
HAL Id: tel-00945453
https://theses.hal.science/tel-00945453v1

Submitted on 12 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time scheduling of dataflow graphs
Adnan Bouakaz

To cite this version:
Adnan Bouakaz. Real-time scheduling of dataflow graphs. Other [cs.OH]. Université de Rennes, 2013.
English. �NNT : 2013REN1S103�. �tel-00945453�

https://theses.hal.science/tel-00945453v1
https://hal.archives-ouvertes.fr

ANNÉE 2013

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

École doctorale Matisse

présentée par

Adnan BOUAKAZ

préparée à l’unité de recherche IRISA – UMR6074
Institut de Recherche en Informatique et Systèmes Aléatoires

ISTIC

Real-time
scheduling of
dataflow graphs

Thèse soutenue à Rennes
le 27 novembre 2013

devant le jury composé de :

Isabelle PUAUT
Professeur à l’Université de Rennes 1 / Présidente

Robert DE SIMONE
Directeur de recherche INRIA / Rapporteur

Sander STUIJK
Prof. adjoint à Eindhoven University of Tech. / Rapporteur

Frank SINGHOFF
Professeur à l’Université de Brest / Examinateur

Eric JENN
Responsable de projet à Thalès Avionique Toulouse /
Examinateur

Jean-Pierre TALPIN
Directeur de recherche INRIA / Directeur de thèse

Jan VITEK
Professeur à Purdue University / Co-directeur de thèse

Acknowledgements

First, I would like to greatly thank all the members of my dissertation committee. I
wish to thank Isabelle PUAUT, professor of University of Rennes 1, for her acceptance
to be president of the committee and for being my master’s advisor.

I would like to thank Robert de SIMONE, INRIA research director, and Sander Stuijk,
assistant professor of Eindhoven University of Technology, for accepting to review and
evaluate this thesis. I am also very thankful for Frank SINGHOFF, professor of University
of Bretagne Occidentale, and Eric JENN, project manager of THALES Avionics, for
accepting to be the examiners of my thesis defense.

This thesis would not be possible without the guidance of my thesis advisors, Jean-

Pierre TALPIN, INRIA research director, and Jan VITEK, professor of Purdue University.
I would like to thank them for accepting me as a Ph.D. student, for their continuous
interest and encouragements, and for always pushing for results. I wish to thank Thierry

GAUTIER, INRIA researcher, for his help preparing the final thesis manuscript and
presentation.

I would like to thank my colleagues within the ESPRESSO team at IRISA laboratory
for sharing the good ambiance during my stay at IRISA. I wish to thank Alěs Plšek for
his contribution to my successful visit to Purdue University.

Finally, I am deeply thankful to my parents for their endless love and support, to
my brothers, sisters, and their families. I wish to thank Mohamed-Elarbi DJEBBAR, for
his support and encouragement, and all my friends at Rennes, among others, Abdallah,
Mehdi, Rabie, Youcef, Mohammed, Mouaad, Nadjib, and Hamza.

to my parents . . .

Contents

Introduction 3

Résumé en français 7

1 Design and Verification 11
1.1 Generalities . 11
1.2 Dataflow models of computation . 13

1.2.1 Kahn process networks . 14
1.2.2 Bounded execution of KPNs . 15
1.2.3 Dataflow process networks . 17
1.2.4 Specific dataflow graph models 18
1.2.5 Dataflow synchronous model . 21

1.3 Static analysis of (C|H)SDF graphs . 26
1.3.1 Reachability analysis . 26
1.3.2 Timing analysis . 29
1.3.3 Memory analysis . 33

1.4 Real-time scheduling . 35
1.4.1 System models and terminology 36
1.4.2 EDF schedulability analysis . 39
1.4.3 Fixed-priority schedulability analysis 43
1.4.4 Symbolic schedulability analysis 45
1.4.5 Real-time scheduling of dataflow graphs 47

1.5 Real-time calculus . 48
1.6 Conclusion . 49

2 Abstract schedules 51
2.1 Priority-driven operational semantics . 52
2.2 Activation-related schedules . 53

2.2.1 Activation relations . 53
2.2.2 Consistency . 55
2.2.3 Overflow analysis . 63
2.2.4 Underflow analysis . 65

2.3 Affine schedules . 67
2.3.1 Affine relations . 68

1

2 Contents

2.3.2 Consistency . 70
2.3.3 Fixed-priority schedules . 72
2.3.4 EDF schedules . 76

2.4 Specific cases . 78
2.4.1 Ultimately cyclo-static dataflow graphs 79
2.4.2 Multichannels . 81
2.4.3 Shared storage space . 82
2.4.4 FRStream . 83

2.5 Conclusion . 86

3 Symbolic schedulability analysis 87
3.1 General conditions . 87
3.2 Fixed-priority scheduling . 90

3.2.1 Priority assignment . 91
3.2.2 Uniprocessor scheduling . 97
3.2.3 Multiprocessor scheduling . 101

3.3 EDF scheduling . 102
3.3.1 Deadlines adjustment . 102
3.3.2 Uniprocessor scheduling . 106
3.3.3 Multiprocessor scheduling . 109

3.4 Conclusion . 112

4 Experimental validation 113
4.1 Performance comparison: ADFG vs DARTS 113

4.1.1 Throughput . 115
4.1.2 Buffering requirements . 118

4.2 Symbolic schedulability analysis . 121
4.2.1 EDF scheduling . 122
4.2.2 Fixed-priority scheduling . 125

4.3 Application: Design of SCJ/L1 systems 127
4.3.1 Concurrency model of SCJ/L1 128
4.3.2 Dataflow design model . 129

4.4 Conclusion . 131

Conclusion 133

Bibliography 150

A Sets, orders, and sequences 151

List of Figures 157

Introduction

Embedded systems are everywhere: homes, cars, airplanes, phones, etc. Every time we
take a picture, watch TV, or answer the phone, we are interacting with an embedded
system. The number of embedded systems in our daily lives is growing ceaselessly. A
modern heart pacemaker is an example of so-called safety-critical embedded systems,
a term that refers to systems whose failure might endanger human life or cause an
unacceptable damage. A heart pacemaker is also a real-time embedded system, a term
that refers to systems which must perform their functions in time frames dictated by
the environment.

Embedded systems design requires approaches taking into account non-functional
requirements regarding optimal use of resources (e.g. memory, energy, time, etc.) while
ensuring safety and robustness. Therefore, design approaches should use as much as
possible formal models of computation to describe the behavior of the system, formal
analysis to check safety properties, and automatic synthesis to produce “correct by
construction” implementations. Many models of computation for embedded systems
design have been proposed in the past decades. Most of them have to deal with time
and concurrency. Among these models, the dataflow and the periodic task models are
very popular.

Dataflow models of computation Dataflow models are characterized by a data-driven
style of control; data are processed while flowing through a network of computation
nodes. There are three major variants of dataflow models in the literature, namely,
Kahn process networks, dataflow process networks, and dataflow synchronous languages.
These models are widely used to design stream-based systems. The Turing-completeness
of Kahn and dataflow process networks has motivated the research community to pro-
pose less expressive but decidable dataflow models such as synchronous and cyclo-static
dataflow graphs. In these models, a system is described by a directed graph where
computation nodes (called actors) communicate only through one-to-one FIFO buffers.
Each time an actor executes (or fires), it consumes a predefined (either constant or
cyclically changing) number of tokens from its input channels and produces a prede-
fined number of tokens on its output channels. These two models are used in the signal
and stream processing community due to the following reasons:

Expressiveness : They are expressive enough to model most of digital signal processing
algorithms (e.g. FFT, H.263 decoder, etc.).

3

4 Introduction

Decidability : The questions of boundedness (i.e. whether the system can be executed
with bounded buffers) and liveness (i.e. whether each actor can fire infinitely often)
are decidable. Furthermore, static-periodic schedules (i.e. infinite repetitions of firing
sequences of actors) can be easily constructed.

Powerful tools : Many tools (e.g. SDF3, Ptolemy) propose algorithms for static-
periodic scheduling of dataflow graphs considering many optimization problems: buffer
minimization, throughput maximization, code size minimization, etc.

Real-time scheduling The major drawback of static-periodic schedules (or cyclic ex-
ecutives) is their inflexibility and difficult maintainability. Therefore, new scheduling
techniques have been proposed; e.g. fixed-priority scheduling, earliest-deadline first
scheduling, etc. Their underlying model of computation consists of a set of (periodic,
sporadic, or aperiodic) independent and concurrent real-time tasks. Each task is char-
acterized by a deadline that must be met by all invocations (called jobs) of that task.
The real-time research community has proposed a set of algorithms (called schedulability
tests) to verify before the costly implementation phase whether tasks will meet their
deadlines or not.

Nowadays real-time embedded systems are so complex that real-time operating sys-
tems are used to manage hardware resources and host real-time tasks. Most of real-time
operating systems implement a bunch of priority-driven scheduling algorithms (as dead-
line monotonic and earliest-deadline first scheduling policies). In parallel with the rapid
increase in software complexity, demands for increasing processor performance have mo-
tivated using multiprocessor platforms for real-time embedded applications. While not
as mature as uniprocessor scheduling theory, multiprocessor scheduling theory starts
providing us with very interesting schedulability tests.

Problem statement

Real-time scheduling

of periodic task sets
Static-periodic

scheduling of dataflow

graphsReal-time

scheduling

of dataflow

graphs

Figure 1: Real-time scheduling of dataflow graphs.

The key properties of any real-time safety-critical system are functional determinism
(i.e. for the same sequence of inputs, the system always produces the same sequence of
outputs) and temporal predictability (i.e. tasks meet their deadlines even in the worst-case
scenario). Besides of all the above mentioned advantages of dataflow graphs, functional
determinism is an inherent property of this model of computation. This is why we argue

Introduction 5

that dataflow graphs are suitable for designing safety-critical systems. Thus, the input
of our synthesis technique is a dataflow graph specification.

Since real-time operating systems are used in most recent real-time systems, we
must ask the following question: how to generate a set of independent real-time tasks (or
precisely a periodic task set) from a dataflow specification? As depicted in Figure 1, we refer
to this problem as real-time scheduling of dataflow graphs. Many properties (from both
communities) should be satisfied for correct implementations. The most important ones
are boundedness, data dependencies, and schedulability on a given architecture.

Contributions

In this thesis, we propose a method to generate implementations of dataflow graph
specifications on systems equipped with a real-time scheduler (as in real-time operating
systems or real-time Java virtual machines). Each actor is mapped to a periodic task
with the appropriate scheduling and timing parameters (e.g. periods, priorities, first
start times). The approach consists of two steps:

Abstract scheduling

An abstract schedule is a set of timeless scheduling constraints (e.g. relation between the
speeds of two actors or between their first start times, the priority ordering, etc.). The
schedule must ensure the following property: communication buffers are overflow and
underflow-free; i.e. an actor never attempts to read from an empty channel or write to
a full one. The appropriate buffer sizes and number of initial tokens are computed in
accordance with that property.

Since each actor is implemented as an independent thread, the code size minimiza-
tion problem is no longer an issue. Only the buffer minimization problem is consid-
ered at this step. Furthermore, the abstract schedule construction is entirely code and
machine-independent; i.e. we do not consider neither the implementation code of ac-
tors nor their worst-case execution times on the target machine. Though (theoretically
speaking) time-dependent techniques are more accurate, the smallest change in exe-
cution times (either by changing the target architecture or the implementation code)
requires reconstruction of the schedule. To sum up the first step, this thesis makes the
following contributions:

- We propose a general framework that uses only infinite integer sequences to describe
abstract priority-driven schedules. The necessary conditions for overflow/underflow-
free and consistent schedules are also presented.

- Regrading real-time scheduling of dataflow graphs, a specific class of abstract sched-
ules (called affine schedules) is presented together with an ILP (Integer Linear pro-
gramming) formalization of the problem.

- We also present the ultimately cyclo-static dataflow model (a generalization of the
cyclo-static dataflow model) and FRStream (a simple synchronous language).

6 Introduction

Symbolic schedulability analysis

Each real-time task must be characterized with some timing parameters (e.g. periods,
first start times, deadlines). However, abstract scheduling does not attribute any timing
properties to actors. Thus, the symbolic schedulability analysis consists in defining the
scheduling parameters that: respect the abstract scheduling constraints, ensure the
schedulability for a given scheduling algorithm and a given architecture, and optimize
a cost function (e.g. maximize the throughput, minimize the buffering requirements,
minimize the energy consumption, etc.).

This thesis presents several symbolic schedulability analyses regarding the earliest-
deadline first and fixed-priority scheduling policies. Both uniprocessor and homogeneous
multiprocessor scheduling are considered. Though the thesis focuses more on schedul-
ing of connected dataflow graphs, we have also presented few symbolic schedulability
algorithms for disconnected dataflow graphs.

Thesis overview

This thesis is organized as follows.

Chapter 1 first introduces the three major varieties of dataflow models of compu-
tation. We only present the most important properties regarding their semantics and
expressiveness. The second part briefly reviews the existing results about static-periodic
scheduling of synchronous and cyclo-static dataflow graphs. Finally, the real-time
scheduling theory is briefly introduced together with the very few existing results about
parametric schedulability analysis. All the mathematical concepts used in this chapter
are introduced in Appendix A.

Chapter 2 presents the abstract scheduling step. Again, all needed mathematical
concepts and notations about sequences can be found in Appendix A. This chapter
first describes activation-related schedules (i.e. the general framework) and then affine
schedules with more details on the overflow and underflow analyses w.r.t. earliest-
deadline first and fixed-priority scheduling policies. The chapter ends with notes about
some specific cases.

Chapter 3 presents the symbolic schedulability analysis step. Two performance met-
rics are considered: buffer minimization and throughput maximization. Furthermore,
two scheduling policies are addressed: earliest-deadline first and fixed-priority schedul-
ing policies for both uniprocessor and multiprocessor systems.

Chapter 4 presents the results obtained by the scheduling algorithms on a set of
real-life stream processing applications and randomly generated dataflow graphs w.r.t.
buffer minimization and throughput maximization. It also briefly presents how to use
the affine scheduling technique to automatically generate safety-critical Java Level 1
applications from a dataflow specification.

Finally, we end this thesis with some conclusions and perspectives for future work.

Résumé en français

Les systèmes embarqués sont omniprésents dans l’industrie comme dans la vie quoti-
dienne. Ils sont qualifiés de critiques si une défaillance peut mettre en péril la vie humaine
ou conduire à des conséquences inacceptables. Ils sont aussi qualifiés de temps-réel si leur
correction ne dépend pas uniquement des résultats logiques mais aussi de l’instant où ces
résultats ont été produits. Les méthodes de conception de tels systèmes doivent utiliser,
autant que possible, des modèles formels pour représenter le comportement du système,
afin d’assurer, parmi d’autres propriétés, le déterminisme fonctionnel et la prévisibilité
temporelle.

Les graphes « flot de données », grâce à leur déterminisme fonctionnel inhérent, sont
très répandus pour modéliser les systèmes embarqués de traitement de flux. Dans ce
modèle de calcul, un système est décrit par un graphe orienté, où les nœuds de calcul
(ou acteurs) communiquent entre eux à travers des buffers FIFO. Un acteur est activé
lorsqu’il y a des données suffisantes sur ses entrées. Une fois qu’il est actionné, l’acteur
consomme (resp. produit) un nombre prédéfini de données (ou jetons) à partir de ses en-
trées (resp. sur ses sorties). L’ordonnancement statique et périodique des graphes flot de
données a été largement étudié surtout pour deux modèles particuliers : SDF et CSDF.
Le problème consiste à identifier des séquences périodiques infinies d’actionnement des
acteurs qui aboutissent à des exécutions complètes et à buffers bornés. Le problème est
abordé sous des angles différents : maximisation de débit, minimisation des tailles des
buffers, etc. Cependant, les ordonnancements statiques sont trop rigides et difficile à
maintenir.

Aujourd’hui, les systèmes embarqués temps-réel sont très complexes, au point qu’ils
ont recours à des systèmes d’exploitation temps-réel (RTOS) pour gérer les tâches
concurrentes et les ressources critiques. La plupart des RTOS implémentent des straté-
gies d’ordonnancement temps-réel dynamique ; par exemple, RM, EDF, etc. Le modèle
de calcul sous-jacent consiste en un ensemble de tâches périodiques (ou non) indé-
pendantes ; chaque tâche est caractérisée par des paramètres d’ordonnancement (ex. :
période, échéance, priorité, etc.). La théorie de l’ordonnancement temps-réel fournit de
nombreux tests d’ordonnançabilité pour déterminer avant la phase d’implémentation,
et pour une architecture et une stratégie d’ordonnancement données, si les tâches vont
respecter leurs échéances.

Il est intéressant de pouvoir modéliser les systèmes embarqués par des graphes flot
de données et en même temps d’être capable d’implémenter les acteurs par des tâches
temps-réel indépendantes ordonnançables par un RTOS. Cette thèse aborde le problème

7

8 Résumé en français

d’ordonnancement temps-réel dynamique des graphes flot de données. Le problème n’est
pas anodin et il est résolu en deux étapes : la construction d’un ordonnancement affine
abstrait et l’analyse symbolique d’ordonnançabilité.

Ordonnancement abstrait

Un ordonnancement abstrait des acteurs est construit dans une première étape. Il
consiste en un ensemble de contraintes d’ordonnancement non temporelles ; plus préci-
sément, un ensemble de relations entre les horloges abstraites d’activation des tâches.
La figure 2.(a) représente un graphe flot de données composé de deux acteurs, p1 et p2,
et d’un buffer e = (p1, p2, x, y) de taille δ(e) et qui contient initialement θ(e) jetons.
Les fonctions x, y : N>0 → N indiquent les taux de production et de consommation du
buffer e ; durant le je actionnement du producteur p1, le nombre de jetons produits sur
e est égal à x(j). Les taux de production et de consommation sont constants dans le
modèle SDF et périodiques dans le modèle CSDF. Dans cette thèse, on traite de types
de taux plus expressifs comme par exemple les taux ultimement périodiques.

Figure 2 – (a) un graphe flot de données et (b) une relation d’activation.

Chaque acteur pi est associé à une horloge d’activation p̂i qui indique combien
d’instances de pi sont activées à un moment donné. Puisque cette première étape ne
prend pas en compte le temps physique, nous sommes intéressés uniquement par l’ordre
logique des activations d’où la notion de relation d’activation. La figure 2.(b) représente
une relation d’activation entre les acteurs p1 et p2. La relation montre clairement l’ordre
logique des activations ; par exemple, la première activation de p2 est précédée par
deux activations de p1. Cependant, ça ne veut dire pas que la première instance de
p2 (dénotée par p2[1]) ne commence son exécution que lorsque p1[2] s’acheva. Cela
dépend de la stratégie d’ordonnancement et d’autres paramètres (par ex. priorités).
Une relation d’activation peut être exprimée à l’aide de deux séquences infinies d’entiers.
La construction d’un ordonnancement abstrait consiste à calculer toutes les relations
d’activation entre les acteurs adjacents de façon à satisfaire les conditions suivantes.

Analyse des overflows : Un overflow se produit lorsqu’une tâche (i.e. un acteur) tente
d’écrire des jetons sur un buffer plein. Pour éliminer ce type d’exception, il faut garantir
que le nombre de jetons accumulés dans chaque buffer à chaque instant est inférieur ou

égal à la taille du buffer. Si ⊕x(j) =
j
∑

i=1
x(i), alors l’analyse des overflows pour un buffer

e = (pi, pk, x, y) peut être décrite par l’équation suivante :

∀j ∈ N>0 : θ(e) +⊕x(j)−⊕y(j′) ≤ δ(e) (1)

Résumé en français 9

de telle sorte que pk[j′] est la dernière instance de pk qui certainement lit ses entrées
à partir de e avant que pi[j] ne commence l’écriture de ses résultats sur le buffer. Le
calcul de j′ dépend de la relation d’activation entre pi and pk mais aussi de la stratégie
d’ordonnancement. Ce calcul ne doit pas prendre en compte le temps physique (par ex.
le temps d’exécution pire-cas des tâches) mais plutôt les scénarios pire-cas des overflows.

Analyse des underflows : Un underflow se produit lorsqu’une tâche tente de lire à partir
d’un buffer vide. Il faut donc garantir que le nombre de jetons accumulés dans chaque
buffer à chaque instant est supérieur ou égal à zéro. Formellement, il faut assurer que

∀j ∈ N>0 : θ(e) +⊕x(j′)−⊕y(j) ≥ 0 (2)

de telle sorte que pi[j′] est la dernière instance de pi qui écrit tous ses résultats sur e
avant que pk[j] ne commence la lecture de ses entrées à partir du buffer.

Consistance : Si le graphe flot de données ne contient pas de cycles non orientés, alors
chaque relation d’activation peut être calculée séparément des autres relations en utili-
sant les équations 1 et 2. Cependant, s’il y a des cycles non orientés dans le graphe, il
faut assurer la cohérence des relations calculées afin d’éviter les problèmes de causalité.
La figure 3 représente un ordonnancement abstrait inconsistant qui contient des pro-
blèmes de causalité. En effet, on peut déduire à partir de la relation d’activation entre
p1 et p2 et de la relation entre p2 et p3 que la 4e activation de p3 précède strictement la
2e activation de p1. Par contre et partant de la relation entre p3 et p1, la 2e activation
de p1 précède strictement la 2e activation de p3.

Figure 3 – Un ordonnancent abstrait inconsistant.

La première partie du chapitre 1 présente en détails l’approche d’ordonnancement
abstrait pour des relations d’activation arbitraires. Néanmoins, nous sommes plutôt
intéressés par des ordonnancements périodiques ; d’où l’introduction de la notion de
relation d’activation affine. Une relation affine entre pi et pk est décrite par trois pa-
ramètres (n, ϕ, d) tels que toutes les d activations de pi il y a n activations de pk (i.e.
n et d encodent la relation entre les vitesses des deux tâches) tandis que le paramètre
ϕ encode la différence entre les phases de pi et pk. La figure 4 représente une relation
d’activation affine de paramètres (4, 2, 3).

Figure 4 – Une relation d’activation affine de paramètres (4, 2, 3).

Nous présentons dans la deuxième partie du chapitre 1 une méthode pour calculer
les ordonnancements abstraits et affines des graphes dont les taux de production et de

10 Résumé en français

consommation sont ultimement périodiques. Cette méthode se base sur la programma-
tion linéaire en nombres entiers et a comme objectif la minimisation de la somme totale
des tailles des buffers. Par ailleurs, deux stratégies d’ordonnancement sont considérées :
EDF et ordonnancement à priorités fixes.

Analyse symbolique d’ordonnançabilité

Chaque acteur pi est assigné à une tâche temps-réel périodique caractérisée par un
temps d’exécution pire-cas Ci, une période πi, une phase ri, une échéance di, une priorité
(dans le cas d’ordonnancement à priorités fixes), et le processeur sur lequel elle s’exécute
(dans le cas d’ordonnancement multiprocesseur partitionné). L’ordonnancement abstrait
décrit les relations entre les paramètres des tâches mais il ne calcule pas les valeurs de ces
paramètres. L’analyse symbolique d’ordonnançabilité consiste à calculer ces paramètres
de telle façon à :

- Respecter l’ordonnancement abstrait : Si la relation affine entre deux acteurs pi et pk est
de paramètres (n, ϕ, d), alors les caractéristiques temporelles des deux tâches doivent
satisfaire les deux contraintes suivantes qui assurent que les activations d’un acteur sont
séparées par une période constante.

dπi = nπk rk − ri =
ϕ

n
πi

- Optimiser les performances : Dans cette thèse, on considère deux métriques de mesure de
performance des systèmes embarqués temps-réel : le débit (ou de manière équivalente, le
facteur d’utilisation du processeur U =

∑

pi

Ci
πi

) et la somme totale des tailles des buffers.

Malheureusement, la maximisation du débit est en conflit avec la minimisation des tailles
des buffers. Les paramètres qui influencent principalement ces performances sont : les
périodes, les priorités dans le cas d’ordonnancement à priorités fixes, les échéances dans
le cas d’ordonnancement EDF, et l’allocation des processeurs dans le cas d’ordonnan-
cement multiprocesseur partitionné. Nous proposons plusieurs techniques d’affectation
des priorités et d’adaptation des échéances pour optimiser les performances.

- Assurer l’ordonnançabilité : On ne peut pas appliquer directement les tests standards
d’ordonnançabilité car les paramètres temporels des tâches (principalement les périodes)
sont inconnus. C’est pourquoi on a modifié ces tests afin de pouvoir calculer les para-
mètres temporels des tâches pour lesquelles le système est ordonnançable sur une ar-
chitecture et pour une stratégie d’ordonnancement données. Nous proposons plusieurs
algorithmes ; à titre d’exemple, SQPA pour l’ordonnancement EDF monoprocesseur,
SRTA pour l’ordonnancement monoprocesseur à priorités fixes, SQPA-FFDBF pour l’or-
donnancement EDF multiprocesseur global, etc.

Pour conclure, nous montrons l’efficacité de notre approche en utilisant des graphes
issus de cas réels, ainsi que des graphes générés aléatoirement. Nous proposons aussi
un flot de conception des applications Java pour les systèmes critiques (SCJ), basé sur
l’approche décrite précédemment.

Chapter 1

Design and Verification

Contents

1.1 Generalities . 11

1.2 Dataflow models of computation 13

1.2.1 Kahn process networks . 14

1.2.2 Bounded execution of KPNs 15

1.2.3 Dataflow process networks . 17

1.2.4 Specific dataflow graph models 18

1.2.5 Dataflow synchronous model 21

1.3 Static analysis of (C|H)SDF graphs 26

1.3.1 Reachability analysis . 26

1.3.2 Timing analysis . 29

1.3.3 Memory analysis . 33

1.4 Real-time scheduling . 35

1.4.1 System models and terminology 36

1.4.2 EDF schedulability analysis 39

1.4.3 Fixed-priority schedulability analysis 43

1.4.4 Symbolic schedulability analysis 45

1.4.5 Real-time scheduling of dataflow graphs 47

1.5 Real-time calculus . 48

1.6 Conclusion . 49

1.1 Generalities

This introductory section presents general notions about some types of computer-based
systems starting from the most general to the most specific.

11

12 Design and Verification

Embedded systems

Embedded systems are ubiquitous in our daily lives. They are present in many in-
dustries, including transportation, telecommunication, defense, and aerospace. They
have changed the way we communicate, the way we conduct business - in short, our
inventions are changing who we are.

What are embedded systems? There are several definitions in the literature [97,
125, 78] that may agree with our vision. We believe that an embedded system is
one that integrates software with hardware to accomplish a dedicated function that is
subject to physical constraints. Such constraints are arising from either the behavioral
requirements (e.g. throughput, deadlines, etc.) or the implementation requirements
(e.g. memory, power, processor speed) of the system.

Separate design of software and hardware does not work for embedded systems where
techniques from both fields should be combined into a new approach that should not
only meet physical constraints but also reduce the development cost and the time to
market.

Reactive systems

A reactive system is a system that maintains a permanent interaction with its envi-
ronment [94]. Unlike interactive systems (e.g. database management systems) which
interact at their own speed with users or with other programs, reactive systems are
subject to some reaction constraints represented in the way the external environment
dictates the rhythm at which they must react. Reactive systems may enjoy functional
determinism. This key property means that for a given sequence of inputs, a system
will always produce the same sequence of outputs.

All reactive systems are embedded systems; however, not all embedded systems are
reactive systems. For example, proactive systems (e.g. autonomous intelligent cruise
control) extend reactive systems with more autonomy and advanced capabilities - they
anticipate and take care of dynamically occurring (not necessarily a priori predicted)
situations.

Depending on how reactive systems acquire inputs, they can be either event-driven
or sampled systems. An event-driven system waits for a stimulus to react. So, if its
response time is too long, it may miss some subsequent events. On the other hand,
a sampled system requires its inputs at equidistant time instants according to some
physical requirements. Examples of sampled systems are flight control systems and
real-time signal processing systems. In this thesis, we are mainly interested in sampled
systems.

Real-time systems

Real-time systems are reactive systems for which the correct behavior depends not only
on the outputs but also on the time at which the results are produced. A real-time task
is usually characterized by a deadline before which the task must complete its execution.
It is said to be hard if missing the deadline may cause catastrophic consequences; while

Dataflow models of computation 13

it is said to be soft if missing the deadline is not catastrophic but the the result becomes
less valuable - e.g. it decreases the quality of a video game. Finally, the task is said to
be firm if a late response is worthless.

Real-time computing is not just fast computing or matter of good average case per-
formance, since these cannot guarantee that the system will always meet its deadlines
in the worst-case scenario. Real-time computing should rather be a predictable comput-
ing [51]. The need for predictability should not be confused with the need for temporal
determinism where the response times of the system can be determined for each possible
state of the system and set of the inputs.

Safety-critical systems

A safety-critical system is a system whose failure may cause serious injury to people,
loss of human life, significant property damage, or large environmental harm. Flight
control systems, railway signaling systems, robotic surgery machines, or nuclear reactor
control systems naturally come to mind. But, something simple as traffic lights can
also be considered as safety-critical since giving green lights to both directions at a
cross road could cause human death.

Many disciplines are involved in safety-critical systems design [111]: domain engi-
neering, embedded systems engineering, safety engineering, reliability engineering, etc.
Unlike reliability engineering which is concerned with failures and failure rate reduction,
the primary concern of safety engineering is the management of hazards, i.e. identify-
ing, analyzing, and controlling hazards throughout the life cycle of a system in order to
prevent or reduce accidents. In a domain such as avionics, a system is designed to have
at most 10−9 accidents per hour.

All safety-critical systems are real-time systems because they must respond, as re-
quired by the safety analysis, to a fault by the fault tolerance time which is the length
of time after which the fault leads to an accident [72].

1.2 Dataflow models of computation

It is easier to explain the concept of “model of computation” by giving some examples
rather than to search for a precise essential definition. State machines, timed Petri nets,
synchronous models, Kahn process networks, and communicating sequential processes
are typical examples of models of computation. A model of computation consists of a
set of laws that govern the interaction of components in a design. It usually defines
the following elements [113]- ontology: what is a component? epistemology: what
knowledge do components share? protocols: how do components communicate? lexicon:
what do components communicate?

A model of computation for embedded real-time systems should deal with concur-
rency and time. A classification of models of computation according to their timing
abstraction can be found in [99]. They can be continuous-time, discrete-time, syn-
chronous, or untimed models.

14 Design and Verification

Dataflow models of computation are characterized by a data-driven style of control;
data are processed while flowing through a network of computation nodes. Therefore,
communication and parallelism are very exposed. Dataflow programming languages
can be traced back to the 70’s with a great advancement in the underlying models of
computation and visual editors since then [102].

In this chapter, we will present the three major variants of dataflow models in the
literature, namely, Kahn process networks [105], Dennis dataflow [70], and synchronous
languages [21, 94]. Mathematical notations and definitions used in this chapter can be
found in Appendix A.

1.2.1 Kahn process networks

A Kahn process network (KPN) is a collection of concurrent processes that communicate
only through unidirectional first-in, first-out (FIFO) channels. A process is a determin-
istic sequential program that executes, possibly forever, in its own thread of control. It
cannot test for the presence or absence of data (also called tokens) on a given input
channel. Therefore, a process will block if it attempts to read from an empty channel.
Communications in KPNs are asynchronous; i.e. the sender of the token needs not to
wait for the receiver to be ready to receive it. Furthermore, writing to a channel is a
non-blocking operation since channels are assumed to be unbounded.

KPNs are deterministic; i.e. the history of tokens produced on channels does not
depend on either the execution order or the communication latencies. Gilles Kahn had
provided an elegant mathematical proof of determinism using a denotational framework
[105].

A Denotational semantics

A denotational semantics explains what input/output relation a KPN computes. A
Kahn process is a continuous functional mapping from input streams into output streams.
A stream or a history of a channel is the sequence of tokens communicated along that
channel. It can be the input (and the output) of at most one process. The basic patterns
of deterministic composition of processes are described in [115].

Every continuous process is monotone but not vice versa. Monotonicity of a process
means that the process needs not to wait for all its inputs to start computing outputs,
but it can do that iteratively. Thus, monotonicity implies a notion of causality since
future inputs concern only future outputs. Furthermore, continuity prevents a process
from waiting forever before sending some outputs.

Let {s1, . . . , sN} be the set of streams of the network; and let {f1, . . . , fN} be the
set of terms built out of processes such that for each stream si, we have that si =
fi(s1, . . . , sN). If we take S to be equal to the N -tuple [s1, . . . , sN] ∈ AN , then the
network can simply be described as S = F (S) with F : AN −→ AN . It is worth
mentioning that feedback loops, which can be used to model local states, fit naturally
in this description framework.

The denotational semantics of the KPN is the solution of the equation system S =

Dataflow models of computation 15

F (S). Therefore, it is only a matter of computing a least fixed point solution. Since
Kahn processes are continuous over cpos, there is a unique least fixed point solution; i.e.
the network is deterministic. According to the least fixed point theorem for monotone
functions on cpos, the minimum solution of the system can be iteratively computed
by Sj+1 = F (Sj) till stabilization such that S0 consists of the initial streams of the
network.

B Operational semantics

Despite its mathematical beauty, the denotational semantics is not suitable for reasoning
about implementation related aspects such as buffer sizes and potential deadlocks. In
the past decades, several operational semantics of KPNs were given, for instance, in the
form of labeled transition systems [81], I/O automata [133], or concurrent transition
systems [177]. Like it had been proved, the behavior of a KPN according to these
operational semantics corresponds to the least fixed-point solution given by Kahn. This
equivalence is referred to as the Kahn principle.

C Limitations of determinism

A Kahn process network models a functional deterministic system; however, it is widely
accepted that there are many systems that require non-determinism such as resource
management systems. KPNs are unsuitable for handling asynchronous events or dealing
with timing properties. To model such behaviors, one has to extend the model with
additional features that may break the property of determinism.

Non-determinism can be added to KPNs by any of the following methods described
in [118]: (1) allowing a process to test inputs for emptiness; a solution that was adopted
in [69, 136], (2) allowing multi-writer channels and/or multi-reader channels, (3) allow-
ing shared variables; a solution that was used in [107], and (4) allowing a process to be
internally non-deterministic.

The non-deterministic merge is essential for modeling reactive systems. Its behavior
consists in moving tokens whenever they arrive on any of its two inputs to its unique
output. Hence, the output sequence depends on the arrival times of the input tokens.
This merge process is not a Kahn process since it has to be either non-monotone or
unfair [47].

1.2.2 Bounded execution of KPNs

Kahn process networks are deterministic; i.e. the order in which the processes execute,
assuming a fair scheduler, does not affect the final result. Fairness states that in an
infinite execution, a ready process must not be postponed forever. Even if KPNs only
allow modeling of functional deterministic systems, they are a very expressive model.
In fact, they are Turing-complete.

Due to Turing-completeness, some interesting properties of KPNs are undecidable
[48]. For instance, the boundedness of an arbitrary KPN, i.e. whether it can be executed
with bounded internal channels or not, is undecidable. Another undecidable problem is

16 Design and Verification

deadlock-freedom which states that, whatever the input sequences, the KPN will never
deadlock. Indeed, the halting problem of Turing machines, known to be undecidable,
can be reduced to these problems.

The KPN model is not amenable to compile-time scheduling since it is not possible,
in the general case, to decide boundedness in finite time. Thus, it is necessary to resort
to the dynamic scheduling which has infinite time to find a bounded memory solution, if
any. The behavior of a dynamically scheduled network must conform to its denotational
semantics. Authors of [150, 16, 81] have defined some requirements, described below,
for correct schedulers.

A Correctness criteria

A scheduler is correct with respect to Kahn semantics if and only if every execution the
scheduler may produce is sound, complete, and bounded whenever it is possible.

Soundness An execution is sound if and only if the produced tokens are not different
from the formal ones. So, if s is the actual stream produced on a given channel and
s# is the corresponding formal stream predicted by the denotational semantics, then
s ⊑ s#.

Completeness Let s0 ⊑ s1 ⊑ · · · be the partial streams produced by the execution on
a given channel such that any progress is done in finite time. The execution is complete
if and only if s# =

⊔{s0, s1, . . .}.
Boundedness An execution is bounded if and only if the number of accumulated
tokens on each internal channel does not exceed a bound. Following [150], a KPN is
strictly bounded if every complete execution of the network is bounded; it is bounded if
there is at least one bounded execution; and it is unbounded if any execution requires
unbounded memory.

B Boundedness and artificial deadlocks

The assumption about unbounded channels is clearly unrealistic. Real implementations
bound channel capacities and impose blocking write operations; i.e. a process may
block if it attempts to write on a full channel. This limitation of the model does not
impact its determinism. In fact, any arbitrary KPN can be easily transformed into
a strictly bounded network by adding a feedback channel for each internal channel.
Before writing a token to an internal channel, a process must first read one token from
the corresponding feedback channel. Dually, after reading a token from a channel, it
has to write one token on the feedback channel. This way, the size of the channel is
bounded by the number of initial tokens in the feedback channel.

This new operational semantics could introduce artificial deadlocks. This is the case
when a subset of processes are blocked in a deadlock cycle, with at least one process
being blocked on writing to a full channel. Since it is impossible to compute chan-
nel capacities at compile-time, one solution is to dynamically increase capacities when
artificial deadlocks occur. Thus, dynamic scheduling requires run-time detection and

Dataflow models of computation 17

resolution of artificial deadlocks. It has been proved in [81] that an artificial deadlock
cannot be avoided by only changing the scheduling and without increasing some channel
capacities.

The dynamic scheduling strategy proposed by Parks [150] executes the KPN with
initially small channel capacities. If an artificial global deadlock occurs, then the sched-
uler increases the capacity of the smallest channel and continues. Hence, if the KPN
is bounded, then its execution will require a bounded memory. Geilen and Basten [81]
have noticed that the strategy of Parks is not complete because it deals only with global
deadlocks. Indeed, it gives priority to non-terminating execution over bounded execu-
tion, and to bounded execution over complete execution. They proposed therefore a
deadlock resolution algorithm, built upon the notion of chains of dependencies, that
also handles artificial local deadlocks. This scheduling strategy is correct for effective
KPNs where a produced token on an internal channel is ultimately consumed.

C Dynamic scheduling policies

Dynamic scheduling policies can be classified as data-driven policies (i.e. eager execu-
tion), or demand-driven policies (i.e. lazy execution), or a combination of both.

Demand-driven scheduling The activation of a process is delayed until its output is
needed by another process. Kahn and MacQueen described a demand-driven scheduling
technique in [106] where the process responsible of sending the results to the environment
is selected to drive the whole network. Upon an attempt to read from an empty channel,
the consumer blocks and the producer process for that channel is activated. This latter
will be suspended after producing the necessary data, and then the waiting consumer
process will be again activated. In a technique called anticipation, the producer process
may continue producing data on the channel in parallel with the consumer until it
reaches the threshold of the channel called the anticipation coefficient.

Data-driven scheduling A process is activated as soon as sufficient data is available
on its input ports. This policy satisfies the completeness criterion, since processes only
block on reading from empty channels. The data-driven policy may lead to unbounded
accumulation of tokens on internal channels. Pingali and Arvind proved that it is
possible to transform a network so that a data-driven execution of the resulted network is
equivalent to a demand-driven execution of the original one [153, 154]. This implies that
a demand-driven scheduling policy may or may not satisfy the boundedness criterion.

1.2.3 Dataflow process networks

A dataflow process network (DPN) is a graph where nodes are dataflow actors and edges
are FIFO channels. An actor, when it fires, consumes finite number of input tokens and
produces finite number of output tokens. A set of firing rules indicates when the actor is
enabled to fire. This style of dataflow models, introduced by Dennis [70], has influenced
concurrent programming languages and computer architectures for several years.

As shown later, repeated firings of an actor form a particular type of Kahn process
called dataflow process. It is very convenient to break down a process to a sequence of

18 Design and Verification

firings in order to enable efficient implementations and formal analyses. However, the
relation between the Kahn’s denotational semantics and the operational data-driven
semantics of DPNs became clear only after the outstanding work of Lee and Parks
[115, 150, 118].

Mathematically speaking, a dataflow actor with m input and n output channels
consists of a firing function f : Am −→ An and a finite set R of firing rules. A firing
rule is just an m-tuple that is “satisfied” if each sequence of the tuple is a prefix of the
sequence of tokens accumulated in the corresponding input channel. In other words,
it indicates what tokens must be available at the inputs for the actor to be enabled.
The code of the firing function will be executed each time a rule is satisfied, and tokens
will be consumed as specified by that rule. Clearly at most one firing rule should be
satisfied at each time in order to have a deterministic behavior of the actor. Therefore,
for all r, r′ ∈ R, if r 6= r′, then r ⊔ r′ must not exist.

A set of firing rules is said to be sequential if it can be implemented as a sequence
of blocking read operations. Lee and Parks proposed in [118] a simple algorithm to
decide whether a set of firing rules is sequential or not. Sequential firing rules are
a sufficient condition for a dataflow process to be continuous. Despite the fact that
not every set of firing rules which satisfies the above mentioned condition about upper
bounds is sequential, that condition is more restrictive than what is really necessary for
a dataflow to be continuous. A weaker condition (commutative firing rules) is given in
[115] which states that if the upper bound r ⊔ r′ exists, then the order in which these
two rules are used does not matter; i.e. f(r).f(r′) = f(r′).f(r) and r ⊓ r′ = ǫm. Unlike
sequential firing rules, commutative rules enable compositionalilty; in the sense that the
composition of two actors with commutative firing rules is an actor with commutative
firing rules.

Relation to KPNs

Each actor, with a function f and a set of firing rules R, is associated with a functional
F : [Am −→ An] −→ [Am −→ An] such that

∀g ∈ [Am −→ An] : ∀S ∈ Am : F (g)(S) =

{

f(r).g(S′) if ∃r ∈ R : S = r.S′

ǫm otherwise

As proved in [115], F is a continuous and closed function on the CPO ([Am −→
An],⊑) and has therefore a least fixed-point that can be computed iteratively by ∀S ∈
Am : g0(S) = ǫn (g0 is trivially continuous) and gn+1 = F (gn). Clearly, if S = r1.r2. · · · ,
then g0(S) = ǫn, g1(S) = f(r1), g2(S) = f(r1).f(r2), . . . In words, the dataflow process
(i.e. the least fixed-point) is constructed by repeatedly firing the actor. This least
fixed-point is continuous and it is therefore a Kahn process.

1.2.4 Specific dataflow graph models

Due to Turing-completeness of dataflow graphs, their boundedness and static scheduling
are generally undecidable. A bunch of restricted models that trade off expressiveness

Dataflow models of computation 19

for decidability have been developed over the past years. They can be classified into
two main categories: static dataflow graphs [93] and dynamic dataflow graphs [29].

A Static dataflow graphs

Static dataflow models restrict actors so that on each port and at each firing, they pro-
duce and consume a compile-time known number of tokens. These models are amenable
for construction of static schedules (with finite descriptions) that execute the graphs in
bounded memory.

The synchronous dataflow (SDF) model [117] is widely used for embedded systems
design, especially for digital signal processing systems. In SDF, the production (or
consumption) rate of each port is constant; i.e. an actor produces (or consumes) a fixed
number of tokens on each port. If all the rates in the graph are equal to 1, then the
graph is said to be a homogeneous synchronous dataflow (HSDF) graph. HSDF graphs
are equivalent to marked graphs [140] while SDF graphs are equivalent to weighted
marked graphs [187]. Both marked graphs and weighted marked graphs are subclasses
of Petri nets, whose literature provides many useful theoretical results. Computation
graphs [109] are similar to SDF graphs; however, each channel is associated with a
threshold that can be greater than its consumption rate. An actor can fire only if the
number of accumulated tokens on each input channel exceeds its threshold. Cyclo-static
dataflow (CSDF) model [41] is a generalization of SDF where the number of produced
(or consumed) tokens on a port may vary from one firing to another in a cyclic manner.

The SDF model assumes that both the producer and the consumer of a channel
manipulate the same data type. However, in multimedia applications, it is natural
to use composite data types such as video frames so that, for example, a node may
consume or produce only a fraction of the frame each time. In the fractional rate
dataflow (FRDF) model [146], an actor can produce (or consume) a fractional number
of tokens at each firing which leads generally to better buffering requirements compared
to the equivalent SDF graph. The FRDF model gives a statistical interpretation of
a fraction x

y
associated to a given port in case of atomic data types; i.e. the actor

produces (or consumes) x tokens each y firings but without assuming any knowledge
on the number of tokens produced (or consumed) each time. Therefore, the scheduling
algorithm should consider the worst-case scenarios.

More varieties of the SDF model, that tailor the model for specific needs, can be
found in the literature. In the scalable synchronous dataflow model [160], the number
of produced (or consumed) tokens on a given port can be any integer multiple of the
predefined fixed rate of that port. So, all rates of an actor will be scaled by a scale
factor. The static analysis must determine the scale factor of each actor in a way that
compromises between function call overheads and buffer sizes.

B Dynamic dataflow graphs

Some modern applications have production and consumption rates that can vary at run
time in ways that are not statically predictable. Dynamic models provide the required

20 Design and Verification

expressive power, but at cost of giving up powerful static optimization techniques or
guarantees on compile-time bounded scheduling.

Boolean dataflow (BDF) model [48] is an extension of SDF that allows data-dependent
production and consumption rates by adding two control actors called select and switch.
The switch actor consumes one boolean token from its control input and one token from
the data input, and then copies the data token to the first or second output port accord-
ing to the value of the control token. The behavior of the select actor is dual to that of
the switch actor; both of them combined may allow us to build if-then-else constructs
and do-while loops. BDF model is Turing-complete [48]; hence, the questions of bound-
edness and liveness are undecidable. Nevertheless, the static analysis is yet possible for
many practical problems. A variant of the BDF model is the integer-controlled dataflow
(IDF) model [49] in which we can model an actor that consumes an integer token and
then produces a number of tokens equal to that integer.

Scenario aware dataflow (SADF) model [188, 181] extends the SDF model with
scenarios that capture different modes of operation and express hence the dynamism of
modern streaming applications. Production and consumption rates and execution times
of actors may vary from one scenario to another. The SADF model distinguishes data
and control explicitly by using two kinds of actors: kernels for the data processing parts
and detectors to handle dynamic transitions between scenarios. Furthermore, there are
two kinds of channels: control channels which carry scenario-valued tokens and usual
data channels. Detectors contain discrete-time Markov chains to capture occurrences
of scenarios and allow hence for average-case performance analysis.

