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Abstract

Consider a communication network whose links fail independently and a set of sites
named terminals that must communicate. In the classical stochastic static model the
network is represented by a probabilistic graph whose edges occur with known probabili-
ties. The classical reliability (CLR) metric is the probability that the terminals belong to
a same connected component. In several contexts it makes sense to impose the stronger
condition that the distance between any two terminals does not exceed a parameter d.
The probability that this holds is known as the diameter-constrained reliability (DCR).
It is an extension of the CLR. Both problems belong to the NP-hard complexity class;
they can be solved exactly only for limited-size instances or specific network topologies.

In this thesis we contribute a number of results regarding the problem of DCR com-
putation and estimation. We study the computational complexity of particular cases
parameterized by the number of terminals, nodes and the parameter d. We survey meth-
ods for exact computation and study particular topologies for which computing the DCR
has polynomial complexity. We give basic results on the asymptotic behavior of the DCR
when the network grows as a random graph. We discuss the impact that the diameter
constraint has in the use of Monte Carlo techniques. We adapt and test a family of
methods based on conditioning the sampling space using structures named d-pathsets
and d-cutsets. We define a family of performability measures that generalizes the DCR,
develop a Monte Carlo method for estimating it, and present numerical evidence of how
these techniques perform when compared to crude Monte Carlo. Finally we introduce a
technique that combines Monte Carlo simulation and polynomial interpolation for relia-
bility metrics.

Résumé

Soit un réseau comprenant des lignes de communication qui échouent indépendamment,
dans lequel tous ou certains sites, appelés terminaux, doivent être capables de commu-
niquer entre eux. Dans le modèle stochastique statique classique le réseau est représenté
par un graphe probabiliste dont les arêtes sont présentes selon des probabilités connues.
La mesure de fiabilité classique (CLR) est la probabilité que les terminaux appartien-
nent à la même composante connexe. Dans plusieurs contextes il est utile d’imposer
la condition plus forte que la distance entre deux terminaux quelconques soit bornée
supérieurement par un paramètre d. La probabilité que ća se produise est connue comme
la fiabilité diamètre-bornée (DCR). Il s’agit d’une extension de la CLR. Les deux prob-
lèmes appartiennent à la clase NP-difficile de complexité; le calcul exact n’est possible
que pour les instances de taille limitée ou topologies spécifiques.

Dans cette thèse, nous contribuons des résultats concernant le problème du calcul
et l’estimation de la DCR. Nous étudions la complexité de calcul de cas particuliers,



paramétré par le nombre de terminaux, nœuds et le paramétre d. Nous passons en
revue des méthodes pour le calcul exact et étudions des topologies particulières pour
lesquelles le calcul de la DCR a une complexité polynomiale. Nous présentons des résul-
tats de base sur le comportement asymptotique de la DCR lorsque le réseau se développe
comme un graphe aléatoire. Nous discutons sur l’impact de la contrainte de diamétre
dans l’utilisation des techniques de Monte Carlo, et adaptons et testons une famille de
méthodes basées sur le conditionnement de l’espace d’échantillonnage en utilisant des
structures nommées d-pathsets et d-cutsets. Nous définissons une famille de mesures de
performabilité qui généralise la DCR, développons une méthode de Monte Carlo pour
l’estimer, et présentons des résultats experimentaux sur la performance de ces techniques
Monte Carlo par rapport à l’approche naïve. Finalement, nous proposons une nouvelle
technique qui combine la simulation Monte Carlo et l’interpolation polynomiale pour les
mesures de fiabilité.
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K ⊆ V Set of terminal nodes
R(G,K) or RK(G) Classical K-reliability
R(G,K, d) or RK(G, d) Diameter-constrained d-K-reliability
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Abbreviations

CLR Classical reliability (the problem, the measure or the context)
DCR Diameter-constrained reliability (idem)
K-CLR, K-DCR CLR and DCR for terminal set K
d-DCR DCR with distance parameter d
d-K-DCR DCR with distance parameter d and terminal set K
DFS Depth-first search
BFS Breadth-first search
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Résumé en Français

Introduction

Cette thèse porte sur certaines propriétés qui sont définies pour les réseaux de télécommu-
nication. Ici, nous travaillons avec des modèles de réseaux où les composants élémentaires
peuvent échouer selon un certain modèle probabiliste que l’on suppose connu. Même si
nous parlons en général de réseaux de télécommunication, les modèles, mesures, résultats
théoriques et les algorithmes que nous utilisons et introduisons peuvent être appliqués
à d’autres contextes, comme les réseaux de transport, les architectures informatiques
parallèles, les réseaux électriques, le contrôle de systèmes, la propagation du feu, etc.
La raison pour laquelle nous nous concentrons sur les réseaux de télécommunications,
c’est qu’ils ont été le principal moteur de la recherche et développement de mesures de
fiabilité, le sujet principal de cette thèse.

Ici, nous commençons par discuter de plusieurs types de propriétés des réseaux qui
peuvent être englobées sous le concept général connu comme “ fiabilité ”. Ensuite, nous
nous intéressons spécifiquement au rôle joué par l’évaluation des indicateurs de fiabilité
(network reliability) ; cette thèse est principalement concerné sur l’une de ces mesures,
connue sous le nom de “ fiabilité diamètre-bornée ”. Une fois cette introduction con-
textuelle est donnée, nous présentons nos contributions et la liste correspondante des
articles publiés ou acceptés.

Propriétés de fiabilité

Un grand nombre de mesures pour quantifier le service que les réseaux de télécommu-
nication offrent aux utilisateurs peut être conçu. Certaines d’entre elles peuvent être
simplement exprimées comme indicateurs binaires (par exemple, le réseau est soit “ ac-
tive ou hors service ”). D’autres mesures peuvent avoir un caractère non - binaire (par
exemple, le débit du réseau). On peut même penser à des mesures très complexes définies
par exemple en attribuant des poids différents à différentes situations du réseau et en ten-
ant compte de la vitesse, perte de paquets, délais, etc. En général, nous ferons référence
comme performance du réseau au niveau qu’un certain réseau atteint en ce qui con-
cerne certains métriques quantitatives bien définies. Durant les premières décennies du
développement des réseaux de télécommunication, l’accent a été mis sur les mesures
qui manifestent la capacité d’un réseau de continuer à fonctionner [1]. Comme nous le
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verrons plus tard, en fonction du modèle et de la définition, ces mesures sont appelées
disponibilité et fiabilité (availability et reliability). Quand les premiers réseaux à com-
mutation de paquets ont été déployés sur les lignes téléphoniques, les principaux efforts
visaient à maintenir les lignes (et la topologie sous-jacente du réseau) opératives. Dans
ce contexte, une simple différenciation entre les états opérationnel et hors service était
suffisante, donc motivant intenses efforts de recherche dans le domaine de l’analyse de la
fiabilité. L’amélioration des technologies, et la progressive réduction du coût des disposi-
tifs qui permettait l’introduction de redondance, a conduit à la conception et déploiement
des réseaux qui étaient beaucoup plus fiables en termes de connectivité. Au même temps,
avec plus trafic de données et applications plus complexes, le focus s’est déplacé de la
connectivité aux indicateurs de performance plus complexes, capables de distinguer entre
plusieurs niveaux de service. Puis, dans les années 80 et 90, il est venu le temps pour
le déploiement massif de lignes à fibres optiques très fiables. L’extraordinaire capacité
de ces lignes rend possible qu’un réseaux ayant un seul chemin pour relier deux points
offre le niveau de performance requis, à condition que ses lignes soient opérationnelles.
Dans ce contexte, les modèles de fiabilité ont récupéré leur pertinence. Actuellement, la
connectivité a récupéré aussi la pertinence principalement à cause du déploiement massif
des réseaux sans fil, dont le liens point-à-point sont moins fiables pour des raisons telles
que les facteurs environnementaux et d’économie d’énergie. On peut dire que l’accent
historiquement placé sur la connectivité a été nivelé par le concept plus global de per-
formabilité (performability), qui englobe à la fois questions de fiabilité et performance
[1]. Le service offert par les réseaux réels peut être affectée par plusieurs types d’échecs.
Des erreurs humains peuvent entraîner des dysfonctionnements, coupures de service, le
déploiement des routes erronées pour paquets de commutation, etc. Les humains peuvent
également provoquer des dommages intentionnels (sabotage). Des défauts de conception
peuvent entraîner la perte de données, des performances insuffisantes, des coupures de
courant, saturation de liens saturation, ainsi que d’autres problèmes plus subtils comme
le jitter. Les facteurs environnementaux peuvent causer des interférences et du bruit
dans des lignes filaires, atténuation de signal, des interruptions intermittentes dans les
liaisons sans fil, ainsi que des dommages plus généraux en cas d’inondations, de trem-
blements de terre et d’autres situations semblables. L’usure aléatoire peut provoquer le
dysfonctionnement ou stoppage de l’activité d’un composant. Lors de la conception des
réseaux de communication, les ingénieurs doivent anticiper les sources possible d’échec et
de dégradation de la performance. Une fois un modèle mathématique pour le réseau a été
adopté, deux approches principaux peuvent être suivies, souvent en collaboration itéra-
tive. D’une part, le réseau peut être conçu avec le but d’atteindre certaines propriétés
et seuils de performance désirés ; les algorithmes de conception, les topologies utilisés,
etc. sont telles que la réalisation de ces propriétés est garantie. D’autre part il existe des
techniques d’analyse de réseau qui, étant donné un certain réseau, permettent le calcul ou
estimation de mesures qui quantifient les propriétés dont on est intéressé. Par exemple,
on peut d’abord analyser un réseau existant, et une fois que ses propriétés actuelles sont
connus, on peut essayer de les améliorer grâce à des techniques de conception, jusqu’à
ce que le réseau atteigne les niveaux souhaités, plus exigeants que ceux atteints par le
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réseau initial. Cette approche hybride peut également être suivie quand les techniques de
conception proposent des probables améliorations (techniques heuristiques). En ces cas,
il faut effectuer des analyses sur le réseau augmenté afin de déterminer si les propriétés
souhaitées ont été atteintes. Dans cette thèse, nous nous intéressons aux techniques
d’analyse des réseaux.

Lors de la conception de systèmes avec certains seuils de fiabilité, l’effort peut être
orienté dans deux directions principales (et compatibles). D’une part nous pouvons
essayer d’améliorer la fiabilité des composants élémentaires. Cela peut être considéré
comme une approche “ d’optimisation locale ”. D’autre part nous pouvons introduire
des composants redondants dans le système. Cela peut être vu comme une approche
“ systémique ”. Il y a plusieurs raisons pour lesquelles la deuxième approche a tradi-
tionnellement joué un rôle relativement important dans la conception de réseaux. Par
exemple, cela est particulièrement vrai par rapport aux principes de fabrication de qual-
ité totale comme celles du “ Toyota Production System ”[2] ou Six-Sigma [3], où le focus
est placé dans la production d’unités fiables à travers de tâches atomiques qui soient
autant libres d’erreur que possible. Tout d’abord, il est très difficile de prévoir toutes
les sources possibles d’échec qui menacent les composants du réseau. Deuxièmement, le
majeur coût de déploiement entraîné par la redondance est justifiée normalement par
les économies significatives obtenues en utilisant des composants de qualité ou capacité
inferieures. Pensez par exemple au cas des clusters commerciaux d’équipement informa-
tique, où des grandes économies sont réalisées à l’aide de serveurs basiques et identiques
(commodity servers), malgré la nécessité de quelques unités supplémentaires pour avoir
de la redondance.

Évaluation des mesures de fiabilité

Une famille de métriques développées au cours des 50 dernières années qui a été très
étudiée est celle de la fiabilité. D’une manière générale, elles expriment la probabilité
qu’un réseau qui peut être dans deux états du point de vue de l’utilisateur (opérationnel
/ échoué), ne tombe pas dans l’état d’échec lors d’un intervalle de temps donné (modèles
dynamiques), ou à tout moment (modèles statiques) - voir la Section 2.2. Les réseaux
de télécommunication physiques, indépendamment de leur taille et leur complexité, sont
construites utilisant quelques composants élémentaires. La plupart des réseaux peu-
vent être bien représentés en fonction de deux grandes classes de composants : (i) des
composants qui envoient, reçoivent, traitent et stockent des données (sites) et (ii) des
composants qui emmènent les données d’un site à un autre site voisin (liens). Pour
l’analyse de la fiabilité, ces réseaux sont souvent modélisés sous forme de graphes prob-
abilistes (voir Section 2.1). Les échecs aléatoires de sites et liens sont modélisés comme
des nœuds et des arêtes qui sont étiquetés avec leurs probabilités d’échec. Le complément
de la fiabilité (unreliability), est alors la probabilité que se produise une combinaison de
défauts élémentaires qui rende le réseau dans l’état d’échec. Des efforts considérables ont
été consacrés à l’étude des mesures de fiabilité. D’une part, cela est dû à la pertinence
que la connectivité avait notamment pour les réseaux réels qui ont été développés dans
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la seconde moitié du siècle passé. D’autre part parce que, même avec de nombreuses
hypothèses simplificatrices, les problèmes qui se posent sont complexes, difficiles et en
général loin d’avoir des solutions connues satisfaisantes (voir Section 3.2). Au cours des
dernières décennies, l’accent mis sur la connectivité a été complémenté par celui mis sur
la performance, créant la notion de performabilité, qui englobe à la fois la fiabilité et
la performance. Dans cette thèse, nous travaillons avec des mesures de fiabilité définies
par un modèle stochastique statique qui est constitué d’un graphe probabiliste et un
ensemble de nœuds terminaux que l’on appelle “ distingués ”ou “ terminaux ”. Dans le
Chapitre 2, nous formalisons le modèle et les définitions. La fiabilité classique (CLR =
Classical Reliability) est la probabilité que les terminaux soient connectés. Des résumés
de littérature peuvent être trouvés dans [4, 5, 6]. Cette mesure a été généralisée [7]
pour considérer non seulement la connectivité mais aussi la distance entre les terminaux,
imposant un borne supérieur. Un résumé de littérature peut être trouvée dans [8]. La
nouvelle mesure, appelée fiabilité diamètre-bornée (DCR = Diameter-constrained Relia-
bility), permet modéliser des situations où l’on impose des limites au nombre acceptable
de sauts que les paquets peuvent subir. Cette contrainte est pertinente dans plusieurs
contextes qui sont de plus en plus importantes depuis les années 90. Par exemple, en
applications de peer-to-peer (P2P) et voix sur IP (VoIP), la qualité perçue est affecté par
la latence, déterminée à son tour par le nombre de liaisons parcourues par les paquets.
La qualité se détériore à mesure que le réseau présente plus souvent des états avec haute
distances entre terminaux. Dans les applications Web avec interfaces riches, la qualité
perçue par l’utilisateur final est lié à la réactivité, où la latence détermine le délai entre
les actions de l’utilisateur et leur effet sur l’interface de sortie.

L’hypothèse d’indépendance

La plupart des méthodes qui ont été développées pour le calcul exact, de bornes ou estima-
tion de la fiabilité de réseaux assume que les composants échouent indépendamment. Cela
est dû à plusieurs raisons. D’abord, comprendre et modéliser la dépendance des échecs
est généralement une tâche très complexe. Deuxièmement, l’hypothèse d’indépendance
simplifie considérablement le traitement mathématique du problème, grâce au fait que
les probabilités peuvent être écrites facilement en utilisant des expressions factorisées .
Troisièmement, plusieurs sources d’erreurs sont bien modélisés comme des événements
indépendants. Un exemple typique est l’usure naturelle. Une autre famille est celle des
erreurs humaines, comme par exemple la mauvaise configuration d’une interface ou la
coupure accidentelle d’une ligne de fibre due aux activités de mouvement de terre dans
un campus. La dépendance des échecs de composants peut être importante et donc non
négligeable par exemple lorsque l’on considère les catastrophes naturelles (qui peuvent
affecter à la fois plusieurs liens proches) et en particulier pour l’analyse de performabilité.
Par exemple, l’échec de quelques liens provoque que le trafic qu’ils conduisaient transite
par d’autres liens, rendant ces derniers plus susceptibles d’être surchargés et échouer.
Dans cette thèse, sauf spécifiée localement, on assume que l’hypothèse d’indépendance
est valide.
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Definitions fondammentales

Systèmes multi-composants

Les réseaux de communication peuvent être considérés comme des systèmes multi-composants.
En général, un tel système est intégré de plusieurs composants (M). Chaque composant
peut être dans l’un de deux états possibles. Chaque combinaison des états du composant
entraîne à la fois le système entier dans deux états aussi. L’un de ces états binaires est
normalement dit opérationnel (operational, up, working); l’autre état binaire est nor-
malement dit échoué (failed, down). Classiquement, les deux états sont représentés par
les nombres entiers 1 et 0 respectivement. Un vecteur d’état, aussi dit une configuration
du système, est un vecteur ~x = (x1, . . . , xM ) ∈ {0, 1}M . La valeur de xi : i ∈ 1, . . . ,M
indique l’état de la i-ème composante du système (suivant un certain ordre convention-
nel). Comme nous l’avons dit, chaque configuration ~x entraîne un état 1 ou 0 pour le
système. Par conséquence, il existe une fonction de structure Φ définie comme suit :

Φ : {0, 1}M → {0, 1}

Φ(~x) =

{
1 si le système est opérationnel lorsque la configuration est ~x,

0 si le système est échoué lorsque la configuration est ~x.

Observez qu’il y a 2M fonctions différentes qui respectent cette définition. Celle
qu’on utilise dépend de l’aspect spécifique de la situation réelle que l’on veut modéliser.
Par exemple, deux systèmes à M composantes peuvent être telles que l’un est consid-
éré opérationnel lorsque (et seulement lorsque) tous ses composants sont opérationnels,
tandis que l’autre est dite opérationnel lorsque (et seulement lorsque) il y a au moins un
composant qui fonctionne. En outre, il peut y avoir différent aspects à évaluer pour la
même situation réelle, qui se traduisent par différents fonctions de structure. Considérons
par exemple un bureau ayant M employés. On pourrait dire que le bureau “ travaille ”s’il
y a au moins un employé présent. Alternativement, on pourrait aussi dire que le bureau
“ fonctionne ”toutefois que la totalité de certains employés essentiels sont présents.

La fiabilité classique

Le modèle classique pour l’analyse de la fiabilité du réseau est un modèle statique stochas-
tique où le réseau est représenté par un graphe probabiliste G(V,E,~r) avec n = |V |,
m = |E| et ~r = (re)e∈E le vecteur de fiabilité des arêtes. Les nœuds modélisent les sites
et les liens modélisent les lignes de communication. S’il existe au moins un lien qui est
unidirectionnel, on doit utiliser un graphe orienté. Si toutes les liens sont bi-directionnels,
un graphe non orienté peut être utilisé. Si plusieurs liens relient la même paire de sites,
ils peuvent être remplacés dans le modèle par un lien unique dont la fiabilité est égal à la
probabilité qu’au moins l’un de ces liens soient opérationnels (voir Section 5.1.1). Dans
cette thèse, nous travaillons avec des réseaux dont les nœuds sont parfaits (ils n’échouent
jamais, c’est à dire, leur fiabilité est égal à 1) et dont les nœuds ont des fiabilités connues
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et échouent de manière indépendante. Nous allons donc modéliser le réseau comme un
graphe probabiliste simple et non orienté. Une fois établi le modèle de graphe, la fonction
de structure Φ doit être définie. Cela se fait selon une propriété de connexité du graphe ;
la fiabilité du réseau est alors définie comme la probabilité que cette propriété soit vraie
pour le graphe. La littérature classique distingue trois principaux problèmes d’analyse
de fiabilité selon la définition precise de ladite propriété :

• two terminal : que deux nœuds bien définis, connus comme source et terminal,
souvent notés s et t, appartiennent à une même composante connexe du graphe
(i.e. qu’il y ait un chemin qui relie les deux nœuds) ;

• all-terminal : que le graphe soit connexe (c’est à dire qu’il y ait une seul composante
connectée) ;

• K-terminal : un sous-ensemble de nœuds K appartienne à une même composante
connexe (c’est à dire, que le graphe soit K-connexe). Ce dernier modèle englobe
les deux précédents.

Voici alors la définition de nos problèmes principaux.

Définition. Etant donné un graphe probabiliste G = (V,E,~r), deux nœuds s, t ∈ V
et un sous-ensemble K ∈ V , nous définissons comme {s, t}-CLR le problème de calculer
la probabilité R(G, {s, t}) que les nœuds s et t soient reliés ; comme all-terminal -CLR
le problème du calcul de la probabilité R(G, V ) que le graphe soit connecté ; et comme
K-CLR le problème du calcul de la probabilité R(G,K) que le graphe soit K-connexe.

s

u t

v

0.6

0.2

0.4 0.8

Figure 1: Un réseau avec 4 sites et 4 liens.

Nous allons illustrer les définitions précédentes au moyen d’un exemple. La Figure 1
présente le modèle d’un certain réseau avec quatre sites et quatre liens. Chaque arête
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dans le graphe est étiquetée conformément à sa fiabilité (dans l’exemple, les valeurs sont
de 0,2 , 0,4, 0,6 et 0,8 ). Plusieurs mesures de fiabilité peuvent être calculées selon la
définition choisie pour K. La valeur de la fiabilité pour certains ensembles K de tailles
2 , 3 et 4 est montré dans la Figure 2 à droite. Il y a seize différentes configurations
qui peuvent résulter de la combinaison des états des arêtes. Chaque événement aléatoire
Xi correspondant à une configuration ~xi a une probabilité d’occurrence Pr(Xi) associé,
qui en vertu de l’indépendance d’échec est calculée comme le produit des fiabilités des
arêtes opérationnelles fois le produit du complément de la fiabilité des arêtes échoués. Les
trois colonnes à droite identifient les configurations qui appartiennent aux événements
“ le graphe est {s, t}-connecté ”, “ le graphe est connexe ”et “ le graphe est {s, t, u}-
connecté ”. Totalisant chaque colonne on obtient respectivement les trois mesures de
fiabilité. En ce qui concerne le réseau, chaque configuration représente un événement
aléatoire élémentaire, avec une probabilité connue d’occurrence. Alors les trois mesures
correspondent à des événements qui englobent plusieurs événements élémentaires, c’est
à dire plusieurs configurations. Notez que la procédure suivie ici pour calculer la CLR
est simple et directe mais présente un inconvénient majeur : elle nécessite un effort,
mesurée par le nombre d’opérations mathématiques élémentaires à effectuer, qui grandit
exponentiellement avec le nombre d’arêtes. D’où l’ intérêt pour le développement de
méthodes de calcul et d’estimation plus efficaces.

La fiabilité diamètre-bornée

La fonction la structure Φ est définie seulement en termes de connectivité pour le CLR.
Mais comme nous avons déjà vu, dans plusieurs contextes, la distance entre les nœuds
peut être aussi pertinente. Dans [7], les auteurs ont introduit un modèle qui englobe
le modèle CLR en ajoutant une limite supérieure pour la distance entre les terminaux.
Voici alors les définitions suivantes pour la DCR, analogues à celles de la CLR.

Définition. Etant donné un graphe probabiliste G = (V,E,~r), un entier positif d,
deux nœuds s, t ∈ V et un sous-ensemble K ∈ V , nous définissons comme {s, t}-DCR le
problème de calculer la probabilité R(G, {s, t}, d) que la distance entre les nœuds s et t
soit au maximum d ; comme all-terminal -DCR le problème du calcul de la probabilité
R(G, V, d) que la distance entre deux nœuds quelconques ne dépasse pas d ; et comme
K-DCR le problème du calcul de la probabilité R(G,K, d) que la distance entre deux
nœuds de K ne dépasse pas d.

Selon ces définitions il est évident que tout problème DCR avec d ≥ n − 1 est
équivalent au problème CLR correspondant. Mais, lorsque d < n − 1, il peut y avoir
des configurations où les terminaux sont connectés mais il y a quelques terminaux
dont la distance dépasse d. Par conséquence nous avons que pour chaque graphique
probabiliste G = (V,E,~r), ensemble K ∈ V et entiers 1 ≤ d ≤ d′, il se vérifie que
R(G,K, d) ≤ R(G,K, d′). Aux fins d’illustration, nous ramenons le réseau exemple de la
Figure 1 et calculons les mesures de DCR correspondantes pour une valeur de d = 2 dans
la Figure 2. Remarquez que, dans ce cas, la DCR et CLR coïncident pour les problèmes
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Figure 2: À gauche : un exemple de trois mesures CLR (même réseau, différents ter-
minaux) ; à droite, idem pour DCR.
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à deux terminaux, mais le DCR est inférieur au CLR à la fois pour les autres cas.

Contributions

Dans cette thèse, nous avons présenté plusieurs résultats concernant le problème DCR.
Nous avons présenté une introduction à plusieurs types des propriétés des réseaux qui
peuvent être englobés sous le concept général de fiabilité. Ensuite, nous nous sommes
concentrés spécifiquement sur le rôle joué par l’évaluation des métriques de fiabilité et
en particulier la DCR. Nos contributions se réfèrent aux sujets qui suivent :

• la complexité computationnelle de certain cas particuliers de la DCR ;

• des topologies pour lesquelles le calcul de la DCR a une complexité polynomiale ;

• le comportement asymptotique de la DCR lorsque le réseau grandit selon certains
règles probabilistes ;

• des méthodes de simulation de Monte Carlo appliquées à l’estimation de la DCR ;

• une métrique de performabilité qui généralise la DCR et son estimation par Monte
Carlo ;

• l’utilisation de techniques d’interpolation polynomiales associés à Monte Carlo pour
la CLR et DCR.

Ensuite, nous résumons nos résultats obtenus pour chaque sujet.

Complexité computationnelle

Le problème DCR généralise le problème CLR, en ajoutant une contrainte pour la dis-
tance entre les terminaux. La complexité de plusieurs problèmes augmente lors de l’ajout
d’une telle contrainte, pour la plupart des valeurs du paramètre de distance d (voir par
exemple [9]). Nous avons vu que la même chose s’applique lorsque l’on passe de CLR à
DCR. Dans cette thèse, nous avons démontré que le calcul de la 2-K-DCR (i.e. K-DCR
avec d = 2) pour quelconque ensemble K de taille fixe est une tache de complexité poly-
nomiale (en plus, linéaire en n). Nous avons présenté deux démonstrations, l’une avec
une formule fermée, l’autre avec une formulation recursive. Ce dernier a été implémenté
et deux exemples ont été présentés qui attestent de la linearité du calcul.

On savait déjà que le K-CLR était un problème NP-difficile en général, et aussi pour
le cas particulier où d ≥ 3 et |K| ≥ 2 est fixe. La classification de la complexité de calcul
est un problème ouvert pour le d-K-DCR lorsque |K| est considérée comme une entrée
libre, pour tout d ≥ 2. Comme nous commentons dans la Section 4.4, ce problème est
au moins aussi complexe que celui de compter le nombre de graphes partiels du réseau
ayant un diamètre donné. Si l’on prouvait que ce dernier est NP-difficile, ça suffirait pour
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prouver la NP-difficulté du d-V -KDCR aussi (et donc, pour quelconque K libre). Nous
adressons actuellement nos efforts dans cette direction. La Figure Figure 3 reproduit les
classes de complexité connues et non connues des sous-problèmes que l’on obtient pour
différentes combinaisons de |K| et d.

|K| (fixe)

d

2 3 . . .

2

3

...

n− 2

n− 1

...

O(n) [10] O(n) [Cette thèse]

NP-hard [10]

NP-hard [11]; voir Table 3.1 ici

|K| = n ou libre

Non connue

Non connue

Figure 3: Complexité des sub-problèmes DCR selon d et |K|

L’analyse exacte et asymptotique des mesures DCR

Pour plusieurs catégories particulières de topologies le CLR et DCR peuvent être résolus
en temps polynomial en le nombre de nœuds ou arêtes. Ici, nous avons illustré l’utilisation
des techniques de programmation dynamique pour calculer le DCR pour deux familles
simples de réseaux. Nous avons également caractérisé une vaste gamme de topologies
pour lesquelles la {s, t}-DCR est polynomiale. Les graphes de ces familles doivent être
telles que l’ensemble de nœuds puisse être partitionné en sous-ensembles dont le cardinal
est borné par un certain paramètre h. La partition définit quels sont les liens permis
dans cette topologie. La Figure 4 illustre cette famille de graphes. L’ordre de temps est
polynomiale en la cardinalité de la partition (ainsi qu’en le nombre total de nœuds) bien
qu’encore exponentielle en le paramètre h. Cela permet de calculer la valeur exacte de
la DCR pour graphes de grande taille qui appartiennent à ces familles, ce qui peut être
utile pour calculer des bornes (grâce à des méthodes basées sur l’identification de graphes
partiels avec lesdites topologies), ou pour connaître des valeurs exactes auxquelles com-
parer les résultats de méthodes d’estimation.

Lorsque les réseaux se développent selon certains patrons probabilistes, il est naturel
de se demander comment évoluent leurs propriétés de fiabilité. Nous avons introduit la
question de l’analyse du comportement asymptotique du CLR et DCR, dans les réseaux
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Figure 4: La famille de graphes Gh

qui se développent selon les modèles extraits de la Théorie des Graphes Aléatoires. Nous
avons présenté des résultats pour le mode de l’ Gilbert selon lequel chaque paire de
nœuds a la même probabilité p d’être lié par une arête. Nous avons prouvé que la K-
DCR d’un tel réseau tend vers 1 quand p > 1. Par ailleurs, nous avons montré que,
sous certains conditions, la K-DCR tend vers 1 voire avec p →

n
0 (c’est à dire, avec une

dégradation progressive de p sans borne inférieur). Nous visons à prolonger ce travail
par l’étude du comportement asymptotique sur autres modèles aléatoires comme ceux
d’Albert-Barabasi et Watts-Strogatz.

Méthodes de Monte Carlo pour l’estimation de la DCR

La complexité de calcul élevée de la CLR a motivé le développement de procédures pour
l’estimation et le calcul de bornes. Plusieurs méthodes Monte Carlo ont été proposés.
Dans les réseaux de communication réels, la fiabilité est généralement très proche de 1, et
donc l’échantillonnage d’un réseau en état d’échec est un événement rare. Si on utilise la
méthode Monte Carlo naïve il faut utiliser des échantillons de grande taille pour atteindre
des résultats statistiquement significatifs (voir [12]). En outre, donné un certain intervalle
de confiance, la taille nécessaire des échantillons augmente sans borne à mesure que la
fiabilité du réseau devient plus proche à 1. Par conséquent, plusieurs méthodes de Monte
Carlo avec des techniques de réduction de variance ont été développées pour la CLR.
Dans le Chapitre 8, nous avons adapté une famille de telles méthodes au contexte DCR
et montré comment la transition de CLR à DCR affecte chaque étape de la simulation.
Nous avons étudié leur efficacité relative à Monte Carlo naïve. Cette famille méthodes est
basée sur le conditionnement de l’espace d’échantillonnage, utilisant ensembles d’arêtes
nommés pathsets et cutsets pré-calculées. Nous avons présenté quatre familles de tests
qui attestent de l’amélioration de performance obtenue par rapport aux méthodes naïves.
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Measures de performabilité dependentes du K-diamètre

Outre les mesures de fiabilité, qui mettent l’accent sur la connectivité du réseau, les
mesures de performabilité reflètent mieux les aspects comme la performance globale et
la qualité perçue. Ces mesures sont souvent définies comme la moyenne pondérée de la
probabilité que le réseau soit dans certains états, si ceux-ci sont discrètes, ou l’intégrale de
la densité de probabilité des états fois la valeur d’une fonction de l’état. De nombreuses
méthodes qui sont appliquées pour calculer et estimer les mesures de performabilité ont
leurs racines dans des travaux antérieurs développés pour les métriques de fiabilité. Dans
le Chapitre 10, nous avons defini une métrique définie en termes du K-diamètre du réseau
et adapté la technique Monte Carlo du Chapitre 8 pour l’estimer. Nous supposons que
les diamètres possibles sont divisées en un certain nombre de gammes et chaque gamme
reçoit un poids pour la construction de la métrique. Ces mesures de performabilité
qui considèrent le K-diamètre peuvent être utiles dans des contextes où les latences
affectent l’expérience de l’utilisateur, comme les réseaux P2P, les applications VoIP ou
les applications Web. Nous avons montré qu’on atteint des réductions très significatives
de variance par rapport à Monte Carlo naïve en exécutant des tests sur des réseaux de
type maille. Nous avons introduit aussi une famille d’heuristiques qui génèrent les pathsets
et cutsets à être utilisés pour le conditionnement de l’espace d’échantillonnage ; les tests
montrent avantages significatives de performance quand on enchaîne ces heuristiques avec
la méthode Monte Carlo proposée.

Interpolation polynomiale pour les métriques de fiabilité

Dans le Chapitre 10 nous avons introduit un algorithme pour l’estimation du polynôme
de fiabilité. Quand tous les arêtes ont la même fiabilité p, la fonction R(p) qui donne
la fiabilité du réseau selon la valeur de p est un polynôme dont le degré est le nombre
d’arêtes. Bien que l’exposition soit faite pour la all-terminal-CLR, la méthode peut
être également appliquée à la DCR et quelconque ensemble K. L’algorithme utilise
Monte Carlo pour estimer la fiabilité du réseau pour différentes valeurs de p, suivie d’une
interpolation polynomiale de Newton. La métrique d’Hilbert induite dans L2[0, 1] est
utilisée pour projeter et retourner un polynôme à coefficients entiers qui satisfait certains
propriétés élémentaires partagés par tous les polynômes de fiabilité. L’exemple que nous
avons présenté illustre que les coefficients des majeures degrés sont estimés avec plus de
précision que le reste. Cela est prometteur car les coefficients dominants sont les plus
pertinents dans le contexte de défaillances rares. Un avantage important de connaître le
polynôme de fiabilité est que cela permet l’analyse de sensibilité immédiat de la fiabilité
du réseau par rapport à p.

Publications

Les travaux effectués pour cette thèse et les résultats obtenus ont abouti aux publications
suivantes ( articles publiés ou acceptés pour publication ) :
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Chapter 1

Context and Motivation

This thesis is about certain properties that are defined in the context of telecommuni-
cation networks. We work with models of networks where the basic components can
fail and we assume that we know the probabilistic behavior of such failures. Although
in general we talk about telecommunication networks, the models, metrics, theoretical
results and algorithms that we employ and introduce can be applied to other contexts
as transportation networks, parallel computer architectures, electrical networks, control
systems, fire spreading, etc. The reason why we focus in telecommunication networks,
is that they have been the main driver for the development of reliability measures, the
main metrics we are concerned with in the thesis.

In this chapter we start by discussing several types of network properties that can be
encompassed under the broad concept of network dependability. Then, we focus specifi-
cally on the role played by the evaluation of reliability metrics; this thesis is mainly con-
cerned about one of such metrics, known as the diameter-constrained reliability. Once
this contextual introduction is given, we finally summarize our contributions and the
corresponding list of published and accepted articles.

1.1 Dependability properties of telecommunication networks

Communication networks are increasingly present in our daily lives in different ways. A
vast number of metrics to quantify the service that they deliver to users can be conceived.
Some of these can be simply expressed as binary metrics (e.g. the network is either “up”
or “down”). Other metrics can have a non-binary nature (e.g. network throughput).
One can even think of very complex metrics defined e.g. by assigning different weights
to different classes of “actors” and taking into account throughput, packet loss, delays,
etc. In general we will refer to network performance as the level that a certain network
achieves regarding some well-defined quantitative metric.

During the first decades of telecommunication networks development, the emphasis
was put on metrics that expressed the capacity of a network to keep operating [1]. As
we see later, depending on the model and definition, these metrics are referred to as
availability and reliability. When the first packet switched networks were deployed using
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telephone lines, the main efforts aimed at keeping the lines (and the underlying network
topology) operating. Within this context, a simple differentiation between an “up” and
a “down” state was useful enough, therefore motivating a big deal of research in the field
of reliability anaysis. Improved technologies and reduced costs of networking equipment,
that enabled affordable redundancy, led to the design and deployment of networks that
were much more reliable in terms of connectedness. At the same time, higher data
traffics and more complex applications led to a focus shift from conectedness to more
complex performance metrics able to distinguish between several levels of service [19].
Then, in the late 80’s and 90’s, there came the time for massive deployment of highly
reliable optic fiber lines. The extraordinary capacity of these lines made possible that
single-path networks deliver the required performance levels, provided that the lines were
operational. In this context, reliability models for those lines gained relevance again. At
present, the massive deployment of wireless networks, whose point-to-point links are less
reliable because of reasons like environmental factors and energy-saving concerns, made
connectivity properties gain relevance again. We can say that the historical emphasis
on connectedness has been leveled by the more comprehensive concept of performability,
which encompasses both reliability and performance concerns [1, 20].

The service that real networks offer can be affected by several kinds of failures. Human
errors can cause operational faults, black-outs, the deployment of wrong routes for packet
switching, etc. Humans can also purposely damage networks (sabotage). Design flaws
can result in data loss, insufficient performance, power outages, link saturation or more
subtle problems like jitter. Environmental factors can cause interferences and noise in
wired lines, signal atenuation, intermittent interruptions in wireless links, as well as
more general damages in case of floods, earthquakes and other situations alike. Random
wearout can cause a component to malfunction or to stop operating.

When designing communication networks, engineers must anticipate the possible
sources of failure and performance degradation. Basically, once a mathematical model
for the network has been adopted, two major approaches can be followed, often collabo-
rating through several iterations. On the one hand the network can be designed with the
aim of achieving certain desired properties and performance thresholds; the design algo-
rithms, topologies used, etc. are such that fulfilling these properties is guaranteed. On
the other hand there are network analysis techniques that, given a certain network, allow
to compute, bound or estimate metrics that quantify the properties and performance
metrics we are interested in. An example of interaction can be that of analyzing first a
legacy network, and once its current properties are known, improving it through design
techniques until it reaches the desired levels, more demanding than those achieved by
the original network. This hybrid approach can be also followed when design techniques
are only able to suggest improvements that can probably improve the desired properties
(e.g. heuristics); analysis must be performed on the augmented network to determine
if these properties were reached. In this thesis we are concerned with network analysis
techniques.

