 a -e -is 3 a | 2 da R |a ′ | -1-2β |e it 1 a ′ -1| 2 da ′
all these integrals have already studied and then we obtain the good estimate for I 2 . The estimation of I 3 and I 4 is obtained by the same technique.

Step 2: Convergence of X N . We prove some Garsia-Rodemich-Rumsey inequalities for our objects and then we obtain the convergence of the sheet X N . To give an idea we will first show the convergence of our first term in fact by the Lemma 2.6.2 and the Gaussian hypercontractivity we have that :

E[||A N M x || p h,h ′ ] h,h ′ ,p,α,β [0,1] 4 E[|A N M x s 1 s 2 t 1 t 2 | p ] |s 2 -s 1 | hp+2 |t 2 -t 1 | h ′ p+2 ds 1 ds 2 dt 1 dt 2 [0,1] 4 |s 2 -s 1 | (α-h)p-2 |t 2 -t 1 | (β-h ′ )p-2 ((I M A ) (s 1 ,s 2 )(t 1 ,t 2 ) ) p 2 ds 1 ds 2 dt 1 dt 2
where h < α and h ′ < β. Then if p is large enough these last Integral go to zero when M go to infinity by dominate convergence and this give us the convergence of A N M x . Now we will do the same work for the other terms and for this we must establish the following estimate :

Lemma 2.6.5. let z and y two smooth sheet, (h, h ′ ) ∈ (0, ∞) 2 and p > 1 then the following inequalities :

||B zz 1 -B yy 1 || p 2h,h ′ h,h ′ ,p (U 2 2h,h ′ ,p (B zz 1 -B yy 1 )) p + (U 3 2h,h ′ ,h ′ (D zz 2 -D yy 2 )) p + ||δ 1 zδz -δ 1 yδy|| p 2h,h ′ + ||δz -δy|| p h+ 2 p ,h ′ + 2 p (||δz|| h+ 2 p ,h ′ + 2 p + ||δy|| h+ 2 p ,h ′ + 2 p ) p ||C zz -C yy || p 2h,2h ′ h,h ′ ,p (U 2 2h,2h ′ ,p (C zz -C yy )) p + (U 3 2h+ 2 p ,h ′ ,h ′ ,p (D zz 2 -D yy 2 )) p + (U 3 h,h,2h ′ + 2 p ,p (D zz 1 -D yy 1 )) p + (||δz -δy|| h+ 2 p ,h ′ + 2 p (||δz|| h+ 2 p ,h ′ + 2 p + ||δy|| h+ 2 p ,h ′ + 2 p )) p ||D zz 1 -D yy 1 || p 2h,2h ′ h,h ′ ,p (U 3 h,h,2h ′ (D zz 1 -D yy 1 ) p + (||δz -δy|| h+ 1 p ,h ′ (||δz|| h+ 1 p ,h ′ + ||δy|| h+ 1 p ,h ′ )) p hold.
Proof. Let us prove the three first inequalities because all the others are obtained by the same techniques. Lemma 2.6.2 applied in the first direction and using the fact that δ 1 B zz 1 = δ 1 zδz we obtain that

|(B zz 1 -B yy 1 ) s 1 s 2 t 1 t 2 | p h,h ′ ,p |s 2 -s 1 | 2hp ( [0,1] 2 |(B zz 1 -B yy 1 ) u 1 u 2 t 1 t 2 | p |u 2 -u 1 | 2hp+2 du 1 du 2 + ||(δ 1 zδz -δ 1 yδy) .t 1 t 2 || p 2h ) (2.81)
Now we have to deal with the other direction. The second term appearing in the right side of this inequality can be estimated by |t 2t 1 | h ′ p ||δ 1 xδxδ 1 yδy|| p 2h,h ′ for the first term we need to apply Lemma 2.6.2 once again

[0,1] 2 |(B zz 1 -B yy 1 ) u 1 u 2 t 1 t 2 | p |u 2 -u 1 | 2hp+2 du 1 du 2 h,h ′ ,p |t 2 -t 1 | h ′ p ((U 2 2h,h ′ ,p (B zz 1 -B yy 1 )) p + [0,1] 2 ||δ 2 (B zz 1 -B yy 1 ) u 1 u 2 . || p h ′ |u 2 -u 1 | hp+2 du 1 du 2 ) (2.82)
then it suffices to note that

||δ 2 (B zz 1 -B yy 1 ) u 1 u 2 . || p h ′ = ||(µ 2 D zz 2 -µ 2 D yy 2 ) u 1 u 2 . || p h ′ ≤ ||(D zz 2 -D yy 2 ) u 1 u 2 . || p C h ′ 2 ⊗C h ′ 2 h,h ′ ,p [0,1] 4 |(D zz 2 -D yy 2 ) u 1 u 2 v 1 v 2 v 3 v 4 | p |v 4 -v 3 | h ′ p+2 |v 2 -v 1 | h ′ p+2 dv 1 dv 2 dv 3 dv 4 h,h ′ ,p |u 2 -u 1 | hp+2 ((U 3 h+ 2 p ,h ′ ,h ′ ,p (D zz 2 -D yy 2 )) p + [0,1] 4 ||(δz ⊗ 2 δz -δy ⊗ 2 δy) .v 1 v 2 v 3 v 4 || p h+2/p |v 4 -v 3 | h ′ p+2 |v 2 -v 1 | h ′ p+2 dv 1 dv 2 dv 3 dv 4 ).
( ) p then putting all these bound together gives

||B zz 1 -B yy 1 || p 2h,h ′ h,h ′ ,p (U 2 2h,h ′ ,p (B zz 1 -B yy 1 )) p + (U 3 2h,h ′ ,h ′ (D zz 2 -D yy 2 )) p + ||δ 1 zδz -δ 1 yδy|| p 2h,h ′ + ||δz -δy|| p h+ 2 p ,h ′ + 2 p (||δz|| h+ 2 p ,h ′ + 2 p + ||δy|| h+ 2 p ,h ′ + 2 p ) p
then we have prove the first inequality. Now by the Lemma 2.6.2 once again we have that

|C zz s 1 s 2 t 1 t 2 -C yy s 1 s 2 t 1 t 2 | h,h ′ ,p |s 2 -s 1 | 2hp ((U 1 2h,p (C zz .t 1 t 2 -C yy .t 1 t 2 ) p + ||δ 1 (C zz -C yy ) .t 1 t 2 || p 2h )
with δ 1 C zz = µ 1 D zz 1 then by same argument has before we have

||δ 1 (C zz -C yy ) .t 1 t 2 || p 2h h,h ′ ,p |t 2 -t 1 | 2h ′ p (((U 3 h,h,2h ′ ,p (D zz 1 -D yy 1 )) p + ||δz -δy|| p h+ 2 p ,h ′ + 2 p (||δz|| h+ 2 p ,h ′ + 2 p + ||δy|| h+ 2 p ,h ′ + 2 p ) p ) (2.84)
and

(U 1 2h,p (C zz .t 1 t 2 -C yy .t 1 t 2 )) p h,h ′ ,p |t 2 -t 1 | 2h ′ p ((U 2 2h,2h ′ ,p (C zz -C yy )) p + [0,1] 2 ||δ 2 (C zz -C yy ) u 1 u 2 . || p 2h ′ |u 2 -u 1 | hp+2 du 1 du 2 ) h,h ′ ,p |t 2 -t 1 | 2h ′ p ((U 2 2h,2h ′ ,p (C zz -C yy )) p + (U 3 2h+ 2 p ,h ′ ,h ′ ,p (D zz 2 -D zz 2 )) p + ||δz -δy|| p h+ 2 p ,h ′ + 2 p (||δz|| h+ 2 p ,h ′ + 2 p + ||δz|| h+ 2 p ,h ′ + 2 p ) p ) (2.85)
Putting these two bound together we obtain the second inequality. This concludes the proof of the Lemma

To obtain convergence of all the term of the rough sheet is suffices to take x = X N and y = X M in the lemma (2.6.5), indeed let us give an example :

E[||C N M xx || p 2h,2h ′ ] h,h ′ ,p [0,1] 4 |u 2 -u 1 | 2(α-h)p-2 |v 2 -v 1 | 2(β-h ′ )p-2 ((I M C ) (u 1 ,u 2 )(v 1 ,v 2 ) ) p 2 du 1 du 2 dv 1 dv 2 + [0,1] 6 |u 2 -u 1 | 2(α-h)p-4 |v 2 -v 1 | (β-h ′ )p-2 |v 4 -v 3 | (β-h ′ )p-2 ((I M D 2 ) (u 1 ,u 2 )(v 1 ,v 2 ,v 3 ,v 4 ) ) p 2 du 1 du 2 dv 1 dv 2 dv 3 dv 4 + [0,1] 6 |v 2 -v 1 | 2(β-h ′ )p-4 |u 2 -u 1 | (α-h ′ )p-2 |u 4 -u 3 | (α-h ′ )p-2 ((I M D 1 ) (u 1 ,u 2 ,u 3 ,u 4 )(v 1 ,v 2 ) ) p 2 dv 1 dv 2 du 1 du 2 du 3 du 4 + E[||A N M x || 2p h+2/p,h ′ +2/p ] 1/2 E[(||δx N || h+2/p,h ′ +2/p + ||δx M || h+2/p,h ′ +2/p ) 2p ] 1/2
where we used that our term is in the second chaos of Ŵ and the Gaussian hypercontractivity (see for example [START_REF] Janson | Gaussian Hilbert Spaces[END_REF]). Then if p is large enough the three first terms of right side go to zero when M tend to infinity by dominate convergence and the last term was already studied this allow us to conclude that

C N XX is a Cauchy sequence in L p (Ω, CC 2h,2h ′ 2,2
). The other terms can be treat similarly .

Do to this construction and theorem (2.5.6) we are able to define the two integrals

f ′ (x)dx, f ′′ (x)d 1 xd 2 x
for a function f ∈ C 10 (R) and then our goal is to use the continuity result (2.5.21) to obtain the Stratonovich Change of variable formula, for that we need an another assumption on the function f which allow us to control the constant C appearing in (2.5.21).

Definition 2.6.6. Let k ∈ N, we will say that a function f ∈ C k (R) satisfies the growth condition (GC) if there exist positive constants c and λ such that

λ < 1 4 max s,t∈[0,1] R 1 s R 2 t
, and max l=0,...,k |f (l) (ξ)| ≤ c e λ |ξ| 2 for all ξ ∈ R.

(2.86)

Remark 2.6.7. This last definition depend on the covariance function of the Gaussian process x where here is given by the fBs.

And a preliminary result ensures that x N satisfy some uniform exponential integrability.

Proposition 2.6.8. There exist λ > 0 such that

sup N ∈N E e λ sup (s,t)∈[0,1] 2 |x N s;t | 2 < +∞. ( 2 

.87)

Proof. We now by the Theorem(2.6.3) that lim

N →∞ E[[ x N -x p α-ǫ,β-ǫ ] = 0, which imply that sup n E ||x N || p α-ǫ,β-ε < +∞
We now focus on the exponential integrability of sup X N . Notice that for a fixed N one can easily get those exponential estimates thanks to Fernique's lemma. However, we claim some uniformity in N here, and we thus come back to uniform estimates of moments in order to prove (2.87). Let then

r = max(⌊ 1 α-ǫ ⌋, ⌊ 1 β 2 -ǫ ⌋) + 1 and remark that X N ∞ ε X N ǫ,ǫ . We thus use a decomposition of the form E[e λ sup (s,t)∈[0,1] 2 |x N s;t | 2 ] = I 1,N (λ) + I 2,N (λ),
where

I 1,N (λ) = r-1 l=0 λ l l! E[ x N 2l ∞ ], and 
I 2,N (λ) = +∞ l=r λ l l! E[ x N 2l ∞ ].
We now bound those 2 terms separately: one the one hand, it is readily checked that

I 1,n (λ) ≤ max i=0,...,r sup N ∈N E[ x N 2i ǫ,ǫ ] < +∞,
for ǫ < min(α, β). On the other hand, the bound on I 2,n (λ) is obtained invoking Lemma (2.6.2) again. Indeed, starting from expression appearing in (2.6.2) and introducing a standard Gaussian random variable N , it is easily seen that

E[ x N 2l ǫ,ǫ ] ≤ C 2l,ǫ,ǫ E[N 2l ] [0,1] 2 ×[0,1] 2 E[|δx N s 1 s 2 t 1 t 1 | 2 ] l |s 2 -s 1 | 2lǫ+2 |t 2 -t 1 | 2lǫ+2 ds 1 ds 2 dt 1 dt 2
with N is a Gaussian random variable N (0, 1). Now we have

sup n∈N E |δx N s 1 s 2 ;t 1 t 2 | 2 ≤ R 2 |e ıs 2 x -e ıs 1 ξ | 2 |e ıt 2 η -e ıt 1 η | 2 |ξ| 2γ 1 +1 |η| γ 2 +1 dξdη ≤ |s 2 -s 1 | 2γ 1 |t 2 -t 1 | 2γ 2 R 2 |e ıξ -1| 2 |e ıη -1| 2 |ξ| 2γ 1 +1 |η| γ 2 +1 dξdη |s 2 -s 1 | 2γ 1 |t 2 -t 1 | 2γ 2 .
Furthermore, it can be shown that C 2l,ǫ,ǫ is of the form M l for a given M > 1. Thus

sup n∈N E[ x N 2l ǫ,ǫ ] M l E N 2l ,
from which the relation I 2,n (λ) < ∞ is easily obtained. This finishes the proof of (2.87).

Now is not difficult to obtain the following result

Theorem 2.6.9. Let f ∈ C 10 (R) function satisfying the (GC) with a small parameter λ > 0 then

δf (x) = f ′ (x) dx + f ′′ (x) d 1 xd 2 x (2.88)
moreover the following convergence Hold

f ′ (x N )dx n → N →+∞ f ′ (x) dx, f ′′ (x N )d 1 x N d 2 x N → N →+∞ f ′′ (x)d 1 xd 2 x (2.89) in L p (Ω, C α-ε,β-ε 2,2
) for ε > 0 and 0 < λ < λ(p).

Proof. Du to the Theorem (2.5.21) we have that

f ′ (x N )dx N - f ′ (x)dx α-ε,β-ε C N K(||X N || + ||X||)||X N -X|| H α-ε,β-ε
Then using the Hölder inequality we can see that the needed convergence is only due to the fact that

E[||X N -X|| a α-ε,β-ε ] → N →+∞ 0, sup N E[K(||X N || + ||X||) b ] < +∞, sup N E[(C N ) c ] < ∞
for some a, b, c > 0, Now the two first affirmation are given by the theorem (2.6.3) and for the third is suffice to recall that

C = 10 i=1 sup |ξ|≤||x||∞+||x N ||∞ |f (i) (ξ)| e λ||x|| 2 ∞ e λ||x N || 2
where we have used that f satisfy the (GC) and then using Hölder inequalty Fernique Theorem and (2.87) we can see that sup N E[(C N ) c ] < +∞ which gives the convergence (2.89). Now to obtain the formula (2.88) is suffice to use the fact that

N α-ε,β-ε (f (x N ) -f (x)) → N →+∞ 0 in L p (Ω)
for p > 1 du to the Lemma (2.5.20) and the fact that sup N E[(C N ) p ] < +∞, and this end the proof.

The Brownian case

In [START_REF] Cairoli | Stochastic integrals in the plane[END_REF] the authors give a definition a la Itô for the multidmensional integral in the case of the Brownian sheet, the aim of this section is to compare their notion of integration with the integral previously defined. More precisely we will show that the two concepts coincide when the rough sheet is understood as Itô meaning. In all this subsection x is a Brownian sheet and X Itô the rough sheet be associated where all the iterated integrals are understood in the sense given in [START_REF] Cairoli | Stochastic integrals in the plane[END_REF] .

Of course using the same argument as in the lemma 2.6.5 we can see that our objects satisfy the regularity expected. For example

E[||B Itôxx || p 2h,h ′ ] h,h ′ ,p [0,1] 4 E[|(B Itôxx 1 ) u 1 u 2 v 1 v 2 | p ] |u 2 -u 1 | 2hp+2 |v 2 -v 1 | h ′ p+2 du 1 du . 2 dv 1 dv 2 + [0,1] 6 E[|(D Itôxx 2 ) u 1 u 2 v 1 v 2 v 3 v 4 | p ] |u 2 -u 1 | 2hp+2 |v 4 -v 3 | h ′ p+2 |v 2 -v 1 | h ′ p+2 du 1 du 2 du 3 du 4 dv 1 dv 2 + E[||δ 1 xδx|| p 2h,h ′ ] + E[||δx|| 2p h+2/p,h ′ +2/p ] (2.90) 
but by a simple computation we have that

E[|(B Itôxx 1 ) u 1 u 2 v 1 v 2 | p ] = c 1 p u p/2 1 (u 2 -u 1 ) p (v 2 -v 1 ) p/2 and E[|(D Itôxx 2 ) u 1 u 2 v 1 v 2 v 3 v 4 | p ] = c 2 p (u 2 -u 1 ) p (v 2 -v 1 ) p/2 (v 4 -v 3 ) p/2 then if h, h ′ < 1/
2 and p large enough then the r.h.s of the equation is finite and this gives that

B ItôXX 1 ∈ CC 2h,h ′ 2,2 .
To compare the two definition of integration we will show first that the two definition of boundary integral coincide.

Proposition 2.6.10. Let ϕ ∈ C 2 (R) satisfying the (GC) then the integral

I Itô,b1 s 1 s 2 t 1 t 2 = s 2 s 1 ϕ(x st 1 ) t 2 t 1 dst x st
with d is the Itô differential admit a continuos version which coincide with

I Rough,b1 s 1 s 2 t 1 t 2 = s 2 s 1 ϕ(x st 1 ) t 2 t 1 d st x st
where I rough,X,b1 are given by the Proposition 2.5.4

Proof. Let π = (s i ) i a dissection of the interval [s 1 , s 2 ]. Now by definition we have that

I Itôx,b 1 s 1 s 2 t 1 t 2 = P -lim |π|→0 i ϕ(x s i t 1 )δx s i s i+1 t 1 t 2 and I Rough,x,b 1 s 1 s 2 t 1 t 2 = a.s -lim |π|→0 i ϕ(x s i t 1 )δx s i s i+1 t 1 t 2 + ϕ ′ (x s i t 1 )(B Itô,xx 1 
) s i s i+1 t 1 t 2 but E[| i ϕ ′ (x s i t 1 )(B Itôxx 1 
) s i s i+1 t 1 t 2 | 2 ] = i E[ϕ ′ (x s i t 1 ) 2 ] E[|(B Itô,xx 1 
) s i s i+1 t 1 t 2 | 2 ] = 1/2t 1 (t 2 -t 1 ) i E[ϕ ′ (x s i t 1 ) 2 ](s i+1 -s i ) 2 ≤ t 1 (t 2 -t 1 )(s 2 -s 1 )|π| sup s∈[0,1] 2 E[ϕ ′ (x st 1 ) 2 ]
Then is suffice to remark that the term appearing in the r.h.s vanish when |π| go to zero and this finishes the proof .

Proposition 2.6.11. Let ϕ ∈ C 3 (R) satisfying the (GC) and Π = {(s i , t j )} ij a dissection of the rectangle [s 1 , s 2 ] × [t 1 , t 2 ] then we have :

L 2 (Ω) -lim |Π|→0 i,j ϕ(x s i t j )C Itô,xx s i s i+1 t j t j+1 = 0 L 2 (Ω) -lim |Π|→0 i,j ϕ(x s i t j )C Itô,ωx s i s i+1 t j t j+1 = 0 and L 2 (Ω) -lim |Π|→0 i,j J Rough,xx,ba s i s i+1 t j t j+1 = 0 L 2 (Ω) -lim |Π|→0 i,j
J Rough,ωx,ba s i s i+1 t j t j+1 = 0

where J Rough,xx,ba = a ϕ ′ (x)d a x â dxdx and J Rough,ωx,ba = a ϕ ′ (x)d a x â dωdx are given by the Proposition 2.5.4

Proof. We will prove only the first and third statement, for the two other we have exactly the same proof. Now definition we have that

C Ito,XX s 1 s 2 t 1 t 2 = (s 2 ,t 2 ) (s 1 ,t 1 )
(s,t)

(s 1 ,t 1 ) duv x uv dst x st and then by independence of the increment of the Brownian sheet we have that

E[| i,j ϕ(x s i t j )C Itô,xx s i s i+1 t j t j+1 | 2 ] = i,j 1/4 E[ϕ(x s i t j ) 2 ](s i+1 -s i ) 2 (t j+1 -t j ) 2 |Π| sup (s,t)∈[0,1] 2 E[ϕ(x st ) 2 ]
This give us the first convergence. Now we will focus on the third convergence which require more work. In fact by definition

J Rough,xx,b 1 s i s i+1 t j t j+1 = Λ 1 [δ 1 ϕ(x)C Itô,xx + ϕ ′ (X)µ 1 E Itô,xxx 1 + µ 1 (Λ 1 ⊗ 1 1)(ϕ(x) ♯1 D Itô,xx 1 + δ 1 ϕ ′ (x)E Itô,xx 1 
)] s i s i+1 t j t j+1 = Λ 1d [δ 1 ϕ(x) .t j C Itô,xx .t j t j+1 + ϕ ′ (x) .t j (µ 1 E Itô,xxx 1 
) .t j t j+1 + µ 1 (Λ 1 ⊗ 1 1)(ϕ(X) ♯1 .t j (D Itô,xx 1 
) .t j t j+1 + δ 1 ϕ ′ (X) .t j (E Itô,xx 1 
) .t j t j+1 )] s i s i+1
and then we have the bound

|J Rough,xx,b 1 s i s i+1 t j t j+1 | h (s i+1 -s i ) 3h (||δ 1 ϕ(X) .t j || h ||C Itô,xx .t j t j+1 || 2h + ( sup (s,t)∈[0,1] 2 |ϕ ′ (x st )|)||(E Itô,xxx 1 
) .t j t j+1 || C 2h 2 ⊗C h 2 + ||ϕ(x) ♯1 .t j || 2h ||(D Itô,xx 1 
) .t j t j+1 || C h ⊗C h + ||δ 1 ϕ ′ (x) .t j || h ||(E Itô,xxx 1 
) .t j t j+1 || C 2h ⊗C h ) (2.91) 
By independence of increments in the second direction, this gives:

E[| i,j J Rough,xx,ba s i s i+1 t j t j+1 | 2 ] h | i (s i+1 -s i ) 3h | 2 (a 1 + a 2 + a 3 + a 4 ) (2.92) where 1. a 1 = j E[||δ 1 ϕ(x) .t j || 2 h ] E[||C Itô,xx .t j t j+1 || 2 2h ] 2. a 2 = E[sup (s,t)∈[0,1] 2 |ϕ ′ (x st )| 2 ] j E[||(E Itô,xxx 1 ) .t j t j+1 || 2 C 2h 2 ⊗C h 2 ] 3. a 3 = j E[||ϕ(x) ♯1 .t j || 2 2h ] E[||(D Itô,xx 1 
) .t j t j+1 || 2 C h ⊗C h ] 4. a 4 = j E[||δ 1 ϕ ′ (x) .t j || 2 h ] E[||(E Itô,xxx 1 
) .t j t j+1 || 2 C 2h ⊗C h ]
To obtain our convergence it suffices to show that all these terms are bounded. A simple computation gives :

E[||δ 1 ϕ(x) .t j || 2 ] E[ sup (s,t)∈[0,1] 2 |ϕ ′ (x st )| 4 ] 1/2 E[||δ 1 x|| 4 h ] 1/2
where the r.h.s is finite. Now the Lemma 2.6.2 gives

||C Ito,xx .t j t j+1 || p 2h h,p [0,1] 2 |C Itô,xx u 1 u 2 t j t j+1 | p |u 2 -u 1 | 2hp+2 du 1 du 2 + [0,1] 4 |(D Itô,xx 1 ) u 1 u 2 u 3 u 4 t j t j+1 | p |u 4 -u 3 | hp+2 |u 2 -u 1 | hp+2 du 1 du 2 du 3 du 4
then taking the expectation in this last equality and using Jensen inequality we obtain that

E[||C Ito,XX .t j t j+1 || 2 2h ] h c p (t j+1 -t j ) 2 < ∞
where c p < +∞ for p large enough and then

a 1 h,p E[ sup (s,t)∈[0,1] 2 |ϕ ′ (x st )| 4 ] 1/2 E[||δ 1 x|| 4 h ] 1/2 j (t j+1 -t j ) 2
the terms a 2 , a 3 and a 4 can be treated similarly and then we obtain the wanted convergence of the boundary integral .

Corollary 2.6.12. Let ϕ ∈ C 5 (R) satisfying the (GC) then the integral

J Itô s 1 s 2 t 1 t 2 = s 2 s 1 t 2 t 1 ϕ(x st ) dst x st
where d is a Ito differential admit a continuous version with coincide with

J Rough s 1 s 2 t 1 t 2 = s 2 s 1 t 2 t 1 ϕ(x st )d st x st
where this last integral are given by Theorem 2.5.6

Proof. let Π = {(s i , t j )} ij a dissection of the rectangle [s 1 , s 2 ] × [t 1 , t 2 ]
then by definition we have that

J Rough s 1 s 2 t 1 t 2 = ij (-ϕ(x s i t j )δx s i s i+1 t j t j+1 + ϕ ′ (x s i t j )C Itô,xx s i s i+1 t j t j+1 + ϕ ′ (x s i t j )C Itô,ωx s i s i+1 t j t j+1 + a=1,2 (I Rough,x,ba s i s i+1 t j t j+1 + J Rough,xx,ba s i s i+1 t j t j+1 + J Rough,ωx,ba s i s i+1 t j t j+1 ) + r ♭ s i s i+1 t j t j+1 ) (2.93) 
where

r ♭ ∈ CC 1+,1+ 2,2
this fact combined with the proposition (2.6.11) and (2.6.10) give us

J Rough s 1 s 2 t 1 t 2 = P -lim |Π|→0 ij -ϕ(x s i t j )δx s i s i+1 t j t j+1 + I Itô,x,b 1 s i s i+1 t j t j+1 + I Itô,x,b 2 s i s i+1 t j t j+1
Now this last converge to the Ito integral in fact

E[|J Itô s 1 s 2 t 1 t 2 - ij I Itô,x,b 1 s i s i+1 t j t j+1 | 2 ] E[ sup (s,t)∈[0,1] 2 |ϕ(x st )| 4 ] 1/2 E[ sup |t-t ′ |+|s-s ′ |≤|Π| |x st -x s ′ t ′ | 4 ] 1/2
which the r.h.s vanish when the mesh of the partition go to zero then we have the result.

Stratanovich formula Vs Skorohod formula

Introduction

In [START_REF] Tudor | Itô formula and local time for the fractional Brownian sheet[END_REF] the authors use the Malliavin calculus to give a meaning for the Skorohod integral in the plane for a fractional Brownian sheet x of hurst parameter γ 1 , γ 2 > 1/2 and then he obtain the following change of variable formula

f (x st ) = f (0) + [0,s]×[0,t] f ′ (x uv )d ⋄ x uv + [0,s]×[0,t] f ′′ (x uv )d ⋄ 1 x uv d ⋄ 2 x uv + 2γ 1 γ 2 1 2 f ′′ (x uv )u 2γ 1 -1 v 2γ 2 -1 dudv + γ 2 1 2 f (3) (x uv )u 2γ 1 v 2γ 2 -1 d ⋄ 1 x u;v dv + γ 1 s 0 t 0 f (3) (x uv ) u 2γ 1 -1 v 2γ 2 d ⋄ 2 x u;v du + 2γ 1 γ 2 1 2 f (4) (x uv ) u 4γ 1 -1 v 4γ 2 -1 dudv.
(2.94) for a smooth function f satisfying an Gaussian bound, and in [START_REF]Itô formula for the two-parameter fractional Brownian motion using the extended divergence operator[END_REF] he give an extension for this formula in the case of the extended divergence which more artificial than the usual divergence operator. Our goal in this section is threefold, first we generalize this formula for a Gaussian process with smooth covariance function which satisfy some factorization property using the two parameters Young integration theory, secondly we will focus on the case of fractional Brownian sheet with hurst parameters γ 1 , γ 2 > 1/3 and using the construction given in the previous section for the rough sheet we show that the formula still hold true for the usual divergence, and thirdly we point out the link between the path by path integration given by the notion of Rough-Sheet or the bidimensional Young theory and the different type of the Skorohod integrals in the plane. Now we introduce some notations which are specific to this section.

Notation 2.7.1. We shall drop the index n of approximations in x n , which means that x will stand for a generic smooth path defined on [0, 1] 2 . For a smooth function ϕ : R → R, we also write y for the path ϕ(x) and for all j ≥ 1 we set y j = ϕ (j) (x) and y j,n = ϕ (j) (x n ).

Before starting to give our main result we recall in the following part briefly some tools of the Malliavin calculus.

Malliavin calculus framework

We consider in this section a centered Gaussian process {x s;t ; (s, t) ∈ [0, 1] 2 } with covariance function E[x s 1 ;t 1 x s 2 ;t 2 ] = R s 1 s 2 ;t 1 t 2 . We now briefly define the basic elements of Malliavin calculus with respect to x and then specify a little the setting under which we shall work.

Malliavin calculus with respect to x

We first relate a Hilbert space H to our process x, defined as the closure of the linear space generated by the functions {1 [0,s]×[0,t] , (s, t) ∈ [0, 1] 2 } with respect to the semi define positive form

1 [0,s 1 ]×[0,t 1 ] , 1 [0,s 2 ]×[0,t 2 ] = R s 1 s 2 ;t 1 t 2 .
Then the map I 1 : 1 [0,s]×[0,t] → x s;t can be extended to an isometry between H and the first chaos generated by {x s;t ; (s, t) ∈ [0, 1] 2 }.

Starting from the space H, a Malliavin calculus with respect to x can now be developed in the usual way (see [START_REF] Hu | Wick calculus for nonlinear Gaussian functionals[END_REF][START_REF]The Malliavin Calculus and Related Topics[END_REF] for further details). Namely, we first define a set of smooth functionals of x by

S := {f (I 1 (ψ 1 ), . . . , I 1 (ψ n )); n ∈ N, f ∈ C ∞ b (R n ), ψ 1 , . . . , ψ n ∈ H} and for F = f (I 1 (ψ 1 ), . . . , I 1 (ψ n )) ∈ S we define DF = n i=1 ∂ i f (I 1 (ψ 1 ), . . . , I 1 (ψ n )) ψ i .
Then D is a closable operator from L p (Ω) into L p (Ω, H). Therefore we can extend D to the closure of smooth functionals under the norm

F 1,p = (E[|F | p ] + E[ DF p H ]) 1 p
The iteration of the operator D is defined in such a way that for a smooth random variable F ∈ S the iterated derivative D k F is a random variable with values in H ⊗k . The domain D k,p of D k is the completion of the family of smooth random variables F ∈ S with respect to the semi-norm :

F k,p =   E[|F | p ] + k j=1 E[ D j F p H ⊗j ]   1 p
.

Similarly, for a given Hilbert space V we can define the space D k,p (V ) of V -valued random variables, and

D ∞ (V ) = ∩ k,p≥1 D k,p .
Consider now the adjoint δ ⋄ of D. The domain of this operator is defined as the set of u ∈ L 2 (Ω, H)

such that E[| DF, u H |] F 1,2
, and for this kind of process δ ⋄ (u)

(called Skorohod integral of u) is the unique element of L 2 (Ω) such that E[δ ⋄ (u)F ] = E[ DF, u H ]. Note that E[δ ⋄ (u)] = 0 and E[|δ ⋄ (u)| 2 ] ≤ E[ u 2 H ] + E[ Du 2 H⊗H ].
The following divergence type property of δ ⋄ will be useful in the sequel:

δ ⋄ (F u) = F δ ⋄ (u) -u, DF H , (2.95) 
and we also recall the following compatibility of δ ⋄ with limiting procedures:

Lemma 2.7.2. let u n be a sequence of elements in Dom(δ ⋄ ), which converges to u in L 2 (Ω, H). We further assume that δ ⋄ (u n ) converges in L 2 (Ω) to some random variable F ∈ L 2 (Ω). Then u ∈ Dom(δ ⋄ ) and δ ⋄ (u) = F .

Wick's products

Some of our results below will be expressed in terms of Riemann-Wick sums. We give a brief account on these objects, mainly borrowed from [START_REF] Hu | On Stratonovich and Skorohod stochastic calculus for Gaussian processes[END_REF][START_REF] Hu | Wick calculus for nonlinear Gaussian functionals[END_REF].

Among functionals F of x such that F ∈ D ∞ , the set of multiple integrals plays a special role. In order to introduce it in the context of a general process x indexed by the plane, consider an orthonormal basis {e n ; n ≥ 1} of H and let ⊗ denote the symmetric tensor product. Then

f n = finite f i 1 ,••• ,in e i 1 ⊗ • • • ⊗e in , f i 1 ,••• ,in ∈ R (2.96)
is an element of H ⊗n satisfying the relation:

f n 2 H ⊗n = finite |f i 1 ,••• ,in | 2 . (2.97)
Moreover, H ⊗n is the completion of the set of elements like (2.96) with respect to the norm (2.97).

For an element f n ∈ H ⊗n , the multiple Itô integral of order n is well-defined. First, any element of the form given by (2.96) can be rewritten as

f n = finite f j 1 •••jm e ⊗k 1 j 1 ⊗ • • • ⊗e ⊗km jm , (2.98) 
where the j 1 , . . . , j m are different and

k 1 + • • • + k m = n.
Then, if f n ∈ H ⊗n is given under the form (2.98), define its multiple integral as:

I n (f n ) = finite f j 1 ,••• ,jm H k 1 (I 1 (e j 1 )) • • • H km (I 1 (e jm )), (2.99) 
where H k denotes the k-th normalized Hermite polynomial given by

H k (x) = (-1) k e x 2 2 d k dx k e -x 2 2 = j≤k/2 (-1) j k! 2 j j! (k -2j)! x k-2j .
It holds that the multiple integrals of different order are orthogonal and that

E |I n (f n )| 2 = n! f n 2 H ⊗n .
This last isometric property allows to extend the multiple integral for a general f n ∈ H ⊗n by L 2 (Ω) convergence. Finally, one can define the integral of f n ∈ H ⊗n by putting I n (f n ) := I n ( fn ), where fn ∈ H ⊗n denotes the symmetrized version of f n . Moreover, the chaos expansion theorem states that any square integrable random variable F ∈ L 2 (Ω, G, P), where G is the σ-field generated by x, can be written as

F = ∞ n=0 I n (f n ) with E[F 2 ] = ∞ n=0 n! f n || 2 H ⊗n . (2.100) 
With these notations in mind, one way to introduce Wick products on a Wiener space is to impose the relation

I n (f n ) ⋄ I m (g m ) = I n+m (f n ⊗g m ) (2.101)
for any f n ∈ H ⊗n and g m ∈ H ⊗m , where the multiple integrals I n (f n ) and I m (g m ) are defined by (2.99).

If F = N 1 n=1 I n (f n ) and G = N 2 m=1 I m (g m ), we define F ⋄ G by F ⋄ G = N 1 n=1 N 2 m=1 I n+m (f n ⊗g m ).
By a limit argument, we can then extend the Wick product to more general random variables (see [START_REF] Hu | On Stratonovich and Skorohod stochastic calculus for Gaussian processes[END_REF] for further details). In this paper, we will take the limits in the L 2 (Ω) topology.

Some corrections between ordinary and Wick products will be computed below. A simple example occurs for products of f (x) by a Gaussian increment. Indeed, for a smooth function f and g 1 , g 2 ∈ H, it is shown in [START_REF] Hu | On Stratonovich and Skorohod stochastic calculus for Gaussian processes[END_REF] that

f (I 1 (g 1 )) ⋄ I 1 (g 2 ) = f (I 1 (g 1 )) I 1 (g 2 ) -f ′ (I 1 (g 1 )) g 1 , g 2 H .
(2.102)

We now state a result which is proven in [53, Proposition 4.1].

Proposition 2.7.3. Let F ∈ D k,2 and g ∈ H ⊗k . Then

1. F ⋄ I k (g) is well defined in L 2 (Ω).
2. F g ∈ Dom δ ⋄k .

3. F ⋄ I k (g) = δ ⋄k (F g).

Young Vs Skorohod

We define the bidimensional integral for a general Gaussian process which have a "Young-Hölder" regularity and obtain a change of variable formula in this case which generalize the result obtained in [START_REF] Tudor | Itô formula and local time for the fractional Brownian sheet[END_REF]. Now let us specify what doesn't mean by the Young-Hölder regularity Hypothesis 2.7.4. The covariance R of our centered Gaussian process x belongs to the space C 1-var ([0, 1] 4 ), and satisfies a factorization property of the form

E[x s 1 ;t 1 x s 2 ;t 2 ] = R s 1 s 2 ;t 1 t 2 = R 1 s 1 s 2 R 2 t 1 t 2 ,
for two covariance functions R 1 , R 2 on [0, 1]. In addition, setting R i a = R i aa for a ∈ [0, 1] and i = 1, 2, we assume that a → R i a is differentiable and we suppose that

|2R i ab -R i aa -R i bb | |a -b| γ i (2.103) for all a, b ∈ [0, 1], with γ i > 1. Finally we suppose that (R i ) ′ a = ∂ a R i aa ∈ L ∞ ([0, 1]).
The first consequence of our Hypothesis 2.7.4 is that the regularity of x corresponds to the Young type regularity of Section (2.4). Indeed, it is readily checked that relation (2.103) yields

E (δx s 1 s 2 ;t 1 t 2 ) 2 |s -s ′ | γ 1 |t -t ′ | γ 2 .
Since x is Gaussian, an easy application of Kolmogorov's criterion ensures that

x ∈ CC α 1 ,α 2 1,1 , with α 1 = γ 1 2 -ǫ 1 > 1 2 , α 2 = γ 2 2 -ǫ 2 > 1 2 , (2.104) 
for arbitrarily small ǫ 1 , ǫ 2 > 0. This enables us to appeal to Young's integration theory given in the section (2.4) in order to define the integrals

z 1 = y 1 dx, z 2 = y 2 d 1 xd 2 x .
Theorem 2.7.5. Assume x is a centered Gaussian process on [0, 1] 2 with a covariance function satisfying (2.7.4), and consider a function f ∈ C 4 (R) satisfying condition (GC). Then the increments 

z 1,⋄ s 1 s 2 t 1 t 2 = s 2 s 1 t 2 t 1 y 1 uv d ⋄ 12 x uv , and z 2,⋄ s 1 s 2 t 1 t 2 = s 2 s 1 t 2 t 1 y 2 d ⋄ 1 xd ⋄ 2 x uv , ( 2 
lim n→∞ π 1 n ,π 2 n y 1 σ i ;τ j ⋄ δx σ i σ i+1 τ j τ j+1 = z 1,⋄ s 1 s 2 t 1 t 2 (2.106) lim n→∞ π 1 n ,π 2 n y 2 σ i ;τ j ⋄ δ 2 x s i ;t j t j+1 ⋄ δ 1 x s i s i+1 ;t j = z 2,⋄ s 1 s 2 ;t 1 t 2 , (2.107) 
where ⋄ stands for the Wick product in the left hand side of the relations above, and where the convergence holds in both a.s and L 2 (Ω) sense.

(ii) The change of variables formula for y = f (x) becomes 

δy s 1 s 2 t 1 t 2 = z 1,⋄ s 1 s 2 t 1 t 2 + z 2,⋄ s 1 s 2 t 1 t 2 + 1 2 s 2 s 1 t 2 t 1 y 2 uv d 1 R 1 u d 2 R 2 v + 1 2 s 2 s 1 t 2 t 1 y 3 uv R 1 u d 2 R 2 v d ⋄ 1 x uv + 1 2 s 2 s 1 t 2 t 1 y 3 uv R 2 v d 1 R 1 u d ⋄ 2 x uv + 1 4 s 2 s 1 t 2 t 1 y 4 uv R 1 u R 2 v d 1 R 1 u d 2 R 2 v . ( 2 
≤ f ∞ R 1-var;[0,1] 4 . Proof. Consider a step function f = ij a ij 1 ∆ ij related to a partition (∆ ij ) ij of [0, 1] 2 .
We have

f 2 H = i,j,l,k a ij a lk R 1 s i s l R 2 t j t k = i,j,k,l a ij a kl s i 0 s l 0 t j 0 t k 0 d 12 R 1 s 1 s 2 d 12 R 2 t 1 t 2 = [0,1] 4 f s 1 ;t 1 f s 2 ;t 2 d 12 R 1 s 1 s 2 d 12 R 2 t 1 t 2 ≤ f 2 ∞ R 1-var;[0,1] 4 . (2.109)
The general case now easily follows by density of the step functions in H.

Let us now recall that we work under the usual assumptions for Skorohod type change of variables formulae given at Definition 2.6.6 and referred to as (GC) condition in the sequel. Notice that

max s,t∈[0,1] (R 1 s R 2 t ) = max s,t∈[0,1] E[|x s;t | 2 ]. Thus condition (GC) implies that E sup s,t∈[0,1] |f (x s;t )| r < ∞, for all r ≥ 1.
(2.110)

We now state an approximation result in H which proves to be useful in order to get our Itô type formula.

Proposition 2.7.7. Let x be a centered Gaussian process on [0, 1] satisfying Hypothesis 2.7.4 and f ∈ C 1 (R) such that the growth condition (GC) is fulfilled for ϕ and ϕ (1) . Consider a rectangle

∆ = [s 1 , s 2 ] × [t 1 , t 2 ], π 1 = (s i ) i , π 2 = (t j ) j two respective dissections of the intervals [s 1 , s 2 ] and [t 1 , t 2 ] and denote by ∆ i,j = [s i , s i+1 ] × [t j , t j+1 ]. Then lim |π 1 |,|π 2 |→0 E   y • 1 ∆ - i,j y s i ;t j 1 ∆ i,j 2 H   = 0, Proof. Observe first that y s;t 1 ∆ (s, t) - i,j y s i ;t j 1 ∆ ij (s, t) = i,j
(y s;ty s i ;t j )1 ∆ i,j (s, t) from which the following estimation is easily obtained:

|(y s;t -y s i ;t j )1 ∆ i,j (s, t)| ≤ sup (s,t)∈∆ |y 1 s;t | max |s 1 -s 2 |≤|π 1 |,|t 1 -t 2 |≤|π 2 | |x s 1 ;t 1 -x s 2 ;t 2 | 1 ∆ i,j .
Hence if we take expectations in this last estimation and resort to Hölder's inequality, we obtain that

E   y • 1 ∆ - i,j y s i ;t j 1 ∆ i,j 2 ∞   ≤ E 1/2 sup (s,t)∈∆ |y 1 s;t | 4 E 1/2 max |s-s ′ |≤|π 1 |,|t-t ′ |≤|π 2 | |x s;t -x s 2 ;t 2 | 4 i,j 1 ∆ ij ∞ .
Now the r.h.s of this inequality goes to zero when the mesh of the partitions π 1 , π 

= [s 1 , s 2 ] × [t 1 , t 2 ]. Then we have that y 1 • 1 ∆ ∈ Dom(δ ⋄ )
, and if we define the increment z 1,⋄ ≡ δ ⋄ (y 1 • 1 ∆ ) the following relation holds true:

z 1,⋄ s 1 s 2 ;t 1 t 2 = z 1 s 1 s 2 ;t 1 t 2 - 1 4 s 2 s 1 t 2 t 1 y 2 s;t d 1 R 1 s d 2 R 2 t , (2.111) 
where z 1 is given by Proposition (2.4.1) and the second one is of Riemann-Stietjes type. Moreover, relation (2.106) holds true in the L 2 (Ω) and almost sure sense.

Proof. Consider a sequence of partitions π n = (π 1 n , π 2 n ) whose mesh go to 0 as n → ∞. The generic elements of π n will be denoted by (s i , t j ). Owing to formula (2.95), we have that

πn δ ⋄ (y 1 s i ;t j 1 ∆ ij ) = πn y 1 s i ;t j δx s i s i+1 ;t j t j+1 - πn y 2 s i ;t j E[x s i ;t j δx s i s i+1 ;t j t j+1 ] = πn y 1 s i ;t j δx s i s i+1 ;t j t j+1 - πn y 2 s i ;t j (R 1 s i s i+1 -R 1 s i s i )(R 2 t j t j+1 -R 2 t j t j ) ≡ A n 1 -A n 2 .
We now treat those two terms separately.

