. La-chimie-théorique and . La, modélisation sont indispensables dans l'étude de la matière à l'état moléculaire ou solide. L'étude théorique contribue à la dé- II.1. Étude expérimentale

I. Figure, 8 ? La cinétique du processus d'isomérisation. pour ?S(t) < 0, pour ?S(t) > 0 et pour ?S

. Un, irradiation à longue durée dans le domaine de 5500 -7700 cm ?1 (1800 -1300 nm) a été observé sur les bandes de vibration de l'espèce s-o au détriment de la disparition de celles de l'espèce e-o. Avec cette photochimie nous avons attribué le mode d'élongation Ti ? O de l'espèce, OTi(? 2 ? NN)] situé à 980, pp.1-1

L. Figure and I. , 9 illustre l'effet d'irradiation sur les modes d'élongation N ? N et

I. Chapitre, Produits de la réaction 1 :1 (Ti + N 2 O)

. Maine-allant-de, Filtre Si couvrant la gamme de 0 -9000 cm ?1 ) à 78 kcal/mol

L. Figure and I. , 3 montre un des effets d'irradiation effectuée avec un filtre dont la bande passante s'étend entre 830 et 780 nm où nous observons une photodissociation totale de cette espèce. Cette réduction de la molécule est souvent Chapitre III

Y. L. Yung, W. C. Wang, and A. A. , Greenhouse effect due to atmospheric nitrous oxide, Geophysical Research Letters, vol.13, issue.10, p.619, 1976.
DOI : 10.1029/GL003i010p00619

A. T. Brown, C. M. Volk, M. R. Schoeberl, C. D. Boone, and P. F. Bernath, Stratospheric lifetimes of CFC-12, CCl<sub>4</sub>, CH<sub>4</sub>, CH<sub>3</sub>Cl and N<sub>2</sub>O from measurements made by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), Atmospheric Chemistry and Physics, vol.13, issue.14, p.6921, 2013.
DOI : 10.5194/acp-13-6921-2013

D. Pope, D. Walker, and R. Moss, Evaluation of cobalt oxide catalysts for the oxidation of low concentrations of organic compounds in air, Atmospheric Environment (1967), vol.10, issue.11, p.951, 1976.
DOI : 10.1016/0004-6981(76)90201-8

E. Wilczkowska, K. Krawczyk, J. Petryk, J. W. Sobczak, and Z. Kaszkur, Direct nitrous oxide decomposition with a cobalt oxide catalyst, Applied Catalysis A: General, vol.389, issue.1-2, p.165, 2010.
DOI : 10.1016/j.apcata.2010.09.016

E. Iwanek, K. Krawczyk, J. Petryk, J. W. Sobczak, and Z. Kaszkur, Direct nitrous oxide decomposition with CoOx-CeO2 catalysts, Applied Catalysis B: Environmental, vol.106, issue.3-4, p.416, 2011.
DOI : 10.1016/j.apcatb.2011.05.049

K. Fujita, J. M. Chan, J. A. Bollinger, M. L. Alvarez, and D. M. Dooley, Anaerobic purification, characterization and preliminary mechanistic study of recombinant nitrous oxide reductase from Achromobacter cycloclastes, Journal of Inorganic Biochemistry, vol.101, issue.11-12, p.1836, 2007.
DOI : 10.1016/j.jinorgbio.2007.06.029

S. Ghosh, S. I. Gorelsky, S. Debeer-george, J. M. Chan, I. Cabrito et al., O Reductase:?? pH Effect on the Edge Ligand and Its Contribution to Reactivity, Journal of the American Chemical Society, vol.129, issue.13, p.3955, 2007.
DOI : 10.1021/ja068059e

H. Schwarz, On the spin-forbiddeness of gas-phase ion???molecule reactions: a fruitful intersection of experimental and computational studies, International Journal of Mass Spectrometry, vol.237, issue.1, p.75, 2004.
DOI : 10.1016/j.ijms.2004.06.006

S. M. Souvi, N. Berkaïne, M. E. Alikhani, and L. Manceron, Neon-matrix spectroscopic and theoretical studies of the reactivity of titanium dimer with diatomic ligands: comparison of reactions with nitrogen and carbon monoxide, Physical Chemistry Chemical Physics, vol.454, issue.239
DOI : 10.1039/b910056c

E. Whittle, D. A. Dows, and G. Pimentel, Matrix Isolation Method for the Experimental Study of Unstable Species, The Journal of Chemical Physics, vol.22, issue.11, 1943.
DOI : 10.1063/1.1739957

