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Abstract

This study deals with piezoelectric shunt damping in the mistuned

bladed disks. Bladed disks are rich dynamical systems that are known

to suffer from severe vibration problems. Blade mistuning is an issue

of major concern since it is responsible for high cycle fatigue and

failure risks. In the mitigation practice, additional damping is usually

introduced into the structure to reduce vibration amplitudes. Here,

we are interested in piezoelectric shunt damping applied into mistuned

bladed disks.

In our proposed damping strategy, shunted piezoelectrics are attached

onto the disk surface between adjacent blades in order to dissipate

the disk mechanical energy. Consequently the blade vibration can

be reduced due to the blade-disk coupling. This strategy is of engi-

neering interest since piezoelectric transducers are placed outside of

the main stream in turbomachinery. This idea is developed based on

a lumped-parameter bladed disk model. Resonant shunt circuits are

adopted. Both piezoelectric shunt damping and optimized piezoelec-

tric mistuning are introduced to minimize the blade mistuning effect.

Piezoelectric mistuning can be seen as a kind of damping mistuning;

it is modeled as a small variation of the inductance value of each shunt

circuit.

In reality the blade mistuning pattern is not constant in the long run.

Due to various complexities, a perturbation of the blade mistuning

pattern might result. In benefitting from the manageability and con-

trollability of piezoelectric shunt circuits, an adaptive control strategy

is developed to adjust the optimal piezoelectric mistuning pattern ac-

cording to the perturbation. Numerical simulations reveal that a fine



performance is achieved in terms of reducing the blade vibration of

slowly time-variant, mistuned bladed disks.

An essentially nonlinear piezoelectric shunt circuit is proposed as prac-

tical realization of nonlinear energy sink (NES). This piezoelectric-

based NES is featured by nonexistence of preferential resonant fre-

quency. It is therefore able to act in essence, as a passive, adap-

tive, broadband vibration absorber, when integrated into a mechanical

structure. A variable-coefficient harmonic balance method for quasi-

periodic responses is devised. It helps gain insights into the complex

dynamics of forced response when the coupled electromechanical sys-

tem is under harmonic external forcing.

The appealing property of the piezoelectric-based NES enables it es-

pecially suitable for applications in mistuned bladed disks since it is

capable of adaptively interacting with each sector of mistuned bladed

disks in a broadband fashion. Promising results obtained in the nu-

merical studies further demonstrate this viewpoint.

Key words: piezoelectric shunt damping, blade mistuning, adaptive

control, nonlinear energy sink.



Résumé

Ce travail porte sur l’étude d’amortissement piézoélectrique shunté

pour les roues aubagées désaccordées de turbomachines. Les problèmes

vibratoires sont de première importance pour les motoristes aéronautiques

et, parmi ceux-ci, les vibrations causées par le désaccordage des aubes

tiennent une place importante puisqu’elles sont à l’origine des phénomènes

de fatigue oligocyclique et des risques de défaillance associés. L’usage

de technologies d’amortissement est donc assez répandu pour réduire

l’amplitude vibratoire. Ici, on s’intéresse à l’étude de l’amortissement

piézoélectrique shunté appliqué aux roues aubagées désaccordées.

Dans notre stratégie, des patchs piézoélectriques shuntés sont attachés

sur la surface de la roue entre les aubes adjacentes afin de dissiper

l’énergie mécanique de la roue. Par conséquent, l’amplitude des aubes

peut être réduite du fait du couplage entre les aubes et la roue.

Cette stratégie est d’intérêt pour l’ingénieur car les transducteurs

piézoélectriques sont placés en dehors du flux principal des turboma-

chines. Un modèle numérique a été développé intégrant des circuits

piézoélectriques shuntés résonnants. L’amortissement piézoélectrique

shunté et un motif optimisé de désaccordage piézoélectrique sont tous

les deux introduits afin de minimiser l’effet du désaccordage des aubes.

En pratique, le désaccordage des aubes change au cours de la vie

du moteur. Les raisons peuvent être multiple comme l’usure, des

endommagement par impacts qui vont conduire inévitablement à une

évolution du motif du désaccordage. En s’appuyant sur la stratégie

de contrôle adaptatif, nous avont proposé un shunt piézoélectrique

resonant capable de suivre l’évolution de la structure au cours du

temps. Les simulations numériques montrent qu’une bonne efficacité



est obtenue en termes de réduction des vibrations de roues aubagées

désaccordées.

Dans cette thèse, une dernière stratégie est proposée qui correspond à

la mise en place d’un système de pompage énergetique nonlinéaire basé

sur les élements piézoélectriques. Une fois intégrées dans une struc-

ture mécanique, il est donc en mesure d’agir en tant qu’amortisseur

de vibrations, adaptatif et large bande. Une méthode numérique, à

coefficient variables de balance harmonique, a été développée afin de

calculer les réponses quasi-périodiques associés à ce type de problème.

Ce dispositif de pompage énergetique piézoélectrique semble partic-

ulièrement intéressant dans le cadre des roues aubagées désaccordées,

car il est capable d’interagir de façon adaptative avec chaque secteur

de la roue désaccordé. Des résultats prometteurs ont été obtenus et

illustrent démontrent ce point de vue.

Mots clés: amortissement piézoélectrique shunté, roues aubagées,

désaccordage, contrôle adaptatif, pompage énergetique nonlinéaire.
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Introduction

Bladed disk structures are used in a number of propulsion and power generation

applications. Bladed disks, as the name implies, consists of a central circular disk

surrounded by blades. A bladed disk is featured by cyclic symmetry in the design

phase. The structure can be divided into a number of identical substructures or

sectors, which are arranged symmetrically around the central axis. In practice,

however, the sectors are never perfectly identical due to manufacturing tolerances,

material defects, and uneven wear in the operation. The small discrepancies

between sectors are known as mistuning. It is well known that mistuning has a

profound effect on the dynamic behavior of the bladed disk structure.

Vibration in mistuned bladed disks has received significant attention from

the academic and industrial community in the last decades. In general, various

research efforts in this domain can naturally fall into three categories.

The first category concerns the comprehensive understanding of the mistun-

ing mechanism. Early research efforts on the phenomenological aspects of blade

mistuning have been conducted in the area of structural dynamics. In fact, the

subject matter is an interdisciplinary one requiring expertise in aerodynamics

of cascades as well as structural dynamics of bladed disk assemblies leading to

aeroelasticity of blades. The current trend is to include effects either previously

absent or ignored from the early mistuned bladed disk analyses. For example,

specific features of the aerodynamic damping and aerocoupling are now taken

into account in the modeling of mistuned bladed disks.

The second category is more methodological in the field of structural dynam-

ics. These research works focus on both a better representation of modeling

and reducing computational cost. Studies on this subject are often initially mo-

tivated by the request for phenomenological representation of mistuned bladed

1



Introduction

disks. For example, nowadays, more and more investigations are performed on

reduced-order models generating from large scale modern industrial finite element

models of a full bladed disk. The reduced order models could reduce the com-

putational models of the full bladed disk to manageable size, while retaining the

model accuracy.

Finally, the last category focuses on blade vibration reduction. To this end,

several schemes have emerged in the literature. One possibility is to act at the

level of excitation to reduce their impact on the structure (e.g., symmetry break-

ing excitations). One can also optimize the distribution of vibrational energy in

the mistuned bladed disks and accordingly limit vibration levels in critical areas

(structural optimization, or intensional mistuning). In the mitigation practice,

additional damping is usually introduced into the bladed disk. In this thesis, we

will pay special attention to the piezoelectric shunt damping in mistuned bladed

disks.

Thesis outline

This thesis is dedicated to applying piezoelectric shunt damping into bladed disks

in order to suppress blade mistuning effects. Chapter 1 is devoted to introducing

dynamics and vibration phenomenons in bladed disks. The modeling methodol-

ogy of tuned bladed disks is then illustrated in taking advantage of cyclic sym-

metry property. Of particular interest is the vibration in mistuned bladed disks.

A range of fundamental research issues are briefly presented.

In Chapter 2, conceptions of piezoelectric shunt damping are fully discussed.

We present a detailed discussion on physical principles and constitutive mod-

els of piezoelectric materials and structures. The concept of piezoelectric shunt

damping is illustrated when piezoelectric materials are connected with classical

shunt circuits, i.e. the resistive shunt circuit and resonant shunt circuit. Recent

advances in this area will be also covered in the end of this chapter.

We propose a new piezoelectric damping strategy especially suitable for blisks,

i.e., using resonant shunted piezoelectrics solely attached onto the disk, in Chap-

ter 3. Both the piezoelectric shunt damping and piezoelectric mistuning effect

will be utilized to achieve a maximum blade vibration reduction. Piezoelectric

2
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mistuning can be seen herein, to some extent, as a kind of damping mistuning;

it is modeled as a small variation of the inductance value of each shunt circuit.

More specifically, an optimal piezoelectric mistuning, obtained by genetic algo-

rithm optimization, could be introduced into a bladed disk with a given blade

mistuning to achieve further blade vibration mitigation.

Chapter 4 presents an adaptive control strategy based on the piezoelectric

shunt technique. This adaptive control strategy has focused on more realistic

cases where the blade mistuning pattern is slowly time-varying. By taking ad-

vantage of the controllability of piezoelectric shunt circuits, the piezoelectric mis-

tuning pattern can be adjusted to keep “optimal” in terms of maintaining low

blade vibration levels.

An essentially nonlinear piezoelectric shunt circuit is proposed in Chapter 5

as practical realization of nonlinear energy sink (NES). This piezoelectric-based

NES is featured by nonexistence of preferential resonant frequency. It is therefore

able to act in essence, as a passive, adaptive, broadband vibration absorber,

when integrated into a mechanical structure. This appealing property enables it

especially suitable for application in mistuned bladed disks.

In Chapter 6, essentially nonlinear piezoelectric shunt circuits are applied into

mistuned bladed disks as an attempt. These essentially nonlinear shunt circuits

are capable of adaptively interacting with each sector of mistuned bladed disks

in a broadband fashion. Consequently, a sound damping performance can be

expected.

Finally, main contributions of the research work presented in this thesis are

summarized and a brief discussion on future directions for piezoelectric shunt

damping in bladed disks is given at the end of this thesis.

3
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Chapter 1

Dynamics of the bladed disk

This chapter is dedicated to introducing dynamics and vibration phenomenons

in bladed disks. Following a general overview on the functional environment of

bladed disks, excitation sources and principal blade vibratory phenomenons are

described. The modeling methodology of tuned bladed disks is then illustrated

in taking advantage of cyclic symmetry property. Of particular interest is the

vibration in mistuned bladed disks. A range of fundamental research issues will

be briefly presented.

1.1 Overview of turbomachinery, compressors

and bladed disks

A turbomachine is a device that exchange energy with a fluid using continuously

flowing fluid and rotating blades [1; 2]. Examples of these devices include aircraft

engines (see Fig. 1.1) and wind turbine. Although aircraft engines have been built

and operated successfully for the past century, their inherent complexity still gives

rise to unexpected behavior.

In a basic aircraft engine, air enters the front inlet and is compressed through

a compressor. The compressor is made up of many blades that are attached to

a disk mounted onto a shaft. These rotating blades compress the air and raise

the pressure. Then the compressed air is mixed with sprayed fuel and an electric

spark lights the mixture. The hot gases are expanded either through a turbine

5



1.Dynamics of the bladed disk

Figure 1.1: The aircraft engine RB211-535E4 manufactured by Rolls-Royce (UK)

to generate shaft power or through a nozzle to create thrust. This shaft power,

drives the compressor or the fan in turn, therefore bringing in a fresh air supply

through the inlet. Aircraft engines are self sustaining machines. As long as fuel

is provided they will keep operating.

The turbine and compressor components are mated by a shaft, since the former

powers the latter. A single shaft aeroengine has only one shaft connecting the

compressor and turbine components. A twin-spool aeroengine has two concentric

shafts, a longer one connecting a low-pressure compressor (LPC) to a low pressure

turbine (the low spool), which rotates inside a shorter, larger-diameter shaft. The

latter connects the high-pressure turbine with the higher pressure compressor

(HPC), which rotates at higher speeds than the low spool. A triples pool engine

would have a third, intermediate-pressure compressor-turbine spool.

The more efficient, higher capacity axial flow compressor is widely used on

most gas turbines for high level of compression and thrust generation (see Fig. 1.2a).

A stationary row in the form of inlet guide vanes is located at the start of the

passage. Air or any other working fluid is first accelerated and then diffused to

obtain the right pressure increment in an axial compressor stage. Rotating blades

(airfoils) mounted on the disk impart kinetic energy to the fluid; stationary blades

(stator vanes) then convert it into potential energy in the form of increased pres-

sure (see Fig. 1.2b). Multiple stages are required to attain the proper compression,

6



1.Dynamics of the bladed disk

(a) (b)

Figure 1.2: a)Low pressure axial compressor scheme of the Olympus BOl.1 tur-
bojet; b)Diagram of an axial flow compressor.

each row of stationary and moving blades constituting a stage.

Bladed disks are therefore essential components of compressors and turbines.

A bladed disk assembly is represented in Figure 1.3. Vibration-induced fatigue

failure of rotating blades has been a problem of major concern to the designer [3].

Vibration reduction technologies are needed for high performance and lifespan

requirement in modern aeroengines.

reference sector

Figure 1.3: A blade disk assemble model

7



1.Dynamics of the bladed disk

In the following, the principal excitation sources and vibratory phenomenons

in bladed disks will be discussed.

1.2 Vibratory phenomenons in bladed disk

There are several excitation sources, arising out of aerodynamic and structural

environment in aeroengine, which can lead to vibration phenomenons of engine

blades. The most common vibration problems of rotating bladed disks in op-

eration include: a) resonant vibration occurring at multiple of rotation speed

(integral order vibration); b) flutter, which is an aeroelastic instability (nonin-

tegral order vibration), having the potential to escalate into larger and larger

amplitude and leading to severe damage to the blades. The associate failures of

engine blades are referred to as high cycle fatigue (HCF) failures. Both the reso-

nance and flutter are induced by aerodynamic excitation. In addition, mechanical

sources of excitation are also briefly referred.

1.2.1 Aeroelastic aspect

The principal sources of excitation in bladed disk is related to the aerodynamic

loading acting on the blade. As remarked earlier, air flow entering the engine

inlet meets with the rotating bladed disks and static obstructions (stator vanes)

in its path from the inlet to the exhaust. The flow field inside the engine is

inherently unsteady. Various of aerodynamic unsteady phenomenons, such as

wakes, potential pressure disturbances, circumferential flow distortions, shocks in

passages, secondary flows, coexist in either upstream or downstream of any rotor

stage. The unsteady flow produces pressure variations, which is experienced by

the spinning blades as a time-varying forces. A more detailed introduction is given

by Srinivasan [3] and numerous research efforts in this domain are presented by

Hall and Kielb [4]. In this section, we mainly introduce the aforementioned two

principal phenomenons in brief.
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1.Dynamics of the bladed disk

Resonant response

The flow conditions of air drawn through fan stages of an engine and delivered

to compressors generally vary in space and time at any engine stage. Similar

conditions prevail in the turbine stages. Therefore, blades experiencing pressures,

velocities, incidence, temperatures, etc., that vary periodically in time. From

the viewpoint of the structural dynamics, the key point relates to an accurate

estimate of aerodynamic forcing and determining the resonant conditions under

which the pattern of varying aerodynamic forces match any blade-disk modes

both in time and space. If the resonant condition is met, the resulting vibration

amplitude is controlled by attainable aerodynamic and structural damping in

aeroengines. Therefore, the reliability of predicting resonant stresses depends

upon the accuracy of prediction of aerodynamic forces, bladed disk modes and

damping available in the operational environment. All these efforts are made to

avoid resonant conditions based on a Campbell diagram, which will be introduced

in Section 1.4.

Flutter

Susceptibility of rotor blades to flutter instabilities is a major consideration in

the design of turbomachines. A principal reason is that flutter is an aeroelas-

tic instability leading to very high vibration amplitudes. Flutter is caused by

an interaction between the blade vibratory motions and the aerodynamic forces

resulting from these motions. In the instable condition the aerodynamic forces

feed energy into the blade, and thus stresses escalate with each sequential cycle

of vibration. Vibration amplitude of blade can thus cumulate. Unless the energy

dissipated by aerodynamic and mechanical damping matches the energy input,

blade vibration will not be limited, which can result in large amplitude vibration

and potentially lead to rapid failure.

Because of this, the blades are designed carefully within known parameters

to avoid flutter. However, usually both the unsteady aerodynamics and the me-

chanical properties of the bladed disks in aeroengines are not fully understood,

flutter can only be kept under control through detailed testing. An important

feature of flutter is that the resulting vibration is nonintegral and therefore the
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1.Dynamics of the bladed disk

frequency-speed characteristic does not “ride” the engine order line in the Camp-

bell diagram. On the contrary, resonant conditions at an integral order are met

when the frequency speed characteristic goes across the engine order line. When

it departs from the engine order line, then the aeroelastic instability of flutter

could take place.

1.2.2 Mechanical sources of excitation

In addition to the aerodynamic sources, there also exist mechanical sources of

excitation that can produce forces at frequencies that may lead to forced vibration

in an individual blade mode or a system mode. For example, foreign object

damage occurs when either the low compressor blades are impacted by a bird

(or a block of ice) at take-off/landing, or if a downstream blade is impacted by

debris of an upstream blade. Whatever the case is, the metal pieces must be

contained by the casing. Fan blade-off and bird ingestion are two tests used in

the certification process of an engine.

Among various effects of mechanical excitation, the nonlinearity caused by

contact interface are receiving more and more attention. In fact, there are non-

linearities caused by contact at shroud interface, at dovetail attachments for in-

serted blades [5; 6], and caused by the blade-tips/casing contact phenomenons

[7; 8]. A number of emerging studies in this area are beyond the scope of this

work. Hence they are not listed here.

Above all, vibrations of bladed disks occur in an aerodynamical environment in

aeroengines. Therefore, apart from structural dynamic characteristics, significant

advances in the aerodynamic aspect is also required for the prediction of blade

vibration risks. Next we will turn to the structural dynamic aspect of bladed

disks.
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1.Dynamics of the bladed disk

1.3 Bladed disk modeling: cyclic symmetry strat-

egy

The bladed disk modeling methodology takes advantage of the cyclic symmetry

property in this periodic structure. A structure is said to present cyclic symmetry

when it is composed of a number of geometrically identical substructures, i.e.

sectors. For instance, Fig. 1.3 depicts a full model of bladed disk and its reference

sector.

The assumption of perfect cyclic symmetry greatly simplifies the tuned bladed

disk vibration analysis. It enables equations of motion to be uncoupled by spatial

Fourier decomposition. Instead of analyzing the full bladed disk as a whole, we

could therefore have an insight of the full structure by only investigating the

dynamic behavior of the reference sector. For more details, readers are referred

to early research efforts by Thomas [9], Wildheim [10] and Sternchuss [11].

1.3.1 Cyclic components

Let’s consider a cyclic structure that is composed of N sectors numbered from 0

to N−1. It is generated by rotation of the reference sector with a phase difference

α = 2π/N . A vector uj represents a certain quantity (displacements, forces etc.)

in physical coordinates for the jth sector. As usual, u0 stands for the quantity in

the reference sector. According to the cyclic symmetry condition, we have:

uN+j = uj, j = 0, 1, · · · , N − 1 (1.1)

From the theory of cyclic components, the vector uj in physical coordinates

for all N sectors may be expressed as a linear combination of the corresponding

quantity ũ0 in cyclic coordinates for the reference sector as:

uj =
N−1∑

k=0

ũk
0e

ijkα, i2 = −1 (1.2)

The amplitude ũk
0 is named cyclic component of harmonic order k on the

reference sector. The “tilde” notation is used throughout this thesis to indicate
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1.Dynamics of the bladed disk

that a quantity is represented in cyclic coordinates. For each cyclic component

of harmonic order k, the inter-sector phase difference is fixed and equals kα.

The cyclic components ũk
0 is defined as a function of physical coordinates uj:

ũk
0 =

1

N

N−1∑

j=0

uje
−ijkα (1.3)

Transforms (1.2) and (1.3) are (inverse) discrete spatial Fourier transforms, in

essence. Since the physical quantity u is considered in the real-valued form, a real-

valued matrix presentation of the discrete spatial Fourier transform is preferable

for convenience. The complex cyclic components could be written as:

ũk
0 = ũk,c

0 + iũk,s
0 (1.4)

A real form of cyclic representation is introduced as:

ũ = [ũ0
0 · · · ũk,c

0 ũk,s
0 · · · ũN/2

0 ]T (1.5)

where the last term ũ
N/2
0 only exists if N is even.

The physical representation is:

u = [u0 · · · uj · · ·uN−1]
T (1.6)

Since cyclic components are represented by trigonometric series, the physical

quantity uj for jth sector can be expressed as:

uj =
1√
N
ũ0

0 +

√

2

N

κ∑

k=1

[

ũk,c
0 cos(jkα) + ũk,s

0 sin(jkα)
]

+
(−1)j−1

√
N

ũ
N/2
0 (1.7)

In the above expression, the harmonic index k varies from 0 to κ. κ is defined

as:

κ =

{

N/2 − 1 if N is even;

(N − 1)/2 if N is odd.
(1.8)

We can therefore define the real-valued matrix representation of the inverse
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1.Dynamics of the bladed disk

discrete spatial Fourier transform:

u = [E]ũ (1.9)

The unitary Fourier matrix [E] is defined as:

[E] = 1√
N












1
√

2 0 · · · 0 1

1
√

2cosα
√

2sinα · · · √
2sinκα −1

1
√

2cos2α
√

2sin2α · · · √
2sin2κα 1

...
...

...
...

...

1
√

2cos(N−1)α
√

2sin(N−1)α · · · √
2sin(N−1)κα (−1)N−1












(1.10)

where the last column only exists if N is even.

Similarly, the cyclic components could also be expressed with the inverse

matrix of [E]. Let’s note that the matrix [E] is orthonormal, or unitary, such

that [E]T [E] = I, where I is an identity matrix of size N and the superscript (.)T

denotes the transpose. This implies that [E]T = [E]−1. We have:

ũ = [E]−1u = [E]Tu (1.11)

where the corresponding backward transform from physical to cyclic coordinates

could also be given by the following series of relations:

ũ0
0 =

1√
N

N−1∑

j=0

uj (1.12)

ũk,c
0 =

√

2

N

N−1∑

j=0

cos(jkα)uj

ũk,s
0 =

√

2

N

N−1∑

j=0

sin(jkα)uj

ũ
N/2
0 =

1√
N

N−1∑

j=0

(−1)j−1uj

(1.13)
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In the rest of this thesis, the real-valued form of spatial Fourier transform is

preferred. The physical representation u = {uj, j = 0, · · · , N − 1} and cyclic

representation ũ0 = {ũ0
0, ũ

k,c
0 , ũk,s

0 , ũ
N/2
0 , k = 1, · · · , κ} are equivalent. Due to the

fact that the cyclic components contain the complete set of admissible circumfer-

ential mode shapes of the cyclic assembly, this transform is not an approximation,

but an accurate description of the global system behavior.

1.3.2 Spatial Fourier transform of matrices

In finite element formulations (Ritz-Galerkin procedure), the continuous field u is

discretized which leads to a physical vector of degree of freedom (DOF) U on the

full bladed disk structure. We can gather all the DOFs as a series of vectors Uj

defined on jth sector. Since it is assumed the full bladed disk has a perfect cyclic

symmetry, it is possible to compute cyclic components defined on the reference

sector by the spatial Fourier transform. Let U = [U0, U1, · · · , UN−1]
T , we have:

Ũ = ([E]T ⊗ In)U (1.14)

where Ũ is the vector in cyclic coordinates in the form of

Ũ = [Ũ0
0 , · · · , Ũk,c

0 , Ũk,s
0 , · · · , ŨN/2

0 ]T (1.15)

As aforementioned, the last term Ũ
N/2
0 only exists if N is even. In is n×n identity

matrix and n is the number of DOFs in each sector. The symbol ⊗ denotes the

Kronecker product. U could also be recovered by the inverse discrete Fourier

transform:

U = ([E] ⊗ In)Ũ (1.16)

At this stage, the physical discretized fields defined in two adjacent sectors

are assumed disjoint. The continuity condition will be discussed in Section 1.3.3.

The spatial Fourier transform of a field, either continuous or discretized, only

requires a periodic distribution of points. A matrix representation of the operator

that acts on the physical field is to be examined below.

Let Aj be any finite element matrix associated with jth sector. The matrix A
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1.Dynamics of the bladed disk

results from the assembly of the disjoint sector matrices:

A =












A0 · · · 0 · · · 0
...

. . .
...

...

0 · · · Aj · · · 0
...

...
. . .

...

0 · · · 0 · · · AN−1












(1.17)

The bladed disk is said to be tuned when all sectors share exactly the same set

of mechanical properties, i.e. perfect cyclic symmetry. In this particular case, the

matrix A could be derived from the submatrix A0 associated with the reference

sector so that:

A = IN ⊗ A0 (1.18)

The spatial Fourier transform could then be applied to the the matrix A:

Ã = ([E]T ⊗ In)(IN ⊗ A0)([E] ⊗ In) (1.19)

Taking into account properties of the unitary Fourier transform matrix [E],

we have a block-form matrix of Ã:

Ã =












Ã0 · · · 0 · · · 0
...

. . .
...

...

0 · · · Ãk · · · 0
...

...
. . .

...

0 · · · 0 · · · ÃN/2












(1.20)

Blocks in Ã depend on the mechanical properties of the reference sector A0

and the harmonic index k:

Ã0 = ÃN/2 = A0 (1.21)

Ãk =

[

A0 0

0 A0

]

, k = 1, · · · , κ (1.22)

For each block Ãk, the upper and bottom row correspond to the real and
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1.Dynamics of the bladed disk

imaginary part of the spatial Fourier harmonic with index k.

The property exhibited in this section reveals that in the tuned bladed disk,

structure matrices do not couple the Fourier harmonics to each other if sectors

in the full bladed disk are considered disjoint. Next, it is necessary to define

continuity conditions between the reference sector and its neighboring sectors.

1.3.3 Continuity conditions in neighboring sectors

Continuity conditions are imposed on the interface of the reference sector. Fig. 1.4

gives an illustration of interfaces between the reference sector and its neighboring

sectors. Let us consider that an arbitrary vector U0 defined on the reference

sector could be partitioned into the DOFs on the left interface lU0, on the right

interface rU0 and interior DOFs iU0:

U0 = [lU0
rU0

iU0] (1.23)

sector 1

right interface

left interface

sector 0

r U1

l UN−1

l U0

r U0

iU0

sector N-1

Figure 1.4: Illustration of interfaces of the reference sector

Continuity conditions on interfaces of the reference sectors with the neighbor-

ing sector numbered 1 and N − 1 are given by:

lU0 = rU1 (1.24)

rU0 = lUN−1 (1.25)

Substituting the relation in Eq. (1.3) into Eq. (1.24) and Eq. (1.25), one could

express the continuity conditions based on the cyclic components with harmonic
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1.Dynamics of the bladed disk

index k:

lŨk
0 = rŨk

0 e
ikα (1.26)

rŨk
0 = lŨk

0 e
i(N−1)kα (1.27)

These propagation equations in cyclic coordinates allow to relate the DOFs on

the left interface to that on the right interface. They are completely equivalent.

Eq. (1.26) is then adopted to eliminate the DOFs on the left interface. Once

again, we can write continuity conditions in the real-valued form:

• k = 0,
lŨ0

0 =r Ũ0
0 (1.28)

• k = 1, · · · , κ,
[

lŨk,c
0

lŨk,s
0

]

=

[

coskα sinkα

−sinkα coskα

][
rŨk,c

0

rŨk,s
0

]

(1.29)

• k = N/2,
lŨ

N/2
0 = −rŨ

N/2
0 (1.30)

With inter-sector continuity conditions, it enables to carry out the bladed disk

structure analysis based on the reference sector. This will considerably reduce

the size of vibration problems. In the next section, the method of formulating

bladed disk structure problems with cyclic symmetry is to be presented.

1.4 Structure problems formulated with cyclic

symmetry

Consider a discrete structure problem of the bladed disk in physical coordinates:

MÜ(t) + CU̇(t) +KU(t) = F (t) (1.31)

where M , C and K are mass matrix, damping matrix and stiffness matrix, re-

spectively. U(t) is the vector of displacement and F (t) denotes the external
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1.Dynamics of the bladed disk

excitation.

As described in the precedent sections, the physical quantities U and F could

be reformulated in cyclic coordinates according to the relation in Eq. (1.14).

Consequently, the problem presented by Eq. (1.31) in physical coordinates could

be reformulated in cyclic coordinates. This reformulation consists of a set of

independent subproblems for each harmonic order k:

M̃k ¨̃Uk
0 (t) + C̃k ˙̃Uk

0 (t) + K̃kŨk
0 (t) = F̃ k

0 (t) (1.32)

For each subproblem corresponding to harmonic order k, the continuity con-

ditions defined in Eq. (1.28), (1.29) and (1.30) should be taken into account.

After resolving each subproblem, the complete response U(t) could be ob-

tained by the superposition of all cyclic components (see Eq. (1.16)). We discuss

the details of the modal analysis and the force response respectively in this sec-

tion.

1.4.1 Modal analysis

The modal analysis of a tuned bladed disk is realized through solving the eigen-

value problems defined in the reference sector for each harmonic index k:

(K̃k − ω2M̃k)X̃k
0 = 0 (1.33)

For the harmonic index k = 0 and k = N/2, the system matrix in cyclic

coordinates are of size n (see Eq. (1.21)) and the corresponding modes are non-

degenerate; for the other harmonic index k = 1, · · · , κ, system matrices in cyclic

coordinates are of size 2n (see Eq. (1.22)). The rows in system matrices are de-

coupled into the real and imaginary part of the spatial Fourier harmonic. Note

that these system matrices are symmetric and that their two diagonal blocks are

identical. The eigenvalue problems belongs to a degenerate class of structural

eigenvalue problems, which will yield pairs of real eigenvalues. The circumferen-

tial positioning of mode shapes pertaining to double harmonics is arbitrary. As

a result, these mode shape pairs can also be represented by complex, counter-

rotating waves [12].
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Mode shapes of the full bladed disk are obtained by applying the relation

Eq. (1.16) to the eigenmode X̃k
0 in the cyclic coordinates. Let’s note that each

subproblem for harmonic index k is independent. For practical consideration, it

is possible to only solve the subproblems with some particular harmonic index k.

Then the full blade-disk mode with respect to harmonic index k is reconstructed

separately:

Xk =







([E]0 ⊗ In)X̃0
0 k = 0;

([E]k ⊗ In)

(

X̃k,c
0

X̃k,s
0

)

k = 1, · · · , κ;

([E]N/2 ⊗ In)X̃
N/2
0 k = N/2.

(1.34)

with

[E]0 =
1√
N












1

1

1
...

1












[E]N/2 =
1√
N












1

−1

1
...

(−1)N−1












(1.35)

[E]k =

√

2

N












1 0
...

...

cos(jkα) sin(jkα)
...

...

cos(N − 1)kα sin(N − 1)kα












It is a classical strategy to plot the eigenfrequency of a tuned bladed disk

with respect to the number of nodal diameters (harmonic index k). A typical

frequency/nodal diameters plot is shown in Fig. 1.5 for a monobloc disk with 36

blades [13].

As remarked earlier, blade-disk mode can be represented by counter-rotating

waves propagating in the circumferential direction. Blade vibration is thus related

to energy transfer among consecutive sectors in the blade-disk structure. In

most cases, the structure coupling, particularly blade-disk coupling, plays the

key role as the dominant mechanism for inter-sector energy transfer. The blade-

disk coupling strength can be examined in the frequency/nodal diameters plot

[14]. Generally, two different types of blade-disk modes are observed in this plot:
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Figure 1.5: Example of Frequency/ Nodal diameters diagram

blade-dominated mode

Modes dominated by blade motion tend to appear as horizontal lines in

the plot. They feature little disk motion and thus they have weak inter-

blade coupling. This feature tends to confine the strain energy to the blades.

There may be numerous blade-dominated modes corresponding to moderate

or high nodal diameters. These regions of high modal density are referred

to as clustered mode area.

disk-dominated mode

The modal stiffness of a disk increases rapidly as the number of nodal

diameters is increased. So disk-dominated modes appear as slanted lines in

this plot. In disk-dominated modes, the inter-blade coupling is high enough

so that the strain energy spreads over the blades and the disk.

There are several regions where the disk and blade modes appear to veer

away from each other, as indicated by “veering” in Fig. 1.5. For example, in

the veering area #2, blade-dominated modes at 5 nodal diameters loses its blade

characteristics through the veering, becoming disk-dominated mode at 6 nodal

diameters; on the other hand, the disk-dominated mode at 5 nodal diameter
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1.Dynamics of the bladed disk

gains more blade participation through the veering, becoming blade-dominated

at higher nodal diameters. Modes in the veering regions tend to be featured by

mixed disk-blade motion. Therefore, the blades will have significant vibration

response if these modes are excited. There is also a mechanism for transferring

energy between blades through the disk. This combination of conditions can

lead to the blade vibration energy being localized in a few blades when blade

mistuning is present [14]. Blade mistuning will be discussed in detail in Section

1.5.