Step 1: 

Estimation of A n 1 . The term A n 1 = πn y 1 s i ;t j δx s i s i+1 ;t j t j+1 is a Riemann type sum. Since x ∈ CC α 1 ,α 2 1,1 with α 1 , α 2 > 1/2,
= A n 1 + πn (Id -Λ 2 δ 2 )(Λ 1 δ 1 )(y 1 δx) s i s i+1 ;t j t j+1 + πn (Id -Λ 1 δ 1 )(Λ 2 δ 2 )(y 1 δx) s i s i+1 ;t j t j+1 - πn Λδ(y 1 δx) s i s i+1 ;t j t j+1 .
Furthermore, some partial summations can be performed on the terms Id -Λ i δ i for i = 1, 2 and setting

D n 1 ≡ s 2 s 1 t 2 t 1 y 1 s;t d 12 x s;t -A n 1 we deduce that D n 1 = π 2 n [(Id -Λ 1 δ 1 )(Λ 2 δ 2 )] (y 1 δx) s 1 s 2 ;t j t j+1 + π 1 n [(Id -Λ 2 δ 2 )(Λ 1 δ 1 )] (y 1 δx) s i s i+1 ;t 1 t 2 - πn Λδ(y 1 δx) s i s i+1 ;t j t j+1 .
Recalling the Hölder regularity (2.104) of our process x, we thus obtain

|D n 1 | |s 2 -s 1 | α 1 δ 2 y 1 0,α 1 δx α 1 ,α 2 j |t j+1 -t j | 2α 2 + |t 2 -t 1 | α 2 δ 1 y 1 α 1 ,0 δx α 1 ,α 2 π 1 n |s i+1 -s i | 2α 1 + δy 1 α 1 ,α 2 δx α 1 ,α 2 πn |s i+1 -s i | 2α 1 |t j+1 -t j | 2α 2 .
Now taking expectations in the last relation and using Hölder's inequality we end up with

E[|D n 1 | 2 ] s 1 ,s 2 ,t 1 ,t 2 ,α 1 ,α 2 |π 1 | 4α 1 -2 + |π 2 | 4α 2 -2 E 1/2 [ δx 4 α 1 ,α 2 ] × E 1/2 [ δ 1 y 1 4 0,α 1 ] + E 1/2 [ δ 2 y 1 4 α 2 ] + E 1/2 [ δy 1 4 α 1 ,α 2 ] , (2.112) 
for n large enough.

We are now going to prove that one can recast (2.112) into

E[|D n 1 | 2 ] s 1 ,s 2 ,t 1 ,t 2 ,α 1 ,α 2 |π 1 | 4α 1 -2 + |π 2 | 4α 2 -2 .
(2.113)

In addition combining the fact that E[ δx 4 α 1 ,α 2 ] < +∞ with Lemma (2.5.20) plus condition (GC) on the function f , we obtain that

E[ δx 4 α 1 ,α 2 ] 1/2 E[ δ 1 y 1 4 0,α 1 ] 1/2 + E[ δ 2 y 1 4 α 2 ] 1/2 + E[ δy 1 4 α 1 ,α 2 ] 1/2 < +∞.
Hence inequality (2.113) is easily deduced from (2.112), and this proves that

A n 1 converges in L 2 (Ω) to s 2 s 1 t 2 t 1 y 1 s;t d 12 x s;t as n → ∞. Step 2: Estimation of A n 2 .
Recall that A n 2 is defined by

A n 2 = πn y 2 s i ;t j (R 1 s i+1 s i -R 1 s i s i )(R 2 t j+1 t j -R 2 t j t j ).
In order to treat this term, first remark that for k = 1, 2 we have

R k s i s i+1 -R k s i s i = 1 2 (R k s i+1 s i+1 -R k s i s i ) + ρ k s i s i+1 , where ρ k s i s i+1 = 1 2 (2R k s i s i+1 -R k s i s i -R k s i+1 s i+1 ).
Injecting this relation in the definition of the term A n 2 and recalling that we have set R k a ≡ R k aa , we obtain

A n 2 = 1/4 πn y 2 s i ;t j (R 1 s i+1 -R 1 s i )(R 2 t j+1 -R 2 t j ) +1/2 πn y 2 s i ;t j (R 2 t j+1 -R 2 t j )ρ 1 s i s i+1 + (R 1 s i+1 -R 1 s i )ρ 2 t j t j+1 + ρ 1 s i s i+1 ρ 2 t j t j+1 ≡ A n 21 + A n 22 + A n 23 + A n 24 .
We will now show that 

lim n→∞ A n 21 = 1 4 s 2 s 1 t 2 t 1 y 2 s;t d 1 R 1 s d 2 R 2 t ,
A n 22 |π 1 | γ 1 -1 sup (s,t)∈∆ |y 2 s;t | πn (s i+1 -s i ) |R 2 t j+1 -R 2 t j | ≤ |π 1 | γ 1 -1 sup (s,t)∈∆ |y 2 s;t | (s 2 -s 1 ) t 2 t 1 |d 2 R 2 t |.
This relation, plus the condition (GC) on f , obviously entails that lim n→∞ A n 22 = 0 in the almost sure and L 2 (Ω) sense. The case of A n 23 , A n 24 follow exactly along the same lines. We now focus on the term A n 21 : observe that

a 1 -1/4 s 2 s 1 t 2 t 1 y 2 s;t d 1 R 1 s d 2 R 2 t sup (s,t)∈∆ |y 2 s;t | max |s-s ′ |≤|π 1 |,|t-t ′ |≤|π 2 | |x s;t -x s 2 ;t 2 | s 2 s 1 t 2 t 1 |d 1 R 1 s d 2 R 2 t |.
Invoking the same estimates as before for the Hölder norm of x and condition (GC) on f , the proof of our assertion (2.114) is now completed.

Step 

δ ⋄ (y 1 s i ;t j 1 ∆ ij ) = s 2 s 1 t 2 t 1 y 1 s;t d 12 x s;t - 1 4 s 2 s 1 t 2 t 1 y 2 s;t d 1 R 1 s d 2 R 2 t .
where the convergence is understood in both a.s and L 2 (Ω) sense. Furthermore, Proposition 2.7.7 asserts that πn y 1 s i ;t j 1 ∆ i,j converges in L 2 (Ω, H) to y 1 • 1 ∆ . This finishes our proof of relation (2.111) thanks to a direct application of Lemma 2.7.2.

As far as expression (2.106) with Wick-Riemann sums is concerned, recall that we have proved that

δ ⋄ (y 1 • 1 ∆ ) = lim |π 1 |,|π 2 |→0 πn δ ⋄ (y 1 s i ;t j 1 ∆ ij ).
Now invoke Proposition 2.7.3 for k = 1 in order to state that

δ ⋄ (y 1 s i ;t j 1 ∆ ij ) = y 1 s i ;t j ⋄ δ ⋄ (1 ∆ ij ) = y 1 s i ;t j ⋄ δx s i s i+1 ;t j t j+1 ,
which ends the proof.

Proposition 2.7.8 gives a meaning to the increment z 1,⋄ and compares them to the corresponding Stratonovich increment z 1 . In order to compare change of variables formulae, we still have to define Skorohod integrals of the form z 2,⋄ , which is what we proceed to do now.

To this aim, let us start by some formal considerations: it is easily conceived that

s 0 t 0 y 2 uv d ⋄ 1 x uv d ⋄ 2 x u;v = s 0 t 0 u 0 v 0 y 2 uv d ⋄ 12 x u ′ v d ⋄ 12 x uv ′ = δ 2,⋄ (N (y)) (2.115)
where, similarly to [START_REF] Tudor | Itô formula and local time for the fractional Brownian sheet[END_REF], we set

N (y) u ′ u;vv ′ := y 1 [0,s]×[0,v] (u, v ′ ) 1 [0,u]×[0,t] (u ′ , v),
and where we integrate firstly in (u ′ , v) and then in (u, v ′ ). Our objective in what follows is to give a rigorous meaning to equation (2.115).

Lemma 2.7.9. Take up the notation of Proposition 2.7.8, and consider f ∈ C 3 (R) satisfying condition (GC). For a sequence of partitions (π n ) n≥1 whose mesh goes to 0 define

a πn u ′ u;vv ′ = i,j y 2 s i t j 1 [0,s i ]×[t j ,t j+1 ] (u ′ , v) 1 [s i ,s i+1 ]×[0,t j ] (u, v ′ ). ( 2 

.116)

Then a πn converges to N (y) in L 2 (Ω, H ⊗2 ) as n goes to infinity.

Proof. First notice that the tensor norm of an element K ∈ H ⊗2 can be bounded as:

K H ⊗2 = [0,1] 8 K a 1 a ′ 1 ;b 1 b ′ 1 K a 2 a ′ 2 ;b 2 b ′ 2 d 12 R 1 a 1 a ′ 1 d 12 R 1 a 2 a ′ 2 d 12 R 2 b 1 b ′ 1 d 12 R 1 b 2 b ′ 2 ≤ [0,1] 8 |K a 1 a ′ 1 ;b 1 b ′ 1 K a 2 a ′ 2 ;b 2 b ′ 2 | |d 12 R 1 a 1 a ′ 1 ||d 12 R 1 a 2 a ′ 2 ||d 12 R 2 b 1 b ′ 1 ||d 12 R 1 b 2 b ′ 2 |.
(2.117) Furthermore, a simple computation shows that

a πn u ′ u;vv ′ -N (y) u ′ u;vv ′ = πn y 2 s i t j -y 2 uv 1 [0,u]×[t j ,t j+1 ] (u ′ , v)1 [s i ,s i+1 ]×[0,v] (u, v ′ ) + πn y 2 
s i t j 1 [0,s i ]×[0,t j ] (u ′ , v ′ ) -1 [0,u]×[0,v] (u ′ , v ′ ) 1 [s i ,s i+1 ]×[t j ,t j+1 ] (u, v) ,
and thus,

a πn u ′ u;vv ′ -N (y) u ′ u;vv ′ ≤ sup (a,b)∈[0,s]×[0,t] |y 3 ab | sup |a 2 -a 1 |≤|π 1 |,|b 2 -b 1 |≤|π 2 | |x a 2 ;b 2 -x a 1 ;b 1 | + max i,j (1 [s i ,s i+1 ] (u ′ ) + 1 [t j ,t j+1 ] (v ′ )) sup (a,b)∈[0,s]×[0,t] |y 2 ab | . (2.118)
Our claims are now easily derived: on the one hand the right hand side of (2.118) converges to zero when n → ∞ if u ′ = s i and v ′ = t j for all i, j. Then using inequality (2.117) and dominated convergence we obtain that a πn converges a.s to N (y) in H ⊗2 . On the other hand, in order to obtain the convergence in L 2 (Ω, H ⊗2 ) it suffices to use the fact that f satisfies condition (GC) and apply once again dominated convergence.

Now we are able to define our mixed integral in the Skorohod sense and connect it to the equivalent integral in the Young theory: Proposition 2.7.10. Assume x is a centered Gaussian process on [0, 1] 2 with a covariance function satisfying (2.7.4). Consider a function f ∈ C 4 (R) satisfying condition (GC) and a rectangle ∆ = [s 1 , s 2 ] × [t 1 , t 2 ]. Then we have that N (y) ∈ Dom(δ ⋄,2 ), and if we define z 2,⋄ = δ ⋄,2 (N (y)) the following relation holds:

z 2,⋄ s 1 s 2 ;t 1 t 2 = z 2 s 1 s 2 ;t 1 t 2 - 1 4 s 2 s 1 t 2 t 1 y 2 uv d 1 R 1 u d 2 R 2 v - 1 2 s 2 s 1 t 2 t 1 y 3 uv R 1 u d 2 R 2 v d 1 x uv - 1 2 s 2 s 1 t 2 t 1 y 3 uv R 2 v d 1 R 1 u d 2 x uv + 1 4 s 2 s 1 t 2 t 1 y 4 uv R 1 u R 2 v d 1 R 1 u d 2 R 2 v , (2.119) 
where

s 2 s 1 t 2 t 1 y 3 uv R 1 u d 2 R 2 v d 1 x uv and s 2 s 1 t 2 t 1 y 3 uv R 2 v d 1 R 1 u d 2
x uv are defined according to Proposition 2.4.5. Moreover, relation (2.107) holds true in the L 2 (Ω) and almost sure sense.

Proof. Like for Proposition 2.7.8, our strategy is as follows: consider a sequence π n = (π 1 n , π 2 n ) whose mesh go to 0 as n → ∞ and set a n ≡ a πn defined by (2.116). We have seen at Lemma 2.7.9 that lim n→∞ a n = N (y) in L 2 (Ω, H ⊗2 ). We shall now study the convergence of δ ⋄ (a n ) by means of Wick-Stratonovich corrections. Then we will conclude by invoking Proposition 2.7.2.

Step 1: Wick-Stratonovich corrections. According to relation (2.101) and Proposition 2.7.3 for k = 2 we obtain

δ ⋄,2 (a n ) = πn δ ⋄,2 (y 2 s i ;t j 1 [0,s i ]×[t j ,t j+1 ] ⊗ 1 [s i ,s i+1 ]×[0,t j ] ) = πn y 2 s i ;t j ⋄ δ 2 x s i ;t j t j+1 ⋄ δ 1 x s i s i+1 ;t j . ( 2 

.120)

We now use Theorem 4.10 in [START_REF] Hu | On Stratonovich and Skorohod stochastic calculus for Gaussian processes[END_REF] in order to get that δ ⋄,2 (a n ) can be decomposed as:

πn y 2 s i ;t j (δ 2 x s i ;t j t j+1 ⋄ δ 1 x s i s i+1 ;t j ) - πn y 3 s i ;t j R 1 s i (R 2 t j t j+1 -R 2 t j t j )δ 1 x s i s i+1 ;t j - πn y 3 s i ;t j R 2 t j (R 1 s i s i+1 -R 1 s i ,s i )δ 2 x s i ;t j t j+1 (2.121) + πn y 4 s i ;t j R 1 s i R 2 t j (R 1 s i s i+1 -R 1 s i s i )(R 2 t j t j+1 -R 2 t j t j ) ≡ B n 1 -B n 2 -B n 3 + B n 4 .
Like in the proof of Proposition 2.7.8, we treat those 4 terms separately.

Step 2: Estimation of B n 1 , . . . , B n 4 . The term B n 1 can be decomposed as

B n 1 = πn y 2 s i t j δ 1 x s i s i+1 t j δ 2 x s i t j t j+1 - πn y 2 s i t j (R 1 s i s i+1 -R 1 s i s i )(R 2 t j t j+1 -R 2 t j t j ).
Moreover, the second term in the r.h.s is the same as A n 2 in the proof of Proposition 2.7.8, while the convergence for πn y 2 s i ;t j δ 1 x s i s i+1 ;t j δ 2 x s i ;t j t j+1 follows exactly along the same lines as A n 1 in the same proof. We thus leave to the patient reader the task of showing that

lim n→∞ B n 1 = s 2 s 1 t 2 t 1 y 2 st d 1 x st d 2 x s;t - 1 4 s 2 s 1 t 2 t 1 y 2 st d 1 R 1 s d 2 R 2 t , (2.122) 
and we concentrate now on the other terms in (2.121).

The term B n 2 = πn y 3

s i t j R 1 s i (R 2 t j t j+1 -R 2 t j t j )δ 1 x s i s i+1 ;t j can be decomposed as B n 2 = B n 21 + B n 22 , with B n 21 = 1 2 πn y 3 s i t j R 1 s i (R 2 t j+1 -R 2 t j )δ 1 x s i s i+1 t j , B n 22 = πn y 3 s i ;t j R 1 s i ρ 2 t j t j+1 δ 1 x s i s i+1 ;t j ,
where we recall that we have set

ρ k t j t j+1 = 1 2 (2R k t j t j+1 -R k t j t j -R k t j+1 t j+1 ) for k = 1, 2.
It is now easily seen that the almost sure and L 2 convergence of B n 2 are obtained with the same kind of considerations as for A n 2 in the proof of Proposition 2.7.8. We get that

lim n→∞ B n 2 = 1 2 s 0 t 0 y 3 u;v R 1 u d 2 R 2 v d 1 x u;v ,
and B n 3 , B n 4 are also handled in the same way.

Step 3: Conclusion. Thanks to Step 1 and Step 2, we have obtained that δ ⋄ (a n ) converges to the right hand side of relation (2.119) as n → ∞, in both almost sure and L 2 senses. As mentioned before, this limiting behavior plus the convergence of a n to N (y) established at Lemma (2.7.9) yield relation (2.119) by a direct application of Proposition (2.7.2). Furthermore, relation (2.107) is also a direct consequence of relation (2.120).

Notice that our formula (2.119) involves some mixed integrals of the form

s 0 t 0 y 3 u;v R 2 v d 1 R 1 u d 2 x u;v
, which are defined as Young type integrals. The following proposition, whose proof is similar to Propositions (2.7.8) and (2.7.10) and is left to the reader for sake of conciseness, gives a meaning to the analogue integrals in the Skorohod setting. Proposition 2.7.11. Let f ∈ C 4 (R) be a function satisfying condition (GC). Then for every fixed u ∈ [0, s] we have that v → y 3 u;v R 2 v ∈ Dom(δ ⋄,u ) where δ ⋄,u is the divergence operator associated to the process (x uv ) v∈[0,t] . We can thus define

s 0 t 0 y 3 uv R 2 v d 1 R 1 u d ⋄ 2
x uv by :

s 0 t 0 y 3 u;v R 2 v d 1 R 1 u d ⋄ 2 x u;v := lim |π|→0 πn δ ⋄,s i (y 3 s i ;t j 1 [t j ,t j+1 ] )R 2 t j (R 1 s i+1 -R 1 s i )
where the convergence holds in both L 2 (Ω) and almost sure senses. In addition, we have the following identity:

s 0 t 0 y 3 uv R 2 v d 1 R 1 u d ⋄ 2 x u;v = s 0 t 0 y 3 uv R 2 v d 1 R 1 u d 2 x u;v - 1 2 s 0 t 0 y 4 u;v R 1 u R 2 v d 1 R 1 u d 2 R 2 v .
Finally, the integral

s 0 s 0 y 3 uv R 1 u d 2 R 2 v d ⋄ 1
x uv is defined similarly. Remark 2.7.12. We have defined all the integrals we needed in order to prove our Skorohod change of variable formula (2.108). Indeed, start from the Stratonovich type formula (2.4.4). The proof of formula (2.108) is now easily deduced by injecting the identities of Propositions 2.7.8, 2.7.10 and 2.7.11 in the equality above.

Skorohod's calculus in the rough case

Our goal in this section is to extend the formulae given in Propositions 2.7.8 and 2.7.10 to rougher situations, namely for Gaussian processes in the plane with Hölder regularities smaller than 1/2. This is however a harder task than in the Young case, and this is why we introduce 2 simplifications in our considerations:

(1) Instead of dealing with a general centered Gaussian process whose covariance admits the factorization property of Hypothesis 2.7.4, we handle here the case of a fractional Brownian sheet

(x s;t ) (s,t)∈[0,1] 2 with Hurst parameters γ 1 , γ 2 ∈ (1/3, 1/2].
(2) The definition of our Skorohod integrals with respect to x is obtained in the following way: we first regularize x as a smooth process x n . For this process we can still use the formulae of Propositions 2.7.8 and 2.7.10 like in the Young case. We shall then perform a limiting procedure on these formulae (this is where the specification of a concrete approximation is important), which will give our Stratonovich-Skorohod corrections. Notice however that the interpretation in terms of Riemann-Wick sums will be lost with this strategy.

Our main result for this partin the following Theorem 2.7.13. Assume x is a fractional Brownian sheet on [0, 1] 2 , with γ j > 1/3 for j = 1, 2.

Then the increments

z 1,⋄ = y 1 d ⋄ 12 x, z 2,⋄ = y 2 d ⋄ 1 xd ⋄ 2 x
are well defined in the Skorohod sense of Malliavin calculus. Moreover: (i) Both z 1,⋄ and z 2,⋄ can be seen as respective limits of z n,1,⋄ and z n,2,⋄ , computed as in Theorem 2.7.5 for the regularized process x n .

(ii) For all f ∈ C 10 (R), the following change of variables formula

δy s;t = z 1,⋄ + z 2,⋄ + 2γ 1 γ 2 1 2 y 2 u;v u 2γ 1 -1 v 2γ 2 -1 dudv + γ 2 1 2 y 3 u;v u 2γ 1 v 2γ 2 -1 d ⋄ 1 x u;v dv + γ 1 1 2 y 3 u;v u 2γ 1 -1 v 2γ 2 d ⋄ 2 x u;v du + γ 1 γ 2 1 2 y 4 u;v u 4γ 1 -1 v 4γ 2 -1 dudv. (2.123)
(iii) Explicit corrections between z 1 , z 2 and z 1,⋄ , z 2,⋄ can be computed (see relations (2.136) and (2.144)).

As in the previous section, we start our considerations by specifying the Malliavin framework in which we are working.

Malliavin calculus preliminaries

Recall that the covariance function of our fractional Brownian sheet x is given by (2.77). We can thus consider a Hilbert space H x related to x exactly as in Section 2.7.2. In particular we denote by I x 1 the isometry between H x and the first chaos generated by x. However, the Malliavin structure related to the harmonizable representation of x will also play a prominent role in the sequel. Namely, it is well known (see e.g. [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF]) that for s, t ∈ [0, 1], x can be represented as

x s;t = c γ 1 ,γ 2 Ŵ (Q s;t ) = c γ 1 ,γ 2 R 2 Q s;t (ξ, η) Ŵ (dξ, dη), (2.124) 
where c γ 1 ,γ 2 is a normalization constant whose exact value is irrelevant for our computations, W is the Fourier transform of the white noise on R 2 , and Q s;t is a kernel defined by

Q s;t (ξ, η) = e ısξ -1 |ξ| γ 1 + 1 2 e ıtη -1 |η| γ 2 + 1 2 . ( 2 

.125)

This induces us to consider the canonical Hilbert space related to Ŵ , that is

H Ŵ = L 2 (R 2 ).
The relations between Malliavin calculus with respect to Ŵ and x are then summarized in the next lemma:

Lemma 2.7.14. Denote by D x,k,p (resp. D Ŵ ,k,p ) the Sobolev spaces related to x (resp. Ŵ ), and recall the notation

L 1,2 = D Ŵ ,1,2 (L 2 (R)) borrowed from [64]. For φ : [0, 1] 2 → R, set Kφ(ξ, η) = [0,1] 2 φ s;t ∂ s ∂ t Q s;t (ξ, η)dsdt, (2.126) 
where we recall that Q is defined by (2.125). Then the following holds true: (i) We can represent the space H x as the closure of the set of step functions under the norm φ

H x = Kφ L 2 (R 2 ) . (ii) We have D x,1,2 (H x ) = K -1 (L 1,2
). In addition, for any smooth function F and any H x -valued square integrable random variable u the following identity holds:

u, D x F H x = Ku, D Ŵ F L 2 (R 2 ) .
(iii) As far as divergence operators are concerned, the relation is

Dom(δ x,⋄ ) = K -1 Dom(δ Ŵ ,⋄ ), and δ x,⋄ (u) = δ Ŵ ,⋄ (Ku). Proof. Let φ = i,j φ i,j 1 [s i ,s i+1 ]×[t j ,t j+1 ]
be a step function. We have that:

I x 1 (φ) = i,j φ i,j δx s i s i+1 ;t j t j+1 = i,j φ i,j Ŵ (δQ s i s i+1 t j t j+1 ) = Ŵ   i,j φ i,j δQ s i s i+1 ;t j t j+1   = Ŵ (Kφ), (2.127) 
which easily yields our first claim (i).

Let now F be a smooth functional of x of the form F = f (x s 1 ;t 1 , . . . , x sn;tn ). Then

E [ u, D x F H x ] = E l∈{1,...,n} ∂ l f (x s 1 t 1 , . . . , x sntn ) u, 1 [0,s l ]×[0,t l ] H x = E l∈{1,...,n} ∂ l f (x s 1 t 1 , . . . , x sntn ) Ku, K1 [0,s l ]×[0,t l ] L 2 (R) , (2.128) 
and since K1 [0,s l ]×[0,t l ] = Q s l ,t l we end up with

E [ u, D x F H x ] = E Ku, l∈{1,...,n} ∂ l f ( Ŵ (Q s 1 t 1 ), . . . , Ŵ (Q sntn ))Q s l ,t l L 2 (R) = E Ku, D Ŵ F L 2 (R) ,
which gives our assertion (ii) by density of smooth functionals. Relation (iii) is easily derived from (ii) by duality.

Notice that the preceding result can be extended to second order derivatives thanks to a simple tensorization trick. We label here the result for further use: Lemma 2.7.15. Under the conditions of Lemma 2.7.14, set

K ⊗2 φ (ξ 1 ξ 2 ; η 1 η 2 ) = [0,1] 4 φ s 1 s 2 ;t 1 t 2 ∂ st Q s 1 ;t 1 (ξ 1 , η 1 )∂ st Q s 2 ;t 2 (ξ 2 , η 2 ) ds 1 ds 2 dt 1 dt 2 .
(2.129)

Then for any smooth functional F and any (H x ) ⊗2 -valued square integrable random variable u we have:

u, D 2,x F H x = K ⊗2 u, D 2, Ŵ F L 2 (R 4 ) .

Embedding results

Similarly to [START_REF] Bardina | Multiple fractional integral with Hurst parameter less than 1 2[END_REF], we now give an embedding result for the space H x which proves to be useful for further computations.

Lemma 2.7.16. Let γ 1 , γ 2 ∈ (0, 1 2 ]. Then the following inequality is satisfied:

u 2 H R 2 R 2 |δ ũs 1 s 2 ;t 1 t 2 | 2 |s 2 -s 1 | 2-2γ 1 |t 2 -t 1 | 2-2γ 2 ds 1 dt 1 ds 2 dt 2 + R 2 1 |s 2 -s 1 | 2-2γ 1 1 0 u s 2 t 1 [0,1] (s 2 ) -u s 1 t 1 [0,1] (s 1 ) 2 dt ds 1 ds 2 (2.130) + R 2 1 |t 2 -t 1 | 2-2γ 2 1 0 u st 2 1 [0,1] (t 2 ) -u st 1 1 [0,1] (t 1 ) 2 ds dt 1 dt 2 + [0,1] 2 |u st | 2 dsdt,
where we have set ũs;t = u s;t 1 [0,1] 2 (s, t).

Proof. In this proof we only consider the case γ 1 , γ 2 < 1/2. Indeed, if γ 1 = 1/2 or γ 2 = 1/2 then our process x is simply a Brownian motion in the first or in the second direction, and this situation is handled by L 2 norms. Set now w η s ≡ ( 1 0 u s;t e ıtη dt)1 [0,1] (s). Then for γ 1 , γ 2 < 1/2, definitions (2.125) and (2.126) entail that:

u 2 H = R 2 |ξ| 1-2γ 1 |η| 1-2γ 2 [0,1] 2 u s;t e ısξ+ıtη dsdt 2 dξdη = R |η| 1-2γ 2 R |ξ| 1-2γ 2 ŵη ξ 2 dξ dη = R |η| 1-2γ 2 ŵη H 1/2-γ 1 dη
where H 1/2-γ 1 stands for the Sobolev space W 1/2-γ 1 ,2 . Now we use the fact that 1/2γ 1 ∈ (0, 1/2), and recall that the norm defined by

N 2 1/2-γ 1 (φ) = R 2 |φ s 1 -φ s 2 | 2 |s 2 -s 1 | 2-2γ 1 ds 1 ds 2 + R |φ s | 2 ds for all φ ∈ H 1/2-γ 1 is equivalent to the usual norm in H 1/2-γ 1 . This yields u 2 H 1 0 R |η| 1-2γ 2 1 0 u s;t e ıtη dt 2 dη ds + R 2 1 |s 2 -s 1 | 2-2γ 1 R |η| 1-2γ 2 1 0 (u s 2 ;t 1 [0,1] (s 2 ) -u s 1 ;t 1 [0,1] (s 1 ))e ıtη dt 2 dη ds 2 ds 1 .
Now is suffices to repeat the same procedure in the second variable in order to obtain inequality (2.130).

Let us now recall the notations :

f α,1 = sup (s 1 ,s 2 ,t)∈[0,1] 2 ×[0,1] |δ 1 f s 1 s 2 ;t | |s 2 -s 1 | α , and f β,2 = sup (s,t 1 ,t 2 )∈[0,1] 2 |δ 2 f s;t 1 t 2 | |t 2 -t 1 | β .
With these notations in hand, the following embedding result is easily deduced from Lemma 2.7.16.

Corollary 2.7.17. Let γ 1 , γ 2 ∈ (0, 1/2] and u ∈ CC α 1 ,α 2

1,1 such that 0 < 1 2α i < γ i . Then we have the following embedding:

u H N α 1 ,α 2 (u), where we recall that N α,β (f ) = f α,β + f α,1 + f β,2 + f ∞ . (2.131)

Strategy and preliminary results

The strategy we shall develop in order to extend Proposition 2.7.8 (and also Proposition 2.7.10) to the rough case is based on a regularization of x. Specifically, for a strictly positive integer n, set

x n s;t = c γ 1 ,γ 2 |x|,|y|≤n Q s;t (ξ, η) Ŵ (dξ, dη), (2.132) 
where we recall that x and Q are respectively defined by (2.124) and (2.125). For fixed n, it is readily checked that x n is a regular Gaussian process. Its covariance function is given by R n s 1 s 2 ;t 1 t 2 = R 1,n s 1 s 2 R 2,n t 1 t 2 , where

R i,n ab = c γ i |ξ|≤n (e ıaξ -1)(e -ibξ -1) |ξ| 2γ i +1 dξ, for i = 1, 2,
and hence R n is a regular function which satisfies Hypothesis 2.7.4. One can thus apply Proposition 2.7.8 and obtains the following Skorohod-Stratonovich comparison: A first observation in this direction is that equation (2.133) involves Skorohod integrals with respect to x n . The fact that a different integral has to be defined for each n is somehow clumsy, and this is why we have decided to express all integrals with respect to Ŵ in the remainder of our computations. Namely, the same computations as for equations (2.127) and (2.128) entail that

z 1,n,⋄ s 1 s 2 t 1 t 2 ≡ δ x n ,⋄ (y n,1 • 1 ∆ ) = ∆ y n,1 st d 12 x n st - 1 4 ∆ y n,2 st d 1 R 1,n s d 2 R 2,
δ x n ,⋄ (y n ) = δ Ŵ ,⋄ (K n y n )
, where K n is the operator defined by

K n φ(x, y) = 1 (|x|,|y|≤n) [0,1] 2 φ s;t ∂ s ∂ t Q s;t (x, y)dsdt. (2.134) 
With this representation in hand, our limiting procedure can be decomposed as follows:

• Take L 2 limits in the right hand side of equation (2.133) by means of rough paths techniques.

• Show that K n y n converges in L 2 (Ω, L 2 (R)) to Ky.

Thanks to the closability of δ Ŵ ,⋄ , this will show the convergence of δ x n ,⋄ (y n 1 [0,1] 2 ) to δ x,⋄ (y1 [0,1] 2 ) and our Skorohod-Stratonovich correction formula will be obtained in this way.

We now state and prove 3 useful lemmas for our future computations. The first one deals with convergence of covariance functions: Lemma 2.7.18. For i = 1, 2, set R i u = u 2γ i . Then for all ε > 0 we have

lim n→+∞ R i,n -R i 2γ i -ǫ = 0. Proof. We recall that c γ i R |e ıaξ -1| 2 |ξ| 2γ i +1 dξ = a 2γ i .
Then an elementary computation shows that

|δ i (R i,n -R i ) ab | = c γ i |ξ|≥n cos(aξ) -cos(bξ) |ξ| 2γ i +1 dξ γ i ,ǫ |a -b| 2γ i -ǫ |x|≥n |ξ| -1-ǫ dξ, which gives R n,i -R u 2γ i -ǫ γ i ,ǫ |ξ|≥n |ξ| -1-ǫ dξ,
and this finishes the proof.

Itô-Skorohod type formula

We now turn to the limiting procedure in equation (2.133), beginning with the term involving covariances only: Proposition 2.7.19. Let f ∈ C 6 (R) be a function satisfying condition (GC) with a small parameter λ > 0, and x n be the regularized version of x defined by (2.132). Then the following convergence:

lim n→+∞ [0,1] 2 y n s;t d 1 R 1,n s d 2 R 2,n t = γ 1 γ 2 [0,1] 2 y s;t s 2γ 1 -1 t 2γ 2 -1 dsdt (2.135) holds in L 2 (Ω).
Proof. The integrals involved in (2.135) are all of Young type. Owing to Proposition 2.4.5, we thus have:

[0,1] 2 y n s;t d 1 R 1,n s d 2 R 2,n t = [(Id -Λ 1 δ 1 )(Id -Λ 2 δ 2 )] (y n δ 1 R 1,n δ 2 R 2,n ).
By continuity of the sewing map, the desired convergence will thus stem from the relations lim n→0 A 1,n = 0 and lim n→0 A 2,n = 0, where for ǫ > 0 we set:

A 1,n := 2 i=1 δ i R i,n -δ i R i 2γ i -ǫ , and A 2,n := N γ 1 -ǫ,γ 2 -ǫ (y n -y).
Now the relation lim n→0 A 1,n = 0 is obviously a direct consequence of Lemma 2.7.18. As far as A 2,n is concerned, we start from relation (2.76) and apply Hölder's inequality. This yields

E[(N γ 1 -ǫ,γ 2 -ǫ (y n -y)) 2 ] E 1/4 [(c x 1 ,x 2 ) 8 ] E 1/2 [ x n -x 4 γ 1 -ǫ,γ 2 -ǫ ] E 1/4 [(1 + N ρ 1 ,ρ 2 (x n ) + N ρ 1 ,ρ 2 (x)) 16 ].
Then according to Proposition 2.6.8 we see that the r.h.s of this last equation vanishes when n goes to infinity, which proves our claim.

We now compute the correction terms in z 1 , that is the equivalent of Proposition 2.7.8.

Proposition 2.7.20. Let x be a fBs with Hurst parameters

γ 1 , γ 2 > 1/3. Consider a function f ∈ C 10 (R) satisfying condition (GC) and a rectangle ∆ = [s 1 , s 2 ] × [t 1 , t 2 ].
Then we have that y 1 • 1 ∆ ∈ Dom(δ ⋄ ), and if we define the increment z 1,⋄ ≡ δ ⋄ (y 1

• 1 ∆ ) the following relation holds true:

z 1,⋄ s 1 s 2 ;t 1 t 2 = z 1 s 1 s 2 ;t 1 t 2 -γ 1 γ 2 ∆ y 2 s;t s 2γ 1 -1 t 2γ 2 -1 dsdt, (2.136) 
where z 1 = f ′ (x)dx is the rough integral given by Theorem 2.6.9.

Proof. Let us start from the corrections for the regularized process x n , for which we can appeal to Proposition 2.7.8. We obtain relation (2.133), written here again for convenience:

z 1,n,⋄ s 1 s 2 ;t 1 t 2 ≡ δ x n ,⋄ (y n,1 • 1 ∆ ) = ∆ y n,1 s;t d 12 x n s;t - 1 4 ∆ y n,2 s;t d 1 R 1,n s d 2 R 2,n t .
(2.137)

Now putting together Proposition 2.7.19 and the continuity of the rough integral, we get convergence of the r.hs of (2.137) in L 2 (Ω). Thus one can write, in the p.s and L 2 (Ω) sense:

lim n→+∞ δ x n ,⋄ (y n ) = ∆ y 1 s;t d 12 x s;t -γ 1 γ 2 ∆ y 2 s;t s γ 1 -1 t γ 2 -1 dtds,
where the integral with respect to x is interpreted in the sense of Theorem 2.6.9.

Let us further analyze the convergence of δ x n ,⋄ (y n ): recall that this quantity can be written as δ Ŵ ,⋄ (K n y n ), where K n is defined by (2.134) or specifically as

(K n y n )(ξ, η) = ıξ ıη |ξ| γ 1 +1/2 |η| γ 2 +1/2 ∆ y n uv e ıξu+ıηv dudv 1 (|ξ|,|η|≤n) (2.138)
Hence, owing to closability of the operator δ Ŵ ,⋄ , the proof of (2.136) is reduced to show that K n y n,1 converges in L 2 (Ω; L 2 (∆)) to Ky 1 . Now expression (2.138) easily entails that

K n y n,1 -Ky L 2 (R) ≤ y n,1 -y 1 H + |ξ|,|η|≥n |ξ| 1-2γ 1 |η| 1-2γ 2 ∆ y 1 u;v e ıξu+ıηv dudv 2 dξdη,
and we shall bound the 2 terms on the r.h.s of this inequality. Indeed, on the one hand we consider γ 1 , γ 2 > 1/4 and ǫ > 0 small enough. This gives

E (ξ,η) ∞≥n |ξ| 1-2γ 1 |η| 1-2γ 2 ∆ y u;v e ıξu+ıηv dudv 2 dξdη n -ǫ E (N γ 1 -ǫ,γ 2 -ǫ (y)) 2 n→+∞ -→ 0.
On the other hand, Corollary 2.7.17 asserts that yy n H N γ 1 -ǫ,γ 2 -ǫ (y ny), and the r.h.s of this relation vanishes as n → ∞ thanks to Proposition 2.6.8. This concludes our proof.

In order to complete our comparison between Itô and Stratonovich formulae, we still have to compare the Skorohod type increment z 2,⋄ and the rough integral z 2 . As a previous step, let us give an intermediate result concerning some mixed integrals in R, x: Proposition 2.7.21. Let f ∈ C 10 (R) and recall that for the fractional Brownian sheet x we have R i u = u 2γ i for i = 1, 2. Then the integral

y 1 R 1 d 1 xd 2 R 2 = [(Id -Λ 1 δ 1 )(Id -Λ 2 δ 2 )] y 1 R 1 δ 1 xδ 2 R 2 + 1/2y 2 R 1 (δ 1 x) 2 δ 2 R 2 (2.139)
is well defined a.s, in the sense of Corollary (2.3.3). Moreover the following convergence takes place in L 2 (Ω):

lim n→+∞ ∆ y 1,n uv R 1,n u d 2 x n uv d 2 R 2,n v = ∆ y 1 u;v R 1 u d 2 x u;v d 2 R 2 v .
(2.140)

Finally, the same kind of result is still verified when one interchanges directions 1 and 2 in relation (2.139).

Proof. Let us first check that the integral in (2.139) is well-defined in the sense of Proposition 2.4.5. To this aim, set

A = y 1 R 1 δ 1 x δ 2 R 2 +1/2y 2 R 1 (δ 1 x) 2 δ 2 R 2 . Then a simple computations yields δ 1 A = z δ 2 R 2 , with z = y 1 δ 1 x -δ 1 y R 1 δ 1 x -1/2δ 1 (y 2 R 1 )(δ 1 x) 2 -y 1 δ 1 R 1 δ 1 x.
It is thus easily seen that δ 1 A ∈ CC 3γ 1 -ǫ,2γ 2 3,2

for an arbitrary small ǫ, thanks to the fact that x ∈

CC γ 1 -ǫ,γ 2 -ǫ 1,1 and 1/2y 2 δ 1 x -δ 1 y ∈ CC 2γ 1 -ǫ,γ 2 2,1
almost surely. Notice that with the same kind of considerations we also have that

δ 2 A ∈ CC γ 1 ,3γ 2 -ǫ 2,3
.

Let us now compute δA: we have

δA = -δ 2 z δ 2 R 2 = -(A 1 + A 2 ) δ 2 R 2 ,
where

A 1 = g R 1 δ 1 x, with g = δy 1 -δ 2 y 2 δ 1 x -y 2 δx,
and where setting (δ 1 x • 1 δx) s 1 s 2 ;t 1 t 2 = δ 1 x s 1 s 2 t 1 δx s 1 s 2 ;t 1 t 2 , we have

A 2 = δ 2 y 1 δ 1 R 1 δ 1 x -{δ 1 y 1 -1/2y 2 δ 1 x}R 1 δx -1/2δy 2 (δ 1 x) 2 -1/2δ 1 y 2 {δx • 1 δ 1 x + δ 1 x • 1 δx}.

The reader can now easily check that

A 2 ∈ CC 3γ 1 -ǫ,γ 2 -ǫ 2,2
. In order to check the regularity of A 1 , observe that g is of the form g = δ 2 h, with h s 1 s 2 ;t := (δ 1 y 1 s 1 s 2 ;ty 2 s 1 ;t )δ 1 x s 2 s 2 ;t

= 1 0 dθ θ 1 0
dθ ′ y 2 (x s 1 ;t + θθ ′ δ 1 x s 1 s 2 ;t ) (δ 1 x s 1 s 2 ;t ) 2 .

(2.141)

Computing δ 2 h with formula (2.141), one obtains that

A 1 = δ 2 hR 1 δ 1 x ∈ CC 3γ 1 -ǫ,γ 2 -ǫ 2,2
.

Let us summarize our last considerations: we have seen that both A 1 and A 2 lye into CC 3γ 1 -ǫ,γ 2 -ǫ 2,2 , and recalling that δA = -(A 1 + A 2 )δ 2 R 2 , we obtain δA ∈ CC 3γ 1 -ǫ,3γ 2 -ǫ 3,3

. We have also checked that δ

1 A ∈ CC 3γ 1 -ǫ,2γ 2 3,2 and δ 2 A ∈ CC 2γ 1 ,3γ 2 -ǫ 2,3
. Gathering all this information, we have checked the assumptions of Corollary 2.3.3 for the increment A, which justifies expression (2.139). Now we focus on the convergence formula (2.140). We start by observing that for all n ≥ 1 the following representation holds true:

∆ y n,1 uv R 1,n u d 2 x n uv d 2 R 2,n v = [(Id -Λ 1 δ 1 )(Id -Λ 2 δ 2 )]A n with A n = y n,1 R 1,n δ 2 R 2,n + 1/2y n,1 R 1,n (δ 1 x n ) 2 δ 2 R 2,n .
Hence, owing to the continuity of the planar sewing-maps (Λ i ) i=1,2 and Λ, our claim (2.140) is reduced to prove that the sequences

A n - A γ 1 -ǫ,2γ 2 -ǫ , δ 1 (A n -A) 3γ 1 -ǫ,2γ 2 -ǫ , δ 2 (A n -A) γ 1 -ǫ,3γ 2 -ǫ and δ(A n -A) 3γ 1 -ǫ,3γ 2 -ǫ converge in L 2 (Ω)
and almost surely to 0. Furthermore, it is readily checked that those convergences all stem from the relations

lim n→0 R i,n -R 2γ i -ǫ + 5 i=0 N γ 1 -ǫ,γ 2 -ǫ (y n,i -y i ) + (δ 1 x n ) 2 -(δ 1 x) 2 2γ 1 -ǫ,1 = 0 (2.142) and lim n→0 δ 2 (h -h n ) 2γ 1 -ǫ,γ 2 -ǫ = 0, with h n = δ 1 y n -y n,1 δ 1 x n , (2.143) 
where the limits take place in some L p (Ω) with a sufficiently large p, and where we recall that h is defined by (2.141). We now turn to the proof of those two relations.

To begin with, note that the convergence (2.142) has already been established in Lemma 2.7.18. In order to prove (2.143), we invoke again the integral representation (2.141) for both h n and h. Then some elementary considerations (omitted here for sake of conciseness) allow to reduce the problem to the following relation:

L p (Ω) -lim n→∞ E[N p γ 1 -ǫ,γ 1 -ǫ (x n -x)] + 3 i=0 E[N p γ 1 -ǫ,γ 2 -ǫ (y n,i -y i )] = 0.
This last relation is a direct consequence of Proposition 2.6.8 and composition with non linearities, whenever f satisfies the growth condition (GC) with a small parameter λ > 0. The proof is now finished.

We can now state our result concerning the Itô-Stratonovich correction for the mixed stochastic integral

y 2 d ⋄ 1 xd ⋄ 2 x:
Theorem 2.7.22. Let x be a fBs with Hurst parameters

γ 1 , γ 2 > 1/3. Consider a function f ∈ C 10 (R) satisfying condition (GC) and a rectangle ∆ = [s 1 , s 2 ] × [t 1 , t 2 ].
Then we have that N (y 2 ) ∈ Dom(δ ⋄,2 ), and if we define the Skorohod integral z 2,⋄ as δ ⋄,2 (N (y)), the following particular case of relation (2.119) holds:

z 2,⋄ s 1 s 2 ;t 1 t 2 = z 2 s 1 s 2 ;t 1 t 2 -γ 1 γ 2 ∆ y 2 u;v u 2γ 1 -1 v 2γ 2 -1 dudv -γ 2 ∆ y 3 u;v u 2γ 1 v 2γ 2 -1 dvd 1 x u;v -γ 1 ∆ y 3 u;v u 2γ 1 -1 v 2γ 2 dud 2 x u;v + γ 1 γ 2 ∆ y 4 u;v u 4γ 1 -1 v 4γ 2 -1 dudv. (2.144)
Proof. We follow the same strategy as for Theorem 2.7.20: apply first Proposition 2.7.10 for the regularized process x n , which yields:

∆ y n,2 u;v d ⋄ 1 x n uv d ⋄ 2 x n uv = ∆ y n,2 u;v d 1 x n u;v d 2 x n uv -1/4 ∆ y n,2 u;v d 1 R 1,n u d 2 R 2,n v -1/2 ∆ y n,3 u;v R 1,n u d 2 R 2,n v d 1 x u;v -1/2 ∆ y n,3 u;v R 2,n v d 1 R 1,n u d 2 x n uv + 1/4 ∆ y n,4 u;v R 1,n u R 2,n v d 1 R 1,n u d 2 R n,2 v .
(2.145)

Now our preliminary results allow to take limits in relation (2.145). Indeed, owing to Propositions 2.7.19 and 2.7.21 plus the continuity of the rough increment z 2 given at the Proposition (2.6.9), we obtain the convergence in L 2 (Ω) for the four first terms in the r.h.s of equation (2.145). Moreover the last term also converges in L 2 (Ω), thanks to the same arguments as in the proof of the Proposition 2.7.19. We thus get the convergence of the r.h.s of equation (2.145) to the r.h.s of equation (2.144), and also the fact that z 2,⋄ converges in L 2 (Ω). Like in the proof of Theorem 2.7.20, the proof of (2.144) is thus reduced to show the L 2 convergence of the integrand defining z 2,⋄ .