M. Jacox, Comparison of the ground state vibrational fundamentals of diatomic molecules in the gas phase and in inert solid matrices, Journal of Molecular Spectroscopy, vol.113, issue.2, p.286, 1985.
DOI : 10.1016/0022-2852(85)90268-1

J. C. Slater, Atomic Shielding Constants, Physical Review, vol.36, issue.1, p.57, 1930.
DOI : 10.1103/PhysRev.36.57

F. K. Jr and J. S. Hans, Basis set quality vs size. approximate gaussian-type orbital (gto) wave functions for first row transition metal atoms, J. Chem. Phys, vol.86, p.7035, 1987.

S. M. Blinder, Basic Concepts of Self-Consistent-Field Theory, American Journal of Physics, vol.33, issue.6, pp.33-431, 1965.
DOI : 10.1119/1.1971665

C. C. Roothaan, Self-Consistent Field Theory for Open Shells of Electronic Systems, Reviews of Modern Physics, vol.32, issue.2, pp.32-179, 1960.
DOI : 10.1103/RevModPhys.32.179

C. C. Roothaan, New developments in molecular orbital theory ; Rev

A. Wolf and H. Schmidtke, Nonempirical calculations on diatomic transition metals. II.RHF investigation of lowest closed-shell states of homonuclear 3d transition-metal dimers, International Journal of Quantum Chemistry, vol.8, issue.5, p.1187, 1980.
DOI : 10.1002/qua.560180507

J. D. Goddard, N. C. Handy, and H. F. , III ; Gradient techniques for open-shell restricted hartree?fock and multiconfiguration self-consistent-field methods, S

J. A. Pople and R. K. Nesbet, Self???Consistent Orbitals for Radicals, The Journal of Chemical Physics, vol.22, issue.3, pp.571-592, 1954.
DOI : 10.1063/1.1740120

P. Löwdin, The historical development of the electron correlation problem, International Journal of Quantum Chemistry, vol.293, issue.Suppl. 1
DOI : 10.1002/qua.560550203

A. D. Becke, Density functionals for static, dynamical, and strong correlation, The Journal of Chemical Physics, vol.138, issue.7
DOI : 10.1063/1.4790598

C. Møller and M. S. Plesset, Note on an Approximation Treatment for Many-Electron Systems, Physical Review, vol.46, issue.7, pp.46-618, 1934.
DOI : 10.1103/PhysRev.46.618

F. Coester, Bound states of a many-particle system ; Nucl. Phys, 1958.

F. Coester and H. Kümmel, Short-range correlations in nuclear wave functions, Nuclear Physics, vol.17
DOI : 10.1016/0029-5582(60)90140-1

B. O. Roos, P. R. Taylor, and P. Sigbahn, A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach, Chemical Physics, vol.48, issue.2, pp.48-157, 1980.
DOI : 10.1016/0301-0104(80)80045-0

K. Andersson, P. A. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, Second-order perturbation theory with a CASSCF reference function, The Journal of Physical Chemistry, vol.94, issue.14, p.5483, 1990.
DOI : 10.1021/j100377a012

P. R. Westmoreland, Applying Molecular and Materials Modeling, 2002.
DOI : 10.1007/978-94-017-0765-7

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.136, issue.3B, p.864, 1964.
DOI : 10.1103/PhysRev.136.B864

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A, pp.140-1133, 1965.
DOI : 10.1103/PhysRev.140.A1133

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.38, issue.6, p.3098, 1988.
DOI : 10.1103/PhysRevA.38.3098

A. D. Becke and M. R. Roussel, Exchange holes in inhomogeneous systems: A coordinate-space model, Physical Review A, vol.39, issue.8, p.3761, 1989.
DOI : 10.1103/PhysRevA.39.3761

A. D. Becke, Density???functional thermochemistry. IV. A new dynamical correlation functional and implications for exact???exchange mixing, The Journal of Chemical Physics, vol.104, issue.3, 1040.
DOI : 10.1063/1.470829

J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Climbing the Density Functional Ladder: Nonempirical Meta???Generalized Gradient Approximation Designed for Molecules and Solids, Physical Review Letters, vol.91, issue.14, p.91, 2003.
DOI : 10.1103/PhysRevLett.91.146401

Y. Zhao, N. E. Schultz, and D. G. Truhlar, Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions, Journal of Chemical Theory and Computation, vol.2, issue.2
DOI : 10.1021/ct0502763