Parameterized synchronous dataflow (PSDF) [28] and schedulable parametric dataflow
(SPDF) [76] models are examples of parameterized dataflow which is a meta-modeling
approach for integrating dynamic parameters (such as parametric rates) in models that
have a well-defined concept of iteration (e.g. SDF and CSDF). SPDF extends SDF with
parametric rates that may change dynamically and it is therefore necessary to statically
check consistency and liveness for all possible values of the parameters. In addition to
the classical analyses of SDF, we have also to check whether dynamic update of param-
eters is safe in terms of boundedness. This analysis is possible since parameters can be
updated only at the boundaries of (local) iterations.

C Comparison of models

Dataflow models can be compared with each other using three features [179]: expressive-
ness and succinctness, analyzability and implementation efficiency. These features can
be illustrated by the following examples. BDF model is more expressive than the CSDF
model since this latter does not allow modeling of data-dependent dynamic production
and consumption rates. The CSDF, SDF, HSDF models have the same expressiveness;
any behavior that can be modeled with one of them can be modeled with the two other
models. Nevertheless, the resulted graphs have different sizes with CSDF graphs be-
ing the most succinct. Transformation of (C)SDF graphs into equivalent HSDF graphs
use an unfolding process that replicates each actor possibly an exponential number of
times [175, 116, 41]. A transformation of CSDF graphs into SDF graphs such that

Dataflow models of computation 21

each CSDF actor is mapped to a single SDF actor was presented in [152]; however, this
transformation may create deadlocks, covers unnecessary computations, and exposes
less parallelism.

HSDF model is more analyzable than the (C)SDF model in sense that existing
analysis algorithms for HSDF graphs have lower complexities than the corresponding
algorithms for (C)SDF graphs with the same number of nodes. Implementation ef-
ficiency concerns the complexity of the scheduling problem and the code size of the
resulting schedules. For example, scheduling of computation graphs is more complex
than scheduling of SDF graphs because of the threshold constraint on consumption.

1.2.5 Dataflow synchronous model

KPNs and Dataflow process networks are closely related, while dataflow synchronous
models are quite different. There are a bunch of synchronous languages (e.g. SIG-

NAL [92], ESTEREL [24], LUSTRE [95], LUCID SYNCHRONE [54]) dedicated to reactive
systems design that rely on the same assumptions (the synchronous paradigm) [19, 20]:

1. Programs progress via an infinite sequence of reactions. The system is viewed
through the chronology and simultaneity of the observed events, which constitute a logi-
cal time, rather than the chronometric view of the execution progress. The synchronous
hypothesis therefore assumes that computations and communications are instantaneous.
This hypothesis is satisfied as long as a reaction to an input event is fast enough to pro-
duce the output event before the acquisition of the next input events. The synchrony
hypothesis simplifies the system design; however it implies that only bounded KPNs
can be specified (by programming processes that act as bounded buffers).

2. Testing inputs for emptiness is allowed. Hence, decisions can be taken on the
basis of the absence of some events. Synchronous programs can have therefore a non-
deterministic behavior.

3. Parallel composition is given by taking the pairwise conjunction of associated
reactions, whenever they are composable.

A Abstract clocks

The denotational semantics of both untimed models of computation (e.g. KPNs) and
timed models (e.g. dataflow synchronous model) can be expressed in a single denota-
tional framework (“meta-model”): the tagged signal model [119]. The main objectives
of this model is to allow comparison of certain properties of several models of com-
putation, and also to homogenize the terms used in different communities to mean
sometimes significantly different things (e.g. “signal”, “synchronous”). The basic idea of
this framework is to couple streams (or sequences) with a tag system and consider hence
signals instead of untimed streams. The tag system, when specifying a system, should
not mark physical time but should instead reflect ordering introduced by causality. The
tag system presented in this section is tailored to the dataflow synchronous model.

Definition 1.1 (Tag system). A tag system is a complete partial order (T ,⊑). It
provides a discrete time dimension that corresponds to logical instants according to

22 Design and Verification

which the presence and absence of events can be observed.

Definition 1.2 (Events, Signals). An event is a pair (t, a) ∈ T × A such that A is
a value domain. A signal s is a partial function s : C ⇀ A with C a chain in T . It
associates values with totally ordered observation points.

Definition 1.3 (Abstract clock). The abstract clock of a signal s : C ⇀ A is its
domain of definition ŝ = dom(s) ⊆ C.

Usual set operations and comparisons can be naturally applied on clocks. Relations
between clocks can be deduced from the different operations on signals (e.g. merge,
select). The relational synchronous language SIGNAL allows explicit manipulation of
clocks. Table 1.1 shows the essential SIGNAL operators and what relations should relate
clocks. Both the select and merge operators are not Kahn processes. Unlike LUSTRE

and ESTEREL, SIGNAL is a multi-clocked model; i.e. a master clock is not needed in
the system. Therefore, two signals may have totally unrelated abstract clocks; such as
the operands of the merge process.

Construct clock relations semantics
Stepwise extensions

r = f(s1, . . . , sn)
r̂ = ŝ1 = · · · = ŝn ∀t ∈ r̂ : r(t) = f(s1(t), . . . , sn(t))

Delay

r = s$ init a0
r̂ = ŝ

∀t ∈ r̂ : r(t) =
{

a0 if t =
d
r̂

s(t−) otherwise

t− and t are successive tags in r̂
Select

r = swhen b
r̂ = ŝ ∩ {t ∈ b̂|b(t) =
true}

∀t ∈ r̂ : r(t) = s(t)

Merge

r = s1 default s2
r̂ = ŝ1 ∪ ŝ2 ∀t ∈ r̂ : r(t) =

{

s1(t) if t ∈ ŝ1
s2(t) otherwise

Table 1.1: SIGNAL elementary processes

Elementary relations can be combined to produce more sophisticated clock trans-
formations. One important clock transformation is the affine transformation, described
in [168], and used extensively in this thesis. A subclass of affine relations between ab-
stract clocks was used in [79] to address time requirements of streaming applications on
multiprocessor systems on chip.

Definition 1.4 (Affine transformation). An affine transformation of parameters (n, ϕ, d)
applied to the clock ŝ produces a clock r̂ by inserting (n− 1) instants between any two
successive instants of ŝ, and then counting on this fictional set each dth instant, starting
with the (ϕ+ 1)th instant.

B Quasi-synchrony and N-synchronous

Two signals s1 and s2 are said to be synchronous if and only if ŝ1 = ŝ2. Synchronous
dataflow languages provide a type system, called clock calculus, that ensures that a signal

Dataflow models of computation 23

can be assigned only to another signal with the same clock (i.e. buffer-less communi-
cation). This does not however mean that a signal cannot be delayed. Mitigation of
this strong requirement has been the subject of some works motivated by the current
practice in real-time systems development; especially real-time systems that consist of
a set of periodic threads which communicate asynchronously.

Quasi-synchrony is a composition mechanism of periodic threads that tolerates small
drifts between thread’s release (i.e. activation) clocks [53]. If ŝ and r̂ are the activation
clocks of two periodic threads, then their quasi-synchronous composition is such that
between two occurrences of ŝ there are at most two occurrences of r̂, and conversely,
between two occurrences of r̂ there are at most two occurrences of ŝ. This definition
was refined in [96] to enable synchronous occurrences. If t1 and t2 are two successive
tags in ŝ, then |{t ∈ r̂|t1 ❁ t ⊑ t2}| ≤ 2; Conversely, if t1 and t2 are two successive
tags in r̂, then |{t ∈ ŝ|t1 ❁ t ⊑ t2}| ≤ 2. A stream between two quasi-synchronously
composed threads can be no more considered neither as an instantaneous (buffer-less)
communication nor as a bounded FIFO; but rather as a shared variable. Hence, some
values are lost if the sender is faster than the receiver and some values are duplicated
if the receiver is faster than the sender. This non-flow-preserving semantics was taken
further in the Prelude compiler [149] as shown later.

In the N-synchronous paradigm [62], two signals can be assigned to each other as
long as a bounded communication is possible. Hence, the new synchronizability relation
states that two clocks ŝ and r̂ are synchronizable if and only if for all n ∈ N>0, the nth

tags of ŝ and r̂ are at bounded distance. Formally, ∀t′ ∈ ŝ : |{t ∈ ŝ|t ⊑ t′}| − |{t ∈
r̂|t ⊑ t′}| is bounded. This model allows to specify any bounded KPN. Unlike the
quasi-synchronous approach, communications in this model are flow-preserving.

C From synchrony to asynchrony

Although the synchronous hypothesis states that reactions are instantaneous, causality
dependencies dictate in which order signals are evaluated within a reaction. For in-
stance, the presence of a signal must be decided before reading its value. A schizophrenic
cycle is one in which the presence of a signal depends on its value. More dependencies
can be deduced from elementary processes. For example, computing values of s1, . . . , sn
must precede computing value of r = f(s1, . . . , sn). Synchronous languages provide the
necessary tools to check deadlock freedom; that is, there is no cycle in the dependencies
graph.

Desynchronizing a signal to obtain an asynchronous communication consists in get-
ting rid of the tags information and hence preserving only the stream. A synchronous
process may take some decisions based on the absence of a signal; but it can no more
test the emptiness of an input in an asynchronous implementation. The question that
raises naturally is whether it is possible to resynchronize a desynchronized signal. An
endochronous process [19] is a process that can incrementally infer the status (pres-
ence/absence) of all signals from already known and present signals. Therefore, an
endochronous process should have a unique master clock so that all the other clocks are
subsets of it. Endochrony is undecidable in the general case [19]. An endochronous pro-

24 Design and Verification

cess is equivalent to a dataflow process with sequential set of firing rules; and it is hence
a Kahn process. Weak endochrony [157] is a less restrictive condition than endochrony.
A weakly endochronous process is equivalent to a dataflow process with commutative
firing rules. Similarly to composition properties of dataflow actors, the composition
of two endochronous processes is not in general an endochronous process; while the
composition of two weakly endochronous processes results in a weakly endochronous
process.

The compositional property of isochrony ensures that the synchronous composition
of (endochronous) processes is equivalent to their asynchronous composition. It is an
important property for designing globally asynchronous locally synchronous (GALS)
architectures. Roughly speaking, a pair of processes is isochronous if every pair of their
reactions which agree on present common signals also agree on all common signals.

D Lucy-n

Lucy-n [134] is an extension of the synchronous language LUSTRE with an explicit buffer
construct for programming networks of processes communicating through bounded
buffers. The synchronizability relation is the one defined by the N-synchronous paradigm.
Lucy-n provides a clock calculus (defined as an inference type system) which can com-
pute the necessary buffer sizes using a linear approximation of boolean clocks. We
illustrate the semantics of Lucy-n using a simple example (Listing 1.1). The clock of
each signal is denoted by a binary sequence such that 1 represents presence and 0 rep-
resents absence. The clock calculus handles only ultimately periodic clocks which are
denoted syntactically by u(v). The N-synchronous execution is presented in Table 1.2.

Listing 1.1: Example in Lucy-n.

let node example x=y where

rec a=x when (0 1)
and b=x when (1 0 1)
and y= a+ buffer(b)

example

when

when

Since the (+) operator is a stepwise operator, signals a and buffer(b) must have
the same clock 1ω on (0 1)ω. However, this program must be rejected because signal a
and b are not synchronizable (as defined by the N-synchronous paradigm). Indeed, the
difference between the nth tags of â and b̂ are not at a bounded distance when n tends
to infinity. So, the inserted buffer is unbounded.

Table 1.2: N-synchronous execution of Program 1.1.

signal flow clock
x 2 5 1 0 3 2 1 1ω

a = x when (0 1) 5 0 2 1ω on (0 1)ω

b = x when (1 0 1) 2 1 0 2 1 1ω on (1 0 1)ω

buffer(b) 2 1 0 1ω on (0 1)ω

y 7 1 2 1ω on (0 1)ω

Dataflow models of computation 25

E Prelude

Prelude [149] is a real-time programming language build upon the synchronous language
LUSTRE. Listing 1.2 represents a simple example; while Table 1.3 shows its semantics.
The difference between Prelude and the synchronous languages consists mainly in the
two following points.

Listing 1.2: Example in Prelude.

node foo (x: rate(10,0)) returns (y)
var a,b;

let

(y, a) =Add (x, (1 fby b)∗̂2);

b = INC(a/̂2);
tel

foo

IN
C

A
D
D

Table 1.3: Semantics of Program 1.2.

date 0 10 20 30 40 50 60
x 3 2 4 1 0 6 2
a 4 3 9 6 10 16 13
a/̂2 4 9 10 13
b 5 10 11 14

1 fby b 1 5 10 11
(1 fby b)∗̂2 1 1 5 5 10 10 11

Real-time constraints: Real-time constraints represent environmental constraints and
they are specified either on node inputs and outputs (e.g. periods, phases, deadlines)
or on nodes (worst-case execution time). In Listing 1.2, signal x has a period of 10
and a first start time equals to zero. This implies that task ADD is a periodic task
with a period equal to 10. The compiler checks the consistency of real-time constraints
(e.g. inputs and outputs of a node have the same period) and earliest-deadline first
schedulability of the specification.

Communication patterns: Rate transition operators (e.g. ∗̂, /̂) handle transition be-
tween nodes of different rates and hence enable the definition of user-provided commu-
nication patterns. For example, in Listing 1.2, flow a is under-sampled using operator
/̂2; which implies that node ADD is twice as fast as node INC. As in quasi-synchrony,
communication is non-flow-preserving; i.e. when the producer is faster than the con-
sumer, an adapter is added allowing some produced tokens to not be buffered; and
when the consumer is faster, an adapter is added to allow for reading the same value
several times. Furthermore, communications are deterministic (i.e. not affected by the
earliest-deadline first scheduling policy and preemption). To realize this objective some
deadlines are adjusted to enforce some precedences between jobs.

26 Design and Verification

1.3 Static analysis of (C|H)SDF graphs

The HSDF, SDF, and CSDF models have been used as the underlying models of several
Digital Signal Processing (DSP) programming environments, since they combine good
levels of analyzability and expressivity. Indeed, properties such as boundedness and
liveness are decidable. Furthermore, static-periodic scheduling of (C|H)SDF graphs
has been the subject of an enormous number of works that have addressed the problem
with respect to different non-functional constraints: throughput, buffering, latency, code
size, etc. The proposed analyses abstract from the actual values of data that are being
communicated, and focus only on the non-functional properties such as the distribution
of tokens over channels. This section presents some existing analyses; and it is by no
means a complete in-depth survey.

Definition 1.5 (Static dataflow graph). A static dataflow graph is a directed graph
G = (P,E) consisting of a finite set of actors P = {p1, . . . , pN} and a finite set of one-
to-one edges (or channels) E. A channel e = (pi, pk, x, y) ∈ E connects the producer pi
to the consumer pk such that the production (resp. consumption) rate is given by the
infinite integer sequence x ∈ Nω (resp. y ∈ Nω). For instance, the jth firing of actor pi
(denoted by pi[j]) writes x(j) tokens on channel e.

(H|C)SDF graphs are specific cases of static dataflow graphs. Each rate function
x is a constant sequence (i.e. x = aω with a ∈ N>0) in the SDF model, a periodic
sequence (i.e. x = vω with v ∈ N∗ and ‖v‖ > 0) in the CSDF model, and equals to 1
(i.e. x = 1ω) in the HSDF model. Figure 1.1 shows a SDF graph, and its transformation
into an equivalent HSDF graph, where a black dot on an edge represents an initial token
in the channel.

(a) (b)

Figure 1.1: Example of (a) a cyclic SDF graph, and (b) its equivalent HSDF graph.

1.3.1 Reachability analysis

Since SDF graphs are equivalent to weighted marked graphs, many techniques from the
Petri nets literature can be used to analyze them. A marking M (or channels state)
is denoted by a vector whose ith component M(i) represents the number of tokens in

Static analysis of (C|H)SDF graphs 27

channel ei. The initial marking M0 contains for each channel e its number of initial
tokens θ(e). Figure 1.2 represents the reachability graph of the SDF example (Figure
1.1(a)) where states are markings and transitions are actor firings. The SDF example
is strictly bounded since its reachability graph is finite. However, if we delete channel
e1, then the reachability graph is infinite since actor p1 is always enabled. This implies
that the new SDF graph is not strictly bounded; but it is bounded since there exists at
least one complete execution with bounded channels.

A dataflow graph is live if it has executions in which all actors are fired infinitely.
An immediate result of the functional determinism of CSDF graphs (i.e. the scheduling
order does not affect the results) is that if one execution deadlocks then all executions
deadlock [84]. The reachability graph in Figure 1.2 is deadlock-free (i.e. ∀M : ∃pi ∈ P :
pi is firable at M) and live (i.e. ∀pi : ∀M : ∃M ′ : the firing sequence that transforms M
into M ′ contains pi). If θ(e2) = 1, then the SDF graph is not live because [0 1 1]T

p3−→
[2 1 0]T

deadlock−→ .

Figure 1.2: Reachability graph of the SDF example.

A Consistency

If a dataflow graph is not consistent, then its execution requires unbounded channels
or unbounded number of initial tokens to not deadlock. Only consistent graphs are of
interest in this thesis. Consistency is a structural property that can be verified efficiently
[17, 117, 41]. A (C|H)SDF graph can be described by a |E| × |P | topology matrix Γ

such that ∀ej = (pi, pk, v
ω
1 , v

ω
2) : Γj,i =

‖v1‖
|v1| ,Γj,k = −‖v2‖

|v2| , and Γj,l = 0 for any other
actor pl.

For a graph to be consistent, a positive non-null integer solution of the balance
equation (Equation 1.1) must exist.

Γ~r = ~0 (1.1)

The minimal solution is called the repetition vector which determines the relative firing
frequencies of actors. The repetition vector of the SDF graph in Figure 1.1 is equal to
[2 1 3]T.

The balance equation can be easily explained as follows. Let |σ|i be the number of
firings of actor pi during a complete execution σ. The total number of produced tokens

28 Design and Verification

on channel e = (pi, pk, v
ω
1 , v

ω
2) converges to ‖v1‖

|v1| |σ|i while the number of consumed

tokens converges to ‖v2‖
|v2| |σ|k. A necessary condition for e to be bounded is that

|σ|i
|σ|k

=
‖v2‖
|v2|

|v1|
‖v1‖

=
~r(i)

~r(k)

Equation 1.1 ensures that cycles can satisfy this constraint. Any dataflow graph without
undirected cycles is consistent.

B Graph iteration

An iteration is a sequence of actor firings that returns the graph into its initial marking.
The firing sequence must contain k~r(i) firings of each actor pi with k ∈ N>0. Repeating
the iteration infinitely results in a bounded and complete execution. For the reachabil-
ity graph in Figure 1.2, the periodic sequence (p2 p3 p3 p3 p1 p1)

ω is such a bounded
execution. Not all bounded executions should be periodic. Indeed, the language recog-
nized by the reachability graph in Figure 1.2 (considered as a Büchi automaton) is not
periodic.

The balance equation is a necessary but not sufficient condition for the existence
of an iteration. In fact, an iteration that returns the graph to its initial marking
may not exist. That depends essentially on the initial marking. If the graph is live
and consistent, then an iteration always exists [84]. One simple solution to test the
existence of an iteration is through simulated execution that consists in constructing
the reachability graph [117]. A second solution is to check that all maximal strongly
connected components are deadlock-free [84]. The third solution consists in checking
that the equivalent HSDF graph of any directed cycle in the CSDF graph is live [41]. A
necessary and sufficient condition for a single-rate (i.e. HSDF) graph to be live is that
every directed cycle in it contains at least one initial token.

A sufficient and necessary condition for a cycle to be deadlock-free was presented
for computation graphs in [109], and adapted for SDF graphs in [141]. A cycle {e2 =
(p1, p2, a

ω
1 , b

ω
2), . . . , e1 = (pn, p1, a

ω
n , b

ω
1)} deadlocks if and only if the following integer

program has a non-negative integer solution.

Γ~x ≤ ~B

where Γ is the topology matrix of the cycle and ~B is the vector such that ~B(i) =
bi− θ(ei)−1. Assume that there is a non-negative integer solution ~x0. After firing each
actor pi as many times as indicated by ~x0(i), the number of tokens in channel ei will
be less or equal to θ(ei) + ~B(i) = bi − 1. This is a deadlocked state.

In the periodic schedule (p2 p3 p3 p3 p1 p1)
ω, three instances of actor p3 are enabled

at the same time. Therefore, if there are enough processing units, the three firings can
be executed in parallel. This behavior is called auto-concurrency. To constrain the
auto-concurrency of an actor p such that at most b firings of actor p can execute in
parallel, we need to add a single-rate self-loop e = (p, p, 1ω, 1ω) such that θ(e) = b. In
Figure 1.1, auto-concurrency of actors p1 and p3 is disabled in the HSDF graph.

Static analysis of (C|H)SDF graphs 29

As described for KPNs, to constrain the size of a channel e = (pi, pk, x, y) to be
less than or equal to b, we may add a feedback channel e′ = (pk, pi, y, x) such that
θ(e) + θ(e′) = b. This way, any bounded graph can be transformed to a strongly
connected graph.

A static-order schedule [141] is an infinite sequence of actor firings such that actors
in the sequence are fired one after one without overlapping. If the firing sequence is
periodic, then the schedule is called a static-periodic schedule (or a cyclic executive).

1.3.2 Timing analysis

In a timed dataflow graph, each actor pi is associated with a (constant or periodic)
worst-case execution time sequence ηi ∈ Nω such that ηi(j) is the worst-case execution
time of firing pi[j]. As shown in Figure 1.1, worst-case execution times are denoted
inside the nodes. When it is needed, a single worst-case execution time of actor pi is
taken as Ci = max

j
ηi(j).

One important operational semantics, especially to analyze timing properties, is
the self-timed execution [175] which can be described formally in terms of a labeled
transition system as proposed in [179, 85].

Definition 1.6 (Self-timed execution). An actor is enabled if there are enough tokens
on its input channels. In a self-timed execution, an actor fires as soon as it is enabled.

Figure 1.3 depicts the self-timed execution of the SDF example. At time 10, one
instance of p2 ends leading to channel state [0 0 3]T and hence three instances of actor
p3 start their executions. As illustrated in Figure 1.3 and proved in [85], the state-space
of the self-timed execution of a consistent and strongly connected SDF graph consists
of a transient phase followed by a periodic phase.

Self-timed boundedness does not coincide with the general notion of (strict) bound-
edness [84] since self-timed executions are a subset of all the possible executions. All
self-timed bounded graphs are bounded but not necessarily strictly bounded; and not
all bounded graphs are self-timed bounded.

time

periodphase

Figure 1.3: Self-timed execution of the SDF example.

A Throughput analysis

One of the most primordial performance metrics of DSP and real-time multimedia
applications is throughput. The throughput of an actor p in an execution σ is defined

30 Design and Verification

as the average number of firings of p in σ per unit of time; and it is denoted by Θ(p, σ).
The maximum throughput of an actor p is obtained by the self-timed execution; and it
is denoted simply by Θ(p). The self-timed throughput of an actor in a consistent and
strongly connected CSDF graph is bounded; However, if an actor is always enabled, then
its self-timed throughput tends to infinity. The self-timed throughput of a consistent
and strongly connected graph G is defined as Θ(G) = Θ(pi)

~r(i) for an arbitrary pi ∈ P .
Throughput analysis has been proposed in the literature either as a (symbolic)

state-space exploration [85, 84] or as a maximum cycle mean analysis [175]. In the first
approach, the self-timed throughput is computed from the periodic phase of the self-
timed execution constructed by a simulated execution. In the second approach, and as
proved in [175], the self-timed throughput of the graph is equal to 1 over the maximum
cycle mean (MCM) of the equivalent HSDF graph. The MCM of a HSDF graph G,
assuming that ηi is a constant sequence for all pi ∈ P , is defined as

MCM(G) = max
cycle C∈G

∑

pi∈P
Ci

∑

e∈C
θ(e)

Efficient algorithms for computing MCM have been proposed in the literature [108,
64]. However, transforming a CSDF graph into a HSDF graph can result in an expo-
nential number of actors compared with the original graph. Because of this, and as
illustrated by experimental evaluations [85], state-space exploration approach outper-
forms the MCM-based approach.

Reduction techniques [80] may help to obtain smaller and hence more analyzable
HSDF graphs. One proposed technique is to abstract a (H)SDF graph G with a smaller
one G′ where actors with identical firing rates are ordered and represented as a single
actor. Authors proved that, following their transformation rules, the resulted graph
G′ will have a conservative throughput; i.e. Θ(G′) ≤ Θ(G). A second technique was
a new transformation algorithm of SDF graphs into HSDF graphs that produces not
necessarily an equivalent image but only a conservative one. This technique relies on a
symbolic state-space exploration (a Max-Plus model) limited to the phase and a period
of the self-timed execution. The resulted graph is at most quadratic in the number of
initial tokens in the original graph.

As shown in [85, 68], the state-space exploration can be characterized by a Max-
Plus algebra [7]. Let ti[j] be the start time of the jth firing of actor pi. In Max-Plus
algebra, ti[j] is expressed in terms of the start times of some preceding firings by means
of two operators: the maximum ⊕ (used in the role of addition) and the ordinary
addition ⊗ (used in the role of multiplication). For the HSDF example (Figure 1.1(b)),
t1,1[j] = (t1,2[j − 1]⊕ 10)⊕ (t3,1[j]⊗ 20)⊕ (t3,2[j]⊗ 20). The max-plus time system of
a SDF graph can be constructed without transforming the graph into an HSDF graph
(see [68] for details). The set of sum-of-products equations can be encoded as a matrix
equation

~tj = A~tj−1

Vector ~tj describes the start times of the jth firings of all actors; i.e. ∀pi : ~tj(i) = ti[j].

Static analysis of (C|H)SDF graphs 31

If ~t0 encodes the initial state, then ~tj = Aj~t0 describes the progress of the self-timed
execution over time. The eigenvalue λ (i.e. the solution of equation A~t = λ⊗~t) equals
the MCM of the graph; and thus the throughput of the graph is equal to 1

λ
.

A parametric throughput analysis of SDF graphs is presented in [83] where actors’
execution times can be parameters. The throughput is hence computed as function
of the parameters. Recalculation of throughput is then simply an evaluation of this
function for specific parameter values. This parametric analysis could be useful at
design time to avoid recalculation of the throughput for each different configuration.

B Throughput in multiprocessor scheduling

The self-timed execution, under which a maximal throughput can be obtained, assumes
that there is an unlimited number of processing units. Multiprocessor scheduling of
dataflow graphs assumes a fixed number of processing units. It can be either dynamic
or static [114, 175]. The partitioned static-order scheduling problem of dataflow graphs
consists in statically (and permanently) mapping actors onto a fixed number of pro-
cessors {A1, . . . , AM} (the allocation step), constructing a static-order schedule of each
partition Ai (the scheduling step), and determining exactly when each actor fires such
that all data precedence constraints are met (across processors). This problem has been
extensively studied in the two past decades from multiple angles of view. Throughput
maximization was one of the most important optimization criteria. Existing solutions
either transform the graph into a HSDF graph [175, 176, 139] or compute mapping and
scheduling directly on (C)SDF graphs [183, 42].

The achieved throughput depends on both allocation and scheduling. In most ap-
proaches the two steps are performed separately as a bin-packing heuristic due to the
NP-hardness of the scheduling problem. Firstly, the actors are ordered according to
some criterion. In [183], actors are ordered according to their impact on the through-
put of the graph. As described before, the throughput of the graph is limited by its
critical path. To avoid graph transformation and MCM analysis, authors proposed an
approximate cost function to estimate the criticality of an actor pi.

cost(pi) = max
Cycle C|pi∈C

∑

pk∈C
~r(k) . avg(ηk)

∑

e∈C
θ(e)/ẽ

avg(ηk) is the average execution time of actor pk on different processing units. For
a channel e = (p, q, x, vω), value ẽ is equal to ‖v‖

|v| . After ordering the actors, the
second step in the heuristic consists in binding actors, one after another, to processors
according to some objective function. In [183, 139], the objective was to balance the
load of partitions. The load of a partition is estimated by the processor, memory, and
connection utilizations. Actors are then assigned to partitions with a first fit or best fit
strategy to achieve the desired objective.

32 Design and Verification

C Retiming technique

Besides the graph topology and execution times, the initial delay distribution may
limit the throughput. Retiming is a graph transformation technique for performance
optimization (e.g. throughput maximization, minimizing memory usage, decreasing
power consumption, etc.) that redistributes the delays and does not affect neither the
topology nor the functionality of the graph [128, 199, 198, 191, 148, 122].

Figure 1.4(a) shows the SDF example with a different initial delay distribution
(θ(e1) = 4, θ(e2) = 0, and θ(e3) = 2). We impose that during each period of the self-
timed execution, every actor pi fires only ~r(i) times (we can model this constraint by
adding a fictional actor as illustrated in Figure 1.4(a)). As can be deduced from the
self-timed execution (Figure 1.4(c)), the self-timed throughput is equal to 1

60 . After
retiming the graph (θ(e1) = 0, θ(e2) = 2, and θ(e3) = 1), the new self-timed throughput
is equal to 1

40 (Figure 1.4(b)).

(a) CSDF graph

time
period

(b) Self-timed execution after retiming. Θ(G) = 1/40.

timeperiod

(c) Self-timed execution. Θ(G) = 1/60.

Figure 1.4: Retiming of a SDF graph.

Let G be a consistent and live SDF graph and ~z : P −→ Z be a transformation vector
such that the new retimed graph is obtained by firing each actor pi in the original graph
~z(i) times. Hence, for very channel e = (pi, pk, v

ω
1 , v

ω
2), the new number of initial tokens

is θ′(e) = θ(e) + ‖v1‖~z(i)− ‖v2‖~z(k). The retiming vector in the previous example was
[2 0 1]T. A retiming is legal if it results in nonnegative delay distribution. The retimed
graph will be then bounded and live. Most solutions search for an optimal legal retiming
or a feasible one that satisfies some throughput constraints.

D Latency analysis

Another useful performance metric of interactive concurrent real-time applications is
latency. Latency was defined in [175] for HSDF graphs and consistently generalized in

Static analysis of (C|H)SDF graphs 33

[86] to SDF graphs. It is measured for two actors pi and pk that are usually considered
as the input and output of the system. To measure the latency, two fictional actors p0
and pN+1 will be added to the graph such that in each iteration of the graph (according
to the repetition vector) these two actors fire only once (i.e. ~r(0) = ~r(N + 1) = 1).
The fictional actors have null execution times (i.e. η0 = ηN+1 = 0ω) in order to not
affect the timing analysis. Two channels are added to the graph: e = (p0, pi, ~r(i)

ω, 1ω)
and e′ = (pk, pN+1, 1

ω, ~r(k)ω) with θ(e) = θ(e′) = 0. The κ(j)th firing of pN+1 is
the firing that consumes some tokens whose construction involves the reading of some
tokens produced by the jth firing of actor p0. Hence, the latency of actors pi and pk in
an execution σ is given as

Lσi,k = max
j∈N>0

{tN+1[κ(j)]− t0[j]}

where ti[j] is the start time of firing pi[j]. The minimal latency is obtained by the
self-timed execution. However, due to resource constraints, the self-timed execution
could not be possible. The worst minimal achievable latency is obtained for a single
processor.

1.3.3 Memory analysis

Memory analysis concerns the minimization of both code size and channel sizes. Memory
constraints are strong non-functional requirements since the amount of on-chip memory
in embedded systems is severely limited due to several constraints (e.g. cost, power
consumption, speed penalties, etc.).

A Code size minimization

Automatic code generation is an essential feature of any dataflow-based design environ-
ment. One widely used code generation strategy in single-processor scheduling is called
threading which inlines the code of actors in a static-periodic schedule. One objective of
such strategy is to minimize the resulted code size by using loops as efficient as possible.
For the schedule (p2 p3 p3 p3 p1 p1)

ω of the SDF example, the generated code is shown
in Listing 1.3.

Listing 1.3: Software synthesis from the SDF example.

while(true) do{

code of p2
for(i=0;i<3;i++){ code of p3 }

for(i=0;i<2;i++){ code of p1 }

}

As shown in the reachability graph of the SDF example, there is an infinite number
of static-periodic schedules that may have different code sizes. Periodic schedules that
can be described with a regular expression in which each actor appears only once, and
hence have a minimal size, are called single appearance schedules [30, 33]. The previous

34 Design and Verification

example is a single appearance schedule that can be described with (p2(p3)
3(p1)

2)ω. As
has been proved, every consistent acyclic SDF graph has at least one single appearance
schedule. More results can be found in [32, 17, 31]. For instance, a SDF graph has
a single appearance schedule if and only if each strongly connected component has a
single appearance schedule. Furthermore, a consistent strongly connected SDF graph
has a single appearance schedule if and only if all its strongly connected subgraphs are
loosely interdependent. As an illustration, the SDF example is loosely interdependent
because it can be partitioned into two subsets A = {p2} and B = {p1, p3} such that
actors in subset A can fire, as many times as indicated by the repetition vector, before
any firing of actors in subset B. If the delay distribution is such that ∀i : θ(ei) = 1, then
the SDF example is not loosely interdependent; a single appearance schedule does not
hence exist. Since a graph may have multiple single appearance schedules, selecting the
one with the least buffering requirements was the choice of most solutions [143, 145].

B Buffer minimization

Minimizing buffer storage capacity has been the subject of several heuristics and exact
approaches in the last two decades. It consists in finding the smallest buffering require-
ments that allow for a complete execution. The buffer minimization problem is known
to be NP-complete [17, 141] by reduction of the Feedback arc set problem to buffer
minimization in HSDF graphs.

If channels are implemented as separated storage spaces (i.e. empty space in one
channel cannot be used to store tokens of other channels), then the buffer minimization
problem consists in finding a schedule that minimizes

∑

e∈E
̥(e)max

t
{θt(e)} where θt(e) is

the number of tokens in channel e at time t and ̥(e) is the size of a token (deduced from
the data type). From the reachability graph of the SDF example and assuming that all
tokens in the graph have the same size, the periodic schedule (p3 p2 p3 p1 p3 p1)

ω results
in the smallest buffer size distribution [4 2 3]T. This distribution is indeed minimal
because the lower bound of the size of a channel e = (pi, pk, a

ω, bω) in a SDF graph
that can be achieved by any valid schedule is given in [141] by a+ b− gcd(a, b) + θ(e)
mod gcd(a, b) if 0 ≤ θ(e) ≤ a+ b−gcd(a, b), and by θ(e) otherwise. This first variation
of the buffer minimization problem is considered, for instance, in [132, 91, 63, 1].

If memory is shared between buffers (i.e. all buffers share a single storage space),
then the buffer minimization problem consists in finding the schedule that minimizes
max
t
{∑
e∈E

̥(e)θt(e)}. Unlike the previous variation, this latter approach, considered in

[142], must take into account the lifetime of tokens. Hybrid methods may combine the
two variations as proposed in [147, 82]. In case the smallest buffer size distribution
is not unique, scheduling algorithms choose either the distribution with the highest
throughput or the one with the smallest code size.

Another variation of the buffer minimization problem is to minimize the buffering re-
quirements while satisfying a throughput constraint [194, 195, 18]. Indeed, the schedule
with minimal buffer sizes may have a throughput that does not satisfy timing con-
straints. Figure 1.5 shows, for each total amount of buffering requirements, the buffer

Real-time scheduling 35

size distribution that gives the highest self-timed throughput. For example, if the total
storage space is constrained to be at most 10, then there are two buffer size distributions
([5 2 3]T and [4 2 4]T) which achieve the best self-timed throughput (0.014). Since the
SDF example is strictly bounded, the maximal throughput that can be achieved with
a bounded storage distribution is the one computed by the MCM analysis. The set of
all trade-offs between the distribution size and the throughput is called the Pareto space
of throughput and storage trade-offs. A technique that compute either the exact or the
approximate Pareto space of (C)SDF graphs was presented in [184, 180].

Storage distribution size

T
h

ro
u

g
h

p
u

t

Figure 1.5: Pareto space of the SDF example.

1.4 Real-time scheduling

The inflexibility and difficult maintainability of systems scheduled by cyclic executives
(i.e. static-order schedules) led to the development of new real-time scheduling theories
such as priority-driven scheduling theory. Much effort has been devoted to identify
models of systems, such as the periodic task system model of Lui and Layland [127],
from the requirements encountered in the development of real-time systems. Besides
models, many theoretical results have been established to predict before the costly
implementation phase whether the system will meet its timing requirements even in the
worst-case scenarios.

Current models are much mature and general [165, 66, 51, 74]; they consist of
periodic, sporadic, and aperiodic tasks (i.e. threads) with implicit deadlines (deadlines
equal to periods), constrained deadlines (deadlines less than or equal to periods), or
arbitrary deadlines. More requirements are considered such as jitters, resource access
protocols, precedence constraints, etc. However, some models are well understood than
others. For instance, aperiodic tasks are less predictable than periodic and sporadic
tasks. In this section, we will consider a restricted but yet expressive task model that
corresponds to our needs for a priority-driven scheduling of dataflow graphs.

36 Design and Verification

1.4.1 System models and terminology

A real-time system comprises a set of N tasks (a task set) P = {p1, p2, . . . , pN}, each
task consists of an infinite or finite sequence of jobs (invocations, activations, or re-
quests). The jth job of task pi is denoted by pi[j]. A job executes in a sequential
fashion and does not self-suspend. In addition, auto-concurrency is not allowed and
tasks are independent and do not share any resources (except the processors of course)
unless it is stated otherwise. A run-time scheduler (dispatcher or operating system)
controls which job is executing at a given moment on a given processor.

Timing constraints are of a particular interest in real-time computing. In the pre-
sented model of computation, timing constraints are expressed in terms of deadlines. If
Ri[j] is the release (or arrival) time of job pi[j] and di is the relative deadline of task pi,
then job pi[j] meets its timing constraint if its execution completes before the absolute
deadline Di[j] = Ri[j] + di. As we mentioned before, deadlines can be either hard or
soft.

Scheduling theory generally assumes three kinds of tasks, characterized by the arrival
pattern of their jobs.

• Periodic tasks. Jobs of a periodic task pi arrive at fixed intervals; i.e. ∀j ∈ N>0 :
Ri[j+1] = Ri[j]+πi. The constant πi is called the period of the task. This arrival
pattern is thus time-driven. A periodic task pi is characterized by a worst-case
execution time Ci, a hard deadline di, and a first release time (called phase or
offset) ri = Ri[1].

• Aperiodic tasks. Jobs of an aperiodic task arrive randomly, usually in response to
some external triggering event. This arrival pattern is thus event-driven. Besides
having unknown interarrival time of requests, aperiodic tasks have unknown (or
extremely large) worst-case execution times. Due to this unpredictability, aperi-
odic tasks can have only soft deadlines.

• Sporadic tasks. A sporadic task pi has a fixed minimum interarrival time πi; i.e.
∀j ∈ N>0 : Ri[j + 1] ≥ Ri[j] + πi. The worst-case behavior is usually considered
when analyzing sporadic tasks. Hence, they can be considered just as periodic
tasks.

A periodic task set, whose all tasks are periodic, can be classified either as synchronous
or asynchronous. A task set is synchronous if there is some point in time at which all
tasks arrive simultaneously (i.e. ∃t : ∀pi ∈ P : ∃j ∈ N>0 : Ri[j] = t); and asynchronous
otherwise. Furthermore, it can be classified as an implicit task set (∀pi ∈ P : di = πi), as
a constrained task set (∀pi ∈ P : di ≤ πi) , or as an arbitrary task set (∀pi ∈ P : di ≶ πi).
A task set is also characterized by its utilization U =

∑

pi∈P
Ui with Ui =

Ci
πi

, its density

µ =
∑

pi∈P
µi with µi =

Ci
min{di,πi} , and its hyperperiod H = lcm{πi|pi ∈ P}.

A task set is said to be feasible w.r.t. a given system if there is a scheduling algorithm
under which all the possible sequences of jobs that may be generated by the task set
are scheduled on that system without missing any deadline. A scheduling algorithm is

Real-time scheduling 37

said to be optimal w.r.t. a system and a task model if it can schedule any feasible task
set that conforms to the task model.

A task set is said to be schedulable according to a given scheduling algorithm if all
its tasks do never miss their deadlines under that algorithm. If all the task sets that are
qualified as schedulable by a schedulability test w.r.t. a scheduling algorithm are in fact
schedulable, then the schedulability test is said to be sufficient. If all the task sets that
are deemed unschedulable by the test are in fact unschedulable, then the test is referred
to as necessary. An exact schedulability test is one that is sufficient and necessary.

For implicit-deadline periodic task sets, the utilization bound (UB) UA of a scheduling
algorithm A is defined as the minimum utilization of any task set that is only just A-
schedulable; i.e. any task set with U ≤ UA is A-schedulable.

A Uniprocessor scheduling algorithms

The scheduling algorithm selects, at each decision instant, a single job among all the
active jobs which are waiting for the processor in order to start or continue their exe-
cutions. If there is no active job, the processor is said to be idle. Most of scheduling
algorithms do not idle the processor unless there is no active jobs; they are called
work-conserving algorithms. One of the most important class of dynamic scheduling al-
gorithms is the class of priority-driven scheduling policies. In priority-driven scheduling,
each job pi[j] is assigned a priority ωi[j] ∈ N>0 according to some policy with 1 being
the highest priority. At each decision instant, the scheduler chooses the active job with
highest priority to execute.

Based on the set of instants at which a scheduler must select an active job, algorithms
can be classified as preemptive, nonpreemptive, or cooperative.

• Preemptive. Tasks can be preempted by a higher priority task at any time. Hence,
schedule decisions are taken when jobs complete, or when jobs arrive.

• Nonpreemptive. Once a task starts executing, it cannot be preempted. Hence,
schedule decisions are taken when jobs complete, or when one or more new jobs
arrive while the processor is idle.

• Cooperative. Tasks can only be preempted at specific points within their execution.

In the sequel, all the presented algorithms are fully-preemptive. Based on the pri-
ority assignment strategy, scheduling algorithms can be furthermore classified as fixed-
priority or dynamic-priority.

Fixed-priority scheduling In FP scheduling, all jobs of a task pi have the same fixed
priority wi. Priorities are assigned to tasks at compile-time and do not change once the
application starts executing. Priorities can be assigned arbitrarily by the designer, or
according to some priority assignment policy. Two well-known priority assignment poli-
cies are the Rate Monotonic (RM) policy [127, 46] and the Deadline Monotonic (DM)

38 Design and Verification

policy [124]. In RM policy, tasks with shorter periods are associated with higher pri-
orities; while in DM policy, tasks with shorter deadlines are assigned higher priorities.
Clearly, for an implicit-deadline task set, the DM policy reduces to the RM policy.

For synchronous constrained periodic task sets, the DM policy is proven to be op-
timal [127, 124] among all FP assignments. The complexity of ordering tasks accord-
ing to DM policy is equal to O(N log2N). The DM policy is however not optimal
for asynchronous task sets [124]. The optimal priority assignment policy for asyn-
chronous constrained periodic task sets was proposed in [4] and it has a complexity of
O(E(N2 + N)/2) where E represents the (non-polynomial) complexity of the schedu-
lability test.

Dynamic-priority scheduling In dynamic-priority scheduling, algorithms deter-
mine the priorities of each task at run-time. Two well-known methods of dynamic
priority assignment are the Earliest Deadline First (EDF) policy [127] and the Least Laxity
First (LLF) policy [138]. In EDF policy, the job with the earliest absolute deadline
among all active jobs is given the highest priority; while in LLF policy, the job with
the smallest laxity among all active jobs is given the highest priority. The laxity of a
job is the difference between its upcoming deadline and its (estimated) remaining com-
putation time. Both EDF and LLF are proved to be optimal; however LLF has more
context switching overhead than EDF. For this reason, most of the proposed theoretical
results concern the EDF policy.

B Multiprocessor scheduling algorithms

Multiprocessor scheduling is a much more difficult problem than uniprocessor scheduling
and only few of the results obtained for a single processor can be directly generalized
to the multiple processor case. Multiprocessor systems can be classified into three
categories [66]:

• Homogeneous. The system comprises M identical processors. A task has hence the
same rate of execution on all processors. The presented algorithms in this section
are tailored to this architecture unless it is stated otherwise.

• Uniform. Processors may have different speeds. Hence, a processor of speed 2 will
execute all tasks at exactly twice the rate of a processor of speed 1.

• Heterogeneous. Processors are different. Some tasks may not be able to execute
on some processors. Hence, the rate of execution of a task depends both on the
processor and the task.

Besides the priority assignment problem described for uniprocessor scheduling, mul-
tiprocessor scheduling has to solve an allocation problem: on which processor a task
should execute at each instant. As a result of preemption, a task may migrate from one
processor to another. Based on migration, scheduling algorithms can be classified as:

Real-time scheduling 39

• Partitioned. Each task is permanently allocated to a processor and no migration
is permitted. Partitioned algorithms are hence not work-conserving; a processor
can be idle while some active tasks are waiting for another processor.

• Global. A single job can migrate to and execute on different processors.

The current state of the art favors the partitioned scheduling over the global one
for the following advantages of partitioned scheduling: (1) There is no penalty in terms
of migration cost. (2) A task that overruns its time budget can only affect other tasks
on the same processor. (3) Once an allocation of tasks has been achieved, well-mature
scheduling techniques for uniprocessor systems can be used. The main drawback of
partitioned scheduling is that the allocation problem is analogous to the bin packing
problem which is known to be NP-hard. As stated for the multiprocessor static schedul-
ing of dataflow graphs, most of solutions use some bin packing heuristics such as first
fit, next fit, best fit, and worst fit. Besides this reason, the recent advancement in mul-
tiprocessor technology that reduces the migration penalties has rekindled the interest
in global scheduling.

1.4.2 EDF schedulability analysis

This section reviews some existing EDF schedulability tests that will be used in this
thesis. In the sequel, we will focus more on periodic task sets with implicit or constrained
deadlines. One of the outstanding results about EDF it is its optimality for uniprocessor
systems. Unfortunately, EDF scheduling is not optimal for multiprocessor systems.

A Uniprocessor scheduling

Liu and Layland [127] proved that an implicit-deadline periodic task set is schedulable
if and only if

U ≤ 1 (1.2)

The UB of the EDF policy UEDF is hence equal to 1. This is an exact test that has
a complexity of O(N). For arbitrary periodic task sets, the previous test is only a
necessary test; while µ ≤ 1 is only a sufficient condition [131]. Devi [71] proposed a
sufficient schedulability test of arbitrary periodic task sets. Assuming that the task set
{p1, . . . , pN} is arranged in order of non-decreasing relative deadlines, the task set is
EDF-schedulable if

∀1 ≤ k ≤ N :

k
∑

i=1

Ui +
1

dk

k
∑

i=1

(

πi −min{πi, di}
πi

)

.Ci ≤ 1 (1.3)

This test is better than the density condition, but has a complexity of O(N logN)
because it requires sorted task sets. An improved sufficient test that has a complexity
of O(N2) was presented in [137].