When designing systems with the goal of having a failure probability that lies below
a threshold goal, investments can be oriented in two major (compatible) directions. We
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can spend resources trying to improve the individual reliability of single components.
This can be seen as a “local optimization” approach. We can also spend resources by
introducing redundant components in the system (without an extreme focus on their
individual reliability). This can be seen as a “systemic” approach. There are several
reasons why the second approach has traditionally played an important relative role in
network design. For example, this is particulary true when compared to total-quality
manufacturing principles like those of Toyota Production System [2] or Six-Sigma [3],
where major stress is put in producing the reliable units through atomic tasks that are
error-free as much as possible. Firstly, it is very difficult to anticipate all possible sources
of failure that threaten network components. Secondly, the costs of deploying more com-
ponents for having redundancy is often justified by the significant savings achieved using
“just acceptable” components. Think for example of the case of commercial computer
clusters, where great economies are achieved by using commodity servers, at the expense
of some additional units being needed for improved redundancy.

1.1.1 A classification of concepts underlying dependability

Dependability is a broad generic concept that includes attributes such as reliability,
availability, safety, integrity, maintenability and others. Boundaries in the definition of
these concepts have been historically blurred. Some attempts have been made to agree
on precise definitions for helping communication and cooperation among the research
community. What follows is based on [21].

The following definitions, yet focusing mainly on computing and communication sys-
tems, are in general applicable to systems that include human and organizations as part
of their environment. This said, a system is defined as an entity that interacts with
other entities that build its environment. The function of the system is what it is in-
tended to do. It is described, in terms of functionality and performance, by a functional
specification. The behavior of the system is the sequence of states by which the system
implements its function. It is enabled by the system’s structure, which is a recursive set
of components that can be further structurally decomposed or be considered as atomic.
The service delivered by a system is its behavior as perceived by its users, through a
service interface. The total state of a system is the set of the following states: compu-
tation, communication, stored information, interconnection and physical condition. The
part of the provider’s total state that is (is not) perceivable at the service interface is its
external (internal) state.

Of particular importance is the precise definition of failures, errors and faults. A
failure is any deviation from correct service, which is defined as the condition where the
system implements the system function. The period that the failure spans is a service
outage and the transition back to correct service is a service restoration. The occurrence
of a failure implies that the external state has deviated from the correct state; such
deviation is called an error. An error is the part of the total state that may lead to
a subsequent failure. Errors are caused by faults. A fault is said to be active when it
causes an error, otherwise it is dormant. Note that a fault can cause an error that affects
the state of a component that is part of the internal state of the system; in that case,
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the external state might not be immediately affected and no error would occur (at least
immediately). For example, if a single hard drive wich makes part of a RAID-5 array in a
server malfunctions, there is a dormant fault (considering the server as “the system”). If
a second drive starts also to malfunction before the first one is replaced, an error occurs.
This can lead to a failure if the system’s users are affected by this error before the array
is repaired and rebuilt. Note that in general the system provides more than one specific
function to the users. When some (but not all) of them fail, the system is said to be in
a degraded mode and there is a partial failure.

Dependability was originally defined as the ability to deliver a service that could
justifiably be trusted; an alternate definition is whether the system presents or not the
ability to avoid service failures that are more frequent and more severe than is acceptable.
It encompasses the following attributes:

• availability : readiness for correct service (at a given instant t);

• reliability : continuity of correct service (during a given time interval [t1, t2]);

• safety : absence of catastrophic consequences on the user and the environment;

• integrity : absence of improper system alterations;

• maintainability : ability to undergo modifications and repairs.

An additional attribute is confidentiality i.e. the absence of unauthorized disclosure of
information. Confidentiality, together with availability and integrity, define the concept
of security. There has been a trend towards considering at the same time issues related
to dependability and security. Finally, the dependability and security specification of
a system must disclose what the requirements are for the above attributes, in terms of
the acceptable frequency and severity of service failures for specified classes of faults and
given use environments. When designing dependable and secure systems, the means to
achieve the desired levels for each dependability and security attributes can be grouped
in four categories:

• fault prevention: preventing the occurrence or introduction of faults;

• fault tolerance: avoiding service failures in the presence of faults;

• fault removal : reducing the number and severity of faults;

• fault forecasting : estimating the present number, the future incidence, and the
likely consequences of faults.

1.2 Evaluation of reliability metrics

A family of metrics developed in the last 50 years that has received vast consideration
is that of the reliability metrics. Generally speaking, they express the probability that a
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given network that can be in two states from the user’s standpoint (operational/failed),
avoids the failed state during a given time interval (dynamic models) or at any moment
(static models) - see Section 2.2. Some well-defined property of the network determines
the difference between both states. Physical telecommunication networks, regardless of
their size and complexity, are built on top of few basic components. Most networks
can be well represented in terms of two major classes of component: (i) components
that send, receive, process and hold data (sites) and (ii) components that channel data
from one site to another neighbor site (links). For reliability analysis these networks are
often modeled as probabilistic graphs (see Section 2.1). The random failures of sites and
links are modeled as nodes and edges that are labeled with their failure probabilities. A
failing site is a failure for the atomic subsystem “site”); but it is a fault for the system
“network”. Therefore, reliability is related with the fault tolerance category in the context
of dependable systems. The complement of the reliability, called unreliability, is then the
probability that a combination of faults occurs that makes the network be in a failure
state. Considerable effort has been devoted to the study of reliability metrics. On the one
hand this is due to the relevance that connectedness had in particular for real networks
that were developed in the second half of past century. On the other hand because, even
with many simplifying assumptions, the problems that arise are complex, challenging
and far from having reached definitively satisfactory solutions (see Section 3.2). During
the last decades, the focus on connectedness has been broadened to consider performance
concerns, giving rise to the concept of performability, which encompasses both reliability
and performance.

In this thesis we work with reliability metrics defined by a static stochastic model
that consists of a probabilistic graph and a set of distinguished nodes called terminals.
In Chapter 2 we formalize the model and definitions. The classical reliability (CLR)
analysis studies the probability that the terminals are connected. Surveys can be found
in [4, 5, 6]. This metric has been generalized [7] to consider not only connectedness
but also to enforce that the distance between terminal nodes is not above an acceptable
threshold. A survey can be found in [8]. The new metric, called diameter-constrained
reliablility (DCR), allows for modeling contexts where there are limits in the acceptable
number of hops that packets can undergo. This constraint is relevant in several contexts
that are increasingly important since the 90’s. For example, in peer-to-peer (P2P) and
voice-over-IP (VoIP) applications, perceived quality is affected by latency, which is in
turn determined by the number of links traversed by packets. Quality deteriorates as
high hop-distance states occur more frequently in the network. In web applications with
rich interfaces, the quality perceived by the end user is related to responsiveness, where
latency determines the delay between the user actions and their effect on the output
interface.

1.2.1 The independence hypothesis

Most of the methods that have been developed for computing, bounding and estimating
the network reliability assume that the failure of components are independent. This
is due to several reasons. First, predicting and modeling the way that failures depend
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on each other is usually a very complex task. Second, the independence hypothesis
simplifies significantly the mathematical treatment of the problem, thanks to the fact
that probabilities can be conveniently written using factorized expressions. Third, several
sources of faults are well-modeled as independent events. A typical example is component
wearout. Another family is that of human errors, like bad configuration of a network
interface card or accidentally chopping a fiber line due to land-moving activities in a
campus. Dependency between the failure of components can be significant and thus non-
negligible e.g. when considering natural catastrophes (that can affect at the same time
several links), and in particular for performability analysis. For example, the failure of
several links causes that a lot of traffic be channeled through other links, which at this
time makes them more prone to be overloaded and go down. In this thesis, unless locally
specified, we will assume that the independence hypothesis holds.

1.3 Contributions of the thesis

The list below summarizes the contributions of this thesis. We include references to the
chapters where they can be found, as well as to the articles that were written under the
research process leading to the completion of the thesis.

• Results on the computational complexity of the DCR. We survey previous results
on computational complexity for the CLR and DCR problems. Then we prove
that the DCR problem with diameter parameter d = 2 and any fixed number of
terminal nodes can be solved in a time linear in the number of nodes. We give two
alternative proofs for this result. See Chapters 3 and 4, as well as [13].

• Characterization of a family of topologies that has polynomially-computable DCR.
We characterize a broad family of topologies for which the two-terminal DCR can
be computed in polynomial time in the number of nodes of the network. We give
the corresponding algorithm. The family is defined in terms of a certain way to
partition the nodes in subsets with bounded cardinality. Restrictions on the sets
to which both nodes of any edge can belong must be respected. See Chapters 5
and 6.

• Asymptotic analysis of the DCR and basic results. We introduce the question of
analyzing the asymptotic behaviour of CLR and DCR metrics in networks that grow
following precise probabilistic rules. Some basic results are given for the Gilbert’s
model. We show that the DCR tends to 1 provided that the link reliabilities and
diameter parameter d respect relationships, even when a certain degradation of
those reliabilities is allowed. See Section 6.4.

• Monte Carlo methods for DCR metrics. We discuss the differences that arise when
moving from CLR to DCR context, regarding the use of Monte Carlo techniques
for network reliability estimation. A family of methods based on conditioning the
sampling space by pathsets and cutsets is adapted to DCR. We present numerical
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examples that evidence important gains in efficiency relative to crude Monte Carlo
simulations. See Chapters 7 and 8, as well as [14].

• Monte Carlo estimation of performability measures defined in terms of distances.
We define a family of performability measures as a weighted average based on K-
diameter intervals. Then we estimate it, by introducing a Monte Carlo method
that generalizes the one presented for DCR in the previous section. We present
numerical examples that evidence important gains in efficiency relative to crude
Monte Carlo. See Chapter 8 as well as [15, 17, 18].

• Reliability estimation by simulation and polynomial interpolation. We introduce
a novel interpolation algorithm to estimate the reliability polynomial in networks
with uniform edge reliability p. We develop an example for the all-terminal CLR,
but the technique can be applied for DCR and any set K in general. Knowing
the reliability polynomial is useful for performing sensitivity analysis on the edge
reliabliity. The example shows that the dominant coefficients are estimated with
more precision, which is good particularly in the context of high edge reliabilities
(rare failures). See Chapter 10.

The work carried on during this thesis and the results obtained have resulted in the
following articles, either published or accepted for publication:

• [13] E. Canale, H. Cancela, F. Robledo, G.Rubino, and P. Sartor. “On computing
the 2-diameter-constrained K-reliability of networks”, International Transactions
in Operational Research, vol. 20, no. 1, pp. 49-58, 2013.

• [14] H. Cancela, F. Robledo, G. Rubino, and P. Sartor. “Monte Carlo estimation
of diameter-constrained network reliability conditioned by pathsets and cutsets”,
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1. CONTEXT AND MOTIVATION

1.4 Structure of the thesis

This document is organized as follows. Part I includes an introduction to the concept of
dependability in telecommunication networks and, in particular, to the evaluation of the
reliability metrics that this thesis focuses on. Basic concepts from Graph Theory that are
used throghout the thesis are defined in Chapter 2. Also, in Chapter 2, the classical and
diameter-constrained reliability metrics are formally defined, grounding the foundation
for the remaining chapters.

Part II is devoted to the analysis of the computational complexity of the DCR metric.
A survey of previously available results for the CLR and DCR is done in Chapter 3. Then,
in Chapter 4 we contribute results for a particular case that was not yet classified into
complexity classes.

Part III is devoted to the exact calculation of the DCR metric. Chapter 5 includes
a brief survey on exact methods both for the CLR and the DCR. Then, in Chapter 6,
we illustrate how the exact computation of the CLR and DCR metrics can be done
polynomially for certain topologies using dynamic-programming techniques. This chapter
is intended also to illustrate some concepts related to the DCR metric e.g. the distribution
of probabilities for the diameter of the network. We start by developing algorithms
for two simple topologies. We generalize them into a broader family of topologies and
present an algorithm that computes the two-terminal reliabilities in polynomial time.
Finally, in Section 6.4 we introduce the problem of analyzing the asymptotic behaviour
of the DCR metric in networks that grow following strict probabilistic rules drawn from
Random Graph Theory. We introduce basic results for the simplest type of random
graphs (Gilbert’s model).

Part IV is devoted to the estimation of the DCR and related performability measures
by means of Monte Carlo techniques. Chapter 7 motivates and introduces to the use of
this simulation technique in the context of reliability metrics and failures that are rare
events. Chapter 8 describes a family of methods previously introduced for the CLR,
based on sampling conditioned by pathsets and cutsets and adapts it to DCR context.
The chapter is intended to illustrate the differences that arise when moving from CLR to
DCR as well as presenting numerical examples. In Chapter 9 we generalize the method
developed in Chapter 8 for estimation of a performability measure that we define in
terms of the network K-diameter. In Chapter 10 we introduce an algorithm for estimating
reliability measures that combines Monte Carlo simulation with polynomial interpolation.
It is based on estimating the reliability polynomial through Newton’s interpolation based
on estimates of the network reliability for different edge reliability values. The example
developed in the chapter is based on the all-terminal reliability although the technique
can be applied straightforwardly for DCR and any set of terminal nodes.

Finally, Part V summarizes the conclusions that can be drawn from this thesis, further
aspects to analyze, and discusses the current research lines that we are pursuing.
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Chapter 2

Mathematical background and

metric definitions

The main purpose of this chapter is to lay out the mathematical basis of the reliability
metrics used in this thesis. We also illustrate the classical and diameter-constrained net-
work reliability metrics. We start by introducing the necessary definitions and notation
from Graph Theory. Next we introduce the basic concepts we need of multi-component
systems. We finally employ these definitions and concepts to define the classical and
diameter-constrained reliability measures and give an example of each one.

2.1 Graph concepts

In this section we formally define several mathematical objects related to Graph Theory
that we employ throughout this thesis. This is not intended to be a comprehensive
corpus of definitions, but to introduce the particular definitions and notation that we
employed in this work. Observe that there is no complete consensus in Graph Theory
literature about the exact definition of certain concepts, so this section should be useful
for disambiguation in the context of the thesis.

A graph is a mathematical object that represents a set of objects where some pairs of
such objects are related (connected) by links. This is usually represented as G = (V,E),
where G is the graph, V is the set of objects (called vertices or nodes) and E is a family
of pairs called edges or arcs. The edges can be directed (when the pair is ordered) or
undirected (when they are defined by an unordered pair of nodes). A graph can have
loops i.e. edges that relate a node with itself. It can also have multiple edges i.e. more
than one edge connecting the same pair of nodes (in the same order if they are directed).
A simple graph is a graph with no loops and no multiple edges. In the context of this
thesis, unless locally specified, we work always with simple, undirected graphs. Therefore,
we introduce the following definition.

Definition 1. A graph is a pair G = (V,E) where V are called nodes and E ⊆ {{x, y} :
x ∈ E ∧ y ∈ E}. In general we will denote the cardinalities of V and E as n = |V | and

11



2. MATHEMATICAL BACKGROUND AND METRIC DEFINITIONS

m = |E|. We will also denote the edge corresponding to the nodes u and v as both uv or
{u, v}.

Graphs will allow us to model networks, where sites are represented by nodes and
links between them are represented by edges. We will assign probabilities of failures
to the edges and be interested in certain properties that the resulting graphs can have.
Therefore we introduce the definition of probabilistic graphs.

Definition 2. A probabilistic graph is a graph whose nodes and edges are labeled with
probabilities (that can be different in general). That is, G = (V,E,~r) where ri ∈ [0, 1] for
all i ∈ V ∪ E.

We will work with perfect nodes and edges that can fail, so (unless otherwise specified
locally) the vector ~r will be indexed just by the set E. In general, ruv and re will denote
the probability that the edge e = {u, v} is operational. Then, every probabilistic graph
G = (V,E,~r) yields random events that consist of the partial graphs G′ = (V,E′ ⊆ E).
Each of these random events occurs with a certain discrete probability. As we will see,
the final goal is to calculate or estimate the probability accumulated by the random
events for which a certain connectivity property holds.

Definition 3. A walk is a sequence of edges e1, . . . , eℓ such that ei = uivi for i = 1 . . . ℓ
and vi = ui+1 for i = 1 . . . ℓ − 1. The walk is said to connect the nodes u1 and vℓ and
have length equal to ℓ. We say that this is an (u1 − vℓ)-walk.

Observe that the definition of walks allow for visiting the same nodes several times.
A walk where this does not happen is a simple walk. Although there is no consensus,
most authors adhere to the following definition (and so do we in this thesis).

Definition 4. A path is a simple walk. We say that the path corresponding to an (u1 −
vℓ)-walk is an (u1 − vℓ)-path and denote it by giving the sequence of visited nodes as
u1 − u2 − · · · − uℓ − vℓ.

As we said we are interested in evaluating the probability that the probabilistic graphs
that model networks have certain connectivity properties. Next we define the concepts
related to connectivity.

Definition 5. A graph is said to be connected if and only if there is an (s− t)-path for
every pair of nodes s, t ∈ V . Connectedness between nodes is an equivalence relationship
that induces a partition of the nodes in connected components.

We will distinguish certain nodes K ∈ V and call them terminals. In general we will
be interested in connectivity properties that apply only for the nodes of K, and consider
the nodes in V \K as optional ones (nodes that can be optionally used if they help to
achieve the desired properties). This results in the following definitions.

Definition 6. A graph is said to be K-connected if and only if there is an (s− t)-path
for every pair of nodes s, t ∈ K. Observe that the nodes outside of K can optionally be
part of such paths.

12



2.1 Graph concepts

In this thesis we are also concerned with the length of paths that connect terminal
nodes. In general we will accept only path whose length does not exceed a certain
threshold d. Next we introduce several definitions related to this.

Definition 7. The distance between two nodes s and t is the length of the shortest s− t-
path, i.e. the length of the s−t-path with the lowest length (it can be either a non-negative
integer, or infinity if s and t are not connected).

Definition 8. The diameter of a graph (or a certain connected component) is the max-
imum of the set of distances between all pairs of nodes of the graph (or the connected
component). Again, it can be a non-negative integer of infinity.

Definition 9. Given a non-negative integer d, two nodes s, t are said to be d-connected
if and only if their distance does not exceed d.

Definition 10. The K-diameter of a graph (being K ⊆ V ) is the maximum of the set
of distances between all pairs of nodes in K.

Definition 11. A graph is said to be d-K-connected if and only if its K-diameter is not
above d.

The definitions above allow for a short introduction to the problem of computing
the reliability metrics we deal with in this thesis. Assume that a probabilistic graph
G modeling a network with edges that can fail, a set of terminals K and a distance
threshold d are given. Computing the classical reliability (CLR, Section 2.3) and the
diameter-constrained reliability (DCR, Section 2.4) consist of computing the probability
that the graph is K-connected or d-K-connected respectively. Next we define some
additional objects that play an important role in the techniques used for computing and
estimating these measures.

Definition 12. Given a graph G = (V,E) and a set of terminals K ⊆ V , a subset of
edges E′ ⊆ E is said to be a pathset if and only if the partial graph G′ = (V,E′) is
K-connected. Conversely, the subset E′ is said to be a cutset if and only if the partial
graph G′ = (V,E \ E′) is not K-connected.

The context will always make clear what the set K is. Taking into account the
condition of useful paths not being longer than a certain threshold d, results in the
following definition.

Definition 13. Given a graph G = (V,E), a set of terminals K ⊆ V and a positive
integer d, a subset of edges E′ ⊆ E is said to be a d-pathset if and only if the partial
graph G′ = (V,E′) is d-K-connected. Conversely, the subset E′ is said to be a d-cutset
if and only if the partial graph G′ = (V,E \ E′) is not d-K-connected.

In general we will refer to pathsets and d-pathsets (alternatively, cutsets and d-
cutsets) just as “pathsets” (“cutsets”). The context will make clear if there is a parameter
d involved and its value in that case. Note that pathsets and cutsets (with no parameter
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2. MATHEMATICAL BACKGROUND AND METRIC DEFINITIONS

d) can be seen as d-pathsets and d-cutsets respectively for any d ≥ n − 1. Consider a
probabilistic graph G = (V,E,~r) and one of the random events G′ = (V,E′′ ⊆ E). Then,
a pathset E′ is said to operate in G′ if and only if E′ ⊆ E′′. Similarly, a cutset E′ is
said to fail in G′ if and only if E′ ∩ E′′ = ∅. Pathsets and cutsets are concepts widely
employed in reliability analysis because they account for sets of edges whose presence
(respectively absence) guarantees (respectively deters) connectivity.

Observe that adding an edge to a pathset results in another pathset. The same
applies to cutsets. But there are pathsets (cutsets) for which the suppression of any edge
results in an edge set that is not a pathset (cutset). Formally this leads to the following
definition.

Definition 14. A set of edges E′ ⊆ E is a minpath (respectively mincut) if and only if
it is a pathset (cutset) and for any e ∈ E′ it holds that E′ \ {e} is not a pathset (cutset).

Minpaths and mincuts are thus minimal-cardinality edge sets, whose presence and
absence respectively determines that the network is connected or disconnected, in a
certain context given by a well-defined terminal set K and an eventual length threshold
d.

The above definitions are illustrated in Figure 2.1. The modeled network has 6
nodes and 9 edges. Two nodes, s and t, are considered as terminals. Different pathsets
and cutsets are represented by thick, dashed and double lines, whereas dotted lines
represent the remaining links. Figures (a), (b) and (c) show respectively two pathsets
for K = {s, t}, one 3-pathset and one 4-pathset. These are also minpaths; observe that
when |K| = 2, as in the example, all minpaths are paths. Similarly, Figures (d), (e)
and (f) show respectively three cutsets for K = {s, t}, one 3-cutset and one 4-cutset.
Suppressing the edges of the 4-cutset in (f) does not disconnect s and t but breaks every
possible path whose length is lower or equal to 4. Analogously as for (a), (b) and (c),
the cutsets illustrated are also mincuts. When working with no length constraint (or
d ≥ n − 1), a minpath is always a tree whose leaves are exactly the nodes of K. When
there is a length constraint d < n − 1, this is not necessarily true and minpaths can in
general have cycles.

2.2 Multi-component systems

Communication networks can be seen as multi-component systems. In general, a multi-
component system is a system built by several (M) components. Each component can be
in one of two possible states. Each combination of the component’s states results in the
overall system having one of two states too. One of these binary states is normally referred
to as operational, working or up. The other binary state is normally referred to as failed
or down. Conventionally, both states are represented by the integers 1 and 0 respectively.
A state vector or configuration of the system is a vector ~x = (x1, . . . , xM ) ∈ {0, 1}M .
The value of xi : i ∈ 1, . . . ,M indicates the state of the i-th component of the system
(following a certain conventional order). As we said, every possible configuration ~x results
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Figure 2.1: Pathsets and cutsets.

in the system being in a state represented by 1 or 0. Hence, there exists a structure
function Φ defined as follows:

Φ : {0, 1}M → {0, 1}

Φ(~x) =

{
1 if the system is operational when the configuration is ~x,

0 if the system is failed when the configuration is ~x.

Observe that there are 2M different functions that respect this definition. The par-
ticular one to be used depends on the specific aspect of the real situation that is being
modeled. For example, two systems with M components may be such that one is said
to work when (and only when) all of its components work, while the other is said to
work whenever there is at least one component that works. Moreover, there may be
different aspect to evaluate for the same real situation, that result in different Φ func-
tions. Consider for example an office with M employees. One could say that the office
“works” if there is at least one employee present. Alternatively, one could also say that
the office “works” if certain essential employees are present, regardless of the remaining.
Both result in different Φ functions for the same reality (the office).

Frequently, structure functions are assumed to be coherent, meaning that the follow-
ing three properties hold for them:

• (i) Φ(~0) = 0;

• (ii) ~x ≤ ~y → Φ(~x) ≤ Φ(~y);

• (iii) (∀i)(∃~x) : Φ(~x, 0i) 6= Φ(~x, 1i);
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2. MATHEMATICAL BACKGROUND AND METRIC DEFINITIONS

where ~0 denotes a configuration where all entries are 0, ~x ≤ ~y denotes the fact that
xi ≤ yi for all i (similarly for ~x < ~y) and (~x, 0i) denotes the configuration obtained from ~x
by setting xi to 0 (similarly for (~x, 1i)). Condition (i) states that the system cannot work
if no component works. Condition (ii), monotonicity, states that bringing up components
can never result in the system switching from the up state to the down state. Condition
(iii) states that all components are meaningful regarding the system state, since for each
one there is at least one configuration for which changing its state affects the state of the
system. It follows from condition (iii) that there must exist configurations that result in
the system being up. In the field of reliability analysis, systems are usually coherent. This
is the case of the models that we study here. Nevertheless there are also non-coherent
systems, as the classical model where nodes can fail and the system is considered to be
operational if and only if the surviving nodes are connected; in this case, the monotonicity
condition does not hold.

Once the function Φ is defined, a framework must be set for its probabilistic analysis.
Let us see the main ones and how the reliability (as a function of the time t) and avail-
ability (as a function of time intervals [0, t] or [t1, t2]) are defined. There are stochastic
models where all components start in operational state (t = 0), fail independently and
then remain failed forever (there is no repairing capability). Defining as reliability the
probability that a component/the system is up in time t (reliability) and as availability
the probability that a component/the system is always up in the interval [0, t] (or [t1, t2]),
we observe that in these models the reliability and availability of the system coincide.
Other stochastic models allow for repairing components, which takes a certain time. In
this case, the system can switch between the operational and failed state as components
fail and are repaired. Observe that when allowing repairs, failure of a set of components
whose simultaneous failure implies a system failure does not guarantee a system failure.
If the components are repaired in times such that there is no time when all of them are
in a failed state simultaneously, the system will not necessarily fail. A comprehensive
set of definitions related to the more general concept of dependability (that subsumes
more specific concepts such as reliability, availability, safety, integrity, maintainability
and others) can be seen in [21]. When performing asymptotic analysis, the availability
of a component can be estimated [11] as the ratio between the mean time to failure and
the sum of it and the mean time to repair. This definition is extensible to the system
availability of the system. But the most usual framework in classical literature for reli-
ability analysis is a static stochastic model, where the state of the i-th component is a
Bernoulli random binary variable Xi and the M random variables are independent. This
is the model we work with in this thesis. In this time-independent model, both the terms
availability and reliability R are used for referring to the probability that the network
system is operational, that is,

R = Pr(Φ(X) = 1) = E(Φ(X))

with X = (X1, . . . , XM ).
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2.3 Classical reliability metrics

2.3 Classical reliability metrics

As said before, the classical model for network reliability analysis is a stochastic static
model where the network is represented by a probabilistic graph. Nodes model the
sites and edges model the communication lines. If there is at least one line that is
uni-directional then a directed graph must be used. If all lines are bi-directional then
an undirected graph can be used. If several lines exist that connect the same pair of
sites, they can be replaced in the model by a single line whose reliability is equal to
the probability that at least one of such lines are operational (see Section 5.1.1). In
the context of this thesis we will work with networks that have perfect nodes (they
never fail, i.e. their reliability is equal to 1) and edges that fail independently with
known reliabilities. Therefore we will model the network as a simple, undirected and
probabilistic graph. Once the graph model is chosen, the structure function Φ must be
defined somehow. This is done by means of some connectedness property of the graph;
the reliability of the network is then defined as the probability that this property holds
for the graph. Classical literature distinguishes three main reliability analysis problems
for which the corresponding property states that:

• two-terminal : two well-defined nodes, known as “source and terminal”, often de-
noted as s and t, belong to the same connected component of the graph (there is
a path that connects both nodes);

• all-terminal : the graph is connected (i.e. there must be one single connected
component);

• K-terminal : only a certain subset of nodes K are required to belong to the same
connected component (the graph is K-connected). This model subsumes the two
previous ones.

Recall that we refer throughout this thesis as CLR both to the classical reliability
context as well as the specific problems that we define next (the context will make it
clear, in each occurrence, what the meaning is).

Definition 15. Given a probabilistic graph G = (V,E) and two nodes s, t ∈ V , we define
as {s, t}-CLR the problem of computing the probability R(G, {s, t}) that the nodes s and
t are connected.

Definition 16. Given a probabilistic graph G = (V,E) we define as all-terminal-CLR
the problem of computing the probability R(G, V ) that G is connected.

Definition 17. Given a probabilistic graph G = (V,E) and a subset K ∈ V , with
|K| ≥ 1, we define as K-CLR the problem of computing the probability R(G,K) that the
graph is K-connected.

Let us illustrate the previous definitions by means of an example. Figure 2.2 presents
the model for a certain network with four sites and four links. Each edge in the graph is
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2. MATHEMATICAL BACKGROUND AND METRIC DEFINITIONS

labeled according to its reliability (in the example the values are 0.2, 0.4, 0.6 and 0.8).
Depending on what the terminal set is, several reliability measures can be computed. In
Figure 2.3 we compute the reliability for terminal sets of sizes 2, 3 and 4. There are
sixteen different configurations that can result from the combination of the edge states.
Each configuration xi has a probability of occurrence associated, which by virtue of
the independence of failures is computed as the product of the reliabilities of operational
edges times the product of the unreliabilities of failed edges. The three rightmost columns
identify the configurations that belong to the events “the graph is {s, t}-connected”, “the
graph is connected” and “the graph is {s, t, u}-connected”. Summing each of these right-
most columns yields respectively the two-terminal (s, t) CLR, the all-terminal CLR and
the K-terminal CLR for K = {s, t, u}. This is known as state enumeration method.
Regarding the network, each configuration represent an elementary random event, with
a known probability of occurrence. The events that we are interested in (connectedness
of a certain set of nodes) are events that encompass several elementary events, i.e. sev-
eral configurations. Observe that the procedure followed here to compute the CLR is
simple and straightforward yet has a major drawback; it requires an effort, measured as
the number of elemental mathematical operations to compute, that grows exponentially
with the number of edges. Hence the interest in developing more efficient methods for
computing, bounding and estimating these measures.

s

u t

v

0.6

0.2

0.4 0.8

Figure 2.2: A network with 4 nodes and 4 edges.

2.4 Diameter-constrained reliability metrics

The structure function Φ is defined just in terms of connectedness for the CLR. But in
several contexts, the distance between nodes can be relevant too and affect the way Φ is
defined. In [7] the authors introduced a model that subsumes the CLR model by adding
an upper limit for the distance between terminals. Similarly to what we did for the CLR,
we next define the DCR (diameter-constrained reliability). Again, recall that we refer
as DCR both to the context where such upper limit is imposed as well as to the specific
problem of computing the diameter-constrained network reliability.
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2. MATHEMATICAL BACKGROUND AND METRIC DEFINITIONS

Definition 18. Given a probabilistic graph G = (V,E), two nodes {s, t} ∈ V and an inte-
ger d > 0, we define as {s, t}-DCR the problem of computing the probability R(G, {s, t}, d)
that the nodes s and t are d-connected.

Definition 19. Given a probabilistic graph G = (V,E) and an integer d > 0, we define
as all-terminal-DCR the problem of computing the probability R(G, V, d) that G is d-
connected (i.e. it has a diameter value that is lower or equal to d).

Definition 20. Given a probabilistic graph G = (V,E), a subset K ∈ V with |K| ≥ 1
and an integer d > 0, we define as K-DCR the problem of computing the probability
R(G,K, d) that the graph is d-K-connected.

From these definitions, it follows that a DCR problem where d ≥ n− 1 is equivalent
to the corresponding CLR problem. But, when d < n − 1, there can be configurations
where the terminal set is connected but not d-connected. This results in the following

Property 1. For every probabilistic graph G = (V,E), set K ∈ V and integers 1 ≤ d ≤
d′, it holds that R(G,K, d) ≤ R(G,K, d′).

For illustration purposes, we recall the example network of Figure 2.2 and compute
the corresponding DCR measures for a value of d = 2 in Figure 2.4.

Observe that, in this case, the DCR and CLR coincide for the two-terminal problems,
but the DCR is lower than the CLR both for the all-terminal as well as the K-terminal
problems.
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!"

#"

$"

%"

&"

'"

("

)"

*"

!+"

!!"

!#"

!$"

!%"

!&"

!'"

+,+$)%"

+,++*'"

+,+#&'"

+,++'%"

+,+&('"

+,+!%%"

+,+$)%"

+,++*'"

+,!&$'"

+,+$)%"

+,!+#%"

+,+#&'"

+,#$+%"

+,+&('"

+,!&$'"

+,+$)%"

✔"

✔"

✔"

✔"

✔"

✔"

✔" ✔"

✔"

✔"

✔"

✔"

-./01,"2" 34526" 789:;" <" 789:9=;"

>.?@"A@:"B"

!"#$%$& !"!#'(& !")(!!&%"!!!!&

Figure 2.4: An example of three DCR measures (same network, different terminal set).
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Part II

Computational complexity
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Chapter 3

The computational complexity of

DCR metrics

3.1 About the analysis of computational complexity

3.1.1 Computational problems

In this part of the thesis we are concerned with concepts like the “effort” or “difficulty”
of computing the DCR; as well as several subproblems derived from it (specific cardinal-
ities of K, diameters d, topologies, etc.). Let us start by making these concepts precise.
The computational complexity theory sets a formal framework to classify computational
problems into several classes, according to their inherent difficulty. Computational prob-
lems are formalizations of the concept of “problem”. A computational problem can be
viewed as a collection of pairs <instance-of-the-problem, solution-for-it>. There are
several ways for specifying the instances and their solutions, whose nature are deeply
related; in general they consist of strings defined over a certain alphabet. The simplest
one (in terms of the alphabet) is the binary string defined over the alphabet {0, 1}. An
example of a computational problem is that of determining wheter a given positive in-
teger number is prime or not. In this case, the instances are integer numbers (that can
be represented as binary strings using base-two notation), and the solutions are {yes,
no} (also, representable as single-symbol binary strings). There are different categories
of computational problems according to the possible anwers or outcomes. The simplest
ones are the recognition problems, also known as decision problems, for which the answer
is binary (yes/no), as in the “is it prime?” example. Decision problems can be seen as
formal languages, where the strings that belong to the language correspond to (and only
to) the problem instances for which the answer is “yes”. A broader category of problems
is that of the function problems, where the set of possible solutions has more than two
members. Consider the problem of finding the minimum-cost spanning tree of a given
connected, undirected graph, with cost labels in each edge. In this case each instance
can be specified by a binary string that encodes the adjacency matrix of the graph and
each edge cost; the solution to the instance will be some binary string representing the

25



3. THE COMPUTATIONAL COMPLEXITY OF DCR METRICS

edges that build the optimal spanning tree. Observe that the function problem of finding
the square of an integer i, is equivalent to the decision problem of determining wheter
(i, j) are such i2 = j for every pair of integers i, j, in the sense that once an algorithm is
available that solves one of these problems, we can easily cast an algorithm for solving
the other problem (although nothing is yet said about the relative efforts). Optimiza-
tion problems are not different from function problems; the mentioned problem of the
minimum-cost spanning tree is equivalent to the following decision problem: determine
if a (graph, subtree) pair (G, T ) is such that no subtree T ′ of G exists whose cost is lower
than that of T . A very important question about computational problems is that of the
tractability. A problem is said to be tractable if there is an algorithm that returns a
solution for every instance with a finite amount of effort (time, number of steps, amount
of memory or any other measure of complexity). Note that nothing is said about the
amount of effort (other than being finite for all instances). It is well known that not all
problems are tractable. Kurt Gödel [22] proved that there exist problems for which no
such algorithm exist via his two famous incompleteness theorems. The first one states
that no consistent system of axioms can prove all arithmetic truths that hold for the
natural numbers; whilst the second one extends the first one to prove that such a system
cannot prove its own consistency.

3.1.2 Computational complexity

Besides the theoretical question of whether a certain problem is tractable or not, the
effort undergone to solve a given problem is very relevant for practical applications; in
particular, how it evolves as the instances of the problem become larger. One possible
definition for the concept of “instance size” is the length of the binary string that rep-
resents the instance. Then, computational complexity theory deals with analyzing the
solution time, space and other resource-consumption metrics that a machine spends to
solve a problem, as a function of the instance size. Several models of theoretical machines
have been defined to formalize such metrics; the most famous one is that of the Turing
machine, introduced in [23]. It is a device that reads and writes symbols contained on a
tape with discrete slots. Each operation performed (reading a symbol, moving the tape
one slot, etc.) adds one unit to the total “time”. The Turing machine is then a theo-
retical model that allows to make precise the definition of resource metrics as time and
space, and are used to classify problems into several classes of computational complexity.
The maximum number t(x) of basic steps that the Turing machine performs, to answer
yes/no for a decision problem instance of size x, defines the time complexity of the prob-
lem; therefore it is said that the problem takes time t(x) to be solved. The nature of the
function t(x) defines the most usual complexity classes. The most prominent classes of
decision problems are:

• P : These are the decision problems that can be solved, in polynomial time, by a
deterministic Turing machine (a machine where there are precise and deterministic
rules of what to do according to the tape current position and the symbol stored
on it). Because of their polynomial time, these problems are usually seen as “effi-
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ciently solvable”; at least by contrast to those problems for which the best-known
algorithms have exponential times.

• NP : These are the decision problems that can be solved, in polynomial time, by a
non-deterministic Turing machine (an imaginary machine where there can be many
transitions associated with each tape position and symbol combination; all possible
courses of action are taken at the same time, “forking” the execution flow into many
simultaneous replicas of the machine). This class of problems contain the class P.
There are many common NP problems for which no polynomial-time algorithm is
known.

It is believed, although not yet proved, that the class NP is different than P, i.e. that
there are problems that belong to NP but not to P. To compare different classes, the
notions of hardness and completeness are used. A problem X is said to be hard for a
class C (or C-hard) if all problems in C can be reduced to X. Here, “reduced” means
that the problems in C can be transformed into X with a number of steps that respects
certain restrictions; the most used one (and throughout the rest of this work) is that of
being polynomial in the instance size. If X is hard for the class C and at the same time
X is a member of C, then X is said to be complete for C (or C-complete). One can think
of these problems as the most difficult to solve within the class C. There are problems
that are NP-complete, as first shown in [24] with the boolean-satisfiability SAT theorem.
Observe that, if a problem X that is C-complete for a certain class C can be reduced
to another problem Y , then Y is also C-complete; this is a recurrently used procedure
to classify problems. Several compendia of known NP-complete problems exist (and for
other classes too); the first one published was Karp’s 21 NP-complete problems in [25].