A. J. Pérez-jiménez, F. Moscardó, J. C. Sancho-garcía, L. P. Abia, E. San-fabián et al., Pérez-Jordá ; New approach to the design of density functionals

J. Sauer, Book Review: Ab Initio Calculation of the Structures and Properties of Molecules. By C. E. Dykstra, Angewandte Chemie International Edition in English, vol.28, issue.10, p.1404, 1989.
DOI : 10.1002/anie.198914041

D. H. Mathew and H. B. Schlegel, Comparison of the performance of local, gradientcorrected , and hybrid density functional models in predicting infrared intensities

C. A. Jimenez-hoyos, B. G. Janesko, and G. E. Scuseria, Evaluation of range-separated hybrid density functionals for the prediction of vibrational frequencies, infrared intensities, and Raman activities, Physical Chemistry Chemical Physics, vol.36, issue.44, p.6621, 2008.
DOI : 10.1039/b810877c

E. E. Zvereva, A. R. Shagidullin, and S. A. Katsyuba, Ab Initio and DFT Predictions of Infrared Intensities and Raman Activities, The Journal of Physical Chemistry A, vol.115, issue.1, p.63, 2011.
DOI : 10.1021/jp108057p

R. G. Parr and W. , Yang Density-Functional Theory of Atoms and Molecules, 1989.

W. Koch and M. C. , Holthausen In A Chemist's Guide to Density Functional Theory, p.65, 2001.

J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B, vol.23, issue.10, p.5048, 1981.
DOI : 10.1103/PhysRevB.23.5048

S. Goedecker and C. J. Umrigar, Critical assessment of the self-interactioncorrected?local-density-functional method and its algorithmic implementation

E. J. Meijer and M. Sprik, A density???functional study of the intermolecular interactions of benzene, The Journal of Chemical Physics, vol.105, issue.19, p.8684, 1996.
DOI : 10.1063/1.472649

S. M. Cybulski and C. E. Seversen, Critical examination of the supermolecule density functional theory calculations of intermolecular interactions, The Journal of Chemical Physics, vol.122, issue.1, p.14117, 2005.
DOI : 10.1063/1.1829044

S. Kristyán and P. Pulay, Can (semi)local density functional theory account for the London dispersion forces?, Chemical Physics Letters, vol.229, issue.3, p.175, 1994.
DOI : 10.1016/0009-2614(94)01027-7

J. M. Pérez-jordá and A. D. Becke, A density-functional study of van der Waals forces: rare gas diatomics, Chemical Physics Letters, vol.233, issue.1-2, p.134, 1995.
DOI : 10.1016/0009-2614(94)01402-H

E. Ruiz, D. R. Salahub, and A. Vela, Defining the Domain of Density Functionals: Charge-Transfer Complexes, Journal of the American Chemical Society, vol.117, issue.3, p.1141, 1995.
DOI : 10.1021/ja00108a036

E. R. Johnson and A. D. Becke, A post-Hartree???Fock model of intermolecular interactions, The Journal of Chemical Physics, vol.123, issue.2, p.24101, 2005.
DOI : 10.1063/1.1949201

S. Grimme, Semiempirical gga-type density functional constructed with a longrange dispersion correction, J. Comp. Chem, pp.27-1787, 2006.

G. J. Laming, N. C. Handy, and R. D. Amos, Kohn-Sham calculations on open-shell diatomic molecules, Molecular Physics, vol.26, issue.5, p.1121, 1993.
DOI : 10.1021/cr00005a001

T. V. Russo, R. L. Martin, and P. J. Hay, Density functional calculations on first???row transition metals, The Journal of Chemical Physics, vol.101, issue.9, p.7729, 1994.
DOI : 10.1063/1.468265

D. Cremer, Density functional theory: coverage of dynamic and non-dynamic electron correlation effects, Molecular Physics, vol.91, issue.23, pp.99-1899, 2001.
DOI : 10.1063/1.1373433

L. Noodleman and J. J. Norman, The x alpha valence bond theory of weak electronic coupling. application to the low-lying states of Mo 2 Cl 4? 8, J. Chem

J. P. Perdew, A. Savin, and K. Burke, Escaping the symmetry dilemma through a pair-density interpretation of spin-density functional theory, Physical Review A, vol.51, issue.6, p.4531, 1995.
DOI : 10.1103/PhysRevA.51.4531