However, mimicking again the proof of Theorem 2.7.20, it is easily seen that

1 0 1 0 y n,2 u;v d ⋄ 1 x n uv d ⋄ 2 x n uv := δ x n ,2,⋄ N (y n,2 ) = δ Ŵ ,2,⋄ K n,⊗2 N (y n,2 ) ,
where we recall that K ⊗2 is defined by (2.129) and

K n,⊗2 φ (x 1 x 2 ; y 1 y 2 ) = 1 {|x 1 |,|x 2 |,|y 1 |,|y 2 |≤n} K ⊗2 φ (x 1 x 2 ; y 1 y 2 ).
It thus remains to show that K n,⊗2 (N (y n,2 )) converges to

K ⊗2 (N (y 2 ) in L 2 (Ω, L 2 (R 4 
)). Towards this aim, we introduce the further notation u s;t (ξ, η) = y 2 s;t (e ısξ -1)(e ıtη -1), u n s;t (ξ, η) = y n,2 s;t (e ısξ -1)(e ıtη -1) and

û(ξ 1 , ξ 2 ; η 1 , η 2 ) = ∆ u s;t (ξ 1 , η 1 )e ısξ 2 +ıtη 2 dsdt ûn (ξ 1 , ξ 2 ; η 1 , η 2 ) = ∆ u n s;t (ξ 1 , η 1 )e ısξ 2 +ıtη 2 dsdt.
Then note that

(K n ) ⊗2 (N (y n )) -K ⊗2 (N (y) 2 L 2 (R 4 ) ≤ I n 1 + I n 2 + I n 3
, where

I n 1 = |ξ 1 |,|η 1 |≥n R 2 |ξ 2 | 1-2γ 1 |η 2 | 1-2γ 2 |û(ξ 1 , ξ 2 ; η 1 , η 2 )| 2 dξ 2 dη 2 dξ 1 dη 1 |ξ 1 | 2γ 1 +1 |η 1 | 2γ 2 +1 I n 2 = R 2 |ξ 2 |,|η 2 |≥n |ξ 2 | 1-2γ 1 |η 2 | 1-2γ 2 |û(ξ 1 , ξ 2 ; η 1 , η 2 )| 2 dξ 2 dη 2 dξ 1 dη 1 |ξ 1 | 2γ 1 +1 |η 1 | 2γ 2 +1
and

I n 3 = R 2 R 2 |ξ 2 | 1-2γ 1 |η 2 | 1-2γ 2 |û(ξ 1 , ξ 2 ; η 1 , η 2 ) -ûn (ξ 1 , ξ 2 ; η 1 , η 2 )| 2 dξ 2 dη 2 × dξ 1 dη 1 |ξ 1 | 2γ 1 +1 |η 1 | 2γ 2 +1 .
In order to bound those 3 terms, observe that

N γ 1 -ǫ,γ 2 -ǫ (u(ξ, η)) N γ 1 -ǫ,γ 2 -ǫ (y)(1 + |ξ| γ 1 -ǫ + |η| γ 2 -ǫ + |ξ| γ 1 -ǫ |η| γ 2 -ǫ )
and thus Corollary 2.7.17 entails that

E[I n 1 ] E[N 2 γ 1 -ǫ,γ 2 -ǫ (y 2 ) 2 ] |ξ|,|η|≥n 1 |ξ| ǫ+1 |η| ǫ+1 dξdη n→+∞ -→ 0,
and

E[I n 2 ] n -ǫ E[N 2 γ 1 -ǫ,γ 2 -ǫ (y 2 )] n→+∞ -→ 0.
As far as I n 3 is concerned, we remark that

N γ 1 -ǫ,γ 2 -ǫ (u(ξ, η) -u n (ξ, η)) N γ 1 -ǫ,γ 2 -ǫ (y 2 -y n,2 )(1 + |ξ| γ 1 -ǫ + |η| γ 2 -ǫ + |ξ| γ 1 -ǫ |η| γ 2 -ǫ )
and then we can conclude along the same lines as in Theorem 2.7.22 that E[I n 3 ] vanishes as n goes to infinity. This finishes the proof.

Introduction

In this chapter we consider nonlinear PDEs of the form

d dt ϕ t = Aϕ t dw t dt + N (ϕ t ), t ≥ 0 (3.1)
where w : R + → R is an arbitrary continuous function, A is an unbounded linear operator and N some nonlinear function. The situation we have in mind is where A is a dispersive operator like the Schrödinger operator i∂ 2 or the Airy operator ∂ 3 acting on periodic or non-periodic functions on R n and where N is some polynomial non-linarity with possibly derivative terms. Our analysis will be mainly devoted to the following cases:

1. (KdV) Korteweg-de Vries equation in T or R, A = ∂ 3 , N (φ) = ∂φ 2 ; 2. (NLS) Non-linear cubic Schrödinger equation in T n , R n , n = 1, 2, A = i∂ 2 , N (φ) = i|φ| 2 φ; 3. (mKdV) Modified Korteweg-de Vries equation in T, A = ∂ 3 , N (φ) = ∂(φ 2 -3||φ|| 2 H 0 )φ; 4. (dNLS) Non-linear (Wick-ordered) derivative cubic Schrödinger equation in T, A = i∂ 2 , N (φ) = i∂ θ (|φ| 2 -φ 2 H 0 )φ with θ > 0;
in all these cases the Banach space V will be taken as belonging to the scale of Sobolev spaces H α , α ∈ R defined as the completion of smooth functions with respect to the norm

|φ| α = φ H α = ξ α φ(ξ) L 2 (R n ) (3.2)
where φ is the Fourier transform of φ : R n → C and ξ = (1 + |ξ| 2 ) 1/2 . Similar definition holds in the periodic case where R n is replaced by T n with T = [0, 2π[ with periodic boundary conditions.

The (randomly) modulated NLS equation has been subject of interest in recent literature (for example [START_REF] Kh | Soliton perturbations and the random Kepler problem[END_REF][START_REF] De Bouard | The nonlinear Schrödinger equation with white noise dispersion[END_REF][START_REF] Debussche | 1D quintic nonlinear Schrà ¶dinger equation with white noise dispersion[END_REF][START_REF] Hundertmark | Decay estimates and smoothness for solutions of the dispersion managed non-linear Schrödinger equation[END_REF][START_REF]Super-exponential decay of diffraction managed solitons[END_REF][START_REF] Kunze | Ground states for the higher-order dispersion managed NLS equation in the absence of average dispersion[END_REF][START_REF] Marty | On a splitting scheme for the nonlinear Schrödinger equation in a random medium[END_REF][START_REF] Zharnitsky | Stabilizing effects of dispersion management[END_REF]), especially due to the applications to soliton management in optical wave-guides. The authors do not know of any relevant application of the other models, apart from the work of Clarke et al. [START_REF] Clarke | Dispersion management for solitons in a Korteweg de Vries system[END_REF] on dispersion management for KdV.

Aside of specific applications we are motivated by the general problem of understanding the properties of PDEs in non-homogeneous environments and what can be expected as far as "generic" properties of the equation are concerned. Modulated equations rule out classical techniques of Fourier analysis (e.g. Bourgain spaces in the case of KdV) and other important tools like Strichartz estimates. Many conservation laws are also not available in the modulated context affecting the analysis of global solutions.

Another of our motivations has been the study of the regularisation effect of a non-homogeneous time modulation in the spirit of the recent work of Flandoli, Priola and one of the authors [START_REF] Flandoli | Well-posedness of the transport equation by stochastic perturbation[END_REF] on the stochastic transport equation.

Eq. (3.1) is only formal since the derivative of w does not exists in general. If w is a Brownian motion then the differential equation can be understood via stochastic calculus. Interpreting the differential in Stratonovich sense seems the most natural choiche in this context since it preserves the mild fomulation of the equation (see below). De Bouard and Debussche [START_REF] De Bouard | The nonlinear Schrödinger equation with white noise dispersion[END_REF] study the Nonlinear Schrödinger equation with Brownian modulation and they show that it describes the homogenisation of the deterministic Nonlinear Schrödinger Equation with time dependent dispersion satisfying some ergodicity properties. In the more general situation the interpretation of eq. (3.1) as an Itô or Stratonovich SPDE is not 3.1. INTRODUCTION possible and we prefer to describe solutions via a mild formulation. If we denote by (e tA ) t∈R the group of isometries of V = H α generated by A, the mild solution of eq. (3.1) is formally given by

ϕ t = U w t ϕ 0 + U w t t 0 (U w s ) -1 N (ϕ s )ds (3.3)
where U w t = e Awt is the operator obtained by a time-change of the linear evolution associated to A using the function w. In this form the equation make sense for arbitrary continuous function w.

The aim of this paper is to analyse eq. ( 3.3) under some hypothesis on the "irregularity" of the perturbation w. In particular if w is sufficiently irregular (in a precise sense to be specified below) then we will be able to show that the above nonlinear PDE can be solved in spaces which are comparable to those allowed by the unmodulated equation

d dt ϕ t = Aϕ t + N (ϕ t ), t ≥ 0 (3.4)
and that in some situations the combination of the irregularity of the perturbation and the non-linear interaction provides a strong regularizing effect on the equation.

Let us now be more specific about the kind of solutions we are looking for. Let Π N : H α → H α be the projector over Fourier modes |ξ| ≤ N : Π N f (ξ) = I |ξ|≤N f (ξ) where f denotes the Fourier transform of f ∈ H α and let N N (φ) = Π N N (Π N φ) be the Galerkin regularization of the non-linearity.

Definition 3.1.1. The function ϕ ∈ C(R + ; V ) is a local solution to (3.3) in V with initial condition φ ∈ V if there exists T > 0 and such that lim N →∞ t 0 (U w s ) -1 N N (ϕ s )ds = Q t (ϕ)
exists in V for any t ∈ [0, T ] and the equality

ϕ t = (U w t )[φ + Q t (ϕ)]
holds in V for any t ∈ [0, T ]. We say that the solution is global if the equality holds of any t ≥ 0.

Whenever the limit exists we write lim

N →∞ t 0 (U w s ) -1 N N (ϕ s )ds = t 0 (U w s ) -1 N (ϕ s )ds.
It should be noted that the quantity on the r.h.s. is not a usual integral but only a convenient notation for the limit procedure. Indeed N (ϕ s ) will exist only as a space-time distribution and not as a continuous function with values in V . The next definition concerns the particular notion of "irregularity" of the perturbation that will be relevant in our analysis. Definition 3.1.2. Let ρ > 0 and γ > 0. We say that a function w ∈ C([0, T ]; R) is (ρ, γ)-irregular if for any T > 0:

Φ w W ρ,γ T = sup a∈R sup 0≤s<t≤T a ρ Φ w s,t (a) |s -t| γ < +∞ where Φ w s,t (a) =
t s e iawr dr. Moreover we say that w is ρ-irregular if there exists γ > 1/2 such that w is (ρ, γ)-irregular.

As it is apparent from this definition the notion of irregularity that we need is related to the occupation measure of the function w (see for example the review of Geman and Horowitz on occupation densities for deterministic and random processes [START_REF] Geman | Occupation Densities[END_REF]), in particular to the decay of its Fourier transform at large wave-vectors as measured by the exponent ρ. The time regularity of this Fourier transform, measured by the Hölder exponent γ, will also play an important rôle.

Existence of (plenty of) perturbations w which are ρ-irregular is guaranteed by Theorem 3.1.3. Let (W t ) t≥0 be a fractional Brownian motion of Hurst index H ∈ (0, 1) then for any ρ < 1/2H there exist γ > 1/2 so that with probability one the sample paths of W are (ρ, γ)-irregular.

In particular there exists continuous paths which are ρ-irregular for arbitrarily large ρ. Using well known properties of support of the law of the fractional Brownian motion it is also possible to show that there exists ρ-irregular trajectories which are arbitrarily close in the supremum norm to any smooth path. It would be interesting to study more deeply the irregularity of continuous paths "generically".

In our opinion an important general contribution of our work is the observation that the regularity of the occupation measure of w seems to play a major rôle in the understanding of the regularizing properties of w in a non-linear context and it would be desirable to understand more deeply the link of the notion of ρ-irregularity with the path-wise properties of w.

Apart from the classic contribution of Geman and Horowitz [START_REF] Geman | Occupation Densities[END_REF], the authors are not aware of any systematic study of occupation measures from the point of view of their action on spaces of functions, topic which is central to our analysis. Let us explain this better: let

T w s,t f (x) = t s f (x + w r )dr
for measurable functions f : R → R. Then T w s,t (e ia• )(x) = Φ w s,t (a)e iax which shows for example that if w is (ρ, γ)-irregular then T w s,t f H ρ (R) |t -s| γ f H 0 (R) meaning that T is a regularizing operator. This point of view links our research to the topic of improving bounds for averages along curves (see for example the paper of Tao and Wright [START_REF] Tao | Lp improving bounds for averages along curves[END_REF]). Inspired by the work of Davie [START_REF] Davie | Uniqueness of solutions of stochastic differential equations[END_REF] on pathwise uniqueness for SDEs, Catellier and Gubinelli [START_REF] Catellier | On the regularization of ODEs via irregular perturbations[END_REF] provide some analysis of the regularizing properties of random paths but much is still not very well understood.

An open problem is, for example, what happens if we replace w with a regularised version w ε or with a function which could depend on the solution itself. In this respect we conjecture that if w is (ρ, γ)-irregular then for any smooth function ϕ the perturbed path w ϕ = w + ϕ is still (ρ, γ)-irregular but we are only able to prove this in the specific situation where w is a fractional Brownian motion and ϕ is a deterministic perturbation, or more generally but with a loss of 1/2 in the ρ irregularity of w ϕ : both results (with precise statements) are obtained in [START_REF] Catellier | On the regularization of ODEs via irregular perturbations[END_REF]. In the case of a smooth w we have the following straightforward result: 

Proposition 3.1.4. Let w : [0, T ] → R a twice differentiable function such that c T = inf t∈[0,T ] |w ′ t | > 0 for any T > 0 and w ′′ (w ′ ) 2 ∈ L 1 loc (0, +∞) then w is (1 -γ, γ)

INTRODUCTION

To deal with irregular modulations in the sense of Def. 3.1.2 we develop two different techniques:

1. The first uses the controlled path approach and Young's integral and it is inspired by the work of one of the authors [START_REF]Rough solutions for the periodic Korteweg-de Vries equation[END_REF] where the periodic KdV equation in negative Sobolev spaces (and more general Fourier-Lebesgue spaces) is studied without relying on Bourgain spaces and the timehomogeneity of the equation. This work has connection to the normal form analysis of Babin, Ilyin and Titi of the same equation [START_REF] Anatoli | On the regularization mechanism for the periodic Korteweg-de Vries equation[END_REF].

2. The second is based on a novel deterministic Stricharz estimate for the modulated linear equation which is a generalization of the probabilistic results of Debussche and Tsutsumi [START_REF] Debussche | 1D quintic nonlinear Schrà ¶dinger equation with white noise dispersion[END_REF].

Let us summarise the main contributions of this paper, all along which we are going to make the following basic assumption: Hypothesis 3.1.5. The function w is (ρ, γ)-irregular for some ρ > 0 and γ > 1/2.

Our first result is about the modulated Korteweg-de Vries (KdV) equation. This theorem shows that an irregular modulation provides a regularisation effect on the KdV equation. Indeed the unmodulated equation allows for a uniformly continuous flow only if α ≥ -1/2 in the periodic setting and only if α ≥ -3/4 in the non-periodic one [START_REF] Christ | Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations[END_REF]. Recall that exploiting the complete integrability of the unpertubed model it is possible to show existence of solutions up to α ≥ -1 [START_REF] Kappeler | Well-posedness of KdV on H -1 (T)[END_REF].

As far as we know there are no existence results for α < -1 for the unmodulated equation and since we obtain solutions with standard fixed point methods we have also the existence of continuous flow in situation were it is known to be false for the unmodulated equation.

Ours are the first results of regularization by noise in non-linear dispersive equations with rough initial conditions. It is known that noise can act as to worsen the behavior of the equation, for example blow-up in NLS with multiplicative noise [START_REF] De Bouard | On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation[END_REF][START_REF]Blow-up for the stochastic nonlinear Schrödinger equation with multiplicative noise[END_REF].

For the cubic NLS equation we have the following theorem. In the case of Brownian modulation the global solution for α = 0 have already been constructed by de Bouard et Debussche [START_REF] De Bouard | The nonlinear Schrödinger equation with white noise dispersion[END_REF]. Here we extend their result to any α ≥ 0 and any sufficiently irregular modulation. Global solutions for any α ≥ 0 are the result of the L 2 conservation law and some regularity preservation estimates for the non-linear term.

For the other models we considered we obtained the partial results listed in the following theorem.

Theorem 3.1.8. Assuming ρ > 1/2. We have the following results:

1. The modulated cubic NLS equation on R 2 has a unique local solution in H α if α ≥ 1/2;

2. The modulated dNLS equation on T has a unique local solution in H α if α ≥ 1/2 and ρ > 1;

The modulated mKdV equation on T has a unique local solution in

H α if α ≥ 1/2.
A key argument in the proof of all these results is the use of explicit computations allowed by the polynomial character of the non-linearity. These results are however limited to modulations irregular enough. Indeed, a bit surprisingly, in the modulated context the application of controlled path techniques is easier if the modulation is very irregular. This has allowed us not to have to deal with second order controlled expansions as has been necessary in [START_REF]Rough solutions for the periodic Korteweg-de Vries equation[END_REF]. An open problem is to fill the gap between regular and irregular modulations.

A different line of attack to the modulated Schrödinger equation comes from the application of the following Strichartz type estimate which can be proved under the same ρ-irregularity assumption of Hyp. 3.1.5:

Theorem 3.1.9. Let A = i∂ 2 x , T > 0, p ∈ (2, 5],ρ > min( 3 2 -2 p , 1)
then there exists a finite constant C w,T > 0 and γ ⋆ (p) > 0 such that the following inequality holds:

. 0 U w . (U w s ) -1 ψ s ds L p ([0,T ],L 2p (R)) ≤ C w T γ ⋆ (p) ||ψ|| L 1 ([0,T ],L 2 (R)) for all ψ ∈ L 1 ([0, T ], L 2 (R)).
As an application we obtain global well-posedness for the modulated NLS equation with generic power nonlinearity ie : N (φ) = |φ| µ φ:

Theorem 3.1.10. Let µ ∈ (1, 4], p = µ + 1, ρ > min(1, 3/2 -2
p ) and u 0 ∈ L 2 (R) then there exists T ⋆ > 0 and a unique u ∈ L p ([0, T ], L 2p (R)) such that the following equality holds:

u t = U w t u 0 + i t 0 U w t (U w s ) -1 (|u s | µ u s )ds for all t ∈ [0, T ⋆ ]. Moreover we have that ||u t || L 2 (R) = ||u 0 || L 2 (R)
and then we have a global unique solu-

tion u ∈ L p loc ([0, +∞), L 2p (R)) and u ∈ C([0, +∞), L 2 (R)). If u 0 ∈ H 1 (R) then u ∈ C([0, ∞), H 1 (R)
). We point out that all our techniques are deterministic and that they provide novel results even in the stochastic context, for example when w is taken to be the sample path of a fractional Brownian motion. In the Brownian case it is not difficult to show that our solutions corresponds to limits of solutions of Stratonovich type SPDEs. Even in the Brownian setting our results on KdV, mKdV and DNLS are, to our knowledge, novel. In the case of NLS we recover the known results of Debuscche and Tsustumi adding to that existence of a continuous flow map for the SPDE, result which is usually difficult to obtain in the stochastic framework.

Plan. In Sect. 3.2 we illustrate the controlled path approach to solution to modulated semilinear PDEs. This approach relies on a non-linear generalisation of the Young integral [START_REF] Gubinelli | Controlling rough paths[END_REF][START_REF] Terry | Differential equations driven by rough signals[END_REF][START_REF] Young | An inequality of the Hölder type, connected with Stieltjes integration[END_REF] for which we provide complete proofs in Sect. 3.3. Using the non-linear Young integral we define and solve Young-type differential equations in Sect. 3.4. This will provide a general theory for the constructions and approximation of the controlled solutions. In Sect. 3.5 we verify that all our models satisfy the hypothesis to apply the general theory we outlined in the previous section. In Sect. 3.6 we study global solutions in different H α spaces: above L 2 by seeking suitable preservation of regularity estimates and for KdV below L 2 by an adaptation of the I-method to our context. Finally in Sect. 3.8 we prove the

CONTROLLED PATHS

Strichartz estimate of Thm. 3.1.9 and apply it to the study the modulated NLS equation with general non-linearity without relying on controlled solutions.

Notations. If V, W are two Hilbert spaces we let L n (V, W ) be the Banach space of bounded operators on V ⊗n (considered with the Hilbert tensor product) with values in W and endowed with the operator norm and set L n (V ) = L n (V, V ). We let T > 0 denote a fixed time and C γ V = C γ ([0, T ], V ) the space of γ-Hölder continuous functions form [0, T ] to V endowed with the semi-norm

f C γ V = sup 0≤s<t≤T f (t) -f (s) v |t -s| γ .
If V is a Banach space then Lip M (V ) will denote the Banach space of locally Lipshitz map on V with polynomial growth of order M ≥ 0, that is maps

f : V → V such that f Lip M (V ) = sup x,y∈V f (x) -f (y) V x -y V (1 + x V + y V ) M < +∞.

Controlled paths

The approach we will use in proving Thms. 3.1.6, 3.1.7 and 3.1.8 is based on ideas coming from the theory of controlled rough paths [START_REF] Gubinelli | Controlling rough paths[END_REF][START_REF] Perkowski | Paraproducts, rough paths and controlled distributions[END_REF] which have been already used in a variety of contexts:

1. alternative formulation of rough path theory with the related applications to stochastic differential equations and in general to differential equations driven by non-semimartingale noises [START_REF] Deya | Non-linear rough heat equations[END_REF][START_REF] Gubinelli | Young integrals and SPDEs[END_REF][START_REF] Gubinelli | Rough evolution equations[END_REF];

2. approximate evolution of three dimensional vortex lines in incompressible fluids where the initial condition is a non-smooth curve [START_REF] Bessaih | The evolution of a random vortex filament[END_REF][START_REF] Brzeźniak | Global evolution of random vortex filament equation[END_REF] 3. study of the stochastic Burgers equation (multi-dimensional target space and various kind of robust approximation results) [START_REF] Hairer | Rough stochastic PDEs[END_REF][START_REF] Perkowski | Paraproducts, rough paths and controlled distributions[END_REF];

4. definition of controlled (or energy, or martingale) solutions for a class of SPDEs including the Kardar-Parisi-Zhang (KPZ) equations [START_REF] Gubinelli | Regularization by noise and stochastic Burgers equations[END_REF];

5. Hairer's work on the well-posedness and uniqueness theory for the KPZ equation [START_REF]Solving the KPZ equation[END_REF];

Recently the controlled path approach has also been used to highlight the regularisation by noise phenomenon in ODE with irregular additive perturbations [START_REF] Catellier | On the regularization of ODEs via irregular perturbations[END_REF] where techniques very similar to those used in this paper are exploited (in particular the notion of ρ-irregularity and the non-linear Young integral).

Controlled paths are functions which "looks like" some given reference object. In the case of eq. ( 3.3) it looks quite clear that the solution should have the form ϕ t = U w t ψ t for ψ t another continuous path in V such that ϕ 0 = ψ 0 . If we stipulate that ψ has a nice time behavior then ϕ is somehow "following" the flow of a free solution of the linear equation, modulo a time-dependent slowly varying modulation. The space of controlled paths D w (to be defined below) in which we will set up the equation will then be given by functions ϕ such that an Hölder condition holds for ψ t = (U w t ) -1 ϕ t . Note that this space depends on the modulation and that different driving functions w and w ′ would give rise a priory to different spaces D w and D w ′ of controlled functions. This difference is somehow crucial and make the spaces of controlled paths to be more effective in the analysis of the non-linearities. Let us try to explain why. Assume that ϕ is the simplest path controlled by w, that is the solution of the free evolution ϕ t = U w t φ for some fixed φ ∈ V (i.e. not depending on time). In this case the non-linear term in eq. ( 3.3) takes the form

Φ t = U t t 0 (U w s ) -1 N (U w s φ)ds = U t X t (φ)
where X t : V → V is the time-inhomogeneous map given by

X t (φ) = t 0 (U w s ) -1 N (U w s φ)ds (3.5)
We will show that, in the specific settings we will consider, it is possible to actually prove the following regularity requirement:

Hypothesis 3.2.1. The map X st = X t -X s is almost surely a locally Lipshitz map on V satisfying the Hölder estimate

X st (φ) -X st (φ ′ ) V |t -s| γ (1 + φ V + φ ′ V ) M φ -φ ′ V
for some γ > 1/2 and M ≥ 0.

In this situation we see that Φ t is a controlled path such that Ψ t = (U w t ) -1 Φ t belongs at least to C 1/2 (V ). If we want a space of controlled paths stable under the fixed point map

Γ(ϕ) t = U w t ϕ 0 + U w t t 0 (U w s ) -1 N (ϕ s )ds
we have to require t → (U w t ) -1 Γ(ϕ) t to be at most in C 1/2 (V ) since otherwise even the first step of the Picard iterations will get us out of the space. These considerations suggest us a definition of controlled paths: Definition 3.2.2. The space of paths D w (V ) controlled by w is given by all the paths ϕ in C([0, T ], V ) such that t → ϕ w t = (U w ) -1 t ϕ t belongs to C 1/2 (V ). At this point it is still not clear that the non-linear term is well defined for every controlled paths. Hypothesis 3.2.1 ensure that the non-linearity is well defined when the controlled path ϕ is such that ϕ w is constant in time. To allow for more general controlled paths we consider a smooth (in space and time) path f : in this case the following computations can be easily justified in all the models we will consider:

t 0 (U w s ) -1 N (U w s f s )ds = t 0 d ds X s (f s )ds = t 0 X ds (f s ).
where the last integral in the r.h.s. should be interpreted as the limit of suitable Riemman sums:

t 0 X ds (f s ) := lim |Π 0,t |→0 i X t i t i+1 (f t i ).
A key observation is that the map f → t 0 X ds (f s ) can be extended by continuity to all the functions f ∈ C 1/2 (V ) using the theory of Young integrals, indeed note that X is a path of Lipshitz maps with Hölder regularity γ > 1/2 and that this is enough to integrate functions of Hölder regularity 1/2 since the sum of these two regularities exceed 1. Since the kind of Young integral we use is not standard we will provide proofs and estimates in a self-contained fashion below. This allows us to give a natural definition of the nonlinear term for all controlled paths ϕ, indeed it is now easy to prove the following claim: 

(U w s ) -1 N ((ϕ n ) s )ds → t 0 X ds (ϕ w s ) in V uniformly in t.
As it should be clear by now, the time-integral of the non-linearity (even if not the non-linearity itself) is a well defined space distribution for all controlled paths and it is explicitly given by a Young integral involving the modulated operator X. We can then recast the mild equation (3.3) as a Youngtype differential equation for controlled paths:

ϕ w t = ϕ 0 + t 0 X ds (ϕ w s ). (3.6)
Any solution of this equation corresponds to a controlled path ϕ t = U w t ϕ w t which solves (3.3) where the r.h.s. should be understood according to Lemma 3.2.3.

The Young equation (3.6) can then be solved, at least locally in time and in a unique way, in C 1/2 (R + , V ) by a standard fixed point argument. In some cases it is also possible to prove the existence of a conservation law which imply ϕ t V = ϕ 0 V and obtain global solutions. Another byproduct of this approach is the existence of a Lipshitz flow map on V .

The nonlinear Young integral

Young theory of integration is well known [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF][START_REF] Terry | Differential equations driven by rough signals[END_REF][START_REF] Lyons | Differential equations driven by rough paths[END_REF][START_REF] Young | An inequality of the Hölder type, connected with Stieltjes integration[END_REF]. Here we introduce a non-linear variant which is not covered by the standard assumptions. For the sake of completeness we derive here the main estimates in our specific context. Theorem 3.3.1 (Young). Let f ∈ C γ Lip M (V ) and g ∈ C ρ V with γ + ρ > 1 then the limit of Riemann sums

I t = t 0 f du (g u ) = lim |Π|→0 i f t i+1 (g t i ) -f t i (g t i )
exists in V as the partition Π of [0, t] is refined, it is independent of the partition, and we have

I t -I s -(f t -f s )(g s ) V ≤ (1 -2 1-γ-ρ ) -1 f C γ Lip M (V ) g C ρ V (1 + g C 0 V ) M |t -s| γ+ρ .
Proof. We give a new proof of this fact. Let f, g be smooth functions in Lip M (V ) and V respectively. Define the bilinear forms

I s,t (f, g) = t s (d u f u )(g u ) and J s,t (f, g) = I s,t (f, g)-f s,t (g s ) where f s,t = f t -f s and note that this last satisfy J s,t (f, g) = J s,u (f, g) + J u,t (f, g) + (f u,t (g u ) -f u,t (g s )) for all s ≤ u ≤ t. Let t n k = s + (t -s)k2 -n for k = 0, . . . , 2 n
. By induction we have that

J s,t (f, g) = 2 n -1 i=0 J t n i ,t n i+1 (f, g) + n k=0 2 k -1 i=0 (f t k 2i+1 ,t k 2i+2 (g t k 2i+1 ) -f t k 2i+1 ,t k 2i+2 (g t k 2i 
))

Since f, g are smooth we have

J t n i ,t n i+1 (f, g) V f,g |t n i+1 -t n i | 2 Ω f,g 2 -2n so that 2 n -1 i=0 J t n i ,t n i+1 (f, g) V f,g 2 -n → 0
as n → ∞. Then we can estimate

J s,t (f, g) V ≤ ∞ k=0 2 k -1 i=0 (f t k 2i+1 ,t k 2i+2 (g t k 2i+1 ) -f t k 2i+1 ,t k 2i+2 (g t k 2i )) V ≤ ∞ k=0 2 k(1-γ-ρ) f C γ Lip M (V ) g C ρ V (1 + g C 0 V ) M ≤ (1 -2 1-γ-ρ ) -1 f C γ Lip M (V ) g C ρ V (1 + g C 0 V ) M Now assume that f ∈ C γ Lip M (V ) and g ∈ C ρ V .
Then there exists sequences of smooth function f n and g n such that f n → f in C γ ′ Lip M (V ) and g n → g in C ρ ′ V for all γ ′ < γ and all ρ ′ < ρ and moreover such that

f n C γ Lip M (V ) ≤ f C γ Lip M (V ) and g n C ρ V ≤ f C ρ V .
Then the above estimate implies the convergence of J s,t (f n , g n ) → J s,t (f, g) in V for all s, t. In turn this implies that, by passing to the limit in the estimate we have also

J s,t (f, g) V ≤ (1 -2 1-γ-ρ ) -1 f C γ Lip M (V ) g C ρ V (1 + g C 0 V ) M .
Which means that we can define

I s,t (f, g) = t s f du (g u ) = f s,t (g s ) + J s,t (f, g) for any f ∈ C γ Lip M (V ) and g ∈ C ρ V . Now assume that Π = {s ≤ t 0 < t 1 < • • • < t n ≤ t} is a partition of [s, t] and denote with S Π = n-1 i=0 f t i ,t i+1 (g t i )
the associate Riemman sum. By the above construction we have

f t i ,t i+1 (g t i ) = I t i+1 t i (f, g) -J t i+1 t i (f, g) with J t i ,t i+1 (f, g) f,g |t i+1 -t i | γ+ρ and so S Π = n-1 i=0 I t i ,t i+1 (f, g) + n-1 i=0 J t i ,t i+1 (f, g) = I s,t (f, g) + n-1 i=0 J t i ,t i+1 (f, g) moreover n-1 i=0 J t i ,t i+1 (f, g) V f,g n-1 i=0 |t i+1 -t i | γ+ρ f,g |Π| γ+ρ-1
|t -s| which implies that S Π → I s,t (f, g) as |Π| → 0 and the integral which we defined above by the continuous extension of the bilinear form I s,t (f, g) coincide indeed with the limit of Riemann sums on arbitrary partitions.

Young solutions

With the estimates of Young integral we can set up a standard fixed point procedure to prove existence of local solution and their uniqueness assuming suitable regularity of X. We assume that X t (0) = 0 for simplicity. Define standard Picard's iterations by

ψ (n+1) t = ψ 0 + t 0 X ds (ψ (n) s ) with ψ (0) t = ψ 0 . Now t 0 X ds (ψ (n) s ) -X t (ψ 0 ) V T γ+1/2 X (1 + ψ (n) C 0 V ) M ψ (n) C 1/2 V T γ X (1 + ψ 0 V + T 1/2 ψ (n) C 1/2 V ) M +1 and ψ (n+1) C 1/2 V X T γ (1 + ψ 0 V + T 1/2 ψ (n) C 1/2 V ) M +1
which means that for sufficiently small T (depending only on ψ 0 V ) we can have

T 1/2 ψ (n) C 1/2 V ≤ 1 for all n ≥ 0. Moreover in this case ψ (n+2) -ψ (n+1) C 1/2 V ψ 0 V X T γ-1/2 ψ (n+1) -ψ (n) C 1/2 V which for X T γ-1/2 ψ 0 V 1/2 implies that (ψ (n) ) n≥0 converges in C 1/2 V
to a limit ψ which by continuity of the Young integral and of the operator X satisfies

ψ t = ψ 0 + t 0 X ds (ψ s ).
This solution exists at least until t ≤ T where T depends only on the norm of X and ψ 0 V . Note that a posteriori ψ belongs to C γ V and not only to

C 1/2 V . Uniqueness in C 1/2 V is now obvious.
Of course if M = 0 it is easy to prove that the existence time T of the local solution does not depend on φ 0 V and this imply existence of solution on arbitrary intervals. In the general case we need further assumptions on the properties of X:

Lemma 3.4.1. Assume that for all φ ∈ V such that φ V ≤ R we have | φ + X s,t (φ) V -φ V | C R |t -s| ρ
where ρ > 1, then ψ t V = ψ 0 V and there exists a unique global solution of the Young equation.

Proof. Consider M t = ψ t V which satisfy

|M t -M s | = | ψ s + X s,t (ψ s ) + R s,t V -ψ s V | ≤ | ψ s + X s,t (ψ s ) V -ψ s V | + R s,t V
by assumption and by the Young estimates on R we have

ψ 0 V |t -s| ρ + |t -s| 1/2+γ .
This relation implies that M t must be a constant function since both ρ > 1 and 1/2 + γ > 1.Then M t = M 0 for all t < T . The conservation of the V norm allows then to extend the solution to an arbitrary interval and obtain a global solution.

Euler Scheme

Young equations allow for a straightforward Euler approximation scheme. Let ψ ∈ C γ V the solution of the Young equation defined before and T the life time of this solution. For any n ≥ 0 let ψ n 0 = ψ 0 ∈ V and define recursively

ψ n i = ψ n i-1 + X i-1 n i n (ψ n i-1 ). Theorem 3.4.2. Let for n ≥ 0 and 0 ≤ i ≤ nT , ∆ n i = ψ n i -ψ i n then max 0≤i<j≤⌊nT ⌋ |∆ n j -∆ n i | |i -j| γ = O(n 1-2γ ) Proof. We remark that ψ n j -ψ n i = j-1 l=i X l n l+1 n
(ψ n i ) and for 0 ≤ i < j ≤ ⌊nT ⌋ and define the partition of [i/n, j/n] by π

j-i+1 = (t n k ) i≤k≤j with t n k = k n . Denote by M π j-i+1 ij = j-1 l=i X t n l t n l+1 (ψ n l
), now consider the partition π j-i = π j-i+1 -{t n k } for i < k < j and then

M π j-i+1 ij = M π j-i ij + X t n k t n k+1 (ψ n k ) -X t n k t n k+1 (ψ n k-1 )
and by induction we obtain immediately that

ψ n j -ψ n i = X t n i t n j (ψ n i ) + j-1 k=i+1 X t n k t n k+1 (ψ n k ) -X t n k t n k+1 (ψ n k-1 )
now for some convenience we denote by p n lk = X t n l t n k (ψ n q ) and q n lk = X t n l t n k (ψ q/n ) then using that ψ satisfies the Young equation we obtain

ψ j/n -ψ i/n = q n ij + j-1 k=i+1 X t n k t n k+1 (ψ k/n ) -X t n k t n k+1 (ψ (k-1)/n ) + R n ij where R n ij = j-1 k=i t n k+1 t n k X dσ (ψ σ ) -X t n k t n k+1 (ψ t n k )
For this term we have the bound

|R n ij | |ψ|γ +|ψ| 0 ,||X|| (j -i)n -2γ .

Now consider

∆ n j -∆ n i = p n ij -q ij -R n ij + j-1 k=i+1 X t n k t n k+1 (ψ n k ) -X t n k t n k+1 (ψ n k-1 ) -X t n k t n k+1 (ψ k/n ) + X t n k t n k+1 (ψ (k-1)/n )
and let

B n l = max 0≤i<j≤l j -i n -1 ∆ n j -∆ n i -p n ij -q ij + R n ij .
To prove our result is suffices to show that B n ⌊nT ⌋ = O(n 1-2γ ). Observe that when |i -j| < l the sum appearing in the expression of ∆ n i -∆ n j can be bounded by B n l-1 : in fact we have that

|X t n k t n k+1 (ψ n k )-X t n k t n k+1 (ψ n k-1 )-X t n k t n k+1 (ψ k/n )+X t n k t n k+1 (ψ (k-1)/n )| ≤ C( j -i n ) 2γ (1+B n l-1 ) M (n 1-2γ +B n l-1 )
where C = C(ψ 0 , ||X||) and

B n l ≤ C(1 + B n l-1 ) M (B n l-1 + n 1-2γ )(l/n) 2γ-1 .
When l = 1 we have that B n 1 = 0 and the result is clearly true. Now assume that for some l we have that B n l-1 ≤ A and define the increasing map θ

(x) = (l/n) 2γ-1 (1 + x) M +1 . Remark that θ(n 2γ-1 B n l ) ≤ n 2γ-1 B n l-1 .
Then if l/n is small enough we have that θ admits a fixed point and that n 1-2γ B n l ≤ A < +∞ where we take A is the limit of the sequence (x i ) defined by x i+1 = θ(x i ) and x 0 = 0. Now is suffice to iterate this argument to prove that bound hold for l ≤ ⌊nT ⌋.

Regular equation

In this section we study the convergence of approximations given by a standard PDE to the solution of the Young equations. Consider the following regularized problem

∂ t ϕ t = Aϕ t ∂ t n t + Π L N (Π L ϕ t ), t ≥ 0 ϕ(0, x) = Π L φ(x) ∈ C ∞ (T) (3.7) with n is a differentiable function, φ ∈ L 2 (T), A = ∂ 3 x or i∂ 2
x and N is the non linearity given in the previous section, of course this Cauchy problem is equivalent to the mild formulation

ϕ t = U n t Π L φ + t 0 U n t (U n s ) -1 Π L N (Π L ϕ s )ds (3.8)
or equivalently

ψ t = Π L φ + t 0 (U n s ) -1 Π L N (Π L U n s ψ s )ds (3.9)
with U n t = e Ant and ψ t = (U n ) -1 t ϕ t , In the rest of this section we take A = ∂ 3 x and N (φ) = ∂ x φ 2 for the case of the Schrödinger equation we can adapt exactly the same argument. Now we can check easily that the modulated operator X n,L associated to the equation (3.9) is well defined and satisfy

||X n,L st || L 2 (Hα 1 ,Hα 2 ) n,L |t -s| for all α 1 , α 2 ∈ R.
, and then by a fixed point argument we obtain the existence of a unique Young local solution

ϕ n,L ∈ C([0, T ⋆ ], L 2 ) such that ψ n,L t = (U n t ) -1 ϕ n,L t ∈ C 1 ([0, T ⋆ ], L 2 ) moreover we have that ψ n,L ∈ ∩ β≥0 C 1 ([0, T ⋆ ], H β ) and then clearly ∂ t ϕ t = Aϕ t ∂ t n t + Π L N (Π L ϕ t )
in the weak sense. To obtain a global solution is sufficient to remark that for all

v ∈ L 2 v, X n,L st (v, v) = t s dσ T dxU n σ v(x)Π L ∂ x (U n σ v(x)) 2 = - t s dσ T dxΠ L (U n v(x)) 2 ∂ x (Π L U n v(x)) 2 = 0
and then we obtain that

||ψ n,L t || 2 L 2 = ||ψ n,L s || 2 L 2 + ||ψ n,L t -ψ n,L s || 2 L 2 + ψ n,L s , X n,L st (v s , v s ) + R st = ||ψ n,L s || 2 L 2 + ||ψ n,L t -ψ n,L s || 2 L 2 + R st for all s, t ∈ [0, T ⋆ ] with |R st | |t -s| 2 , then we obtain that |||ψ n,L t || 2 L 2 -||ψ n,L s || 2 L 2 | |t -s| 2 and this give us ||ψ n,L t || = ||Π L φ|| L 2 .
Using this conservation law we can extend our local solution to a global one. The mild eq. (3.9) has a meaning even when n is only continuous function. Let R > 0, T > 0 and assume that sup σ∈[0,T ] |n σ | ≤ R then we obtain

||ψ n,L || C 1-ε ([0,T ],L 2 ) L T ε 1 ||X n,L || C 1 ([0,T ],L 2 ) (||ψ n,L || C 1-ε ([0,T 1 ],L 2 ) + ||Π L φ|| L 2 ) 2 for all T 1 < min(1, T ), using the fact that ||X n,L || C 1 ([0,T ],L 2 ) L sup σ∈[0,T ] |n σ | L R and taking T 1 = T 1 (||Π L φ|| L 2 ) small enough we can see that ||ψ n,L || C 1-ε ([0,T 1 ],L 2 ) L R.
Finally using the conservation law and iterating these results gives us that ||ψ n,L || C 1-ε ([0,T ],L 2 ) L R. By a similar argument we obtain easily

||ψ n 2 ,L -ψ n 1 ,L || C 1-ε ([0,T ],L 2 ) L,R sup σ∈[0,T ] |n 1 σ -n 2 σ | for all n 1 , n 2 ∈ C([0, T ], L 2 ) such that sup σ∈[0,T ] |n i σ | ≤ R for i = 1
, 2 where ψ n 1 ,L ,ψ n 2 ,L are respectively the global solution of the eq. (3.9) associated to the dispersion n 1 and n 2 . Now let w N a regularization of the continuous ρirregular function w and assume that sup σ∈[0,T ] |w N σw σ | → N →+∞ 0 for all T > 0. Then the solutions (ϕ N,L ) N ∈N of the regularized problem (3.7) with dispersion w N converge in C([0, T ], L 2 ) to ϕ L which is the solution of the mild equation (3.8) with dispersion w:

ϕ L t = U w Π L φ + t 0 (U w t )(U w s ) -1 Π L N (Π L ϕ s )ds. (3.10) 
Finally we have Theorem 3.4.3. Let ρ > 3/4, T > 0 and ϕ L , ϕ respectively the solution of the mild eq. (3.10) on [0, T ] and the modulated KdV equation then

||ψ L -ψ|| C 1/2 ([0,T ],L 2 ) → L→+∞ 0 with ψ L t = (U w t ) -1 ϕ L t and ψ t = (U w t ) -1 ϕ t
Proof. Using the equation

ψ L t = Π L φ + t 0 X L dσ (ψ σ )
we obtain that

||ψ L || C 1/2 ([0,T 1 ],L 2 ) T γ-1/2 1 sup L ||X L || C γ ([0,T ],L 2 (L 2 )) (||ψ L || C 1/2 ([0,T 1 ],L 2 ) + ||φ|| L 2 ) 2
and then taking

T 1 = T 1 (||φ|| L 2 ) small enough we obtain that sup L ||ψ L || C 1/2 ([0,T 1 ],L 2 ) sup L ||X L || C γ ([0,T ],L 2 (L 2 ))
+∞ using the conservation law we can proceed by induction to recover the interval [0, T ] and then

sup L ||ψ L || C 1/2 ([0,T ],L 2 ) < +∞. Now the same argument shows that ||ψ L -ψ|| C 1/2 ([0,T ],L 2 ) ||φ|| L 2 ||X L -X|| C 1/2 ([0,T ],L 2 )
and then suffices to use the fact that ||X -X L || → L→∞ 0 (proven in Lemma 3.5.2 below) to deduce the needed convergence.

Regularity of X

Let w a ρ-irregular path, the aim of this section is to provide the necessary pathwise estimates on the modulated operator X w in the various models we consider. Definition 3.5.1. We say that a n-linear operator X on the Banach space V belongs to X w n,V if 1. For all T > 0 we have

|X st | L n V ≤ C Φ w W ρ,γ T |t -s| γ
for s, t ∈ [0, T ] and for some finite constant C > 0 which does not depend on w.