The relationship between the veering and inter-blade coupling has been in-

vestigated extensively [15–17]. From curve veering theory, it is known that the

strength of the blade-disk interaction, and thus the inter-sector coupling, is a

function of veering curvature. If the interaction between disk-dominated and

blade-dominated motion is negligible, then the disk-dominated and the blade-

dominated frequency curves will appear to “pass through” each other (veering

#1 in Fig. 1.5). The veering is therefore extremely sharp with high curvature. In

contrast, a lower-curvature veering indicates a higher level of modal interaction,

and accordingly, stronger inter-sector coupling (veering #2 in Fig. 1.5).

The veering theory has been further developed by Bladh et al. [18] to ob-

tain continuous natural frequency curves. The continuous veering plot offers a

tool to better determine the type of the examined blade-disk modes. Thus, the

inter-sector coupling strength can be quantified by examining the veering char-

acteristics.

Another benefit of examining blade-to-blade coupling through the disk is that

it enables one to affect the blade response through variation of the disk parameters

[19]. This finding also raise possibility of introducing some kind of damping to

the disk for the purpose of affecting the blade response. For example, friction

rings are usually arranged inside the integral blisk grooves in order to enhance

the structural damping.

1.4.2 Forced response

When it comes to compute the response of a tuned bladed disk under an external

excitation, a similar procedure as described in the modal analysis is adopted.
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This procedure consists of three typical steps:

• Decomposition of the external excitation into spatial Fourier harmonics;

• Resolving subproblems for each harmonic;

• Reconstructing the displacement vector of the full bladed disk in physical

coordinates from the cyclic coordinates.

First, the external excitation F (t) is decomposed into its spatial Fourier com-

ponents using the Fourier transform Eq. (1.14). This transform allows to obtain

the cyclic component F̃ k
0 of external force defined in the reference sector using

the physical representation Fj acting on each sector:

F̃ 0
0 =

1√
N

N−1∑

j=0

Fj (1.36)

F̃ k,c
0 =

√

2

N

N−1∑

j=0

cos(jkα)Fj

F̃ k,s
0 =

√

2

N

N−1∑

j=0

sin(jkα)Fj

F̃
N/2
0 =

1√
N

N−1∑

j=0

(−1)j−1Fj

Following the spatial Fourier decomposition, we can solve a series of subprob-

lems corresponding to each harmonic component:

• k = 0,
{

M̃0 ¨̃U0
0 (t) + C̃0 ˙̃U0

0 (t) + K̃0Ũ0
0 (t) = F̃ 0

0 (t)
lŨ0

0 = rŨ0
0

(1.37)
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• k = 1, · · · , κ,






M̃k

[
¨̃Uk,c

0 (t)
¨̃Uk,s

0 (t)

]

+ C̃k

[
˙̃Uk,c
0 (t)

˙̃Uk,s
0 (t)

]

+ K̃k

[

Ũk,c
0 (t)

Ũk,s
0 (t)

]

=

[

F̃ k,c
0 (t)

F̃ k,s
0 (t)

]

[
lŨk,c

0

lŨk,s
0

]

=

[

coskα sinkα

−sinkα coskα

][
rŨk,c

0

rŨk,s
0

]

(1.38)

• k = N/2,

{

M̃N/2 ¨̃U
N/2
0 (t) + C̃N/2 ˙̃U

N/2
0 (t) + K̃N/2Ũ

N/2
0 (t) = F̃

N/2
0 (t)

lŨ
N/2
0 = −rŨ

N/2
0

(1.39)

After resolving each subproblems, the complete forced response U(t) could be

obtained by the superposition of all cyclic components:

U = ([E] ⊗ In)Ũ (1.40)

Equivalently, this principle of superposition could be expressed by trigono-

metric series:

Uj =
1√
N
Ũ0

0 +

√

2

N

κ∑

k=1

[

Ũk,c
0 cos(jkα) + Ũk,s

0 sin(jkα)
]

+
(−1)j−1

√
N

Ũ
N/2
0 (1.41)

Engine order excitation

The primary form of excitation in the analysis of forced response in turbomachin-

ery is that of engine order excitation. As remarked in Section 1.2.1, this forcing

condition occurs due to the fact that the rotors are rotating through a unsteady

flow that is non-uniform in the circumferential direction. The non-uniformity of

the flow stems from the multiple obstructions in the flow field. Each blade on the

rotating assembly experiences these spatial variations in the steady flow as time-

varying and therefore responds by vibrating with frequencies that are directly

related to the speed of rotation.
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1.Dynamics of the bladed disk

The forcing function is characterized by a frequency which is an integer mul-

tiple of the rotation speed; on the other hand, it has also a characteristic shape

since it is applied simultaneously to all the blades around the assembly. By per-

forming a spatial Fourier transform of the flow field it may be broken into its

spatial harmonics. In assuming linear dynamics, the response of the assembly to

each of these harmonics can be analyzed separately. An engine order excitation is

therefore assumed, which is harmonic in time and differs only in phase from blade

to blade. The forcing function of an engine order EO with excitation frequency

ω on blade j can be expressed as:

Fj = Fampe
iωtei2πEO

j−1

N (1.42)

which is a traveling wave excitation of amplitude Famp traveling in the positive j

direction with wave speed:
ωN

2πEO

The advantage of examining individually the spatial harmonics of the excita-

tion is that each harmonic excites only modes with a harmonic index that matches

the engine order. The relationship between the number of nodal diameters (Nd)

of the excited mode and the excitation order p (excitation harmonic EO multi-

plied by the number of obstacles (stator blades) in the upstream of the considered

bladed disk) is determined analytically by: Nd = |kN −p| with 0 ≤ k ≤ N/2 and

0 ≤ |kN − p| ≤ N/2. For example, the nodal diameter 3 mode shown in Fig. 1.5

would be excited by engine order excitation EO = 3. If there are 36 blades in

the system, this mode would be excited by an excitation of order p = 33, and

p = 39, and so forth. This relationship could also be intuitively illustrated in a

Zig-zag diagram [10].

Campbell diagram

Let’s turn to the realistic case where the bladed disk is rotating at speed Ω. As

remarked above, the engine order EO excitation will excite all blade-disk modes

that contain a component of EO nodal diameters in their mode shape, and will

do so at a frequency experienced by the bladed disk of EOΩ. A convenient way
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to present the characteristics of forced response due to engine order excitation is

with a Campbell or interference diagram (see Figure 1.6 for a 18-sector bladed

disk).

Figure 1.6: Example of Campbell diagram

Campbell diagram in Figure 1.6 plots the vibration frequency (as experi-

enced on the rotating bladed disk) against rotation speed. When the bladed

disk is subjected to an engine order excitation, resonance vibration can be ex-

pected. It can be clearly seen on this diagram that each EO selectively picks

out the vibration mode with the matching number of nodal diameters and gen-

erates resonance accordingly. Furthermore, coincidence of excitation frequencies

with natural frequencies does not necessarily satisfy the additional requirement of

matching engine order and number of nodal diameters; consequently it does not

lead to resonance vibration [20]. Hence, in the design phase, resonant conditions

are always carefully identified and further avoided at a glance of the Campbell

diagram.

At this point, it should be emphasized that all the analyses presented in Sec-

tion 1.3 and Section 1.4 are based on a common hypothesis: the bladed disk

is tuned with perfect cyclic symmetry. In the following, a special vibration phe-
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nomenon in the realistic blade disk where the perfect cyclic symmetry is destroyed,

i.e. mistuning vibration, is introduced.

1.5 Vibration in mistuned bladed disks

Bladed disks, as shown in precedent sections, are rich dynamical systems that are

known to suffer from severe vibration problems. Although a bladed disk in the

ideal, tuned design has uniform blades, there are always random, inevitable de-

viations among the blades, which is called mistuning. Blade mistuning could be

caused by manufacturing tolerances, wear, and other causes in operation. Even

though mistuning is typically small (e.g. blade properties deviate on the order

of a few percent of the nominal values), it has a profound effect on the system

dynamics of bladed disks. The most important and dangerous consequence is

that the mistuned bladed disk can have drastically larger forced response levels

than the tuned design. The attendant increase in vibration amplitude can lead to

unexpected high cycle fatigue (HCF) of the blades. HCF is widely supposed to be

related to blade failures in aeroengines. The comprehensive modeling, analysis,

and understanding of bladed disk vibration is thus critical to reducing the occur-

rence of HCF and improving the performance and reliability of aeroengines [14].

To gain an insight to the mistuning phenomenon, modeling the entire blade-disk

structure is indispensable since each blade differs from the others. This process

is certainly much more computationally expensive compared to the tuned case.

In this section, some fundamental issues in the mistuned bladed disk are briefly

covered.

1.5.1 Mistuning sources

Vibration in mistuned bladed disks has received significant attention from the

research community in the last decades. To understand the basic vibration char-

acteristics, bladed disks have often been modeled as cyclic chains of spring-mass

oscillators in early mistuning studies. The simplest such model of an N -sector

bladed disk is a chain of N single-degree-of-freedom oscillators coupled by linear

springs. Additional oscillators can be added at each sector to have both blade and
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disk degrees of freedom. In the literature, we observe a general classification into

structural coupling methods for forced response predictions of mistuned bladed

disks, incorporating deterministic and statistical approaches [21], and aerody-

namic methods for turbomachinery applications [22; 23].

Nowadays, more and more investigations are performed on reduced-order

models generating from large scale modern industrial finite element models of

a full bladed disk. The reduced order models could reduce the computational

models of the full bladed disk to manageable, smaller size, while retaining ade-

quate model accuracy. Numerous studies on this subject reveals that there exist

a set of parameters whose spatial variations have a significant impact on the be-

havior of the nominally tuned bladed disks. These identified structure parameters

range over:

blade mass

The bladed disk is mistuned by the addition of small, unequal weights to

the blade tips [24] or by the perturbation of blade mass matrices [25–27].

blade stiffness

The mistuning model can be represented by perturbation of the individual

sector partition of the bladed disk stiffness matrix. Blade stiffness mistuning

models are adopted in most of publications [28–32].

damping

In reality, blade energy is dissipated by a combination of mechanisms such

as material damping, Coulomb friction at the interfaces between sectors

and aerodynamic damping. Early studies have used lumped parameter

models to investigate the damping mistuning effect [28; 33]. Using large

scale finite element models, Petrov and Ewins [30] have studied friction

damping mistuning and its effects on the dynamics of bladed disks. In

recent researches, damping mistuning has been characterized at the sector

level as variations in the modal damping values of each sector [27] or by

deviations of the structural damping coefficients of the blades from their

average value [34; 35].

natural frequencies of the cantilevered blades
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Natural frequencies of the cantilevered blades [36; 37] or of bladed sectors

whose inter-sector interfaces are fixed [38–41] differ from each other. This

can be interpreted as a combined effect of the blade mass and stiffness.

geometry

Geometry mistuning could originate from the manufacturing process [42;

43], from in service wear or from an accidental damage (a foreign object

crash leading to a permanent blade deformation)[44], etc. Generally, geo-

metric mistuning is considered to cause simultaneous perturbations in mass

and stiffness matrices, which alter mode shapes associated with the blade.

In the case of severe foreign object crash, some blades undergo drastic

geometric deformation, which definitely changes the mode deformation of

blades. This characterizes geometric mistuning from “frequency mistun-

ing”, which does not alter the blade mode shapes, but only the blade alone

frequencies [45].

Besides these various mistuning sources, there are still many potentially im-

portant phenomena that are typically neglected in early vibration models of mis-

tuned bladed disks, such as aerodynamic coupling and Coriolis force effect.

aerodynamic coupling effect

The aerodynamic coupling effect has been first included in a lumped pa-

rameter model of mistuned bladed disk by Pierre and Murthy [23]. The

authors state that aerodynamic coupling has an effect qualitatively simi-

lar to that of structural interblade coupling. In particular, the blade-disk

assemblies with weak aerodynamic inter-blade coupling (e.g. high solidity

assemblies, for which aerodynamic forces are small compared to structural

forces) are highly sensitive to mistuning. In recent years, Mayorca and Vogt

et al [46] present a Multimode Least Square method for stability and forced

response analyses of aerodynamically coupled blades considering the inter-

action of various mode families. The mistuned forced response calculated

with aerocoupling effects included has been studied for cases of random

blade mistuning and for mistuned blade rearrangements by Petrov [47].

Coriolis force effect
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The effect of Coriolis forces is neglected in most of studies in the domain of

bladed disk dynamics. In general, Coriolis forces are derived as components

of blade and disk motion along the axes, which are perpendicular to the axis

of disk rotation. At the same time the force components related with the

disk motion in the parallel direction do not participate in the effect. The

effects of Coriolis forces and magnitude of disorder on the localization phe-

nomenon of a rotating bladed-disk system are investigated numerically by

Huang [48]. Obtained results indicate that Coriolis forces may enhance the

localization phenomenon. Coriolis effects and their mutual interaction with

mistuning is studied in [49] numerically with a lumped mass model and ex-

perimentally by means of a specially designed so-called swept test piece with

24 blades allowing a strong Coriolis coupling of blade vibrations. Typical

changes in the dynamics induced by Coriolis effect are shown and quan-

tified experimentally and numerically in [31]. It is concluded that modes

affected by Coriolis effects are rather low nodal diameters coupled modes for

which significant splits of frequencies appear with increase of the rotating

speed. In cases where these modes are concerned by forced responses, it

is recommended to take into account the demonstrated effects for accurate

prediction of bladed disks dynamic properties. Similar conclusions are also

reported in another numerical investigation by Xin and Wang [50].

In summary, a trend toward including effects either previously absent or ig-

nored from the mistuned bladed disk analysis is highlighted in recent years. In-

volving these aforementioned aerodynamic effects or Coriolis force effect may give

rise to new insights into mistuned bladed disk analysis.

1.5.2 Mistuning, coupling and mode localization

As described in Section 1.4, mode shapes of a periodic structure with perfect cyclic

symmetry are characterized by sinusoidal shapes that are extended throughout

the structure (see Fig. 1.7a). However, mistuning in bladed disks could have a

drastic effect on system behaviors of the full structure. In particular, the mode

shapes can become spatially confined in a small region of the structure, as shown

in Fig. 1.7b. This phenomenon is known as mode localization. In early times,
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Hodges [51] pointed out that the degree of mode localization depends largely

on the mistuning-to-coupling ratio. In other words, mode localization increases

monotonically with increasing mistuning strength or decreasing mechanical cou-

pling strength between substructures.
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Figure 1.7: Mode shape of a lumped-parameter bladed disk model (which will be
described in Chapter 3): a) 3 nodal diameter-mode of a tuned bladed disk; b)
localized mode of a mistuned bladed disk.

In bladed disks, the coupling includes: the structural coupling arising from

blade-disk coupling or shroud coupling (in shrouded cases), and the aerodynamic

coupling between blades. For an ideal, cyclic bladed disk, engine order excita-

tion will excite only those modes whose number of nodal diameters meets the

harmonic index of the excitation (see Section 1.4). For a mistuned bladed disk,

the localized modes could be decomposed into multiple harmonic contents. Con-

sequently many tuned mode components will be excited by a single engine order

excitation. Among those excited modes, the one that retains significant harmonic

content matching the engine order of excitation will be strongly excited, leading

to exceptional large forced response level [14].

When it comes to the maximum forced-response levels, things become dif-

ferent. Unlike the phenomenon that mode localization increases monotonically

with respect to the mistuning-to-coupling ratio, it is shown in Fig. 1.8 that vibra-

tion amplitude magnification tends to exhibit a peak value when blade mistuning

is of a moderate level. Based on this finding, Óttarsson [52] has declaimed that
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Figure 1.8: Amplitude magnification as a function of mistuning strength. Calcu-
lation is based on a lumped-parameter bladed disk model described in Chapter
3.

moderately weak interblade coupling is required for significant increases in forced-

response amplitudes. Neither weak coupling nor extremely strong coupling could

lead to spatial vibration localization and further amplitude magnification.

1.5.3 Mistuning sensitivity

With the identified mistuning sources and the basic understanding of the mis-

tuning mechanism in the bladed disk, additional research issues to assess and

improve the bladed disk design with respect to its sensitivity are presented.

Blade-disk coupling

As just mentioned, the inter-sector coupling plays an important role in the sys-

tem dynamics because it governs the communication of vibration energy among

blades. Moreover, inter-sector coupling is largely dependent on the blade-disk

interaction. This is deduced throgh an examination of the frequency/nodal di-

ameters diagram, as presented in Fig. 1.5.

In Section 1.4.1, the relationship between the veering and the inter-blade cou-

pling is discussed. It is said that quantifying the veering characteristics can yield
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key information for the quantification of blade-disk coupling strength. Natu-

rally, these quantitative coupling strength could be used for predicting mistuning

sensitivity [15].

Blade-disk coupling can also be quantitatively measured through so-called

“coupling index” proposed by Javier and Mignolet [53]. The coupling index allows

to intuitively qualify the blade-disk coupling by observing the impact of blade

stiffness drifts on the variation of blade-disk mode frequencies. Furthermore, an

examination of blade-disk coupling also raises the possibility of influencing blade

response by damping the disk. This concept will be discussed and calculated in

Chapter 3.

Maximum forced response

A major concern in the academic community of mistuning is the prediction of

maximum attainable forced response levels. The maximum amplification factor

is traditionally defined as a ratio of the largest amplitude of mistuned bladed

disk to the corresponding value of tuned response. Prediction of the maximum

forced response increase due to mistuning has been one of the most challenging

mistuning questions. A number of studies have attempted to provide a definitive

answer.

The first research effort to address this issue was by Whitehead [54] who

concluded that the amplitude of blade response on a mistuned N-blade disk could

be as large as (1 +
√
N)/2. A single degree of freedom per blade model with a

negligible damping is used to obtain this upper limit to the amplification factor.

This expression reveals that the number of blades is a major factor influencing

the maximum forced response amplification.

Subsequent analyses [55–57] typically have supported and qualified the oc-

currence of such amplitude, and also extended the discussion to multi-degree of

freedom per blade models [58; 59] and further multi-stage assemblies [60]. The

maximum amplification factors were announced ranging from about 1.2 to 5.3 in

these research efforts. On the other hand, these studies have also argued that the

maximum amplification factor is affected by a range of possible factors, such as

the mistuning strength, coupling level, attainable damping and the specificity of
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operating conditions, etc. For this reason, the conflicting results tend to be case-

dependent and difficult to generalize. A better understanding of the interaction

of important factors affecting the maximum forced response is needed.

Mistuning pattern

It is well known that some particular pattern of the blade mistuning has a large

effect on the forced response amplification, even for small mistuning. It is then

natural to wonder what kind of mistuning patterns lead to high or low forced

response and whether there exist common characteristics among these worst/best

mistuning pattern.

Ewins [61] has first noted that by careful rearrangement of the same set of non-

identical blades on the disk, it is possible to reduce the maximum forced response

levels. There have been several studies on using optimization methods to find the

worst and best overall mistuning pattern in terms of forced response amplification

in recent decades [62; 63]. Petrov and Ewins [57] showed that the same set of 92

blades can be rearranged into a pattern, such that the maximum forced response

could have a value less than 2 for the best arrangement and greater than 5 for the

worst blade arrangement. If the industrial blades are detachable, this indicates a

considerable potential for vibration reduction of mistuned bladed disks by simply

rearranging the blade locations.

Mistuning identification

For mistuned bladed disk vibration research, how to identify the mistuning pat-

tern existing in a manufactured bladed disk is also of engineering interest. For

disks with detachable blades, the standard method consists of removing the indi-

vidual blades for measurements of their natural frequencies. But problems arise

when it comes to the integrally bladed disk structures (blisks), where the blades

and disk form one integral piece and blades can not be removed from the as-

sembly. Therefore, in order to accurately identify mistuning pattern in blisks,

mistuning identification techniques based on experimental measurements of sys-

tem response have been therefore developed recently to determine the individual

blade mistuning pattern.
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Mistuning identification is achieved through global measurements on the whole

blisk structure followed by a global model updating procedure. Early work to-

ward this goal has been reported by Judge et al. [64], in which the authors have

developed a method of using free response system measurements to identify the

blade modal stiffnesses present in a reduced-order model of a blisk and described

preliminary experimental validation of this technique. Other early works on mis-

tuning identification have made use of lumped parameter models [28; 65]; more

recently, several alternative reduced-order models have been applied to mistuning

identification [66–68]. Mistuning identification can also be beneficial in terms of

damage detection applications in bladed disks, such as crack monitoring [44].

1.5.4 Mistuning is always adverse?

The answer is “no” ! Early studies reveal that mistuning is not only a phenomenon

with adverse effects. In some special cases, mistuning tends to be beneficial.

For instance, periodic structure can become stable in terms of flutter with a

small mistuning between sectors of this structure [69]. Several studies have also

shown numerically that frequency mistuning has the effect of increasing the flutter

stability by distributing the energy of unstable flutter modes over a range of stable

modes [70; 71].

In particular, a new phenomenon of reducing blade disk forced response by

random mistuning is reported by Petrov [47; 72]. In these studies, a high-fidelity

method is proposed which allows the use of industrial-size sector models of bladed

disks for analysis of forced response of mistuned structures in the gas flow. This

method consists of two decoupled steps:

1. CFD (Computational Fluid Dynamic) analysis. During this step the modal

aerodynamic forces are calculated for a tuned bladed disk vibrating with a

frequency of interest, i.e. the excitation frequency.

2. Mistuned forced response analysis. The CFD characteristics obtained in

the previous step are then combined with different mistuned bladed disks

for forced response calculations.

Aerodynamic damping, the interaction of vibrating blades through gas flow
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and the effects of structural/aerodynamic mistuning are thus involved in the

model. A newly observed phenomenon has been declared by Petrov: forced

response levels for any randomly mistuned bladed disk can be smaller than those

of its tuned counterpart by several times.

This conclusion is astonishing because it is traditionally and widely believed

that mistuning is generally adverse for forced response levels, although it is fa-

vorable for flutter suppression. The involved aerodynamic effects definitively

determines the new finding in the mistuned bladed disk analysis.

It is explained that a major cause of this reported vibration reduction phe-

nomenon by any random mistuning are the differences in modal damping values.

These differences are introduced by aerodynamic forces. As remarked earlier,

localized modes caused by mistuning contains multiple harmonic contents. The

mistuned modes containing tuned mode shapes with all numbers of nodal di-

ameters are excited even by a single engine order excitation. Therefore, in the

expansion of a mode shape of the mistuned bladed disk over mode shapes of a

tuned bladed disk, contributions of tuned modes with numbers of nodal diameters

different from excitation EO can be significant. When mode shapes correspond-

ing to the engine order excitation have smaller damping values than the rest of

the modes, then excitation of modes with higher modal damping factors makes

the resulting damping factor higher than that for a tuned bladed disk. When this

situation is arrived, a reduced forced response level is observed.

Finally, this phenomenon is expected to occur for most industrial bladed disks

for which aerodynamic damping is significant. Moreover, such reduction of the

forced response does not require any special intentional mistuning pattern: any

random mistuning can be beneficial. Hence, a series of questions naturally arise:

• The research work is based on the hypothesis that flow fields in the tuned

and mistuned bladed disk share the same CFD characteristics. However,

does this strong assumption really hold?

• What is the realistic aerodynamic damping level for a mistuned bladed disk

in gas flow?

• If this vibration reduction phenomenon due to mistuning could manifest
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in many other bladed disks, then how to explain the excessive amplitudes

responsible for occasional blade high cycle fatigue failures?

It is also admirable that this high-fidelity method is capable of including all

aerodynamics effects that are typically absent in the literature. With the devel-

opment in CFD, it can be seen that more and more research efforts will taken

into account the aerodynamic environment for the mistuned bladed disk analy-

sis. Let’s terminate this section by quoting Srinivasan in 1997 [3]: “Vibrations

of bladed disks occur in an aerodynamical environment and therefore it is only

appropriate that significant advances in the aerodynamic and structural dynamic

characteristics be realized. The subject matter is an interdisciplinary one requir-

ing expertise in aerodynamics of cascades as well as structural dynamics of bladed

disk assemblies leading to aeroelasticity of blades.”

1.6 Vibration reduction in mistuned bladed disks

Vibration of mistuned bladed disks have been widely investigated, as presented

in the precedent section; while studies of methods to reduce the blade vibration

have been conducted to a less extent. The worsening effects of mistuning have

challenged researchers to seek means of vibration reduction and prevention of the

worst case. Intentional mistuning is an appealing design strategies from many

viewpoints. In the mitigation practice, additional damping is usually introduced

into the structure in order to reduce vibration amplitudes. The latter will receive

special attention in this thesis.

1.6.1 Intentional mistuning

Intentional mistuning refers to a deliberate mistuning pattern that can be im-

plemented in the nominal design that will make the bladed disk less sensitive to

random mistuning in operation.

The first study that have used an intentional mistuning in design of mis-

tuned bladed disks is attributed to Castanier and Pierre [73] in 1997. They have

demonstrated a feasibility of employing the intentional mistuning in harmonic

(sinusoidal) patterns to significantly decrease the maximum forced response on
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a simple 12-bladed spring-mass model. Subsequent studies [74–77] supporting

this finding have also examined a range of intentional mistuning patterns. For

example, square-wave patterns of intentional mistuning, which only require two

different blade types, is a more practical consideration for its easy implementa-

tion.

Furthermore, intentional mistuning makes the bladed disk design much more

robust with respect to extra random mistuning. It is explained that the ampli-

tude magnification often exhibits a peak with respect to a moderate mistuning

strength, as discussed in Sec.1.5.2. If the intentional mistuning is put on the

right side of the peak, the extra random mistuning would barely affect the forced

response level. Further studies considered the optimization of intentional mistun-

ing patterns by means of simple genetic algorithm [78] and sequential quadratic

programming method [79].

1.6.2 Additional damping

Intentional mistuning is not the only feasible forced response reduction strategy.

Escalation of stresses due to resonant responses and flutter can be minimized only

if there is adequate damping in the system. System damping of bladed disks in

gas flow is the sum of available aerodynamic damping and mechanical damping.

It is widely thought that bladed disks are weakly damped in the functional en-

vironment. In the mitigation practice, additional damping is introduced into the

structure to reduce vibration amplitudes. Different types of mechanical damping

and new emerging damping technologies are presented below.

Friction damping

Since the 1980s, friction damping becomes the most common approach to ef-

fectively damping the resonance mode of interest. Vibration energy is herein

dissipated in frictional contacts between two adjacent blades or in a blade-disk

interfaces. Friction dampers consists of underplatform dampers (Fig. 1.9) [80],

snubbers and tip shrouds (Fig. 1.10) [81], friction rings (Fig. 1.11) [82]. All fric-

tion dissipation systems or mechanisms, except snubbers, are designed at the

blade tip (e.g. shrouds) or under the airfoil platform, so that the aerodynamic
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blade-disk contact interface

underplatform damper

Figure 1.9: Illustration of underplatform damper

performance in the cascade is not perturbed by the presence of friction dampers.

snubber contact 

shroud contact 

Figure 1.10: Contact configuration of snubbers and shrouds

The phenomenon of friction between contacting surfaces is an elusive physi-

cal mechanism. The complexity of friction damping arises from variations in the

type of time-dependent motions at the contact interfaces. To predict the vibra-

tion amplitudes including frictional sliding, nonlinear dynamic contact models

have to be considered and sophisticated computational strategies are necessary

[83; 84]. Various physical parameters such as friction coefficients, contact stiff-

ness and time-varying normal load are difficult to estimate and model. Microslip

behavior (small relative displacements in the tangential directions) at the contact

interface also have a damaging effect, since fretting-wear appears and can induce
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cracking [85]. Besides, large finite element model of full bladed disks describ-

ing the contact interactions usually requires prohibitive computational resources.

Effective computational strategies are devised by Petrov [30; 86].

ring

groove

blisk

Figure 1.11: Friction ring dampers in their grooves

Coating materials

For the materials currently in use for manufacturing blades (titanium-based and

nickel-based alloys), contributions to mechanical damping is essentially negligible

[3]. To increase the material damping, damping materials are treated over the

blade surface. Although such coatings applied to blades are generally quite thin,

they have been shown to add significant damping to the system [87]. A study

on improving material damping of blades due to coating is presented with mea-

suring and modeling results [88]. Such coatings are found to display nonlinear

mechanical properties in the stiffness. Thus, system nonlinearity arising from a

nonlinear coating should be incorporated into the forced response prediction of

blades. This issue is addressed in the recent research by Filippi and Torvik [89].

Eddy current damping

A non-contact damping mechanism based on eddy current damping applied in

bladed disk has been investigated by Laborenz and Krack et al.[90; 91]. In this

non-contacting approach permanent magnets and copper plates are embedded
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into the blades facing each other between adjacent blades. In case of vibrations

the relative movement between magnets and copper plates induces eddy currents

in the conducting material such that mechanical energy is converted to electrical

energy which then dissipates into heat and, therefore, leads to an amplitude

reduction.

Piezoelectric shunt damping

Another vibration damping technology, piezoelectric shunt damping, is receiving

a growing awareness for its possible application in bladed disks. The piezoelectric

effect is the ability of a material to generate electric charges when subjected to

external forces. Thus the piezoelectric material bonded to flexible structures is

capable of converting mechanical energy into electrical energy. If the piezoelec-

tric material is connected to a shunt circuit, then the shunted impedance enables

to dissipate the converted energy into heat, leading to an amplitude reduction.

The term shunt damping is therefore used for a single piezoelectric ceramic con-

nected to a shunt circuit. Passive shunt circuit only consists of discrete electric

components, such as inductance, resistance and capacitance. An overview on the

piezoelectric shunt damping will be presented in the following chapter.

1.7 Conclusion

To conclude, for tuned bladed disks, there are considerable savings in both com-

puting cost and data storage associated with the application of cyclic symmetry

property. With a real-valued spatial Fourier transform, it enables to carry out

the full bladed disk structure analysis using only one sector, i.e. the reference

sector.

Much insight to the vibration in mistuned bladed disk have been gained to

date. In essence, the interaction between the disk and blade dynamics provides

the dominant mechanism for energy transfer among blades. This blade-disk cou-

pling enables vibration energy to be communicated and confined around certain

blades, potentially determining the mistuning sensitivity of a bladed disk design.

This may also raise the possibility of influencing the blade response through

40



1.Dynamics of the bladed disk

damping the disk.

Excessive blade vibration level is usually observed in mistuned bladed disks.

Additional damping is considered for the purpose of forced response reduction and

increasing aerodynamic stability in terms of flutter. Several damping technologies

for bladed disks are briefly introduced. Special attention will be paid to the

piezoelectric shunt damping in this dissertation. The conception of piezoelectric

shunt damping and modeling methodologies will be fully discussed in the next

chapter.

41



1.Dynamics of the bladed disk

42



Chapter 2

Conceptions of piezoelectric

shunt damping

Conceptions of piezoelectric shunt damping will be fully discussed in this chap-

ter, which will pave the way for its application to bladed disks. This chapter

is initialized by an overview of piezoelectric materials. Constitutive equations

and different transduction modes of piezoelectric materials are described. The

concept of piezoelectric shunt damping is illustrated when piezoelectric materials

are connected with classical shunt circuits, i.e. the resistive shunt circuit and

resonant shunt circuit. Piezoelectric-based system modeling methodologies are

presented both in the time domain and frequency domain. Recent advances in

this area will be also covered in the end of this chapter.

2.1 Overview of piezoelectric materials

It was first demonstrated by Curie brothers in 1880 that when piezoelectric mate-

rials undergo mechanical deformation, an electric charge can be produced. This

is referred to as piezoelectricity that these materials exhibit a coupling between

their electrical, mechanical states. Piezoelectricity exists in materials either natu-

rally or synthetically. Synthetic piezoelectric materials extensively used nowadays

include lead zirconate titanate (PbZrT iO3 − PbT iO3, known as PZT), barium

titanate, barium strontium titanate (BaSTO), etc [92; 93].
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2. Conceptions of piezoelectric shunt damping

An important characteristic of piezoelectric material is the “Curie tempera-

ture”. A manufactured piezoelectric ceramic consists of electric dipoles in random

directions. This ceramic shows no piezoelectricity as a whole since the responses

of these dipoles subjected to an externally applied electric field tend to cancel

one another. If the ceramic is heated above the Curie temperature and exposed

to a very strong electric field, the dipoles can change and align their orientation

in the solid phase material. The direction of this electric field is referred to as

the polarization direction. It determines the direction along which the dipoles are

aligned. The material is then cooled below its Curie temperature with the polling

field is maintained. This process is called as “polling”. As a result of this process

the alignment of the electric dipoles is permanently formed. Piezoelectricity then

exists in this piezoelectric ceramic under Curie temperature.

When a poled piezoelectric material undergoes mechanical deformation, elec-

tric charges can be produced on the surface of ceramic and form an electric field

in the polarization direction (direct effect). Conversely, if it is subjected to an

electric field in the polarization direction, a mechanical deformation is formed

in response, which produces an expansion along the polling direction and con-

traction in the perpendicular plane (converse effect). In general, piezoelectrics

have the capability efficiently to transform mechanical energy to electrical energy

and vice versa. It is this dual transformation ability that makes them useful as

actuators or sensors.