Exact schedulability analysis of constrained periodic task sets is known to be Co-
NP-hard [73]. In [123], it was noted that a periodic task set is schedulable if and only

40 Design and Verification

if all absolute deadlines in the interval [0, L] are met where L = max
pi∈P
{ri} + 2H (recall

that H is the hyperperiod). The upper bound L is called a feasibility bound. This exact
test has however an exponential complexity.

A pseudo-polynomial-time algorithm based on the processor demand function has
been proposed for constrained periodic task systems. The processor demand function
for a task pi is a function on time interval [t1, t2] that gives the amount of computation
needed by all jobs of pi that have both their arrival time and their deadlines within the
interval [t1, t2]; i.e. hi(t1, t2) =

∑

Ri[j]≥t1∧Di[j]≤t2
Ci. The processor demand of the entire

task system is hence equal to h(t1, t2) =
∑

pi∈P
hi(t1, t2). A task set is EDF-schedulable

if and only if ∀t1, t2 : h(t1, t2) ≤ t2 − t1. Let us take h(t) to be the maximum processor
demand over a contiguous interval of length t, hence hi(t), for synchronous task sets, is
given as

hi(t) = max{0, 1 +
⌊

t− di
πi

⌋

} (1.4)

Theorem 1.1 ([14, 15]). A synchronous arbitrary periodic task set is EDF-schedulable
if and only if U ≤ 1 and ∀t < L : h(t) ≤ t where L = max{d1, . . . , dN ,max

pi∈P
{πi − di} U

1−U }.

This schedulability test is only sufficient for asynchronous task sets. A better feasi-
bility bound for constrained systems was proposed in [159] as

L =

∑

pi∈P
(πi − di)Ui

1− U (1.5)

Another feasibility bound is the length of the synchronous busy period [159]. The busy
period starts when all tasks are released simultaneously at their maximum rate, and
ends by the first processor idle item. The length of the busy period can be computed
by the following recurrence.

w0 =
∑

pi∈P
Ci wm+1 =

∑

pi∈P

⌈

wm

πi

⌉

Ci (1.6)

When the recurrence stops (i.e. wm+1 = wm), then L = wm.
The processor demand test (h(t) ≤ t) needs to be checked only at the absolute

deadlines in the interval [0, L] since the processor demand does not change from one
point t1 to another point t2 unless there is at least one absolute deadline between
the two points. This testing set can be however very large. The Quick convergence
Processor-demand Analysis (QPA) was proposed in [197, 196] in order to reduce the
testing set. Instead of checking all deadlines in the increasing order, the proposed
algorithm starts from the last deadline in the testing set and moves backward, skipping
many intermediate deadlines thanks to the following lemma, where d, d′, dm, and d∗

denote some absolute deadlines.

Real-time scheduling 41

Algorithm 1: QPA algorithm

t = dm;
while h(t) ≤ t ∧ h(t) > min{d} do

if h(t) < t then t = h(t); else t = max{d|d < t};
if h(t) ≤ min{d} then the task set is schedulable;
else the task set is not schedulable;

Lemma 1.1 ([196]). For an unschedulable task set, if h(dm) ≤ dm, then d∗ < h(d∗) ≤
d′, where dm = max{d| d ≤ L}, d∗ = max{d|0 < d < L∧h(d) > d}, and d′ = min{d|d >
d∗}.

From Lemma 1.1, it is easy to deduce that ∀t ∈ [h(d∗), L] : h(t) ≤ t. Based on this
result, Listing 1 represents the QPA algorithm (from [197]).

B Multiprocessor scheduling

Regardless of the scheduling algorithm, an implicit-deadline periodic task set is feasible
on M processors if and only if U ≤M and ∀pi ∈ P : Ui ≤ 1 [98]. A constrained periodic
task set is feasible only if max

t
{h(t)

t
} ≤M [12].

For partitioned EDF scheduling, several heuristic allocation algorithms have been
proposed. Let (Vj)j=1..M be the set of M initially empty partitions (Vj consists of all
the tasks allocated to the jth processor) and let U j =

∑

pi∈Vj
Ui be the utilization of

partition Vj . For an implicit-deadline task set and using a first fit allocation strategy,
each task pi (tasks are ordered by decreasing utilization) is assigned to the first processor
Vj with enough capacity (i.e. {pi} ∪ Vj is EDF-schedulable on the jth processor; hence
Ui + U j ≤ 1). It has been shown in [129] that for any reasonable allocation algorithm
the UB of the scheduling algorithm is bounded by

M − (M − 1)U∗ ≤ UEDF ≤
⌊

1
U∗

⌋

M + 1
⌊

1
U∗

⌋

+ 1
(1.7)

where U∗ = max
pi∈P
{Ui}. EDF with a best fit allocation strategy can achieve the highest

UB.
As for uniprocessor systems, the processor demand approach is usually used for par-

titioned EDF scheduling of constrained task sets. Such a technique has been proposed
in [13]. Firstly tasks are arranged in non-decreasing order of their relative deadlines
(i.e. a DM ordering). Task pi is assigned to the first partition Vj that satisfies

di −
∑

pk∈Vj
h∗k(di) ≥ Ci (1.8)

Where h∗i (t) is an upper bound of the processor demand hi(t). Simply, h∗i (t) = Ci +
Ui(t − di) if t ≥ di, and 0 otherwise. This scheduling heuristic has a polynomial-time
complexity.

42 Design and Verification

Concerning global EDF scheduling of implicit-deadline periodic task sets, the UB
UEDF is equal to M − (M − 1)U∗ [88]. A constrained task set is schedulable if µ ≤
M − (M − 1)µ∗ where µ∗ = max

pi∈P
{µi}. A theoretical and experimental comparison

between global EDF schedulability tests can be found in [25]. One particular test,
that will be used in this thesis, is the one based on the forced-forward demand bound
function.

Theorem 1.2 ([25, 11]). A constrained periodic task set is schedulable if ∃γ : µ∗ ≤ γ <
M−U
M−1 − ǫ (with an arbitrary small ǫ) such that ∀t ≤ L : h(t, γ) ≤ t where

L =

∑

pi∈P

(πi−di)Ui

M−(M−1)γ−U and h(t, γ) = ffdbf(t,γ)
M−(M−1)γ . We have that ffdbf (t, γ) =

∑

pi∈P
ffdbfi(t, γ)

is the forced-forward demand bound function; and we have that: zi = (t mod πi) and

ffdbfi(t, γ) =

⌊

t

πi

⌋

Ci +

Ci if zi ≥ di
Ci − (di − zi)γ if di > zi ≥ di − Ci

γ

0 otherwise

It is sufficient to check the condition h(t, γ) ≤ t only at absolute deadlines in the
interval [0, L]. Furthermore, the QPA technique can be used to reduce the testing set.
Listing 2 represents the QPA-FFDBF algorithm proposed in [25].

Algorithm 2: QPA-FFDBF algorithm

γ = µ∗;
while γ < M−U

M−1 do

t = L;
while min{d} < h(t, γ) ≤ t do

t = min{h(t, γ),max{d|d < t}};
if h(t, γ) ≤ min{d} then return the task set is schedulable ;
γ = γ + ǫ;

return the task set is unschedulable;

An experimental comparison of partitioned and global EDF scheduling techniques
can be found in [8].

C EDF with precedence constraints

In many hard-real time systems, communication among tasks should be deterministic.
One approach to achieve this goal is to model communication requirements as prece-
dence constraints. Let J1 and J2 be two jobs such that each job Ji has an absolute
deadline di, a release time ri, and worst-case execution time Ci. A precedence con-
straint J1 → J2 implies that J2 starts executing only after J1 ends. An algorithm was
proposed in [58] that solves this problem (for uniprocessor systems) by transforming

Real-time scheduling 43

dependent jobs (i.e. adjusting their release times and deadlines) into new independent
jobs such that EDF scheduling of the new set of jobs satisfies the precedence constraints.

Since J2 cannot start before the completion of J1, it is safe to change its release time
to be r2 = max{r2, r1+C1}. Note that if there is a precedence constraint J3 → J1, then
r1 must be adjusted before computing the new r2. The second step in the algorithm is
to adjust the deadlines. Since J2 must start executing at most at d2 −C2 (otherwise it
misses its deadline), it is safe to adjust the deadline of J1 to be d1 = min{d1, d2 −C2}.
This way, the new J2 will not preempt the new J1.

This transformation algorithm can be implemented in O(n). It also ensures that if
the new job set is EDF-schedulable, then the original set under precedence constraints
is also EDF-schedulable.

1.4.3 Fixed-priority schedulability analysis

As with EDF policy, we will consider both uniprocessor and multiprocessor FP schedul-
ing. We will assume that each task can have a distinguished priority.

A Uniprocessor scheduling

An implicit-deadline periodic task set is RM-schedulable if U ≤ URM = N(N
√
2 − 1)

[127]. This is only a sufficient schedulability test. The UB depends on the number of
tasks in the system and we have that lim

N→∞
URM = ln 2. A less pessimistic sufficient

test was presented in [37] as
N
∏

i=1
(Ui + 1) ≤ 2. For constrained task sets µ ≤ URM is a

sufficient DM schedulability test.
The exact schedulability test of synchronous constrained periodic task sets, regard-

less of the priority assignment policy, is based on the notion of worst-case response times
[3, 103]. A task set is schedulable if and only if the worst-case response time Ri of each
task pi is less than or equal to its deadline; i.e. ∀pi ∈ P : Ri ≤ di. The worst-case
response time Ri is the solution of the following recurrence.

R0
i = Ci Rm+1

i = Ci +
∑

wk<wi

⌈

Rmi
πk

⌉

Ck (1.9)

The response time analysis (RTA) has a pseudo-polynomial complexity. Further
improvement can be achieved by reducing the number of iterations required to solve the
recurrence equation [130, 67]. Efficient (polynomial time) computation of approximate
response times can be desirable especially for online admission tests. Assume that Ri is
bounded by Rli ≤ Ri ≤ Rui , then if ∀pi ∈ P : Rui ≤ di, then the task set is schedulable.
Dually, if ∃pi ∈ P : Rli > di, then the task set is unschedulable. As noticed in [166], we

have that x ≤ ⌈x⌉ < x + 1. Thus, Rli =
Ci

1−
∑

wk<wi

Uk
and Rui =

Ci+
∑

wk<wi

Ck

1−
∑

wk<wi

Uk
. A better

44 Design and Verification

upper bound is proposed in [40] as

Rui =

Ci +
∑

wk<wi

Ck(1− Uk)

1− ∑

wk<wi

Uk
(1.10)

B Multiprocessor scheduling

The UB of any FP partitioning algorithm of implicit-deadline periodic task sets is
upper bounded by M+1

M+1
√
2+1

[144]. An allocation strategy, that has a UB equal to

(M − 2)(1 − U∗) + 1 − ln 2, was proposed in [126]. It attempts to allocate tasks with
harmonic periods (i.e. periods that are close to harmonics of each other) to the same
processor. Tasks on each processor are then RM-scheduled. In a first fit strategy, a task
pi (tasks ordered according to their RM priorities) is assigned to the first partition Vj
that satisfies Ui + U j ≤ URM . The UB of such strategy is equal to (M − 1)(

√
2− 1) +

(N −M + 1)(N−M+1
√
2− 1) [126].

A partitioned DM scheduling algorithm of constrained periodic task sets is proposed
in [75]. It orders tasks according to their DM priorities, and then assigns each task pi
to the first partition Vj that satisfies di −

∑

pk∈Vj
(Ck + Ukdi) ≥ Ci. Notice that this

approximate condition is not just more than Rui ≤ di with Rui =

Ci+
∑

pk∈Vj

Ck

1− ∑

pk∈Vj

Uk
. However,

we have shown that there is a better upper bound. When a task is assigned to a
partition, the worst-case response times of the already assigned tasks do not change
because they have higher priorities than the new task.

The UB of any global fixed-priority scheduling algorithm of implicit-deadline task
sets, where priorities are defined as a scale-invariant function of tasks periods and worst-
case execution times, is upper bounded by (

√
2−1)M . The UB of global RM algorithm

is equal to M
2 (1 − U∗) + U∗ [27]. Furthermore, any implicit-deadline task set with

U∗ ≤ M
3M−2 and U ≤ M2

3M−1 is global RM-schedulable [2]. A sufficient response time
analysis for global FP scheduling of constrained periodic task sets has been proposed
in [26]. A task set is schedulable if ∀pi ∈ P : Ri ≤ di where Ri is an upper bound on
the response time of task pi computed by the following recurrence.

Ri = Ci +

⌊

1

M

∑

wk<wi

Ik(Ri)

⌋

(1.11)

Where Ik(Ri) is an upper bound on the interference due to task pk within the worst-case
response time of pi and which is computed as follows.

Ik(Ri) = min{Ri − Ci + 1, NkCk +min{Ck, Ri + dk − Ck −Nkπk}} (1.12)

Nk =

⌊

Ri + dk − Ck
πk

⌋

(1.13)

More global FP schedulability tests can be found in [66].

Real-time scheduling 45

C Aperiodic servers

In this section, we will consider uniprocessor FP scheduling of systems that consist of a
set of hard periodic tasks P and a set of soft aperiodic tasks P ′. Scheduling aperiodic
tasks based on their priorities may cause some lower priority hard tasks to miss their
deadlines. One simple solution to prevent soft aperiodic tasks from interfering with
hard periodic tasks is to execute them as background tasks; i.e. they execute only when
there are no ready periodic jobs. However, this solution generally leads to long response
time of aperiodic tasks. In the past decades, many techniques based on aperiodic servers
have been devised to improve the average response time of soft aperiodic tasks; examples
of such techniques are: polling servers [121], deferrable servers [178], sporadic servers
[174], priority exchange servers [173], etc. An aperiodic job executes as the capacity
of its server is not exhausted, then it waits for the next replenishment of the server
capacity according to its replenishment period and strategy.

Assume that the system contains one server ps with a capacity Cs and a replenish-
ment period πs. The server has generally the highest priority. One important property
of polling, deferrable, and sporadic servers is that they can be considered just as spo-
radic tasks (sometimes with jitters) in the response time analysis. Sporadic servers are
often considered the best because they achieve a higher processor utilization and can
be considered in the schedulability analysis just like sporadic tasks [174]. Bernat and
Burns have shown that there is no big difference between the performance of a deferrable
server and a sporadic one [22]. They have also shown that a deferrable server can be
also considered in the schedulability analysis as a sporadic task with a jitter. Hence,
the worst-case response time of a periodic task can be computed as

Ri = Ci +
∑

wk<wi

⌈

Ri
πk

⌉

Ck + (1 +

⌈

Ri − Cs
πs

⌉

)Cs (1.14)

Parameters of servers that minimize the average response time are generally obtained
by simulation. Some selection criteria have been proposed in [22]. If the system contains
multiple servers, then a capacity sharing protocol like the one described in [23] may
increase the responsiveness of aperiodic tasks.

1.4.4 Symbolic schedulability analysis

Designing real-time systems is a very complicated task due to the large number of pa-
rameters to be considered by the designer such as: task priorities, deadlines, phases, etc.
Parametric analysis is a powerful tool to explore the space of design parameters and find
hence the optimal values or prune non-feasible solutions from the design space. Symbolic
(or parametric) schedulability analysis consists in finding the schedulability region; i.e.
the set of values of parameters for which the system is schedulable when using a specific
scheduling policy. Optimization objectives, such as maximizing the processor utiliza-
tion, can be further considered. Few works, compared to the standard schedulability
analysis, have addressed this problem and they target mainly FP scheduling for single
processor systems.

46 Design and Verification

In [35], symbolic FP schedulability analysis of constrained periodic task sets is con-
sidered. Periods, deadlines, and priorities are assumed to have known values; while
worst-case execution times are considered as free variables. The proposed technique
computes the C-space such that the system is FP schedulable at each point (C1, . . . , CN)
in that space. The C-space is constructed by deducing linear constraints on Ci using
Lehoczky schedulability test [120]. A synchronous task set is schedulable if and only if

∧

i=1...N

∨

t∈Si

∑

wk≤wi

⌈

t

πk

⌉

Ck ≤ t (1.15)

where Si =
⋃

wk≤wi
{rπk|r = 1 . . .

⌈

πi
πk

⌉

}. The schedulability region is therefore the union

of some convex regions; hence the performance optimization problem can be solved
using convex optimization techniques.

Both periods and execution times are considered as parameters in the sensitivity
analysis proposed in [39, 34]. Assuming a FP scheduling policy with known priorities,
the proposed analysis computes either the C-space (execution times are the only free
variables) or the f -space (periods are the only free variables). Construction of the
f -space is very important in control systems domain, where control tasks are known
and their activation rates needed to be computed. For a given unschedulable task
set, the sensitivity analysis computes the minimal modifications on either periods or
execution times that bring the system into the schedulability region. The f -space
is constructed by deducing constraints on πi using the schedulability test provided in
[163, 38]. Assuming that tasks are ordered according to their priorities (i.e. ∀pi : wi = i),
a task pi in a synchronous implicit-deadline periodic task set is FP-schedulable if and
only if ∃n1, . . . , ni−1 ∈ N>0 such that

Ci +
∑

j<i

njCj ≤ πi ∧ ∀k < i : (nk − 1)πk ≤ Ci +
∑

j<i

njCj ≤ nkπk (1.16)

The schedulability region of each task pi is the union of parallelepipeds, each one result-
ing from a different selection of tuple (n1, . . . , ni−1). The schedulability region of the
task set is hence the intersection of the schedulability regions of all tasks. Given a cost
function F that provides a measure of the application performance, authors proposed
an algorithm that searches for the periods that achieve the highest performance. How-
ever, the function F (x) must be convex and ∀i : ∂F

∂πi
≤ 0; i.e. an increase of any task’s

rate results in an improvement of the application performance. The algorithm starts
by computing an admissible solution, then enumerating, using a branch and bound ap-
proach, all the vertices in a direction indicated by the gradient of the cost function.
Examples of cost functions are: maximization of the utilization U , minimization of the

energy given by
∑

αie
−βi
πi , etc.

The previous approach was extended in [185] for task sets with jitters and dead-
lines as free parameters. In [89], a method was provided to find the optimal priority
assignment (i.e. priorities are the only free variables) given the cost function and all
the timing characteristics.

Real-time scheduling 47

Symbolic model checking of parametric timed automata (PTA) has been recently
used to perform symbolic schedulability analysis [60, 112, 185, 158, 77]. PTA extend
timed automata with parameters that can be used in guards and invariants. The basic
idea of this approach is to model the schedulability problem using PTA, and then using
existing model checking tools to compute the schedulability region. Thanks to the
expressivity of the PTA model, it is possible to perform parametric analysis on a large
class of constraints. However, this expressivity comes at the price of a huge complexity.

1.4.5 Real-time scheduling of dataflow graphs

Using real-time scheduling policies to implement dataflow graphs has been the subject of
only few works. Unlike in cyclic executives (i.e. static-periodic schedules), each actor is
mapped to a periodic real-time task; hence the schedule is strictly periodic (as opposite
to static-periodic). One advantage of this scheduling approach is that existing real-time
scheduling theories can be used to decide the schedulability of a dataflow specification
on a given architecture.

In [151], a system is described as a set of independent periodic tasks (with user-
provided periods) that may communicate through sample-and-hold mechanisms that
do not require synchronization. The periodic task set is scheduled according to a RM
policy. Each task is modeled as a SDF graph where each actor is called a subtask.
Subtasks within a task are executed according to a generated static-periodic schedule
where a subtask cannot be preempted. Non-preemptive scheduling is known to be
NP-hard in the strong sense even for single processor systems [101]. To handle non-
preemption, authors have considered the processor as a shared resource and then used
existing analysis for priority inheritance protocols.

Real-time scheduling of acyclic computation graphs (with a chain topology) was
studied in [87]. The author did not however use a periodic task model but he has
used the Rate-Based Execution (RBE) model [100] where each task pi has four parameters
(xi, yi, di, Ci) with xi is the number of execution of pi in an interval of length yi. Jobs
are executed using a preemptive EDF scheduling policy. The schedulability analysis
ensures that any job pi[j] released at time ri[j] will finish before its absolute deadline
Di[j] given as

Di[j] =

{

ri[j] + di if 1 ≤ j ≤ xi
max{ri[j] + di, Di[j − xi] + yi} if j > xi

The task set is schedulable if and only if ∀l > 0, l ≥ ∑

pi∈P
max{0,

⌊

l−di+yi
yi

⌋

xiCi}. So,

each actor in the computation graph is mapped to a task; and a task is activated only
when the number of accumulated tokens in a channel exceeds its threshold (i.e. a data-
driven execution). The author assumes that both the parameter y of the first actor in
the chain and the relative deadlines are user provided. Hence, parameters x and y of
all the actors can be deduced using the repetition vector. The author also proposed an
analysis to compute the size of buffers.

48 Design and Verification

The scheduling approach proposed in [9, 10] is closely related to our work. In [9],
authors have used the implicit-deadline periodic task model to implement acyclic weakly
connected CSDF graphs. Firstly, periods are expressed in terms of the period of one
actor using the repetition vector; i.e. ~r(i)pi = ~r(j)pj . Then, the minimum period pmin

i

of each actor pi is computed (assuming unlimited processing units) as follows.

pmin
i =

H

~r(i)

max
pk∈P

Ck~r(k)

H

such that H = lcm{~r(1), . . . , ~r(N)} (1.17)

Secondly, the earliest start times of actors are computed according to the initial tokens
in the channels. Knowing all the timing parameters and assuming unlimited resources,
it is easy to compute the minimum buffer sizes. The last step in this approach consists
in using the utilization bound of any multiprocessor scheduling algorithm (i.e. using the
test µ ≤M) to compute the necessary number of processors. Authors have shown that
this approach gives the self-time throughput of a class of graphs called matched input
output rates graphs. They are graphs satisfying max

pk∈P
Ck~r(k)modH = 0. In [10], authors

showed that the implicit-deadline task model does not give the minimum latency (i.e.
a self-timed latency) for a class of graphs called unbalanced graphs. A balanced graph
must satisfy ∀pi, pk : ~r(i)Ci = ~r(k)Ck. Authors proposed a technique that constrains
the deadlines to obtain a better latency.

1.5 Real-time calculus

Real-time calculus (RTC) [189, 56] is a specialization of network calculus [57] to the
domain of real-time and embedded systems. RTC is used for system-level performance
analysis of stream processing systems with timing constraints. In RTC, event streams
and services offered by resources are modeled in a coherent way. For a given stream s,
the number of arrived events in each time interval is lower bounded and upper bounded
by two right-continuous, non-negative, subadditive functions sl and su, respectively; i.e.
if s[t1, t2) is the number of arrived events in interval [t1, t2), then ∀t1 < t2 : s

l(t2− t1) ≤
s[t1, t2) ≤ su(t2 − t1). Hence, sl(t) and su(t) can be considered as the minimum and
maximum number of events arriving within any interval of length t, respectively. A
periodic event (e.g. release of a periodic task) of period π can be bounded by two
staircase functions of step width equal to π and height equal to 1. Similar representations
can be given to other event classes; e.g. sporadic events, periodic events with jitters,
etc.

Similar to lower and upper arrival curves of event streams, a resource r can be
described by lower and upper service curves rl and ru, respectively. If r[t1, t2) denotes
the number of processing or communication units available from the resource over the
time interval [t1, t2), then ∀t1 < t2 : r

l(t2− t1) ≤ r[t1, t2) ≤ ru(t2− t1). Service curves of
a processor can be represented as lines. More complicated resources (e.g. time division
multiplex bus) can be considered in this framework.

Conclusion 49

Given the arrival curves of an event stream arriving at a resource, and the service
curves offered by that resource, it is possible to compute the timing properties of the
resulted stream and remaining resource capacity, as well as the maximum backlog and
delay experienced by the stream. If s̄ is the resulted stream, then we have that

s̄l(t) = min{ inf
0≤t1≤t

{sup
t2≥0
{sl(t1 + t2)− ru(t2)}+ rl(t− t1)}, rl(t)} (1.18)

s̄u(t) = min{sup
t2≥0
{ inf
0≤t1≤t2+t

{su(t1) + ru(t2 + t− t1)} − rl(t2)}, ru(t)} (1.19)

Furthermore, if r̄ is the remaining service, then we have that

r̄l(t) = sup
0≤t1≤t

{rl(t1)− su(t1)} r̄u(t) = max{ inf
t1≥t
{ru(t1)− sl(t1)}, 0} (1.20)

The resulted stream can be processed by another resource and so on. When multiple
event enter a single resource, this latter is shared between streams according to a given
scheduling policy (e.g. fixed-priority, EDF, TDMA). Thus, arrival curves of the resulted
streams depend on what scheduling policy is used.

1.6 Conclusion

Through this section, we have presented a bunch of MOCs that are being used in real-
time embedded system design. Three kinds of MOCs are presented: dataflow models,
periodic real-time task models, and RTC. Dataflow models offer a simple design frame-
work that guarantees functional determinism. The periodic task model offers theories
that ensure temporal predictability. RTC offers a general framework for approximate
performance analysis of embedded systems. Through a combination of all these models,
this thesis presents a new real-time scheduling approach of dataflow graphs.

50 Design and Verification

Chapter 2

Abstract schedules

Contents

2.1 Priority-driven operational semantics 52

2.2 Activation-related schedules 53

2.2.1 Activation relations . 53

2.2.2 Consistency . 55

2.2.3 Overflow analysis . 63

2.2.4 Underflow analysis . 65

2.3 Affine schedules . 67

2.3.1 Affine relations . 68

2.3.2 Consistency . 70

2.3.3 Fixed-priority schedules . 72

2.3.4 EDF schedules . 76

2.4 Specific cases . 78

2.4.1 Ultimately cyclo-static dataflow graphs 79

2.4.2 Multichannels . 81

2.4.3 Shared storage space . 82

2.4.4 FRStream . 83

2.5 Conclusion . 86

This chapter describes how to construct abstract priority-driven schedules of dataflow
specifications which respect the Kahn principle and hence guarantee functional deter-
minism. An abstract schedule consists only of physical-time independent constraints
called activation relations; and it is constructed in a machine-independent manner. In-
deed, we do not consider neither the implementation code of the firing functions nor
their worst-case execution times. Therefore, the presented scheduling method requires
only an untimed dataflow graph and a real-time scheduling policy.

51

52 Abstract schedules

The optimization problem addressed in this chapter is memory usage minimization.
Since each actor is implemented as a separated thread, code size is no longer an is-
sue. Buffering requirements minimization is hence the only optimization problem to
consider. Most of existing buffer minimization techniques (mostly in static-periodic
scheduling of (C)SDF graphs) are machine-dependent. Though (theoretically speaking)
time-dependent techniques are more accurate, the smallest change in execution times
(either by changing the target architecture or the implementation code) requires the
schedule reconstruction.

We firstly describe what is a consistent and valid abstract schedule by using only a
very simple mathematical concept: sequences. Then, we show how to construct (using
integer linear programming) a specific class of abstract schedules called affine schedules
with respect to EDF and fixed-priority scheduling policies.

2.1 Priority-driven operational semantics

In a data-driven semantics, an actor is enabled whenever there are enough tokens on
its input ports. If channels are bounded, then an actor is enabled only if there are
enough empty spaces on its output channels. The scheduler must maintain a list of
enabled actors and chooses among them which actors to fire depending on the available
resources.

In a clock-triggered semantics, an actor is enabled (or triggered) according to its
activation clock. Hence, the list of enabled actors can be constructed much easily in
a clock-triggered scheduling compared with a data-driven scheduling. Let G = (P,E)
be a static-dataflow graph (see Definition 1.5, p. 26) that consists of N actors. An
activation clock is defined as follows.

Definition 2.1 (Activation clock). Let (T ,⊑) be a tag system. An activation (release
or dispatch) clock of an actor pi is a total function p̂i : C → N with C a chain in T
such that p̂i(t) indicates the number of released jobs of actor pi at tag t.

Example 2.1 (Self-timed example). Consider the self-timed execution in Figure 1.3
(p. 29). The tag system is (N,≤); i.e. the system has a global discrete clock. Since
the self-timed execution consists of a transient and a periodic phase, activation clocks
can be described using ultimately periodic integer sequences. So, p̂1 = 030(2 039)ω,
p̂2 = (1 039)ω, and p̂3 = 1 09(3 039)ω.

Let t1 and t2 be two tags in the chain C such that: (i) at least one job of pi is
released at tag t1 (i.e. p̂i(t1) > 0); and (ii) t2 is the first successor of t1 at which a job
of pi is released (i.e. t2 = min{t|t > t1 ∧ p̂i(t) > 0}). In this thesis, we will assume that
“all jobs of pi released at tag t1 complete their execution by tag t2”. Consequently, we will not
consider task sets with deadlines greater than periods.

In a priority-driven operational semantics, each actor pi is associated with an infinite
integer sequence ωi ∈ Nω such that ωi(j) is the priority of the jth job of pi (denoted by
pi[j]). We assume that 1 is the highest priority. At each instant t, the scheduler chooses
among all the enabled jobs the job with the highest priority. Preemption may occur if

Activation-related schedules 53

a job with a higher priority than the jobs being executed is enabled. In RM scheduling,
each priority sequence is a constant infinite sequence. In EDF scheduling of periodic
task sets, priorities of jobs depend on deadlines and phases of actors; priority sequences
are hence ultimately periodic. A simple procedure to compute priority sequences in
EDF scheduling of periodic task sets (we assume that there is no dynamic admission of
new tasks) is to order jobs in a hyperperiod by their deadlines and then assign priority
1 to the job with the earliest deadline, and so on. Priority sequences can model fixed
task priority scheduling (e.g. RM), fixed job priority scheduling (e.g. EDF), but not
dynamic job priority scheduling. For example, in Least Laxity First (LLF) scheduling,
a single job may have different priorities at different moments.

If several jobs of an actor pi are released at the same tag, then we assume that
“the released jobs read their required data and write their results on a given channel in the same
order of activation”; i.e. job pi[j] cannot write any token on a given channel before
pi[j − 1] writes all its results on that channel; and pi[j] cannot read any token from
a given channel before pi[j − 1] reads all its needed data from that channel. This is
a requirement for a functionally deterministic execution of the dataflow graph. In the
self-timed example, jobs p3[2], p3[3], and p3[4] execute in parallel with each other. Since
the execution time of a job may depend on the data being processed, these three jobs
write their results in a non-deterministic order. Recall that if an actor contains some
local state, then auto-concurrency must be disabled (by adding self-loops) to ensure
proper state update.

In most of dataflow models, actors are assumed to read tokens before performing
any computation and then write the results at the end. In our model of computation,
we get rid of this constraint in order to give the programmer total freedom on how to
write the implementation code of firing functions.

In Kahn semantics of dataflow graphs, an actor blocks if it attempts to read from an
empty channel. If channels are bounded, an actor also blocks if it attempts to write on
a full channel. In our priority-driven operational semantics, an overflow exception occurs
when an actor attempts to write to a full channel; while an underflow exception occurs
when an actor attempts to read from an empty channel.

2.2 Activation-related schedules

An abstract schedule consists of a set of timeless (i.e. abstract) scheduling constraints
called activation relations. This section presents the necessary conditions that must
be satisfied in order to have a consistent (i.e. no causality problems) and valid (i.e.
overflow/underflow-free communications) schedule.

2.2.1 Activation relations

Let p̂i, p̂k : C → N be two activation clocks defined on the same set of tags. An activation
relation is a concise abstract representation of the two clocks on the set {t|p̂i(t) >
0 ∨ p̂k(t) > 0} ⊆ C; i.e., instants at which neither actors are released are neglected.
This is a time abstraction that keeps only the relative positioning of activations. As

54 Abstract schedules

illustrated in Figure 2.1, the duration between releases (i.e. the original timing) does
not matter. Hence, only the precedence relations between releases are preserved.

Figure 2.1: Time abstraction of the self-timed example.

Definition 2.2 (Activation relation). Two actors pi and pk are said to be activation-
related if and only if the relative positioning of all their releases can be entirely defined;
that is, ∀j, j′ ∈ N>0 : job pi[j] is released before, after, or at the same time with job
pk[j

′].

An activation relation can be described by two integer sequences si,k and sk,i such
that si,k(j) indicates the number of releases of actor pi at the jth tag in the set {t|p̂i(t) >
0 ∨ p̂k(t) > 0}. Hence, ∀j ∈ N>0 : si,k(j) + sk,i(j) > 0. We say then that pi and pk

are [si,k, sk,i]-activation-related (denoted by pi
[si,k,sk,i]−→ pk); or equivalently pk and pi are

[sk,i, si,k]-activation-related.

Example 2.2. In the self-timed example, we have that p1
[(0 2)ω ,(1 0)ω]−→ p2

[(1 0)ω ,1(3 0)ω]−→
p3

[1(3 0)ω ,0(0 2)ω]−→ p1.

Since we are interested only in fair and complete executions of live dataflow graphs,
we impose the following property.

Property 2.1 (Activation relation). If [si,k, sk,i] is an activation relation, then

(i) si,k, sk,i ∈ Nω.

(ii) ∀j ∈ N>0 : si,k(j), sk,i(j) and ⊕si,k(j)−⊕sk,i(j) are bounded.

Hence, if pi and pk are activation-related, then both actors will fire infinitely often
(liveness) and between every two releases of an actor there is a finite number of releases of
the other actor (fairness). If auto-concurrency is disabled, then we have that si,k, sk,i ∈
Bω.

Definition 2.3 (Strict predecessors and successors). sprdi,k : N>0 → N is an integer
function such that pk[sprdi,k(j)] is the last job of pk which is released strictly before pi[j].
Similarly, ssuci,k : N>0 → N is an integer function such that pk[ssuci,k(j)] is the first job
of pk which is released strictly after pi[j]. Both sprd and ssuc are monotone functions.

We have that job pi[j] is released at the tag number s−1
i,k (j) in the set {t|p̂i(t) >

0 ∨ p̂k(t) > 0}. All jobs of pk released before that tag are strict predecessors of pi[j].
Therefore, sprdi,k(j) = ⊕sk,i(s−1

i,k (j) − 1). Similarly, the first strict successor of pi[j]

is the first job of pk released at a tag greater than s−1
i,k (j). Therefore, ssuci,k(j) =

⊕sk,i(s−1
i,k (j)) + 1. By convention, we take sprdi,k(0) = 0 and ssuci,k(0) = 1.

Activation-related schedules 55

Definition 2.4 (Predecessors and successors). prdi,k : N>0 → N is an integer function
such that pk[prdi,k(j)] is the last job of pk which is released before or simultaneously
with pi[j]. Similarly, suci,k : N>0 → N is an integer function such that pk[suci,k(j)] is
the first job of pk which is released after or simultaneously with pi[j]. Both prd and suc

are monotone functions.

We have that
{

prdi,k(j) = ⊕sk,i(s−1
i,k (j))

suci,k(j) = ⊕sk,i(s−1
i,k (j)− 1) + 1

Let lsimi,k(j) = ⊕si,k(s−1
i,k (j)). So, pi[lsimi,k(j)] is the last job of pi which is re-

leased simultaneously with pi[j] according to the activation relation [si,k, sk,i]. Dually,
if fsimi,k(j) = ⊕si,k(s−1

i,k (j) − 1) + 1, then pi[fsimi,k(j)] is the first job of pi which is
released simultaneously with pi[j] according to the activation relation [si,k, sk,i].

Example 2.3. In the self-timed example, we have that ∀j : sprd1,2(j) =
⌈

j
2

⌉

, ssuc1,3(j) =

3
⌈

j
2

⌉

+ 2, and lsim1,2(j) = 2
⌈

j
2

⌉

.

Lemma 2.1. ∀j ∈ N>0 : prdi,k(j) < j′ ⇔ prdi,k(j) < fsimk,i(j
′) and suci,k(j) > j′ ⇔

suci,k(j) > lsimk,i(j
′).

Definition 2.5 (Synchronous relation). Jobs pi[j] and pk[j
′] are synchronous (i.e.

released at the same time) if and only if sprdi,k(j) < j′ < ssuci,k(j).

If pi[j] is released strictly before pk[j′], then we denote that by pi[j] < pk[j
′]. If

both jobs are synchronous, we denote that by pi[j] = pk[j
′]. Knowing functions sprdi,k

and ssuci,k is not enough to construct the relative positioning of releases of pi and pk
unless si,k, sk,i ∈ Bω (i.e. auto-concurrency is disabled). In the self-timed example, we
have that sprd2,1(j) = 2(j − 1) and ssuc2,1(j) = 2j − 1, but, it is not possible to know
only from these two functions that ∀j ∈ N>0 : p1[2j − 1] = p1[2j]. This means that is
possible to deduce sprdi,k and ssuci,k from [si,k, sk,i] but not vice versa.

Property 2.2. The synchronous relation is an equivalence relation; i.e. it is reflexive,
symmetric, and transitive.

2.2.2 Consistency

Definition 2.6 (Graph of activation relations). The graph of activation relations
Gr = (P,R) is an undirected graph where the set of vertices P represent actors and the
set of edges R represent activation relations.

Recall that each activation relation can be reversed. Hence, each edge can be tra-
versed in both directions. By convention, an undirected edge is annotated by an acti-
vation relation [si,k, sk,i] such that i < k.

A walk in a graph G = (P,E) is an alternating sequence p1
e1−→ p2 · · · em−→ pm+1 of

vertices and directed edges in P and E respectively so that ∀i : ei = (pi, pi+1). A walk

56 Abstract schedules

is called closed if p1 = pm+1. A path is a walk with no vertex and no edge repeated. A
cycle (or simple cycle) is a closed path (i.e. the only repeated vertices are the first and
the last ones). For every walk ψ, we denote by ψ−1 the inverse walk that starts at the
last vertex of ψ and ends at the first vertex.

Let ψ = p1
[s1,2,s2,1]−→ p2−→· · ·

[sm−1,m,sm,m−1]−→ pm be a walk in the graph of activation
relations. Functions sprdψ and ssucψ are the extensions of sprd and ssuc using transitivity
relation on walk ψ; i.e. ∀j ∈ N>0 : sprdψ(j) = (sprdm−1,m ◦ · · · ◦ sprd2,3 ◦ sprd1,2)(j) and
ssucψ(j) = (ssucm−1,m ◦ · · · ◦ ssuc2,3 ◦ ssuc1,2)(j). If Ψi,k is the set of all walks from pi to
pk in Gr, then we put sprdi→k(j) = max

ψ∈Ψi,k
{sprdψ(j)} and ssuci→k(j) = min

ψ∈Ψi,k
{ssucψ(j)}.

So, for instance, pk[sprdi→k(j)] is the last job of pk known from the activation relations
that it is released strictly before pi[j]. Similarly, we define functions prdi→k and suci→k.

Example 2.4. In the self-timed example, we have that prd1,2(j) =
⌈

j
2

⌉

, prd2,3(j) =

3j − 2, and prd1,3(j) = 3
⌈

j
2

⌉

+ 1; hence, prd1,2,3(j) = 3
⌈

j
2

⌉

− 2 < prd1,3(j).

Suppose that we have P = {p1, p2, p3} and R = {p1
[1ω ,1ω]−→ p2, p2

[1ω ,1ω]−→ p3, p3
[1ω ,2ω]−→

p1}. The set R is clearly non-consistent because according to the first and second
activation relations ∀j ∈ N>0 : p1[j], p2[j] and p3[j] are synchronous while ∀pi : pi[j]
and pi[j +1] are not synchronous. But according to the third relation, ∀j ∈ N>0 : p3[j]
and p1[2j] are synchronous.

Property 2.3. The graph Gr is consistent only if for every actor pi, if [si,k, sk,i] and
[si,k′ , sk′,i] are two activation relations in R, then ∀j ∈ N>0 : fsimi,k(j) = fsimi,k′(j) and
lsimi,k(j) = lsimi,k′(j).

Property 2.3 means that all activation relations agree on which jobs of a given ac-
tor are synchronous with each other. In the sequel, we will suppose that this trivial
necessary condition is satisfied. Hence, for sake of conciseness, fsimi(j) and lsimi(j) de-
note fsimi,k(j) and lsimi,k(j) (∀k 6= i), respectively. When auto-concurrency is disabled,
Property 2.3 is obviously satisfied since ∀pi, pk ∈ P : ∀j : fsimi,k(j) = lsimi,k(j) = j.

Proposition 2.1 (Consistency of a closed walk). A closed walk ψ = p1 → p2 → · · · →
pm → p1 in the graph of activation relations is consistent if and only if

∀j ∈ N>0 :

{

prdψ(j) = lsim1(j) ∧ sucψ(j) = fsim1(j) if ψ[j] is true

prdψ(j) < fsim1(j) ∧ sucψ(j) > lsim1(j) otherwise
(2.1)

where ψ[j] is true if and only if

p1[j] = p2[suc1,2(j)] = p3[suc1,2,3(j)] = · · · = pm[suc1,2,...,m(j)]

Proposition 2.1 ensures that there is no causality problems in the abstract schedule.
Causality problems can occur only when there are cycles in the graph of activation

Activation-related schedules 57

relations. We have that prdψ(j) is the last job of p1 known (according to the closed
walk ψ) to be released before or simultaneously with job p1[j]. So, if ψ[j] is true,
then prdψ(j) must be equal to the last job of p1 released simultaneously with p1[j] (i.e.
lsim1(j)). If ψ[j] is false, then prdψ(j) must be less than j; but according to Lemma
2.1, we have prdψ(j) < fsim1(j). A similar argument holds for sucψ(j).

Example 2.5 (Consistency). Let P = {p1, p2, p3} and the closed walk ψ = p1
[3(2 1 0)ω ,0(3 0 2)ω]−→

p2
[0(3 0 2 0)ω ,2(1 2 0 1)ω]−→ p3

[s3,1,s1,3]−→ p1. The first and second activation relations are
depicted in Figure 2.2(a). We use Proposition 2.1 to deduce the possible activation
relations between p3 and p1 such that ψ is consistent.

Let s′ denotes the sequence s where zeros are neglected. To satisfy Property 2.3,
we must have s′1,3 = 3(2 1)ω and s′3,1 = 2(1 2 1)ω. Using Equation 2.1, we have the
following constraints.

(a) (b)

(c)

Figure 2.2: Illustration of Proposition 2.1.

prdψ(1) = prdψ(2) = prdψ(3) = 0 sucψ(1) = sucψ(2) = prdψ(3) > 1

prdψ(4) = prdψ(5) = 5 (ψ[5] is true) sucψ(4) = sucψ(5) = 4

prdψ(6) < 6 sucψ(6) > 6

prdψ(7) = prdψ(8) = 8 sucψ(7) = sucψ(8) = 7
...

...

Hence,

prd3,1(3) = 5 suc3,1(3) = 4

prd3,1(7) = 8 suc3,1(6) > 6

prd3,1(11) = 11 suc3,1(7) = 7

prd3,1(15) = 14 suc3,1(10) > 9
...

...

58 Abstract schedules

There is an infinite number of activation relations that satisfy the previous con-

straints; for instance, p3
[0 2(1 0 2 1)ω ,3 0(2 1 0 0)ω]−→ p1 (illustrated in Figure 2.2(b)) and

p3
[2(1 2 1)ω ,3(2 1 0)ω]−→ p1 (illustrated in Figure 2.2(c)).

Lemma 2.2. Let ψ1 = p1 → p2 → p3 → · · · → p1 and ψ2 = p2 → p3 → · · · → p1 → p2
be two closed walks in Gr. If Equation 2.1 holds (only) for walk ψ1, then ∀j ∈ N>0 :
ψ2[prd1,2(j)] is false =⇒ prd1,2(prdψ1

(j)) < prd1,2(j).

Proof:
Let us consider all the three possible cases (illustrated in Figure 2.3).

Figure 2.3(a): If ψ1[j] is true, then prdψ1
(j) = lsim1(j). Hence, prd1,2(prdψ1

(j)) =
prd1,2(lsim1(j)) = prd1,2(j).

Figure 2.3(b): If ψ1[j] is false and ψ2[prd1,2(j)] is true, then prd1,2(prdψ1
(j)) = prd1,2(j).

Figures 2.3(c) and 2.3(d): In both cases, ψ2[prd1,2(j)] is false. Suppose that prd1,2(prdψ1
(j)) ≥

prd1,2(j). Since ψ1[j] is false, we have that prdψ1
(j) < fsim1(j); and hence prd1,2(prdψ1

(j)) =
prd1,2(j). This implies that prdψ1

(prdψ1
(j)) = prdψ1

(j); hence, ψ1[prdψ1
(j)] is true. But

ψ1[prdψ1
(j)] cannot be true, otherwise ψ2[prd1,2(j)] will also be true. Contradiction.

(a) (b) (c) (d)

Figure 2.3: Illustration of Lemma 2.2.

In a similar way, we can prove that if ψ2[suc1,2(j)] is false, then suc1,2(sucψ1
(j)) >

suc1,2(j).

Proposition 2.2. If Equation 2.1 holds for the closed walk ψ1 = p1 → p2 → · · · →
pi → pi+1 → · · · → pm → p1, then it holds for any closed walk ψi = pi → pi+1 → · · · →
pi−1 → pi for i = 1,m.

Proof:
We prove that if Equation 2.1 holds for ψ1, then it holds for ψ2; and so it holds for

ψ3 and so on. We first have to prove the first part; i.e.

∀j′ ∈ N>0 :

{

prdψ2
(j′) = lsim2(j

′) if ψ2[j
′] is true

prdψ2
(j′) < fsim2(j

′) otherwise

Activation-related schedules 59

We have that prdψ2
(j′) = prd1,2 ◦ prdm,1 ◦ · · · ◦ prd2,3(j

′). We consider two cases:

1) If ∃j ∈ N>0 : j′ ∈ [fsim2(prd1,2(j)), prd1,2(j)], then prd2,3(j
′) = prd2,3 ◦ prd1,2(j)

and hence prdψ2
(j′) = prd1,2(prdψ1

(j)). As in the proof of Lemma 2.2, we have three
possibilities.

• ψ1[j] is true: In this case, ψ2[j
′] is also true. So, prdψ2

(j′) = prd1,2(prdψ1
(j)) =

prd1,2(lsim1(j)) = lsim2(j
′).

• ψ1[j] is false and ψ2[j
′] is true: In this case, prd1,2(prdψ1

(j)) = prd1,2(j). Hence,
prdψ2

(j′) = prd1,2(j) = lsim2(j
′).

• ψ2[j
′] is false: According to Lemma 2.2, we have that prd1,2(prdψ1

(j)) < prd1,2(j).
Hence, prdψ2

(j′) < prd1,2(j). So, according to Lemma 2.1, prdψ2
(j′) < fsim2(prd1,2(j)) =

fsim2(j
′).

2) If 6 ∃j ∈ N>0 : j
′ ∈ [fsim2(prd1,2(j)), prd1,2(j)], then ψ2[j

′] cannot be true. Let us take
j such that j = suc2,1(j

′). There are two possibilities, as illustrated in Figure 2.4.