O. Gunnarsson and B. I. Lundqvist, Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism, Physical Review B, vol.13, issue.10, p.4274, 1976.
DOI : 10.1103/PhysRevB.13.4274

F. Allouti, L. Manceron, and M. E. Alikhani, The Ni 2 +O 2 reaction : the ir spectrum and structure of Ni 2 O 2 . a combined ir matrix isolation and theoretical study

S. M. Souvi, D. Delphine, M. E. Alikhani, and L. Manceron, Formation and structure of Co 2 O 4 : A combined ir matrix isolation and theoretical study, J. Phys. Chem

A. Marzouk, D. Danset, M. Zhou, Y. Gong, M. E. Alikhani et al., : A Model Compound for Molecular Oxygen Reversible Binding on Cobalt Oxides and Salts; A Combined IR Matrix Isolation and Theoretical Study, The Journal of Physical Chemistry A, vol.115, issue.32, p.9014, 2011.
DOI : 10.1021/jp203943x

C. D. Sherrill, M. S. Lee, and M. Head-gordon, On the performance of density functional theory for symmetry-breaking problems, Chemical Physics Letters, vol.302, issue.5-6, p.425, 1999.
DOI : 10.1016/S0009-2614(99)00206-7

A. A. Ovchinnikov and J. K. Labanowski, Simple spin correction of unrestricted density-functional calculation, Physical Review A, vol.53, issue.6, p.3946, 1996.
DOI : 10.1103/PhysRevA.53.3946

P. Löwdin, Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction, Physical Review, vol.97, issue.6, pp.97-1474, 1955.
DOI : 10.1103/PhysRev.97.1474

M. S. Gordon, M. W. Schmidt, G. M. Chaban, K. Glaesemann, W. J. Stevens et al., A natural orbital diagnostic for multiconfigurational character in correlated wave functions, The Journal of Chemical Physics, vol.110, issue.9, p.4199, 1999.
DOI : 10.1063/1.478301

N. Helbig, I. V. Tokatly, and A. Rubio, Physical meaning of the natural orbitals: Analysis of exactly solvable models, Physical Review A, vol.81, issue.2, p.22504, 2010.
DOI : 10.1103/PhysRevA.81.022504

H. Dachsel, R. J. Harrison, and D. A. Dixon, Multireference configuration interaction calculations on Cr 2 :passing the one billion limit in mrcimracpf calculations

V. Bondybey and J. English, Electronic structure and vibrational frequency of Cr 2

K. Andersson, The electronic spectrum of Cr2, Chemical Physics Letters, vol.237, issue.3-4, p.212, 1995.
DOI : 10.1016/0009-2614(95)00328-2

M. Brynda, L. Gagliardi, and B. O. Roos, Analysing the chromium???chromium multiple bonds using multiconfigurational quantum chemistry, Chemical Physics Letters, vol.471, issue.1-3, p.471, 2009.
DOI : 10.1016/j.cplett.2009.02.006

P. Celani, H. Stoll, H. Werner, and P. J. Knowles, The CIPT2 method: Coupling of multi-reference configuration interaction and multi-reference perturbation theory. Application to the chromium dimer, Molecular Physics, vol.15, issue.21-22, p.2369, 2004.
DOI : 10.1063/1.1406535

K. E. Edgecombe and A. D. Becke, Cr2 in density-functional theory: approximate spin projection, Chemical Physics Letters, vol.244, issue.5-6, p.427, 1995.
DOI : 10.1016/0009-2614(95)00945-Z

L. Noodleman, Valence bond description of antiferromagnetic coupling in transition metal dimers, The Journal of Chemical Physics, vol.74, issue.10, pp.74-5737, 1981.
DOI : 10.1063/1.440939

L. Noodleman and E. R. Davidson, Ligand spin polarization and antiferromagnetic coupling in transition metal dimers, Chemical Physics, vol.109, issue.1, p.131, 1986.
DOI : 10.1016/0301-0104(86)80192-6

R. F. Bader, Bond Paths Are Not Chemical Bonds, The Journal of Physical Chemistry A, vol.113, issue.38, p.10391, 2009.
DOI : 10.1021/jp906341r

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.408.1899

F. Cortes-guzman and R. Bader, Complementarity of QTAIM and MO theory in the study of bonding in donor?acceptor complexes, Coordination Chemistry Reviews, vol.249, issue.5-6, p.633, 2005.
DOI : 10.1016/j.ccr.2004.08.022