2.1.1 Constitutive equations

Assuming linear characteristics and constant temperature, the standardized Piezo-

electric constitutive equations [94] can be written as:

[

D

S

]

=

[

ξT d

dt sǫ

][

ǫ

T

]

(2.1)

In matrix form of this expression, D ∈ R3×1 is a vector of electrical displace-

ment (charge/area); ǫ is the vector of electrical field in the material (volts/meter);

S is the vector of material engineering strains, and T is the vector of material
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2. Conceptions of piezoelectric shunt damping
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The direction 3 is associated with the polarization direction. These direction

conventions are shown in Fig. 2.1. sǫ is the (6 × 6) compliance matrix, which
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Figure 2.1: A typical piezoelectric material with the top and bottom surfaces
electrode and x3 axis in the polarization direction [94]

relate the two elastic variables, stain S and stress T . The superscripts, such as

[.]ǫ, on material properties typically denote the mechanical or electrical boundary

conditions under which the constants are valid. Hereby [.]ǫ is to emphasize the

fact that it has been measured at constant electric field (e.g. short circuit).

ξT is the (3 × 3) dielectric or permittivity constants matrix, which relates

the two electrical variables, electrical displacement D and electrical field ǫ. The

superscript [.]T signifies that these values are measured at constant stress.

Finally, d is another (3 × 6) coupling matrix in Coulomb/Newton or m/Volt .
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2. Conceptions of piezoelectric shunt damping

It is a matrix of piezoelectric constants, which couples the mechanical and elec-

trical equations through the piezoelectric effect. The subscript [.]t, represents the

conventional matrix transpose temporarily in this section.

2.1.2 Different transduction modes

In taking advantage of the transverse isotropic property of piezoelectrics, the

constitutive equation Eq. (2.1) can be further developed explicitly [93]. For PZT

ceramics, they are:

• Actuation:
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• Sensing:
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As just mentioned, the direction 3 coincides with the polarization direction

of the piezoelectric materials. PZT materials are isotropic in the plane, and thus

have d31 = d32 and d24 = d15. Typical values for piezoelectric constants are given

for PZT-4 [93]: d33 = 289, d31 = −123, d15 = 496 (units: 10−12C/N).

According to Eq. (2.3), three different piezoelectric transduction mode could

be derived in engineering applications. The transduction modes illustrated in

Fig. 2.2 mainly depend on the directions of applied force and electrical field:
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2. Conceptions of piezoelectric shunt damping

• d33 mode or thickness mode. Force and field are both in 3 direction. In this

case, several thin slices of PZT are usually stacked together and separated

by electrodes. When an electric field ǫ3 is applied, the piezo transducers

may expand along its thickness (d33) and shrink in the in-plane directions,

because the d31 and d32 coefficients are negative.

ΔL

P

P

+

-

V

ΔL

P

+

-

supporting structure

V є

+

-

Vє P

ΔL

1

3

d33 mode

d31 mode

d15 mode

Figure 2.2: Different piezoelectric transduction modes [95]; P : polarization di-
rection, ǫ: electric field.

• d31 mode or transverse mode. A thin piezoelectric patch is usually bonded

onto a plate structure. The expansion or contraction is generated along

with the movement of the supporting structure. The direction of expansion

or contraction is perpendicular to the electric field.

• d15 mode or shear mode, the application of electric field ǫ1 or ǫ2 (normal

to the polarization direction 3) produces a shear deformation S5 or S4. d15

typically has the largest values among all piezoelectric constants.
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2. Conceptions of piezoelectric shunt damping

This thesis mainly deals with the transverse d31 mode in Chapter 3 and the

thickness d33 mode in Chapter 5.

We recall that the existence of piezoelectricity in piezoelectric materials is

observed below the Curie temperature. High temperature usually changes the

crystal structure of ceramics, resulting in no net macroscopic dipole in the mate-

rials. The Curie temperature is usually in the range of 300 ◦C−400 ◦C. Although

typically fixed, this range can be changed and tuned accordingly if needed [93].

This issue is hereby addressed out of practical consideration for its application

in aeroengine since the working environment of bladed disks is featured by high

temperature.

Electromechanical coupling factor

Piezoelectric electromechanical coupling factors are material constants that mea-

sure the effectiveness of the conversion of mechanical energy into electrical energy

(and vice versa). In the direct piezoelectric effect, it is quantitatively defined as

the ratio of the stored electrical energy to applied mechanical energy [93]:

k2
ij =

stored electrical energy (electric field and electric displacement) in direction i

applied mechanical energy (stress and strain) in direction j
(2.5)

This factor plays a vital role in shunt damping of piezoelectric shunted structures

in the rest of this chapter. Three different factors for different transduction modes

are determined by:

• d33 mode: k33 = d33/
√

sǫ
33ξ

T
3

• d31 mode: k31 = k32 = d31/
√

sǫ
11ξ

T
3

• d15 mode: k15 = k24 = d15/
√

sǫ
55ξ

T
1

Accordingly, the higher the value of this factor, the more efficient the energy

conversion is. PZT ceramics typically have k33 ≈ k15 ≈ 0.7 and k31 ≈ 0.3 [93].
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2. Conceptions of piezoelectric shunt damping

2.2 Piezoelectric shunt damping

Passive piezoelectric damping applications have been investigated completely by

Hagood and Von Flotow [94] in 1990. In this research, the derivation for analy-

sis of general structural systems with shunted piezoelectrics are established. In

energy dissipation applications, the electrodes of the piezoelectric are shunted

with some electrical impedance; hence the term piezoelectric shunt damping is

used. The electrical impedance is designed to dissipate the electrical energy which

has been converted from mechanical energy by the piezoelectric. In the follow-

ing sections, the shunted piezoelectric’s interaction with external circuits will be

modeled, and classic passive shunt circuits will be compared. The derivation for

analysis of resonant shunt circuits will also benefit the nondimensionalization pro-

cess of essentially nonlinear shunt circuits in Chaper 6. The methodology adopted

here is the impedance-based formulation put forward by Hagood and Von Flotow

and recently applied by Benjedou and Ranger-Vieillard [96; 97]. Alternatively, a

time-domain modeling method is also presented.

2.2.1 Piezoelectric-based system modeling: in the frequency

domain

A typical application of piezoelectric working in the d31 mode is shown in Fig. 2.3.

In engineering applications,two identical piezoelectric patches are usually at-

tached onto surfaces of a beam-like structure in order to enhance the energy

conversion. Note that both patches are poled in the same direction 3. The de-

formation of piezoelectric patches along with bending movement of the beam

will thus create opposite electric field directions due to their relative location.

Piezoelectric transducers behave electrically like a charged capacitance Cp, since

electric charges arising out of piezoelectricity cumulate on the ceramic surface.

Connected with shunt impedances Zsh, piezoelectric patches are capable of con-

verting the mechanical energy into electrical energy and dissipating this converted

energy.
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2. Conceptions of piezoelectric shunt damping
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Figure 2.3: Piezoelectric in transverse mode connected with shunt impedance

Shunted piezoelectric model

For the piezoelectric patches working in the transverse mode with one-dimensional

stress loading in the longitudinal direction 1, according to Eq. (2.1), the reduced

constitutive equation can be written as follows:

[

D3

S1

]

=

[

ξT
3 d31

d31 sǫ
11

][

ǫ3

T1

]

(2.6)

It is assumed that both the electric field and electric displacement are constant

through the thickness direction. We then introduce a linear relationship for the

capacitance of the piezoelectric patch at constant stress CT
p :

D3 =
q3
A3

, ǫ3 =
V3

h
, CT

p =
ξT
3 A3

h
(2.7)

where q3 is the charge collected on the electrode surface A3; V3 is the difference

of electric potential in the upper and lower electrodes, and h is the piezoelectric

thickness along direction 3.

According to the impedance-based formulation in [94], the electric current

in the Laplace domain is expressed by I3 = sq3 , where s is the Laplace vari-

able. Furthermore the open circuit electrical impedance at constant stress ZT
oc is

introduced by:

ZT
oc =

1

sCT
p

(2.8)
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2. Conceptions of piezoelectric shunt damping

It enables us to express Eq. (2.7) in terms of the piezoelectric impedance:

[

I3

S1

]

=

[

1/ZT
oc sA3d31

d31/h sǫ
11

][

V3

T1

]

(2.9)

When the piezoelectric patch is connected by a shunt impedance Zsh , as shown

in Fig. 2.3, the piezoelectric impedance ZT
oc can be replaced by an equivalent

impedance Zeq:

Zeq =
ZT

ocZsh

ZT
oc + Zsh

(2.10)

We recall the electromechanical coupling factor k31 and non-dimensional elec-

trical impedance:

k31 =
d31

√

sǫ
11ξ

T
3

, Z̄eq =
Zeq

ZT
oc

(2.11)

Substituting Eq. (2.10) and Eq. (2.11) into Eq. (2.9) yields an expression of

the strain S1 in terms of the stress T1 and electric current I3:

S1 = sǫ
11(1 − k2

31Z̄eq)T1 +

(
d31

h
Zeq

)

I3 (2.12)

The shunted piezoelectric compliance is then defined as:

ssh
11 = sǫ

11(1 − k2
31Z̄eq) (2.13)

It indicates that the shunted impedance Zsh imposes a modification on the piezo-

electric compliance sǫ
11. In the open circuit condition characterized by Zsh → ∞,

we have

Z̄eq = 1, soc
11 = sǫ

11(1 − k2
31) (2.14)

and conversely a short circuit condition is achieved for a null shunt impedance

Zsh = 0, so that:

Z̄eq = 0, ssc
11 = sǫ

11 (2.15)

We can also write the shunted elastic modulus in terms of the short circuit

one csc11 = 1/sǫ
11 as:

csh11 =
csc11

(1 − k2
31Z̄eq)

(2.16)
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2. Conceptions of piezoelectric shunt damping

Following the simplification in the classic beam theory, piezoelectric patch’s

stiffness along direction 1 can be approximated by:

k11 =
c11A1

L1

(2.17)

where A1 and L1 are the area of the cross section along direction 1, respectively.

Using equation (2.16), when bonded on the surface of structures, the shunted

piezoelectric patch’s stiffness ksh
11 can be obtained in terms of the short circuit one

ksc
11:

ksh
11 =

csh11A1

L1

=
csc11A1

(1 − k2
31Z̄eq)L1

=
ksc

11

1 − k2
31Z̄eq

(2.18)

Accordingly, different shunt circuits lead to various Z̄eq, and exerts a signifi-

cant impact on the damping capability of piezoelectric transducers. Two classical

shunt circuits, i.e. resistive shunt circuit and resonant shunt circuit will be covered

below.

Resistive & Resonant shunt circuit

ΔL
P

є

Polling direction-3

1

+

-

R

+

-

R

L

resistive circuit resonant circuit

Figure 2.4: Piezoelectric connected with resistive & resonant shunt circuit

For a resistive shunt circuit, the impedance Zsh is a resistance R as illustrated

in Fig. 2.4. In this case, the normalized equivalent electrical impedance is:

Z̄eq =
sRCT

p

1 + sRCT
p

(2.19)

In considering a harmonic excitation with frequency ω , such that s = iω, i2 =

−1, and using Eq. (2.18), the shunted piezoelectric stiffness ksh
11 can be rewritten
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2. Conceptions of piezoelectric shunt damping

as the following frequency dependent complex stiffness:

ksh
11(iω) =

1 + iωRCT
p

1 + iωRCT
p (1 − k2

31)
ksc

11 (2.20)

Another case of interest is to create a resonant circuit by shunting the piezo-

electric inherent capacitance Cp with a resistance R and inductance L in series

forming a LRC circuit for Zeq. This circuit is also shown in Fig. 2.4. The nor-

malized equivalent electrical impedance is:

Z̄eq =
s2LCT

p + sRCT
p

1 + s2LCT
p + sRCT

p

(2.21)

In a similar way, substituting the expression Eq. (2.21) into Eq. (2.18), we

have the following frequency dependent complex stiffness of resonant shunted

piezoelectrics:

ksh
11(iω) = ksc

11

1 + iωRCT
p − ω2LCT

p

1 + iωRCS
p − ω2LCS

p

(2.22)

Performance comparison of classic shunt circuits

Now that the expressions of the shunted piezoelectric stiffness have been estab-

lished. The objective is then to evaluate the effective dissipation of the vibration

energy for a targeted structural mode, using resistive & resonant shunted piezo-

electric materials. For this purpose, the damping of a single-mode mechanical

system with shunted piezoelectric is now considered, through the study of the

single degree of freedom (SDOF) system shown in Fig. 2.5.

Given the single modal parameters m, k of a mechanical structure, denote the

modal mechanical displacement x(t) = Xeiωt and the modal excitation f(t) =

Feiωt, the equation of motion of this SDOF system can be written now in the

frequency domain as

[−ω2m+ k + ksh
11(iω)]X = F (2.23)

The problem associated with the parameter optimization of two different shunt

circuits is to add maximum damping to the targeted structural mode. Conven-

tionally known as “tuning” design, it is briefly introduced, respectively.
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Figure 2.5: A SDOF mechanical system with shunted piezoelectric patches

For the resistive shunt circuit, introducing CS
p as the piezoelectric capacitance

at constant strain, such that CS
p = CT

p (1 − k2
31), and defining a non-dimensional

frequency:

ρ = RCS
p ω (2.24)

then one can represent the complex stiffness Eq. (2.20) in the standard complex

modulus form:

ksh
11 = Ksh

11 (1 + iηsh) (2.25)

where the real part of ksh
11 is defined as the modulus Ksh

11 , and the ratio between

the imaginary and real parts ηsh is defined as the loss factor. The key point for

resistive circuit tuning is that a maximum loss factor turns out at a transition

point:

ρopt = RCS
p ω =

√

1 − k2
31 (2.26)

Consequently, by appropriate choice of resistance, the peak of the loss fac-

tor can be move to any target modal frequency. The optimal resistance that

maximizes the loss factor at a given frequency ω can be obtained as

Ropt =
1

ωCT
p

√

1 − k2
31

(2.27)

For the resonant shunt circuit, key similarities have been observed between

a system containing a resonant shunted piezoelectric and a system containing

a mechanical vibration absorber or proof mass damper. In order to make the
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2. Conceptions of piezoelectric shunt damping

expressions non-dimensional, the following parameters are introduced:

• ωn =
√

k/m, resonance frequency of the mechanical system;

• ωe =
√

1/LCS
p , electrical resonance frequency;

• δt = ωe/ωn, nondimensional tuning ratio;

• ωsc
n =

√

(k + ksc
11)/m, short circuit natural frequency of the SDOF system;

• ωoc
n =

√

(k + koc
11)/m, open circuit natural frequency of the SDOF system;

• r = RCS
p ω

sc
n , electric damping ratio;

• g = ω/ωn, nondimensional frequency;

• K2
31 =

(
ksc
11

k+ksc
11

)(
k2

31

1−k2

31

)

= K̄
(

k2

31

1−k2

31

)

, generalized electromechanical cou-

pling coefficient.

The generalized electromechanical coupling proposed by Hagood and Von Flo-

tow [94] is a direct measurement of a shunted piezoelectric’s influence on the global

system. It is widely used for determining the optimal nondimensional tuning ratio

δt
opt and electric damping ratio ropt:

δt
opt =

√

1 +K2
31 (2.28)

ropt =

√

2K2
31

1 +K2
31

(2.29)

The optimal resistance and inductance values of the resonant shunt circuit for

a targeted structural mode could then be calculated by:

Ropt =
ropt

CS
p ω

sc
n

(2.30)

Lopt =
1

CS
p (δt

optω
sc
n )2

(2.31)

Fig. 2.6 typically illustrates the performance of vibration reduction due to dif-

ferent piezoelectric shunt damping. The nondimensional ratios given for optimal

tuning and electrical damping of the resonant shunt circuit is used to minimize
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Figure 2.6: Performance of piezoelectric shunted mechanical system

the maximum response of the targeted mode in the way analogous to proof mass

damper tuning. The effectiveness of the resonant shunted piezoelectric damper at

optimal tuning is dependent on the generalized electromechanical coupling effi-

cient. Moreover, a tuned resonant shunt circuit ( ) can increase the structural

mode damping several orders of magnitude above a simple resistive shunt circuit

( ). Considering that the damping level in the realistic bladed disk arising

from aerodynamic and structural environment is very low, we expect to intro-

duce piezoelectric shunt damping into the structure as much as possible. For this

reason, we confine to the resonant shunt circuit in terms of passive piezoelectric

shunt damping in the rest of this thesis.

Despite the good prospect of resonant shunted piezoelectric as additional

damping, it also exhibits some disadvantages:

• Impractical large and massive inductance is required for the low-frequency

electrical resonance with the small inherent piezoelectric capacitance. The

size required for the inductance is proportional to the inverse square of the

frequency;

• In the tuning design, the electrical resonance is tuned very close to the

structural resonance. The behavior of resonant shunted piezoelectrics is
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very sensitive to the deviation of both structural parameters and optimal

electrical parameters.

2.2.2 Piezoelectric-based system modeling: in the time

domain

In this subsection, a time-domain modeling method for shunted piezoelectric in-

tegrated into the SDOF structure [98] is also presented, which will also be used

in this thesis.

Let’s recall the configuration in Fig. 2.5. Performing a force balance on the

mass yields

mẍ+ k x+ fp = f(t) (2.32)

where fp is the force due to the piezoelectric element. The force fp could be

derived by examining the reduced piezoelectric constitutive equation Eq. (2.6).

Using relations presented in Eq. (2.7). The piezoelectric constitutive equation

can be rearranged as:

q3 = CT
p V3 + A3d31T1 (2.33)

S1 = sǫ
11T1 + d31V3/h (2.34)

The stress and strain along the direction 1 can be defined as:

S1 =
x

L1

, T1 =
fp

A1

(2.35)

Substituting equation (2.35) into (2.32) and (2.34) yields:

q3 = CS
p V3 + ksc

11d31
L1

h
x (2.36)

fp = ksc
11x− ksc

11d31
L1

h
V3 (2.37)

Combining Eq. (2.32) with (2.36) and (2.37) gives the equation of motion for
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2. Conceptions of piezoelectric shunt damping

the SDOF modal structure with a piezoelectric element:

mẍ+ (k + ksc
11)x = f(t) +

ksc
11d31L1

CS
p h

q3 −
(ksc

11d31L1/h)
2

CS
p

x (2.38)

or

mẍ+ (k + koc
11)x = f(t) +

ksc
11d31L1

CS
p h

q3 (2.39)

From Eq. (2.14) and (2.15) a relation can be readily obtained:

koc
11 =

ksc
11

1 − k2
31

(2.40)

The voltage across the piezoelectric electrode is:

V3 =
q3
CS

p

− ksc
11d31L1

CS
p h

x (2.41)

Furthermore, when the piezoelectric material is connected with a RL shunt

circuit, the governing equation for the shunt circuit is written as

Lq̈3 +Rq̇3 +
1

CS
p

q3 −
ksc

11d31L1

CS
p h

x = 0 (2.42)

Denoting x = Xeiωt, q3 = Q3e
iωt and f = Feiωt, let us substitute these ex-

pressions into Eq. (2.38)-(2.42). The electric degree of freedom can be eliminated

after mathematic manipulations by use of piezoelectric constitutive equations,

which leads to:

[−ω2m+ k + ksc
11

1 + iωRCT
p − ω2LCT

p

1 + iωRCS
p − ω2LCS

p

]X = F (2.43)

Note that this express is the same as that one obtains in Eq. (2.23). Hence, the

different modeling methodologies presented by Eq. (2.23) and Eq. (2.38)-(2.42)

are equivalent in terms of describing the behavior of shunted piezoelectrics.
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2. Conceptions of piezoelectric shunt damping

2.3 Recent advances in piezoelectric shunt damp-

ing

Hagood and Von Flotow [94] have initialized the complete and brilliant study

about classical shunt circuits. In the past decades, there emerge a variety of

research efforts on this subject [99; 100]. A number of recent advances in piezo-

electric shunt damping will be briefly listed in this section.

Synthetic inductance

Resonant circuits require impractical high values for the inductance (typically

hundreds or even thousands of Henries) in low frequency vibration cases. To

overcome this limitation, synthetic inductance (or gyrators) are obtained by us-

ing operational amplifiers, as depicted in Fig. 2.7. The inductance value that can

be achieved with these circuits is much larger (up to thousands of Henries); it

however requires the supply of a power source [101]. These two different config-

urations, known as a) Riordan circuit and b) Antoniou circuit, yield equivalent

attainable inductance values.

R1

R3

C4

V

I

R5

R2

R1

R3 C4

V

I

R5

R2

a) L =
R2

R1R3R5C4

b)

Figure 2.7: Synthetic inductances (gyrators) made of operational amplifiers: a)
Riordan circuit; b) Antoniou circuit [95].

59



2. Conceptions of piezoelectric shunt damping

Multimodal damping

A question puzzling the academic community of piezoelectric has been: how

can one extend the resonant shunt circuit to achieve multiple mode vibration

suppression? One can attach a number of piezoelectric transducers to a structure,

each one shunted by a RL circuit tuned to a specific mode [102]. The main focus

in this area has been on finding multiple-mode vibration damping methods using

a single piezoelectric transducer. Extension of a resonant shunt circuit for single-

mode damping to multi-mode damping has been first considered by Hollkamp

[103], who have used several RLC circuits connected in parallel (Fig. 2.8a). Wu

[104] has proposed current-blocking parallel LC circuits to realize multimodal

damping (Fig. 2.8b). More recently, parametric analyses have been performed

to evaluate optimal configurations of a sole piezoelectric transducer for a set of

damped modes [97; 105].

a) b)

Figure 2.8: Electric circuits for multimodal damping

Negative capacitance

The electro-mechanical coupling coefficient, as shown in Section. (2.2), exerts a

critical impact on piezoelectric shunt damping. This coefficient can be increased

by introducing a negative capacitance. By connecting a negative capacitance

in series with the piezoelectric material, the overall capacitance of the circuit is

increased, resulting in a larger electro-mechanical coupling coefficient.

Although the negative capacitance cannot be realized passively and one needs

to use an operational amplifier to form a negative impedance converter circuit
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2. Conceptions of piezoelectric shunt damping

that requires a power source (see Fig. 2.9), the power consumption is little and

it is an attractive approach for its multiple benefits in many situations. The

negative capacitance increases the overall capacitance value of the shunt circuit,

and directly reduces the required optimal inductance value. On one hand, the

synthetic inductor becomes unnecessary if the required inductance is reduced to

an acceptable low level; on the other hand, the negative inductance can share the

power source with the synthetic inductor [106]. It is reported that the negative

capacitance connected in series with piezoelectrics is capable of enhancing the

electromechanical coupling and improving the shunt damping accordingly [95;

107].

R2

R2

_

+ Op-am

C2

Figure 2.9: Circuit diagram of the negative capacitor. The equivalent negative
capacitance value is expressed as: Cn = −R2C2/R2 = −C2.

Active shunt circuit

Piezoelectric shunt damping is not limited to passive circuits. A number of re-

search works [106; 108] have investigated the use of hybrid circuits, in which the

integration of the passive and active approach, often referred to as an active-

passive hybrid piezoelectric network, has shown promising results.

Adaptive shunt circuit

The damping performances of the resonant circuit (both single-mode and multi-

modes) are extremely sensitive to circuit tuning on the targeted structural natural
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2. Conceptions of piezoelectric shunt damping

frequencies. Since synthetic inductance has been introduced as implementation

of piezoelectric shunt impedances, the electric parameters are easily tuned online.

Consequently Niederberger and Fleming et al. [109; 110] have proposed the use

of adaptive circuits to compensate for a drift of the system characteristics.

Distributed shunt circuit

Thorp and Ruzzene et al. [111] have proposed that shunted piezoelectric patches

are periodically distributed along rods (Fig. 2.10) to control the longitudinal

wave propagation in the rods. Wave propagation over specified frequency bands,

namely stop bands can be filtered in this periodic structure. Furthermore, it is

found that disorder in the shunt parameters of periodically piezoelectrics typically

extends the stop bands into adjacent propagation zones and produces vibration

energy localization near the excitation source. Motivated by this research, we

are also going to introduce intentional disorder of shunt parameters into periodic

bladed disks. A number of sophisticated periodic electric networks have been

further reported to achieve multimodal damping [112; 113].

Z
SU

Piezoelectric patch 

Z
SU

Base structure 
Shunting impedance 

Z
SU

Z
SU

Figure 2.10: A rod with periodically distributed shunted piezoelectric patches
[111]

Switched shunt circuit

The switched shunt circuit has also received much attention during the last

decade. Lawrence and Clark [98] have proposed the “state switching” technique

(Fig. 2.11a) in which piezoelectric elements play the role of a variable stiffness
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actuator. A simple control law is employed to switch the piezoelectric element

between high and low stiffness conditions in order to dissipate the vibration en-

ergy.

More recently, a nonlinear vibration control method, called the synchronized

switch damping (SSD) technique, has been developed by Guyomar [114; 115].

This technique consists of adding a switching device (a switch and an inductance

connected in series) in parallel with the piezoelectric elements (Fig. 2.11b). It

allows to briefly inverse the voltage measured in the piezoelectric electrodes at

selected instants. The switch is almost always open, except at selected instants.

The switch is then kept closed until the voltage V on the piezoelectric elements

has been inverted. Waveforms of the voltage V and displacement u are shown

in the case of a sinusoidal excitation and when the voltage inversion instants

correspond to the displacement extremes. Compared with resonant circuits, this

technique does not require a high inductance value for a single structural mode.

A multimodal control law for this SSD technique has also been developed.

t 

V

u
u
.

I 

I
L

a) b)

Figure 2.11: Various switched shunts: a) state switching shunt [98]; b) SSD device
and waveforms of the voltage V and displacement u for a sinusoidal excitation
[115].

Energy harvest device

In the last few years, there has been a surge of research in the area of power har-

vesting. The process of acquiring the energy surrounding a system and converting

it into usable electrical energy is termed energy harvesting. Different from the
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shunt damping, piezoelectric materials can also be used as mechanisms to trans-

fer mechanical energy, usually ambient vibration, into electrical energy that can

be stored and used to power other devices. With the recent advances in wireless

and micro-electro-mechanical-systems (MEMS) technology, sensors can be placed

in exotic and remote locations. As these devices are wireless it becomes neces-

sary that they have their own power supply. The energy harvest device based

on piezoelectrics thus provides promising prospects in powering small electronic

components [116].

2.4 Conclusion

Piezoelectric shunt damping techniques exploit the capability of piezoelectric ma-

terials to transform mechanical (strain) energy into electrical energy, which is then

dissipated in the electrical circuit. In a piezoelectric shunted structure, this con-

version capability highly depends on 1) the ability to absorber the strain energy

of the structure into the active piezoelectric material and 2) the capability of

the piezoelectric materials to transform this strain energy into electrical energy.

The former depends on the distribution of modal strain energy in the structure,

which requires that piezoelectric materials should be located in the proper zone;

the latter is determined by the piezoelectric electromechanical coupling factor,

which can be increased by a negative capacitance for example.

In summary, the classic resonant shunt circuits exhibit the advantage of sim-

plicity and compactness and high efficiency when properly tuned; while at the

same time the use of resonant shunt circuits is limited by the massive inductance

required in low-frequency cases and sensitivity to drifts in both structural fre-

quencies and optimal electric parameters. Various semi-passive or active-passive

strategies for improving the piezoelectric shunt damping should be well reflected

before applying into bladed disks since special considerations is to be taken into

account for this special situation, such as rotor balance and installation problems.

In the next chapter, both the piezoelectric shunt damping and piezoelectric mis-

tuning will be exploited with respect to minimizing the blade mistuning effect.
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Chapter 3

Resonant shunt circuits applied

into mistuned bladed disks

This chapter is devoted to applications of piezoelectric shunt damping in mis-

tuned bladed disks. State-of-art of piezoelectric shunt damping in turbomachin-

ery is first presented. Different piezoelectric-based damping strategies in turbo-

machinery are compared. Then we propose to damp blades by attaching resonant

shunted piezoelectric materials solely onto the disk surface. Both the piezoelec-

tric shunt damping and piezoelectric mistuning effect will be taken into account

to achieve a maximum blade vibration reduction.

3.1 Introduction

Piezoelectric materials have been extensively used as sensors and actuators for vi-

bration controls because of their ideal properties: light weight, high bandwidths,

efficient energy conversion and easy integration. Embedded or bonded onto the

vibrating structures, piezoelectric materials can convert mechanical energy into

electric energy and vice versa. In exploiting this energy conversion capability,

several research efforts have been dedicated to applications of piezoelectric mate-

rials in blade vibration reduction. In this section, a brief overview on the recent

advances of piezoelectric shunt damping in blades will be first presented; then a

new piezoelectric shunt damping strategy for bladed disks will be proposed.
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3. Resonant shunt circuits applied into mistuned bladed disks

3.1.1 State-of-art: piezoelectric shunt damping in turbo-

machinery

The application of passive piezoelectric shunt damping for turbomachine blades

has been first investigated through experiments performed by Cross and Fleeter

[117]. An array of piezoelectric elements is bonded to an airfoil in the stator

row (see Fig. 3.1). This airfoil is excited in a resonant chordwise bending mode

by upstream rotor-generated wakes. The piezoelectrics experience a strain and

in response produce an electric field. Tuned electrical circuits connected to the

piezoelectrics as shunts dissipate this electrical energy, with multi-mode shunting

techniques utilized. The authors state that this electrical energy dissipation and

the corresponding reduction in the airfoil mechanical energy result in a reduction

in the magnitude of the resonant vibrations.

Figure 3.1: Flat plate airfoil boned with multiple piezoelectric elements [117]

Livet and Berthillier et al. [118] have studied vibration suppression by piezo-

electric shunt damping using a simplified blade model. A piezoelectric patch is

bonded close to the cantilever beam root. The authors have presented a finite

element modeling methodology to describe the Euler-Bernoulli beam model with

piezoelectric materials in order to optimize electrically the shunted piezoelectric

element and its location. It is concluded that a significant vibration reduction is

possible with both passive and semi-active shunting.
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3. Resonant shunt circuits applied into mistuned bladed disks

Schwarwendahl and Szwedowicz et al have proposed the integration of the

piezoelectric material into the blade in order to protect the material from the

centrifugal loading and environmental degradation [119]. As shown in Fig. 3.2a,

the piezoelectric stack is put into an artificial cavity into the top section of a

simplified blade. The size and location of piezoelectric stack is optimized based

on a finite element piezo-blade model with respect to a specified blade chord-wise

bending mode. Additionally, a sensitivity analysis reveals that the piezoelectric

damping performance depends on the frequency ratio of the electrical to the

mechanical resonance of interest. For high blade mistuning above 1%, the detuned

piezodamper loses its desired damping effect.

Blade with cavity

Piezo stack

Figure 3.2: Blade with cavity and piezoelectric stack [119].

In addition to passive piezoelectric shunting, a number of active piezoelectric

control approaches applied to blades have been also devised to improve structure

damping. Watanabe et al. [120] performed analysis and testing of piezoelectric

actuators on airfoil trailing edges to actively control flutter on airfoils in a linear

transonic cascade. In order for a piezoelectric patch to absorber vibration energy

as much as possible, it needs to be placed in an blade area of high modal strain.

However, as the blade spins, centrifugal loading causes the blade to stiffen, and

modal strain contours to shift, changing the effectiveness of the patch to sense or

actuate the target mode. Considering the practical implementation of piezoelec-

tric elements within rotor blades, Duffy et al. [121; 122] showed the effectiveness

of a piezoelectric-damped plate under centrifugal loading. Testing shows that ac-

tive piezoelectric control can significantly reduce vibrations of subscale composite

fan blades. State switching shunt circuits have also been adopted by Kauffman
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and Lesieutre [123] and Sénéchal [124] in blade vibration suppression.

a) b)

Figure 3.3: a) Bladed-disk model with piezoelectric network; b) Base line bladed-
disk model system with piezoelectric patches [125].

In particular, Yu and Wang et al. [125–127] have recently explored the feasi-

bility of utilizing piezoelectric materials attached onto both the blade and disk for

the vibration reduction of mistuned periodic structures. A simplified bladed-disk

model in Fig. 3.3a is used so that the disk dynamics are included. Capacitor

Ca is used to couple these local shunt circuits. The additional capacitor C2 is

added to cancel out mechanical blade-disk coupling effects. The bladed-disk test

structure with piezoelectric patches is shown in Fig. 3.3b. A tuned passive piezo-

electric network is derived to achieve multiple spatial harmonic suppression. This

research effort offers a very good start in applying piezoelectric shunt damping

to simplified bladed disk structures. A symmetric piezoelectric network [128]

combining energy harvesting and vibration reduction has been also proposed for

vibration suppression in simplified periodic structures.

In summary, passive resonant shunt circuits for a single blade mode require

huge and massive inductance in low-frequency cases, even though these circuits

exhibit the advantage of simplicity and compactness. Moreover, they are sensi-

tive to drifts in the structural resonance frequencies. Once the blade becomes

mistuned, the resonant shunt circuit loses its desired damping performance.

For active piezoelectric control approaches, more sophisticated electronic com-

ponents such as operational amplifies, diodes and voltage sources are needed. Out
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of practical considerations such as rotor imbalance and installation problems in

bladed disks, those aforementioned active control strategies are greatly limited

by power supply needs as well as complex signal processing.

