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Co-directeur de thèse: Mario Ricchiuto

Soutenue le: 3 Décembre 2013
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Abstract

The construction of compact high-order Residual Distribution schemes for the dis-

cretization of steady multidimensional advection-diffusion problems on unstructured

grids is presented. Linear and non-linear scheme are considered. A piecewise con-

tinuous polynomial approximation of the solution is adopted and a gradient recon-

struction procedure is used in order to have a continuous representation of both the

numerical solution and its gradient. It is shown that the gradient must be recon-

structed with the same accuracy of the solution, otherwise the formal accuracy of

the numerical scheme is lost in applications in which diffusive effects prevail over

the advective ones, and when advection and diffusion are equally important. Then

the method is extended to systems of equations, with particular emphasis on the

Navier-Stokes and RANS equations. The accuracy, efficiency, and robustness of the

implicit RD solver is demonstrated using a variety of challenging aerodynamic test

problems.

Keywords: Residual Distribution schemes, High-order methods, Gradient re-

construction, Advection-diffusion problems, Compressible flows, RANS equations,

Spalart-Allmaras equation, Implicit methods.

Résumé

Cette thèse présente la construction de schémas distribuant le résidu (RD) d’ordre

très élevés, pour la discrétisation d’équations d’advection-diffusion multidimension-

nelles et stationnaires sur maillages non structurés. Des schémas linéaires ainsi que

des schémas non linéaires sont considérés.

Une approximation de la solution polynomiale par morceaux et continue sur

chaque élément est adoptée, de plus une procédure de reconstruction du gradient

que celle de la solution numérique est utilisée afin d’avoir une représentation continue

de la solution numérique et de son gradient. Il est montré que le gradient doit être

reconstruit avec la même précision de la solution, sans quoi la précision formel

du schéma numérique est perdue dans les cas où les effets de diffusion prévalent

sur les effets d’advection, et aussi quand l’advection et la diffusion sont également

importants.

Ensuite, la méthode est étendue à des systèmes d’équations, en particulier aux

équations de Navier-Stokes et aux équations RANS. La précision, l’efficacité et la

robustesse du solveur RD implicite sont démontrées sur plusieurs cas tests.

Mots-clés: Schéma aux Résidus Distribués, Schéma d’ordre Très Élevé, Recon-

struction du gradient, Problèmes d’advection-diffusion, Écoulements compressibles,

Équations RANS, Équations de Spalart-Allmaras, Méthodes implicites
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Résumé

La dynamique des fluides joue un rôle important dans la conception d’un large

spectre d’applications industrielles, qui vont des appareils de cuisine aux sous-marins

nucléaires. En particulier, l’industrie aéronautique a toujours profitée des progrès

réalisés dans le domaine de la recherche de la dynamique des fluides.

À cause d’un marché compétitif, l’industrie aéronautique doit maintenant livrer

des produits qui ont de meilleurs performances avec un coût de conception et

réalisation réduit. Cela a produit un changement dans le paradigme de la con-

ception industrielle: la dynamique des fluides computationnelle, ou Computational

Fluid Dynamics (CFD), est devenu l’élément principal dans le processus de con-

ception de l’avion en raison de sa flexibilité et moindre coût quand il faut explorer

la faisabilité de plusieurs designs alternatifs. Cela peut être intégré aussi dans un

environnement multidisciplinaire d’analyse et optimisation.

La complexité de l’écoulement autour d’un avion commercial est telle que réaliser

une simulation numérique prédictive est encore très difficile. Afin de simuler de façon

fiable les caractéristiques de l’écoulement, il est nécessaire d’utiliser des modèles

complexes et calculer des solutions très précises.

Malgré les progrès réalisés en CFD, en terme de temps de calcul et modélisation,

des simulations aérodynamiques de l’écoulement turbulent autour des configurations

complexes sont encore très coûteux et difficiles. L’obligation à obtenir des résultats

avec un niveau de précision suffisant dans un temps de calcul court est toujours une

contrainte sévère pour exploiter complètement les avantages de la CFD pour des

applications industrielles et pour l’intégration des simulations dans des procédures

d’optimisation.

La majorité des outils utilisés pour des simulations CFD dans l’industrie

aéronautique est basée sur des méthodes de type volume finis (FV) au deuxième

ordre. Lorsque des applications complexes sont considérées, la précision de ces

méthodes est dégradée, en obtenant entre un premier ou deuxième ordre en fonction

du maillage. Pour obtenir des solutions indépendantes des maillages utilisés, il est

nécessaire d’utiliser des mailles très fines avec un grand nombre de degrés de liberté,

ce qui génère un temps de calcul trop long.

Les méthodes d’ordre élevé peuvent produire une réduction plus rapide des er-

reurs de discrétisation avec une augmentation modérée du nombre des degrés de

liberté. En fait, en supposant que la méthode numérique est d’ordre k + 1, la
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diminution d’erreur avec la taille du maillage (h) est e ∝ hk+1. Cela signifie que si,

par exemple, la taille du maillage se réduit, la réduction de l’erreur avec les méthodes

d’ordre élevé est plus grande par rapport à des méthodes du premier ou du deuxième

ordre. D’autre part, le coût en terme de temps de calcul augmente avec l’ordre des

méthodes, mais seulement avec un facteur fixé. Si on veut calculer la solution avec

un niveau de précision donné, il y aura un ordre optimal pour lequel les méthodes

d’ordre élevé sont plus précises et plus rapides que les méthodes d’ordre inférieures,

pour un niveau d’erreur de discrétisation suffisamment faible.

L’ordre optimal de précision est en fait inconnu et dépend des problèmes con-

sidérés, mais pour un calcul CFD classique, il est typiquement trois ou quatre.

Une approche innovante pour la solution des écoulements compressibles est

représentée par les schémas distribuant le résidu (RD). Dans le cadre de la méthode

RD, la solution numérique est supposée être continue, en ayant ainsi des similitudes

avec la méthode des éléments finis (FE). L’utilisation d’une approximation continue

de la solution garantit que le nombre des degrés de liberté est plus petit par rapport

à une approche discontinue. En même temps, la possibilité d’utiliser une approx-

imation d’ordre élevé de la solution est gardée sans la nécessité de recourir à une

procédure de reconstruction. En pratique, puisque la solution approchée ne satis-

fait pas exactement les équations qui régissent l’écoulement, une quantité intégrale

(le résidu total) est définie sur chaque élément et est ensuite distribuée à chaque

degré de liberté. Le résidu distribué est ensuite utilisé pour faire évoluer la solution

discrète.

Malgré les potentialités de l’approche RD, ces méthodes ont été rarement utilisées

pour des applications aéronautiques complexes. Les applications ont été limitées à

la discrétisation des équations d’Euler au deuxième ordre, sur des maillages avec des

triangles (2D) et des tétraèdres (3D). La difficulté majeure, qui a limité l’extension

des méthodes RD vient du fait que les schémas RD les plus populaires s’appuient

sur des interprétations géométriques. De plus, leur extension aux éléments généraux

et aux ordres arbitraires d’approximation de la solution n’est pas claire.

Dans ce travail, le paradigme traditionnel de l’approche multidimensionnelle est

abandonné en faveur de méthodes centrales qui sont plus flexibles que les schémas

classiques RD multidimensionnelles. L’idée est de récupérer la flexibilité typique des

méthodes FE, mais en même temps de construire une classe de systèmes non-linéaires

qui permettent une discrétisation simple et sans paramètres des équations avec une

approximation stable et non-oscillatoire des discontinuités. L’idée n’est pas nouvelle

et a déjà été utilisée avec succès pour la discrétisation d’ordre élevé des équations

d’Euler sur des maillages quelconque, mais l’utilisation pour les écoulements visqueux

n’était pas claire encore. L’objectif de ce travail est la construction d’une méthode

RD robuste, efficace et d’ordre élevé pour la discrétisation des écoulement laminaires

et turbulents, sur des maillages arbitraires, en deux et trois dimensions spatiales.

Même si l’accent sera mis sur les fluides visqueux, des problèmes non visqueux sont

également examinés dans l’hypothèse de gaz parfaits et aussi avec des lois thermo-

dynamiques complexes.
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Figure 1: Norme L2 des erreurs pour la solution du problème d’advection-diffusion linéaire,

sur des maillages triangulaires, en fonction du nombre de degrés de liberté et du

temps de calcul.

Même si les méthodes RD ont été utilisées pendant longtemps avec succès pour la

discrétisation des problèmes d’advection, leur extension à des problèmes d’advection-

diffusion n’a pas atteint un niveau complet de compréhension. Le simple couplage

d’une méthode RD pour les termes d’advection avec une approche différente pour

ceux de diffusion se traduit généralement par un schéma global qui n’est pas optimal,

même si les deux schémas séparément sont bons. Dans ce travail, l’advection et

la diffusion sont discrétisés avec la même méthode afin de construire un schéma

RD efficace et flexible qui conserve une précision optimale pour de différents cas,

qui vont de problèmes où l’advection domine la diffusion à des problèmes où la

diffusion domine l’advection. Le point clé de cette approche est la reconstruction

d’une valeur unique du gradient de la solution numérique pour chaque degré de

liberté du maillage, donc l’approximation continue de la solution et de son gradient

peut être utilisée pour calculer le résidu total sur chaque élément. La précision du

schéma mis en place est illustrée à l’aide de cas test pertinents, voir Figure 1.

En se basant sur l’expérience acquise dans le cas des équations scalaires, la

méthode numérique est appliquée aux systèmes d’équations de Navier-Stokes. En

plus de la formulation scalaire, la solution du système d’équations nécessite un traite-

ment particulier pour les conditions aux limites. De plus, un solveur implicite qui

repose sur l’approche matrix-free est adopté afin d’accélérer la convergence de la

solution à l’état stationnaire. La robustesse et la précision du schéma mis en place

sont illustrées à l’aide d’un grand nombre de cas tests pertinents, voir Figure 2.

L’approche RD est ensuite appliquée à la solution des équations RANS. Le

modèle de turbulence Spalart-Allmaras entièrement couplé avec les équations

moyennées de l’écoulement est adopté. L’approche entièrement couplée permet une

extension directe de la méthode RD des équations de Navier-Stokes aux équations

RANS. De plus, leséquations moyennées de l’écoulement et de la turbulence sont

discrétisées avec le même degré de précision. Pour rendre la méthode robuste pour
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Figure 2: Gauche: Ligne de courant et des isosurface du nombre de Mach le long et derrière

l’aile, pour une simulation du troisième ordre. Droite: histoire de convergence

pour les simulations du deuxième et troisième ordre.

des applications pratiques, la forme originale de l’équation de Spalart-Allmaras a

été modifiée et une méthode LU-SGS non-linéaire est utilisée pour faire converger la

solution vers l’état stationnaire. Les résultats numériques montrent que le solveur

final est suffisamment robuste pour la simulation transsonique des écoulements tur-

bulents. De plus, malgré la mauvaise régularité du champ de l’écoulement turbulent,

il y a des avantages à utiliser des méthodes RD d’ordre élevé pour la simulation des

écoulements turbulents. La robustesse et la précision du schéma mis en place sont

illustrées à l’aide d’un grand nombre de cas tests pertinents, voir Figure 3.
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Figure 3: Nombre de Mach (a) et coefficient de pression (b) pour le profil multi-élément

L1T2, avec des éléments quadratiques.
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Chapter 1

Introduction

1.1 Background

Fluid dynamics plays an important role in the design of a large variety of industrial

products, ranging from kitchen appliances to nuclear submarines. In particular, the

aeronautical industry has always exploited the progresses made in the fluid dynamic

research field.

Due to global competition and ecological pressures, the aeronautical industry

now needs to deliver products which are better, faster and cheaper to produce. This

has produced a shift in the design paradigm, in which the numerical solution of the

governing equations, or Computational Fluid Dynamics (CFD), is the principal ele-

ment in the aircraft design process because of the flexibility it provides for rapid and

comparatively inexpensive evaluation of alternative designs, and because it can be

integrated in a simulation environment treating concurrently both multidisciplinary

analysis and optimization. Together with the increasing fidelity of mathematical

modeling and numerical methods within the fruitful research field of CFD, the role

of the wind tunnel is currently changing: it is moving from being a design tool to

becoming a tool that validates the designs obtained through the use of CFD. This

shift is also favorable because it yields significant savings in terms of both time and

budget for wind tunnel experimental campaigns and because it allows the engineer

to go into even more detail, e.g., to analyze local features of the flow solution.

The complexity of the flow regime around a commercial airplane is such that

performing an accurate and predictive numerical simulation is still a very challenging

process. In order to reliably simulate the features of the flow, complicated models

and accurate solutions are needed.

The accuracy of numerical solutions is determined from the correspondence be-

tween numerical approximation and the exact solution, which is usually unavailable.

Numerical solutions of fluid flows generally include several groups of error [75]:

Modeling errors are defined as the difference between the actual flow field and the

exact solution of the mathematical model that describes the system in term
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of coupled partial differential equations. For example, in the case of laminar

flows, modeling errors may be considered negligible for practical purposes, but

for turbulent flows, some modeling equations for the turbulence have to be

introduce, since the direct simulation of the underlying physic is not affordable

yet. The additional models do not always describe the physic of the problem

accurately, resulting in modeling errors.

Discretization errors are defined as the difference between the exact (unknown)

solution of the system of the governing equations and the approximated solu-

tion obtained with a numerical method. Since discretization errors depend on

the accuracy of the numerical method and the discretization of the solution

domain, they should be reduced considering more accurate numerical schemes

and more resolved discretization.

Iteration convergence errors are defined as the difference between the exact and

the approximated solution of the discrete system of equations. In fact, the

discretization of the original non-linear system of partial equations results in

an algebraic system of non-linear equations that must be solved numerically

via an iterative method. By computing the residual of the discrete set of

equations, it is possible to monitor the evolution of the convergence errors

with the number of the iterations. Obviously, in order to be sure that the

numerical solution is the correct solution that the numerical method should

provide, the iteration convergence errors must be zero or reasonably small.

The use of the CFD for industrial aircraft design started in the early 1970s, and

since then has undergone tremendous development which made it a new technology

giving important contributions to all stages of the design of an aircraft. The progress

made in these years is enormous. Three factors were instrumental in this: a) the

increase in available computer resources, b) the progress in development of efficient

numerical methods, and c) the progress in physical modeling [129].

Typical applications of CFD, currently underway or planned in the near future

are: a) design of the aircraft external shape, e.g. airfoil and wing design, nacelles and

body-fairings optimization, b) evaluation of the performance and control database,

e.g. stability and control derivatives together with the analysis of stability, control

and handling characteristics, c) evaluation of the loads database for the structural

design, d) systems integration, e.g. interference between weapons and the airframe

or evaluation of the performances of the air conditioning system in the cabin and

e) many more, among which aero-servo-elastic analysis. A graphical survey of the

typical applications of CFD within today’s aeronautical industry is presented in

Figure 1.1.

Despite the progress made in CFD, in terms of user time and computational

resources, large aerodynamic simulations of turbulent flow around complex aircraft

configurations are still very expensive and time consuming. The requirement to

achieve results at a sufficient level of accuracy in a short computational time is still
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Figure 1.1: Use of CFD in aircraft development in Airbus [63].

a severe constrain to completely exploit the benefits of the CFD in the whole design

of industrial aircraft applications and in the integration of the numerical methods

in multidisciplinary simulations and optimization procedures.

1.2 The Need for High-Order Methods

The majority of the CFD tools used for aerodynamic simulations in the aeronautical

industry are based on second-order Finite Volume (FV) methods [48]. When com-

plex applications are considered the accuracy of these methods is degraded, ranging

between first and second-order due to the irregular and highly stretched meshes. As

emerged in different editions of the AIAA Drag Prediction Workshop [43, 62, 68],

FV methods may not produce sufficiently accurate results on meshes with typical

grid sizes used in the industry. High fidelity solutions are also required to separate

discretization errors from modeling errors making possible to check the deficits of

physical modeling. In order to obtain mesh independent solutions very fine meshes

with a very large number of degrees of freedom are required, which lead to enormous

computational times.

High-order methods have the potential to achieve a faster reduction of the dis-

cretization errors with a moderate increase of the number of the degrees of freedom.

In fact, assuming that a numerical method has order k + 1, the error decrease with

the mesh size h according to e ∝ hk+1. This means that if, for example, the grid size

halves, the reduction of the error with high-order methods is larger compared to first

or second-order schemes. On the other hand, the cost in term of computational time
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increase with the order of the methods, but only with a fixed factor. If one wants to

compute the solution with a prescribed level of accuracy, there will be an optimal

order for which high-order methods are more accurate and faster than lower-order

ones, for a sufficiently low level of error discretization. The optimal order of accu-

racy is actually unknown and depends on the specific problems considered, but for

typical CFD computations is in the range of three or four.

Solutions of compressible flows are not globally smooth and this spoils the higher

order characteristics in non-smooth regions like shocks or sharp edges, but still

high-order methods will be overall more accurate than low-order schemes. Further-

more this problem can be tackled by local mesh adaptation instead of globally finer

meshes. Selecting an appropriate order of the method, combined with local mesh

adaptation, a higher accuracy can be achieved with similar computational effort

compared to classical second-order finite volume schemes.

1.3 High-Order Methods for Unstructured Grids

Although numerical schemes for structured grids may be very simple and extremely

efficient, real life applications involves complex geometries that make impossible or

extremely difficult the use of structured grids. For this reasons, only high order

methods formulated on unstructured grids have the potential to be applied to test

cases relevant for industrial applications. In the following a short review of the most

common high order methods is given, in addition some very recent schemes are also

included.

ENO/WENO Methods

This type of FV methods has its root to the first-order Godunov method [52], which

was later extended to second-order by van Leer [125, 126], and to arbitrary order

of accuracy by Harten et al. [53], all on structured grids. The basic ideas where

extended later by many researcher for ENO [1,46,87,115] and WENO [24,49,66,76]

schemes. For a review of ENO and WENO schemes, see [113].

This methods are based on the ideas adopted in the FV approach, but a high

order polynomial representation of the solution on each cell is adopted instead of the

piecewise constant approximation, used in standard first order FV methods. The

higher-order solution is constructed out of the piecewise constant element data of

adjacent cells using a reconstruction procedure. The cells, included in the recon-

struction, represent the reconstruction stencil of the method. The problem with this

approach is that the high-order solution reconstruction involves very large stencils

for unstructured grids, thus the resulting scheme is extremely complex to program

and very expensive in term of computational time. Moreover, real high-order is

achieved only on relatively smooth grids. A further drawback of this methods is

that they are not suited for efficient parallelization, due to the large stencil for the
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reconstruction.

Continuous Finite Elements Methods

Differently from FV approach, the Finite Element (FE) method is based on the so-

called residual discretization. In these schemes the discrete solution is expressed as

a linear combination of basis functions which are continuous piecewise polynomials.

The basic FE formulation bring to the well known Galerkin scheme, which is how-

ever not stable for wave equations and a stabilization mechanism must be added.

Many types of stabilizing techniques have been developed to remedy to the stability

problem. Examples include the streamline upwind Petrov–Galerkin (SUPG) [57],

Galerkin/least squares [58, 65], Taylor Galerkin method [78] amongst many oth-

ers. Moreover, when discontinuities are present in the solution an additional shock

capturing term must be added to guaranties the monotonicity of the solution.

High-order versions of the FE method are easy to construct, since the accuracy

of the method depends on the degree of the polynomial basis functions. Conse-

quently, the discretization stencil is compact, because no reconstruction procedure

is necessary.

Discontinuous Galerkin Methods

The Discontinuous Galerkin (DG) method combines features of the FV method as

well as of the discretization with standard FE. The DG method is based on the

Galerkin formulation of the governing equations, but the solution is assumed to be

discontinuous between two adjacent elements. The discontinuities of the solution at

the faces of the elements are taking into account by numerical fluxes, as done in the

FV approach. For a review of the DG method, see [33].

High-order representation of the solution is obtained by using high-order polyno-

mials within elements, thus the degrees of freedom associated with any element are

coupled only with those of the neighboring elements sharing a face, making the re-

sulting scheme extremely compact and flexible. This feature makes the DG method

ideally suited for parallel computers and it also results in highly sparse matrices in

a linearized implicit time integration scheme.

The DG schemes have shown impressive results in the last years, however one

of the major drawbacks of this approach is the extremely high number of degrees

of freedom introduced and consequently the high computational cost. Moreover,

in presence of discontinuities, the high order polynomial approximation produces

spurious oscillations in the numerical solution that reduce the benefit of using a

high-order method. Some stabilization technique is required to prevent spurious

oscillations. One way consists in supplementing the numerical scheme with an ar-

tificial viscosity term [54, 95], another way is concerned with the elaboration of a

local projection method or slope limiter to enforce the nonlinear stability [22, 34].

However, the accurate and effective discretization of discontinuous solutions with

the DG framework is not completely clear and it is still an active area of research.
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Spectral Volume, Spectral Difference and Flux Reconstruction Methods

Both Spectral Volume (SV) and Spectral Difference (SD) employ a element-wise

discontinuous polynomials as for DG methods. The SV method is similar to a FV

method, while the SD method is close to a finite difference method.

In the SV method, the high order representation of the solution is obtained

by partitioning each element of the grid into sub-cells, the unknown are the cell-

average values on each sub-cell that are used to construct a continuous polynomial

representation of the solution within the main element. In this way, SV methods

represents an attempt to overcome the problem of the solution reconstruction that

characterize standard FV methods. [131–133]. Despite they potential, SV have

some of the drawback of the DG method, i.e., high number of degrees of freedom

and high computational cost. Furthermore, Fourier analysis revealed the presence

of weak instability in several SV partitions of the main elements [44, 45].

The SD method relies on the differential formulation of the governing equations.

In this approach two sets of grid points, i.e., the solution points and flux points

are defined in each element. [77, 134] The solution points are used to construct a

polynomial representation of the solution within the element. Since the solution

is discontinuous across the element boundaries, numerical fluxes are computed at

flux points along the interface, while the continuous flux function is evaluated at

flux points at the interior of the element. Once the fluxes at all the flux points are

recomputed, they are used to form polynomial flux representation which is used to

express the divergence of the flux at the solution points. The SD method is easier

to implement than the DG and SV methods because it does not involve surface or

volume integrals, Moreover, the SD method in 1D and for 2D quadrilateral mesh is

similar to the staggered-grid multi-domain spectral method by Kopriva et al. [70],

therefore the SD method can be viewed as the extension of the staggered-grid multi-

domain spectral method to simplexes.

The Flux Reconstruction (FR) approach, originally proposed by Huynh [61] and

then extended by Jameson and coworkers [27, 28], share some similarity with the

SD method. In the FR method, as in the SD method, the solution points and flux

points are defined in each element. The solution points are used to locally construct

a polynomial representation of the solution in the element, which is used to evaluate

a common interface numerical flux at the element boundaries. Then, correction

functions are introduced and added to the discontinuous flux representation in the

element. An approximate continuous flux is now available, which is used to evaluate

the divergence of the flux at the solution points.

It has been demonstrated that several high-order schemes, including nodal DG

schemes and various SD schemes can be cast within the single unifying FR frame-

work [13]. Like the SD method, the FR approach uses the differential form of the

governing equations and does not require the calculation of surface or volumes in-

tegrals, making it cheaper than the classical DG methods. Although both SD and

FR methods have showed to reach high-order accuracy, that make them particularly
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suited for aeroacoustic or LES applications, it is not clear what the behavior of these

scheme is for non smooth solutions, since they relies on the differential form of the

governing equations.

1.4 Motivation and Objectives

An alternative approach to the numerical methods introduced in the previous section

is represented by Residual Distribution (RD) schemes. In the RD framework, the

numerical solution is assumed to be continuous, thus sharing similarities with the FE

method. The use of a continuous approximation of the solution guarantees that the

number of degrees of freedom is smaller with respect to a discontinuous approach,

but at the same time the possibility to use a high order approximation of the solution

is kept without the necessity to use a reconstruction procedure. In short, since the

approximated solution does not satisfies the governing equation exactly, an integral

quantity, the total residual, is defined on each element and is then distributed to

each degree of freedom of elements. The distributed residual is then used to make

evolve the discrete solution.

The development of RD methods dates back to pioneering work of Roe [101,

103] in the early eighties, during the attempt to construct truly multidimensional

upwind scheme, potentially more accurate than standard FV methods. Since the

very first multidimensional upwind schemes developed by Roe [102] and Roe and

Sidilkover [104,114], several research groups contributed to the development of this

class of schemes, above all Deconinck and coworkers at von Karman Institute for

Fluid Dynamics and Abgrall and coworkers at Université de Bordeaux I, see [99]

for a detailed review. The higher accuracy and compact character of RD schemes

makes them very efficient when compared to FV schemes [138]. Moreover, the RD

approach offers a natural possibility to construct parameter-free, non-oscillatory

schemes, leading to a more robust and reliable scheme with respect to FE schemes.

Despite the potentiality of the RD approach, such class of schemes has been rarely

used for complex aeronautical applications. Most of the applications are limited to

the discretization of the Euler equations up to the second order accuracy, on gird

of triangles and tetrahedra, for two and three dimensional simulations, respectively.

The main difficulty which limited the extension of RD methods comes from the fact

that the most popular RD schemes deeply rely on geometrical interpretations, thus

their extension to general elements and to arbitrary orders of approximation of the

solution is unclear.

In this work, the traditional paradigm of the multidimensional upwind approach

is abandoned if favor of central schemes which are more flexible than the classical

multidimensional RD schemes. The idea is to recover the flexibility typical of FE

schemes, but at the same time to construct a class of non-linear schemes which allow

a simpler and parameter-free discretization of the governing equations with a stable
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and non-oscillatory approximation of discontinuities. The idea is not new and has

been successfully used for the high order discretization of the Euler equations on

arbitrary grids [3], but their use for viscous flows need to be investigated.

The objective of this work is the construction of a robust, efficient and accurate

high-order RD solver for the discretization of steady laminar and turbulent flows,

on arbitrary grids, in two and three spatial dimensions. Although much of the work

will be focus on viscous fluids, simpler inviscid problems are also considered under

the hypothesis of ideal gas and complex thermodynamic laws, as well.

In order to apply RD schemes to complex problems that could be relevant for

industrial applications, some important issues which have been only marginally con-

sidered on previous works need to be analyzed with care. A discussion of the main

issues faced in this work is given in the following subsections.

1.4.1 Extension to Advection-Diffusion Problems

Real life applications involve the solution of systems of conservations law containing

viscous dissipation terms. The use of RD methods for the discretization of problems

with viscous effects has been always very limited. This is due to the fact that is

not clear how to handle viscous terms, which have an isotropic behavior, within an

upwind mechanism.

The first attempts to discretize advection-diffusion problems with the RD frame-

work used a simple coupling of the RD method for the advective part with a Galerkin

discretization of the viscous terms [90, 124]. This approach seems quite logical and

is still a common practice for the discretization of the Navier-Stokes equation with

RD methods. However, an error analysis [85] reveled that the resulting scheme is

only first order accurate in the case in which advection and diffusion have the same

importance, and the formal order of accuracy is recovered only in the pure advection

or the pure diffusion limits.

Consider, for example, the flow of a viscous fluid over an airfoil. The problem

can be considered almost inviscid everywhere except in a small boundary layer over

the airfoil, where viscous effects are not negligible but the problem here is non

pure diffusive. Since the boundary layer resolution affects directly the values of the

friction forces on the wall and the drag force generated, it is extremely important

that the accuracy of numerical scheme does not spoil in this region.