A. D. Becke and K. E. Edgecombe, A simple measure of electron localization in atomic and molecular systems, The Journal of Chemical Physics, vol.92, issue.9, pp.92-5397, 1990.
DOI : 10.1063/1.458517

A. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss et al., Electron Localization in Solid-State Structures of the Elements: the Diamond Structure, Angewandte Chemie International Edition in English, vol.31, issue.2, pp.31-187, 1992.
DOI : 10.1002/anie.199201871

C. F. Weizsäcker, Zur theorie der kernmassen (on the theory of nuclear masses), Z. Phys, pp.96-431, 1935.

B. Silvi and A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions, Nature, vol.371, issue.6499, pp.371-683, 1994.
DOI : 10.1038/371683a0

J. Pilme, B. Silvi, and M. E. Alikhani, Structure and Stability of M???CO, M = First-Transition-Row Metal:?? An Application of Density Functional Theory and Topological Approaches, The Journal of Physical Chemistry A, vol.107, issue.22, p.4506, 2003.
DOI : 10.1021/jp027203p

F. Weinhold and J. E. , Carpenter In The Structure of Small Molecules and Ions

L. D. Aquilante, N. Vico, G. Ferré, P. -. Ghigo, P. Malmqvist et al., The next generation, J. Comp. Chem, vol.7, pp.31-224, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01460198

S. Noury, X. Krokidis, F. Fuster, and B. Silvi, Computational tools for the electron localization function topological analysis, Computers & Chemistry, vol.23, issue.6, p.597, 1999.
DOI : 10.1016/S0097-8485(99)00039-X

S. King, K. Hyunh, and R. Tannenbaum, Kinetics of Nucleation, Growth, and Stabilization of Cobalt Oxide Nanoclusters, The Journal of Physical Chemistry B, vol.107, issue.44, p.12097, 2003.
DOI : 10.1021/jp0355004

M. Calatayud, J. Andrès, and A. Beltran, (X = 2???4, Y = 2???10) Systems, The Journal of Physical Chemistry A, vol.105, issue.42, p.9760, 2001.
DOI : 10.1021/jp011535x

D. Danset and L. Manceron, Mid- and Near-IR Electronic Absorption Spectrum of CoO Isolated in Solid Neon. Vibronic Data for Low-Lying Electronic States, The Journal of Physical Chemistry A, vol.107, issue.51
DOI : 10.1021/jp0357626

V. Staemmler, P. Reinhardt, F. Allouti, and M. E. Alikhani, A theoretical study of the electronic structure of the Co2O2 molecule, Chemical Physics, vol.349, issue.1-3, p.83, 2008.
DOI : 10.1016/j.chemphys.2008.02.040

Y. Gong, M. Zhou, and L. Andrews, Spectroscopic and Theoretical Studies of Transition Metal Oxides and Dioxygen Complexes, Chemical Reviews, vol.109, issue.12, p.6765, 2009.
DOI : 10.1021/cr900185x

L. Füsti-molnár and P. Pulay, Gaussian-based first-principles calculations on large systems using the Fourier Transform Coulomb method, Theochem) 2003, pp.666-667
DOI : 10.1016/j.theochem.2003.08.114

G. T. Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. Van-gisbergen et al., Chemistry with ADF, Journal of Computational Chemistry, vol.104, issue.180, p.931, 2001.
DOI : 10.1002/jcc.1056

T. Baruah, R. R. Zope, and M. R. Pederson3, clusters, Physical Review A, vol.69, issue.2, p.23201, 2004.
DOI : 10.1103/PhysRevA.69.023201

F. Kapteijn, J. Rodriguez-mirasol, and J. A. Moulijn, Heterogeneous catalytic decomposition of nitrous oxide, Applied Catalysis B: Environmental, vol.9, issue.1-4, p.25, 1996.
DOI : 10.1016/0926-3373(96)90072-7

J. Oi, A. Obuchi, G. R. Bamwenda, A. Ogata, H. Yagita et al., Decomposition of nitrous oxide over supported rhodium catalysts and dependency on feed gas composition, Applied Catalysis B: Environmental, vol.12, issue.4, p.277, 1997.
DOI : 10.1016/S0926-3373(96)00079-3

A. Dandekar and M. Vannice, Decomposition and reduction of N2O over copper catalysts, Applied Catalysis B: Environmental, vol.22, issue.3, p.179, 1999.
DOI : 10.1016/S0926-3373(99)00049-1

K. Doi, Y. Y. Wu, R. Takeda, A. Matsunami, N. Arai et al., Catalytic decomposition of N 2 O in medical operating rooms over Rh, Pd/Al 2 O 3 , and Pt/Al 2 O 3 ; App. Cat. B : Env, p.43, 2001.