• ψ1[j] is true: In this case, prd2,...,1(j
′) < j. Therefore, prdψ2

(j′) = prd1,2(prd2,...,1(j
′)) <

fsim2(j
′) (otherwise j 6= suc2,1(j

′)).

• ψ1[j] is false: In this case, prdψ1
(j) < fsim1(j). Suppose that prd1,2(prdψ1

(j)) ≥
fsim2(j

′). As illustrated in Figure 2.4(b), suc2,1(j
′) = prdψ1

(j) < fsim1(j). This
contradicts the hypothesis that j = suc2,1(j

′). Hence, prd1,2(prdψ1
(j)) < fsim2(j

′).
Since, prd2,...,1(j

′) ≤ prdψ1
(j) (due to monotonicity of prd), we have that prdψ2

(j′) =
prd1,2(prd2,...,1(j

′)) < fsim2(j
′).

(a) (b)

Figure 2.4: Illustration of Proposition 2.2.

Similarly, we can prove that

∀j′ ∈ N>0 :

{

sucψ(j
′) = fsim2(j

′) if ψ[j′] is true
sucψ(j

′) > lsim2(j
′) otherwise

60 Abstract schedules

Proposition 2.3. If Equation 2.1 holds for the closed walk ψ = p1 → p2 → · · · →
pm → p1, then it holds for walk ψ′ = pm → pm−1 → · · · → p1 → pm.

Proof: Firstly, we prove that

∀j′ ∈ N>0 :

{

prdψ′(j′) = lsimm(j
′) if ψ′[j′] is true

prdψ′(j′) < fsimm(j
′) otherwise

There are two cases:

1) ψ′[j′] is true: As illustrated in Figure 2.5(a), if j = prdm,m−1,...,1(j
′), then ψ[j] is also

true. Hence, prdψ′(j′) = prd1,m(j) = lsimm(j
′).

2) ψ′[j′] is false: Let j = prdm,m−1,...,1(j
′). we have that suc1,...,m(j) ≤ fsimm(j

′) and
hence sucψ(j) ≤ sucm,1(j). Suppose that prdψ′(j′) ≥ fsimm(j

′) (i.e. the walk ψ′ is
inconsistent). Hence, prd1,m(j) ≥ fsimm(j

′). This implies that sucm,1(j
′) ≤ fsim1(j).

So, we have that sucψ(j) ≤ sucm,1(j
′) ≤ fsim1(j) ≤ lsim1(j). This contradicts the

hypothesis that Equation 2.1 holds for walk ψ.
Similarly, we can prove that

∀j′ ∈ N>0 :

{

sucψ′(j′) = fsimm(j
′) if ψ′[j′] is true

sucψ′(j′) > lsimm(j
′) otherwise

(a) (b)

Figure 2.5: Illustration of Proposition 2.3.

Composition

A cycle (or simple cycle) is a closed path; i.e. a closed walk with no repeated vertices
(except the requisite repetition of the first and last vertices). For example, in Figure
2.6, walks ψ = p1 → p2 → p1 and ψ′ = p2 → p3 → p4 → p5 → p2 are simple cycles;
while walk ψ′′ = p1 → p2 → p3 → p4 → p5 → p2 → p1 is not a simple one. Every closed
walk can be expressed as the disjoint union of some simple cycles. For instance, ψ′′ is
the disjoint union of ψ and ψ′.

Activation-related schedules 61

Figure 2.6: Graph of activation relations.

Proposition 2.4 (Consistency of closed walks). A closed walk ψ is consistent if all
simple cycles composing ψ are consistent.

Proof:
Let ψ = p1 → . . .→ p1. Suppose that pi appears more than once in ψ. Hence, ψ can

be decomposed as p1 → . . . → pi−1 → ψ′ → pi+1 → . . . → p1 such that ψ′ is the walk
from the first occurrence of pi to the last one. Let us put ψ′′ = p1 → . . .→ pi → . . .→ p1
(i.e. ψ′′ is obtained by removing the sub-walk ψ′ from ψ). We suppose that ψ′ and
ψ′′ are simple cycles, otherwise we have to further decompose them. We have that
∀j ∈ N>0 : prdψ(j) = prdi,i+1,...,1(prdψ′(prd1,...,i−1,i(j))).

• ψ[j] is true: trivially, ψ′[prd1,...,i−1,i(j)] and ψ′′[j] are true. So, prdψ′(prd1,...,i−1,i(j)) =
prd1,...,i−1,i(j). Hence, prdψ(j) = prdi,i+1,...,1(prd1,...,i−1,i(j)) = prdψ′′(j) = lsim1(j).

• ψ[j] is false: In this case, ψ′′[j] and ψ′[prd1,...,i−1,i(j)] cannot be both true. In case
ψ′[prd1,...,i−1,i(j)] is true, we have that prdψ(j) = prdi,i+1,...,1(prdψ′(prd1,...,i−1,i(j))) =
prdi,i+1,...,1(prd1,...,i−1,i(j)) = prdψ′′(j) < fsim1(j). In case ψ′′[j] is true, we have
that prdψ(j) = prdi,i+1,...,1(prdψ′(prd1,...,i−1,i(j))) < prdi,i+1,...,1(fsimi

(prd1,...,i−1,i(j))) = lsim1(j). The third case (i.e. when both ψ′[prd1,...,i−1,i(j)] and
ψ′′[j] are false) is straightforward.

Similarly, we can prove the second part of Equation 2.1.

Some simple cycles can also be expressed as the symmetric difference of some other
simple cycles. For instance, in Figure 2.6, we have that p1 → p2 → p3 → p4 → p1⊎p2 →
p5 → p4 → p3 → p2 = p1 → p2 → p5 → p4 → p1.

Question 1 Let ψ,ψ′, ψ′′ be three simple cycles such that ψ = ψ′ ⊎ ψ′′. If ψ′ and ψ′′

are consistent, does this imply that ψ is also consistent?

Example 2.6 (Counterexample-Q1). In the general case, the answer to question 1

is no. The graph in Figure 2.6 is a counterexample where ψ′ = p1
[(0 1 1)ω ,(1 0 0)ω]−→

p2
[(0 1)ω ,(1 0)ω]−→ p3

[(0 1 0)ω ,(1 0 1)ω]−→ p4
[(1 0 0 1)ω ,(0 1 1 0)ω]−→ p1 and ψ′′ = p2

[(0 1)ω ,(1 0)ω]−→
p5

[(0 0 1)ω ,(1 1 0)ω]−→ p4
[(1 0 1)ω ,(0 1 0)ω]−→ p3

[(1 0)ω ,(0 1)ω]−→ p2. Equation 2.1 holds for ψ′

(Figure 2.7(a)) and ψ′′ (Figure 2.7(b)) but not for ψ = ψ′ ⊎ψ′′ (Figure 2.7(c)). Indeed,
prdψ(1) = 2.

62 Abstract schedules

Figure 2.7: Consistency of symmetric difference of simple cycles.

Question 2 Let ψ,ψ′, ψ′′ be three simple cycles such that ψ = ψ′ ⊎ ψ′′. If ψ is
consistent, does this imply that ψ′ and ψ′′ are also consistent?

Example 2.7 (Counterexample-Q2). In the general case, the answer to question 2 is

no. In Example 2.6, if we put p4
[(1 0 1)ω ,(0 1 0)ω]−→ p5 and p3

[(0 0 1)ω ,(1 1 0)ω]−→ p4, then
Equation 2.1 holds for cycle ψ but not for ψ′.

Proposition 2.5 (Consistency of an abstract schedule). An abstract schedule is consis-
tent if and only if every undirected cycle in the graph of activation relations is consistent.

Proof:
Let Ψi,i be the set of all closed walks from pi to itself in Gr. If Equation 2.1 holds

for each walk in Ψi,i, then we will have that

∀j ∈ N>0 :

{

prdi→i(j) = lsimi(j) ∧ suci→i(j) = fsimi(j) if ∃ψ ∈ Ψi,i : ψ[j] is true
prdi→i(j) < fsimi(j) ∧ suci→i(j) > lsimi(j) otherwise

Hence, there will be no causality problems in the schedule. According to Proposition
2.4 and the previous counterexamples, it is enough to check only the consistency of all
the simple cycles. According to propositions 2.2 and 2.3, it is enough to check only the
consistency of one cycle per undirected cycle in graph Gr.

Consistency of ultimately periodic schedules

Definition 2.7 (Ultimately periodic schedules). An activation relation [si,k, sk,i] is ul-
timately periodic if si,k and sk,i are ultimately periodic sequences. An abstract schedule
is ultimately periodic if all its activation relations are ultimately periodic.

Hence, we can put si,k = ui,kv
ω
i,k and sk,i = uk,iv

ω
k,i such that |ui,k| = |uk,i| and

|vi,k| = |vk,i|. Example 2.2 is an ultimately periodic abstract schedule.

Proposition 2.6. A closed walk ψ = p1 → p2 → · · · → pm → p1 in an ultimately
periodic schedule is consistent only if

m
∏

i=1

‖vi,k‖ =
m
∏

i=1

‖vk,i‖ (2.2)

Where k = i mod m+ 1 and ‖v‖ is the sum of elements of the finite integer sequence
v.

Activation-related schedules 63

Proof:
If Equation 2.1 holds for ψ, then we have that ∀j ∈ N>0 : prdψ(j) ≤ j and sucψ(j) ≥

j. Let k1 be the maximum integer for which ‖u1,2‖+k1‖v1,2‖ < fsim1(j). As illustrated
in Figure 2.8, k1 is the number of instances of the positioning pattern before the instance
that contains the jth activation of p1. Since [s1,2, s2,1] is an ultimately periodic activation
relation, we have that prd1,2(j) ≥ j1 = ‖u2,1‖+ k1‖v2,1‖. Continuing the same process,
k2 is the maximum integer for which ‖u2,3‖ + k2‖v2,3‖ < fsim2(j1) and so prd2,3(j1) ≥
j2 = ‖u3,2‖+ k2‖v3,2‖. Hence, jm = ‖u1,m‖+ km‖v1,m‖ ≤ prdm,1(jm−1) ≤ j.

We denote by c any non important constant. We have that k1 = 1
‖v1,2‖j + c, k2 =

‖v2,1‖
‖v1,2‖‖v2,3‖j+c, . . . , km =

‖v2,1‖...‖vm,m−1‖
‖v1,2‖...‖vm,1‖ j+c. Let us denote by

∏

ψ the product of ‖vi,k‖
of all the activation relations on a walk ψ. So, prdψ(j) ≤ j implies that

∏
ψ−1
∏
ψ
j + c ≤ j.

When j tends to infinity, the previous inequality has a solution only if
∏

ψ−1 ≤
∏

ψ.

Similarly and using the second part of Equation 2.1, we have that
∏
ψ−1
∏
ψ
j+c ≥ j. Thus,

∏

ψ−1 ≥
∏

ψ.

positioning pattern

Figure 2.8: Illustration of Proposition 2.6.

Property 2.4. Let ψ, ψ′, and ψ′′ be three simple cycles such that ψ = ψ′ ⊎ ψ′′. If
Equation 2.8 holds for ψ′ and ψ′′, then it holds for ψ.

Proof:
We prove the case where the set of edges in ψ′ that have opposites in ψ′′ forms a

contiguous path; however, the presented argument also holds for the general case. Let
ψ∗ = ψ′∩ψ′′ be such a contiguous path. Hence, we can put ψ′ = ψ1+ψ∗, ψ′′ = ψ2+ψ

−1
∗ ,

and ψ = ψ1 + ψ2. Since Equation 2.8 holds for ψ′ and ψ′′, we have that
∏

ψ1
.
∏

ψ∗
=

∏

ψ−1

1

.
∏

ψ−1
∗

and
∏

ψ2
.
∏

ψ−1
∗

=
∏

ψ−1

2

.
∏

ψ∗
. Hence,

∏

ψ1
.
∏

ψ2
=

∏

ψ−1

1

.
∏

ψ−1

2

.

2.2.3 Overflow analysis

An overflow exception occurs when an actor attempts to write to a full channel. Let
e = (pi, pk, x, y) be a channel between the producer pi and the consumer pk. The
overflow analysis ensures that the (over-approximated) number of accumulated tokens
in channel e does not exceed its size δ(e) for every execution of the dataflow graph. The
(over-approximated) number of accumulated tokens can be computed as follows.

• The number of produced tokens by job pi[j] is equal to x(j).

64 Abstract schedules

• The number of produced tokens before pi[j] writes any token is equal to ⊕x(j − 1)
since we assume that the scheduling policy ensures, even with auto-concurrency, that
jobs of the producer write tokens in the same order of their activation. The number
of produced tokens until and including the jth job of pi is hence equal to ⊕x(j). If
j = lsimi(j) (which is always the case if auto-concurrency is disabled), then ⊕x(j) =
⊕(x⊗ si,k)(s−1

i,k (j)) = ⊕x(⊕si,k(s−1
i,k (j))).

Definition 2.8 (Complete before). cbefi,k : N>0 → N is an integer function such that
pk[cbefi,k(j)] is the last job of pk which certainly reads all its needed tokens from channel
e before pi[j] writes any token on that channel. So, cbefi,k is a monotone function.

• The (under-approximated) number of consumed tokens before pi[j] writes any token
on channel e is equal to ⊕y(cbefi,k(j)) since we assume that the scheduling policy
ensures, even with auto-concurrency, that jobs of the consumer consume tokens in the
same order of their activation. If cbefi,k(j) = lsimk(cbefi,k(j)), then ⊕y(cbefi,k(j)) =
⊕(y ⊗ sk,i)(s−1

k,i (cbefi,k(j))) = ⊕y(⊕sk,i(s−1
k,i (cbefi,k(j)))).

Function cbefi,k depends essentially on the scheduling policy, the physical timing
parameters, and the implementation code of the firing functions. Since the abstract
schedule consists of a set of timeless constraints, function cbefi,k could be only a safe
approximation that does not consider neither the timing nor the implementation code.

Example 2.8. Let us take e2 = (p1, p2, 1
ω, 2ω) of the self-timed example (Figure 1.1,

p. 26). We have that cbef1,2(j) = sprd1,2(j) =
⌈

j
2

⌉

. Since actor p2 does not preempt

actor p1 or execute in parallel with it, function cbef1,2, as defined before, is accurate.
Similarly, ∀j ≥ 2 : cbef2,3(j) = sprd2,3(j) gives the accurate values. However, since job
p2[1] executes in parallel with job p3[1], it is not safe to say that p3[1] reads the required
data before p2[1] writes its results unless we assume that an actor reads tokens at the
beginning of firings and writes results at the end. A safe approximation for the overflow
analysis is one that over-approximates the number of accumulated tokens in channels,
hence cbef2,3(1) = 0.

The (over-approximated) number of accumulated tokens on channel e when job pi[j]
writes all its results can be given as

X(j) = θ(e) +⊕x(j)−⊕y(cbefi,k(j))

If the over-approximated number of accumulated tokens in the channel does not
exceed the size of the channel δ(e) for all j ∈ N>0, then overflow exceptions will not
occur at run-time. Hence, the overflow analysis can be formulated as follows.

∀j ∈ N>0 : θ(e) +⊕x(j)−⊕y(cbefi,k(j)) ≤ δ(e) (2.3)

If ∀j ∈ N>0 : cbefi,k(j) = cbefi,k(lsimi(j)), then Equation 2.3 can be checked only for
points where j = lsimi(j) since the maximum numbers of accumulated tokens happen
at these points.

Activation-related schedules 65

Example 2.9. In the self-timed example and for e = (p1, p2, 1
ω, 2ω), we have that

s2,1 ∈ Bω and cbef1,2(j) = cbef1,2(lsim1(j)). Thus, Equation 2.3 can be written as

∀j ∈ N>0 : θ(e) +⊕x(lsim1(j))−⊕y(cbef1,2(j)) ≤ δ(e)

We have that ∀j ∈ N>0 :

⊕x(j) = j; ⊕y(j) = 2j; cbef1,2(j) =
⌈

j
2

⌉

; lsim1(j) = 2
⌈

j
2

⌉

So,

X(j) = θ(e) + 2

⌈

j

2

⌉

− 2

⌈

j

2

⌉

= θ(e)

For θ(e) = 2, the overflow equation can be written as

∀j ∈ N>0 : δ(e) ≥ 2

The minimum safe size of channel e is hence equal to 2 (which is equal to the size
obtained by the symbolic execution).

Boundedness

Channel e can be implemented as a bounded buffer if there are bounded constants θ(e)
and δ(e) (with θ(e) ≤ δ(e)) that satisfy the overflow equation. From Equation 2.3, we
have that ⊕y(cbefi,k(j)) ≥ ⊕x(j) + θ(e) − δ(e). Since ⊕y is a monotone function, we
have that

cbefi,k(j) ≥ y−1(⊕x(j) + θ(e)− δ(e)) (2.4)

According to the second property of an activation relation (Property 2.1), there must
be a finite number of firings of the consumer between every two firings of the producer.
Hence, function cbefi,k should satisfy

∀j ∈ N>0 : cbefi,k(j)− cbefi,k(j − 1) is bounded (2.5)

Example 2.10 (SDF graphs). Let e = (p1, p2, a
ω, bω) be a channel in a SDF graph

where a, b ∈ N>0. We have that ⊕x(j) = aj, ⊕y(j) = bj, and y−1(j) =
⌈

j
b

⌉

. So,

cbef1,2(j) ≥
⌈

a
b
j + θ(e)−δ(e)

b

⌉

. For instance, if the activation relation and the scheduling

policy ensure that cbef1,2(j) = max{0,
⌈

a
b
j + θ(e)−δ(e)

b

⌉

}, then cbefi,k(j)− cbefi,k(j − 1)

is upper bounded by
⌈

a
b

⌉

.

2.2.4 Underflow analysis

The underflow analysis is dual to the overflow analysis. An underflow exception occurs
when an actor attempts to read from en empty channel. The underflow analysis ensures
that the (under-approximated) number of accumulated tokens is always greater than

66 Abstract schedules

or equal to zero for every execution of the dataflow graph. The (under-approximated)
number of accumulated tokens can be computed as follows.

• The number of consumed tokens by job pk[j] is equal to y(j).

• The number of consumed tokens before pk[j] reads any token is equal to ⊕y(j − 1).
The number of consumed tokens until and including the jth job of pk is hence equal to
⊕y(j). If j = lsimk(j), then ⊕y(j) = ⊕(y ⊗ sk,i(s−1

k,i (j)) = ⊕y(⊕sk,i(s−1
k,i (j))).

• The (under-approximated) number of produced tokens before pk[j] reads any token on
channel e is equal to ⊕x(cbefk,i(j)). Function cbefk,i : N>0 → N is a monotone integer
function such that pi[cbefk,i(j)] is the last job of pi which certainly writes all its results on
channel e before pk[j] reads any token from that channel. If cbefk,i(j) = lsimi(cbefk,i(j)),
then ⊕x(cbefk,i(j)) = ⊕(x⊗ si,k)(s−1

i,k (cbefk,i(j))) = ⊕x(⊕si,k(s−1
i,k (cbefk,i(j)))).

If the under-approximated number of accumulated tokens in the channel is greater
than or equal to zero for all j ∈ N>0, then underflow exceptions will not occur at run
time. Hence, the underflow analysis can be formulated as follows.

∀j ∈ N>0 : θ(e) +⊕x(cbefk,i(j))−⊕y(j) ≥ 0 (2.6)

Example 2.11. Let us take channel e = (p2, p3, 3
ω, 1ω) of the self-timed example. We

have that ∀j ≥ 2 : cbef3,2(j) = sprd3,2(j) =
⌈

j−1
3

⌉

. Since it is not safe to say that p2[1]

writes its results before p3[1] reads any token, we must take cbef3,2(1) = 0. We have
that s2,3 ∈ Bω and cbef3,2(j) = cbef3,2(lsim3(j)). Thus, Equation 2.6 can be written as

∀j ∈ N>0 : Y (j) = θ(e) +⊕x(cbef3,2(j))−⊕y(lsim3(j)) ≥ 0

We have that

⊕x(j) = 3j; ⊕y(j) = j; lsim3(j) = 3
⌈

j−1
3

⌉

+ 1; cbef3,2(j) =
⌈

j−1
3

⌉

So,

Y (j) = θ(e) + 3

⌈

j − 1

3

⌉

− (3

⌈

j − 1

3

⌉

+ 1) = θ(e)− 1

The underflow equation can be written as

∀j ∈ N>0 : θ(e)− 1 ≥ 0

The minimum number of initial tokens on the channel that excludes underflow excep-
tions is hence equal to 1.

Boundedness

Channel e can be implemented as a bounded buffer if there is a bounded constant θ(e)
that satisfies the underflow equation. From Equation 2.6, we have that ⊕x(cbefk,i(j)) ≥
⊕y(j)− θ(e). Since ⊕x is a monotone function, we have that

cbefk,i(j) ≥ x−1(⊕y(j)− θ(e)) (2.7)

Affine schedules 67

According to Property 2.1, there must be a finite number of firings of the producer
between every two firings of the consumer. Hence, function cbefk,i should satisfy

∀j ∈ N>0 : cbefk,i(j)− cbefk,i(j − 1) is bounded (2.8)

Since cbefk,i(cbefi,k(j)) < j, there is no activation relation that satisfies both the over-
flow and the underflow analyses if ∃j :

x−1(⊕y(y−1(⊕x(j) + θ(e)− δ(e)))− θ(e)) ≥ j

A similar condition can be deduced using cbefi,k(cbefk,i(j)) < j.

Example 2.12. Let e = (p1, p2, x, 2
ω) be a channel such that x is equal to the Fibonacci

word. The Fibonacci word is an aperiodic infinite binary sequence and cannot hence
modeled in the (C)SDF model. If s0 = 0, s1 = 0 1, and sn = sn−1.sn−2, then the
Fibonacci word is the limit s∞.

If Φ = 1+
√
5

2 is the golden ratio, then we have that x(j) = 2 + ⌊jΦ⌋ − ⌊(j + 1)Φ⌋,
y−1(j) =

⌈

j
2

⌉

, x−1(j) = ⌊jΦ2⌋, and ⊕x(j) = 2j+1−⌊(j+1)Φ⌋. According to Equations

2.4 and 2.7, we must have

cbef2,1(j) ≥ ⌊(2j − θ(e))Φ2⌋ (2.9)

cbef1,2(j) ≥
⌈

2j + 1− ⌊(j + 1)Φ⌋+ θ(e)− δ(e)
2

⌉

(2.10)

A possible schedule of the two actors that could satisfy the previous equations is

presented in Listing 2.1. For this schedule, cbef1,2(j) =
⌊

j
2Φ2

⌋

and cbef2,1(j) = ⌊2Φ2j⌋.
Equation 2.9 is satisfied if θ(e) ≥ 0. For θ(e) = 0, Equation 2.10 is satisfied if δ(e) ≥ 2.
Hence, δ(e) = 2 is the minimum buffer size when θ(e) = 0.

Listing 2.1: A bounded and complete schedule of Example 2.12 .

j=1; k=0;

while(true) do{

for(i=k+1;i ≤ ⌊2Φ2j⌋ ;i++){ k++; code of p1 }

code of p2
j++;

}

2.3 Affine schedules

In real-time scheduling of dataflow graphs, a dataflow graph is represented as a periodic
task set where each actor is mapped to a periodic task with scheduling parameters
(period, phase, deadline, priority, etc). Tasks cannot self-suspend and auto-concurrency
is disabled. A periodic task set can be abstracted by a specific class of activation-related
schedules, called affine (or strictly periodic) schedules.

68 Abstract schedules

2.3.1 Affine relations

Affine transformations of abstract clocks were introduced in [168] (Definition 1.4, p.
22). In this section, we will approach them differently using ultimately periodic binary
sequences. Activation clocks p̂i and p̂k are (n, ϕ, d)-affine-related, with n, d ∈ N>0 and
ϕ ∈ Z, if in case ϕ is positive (resp. negative), clock p̂i is obtained by counting each
nth instant on a referential abstract clock ĉ starting from the first (resp. (−ϕ + 1)th)
instant; while clock p̂k is obtained by counting each dth instant on ĉ starting from the
(ϕ+ 1)th (resp. first) instant. Hence, we have ∀j ∈ N>0 (j denotes the jth tag in ĉ)

p̂i(j) =

{

1 if ∃t ∈ N : j = nt+max{1,−ϕ+ 1}
0 otherwise

and

p̂k(j) =

{

1 if ∃t ∈ N : j = nt+max{1, ϕ+ 1}
0 otherwise

Figure 2.9 represents a (3,−4, 5)-affine relation.

Figure 2.9: A (3,−4, 5)−affine relation.

Property 2.5. p̂i and p̂k are ultimately periodic binary sequences.

Proof : We have that ∀j ∈ N>0 : p̂i(j+
nd

gcd{n,d}) = p̂i(j) and p̂k(j+ nd
gcd{n,d}) = p̂k(j).

Therefore, there is a positioning pattern that repeats infinitely, as depicted in Fig-
ure 2.9. It consists of d

gcd{n,d} activations of pi and n
gcd{n,d} activations of pk. Thus,

parameters n and d of an affine relation encode the ratio between activation rates of
actors. For instance, a (1, ϕ, 2)-affine relation means that pi is twice as fast as actor pk.
Parameter ϕ encodes the difference between the first start times of the two actors.

Property 2.6. If pi and pk are (n, ϕ, d)-affine-related, then pk and pi are (d,−ϕ, n)-
affine-related.

In the sequel, ϕ is supposed to be positive (unless it is stated otherwise). When
ϕ is negative, it is sufficient to reverse the affine relation and then obtain the desired
property.

Property 2.7. An affine relation contains synchronous activations if and only if
gcd{n, d} divides ϕ.

Proof : If pi[j] = pk[j
′], then p̂i(nj−n+1) = p̂k(dj

′−d+ϕ+1) = 1 and nj−dj′ = ϕ+n−d.
We have two cases:
(i) gcd{n, d}|ϕ: the diophantine equation n

gcd{n,d}j − d
gcd{n,d}j

′ = ϕ+n−d
gcd{n,d} have an in-

finite number of solutions. If the first synchronization occurs at (j1, j
′
1), then the lth

Affine schedules 69

synchronization occurs at (j1 +
(l−1)d

gcd{n,d} , j
′
1 +

(l−1)n
gcd{n,d}). Hence, there is exactly one syn-

chronization per positioning pattern instance.
(ii) gcd{n, d} 6 |ϕ: Equation nj − dj′ = ϕ+ n− d has no solution.

Since we are not interested in tags where both clocks are absent, we define an affine
relation as an ultimately periodic activation relation [si,k = uiv

ω
i , sk,i = ukv

ω
k]. We have

that (assuming that ϕ is positive)

• |ui| = |uk| =
⌈

ϕ
n

⌉

; ∀j ≤ |ui| : ui(j) = 1 and uk(j) = 0.

• According to Property 2.7,

|vi| = |vk| =
n+ d

gcd{n, d} −
{

1 if gcd{n, d}|ϕ
0 otherwise

• ‖vi‖ = d
gcd{n,d} and ‖vk‖ = n

gcd{n,d} .

Example 2.13. For the affine relation in Figure 2.9, we have that si,k = 0(1 0 1 1 1 0 1)ω

and sk,i = 1(0 1 0 1 0 1 0)ω.

We have also that sprdi,k(j) = max{0,
⌈

n(j−1)−ϕ
d

⌉

}, prdi,k(j) = max{0,
⌊

n(j−1)−ϕ
d

⌋

+

1}, ssuci,k(j) = prdi,k(j) + 1, and suci,k(j) = sprdi,k(j) + 1. To obtain sprdk,i, prdk,i,
ssuck,i, and suck,i, we need just to reverse the affine relation. Let ξ(j) be the number of
synchronizations until and including pi[j], and pi[j1] be the first job of pi synchronized
with a job of pk. So, we have that s−1

i,k (j) = j + prdi,k(j)− ξ(j) and

ξ(j) =

{

0 if gcd{n, d} 6 |ϕ
max{0,

⌊

(j−j1) gcd{n,d}
d

⌋

+ 1} otherwise

Canonical form

An infinite number of affine transformations can result in the same activation relation.
For instance, (n, ϕ, d) and (cn, cϕ, cd) (where c is an integer constant) result in the same
activation relation. A canonical form is therefore proposed in [167]. Let g = gcd{n, d}.
So,

(i) g|ϕ: (n, ϕ, d) ≡ (n
g
, ϕ
g
, d
g
).

(ii) g 6 |ϕ: (n, ϕ, d) ≡ (2n
g
, 2

[

ϕ
g

]

+ 1, 2d
g
).

The first case is obvious; the second case needs a proof. We present here a much
simpler proof than the one presented in [167].

Proof: Let (n, ϕ, d) ≡ (n′, ϕ′, d′) with n′ = mn
g

and d′ = md
g

. We need to find the
minimum integers m (m ≥ 1) and ϕ′ such that both affine transformations result in the
same activation relation; hence in the same sprdi,k and ssuci,k.

70 Abstract schedules

sprdi,k(j) =
⌈

n′(j−1)−ϕ′

d′

⌉

=
⌈

n(j−1)−ϕ
d

+ ϕ
d
− gϕ′

md

⌉

. The two affine transformations

are equivalent only if
⌈

n(j−1)−ϕ
d

⌉

=
⌈

n(j−1)−ϕ
d

+ ϕ
d
− gϕ′

md

⌉

. Let d0 ≥ 1 and d1 ≥ 1 be

the minimum integers such that d|n(j−1)−ϕ−d0 and d|n(j−1)−ϕ+d1, respectively.
Note that d0 and d1 are greater or equal to 1 because the affine relation does not contain
any synchronous activations (since g 6 |ϕ). Hence, we must have −d0 < ϕ − g

m
ϕ′ ≤ d1.

Following the same process with ssuci,k, we should have the constraint −d0 ≤ ϕ− g
m
ϕ′ <

d1. Therefore, ϕ−d1
g

< ϕ′

m
< ϕ+d0

g
. So, we must have

ϕ−min
j
d1

g
< ϕ′

m
<

ϕ+min
j
d0

g
. Since

min
j
d0 +min

j
d1 = g, bounds

ϕ−min
j
d1

g
and

ϕ+min
j
d0

g
are two successive integers. Hence,

the minimum value of m is 2 and the minimum value of ϕ′ is 2
[

ϕ
g

]

+ 1.

2.3.2 Consistency

An affine schedule consists of a set of affine relations. Let Gr be the graph of affine
relations.

Proposition 2.7. A closed walk p1
(n1,ϕ1,d1)−→ p2 → · · · → pm

(nm,ϕm,dm)−→ p1 is consistent
only if

m
∏

i=1

ni =
m
∏

i=1

di (2.11)

Proof: Since an affine schedule is also an ultimately periodic schedule, a closed walk in

Gr is consistent only if Proposition 2.8 is satisfied; i.e.
m
∏

i=1
‖vi,k‖ =

m
∏

i=1
‖vk,i‖ with k = i

mod m+ 1. But, ‖vi,k‖ = di
gcd{ni,di} and ‖vk,i‖ = ni

gcd{ni,di} .

Proposition 2.8. A closed walk p1
(n1,ϕ1,d1)−→ p2 → · · · → pm

(nm,ϕm,dm)−→ p1 is consistent
if Equation 2.11 is satisfied and

m
∑

i=1

(

i−1
∏

j=1

dj)(

m
∏

j=i+1

nj)ϕi = 0 (2.12)

Proof: Let us put Xm =
m
∏

i=1
ni, Ym =

m
∏

i=1
di, and Zm =

m
∑

i=1
(
i−1
∏

j=1
dj)(

m
∏

j=i+1
nj)ϕi. We have

two cases.
(i) ψ[j] is true: In this case, prd1,2(j) =

X1j−Z1

Y1
− X1

Y1
+1, prd1,2,3(j) =

X2j−Z2

Y2
− X2

Y2
+1,

etc. Since Xm = Ym, we have that prdψ(j) = j − Zm
Ym

. According to Proposition 2.1,
prdψ(j) = j; hence Zm = 0. Similar process can be done for sucψ.

(ii) ψ[j] is false: Since prdψ(j) < j − Zm
Ym

< sucψ(j), condition Zm = 0 is a sufficient
condition for consistency.

Affine schedules 71

Example 2.14. Proposition 2.8 is a sufficient but non-necessary condition for consis-

tency of a cycle. If p1
(3,5,5)−→ p2

(4,−8,3)−→ p3
(n3,ϕ3,d3)−→ p1, then according to Equations 2.11

and 2.12 we have that 4n3 = 5d3 and 4n3 = 3ϕ3. So, (n3, ϕ3, d3) ≡ (15k, 20k, 12k) for
k ≥ 1. Since gcd{15k, 12k} 6 |20k, the canonical form is (10, 13, 8). However, Equation
2.12 does not hold when (n3, ϕ3, d3) = (10, 13, 8). The affine schedule is also consistent
when (n3, ϕ3, d3) = (10, 11, 8), as illustrated in Figure 2.10. Equation 2.12 does not
also hold in this case. All the affine transformations that are equivalent with (10, 11, 8)
can be written as (5k, ϕ, 4k) with 5k < ϕ < 6k. All these affine transformations cannot
satisfy Equation 2.12.

Figure 2.10: A consistent affine schedule.

Property 2.8. Equation 2.12 is a necessary condition if the following equation system
admits a solution.

Γ~x = ~ϕ (2.13)

where ~ϕ(i) = ϕi, and for every affine relation pi
(ni,ϕi,di)−→ pk with k = (i mod m) + 1,

we have that Γi,i = ni and Γi,k = −di.

Proof: Firstly, if Equation 2.13 admits a solution, then it admits an infinite number of
solutions since det(Γ) = Xm − Ym = 0. If ~x is a solution, then ∀i = 1,m : ni~x(i) −
di~x(k) = ϕi such that k = (i mod m) + 1. Hence, prdi,k(~x(i) + 1) = suci,k(~x(i) + 1) =
~x(k) + 1. So, pi[~x(i) + 1] = pk[~x(k) + 1]. Thus, ψ[~x(1) + 1] is true. According to the
proof of Proposition 2.8, Zm must be equal to zero.

In real-time scheduling of dataflow graphs, we need to have a global referential
clock. Therefore, Proposition 2.8 must hold for every simple cycle in the graph of affine
relations.

Proposition 2.9. Let ψ, ψ′, ψ′′ be three simple cycles such that ψ = ψ′ ⊎ ψ′′ and
ψ′ ∪ ψ′′ forms a continuous path. If Proposition 2.8 holds for ψ′ and ψ′′, then it holds
for ψ.

Proof: According to Property 2.4 and since an affine schedule is also an ultimately
periodic schedule, we have that Equation 2.11 holds for cycle ψ. Since the set of edges
in ψ′ that have opposites in ψ′′ forms a contiguous path, we can put ψ′ = ψ1+ψ∗, ψ′′ =
ψ2 +ψ−1

∗ , and ψ = ψ1 +ψ2. To ease the notations, we illustrate the proof for Equation

72 Abstract schedules

2.12 on an example. Let ψ∗ = p2
(n,ϕ,d)−→ p3

(n′,ϕ′,d′)−→ p4, ψ1 = p4
(n4,ϕ4,d4)−→ p1

(n1,ϕ1,d1)−→ p2,

and ψ2 = p2
(n2,ϕ2,d2)−→ p5

(n5,ϕ5,d5)−→ p4.
So, we have that Zψ′ = n1ϕ4nn

′ + d4ϕ1nn
′ + d4d1ϕn

′ + d4d1ϕ
′d = 0 and Zψ′′ =

n5ϕ2d
′d+d2ϕ5d

′d−d2d5ϕ′d−d2d5ϕn′ = 0. We then eliminate common terms: d2d5Zψ′+

d4d1Zψ′′ = n5d4d1ϕ2dd
′ + d2d4d1ϕ5dd

′ + n1d2d5ϕ4nn
′ + d4d2d5ϕ1nn

′ = 0. Using nn′

dd′
=

d4d1
n4n1

(Equation 2.11 on cycle ψ′), we obtain
d2d5Zψ′+d4d1Zψ′′

dd′
= Zψ = 0.

Generally, if Xψ is the product of parameters n of affine relations on walk ψ and Yψ
is the product of parameters d of affine relations on walk ψ, then

Yψ1
Zψ′′ + Yψ2

Zψ′ = Yψ∗
Zψ

Proposition 2.10 (Consistency of affine schedules). An affine schedule is consistent if
Equations 2.11 and 2.12 hold for every fundamental cycle in the graph of affine relations.

A fundamental cycle is an undirected cycle that is obtained when adding an edge
to the spanning tree (or the spanning forest if Gr is not connected) of the graph of
affine relations. There is a one-to-one correspondence between fundamental cycles and
edges not in the spanning tree. if Gr = (P,R) is connected, then there are |R| −N + 1
fundamental cycles. Fundamental cycles form a basis for the cycle space; i.e. any
undirected cycle in the graph can be expressed as the symmetric difference of some
fundamental cycles. According to Proposition 2.9, we need to check consistency of only
cycles in a cycle basis. Finding a cycle basis is a well-known problem in graph theory
[110] that can be solved in polynomial time. Finding the minimum cycle basis (i.e. the
total number of edges in the cycle basis is minimum) could be interesting to reduce the
length of constraints (i.e. Equation 2.12).

2.3.3 Fixed-priority schedules

In FP scheduling, each actor pi has a constant priority sequence ωi = (wi)
ω. We assume

that each actor can have a distinguished priority. At each instant of the execution, a FP
scheduler chooses the task with the highest priority among all activated tasks to execute
on a given processor. In case of partitioned scheduling, each actor is permanently
allocated to processor number νi; while in global scheduling, a job can migrate from one
processor to another. We will show in the next chapter how to compute the scheduling
parameters wi and νi of each actor. In this section, we present how to compute a
FP abstract schedule using Linear Integer Programming (ILP). The abstract schedule
consists of an affine relation between every two adjacent (i.e. communicating) actors.
The abstract schedule should exclude overflow and underflow exceptions.

A Overflow analysis

Let e = (pi, pk, x, y) be a channel between the (n, ϕ, d)-affine-related actors pi and pk.
The affine relation is under the canonical form. Firstly, we need to compute function

Affine schedules 73

cbefi,k that corresponds to a FP scheduling policy without considering the physical
timing. Figures 2.11 illustrates for all possible cases which last job of pk certainly reads
all its needed tokens from channel e before pi[j] writes any token on that channel. Let
j′ = prdi,k(j) and j′′ = cbefi,k(j).

(i) Partitioned scheduling:

a. wi < wk, νi = νk, and pi[j] 6= pk[j
′]: When job pi[j] is released, it may be possible

that pk[j′] has not yet finished reading from channel e. In this case, pi[j] preempts
pk[j

′] because pi has the highest priority and both jobs are allocated to the same
processor. Thus, we are only certain that pk[j′ − 1] has already finished. A safe
approximation is hence to put cbefi,k(j) = prdi,k(j)− 1.

b. wi < wk, νi = νk, and pi[j] = pk[j
′]: jobs pi[j] and pk[j

′] are released simultane-
ously to execute on the same processor. Thus, pi[j] will execute first because it
has the highest priority. Hence, cbefi,k(j) = prdi,k(j)− 1.

c. wi < wk, νi 6= νk, and pi[j] 6= pk[j
′]: As in case (a), cbefi,k(j) = prdi,k(j)− 1.

d. wi < wk, νi 6= νk, and pi[j] = pk[j
′]: As in case (b), cbefi,k(j) = prdi,k(j)− 1.

e. wi > wk, νi = νk, and pi[j] 6= pk[j
′]: Since pk[j′] has a higher priority than pi[j]

and pk[j′] is released first, we are certain that pk[j′] ends before pi[j] starts writing
any token. Hence, cbefi,k(j) = prdi,k(j).

f. wi > wk, νi = νk, and pi[j] = pk[j
′]: As in the previous case, cbefi,k(j) = prdi,k(j).

g. wi > wk, νi 6= νk, and pi[j] 6= pk[j
′]: Though pk[j

′] is released before pi[j] and
pk[j

′] has the highest priority, we are not certain that pk[j′] completes reading
from channel e before pi[j] starts writing. Indeed, pi[j] and pk[j

′] can execute in
parallel with each other because they are allocated to different processors. A safe
approximation is hence cbefi,k(j) = prdi,k(j)− 1.

h. wi > wk, νi 6= νk, and pi[j] = pk[j
′]: pi[j] can execute in parallel with pk[j

′].
Thus, cbefi,k(j) = prdi,k(j)− 1.

Figure 2.11: Function cbefi,k: partitioned fixed-priority scheduling.

74 Abstract schedules

To sum up, it is certain that the last job of pk released before or simultaneously with
pi[j], completes reading from channel e before pi[j] starts writing on e only if pk has a
higher priority than pi and both actors are allocated to the same processor. Therefore,

cbefi,k(j) =

{

max{0, prdi,k(j)− 1} if wi < wk ∨ νi 6= νk
prdi,k(j) otherwise

(ii) Global scheduling: It is possible that there are enough resources to execute pi[j] and
pk[j

′] in parallel with each other. Hence, a safe approximation is to take cbefi,k(j) =
max{0, prdi,k(j)− 1}.

Channel e is overflow-free if Equation 2.3 is satisfied. Unfortunately, that equation
is not a linear constraint. Similarly to real-time calculus, we approximate the number
of accumulated tokens by upper and lower bound curves. However, the curves are time-
independent. If ⊕xu is the upper bound curve of ⊕x, ⊕yl is the lower bound curve of
⊕y, and cbefli,k is the lower bound curve of cbefi,k, then the over-approximated number
of accumulated tokens is given as

Xu(j) = θ(e) +⊕xu(j)−⊕yl(cbefli,k(j))

In order to compute cbefli,k, we need to compute the lower bound of
⌊

n(j−1)−ϕ
d

⌋

which could be taken as the linear bound n
d
j − ϕ+n+d−1

d
. Since an actor produces

or consumes a finite number of tokens at each firing, the cumulative function of a rate
function x can be linearly bounded. Suppose that we have ∀j ∈ N : ⊕xl(j) = axj+λ

l
x ≤

⊕x(j) ≤ ⊕xu(j) = axj+λux with ax ∈ Q>0. If cbefi,k(j) = prdi,k(j)− 1, then we obtain

Xu(j) = (ax − ay
n

d
)j + θ(e) + λux − λly + ay

ϕ+ n+ d− 1

d

The number of accumulated tokens is bounded only if ax − ay nd = 0. Thus, the
boundedness criterion is

n

d
=
ax
ay

(2.14)

Since n and d can be deduced from the boundedness criterion, the overflow equation
can be written as a simple linear constraint

θ(e)− δ(e) + ay
d
ϕ ≤ λly − λux − ay

n+ d− 1

d
(2.15)

where ϕ is the free integer variable. The size of the channel and the number of its initial
tokens can be either predefined or free variables. If cbefi,k(j) = prdi,k(j), we obtain the
following linear constraint.

θ(e)− δ(e) + ay
d
ϕ ≤ λly − λux − ay

n− 1

d
(2.16)

Affine schedules 75

B Underflow analysis

The underflow analysis is dual to the overflow analysis. We first need to compute
function cbefk,i that corresponds to a FP scheduling policy without considering the
physical timing. Figure 2.12 illustrates for some possible cases which last job of pi
certainly writes all its results on channel e before pk[j] reads any token from that
channel.

Figure 2.12: Function cbefk,i: partitioned fixed-priority scheduling.

In partitioned scheduling, cbefk,i(j) = prdk,i(j) if wi < wk and νi = νk (cases (a)
and (b)); and cbefk,i(j) = prdk,i(j) − 1 otherwise. In global scheduling, cbefk,i(j) =
prdk,i(j)− 1 (cases (c) and (d)). The number of accumulated token in channel e can be
under-approximated as

Y l(j) = θ(e) +⊕xl(cbeflk,i(j))−⊕yu(j)

If cbefk,i(j) = prdk,i(j) − 1, then cbefk,i(j) can be linearly lower bounded by d
n
j +

ϕ−n−d+1
n

. Hence,

Y l(j) = (ax
d

n
− ay)j + θ(e) + λlx − λuy + ax

ϕ− n− d+ 1

n

But, ax dn − ay = 0 (the boundedness criterion). Therefore, the underflow equation can
be written as the following linear constraint.

θ(e) +
ay
d
ϕ ≥ λuy − λlx + ay

n+ d− 1

d
(2.17)

When cbefk,i(j) = prdk,i(j), the linear underflow constraint is given as.

θ(e) +
ay
d
ϕ ≥ λuy − λlx + ay

d− 1

d
(2.18)

If we combine the overflow equation with the underflow equation, then we can
compute an approximate size of the channel as illustrated in Table 2.1 where λ =
(λuy +λ

u
x)− (λly+λ

l
x). These approximate sizes are useful when computing the schedul-

ing parameters. For instance, the gain in storage space that comes from switching
the priorities of two actors allocated to the same processor is approximatively equal to
ay|d−nn |.

76 Abstract schedules

νi = νk νi 6= νk
wi < wk λ+ ay

n+2d−2
d

λ+ ay
2n+2d−2

d

wi > wk λ+ ay
2n+d−2

d
λ+ ay

2n+2d−2
d

Table 2.1: Approximate buffer sizes in fixed-priority scheduling.

C Algorithm

If the graph of affine relations is acyclic, then every affine relation can be computed
independently of the other relations. Parameters n and d can be deduced from the
boundedness criterion; while parameter ϕ is computed (using an enumerative solution
or the approximate overflow and underflow equations) so that the total sum of sizes of
the channels between pi and pk is minimized.

When the graph of affine relations is cyclic, consistency of the schedule must be
considered. Firstly, we use Equation 2.14 to deduce parameters n and d of every affine
relation, then Equation 2.11 is applied on every fundamental cycle in Gr. To compute
the parameters ϕ, we construct an integer linear program by applying overflow and
underflow linear constraints on channels; and Equation 2.12 on fundamental cycles.
The objective function of the linear program is to minimize the buffering requirements.
From the overflow and underflow equations, we can notice that lim

|ϕ|→+∞
δ(e)
|ϕ| =

ay
d

. This

indicates that the best values of ϕ are in the neighborhood of 0.
The number of initial tokens in channels could be insufficient and an underflow-free

affine schedule does not hence exist. It is also possible to not find an underflow-free
schedule because of the conservative approximation made in the overflow and underflow
analyses. One option is to not specify the numbers of initial tokens and so let the
scheduling tool compute the appropriate values. Sizes obtained by the solution of the
linear program are a safe approximation of the actual sizes. Therefore, they may be
recomputed after obtaining the affine relations. The minimum number of initial tokens
is given by θ(e) = |min{0,min

j
{⊕x(cbefk,i(j))−⊕y(j)}}| and the minimum size of the

channel is given by δ(e) = max
j
{θ(e) +⊕x(j)−⊕y(cbefi,k(j))}.