A first attempt to remedy to the loss of accuracy for advection-diffusion problems

was addressed in [98] where a proper blending of the multidimensional RD method

with Galerkin scheme was adopted. However the approach in not very flexible and

it is difficult to define a proper blending function for system of equations.

The approach used in this work has been highlighted by Nishikawa and Roe

[85], who showed that in order to preserve the accuracy of the numerical scheme,

it is important that advection and diffusion should not be discretized using two

different schemes, but they have to be discretized within the same RD method. This
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approach brings to the definition of a total residual for both the advective and viscous

terms, which is then distributed to the degrees of freedom with a RD method. One

disadvantage of using this approach is that a gradient reconstruction procedure must

be used in order to define an unique value of the gradient of the numerical solution

along the face of two adjacent elements. The quality of the gradient reconstruction

will in general influence the overall accuracy of the numerical scheme but, on the

other hand, the cost and the compactness of the gradient reconstruction procedure

plays also an important role in the global efficiency of the numerical scheme. For

this reason different gradient reconstruction procedures are considered in this work

and their effect on the accuracy of the numerical scheme is studied in detail.

1.4.2 Turbulence Modeling

Turbulent flows represent a complex multi-scale phenomenon which requires ex-

tremely small space and time resolutions. The direct simulation of turbulent flows

for practical applications is still out of range. A widely use approach for aerody-

namic applications in bases on the use of Reynolds Average Navier-Stokes (RANS)

equation, in which the small turbulent scales are modeled instead of being solved.

RANS equations represent a very challenging application area for high-order meth-

ods, due to reduced regularity of the solution and because of the increment of the

stiffness of the governing equations.

In this work the single-equation Spalart-Allmaras model is used as a closure

model for the turbulent eddy viscosity. Despite the fact that the Spalart-Allmaras

model is largely used in the aerodynamic field, this model is know to have spurious

oscillations of the turbulent working variable that occur at the edges of the bound-

ary layers and wakes. These oscillations has been usually ignored in the classical

FV schemes, however, the presence of oscillations can lead to negative values of

the turbulent working variable which impact the stability of high-order numerical

schemes.

During the last years, several modification to the original form of the Spalart-

Allmaras equations have been introduced in order to alleviate the problem of the

spurious oscillations and to increase the robustness of the numerical form. Most

of this modifications have been introduced for DG methods, but the same prob-

lem has been encounter also in the present work with high order RD schemes. In

reference [86] are introduced some modifications to the Spalart-Allmaras equation

intended to stabilize the model for negative values of the turbulence model working

variable. However, the robustness of the high order discretization is not addressed

in reference [86] and some additional modifications to improve the robustness and

the iterative convergence of the numerical scheme has been considered by other re-

searchers [23,40,79]. In this work some ideas introduced to ameliorate the behavior

of the Spalart-Allmaras model for DG schemes have been adopted in the context of

the RD methods. These modifications has been found of the paramount importance
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in order to construct a robust and reliable numerical solver.

1.4.3 Implicit Schemes

When applying a RD method to the solution of steady problems, the approach

leads to the solution of a non-linear system of equations. Usually, a pseudo-time

approach is used to make the system evolve to the steady state, with explicit or

implicit schemes. Explicit schemes are simpler and less expensive than implicit

ones, but they have severe time step limitations due to stability reasons, that make

them unattractive for steady state simulations. In fact, since the time dependence

is purely artificial, one is not interested to solve accurately the transients but need

just to converge as fast as possible to the steady state solution. For this reason the

backward Euler method is generally adopted, due to the great margin of stability of

this method. At each non-linear iteration, the solution of the resulting linear system

is obtained with an approximated method, which in most cases is the preconditioned

GMRES, thus a family of inexact Newton-Krylov method is obtained [127].

A key aspect in the construction of implicit schemes is the evaluation of the

Jacobian matrix of the residual of the numerical scheme. This matrix, for real life

applications, is very large and sparse and its exact calculation may be very complex,

if not impossible. The convergence of the scheme to the steady state is largely influ-

enced by the accuracy with which the entries of the Jacobian matrix are computed,

as well as the type of preconditioned used. An alternative approach, which avoid the

explicit calculation and assembly of the Jacobian matrix, is the so called matrix-free

approach that exploits the fact that in the GMRES algorithm the Jacobian matrix

is involved only in matrix-vector products, thus it is possible to approximate this

operation with a finite difference-like approach. However, for practical applications

a preconditioner has to be used, otherwise the scheme will be not able to converge

to the steady state. This implies that an approximated version of the Jacobian must

be computed anyway, but the convergence of the numerical scheme is expected to

be marginally affected by the accuracy of the computed Jacobian since the precon-

ditioning itself is already an approximation of the inverse of the Jacobian matrix.

The resulting approach is called Jacobian-free approach [69].

In this work the Jacobian-free approach has been successfully used for the sim-

ulation of Euler and Navier-Stokes equations with RD schemes; this approach has

showed to be more efficient than the matrix-based GMRES approach in reducing

the residual of the numerical scheme to the machine-zero value. Furthermore, the

use of the Jacobian-free method is almost mandatory for non-linear RD schemes, for

which is impossible to compute the Jacobian of the scheme due to use of non-linear

mappings and non-differentiable operations.

Another very attractive implicit scheme is based on the lower-upper symmet-

ric Gauss–Seidel (LU-SGS) approximate factorization scheme, originally developed

for structured grids by Jameson and Yoon [64], has been extended and applied to
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unstructured grids [112, 112]. The method has been subsequently improved [29] to

make its performance comparable with a fully implicit scheme. More recently the

approach has been further developed bringing to the so called non-linear LU-SGS

method [120]. The advantage of this approach lies in the fact that the method ulti-

mately solve for the original non-linear problem instead of the linearized one, making

it very effective, especially for very stiff problems like the RANS equations. Another

interesting feature of the non-linear LU-SGS is that only the diagonal blocks of the

Jacobian matrix are needed, this results in a huge reduction of memory and compu-

tational effort in the calculation of the Jacobian matrix. The non-linear LU-SGS has

been used in this wok for the simulations of turbulent flows, this approach resulted

to be more robust and effective than Krylov based methods, making possible to

reduce the residual of the numerical scheme down to the machine-zero value, even

for transonic turbulent flows.

1.4.4 The Contribution of the Thesis

The thesis is an attempt to deal with the issues described in the previous section, by

combining some ideas already present in literature, and at the same time proposing

new concepts. The overall goal of this work is the extension of high-order RD

methods to advection-diffusion scalar problems, and the application of the resulting

scheme to the discretization of the steady Navier-Stokes and the RANS equations.

Part of the work focuses on the construction of linear and non-linear RD schemes for

the high-order discretization of scalar advection-diffusion equations, with particular

emphasis on the issue to construct a numerical scheme with an uniform order of

accuracy for a wide range of applications, ranging from advection dominated to

diffusion dominated problems, including pure advection and pure diffusion problems,

as well. The final objective is the construction of an implicit RD method for the

numerical simulation of steady laminar and turbulent flows on unstructured grids, in

two and three spatial dimensions. In order to test the robustness and the accuracy

of the proposed RD solver, several test problems that span a range of complexity

and difficulty, from simple inviscid flows to turbulent flows, are examined. The goal

of the dissertation is to demonstrate that, with the described strategy, high-order

solutions for practical problems can be obtained.

The work presented in the thesis has lead to the following main contributions

• Extension of high-order RD linear and non-linear schemes to the discretization

of steady-state advection diffusion problems, with the second and third order

spatial accuracy.

• Analysis of accurate gradient reconstruction techniques for the computation

of viscous terms in the RD framework, with emphasis on the study of the

influence of the gradient reconstruction quality on the accuracy of the numer-

ical scheme. The so called Super-convergent Patch Recovery (SPR) method

has been identified as the method of choice for the gradient reconstruction.
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In particular the present work indicates that the SPR is recommended for the

construction of RD methods applied to the discretization of advection-diffusion

problems, with an uniform order of accuracy for both advection dominated and

diffusion dominated problems. To the author’s knowledge, this is the first time

that the SPR approach is used in the discretization of the partial differential

equations in the field of the fluid dynamics.

• Extension of the proposed numerical scheme to the discretization of the steady

Navier-Stokes and RANS equations on unstructured curved grids, in two and

three spatial dimensions, with the second and third order accurate spatial

discretization. In particular the issue of the construction of an efficient and

robust implicit scheme has been addressed with particular care.

The implementation of the numerical scheme resulted in a parallel numerical

code for the discretization of the steady Euler, Navier-Stokes and RANS equations

with the Spalart-Allmaras turbulence equation, at the second and third order of

accuracy, on unstructured grids in two and three spatial dimensions. The code uses

the Jacobian-free or the non-linear LU-SGS methods as implicit solver to acceler-

ate the converged to the steady state. In the most recent development, complex

thermodynamic laws have been implemented to simulated also flows with real gas

effects.

An embryonic version of the code for the discretization of the Euler equations,

with the non-linear RD scheme using a GMRES solver, was already available at

the beginning of the thesis. However, due to the necessity to use general high-

order grids, implement different non-linear solvers and efficiently implement gradient

reconstruction procedures, of the original code only some routines for the partition

of the grid and data exchange in parallel simulations have been retained, all the

other parts of the code have been written from scratch.

1.5 Thesis Outline

The thesis is organized as follows. The first part of the thesis deals with scalar equa-

tions. In particular, Chapter 2 describes the properties of an abstract prototype RD

scheme for solving scalar first-order PDEs. The basic steps needed to discretize the

continuous problem are presented and the notation used throughout the manuscript

is introduces. In Chapter 3 are described in detail the different steps involved in

the construction of a RD method for the discretization of scalar advection problems.

Moreover, different RD schemes are presented, including both multidimensional up-

wind schemes and central ones. In Chapter 4, the extension of the RD method to

the discretization of second-order PDEs is described, with particular emphasis on

the gradient reconstruction procedures for the discretization of the diffusive terms.

The effectiveness of the proposed approach is evaluated by the means of numerical



Introduction 13

experiments for advection-diffusion and pure diffusion problems.

In the second part of the thesis systems of conservation laws are considered. In

particular, in Chapter 5, the numerical method presented for the scalar equation is

extended to systems of equations and the problem of the construction of an efficient

implicit scheme is addressed. Several results for the Euler and the Navier-Stokes

equations are presented. In Chapter 6 the discretization of the RANS equations

coupled with the Spalart-Allmaras turbulence model is discussed and the robustness

and the accuracy of the numerical scheme is assess against several test cases. In

Chapter 7 results obtained in inviscid flows with complex thermodynamic laws are

shown. Finally, in Chapter 8 conclusions are drawn.
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Scalar Conservation Laws





Chapter 2

The Residual Distribution Approach

This chapter introduces the RD approach for solving scalar first-order PDEs, as

for example scalar advection problems, considering a generic abstract prototype

scheme. The objective is to describe the key ideas of the RD approach, and also to

introduce the notation used through the whole manuscript. The basic properties of

RD schemes are presented and the theoretical accuracy of the method is analyzed

here.

2.1 Preliminaries

Consider solving the following steady, scalar conservation law in d space dimensions

∇· f (u) = 0, (2.1)

within an arbitrary domain Ω, where u(x) ∈ R is the scalar unknown and f (u) ∈ Rd

is a given vector flux function, with x ∈ Ω ⊂ Rd the spatial coordinate. The Eq. (2.1)

must be supplemented with the proper boundary conditions on the inflow portion

of the boundary ∂Ω

u|∂Ω− = g(s), s ∈ ∂Ω−, (2.2)

where the given function g represents the boundary condition of the problem on the

inflow boundary and ∂Ω− = {x ∈ ∂Ω |a ·n < 0}, with n the outward normal vector

to the boundary of the domain and a the advection velocity defined as

a =
df

du
. (2.3)

The domain Ω is approximated by the computational domain Ωh, this is the

space filling tessellation composed of the union of E non-overlapping elements Ωe

with characteristic size h. Hence (see Figure 2.1)

Ω ≃ Ωh =
E⋃

e=1

Ωe, (2.4)
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and the set of all elements is denoted by Eh. Here the elements are assumed to be

polyhedra.

∂Ω

Ω

(a) (b)

Ωh

∂Ωh

(c)

Figure 2.1: An Example of a numerical domain (a), tessellation with triangular elements

(b) and the final discrete domain (c).

2.2 Prototype of a RD Scheme

To move to the discrete form of the governing equation, the solution is assumed to

be approximated by the continuous piecewise k-th order polynomial uh(x) ∈ Vh,

with

Vh = span{ψi(x)}i∈Nh
, x ∈ Ωh, (2.5)

where Nh is the set of all the degrees of freedom in the numerical domain, and

ψi ∈ Pk is the i-th basis function. Noting that the solution of the discrete problem

can be written as a linear combination of the basis functions, one obtains

uh(x) =
∑

i∈Nh

ψi(x) ui, (2.6)

with ui the, still unknown, nodal value of the numerical solution at the generic degree

of freedom i. The support of the approximated solution is local, being restricted to

few elements that share a common degree of freedom. Furthermore, restricting on

the element the same expansion used for the global approximation of solution, the

variation of the solution on each element can be expressed as

uh(x)|Ωe =
∑

i∈N e
h

ψi(x) ui, (2.7)

where N e
h is the set of the degrees of freedom of the element e.

It is well known that the numerical solution, generally, does not exactly satisfy

the governing equation. This means that if the discrete solution, expressed in the

form of the Eq. (2.6), is injected into the governing equation, the right-hand side
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of the Eq. (2.1) will be a quantity different from zero. This quantity represents the

residual associated with the numerical discretization. In particular, for each element

e of the numerical domain, the following integral quantity

Φe(uh) =

∫

Ωe

∇· f (uh) dΩ, (2.8)

can be defined, which is called total residual in the RD jargon. The previous expres-

sion is nothing but the integral over the element of the governing equation evaluated

with the numerical solution, but it assumes an important role in the construction of

the RD methods. Obviously, if the exact solution is used in the Eq. (2.8), the total

residual is zero by definition.

The total residual is an integral quantity defined for each element, but it cannot

be used to write an enough number of equations for all the unknowns of the numerical

problem. The next step in the construction of a RD method is the definition of

nodal quantities associated with the degrees of freedom of the element. This task

is accomplished by redistributing the total residual to all the degrees of freedom of

the element. The distribution step might be generically written as follows

Φe
i = βe

i (uh)Φ
e, ∀ i ∈ N e

h , (2.9)

where βe
i = βe

i (uh) are called distribution coefficients. It is obvious that the consis-

tency constrain imposes that
∑

i∈N e
h

Φe
i (uh) = Φe(uh), (2.10)

which implies that the distributions coefficients on each element must sum up to

one, namely ∑

i∈N e
h

βe
i (uh) = 1. (2.11)

In this part of the work, the expression of the distribution coefficients is left

undetermined to keep the description more general, but it is important to underline

already now that the definition of the distribution coefficients is the most important

aspect of RD methods. Indeed, it is the distribution process which diversifies the

different schemes among the RD methods, and determines the good or the bad

properties of the numerical schemes.

The last step in the RD methods consists in requiring that, for each degree

of freedom, all the distributed residuals coming from the elements that share that

degree of freedom sum up to zero
∑

e∈Ei
h

Φe
i (uh) = 0, ∀ i ∈ Nh, (2.12)

where E i
h is the set of all the elements that have the degree of freedom i in common.

In this way the numerical scheme is conservative in the sense that a variation of
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uh within Ωh only depends on the fluxes through the boundary of the domain ∂Ωh.

Indeed, summing up Eq. (2.12) for all the degrees of freedom one obtains

∑

i∈N e
h

∑

e∈Ei
h

Φe
i (uh) =

∮

∂Ωh

f (uh) · n̂d∂Ω. (2.13)

Note that Eq. (2.12) does not take into account the terms arising from the imposition

of the boundary conditions, which are neglected in the analysis done in this chapter.

The Eq. (2.12) represents a non-linear system of equations that must be solved

for the nodal unknowns ui, in practice the non-linear system is relaxed as follows

|Ci|
dui
dt

+
∑

e∈Ei
h

Φe
i (uh) = 0, ∀ i ∈ Nh, (2.14)

where t is a pseudo-time and |Ci| is the volume of the dual cell around i. The

full discrete form of the previous equation can be obtained using the forward Euler

method, for example. The final form of the discrete RD scheme reads

|Ci|
un+1
i − uni
∆tn

+
∑

e∈Ei
h

Φe
i (uh) = 0, ∀ i ∈ Nh. (2.15)

The change of the nodal values of the solution during the iterative process is driven

by only non-zero total residuals on the elements; for n → ∞ the total residual on

each element vanishes and the steady state solution is obtained.

2.3 Properties of the Numerical Method

In the previous section, only the conservation constrain has been used in the con-

struction of a prototype of the RD method, nothing has been said about accuracy

and stability of the numerical scheme. This section is devoted to the analysis of basic

properties of the numerical scheme, in order to find the conditions under which the

scheme is stable and converges to the correct solution. Furthermore, here, a proof

of the theoretical accuracy of the numerical method is given.

2.3.1 Basic Properties

Lax-Wendroff theorem

The classical Lax-Wendroff theorem [74] assures that if a numerical scheme for

hyperbolic conservation laws is conservative and it converges, then it converges

towards a weak solution of the governing equation. In particular, for RD methods

it has been proved that
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Theorem 1 Given a bounded initial data u0 ∈ L∞(Rd), a square integrable func-

tion u ∈ L2(Rd × R+), and a constant C depending on u0 and u, such that the

approximated solution uh(x, t) obtained with the numerical scheme (2.14) verifies

sup
h

sup
(x,t)

|uh| ≤ C and lim
h→0

‖uh − u‖L2
loc(R

d×R+) = 0, (2.16)

then u is a weak solution of the problem.

See [9] for the proof.

Positivity

Consider now, the properties that must be satisfied by the numerical method in

order to have a non-oscillatory solution. To this purpose, the scheme (2.14) is first

re-written in the following form

|Ci|
dui
dt

+
∑

e∈Ei
h

∑

j∈N e
h

j 6=i

ceij(ui − uj) = 0, ∀ i ∈ Nh. (2.17)

The first property considered is the so-called Local Extrema Diminishing prop-

erty, which guarantees that local extrema are kept bounded by the numerical scheme.

Rearranging Eq. (2.17) as follows

|Ci|
dui
dt

= −
∑

e∈Ei
h

∑

j∈N e
h

j 6=i

ceij(ui − uj)

= −
∑

j∈N i
h

j 6=i


 ∑

e∈Ei
h
∩Ej

h

ceij


 (ui − uj) = −

∑

j∈N i
h

j 6=i

c̃ij(ui − uj),

(2.18)

with N i
h the set of the degrees of freedom contained in the stencil of i, it is easy to

see that, if

c̃ij =
∑

e∈Ei
h
∩Ej

h

ceij ≥ 0, ∀ i ∈ Nh, ∀ j ∈ N i
h, j 6= i, (2.19)

the variation of ui is non-positive if ui is a local maximum (ui ≥ uj), and is non-

negative if ui is a local minimum (ui ≤ uj). A stronger constrain can obtained by

requiring that each ceij is positive on every element e (local positivity).

Maximum principle

Consider, now, the fully discrete version of the Eq. (2.17), namely

|Ci|
un+1
i − uni
∆t

+
∑

e∈Ei
h

∑

j∈N e
h

j 6=i

ceij(u
n
i − unj ) = 0, ∀ i ∈ Nh, (2.20)
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where an explicit scheme has been used for the time discretization. It easy to verify

that the previous scheme satisfies the following maximum principle

min
j∈N i

h

unj ≤ un+1
i ≤ max

j∈N i
h

unj (2.21)

if the Local Extrema Diminishing property (2.19) holds and the following time step

restriction is kept

∆t ≤ |Ci|∑

j∈N i
h

j 6=i

c̃ij
, ∀i ∈ Nh. (2.22)

Indeed, by writing

un+1
i = uni −

∆t

|Ci|
∑

j∈N i
h

j 6=i

c̃ij(u
n
i − unj )

=


1− ∆t

|Ci|
∑

j∈N i
h

j 6=i

c̃ij


uni +

∆t

|Ci|
∑

j∈N i
h

j 6=i

c̃iju
n
j

= c̄iiu
n
i +

∑

j∈N i
h

j 6=i

c̄iju
n
j =

∑

j∈N i
h

c̄iju
n
j ,

(2.23)

since, property (2.19), together with the condition (2.22), guarantees that c̄ij ≥ 0, ∀ i, j,
hence 

∑

j∈N i
h

c̄ij


min

j∈N i
h

unj ≤ un+1
i ≤


∑

j∈N i
h

c̄ij


max

j∈N i
h

unj . (2.24)

By using the trivial relation
∑

j∈N i
h
c̄ij = 1, one obtains the condition (2.21). For

steady problems the following version of the maximum principle is more appropriate

min
j∈N i

h

(
lim
n→∞

unj

)
≤ lim

n→∞
uni ≤ max

j∈N i
h

(
lim
n→∞

unj

)
. (2.25)

A numerical scheme which satisfies the maximum principle is said to be positive.

A consequence of the maximum principle is that the numerical scheme is L∞-stable

and the following bounds hold for the numerical solution

min
i∈Nh

u0i ≤ unj ≤ max
i∈Nh

u0i , ∀ i ∈ Nn, ∀n. (2.26)

2.3.2 Accuracy and Order Preservation

In this section an error estimation for a generic RD scheme is given. It is important

to note that the following results are valid only for a solution at the steady state
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and they are not generalizable to unsteady problems. In addition, it is also given

the condition that must be fulfilled by a RD scheme in order to get a numerical

method which is able to maintain the theoretical order of accuracy.

Consider the numerical scheme (2.14) at the steady state and analyze the fol-

lowing expression ∑

i∈Nh

ϕi(x)
∑

e∈Ei
h

Φe
i (uh) = 0, (2.27)

for any smooth, compact, function ϕ(x), with ϕi = ϕ(xi). The continuous piecewise

polynomial approximation of ϕ is given by

ϕh(x) =
∑

i∈Nh

ϕi ψi(x), (2.28)

with

‖ϕh‖L∞(Ω) ≤ ‖ϕ‖L∞(Ω) <∞. (2.29)

The Eq. (2.27) can be rewritten as follows

0 =
∑

i∈Nh

ϕi

∑

e∈Ei
h

Φe
i (uh) =

∑

e∈Eh

∑

i∈N e
h

ϕiΦ
e
i (uh)

=

∫

Ω

ϕh∇· f (uh) dΩ +
∑

e∈Eh

∑

i∈N e
h

ϕi

(
Φe

i (uh)− Φe, G
i (uh)

)
,

(2.30)

where Φe,G
i (uh) is the so-called Galerkin residual

Φe, G
i (uh) =

∫

Ωe

ψi∇· f (uh) dΩ. (2.31)

By using the basic relation of the basis functions
∑

i∈N e
h

ψi = 1, (2.32)

one can easily obtain the following identity
∑

i∈N e
h

Φe
i (uh)−

∑

i∈N e
h

Φe, G
i (uh) = Φe(uh)− Φe(uh) = 0 (2.33)

and hence ∀j ∈ N e
h

∑

e∈Eh

∑

i∈N e
h

ϕi

(
Φe

i (uh)− Φe, G
i (uh)

)
=
∑

e∈Eh

∑

i∈N e
h

(ϕi −ϕj)
(
Φe

i (uh)− Φe,G
i (uh)

)
. (2.34)

Thanks to the previous relation, it is possible to rewrite Eq. (2.30) as follows

∑

i∈Nh

ϕi

∑

e∈Ei
h

Φe
i (uh) =

∫

Ω

ϕh∇· f (uh) dΩ

+
1

C

∑

e∈Eh

∑

i,j∈N e
h

(ϕi − ϕj)
(
Φe

i (uh)− Φe,G
i (uh)

)
,

(2.35)
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where C is the number of possible combinations of i and j in the expression (2.34).

If f (uh) is a smooth function and a (k+1)-th order accurate approximation of f (u),

and using the fact that ϕ ∈ C1
0(Ω), one gets

∫

Ωe

ϕh∇· f (uh) dΩ =

∫

Ωe

ϕ∇· f (u) dΩ +O
(
hk+1

)
, (2.36)

and hence

∑

i∈Nh

ϕi

∑

e∈Ei
h

Φe
i (uh) =

∫

Ω

ϕ∇· f (u) dΩ

+
1

C

∑

e∈Eh

∑

i,j∈N e
h

(ϕi − ϕj)
(
Φe

i (uh)− Φe, G
i (uh)

)
+O

(
hk+1

)
.

(2.37)

On the other hand, for a regular solution

Φe, G
i (uh) =

∮

∂Ωe

ψ
(
f (uh)− f (u)

)
· n̂ d∂Ω−

∫

Ωe

∇ψ ·
(
f (uh)− f (u)

)
dΩ

= O(hk+d) +O(hk+d) = O(hk+d),

(2.38)

having used the fact that |∂Ωe| = O(hd−1) and |Ωe| = O(hd).

Since Φe,G
i (uh) = O(hk+d), the number of elements is O(h−d), and remembering

that ϕ ∈ C1
0(Ω), with ϕi − ϕj = O(h), one can prove that, if Φe

i (uh) = O(hk+d),

then the following error estimation is true
∣∣∣∣∣∣

∑

i∈Nh

ϕi

∑

e∈Ei
h

Φe
i (uh)−

∫

Ω

ϕ∇· f (u) dΩ

∣∣∣∣∣∣
≤ C̃ ‖∇ϕ‖L∞(Ω) h

k+1, (2.39)

see [11] for more details. The previous error estimation leads to the following im-

portant condition

Definition 1 Given a continuous (k + 1)-th order accurate approximation of the

flux function, f (u), in the case of d spatial dimensions, a necessary condition for a

RD scheme of the form (2.17) to be (k+1)-th order accurate, at the steady state, is

that

Φe
i (uh) = O(hk+d). (2.40)

Note that, for a continuous k-th order approximation of the solution, at the steady

limit, one has the following approximation

Φe(uh) =

∫

Ωe

∇· f (uh) dΩ = O(hk+d). (2.41)

This allows to introduce the following property
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Definition 2 A RD scheme of the type (2.17), with the distributed residuals ex-

pressed as Φe
i (uh) = βe

iΦ
e(uh), such that

∑

i∈N e
h

βe
i (uh) = 1, (2.42)

and that verifies the Definition 1, is said to be order preserving if the distribution

coefficients are bounded independently on the solution, the mesh and the initial data.

Namely

max
e∈Eh

max
i∈N e

h

|βe
i | <∞. (2.43)

Historically, this condition is also called Linearity Preserving.

2.3.3 Godunov’s Theorem

A RD scheme of the type (2.17) is said to be linear if all the coefficients ceij are

independent on the numerical solution, on the other hand a RD scheme for which

the coefficients ceij , and so the distribution coefficients βe
i , depend on the solution,

is said non-linear.

RD schemes obey the classical Godunov’s theorem, that means that a linear

scheme cannot be more than first order accurate, remaining at the same time mono-

tone near discontinuities. The construction of a high-order RD scheme which is

at the same time positive and Linearity Preserving, requires that the distribution

process must depend itself on the numerical solution, making the scheme non-linear.





Chapter 3

RD Schemes for Multidimensional

First-Order PDEs on Unstructured Grids

In this chapter the RD method is described from a practical point of view, with

particular emphasis on the way how actually performing the distribution process.