If we let X

L s,t (ϕ 1 , . . . , ϕ n ) = Π L X s,t (Π L ϕ 1 , . . . , Π L ϕ n ) then X L → X in C 1/2
T L n V . Once appropriate bounds are obtained for the relevant X operators, the Young theory of Section 3.4 gives a complete local well-posedness theory for the equation (including convergence of approximations and the Euler scheme). For the KdV equation and the non linear cubic Schrödinger equation we will see in the next section how we can obtain a global solution for an initial data φ ∈ H α with α ≥ 0 using some smoothing estimates. For the following we will assume that w is ρ-irregular.

Periodic KdV

Here we will bound the modulated operator associated to the periodic KdV equation (ie: A = ∂ 3 and N (ϕ) = ∂ϕ 2 ) on H α (T). We recall that in this case the operator X is given by

X s,t (ψ) = X s,t (ψ, ψ) = t s (U w σ ) -1 ∂ x (U w σ ψ) 2 dσ Lemma 3.5.2. Let α ≥ -ρ and ρ > 3/4 then X ∈ X w 2,H α . Proof. Let ψ 1 , ψ 2 ∈ H α . The Fourier transform gives Xst (ψ 1 , ψ 2 ) = ik k 1 +k 2 =k I kk 1 k 2 =0 Φ w st (kk 1 k 2 ) ψ1 (k 1 ) ψ2 (k 2 ).
From an application of Cauchy-Schwarz we obtain that

k 1 +k 2 =k I kk 1 k 2 =0 Φ w st (kk 1 k 2 ) ψ1 (k 1 ) ψ2 (k 2 ) 2 ≤   k 1 +k 2 =k I kk 1 k 2 =0 |k 2 | -2α |Φ w st (kk 1 k 2 )| 2 | ψ1 (k 1 )| 2   |ψ 2 | 2 α ≤ sup k 1 ;kk 1 k 2 =0,k 1 +k 2 =k |Φ w st (kk 1 k 2 )| 2 |k 1 | 2α |k 2 | 2α |ψ 1 | 2 α |ψ 2 | 2 α (3.11)
where the supremum is taken over k 1 . And we obtain

|X st | 2 L 2 H α ≤ k |k| 2α+2 sup k 1 ;kk 1 k 2 =0,k 1 +k 2 =k |Φ w st (kk 1 k 2 )| 2 |k 1 | 2α |k 2 | 2α 1/2 (3.12)
The ρ-irregularity of w allows to estimate this bound by

|X st | 2 L 2 H α ≤ C ρ,T ||Φ w || W ρ,γ T |t -s| 2γ k |k| 2α+2-2ρ sup k 1 ;kk 1 k 2 =0,k 1 +k 2 =k 1 |k 1 | 2α+2ρ |k 2 | 2α+2ρ w,ρ,γ |t -s| 2γ k |k| 2-4ρ sup k 1 ;kk 1 k 2 =0,k 1 +k 2 =k ( |k| |k 1 ||k 2 | ) 2α+2ρ . Now if we remark that |k| |k 1 ||k 2 | ≤ 1 |k 1 | + 1 |k 2 |
≤ 2 and if we take α ≥ -ρ and ρ > 3/4 we obtain that

k |k| 2-4ρ sup k 1 ;kk 1 k 2 =0,k 1 +k 2 =k ( |k| |k 1 ||k 2 | ) 2α+2-2ρ ≤ 2 2α+2ρ k 1 |k| 2-4ρ < +∞
which gives the claimed regularity for X. As far as the convergence of X L is concerned we let φ 1 , φ 2 ∈ L 2 and observe that

||X L st (φ 1 , φ 2 ) -X st (φ 1 , φ 2 )|| 2 2 = |k|<L |k| 2 k 1 +k 2 =k,k 1 k 2 =0 (I |k 1 |,|k 2 |≤L -1) φ1 (k 1 ) φ2 (k 2 )Φ st (kk 1 k 2 ) 2 + |k|≥L |k| 2 k 1 +k 2 =k,k 1 k 2 =0 φ1 (k 1 ) φ2 (k 2 )Φ w st (kk 1 k 2 ) 2 |φ 1 | 2 2 |φ 2 | 2 2   k |k| 2 sup |k 1 |≥L;k 1 +k 2 =k |Φ w st (kk 1 k 2 )| 2 + |k|≥L |k| 2 sup k 1 ,k 1 +k 2 =k |Φ st (kk 1 k 2 )| 2   .
Using this bound with the fact that w is ρ-irregular gives us

||X L -X|| C γ ([0,T ],L 2 (L 2 )) w,T k |k| 2-2ρ sup |k 1 |≥L;k 1 +k 2 =k |k 1 | -2ρ |k 2 | -2ρ + |k|≥L |k| 2-2ρ sup k 1 |k 1 k 2 | -2ρ
for some γ > 1/2 and ρ > 4/3. Now the r.h.s of this inequality vanish when L goes to the infinity, in fact choosing θ > 0 small enough we have

k |k| 2-2ρ sup |k 1 |≥L;k 1 +k 2 =k |k 1 | -2ρ |k 2 | -2ρ θ,ρ L -θ k |k| 2-4ρ+θ → L→+∞ 0 and |k|≥L |k| 2-2ρ sup k 1 |k 1 k 2 | -2ρ ρ |k|≥L |k| 2-4ρ → L→+∞ 0
and this finishes the proof. Now we will give an improvement of the Lemma 3.5.2.

Lemma 3.5.3. Let ρ > 4/3 , α > -ρ and β < α + 2ρ -3 2 then there exists γ > 1/2 such that for all T > 0 the following inequality holds

|X st (φ 1 , φ 2 )| H β ≤ C T,α,β Φ w W ρ,γ T |t -s| γ |φ 1 | H α |φ 2 | H α for all φ 1 , φ 2 ∈ H α where C T,α,β < +∞.
Proof. Eq. (3.12) can be modified to give

|X st (φ 1 , φ 2 )| 2 H β ≤ |φ 1 | 2 H α |φ 2 | 2 H α k |k| 2+2β sup k 1 |Φ w st (3kk 1 k 2 )| 2 |k 1 | α |k 2 | α an k |k| 2+2β sup k 1 |Φ w st (3kk 1 k 2 )| 2 |k 1 | α |k 2 | α ≤ |t -s| 2γ k |k| 2+2β-2ρ sup k 1 |k 1 k 2 | -2α-2ρ α,β |t -s| 2γ k |k| 2-4ρ+2β-2α < +∞ if β < α + 2ρ -3/2
which finishes the proof.

Periodic modified KdV

In the case of the periodic modified KdV equation we have

A = ∂ 3 and N (u) = ∂u(u 2 -||u|| 2 
2 ) and the Fourier transform of the modulated operator X reads

Xst (ψ 1 , ψ 2 , ψ 3 ) = ik * ψ1 (k 1 ) ψ2 (k 2 ) ψ3 (k 3 )Φ w st (2(k -k 2 )(k -k 1 )(k -k 3 ))
where the star under the sum mean that

k 1 + k 2 + k 3 = k,k 1 k 2 k 3 = 0 and k 2 , k 3 = k and we have used the algebraic relation k 3 -k 3 1 -k 3 2 -k 3 3 = (k -k 1 )(k -k 2 )(k -k 3 ). By Cauchy-Schwarz |X st (ψ 1 , ψ 2 , ψ 3 )| 2 H α = k |k| 2α+2 | * ψ1 (k 1 ) ψ2 (k 2 ) ψ3 (k 3 )Φ w st (2(k -k 2 )(k -k 1 )(k -k 3 ))| 2 ≤ k |k| 2α+2 ( * |k 1 k 2 k 3 | -2α |Φ w st (2(k -k 2 )(k -k 3 )(k -k 1 ))| 2 ) × ( * |k 1 | 2α |k 2 | 2α |k 3 | 2α | ψ1 (k 1 )| 2 | ψ2 (k 2 )| 2 | ψ3 (k 3 )| 2 ) ≤ (sup k =0 |k| 2α+2 * |k 1 k 2 k 3 | -2α |Φ w st (2(k -k 2 )(k -k 3 )(k -k 1 ))| 2 )||ψ 1 || H α ||ψ 2 || 2 H α ||ψ 3 || 2 H α
from which we obtain that

|X st | 2 L 3 H α ≤ sup k =0 |k| 2α+2 * |k 1 k 2 k 3 | -2α |Φ w st (2(k -k 2 )(k -k 3 )(k -k 1 ))| 2 . (3.13) 
Now we will give a lemma which help us to bound our operator Lemma 3.5.4. Let α ≥ 1/2 and ρ > 1/2 then we have

l =0,k |l| -2α |l -k| -2ρ ε,ρ,α |k| -min(2α,2ρ-ε)
for all ε > 0 small enough.

Proof. We begin by decomposing our sum in two region in the following manner

k 2 =0,k 1 |k 2 | 2α |k -k 2 | 2ρ = I 1 + I 2
where

I 1 = k 2 =0,k;|k-k 2 |≤2|k 2 | 1 |k 2 | 2α |k -k 2 | 2ρ , I 2 = k 2 =0,k;|k-k 2 |≥2|k 2 | 1 |k 2 | 2α |k -k 2 | 2ρ . Remark that if |k -k 2 | ≤ 2|k 2 | then |k| ≤ 3|k 2 | then we have I 1 1 |k| 2α k 2 =0,k;|k-k 2 |≤2|k 2 | 1 |k -k 2 | 2ρ 1 |k| 2α k 2 =k 1 |k -k 2 | 2ρ = 1 |k| 2α k 2 =0 1 |k 2 | 2ρ < +∞.
For the second term I 2 , we begin by noting that if |k -

k 2 | ≥ 2|k 2 | then |k| |k -k 2 | so I 2 1 |k| 2ρ-ε k 2 =0,k;|k-k 2 |≥2|k 2 | 1 |k 2 | 2α+ε < +∞.
Now using the inequality (3.13) and the (ρ, γ)-irregularity if w we have

|X st | L 3 H α ≤ sup k =0 |k| 2α+2 * |k 1 k 2 k 3 | -2α |Φ w st (2(k -k 2 )(k -k 3 )(k -k 1 ))| 2 ≤ C w,ρ |t -s| γ sup k =0 |k| 2+2α * |k 1 k 2 k 3 | -2α 1 |k -k 2 | 2ρ |k -k 3 | 2ρ |k -k 1 | 2ρ
where C w,ε,T is a finite constant. Lemma 3.5.5. For all α ≥ 1/2 and ρ > 1/2 we have that

I = sup k =0 |k| 2+2α * |k 1 k 2 k 3 | -2α 1 |k -k 2 | 2ρ |k -k 3 | 2ρ |k -k 1 | 2ρ < +∞ Proof. Now the inequality |k| 2α = | -k 1 + k 2 + k 3 | 2α |k 1 | 2α + |k 2 | 2α + |k 3 | 2α gives I sup k |k| 2 k 2 ,k 3 =0,k |k 2 k 3 | -2α |k -k 2 | -2ρ |k -k 3 | -2ρ = sup k |k| 2 ( k 2 =0,k |k| -2α |k -k 2 | -2ρ ) 2
Then using the Lemma 3.5.4 we conclude that I < +∞ when α ≥ 1/2. Theorem 3.5.6. Let ρ > 1/2 then there exists γ > 1/2 such that X ∈ C γ ([0, T ], H α ) for all α ≥ 1/2 and T > 0. Moreover if α > 1/2 we have that X ∈ X w 3,H α .

KdV on R

Here we treat the operator X associated to the KdV equation on the non-periodic case. By a simple computation we see that the Fourier transform of X is given by the convolution formula

Xst (ψ 1 , ψ 2 )(x) = ix R Φ w st (xy(x -y)) ψ1 (y) ψ2 (x -y)dy
We begin by treating the case α ≥ 0. Cauchy-Schwarz inequality gives

||X st || 2 H α ≤ sup x∈R x 2α |x| 2 R |Φ w st (xy(x -y))| 2 y 2α x -y 2α dy ≤ ||Φ w || W ρ,γ T |t -s| γ sup x∈R x 2α |x| 2 R dy y 2α x -y 2α (1 + |xy(x -y)|) 2ρ
and then we have to check that

I(α) = sup x∈R x 2α |x| 2 R dy y 2α x -y 2α (1 + |xy(x -y)|) 2ρ < +∞
with α ≥ 0. Using the fact that x 2α y 2α + xy 2α we obtain I(α) I(0) and then is sufficient to prove that I(0) is finite. We will decompose this quantity as I(0) = I 1 + I 2 + I 3 + I 4 where

I 1 = sup |x|≥1 |x| 2 {|y|≥1/2;|y-x|≥1/2} dy (1 + |xy(x -y)|) 2ρ sup |x|≥1 |x| 2-4ρ {|y|≥1/2}
|z| -2ρ dy < +∞ when ρ > 1/2.

I 2 =2 sup |x|≥1 |x| 2 |y|≤1/2 dy (1 + |xy(x -y)|) 2ρ sup |x|≥1 |x| 2 |y|≤1/2 dy (1 + x 2 |y|) 2ρ R (1 + |z|) -2ρ dz < +∞ I 3 = sup |x|≤1 |x| 2 |y|≥2 dy (1 + |xy(x -y)|) 2ρ sup |x|≤1 |x| 2 |y|≥2 dy (1 + |xy 2 |) 2ρ R (1 + |z| 2 ) -2ρ dz < +∞
and finally the last term can easily bounded by

I 4 = sup |x|≤1 |x| 2 |y|≤2 (1 + |yx(x -y)|) -2ρ dy ≤ 4.
In the case α < 0 we will bound our operators by

||X st || 2 ≤ |x|≥1 |x| 2 x 2α sup |y|≥1/2;|x-y|≥1/2 |Φ w st (xy(x -y))| 2 y 2α x -y 2α dx + 2 sup |x|≥1 x 2α |x| 2 |y|<1/2 |Φ w st (xy(x -y))| 2 y 2α x -y 2α + sup |x|<1 x 2α |x| 2 R |Φ w st (xy(x -y))| 2 y 2α x -y 2α = J 1 + J 2 + J 3
The integral J 1 correspond to the high-high-high part and cant by treated by similar argument used in the periodic setting in fact

J 1 γ,α ||Φ w || W ρ,γ T |t -s| γ |x|≥1 |x| 2-4ρ sup |y|,|x-y|≥1/2 |x| |x -y||y| 2α+2ρ < +∞
when ρ > 3/4 and α > -ρ. For the term J 2 we remark that if |x| ≥ 1 and |y| < 1/2 then |x -y| ∼ |x| and

J 2 ||Φ w || W ρ,γ T |t -s| γ sup |x|≥1 |x| 2 |y|≤1/2 dy (1 + |x 2 y|) 2ρ R (1 + |z|) -2ρ dz < +∞. Now split J 3 = J 31 + J 32 with J 31 = sup |x|<1 |x| 2 x 2α |y|<2 |Φ w st (xy(x -y))| 2 y 2α x -y 2α α |t -s|.
If |x| < 1 and |y| ≥ 2 then |x -y| ∼ |y| and

J 32 = |t -s| γ sup |x|≤1 |x| 2 |y|≥2 dy (1 + |y| 2 |x|) 4ρ y 4α sup |x|≤1 |x| 3/2+2α R |y| -4α (1 + |y| 2 ) 2ρ < +∞
when α ∈ (-3/4, 0] and α > -ρ. These considerations results in the following regularity for X:

Proposition 3.5.7. Let ρ > 3/4 then there exist γ > 1/2 such that X ∈ C γ ([0, T ], H α ) for all T > 0 and α > -min(3/4, ρ).
The restriction of the regularity at -3/4 is imposed by the low-highy frequency term in the proof above. To bypass this difficulty we will consider distribution spaces given by the following definition.

Definition 3.5.8. We say that f ∈ H α,β if f ∈ S ′ (R) and R |θ α,β (x)| 2 | f (x)| 2 dx < +∞ where θ α,β (x) = |x| α+β (1+|x|) β
Observe that H α = H α,0 is the homogenous Sobolev space. Now as in periodic case by simple computation we have that

|X st | 2 L 2 H α ≤ R |x| 2+2α sup y∈R |Φ w st (xy(x -y)| 2 |y| 2α |x -y| 2α dx.
Now the problem with this bound is that the terms in r.h.s admit a singularity at the origin which not exist in the periodic case to bypass this difficulty we will give another bound of our operator in the region which poses a problem. Lemma 3.5.9. There exist a universal constant C such that the following inequality holds

|X st | 2 L 2 H α,β ≤ C( sup |x|≤1 |x| 2 |θ α,β (x)| 2 |y|≤2 |Φ w st (xy(x -y))| 2 |θ α,β (y)| 2 |θ α,β (x -y)| 2 dx + |x|≤1 |x| 2 θ 2 α,β (x) sup |y|≥2 |Φ w st (xy(x -y))| 2 |θ α,β (y)| 2 |θ α,β (x -y)| 2 dx + sup |x|≥1 |x| 2 θ 2 α,β (x) |y|≤ 1 2 |Φ w st (xy(x -y))| 2 |θ α,β (y)| 2 |θ α,β (x -y)| 2 dy + sup |x|≥1 |x| 2 θ 2 α,β (x) {|y|≥ 1 2 ;|y-x|≤ 1 2 } |Φ w st (xy(x -y))| 2 |θ α,β (y)| 2 |θ α,β (x -y)| 2 dy + |x|≥1 |x| 2 θ 2 α,β (x) sup {|y|≥ 1 2 ;|y-x|≥ 1 2 } |Φ w st (xy(x -y))| 2 |θ α,β (y)| 2 |θ α,β (x -y)| 2 dx) (3.14) Proof. Let ψ 1 , ψ 2 ∈ H α,β then by definition we have | Xst (ψ 1 , ψ 2 )| 2 α,β = R |x| 2 θ 2 α,β (x)| R Φ w st (xy(x -y)) ψ1 (y) ψ2 (x -y)dy| 2 dx = |x|≤1 |x| 2 θ 2 α,β (x)| R Φ st (xy(x -y)) ψ1 (y) ψ2 (x -y)dy| 2 dx + |x|≥1 |x| 2 θ 2 α,β (x)| R Φ w st (xy(x -y)) ψ1 (y) ψ2 (x -y)dy| 2 dx = I 1 + I 2
Now we begin by study the term I 1 , then by Cauchy-Schwarz we have:

I 1 ≤ 2( |x|≤1 |x| 2 θ 2 α,β (x)| |y|≤2 Φ w st (xy(x -y)) ψ1 (y) ψ2 (x -y)dy| 2 dx + |x|≤1 |x| 2 θ 2 α,β (x)| |y|≥2 Φ w st (xy(x -y)) ψ1 (y) ψ2 (x -y)dy| 2 dx) ≤ 2( sup |x|≤1 |x| 2 |θ α,β (x)| 2 |y|≤2 |Φ w st (xy(x -y))| 2 |θ α,β (y)| 2 |θ α,β (x -y)| 2 dx + |x|≤1 |x| 2 θ 2 α,β (x) sup |y|≥2 ( |Φ w st (xy(x -y))| 2 |θ α,β (y)| 2 |θ α,β (x -y)| 2 )dx)|ψ 1 | 2 α,β |ψ 2 | 2 α,β
By the same argument we can show that I 2 satisfy the following inequality :

I 2 ≤3( sup |x|≥1 |x| 2 θ 2 α,β (x) |y|≤ 1 2 |Φ w st (xy(x -y))| 2 |θ α,β (y)| 2 |θ α,β (x -y)| 2 dy + sup |x|≥1 |x| 2 θ 2 α,β (x) {|y|≥ 1 2 ;|y-x|≤ 1 2 } |Φ w st (xy(x -y))| 2 |θ α,β (y)| 2 |θ α,β (x -y)| 2 dy + |x|≥1 |x| 2 θ 2 α,β (x) sup {|y|≥ 1 2 ;|y-x|≥ 1 2 } |Φ w st (xy(x -y))| 2 |θ α,β (y)| 2 |θ α,β (x -y)| 2 dx)
which finishes the proof. Now to obtain the Young regularity we have to bound this five kernel

I hhh st = |x|≥1 |x| 2 θ 2 α,β (x) sup {|y|≥ 1 2 ;|y-x|≥ 1 2 } |Φ w st (xy(x -y))| 2 |θ α,β (y)| 2 |θ α,β (x -y)| 2 dx I ll st = sup |x|≤1 |x| 2 |θ α,β (x)| 2 |y|≤2 |Φ w st (xy(x -y))| 2 |θ α,β (y)| 2 |θ α,β (x -y)| 2 dx I lh st = |x|≤1 |x| 2 θ 2 α,β (x) sup |y|≥2 |Φ w st (xy(x -y))| 2 |θ α,β (y)| 2 |θ α,β (x -y)| 2 dx I hlh st = sup |x|≥1 |x| 2 θ 2 α,β (x) |y|≤ 1 2 |Φ w st (xy(x -y))| 2 |θ α,β (y)| 2 |θ α,β (x -y)| 2 dy I hhl st = sup |x|≥1 |x| 2 θ 2 α,β (x) {|y|≥ 1 2 ;|y-x|≤ 1 2 } |Φ w st (xy(x -y))| 2 |θ α,β (y)| 2 |θ α,β (x -y)| 2 dy
Now we will begin by the term which contain the high-high-high frequency : 

I hhh st |t -s| γ |x|≥1 |x| 2α+2-2ρ sup {|y|≥1/2;|y-x|≥1/2} 1 |y(x -y)| 2α+2ρ dx |t -s| γ |x|≥1 |x| 2-4ρ sup {|y|≥1/2;|y-x|≥1/2} ( |x| |y(x -y)| ) 2α+2ρ dx < +∞ if α > -1
I ll st |t -s| sup |x|≤1/2 |x| 2(α+β)+2 |y|≤2 1 |y(x -y)| 2α+2β dy < +∞ if -1 ≤ α + β < 1/2
. Now we will focus on the low-high frequency term, and we begin by remark that by interpolation we have that |Φ w st (a)| ≤ C |t-s| γ |a| ρ ′ for one γ > 1/2 and all ρ ′ ∈ (0, ρ], then using this inequality we obtain that :

I lh st α,β |t -s| γ |x|≤1 |x| 2(α+β)+2-2ρ ′ sup |y|≥2 1 |y(x -y)| 2α+2ρ ′ dx < +∞ when we can choose ρ ′ ∈ (0, ρ) ∩ (-α, α + β + 3/2)
and this is possible if and only if 2α + β > -3/2, α > -ρ and α + β > -3/2. Now it remains to study the two terms I hlh st and I hhl st but by symmetry these terms are essentially equivalent then it suffices to treat only one of them. Let us for example treat the term I hlh st then we begin by noting that if |x| ≥ 1 and |y| ≤ 1/2 then |x| -1/2 ≤ |x -y| ≤ |x| + 1/2 using this fact we have :

I hlh st |t -s| γ sup |x|≥1 |x| 2α+2-2ρ ′ |y|≤1/2 1 |y| 2α+2β+2ρ ′ |x -y| 2α+2ρ ′ dy |t -s| γ sup |x|≥1 |x| 2-4ρ ′ |y|≤1/2 1 |y| 2α+2β+2ρ ′ dy < +∞ when we choose ρ ′ ∈ (0, ρ) ∩ (1/2, 1/2 -α -β)
and this is possible if and only if α + β < 0 Then we have the following lemma. Lemma 3.5.10. Let ρ > 3/4 ,α > -ρ and -α > β ≥ 0 with β + 2α > -3/2 then there exist γ ⋆ > 1/2 such that for all T > 0 the following inequality holds

|X st | L 2 H α;β ≤ C Φ w W ρ,γ T |t -s| γ ⋆ for all (s, t) ∈ [0, T ] 2 where C = C(T, β, α) > 0.
Corollary 3.5.11. Let ρ > 3/4 and 0 > α > max(-3/4, -ρ) then there exist γ > 1/2 such that for all T > 0 the following inequality holds:

|X st | L 2 H α ≤ C||Φ w || W ρ,γ T |t -s| γ for all (s, t) ∈ [0, T ] where C = C(T, α, ρ) > 0.
Proof. The condition α > -3/4 ensures that you can take β = 0 in the Lemma 3.5.10

Periodic cubic NLS equation

Proposition 3.5.12. Let ρ > 1/2 then there exist γ > 1/2 such that for all T > 0 and α ≥ 0 we have

X ∈ C γ ([0, T ], H α ). Moreover if α > 0 then X ∈ X w 3,H α .
Proof. By definition Ẋs (ψ 1 , ψ 2 , ψ 3 ) is a trilinear operator with Fourier transform given by

F Ẋs (ψ 1 , ψ 2 , ψ 3 )(ξ) = FX 1 (ψ 1 , ψ 2 , ψ 3 ) + FX 2 s (ψ 1 ψ 2 , ψ 3 ) = ψ 3 ψ 1 , ψ 2 + ψ 2 ψ 1 , ψ 3 + ξ 1 ,ξ 2 ,ξ 3 ∈Z 0 ξ=-ξ 1 +ξ 2 +ξ 3 I ξ =ξ 2 ,ξ 3 e iws(ξ 2 +ξ 2 1 -ξ 2 2 -ξ 2 3 ) ψ1 (ξ 1 ) * ψ2 (ξ 2 ) ψ3 (ξ 3 )
where ψi = Fψ i . Note that

ξ 2 +ξ 2 1 -ξ 2 2 -ξ 2 3 = 2(ξ-ξ 2 )(ξ-ξ 3 ) under the condition that ξ = -ξ 1 +ξ 2 +ξ 3 . Setting Ξ = 2(ξ -ξ 2 )(ξ -ξ 3 ) we get | ψ, X 2 st (ψ 1 , ψ 2 , ψ 3 ) | ≤ ξ 1 ,ξ 2 ,ξ 3 ∈Z 0 ξ=-ξ 1 +ξ 2 +ξ 3 I ξ =ξ 2 ,ξ 3 |Φ w s,t (Ξ)| ψ(ξ) * ψ1 (ξ 1 ) * ψ2 (ξ 2 ) ψ3 (ξ 3 )
By by now standard application of Cauchy-Schwarz we get

| ψ, X 2 st (ψ 1 , ψ 2 , ψ 3 ) | ≤ (I α,ρ ) 1/2 sup a∈Z 0 |a| -2ρ |Φ w st (a)| ψ α ψ 1 α ψ 2 α ψ 3 α with I α,η = sup ξ∈Z 0 ξ 1 ,ξ 2 ,ξ 3 ∈Z 0 ξ=-ξ 1 +ξ 2 +ξ 3 I ξ =ξ 2 ,ξ 3 |ξ| 2α |ξ 1 ξ 2 ξ 3 | -2α |Ξ| -2ρ .
Some condition on the finiteness of the constant I α,β,ρ are enough to control the regularity of the operator X 2 . Since α ≥ 0, by using that

|ξ| 2α |ξ 1 | 2α + |ξ 2 | 2α + |ξ 3 | 2α we have I α,ρ I 0,ρ moreover I 0,η = sup ξ∈Z 0 ξ 2 ∈Z 0 I ξ =ξ 2 |ξ -ξ 2 | -2ρ ξ 3 ∈Z 0 I ξ =ξ 3 |ξ -ξ 3 | -2ρ
Is then easy to see that all these sums are finite provided 1 < 2ρ which means that we can take any ρ > 1/2. Now for the operator X 1 we have the following bound

||X 1 st (ψ 1 , ψ 2 , ψ 3 )|| H α ≤ 2(t -s)||ψ 1 || α ||ψ 2 || α ||ψ 3
|| α and this finishes the bound of the operator X.

Cubic NLS equation on R

Lemma 3.5.13. Let (ψ i ) i=1,..,4 ∈ L 2 (R) and define the following integral

I(α) := R 3 dx 1 dx 2 dx 3 |x 2 -x 1 | α |Φ w s 1 s 2 (2(x 2 -x 1 )(x 3 -x 1 ))| ×| ψ1 (x 1 )|| ψ * 2 (x 2 )||( ψ3 ) * (x 3 )||( ψ * 4 ) * (-x 1 + x 2 + x 3
)| then we have the following bound

I(α) < |s 2 -s 1 | γ Π i=1,..4 |ψ i | L 2 (R)
when α ∈ [0, 1) and ρ > 1/2 + α or α = 1 and ρ > 1 Proof. In the case α < 1 let us split R 3 = ∪ i=1,...,4 D i with

D 1 = {(x 1 , x 2 , x 3 ) ∈ R 3 ; |x 2 -x 1 | ≥ 1, |x 3 -x 1 | ≥ 1}, D 2 = {(x 1 , x 2 , x 3 ) ∈ R 3 ; |x 2 -x 1 | ≤ 1, |x 3 -x 1 | ≤ 1}, D 3 = {(x 1 , x 2 , x 3 ) ∈ R 3 ; |x 2 -x 1 | ≤ 1, |x 3 -x 1 | ≥ 1}, D 4 = {(x 1 , x 2 , x 3 ) ∈ R 3 ; |x 2 -x 1 | ≥ 1, |x 3 -x 1 | ≤ 1}.
According to this split I(α) = i=1,...,4 I i . By Cauchy-Schwarz we have

I l ≤ J l Π 4 i=1 |ψ i | L 2 (R)
for l ∈ {1, 2, 3} and using the (ρ, γ)-irregularity of w we have

J 2 1 = sup x 1 R 2 dx 2 dx 3 I {|x 2 -x 1 |≥1;|x 3 -x 1 |≥1} |x 2 -x 1 | 2α |Φ w s 1 s 2 (2(x 2 -x 1 )(x -x 1 ))| 2 = R 2 dy 2 dy 3 I {|y 2 |≥1;|y 3 |≥1} |y 2 | 2α |Φ w s 1 s 2 (2y 2 y 3 )| 2 |s 2 -s 1 | 2γ ( |y 2 |≥1 1 |y 2 | 2ρ-2α dy 2 )( |y 3 |≥1 1 |y 3 | 2ρ dy 3 ) < +∞ when ρ > α + 1/2.
To bound the term J 3 we use again the (ρ, γ) irregularity of w and we obtain

J 2 3 = sup x 1 R 2 dx 2 dx 3 I {|x 2 -x 1 |≤1;|x 3 -x 1 |≥1} |x 2 -x 1 | 2α |Φ w s 1 T (2(x 2 -x 1 )(x -x 1 ))| 2 = R 2 dy 2 dy 3 I {|y 2 |≤1;|y 3 |≥1} |y 2 | 2α |Φ w s 1 s 2 (2y 2 y 3 )| 2 |s 2 -s 1 | 2γ |y 2 |≤1 |y 2 | 2α ( |y 3 |≥1 1 (1 + [y 2 y 3 |) 2ρ dy 3 )dy 2 |s 2 -s 1 | 2γ ( |y 2 |≤1 1 |y 2 | 1-2α dy 2 )( R 1 (1 + |z 3 |) 2ρ dz 3 ) < +∞
when ρ > 1/2, α > 0 and this give us the bound for I 3 , we remark also in the case α = 0 the integral I 3 and I 4 are essentially the same by symmetry and can be be bounded using the same argument. Now we will focus to bound the term J 2 for that we use only the bound |Φ w s 1 s 2 (a)| ≤ |s 2s 1 | which is valid for all a ∈ R, in fact we have

J 2 2 = sup x 1 R 2 dx 2 dx 3 I {|x 2 -x 1 |≤1;|x 3 -x 1 |≤1} |x 2 -x 1 | 2α |Φ w s 1 s 2 (2(x 2 -x 1 )(x -x 1 ))| 2 = R 2 dy 2 dy 3 I {|y 2 |≤1;|y 3 |≤1} |y 2 | 2α |Φ w s 1 T (2y 2 y 3 )| 2 ≤ |s 2 -s 1 | 2
all these bounds give us the estimates for (I l ), l ∈ {1, 2, 3} then we will focus on the last integrals. To bound the integral I 4 we proceed in a different way, to simplify the notation let η = 2(x 2x 1 )(x 3x 1 ) and then using the Cauchy-Schwarz inequality we have :

R

dx 2 I |x 2 -x 1 |≥1 |x 2 -x 1 | α |Φ s 1 T (η)|| ψ2 (x 2 )|| ψ4 (x)| ≤ sup x 2 (I |x 2 -x 1 |≥1 |x 2 -x 1 | α |Φ s 1 s 2 (η)|)|ψ 2 | L 2 (R) |ψ 4 | L 2 (R)
now injecting this inequality in I 4 and using Cauchy-Schwarz and Young inequality we obtain that

I 4 ≤ ( R 2 dx 3 dx 1 I |x 3 -x 1 |≤1 sup x 2 (I |x 2 -x 1 |≥1 |x 2 -x 1 | α |Φ w s 1 s 2 (η)|)| ψ1 (x 1 )|| ψ3 (x 3 )|)|ψ 2 | L 2 (R) |ψ 4 | L 2 (R) = ( R | ψs 1 (x 1 )|( R I |x 3 -x 1 |≤1 sup x 2 (I |x 2 -x 1 |≥1 |x 2 -x 1 | α |Φ w s 1 s 2 (η)|)| ψ3 (x 3 )|dx 3 )dx 1 )|ψ 2 | L 2 (R) |ψ 4 | L 2 (R) ≤ R R I |x 3 -x 1 |≤1 sup x 2 (I |x 2 -x 1 |≥1 |x 2 -x 1 | α |Φ w s 1 s 2 (η)|)| ψ3 (x 3 )|dx 3 2 dx 1 1/2 |ψ 2 | L 2 (R) |ψ 4 | L 2 (R) |ψ 1 | L 2 (R) ≤ |y 3 |≤1 sup |y 2 |≥1 (|y 2 | α |Φ w s 1 s 2 (2y 2 y 3 )|)dy 3 Π 4 i=1 |ψ i | L 2 (R) |T -s 1 | γ Π 4 i=1 |ψ i | L 2 (R) sup z 2 |z 2 | α (1 + |z 2 |) -ρ |y 3 |≤1
|y| -α dy 3 < +∞ when α < 1 and ρ > α. As was noted previously this gives us also a bound for I 3 when α = 0. Now to treat the case α = 1 we proceed as in [START_REF] Debussche | 1D quintic nonlinear Schrà ¶dinger equation with white noise dispersion[END_REF]. Indeed after change of variable we can rewrite our integral as :

I(1) = R |x| R | ψ1 (y 1 )|| ψ2 (x -y 1 )| R | ψ3 (y 2 )|| ψ4 (x -y 2 )||Φ w s 1 s 2 (2x(y 2 -y 1 ))|dy 2 dy 1 dx
and then by Cauchy-Schwarz and Young inequality we have

I(1) ≤ (sup x |x| R |Φ w s 1 T (2xz)|dz)Π 4 i=1 |ψ i | L 2 (R) ≤ |s 2 -s 1 | γ ( R (1 + |z|) -ρ dz)Π 4 i=1 |ψ i | L 2 (R)
and the r.h.s is finite if ρ > 1 which finish the proof.

Proposition 3.5.14. Let ρ > 1/2 and X the modulated operator associated to the NLS on R then there exist γ > 1/2 such that X ∈ C γ ([0, T ], H α (R)) for all α ≥ 0 Proof. Let (ψ i ) i=1,2,3 ∈ H α and ψ 4 ∈ H -α then by a simple computation we have that

| ψ 4 , X st (ψ 1 , ψ 2 , ψ 3 ) | ≤ R (|x| -α | ψ4 (x)|)|x| α |x 1 x 2 x 3 | -4α |-x 1 +x 2 +x 3 | α Π i=1,.,3 |x i | α | ψi (x i )dx 1 dx 2 dx 3 (3.15) with x = -x 1 + x 2 + x 3 now using the fact that |x i | α |x 1 | α + |x 2 | α + |x 3 | α and the lemma 3.5.13 we obtain immediately | ψ 4 , X st (ψ 1 , ψ 2 , ψ 3 ) | |t -s| γ |ψ 4 | -α Π i=1,..,3 |ψ| α .

Cubic non linear Schrödinger equation on R 2

To extend the previous results to the modulated Schrödinger equation on R 2 we need to obtain regularity estimates for the appropriate X operators. Here Ẋs (ψ 1 , ψ 2 , ψ 3 ) is a trilinear operator with Fourier transform given by

F Ẋs (ψ 1 , ψ 2 , ψ 3 )(ξ) = ξ 1 ,ξ 2 ,ξ 3 ∈R 2 ξ=-ξ 1 +ξ 2 +ξ 3 e iws(|ξ| 2 +|ξ 1 | 2 -|ξ 2 | 2 -|ξ 3 | 2 ) ψ1 (ξ 1 ) * ψ2 (ξ 2 ) ψ3 (ξ 3 )dξ 2 dξ 3 . Note that |ξ| 2 + |ξ 1 | 2 -|ξ 2 | 2 -|ξ 3 | 2 = 2 ξ -ξ 2 , ξ -ξ 3 R 2 = Ξ under the condition that ξ = -ξ 1 + ξ 2 + ξ 3 .
Then X has the expression

FX s,t (ψ 1 , ψ 2 , ψ 3 )(ξ) = ξ 1 ,ξ 2 ,ξ 3 ∈R d ξ=-ξ 1 +ξ 2 +ξ 3 Φ w s,t (Ξ) ψ1 (ξ 1 ) * ψ2 (ξ 2 ) ψ3 (ξ 3 )dξ 2 dξ 3 .
Using the (ρ, γ)-iregularity of w we can easily obtain that

| ψ, X ts (ψ 1 , ψ 2 , ψ 3 ) | ≤ ξ,ξ 1 ,ξ 2 ,ξ 3 ∈R 2 ξ=-ξ 1 +ξ 2 +ξ 3 |Φ w s,t (Ξ)| | ψ(ξ)|| ψ1 (ξ 1 )|| ψ2 (ξ 2 )|| ψ3 (ξ 3 )|dξ 1 dξ 2 dξ 3 ≤ J 1/2 |t -s| γ ψ -α ψ 1 α ψ 2 α ψ 3 α with J = sup ξ∈R 2 ξ 1 ,ξ 2 ,ξ 3 ∈R 2 ξ=-ξ 1 +ξ 2 +ξ 3 (1 + 2| ξ -ξ 2 , ξ -ξ 3 |) -2ρ (1 + |ξ| 2 ) α i=1,2,3 (1 + |ξ i | 2 ) -α dξ 2 dξ 3
Lemma 3.5.15. The quantity J is finite when α > 1/2 and ρ > 1/2.

Proof. Inserting the estimate

(1 + |ξ| 2 ) α 3 i=1 (1 + |ξ i | 2 ) α we obtain that J = J 1 + J 2 where J 1 = sup ξ∈R 2 ξ 1 ,ξ 2 ,ξ 3 ∈R 2 ξ=-ξ 1 +ξ 2 +ξ 3 (1 + 2| ξ -ξ 2 , ξ -ξ 3 |) -2ρ (1 + |ξ 2 | 2 ) -α (1 + |ξ 3 | 2 ) -α dξ 2 dξ 3
and

J 2 = sup ξ∈R 2 ξ 1 ,ξ 2 ,ξ 3 ∈R 2 ξ=-ξ 1 +ξ 2 +ξ 3 (1 + 2| ξ -ξ 2 , ξ -ξ 3 |) -2ρ (1 + |ξ 2 | 2 ) -α (1 + |ξ 1 | 2 ) -α dξ 2 dξ 3
Let us consider first the J 1 contribution. Let q i = ξξ i , i = 2, 3

J 1 = sup ξ∈R 2 R 2 dq 2 (1 + |ξ + q 2 | 2 ) α R 2 dq 3 (1 + 2| q 2 , q 3 |) 2ρ (1 + |ξ + q 3 | 2 ) α Write q ⊥
3 , q 3 ∈ R for the perpendicular and parallel components of q 3 ∈ R 2 with respect to q 2 and similarly for ξ and bound

J 1 ≤ sup ξ∈R 2 R 2 dq 2 (1 + |ξ + q 2 | 2 ) α R dq ⊥ 3 (1 + |ξ ⊥ + q ⊥ 3 | 2 ) α R dq 3 (1 + 2|q 2 ||q 3 |) 2ρ = sup ξ∈R 2 R 2 dq 2 (1 + |ξ + q 2 | 2 ) α R dq ⊥ 3 (1 + |q ⊥ 3 | 2 ) α R dq 3 (1 + 2|q 2 ||q 3 |) 2ρ
now note that for α > 1/2 and ρ > 1/2 we have

R dq ⊥ 3 (1 + |q ⊥ 3 | 2 ) α R dq 3 (1 + 2|q 2 ||q 3 |) 2ρ |q 2 | -1 so that J 1 sup ξ∈R 2 R 2 dq 2 (1 + |ξ + q 2 | 2 ) α |q 2 | < +∞ for α > 1/2.
To estimate the J 2 integral we rewrite it as

J 2 = sup ξ∈R 2 R 2 R 2 (1 + 2| ξ 1 -ξ 2 , ξ -ξ 2 |) -2ρ (1 + |ξ 2 | 2 ) -α (1 + |ξ 1 | 2 ) -α dξ 2 dξ 1
where we used that ξξ 3 = ξ 2ξ 1 . By writing q 1 = ξ 1ξ 2 and q 2 = ξξ 2 we get

J 2 = sup ξ∈R 2 R 2 dq 2 (1 + |ξ -q 2 | 2 ) α R 2 dq 1 (1 + 2| q 1 , q 2 |) 2ρ (1 + |q 1 + ξ -q 2 | 2 ) α Write q ⊥
1 , q 1 for the perpendicular and parallel components of q 1 with respect to q 2 to get the estimate

J 2 ≤ sup ξ∈R 2 R 2 dq 2 (1 + |ξ -q 2 | 2 ) α R 2 dq ⊥ 1 dq 1 (1 + 2|q 1 ||q 2 |) 2ρ (1 + |q ⊥ 1 + ξ ⊥ | 2
) α again the condition α > 1/2 allows to bound this last quantity as

sup ξ∈R 2 R 2 dq 2 (1 + |ξ -q 2 | 2 ) α R dq 1 (1 + 2|q 1 ||q 2 |) 2ρ
and ρ > 1/2 subsequently by

sup ξ∈R 2 R 2 dq 2 (1 + |ξ -q 2 | 2 ) α |q 2 |
which is finite when α > 1/2. Theorem 3.5.16. For all ρ > 1/2 there exists γ > 1/2 such that for all T > 0 the operator X belongs to C γ ([0, T ], H α (R 2 )) for all α > 1/2.

The derivative NLS equation

Here we will focus on the modulated Derivative non linear Schrödinger equation (ie: A = i∂ 2 and

N (u) = ∂ θ (|u| 2 -||u|| 2 
2 )u for θ > 0. Now the Fourier transform of the operator associated to this equation is given by

Xst (ψ 1 , ψ 2 , ψ 3 ) = (ik) θ ⋆ ψ 1 (k 1 ) * ψ 2 (k 2 )ψ 3 (k 3 )Φ w st (2(k -k 2 )(k -k 3 ))
where the star under the sum means that we have -k

1 + k 2 + k 3 = k and k 2 = k,k 3 = k , k 1 k 2 k 3 = 0.
Standard application of Cauchy-Schwartz gives

||X st || 2 H α ≤ sup k =0 |k| 2α+2θ ⋆ |k 1 k 2 k 3 | -2α |Φ w st (2(k -k 2 )(k -k 3 ))| 2
then using the fact that w is (γ, ρ) irregular we obtain

||X st || 2 H α w,ε,T |t -s| γ sup k |k| 2+2α ⋆ |k 1 k 2 k 3 | -2α |k -k 2 | -2ρ |k -k 3 | -2ρ
with s, t ∈ [0, T ], then is sufficient to prove that

I = sup k |k| 2α+2θ * |k 1 k 2 k 3 | -2α |k -k 3 | -2ρ |k -k 2 | -2ρ < +∞
for that we will need the following lemma.