Other commonly used complexity classes are those for counting problems. A prob-
lem X is said to be a counting problem, if its solution is a non-negative integer, that
corresponds to the number of alternate paths that a certain non-deterministic Turing
machine can follow that lead to a solution. In other words, they can be stated as “given
an instance x, determine how many y exist such that (x, y) is recognized by a certain
non-deterministic Turing machine”. For example, counting the number of spanning trees
of a given undirected graph, or counting the number of different prime factors of a given
integer, are both counting problems. It follows from its definition that every counting
problem is associated to a decision problem (in the examples, determining if a certain
graph is a subtree of the input graph, and determining if a certain integer is a prime
factor of the input integer). The complexity class of the counting problems whose under-
lying decision problem is NP, is known as #P (sharp-P); similarly, #P-complete denotes
those counting problems whose underlying decision problem is NP-complete.

27



3. THE COMPUTATIONAL COMPLEXITY OF DCR METRICS

3.2 Known results on the complexity of reliability metrics

3.2.1 Known results for CLR

The problems of reliability analysis can be related to discrete combinatorial problems,
by means of the special case where all edges have the same reliability r. Observe that in
this case, computing R(G,K) consists of evaluating the following reliability polynomial :

R(G,K) =

m∑

i=0

Fir
m−i(1− r)i.

Finding this polynomial is denoted as the f-Rel problem in [11]. Each coefficient Fi

is the number of operational configurations that have exactly i failing edges. So, the
determination of each coefficient Fi is a counting problem, thus at least as difficult as
their associated decision problem - determining whether a certain configuration with
exactly i failing edges is operational or not. It is easy to see that the latter belongs to
the P class for CLR and DCR problems; e.g. it suffices with doing breadth-first-searches
between every pair of terminals, which can be done in |K|(|K| − 1)/2O(m) = O(m3)
time. But, as we see below, counting many Fi is an NP-hard problem. When edge
probabilities can differ, yet being rational numbers, the problem is denoted as r-Rel in
[11]; there it is proved by polynomial-time reduction that, if f-Rel is NP-hard, then r-Rel
is NP-hard too. As a generalization of r-Rel, the same applies then to the CLR problem
(where edge reliabilities can be different and any real number in [0, 1]). The authors
then present the following theorem from which they later derive several results for CLR
complexity.

Theorem 3.1. (Ball, Colbourn, Provan 1992): If any of the following hold, then f-Rel
and r-Rel are NP-hard:

• The minimum cardinality pathset recognition problem is NP-hard;

• The minimum cardinality pathset counting problem is NP-hard;

• The minimum cardinality cutset recognition problem is NP-hard;

• The minimum cardinality cutset counting problem is NP-hard;

• The problem of determining a general coefficient of the reliability polynomial is
NP-hard.

Table 3.1, taken from [11], summarizes the known results for each condition in Theo-
rem 3.1 and for the two-terminal, K-terminal and all-terminal CLR problems. Therefore,
by virtue of the theorem, the three versions of the CLR happen to be NP-hard. The
case “min. card. pathset rec.” vs. “all-term”, not justified in [11], consists of counting
the number of spanning trees of the graph G. This can be done in polynomial time by
virtue of Kirchoff’s matrix tree theorem using the non-zero eigenvalues of the Laplacian
matrix; see [26].
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Table 3.1: Complexity results related to Theorem 3.1; (* means polynomial, ! means
NP-hard

. two-term K-term all-term

min. card. pathset rec. *[25] ![27] *
min. card. cutset rec. *[28, 29] *[28, 29] *[28, 29]

min. card. pathset count. *[25] ![30] *[31]
min. card. cutset count. ![32] ![32] *[30, 33]

gen. term. count. ![25] ![34] ![32]

The problem of computing the CLR remains NP-hard even when restricted to cer-
tain stuctured networks. Provan [35] shows that the two-terminal CLR problem remains
NP-hard for the (very restrictive) condition that the graph is planar and has node de-
grees bounded by three. The high complexity of the CLR problem has motivated intense
research on developing bounds and estimators; exact computations are feasible for net-
works that belong to certain topologies only, or with sizes that allow applying the best
available methods yet having exponential times.

3.2.2 Known results for DCR

As a generalization of the CLR problem, the two-terminal, K-terminal and all-terminal
DCR problems are NP-hard too. The addition of a bounded-length constraint increases
considerably the complexity of several problems on graphs. For example, the min-max
equality of Menger’s theorem and the Dantzig-Fulkerson’s max-flow min-cut theorem
do not hold anymore, when bounds are imposed to the path lengths. Also, in [9], the
authors summarize the complexity of the decision problems asking for the existence
of edge-disjoint pathsets and cutsets with a given cardinality j for a given diameter
constraint d. They show that these problems are NP-hard when one or both of j and
d are considered as inputs, and belong to the FTP complexity class1 when both are
parameters. Regarding particular cases of the DCR, it is proved in [10] that computing
the d-K-DCR is NP-hard when the diameter d > 2 and |K| ≥ 2 is any fixed number of
nodes. They also show that for complete topologies where the edge set are partitioned
using a certain pattern that allows at most four equi-reliable classes, the two-terminal
DCR can be computed in polynomial time.

The following list resumes what was known about the complexity of the DCR when
restricting k = |K| and d to have certain values.

• k = 2 and d = 2: polynomially solvable [10];

• any k and d ∈ [3, n− 1]: NP-hard [10];

1FTP is the complexity class FTP of the parameterized problems taking time O(f(p)g(i)), where f

is any function on the parameters p and g is any polynomial on the inputs i
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• any k and d ≥ n− 1: NP-hard [11] since the problem is equivalent to the CLR.

The following cases were not yet covered by existing literature:

• The DCR subproblem with K-diameter two and any fixed |K|;

• The DCR subproblem with |K| as an input for the complexity analysis.

In the remaining sections of Part I, we contribute to the knowledge on the complexity
of computing the DCR, by introducing results for the first case.
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Chapter 4

The DCR subproblem with

K-diameter two and any fixed |K|

In this section we prove that the 2-K-DCR belongs to the FTP complexity class when
considering |K| as a parameter; in particular it is linear in min{|V |, |E|} when |K| is
fixed. Recall that FTP is the complexity class of the parameterized problems taking time
O(f(p)g(i)), where f is any function on the parameters p and g is any polynomial on the
inputs i. First, in Section 4.1 we develop the case where |K| = 3. Then we generalize it
in Section 4.2 for any |K|, by finding a closed formula for computing the R(G,K, 2) and
showing that it can be computed in a time linear in n. Then, in Section 4.3, we present
an alternative demonstration, based on finding a recursive formulation for R(G,K, 2)
and showing that it is indeed linear in n, i.e, O(n). Finally, in Section 4.4 we comment
on the case where K is a free input for the complexity analysis, whose complexity has
not yet been determined.

An article based on the recursive formulation above mentioned for the case d = 2 and
fixed K was published in the journal International Transactions in Operational Research;
see [13].

4.1 Computing the 2-DCR with |K| = 3

Let us start analyzing the subproblem of the DCR where the terminal set is K = {1, 2, 3}
and the diameter parameter d = 2. The only edges whose state is important when
computing R(G,K, 2) are those that link two nodes of K and those that link a vertex
of K to a vertex of V \K. Let us call central nodes the set of nodes V \K and denote
it as V \ K = {b1, b2, . . . , bs}, being s = n − 3. Note that we can consider that every
central node is linked to every terminal node by adding to G edges with probability
of operation equal to zero. Recall from Section 2.2 that every network configuration x
defines a random event (X = x). Then, let us define:

• for every central node bh and subset T ⊆ K, we define eh,T as the event where T is
exactly the set of terminals that are linked to bh by operational edges. We define
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also eh,∗ as the conjunction of all states eh,T with |T | ≤ 1. Then, in what follows,
we can partition the events for each central node h as {eh,123, eh,12, eh,13, eh,23, eh,∗};

• for every edge (u, v) linking two nodes of K we define euv,1 and euv,0 as the events
where the edge is operational or failing respectively.

Observe that the events above defined for different central nodes are independent, and
so are the events defined for different edges within K. Let us introduce the following
expression F to generate all possible combinations of these events. For ease of notation,
(+) and (·) denote the disjunction and conjunction operators respectively.

F =(e12,0 + e12,1)(e13,0 + e13,1)·
· (e23,0 + e23,1)(e1,∗ + e1,12 + e1,13 + e1,23 + e1,123) · · ·
· · · (em−1,∗ + em−1,12 + em−1,13 + em−1,23 + em−1,123)·
· (em,∗ + em,12 + em,13 + em,23 + em,123) =

∏

u 6=v∈K

(euv,0 + euv,1)

s∏

h=1

(eh,∗ + eh,12 + eh,13 + eh,23 + eh,123)

The function F is a multinomial whose development indicates every possible event
of the system (among those defined in the above bullet points), that is relevant for
computing R(G,K, 2). By virtue of the independence hypothesis, the probability of any
monomial will be the product of the probabilities of its factors.

Now let us analyze the events where the network has K-diameter two. Let us denote
as t(u, v) the lowest central node that is connected to both u, v by operational edges
(where “lowest” refers to any arbitrary labeling of the central nodes b1 < b2 < · · · < bs).
Then we can partition those states as follows:

• (a) at least two edges (u, v) with u, v ∈ K are operational;

• (b) one and only one edge (u, v) with u, v ∈ K is operational

– (b.1) there is at least one central node h for which it holds that eh,123;

– (b.2) it holds that e12,1 ∧ t(13) < t(23);

– (b.3) it holds that e12,1 ∧ t(23) < t(13);

– (b.4) it holds that e13,1 ∧ t(12) < t(23);

– (b.5) it holds that e13,1 ∧ t(23) < t(12);

– (b.6) it holds that e23,1 ∧ t(12) < t(13);

– (b.7) it holds that e23,1 ∧ t(13) < t(12);

• (c) no edge (u, v) with u, v ∈ K is operational

– (c.1) there is at least one central node h for which it holds that eh,123;

32
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– (c.2) t(12) < t(13) < t(23);

– (c.3) t(12) < t(23) < t(13);

– (c.4) t(13) < t(12) < t(23);

– (c.5) t(13) < t(23) < t(12);

– (c.6) t(23) < t(12) < t(13);

– (c.7) t(23) < t(13) < t(12).

The events (a) will be:

(a) =(e12,1e13,1e23,1 + e12,1e13,1e23,0 + e12,1e13,0e23,1 + e12,0e13,1e23,1)
s∏

h=1

(eh,∗ + eh,12 + eh,13 + eh,23 + eh,123)

The events (b.1) can be obtained by the following aggregation of disjoint terms, based
on partitioning according to the first central node that is connected to the three nodes
of K:

(b.1) =(e12,1e13,0e23,0 + e12,0e13,1e23,0 + e12,0e13,0e23,1)

s∑

k=1

{
k−1∏

h=1

(eh,12 + eh,13 + eh,23 + eh,∗)ek,123

s∏

h=k+1

(eh,123 + eh,12 + eh,13 + eh,23 + eh,∗)

}

The events (b.2) can be obtained by another aggregation of disjoint terms, based on
partitioning according to the possible pairs (i, j) of central nodes that are the lowest ones
connected respectively to 13 and 23 in K:

(b.2) =e12,1e13,0e23,0

∑

1≤i<j≤s

{
(
i−1∏

h=1

(eh,∗ + eh,12)ei,13

(

j−1∏

h=i+1

(eh,∗ + eh,12 + eh,13))ej,23(
s∏

h=j+1

(eh,∗ + eh,12 + eh,13 + eh,23))





The events (b.3) to (b.7) can be obtained analogously to (b.2). The events (c.1) are
similar to (b.1):

(c.1) =(e12,0e13,0e23,0)

s∑

k=1

{
k−1∏

h=1

(eh,12 + eh,13 + eh,23 + eh,∗)ek,123

s∏

h=k+1

(eh,123 + eh,12 + eh,13 + eh,23 + eh,∗)

}

The events (c.2) can be obtained by another aggregation of disjoint terms, based on
partitioning according to the possible triads (i, j, k) of central nodes that are the lowest
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ones connected respectively to 12, 13 and 23 in K:

(c.2) =e12,0e13,0e23,0

∑

1≤i<j<k≤s

{
(
i−1∏

h=1

eh,∗)ei,12(

j−1∏

h=i+1

(eh,∗ + eh,12))ej,13

(
k−1∏

h=j+1

(eh,∗ + eh,12 + eh,13))ek,23(

j−1∏

h=i+1

(eh,∗ + eh,12 + eh,13 + eh,23))





Finally the events (c.3) to (c.7) can be obtained analogously to (c.2). Now, to compute
R(G,K, 2) we must add the probability of the events (a), (b.1) . . . (b.7) and (c.1) . . . (c.7).
Translating the previous expressions into probabilities is straightforward since the unions
are disjoint and the intersections involve independent events. There are no more than
23 = 8 combinations of events euv,01. Regarding each central node bh, there are no more
than 25 non-elementary events determined by the union of some of eh,∗, eh,12, eh,13, eh,23
and eh,123. So there is a number of building blocks for the previous expressions that can
be computed with an effort that is O(s). Then, the probabilities for (a), (b) and (c) can
be computed with efforts that are:

• (a) O(1) (computing the product operator is needless since it will always be equal
to one);

• (b.1) O(s2) (dominated by a summation of s terms, each involving a product of s
factors);

• (b.2) O(s2) (dominated by a summation of s(s−1) terms, each involving s factors);

• (c.1) O(s2) (similar to b.1);

• (c.2) O(s3) (dominated by a summation of
(
s
3

)
= s(s − 1)(s − 2)/6 terms with s

factors).

We have therefore shown that R(G,K, 2), with |K| = 3, can be computed in a time
that is polinomial in s = |V \K| = n− 3 i.e. polinomial in n. In the next two sections,
we generalize these ideas to demonstrate that this holds true for any value of |K| that
is fixed, i.e. where |K| is not an input but a parameter for the complexity analysis; and
that it is indeed linear in n.

4.2 A proof of linearity for any (fixed) |K|
Let us start by introducing some notation elements. In this section we work with a
complete graph G =< V,E >, where the edges xy that correspond to real links have a
probability of operation p(xy), and those that do not correspond to real links are assigned
p(xy) = 0. Additionally:
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4.2 A proof of linearity for any (fixed) |K|

• given K ⊆ V , a 2-pathset is any E′ ⊆ E such that the partial graph (V,E′) is
2-K-connected;

• we denote by s the number of nodes not in K, that is, s = |V \K| = n− |K|;

• we denote by O2
K(E) the set of 2-pathsets determined by E and K (following the

notation of [8]);

• we denote by X{m} the set of all subsets of a certain set X that have m different
elements, that is, X{m} = {Y ⊆ X : |Y | = m};

• we denote by X(m) the set of all m-tuples built with different elements of a certain
set X, that is, X(m) = {Y ∈ Xm : i 6= j → Yi 6= Yj};

• we denote by ⊗ the binary operator defined as:
(a1, a2, . . . , an)⊗ (b1, b2, . . . , bn) = {(a1, b1), (a2, b2), . . . , (an, bn)};

• we call requirement to any set of two nodes {x, y} ⊆ K{2} and denote it by xy.
We say that a requirement xy is satisfied if there is a path of length at most two,
composed only by operational edges, that connects the two nodes xy;

• we denote by P(A) the powerset of a certain set A.

4.2.1 Demonstration plan

We start by finding an analytical expression for computing RK(G, 2). To do so, we par-
tition O2

K(E) in disjoint components whose probabilities are then computed and totaled.
We build a function f : O2

K(E) → A (with a certain discrete codomain A conveniently
chosen) and then compute the probability of the domain by totaling the probabilities of
all preimages of A:

RK(G, 2) = Pr(O2
K(E)) =

∑

a∈A

Pr(f−1(a)) (4.1)

The set A is defined as

A =

s⋃

ℓ=0

(
(V \K)(ℓ) ⊗ P(K)(ℓ)

)
.

Each element of A is a set of pairs (t, C), where t is a node of V \K and C is a subset of
K. We see each such element of A as a collection of sets of edges between nodes of V \K
and K that belong to a 2-pathset (besides edges between nodes of K). Observe that any
edge linking two nodes of V \ K is irrelevant for the 2-K-connectivity, since they can
not be part of a path of length below three connecting two nodes of K. The function
f is defined later in Eq. (4.2). We first show that A can be built such that totaling the
probabilities Pr(f−1(a)) involves a number of elementary operations that is polynomial
in n; finally, we show that it is indeed linear in n.
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4.2.2 Partitioning the pathsets O2
K(E)

We assume that there is a certain strict ordering within V . We say that a family C ⊆
P(K) covers (or is a cover of) K for F ⊆ K{2}, and denote it by C ⊐F K, if and
only if for every requirement xy at least one of the following applies: (i) xy ∈ F ; (ii)
∃z ∈ K : {xz, zy} ⊆ F ; (iii) ∃C ∈ C : {x, y} ⊆ C.

a b

c d

C1

C2
C3

K = {a, b, c, d}
F = {ab, ac, cd}

C = {{a, c}, {a, d}, {b, c, d}}

Figure 4.1: Example of cover set

Figure 4.1 illustrates the concept of covers. Thick lines represent the elements of
F . Nodes connected by thin lines to the square nodes represent each element of C =
{C1, C2, C3}. Condition (i) applies for the pairs ab, ac and cd. Condition (ii) applies for
bc and ad. Condition (iii) applies for ac, ad, bc, bd and cd. Thus all pairs satisfy at least
one of (i), (ii), (iii) and then C ⊐F K.

Observe that if E′ ∈ O2
K(E) then the family CE′ defined as the set

CE′ = {CE′(t) : t ∈ V \K} being CE′(t) = {x ∈ K : xt ∈ E′},

covers K for F = E′ ∩ K{2}, and we say that E′ generates CE′ . Conversely, given a
cover C of K for F , if |C| ≤ n− |K| then there is some E′ that generates C; for example
E′ = {xy ∈ E : xy ∈ F ∨ (∃C ∈ C : {x, y} ⊆ C)} is a 2-pathset. The preceding definitons
relate with the operational states of the network in the following way. Assume that the
elements of F correspond exactly to the edges linking nodes of K that operate. Assume
also that each element C ∈ C represents a node in V \K whose neighbors, ignoring failing
edges, are exactly the elements of C (e.g. C1, C2, C3 in Figure 4.1). Then, C ⊐F K implies
that every requirement is satisfied. The powerset P(K) has 2|K| elements (i.e. there are
2|K| different subsets of K). Its powerset P(P(K)) has 2(2

|K|) elements that are sets of
subsets of K. So, for the number of families C for which C ⊐F K, there is an upper bound
2(2

|K|) that depends only on |K|. Now, observe that when considering a family CE′ , if
there are two nodes t 6= t′ 6∈ K with CE′(t) = CE′(t′), one of t and t′ can be removed
from the graph G, yet obtaining the same family CE′ . For example, in Figure 4.1, the
addition of a node C4 with exactly a and c as neighbors in K, would make no difference
when producing CE′ , due to the existence of a node C1 with exactly the same neighbors
in K. In general, given a path E′ and one element C of the cover CE′ there are one or
more t ∈ V \ K such that CE′(t) = C. Let us define tE′(C) as the minimum of them
according to the ordering of V , that is

tE′(C) = min{t ∈ V \K : CE′(t) = C}.
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Then, for every 2-pathset E′, there is exactly one set {t1, t2, . . . , tℓ} and one cover CE′ =
{C1, C2, . . . , Cℓ} for F = E′ ∩ K{2}, such that ti = tE′(Ci) ∀i = 1, . . . , ℓ. Now we can
define our function f as follows:

f(E′) = {(t1, C1), (t2, C2), . . . , (tℓ, Cℓ)}. (4.2)

4.2.3 Computing the probabilities

Given x ∈ V \ K and C ⊆ K, let us denote as P (x,C) the event where the set of
neighbors of node x that belong to K and are connected by operational links is exactly
C. Its probability, that we denote p(x,C), is:

p(x,C) =
∏

y∈C

p(xy)
∏

y∈K\C

(1− p(xy)).

Now, given C1, . . . , Cℓ ⊆ K and t1, . . . , tℓ ∈ V \K such that ti < ti+1∀i = 1, . . . , l−1,
let us define the event P (t1, . . . , tℓ, C1, . . . , Cℓ) as the event where the following statements
hold true:

• the nodes t1, . . . , tℓ are connected exactly to C1, . . . , Cℓ in K respectively;

• the nodes t with t < t1 have no neighbors in K;

• the nodes t with ti < t < ti+1 have no neighbors in K or have exactly as neighbors
one of C0, . . . , Ci for i ∈ {0, . . . , ℓ− 1};

• the nodes t with tℓ < t have no neighbors in K or have exactly as neighbors one of
C1, . . . , Cℓ.

We denote its probability as p(t1, . . . , tℓ, C1, . . . , Cℓ)), and so we have that

p(t1, . . . , tℓ, C1, . . . , Cℓ) =[∏

t<t1

p(t, ∅)
]
p(t1, C1)

[ ∏

t1<t<t2

[p(t, ∅) + p(t, C1)]

]
p(t2, C2)

[ ∏

t2<t<t3

[p(t, ∅) + p(t, C1) + p(t, C2)]

]
p(t3, C3) · · ·


 ∏

tℓ−1<t<tℓ

[p(t, ∅) + p(t, C1) + · · ·+ p(t, Cℓ−1)]


 p(tℓ, Cℓ)

[∏

tℓ<t

[p(t, ∅) + p(t, C1) + · · ·+ p(t, Cℓ)]

]
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To build a compact expression, let us define t0 and tℓ+1 as “virtual nodes” such that
t0 < t1 and tℓ < tℓ+1; and C0 = ∅. Then we have that:

p(t1, . . . , tℓ, C1, . . . , Cℓ) =

[
ℓ∏

i=1

p(ti, Ci)

]


ℓ∏

i=0

∏

ti<t<ti+1

i∑

j=0

p(t, Cj)


 . (4.3)

Note that the terms in the addition p(t, ∅) + p(t, C1) + · · · + p(t, Cj) correspond to
the probabilities of events that are pairwise disjoint due to the “is exactly” condition
in the definition of P (x,C). Therefore, this addition results in the probability of the
union event. It follows that the probability that a 2-pathset E′ generates the cover
{C1, C2, . . . , Cℓ} and the ℓ-tuple (t1, t2, . . . , tℓ) with tE′(Ci) = ti ∀i ∈ 1, . . . , ℓ is:

p({E′ : CE′ = {C1, . . . , Cℓ} : tE′(Ci) = ti}) = p(t1, . . . , tℓ, C1, . . . , Cℓ). (4.4)

Finally, from Eq. (4.1) and Eq. (4.4) we have that:

RK(G, 2) =
∑

F⊂K{2}

[∏

e∈F

p(e)

]
 ∏

e∈K{2}\F

(1− p(e))




∑

(C1,...,Cℓ)∈P(K)(ℓ):
{C1,...,Cℓ}⊐FK

∑

(t1,...,tℓ)∈(V \K)(ℓ):
ti<ti+1,i=1,...,l−1

p(t1, . . . , tℓ, C1, . . . , Cℓ).
(4.5)

where the second summation ranges over all covers of K for F having a number ℓ of
elements between 0 and max(s, 2(2

|K|)) (recall that the cover is a set and thus its elements
are different).

4.2.4 Computational complexity

The first summation in Eq. (4.5) has 2(
|K|
2 ) terms. The second summation has no more

than 2(2
|K|)(ℓ!) terms with ℓ ≤ 2(2

|K|). The third summation has
(
s
ℓ

)
terms. The product

operands involve
(
|K|
2

)
products. Computing p(t1, · · · , tℓ, C1, · · · , Cℓ) involves n products

and a number of additions bounded by (ℓ + 1)n since, denoting as τi the position of t′i
within the ordering of V \K, the number of additions is equal to 2(τ2−τ1−1)+3(τ3−τ2−
1)+· · ·+ℓ(τℓ−τℓ−1−1)+(ℓ+1)(n−τℓ) = −2−3−· · ·−ℓ−2τ1−τ2−τ3−· · ·−τℓ+(ℓ+1)n <
(ℓ+ 1)n. Hence the number of elemental operations (additions and products) needed to
compute RK(G, 2) has order

2(
|K|
2 )
(|K|

2

)
2(2

|K|)2(2
|K|)!s2

(2|K|)
n(2(2

|K|) + 2) (4.6)

which is a polynomial in n of degree 2(2
|K|) + 1, thus proving that the complexity

is polynomial (recall that s = n − |K|). It is easy to see that an enumeration of the
sets P(K(2)), {C ⊐F K} and (V \ K)(ℓ) can be done in a number of steps linear in
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4.2 A proof of linearity for any (fixed) |K|

their cardinality; then the computational complexity order of the three summations is
the number of terms involved. Now let us see that the complexity is, indeed, linear in
n. To do so, it is enough to show that the rightmost summation of Eq. (4.5) can be
computed in a time linear in n. This is because the remaining summations and product
operators in Eq. (4.5) multiply the order by factors that depend only on |K|, thus being
constant with regard to n. For ease of notation let us assume that V \K = {1, · · · , s}.
Following Eq. (4.3), the rightmost summation of Eq. (4.5) coincides with the summation
of all products that have the form

p(1, Ca1)p(2, Ca2) . . . p(s, Cas)

where at ∈ {0, 1, . . . , ℓ} (recall that C0 = ∅) and there are ℓ integers ti with 0 < t1 <
· · · < tℓ ≤ s such that:

• ati = i ∀i ∈ {1, . . . , ℓ},

• if t < t1 then at = 0,

• if ti < t < ti+1 with i ∈ {1, . . . , ℓ− 1} then at ∈ {0, . . . , i},

• if t > tℓ, then at is any integer between 0 and ℓ.

These products can be associated to directed paths in the directed graph defined by:

~G = ({1, . . . , s} × {0, . . . , ℓ}2, ~E)

~E = {((t, a, b), (t+ 1, a′, b′)) : t ≤ s− ℓ, t ≤ b+ 1, 0 ≤ a′ ≤ b+ 1, b′ = max(a′, b)} ∪
{((t, a, b), (t+ 1, a′, b′)) : s− ℓ ≤ t ≤ s− ℓ+ b, ℓ− (s− t) < a′ ≤ b+ 1, b′ = max(a′, b)}

that go from vertex (1, 0, 0) to (s, ·, ℓ). Each vertex (t, a, b) is associated to the probability
p(t, Ca). The variable b cumulates the number of nodes of t1, . . . , tℓ already visited when
t moves from t = 1 to t = s; while a represents the possible sets involved in the events
p(t, Ca). An example can be seen in Figure 4.2. Computing the rightmost summation of
Eq. (4.5) can therefore be done by dynamic programming, proceeding from the vertices
with the form (s, ·, ℓ) downwards to reach (1, 0, 0). In each step, a value ν(t, a, b) is
assigned to the vertex (t, a, b) as follows:

ν(t, a, b) =

{
p(t, Ca) if t = s,

p(t, Ca)
∑

(t,a,b) (t+1,a′,b′) ν(t+ 1, a′, b′) if 0 < t < s.

Hence the number of operations for computing the rightmost summation of Eq. (4.5) will
not exceed the number of edges of the graph ~G, which is bounded by (s− 1)ℓ2 times the
maximum possible degree ℓ2, that is (s − 1)ℓ4. This is linear in n, which completes the
proof.
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5, 0 5, 1 5, 2

4, 0 4, 1 4, 2

3, 0 3, 1 3, 2

2, 0 2, 1 2, 2

1, 0 1, 1 1, 2

Figure 4.2: Auxiliary graph for computing p(t1, . . . , t5, C0, . . . , C2)

4.3 An alternative proof and algorithm: recursive formula-
tion

In this section we present an alternative demonstration that the problem 2-DCR belongs
to the FTP complexity class when considering |K| as a parameter; in particular it is
linear in min{|V |, |E|} when |K| is fixed. We do so by means of a different approach
than in Section 4.2; here we derive a recursive formulation for the 2-DCKR and show that
computing it is a linear task when |K| is fixed. The remainder of the section is organized
as follows. Section 4.3.1 introduces the needed definitions and notation. Sections 4.3.2,
4.3.3 and 4.3.4 derive a formula to compute R(G,K, 2) and introduce the corresponding
algorithms. Section 4.3.5 provides two numerical examples.

4.3.1 Definitions and notation

We employ the following definitions and notations throughout the remaining of this
section.

• As in the previous section, we define s = |V \K| = n− |K|.

• k = |K| is the number of non-terminal nodes.

• Given a set of partial graphs W of G, we denote as Pr(W ) the probability of the
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random event where the partial graph induced by the operational edges belongs to
W .

• Given any set S, we denote by S(2) = {{u, v} : u, v ∈ S ∧ u 6= v} the set of all the
unordered pairs of different elements of S.

• We say that two nodes are D2C (distance-two-connected) if they are connected by a
path with length at most two. We also say that a node D2C (distance-two-connects)
a pair of nodes if it is adjacent to both.

• We call requirement any element p ∈ K(2). A met requirement is one whose nodes
are D2C.

• If T is a set of requirements (T ⊆ K(2)) we denote as V (T ) the set of all nodes
that occur in the definition of at least one requirement in T .

Consider the set of requirements being D2C in the partial graph obtained after dis-
carding all edges that are incident to a non-terminal with index above a given j. Given
T ⊆ K(2) we denote as Aj

T the event defined by such a set being exactly T . Formally,

• Φj
u,v is the binary random variable whose value is one if the nodes u and v are

connected through a path of length at most two avoiding nodes {bj+1, ..., bs}, and
zero otherwise;

• Aj
T is the event: “(∀{u, v} ∈ K(2))(Φj

u,v = 1 ⇐⇒ {u, v} ∈ T )”.

So, the event Aj
T occurs whenever: (i) each requirement in T is met by a path of

length one or whose central node is either a terminal or a non-terminal with index not
above j; and (ii) the requirements in T are the only ones for which this holds true. We
need also to consider the events in which, given sets X ⊆ K and Y ⊆ K(2), a given
non-terminal bj is adjacent to all u ∈ X and at the same time it does not D2C any
requirement of Y . We denote this event as Bj

X,Y and formally define it as follows:

• Bj
X,Y = {G′ =< V,E′ >:

((∀u∈X)(bj , u)∈E′) ∧ ((∀{v, w}∈Y )(bj , v)/∈E′ ∨ (bj , w)/∈E′)}.

As we see next these definitions allow us to recursively compute R(G,K, 2). Note that
the event A = As

K(2) includes all (and only) the configurations where all requirements
are D2C in G, thus being exactly the event “the network is operational” in the 2-DCR
context. So we have that R(G,K, 2) = Pr(As

K(2)).

4.3.2 Computing R(G,K, 2)

Figure 4.3 shows the graph that correspond to a network G with four (bold) terminal
nodes K and three (empty) non-terminal nodes V \K. We can first of all reduce G
by removing all edges connecting two non-terminals, since they will never be part of a
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b1 b2 b3

t1 t2 t3 t4

K

V \ K

b1 b2 b3

t1 t2 t3 t4

K

V \ K

b1 b2 b3

t1 t2 t3 t4

b1 b2 b3

t1 t2 t3 t4

a b

Figure 4.3: How the recursion works

path of length at most two connecting two terminals; edges incident to non-terminals
with degree one can be also removed. Figure 4.3(a) depicts a possible partial graph
G′ yielded by a configuration x with only eight operational edges. As an example, let
T = {{t1, t2}, {t1, t3}, {t1, t4}, {t2, t3}}; its elements are all (and only) the terminal pairs
that are D2C in the subgraph of G′ induced by K ∪ {b1} (solid lines). So G′ ∈ A1

T .
Similarly, if T ′ = {{t1, t2}, {t1, t3}, {t1, t4}, {t2, t3}, {t2, t4}, {t3, t4}}, observe that G′ 6∈
A1

T ′ because there are no paths of length at most two in the subgraph of G′ induced
by K ∪ {b1} connecting neither t2 to t4 nor t3 to t4. But as Figure 4.3(b) shows, when
allowing also to employ the edges incident to b2 the requirements in T ′ are met. In other
words, G′ ∈ A2

T ′ .
Let us consider a certain partial graph G′ that belongs to the event Aj

T . Some of its
met requirements T might also be met after suppressing all edges incident to bj , while
other requirements might not be met anymore. Let Q be the set of the requirements that
keep met after suppressing those edges. Then we have that G′ ∈ Aj−1

Q and thanks to the

edges that connect bj to the nodes V (T\Q) we also have that G′ ⊆ Aj
T . This enables

a way to recursively express Aj
T in terms of several events Aj−1

Q (being Q ⊆ T ), whose
unmet requirements must be met when considering also edges connecting K to bj .

Lemma 4.1. For all 0 < j ≤ s, the following recursive identity in A holds:

Aj
T =

⋃

Q⊆T

(
Aj−1

Q ∩Bj

V (T\Q),K(2)\T

)
(for 0 < j ≤ s) (4.7)

Proof. Let us first prove that the left-hand side (LHS) is included within the right-hand
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side (RHS). Let G′ be an element of Aj
T . The requirements met by G′ avoiding non-

terminals above bj can be partitioned as Q, T\Q being Q the set of requirements still

met by G′ when also avoiding bj . So it is clear that G′ ∈ Aj−1
Q . At the same time, G′ has

edges linking bj to every node in T\Q (otherwise it would not belong to Aj
T due to unmet

requirements), and bj does not D2C any requirement in K(2)\T (otherwise G′ would not

belong to Aj
T due to an excess of met requirements). Thus, G′ belongs to the RHS. Let

us now prove that the RHS is included within the LHS. Let G′ be a configuration in the
RHS with a certain Q. It meets the requirements Q as it belongs to Aj−1

Q . And as it

also belongs to Bj

V (T\Q),K(2)\T
, it meets the requirements in T\Q without meeting any

requirement out of T . Thus the set of requirements met by G′ avoiding non-terminal
nodes above bj is exactly T , and then G′ belongs to the LHS.

The following lemma is important for computing the RHS of Eq. 4.7.

Lemma 4.2. The terms of the union in the RHS of Equation 4.7 are pairwise disjoint;
and within each term, the events A and B are independent.

Proof. Any two given terms of the union will involve two subsets of T (Q and Q′) with
Q 6= Q′. Then, for any configuration G′, the set of requirements met by G′ avoiding
non-terminal nodes above j − 1 can be different from both Q and Q′ (in which case G′

does not belong to any of both terms) or coincide with only one of Q and Q′ (in which
case G′ belongs to the corresponding term). Thus no configuration belongs to both terms
and these are disjoint. Regarding independence, the term Aj−1

Q imposes conditions only

on edges linking nodes within K ∪ {b1...bj−1} whereas any term with the form Bj
X,Y

imposes conditions only on edges incident to bj . Independence follows from disjointness
of both edge sets.

The leaves in the recursion tree are given by j = 0 i.e. when only considering edges
that connect nodes of K(2). Denoting by EK the subset of E involving only terminal
nodes then we have that

A0
T = {G′ =< V,E′

K > /E′
K ⊆ EK∧

all and only the requirements in T are met by G′}. (for j = 0)
(4.8)

On one hand there are 2k(k−1)/2 different sets T ⊆ K(2) (which is a fixed number if
k is a fixed parameter of the problem). On the other hand, computing the probabilities
Pr(A0

T ) (that we will denote as P 0
T ) involves adding the occurrence probability of each

configuration of the subgraph of G induced by K. Then we have that the time τ0 spent
to compute all the probabilities P 0

T for all T is bounded by some constant dependent on
k and independent of n and m. Going back to Equation 4.7, by virtue of Lemma 4.2, the
probability (denoted as P j

T ) that the event Aj
T occurs (with 0 < j ≤ s) can be computed

as
P j
T =

∑

Q⊆T

(
P j−1
Q Pr(Bj

V (T\Q),K(2)\T
)
)

(for 0 < j ≤ s) (4.9)
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Procedure B(j,X, Y )

1: if ∃{a, b} ∈ Y/{a, b} ⊆ X then
2: return 0
3: else
4: X̂ ← {u ∈ V (Y )/(∃v ∈ X/{u, v} ∈ Y )}
5: Y ← Y \ {{u,w} ∈ Y/u ∈ X∪X̂}
6: return

(∏
x∈X rbjx

) (∏
x̂∈X̂(1− rbj x̂)

)
C(j, Y )

7: end if

Procedure C(j, Y )

1: if Y = ∅ then
2: return 1
3: else
4: z ← any node from V (Y )
5: Y1 ← Y \ {{z, v} ∈ Y }
6: X̂ ← {u ∈ V (Y )/({z, u} ∈ Y )}
7: Y2 ← Y1 \ {{u, v} ∈ Y/v ∈ x̂}
8: return (1− rbjz)C(j, Y1) + rbjz

(∏
x̂∈X̂(1− rbj x̂)

)
C(j, Y2)

9: end if

Figure 4.4: Pseudo-code for computing Bj
X,Y

and thus the sought reliability R(G,K, 2) = P s
K(2) . The event Bj

V (T\Q),K(2)\T
involves a

number of states bounded by 2k and its probability can be computed in a time depending
only on k. Figure 4.4 suggests a possible algorithm to compute Bj

X,Y . The value returned
in line 6 is a product of three factors. The first factor involves edges that must be
operational. The second factor involves edges that must necessarily fail. The third
factor, obtained by means of an auxiliary algorithm C(j, Y ), computes the probability
of the event Cj

Y defined as “the node bj does not D2C the nodes of any requirement of
Y ”. The latter is computed by sequentially considering the probability of operation and
failure for each edge linking bj and V (Y ) and invoking itself recursively with diminished
sets Y1, Y2. It could be improved by first partitioning Y into components Y1 · · ·Yh without
common nodes pairwise and then invoking the algorithm for each one, finally returning
the product of C(j, Y1) · · ·C(j, Yh), with worst-case time O(|Y1|! · · · |Yh|!) (recall that∑

i=1..h |Yi| ≤ k). The implementation used in our tests stores each C(j, Y ) in a map
indexed by (j, Y ) in order to compute it only the first time it is requested.