As shown in the previous chapter, retiming techniques can be used to redistribute the
initial tokens in order to improve the throughput. If the production and consumption
rates are constant, then retiming can be easily expressed as linear constraints. If e =
(pi, pk, a

ω, bω) and ~z is the retiming vector, then we have to add the linear constraint
θ(e) = θ′(e) + a~z(i)− b~z(k) where θ′(e) is the user-provided number of initial tokens in
the channel.

2.3.4 EDF schedules

In EDF scheduling, the job with the earliest absolute deadline has the highest priority.
If two jobs pi[j] and pk[j

′] have the same absolute deadlines, then the job which is
released first gets the highest priority. However, if the two jobs are synchronous, then
we use the actors’ ID to break the tie. In this section, we show how to compute the

Affine schedules 77

affine schedule when the dataflow graph is modeled as an implicit periodic task set. We
also show the impact of the totally ordered communication strategy on the buffering
requirements.

A Implicit task model

Each job p[j] has an absolute deadline that has the same tag as the next release p[j+1].
Let e = (pi, pk, x, y) be a channel between two (n, ϕ, d)-affine-related actors. Regarding
the overflow analysis, we need to compute function cbefi,k that corresponds to the EDF
scheduling of implicit task sets. Figures 2.13 illustrates for some possible cases which
last job of pk certainly reads all its needed tokens from channel e before pi[j] writes any
token on that channel. Let j′ = prdi,k(j) and j′′ = cbefi,k(j).

(i) Partitioned scheduling (νi = νk):

a,b. pi[j] 6= pk[j
′] and pk[j′ + 1] ≤ pi[j + 1]: According to the EDF policy, pk[j′] has a

higher priority than pi[j]. Since pk[j′] is released before pi[j] and the two actors
are allocated to the same processor, pk[j′] will end before pi[j] starts executing.
Hence, cbefi,k(j) = prdi,k(j).

c. pi[j] 6= pk[j
′] and pi[j + 1] < pk[j

′ + 1]: job pk[j
′] is released first; but it can be

preempted by pi[j] since this latter has the highest priority. Hence, it is safe to
take cbefi,k(j) = prdi,k(j)− 1.

d. pi[j] = pk[j
′] and pk[j

′ + 1] < pi[j + 1]: pk[j′] has a higher priority than pi[j].
Therefore, cbefi,k(j) = prdi,k(j).

e. pi[j] = pk[j
′] and pi[j + 1] = pk[j

′ + 1]: To break the tie, we need to look at
the actors’ ID. If ID(pk) < ID(pi), then cbefi,k(j) = prdi,k(j); else cbefi,k(j) =
prdi,k(j)− 1.

f. pi[j] = pk[j
′] and pi[j + 1] < pk[j

′ + 1]: job pi[j] has a higher priority than pk[j′].
Hence, cbefi,k(j) = prdi,k(j)− 1.

(a) (b) (c)

(d) (e) (f)

Figure 2.13: Function cbefi,k: partitioned EDF scheduling, νi = νk.

There are only three cases in which cbefi,k(j) = prdi,k(j)− 1 (cases (c), (e), and (f))
and which are possible only if d−n

gcd{n,d} ≥ 2 or if n = d ∧ ID(pi) < ID(pk).

78 Abstract schedules

(ii) Partitioned scheduling (νi 6= νk) or global scheduling: In these cases, priorities do not
guarantee any precedences between jobs as shown in the FP scheduling. For instance,
in Figure 2.13, case (a), jobs pk[j′] and pi[j] can execute in parallel with each other. So,
for all possible cases, we have that cbefi,k(j) = prdi,k(j)− 1.

The underflow analysis is dual to the overflow analysis. For instance, if pk[j] = pi[j
′],

νi = νk, and pk[j + 1] < pi[j
′ + 1], then cbefk,i(j) = prdk,i(j) − 1. The overflow and

underflow linear equations can be computed as in the FP scheduling. Similarly, we
can deduce the approximate gain that comes from allocating two actors to the same
processor.

B Totally ordered communication

Consider the case when the producer pi and the consumer pk are all allocated to the
same processor. As illustrated in Figure 2.13 case (c), worst-case overflow and underflow
scenarios are considered when there is a potential preemption. Besides reducing the
context switching overhead, eliminating preemptions will definitely result in a more
accurate analysis and hence less buffering requirements.

The totally ordered communication strategy between pi and pk is defined as follows.
If pi[j] is released before pk[j

′], then pi[j] executes entirely before pk[j
′]. Similarly,

if pk[j′] is released before pi[j], then pk[j
′] executes entirely before pi[j]. In the next

chapter, we will describe how to implement this communication strategy without using
lock-based synchronization mechanisms.

For the overflow analysis, we will have cbefi,k(j) = prdi,k(j) in cases (a,b,c,d) of
Figure 2.13 and cbefi,k(j) = prdi,k(j) − 1 in case (f). We need to look at actors’ ID to
break the tie in case (e). The difference between the implicit task model and the totally
ordered communication strategy lies in case (c); i.e. when d−n

gcd{n,d} ≥ 2. In this case,
the linear overflow and underflow equations are

λuy − λlx + ay
d− 1

d
≤ θ(e) + ay

d
ϕ ≤ δ(e) + λly − λux − ay

n

d

Compared to the implicit task model, the approximate gain on buffering require-
ments is hence equal to ay

d−1
d

. Similarly, if n−d
gcd{n,d} ≥ 2, then the consumer may

preempt the producer. The approximate gain that comes from the totally ordered
communication will be equal to ax n−1

n
.

One important question about the totally ordered communication strategy is whether
imposing scheduling precedences may create deadlocked cycles. The answer is no be-
cause we enforce a scheduling precedence from pi to pk only when n−d

gcd{n,d} ≥ 2. This
property cannot be satisfied by all relations on a cycle.

2.4 Specific cases

In this section, we refine our technique for ultimately cyclo-static dataflow graphs. We
also extend the approach to consider multichannels, shared storage space, synchronous
semantics, etc.

Specific cases 79

2.4.1 Ultimately cyclo-static dataflow graphs

Definition 2.9 (UCSDF graph). An ultimately cyclo-static dataflow (UCSDF) graph
is a static dataflow graph where production and consumption rates are ultimately peri-
odic.

Figure 2.14: An ultimately cyclo-static dataflow graph.

Figure 2.14 represents an UCSDF graph. It is not evident how to transform an
UCSDF graph to an equivalent SDF graph without refactoring the code. Let us consider a
very simple UCSDF graph G = ({p1, p2}, e = (p1, p2, x = u1v

ω
1 , y = u2v

ω
2)). This graph

can be modeled as a (C)SDF graph only if there are two finite integers j1 ≥ |u1| and
j2 ≥ |u2| such that θ(e) + ⊕x(j1) − ⊕y(j2) = 0. For example, if x = 3 0(2 1)ω, y =
3(2 0 1)ω, and θ(e) = 2, then j1 = 2 and j2 = 2. This way the graph can be partitioned
into two disjoint (C)SDF graphs: a deadlocked graph and a live one, as illustrated in
Figure 2.15. Note that actor p1[1] will fire only once (and hence corresponds to the first
job of actor p1) because of the non-consistent self loop.

Figure 2.15: (a) An UCSDF graph and (b) its equivalent CSDF graph.

There are some problems in this transformation method: (1) The resulted graph
is non-consistent, which hinders the use of analysis tools for (C)SDF graphs. (2) We
cannot disable auto-concurrency because this requires to add edges from the deadlocked
subgraph into the live one and hence turns this latter into a deadlocked graph. (3) The
UCSDF graph in Figure 2.14 cannot be transformed because it is not possible to find
three finite integers j1 ≥ 1, j2 ≥ 2, and j3 ≥ 1 that bring the marking to [0 0 0]T.

If Γ denotes the reachability graph in Figure 1.2 (p. 27), then the reachability graph

80 Abstract schedules

of the UCSDF example (Figure 2.14) is

0
0
0

p2−→

0
0
3

p3−→

1
0
1

p3−→

3
0
0

p1−→

0
4
0

p2−→ Γ

Therefore, there are an infinite number of live and bounded static schedules for the
UCSDF example. All these schedules start with the prefix p2 p3 p3 p1 p2. Unlike
in reachability graphs of (C)SDF graphs, it is possible that the initial marking of an
UCSDF graph is not a home marking (i.e. there is no firing sequence that brings the
graph to its initial state).

Affine scheduling

Let x = uvω be an ultimately periodic rate function. So, ⊕x is a function that increases
by ‖v‖ every |v| steps. Therefore, the cumulative function can be linearly bounded
by axj + λlx ≤ ⊕x ≤ axj + λux where ax = ‖v‖

|v| , λ
l
x = min

0≤j≤|u|+|v|
{⊕x(j) − ‖v‖

|v| j},

and λux = max
0≤j≤|u|+|v|

{⊕x(j) − ‖v‖
|v| j}. Figure 2.16 illustrates the linear bounds for x =

2 0 1(2 1 0 2)ω.

Figure 2.16: Linear bounds of ultimately periodic rates.

If e = (pi, pk, x = u1v
ω
1 , y = u2v

ω
2) is a channel between pi and pk, then the affine

relation between the two actors must satisfy the boundedness criterion

n

d
=
ax
ay

=
‖v1‖
|v1|

|v2|
‖v2‖

Question: Is there an affine schedule among all the possible static schedules of the
UCSDF example?

Firstly, it is worth recalling that the positioning pattern in an affine relation always
consists of d

gcd{n,d} activations of pi and n
gcd{n,d} activations of pk whatever the parameter

ϕ. Using the boundedness criterion, we may have p1
(2,ϕ1,4)−→ p2

(6,ϕ2,2)−→ p3
(4,ϕ3,6)−→ p1. Let

us consider the static schedule p2 p3 p3 p1 p2(p2 p3 p3 p1 p3 p1)ω. By projecting this

Specific cases 81

schedule on each pair of the actors, we obtain the activation relations in Figure 2.17.
Assuming an EDF scheduling policy with a totally ordered communication strategy on
a single processor, we have to find the affine relations that give the same order of firings
as in the static schedule. So, the activation relation between p1 and p3 corresponds to

the affine relation p1
(6,−7,4)−→ p3. However, there is no affine relation (by enumerating

values of ϕ1) that can give the same order of firings as in Figure 2.17.(a) because of the
prefix. Therefore and for the same reason, there is no underflow-free affine schedule for
the chosen scheduling policy. This is why it is better to let the scheduling tool compute
the appropriate numbers of initial tokens.

Figure 2.17: Activation relations of the schedule p2 p3 p3 p1 p2(p2 p3 p3 p1 p3 p1)ω.

2.4.2 Multichannels

Let e = (pi, pk, pl, x, y, z) be a channel that relates two producers pi and pk (allocated
to the same processor) to one consumer pl. We impose a totally ordered communication
strategy between producers; i.e. a job of a producer cannot preempt a job of the other
producer. This way, if the affine relation between pi and pk is predefined or if all the
possible values of the affine relation result in the same order of firings of the producers,
then the producers write tokens on channel e in a deterministic way. We have hence a
deterministic merge operator.

Like with simple channels, the number of accumulated tokens must be always smaller
than or equal to the size of the channel and greater than or equal to zero. The overflow
analysis can be written as

∀j ∈ N>0 : θ(e) +⊕x(j) +⊕y(cbefi,k(j))−⊕z(cbefi,l(j)) ≤ δ(e)
∀j ∈ N>0 : θ(e) +⊕x(cbefk,i(j)) +⊕y(j)−⊕z(cbefk,l(j)) ≤ δ(e)

The number of accumulated tokens can be linearly over-approximated by considering
⊕xu, ⊕yu, ⊕zl, cbefui,k, cbefuk,i, cbefli,l, and cbeflk,l. Dually, the underflow analysis can
be written as

∀j ∈ N>0 : θ(e) +⊕x(cbefl,i(j)) +⊕y(cbefl,k(j))−⊕z(j) ≥ 0

The number of accumulated tokens can be linearly under-approximated by considering

⊕xl, ⊕yl, ⊕zu, cbefll,i, and cbefll,k. If pi
(n1,ϕ1,d1)−→ pk

(n2,ϕ2,d2)−→ pl
(n3,ϕ3,d3)−→ pi, then the

boundedness criterion will be

az = ax
n3
d3

+ ay
d2
n2

Similar analysis can be performed on channels with two consumers and one producer.
This construct represents the deterministic select operator.

82 Abstract schedules

Example 2.15. Figure 2.18.(a) represents an UCSDF graph with a simple channel
e1 and a multichannel e2 = (p1, p2, p3, x, y, z). We would like to find a consistent EDF
schedule with a totally ordered communication between p1 and p2 (i.e. no preemption).
Since θ(e1) = 2 and δ(e1) = 4, all the possible affine relations between p1 and p2 that
prevent overflow and underflow exceptions over channel e1 are of the form (4, ϕ1, 6)
such that ϕ1 ∈ {0, 1}. Both the affine relations give the same order of firings of p1 and
p2 which is (p1 p2 p1 p2 p1)

ω. Therefore p1 and p2 write into the multichannel in a
deterministic manner (i.e. functional determinism is guaranteed). Let s1 = (1 0 1 0 1)ω

(resp. s2 = s̄1 = (0 1 0 1 0)ω) denote the instants at which p1 (resp. p2) fires.
Channel e2 can be splitted into two simple channels e2,1 and e2,2 whose consumer is
actor p3, as illustrated in Figure 2.18.(b). The consumption rate of e2,1 is z1; while
the consumption rate of e2,2 is z2. So, ∀j ∈ N>0 : z(j) = z1(j) + z2(j). Let xj be the
total number of produced tokens by p1 among the first j commonly produced tokens.
So, xj can easily be obtained from the sequence (x ⊗ s1) + (y ⊗ s2). Hence, we have
that z1(j) = x⊕z(j) − ⊕z1(j − 1). In this example, z1 and z2 are ultimately periodic
sequences such that the length of their periods is equal to 18.

Figure 2.18: (a) An UCSDF graph with a multichannel and (b) its equivalent graph
with simple channels.

Once we have a graph that consists only of simple channels, we can apply the affine
relation synthesis described in Section 2.3. Nevertheless, we prefer to use the overflow
and underflow analyses described in this section to handle multichannels because (1) the
length of rate functions grows exponentially when we split multichannels as illustrated
in the previous example, and (2) the computation of z1 and z2 depends on the number
of initial tokens in the multichannel. So, if we would like to let θ(e2) as a free variable,
then z1 and z2 cannot be computed.

2.4.3 Shared storage space

So far, we have only supposed that channels are implemented as separated storage
spaces. LetG = ({p1, p2}, {e1 = (p1, p2, (0 3 0)

ω, (3 0 0)ω), e2 = (p1, p2, (0 0 3)
ω, (0 0 3)ω)})

be a CSDF graph where θ(e1) = θ(e2) = 0. One possible affine relation between p1 and
p2 that results in the minimum buffering requirements when using EDF scheduling is
(2, 3, 2). Figure 2.19 shows the number of accumulated tokens in e1 and e2 and the sum
of them after each firing of p1 and p2 according to the affine relation and the scheduling
policy. From that picture, we have that δ(e1) = 3 and δ(e2) = 3. So, when the channels

Specific cases 83

are implemented as separated buffers, the buffering requirements are equal to 6. But,
we clearly notice that the sum of accumulated tokens in both channels at each instant
of the execution is less or equal to 3. Hence, by implementing the two channels as a
shared storage buffer, we can reduce the buffering requirements to 3.

Figure 2.19: Buffer minimization using a shared storage space.

Let e1 = (p1, p2, x1, y1) and e2 = (p3, p4, x2, y2) be two channels in the dataflow
graph. Without loss of generality, we suppose that they have the same data type. We
would like to implement them as a single shared buffer b. The number of initial tokens
in the shared buffer is θ(b) = θ(e1)+ θ(e2); while its size is δ(b) ≤ δ(e1)+ δ(e2). Firstly,
to ensure functional determinism, we need to devise a read and write mechanism so that
each consumer pulls from the shared buffer only tokens written by its corresponding
producer. One simple solution is to tag produced tokens by the ID of the producer.

The underflow analysis does not change; i.e. we must always have that

∀j ∈ N>0 : θ(e1) +⊕x1(cbef2,1(j))−⊕y1(j) ≥ 0

∀j ∈ N>0 : θ(e2) +⊕x2(cbef4,3(j))−⊕y2(j) ≥ 0

However, the overflow equations for the two channels must be combined together.
Let crbefi,k : N>0 −→ N be an integer function such that pk[crbefi,k(j)] is the last job of
pk that could write some of its results on channel e2 before or at the same time at which
pi[j] finishes writing its results on channel e1. The overflow analysis can be written as

∀j ∈ N>0 : θ(b) +⊕x1(j) +⊕x2(crbef1,3(j))−⊕y1(cbef1,2(j))−⊕y2(cbef1,4(j)) ≤ δ(b)

∀j ∈ N>0 : θ(b) +⊕x1(crbef3,1(j)) +⊕x2(j)−⊕y1(cbef3,2(j))−⊕y2(cbef3,4(j)) ≤ δ(b)
In the previous example, we have that crbef1,1(j) = j and cbef1,2(j) = prd1,2(j) =

max{0, j − 2}. Hence, the overflow equation is

∀j ∈ N>0 : θ(b) +⊕x1(j) +⊕x2(j)−⊕y1(prd1,2(j))−⊕y2(prd1,2(j)) ≤ δ(b)

2.4.4 FRStream

In the same spirit of Lucy-n, we propose a simple synchronous language called FRStream

(FR from Firing Related) by expressing the synchronous semantics in our priority-
driven semantics. In the synchronous paradigm, computations and communications

84 Abstract schedules

are instantaneous and scheduling precedences inside each reaction are deduced from
the flow in the program. We can tailor the priority-driven semantics to express such
paradigm as follows. Let [si,k, sk,i] be an activation relation between actors pi and pk. If
pi[j] < pk[j

′], then pi[j] executes entirely before pk[j′] because an actor takes zero time
to fire. This is similar to the totally ordered communication strategy in EDF scheduling
policy. The main difference lies when pi[j] and pk[j

′] are synchronous. Suppose that
there is a channel from pi to pk. In a synchronous language such as SIGNAL, there will be
a scheduling precedence between pi[j] to pk[j′] because pk[j′] will use the value produced
by pi[j] at the same instant (i.e. zero delay communication). In our case, it is possible
that pk[j′] will not use any value produced by pi[j] because of the buffering mechanism.
Therefore, we add a scheduling precedence only if results of pi[j] are required by pk[j′].
Regarding auto-concurrency, if pi[j] = pi[j

′] with j′ > j, then we add a scheduling
precedence between pi[j] and pi[j′].

A Language constructs

The main constructs of our language are streams, actors, activation relations, and processes.
Syntactically, an infinite sequence uvω is denoted by u(v)*; while a finite sequence uvn

is denoted by u(v)n.

1) Streams: Every variable in the program is a stream. So, integer x init 0(1)2;

means that x is a stream of integers that initially contains values 0, 1, and 1. Let s be
an ultimately periodic integer sequence such that ∀j ∈ N>0 : s(j) > 0. During the jth

firing of actor p, expression x[s] at the right hand of an assignment denotes the s(j)th

token consumed by p[j] from stream x. Similarly, expression x[s] at the left hand of an
assignment denotes the s(j)th token produced by p[j] on stream x. When s = iω with
i ∈ N>0, we use notation x[i] instead of x[(i)∗]. At each firing, a value can be read
many times but can be only defined once (i.e. single assignment).

2) Actors: An actor is a deterministic program such that each pair of its sub-actors
is (1, 0, 1)-affine-related. All arithmetic and logic operators are actors. For instance,
plus(1 2,0 3)=1 5. Listing 2.2 represents an actor p1 that has an input stream x and
output stream y. As in SIGNAL, symbol “ |” denotes synchronous composition. So, the
two sub-actors (the copy and plus actors) are synchronous and have a data-dependency
(stream z). However, they can run in no particular order because z is never empty. Note
that though there is no assignment to y[1] the default value will be produced at each
firing since we cannot produce the second token without producing the first one. Thus,
both the production and consumption rates of p1 are equal to 2ω. Table 2.2 represents
a synchronous execution of actor p1. Listing 2.3 represents the code of an actor that
has two states s1 and s2. A different firing function is executed in each state. When p2
is in state s1, it switches to state s2 after one firing; and then it returns back to state s1
after one firing. Only ultimately periodic state automata are allowed. The production
rate of stream y is equal to (0 2)ω; while the consumption rate of stream x is equal to
(2 0)ω.

Specific cases 85

Listing 2.2: Actor p1.

actor P1(?real x; ! real y;)

real z init 4.0;

begin

state S1{

y[2]=plus(x[2],z[1]) |

z[1]=x[1]

}

transitions{ }

end

Listing 2.3: Actor p2.

actor P1(?real x; ! real y;)

real z;

begin

state S1{ z[1]=x[1] | z[2]=x[2] }

state S2{ y[2]=z[1] | y[1]=z[2] }

transitions{

S1 -- 1 ->> S2;

S2 -- 1 ->> S1; }

end

Table 2.2: A synchronous execution of actor p1.

firing 1 2 3
x = 6 5 4 3 2 1 4 3 2 1 2 1 ǫ

z = 4 6 4 2
y = ǫ 0 9 0 9 0 9 0 9 0 9 0 5

3) Activation relations: In a process, every two communicating actors (we assume that
instances of the same actor have different names) are (1, 0, 1)-affine-related by default.
To express a different activation relation between two actors p and q, we use either
notation p,q=(n,phi,d); to express an affine relation or p,q=[s1,s2]; to express an
ultimately periodic activation relation.

4) Processes: A process is a multi-clocked composition of actors and processes. Listing
2.4 is a process p that consists of the synchronous composition of two [(1 0)ω, (0 2)ω]-
activation-related actors p1 and p2. Figure 2.20 represents a synchronous execution of
process p.

Listing 2.4: Process p.

process P()

real x init 0.0 1.0; real y;

(|

y=P1(x) | x=P2(y)

|)

where P1,P2=[(1 0)*,(0 2)*];

end

Figure 2.20: A synchronous execution of process p.

86 Abstract schedules

B Type system

In addition to classical type checking, the type system must ensure three other proper-
ties.

1) Consistency: The type system must statically check the consistency of the set of
activation relations according to Propositions 2.5 and 2.6. This problem is decidable
since all activation relations and rate functions are ultimately periodic.

2) Boundedness and deadlock freedom: We have two ensure that each stream is bounded
and contains enough initial tokens. Each stream has one producer pi and one consumer
pk. Firstly, we have to deduce the activation relation [si,k, sk,i], the production rate,
and the consumption rate. Then, the overflow and underflow equations are applied
such that functions cbefi,k and cbefk,i are computed according to the above described
synchronous semantics.

3) Causality: This analysis is specific to the synchronous operational semantics. Con-
sider the previous process (Listing 2.4) with an activation relation P1,P2=[(1)*,(2)*].
In this case, there are some synchronous activations; indeed p1[j] = p2[2j − 1] = p2[2j].
From the data-dependencies, p1[j] executes first if stream y is empty and p2[2j − 1] ex-
ecutes first if stream x is empty. Therefore, there is a dependency cycle if both streams
are empty. This problem is specific to the synchronous semantics because in EDF or
FP scheduling, it is impossible to have for instance that cbef2,1(cbef1,2(j)) = j.

2.5 Conclusion

In this chapter, we have defined abstract schedules of dataflow graphs and presented
the necessary conditions that a consistent schedule must satisfy. We have also refined
the results for specific cases: strictly periodic schedules with EDF and FP scheduling
policies, ultimately cyclo-static dataflow graphs, mulichannels, synchronous operational
semantics, etc. In the next chapter, we will further refine abstract schedules by com-
puting the necessary timing and scheduling parameters that maximize a performance
metric and satisfy schedulability for different architectures and scheduling policies.

Chapter 3

Symbolic schedulability analysis

Contents

3.1 General conditions . 87

3.2 Fixed-priority scheduling . 90

3.2.1 Priority assignment . 91

3.2.2 Uniprocessor scheduling . 97

3.2.3 Multiprocessor scheduling . 101

3.3 EDF scheduling . 102

3.3.1 Deadlines adjustment . 102

3.3.2 Uniprocessor scheduling . 106

3.3.3 Multiprocessor scheduling . 109

3.4 Conclusion . 112

In real-time scheduling of dataflow graphs, each actor is mapped to a real-time pe-
riodic task. The necessary timing parameters that must be computed for each task are:
periods, phases, and deadlines. More scheduling parameters could be needed as prior-
ities of tasks in FP scheduling and processor allocation in partitioned multiprocessor
scheduling. The computed scheduling parameters should respect the abstract schedule,
ensure schedulability, and maximize a performance metric.

In the first section, we will present the general conditions that must be satisfied
whatever the scheduling policy. Then, we present the symbolic schedulability analysis
for two scheduling policies: FP scheduling (Section 3.2) and EDF scheduling (Section
3.3).

3.1 General conditions

Let G = (P,E) be a timed static dataflow graph and Gr be the computed affine schedule
(or more precisely the graph of affine relations). In a timed dataflow graph, each actor
pi is associated with a worst-case execution time sequence ηi ∈ Nω such that ηi[j] is

87

88 Symbolic schedulability analysis

the worst-case execution time of firing pi[j]. To fit the periodic task model, we take
the worst-case execution time of an actor pi as Ci = max

j
ηi[j]. So, each actor pi is

characterized by (πi, ri, di, Ci) such that πi is the period, ri is the phase, and di is the
relative deadline. In FP scheduling, actor pi is permanently assigned the priority wi.
The dataflow is to be scheduled on a many-core processor architecture that consists of
M ≥ 1 identical cores. In partitioned scheduling, actor pi is permanently allocated to
core number νi.

An affine relation is an abstract constraint that describes the relative positioning
of activations of two actors without considering the physical duration between two
activations. In the sequel, we will impose that the time interval between successive
activations of an actor is constant since an actor will be mapped to a periodic task. Let
pi and pk be two (n, ϕ, d)-affine-related actors. We have hence that

dπi = nπk (3.1)

rk − ri =
ϕ

n
πi (3.2)

So, the period and phase of pk can be expressed in terms of the period and phase of
pi; i.e. πk = d

n
πi and rk = ri +

ϕ
n
πi. But, timing parameters are non-negative integers.

Thus, πi must be a multiple of lcm{ n
gcd{n,d} ,

n
gcd{n,ϕ}} and ri must be greater or equal

to −ϕ
n
πi. Similarly, if pi

(n,ϕ,d)−→ pk
(n′,ϕ′,d′)−→ pl, then πl = dd′

nn′πi and rl = ri +
ϕn′+ϕ′d
nn′ πi.

• If the graph of affine relations is connected, then the period of each actor can be
expressed in terms of the period of an arbitrary actor. We can therefore put ∀pi ∈
P : πi = αiT where αi ∈ Q>0 and T is a multiple of some integer B. We can also put
∀pi ∈ P : ri = f+α′

iT such that f is the phase of the arbitrary actor (f must be greater
than or equal to max

pi∈P
{−α′

iT}). Furthermore, we have that U =
∑

pi∈P
Ci
πi

=
∑

pi∈P
Ci
αiT

= σ
T

.

Regardless of the scheduling policy, a necessary condition for schedulability is that
U ≤M . Hence, we have that

T ≥ σ

M
(3.3)

For some real-time systems, frequencies of tasks must be higher than some minimal
frequencies under which safety is not ensured or the service quality is poor. The fre-
quencies should also be lower than some maximal frequencies over which a device, for
example, may get damage. To better meet these requirements, we allow the designer
to specify upper bounds and lower bounds on periods of actors. We will then have the
following condition.

T l ≤ T ≤ T u (3.4)

where T l, T u ∈ N>0. The schedulability region concerning the periods and phases is
initially defined by the following constraints: T l ≤ T ≤ T u, T = kB, and T ≥ σ

M
. So,

T is the only free variable.

• If the graph of affine relations is disconnected, then we partition Gr to a set of L
(maximal) connected graphs Gj = (Pj , Rj). Hence, the period and phase of each actor

General conditions 89

in a partition Pj can be expressed in terms of the period and phase of an arbitrary
actor in that partition; i.e. ∀pi ∈ Pj : πi = αiTj and ri = fj + α′

iTj where Tj must be
a multiple of Bj , T lj ≤ Tj ≤ T uj , and fj ≥ −α′

iTj . Let U j be the total contribution of

actors in Pj to the processor utilization factor. So, U j =
∑

pi∈Pj

Ci
πi

=
σj
Tj

. A necessary

schedulability condition is therefore given as

L
∑

j=1

σj
Tj
≤M (3.5)

Regarding deadlines, we consider either implicit deadlines or constrained deadlines.
The designer may like to impose deadlines. However, since periods are unknown, the
designer has to specify deadlines in terms of periods; e.g. d1 = π1

2 − 3. Therefore, the
deadline of an actor pi can be expressed in terms of the period of an arbitrary actor in
the connected subgraph that contains pi. So, ∀pi ∈ Pj : di = βiTj − β′i where βi ∈ Q>0

and β′i ∈ N. Since deadlines are integers, βiTj must be an integer. Thus, factor Bj must
be recomputed. We should also ensure that Ci ≤ di ≤ πi. So,

Ci ≤ βiTj − β′i ≤ αiTj (3.6)

Therefore, the bounds T lj and T uj should also be recomputed.

Regarding priority assignment and processor allocation, these scheduling parameters
are required in the affine relation synthesis step and buffer sizes computation. But, in
order to compute them, we need to perform a symbolic schedulability analysis that
requires performing affine scheduling. We break the cycle in the scheduling approach
as follows. Priorities and processor allocation are needed in affine scheduling only to
compute parameters ϕ of affine relations since parameters n and d can be obtained
from the boundedness criterion. Parameters ϕ are needed in the symbolic schedulability
analysis only to compute phases of actors. But, most schedulability tests consider the
worst-case arrival scenario when all actors arrive at the same time. Thus, we do not need
parameters ϕ to perform the symbolic schedulability analysis. This slightly influences
the computation of factors Bj .

Most real-life applications are modeled as connected dataflow graphs. Therefore, we
will focus more on the symbolic schedulability analysis of connected graphs. Obviously,
symbolic schedulability analysis of disconnected graphs is more complicated.

Performance metrics

The design process of any embedded real-time system is driven by the objective of
providing the best possible performance within the timing and resource constraints.
Thus, we need to express the performance as a function of the design parameters (free
variables) and then exploring the schedulability region (i.e. the region of the parameter
space that corresponds to feasible designs) to find the best solution. So, if X is the
vector of design parameters, S is the schedulability region, and F is the cost (reward or

90 Symbolic schedulability analysis

utility) function, then the symbolic schedulability analysis problem can be formulated
as

maxF (X)

Subject to X ∈ S
(3.7)

Many practical cost functions exist such as energy consumption, throughput, la-
tency, etc. Some of them could be in conflict with each other as the throughput and
buffering requirements of dataflow graphs. In the rest of this section, we will present
some cost functions and the controlled parameters for each function. However, we will
not consider metrics that depend on the phases of actors such as the end-to-end latency.

Buffering requirements: As shown in the previous chapter, some scheduling parameters
influence the buffer sizes computation. In partitioned scheduling, allocating two actors
to the same processor results in a smaller total sum of capacities of the channels be-
tween them. In FP scheduling, switching priorities of two actors may improve sizes
of buffers between them. In EDF scheduling, adjusting deadlines (to implement the
totally ordered communication strategy) may also reduce the buffering requirements.

Throughput: The throughput of an actor pi is the average number of firings of pi per
unit of time and hence equals to its frequency 1

πi
. If the graph of affine relations is

connected, then the throughput of the graph is equal to 1
πi~r(i)

. The repetition vector ~r
can be easily obtained from parameters n and d of affine relations. Since πi = αiT and
U = σ

T
, maximizing the throughput is equivalent to maximizing the processor utilization

factor and so to minimizing T .
If the graph of affine relations is disconnected (and so the dataflow graph is also

disconnected), the throughput of each connected subgraph Gj can always be expressed
in terms of Tj . However, it is not clear how to define the throughput of the whole graph.
We hence choose, as in the connected case, to maximize the processor utilization factor.

If T = [T1, . . . , TL] (a lightweight way to denote a vector), then we may consider
any cost function F (T). For most practical metrics, it is expected that the performance
of the system improves when tasks’ rates are increased. Therefore and as in [38], we
my consider cost functions such that ∇F ≤ 0 (i.e. ∀j : ∂F

∂Tj
≤ 0). For example,

if F (T) = U =
L
∑

j=1

σj
Tj

, then ∂F
∂Tj

=
−σj
T 2
j

≤ 0. Another example is the first order

approximation of the energy spent in a bubble control application which is given as
∑

pi∈P
aie

− bi
πi [164].

3.2 Fixed-priority scheduling

In this section, we present the symbolic FP schedulability analysis for uniprocessor and
multiprocessor systems. In each case, we describe the solution with respect to buffer
minimization or processor utilization maximization.

Fixed-priority scheduling 91

3.2.1 Priority assignment

We will describe here how to compute the priority of each actor (without computing
the timing parameters) w.r.t. buffer minimization, processor utilization maximization,
or a combination of the two metrics. Priorities are used in affine scheduling and they
will be used later to perform a symbolic response time analysis.

A Buffer minimization

Let Ei,k ⊆ E be the set of all channels between pi and pk (in both directions); and let
bi,k be the total sum of approximate capacities of channels in Ei,k assuming that pi has
a higher priority than pk (i.e. wi < wk). Table 2.1 (p. 76) shows how to compute the
approximate size of a channel (column νi = νk). So, bi,k =

∑

e∈Ei,k
̥(e)δ(e) such that

wi < wk. For each connected subgraph Gj = (Pj , Ej) in the graph of affine relations,
we construct a weighted complete directed graph G′

j = (Pj , E
′
j) such that the weight of

edge ei,k = (pi, pk) ∈ E′
j is equal to bi,k.

Hence, the problem of finding the priority assignment that reduces the buffering
requirements is equivalent to the linear ordering problem (LOP) [135] which consists in
finding an acyclic tournament in the graph G′

j such that the sum of weights of edges in
the tournament is minimal. A tournament is a subset of edges containing for every pair
of nodes pi and pk either edge (pi, pk) or (pk, pi) but not both. For N actors, there are
N ! different priority assignments (i.e. permutations). The LOP is NP-hard; however
many exact and heuristic solutions had been proposed in the past decades [135].

The LOP can be formulated as a 0/1 integer linear program. A 0/1 variable xi,k
states whether edge (pi, pk) is present in the tournament or not.

min
∑

i,k

bi,k xi,k

∀i < k : xi,k + xk,i = 1

∀i < j, i < k, j 6= k : xi,j + xj,k + xk,i ≤ 2

∀i, k : xi,k ∈ {0, 1}

Once the LOP is solved for every connected subgraph, actors within each subgraph
can be ordered according to the computed priorities. It does not matter how to order two
actors in different subgraphs because this will not influence the buffering requirements.

Example 3.1. Consider the UCSDF example in Figure 2.14 (p. 79) and assume that

all tokens have the same size. The affine relations in the graph are p1
(2,ϕ1,4)−→ p2

(6,ϕ2,2)−→
p3

(4,ϕ3,6)−→ p1. The graph of affine relations is connected and the constructed weighted
graph for LOP assignment is depicted in Figure 3.1. So, the best priority ordering
is p2 p1 p3; while the worst priority ordering is p3 p1 p2 (which is the RM priority
assignment).

92 Symbolic schedulability analysis

Figure 3.1: Priority assignment problem expressed as a LOP.

B Utilization maximization

If deadlines are free parameters, then using implicit deadlines obviously results in the
best utilization. Let us consider the case where deadlines are implicit or user-imposed.
In both cases, we have that ∀pi ∈ Pj : di = βiTj − β′i. As mentioned in Chapter 1, the
DM priority assignment is optimal (for synchronous task sets). Therefore, it results in
the largest processor utilization. In case of equal deadlines, we break the tie using the
actors’ ID. So, the (initial) schedulability region (or the T -space) can be partitioned
into a set of priority regions as illustrated by the following example.

Example 3.2. We add to the UCSDF example (Figure 2.14, p. 79) two actors p4
and p5 and a channel e4 = (p4, p5, 4

ω, 1ω). We have hence an additional affine relation

p4
(8,ϕ4,2)−→ p5 in graph Gr which is disconnected in this case. So, we have that π =

[T1, 2T1,
2
3T1, T2,

T2
4]. Suppose that C = [65, 70, 95, 60, 55] and d = [π1 − 30, π22 ,

3
4π3 −

10, π45 , π5 − 60]. We have that U = 242.5
T1

+ 280
T2

. The initial T -space is hence defined by
T1 ≥ 210, T2 ≥ 460, B1 = 6, B2 = 20, and U ≤ 1 (i.e. uniprocessor scheduling). Using
linear equations di = dk, we can partition the T -space into a set of priority regions as
illustrated in Figure 3.2. For instance region S1 corresponds to the DM priority ordering
p3 p5 p4 p1 p2.

Definition 3.1 (Monotonicity of schedulability). FP schedulability is monotone over
the T -space if and only if given any two points T1 and T2 in the T -space such that
T1 ≤ T2 and the task set is FP schedulable at T1, then the task set is also FP schedulable
at T2.

Property 3.1. Fixed-priority schedulability with predefined priorities is monotone
over the T -space.

Proof: We mean by “predefined” priorities the precomputed priorities that do not
depend on the values of Tj (e.g. the priorities computed for buffer minimization using
LOP assignment). To prove Property 3.1, we use the response time analysis. We have

that Ri = Ci +
∑

wi<wk

⌈

Ri
πk

⌉

Ck. When periods are increased, priorities do not change;

hence, the solution of the recurrence (i.e. the worst-case response time) decreases.
Furthermore, the deadline di gets larger since di = βiTj − β′i. So, if Ri was initially less
than or equal to di, then this remains true when periods are increased.

Fixed-priority scheduling 93

250 300 350 400 450 5
500

750

1000

1250

1500

Figure 3.2: Partitioning of the T -space into a set of DM priority regions.

Proposition 3.1. DM schedulability is monotone over the T -space.

Proof: Let T1 and T2 be two points in the T -space such that T1 ≤ T2 and the task
set is DM schedulable at point T1. We denote by πi and di the vectors of periods and
deadlines at point Ti, respectively. We have that π1 ≤ π2 and d1 ≤ d2. There are two
cases:
1. If T1 and T2 are in the same priority region, then the task set is also DM schedulable
at point T2 according to Property 3.1.
2. If T1 and T2 are in different priority regions, then we break the transformation
from the first to the second point into successive swaps as illustrated by the following
example.

Let π1 = (12, 30, 25, 24), d1 = (5, 20, 21, 24), π2 = (35, 32, 25, 25), and d2 = (27, 26, 21, 25).
So, we have that d1 ≤ d2 and π1 ≤ π2. But, T1 and T2 are in different priority regions
since the DM priority ordering at T1 is p1 p2 p3 p4 while the DM priority ordering at
point T2 is p3 p4 p2 p1. To get from the first permutation (or ordering) to the second
one, we need five swaps (see Figure 3.3).

Since the task set is DM schedulable at the first point, we have only to prove that
it remains DM schedulable after each swap. So, at each step, we switch only priorities
of pi and pi+1 (assuming that actors are ordered by their priorities). According to the
worst-response time computation, we have that

• ∀k > i+1 : Rk remains intact (Actually, Rk decreases if periods πj s.t. j < k are
increased). Hence, ∀k > i+ 1 : pk meets its deadline.

• ∀k < i or k = i+1: Rk decreases or remains intact (note that pi is excluded from
the sum in the response time formula).

94 Symbolic schedulability analysis

DM

Figure 3.3: Transforming DM priority assignments.

• For pi, we have that Ri = Ci +
⌈

Ri
πi+1

⌉

Ci+1 +
∑

k<i

⌈

Ri
πk

⌉

Ck. Let R′
i+1 and d′i+1

be the response time and deadline, respectively, of actor pi+1 before the swap.

So, we have that R′
i+1 = Ci+1 +

⌈

R′

i+1

πi

⌉

Ci +
∑

k<i

⌈

R′

i+1

πk

⌉

Ck. If we can prove that

Ri ≤ R′
i+1, then we will have that Ri ≤ di because di ≥ d′i+1 ≥ R′

i+1.

Since R′
i+1 is the fixed point of the response time formula, we have that R′

i+1 =

Ci+1 + aiCi +
∑

k<i

akCk such that ∀k ≤ i : ak =
⌈

R′

i+1

πk

⌉

∈ N>0. Let us solve the

recurrence for Ri starting from R0
i = R′

i+1. So, R1
i = Ci +

⌈

R′

i+1

πi+1

⌉

Ci+1 +
∑

k<i

akCk.

But, R′
i+1 ≤ πi+1 because the system is DM schedulable before the swap. Thus, R1

i =
Ci + Ci+1 +

∑

k<i

akCk ≤ R′
i+1. We have two cases, either R1

i = R′
i+1 (the recurrence

stops) or R1
i < R′

i+1. In the second case, we will continue until reaching a fixed point
which will be less than R′

i+1.

One direct result of Proposition 3.1 is that if a task is not DM schedulable at point
T2, then it is not DM schedulable at point T1.

C Buffering vs processor utilization

As in static-periodic scheduling of (C)SDF graphs [180], buffer minimization and through-
put maximization are in conflict with each other. Indeed, we have shown in Example
3.1 that the worst buffering requirements are obtained by the DM priority ordering.
This observation can be simply explained as follows. Let pi and pk be two (n, ϕ, d)-
affine-related actors with implicit deadlines and all channels between them are directed
from pi to pk. We have that πk = d

n
πi. If d > n, then pi will have a higher DM priority

than pk. But according to Table 2.1 (p. 76), pk must have a higher priority than pi in
order to achieve better buffer sizes.

Let O1 and O2 be two priority orderings (i.e. permutations). The swapping distance
between O1 and O2 is the minimum number of transpositions of two adjacent elements
necessary to transform permutation O1 into permutation O2. Each step in the swapping
path positively or negatively affects the buffering requirements and the throughput. The
impact on buffer sizes can be approximately measured by equations in Table 2.1.

Fixed-priority scheduling 95

Example 3.3. Let us consider the dataflow graph in Figure 2.14 (p. 79). We add
two actors p4 and p5 and two channels e4 = (p4, p5, 4

ω, 1ω) and e5 = (p5, p3, 1
ω, 2ω).

So, π = [T, 2T, 23T,
4
3T,

T
3], C = [65, 70, 95, 60, 55] and U = 452.5

T
. We take deadlines

as d = [π1 − 30, π22 ,
3
4π3 − 10, π42 , π5 − 60]. So, the initial T -space is defined by B = 6

and T ≥ 452.5. Figure 3.4 represents the trade-off between processor utilization and
approximate buffering requirements for all the possible (5!) priority orderings. As one
could notice, many priority orderings can result in the same buffering requirements but
in different processor utilizations. If we consider only Pareto points, then the buffering
requirements and the throughput are proportional to each other.

Figure 3.4: Exploration of the priority orderings space: throughput vs buffering require-
ments.

It will be useful if one can compute the (approximate) cost of a swap on the processor
utilization without performing a symbolic schedulability analysis. Let O∗, π∗, U∗ be
the DM priority ordering, the period vector, and the processor utilization, respectively,
obtained by the symbolic schedulability analysis. Hence, any priority ordering should
result in a processor utilization no greater than U∗. Figure 3.5 shows for every priority
ordering O the precedence distance between O and O∗ and the corresponding decrease
in processor utilization. The precedence distance between two permutations O and O∗

is defined as follows. Let sim(O,O∗) be equal to the number of times an actor pi is
preceded by an actor pk in both O and O∗. The precedence distance is hence equal to

N(N − 1)

2
− sim(O,O∗)

If x̃i,k is the 0/1 variable that states whether actor pi has a higher priority in O∗

than pk or not, then the precedence distance is equal to N(N−1)
2 −∑

i,k

xi,k x̃i,k. In the

ILP formulation, we could add a constraint that states that the precedence distance
is less than some threshold. From Figure 3.5, the decrease in the processor utilization
is roughly proportional to the precedence distance. However, the precedence metric is

96 Symbolic schedulability analysis

Figure 3.5: Exploration of the priority orderings space: throughput vs precedence dis-
tance.

not accurate and it is possible to define a better one. Figure 3.6 presents a new more
accurate distance metric called the utilization distance.

Utilization distance: We compute a new period vector π for which the task set is schedu-
lable w.r.t. priority ordering O. Vector π must be computed without performing a
complex schedulability analysis. If U is the processor utilization that corresponds to
period vector π, then the utilization distance is equal to

0 ≤ dis(O,O∗) = 1− U

U∗ ≤ 1

Vector π is computed as follows. We compute the response times w.r.t. periods π∗

and priority ordering O. Then, we take Tj = max{T ∗
j , max

pi∈Pj
{
⌈

Ri+β
′

i

Bjβi

⌉

Bj}}. Clearly, the

task set is FP schedulable w.r.t. the new computed periods.

Figure 3.6: Exploration of the priority orderings space: throughput vs utilization dis-
tance.

Fixed-priority scheduling 97

Heuristic: Many heuristics have beed developed to solve the linear order problem [135].
We choose a simple local enumeration method. For a given ordering and a given window
of length W , the heuristic (Algorithm 3) arranges the elements in the window to get
the best buffering requirements and an utilization distance no greater than a threshold
u. We denote by b(O) the sum of approximate buffer sizes w.r.t. priority ordering
O. The best ordering among a set of orderings is the one with the smallest buffering
requirements. In case of tie, we choose the one with the smallest utilization distance.