Lemma 3.5.17. For ρ > max(1/2, θ/2) and α ≥ 1 2 θ the following inequality holds:

l =0,k |l| -2α |k -l| -2ρ |k| -θ
Proof. The proof of this lemma is very similar to the proof of the Lemma 3.5.4. We begin by decomposing our sum in the following way :

l =k,0 |l| -2α |k -l| -2ρ = l =0,k;|l-k|≤|l| |l| -2α |k -l| -2ρ + l =0,k;|k-l|≥|l| |l| -2α |k -l| -2ρ ≤ |k| -θ l =0 1 |l| 2ρ + |k| -θ l 1 |l| 2α+2ρ-θ θ,α,ρ 1 |k| θ Lemma 3.5.18. Let ρ > max(θ, 1/2) and α ≥ 1 2 θ then I < +∞. Proof. If we use the fact that |k| 2α |k 1 | 2α + |k 2 | 2α + |k 3 | 2α we obtain I sup k |k| 2θ * |k 2 k 3 | 2α |k -k 2 | -2ρ |k -k 3 | -2ρ + * |k 1 k 2 | -2α |k -k 2 | -2ρ |k 2 -k 1 | -2ρ sup k |k| 2θ   k 2 =0,k |k 2 | -2α |k -k 2 | -2ρ   2 + sup k |k| 2θ * |k 1 k 2 | -2α |k -k 2 | -2ρ |k 2 -k 1 | -2ρ = I 1 + I 2
Now by the Lemma 3.5.17 we have

I 1 = sup k |k| 2θ ( k 2 =0,k |k 2 | -2α |k -k 2 | -2ρ ) 2 < +∞ for ρ > max(θ, 1/2), α > 1 2 θ.
It remains to treat the second term which requires a bit more work:

I 2 = sup k |k| 2θ k 1 ,k 2 |k 2 k 1 | -2α |k 2 -k| -2ρ |k 2 -k 1 | -2ρ = sup k |k| 2θ k 2 |k 2 | -2α |k -k 2 | -2ρ k 1 |k 1 | -2α |k 2 -k 1 | -2ρ sup k |k| 2θ k 2 |k 2 | -2α-θ |k -k 2 | -2ρ sup k |k| 2θ ( k 2 ;|k-k 2 |≤|k 2 | |k 2 | -2α-θ |k -k 2 | -2ρ + k 2 ;|k-k 2 |≥|k 2 | |k 2 | -2α-θ |k -k 2 | -2ρ ) sup k (|k| θ-2α ) + sup k k 2 ;|k-k 2 |≥|k 2 | |k 2 | -2α-θ |k -k 2 | -2ρ+2θ sup k (|k| θ-2α ) + k 2 =0 |k 2 | -2α-2ρ+θ < +∞ if ρ > max(1/2, θ), α ≥ 1 2 θ.
Theorem 3.5.19. Let ρ > max(1/2, θ) then there exist γ > 1/2 such that X ∈ C γ ([0, T ], H α ) for all T > 0 and α ≥ 1 2 θ.

Global existence for the modulated KdV in Sobolev spaces with non-negative index

In this section we will concentrate on the periodic modulated KdV equation on T and R and on the NLS equation on T. We prove the existence of a global solution for an initial data φ ∈ H α (T) for any α ≥ 0 in spite of the fact that the modulation breaks all conservation law apart from that associated to the L 2 norm.

Let us recall how we can establish the L 2 -norm conservation in this case. Proof. Let ψ a smooth function then we have by integration by part formula

ψ, X st (ψ, ψ) L 2 = t s dσ( T ψ(U w σ ) -1 ∂ x (U w σ ψ) 2 ) = t s dσ T U w σ ψ∂ x (U w σ ψ) 2 = - t s dσ T ∂ x (U w σ ψ)(U w σ ψ) 2 = 0
and then we have that

||v t || 2 2 = ||v s || 2 2 + v s , X st (v s , v s ) + ||v t -v s || 2 2 + R st = ||v s || 2 2 + ||v t -v s || 2 2 + R st
where |R st | |t -s| 2γ with γ > 1/2 and then we can see that

||v t || 2 2 -||v s || 2 2
|t -s| γ+1/2 which give us our result. Now using this proposition and the smoothing effect for X we obtain the global existence for the equation in the Sobolev space with non negative index. Proposition 3.6.2. Let α ≥ 0, φ ∈ H α and T > 0 then there exist a unique v ∈ C 1/2 ([0, T ], H α ) such that v t = φ + t 0 X dσ (v σ , v σ )dσ holds for all t ∈ [0, T ] Proof. Let φ ∈ L 2 then we using the local existence result we know that there exists κ = κ(||φ|| L 2 ) > 0 and a unique v ∈ C 1/2 ([0, κ], H α ) solution of the Young equation associated to X in [0, κ]. Moreover we have the conservation law ||v t || L 2 = ||v 0 || L 2 and this allow us to iterate our local result to obtain global a solution defined on [0, T ] for arbitrary T > 0. Now to extend this local we use the lemma 3.5.3 in fact let α > 0 and φ ∈ H α then is obvious that φ ∈ L 2 and using the Lemma 3.5.3 and the fact that v satisfy the Young equation we have easily that

||v t -v s || H β T,||X|| C γ ([0,T ],L(L 2 ,H β )) |t -s| γ (||v|| C 1/2 ([0,T ],L 2 ) + |φ| L 2 ) 2
for all 0 < β < 2ρ -3/2 and then v ∈ C 1/2 ([0, T ], H β ). By iterating this result we see that v ∈ C 1/2 (H α , [0, T ]) and this finishes the proof.

Remark 3.6.3. The bound of the operator X allows us to construct a local solution even when the initial data is in a negative Sobolev space (α > -ρ). The method presented in this section gives the possibility to construct a global solution only in the case when we deal with initial data in a positive regularity space. In the next section we present an adaptation of the almost conservation law method developed in [START_REF] Colliander | Sharp global well-posedness for the KDV and modified KDV on R and T[END_REF] which will allow to control global solutions in negative regularity spaces.

Cubic NLS equation

Here we obtain global solution of positive regularity for the modulated cubic NLS equation. Lemma 3.6.4. We have that for any φ ∈ H 0 and any 0 ≤ s ≤ t: φ, X st (φ, φ, φ) ∈ R and there exists a constant C R such that for all φ ∈ H 0 with φ H 0 ≤ R we have

| φ + X s,t (φ, φ, φ) H 0 -φ H 0 | ≤ C R |t -s| 2γ .
Proof. We start observing that for smooth φ:

φ, Ẋs (φ, φ, φ) = φ, U w -s (|U s φ| 2 U w s φ) = U w s φ, |U w s φ| 2 U w s φ ∈ R
Integrating in s and extending to arbitrary φ ∈ H 0 we get the claim. Then if φ ∈ H 0 we have

φ + X s,t (φ, φ, φ) 2 H 0 = φ 2 H 0 + X st (φ, φ, φ) 2 H 0 so | φ + X s,t (φ, φ, φ) H 0 -φ H 0 | ≤ X st (φ, φ, φ) 2 H 0 φ H 0 |t -s| 2γ φ 5 H 0 .
with γ > 1/2 . At this point the Lemma (3.4.1) allow us to obtain the conservation law for our equation in H 0 and extend in this space the local solution in a global solution. Now we prove the existence of a global solution for an initial data in H α with α > 0.

Proposition 3.6.5. Let φ ∈ H α and T > 0 then there exist v ∈ C 1/2 T H α such that the following equality holds

v t = φ + t 0 X dσ (v σ , v σ , v σ ) for all t ∈ [0, T ].
Proof. The existence of the global solution for an initial data in φ ∈ L 2 is given by the conservation law ||v t || L 2 = ||φ|| L 2 . Now we will focus on the case when φ ∈ H α and we decompose our modulated Schrödinger operator X as

X 2 = X 21 + X 22 + X 23 with FX 2j st (ψ 1 , ψ 2 , ψ 3 )(k) = (k 1 ,k 2 ,k 3 )∈D k j ψ1 (k 1 ) ⋆ ψ2 (k 2 ) ψ3 (k 3 )Φ w st ((k -k 2 )(k -k 3 ))
for j ∈ {1, 2, 3} and where 

D k 1 = {-k 1 + k 2 + k 3 = k, k 2 = k, k 3 = k} ∩ {|k 1 | ≥ |k|/3}, D k 2 = {-k 1 + k 2 + k 3 = k, k 2 = k, k 3 = k} ∩ {|k 1 | < |k|/3, |k 2 | ≥ |k|/3} and D k 3 = {-k 1 + k 2 + k 3 = k, k 2 = k, k 3 = k} ∩ {|k 1 | < |k|/3,
||X 2j st (ψ 1 , ψ 2 , ψ 3 )|| 2 H β+ε ≤||ψ j || H β+ε Π i =j ||ψ i || H β sup k |k| 2β+2ε D k j |k j | -2β-2ε Π i =j |k i | -2β |Φ w st (2(k -k 2 )(k -k 3 ))| 2 (3.16)
for β, ε ≥ 0 then using the fact that |k| |k j | on D k j and using the ρ-irregularity of w we obtain

||X 2j st (ψ 1 , ψ 2 , ψ 3 )|| 2 H β+ε α,ε ||Φ w || W ρ,γ T |t -s| γ ||ψ j || H β+ε Π i =j ||ψ i || H α   l =0 |l| -2ρ   2 < +∞
when ρ > 1/2 and then we have that for all T > 0 there exist γ > 1/2 such that

X 21 ∈ C γ [0, T ], L 3 (H α+ε × H α × H α , H α+ε )
for all β, ε ≥ 0, of course the same statement holds for the other operators. Now let us define the norm on 

C 1/2 ([0, T ], H β ) by ||ψ|| β = ||ψ|| C 1/2 ([0,T ],H β ) + ||ψ|| C 0 ([0,T ],H β ) for β ∈ R
||Γ(ψ 1 ) -Γ(ψ 2 )|| 0 γ,w T γ-1/2 ||ψ 1 -ψ 2 || 0 (1 + (r ⋆ ) 2 )
and then if T ≤ T 2 ≤ T 1 sufficiently small, Γ is a strict contraction on B r ⋆ which admits a unique fixed point v. Let Γ B r ⋆ the restriction of Γ on B r ⋆ and use the fact that

Γ(ψ) t = φ + 2 t 0 v σ ||v σ || 2 L 2 dσ + j∈{1,2,3} t 0 X 2j dσ (ψ σ )
and the regularity of X 2j to deduce that

||Γ B r ⋆ (ψ)|| α ||φ|| H α + T γ-1/2 (r ⋆ ) 2 ||ψ|| α . Then B(0, R) := {ψ ∈ C([0, T ], H β ); ||ψ|| ≤ R} is invariant by Γ B r ⋆ for T ⋆ = T ⋆ (||φ|| L 2 )
small enough depending only on r ⋆ > 0. Being the ball closed in C 1/2 ([0, T ], L 2 ) we have that v ∈ C 1/2 ([0, T ⋆ ], H α ) and now is suffice to iterate this result to obtain a global solution in H α .

KdV on R

Here we go back to the KdV equation to prove the global existence of the modulated KdV equation in non-negative Sobolev space. Now as in the proposition 3.6.5 we will decompose the modulated operator X of the KdV equation in the following way As in the periodic case the operator X 1 have some smoothing effect more precisely

X = X 1 + 2X 2 + X 3 + X 4
||X 1 st (ψ 1 , ψ 2 )|| α+ε ≤ |t -s| γ ||φ|| α ||φ 2
|| α for α, ε > 0 and ε > 0 small enough moreover we have the following bound

||X 1 st (ψ 1 , ψ 2 )|| β |t -s| γ (||ψ 1 || α ||ψ 2 || β + ||ψ 1 || β ||ψ 1 || α )
for all α, β ≥ 0. We will focus on the operator X 2 . By a usual argument we have that

||X 2 st (ψ 1 , ψ 2 )|| α+ε |t -s| γ ||ψ 1 || α ||ψ 2 || α+ε sup |x|≥1 |x| 2 |y|≤1/2
(1 + |yx 2 |) -2ρ < +∞ when ρ > 1/2 then for all α, ε > 0 and T > 0 we have

X 2 ∈ C γ ([0, T ], L 2 (H α × H α+ε , H α+ε )).
For the third operator X 3 we have the bound

||X 3 st (ψ 1 , ψ 2 )|| α+ε |t -s| γ ||ψ 1 || α ||ψ 2 || α sup |x|<1 |x| 2 |y|>2 (1 + y 2 |x|) -2ρ < +∞ for α, ε > 0 and then X 3 ∈ C γ ([0, T ], L 2 (H α × H α , H α+ε )
) for all T > 0. Of course we have the same regularity for the operator X 4 and the global existence for the KdV equation follow by the same argument used in the proof of Proposition 3.6.5.

Global existence for the modulated KdV equation in negative Sobolev spaces

In this section we prove the global existence for the KdV equation with rough initial condition φ ∈ H α (T) with negative α. For the unmodulated equation with initial condition in negative Sobolev spaces [START_REF] Colliander | Sharp global well-posedness for the KDV and modified KDV on R and T[END_REF] proves global existence using the so called "I-method". In this section we try to adapt this technique to our context. To do so we have to study the rescaled Cauchy problem associated to the modulated equation and then give an almost conservation law for the rescaled local solution.

Rescaled equation

Here we study the rescaled solution of our equation we know in the deterministic case if u is a local solution of KdV equation on [0, T ] with initial data φ ∈ H α (T) then the function defined by u λ (t, x) = λ -2 u(λ -3 t, λ -1 x) is once again a solution of the KdV equation on [0, λ 3 T ] with initial data φ λ (x) = λ -2 φ(λ -1 x) and vice versa. We proceed along the same lines in our setting. By a formal computation we see that if u is a local solution for the modulated KdV equation on the torus then the rescaled function satisfies formally the equation

d dt u λ t = ∂ 3 x u λ dw λ t dt + ∂ x (u λ t ) 2
with w λ t = λ 3 w λ -3 t and u λ (0, x) = λ -2 φ(λ -1 x). We must also pay attention to the fact that space has changed because the new solution is λ-periodic function and not a 1-periodic function. Let us introduce some definition and conventions that will be used later. We begin by define the Fourier transform of function on T λ = [0, λ] by

f (k) = λ 0 f (x)e -2iπkx dx
for k ∈ Z/λ then the usual properties of the Fourier transform holds:

1. λ 0 |f (x)| 2 dx = 1 λ k∈Z/λ | f (k)| 2 2. f (x) = 1 λ k∈Z/λ f (k)e 2iπkx 3. F(f g)(k) = 1 λ k 1 ,k 2 ∈Z/λ;k 1 +k 2 =k f (k 1 )ĝ(k 2 )
and then we define the Sobolev space H α (T λ ) by the set of the distribution f ∈ S ′ (T λ ) such that f (0) = 0 and

||f || 2 H α (0,λ) = 1 λ k∈Z/λ |k| 2α | f (k)| 2 < +∞.
Now we are able to study our rescaled Cauchy problem given by

   d dt u λ t = ∂ 3 x u t d dt w λ t + ∂ x (u λ t ) 2 dt u(0, x) λ = ψ(x) ∈ H α (0, λ) (3.17) 
As usual we write this last equation as

v λ t = ψ + t 0 X λ dσ (v σ , v σ )
with v λ t = (U w λ t ) -1 u λ t . Now to solve this last equation by the fixed point method we have to estimate the Hölder norm of the modulated operator X λ given by :

X λ st (ψ 1 , ψ 2 ) = t s (U w λ σ ) -1 ∂ x (U w λ σ ψ 1 U w λ σ ψ 2 )dσ for ψ 1 , ψ 2 ∈ H α (0, λ).
Proposition 3.7.1. Let α > -ρ and ρ > 3/4 then there exist γ > 1/2 such that for all T > 0 the following inequality holds.

||X λ st || L 2 H α (0,λ) ≤ C T ||Φ w || W γ ρ,T λ α+3/2-3γ |t -s| γ
for all (s, t) ∈ [0, λ 3 T ], with C T > 0 is a finite positive constant.

Proof. Let ψ 1 , ψ 2 ∈ H α (0, λ) then by a simple computation we have that

|X λ st (ψ 1 , ψ 2 )| 2 H α(0,λ) = λ -3 k∈Z/λ |k| 2α+2 k 1 +k 2 =k φ 1 (k 1 )φ 2 (k 2 )Φ λ st (k 1 k 2 k) 2 with Φ λ st (a) =
t s e iaw λ σ dσ and then using Cauchy-Schwarz inequality we obtain

|X λ st (ψ 1 , ψ 2 )| 2 H α(0,λ) ≤ λ -1 k∈Z/λ |k| 2α+2 sup k 1 +k 2 =k Φ λ st (kk 1 k 2 ) 2 |k 1 | 2α |k 2 | 2α ||ψ 1 || H α (0,λ) ||ψ 2 || H α (0,λ)
Now using the (ρ, γ) irregularity of w we can see that

t s e ikk 1 k 2 w λ σ dσ = λ 3 λ -3 t λ -3 s e iλ 3 kk 1 k 2 wσ dσ ≤ C w,T λ 3-3(γ+ρ) |t -s| γ |kk 1 k 2 | -2ρ+ε
and then we have

|X λ st | 2 L 2 H α(0,λ) ≤ C 2 w,T λ 5-6(γ+ρ) |t -s| 2γ k∈Z/λ |k| 2-4ρ sup k |k| |k 1 k 2 | 2α+2ρ ≤ C 2 w,T λ 3-6γ+2α |t -s| 2γ k∈Z * |k| 2-4ρ < +∞
and this finishes the proof.

Corollary 3.7.2. Let λ > 0 then u is a local solution of the modulated KdV equation on the Torus with initial data φ ∈ H α (T) and life time T > 0 if and only if u λ (t, x) = λ -2 u(λ -3 t, λ -1 x) is a local solution of the rescaled equation with initial data φ λ (x) = λ -2 φ(λ -1 x) with life time λ 3 T Proof. Let u a solution of the modulated KdV equation on the Torus then by definition we have that

v t = U -1 t u t ∈ C 1/2 ([0, T ], H α (T))
and by a simple computation we have that

v λ t = (U w λ t ) -1 u λ t ∈ C 1/2 ([0, λ 3 T ], H α (T λ )
). Now we have to check that the rescaled function u λ (t, x) = λ -2 u(λ -3 , λ -1 x) satisfy the equation. but by a simple computation we have that vλ t (k) = 1 λ vλ -3 t (λk) and

Xλ st (ψ 1 , ψ 2 )(k) = ikλ -1 k 1 +k 2 =k;k 1 ,k 2 ∈Z/λ ψ1 (k 1 ) ψ2 (k 2 ) t s e ikk 1 k 2 λ 3 w λ -3 σ dσ = ikλ 2 l 1 +l 2 =λk;l 1 ,l 2 ∈Z ψ1 l 1 λ ψ2 l 2 λ Φ w λ -3 s,λ -3 t (l 1 l 2 λk) = λ -1 X s λ 3 t λ 3 (ψ 1 (λ.), ψ 2 (λ.))(λk)
for all k ∈ Z/λ and all ψ 1 , ψ 2 ∈ H α (0, λ). Let λ 3 t ∈ [0, λ 3 T ] and Π = (t i ) i a partition of the interval [0, λ 3 t] then of course Π λ = (λ -3 t i ) is a dissection of [0, t] and using the relation given above we can easily see that

Xλ t i t i+1 (v λ t i , v λ t i ) = λ -1 Xλ -3 t i+1 ,λ -3 t i (v λ -3 t i , v λ -3 t i )(λk)
and using the fact that u is a solution of the 1-periodic equation we can easily see that

v t = ψ + lim |Π λ |→0 t i X λ -3 t i+1 ,λ -3 t i (v λ -3 t i , v λ -3 t i )
in H α (T) and then

v λ t = φ λ + lim |Π|→0 i X λ t i t i+1 (v λ t i , v λ t i ) in H α (0, λ) with φ λ (x) = λ -2 φ(λ -1
x) of course this give us our result by the convergence of Riemann sum to the Young integral.

Commutator estimates and almost conservation law

The previous section tell us if we want to construct a global solution to the 1-periodic KdV equation is sufficient to prove that for every T > 0 and a suitable λ > 1 we are able to construct a global solution to the rescaled equation. For that let us introduce the spatial Fourier multiplier operator I which act like the identity on the low frequencies and like a smoothing operator of order |α| on the high frequencies more precisely we choose a smooth function m such that

m(ξ) = 1, |ξ| < 1 |ξ| α , |ξ| ≥ 10
and for N >> 1 we define I by F(Iφ)(k) = m( k N ) φ(k) for every φ ∈ H α (T λ ). Now the so called I method to proof the global solution is based on some estimation of the modified energy ||Iu t || L 2 . Let us begin by expand our modified energy

||Iv t || 2 2 -||Iv s || 2 = Iv s , IX λ st (v s , v s ) -X λ st (Iv s , Iv s ) + R st
with R st |t-s| γ+1/2 then to control R is sufficient to control the first order term of our expansion and for that we have the following commutator estimates. To simplife the notation let m N (k) = m(k/N ).

Proposition 3.7.3. Let α ∈ (-ρ, 0), ρ > 3/4 there exist γ > 1/2 such that for all T > 0 the following inequality holds a

||IX λ st (ψ 1 , ψ 2 ) -X λ st (Iψ 1 , Iψ 2 )|| 2 ≤ C T ||Φ w || W γ ρ,T |t -s| γ N -ρ λ -ρ+3/2-3γ ||Iψ 1 || 2 ||Iψ 2 || 2
for all s, t ∈ [0, λ 3 T ], λ > 0 and ψ 1 , ψ 2 ∈ H α (0, λ), with C w,T > 0 a finite constant.

Proof. By a simple computation we have

||IX λ st (ψ 1 , ψ 2 ) -X λ st (Iψ 1 , Iψ 2 )|| 2 2 = 1 λ 3 k∈Z/λ |k| 2 k 1 +k 2 =k Φ λ st (kk 1 k 2 ) ψ1 (k 1 ) ψ2 (k 2 )(m N (k) -m N (k 1 )m N (k 2 ))
and then we split

{k 1 + k 2 = k} = ∪ i=0,1,2,3 D i with D 0 = {k 1 + k 2 = k; |k 1 | ≤ N/2, |k 2 | ≤ N/2},D 1 = {k 1 +k 2 = k; |k 1 | ≥ N/2, |k 2 | ≤ N/2, |k| ≤ N/4},D 2 = {k 1 +k 2 = k; |k 1 | ≥ N/2, |k 2 | ≤ N/2, |k| ≥ N/4} and D 3 = {k 1 + k 2 = k; |k 1 | ≥ N/2, |k 2 | ≥ N/2}.
Is not difficult to see that the region D 0 give a zero contribution. Using the Cauchy-Schwarz inequality we can see that

λ -3 k∈Z/λ |k| 2 D i Φ λ st (kk 1 k 2 ) ψ1 (k 1 ) ψ2 (k 2 )(m N (k) -m N (k 1 )m N (k 2 )) 2 ≤ h λ,i N ||Iψ 1 || 2 2 ||Iψ 2 || 2 2 with h λ,i N = λ -1 |k|≤N/4 |k| 2 sup D i |Φ λ st (kk 1 k 2 )| 2 |m N (k) -m N (k 2 )m N (k 1 )| 2 |m N (k 1 )| 2 |m N (k 2 )| 2
for i = 1, 3 and

h λ,2 N = λ -1 sup |k|≥N/4 |k| 2 D 2 |Φ λ st (kk 1 k 2 )| 2 |m N (k) -m N (k 2 )m N (k 1 )| 2 |m N (k 1 )| 2 |m N (k 2 )| 2 .
We begin by bounding the term h λ,2 N : 

h λ,2 N ≤ C w,T |t -s| 2γ λ 5-6(γ+ρ) N 2α sup |k|≥N/4 |k| 2-2ρ D 2 |m N (k) -m N (k 1 )| 2 |k 1 | 2α+2ρ |k 2 | 2ρ ,
D 2 (|k||k 1 | -1 ) 2α+2ρ |k 2 | -1-ε C w,T |t -s| 2γ N 3-6ρ+ε λ 6-6(γ+ρ)+ε C w,T |t -s| 2γ N -2ρ λ -2ρ+3-6γ .
If ρ > 3/2 we use only the trivial bound to get

h λ,2 N C w,T |t -s| 2γ λ 5-6(γ+ρ) sup |k|≥N/4 |k| 2-4ρ D 2 (|k||k 1 | -1 ) 2α+2ρ |k 2 | -2ρ C w,T |t -s| 2γ N 2-4ρ λ 5-6γ-4ρ
C w,T |t -s| γ N -2ρ λ 3-6γ-2ρ . Now we will focus on the term h λ,1 N in fact by a simple computation we can see that in this region we have |k 2 | ∈ [N/4, N/2] and then

h λ,1 N C w,T |t -s| γ λ 5-6(γ+ρ) |k|≤N/4 |k| 2-4ρ sup D 1 |k| 2α+2ρ |k 1 | -2α-2ρ |k 2 | -2ρ C w,T |t -s| γ λ 3-6γ-2ρ N -2ρ .
It remains to bound h λ,3 N . We begin by noting that in this region we have |m

N (k) -m N (k 1 )m N (k 2 )| 2 |m N (k)| 2 + N -4α |k 1 k 2 | 2α and then h λ,3 N C w,T |t -s| 2γ λ 5-6(γ+ρ) (N 4α k |k| 2-4ρ-2α |m N (k)| 2 sup D 3 |k| 2α+2ρ |k 1 k 2 | -2α-2ρ + k |k| 2-4ρ sup D 3 |k| 2ρ |k 1 k 2 | -2ρ ) C w,T |t -s| 2γ λ 5-6(γ+ρ) N -2ρ (λ 4ρ-2 + N 2α k |k| 2-4ρ-2α |m N (k)| 2 ) Now it is not difficult to see that N 2α k |k| 2-4ρ-2α |m N (k)| 2 λ 4ρ-2
and that we have

h λ,3 N C w,T |t -s| 2γ λ 3-6γ-2ρ N -2ρ .
This ends the proof. Now we have a useful Corollary which be used to prove a variant of the local existence result.

Corollary 3.7.4. Let α ∈ (-ρ, 0), ρ > 3/4 then there exist γ > 1/2 such that for all T > 0 there exists a constant such that

||IX λ st (ψ 1 , ψ 2 )|| L 2 w,T |t -s| γ λ 3/2-3γ+α ||Iψ 1 || 2 ||Iψ 2 || 2 for all s, t ∈ [0, λ 3 T ] and ψ 1 , ψ 2 ∈ H α (0, λ)
Let us define N I (ψ) = ||Iψ|| L 2 for all ψ ∈ H α (0, λ) of course H α (0, λ) equipped with the norm N I is a Banach space. Now we have the following local existence result. Proposition 3.7.5. Let ψ ∈ H α (0, λ) then there exist a life time κ > 0 and a solution u of the rescaled problem such that Iv λ ∈ C 1/2 ([0, κ], L 2 ) moreover we have that κ ∼ min(5, ||Iψ|| -θ ) for some θ > 0 and we also have

||Iv|| C 0 (L 2 ) + ||Iv|| C 1/2 (L 2 ) ||Iψ|| L 2 . Proof. Let v ∈ C 1/2 ([0, κ], H α ), 0 < κ < 5 then we introduce the norm ||v|| = ||Iv|| C 1/2 L 2 + ||Iv|| C 0 L 2
and we define the fixpoint map

Γ κ (v) = ψ + t 0 X λ dσ (v σ , v σ ).
Of course Γ κ is well defined and if we let

B C := {v ∈ C 1/2 ([0, κ], H α ); ||v|| ≤ c||Iψ|| L 2 } then if v ∈ B C
we have by a simple computation that

||IΓ κ (v)|| C 1/2 L 2 C W,λ -3 κ λ α+3/2-3γ ||Iψ|| 2 κ γ-1/2
and then for λ > 1, we have that

||Γ κ (v)|| C W,κ c 2 ||Iψ|| 2 κ γ-1/2 .
Now is sufficient to take κ ⋆ ∼ min(5, ||Iψ|| 1 1/2-γ ) small enough and then there exist c > 1 such that ||Γ(v)|| ≤ c||Iψ|| L 2 . Now Γ κ is a contraction in B c in fact we have by a simple computation

||Γ κ (v 1 ) -Γ κ (v 2 )|| cκ γ-1/2 ||Iψ|| L 2 ||v 1 -v 2 || c||v 1 -v 2 ||
and then if we take κ ∼ min(5, ||Iψ|| 1 1/2-γ ) ≤ κ ⋆ small enough, Γ κ in this case is a strict contractions in B c and then it have a unique fixed point in this ball, the proof of the uniqueness is standard.

We have now all the ingredients to prove the global existence result.

Global existence

To exibith a global solution for 1-periodic Cauchy problem with initial data φ ∈ H α (T) it suffices to prove that for every T > 0 the rescaled equation admits a solution in [0, λ 3 T ] with initial condition ψ λ (x) = λ -2 φ(λ -1 x). We begin by noting that

||Iψ λ || L 2 λ -α-3/2 N -α ||φ|| H α (T)
and then we choose

λ ∼ ||φ|| H α N -α 3/2+α such that ||Iψ λ || L 2 = ε 0 ≪ 1.
Using the local result we know that there exists a solution v λ = v of the rescaled problem with lifetime κ > 1 now by a simple computation we have

||Iv t || L 2 -||Iv s || L 2 = v s ; IX(v s , v s ) -X(Iv s , Iv s ) + R st
where |R st | |t -s| 2γ then for ρ < 3/2 and using this last equation,the Young estimation given in the Theorem 3.3.1 and commutator estimate we can see that

||Iv 1 || ≤ ε 2 0 + N -ρ λ -ρ+3/2-3γ
then if we iterate our local result given by the Proposition 3.7.5 we can construct a solution with life time ∼ N ρ λ ρ+3/2-3γ and then we have to choose N such that

λ 3 T N ρ λ ρ-3/2+3γ .
This is possible if α > -ρ 3-2γ and N large enough.

Strichartz estimate and the modulated NLS

In this section we study the Schrödinger equation with quintic non linearity (ie : A = i∂ 2 and N (u) = |u| µ u, µ ∈ [START_REF] Kh | Soliton perturbations and the random Kepler problem[END_REF][START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I,II[END_REF]). The problem here is to manage the algebraic difficulty given by the non linearity for this we will use a different strategy than that used in the previous sections. We recall for the case of Brownian motion that this equation has already been studied in [START_REF] Debussche | 1D quintic nonlinear Schrà ¶dinger equation with white noise dispersion[END_REF] using a strong Strichartz type estimates, the goal of this section is to observe that their result generalizes easily to an arbitrary ρ-irregular path. In order to prove Th. 3.1.9 we will follow their strategy and obtain a preliminary estimate which involves computations similar to those used in the study of the X operator for the cubic NLS in Lemma 3.5.12. Proposition 3.8.1. Let α ∈ [0, 1] and ρ > 0 such that 0 ≤ α < 1 and ρ > α + 1/2 or α = 1 and ρ > 1 then for all T > 0 there exist γ > 1/2 such that :

T 0 dt D α 2 t 0 U w t (U w s ) -1 ψ s ds 2 2 L 2 (R) ||Φ w || W γ ρ,T T γ ||ψ|| 4 L 1 ([0,T ],L 2 (R))
for every ψ ∈ L 1 ([0, T ], L 2 (R)).

Proof. By going in Fourier variables we can see that :

T 0 dt D α 2 t 0 U w t (U w s ) -1 ψ s ds 2 2 L 2 (R) = T 0 dt [0,t] 4 ds 1 ds 2 ds 3 ds 4 R 3 dx 1 dx 2 dx 3 × × (e -iφ |x 2 -x 1 | α | ψs 1 (x 1 )|| ψ * s 2 (x 2 )||( ψs 3 ) * (x 3 )|| ψ * s 4 (x 4 )|)
where

x 4 = -x 1 + x 2 + x 3 , φ = x 2 1 (w t -w s 1 ) -x 2 2 (w t -w s 2 ) -x 2 3 (w t -w s 3 ) + x 2 4 (w t -w s 4
). Now we split the integral over (s 1 , s 2 , s 3 , s 4 ) in four region where s i = max(s 1 , s 2 , s 3 , s 4 ) for i = 1, ..., 4. Consider for example the first region where s 1 > s 2 , s 3 , s 4 . Then using Fubini we can see that this integral is given by : e 2i(x 2 -x 1 )(x 3 -x 1 )(wt-ws 1 ) dt = Φ w s 1 T (2(x 2x 1 )(x 3x 1 )) .

I = T 0 ds 1 [0,s 1 ] 3 R 3 dx 1 dx 2 dx 3 ( T s 1 e -iφ dt)|x 2 -x 1 | α | ψs 1 (x 1 )|| ψ * s 2 (x 2 )||( ψs 3 ) * (x 3 )||( ψ *
Then we have to bound the following integral

I(α) = R 3 dx 1 dx 2 dx 3 |x 2 -x 1 | α |Φ w s 1 T (2(x 2 -x 1 )(x 3 -x 1 ))|| ψs 1 (x 1 )|| ψ * s 2 (x 2 )||( ψs 3 ) * (x 3 )||( ψ * s 4 ) * (x 4 )|.
An application of Lemma 3.5.13 shows that

I T γ T 0 |ψ s | L 2 (R) ds 4 
and concludes the proof.

Now we obtain a Gagliardo-Nirenberg type inequality to transform the regularity gain of the previous proposition into an integrability result of Strichartz's type. Lemma 3.8.2. Let p > 2 and ε > 0 then there exist C = C(ε, p) such that for all f ∈ L 1 (R) ∩ H s the following inequality holds :

||f || L p (R) ≤ c||f || 1-θ L 1 (R) ||f || θ

Hs

where H s is the homogenous Sobolev space on R, s = 1 2 -1 p + ε 2 and θ = 2p-2 (2+ε)p-2 ∈ (0, 1)

Proof. We begin by decomposing f in here Littlewood-Paley block f = i>-1 ∆ i f and then

||f || L p (R) ≤ ||∆ -1 f || L p (R) + i≥0 ||∆ i f || L p (R) (3.18) 
Now we recall that ∆ -1 f = h ⋆ f and

∆ i f = h i ⋆ f with h = F -1 χ 1 and h i = 2 i F -1 (χ 2 (2 i .))
where χ 1 and χ 2 are radial infinitely differentiable functions such that -the support of χ 1 is contained in a ball and the support of χ 2 is contained in an annulus.

-

χ 1 + j≥0 χ 2 (2 -i .) = 1 -supp(χ 1 )∩supp(χ 2 (2 -i .))=∅ for i ≥ 1 and if |i -j| > 1 then supp(χ 2 (2 -i .))∩supp(χ 2 (2 -j .
))=∅ then using the Young inequality we get :

||∆ -1 f || ≤ ||F -1 χ 1 || L p (R) ||f || L 1 (R)
this give us the bound for the first term of the inequality 3.18 for the second term we remark that ∆ i f is a function which the support of here Fourier transform is contained in a ball 2 i B then using Bernstein's inequality we obtain that :

||∆ i f || L p (R) 2 i( 1 2 -1 p ) ||∆ i f || L 2 (R)
then summing this last equation over i ≥ 0 and using Jensen inequality we can see that . 

i≥0 ||∆ i f || L p (R) i≥0 2 i( 1 2 -1 p ) ||∆ i f || L 2 (R) i≥0 (2 i( 1 2 -1 p + ε 2 ) ||∆ i f || L 2 (R) )2 -i ε 2 ε   i≥0 2 2i( 1 2 -1 p + ε 2 ) ||∆ i f || 2 L 2 (R)   1 
0 U w . (U w s ) -1 ψ s ds p L p ([0,T ],L 2p (R)) = T 0 dt t 0 U w t (U w s ) -1 ψ s ds 2 p/2 L p (R) T 0 dt t 0 U w t (U w s ) -1 ψ s ds 2 1/2 L 1 (R) D 1 2 t 0 U w t (U w s ) -1 ψ s ds 2 p-1 2 L 2 (R) C w T γ(p-1) 4 + 5-p 4 . 0 U w . (U w s ) -1 ψ s ds L ∞ ([0,T ],L 2 (R)) T 0 ||ψ s || L 2 (R) ds p-1 . Now is suffice to remark that . 0 U w . (U w s ) -1 ψ s ds L ∞ ([0,T ],L 2 (R)) ≤ sup 0≤t≤T T 0 U w t (U w s ) -1 ψ s L 2 (R) ds ≤ T 0 ||ψ s || L 2 (R
||U w t ψ|| L p ([0,T ],L 2p (R)) ≤ C p ||Φ|| W ρ,γ T T γ ⋆ (p) ||ψ|| L 2 (R)
for all ψ ∈ L 2 (R).

Proof. Let us begin by using the Lemma 3.8.2 and then

||U w t ψ|| p L p ([0,T ],L 2p (R)) = T 0 dt |U w t ψ| 2 p/2 L p (R) ||U w ψ|| (1-θ)p L ∞ ([0,T ],L 2 (R)) T 0 dt D α/2 |U w t ψ| 2 θ p 2 L 2 (R)
where θ = 2p-2 (2+ε)p-2 then is suffice to bound the quantity D α/2 |U w t ψ| 2 2 and to proceed as the in the Proposition 3.1.9. By a simple computation we have

D α/2 |U w t ψ| 2 2 = R 3 dx 1 dx 2 dx 3 |x 2 -x 1 | α |Φ w 0T (η)|| ψ(x 1 )|| ψ(x 2 )|| ψ(x 3 )|| ψ(-x 1 + x 2 + x 3 )| where η = 2(x 2 -x 1 )(x 3 -x 2 )
. Now applying again Proposition 3.8.1 we concludes the proof.

We are now ready to prove Th. 3.1.10 about existence of local solution to the modulated NLS with general non-linearity.

Proof of 3.1.10. Let us define for ψ ∈ L p ([0, T ], L 2p ) the following map :

Γ(ψ) t = U w t u 0 + i t 0 U w t (U w s ) -1 (|ψ s | µ ψ s )ds
then we can easily see by proposition Γ(ψ) ∈ L p ([0, T ], L 2p (R)). Now we will prove that Γ is a strict contraction in a adequate ball of our space. In fact let

B r = ψ ∈ L p ([0, T ], L 2p (R)), ||ψ|| L p ([0,T ],L 2p (R)) ≤ r
then using the Proposition 3.8.3 and Proposition 3.1.9 we have

||Γ(ψ)|| L p ([0,T ],L 2p (R)) ≤ ||U w . u 0 || L p ([0,T ],L 2p (R)) + . 0 U w . (U w s ) -1 (|ψ s | µ ψ s )ds L p ([0,T ],L 2p (R)) ≤ C w,T T γ ⋆ (p) ||u 0 || L 2 (R) + T 0 |||ψ s | µ ψ s || L 2 (R) ds ≤ C w,T T γ ⋆ (p) (||u 0 || L 2 (R) + ||ψ|| p L p ([0,T ],L 2p (R)) ) ≤ C w,T T γ ⋆ (p) (||u 0 || L 2 (R) + r p )
then we can choose T 1 small enough such for all T ≤ T 1 that the equation r T = C w T γ ⋆ (p) (||u 0 || L 2 (R) +r p T ) admit a positive solution r = r T . Now for T < T 1 and ψ 1 , ψ 2 ∈ L p ([0, T ], L 2p (R)) ∩ B r we see by the same argument using previously we have

||Γ(ψ 1 ) -Γ(ψ 2 )|| L p ([0,T ],L 2p (R)) = . 0 U w . (U w s ) -1 (|ψ 1 | µ ψ 1 -|ψ 2 | µ ψ 2 )ds L p ([0,T ],L 2p (R)) ≤ C w,T T γ ⋆ (p) r p-1 ||ψ 1 -ψ 2 || L p ([0,T ],L 2p (R))
then if we choose T 2 < T 1 such that for all T < T 2 we have 

||Φ|| W γ,ρ T T γ ⋆ (p) r p-1 < 1 then in this case Γ is a strict contraction of the ball L p ([0, T 2 ], L 2p (R)) ∩ B
u M t = U w t Π M u 0 + i t 0 U w t (U w s ) -1 Π M |Π M u M | 4 Π M u M ds for all t ∈ [0, T ] and some T = T (||u 0 || L 2 (R) ). Let v M = (U w t ) -1 u M t . A simple computation shows that ||v M t -v M s || L 2 (R) ≤ t s ||Π M u M σ || 5 L 10 dσ M (t -s)||u M || L ∞ ([0,T ],L 2 (R))
from which we obtain that

||v M t || 2 2 = ||v M s || 2 2 + 2 t s Im v s , (U w σ ) -1 (|U w σ v M s | 4 U σ v M s ) dσ + O(|t -s| 2 ). It is not difficult to see that v s , (U w σ ) -1 (|U w σ v M s | 5 U σ v M s ) ∈ R and then ||v M t || 2 2 = ||v M s || 2 2 + O(|t -s| 2
) and then we obtain immediately that ||u M t || 2 = ||u 0 || 2 . Moreover we have -Π M u M = u M ; -for every T > 0, sup M ||u M || L 5 ([0,T ],L 10 (R)) < +∞ .

Using that we have easily

||u M -u|| L 5 ([0,T ],L 10 (R)) T γ (||u 0 -Π M u 0 || 2 + ||u M -u|| L 5 ([0,T ],L 10 (R)) )
and for T < min(T 2 , 1/2) small enough ||u M -u|| L 5 ([0,T ],L 10 (R)) → M →+∞ 0. It is then sufficient to iterate this procedure to extend it to the interval [0, T 2 ]. Now by a simple computation we can see that

||u M -u|| L ∞ ([0,T 2 ],L 2 (R)) ||Π M u 0 -u 0 || 2 + ||u M -u|| L 5 ([0,T ],L 10 (R))
and then ||u t || L 2 (R) = ||u 0 || L 2 (R) which gives the conservation law and allow us to extend our local solution in a global solution. Now let u 0 ∈ H 1 and using the Strichartz estimates after taking the first derivative of the function Γ(ψ) we obtain that

||Γ(ψ)|| L 5 ([0,T ],W 1,10 (R)) w T γ (||u 0 || H 1 + r 4 ||ψ|| L 5 ([0,T ],W 1,10 (R)) )
with ψ ∈ B r where B r is the ball in which we have setup our point fix argument at the beginning of the proof. Then B(0, R), the ball of radius R in L 5 ([0, T ], W 1,10 (R)) is invariant by Γ Br the restriction of Γ on B r for T 3 = T depending only on r and not R. Since closed balls of L 5 ([0, T ], W 1,10 (R)) are closed also in L 5 ([0, T ], L 10 (R)) the fixed point of Γ Br is in L 5 ([0, T ], W 1,10 (R)) and we obtain that u ∈ L 5 ([0, T 3 ], W 1,10 (R)). Now by a standard argument we obtain the needed regularity for u.

where P t = e t∆ is the Heat flow and X t = t 0 P t-s ξ s ds is a the solution of the linear equation :

∂ t X t = ∆ T 3 X t + ξ; X 0 = 0. (4.3)
Moreover X is a Gaussian process and as we see below X ∈ C([0, T ], C -1/2-ε (T 3 )) for every ε > 0 with C α = B α ∞,∞ is the Besov-Hölder space. The main difficulty of the equation (4.1) comes from the fact that for any fixed time t the space regularity of the solution u(t, x) cannot be better than the one of X t . If we measure spatial regularity in the scale of Hölder spaces C α we should expect that u(t, x) ∈ C α (T 3 ) for any α < -1/2 but not better. In particular the term u 3 is not well defined. A natural approach to give a well defined meaning to the equation would consist in regularizing the noise in ξ ε = ξ ⋆ ρ ε with ρ ε = ε -3 ρ( . ε ) a smooth kernel and taking the limit of the solution u ε of the approximate equation

∂ t u ε = ∆u ε -(u ε ) 3 + ξ ε . (4.4)
Since the non-linear term diverges when ε goes to zero, an a priori estimate for the wanted solution is hard to find. To overcome this problem we have to focus on the following modified equation

∂ t u ε = ∆u ε -((u ε ) 3 -C ε u ε ) + ξ ε (4.5)
where C ε > 0 is a renormalization constant which diverges when ε goes to 0. We will show that we have to take C ε ∼ a ε + b log(ε) + c to obtain a non trivial limit for (u ε ) 2 -C ε . Therefore this paper aims at giving a meaning of the equation (4.2) and at obtaining a (local in time) solution. The method developed here uses some ideas of [START_REF]Solving the KPZ equation[END_REF] where the author deals with the KPZ equation. More precisely we use the partial series expansion of the solution to define the reminder term using the notion of paracontrolled distributions introduced in [START_REF] Gubinelli | Paraproducts, rough paths and controlled distributions[END_REF]. A solution of this equation has already been constructed in the remarkable paper of Hairer [START_REF] Hairer | A theory of regularity structures[END_REF] where the author shows the convergence of the solution of the mollified equation (4.5).

The stochastic quantization problem has been studied since the eighties in theoretical physics (see for example [START_REF] Jona-Lasinio | On the stochastic quantization of field theory[END_REF] and [START_REF]Large deviation estimates in the stochastic quantization of $\phi^4_2[END_REF] In [START_REF] Bertini | Stochastic Quantization, Stochastic Calculus and Path Integrals: Selected Topics[END_REF] and the references about it in [START_REF] Hairer | A theory of regularity structures[END_REF]).

From a mathematical point of view, several articles deals with the 2-dimensional case. Weak probabilistic solutions where find by Jona-Lasinio and and Mitter in [START_REF] Jona-Lasinio | On the stochastic quantization of field theory[END_REF] and [START_REF]Large deviation estimates in the stochastic quantization of $\phi^4_2[END_REF]. Some other probabilistic results are obtain thanks to non perturbative methods by Bertini, Jona-Lasinio and Parrinello in [START_REF] Bertini | Stochastic Quantization, Stochastic Calculus and Path Integrals: Selected Topics[END_REF]. In [START_REF] Da | Strong solutions to the stochastic quantization equations[END_REF] Da Prato and Debussche found a strong ( in the probabilistic sense) formulation for this 2d problem.

In a recent paper, Hairer [START_REF] Hairer | A theory of regularity structures[END_REF] gives a fixed point solution to the 3-dimensional case thanks to his theory of regularity structures. Like the theory of paracontrolled distributions, Hairer's theory of regularity structures is a generalization of rough path theory. Hairer gets his result by giving a generalization of the notion of pointwise Hölder regularity. With this extended notion, it is possible to work on a more abstract space where the solutions are constructed thanks to a fixed point argument, and then project the abstract solution into a space of distributions via a reconstruction map. The regularity structures approach is quite general and can treat more singular models.