Now, note that to compute P 1
T for a certain set T , a number of probabilities P 0

Q

(bounded by 2k(k−1)/2) are needed. The same holds true for all j ∈ {1 · · · s} when it comes
to computing P j

T (just knowing every P j−1
Q is needed). Since the number of possible sets

T ⊆ K(2) depends only on k, then the time τj spent computing these probabilities for a
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Procedure Level0(G′ =< K,F >,π)

1: i← 1; G′′ ← Graph < K, ∅ >; ρ←∏
h=1..|F |(1− πh)

2: (∀Q ∈ 2K
(2)
)(P 0

Q ← 0)
3: level0Rec(G′′, ρ, i)
4: return P 0

Subprocedure Level0Rec(G′′ =< K,E′ >, ρ, i)

1: if i ≥ |F | then
2: Q← all requirements met by G
3: P 0

Q ← P 0
Q + ρ

4: else
5: Level0Rec(G′′, ρ, i+ 1)
6: Level0Rec(G′′ ∪ {fi}, ρπi/(1− πi), i+ 1)
7: end if

Figure 4.5: Level0 pseudo-code for computing P 0

certain j depends only on k. Thus, the algorithm will proceed downwards from j = s to
j = 0, computing R(G,K, 2) in a time which is O(nτ) (linear in n, with τ = max{τ0...τj}
depending only on k).

4.3.3 Computing the base cases

The algorithm Level0 shown in Figure 4.5 computes the probabilities Pr(A0
Q⊆K(2)) re-

turning them in a map P 0 indexed by Q ⊆ K(2). When invoked it receives the subgraph
G′ =< K,F > of G induced by the node set K and the vector (π)1···|F | of probabilities
of operation of the edges of F = {f1, · · · , f|F |}. An edgeless graph G′′ is initialized with
node set K and a variable ρ is initialized as its corresponding probability of occurrence
(all edges failed). Line 2 initializes P 0 with all components equal to zero, ready to accu-
mulate the probabilities of all configurations meeting each set of requirements Q. Then
in line 3 the recursive subprocedure Level0Rec is invoked to perform a depth-first-search
on G′′, prior to returning P 0. This procedure completes a certain network configuration
when it enters line 2, where the probability ρ of getting that particular configuration G′′

is added to P 0
Q, being Q the subset of all requirements (V (E′))(2) that are D2C in G′′.

Lines 5 and 6 invoke recursively the same subprocedure, respectively for the cases where
fi is operational or failed.

4.3.4 The main algorithm

Our algorithm for computing R(G,K, 2), shown in Figure 4.6, is a straightforward imple-
mentation of Equation 4.9. It receives the graph G, the set K and the edge’s probabilities
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Procedure RGK2(G =< V,E >,K, r)

1: for all (u ∈ K, v ∈ V \K)/(u, v) /∈ E do
2: E ← E ∪ {(u, v)}
3: ruv ← 0
4: end for
5: G′ =< K,F >← subgraph of G induced by K;π ← (ruv)(uv)∈F
6: P 0

∗ ← Level0(G′, π)
7: p← LeveljRec(K(2), |V | − |K|)
8: return p

Subprocedure LeveljRec(T, j)

1: p = 0
2: if j = 0 then
3: return P 0

T

4: end if
5: for all Q ⊆ T do
6: α← LeveljRec(Q, j − 1)
7: β ← B(j, V (T\Q),K(2)\T )
8: p← p+ αβ
9: end for

10: return p

Figure 4.6: Main algorithm pseudo-code for computing R(G,K, 2)

of operation r. In lines 1-4 all non-existent edges linking nodes among K and V \K are
added to G with probabilities of operation equal to zero. Lines 5-6 invoke Level0 to
build P 0 with the probability of the base cases. Line 7 invokes the recursive subproce-
dure LeveljRec to compute R(G,K, 2) = P s

K(2) as seen above (recall that s = n − k).
Lines 2-4 of LeveljRec refer to the base cases where (j = 0). When j > 0, lines 5-9 of
the latter procedure accumulate the probability for each Q ⊆ T making use of a recursive
call on the set Q and non-terminals b1 to bj−1. As we did with C(j, Y ), in our imple-

mentation each P j
Q is computed only the first time it is needed and stored for subsequent

uses.

4.3.5 Numerical results

This section presents numerical results for two tests. The algorithms were implemented
in C++ and tested on an Intel Core2 Duo T5450 CPU machine with 2 GB RAM.

In the first test, the algorithm was run on the complete graphs K5 · · ·K20, both with
four and five terminals, with all edges having failure probability 0.5. The results are
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shown in Figure 4.7. As expected, both reliabilities grow when more non-terminal nodes
are added and are higher when |K| is lower (since less requirements must be met). Note,
on one hand, the clearly linear progression of times following |V |; and on the other hand,
the significant increase in times when dealing with one additional terminal node. The
latter is due to the complexity inherent to a much larger number of subsets T,Q ⊆ K(2).
The size of K affects more-than-exponentially this number of sets, thus significantly af-
fecting the total time. This can be seen also in the closed formulae of Section 4.2, in
particular in Eq. (4.6). This strong dependence on |K| can severely limit the application
of the algorithms in practice, when the set K is large.

The second test was run on a graph G with the Arpanet topology, with a set K of
five nodes (square) distinguished as terminal, shown in Figure 4.8. Observe that some
pairs of terminals (but not all) are at distance above two thus making RK(G, 2) = 0. In
order to allow communication in less than three “hops” between all terminals, we added
from one to ten “virtual nodes” and linked them to every real node (the latter are those
labeled 0 · · · 19). In this test the reliability of all edges was set to 0.9. Figure 4.9 shows
how the network reliability increases as more virtual nodes are added, as well as the fairly
linear progression of times that was obtained.

4.4 The case where |K| is an input and d ≥ 2

The case where |K| is also considered as an input for the complexity analysis seems to
be also an NP-hard problem; although this has not yet been demonstrated. Even for the
all-terminal particular case (K = V ) the complexity remains unknown for all values of
the distance parameter d ≥ 2.

Given any d ≥ 2, observe that the problem P1 of computing the d-DCKR with K = V
and all edge reliabilities equal to 0.5 is equivalent to the problem P2 of counting all the
partial graphs (V,E′ ⊆ E) of G with diameter up to d. This is due to the fact that under
such hypothesis every partial graph has the same probability of occurrence (2−n) and
each partial graph is d − V−connected if and only if it has diameter up to d; it follows
that RV (G, d) equals the number of such partial graphs divided by 2n. Then, proving
that the problem P2 is NP-hard would suffice to prove that the d-DCKR with K = V
is NP-hard too; since P2 is a special case of the latter (where all edges are assigned
reliabilities equal to 0.5). Furthermore, it would follow that the d-DCKR with K as a
free input for the complexity would be NP-hard, since so it is its particular case d-DCKR
with K = V . Currently our efforts are headed towards proving that P1 is an NP-hard
problem for different values of d. Unfortunately, we have not found yet results on the
complexity of counting partial graphs with a given diameter.

4.5 Computational complexity: summary and conclusions

This section presented our contributions regarding the computational complexity of the
DCR. We proved that the cases with diameter parameter d = 2 and fixed size |K| for
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Figure 4.7: Numerical test I (dashed:|K| = 4; solid:|K| = 5)
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Figure 4.8: Numerical test II - Arpanet network
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4.5 Computational complexity: summary and conclusions

Figure 4.9: Numerical test II - Results
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4. THE DCR SUBPROBLEM WITH K-DIAMETER TWO AND ANY
FIXED |K|

the terminals set can be computed in a time which is linear on the number of nodes |V |.
Recall that it was already known that for d > 2 the problem is NP-hard. Two proofs
were given. The first one is based in combinatorial structures that we named covers
and lead to a closed expression for computing R(G,K, 2). The second one is based on a
recursive formulation that allows for a dynammic programming algorithm; we presented
an algorithm based on this recursive approach. The algorithm is valid also for non-fixed
|K| (i.e. considering |K| as an additional input rather than a parameter) though taking
exponential times in those cases. We implemented the recursive approach and run two
families of numerical tests. They behaved as predicted, showing a clearly linear time
progession when n grows. Although being linear in n when |K| is fixed, the time is
strongly dependent on |K| (more than exponentially, as evidenced by its corresponding
factors in the first proof), which can limit the applicability in instances with large sets
K. It remains pending to classify the complexity of the case where d ≥ 2 and K is
either equal to V or free. Figure 4.10 resumes the complexity classes of the different
subproblems for any value of d and fixed |K|, including references for tracking the works
where each result was first presented.

|K| (fixed)

d

2 3 . . .

2

3

...

n− 2

n− 1

...

O(n) [10] O(n) [This thesis]

NP-hard [10]

NP-hard [11]; see Table 3.1 here

|K| = n or free

Unknown

Unknown

Figure 4.10: Complexity of DCR subproblems for any d and fixed |K|
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Chapter 5

Exact methods for reliability metrics

As we have already seen, computing CLR and DCR metrics is an NP-hard task except
for particular subclasses of these problems. In this section we intend to resume the ba-
sic algorithmic approaches that can be applied for computing the exact value of such
metrics. These, in general, result in exponential-time algorithms for general cases, and
polynomial ones for particular classes of the problems, given by specific topologies, termi-
nal sets, distance parameters, uniformity of edge reliabilities, etc. We start by surveying
known methods for CLR and DCR contexts, in Sections 5.1 and 5.2 respectively. Then,
in Chapter 6, we illustrate, by means of simple examples, how dynamic programming
techniques can be used to compute two-terminal metrics in polynomial time. We extend
the examples to define a broader family of topologies, giving a polynomial algorithm for
it too.

5.1 Exact methods for CLR

The most obvious way to compute R(G,K) is to enumerate the possible operational
configurations and total their probabilities, that is,

R(G,K) =
∑

x:Φ(x)=1

Pr(X = x) =
∑

x:Φ(x)=1

( ∏

i:xi=1

ri

)( ∏

i:xi=0

(1− ri)

)
.

This method can only be applied to small instances since the number of configurations
grows exponentially with the number of edges m.

Recall the definition of minpaths and mincuts given in Section 2.1. The event “the
network operates” is the (in general non-disjoint) union of all the events “minpath x
operates” (the same applies to mincuts). Non-disjointness implies that we cannot simply
add the probability of operation for all minpaths or mincuts. Several methods have been
developed that compute the network reliability by means of a sum of disjoint products
(SDP). They are based on expressing the event “the network operates” as a union of
disjoint events, where each event is a conjunction of independent events, which allows to
compute the overall probability as a SDP. A survey can be found in [36]. For example,
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5. EXACT METHODS FOR RELIABILITY METRICS

Poincare’s formula of inclusion-exclusion can be applied either over all minpaths or all
mincuts. Denoting as {µ1, . . . , µMP } the list of all ordered minpaths, and as Pk the event
“all links in µk are operational”, we have that

R(G,K) =

MP∑

i=1

(−1)i−1
∑

1≤h1≤...≤hi≤MP

Pr(

m⋂

j=1

Phj ).

This formula contains 2MP−1 terms, and MP itself is usually exponential in the
number of nodes or edges. But, as many terms cancel out, algorithms can be devised that
generate only the remaining terms and then proceed simply totaling their probabilities;
yet, in general, the number of these terms remains exponential in the size of the network.
Several methods have been proposed that require the generation of all minpaths (e.g.
[37, 38, 39, 40, 41, 42]). Other SDP methods that do not require generating all minpaths
have also been proposed (e.g. [43]). A particular family of SDP methods is the multiple
variable inversion (MVI) technique ([44, 45, 46]) that allows for further reduction on the
number of summands. Another family is that of the binary decision diagram (BDD)
based methods [47]. Dual approaches, based on mincuts instead of minpaths, can be
applied, with the advantage that usually the number of minpaths in a graph exceeds
that of its mincuts. For example, observe that in complete topologies and all-terminal
context, the number of minpaths and mincuts are respectively nn−2 and 2n−1−1. Besides
this, a drawback of using mincuts is that no current theory analogous to domination (see
Section 5.1.2) exists that is based on mincuts.

5.1.1 Reduction techniques

Many techniques can be applied to reduce the size of the original instance of the problem.
When these techniques involve low cost in terms of computational effort, they are usually
worth to be embedded within general approaches. Some polynomial-time reductions that
have been suggested[11, 48] include:

• deletion of irrelevant edges (those that do not belong to any minpath);

• contraction of mandatory edges (those that belong to all minpaths, e.g. bridges);

• series-parallel reductions [49];

• polygon-to-chain and delta-Y reductions [50, 51, 48];

• s-attached subgraphs replacement [52, 53];

• other divide-and-conquer approaches (e.g. decomposition in triconnected compo-
nents [54]).

Although being unable to reduce general instances to polynomially-computable subin-
stances, there are several reasons why these reduction techniques are relevant. First, they
can be embedded within general algorithms to reduce, when possible, the inherent sub-
problems, as we exemplify later for a factoring algorithm. Second, they can completely
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5.2 Exact methods for DCR

solve certain topologies, which in practice is useful for building large instances whose
reliability is exactly computable, that server for later analysis of the performance of
bounding or estimation methods. Finally, they can be applied to compute lower and
upper reliability bounds.

5.1.2 Factoring-based algorithms

The most powerful family of algorithms for the general CLR problem so far introduced
exploit a property known as factoring or pivotal decomposition, first introduced in [55, 56].
Given a graph G and any of its edges e = (i, j), let Gc be the graph obtained after
replacing i and j by one single node, and after replacing every edge end incident to i or
j by an edge end incident to the contracted node. This operation is called contraction;
observe that it may generate loops and multi-edges. Similarly, let Gd be the graph
obtained after dropping the edge e from G. Then, the factoring property states that, for
any edge e 6= (s, t) with reliability re,

R(G, {s, t}) = reR(Gc, {s, t}) + (1− re)R(Gd, {s, t}).

In Section 5.2 we illustrate how the factoring algorithms proceed with an example in DCR
context. The contraction operation can easily be defined for sets K with more than two
elements. The straightforward recursive application of the pivotal decomposition leads
to a binary tree with 2m − 1 nodes and 2m−1 leaves, that are trivial instances with
reliability equal either to 1 or 0. An important property of this method is that it requires
storage space that is O(m2), instead of the exponential order implied by precomputing
all minpaths or mincuts for Boolean methods. The procedure to choose the edge to
contract/delete (the pivot) heavily influences the performance of the algorithm, since it
can lead to binary trees with different sizes (being 2m − 1 nodes the worst case). For
example, the contracted graph Gc might be such that K gets reduced to one single node;
its reliability is then equal to 1, and no further recursion is needed from Gc. Similarly, if
Gd disconnects K, then its reliability is equal to 0 and no further recursion is needed from
Gd. Intense research has been carried on to find good pivot selection strategies. Strategies
based on the graph invariant known as the reliability domination were introduced by
Satyanarayana and Prabhakar in [57] and later applied to the two-terminal reliability
with series-parallel reductions in [58]. See also [59, 60, 61, 62, 63]. A variation of the
dominant called minimal domination was used in [51] for polygon-to-chain reductions.

5.2 Exact methods for DCR

As a generalization, finding a general algorithm for computing the DCR metric is at
least as difficult than doing the same for CLR. There are few particular cases for which
exactly computing R(G,K, d) is trivial. When the parameter d = 1, a configuration
is operational if and only if every pair of terminals {i, j} ∈ K(2) corresponds to an
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operational edge (i, j). Thus, the DCR can be computed in time O(|K|2) as follows:

R(G,K, 1) =
∏

{i,j}∈K(2)

rij .

Things are a bit more complex when d = 2. For two-terminals (s, t), every operational
path consists of either a single edge {s, t}, or a two-edge path s − u − t being u any
node other than s and t. Hence, R(G,K, d) can be computed as the probability of the
complement of the event where all such paths fail [64]. Denoting by ν(w) the neighbors
of node w in G =< V,E >, then

R(G, {s, t}, 2) =
{
1− (1− rst)

∏
u∈ν(s)∩ν(t)(1− rsurut) if {s, t} ∈ E

1−∏u∈ν(s)∧ν(t)(1− rsurut) if {s, t} 6∈ E

which takes time O(n). We have already seen that the same applies for d = 2, whatever
the (fixed) size of K, although the constants involved grow exponentially with |K| (at
least for the methods we developed). Observe that the enumeration of paths with lengths
up to d has order O(|K|(|K|−1)/2∆d), where ∆ is the maximal node degree of the graph.
So, for small values of d, the number of such paths could be handled with reasonable
effort for problem instances that would be intractable in CLR context, by means of
inclusion-exclusion or other Boolean procedures.

5.2.1 Reduction techniques in DCR context

Many reduction techniques that were presented in Section 5.1.1 cannot be applied in DCR
context (at least without modifications), since they would affect the distance between
terminals. Next we present some reduction techniques that can be applied to the two-
terminal DCR; see [65, 66].

• Deletion of irrelevant links. An irrelevant link is any edge that does not belong to
any d-pathset; see [66] for an efficient identification procedure.

• Path-terminal reduction. It can be applied whenever a terminal node s has degree
one and is connected to a node v by means of a path s − w1 − w2 − · · · − wℓ − v
such that w1 . . . wℓ are non-terminals with degree two. It is easy to see that

R(G, {s, t}, d) = rs,w1

∏

i=1...ℓ−1

rwi,wi+1rwℓ,vR(G− {s, w1 . . . wℓ}, {v, t}, d− ℓ− 1).

• Parallel links. Two edges e, f that link the same pair of nodes, can be replaced by
one single edge (linking the same nodes) with reliability re + rf − rerf .

• Edges incident to a terminal. Whenever all edges that are incident to a certain
terminal u have reliability equal to one (i.e. are perfect), the neighbors of u can be
collapsed into u. If the new graph is denoted by G′, then R(G,K, d) = R(G′,K, d−
1).
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Procedure FACT(G =< V,E >,K, d, ~r)

1: reduce G if possible
2: drop all e ∈ E : ~re = 0
3: if the subgraph induced by {e ∈ E : ~re = 1} has K-diameter d or lower then
4: return 1
5: end if
6: if G has K-diameter higher than d then
7: return 0
8: end if
9: choose any e ∈ E : ~re < 1

10: ~r′ ← ~r; ~r′e = 1
11: return ~re · FACT(G,K, d, ~r′) + (1− ~re) · FACT(G \ {e},K, d, ~r)

Figure 5.1: Pseudocode for the FACT algorithm in DCR context.

• Junction points. In two-terminal s, t context, a junction point is a node u that
belongs to all paths between s and t. In [67], it is shown how R(G, {s, t}, d) can be
computed by solving two subproblems on a 2-partition of G (defined by u). Each
subproblem consists of determining the distribution of probability of the d′-DCR
for d′ ∈ 0, . . . , d and then computing the convolution of both distributions obtained.

5.2.2 Factoring-based algorithms in DCR context

Pivotal decomposition techniques can also be applied in DCR context, resulting in the
best performing algorithms currently available for the general problem. Next we describe
how this family of algorithms proceed and comment on the differences arising when work-
ing in DCR context. Similar to the CLR case, an edge e is selected and the configuration
space of the graph G is partitioned into two sets, according to whether the edge is in
operational or failed state. When the edge is set to fail, which happens with probability
(1 − re), the algorithm is recursively invoked on the graph G \ {e}, exactly as we did
for CLR. But, when the edge is set to operate, which happens with probability re, the
algorithm is recursively invoked on the same graph, but setting the reliability of e to one,
i.e. it is further considered as a “perfect” edge. Figure 5.1 shows the pseudocode of the
basic FACT algorithm. It receives the graph G, terminals K, diameter threshold d and the
vector of edge reliabilities ~r. Although taking exponential time, the step where possible
reductions are tried, toghether with the early detection of operational or failed partitions
of the configuration space (lines 3 to 8), result in significant performance improvements
over alternative methods. Again, choosing the pivot edge can significantly affect the
depth of the recursion tree [64]. Results for the reliability domination in DCR context
can be found in [68].

Let us see an example of how the FACT algorithm proceeds. Figure 5.2 shows an
instance of the two-terminal DCR problem. Nodes s and t are the terminals and we
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consider the network as operational if and only if they are at distance three or lower, i.e.
K = {s, t} and d = 3. Figure 5.3 illustrates the execution flow of the recursion. It results
in a tree with 35 nodes, each one corresponding to a new instance of the DCR. Numbers 1
to 35 correspond to the order in which the recursive subinstances are invoked. Terminals
are represented by gray nodes and non-terminal as empty ones. Dotted edges represent
edges of the original graph that have not yet been used for pivoting. Full edges represent
edges that were already considered for pivoting and conditioned as operational in the
particular branch. In each step, the edge considered for pivoting is shown as a double
line. For example, the first edge used for pivoting is {b, c}, resulting in the recursive
steps 2 (where it is conditioned to be operational) and 21 (where it is conditioned to
fail). Instances surrounded by an empty square correspond to “the network operates”
recursion leaves; there are eight such instances (4, 7, 9, 14, 17, 23, 26, 32). Instances
surrounded by a gray square correspond to “the network fails” recursion leaves; there
are 10 such instances (10, 11, 18, 19, 20, 27, 28, 33, 34, 35). The probability that each
“network operates” leave is reached is totaled. Each of those probabilities correspond to
the product of the reliabilities or unreliabilities of the pivots used, according to the states
each pivot was conditioned to have (operational or failed). Two important differences
between CLR and DCR contexts arise with regards to the FACT algorithm. First, in DCR
context there is no node contraction operation; instead, the pivot edge is set to operate,
but it must be kept, in order not to lose one unit in the length of the paths it belongs to.
Second, there are more chances of reducing the graph and pruning branches than in CLR
context. This is due to the K-diameter constraint. For example, in instance 5, it can be
seen that node c has no further chance of belonging to an s − t path with fewer than 4
edges. Therefore, it can be removed (we represented this by crossing it out). The same
happens in instaces 13, 24 and 30. An instance can also be discarded if its K-diameter
is above d (considering all edges that have been set to operate and the ones that were
not yet used as pivots). These reduction and pruning operations cannot be applied in
CLR context. The main idea underlying FACT -that of conditioning according to the
two possibles states of an edge- can be extended to consider several edges at the same
time. For example, in the recursive variance-reduction Monte Carlo method RVR [69],
the configuration space is split according to combination of the states of the individual
edges of a (conveniently chosen) path. The resulting algorithm for the DCR can be found
in [70]. Other ways of conditioning can be devised. The basic idea is that of splitting the
problem into several subproblems that are recursively invoked. This splitting must be
done according to some set of events that result in a partition i.e. that are at the same
time disjoint and complete.

5.2.3 Other procedures

In [40] an algorithm is proposed for exact computation of two-terminal CLR; it pro-
ceeds by exploring paths in depth-first-search and generating disjoint “branches” whose
probabilities are totaled to compute R(G, {s, t}). This method (named AHMAD after his
author) is generalized in [71] to all-terminal CLR with a version that has space com-
plexity (the amount of memory required for execution) linear in the size of the problem.
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t R(G, {s, t}, 3)

Figure 5.2: An instance of the 3-2-DCR; s and t must be connected by paths no longer
than 3 edges.
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Figure 5.3: An example of how the FACT algorithm proceeds (d = 3).
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The so-called branches consist of spanning trees of operational edges, accompanied by
some failing edges, necessary to ensure disjointness respect to previously found branches.
In [72] the algorithm is generalized for the K-terminal CLR (general set K ∈ V ); in
this case the branches are based on K-spanning Steiner trees. Figure 5.4 illustrates how
the algorithm proceeds, on the same network that in Figure 5.3, to compute the CLR.
Observe that in this case the CLR coincides with the d-DCR for any d ≥ 4. The network
is explored from source to terminal in the order of the edge labels. Six branches are
found. Bold lines represent edges that must operate in the branch, while lines “banned”
represent edges that must fail in it. It turns out that

R(G, {s, t}) =r1r2r3 + r1r2(1− r3)r4r5 + r1(1− r2)r6r4r3+

r1(1− r2)(1− r3)r6r5 + (1− r1)r7r6r2r3 + (1− r1)r7(1− r6)r5

where terms correspond to branches and are written in the order they are generated.
Although exponential in time, these methods perform well for networks up to certain

sizes [5] and have an interesting feature: they accumulate the probability that the network
operates by finding pathsets, starting by more straightforward ones (simpler “branches”)
and exploring more complex ones towards the end. If the algorithm is run during a
certain time t, it will accumulate the probability of several disjoint branches found, thus
giving a lower bound for the network reliability; then its corresponding set of pathsets
could be used to feed a Monte Carlo algorithm like the ones in Chapter 7. If several
depth-first-search explorations are done in parallel, branches with higher disjointness
level could be built more quickly; as we explain in Chapter 7 this can result in better
performance for the simulations.

These algorithms can be adapted for use in DCR context. For two-terminal d-DCR,
the algorithm is basically the same; the only difference is that any branch corresponding
to a path from the source node longer than d must be discarded. In Figure 5.5, the same
network as that of Figure 5.4 is used but the parameter d is set to three. This results in
just four branches; in this case, we have that

R(G, {s, t}, 3) = r1(1− r2)r6r5 + (1− r1)r7r4r3 + (1− r1)r7(1− r4)r5.

For all-terminal or K-terminal d-DCR the exploration of the space of pathsets be-
comes more complex. This is due to the fact that, while in CLR context all minpaths are
trees, the same does not hold in DCR context. Further research is necessary to devise
smart strategies for exploring the pathset space and build the corresponding branches.
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Figure 5.4: An example of how the AHMAD algorithm proceeds for CLR (d ≥ 4).
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Figure 5.5: An example of how the AHMAD algorithm proceeds for DCR (d = 3).
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Chapter 6

Exact polynomial methods for a

family of topologies and asymptotic

analysis

In this chapter we illustrate the exact computation of the classical (CLR) and diameter-
constrained (DCR) reliabilities in the context of certain particular topologies. We start
by a topology that is simple yet not trivial, namely the “ladder” graph. This will allow us
to see an example of how the existence of diameter constraints increases the complexity
of the problem when compared to the CLR. We begin by developing an algorithm for
computing the two-terminal CLR for the ladder with any length ℓ; then we extend it to
compute the two-terminal DCR. We generalize these algorithms to a family that we call
“multi-ladders”. Then we develop a similar discussion for another family that we call "the
Spanish fans". We characterize a broader family of topologies for which computing the
two-terminal DCR can be done in polynomial time. Finally, in Section 6.4 we introduce
the problem of computing the asymptotic value of the DCR, in graphs that grow infinitely
following given probabilistic rules, and give some basic results.

6.1 The ladder network

Let us work with a family of networks Lℓ whose topologies, shown in Fig. 6.1, are defined
by a parameter ℓ ∈ Z : ℓ ≥ 1 (ℓ is the number of “steps” of the ladder).

The ladder has a height of ℓ steps. We set as terminal nodes K = {u0, vℓ} and
so we want to compute the probability that the nodes u0 and vℓ are connected (with
and without length constraints). We keep the hypothesis that nodes are perfect and
edges fail independently with know probabilities (that can have different values). We
denote as α1, . . . , αℓ the reliability of edges a1, . . . , aℓ; as β1, . . . , βℓ the reliability of
edges b1, . . . , bℓ; and as γ1, . . . , γℓ+1 the reliability of edges c1, . . . , cℓ+1. Finally, ᾱi, β̄i, γ̄i
denote respectively 1− αi, 1− βi, 1− γi (the edge unreliabilities).
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6. EXACT POLYNOMIAL METHODS FOR A FAMILY OF
TOPOLOGIES AND ASYMPTOTIC ANALYSIS

u0 u1 u2 uℓ−1 uℓ

v0 v1 v2 vℓ−1 vℓ

a1 a2 aℓ

c1 c2 c3 cℓ cℓ+1

b1 b2 bℓ

Figure 6.1: The ladder network

6.1.1 Computing the CLR of the ladder

Now we develop an algorithm for computing Ru0,vℓ(Lℓ). To do so we introduce the
following definitions.

• We denote as u  
i
v the event where there is a path that connects nodes u and v

using only edges whose labels have subindices between 1 and i;

• Ai = (u0  
i
ui) ∧ ¬(u0  

i
vi);

• Bi = (u0  
i
vi) ∧ ¬(u0  

i
ui);

• Ci = (u0  
i
ui) ∧ (u0  

i
vi).

For example, the network configuration depicted in Fig. 6.2 belongs to the events C1,
B2 and C3 but not to the events A1, B1, A2, C2, A3 nor B3.

u0 u1 u2 u3

v0 v1 v2 v3

Figure 6.2: Example of a configuration of the ladder L3

Next, for ease of notation, we denote as x and x̄ the events in which an edge labeled
x is operating or failing respectively, and as xz the intersection of two such events x and
z. Observe that, for i = 1, . . . , ℓ, it holds that

Ai = Ai−1 ∧
(
aib̄ic̄i ∨ aibic̄i ∨ aib̄ici

)
∨

Bi−1 ∧ aib̄ici∨
Ci−1 ∧

(
aib̄ic̄i ∨ aib̄ici

) (6.1)
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6.1 The ladder network

Bi = Ai−1 ∧ āibici∨
Bi−1 ∧ (āibic̄i ∨ aibic̄i ∨ āibici)∨
Ci−1 ∧ (āibic̄i ∨ āibici)

(6.2)

Ci = Ai−1 ∧ aibici∨
Bi−1 ∧ aibici∨
Ci−1 ∧ (aibic̄i ∨ aibici) .

(6.3)

The unions and intersections of events involving the edges ai, bi and ci were written in
canonical form, to make evident each of the eight possible conjoint states yielded by the
individual states of the edges, and how they contribute to Ai, Bi and Ci. Moreover, all
unions involve disjoint events and all intersections involve independent events, therefore
holding the following identities for the probabilities Pr(Ai), Pr(Bi) and Pr(Ci):

Pr(Ai) = Pr(Ai−1)
(
αiβ̄iγ̄i + αiβiγ̄i + αiβ̄iγi

)
+

Pr(Bi−1)αiβ̄iγi+

Pr(Ci−1)
(
αiβ̄iγ̄i + αiβ̄iγi

) (6.4)

Pr(Bi) = Pr(Ai−1) (ᾱiβiγi)+

Pr(Bi−1) (ᾱiβiγ̄i + αiβiγ̄i + ᾱiβiγi)+

Pr(Ci−1) (ᾱiβiγ̄i + ᾱiβiγi)

(6.5)

Pr(Ci) = Pr(Ai−1) (αiβiγi)+

Pr(Bi−1) (αiβiγi)+

Pr(Ci−1) (αiβiγ̄i + αiβiγi) .

(6.6)

Note that computing the probabilities with subindices i can be recursively done in-
voking events with subindices i− 1 and edge probabilities with indices i. The base cases
are given by Pr(A0) = 1, Pr(B0) = 0 and Pr(C0) = 0. So we can build an algorithm that
is linear in ℓ (shown in Fig. 6.3), to compute Ru0,vℓ(Lℓ). The expression in the return

statement is necessary to consider the events where uℓ is reached thanks to the last “step”
cℓ+1 of the ladder.

6.1.2 Computing the DCR of the ladder

Now we show how the previous method can be extended from computing the two-terminal
d-DCR, denoted as Ru0,vℓ(Lℓ, d). First, we need to introduce the following Lemma.
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Procedure CLR-Ladder(ℓ, ~α, ~β,~γ)

1: a← 1; b← 0; c← 0
2: for all i ∈ 1, . . . , ℓ do
3: a′ ← a

(
αiβ̄iγ̄i + αiβiγ̄i + αiβ̄iγi

)
+ bαiβ̄iγi + c

(
αiβ̄iγ̄i + αiβ̄iγi

)

4: b′ ← a (ᾱiβiγi) + b (ᾱiβiγ̄i + αiβiγ̄i + ᾱiβiγi) + c (ᾱiβiγ̄i + ᾱiβiγi)
5: c′ ← a

(
αiβ̄iγ̄i + αiβiγ̄i + αiβ̄iγi

)
+ b

(
αiβ̄iγi

)
+ c

(
αiβ̄iγ̄i + αiβ̄iγi

)

6: a← a′; b← b′; c← c′

7: end for
8: return b+ c+ aγℓ+1

Figure 6.3: Algorithm for computing the s, t-CLR of a ladder graph

Lemma 6.1. Suppose that u0  
i
ui and u0  

i
vi. The shortest paths that connect u0 to

ui and u0 to vi (i = 1, . . . , ℓ), using only edges whose labels have subindices up to i, have
lengths that differ exactly in one.

Proof. Let p1 and p2 be examples of the shortest paths that connect u0 to ui and vi
respectively (using only edges with subindices up to i). Both will have the general
structure of Fig. 6.4 where, walking from u0 to ui and vi, they meet a certain number
of times, before they reach ui and vi. Let w be the last common node. The part p′1 of
p1 going from u0 to w has the same length that the part p′2 of p2 going from u0 to w;
otherwise, one of p1 or p2 could be made shorter by replacing p′1 by p′2 or vice versa. The
parts of p1 and p2 going from w to ui and vi must be as in Fig. 6.4, where the two possible
cases w = uj and w = vj with j ∈ {0, i} are shown. Regardless what the case is, clearly
the difference in length is one; otherwise w would not be the last common node.

u0

w ui

vi

u0
w

ui

vi

Figure 6.4: Lemma 6.1

In the case of the DCR, for each i = 1, . . . , ℓ, we have to deal with more events than
in the case of the CLR (Ai, Bi and Ci). Now the events get defined by the pairs of
distances from u0 to ui and vi. Let us denote by E

m,n
i the event where dist(u0, ui) = m

and dist(u0, vi) = n when only considering operational edges with subindices up to i. In
light of Lemma 6.1 and the specific topology of the ladder, no event other than E

∞,∞
i ,
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6.1 The ladder network

E
m,∞
i , Em+1,m

i , Em,m+1
i , E∞,m

i can be feasible, being i = 0, . . . , ℓ and m = i, . . . , 2i + 1.
As we did for the CLR, we can express the events for i using only events with subindices
i− 1:

E
m,∞
i = E

m−1,∞
i−1 aibici ∨ E

m−1,m
i−1 aib̄i ∨ E

∞,m−2
i−1 aib̄ici ∨ E

m−1,m−2
i−1 aib̄i (6.7)

E
m+1,m
i = E

∞,m−1
i−1 aibici ∨ E

m,m−1
i−1 aibi (6.8)

E
m,m+1
i = E

m−1,∞
i−1 aibici ∨ E

m−1,m
i−1 aibi (6.9)

E
∞,m
i = E

∞,m−1
i−1 biaici ∨ E

m,m−1
i−1 āibi ∨ E

m−2,∞
i−1 āibici ∨ E

m−2,m−1
i−1 āibi. (6.10)

Similar considerations to those for the CLR about disjointness of unions and inde-
pendency of intersections apply to the events involved in these equations. The only base
case (i = 0) with non-zero probability is Pr(E0,∞

0 ) = 1. Now we can build an algorithm
(shown in Fig. 6.5) to compute Ru0,vℓ(Lℓ, d). It starts by considering the trivial cases
where the threshold distance d between u0 and vℓ is too low to be reachable (the lowest
possible one is ℓ + 1). Similarly, if d is above 2ℓ − 1, then the operating configurations
are exactly the same as for the CLR, since given the topology of the network, no config-
uration exists where the distance between u0 and vℓ is above 2ℓ− 1. Next, the algorithm
defines a square array, initialized with zeros, large enough to store the probability of all
the events E. For ease of notation we assume that any reference involving out-of-range
subindices returns zero. The constant t is set to 2ℓ + 3 to represent the array index for
∞. The probability of the base case E

0,∞
0 is set to one. Then the algorithm proceeds by

sequentially processing the edges, one “ladder step” at a time. For each step, only those
values of m that can accumulate probability are considered; they range from i to 2i.
Once the array is computed, the algorithm builds a vector ~p that stores the probability
that the distance between u0 and vℓ is an integer m, for every index m ranging from
ℓ+1 to 2ℓ+1. Care is taken to consider the impact of the edge cℓ+1, similarly as we did
for the CLR-Ladder algorithm. Finally, the algorithm returns the cumulative probability
that the distance is any between ℓ+ 1 and the parameter d.