Details about the interpolation of the numerical solution and the calculation of the

total residual over the elements are given first, then different procedures to distribute

the residual to the degrees of freedom are described.

Two family of schemes are presented: multidimensional upwind and central

schemes. The first group includes schemes developed in order to extend to more

spatial dimensions the upwind property; while in one spatial dimension the upwind

mechanism can be easily construct, for two or three dimensional problems it is more

complicated to include a truly upwind property in the numerical scheme. The sec-

ond group includes schemes for which the truly upwind property is relaxed in favor

of a more flexibility. Finally, a class of non-linear schemes is introduced with the

aim to construct high-order and monotone schemes, overcoming the barrier of the

Godunov’s theorem for linear schemes.

3.1 Basic Elements of the Numerical Scheme

In the RD method here formulated, the solution is assumed to be continuous and

is expressed as a linear combination of basis functions, as in Eq. (2.6). This implies

that the basis functions, used to express the numerical solution, must be continuous

over the computational domain.

In general, the basis is associated to a reference element of standard, simple

shape, and then transformed to the basis of the real elements of the computational

domain by a suitable coordinate transformation. To enforce the continuity of the

approximation, the basis functions can be chosen such that the continuity condition
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is automatically satisfied. For instance, using Lagrangian functions 1 with the de-

grees of freedom on the element suitably located, the continuity of the solution is

always satisfied, as it is well know from the finite element theory.

3.1.1 Basis Functions

The expressions of the basis functions on the reference elements are here recalled,

for sake of completeness, for different types of elements considered in this work. As

standard practice, the basis functions are first formulated on standard, reference

elements, and then transformed into the physical element.

Segments

The reference segment is defined as {ξ : 0 ≤ ξ ≤ 1}. For a segment of degree k, two

degrees of freedom are located at the extremes of the element and for the remaining

k−1 degrees of freedom, a set of equally-spaced nodes is used, for k > 1, (Figure 3.1).

The expression of a basis function, associated with the degree of freedom i, reads

ψk
i (ξ) =

k+1∏

j=1
j 6=i

(ξ − ξj)

k+1∏

j=1
j 6=i

(ξi − ξj)

, i = 1, . . . , k + 1, (3.1)

where ξj is the coordinate of the degree of freedom j.

2
ξ1

(a)

2
ξ1 3

(b)

Figure 3.1: Reference segment element for linear (a) and quadratic (b) approximations.

Triangles

The reference triangle is defined as {ξ, η : 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1− ξ}, and for a basis

of degree k, the number of degrees of freedom of the element is

N =
(k + 1)(k + 2)

2
. (3.2)

The first three degrees of freedom are located at the vertices of the triangles, the

other 3(k − 1) degrees of freedom are located on the faces of the element with an

equally-spaces distribution, and the remaining degrees of freedom are symmetrically

distributed around the barycenter of the element, (Figure 3.2).

1In this work, only standard Lagrangian elements are used; an example of RD method using

non-Lagrangian elements is reported in [12].
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For this element the expression of basis functions becomes easier if barycen-

tric coordinates are used instead of the classical Cartesian ones. The barycentric

coordinates for the reference triangle are defined as follows

λ1 = 1− ξ − η, λ2 = ξ, λ3 = η, (3.3)

and the linear basis functions on the reference triangle simply read

ψ1
i (λ1, λ2, λ3) = λi, i = 1, 2, 3. (3.4)

For quadratic triangles, it is easy to verify that the basis functions for the refer-

ence element are given by

ψ2
i (λ1, λ2, λ3) = (2λi − 1)λi, i = 1, 2, 3

ψ2
i (λ1, λ2, λ3) = 4λmλn, i = 4, 5, 6

(3.5)

with m and n the extreme nodes of the segment which contains the internal node i.

1
2

3

η

ξ

(a)

1
2

3

η

ξ

6

4

5

(b)

Figure 3.2: Reference triangular element for linear (a) and quadratic (b) approximations.

Quadrangles

The nodes and the basis functions for quadrilateral elements are obtained by the

tensor product of the one-dimensional ones, thus the total number of degrees of

freedom, for a basis of degree k, is N = (k + 1)2. The reference element is defined

as {ξ, η : −1 ≤ ξ, η ≤ 1} (Figure 3.3), and the basis functions are given by the

following expressions

ψk
i (ξ, η) =

1

4
ψ̄k
m(ξ)ψ̄

k
n(η), i = 1, . . . , (k + 1)2,

m, n = 1, . . . , k + 1,
(3.6)

with ψ̄k the basis functions of the one-dimensional segment, as defined previously.
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1

η

ξ

4 3

2

(a)

1

η

ξ

4 3

2

7

5

68

10

(b)

Figure 3.3: Reference triangular element for linear (a) and quadratic (b) cubic approxi-

mations.

Tetrahedra

The reference tetrahedron is defined as an element in the three dimensional space

such that {ξ, η, ζ : 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1 − ξ, 0 ≤ ζ ≤ 1 − ξ − η}, and for a basis of

degree k, the number of degrees of freedom of the element is

N =
(k + 1)(k + 2)(k + 3)

6
. (3.7)

The first four degrees of freedom are located at the vertices of the tetrahedron, the

degrees of freedom on the faces are located in the same way seen for triangles, and the

remaining degrees of freedom are symmetrically distributed around the barycenter

of the element, (Figure 3.4) Introducing the barycentric coordinates for the reference

tetrahedron

λ1 = 1− ξ − η − ζ, λ2 = ξ, λ3 = η λ4 = ζ, (3.8)

the basis functions become analogous to the expressions shown for the triangles. In

the case of a linear element, the basis functions simply read

ψ1
i (λ1, λ2, λ3, λ4) = λi, i = 1, . . . , 4. (3.9)

For a quadratic tetrahedron, the basis functions on the reference element are given

by

ψ2
i (λ1, λ2, λ3, λ4) = (2λi − 1)λi, i = 1, . . . , 4

ψ2
i (λ1, λ2, λ3, λ4) = 4λmλn, i = 5, . . . , 10

(3.10)

with m, n the extreme nodes of the segment which contains the node i.

Hexahedra

The nodes, and the basis functions, for hexahedral elements are obtained by tensor

product of the one-dimensional ones, thus the total number of degrees of freedom,
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Figure 3.4: Reference tetrahedral element for linear (a) and quadratic (b) approximations.

for a basis of degree k, is N = (k+1)3. The reference element is defined as {ξ, η, ζ :
−1 ≤ ξ, η, ζ ≤ 1}, (Figure 3.5), and the basis functions are given by the following

expression

ψk
i (ξ, η, ζ) =

1

8
ψ̄k
l (ξ)ψ̄

k
m(η)ψ̄

k
n(ζ), i = 1, . . . , (k + 1)3,

l, m, n = 1, . . . , k + 1,
(3.11)

with ψ̄k the basis function of the one-dimensional segment.
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Figure 3.5: Reference hexahedral element for linear (a) and quadratic (b) approximations.

3.1.2 Element Mappings

The connection between the reference element, Ω̂, and the physical one, Ωe, is done

by means of a mapping, J : Ω̂ → Ωe. Depending on the choice of J , the map can

account for elements with curved edges/faces, Figure 3.6. It is assumed that i) the
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Jacobian of J is not singular, ii) J is sufficiently regular and iii) J is a bijection

between Ω̂ and Ωe

η

ξ

y

x

Ωe

J

Ωe

J

Ω̂

Figure 3.6: Example of mapping from the reference element to linear and quadratic ele-

ments.

Consider a generic three dimensional element, the mapping from the reference

element in (ξ, η, ζ) to the physical element in (x, y, z), is given by

x(ξ, η, ζ) =

Ng∑

j=1

ψ̂j(ξ, η, ζ) xj,

y(ξ, η, ζ) =

Ng∑

j=1

ψ̂j(ξ, η, ζ) yj,

z(ξ, η, ζ) =

Ng∑

j=1

ψ̂j(ξ, η, ζ) yj,

(3.12)

where Ng is the number of geometrical nodes of the element, ψ̂j is the shape func-

tion for the node j and xi, yj, zj are the node coordinates. The Jacobian of the
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transformation is given by

J =




∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

∂x

∂η

∂y

∂η

∂z

∂η

∂x

∂ζ

∂y

∂ζ

∂z

∂ζ




=




Ng∑

j=1

∂ψ̂j

∂ξ
xj

Ng∑

j=1

∂ψ̂j

∂ξ
yj

Ng∑

j=1

∂ψ̂j

∂ξ
zj

Ng∑

j=1

∂ψ̂j

∂η
xj

Ng∑

j=1

∂ψ̂j

∂η
yj

Ng∑

j=1

∂ψ̂j

∂η
zj

Ng∑

j=1

∂ψ̂j

∂ζ
xj

Ng∑

j=1

∂ψ̂j

∂ζ
yj

Ng∑

j=1

∂ψ̂j

∂ζ
zj




. (3.13)

Derivation

Derivatives of the solution over the element e can be computed through the use of

the derivatives of the shape functions of the element, namely

∂uh

∂x
=
∑

i∈N e
h

∂ψi

∂x
ui,

∂uh

∂y
=
∑

i∈N e
h

∂ψi

∂y
ui,

∂uh

∂z
=
∑

i∈N e
h

∂ψi

∂z
ui.

(3.14)

The derivatives of the basis functions on the physical space can be easily computed

from the derivatives of the basis functions on the reference element. By the usual

rules of partial differentiation, the first component of the derivatives reads

∂ψi

∂ξ
=
∂ψi

∂x

∂x

∂ξ
+
∂ψi

∂y

∂y

∂ξ
+
∂ψi

∂z

∂z

∂ξ
. (3.15)

Performing the same differentiation with respect to the other coordinates and

using the matrix form, one obtains




∂ψi

∂ξ

∂ψi

∂η

∂ψi

∂ζ




=




∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

∂x

∂η

∂y

∂η

∂z

∂η

∂x

∂ζ

∂y

∂ζ

∂z

∂ζ







∂ψi

∂x

∂ψi

∂y

∂ψi

∂z




= J




∂ψi

∂x

∂ψi

∂y

∂ψi

∂z



, (3.16)

thus the derivatives in the physical space can be obtained by inverting the previous
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expression 


∂ψi

∂x

∂ψi

∂y

∂ψi

∂z




= J−1




∂ψi

∂ξ

∂ψi

∂η

∂ψi

∂ζ




. (3.17)

The inverse of the Jacobian matrix usually exists, however the transformation

can be singular in case of degenerate or highly distorted elements.

Volume Integration

As usually happens in numerical methods, integrals are evaluated numerically with

quadrature rules. The quadrature rules are usually defined on reference elements,

thus the integrals on the physical elements require the transformation of the integral

from the physical to the reference space. For instance, the integral of a function

f(x, y, z) on the element e is written as

∫

Ωe

f(x, y, z) dΩ =

∫

Ω̂

f(ξ, η, ζ) |J |dΩ̂, (3.18)

where Ω̂ is the reference element and |J | is the determinant of the Jacobian of

the transformation. Now, the integral can be evaluated numerically with a proper

quadrature rule, as follows

∫

Ω̂

f(ξ, η, ζ) |J |dΩ̂ ≈
Nq∑

q=1

f(ξq, ηq, ζq) |J |q ωq =

Nq∑

q=1

f(ξq, ηq, ζq) ω̃q, (3.19)

where Nq is the number of the quadrature points, ξq, ηq, ζq are the coordinates of

the quadratures points on the reference element and ωq are the quadratures weights.

The term |J |q indicates that the determinant of the Jacobian of the transformation

is evaluated at the coordinates of the quadrature point. Note that the modified

quadrature weights ω̃q have been introduced, this notation is useful for implemen-

tation, since in numerical codes the terms |J |q are computed once for all, multiplied

by the wights of the quadrature rules and then only ω̃q are stored.

Surface Integration

Usually, numerical schemes require the calculation of the following type of surface

integral for the vector function f (x, y, z)

∫

∂Ω

f (x, y, z) · n̂ d∂Ω, (3.20)

where n̂ is the outward normal versor to the surface. The most convenient way

to deal with the above expression is to consider the infinitesimal surface d∂Ω as
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an oriented vector in the direction normal to the surface. For three dimensional

problems the oriented vector is given by the following vector product

n̂ d∂Ω = d∂Ω =




∂x

∂ξ
∂y

∂ξ
∂z

∂ξ




×




∂x

∂η
∂y

∂η
∂z

∂η




dξ dη. (3.21)

In two spatial dimensions, the previous relations reduces to

n̂ d∂Ω = d∂Ω =




∂x

∂ξ
∂y

∂ξ

0




×




0

0

1




dξ. (3.22)

By re-writing the oriented surface as d∂Ω = n̂ ‖d∂Ω‖, with n̂ the unit vector, the

numerical integral reads

∫

∂̂Ω

f (ξ, η, ζ) · n̂|J |dΩ̂ ≈
Nq∑

q=1

f (ξq, ηq, ζq) · n̂q ‖d∂Ω‖q ωq

=

Nq∑

q=1

f (ξq, ηq, ζq) · n̂q ω̃q

(3.23)

3.1.3 Calculation of the Total Residual

As already introduced in Chapter 2, the first step in the construction of a RD scheme

is the computation of the total residual on each element of the grid. For advection

problems the total residual on the generic element e reads

Φe(uh) =

∫

Ωe

∇· f (uh) dΩ =

∮

∂Ωe

f (uh) · n̂d∂Ω, (3.24)

where the divergence theorem has been used to transform the domain integral in

the surface one, since the flux function is continuous on the face of the element. In

such a way the direct calculation of the divergence is avoided and conservation is

automatically satisfied.

In the construction of multidimensional upwind schemes, the total residual is usu-

ally computed by resorting the quasi-linear form of the governing equation, namely

Φe(uh) =

∫

Ωe

∇· f (uh) dΩ = ā ·

∫

Ωe

∇uh dΩ. (3.25)
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A key aspect of this formulation is the mean-value linearization of the Jacobian

flux. It is well know that if ā is not computed properly, the numerical scheme is

not conservative and therefore it converges to the wrong solution in case of non-

linear problems, when discontinuities are present. A practical way to construct a

conservative scheme is to compute a proper average state ūh, with ā = a(ūh), by

the means of a conservative linearization, such that Eq. (3.25) and Eq. (3.24) are

identical [118]. The main difficulty of this approach is that it is not possible to

define the state ūh for general nonlinear conservation laws, such that the following

relation is true

ā = a(ūh) =
1

|Ωe|

∫

Ωe

a(uh) dΩ. (3.26)

An alternative approach was used by Abgrall and Barth [4], who proposed a

family of non-conservative RD schemes in terms of entropy variables. The non-

conservative integrals appearing in the quasi-linear form are approximated by an

appropriate adaptive quadrature procedure such that the weak solutions are still

obtained in the limit of mesh refinement, whenever sufficient order numerical quadra-

ture is used. The method, however, is computational demanding due to the process

of the adaptive quadrature and heavily relies on the symmetric formulation of the

system.

In this work the formulation (3.24) is preferred to the others since it is more

flexible and easier to apply to general non-linear conservation laws and to any kind

of element. From a numerical point of view, the total residual on the generic element

e is computed by the means of quadrature rules, as follows

Φe(uh) =

∮

∂Ωe

f (uh) · n̂d∂Ω ≈
∑

f∈Fe




Nf
q∑

q=1

f (uq) · n̂q ω̃q


 , (3.27)

where F e is the set of the faces of the element e, Nf
q is the number of quadrature

points on the face f and the numerical solution at the quadrature point q is given by

uq =
∑

i∈N e

ψi(ξq, ηq, ζq) ui. (3.28)

Consider now inhomogeneous problems written in the following from

∇· f (uh) = S(uh), (3.29)

where S(uh) is a source term, which might depend on uh in the general case. The

total residual for this problem reads

Φe(uh) =

∫

Ωe

(
∇· f (uh)− S(uh)

)
dΩ

=

∮

∂Ωe

f (uh) · n̂ d∂Ω−
∫

Ωe

S(uh) dΩ.

(3.30)
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The boundary integral has the same form already seen for homogeneous problems,

and the domain integral is approximated with quadrature rules as follows

∫

Ωe

S(uh) dΩ ≈
Nq∑

q=1

S(uq) ω̃q. (3.31)

3.2 Multidimensional Upwind Schemes

After the calculation of the total residual, the next step in the construction of RD

schemes is the distribution of the total residual to each degree of freedom of the

element. The way the distribution process is performed is crucial and determines

the behavior and the accuracy of the numerical scheme.

The first line of research within RD methods aimed to construct truly multidi-

mensional upwind schemes in order to have more accurate schemes than FV [102].

Consider, for example, a standard node-centered FV method for multidimensional

problems. For each node i of the grid, the method reduces to several one dimensional

upwind schemes along the directions of the node-pairs composed by the node i and

the neighboring nodes j. Hence the method is very dissipative and the overall accu-

racy of the FV scheme for multidimensional problems is lower than that guaranteed

for one dimensional problems.

To see how multidimensional upwind schemes work, consider a two dimensional,

homogeneous, scalar advection problem discretized on a grid of triangular elements;

the description is limited to P1 elements only. The total residual on the element e

reads

Φe =

∫

Ωe

∇· f (uh) dΩ = ā ·

∫

Ωe

∇uh dΩ, (3.32)

where the quasi-linear formulation has been resorted. For linear elements it is easy

to put the previous expression in terms of the nodal values of the solution. Indeed,

consider a node j of the element e, with ne
j denoting the inward pointing vector

normal to the edge of e opposite to the node j, scaled by the length of the edge

(Figure 3.7), the gradient of the shape function is constant over the element and is

given by

∇ψj =
ne

j

2 |Ωe|
, (3.33)

thus the gradient of the numerical solution on the element e reads

∇uh =
∑

j∈N e
h

ne
j

2 |Ωe|
uj. (3.34)

For uh varying linearly on the element, the gradient of the numerical solution is
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constant and Eq. (3.32) can be written as follows

Φe = ā ·

∑

j∈N e
h

ne
j

2 |Ωe|
uj =

∑

j∈N e
h

kej uj, (3.35)

where the following upwind parameter has been introduced

kej =
ā ·ne

j

2 |Ωe|
. (3.36)

It is easy to understand the reason of name upwind parameter: kej > 0 if ā is

oriented as ne
j , hence the node j is down-stream, conversely if kej < 0 the node j is

up-stream.

ne
j

j

Figure 3.7: Definition of the scaled inward normal vector.

Note that, since the elements have a close boundary, the normal vectors ne
j sum

up to zero for each element, thus the following relation holds

∑

j∈N e
h

kej = 0. (3.37)

Introducing the following definitions

ke
+

j = max(kej , 0) and ke
−

j = min(kej , 0), (3.38)

it is possible to re-write Eq. (3.32) as follows

Φe =
∑

j∈N e
h

ke
+

j uj +
∑

j∈N e
h

ke
−

j uj =
∑

j∈N e
h

ke
+

j


∑

j∈N e
h

N eke
+

j uj +
∑

j∈N e
h

N eke
−

j uj


 (3.39)

with

N e =

(∑

j∈N e
h

ke
+

j

)−1

= −
(∑

j∈N e
h

ke
−

j

)−1

=
1

2

(∑

j∈N e
h

|kej |
)−1

> 0. (3.40)
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Defining the inflow

uein =

∑

j∈N e
h

ke
−

j uj

∑

j∈N e
h

ke
−

j

= −
∑

j∈N e
h

N eke
−

j uj (3.41)

and the outflow state on the element e

ueout =

∑

j∈N e
h

ke
+

j uj

∑

j∈N e
h

ke
+

j

=
∑

j∈N e
h

N eke
+

j uj (3.42)

one finally obtains

Φe =
∑

j∈N e
h

ke
+

j (uout − uin). (3.43)

A geometrical interpretation of the previous expression can be found by noting

that the inflow and outflow states represent the values of the numerical solution,

respectively, in the most up-stream and down-stream points of e along the streamline

direction ā. As a consequence, Eq. (3.43) represents a one dimensional balance along

the direction of ā.

It is possible to distinguish two situations on the element e. If ā points in the

direction of a single node, Figure 3.8-(a), then this node coincides with the outflow

point; in this situation the element is said to be a one-target element. Conversely,

if ā points in the direction of one edge, Figure 3.8-(b), then one node coincides

with the up-stream point and the other two nodes are located down-stream; in this

situation the element is said to be a two-target element.

k

i

uj = uout

uin

ā

(a)

i

k

ā

uj = uin

uout

(b)

Figure 3.8: Definition of the inflow and outflow states for the one-target (a) and two-target

(b) element.

The framework just described gives the possibility to construct multidimensional

upwind schemes. These schemes must satisfy the following properties
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i) For the one-target element e, if kej > 0 and kei , k
e
k < 0, then Φe

j = Φe and

Φe
i = Φe

k = 0

ii) For the two-target element e, if kej < 0 and kei , k
e
k > 0, then Φe

j = 0

The previous properties define a one dimensional upwind scheme along the stream

line direction, in particular in the case of a one-target element the whole residual

is sent down-stream to the single outflow node. For a two-target element, the total

residual has to be split between the two down-stream nodes; the way the residual is

distributed between these two nodes in not unique. Here are described two ways to

perform this task, which bring to two famous schemes in the RD framework.

3.2.1 LDA Scheme

The LDA (Low Diffusion A) scheme is a linearity preserving, multidimensional up-

wind scheme. It is defined by the following distribution coefficients

βe,LDA
i = ke

+

i

(
∑

j∈N e
h

ke
+

j

)−1

= ke
+

i N e, (3.44)

which give the following nodal residuals

Φe,LDA
i = βe,LDA

i Φe = ke
+

i (uout − uin). (3.45)

Since the distribution coefficients remain bounded independently on Φe, the LDA

scheme is formally second order accurate, but it is not Local Extrema Diminishing

[89], thus the scheme is not monotone near discontinuities.

3.2.2 N Scheme

The N (Narrow) scheme, firstly proposed by Roe [102], is a first order, multidimen-

sional upwind scheme. It is defined by the following nodal residuals

Φe,N
i = ke

+

i (ui − uin). (3.46)

It differs from the LDA scheme only for the two-target element, in this case the

N scheme reduces to a first order upwind scheme along the edges of the element

originating from the inflow point.

Since the distribution coefficients are defined implicitly as

βe,N
i =

Φe,N
i

Φe
, (3.47)

they can be unbounded as Φe → 0, hence the scheme is not Linearity Preserving.

On the other hand, it is easy to see that Positivity is guaranteed, which implies that

the scheme is monotone.
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While in the LDA scheme any arbitrary state can be used to determine the

advection speed ā, in the case of the N scheme a proper linearization must be per-

formed otherwise the scheme is no longer consistent in case of non-linear problems.

An alternative approach [42], which avoids the use of a consistent linearization, is

based on the observation that the conditions




Φe,N
i = ke

+

i (ui − uin)

Φe =
∑

i∈N e
h

Φe,N
i

(3.48)

uniquely define the state uin. Thus, if the inflow state is computed as

uin =

(∑

j∈N e
h

ke
+

j

)−1(∑

j∈N e
h

ke
+

j uj − Φe

)
, (3.49)

it is guaranteed that the scheme is formally identical to the N scheme and it does

not violate the conservative definition of the residual, Eq. (3.24), independently on

how the mean state ā is computed.

3.2.3 The Limit of the Multidimensional Upwind Schemes

Although multidimensional upwind RD schemes have shown great capabilities in the

discretization of advection problems on simplexes, they suffer of a lack of flexibility.

One limit is due to the fact that the extension of the multidimensional upwind

mechanism to elements different from simplexes is not clear. For instance in [91,128],

multidimensional linearity preserving schemes have been extended to quadrilateral

elements for the discretization of two-dimensional scalar problems. However, it was

found that an additional streamline stabilization term must be added because the

schemes formulated on quadrilateral elements are marginally stable with respect to

their counterpart on triangles.

Another important drawback of multidimensional upwind schemes is the diffi-

culty to extend the approach to higher orders of approximation of the solution; most

of the numerical results are limited to the case of linear interpolation. A possible way

out to this limit consists in using sub-triangulation [130]. With this approach, the

solution on each element is approximated with a k-th order polynomial, at the same

time the degrees of freedom of the element are used to construct sub-cells within the

main element. The total residual is computed on each sub-cell with the global poly-

nomial expansion of the solution on the main element (i.e., using all the degrees of

freedom), then the residual is distributed to the degrees of freedom of each sub-cell

by using a multidimensional upwind scheme, as done for linear elements (Figure 3.9)

It is clear that the sub-triangulation adds a large computational effort with re-

spect to the linear interpolation of the solution and might make higher order schemes

less efficient than low order ones in term of computational time. An alternative ap-

proach has been proposed in [26] to construct a third order RD scheme on triangles
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Figure 3.9: Graphical representation of the sub-triangulation approach.

and tetrahedra. In this approach, the order of accuracy is increased by considering a

higher order reconstruction of the solution; the Hermite cubic interpolation is used

to compute the midpoint value of the solution on the edge, this value is used to-

gether with the vertex values to construct a quadratic approximation of the solution

on the edge. The total residual on the element, computed using a better approxi-

mation of the solution, is then distributed to the vertices with a multidimensional

upwind RD scheme. Although this approach is less expensive that the use of the

sub-triangulation, it is limited to formally third order approximation on triangles

and tetrahedra. Furthermore, the Hermite interpolation requires the reconstruction

of the gradient of the solution at the vertices of the element and this introduce two

additional drawbacks: the stencil of the numerical scheme becomes larger and the

accuracy of the numerical scheme depends strongly on the regularity of the mesh.

3.3 Central Schemes

To overcome the limits of multidimensional upwind schemes, a different family of

scheme is now considered. The idea of truly multidimensional upwinding is aban-

doned in favor of a central distribution of the residual in order to construct a more

flexible method.

In central schemes, differently from truly upwind ones, each degree of freedom

of the element always receives a certain amount of the total residual. Obviously,

a pure isotropic distribution of the residual would result in an unstable scheme for

hyperbolic problems, hence a bias term must be added to the pure central part in

order to stabilize the numerical scheme.
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3.3.1 Petrov-Galerkin Scheme

Consider the Petrov-Galerkin scheme used in the FE framework for the discretization

of the scalar advection problem (2.1). As well know, the scheme consists of the

Galerkin discretization of the governing equation plus a streamline dissipation term,

[20, 59, 60]
∫

Ω

ψi a·∇uh dΩ +
∑

e∈Eh

∫

Ωe

a·∇ψi τh a·∇uh dΩ = 0, ∀i ∈ Nh, (3.50)

where τh is a positive parameter with the dimension of a time and it is defined as

follows

τh =
1

2

he
‖a‖ , (3.51)

with he a characteristic length scale of the element.

Exploiting the compactness of the basis functions, in the case of linear triangular

elements and constant advection speed a, the first integral of Eq. (3.50) reduces to

∑

e∈Ei
h

∫

Ωe

ψi a·∇uh dΩ =
∑

e∈Ei
h

Φe

3|Ωe|
, (3.52)

while using the relation (3.34) and the definition (3.36), the second integral of

Eq. (3.50) reads

∑

e∈Ei
h

∫

Ωe

a·∇ψi τh a·∇uh dΩ =
∑

e∈Ei
h

τh
ki

2|Ωe|
Φe. (3.53)

Hence, the Petrov-Galerkin scheme (3.50) can be recasted in the following RD form

Φe,PG
i = βe,PG

i Φe, with βe,PG
i =

1

3
+ τh

ki
2|Ωe|

. (3.54)

Strictly speaking, the previous analogy between RD and Petrov-Galerkin schemes is

valid only for P1 elements and constant advection speed. In the more general case

Eq. (3.50) no longer reduces to Eq. (3.54).