J. Pérez-ramirez, F. Kapteijn, G. Mul, and J. A. , NO-Assisted N2O Decomposition over Fe-Based Catalysts: Effects of Gas-Phase Composition and Catalyst Constitution, Journal of Catalysis, vol.208, issue.1, p.211, 2002.
DOI : 10.1006/jcat.2002.3559

J. Haber, T. Machej, J. Janas, and M. Nattich, Catalytic decomposition of N 2 O; Catalysis Today, pp.90-105, 2004.

I. Bar-nahum, A. K. Gupta, S. M. Huber, M. Z. Ertem, C. J. Cramer et al., Reduction of Nitrous Oxide to Dinitrogen by a Mixed Valent Tricopper-Disulfido Cluster, Journal of the American Chemical Society, vol.131, issue.8, p.2812, 2009.
DOI : 10.1021/ja808917k

E. Ruiz-martinez, J. M. Sanchez-hervas, and J. Otero-ruiz, Catalytic reduction of nitrous oxide by hydrocarbons over a Fe-zeolite monolith under fluidised bed combustion conditions, Applied Catalysis B: Environmental, vol.50, issue.3, 0195.
DOI : 10.1016/j.apcatb.2004.01.013

T. Matsushima, Surface species studied by angle-resolved product desorption: Emission mechanism and spatial distribution, Surface Science, vol.603, issue.10-12, p.1415, 2009.
DOI : 10.1016/j.susc.2008.10.053

E. I. Solomon, R. Sarangi, J. S. Woertink, A. J. Augustine, J. Yoon et al., O Activation by Bi-, Tri-, and Tetranuclear Cu Clusters in Biology, Accounts of Chemical Research, vol.40, issue.7, p.581, 2007.
DOI : 10.1021/ar600060t

E. S. Kryachko, C. Vinckier, and M. T. Nguyen, Another look at the electron attachment to nitrous oxide, The Journal of Chemical Physics, vol.114, issue.18, p.7911, 2001.
DOI : 10.1063/1.1364679

D. E. Clemmer, K. Honma, and I. Koyano, Kinetics of excited-state titanium(a5F) depletion by nitric oxide, oxygen, nitrous oxide, and nitrogen, The Journal of Physical Chemistry, vol.97, issue.44, p.11480, 1993.
DOI : 10.1021/j100146a022

D. Ritter and J. C. Weisshaar, Kinetics of neutral transition-metal atoms in the gas phase: oxidation of titanium(a3F) by nitric oxide, oxygen, and nitrous oxide, The Journal of Physical Chemistry, vol.93, issue.4
DOI : 10.1021/j100341a076

D. Ritter and J. C. Weisshaar, Kinetics of neutral transition-metal atoms in the gas phase: oxidation of scandium(a2D), titanium(a3F), and vanadium(a4F) by nitric oxide, oxygen, and nitrous oxide, The Journal of Physical Chemistry, vol.94, issue.12, p.4907, 1990.
DOI : 10.1021/j100375a028

M. L. Campbell, E. J. Kölsch, and K. L. Hooper, ) Atoms with Nitrous Oxide, Cr(a 7 S 3 ), Co(a 4 F 9/2 ), p.11147, 2000.
DOI : 10.1021/jp002702g

M. Chen, G. Wang, and M. Zhou, Formation of the end-on bonded OTiNN dinitrogen complex and its photoconversion to the side-on bonded OTi(N2) molecule, Chemical Physics Letters, vol.409, issue.1-3
DOI : 10.1016/j.cplett.2005.04.094

M. Zhou, J. Zhuang, Z. Zhou, Z. H. Li, Y. Zhao et al., Titanium oxide complexes with dinitrogen. formation and characterization of the side-on and endon bonded titanium Oxide?Dinitrogen complexes in solid neon, J. Phys. Chem

L. Wan, G. Xu, L. Wu, Y. Chen, and S. Hu, Vibrational spectroscopy of N2O in solid neon matrices, Journal of Molecular Spectroscopy, vol.249, issue.1, p.65, 2008.
DOI : 10.1016/j.jms.2007.12.010

L. Manceron, O. Hübner, and H. Himmel, Dinitrogen activation by the Ti 2 N 2 molecule : A matrix isolation study ; Eur, J. of Inorg. Chem, p.595, 2009.