Another issue of major concern is the location of piezoelectric transducers in

bladed disks. In most of current applications, piezoelectric patches are mounted

onto blade surfaces. In general however, it is not thought to be practical since

objects attached onto blades will disturb the flow field in the cascade. A trend is

toward a compact integration of piezoelectric materials into the blade [119]. For

instance, it is stated that the full-size fan blade does have adequate thickness to

incorporate embedded piezoelectric elements [122]. While for small-sized blades

in higher stage, it seems that there is not enough space inside. In addition,

such incorporation itself may also bring about new problems, like manufacturing

difficulties and blade strength degradation.

3.1.2 Problem Statement and Research Objective

A piezoelectric application as actuators is given in our previous research concern-

ing the friction ring damper [82]. 24 PZT piezoelectric transducers (30 × 10 ×
1mm) working in d31 mode are attached onto the disk circumferentially to pro-

vide excitation for experimental validation of friction damping (see Fig. 3.4). In

this case, blade vibration is successfully excited only by shaking the disk through

piezoelectric actuators. Therefore, an inverse energy transfer from blades to the

disk is naturally desired. A similar arrangement of piezoelectric materials as

damping device for industrial bladed disks has been also proposed in the latest

research by Mokrani and Bastaits et al in 2012 [129].

Based on the above arguments, this thesis is devoted to reducing the vibration

of mistuned bladed disks using shunted piezoelectrics solely attached onto the disk

(see the position of piezoelectric transducers in Fig. 3.4). In this chapter, resonant

shunted piezoelectric patches are bonded onto the disk surface between adjacent

blades in order to dissipate the disk’s mechanical energy. Consequently, the blade

vibration level can be reduced because of coupling between blades and the disk.

This strategy is of engineering interest since the piezoelectric transducers are

placed outside of the main stream in turbomachinery. It is particularly suitable
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Phase switch

Piezoelectric actuators

Electronic box cover
Strain gauges

Figure 3.4: Position of piezoelectric transducers in the bladed disk [82]

for the integral bladed disk (“blisk”) where the friction damping is not favorable

due to the absence of a frictional contact interface. This idea is developed based

on a lumped-parameter bladed disk model, in which the coupling effect of blade

and disk is taken into account. An initial piezoelectric configuration that includes

optimal inductance and resistance values will be sought to damp a certain blade-

disk mode in Section 3.2.

The effectiveness of resonant shunt circuits relies on the internal resonance

between electrical and mechanical systems. U. Andreaus and M. Porfiri [130] have

investigated the damping effectiveness of RL circuits under electrical impedance

variation with respect to their optimal values. Results from sensitivity analyses

reveal that small uncertainties of the inductance value lead to a huge variance of

the performance of the resonant shunted structures; while the variance of damping

parameter (resistance) does not significantly influence the system performance.

In this chapter, similar phenomena will be observed that piezoelectric shunted

bladed disks are very sensitive to inductance value perturbations. It is naturally

desirable to seek further vibration reduction by introducing a piezoelectric mis-

tuning pattern. As a result, both piezoelectric shunt damping and piezoelectric

mistuning will be introduced to minimize the blade mistuning effects. Piezoelec-

tric mistuning can be seen herein, to some extent, as a kind of damping mistuning

[27]; it is modeled as a small variation of the inductance value of each shunt cir-

cuit. As the synthetic inductance value can be determined by a digital filter, the

70



3. Resonant shunt circuits applied into mistuned bladed disks

piezoelectric mistuning is considered controllable. More specifically, an optimal

piezoelectric mistuning δL, obtained by genetic algorithm optimization, could be

introduced into a blisk with a given blade mistuning δ to achieve further blade

vibration mitigation (see the definition of δL and δ in Section 3.2).

3.2 Piezoelectric shunt damping in the tuned

bladed disk

The piezoelectric shunt damping will be investigated for a tuned bladed disk

in this section. A theoretical model for the bladed disk with resonant shunted

piezoelectric patches will be first presented. Both the time-domain and frequency-

domain modeling methods are developed. Optimal electrical parameters are

sought in order to damp a specified blade-disk mode.

3.2.1 Piezoelectric shunted bladed disk model

A lumped-parameter bladed disk model is presented in Fig. 3.5. This cyclic

periodic structure consists of N identical sectors. Blade masses (m1,j,m2,j) and

disk mass m3,j are linked by coupling springs (k1,j, · · · , k4,j). The external engine

order excitation acts upon the blade mass 1 (m1,j).

Identical piezoelectric patches working in the d31 mode are attached onto both

the front and rear disk surface circumferentially between adjacent blades. The

schematic of two equally sized piezoelectric patches attached to the disk is shown

in Fig. 2.3. It is assumed that only uniaxial loading of piezoelectric patches in

the longitudinal direction 1 has been considered in this lumped-parameter model.

Accordingly, piezoelectric patches are modeled as coupling components in parallel

with disk coupling stiffness k3,j.

We begin with an investigation into the original 9-sector bladed disk with-

out piezoelectric patches. Modal analysis for the tuned bladed disk is carried

out according to the method presented in Chapter 1.4.1. Numerical values of

the mechanical system generating the frequency/nodal diameters diagram (see

Fig. 3.6) are listed in Table 3.1, where γ denotes structure damping. This model

is built so that it represents as much as possible a real bladed disk, particularly
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Figure 3.5: Lumped-parameter model of piezoelectric shunted bladed disks

in terms of blade-disk coupling. As concluded in Chapter 1, examining the blade-

disk coupling strength may raise the possibility of influencing the blade response

through damping the disk. A quantitative measurement of the coupling, namely

the coupling index, has been proposed by Javier and Mignolet [53].

Table 3.1: Numerical values of the lumped-parameter bladed disk model

m1,j m2,j m3,j k1,j k2,j k3,j k4,j γ
0.25kg 0.35kg 1.2kg 2 × 106N/m 106N/m 5 × 107N/m 105N/m 0.2%

Coupling index

It is declared that the interblade coupling plays a crucial role in the dy-

namics of the system because it governs the communication of vibration

energy among blades. The interblade coupling is largely dependent on the

blade-disk coupling. An qualitative analysis of the natural frequency versus

nodal diameter plot is often conducted that intuitively qualify this coupling,

as discussed in Section 1.4.1. The coupling index, as quantitative measure-

ment of blade-disk coupling, is based on observing the impact of blade
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Figure 3.6: Frequency/nodal diameter diagram of 9-sector bladed disk without
piezoelectric patches; coupling indices are included for each blade-disk mode.

stiffness drifts on the variation of blade-disk mode frequency. Note that a

relative change δE of blade Young’s modulus would affect the blade-alone

frequencies by the factor
√

1 + δE while the frequencies of disk-alone modes

would not be affected. Thus the variation of the blade-disk mode natural

frequencies will be between these two extreme cases and the coupling index

is defined as:

CI = 1 − ωr(1 + δE) − ωr(1)

(
√

1 + δE − 1)ωr(1)
(3.1)

where ωr(1 + δE) corresponds to the appropriate bladed disk natural fre-

quency associated with r nodal diameters and a blade Young’s modulus of

E + δE. Similarly, ωr(1) corresponds to δE = 0. Clearly, a coupling index

CI = 0 indicates a purely blade alone mode, while CI = 1 corresponds

to a disk mode with rigid blades. Moderate blade-disk mode coupling is

necessary for significant forced amplitude magnification in mistuned bladed

disks. Similar definition of coupling index could be readily extended to

the lumped-parameter bladed disk model. A plot of coupling indices for

all blade-disk modes is shown in Fig. 3.6. Note the excellent correlation

between the coupling index values and a qualitative analysis discussed in

Section 1.4.1.
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According to coupling indices, in the first two mode families (i.e. low fre-

quency), the coupling is weak for high nodal diameters, whereas in small nodal

diameters the coupling is stronger. Let’s also note a strong coupling appears in

the 1st and 2nd modes (low frequency) of 1 nodal diameter while the 3rd mode

(high frequency) tends to be disk-dominant in Fig. 3.6. This coupling parameter

is an important factor relative to the efficiency of the piezoelectric shunt damping

since it determines disk participation in the global motion. The energy dissipa-

tion due to piezoelectric shunt damping depends on the relative displacement

between different disk areas; this is achieved when the strong coupling mode of

the structure is excited and that both the blades and disk move.

Next, let’s turn to the system description in the time domain, which contains

shunt circuit governing equations. Let qj be the electric charge generated on the

jth piezoelectric patch. kc
j reflects the electromechanical coupling effect and koc

j

is the open circuit piezoelectric stiffness. At first structural damping is not taken

into account. Following the time-domain modeling methodology presented in

Eq. (2.38)-(2.42), the equation of motion (EOM) for the jth sector can be written

as:

m1,jẍ1,j + k1,jx1,j − k1,jx2,j = f1,je
iωt

m2,jẍ2,j − k1,jx1,j + (k1,j + k2,j)x2,j − k2,jx3,j = 0

m3,jẍ3,j − k3,j−1x3,j−1 − koc
j−1x3,j−1 − kc

j−1qj−1 − k2,jx2,j + (k3,j−1 +

k2,j + k3,j + k4,j)x3,j + (koc
j−1 + koc

j )x3,j + kc
jqj − k3,jx3,j+1 − koc

j x3,j+1 = 0

Lj q̈j +Rj q̇j +
1

Cs
p,j

qj + kc
jx3,j − kc

jx3,j+1 = 0 (3.2)

With structure damping γ, a compact matrix form of EOM is presented:

Mp ÿ + Dp ẏ + Kp y = fpe
iωt (3.3)

y = [y1, · · · , yN ]T , fp = [fp,1, · · · , fp,N ]T , Mp = Bdiag (Mp,1, · · · ,Mp,N)

yj = [x1,j, x2,j, x3,j, qj]
T , fp,j = [f1,j, 0, 0, 0]T , Mp,j = diag(m1,j,m2,j,m3,j, Lj)

where the subscript p indicates that the electrical degree of freedom of piezoelec-

tric patches is involved. Other submatrices are given in Appendix A.
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An alternative frequency-domain system description is also proposed. Here,

the piezoelectric patches connected with Rj and Lj are modeled as frequency-

dependent coupling stiffness k5,j(iω), which is derived from Eq. (2.22). After a

similar transformation presented in Eq. (2.43), we furthermore have the following

equations of motion in the frequency domain:

[−ω2M + iγKmech + Kmech + Kpiezo]X = F (3.4)

X = [X1, · · · , XN ]T , F = [F1, · · · , FN ]T , M = Bdiag (M1, · · · ,MN)

Xj = [X1,j, X2,j, X3,j]
T , Fj = [f1,j, 0, 0]T , Mj = diag(m1,j,m2,j,m3,j)

In this equation, the mechanical stiffness matrix Kmech and piezoelectric stiff-

ness matrix Kpiezo are separated. Readers are referred to Appendix A for details

on the submatrices. Note that only the mechanical degrees of freedom have been

included in Eq. (3.4).

Given a blade mistuning pattern δ and tuned blade stiffness k1,t, k2,t, the blade

mistuning is modeled as a variation in blade-alone stiffness:

k1,j = k1,t(1 + δj), k2,j = k2,t(1 + δj), j = 1, 2, · · · , N (3.5)

Similarly, the piezoelectric mistuning is modeled as a variation in inductance

values. Ropt and Lopt denote the optimal electric parameters obtained by tuning

design.

Lj = Lopt(1 + δL,j) (3.6)

A piezoelectric configuration is to be sought in order to damp a specified

blade-disk mode, i.e. tuning design.

3.2.2 Tuning design

Previous research efforts have demonstrated that the behavior of resonant shunted

piezoelectric is almost like that of a dynamic vibration absorber when integrated

into the host structure. Considering the analogy of the dynamic absorber, as

discussed in Chapter 2.2, the optimal electric parameters for a targeted structural

mode can be obtained through optimization methods presented by Hagood and
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Von Flotow [94]. In particular, the tuning design could benefit from the cyclic

symmetry in periodic structures. For instance, a so-called U-transform technique

was adopted by Yu and Wang [125]. In essence, this U-transform is a spatial

Fourier transform widely used in the tuned bladed disk modeling.

We propose herein a numerical procedure for obtaining the optimal electrical

parameters based on strain energy considerations. The objective function is set

as the strain energy of the global tuned piezo-mechanical system over a given

frequency range:

Es(R,L) =

∫ ωu

ωl

XT (Kmech + Kpiezo)X dω (3.7)

where X is the response vector ; Kmech and Kpiezo are defined in Eq. (3.4).

The optimal resistance Ropt and inductance Lopt are sought so as to obtain

the minimum global strain energy over the frequency interval [ωl, ωu] around the

targeted blade-disk mode. Note that these tuning parameters only make sense in

the tuned bladed disk.

Table 3.2: Dimensions and material properties of piezoelectric patches

Dimension(:cm) Material property
width: 1.5 Young’s modulus (E): 63Gpa
thickness: 0.05 OC capacitance CT

p : 9.93 × 10−8F
length: 10 SC stiffness ksc: 2.4 × 106N/m

electro-mechnical factor k31: 0.35

The numerical values of piezoelectric materials are given in Table 3.2. Note

that in most cases the piezoelectric stiffness should be much smaller than disk stiff-

ness. The geometry is chosen so that the ratio between the short circuit stiffness

ksc and mechanical coupling stiffness k3 is approximately 5%. The piezoelectric

patches are tuned to damp the 1st mode of 1 nodal diameter (low frequency),

which is a blade-dominant mode, while at the same time the blade-disk coupling

is strong enough. The corresponding optimal electric parameters are given below
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by minimizing the global system strain energy defined in Eq. (3.7):

Ropt = 148Ω Lopt = 7.79H

A highly concerned issue regarding resonant shunt circuit is the realization

of huge and massive inductance. The size required for the inductance is pro-

portional to the inverse square of the frequency and thus decreased rapidly with

higher structural frequencies. It is true that when targeting low-frequency struc-

tural modes, impractically large inductance values are required. However, in the

real rotating bladed disk with high speed, the blade vibration frequency induced

by aerodynamic loading is typically up to 5 ∼ 35kHz [14]. We can draw an

evident conclusion that relatively much smaller inductances are needed, with an

increasing frequency of damped bladed disk mode. In other words, the resonant

shunted piezoelectric is more favorable in cases of relatively high-frequency vibra-

tion. On the other hand, the large inductance value 7.79H is obviously caused by

the low frequency of this lumped-parameter model (i.e. approx. 192 Hz), though

it is still acceptable in the numerical simulation. This situation can be immedi-

ately verified by checking the tuning electrical parameters for the 2nd mode of 1

nodal diameter:

R
′

opt = 44.3Ω L
′

opt = 0.76H

With a relatively small inductor requirement, such a passive piezoelectric

shunt technique is therefore well suited to the high-frequency case of bladed disks.

3.3 Blade mistuning

The blade mistuning effect is to be examined from both a determined and statistic

viewpoint. Most of studies in blade mistuning have been of deterministic type, in

which a model is generated and mistuned by a specified pattern, then the results

are analyzed. However, deterministic approaches by themselves are not sufficient

since blade mistuning is a random phenomenon. Statistical approaches to mis-

tuned bladed disk analysis become therefore necessary. An additional remark is

that the shunted piezoelectrics are assumed to be distributed on the disk in a

“tuned” pattern, i.e. no piezoelectric mistuning is introduced in this section.
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3. Resonant shunt circuits applied into mistuned bladed disks

3.3.1 Blade mistuning: deterministic viewpoint

Blade mistuning effect is first examined from a deterministic viewpoint. With

optimal electrical parameters damping a 1 nodal diameter mode, an engine or-

der 1 excitation is imposed on the bladed disk. Blade mistuning is added as

random variables δ, as in the expressions in Eq. (3.5). Blade vibration levels

of tuned/mistuned mechanical/piezo-mechanical systems are then compared in

Fig. 3.7 by examining responses under engine order excitation with fixed fre-

quency (chosen as the damped modal frequency).
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Figure 3.7: Responses of blade mass 1 at the fixed excitation frequency.

The tuned assembles possess constant inter-blade phase angle modes. When

the tuned mode is excited, all blades throughout the structure vibrate at the

same amplitude level yet with a fixed phase difference, which is determined by

the number of nodal diameters of the excited blade-disk mode (see Fig. 3.7a,c).
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3. Resonant shunt circuits applied into mistuned bladed disks

A significant vibration reduction is seen due to the added piezoelectric shunt

damping. An uniform blade amplitude indicates that vibration energy is still

equally distributed among all the sectors.

When blade mistuning takes place, the perfect cyclic symmetry is destroyed.

The small blade mistuning alters mode shapes drastically, which leads to vibration

energy localization around a few blades. Because of the spatial confinement of

vibration energy, certain blades in a mistuned system can suffer a higher vibration

level than the others, as depicted in Fig. 3.7b,d. Even though the piezoelectric

shunt damping lower the vibration level, localization phenomenon does still exist.

Frequency sweeps on the basis of Eq. (3.4) are then performed with respect

to blade-tuned/ blade-mistuned mechanical/ piezo-mechanical bladed disk sys-

tems. Various responses are compared by examining the maximum amplitudes

throughout the bladed disk versus excitation frequency, as illustrated in Fig. 3.8,

where only the amplitudes of blade mass 1 are plotted.
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Figure 3.8: Maximum blade amplitude versus frequency

In Fig. 3.8, for tuned systems, resonant shunt circuit are sought to mini-

mize response of bladed disk in a way analogous to dynamic damper tuning.

Two resonance peaks are generated in the frequency response of the tuned piezo-

mechanical system (− · −), and a significant vibration reduction (up to nearly

80% compared to the mechanical counterpart (− · −)) is achieved within the

frequency band limited by the two peak points.
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The mistuned blade-disk mode shape is no longer a pure modal diameter

mode, but instead has multiple harmonic content. The modes that retain signif-

icant harmonic content matching the engine order of excitation will be strongly

excited. As a result, several peak response amplitudes arise around the damped

modal frequency and some of them exhibit excessive vibration level than that of

a tune system. Due to the same blade stiffness mistuning, the piezo-mechanical

bladed disk ( ) yields several peak amplitudes over the frequency range where

the peak response of the mistuned mechanical counterpart ( ) is exposed.

The vibration level of this mistuned system is depressed because of piezoelectric

shunt damping. The blade mistuning effect is greatly alleviated especially around

the the tuning frequency.

3.3.2 Blade mistuning: statistic viewpoint

To estimate the statistics of the forced response for a population of randomly

mistuned bladed disks with the same nominal design, a Monte Carlo simulation

is performed. First, given a value σ = 0.03 for the standard deviation of random

mistuning, the blade mistuning pattern δ for one realization of a mistuned bladed

disk are assigned by a pseudo-random-number generator (normal distribution).

Second, a frequency sweep is performed to find the largest peak response ampli-

tude of any blade on the bladed disk. Third, this process is repeated for many

realizations (5000 realizations in this section) of mistuned bladed disks. In order

to facilitate the comparison, amplitude magnification factors are defined based

on the maximum blade amplitude Amax of the tuned mechanical system:

AMF =
Amax(blade-mistuned systems)

Amax(blade-tuned mechanical system)
(3.8)

Post-processing of this simulation results in an approximation of the response

statistics, e.g., the probability density function. The probability distribution

function (PDF) of a random variable X, FX(x), corresponds to the probability

that X < x. Fig. 3.9 shows PDFs of the maximum blade amplitudes versus

(AMF) of blade mass 1. It is clearly seen that the piezoelectric shunt damping

is efficient to suppress the vibration level of mistuned bladed disks at this given
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Figure 3.9: Probabilistic density function (PDF) of the maximum blade ampli-
tudes versus amplitude magnification factor (AMF) of blade mass 1

blade mistuning strength.

Early research efforts reveal that the maximum response amplitude of mis-

tuned bladed disks is sensitive to the mistuning strength. Fig. 3.10 shows how the

statistics of the largest response of mistuned bladed disks evolve as the level of

mistuning strength is varied. Mistuning strength is measured by the standard de-

viation of the blade mistuning pattern distribution. Of greatest importance is the

curve labeled 99%. The values on this curve denote the mistuning-induced ampli-

fication of largest response that will only be surpassed by 1% of all realizations of

mistuned systems. When this value deviates greatly from unity, mistuning effects

are high.

As blade mistuning strength increases from weak to strong, we note that

for mechanical systems (blue lines) the mistuning effect reaches a maximum at

moderate blade mistuning level. This result is in agreement with that in the

literature. With the presence of piezoelectric shunt damping (red lines), This

feature is not seen any more. Instead, mistuning effects are greatly suppressed at

the weak and moderate blade mistuning level. It indicates that the piezoelectric

shunt damping is promising in reducing the blade mistuning effect from a statistic

viewpoint.
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Figure 3.10: Amplitude magnification factor as a function of blade mistuning
strength. blue lines: mechanical systems; red lines: piezo-mechanical systems

3.4 Piezoelectric mistuning

In this section, the effect of random piezoelectric mistuning in a blade-mistuned is

first examined. Piezoelectric shunt damping together with piezoelectric mistuning

effect will be then utilized to achieve maximum blade vibration reduction. To

this end, the genetic algorithm is employed to search for an optimal piezoelectric

mistuning pattern with regard to a given blade mistuning pattern.

3.4.1 Piezoelectric mistuning effect

Previous sections have provided the tuning electric parameters for a tuned piezo-

electric shunted bladed disk. When blade mistuning δ is taken into account, as

we see, the vibration level of the mistuned piezo-mechanical system is depressed

in comparison with the mechanical counterpart because of added piezoelectric

damping. The blade mistuning effect, however, does still exist. Inspired by the

sensitivity of the resonant shunt circuits to inductance uncertainty, we perform

an investigation of the piezoelectric mistuning effect below. A random piezoelec-

tric mistuning pattern δL is added into the blade-mistuned system in a fashion

presented in Eq. (3.6).
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Figure 3.11: Maximum blade amplitude versus frequency

Fig. 3.11 reveals that with a random piezoelectric perturbation δL, the re-

sponse curve of the blade-mistuned disk (green line) changes significantly near

the first peak value. This implies that the blade-mistuned disk is also sensitive

to piezoelectric mistuning, which is thought to be controllable. This interesting

phenomenon provides the possibility to derive the genetic algorithm optimization

presented in the next subsection.

3.4.2 Piezoelectric mistuning pattern optimization

Let’s note that the blade mistuning identification technique has been well devel-

oped in recent years [67; 68]. Hence, it is reasonable to assume that the initial

blade mistuning pattern δ could be derived experimentally. It is found that the

resonant shunted bladed disk, to some extent, is very sensitive to inductance

mistuning. As a result, it is desirable to find a special piezoelectric patch ar-

rangement pattern to obtain a more acceptable vibration level for a blisk with an

known blade mistuning pattern. The problem of searching for a better piezoelec-

tric mistuning pattern can thus be formulated as a pattern optimization problem.

Such optimization problems are also encountered in some worst mistuning pattern

analyses [57] as well as intentional mistuning optimization [78].
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A glimpse of genetic algorithm

Generally, one can categorize the optimization methods into two major classes,

namely gradient-based methods and global-based methods. In some engineering

applications conventional gradient-based algorithms are ineffective due to the

problem of local minima or the difficulty in calculating gradients. The genetic

algorithm (GA) is one of the optimization methods that require no gradient and

can achieve a global optimal solution. GAs are so-called because they attempt

to use the supposition of evolution, i.e. learning/survival of the fittest, as a

basic mechanism for improvement in solving an optimization problem. GAs are

computationally simple but powerful and not limited by assumptions about the

search space.

The genetic algorithm solves optimization problems on the basis of natural

selection, the process that drives biological evolution [131]. The genetic algorithm

repeatedly modifies a population of individual solutions. At each step, the genetic

algorithm selects individuals at random from the current population to be parents

and uses them produce the children for the next generation. Over successive

generations, the population “evolves” toward an optimal solution. The genetic

algorithm uses three main types of rules at each step to create the next generation

from the current population:

• Selection rules select the individuals, called parents, that contribute to the

population at the next generation;

• Crossover rules combine two parents to form children for the next genera-

tion;

• Mutation rules apply random changes to individual parents to form chil-

dren.

The genetic algorithm differs from a standard optimization algorithm in two

main ways, as summarized in Table 3.3 [131]:

Overall, GAs are global optimizers because of mutation and their general

probabilistic non-gradient nature.
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Table 3.3: Differences between standard algorithm and genetic algorithm

Standard algorithm Genetic algorithm

Generates a single point at each it-
eration.The sequence of points ap-
proaches an optimal solution.

Generates a population of points at
each iteration. The population ap-
proaches an optimal solution.

Selects the next point in the se-
quence by a deterministic computa-
tion.

Selects the next population by
computations that involve random
choices.

Piezoelectric mistuning optimization by genetic algorithm

Above all, the optimal piezoelectric mistuning pattern δL for a given blade-

mistuned disk is a special arrangement that minimizes the piezo-mechanical sys-

tem’s amplitude magnification factor (AMF piezo) over a specified frequency range,

i.e.:

δL = argmin|δL,j |<µ {AMF piezo{[ωl, ωu], δL}} (3.9)

µ is the upper bound of perturbation parameters. AMF piezo is defined based

on the maximum blade amplitude Amax of the blade-mistuned disk with tuned

piezoelectric patches:

AMF piezo =
Amax(blade-mistuned disk & mistuned piezoelectric)

Amax(blade-mistuned disk & tuned piezoelectric)
(3.10)

In numerical simulations, the pulsation range has been set at [1150, 1300](rad/s),

which is wide enough to cover all the possible peak amplitudes around the damped

modal frequency. The upper bound of inductance perturbation is 0.06. When

the genetic algorithm is implemented, the initial population of optimization pa-

rameter δL is set at zero, which means that the iteration begins from the tuned

case with the same inductance value Lopt. The number of population in each

generation of GA is 200; the crossover rate is 90% and the mutation rate is 1%.

The objective function AMF piezo (fitness value) converges on a value 0.46 after 66
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generations, as shown in Fig. 3.12. In Fig. 3.13a it is rewarding to see that the
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Figure 3.12: Evolving fitness values in genetic algorithm
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Figure 3.13: Results of genetic algorithm optimization: a) frequency sweep re-
sults; b) blade and optimal piezoelectric mistuning pattern.

optimal piezoelectric mistuning pattern does effectively lower the vibration level
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around several peaks. This encouraging result demonstrates complete feasibil-

ity of reducing the blade mistuning effect by introducing piezoelectric mistuning.

The given blade stiffness mistuning pattern δ and optimized inductance mistuning

pattern (hereafter denoted δL) are plotted in Fig. 3.13b.

The derived piezoelectric mistuning pattern δL is optimal only in conjunction

with the initial blade mistuning pattern δ. As blade mistuning evolves and causes

blade amplitude augmentation, a corresponding adjustment of piezoelectric mis-

tuning will be sought.

3.5 Conclusion

In this chapter, the passive piezoelectric shunt technique has been explored to

derive the effective vibration suppression of mistuned bladed disks. Resonant

shunted piezoelectric transducers attached onto the disk, combined with the

piezoelectric mistuning effect, provide a practical means for blade vibration re-

duction in turbomachinery. This strategy is of engineering interest since all the

piezoelectric patches are placed outside of the main stream. It is also important to

demonstrate that relatively small inductances are required for the high-frequency

vibration in bladed disks.

Piezoelectric mistuning, to some extent, is a kind of damping mistuning. The

optimized piezoelectric mistuning pattern is demonstrated effective in blade vi-

bration reduction for a given mistuned bladed disk. However, for such a pattern

optimization, GA needs exhaustive computation resources and is time-consuming.

If blade mistuning evolves, repeated blade mistuning identification in terms of δ

is also required, which is obviously cumbersome. For this reason, an adaptive

control strategy is to be developed in case of blade mistuning evolution in the

next chapter.
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Chapter 4

Adaptive control strategy for

mistuned piezoelectric shunted

blisks

In the previous chapter we have succeeded in suppressing blade vibration in mis-

tuned blisks by introducing piezoelectric shunt damping combined with piezo-

electric mistuning. Provided that the blade mistuning pattern δ is known by

mistuning identification techniques, the optimal piezoelectric mistuning pattern

δL is obtained by genetic algorithm, as Step 1 illustrated in Fig. 4.1.

Optimal piezoelectric 
mistuning pattern:

δL

Blade mistuning
           δ

GA 
optimization

Perturbed blade
mistuning pattern

δ + Δδ

1

Perturbation: Δδ 

Adaptive
Control

2

Modified piezoelectric 
mistuning pattern:

δL + ΔδL

Figure 4.1: Overview of blade vibration control strategy based on piezoelectric
shunt techniques

In the actual operation, the blade mistuning pattern is not constant. Due to

various complexities including wear, cracked blades and geometric damage (e.g.
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caused by missing materials in the blade tip), a perturbation ∆δ might arise.

Cracks or other types of blade damage can have very small effects on the blade-

alone frequencies yet still cause major changes in some of the system mode shapes

[44]. The perturbation ∆δ usually leads to unexpected response augmentation

within a certain frequency range. In benefitting from the manageability and

controllability of piezoelectric shunt circuits, an adaptive control strategy has

been developed, with the aim of adjusting the piezoelectric mistuning pattern by

∆δL to maintain a low blade vibration level in the event that the blade mistuning

evolves and ∆δ generates. That is exactly what we are going to do during Step

2 in Fig. 4.1.

4.1 Framework of the adaptive control strategy

The idea of adaptive control has been around for at least five decades. In the 1950s

the topic was enthusiastically pursued by many people, especially in relation to

autopilot design. Up to date many apparently different approaches to adaptive

control have been proposed in the literature. The design of an adaptive control

system is conceptually simple. Essentially, a very natural approach is to combine

a particular parameter estimation technique with any control law [132].

One can distinguish two broad classes of adaptive control algorithms depend-

ing on the complexity of the design calculation. The simplest conceptual scheme

is when the system is parameterized in a natural way and the design calculations

are carried out based on the estimated system model. For example, one might

adaptively solve the closed-loop pole assignment problem by estimating the sys-

tem parameters online and calculating the corresponding feedback law. This class

of algorithm is commonly called indirect since the evaluation of the control law

is indirectly achieved via the system model. These schemes are also sometimes

called explicit since the design is based on an explicit process model.

In some cases it is possible to parameterize the system directly in terms of

the control law parameters. If this is done, the design calculation necessary to

determine the control law becomes essentially trivial. An example is the one-step-

ahead design, in which the control law parameters are simply the parameters in a

one-step-ahead predictor. This class of algorithm is commonly called direct since
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the control law is directly estimated. These schemes are also called implicit since

the design is based on estimation of an implicit process model.

In this chapter we turn our attention to the mistuned piezoelectric shunted

bladed disk. Of course, as is the case with any design technique, the basic adaptive

control theory must be augmented with practical considerations relevant to the

system under study.

The general block diagram of the adaptive control system for mistuned bladed

disk is shown in Fig. 4.2. Two basic assumptions are given as prerequisites: 1)

the engine order excitation fp(t) as system input is known in experimental cases;

2) the response y(t) as system output is known by measurements and expansion

techniques. Measurement noise has been neglected. This adaptive control system

is generally viewed within a determined framework in order to simplify parameter

estimation process. The strategy presented in this chapter does not strictly belong

to neither of the above two classification because the control law, as we shall show

later, is devised quite differently from the existent direct and indirect schemes.

Keeping the basic block diagram of Fig. 4.2 in mind, we shall take an overview

of this strategy at first.

    System
θ0 :(δ + Δδ, δL)

Parameter estimation
            θ' : Δδ*

Design Calculation

   Control law
θ: (δ + Δδ*, δL+ΔδL)

Inputs:
  fp(t)

Outputs:
   y(t)

Figure 4.2: Block diagram of the adaptive control strategy for mistuned bladed
disks

In the block diagram of the adaptive control system, the dynamic system

parameter θ0 contains the unknown blade mistuning perturbation ∆δ. As a
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wide class of linear and nonlinear deterministic dynamic systems, input-output

characteristics can be described by the model that may be expressed succinctly

in the following simple form [133]:

y(t) = ϕ(t− 1)T θ0 (4.1)

where y(t) denotes system output at time t;

θ0 denotes the unknown parameter vector;

ϕ(t− 1) denotes a vector that is a linear or nonlinear function of

present and past observations of system outputs and inputs.

Although Eq. (4.1) appears very simple, the parameter estimation algorithm

can in fact be motivated by many different objective functions. In particular,

an online parameter estimation algorithm is preferred in this research. “Online”

means that this algorithm handles sequential data; it requires that parameter

estimation be recursively updated within the time limit imposed by the sam-

pling period. The online parameter estimation algorithm is capable therefore of

continuously tracking time-varying blade stiffness mistuning patterns.

With the estimation ∆δ∗, the control law is intended to yield a new piezoelec-

tric mistuning pattern δL + ∆δL, which minimizes the blade vibration amplitude

at a specified frequency. The basic idea here is to derive a linear approximation

of the response vector. The design calculation can then be formulated as a least-

squares problem to search a minimal blade response in the neighborhood of δL.

Details of this adaptive control strategy are organized in this manner: the online

parameter estimation algorithm in Section 4.2 along with the response expansion

in Section 4.3 correspond to the “parameter estimation” in the block diagram of

Fig. 4.2. The “control law” block will be presented in Section 4.4. Numerical

simulations are lastly performed in Section 4.5.