Thanks to the property (3.37) the scheme is consistent. Furthermore, it is easy

to see from the definition of the distribution coefficients (3.54) that the scheme is

linearity preserving, thus formal second order accuracy is guaranteed for a linear

interpolation of the solution.

3.3.2 Rusanov Scheme

The Rusanov scheme is a central scheme obtained from a central distribution of the

total residual plus a stabilization term

Φe,Rv
i =

1

N e
dof

Φe +
1

3
αe
∑

j∈N e
h

j 6=i

(ui − uj), αe ≥ max
j∈N e

h

|kj| > 0. (3.55)
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Since the distribution coefficients are defined implicitly as

βe,Rv
i =

Φe,Rv
i

Φe
, (3.56)

they can be unbounded as Φe → 0, hence the scheme is only first order accurate.

The streamline dissipation term of the Petrov-Galerkin scheme, Eq. (3.54), has

residual properties, i.e. it is proportional to the residual of the governing equation

through bounded coefficients, thus it vanishes as the residual tends to zero. On

the other hand, the dissipation term of the Rusanov scheme, Eq. (3.55), has not a

residual properties and, in addition, it has a purely isotropic character. Although

very cheap, the Rusanov scheme is expected to be extremely dissipative.

3.3.3 Lax-Wendroff Scheme

Consider a discretization method consisting of a central scheme plus a streamline

stabilization term, which gives the following nodal residual

Φe,LW
i =

Φe

N e
dof

+

∫

Ωe

a·∇ψi τ a·∇uh dΩ, (3.57)

with the positive parameter τ given by

τ =
1

2

|Ωe|
max
j∈Nh

e

(k+j )
. (3.58)

The reason why this scheme is called here Lax-Wendroff comes from the fact that

Eq. (3.57), in the case of P1 element with constant advection speed, coincides with

the classical Ni’s version of the Lax-Wendroff scheme [81], for which the distribution

coefficients can be defined as

βe,LW
i =

1

3
+

∆t

2|Ωe|
ki. (3.59)

Note that the previous expression of the distribution coefficients is very similar to

that of the Petrov-Galerkin scheme, although the derivation of the two scheme is

completely different.

3.4 Non-Linear Schemes

As already reported in Chapter 2, a linear scheme cannot be monotone and high-

order at the same time, thus non-linear schemes have to be considered to overcome

this limit. Two approaches are commonly used in the RD framework to construct

non-linear schemes: the local non-linear blending of a linearity preserving scheme
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with a positive one, and the non-linear limiting of a positive scheme into a linearity

preserving one.

The first approach simply consists in blending together two linear schemes in or-

der to combine the non-oscillatory properties of a Positive scheme with the capacity

to get high-order of a linearity preserving scheme, namely

Φe,B
i = (1−Θe(uh))Φ

e,LP
i +Θe(uh)Φ

e,P
i , (3.60)

where Φe,LP
i and Φe,P

i are, respectively, the residuals computed with the linearity

preserving scheme and the positive one. The blending parameter Θe(uh), which

depends on the numerical solution, must ensure that the condition (2.40) is fulfilled

in smooth regions, while the monotonicity of the first order scheme must prevail

across discontinuities. A very common choice [41,55,111] consists in taking Φe,LP
i =

Φe,LDA
i and Φe,P

i = Φe,N
i with the blending parameter defined as

Θe(uh) =
|Φe|∑

i∈N e

∣∣Φe,N
i

∣∣ , (3.61)

even though more sophisticated expressions can be constructed [2]. Note that the

previous definition of Θe(uh) only assures that condition (2.40) is satisfied, but there

is no guarantee that the scheme is really monotone across shocks.

Although the non-linear blending provides an easy way to construct effective

high-order schemes, in practical applications it might be difficult to define a proper

blending parameter that does not spoil accuracy and robustness of the numerical

scheme. Furthermore, these schemes are not well suited for unsteady simulations

[10].

Another approach for combining high-order discretization with monotonicity,

consists in mapping a positive scheme into a linearity preserving one. This operation

is generally called non-linear limiting and is described in the next section.

3.4.1 Limited Non-Linear Schemes

Consider a first order accurate monotone scheme, such a scheme has unbounded

distribution coefficients βe
i = Φe

i/Φ
e. The construction of a non-linear limited scheme

consists in limiting the distribution coefficients of the first order scheme in order to

have bounded values. The limiting procedure is obtained by applying a continuous

mapping βe
i 7→ β̂e

i , from the space of the distribution coefficients of the low-order

scheme to the one of the higher order scheme. The high-order, monotone distributed

residuals are then computed as

Φ̂e
i = β̂e

i (uh)Φ
e(uh). (3.62)

In order to have a well posed map, the following conditions must be satisfied
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i) |β̂e
i | <∞, ∀i ∈ N e

h ,

ii) β̂e
i β

e
i ≥ 0 and Φe

i = 0 ⇒ β̂e
i = 0, ∀i ∈ N e

h ,

iii)
∑

i∈N e
h

β̂e
i = 1.

The first property assures that the scheme is linearity preserving because all the dis-

tribution coefficients remain bounded. The second property corresponds to require

that the scheme is monotone; indeed

Φ̂e
i =

Φ̂e
i

Φe

Φe

Φe
i

Φe
i =

β̂e
i

βe
i

∑

j∈N e
h

j 6=i

ceij(ui − uj) =
∑

j∈N e
h

j 6=i

ĉeij(ui − uj), (3.63)

where

ĉeij = ceij
β̂e
i

βe
i

. (3.64)

Since, by definition, for a first order monotone scheme ceij ≥ 0, the positivity of

ĉeij requires β̂e
i β

e
i ≥ 0. The last property assures the conservation of the numerical

scheme.

One popular RD scheme based on this approach, the so-called PSI scheme [10,11,

118], uses the N scheme as first order starting method with the following definition

of the map

β̂e,PSI
i =

max
(
βe,N
i , 0

)
∑

j∈N e
h

max
(
βe,N
j , 0

) , (3.65)

in which negative values of βe,N
i are set to zero and the maximum value cannot

exceed the unity. Note that the new distribution coefficients sum up to the unity

and all the properties which assure the well-posedness of the map are fulfilled.

The great drawback of the PSI scheme is the poor iterative convergence in the

case of system of equations, furthermore the PSI scheme cannot be extended easily

to orders of accuracy more than two. In [11] higher order accuracy was obtained

with the PSI scheme through the use of sub-triangulation of the elements and linear

interpolation of the solution on each sub-element, however it is easy to show that

in order to ensure that the consistency condition is satisfied, the monotonicity one

must be relaxed.

In [3] a limited non-linear scheme based on the Rusavon scheme is proposed with

the use of the same limiting map of the PSI scheme (3.65). This last approach is more

flexible than the PSI scheme, since the central scheme can be easily formulated on

every type of element, for scalar problem and system of equations, as well. However,

the use of a central scheme, like the Rusanov scheme, in combination with the

limiting technique produces undamped spurious modes in smooth regions of the

solution, although the scheme performs well near discontinuities. Furthermore, the
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numerical scheme has a very poor iterative convergence to the steady state. The

problem is due to the fact that in the limiting only the sign of the distribution

coefficients is considered and no upwind mechanism is taken into account, hence the

scheme can be locally downwind.

The problem is analyzed with more details in [3], where it is shown that an

additional filtering term must be added to the limited residuals in order to obtain

a convergent and accurate numerical scheme. The non-linear Rusanov scheme then

reads

Φ̂e,Rv
i = β̂e,Rv

i (uh)Φ
e(uh) + θeh(uh)

∫

Ωe

a · ∇ψi a · ∇uh dΩ, (3.66)

where the parameter θeh(uh) provides the correct scaling of the filtering term. In

the general case θeh depends on the solution itself, this means that the monotonicity

of scheme is not formally guaranteed, however numerical experiments confirm that

the scheme remains essentially non oscillatory near discontinuities. The following

definition of the parameter θeh is used here

θeh(uh) = ε(uh)




∑

j∈N e
h

|ā·nj|

2|Ωe|




−1

, with nj =

∫

Ωe

∇ψj dΩ, (3.67)

where ā is the arithmetic average of the advection speed on the element and ε(uh)

is a smoothness sensor such that ε(uh) = 1 in smooth regions and ε(uh) = 0 across

discontinuities [8].
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Extension to Multidimensional

Second-Order PDEs on Unstructured Grids

The RD approach, previously detailed for the discretization of advection problems,

is now extended to include the discretization of diffusion terms. Although RD

methods have been successfully used to discretize advection problems for long time,

their extension to advection-diffusion problems has not reached a complete level of

understanding yet. The simple coupling of a RD method for the advective terms

with a different approach for the diffusive ones generally results in a not optimal

global scheme, although the two schemes separately perform well.

In this work advection and diffusion are discretized within the same framework

in order to construct an effective and flexible RD method which maintains an op-

timal accuracy for different cases, ranging from advection dominated to diffusion

dominated problems. The key point of this approach is the reconstruction of an

unique value of the gradient of the numerical solution at the degrees of freedom of

the grid, thus a continuous approximation of both the solution and its gradient can

be used to compute the total residual on each element.

4.1 Discretization of Diffusion Terms with RD Methods

When in the governing equation (2.1) diffusive phenomena are considered together

with the advective terms, the following advection-diffusion equation is obtained

∇· f (u) = ∇·
(
ν∇u

)
, (4.1)

where ν > 0 is the viscosity, generally function of u. The relative importance

of the advection and the diffusion is described by the non-dimensional parameter,

Peclet number, Pe = ‖a‖ h/ν. In advection and diffusion limits Pe → ∞, Pe → 0,

respectively, while Pe ∼ 1 when advection and diffusion are equally important.
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For the extension of RDmethods to advection-diffusion problems, different strate-

gies have been considered to compute and to distribute the residual associated with

the diffusive terms. On a first attempt, based on the physical intuition that the

diffusion has an isotropic behavior in space, RD schemes (for advection problems)

were coupled with the Galerkin discretization of diffusive terms [90,124], but a trun-

cation error analysis revealed that this simple approach results in a first order ac-

curate scheme when advection and diffusion have the same order of magnitude [85].

A different approach, developed for two-dimensional problems on triangular grids,

considered the hybridization of RD methods with a Petrov-Galerkin scheme by the

means of a scaling parameter, function of the Peclet number [98].

A key aspect that emerges from the work of Nishikawa and Roe [85] is that a

RD scheme with an uniform order of accuracy in the whole range of Peclet numbers

should not consider two different distribution schemes for advective and diffusive

terms, but only one distribution process has to be performed for the residual of the

whole equation, namely

Φe =

∫

Ωe

(
∇· f

(
uh
)
−∇·

(
ν∇uh

))
dΩ. (4.2)

To put the previous expression in term of a boundary integral, one has to cope

with the fact that the normal component of the gradient of the numerical solution,

∇uh ·n̂, is in general discontinuous across the face of two adjacent elements and this

violates the continuous approximation hypothesis of the numerical scheme. Suppose,

now, that an unique value of the gradient is available at each degree of freedom, the

gradient can be interpolated with the same shape functions used for the solution.

The total residual on the element can be written as follows

Φe =

∮

∂Ωe

(
f
(
uh
)
− ν∇̃uh

)
· n̂ d∂Ω, (4.3)

where ∇̃uh is the interpolated gradient of the numerical solution, which is now

continuous on the faces of the elements.

Once the total residual is evaluated, it can be distributed to the degrees of free-

dom of the elements. This strategy has been adopted in [88] to construct a second

order RD scheme for advection-diffusion problems on triangular grids an has been ex-

tended to the third order in [25]. In both works, the distribution process is performed

by means of purely advective distribution coefficients, which is not appropriate in

the diffusion limit. A more general scheme consists in using distribution coefficients

which are function of the local Peclet number in order to recover an isotropic scheme

in the diffusion limit and an upwind one in the advection limit [31, 85].

The key idea of the Eq. (4.3) is the reconstruction of the gradient of the numerical

solution at each degree of freedom of the grid and is one of the issue analyzed in this

chapter. Numerical experiments show that in order to obtain high-order accurate

solutions, the gradients must be reconstructed with the same order of the solution.
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An alternative approach, proposed by Nishikawa for scalar diffusion problems [82]

and scalar advection-diffusion problems [83], consists in reinterpreting the advection-

diffusion scalar equation as an equivalent hyperbolic first order system, in this way

the gradient reconstruction is no longer necessary, but the price to pay is the incre-

ment of the unknowns of the problem due to the fact that a system of equations

must be solved instead of a single scalar equation.

4.2 Hyperbolic First Order System Formulation

The hyperbolic First Order System (FOS) formulation is here recalled for later con-

venience. The basic idea consists in re-writing the advection-diffusion scalar problem

(4.1) as an equivalent first order system in which the second order derivatives of the

original problem are replaced by the first order derivatives of auxiliary variables.

At the steady state the two formulations will coincide and the values of the auxil-

iary variables will equal the values of the derivatives of the unknown in the original

problem.

Consider the scalar advection-diffusion problem in Ω ∈ R2, for simplicity,

∂u

∂t
+ a · ∇u−∇·

(
ν∇u

)
= 0, (4.4)

with the advection speed a = (ax, ay)
T. The previous equation can be recasted as

first order system (FOS) by writing

∂u

∂t
+ a ·∇u = ν

(
∂p

∂x
+
∂q

∂y

)

∂p

∂t
=

1

Tr

(
∂u

∂x
− p

)

∂q

∂t
=

1

Tr

(
∂u

∂y
− q

)
(4.5)

where p and q are the gradient variables and Tr is a relaxation time. At the steady

state, the system (4.5) is equivalent to the original equation (4.4), independently on

the parameter Tr, and p,q become equivalent to ∂u
∂x

and ∂u
∂y
, respectively.

The system (4.5), in vector form reads

∂u

∂t
+A · ∇u = S, (4.6)

with

u =




u

p

q


 , Ax




ax −ν 0

1

Tr
0 0

0 0 0


 , Ay




ay 0 −ν
0 0 0

1

Tr
0 0


 , S =




0

− p

Tr

− q

Tr



, (4.7)
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and since, for an arbitrary vector n = (nx, ny)
T, it is possible to write the Jacobian

matrix as A · n = Axnx + Ayny, thus

An = Axnx + Ayny =




an −νnx −νny

−nx

Tr
0 0

−ny

Tr
0 0



, (4.8)

with an = a · n. The Jacobian matrix (4.8) has a set of real eigenvalues

λ1,n =
1

2

(
an −

√
a2n +

4ν

Tr

)
, λ2,n =

1

2

(
an +

√
a2n +

4ν

Tr

)
, λ3,n = 0, (4.9)

while the matrix of the right-eigenvectors reads

Rn =




λ1,nTr λ2,nTr 0

nx ny −ny

ny ny nx


 , (4.10)

and, as usual, the Jacobian matrix can be written as An = RnΛnLn, where Λn

is the diagonal matrix of the eigenvalues and Ln = R−1
n is the matrix of the left

eigenvectors.

The system (4.5) has real eigenvalues and linearly independent right-eigenvectors,

thus the system is hyperbolic. The parameter Tr can be defined as the ratio of a

length scale Lr to the characteristic wave speed of the system. When the maximum

eigenvalue is considered, Tr can be written as

Tr =
Lr

λ2,n
, (4.11)

substituting in the previous relation the definition of λ2,n and solving for Tr one

obtains

Tr =
Lr

|an|+ ν/Lr
, (4.12)

where an has been replaces by |an| to keep Tr positive. By substituting the definition

(4.12) back into the definition of the eigenvalues one obtains

λ1,n = a−n

(
1− 1

Re−Lr

)
, λ2,n = a+n

(
1 +

1

Re+Lr

)
, λ3,n = 0, (4.13)

with

a−n = min(0, an), a+n = max(0, an)

Re−Lr
=
a−nLr

ν
Re+Lr

=
a+nLr

ν
.
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Note that a+n + a−n = an and a+n − a−n = |an|. The matrix of the right-eigenvectors

can be now written as follows

Rn =




Lr

Re+Lr
+ 1

Lr

Re−Lr
− 1

0

nx ny −ny

ny ny nx


 , (4.14)

with the corresponding left-eigenvectors given by

Ln =
1

|ReLr |+ 2




|ReLr |+ 1

Lr
(1 +Re+Lr

)nx (1 +Re+Lr
)ny

−|ReLr |+ 1

Lr
(1− Re−Lr

)nx (1−Re−Lr
)ny

0 −ny nx



, (4.15)

where |ReLr | = |an|Lr

ν
. The Jacobian matrix An can be decomposed as follows

An = λ1.nΠ1,n + λ2,nΠ2,n, (4.16)

with the projection matrices Π1,n,Π2,n given by

Π1,n =
1

|ReLr |+ 2




1− Re−Lr
Lrnx Lrny

|ReLr |+ 1

Lr
nx (1 +Re+Lr

)n2
x (1 +Re+Lr

)nxny

|ReLr |+ 1

Lr
ny (1 +Re+Lr

)nxny (1 +Re+Lr
)n2

y



, (4.17)

Π2,n =
1

|ReLr |+ 2




1 +Re+Lr
−Lrnx −Lrny

−|ReLr |+ 1

Lr

nx (1−Re−Lr
)n2

x (1− Re−Lr
)nxny

−|ReLr |+ 1

Lr

ny (1− Re−Lr
)nxny (1− Re−Lr

)n2
y



. (4.18)

It is worth noting that all the previous considerations are done on the continuous

system, regardless the numerical method used.

4.2.1 Determination of the Length Scale

In the previous section, the parameter Tr has been defined as the ratio of a length

scale Lr to the maximum wave speed of the system. The length scale Lr must be still

determined. One can think to choose Lr to optimize some property of the numerical

scheme or to ameliorate, in some way, the formulation of the continuous system.

For example, one can choose Lr such that the stiffness of the continuous system is

minimized, thereby reaching the steady state as fast as possible.
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Following Nishikawa [83], consider a Fourier mode of phase angle β = (βx, βy)
T,

with βx, βy ∈ [0, π]

uβ = e(βxx/h+βyy/h)u0, (4.19)

inserting this mode in the equation (4.6), one obtains

duβ

dt
=Mβuβ, (4.20)

where

Mβ =




i
a · β

h
ν
iβx
h

ν
iβy
h

iβx
hTr

− 1

Tr
0

iβy
hTr

0 − 1

Tr




, (4.21)

The eigenvalues of Mβ are given by

λβ1,2 = −1

2



(

1

Tr
+
iβaβ
h

)
±
√(

1

Tr
− iβaβ

h

)2

− 4νβ2

h2Tr


 , λβ3 = − 1

Tr
, (4.22)

with

aβ =
a · β

β
, and β =

√
β2
x + β2

y . (4.23)

Since the third eigenvalue is zero, the attention is focused only on λβ1,2. These

eigenvalues are complex, the imaginary part gives the propagation velocity and the

real part gives the damping factor. If λβ1,2 are complex conjugate, the system will

be perfectly conditioned because at the two eigenvalues will be associated the same

propagation speed (magnitude of the imaginary part) and the same damping factor.

Only in the diffusion limit the two eigenvalues will be complex conjugate, while in

the advection limit the eigenvalues will be pure imaginary and pure real

λβ1 = −iαaβ
h

and λ2 = − 1

Tr
. (4.24)

One can consider to equalize the magnitude of the eigenvalues, |λβ1 |/|λβ2 | = 1, for

the smoothest error mode, to obtain the following optimal length [83]

Lr =
1

2π




Reπ√
1 +Reπ

2 + 1
+

√√√√1 +
2(√

1 +Reπ
2 + 1

)


 , (4.25)

where

Reπ =
‖a‖(1/π)

ν
. (4.26)
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It is easy to see that in the diffusion limit (‖a‖ → 0) Lr = 1/(
√
2π), in the advection

limit (ν → 0) Lr = 1/π, and the value of Lr remains confined between these two

values, see Figure 4.1. With this choice of Lr the condition number K = |λβ1 |/|λβ2 |
is one on all the range of Reπ.

Re π

L
r

10-3 10-2 10-1 100 101 102 103

0.24

0.26

0.28

0.3

0.32

La
diff

Lr
adv

Figure 4.1: Variation of the characteristic length Lr as defined in Eq. (4.25).

4.2.2 Spatial Discretization

Since the system of equations (4.6) is hyperbolic, it can be discretized with any

scheme already available for hyperbolic problems. If a RD scheme is used, the total

residual of a generic element e is defined as follows

Φe(uh) =



Φe
u

Φe
p

Φe
q


 =

∫

Ωe

(
A·∇uh − S(uh)

)
dΩ. (4.27)

The system can be written in conservative form by introducing the flux function

f(u) =
(
fx(u), fy(u)

)T
, such that A = ∇uf(u), with

fx(u) =




axu− νp

− u

T ⋆
r

0


 and fy(u) =




ayu− νq

0

− u

T ⋆
r


 , (4.28)

where the parameter T ⋆
r is used instead of the parameter Tr, with

T ⋆
r =

Lr

‖a‖+ ν/Lr
, (4.29)
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so that T ⋆
r is constant on the element; this ensure that at the steady state the

relations ∂u
∂x

= p and ∂u
∂y

= q will be satisfied in the integral sense. The total residual

can be now written as

Φe =

∫

Ωe

(
∇· f(uh)− S(uh)

)
dΩ

=

∮

∂Ωe

f(u) · n d∂Ω−
∫

Ωe

S(uh) dΩ,

(4.30)

and RD schemes developed for hyperbolic systems of equations can be used to

distribute the residual to each degree of freedom of the element, see Chapter 5.

4.3 RD Discretization of Advection-Diffusion Problems

The RD numerical schemes introduced in Chapter 3 for advection problems are now

extended to the advection-diffusion case. Having in mind the goal to discretize the

compressible Navier-Stokes equations on hybrid grids with second and third order

accuracy, the attention is focused here only on the linear scheme (3.57) and the

non-linear one (3.66) due to their flexibility compared to multidimensional upwind

schemes. Furthermore, purely upwind schemes are expected to be not suited when

diffusive effects prevail on the advective ones. In fact, some authors [31, 85] used

a modified version of the distribution coefficients of the LDA scheme in order to

recover an isotropic scheme in the diffusion limit.

4.3.1 Central Linear and Non-Linear RD Schemes

Given the total residual computed as in Eq. (4.3), the linear scheme for advection-

diffusion problems reads

Φe,LW
i =

Φe

N e
dof

+

∫

Ωe

a·∇ψi τ
(
a·∇uh −∇·

(
ν∇̃uh

))
dΩ (4.31)

where the scaling parameter τ is defined as follows

τ =
1

2

|Ωe|∑

j∈Σe
h

max(kj, 0) + ν
, with kj =

1

2
ā·nj, (4.32)

The scheme (4.31) is linearity preserving but not positive. An RD scheme which is

high order preserving and monotone is given by the following non-linear scheme

Φ̂e,Rv
i = β̂e,Rv

i (uh)Φ
e(uh)

+ θeh(uh)

∫

Ωe

(
a · ∇ψi −∇·

(
ν∇ψi

)) (
a · ∇uh −∇·

(
ν∇̃uh

))
dΩ,

(4.33)
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The parameter θ e
h(u

h) is taken as follows

θ e
h(u

h) = ε(uh)




∑

j∈Σe
h

|ā·nj|+ ν

2|Ωe|




−1

, (4.34)

with ε(uh) a smoothness sensor. The non-linear distribution coefficients, β̂e,Rv
i , are

obtained from the Rusanov’s scheme, by applying the non-linear limiting technique

described in Section 3.4.1, and a symmetric form is used in the filtering term.

Note that although the integrals at the second member of the linear and non-

linear schemes are strictly computed on the element interior, for sake of robustness

and consistency with the calculation of the total residual, the reconstructed gradient

is used in place of the internal gradient for the viscous terms.

4.3.2 Improved Discretization of the Diffusion Terms

Numerical experiments reveal that the schemes (4.31) and (4.33) applied to the

discretization of advection-diffusion problems are unsatisfactory from the point of

view the robustness. In order to obtain a better discretization of the diffusive terms,

the advection-diffusion equation (4.1) is written in the form of a first order system

as follows {
∇· f (u)−∇· (νq)= 0

q −∇u= 0
(4.35)

Consider now a numerical scheme for the previous system obtained by writing the

weak form of the system plus a streamline stabilization term. With an abuse of

notation it is possible to write
∫

Ωe

ψi

(
∇· f (uh)−∇· (νqh)

qh −∇uh

)
dΩ

+

∫

Ωe

A·∇ψi τ

(
∇· f (uh)−∇· (νqh)

qh −∇uh

)
dΩ = 0,

(4.36)

where A = (Ax, Ay) with

Ax =



ax −ν 0

−1 0 0

0 0 0


 and Ay =



ay 0 −ν
0 0 0

−1 0 0


 , (4.37)

so that

A·∇ψi =




a·∇ψi −ν ∂ψi

∂x
−ν ∂ψi

∂y

−∂ψi

∂x
0 0

−∂ψi

∂y
0 0



. (4.38)
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The term τ is assumed to be of the following form

τ =



τa 0 0

0 τd 0

0 0 τd


 , (4.39)

where τa and τd are strictly positive coefficients.

Supposing, now, that the gradient of the numerical solution has been recon-

structed at each degree of freedom, one can replace the second equation of the sys-

tem (4.35) with the approximation ∇uu ≃ ∇̃uh and consider only the first equation,

which now reads
∫

Ωe

ψi

(
∇· f (uh)−∇· (ν∇̃uh)

)
dΩ

+

∫

Ωe

a·∇ψi τc

(
a·∇uh −∇·

(
ν∇̃uh

))
dΩ

+

∫

Ωe

ν∇ψi ·

(
τd

(
∇uh − ∇̃uh

))
dΩ = 0.

(4.40)

The first two integrals of the previous equation represent a discretization method

for the scalar advection-diffusion equation with a central scheme plus a streamline

stabilization term, in the same way as shown in the Eq. (4.31). The last integral

represents an additional stabilization term, for the diffusive part only, which vanishes

in the advective limit and the parameter τd is dimensionless. It is interesting to note

that the additional term penalizes the difference between the discontinuous and the

interpolated gradient, on each element.

With a slightly different procedure, a similar stabilization term for the diffu-

sive part has been obtain by Nishikawa [84] for the RD discretization of diffusion

problems.

With the Eq. (4.40) in mind, it is proposed here a modification of the schemes

(4.31) and (4.33), previously introduced, in order to include the extra stabilization

term for the diffusive part of the equation. In practice, the linear scheme reads

Φe,LW
i =

Φe

N e
dof

+Υ(Pee)

∫

Ωe

a·∇ψi τ
(
a · ∇uh −∇·

(
ν∇uh

))
dΩ

+
(
1−Υ(Pee)

)∫

Ωe

ν∇ψi ·

(
∇uh − ∇̃uh

)
dΩ,

(4.41)

while the non-linear scheme becomes

Φ̂e,Rv
i = β̂e,Rv

i (uh)Φ
e(uh)

+ Υ(Pee) θ e
h(uh)

∫

Ωe

(
a·∇ψi −∇·

(
ν∇ψi

))(
a · ∇uh −∇·

(
ν∇uh

))
dΩ

+
(
1−Υ(Pee)

)∫

Ωe

ν∇ψi ·

(
∇uh − ∇̃uh

)
dΩ,

(4.42)
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where it has been introduced the local Peclet number, define as Pee = ‖a‖ he/ν,
with he the characteristic length of the element e, the function Υ(Pee) is defined

such that Υ(Pee) → 0 in the diffusive limit and Υ(Pee) → 1 in the advective limit.