The execution time is dominated by the nested iteration, and thus the algorithm has
a complexity in time that is

O(
ℓ∑

i=1

2i∑

m=i

) = O(
∑

i=1

ℓ(i+ 1)) = O((ℓ+ 1)ℓ/2 + ℓ) = O(ℓ2)

that is, quadratic with respect to ℓ. We implemented the algorithm of Figure 6.5 in C++

and tested on an Intel Core2 Duo T5450 CPU machine with 2 GB RAM. Table 6.1 shows
the values of Ru0,vℓ obtained for ℓ between 1 and 20, the parameter d between 2 and 41
(which are the minimal and maximal finite distances for ℓ = 1 and ℓ = 20 respectively),
and all edge reliabilities equal to 0.3. Table 6.2 shows the values of Ru0,vℓ obtained for
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Procedure DCR-Ladder(ℓ, d, ~α, ~β,~γ)

1: if d ≤ ℓ then
2: return 0
3: else if d ≥ 2ℓ− 1 then
4: return CLR-Ladder(ℓ, ~α, ~β,~γ)
5: end if
6: t← 2ℓ+ 3
7: e(·, ·)← array (t+ 1, t+ 1) initialized with 0’s
8: e(0, t)← 1
9: ~x1, ~x2, ~x3, ~x4 ← vectors with subindices 1, . . . , 2ℓ+ 1

10: for all i ∈ 1, . . . , ℓ do
11: for all m ∈ i, . . . , 2i+ 1 do
12: x1(m)← e(m− 1, t)αiβiγi + e(m− 1,m)αiβ̄i + e(t,m− 2)αiβ̄iγi + e(m− 1,m−

2)αiβ̄i
13: x2(m)← e(t,m− 1)βiαiγi + e(m,m− 1)ᾱiβi + e(m− 2, t)ᾱiβiγi + e(m− 2,m−

1)ᾱiβi
14: x3(m)← e(t,m− 1)αiβiγi + e(m,m− 1)αiβi
15: x4(m)← e(m− 1, t)αiβiγi + e(m− 1,m)αiβi
16: end for
17: for all m ∈ i, . . . , 2i do
18: e(m, t)← x1(m)
19: e(t,m)← x2(m)
20: e(m+ 1,m)← x3(m)
21: e(m,m+ 1)← x4(m)
22: end for
23: e(i− 1, t)← 0; e(t, i− 1)← 0; e(i, i− 1)← 0; e(i− 1, i)← 0
24: end for
25: ~p← vector with subindices ℓ+ 1, . . . , 2ℓ+ 1
26: for all m ∈ ℓ+ 1, . . . , 2ℓ+ 1 do

27: p(m)←
(∑

j=m−1,m+1,t e(j,m)
)
+ e(t,m)

28: p(m)← p(m) + (e(m− 1,m− 2) + e(m− 1, t)) γℓ+1

29: end for
30: return

∑
m=ℓ+1,...,d p(m)

Figure 6.5: Algorithm for computing the s, t-DCR of a ladder graph
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ℓ between 1 and 40, d between 2 and 81 (again, covering all possible finite distances
between u0 and vℓ), this time with edge reliabilities equal to 0.9. Figure 6.7 shows (left)
the elapsed time for computing L1 to L150 and (right) the square root of these times,
making clear their quadratic evolution. Finally, four tests were run for the network L20,
and their results are shown in Figure 6.8. The four charts show the probabilities that
the random variable “distance between u0 and v20” has the values that range from 21 to
41. (These are the possible finite values it can have for L20). The difference between
1 and the cumulative probability of each chart is the probability that both nodes are
disconnected. This kind of probability distribution functions are used in [67] to compute
the two-terminal DCR of networks with junction points by means of the convolution
operator.

6.2 The Spanish fan network

Let us see another example based on a topology that we call the “Spanish fan”. This
family of networks Fℓ is shown is Fig. 6.6, parameterized by ℓ ∈ Z : ℓ > 1. It can be seen
as a ladder in which one of the sides was collapsed into a single node (v). Again, we set
as terminal two nodes K = {u0, uℓ} and we want to compute the probability that the
nodes u0 and uℓ are connected by a path with length up to a certain integer d.

u0

u1

u2

uℓ−1

uℓ

v

a1

a2

a3

aℓ

aℓ+1

b1

b2

bℓ

Figure 6.6: The Spanish fan network

It is easy to see that, in any configuration, when only considering edges with subindices
up to i, the following statements hold true:

• the distance between u0 and ui can be any of the range min(2, i), . . . , i + 1 or
infinite;

• the distance between u0 and v can be any of the range 1, . . . , ℓ+ 1 or infinite.

Now, analogously to Section 6.1.1, we can define Em,n
i as the event where dist(u0, v) =

m and dist(u0, ui) = n when only considering operational edges with subindices up to
i. For a given value of i ∈ 1, . . . , ℓ, the only elementary events that can occur with
probabilities other than zero, and at the end contribute to Ru0,uℓ

(Fℓ, d), are:
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• E
∞,i
i

• E
m,∞
i : m ∈ 1, . . . , i

• E
m,n
i : n ∈ 1, . . . , i ∧m ∈ 1, . . . , n

• E
m,i+1
i : m ∈ 1, . . . , i

So, as i grows, the number of such feasible elementary events has order O(i2). It
is interesting to note that, although being a simpler topology, these events outnumber
those of the ladder network; since by virtue of Lemma 6.1, the number of events of the
ladder grows with order O(i). Again, we can express the events for a given value of i just
using events defined for i− 1, as follows:

E
∞,i
i = E

∞,i−1
i−1 āibi

E
m,∞
i =

(
∪∞j=mE

m,j
i−1b̄i

)
∨ E

m,∞
i−1 āibi ∨ E

∞,m−1
i−1 aib̄i (m ∈ 1, . . . , i)

E
m,n
i = E

m,n−1
i−1 bi ∨ E

∞,n−1
i−1 (m = n)aibi (n ∈ 1, . . . , i;m ∈ 1, . . . , n)

E
m,i+1
i = E

m,i
i−1bi (m ∈ 1, . . . , i)

Again, the probabilities with subindices i can be computed just recurring to events
that just involve the subindex i− 1. This time the base case is given by E

∞,0
0 = 1. Sim-

ilarly as we did for the ladder, we can build an algorithm that computes the probability
of the O(i2) relevant events with subindices i, using the correspondent probabilities for
i − 1. This results in a dynamic programming algorithm with a number of operations
that is O(i3), therefore with time complexity O(i3); once again, polynomial in i.

6.3 A general family of topologies with polynomial complex-
ity

The examples we have introduced in Sections 6.1 and 6.2 exemplify the use of dynamic
programming techniques for computing the DCR of particular topologies. Next we in-
troduce a more general family of topologies that we call Gh. Although being an arbitrary
family of topologies, it serves for illustrating how the existence of a certain structure in
the network can lead to efficient (in the sense of polynomial) procedures for computing
the DCR; as well as how the level of structural decomposition allows to obtain lower
degrees in the polynomial. We show that the two-terminal DCR can be computed for
any member of Gh in a time that is polynomial in the number of nodes. We give an al-
gorithm that behaves according to this property. Besides illustration purposes, our main
interest in this algorithm lies on having a tool to create non-trivial graphs for which the
two-terminal DCR can be exactly computed; this is interesting, for example, for testing
bounds and/or approximation methods.
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1 2 3 5 8 11 15 20

2 1.72E-01
3 1.72E-01 7.56E-02
4 1.72E-01 7.56E-02 2.99E-02
5 1.72E-01 7.68E-02 2.99E-02
6 1.72E-01 7.68E-02 3.14E-02 3.98E-03
7 1.72E-01 7.68E-02 3.14E-02 3.98E-03
8 1.72E-01 7.68E-02 3.14E-02 4.74E-03
9 1.72E-01 7.68E-02 3.14E-02 4.74E-03 1.60E-04
10 1.72E-01 7.68E-02 3.14E-02 4.75E-03 1.60E-04
11 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.51E-04
12 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.51E-04 5.73E-06
13 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 5.73E-06
14 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.24E-05
15 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.24E-05
16 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.37E-05 6.16E-08
17 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.37E-05 6.16E-08
18 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.37E-05 2.02E-07
19 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.37E-05 2.02E-07
20 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.37E-05 2.65E-07

25 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.37E-05 2.74E-07 1.78E-09

30 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.37E-05 2.74E-07 2.05E-09

41 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.37E-05 2.74E-07 2.05E-09

Table 6.1: Ru0,vℓ(Lℓ, d) for ℓ between 1 and 20, d between 2 and 41, with all edge
reliabilities equal to 0.3
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1 3 6 10 15 20 30 40

2 9.64E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3 9.64E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4 9.64E-01 9.30E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
5 9.64E-01 9.30E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6 9.64E-01 9.48E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
7 9.64E-01 9.48E-01 8.36E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
8 9.64E-01 9.48E-01 8.36E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
9 9.64E-01 9.48E-01 9.14E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
10 9.64E-01 9.48E-01 9.14E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
11 9.64E-01 9.48E-01 9.15E-01 6.86E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
12 9.64E-01 9.48E-01 9.15E-01 6.86E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
13 9.64E-01 9.48E-01 9.15E-01 8.66E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
14 9.64E-01 9.48E-01 9.15E-01 8.66E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
15 9.64E-01 9.48E-01 9.15E-01 8.73E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
16 9.64E-01 9.48E-01 9.15E-01 8.73E-01 5.07E-01 0.00E+00 0.00E+00 0.00E+00
17 9.64E-01 9.48E-01 9.15E-01 8.73E-01 5.07E-01 0.00E+00 0.00E+00 0.00E+00
18 9.64E-01 9.48E-01 9.15E-01 8.73E-01 7.93E-01 0.00E+00 0.00E+00 0.00E+00
19 9.64E-01 9.48E-01 9.15E-01 8.73E-01 7.93E-01 0.00E+00 0.00E+00 0.00E+00
20 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.22E-01 0.00E+00 0.00E+00 0.00E+00

22 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 3.60E-01 0.00E+00 0.00E+00
24 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.05E-01 0.00E+00 0.00E+00
26 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.71E-01 0.00E+00 0.00E+00
28 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01 0.00E+00 0.00E+00
30 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01 0.00E+00 0.00E+00
32 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01 1.67E-01 0.00E+00
34 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01 5.04E-01 0.00E+00
36 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01 6.59E-01 0.00E+00
38 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01 6.86E-01 0.00E+00
40 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01 6.89E-01 0.00E+00
50 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01 6.89E-01 6.11E-01
81 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01 6.89E-01 6.12E-01

Table 6.2: Ru0,vℓ(Lℓ, d) for ℓ between 1 and 40, d between 2 and 81, with all edge
reliabilities equal to 0.9
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150 ℓ

t(s)
558

150 ℓ

t1/2

23.63

Figure 6.7: Elapsed time, and its square root, for computing L1 to L150 using DCR-Ladder
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Figure 6.8: Distributions of probability for the distance between u0 and v20 in L20

Definition 21. Given a positive integer h, we call Gh the set of all undirected graphs
G = (V,E) such that:

• ℓ is any positive integer or zero;
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• V has a partition {s}, V0, V1, . . . , Vℓ, {t} with |Vi| ≤ h for i = 0, . . . , ℓ;

• E has a partition E0, . . . , Eℓ−1, S0, . . . , Sℓ,W0, . . . ,Wℓ, T ;

• Ei ⊆ {{x, y} : x ∈ Vi ∧ y ∈ Vi+1} for i = 0, . . . , ℓ− 1;

• Si ⊆ {{s, x} : x ∈ Vi} for i = 0, . . . , ℓ;

• Wi ⊆ {{x, y} : x, y ∈ Vi} for i = 0, . . . , ℓ;

• T ⊆ {{t, x} : x ∈ Vℓ}.

Figure 6.9 depicts the structure of a generic element of Gh. Gray bars represent sets
of edges that link pairs of nodes belonging to different components of V . The minimum
possible distance between s and t is 2, thanks to any path s−x− t where x ∈ Vℓ. But, in
contrast to the examples of the ladder and the Spanish fan networks, there may be s� t
paths whose sequence of visited subsets Vi goes back and forward several times. For
instance, Figure 6.10 shows one path whose sequence of V subindices goes downwards
twice. This prevents us from the possibility of just keeping track of the distances from
s to each node in Vi considering only edges with subindices up to i, as we did in the
previous cases. More information has to be tracked as the algorithm proceeds by moving
forward in i, namely the distance between each pair of nodes in Vi, considering only edges
with subindices up to i. Next we describe an algorithm for computing the DCR of any
network in Gh and prove that it takes a time that is polynomial in the number of nodes.
To do so, we first need to prove the following lemmas.

s t

S0

V0V0VV E0000

W0

S1

V1VVV11VVVV E111111

W1

S2

V2 · · ·22222

W2

Sℓ−2

Vℓ−2VℓVV −2 Eℓ−2ℓℓℓ

Wℓ−2

Sℓ−1

Vℓ−1VℓVV −−1 Eℓ−1ℓℓℓ

Wℓ−1

Sℓ

Vℓ

Wℓ

t

VVVℓℓVVVVℓℓℓℓℓℓ

T

Figure 6.9: The family of graphs Gh

Lemma 6.2. Let G = (V,E) be an undirected graph; u, v, t, w any nodes of V with u �= v
and t �= w; du,v the distance between u and v in G. Then, the distance between t and w
in the graph G′ = (V,E ∪ {u, v}) (denoted d′t,w) is

d′t,w = min{dt,w, 1 + dt,u + dv,w, 1 + dt,v + du,w}
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s t

· · ·

Figure 6.10: Example of an s, t-path moving back and forward in the sequence of the Vi

Proof. For each path that connects t and w in G′, exactly one of the three possible
statements hold true for the corresponding trail from t to w: (i) it does not uses the edge
{u, v}; (ii) it uses the edge {u, v} and visits u before v; (iii) it uses the edge {u, v} and
visits v before u. Let d0, d1 and d2 be the length of the shortest paths t  w in G′ for
which (i), (ii) and (iii) respectively hold (∞ if there is no such path). We have that

• d0 = dt,w;

• d1 = d′t,u + 1 + d′v,w = dt,u + 1 + dv,w;

• d2 = d′t,v + 1 + d′u,w = dt,v + 1 + du,w.

Then the shortest path between t and w in G′ will have a distance equal to min{d0, d1, d2}
wich completes the proof.

Lemma 6.3. Let G = (V,E) be an undirected graph; H ⊆ V ; du,v is the distance between
u and v in G for every u, v ∈ H; and E′ ⊆ {{u, v} : u, v ∈ H} is a set of edges whose
nodes belong to H (but not necessarily to E). Then, the set of all distances d′u,v : u, v ∈ H
between nodes of H in G′ = (V,E ∪ E′) can be computed knowing only du,v : u, v ∈ H,
with an amount of elementary operations that is O(|H|4).

Proof. We prove it by giving an algorithm that returns the desired distances with O(|H|4)
elementary operations. Consider the following algorithm.

Procedure New-Distances(H, d,E′)

1: for all {u, v} ∈ E′ do
2: for all {x, y} ∈ {{t, w} : t, w ∈ H} do
3: d′x,y ← min{dx,y, 1 + dx,u + dv,y, 1 + dx,v + du,y}
4: end for
5: d← d′

6: end for
7: return d

The interior loop has at most |H|(|H| − 1)/2 iterations. Each one performs four
additions, a minimum-of-three comparison and an assignment, i.e. a constant number
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of elementary operations. By virtue of Lemma 6.2, after each interior iteration, we have
the set of distances d for the new graph obtained after adding one edge of E′. After
repeating this (external loop) for each one of the (at most) |H|(|H| − 1)/2 edges of E′,
the returned d contains the desired distances, and the number of elementary operations
is at most |H|2(|H| − 1)2/4 times a constant number, i.e. it is O(|H|4).

Now we are able to prove the main theorem of this section.

Theorem 6.1. When restricted to a family of graphs Gh, the DCR can be computed in
a time that is a polynomial in the number of nodes. The order degree depends only on h.

Proof. We start the proof by presenting an algorithm that satisfies the thesis in Fig. 6.11.
The algorithm receives the parameters ℓ, the edge reliabilities ~r, the maximum allowed
K-diameter dmax, and the partitions that build the sets of nodes and edges of the graph.
We employ “triads” (x, y, z) that mean “the distance between nodes x and y is z”. Given
a certain i, a set of triads can be seen as the event where the distances (avoiding edges
that belong to components labeled above i) are those specified by the triads. Each set
Di will record sets of triads (x, y, z), i.e. Di is a set of sets of triads; we use Di to store
the mentioned events. We maintain also maps µi, indexed by the elements of Di, that
store the probability of each event given by a set of triads. The base case is given by the
triad (s, s, 0); the probability p0 that the single-element set of triads {(s, s, 0)} holds true
is 1. The algorithm then performs an outer loop (lines 8 to 30) to sequentially consider
i from 0 to ℓ. In each of its iterations, a new set F of edges belonging to components
labeled with subindex i is considered. For each i, an intermediate loop (lines 14 to 29)
iterates through all the feasible sets of triads that were previously recorded in Di. The
inner loop (lines 15 to 28) matches every such set of triads with every subset of edges of
F (to consider every possible combination of operational and failing edges in F ). The
probability of this combination of operational and failing edges is computed and assigned
to ρ. The procedure New-Distances of Lemma 6.3 is invoked to compute the distances
between nodes in Vi ∪ Vi+1 ∪ {s} considering edges that belong to components whose
labels have subindices up to i. It returns a new set of triads d′, whose probability is
accumulated in the map µi+1 for use in the next outer iteration.

After leaving the nested iterations, µℓ+1 records the probability of a number of sets of
triads, including all the possible scenarios for distances between s and t. The probability
for those that respect the diameter constraint parameter dmax are totaled and returned
at the end as Rs,t(G, dmax).

Let us analyze the computational complexity of this algorithm. Loop (8-30) per-
forms ℓ + 1 = O(ℓ) iterations. Each iteration of loop (8-30) is dominated by loop (14-
29), that performs |Di| iterations. At its time, each iteration of loop (14-29) performs
2|F

′| ≤ 2h+h2+h(h−1)/2 ≤ 4h
2

iterations. The latter iterations are dominated by procedure
New-Distances that executes in time O((2h+ 1)4) = O(h4). So, the total time has order

order =
ℓ∑

i=0

(
|Di|4h

2
h4
)
= f(h)

ℓ∑

i=0

|Di| (6.11)
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where f(h) is a constant that depends on the parameter h (that grows extremely fast
with h). Regarding |Di|, note that each element of Di specifies distances for pairs of at
most h+ h+ 1 nodes, that is, (2h+ 1)(2h+ 1− 1)/2 = (2h+ 1)h pairs. Each pair can
have a distance between 2 and h+ hℓ = h(ℓ+ 1) (given by a path whose trail goes back
and forward h times from V0 to Vi). So, |Di| is bounded by (h(i+ 1))(2h+1)h. Replacing
in Eq. (6.11) we have that the order of execution time is

order = O

(
f(h)

ℓ∑

i=0

(h(i+ 1))(2h+1)h

)
= O

(
g(h)ℓ(2h+1)h

)
(6.12)

where, again, g(h) is a constant that depends on the parameter h (growing even faster
than f with h). This completes the proof.

Observe that ladder network belongs to the family G3, as illustrated in Figure 6.12
with ℓ − 1 components for a ladder with ℓ steps. By means of a simple technique that
we illustrate below for a generalization of the ladders (in Figure 6.13), it can be reduced
to G2. Then the execution time of Eq. (6.12) is O(ℓ5), while the one of the algorithm
suggested in Section 6.1 was ℓ2. This happens because in the algorithm DCR-Ladder

we took advantage of additional knowledge about the structure of the network, namely
that there cannot be “back and forward” paths in a ladder. In other words, the general
algorithm considers eventually that there can be edges linking any pair of nodes in each
Vi or between Vi and Vi+1, but the possibilities allowed by the ladder network are much
more restrictive than that. An intermediate case would be that of a family that we
could name “multi-ladders”, shown in Figure 6.13. There, back-and-forward paths are
feasible, but the number of feasible edges in each Vi or between Vi and Vi+1 is bounded
by h instead of h2. In this figure we illustrate a reduction technique that allows to set
h as the number of nodes existing in each step of the multi-ladder (the “step size”). A
multi-ladder G with ℓ steps and step size h, is converted into a member G′ of Gh. This
is done by adding a new node t′, linked exclusively to the destination node t of the
multi-ladder, by an edge with reliability equal to one (a perfect link). Observe that the
random variable “distance s-t’” is equal to the random variable “distance s-t” plus one.
Hence, we have that R(G, {s, t}, d) = R(G′, {s, t′}, d+1), so we can invoke the algorithm
DCR-Polynomial and compute R(G, {s, t}, d) with a complexity determined by the size
of each step h.

6.4 On the asymptotic d-K-DCR of random graphs

We now introduce the problem of computing the asymptotic value of the DCR, in graphs
that grow infinitely, following given probabilistic rules. The basic question is that of
determining if the DCR converges (and to what value) when a given network grows by
adding nodes and edges according to precise probabilistic rules. In this section we derive
some direct results from Random Graph Theory, for Gilbert’s model of random graphs.
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Procedure DCR-Polynomial (ℓ, ~r, dmax, V0, . . . , Vℓ, S0, . . . , Sℓ,W0, . . . ,Wℓ, E0, . . . , Eℓ, T )

1: for all i ∈ 0, . . . , ℓ+ 1 do
2: initialize Di ← ∅
3: initialize µi(·) as an empty map of reals
4: end for
5: d← {(s, s, 0)}
6: D0 ← {d}
7: µ0(d)← 1
8: for all i ∈ 0, . . . , ℓ do
9: if i < ℓ then

10: F = Si ∪Wi ∪ Ei

11: else
12: F = Si ∪Wi ∪ T
13: end if
14: for all d ∈ Di do
15: for all F ′ ⊆ F do
16: if i < ℓ then
17: d′ ← New-Distances(Vi ∪ Vi+1 ∪ {s}, d, F )
18: else
19: d′ ← New-Distances(Vi ∪ {s, t}, d, F )
20: end if
21: Di+1 ← Di+1 ∪ {d′}
22: ρ←∏

x∈F ′ rx
∏

x∈F\F ′(1− rx)

23: if µi+1 has an element with index d′ then
24: µi+1(d

′)← µi(d
′) + µi+1(d) · ρ

25: else
26: µi+1(d

′)← µi(d) · ρ
27: end if
28: end for
29: end for
30: end for
31: r ← 0
32: for all d ∈ Dℓ+1 do
33: if d has a triad (s, t, δ) with δ ≤ dmax then
34: r ← r + µℓ+1(d)
35: end if
36: end for
37: return r

Figure 6.11: Pseudocode for computing the DCR in Gh graphs
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s

t

V0 V1 V2 Vℓ−1

Figure 6.12: The ladder toplogy as a member of G3

s

t t′

V0 V1 V2 Vℓ−1 Vℓ

r = 1

Figure 6.13: The multi-ladder family of networks

The theory of Random Graphs studies the asymptotic behaviour (in the number of
nodes or edges) of the properties of graphs that grow following certain rules. Random
graphs were first defined in [73, 74]; good reference books on the subject are [75, 76]. In
the model proposed by Gilbert [74], denoted G(n, p), the graph has n nodes and each
possible edge between them occurs with a probability p. Erdos-Renyi [73] suggested a
closely related model G(n,m) in which a graph is chosen uniformly at random from the
set of all graphs that have n nodes and m edges. Models introduced later tried to mimic
properties and growth patterns of networks present in diverse disciplines and contexts
like Biology, Sociology, website link referencing, academic publication referencing, etc.
Among these the most studied ones are the Albert-Barabasi model [77] of preferential
attachment for generating random scale-free networks, and the Watts-Strogatz model
[78] that produces graphs with small-world properties.

The diameter of a graph is directly related to the all-terminal DCR. There are several
known results for the diameter of random graphs (see e.g. [79, 80] and in particular the
chapter 5.2 of [81]). Next we illustrate how some results on the diameter of random
graphs can be applied to determine the asymptotic behaviour of the 2-DCR.

Consider a Gilbert’s graph G(n, p) =< V,E >. It has n nodes and is built with
the following procedure: start with no edges, then for each pair of nodes u, v, draw an
uniform real number s from [0, 1] and add an edge (u, v) if and only if s ≥ p, being
p ∈ [0, 1]. It is clear that the expected value of m = |E| is n(n− 1)p/2. One can ask how
different properties of G(n, p) behave when n → ∞. Let us first study the asymptotic
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behaviour of the subproblem 2-{s, t}-DCR. The probability that the distance between
both terminals s, t is above two is

Pr(d(s, t) > 2) =

Pr((s, t) 6∈ E ∧ (∀w ∈ V \ {s, t})¬((s, w) ∈ E ∧ (w, t) ∈ E)) =

(1− p)(1− p2)n−2

which tends to zero when n→∞ for any p > 0. So we have that

lim
n→∞

R(G(n, p), {s, t}, 2) = 1.

Moreover, the 2-K-DCR tends to one whatever the set K is. This result comes
immediately from the well know fact ([82, 83] and, as a particular case of a more general
result, [84]) that the probability that the diameter of a Gilbert’s random graph G(n, p)
is two tends to one as n→∞ (provided that p > 0). Hence, the following lemma holds.

Lemma 6.4. Given any real p and integer d such that 0 < p ≤ 1 and d ≥ 2, regardless
how the terminal set K evolves as |V | grows, the d-K-DCR tends asymptotically to one,
that is,

lim
n→∞

R(G(n, p),K, d) = 1 for p > 0, d ≥ 2.

Proof. Since the probability that the graph has diameter two tends to one, it then follows
that the probability that the graph is d-connected for any d ≥ 2 tends also to one. It
follows that the same holds for the less restrictive condition that the graph is d-K-
connected.

A more general result can be drawn from the following property, first proved in
[85, 86]:

Property 2. The probability that a Gilbert’s graph G(n, p) has diameter d tends to one
when n→∞ if (pn)(d−1)/n→ 0 and (pn)d/n→∞.

It immediately follows from Property 2 the following lemma.

Lemma 6.5. Given any real p and integer d such that (pn)(d−1)/n→ 0 and (pn)d/n→
∞, and any integer d′ ≥ d, regardless how the terminal set K evolves as |V | grows, the
d′-K-DCR tends asymptotically to one, that is,

lim
n→∞

R(G(n, p),K, d′) = 1.

The conditions in the hypothesis of Lemma 6.5, applied to the case d = 2, yield that
pn/n → 0 and p2n → ∞, that is, p

√
n → ∞. Therefore, observe that the 2-K-DCR

keeps tending to one, even if the edge reliability degrades when n grows, provided that
n−1/2 is an infinitessimal of higher order than p(n). For any integer d ≥ 2, if we set
p(n) = nα with α < 0, then the conditions of Lemma 6.5 are
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nα(d−1)nd−2 → 0 and nαdnd−1 →∞
and so

α < −d− 2

d− 1
and α > −d− 1

d
.

Therefore, for any integer d′ ≥ d, the d′-K-DCR tends to one when α ∈ (−d−1
d ,−d−2

d−1).

Observe that if α < α′ < 0 then Pr(G(n, nα)is connected) < Pr(G(n, nα′
)is connected),

so the right edge of the interval can be set to zero. Therefore, the following lemma holds.

Lemma 6.6. For any d ≥ 1, if the edge reliabilities evolve as p(n) > nα (α < 0), then
the d-K-DCR tends to one when α > −d−1

d .

Further work regarding the asymptotic d-K-DCR includes investigating its behavior
with other models of random graphs as those of [77, 78].
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Chapter 7

About the application of Monte

Carlo to the analysis of reliability

7.1 Motivation

We have seen that in the general case, as well as for several subproblems, both the
CLR and the DCR problems belong to the NP-hard computational complexity class
of problems. This means that, even when using the best-performing known algorithms,
computing R(G,K) or R(G,K, d) implies a number of operation that grows exponentially
with the number of nodes n. This, in practice, limits the size of the networks for which
the exact computation is feasible to several dozens of nodes (see e.g. Section 11.4 in
[87]). This has motivated intense research, both on developing bounds and simulation
techniques, to estimate the network reliability with precision goals set by each specific
application and context. In this part of the thesis we focus on the application of Monte
Carlo methods for computing the DCR, by means of a particular family of methods
previously applied to the CLR. In Section 7.2 we resume the basic concepts behind Monte
Carlo applied to the CLR. In Chapter 8 we adapt the mentioned family of methods to
the DCR context and present several numerical results. In Chapter 9 we generalize this
to estimate a network performability measure that we define in terms of the K-diameter.

The contents of this chapter were published in the journal Computer Communica-
tions; see [14].

7.2 Monte Carlo methods for the CLR

The estimation of any reliability measure R by the standard (also referred to as “crude”
or “naive”) Monte Carlo method consists of the following steps:

• draw N independent samples X(1), . . . , X(N) of network configurations;

• compute the binary state Φ(X) for each sampled X;

• estimate R through the unbiased estimator R̂N = 1
N

∑N
i=1Φ(X

(i)).
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The precision of the estimator will depend on the sample size N and on the probability
that the network is in an operational state. Intuitively, a high precision means that the
estimations obtained after completing several simulations will closely fluctuate around
the real value R of the measure to estimate. Formally, the standard way to measure the
estimator precision is by its variance. Since Φ(X) is a Bernoulli random variable, its
variance is σ2

Φ = R(1−R), and then the variance of the estimator R̂N is

Var(R̂N ) = R(1−R)/N. (7.1)

The Central Limit Theorem can be used to construct a confidence interval for R̂N .
So, the following items are strongly related; given any two of them, the third is perfectly
determined:

• the variance Var(R̂N );

• an interval I = [R− ǫ, R+ ǫ];

• the confidence level for the interval I (the probability that R̂N falls within the
interval).

For instance, suppose we want to run a simulation experiment so that there is a 95%
probability that the outcoming R̂N falls within an interval [R − ǫ, R + ǫ]. Then the
Central Limit Theorem states that, for a sample size N sufficiently large, the variance
must converge to (ǫ/1.96)2. Now, how can we build such a Monte Carlo experiment?
Eq. (7.1) yields that

N =
R(1−R)

(ǫ/1.96)2
(7.2)

Hence, observe that the needed sample size N grows proportionally to the square of
the confidence interval width ǫ. An important remark is that, as Eq.(7.2) shows, the
sample size does depend on the exact value R that we want to determine. Since, in
general, we do not know it1, all we can do is compute an estimator for Var(R̂N ), i.e. an
estimator for the variance of the reliability estimator. Un unbiased estimator V̂ar(R̂N )

typically used for Var(R̂N ) is the following:

V̂ar(R̂N ) = R̂N (1− R̂N )N/(N − 1).

7.2.1 The rare event issue

As discussed in Section 1.1, edge reliabilities in real networks are very high. Therefore,
sampling a network configuration that corresponds to the state “the network fails” is a
rare event. This means that a huge number of samples must be drawn in order to obtain
a few cases where the network fails. Consider the ratio relerr between the confidence

1One could know the exact value of R for a certain network and want to test a certain simulation
method; but in the general case, R is not known and can only be estimated.
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interval width and the unreliability 1 − R of the network, known as the relative error.
From Eq. (7.2) we have that

relerr =
ǫ

1−R
= z

√
R

N(1−R)

where z is the Gaussian z-value that corresponds to the attained confidence level. Observe
that, once fixed a certain sample size N and confidence level given by z, the relative
error unboundedly grows as the network reliability R tends to one. In other words, when
working with highly reliable networks, huge sample sizes may be needed in order to obtain
an estimator for R that has an acceptable relative error. In [5] an example is given where
the network has 14 nodes, 25 edges, mean degree 3.57 and uniform reliabilities equal to
0.99 resulting in a network unreliability 1−R ≈ 4.18×10−8. In this example, just to have
a couple of significant figures in 1 − R̂N , the sample size must exceed 1.6 × 1011. This
would be several orders of magnitude worse for real links, for which unreliability orders
of -4, -5, -6 are much more realistic that only -2 (that of the example). To cope with
this problem, several variance-reduction techniques have been proposed for estimating
R(G,K). Surveys can be found in [11, 87, 88]. More recent works include [89, 90,
91, 92, 93]. These methods allow to significantly reduce the sample size yet attaining
the same confidence interval/levels than when using a crude Monte Carlo simulation.
It is important to note that the crude Monte Carlo method is such that nothing is
said about the structure function Φ; the only desirable property to expect from it is
that it is easily computable for a given configuration X. This is something to bear in
mind when working with more complex methods since many of them rely on certain
properties of the measure R (e.g. coherence). Another typical issue that must be studied
for each simulation methods in the rare event context is the robustness of the method.
This relates to the degree up to which an estimated confidence interval matches the
theoretical one when R → 1. They will be in general some mismatch, because the
variance of the estimator of R must be estimated itself, as we saw above. The gains
offered by variance-reduction techniques, in terms of needing smaller sample sizes, have
a counterpart with regards to the higher execution times that they may involve. This is
due to the nature of their sampling procedures, that are in general more complex than the
simple Bernoulli’s experiments needed to sample a random configuration in crude Monte
Carlo. From the user’s point of view, what matters is the balance between precision and
execution time. The relative efficiency is a measure that allows to compare the efficiency
of several simulation techniques, taking into account both the ratios between spent times
and variances; we define (and apply it) in Section 8.4.

The Monte Carlo techniques used for estimating CLR measures can in general be
adapted to the DCR context, provided that convenient mechanisms for sampling and
computing Φ in diameter-sensitive contexts are devised. We do it next for a family of
methods previously introduced for CLR estimation.
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Chapter 8

Monte Carlo estimation of the DCR

conditioned by pathsets and cutsets

In this chapter we focus on a family of Monte Carlo sampling plans described in [94],
based on employing a priori knowledge about pathsets and cutsets (see Section 8.2.1).
Van Slyke and Frank [95] and Kumamoto, Tanaka and Inoue [96] suggested such sampling
plans, that operate by restricting the sampling space, thanks to the previous knowledge
of a set of pathsets and cutsets. Fishman includes in [94] these previous works under
a general framework of conditioned Monte Carlo sampling plans and in [97] compares
them to other sampling plans for K = {s, t}, evidencing the advantages of this approach.
This chapter proceeds as follows. Section 8.1 introduces the needed definitions and no-
tation. Section 8.2 presents the general framework and discusses the consequences that
switching to the DCR context has, regarding the topological components employed for
computing the bounds (pathsets and cutsets) and each step of the Monte Carlo simula-
tion. Section 8.3 briefly describes each sampling plan comparing their requirements and
limitations. Section 8.4 presents numerical results obtained after running tests on sparse
and dense topologies. It also illustrates how the existence (and its value) of a diame-
ter constraint and the size of the set of terminal nodes affect the attained performance.
The tests also illustrate how the performance improvements over the crude Monte Carlo
method tend to be higher in the context of the DCR when compared to the CLR. Finally
Section 8.5 summarizes main conclusions.

8.1 Definitions and notation

For ease of reference we resume here the relevant notation for this chapter. As usual an
instance of the CLR is defined by an undirected graph G = (V,E,~r) with n = |V |,m =
|E|, E = {e1...em}, a set of terminal nodes K⊆V with k = |K| and known probabilities
of operation ~r = (re)e∈E for each edge. Recall that edge states are assumed to be
independent of one another. The addition of a diameter constraint d defines an instance
of the DCR which we denote by d-DCR. For each e∈E, let Xe be a random binary
variable whose value is 1 if e operates and 0 otherwise. We call the network configuration
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or state vector any m-tuple X = (X1...Xm) ∈ {0, 1}m encoding the states of all edges.
Let X be the set of the 2m possible configurations and denote by π(x) the probability
that the random configuration is x, that is, π(x) = Pr(X = x). We denote as Φ the
structure function that maps each configuration x ∈ X into 1 or 0 according to the fact
that the network operates or fails when the components are in the states encoded in x.
As a consequence, Φ(X) is a random network state and R(G,K, d) = Pr(Φ(X) = 1).
For ease of reference, we next list the variables and notations that appear in places other
than just where they are defined.

• R: network reliability (CLR or DCR given by context);

• P,C: sets of d-pathsets and d-cutsets a priori known (see Section 8.2.1);

• L,U : the sets of those configurations where at least one of P operates (L) and at
least one of C fails (U);

• Γ: the set of those configurations not in L nor in U ;

• RL, RU : lower and upper bound for R, given by L and U (see Section 8.2);

• R̂N , V̂ar(R̂N ): unbiased estimators for R and its variance obtained using any sim-
ulation method;

• N : simulation sample size (number of iterations);

• M,N : size of the lowest-cardinality d-pathset and d-cutset that exist according to
G, d and K (see Section 8.3.2);

• Ω: set of edges that belong to at least one element of P or C.

8.2 Conditioned Monte Carlo simulation

The d-DCR for a graph G with terminal set K can be computed as R = R(G,K, d) =∑
x∈XΦ(x)π(x). By sampling N configurations {X(1)...X(N)} according to the proba-

bility distribution given by π(x) (crude Monte Carlo sampling plan) we can build an
unbiased estimator

∑N
i=1Φ(X

(i))/N for R whose variance is R(1 − R)/N . Suppose we
partition X into three pairwise disjoint sets U (set of configurations known to fail i.e. for
which Φ = 0), L (set of configurations known to be operational i.e. Φ = 1) and Γ (set of
configurations for which we do not know the state of the network), as shown in Figure
8.1. Then, defining RL = π(L) =

∑
x∈L π(x) and RU = 1 − π(U) = 1 −∑x∈U π(x) we

have that RL ≤ R ≤ RU (RL and RU are lower and upper bounds for the DCR) and
that

R = RL + Pr(X ∈ Γ ∧ Φ(X) = 1)

= RL + (RU −RL) Pr(Φ(X) = 1 |X ∈ Γ).
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L UΓ

Operational configs Failing configs

0 RL
RU 1g=R(G,K,d)

(a pathset operates) (a cutset fails)

Figure 8.1: Monte Carlo sampling conditioned by pathsets and cutsets

So, if RL, RU are known, and if we can sample the component states from the conditional
probabilities Pr(Xe = 1 | X ∈ Γ), one can draw N configurations from Γ according
to that conditional probability and build an unbiased estimator R̂N = RL + (RU −
RL)

∑N
i=1Φ(X

(i))/N for R whose variance can be shown to be (RU − R)(R − RL)/N

and thus unbiasedly estimated as V̂ar(R̂N ) = (RU − R̂N )(R̂N −RL)/(N − 1), achieving
a variance reduction against the crude sampling plan if RL > 0 or RU < 1. This is
presented in [94] together with bounds on the amount of samples needed to achieve
desired confidence level and interval width goals for the absolute and relative errors. The
methods here discussed differ in the way the sets U and L are defined and the way they
implement a configuration sampling coherent with Pr( . | X ∈ Γ). Unless otherwise
specified we will assume that the edge states are independent. A generic pseudocode for
these simulations is shown in Figure 8.2. There are four basic steps for which we next
discuss the differences introduced when working in DCR context respect to CLR.