4.2 Estimation of random perturbation ∆δ

In the previous section we saw that a compact mathematical model could be used

to describe the dynamical behavior of deterministic systems. The precise nature
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of the model response is determined by the values of certain parameters, such

as δ + ∆δ. In these instances it may be possible to deduce the values of the

parameters by observing the nature of the system’s response under appropriate

experimental conditions. This procedure is called parameter estimation.

In terms of estimation algorithm, we may distinguish two main classes of

algorithm: online and offline. In the offline case, it is presumed that all the

data are available prior to analysis. Consequently, the data may be treated as a

complete block of information, with no strict time limit on the process of analysis.

In contrast, the online case deals with sequential data, which requires that the

parameter estimates be recursively updated within the time limit imposed by the

sampling period. In this section we are concerned primarily with online algorithm

for estimation of ∆δ. Before the parameter estimation, a proper model is required

to describe the blade mistuning pattern evolution, which will be discussed next.

4.2.1 Modeling gradual degradation of blade stiffness

It is noted that Tserpes [134] has proposed a progress damage modeling method to

assess fatigue damage accumulation and residual strength of aircraft composite

materials. In cases of fatigue loading, the nature of cyclic loading implies an

additional material degradation plus some sudden material property degradation.

The so-called gradual material property degradation is driven by the increased

number of cycles.

Based on theoretical and experimental methods, the gradual degradation of

stiffness is modeled as function of number of cycles and a linear equation is derived

from fitting of the data in Fig. 4.3. The general form of the linear equations in

terms of normalized residual stiffness and normalized number of cycles is:

Eres =

[

A

(
n

Nf

)

+ 1

]

Estatic (4.2)

where Eres and Estatic are the residual stiffness and the static stiffness, respec-

tively; n is the number of cycles; Nf is the number of cycles to failure and A is

an experimental fitting parameter.

Inspired by the residual stiffness model in the reference, a similar expression
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Figure 4.3: Normalized residual stiffness of composite material subjected to fa-
tigue at various stress level

of the time-varying residual blade stiffness in the lumped-parameter model is

written as:

kres
j = kj,t(1 + δj) [1 − α(t)] (4.3)

α is a time-dependent parameter related to the number of cycles. Conse-

quently, the perturbation of blade mistuning pattern ∆δ can be extracted from

the above expression and a proper value of α can be assigned for the numerical

simulation.

∆δj = −α(t)(1 + δj) (4.4)

Generally speaking, the gradual degradation of blade stiffness is a very slow

physical phenomenon compared with the blade vibration phenomenon and the

“online” identification strategy presented in this section. It is thus reasonable

to assume that the blade mistuning pattern remains time-invariant during the

parameter estimation. This assumption is of great importance for the proposed

adaptive control strategy.

4.2.2 Online parameter estimation algorithm

To identify the blade mistuning perturbation ∆δ, a description of the input-

output characteristics similar to Eq. (4.1) is necessary. First, we can derive the
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perturbed damping matrix ∆Dp and stiffness matrix ∆Kp caused by the blade

mistuning perturbation ∆δ based on Eq. (3.3).

Mp ÿ + (Dp + ∆Dp) ẏ + (Kp + ∆Kp)y = fpe
iωt (4.5)

∆Dp = Bdiag(∆Dp,1,∆Dp,2, · · · ,∆Dp,N)

∆Kp = Bdiag(∆Kp,1,∆Kp,2, · · · ,∆Kp,N)

For jth sector:

∆Kp,j =

[

∆Kj 0

0 0

]

, ∆Dp,j =

[
γ
ω
∆Kj 0

0 0

]

=
γ

ω
∆Kp,j (4.6)

∆Kj = ∆δjKbase = ∆δj






k1,t −k1,t 0

−k1,t k1,t + k2,t −k2,t

0 −k2,t k2,t






Therefore, ∆Kp can be expressed as a linear sum of mistuning submatrices

Kj
mist:

∆Kp = ∆δ1K
1
mist + ∆δ2K

2
mist + · · · + ∆δNK

N
mist (4.7)

Kj
mist = Bdiag(ej ⊗

[

Kbase 0

0 0

]

), ej = [0, · · · , 1j, · · · , 0]

It is assumed that the response of bladed disks could be obtained by the

“tip-timing” measuring technique [135] and the expansion technique [136]. The

“tip-timing” technique allows measuring one DOF in the tip of each blade with

far fewer sensors. The expansion technique could expand the limited measured

DOFs to obtain all DOFs in the model. In reality, all the measurements are

discrete time signals. Eq. (3.3) can be discretized by use of finite differences:

ẏ(t) =
y(t) − y(t− 1)

T
(4.8)

ÿ(t) =
y(t+ 1) − 2y(t) + y(t− 1)

T 2

where T is the sampling interval. The resulting discretized model is described in
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a regression form:

y(t+ 1) = 2y(t) − y(t− 1) − TM−1
p Dp [y(t) − y(t− 1)] − T 2M−1

p Kp y(t)
︸ ︷︷ ︸

ya(t)

+ T 2M−1
p fp(t)

︸ ︷︷ ︸

ya(t)

+M−1
p ∆Kp

{

−γT
ω

[y(t) − y(t− 1)] − T 2y(t)

}

︸ ︷︷ ︸

yb(t)

= ya(t) + M−1
p ∆Kpyb(t) (4.9)

Substituting Eq. (4.7) into Eq. (4.9) yields:

y(t+ 1) = ya(t) + M−1
p

(
N∑

j=1

∆δjK
j
mist

)

yb(t)

=
[

ya(t) M−1
p K1

mist yb(t) · · · M−1
p KN

mist yb(t)
]

×

[ 1, ∆δ1, . . . , ∆δN ]T

= ϕ(t)T θ (4.10)

We succeed here in separating the perturbation of the blade mistuning pattern.

The expression above can be used for a variety of parameter estimation algorithms

to minimize the following cost function [132]:

Jn(θ)
△
=

1

2
(θ − θ0)

TP−1
0 (θ − θ0) +

1

2

n∑

t=1

[
y(t) − ϕ(t− 1)T θ

]T
W−1

[
y(t) − ϕ(t− 1)T θ

]
(4.11)

Basically, the cost in Eq. (4.11) represents the sum of weighted squares of

errors (the second term) e(t) = y(t)−ϕ(t−1)T θ , which is the difference between

the actual observation y(t) and the value predicted by the model with parameter

vector θ. W is the weight matrix. The first term has been included to account

for initial conditions. P0 can be seen as a measure of confidence in the initial

estimate θ0. Usually P0 and W are both identity matrices.

The adopted multivariable least-squares algorithm for parameter estimation
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is thus:

θ̂(t) = θ̂(t− 1) + P (t− 2)ϕ(t− 1) ×
[
ϕ(t− 1)TP (t− 2)ϕ(t− 1) +W

]−1 ×
[

y(t) − ϕ(t− 1)T θ̂(t− 1)
]

P (t− 1) = P (t− 2) − P (t− 2)ϕ(t− 1) ×
[
ϕ(t− 1)TP (t− 2)ϕ(t− 1) +W

]−1 ×
ϕ(t− 1)TP (t− 2)

P (−1) = P0 (any positive definite matrix) (4.12)

The perturbation of the blade mistuning pattern ∆δ∗ can be extracted from

the final estimation of θ. Before proceeding to the second step in this strategy,

some practical considerations concerning response expansion should be taken into

account in the following.

4.3 Response expansion

In real cases, experimental data often provide less information than that one

needs for analyses. For the purpose of identifying perturbation ∆δ, each degree

of freedom (DOF) in the model should be measured. Unfortunately only a limited

number of DOFs could actually be measured . The problem arises from the use

of measured experimental data because of incompleteness. Expansion of these

measured data is required for parameter estimation.

It is assumed that by making one measurement per blade, the time history of

tip displacements x1,j(t) can be measured and reconstructed by the “tip-timing”

measurement strategy [135]. The tip-timing method is a new-emerging non-

invasive method in aeroengine. Blade tip deflections can be measured by making

use of the blade tip arriving time when a blade tip passes the stationary probes

installed on the engine casing (see Fig. 4.4). When the blade is experiencing

vibration, the blade tip arriving time depends on the blade vibration amplitude

as well as the rotation speed. The tip-timing method can be thus used to create

an on-line monitoring system for blade dynamic performance. For this purpose,

the “tip-timing” measurement strategy has the capabilities listed below:

• initial data measurement (time of blade tip passing through the probe)
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using single or multiple probes;

• calculation of characteristic parameters including vibration amplitude, blade

tip deflection etc, on the basis of measured data;

• processing of characteristic parameters in order to describe a specified blade

dynamic behavior.

A

A

A-A

Figure 4.4: Illustration of the tip-timing method [135].

Consequently the forced response X1,meas in the frequency domain can be

obtained. Besides, some high-precision current measurement techniques could be

used to determine the current in each shunt circuit. Under harmonic excitation

the electrical DOF qj(t) and Qmeas are also available. The objective is to expand

x1,j(t), qj(t) so that all other DOFs in each sector x1,j(t), x2,j(t), x3,j(t), qj(t) can

be obtained. Classical expansion techniques make use of the analytical modes of

structures [136]. At first, let’s turn our attention to the free vibration equations

of tuned piezoelectric shunted bladed disks derived from Eq. (3.3).

Mp ÿ + Dp ẏ + Kp y = 0 (4.13)

Due to the piezoelectric shunt damping, the damping matrix Dp can not be

considered as either small or proportional to Mp and Kp. Complex modes should

thus be used for the response expansion. Eq. (4.13) is therefore rewritten in the
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following generalized state-space form:

[

Dp Mp

Mp 0

]{

ẏ

ÿ

}

+

[

Kp 0

0 −Mp

]{

y

ẏ

}

= 0 (4.14)

In all, 8N complex modes Ψ = [Φ, λΦ]T could be obtained by solving the

eigenvalue problem:

([

Dp Mp

Mp 0

]

λ+

[

Kp 0

0 −Mp

])

Ψ = 0 (4.15)

The proposed response expansion method makes use of the analytical modes

of the tuned piezoelectric shunted bladed disk. First, a measurement vector Ymeas

is built using X1,meas and Qmeas.

Ymeas = [X1,meas, Qmeas, iωX1,meas, iωQmeas]
T (4.16)

The measurement vector Ymeas can then be expressed as a linear combination

of selective modes Ψsel, i.e.:

BΨselU = Ymeas (4.17)

where B is the Boolean matrix for the measured DOFs and U is an unknown

vector to be estimated.

To avoid underdetermined problems, only a selected collection of 4N modes

Ψsel is utilized in the above equation. It is found that inadequate system informa-

tion in the selected mode set usually leads to poor expanded responses. In order

to improve the accuracy of this response expansion, some auxiliary equations are

sought to include more modes in Ψsel.

Let’s recall the forced vibration equation Eq. (3.3) of the mistuned bladed

disk and simply transform it into the frequency domain:

{
−ω2Mp + iωDp + Kp

}
Y = ApY = fp (4.18)

where y(t) = Y eiωt and obviously we have Y = ΦselU.
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Let’s now rearrange the matrix Ap and extract the corresponding 2N rows in

the bottom Ap,b for coupled DOFs X3,j and Qj. Let’s note the absence of external

excitation imposed on these coupled DOFs, i.e. fp,b = 0.

[

Ap,t

Ap,b

]

Y =

[

Ap,t

Ap,b

]

ΦselU = fp =

[

fp,t

fp,b

]

(4.19)

Ap,bΦselU = 0 (4.20)

Next, combine the equations Eq. (4.17) and Eq. (4.20):

[

BΨsel

Ap,bΦsel

]

U =

[

Ymeas

0

]

(4.21)

Finally, a set of 6N modes Ψsel could be utilized in this equation. Generally

speaking, both tuned blade-dominant and disk-dominant modes near the exci-

tation frequency should be involved. Once U is solved, the expanded response

vector Y exp is given by:

Y exp = ΦselU (4.22)

We can reproduce the time history of all DOFs in the jth sector:

[x1,j(nT ), x2,j(nT ), x3,j(nT ), qj(nT )]T = eiωnTY exp
j (4.23)

n = 0, 1, 2, · · ·

This expanded response is to be used for the online parameter estimation

algorithm presented in the previous section.
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4.4 Control law about the adjustment of piezo-

electric mistuning ∆δL

Let’s imagine that after parameter estimation an “initial” system equation Eq. (3.4)

with ∆δ∗ can be rewritten in the frequency domain as follows:

[

−ω2M + iγKδ+∆δ∗

mech +
(

Kδ+∆δ∗

mech + K
δL

piezo

)]

Xδ+∆δ∗,δL

0 = F (4.24)

In this equation, blade mistuning δ + ∆δ∗ and piezoelectric mistuning δL are

respectively incorporated into the stiffness matrices. If the piezoelectric mistuning

pattern is the perturbation such that δpert
L = δL + ∆δL, in assuming a first order

Taylor expansion, then the corresponding response vector XδL+∆δL is perturbed

as:

X(δL + ∆δL) = X0 + J∆δL (4.25)

The perturbed response vector is a function of the initial response vector X0,

the perturbation ∆δL and the Jacobian matrix (or derivative) J. The Jacobian is

available mathematically (see Appendix B.1). We thus have a linear approxima-

tion of the response vector X in the neighborhood of δL at a specified frequency ω.

Naturally, the adjustment of piezoelectric mistuning pattern ∆δL can be obtained

by minimizing the 2-norm of XδL+∆δL , i.e.:

∆δL = argmin∆δL
{‖X(δL + ∆δL)‖2} (4.26)

This objective function aims to minimize the response at a specified frequency

ω. Alternatively, a more reasonable objective function defined over a frequency

range [ωl, ωu] is proposed:

∆δL = argmin∆δL
{Π(δL + ∆δL)} = argmin∆δL

{∫ ωu

ωl

‖X(δL + ∆δL, ω)‖2
2 dω

}

subject to ∆δL − ∆δ∗L = 0 (4.27)

The response vector X(δL + ∆δL, ω) and Jacobian matrix J(δL, ω) are both

complex matrices (vectors). An additional constraint is necessary to ensure that

∆δL is a real vector (∆δ∗L denotes conjugation of ∆δL). The latter objective
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function can easily be expanded as:

Π(δL + ∆δL) =

∫ ωu

ωl

‖X(δL + ∆δL, ω)‖2
2dω =

n∑

j=1

‖X(δL + ∆δL, ωj)‖2
2∆ω

= ∆ω
n∑

j=1

{
XH

0 (ωj)X0(ωj) + 2∆δT
LRe[J

H(ωj)X0(ωj)]+

∆δT
LJH(ωj)J(ωj)∆δL

}

= Π(δL) + 2∆δT
L

n∑

j=1

Re[JH(ωj)X0(ωj)] +

∆δT
L

n∑

j=1

[JH(ωj)J(ωj)]∆δL (4.28)

The Gauss-Newton method for such a nonlinear least-squares problem (see

Appendix B.2) Eq. (4.27) is adopted to find a local minimizer in the vicinity of

δL [137]. The final δL is found by the following typical iterative steps:

Solve: Re[
n∑

j=1

JH(ωj)J(ωj)](∆δL)gn = −
n∑

j=1

Re[JH(ωj)X0(ωj)]

line search: δ̄L = δL + β(∆δL)gn

next iterate: δL = δ̄L; (4.29)

Here, (∆δL)gn is the Gauss-Newton step and β is found by conducting a line

search [137]. In combination with a line search, this hybrid method can be shown

to guarantee convergence.

4.5 Numerical simulation and results

In this section, we will present the results of computer simulations using the

formulas derived in the previous sections.

102



4. Adaptive control strategy for mistuned piezoelectric shunted blisks

Table 4.1: Numerical values of the lumped-parameter bladed disk model

No. ∆δreal ∆δ∗ ∆δL ∆δ∗exp ∆δexp
L

1 0 7.10e-5 -0.0064 0.0054 0.0401
2 0 6.52e-5 0.0059 -0.0041 -0.0005
3 0 6.62e-5 0.0050 0.0163 0.0079
4 0 6.84e-5 0.0142 0.0028 0.0079
5 -0.0090 -0.0097 -0.0090 -0.0184 -0.0061
6 0 6.82e-5 -0.0073 -0.0100 0.0214
7 -0.0099 -0.0098 -0.0149 -0.0167 -0.0315
8 0 6.47e-5 0.0391 0.0161 0.0465
9 0 7.04e-5 0.0241 0.0039 0.0249

4.5.1 Performance of the adaptive control strategy

It is assumed that the initial blade mistuning δ and the corresponding optimal

piezoelectric mistuning pattern δL are both obtained after the optimization rou-

tine in Chapter 3. Numerical simulations concerning the adaptive control strategy

have been carried out. It is moreover assumed that the perturbation takes place

randomly in two cracked blades with blade No.: 5,7 in Table 4.1. The time-

varying parameter α(t) in Eq. (4.3) is set at 0.01 and remains constant during

parameter estimation. As shown in Fig. 4.5a, when the perturbation ∆δ is ex-

posed, an amplitude augmentation occurs around the frequency 1213 rad/s. If

the bladed disk is experiencing vibration at this frequency and the steady re-

sponse is observed sequentially, then the online parameter estimation presented

in Section 4.2 is performed.

In the simulation, the observation of a steady response is generated numeri-

cally. Provided exact and complete measurements of all DOFs in the bladed disk

model, an “accurate” estimation of perturbation ∆δ∗ is derived by the parameter

estimation.

To validate the response expansion technique forwarded in Section 4.3, the

measured blade tip displacement X1,meas and the electrical DOF Qmeas are given

by exact numerical values. The estimated perturbation derived from the incom-

plete measurements is denoted ∆δ∗exp.
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It is shown in Table 4.1 that the online parameter estimation provides a very

good estimation of ∆δ when the exact response from the analytical calculation is

used. In contrast, the expanded response leads to a poorly estimated perturbation

∆δ∗exp. This can be explained by the high sensitivity of the blade response to the

blade mistuning pattern. Since no “exact” response could be obtained using the

response expansion technique, a totally spurious perturbation pattern might be

caused by the small error from the expanded response.
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Figure 4.5: Results of the adaptive control strategy

However, let’s be clear that in the adaptive control strategy the perturbation

is not necessary to be identified precisely. It is the adjustment of piezoelec-

tric mistuning ∆δL that plays the role of control variable. Following the esti-

mated perturbation ∆δ∗ (or ∆δ∗exp), the optimal adjustment ∆δL (or ∆δexp
L ) is

searched by the iterative Gauss-Newton method combined with a line search (see
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Eq. (4.29)). With the new mistuning patterns (δ + ∆δ, δL + ∆δL) in Fig. 4.5a

((δ + ∆δ, δL + ∆δexp
L ) in Fig. 4.5b), frequency sweep results are plotted below.

The red curve shows that a further vibration reduction around the excitation

frequency is achieved due to ∆δL. Moreover, the deduced adjustment ∆δexp
L still

provides very good vibration suppression results, as indicated in Fig 4.5b.

4.5.2 Adaptive control strategy applied to time-varying

mistuned bladed disks

The performance of the adaptive control strategy applied to time-varying mis-

tuned bladed disks will be investigated in this subsection. The “time-varying”

blade mistuning perturbation will be modeled in a step-increasing manner. Con-

sidering that the blade stiffness evolves slowly, the blade mistuning pattern is

thought to be constant over each step interval. Similar to Eq. (4.3), a series of

values with a constant increment are assigned to α(t) in order to describe the

gradual degradation of blade stiffness. α remains invariant in each parameter

estimation step.

Note that the perturbation ∆δ exerts a great impact on the distribution of

peak amplitudes in the frequency range. In particular, the location of peaks may

change. On the other hand, the objective function Π (see Eq. (4.28)) could be

treated as a generalized Euclidean norm of response over the frequency range. It

takes into account all possible peaks in this frequency band with the evolution

in blade mistuning. Consequently, the function Π (instead of the maximum peak

values of the blade amplitude) is used to measure performance of the adaptive

control strategy.

Fig. 4.6 shows the effectiveness of this adaptive control strategy (△) with

blade stiffness mistuning evolution. For purpose of comparison, performances of

the blade-mistuned disk without piezoelectric mistuning (�) and of the mistuned

bladed disk with an invariant piezoelectric mistuning pattern δL (⊙) are also

illustrated. Starting from the tuned case, it can be seen that as compared with the

invariant piezoelectric mistuning pattern ∆δL, the variant piezoelectric mistuning

by the adaptive control strategy is more effective in suppressing the vibration of

time-varying mistuned bladed disks.
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Figure 4.6: Performance of the adaptive control strategy applied to time-varying
mistuned bladed disks

4.6 Conclusion

The adaptive control strategy based on the piezoelectric shunt technique has

focused on more realistic cases where the blade mistuning pattern is slowly time-

varying. By taking advantage of the controllability of piezoelectric shunt circuits,

the piezoelectric mistuning pattern can be adjusted to keep “optimal” in terms

of maintaining low blade vibration levels.

When the blade mistuning is evolving, the adaptive control strategy is rel-

atively more effective compared with the genetic algorithm optimization. Re-

peating blade mistuning identification in terms of δ is avoided; the optimization

of piezoelectric mistuning is greatly simplified since the piezoelectric mistuning

pattern is only slightly adjusted based on the precedent pattern. This is the

motivation for the proposed adaptive control strategy. Numerical studies have

shown that a fine performance is achieved with respect to reducing the vibration

of a time-variant mistuned bladed disk.
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Chapter 5

Essentially nonlinear

piezoelectric shunt circuit

An essentially nonlinear piezoelectric shunt circuit is proposed for practical real-

ization of nonlinear energy sink in this chapter. First, targeted energy transfer

phenomenons from a linear primary structure to a nonlinear attachment, i.e.,

nonlinear energy sink, are introduced. Various methods for nonlinear dynamic

problems and stability analysis are listed. Special attention is paid to the har-

monic balance method since it is employed as a main tool in this thesis. The

configuration of essentially nonlinear shunt circuits is described. Both the non-

linear normal modes and forced response under harmonic forcing are investigated

extensively. A special section is devoted to a numerical method , namely, variable-

coefficient harmonic balance method, to calculate quasi-periodic responses arising

in the coupled electromechanical nonlinear system. Finally, the concept of non-

linear damping ratio is discussed.

5.1 Targeted energy transfer and nonlinear en-

ergy sink

The nonlinear targeted energy transfer phenomenon (or nonlinear energy pump-

ing) has been first observed by Gendelman [138] in 2001. In this research,

redistribution of energy in a highly asymmetric two-DOF system consisting of
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weakly coupled linear oscillator (with a high linear frequency) and highly nonlin-

ear damped oscillator (with a small linear frequency) is investigated. The need for

essential (strong) nonlinearity in the nonlinear oscillator is emphasized. It was

late demonstrated that the transition of mode localization in nonlinear systems

raises the possibility of energy transfer from one mode to another [139].

Gendelman has investigated the transient dynamics of the global system when

the primary linear oscillator undergoes impulsive loads. It is shown that, whereas

input energy is initially stored to the linear oscillator (LO), a nonlinear normal

mode (NNM) localized to the nonlinear attachment can be excited provided that

the input energy is above a critical threshold. As a result, TET occurs and a

significant portion of the input energy to the LO gets passively absorbed and

locally dissipated by the essentially nonlinear attachment. With the capacity

of absorbing external energy, the nonlinear attachment is termed as nonlinear

energy sink (NES).

Another attractive feature of such essentially nonlinear oscillators is that they

do not have preferential resonant frequencies of oscillation. It enables them to res-

onantly interact with modes of the primary linear system at arbitrary frequency

ranges. This characterizes NES from traditional vibration absorbers, such as

resonant shunted piezoelectrics. As remarked in Chapter 1, the behavior of res-

onant shunted piezoelectrics is very sensitive to the deviation of both structural

parameters and optimal electrical parameters.

5.1.1 Configurations of nonlinear energy sink

A basic NES configuration (see Fig .5.1a) has been proposed by Vakakis and Gen-

delman [140; 141]. The grounded nonlinear oscillator (the NES) is coupled to the

impulsively loaded primary structure by means of essential nonlinearity. In this

configuration, grounded and relatively heavy nonlinear attachments clearly limit

their application in practice. For this reason, another lightweight and ungrounded

NES configuration (see Fig .5.1b) has been devised and widely studied [142]. It

has been shown that the dynamics of these two NES configurations bears strong

resemblance.

According to the classic NES configuration in Fig .5.1b, the simplest two-DOF
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a) b)

Figure 5.1: NES configurations [139]: a) grouded and heavy weighted NES; b)
ungrounded and lightweight NES.

system capable of exhibiting targeted energy transfer phenomenons is constructed

as follows [139]:

m1ẍ+ c1ẋ+ c2(ẋ− v̇) + k1x+ k2(x− v)3 = 0 (5.1)

m2v̈ + c2(v̇ − ẋ) + k2(v − x)3 = 0 (5.2)

This system consists of a grounded, damped SDOF linear oscillator (LO),

which acts as the primary system with mass m1 and viscous damper c1, coupled

to an ungrounded attachment m2 through a pure cubic stiffness in parallel to

a viscous damper c2. The equation of motion for this integrated system clearly

characterizes NES by: a) strong mass asymmetry, m2 << m1; b) essentially

nonlinear coupling between the primary structure and NES.

5.1.2 Analysis method and NES design

TET has then been defined as the one-way (irreversible) channel of vibrational

energy from the directly excited linear primary structure to the attached NES.

Weak damping of the global system is a prerequisite for effective realization of

TET in the dynamics discussed. Without the presence of damping, the integrated

system typically can only exhibit nonlinear beat phenomena, whereby the con-

served energy flows back and forth between the linear primary system and the
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NES, and that no targeted energy transfer, even energy dissipation can occur.

The triggering mechanism of nonlinear energy pumping has been further in-

vestigated in several recent studies. A criterion (critical threshold) for inducing

nonlinear energy pumping has been formulated by Vakakis [143]. In particular,

for the case of a two DOF system it is shown that nonlinear energy pumping

coincided with the zero crossing of a frequency of envelope modulation.

A trend is seen that the theory of nonlinear mode localization has become a

powerful tool in pursuing the mechanism of nonlinear energy transfer. At early

times, the complexification-averaging method [139] is adopted to have a grasp

of the dynamics and nonlinear localization phenomena that occur in different

frequency/energy ranges of the global system. More recently, the bifurcation

structure of the nonlinear normal modes (NNMs) has been studied in-depth for

the undamped linear primary system coupled to an undamped NES attachment

[144; 145]. Stemming from the classic theory of NNM by Rosenberg, a slightly

different definition of NNM is proposed by Kerschen [146; 147]. Not only the the

resonant dynamics under condition of 1:1 internal resonance, but also nonsyn-

chronous periodic motions are included in the calculation of NNMs. The influ-

ence of damping on the resonant dynamics and TET phenomena in the weakly

damped system has been further studied in [148]. In these research efforts, two

useful tools are proved effective in seeking the underlying dynamical mechanism

governing TETs:

• Frequency-energy plot (FEP). As a suitable graphic representation of non-

linear normal modes, it offers an intuitive observation of their energy-

dependence. For the weakly damped dynamics, it also reveals how the

decaying global system energy exerts an impact on the transition of non-

linear mode localization, and further leads to nonlinear energy transfer.

• Wavelet transform (WT). When superposed to a frequency-energy plot,

the wavelet transform (WT) spectra of the weakly damped responses is

used extensively for analyzing energy exchanges and transfers taking place

between the primary structure and NES [148; 149].

The response of harmonically forced linear oscillator with attached nonlin-

ear energy sink (NES) has been investigated by Starosvetsky and Gendelman
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[150; 151]. Even in the case of single-frequency excitation, quasi-periodic re-

sponse regimes is demonstrated to typically exist together with periodic response

regimes. The complicated response regimes give rise to essential problems that

in such situations, NES requires careful tuning design for optimal performance

and may be only efficient in limited range of external forcing amplitudes.

In terms of NES design, a design procedure has been developed by Musienko

et al. [152]. Efficient energy pumping in the presence of uncertain parameters (in

particular, nonlinear parameters and damping) has been assessed by Gourdon

and Lamarque [153]. Kozmin et al. [154] have performed studies of optimal

energy pumping mode using global optimization. Experimental verification of

analytic and numerical results of nonlinear energy pumping has been performed

by means of appropriately small designed building model [155].

5.1.3 Implementation of nonlinear energy sink

Among a number of experimental studies of nonlinear energy transfers [156; 157],

the design and practical implementation of essentially nonlinear elements is al-

ways of major concern. As remarked earlier, this is due to the fact that essential

nonlinearity characterizes the nonlinear energy sink systems.

In most of existing NES devices, essential nonlinearity is realized by sophis-

ticated wire-based rigs. For example, the design, application and performance of

nonlinear energy sink in suppressing aeroelastic instability has been reported by

Lee et al. [158; 159]. This research interests us because the rotating blades in the

flow field also experience possible aeroelastic instabilities. In this experimental

study, a 2DOF in-flow rigid wing model interacts with a mechanical NES device.

Since the NES provides a one-way irreversible channel of vibration energy from

the wing to the NES, it is feasible to partially or even completely suppress aeroe-

lastic instability of the wing in flow field. Naturally, NES is also expected to give

promising prospect if applied to bladed disks.

Let’s focus on the NES used in this nonlinear aeroelastic test apparatus

(NATA) depicted in Fig .5.2. A small “car”, representing the mass of NES,

is supported on an air track and connected to the NATA through the viscous

damper and the essentially nonlinear spring. This spring is formed by fastening
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Figure 5.2: Configuration of NES used in NATA [159]

a pair of thin metal wires. As a consequence, geometrically nonlinear overall

stiffness characteristic between the NATA and NES is obtained when the NATA

moves with respect to the NES in the direction perpendicular to the wires.

In another applications of nonlinear energy pumping to problems in acoustics,

essential nonlinearity depending on the thin circular visco-elastic membrane ex-

periencing large amplitude oscillation has been demonstrated experimentally by

Cochelin et al. [160].

As pointed out in the literature [161], such geometrically nonlinear stiffness

designs at this stage also introduce a weight penalty to the primary structure

and need significant installation space for efficient vibration mitigation. These

inherent limitations stimulate us to seek new intermedia for practical realizations

of nonlinear energy sinks. A nonlinear piezoelectric shunting strategy has been

proposed in a previous research effort [162]. In this chapter, we attempt to

construct a piezoelectric-based NES through shunting the piezoelectric materials

by a so-called essentially nonlinear shunt circuit.

5.2 Methods in nonlinear analyses

In this section, we will briefly discuss different methods that can be used to

characterize the response of nonlinear systems. Let’s consider a non-autonomous

nonlinear dynamic system described by the following second order differential
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equation:

Mü+Du̇+Ku+ fnl(t, u, u̇) = f(ω, t) (5.3)

where M , D and K are mass, damping and stiffness matrix of size n×n, respec-

tively; fnl represents nonlinear force and f(ω, t) the external periodic excitation

with a frequency ω. We are mainly interested in periodic solutions of the nonlin-

ear system.

For time-periodic solutions, there is a minimum time interval T > 0 (the

“period”) after which the system returns to its original state:

u(t) = u(t+ T ) (5.4)

for all t.

There exist numerous approaches to analyzing periodic solutions for a non-

linear dynamic system. These approaches can be naturally divided into two

categories:

• analytical methods, such as perturbation methods [163] and averaging method

[164], are limited in small-sized systems possessing certain types of nonlin-

earities. In this thesis, a complexification-averaging technique [139] that is

especially suitable for analyzing strong nonlinear systems is to be adopted

in our studies of targeted energy transfer in a 2DOF system;

• numerical methods can be further categorized into two groups:

1. methods in the time domain based on time integrations [165]; the

time history of motions are progressively constructed from the system

in question;

2. methods in the frequency domain based on Galerkin method (i.e. a

projection procedure) [166].

There are also some other kinds of numerical methods, such as Describing

Function Method [167] and Cell Mapping method [168], etc, which are

beyond the scope of this thesis.

In particular, the harmonic balance method (HBM) has been shown compu-

tationally efficient for simple nonlinear problems as well as complex industrial
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nonlinear systems. Employed as a principal tool in this thesis, it will be intro-

duced in detail. Continuation technique is also covered in order to follow the

branch of solutions by HBM.

5.2.1 Harmonic balance method

For all linear systems subjected to mono-harmonic excitation their responses will

also be mono-harmonic. This consideration is derived from the theory of linear

differential equations. But it cannot be directly applied to the non-linear system

case. It is only possible to suppose that nonlinear system response is periodic.

Sometimes it happens that non-linear response is quasi-periodic or even chaotic.

But in majority of cases the periodic solution is obtained. Solutions periodic in

time, and of an unique fundamental frequency, may be expressed in terms of a

Fourier series:

u(t) = U0 +

Nh∑

k=1

U ckcos(kωt) + U sksin(kωt)

= [I, cos(ωt)I, sin(ωt)I, · · · , cos(kωt)I, sin(kωt)I, · · · ]
× [U0, U c1, U s1, · · · , U ck, U sk, · · · ]T

= T (t)U (5.5)

where I is the n×n identity matrix and Nh is the number of retained harmonics.