In the numerical simulations the following definition is used

Υ(Pee) = max

(
0, 1− 1

Pee

)
. (4.43)

Note that in the schemes (4.41) or (4.42), the use of the blending function Υ(Pee),

makes possible to recover, in the case of the pure advection, the same scheme used

for the discretization of pure advective problems, while in the case of pure diffusion

problems only the stabilization term for the diffusive terms is taken into account.

4.3.3 Discretization of the Hyperbolic FOS

The schemes introduced for the scalar advection-diffusion problem can be easily ex-

tended to case of system of equations, see Chapter 5, meaning that the discretization

of the hyperbolic FOS is straightforward.

With respect to the original work of Nishikawa, where only strong boundary

conditions are considered, here the boundary conditions are imposed in a weak

sense as typical done for advection problems. The weak boundary conditions have

been found to be more effective than the strong boundary conditions in terms of

iterative convergence.

In numerical experiments, it has been observed that the high-order discretization

of the hyperbolic FOS converges very slowly to the steady state, making the use of

a explicit scheme almost impossible. For this reasons, when quadratic elements are

used, an implicit Euler scheme is employed in combination with the pseudo-transient

continuation strategy for which the local time step is defined as follows

∆tni =
CFLn

∑

e∈Ei
h

(
max
j∈N e

h

|knj |+ ν

) , (4.44)

with the CFL law taken as

CFLn = CFLn−1‖Rn−2‖L2

‖Rn−1‖L2

, with CFL0 < 1, (4.45)

where ‖Rn−1‖L2 and ‖Rn−2‖L2 are the L2 norms of the residual at the time steps

n − 1 and n − 2, respectively. In the simulation CFL0 is takes as 0.9 and the

maximum value of CFL is limited to 106. The implicit problem is solved by the

means of the inexact Newton-Krylov method and the GMRES algorithm with the

ILU0 preconditioner is used to solve the resulting linear systems.
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4.4 Gradient Reconstruction Strategies

As previously explained, in order to compute the total residual for the whole advection-

diffusion equation, one has to assume that a continuous value of the gradient of the

numerical solution is available on the faces of the elements. The strategy adopted in

this work to obtain a continuous approximation of gradient consists in reconstruct-

ing the gradient of the numerical solution at each degree of freedom of the grid and

then the nodal values of gradients are interpolated with Lagrangian functions on

each element.

The key point is the reconstruction of the gradient at the degrees of freedom,

for this reason here are recalled some of the most used techniques in the field of the

gradient reconstruction. Attention is focused on the possibility to obtain an high-

order gradient reconstruction, e.g., the gradient is recovered with the same order

of accuracy of the solution. For simplicity, the description is always limited to the

two-dimensional case.

4.4.1 Theory

Area-Weighted Method

One of the easiest way to reconstruct the gradient at the grid nodes is the area-weight

average of the gradients in each element surrounding a node, namely

∇̃ui =

∑

e∈Ei
h

∇uh(xi) |Ωe|

∑

e∈Ei
h

|Ωe|
, ∀i ∈ Nh, (4.46)

The previous relation, in the case of linear elements is the so-called Green-Gauss

formula.

L2-Projection

In the L2-Projection, the reconstructed gradients are obtained by solving the fol-

lowing equivalence ∇uh = ∇̃uh in a weak sense
∫

Ω

ψ∇̃uh dΩ =

∫

Ω

ψ∇uh dΩ, ∀ψ ∈ Vh. (4.47)

From a numerical point of view, the weight function ψ is taken in the finite dimen-

sional space of the Lagrangian functions. The gradient is expressed as follows

∇̃uh|e ≃
∑

j∈N e
h

ψj∇̃uj , (4.48)

where ∇̃uj is the reconstructed gradient at the generic degree of freedom j. If,

for the spatial components of the gradient, the following vectors of unknowns are
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defined

x∂ =


 ∂̃u
∂x

∣∣∣∣∣
j



j=1,Ndof

and y∂ =


 ∂̃u
∂y

∣∣∣∣∣
j




j=1,Ndof

, (4.49)

than the discrete solution of the problem (4.47) can be obtained by solving the

following linear systems

Mx∂ = bx and My∂ = by, (4.50)

with

Mij =

∫

Ωij

ψiψj dΩ, bxi
=

∫

Ωi

ψi
∂uh

∂x
dΩ, and byi =

∫

Ωi

ψi
∂uh

∂y
dΩ, (4.51)

where Ωi is the support of the shape function ψi and Ωij = Ωi ∩ Ωj . The gradient

∇uh is computed by resorting the gradient of the shape functions, as standard

practice in the FE framework.

This technique requires the solution of a global linear system that can be quite

expensive for a high number of unknowns. Obliviously, since the matrix M depends

only on the geometry of the grid, it can be inverted only once and can be used for

several calculations on the same grid.

Least-Square Method

Another approach to reconstruct the gradient at each degree of freedom of the grid

is the least-square method. The technique is unrelated to the mesh topology and

it involves only the information associated to the neighboring nodes. Although the

stencil is arbitrary, the natural choice involves only the nearest neighboring nodes.

The starting point consists in expanding the solution in a Taylor series around

the node i for each node j belonging to the stencil of i, see Figure 4.2,

uj = ui +
∂u

∂x

∣∣∣∣
i

(xj − xi) +
∂u

∂y

∣∣∣∣
i

(yj − yi)

+
∂2u

∂x2

∣∣∣∣
i

(xj − xi)
2 +

∂2u

∂y2

∣∣∣∣
i

(yj − yi)
2 +

∂2u

∂x∂y

∣∣∣∣
i

(xj − xi)(yj − yi) + . . . ,

(4.52)

where ui = u(xi) and uj = u(xj). The gradient reconstruction is obtained by solving

for the values of the gradient that minimize the following function

Ni∑

j=1

ω2
ijE

2
ij , ∀ i ∈ Nh (4.53)

with

E2
ij =

(
−∆uij +

∂u

∂x

∣∣∣∣
i

∆xij +
∂u

∂y

∣∣∣∣
i

∆yij

+
∂2u

∂x2

∣∣∣∣
i

∆x2ij +
∂2u

∂y2

∣∣∣∣
i

∆y2ij +
∂2u

∂x∂x

∣∣∣∣
i

∆xik∆yij + . . .

)2

,

(4.54)
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where ∆uij = uj −ui, ∆xij = xj −xi, ∆yij = yj − yi, while ωij is a weight factor. In

the case of linear elements, the solution is expanded only up to the first derivatives

in the Taylor series and the components of the gradient are obtained by solving the

following minimization problems for the first derivatives

∂

(
N∑

j=1

ω2
ijE

2
ij

)

∂

(
∂u

∂x

∣∣∣∣
i

) = 0 and

∂

(
N∑

j=1

ω2
ijE

2
ij

)

∂

(
∂u

∂y

∣∣∣∣
i

) = 0. (4.55)

By simple algebra, it is easy to see that the previous minimization problems corre-

spond to the solution of the following linear system




N∑

j=1

ω2
ij∆x

2
ij

N∑

j=1

ω2
ij∆xi∆yij

N∑

j=1

ω2
ij∆xij∆yij

N∑

j=1

ω2
ij∆y

2
ij







∂u

∂x

∣∣∣∣
i

∂u

∂y

∣∣∣∣
i




=




N∑

j=1

ω2
ij∆xij∆uij

N∑

j=1

ω2
ij∆yij∆uij



. (4.56)

The weight factor ωij is generally taken as the inverse of the distance between the

nodes i and j.

The extension to the case of quadratic elements is straightforward, it consists in

taking also the second derivatives in the Taylor expansion and the minimization is

done with respect to first and second derivatives.

i

(a)

i

(b)

Figure 4.2: Illustration of the stencil for least square gradient reconstruction at the node i.

The symbol (•) indicates the node around which the Taylor series expansion is

done while the symbols (◦) indicate the node used to construct the least square

problem. Left: stencil with linear elements. Right: stencil with quadratic

elements for a midpoint node.
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Super-Convergent Patch Recovery

In the field of the FE method applied to mechanical structures, it is know that the

stresses (gradients of the displacements) sampled at certain points in the element

possess a super-convergent property, thus the stresses can be computed with the

same order of accuracy of the displacements [142]. It can be shown that in the case of

a segment element, such particular points correspond to the Gauss-Legendre points

[56], obviously by tensor product such points can be defined also for quadrangles and

hexahedra. For triangles or tetrahedra such a property cannot be rigorously shown,

but numerical experiments confirm that the stresses sampled at certain points have

higher order of accuracy.

Accepting the fact that gradients are sampled with higher order accuracy in

certain points of the element, it is possible to compute gradients with good accuracy

within all the element. Indeed, if at sampling points the values of the gradient are

accurate to the order k + 1, by using a polynomial of degree k (the same order

used to interpolate the solution) it is possible to obtain an approximation which has

high order accuracy everywhere within the element, if this polynomial is made to

fit the values of the sampled gradients in a least square manner. Such a technique,

called super-convergent patch recovery, has been introduced by Zienkiewicz and Zhu

(SPR-ZZ) [140, 141].

Consider, for simplicity, a two dimensional scalar problem and assume that uh
is the piecewise continuous polynomial interpolation of the solution, with order k.

The aim is to obtain a value for the reconstructed gradient, ∇̃uh at all the degrees

of freedom, with the same order of accuracy of the solution. The components of

the recovered gradient, at the generic node i, are written in a polynomial form as

follows

∂̃uh
∂x

∣∣∣∣∣
i

= pTax and
∂̃uh
∂y

∣∣∣∣∣
i

= pTay, (4.57)

with

pT(x) = (1, x, y, x2, . . . , xk, xk−1y, . . . , yk), (4.58)

ax = (ax1 , ax2, . . . , axm) and ay = (ay1 , ay2, . . . , aym). (4.59)

Assuming that Ns sampling points, (xj , yj), j = 1 . . . Ns, are available for each grid

vertex i, the objective is to minimize the following functions

Fx =
Ns∑

k=1

(
∂uh
∂x

(xk)− pT
kax

)
and Fy =

Ns∑

k=1

(
∂uh
∂y

(xk)− pT
kay

)
, (4.60)

with pk = p(xk). The vectors of the coefficients ax and ay are obtained by solving

the following minimization problems

∂Fx

∂ax
= 0 and

∂Fy

∂ay
= 0. (4.61)
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It is easy to verify that the minimization problems correspond to the solution of the

following linear systems 1

ATAax = ATbhx, and ATAay = ATbhy , (4.62)

where

bhx =




∂uh

∂x
(x1)

∂uh

∂x
(x2)

...
∂uh

∂x
(xNs)




, bhy =




∂uh

∂y
(x1)

∂uh

∂y
(x2)

...
∂uh

∂y
(xNs)




and A =




1 x1 y1 . . . yk1

1 x2 y2 . . . yk2
...

...
...

...
...

1 xNs yNs . . . ykNs



.

(4.63)

To compute the coefficients ax and ay a small linear system must be solved

for each vertex of the grid. The dimension of the matrix A are determined by the

number of the sampling points (Ns) and by the degree of the polynomial used to

express the reconstructed gradient, that is A ∈ RNs×m, where m is the number of

the coefficients in the vectors ax and ay. The problems in the Eq. (4.62) admit an

unique solution if RankA = m, that is always satisfied in the case in which Ns ≥ m.

It is worth also noticing that, since the matrix A depends only on the geometry, for

a given grid, the matrix (ATA)−1AT needs to be computed only once.

The least-square problem is solved for each grid vertex, but not for the extra

nodes introduced by a higher approximation of the solution. For these nodes, the

gradient is reconstructed by simply evaluating at the coordinates of the nodes the

polynomial function constructed for the nearest grid vertex. For each node associ-

ated with the higher order degrees of freedom, there may be two or more equidistant

grid vertices, each of them is equally valid to evaluate the gradient. To resolve this

ambiguity, an arithmetic average of the values of gradients, evaluated using the

polynomial expansion of all the equidistant vertices, is used to uniquely define the

reconstructed gradient at the high-order nodes.

Generally, the number of elements that share the same node is such that the

condition Ns ≥ m is always satisfied, this means that the gradient reconstruction is

compact because it involves only the elements contained in the support of a grid

node. For the nodes belonging to the boundary of the domain, the condition Ns ≥ m

might not be satisfied without enlarging the stencil, otherwise the problem will be

ill conditioned. In this case, to avoid the use of larger stencils for the boundary

nodes, it is possible to obtain the value of the reconstructed gradient with the same

polynomial expansion used for the nearest domain node.

In Figure 4.3 are shown examples of patches used to reconstruct the gradient

for a domain node in the case of quadrangular and triangular elements. Note that,

although in this section the description of the SPR-ZZ technique is given only for

1The least-square problem could be solved also with a QR factorization of the matrix A.
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two dimensional elements, the extension to three dimensional elements is straight-

forward.

(a) Four nodes quadrangles (b) Three nodes triangles

(c) Nine nodes quadrangles (d) Six nodes triangles

Figure 4.3: Interior super-convergent patches for quadrilateral and triangular elements:

top linear elements, bottom quadratic elements. The symbols (◦) indicate the

patch assembly points, the symbols (•) indicate the points where the gradient

is reconstructed and the symbols (△) indicate the super-convergent sampling

points.

For a quadrangle, the sampling points are defined uniquely. Considering a ref-

erence segment defined as ξ = [−1, 1], the sampling point is the point ξ = 0 in the

case of a linear element, while in the case of a quadratic element the sampling points

have coordinate ξ = ±1/
√
3. The sampling points on the reference quadrangle are

simply obtained by tensor product of the points defined on the reference segment.

For a linear triangle, the sampling point is the point with barycentric coordinates

λ = (1/3, 1/3, 1/3), while in the case of a quadratic triangle the sampling points are

not unique; different choices are available. In Figure 4.4 are shown three examples

of sampling points used. In the first option (Figure 4.4-(a)) are used three points
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with barycentric coordinates

λ1 =

(
2

3
,
1

3
,
1

3

)
, λ2 =

(
1

3
,
2

3
,
1

3

)
, and λ3 =

(
1

3
,
1

3
,
2

3

)
. (4.64)

in the second option (Figure 4.4-(b)) are used four points with barycentric coordi-

nates

λ1 =

(
1

3
,
1

3
,
1

3

)
, λ2 = (0.6, 0.2, 0.2) ,

λ3 = (0.2, 0.6, 0.2) , λ4 = (0.2, 0.2, 0.6) .

(4.65)

Another option (Figure 4.4-(c)) consists in taking as sampling points the three points

with barycentric coordinates

λ1 =

(
1

2
,
1

2
, 0

)
, λ2 =

(
0,

1

2
,
1

2

)
, λ3 =

(
1

2
,
1

2
, 0

)
. (4.66)

(a) (b) (c)

Figure 4.4: Three different examples of sampling points for quadratic triangles.

4.4.2 Results and Discussion

To study the accuracy of the presented gradient reconstruction strategies, the fol-

lowing function is used

u = − cos(2πη) exp

(
ξ
(
1−

√
1 + 16π2ν2

)

2ν

)
, (4.67)

with η = ayx− axy and ξ = axx+ ay. Here ax = 0.5, ay =
√
3/2 and ν = 0.01. The

solution, shown in Figure 4.5, is infinitely differentiable with continuous gradient.

The computations of the reconstructed gradient are performed on four different type

of grids, shown in Figure 4.6, namely unstructured grids of triangles, quadrangles

and hybrid elements and highly distorted unstructured meshes of triangles, obtained

randomly perturbing regular grids.



Chapter 4 67

The SPR-ZZ technique is compared against the weighted-area (hereafter called

also Green-Gauss), L2-projection and least-square procedures. Note that in the

least-square method, for each node, only the direct neighboring nodes are considered,

to avoid large computational stencils.

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

Figure 4.5: Graphical representation of the Eq. (4.67) used to test the gradient reconstruc-

tion methods.

The error of the reconstruction procedure is computed as the L2 norm of the

difference between the computed gradient, ∇̃uh, and the exact gradient, ∇uex, for

each spatial component

ǫL2 =

√√√√√√√

∫

Ω

(
∇̃uh −∇uex

)2
dΩ

∫

Ω

(
∇uex

)2
dΩ

. (4.68)

In Figure 4.7 are shown the L2 errors of different gradient reconstruction methods

with triangular grids. In the case of linear elements, the differences between the

reconstruction procedures are small and all the schemes reach almost the second

order accuracy. The L2-Projection and the SPR-ZZ methods have the smallest level

of error, but the former scheme is more expensive because it requires the solution

of a global (large) linear system. In the case of quadratic elements, the methods

have an order of accuracy no more than two, except for the SPR-ZZ method which

is third order accurate. It is also worth noticing that the errors obtained with the

SPR-ZZ method are one order of magnitude smaller than those obtained with other

methods. In Figure 4.8 are reported the errors obtained with the SPR-ZZ procedure

on quadratic triangular elements, for the three different sampling strategies shown

in Figure 4.4. It is evident that the first strategy guaranties the smallest level of

error, while the four-points strategy does not introduce any improvement. The first

strategy has been used to produce the results of Figure 4.7, for the SPR-ZZ method.
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Figure 4.6: Example of different type of grid used to test the accuracy of the gradient

reconstruction procedures.

The errors of the reconstruction methods on unstructured grids of quadrangles

and of hybrid elements are reported in Figure 4.9 and Figure 4.10, respectively.

The behavior of the reconstruction methods is the same observed in the case of

triangular grids. Figure 4.11 shows the errors computed on a sequence of highly

distorted triangular grids, the performance of the reconstruction methods is not

optimal anymore due to very poor quality of the meshes, nevertheless the errors

obtained with the SPR-ZZ methods are always much smaller than those obtained

with other procedures.

4.5 Numerical Experiments

This section presents an extensive evaluation of the numerical schemes proposed.

The objective is to show that

i) high-order RD schemes previously proposed can be successfully used in the
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Figure 4.7: L2 errors of different gradient reconstruction methods with linear (◦) and

quadratic (△) elements on unstructured grids of triangles. Solid and dashed

lines represent the error of the x and y components of the gradient, respectively.

From left to right: Weighted area, L2-Projection, Least Square and SPR-ZZ

methods. The mean slopes of curves are also reported and h = 1/
√
Ndof
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Figure 4.8: L2 errors of the SPR-ZZ method for quadratic triangular elements with differ-

ent sampling strategies: (△) strategy Figure 4.4-(a), (◦) strategy Figure 4.4-

(b) and (�) strategy Figure 4.4-(c). On the left errors for the x component

of the gradient, on the right errors for the y component of the gradient and

h = 1/
√
Ndof .

.

discretization of advection-diffusion problems,

ii) high-order accuracy is preserved in the whole range of the Peclet number.

The last requirement could not by satisfied by the method proposed in [5] for which

the theoretical accuracy was spoiled in the region Pe ≈ 1
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Figure 4.9: L2 errors of different gradient reconstruction methods with linear (◦) and

quadratic (△) elements on unstructured grids of quadrangles. Solid and

dashed lines represent the error of the x and y components of the gradi-

ent, respectively. From left to right: Weighted area, L2-Projection, Least

Square and SPR-ZZ methods. The mean slopes of curves are also reported

and h = 1/
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Ndof
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Figure 4.10: L2 errors of different gradient reconstruction methods with linear (◦) and

quadratic (△) elements on hybrids grids. Solid and dashed lines represent

the error of the x and y components of the gradient, respectively. From left

to right: Weighted area, L2-Projection, Least square and SPR-ZZ methods.

The mean slopes of curves are also reported also and h = 1/
√
Ndof

Here, the steady state is considered to be reached when the L2 norm of the

initial residual is reduced by ten orders of magnitude. If the residual of the scheme

stagnates at a higher level, it is marked that the simulation did not converged.

The CFL number is taken as 0.9 and 0.6, respectively for the second and third order

schemes. The same type of grids shown in Figure 4.6 are considered in the numerical

simulations. In all the simulations the following definition of the L2 norm of the
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Figure 4.11: L2 errors of different gradient reconstruction methods with linear (◦) and

quadratic (△) elements on an unstructured grids of randomly distorted trian-

gles. Solid and dashed lines represent the error of the x and y components of

the gradient, respectively. From left to right: Weighted area, L2-Projection,

Least Square and SPR-ZZ methods. The mean slopes of curves are also

reported and h = 1/
√
Ndof

error is used

ǫL2 =

√√√√√√√

∫

Ω

(
uh − uex

)2
dΩ

∫

Ω

uex
2 dΩ

. (4.69)

4.5.1 Linear Advection-Diffusion Equation

To check the order of accuracy of the linear and non-linear schemes, as well as to

study the influence of different gradient reconstruction methods on the accuracy of

the numerical solution, the linear advection-diffusion problem with constant viscos-

ity is considered here; namely a·∇u = ν∆u on Ω = [0, 1]2, with boundary conditions

such that the exact solution of the problem is given by

u = − cos(2πη) exp

(
ξ
(
1−

√
1 + 16π2ν2

)

2ν

)
, (4.70)

with η = ayx − axy and ξ = axx + ayy. Here a = (0, 1)T and ν = 0.01, which is

the most critical case because the advection and the diffusion have similar orders

of magnitude and traditional high-order RD schemes generally loose an order of

accuracy in this regime. On the left, right and bottom boundaries of the domain

the exact solution is imposed as Dirichlet boundary condition while on the top

boundary nothing is done. The solution is initialized with a zero value everywhere

in the domain except on the inflow boundaries where the exact solution is imposed.
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In Figure 4.12 and Figure 4.13 are reported the L2 norms of the errors of the

numerical solution obtained on a sequence of triangular grids with the linear scheme

(4.41) and the non-linear one (4.42), for different gradient reconstruction strategies;

linear and quadratic elements are considered. For sake of completeness, the errors

of the solution are shown together with the errors of the gradients of the numerical

solution. In the case of linear elements, the accuracy of the schemes with different

gradient reconstruction methods is almost identical, for both linear and non-linear

schemes. This is in accordance with the accuracy results observed for the different

gradient reconstruction techniques and it underlines also the fact that the high cost

of the L2-projection method is not justified, since less expensive methods produce

results with the same level of accuracy.

The situation is very different in the case of quadratic elements; the weighted

area and the L2-Projection gradient reconstruction methods produce sub-optimal

schemes with second order only accurate solutions for both linear and non-linear

schemes. The use of the SPR-ZZ method allows the construction of an optimal

third order accurate scheme and it is worth noticing that also the x-component of

the gradient of the numerical solutions is third order accurate, meaning that solution

and gradients are computed with the same order of accuracy. On the y-component

of the gradient this optimal behavior is lost, and this due to the combined effects of

the gradient reconstruction with the solution error on the outflow boundary, where

no boundary condition is imposed. An optimal accuracy on both the components

of the gradient has been observed in numerical simulations of the linear advection-

diffusion problems with Dirichlet boundary conditions imposed on all the boundaries

of the domain.

It is worth noticing that the combination of the non-linear scheme with the

least square gradient reconstruction technique produces an almost optimal scheme

although the least square reconstruction does not allow a high-order gradient recon-

struction by itself.

In Figure 4.14 are reported the errors of the solution and of gradient compo-

nents obtained for the discretization of the linear advection-diffusion problem on

a sequence of unstructured grids of quadrangles with the linear and the non-linear

schemes. For simplicity, only the weighted area and the SPR-ZZ reconstruction

strategies are used. As previously observed, with linear elements there is no sig-

nificant difference in the level of accuracy between different gradient reconstruction

techniques, however with quadratic elements only the SPR-ZZ gradient reconstruc-

tion guarantees third order accurate solutions. Of course, the same considerations

done for triangular and quadrangular grids are still valid with grids with hybrid

elements, as it is evident from Figure 4.15.

In Figure 4.16 are reported the errors obtained on a sequence of highly distorted

triangular grids. The behavior of the schemes is similar to that observed with more

regular meshes, in particular it is important to note that the poor quality of the

grids has only a limited influence on the overall accuracy of the scheme.

In order to highlight the effectiveness of higher order schemes over the second
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Figure 4.12: L2 errors for the solution of the linear advection-diffusion problem on tri-

angular girds with linear elements. Errors of the solution (first column),

errors of the x-component of the gradient (second column) errors of the y-

component of the gradient (third column). Linear scheme (upper), non-linear

scheme (lower). In the legends are reported also the mean slopes of curves

and h = 1/
√
Ndof .
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Figure 4.13: L2 errors for the solution of the linear advection-diffusion problem on trian-

gular girds with quadratic elements. Errors of the solution (first column),

errors of the x-component of the gradient (second column) errors of the y-

component of the gradient (third column). Linear scheme (upper), non-linear

scheme (lower). In the legends are reported also the mean slopes of curves

and h = 1/
√
Ndof .
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Figure 4.14: L2 errors for the solution of the linear advection-diffusion problem on quad-

rangular girds with linear (dashed lines) and quadratic (solid lines) elements.

Errors of the solution (first column), errors of the x-component of the gradient

(second column) errors of the y-component of the gradient (third column).

Linear scheme (upper), non-linear scheme (lower). In the legends are reported

also the mean slopes of curves and h = 1/
√
Ndof .
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Figure 4.15: L2 errors for the solution of the linear advection-diffusion problem on hybrid

girds with linear (dashed lines) and quadratic (solid lines) elements. Errors of

the solution (first column), errors of the x-component of the gradient (second

column) errors of the y-component of the gradient (third column). Linear

scheme (upper), non-linear scheme (lower). In the legends are reported also

the mean slopes of curves and h = 1/
√
Ndof .
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Figure 4.16: L2 errors for the solution of the linear advection-diffusion problem on highly

distorted triangular girds with linear (dashed lines) and quadratic (solid lines)

elements. Errors of the solution (first column), errors of the x-component of

the gradient (second column) errors of the y-component of the gradient (third

column). Linear scheme (upper), non-linear scheme (lower). In the legends

are reported also the mean slopes of curves and h = 1/
√
Ndof .
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Figure 4.17: L2 errors for the solution of the linear advection-diffusion problem, on trian-

gular grids, versus the number of degrees of freedom and the CPU time in

seconds.

order ones, in Figure 4.17 the discretization errors of the solution are reported as

function of the number of degrees of freedom and the CPU time; for brevity only

results for the linear scheme on triangular grids are shown. One can see that to get

a fixed level of error, 10−5 for example, an actual third order scheme requires about

12 000 degrees of freedom and 25 minutes to perform the computation. A second

order scheme, on the other hand, requires about 31 000 degrees of freedom and 5

hours to get the same level of error.

The effect of the filtering term for the viscous part only is now investigate, i.e.

the linear scheme (4.41) is compared against the scheme (4.31) and the non-linear

scheme (4.42) is compared against the scheme (4.33). The comparison is done in

term of solution accuracy and number of iterations necessary to reach the steady

state; results are reported in Table 4.1 for the linear and non-linear schemes, with

the SPR-ZZ reconstruction strategy. It can be observed that in the case of linear

elements there is no appreciable difference in term of error between the schemes

with and without the stabilization term for the viscous part, however the use of

the extra stabilization term makes the linear scheme converge much faster to the

steady state. The effect becomes even more important for the non-linear scheme,

for which it is observed that the absence of the extra dumping term prevents the

scheme to converge in several cases. For the quadratic elements, the presence of the

extra dumping term has two effects, it improves the convergence of the numerical

methods and it introduces a crucial improvement in the level of accuracy, for both

linear and non-linear schemes.