8.2.1 Gathering information about the topology of the network that

is useful for bounding the configurations space

The following discussion applies to the steps “Precomputing” and “Bounding” of Figure
8.2. The most common topological structures used in the literature for computing,
bounding and estimating network reliability are the concepts of pathset and cutset. Recall
that a pathset is any set of edges such that if they all operate, the network operates,
regardless of the state of edges not in the pathset. Similarly, a cutset is any set of edges
such that if they all fail, the network fails as well, regardless the state of edges not in
the cutset. These definitions are also valid for the DCR context, where then notation
d-pathset and d-cutset is used to make explicit that there is a diameter parameter d. A
pathset is said to fail when at least one of its edges fails (otherwise the pathset is said to be
operational); whereas a cutset is said to fail when all of its edges fail (otherwise it is said
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Procedure Simulate(G,K, d,π,N)

1: Precomputing: Prop← (properties of the graph, subsets, auxiliary tables, etc.)
2: Bounding: RL, RU ← compute-bounds(G,K, d, π, Prop)
3: Z ← 0
4: for all iter ∈ {1 . . . N} do
5: Sampling: x← sample-a-configuration(π, Prop)
6: Checking: if connected(x,K, d) then Z←Z + 1
7: end for
8: R̂← RL + (RU −RL)Z/N ;

σ̂2 ← (RU −RL)
2(1− Z/N)Z/(N(N − 1))

9: return R̂, σ̂2

Figure 8.2: Generic conditioned Monte Carlo simulation pseudocode

to be operational). Both pathsets and cutsets are said to be minimal if there is no edge
whose suppression still yields a pathset or a cutset, respectively. Some sampling plans
discussed here require determining the number of edges in the pathsets and cutsets with
smallest cardinality. Following [94] we denote these cardinalities as M and N respectively.
In the CLR context, determining M takes O(n2/3m) time and determining N takes O(m)
time for k ∈ {2, n} and O(kmn) in general. Other plans take advantage of knowing as
many edge-disjoint pathsets and cutsets as possible. Building N disjoint pathsets and
M disjoint cutsets1 (useful for the plans of Section 8.3.3) takes O(Mm) and O(m) times
respectively. See [94] for the above results. All these tasks become more complex when
working with diameter constraints. Golovach and Thilikos [9] summarize the complexity
of the decision problems asking for the existence of edge-disjoint pathsets and cutsets with
a given cardinality κ for a given constraint d. These problems are NP-hard when one or
both of κ and d are considered as inputs and belong to the FTP complexity class2 when
both are parameters. Note that a certain edge set that is a pathset under diameter d is
not necessarily a pathset under diameter d′ < d; whilst all pathsets under diameter d′ are
also pathsets under diameter d. The opposite happens regarding cutsets. In other words,
for the same topology, as the required diameter decreases there are fewer pathsets and
more cutsets, which shifts the [lower bound, upper bound] intervals computed through
pathsets and cutsets suggested in Section 8.3.3. This is intuitive since the DCR decreases
monotonously when d decreases (the constraint being more demanding). We will assume
that M , N and/or a set of pathsets and cutsets are given a priori though finding them
can be a difficult task (particularly for the DCR as seen). It is useful to treat these
precomputing tasks as problems separated from the simulation itself; once solved for a
given topology and set K they can be used multiple times for estimating reliabilities

1I.e. as many pathsets as the smallest cardinality of a cutset, and as many cutsets as the smallest
cardinality of a pathset, as suggested in [94] for bounding the simulation relative error.

2The class of complexity of the parameterized problems taking time O(f(p)g(i)) where f is any
function on the parameters p and g is any polynomial on the inputs i.
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with different values of ~r = (re)e∈E , for instance to perform a sensitivity analysis, or for
optimizing purposes.

8.2.2 Sampling configurations

As discussed in Section 8.3, in this step a configuration must be randomly chosen, from
the subspace yielded after dropping off the configurations for which the network state
is known thanks to the bounding method applied. The selection must be made with
probabilities proportional to the ones in the original configuration space. As we will see,
regarding the algorithms applied in this step in the sampling plans here discussed, no
differences arise when moving from the CLR to the DCR context.

8.2.3 Determining the network state for a sampled configuration

After sampling a configuration x it must be determined whether it corresponds to an
operational or to a failed network state (by computing Φ(x)). This can be done in O(m)
time for the CLR running a breadth-first-search (BFS) starting at any node of K. Under
DCR the time required is in general O(km) (BFS with depth bounded by d starting at
each node of K). The values of d and k determine whether this step takes more or less
time in DCR than in CLR. With low values of d each BFS might execute faster in DCR
than in CLR since it reaches a depth of at most d. On the contrary high values of k will
force to run several BFS in DCR instead of one in CLR thus increasing the checking time
in DCR. The effect of both parameters is made evident in Section 8.4, where we show
their impact on the relative efficiency (RE) of the methods against crude Monte Carlo
attained in CLR and DCR.

8.3 Description of the methods

8.3.1 SIM1: Crude Monte Carlo

As seen above, when applying crude Monte Carlo, the sets U and L are empty (no
information about failing or operational configurations is used when sampling) and thus
RL = 0, RU = 1 and σ2

N = R(1 − R)/N . The steps “Precomputing” and “Bounding”
are trivial (nothing to compute). The step “Sampling” is O(m) since it involves running
m Bernoulli trials, one for each edge e with success probability Pr(Xe = 1) if failures
are independent, or conditioned to the already sampled edges to compute Pr(Xe =
1 | “state of already sampled edges”) if there are dependencies. The step “Checking” is
identical for all methods and was discussed in Section 8.2.3.

8.3.2 SIM2: Bounds based on minimal cardinality pathsets and cutsets

In [95] Van Slyke and Frank suggested the following way to build U and L. Let M be the
cardinality of the pathset with the lowest cardinality (for a given instance G,K, d) and let
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N be the cardinality of the cutset with the lowest cardinality. It is clear that any configu-
ration with fewer than M operational edges leads to a failing network. At the same time,
any configuration with more than m−N operational edges leads to an operational system.
So we can define U as the set of all configurations having more than m−N operational
edges and L as the set of all configurations having fewer than M operational edges. The
step “Precomputing” implies determining M and N (refer to Section 8.2.1) which can be
more difficult for DCR than CLR; in large instances it can be easier to bound M and N
by certain integers M ′ ≤ M and N ′ ≥ N though getting potentially less tight bounds.
Determining RL involves adding the occurrence probabilities of all configurations with
fewer than M operational edges. Note that when working with uniform edge reliabilities p
(re = p for all edge e) any configuration with j operational states has an occurrence prob-
ability equal to pj(1− p)m−j . Then, defining Fi(m, p) =

∑i
j=0

(
m
j

)
pj(1− p)m−j we have

that RL = FM−1(m, p) and RU = 1−Fm−N (m, p) computable in O(M) and O(m−C+1)
times respectively. When probabilities are not uniform, algorithms known in the litera-
ture as of the “k-out-of-n” type must be used [98, 99, 100]. Computing a table with all
values for F can be seen as part of “Precomputing”. Then, “Sampling” implies that a
random configuration must be drawn with at least M but fewer than m−N operational
edges according to their probabilities of occurrence. To do so with uniform probabilities
involves two steps. First, one determines the number Q of edges by choosing an uniformly
distributed random cutpoint U in the interval (FM−1(m, p), 1 − Fm−N (m, p)) and then
applying the ordinary inversion method on a table of cumulative Fi(m, p) values, in order
to obtain a value for i and assign it to Q. Second, a configuration with such number
of operational edges is randomly built by generating an uniformly distributed random
integer in [0,

(
m
Q

)
) and “translating it” into a unique set of Q operational edges through

a bijective function (in [94] the k-canonical representation of integers of Kruskal-Katona
is suggested). Both can be executed in O(m) time provided that tables with the values
of F and precomputed needed combinations exist. Note that the absence or presence
(and value) of a diameter constraint d has no explicit impact on the algorithm used for
sampling edges, though it has an indirect impact through the values of M and N , since
the minimum-cardinality pathsets and cutsets depend on the constraint d.

8.3.3 SIM3, SIM4, SIM5: Bounds based on precomputed pathsets and

cutsets

Kumamoto, Tanaka and Inoue [96] suggested a method that takes advantage of more
information about the topology of the problem instance than just knowing M and C,
namely knowing a set of I pathsets P = P1...PI and a set of J cutsets C = C1...CJ ;
this method is presented under a more comprehensive framework in [94]. The set U (as
defined in Section 8.3 together with L) will be exactly the set of all configurations where
at least one of C1...CJ fails (thus making the network fail). The set L will be exactly the
set of all configurations where at least one of P1...PI is operational (thus guaranteing that
the network is operational). So the set Γ from which samples must be drawn contains
all configurations for which we do not have evidence of their state if only considering the
information given by P and C.
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Let us first address the general case where the elements of P are not required to be
pairwise disjoint nor are the elements of C; let us call this plan SIM3. “Precomputing”
in this context involves generating the sets P and C which (not having to be edge-
disjoint) can be easily done through DFS algorithms for P (both for CLR and DCR)
and drop-and-test algorithms for C (observe that we are not constrained to generate all
pathsets or cutsets; this is just a matter of trade-off between precomputing effort and
bounds tightness). “Bounding” (computing RL and RU ) can be exponentially complex
if the elements in P and/or C are numerous and highly overlap (though trivial if they
are disjoint, by factoring probabilities). Regarding “Sampling” let Ω be the set of all
edges in P1...PI and C1...CJ . Sampling edges in E \ Ω involves just m − |Ω| Bernoulli
trials. Edges in Ω can be sequentially sampled in O(|Ω|(∑I

h=1 |Ph| +
∑J

h=1 |Ch|). In
[94] formulae are presented for sampling the state of the edges in Ω. Although they
are presented in a context where general (not necessarily disjoint) pathsets and cutsets
are used, they are indeed only valid for disjoint pathsets and cutsets. In Section 8.6
we concisely derive valid formulae both for non-disjoint and disjoint contexts. A variant
presented in [94] that we call SIM4 implies precomputing the probability of the occurrence
of each of the 2|Ω| possible sub-configurations that exist when only considering the edges
of Ω, in O(2|Ω|) time. Then sampling involves just choosing any of them through a
random cutpoint access on a table accumulating the precomputed probabilities (thus
in O(m) time). This variant is feasible only for limited-sized sets Ω and thus limited-
sized problem instances (because the bounds loosen as m grows with a fixed |Ω|). A
third variant that we call SIM5 makes use only of pairwise disjoint pathsets P1...PI and
cutsets C1...CJ . Disjointness allows an easy factorized computation of RL and RU in
O(
∑I

h=1 |Ph|) and O(
∑J

h=1 |Ch|) steps respectively, and sampling of all edges in O(m);
the algorithm, presented in [94] with mistyped formulae as noted in [101], is included
together with its proof in 8.6. It is important to note that the previous discussions about
SIM3, SIM4 and SIM5 are valid for non-uniform probabilities. Again, note that for SIM3,
SIM4 and SIM5 the absence or presence (and its value) of a diameter constraint d has no
explicit impact on the sequential computation of the probabilities for sampling the edges
of Ω. Yet there is an indirect impact when building the sets P and C since their elements
must be then d-pathsets and d-cutsets for a given value of d. Once in the sampling phase
their elements intrinsically carry the constraint within their topology but the sampling
algorithm remains identical (and independent of d) in CLR and DCR.

8.3.4 Comparison of sampling plans

Table 8.1 compares the requirements on uniformity of probabilities, previous-to-simulation
knowledge needed and times order for precomputing, bounding and sampling. The no-
tation exp(P,C) means “potentially exponential in the edges of P and C”. As the tests
show later, there are significant differences in time even in cases with identical order.
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Table 8.1: Comparison of computational orders, by step and sampling plan, for the DCR.

. SIM1 SIM2 SIM3 SIM4 SIM5

re∈E Any Uniform Any Any Any
Pre-knowledge - min.sizes M,N P,C general P,C general P,C disjoint

Precomputing - m (for table F ) - 2|Ω| -
Bounding - M +m−N exp(P,C) exp(P,C)

∑ |Pi|+
∑ |Ci|

Sampling m m
∑ |Pi|+

∑ |Ci| m m

8.4 Experimental results

8.4.1 Test instances

In order to study the performance of the methods presented in the previous sections, we
provide computational results obtained in four different tests. Tests I and II are based on
the “dodecahedron” network, a common topology in network reliability literature, shown
in Figure 8.3. Test I compares the performance of all methods with different d values
for a terminal set K = {s, t}. Test II compares SIM5 and crude Monte Carlo when
specifying a larger set K and diameter d. Test III is based on the countrywide transport
network topology of ANTEL, the largest telecommunications provider in Uruguay, shown
in Figure 8.4. It also illustrates the effect of specifying different d values as well as two
different cases of link reliabilities. In these cases a comparison against CLR is also done.
Test IV aims to illustrate the behaviour of the methods when applied to dense networks.
It is based on the networks G15,3, G15,4 and G15,5 (we denote as Gn,h the uniform graph
with n nodes labeled 0 · · ·n− 1 and where the set of neighbors of each node i is exactly
∪j=−h...h,j 6=i{i+n j} being +n the addition modulo n). The diameter is set to three and
the terminals are K = {0, 8}. The performance is compared for different link reliabilities.

In particular it is interesting to analyze how the RE of each variance reduction meth-
ods change when moving from the CLR to the DCR context; this has much to do with
the following reason. Let τNI and τNII be respectively the times consumed to generate a
sample configuration under two sampling plans I and II (e.g. crude Monte Carlo and a
variance reduction plan) and let τΦ be the time consumed for evaluating the correspond-
ing Φ. Then the RE among both plans is given by the ratios among the times and the
variances obtained, σ2

I and σ2
II ; that is RE = (τNI + τΦ)/(τNII + τΦ) × σ2

I/σ
2
II . We see

that a growth in τΦ softens the effect of the difference between τNI and τNII , increasing
the impact on the RE of the difference between σ2

I and σ2
II .

All methods were implemented in C++ and the tests were run on an Intel Core2 Duo
T5450 machine with 2 GB of RAM; reported times are expressed in seconds.

8.4.2 Test I

In this test we set K = {1, 9}, re = 0.95 for all e∈E, and we estimated R(G,K, d)
running all the discussed methods with a sample size N = 218 and diameter constraints
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Figure 8.3: dodecahedron network (for test cases I and II)

d = 2, 3, 4, 5, 6, 7 plus CLR (d = ∞). The bounds (M,N) for SIM2 are (2, 1) for d = 2,
(2, 2) for d = 3, 4 and (2, 3) for d = 5, 6, 7,∞. The disjoint sets P contain

• for d = 2: {3, 9};

• for d = 3, 4, 5: {3, 9}, {8, 2, 0};

• for d = 6, 7,∞: {3, 9}, {8, 2, 0}, {17, 26, 18, 19, 11, 4},

while the disjoint sets C contain

• for d = 2: {3}, {9};

• for d = 3, 4: {0, 3}, {8, 9};

• for d = 5, 6, 7,∞: {0, 3, 4}, {8, 9, 17}.

For SIM3 and SIM4 larger (non-disjoint) sets P,C are used for most values of d as
follows. Sets P contain

• for d = 5: {3, 9}, {9, 10, 19, 11, 4}, {8, 2, 0};

• for d = 6: {3, 9}, {8, 2, 0}, {17, 26, 18, 19, 11, 4}, {17, 26, 18, 10, 3}, {8, 7, 15, 6, 1, 0};

• for d = 7,∞: {3, 9}, {8, 2, 0}, {17, 26, 18, 19, 11, 4}, {17, 26, 18, 10, 3},
{8, 7, 15, 6, 1, 0}, {17, 25, 16, 7, 2, 0},

while the sets C contain

• for d = 3, 4: {0, 3}, {8, 9}, {2, 9}, {3, 8};
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Figure 8.4: Transport network topology of ANTEL (Uruguayan national telecommuni-
cations provider; for test case III)

• for d = 5: {0, 3, 4}, {8, 9, 17}, {3, 8, 19}, {3, 8, 9};

• for d = 6, 7,∞: {0, 3, 4}, {8, 9, 17}, {8, 9, 25, 26}, {0, 3, 11, 12}.

Table 8.2 presents the results. Simulation times are reported as tsim. REsim(z)

stands for the relative efficiency of SIM(z) when compared to SIM1. First, note that
the estimated reliability grows when d goes from 2 to 7 and then ∞ as expected due to
the progressive loosening of the diameter constraint. Second, observe that the variance
is zero for SIM3,4,5 and d = 2, 3, 4 due to the fact that the set Γ is empty in those
cases (the used pathsets and cutsets easily determined by visual inspection capture all
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Figure 8.5: Dense graph G15,3 (one of the familiy of networks for test case IV)

information about R). Third, note that execution times tend to grow when d grows, due
to the deeper BFS performed when checking each sample. Fourth, with regard to relative
efficiency RE, SIM2 outperforms crude Monte Carlo for all d ≥ 5 and SIM3, 4, 5 for all d.
SIM4 has by far the largest RE ratios though one has to take into account the limitations
already discussed in Section 8.3.3 (e.g. in this case building the precomputed tables took
a time equivalent to that consumed by the simulation itself and would exponentially
grow for larger topologies). SIM3 does not require precomputing the table but it does
require a significant effort to find a minimal-size polynomial to compute the probabilities
for sampling edges in Ω; and with highly overlapping sets P,C (as is for d = 5, 6, 7)
the computation time growths outweigh the gains in bound tightness delivering a poorer
performance when compared to SIM5. Fifth, in this case (k = 2) the time needed for
sample checking is equal or lower for DCR than for CLR (one single BFS in both cases,
potentially deeper for CLR) and thus the RE in CLR outperforms those in DCR; this
changes in Tests II and III as we see next.

8.4.3 Test II

In this test we set K = {7, 9, 11, 12, 18, 19}, re = 0.95 for all e ∈ E, and we estimated
R(G,K, 9) and R(G,K) comparing crude Monte Carlo with SIM5. The following two
disjoint pathsets are employed:

• {19, 10, 9, 17, 26, 27, 29, 23, 14, 22},

• {28, 20, 11, 4, 0, 2, 7, 8, 16, 24, 21, 13, 5, 6, 15};
as well as the following five disjoint cutsets:

• {27, 28, 29},
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Table 8.2: Numerical results for test case I

Diameter (d) 2 3 4 5 6 7 ∞
R̂ 0.902943 0.986343 0.986263 0.997276 0.999355 0.999577 0.999702

V̂ar(R̂)sim1 3.34E-07 5.14E-08 5.17E-08 1.04E-08 2.46E-09 1.61E-09 1.13E-09
tsim1 3.29 3.62 3.62 3.64 3.65 3.67 2.68

V̂ar(R̂)sim2 2.54E-07 2.30E-08 2.30E-08 2.04E-09 4.49E-10 3.18E-10 2.10E-10
tsim2 10.12 10.33 10.19 10.36 10.39 10.45 9.41

REsim2 0.43 0.78 0.80 1.78 1.92 1.78 1.54

V̂ar(R̂)sim3 0.00E+00 0.00E+00 0.00E+00 4.83E-11 2.20E-12 6.96E-13 1.71E-13
tsim3 11.47 17.39 17.26 34.37 51.84 59.92 46.74

REsim3 ∞ ∞ ∞ 22.67 78.71 141.89 381.08

V̂ar(R̂)sim4 0.00E+00 0.00E+00 0.00E+00 4.83E-11 2.20E-12 6.96E-13 1.71E-13
tsim4 2.92 5.21 4.25 6.66 7.80 8.06 6.12

REsim4 ∞ ∞ ∞ 117.07 523.03 1054.48 2908.92

V̂ar(R̂)sim5 0.00E+00 0.00E+00 0.00E+00 1.10E-10 4.65E-12 2.57E-12 5.40E-13
tsim5 2.89 4.56 4.73 7.77 8.57 8.69 5.80

REsim5 ∞ ∞ ∞ 44.06 225.00 265.34 971.93

Bounds

RL(SIM2) 0.214639 0.553542 0.553542 0.812179 0.812179 0.812179 0.812179
RU (SIM2) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
RL(SIM3,4) 0.902500 0.986094 0.986094 0.991612 0.997850 0.998447 0.998447
RU (SIM3,4) 0.902500 0.990381 0.990381 0.999513 0.999738 0.999738 0.999738
RL(SIM5) 0.902500 0.986094 0.986094 0.986094 0.996316 0.996316 0.996316
RU (SIM5) 0.902500 0.995006 0.995006 0.999750 0.999750 0.999750 0.999750
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8.4 Experimental results

Table 8.3: Numerical results for test case II

. R̂ V̂ar(R̂) tsim RL RU RE

SIM1 (CLR) 0.999138 3.49E-09 4.63 0.000000 1.000000
SIM5 (CLR) 0.999130 2.00E-10 6.26 0.784639 0.999375 12.89

SIM1 (d = 9) 0.999081 3.72E-09 19.44 0.000000 1.000000
SIM5 (d = 9) 0.999105 2.05E-10 21.26 0.784639 0.999375 16.59

• {8, 9, 17},

• {11, 19, 20},

• {6, 14, 15},

• {13, 21, 22}.

Table 8.3 presents the results. As expected the estimated reliability is slightly higher
for CLR than for DCR (operational configurations with diameters higher than nine exist
although they represent a small fraction of the total). In this test, the values of k and
d are higher than in Test I. This causes the checking time for DCR (which is the same
for SIM1 and SIM5) to gain relevance in the total time, and thus the ratio of SIM5
time respect to SIM1 is significantly lower in DCR (21.26/19.44) than that for CLR
(6.26/4.63). With similar variance ratios (0.205/3.72 vs 0.200/3.49), then the RE is
higher for DCR than for CLR (16.59 vs 12.89). The lower reliability bound RL is less
close to R than RU due to the fact that the employed pathsets are fewer (and larger)
than the cutsets; disjointness is often a very tough requirement, particularly for sparse
topologies. When relaxed by allowing to share some edges many more pathsets can be
taken into account getting tighter lower bounds though at the expense of more costly
computation of probabilities when building samples.

8.4.4 Test III

The network for this case has 121 edges and 109 nodes among which 22 are terminal
(squares in Figure 8.4). SIM1 and SIM5 were run with N = 220 samples, uniform edge
reliabilities p = 0.99 and p = 0.999 and diameters d = 25, 30, 35 plus ∞ (CLR). Set P
consists of a single pathset P1 with the following edges: 18, 21, 22, 19, 20, 11, 12, 49,
50, 51, 52, 53, 54, 43, 42, 41, 40, 39, 38, 55, 56, 66, 65, 64, 63, 62, 61, 60, 59, 58, 75, 76,
96, 102, 95, 94, 105, 106, 113, 85 and 84. Set C consists of fifteen disjoint cutsets, easily
generated by grouping the edges incident to fifteen terminal nodes, namely nodes 59, 0,
67, 52, 46, 7, 97, 3, 91, 35, 105, 31, 50, 33 and 12. The results are shown in Table 8.4.
First observe that the constraint d = 25 is very demanding for this topology and set
K (e.g. the distance between terminals 52 and 105 is 24) hence the reliability drop
obtained for d = 25 when compared to the other values of d. This happens particularly
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Table 8.4: Numerical results for test case III

. R̂ V̂ar(R̂)sim1 V̂ar(R̂)sim5 tsim1 tsim5 RE

p = 0.99
CLR 0.990734 8.65E-09 2.90E-09 95.77 108.94 2.62
d = 35 0.984802 1.41E-08 4.67E-09 1596.03 1583.41 3.05
d = 30 0.953564 4.21E-08 1.29E-08 1547.34 1469.22 3.44
d = 25 0.788949 1.59E-07 2.55E-08 1335.24 817.93 10.17

p = 0.999
CLR 0.999916 7.64E-11 3.20E-12 95.49 108.64 21.00
d = 35 0.999866 1.27E-10 5.13E-12 1628.81 1641.85 24.62
d = 30 0.998572 1.38E-09 5.28E-11 1613.50 1598.75 26.46
d = 25 0.977157 2.13E-08 3.78E-10 1590.04 945.27 94.84

for p = 0.99 because with lower edge reliabilities many failed configurations are sampled
when working with d values close to 24. Second, observe that the RE (SIM5 vs SIM1)
is higher for d = 25, 30, 35 than for CLR. One reason is that the time spent on checking
d-connectedness is much higher than that spent on checking simple connectedness (as a
consequence of high values of k and d) which dilutes the lower sampling time implied
by a simpler computation of samples for SIM1. Another reason (particularly visible for
d = 25 but also for d = 30) is that execution times are indeed lower for SIM5 than for
SIM1. This is due to the fact that forcing P1 to fail (in order to sample within Γ) often
leads to sampling failed configurations, quickly identified as such when being checked,
thus cutting down average iteration times in SIM5.

8.4.5 Test IV

The three networks G15,3, G15,4 and G15,5 used in this case have 15 nodes and 45, 60
and 75 edges respectively and allow to illustrate the performance attained as the network
becomes denser. Figure 8.5 shows the fifteen nodes labeled 0 · · · 15, and the edges for
the case G15,3. The methods SIM1 and SIM5 were run with N = 218 samples, uniform
probabilities p = 0.40, p = 0.60, p = 0.80 and p = 0.95 and diameter d = 3. Two
terminals were specified (K = {0, 8}), shown as squares in Figure 8.5.

Figure 8.6 shows1 the 3-pathsets and 3-cutsets employed in each case. The test
results are shown in Table 8.5. As expected note that the estimated reliability grows
when the network gets denser and when the link reliability is higher. Note that in two
cases (G15,5, p = 0.80 and p = 0.95) the variance estimated by both methods was zero
since no failing configurations were sampled after the 218 trials due to their rarity. In
one case (G15,4, p = 0.95) the same applied but only for SIM1. In the remaining cases
the ratio RE could be computed and always favoured SIM5. Note that RE tends to grow

1In what follows we denote as (x, y) the edge that links nodes x and y and as (x− y − · · · − z) the
set of edges of the path that traverses in order the nodes x, y, · · · , z.
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Table 8.5: Numerical results for test case IV

. R̂ V̂ar(R̂)sim1 V̂ar(R̂)sim5 tsim1 tsim5 RE

p = 0.40
G15,3 0.412745 9.25E-7 2.19E-7 7.41 7.85 3.99
G15,4 0.817238 5.71E-7 1.39E-7 9.52 10.89 3.60
G15,5 0.955233 1.65E-7 2.46E-8 11.53 13.29 5.81

p = 0.60
G15,3 0.832648 5.30E-7 7.22E-8 20.03 20.14 7.30
G15,4 0.991864 3.03E-8 1.81E-9 22.70 28.21 13.47
G15,5 0.999596 1.64E-9 1.54E-11 26.40 33.53 83.85

p = 0.80
G15,3 0.991225 3.35E-8 5.87E-10 20.17 21.75 52.92
G15,4 0.999984 5.82E-11 5.31E-14 19.66 27.78 775.67
G15,5 1.000000 0.00 0.00 22.29 32.29 n/a

p = 0.95
G15,3 0.999989 1.46E-11 1.84E-15 17.78 20.95 6734.15
G15,4 1.000000 0.00 4.12E-24 15.23 24.96 n/a
G15,5 1.000000 0.00 0.00 17.24 28.86 n/a

when the link reliabilities become higher as well as when the network gets dense, showing
that SIM5 becomes more valuable as the network failures get rarer. It is interesting to
analyze how the execution time depends on the number of edges and the link reliability.
Denser networks always resulted in higher times; and the times for SIM1 were always
lower than those for SIM5. Note that for a given method and network, the execution
time was not a monotonous function of the link reliability but reached a maximal value
for an “intermediate” reliability. This is related to the fact that evaluating Φ is faster
with very low or very high reliabilities rather than with intermediate ones, because the
BFS quickly aborts or reaches the destination in those cases.

8.5 Conclusions

In this chapter we have shown how Monte Carlo sampling plans conditioned by d-pathsets
and d-cutsets can be applied to estimate the d-DCR. We briefly presented methods which
make use of previously-known topological information and discussed the consequences of
working in the DCR context. Then we illustrated them with four tests. Three of them
are based on sparse networks (a case usually employed in the literature and a real network
topology) while the fourth is based on three dense networks. As for the CLR in [94],
these tests show that the methods based on precomputing pathsets and cutsets have the
best relative efficiencies when compared to crude Monte Carlo. When the d-pathsets and
d-cutsets involve a limited amount of edges, precomputing tables (SIM4) can be the best
option (Test II), particularly if a large number of samples are to be generated due to
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Table 8.6: 3-pathsets and 3-cutsets for test case IV

Test 3-pathsets 3-cutsets

G15,3

(0− 3− 6− 8)
(0− 2− 5− 8)
(0− 12− 9− 8)
(0− 13− 10− 8)
(0− 14− 11− 8)

{(0, 2), (0, 13), (0, 14), (0, 3), (0, 12)}
{(8, 6), (8, 9), (8, 10), (8, 5), (8, 11)}

G15,4

(0− 4− 8)
(0− 12− 8)
(0− 11− 8)

(0− 13− 9− 8)
(0− 14− 10− 8)
(0− 3− 7− 8)
(0− 2− 6− 8)
(0− 1− 5− 8)

{(0, 1), (0, 2), (0, 3), (0, 4), (0, 14), (0, 13), (0, 12), (0, 11)}
{(8, 7), (8, 6), (8, 5), (8, 4), (8, 9), (8, 10), (8, 11), (8, 12)}

G15,5

(0− 3− 8)
(0− 4− 8)
(0− 5− 8)

(0− 1− 6− 8)
(0− 2− 7− 8)
(0− 13− 8)
(0− 12− 8)
(0− 11− 8)
(0− 10− 8)

(0− 14− 9− 8)

{(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 14), (0, 13), (0, 12), (0, 11), (0, 10)}
{(8, 7), (8, 6), (8, 5), (8, 4), (8, 3), (8, 9), (8, 10), (8, 11), (8, 12), (8, 13)}
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high significance goals for the estimators. Otherwise, disjoint d-pathsets and d-cutsets
(SIM5) are recommended due to lower sampling times, although it is often the case that
allowing a small number of overlapping edges significantly tightens the bounds (leading
to variance reductions) without adding major complexity to the sampling computations;
further research has to be conducted regarding this trade-off. We have also discussed
and illustrated the important fact that two features present in most real cases (large sets
K and diameters d) yield higher relative efficiencies for DCR than for CLR (Tests II and
III) which makes the research on high variance reduction methods for DCR even more
appealing than for CLR. This work shall be pursued by adapting other Monte Carlo
variance-reduction methods (see the references in Section 7.1) from the CLR to the DCR
context and comparing their performance on a common set of test cases.

8.6 Appendix: Sequential sampling for pathset/cutset based
bounding

Let P , C and Ω be defined as in Section 8.3.3. Let the edges of Ω be arbitrarily ordered
with h = |Ω|, (z1, ..., zh) ∈ {0, 1}h an h-tuple encoding the sampled states for the edges
of Ω and ρ1, ..., ρh their (unconditioned) probabilities of operation. Suppose that the
sampling procedure has achieved a certain point where s < h edges from Ω have been
sampled. Then, in order to sample a value for zs+1 (corresponding to an edge that we
will denote e) we need to compute the probability p that the (s + 1)-th edge of Ω is
operational provided that the configuration under construction belongs to Γ, and the
state of the first s edges has already been sampled. We denote as EΓ the event where the
configuration belongs to Γ and as Es the event where the state of the first s edges received
certain specific sampled values. In the context of this sampling method, belonging to Γ
means that the event Encf =“no cutset of C fails” must be met while at the same time
the event Eomp =“one or more paths of P are operational” must not. It is easy to see that
Eomp → Encf . For convenience we will denote the probability of event A conditioned to
event B both as Pr(A|B) and Pr |B(A). Using this notation,

p = Pr(zs+1 = 1 | EΓ ∧ Es) =
Pr(zs+1 = 1 ∧ EΓ ∧ Es)

Pr(EΓ ∧ Es)

=
Pr |Es(zs+1 = 1 ∧ EΓ) Pr(Es)

Pr|Es(EΓ) Pr(Es)

= Pr |Es(zs+1 = 1)
Pr |Es(EΓ | zs+1 = 1)

Pr |Es(EΓ)

Since the failures are independent we have that Pr |Es(zs+1 = 1) = Pr(zs+1 = 1) =
ρs+1; and since Eomp → Encf then
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p = ρs+1
Pr |Es(Encf | zs+1 = 1)− Pr |Es(Eomp | zs+1 = 1)

Pr |Es(Encf )− Pr |Es(Eomp)
(8.1)

= ρs+1
Pr(Encf | Es ∧ zs+1 = 1)− Pr(Eomp | Es ∧ zs+1 = 1)

Pr(Encf ∧ Es)− Pr(Eomp ∧ Es)
(8.2)

Let ω(ρ1, ..., ρn) and λ(ρ1, ..., ρn) be the polynomials that respectively compute p(Encf )
and p(Eomp). Then Eq. 8.1 translates into

p=ρr+1
ω(z1, ..., zs, 1, ρs+2, ..., ρh)−λ(z1, ..., zs, 1, ρs+2, ..., ρh)

ω(z1, ..., zs, ρs+1, ..., ρh)−λ(z1, ..., zs, ρs+1, ..., ρh)
(8.3)

Finding the polynomials ω and λ can be a quite complex task if the pathsets and
cutsets are numerous and highly overlap. Only if they are pairwise disjoint they can be
easily computed as

ω(ρ1, ..., ρh) =
J∏

j=1


1−

∏

i∈Cj

ρΩ(i)


 (8.4)

λ(ρ1, ..., ρh) = 1−
I∏

j=1


1−

∏

i∈Pj

ρΩ(i)


 (8.5)

where Ω(i) denotes the index of edge i in the ordering used for the edges of Ω. In
this case the probability for sampling each edge of Ω can be computed in O(|Ω|) time as
next section shows.

8.6.1 Sequential sampling for SIM5

Let λj =
∏

i∈Pj
ri for j = 1, ..., I be the probability that pathset Pj is operational and

ωj =
∏

i∈Cj
qi for j = 1, ..., J the probability that cutset Cj fails (with qi = 1− ri). Then

let us denote λ = 1−∏I
j=1(1−λj) the probability of the event Eomp and ω =

∏J
j=1(1−ωj)

the probability of the event Encf . For convenience let us also define λ0 = ω0 = 0 and the
following pointers ji (pathset to which edge Ω(i) belongs) and ki (cutset to which edge
Ω(i) belongs):

ji =

{
j if eΩ(i) ∈ Pj j = 1...I

0 if eΩ(i) /∈ ⋃k=1...I Pk,

ki =

{
j if eΩ(i) ∈ Cj j = 1...J

0 if eΩ(i) /∈ ⋃k=1...J Ck.
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From Eq. 8.1 the failure probability to sample the first edge of Ω will be

q =
Pr(z1 = 0 ∧ Encf )− Pr(z1 = 0 ∧ Eomp)

ω − λ
(8.6)

The event z1 = 0 ∧ Encf will be met whenever the edge eΩ(1) fails and all cutsets C
(among which one could eventually include this edge) have at least one operating edge,
so

Pr(z1 = 0 ∧ Encf ) = qΩ(1)

J∏

j=1,j 6=k1

(1− ωj)(1−
∏

i∈Ck1
\{h}

qΩ(1))

and thanks to the definition of ω0 this yields the compact form

Pr(z1 = 0 ∧ Encf ) = qΩ(1)
ω

1− ωk1

(
1− ωk1

qΩ(1)

)
(8.7)

At the same time, the event z1 = 0 ∧ Eomp will be met whenever the edge eΩ(1) fails
and not every pathset in P fails (note that an eventual pathset including this edge will
be failed), so

Pr(z1 = 0 ∧ Eomp) = qΩ(1)


1−

I∏

j=1,j 6=j1

(1− λj)




that, thanks to the convenient definition of λ0 yields

Pr(z1 = 0 ∧ Eomp) = qΩ(1)
λ− λj1

1− λj1

(8.8)

Once the probability of failure for edge eΩ(1) has been computed through Eq. 8.7,8.8
and 8.6, z1 is sampled and its resulting state must be taken into account when comput-
ing the probability of failure for sampling the remaining edges of Ω. First of all, the
probability ωk1 that the cutset that includes eΩ(1) fails (provided it exists) will be zero
if the edge operates; but will exclude the factor (1− pΩ(1)) from its definition if it fails.
Similarly, the probability λj1 that the pathset that includes that edge operates (provided
it exists) will be zero if it fails; but will exclude the factor pΩ(1) from its definition if it
operates, so before sampling next edges in Ω both must be adjusted in the following way
(apostrophes stand for new values to take before addressing the next edge):

ω′
k1 =

(1− z1)ωk1

qh
λ′
j1 =

λj1z1
pΩ(1)

Finally ω and λ must also be updated to reflect the changes in ωk1 and λj1 :

ω′ =
ω

1− ωk1

(1− ω′
k1) λ′ = 1− 1− λ

1− λj1

(1− λ′
j1)

By repeating the preceding steps for z2, ..., zh the remaining edges of Ω get sampled.
This is summarized in the pseudocode of Figure 8.6.

107



8. MONTE CARLO ESTIMATION OF THE DCR CONDITIONED BY
PATHSETS AND CUTSETS

Procedure SampleOmega(E,Ω, ~r, I, J, λ, ω, {λi}, {ωi}, {ji, ki})
Returns: Set of edges in Ω sampled as operating

1: Sample the state of each edge e in E \ Ω as Binomial(re)
2: S ← ∅
3: for all h = 1, ..., |Ω| do
4: α← ω

1−ωkh
(1− ωkh

qΩ(h)
)

5: β ← λ−λjh
1−λjh

6: q ← qΩ(h)
α−β
ω−λ

7: Sample zh as Binomial(1− q)
8: if zh = 1 then
9: S ← S ∪ {eΩ(h)}

10: end if
11: ω′

kh
← (1−xh)ωkh

qΩ(h)

12: λ′
jh
← λjh

xh

pΩ(h)

13: ω′ ← ω
1−ωkh

(1− ω′
kh
)

14: λ′ ← 1− 1−λ
1−λjh

(1− λ′
jh
)

15: ωkh ← ω′
kh
;λjh ← λ′

jh
;ω ← ω′;λ← λ′

16: end for
17: return S

Figure 8.6: Pseudocode for sampling edges in SIM5
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Chapter 9

Monte Carlo analysis of

K-diameter-dependent

performability metrics

9.1 Introduction

The DCR, as a generalization of the CLR, is conceived to model situations where limits
exist in the acceptable distance between any pair of distinguished nodes. This allows
e.g. to model limits in delay times or in the number of hops undergone by data packets
in a communication network. This model keeps the binary nature, not only of each
component’s state (nodes and edges can operate or fail), but also the binary nature of
the network state itself (the network operates or fails). Solving a DCR instance implies
finding a reliability measure, that is, the probability that the network is in one of the
two possible states - namely, the operational one.