A. Stirling, O, The Journal of Physical Chemistry A, vol.102, issue.32, p.6565, 1998.
DOI : 10.1021/jp981151f

H. Kang and J. L. Beauchamp, Pulsed laser evaporation and ionization of solid metal targets. Implications for studying the gas-phase reactions of laser-generated atoms and ions, The Journal of Physical Chemistry, vol.89, issue.15, p.3364, 1985.
DOI : 10.1021/j100261a041

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.37, issue.2, p.785, 1988.
DOI : 10.1103/PhysRevB.37.785

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, p.3865, 1996.
DOI : 10.1103/PhysRevLett.77.3865

Y. Zhao and D. G. Truhlar, A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions, The Journal of Chemical Physics, vol.125, issue.19, 2006.
DOI : 10.1063/1.2370993

A. D. Becke, Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7
DOI : 10.1063/1.464913

C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, The Journal of Chemical Physics, vol.110, issue.13, p.6158, 1999.
DOI : 10.1063/1.478522

Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical Chemistry Accounts, vol.103, issue.1-3, p.215, 2007.
DOI : 10.1007/s00214-007-0310-x

V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes, The Journal of Chemical Physics, vol.119, issue.23, p.12129, 2003.
DOI : 10.1063/1.1626543

C. Adamo and V. Barone, Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models, The Journal of Chemical Physics, vol.108, issue.2, p.664, 1998.
DOI : 10.1063/1.475428

J. Chai and M. Head-gordon, Systematic optimization of long-range corrected hybrid density functionals, The Journal of Chemical Physics, vol.128, issue.8, p.84106, 2008.
DOI : 10.1063/1.2834918

J. Chai and M. Head-gordon, Long-range corrected hybrid density functionals with damped atom???atom dispersion corrections, Physical Chemistry Chemical Physics, vol.110, issue.44, p.6615, 2008.
DOI : 10.1039/b810189b

S. Grimme, Semiempirical hybrid density functional with perturbative second-order correlation, The Journal of Chemical Physics, vol.124, issue.3, p.34108, 2006.
DOI : 10.1063/1.2148954

T. Schwabe and S. Grimme, Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects, Physical Chemistry Chemical Physics, vol.116, issue.38, p.4398, 2006.
DOI : 10.1039/b608478h

T. Schwabe and S. Grimme, Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability, Physical Chemistry Chemical Physics, vol.125, issue.26
DOI : 10.1039/b704725h

H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, A long-range correction scheme for generalized-gradient-approximation exchange functionals, The Journal of Chemical Physics, vol.115, issue.8, p.3540, 2001.
DOI : 10.1063/1.1383587

V. Staemmler, P. Reinhardt, F. Allouti, and M. E. Alikhani, A theoretical study of the electronic structure of the Co2O2 molecule, Chemical Physics, vol.349, issue.1-3, p.83, 2008.
DOI : 10.1016/j.chemphys.2008.02.040

S. M. Souvi, B. Tremblay, J. Perchard, and M. E. Alikhani, Pd2N2, a proteiform molecule: Matrix isolation spectroscopy and density functional theory calculations, The Journal of Chemical Physics, vol.130, issue.7, p.74304, 2009.
DOI : 10.1063/1.3076925

A. Kant and B. Strauss, Dissociation Energies of Diatomic Molecules of the Transition Elements. II. Titanium, Chromium, Manganese, and Cobalt, The Journal of Chemical Physics, vol.41, issue.12, pp.41-3806, 1964.
DOI : 10.1063/1.1725817

A. Kant and S. Lin, Dissociation energies of Ti 2 and V 2, The Journal of Chemical Physics, pp.51-1644, 1969.

C. Cossé, M. Fouassier, T. Mejean, M. Tranquille, and D. , Moskovits ; Dititanium and divanadium, P.DiLella, and M. J. Chem. Phys, pp.73-6076, 1980.

K. D. Bier, T. L. Haslett, A. D. Kirkwood, and M. Moskovits, Laser spectroscopy of matrix-isolated metal diatomics ; Faraday Discuss, Chem. Soc, vol.86, p.181, 1988.

C. Bauschlicher, H. Partridge, S. R. Langhoff, and M. Rosi, A theoretical study of the low-lying states of Ti 2 and Zr 2, J. Chem. Phys, pp.95-1057, 1991.