For sake of completeness, the linear advection-diffusion problem is also solved

with a very small viscosity coefficient, ν = 10−6, in order to verify that the numerical

schemes are able to preserve the theoretical accuracy in the advection limit. The
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Linear elements Quadratic elements

Ndof ǫ
L2(uh) Ite ǫ

L2(uh) Ite Ndof ǫ
L2(uh) Ite ǫ

L2 (uh) Ite

improved standard improved standard

Linear scheme

43 1.2639 10−1 454 1.1945 10−1 465 149 1.1247 10−2 3148 1.4256 10−2 4443

121 3.3130 10−2 538 3.1174 10−2 726 445 1.8777 10−3 2507 3.1427 10−3 7065

445 8.2461 10−3 532 8.8271 10−3 1456 1705 1.9648 10−4 2566 9.3957 10−3 7125

1705 2.3337 10−3 1319 2.5600 10−3 2877 6673 2.3797 10−5 7029 not converged −

6673 5.8201 10−4 4428 8.1456 10−4 6310 26401 3.5754 10−6 23431 not converged −

Non-linear scheme

43 3.0257 10−1 474 2.9418 10−1 529 149 1.3349 10−2 4747 1.4830 10−2 5566

121 7.2141 10−2 686 6.7668 10−2 992 445 1.8975 10−3 4544 6.5685 10−3 11414

445 1.8068 10−2 835 1.7301 10−2 2003 1705 2.2616 10−4 3991 8.8542 10−4 9935

1705 4.4622 10−3 1791 not converged − 6673 2.9410 10−5 5075 1.0561 10−3 31636

6673 1.0974 10−3 4897 not converged − 26401 4.6791 10−6 42370 not converged −

Table 4.1: L2 errors and orders of accuracy for the solution of the linear advection-diffusion

problem on triangular girds with the linear and non-linear schemes, for different

gradient reconstruction strategies, and with linear and quadratic elements. The

standard and improved identification stands for the basic and the modified

scheme with the additional filtering term for the viscous part, respectively.

errors, obtained on a sequence of triangular grids, are reported in Figure 4.18 for the

linear and the non-linear schemes. As expected, the theoretical order of accuracy

is reached independently on the gradient reconstruction method used, because the

diffusive effects are negligible in this regime. Nevertheless, the level of accuracy of

the gradients obtained with the SPR-ZZ technique is hgher.

Discretization with the Hyperbolic FOS

The linear advection-diffusion problem is now discretized by the means of the hy-

perbolic Fist Order System scheme described in Section 4.3.3. The objective is to

compare the accuracy and the performance of this formulation with the scalar dis-

cretization method. The linear scheme is used to discretize the hyperbolic FOS and

the scalar equation. In the latter case the SPR-ZZ gradient reconstruction strategy

is used. A sequence of triangular grids is considered, with linear and quadratic ele-

ments, and the viscosity coefficient ν is takes as 0.01. In Figure 4.19 are shown the

errors on the solution and the x-component of the gradient, together with the CPU

time (in seconds), needed to reach the steady state.

With linear elements, there is only a small difference in the errors discretization

between the scalar and the FOS formulation, however in terms of CPU time, it is

evident that the scalar scheme is much more effective than the FOS formulation.
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Figure 4.18: L2 errors for the solution of the linear advection-diffusion problem, with ν =

10−6, on triangular girds with linear (dashed lines) and quadratic (solid lines)

elements. Errors of the solution (first column), errors of the x-component of

the gradient (second column) errors of the y-component of the gradient (third

column). Linear scheme (upper), non-linear scheme (lower). In the legends

are reported also the mean slopes of curves and h = 1/
√
Ndof . Note that the

error of the y-component of the gradient is not normalized in this case, due

to the very small value of the exact expression.

The slope of the curve CPU time–error for the scalar scheme is in accordance with

the analysis reported in [83] for which, in two spatial dimensions, ǫ = O(CPU−p/4),

where ǫ is some norm of the solution error, CPU is the total CPU time and p

is the order of convergence of the numerical scheme. For the FOS scheme, using

an explicit method, the theoretical CPU time–error curve is ǫ = O(CPU−p/3), in

2D. The correct slope −2/3 can be observed in Figure 4.19 for the FOS scheme
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with linear elements, while, since an implicit method has been used with quadratic

elements, the previous estimations cannot be applied. In particular, a slope −0.85

has been obtained for the implicit third-order simulation with the FOS scheme.

With quadratic elements, the accuracy of the solution obtained using the FOS

scheme is slightly better than that obtained with the scalar scheme, but the situation

is completely different if one looks at the accuracy of the gradient. As already

pointed out in [83], the discretization of the hyperbolic FOS with RD schemes does

not allow to recover the gradients with the same accuracy of the solution, unless the

mesh is regular. It can be noticed how the use of the SPR-ZZ strategy allows to

obtain a third order accurate gradient while the FOS scheme gives only second order

accuracy. The last remark concerns the CPU time. An implicit Euler method has

been used for the FOS scheme and an explicit Euler method has been used for the

scalar scheme; the scalar scheme is still much more effective than the FOS scheme.

Note that in the advection limit the smallest eigenvalue of the hyperbolic FOS

vanishes, this means that two of the three eigenvalues are zero and the problem

becomes ill conditioned. It has been observed here that the FOS scheme is not able

to converge for the linear advection-diffusion problem with the viscous coefficient ν

taken as 10−6.

4.5.2 Viscous Burger Equation

The viscous Burger equation is now considered in order to test the accuracy of the

numerical schemes with a non-linear problem. The governing equation reads

∂

∂x

(
u2

2

)
+
∂u

∂y
= ν

∂2u

∂x2
, on Ω = [0, 1]2, (4.71)

the problem admits the following exact solution

u =
2νπ exp(−νyπ2) sin(πx)

a+ exp(−νyπ2) cos(πx)
, with a > 1. (4.72)

Note that the exact solution of the steady two-dimensional problem is obtained from

the unsteady one-dimensional problem, in which the time coordinate is substituted

by the y coordinate. In the simulations, the parameter a is taken as 1.5 and the

viscosity coefficient ν is taken as 0.05. On the bottom, left and right boundaries

the exact solution is imposed as Dirichlet boundary condition. The solution is

initialized with a zero value everywhere, except on the inflows boundaries where the

exact solution is imposed.

A sequence of unstructured triangular grids is considered, the weighted area and

the SPR-ZZ gradient reconstruction methods are used. The errors for the solution

are reported in Figure 4.20 together with the errors for the gradients components.

With linear elements, the level of accuracy of the schemes is almost identical, while

with quadratic elements the situation is very different. The use of the weighted area
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Figure 4.19: L2 errors for the solution of the linear advection problem with ν = 0.01

on triangular girds, with the scalar and FOS solver. Errors of the solution

(first column), and of the x-component of the gradient (second column) as

function of the number of DofS. Error of the solution as function of the CPU

time in seconds (third column). Linear elements (upper), quadratic elements

(lower). In the legends are reported also the mean slopes of the curves and

h = 1/
√
Ndof .
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gradient reconstruction has a disastrous effect on the accuracy of the solution, indeed

the theoretical third order scheme has the same level of accuracy of the second order

scheme. On the other had, the use of the SPR-ZZ reconstruction method allows to

construct an optimal third order scheme and also the accuracy of the gradient is

noticeably improved.

4.5.3 Anisotropic Diffusion Problem

A two-dimensional diffusion problem is now addressed, the viscosity is not considered

to be a scalar anymore but an anisotropic tensor. The aim of this test case is to

study the accuracy of the proposed RD schemes with a pure diffusion problem, and

the anisotropy of the viscous tensor is introduced to test also the robustness of the

numerical scheme.

The diffusion problem is formulated as follows

−∇·
(
K∇u

)
= 0, on Ω = [0, 1]2, (4.73)

with

K =

(
1 0

0 δ

)
, (4.74)

the problem has the following exact solution u = sin(2πx) e−2πy
√

1/δ ; in the numer-

ical simulations δ is takes as 103.

A sequence on unstructured triangular grids is considered, the scalar schemes

with the weighted area and SPR-ZZ gradient reconstruction strategies are consid-

ered. In Figure 4.21 are reported the errors of the solution and of the gradients

for linear and quadratic elements. As usual, the second order schemes have the

same level of accuracy independently on the gradient reconstruction method used,

but with quadratic elements only the use of the SPR-ZZ method allows to get a

third order accuracy on the solution as well as on the gradient. It is interesting to

note that the accuracy of the non-linear scheme is severely spoiled by the use of the

simple weighted area method with quadratic elements.

In the end, the anisotropic viscous problem is solved on a uniform, structured

mesh of quadrangles, results are shown in Figure 4.22 and indicated that the the-

oretical accuracy of the schemes is achieved independently on the gradient recon-

struction technique used, although the accuracy of the gradient is always better

with the SPR-ZZ method. This remark is important because for advection-diffusion

problems, even with the use of uniform structured grids, the formal accuracy of the

scheme is not preserved, unless the gradients are recovered with high order accuracy.
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Figure 4.20: L2 errors for the solution of the viscous Burger problem on triangular girds

with linear (dashed lines) and quadratic (solid lines) elements. Errors of the

solution (first column), errors of the x-component of the gradient (second

column) errors of the y-component of the gradient (third column). Linear

scheme (upper), non-linear scheme (lower). In the legends are reported also

the mean slopes of the curves and h = 1/
√
Ndof .
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Figure 4.21: L2 error in the solution of the anisotropic diffusion problem on triangular

girds with linear (dashed lines) and quadratic (solid lines) elements. Error of

the solution (first column), error of the x-component of the gradient (second

column) error of the y-component of the gradient (third column). Linear

scheme (upper), non-linear scheme (lower). In the legends are reported also

the mean slopes of the curves and h = 1/
√
Ndof .

4.5.4 Linear Advection-Diffusion Equation with Discontinuous Solution

To check the capacity of the numerical scheme to get oscillations-free discontinuous

solutions, the following advection-diffusion problem is considered

a·∇u = ν∆u, on Ω = [0, 1]2 (4.75)
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Figure 4.22: L2 error in the solution of the anisotropic diffusion problem, with the linear

scheme, on uniform structured grids of quadrangles, with linear (dashed lines)

and quadratic (solid lines) elements. Error of the solution (first column), error

of the x-component of the gradient (second column) error of the y-component

of the gradient (third column). In the legends are reported also the mean

slopes of the curves and h = 1/
√
Ndof .

with a = (1/2,
√
3/2)T, ν = 10−3 and with the following boundary conditions on

the inflow boundaries

u =





1, on {y = 0, 0 ≤ x ≤ 1},
1, on {x = 0, y ≤ 1/5},
0, elsewhere.

(4.76)

In Figure 4.23 are reported the approximated solutions obtained on an unstruc-

tured grid of 3 264 triangles, with the SPR-ZZ method for the gradient reconstruc-

tion. Note that the linear scheme produces spurious oscillations near the discontinu-

ity, which are reduced using quadratic elements, but never disappear. The non-linear

scheme, on the other hand, gives smooth solutions for both linear and quadratic ele-

ments. This can be better observed in Figure 4.24, where the profiles of the solutions

along x = 0.05 are reported.
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Figure 4.23: Solutions of the advection-diffusion problem with discontinuous boundary

conditions. Top row: solutions with the liner scheme, bottom row: solution

with the non-linear scheme. Left column: linear elements, right column:

quadratic elements.
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Figure 4.24: Profiles at x = 0.05 of the solutions of the advection-diffusion problem with

discontinuous boundary conditions with the linear and the non-linear scheme.

Left: linear elements, right: quadratic elements.





Part II

Systems of Conservation Laws





Chapter 5

RD Discretization of Systems of Equations

In this chapter the RD method developed for scalar advection-diffusion problems is

now extended to the case of systems of conservation laws, with particular focus on

the Navier-Stokes equations, although some problems with the Euler equations are

considered as well, for sake of completeness.

After the introduction of the governing equations, the numerical method for their

discretization is presented. Given the numerical method described in Chapter 4 for

scalar equations, the extension to systems of equations is almost straightforward

and does not introduce any new aspect for the spatial discretization. However, in

addition to the scalar formulation, here is described with more details the way used

to impose the boundary conditions and also how to treat high order representation of

the boundaries. Furthermore, an implicit solver based on the matrix-free approach

is adopted in order to accelerate the convergence of the solution to the steady state.

5.1 Governing Equations

The mathematical model considered in this work describe the dynamics of the com-

pressible flows with the proper initial and boundary conditions. In the particular

case in which the viscous and thermal effects are neglected, the governing equa-

tions are denoted as Euler equations, while in the more general case the governing

equations are denoted as Navier-Stokes equations.

5.1.1 Euler Equations

In the general case of three spatial dimensions, the dynamic of a compressible flow,

for which the viscous and thermal effect are neglected, is governed by the following
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set of non-linear equations written in conservative form




∂ρ

∂t
+∇·m = 0

∂m

∂t
+∇·

(m⊗m

ρ
+ P I

)
= 0

∂Et

∂t
+∇·

((
Et + P

)m
ρ

)
= 0

(5.1)

where ρ is the density, P is the pressure, I ∈ R3 is the identity matrix, the momentum

vectorm = ρv, with v the velocity vector, and Et is the total energy per unit volume

defined as

Et = ρe +
‖m‖2
2

= ρet, (5.2)

with e the specific (i.e, per unit mass) internal energy and et the specific total energy.

The system (5.1) must be completed with thermodynamic relations for the vari-

ables P and e, In the case of the polytropic ideal gas, the following equations of

state can be written

e(T ) =
RT
γ − 1

and P (T, ρ) = RTρ (5.3)

where T is the temperature, γ = cp/cv is the specific heat ratio, and R is the gas

constant. For typical aerodynamic applications γ = 1.4. By combining the relations

in (5.3), one obtains the pressure as function of the specific variables e and ρ

P (e, ρ) = (γ − 1)ρe. (5.4)

Since in the Euler equations the actual unknown is the total energy per unit volume

(Et) and not the specif energy (e), it is convenient to rewrite the previous relation

as

P = P (Et, ρ) = (γ − 1)

(
Et − ‖m‖2

2

)
, (5.5)

where with a slight abuse of notation the same symbol has been used to indicate

the pressure as function of the ρ and e and as function of the conservative variables.

It is common practice to introduce the vector u of the conservative variables and

the advective flux function f
a(u)

u =




ρ

m

Et


 and f

a(u) =




m

m⊗m

ρ
+ P I

(
Et + P

)m
ρ



, (5.6)

such that the system (5.1) can be recasted in the following vector form

∂u

∂t
+∇· f

a(u) = 0. (5.7)
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5.1.2 Navier-Stokes Equations

The complete set of equations includes the description of viscous effects, as well as

heat conduction phenomena. The system of equations in conservative form, in the

general case of three spatial dimensions reads





∂ρ

∂t
+∇·m = 0

∂m

∂t
+∇·

(m⊗m

ρ
+ P I

)
= ∇· S

∂Et

∂t
+∇·

((
Et + P

)m
ρ

)
= ∇·

(
S ·

m

ρ
− q

)
(5.8)

where S is the viscous stress tensor and q is the heat flux vector.

The viscous stress tensor for a Newtonian fluid is: S = 2µD + λ(∇· v)I, with

D = 1
2
(∇Tv+∇v) the symmetric tensor deformation, and µ the viscosity coefficient.

Using the Stokes hypothesis, the coefficient λ can be related to µ by the relation

λ+
2

3
µ = 0 and the stress tensor reads

S = −2

3
µ(∇· v)I+ µ(∇Tv +∇v). (5.9)

The heat flux, using the Fourier law, can be written as q = −κ∇T , where the

thermal conductivity (κ) is evaluated using the constant Prandtl number hypothesis

κ = cp
µ

Pr
, (5.10)

with cp the specific heat at constant pressure and Pr the Prandtl number. Typically,

Pr = 0.72.

In the simplest case, the viscosity coefficient (µ) is considered constant, however,

for a more realistic modeling, the viscosity coefficients depends on the thermody-

namics conditions as well as the type of fluid. For fluids at moderate temperature(
100 [K] ≤ T ≤ 2000 [K]

)
, the viscosity coefficient can be assumed to be function

of the temperature only, and the following equation can be used

µ = µ0 µ̃(T, T0) = µ0

(
T

T0

) 2
3 T0 + Cs

T + Cs
, (5.11)

know as Sutherland’s law, in which the temperature is in Kelvin degrees as well as

the Sutherland’s constant Cs = 110.4 [K]. The values of µ0 and T0 can be arbitrarily

chosen provided that

µ
T + Cs

T
2
3

= µ0
T0 + Cs

T
2
3
0

= 1.458× 10−6. (5.12)
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By introducing the viscous flux function f
v(u,∇u)

f
v(u,∇u) =




0

S

S ·
m

ρ
+ κ∇T


 , (5.13)

the Navier-Stokes system of equations can be recasted in the following vector form

∂u

∂t
+∇· f

a(u) = ∇· f
v(u,∇u) (5.14)

It is well know that the viscous flux function is homogeneous with the respect to

the gradient of the conservative variables, namely

f
v(u,∇u) = K(u)∇u, (5.15)

where the tensor K(u) ∈ Rm×d×m×d, with m the number of the equations and d the

number of the spatial dimensions, is defined as

Kijrs(u) =
∂f v

ij(u,∇u)

∂

(
∂ur
∂xs

) (5.16)

with i, r = 1, . . . , m and j, s = 1, . . . , d. The expression of the tensor K is reported

in Appendix A.

5.1.3 Dimensionless Form of the Equations

From a numerical point of view it is always preferable to work with dimensionless

equations. The non-denationalization process simply consists in applying a change

of variable so that a generic dimensional quantity w is made non-dimensional by

defining

w = w̃wr, (5.17)

where wr is a dimensional reference quantity. If one introduces the reference length

lr and the reference velocity vr, it is possible to define the dimensionless time and

the dimensionless spatial coordinates as follows

t̃ =
t

lr/vr
, x̃ =

x

lr
, ỹ =

y

lr
, z̃ =

z

lr
, (5.18)

the dimensionless temporal and spatial differential operators are related to the re-

spective dimensional operators by the following relations

∂

∂t
=
vr
lr

∂

∂t̃
, ∇ =

1

lr
∇̃. (5.19)
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If the dimensionless version of the following variables is introduced

ρ̃ =
ρ

ρr
, ṽ =

v

vr
, ẽt =

et

etr
, P̃ =

P

Pr
,

T̃ =
T

Tr
, κ̃ =

κ

κr
, c̃p =

cp
cpr
, µ̃ =

µ

µr
,

(5.20)

after easy simplifications, the non-dimensional Navier-Stokes equations read





∂ρ̃

∂t̃
+ ∇̃·m̃ = 0

∂m̃

∂t̃
+ ∇̃·

(
m̃⊗ m̃

ρ̃
+

[
Pr

ρrv2r

]
P̃ I

)
=

1

Rer
∇̃·S̃

∂Ẽt

∂t̃
+ ∇̃·

((
Ẽt +

[
Pr

ρretr

]
P̃

)
m̃

ρ̃

)
=

1

Rer
∇̃·

([
v2r
etr

]
S̃ ·

m̃

ρ̃
+

1

Prr

[
cprTr
etr

]
κ̃∇̃T̃

)

(5.21)

where

Rer =
ρrvrlr
µr

and Prr =
µrcpr
κr

, (5.22)

are the reference Reynolds number and the reference Prandtl number, respectively.

The guiding principle of non-dimensionalization imposes that the dimensionless

system of equations recovers exactly the same formal structure as its dimensional

counterpart. For this to happen, in the system (5.21), all terms in the square

brackets must amount to unity, as well as the reference Reynolds number and the

reference Prandtl number, so that the reference values must satisfy the following

conditions
Pr

ρrv2r
= 1,

v2r
etr

= 1,
ρrvrlr
µr

= 1 and
µrcpr
κr

= 1. (5.23)

The non-dimensional thermodynamic relations are obtained in the same way showed

for the Navier-Stokes equations. Namely, the relations (5.3) can be put in dimen-

sionless form as follows

PrP̃ = ρrρ̃RrR̃TrT̃ ⇒
[

Pr

RrTrρr

]
P̃ = R̃T̃ ρ̃,

erẽ =
RrR̃TrT̃

γ − 1
⇒

[
er

RrTr

]
ẽ =

R̃T̃
γ − 1

.

By imposing that the terms in the square brackets are equal to unity, the dimen-

sionless thermodynamic relations are equal to their dimensional counterpart if the

following conditions are satisfied

Rr =
Pr

Trρr
and er =

Pr

ρr
. (5.24)
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Furthermore, since the following thermodynamic relation holds

R = (γ − 1)cv =
γ − 1

γ
cp, (5.25)

where cv is the specific heat at constant volume, it is easy to see that the following

condition must be also satisfied

cpr = cvr = Rr. (5.26)

In order to define a complete non-dimensionalization of the equations, it is nec-

essary to choose four independent reference quantities and the remaining quantities

are obtained as function of the fundamental ones by using the conditions (5.23 –

5.26). Any set of four independent reference quantities can be used to make the

equations dimensionless, but obviously some sets of variables are more practical

than others. For external aerodynamic problems the following set of variables is

generally used

(lr, ρr, vr, Tr), (5.27)

and by using the conditions (5.23 – 5.26) the remaining reference quantities read

Pr = ρrv
2
r , etr = v2r , µr = ρrvrlr, Rr =

v2r
Tr
, κr =

ρrv
3
r lr
Tr

. (5.28)

The choice of the values of the fundamental reference quantities is mainly matter

of convenience and depends on the applications considered. A typical choice for ex-

ternal aerodynamic problems consists in taking as reference quantities the variables

at the infinity





lr = l some length: chord, mean aerodynamic chord, . . .

ρr = ρ∞ upstream infinity static density,

vr = c∞ upstream infinity speed of sound,

Tr = T∞ upstream infinity static temperature.

(5.29)

According to the previous choice of the reference quantities, the dimensionless

thermodynamic quantities now write as follows

R̃ =
R
Rr

= RT∞
c2∞

= R T∞
γRT∞

=
1

γ
, (5.30)

c̃v =
cv
cvr

=
R

(γ − 1)Rr

,=
1

γ(γ − 1)
, (5.31)

c̃p =
cp
cpr

=
γR

(γ − 1)Rr
=

1

γ − 1
, (5.32)
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and the dimensionless variables at infinity now read

P̃∞ =
P∞

Pr

=
P∞

ρ∞c2∞
=

1

γ
, ρ̃∞ =

ρ∞
ρr

= 1,

ẽ∞ =
P̃∞

ρ̃∞(γ − 1)
=

1

γ(γ − 1)
, c̃∞ =

c∞
cr

= 1,

ṽ∞ =
v∞

vr
=

v∞

c∞
=M∞v̂∞, T̃∞ =

T∞
Tr

= 1,

(5.33)

where v̂∞ is the unit length vector directed along the velocity vector.

The dimensionless dynamic viscosity can be written as

µ̃ =
µ

µr

=
1

lρ∞c∞
µ0

(
T

T0

) 2
3 T0 + Cs

T + Cs

, (5.34)

taking µ0 = µ∞ and therefore T0 = T∞ in the Sutherland law, is possible to rewrite

the previous expression as

µ̃ =
µ∞

lρ∞c∞

(
T

T∞

) 2
3 T∞ + Cs

T + Cs

=
µ∞

lρ∞v∞

v∞
c∞

1 + C̃s

T̃ + Cs

T̃
2
3

=
M∞

Re∞

1 + C̃s

T̃ + C̃s

T̃
2
3 ,

(5.35)

where M∞ and Re∞ are, respectively, the Mach number and the Reynolds number

computed with quantities at the infinity, while C̃s = Cs/T∞.

The non-dimensional thermal conductivity can be expressed as

κ̃ =
κ

κr
= κ

T∞
lρ∞c3∞

=
κ

lρ∞c∞Rr

=
κ

lρ∞v∞Rr
M∞ =

µ

lρ∞v∞
M∞

κcp
µ(γ − 1)

=
µ̃

(γ − 1)Pr

(5.36)

where the Prandtl number is defined as Pr =
µcp
κ

.

Obviously the dimensionalization procedure for the Euler equations is the same

showed for the Navier-Stokes equation without considering the viscous and the ther-

mal terms.

5.2 RD Spatial Discretization of System of Equations

Given the RD space discretization for the scalar equation, as seen in Chapters 3

and 4, the extension to the system of equations is almost straightforward; the key
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elements for the RD discretization remain the same. In this section the linear and

non-linear central schemes are extended to the discretization of the Euler and the

Navier-Stokes equations.

As seen in the scalar case, the starting point for the RD space discretization

is the approximation of the continuous solution, in particular each component of

the vector of the conservative variables is expanded with Lagrangian functions. In

vector form one gets

uh(x) =
∑

i∈Nh

ψi(x) ui, (5.37)

where uh is the approximation of the vector of the conservative variables, Nh is as

usual the set of all the degrees of freedom of the grid, ψi(x) are the same basis

functions used for the scalar case and ui is the vector of the conservative variables

at the degree of freedom i.

5.2.1 Discretization of the Euler Equations

In case of purely advective problems, i.e., Euler equations, the total residual is

computed as follows

Φe
(
uh
)
=

∫

Ωe

∇· f
a(uh) dΩ =

∮

∂Ωe

f
a(uh) · n̂ d∂Ω, (5.38)

where Φe is now a vector whose components are the total residual of each compo-

nent of the system. Once computed the total residual, the next step consists in

distributing the residual to each degree of freedom of the element.

Multidimensional upwind RD schemes are based on the matrix formulation, for

example the N and the LDA schemes.In these schemes the scalar formulation is

extended to the system by introducing the matrix counterpart of the parameter

(3.36) defined for scalar problems, namely

Ke
j =

Ā · ne
j

2|Ωe|
, (5.39)

whereA = ∇uf
a is the Jacobian matrix of the Euler flux function. Another approach

makes use of central schemes, which are the ones used in this work.

Linear Scheme

The vector formulation of the linear scheme introduced for the scalar advection

scalar equation reads

Φe,LW
i =

Φe

N e
dof

+

∫

Ωe

A · ∇ψi ΞA · ∇uh dΩ, (5.40)

where Ξ is a scaling matrix which is taken as

Ξ =
1

2
|Ωe|


∑

i∈N e
i

Rni
(ū)Λ+

ni
(ū) Lni

(ū)




−1

(5.41)
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where ū is the arithmetic average of the conservative variables on the element, Rn,

Ln are respectively the matrices of the right and left eigenvectors along the direction

of the generic vector n, and Λn = diag(λn) is the corresponding diagonal matrix

of the eigenvalues. The operator (·)+ selects only the positive values and sets the

negative ones to zero. The vector ni is taken as follows

ni =
1

Ndim

∫

Ωe

∇ψi dΩ, (5.42)

such that it has the dimensions of a length (surface) in two (three) spatial dimen-

sions.

Non-Linear Scheme

A central non-linear scheme for a system of equations is constructed in the same

way shown for the scalar equation. The starting point is the first order accurate

Rusanov scheme, which is re-written here for the system

Φe,Rv
i =

1

N e
dof

Φe +
1

N e
dof

αe
∑

j∈N e
h

j 6=i

(ui − uj), (5.43)

with αe taken as

αe = max
j∈N e

h

|λnj
| > 0. (5.44)

In the next step, the distribution coefficients of the low-order scheme are mapped

into non-linear bounded distribution coefficients by the means of a non-linear map.