The (2Nh + 1)n× 1 vector U contains unknown Fourier coefficients:

U = [U0, U c1, U s1, . . . , U ck, U sk, . . . , U cNh , U sNh ]T (5.6)

T (t) is the n× (2Nh + 1)n matrix containing trigonometric functions:

T (t) = [I, cos(ωt)I, sin(ωt)I, · · · , cos(Nhωt)I, sin(Nhωt)I] (5.7)

The same procedure is then applied for the external force f and nonlinear

114



5. Essentially nonlinear piezoelectric shunt circuit

force fnl:

f(t) = T (t) × [F 0, F c1, F s1, · · · , F ck, F sk, · · · ]T = T (t)F (5.8)

fnl(t, u, u̇) = T (t) × [F 0
nl, F

c1
nl , F

s1
nl , · · · , F ck

nl , F
sk
nl , · · · ]T = T (t)Fnl(U) (5.9)

In order to compute velocities and accelerations, a frequential derivative op-

erator is defined:

∇ = diag(0n×n,∇1, · · · ,∇Nh
) with∇k =

[

0 I

−I 0

]

(5.10)

We may thus write:

u̇(t) = ωT (t)∇U (5.11)

ü(t) = ω2T (t)∇2U (5.12)

Substituting Eq. (5.6)-(5.12) into Eq. (5.3) yields:

ω2MT (t)∇2U + ωDT (t)∇U +KT (t)U + T (t)Fnl(U) = T (t)F (5.13)

Considering that for a n × n matrix W and a (2Nh + 1)n × 1 vector U , we

have:

WT (t)U = T (t)NwU (5.14)

with Nw = Bdiag(W,W, · · · ).
Eq. (5.13) becomes:

T (t)[(ω2NM∇2 + ωND∇ +NK)U + Fnl(U)] = T (t)F (5.15)

Time dependency may be suppressed and a frequency algebraic equation link-

ing Fourier coefficient may be obtained using a Galerkin method, which is a pro-

jection of the equation on trigonometric functions. Indeed these trigonometric

functions define a scalar product:

〈f, g〉 =
ω

2π

∫ 2π/ω

0

f(t)g(t)dt (5.16)
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We thus may write:

ω

2π

∫ 2π/ω

0

TT (t)T (t)dt =
1

2









2I 0

I

I

0
. . .









= L (5.17)

Applying this scalar production Eq. (5.15) leads to:

L[(ω2NM∇2 + ωND∇ +NK)U + Fnl(U)] = LF (5.18)

L is a diagonal matrix so Eq. (5.18) may be simplified into a (2Nh + 1)n

equation system:

G(ω, U) = P (ω)U + Fnl(U) − F = 0 (5.19)

where P (ω) = ω2NM∇2 + ωND∇ +NK .

The problem of searching for periodic solutions to the nonlinear dynamic

system Eq. (5.3) is therefore equivalent to finding zeros of the algebraic func-

tion G(U) : R
(2Nh+1)n → R

(2Nh+1)n. Roots of Eq. (5.19) are found by using a

quasi-newton algorithm, variants of which are available in Fortran libraries or in

Matlab’s optimization toolbox. A critical issue in the formulation of harmonic

balance method is the treatment of nonlinear force, i.e., the determination of the

nonlinear term Fnl(U), which is to be discussed next.

Treatment of nonlinear force

In the standard harmonic balance method, the nonlinear force fnl(t) is expressed

by a Fourier expansion:

fnl(t) = F 0
nl +

Nh∑

k=1

F ck
nl cos(kωt) + F sk

nl sin(kωt) (5.20)
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where

F 0
nl =

ω

2π

∫ 2π/ω

0

fnl(t, T (t)U, ωT (t)∇U)dt (5.21)

F ck
nl =

ω

π

∫ 2π/ω

0

fnl(t, T (t)U, ωT (t)∇U)cos(kωt)dt (5.22)

F sk
nl =

ω

π

∫ 2π/ω

0

fnl(t, T (t)U, ωT (t)∇U)sin(kωt)dt (5.23)

Apparently if the nonlinear function fnl(t, u, u̇) is of a simple form (e.g., a

cubic nonlinearity), analytical expression of Fnl can be readily obtained for small

valued Nh. When the nonlinearity is strong, the solution may not be strictly

harmonic. Also higher harmonics may significantly contribute to the overall solu-

tion. Moreover, when more harmonics are included in the analysis the resulting

expression from Eq. (5.20) may be long and complex. Consequently the classical

HBM becomes cumbersome or even impractical.

In the case that no analytical expression can be written between Fnl and U ,

nonlinearities of all kinds could be treated by using the alternating frequency/time-

domain (AFT) technique [169] based on fast Fourier transform. Eq. (5.19) is non-

linear and it must be solved iteratively. AFT technique in this iteration process

can be sketched in Fig. 5.3:

U(k)

Fnl
(k+1)

u(t),  u(t)(k) (k).

(k+1)
fnl(t, u, u)

.

iFFT

FFT

frequency domain time domain

Figure 5.3: Alternating frequency/time-domain technique

At each iterative step, an evaluation of the approximate temporal terms u(t)

and u̇(t) is carried out from an initial value U (k) using the inverse fast Fourier

transform (iFFT); it also allows to evaluate temporarily the nonlinear term

fnl(t, u, u̇)
(k+1), and then to deduce Fourier coefficients Fnl by a fast Fourier trans-
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form (FFT) procedure. As a result, an explicit evaluation of Fnl(U) is avoided

and HBM could be applied with a large number of harmonics.

Besides AFT technique, the determination of the nonlinear term Fnl(U) could

also be solved by a Trigonometrical Collocation Method [170; 171].

5.2.2 Continuation technique

The task of finding a periodic solution for the the nonlinear dynamic system

Eq. (5.3) can be transformed into an equivalent root-finding problem Eq. (5.19),

by means of HBM:

G(ω, U) = 0 (5.24)

where ω is an independent, externally controlled scalar parameter, excitation

frequency over a range in which the solution to Eq. (5.3) is of interest; U is the

(2Nh + 1)n × 1 unknown Fourier coefficient vector and G a nonlinear algebraic

function in a (2Nh + 1)n dimensional space.

Once a solution to Eq. (5.24) is found for a certain parameter, i.e. (ω0, U0),

one can use this information in order to find the other solutions when the control

parameter of the system ω is varied. The variation of ω yields a branch of solutions

in the solution-parameter space.

Here, we consider continuation technique for the periodic solutions of the

system Eq. (5.24). This technique provides algorithmic procedures to generate a

continuum of periodic solutions (ωj, U j) so that:

G(ωj, U j) ≤ ǫ (5.25)

where ǫ is the prescribed accuracy of the solution.

In general, the continuation technique proceeds step-wise, due to the fact that

each previous periodic solution is the initial guess for finding the next periodic

solution. There exist various continuation methods that differ in the parameter-

ization strategy, predictor, corrector and step control [172; 173]. The arc-length

continuation method employed in this chapter is based on a prediction step tan-

gent to the solution branch and subsequent correction steps to converge to the

branch (see Fig. 5.4).
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Δs

U

ω

(ωj, Uj)

(ωj+1, Uj+1)

prediction

correction

Figure 5.4: Arc-length continuation

In an arc-length continuation, periodic solutions are parameterized by the arc

length s, so that (ωj, U j) = (ω(sj), U(sj)). The subsequent solution is to be

obtained by:

U j+1 = U j + ∆Upred +
∑

k

∆U cor
k (5.26)

ωj+1 = ωj + ∆ωpred +
∑

k

∆ωcor
k (5.27)

Prediction step

At step j, ∆Upred and ∆ωpred are generated along the tangent vector to the branch

at the current point (ωj, U j). An expansion is first performed:

G(ωj + ∆ωpred, U j + ∆Upred) = G(ωj, U j) +
∂G(ωj, U j)

∂U
∆Upred +

∂G(ωj, U j)

∂ω
∆ωpred + H.O.T = 0 (5.28)

Neglecting the high order terms and substituting Eq. (5.25) into the above

expression yields:

∂G(ωj, U j)

∂U
∆Upred +

∂G(ωj, U j)

∂ω
∆ωpred = 0 (5.29)

Eq. (5.29) is underdetermined. An auxiliary condition is desired to obtain
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an unique prediction. For this purpose, the arc-length is normalized so that the

tangent vector [∆Upred |∆ωpred]T has a unit length:

||∆Upred||2
||∆s||2 +

||∆ωpred||2
||∆s||2 = 1 (5.30)

Combining Eq. (5.29) with Eq. (5.30), we obtain expressions of ∆ωpred and

∆Upred:

∆ωpred = ±∆s/

√

||[∂G(ωj, U j)

∂U
]−1

∂G(ωj, U j)

∂ω
||2 + 1 (5.31)

∆Upred = −[
∂G(ωj, U j)

∂U
]−1∂G(ωj, U j)

∂ω
∆ωpred (5.32)

It is observed that there are two possibilities for ∆ωpred, which correspond to

two different prediction directions. In order to follow the branch in the same di-

rection, a scalar product condition is imposed between two consecutive prediction

steps:

[∆Upred |∆ωpred]Tj−1 · [∆Upred |∆ωpred]j ≥ 0 (5.33)

Correction step

The prediction solution (ωj + ∆ωpred, U j + ∆Upred) usually does not meet the

criterion in Eq. (5.25). A Newton-Raphson corrector is utilized to make the pre-

diction solution converge to the branch. Values of ∆U cor
k and ∆ωcor

k corresponding

to kth correction are determined by:

∂G(ω, U)

∂U
∆U cor

k +
∂G(ω, U)

∂ω
∆ωcor

k = −G(ω, U) (5.34)

where (ω, U) is the updating point expressed by:

U = U j + ∆Upred +
k−1∑

l=1

∆U cor
l (5.35)

ω = ωj + ∆ωpred +
k−1∑

l=1

∆ωcor
l (5.36)
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Eq. (5.34) is also underdetermined. An additional equation is given by:

||U − U j||2 + ||ω − ωj||2 = ||∆s||2 (5.37)

It means that the distance between the two consecutive periodic solution is

always kept equaling to ∆s.

This iterative process is carried out until convergence is achieved. Convergence

is achieved when G(ω, U) ≈ 0 approaches to the desired accuracy. In summary,

the algorithm for periodic solutions based on HBM and arc-length continuation

method is illustrated in Fig. 5.5.

Start point (ω0, U0)

G(ω0, U0) < ε (j=0)

Prediction Step

Calculate the tangent predictor
(ωj+1

(0), Uj+1
(0))  (k=0)

Evaluation of residue

Calculate G(ωj+1
(k), Uj+1

(k)) 

Convergence ?

|| G(ωj+1
(k), Uj+1

(k)) || < ε 

Correction step

Calculation by Newton-Raphson corrector
(ωj+1

(k+1), Uj+1
(k+1))

YES
New point
ωj+1 = ωj+1

(k)

Uj+1
(k) =  Uj+1

(k) 

j = j+1

k = k+1

Non

Figure 5.5: Algorithm for continuation of periodic solutions

Step control

The evolution path of this predictor-corrector method is parameterized by the

distance ∆s along the tangent predictor, also referred to as arc-length continu-

ation parameter in the literature. In simple problems the principles introduced
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above may work effectively without a step-length control. That is, constant step

lengths are taken throughout, with ∆s = 0.1. If the step size is small enough,

such a step strategy may be successful for a wide range of problems. But such

results are often obtained in an inefficient manner, involving too many steps along

“flat” branches. The step length should be adapted to the actual convergence

behavior. Ultimately, it is the flexibility of a step control that decides whether

a continuation algorithm works well. Step-length algorithms should therefore be

specifically designed.

As pointed out in the literature [173], step-length algorithms can be based

on empirical arguments. The costs of a continuation are moderate for a certain

medium step length, which is related to an optimal number N∗
iter of iterations of

during the correction step. This number depends on the type of corrector and on

the prescribed error tolerance ǫ. For example, with quasi-Newton correctors and

ǫ = 10−4, the optimal number is about N∗
iter = 6.

The step control strategy used herein relies on the evaluation of the conver-

gence quality by the number of iterations of the corrector step. The step size

is controlled so that the corrector step requires on average the desirable number

of iterations N∗
iter. At each step, the step size is updated according to the ratio

between the desirable number N∗
iter and the previous number N j−1

iter of iterations:

∆s(j) =
N∗

iter

N j−1
iter

∆s(j−1) (5.38)

In practice,the ratio N∗
iter/N

j−1
iter is often bounded to make the adaptation step-

size more robust and to prevent the continuation from jumping between different

branches. The step size can also be bounded ∆s ≤ ∆smax to obtain enough dis-

cretized points on the branch during the continuation. In case of no convergence,

the step size can be halved until convergence is achieved.

5.3 Stability analysis

When tracing a branch of periodic solutions, the question arises whether the

periodic solutions are stable and where and in which way stability is lost. Deter-
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mining the local stability of a dynamical system periodic solution is of primary

interest in an engineering context since only stable solutions are experimentally

encountered. In this section, we will mainly discuss the stability analysis scheme

based on the well-known Floquet theory. A newly emerging Hill method is to be

also introduced in short.

5.3.1 Notion of stability

We usually consider the continuous-time dynamic system governed by the general

equation of first order. To this end, the second order equation of motion Eq. (5.3)

is rearranged in the following form:

[

u̇

ü

]

=

[

0 I

−M−1K −M−1D

][

u

u̇

]

+

[

0

M−1[−fnl(t, u, u̇) + f(ω, t)]

]

(5.39)

or in a succinct form:

v̇(t) = g(v;ω) (5.40)

where v(t) = [u(t), u̇(t)]T is a 2n-dimensional state vector and g is a nonlinear 2n-

dimensional vector field that depends on a control parameter ω. In the following,

g may explicitly depend on t (in non-autonomous systems) or not (in autonomous

systems).

Global stability

In nonlinear dynamics, the most common definition is Lyapunov stability.

Definition 1. A solution v(t) of the differential equation in Eq. (5.40) is said to

be Lyapunov stable if, given a small number ǫ > 0, there exists a number

δ = δ(ǫ) > 0 such at any other solution w(t) for which ||v(t) − w(t)|| < δ

at time t = t0 satisfies ||v(t) − w(t)|| < ǫ for all t > t0.

If v(t) is Lyapunov stable, then any other solution that is close to it initially

remains so and is confined to a tube formed by the union of spheres of radius ǫ

centered on points along the trajectory v(t), the so-called ǫ tube.

Another widely used definition in mechanic dynamics is asymptotic stability:
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Definition 2. A solution v(t) of Eq. (5.40) is said to be asymptotically stable if

it is Lyapunov stable and limt→∞ ||v(t) − w(t)|| → 0.

Lyapunov functions are often employed to determine the global stability of a

nonlinear solution. However, there is no general method for determining these

functions. There still exist various definitions of global stability in the literature,

such as Poincaré stability and Lagrange stablity [172]. But all the notions of

global stability above do not provide any explicit schemes to determine the sta-

bility of a solution. Studies focusing principally on local stability are discussed

below. On the contrary, explicit schemes for determining local stability can be

derived.

Local stability

We consider a periodic solution v0(t) of Eq. (5.40) with minimal period T , at the

particular control parameter value ω0. The stability of this periodic solution is

studied by superimposing a small disturbance w(t):

v(t) = v0(t) + w(t) (5.41)

Substituting Eq. (5.41) into Eq. (5.40), assuming that g is at least twice

continuously differentiable, expanding the result in a Taylor series about v0, and

retaining only linear terms in the disturbance, we obtain:

ẇ(t) = Jv(v0;ω0)w(t) (5.42)

where Jv(v0;ω0) is the Jacobian matrix of g at (v0;ω0).

The stability study of the periodic solution v0(t) consists in finding if the

disturbance w(t), solution of Eq. (5.42), fades away or is amplified as t is increased.

Since v0(t) is T -periodic in time, Jv is also T -periodic in time considering its

definition. Consequently, the system in Eq. (5.42) is a linearized system with

periodic coefficients. The Floquet theory discussed in the following, specifically

deals with this kind of dynamical systems.
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5.3.2 Floquet theory

Assuming that a fundamental matrix solution of Eq. (5.42) W (t) is expressed as:

W (t) = [w1(t), w2(t), . . . , w2n(t)] (5.43)

W (t+T ) should therefore be also a fundamental matrix solution and moreover,

be linear combinations of w1(t), w2(t), . . . , w2n(t) . That is:

W (t+ T ) = W (t)Φ (5.44)

where the matrix Φ is called the monodromy matrix.

Specifying the initial condition W (0) = I (I is 2n × 2n identity matrix) and

setting t = 0 yields Φ = W (T ). The monodromy matrix can be thus obtained

by calculating wj(T ) using time integration from an initial condition wj(0) = Ij,

where Ij is the jth column of I. In particular, the monodromy matrix is simply

a by-product of a shooting continuation method [147].

The monodromy matrix Φ has 2n eigenvalues ρj, called Floquet multipliers.

One of the Floquet multipliers is always equal to +1, say ρ2n = 1. The other

2n − 1 multipliers determine local stability of periodic solution (v0;ω0) by the

following rule:

1. v0(t) is stable if |ρj| < 1 for all j = 1,2, . . . , 2n-1;

2. v0(t) is unstable if |ρj| > 1 for some j;

3. if max ρj = 1, a nonlinear analysis is necessary to determine the stability

of such a nonhyperbolic periodic solution v0(t).

Stability analysis based on Floquet theory is usually of good precision. How-

ever, it is necessary to perform time integrations for 2n differential equations in

the construction of the monodromy matrix. Inherently, the eigenvalue accuracy

depends on the chosen time step size, leading to possible long time computation.

Apparently it is computationally cumbersome for large-scale nonlinear systems.
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Mechanisms of losing stability

So far we have discussed how (local) stability of a particular periodic solution

manifests itself through Floquet multipliers. In general, the multipliers and,

hence, the stability vary with the control parameter ω. Depending on where the

critical multiplier or pair of complex conjugate multipliers crosses the unit circle,

different types of bifurcation occur. One distinguishes three ways of crossing the

unit circle, with three associated types of bifurcation in Fig. 5.6, which shows the

path of the critical multiplier onlythat is, the eigenvalue with |ρj| = 1:

1. ρj gets unity in addition to ρ2n; saddle-node or symmetry breaking bifur-

cation occurs.

2. ρj = −1, the multiplier crosses the unit circle at the negative real axis

period-doubling or flip bifurcation occurs.

3. the crossing is with nonzero imaginary part, that is, a pair of complex

conjugate eigenvalues crosses the unit circle; a bifurcation from a periodic

solution to a torus (generalized Hopf bifurcation or Neimark-Sacker bifur-

cation); a new frequency component is exposed after the bifurcation point.

Im(ρ)

Re(ρ)
+1-1

12

3

3

Figure 5.6: Different mechanisms of losing stability
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5.3.3 Hill method

Hill method is a harmonic-based numerical approach used to determine the so-

lutions of linear periodic systems like Eq. (5.42). Stability analysis could be also

performed with a modification of Hill method [174]. This algorithm transforms a

linear time-variant system into an eigenvalue problem of a linear time-invariant

system.

Let’s recall the second order nonlinear dynamic system with a periodic solution

u0(t):

Mü0 +Du̇0 +Ku0 + fnl(t, u0, u̇0) = f(ω, t) (5.45)

After a harmonic balance procedure, this system is described in the frequency

domain:

P (ω)U0 + Fnl(U0) = F (5.46)

The periodic solution u0(t) is perturbed by a periodic term w(t) multiplied by

a decay term eρt

u(t) = u0(t) + w(t)eρt (5.47)

Introducing this solution u(t) into Eq. (5.3), we have:

Mü0 +Du̇0 +Ku0 + eρt[ρ2Mw + ρ(2Mẇ +Dw)] + · · ·
eρt(Mẅ +Dẇ +Kw) + fnl[t, u0(t) + w(t)eρt] = f(ω, t) (5.48)

Applying a harmonic balance procedure with Nh harmonics retained to the

above equation yields:

P (ω)U0 + eρt[P (ω) + ρΛ1 + ρ2Λ2]W + Fnl(U0 +Weρt) = F (5.49)

where w(t) = T (t)W , and the matrices Λ1 and Λ2 are given by:

Λ1 = Bdiag(K,Λ1
1, . . . ,Λ

k
1, . . . ,Λ

Nh

1 ),

Λ2 = Bdiag(M, . . . ,M), (5.50)
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The subblocks Λk
1 are written as:

Λk
1 =

[

D 2kωM

−2kωM D

]

, k = 1, . . . , Nh. (5.51)

In addition, an expansion of the nonlinear term is performed:

Fnl(U0 +Weρt) = Fnl(U0) +
∂Fnl(U0)

∂U0

Weρt +H.O.T (5.52)

Substituting Eq. (5.52) into Eq. (5.49) and neglecting terms of higher order,

Eq. (5.49) simplifies to the following eigenvalue problem:

[P (ω) + ρΛ1 + ρ2Λ2 +
∂Fnl(U0)

∂U0

]W = 0 (5.53)

It is important to note that the term ∂Fnl(U0)/∂U0 is readily available as a

by-product in solving Eq. (5.46) by a quasi-newton algorithm.

Solving for the eigenvalues of Eq. (5.53), one obtains a set of ρj with real and

imaginary parts, where a negative real part indicates stability of the solution, as

the perturbation decays with time, and a positive real part indicates instability.

Obviously, Hill method is more advantageous when one operates in the fre-

quency domain using the harmonic balance method, since no time integration

is needed. However, a Fourier expansion of the nonlinear term Fnl(U0 + Weρt)

is involved in this method. As a result, the Nh order truncation of Fourier se-

ries may have a great impact on the precision of stability analysis, especially in

strong nonlinear cases. A comparative study supporting this viewpoint has been

conducted by Guskov [171]. Besides, an improved variant of Hill method, based

on HBM combined with the asymptotic numerical method has been reported by

Lazarus and Thomas [175].

In this thesis, the method based on Floquet theory is adopted for stability

analysis of periodic solution in nonlinear dynamic systems.
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5. Essentially nonlinear piezoelectric shunt circuit

5.4 Configuration of essentially nonlinear piezo-

electric shunt circuit

In this section, we propose an essentially nonlinear piezoelectric shunt circuit as

practical realization of nonlinear energy sink system. This kind of NES relying

on piezoelectric shunt circuits possesses attractive features. The most significant

advantage is that various forms of nonlinearity can be readily achieved by proper

circuit design. For instance, on the basis of traditional resonant shunt circuits,

cubic nonlinearity can be introduced by an additional ferroelectric capacitance.

The small size of the piezoelectric absorber and the compact easy-integration also

make nonlinear piezoelectric shunting appealing for practical use.

P
IE

ZOk

x(t)f(t)

m

c

R

L

Zsh
R

L

resonant circuit

Cnl

Cneg

nonlinear circuit

Figure 5.7: Single Degree of freedom system of a mass and a piezoelectric element

We consider once again the simplest SDOF mechanical linear oscillator with

a piezoelectric attachment in d33 mode depicted in Fig. 5.7. At first the linear

piezoelectric shunt circuit, i.e. the resonant circuit in which a resistance R and

an inductance L connected in series with the piezoelectric is examined. The

governing equations in the time domain are derived in Chapter 2.2.2:

mẍ+ cẋ+ (k + koc)x− kcq = f(t) (5.54)

Lq̈ +Rq̇ + 1/Cs
pq − kcx = 0 (5.55)

where q is the electric charge on the piezoelectric stack, koc (ksc) is the open
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(short) circuit piezoelectric stiffness, kc reflects the electromechanical coupling

effect, Cs
p is the inherent piezoelectric capacitance.

This resonant circuit allows the attenuation of resonance vibration through

proper tuning of the electric parameters. Let Lopt, Ropt denote the tuned in-

ductance and resistance value, respectively. Then we consider introducing the

nonlinearity realized by using a ferroelectric capacitance, which is denoted by Cnl

in Fig. 5.7. Another important component Cneg will be explained soon.

Ferroelectric capacitance

Ferroelectric ceramic capacitances are widely used, in particular in circuits

where high capacitance precision is not required (rough filtration, etc.).

These capacitors have already found also in some nontrivial applications as

nonlinear elements. One can characterize the ferroelectric capacitance via

its nonlinear voltage-charge characteristic vc(q) which usually is close to a

third degree (or fifth degree) polynomial with positive coefficients [176]:

vc(q) =
1

C0

q + αq3 (5.56)

where C0 is the linearized capacitance near q = 0.

We mention at this point that the requirement of essential stiffness nonlinear-

ity of the nonlinear attachment plays a key role in the realization of NES, since it

precludes the existence of a preferential resonance frequency of the nonlinear os-

cillator. This follows from the fact that an essential nonlinear piezoelectric shunt

circuit is not a priori tuned to any specific frequency, unlike the linear RL shunt

circuit. However, the presence of the inherent capacitance of the piezoelectric

material Cs
p undermines the realization of essential nonlinearity. Hence a possi-

ble solution is to introduce a negative capacitance, denoted by Cneg in Fig. 5.7,

connected in series with the piezoelectric capacitance.

Negative capacitance

As mentioned in Chapter 2.3, negative capacitances are widely used to

enhance the electromechanical coupling and improve the shunt damping

accordingly. Connected in series with the piezoelectric material, the nega-

tive capacitance increases the overall capacitance value of the shunt circuit.
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With little power consumption, it is an attractive approach in many situa-

tions.

Let Cres denote the residual capacitance in the essentially nonlinear shunt

circuit, which is resulted from the combination of inherent piezoelectric capac-

itance, ferroelectric capacitance and negative capacitance. Further, we have

1/Cres = µ/Cs
p , where µ is a small parameter. As pointed out in [139], such

a small linear term (usually unavoidable) always appears, however, it does not

affect the TET results.

The equations of motion of the nonlinear system are given by:

mẍ+ cẋ+ (k + koc)x− kcq = f(t) (5.57)

εLoptq̈ + βRoptq̇ + 1/Cresq + αq3 − kcx = 0 (5.58)

Hereby the tuned resonant shunt circuit expressed by Eq. (5.54)-(5.55) is

taken as a reference system. A critical nonlinear coefficient αcr can be defined

by αcrq3
max = qmax/C

s
p , where qmax is the maximum electric charge exhibited in

Eq. (5.55). Consequently the actual nonlinear coefficient α can be measured by

αcr.

A series of nondimensional quantities are introduced as follows:

ωsc =

√

k + ksc

m
, ωe =

√

1

Cs
pLopt

, αcr
n =

αcrq2
max

ω2
scL

2
opt

, δsc =
ωe

ωsc

,

q =
qmax
√
Lopt

q̄, x =
qmax√
m
x̄, t =

1

ωsc

t̄,
1

Cres

= µ
1

Cs
p

,

λ1 =
c

mωsc

, λ2 =
Ropt

Loptωsc

, f̄(t̄) =
f(t̄/ωsc)√
mω2

scqmax

, αn =
αq2

max

ω2
scL

2
opt

(5.59)

Note that a tuning ratio δsc is defined based on the short circuit natural fre-

quency ωsc, which differs with δt described in Chapter 2.2. By use of the piezo-

electric constitutive equations, Eq. (5.57)-(5.58) are then nondimensionalised in

the following form:

¨̄x+ λ1 ˙̄x+ (1 +K2
33)x̄− δscK33q̄ = f̄(t̄) (5.60)

ε¨̄q + βλ2 ˙̄q + µδ2
scq̄ + αnq̄

3 − δscK33x̄ = 0 (5.61)
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Differentiation in Eq. (5.60)-(5.61) is with respect to the nondimensional time

t̄. Note that δsc ≈ 1 since the linear tuned circuit is chosen as the reference. For

the sake of simplicity, the “bar” notation is not used in the rest of this chapter:

ẍ+ λ1ẋ+ (1 +K2
33)x− δscK33q = f(t) (5.62)

εq̈ + βλ2q̇ + µδ2
scq + αnq

3 − δscK33x = 0 (5.63)

or in a compact matrix form by denoting y = [x, q]T :

Mpÿ +Dpẏ +Kpy + fpnl
(y) = fp(t) (5.64)

Several parameters λ1, λ2, δsc and K33 are fixed because the tuned resonant

circuit is chosen as reference. Different configurations of nonlinear shunt circuits

could be achieved by assigning proper values of (ε, β, µ, αn). Apparently the

parameter set (ε = 1, β = 1, µ = 1, αn = 0) corresponds to the tuned resonant

circuit. We are mainly interested in the essential nonlinear piezoelectric circuit

(e.g., µ << 1) with small inductance (e.g., ε < 1). The piezoelectric-based NES

possessing linear coupling with the primary structure differs from the the widely

investigated mechanical NES configuration in Eq. (5.2). In an effort to understand

the dynamics of this simple coupled electromechanical system, we proceed to the

analytical and numerical studies in the following sections.

5.5 Nonlinear normal mode and free vibration

As it is known, the dynamics of free vibration of the coupled nonlinear system

is governed by the topological structure and bifurcations of the nonlinear normal

modes of the undamped and unforced system. For the coupled electromechanical

system, the underlying Hamiltonian system is described by:

ẍ+ (1 +K2
33)x− δscK33q = 0 (5.65)

εq̈ + µδ2
scq + αnq

3 − δscK33x = 0 (5.66)

Nonlinear normal modes (NNM) are defined as (not necessarily synchronous)
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time-periodic oscillations of a non-dissipative nonlinear dynamic systems. More

detailed description of NNM could be found in [139]. In order to have an initial

grasp of the dynamics and localization phenomenons that occur in different fre-

quency/energy ranges of the system in Eq. (5.65)-(5.66), we first proceed to the

analytical study of the periodic solutions; numerical calculations for NNMs and

transient responses are further conducted in the later subsection.

5.5.1 Analytical study of nonlinear normal mode

The analytical study of nonlinear normal modes is performed by employing the

Complexification-Averaging methodology [139]. The standard process is initial-

ized by a transition to complex variables:

ψ1 = ẋ+ iωx, ψ2 = q̇ + iωq (5.67)

The initial undamped and unforced system is thus written as:

ψ̇1 − i
ω

2
(ψ1 + ψ∗

1) + (1 +K2
33)

(ψ1 − ψ∗
1)

2iω
− δscK33

(ψ2 − ψ∗
2)

2iω
= 0 (5.68)

ε
[

ψ̇2 − i
ω

2
(ψ2 + ψ∗

2)
]

+ µδ2
sc

(ψ2 − ψ∗
2)

2iω
+

αn

(
ψ2 − ψ∗

2

2iω

)3

− δscK33
(ψ1 − ψ∗

1)

2iω
= 0 (5.69)

The Complexification-Averaging methodology essentially involves a slow-fast

partition of the dynamics. It is assumed that 1 : 1 resonant response is sought

with the same fast frequency ω. Then we further introduce the change of variables

related with fast oscillation of frequency ω:

ψ1 = φ1(t)e
iωt, ψ2 = φ2(t)e

iωt (5.70)

The above two complex variables indicate that the complex variables ψj, j =

1, 2 are approximately expressed in terms of fast oscillations eiωt, modulated by

slowly varying complex amplitudes φj.

Averaging with respect to the fast frequency ω, after which only terms con-

taining the fast frequency remain. This leads to the following set of complex
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modulation equations (for the slow dynamics):

φ̇1 + i
ω

2
φ1 − i

(1 +K2
33)

2ω
φ1 + i

δscK33

2ω
φ2 = 0 (5.71)

ε

(

φ̇2 +
iω

2
φ2

)

− i
µδ2

sc

2ω
φ2 − i

3αn

8ω3
|φ2|2φ2 + i

δscK33

2ω
φ1 = 0 (5.72)

Let’s introduce the polar representations φ1 = A1e
iθ1 and φ2 = A2e

iθ2 in the

above equations, where A1, A2 are real amplitudes and θ1, θ2 real phases. Equa-

tion is balanced by setting the real and imaginary parts of the resulting equations

equal to zero, respectively. The following set of real modulation equations is thus

obtained:

Ȧ1 −
A2δscK33

2ω
sin(θ2 − θ1) = 0 (5.73)

A1θ̇1 +
ωA1

2
− (1 +K2

33)A1

2ω
+
A2δscK33

2ω
cos(θ2 − θ1) = 0 (5.74)

εȦ2 +
A1δscK33

2ω
sin(θ2 − θ1) = 0 (5.75)

εA2θ̇2 +
εωA2

2
− εµδ2

scA2

2ω
− 3αn

8ω3
A3

2 +
A1δscK33

2ω
cos(θ2 − θ1) = 0 (5.76)

Fix points of the set of real modulation equation is achieved by setting the

derivatives with respect to time equal to zero. Let’s recall the slow-fast partition

of the response Eq. (5.78). Fix points of the slow dynamics imply periodic solution

to the initial undamped and unforced system. If we assume identity of phases,

θ1 = θ2, the amplitude A1, A2 can be estimated, which leads to the following

analytic expressions for the nonlinear normal modes (periodic solutions):

x(t) = Xcosωt =
ψ1 − ψ∗

1

2iω
= (A1/ω)cosωt

=
δscK33

(1 +K2
33) − ω2

√

4

3αn

[

εω2 − µδ2
sc +

(δscK33)2

(1 +K2
33) − ω2

]

cosωt (5.77)

q(t) = Qcosωt =
ψ2 − ψ∗

2

2iω
= (A2/ω)cosωt

=

√

4

3αn

[

εω2 − µδ2
sc +

(δscK33)2

(1 +K2
33) − ω2

]

cosωt (5.78)
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We reminded that the analytical expressions Eq. (5.77)-Eq. (5.78) are only

approximations of the periodic solutions where 1 : 1 fundamental resonance oc-

curs. Then the ratio of the amplitudes of the linear mechanical and nonlinear

piezoelectric oscillators is given by:

X

Q
=

δscK33

(1 +K2
33) − ω2

(5.79)

This relation shows that if the frequency ω is not close to
√

1 +K2
33, the

motion is always localized to the piezoelectric NES. The oscillation localizes to the

mechanical linear oscillator sufficiently close to its resonant frequency
√

1 +K2
33.