In the approach of the paracontrolled distribution developed in [START_REF] Gubinelli | Paraproducts, rough paths and controlled distributions[END_REF] by Gubinelli, Imkeller and Perkowski, on the other hand, it is the notion of controlled path which is generalized. This allows us to give a reasonable notion of product of distributions. Since all the problems treated by the theory of paracontrolled distributions can be solved by using the theory of regularity structures, asking whether or not the opposite is true is a legitimate (and reasonable) question. The following theorems are a piece of the answer.

INTRODUCTION

We will proceed in two steps. In an analytic part we will extend the flow of the regular equation, ∂u t = ∆u tu 3 + 3au + 9bu + ξ with (a, b) ∈ R 2 and ξ ∈ C([0, T ], C 0 (T 3 )) to the situation of more irregular driving noise ξ. More precisely we will prove that the solution u is a continuous function of

(u 0 , R ϕ a,b X) with R ϕ a,b X =(X, X 2 -a, I(X 3 -3aX), π 0 (I(X 3 -3aX), X), π 0 (I(X 2 -a), (X 2 -a)) -b -ϕ, π 0 (I(X 3 -3aX), (X 2 -a)) -3bX -3ϕX, ϕ) (4.6) 
where X t = t 0 P t-s ξds, π 0 (., .) denotes the reminder term of the paraproduct decomposition given in (4.2.3) and I(f ) t = t 0 P t-s f ds. This extension is given in the following theorem.

Theorem 4.1.1. Let F : C 1 (T 3 ) × C(R + , C 0 (T 3 )) × R × R → C(R + , C 1 (T 3 )) the flow of the equation      ∂ t u t = ∆u t -u 3 t + 3au t + 9bu t + ξ t , t ∈ [0, T C (u 0 , X, (a, b))[ ∂ t u t = 0, t ≥ T C (u 0 , X, (a, b)) u(0, x) = u 0 (x) ∈ C 1 (T 3 )
where ξ ∈ C(R + , C 0 (T 3 )) and T C (u 0 , ξ, (a, b)) is a time such that the the equation holds for t ≤ T C . Now let z ∈ (1/2, 2/3), then there exists a Polish space X , called the space of rough distribution, TC : C -z × X → R + a lower semi-continuous function and

F : C -z × X → C(R + , C -z (T 3 )) continuous in (u 0 , X) ∈ C -z (T 3
) × X such that ( F , T ) extends (F, T ) in the following sense : In a second part we obtain a probabilistic estimate for the stationary Ornstein Uhlenbeck (O.U.) process which is the solution if the linear equation (4.3) and this allows us to construct the rough distribution in this case. Theorem 4.1.2. Let X be the stationary (O.U.) process and X ε a space mollification of X. There exists two constants

T C (u 0 , ξ, (a, b)) ≥ TC (u 0 , R ϕ a,b X) > 0 and F (u 0 , ξ, a, b)(t) = F (u 0 , R ϕ a,b X)(t), for all t ≤ TC (u 0 , R ϕ a,b X) for all (u 0 , ξ, ϕ) ∈ C 1 (T 3 ) × C(R + , C 0 (T 3 )) × C ∞ ([0, T ]), (a, b) ∈ R 2 with X t = t 0 dsP t-
C ε 1 , C ε 2 → ε→0 +∞ and a function ϕ ε ∈ C ∞ (R + ) such that R ϕ ε C ε 1 ,C ε 2 X ε converge in L p (Ω, X ) to some X ∈ X . Furthermore the first component of X is X.
In the setting, the Corollary below follows immediately.

Corollary 4.1.3. Let ξ a space time white noise, and ξ ε is a space mollification of ξ such that :

ξ ε = k =0 f (εk) ξ(k)e k
with f a smooth radial function with compact support satisfying f (0) = 0, let X the stationary (O.U.) process associated to ξ, X the element of X given in the Theorem (4.1.2) and u 0 ∈ C -z for z ∈ (1/2, 2/3) then if u ε is the solution of the mollified equation :

     ∂ t u ε t = ∆u ε t -(u ε t ) 3 + 3C ε 1 u t + 9C ε 2 u t + ξ ε t , t ∈ [0, T ε [ ∂ t u t = 0, t ≥ T ε u(0, x) = (u 0 ) ε (x)
We have the following convergence :

lim ε u ε = F (u 0 , X)
where the limit is understood in the probability sense in the space C(R + , C -z ).

The proofs of those two theorems are almost independent, but we need the existence and the properties of the rough distribution, specified in the Definition 4.2.9, to prove the first theorem.
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Plan of the paper. It is the aim of Section 4.2 to introduce the notion spaces of paracontrolled distributions where the renormalized equation will be solved. In Section 4.3 we prove that for a small time the application associated to the renormalized equation is a contraction, which, by a fixed point argument, gives the existence and uniqueness of the solution, but also the continuity with respect to the rough distribution and the initial condition. The last Section 4.4 is devoted to the existence of the rough distribution for the (O.U.) process.

Paracontrolled distributions

Besov spaces and paradifferential calculus

The results given in this Subsection can be found in [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] and [START_REF] Gubinelli | Paraproducts, rough paths and controlled distributions[END_REF]. Let us start by recalling the definition of Besov spaces via the Littelwood-Paley projectors.

Let χ, θ ∈ D be nonnegative radial functions such that 1. The support of χ is contained in a ball and the support of θ is contained in an annulus;

2. χ(ξ) + j≥0 θ(2 -j ξ) = 1 for all ξ ∈ R d ; 3. supp(χ) ∩ supp(θ(2 -j .)) = ∅ for i ≥ 1 and supp(θ(2 -j .)) ∩ supp(θ(2 -j .)) = ∅ when |i -j| > 1.
For the existence of χ and θ see [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF], Proposition 2.10. The Littlewood-Paley blocks are defined as ∆ -1 u = F -1 (χFu) and for j ≥ 0, ∆ j u = F -1 (θ(2 -j .)Fu).

We define the Besov space of distribution by

B α p,q =    u ∈ S ′ (R d ); ||u|| q B α p,q = j≥-1 2 jqα ||∆ j u|| q L p < +∞    .
In the sequel we will deal with the special case of C α := B α ∞,∞ and write ||u|| α = ||u|| B α ∞,∞ . We hold the following result for the convergence of localized series in the Besov spaces, which will prove itself useful.

Proposition 4.2.1. Let (p, q, s) ∈ [1, +∞] 2 × R, B a ball in R d and (u j ) j≥-1 a sequence of functions such that supp(u j ) is contained in 2 j B moreover we assume that Ξ p,q,s = (2 js ||u j || L p ) j≥-1 l q < +∞ then u = j≥-1 u j ∈ B s p,q and ||u|| B s p,q Ξ p,q,s .

The trick to manipulate stochastic objects is to deal with Besov spaces with finite indexes and then go back to space C α . For that we have the following useful Besov embedding.

Proposition 4.2.2. Let 1 ≤ p 1 ≤ p 2 ≤ +∞ and 1 ≤ q 1 ≤ q 2 ≤ +∞. For all s ∈ R the space B s p 1 ,q 1 is continuously embedded in B s-d( 1 p 1 -1 p 2 ) p 2 ,q 2
, in particular we have ||u|| α-d p ||u|| B α p,p . Taking f ∈ C α and g ∈ C β we can formally decompose the product as

f g = π < (f, g) + π 0 (f, g) + π > (f, g) with π < (f, g) = π > (g, f ) = j≥-1 i<j-1 ∆ i f ∆ j g; π 0 (f, g) = j≥-1 |i-j|≤1 ∆ i f ∆ j g.
With these notations the following results hold. On of the key result of [START_REF] Gubinelli | Paraproducts, rough paths and controlled distributions[END_REF] is a commutation result for the operator π < and π 0 .

Proposition 4.2.4. Let α, β, γ ∈ R such that α < 1, α + β + γ > 0 and β + γ < 0 then R(f, x, y) = π 0 (π < (f, x), y) -f π 0 (x, y)
is well-defined when f ∈ C α , x ∈ C β and y ∈ C γ and more precisely

||R(f, x, y)|| α+β+γ ||f || α ||x|| β ||y|| γ
We finish this Section by describing the action of the Heat flow on the Besov spaces and a commutation property with the paraproduct . See the appendix for a proof. Lemma 4.2.5. Let θ ≥ 0 and α ∈ R then the following inequality holds

||P t f || α+2θ 1 t θ ||f || α , ||(P t-s -1)f || α-2ε |t -s| ε ||f || α for f ∈ C α . Moreover if α < 1 and β ∈ R we have ||P t π < (f, g) -π < (f, P t g)|| α+β+2θ 1 t θ ||f || α ||g|| β for all g ∈ C β .
In the following, we will extensively use some space-time function spaces. Let us introduce the notation Notation 4.2.6.

C β T = C([0, T ], C β ) For f ∈ C β T we introduce the norm ||f || β = sup t∈[0,T ] ||f t || C β = sup t∈[0,T ] ||f t || β and by C α,β T := C α ([0, T ], C β (T 3 )).
Furthermore, we endow this space with the following distance

d α,β (f, g) = sup t =s∈[0,T ] (f -g) t -(f -g) s β |t -s| α + sup t∈[0,T ] ||f t -g t || β .

Renormalized equation and rough distribution

Let us focus on the mild formulation of the equation (4.1)

u = Ψ + X + I(u 3 ) = X + Φ (4.7) 
where we remind the notation I(f )(t) = -t 0 P t-s f s ds, X = -I(ξ) and Ψ t = P t u 0 for u 0 ∈ C -z (T 3 ). We can see that a solution u must have at least the same regularity as X. Yet thanks to the definition of I, as ξ ∈ C([0, T ], C -5/2-ε ), for all ε > 0, we have X ∈ C([0, T ], C -1/2-ε ). But in that case the non-linear term u 3 is not well-defined, as there is no universal notion for the product of distributions. A first idea is to proceed by regularization of X, such that products of the regularized quantities are well-defined, and then try to pass to the limit. Let us recall that the stationary O.U process is defined by the fact that ( Xt (k)) t∈R,k∈Z 3 is a centered Gaussian process with covariance function given by

E Xt (k) Xs (k ′ ) = δ k+k ′ =0 e -|k| 2 |t-s| |k| 2
and Xt (0) = 0. Let X ε t = t 0 P t-s ξ ε ds more precisely ξε = f (εk) ξ(k) where f is a smooth radial function with bounded support such that f (0) = 1. Then we have the following approximated equation

Φ ε = Ψ ε + I((X ε ) 3 ) + 3I((Φ ε ) 2 X ε ) + 3I(Φ ε (X ε ) 2 ) + I((Φ ε ) 3 ) for Φ ε = I((u ε ) 3 ) + Ψ ε which is well-posed. Then an easy computation gives for (X ε ) 2 E (X ε t ) 2 = k∈Z 3 k 1 +k 2 =k f (εk 1 )f (εk 2 ) 1 |k 1 | 2 δ k 1 +k 2 =0 = k∈Z 3 |f (εk)| 2 |k| 2 ∼ 0 1 ε R 3 f (x)(1 + |x|) -2 dx
and there is no hope to obtain a finite limit for this term when ε goes to zero. This difficulty has to be solved by subtracting to the original equation these problematic contributions. In order to do so consistently we will introduce a renormalized product. Formally we would like to define

X ♦2 = X 2 -E[X 2 ]
and show that it is well-defined and that X ♦2 ∈ C -1-δ T for δ > 0. More precisely we will defined

(X ε ) ♦2 = (X ε ) 2 -E[(X ε ) 2 ]
and we will show that it converges to some finite limit. The same phenomenon happens for X 3 and other terms, and we have to renormalize them too. This is the meaning of Theorem 4.1.2. We remind the notation of that theorem Notation 4.2.7. Let C ε 1 and C ε 2 two positives constants (to be specified later). We denote by

(X ε ) ♦2 := (X ε ) 2 -C ε 1 I((X ε ) ♦3 ) := I((X ε ) 3 -3C ε 1 X ε ) π 0♦ (I((X ε ) ♦2 ), (X ε ) ♦2 ) = I((X ε ) ♦2 )(X ε ) ♦2 -C ε 2 π 0♦ (I((X ε ) ♦3 ), (X ε ) ♦2 ) = I((X ε ) ♦3 )(X ε ) ♦2 -3C ε 2 X ε .
Remark 4.2.8. In all the sequel the symbol ♦ does not stand for the usual Wick product, also it looks like it, but for renormalized product, where we have subtracted only the diverging quantity in the expression of the stochastic processes. It can be seen as a product between the usual one and the Wick one. When in Section 4.4 we use the usual Wick product (see [START_REF] Janson | Gaussian Hilbert Spaces[END_REF] for its definition and its properties) we use the usual notation :: .

To include such considerations and notations in the approximated equation, we need to add a renormalized term

Φ ε = Ψ ε + I((X ε ) 3 ) + 3I((Φ ε ) 2 X ε ) + 3I(Φ ε (X ε ) 2 ) + I((Φ ε ) 3 ) -C ε I(Φ ε + X ε ) = Ψ ε + I((X ε ) 3 -3C ε 1 X ε ) + 3I((Φ ε ) 2 X ε ) + 3I(Φ ε ((X ε ) 2 -C ε 1 ) -3C ε 2 (Φ ε + X ε )) + I((Φ ε ) 3 ) with C ε = 3(C ε 1 -3C ε 2 ).
Then the approximated equation is given by

Φ ε = Ψ ε + I((X ε ) ♦3 ) + 3I((Φ ε ) 2 X ε ) + 3I(Φ ε ♦(X ε ) ♦2 ) + I((Φ ε ) 3 ) (4.8)
where

I(Φ ε ♦(X ε ) ♦2 ) := 3I(Φ ε ((X ε ) 2 -C ε 1 )) + 9C ε 2 I(Φ ε + X ε )
Then our goal is obtain a uniform bound for the solution Φ ε . For that we proceed in two steps 1. In a first analytic step we build an abstract fix point equation which allows us to extend continuously the flow of the regular equation given by

Φ = I(X 3 -3aX) + 3I(Φ 2 X) + 3 I(X 2 -a)) -3bI(Φ + X) + I(Φ 3 ) + Ψ (X, Ψ, (a, b)) ∈ C 1 T (T 3 ) × C 1 T (T 3 )) × R 2 (4.9)
to a space X of a more rough signal X which satisfies some algebraic and analytic assumptions (see (4.2.9) for the exact definition of X ).

2. In a second probabilistic step we show that the stationary (O.U) process can be enhanced in a canonical way in an element X of X . We will give the exact definition of the space X Definition 4.2.9. Let T > 1, ν, ρ > 0. We denote by C ν,ρ T the closure of the set of smooth functions C ∞ ([0, T ], R) by the semi-norm :

||ϕ|| ν,ρ = sup t∈[0,T ] t ν |ϕ t | + sup t,s∈[0,T ];s =t s ν |ϕ t -ϕ s | |t -s| ρ .
For 0 < 4δ ′ < δ we define the normed space W T,K

W T,K = C δ ′ ,-1/2-δ T × C δ ′ ,-1-δ T × C δ ′ ,1/2-δ T × C δ ′ ,-δ T × C δ ′ ,-δ T × C δ ′ ,-1/2-δ T × C ν,ρ T with K = (δ, δ ′ , ν, ρ) equipped with the product topology . For (X, ϕ) ∈ C([0, T ], C(T 3 )) × C ∞ ([0, T ]), and (a, b) ∈ R 2 we define R ϕ a,b X ∈ W T,K by R ϕ a,b X =(X, X 2 -a, I(X 3 -3aX), π 0 (I(X 3 -3aX), X), π 0 (I(X 2 -a), (X 2 -a)) -b -ϕ, π 0 (I(X 3 -3aX), (X 2 -a)) -3bX -3ϕX, ϕ).
The space of the rough distribution X T,K is defined as the closure of the set

R ϕ a,b X, (X, ϕ) ∈ C([0, T ], C(T 3 )) × C ∞ ([0, T ]), (a, b) ∈ R 2 in W T,K .
For X ∈ X we denote its components by X = (X, X ♦2 , I(X ♦3 ), π 0♦ (I(X ♦3 ), X), π 0♦ (I(X ♦2 ), X ♦2 )ϕ X , π 0♦ (I(X ♦3 ), X ♦2 ) -3ϕ X X, ϕ X ).

For two rough distributions X ∈ X T,K and Y ∈ X T,K we introduce the distance :

d T,K (Y, X) =d δ ′ ,-1/2-δ (Y, X) + d δ ′ ,-1-δ (Y ♦2 , X ♦2 ) + d δ ′ ,1/2-δ (I(Y ♦3 ), I(X ♦3 )) + d δ ′ ,-1/2-δ (π 0 (I(Y ♦3 ), Y ), π 0 (I(X ♦3 ), X)) + d δ ′ ,-1-δ (π 0♦ (I(Y ♦2 ), ♦Y ♦2 ) -ϕ Y , π 0♦ (I(X ♦3 ), ⋄X 2 ) -ϕ X ) + d δ ′ ,-1-δ (π 0♦ (I(Y ♦3 )♦Y ♦2 ) -3ϕ Y Y, π 0⋄ (I(X ♦3 )♦, X 2 ) -3ϕ X X) + ϕ Y -ϕ X ν,ρ . (4.10) 
with K = (δ, δ ′ , ρ, ν) ∈ [0, 1] 4 and we denote by ||X|| T,K = d T,K (X, 0).

Remark 4.2.10. As we see in the Section (4.4), the term π 0 (I((X ε ) 2 ), (X ε ) 2 ) -C ε 2 where X ε is a mollification of the O.U process does not converge in the space C δ ′ ,-δ T . On the other hand it converge in a explosive norm and more precisely there exit a function

ϕ ε ∈ C ∞ ([0, T ]) such that ϕ ε → ε→0 ϕ in C ν,ρ T and π 0 (I((X ε ) 2 ), (X ε ) 2 ) -C ε 2 -ϕ ε converge in C δ ′ ,-δ T for all 0 < δ ′ < δ/4.
For X ∈ X we can obviously construct I(X ♦2 )♦X ♦2 using the Bony paraproduct in the following way

I(X ♦2 )♦X ♦2 = π < (I(X ♦2 ), X ♦2 ) + π > (I(X ♦2 ), X ♦2 ) + π 0♦ (I(X ♦2 ), X ♦2 )
and a similar definition for I(X ♦3 )♦X ♦2 . In the sequel we might abusively denote X by X if there is no confusion, and the rough path terminology we denote the other components of X by the area components of X.

Paracontrolled distributions and fixed point equation

The aim of this Section is to define a suitable space in which it is possible to formulate an fix point for the eventual limit of the mollified solution, to be more precise let X ∈ X then we know that there exist

X ε ∈ C 1 T (T 3 ), a ε , b ε ∈ R and ϕ ε ∈ C ∞ ([0, T ]) such that lim ε→0 R ϕ ε a ε ,b ε X ε = X.
Let us focus more intently on the regular equation given by :

Φ ε = I((X ε ) 3 -3a ε X ε ) + 3 I(Φ ε ((X ε ) 2 -a ε )) -3b ε I(X ε + Φ ε ) + 3I((Φ ε ) 2 X ε ) + I((Φ ε ) 3 )
where we have omitted temporarily the dependence on the initial condition. If we assume that Φ ε converge to some Φ in C 1/2-δ we see that the regularity of X is not sufficient to define

I(Φ 2 X) := lim ε→0 I((Φ ε ) 2 X ε ) and I(Φ♦X ♦2 ) := lim ε→0 I(Φ ε (X ε -a ε )) + 3b ε I(X ε + Φ ε ). To bypass this problem we remark that Φ ε = I((X ε ) 3 -3a ε X ε ) + I(π < (Φ ε , (X ε ) 2 -a ε )) + (Φ ε ) ♯ then if we impose the convergence of (Φ ε ) ♯ to some Φ ♯ in C 3/2-δ T
we see that the limit Φ should satisfy the following relation

Φ = I(X ♦3 ) + I(π < (Φ, X ♦2 )) + Φ ♯ .
This is the missing ingredient which allows to construct the quantity I(Φ 2 X) and I(Φ♦X ♦2 ) and to solve the equation

Φ = X ♦2 + I(Φ 2 X) + I(Φ♦X ♦2 ) + Φ ♯ (4.11) 
Notation 4.2.11. Let us introduce some useful notations for the sequel

B > (f, g) = I(π > (f, g)), B 0 (f, g) = I(π 0 (f, g)) and B < (f, g) = I(π < (f, g)).
As we observed in the beginning of this Section to deal with the difficulty of defining the products of distributions, we use the notion of controlled distribution introduced in [START_REF] Gubinelli | Paraproducts, rough paths and controlled distributions[END_REF]. Definition 4.2.12. Let X ∈ X and z ∈ (1/2, 2/3). We said that a distribution

Φ ∈ C -z T is controlled by X if Φ = I(X ♦3 ) + B < (Φ ′ , X ♦2 ) + Φ ♯ such that ||Φ ♯ || ⋆,1,L,T = sup t∈[0,T ] t 1+δ+z 2 ||Φ ♯ t || 1+δ + t 1/4+ γ+z 2 ||Φ ♯ t || 1/2+γ + t κ+z 2 ||Φ ♯ t || κ + sup (s,t)∈[0,T ] 2 s z+a 2 ||Φ ♯ t -Φ ♯ s || a-2b |t -s| b < +∞ and ||Φ ′ || ⋆,2,L,T = sup (s,t)∈[0,T ] 2 s z+c 2 ||Φ ′ t -Φ ′ s || c-2d |t -s| d + sup t∈[0,T ] t η+z 2 ||Φ ′ t || η < +∞ with L := (δ, γ, κ, a, b, c, d, η) ∈ [0, 1] 8 , z ∈ (1/2, 2/3) and 2d ≤ c, 2b ≤ a.
Let us denote by D L T,X the space of controlled distributions, endowed with the following metric

d L,T (Φ 1 , Φ 2 ) = ||Φ ′ 1 -Φ ′ 2 || ⋆,T + ||Φ ♯ 1 -Φ ♯ 2 || ⋆,T for Φ 1 , Φ 2 ∈ D L X and the quantity ||Φ|| ⋆,T,L = ||Φ 1 || D L T,X = d L,T (Φ 1 , I(X ♦3 )).
where

R(I(X ♦3 ), I(X ♦3 ), X) = π 0 (π < (I(X ♦3 ), I(X ♦3 )), X) -I(X ♦3 )π 0 (I(X ♦3 ), I(X ♦3 ))
is well-defined by the Proposition 4.2.4. And there exists a choice of L such that the following bound holds

||I(Φ 2 X)[Φ, X]|| ⋆,1,T T θ ||Φ|| D L X + 1 2 1 + ||X|| T,ν,ρ,δ,δ ′ 3
for θ > 0 and δ, δ ′ , ρ, ν > 0 small enough depending on L and z. Moreover if X ∈ C 1 T (T 3 ) then

I(Φ 2 X)[Φ, R ϕ a,b X] = I(Φ 2 X)
Proof. By a simple computation it is easy to see that

||B < (Φ ′ , X ♦2 )(t)|| κ t 0 ds(t-s) -(κ+1+r)/2 ||Φ ′ s || κ ||X ♦2 s || -1-r r,κ T 1/2-r/2-κ/2-z/2 ||Φ ′ || ⋆,2,T ||X ♦2 || -1-r
for r, κ > 0 small enough and 1/2 < z < 2/3. A similar computation gives

||B < (Φ ′ , X ♦2 )(t)|| 1/2+γ t 0 ds(t -s) -(3/2+γ+r)/2 ||Φ ′ s || κ ||X ♦2 s || -1-r κ,r,z ||Φ ′ || ⋆,2,T ||X ♦2 || -1-r t 0 ds(t -s) -(3/2+γ+r)/2 s -(κ+z)/2 t 1/4-(γ+κ+z+r)/2 ||Φ ′ || ⋆,2,L,T ||X ♦2 || -1-r
for γ, r, κ > 0 small enough. Using this bound we can deduce that

||I((θ ♯ ) 2 X)(t)|| 1+δ t 0 ds(t -s) -(3/2+δ+β)/2 ||(θ ♯ s ) 2 X s || -1/2-β β,δ t 0 ds(t -s) -(3/2+δ+β)/2 ||θ ♯ s || κ ||θ ♯ s || 1/2+γ ||X s || -1/2-β L,z ||Φ|| 2 ⋆,L,T (||X ♦2 || -1-r + ||X|| -1/2-β + 1) 2 × t 0 ds(t -s) -(3/2+δ+β) s -(1/2+κ+γ+2z)/2 L,z t -(δ+κ+γ+β+2z) ||Φ|| 2 ⋆,L,T (||X ♦2 || -1-r + ||X|| -1/2-β + 1) 2
for γ, β, δ > 0 small enough and 2/3 > z > 1/2. Hence we obtain that

sup t∈[0,T ] t (1+δ+z)/2 ||I((θ ♯ ) 2 X)(t)|| 1+δ L T θ 1 ||Φ|| 2 ⋆,L,T (||X ♦2 || -1-r + ||X|| -1/2-β + 1) 2
for some θ 1 > 0 depending on L and z. The same type of computation gives

sup t∈[0,T ] t (κ+z)/2 ||||I((θ ♯ ) 2 X)(t)|| κ L,z T θ 2 ||Φ|| 2 ⋆,L,T (||X ♦2 || -1-r + ||X|| -1/2-β + 1) 2 and sup t∈[0,T ] t (1/2+γ+z)/2 ||||I((θ ♯ ) 2 X)(t)|| 1/2+γ L,z T θ 3 ||Φ|| 2 ⋆,T (||X ♦2 || -1-r + ||X|| -1/2-β + 1) 2
with θ 2 and θ 3 two non negative constants depending only on L and z. To complete our study for this term, we have also

||I((θ ♯ ) 2 X)(t) -I((θ ♯ ) 2 X)(s)|| a-2b I 1 st + I 2 st with I 1 st = s 0 du(P t-u -P s-u )(θ ♯ u ) 2 X u a-2b , I 2 st = t s duP t-u (θ ♯ u ) 2 X u a-2b
.

Let us begin by bounding I 1 :

I 1 st (t -s) b s 0 du||P s-u (θ ♯ u ) 2 X u || a (t -s) b t 0 du(s -u) -(1/2+a+β) ||(θ ♯ u ) 2 X u || -1/2-β T θ 4 |t -s| b ||Φ|| 2 ⋆,T (||X ♦2 || -1-r + ||X|| -1/2-β + 1
) 2 with θ 4 > 0 depending on L and z. Let us focus on the bound for I 2 ,

I 2 st t s (t -u) -(1/2+a-2b+β)/2 ||(θ ♯ u ) 2 X u || -1/2-β L,z ||Φ|| 2 ⋆,T (||X ♦2 || -1-r + ||X|| -1/2-β + 1) 2 t s du(t -u) -(1/2+a-2b+β)/2 u -(1/2+κ+γ+2z)/2 and t s du(t -u) -(1/2+a-2b+β)/2 u -(1/2+κ+γ+2z)/2 = (t -s) 3/4-(a-2b+β) 1 0 dx(1 -x) -(1/2+a-2b+β) (s + x(t -s)) -(1/2+κ+γ+2z)/2 l,κ,γ,a,b (t -s) l-(a-2b+β)/2 s 1/2-z+(κ+γ)/2 1 0 dx(1 -x) -(1/2+a-2b+β)/2 x -3/4+l .
Then using the fact z < 1 and choosing l, κ, γ, b > 0 small enough we can deduce that

t s du(t -u) -(1/2+a-2b+β)/2 u -(1/2+κ+γ+2z)/2 L T θ 5 (t -s) b s -(z+a)/2
with θ 5 > 0. This gives the needed bound for I 2 . Finally we have sup

(s,t)∈[0,T ] s (z+a)/2 ||I((θ ♯ ) 2 X)(t) -I((θ ♯ ) 2 X)(s)|| a-2b |t -s| b T θ 5 ||Φ|| 2 ⋆,T (||X ♦2 || -1-r + ||X|| -1/2-β + 1) 2 hence ||I((θ ♯ ) 2 X)|| ⋆,1,T L T θ ||Φ|| 2 ⋆,T (||X ♦2 || -1-r + ||X|| -1/2-β + 1) 2 .
The bound for ||I(θ ♯ I(X 3 )X)|| ⋆,1,T can be obtained by a similar way and then, according to the hypothesis given on the area I(X ♦3 )X and the decomposition of I(I(X ♦3 ) 2 X), we obtain easily from the Proposition 4.2.4 and the Proposition 4.2.3 that

I(I(X ♦3 )) 2 ⋄ X ⋆,1,T T θ (1 + π 0 (I(X ♦3 ), X) δ ′ ,-1/2-ρ + I(X ♦3 ) δ ′ ,1/2-ρ + X δ ′ ,-1/2-ρ ) 3
for 3ρ < δ ′ small enough, which gives the wanted result.

Decomposition of I(Φ♦X ♦2 )

Let us apply the controlled structure to the mollified equation. As in that case the equation is well-posed, we have

Γ(Φ ε ) = Φ ε where Γ(Φ ε ) = I((X ε ) ♦3 ) + 3I(Φ ε (X ε ) ♦2 ) + 3I((Φ ε ) 2 X ε ) + I((Φ ε ) 3 ) with of course Φ ε controlled by X ε Φ ε = I((X ε ) ♦3 ) + B < ((Φ ε ) ′ , (X ε ) ♦2 ) + (Φ ε ) ♯ .
By a direct computation we also have

I(Φ ε (X ε ) ♦2 ) =B < (Φ ε , (X ε ) ♦2 ) + B 0 (I((X ε ) ♦3 ), (X ε ) ♦2 ) + B 0 (B < ((Φ ε ) ′ , (X ε ) ♦2 ), (X ε ) ♦2 ) + B 0 ((Φ ε ) ♯ , (X ε ) ♦2 ) + B > (Φ ε , (X ε ) ♦2 ).
Indeed, thanks to the Bony paraproduct, the first and the last terms in the r.h.s are well defined. The only problem is to define B 0 (.). By an analysis of the regularity, the structure of controlled distribution for Γε (Φ ε ) appears, and we have Γε (Φ ε ) ′ = 3Φ ε hence (Φ ε ) ′ = 3Φ ε . Furthermore, B 0 (I((X ε ) ♦3 ), (X ε ) ♦2 ) does not converge, and we need to renormalize it by subtracting 3C ε 2 I(X ε ). We have to deal with the (ill-defined) diagonal term.

X ε,♦ (Φ ′ )(t) = B 0 (B < ((Φ ε ) ′ , (X ε ) ♦2 ), (X ε ) ♦2 )(t) = t 0 dsP t-s π 0 ( s 0 dσP s-σ π < ((Φ ε ) ′ σ , (X ε ) ♦2 σ ), (X ε ) ♦2 s )
Thanks to the properties of the paraproduct, we decompose this term in the following way

(X ε ) ε,♦ ((Φ ε ) ′ )(t) = t 0 dsP t-s (Φ ε ) ′ s π 0 (I((X ε ) ♦2 )(s), (X ε ) ♦2 s ) + t 0 dsP t-s s 0 dσ((Φ ε ) ′ σ -(Φ ε ) ′ s )π 0 ((X ε ) ♦2 s , P s-σ (X ε ) ♦2 σ ) + t 0 dsP t-s s 0 dσπ 0 (R 1 s-σ ((Φ ε ) ′ σ , (X ε ) ♦2 σ ), (X ε ) ♦2 s ) + t 0 dsP t-s s 0 R 2 ((Φ ε ) ′ σ , P s-σ (X ε ) ♦2 σ , (X ε ) ♦2 s ) ≡ 4 i=1 (X ε ) ♦,i (t) with R 1 s-σ (f, g) = P s-σ π < (f, g) -π < (f, P s-σ g), R 2 (f, g, h) = π 0 (π < (f, g), h) -f π 0 (g, h)
Here again, to have a convergent quantity we need to renormalize

(X ε ) ♦,1 by C ε 2 t 0 P t-s (Φ ε ) ′ s = C ε 2 I(Φ ε ). Hence, the approximated equation must be Γ(Φ ε ) = Φ ε with Γ ε (Φ ε ) = Γε (Φ ε ) + 9C ε 2 (Φ ε + X ε ).
The same computation holds for the renormalized equation, and we have

I(Φ♦X ♦2 ) = B < (Φ, X ♦2 ) + B 0♦ (I(X ♦3 ), X ♦2 ) + B 0,♦ (B < (Φ ′ , X ♦2 ), X ♦2 ) + B 0 (Φ ♯ , X ♦2 ) + B > (Φ, X ♦2 ).
Indeed, thanks to the Bony paraproduct, the first and the last terms in the r.h.s are well-defined. The only problem is to define B 0 (.). The term in Φ ♯ X ♦2 is also well-defined as Φ ♯ ∈ C 1+δ T . The term B 0♦ (I(X ♦3 ), X ♦2 ) is also well-defined by Definition 4.2.9. So we only have to deal with the diagonal term

X ♦ (Φ ′ )(t) = B 0,♦ (B < (Φ ′ , X ♦2 ), X ♦2 )(t) = t 0 dsP t-s π 0,♦ s 0 dσP s-σ π < (Φ ′ σ , X ♦2 σ ), X ♦2 s
Thanks to the properties of the paraproduct, we decompose this term in the following way

X ♦ (Φ ′ )(t) = t 0 dsP t-s Φ ′ s π 0,♦ (I(X ♦2 ) s , X ♦2 s ) + t 0 dsP t-s s 0 dσ(Φ ′ σ -Φ ′ s )π 0 (X ♦2 s , P s-σ X ♦2 σ ) + t 0 dsP t-s s 0 dσπ 0 (R 1 s-σ (Φ ′ σ , X ♦2 σ ), X ♦2 s ) + t 0 dsP t-s s 0 R 2 (Φ ′ σ , P s-σ X ♦2 σ , X ♦2 s ) ≡ 4 i=1 X ♦,i (t) 
where

R 1 s-σ (f, g) = P s-σ π < (f, g) -π < (f, P s-σ g), R 2 (f, g, h) = π 0 (π < (f, g), h) -f π 0 (g, h)
and f, g, h are distributions lying in the suitable Besov spaces for R 1 and R 

||I(f )(t) -I(f )(s)|| a-2b |t -s| b b,a,z,r T θ sup t∈[0,T ] t (r+z)/2 ||f t || r with a + z < 2, z + r < 2, a -r < 2, 0 < a, b < 1 and θ > 0 is a constant depending only on a, r, b, z.
Proof. By a simple computation we have

I(f )(t) -I(f )(s) = I 1 st + I 2 st with I 1 st = (P t-s -1) s 0 duP s-u f u and I 2 st = t s duP t-u f u .
Using the lemma (4.2.5) the following bound holds

||I 1 st || a-2b |t -s| b t 0 du(t -u) -(a-r)/2 u -(r+z)/2 sup t∈[0,T ] t (r+z)/2 ||f t || r < +∞.
To handle the second we use Hölder inequality,

||I 2 st || a-2b |t -s| b t s du(t -u) -(a-2b-r) 2(1-b) u - (z+r) 2(1-b) 1-b sup t∈[0,T t (r+z)/2 ||f t || r < +∞
which ends the proof.

The following proposition gives us the regularity for our terms.

Proposition 4.2.16. Assume that X ∈ X then there exists a choice of L such that for all z ∈ (1/2, 2/3) the following bound holds

||X ♦ (Φ ′ )|| ⋆,1,T T θ (1 + ||X|| T,K ) 2 ||Φ ′ || ⋆,2,T
with K ∈ [0, 1] 4 , θ > 0 are two small parameters depending only on L and z.

Proof. We begin by estimate the first term of the expansion (4.2.5)

||X ♦,1 (Φ ′ )(t)|| 1+δ t 0 ds(t -s) -(1+δ+η/2)/2 ||Φ ′ s π 0,♦ (I(X ♦2 )(s), X ♦2 s ) -ϕ X s || -η/2 + ( sup σ∈[0,T ] σ ν |ϕ X σ |) t 0 ds(t -s) -(1+δ-η)/2 ||Φ ′ s || η ||Φ ′ || ⋆,2,T (I(X ♦2 ), X ♦2 ) -ϕ X || -η/2 + sup σ∈[0,T ] σ ν |ϕ X σ | + 1) × t 0 ds(t -s) -(1+δ+η/2)/2 s -(η+ν+z)/2 β,L T θ 1 ||Φ ′ || ⋆,2,T (||π 0♦ (I(X ♦2 ), X ♦2 ) -ϕ X || -η/2 + sup σ∈[0,T ] σ ν |ϕ X σ | + 1)
for ν, η, δ > 0 small enough and with θ 1 > 0 depending on L. Hence

sup t∈[0,T ] t (1+δ+z)/2 ||X ♦,1 (Φ ′ )(t)|| 1+δ L,z T θ 1 (||π 0♦ (I(X ♦2 ), X ♦2 ) -ϕ X || -η/2 + sup σ∈[0,T ] σ ν |ϕ X σ | + 1)
Let us focus on the second term. We have

||X ♦,2 (Φ ′ )(t)|| 1+δ t 0 ds(t -s) -(1+δ-β)/2 s 0 dσ||(Φ ′ σ -Φ ′ s )π 0 (P s-σ X ♦2 σ , X ♦2 s )|| β β,ρ t 0 ds(t -s) -(1+δ-β)/2 s 0 dσ(s -σ) -(2+ρ)/2 ||Φ ′ σ -Φ ′ s || c-2d ||X ♦2 s || 2 -1-ρ L,β,ρ ||Φ ′ || ⋆,2,T ||X ♦2 || 2 C -1-ρ T t 0 ds(t -s) -(1+δ-β)/2 s 0 dσ(s -σ) -1-ρ/2+d σ -(c+z)/2 L,β,ρ ||Φ ′ || ⋆,2,T ||X ♦2 || 2 C -1-ρ T t 0 ds(t -s) -(1+δ-β)/2 s -(ρ+c-2d+z)/2 L,β,ρ T θ 2 ||Φ ′ || ⋆,2,T ||X ♦2 || 2 C -1-ρ
T for β = min(c -2d, ρ) ≥ 0 and all c, d, ρ > 0 small enough, z < 1 and θ 2 > 0 is a constant depending only on L and z. Using the Lemma 4.2.5 we see

||R 1 s-σ (Φ ′ σ , X ♦2 σ )|| 1+2β (s -σ) -(2+3β-η)/2 ||Φ ′ σ || η ||X ♦2 σ || -1-β
for all β > 0, β < η/3 small enough. By a straightforward computation we have

||X ♦,3 (Φ ′ )(t)|| 1+δ t 0 ds(t -s) -(1+δ-β)/2 s 0 dσ||π 0 (R 1 s-σ (Φ ′ σ , X ♦2 σ ), X ♦2 s )|| β t 0 ds(t -s) -(1+δ-β)/2 s 0 dσ||R 1 s-σ (Φ ′ σ , X ♦2 σ )|| 1+2β ||X ♦2 s || -1-β ||X ♦2 || 2 C -1-β T ||Φ ′ || ⋆,2,T t 0 ds(t -s) -(1+δ-β)/2 s 0 dσ(s -σ) -(2+3β-κ)/2 σ -(η+z)/2 ||X ♦2 || 2 C -1-β T ||Φ ′ || ⋆,2,T t 0 ds(t -s) -(1+δ-β)/2 s -(3β-κ+η+z)/2 T θ 3 ||X ♦2 || 2 C -1-β T ||Φ ′ || ⋆,2,T
where θ 3 > 0 is a constant depending on L and z, 0 < β < η/3 small enough and z < 1. To treat the last term it is sufficient to use the commutation result given in the Proposition (4.2.4), indeed we have

||R 2 (Φ ′ σ , P s-σ X ♦2 σ , X ♦2 s )|| η-3β η,β s -(η+z)/2 (s -σ) -(2-β)/2 ||X ♦2 || 2 C -1-β T ||Φ ′ || ⋆,2,T
for 0 < β < η/3 small enough and then

||X ♦,4 (Φ ′ )(t)|| 1+δ η,β ||X ♦2 || 2 C -1-β T ||Φ ′ || ⋆,2,T t 0 ds(t -s) -(1+δ-η+3β)/2 s 0 dσs -(η+z)/2 (s -σ) -(2-β)/2 η,β ||X ♦2 || 2 C -1-β T ||Φ ′ || ⋆,2,T t 0 ds(t -s) -(1+δ-η+3β)/2 s -(η+z+β)/2 T θ 4 ||X ♦2 || 2 C -1-β T ||Φ ′ || ⋆,2,T
for θ 4 > 0 depending on L and z < 1 and β, η, δ > 0 small enough. Binding all these bounds together we conclude that

sup t∈[0,T ] t (1+δ+z)/2 ||X ♦ (Φ ′ )(t)|| 1+δ L,z T θ (1 + ||X ♦2 || C -1-ρ T + ||π 0♦ (I(X ♦2 ), X ♦2 ) -ϕ X || C -1-ρ T + sup t∈[0,T ] t ν |ϕ X t |) 2 ||Φ ′ || ⋆,2,T
for θ > 0 depending on L and z. The same arguments gives

sup t∈[0,T ] t (1/2+γ+z)/2 ||X ♦ (Φ ′ )(t)|| 1/2+γ L,z T θ (1 + ||X ♦2 || C -1-ρ T + ||π 0♦ (I(X ♦2 ), X ♦2 ) -ϕ X || C -1-ρ T + sup t∈[0,T ] t ν |ϕ X t |) 2 ||Φ ′ || ⋆,2,T and sup t∈[0,T ] t (κ+z)/2 ||X ♦ (Φ ′ )(t)|| κ L,z T θ (1 + ||X ♦2 || C -1-ρ T + ||π 0♦ (I(X ♦2 , X ♦2 ) -ϕ X || C -1-ρ T + sup t∈[0,T ] t ν |ϕ X t |) 2 ||Φ ′ || ⋆,2,T
To obtain the needed bound we still need to estimate the following quantity

sup (s,t)∈[0,T ] 2 s z+a 2 ||X ♦ (Φ ′ )(t) -X ♦ (Φ ′ )(s)|| a-2b |t -s| b .
To deal with is we use the fact that X ♦,i (Φ ′ ) = I(f i ) with

f 1 (s) = Φ ′ s π 0,♦ (I(X ♦2 )(s), X ♦2 s ), f 2 (s) = s 0 dσ(Φ ′ σ -Φ ′ s )π 0 (X ♦2 s , P s-σ X ♦2 σ )
and

f 3 (s) = s 0 dσπ 0 (R 1 s-σ (Φ ′ σ , X ♦2 σ ), X ♦2 s ), f 4 (s) = s 0 R 2 (Φ ′ σ , P s-σ X ♦2 σ , X ♦2 s ).
By a easy computation we have

||f 1 (t)|| η/2 η s -(η+z)/2 ||Φ ′ || ⋆,2,T (1 + ||π 0♦ (I(X ♦2 ), X ♦2 ) -ϕ X || -η/4 + sup t∈[0,T ] t ν |ϕ X t |) 2 ||f 2 (s)|| -d ||Φ ′ || ⋆,2,T ||X ♦2 || 2 -1-d/4 s 0 dσ(s-σ) -1+d/2 σ -(c+z)/2 z,c,d s d/2-(c+z)/2 ||Φ ′ || ⋆,2,T ||X ♦2 || -1-d/4 ||f 3 (s)|| 2η/3 ||Φ ′ || ⋆,2,T ||X ♦2 || 2 -1-η/9 s 0 ds(s-σ) -1+η/9 s -(η+z)/2 s -(11η+9z)/2 ||Φ ′ || ⋆,2,T ||X ♦2 || 2 -1-η/9
with ν > 0 depending only on L, and a similar bound for f 4 which allows us to conclude by the Lemma (4.2.15) that we have

sup (s,t)∈[0,T ] 2 s z+a 2 ||X ♦ (Φ ′ )(t) -X ♦ (Φ ′ )(s)|| a-2b |t -s| b T θ ||Φ ′ || ⋆,2,T ||X ♦2 || 2 -1-ρ
for some ρ > 0, θ > 0 and η, c, d > 0 small enough and z ∈ (1/2, 2/3).

We are now able to give the meaning of I(Φ♦X ♦2 ) for a Φ ∈ D L X .