As described in [3], the mapping for a system of equations is constructed in the

characteristic space, consequently the distributed and the total residuals are first

rewritten as

Φe,⋆
i = LnΦ

e,Rv
i and Φe,⋆ =

∑

i∈N e
h

Φe,⋆
i , (5.45)

where the mean fluid velocity vector on the element is used as direction vector

for the computation of the eigenvectors. The distributed high-order residuals are

obtained by applying a non-linear mapping to the original unbounded distribution

coefficients, βe,⋆
i = Φe,⋆

i /Φe,⋆. The map is constructed as follows

β̂e,⋆
i =

(
Φe,⋆

i

Φe,⋆

)+

∑

j∈N e
h

(
Φe,⋆

j

Φe,⋆

)+ , (5.46)

which corresponds to the scalar PSI limiter. The limited residual in the characteristic

space is firstly computed as follows

Φ̂e,⋆
i = β̂e,⋆

i Φe,⋆, (5.47)
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and finally, the high order distributed residuals are projected back onto the physical

space: Φ̂e
i = RnΦ̂

e,⋆
i .

As already mentioned in the case of scalar problem, the use of a central scheme

in combination with the limiting technique, produces undamped spurious modes

and a poor iterative convergence to the steady state solution, due to the fact that

no upwind mechanism is included. The cure to this problem consists in adding a

filtering term by means of a streamline dissipation term, hence the final form of the

non-linear scheme reads

Φ̂e,Rv
i = Φ̂e

i + ε e
h(uh)

∫

Ωe

A · ∇ψi ΞA · ∇uh dΩ, (5.48)

where

Ξ =
1

2
|Ωe|


∑

i∈N e
h

Rni
(ū)Λ+

ni
(ū) Lni

(ū)




−1

, (5.49)

and ε e
h(uh) is a smoothness sensor which assures that the filtering term is added

only in the smooth regions of the solution, namely εeh(uh) ∼ 1 in smooth regions and

εeh(uh) ∼ 0 near discontinuities [8].

The limited procedure can be applied also to the N scheme, resulting in the

popular PSI scheme, widely used for the numerical discretization of the Euler equa-

tion [118], also in a blended form with the LDA scheme [42], however it is well know

that such a scheme has a very poor iterative convergence in the case of systems,

making it less attractive than the central non-linear scheme.

5.2.2 Discretization of the Navier-Stokes Equations

As seen in Chapter 4, in the case of advection-diffusion scalar problems, the dis-

cretization of diffusive terms in the proposed RD framework requires the recon-

struction of an unique value of the gradient of the numerical solution at the degrees

of freedom. The continuous approximation of the gradient allows to express the

total residual on each element as follows

Φe =

∮

∂Ωe

(
f
a(uh)−K(uh)∇̃uh

)
· n̂d∂Ω, (5.50)

where ∇̃uh is an unique value of the gradient of the numerical solution reconstructed

with one of the techniques described in Section 4.4.

From a practical point of view, the gradient of each component of the vector of

the conservative variables is reconstructed, although one can consider to reconstruct

the gradient of the primitive variables which is then used to compute the gradient of

the conservative variables. In numerical experiments it has been observed that the

reconstruction of the gradient of the primitive variables produces only a marginal

improvement in the accuracy of the reconstructed gradient, hence in numerical sim-

ulation the gradient of the conservative variables is reconstructed directly.
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Linear Scheme

The linear scheme described for the Euler equations is now extended to include

viscous effects. The scheme is the vector counterpart of the scheme (4.31) proposed

for the scalar advection-diffusion equation, hence it reads

Φe,LW
i =

Φe

N e
dof

+

∫

Ωe

A · ∇ψi Ξ
(
A · ∇uh −∇·

(
K∇̃u

))
dΩ, (5.51)

with

Ξ =
1

2
|Ωe|


∑

i∈N e
h

Rni
(ū)Λ+

ni
(ū) Lni

(ū) +

Ndim∑

j=1

Kjj(ū)




−1

. (5.52)

As described in Section 4.3.2, an improved version of the previous scheme takes

into account of the difference between the reconstructed and the internal gradient

on the element, namely

Φe,LW
i =

Φe

N e
dof

+

∫

Ωe

A · ∇ψi Ξ
(
A · ∇uh −∇·

(
K∇̃u

))
dΩ

+

∫

Ωe

K∇ψi ·

(
∇uh − ∇̃uh

)
dΩ

(5.53)

Non-Linear Scheme

With the Eq. (5.40) and the Eq. (4.33) in mind, the non-linear central RD scheme

for the discretization of the Navier-Stokes equation reads

Φ̂e,Rv
i = Φ̂e

i + ε e
h(uh)

∫

Ωe

(
A · ∇ψi −K∇ψi

)
Ξ
(
A · ∇uh −∇·

(
K∇̃uh

))
dΩ,

(5.54)

with Φ̂e
i the limited version of the residual distributed with the Rusanov scheme and

Ξ =
1

2
|Ωe|


∑

i∈N e
h

Rni
(ū)Λ+

ni
(ū) Lni

(ū) +

Ndim∑

j=1

Kjj(ū)




−1

. (5.55)

Also the non-linear scheme is modified with the addition of the extra stabilization

term for the viscous part

Φ̂e,Rv
i = Φ̂e

i + ε e
h(uh)

∫

Ωe

(
A · ∇ψi −K∇ψi

)
Ξ
(
A · ∇uh −∇·

(
K∇̃uh

))
dΩ

+

∫

Ωe

K∇ψi ·

(
∇uh − ∇̃uh

)
dΩ

(5.56)

Note that for the system, in the non-linear scheme, as well as the linear one,

the streamline stabilization term is not blended with the stabilization term for the
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viscous part via a parameter function of the local Reynolds number, as it has been

done instead in the scalar case; this choice gives more robustness to the numerical

solver, since it was observed that the blending might cause a breakdown of the

numerical simulations.

5.3 Boundary Conditions

The imposition of the boundary conditions in the RD framework has not reached

yet a mature level of understanding, for this reason it is shown here how boundary

conditions are imposed in this work.

Consider the weak form of a generic steady conservation law
∫

Ω

ψ∇· f(uh) dΩ = 0, (5.57)

an integration by parts gives
∫

∂Ω

f(u∂) · n d∂Ω−
∫

Ω

∇ψ · f(uh) dΩ = 0, (5.58)

where u∂ represents the solution state that takes into account the boundary condi-

tions. Replacing the basis function ψ with the standard Lagrangian basis functions

ψi, ∀ i ∈ Nh, and applying again the integration by parts to the second member on

the left-hand side of the previous equation, one obtains
∫

Ωi

ψi∇· f(uh) dΩ +

∫

∂Ωi∩∂Ω

ψi

(
f(u∂)− f(uh)

)
· n d∂Ω = 0, (5.59)

where Ωi is the union of the elements that have the degree of freedom i in common.

The boundary integral on the previous equation can be regarded as the contribution

that must be added to the residuals computed on the domain elements without

considering the boundary conditions. Note that the correction flux, f(u∂) − f(uh),

becomes null as the boundary conditions are correctly enforced into the numerical

scheme. With the Eq. (2.12) in mind, the complete RD space discretization, which

includes the imposition of the weak boundary conditions, can be written as follows
∑

e∈Eh,i

Φe
i +

∑

f∈Fh,i

Φe,∂
i = 0, ∀i ∈ Nh, (5.60)

where the boundary residuals reads

Φe,∂
i =

∫

∂Ωi∩∂Ω

ψi

(
f(u∂)− f(uh)

)
· n d∂Ω (5.61)

and Fh,i is the set of the boundary faces which share the degree of freedom i; the

set is empty if i is not on the boundary.
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Slip Wall

For an inviscid wall, the boundary condition requires that the normal component of

the velocity to the plane is null: v · n̂ = 0, with n̂ the outward normal versor to the

boundary face. The flux function and the correction flux read

f
a(u∂wall) · n̂ =




0

P n̂

0


 ,

(
f
a(u∂wall)− f

a(uh)
)
· n̂ = −vn




ρ

ρv

Et + P


 , (5.62)

respectively, with vn = v · n̂.

Subsonic Inflow/Outflow

The imposition of inflow/outflow boundary condition has to rely on a characteristics-

based procedure in order to impose the correct number of conditions. The number

of characteristics pointing into or out of the domain depends on the fact that the

boundary is an inflow or outflow boundary.

In the case of a subsonic inflow boundary, one of the characteristics points out

of the domain and the others point into the domain, this means that for a two

(three) dimensional flows, three (four) conditions must be specified. For a subsonic

outflow only one characteristic point into the domain, thus only one condition must

be specified.

The procedure here described takes into account automatically the number of

conditions which need to be imposed, provided the proper inflow/outflow state

u∂in/out. As standard practice, the advective flux function is linearized as

f
a(u∂in/out) · n̂ ≃ A+

n (uh)uh +A−
n (uh)u

∂
in/out, (5.63)

where A±
n (u) = Rn(u)Λ

±
n (u) Ln(u); the operator + selects the components of the so-

lution state that must be taken from the interior of the domain, while the operator −
selects those components that must be imposed from the exterior. By linearizing

the flux function at the interior state as follows

f
a(uh) · n̂ = An(uh)uh =

(
A−

n (u
h) +A+

n (u
h)
)
uh, (5.64)

the correction flux for the imposition of the inflow/outflow boundary conditions

reads (
f
a(u∂in/out)− f

a(uh)
)
· n̂ = A−

n (u
h)(u∂in/out − uh). (5.65)

Usually, at inflow boundary the total pressure, the total temperature (or density)

and the flow direction are specified, while the velocity magnitude is taken from the

interior; with these quantities it is possible to define the state u∂in. At the outflow

boundary the static pressure is generally prescribed, while density and velocity are

taken from the interior, giving the state u∂out.
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Far-Field

In the imposition of the far-field boundary conditions, the state u∂ is taken as the

far-field condition u∞, and the procedure previously illustrated to impose subsonic

inflow/outflow boundary conditions is applied. Although the number of conditions

imposed might be over-specified, the procedure ignores the superfluous conditions.

Adiabatic Slip Wall

For viscous fluids at the solid surface, the adiabatic and no-slip boundary condition

is applied; in this case the velocity and the normal heat flux on the wall must be

zero: v|wall = 0, q · n̂|wall = 0. In the RD scheme, the adiabatic no-slip boundary

conditions are generally applied by initializing the velocity field such that the velocity

components are zero on the wall and the residual of the momentum equation is

enforced to be zero on the boundary nodes at each iteration; this corresponds to

impose strongly the boundary condition for the momentum equation. In some works,

nothing is explicitly done for the residual associated to the energy equation, this is

partially justified by the fact that on the wall, since the velocity is zero, one has

∫

∂Ωei∩∂Ω

(v · S− q) · n̂ = −
∫

∂Ωei∩∂Ω

q · n̂, (5.66)

thus not computing the previous integral is equivalent to assume that q · n̂ is zero

on the wall. However, this consideration is not true in practice and imposing the

boundary conditions in such a way does not guarantee that the normal heat flux is

zero on the wall.

An effective way to impose the boundary condition for the energy equation makes

use of the correction flux technique showed before. Since the velocity is zero on the

wall, the viscous flux function in the normal direction to the wall becomes

f
v(u) · n̂ =




0

S · n̂

κ∇T · n̂


 , (5.67)

consequently the correction flux on the wall is

f
v(u∂wall) =




0

0

0

−κ∇T · n


 . (5.68)

The gradient of the temperature for a perfect gas can be easily expressed as function

of the conservative variables and their gradient, for example, considering explicitly
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the x component for simplicity

∂T

∂x
=
γ − 1

R
∂

∂x

(
Et

ρ
− 1

2
‖v‖2

)

=
γ − 1

R

[
∂

∂x

(
Et

ρ

)
− 1

2

(
∂

∂x

(
m2

x

ρ2

)
+

∂

∂x

(
m2

y

ρ2

))]

=
γ − 1

R

[
1

ρ

∂Et

∂x
− Et

ρ2
∂ρ

∂x
−
(
mx

ρ2
∂mx

∂x
− m2

x

ρ3
∂ρ

∂x
+
my

ρ2
∂my

∂x
− m2

y

ρ3
∂ρ

∂x

)

︸ ︷︷ ︸
=0,wall

]
,

(5.69)

and therefore

∇T =
γ − 1

R

(
∇Et − Et

ρ
∇ρ

)
1

ρ
. (5.70)

The reconstructed gradient of the conservatives variables are used in the previous

equation, in this way an unique value of the gradient of the temperature at each

node is obtained. As usual, the residual of the momentum equation is explicitly

imposed to be zero in order to apply the strong boundary conditions for the velocity

on the wall.

5.3.1 High Order Boundary Representation

Here the problem of the boundary representation is briefly recalled, While in stan-

dard FV methods a linear representation of the geometry is generally used, it is well

know that when high-order methods are used, if the spatial discretization is accurate

enough, the error due to the approximation of the geometry may dominate and the

formal accuracy of the scheme is spoiled [18, 71].

Another consideration must be also done. The main advantage of high-order

methods over the low-order ones is the capability of the high-order methods to

achieve an higher level of accuracy given the same computational resources. Obvi-

ously, since a high-order method introduces more degrees of freedom than a lower

one, a fair comparison between high and low order methods must be done with the

same number of degrees of freedom. In other words the computational grids used by

high-order methods should be coarser than those used by low-order methods, hence

high-order approximation of the boundaries have to be considered to preserve the

correct representation of the geometry.

As previously explained, boundary conditions are prescribed (entirely or par-

tially) in a weak manner by specifying the flux function which takes into account

the boundary state. The flux function depends on the normal vector to the bound-

ary face, thus in order to take into account the real geometry of the boundary, the

normal vector to the boundary face must be computed using the high-order element

approximation.
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In this work a simple approach is used for the boundary approximation: the

solution and the geometry are represented with the same order of accuracy. The

geometry of high-order elements is defined by the following isoparametric transfor-

mation from the reference element, Ω̂e, to the physical one, Ωe, (Figure 5.1)

x(ξ) =

Ng∑

i=1

xiψi(ξ), (5.71)

where ξ is the independent variable in the reference space, xi are the coordinates

of the nodes defined in the physical space and ψi are the same Lagrangian basis

functions used for the discretization of the solution. Note that the nodes on the faces

of the element belonging to the boundary ∂Ω are places on the real geometry of the

boundary. A curved boundary is therefore approximated by piecewise polynomial

elements. The use of Lagrangian functions guarantees the geometric continuity

between neighboring elements.

Figure 5.1: Three and two dimensional mapping of standard elements to arbitrary curved

ones in the physical space.

It must be pointed out that, since the inverse of the mapping Jacobian is a

rational function for curved elements, the accuracy of the quadrature formula used

to computed domain and boundary integrals must be higher than that used with

linear elements (with the same order of interpolation of the solution).

The generation of high-order grids is still a very active field of research [7,67,96],

due to the necessity to create robust mesh generators which are able to generate high

quality elements. The use of high-order elements makes the problem more stiff and

if elements are very distorted high-order numerical solvers could fail. In Figure 5.2
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Figure 5.2: Example of linear (a) and quadratic (b) mesh around the leading edge of an

airfoil.

is reported an example of linear and quadratic meshes around the leading edged of

a NACA-23012 airfoil, generated with the Gmsh software [50]. Note that due to

the clustering of the elements in the boundary layer, some curved faces must be

generated also at the interior of the domain, otherwise the elements overlap each

other.

5.4 Implicit Numerical Solver

The numerical solution of the RD method is obtained by solving the non-linear

system of equations (5.60), which here is rewritten in the following form

R(uh) = 0. (5.72)

Among all kinds of methods, the Newton’s method is one of the most popular for

the solution of non-linear equations, and has a local quadratic convergence. The

general form of the Newton’s method for solving Eq. (5.72) is

uk+1
h = ukh − J−1R(ukh), k = 0, 1, 2, . . . (5.73)

where u0h is an initial guess of the solution and J = ∂R(u)/∂u the Jacobian of R, is non

singular at each iteration. In practice, the Newton iteration (5.73) is implemented

in the following form

J(ukh)∆ukh = −R(ukh), and uk+1
h = ukh +∆ukh. (5.74)

Usually the original problem (5.72) is relaxed as a pseudo-transient problem

R(uh) = 0 −→ duh
dt

= −R(uh), (5.75)
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where t is a scaled, pseudo-time variable. The steady state solution is the limit

for t that tends to infinity. The presence of the time derivative enables a better

convergence of the Newton’s method, overcoming the harsh start-up phase when

the solution is far from an optimal initial guess. Furthermore, the Jacobian of the

modified problem is better conditioned than the Jacobian of the original problem

during the start-up phase.

If the backward Euler formula is used for the discretization of the time derivative,

the fully discrete form of the problem reads

un+1
h − unh
∆tn

= −R(un+1
h ), n = 0, 1, 2, . . . (5.76)

where n is the number of the time steps and u0 is the initial value of the solution.

For each time step n, a non linear problem should be solved with the Newton’s

method, namely
[

I

∆tn
+ J(unhk

)

]
∆unhk

= −R(unhk
) (5.77)

unhk+1
= unhk

+∆unhk
, k = 0, 1, 2, . . . , (5.78)

in practice at each time step only one Newton iteration is performed.

The parameter ∆tn is the discrete time step, with ∆tn → ∞ as n → ∞. Note

that for ∆tn → ∞ the iteration of the original Newton’s method (5.73) is retrieved.

The evolution of the time step is controlled by the CFL number, that is chosen

according to the following law [123]

CFLn = CFLn−1‖R(un−2)‖∞
‖R(un−1)‖∞

, (5.79)

starting from a low CFL number. The iterative process is stopped when the residual

of the equations becomes small enough with respect to the initial residual.

5.4.1 Jacobian-Free Newton/GMRES Method

At each non-linear iteration, the linear system (5.77) must be solved; the linear

system is re-written for convenience as follows

A(unh)∆unh = −R(unh), with A(unh) =

(
I

∆tn
+ J(unh)

)
. (5.80)

Complete solving of the linear system is unnecessary for the convergence of the

scheme, usually inexact Newton’s method is used to reduce the computational effort

and avoid over-solving of the system [47]. The linear system is solved until

‖R(unh) + A(unh)∆unh‖ ≤ ηnh‖R(unh)‖ (5.81)
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with a tolerance ηnh < 1. In this work, a constant value for ηnh is used during the

simulation; typical values for η are 10−1 or 10−2.

Furthermore, the matrix of the linear problem is non symmetric and very sparse,

with dimension N = Ndof × Neq, thus the number of the non-zero elements can

be very high. Krylov methods can be used to solve this class of linear systems, in

particular the GMRES method [109] is widely used. This method has the property of

minimizing the L2-norm of the residual over all the vectors in the Krylov subspace.

The GMRES method computes a new search vector every iteration. The vector

is added to the Krylov subspace to progressively improve the solution. However,

more search directions incur higher memory and computational costs. For large

problems, this limits the maximum number of iterations that can be used. The

restarted version of the algorithm can be used, where the algorithm is restarted

from the most recent solution.

To accelerate the convergence of the iterative linear solver, preconditioning is

used, this consists in solving a modified linear system

AP−1P∆uh = −R, (5.82)

with P a preconditioning matrix for the matrix A of the linear system. When the

right preconditioning is used, one first solves

AP−1w = −R, (5.83)

for w, and the solves

∆uh = P−1w, (5.84)

for ∆uh. Only P−1 is required. For sake of clarity the right-preconditioned GMRES

pseudo-code is reported in Algorithm 1.

The construction of the matrix A requires to compute the Jacobian of R. In order

to obtain quadratic convergence for the Newton’s method, the linearization of the

residual must be exact. Unfortunately, explicit calculation of the Jacobian matrix

resulting from the linearization of the high-order, non-linear residuals is extremely

expensive, if not impossible. The Jacobian of the low-order residual is generally used

in the construction of the matrix A, but the quadratic convergence of the Newton’s

method is lost due to the inconsistency between the right-hand side of the linear

system, constructed with the high-order residual, and the matrix on the left-hand

side, constructed with the low order scheme.

In Algorithm 1 it is clear that the GMRES solver requires the matrix A only in

a matrix-vector product, thus remembering that the matrix contains the Jacobian

of the numerical scheme, one can approximate the product of the matrix A with a

generic vector w as follows [21, 69, 121]

Aw =

(
I

∆tn
+ J(unh)

)
w

≃ I

∆tn
w +

R(unh + ǫw) − R(unh)

ǫ
,

(5.85)
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Algorithm 1 Right preconditioned GMRES. Solve Ax = b

1: Choose x0

2: r0 = b−Ax0

3: β = ‖r0‖2
4: v1 = r0/β

5: Define Hm = {hi,j}1≤i≤m+1,1≤j≤m

6: Hm = 0

7: for j = 1 to m do

8: w1 = AP−1vj

9: for i = 1 to j do

10: hi,j = (wj, vi)

11: wj = wj − hijvi

12: hj+1,j = ‖wj‖2
13: if hj+1,j = 0 then

14: m = j

15: goto 20

16: end if

17: vj+1 = wj/hj+1,j

18: end for

19: end for

20: ym = argmin
y

‖βe1 −Hmy‖2
21: Vm = [v1, . . . , vm]

22: xm = x0 + P−1Vmym

23: if ‖βe1 −Hmy‖2 < ηn‖b‖2 then

24: EXIT

25: else

26: x0 = xm

27: goto 2

28: end if

with ǫ a small step size chosen as [94]

ǫ =

√
1 + ‖u‖L2

‖w‖L2

ǫrel, ǫrel = 10−8. (5.86)

Since there is no need to compute explicitly the Jacobian, this approach is called

Jacobian-free. However, a rough approximation of the Jacobian is always computed

at each non-linear iteration, this matrix is used as a preconditioner in the GMRES

algorithm.

Among all the types of preconditioning developed for CFD applications, in this

work the LU-SGS [64] preconditioning is considered. This method represents a good

compromise between robustness and memory requirement, and guarantees a good

scalability in parallel algorithms. Consider the linear system (5.80) and given D,U ,
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and L, the diagonal block, the lower and the upper part of the matrix, respectively,

it is easy to verify that the following factorization is true

(D + L)D−1(D + U)∆uh = −R+ (LD−1U)∆uh. (5.87)

In the LU-SGS method the system is approximately factorized by neglecting the last

term on the right-hand side of the previous equation, so the preconditioning matrix

reads

P = (D + L)D−1(D + U). (5.88)

The solution of the Eq. (5.84) is obtained in two steps, each of them requires the

inversion only of the diagonal block matrices:

Forward sweep

(D+L)∆u⋆h = w ⇒ ∆u⋆i = D−1
i

(
wi−

∑

j∈N i
h

j< i

Aij∆u⋆j

)
, i = 1, 2, . . . , Ndof

Backward sweep

(D + U)∆uh = D∆u⋆h ⇒ ∆ui = ∆u⋆i −D−1
i

∑

j∈N i
h

j> i

Aij∆uj, i = Ndof , . . . , 2, 1

The LU-SGS algorithm here is preferred over other preconditioners since it is not

computational expensive and has good convergence properties. For instance, the

LU-SGS method requires only the inversion of the diagonal block matrix but it is

much more effective that the Jacobi preconditioner, and at the same time it does

not require to store the entire factorized matrix, like for example in ILU based

preconditioners, but it is still very effective.

The Jacobian-free approach allows quadratic convergence of Newton’s method

because the matrix of the linear system is a complete linearization of the residual

vector. The price to pay for using this technique is an increment of the computational

effort, because at each time step it is necessary to compute several times the residual

R(u) on the whole domain. This is largely compensated by a drastic reduction of

the iterations number.

As an illustrative example, consider the simple subsonic, inviscid flow over a cir-

cular bump discretized with a third order RD non-linear scheme on an unstructured

grid of triangles, see [6] for details. In Figure 5.3 the convergence curves are reported

in terms of number of iterations and CPU time (in seconds) for the Jacobian-free

technique with different type of preconditioners. The residual is computed as the

L2 norm of the continuity equation and is normalized with respect to the resid-

ual at the first iteration. In all the computations, 40 search directions has been

used in the GMRES algorithm. It can be seen that the GMRES algorithm without

preconditioning does not converge even for a simple problem, as that considered
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Figure 5.3: Iterative convergences as function of the number of iterations (a) and the

CPU time (b) for an inviscid problem. Different preconditioners has been

used for the Jacobian-free technique, the convergence history for the matrix-

based implicit scheme, using the Jacobian of the first order scheme, is also

reported.

here. The ILU(0) preconditioner does not perform as well as the LU-SGS precon-

ditioners, probably because no reordering technique has been adopted, and might

be for the same reason that the Jacobi and the LU-SGS preconditioner have similar

performances for this particular test case.

In the Jacobian-free technique, the preconditioner matrix is computed using the

Jacobian of the first order Rusanov scheme. The same matrix used directly as Ja-

cobian in the implicit scheme does not allow the implicit scheme to converge to the

zero machine, whatever the preconditioning strategy is. In Figure 5.4 is evaluated

the influence of the number of the search directions in the GMRES algorithm in

combination with the LU-SGS preconditioner. As expected the matrix-based im-

plicit method, with the Jacobian of the first order scheme, does not make the scheme

converge, whatever the number of search directions is.

5.5 Numerical Results for Inviscid Problems

In this section, some numerical results for inviscid problems are reported as illustra-

tive examples of the discretization of the Euler equations with the RD approach. A

smooth flow over a bump and a transonic flow over an airfoil are considered to verify

the practical order of accuracy of the method and the non oscillatory properties of

the numerical scheme.



Chapter 5 113

Iterations

R
es

id
ua

l

0 50 100 150 200 250 300

10-10

10-8

10-6

10-4

10-2

100

JF(10)+LUSGS
JF(20)+LUSGS
JF(30)+LUSGS
JF(40)+LUSGS
First order Jacobian

(a)

CPU time (s)

R
es

id
ua

l

0 100 200 300

10-10

10-8

10-6

10-4

10-2

100

JF(10)+LUSGS
JF(20)+LUSGS
JF(30)+LUSGS
JF(40)+LUSGS
First order Jacobian

(b)

Figure 5.4: Iterative convergences as function of the number of iterations (a) and the

CPU time (b) for an inviscid problem. Different preconditioners has been

used for the Jacobian-free technique, the convergence history for the matrix-

based implicit scheme, using the Jacobian of the first order scheme, is also

reported.

5.5.1 Subsonic Flow over a Smooth Bump

A subsonic flow over a smooth bump is here considered, the inflow Mach number is

M = 0.5, with 0◦ angle of incidence. The computational domain is bounded between

x = −1.5 and x = 1.5, and between the bump and y = 0.8. The form of the bump

is given by y = 0.0625e−25x2
. An example of coarse grid with quadratic elements

is reported in Figure 5.5, finer grids are obtained with an uniform refinement of

the coarse grid. Slip wall boundary conditions are used for the top and bottom

boundaries, while inflow and outflow conditions are applied on the left and right

boundary, respectively. An example of the numerical solution is shown in Figure 5.6,

for the third order non-linear scheme on a fine grid.

Figure 5.5: Coarse mesh, with quadratic elements, used for the simulation of the subsonic

flow over the smooth bump.