Algorithm 3: Priority ordering heuristic

O = O∗;
repeat

Oprev = O;
for i=1, . . ., N-W+1 do

Find the best priority ordering O′ s.t. dis(O′, O∗) ≤ u by arranging
elements at positions i, i+1, . . . , i+W-1 in O;
if b(O′) < b(O) or (b(O′) = b(O) and dis(O′, O∗) < dis(O,O∗)) then

O = O′;

until Oprev == O;

3.2.2 Uniprocessor scheduling

We firstly consider the simple case where the graph of affine relations is connected and
there is only one priority region (e.g. when deadlines are implicit, the LOP assignment,
etc). The maximum throughput corresponds to the minimum value of T . For RM
scheduling, we can use the utilization-based tests but they are too pessimistic. There-
fore, we will use a symbolic RTA. In the first place, we reduce the space of feasible
values of T by using upper and lower bounds on worst-case response times. As shown
in Chapter 1,

Rui =

Ci +
∑

wk<wi

Ck(1− Uk)

1− ∑

wk<wi

Uk

Following a similar reasoning to that in [40], we can prove that if the system is schedu-
lable, then

Rli =

Ci −
∑

wk<wi

Ck(1− Uk)

1− ∑

wk<wi

Uk
(3.8)

If ∃pi ∈ P : Rli > di, then the task system is unschedulable. We have that

Rli > di ⇔

βiT
2 − (Ci + β′i +

∑

wk<wi

Ck(
βi
αk
− 1))T −

∑

wk<wi

Ck
αk

(Ck − β′i) < 0

98 Symbolic schedulability analysis

The second degree inequality can be easily solved to find an interval in which the
system is unschedulable. Dually, if ∀pi ∈ P : Rui ≤ di, then the task set is schedulable.
We have that

Rui ≤ di ⇔

βiT
2 − (Ci + β′i +

∑

wk<wi

Ck(1 +
βi
αk

))T +
∑

wk<wi

Ck
αk

(Ck + β′i) ≥ 0

So, we have intervals in which the system is schedulable and intervals in which the
system is unschedulable. To find the best T , it is sufficient to perform a dichotomic
search in the remaining space knowing that if Ri ≤ di for some T , then Ri ≤ di for all
T ′ > T . We denote this procedure by SRTA.

Example 3.4. Let us take the task set in Example 3.3 and the priority assignment
p1 p2 p3 p4 p5. The solutions of the previous inequalities are presented in Table 3.1. So,
the system is schedulable for T ∈ [1422,∞[and unschedulable for T ∈ [0, 456[. To find
the best T , we perform RTA for values in [456, 1416] using a dichotomic search. Each
time, we compute the response times in the order p5 p4 p3 p2 p1; i.e. the task that gives
the worst value of T s.t. Rui ≤ di is considered first. We will find the best value of T
after computing only six response times. Clearly, the symbolic RTA is faster for large
values of B.

Table 3.1: Symbolic RTA of the task set in Example 3.3 with DM priorities.

actor Rli > di Rui ≤ di
p1 ∅ [456,∞[

p2 ∅ [456,∞[

p3 ∅ [558,∞[

p4 ∅ [630,∞[

p5 ∅ [1422,∞[

The second case is DM scheduling of connected graphs. Each DM priority region
corresponds to an interval. There are at most 1+ N(N−1)

2 DM priority regions since each
equation di < dk can create only one new region. We use RTA to find the first interval
[tl, tu] such that the task set is schedulable for T = tu. According to Proposition 3.1,
the task set is schedulable for every T > tu and unschedulable for every T < tl. To find
the best T , we only have to apply the SRTA procedure in interval [tl, tu].

The third case is when the graph of affine relations is disconnected and there is only
one priority region. Since priorities are fixed a priori and the cost function U(T) is
convex, we can apply the branch-and-bound method described in [38] in case deadlines
are equal to periods. We present here a different depth-first brand-and-bound (DF-
B&B) solution based on symbolic RTA. However, the presented algorithm does not seek
for a global optimum solution but for the optimum solution in the sub-space dominated

Fixed-priority scheduling 99

by a first admissible solution T fst (i.e. for all T in the sub-space, T ≤ T fst). To get the
global optimum, we have to take T fst = T u. Algorithm 4 represents the pseudo-code of
the search algorithm.

Algorithm 4: DF-B&B SRTA.

Procedure main() begin

T cur = T fst ;
U cur = U(T fst);
VisitTree(1);
return T cur;

Procedure visitTree(i) begin

ki =PossibleValuesOf(Ti) ;
for each t ∈ ki do

if not Feasible(T node) then
prune this node and nodes for remaining values in ki

else

if U(T node) < U cur then

T cur = T node ;
U cur = U(T cur);

if i < L then VisitTree(i+1);

In order to explain the algorithm more clearly, we solve the problem in Example
3.2 w.r.t. priority ordering p4 p2 p3 p1 p5. Since there are two weakly connected
components, each point in the T -space has two components; i.e. T = [T1, T2]. The
start point of the algorithm is a first admissible solution T fst (or simply T u, assuming
that the task is schedulable at point T u).

We may compute T fst using a linear relaxation of RTA as follows. Firstly, each
deadline di = βiTj − β′i is under-approximated as d′i = ρiTj . So, we could simply

take ρi = βi − β′

i

T lj
. Clearly, if the system is schedulable with the new deadlines, then

it is schedulable with the original ones. Furthermore, the system is schedulable if

∀pi : Rui =
Ci+

∑

wk<wi

Ck

1− ∑

wk<wi

Uk
≤ d′i. We solve this problem in R>0 as a linear program by

putting xj = 1
Tj

while the objective function is to maximize the processor utilization.

If X = [x1, x2, . . .] is a solution of the linear program, then we take T fst
j =

⌈

1
xj Bj

⌉

Bj .

Linear programming has a lower time complexity than convex optimization used in
[38]. Regarding the previous example, we have that d′ = [67T1, T1,

19
42T1,

1
5T2,

11
92T2].

The linear program can hence be written as

100 Symbolic schedulability analysis

max 242.5 x1 + 280 x2

242.5 x1 + 280 x2 ≤ 1 (U ≤ 1)

300 x2 ≤ 1 (Ru4 ≤ d′4)
130 x1 + 60 x2 ≤ 1 (Ru2 ≤ d′2)
10115 x1 + 1140 x2 ≤ 19 (Ru3 ≤ d′3)
3095 x1 + 360 x2 ≤ 6 (Ru1 ≤ d′1)
2667.5 x1 + 32400 x2 ≤ 11 (Ru5 ≤ d′5)

0 ≤ x1 ≤
1

210
; 0 ≤ x2 ≤

1

460

The solution of this program is T fst = [540, 5360] and U fst = 0.501. So, the T -space
consists of 13776 points to be checked. From this first admissible solution, the tree
structure built by the invocation of visitTree is shown in Figure 3.7. At the first level,
procedure PossibleValuesOf(T1) returns all possible values of T1 (denoted by k1) in
[T l1, T

fst
1] such that the system could be schedulable at each point T = [t ∈ k1, T2, . . .]; i.e.

the values of the other components in vector T are constant. Values of ki are obtained

by using test ∀pi : Rli =
Ci−

∑

wk<wi

Ck(1−Uk)

1− ∑

wk<wi

Uk
≤ di since the system is unschedulable if

∃pi : Rli > di. For the previous example, we have that k1 = [258, 540]. The nodes at
this level are processed in the decreasing order of T1. If the system is unschedulable at
a given node, then the subtree whose root is that node will be pruned since, according
to Property 3.1, reducing values of the other components (i.e. nodes in the subtree) will
not make the system schedulable. For the same raison, we have also to prune all the
nodes for the remaining values of T1 in ki. In the example, the system is unschedulable
for T1 = 468 and so for all T1 ∈ [258, 468].

At level L, there is only one free variable, we can hence use SRTA instead of the
enumeration to compute the best value of the last component TL.

Figure 3.7: Illustration of DF-B&B symbolic FP schedulability analysis.

Fixed-priority scheduling 101

The fourth and last case is DM scheduling of disconnected graphs. We use the pre-
vious branch and bound technique but we have also to consider the DM priority regions.
The first admissible solution can be obtained as in the previous case by considering any
priority ordering. Hence, T fst = [474, 2000] (the best solution for priority assignment
p4 p2 p3 p1 p5) is an admissible solution for the DM scheduling. Starting from this point,
the space 210 ≤ T1 ≤ 474∧460 ≤ T2 ≤ 2000∧U ≤ 1 contains 9 DM priority regions (see
Figure 3.2). The DF-B&B algorithm can simply be applied on each region. However,
this algorithm can be further improved; for instance, by considering Proposition 3.1.
For example, Let T be the current node in the current DM priority region, and let T ′

be a node in an already processed region. If T ′ ≥ T and the system is unschedulable in
T ′, then the current node can be immediately pruned.

3.2.3 Multiprocessor scheduling

Let us first address the symbolic partitioned scheduling problem. We consider only
connected dataflow graphs. Partitioned scheduling is known to be NP-hard; we use
therefore a best fit heuristic that consists in two steps:

1. Order actors by their decreasing priorities. We will consider only systems with a
unique priority region (e.g. computed by the LOP priority assignment).

2. Assign each actor (in the previous order) to a processor according to the best fit
strategy.

Let (Vi)i=1,M be the initially empty M partitions (i.e. each partition corresponds
to a processor). We allocate task pk, assuming that higher priority tasks are already
allocated, as follows. Let Ti be the optimal value (a point in the T -space) returned by
the symbolic response time analysis such that all partitions (Vj)j 6=i and Vi ∪ {pk} are
schedulable each one on a single processor. Ti can be found by applying SRTA only
on partition Vi ∪ {pk} (since partitions (Vj)j 6=i remain schedulable). We assign task
pk to partition Vi that results in the maximum processor utilization U(Ti). In case
of equality, we break the tie by favoring the partition with the minimum utilization
U i =

∑

pj∈Vi∪{pk}

Cj
πj

and hence seek for balanced partitions.

ForN periodic tasks, we will apply the symbolic response time analysis N×M times.
However, adding task pk to a partition Vi does not change the worst-case response times
of the already allocated tasks on Vi. Hence, if T ′ is the minimum value for which Vi
is schedulable (which is computed in the previous steps), then T = max{T ′,min{T |
Rk ≤ dk}} is the minimum value for which {pk} ∪ Vi is schedulable. If we would like to
speed up more the allocation procedure, we may take T = max{T ′,min{T | Ruk ≤ dk}}
as an approximate schedulability test.

Example 3.5. Let us consider the task set in Example 3.3 with priority assignment
p1 p2 p5 p4 p3 and M = 2. Initially, we have that V1 = ∅ and V2 = ∅. Task p1 is
assigned directly to partition V1 and task p2 to partition V2; so, V1 = {p1}, V2 = {p2}.
At this stage, we have T = 96 and U(T) = 65

96 + 70
192 = 1.041. When allocating task

102 Symbolic schedulability analysis

p5, we have two cases, either to assign the task to partition V1 or to partition V2.
In the first case, p1 is already schedulable (for T ≥ 96). We have that T ≥ 96 and
R5 = 55+

⌈

R5

T

⌉

65 ≤ d5 implies that T ≥ 540. In the second case, we have that T ≥ 96

and R5 = 55+
⌈

R5

2T

⌉

70 ≤ d5 implies that T ≥ 555. So, the best case is to allocate p5 to
partition V1 (so, T = 540 and U = 0.78).

This best-fit allocation strategy aims at maximizing the processor utilization. As
shown in the overflow and underflow analyses, the task allocation strategy affects the
buffer sizes computation. Hence, an allocation strategy that reduces the buffering re-
quirements can be more suitable for systems with strong memory constraints. For
instance, a task pk could be assigned to a partition so that the total sum of sizes of
channels that connect pk to the already assigned tasks is minimized.

For global FP scheduling, we use the schedulability test proposed in [26] (Section
1.4.3) assuming that there is a unique priority region. Again, we will consider only
connected dataflow graphs. The algorithm consists in arranging tasks by the decreasing
order of priorities. Then, for each task pk and starting from the solution found in the
previous step, we compute the best solution that satisfies Rk ≤ dk. So, we do not have
to check the schedulability of the already processed tasks (thanks to Lemma 3.1).

Lemma 3.1. If T ′ ≥ T , then the value of Rk at T ′ is smaller than its value at T .

Proof: Since Rk = Ck +

⌊

1
M

∑

wi<wk

Ii(Rk)

⌋

, it is sufficient to prove that ∀L : Ii(L) is

smaller at T ′ than at T . Recall that Ii(L) is an upper bound on the interference of task
pi on task pk in an interval of length L. This interference is higher for small periods
and deadlines of pi. Hence, Ii(L) at point T ′ is smaller than Ii(L) at point T .

Example 3.6. We again consider the task set in Example 3.3 with priority assignment
p1 p2 p5 p4 p3 and M = 2. For actor p1, we have R1 = 65. Hence, T = 96. For
actor p2, we have that T ≥ 96 and T ≥ R2 = 70 +

⌊

1
2 min{R2 − 69,W1}

⌋

such that
W1 = N165 + min{65, R2 − T − 95−N1T} and N1 =

⌊

R2+T−95
T

⌋

. Hence, T = 96, etc.

3.3 EDF scheduling

In this section, we present the symbolic EDF schedulability analysis of dataflow graphs
for uniprocessor and multiprocessor systems. We also describe the lock-free implemen-
tation of the totally ordered communication strategy.

3.3.1 Deadlines adjustment

In FP scheduling, adjusting priorities of actors can be used to reduce the buffering
requirements. Similarly, adjusting priorities of jobs in EDF scheduling could improve the
buffering requirements, as shown in the previous chapter. Let di[j], Ri[j] = ri+(j−1)πi,
and Di[j] = Ri[j] + di[j] be the relative deadline, the release time, and the absolute
deadline of job pi[j], respectively. One way to ensure that job pi[j] has a higher priority

EDF scheduling 103

than job pk[j′] (i.e. ωi[j] < ωk[j
′]) without using lock-based synchronizations is to make

sure that Di[j] < Dk[j
′] if Ri[j] = Rk[j

′] and ID(pi) > ID(pk); and Di[j] ≤ Dk[j
′]

otherwise.

Totally ordered communication

The totally ordered communication strategy was used in abstract EDF schedules con-
truction to eliminate preemptions and hence obtain more accurate buffer sizes. The
precedences imposed by this strategy can be encoded as deadlines adjustments. Figure
3.8 represent a (5, 3, 4)-affine relation between producer pi and consumer pk of a channel
e. Arrows represent the precedence relation. For instance, the scheduling constraint
“pk[4] precedes pi[4]” can be encoded as Dk[4] < Di[4] (assuming that ID(pi) < ID(pk))
or as Dk[4] = min{Dk[4], Di[4]− 1}.

Figure 3.8: Totally ordered communication strategy.

Let Si be the set of neighbors of pi in the dataflow graph; i.e. ∀pk ∈ Si : pk
communicates with pi and therefore pk and pi are affine-related. Let pk[safri,k(j)] be
the earliest job of pk that must be preceded by job pi[j]; i.e. pk[safri,k(j)] can only
start when pi[j] completes its execution. So, cbefk,i(safri,k(j)) ≥ j. Figure 3.8 gives
an intuition on how to compute safri,k(j). There are mainly five cases, illustrated in
Figure 3.9 where j′ = safri,k(j). The totally ordered communication is just an example
of communication strategies; one can imagine more possible strategies.

(a) (b) (c) (d) (e)

Figure 3.9: safri,k function.

Let d∗i be the user-provided deadline of actor pi (it could be the implicit deadline)
and ζi,k(j) = 1 if Di[j] must be strictly less than Dk[safri,k(j)], and ζi,k(j) = 0 otherwise.
The new deadline of job pi[j] can be computed as follows.

Di[j] = min
pk∈Si

{Ri[j] + d∗i , Dk[safri,k(j)]− ζi,k(j)} (3.9)

If we consider relative deadlines, then Equation 3.9 can be written as

di[j] = Di[j]−Ri[j]
= min

pk∈Si
{d∗i , dk[safri,k(j)]− ζi,k(j) +Rk[safri,k(j)]−Ri[j]}

104 Symbolic schedulability analysis

It is worth mentioning that even if pi belongs to a cycle in the dataflow graph,
Di[j] does not depend on itself. Therefore, it is possible to compute adjusted deadlines
using simple propagation of new values. Furthermore, since each affine relation is an
ultimately periodic activation relation, the deadlines of jobs of each actor are ultimately
periodic.

Example 3.7. Consider the UCSDF graph in Figure 2.14 (p. 79) with affine relations

p1
(1,1,2)−→ p2

(3,−1,1)−→ p3
(2,−1,3)−→ p1. As shown in Figure 3.10, the hyperperiod of this

schedule consists of two activations of p1, one activation of p2, and three activations of p3.
Deadlines computation will be limited to one hyperperiod. We have that π = [T, 2T, 23T]
and we suppose that the user-provided deadlines are d∗ = [π1 − 10, π22 , π3] and that
ID(p1) < ID(p2) < ID(p3). The new deadlines are computed as follows.

Figure 3.10: Deadlines computation example.

d1[1] = min{d∗1, d3[1] +R3[1]−R1[1]} = T − 10
d1[2] = min{d∗1, d2[1], d3[3] +R3[3]−R1[2]} = T − 10
d1[3] = min{d∗1, d3[4] +R3[4]−R1[3]} = T − 10
d2[1] = min{d∗2, d1[3] +R1[3]−R2[1], d3[3] +R3[3]−R2[1]} = min{T, 2T − 10}
d3[1] = d∗3 =

2
3T

d3[2] = min{d∗3, d1[2]− 1, d2[1]− 1} = min{23T, T − 11}
d3[3] = min{d∗3, d1[3] +R1[3]−R3[3]} = min{23T, 43T − 10}
d3[4] = d∗3 =

2
3T

The possible deadline regions are depicted in Table 3.2. So, if C = [65, 70, 95], then
T ≥ 242.5

M
. Hence, if M = 1, then ∀pi : di = d∗i .

Table 3.2: Deadline regions of Example 3.7.

T ∈]10, 15]]15, 33]]33,∞[

d1 (T − 10)ω (T − 10)ω (T − 10)ω

d2 (T)ω (T)ω (T)ω

d3 2

3
T (T − 11 4

3
T − 10 2

3
T)ω 2

3
T (T − 11 2

3
T 2

3
T)ω (23T)

ω

Approximate deadlines

Most of EDF schedulability tests assume that a task has a unique deadline. To fit in
this model, we may consider the following two simple solutions.

EDF scheduling 105

1. For each actor pi, we compute a minimum deadline di = min
j
di[j]. These deadlines

are used just in the symbolic schedulability analysis since if the system is schedulable
with the minimum deadlines, then it is schedulable with the original deadlines. This is
true for sustainable schedulability tests (see [50]) such as the processor demand analysis
used in the sequel. However, the original deadlines must be used in the implementa-
tion since the minimum deadlines do not guarantee the totally ordered communication
strategy. In the previous example, we may take d3 = T − 11 when T ∈]15, 33].
2. A unique deadline is computed for each task pi as di = min

j
di[j]. Hence,

di = min
j
di[j] = min

j
min
pk∈Si

{d∗i , dk[safri,k(j)]− ζi,k(j) +Rk[safri,k(j)]−Ri[j]}

= min
pk∈Si

{d∗i ,min
j
{dk[safri,k(j)]− ζi,k(j) +Rk[safri,k(j)]−Ri[j]}}

≥ min
pk∈Si

{d∗i , dk +min
j
{−ζi,k(j) +Rk[safri,k(j)]−Ri[j]}}

(because min
j
dk[safri,k(j)] ≥ min

j
dk[j] = dk)

So, we only need to compute a lower bound on min
j
{−ζi,k(j) + Rk[safri,k(j)] − Ri[j]}.

That depends on the affine relation between pi and pk. If the affine relation contains syn-
chronous activations (i.e. gcd{n, d} = 1 assuming that the affine relation is under canon-
ical form) and ID(pi) > ID(pk), then min

j
{−ζi,k(j)} = −1; otherwise min

j
{−ζi,k(j)} = 0.

Similarly, from the affine relation, it is possible to compute min
j
{Rk[safri,k(j)]−Ri[j]}.

Let us put ∆i,k = min
j
{−ζi,k(j) +Rk[safri,k(j)]−Ri[j]}. Therefore, we have that

di = min
pk∈Si

{d∗i , dk +∆i,k} (3.10)

If we put X = [d1, d2, . . . , dN], then approximate deadlines computation can be
written as X = F (X). So, we need to compute the greatest fixed point of the function
F . Since F is a monotone function, the fixed point, if any, can be found by computing
the sequence X0, X1 = F (X0), X2 = F (X1), . . . until stabilization such that X0 is the
vector where ∀pi ∈ P : di = d∗i .

Example 3.8. Let us consider the graph in Example 3.7. Using Equation 3.10, we
obtain d1 = min{d1, d2+T, d3+ T

3 }, d2 = min{d2, d1+T, d3+ 2
3T}, and d3 = min{d3, d1−

1, d2 − 1}. The solutions of this equation system are presented in Table 3.3.

Property 3.2. Deadlines are monotone over the T -space.

This property means that for two points T and T ′ in the T -space such that T ≤ T ′,
the deadline of any job at point T ′ is greater than or equal to its deadline at point T .

106 Symbolic schedulability analysis

Table 3.3: Fixed-point computation of deadlines.

T ∈]10, 16]]16, 33]]33,∞[

d1 T − 10 T − 10 T − 10
d2

5
3T − 11 T T

d3 T − 11 T − 11 2
3T

Impact on throughput

Let T ∗ be the point that gives the best processor utilization in the initial T -space (i.e.
using the necessary schedulability test U ≤M). Any increase on the lower bound of Tj ,
due to deadlines adjustment, potentially decreases the processor utilization if T lj > T ∗

j .
The lower bound could be increased after adjusting the deadlines in order to meet the
constraint Ci ≤ di[j]. One simple solution is to not consider in the deadlines adjustment
any precedence that may increase the lower bounds of components Tj .

3.3.2 Uniprocessor scheduling

We firstly consider the case where the graph of affine relations is connected. Thus,
∀pi ∈ P : πi = αiT . If the deadlines are equal to periods, we use the schedulability test
U ≤ 1 since it is an exact EDF schedulability test. The solution is therefore equal to

T =
⌈

T l

B

⌉

B (computation of T l has already considered the constraint U ≤ 1). If the

deadlines are constrained, then we use the QPA schedulability test (Section 1.4.2). The

basic symbolic schedulability test consists in using QPA at each point Tk =
⌈

T l

B

⌉

B+kB

in the interval [T l, T u] in the increasing order till reaching the first feasible solution. This
time consuming approach can be improved knowing that “when we increase T , deadlines
and period are stretched while execution times remain constants”.

Our symbolic schedulability analysis of dataflow graphs consists in incorporating
the search of the minimum T that ensures EDF schedulability into the QPA algorithm.
Algorithm 5 represents the symbolic QPA algorithm. Let L(T), U(T), and hT (t) denote
respectively the values L,U, and h(t) for a given T . Recall that L is the feasibility
bound and h is the processor demand function.

Starting from the minimum value of T (i.e. T0), SQPA performs the QPA analysis
in the interval [0, L(T0)]. This first iteration leads either to hT0(t) ≤ min{d} or to
a deadline miss, i.e. hT0(t) > t (Figure 3.11). In the first case, the task system is
schedulable and the algorithm returns T0.

In the second case, assume that the deadline miss occurs at d∗ (i.e. hT0(d∗) > d∗).
In this case, T must be increased to T1 (instruction k++;). According to Lemma 3.2,
L(T1) ≤ L(T0). Hence, the verification can restart from L(T1) instead of L(T0). But,
according to Lemma 1.1 (p. 41), we have that ∀t ∈ [hT0(d∗), L(T0)] : hT0(t) ≤ t. Since
Lemma 3.3 implies that ∀t ∈ [hT0(d∗), L(T0)] : hT1(t) ≤ hT0(t) ≤ t, the verification
process for T1 can restart from min{L(T1), hT0(d∗)}. This process is repeated until the
termination condition is reached or T exceeds the upper bound T u.

EDF scheduling 107

 increase T
update

schedulable

Figure 3.11: Illustration of SQPA.

Algorithm 5: SQPA algorithm

k = 0; t = max{d|d ≤ L(Tk)};
while h(t) > min{d} do

if h(t) < t then t = h(t);
else if t == h(t) then t = max{d|d < t};
else

k++;
if Tk > T u then return task set not schedulable;
t = min{hTk−1(t),max{d|d ≤ L(Tk)}};

return Tk;

Lemma 3.2. If T ≤ T ′, then L(T) ≥ L(T ′).

Proof: We have that L is equal to synchronous busy period which can computed with

Lm+1 =
∑

pi∈P

⌈

Lm

πi

⌉

Ci where L0 =
∑

pi∈P
Ci. Clearly, ∀m : Lm(T ′) ≤ Lm(T). Hence,

L(T ′) ≤ L(T).

Lemma 3.3. If T ≤ T ′, then ∀t : hT (t) ≥ hT ′

(t).

Proof: We have that hT (t) =
∑

pi∈P
hTi (t) such that hTi (t) =

∑

Di[j]≤t
Ci. According to

Property 3.2, a given absolute deadline occurs earlier for T than for T ′. Therefore,
∀l, hTi (t) ≥ hT

′

i (t).
SQPA algorithm has a pseudo-polynomial complexity since it checks in the worst-

case scenario all the deadlines in interval [0, L(T0)] as a standard processor-demand
analysis may do.

Example 3.9. We take the same example as in Example 3.7 with C = [65, 70, 95]. We
have that U = 242.5

T
, T ≥ 243, and B = 3.

• T = 243, L = 485
t = 476, h(t) = 390 t = 390, h(t) = 325
t = 325, h(t) = 325 t = 324, h(t) = 325 (deadline miss; increase T)
• T = 246, L = 485
t = 325, h(t) = 230 t = 230, h(t) = 95 (return T = 246)

108 Symbolic schedulability analysis

So, the maximum processor utilization that can be achieved with the user-provided
deadlines is equal to U = 0.985.

The second case is when the graph of affine relations is disconnected. We propose
a DF-B&B SQPA search algorithm (Algorithm 6). Procedure SQPA∗(T , t) performs
QPA (i.e. testing h(t) ≤ t in backward manner) for a given value T starting from
point min{t, L(T)}. It ends when there is a miss (i.e. this procedure does not increase
periods) or if the system is schedulable at point T . When U(T) > 1, the procedure
indicates the miss immediately. To better explain the search algorithm, we consider the
following example.

Algorithm 6: DF-B&B SQPA.

Procedure main() begin

T cur = [T l1, . . . , T
l
L]; U

cur = 0;
t = SQPA∗(T cur, L(T cur));
if t > min{d} then VisitTree(T cur, t, 1);
return T cur;

Procedure visitTree(T , t, j) begin

for i = j, j + 1, . . . ,L, . . . , j − 1 do

T node ← increase Ti in T ;
if Ti > T ui or U(T node) ≤ U cur then prune this node;
else

t = SQPA∗(T node, t) ;
if t ≤ min{d} then T cur = T node; U cur = U(T node);

else VisitTree(T node, hT
node

(t), j mod L+ 1);

Example 3.10. Let us take the dataflow graph in Example 3.2 with C = [20, 30, 10, 15, 10]
and d = [π1 − 30, π22 − 5, π3, π4 − 5, 45π5 − 10]. We have that π = [T1, 2T1,

2
3T1, T2,

T2
4].

We suppose that the initial T -space is defined by T1 ≥ 84, T2 ≥ 100, B1 = 12, B2 = 20,
and U = 50

T1
+ 55

T2
≤ 1.

Figure 6 represents the results of the search algorithm where nodes are numbered
in the order of appearance. Initially, we have that T cur = [102, 96] and U = 0. Since
U(T cur) > 1, procedure SQPA∗ indicates a miss immediately. From each node, we
increase either T1 or T2. The first node with U(T node) ≤ 1 is T node = [96, 120]. At this
node, Procedure SQPA∗ returns a miss. As in SQPA, If d∗ is the missed deadline, then
the verification will continue from min{L, h(d∗)} when periods are increased (h(d∗) is
denoted by t in Figure 3.12). The first encountered leaf is T = [120, 160] (i.e. the
task set is EDF-schedulable at this point), and U cur and T cur must be updated. Node
numbered 12 is pruned because U([144, 120]) < U cur = 0.806.

However, this algorithm requires upper bounds T uj in order to have a finite search
space. This is mainly to ensure that a point such T = [∞, T l2] or T = [T l1,∞] cannot

EDF scheduling 109

Figure 3.12: Illustration of DF-B&B SQPA.

be the optimum solution. As in DF-B&B SRTA, it is possible to limit the search space
to the sub-space dominated by a first admissible solution.

3.3.3 Multiprocessor scheduling

Let us first address the symbolic partitioned EDF scheduling problem. As in FP schedul-
ing, we consider a best fit allocation strategy. Actors are ordered according to some
criterion (e.g. non-decreasing order of deadlines in case there is a unique DM priority
region). Then, actor pk is assigned to the best partition. Let Ti be the value of T
returned by uniprocessor schedulability analysis and which is the best vector for which
all partitions (Vj)j 6=i and Vi ∪{pk} are EDF-schedulable each one on a single processor.
We assign task pk to the partition that gives the highest processor utilization U(Ti). In
case of equality, we break the tie by favoring the partition with the minimum utilization
U i =

∑

pj∈Vi∪{pk}

Cj
πj

and hence seek for balanced partitions. This best fit allocation strat-

egy aims at maximizing the processor utilization. As shown in the previous chapter,
the processor allocation influences the buffer sizes computation. Furthermore, adjust-
ing deadlines to enforce precedences between jobs of two actors does not work if the
two actors are allocated to different processors. The approximate gains that come from
assigning two actors to the same processor and from totally ordered communication
strategy can be deduced using overflow and underflow equations.

An allocation strategy, for connected graphs, that firstly aims at minimizing the
buffering requirements (by adjusting implicit deadlines) and secondly balances the pro-
cessor utilization of partitions consists of the following steps.

1. Parameters n and d of every affine relation are computed using the boundedness

110 Symbolic schedulability analysis

criterion. So, we have that ∀pi ∈ P : πi = αiT .

2. Let G = (V,E) be an undirected graph where nodes represent actors and edges
represent affine relations. Each node vi is associated with a weight that represents the
utilization of actor pi; i.e. w(vi) = Ci

αi
. The weight of edge ei,k = (vi, vk), denoted

by w(ei,k), is equal to zero if enforcing precedences between pi and pk may jeopardize
the processor utilization factor, and equal to the approximate gain that comes from
adjusting the deadlines otherwise.

3. The graph G should be partitioned into M balanced partitions (Vi)i=1,M ; that
is, ∀i, j : |w(Vi) − w(Vj)| is minimal such that w(Vi) =

∑

v∈Vi
w(v). Furthermore, the

partitioning must minimize the total weight of edges connecting different partitions. The
reason behind this requirement is that adjusting deadlines will not ensure precedences
between actors allocated to different processors. This M -partitioning problem is well
known in graph theory; for instance, we use the SCOTCH tool [59] to solve the problem.

4. Once each actor is assigned to a processor, overflow and underflow analyses can be
performed to compute parameter ϕ of each affine relation.

5. Computation of symbolic deadlines of tasks in each partition.

6. The SQPA algorithm is then applied on each partition Vi. The algorithm will return
the minimum value Ti that ensures EDF schedulability of the set Vi on a single processor.
We need just to take T = max

i=1,M
Ti.

For global EDF scheduling of connected graphs, we will use the QPA-FFDBF schedu-
lability test. But first, we propose an improvement of the schedulability test using the
following lemma.

Lemma 3.4. If γ1 < γ2 and ffdbf(t, γ1) ≥ (M−(M−1)γ1
(M−1)γ2

)
∑

pi∈P
Ci, then h(t, γ1) ≤ h(t, γ2).

Proof: Figure 3.13 depicts the forced-forward demand bound function for two values γ1
and γ2 such that γ1 < γ2. As shown in that figure, we have clearly that ∀t : 0 ≤ ∆i(t) =
ffdbfi(t, γ1) − ffdbfi(t, γ2) ≤ ∆i. Using basic geometry, we have that ∆i = Ci(1 − γ1

γ2
).

So,

hi(t, γ2)− hi(t, γ1) =
ffdbf

i
(t, γ1)−∆i(t)

M − (M − 1)γ2
− ffdbf

i
(t, γ1)

M − (M − 1)γ1

Hence,

h(t, γ2)− h(t, γ1) =
x

(M − (M − 1)γ2)(M − (M − 1)γ1)

s.t. x = (M − 1)(γ2− γ1) ffdbf(t, γ1)− (M − (M − 1)γ1)
∑

pi∈P
∆i(t). Therefore, if x ≥ 0;

i.e.

ffdbf(t, γ1) ≥
M − (M − 1)γ1
(M − 1)(γ2 − γ1)

∑

pi∈P
∆i(t)

then h(t, γ1) ≤ h(t, γ2). But, ∀t : ∑

pi∈P
∆i(t) ≤

∑

pi∈P
∆i.

EDF scheduling 111

Figure 3.13: Illustration of ffdbf

Lemma 3.4 is used as follows. For a given γ1, if h(t, γ1) > t and ffdbf(t, γ1) ≥ F ∗ =

(M−(M−1)γ1
(M−1)γ1

)
∑

pi∈P
Ci, then it does not matter if we increase γ1 to γ2 since h(t, γ2) will

be also greater than t. Note that we used γ1 in the dominator of F ∗ instead of γ2.

Algorithm 7 represents the symbolic QPA-FFDBF algorithm for global EDF schedul-
ing of connected graphs. Let γmin(T), and γmax(T) denote respectively γmin = µ∗, and
γmax = M−U

M−1 for a given T . Let F ∗(γ) denote the value of F ∗ for a given value of γ. If
h(t, γ) > t, then we have to increase either γ or T according to Lemma 3.4 and Theorem
1.2 (p. 42). As for SQPA, we note the following results.

Lemma 3.5. If T ≤ T ′, then ∀t : hT (t, γ) ≥ hT ′

(t, γ).

Proof: We have that hT (t, γ) =

∑

pi∈P

ffdbf Ti (t,γ)

M−(M−1)γ . It is quite easy to prove that ffdbf T
′

i (t, γ) ≤
ffdbf Ti (t, γ). Indeed, periods and deadlines are larger at point T ′ than at point T . You
can easily notice in Figure 3.13 that the value of the forced-forward demand bound
function decreases when periods and deadlines are increased.

If d∗ is the first deadline for which hT (d∗, γ) > d∗, then we have that ∀t ∈ [hT (d∗, γ), L(T)] :
hT

′

(t, γ) ≤ hT (l, γ) ≤ t. For given values Tk+1 and γ, we take Prev(γ) = hTk(d∗, γ).

Lemma 3.6. If T ≤ T ′, then L(T) ≥ L(T ′).

Proof: If there is a unique deadline region and ∀pi : diπi is monotone over the T -space,

then L =

∑

pi∈P

(πi−di)Ui

M−(M−1)γ−U satisfies the property; otherwise L =

∑

pi∈P

Ci

M−(M−1)γ−U (from [11])
satisfies the property.

Thanks to these observations, for a given value γ, it is not necessary to recheck
deadlines in the interval [L(T ′),Prev(γ)] when T is increased to T ′.

It is worth mentioning that computation of T l must consider the constraint µ∗ <
M−U
M−1 . If the graph of affine relation is disconnected, then a branch and bound technique
like the one proposed for SQPA can be used with SQPA-FFDBF.

112 Symbolic schedulability analysis

Algorithm 7: SQPA-FFDBF algorithm

k = 0; γ = γmin(Tk); t = L(Tk);
while h(t, γ) > min{d} do

if h(t, γ) ≤ t then t = min{h(t, γ),max{d|d < t}};
else

if ffdbf(t, γ) ≥ F ∗(γ) ∨ γ + ǫ ≥ γmax(Tk) then

k++;
if Tk > T u then return task set unschedulable;
γ = γmin(Tk);

else γ = γ + ǫ;
t = min{L(Tk),Prev(γ)};

return Tk;

Example 3.11. Let us consider the task set in Example 3.3: π = [T, 2T, 23T,
4
3T,

T
3],

C = [65, 70, 95, 60, 55], d = [π1 − 30, π22 ,
3
4π3 − 10, π42 , π5 − 60], and U = 452.5

T
. If

M = 2, then the initial T -space is defined by T ≥ 348 and B = 6. We have that
γmin(T) = max{ 190

T−20 ,
165

T−180} and γmax(T) = 2 − 452.5
T

. Constraint µ∗ < M−U
M−1 implies

that T ≥ 384. We take ǫ = 0.002 and the initial value of γ is rounded up (e.g.
0.6893→ 0.690) in order to pass by the same values of γ in the iterations.

✷ T = 384, γmin = 0.8088, γmax = 0.8216
• γ = 0.810, L = 10504
t = 10504, h(t, γ) = 10425.21 t = 10425, h(t, γ) = 10363.86 . . .
t = 6584, h(t, γ) = 6584.03: miss.
Increasing γ will not solve the problem since ffdbf (t, γ) = 7835.0 > F ∗ = 506.85. Hence,
T must be increased.
✷ T = 390, γmin = 0.7857, γmax = 0.8397
• γ = 0.786, L = 2270
t = 2265, h(t, γ) = 2173.49 . . . t = 751, h(t, γ) = 751.23: miss and ffdbf (t, γ) > F ∗.
...
✷ T = 408, γmin = 0.7236, γmax = 0.8909

• γ = 0.724, L = 718: schedulable and U
M

= 0.554

3.4 Conclusion

In this chapter, we have presented the necessary symbolic schedulability analyses of
abstract schedules that aim at either minimizing the buffering requirements or maxi-
mizing the processor utilization. We have presented the symbolic schedulability analysis
for uniprocessor and multiprocessor systems with respect to two real-time scheduling
policies: fixed-priority scheduling and earliest-deadline first scheduling.

Chapter 4

Experimental validation

Contents

4.1 Performance comparison: ADFG vs DARTS 113

4.1.1 Throughput . 115

4.1.2 Buffering requirements . 118

4.2 Symbolic schedulability analysis 121

4.2.1 EDF scheduling . 122

4.2.2 Fixed-priority scheduling . 125

4.3 Application: Design of SCJ/L1 systems 127

4.3.1 Concurrency model of SCJ/L1 128

4.3.2 Dataflow design model . 129

4.4 Conclusion . 131

In this chapter, we present the results obtained by the scheduling algorithms on a
set of real-life stream processing applications and randomly generated dataflow graphs
w.r.t. buffer minimization and throughput maximization. Furthermore, we compare
the complexity of our symbolic schedulability analyses with that of basic enumerative
solutions. We refer to the implementation of our scheduling algorithms as the ADFG

tool. We will also briefly present a graphical editor for automatic synthesis of SCJ Level
1 applications from UCDF graph specifications.

4.1 Performance comparison: ADFG vs DARTS

In a first place, we compare our scheduling tool (the ADFG tool) with the DARTS tool
(an implementation of the scheduling approach presented in [9]). In the best of our
knowledge, DARTS is the only existing tool for real-time scheduling of (C)SDF graphs.
However, it can handle only acyclic connected graphs. Therefore, we use the same acyclic
benchmarks (see Table 4.1) presented in more details in [9]. They are SDF and CSDF
graphs collected from many sources (the StreamIt benchmark [190], the SDF3 tool [182],

113

114 Experimental validation

Application #nodes #edges B σ Θ(G) Umax minBS

Serpent 120 128 1 129020 2.99× 10−4 38.675 14249
Fast Fourier transform (FFT) 17 16 1 141058 8.31× 10−5 11.723 8192
MPEG2 video 23 26 1 56737 1.30× 10−4 7.387 6274
Digital Radio Mondiale receiver 4 3 768 47207.8 1.24× 10−5 2.927 2698
Channel vocoder 55 70 1 1186025 2.81× 10−5 33.409 2618
Data Encryption Standard (DES) 53 60 1 18034 9.76× 10−4 17.611 2564
Discrete cosine transform (DCT) 8 7 1 121672 2.10× 10−5 2.555 1792
Satellite receiver 22 26 220 188.12 9.45× 10−4 4.275 1542
H.263 video decoder 4 3 1 1107.24 3.01× 10−6 1.98 1189
Filterbank for signal processing 85 99 1 364268 8.84× 10−5 32.201 680
Vocoder 114 146 1 25417 1.10× 10−4 2.791 668
Multi-channel beamformer 57 70 1 130033 1.97× 10−4 25.617 254
Bitonic Parallel Sorting 40 46 1 930 1.05× 10−2 9.789 151
Software FM radio with equalizer 43 53 1 18828 6.97× 10−4 13.129 57
Heart pacemaker 4 3 320 611 3.12× 10−3 1.909 42
MP3 audio decoder 14 18 1 6105381 2.68× 10−7 3.271 20
Data modem 6 5 1 2.93 6.25× 10−2 2.937 16
CD-to-DAT rate converter 6 5 80 16.36 8.50× 10−4 4.227 5

Table 4.1: Real-life stream processing benchmarks.

and some research papers). The number of nodes in a graph is denoted by #nodes,
the number of channels is denoted by #edges, the maximum throughput (i.e. the
self-timed throughput) is denoted by Θ(G), while the minimum buffering requirements
that can be obtained by a static-periodic schedule is denoted by minBS. The maximum
throughput and the minimum buffering requirements are computed after disabling auto-
concurrency. Minimum buffering requirements are computed using the SDF3 tool. The
throughput of an actor pi is taken as Θ(pi) = Θ(G)~r(i). Then, the maximum processor
utilization is taken as Umax =

∑

pi∈P
Θ(pi)Ci.

Definition 4.1. Let e = (pi, pk, u1v
ω
1 , u2v

ω
2) be a channel. Channel e is said to be a

matched I/O rates channel if ‖v1‖
|v1| ≈

‖v2‖
|v2| . It is said to be a perfectly matched I/O rates

channel if ‖v1‖
|v1| = ‖v2‖

|v2| .

If all the channels in a graph are perfectly matched I/O rates channels, then fac-
tor B (computed in the symbolic schedulability analysis) will be equal to 1. Most of
the applications in Table 4.1 (except for MP3 decoder, cd2dat-csdf, Satellite,
Receiver, and Pacemaker) consist of perfectly matched I/O rates channels. This
kind of graphs does not allow us to demonstrate the reduction of buffering requirements
that results from priority assignment or deadlines adjustment because of the following
observation. According to Table 2.1, the approximate gain that comes from switching
the priorities of the producer and the consumer is given as ‖v2‖

|v2|
∣

∣

d−n
n

∣

∣. But, this quantity

Performance comparison: ADFG vs DARTS 115

is very small in case of matched I/O rates channels (and null in case of perfectly matched
I/O channels) since d

n
= ‖v1‖

|v1|
|v2|
‖v2‖

. Similar observation holds for deadlines adjustment.
To better measure the impact of our techniques, we will use a set of randomly generated
(cyclic) connected SDF graphs. The graphs are generated by the SDF3 tool with the
following setting. Production and consumption rates follow a normal distribution with
a mean equal to 5 and a variance equal to 4. Worst-case execution times follow a normal
distribution with a mean equal to 1000 and a variance equal to 300. The graphs are
generated with different numbers of nodes (from 6 to 80) such that the average degree
of each node is 2.

In most of the experiments, we will assume implicit deadlines unless it is stated oth-
erwise or the deadlines adjustment technique is used. We will show the results obtained
by some of the scheduling algorithms presented in the previous chapter. However, we
will focus more on uniprocessor scheduling algorithms.

4.1.1 Throughput

We consider here some of the scheduling algorithms that aim at maximizing the pro-
cessor utilization regardless of the achieved buffering requirements. Let us first address
the uniprocessor scheduling case.

Figure 4.1 shows the obtained results by the ADFG and DARTS tools in case of EDF
and FP priority scheduling of the real-life benchmarks. Implicit deadlines are used in
order to achieve the highest throughput. Furthermore, the priority assignment policy
for FP scheduling is taken as the RM priority assignment. Clearly, our scheduling tool
gives (by far) the best processor utilization in case of RM scheduling. This is because our
RM schedulability analysis is based on the accurate RTA; while the RM schedulability
analysis in the DARTS tool is based on the pessimistic utilization-based test.

!"
!#$"
!#%"
!#&"
!#'"
!#("
!#)"
!#*"
!#+"
!#,"
$"

!"
#$
"%
&'

((
)'

*
+,
-.
'

/"
0"
12"
#'

34
5%
%"
678
08
9"
#'

:,
!'

:3
)'

!5
&"
661&
"'

;<
.=
>'9
"0
89
"#
'

(16
&"
#?
5%
@'

78
08
9"
#'

A"
5B
C8
#B
"#
'

A1&
8%
10!
8#
&'

(*
/5
918
'

+5
0"
B
5@
"#
'

*
+>
'9"
08
9"
#'

*
89
"B
'

09
.9
5&D
0E
9C
'

+#
80
"E
E8
#'
FG
61H
5G
8%
'

-./012./" .-34512./" -./0136" .-345136"

Figure 4.1: Achieved throughput in EDF/RM uniprocessor scheduling.

In case of EDF scheduling, our tool slightly outperforms the DARTS tool. Though
both tools use the same exact utilization-based EDF schedulability test (U ≤ 1), they
produce different utilizations due to the implementation details (and not because of the

116 Experimental validation

number of initial tokens in channels). The reason is that the DARTS tool first computes
the minimum periods assuming unlimited resources and then scales these periods so
that the task set fits on one processor.

Even in EDF scheduling, it is not always possible to achieve an utilization equal
to 1. If the system is unschedulable for a given T , then the next value of T depends

on B (since T =
⌈

T l

B

⌉

B + kB). This explains the low utilization achieved by the

cd2dat-csdf and Satellite applications for instance.
Regarding constrained deadlines, the DARTS tool allows the user to specify dead-

lines of the form ∀pi ∈ P : di = fπi + (1 − f)Ci such that f ∈]0, 1]. Hence, all the
deadlines must be scaled with the same scale factor f . In our tool, the designer has
more freedom on which deadlines he would like to constrain as di = aiπi − bi. In Sec-
tions 2.3.3 and 2.3.4, we have shown how to compute function cbef in the overflow and
underflow analyses. In FP scheduling, user-imposed deadlines has no (direct) impact on
the computation of cbef. However, in EDF scheduling, user-provided deadlines may in-
troduce different scheduling precedences than the one deduced from implicit deadlines.
Therefore, they must be considered at the abstract schedule construction step.

Let us now address the multiprocessor scheduling case. One important question is
“given a (global or partitioned) scheduling algorithm, what is the minimum number of processors
required to achieve the self-timed throughput ?”. A necessary schedulability condition is that
U = σ

T
≤ M . But, T must be a multiple of some integer B. Therefore, if B ≥ σ,

then even if we increase the number of processors, we cannot reduce the lower bound
on T (deduced from U ≤ M and T = kB). This is why in some cases (e.g. the
satellite application), it is impossible to achieve the self-timed throughput even
with an unlimited number of processors.

In partitioned scheduling, the best processor utilization cannot exceed the one ob-
tained when M = N . In this case, the best fit strategy allocates each actor to a different
processor. Let UM=N be the obtained utilization and let T l be the lower bound deduced
only from constraint Ci ≤ di. So,

UM=N =
σ

⌈

T l

B

⌉

B

Depending on T l and B, value UM=N can or cannot be equal to the self-timed utiliza-
tion.

Application #nodes #edges B σ Θ(G) Umax

nodes28 28 63 55125 5895372.96 1.22× 10−8 6.938
nodes34 34 64 5040 41300.90 4.90× 10−10 4.138
nodes56 56 95 58320 588329.26 3.03× 10−12 5.467

Table 4.2: Some randomly generated SDF graphs.