NNM is featured by frequency-energy (or amplitude) dependence, as shown in

Eq. (5.77)-Eq. (5.78). A suitable graphic representation of the nonlinear normal

mode is a frequency-energy plot (FEP). A NNM is represented by a point in the

FEP, which is drawn at a frequency corresponding to the minimal period of the

period motion and at an energy equal to the conserved total energy during the

motion. The analytical approximations of branches in the FEP are computed by

noting that the conserved energy of the system is given by:

E =
1

2
(1 +K2

33)X
2 +

1

2
µδ2

scQ
2 − δscK33QX +

αn

4
Q4 (5.80)

It is assumed that the essentially nonlinear shunt circuit generating the FEP

depicted in Fig. 5.8 has the properties: ε = 0.1, µ = 0.113, αn = 0.1αcr
n and

K33 ≈ 0.035.

There are two distinct branches of NNMs in this frequency-energy plot, de-

noted by S11+ and S11− respectively. Hereby the notation used in this research is

in accordance with the literature: the two subscripts indicate the ratio of the two

main frequency components in the periodic solution; the signs indicate the rela-

tive phase relationship between the two oscillators during the periodic motion (+

in-phase or − out-of-phase). For instance, in the branch S11+, the two oscillators

vibrate in an in-phase manner with the same vibratory frequency. In particu-

lar, motion along the S11+ branch represents the basic targeted energy transfer

mechanism, termed fundamental energy pumping. It relies on the localization

phenomenon in the NNMs. A more intuitive explanation of the fundamental
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Figure 5.8: Analytic approximation of NNM in the FEP

energy pumping will be given in the next subsection.

For a complete introduction about NNMs in the FEP, readers may refer to

the reference [139]. Through this short analytic study, we conclude that the

essentially shunted piezoelectrics show considerable potential to perform as a

nonlinear energy sink. In order to cope with more complex nonlinear systems,

next we present numerical studies on nonlinear normal modes.

5.5.2 Numerical study of nonlinear normal mode

We will discuss numerical computations of nonlinear normal modes by means of

HBM in this subsection. The classical harmonic balance method presented in

Section 5.2.1 can be directly applied to the non-dissipative autonomous system:

Mpÿ +Kpy + fpnl
(y) = 0 (5.81)

By expressing y = T (t)Y , the task of searching for periodic solution could be
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formulated by a set of algebraic equations:

G(ω, Y ) = P (ω)Y + Fpnl
(Y ) = 0 (5.82)

where P (ω) = ω2NMp
∇2 +NKp

.

However, Eq. (5.82) does not define an unique periodic solution. This is due

to the fact that any solution y(t) = y(t + ∆t) also satisfies the formulation of

HBM for arbitrary but fixed phase shift. Mathematically, the underdetermined

system Eq. (5.82) needs a supplementary condition, termed the phase condition.

A suitable phase condition for NNM computation in this thesis is to set all

the initial velocities ẏ(0) to zero. This can be achieved by retaining only cosine

terms in the development of y [177], i.e.:

Y = [Y 0, Y c1, . . . , Y ck, . . . , Y cNh ]T (5.83)

NNMs can then be calculated using HBM combined with the arc-length contin-
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Figure 5.9: Numerical approximation of NNM in the FEP

uation technique. Nh = 7 harmonics are retained in the formulation of HBM.

Different branches in Fig. 5.9 are computed by starting from the corresponding
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linear normal mode at low amplitudes. Stability analysis is also carried out based

on Floquet theory. Instable NNMs are denoted by + points. For the electrome-

chanical system, the total energy is expressed by:

E =
1

2
ẏTMpẏ +

1

2
yTKpy +

αn

4
q4 (5.84)

The backbones S11+ and S11− validate the analytic approximation of NNMs

in Fig. 5.8. In weakly damped dynamics, as the damped motion follows branch

S11+ with decaying energy, an irreversible energy transfer could take place from

the mechanical oscillator to the piezoelectric-based NES, since Fig. 5.10a-c show

that if the frequency is not close to
√

1 +K2
33, the motion is always localized to

the piezoelectric NES.
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Figure 5.10: Periodic motions in: a) S11+, ω = 0.8 ; b) S11+, ω = 0.99 ; c)
S11-, ω = 1.2; d) S13+, ω = 0.34. ( : x(t); : q(t))
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In addition, we can observe a sequence of subharmonic branches S13+ and

S15+. These branches are termed tongues, which bifurcate out of the backbone.

Unlike the NNM in the backbone, these tongues consist of multifrequency peri-

odic solutions. The tongues highlights the versatility of the NES; it is capable of

engaging in 1 : 3 or 1 : 5 internal resonance with the primary mechanical oscilla-

tor. Motion along these tongues represents the second targeted energy transfer

mechanism, termed subharmonic energy pumping. As examples, Fig. 5.10d also

depicts period motions on the S13+ tongue.

As declared in the literature, there are two saddle-node bifurcations observed

on the branch S11−. This is the mechanism responsible for the existence of a crit-

ical energy threshold above which the nonlinear vibration absorber is capable of

robustly absorbing impulsive loads. It is better explained by plotting amplitudes

versus energy of NNMs on this branch in Fig. 5.11. In the low energy region, the

motion appears to be nearly localized to the linear mechanical oscillator since the

modal curve in FEP is a straight line; with increasing energy, the motion of the

linear oscillator jumps from high to low levels around the saddle-node bifurcation

point; on the other hand, the amplitude of electrical charge escalate to a higher

level. In the high energy region, strong spatial localization of NNMs to the NES

is observed. This “jump” phenomenon, occurring at a certain energy level, im-

plies the existence of a critical energy threshold for effective transient response

reduction.
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Figure 5.11: Amplitude versus energy: a) linear mechanical oscillator; b) essen-
tially nonlinear shunt circuit. ( : stable; : instable)
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5. Essentially nonlinear piezoelectric shunt circuit

The existence of this critical energy level becomes apparent when we consider

the transient dynamics of the coupled electromechanical system. Hereby the

system is set to be initially at rest, with an impulse of magnitude V applied to

the linear mechanical oscillator. This is equivalent to initiate the system with

initial conditions ẋ(0) = V , x(0) = q(0) = q̇(0) = 0 and no external forcing.

Time integration is carried out for varying values of the impulse of V and fixed

parameters ε = 0.1, β = 0.2, µ = 0.113, αn = 0.1αcr
n . Note that weak damping is

highlighted since it is necessary for effective realization of targeted energy transfer.

The relative instantaneous amount of energy localized at the piezoelectric

oscillator is plotted versus time t, as well:

E2

E1 + E2

=
µδ2

scq
2 + εq̇2 + αn

2
q4 − 2δscK33xq

(1 +K2
33)x

2 + ẋ2 + µδ2
scq

2 + εq̇2 + αn

2
q4 − 2δscK33xq

(5.85)
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(b) V = 1.5

Figure 5.12: Transient dynamics of the 2DOF system: a) low energy level, V =
1.0; b) high energy level, V = 1.5.
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5. Essentially nonlinear piezoelectric shunt circuit

In Fig. 5.12a we first present the transient damped dynamics at a low-energy

level initial condition V = 1.0. The mechanical displacement decreases very

slowly, since most of the impulsive energy remains localized to the linear me-

chanical oscillator. Moving to a higher energy level in Fig. 5.12b with V = 1.5, a

completely different dynamical behavior is realized. In spite of the fact that ini-

tially the energy is entirely stored in the mechanical oscillator, a large part of this

total system energy (up to 90%) is quickly pumped to the essentially nonlinear

piezoelectric shunt circuit and dissipated. This results in a much faster vibration

reduction of the mechanical oscillator. Consequently it is clear that above a cer-

tain initial energy threshold the dynamics of the system undergo essential change.

Then questions naturally arise concerning the quantitative determination of this

“energy threshold”. Recent research efforts have revealed that the critical energy

threshold required for effective targeted energy transfer can be directly related to

a similar critical energy value in the underlying undamped system, above which

the topological features of NNMs undergo essential changes. However, a definitive

criterion for the “energy threshold” is not yet available at this stage.

The numerical studies of NNMs and transient damped dynamics validate the

feasibility of essentially nonlinear piezoelectric shunt circuits as practical realiza-

tion of nonlinear energy sink. Consequently we do not continue to perform an

exhaustive calculation of the periodic orbits of the underlying Hamiltonian sys-

tem. As pointed out in numerous research efforts, the NES performance depends

on the impulse magnitude, which is an intrinsic limitation of this type nonlinear

absorber. Another attractive feature is that the effectiveness of the NES is not

significantly influenced by changes in the natural frequency of the linear primary

structure. This prevailing characteristic of the piezoelectric-based NES will be

fully addressed in the following section.

5.6 Forced response

The forced response of the coupled electro-mechanical system under harmonic

external excitation applied to the mechanical oscillator is investigated in this

section.

The steady-state response of the single-DOF linear system with strongly non-
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5. Essentially nonlinear piezoelectric shunt circuit

linear attachment to external harmonic forcing loading have been studied via

averaging method by Starosvetsky and Gendelman [178]. It is demonstrated that

in close vicinity of the main resonance the system with NES can exhibit quasi-

periodic rather than simple periodic response, leading to qualitatively different

dynamical behavior. In our research, we will first calculate the nonlinear forced

response by HBM combined with arc-length continuation. Then a so-called vari-

able harmonic balance method is to be proposed in order to precisely predict the

quasi-periodic response due to the essential nonlinearity.

5.6.1 Forced response by HBM & arc length continuation

The nonlinear forced response is calculated by applying HBM combined with arc

length continuation to the non-autonomous system:

Mpÿ +Dpẏ +Kpy + fpnl
(y) = fp(ω, t) (5.86)

A preliminary convergence study with the number of harmonics shows that a

good approximation can be obtained by retaining 3 harmonics in this research.

Hence, Nh = 3 is chosen due to the cubic nonlinearity in Eq. 5.86. A typical

frequency response plot describing the dependence of the vibration amplitude of

the system on frequency is depicted in Fig. 5.13. The parameter set (ε = 0.1, β =

1, µ = 0.113, αn = 0.1αcr
n ) is chosen for the essentially nonlinear shunt circuit.

Special discussion about the nonlinear damping parameter β will be conducted

later.

Stability analysis of the periodic solutions is carried out by monitoring the

numerical values of Floquet multipliers. Two Neimarker-Sacker bifurcation or

generalized Hopf bifurcation points (see Section 5.3.2) are observed in the non-

linear frequency response curves. The branch of stable periodic solutions that

exists prior to the bifurcation continues as a branch of unstable periodic solu-

tions after the bifurcation. At these bifurcation points, there emerges a new

unknown frequency component and periodic solutions accordingly evolves into a

torus. Another branch of stable quasi-periodic solutions is thus created. This

can be demonstrated through numerical validation of periodic solutions by direct

time integration.
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Figure 5.13: Nonlinear frequency response: a) mechanical displacement; b) elec-
tric charge. ( : stable solution; · · · · · · : instable solutions). NS: Neimark-
Sacker bifurcation point.

It is seen that at ω = 0.99 (see Fig. 5.14a) a good accuracy of the HBM so-

lution is achieved. However, at ω = 1.01 (see Fig. 5.14b), the nonlinear response

initiated from the HBM solution evolves into a modulated, nearly periodic os-

cillation. It indicates that in the vicinity of 1 : 1 fundamental resonance there

is a region where a single stable periodic attractor and a stable quasi-periodic

response attractor co-exist. It should be pointed out that the quasi-periodic re-

sponse occurs due to the nonlinear coupling between oscillation modes although

the system is single-frequency excited. This result is in agreement with the lit-

erature regarding targeted energy transfer in nonlinear systems with periodic

excitations. Analytical approach has been proposed for the strongly modulated

response description by Starosvetsky and Gendelman [150; 151].

In this thesis, a numerical approach, called variable-coefficient harmonic bal-

ance method, is proposed to predict the quasi-periodic response precisely.

5.6.2 Variable-coefficient harmonic balance method

In general, a quasi-periodic oscillation that is associated with p different in-

ternal frequencies takes place on a p-dimensional invariant torus. Any quasi-

periodic solution x(t) can be expressed as a function x(t) = x(ωt). The tuple

ω = (ω1, . . . , ωp) is called the frequency base. Since the solution x(t) is quasi-
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Figure 5.14: Numerical validation of HBM solutions

periodic, the basic frequencies ωj must be incommensurate (rationally indepen-

dent), that is, for integers kj the equation 〈k, ω〉 :=
∑p

j=1 kjωj = 0 holds if and

only if all kj = 0 for j = 1, . . . , p. For p = 2 this means that the ratio ω1/ω2

is irrational. Considering the special case of Neimark-Sacker bifurcation in this

chapter, we use the term “quasi-periodic solution” for a quasi-periodic solution

with a two-dimensional frequency base.

A quasi-periodic function with p-dimensional frequency base can uniformly

be approximated by quasi-trigonometric polynomials:

x(t) =
∑

k∈Zp

cke
i〈k,ω〉t, ck := lim

a→∞

1

2a

∫ a

−a

x(t)e−i〈k,ω〉tdt (5.87)

It will be showed that a 2-dimensional quasi-periodic solution can be approx-

imated by Fourier polynomials where the coefficients are 2π-periodic functions.

To this end, the quasi-periodic solution x(t) is expanded in a Fourier series as

follows:

x(t) =
∞∑

k1,k2=−∞
ck1,k2

ei(k1ω1+k2ω2)t =
∞∑

k1=−∞

( ∞∑

k2=−∞
ck1,k2

eik2ω2t

)

eik1ω1t

=
∞∑

k1=−∞
uk1

(ω2t)e
ik1ω1t (5.88)
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The coefficient uk1
(ω2t) is apparently periodic functions. Such a Fourier series

is called a generalized Fourier series. The idea is now to approximate x(t) by a

truncated series:

x(t) =

Nh∑

k1=−Nh

uk1
(ω2t)e

ik1ω1t (5.89)

For quasi-periodic solutions of the nonautonomous system Eq. (5.86), an ap-

proximation y(ω1t, ω2t) could be written equivalently using trigonometric func-

tions:

y(ω1t, ω2t) = Y 0(ω2t) +

Nh∑

k1=1

Y ck1(ω2t)cos(k1ω1t) + Y sk1(ω2t)sin(k1ω1t)

= [I, cos(ω1t)I, sin(ω1t)I, . . . , cos(k1ω1t)I, sin(k1ω1t)I, . . . ] ×
[Y 0(ω2t), Y

c1(ω2t), Y
s1(ω2t), . . . , Y

ck1(ω2t), Y
sk1(ω2t), . . . ]

T

= T1(ω1t)Y (ω2t) (5.90)

where the external forcing frequency is denoted by ω1. The term variable-

coefficient harmonic balance method (VCHBM) is named after the periodic vector

function Y (ω2t). In contrast, the Fourier coefficient vector Y is constant for clas-

sical harmonic balance method in Eq. (5.5).

In general, VCHBM is derived from the method of two timescale harmonic

balance, which stems from ideas from the method of multiple scales and harmonic

balance. The term variable-coefficient harmonic balance method has been first

reported by Summers [179] in 1995. Similar method can also be found as Fourier

method by Schilder [180].

Since one can interpret the coefficient vector Y as time-varying amplitudes

of 2Nh + 1 harmonics with an unknown frequency component ω2, the first step

of VCHBM is to separate Y (ω2t) from the nonlinear system by applying the

harmonic balancing procedure in terms of ω1. Starting from Eq. (5.90), the

velocity and acceleration could be expressed as:

ẏ(t) = ω1T1∇1Y + T1Y
′ (5.91)

ÿ(t) = T1(Y
′′ + 2ω1∇1Y

′ + ω2
1∇2

1Y ) (5.92)
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where Y ′ = ∂Y/∂t, Y ′′ = ∂2Y/∂t2. Subscripts of T1 and ∇1 indicate that these

functions are defined in terms of ω1 (see Eq. (5.10)-(5.12)).

Applying the Galerkin procedure to the nonlinear system Eq. (5.86) leads to:

NMp
(Y ′′ + 2ω1∇1Y

′ + ω2
1∇2

1Y ) +NDp
(ω1∇1Y + Y ′) +NKp

Y + Fpnl
(Y ) − Fp = 0

(5.93)

where fpnl
(y) = T1Fpnl

(Y ) and fp(t) = T1Fp.

This equation can be rearranged so that:

NMp
Y ′′+(2ω1NMp

∇1+NDp
)Y ′+(ω2

1NMp
∇2

1+ω1NDp
∇1+NKp

)Y +Fpnl
(Y )−Fp = 0

(5.94)

At this point, we obtain the output of harmonic balancing in terms of ω1. It is

an autonomous second order differential equation of the time-varying coefficient

vector Y (ω2t) in a succinct form:

MaY
′′ +DaY

′ +KaY + Fpnl
(Y ) − Fp = 0 (5.95)

the subscript (a) indicates that the matrices or vector correspond to the au-

tonomous system.

We mention that the analytic expression of Fpnl
(Y ) can be obtained by use of

Eq. (5.21)-(5.23) due to the cubic form of nonlinearity (see Appendix C). Even

though this procedure could be performed by a symbolic manipulator, it will be

algebraically tedious for large values of Nh. This is an inherent limitation of this

semi-analytic method.

Y is sought by solving the autonomous system of Eq. (5.95) for a periodic

solution with frequency component ω2. Due to the fact that ω2 is not priori

known, a phase condition is needed to fix an unique periodic solution.

Phase condition

Let’s express the desired periodic solution Y (ω2t) by Y (t) = T2(ω2t)Z. The clas-

sical harmonic balancing method is then applied to Eq. (5.95) with Nh2
harmonics
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retained, which leads to:

G(ω2, Z) = P (ω2)Z + Fa,nl(Z) = 0 (5.96)

where P (ω2) = ω2
2NMa

∇2
2 +ω2NDa

∇2 +NKa
and Fpnl

(Y )−Fp = T2(ω2t)Fa,nl(Z).

A well known integral phase condition can be added to obtain an unique

periodic solution of this underdetermined equation:

∫ 2π/ω2

0

Y (t)T ˙̂
Y (t) dt = 0 (5.97)

In Eq. (5.97), Ŷ (t) is a known nearby approximation of periodic solution.

Substituting the relations Y (t) = T2Z and
˙̂
Y (t) = ω2T2∇2Ẑ into this phase

condition and further simplification yield:

h(ω2, Z) = ω2Z
T∇2Ẑ = 0 (5.98)

In summary, periodic solutions of the autonomous system Eq. (5.95) is sought

by solving the following set of algebraic equations:

{

G(ω2, Z) = P (ω2)Z + Fa,nl(Z) = 0

h(ω2, Z) = ω2Z
T∇2Ẑ = 0

(5.99)

This algorithm combined with continuation technique are shown to be ef-

fective in searching for periodic solutions of autonomous systems. Consecutive

branch points are usually treated as precedent known approximation Ŷ (t) in a

continuation.

Practical aspects

A proper initial condition is of major concern for solving Eq. (5.99). Accord-

ing to the phase condition in Eq. (5.98), it is shown that both static (ω2 = 0)

and dynamic (ω2 6= 0) solutions to the autonomous system in Eq. (5.95) coex-

ist. The solver computes either the static solution or the dynamic one, but the

static solution is always first achieved without any special consideration for the

initial condition. In this thesis, optimized initial conditions based on the complex

147



5. Essentially nonlinear piezoelectric shunt circuit

nonlinear modal analysis [181] are introduced.

First, stability analysis at a static equilibrium solution is performed for the

autonomous system in Eq. (5.95). The static equilibrium solution Ys is a critical

position where the system can lose stability and stationary periodic oscillations,

i.e. limit cycles, occur. The corresponding nonlinear static equation is written

as:

KaYs + Fpnl
(Ys) − Fp = 0 (5.100)

where the static equilibrium Ys (a constant vector) is achieved when Y ′
s = 0 and

Y ′′
s = 0.

The system Eq. (5.95) is then linearized around the static equilibrium position

Ys by the perturbation technique. The perturbation is:

Y = Ys + ∆Y (5.101)

Developing the nonlinear term Fpnl
(Ys + ∆Y ) as a Taylor series and retaining

the first order leads to:

Fpnl
(Ys + ∆Y ) = Fpnl

(Ys) + JY Fpnl
(Ys)∆Y (5.102)

where JY Fpnl
(Ys) is Jacobian matrix.

Substituting Eq. (5.101)-(5.102) into Eq. (5.95) yields a linearized approxima-

tion at the equilibrium point:

Ma∆Y
′′ +Da∆Y

′ + [Ka + JY Fpnl
(Ys)]∆Y = 0 (5.103)

The expression above is then written in the state-space form and complex

eigenvalues λ = a+ iω of the matrix:

A =

[

0 I

−M−1
a [Ka + JY Fpnl

(Y0)] −M−1
a Da

]

(5.104)

are derived.

The real part of the eigenvalue a corresponds to the growth rate of the am-

plitude and the imaginary part ω corresponds to the pulsation of the mode. A
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negative real part indicates that the corresponding mode is stable. In other

words, a perturbation about the static equilibrium sliding state will not mod-

ify the equilibrium position of the system. A positive real part equivalent to a

negative damping leads to an unstable mode. Thus, modifying one of the param-

eters will induce growing oscillations about the static equilibrium position of the

system until the dynamical steady state, i.e., periodic solution, is achieved.

As explained by Sinou [182], the nonlinear unstable mode drives the dynamic

solution. The evolution of the approximated periodic solution,defined by consid-

ering only the contribution of the unstable mode, is given by:

Y (t, p, λ) = p(Ψeλt + Ψ̄eλ̄t) (5.105)

where Ψ defines the nonlinear unstable mode and Ψ̄ denotes its conjugate; p is

an arbitrary chosen coefficient.

As a result, the expression Eq. (5.105) is used as initial condition for solving

Eq. (5.99). The trivial static solution can be successfully avoided. Besides, the

initial guess of the unknown frequency ω2 is set to be the unstable mode frequency.

Above all, once the periodic solution Y (ω2t) is sought, the quasi-periodic response
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Figure 5.15: Nonlinear frequency response: a) mechanical displacement; b) elec-
tric charge. ( : stable solution; · · · · · · : instable solutions).

is computed by y(t) = T1(ω1t)Y (ω2t). The complete nonlinear frequency response

is depicted in Fig .5.15 and numerical validation of the quasi-periodic response in
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the time domain is shown in Fig .5.16. The retained harmonics Nh2
in variable-

coefficient harmonic balance method is set as 5. It can be seen that the quasi-

periodic solution by VCHBM is of good precision.
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Figure 5.16: Numerical validation of quasi-periodic solution by VCHBM at ω =
1.01: a) mechanical displacement; b) electric charge

For the purpose of comparison, the performance of the well-tuned resonant

shunt circuit ( ) and essentially nonlinear shunt circuit ( ) are depicted

in Fig .5.17. It is clear shown that significant vibration reduction due to the

resonant/essentially nonlinear shunt circuit is achieved, compared with the me-

chanical oscillator without any attachment ( ). It appears that the essentially

nonlinear shunt circuit performs nearly as well as the well tuned resonant circuit

does. However, a relative small inductance requirement advantages the essen-

tially nonlinear circuit over the linear one by noting that ε = 0.1. What is more

important, the essentially nonlinear shunt circuit is featured by nonexistence of a

preferential resonance frequency. It is assumed that the primary structure under-

goes a slight change, i.e., the mechanical stiffness k is increased by 5%. In other

words, the mechanical system becomes “mistuned” while these shunt circuits re-

main unchanged. Performances of both the linear resonant circuit and essentially

nonlinear circuit are then revaluated, as shown by dashed lines in Fig .5.17. With

a drift of the mechanical system’s frequency, performance of the resonant circuit

( ) undergoes drastic changes. This is due to the fact that the electrical

resonance is tuned very close to the original structural resonance. The behavior
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Figure 5.17: Performances of resonant/essentially nonlinear circuit integrated
into different primary structures. solid lines: original systems; dashed lines:
“mistuned” systems

of resonant shunted piezoelectrics is very sensitive to the deviation of both struc-

tural parameters and optimal electrical parameters. It therefore loses its desired

damping performance around the “mistuned” structural frequency.

On the contrary, the response curve corresponding to the essentially nonlinear

circuit ( ) shifts to the right as a whole. It means that its performance is

barely affected by the drift of the mechanical system’s frequency. The reason lies

in the lack of a preferential resonance frequency of the nonlinear circuit. As a

consequenc, It is able to engage in nonlinear resonance with the linear stucture at

broad frequency ranges. Then the essentially nonlinear piezoelectric shunt circuit

as practical realization of NES, acts in essence, as a passive, adaptive, broadband

vibration absorber.

5.6.3 Nonlinear modal damping

In Section 5.5.2, weak damping β = 0.2 is briefly addressed in the numerical

simulation of transient dynamics of a linear primary structure coupled to NES.
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It is true that weak dissipation is necessary for effective target energy transfers.

Indeed, weak damping does not generate any new dynamics, but merely influ-

ences the damped transitions (jumps) between different branches of NNMs of

the underlying Hamiltonian system [139]. A more detailed consideration of this

nonlinear damped transition can be found in [183].

It might also be noted that a relatively stronger damping β = 1 is presented

in the forced response calculation (see Section 5.6.1). It seems that the strong

damping parameter enables the whole system overdamped. However, nonlinear

damping can not be analyzed by only considering the underlying linear system.

Hereby the concept of nonlinear modal damping in nonlinear modal analysis is

discussed.

The extended definition of complex nonlinear modes is proposed by Laxalde

and Thouverez [184]. It is in essence related to the definition of nonlinear normal

modes; at the same time it is also inspired by the definition of linear complex

modes. A complex nonlinear mode is an oscillation of the autonomous nonlin-

ear system with (potentially) a phase difference between its degrees of freedom.

This phase difference is the main difference between complex and normal modes.

As second order dynamical systems are considered, the motion takes place on

a two-dimensional subspace defined in the system’s phase space and is energy-

dependent. By analogy with linear complex modes, the eigenvalues of the char-

acteristic equation can be defined in the form:

λ = a+ iω (5.106)

In Eq. (5.106), ω = ω0

√

1 − ζ2 is the damped natural frequency, ω0 the

natural frequency and ζ = a/ω0 defines the nonlinear modal damping ratio.

This complete definition of complex nonlinear modes essentially emphasizes

the frequency-damping-energy dependency. In particular, the damping-energy

dependency is addressed in a previous research work [185], in which a hysteretic

oscillator is used as NES. This research further illustrates the pertinence of the

definition of complex nonlinear modes.

Complex nonlinear modes can be theoretically calculated by a generalized

harmonic balance method [184] and the nonlinear damping can be accordingly
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quantitatively evaluated. Nonlinear modal parameters can also be obtained ex-

perimentally through curve fitting of measured frequency response [186]. In this

section, in taking advantage of the obtained nonlinear forced response in Fig .5.15,

it is possible to approximate the nonlinear damping ratio based on an equivalent

linearization method [187].

We have known the forced response of the nonlinear system:

Mpÿ +Dpẏ +Kpy + fpnl
(y) = fp(ω, t) (5.107)

For each y, an equivalent stiffness matrix Keq(y) can be determined so that

an equivalent system description can be written as:

Mpÿ +Dpẏ +Keqy = fp(ω, t) (5.108)

Keq(y) is a matrix which minimizes the difference ǫ:

ǫ = Kpy + fpnl
(y) −Keqy (5.109)

This transform refers to the equivalent linearization. ǫ can be minimized by using

a least square method.

It is then possible to solve the eigenvalue problem in the standard way:

(Keq − ω2
jMp)Ψj = 0 (5.110)

The modal damping is written as dpj
= ΨT

j DpΨj and the nonlinear damping

ratio is determined by:

ζj =
dpj

2ω2
j

(5.111)

Nonlinear damping ratios around the amplitude peaks is calculated in this

way. Maximum damping ratio values approach to 3%. Apparently, the overall

damping is not too high for the nonlinear system to be overdamped.

On the contrary, if the weak damping β = 0.2 is kept, the forced response of

the coupled electromechanical system becomes further complicated since various

coexisting response regimes come out; moreover, no good damping performance
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can be obtained compared to the linear resonant shunt circuit.

5.7 Conclusion

In this chapter, an essentially nonlinear shunted piezoelectric is proposed for

practical realization of nonlinear energy sink.

It is shown that the addition of a piezoelectric-based NES to a linear mechan-

ical system significantly alters the global dynamics of the resulting integrated

system. In transient damped dynamics, targeted energy transfer from the linear

system to the NES is observed under certain conditions. When the linear oscil-

lator undergoes harmonic external forcing, the essentially nonlinear shunt circuit

can resonantly interact with the primary system in a broadband manner. This

feature makes it appealing since it is capable of adapting itself spontaneously ac-

cording to the structural frequency variation. The piezoelectric-based NES then

acts as an adaptive, broadband vibration absorber. Moreover, a relative smaller

inductance requirement also benefits this nonlinear shunt circuit over the resonant

circuit.

High-dimensional bifurcations in the forced response arise due to the pres-

ence of essential nonlinearity. The complicated response regimes are considered

related to the damping parameter in the piezoelectric-based NES. With a certain

particular parameter set, the performance of NES in terms of vibration reduction

is excellent even in the quasi-periodic regime. At this stage, the nonlinear tuning

design to seek the best performance of NES under harmonic forcing remains elu-

sive. A complete analytic study is necessary to fully understand energy-dependent

nonlinear dynamics and nonlinear tuning design in order to achieve its optimal

performance.
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Chapter 6

Essentially nonlinear

piezoelectric shunt circuits

applied in blisks

Essentially nonlinear piezoelectric shunt circuits are applied into mistuned bladed

disks as an attempt in this chapter. In the beginning, resonance capture cascades

existing in multi-DOF linear primary oscillators coupled to a SDOF nonlinear

energy sink, which leads to multi-frequency targeted energy transfers are initially

introduced. Similar dynamics is expected to be reproduced in the bladed disk by

means of piezoelectric-based NES. For this purpose, essentially nonlinear circuits

in tuned bladed disk are first investigated by use of cyclic symmetry. Compu-

tational strategy based on harmonic balance method specially for tuned cyclic

structures is presented; nonlinear normal modes and forced responses of a single

sector will then be discussed. When blade mistuning is considered, nonlinear fre-

quency responses are calculated by HBM in the whole structure. Advantages of

essentially nonlinear shunt circuits in mistuned bladed disks over linear resonant

circuits are examined in the end of this chapter.
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6. Essentially nonlinear piezoelectric shunt circuits applied in blisks

6.1 Multi-frequency TETs and resonance cap-

ture cascades

In the previous chapter, we have examined targeted energy transfer in a two-DOF

system consisting of SDOF linear mechanical oscillator coupled to an essentially

nonlinear piezoelectric shunt circuit, which, acts as nonlinear energy sink. The

application of NES is not limited to SDOF structures. The analysis to MDOF

linear primary structures with a SDOF essentially nonlinear attachment has been

extended in a number of research works. It is reported that the SDOF nonlinear

energy sink can interact with multiple linear modes of the linear system, through

a so-called mechanism resonance capture cascades. The phenomenon that the

resonance capture cascades enable the nonlinear energy sink to extract broadband

vibration energy from the MDOF linear system is termed multi-frequency targeted

energy transfer [139].

x1

m1 m2 m3

x2 x3
k1

kc
knl

C1
k2

C2

C3

Figure 6.1: A 2DOF primary linear structure coupled with a NES [188]

As an example, a system considered in [188] is depicted in Fig .6.1 and consists

of a two-DOF linear primary structure (m1, m2) and a SDOF nonlinear energy

sink (m3). The NES is directly linked to m2 by essentially nonlinear stiffness knl

and viscous damper c3. The equations of motion are given by:

m1ẍ1 + c1ẋ1 + k1x+ kc(x1 − x2) = 0

m2ẍ2 + c2ẋ2 + c3(ẋ2 − ẋ3) + k2x2 + kc(x2 − x1) + knl(x2 − x3)
3 = 0

m3ẍ3 + c3(ẋ3 − ẋ2) + knl(x3 − x2)
3 = 0 (6.1)

A lightweight NES is considered by requiring that m3 << m1,m2, because the
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6. Essentially nonlinear piezoelectric shunt circuits applied in blisks

NES is characterized by the strong mass asymmetry.

Since in this case the primary linear structure possesses two degrees of free-

dom, there exist three backbone branches in the Frequency-Energy Plot in Fig .6.2.