In several contexts there is need to employ metrics that are defined over a larger
number of network states. These are performability measures, a quantification of the
performance of a network with regard to a certain specific goal. Think for example of
quantifying the user perception of the performance of a certain network (e.g. scoring it
between 0 and 10 in a survey). This score might be strongly correlated to the average of a
discrete, more-than-binary metric that partitions the network configuration into several
classes. For example, in a two-terminal context, the time needed to transfer packets from
source to terminal can define the different classes, and the relative frequency with which
each one occurs ultimately determines the overall user’s experience. This performability
measures are then a generalization of reliability measures, where the underlying network
states are not necessarily binary. See [19, 102, 1, 20, 21].

There are several contexts where the classes can be defined in terms of the distance
between terminals in the random network configuration. The mentioned two-terminal
network is an example. Another example is that of voice-over-IP and video streaming
applications, where the perceived quality is affected by latency (the time spent by packets
traveling from the source to the destination) [103], which is in turn determined by the
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number of links traversed by data packets. The quality deteriorates as hig hop-distance
states become more probable in the network. In web applications that heavily rely on
dynamic page technologies, e.g. Asynchronous JavaScript and XML (Ajax) [104], the
quality perceived by the end user is influenced by responsiveness, where latency deter-
mines at a large extent the delay between the user actions and their effect on his/her
browser. Quality deteriorates as high hop-distance states occur more frequently in the
network. This accounts for the dominating model of web application deployment nowa-
days, where mirrors of the same application are placed as close as possible to the physical
location of the users. In general packet switching networks, longer paths involve more
overall RAM memory being used throughout the network, resulting in higher infrastruc-
ture costs. Consider also other possible contexts where costs are born each time a link is
traversed e.g. vehicle or packet routing, where costs can relate to time spent, tolls, fuel,
etc. In all these examples, performability measures can be conceived that are defined by
the distance between terminals.

As we saw in Chapter 7, many Monte Carlo methods have been proposed for efficient
estimation of the CLR and DCR. Now, in this chapter we introduce a Monte Carlo
method to estimate a particular family of performability metrics, namely those defined
as the expected value of a random variable that depends only on the K-diameter of
the partial graph induced by the operational links. In real communication networks,
link reliabilities are normally very high and thus, when applying simulation methods,
sampling a network configuration with distant or disconnected pairs of terminals can be
a rare event. We have seen that in the context of Monte Carlo simulations for network
reliability analysis, once fixed a certain confidence interval goal, the needed sample size
unboundedly grows as link reliabilities become higher, and thus it is convenient to apply
variance-reduction techniques. The Monte Carlo method hereby proposed generalizes
the methods developed for DCR in Chapter 7. Observe that the DCR metric is the
expected value of a binary variable whose value is one if and only if the K-diameter is
up to a certain parameter d. The metric defined in this chapter allows to further split
the K-diameter into more than two tranches, assigning different values to the random
variable according to each one; hence the generalization.

The edge sets (d-pathsets and d-cutsets) used for restricting the sampling space were
considered a priori known in Chapter 7 and within the literature therein referenced, due
to a number of reasons. On one hand, there is a clear split between the preliminary phase
of determining the sets and the simulation itself, and the main efforts have been devoted
to improving the latter for achieving sampling plans with good tradeoffs between the
variance reduction and the sampling effort. On the other hand, the instances typically
used for testing were of limited size, allowing for edge sets selection through simple
visual inspection. In our case there are several reasons why to introduce heuristics for
automated generation of the edge sets. First, the method requires in general a much
higher number of edge sets than previous works, as shown in Section 9.4. Second, when
working with distance-constraints, determining the maximum number of disjoint paths
and cuts, and specific ones, are in general NP -hard tasks; see [9]. Third, as shown in
Test 2, the chosen sets can significantly affect the performance attained by the simulation
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method. Consequently, we hereby introduce and compare a family of heuristics. We
present numerical evidence of the significant efficiency gains attained by chaining these
heuristics to the proposed simulation method when compared to a crude Monte Carlo
simulation.

This chapter is organized as follows. Section 9.2 includes definitions, notation and
model formalization. Section 9.3 describes the crude Monte Carlo method and the esti-
mators it gives for the metric under study as well as for its variance. Section 9.4 describes
the suggested Monte Carlo method and shows the variance reductions achieved relative
to the crude one. Section 9.5 describes the heuristics for selecting the d-pathsets and
d-cutsets that will be applied in the simulation. Section 9.6 presents three numerical
examples, based on mesh-like networks. It compares several variations of the heuristic,
the relative efficiency of the proposed Monte Carlo method vs. the crude one and how it
is influenced by link reliabilities. Finally, conclusions and further work are summarized
in Section 9.7.

The contents of this chapter were published in [15], accepted for publication in [18]
and submitted after revision to [17].

9.2 Definitions and notation

We present here the definitions and notation needed for the rest of the chapter; most
of it was already introduced in previous chapters, but we include it here too for ease of
reference. As usual, the network is modeled by an undirected labeled probabilistic graph
G = (V,E,~r) with n = |V |, m = |E|, E = {e1 . . . em} and ~r = {r1 . . . rm}, being ri the
probability of operation of the link represented by ei. The set of terminal nodes is a
certain K ⊆ V . The following definitions and notation are also employed:

• Xi is a binary random variable that indicates the event “ei operates”. It has a
Bernoulli distribution with parameter ri. We denote X = (X1 . . . Xm);

• x = (x1 . . . xm) ∈ {0, 1}m is a network configuration. X is the set of the 2m possible
network configurations. Each one encodes a partial graph of G, denoted Gx, where
edge ei occurs if and only if xi = 1;

• π(x) = Pr(X = x) (probability that the random network configuration is x);

• dG(s, t) is the distance between nodes s and t in the graph G. The set K is d-
connected in G if and only if ∀s, t ∈ K, dG(s, t) ≤ d. The K-diameter of G is
max{dG(s, t) : s, t ∈ K};

• ∆ : X→ {0, ..., n,∞} is the function defined as ∆(x) = max{dGx(s, t) : s, t ∈ K}.

Let Φ : X→ R be a structure function, interpreted as follows. The real number Φ(x)
is a quantitative measure of the performance of the network, when its operational links
are those that correspond to the edges of Gx. Our final goal is to estimate ν = E(Φ(X)).
We are concerned with structure functions whose value is determined by the maximal
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Procedure Phi(x,K, I,φ0 . . . φr)

1: Compute ∆(x) through breadth-first-search starting at every terminal
2: find i : ∆(x) ∈ Ii
3: return φi

Figure 9.1: Pseudocode to compute Φ : X→ R.

K-distance ∆(x). Figure 9.2 illustrates the model and notations used. Without losing
generality, we can partition Z

∗ into several subintervals I = {I0 ∪ I1 ∪ · · · ∪ Ir}, having
r + 1 components, such that Φ(x) = Φ(y) ⇐⇒ ∆(x),∆(y) ∈ Ii for all i = 0 . . . r.
Each interval can be seen as a ‘quality level’ given by ranges of the K-diameter. This
partition is defined by r integers 0 < d0 < · · · < dr−1, with I0 = (0, d0], Ii = (di−1, di]
for i ∈ [1, r − 1] and Ir = (dr−1,∞]. Let us now partition X in r + 1 components (that
we call regions) X = X0 ∪ · · · ∪ Xr, where Xi = {x ∈ X | ∆(x) ∈ Ii} for i = 0 . . . r. Let
pi = Pr(x ∈ Xi) and φi = Φ(x) for any x ∈ Xi. Figure 9.1 shows how Φ(x) is computed
once K, I and φ0, . . . , φr are given.

I (intervals for ∆) (0, d0] (d0, d1]
(dr−2,
dr−1]

(dr−1,
∞]

regions X0 X1 Xr−1 Xr

Φ Φ0 Φ1 Φr−1 Φr

X p0 p1 pr−1 pr

Figure 9.2: Partitions of the network configuration space

9.3 Crude Monte Carlo method

A crude Monte Carlo simulation estimates ν = E(Φ(X)) by independently sampling
N network configurations x(1), . . . , x(N), computing Φ for each one, and building an
estimator

Φ̂N =
1

N

N∑

i=1

Φ(x(i))

whose variance is
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Var(Φ̂N ) =
N

N2
Var(Φ) =

1

N
(E(Φ2)− E2(Φ)) =

1

N
(

N∑

i=1

φ2
i pi − ν2).

Sampling each x(i) involves m Bernoulli trials for determining the state of each edge.
To compute our performability measure, we first need to determine the K-diameter of
Gx(i) . This can be done by applying a breadth-first-search (BFS) algorithm starting at
every node of K. Then Φ(x(i)) = φj , being Ij the interval to which the K-diameter
belongs. So each iteration takes a time that is O(max{m, |K|2}).

9.4 The proposed Monte Carlo method

Suppose that certain topological knowledge about G = (V,E) is available in the form
of certain edge sets. This are sets of di-pathsets and di-cutsets for given values of i =
0 . . . r− 1. Recall that, if P is any subset of E and G′ = (V, P ) is the partial graph of G
yielded by P , then

• P is a d-pathset if and only if K is d-connected in G′;

• a d-pathset is said to operate when all of its edges operate.

Similarly, recall that if C is any subset of E and G′ = (V,E \C) is the partial graph
of G yielded by E \ C, then

• C is a d-cutset if and only if K is not d-connected in G′;

• a d-cutset is said to fail when all of its edges fail.

Suppose that a certain network configuration x is such that a given 5-pathset operates
while a given 2-cutset fails. It follows that the maximal distance between the nodes of
K must be any of {3, 4, 5} in Gx. If one of the intervals Ij is such that {3, 5} ⊆ Ij , then
the region to which x belongs is known, as well as Φ(x) = φj . This example illustrates
how Φ can be immediately known when certain combinations of events occur. This is the
core idea behind the proposed method. As we see in Section 9.4.1 it allows for reducing
the Monte Carlo sampling space compared to crude Monte Carlo. Let us now formalize
this idea. First, we define some sets of d-pathsets and d-cutsets, assumed to be a priori
available:

• P0, . . . ,Pr−1: r sets such that each Pi is a set of some di-pathsets;

• Pr = ∅ (for convenience of notation);

• C0 = ∅ (for convenience of notation);

• C1, . . . ,Cr: r sets such that each Ci is a set of some di−1-cutsets.
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In the previous definitions, the word ‘some’ means that every set can contain zero
or more elements. At least one of the sets must be non-empty, otherwise the method
coincides with crude Monte Carlo. Now, we define the following random events in terms
of the defined edge sets:

• Ti = (some element of Pi operates) (i = 0 . . . r − 1);

• Kj = (some element of Cj fails) (j = 1 . . . r);

• Z0 = T0;

• Zh = Th ∧Kh (h = 1 . . . r − 1);

• Zr = Kr.

Observe that given a network configuration x, it holds that:

• (Z0 → (∆(x) ∈ (0, d0]));

• (Zi → (∆(x) ∈ (di−1, di])) for i ∈ [1 . . . r − 1];

• (Zr → (∆(x) ∈ (dr−1,∞))).

In other words, each event Zh=0...r determines a precise value φh. Let us denote as
Zi the set of configurations for which Zi holds (i = 0 . . . r). Then each Zi ⊆ Xi. Let also
Z = ∪ri=0Zi, z = Pr(Z) = Pr(x ∈ Z) and zi = Pr(Zi) = Pr(x ∈ Zi) for i = 0 . . . r. We
can write

ν =




r∑

i=0

∑

x∈Zi

Pr(x)Φ(x)


+

∑

x∈X\Z

Pr(x)Φ(x). (9.1)

Calling νZ the first term, we have that νZ =
∑r

i=0 φizi. This is immediate to compute
provided that we know the values of z0, . . . , zr; in Section 9.4.2 we comment on the
complexity of computing the latter. Our method estimates the second term of Eq. (9.1)
by sampling N network configurations x(1), . . . , x(N) within X\Z (with a probability
distribution that respects the relative probabilities of the network configurations in X\Z),
computing Φ for each one, and building an unbiased estimator Φ̃N as follows:

Φ̃N = νZ +
1− z

N

(
N∑

i=1

Φ(x(i))

)
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where the correction factor 1− z is due to the fact that x(1), . . . , x(N) are conditioned to
X\Z. The variance is then

Var(Φ̃N ) =
N(1− z)2

N2
Var (Φ) =

(1− z)2

N

(
E(Φ2)− E2(Φ)

)

=
(1− z)2

N




r∑

i=0

φ2
i (pi − zi)

1− z
−
(

r∑

i=0

φi(pi − zi)

1− z

)2



=
1

N

(
(1− z)

r∑

i=0

Φ2
i (pi − zi)− (ν − νZ)

2

)
.

9.4.1 Variance reduction

The variances obtained through the crude and the proposed Monte Carlo methods are
next compared. For simplicity it is done for N = 1.

Var(Φ̂1)−Var(Φ̃1) =
r∑

i=0

φ2
i pi + (1− z)

r∑

i=0

φ2
i (pi − zi)− 2νφ+ φ2

= z
r∑

i=0

φ2
i pi − z

r∑

i=0

φ2
i zi +

r∑

i=0

φ2
i zi − 2(

r∑

i=0

φipi)(
r∑

i=0

φizi) + (
r∑

i=0

φizi)
2

=

r∑

i=0

r∑

j=0

φ2
i pizj −

r∑

i=0

r∑

j=0

φ2
i zizj +

r∑

i=0

r∑

j=0

φ2
jpizj − 2

r∑

i=0

r∑

j=0

φiφjpizj +

r∑

i=0

r∑

j=0

φiφjzizj

=

r∑

i=0

r∑

j=0

(φi − φj)
2pizj +

r∑

i=0

r∑

j=0

(φiφj − φ2
i )zizj

=

r∑

i=0

r∑

j=0

(φi − φj)
2(pi − zi)zj +

r∑

i=0

r∑

j=0

(
(φi − φj)

2 + φiφj − φ2
i

)
zizj

=

r∑

i=0

r∑

j=0

(φi − φj)
2(pi − zi)zj +

r∑

i=0

r∑

j=0

(φj(φj − φi))zizj

=
r∑

i=0

r∑

j=0

(φi − φj)
2(pi − zi)zj +

r−1∑

i=0

r∑

j=i+1

(φj − φi)
2zizj .

The following Lemma characterizes the variance reduction in terms of the regions Xi

and their respective subsets Zi.

Lemma 9.1. It holds that Var(Φ̃1) ≤ Var(Φ̂1) and the inequality is strict if and only if
there is a pair (i, j) such that φi 6= φj, pi > 0 and zj > 0.

Proof. Observe that both summations in the final expression involve just non-negative
terms, hence the difference of variances is always non-negative. Regarding strict inequal-
ity, assume that two regions Xi and Xj exist such that φi 6= φj , pi > 0 and zj > 0
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(therefore pj > 0). Then, if pi > zi, the first summation will have a strictly positive term
given by the subindices i, j. If pi = zi, then zi > 0 and therefore the second summation
will have a strictly positive term given by the subindices i, j. This proves the strict in-
equality. Conversely, assume that Var(Φ̃1) < Var(Φ̂1). Then there must exist i, j such
that at least one of the corresponding terms in the first and second summation is strictly
positive. If the term for the first summation is strictly positive, then φi 6= φj , pi > zi
and zj > 0. Since (pi > zi → pi > 0) the existence of the pair (i, j) is proved. If the term
for the second summation is strictly positive, then φi 6= φj , zi > 0 and zj > 0. Again,
pi > 0 and the existence of the pair (i, j) is proved.

9.4.2 Sampling within X \ Z
We can sample network configurations within X \ Z with procedures analogous to those
explained in Section 8.3.3. Let Ω = (

⋃r
i=1

⋃
p∈Pi

p) ∪ (
⋃r

j=1

⋃
c∈Cj

c) be the set of all
edges occurring in at least one d-pathset or d-cutset that build Z. Note that the event Z
is independent from the state of all edges that do not belong to Ω. Then the state of the
edges of E \Ω can be easily sampled with m− |Ω| Bernoulli trials. A general sequential
procedure to sample the state of the edges of Ω, conditioning to be in X \ Z, is the
following. Let (o1 . . . o|Ω|) ∈ {0, 1}|Ω| an |Ω|-tuple encoding the sampled states of Ω, for
a certain ordering of its edges. Assume that o1 . . . os have already been sampled (being
s < |Ω|) and let Es be the event ‘the first s edges of Ω have states o1 . . . os respectively’.
Then the probability that the (s+1)-th edge of Ω is operational conditioned to X \Z is:

Pr(os+1 =1 | Z̄ ∧ Es) = Pr(os+1 = 1)
Pr(Z̄ | Es ∧ (os+1 = 1))

Pr(Z̄ | Es)

where Pr(os+1 = 1) is the reliability of the (s + 1)-th edge of Ω. The function
that given the reliabilities ρ1, . . . , ρ|Ω| of the edges of Ω returns Pr(Z̄) is a polynomial
P(ρ1, . . . , ρ|Ω|). So, computing Pr(Z̄ | Es) involves replacing ρ1, . . . , ρs by 0 or 1 ac-
cording to the states sampled for the first s edges and then evaluating P. Observe that
Pr(Z̄) = 1− Pr(Z) = 1− Pr(

∧r
i=0 Zi) = 1−∑r

i=0 Pr(Ti ∧Ki) (recall the pairwise inde-
pendence of all Zi). To compute each Pr(Ti ∧Ki), if every edge involved occurs just in
one of Pi and Ci, then it is possible to get simple factorized expressions for P. This is
due to the fact that each Pi and Ci operates/fails independently. In such case, building
and evaluating P can be done in time O(|Ω|). This results in an efficient way to compute
z0, . . . , zr (as shown in lines 3-8 of Figure 9.3) as well as to perform the sequential sam-
pling. When there is high overlapping between the edges of the Pi and Ci, building and
evaluating P can be very complex, since the independence is lost.

Again, as seen in Section 8.3.3, for limited cardinalities of Ω an alternative approach
can be used, consisting in precomputing the probability of the occurrence of the 2|Ω|

possible sub-configurations that the edges of Ω induce, in O(2|Ω|) time. Then, sampling
their states just involves choosing a sub-configuration at random, through a cut-point
access on a table that accumulates the precomputed probabilities (in O(|Ω|) time). This
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is the fastest way to sample the states for the edges of Ω and compute z0, . . . , zr, but
at the expense of an exponential-in-|Ω| effort for precomputing the table, that can limit
its applicability on large networks. Details and algorithms to implement these sampling
methods can be found in the Appendix of [14].

9.4.3 The simulation algorithm

Figure 9.3 presents the pseudocode of the simulation algorithm we used in the tests
section; it uses the cut-point table method for sampling the edges of Ω. The procedure
receives the graph G, terminals K, intervals I, structure function values for each interval
φ0 . . . φr, the r sets of d-pathsets and d-cutsets, and the sample size N . Lines 1-2 build a
table T that accumulates the probability that every subset of edges of Ω are operational.
This requires that a certain ordering is assumed in the powerset P(Ω). Lines 3 to 9
compute zi for i = 0 . . . r through factorized probabilites, z and νZ . Lines 11-18 execute
the main loop N times. The state of the edges of Ω is sampled by uniformly drawing a
random real in [0, 1] and accessing through it the table T . The state of each remaining
edge e is sampled by independent Bernoulli’s trials whit parameter re. The procedure
Phi is used to accumulate ν and σ. Finally, lines 19-21 complete the computation and
return the estimates for Φ̃N and Var(Φ̃N ).

9.5 A heuristic for d-pathset and d-cutset generation

In this section we introduce a heuristic that generates di-pathsets and di−1-cutsets for
every region Xi. We develop an algorithm for the two-terminal problem that can be
easily generalized to the problem for general sets K. For every i, we build a set of
di-pathsets and di−1-cutsets, such that no two elements share edges. This set should
ideally be the one that maximizes the probability zi that one di-pathset operates and
one di−1-cutset fails at the same time, to attain the largest variance reduction that is
possible. The basic idea consists of a greedy randomized generation of paths with lengths
in (di−1, di], followed by a greedy randomized generation of di−1-cutsets, without using
any edge included in the former paths. The cycle is repeated several times and the
combination of sets that yield the higher probability is finally chosen.

9.5.1 Paths generation

The algorithm shown in Fig. 9.4 receives the graph G, source and destination nodes (s, t)
and the minimum and maximum distances ℓ1, ℓ2 that define the region. It returns a
random path whose length is in the interval [ℓ1, ℓ2] or the null (⊥) element if no such
path could be found. The algorithm proceeds with a greedy selection of nodes (currNode)
that are added to the path under construction newPath. It starts by selecting s and ends
after reaching t or achieving a point where it is impossible to complete a path with the
required constraints. In each iteration, the shortest path (shP) between the current node
and t is computed. If there is no such path, or its length exceeds the difference between
ℓ2 and the length of the already built part, the algorithm returns the null element ⊥.
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Procedure Simulate(G,K, I,φ0 . . . φr,P0 . . .Pr,C0 . . .Cr, N)

1: Ω← (
⋃r

i=1

⋃
p∈Pi

p) ∪ (
⋃r

j=1

⋃
c∈Cj

c)

2: compute a cut-point table T mapping P(Ω)→ [0, 1]
3: z0 ← 1−∏p∈P0

(1−∏e∈p re)
4: for all i = 1 . . . r − 1 do
5: zi ← (1−∏p∈Pi

(1−∏e∈p re))(1−
∏

c∈Ci
(1−∏e∈c(1− re)))

6: end for
7: zr ← 1−∏c∈Cr

(1−∏e∈c(1− re))
8: z ←∑r

i=0 zi
9: νZ ←

∑r
i=0 ziφi

10: ν ← 0; σ ← 0
11: for all sample = 1 . . . N do
12: rnd ← pick a random real uniformly in [0, 1]
13: w ← the Ω configuration w = max{w : T (w) ≤ rnd}
14: y ← sample states of E \ Ω with |E| − Ω Bernoulli’s trials
15: x← configuration built from w and y
16: ν ← ν + Phi(x,K, I, φ0 . . . φr)
17: σ ← σ + Phi(x,K, I, φ0 . . . φr)

2

18: end for
19: ν ← νZ + ν(1− z)/N
20: σ ← σ(1− z)/N2 − (ν − νZ)

2/N
21: return ν, σ

Figure 9.3: Simulation procedure using disjoint edge sets and cut-point table.
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Procedure generatePath(G, s, t, ℓ1, ℓ2)

1: ℓ← 0; currNode← s; newPath← ∅
2: while currNode 6= t do
3: shP← shortestPath(G, currNode, t, newPath)
4: dist← length(shP)
5: if (shP = ⊥) ∨ (ℓ+ dist > ℓ2) then
6: return ⊥
7: else
8: if (currNode has only one neighbor in G) ∨ (rand() < (ℓ + dist − ℓ1)/(ℓ2 − ℓ1))

then
9: next← neighbor of currNode in shP

10: else
11: next← any neighbor of currNode in G \ newPath
12: end if
13: remove the edge (currNode,next) from G
14: append the edge (currNode,next) to newPath
15: currNode← next
16: ℓ← ℓ+ 1
17: end if
18: end while
19: return newPath

Figure 9.4: Heuristic algorithm for generating paths with lengths in [ℓ1, ℓ2].

Otherwise, the next edge can be either the first one of shP, or another one different from
it. When there are more than one feasible edges, the first one of shP is chosen with a
probability proportional to the ratio between the length of shP and the maximum number
of edges that can be added to the path under construction without violating the [ℓ1, ℓ2]
constraint. The function rand() in the algorithm returns a random uniform real number
in [0,1). Therefore the algorithm tends to stick to a shortest path when newPath has
reached a length that leaves few chances to divert. On the contrary, when there is still
room for many more edges than the length of a shortest path, the algorithm will tend
to choose, at random, other directions to extend newPath. In line 11, care is taken to
not repeat a node of shP, which would result in having cycles within the newPath. Lines
13-16 remove the chosen edge from G for future iterations, append it to newPath and
update its length ℓ and currNode. Randomness is therefore introduced in the decision
of wheter to make a step in the direction of a shortest path or not, as well as in the
selection of the next node, in case it was decided not to follow the shortest path.
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9.5.2 d-Cutsets generation

The algorithm for creating an ℓ-cutset given a certain integer ℓ is shown in Fig. 9.5. It
receives the graph G, the source and terminal nodes (s, t), the integer ℓ and a set of edges
H. It starts by building a first-in-first-out queue ~d with all edges of G \ H inserted in
increasing order of distance to s. Randomness is introduced by shaking these distances
prior to insertion. For example, in our tests we swaped each pair of values in ~d with a
probability inversely proportional to their difference. The queue is later used to add each
edge to the cutset under construction newCut in this shaken order; the idea behind this
is that dropping edges in the vecinity of s is a good strategy to find low cardinality ℓ-
cutsets for s, t. The set H will be used when invoking this algorithm to avoid using edges
already used for other ℓ-pathsets or ℓ-cutsets found prior to the one under construction.
The while loop proceeds adding edges to newCut and dropping them from G until one
of the following occurs: i) the distance between s and t is greater than ℓ (so we have
an ℓ-cutset); or ii) the queue is empty (so no ℓ-cutset exists, which happens if and only
if there was a path whose length is not above ℓ built exclusively with edges of G \H).
After the while loop, newCut is an ℓ-cutset not necessarily minimal (i.e. some edges can
be dropped from it and still be an ℓ-cutset). The for loop builds an ℓ-cutset minCut

that is minimal in this sense (although, in general, it will not be a minimum-cardinality
ℓ-cutset).

9.5.3 The main heuristic

Our main algorithm iterates until a given amount of time is spent. In each iteration
a disjoint edge set for a certain region Xi is generated. Each iteration begins with the
generation of one di-pathset and one di−1-cutset. It then continues adding more sets,
following a certain sequence that defines a “version” of the algorithm. Each iteration may
not exceed a certain parameter time MAX_TIME; if it does then it is discarded and a
new iteration is run. For each generated sets P and C of di-pathsets and di−1-cutsets, the
probability of the event zi that they define is computed; the P ,C pair with the highest
Pr(zi) is recorded as the algorithm proceeds and returned after timing out. The algorithm
shown in Fig. 9.6 corresponds to the version where the sequence pathset-cutset-pathset-
cutset is followed in each iteration; we will denote it as PCPC. It illustrates how to
invoke the procedures generatePath and generateCutset. In Section 9.6.2 we compare
the results obtained with seven different versions. The algorithm receives the graph G,
source and destination nodes (s, t) and the range of distances allowed for the zone [ℓ1, ℓ2].
It returns the pair (P, C) whose probability was the highest among all the pairs generated.
The pair is not necessarily built by two d-pathsets and two d-cutsets. Note the way that
generatePath and generateCutset are invoked in lines 18 and 26. Passing G \ P and
P ∪ C allows respectively to obtain disjoint d-pathsets and d-cutsets respect to those so
far generated in the current iteration. If a subprocedure is invoked MAX_TIMES times
without succeeding to return a d-pathset or d-cutset, a new iteration is started. Similar
algorithms PP, PPP, ... and CC, CCC, ... are used for the border regions X0 and Xr,
generating only d-pathsets or only d-cutsets.
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Procedure generateCutset(G, s, t, ℓ,H)

1: ~d← vector of distances between s and every node in G \H
2: randomAlter(~d)
3: queue ← all edges of G\H inserted in increasing order of their values in d̄
4: newCut← ∅; flag← true
5: while flag do
6: shP← shortestPath(G, s, t, ∅)
7: if (shP = ⊥) ∨ (length(shP) > ℓ) then
8: flag← false
9: else if isEmpty(queue) then

10: return ⊥
11: else
12: newEdge← pop(queue)
13: remove newEdge from G
14: add newEdge to newCut
15: end if
16: end while
17: minCut ← ∅
18: for all e ∈ newCut do
19: add e to G
20: shP← shortestPath(G, s, t, ∅)
21: if (shP 6= ⊥) ∧ (length(shP) ≤ ℓ) then
22: remove e from G
23: add e to minCut
24: end if
25: end for
26: return minCut

Figure 9.5: Heuristic algorithm for generating an ℓ-cutset.

121



9. MONTE CARLO ANALYSIS OF K-DIAMETER-DEPENDENT
PERFORMABILITY METRICS

Procedure PCPC(G, s, t, ℓ1, ℓ2)

1: bestP ← ⊥; bestC ← ⊥; highestProb ← 0
2: while ellapsed_time < MAX_TIME do
3: P ← ∅; C ← ∅
4: repeat
5: p ← generatePath(G, s, t, l1, l2)
6: until (p 6= ⊥) or MAX_TRIES attempts were done
7: if (p = ⊥) then continue //aborts current “while” iteration
8: P ← P ∪ {p}
9: repeat

10: c ← generateCutset(G, s, t, l1 − 1,P)
11: until (c 6= ⊥) or MAX_TRIES attempts were done
12: if (c = ⊥) then continue //aborts current “while” iteration
13: C ← C ∪ {c}
14: if Pr(P,C) > highestProb then
15: highestProb ← Pr(P,C); bestP ← P; bestC ← C
16: end if
17: repeat
18: p ← generatePath(G \ P, s, t, l1, l2)
19: until (p 6= ⊥) or MAX_TRIES attempts were done
20: if (p = ⊥) then continue //aborts current “while” iteration
21: P ← P ∪ {p}
22: if Pr(P,C) > highestProb then
23: highestProb ← Pr(P,C); bestP ← P; bestC ← C
24: end if
25: repeat
26: c ← generateCutset(G, s, t, l1 − 1,P ∪ C)
27: until (c 6= ⊥) or MAX_TRIES attempts were done
28: if (c = ⊥) then continue //aborts current “while” iteration
29: C ← C ∪ {c}
30: if Pr(P,C) > highestProb then
31: highestProb ← Pr(P,C); bestP ← P; bestC ← C
32: end if
33: end while
34: return bestP, bestC, highestProb

Figure 9.6: Pseudocode for the main heuristic; version PCPC.
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9.6 Numerical examples

Test Goal Size(n,m) How the edge sets were chosen

1
To illustrate the gains in RE

of our simulation method
(22,31) Visual inspection

2 To compare the heuristics
(64,112)
(225,420)

PC,PCP,PCC,PCPP,
PCPC,PCCP,PCCC

3
To see the combined effect
of chaining the heuristics

and the simulation
(60,110)

PPPP (Z0)
PCCP (Z1)
CCCC (Z2)

Table 9.1: Goal, sizes and heuristics for the numerical tests.

9.6 Numerical examples

This section provides numerical examples based on mesh-like topologies. Tests 1 and 3
are inspired on the following situation. There is a contract between a communication
network provider and a customer who needs to periodically exchange data between two
sites s and t. They agree on a scale of fines, to be paid by the provider, according to the
number of hops that each packet undergoes. The aim is to estimate the expected value
of the fines that will be paid during the contract lifetime. To do so, simulations based
on crude Monte Carlo and the proposed method (the version shown in Figure 9.6) were
run and their results compared. Test 2 compares different versions of the heuristics. The
methods were implemented in C++ and the tests were run on an Intel Core2 Duo T5450
machine with 2 GB of RAM, executing 107 iterations (sample size). Table 9.1 shows the
goals, sizes and heuristics applied.

9.6.1 Test I - ANTEL’s transport network

Test case I is based on the countrywide transport network topology of ANTEL, the largest
telecommunications provider in Uruguay, shown in Figure 9.7. Nodes represent the sites
whose interfaces perform routing activity, thus adding significant latency. Links represent
the existing paths between these sites. Three scenarios are considered, corresponding to
interface failure probability values of 0.10, 0.05 and 0.01 respectively. The test illustrates
the effect that the rarity of edge failures has on the attained efficiency relative to crude
Monte Carlo. Assume that nodes 4 and 14 (shown as squares) are to be connected in a
context where low latencies are desirable. Table 9.2 lists the scale of fines payed according
to the hop distance between both nodes. Three scales are used, each one corresponding
to a certain value of link reliability in the network model (0.90, 0.95 and 0.99). The
simulations will estimate the expected value of the average fine as well as its variance.
The fine scales were proportionaly adjusted so that the expected values of the fines to pay
were rather similar, by running short simulations. Note how the fines per region must
quickly increase to yield the same expected value of fines when link reliabilities become
higher, due to the fact that network configurations with high distances, or disconnected,
become rarer events. In other words, this means that the provider can agree on paying
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∆ region re = 0.9 re = 0.95 re = 0.99

up to 5 X0 0 0 0
6 to 7 X1 5 30 1,000

above 7 X2 10 60 2,000

disconnected X3 20 120 4,000

Table 9.2: Test I: fines per region.

higher fines per region still facing the same fine expected value, because of improved
link reliabilities. Table 9.3 shows the d-pathsets and d-cutsets employed, using the edge
labels of Figure 9.7.
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Figure 9.7: Test 2: reduced transport network topology of ANTEL, Uruguay’s national
telecommunications provider

Table 9.4 shows Φ̂N and Φ̃N (the estimators of ν returned by the crude and proposed
methods respectively); the estimates obtained for their variances; and the total times (in
seconds). As above mentioned the scale of fines was set up so that the expected values of
the fines to pay were approximately the same (they ranged from 0.341855 to 0.361926).
Times spent are essentially the same across the three reliability scenarios, with the crude
method taking a time approximately 11% lower than the proposed method. Observe the
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9.6 Numerical examples

Region Pi Ci

X0 P0 = {{4, 5, 9, 1}, {11, 12, 2, 8}} C0 = ∅
X1 P1 = {{11, 12, 2, 13, 14, 15}} C1 = {{1, 8}}
X2

P2 = {{4, 17, 10, 18, 19,
20, 21, 22, 15}} C2 = {{1, 8, 13}}

X3 P3 = ∅ C3 = {{3, 4, 11}, {1, 8, 15}}

Table 9.3: Test I: d-pathsets and d-cutsets.

. Crude Proposed ratio

re = 0.9

Φ 0.341855 0.341856 -
σ2 4.538235×10−7 3.328820×10−8 13.63
t(s) 290.9 323.7 0.8987

re = 0.95

Φ 0.361926 0.361632 -
σ2 2.467931×10−6 5.451282×10−8 45.27
t(s) 285.8 321.3 0.8896

re = 0.99

Φ 0.338000 0.334667 -
σ2 6.018858×10−5 6.401462×10−8 940.2
t(s) 280.4 321.7 0.8715

Table 9.4: Test I: numerical results.

significant reductions achieved in the variance by the proposed method (13.63, 45.27 and
940.2 for re equal to 0.90, 0.95 and 0.99 respectively). An efficiency comparison can be
reported via the relative efficiency RE, which is a standard ratio employed in simulation
literature (see e.g. [94], [12]), defined as follows:

RE =
Var(Φ̂N )

Var(Φ̃N )
× timecrude

timeproposed

The RE expresses the attained variance reduction adjusted by the spent-time ratio;
in this case, its values are 12.25, 40.27 and 819.4 respectively for re = 0.90, re = 0.95
and re = 0.99.

9.6.2 Test II - Square grids

This test illustrates the behaviour of seven versions of the heuristic algorithm. One
version (that we call PC) always returns one d-pathset and one d-cutset. Two versions
(PCP, PCC) can return one extra edge set. Finally, four versions (PCPP, PCPC, PCCP,
PCCC) return two, three or four edge sets whose nature corresponds to each letter
(P=pathset, C=cutset). Two network topologies were employed: square grids with 8× 8
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Instance Size s t ℓ1 ℓ2 Pr(zi)

Grid1 8× 8 (2,2) (4,4) 6 10 1.895E-4
Grid2 8× 8 (2,2) (5,5) 8 12 1.974E-4
Grid3 15× 15 (4,7) (11,7) 10 20 2.529E-6
Grid4 15× 15 (4,4) (11,11) 18 24 9.575E-9

Table 9.5: Test II: grid-based instances for heuristic tests.

and 15×15 nodes respectively. Table 9.5 shows the characteristics of the four instances of
the problem that were run for each version of the algorithm. Nodes s and t are specified
by their “x, y coordinates” in the grid (numbered from zero). The reliability of each
edge was randomly set, according to a triangular distribution (0.985, 0.99, 0.995). The
parameters MAX_TIME and MAX_TRIES were set to 40 seconds and 5 tries. Last
column of the table shows the highest probability found among those returned by each
version of the algorithm.

Table 9.6 shows the four tests results; within each one, the algorithms are sorted
by descending order of the probability that each one returned. Column labeled %best
reports the ratio between the returned probability and the highest one for that particular
test. Column #edges reports the total number of edges involved in the d-pathsets and
d-cutsets of the returned solution. Columns ‘2 sets’, ‘3 sets’ and ‘4 sets’ report the
number of solutions generated that had two, three and four components. Finally column
best(P,C) reports how many d-pathsets and d-cutsets there are in the solution returned
by each algorithm. First, note that in all cases there is a significant difference between the
best and worst returned solutions (their ratio ranging from 1,22 to 2,94). Second, three of
the best solutions had four components and the remaining one had three. These results
suggest that it might be worth to spend time looking for solutions with many components,
rather than striving to get the best “one d-pathset and one d-cutset” possible solution,
in topologies alike. Third, there is no clear winner, although PCCC, PCPC and PCCP
seem to have the best overall results.