Table 4.2 shows the characteristics of some of the randomly generated SDF graphs.
The throughput Θ(G) is obtained by the SDF3 tool (auto-concurrency disabled). Figure

Performance comparison: ADFG vs DARTS 117

Figure 4.2: Impact of number of processors on the throughput in BF-RM scheduling.

4.2 shows the processor utilization that can be achieved by the best fit partitioned RM
algorithm (BF-RM) for different numbers of processors. In BF-RM, actors with high
utilization are considered first in case of tie. It is worth mentioning that an optimal
multiprocessor scheduling algorithm needs at least ⌈Umax⌉ processors to achieve the
self-timed throughput (if it is possible). Clearly, BF-RM is not an optimal algorithm
and needs more resources to achieve the maximum throughput. For instance, in case of
the Serpent application, BF-RM requires 46 processors to achieve an utilization equal
to 38.67.

Regarding partitioned EDF scheduling, we compare our best fit partitioned schedul-
ing algorithm (BF-EDF) with the first fit partitioned scheduling algorithm of the DARTS

tool. Figure 4.3 shows the number of processors needed by both algorithms to achieve
the self-timed throughput. As one could notice, our algorithm largely outperforms
the DARTS tool in all cases. This is due to the symbolic schedulability approach of

Figure 4.3: Comparison between BF-EDF and the first fit allocation strategy of DARTS.

118 Experimental validation

the DARTS tool and its first fit allocation strategy. We note that the ADFG tool has
obtained the optimum solution in many cases.

DARTS does not implement any global scheduling algorithm. Therefore, we will
compare our global and partitioned scheduling algorithms with each other; for instance,
BF-EDF with FFDBF-SQPA. Since FFDBF-SQPA is especially designed for constrained
task sets, we assume that ∀pi : di = 9

10πi. In this case, BF-EDF will apply SQPA

on each partition instead of the utilization-based test. Figure 4.4 shows the obtained
results for some applications. In this figure, UM=N denotes the maximum utilization
which is obtained when dedicating a processor to each actor. Though the forced-forward
demand analysis can be considered as one of the best global EDF schedulability analyses
[25], this experiment attests the superiority of partitioned EDF schedulability tests over
global EDF schedulability tests.

Figure 4.4: Comparison between BF-EDF and FFDBF-SQPA.

4.1.2 Buffering requirements

We consider here the presented scheduling techniques that aim at minimizing the buffer-
ing requirements. But, we first compare our tool with the DARTS tool in order to have at
least a hint about the accuracy of our linear approximations and machine-independent
buffer sizes computation technique. Figure 4.5 represents the ratios of the obtained
buffering requirements to the minimum buffering requirements (i.e. minBS). The ADFG

tool computes the buffer sizes for uniprocessor EDF scheduling of the benchmarks as-
suming implicit deadlines. However, the DARTS tool computes buffer sizes under the
following hypotheses: (1) An actor consumes its required data at the beginning of a
firing and writes all its results at the end. (2) Unlimited number of resources; hence,
an actor reads tokens simultaneously with each release. Therefore, the computed buffer
sizes are not overflow-safe for uniprocessor scheduling since a consumer can be delayed
because of limited resources.

Both tools manage to get the minimum buffering requirements for most of the ap-
plications with perfectly matched I/O rates channels (e.g. FFT and Beamformer).
However, for applications with mis-matched I/O rates channels (e.g. Satellite,

Performance comparison: ADFG vs DARTS 119

!"

!#$"

%"

%#$"

&"

&#$"

'"

!"#$"%&'

(()'
*
+,-.'

/"0"12"#'

345%%"678089"#'

:,!'
:3)'

!5&"661&"'

;<.=>'9"089"#'

(16&"#?5%@'

78089"#'

!"5BC8#B"#'

!1&8%10!8#&'

(*
/5918'

+50"B5@"#'

*
+>'9"089"#'

*
89"B'

09.95&D0E9C'

/5
F
8E

'8
C'?

GH
"#

1%
I'
#"

JG
1#
"B

"%
&E

'&8
'

B
1%

!!
'

()*+,")(-."

Figure 4.5: Comparison between DARTS and ADFG in terms of buffering requirements.

Pacemaker), our tool largely outperforms the DARTS tool. In average, our tool im-
proves the buffering requirements by 11% compared to the DARTS tool.

Let us now measure the improvement on buffering requirements that can be achieved
by the totally ordered communication strategy in uniprocessor EDF scheduling. As we
mentioned before, this technique does not improve sizes of perfectly matched I/O rates
channels. Thus, we conduct our experiment on the set of randomly generated SDF
graphs. Figure 4.6 shows the improvement on the buffering requirements. We found
that the totally ordered communication strategy improves the buffering requirements in
average by 40% with a very low standard deviation (0.05). However, this improvement
comes at the price of a throughput decline with an average equal to 20.95% (Figure
4.6). In 50% of the graphs, the deadlines adjustment improves the buffering require-
ments without affecting the throughput. These are graphs with highly mis-matched
I/O channels. Indeed, when factor B is too large (compared to σ), adjusting deadlines

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

(# $!# $(# %!# %(# &!# &(# '!# '(# (!# ((#)!#)(# *!# *(# +!#

!"
#
$%
&'
()
&*

+%
,-
$*

$'
./
0
1
2&3
41

,'
)5
$6
2&'

$)

,-./0123# 456178592#

Figure 4.6: Impact of the totally ordered communication strategy on the buffering
requirements.

120 Experimental validation

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

(# $!# $(# %!# %(# &!# &(# '!# '(# (!# ((#)!#)(# *!# *(# +!#

!�

#
$%
&'
()
&*

+%
,-
$*

$'
./
"0

1&2
30

,'
)4
$5
1&'

$)

-./01234# 5672896:3#

Figure 4.7: Impact of the LOP priority assignment on the buffering requirements and
the processor utilization.

does not influence the achievable throughput. Compromised solutions can be obtained
by excluding some precedences in the deadlines adjustment step.

Let us now address buffer minimization in fixed-priority scheduling. Figure 4.7
shows the impact of the LOP priority assignment on buffering and processor utilization
compared to the DM priority assignment. The average improvement is equal to 37.99%
with a low standard deviation (0.07). This is a good improvement that comes at the
price of a throughput decline with an average equal to 48.31%. Thus, LOP priority
assignment can be used for systems with strong memory constraints. We should also
note that LOP assignment does not decrease the throughput of 31.57% of the graphs.
Those graphs are graphs whose factor B is too large (compared to σ) so that changing
the priorities does not affect the throughput.

In a second configuration, we investigate the constrained LOP priority assignment

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

(# $!# $(# %!# %(# &!# &(# '!# '(# (!# ((#)!#)(# *!# *(# +!#

!"
#
$%
&'
()
&*

+%
,-
$*

$'
./
0
1
2&3
41

,'
)5
$6
2&'

$)

,-./0123# 456178592#

Figure 4.8: Impact of the constrained LOP priority assignment on the buffering require-
ments and the processor utilization.

Symbolic schedulability analysis 121

which consists in constraining the precedence distance between the computed assign-
ment and the DM priority assignment to not exceed a given threshold. Figure 4.8
shows the impact of the constrained LOP priority assignment on buffering and proces-
sor utilization for a threshold equal to N(N−1)

10 . We obtained a slightly less buffering
improvement (average equal to 34.99%) but for less throughput decrease (average equal
to 21.83%). Furthermore, the constrained LOP assignment does not decrease the uti-
lization in 44.73% of the cases.

In the third configuration, we would like to find a priority assignment that improves
the buffering requirements without decreasing the processor utilization (compared to the
DM utilization) by more than 15%. Therefore, we use the utilization distance instead
of the precedence distance; and hence the heuristic presented in Algorithm 3 (p. 97).
However, since the heuristic is based on a local enumeration, we do not expect to obtain
a huge buffering improvement as the one obtained in the previous experiment (based on
the ILP exact solution). We take W = 7 (for an exact solution, we must take W = N)
and a threshold u = 0.15. Figure 4.9 represents the obtained results. The average
improvement in buffering requirements is equal to 8.60% (with a standard deviation of
0.1). This is a meaningful improvement that comes at no price (a negligible average
throughput decline of 1.13%). Furthermore, it is worth noticing that for N > 32, value
W = 7 is not large enough to have a good enumeration.

!"#

$"#

%!"#

%$"#

&!"#

&$"#

'!"#

'$"#

(!"#

($"#

$# %$# &$# '$# ($# $$#)$# *$#

!"
#
$%
&'
()
&*

+%
,-
$*

$'
./
0
1
2&3
41

,'
)

5$
62
&'
$)

7&3$),8).49:)9$.9)

+,-./012# 345067481#

Figure 4.9: Impact of the priority assignment with utilization distance on the buffering
requirements and the processor utilization.

4.2 Symbolic schedulability analysis

In this section, we will compare the complexity of our symbolic schedulability algo-
rithms with that of basic enumerative solutions using a huge set of randomly generated
task sets. This comparison will also demonstrate that our algorithms compute the same
solutions as the basic enumerative algorithms. For a machine-independent comparison,
we will compute in each time the number of checked absolute deadlines in EDF schedul-
ing and the number of computed response times in FP scheduling. The task sets are

122 Experimental validation

generated as follows:

1. Connected graphs: For each task pi, we generate three parameters (Ci, αi, βi) such
that πi = αiT and di = βiT . The UUniFast algorithm [36] is used to generate
uniformly distributed Ci

αi
values. Worst-case execution times are uniformly distributed

in the interval [100, 1000]. Parameters αi and βi are uniformly generated by fixing
the value of factor B and the value of an experimental parameter D ∈]0, 1] so that
∀pi : βi ∈ [Dαi, αi]. We will show the obtained results for different configurations of
N,B, and D.

1. Disconnected graphs: A disconnected graph consists of a set of connected components.
Hence, we use the above mentioned method to generate L components and we then take
the union of these components. Let Nj be the number of actors in the jth component

(hence, N =
L
∑

j=1
Nj). We generate the components such that ∀j : Nj =

N
L ; while factors

Bj are uniformly distributed in a given interval.

4.2.1 EDF scheduling

Let us start with the SQPA algorithm (hence, connected graphs) to be compared with the
following basic algorithm: starting from k = 0; test condition h(t) ≤ t at each absolute
deadline t ∈ [0, L(Tk)]. If there is a deadline miss, then increment k. Repeat the same
process until reaching the first feasible task set. Figure 4.10 shows the obtained results.
Each point in the diagram is the ratio of the average number of checked deadlines by the
enumerative solution (for 2000 task sets) to the average number of checked deadlines by
SQPA. For each configuration, we denote by E the average number of checked points per
task (obtained by the enumerative solution) to indicate the complexity of the problem.

The complexity of the symbolic schedulability problem increases inversely with fac-
tor B. Indeed, if B has a small value, then the number of checked deadlines will be
large since each time a deadline is missed, T is increased only by a small quantity.

Figure 4.10: Performance of the SQPA algorithm.

Symbolic schedulability analysis 123

For dataflow graphs with matched I/O rate channels, factor B is generally small, and
the schedulability problem is hence more complicated. The SQPA algorithm outper-
forms the enumerative solution in all cases except cases with small N or very small
D. When deadlines are too constrained, deadline misses could be detected earlier by
a forward search than by a backward search. So, for dataflow graphs with few actors
or highly constrained deadlines, it is better to use the enumerative solution than the
SQPA algorithm.

In order to emphasis the impact of constrained deadlines on the performance of
SQPA, we have conducted the following experiment. We fix N = 60 and B = 2, and use
implicit deadlines for all tasks except for F tasks which will have constrained deadlines
di = βiT such that βi ∈ [Dαi, (D + 0.03)αi]. The obtained results are shown in Figure
4.11. Each point in the diagram represents the average number of checked deadlines by
either the enumerative solution or the SQPA algorithm for 2000 task sets.

!"

#!!!"

$!!!!"

$#!!!"

%!!!!"

%#!!!"

&!!!!"

&#!!!"

'!!!!"

!" !($" !(%" !(&" !('" !(#" !()" !(*" !(+" !(,"

!"
#$
%#
&'
&#

(&
)*+

#,
'

-'

-./01234516"78%!"

9:;<6"78%!"

-./01234516"78&!"

9:;<6"78&!"

-./01234516"78'!"

9:;<6"78'!"

Figure 4.11: Impact of constrained deadlines on the performance of the SQPA algorithm.

This experiment shows that the complexity of the symbolic schedulability problem
is lower for small and large values of D. This means that the schedulability problem
is simpler when task sets have implicit deadlines or highly constrained deadlines. Fur-
thermore, the enumerative solution outperforms SQPA only for task sets with highly
constrained deadlines. The value of D after which SQPA outperforms the enumerative
approach depends on the number of tasks with constrained deadlines (i.e. value of F).

The second algorithm to consider is the FFDBF-SQPA symbolic schedulability algo-
rithm for connected graphs which will be compared with the following basic enumerative
algorithm: Starting from k = 0 and for each value of γ ∈ [γmin(Tk), γmax(Tk)[, test con-
dition h(t, γ) ≤ t at each absolute deadline t ∈ [0, L(Tk)]. If a deadline miss occurs,
then increment either γ (if γ+ǫ < γmax(Tk)) or k. Repeat the same process until reach-
ing the first feasible task set. Figure 4.12 represents the obtained results for M = 2.
They are quite similar to that of SQPA; i.e. the FFDBF-SQPA algorithm outperforms

124 Experimental validation

the enumerative approach for non-small values of N and D. We note that in case of
FFDBF-SQPA, parameter D has more impact than factor B on the complexity of the
problem.

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

#" $#" %#" &#" '#" ##" (#")#" &#" +#"

!"
#$
%#
&'
&#

(&
)*+

#,
'

-*.#'/0'1(,%',#1,'

,-%."/-!0)."1-&!0$'" ,-&."/-!0%."1-$++0&"

,-$)#."/-!0(."1-'0+" ,-&!."/-!0!$."1-+(0%'"

Figure 4.12: Performance of the FFDBF-SQPA algorithm.

Let us now measure the impact of the number of processors on the performance of
the FFDBF-SQPA algorithm. So, we fix N = 100 and B = 2 while we vary M from
2 to 20. The obtained results for two values of D (D = 0.6 and D = 0.2) are shown
in Figure 4.13. Each point in the diagram represents the average number of checked
deadlines by either the enumerative solution or the FFDBF-SQPA algorithm for 2000
task sets. Firstly, you may notice the drastic impact of parameter D on the number
of checked points (by comparing curves Enumerative: D=0.6 and Enumerative: D=0.2).
This impact is almost constant over the entire range of number of processors (a factor
of 1.6). Regarding the impact of parameter M on the performance of FFDBF-SQPA, we
found that the benefit (i.e. reduction of complexity in comparison with the enumerative

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

(!!!"

)!!!"

$" &" (" *" #!" #$" #&" #(" #*" $!"

!"
#$
%#
&'
&#

(&
)*+

#,
'

-./0#1'23'412$#,,21,'

+,-./0123/4"56!7("
88598:;<=>4"56!7("
+,-./0123/4"56!7$"
88598:;<=>4"56!7$"

Figure 4.13: Impact of the number of processors on the performance of the FFDBF-SQPA
algorithm.

Symbolic schedulability analysis 125

solution) is almost constant for D = 0.6 and monotonic for D = 0.2. Furthermore, the
complexity of the schedulability problem decreases when adding more processors.

The last algorithm to consider is the DF-B&B SQPA algorithm (i.e. SQPA for dis-
connected graphs). We generate disconnected graphs with L = 2, Bj ∈ [10, 20], and
T u
j = 10⌈σj⌉. The enumerative solution proceeds as follows: starting from T = T l,

test condition h(t) ≤ t at each absolute deadline in [0, L(T)]. If there is a miss, then
put T = getNext() and repeat the same process until reaching the first feasible task
set. Function getNext() returns the next unexplored point in the T -space that results
in the maximum utilization. The huge overhead of this method is not considered in
the comparison. Figure 4.14 shows the obtained results. Each point in the diagram is
the ratio of the average number of checked deadlines by the enumerative solution (for
100 task sets) to the average number of checked deadlines by DF-B&B SQPA. For each
configuration, we denote by E the average number of checked points per task (obtained
by the enumerative solution) to indicate the complexity of the problem. Again, the
symbolic schedulability problem is more complex for large values of D. Furthermore,
DF-B&B SQPA outperforms the enumerative solution for non-small values of N and D.

!"

%!"

'!"

(!"

&!"

$!!"

$%!"

(" $%" $&" %'" &!" &(" '%" '&" #'" (!" ((")%")&" &'" +!" +("

!"
#!
$#
%&
%#

'%
()*

#+
&

,)-#&./&0'+$&+#0+&

,-%."/-!0)."1-&!+*(.*')$+"

,-%."/-!0&."1-$$($%.)*#&'"

Figure 4.14: Performance of the DF-B&B SQPA algorithm.

4.2.2 Fixed-priority scheduling

Let us first consider the SRTA algorithm (i.e. connected dataflow graphs) with fixed
priorities (i.e. a unique priority region). We assume that tasks have priorities in the
same order in which they were randomly generated. The obtained results are shown in
Figure 4.15 where each point represents the ratio of the average number of computed
response times by the enumerative solution (for 2000 task sets) to the average number of
computed response times by SRTA. The enumerative algorithm consists in the following
steps: starting from k = 0, perform RTA. If the task set is not feasible, then increment
k and repeat the same process until reaching the first feasible task set. The difference
between the performance of SRTA and the performance of the basic algorithm is quite
huge and unexpected. For instance, for N = 100, B = 2, and D = 0.7, SRTA requires

126 Experimental validation

the computation of only 13 response times while the basic approach requires to compute
more than 224426 response times. In fact, for the four configurations, SRTA requires to
compute at most 13 response times.

!"

#!!!"

$!!!!"

$#!!!"

%!!!!"

%#!!!"

#" $#" %#" &#" '#" ##" (#")#" *#" +#"

!"
#
$%

&'
()
*'
+$
",

+'
)-
#
'+
)

./0')"1)&2+3)+'&+)

,-%."/-!0)."1-$#()0'%" ,-&."/-!0%."1-%$')0$("

,-$)#."/-!0(."1-%%0%#" ,-&!."/-!0!$."1-$!&'0("

Figure 4.15: Performance of the SRTA algorithm.

The second schedulability algorithm to address is the DF-B&B SRTA algorithm (i.e.
SRTA for disconnected graphs). We follow the same approach, described in the previous
section, to generate disconnected graphs with L = 2, B ∈ [10, 20], and Tj = 100⌈σj⌉.
The enumerative solution proceeds as follows: starting from T = T l, perform RTA. If
there is a deadline miss, then put T = getNext() and repeat the same process until
reaching the first feasible task set. Figure 4.16 presents the obtained results where each
point in the diagram represents the ratio of the average number of computed response
times by the enumerative solution (for 50 task sets) to the average number of computed
response times by DF-B&B SRTA. The performance of the DF-B&B SRTA algorithm is
not as good as expected, especially in comparison with the performance of the SRTA

algorithm. Thus, the problem should be further researched to identify better algorithms.

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

#!"

(" $%" $)" %'" &!" &(" '%" ')" #'" (!" ((" *%" *)"

!"
#
$%

&'
()
*'
+$
",

+'
)-
#
'+
)

./0')"1)&2+3)+'&+)

+,%-".,!/*-"0,%')!#/%)"

+,%-".,!/&-"0,(!(!!/%"

Figure 4.16: Performance of the DF-B&B SRTA algorithm.

Application: Design of SCJ/L1 systems 127

4.3 Application: Design of SCJ/L1 systems

In recent years, there has been a growing interest in using Java for safety-critical systems
such as flight control systems, railway signaling systems, robotic surgery machines, etc.
The high productivity of Java compared to low-level languages is one among multiple
reasons that encourage efforts to develop Java environments for both high-end and low-
end embedded devices. FijiVM, JamaicaVM, PERC, PERC Pico, KESO, and Muvium
are examples of such environments. Much ongoing effort, mainly made by the JSR-302
expert group, is focused on developing the Safety-Critical Java (SCJ) specification [104].
SCJ is a subset of Java augmented by the Real-Time Specification for Java (RTSJ) [90]
and intended to develop applications that are amenable to certification under safety
critical standards (such as DO-178B, Level A).

To better meet domain-specific safety requirements, the SCJ specification defines
three levels of compliance (Levels 0, 1, and 2), each with a different model of concurrency,
each aiming at applications of specific criticality. By the time of writing, there are few
and incomplete implementations (only levels 0 and 1) of SCJ specification; for instance
oSCJ [156] implemented on top of FijiVM [155], SCJ implemented on top of HVM [169],
and the prototype implementation of SCJ on the Java processor JOP [162]. We have
chosen Level 1 because it is less restricted than Level 0 and more analyzable than Level
2 not yet implemented. Indeed, SCJ/L0 supports only periodic handlers scheduled
by a cyclic executive on a single processor; while SCJ/L2 has a much complicated
concurrency model with nested missions, no-heap real-time threads, inter-processor job
migration, self-suspension, etc.

In this section, we will focus on the concurrency model of SCJ/L1 rather than its
memory model. SCJ/L1 relies entirely on periodic and aperiodic event handling. Each
handler has its own server thread; this is however inconsistent with RTSJ in which
a many-to-one relationship between handlers and servers is allowed [193]. Handlers
communicate through shared memory; concurrency therefore becomes an issue as the
programmer has to deal with data races, priority inversion, and deadlocks. In order
to avoid data races, lock-based synchronization protocols are required though they are
extremely complex and require pessimistic schedulability analyses.

Our objective is to propose a dataflow design model of SCJ/L1 applications (as an
extension to the affine dataflow model) in which handlers communicate only through
lock-free channels. Using dataflow diagrams to model real-time Java applications is
not a new idea. Indeed, dataflow models of computation have been used in many real-
time Java programming models such as Eventrons [170], Reflexes [171], Exotasks [6],
StreamFlex [172], and Flexotasks [5]. The main goal of those restricted subsets of Java is
to achieve lower latencies than what can be achieved by the real-time garbage collector.
They attest the software engineering benefits of the dataflow model by offering some
model-driven development capabilities such as automatic code generation. Some of
them also provide type systems to ensure memory isolation; i.e. tasks can communicate
only through specific mechanisms such as buffers and transactional memory. The above
mentioned issues have been already partially solved by the SCJ memory model [55] or
the SCJ annotation checker [186]. Those dataflow programming models lack however the

128 Experimental validation

necessary tools for computing buffer sizes and priority-driven scheduling parameters.

4.3.1 Concurrency model of SCJ/L1

A SCJ/L1 application consists of a set of missions executed in sequence; nested missions
are hence not allowed. The infrastructure MissionSequencer thread is responsible
of creating and terminating missions, one after another. As depicted in Figure 4.17, a
mission starts in an initialization phase during which schedulable objects (periodic and
aperiodic event handlers) are created. Thus, the number and scheduling parameters
(i.e. periods, phases, deadlines, priorities, etc.) of handlers are known at compile-time.
Handlers are released during the mission execution phase such that periodic handler
releases are time-triggered while aperiodic handler releases are event-triggered. SCJ/L1
specification does not support sporadic releases; therefore, aperiodic handlers can have
only soft deadlines since the assumptions necessary to check their schedulability are
not part of the profile. Each handler overrides the handleAsyncEvent() method to
provide the computational logic executed when the handler is released. This is somehow
similar to firing functions of actors in dataflow graphs and hence justifies our choice of a dataflow
design model.

Application.setup()

Mission.initialize() Execution Mission.cleanup()

Application.teardown()

MissionSequencer.getNextMission()

Figure 4.17: SCJ mission life cycle.

Periodic and aperiodic handlers are bound asynchronous event handlers; i.e. each
handler is permanently bound to a single implementation thread. Each handler has
a fixed priority; and the set of handlers is executed in parallel with a full preemptive
priority-based scheduler. Handlers cannot self suspend and access to shared data is
controlled by synchronized methods and statement blocks to avoid race conditions.
The scheduler must implement the priority ceiling emulation protocol.

Scheduling aperiodic tasks based on their priorities may cause some lower priority
hard tasks to miss their deadlines. Among the proposed solutions, aperiodic servers have
been devised to improve the average response time of soft aperiodic tasks; examples
of such techniques are: polling servers, deferrable servers, sporadic servers, priority
exchange servers, etc. See Section 1.4.3 for more details. The SCJ specification is silent
about using such approaches to execute aperiodic handlers although sporadic servers,
for instance, are now supported by the POSIX standard P1003.1d. In the sequel, we
propose to use sporadic servers; nevertheless, the presented technique can be easily
adapted to consider polling servers or deferrable servers.

SCJ/L1 also supports multiprocessor implementations which require full partitioned
scheduling (through the notion of Affinity Sets). Each handler can execute on a fixed
processor with no migration (i.e. a partitioned FP scheduling).

Application: Design of SCJ/L1 systems 129

4.3.2 Dataflow design model

Since missions are independent, each mission will be separately designed as a dataflow
graph; while the mission sequencer can be modeled by a finite state machine. So,
an actor in a dataflow graph represents a SCJ handler. The necessary user-provided
information about a mission are illustrated in Figure 4.18.

Circle nodes represent periodic actors. The user must provide the worst-case exe-
cution time of each actor and the production and consumption rates of FIFO channels
(solid arrows between periodic actors). Those rates can be just a safe abstraction of
the actual production and consumption rates that can be obtained by some static code
analysis. A FIFO channel e will be simply implemented as a cyclic array E with a fixed
size s such that the instruction e.set(v) is implemented as {E[i]=v;i=(i+1)%s;}
where i is a local index in the producer. Calls for the get() method are implemented
in a similar way. The overflow and underflow analyses will ensure that there will be
no need for synchronization protocols to access the arrays. Two non-communicating
periodic actors can be linked together via an affine relation to relate their speeds to
each other. Actors p3 and p2 are (2, 0, 1)-affine-related which means that actor p2 is
twice as fast as actor p3.

Figure 4.18: An ultimately cyclo-static dataflow graph with aperiodic actors.

Rectangle nodes represent aperiodic handlers. Actor p4 is an aperiodic handler
bound to a sporadic server thread which has a capacity equal to 75 and a replenishment
period equal to 540. Parameters of servers that minimize the average response times are
generally obtained by simulation. Some selection criteria have been proposed in [22].
Since there can be multiple servers in the system, a capacity sharing protocol like the
one described in [23] may increase the responsiveness of aperiodic tasks.

Besides having unknown (or extremely large) worst-case execution times, aperiodic
tasks have unknown interarrival time of requests. Therefore, an aperiodic task cannot
communicate with other tasks via simple FIFO channels. Indeed, these communications
may be unbounded or empty and hence block the other tasks for an indeterminate time.
In our design model, an aperiodic task communicates with other (periodic or aperiodic)
tasks through Cyclical Asynchronous Buffers (CAB) [61]. CABs offer bounded non-
blocking communications. Tokens in a CAB are maintained until they are over-written
by the producer. Hence, some produced tokens are lost if the producer is faster than the
consumer; and the consumer may read the same tokens several times if it is faster than
the producer. This is not a problem in many control applications, where tasks require
fresh data rather than the complete stream. CABs were used in HARTIK system [52]
and SimpleRTK. Sample-and-hold communication mechanisms are used in many design
models; for instance in the Architecture Analysis and Design Language (AADL) [161]

130 Experimental validation

and the Prelude compiler [149]. Based on the parameters of the aperiodic servers bound
to the aperiodic tasks, it is possible to compute the average sizes of CABs.

The user may provide further optional information: (1) Lower bounds and upper
bounds on periods. (2) Constrained deadlines of tasks as fractions (less than one) of
periods; otherwise deadlines are assumed to be implicit. (3) The number of identi-
cal processors for multiprocessor implementations; otherwise uniprocessor scheduling is
considered. (4) Buffer sizes and number of initial tokens in channels.

Implementation

The presented dataflow design model comes with a development tool integrated in the
Eclipse IDE for easing the development of SCJ/L1 applications and enforcing the restric-
tions imposed by the design model. It consists of a GMF editor where applications are
designed graphically and timing and buffering parameters can be synthesized. Indeed,
affine scheduling is first applied on the dataflow subgraph that consists only of periodic
actors. Then, symbolic FP schedulability analysis considers both periodic and aperiodic
actors. Thanks to equations such as Equation 1.14 (p. 45), SRTA can be easily extended
to consider also sporadic servers. Through a model-to-text transformation, using Ac-
celeo, the SCJ code for missions, interfaces of handlers, and the mission sequencer is
automatically generated in addition to the annotations needed by the memory checker.

Figure 4.19: Graphical editor for SCJ/L1 applications design.

Channels are implemented as cyclic arrays or CABs and a fixed amount of memory
is hence reused to store the infinite streams of tokens. Channels are instantiated in
the mission memory since event handlers execute in private memory areas and can
communicate only through mission memory (or the immortal memory). For instance,

Conclusion 131

when a handler reads a token from a channel, it simply copies the token from the mission
memory to its private memory.

The user must provide the SCJ code of all the handleAsyncEvent() methods.
We have integrated the SCJ memory checker in our tool so that potential dangling
pointers can be highlighted at compile-time. A dangling pointer is a reference from
an object allocated in a long-lived memory area (e.g. the immortal memory which is
destroyed only at the end of the application) to an object allocated in a short-lived
memory area (e.g. the private memory of a handler which is destroyed each time its
firing function completes).

4.4 Conclusion

In this chapter, we have performed several experiments on either real-life benchmarks or
randomly generated graphs and task sets. We have compared our tool with the DARTS

tool and shown that our symbolic schedulability tests are generally more accurate.
We have also shown the improvement on buffering requirements that can be achieved
by the priority assignment and deadlines adjustment techniques. Furthermore, we have
shown that our symbolic schedulability tests are much faster than the basic enumerative
solutions in most cases. Finally, we have briefly present how to use the affine scheduling
technique to automatically generate SCJ/L1 applications from a dataflow specification.

132 Experimental validation

Conclusion

The design of real-time safety-critical applications is getting more and more complex
due to the ever-increasing functional and nonfunctional requirements. This calls for new
design flows that solve the specification, validation, and synthesis problems. Formal
models must be used to describe the system, then formal analysis techniques explore
the design space to assess feasibility and find the optimal design before the costly
implementation phase. Finally, automatic synthesis techniques should be used as much
as possible to generate correct by construction implementations.

Any design flow must ensure two key properties of a real-time safety-critical sys-
tem, namely, functional determinism and temporal predictability. Dataflow models of
computation (e.g. SDF, CSDF, etc.) are widely used to design stream-based embedded
systems thanks to their inherent functional determinism. Since the introduction of the
SDF model, a considerable effort has been made to solve the static-periodic scheduling
problem; i.e. the construction of periodic infinite sequences of firings of actors that
result in bounded, live, and complete executions. Ensuring boundedness and liveness
is the essence of the proposed algorithms in addition to optimizing some nonfunctional
performance metrics (e.g. buffer minimization, throughput maximization, code size
minimization, etc.). We tried in Chapter 1 to present a survey of dataflow models
of computation together with the existing algorithms for static-periodic scheduling of
(C|H)SDF graphs.

Nowadays real-time embedded systems are so complex that real-time operating sys-
tems are used to manage hardware resources and host real-time tasks. Most of real-time
operating systems rely on priority-driven scheduling algorithms (e.g. RM, EDF, etc.)
instead of static-periodic schedules (also called cyclic executives) because of the inflex-
ibility and difficult maintainability of cyclic executives. Real-time scheduling theory
provides the necessary schedulability tests to verify that all real-time tasks will meet
their deadlines even in the worst-case scenario. In Chapter 1, we have presented some
of the schedulability tests regarding EDF and FP scheduling for uniprocessor and mul-
tiprocessor architectures. The underlying model of computation was the periodic task
model which consists of a set of independent and concurrent real-time tasks.

This thesis has addressed the problem of implementing a dataflow specification as
a set of independent real-time tasks to be executed on a system equipped with a real-
time operating system [45, 43, 44]. This problem consists in mapping each actor in
the dataflow graph to a periodic real-time task with appropriate scheduling parameters
(i.e. period, first start time, priority, processor allocation, etc.). Certainly, properties

133

134 Conclusion

such as boundedness and liveness must also be considered. Since reads and writes
in the periodic task model are non-blocking operations, we have talked more about
overflow and underflow exceptions over communication channels. Real-time scheduling
of dataflow graphs is not a trivial problem. We have solved it in two steps: abstract
scheduling (Chapter 2) and symbolic schedulability analysis (Chapter 3). Let us recall
the contributions made at each step:

Abstract scheduling

1. Activation-related schedules are presented, together with the necessary conditions
for boundedness, liveness, and consistency, as a general framework to describe schedules
of static dataflow graphs.

2. Affine relations are used to describe strictly periodic schedules. The objective of
the ILP formalization of the problem was to minimize the buffering requirements in a
machine-independent way.

3. We have also presented UCSDF (a generalization of CSDF), FRStream (a syn-
chronous operational semantics for UCSDF graphs), multichannels, and how channels
can share the same storage space.

Symbolic real-time schedulability analysis

1. We have created a new application field for parametric schedulability theory.

2. We have presented many symbolic EDF schedulability analyses (e.g. SQPA, DF-B&B
SQPA, FFDBF-SQPA, BF-EDF, etc.) that aim at maximizing the processor utilization
factor. We have shown that our schedulability tests have a lower complexity than the
basic enumerative solutions. We have also presented a deadline adjustment technique
(to encode scheduling precedences) that aims at minimizing the buffering requirements.

3. Finally, many symbolic FP schedulability tests are presented (e.g. SRTA, DF-B&B
SRTA, etc.). We also presented some priority assignment strategies that aim at ei-
ther minimizing the buffering requirements, maximizing the throughput, or finding a
compromised solution.

In Chapter 4, we have shown that our tool (the ADFG tool) outperforms the only
existing tool for real-time scheduling of dataflow graphs (the DARTS tool). We have also
briefly presented our graphical editor for automatic synthesis of SCJ Level 1 applications
from UCDF graph specifications. Certainly, the synthesis flow relies on affine scheduling
and symbolic FP schedulability analysis to transform the dataflow specification to a set
of independent periodic SCJ handlers.

Perspectives

This thesis is one among the fewest studies that have addressed the real-time schedul-
ing problem of dataflow graphs. However, it offers by no means complete or optimal

Conclusion 135

solutions. Several points need to be researched further; for example:

1. Expressive dataflow models: Though the abstract scheduling approach (Section 2.2)
has been presented for arbitrary rate functions and activation relations, we have only
implemented a specific case where infinite integer sequences (used either to describe
activation relations or rate functions) were ultimately periodic. It will be very interesting
to find more expressive classes of integer sequences that could be used as rate functions
and yet define an analyzable model.

2. Symbolic schedulability analysis: We have focused more on symbolic schedulability
analysis of connected graphs. The design parameter space could be further relaxed
to consider: disconnected graphs, arbitrary deadlines, more priority assignment strate-
gies, etc. More performance metrics should also be addressed as energy consumption
minimization. We believe that this research field is very large, complex, and not yet
explored.

3. Actor clustering: In the presented scheduling approach, each actor is mapped to
a periodic real-time task. However, a large set of real-time tasks could result in a
noticeable run-time overhead (due to context switching, scheduling decisions, etc.). It
may be hence reasonable to map many actors to a single real-time task so that each
task consists in a static schedule of its actors.

4. Design of SCJ\L1 applications: To enhance functional determinism, we would like to
develop an ownership type system, as the one presented in Reflexes, to ensure firstly
that actors are strongly isolated; i.e. objects allocated within an actor are encapsulated
unless they are full-immutable. This requirement ensures that the state of an actor
cannot be altered by other actors. Typing rules such as “a non-private field must be
either a final primitive or a final reference to a full-immutable object” and “non-private
methods of an actor do not change its state or leak references to mutable objects” must
be checked statically. Besides isolation of actors, the type system must ensure that
actors can communicate only through buffers. Hence, “shared objects in the immortal
or mission memory areas must be either final primitives or final references to full-
immutable objects”. Our future work will also consider to develop a static analysis
that infers safe production and consumption rates from the user-provided SCJ code of
firing functions and to connect our tool to existing worst-case execution time estimation
tools.

136 Conclusion

Bibliography

[1] M. Adé, R. Lauwereins, and J. A. Peperstraete. Data memory minimization for
synchronous data flow graphs emulated on DSP-FPGA targets. In Proceedings of
the 34th Annual Design Automation Conference, pages 64–69, 1997.

[2] B. Anderson, S. Baruah, and J. Jonsson. Static-priority scheduling on multipro-
cessors. In Proceedings of the 22nd IEEE Real-Time Systems Symposium, pages 193–202,
2001.

[3] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. Applying
new scheduling theory to static priority pre-emptive scheduling. Software Engineer-
ing Journal, 8:284–292, 1993.

[4] N. C. Audsley. On priority assignment in fixed priority scheduling. Inf. Process.
Lett., 79(1):39–44, 2001.

[5] J. Auerbach, D. F. Bacon, R. Guerraoui, J. H. Spring, and J. Vitek. Flexible task
graphs: a unified restricted thread programming model for Java. SIGPLAN Not.,
43(7):1–11, 2008.

[6] J. Auerbach, D. F. Bacon, D. T. Iercan, C. M. Kirsch, V. Rajan, H. Roeck,
and R. Trummer. Java takes flight: time-portable real-time programming with
Exotasks. SIGPLAN Not., 42(7):51–62, 2007.

[7] F. Baccelli, G. Cohen, G. J. Oldsder, and J.-P. Quadrat. Synchronization and
linearity: an algebra for discrete event systems. Wiley, 1992.

[8] T. P. Baker. A comparison of global and partitioned EDF schedulability tests
for multiprocessors. In Proceedings of the International Conference on Real-Time and
Network Systems, pages 119–130, 2006.

[9] M. Bamakhrama and T. Stefanov. Hard-real-time scheduling of data-dependent
tasks in embedded streaming applications. In Proceedings of the 9th ACM Interna-
tional Conference on Embedded Software, pages 195–204, 2011.

[10] M. A. Bamakhrama and T. Stefanov. Managing latency in embedded streaming
applications under hard-real-time scheduling. In Proceedings of the 8th IEEE/ACM/I-
FIP International Conference on Hardware/Software Codesign and System Synthesis,
pages 83–92, 2012.

[11] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller. Implementa-
tion of speedup-optimal global EDF schedulability test. In Proceedings of the 21st

137

138 Bibliography

Euromicro Conference on Real-Time Systems, pages 259–268, 2009.

[12] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of sporadic
task systems. In Proceedings of the 26th IEEE International Real-Time Systems Sympo-
sium, pages 321–329, 2005.

[13] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of deadline-
constrained sporadic task systems. IEEE Trans. Comput., 55(7):918–923, 2006.

[14] S. K. Baruah, R. R. Howell, and L. E. Rosier. Feasibility problems for recurring
tasks on one processor. Theor. Comput. Sci., 118(1):3–20, 1993.

[15] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. In Proceedings of the 11th Real-Time Systems
Symposium, pages 182–190, 1990.

[16] T. Basten and J. Hoogerbrugg. Efficient execution of process networks. In Com-
municating Process Architectures, pages 1–14, 2001.

[17] S. S. Battacharyya, E. A. Lee, and P. K. Murthy. Software synthesis from dataflow
graphs. Kluwer Academic Publishers, Norwell, MA, USA, 1996.

[18] M. Benazouz, O. Marchetti, A. M. Kordon, and P. Urard. A new approach for min-
imizing buffer capacities with throughput constraint for embedded system design.
In Proceedings of the 8th ACS/IEEE Conference on Computer Systems and Applications,
pages 1–8, 2010.

[19] A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to asynchrony.
In Proceedings of the 10th International Conference on Concurrency Theory, pages 162–
177, 1999.

[20] A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality in dataflow
synchronous languages: specification & distributed code generation. Information
and Computation, 163(1):125–171, 2000.

[21] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and
R. de Simone. The synchronous languages 12 years later. Proceedings of the IEEE,
91(1):64–83, 2003.

[22] G. Bernat and A. Burns. New results on fixed priority aperiodic servers. In
Proceedings of the 20th IEEE Real-Time Systems Symposium, pages 68–78, 1999.

[23] G. Bernat and A. Burns. Multiple servers and capacity sharing for implementing
flexible scheduling. Real-Time Syst., 22(1/2):49–75, 2002.

[24] G. Berry. The foundations of Esterel. In Proof, language, and interaction, pages
425–454. MIT Press, Cambridge, MA, USA, 2000.

[25] M. Bertogna and S. Baruah. Tests for global EDF schedulability analysis. J. Syst.
Archit., 57(5):487–497, 2011.

[26] M. Bertogna and M. Cirinei. Response-time analysis for globally scheduled sym-
metric multiprocessor platforms. In Proceedings of the 28th IEEE International Real-
Time Systems Symposium, pages 149–160, 2007.

Bibliography 139

[27] M. Bertogna, M. Cirinei, and G. Lipari. New schedulability tests for real-time
task sets scheduled by deadline monotonic on multiprocessors. In Proceedings of
the 9th International Conference on Principles of Distributed Systems, pages 306–321,
2006.

[28] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow modeling of
DSP systems. Trans. Sig. Proc., 49(10):2408–2421, 2001.

[29] S. Bhattacharyya, E. Deprettere, and B. Theelen. Dynamic dataflow graphs. In
Handbook of Signal Processing Systems. Springer, 2nd edition, 2012.

[30] S. S. Bhattacharyya. Compiling dataflow programs for digital signal processing. PhD
thesis, EECS Department, University of California, Berkeley, 1994.

[31] S. S. Bhattacharyya, J. T. Buck, S. Ha, and E. A. Lee. Generating compact code
from dataflow specifications of multirate signal processing algorithms. In Read-
ings in hardware/software co-design, pages 452–464. Kluwer Academic Publishers,
Norwell, MA, USA, 2002.

[32] S. S. Bhattacharyya and E. A. Lee. Looped schedules for dataflow descriptions
of multirate signal processing algorithms. In Journal of Formal Methods in System
Design, pages 183–205, 1994.

[33] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesis of embedded software
from synchronous dataflow specifications. J. VLSI Signal Process. Syst., 21(2):151–
166, 1999.

[34] E. Bini. The design domain of real-time systems. PhD thesis, Scuola Superiore
Sant’Anna, 2004.

[35] E. Bini and G. C. Buttazo. Schedulability analysis of periodic fixed priority
systems. IEEE Trans. Comput., 53(11):1462–1473, 2004.

[36] E. Bini and G. C. Buttazo. Measuring the performance of schedulability tests.
Real-Time Syst., 30(1-2):129–154, 2005.

[37] E. Bini, G. Buttazzo, and G. Buttazo. A hyperbolic bound for the rate monotonic
algorithm. In Proceedings of the 13th Euromicro Conference on Real-Time Systems, pages
59–66, 2001.

[38] E. Bini and M. Di Natale. Optimal task rate selection in fixed priority systems. In
Proceedings of the 26th IEEE International Real-Time Systems Symposium, pages 399–
409, 2005.

[39] E. Bini, M. Di Natale, and G. Buttazzo. Sensitivity analysis for fixed-priority real-
time systems. In Proceedings of the 18th Euromicro Conference on Real-Time Systems,
pages 13–22, 2006.

[40] E. Bini, T. H. C. Nguyen, P. Richerd, and S. K. Baruah. A response-time bound in
fixed-priority scheduling with arbitrary deadlines. IEEE Trans. Comput., 58(2):279–
286, 2009.

[41] G. Blisen, M. Engels, R. Lauwereins, and J. Peperstraete. Cycle-static dataflow.
Trans. Sig. Proc., 44(2):397–408, February 1996.

140 Bibliography

[42] A. Bonfietti, M. Lombardi, M. Milano, and L. Benini. Throughput constraint
for synchronous data flow graphs. In Proceedings of the 6th International Conference
on Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 26–40, 2009.

[43] A. Bouakaz and J.-P. Talpin. Buffer minimization in earliest-deadline first schedul-
ing of dataflow graphs. SIGPLAN Not., 48(5):133–142, 2013.

[44] A. Bouakaz and J.-P. Talpin. Design of safety-critical Java level 1 applications
using affine abstract clocks. In Proceedings of the 16th International Workshop on
Software and Compilers for Embedded Systems, pages 58–67, 2013.

[45] A. Bouakaz, J.-P. Talpin, and J. Vitek. Affine data-flow graphs for the synthesis
of hard real-time applications. In Proceedings of the 12th International Conference on
Application of Concurrency to System Design, pages 183–192, 2012.

[46] L. C. Briand and D. M. Roy. Meeting deadlines in hard real-time systems : the rate
monotonic approach. IEEE, 1999.

[47] J. D. Brock and W. B. Ackerman. Scenarios: a model of non-determinate compu-
tation. In Proceedings of the International Colloquim on Formalization of Programming
Concepts, pages 252–259, 1981.

[48] J. T. Buck. Scheduling dynamic dataflow graphs with bounded memory using the token
flow model. PhD thesis, EECS Department, University of California, Berkeley,
1993.

[49] J. T. Buck. Static scheduling and code generation from dynamic dataflow graphs
with integer-valued control systems. In Proceedings of the 28th Annual Asilomar
Conference on Signals, Systems, and Computers, pages 508–513, 1994.

[50] A. Burns and S. Baruah. Sustainability in real-time scheduling. Journal of Computer
Science and Engineering, 2(1):74–97, 2008.

[51] G. C. Buttazo. Hard real-time computing systems: predictable scheduling algorithms and
applications. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

[52] G. Buttazzo and M. Di Natale. HARTIK: a hard real-time kernel for programming
robot tasks with explicit time constraints and guaranteed execution. In Proceedings
of IEEE International Conference on Robotics and Automation, pages 404–409, 1993.

[53] P. Caspi, C. Mazuet, and N. R. Paligot. About the design of distributed control
systems: the quasi-synchronous approach. In Proceedings of the 20th International
Conference on Computer Safety, Reliability and Security, pages 215–226, 2001.

[54] P. Caspi and M. Pouzet. Synchronous Kahn networks. SIGPLAN NOT., 31(6):226–
238, 1996.

[55] A. Cavalcanti, A. Wellings, and J. Woodcock. The safety-critical Java memory
model: a formal account. In Proceedings of the 17th International Conference on
Formal Methods, pages 246–261, 2011.

[56] S. Chakraborty, S. Kunzli, and L. Thiele. A general framework for analyzing prop-
erties in platfrom-based embedded system designs. In Proceedings of the Conference

Bibliography 141

on Design, Automation and Test in Europe, pages 190–195, 2003.

[57] C.-S. Chang. Performance guarantees in communication networks. Springer-Verlag,
2000.

[58] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of real-time tasks
under precedence constraints. Real-Time Syst., 2(3):181–194, 1990.