These branches represent NNMs during 1:1:1 internal resonance. Detailed de-

scriptions of these branches are referred to the reference [139]. In this chapter,

the mechanism for multiple targeted energy transfer is introduced in short. Two

specific branches, namely S111 + −− and S111 + ++, are responsible for the

realization of fundamental targeted energy transfer. Each branch possesses qual-

itative similarities with the branch S11+ in Fig. 5.9. Along these two branches,

there exist transitions of mode localization from the LO to the NES as frequency

decreases. Hence, there coexist both in-phase and out-of-phase fundamental TET

mechanism in this system. “In-phase” or “out-of-phase” indicates the relative

phase between the two degrees of freedom in the primary linear structure.

For the transient damped dynamics, the instantaneous frequency components

of the responses can be continuously monitored by superimposing their wavelet

transform spectra to the FEP, as shown in Fig .6.3 [139]. Consequently, this plot

provides an insight into the energy exchanges and transfers in the global system.

It is observed that the NES engages in 1 : 1 : 1 transient response capture

(TRC) with the high-frequency out-of-phase linear mode as it moves along the

NNM branches S111 + −+ and S111 + −− in the initial stage. As the global

system energy decreases to a certain level due to energy dissipation, there occurs

a transition to the damped NNM branch of S111 + ++.

This is a typical example of a resonance capture cascade, i.e., a sequential tran-

sient resonance interaction of the NES with different modes of the linear primary

system. On the contrary, classical linear vibration absorbers is usually limited

to a narrowband performance. This once again highlights the broadband feature

of nonlinear multi-frequency targeted energy transfer, which renders it suitable

for practical applications. For this reason, as an attempt, essential nonlinearity

is introduced into the piezoelectric shunted bladed disks in order to improve the

damping performance.
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6. Essentially nonlinear piezoelectric shunt circuits applied in blisks

Figure 6.2: NNMs in Frequency-Energy Plot [139]. Mode shapes are projected
to the three-dimensional configuration space, respectively. Top window: (x3, x1),
bottom window (x3, x2)]. Vertical axe: x3.
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6. Essentially nonlinear piezoelectric shunt circuits applied in blisks

Figure 6.3: Wavelet transform spectra superposed to the Frequency-Energy Plot
[139].

6.2 Essentially nonlinear piezoelectric shunt cir-

cuits in tuned bladed disks

As an initial step, essentially nonlinear piezoelectric shunt circuits in tuned bladed

disks are investigated in this section.

In Chapter 3, we have proposed to reduce the vibration of mistuned bladed

disks using resonant shunted piezoelectrics solely attached onto the disk. The

optimal resistance Ropt and inductance Lopt are sought to obtain the best damping

performance for the targeted blade-disk mode. In this chapter, we still choose

the 1st mode of 1 nodal diameter (low frequency) in Fig. 3.6 as example. Let’s

recall the equation of motion for the jth sector:

m1,jẍ1,j + k1,jx1,j − k1,jx2,j = f1,je
iωt

m2,jẍ2,j − k1,jx1,j + (k1,j + k2,j)x2,j − k2,jx3,j = 0

m3,jẍ3,j − k3,j−1x3,j−1 − koc
j−1x3,j−1 − kc

j−1qj−1 − k2,jx2,j + (k3,j−1 +

k2,j + k3,j + k4,j)x3,j + (koc
j−1 + koc

j )x3,j + kc
jqj − k3,jx3,j+1 − koc

j x3,j+1 = 0

Loptq̈j +Roptq̇j +
1

Cs
p,j

qj + kc
jx3,j − kc

jx3,j+1 = 0 (6.2)
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6. Essentially nonlinear piezoelectric shunt circuits applied in blisks

Weak structural damping in the bladed disk could be readily included in the

following analysis.

In a manner similar to Eq. (5.58), essential nonlinearity is introduced into

the linear resonant shunt circuit of each piezoelectric attachment by including

a nonlinear capacitance and a negative capacitance. By denoting the residual

capacitance as Cres and further 1/Cres = µ/Cs
p,j, the equation governing the

essentially nonlinear shunt circuit is rewritten as:

εLoptq̈j + βRoptq̇j + µ
1

Cs
p,j

qj + αq3
j + kc

jx3,j − kc
jx3,j+1 = 0 (6.3)

The nonlinear coefficient α can be measured by a critical nonlinear coefficient

αcr, which is defined based on the maximum electric charge exhibited in the tuned

resonant circuits (see Chapter 5.4). With structure damping γ, a compact matrix

form of EOM is presented for the bladed disk shunted with essentially nonlinear

piezoelectric shunt circuits:

Me ÿ + De ẏ + Ke y + fenl
(y) = fp(t) (6.4)

where the subscript (e) indicates that the essentially nonlinear piezoelectric shunt

circuits are incorporated into the bladed disk.

We mention at this point that the proposed essentially nonlinear piezoelectric

shunt circuits presented in Chapter 5 needs further studies to fully understand

the tuning methodology in terms of vibration reduction. Moreover, the purpose

in this section is to explore the possibility and potentiality of taking advantage

of nonlinear effects in cyclic structures to reduce the blade mistuning vibration.

As a consequence, the impact of essentially nonlinear effects in shunt circuits on

the blade vibration is examined by a preliminary numerical investigation rather

than a detailed and systematic study. Next, the computational strategy based on

HBM specially for tuned cyclic structures is presented; nonlinear normal modes

and forced responses of a single sector will then be discussed.
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6. Essentially nonlinear piezoelectric shunt circuits applied in blisks

6.2.1 HBM applied to structures with cyclic symmetry

Since the bladed disk is under engine order excitation, linear and nonlinear prop-

erties of the bladed disk are cyclically symmetric, responses of both mechanical

displacements and electric charges can be expressed based on the representation

in the reference sector (see Chapter 1.3). The superposition of cyclic compo-

nents still holds on for the bladed disk. Then considering the system description

Eq. (6.4) in physical coordinates, a reformulation in cyclic component can be con-

ducted using the real-valued form of spatial Fourier transform (see Eq. (1.14)).

This reformulation consists of a set of independent subproblems for each harmonic

order k:

M̃k
e
¨̃yk
0 + D̃k

e
˙̃yk
0 + K̃k

e ỹ
k
0 + f̃k

enl
(ỹk

0) = f̃p(t) (6.5)

where ỹk
0 is defined on the reference sector for the spatial harmonic index k =

0, 1, . . . , κ. κ = (N − 1)/2 if the number of sectors N is odd or κ = N/2 − 1 if

N is even. M̃k
e , D̃k

e , K̃k
e and f̃k

enl
(ỹk

0) are along with the harmonic index k on the

reference sector.

Solving Eq. (6.5) is realized in the frequency domain by means of HBM. The

continuity conditions, e.g.,

[
lỹk,c

0

lỹk,s
0

]

=

[

coskθ sinkθ

−sinkθ coskθ

][
rỹk,c

0

rỹk,s
0

]

(6.6)

can be readily incorporated into the formulation of HBM. θ = 2π/N is the phase

difference between two adjacent sectors.

Periodic solutions are sought by solving the following algebraic equation de-

rived from HBM (see Chapter 5.2.1):

G(ω, Ỹ k
0 ) = P (ω)Ỹ k

0 + F̃ k
enl

(Ỹ k
0 ) − F̃p = 0 (6.7)

where P (ω) is the dynamic stiffness matrix, F̃p is the Fourier coefficient vector of

the external forcing and F̃ k
enl

(Ỹ k
0 ) corresponds to the nonlinear term f̃k

enl
(ỹk

0).

In order to determine the vector F̃ k
enl

(Ỹ k
0 ), the alternating frquency/time-

domain (AFT) technique (see Fig. 5.3) combined with (inverse) spatial Fourier

transform (see Chapter 1.3) are utilized [189]. Starting from an estimation of
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the solution Ỹ k
0 (j) during the jth iterative step, an evaluation of the approximate

temporal terms ỹk
0(t) can be derived using the inverse fast Fourier transform

(iFFT). The following step is to evaluate temporarily the nonlinear term f̃k
enl

(ỹk
0)

in the time domain. Since the nonlinear function fenl
(y) is expressed in physical

coordinates, an intermediate step is needed to bridge the gap between the cyclic

coordinates and physical coordinates. To this end, y(t) can be deduced from ỹk
0(t)

by use of inverse spatial Fourier transform (iSFT):

y = ([E]k ⊗ I) ỹk
0 (6.8)

where [E]k is the Fourier transform submatrix corresponding to the harmonic

index k.

Once y(t) is obtained, it enable us to calculate the nonlinear function fenl
(y).

This function is expressed in physical coordinates for all sectors. In order to seek

the expression f̃k
enl

on the reference sector, the spatial Fourier transform (SFT)

is utilized:

f̃k
enl

= [([E]k)T ⊗ I] fenl
(6.9)

The last step is to determine the Fourier coefficient vector F̃ k
enl

(j + 1) for the

(j + 1)th iterative step from the approximation f̃k
enl

(t) in the time domain. This

is done by means of fast Fourier transform (FFT). In summary, this complete

process is illustrated in Fig .6.4.

y(t)

fenl(t)

iFFT

FFT

frequency domain time domain

Y0 (j)
k~ y0(t)

k~ iSFT

fenl(t)
~ SFT

Fenl(j+1)~ kk

Figure 6.4: Alternating frequency/time-domain technique for tuned bladed disks

This method allows the forced response to be calculated for a whole cyclically

symmetric bladed disk using only a reference sector model, while without intro-

duction of any assumptions even for the case of nonlinear vibrations with strong
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nonlinear effects.

Condensation

An additional step, called condensation, can reduce the number of equations

when solving Eq. (6.7). The condensation lies in the fact that nonlinear effect is

exerted only on a part of degrees of freedom in the physical model. Usually this

nonlinear DOFs only accounts for a fraction of the total DOFs. For instance, in

the essentially nonlinear shunted bladed disk model, only the electric charges qj

can be seen as nonlinear DOFs. The remaining DOFs are called linear DOFs.

During the first step of condensation, all DOFs of the Fourier coefficient vector

Ỹ k
0 are reorganized into linear DOFs Ỹ l

0 and nonlinear DOFs Ỹ n
0 using a boolean

matrix B:

Ỹ k
0 =

[

Bn Bl

]
[

Ỹ n
0

Ỹ l
0

]

(6.10)

The same operation could be applied to the Fourier coefficient vector F̃ k
enl

so

that

F̃ k
enl

= BnF̃
n
enl

(6.11)

this is due to the fact that F̃ l
enl

= 0.

Eq. (6.7) can then be written as two sub-equations:

[

BT
nPBn BT

nPBl

BT
l PBn BT

l PBn

]

︸ ︷︷ ︸






Pnn Pnl

Pln Pll







[

Ỹ n
0

Ỹ l
0

]

+

[

F̃ n
enl

0

]

=

[

BT
n F̃p

BT
l F̃p

]

(6.12)

The bottom line of Eq. (6.12) allows to eliminate Ỹ l
0 from the top line. Conse-

quently a reduced nonlinear algebraic equation containing only nonlinear DOFs

is obtained:

PredỸ
n
0 + F̃ n

enl
− F̃red = 0 (6.13)
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with

Pred = Pnn − PnlP
−1
ll Pln (6.14)

F̃red = BT
n F̃p − PnlP

−1
ll BT

l F̃p (6.15)

Once Ỹ n
0 is sought by solving Eq. (6.13), the full Fourier coefficient vector is

resumed by:

Ỹ k
0 = BnỸ

n
0 +BlP

−1
ll (BT

l F̃p − PlnỸ
n
0 ) (6.16)

This condensation technique is an exact reduction of the original problems

and can thus greatly reduce nonlinear computational burdens.

6.2.2 Nonlinear normal modes

Relying on the computational strategy presented above, nonlinear normal modes

are calculated numerically for a single sector of a tuned bladed disk. The pro-

cedure is similar to that for NNMs of 2DOF coupled electromechanical system

presented in Chapter 5.5.2. By expressing ỹk
0 = T (t)Ỹ k

0 , the task of searching for

periodic solution could be formulated by a set of algebraic equations:

G(ω, Ỹ k
0 ) = P (ω)Ỹ k

0 + F̃ k
enl

(Ỹ k
0 ) = 0 (6.17)

where P (ω) = ω2NM̃k
e
∇2 +NK̃k

e
.

A phase condition for NNM computation can be achieved by retaining only

cosine terms in the development of ỹk
0 . The number of retained harmonics is

5. The backbones of the Frequency-Energy plot of the underlying Hamiltonian

system are depicted in Fig. 6.5. Parameters for the essentially nonlinear shunt

circuits are: ε = 0.05, µ = 0.1853, α = 0.05αcr. Frequencies in this plot are

normalized according to the structural frequency of the targeted blade-disk mode.

Vibration amplitudes are also rescaled.

It is not necessary to perform an exhaustive search of all the subharmonic

branches in this FEP. This is due to the conclusion in Section 6.1 that the dy-

namics governing targeted energy transfer can be considered by examining the

backbone branches under conditions of 1 : 1 : 1 : 1 internal resonance. Clearly,
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Figure 6.5: Numerical approximation of NNM in the FEP for a single sector of a
tuned bladed disk

the FEP of the essentially nonlinear shunted single sector in Fig. 6.5 has strong

resemblance with that of the 2DOF primary structure coupled with a mechanical

NES in Fig .6.2. At low energy level, the modes behave linearly, whereas, for

higher energy levels, the nonlinear characterization increases, and a frequency-

energy dependence is exhibited.

Representative periodic orbits along the backbone branches (corresponding to

point A ∼ F ) are plotted in Fig .6.6. At points A and B, the primary blade-

disk structure vibrates in an in-phase way, and the motion becomes increasingly

localized to the mechanical DOFs as ω → ω1H . At point C, the modes almost

behave linearly at low energy level. In the region defined by ω1L ≤ ω ≤ ω2H ,

vibration localizes to the piezoelectric-based NES as ω departs from ω1L, as shown

at point D. Around point E, there is supposed to be a phase transition among the

mechanical vibration since the motion of blade mass 2 tend to zero. As ω → ω2H ,

vibration becomes localized to the mechanical DOFs again.

As mentioned in Section 6.1, these branches discussed above (defined by

ω ≤ ω1H and ω1L ≤ ω ≤ ω2H and so on) play an important role for the real-

ization of multi-frequency targeted energy transfer. Due to the dependence of
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Figure 6.6: Representative periodic orbits; blade mass 1; − · − blade mass
2; disk mass; electric charge.
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the frequency of the damped oscillation on the instantaneous energy, irreversible

transfer of vibration energy from the blade-disk sector to the piezoelectric-based

NES could take place as the weakly damped continuations of the NNMs are traced

from high to low frequencies. This conclusion follows the fact that the shapes of

the corresponding NNMs localize from the LO to the NES as frequency decreases

along different branches. It also raises the possibility of multi-frequency energy

transfer in the transient damped dynamics. As a result, it seems that it is pos-

sible to reproduce, using an essentially nonlinear piezoelectric shunt circuit, the

dynamics created by an essentially nonlinear mechanical system, which paves the

way for applications of the piezoelectric-based NES in bladed disks.

6.2.3 Forced response

Forced responses of the tuned bladed disk with essentially nonlinear shunted

circuits are investigated. An engine order 1 excitation is imposed on the bladed

disk. Parameters for the essentially nonlinear shunt circuits are: ε = 0.05, β =

1, µ = 0.1853, α = 0.05αcr. As explained in Chapter 5.6.3, a strong damping

parameter β is chosen in order to seek a good damping performance and simple

response regimes. Various force responses are compared in Fig. 6.7.
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Figure 6.7: Nonlinear frequency response: a) mechanical displacement of the
blade mass m1; b) electric charge. ( : mechanical bladed disks without
piezoelectric attachments; : bladed disks shunted with essentially nonlinear
circuits; : bladed disks shunted with resonant circuits).
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For the purpose of comparison, the performance of the well-tuned resonant

shunt circuit ( ) and essentially nonlinear shunt circuit ( ) are depicted

in Fig. 6.7. It can be seen that significant vibration reduction due to the reso-

nant/essentially nonlinear shunt circuit is achieved, compared with the mechani-

cal bladed disk without piezoelectric attachment ( ). The essentially nonlin-

ear shunt circuit performs nearly as well as the well tuned resonant circuit does.

Two Neimark-Sacker bifurcation points are observed. Quasi-periodic response is

therefore expected in this region.

According to the preliminary numerical studies on NNMs and forced response

for a single sector of a tuned bladed disk, it seems feasible to apply essentially

nonlinear piezoelectric shunt circuits into the bladed disks. The dynamics cre-

ated by the piezoelectric-based NES coupled with a SDOF mechanical oscillator,

could be reproduced in the piezoelectric shunted bladed disks. Since essentially

nonlinear piezoelectric shunt circuits are featured by nonexistence of preferen-

tial resonance frequency, they are expected to exhibit a better performance than

the resonant circuit, when structure disorder, i.e., blade mistuning, takes place

inevitably.

6.3 Essentially nonlinear piezoelectric shunt cir-

cuits in mistuned bladed disks

In this section, the performance of essentially nonlinear piezoelectric shunt cir-

cuits in mistuned bladed disks is examined. To capture the blade mistuning

phenomenon, one must model the entire blade-disk structure by considering the

system:

Me ÿ + De ẏ + Ke y + fenl
(y) = fp(t) (6.18)

Apparently the mistuned case is much more computationally expensive compared

to the tuned case.

As presented in Chapter 3.2, blade mistuning δ is modeled as a variation in

blade-alone stiffness k1 and k2. Then the response of mistuned bladed disks under

engine order 1 excitation is calculated using HBM applied in the whole structure.

Three harmonics are retained in the formulation of HBM. Condensation tech-
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nique plays an important role in reducing computational burdens. The nonlinear

parameter set generating the nonlinear forced response curve in Fig. 6.8 is listed

as follows: ε = 0.05, µ = 0.1853, β = 1, α = 0.05αcr. For the purpose of compar-

ison, response curves of the tuned/mistuned bladed disks, and resonant shunted

bladed disk are plotted, as well. Readers may also refer to Fig. 3.8 since the same

mistuning pattern δ is imposed on the bladed disk.
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Figure 6.8: Maximum blade amplitude versus frequency

It is seen that in the mistuned bladed disk, the essentially nonlinear piezoelec-

tric shunt circuits ( ) perform better than the engine-order tuned resonant

circuits ( ) since significant vibration reduction is achieved all over the ex-

amined frequency range. This is mainly attributed to the adaptive capability of

the piezoelectric-based NES since it is not necessary to be a priori tuned to any

specified frequency. This feature enables the nonlinear shunted piezoelectric to

adaptively interact with each mistuned sector of bladed disks, which finally leads

to a sound vibration reduction effect.

The forced responses of this mistuned bladed disk with essentially nonlinear

shunted circuits are further validated in the time domain from initial condition at

rest at selected excitation frequencies. To highlight the blade mistuning effect, we
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choose the excitation frequency as ω1 = 1177rad/s, ω2 = 1261rad/s, where the

maximum blade amplitude (point A) and a secondary peak (point B) are found

in Fig. 6.8. A comparison of blade amplitudes between the piezoelectric shunted

bladed disk with linear circuits and the one with nonlinear circuits is depicted in

Fig. 6.9. Due to the blade mistuning effect, strong localization phenomenons are

observed in both cases, i.e., some blades (blade no. 2) undergo excessive vibration

level in Fig. 6.9a. While at the same time the vibration level is significantly

reduced because of the nonlinear effect. Similar vibration reduction phenomenon

is also observed in Fig. 6.9b. These interesting phenomenons demonstrates the

possibility that the essentially nonlinear effects could be beneficial in cases where

motion localization due to structure disorder is unwanted.
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Figure 6.9: Blade amplitude versus blade number: a) at ω1 = 1177rad/s, point
A; b) at ω2 = 1261rad/s, point B.

It is also found that at point B, vibration reduction of the maximum blade

amplitude is less effective than that at point A. This phenomenon is probably

attributed to the energy-dependent performance of piezoelectric-based NES, since

the bladed disk undergoes a higher vibration level at point A. This proves to be a

rational conclusion by examining the responses under an augmented excitation.

Blade amplitude distribution is given in Fig. 6.10 when the engine order excitation

reaches 1.5 times the level in Fig. 6.9. It is shown that in the case of resonant shunt

circuit, the maximum blade amplitudes increase linearly with the augmented

excitation. As expected, more effective vibration reduction is realized at point B
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6. Essentially nonlinear piezoelectric shunt circuits applied in blisks

in Fig. 6.10b.
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Figure 6.10: Blade amplitude versus blade number with augmented excitation:
a) at ω1 = 1177rad/s, point A; b) at ω2 = 1261rad/s, point B.

Finally, it should be pointed out that there still exist small fractions of un-

stable areas in the nonlinear response curve. Since high dimensional bifurcations

have been encountered in the global dynamics of SDOF linear oscillator coupled

with NES, essentially nonlinear effects in the cyclic structure, along with blade

mistuning further complicate the mechanism of losing stability. Despite the ex-

istence of unstable periodic solutions, the essential nonlinear piezoelectric shunt

circuits yield better performance than the linear resonant circuits do over a broad

frequency band.

6.4 Conclusion

Essential nonlinearity is introduced into the piezoelectric shunted bladed disk in

this chapter. The computational strategy based on harmonic balance method

specially for tuned cyclic structures works well even in the case of strong non-

linear effect. By examining NNMs and forced response of a single sector in a

tuned bladed disk, it proves feasible to reproduce, using an essentially nonlin-

ear piezoelectric shunt circuit, the dynamics created by a mechanical NES in

the MDOF primary system. This study paves the way for applications of the

piezoelectric-based NES in bladed disks.
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6. Essentially nonlinear piezoelectric shunt circuits applied in blisks

The appealing feature of NES, i.e., nonexistence of preferential resonant fre-

quency, enables the essentially nonlinear shunt circuits adaptively interact with

each sector of mistuned bladed disks in a broadband fashion. Consequently, they

yield a better damping performance than the resonant circuits do, when blade

mistuning takes place inevitably.
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Conclusions and perspectives

Blade mistuning has a dramatic impact on the vibratory behavior of bladed disks,

giving rise to vibration localization phenomenons and blade forced response am-

plitude magnification. On the other hand, piezoelectric materials have been ex-

tensively used as sensors and actuators for vibration controls in recent decades

because of their ideal properties: light weight, high bandwidths, efficient energy

conversion and easy integration. Embedded or bonded onto the vibrating struc-

tures, piezoelectric materials can convert mechanical energy into electric energy

and vice versa. This thesis is dedicated to applying piezoelectric shunt damping

into bladed disks in order to suppress blade mistuning effects.

The main contributions drawn from the research work presented in this thesis

are summarized as follows:

• A new piezoelectric damping strategy especially suitable for blisks, i.e.,

using shunted piezoelectrics solely attached onto the disk, is proposed. This

strategy is of engineering interest since the piezoelectric transducers are

placed outside of the main stream in turbomachinery in order to avoid

disturbing the flow field. It is also important to demonstrate that relatively

small inductances are required by resonant circuits for the high-frequency

vibration in bladed disks.

• The optimized piezoelectric mistuning, seen as a kind of damping mistuning,

is demonstrated effective in blade vibration reduction for a given mistuned

bladed disk. Relying on this fact, an adaptive control strategy is developed

aiming at adjusting the piezoelectric mistuning pattern to keep “optimal”

in terms of maintaining low blade vibration levels during the operation of

bladed disks.
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Conclusions and perspectives

• An essentially nonlinear piezoelectric shunt circuit is proposed for practi-

cal realization of nonlinear energy sink. This piezoelectric-based NES is

characterized by the lack of preferential resonance frequencies. This feature

enables it to act as a passive, adaptive, broadband vibration absorber. Fur-

thermore, a relative smaller inductance requirement also advantages this

nonlinear shunt circuit over the resonant circuit.

• The variable-coefficient harmonic balance method, namely, a variant of

HBM, is effective in searching for quasi-periodic responses arising in the lin-

ear mechanical oscillators coupled with a piezoelectric-based NES. It helps

gain insights into the complex dynamics of forced response when the coupled

electromechanical system is under harmonic external forcing.

• Essentially nonlinear piezoelectric shunt circuits are applied into mistuned

bladed disks. They are capable of adaptively interacting with each sector

of mistuned bladed disks in a broadband fashion. Consequently, a sound

damping performance is obtained. This study paves the way for applications

of the piezoelectric-based NES in realistic mistuned bladed disks.

The research work presented in this dissertation also suggests a number of

theoretical and experimental work for future studies:

• Experimental validation of the proposed piezoelectric-based damping strat-

egy. Piezoelectric attached onto the disk have been utilized successfully

as excitation sources in realistic blade-disk structures. Based on this ex-

perimental test rig, resonant circuits could be readily integrated into the

structure to provide convincing experimental results in terms of piezoelec-

tric shunt damping for blade vibration.

• Theoretical aspects concerning the piezoelectric-based nonlinear energy sink

have been fully addressed in Chapter 5. There are still a number of chal-

lenges in the way to practical realization of the proposed essentially non-

linear shunt circuit. The negative capacitance and ferroelectric capacitance

are critical issues of major concern.
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Conclusions and perspectives

• The development of variable-coefficient harmonic balance method for quasi-

periodic responses also implies its inherent limitation as a semi-analytic

method. In the following study, this method might be further generalized

by the multi-dimensional harmonic balance method.

• Nonlinear tuning design for the piezoelectric-based NES deserves further

studies in order to seek the best performance of NES under harmonic forc-

ing. This perspective is of great importance for realistic application of NES.

In the end, it is expected that the research work presented in this thesis

could arise more attention to the piezoelectric shunt damping in the academic

and industrial community. As a new damping technique, the piezoelectric shunt

damping, especially the proposed essentially nonlinear shunt circuit, might pro-

vide practical and effective means for vibration reduction in mistuned bladed

disks.
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Appendix A

Details on system descriptions of piezoelectric

shunted bladed disks

The submatrices of circulant matrices Dp and Kp in Eq. (3.3) are given as follows:

Dp =










Dpm,1
Dpr,1

· · · Dpl,1

Dpl,2
Dpm,2

Dpr,2

...

0
. . . . . . 0

Dpr,N
· · · Dpl,N

Dpm,N










, Kp =










Kpm,1
Kpr,1

· · · Kpl,1

Kpl,2
Kpm,2

Kpr,2

...

0
. . . . . . 0

Kpr,N
· · · Kpl,N

Kpm,N










Dpl,j
=









0 0 0 0

0 0 0 0

0 0 − γ
ω
k3,j−1 0

0 0 0 0









, Dpm,j
=









γ
ω






k1,j −k1,j 0

−k1,j k1,j + k2,j −k2,j

0 −k2,j ksum




 0

0 Rj









Dpr,j
=









0 0 0 0

0 0 0 0

0 0 − γ
ω
k3,j 0

0 0 0 0









, Kpl,j
=









0 0 0 0

0 0 0 0

0 0 −k3,j−1 − koc
j−1 −kc

j−1

0 0 0 0









Kpr,j
=
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



0 0 0 0

0 0 0 0

0 0 −k3,j − koc
j 0

0 0 −kc
j 0
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
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=





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
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k1,j −k1,j 0 0

−k1,j k1,j + k2,j −k2,j 0

0 −k2,j ksum + koc
j−1 + koc

j kc
j

0 0 kc
j

1
CS

P,j




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
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where ksum = k3,j−1 +k2,j +k3,j +k4,j. The damping matrix Dp is built such that

the system has an equivalent structure damping to that in Eq. (3.4).

Alternatively, the frequency-domain system description in Eq. (3.4) is pro-

posed as well. Kmech and Kpiezo are also circulant matrices with a similar struc-

ture:

Kmechl,j
=






0 0 0

0 0 0

0 0 −k3,j−1




 , Kmechm,j

=






k1,j −k1,j 0

−k1,j k1,j + k2,j −k2,j

0 −k2,j ksum






Kmechr,j
=






0 0 0

0 0 0

0 0 −k3,j




 , Kpiezol,j

=






0 0 0

0 0 0

0 0 −k5,j−1






Kpiezor,j
=






0 0 0

0 0 0

0 0 −k5,j




 , Kpiezom,j

=






0 0 0

0 0 0

0 0 k5,j−1 + k5,j





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Appendix B

.1 Linear approximation of the response

For the sake of simplicity, hereafter Xδ+∆δ,δL

0 will be substituted by X(δL) or X0.

Similarly, Xδ+∆δ,δL+∆δL is replaced by X(δL + ∆δL). For practical rather than

theoretical reasons, the treatment of matrix calculus is based on differentials

rather than derivatives. Let A equal the transfer matrix:

A =
[

−ω2M + iγKδ+∆δ
mech +

(

Kδ+∆δ
mech + K

δL

piezo

)]

(19)

Taking the differential of X at δL with increment ∆δL and then using the

property of vectorization and Kronecker’s product yields:

dX(δL; ∆δL) = d(A−1F ) = −A−1d(A)A−1F = −A−1d(KδL

piezo)X0

= −
(
XT

0 ⊗ A−1
)
vec
(

dKδL

piezo

)

(20)

Let’s note that K
δL

piezo is the separated piezoelectric stiffness matrix that only

comprises the stiffness of each piezoelectric patch k5,j; we thus have:

dKδL

piezo =
N∑

j=1

∂KδL

piezo

∂k5,j

∂k5,j

∂δL,j

dδL,j (21)

Let’s denote Vj = ∂KδL

piezo/∂k5,j. ∂k5,j/∂δL,j can then be obtained from
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Eq. (2.22). Furthermore we have:

vec
(
dK0

piezo

)
= vec

(

V1
∂k5,1

∂δL,1

dδL,1

)

+ · · · + vec

(

VN
∂k5,N

∂δL,N

dδL,N

)

=

[

vec

(

V1
∂k5,1

∂δL,1

)∣
∣
∣
∣
· · ·
∣
∣
∣
∣
vec

(

VN
∂k5,N

∂δL,N

)]

× [dδL,1, · · · , dδL,N ]T

= E dδL (22)

Now, let’s substitute Eq. (22) into Eq. (20):

dX0 = −
(
XT

0 ⊗ A−1
)
E dδL (23)

Obviously, the Jacobian matrix J is −
(
XT

0 ⊗ A−1
)
E.

.2 Gauss-Newton method for nonlinear least squares

problems

We shall discuss the Gauss-Newton method for nonlinear least squares problems

in this section. Given a vector function X : C
N → C

N . We want to minimize

‖X(δL)‖, or equivalently to find:

δ∗L = argminδL
{F} = argminδL

{1

2
XH(δL)X(δL)} (24)

The Gauss-Newton method is based on a linear approximation to the compo-

nents of X in the neighborhood of δL; for small ‖∆δL‖ we see from the Taylor

expansion that:

X(δL + ∆δL) = X(δL) + J∆δL == X0 + J∆δL (25)

Inserting this expression into the definition Eq. (24) of F and introducing the
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constraint conditionyields:

F(δL + ∆δL) = L(∆δL) = (X0 + J∆δL)H (X0 + J∆δL)

= F(δL) + 2∆δT
LRe(J

HX0) + ∆δT
LJHJ∆δL (26)

We herein introduce L as a function of ∆δL. The Gauss-Newton step (∆δL)gn

minimizes L(∆δL),

(∆δL)gn = argmin∆δL
{L(∆δL)} (27)

It is easily seen that the gradient and the Hessian of L are:

L
′(∆δL) = 2Re(JHX0) + 2Re(JHJ)∆δL (28)

L
′′(∆δL) = 2Re(JHJ) (29)

If there exists a minimum value of L(∆δL), it can be found by solving

L
′[(∆δL)gn] = 2Re(JHX0) + 2Re(JHJ)(∆δL)gn = 0 (30)

The descent direction (∆δL)gn for F could be used in the extensively known

algorithm of descent method. The typical step is:

Solve:Re(JHJ)(∆δL)gn = −Re(JHX0)

δL := δL + β(∆δL)gn (31)

where β is factor that determines how far the next iteration step is to move from

a point δL in the descent direction (∆δL)gn. The classical Gauss-Newton method

uses β = 1 in all iterative steps. However, β is found by line search in this thesis.

There exist a number of line search algorithms, such as uniform search and golden

section search, etc. The Gauss-Newton method with line search can be shown to

have guaranteed convergence under certain conditions.
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Appendix C

Analytic expressions of Fourier coefficients for

nonlinear functions

It is assumed that the electric charge q(t) is expressed by a truncated Fourier

series:

q(t) = Q0 +

Nh∑

k=1

Qckcos(kωt) +Qsksin(kωt) (32)

The (2Nh + 1) × 1 vector Q contains Fourier coefficients:

Q = [Q0, Qc1, Qs1, . . . , Qck, Qsk, . . . , QcNh , QsNh ]T

= [Q1, Q2, . . . , Q2Nh+1]
T (33)

In standard harmonic balance method, the nonlinear term fnl(t, q) = q3 is

also expressed by a Fourier expansion:

fnl(t) = F 0
nl +

Nh∑

k=1

F ck
nl cos(kωt) + F sk

nl sin(kωt) (34)

where

F 0
nl =

ω

2π

∫ 2π/ω

0

q3(t)dt (35)
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F ck
nl =

ω

π

∫ 2π/ω

0

q3(t)cos(kωt)dt (36)

F sk
nl =

ω

π

∫ 2π/ω

0

q3(t)sin(kωt)dt (37)

Analytical expression of Fnl can be readily obtained for small valued Nh. For

instance, when Nh = 3, we have:

Fnl =


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