9.6.3 Test III - Randomized extension of Arpanet

This test illustrates the combined effect of the heuristic algorithm for edge sets generation
and the variance-reduction technique. The network, shown in Fig 9.8, has 60 nodes and
110 edges. It was generated by growing the original Arpanet (20 nodes and 25 edges)
with 40 new nodes, sequentially linked to the previous ones according to the random
network model of [77]. As in Test 1, three instances were run, each one with all edges set
to the same reliability. In this case the nodes s, t are represented as squares. Table 9.7
lists the scale of fines, split in three zones; again they were adjusted so that the expected
value was similar for the different edge reliabilities. The heuristic PCCP was applied
for X1 and it returned a solution built by one 12-pathset and two 5-cutsets. Heuristics
PPPP and CCCC where applied in the regions X0 and X2, returning respectively three
d-pathsets and two d-cutsets. The parameter MAX_TIME was set again to 40 seconds.
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%best #edges 2 sets 3 sets 4 sets best (P,C)

Grid1

PCCP 1.000 22 1,055 726 687 2,2
PCPC 0.998 24 671 637 255 2,2
PCCC 0.911 18 497 336 71 1,3
PCC 0.911 14 1,086 729 0 1,2
PCP 0.509 18 3,186 3,052 0 2,1

PCPP 0.501 18 2,635 2,518 943 2,1
PC 0.465 10 4,135 0 0 1,1

Grid2

PCPC 1.000 28 417 401 152 2,2
PCCP 1.000 28 604 392 377 2,2
PCCC 0.898 20 463 299 266 1,3
PCC 0.898 16 605 387 0 1,2
PCP 0.502 22 2,012 1,907 0 2,1

PCPP 0.501 24 1,709 1,623 621 2,1
PC 0.458 12 2,439 0 0 1,1

Grid3

PCCC 1.000 26 82 55 43 1,3
PCPC 0.772 40 79 61 30 2,2
PCCP 0.769 42 105 73 54 2,2
PCC 0.667 23 110 74 0 1,2
PCPP 0.394 56 286 196 59 3,1
PCP 0.386 37 310 204 0 2,1
PC 0.340 18 380 0 0 1,1

Grid4

PCP 1.000 50 169 105 0 2,1
PCPP 0.996 52 180 98 64 2,1
PCPC 0.996 52 56 27 13 2,1
PCCP 0.988 62 31 21 12 2,2

PC 0.821 28 202 0 0 1,1
PCC 0.821 28 37 17 0 1,1

PCCC 0.821 28 28 17 12 1,1

Table 9.6: Test II: ranking of results for the grid-based instances.
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∆ region re = 0.90 re = 0.95 re = 0.99

up to 5 X0 0 0 0
6 to 12 X1 10 150 85,000

above 12 X2 1,000 15,000 8,500,000

Table 9.7: Test III: fines per region.

. Crude Proposed ratio

re = 0.90

Φ 0.928540 0.928373 -
σ2 9.135802×10−5 2.591886×10−6 35.25
t(s) 606.4 975.2 0.6218

re = 0.95

Φ 0.933135 0.915608 -
σ2 1.366002×10−3 6.188060×10−6 220.75
t(s) 586.2 950.4 0.6168

re = 0.99

Φ 0.935000 0.928744 -
σ2 7.232224×10−1 3.217148×10−5 22,480.23
t(s) 513.1 914.4 0.5612

Table 9.8: Test III: numerical results.

The results of the test are summarized in Table 9.8; each time reported for the proposed
method includes the 120 seconds spent generating the d-pathsets and d-cutsets. Note
the significant relative efficiencies, in particular for rarer failures, obtained in this test:
21.92, 136.15 and 12,615.39 respectively for re equal to 0.90, 0.95 and 0.99.

9.7 Conclusions and future work

The proposed simulation method showed its capability to achieve significant variance
reductions when applied on mesh-like networks. The necessary and sufficient conditions
under which there is a reduction in the variance of the estimated parameter, with respect
to the crude method, were shown in Lemma 9.1. The tests also showed that the pro-
posed heuristic was able to generate sets that exploited the mentioned variance-reduction
potential at significant levels. Even considering the extra time required for running the
heuristic and for sampling with the proposed plan, the efficiency gains are noteworthy,
specially when the links become more reliable.

The heuristics hereby introduced, yet resulting in important efficiency gains when
chained to the simulation in these simple versions, can be improved in several ways. The
algorithm could adapt the amount of effort spent in searching higher cardinality sets
of d-pathsets and d-cutsets according to statistics on the sets so far found or on the
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s t

Figure 9.8: Network for Test 3 - Random extension of Arpanet

connectivity level of the terminal set. It could also alter the relative effort devoted to the
generation of different sequences of d-pathsets and d-cutsets, reacting to the results so far
obtained during execution. The reliability of each edge should be taken into account when
choosing which one to add to the d-pathset or d-cutset under construction, particularly
in networks where the reliabilities significantly differ. The time spent generating the sets
MAX_TIME could also be initially set according to the sample size and the number
of edges and regions (all of which determine at a large extent the time spent by the
simulation). Moreover, it could be adjusted during the algorithm execution in light of
the number and quality of the so far found sets.
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Chapter 10

An interpolation technique for the

edge-reliability problem

In this chapter we deal with the Edge-Reliability Problem: given a connected simple
graph G = (V,E) with perfect nodes and links failing independently with equal proba-
bility 1 − p, find the probability RG(p) that the network remains connected. The edge
reliability RG(p) is a polynomial in p with degree m = |E|, and the exact computation of
RG(p) is in the class of NP-hard problems. However, the related literature is vast, and
offers bounds and estimation techniques, as well as exponential algorithms to exactly
find that polynomial.

We propose a novel interpolation-based technique that exploits the structure of the
Hilbert space L2[0, 1], and combines the efficiency of Newton interpolation with the
simplicity of Monte Carlo reliability estimation in selected abscissas in [0, 1]. The aim is
to guide the polynomial search respecting algebraic properties of the target polynomial
coefficients. We illustrate the effectiveness of the algorithm in the lights of a naive graph
with limited size, and discuss several hints for future work.

This chapter was accepted for publication in the 5th International Workshop on
Reliable Networks Design and Modeling; see [16].

10.1 Introduction

Consider a connected simple graph G = (V,E) with node-set V = {v1, . . . , vn} and links
E = {e1, . . . , em}. The network has perfect nodes, but links operate independently, with
identical probability p (or fail with probability 1 − p). The link states are represented
by a binary vector (x1, x2, . . . , xm), and the network state is expressed by the structural
indicator random variable Φ : {0, 1}m → {0, 1}, defined by Φ(x1, . . . , xm) = 1 whenever
the resulting subgraph with links E′ = {ei : xi = 1, i = 1, . . . ,m} is connected. Our
objective is to find the all-terminal reliability, defined by the expected value RG(p) =
E(Φ) = P (Φ(x1, . . . , xm) = 1). In words, it is the connectedness probability of a random
graph with perfect nodes and failure of its links.
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A cut-set is a set of links C such that Φ(E/C) = 0 (the subgraph (V,E/C) is
disconnected), and a min-cut is a minimum cardinality cut-set; we will denote c the
minimum cardinality of a cut-set, and nc to the number of such min-cuts. Similarly, a
path-set is a set of links P such that Φ(P ) = 1 (the subgraph (V, P ) is connected), and
a min-path is a path-set with minimum cardinality; we will denote l to that cardinality,
and nl is the number of those min-paths.

In the all-terminal case, min-paths are spanning trees, so l = n− 1, and the number
of spanning trees is the complexity of a graph or tree-number, introduced by Kirchhoff
from his pioneer work in electrical networks: nl = κ(G), and κ(G) is exactly a minor of
the Laplacian matrix LG = ∆G −AG, being ∆G = diag[deg(v1), . . . , deg(vn)] and AG is
the adjacency matrix of G [26].

By means of Ford-Fulkerson’s algorithm, the number c can be found in polytime
with the size of the graph. Provan and Ball found in polytime the number nc of min-
cuts [32]. As a consequence, the four numbers l, nl, c and nc can be found in polytime, a
distinguished characteristic for the all-terminal reliability problem (the computation of nc

is NP-hard in the corresponding two-terminal connectedness problem, and consequently
in the general K-terminal problem [105]).

There are several ways to express the all-terminal reliability; we will work with the
F -form, defined as follows. Let Fi = |{E′ ⊆ E : |E′| = i,Φ(E/E′) = 1}| the number of
subgraphs that remain connected after the deletion of exactly i links. The outcome of
one of those graphs has probability pm−i(1− p)i, and as a consequence, the all-terminal
reliability is the following polynomial:

RG(p) =

m∑

i=0

Fip
m−i(1− p)i. (10.1)

It is clear that RG(p) is a polynomial with integer coefficients, and 0 ≤ Fi ≤
(
m
i

)
. From

prior observations, we know that Fc =
(
m
nc

)
−nc and Fm−n+1 = nl, and both can be found

in polytime. Moreover, by its definition we get that Fi = 0 whenever i > m − n + 1,
whereas on the other hand Fi =

(
m
i

)
if i < c. Re-writing Equation (10.1) we get that:

RG(p) =
c−1∑

i=0

(
m

i

)
pm−i(1− p)i + (

(
m

c

)
− nc)p

m−c(1− p)c

+
m−n∑

i=c+1

Fip
m−i(1− p)i + nlp

n−1(1− p)m−n+1. (10.2)

However, the general computation of the remaining m − n − c coefficients of the
F -vector (or equivalently, the reliability polynomial) is an NP-hard problem [32]. As
a consequence, the analysis is focused essentially in the design of exponentially exact
algorithms, polynomial designs for special sub-classes of graphs, reliability estimation for
a fixed operation p, or bounds.

Satyanarayana et. al. proved that the coefficients of the polynomial in the inde-
terminate variable p has integer coefficients that alternate in signs, from dominating set
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theory [58]. The reliability polynomial is a special evaluation of the Tutte polynomial, and
therefore it satisfies the deletion-contraction formula RG(p) = (1−p)RG−e(p)+pRG∗e(p),
where G− e represents the deletion of a chosen link e ∈ E, and G ∗ e is the contraction
operation (where the terminal nodes from e are now the same node, and multi-links are
deleted). This formula leads to a exponentially time algorithm to recursively reduce the
size of the graph and find RV (G) exactly. This idea has been exploited in many ways,
by previous deletion of irrelevant links and series-parallel equivalences, that preserve the
reliability measure. A related area is the pointwise estimation of RG(p), where the effort
is primarily focused on the design of unbiased and time-efficient estimators with reduced
variance, and the main mathematical machinery is Monte Carlo-based simulation meth-
ods [12, 106, 69].

Another alternative is the design of bounds, where the issue is to find RG(p) and

RG(p) such that RG(p) ≤ RG(p) ≤ RG(p), uniformly over the compact interval p ∈ [0, 1].
Birnbaum et. al [107] noticed that the fraction of operational subgraphs with i edges over
all subgraphs with i edges is monotonically increasing with i, and as a consequence Fi−1 ≤
Fi

i
m−i+1 for all i ∈ {0, . . . ,m}. Kruskal [108] and Katona [109] independently found a

better bound (which is indeed the best for hereditary families of sets, without exploiting

coherency) inspired in counting simplices of a complex: Fi−1 ≤ F
(i−1)/i
i . Alternative

bounding techniques exploit coherency information from the network model. Brown et.
al. for instance inspired in the underlying combinatorics of Stanley theorems on Hilbert
spaces [110]. Other more recent fast bounding techniques rely on scanning weak cutsets,
and trade accuracy for computational cost [111]. Exact computations are usually based
on reliability-preserving transformations (such as the deletion-contraction formula), and
try to speed-up the process [112].

In this chapter we address the computation of the reliability polynomial via an alter-
native interpolation-based technique, which, in the best case, returns the exact polyno-
mial efficiently (in polytime with the size of the graph). The basic ingredients are Crude
Monte Carlo (CMC) estimation for the reliability RG(pi) over some finite set {pi} ∈ [0, 1],
Newton interpolation, and least square error to find a feasible reliability polynomial from
the interpolation.

This chapter is structured as follows. Section 10.2 presents CMC and Newton in-
terpolation, which are the building blocks of our interpolation-based methodology. It
also includes an analysis of variance in order to get an insight of the resulting error.
Section 10.3 exploits the structure of the Hilbert space L2[0, 1] to find the nearest poly-
nomial with integer coefficients in a least square integral sense. The full algorithm, its
adjustment as a discussion of possible improvements is covered in Section 10.4. An il-
lustrative numerical example is shown in Section 10.5. A discussion of trends and future
work is included in Section 10.6, whereas Section 10.7 summarizes the main conclusions.

10.2 Crude Monte Carlo and Newton Interpolation

Suppose we are given a fixed probability of operation p, and we want to find the con-
nectedness probability γ = RG(p) = P (Φ = 1).
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Crude Monte Carlo (CMC) simulates a sample Φ1, . . . ,ΦN of N independent iden-
tically distributed variables respecting the structural law Φ, and proposes the estimator
Φn for P (Φ = 1):

ΦN =
1

N

N∑

i=1

Φi. (10.3)

As corollary from Kolmogorov’s Strong Law, the estimator Φn is consistent for γ.
Moreover, E(ΦN ) = RG(p) = γ for all N ≥ 1, so it is also unbiased. Assume N is
sufficiently large to apply the Central Limit Theorem. Therefore, a confidence interval
at level α for RG(p) is centered at Φn and its radius is approximately equal to:

δ =

√
ΦN (1− ΦN )tα/2(N − 1)

√
N

(10.4)

where P (T > tα/2(n − 1)) = α
2 for a t-Student random variable T with n − 1 degrees.

Observe that if we could choose the probability p such that RG(p) ≈ 1/2, we avoid corner
effects coming from a rare event simulation [12]. In case ΦN ≈ 1/2, the radius is roughly:

δ ≈
zα/2

2
√
N

, (10.5)

where P (> zα/2) =
α
2 for a normal standard variable Z. Equation (10.5) states that the

global error is inversely proportional to the square root of the sample size N .
Now, suppose we choose m− n− c probabilities of operation {p1, . . . , pm−n−c} such

that RG(pi) ≈ 1/2 (or at least, min{1−RG(pi), RG(pi)}i=1,...,m−n−c > δ for some δ > 0
large enough. A primitive bipartition in the set [0, 1] makes this assumption feasible.
The idea is to obtain the unknowns Fc+1, . . . , Fm−n by means of Equation (10.2) and the
resulting CMC estimations yi = ΦN (pi), by polynomial interpolation. We will first show
that our problem is a classical interpolation. The second sum from Equation (10.2) can
be re-written in a general form:

f(p) =
m−n∑

i=c+1

Fip
m−i(1− p)i

= pm
(
1− p

p

)c+1 m−n−c−1∑

i=0

Fc+1+i

(
1− p

p

)i

(10.6)

If we change the variable x = (1− p)p−1 and define g(p) = f(p)p−m+c+1(1− p)−c−1, the
polynomial g is in its general form:

g(x) =
m−n−c−1∑

i=0

Fc+1+ix
i, (10.7)

and the coefficients are exactly our unknowns. Finally note that via simple calculations
we can get the estimations {f∗(x1), f

∗(x2), . . . , f
∗(xm−n−c)} starting from the set {yi =

φN (pi)}i=1,...,m−n−c.
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10.3 The reliability polynomial as a projection

There exist several ways to find the unique interpolant. Vandermonde’s method
is conceptually simple, but an ill-conditioned linear system must be faced. Lagrange
polynomials are easy to write, but hard to handle. We will see that Newton interpolation
method is simultaneously simple and easy to evaluate. Last but not least, an error
analysis is also feasible using Newton interpolation. The reader can find a thorough
exposition of interpolation theory in the book [113]. By the previous reasons, we will
focus on the Newton interpolation method. This method iteratively constructs the final
interpolation including in each iteration a new point (xi, g(xi)). In fact, if gi interpolates
the first i points, then the new polynomial gi+1(x) = gi(x) + ci+1

∏
j≤i(x− xj) respects

gi+1(xk) = gi(xk) for all k ≤ i, and ci+1 is found choosing gi+1(xi+1) = yi+1.
Moreover, if g is the polynomial interpolation of a certain function h in the points

{(xi, h(xi))}i=1,...,m−n−c by means of Newton method, the global error can be found
exactly for a given x ∈ [x1, xm−n−c] [114]:

h(x)− g(x) = [x1, x2, . . . , xm−n−c, x](h)
m−n−c∏

i=1

(x− xi), (10.8)

where the operator [x1, x2, . . . , xn](f) is recursively defined by [x1]f = f(x1) and

[x1, . . . , xk]f =
[x2, . . . , xk](f)− [x1, . . . , xk−1](f)

xk − x1
. (10.9)

Therefore, we can find the order of a uniform bound for the worst error {|h(x) −
g(x)|}x∈[0,1] in terms of N if we further neglect the rounding errors. Indeed, by (10.9),
the propagation error can be duplicated in the worst case in each step, so the new ra-
dius is of order δ′ = 2m−n−cδ. If we choose the abscissas such that 1 > pi > 1/2, then
xi = (1 − pi)p

−1
i ∈ (0, 1), and the product

∏m−n−c
i=1 (x − xi) is O(1). As a consequence,

we get that δ′ = O(2m/
√
N), which suggests the sampling size N should increase ex-

ponentially with respect to the size of the graph. This highlights again the hardness of
the problem we are addressing. However, we will see the success of the interpolation
technique for graphs with limited size.

10.3 The reliability polynomial as a projection

The construction of Section 10.2 gives a polynomial interpolator R∗(p) with real co-
efficients. However, the correct polynomial RG(p) has integer coefficients. What is
more: they alternate in sign in its general form, and respect certain bounds. Let
R′(p) =

∑m
i=0 aip

i be the closest polynomial to R∗(p) with respect to the metric from
L2[0, 1]:

R′(p) = arg min
r(p)=

∑m
i=0 aip

i, ai∈Z

∫ 1

0
(R∗(p)− r(p))2dp. (10.10)

It is not true that ai are roundings of the coefficients from R∗(p). The correct solution
can be found using an orthonormal base in the Hilbert space L2[0, 1], for instance, the
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normalized shifted Legendre polynomials P̂i(x) = P (2x − 1), being Pi(x) the Legendre
polynomials, defined recursively by P0(x) = 1, P1(x) = x and (i + 1)Pi+1(x) = (2i +
1)xPi(x)− iPi−1(x).

If < u, v >=
∫ 1
0 u(x)v(x)dx denotes the inner product in L2[0, 1], then < P̂i, P̂j >=

δi,j/(2j+1), being δi,j the δ-Kronecker function. The set {P̂i}i≥0 is in fact an orthonormal
basis for L2[0, 1]1. If we use the orthonormal basis: RG(p) =

∑m
i=0 bi

√
2i+ 1P̂i(p) and

R′(p) =
∑m

i=0 b̂i
√
2i+ 1P̂i(p), then b̂i is the rounding of bi. In fact:

‖R′ −RG‖22 =
∫ 1

0
|R′ −RG|2dp

=

∫ 1

0

(
m∑

i=0

√
2i+ 1(bi − b̂i)P̂i(p)

)2

dp

=
m∑

i=0

(bi − b̂i)
2,

and the last sum is minimized exactly when the integer b̂i is the rounding of bi for all
i = 0, . . . ,m.

10.4 Main Algorithm

In this section we present the main algorithm called RelInterpol, that combines the
observations from previous sections and puts them all together in a coherent order.

Algorithm 1: RG = RelInterpol(G, x,N)

1: (c, nc, l, nl)← Find(G)
2: y ←MonteCarlo(x,N)
3: g ← Newton(x, y)
4: R∗ ← Build(g, c, nc, l, nl)
5: R′ ← Hilbert(R∗)
6: while not HaltingTest(R′) = 1 do
7: Increment(N)
8: go to Line 2
9: end while

10: return RG = R′

In Line 1, the four quantities c, nc, l, nl defined in Section 10.1 are found in polytime
for the input graph G. Given the set of abscissas x in [0, 1], a Crude Monte Carlo
technique returns the vector y with the corresponding estimations for the all-terminal
reliability, in Line 2. Newton’s interpolation technique is applied in Line 3 regarding the

1Legendre polynomials can be obtained applying Gram-Schmidt orthogonalization process to the
independent set of polynomials {xi}i≥0, and are dense in L2[−1, 1] as corollary of Stone-Weierstrass
theorem.

136



10.5 Numerical example

abscissas x and corresponding estimations y, using Equation (10.7) to obtain the auxiliary
polynomial g. The all-terminal reliability estimation R∗ is built in Line 4. Function Build
just takes the coefficients of g and the four elementary quantities of G, to combine them
using Equation (10.2). In Line 5, Function Hilbert is called. Recall that R∗ may have
real coefficients. Therefore, Function Hilbert returns an integer-valued polynomial R′,
whose coefficients are chosen in order to minimize the L2 distance between R∗ and R′.
This is possible by the projection explained in Section 10.3. Function HaltingTest is
introduced in Line 6. This boolean function can either be true whenever the coefficients
do not move largely, or check whether the algebraic properties shared by all reliability
polynomials hold. Finally, if HaltingTest is not true, the sampling size in Monte Carlo
is increased in Line 7 in order to minimize the estimation error for each point in a new
interpolation, and we return to Line 2. Otherwise, RG = R′ is the output, and respects
all previous requirements.

It is worth to notice that we can not certify whether the output polynomial is the
correct one or not. However, in the lights of the uniform bound O(2m/

√
N) for the error

in [0, 1], a large enough sampling size N is guarantee of success at a level 1 − α (unless
numerical errors dominate).

10.5 Numerical example

In this section we show a pictorial example to illustrate the effectiveness of our interpolation-
based algorithm RelInterpol with the small-size sample graph shown in Figure 10.1.

0

3

4

5

61 2

Figure 10.1: Sample network with n = 7 nodes and m = 14 edges.

Thanks to pioneer works from Kirchhoff, Ball and Provan, we know that the size of
the mincut is c = 2, the number of feasible mincuts is nc = 2, the size of a minpath is
precisely l = n−1 = 6 and the tree-number equals nl = κK = 720. Given that the sample
graph has exactly m = 14 edges and n = 7 nodes, we need exactly m− n− c = 5 point-
wise estimations for the reliability polynomial. Moreover, in this small-size instance an
alternative exact algorithm can be implemented, to get the correct reliability polynomial:

RG(p) = 720p6 − 4136p7 + 10741p8 − 16356p9+

+ 15894p10 − 10056p11 + 4034p12 − 936p13 + 96p14 (10.11)

If we let ǫ = 1− p, the anti-reliability polynomial is defined by QG(ǫ) = 1− RG(1− ǫ).
Replacing p = 1 − ǫ from Expression (10.11) we get a closed expression for the anti-
reliability of our sample-graph:
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UG(ǫ) = 2ǫ2 + 8ǫ5 − 8ǫ6 − 13ǫ8 − 64ǫ9

+ 78ǫ10 + 288ǫ11 − 602ǫ12 + 408ǫ13 − 96ǫ14. (10.12)

It is worth to notice that the whole information for the reliability polynomial is stored
by g(x) from Expression (10.7). Therefore, we performed Newton’s interpolation tech-
nique for g(x) at five points in [0, 1]. More specifically, we considered the five abscissas in
the high (and more interesting) zone pk = 5+2k

14 , where k ∈ {0, 1, 2, 3, 4}, provided the reli-
ability is not rare for that cases. Consider different sampling-sizes Ni ∈ {10i, i = 5, 6, 7, 8}
and coefficients Fj , for j ∈ {6, . . . , 14}. Table 10.1 reveals the estimated coefficients P ∗

j

for each sampling size Ni, versus the exact coefficients Pj of our sample graph.

Table 10.1: Performance for different sampling sizes.

Sample size (10i) P6 P7 P8 P9 P10

5 720 -4020 9648 -12054 6674

6 720 -4047 9895 -12963 8477

7 720 -4113 10528 -15523 14110

8 720 -4125 10633 -15926 14957

Exact: 720 -4136 10741 -16356 15894

Sample size (10i) P11 P12 P13 P14

5 1595 -4669 2629 -523

6 -494 -3249 2103 -441

7 -7791 2328 -230 -28

8 -8851 3118 -554 29

Exact: -10056 4034 -936 96

It can be appreciated that the relative error for the coefficients is consistently reduced
with respect to the sampling size, and the estimation is more accurate in dominant
coefficients. Remarkably, the dominant coefficient could always be guessed, even with
low sample sizes. This fact highlights that our interpolation technique sounds promising
for rare event analysis, where failures occur with very small probability.

In order to assess numerical effects, we computed the exact values of the reliability
polynomial, and then we applied Newton’s interpolation technique to them. The result-
ing polynomial identical to the exact one. As a consequence, we neglected numerical
effects, since the error coming from other sources (mainly crude Monte Carlo estimation)
dominate.

It is worth to notice that this methodology can be extended to other coherent net-
work models, such as K-terminal reliability (connection between K special nodes). A
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slight difference is that counting the number of mincuts or pathsets are both NP-hard
problems under K-terminal scenarios (so we have additional unknowns), leading to minor
modifications. The number of mincuts in the K-terminal case can be guessed with this
approach, regarding the stability of the coefficients when the sample size is increased.

10.6 Trends and Future Work

There are several issues that deserve further research in the design of efficient interpo-
lation techniques to guess an all-terminal edge reliability polynomial. In this section we
will discuss promising enhancements.

The whole methodology rests in the accuracy of point-wise estimates for RG(p) us-
ing Crude Monte Carlo. There exist more efficient point-wise estimation techniques,
that combine transformations that preserve the reliability measure and define a recursive
estimation with lower variance than Crude Monte Carlo. Recursive Variance Reduc-
tion [69] is a remarkable example, where the term efficiency is defined by the variance-
computational effort ratio.

Apparently, there is a trade-off in the selection of interpolation points (precisely, the
abscissas). On one hand, Newton’s interpolation technique suggests to select regular steps
in the points from the compact set [0, 1] to reduce the interpolation error in [0, 1]. On the
other hand, the operation near the borders of [0, 1] makes the reliability (or unreliability)
a rare event. This problem imposes a bridge between classical interpolation theory and
stochastic analysis of rare events.

The halting function could check algebraic properties shared by all reliability polyno-
mials in the all-terminal model. Specifically, an ambitious design should check whether
all the following requirements are met:

1. Fi = 0, ∀i ≤ m− n; Fi =
(
m
i

)
, ∀i < c

2. Fc =
(
m
c

)
− nc, Fm−n+1 = κ(G)

3. 0 ≤ Fi ≤
(
m
i

)
, ∀i : c+ 1 ≤ i ≤ m− n,

4. Kruskal-Katona inequalities hold: Fi+1 ≤ (Fi)
(i−1)/i

5. R′ alternates signs when written in its general form.

6. Its real non-trivial roots are in the set (1, 2].

Other aspect for future research is a fast computation of the coefficients Fi, ex-
ploiting different orthonormal sets for L2[0, 1]. The key point here is to observe that if
RG(p) =

∑m
i=0 αiPi(x), where {Pi(x)}i=1,...,m is an orthonormal set, then the coefficients

can be expressed in terms of an integral, i.e.: αi =< RG, Pi >=
∫ 1
0 RG(p)Pi(p)dp. The

approximation of an integral is a highly studied problem, and there are valuable numerical
methods, including Monte Carlo for integrals (which in this case, it would be used for both
point-wise estimation of RG and its integration). Let us briefly explore one possibility.
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Observe that RG(p) =
∑m

i=0 Fip
m−i(1−p)i, where the polynomial set S = {pm−i(1−p)i}

is linearly independent but orthonormal. By means of Gram-Schmidt orthonormalization
process to S, another orthonormal set S′ can be found. However, an explicit determina-
tion for S′ waits for a special determinant to be analytically solved. More specifically,
the Gram matrix has the dot product < pi(1 − p)m−i, pj(1 − p)m−j >= 1

2m+1

(
2m
i+j

)
in

its entry (i, j), and its determinant is needed to find the orthonormal set S′ of polyno-
mials. Observe that the Gram matrix of size k is Dk = (< vi−1, vj−1 >)1≤i,j≤k and its
determinant for each k is:

|Dk| = (2m+ 1)−k

∣∣∣∣
((

2m

i+ j − 2

))∣∣∣∣ , (10.13)

the matrix whose entry (i, j) is exactly |
(

2m
i+j−2

)
| is a special one, called Hankel matrix,

where all the entries of an anti-diagonal are identical (precisely, those entries (i, j) such
that the sum i + j is constant). To the best of our knowledge, the latter determinant
has not been calculated analytically. A thorough revision of determinants is included
in [115].

A complementary approach to be explored is to select |x| > m− n− c abscissas and
choose subsets of size m − n − c, in order to define a class C of

(
|x|

m−n−c

)
polynomials.

The Hausdorff distance between the compact set C and the class of polynomials with
integer-valued and bounded coefficients (for a fixed upper-bound) gives an insight of the
problem complexity and hints to guess the correct reliability polynomial.

Finally, bounds and exact results related with the coefficients of the reliability poly-
nomial should be added in the last verification.

10.7 Conclusions

In this chapter we introduced a novel interpolation algorithm to estimate the all-terminal
reliability polynomial. The main engine is a Crude Monte Carlo combined with Newton’s
method for polynomial interpolation. The algorithm exploits the Hilbert metric induced
in L2[0, 1] to return a polynomial with integral coefficients that respects elementary
properties shared by all reliability polynomials.

The order of the uniform error bound for the resulting and real polynomial is O(2m/
√
N),

being m graph size (i.e. its number of edges) and N the sampling size in Crude Monte
Carlo. This result highlights the hardness of the polynomial computation.

A pictorial example with graphs of small size shows the algorithm consistency. The
dominant coefficient was guessed with small sample sizes, which is promising for the
study of rare events, where the dominant coefficient plays a central role. Moreover, once
the estimation is achieved, a network sensibility analysis with respect to the elementary
operational probability p can be easily performed, with vanishing error.

We encourage the scientific community to perform an in-depth analysis of this novel
technique, which can be improved in several steps, and mixes statistical, algebraic and
computational challenges. Indeed, the selection of the abscissas is in the world of classi-
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cal interpolation theory, whereas more clever estimations than Crude Monte Carlo (for
instance, Recursive Variance Reduction [69]) should be taken into account.
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Chapter 11

Conclusions and perspectives

In this thesis we have contributed several results regarding the diameter-constrained
network reliability (DCR) problem. We presented an introduction about several types
of network properties that can be encompassed under the broad concept of network
dependability. Then, we focused specifically on the role played by the evaluation of
reliability metrics and in particular the DCR. Our contributions refer to the following
topics:

• the computational complexity of particular cases of the DCR;

• topologies for which computing the DCR has polynomial complexity;

• asymptotic behavior of the DCR metric when the network grows following certain
probabilistic rules;

• Monte Carlo simulation methods applied to estimating the DCR;

• a performability metric that generalizes the DCR and its estimation by a Monte
Carlo method;

• the use of interpolation techniques combined with Monte Carlo for the CLR and
DCR.

Next we summarize the main conclusions for each topic.

11.1 Computational complexity

The DCR problem generalizes the CLR problem, by constraining the operational net-
work configurations to be such that there is un upper bound d for the distance between
terminals. Several problems result in the same or increased computational complexity
when adding such a constraint, for most values of the distance parameter d (see e.g. [9]).
We have seen that the same applies when switching from CLR to DCR. It was known
that the K-CLR was an NP-hard problem in general, as well as for the particular case
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where d ≥ 3 and |K| ≥ 2 is fixed. We proved that the case 2-K-DCR with any fixed |K|
can be solved employing dynamic programming techniques in a time that is linear in the
number of nodes, although the algorithm that we propose is strongly exponential in |K|.

The classification of the computational complexity remains as an open problem for
the d-K-DCR for all d ≥ 2 whenever |K| is a free input. As we commented in Section 4.4,
this problem is at least as complex than that of counting the number of partial graphs
of the network that have a given diameter. Hence, proving that the latter is NP-hard
would yield that the d-K-DCR is NP-hard too. We are currently focusing our efforts on
proving this. An extension of this complexity classification for the DCR can be done for
particular topologies; mainly looking for topologies and combinations of |K| and d for
which polynomial algorithms can be devised.

Figure 11.1 reproduces the classes of the subproblems that arise for different combi-
nations of |K| and d and what is currently known about their complexity.

|K| (fixed)

d

2 3 . . .

2

3

...

n− 2

n− 1

...

O(n) [10] O(n) [This thesis]

NP-hard [10]

NP-hard [11]; see Table 3.1

|K| = n or free

Unknown

Unknown

Figure 11.1: Complexity of DCR subproblems for any d and fixed |K|

11.2 Exact and asymptotic analysis of DCR metrics

It is known that both the CLR and the DCR are in general NP-hard complex problems,
yet for many particular classes of topologies they can be solved in polynomial time respect
to the number of nodes. We have illustrated the use of dynamic programming techniques
to compute the DCR for two simple families of networks. We have also characterized a
broad family of topologies for which the two-terminal DCR can be computed in poly-
nomial time. The graphs must be such that the node set can be partitioned in subsets
whose cardinality is bounded by a certain parameter h. The partition defines what the
feasible edges are. The time order is polynomial in the cardinality of the partition (and
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thus in the total number of nodes) yet exponential in the parameter h. This polynomial
algorithm allows to compute the exact DCR of large graphs that belong to these family.
This can be useful e.g. for computing bounds (following methods based on identifying
partial graphs with particular topologies), or for having exact values against which to
compare the outcomes of estimation and bounding methods.

When networks grow following certain patterns, it is natural to ask how its reliability
properties evolve. We have introduced the question of analyzing the asymptotic behavior
of CLR and DCR metrics, in networks that grow according to models extracted from
Random Graph Theory. In Chapter 6.4 we derive some results for the Gilbert’s mode,
according to which each pair of nodes has the same constant probability p of being linked
by an edge. We proved that the K-DCR of such a network tends to one, no matter
how small (yet strictly positive) is p. Moreover, we showed that a certain progressive
degradation of the link reliability p is admissible, yet resulting in the network reliability
tending to one. This work can be extended by studying the asymptotic behavior for
other random models like the ones of Albert-Barabasi and Watts-Strogatz. Possible
applications of this analysis could be devised in contexts where networks reach large
sizes following predictable random patterns, like the Internet itself, marketing campaigns,
knowledge sharing networks, etc.

11.3 Monte Carlo estimation of DCR

The high computational complexity of the CLR has motivated intense research on bound-
ing and estimation procedures. Among the latter, several Monte Carlo methods have been
conceived. In real communication networks, the reliability is usually very close to one,
and thus sampling a network in failed state is a rare event. If the crude Monte Carlo
method is used, this forces to employ large sample sizes to reach statistically significative
results. Moreover, the sample sizes unboundedly grow as the network reliability is closer
to one. Therefore, Monte Carlo methods with variance-reduction techniques have been
developed for the CLR. In Chapter 8 we have adapted a family of such methods to the
DCR context, showing how the transition from CLR to DCR context affects each step of
the simulation. We studied their relative efficiency vs. crude Monte Carlo. This family is
based on conditioning the sampling space based on pre-computed pathsets and cutsets.
The tests run evidenced the following:

• the methods based on precomputing pathsets and cutsets have better relative effi-
ciencies, as it was the case for the CLR;

• when the number of edges involved in the pathsets and cutsets (|Ω|) allows for
pre-computing a table with all the configurations and their elemental probabilities
of occurrence, the forthcoming simulation has the best performance. This is useful
in particular if the same probabilistic graph is to be tested several times, with
different values for d;

• high values of |K| and d result in the conditioned method having even better
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relative efficiencies for DCR than for CLR, due to the higher times required for
testing d-K-connectivity;

The disjointness condition imposed to the pathsets and cutsets in the best-performing
variation of the proposed methods, can be relaxed if a certain level of overlapping is
allowed, allowing for further reduction of the sampling space and variance reduction.
Yet the size of the polynomials that must be evaluated when sampling edges in Ω grows
exponentially with the number of edges overlapping, negatively affecting the sampling
time. This trade-off has to be studied aiming to improve the overall performance. Other
Monte Carlo methods developed for CLR will be adapted and tested for DCR on a
common set of benchmarking cases in order to compare their relative performances. We
are working also on hybrid methods that combine simulation techniques and polynomial
interpolation to estimate the reliability polynomial (or its most relevant coefficients in
the context of rare failures).

11.4 K-diameter-dependent performability metrics

Besides reliability metrics, that focus on connectedness of the network, performability
metrics have been introduced, better reflecting concerns like e.g. overall performance and
quality perceived. These metrics are often defined as a weighted average of the probability
that the network is in certain states if these are discrete, or a weighted integral of the
density of probability for the state function in general. Many methods that are applied
for computing and estimating performability metrics find their roots in previous work
developed for reliability metrics. In Chapter 9 we have adapted such a Monte Carlo
method, for estimating any metric defined in terms of the K-diameter of the network.
We assume that the possible diameters are partitioned in a number of ranges and each
range is given a weight for building the metric. Performability metrics that consider
the K-diameter can be useful in contexts where latencies affect the user experience, like
P2P networks, VoIP or web applications. We showed that significant variance reductions
relative to crude Monte Carlo are achieved by running tests on mesh-like networks. We
introduced heuristics that generate pathsets and cutsets to be used for conditioning the
sampling spaces. Further work to be done include:

• the heuristics, yet having resulted in important relative efficiency gains when chained
to the simulation, can be improved in several ways. They should take into account,
reacting to the ongoing results, aspects like the effort put in each range of diame-
ters and possible sequence of pathset/cutset generation, individual edge reliabilities,
time spent generating the sets and others;

• tests could be devised to study the correlation between this family of metrics and
the quality perceived by users, e.g. in audio or video streaming;

• other performability metrics derived from the K-diameter can be conceived, e.g.
defined in terms of the variance of the K-diameter rather than on its static values.
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11.5 Interpolation techniques for reliability metrics

A novel interpolation algorithm was introduced in Chapter 10 to estimate reliability
polynomials. Although we developed it for the all-terminal CLR, it can also be applied
to the DCR and general sets K. The algorithm is based on Monte Carlo simulation for
estimating the network reliability for different edge reliabilities followed by a Newton’s
polynomial interpolation. The Hilbert metric induced in L2[0, 1] is used to project and
return a polynomial with integral coefficients that satisfies elementary properties shared
by all reliability polynomials. The pictorial example shows that the first (highest degree)
coefficients are estimated with more precision than the remaining. This is a promising
result since the dominant coefficients are the most relevant in the context of rare failures.
An important advantage of knowing the reliability polynomial is that network sensitivity
analysis can be easily done respect to the edge reliability p, with vanishing error. We
are extending this line of research by analyzing the algorithm behavior on networks with
real sizes and topologies.
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