[59] C. Chevalier and F. Pellegrini. PT-Scotch: a tool for efficient parallel graph
ordering. Parallel Comput., 34(6-8):318–331, 2008.

[60] A. Cimatti, L. Palopoli, and Y. Ramadian. Symbolic computation of schedulabil-
ity regions using parametric timed automata. In Proceedings of the 2008 Real-Time
Systems Symposium, pages 80–89, 2008.

[61] D. Clark. HIC: an operating system for hierarchies of servo loops. In Proceedings of
IEEE International Conference on Robotics and Automation, pages 1004–1009, 1989.

[62] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet. N-
synchronous Kahn networks: a relaxed model of synchrony for real-time systems.
In Conference record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principle of
Programming languages, pages 180–193, 2006.

[63] M. Cubric and P. Panangaden. Minimal memory schedules for dataflow networks.
In Proceedings of the 4th International Conference on Concurrency Theory, pages 368–
383, 1993.

[64] A. Dasdan. Experimental analysis of the fastest optimum cycle ratio and mean
algorithms. ACM Trans. Des. Autom. Electron. Syst., 9(4):385–418, 2004.

[65] B. A. Davey and H. A. Priestley. Introduction to lattices and order. Cambridge
University Press, 2002.

[66] R. I. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv., 43(4):35:1–35:44, 2011.

[67] R. I. Davis, A. Zabos, and A. Burns. Efficient exact schedulability tests for fixed
priority real-time systems. IEEE Trans. Comput., 57(9):1261–1276, 2008.

[68] R. de Groote, J. Kuper, H. Broersma, and G. J. M. Smit. Max-plus algebraic
throughput analysis of synchronous dataflow graphs. In Proceedings of the 38th
Euromicro Conference on Software Engineering and Advanced Applications, pages 29–
38, 2012.

[69] E. A. de Kock, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel, W. M. Kruijtzer,
P. Lieverse, K. A. Vissers, and G. Essink. Yapi: application modeling for signal
processing systems. In Proceedings of the 37th Annual Design Automation Conference,
pages 402–405, 2000.

[70] J. B. Dennis. First version of a data flow procedure language. In Programming
Symposium: Proceedings, Colloque sur la programmation, pages 362–376, 1974.

[71] U. C. Devi. An improved schedulability test for uniprocessor periodic task systems.
In Proceedings of the 15th Euromicro Conference on Real-Time Systems, pages 23–30,

142 Bibliography

2003.

[72] B. P. Douglass. Real-time agility: the harmony/ESW method for real-time and embedded
systems development. Addison-Wesley Profissional, 1st edition, 2009.

[73] F. Eisenbrand and T. Rothvoß. EDF-schedulability of synchronous periodic task
systems is coNP-hard. In Proceedings of the 21th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1029–1034, 2010.

[74] C. J. Fidge. Real-time scheduling theory. Technical report, Software Verification
Center, School of Information Technology, The Univerity of Queensland, April
2002.

[75] N. Fisher, S. Baruah, and T. P. Baker. The partitioned scheduling of sporadic
tasks according to static-priorities. In Proceedings of the 18th Euromicro Conference
on Real-Time Systems, pages 118–127, 2006.

[76] P. Fradet, A. Girault, and P. Poplavkoy. SPDF: a schedulable parametric data-
flow MoC. In Design, Automation and Test in Europe Conference and Exhibition, pages
769–774, 2012.

[77] L. Fribourg, R. Soulat, D. Lesens, and P. Moro. Robustness analysis for schedul-
ing problems using the Inverse Method. In Proceedings of the 19th International
Symposium on Temporal Representation and Reasoning, pages 73–80, 2012.

[78] A. Gamatié. Designing embedded systems with the Signal programming language: syn-
chronous, reactive specification. Springer Publisher Company, Inc., 2009.

[79] A. Gamatié. Design of streaming applications on MPSoCs using abstract clocks.
In Design, Automation and Test in Europe Conference, pages 763–768, 2012.

[80] M. Geilen. Reduction techniques for synchronous dataflow graphs. In Proceedings
of the 46th Annual Design Automation Conference, pages 911–916, 2009.

[81] M. Geilen and T. Basten. Requirements on the execution of Kahn process net-
works. In Proceedings of the 12th European Conference on Programming, pages 319–
334, 2003.

[82] M. Geilen, T. Basten, and S. Stuijk. Minimizing buffer requirements of syn-
chronous dataflow graphs with model checking. In Proceedings of the 42nd Annual
Design Automation Conference, pages 819–824, 2005.

[83] A. H. Ghamarian, M. C. W. Geilen, T. Basten, and S. Stuikj. Parametric through-
put analysis of synchronous data flow graphs. In Proceedings of the Conference on
Design, Automation and Test in Europe, pages 116–121, 2008.

[84] A. H. Ghamarian, M. C. W. Geilen, T. Basten, B. D. Theelen, M. R. Mousavi,
and S. Stuikj. Liveness and boundedness of synchronous dataflow graphs. In
Proceedings of the Formal Methods in Computer Aided Design, pages 68–75, 2006.

[85] A. H. Ghamarian, M. C. W. Geilen, S. Stuikj, T. Basten, B. D. Theelen, M. R.
Mousavi, A. J. M. Moonen, and M. J. G. Bekooij. Throughput analysis of syn-
chronous data flow graphs. In Proceedings of the 6th International Conference on
Application of Concurrency to System Design, pages 25–36, 2006.

Bibliography 143

[86] A. H. Ghamarian, S. Stuikj, T. Basten, M. C. W. Geilen, and B. D. Theelen.
Latency minimization for synchronous data flow graphs. In Proceedings of the 10th
Euromicro Conference on Digital System Design Architectures, Methods and Tools, pages
189–196, 2007.

[87] S. Goddard. Analyzing the real-time properties of a dataflow execution paradigm
using a synthetic aperture radar application. In Proceedings of the 3rd IEEE Real-
Time Technology and Applications Symposium, pages 60–71, 1997.

[88] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of periodic task
systems on multiprocessors. Real-Time Syst., 25(2-3):187–205, 2003.

[89] J. Goossens and P. Richard. Performance optimization for hard real-time fixed
priority tasks. In Proceedings of the 12th International Conference on Real-Time Systems,
2004.

[90] J. Gosling and G. Bollella. The Real-Time Specification for Java. Addison-Wesley
Longman Publishing Co., Inc., 2000.

[91] Z. Gu, M. Yuan, N. Guan, M. Lv, X. He, Q. Deng, and G. Yu. Static scheduling
and software synthesis for dataflow graphs with symbolic model-checking. In
Proceedings of the 28th IEEE International Real-Time Systems Symposium, pages 353–
364, 2007.

[92] P. L. Guernic, J.-P. Talpin, and J.-C. L. Lann. POLYCHRONY for system design.
Journal of Circuits, Systems, and Computers, 12(3):261–304, 2003.

[93] S. Ha and H. Oh. Decidable dataflow models for signal processing: synchronous
dataflow and its extensions. In Handbook of Signal Processing Systems. Springer, 2nd
edition, 2012.

[94] N. Halbwachs. Synchronous programming of reactive systems. Springer-Verlag, Berlin,
Heidelberg, 1993.

[95] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language LUSTRE. In Proceedings of the IEEE, pages 1305–1320,
1991.

[96] N. Halbwachs and L. Mandel. Simulation and verification of asynchronous systems
by means of a synchronous model. In Proceedings of the 6th International Conference
on Application of Concurrency to System Design, pages 3–14, 2006.

[97] T. A. Henzinger and J. Sifakis. The embedded systems challenge. In Proceedings
of the 14th International Conference on Formal Methods, pages 1–15, 2006.

[98] W. A. Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly,
21(1):177–185, 1974.

[99] A. Jantsch and I. Sander. Models of computation and languages for embedded
system design. IEEE Proceedings on Computers and Digital Techniques, 152(2):114–
129, March 2005.

[100] K. Jeffay and D. Bennett. A rate-based execution abstraction for multimedia
computing. In Proceedings of the 5th International Workshop on Network and Operating

144 Bibliography

System Support for Digital Audio and Video, pages 64–75, 1995.

[101] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling of peri-
odic and sporadic tasks. In Proceedings of the 12th IEEE Real-Time Systems Symposium,
pages 129–139, 1991.

[102] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in dataflow pro-
gramming languages. ACM Comput. Surv., 36(1):1–34, March 2004.

[103] M. Joseph and P. K. Pandya. Finding response times in a real-time system.
Comput. J., 29(5):390–395, 1986.

[104] JSR-302. Safety critical Java technology specification, 2010.

[105] G. Kahn. The semantics of a simple language for parallel programming. In IFIP
Congress, pages 471–475, 1974.

[106] G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. In
IFIP Congress, pages 993–998, 1977.

[107] D. J. Kaplan. An introduction to the processing graph method. In Proceedings
of the 1997 International conference on Engineering of Computer-Based Systems, pages
46–52, 1997.

[108] R. M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics, 23(3):309–311, 1978.

[109] R. M. Karp and R. E. Miller. Properties of a model for parallel computations: De-
terminacy, termination, queueing. SIAM Journal of Applied Mathematics, 14(6):1390–
1411, November 1966.

[110] T. Kavitha, C. Liebchen, K. Mehlhorn, D. Michail, R. Rizzi, T. Ueckerdt, and
K. A. Zweig. Cycle bases in graphs characterization, algorithms, complexity, and
applications. Computer Science Review, 3(4):199–243, 2009.

[111] J. C. Knight. Safety critical systems: challenges and directions. In Proceedings of
the 24th International Conference on Software Engineering, pages 547–550, 2002.

[112] T. T. H. Le, L. Palopoli, R. Passerone, and Y. Ramadian. Timed-automata
based schedulability analysis for distributed firm real-time systems: a case study.
International Journal on Software Tools for Technology Transfer, 2012.

[113] E. A. Lee. Computing for embedded systems. In IEEE Instrumentation and Mea-
surement Technology Conference, pages 1830–1837, 2001.

[114] E. A. Lee and S. Ha. Scheduling trategies for multiprocessor real-time DSP. In
IEEE Global Telecommunication Conference and Exhibition. Communication Technol-
ogy for the 1990s and Beyond, pages 1279–1283, 1989.

[115] E. A. Lee and E. Matsikoudis. The semantics of dataflow with firing. In G. Huet,
G. Plotkin, J.-J. Lévy, and Y. Bertot, editors, From Semantics to Computer Science:
Essays in Honour of Gilles Kahn, chapter 4, pages 71–94. Cambridge University
Press, 1 edition, 2009.

[116] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow

Bibliography 145

programs for digital signal processing. IEEE Trans. Comput., 36(1):24–35, 1987.

[117] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. In Proceedings of the
IEEE, pages 1235–1245, 1987.

[118] E. A. Lee and T. M. Parks. Dataflow process networks. In G. De Micheli, R. Ernst,
and W. Wolf, editors, Readings in hardware/software co-design, pages 59–85. Kluwer
Academic Publishers, Norwell, MA, USA, 2002.

[119] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of
computation. Trans. Comp.-Aided Des. Integ. Cir. Sys., 17(12):1217–1229, 2006.

[120] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm:
exact characterization and average case behavior. In Proceedings of the 10th Real
Time Systems Symposium, pages 166–171, 1989.

[121] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced aperiodic responsiveness
in hard real-time environments. In Proceedings of the 8th IEEE Real-Time Systems
Symposium, pages 261–270, 1987.

[122] C. Leiserson and J. Saxe. Retiming synchronous circuitry. Algorithmica, 6:5–35,
1991.

[123] J. Y. T. Leung and M. L. Merrill. A note on preemptive scheduling of periodic,
real-time tasks. Inf. Process. Lett., 11(3):115–118, 1980.

[124] J. Y. T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling
of periodic, real-time tasks. Performance Evaluation, 2(4):237–250, 1982.

[125] Q. Li and C. Yao. Real-time concepts for embedded systems. CMP Books, 2003.

[126] J. Liebeherr, A. Burchard, Y. Oh, and S. H. Son. New strategies for assigning
real-time tasks to multiprocessor systems. IEEE Trans. Comput., 44(12):1429–1442,
1995.

[127] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[128] N. Liveris, C. Lin, J. Wang, H. Zhou, and P. Banerjee. Retiming for synchronous
data flow graphs. In Proceedings of the 2007 Asia and South Pacific Design Automation
Conference, pages 480–485, 2007.

[129] J. M. López, J. L. Díaz, and D. F. García. Utilization bounds for EDF scheduling
on real-time multiprocessor systems. Real-Time Syst., 28(1):39–68, 2004.

[130] W.-c. Lu, J.-W. Hsieh, W.-K. Shih, and T.-W. Kuo. A faster exact schedulability
analysis for fixed-priority scheduling. J. Syst. Softw., 79(12):1744–1753, 2006.

[131] J. W. S. Lui. Real-time systems. Prentice-Hall, 2000.

[132] W. Lui, Z. Gu, J. Xu, Y. Wang, and M. Yuan. An efficient technique for analysis of
minimal buffer requirements of synchronous dataflow graphs with model checking.
In Proceedings of the 7th IEEE/ACM International Conference on Hardware/Software
Codesign and System Synthesis, pages 61–70, 2009.

[133] N. Lynch and E. W. Stark. A proof of the Kahn principle for input/output

146 Bibliography

automata. Inf. Comput., 82(1):81–92, July 1989.

[134] L. Mandel, F. Plateau, and M. Pouzet. Lucy-n : a n-Synchronous Extension of
Lustre. In Proceedings of the 10th International Conference on Mathematics of Program
Construction, pages 288–309, 2010.

[135] R. Martí and G. Reinelt. The linear ordering problem. Exact and heuristic methods in
combinatorial optimization. Berlin: Springer, 2011.

[136] A. J. Martin. The probe: an addition to communication primitives. Inf. Process.
Lett., 20:125–130, 1985.

[137] A. Masrur, S. Drössler, and G. Färber. Improvements in polynomial-time feasi-
bility testing for EDF. In Proceedings of the Conference on Design, Automation and
Test in Europe, pages 1033–1038, 2008.

[138] A. K. Mok. Fundamental design problems of distributed systems for the hard real-time
environment. PhD thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, 1983.

[139] O. Moreira, J.-D. Mol, M. Bekooij, and J. v. Meerbergeb. Multiprocessor resource
allocation for hard-real-time streaming with a dynamic job-mix. In Proceedings of
the 11th IEEE Real-Time and Embedded Technology and Applications Symposium, pages
332–341, 2005.

[140] T. Murata. Circuit theoretic analysis and synthesis of marked graphs. IEEE Trans.
on Circuits and Systems, pages 400–405, 1977.

[141] P. K. Murthy. Scheduling techniques for synchronous and multidimentional synchronous
dataflow. PhD thesis, EECS Department, University of California, Berkeley, 1996.

[142] P. K. Murthy and S. S. Bhattacharyya. Shared memory implementations of syn-
chronous dataflow specifications. In Proceedings of the Conference on Design, Automa-
tion and Test in Europe, pages 404–410, 2000.

[143] P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee. Joint minimization of code
and data for synchronous dataflow programs. Form. Methods Syst. Des., 11(1):41–70,
1997.

[144] D.-I. Oh and T. P. Baker. Utilization bounds for N-processor rate monotonic
scheduling with static processor assignment. Real-Time Syst., 15(2):183–192, 1998.

[145] H. Oh, N. Dutt, and S. Ha. Memory optimal single appearance schedule with
dynamic loop count for synchronous dataflow graphs. In Proceedings of the 2006
Conference on Asia South Pacific Design Automation, pages 497–502, 2006.

[146] H. Oh and S. Ha. Fractional rate dataflow model and efficient code synthesis for
multimedia applications. SIGPLAN NOT., 37(7):12–17, 2002.

[147] H. Oh and S. Ha. Memory-optimized software synthesis from dataflow program
graphs with large size data samples. EURASIP J. Appl. Signal Process., 2003:514–529,
2003.

[148] T. W. O’Neil and E. H. M. Sha. Retiming synchronous data-flow graphs to reduce

Bibliography 147

execution time. Trans. Sig. Proc., 49(10):2397–2407, 2001.

[149] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens. Multi-task imple-
mentation of multi-periodic synchronous programs. Discrete event dynamic systems,
21(3):307–338, 2011.

[150] T. M. Parks. Bounded scheduling of process networks. PhD thesis, EECS Department,
University of California, Berkeley, 1995.

[151] T. M. Parks and E. A. Lee. Non-preemptive real-time scheduling of dataflow
systems. In Proceedings of International Conference on Acoustics, Speech, and Signal
Processing, pages 3235–3238, 1995.

[152] T. M. Parks, J. L. Pino, and E. A. Lee. A comparison of synchronous and cycle-
static dataflow. In Proceedings of the 29th Asilomar Conference on Signals, Systems and
Computers (2-Volume Set), pages 204–210, 1995.

[153] K. Pingali and Arvind. Efficient demand-driven evaluation. part 1. ACM trans .
Program. Lang . Syst ., 7(2):311–333, April 1985.

[154] K. Pingali and Arvind. Efficient demand-driven evaluation. part 2. ACM trans .
Program. Lang . Syst ., 8(1):109–139, January 1986.

[155] F. Pizlo, L. Ziarek, and J. Vitek. Real time Java on resource-constrained platforms
with Fiji VM. In Proceedings of the 7th International Workshop on Java Technologies
for Real-Time and Embedded Systems, pages 110–119, 2009.

[156] A. Plsek, L. Zhao, V. H. Sahin, D. Tang, T. Kalibera, and J. Vitek. Develop-
ing safety-critical Java applications with oSCJ/L0. In Proceedings of the 8th In-
ternational Workshop on Java Technologies for Real-Time and Embedded Systems, pages
95–101, 2010.

[157] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concurrency in synchronous
systems. Form. Methods Syst. Des., 28(2):111–130, 2006.

[158] Y. Ramadian. Parametric real-time system feasibility analysis using parametric timed
automata. PhD thesis, Uiversità Degli Studi di Terento, 2012.

[159] I. Ripoll, A. Crespo, and A. K. Mok. Improvement in feasibility testing for real-
time tasks. Real-Time Syst., 11(1):19–39, 1996.

[160] M. P. S. Ritz and H. Meyr. High level software synthesis for signal processing sys-
tems. In Proceedings of the International Conference on Application-Specific Processors,
pages 679–693, 1992.

[161] SAE Aerospace (Society of Automative Engineers). Aerospace standard AS5506A:
Architecture analysis and design language (AADL). SAE AS5506A, 2009.

[162] M. Schoeberl and J. R. Rios. Safety-critical Java on a Java processor. In Proceedings
of the 10th International Workshop on Java Technologies for Real-Time and Embedded
Systems, pages 54–61, 2012.

[163] D. Seto, J. P. Lehoczky, and L. Sha. Task period selection and schedulability in
real-time systems. In Proceedings of the IEEE Real-Time Systems Symposium, pages

148 Bibliography

188–198, 1998.

[164] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. On task schedulability in real-
time control systems. In Proceedings of the 17th IEEE Real-Time Systems Symposium,
pages 13–21, 1996.

[165] L. Sha, T. Abdelzaher, K.-E. Arzén, A. Cervin, T. Baker, A. Burns, G. But-
tazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real time scheduling theory: a
historical perspective. Real-Time Syst., 28(2-3):101–155, 2004.

[166] M. Sjödin and H. Hansson. Improved response-time analysis calculations. In
Proceedings of the IEEE Real-Time Systems Symposium, pages 399–408, 1998.

[167] I. Smarandache and P. Le Guernic. A canonical form for affine relations in SIG-
NAL. Technical report, INRIA, 1997.

[168] I. M. Smarandache, T. Gautier, and P. L. Guernic. Validation of mixed signal-
alpha real-time systems through affine calculus on clock synchronisation con-
straints. In Proceedings of the World Congress on Formal Methods in the Development
of Computing Systems, volume 2, pages 1364–1383, 1999.

[169] H. Søndergaard, S. E. Korsholm, and A. P. Ravn. Safety-critical Java for low-
end embedded platforms. In Proceedings of the 10th International Workshop on Java
Technologies for Real-Time and Embedded Systems, pages 44–53, 2012.

[170] D. Spoonhower, J. Auerbach, D. F. Bacon, P. Cheng, and D. Grove. Eventrons: a
safe programming construct for high-frequency hard real-time applications. SIG-
PLAN Not., 41(6):283–294, 2006.

[171] J. H. Spring, F. Pizlo, R. Guerraoui, and J. Vitek. Reflexes: abstractions for
higly responsive systems. In Proceedings of the 3rd International Conference on Virtual
Execution Environments, pages 191–201, 2007.

[172] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. Streamflex: high-throuput
stream programming in Java. In Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems and Applications, pages 211–228,
2007.

[173] B. Sprunt, J. P. Lehoczky, and L. Sha. Exploiting unused periodic time for
aperiodic service using the extended priority exchange algorithm. In Proceedings
of the 9th IEEE Real-Time Systems Symposium, pages 251–258, 1988.

[174] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-real-time
systems. Real-Time Systems, 1(1):27–60, 1989.

[175] S. Sriram and S. S. Bhattacharyya. Embedded multiprocessors: scheduling and syn-
chronization. Marcel Dekker, Inc., New York, NY, USA, 2000.

[176] S. Sriram and E. A. Lee. Determining the order of processor transactions in
statically scheduled multiprocessors. J. VLSI Signal Process. Syst., 15(3):207–220,
1997.

[177] E. W. Stark. Concurrent transition system semantics of process networks. In Pro-
ceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Bibliography 149

Languages, pages 199–210, 1987.

[178] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable server algorithm for
enhanced aperiodic responsiveness in hard real-time environments. IEEE Trans.
Comput., 44(1):73–91, 1995.

[179] S. Stuijk. Predictable mapping of streaming applications on multiprocessors. PhD thesis,
Eindhoven University of Technology, 2007.

[180] S. Stuijk, M. Geilen, and T. Basten. Exploring trade-offs in buffer requirements
and throughput constraints for synchronous dataflow graphs. In Proceedings of the
43rd Annual Design Automation Conference, pages 899–904, 2006.

[181] S. Stuijk, M. Geilen, B. D. Theelen, and T. Basten. Scenario-aware dataflow: mod-
eling, analysis, and implementation of dynamic applications. In 2011 International
Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation,
pages 404–411, 2011.

[182] S. Stuijk, M. C. W. Geilen, and T. Basten. SDF3: SDF for free. In Proceedings of
the 6th International Conference on Application of Concurrency to System Design, pages
276–278, 2006.

[183] S. Stuikj, T. Basten, M. C. W. Geilen, and H. Corporaal. Multiprocessor resource
allocation for throughput-constrained synchronous dataflow graphs. In Proceedings
of the 44th Annual Design Automation Conference, pages 777–782, 2007.

[184] S. Stuikj, M. Geilen, and T. Basten. Throughput-buffering trade-off explo-
ration for cyclo-static and synchronous dataflow graphs. IEEE Trans. Comput.,
57(10):1331–1345, 2008.

[185] Y. Sun, R. Soulat, G. Lipari, É. André, and L. Fribourg. Parametric schedulability
analysis of fixed priority real-time distributed systems. CoRR, 2013.

[186] D. Tang, A. Plsek, and J. Vitek. Static checking of safety critical Java annotations.
In Proceedings of the 8th International Workshop on Java Technologies for Real-Time and
Embedded Systems, pages 148–154, 2010.

[187] E. Teruel, P. Chrzastowski-Wachtel, J. M. Colom, and M. Silva. On weighted T-
systems. In Proceedings of the 13th International Conference on Application and Theory
of Petri Nets, pages 348–367, 1992.

[188] B. D. Theelen, M. Geilen, T. Basten, J. Voeten, S. V. Gheorghita, and S. Stuikj.
A scenario-aware data flow model for combined long-run average and worst-case
performance analysis. In 4th International Conference on Formal Methods and Models
for Co-Design, pages 185–194, 2006.

[189] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling
hard real-time systems. In Proceedings of the International Symposium on Circuits and
Systems, pages 101–104, 2000.

[190] W. Thies and S. Amarasinghe. An empirical characterization of stream programs
and its implications for language and compiler design. In Proceedings of the 19th
International Conference on Parallel Architectures and Compilation Techniques, pages

150 Bibliography

365–376, 2010.

[191] S. R. V. Zivojnovic and H. Meyr. Optimizing DSP programs using multirate
retiming transformation. In Proceedings of EUSIPCO Signal Processing, 1994.

[192] J. E. Vuillemin. On circuits and numbers. IEEE Trans. Comput., 43:868–879, 1994.

[193] A. Wellings and M. Kim. Asynchronous event handling and safety critical Java.
In Proceedings of the 8th International Workshop on Java Technologies for Real-Time and
Embedded Systems, pages 53–62, 2010.

[194] M. Wiggers, M. Bekooij, P. Jansen, and G. Smit. Efficient computation of buffer
capacities for multi-rate real-time systems with back-pressure. In Proceedings of
the 4th International Conference on Hardware/Software Codesign and System Synthesis,
pages 10–15, 2006.

[195] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit. Efficient computation of
buffer capacities for cyclo-static dataflow graphs. In Proceedings of the 44th Annual
Design Automation Conference, pages 658–663, 2007.

[196] F. Zhang and A. Burns. improvement to quick processor-demand analysis for
EDF-scheduled real-time systems. In Proceedings of the 21st Euromicro Conference
on Real-Time Systems, pages 76–86, 2009.

[197] F. Zhang and A. Burns. Schedulability analysis for real-time systems with EDF
scheduling. IEEE Transactions on Computers, 58:1250–1258, 2009.

[198] X.-Y. Zhu, T. Basten, M. Geilen, and S. Stuikj. Efficient retiming of multirate
DSP algorithms. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 31(6):831–844, 2012.

[199] X.-Y. Zhu, M. Geilen, T. Basten, and S. Stuikj. Static rate-optimal scheduling of
multirate DSP algorithms via retiming and unfolding. In Proceedings of 18th Real
Time and Embedded Technology and Applications Symposium, pages 109–118, 2012.

Appendix A

Sets, orders, and sequences

This appendix introduces some basic mathematical concepts about ordered sets used
in describing the different dataflow models of computation. Most of definitions are
taken from the wonderful book of Davey and Priestly [65]. Furthermore, the appendix
presents the sequence domain and its properties.

A.1 Ordered sets

Definition A.1 (Poset). A partially ordered set (poset for short) is a pair (A,⊑) such
that A is a set and ⊑ is a partial order relation on A (i.e. ⊑ is reflexive, antisymmetric,
and transitive).

Definition A.2 (Maximal elements, the maximum). Let B be a subset of a poset
(A,⊑). Then a ∈ B is a maximal element of B if a ⊑ b and b ∈ B imply a = b. The set
of maximal elements of B is denoted by Max(B). The maximum element of B, if any,
is max(B) ∈ B such that ∀a ∈ B : a ⊑max(B).

Dually, we can define the minimal elements and the minimum of a subset. The
maximum element of the poset, if any, is called the top element (denoted by ⊤A); while
the minimum element, if any, is called the bottom element (denoted by ⊥A).

Definition A.3 (Upper bounds, the least upper bound). Let B be a subset of a poset
(A,⊑). The set of upper bounds of B is Bu = {a ∈ A|∀b ∈ B : b ⊑ a}. The least upper
bound of B, if any, is the minimum of Bu and it is denoted by

⊔

B.

Dually, we can define the set of lower bounds Bl and the greatest lower bound
d
B

of a subset B.

Definition A.4 (Join semi-lattice). A join semi-lattice (A,⊑,⊔) is a poset (A,⊑) such
that any two elements a, b ∈ A have a least upper bound a ⊔ b (i.e.

⊔{a, b}).

Dually, we can define a meet semi-lattice. A lattice (A,⊑,⊔,⊓) is both a join semi-
lattice and a meet semi-lattice.

151

152 Sets, orders, and sequences

Definition A.5 (complete lattice). A complete lattice (A,⊑,⊔,d) is a poset (A,⊑)
such that any subset B ⊆ A has a least upper bound

⊔

B and a greatest lower boundd
B in A.

Definition A.6 (Ascending chain condition). A chain B of a poset (A,⊑) is a subset
B ⊆ A such that ∀a, b ∈ B : (a ⊑ b) ∨ (b ⊑ a). The poset satisfies the ascending
chain condition (ACC) if and only if any infinite sequence a0 ⊑ a1 ⊑ . . . ⊑ an ⊑ . . . of
elements of A is not strictly increasing, that is ∃k ≥ 0 : ∀j ≥ k : ak = aj .

Definition A.7 (CPO). A complete partial order (CPO for short) (A,⊑,⊥A) is a
poset (A,⊑) with a bottom ⊥A such that any increasing chain of A has a lower upper
bound in A.

A.2 Fixed point theory

Definition A.8 (Monotone function). Let f ∈ A→ A be a (total) function on a poset
(A,⊑,⊔,d). f is monotone if and only if ∀a, b ∈ A : a ⊑ b⇒ f(a) ⊑ f(b).

Definition A.9 (Fixed points). Consider f ∈ A→ A with (A,⊑) a poset, an element
a ∈ A is (1) a fixed point if and only if f(a) = a; (2) the greatest fixed point if and only
if f(a) = a and ∀b : f(b) = b ⇒ b ⊑ a; (3) the least fixed point if and only f(a) = a
and ∀b : f(b) = b⇒ a ⊑ b.

Theorem A.1 (Knaster-Tarski). A monotone function f ∈ A → A, with (A,⊑) a
complete lattice, has a least fixed point lfp(f) =

d{a ∈ A|f(a) ⊑ a}.

Definition A.10 (continuous function). Let (A,⊑,⊔) be a CPO. A function f ∈ A→
A is continuous if and only if for every chain B ⊆ A, we have that

⊔

f(B) = f(
⊔

B).

Lemma A.1 (CPO of continuous functions). For CPOs (A,⊑1) and (B,⊑2), let
[A → B] be the set of all continuous total functions from A to B. ([A → B],⊑) is a
CPO where ∀f, g ∈ [A→ B], we have that f ⊑ g ⇔ ∀a ∈ A : f(a) ⊑2 g(a).

Theorem A.2 (fixed point theorem for a continuous function on a CPO). Let f ∈
A→ A be a continuous function on a CPO (A,⊑,⊥A). The least fixed point exists and
equals

⊔

n≥0 f
n(⊥A) such that fn+1 = fn ◦ f .

Theorem A.3 (fixed point theorem for a monotone function on a CPO). Every mono-
tone function on a CPO has a least fixed point.

A.3 Sequences

Let A∞ be the set of finite or denumerably infinite sequences over a set A. A finite
sequence s ∈ A∗ is a total function s : {1, . . . , n} → A for some natural number n such
that s(i) is the ith element of the sequence. The number n is the length of the sequence,
denoted by |s|. The empty sequence, which has a length equal to 0, is denoted by ǫ. The

Tuples 153

sequence s : N>0 → A is an infinite sequence of length equals ω where ∀i ∈ N : i < ω.
The set of infinite sequences is denoted by Aω. Thus, A∞ = A∗ ∪Aω.

We often list the elements of a sequence s, writing a1 a2 . . . a|s| if s ∈ A∗, and
a1 a2 . . . if s ∈ Aω. For two sequences s1 and s2, the sequence s1.s2 represents their
concatenation.

Definition A.11 (Prefix order). A sequence s1 is a prefix of a sequence s2, and we
write s1 ⊑ s2, if and only if it exists s3 such that s2 = s1.s3. We say then that s1
provides an approximate information about s2. The relation ⊑ is a partial order on
A∞.

(A∞,⊑) is a CPO. Indeed, the poset (A∞,⊑) has a bottom element ⊥ = ǫ. Fur-
thermore, the lower upper bound of any finite non-empty chain is the greatest element,
while the lower upper bound of any infinite chain s0 ⊑ s1 ⊑ . . . ⊑ sn ⊑ . . . is the infinite
sequence s where s(i) equals sk(i) for any k such that |sk| ≥ i.

(A∞,⊑) is a meet semi-lattice since the greatest lower bound of any two sequences
is their longest common prefix. However, it is not a join semi-lattice (e.g. a1 a2 and
a2 a1 do not have a lower upper bound).

A.3.1 Periodic sequences

An infinite constant sequence s = aω where a ∈ A is a sequence such that ∀i ∈ N>0 :
s(i) = a. A periodic infinite sequence s = vω, where v is a finite non-empty sequence, is
a sequence such that ∀i ∈ N>0 : s(i) = v(1 + (i− 1) mod |v|). An ultimately periodic
sequence s = uvω, where u is a (possibly empty) finite sequence, is the concatenation of
a periodic sequence vω to a finite sequence u. Hence, ∀i ∈ N>0 : s(i) = u(i) if i ≤ |u|;
and s(i) = v(1+(i−|u|−1) mod |v|) otherwise. So, every constant sequence is periodic
(|v| = 1) and every periodic sequence is ultimately periodic (|u| = 0).

A.4 Tuples

An N -tuple S ∈ A∞
1 × A∞

2 × · · · × A∞
N is a collection of N sequences si ∈ A∞

i . We
often list the sequences within a N -tuple, writing [s1, s2, . . . , sN]. Thus, S(i) represents
the ith sequence of the tuple. For the sake of conciseness, the Cartesian product A∞

1 ×
A∞

2 × · · · ×A∞
N is denoted by AN .

We extend the prefix order to AN as the point-wise prefix order; i.e. if S1, S2 ∈ AN ,
then S1 ⊑ S2 if and only if ∀i : S1(i) ⊑i S2(i). Since any direct product of CPOs is a
CPO, then (AN ,⊑,⊥) is a CPO such that ⊥ = [ǫ1, . . . , ǫN].

A.5 Real sequences

Arithmetic operations are extended to real sequences as follows. If s and r are two in-
finite sequences or finite sequences with |s| = |r|, then ∀i : (s op r)(i) = s(i) op r(i).
Furthermore, s ≤ r if and only if ∀i : s(i) ≤ r(i).

154 Sets, orders, and sequences

Definition A.12 (Cumulative functions). The cumulative function of a real sequence
s ∈ R∞ is the sequence ⊕s such that ∀i ∈ {1, . . . , |s|} : ⊕s(i) =

∑i
j=1 s(j). By

convention, ⊕s(0) = 0.

The sum of all elements of a finite sequence v ∈ R∗, denoted by ‖v‖, is equal to
⊕v(|v|).
Definition A.13 (Inverse sequence). Let s ∈ N∞ be an integer sequence. The inverse
sequence s−1 ∈ N∞ is the sequence such that ∀j ≤ ‖s‖ : ⊕s(s−1(j) − 1) < j ≤
⊕s(s−1(j)). For example, if s = 1 2 4, then s−1(5) = 3 because ⊕s(2) < 5 ≤ ⊕s(3).
Definition A.14 (⊗ operator). Let s ∈ Rω and r ∈ Nω be two infinite sequences. The

sequence s⊗ r ∈ Rω is defined as follows. ∀i ∈ N>0 : (s⊗ r)(i) =
r(i)
∑

j=1
s(j +⊕r(i− 1)).

The on operator of the synchronous language Lucy-n [134] is equivalent to the
⊗ operator defined on binary sequences Bω; i.e. the set of infinite sequences over
B = {0, 1}. The set of ultimately periodic binary sequences corresponds to the set of
2-adic numbers [192]. Table A.1 illustrates the ⊗ operator.

Table A.1: Illustration of ⊗ operator.

i 1 2 3 4 5 6 . . .

s 2 3 1 8 6 2 . . .
⊕s 2 5 6 14 20 22 . . .
r 0 2 1 0 0 2 . . .
⊕r 0 2 3 3 3 5 . . .
s⊗ r 0 5 1 0 0 14 . . .
⊕(s⊗ r) 0 5 6 6 6 20 . . .

Property A.1. ⊕(s⊗ r) = (⊕s) ◦ (⊕r).
Proof: From Definition A.14, we note that ∀i : (s⊗ r)(i) = ⊕s(⊕r(i))−⊕s(⊕r(i− 1)).

Hence, ⊕(s⊗ r)(i) =
i
∑

j=1
⊕s(⊕r(j))−

i
∑

j=1
⊕s(⊕r(j − 1)) = ⊕s(⊕r(i)).

Property A.2. The set of ultimately periodic integer sequences N is closed under the
⊗ operation.

Proof: Let s = u1v
ω
1 and r = u2v

ω
2 be two ultimately periodic sequences. We have that

∀i > |u1| : ⊕s(i+ |v1|) = ⊕s(i) + ‖v1‖ and ∀i > |u2| : ⊕r(i+ |v2|) = ⊕r(i) + ‖v2‖. Let
us put

β =
|v1|

gcd(|v1|, ‖v2‖)
, α = β|v2| , and γ =

‖v2‖
gcd(|v1|, ‖v2‖)

So, ∀i > |u2| : ⊕r(i+ α) = ⊕r(i) + β‖v2‖ = ⊕r(i) + |v1|γ. Thus, ∃i0 : ∀i ≥ i0, we have
that

Real sequences 155

(s⊗ r)(i+ α) = ⊕s(⊕r(i+ α))−⊕s(⊕r(i− 1 + α))

= ⊕s(⊕r(i) + γ|v1|)−⊕s(⊕r(i− 1) + γ|v1|)
= ⊕s(⊕r(i)) + γ‖v1‖ − ⊕s(⊕r(i− 1))− γ‖v1‖
= (s⊗ r)(i)

Therefore, u1vω1 ⊗ u2vω2 = uvω with |v| = α and ‖v‖ = γ‖v1‖.

Property A.3. (N ,⊗, 1ω) is a monoid.

Proof: 1) Closure. ∀s, r ∈ N : s⊗ r ∈ N (Property A.2).
2) Identity element. ∀s ∈ N : s⊗ 1ω = 1ω ⊗ s = s.
3) Associativity. ∀s, r, t ∈ N :

(s⊗ (r ⊗ t))(i) = ⊕s((⊕(r ⊗ t))(i))−⊕s((⊕(r ⊗ t))(i− 1))

= ⊕s(⊕r(⊕t(i)))−⊕s(⊕r(⊕t(i− 1))) (Property A.1)

= (⊕(s⊗ r))(⊕t(i))− (⊕(s⊗ r))(⊕t(i− 1))

= ((s⊗ r)⊗ t)(i)

156 Sets, orders, and sequences

List of Figures

1 Real-time scheduling of dataflow graphs. 4
2 (a) un graphe flot de données et (b) une relation d’activation. 8
3 Un ordonnancent abstrait inconsistant. 9
4 Une relation d’activation affine de paramètres (4, 2, 3). 9

1.1 Example of (a) a cyclic SDF graph, and (b) its equivalent HSDF graph. 26
1.2 Reachability graph of the SDF example. 27
1.3 Self-timed execution of the SDF example. 29
1.4 Retiming of a SDF graph. 32
1.5 Pareto space of the SDF example. 35

2.1 Time abstraction of the self-timed example. 54
2.2 Illustration of Proposition 2.1. 57
2.3 Illustration of Lemma 2.2. 58
2.4 Illustration of Proposition 2.2. 59
2.5 Illustration of Proposition 2.3. 60
2.6 Graph of activation relations. 61
2.7 Consistency of symmetric difference of simple cycles. 62
2.8 Illustration of Proposition 2.6. 63
2.9 A (3,−4, 5)−affine relation. 68
2.10 A consistent affine schedule. 71
2.11 Function cbefi,k: partitioned fixed-priority scheduling. 73
2.12 Function cbefk,i: partitioned fixed-priority scheduling. 75
2.13 Function cbefi,k: partitioned EDF scheduling, νi = νk. 77
2.14 An ultimately cyclo-static dataflow graph. 79
2.15 (a) An UCSDF graph and (b) its equivalent CSDF graph. 79
2.16 Linear bounds of ultimately periodic rates. 80
2.17 Activation relations of the schedule p2 p3 p3 p1 p2(p2 p3 p3 p1 p3 p1)ω. . 81
2.18 (a) An UCSDF graph with a multichannel and (b) its equivalent graph

with simple channels. 82
2.19 Buffer minimization using a shared storage space. 83
2.20 A synchronous execution of process p. 85

3.1 Priority assignment problem expressed as a LOP. 92
3.2 Partitioning of the T -space into a set of DM priority regions. 93

157

158 List of Figures

3.3 Transforming DM priority assignments. 94
3.4 Exploration of the priority orderings space: throughput vs buffering re-

quirements. 95
3.5 Exploration of the priority orderings space: throughput vs precedence

distance. 96
3.6 Exploration of the priority orderings space: throughput vs utilization

distance. 96
3.7 Illustration of DF-B&B symbolic FP schedulability analysis. 100
3.8 Totally ordered communication strategy. 103
3.9 safri,k function. 103
3.10 Deadlines computation example. 104
3.11 Illustration of SQPA. 107
3.12 Illustration of DF-B&B SQPA. 109
3.13 Illustration of ffdbf . 111

4.1 Achieved throughput in EDF/RM uniprocessor scheduling. 115
4.2 Impact of number of processors on the throughput in BF-RM scheduling. 117
4.3 Comparison between BF-EDF and the first fit allocation strategy of DARTS.117
4.4 Comparison between BF-EDF and FFDBF-SQPA. 118
4.5 Comparison between DARTS and ADFG in terms of buffering requirements.119
4.6 Impact of the totally ordered communication strategy on the buffering

requirements. 119
4.7 Impact of the LOP priority assignment on the buffering requirements and

the processor utilization. 120
4.8 Impact of the constrained LOP priority assignment on the buffering re-

quirements and the processor utilization. 120
4.9 Impact of the priority assignment with utilization distance on the buffer-

ing requirements and the processor utilization. 121
4.10 Performance of the SQPA algorithm. 122
4.11 Impact of constrained deadlines on the performance of the SQPA algorithm.123
4.12 Performance of the FFDBF-SQPA algorithm. 124
4.13 Impact of the number of processors on the performance of the FFDBF-SQPA

algorithm. 124
4.14 Performance of the DF-B&B SQPA algorithm. 125
4.15 Performance of the SRTA algorithm. 126
4.16 Performance of the DF-B&B SRTA algorithm. 126
4.17 SCJ mission life cycle. 128
4.18 An ultimately cyclo-static dataflow graph with aperiodic actors. 129
4.19 Graphical editor for SCJ/L1 applications design. 130

Abstract

The ever-increasing functional and nonfunctional requirements in real-time safety-critical
embedded systems call for new design flows that solve the specification, validation, and syn-
thesis problems. Ensuring key properties, such as functional determinism and temporal pre-
dictability, has been the main objective of many embedded system design models. Dataflow
models of computation (such as KPN, SDF, CSDF, etc.) are widely used to model stream-
based embedded systems due to their inherent functional determinism. Since the introduc-
tion of the (C)SDF model, a considerable effort has been made to solve the static-periodic
scheduling problem. Ensuring boundedness and liveness is the essence of the proposed al-
gorithms in addition to optimizing some nonfunctional performance metrics (e.g. buffer
minimization, throughput maximization, etc.). However, nowadays real-time embedded
systems are so complex that real-time operating systems are used to manage hardware re-
sources and host real-time tasks. Most of real-time operating systems rely on priority-driven
scheduling algorithms (e.g. RM, EDF, etc.) instead of static schedules which are inflexible
and difficult to maintain. This thesis addresses the real-time scheduling problem of dataflow
graph specifications; i.e. transformation of the dataflow specification to a set of independent
real-time tasks w.r.t. a given priority-driven scheduling policy such that the following prop-
erties are satisfied: (1) channels are bounded and overflow/underflow-free; (2) the task set is
schedulable on a given uniprocessor (or multiprocessor) architecture. This problem requires
the synthesis of scheduling parameters (e.g. periods, priorities, processor allocation, etc.)
and channel capacities. Furthermore, the thesis considers two performance optimization
problems: buffer minimization and throughput maximization.

Résumé

Les systèmes temps-réel critiques sont de plus en plus complexes, et les exigences fonction-
nelles et non-fonctionnelles ne cessent plus de croître. Le flot de conception de tels sys-
tèmes doit assurer, parmi d’autres propriétés, le déterminisme fonctionnel et la prévisibilité
temporelle. Le déterminisme fonctionnel est inhérent aux modèles de calcul flot de don-
nées (ex. KPN, SDF, etc.) ; c’est pour cela qu’ils sont largement utilisés pour modéliser
les systèmes embarqués de traitement de flux. Un effort considérable a été accompli pour
résoudre le problème d’ordonnancement statique périodique et à mémoire de communica-
tion bornée des graphes flots de données. Cependant, les systèmes embarqués temps-réel
optent de plus en plus pour l’utilisation de systèmes d’exploitation temps-réel et de stratégies
d’ordonnancement dynamique pour gérer les tâches et les ressources critiques. Cette thèse
aborde le problème d’ordonnancement temps-réel dynamique des graphes flot de données ; ce
problème consiste à assigner chaque acteur dans un graphe à une tâche temps-réel périodique
(i.e. calcul des périodes, des phases, etc.) de façon à : (1) assurer l’ordonnançabilité des tâches
sur une architecture et pour une stratégie d’ordonnancement (ex. RM, EDF) données ; (2)
exclure statiquement les exceptions d’overflow et d’underflow sur les buffers de communica-
tion ; et (3) optimiser les performances du système (ex. maximisation du débit, minimisation
des tailles des buffers).

	Introduction
	Résumé en français
	Design and Verification
	Generalities
	Dataflow models of computation
	Kahn process networks
	Bounded execution of KPNs
	Dataflow process networks
	Specific dataflow graph models
	Dataflow synchronous model

	Static analysis of (C|H)SDF graphs
	Reachability analysis
	Timing analysis
	Memory analysis

	Real-time scheduling
	System models and terminology
	EDF schedulability analysis
	Fixed-priority schedulability analysis
	Symbolic schedulability analysis
	Real-time scheduling of dataflow graphs

	Real-time calculus
	Conclusion

	Abstract schedules
	Priority-driven operational semantics
	Activation-related schedules
	Activation relations
	Consistency
	Overflow analysis
	Underflow analysis

	Affine schedules
	Affine relations
	Consistency
	Fixed-priority schedules
	EDF schedules

	Specific cases
	Ultimately cyclo-static dataflow graphs
	Multichannels
	Shared storage space
	FRStream

	Conclusion

	Symbolic schedulability analysis
	General conditions
	Fixed-priority scheduling
	Priority assignment
	Uniprocessor scheduling
	Multiprocessor scheduling

	EDF scheduling
	Deadlines adjustment
	Uniprocessor scheduling
	Multiprocessor scheduling

	Conclusion

	Experimental validation
	Performance comparison: ADFG vs DARTS
	Buffering requirements

	Symbolic schedulability analysis
	EDF scheduling

	Application: Design of SCJ/L1 systems
	Concurrency model of SCJ/L1
	Dataflow design model

	Conclusion

	Conclusion
	Bibliography
	Sets, orders, and sequences
	List of Figures