Corollary 4.2.17. Assume that X ∈ X and let Φ ∈ D L X then for z ∈ (1/2, 2/3) and for a suitable choice of L the term I(Φ♦X ♦2 )[Φ, X] is defined via the following expansion

I(Φ♦X ♦2 )[Φ, X] := B < (Φ, X ♦2 ) + B > (Φ, X ♦2 ) + B 0,♦ (I(X ♦3 ), X ♦2 ) + X ♦ (Φ ′ ) + B 0 (Φ ♯ , X ♦2 )
And we have the following bound

||B 0 (Φ ♯ , X ♦2 )|| ⋆,1,T + ||B > (Φ, X ♦2 )|| ⋆,1,T T θ ||Φ|| ⋆,T ||X ♦2 || C -1-ρ T for some θ, ρ > 0 being a non-negative constant depending on L and z. Moreover if a, b ∈ R, X ∈ C 1 T (T 3 ) and ϕ ∈ C ∞ ([0, T ]) then we have that I(Φ♦X ♦2 )[Φ, R ϕ a,b X] = I(Φ(X 2 -a)) + 3bI(X + Φ) for every Φ ∈ D R ϕ a,b X .
Proof. We remark that all the term in the definition of I(Φ♦X ♦2 ) are well-defined due to the Proposition 4.2.16 and the definition of the paraproduct, and we also notice that

||B 0 (Φ ♯ , X ♦2 )(t)|| 1+δ t 0 ds(t -s) -(1+δ/2)/2 ||Φ ♯ s || 1+δ ||X ♦2 || -1-δ/2 ||Φ ♯ || ⋆,1,T ||X ♦2 || C -1-δ/2 T t 0 ds(t -s) -(1+δ/2)/2 s -(1+δ+z)/2 s -(3/2δ+z)/2 ||Φ ♯ || ⋆,1,T ||X ♦2 || C -1-δ/2 T which gives easily sup t∈[0,T ] t (1+δ+z)/2 ||B 0 (Φ ♯ , X ♦2 )(t)|| 1+δ T 1/2-δ ||Φ ♯ || ⋆,1,T ||X ♦2 || C -1-δ/2
T for δ < 1/2. By a similar computation we obtain that there exists θ > 0 depending on L and z such that

sup t∈[0,T ] t (1/2+γ+z)/2 ||B 0 (Φ ♯ , X ♦2 )(t)|| 1/2+γ + sup t∈[0,T ] t (κ+z)/2 ||B 0 (Φ ♯ , X ♦2 )(t)|| κ T θ ||Φ ♯ || ⋆,1,T ||X ♦2 || C -1-δ/2 T .
To obtain the needed bound for this term we still need to estimate the Hölder type norm for it. We remark that

||π 0 (Φ ♯ s , X ♦2 s )|| δ/2 s -(1+δ+z)/2 ||Φ ♯ s || 1+δ ||X ♦2 s || -1-δ/2
and then as usual we decompose the norm in the following way

B 0 (Φ ♯ t , X ♦2 )(t) -B 0 (Φ ♯ s , X ♦3 s ) = I 1 st + I 2 st with I 1 st = (P t-s -1) t 0 duP t-u π 0 (Φ ♯ u , X ♦2 u ), I 2 st = t s duP t-u π 0 (Φ ♯ u , X ♦2 u ).
A straightforward computation gives

||I 1 st || a-2b ||Φ ♯ || ⋆,1,T ||X ♦2 || C 1-δ/2 T |t -s| b t 0 du(t -u) -(a-δ/2)/2 u -(1+δ+z)/2 T (1-a-δ/2-z)/2 |t -s| b ||Φ ♯ || ⋆,1,T ||X ♦2 || C 1-δ/2 T .
For I 2 we use Hölder inequality which gives

||I 2 st || a-2b |t -s| b ||Φ ♯ || ⋆,1,T ||X ♦2 || C 1-δ/2 T t s du(t -u) - a-2b-δ/2 2(1-b) u -1+δ+z 2(1-b) ) 1-b T (1-a-δ/2-z)/2 |t -s| b ||Φ ♯ || ⋆,1,T ||X ♦2 || C 1-δ/2
T for a, δ > 0 small enough and z < 1. We have obtained that

||B 0 (Φ ♯ , X ♦2 )|| ⋆,1,T T θ ||Φ ♯ || ⋆,1,T ||X ♦2 || C -1-δ/2
T for some θ > 0 depending on L and z. The bound for the term B > (Φ, X ♦2 ) is obtained by a similar argument and this ends the proof.

Remark 4.2.18. When there are no ambiguity we use the notation

I(Φ♦X ♦2 ) instead of I(Φ♦X ♦2 )[Φ, X].
We focus on the explosive Hölder type norm for this term, indeed a quick computation gives

||Φ t -Φ s || c-2d ||I(X ♦3 )(t)-I(X ♦3 )(s)|| c-2d +||B < (Φ ′ , X ♦2 )(t)-B < (Φ ′ , X ♦2 )(s)|| c-2d +||Φ ♯ t -Φ ♯ s || c-2d .
Let us estimate the first term in the right hand side. Using the regularity for I(X ♦3 ) we obtain that for d > 0 small enough and c < 1/2

||I(X ♦3 )(t) -I(X ♦3 )(s)|| c-2d |t -s| d ||I(X ♦3 )|| d,c-2d .
Then we notice that the increment appearing in second term has the following representation

B < (Φ ′ , X ♦2 ) = I(f ) with f = π < (Φ ′ , X ♦2 ).
To treat this term it is sufficient to notice that

||f t || -1-δ ||Φ ′ t || η ||X ♦2 || -1-δ t -(η+z)/2 ||Φ|| ⋆,L,T ||X ♦2 || -1-δ
and then a usual argument gives

||B < (Φ ′ , X ♦2 )(t) -B < (Φ ′ , X ♦2 )(s)|| c-2d T θ |t -s| d t -(c+z)/2 ||Φ|| ⋆,L,T ||X ♦2 || -1-δ
for some θ > 0 and c, δ > 0. For the last term we use that

||Φ ♯ t -Φ ♯ s || c-2d |t -s| b t -(a+z)/2 ||Φ|| ⋆,T T b-d+a-c |t -s| d t -(c+z)/2 ||Φ|| ⋆,L,T
for c -2d < a -2b, d < b and then c < a which gives :

sup s,t∈[0,T ] s -(c+z)/2 ||Φ t -Φ s || c-2d |t -s| d T θ (1 + ||I(X ♦3 )|| d,c-2d + ||X ♦2 || -1-δ )(1 + ||Φ|| ⋆,L,T ).
Hence the following bound holds Let us focus to the term I(Φ 3 ). We notice that

||Γ(Φ) ′ || ⋆,2,L,T T θ (1 + ||I(X ♦3 )|| d,c-2d + ||X ♦2 || -1-δ )(1 + ||Φ|| ⋆,T ). ( 4 
||I(Φ 3 )(t)|| 1+δ t 0 ds(t -s) -(1+δ-η)/2 s -3/2(η+z) ||Φ|| 3 ⋆,T (||X ♦2 || -1-ρ + 1) 3
for δ, κ > 0 small enough and z < 2/3 and we obtain the existence of some θ > 0 such that

sup t∈[0,T ] t (1+δ+z)/2 ||I(Φ 3 )(t)|| 1+δ T θ ||Φ|| ⋆,T .
A similar argument gives

sup t∈[0,T ] t (1/2+γ+z)/2 ||I(Φ 3 )(t)|| 1/2+γ + sup t∈[0,T ] t (κ+z)/2 ||I(Φ 3 )(t)|| κ T θ ||Φ|| 3 ⋆,L,T (1 + ||X ♦2 || -1-ρ ) 3 .
Let us remark that ||Φ 3 t || η t -3(η+z)/2 ||Φ|| 3 ⋆,L,T (1 + ||X ♦2 || -1-ρ ) 3 and then as usual to deal with the Hölder norms we begin by writing the following decomposition

||I(Φ 3 )(t) -I(Φ 3 )(s)|| c-2d I 1 st + I 2 st with I 1 st = (P t-s -1) s 0 duP s-u Φ 3 u , and I 2 st = t s duP t-u Φ 3 u .
For I 1 is suffice to observe that A quick adaptation of the last proof gives a better result (see for example [START_REF] Gubinelli | Controlling rough paths[END_REF] and the continuity result theorem). In fact the flow is continuous with respect to the rough distribution X and with respect to the initial condition ψ (or u 0 ). for every T ≤ T ⋆ , where d is defined in Definition 4.2.12 and d is defined in Defintion 4.2.9.

Hence, using this result and combining it with the convergence Theorem (4.4.3) , we have this second corollary, where the convergence of the approximated equation is proved. for all λ > 0 with T ⋆ = inf(T, T ε ) and Φ ε = u ε -X ε ∈ D L X ε ,T .

Renormalization and construction of the rough distribution

To end the proof of existence and uniqueness for the renormalized equation, we need to prove that the O.U. process associated to the white noise can be extend to a rough distribution of X . (see Definition 4.2.9). As explained above, to define the appropriate process we proceed by regularization and renormalization. Let us take a a smooth radial function f with compact support and such that f (0) = 1. We regularize X in the following way

X ε t = k =0 f (εk) Xt (k)e k
and then we show that we can choose two divergent constants C ε 1 , C ε 2 ∈ R + and a smooth function

ϕ ε such that R ϕ ε C ε 1 ,C ε 2 X ε := X ε converge in X .
As it has been noticed in the previous Sections, without a renormalization procedure there is no finite limit for such a process. 

C ε 2 = 2 k 1 =0,k 2 =0 |f (εk 1 )| 2 |f (εk 2 )| 2 |k 1 | 2 |k 2 | 2 (|k 1 | 2 + |k 2 | 2 + |k 1,2 | 2 )
.

Notice that thanks to the definition of the Littlewood-Paley blocs, we can also choose to write C ε 2 as

C ε 2 = 2 |i-j|≤1 k 1 =0,k 2 =0 θ(2 -i |k 1,2 |)θ(2 -j |k 1,2 |) f (εk 1 )f (εk 2 ) |k 1 | 2 |k 2 | 2 (|k 1 | 2 + |k 2 | 2 + |k 1,2 | 2 )
.

Let us define the following renormalized quantities (X ε ) ♦2 := (X ε ) 2 -C ε 1 I((X ε ) ♦3 ) := I((X ε ) 3 -3C ε 1 X ε ) π 0♦ (I((X ε ) ♦2 ), (X ε ) ♦2 ) = π 0 (I((X ε ) ♦2 ), (X ε ) ♦2 ) -C ε 2 π 0♦ (I((X ε ) ♦3 ), (X ε ) ♦2 ) = π 0 (I((X ε ) ♦3 ), (X ε ) ♦2 ) -3C ε 2 X ε .

Then the following theorem holds. Furthermore there exists some stochastic processes

X ♦2 ∈ C([0, T ], C -1-δ ) I(X ♦3 ) ∈ C δ ′ ([0, T ], C 1/2-δ-2δ ′ ) π 0 (I(X ♦3 ), X) ∈ C δ ′ ([0, T ], C -δ-2δ ′ ) π 0♦ (I(X ♦2 ), X ♦2 ) -ϕ ∈ C δ ′ ([0, T ], C -δ-2δ ′ ) π 0♦ (I(X ♦3 ), X ♦2 ) -3ϕX ∈ C δ ′ ([0, T ], C -1/2-δ-2δ ′ ).
Moreover each component of the sequence X ε converges respectively to the corresponding component of the rough distribution X in the good topology, that is for all δ, δ ′ > 0 small enough, and all p > 1, X ε → X∈ L p (Ω, C δ ′ ([0, T ], C -1-δ-3δ ′ -3/2p )) (4.17) (X ε ) ♦2 → X ♦2 in L p (Ω, C δ ′ ([0, T ], C -1-δ-3δ ′ -3/2p )) (4.18)

I((X ε ) ♦3 ) → I(X ♦3 ) in L p (Ω, C δ ′ ([0, T ], C 1/2-δ-3δ ′ -3/2p )) (4.19) π 0 (I((X ε ) ♦3 ), X ε ) → π 0 (I(X ♦3 ), X) in L p (Ω, C δ ′ ([0, T ], C -δ-3δ ′ -3/2p )) (4.20) π 0♦ (I((X ε ) ♦2 ), (X ε ) ♦2 )ϕ ε → π 0♦ (I(X ♦2 ), X ♦2 )ϕ in L p (Ω, C δ ′ ([0, T ], C -δ-3δ ′ -3/2p )) (4.21) π 0♦ (I((X ε ) ♦3 ), (X ε ) ♦2 ) -3ϕ ε X → π 0♦ (I(X ♦3 ), X ♦2 ) in L p (Ω, C δ ′ ([0, T ], C -1/2-δ-3δ ′ -3/2p )) (4.22) Remark 4.4.4. Thanks to the proof below (especially in Subsection 4.4.5 and 4.4.6) we have the following expressions for ϕ ε and ϕ.

ϕ ε t = - |i-j|≤1 k 1 =0,k 2 =0 |θ(2 -i |k 12 |)||θ(2 -j |k 12 |)||f (εk 1 )f (εk 2 )| |k 1 | 2 |k 2 | 2 (|k 1 | 2 + |k 2 | 2 + |k 1 + k 2 | 2 ) exp -t(|k 1 | 2 + |k 2 | 2 + |k 1 + k 2 | 2 )
and

ϕ t = - |i-j|≤1 k 1 =0,k 2 =0 |θ(2 -i |k 12 |)||θ(2 -j |k 12 |)| |k 1 | 2 |k 2 | 2 (|k 1 | 2 + |k 2 | 2 + |k 1 + k 2 | 2 ) exp -t(|k 1 | 2 + |k 2 | 2 + |k 1 + k 2 | 2 ) .
We split the proof of this theorem according to the various components. We start by the convergence of X ε to X. Then we also give a full proof for X ♦2 . For the other components we only prove the crucial estimates.

Convergence for X

We start by an easy computation for the convergence of X Proof of (4.17). By a quick computation we have that δ(X -X ε ) st = k (f (εk) -1)δ Xst (k)e k and then

E |∆ q δ(X -X ε ) st | 2 = 2 k =0;|k|∼2 q |f (εk) -1| 2 1 -e -|k| 2 |t-s|
|k| 2 h,ρ c(ε)2 q(1+2h+ρ) |t -s| h for h, ρ > 0 small enough, and c(ε) = k =0 |k| -3-ρ |f (εk) -1| 2 . The Gaussian Hypercontractivity (see [START_REF] Janson | Gaussian Hilbert Spaces[END_REF]) gives

E ||∆ q δ(X -X ε ) st || p L p p T 3
E |∆ q δ(X -X ε ) st (x)| 2 p/2 dx ρ,h c(ε) p |t -s| hp/2 2 qp/2(2h+ρ+1) .

for p > 1. We obtain that and by the standard Garsia-Rodemich-Rumsey Lemma (see [START_REF] Garsia | A real variable lemma and the continuity of paths of some Gaussian processes[END_REF]) we finally obtain :

E ||X -X ε || C h-θ ([0,T ],C -1/2-h-ρ-3/p ) c(ε) p
for all h > θ > 0, ρ > 0 small enough and p > 1. Moreover we have X 0 = X ε 0 = 0 and then using the fact that c(ε) → ε→0 0 we obtain that lim ε→0 ||X ε -X|| L p (Ω,C δ ′ ,-1/2-δ-3/p T ) = 0 for all 0 < δ ′ < δ/3 and T > 0.

Renormalization for X 2

To prove the theorem for X ♦2 we first prove the following estimate, and we use the Garsia-Rodemich-Rumsey lemma to conclude. with C(ε, ε ′ ) → 0 when |εε ′ | → 0.

Proof. By a straighforward computation we have

Var(∆ q ((X ε t -X ε s )X ε s )) = k,k ′ ∈Z 3 θ(2 -q k)θ(2 -q k ′ ) k 12 =k;k ′ 12 =k ′ f (εk 1 )f (εk 2 )f (εk ′ 1 )f (εk ′ 2 )
× (I 1 st + I 2 st )e k e -k ′ (4. [START_REF] Da | Strong solutions to the stochastic quantization equations[END_REF] where (e k ) denotes the Fourier basis of L 2 (T 3 ) and

I 1 st = E ( Xt (k 1 ) -Xs (k 1 ))( Xt (k ′ 1 ) -Xs (k ′ 1 )) E Xs (k 2 )X s (k ′ 2 ) = 2δ k 1 =k ′ 1 δ k 2 =k ′ 2 1 -e -|k 1 | 2 |t-s| |k 1 | 2 |k 2 | 2 I 2 st = E ( Xt (k 1 ) -Xs (k 1 )) Xs (k ′ 2 ) E ( Xt (k ′ 1 ) -Xs (k ′ 1 )) Xs (k 2 ) = δ k 1 =k ′ 2 δ k ′ 1 =k 2 (1 -e -|k 1 | 2 |t-s| )(1 -e -|k 2 | 2 |t-s| ) |k 1 | 2 |k 2 | 2 .
Injecting these two identities in the equation (4.23) we obtain that Var(∆ q ((X ε t -X ε s )X ε s ))

|k|∼2 q k 12 =k 1 -e -|k 1 | 2 |t-s| |k 1 | 2 |k 2 | 2 + |k|∼2 q k 12 =k (1 -e -|k 1 | 2 |t-s| )(1 -e -|k 2 | 2 |t-s| ) |k 1 | 2 |k 2 | 2 |k|∼2 q k 12 =k 1 -e -|k 1 | 2 |t-s| |k 1 | 2 |k 2 | 2 . (4.24) 
We have

|k|∼2 q k 12 =k,|k 1 |≤|k 2 | 1 -e -|k 1 | 2 |t-s| |k 1 | 2 |k 2 | 2 |t -s| θ k∈Z 3 ;|k|∼2 q ,k 12 =k |k 1 | -2+2θ |k 2 | -2 |t -s| θ        |k|∼2 q ,k 12 =k, |k 1 |≤|k 2 | |k 1 | -2+2θ |k 2 | -2 + |k|∼2 q ,k 12 =k |k 1 |≥|k 2 | |k 1 | -2+2θ |k 2 | -2        |t -s| θ 2 2q(1+2θ)   k 1 |k 1 | -3-2θ + k 1 |k 2 | -3-4θ   < +∞
and then by the Gaussian hypercontractivity we have

E ||∆ q δ(X ε ) ♦2 st || 2p L 2p = T 3
(V ar δ(X ε ) ♦2 st (ξ)) p dξ |t -s| pθ 2 2qp(1+2θ) .

For the second assertion we see that the computation of the beginning gives Using the Besov embedding 4.2.2 combined with the standard Garsia-Rodemich-Rumsey lemma (see [START_REF] Garsia | A real variable lemma and the continuity of paths of some Gaussian processes[END_REF]) the following convergence result holds. and due to the fact that (X ε 0 ) ♦2 = 0 and (X ♦2 ) 0 = 0 we see that the sequence (X ε ) ♦2 converges in L 2p (Ω, C θ/2-ρ ([0, T ], C -1-3/(2p)-δ-3θ )) to random field noted by X ♦2 .

Var((∆ q ((X ε t -X ε s )X ε s ) -(X ε t -X ε s )X ε s )) |t -

Renormalization for I(X 3 )

As the computations are quite similar, we only prove the equivalent of the L 2 estimate in proposition (4.4.5). Furthermore we only prove it for a fixed t and not for an increment.

Proof of (4.19). By a simple computation we have that I((X ε t ) ♦3 ) = E I((X ε t ) ♦3 ) -I((X ε ′ t ) ♦3 2p 1/2-ρ-3/p → |ε ′ -ε|→0 0 and this gives the needed convergence.

4.4.4 Renormalization for π 0 (I(X ♦3 ), X)

Here, we only prove the L 2 estimate for the term I(X ♦3 )X instead of π 0 (I(X ♦3 ), X) since the computations in the two cases are essentially similar. We remark that in that case we do not need a renormalization.

Proof of (4.20). We have the following representation formula E ∆ q I((X ε ) ♦3 X ε (t) with ρ > 0 small enough; this gives the bound for I ε 1 . More precisely we have I ε 1 (t)(k) |k| -2+ρ for ρ > 0 small enough. Let us focus on the second term I ε 2 (t)(k) which is given by 

I ε 2 (t)(k) =
E ∆ q I((X ε ) ♦3 X ε (t) 2 ρ,T 2 q(1+ρ)
which is the wanted bound.

4.4.5 Renormalization for π 0 (I(X ♦2 ), X ♦2 )

We only prove the crucial estimate for a renormalization of π 0 (I((X ε ) ♦2 , (X ε ) ♦2 )). We recall that since all the other terms of the product I(X ε ) ♦2 ♦(X ε ) ♦2 are well-defined and converge to a limit with a good regularity, only this term need to be checked.

Proof of (4.21). Let us begin by giving the computation for the first term. Indeed a chaos decomposition gives -π 0 (I((X ε ) ♦2 )(t), (X ε t ) ♦2 ) = where :: denotes the usual Gaussian Wick product. Let us focus on the last term

A ε (t) = |i-j|≤1 k 1 ,k 2 |θ(2 -i k 12 )||θ(2 -j k 12 )||f (εk 1 )| 2 ||f (εk 2 )| 2 1 -e -(|k 1 | 2 +|k 2 | 2 +|k 12 | 2 )t |k 1 | 2 |k 2 | 2 (|k 1 | 2 + |k 2 | 2 + |k 12 | 2 ) = C ε 2 +I ε 3 (t)
where I ε 3 is defined below. Moreover is not difficult to see that

lim ε→0 C ε 2 = |i-j|≤1 k 1 ,k 2 θ(2 -i |k 12 |)θ(2 -j |k 12 |) |k 1 | 2 |k 2 | 2 (|k 1 | 2 + |k 2 | 2 + |k 12 | 2 )
= +∞.

To obtain the needed convergence we have to estimate the following term We notice that for the deterministic part we have the following bound

I ε 1 (t) =
I ε 3 (t) t -ρ k 1 ,k 2 ,|k 1 |≤|k 2 | 1 |k 1 | 2 |k 2 | 2 (|k 1 | 2 + |k 2 | 2 + |k 12 | 2 ) 1+ρ t -ρ k 1 ,k 2 ,|k 1 |≤|k 2 | |k 2 | -4-2ρ |k 1 | -2 ρ t -ρ
and then the dominated convergence gives for ρ > 0 Let us begin by treating the first term. As usual by symmetry we have 2 -i(2-η) t η 2 5qη and then sup ε I 1,1 (t) t η 2 5qη . Let us treat the second term I ε 1,2 (t). we have t η 2 q(2+4η) q j 2 -j(2-η) l |l| -3-η t η 2 5qη .

I ε 1,1 (t) 
I ε 1,2 (t) 
We have to treat the last term in the fourth chaos. A similar computation gives where we have used that |k 4 | ≤ |k 2 | and then we can conclude that sup ε I ε 1,3 (t) t η 2 5qη . This gives the needed bound for the term lying in the chaos of order four; in fact, we have Hence,

I ε 1,3 (t)
sup ε E ∆ q |I ε 1 (t)| 2 t η 2 5qη .
-I((X ε t ) ♦3 )(X ε t ) ♦2 -3C ε 2 X ε t = I((X ε t ) ♦3 )(X ε t ) ♦2 I (3) t + (I (3) t - Ĩ(3) t ) + ( Ĩ(3) t -3 Cε 2 (t)X ε t ) + 3(C ε 2 -Cε 2 (t))X ε t
where we remind that

C ε 2 = k 1 =0,k 2 =0 f (εk 1 )f (εk 2 ) |k 1 | 2 |k 2 | 2 (|k 1 | 2 + |k 2 | 2 + |k 1 + k 2 | 2 )
and where we have defined Hence for q ≥ -1,

E[|∆ q (I((X ε t ) ♦3 )(X ε t ) ♦2 -3C ε 2 X ε t )| 2 ] E[|∆ q (I (1) 
t )| 2 ] + E[|∆ q (I (2) 
t )| 2 ] + E[|∆ q (I (3) 
t - Ĩ(3) t )| 2 ] + E[|∆ q ( Ĩ(3) t -Cε 2 (t)X ε t )| 2 ] + |C ε 2 -Cε 2 (t)| 2 E[|∆ q X ε t | 2 ].
Terms in the first chaos. Let us first deal with the "deterministic" part, here C ε 2 -Cε 2 (t). An obvious computation gives for all δ ′ > 0, |C ε 2 -Cε 2 (t)| 2 δ ′ 1/t δ ′ . Furthermore, E[|∆ q X ε t |2] 2 q , hence for all δ ′ > 0, 

|C ε 2 -Cε 2 (t)| 2 E[|∆ q X ε t | 2 ] 2 q /t
t - Ĩ(3) t )| 2 ] k =0 θ(2 -q k) 2 f (εk) 2 |k| 2(1-η) t 0 ds|t -s| η/2 a k (|t -s|) (3) 
t -Ĩ(3) t )| 2 ] 2 q(1+2η) t η-2η ′ .

We have furthermore Hence, there exists δ > 0 and ν > 0 such that

E[|∆ q ( Ĩ(3) t -C ε 2 X ε t )| 2 ] = k =0 f (εk) 2 |k| 2 θ(2 -q k) 2 b k (t)
E[|∆ q ( Ĩ(3) t -3C ε 2 X ε t )| 2 ] t δ 2 (1+ν)q .
Terms in the third chaos. Let us define c k and by an easy computation the following holds E[|∆ q (I (2) Then Estimation of E 1,1 t . Let us rewrite it in a form better to handle

t )| 2 ] = E 2,1 t + E 2,2 t with E 2,1 t = 2 t 0 ds s 0 ds k, k i = 0 k 124 = k θ(2 -q k) 2 i f (εk i ) 2 |k i | 2 c k 1 ,k 2 (t -s)c k 1 ,k 2 (t -s)e -(|k 1 | 2 +|k 2 | 2 )|s-s|
k 124 = k θ(2 -q k) 2 1 |k 1 | 3-η ′ |k 2 | 2 |k 4 | 2 t δ k =0 θ(2 -q k) 2 |k| 1-η ′′ k 2 ,k 3 |k 2 | -3-η ′′ -η ′ 2 |k 4 | -3-η ′′ -η ′ 2 t δ 2 q(2+η
ds k = 0, k i = 0, k 124 = k |k 2 | |k 4 | θ(2 -q k) 2 |k 1 | -3+η ′ |k 2 | -3+η ′ |k 4 | 2 |t -s| -1+ η ′ -η 2 |s -s| -1+ η ′ -η 2 t δ k = 0, k i = 0, k 124 = k θ(2 -q k) 2 |k| -1+η ′′ |k 1 | -3+η ′ |k 2 | -3+η ′ |k 4 | 2 max(|k i |)
E[|∆ q I 1 t | 2 ] = E 1,1 t + E 1,2 t + E 1,3 t with E 1,1 t = 12
E 1,1 t = 12 [0,t] 2 dsds k, k = 0 k 1 + k 2 + l = k l 1 + l 2 + l 3 = l k i = 0, l i = 0 θ(2 -q k) 2 2 i=1 f (εk i ) 2 |k i | 2 3 i=1 f (εl i ) 2 |l i | 2 e -|l| 2 |t-s| e -(|l 1 | 2 +|l 2 | 2 +|l 3 | 2 )|s-s|
Thanks to the symmetries of this term, we can always assume that |k 1 | = max(|k i |) and l 1 = max(|l i |).

For l = 0, we have 2 q(2+η) t.

Let us assume that |l| = max(|l|, |k 1 |); as we have the following estimate |l 1 | -1 |l| -1 , the following bound holds

[0,t] 2 dsds k = 0 θ(2 -q k) 2 |k| -1+η k 1 k 2 = 0 l 2 , l 3 = 0 |k 1 | -4+9η/2 |k 2 | -4+9η/2 (|t -s||s -s|) -1+η |l 2 | -3-η |l 3 | -3-η t η 2 q(2+η)
The case in which |k 1 | = max(|l|, |k 1 |) is quite similar, and the conclusion holds for E 1,1 t .

Estimation of E 1,2 t . This term is symmetric in k 1 , k 2 and in k 3 , k 4 . Hence, we can assume that |k for η small enough.

Then assume that where [(ψ(2 -j •)ϕ(ε•))(D), S j-1 u] denotes the commutator. In the proof of Lemma 2.97 in [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF], it is shown that writing the Fourier multiplier as a convolution operator and applying a first order Taylor expansion and then Young's inequality yields

max{|k i |} = |k 1 | E 1,2 t t δ k k 12345 = k θ(2 -q k) 2 |k 1 | -4+2η |k 2 | -2 |k 3 | -3+η ′ |k 4 | -3+η ′ |k 5 | -2 t 0 ds s 0 ds|t -s| -1+η ′ |s -s| -1+η t η ′ k k 12345 = k θ(2 -q k) 2 |k| -1+η ′′ |k 2 | -3-η ′′ |k 3 | -7/2+(2η+η ′′ +η ′ )/2 |k 4 | -7/2+(2η+η ′′ +η ′ )/2 |k 5 | -3-η ′′ t δ 2 (2+η ′ )q
[(ψ(2 -j •)ϕ(ε•))(D), S j-1 u]∆ j v L ∞ η∈N d :|η|=1 x η F -1 (ψ(2 -j •)ϕ(ε•)) L 1 ∂ η S j-1 u L ∞ ∆ j v L ∞ . (4.25) 
Now F -1 (f (2 -j •)g(ε•)) = 2 jd F -1 (f g(ε2 j •))(2 j •) for every f, g, and thus we have for every multi-index η of order one

x η F -1 (ψ(2 -j •)ϕ(ε•)) L 1 ≤ 2 -j F -1 ((∂ η ψ)(2 -j •)ϕ(ε•)) L 1 + ε F -1 (ψ(2 -j •)∂ η ϕ(ε•)) L 1 = 2 -j F -1 ((∂ η ψ)ϕ(ε2 j •)) L 1 + ε F -1 (ψ∂ η ϕ(ε2 j •)) L 1 2 -j (1 + | • |) 2d F -1 ((∂ η ψ)ϕ(ε2 j •)) L ∞ + ε (1 + | • |) 2d F -1 (ψ∂ η ϕ(ε2 j •)) L ∞ = 2 -j F -1 ((1 -∆) d ((∂ η ψ)ϕ(ε2 j •))) L ∞ + ε F -1 ((1 -∆) d (ψ∂ η ϕ(ε2 j •)) L ∞ 2 -j (1 -∆) d ((∂ η ψ)ϕ(ε2 j •)) L ∞ + ε (1 -∆) d (ψ∂ η ϕ(ε2 j •)) L ∞ , (4.26) 
where the last step follows because ψ has compact support. For j satisfying ε2 j ≥ 1 we obtain

x η F -1 (ϕ(ε•)ψ(2 -j •)) L 1 (ε + 2 -j )(ε2 j ) 2d η:|η|≤2d+1 ∂ η ϕ(ε2 j •) L ∞ (supp(ψ)) , (4.27) 
where we used that ψ and all its partial derivatives are bounded, and where L ∞ (supp(ψ)) means that the supremum is taken over the values of ∂ η ϕ(ε2 j •) restricted to supp(ψ). Now ϕ is a Schwartz function, and therefore it decays faster than any polynomial. Hence, there exists a ball B δ such that for all x / ∈ B δ and all |η| ≤ 2d + 1 we have

|∂ η ϕ(x)| ≤ |x| -2d-1-δ . (4.28) 
Let j 0 ∈ N be minimal such that 2 j 0 εA ∩ B δ = ∅ and ε2 j 0 ≥ 1. Then the combination of (4.25), (4.27), and (4.28) shows for all j ≥ j 0 that

[(ψ(2 -j •)ϕ(ε•))(D), S j-1 u]∆ j v L ∞ (ε + 2 -j )(ε2 j ) 2d η:|η|≤2d+1 (∂ η ϕ)(ε2 j •) L ∞ (supp(ψ)) 2 j(1-α) u α 2 -jβ v β
(ε + 2 -j )(ε2 j ) 2d (ε2 j ) -2d-1-δ 2 j(1-α-β) u α v β

(1 + (ε2 j ) -1 )ε -δ 2 -j(α+β+δ) u α v β .

Here we used that α < 1 in order to obtain ∂ η S j-1 u L ∞ 2 j(1-α) u L ∞ . Since ε2 j ≥ 1, we have shown the desired estimate for j ≥ j 0 . On the other side Lemma 2.97 in [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] implies for every j ≥ -1 that [ϕ(εD), S j-1 u]∆ j v L ∞ ε max

η∈N d :|η|=1 ∂ η S j-1 u L ∞ ∆ j v L ∞ ε2 j(1-α-β) u α v β .

ϕ

  (x st ) = ϕ(x 00 ) + ϕ(x 0t ) + ϕ(x s0 ) + x uv )d 1 x uv d 2 x uv (1.3) pour s, t ∈ [0, 1], avec x ∈ C 2 ([0, 1] 2 , R) et une fonction ϕ ∈ C 2 (R).Une remarque importante est la présence du terme quadratique en x dans le membre de droite de l'équation (1.3) qui est spécifique au cas multidimensionnel.

f

  (t, x, ω)W (ds, dx)

  n u ) ⊗ dx n u = f (x n s ) ⊗ δx n st + f ′ (x n s ) n u + r navec cette fois-ci δx n st = x n tx n s et ⊗ désigne le produit tensoriel sur R k . Alors la théorie des rough path a un paramètre nous dit que si (δx n , dx n dx n ) converge vers un couple (δx, dxdx) dans le sens oùsup s,t∈[0,T ] |δ(x nx) st | |t -s| γ + sup s,t∈[0,T ] a ⊗ dx u | |t -s| 2γ → 0 alors il existe r tel que sup s,t∈[0,T ] |r n str st | |t -s| 3γ → 0 et donc on construit l'intégrale rugueuse par t s f (x u ) ⊗ dx u = f (x s )δx st + f ′ (x st ) dx u + r st et l'objet limite (δx,

Théoreme 1 . 3 . 10 .

 1310 Pour tout ρ > 3/4 et α > -ρ l'équation de KdV sur le Tore avec modulation w admet une solution locale dans H α (T), elle est globale si α ≥ -3/2 et α > -ρ/(3 -2γ). De plus on a unicité dans l'espace D w (H α ) ⊆ C(R + ; H α (T)) introduit dans la définition. 1.3.9. Dans le cas non périodique l'équation de KdV avec modulation w admet une solution locale dans H α (R) pour α >min(ρ, 3/4). La solution est globale si α >min(ρ/(3 -2γ), 3/4) et l'unicité a lieu dans D w (H α ).

Notation 1 . 4 . 1 .

 141 Soit d ∈ N, on note par S(R d ) l'espace des fonctions test de Schwartz et S ′ (R d ) celui des distributions tempérés. D la dérivé sur R d et pour a = (a 1 , a 2 , . . . ., a d ) ∈ N d un multi-indice on introduit aussi la notation suivante

Lemma 1 . 4 . 6 .

 146 Soit ξ un bruit blanc sur T d alors presque sûrement pour tout ε > 0 on a que ξ ∈ C -d/2-ε (T d ). Démonstration. Rappelons que ξ = k∈Z ξ(e k )e k où (e k ) étant la base de Fourier de L 2 (T d ) et où l'égalité précédente a lieu dans L 2 (Ω, S ′ (T d )). En remarquant que (ξ(e k )) k est une famille i.i.d de variable aléatoire Gaussienne N (0, 1), on obtient alors par un simple calcul que pour tout a ∈ T d

2. 3 . 3

 33 Splitting and other operationsEach of the vector spaces CC k,m (V ) is naturally isomorphic to either C k (C m (V )) or to C m (C k (V )): consider each k, m-biincrement either as a k-increment in the first direction with values in m-increments in the other direction or vice-versa. The multiplication in CC * , * is compatible with these isomorphism.

  irregular for all γ ∈ (0, 1). Proof. Integration by parts gives iaΦ w st (a) = e iawte iaws w ′ t + t s (e iawσe iaws ) w ′′ σ (w ′ σ ) 2 dσ and the result follow immediately from the hypothesis.

Theorem 3 . 1 . 6 .

 316 For any ρ > 3/4 and α > -ρ the 1d periodic modulated KdV equation has a local solution in H α (T). The solution is global if α ≥ -3/2 and α > -ρ/(3 -2γ). Uniqueness holds in the space D w (H α ) ⊆ C(R + ; H α (T)) introduced in Def. 3.2.2 below. In the non-periodic setting the 1d modulated KdV equation has local solutions in H α (R) for α >min(ρ, 3/4). The solution is global if α >min(ρ/(3 -2γ), 3/4). Uniqueness holds in the same space D w (H α ).

Theorem 3 . 1 . 7 .

 317 Assume that ρ > 1/2. Then the modulated cubic NLS equation on T and R has a global solution in H α for any α ≥ 0. Uniqueness holds in D w (H α ) and the flow is locally Lipschitz continuous in D w (H α ).

118 3 . 3 .

 33 THE NONLINEAR YOUNG INTEGRAL Lemma 3.2.3. Let ϕ ∈ D w and let (ϕ n ) n≥0 a sequence of elements of ϕ ∈ D w which are smooth and compactly supported in space and such that ϕ n → ϕ in D w . Then t 0

and ρ > 3 / 4

 34 small enough. Now for the term which contain the low frequency we use the inequality |Φ w st (a)| ≤ |t -s| and then :

Proposition 3 . 6 . 1 .

 361 Let u the local solution of the periodic modulated KdV equation with initial data φ ∈ L 2 (T) and v t = (U w t ) -1 u t for t ∈ [0, T ] where T = T (||φ|| L 2 ) is the life-time of the local solution then we have ||v t || 2 = ||φ|| 2 for all t ∈ [0, T ] and we can extend the local solution into a global one.

0 X 3 0

 03 and the map Γ by :Γ(ψ) := φ + t dσ (ψ σ ) for ψ ∈ C 1/2 ([0, T ], H α ). By a simple computation we see that||Γ(ψ)|| 0 γ,w ||φ|| 2 L + T γ-1/2 ||ψ||Now if 0 < T ≤ T 1 is sufficiently small then the equation r = ||φ|| L 2 + T γ-1/2 r 3 admits a positive solution r ⋆ > 0 and the closed ball B r ⋆ =: {ψ ∈ C 1/2 ([0, T ], L 2 ); ||ψ|| 0 ≤ r ⋆ T } is invariant by Γ. Moreover we have that

where FX 1

 1 st (ψ 1 , ψ 2 ) = ixI |x|≥1 |y|,|x-y|≥1/2 ψ1 (y) ψ2 (xy)Φ w st (xy(xy))dy FX 2 st (ψ 1 , ψ 2 ) = ixI |x|≥1 |y|<1/2ψ1 (y) ψ2 (xy)Φ w st (xy(xy))dyFX 3 st (ψ 1 , ψ 2 ) = ixI |x|<1 |y|≥2 ψ1(y) ψ2 (xy)Φ w st (xy(xy))dy and FX 4 st (ψ 1 , ψ 2 ) = ixI |x|<1 |y|<2 ψ1 (y) ψ2 (xy)Φ w st (xy(xy))dy

, 2 N 4 |k| 2 -

 242 then by the mean value theorem we have |mN (k)m N (k 1 )| |k 2 |/N and if we interpolate this bound with the trivial bound |m N (k)m N (k 1 )| 1 we obtain |m N (k)m N (k 1 )| N -2α(1-θ)-2θ |k| 2α(1-θ) |k 2 | 2θ . If ρ ∈ (3/4, 3/2) we can choose θ = ρ -1/2ε ∈ [0, 1] for ε > 0 small enough to obtain h λC w,T |t -s| 2γ λ 5-6(γ+ρ) N 2αθ-2θ sup |k|≥N/4ρ-2αθ

s 4 )

 4 

/ 2 ε

 2 ||f || Hs and then we have||f || L p (R) ||f || L 1 (R) + ||f || Hs now if we put f λ (x) = f (λx) in this inequality we can see that ||f || L p (R) λ -1+1/p ||f || L 1 (R) + λ ε/2 ||f || Hs then to have our result is suffice to take λ = (||f || -1 L 1 (R) ||f || Hs ) 2p 2-(2+ε)pProof of Proposition 3.1.9. Starting with Lemma 3.8.2 and taking α = 1 and ρ > 1 in Prop. 3.8.1 we obtain :

  L 2 (R) ds p when p ∈[START_REF] Alòs | Stochastic calculus with respect to Gaussian processes[END_REF] 5]. Now in the case p ∈ [2, 4) we obtain the same result if we use the Lemma 3.8.2 and take α = 1-2 p + ε ∈ (0, 1/2], ρ > α + 1 2 in Proposition 3.8.1.To have all the ingredients needed for the fixed point argument we have to estimates the action of the operator U w on the initial condition.Proposition 3.8.3. Let T > 0, p = µ + 1 ∈ (4, 5], ρ > min(32 -2 p ) then then there exist constant C p and γ ⋆ (p) > 0 such that the following inequality holds :

  r and then it has a unique fixed point in this ball. The proof of uniqueness is standard. Now the fact that u ∈ C([0, T 2 ], L 2 (R)) is simply given by the inequality||u tu s || L 2 (R) ≤ ||(U w t -U w s )u 0 || + t s ||u σ || p L 2p (R) dσ.Now we will focus on the proof of the conservation law in the quintic case (i.e.: p = 5), for simplicity. For the other value of p the argument is similar. Let now M ∈ N. By the same argument used in the beginning of the proof we can construct a local solution u M ∈ L 5 ([0, T ], L 10 (R)) ∩ C([0, T ], L 2 (R)) of the regularized equation. More precisely we have that

  s ξ and where R ϕ a,b is given in the equation (4.6).

Proposition 4 . 2 . 3 .

 423 Let α, β ∈ R -||π < (f, g)|| β ||f || ∞ ||g|| β for f ∈ L ∞ and g ∈ C β -||π > (f, g)|| α+β ||f || α ||g|| β for β < 0, f ∈ C α and g ∈ C β -||π 0 (f, g)|| α+β ||f || α ||g|| β for α + β > 0 and f ∈ C α and g ∈ C β

||I 1 st 3 T 1 -( 1 +

 1311 || c-2d |t -s| d s 0 du(su) -(c-η)/2 u -3/2(z+η) ||Φ|| 3 ⋆,T (1 + ||X ♦2 || -1-ρ ) (c-η)-3/2(z+η) |t -s| d ||Φ|| 3 ⋆,L,T (1 + ||X ♦2 || -1-ρ ) 3for η, c > 0 small enough, z < 2/3. To obtain the second bound we use the Hölder inequality and then||I 2 st || c-2d |t -s| d ||X ♦2 || -1-ρ ) 3 |t -s| d T 1-(c-2η+3z)/2 ||Φ|| 3 ⋆,T (1 + ||X ♦2 || -1-ρ ) 3 for c, η, d > 0 smallenough and z < 2/3. We can conclude that there exists θ > 0 such that sup s,ts (z+c)/2 ||I(Φ 3 )(t) -I(Φ 3 )(s)|| c-2d |t -s| d T θ ||Φ|| 3 ⋆,T (1 + ||X ♦2 || -1-ρ ) 3and then we obtain all needed bounds for the remaining term and we can state that||Γ(Φ) ♯ || ⋆,2,L,T (T θ ||Φ|| ⋆,T + 1) 3 (1 + ||X|| T,K + ||u 0 || -z ) 3for some K ∈ [0, 1] 4 depending on L and this gives the first bound (4.13). The second estimate (4.14) is obtained by the same manner. Due to the bound (4.13) for T 1 > T > 0 small enough, there exists R T > 0 such that B R T := Φ ∈ D L X,T ; ||Φ|| ⋆,T ≤ R T is invariant by the map Γ. The bound (4.14) tells us that Γ is a contraction on B R T 2 for 0 < T 2 < T 1 small enough. Then by the usual fixed point theorem there exists Φ ∈ D L X,T 2 such that Γ(Φ) = Φ. The uniqueness is obtained by a standard argument.

Proposition 4 . 3 . 2 .

 432 Let X and Y two rough distributions such that||X|| T,K , ||Y || T,K ≤ R, z ∈ (-2/3, -1/2), u 0 X and u 0 Y two initial conditions and Φ X ∈ D L T X ,X and Φ Y ∈ D L T Y ,Ythe two unique solutions of the equations associating to X and Y, and T X and T Y there respective living times. For T ⋆ = inf T X , T Y the following bound hold||Φ X -Φ Y || C([0,T ],C -z (T 3 )) d T,L (Φ X , Φ Y ) R d T,K (X, Y) + u 0 Xu 0 Y -z

Corollary 4 . 3 . 3 .

 433 Let z ∈ (1/2, 2/3), u 0 ∈ C -z and denote u ε the unique solutions (with life times T ε ) of the equation∂ t u ε = ∆u ε -(u ε ) 3 + C ε u ε + ξ εwhere ξ ε is a mollification of the space-time white noise ξ andC ε = 3(C ε 1 -3C ε 2 ) with (C ε 1 )and C ε 2 are the constant given by the Definition 4.4.2. Let us introduce u = X +Φ where Φ is the local solution with life-time T > 0 for the fixed point equation given in the Theorem 4.3.1. Then we have the following convergence result P(d T ⋆ ,L (Φ ε , Φ) > λ) -→ ε→0 0

Notation 4 . 4 . 1 .

 441 Let k 1 , ..., k n ∈ Z 3 we denote by k 1,...,n = n i=1 k i , and for a function f we denote by δf the increment of the function given by δfst = f tf s Definition 4.4.2. Let C ε 1 = E (X ε ) 2 and

Theorem 4 . 4 . 3 .

 443 For T > 0, there exists a deterministic sequence ϕ ε : [0, T ] → R, a deterministic distribution ϕ : [0, T ] → R such that for all δ, δ ′ , ν > 0 small enough we haveϕ ν,ρ,T = sup t t ν |ϕ t | + sup t =s s ν |ϕ tϕ s | |t -s| ρ < +∞and the sequence ϕ ε converges to ϕ for that norm, that isϕ εϕ 1,⋆,T → 0.