H. Himmel and A. Bihlmeier, Ti 2 : Accurate determination of the dissociation energy from matrix resonance raman spectra and chemical interaction with noble gases ; Chem. -A Eur, J, vol.10, p.627, 2004.

A. Kalemos and A. Mavridis, The electronic structure of Ti 2 and Ti + 2, J. Chem

C. J. Barden, J. C. Rienstra-kiracofe, and H. F. Schaefer, transition-metal diatomics: A systematic density functional theory study, The Journal of Chemical Physics, vol.113, issue.2, p.690, 2000.
DOI : 10.1063/1.481916

P. Calaminici, F. Janetzko, A. M. Köster, R. Mejia-olvera, and B. Zuniga-gutierrez, Density functional theory optimized basis sets for gradient corrected functionals: 3d transition metal systems, The Journal of Chemical Physics, vol.126, issue.4, p.44108, 2007.
DOI : 10.1063/1.2431643

Y. Gong, Q. Q. Zhang, and M. Zhou, Matrix isolation infrared spectroscopic and theoretical study of group IV metal oxide clusters : M 2 O 2 and M 2 O 4, J. Phys

H. Himmel, O. Hübner, F. A. Bischoff, W. Klopper, and L. Manceron, Reactivity of titanium dimer and molecular nitrogen in rare gas matrices. vibrational and electronic spectra and structure of Ti 2 N 2, Phys. Chem. Chem. Phys, vol.8, 2000.

O. Hübner, H. Himmel, L. Manceron, and W. Klopper, Low-lying electronic states of the Ti2 dimer: Electronic absorption spectroscopy in rare gas matrices in concert with quantum chemical calculations, The Journal of Chemical Physics, vol.121, issue.15, p.7195, 2004.
DOI : 10.1063/1.1787492

H. Himmel, O. Hübner, W. Klopper, and L. Manceron, Cleavage of the N 2 triple bond by the ti dimer : A route to molecular materials for dinitrogen activation ?

N. E. Schultz, Y. Zhao, and D. G. Truhlar, Density Functionals for Inorganometallic and Organometallic Chemistry, The Journal of Physical Chemistry A, vol.109, issue.49, p.11127, 2005.
DOI : 10.1021/jp0539223

N. E. Schultz, Y. Zhao, and D. G. Truhlar, Databases for Transition Element Bonding:?? Metal???Metal Bond Energies and Bond Lengths and Their Use To Test Hybrid, Hybrid Meta, and Meta Density Functionals and Generalized Gradient Approximations, The Journal of Physical Chemistry A, vol.109, issue.19, p.4388, 2005.
DOI : 10.1021/jp0504468

V. Polo, E. Kraka, and D. Cremer, Electron correlation and the self-interaction error of density functional theory, Molecular Physics, vol.6, issue.11, p.1771, 2002.
DOI : 10.1063/1.480951

V. Polo, E. Kraka, and D. Cremer, Some thoughts about the stability and reliability of commonly used exchange?correlation functionals ? coverage of dynamic and nondynamic correlation effects, Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), vol.107, issue.5, p.291, 2002.
DOI : 10.1007/s00214-002-0331-4

V. Polo, J. Gräfenstein, E. Kraka, and D. Cremer, Long-range and short-range Coulomb correlation effects as simulated by Hartree-Fock, local density approximation, and generalized gradient approximation exchange functionals, Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), vol.109, issue.1, p.22, 2003.
DOI : 10.1007/s00214-002-0398-y

V. Polo, J. Gräfenstein, E. Kraka, and D. Cremer, Influence of the self-interaction error on the structure of the DFT exchange hole, Chemical Physics Letters, vol.352, issue.5-6, p.469, 2002.
DOI : 10.1016/S0009-2614(01)01478-6

G. Herzberg and K. , Huber Molecular Spectra and Molecular Structure : Constants of diatomic molecules, 1979.

G. Chertihin and L. Andrews, Reactions of Laser Ablated Titanium, Zirconium, and Hafnium Atoms with Oxygen Molecules in Condensing Argon, The Journal of Physical Chemistry, vol.99, issue.17, pp.99-6356, 1995.
DOI : 10.1021/j100017a015

K. Ichi-aika and K. Oshihara, Nitrous oxide reduction with ammonia over Co???MgO catalyst and the influence of excess oxygen, Catalysis Today, vol.29, issue.1-4, p.123, 1996.
DOI : 10.1016/0920-5861(95)00290-1