E

  ||δ(X -X ε ) st || p B -1/2-ρ-h p,p c(ε) p/2 |t -s| hp/2Using the Besov embedding (Proposition 4.2.2) we getE ||δ(X -X ε ) st || p C -1/2-ρ-h-3/p c(ε) p/2 |t -s| hp/2

Proposition 4 . 4 . 5 .E

 445 Let p > 1, θ > 0 small enough, then the following bound holdsup ε ||∆ q δ(X ε ) ♦2 st || 2p L 2p p,θ |t -s| pθ 2 2qp(1+2θ) and E ||∆ q δ(X ε ) ♦2 stδ(X ε ′ ) ♦2 st )|| 2p L 2p p,θ C(ε, ε ′ ) p |t -s| 2pθ 2 2qp(1+θ)

s| θ 2

 2 2q(1+3θ) C(ε, ε ′ ) whereC(ε, ε ′ ) = k 12 =k (|f (εk 1 )| 2 |f (εk 2 )| 2 -|f (ε ′ k 1 )| 2 |f (ε ′ k 2 )| 2 )|k| -3-θ |k 1 | -3-2θ → |ε-ε ′ |→0 0by the dominated convergence theorem. Once again the Gaussian hypercontractivity gives us the needed bound.

Proposition 4 . 4 . 6 .

 446 Let θ, δ, ρ > 0 small enough such that ρ < θ/2 and p > 1 then the following bound holdE ||(X ε ) ♦2 -(X ε ′ ) ♦2 || 2p C θ/2-ρ ([0,T ],C -1-3/(2p)-δ-2θ ) θ,p,δ C(ε, ε ′ ) p

k∈Z 3 t 0 F 3 |f (εk i )| 2 |k i | 2 t 0 ds s 0 dσe -(|k 1 | 2 2 |k 2 |E

 0301222 ((X ε s ) ♦3 )(k)e -|k| 2 |t-s| ds e k and thenE ∆ q I((X ε t ) ♦3 ) |k 1 | 2 +|k 2 | 2 +|k 3 | 2 )|s-σ|-|k| 2 (|t-s|+|t-σ|) = k |θ(2 -q k)| 2 Ξ ε,1 (k),whereΞ ε,1 (k) = k 123 =k,k i =0 i=1,..,+|k 2 | 2 +|k 3 | 2 )|s-σ|-|k| 2 (|t-s|+|t-σ) k 123 =k max i=1,..3 |k i |=|k 1 | 1 |k 1 | 2 |k 2 | 2 |k 3 | 2 |k 1 | 2 +|k 2 | 2 +|k 3 | 2 )|s-σ|-|k| 2 |t-s| T 1 |k| 2-ρ k 123 =k max i=1,..3 |k i |=|k 1 | 1 |k 1 | 4-ρ |k 2 | 2 |k 3 | 2 T 1 |k| 4-4ρ ( k -3-ρ ) 2 . |k 1 | 2 +|k 2 | 2 +|k 3 | 2 )|s-σ|-|k| 2 (|t-s|+|t-σ) -1+ρ/2 |s-σ| -1+ρ/2for ρ > 0 small enough. Using again the Gaussian hypercontractivity we haveE ∆ q I((X ε t ) ||I((X ε t ) ♦3 )|| 1/2-ρ-3/p < +∞.The same computation gives sup t∈[0,T ]

2 =k 2 k| 2 t 0 ds s 0 dσe 2 k 2 2 k 1 4 |k 2 |

 220222142 |θ(2 -q k)| 2 (6I ε 1 (t)(k) + 18I ε 2 (t)(k) + 18I ε 3 (t)(k))withI ε 1 (t)(k) = 1234 =k i=1,..,4 |f (εk i )| 2 |k i -|k 123 | 2 (|t-s|+|t-σ|)-(|k 1 | 2 +|k 2 | 2 +|k 3 | 2 )|s-σ| k 1234 =k max i=1,2,3 |k i |=|k 1 | 1 |k 1 | 2 |k 2 | 2 |k 3 | 2 |k 4 | 2 t 0 ds s 0 dσe -|k 123 | 2 (|t-s|+|t-σ|)-(|k 1 | 2 +|k 2 | 2 +|k 3 | 2 )|s-σ| = I ε 11 (t)(k) + I ε 12 (t)(k) and I ε 11 (t)(k) k 1234 =k max i=1,2,3 |k i |=|k 1 | |k 123 |≤|k 4 | 1 |k 1 | 2 |k 2 | 2 |k 3 | 2 |k 4 | 2 123 | 2 (|t-s|+|t-σ|)-(|k 1 | 2 +|k 2 | 2 +|k 3 | 2 )|s-σ| 1 |k| ,k 3 ,k 1 ,max |k i |=|k 1 | 1 |k 1 | 4-ρ |k 2 | 2 |k 3 | 2 |k 123 | 2-ρ 1 |k| ,k 2 ,k 3 1 |k 2 | 3+ρ |k 3 | 3+ρ |k 123 | 3+ρ |k| -2181 CHAPTER 4. STOCHASTIC QUANTIZATION IN T 3 AND PARACONTROLLED . . . for ρ > 0 small enough. Hence we obtain the needed result for I ε 1 . We can treat the second term by a similar computation, indeedI ε 12 (t)(k) k 1234 =k max i=1,2,3 |k i |=|k 1 | |k 123 |≥|k 4 | 1 |k 1 | 2 |k 2 | 2 |k 3 | 2 |k 4 | 2 123 | 2 (|t-s|+|t-σ|)-(|k 1 | 2 +|k 2 | 2 +|k 3 | 2 )|s-σ| |k| -2+ρ k 2 ,k 3 ,k -3-ρ |k 2 | -3-ρ |k 3 | -3-ρ |k| -2+ρ

,k 4 1

 4 |k 1 | 2 +|k 2 | 2 )|s-σ|-(|k-k 3 | 2 +|k 3 | 2 )|t-s|-(|k 4 | 2 +|k-k 4 | 2 )|t-σ| k 12 =k max i=1,2 |k i |=|k 1 | k 3 |k 1 | 1-ρ |k 2 | 3+ρ |k 3 | 2 |k 4 | 2 t 0 ds t 0 dσe -(|k-k 3 | 2 +|k 3 | 2 )|t-s|-(|k 4 | 2 +|k-k 4 | 2 )|t-σ| |k 3 | 2 +|k-k 3 | 2 )|t-s| |k 1 | 2 +|k 2 | 2 )|s-σ|-(|k+k 3 | 2 +|k 3 | 2 )|t-s|-(|k 4 | 2 +|k+k 4 | 2 )|t-σ|

2 k∈Z 3 4 l=1|f (εk l )| 2 |k l | 2 × t 0 t 0 dsdσe -|k12| 2 2 k∈Z 3 4 l=1|f (εk l )| 2 |k l | 2 × t 0 t 0 dsdσe -(|k12| 2 +|k1| 2 2 k∈Z 3

 23420223420223 sup t∈[0,T ] t ρ |I ε 3 (t) -I 3 (t)| → ε→0 0 with I 3 (t) = |i-j|≤1 k 1 ,k 2 θ(2 -i |k 12 |)θ(2 -j |k 12 |) e -(|k 1 | 2 +|k 2 | 2 +|k 12 | 2 )t |k 1 | 2 |k 2 | 2 (|k 1 | 2 + |k 2 | 2 + |k 12 | 2 )and this gives the bound for the deterministic part. Let us focus on I ε 1 (t) and I ε 2 (t). A simple computation givesE ∆ q |I ε 1 (t)| 2 = i∼j∼i ′ ∼j ′ k1234=k θ(2 -i |k 12 |)θ(2 -j |k 34 |)θ(2 -i ′ |k 12 |)θ(2 -j ′ |k 34 |)θ(2 -q |k|) 2 (|t-s|+|t-σ|)-(|k1| 2 +|k2| 2 )|s-σ| + i∼j∼i ′ ∼j ′ k1234=k θ(2 -i |k 12 |)θ(2 -j |k 34 |)θ(2 -j ′ |k 12 |)θ(2 -i ′ |k 34 |)θ(2 -q |k|) 2 +|k2| 2 )|t-s|-(|k34| 2 +|k3| 2 +|k4| 2 )|t-σ| + i∼j;i ′ ∼j ′ k1234=k θ(2 -i |k 12 |)θ(2 -j |k 34 |)θ(2 -i ′ |k 14 |)θ(2 -j ′ |k 23 |)θ(2 -q |k|) 2 4 l=1 |f (εk l )| 2 |k l | 2 |k12| 2 +|k2| 2 )|t-s|-(|k14| 2 +|k4| 2 )|t-σ|-|k1| 2 |s-σ|

k∈Z 3 q i k 1234 =k |k 1 1 (t) k∈Z 3 |k|

 113 |≤|k 2 |,|k 3 |≤|k 4 | max l=1,...,4 |k l |=|k 2 | θ(2 -q |k|)θ(2 -i |k 12 |) 12 | 2 (|t-s|+|t-σ|)-|k 2 | 2 |s-σ| + k∈Z 3 q i k 1234 =k |k 1 |≤|k 2 |,|k 3 |≤|k 4 | max l=1,...,4 |k l |=|k 4 | θ(2 -q |k|)θ(2 -i |k 12 |) 12 | 2 (|t-s|+|t-σ|)-|k 2 | 2 |s-σ| ≡ A ε 1 (t) + A ε 2 (t). We notice that if max l=1,...,4 |k l | = |k 1 | then |k| |k 1 |, then A ε -1+2η θ(2 -q |k|) k 1234 =k |k 1 |≤|k 2 |,|k 3 |≤|k 4 | max l=1,...,4 |k l |=|k 2 | |k 1 | -3-η/3 |k 3 | -3-η/3 |k 4 | -3-η/3 q i 2 -i(2-η) t η 2 3qηwhere we have usedt 0 t 0 dsdσe -|k 12 | 2 (|t-s|+|s-σ|)-|k 2 | 2 |s-σ| t η 1 |k 2 | 2-η |k 12 | 2-η .By a similar argument we haveA ε 2 (t) k∈Z 3 |k| -1+4η θ(2 -q |k|) k 1234 =k |k 1 |≤|k 2 |,|k 3 |≤|k 4 | max l=1,...,4 |k l |=|k 4 | |k 1 | -3-η |k 2 | -3-η |k 3 | -3-η q i

k∈Z 3

 3 q i∼j k1234=k |k1|≤|k2|,|k3|≤|k4| max l=1,...,4 |k l |=|k2| θ(2 -q |k|)θ(2 -i |k 12 |)θ(2 -j |k 34 |) |k12| 2 +|k1| 2 +|k2| 2 )|t-s|-(|k34| 2 +|k3| 2 +|k4| 2 )|s-σ| k∈Z 3 max l=1,...4 |k l |=|k2| θ(2 -q |k|)θ(2 -i |k 12 |)θ(2 -j |k 34 |) 1 |k 1 | 2 |k 2 | 3+3η |k 3 | 2 |k 4 | 2 |k 34 | 2-η

k∈Z 3 q 2 × t 0 t 0 dsdσe -(|k12| 2 3 θ( 2

 320232 i∼j;q i ′ ∼j ′ k1234=k θ(2 -i |k 12 |)θ(2 -j |k 34 |)θ(2 -i ′ |k 14 |)θ(2 -j ′ |k 23 |)θ(2 -q |k|) 2 4 l=1 |f (εk l )| 2 |k l | +|k2| 2 )|t-s|-(|k14| 2 +|k4| 2 )|t-σ| k∈Z 3 q i ′ ∼j ′ k1234=k |k4|≤|k2|,|k1|≤|k3| θ(2 -i |k 12 |)θ(2 -j |k 34 |)θ(2 -i ′ |k 14 |θ(2 -q |k|) 2 |t-s|-|k14| 2 |t-σ| t η 2 -q(2-η) k∈Z -q |k|) k1234=k |k4|≤|k2|,|k1|≤|k3| 1 |k 1 | 2 |k 2 | 4-η |k 3 | 2 |k 4 | 2 .We still need to bound the sumk1234=k |k4|≤|k2|,|k1|≤|k3| 1 |k 1 | 2 |k 2 | 4-η |k 3 | 2 |k 4 | 2for that we notice that when |k 3 | ≤ |k 2 | we can use the bound1 |k 1 | 2 |k 2 | 4-η |k 3 | 2 |k 4 | 2 |k| -1+4η |k 1 | -3-η |k 3 | -3-η |k 4 | -3-ηand in the case |k 2 | ≤ |k 3 | we can use that1 |k 1 | 2 |k 2 | 4-η |k 3 | 2 |k 4 | 2 |k| -1+4η |k 1 | -2 |k 2 | -4+η |k 3 | -1+4η |k 4 | -2 |k| -1+4η |k 1 | -3-η |k 2 | -3-η |k 4 | -3-η

dse -|k 1 dse -|k 1 1 =0,k 2

 1112 +k 2 +k 3 | 2 |t-s| : Xε s (k 1 ) Xε s (k 2 ) Xε s (k 3 ) Xε t (k 4 ) Xε t (k 5 ) : +k 2 +k 3 | 2 |t-s| e -|k 3 | 2 |t-s| |k 3 | 2 f (εk 3 ) 2 : Xε s (k 1 ) Xε s (k 2 ) Xε t (k 4 ) : =0 f (εk 1 ) 2 f (εk 2 ) 2 |k 1 | 2 |k 2 | 2 e -(|k+k 1 +k 2 | 2 +|k 1 | 2 +|k 2 | 2 )|t-s| Xε s (k)

1 1

 11 =0,k 2 =0 f (εk 1 ) 2 f (εk 2 ) 2 |k 1 | 2 |k 2 | 2 e -(|k+k 1 +k 2 | 2 +|k 1 | 2 +|k 2 | 2 )|t-s| Xε t (k) =0,k 2 =0 f (εk 1 ) 2 f (εk 2 ) 2 |k 1 | 2 |k 2 | 2 e -(|k 1 +k 2 | 2 +|k 1 | 2 +|k 2 | 2 )|t-s| .

2 and t 0 ds|t 2 k 1 = 0 k 2 = 0 |k 1 |

 202101 -s| η/2 a k (|t -s|) = k 1 = 0 k 2 = 0 t 0 ds|t -s| η/2 e -(|k+k 1 +k 2 | 2 +|k 1 | 2 +|k 2 | 2 )|t-s| f (εk 1 ) 2 f (εk 1 ) 2 |k 1 | 2 |k 2 | -3-η ′ |k 2 | -3-η ′ t 0 ds|t -s| -1+(η/2-η ′ ) t η/2-η ′ for η/2η ′ > 0. Then we have E[|∆ q (I

f (εk 1 )0 k 1 = 0 k 2 = 0 |k 1 |

 10201 2 f (εk 2 ) 2 |k 1 | 2 |k 2 | 2 e -(|k 1 | 2 +|k 2 | 2 )|t-s| {e -|k 1 +k 2 | 2 |t-s|e -|k 1 +k 2 +k| 2 |t-s| }. Using that |e -|k 1 +k 2 +k| 2 |t-s|e -|k 1 +k 2 | 2 |t-s| | |t -s| η |k| η (|k| + max{|k 1 |, |k 2 |}) ηwe have the following boundb k (t) t -3-η ′ |k 2 | -3-η ′′ |k| η (|k| + max{|k 1 |, |k 2 |}) η |t -s| -1+(η-η ′ /2-η ′′ /2) .We can suppose thatmax{|k 1 |, |k 2 |} = |k 1 | as the expression is symmetric in k 1 , k 2 , then if |k| > |k 1 |, b k (t) t (η-η ′ /2-η ′′ /2) |k| 2η for ηη ′ /2η ′′ /2 > 0. Furthermore if |k 1 | > |k|, and η ′ > η then b k (t) t (η-η ′ /2-η ′′ /2) |k| η k 1 = 0 k 2 = 0 |k 1 | -3-(η ′ -η) |k 2 | -3-η ′′ t (η-η ′ /2-η ′′ /2) |k| η .

1 ,k 2 2 |k 3 |dsc k 1 3 f (εk 2 ) 2 |k 2 | 2 δ k 3 =-k 3 f

 122313233 (ts) = k 3 =0 f (εk 3 ) 2 e -(|k 1 +k 2 +k 3 | 2 +|k 3 | 2 )|t-s| such that I ,k 2 (ts) : Xs (k 1 ) Xs (k 2 ) Xε t (k 4 ) :But for all suitable variables we haveE[: Xε s (k 1 ) Xε s (k 2 ) Xε t (k 4 ) :: Xε s (k 1 ) Xε s (k 2 ) Xε t (k 4 ) :] = 2δ k 1 =-k 1 f (εk 1 ) 2 |k 1 | 2 δ k 2 =-k (εk 3 ) 2 |k 3 | 2 e -(|k 1 | 2 +|k 2 | 2 )|s-s| +2δ k 1 =-k 1 f (εk 1 ) 2 |k 1 | 2 δ k 2 =-k 3 f (εk 2 ) 2 |k 2 | 2 δ k 3 =-k 2 f (εk 3 ) 2 |k 3 | 2 e -|k 1 | 2 |s-s| e -(|k 3 | 2 )|t-s| e -(|k 2 | 2 )|t-s| ×e -|k 1 | 2 |s-s| e -(|k 3 | 2 )|t-s|

2 if (εk i ) 2 |k i | 2 × 2

 222 k i = 0, k 124 = k θ(2 -q k) c k 1 ,k 2 (ts)c k 1 ,k 4 (ts)e -|k 1 | 2 |s-s| e -|k 4 | 2 |t-s| e -|k 2 | 2 |t-s| . In E 2,1 t , we have a symmetry in k 1 , k 2 , hence we can assume that |k 1 | ≥ |k 2 |. Furthermore, we have c k 1 ,k 2 (ts) |t -s| -1+η 2 and c k 1 ,k 2 (ts) |s -s| -1+η 2 If we assume that |k 1 | ≥ |k 4 | and that η ′ /2η > 0, then E -1+η 2 |s -s| -1+(η ′ /2-η) k = 0, k i = 0,

+72 5 i=1f 5 i=1f

 55 (εk i ) 2 |k i | 2 δ k1=-k1 δ k2=-k2 δ k3=-k4 δ k4=-k3 δ k5=-k5 e -|s-s|(|k1| 2 +|k2| 2 )-|t-s||k3| 2 -|t-s||k4| 2 + +36 (εk i ) 2 |k i | 2 δ k1=-k1 δ k2=-k4 δ k3=-k5 δ k4=-k3 δ k5=-k2 e -|s-s||k1| 2 -|t-s|(|k2| 2 +|k3| 2 )-|t-s|(|k4| 2 +|k5| 2 )

[0,t] 2 dsdsθ( 2 -q k) 2 k k 12345 = k 5 i=1fE 1 |k i | 2 ×f (εk i ) 2 |k i | 2 ×

 2225122 (εk i ) 2 |k i | 2 e -|k 123 | 2 |t-s| e -(|k 1 | 2 +|k 2 | 2 +|k 3 | 2 )|s-s| e -(|k 123 | 2 +|k 3 | 2 )|t-s| e -(|k 124 | 2 +|k 4 | 2 )|t-s| e -|s-s|(|k 1 | 2 +|k 2 | 2 ) e -(|k 123 | 2 +|k 2 | 2 +|k 3 | 2 )|t-s| e -(|k 145 | 2 +|k 5 | 2 +|k 4 | 2 )|t-s| e -|s-s||k 1 | 2 id est E 1,3 t = e -(|k 123 | 2 +|k 2 | 2 +|k 3 | 2 )|t-s| e -(|k 145 | 2 +|k 5 | 2 +|k 4 | 2 )|t-s| e -|s-s||k 1 | 2

[0,t] 2 dsdsk, k = 0 k 1 + 2 i=1f (εk i ) 2 |k i | 2 3 i=1f

 2123 k 2 = k l 1 + l 2 + l 3 = 0 k i = 0, l i = 0 θ(2 -q k) 2 (εl i ) 2 |l i | 2 e -(|l 1 | 2 +|l 2 | 2 +|l 3 | 2 )|s-s| [0,t] 2 dsds k = 0 θ(2 -q k) 2 |k| -1+η k 2 =0 |k| -3-η l 2 =0,l 3 =0 |l 2 | -4+η |l 3 | -4+η |s -s| -1+η

1

 1 1 | ≥ |k 2 | and |k 3 | ≥ |k 4 | First let us assume that |k 5 | = max{|k i |}. ThenE -s||s -s|) -1+η × |k 1 | -4+2η |k 2 | -2 |k 3 | -4+2η |k 4 | -2 |k 5 | -(1+η ′ ) |k| -(1-η ′ ) t η k θ(2 -q k) 2 |k| -(1-η ′ ) k 12345 = k |k 1 | -7/2+2η |k 2 | -3-η ′ /2 |k 3 | -7/2+2η |k 4 | -3-η ′ /2 t η 2 (2+η ′ )q

For 1 , 2 t t δ 2 E 1 f (εk i ) 2 |k i | 2 ×

 12212 max{|k i |} = |k 3 | t δ k k 12345 = k θ(2 -q k) 2 |k 1 | -4+η |k 2 | -2 |k 3 | -4+η ′ |k 4 | -2 |k 5 | -2 t δ k k 12345 = k θ(2 -q k) 2 |k 1 | -3+η+1/4 |k 2 | -3+1/4 |k| -1+η ′ |k 4 | -3+1/4 |k 5 | -3+1/4 t δ 2 (2+η ′ )qhence there exists δ > 0 and ν > 0 such thatE (2+ν)q . Estimation of E 1,3 t . Let us deal with this last term. Here the symmetries are in k 2 , k 3 and k 4 , k 5 . Then we can suppose that |k 2 | ≥ |k 3 | ≥ and |k 4 | ≥ |k 5 |. Furthemore, the role of k 2 , k 3 and k 4 , k 5 are symmetrical, then we can assume that |k 1 | ≥ |k 4 | e -(|k 123 | 2 +|k 2 | 2 +|k 3 | 2 )|t-s| e -(|k 145 | 2 +|k 5 | 2 +|k 4 | 2 )|t-s| e -|s-s||k 1 | 2

  αp+2 du 1 du 2 dv 1 dv 2 1/p avec δz s 1 s 2 t 1 t 2 := z s 2 t 2z s 1 t 2z s 2 t 1 + z s 1 t 1 |δx s 1 s 2 t 1 t 1 | p |s 2s 1 | βp |t 2t 1 | αp

	≤ C p S,T,α,β,p	[0,S]×[0,T ]

est satisfaite pour tout s 1 , s 2 ∈ [0, S], t 1 , t 2 ∈ [0, T ] et p > 1 où C S,

T,α,β,p est une constante finie et positive ne dépendant que de S, T, α, β et p. Démonstration. Voir la preuve du Lemme (2.6.2) dans le deuxième chapitre. Ainsi ayant ce résultat un simple calcule nous donne que : E sup s 1 ,s 2 ∈[0,S];t 1 ,t 2 ∈[0,T ]

  ÉTAT DE L'ART ET RÉSULTATS DU CHAPITRE 2 pour tout s 1 , s 2 , t 1 , t 2 ∈ [0, T ] où on a introduit les notations :δx s 1 s 2 t 1 t 2 = x s 2 t 2x s 1 t 2x s 2 t 1 + x s 1 t 1 δ 1 x s 1 s 2 t 1 = x s 2 t 1x s 1 t 1 , δ 2 x s 1 t 1 t 2 = x s 1 t 2x s 1 t 1 où aussi γ 1 , γ 2 > 1/3 et C, C 1 , C 2 >0 des constantes finies. Maintenant si x n est une régularisation de x et procédant comme dans le cas à un seul paramètre on a facilement la formule suivante :δf (x n ) s 1 st 1 t d st x n

			(s 2 ,t 2 ) (s 1 ,t 1 )	f (x n st )d st x n st = f (x n s 1 t 1 )δx n s 1 s 2 t 1 t 2 +	s 2 s 1	(f (x n st 1 ) -f (x n s 1 t 1 ))	t 2 t 1	d st x n st
						+	t 2 t 1	(f (x n s 1 t ) -f (x n s 1 t 1 ))	s 2 s 1	d st x n st +	(s 2 ,t 2 ) (s 1 ,t 1 )
								s 2 s 1	t 2 t 1	(	s s 1	f t t 1	d uv x n uv )d st x n st
	+	s 2 s 1	t 2 t 1	(	t t 1	f s s 1	d uv x n uv )d st x n st
		s 2	t 2		s	
	+			(			
		s 1	t 1		s 1		
		s 2	t 2		s	
				(			
		s 1	t 1		s 1		

t 1 | γ 2 14 1.2. st Ainsi en observant que δf (x n ) s 1 s 2 t 1 t 2 = (s 2 ,t 2 ) (s 1 ,t 1 ) f ′ (x n st )d st x n st + (s 2 ,t 2 ) (s 1 ,t 1 ) f ′′ (x n st )d s x n st d t x n st

on obtient aisément le développement suivant :

(s 2 ,t 2 ) (s 1 ,t 1 ) δf (x n ) s 1 st 1 t d st x n st = f ′ (x n s 1 t 1 ) (s 2 ,t 2 ) (s 1 ,t 1 ) (s,t) (s 1 ,t 1 ) d uv x n uv d st x n st + f ′′ (x n s 1 t 1 ) (s 2 ,t 2 ) (s 1 ,t 1 ) (s,t) (s 1 ,t 1 ) d u x n uv d v x n uv d st x n st + ′ (x n ut 1 )f ′ (x n s 1 t 1 ) ′ (x n s 1 v )f ′ (x n s 1 t 1 ) f ′′ (x n ut 1 )f ′′ (x n s 1 t 1 ) t t 1 d u x uv d v x n uv )d st x n st + f ′′ (x n ut 1 )f ′′ (x n s 1 t 1 ) t t 1 d u x uv d v x n uv )d st x n st + r n

  1 st 1 Donc pour contrôler tous les termes du développement on doit faire l'hypothèse que les suites d'intégrales itérées :(x uv )dx uv |s 1s 2 | γ 1 |t 2t 1 | γ 2 →

										t 2
										d st x st
										t 1
						+ r 1			
			s 2 s 1	t 2 t 1	d s x n st d t x n st ,	s 2 s 1	t 2 t 1	δ 1 x n s 1 st 1 d st x n st ,	s 2 s 1	t 2 t 1	δ 1 x n s 1 st 1 d s x n st d t x n st
	(s 2 ,t 2 ) (s 1 ,t 1 )	(	(s,t) (s 1 ,t 1 )	d rr ′ x n rr ′ )d st x n st ,	(s 2 ,t 2 ) (s 1 ,t 1 )	(	(s,t) (s 1 ,t 1 )
					s 2 s 1 t 1 f a=1,2 t 2 t 1 f (x n uv )dx n uv -s 2 s 1 t 2 a

d r x n rr ′ d r ′ x n rr ′ )d st x n st , (s 4 ,t 2 ) (s 3 ,t 1 ) ( (s 2 ,t) (s 1 ,t 1 )

d rr ′ x n rr ′ )d st x n st (s 4 ,t 2 ) (s 3 ,t 1 ) ( (s 2 ,t) (s 1 ,t 1 ) δ 1 x n s 1 rt 1 d rr ′ x n rr ′ )d st x n st , ( (s 4 ,t 3 ) (s 3 ,t 2 ) ( (s 2 ,t) (s 1 ,t 2 ) ( (r,t 2 ) (s 1 ,t 1 ) d ab x n ab )d rr ′ x n rr ′ )d st x n st ) (et

bien d'autres. . .) convergent dans un espace topologique H γ 1 ,γ 2 liée à leurs régularités Hölderienne respectives, et l'objet limite noté X sera appelé rough sheet. Ce qui nous donne le premier résultat important énoncé (dans un cadre plus général) et prouver d'une manière rigoureuse dans le second chapitre dans les théorèmes (2.5.6) et (2.5.21) qu'on va ici reformuler d'une manière plus compréhensible pour un lecteur qui n'est pas familier avec la théorie des chemins rugueux contrôlés. Théoreme 1.2.10. Soit un drap x et x n une régularisation de x tel que X n converge vers X dans H γ 1 ,γ 2 , alors on a que : sup s 1 =s 2 ,t 1 =t 2 ∈[0,T ] n+→+∞ 0 pour toute fonction f ∈ C 8 (R) où f (x)dx est définie par la formule f (x)dx := f (x)δx +

  est un mouvement Brownien d dimensionnel et • la multiplication de Stratonovich. Ensuite ils réécrivent cette équation comme une équation aux dérivées partielles stochastique de la manière suivante : idu t + ∆ 2 u t dt + ∆u t dW Théoreme 1.3.4 (A.De Bouard, A.Debussche). Soit (Ω, (F t ) t≥0 , P) un espace de probabilité filtré associé et W un (F t ) t≥0 -mouvement Brownien unidimensionnelle. Soit u 0 ∈ L 2 (R d )) ( presque sûrement) qui soit F 0 mesurable et on suppose finalement que σ < 2/d alors il existe une unique solution u pour le problème de Cauchy (1.14) de donné initiale u 0

t + |u| 2σ udt = 0 (1.14) où le terme ∆udW t est interprété aux sens d'Itô. Obtenant des estimés du type Strichartz ils aboutissent au résultat suivant :

  P t-s f s ds avec P t = e t∆ le semi-groupe de la chaleur et X = t 0 dsP t-s ξ le processus d'Ornstein Uhlenbeck (O.U) qu'on va considérer stationnaire ici, et plus précisément on a que

20) 1.4. ÉTAT DE L'ART ET RÉSULTATS DU CHAPITRE 4 où ∆ T 3 est le Laplacien sur T 3 , I(f )(t) = t 0

  Now what we have in mind is to take y = x 1 in this last two lemma but for this we need to construct 2 2 d 2 x 1 d 2 x 1 and 2 dx 1 dx 1 then as usual we must add some algebraic conditions

	(2.74)
	1 t 2
	Then if we combine equations (2.71) (2.72) (2.73) and (2.74) we obtain the needed result.

Hypothesis 2.5.17. Let α, β > 1/3, x ∈ CC 1,1 , a = 1, 2 and we assume the existence of

P xx a = a a d a xd a x ∈ CC * ,2β 1,2 and Q xx a = a dxd a x ∈ CC α,2β

2

,2 satisfying the algebraic relation 1. δ a P xx a

  .83) Now the last term in the right side of this inequality can be bounded by ||δz-δy|| p

	h+ 2 p ,h ′ + 2 p	(||δz|| h+ 2 p ,h ′ + 2 p	+
	||δy|| h+ 2		

p ,h ′ + 2 p

  .105) are well defined in the Skorohod sense of Malliavin calculus. Moreover: (i) Some Riemann convergences hold true: if π 1 n and π 2 n are 2 partitions of [s 1 , s 2 ] × [t 1 , t 2 ] whose mesh goes to 0 as n → ∞, then

  .108) (iii) Explicit corrections between z 1 , z 2 and z 1,⋄ , z 2,⋄ can be computed (see relations (2.111) and (2.119)). Now we will give a crucial property of the Hilbert space H which allow us to do our computations. Lemma 2.7.6. Under Hypothesis 2.7.4, we have f H

  it converges a.s to y 1 d 12 x as n goes to ∞, according to Proposition ??. The L 2 (Ω) convergence of the Riemann sums defining A n 1 is more cumbersome, and we have to go back to the definition of the Young integral given by Proposition 2.4.1. Indeed one can write

	s 2 s 1 for this integral we get that t 2 t 1 y 1 s;t d 12 x s;t = πn ∆ ij y 1 s;t d 12 x s;t , and then using the expansion given in the Proposition (2.4.1)
	s 2 s 1	t 2 t 1	y 1 s;t d 12 x s;t

  and lim

		4		
	n→∞	j=2	A n 2j = 0,	(2.114)
	where the limits are understood in the almost sure and L 2 sense.			
	Indeed, it is easily understood that the terms A n 22 , A n 23 , A n 24 are remainder terms: according to Hypothesis 2.7.4 we have that |ρ i

ab | |a -b| γ i , and we get the following inequality for A n 22 :

  C 6 (R) satisfying condition (GC), and where we set again ∆ = [s 1 , s 2 ] × [t 1 t 2 ]. Our goal is now to take limits in equation (2.133).

	n t ,	(2.133)
	for f ∈	

  |k 2 | < |k|/3, |k 3 | ≥ |k|/3}. Using Cauchy-Schwarz inequality we have the following bound

  -i (|k 12 |)θ(2 -j |k 2(-3) |)|f (εk 2 )| 2 t 0 dse -(|k12| 2 +|k2| 2 )|t-s| |k 2 | -2 : X ε s (k 1 ) Xε t (k 3 ) : e k -i |k 12 |)θ(2 -j |k 12 |)|f (εk 1 )| 2 |f (εk 2 )| 2 1e -(|k1| 2 +|k2| 2 +|k12| 2 )t |k 1 | 2 |k 2 | 2 (|k 1 | 2 + |k 2 | 2 + |k 12 | 2 )

				θ(2 -i |k 12 |)θ(2 -j |k 34 |)
	k∈Z 3 |i-j|≤1 k1234=k
	×	0	t	dse -|k12| 2 |t-s| : Xε s (k 1 ) Xε s (k 2 )X ε t (k 3 )X ε t (k 4 ) : e k
	+4 θ(2 +2 k∈Z 3 |i-j|≤1 k13=k,k2 θ(2
		|i-j|≤1 k1,k2

  3 |i-j|≤1 k 13 =k,k 2 θ(2 -i (|k 12 |)θ(2 -j |k 2(-3) |)|f (εk 2 )| 2 t 0 dse -(|k 12 | 2 +|k 2 | 2 )|t-s| |k 2 | -2 X ε s (k 1 ) Xε t (k 3 )e k -i |k 12 |)θ(2 -j |k 12 |) |f (εk 1 )| 2 |f (εk 2 )| 2 e -(|k 1 | 2 +|k 2 | 2 +|k 12 | 2 )t |k 1 | 2 |k 2 | 2 (|k 1 | 2 + |k 2 | 2 + |k 12 | 2 ).

	and	
	I ε 3 (t) =	θ(2
	|i-j|≤1 k 1 ,k 2	

k∈Z 3 |i-j|≤1 k 1234 =k θ(2 -i |k 12 |)θ(2 -j |k 34 |) t 0 dse -|k 12 | 2 |t-s| : Xε s (k 1 ) Xε s (k 2 )X ε t (k 3 )X t (k 4 ) : e k I ε 2 (t) = k∈Z

  δ ′ Let us deal with E[|∆ q (I 1 =0,k 2 =0 f (εk 1 ) 2 f (εk 2 ) 2 |k 1 | 2 |k 2 | 2 e -(|k+k 1 +k 2 | 2 +|k 1 | 2 +|k 2 | 2 )|t-s| -q k)e k a k (ts)( Xε k e k θ(2 -q k)θ(2 -q k)a k (ts)a k (ts)E[( Xε (εk) 2 |k| 2 (e -|s-s||k| 2e -|t-s||k| 2e -|t-s||k| 2 + 1) δ k=-k f (εk) 2 |k| 2 |k| 2η |t -s| η/2 |t -s| η/2 .

	such that				
	E[|∆ q (I = E	(3) t - 	t	Ĩ(3) t )| 2 ] θ(2 2	 
		0 k	
	=	dsds	
	[0,t] 2		k = 0	
				k = 0	
				(3) t -	Ĩ(3)

t )| 2 ]. For k = 0 we define a k (ts) = k s (k) -Xε t (k)) e s (k) -Xε t (k))( Xε s (k) -Xε t (k))] But E[( Xε s (k) -Xε t (k))( Xε s (k) -Xε t (k))] = δ k=-k f Hence E[|∆ q (I

  ′′ ) for η ′′ > η ′ . When |k 4 | ≥ |k 1 | it is almost the same computation.In E 2,2 t , we can assume that |k 2 | ≥ |k 4 |, so

	E 2,2 t	0	t	ds	0	t

  1-η ′′ t δ 2 q(1+η ′′ ) that we decompose as in the previous term whether|k 1 | ≥ |k 4 | or |k 4 | ≥ |k 1 |.Terms in the fifth chaos. For all suitable variables, we have )2 |k i | 2 δ ki=-ki e -|s-s|(|k1| 2 +|k2| 2 +|k3| 2 )

	= 12	5	f (εk i
		i=1	

E[: Xε s (k 1 ) Xε s (k 2 ) Xε s (k 3 ) Xε t (k 4 ) Xε t (k 5 ) :: Xε s (k 1 ) Xε s (k 2 ) Xε s (k 3 ) Xε t (k 4 ) Xε t (k 5 ) :]

Now to obtain the Theorem (2.7.13) we only need the following well known one parameters result Proposition 2.7. [START_REF] Da | Strong solutions to the stochastic quantization equations[END_REF]. Let B a fractional brownian motion with hurst parameters 1/2 ≥ γ > 1/3 then we have that u → f (B u )u 2γ ∈ Dom(δ ⋄,B ) and we have that

Proof. Use exactly the same arguments of the Proposition (2.7.20) for the one parameters setting.

And then we have immediately the following result Corollary 2.7.24. For γ i > 1/3 and ϕ ∈ C 6 (R) then for every v ∈ [0, 1] u → y 3 u;v u 2γ 1 ∈ Dom(δ ⋄,x.;v ) and the following formula hold true

Proof. we recall that x u,v law = v γ 2 B u with B is a fBm with hurst parameter γ 1 and then it suffice to use the Proposition (2.7.23) Chapter 3

Modulated Dispersive PDEs

Résumé Dans ce chapitre on étudie une large classe d'EDP qui présente une modulation temporelle non homogène dans le terme de dispersion. En particulier un exemple est celui de l'équation de Korteweg-de Vries (KdV), l'équation de KdV modifier, L'équation de Schrödinger non linéaire (NLS) ou encore l'équation de Schrödinger non linéaire avec dérivée. On introduit pour cela une notion d'"irrégularité" pour la modulation et on obtient des résultats d'existence locale et globale qui sont similaires à ceux obtenue pour ces équation sans modulation. Dans certain cas on remarquera que la présence de modulations irrégulières entrainera une amélioration dans la théorie d'existence de solutions pour ces équations. Une première approche est basé sur l'effet régularisant de la modulation sur le terme non linéaire en utilisant la théorie des chemins contrôler et des estimations provenant de la théorie de l'intégral d'Young. Une seconde approche est une extension des estimée de Strichartz obtenue par Debussche et Tsutsumi dans le cas d'une modulation Brownienne pour l'équation NLS quintique.

Abstract

We study various nonlinear PDEs under the effect of a time-inhomogeneous and irregular modulation of the dispersive term. In particular the modulated 1d periodic or non-periodic versions of the Korteweg-de Vries (KdV) equation, of the modified KdV equation, of the non-linear Schrödinger equation (NLS) and of the derivative NLS. We introduce a deterministic notion of "irregularity" for the modulation and obtain local and global results similar to those valid without modulation. In some cases the irregularity of the modulation improves the well-posedness theory of the equations. A first approach is based on novel estimates for the regularising effect of the modulated dispersion on the non-linear term using the theory of controlled paths and estimates stemming from Young's theory of integration. A second approach is an extension of a Strichartz estimated first obtained by Debussche and Tsutsumi in the case of the Brownian modulation for the quintic NLS.

Chapter 4

Stochastic quantization in T 3 and paracontrolled distribution Résumé Nous prouvons l'existence de solution local en temps pou l'equation de Φ 4 3 dans domaine périodique en utilisant l'approche des distributions contrôlées qui est inspirées de la théorie des chemins rugueux et de la décomposition en paraproduit de Bony.

Abstract

We prove the existence and uniqueness of a local solution to the periodic renormalized Φ 4 3 model of stochastic quantisation using the method of controlled distributions introduced recently by Imkeller, Gubinelli and Perkowski ("Paraproducts, rough paths and controlled distributions", arXiv:1210.2684).

Introduction

We study here the following Cauchy problem

where ξ is a space-time with noise such that T 3 ξ(x)dx = 0 i.e. it is a centered Gaussian space-time distribution such that

and u : R + × T 3 → R is a space-time distribution which is continuous in time. We write this equation in its mild formulation

We notice that the distance and the metric introduced in this last definition do not depend on X. More generally for Φ ∈ D L T 1 ,X and Ψ ∈ D G T 2 ,Y we denote by d min(L,G),min(T 1 ,T 2 ) (Φ, Ψ) the same quantity. We claim that if Φ ∈ D L X for a suitable choice of L then we are able to define I(Φ♦X ♦2 ) and I(Φ 2 X) modulo the use of X.

Let us decompose the end of this Section into two parts, namely we show that I(Φ♦X ♦2 ) and I(Φ 2 X) are well-defined when Φ is a controlled distribution. We also have to prove that when Φ is a controlled distribution, Ψ + I(X ♦3 ) + 3I(Φ 2 X) + 3I(Φ♦X ♦2 ) + I(Φ 3 ) is also a controlled distribution. All those verifications being made, the only remaining point will be to show that we can apply a fixed point argument to find a solution to the renormalized equation. This is the aim of Section 4.3.

Decomposition of I(Φ 2 X)

Let X ∈ X and Φ ∈ D L X,T , a quick computation gives :

Using the fact that Φ ∈ D L X,T and that I(

we can see that the two terms I((θ ♯ ) 2 X) and I(θ ♯ I(X ♦3 )X) are well defined. Let us focus on the term I(X ⋄3 ) 2 X which is at this stage is not well understood, then a paraproduct decomposition of this term give us that

We remark that only the first term of this expansion is not well understood and to overcome this problem we use the Proposition (4.2.4), indeed we know that

is well defined and it lies in the space C

1/2-3δ T due to the fact that X ∈ X Remark 4.2.13. We remark that the "extension" of the term I(Φ 2 X) is a functional of "(Φ, X) ∈ D L X,T × X " and then we use sometimes the notation I(Φ 2 X)[Φ, X] to underline this fact.

Proposition 4.2.14. Let z ∈ (1/2, 2/3), Φ ∈ D L X , and assume that X ∈ X . Then the quantity I(Φ 2 X)[Φ, X] is well-defined via the following expansion

+ 2I(X ♦3 )π 0 (I(X ♦3 ), X) + R(I(X ♦3 ), I(X ♦3 ), X) (4.12)

Fixed point procedure

Using the analysis of I(Φ♦X ♦2 ) and I(Φ 2 X) developed in the previous Section, we can now show that the equation Φ = I(X ♦3 ) + 3I(Φ♦X ♦2 ) + 3I(Φ 2 X) + I(Φ 3 ) + Ψ admits a unique solution Φ ∈ D L X for a suitable choice of L and z ∈ (1/2, 2/3) via the fixed point method. We also show that if u ε is the solution of the regularized equation and Φ ε is such that u ε = X ε + Φ ε then d(Φ ε , Φ) goes to 0 as ε. Hence, by the convergence of X ε to X we have the convergence of u ε to u = Φ + X. Let us begin by giving our fixed point result.

X and Ψ = P u 0 then we define the application Γ :

where I(Φ♦X ♦2 ) and I(Φ 2 X) are given by the Corollary (4.2.17) and the Proposition (4.2.14). Then Γ(Φ) ∈ D L X for a suitable choice of L and it satisfies the following bound

for some θ > 0 and K ∈ [0, 1] 8 depending on L and z. We can conclude that for this choice of L there exist T > 0 and a unique Φ ∈ D L X,T such that

Proof. By the the Corollary (4.2.17) and the Proposition (4.2.14) we see that Γ(Φ) has the needed algebraic structure of the controlled distribution more precisely

X and obtain the first bound it remains to estimate ||Φ|| ⋆,2,L,T and ||Γ(Φ) ♯ || ⋆,1,L,T . A straightforward computation gives

Then for 0 < η < κ and η < 1/2 and z ∈ (1/2, 2/3) small enough we see that

Let us focus on the term lying in second chaos.

We treat these two terms separately. In fact, by symmetry, we have

which gives the first bound. The second term has a similar bound, indeed

which ends the proof.

Renormalization for π

Here again we only give the crucial bound, but for I(X ♦3 )♦X ♦2 instead of π 0♦ (I(X ♦3 ), X ♦2 ).

Proposition 4.4.7. For all T > 0, t ∈ [0, T ], δ, δ ′ > 0 and all ≫ ν > 0 small enough, there exists two constants and C > 0 depending on T , δ, δ ′ and ν such that for all q ≥ -1,

Proof. Thanks to a straightforward computation we have

t + I

(2)

t η 2 q(2+η) .

Appendix

A commutation lemma

We give the proof of the Lemma 4.2.5. This proof is from Gubinelli, Imkeller and Perkowski, and can be found in the first version of [START_REF] Gubinelli | Paraproducts, rough paths and controlled distributions[END_REF] and also in [START_REF] Perkowski | Studies of Robustness in Stochastic Analysis and Mathematical Finance[END_REF] Lemmas 5.3.20 and 5.5.7. In fact we give a stronger result, and apply it with ϕ(k) = exp(-|k| 2 /2). Proof. We define for j ≥ -1,

(ϕ(εD)(S j-1 u∆ j v) -S j-1 u∆ j ϕ(εD)v), and every term of this series has a Fourier transform with support in an annulus of the form 2 j A. Lemma 2.69 in [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] implies that it suffices to control the L ∞ norm of each term. Let ψ ∈ D with support in an annulus be such that ψ ≡ 1 on A. We have ϕ(εdD)(S j-1 u∆ j v) -S j-1 u∆ j ϕ(εD)v = (ψ(2 -j •)ϕ(ε•))(dD)(S j-1 u∆ j v) -S j-1 u(ψ(2