Since the entropy for this case should be constant in the flow field, the following
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Figure 5.6: Pressure contours for the subsonic flow over the smooth bump, obtained with

a third order approximation of the solution on a fine grid.

error definition is used to study the accuracy of the numerical method

ǫL2 =

√√√√√√√

∫

Ω

(
p/ργ − p∞/ρ

γ
∞

p∞/ρ
γ
∞

)2

dΩ
∫

Ω

dΩ

. (5.89)

In Figure 5.7, the error is reported as function of the number of the degrees of

freedom and the normalized CPU time 1, with the non-linear scheme. Note that the

correct order of accuracy of the scheme is obtained for the h-refinement, with the

linear and quadratic approximation of the solution. Furthermore, it is clear that

the high-order discretization performs better than the low-order one also in term of

computational time with respect to the second order method.

In addition, Figure 5.7-(a) reports also the variation of the entropy error with

the mesh refinement for quadratic approximation of the solution and linear approx-

imation of the geometry. It is evident that the numerical error is bigger compared

to that obtained with the quadratic approximation of both geometry and solution,

although for this particular test case there is not a severe loss of accuracy, which

may occur for others test cases.

5.5.2 Transonic Flow over a NACA-0012 Airfoil

The transonic flow over over a NACA-0012 airfoil at 5◦ of incidence and free-stream

Mach number M = 0.7 is now considered. The flow field is characterized by the

presence of the shock located about the 45% of the chord an by a slip line detaching

from the trailing edge. The aim of this case is to test the non-oscillatory property

of the non-linear scheme, for both second and third order simulations.

The mesh used for the simulations is made of 12 108 elements and is shown in

Figure 5.8, together with the Mach number contours for the third order simulation.

The far-field boundary is situated about 25 chords away from the airfoil. All the

1The CPU time has been normalized with the time needed to execute the TAU benchmark

code, i.e., 8.22 seconds. All the simulations have been performed on a single processor.
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Figure 5.7: L2 norm of the entropy error for the subsonic flow over a smooth bump as

function of the number of degrees of freedom (a) and the normalized CPU

time (b).

Ndof CL CD

2nd order 6391 0.856262 0.0531105

2nd order 24890 0.871845 0.0471140

3rd order 24890 0.878573 0.0455687

Table 5.1: Lift and drag coefficients of the transonic NACA-0012 airfoil as function of the

number of degrees of freedom, for the second and third order simulations.

simulations are considered to be at the steady state when the L2 norm of the density

residual is reduced by ten orders of magnitude.

In Figure 5.9 is reported the value of the pressure coefficients over the airfoil for

the second and third order simulations and for a second order simulation performed

on a finer mesh, obtained by splitting each element of the coarser grid with four

elements, such that the number of degrees of freedom is the same of the third order

simulation. The numerical method naturally handles smooth and discontinuous so-

lutions within the same framework without the necessity of using tuning parameters.

Note that the solution has no oscillations near the discontinuity, furthermore the

third order solution is more regular than that obtain with the second order scheme,

even with the same number of degrees of freedom. For completeness, in Table 5.1

are reported the values of lift and drag coefficients for the second and third order

simulations.
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Figure 5.8: Zoom near the airfoil showing (a) the grid used for the simulations of the

transonic flow over the NACA-0012 airfoil, and (b) the Mach number contours

for the third order simulation.
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Figure 5.9: Distribution of the pressure coefficient over the airfoil for the simulation of the

transonic flow over the NACA-0012 airfoil and zoom near the discontinuity.

5.6 Numerical Results for Viscous Laminar Problems

In this section the numerical discretization of laminar flows at the second and third

order of accuracy is reported; two and three dimensional test cases are considered to

show the flexibility of the solver. The main objective is to show that a third order

accurate scheme can be obtained if a proper gradient reconstruction technique is

adopted and the third order discretization gives better results that the second order

one for the same number of degrees of freedom.

The method of the manufactured solution is first used to study the accuracy
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of the linear and non-linear schemes, then simple test cases, as the laminar flow

over a flat plate and a NACA-0012 airfoil, are considered to study the effect of

the boundary conditions and of the gradient reconstruction on the accuracy of the

solution. As a more realist test case, the three dimensional flow over a delta wing

is considered and finally the interaction of a shock wave with a laminar boundary

layer is simulated.

5.6.1 Manufactured Solutions

The method of the manufactured solutions gives a flexible way to create analytical

solutions for problems of interest, in this way it is possible to verify rigorously the

accuracy of the numerical scheme. With this approach, the form of the solution is

chosen a priori, and the differential operator of the governing equation is applied to

the chosen solution. The reminder of this operation is then used as source term for

the original governing equation.

Although the form of the solution is arbitrary, it should be smooth and infinitely

differentiable. Here, the form of the primitive variables is taken as a function of

sines and cosines [106]

ρ(x, y) = ρ0 + ρx sin
(axπx

L

)
+ ρy cos

(ayπy
L

)
+ ρxy cos

(axyπxy
L2

)

u(x, y) = u0 + ux sin
(axπx

L

)
+ uy cos

(ayπy
L

)
+ uxy cos

(axyπxy
L2

)

v(x, y) = v0 + vx cos
(axπx

L

)
+ vy sin

(ayπy
L

)
+ vxy cos

(axyπxy
L2

)

P (x, y) = P0 + Px cos
(axπx

L

)
+ Py sin

(ayπy
L

)
+ Pxy sin

(axyπxy
L2

)

(5.90)

for the density, the velocity components and the pressure, and where L is the length

of the edge of the domain, assumed to be a square. In Table 5.2 are reported

the constants used in the previous expressions. The conservative variables are first

Variable φ φ0 φx φy φxy aφx aφy aφxy

ρ [Kg/m3] 1 0.1 −0.1 0.08 0.75 1.0 1.25

u [m/s] 70 4 −12 7 5/3 1.5 0.6

v [m/s] 90 −20 4 −11 51.5 1.0 0.9

P [N/m2] 1×105 −0.3×105 0.2×105 −0.25×105 51.5 1.25 0.75

Table 5.2: Values of the constants used in the manufactured solutions method.

computed from the previous definition of the primitive variables and then are made

dimensionless using as reference quantities the values at the point of coordinates
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(0, 0), while the spatial coordinates are made dimensionless with L. In figure 5.10 are

reported the contours of the conservative variables used as manufactured solutions.
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Figure 5.10: Form of the conservative variables used for the manufactured solution method

Dirichlet boundary conditions are applied on the boundaries of the domain, and

starting from an uniform initialization, the solution is made evolve until the L2 norm

of the residual of the conservative variables is dropped by ten orders of magnitude.

The discretization error is taken as the normalized L2 norm of the difference between

the numerical solution and the exact one, namely

ǫL2 =

√∫
Ω
‖uh − uex‖2 dΩ∫
Ω
‖uex‖2 dΩ

, (5.91)

and the accuracy study is performed on a sequence of four unstructured grids, of

the same type shown in Figure 4.6-(a), made of 228, 898, 3 588 and 14 412 triangles.

The aim of the present study, is not only to verify the formal order of accuracy of

the numerical scheme, but also to investigate if the observed order is kept constant

when the relative importance of advection and diffusion changes. To this purpose,

the observed order of accuracy is computed for different Reynolds numbers.

Two different type of gradient reconstruction methods are considered, the SPR-

ZZ and the Green-Gauss methods, because it has been already observed in the study
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performed for a scalar function, that there is only a limited difference between the

Green-Gauss method and other more sophisticated approaches.

In Figure 5.11, are reported, for different Reynolds numbers, the observed orders

of accuracy, for the numerical solution and the reconstructed gradient, with the

linear and non-linear schemes and the two type of gradient reconstruction. The

observed order of accuracy is taken as the mean slope, computed with a linear least

square interpolation, of the variables log(1/
√
Ndof) and log(ǫL2). Note that only the

results for the x component of the gradients are reported, results for the y component

are very similar.

Consider first the linear scheme, at the second order there is almost no differ-

ence between the results obtained with the two types of gradient reconstructions

in the observed order of accuracy of the solution: both methods guarantee formal

second order accuracy for the solution. However only the SPR-ZZ method gives also

second order of accuracy for the gradient. With quadratic elements, the situation

changes drastically, only the SPR-ZZ method gives third order of accuracy on the

whole range of Reynolds numbers, for both solution and gradient. It is interesting to

observe that in the diffusion limit, the use of a higher order reconstruction method

for the gradients gives an increment of accuracy for the solution with respect to the

theoretical third order; eventually the theoretical order is reached in the advection

dominated regime. With the Green-Gauss method, the formal accuracy of the solu-

tion is lost in the diffusion dominated regime, and is recovered only when advective

terms dominate the diffusive ones. It is worth noting also that the Green-Gauss

method gives at most second order accuracy for the gradient, to be compared with

the third order accuracy guaranteed by the SPR-ZZ method.

The same considerations done above for the linear scheme are also valid for the

non-linear scheme, however in this case the loss of accuracy in the diffusion regime

is more severe if gradients are not reconstructed properly, furthermore the loss of

accuracy affects also the solution computed with linear elements.

5.6.2 Laminar Flow over a Flat Plate

In this test case a laminar flow over a flat plate is simulated, the main objective

here is to verify the correct imposition of the wall boundary conditions. The linear

scheme with the SPR-ZZ gradient reconstruction technique is considered.

A free stream Mach number M = 0.3 is considered and the Reynolds number

based on the free-stream conditions and the flat plate length is Re = 5 000. The

length of the plate is L = 1. The range of the computational domain in the x-

direction is [−1, 1] with the leading edge of the flat plate at x = 0. The size of

the computational domain in the y-direction is 1, which is 10 times the boundary

layer thickness at x = 1. At the inlet, the inflow boundary condition is imposed,

at the top and the exit the static pressure is imposed. Along the plane y = 0, the

symmetry boundary condition is imposed for −1 ≤ x ≤ 0 and the adiabatic wall
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Figure 5.11: Observed orders of accuracy for the solution (left) and the gradient (right)

in the manufactured solutions test, at different Reynolds numbers and with

two type of gradient reconstruction. On the top row are reported the results

for the linear scheme, on the bottom row are reported the results for the

non-linear scheme.
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Figure 5.12: The coarsest mesh used for the flat plate boundary layer case.

no-slip boundary condition is imposed for 0 ≤ x ≤ 1. The coarsest mesh used is

shown in Figure 5.12, it consists of 187 degrees of freedom. The medium and the

fine grids are obtained successively splitting each triangle in four triangles.

In Figure 5.13 are compared the temperature and the axial velocity profiles

at x = 1 for the second order scheme on the medium grid, using the approach of

imposing the weak boundary condition for the energy equation proposed in this work

and when nothing is done. The results are compared against the exact solution of

the thermal boundary layer [110]. Clearly the new approach is able to correctly

impose the adiabatic condition, while the old approach completely fails to predict

the temperature profile and also the normal heat flux is not zero on the wall. The

velocity profile is instead in good agreement with the exact solution since the no-

slip condition is strongly imposed in both procedures. From the Figure 5.14-(a)

can be also deduced that the new way to handle the adiabatic condition assures a

fast convergence to the steady state solution. The third order scheme is much more

sensible to the imposition of the boundary conditions as can be seen in Figure 5.14-

(b), only the new way to impose the boundary condition on the wall makes the

scheme converge.

For sake of completeness, in Figure 5.15 is shown the axial velocity profile at

x = 1 for the second and third order schemes for three levels of grid refinement.

The numerical results are in good agreement with the analytical solution even on

the coarsest grid. In Figure 5.16 are reported the skin friction coefficients along the

flat plate for the second and third order schemes, note that for the same number of

degrees of freedom, third order solutions are closer to the exact values with respect

to the second order solutions.
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Figure 5.13: Temperature profile (a) and axial velocity profile (b) at x = 1, as function of

the dimensionless wall distance for the old and the improved way to impose

the adiabatic boundary conditions. The numerical solutions (second order

scheme) are compared against the theoretical solution.
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Figure 5.14: L2 iterative residual of the axial momentum equation for the old and the

improved way to impose the adiabatic boundary conditions for the second

(a) and third (b) order scheme.

5.6.3 Laminar Flow over a NACA-0012 Airfoil

In this test, a subsonic viscous flow over a NACA-0012 airfoil at zero angle of attack

is considered, the free stream mach number is M = 0.5 and Reynolds number is Re

= 5 000, based on the chord and the free-stream conditions. This is a widely used

test case for two dimensional laminar flows; a distinctive feature of this test case
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Figure 5.15: Axial velocity profile for the second (a) and third (b) order schemes at x = 1

as function of the dimensionless wall distance on three different grids. The

numerical solutions are compared against the theoretical solution.
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Figure 5.16: Skin friction coefficient along the flat plate fort he second (a) and third (b)

order schemes on three different grids. The numerical solutions are compared

against the theoretical solution and semi-log scale has been used.

is a steady separation bubble near the trailing edge of the airfoil. An example of

computational grid is displayed in Figure 5.17, and three levels of grid refinement

are considered in the simulations. The grid extends about 50 chords away from the

airfoil. The airfoil boundary is considered a no-slip adiabatic wall and is represented

by piecewise linear and quadratic elements, for second and third order simulations,

respectively. The far-field boundary condition is applied on the outer boundary of
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Figure 5.17: An example of computational grid used for the NACA-0012 test case.

the domain. In all the simulation the steady state is considered to be reached when

the L2 norm of the density residual is drop by ten orders of magnitudes.

In Figure 5.18 are depicted the solutions computed with the linear scheme and

the SPR-ZZ gradient reconstruction, for P1 and P2 elements. The solution with

the P1 elements has been computed on a grid obtained from that with P2 elements

(4 216 elements) and splitting each P2 triangle with four P1 triangles, in such a way

the number of the degrees of freedom for the second and third order simulations is

exactly the same. Note, in Figure 5.18, that although there is not much difference in

the Mach number contours between the second and the third order simulations, the

streamlines near the trailing edge are very different, and only the third order scheme

is able to reproduce the symmetric recirculation bubble. For the same simulations, in

Figure 5.19 and Figure 5.20 are reported the pressure and skin friction coefficients

profiles, respectively. Note the more regularity of the solution of the third order

simulation with respect to the second order one, for the same number of degrees of

freedom.

In order to compare the effect of the gradient reconstruction on the quality of

the solution, in Figure 5.21 are reported the absolute values of the lift coefficient as

function of the number of the degrees of freedom, for linear and quadratic elements,

with the SPR-ZZ and the Green-Gauss gradient reconstruction. Since the airfoil is

symmetric and the angle of attack is zero, the theoretical value of the lift coefficient

is zero; note that the mesh has no particular symmetries which could cancel out

numerical errors. It is evident that, for the same number of degrees of freedom, the

RD scheme with quadratic elements gives a better approximation of the problem,

in particular the use the SPR-ZZ guarantees a great improvement in the numerical

discretization. If a proper gradient reconstruction is not used, the gain in using a

higher order RD scheme remains marginal with respect to a formal second approxi-

mation of the solution. For sake of completeness, in Table 5.3 are also reported the

values of pressure and viscous contributions to the drag coefficient.
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Figure 5.18: Mach number contours (top) and streamlines near the trailing edge (bottom)

for the second (left) and third (right) order linear scheme.
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Figure 5.19: Pressure coefficient along the NACA-0012 airfoil for the second and third

order simulations, with the same number of degrees of freedom.
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Figure 5.20: Skin friction coefficient along the NACA-0012 airfoil for the second and third

order simulations, with the same number of degrees of freedom.
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Figure 5.21: Absolute values of the computed lift coefficients on different grids, with linear

and quadratic elements, and with the SPR-ZZ and the Green-Gauss gradient

reconstruction methods.

Ndof CDp CDv

SPR-ZZ P1 4630 0.0220 0.0345

8564 0.0222 0.0327

17146 0.0224 0.0325

SPR-ZZ P2 4630 0.0247 0.0369

8564 0.0228 0.0324

17146 0.0228 0.0324

GG P1 4630 0.0225 0.0313

8564 0.0226 0.0311

17146 0.0224 0.0310

GG P2 4630 0.0251 0.0366

8564 0.0230 0.0326

17146 0.0229 0.0320

Table 5.3: Pressure and viscous contributions to the drag coefficient of the NACA-0012

airfoil, for linear and quadratic elements with the SPR-ZZ and the Green-Gauss

gradient reconstruction.

5.6.4 Laminar Flow around a Delta Wing

The laminar flow around a delta wing with sharp edges, at high angle of attack is

now considered. As the flow passes the leading edge, it rolls up and creates a big

vortex structure which is convected far behind the wing, at the same time, near

the leading edge a smaller secondary vortex appears. A free stream Mach number

M = 0.5 is considered, the Reynolds number, based on the root chord of the wing
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and the free-stream conditions, is Re = 4 000, the angle of attack is α = 12.5◦.

The geometry of the delta wing is depicted in Figure 5.22, together with an

example of a coarse grid of tetrahedra used for the simulations. Note the presence of

very stretched elements on the wing. Finer levels of grids are obtained by uniformly

splitting each tetrahedron of the coarser level with eight tetrahedra. Three levels of

refinement are considered and simulations have been run in parallel on 8, 16 and 32

processors, for the coarse, medium and fine grids, respectively. The wing surface is

treated as no-slip adiabatic wall, the vertical plane intersecting the root of wing is

treated as a symmetry plane, while far field boundary conditions are applied on the

outer boundaries of the domain.

The solution is initialized with an uniform flow, the lower order solution is used

�
�
�
�
�
�

�
�
�
�
�
�

A

A

t

c

A − A

Λ

y

x

σ

z

x

Figure 5.22: Left: Bottom and side views of the model of the delta wing: Λ = 75◦, σ = 60◦

and t/c = 0.024. Right: a coarse mesh of tetrahedra use for the simulations.
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delta wing, for a third order simulation on a fine grid. Right: Convergence

history for the order sequencing (second and third order).
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as initial solution for the third order computation. For this test case, the linear

scheme is used with the SPR-ZZ gradient reconstruction method; in Figure 5.23

are reported the streamlines and Mach number contours, at different stations, of

the third order solution on the finest grid. The convergence history is also reported

for the second and third order simulations. Note the quadratic convergence in the

final stage of the non-linear solver and also the fact that the thanks to the order

sequencing strategy, very few iterations are required by the third order method to

converge to the steady state.

In Figure 5.24 are reported the drag and lift coefficients computed with linear and

quadratic elements, on three uniformly refined grids. For comparison, are reported

also the reference values computed in [73] by extrapolating the results obtained

with a higher order DG method. Observing the convergence of the drag coefficient

as function of the number of degrees of freedom, it can be noted that there is no

significant gain in using a higher order approximation, with respect to the second

order. This behavior can be caused by the singularity at the leading edge of the wing,

which might mask the benefits of a higher order approximation with an uniform mesh

refinement. Regarding the convergence of the lift coefficient, it could be observed a

clear benefit of using a higher order approximation, because the big vortex structure

over the wing, which generates the great part of the lift force, is better captured

with higher order elements. For completeness, in Figure 5.25 are reported the errors

of the lift and drag coefficients as function of the number of the degrees of freedom;

the error is computed as the absolute value of the difference between the numerical

and the reference values.

5.6.5 Shock-Wave/Laminar Boundary Layer Interaction

As last test case, the interaction of an oblique shock wave with a laminar boundary

layer is considered. The aim of this test is to verify the non-oscillatory properties of

the non-linear scheme in presence of discontinuities of the solution and at the same

time, the capability to maintain the accuracy required for the discretization of the

boundary layer.

The test consists in a laminar boundary layer developing over a flat plate and an

incident shock impinging the boundary layer. Since the flow is supersonic, a shock

appears at the leading edge of the flat plate, that interacts with the oblique shock.

Furthermore, at the impinging point, the incident shock produces a separation of the

boundary layer, the shock is then reflected and an expansion fan appears, turning

the flow toward the wall and causing a reattachment of the boundary layer, as it is

depicted in Figure 5.26.

In the numerical simulations, the oblique shock is generated by imposing the

incoming supersonic flow state on the lower part of left boundary, while another

supersonic state is imposed on the upper part of the left boundary and on the

top boundary; this state is computed using the relations of the oblique shocks,
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Figure 5.24: Drag (a) and lift (b) coefficients as function of the degrees of freedom for the

delta wing simulation, with linear and quadratic elements.
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Figure 5.25: Errors, with respect to the reference values, of the drag (a) and lift (b) coef-

ficients as function of the degrees of freedom, for the delta wing simulation,

with linear and quadratic elements.
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such that the incident shock has a certain angle of incidence θs. The height of

the computational domain is 0.94, while the range of the computational domain

in the x direction is [−0.2, 2], the flat plate has length L = 2, with the leading

edge at x = 0. Along the plate, the no-slip adiabatic wall boundary condition is

applied, while the symmetry boundary condition is applied on the remaining part

of the bottom boundary. On the right boundary, the outflow boundary condition

is applied, see Figure 5.26. The inflow states are chosen such that the free-stream

Mach number is M = 2.15 and the angle of the incident shock is θs = 30.8◦, in this

case the impingement point would be at center of the plate for an inviscid fluid.

The Reynolds number based on the free-stream values and the distance between the

plate leading edge and the inviscid shock impingement point is Re = 1× 105.
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Figure 5.26: Schematic representation of the waves pattern (left) and of the computational

domain with boundary conditions (right) for the shock-wave/boundary layer

interaction problem

The non-linear scheme with the SPR-ZZ gradient recovery strategy is used to

perform the numerical simulations at second and third order of accuracy. The com-

putational domain is generated from the triangulation of a 90× 85 structured grid;

the first number refers to the number of elements on the horizontal boundaries, with
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Figure 5.27: Left: contours of the pressure obtained with the third order scheme for the

shock/boundary layer interaction. Right: zoom of the solution near the im-

pinging point of the shock with the boundary layer, streamlines are also

reported to show the separation bubble.



132 RD Discretization of Systems of Equations

80 elements along the plates, the second number refers to the number of elements

on the vertical boundaries. The element distribution is uniform on the x direction,

while along the y direction a non-uniform distribution of the elements is used, with

a mesh spacing ∆y = 0.5 × 10−3 near the bottom boundary. For comparison, a

second order simulation is also performed on a finer grid with the same number of

degrees of freedom of the third order simulation on the coarse grid. The simulation

is initialized with an uniform solution and the second order solution is used as ini-

tial solution for the third order approximation. Except the case of the second order

simulation on the coarse grid, for which the initial residual is reduces by ten orders

of magnitude, the residual for the third order simulation and the second order one

on the finer grid could not be reduced by more than eight orders of magnitude.

In Figure 5.27-(a) are shown the contours of the pressure for the third order

simulation; all the features of this problem are well represented. In Figure 5.27-(b)

is reported a zoom of the solution where the incident shock impinges the boundary

layer. Two features are evident: the reflection of the incident shock and the recircu-

lation bubble as a consequence of the separation and subsequent reattachment of the

boundary layer produced by the incident shock and the expansion fan, respectively.

The profiles of density, pressure and Mach number along the lines at y = 0.29 and

y = 0.15 are reported in Figure 5.28. Note that the third order scheme gives a very

sharp and monotone representation of the discontinuities and also smooth portions

of the solution are better represented compared to the second order solution. It is

important to remember that smooth and discontinuous solutions are treated within

the same non-linear scheme, without any special treatment or tuning parameter.

For a fair comparison, it is also reported the solution obtained with the second

order scheme on a finer mesh; it is worth noticing that, although a mesh refinement

produces an improvement of the numerical solution, the level of accuracy obtained

with the second order scheme is still lower than that obtained with the third order

scheme, for the same number of degrees of freedom.

Finally, in Figure 5.29 are reported the values of the pressure and of the friction

coefficient along the plate. The oscillations near the point x = 0 are due to the

singularity of the solution at the leading edge of the flat plate, but they are limited

only in small region around the leading edge. The third order scheme seems less

sensitive to this singularity compared to the second order simulations. The separa-

tion bubble can easily detected by the negative values of friction coefficients, note

also the pressure plateau in the detached zone.
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Figure 5.28: Density, pressure and Mach number profiles along the line y = 0.29 (a, c,

e) and the line y = 0.15 (b, d, f) for the shock/boundary layer interaction

problem.
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Figure 5.29: Pressure (a) and skin friction (b) profiles along the flat plate for the

shock/boundary layer interaction problem.
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Simulations of Turbulent Flows

In this section a robust high-order RD solver for the RANS equations is developed.

The Spalart-Allmaras turbulence model fully-coupled with the mean flow equations

is adopted. The fully-coupled approach allows a straightforward extension of the

RD method from laminar to turbulent problems, furthermore, the mean flow and

turbulent equations are discretized with the same order of accuracy.

To make the method robust for practical applications, the original form of the

Spalart-Allmaras equation has been modified and a non-linear LU-SGS method is

used to make the scheme converge to the steady state. The numerical results show

that the resulting solver is robust enough for the high-order simulation of transonic

turbulent flows. Furthermore, despite the poor regularity of the turbulent flow field,

there is still benefit to employing high-order RD methods for the mean flow and the

turbulent equation.

6.1 Turbulence Modeling: the RANS Approach

One of the most popular method for dealing with turbulent flows in aeronautical

applications is the Reynolds Averaged Navier-Stokes (RANS) approach, which pro-

vides information about the mean flow properties [137]. The main idea of the RANS

is to express a generic variable f(x, t) as the sum of a mean value and a fluctuating

component, namely

f = 〈f〉+ f ′, (6.1)

where 〈f〉 is the mean value and f ′ is the fluctuation. For stationary turbulence,

the time averaging operator is defined as

〈f〉(x) = lim
τ→∞

1

τ

∫ t+τ

t

f(x, t) dt. (6.2)

By applying the decomposition (6.1) to each variable of the Navier-Stokes equations

and taking the time average of the equation, the governing equations for the mean
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flow variables are obtained.

In the case of compressible flows the averaging of the Navier-Stokes equations

would produce too many terms due to the correlation between the fluctuations, for

this reason the density weighted average is preferred

f =
〈ρf〉
〈ρ〉 , (6.3)

which yields to the definition of a new fluctuation f ′′, such that

f = f + f ′′, (6.4)

with 〈ρf ′′〉= 0. It is easy to see that

〈ρf〉=
〈
ρf
〉
= 〈ρ〉f. (6.5)

6.1.1 Derivation of the Averaged Equations

The compressible RANS equations are obtained by first substituting the decompo-

sition (6.4) for each variable of the Navier-Stokes equation and then one averages

the entire equations in time.

Continuity equation

The averaged continuity equations takes the following form

∂〈ρ〉
∂t

+∇·
(
〈ρ〉v

)
= 0, (6.6)

which resembles to its non-averaged counterpart.

Momentum equation

The averaged momentum equations writes

∂
(
〈ρ〉v

)

∂t
+∇·

(
〈ρ〉v ⊗ v + 〈P 〉I

)
= ∇·

(
〈S〉− 〈ρv′′ ⊗ v′′〉

)
, (6.7)

where the extra term St = −〈ρv′′ ⊗ v′′〉 is know as the Reynolds stress tensor.

Moreover, the averaged pressure for a perfect gas is defined as

〈P 〉= 〈ρRT 〉= 〈ρ〉RT , (6.8)

and the averaged stress tensor is defined by

〈S〉= −2

3
µ(∇· v)I+ µ(∇Tv +∇v), (6.9)

with the mean dynamic viscosity coefficient expressed as µ = µ(T ).
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Energy equation

Averaging the energy equation yields to the following terms

〈ρet〉 = 〈ρ〉
(
e +

1

2
‖v′′‖2

)
,

〈(ρe + P )v〉 = 〈ρhv〉 = 〈ρ〉hv + 〈ρh′′v′′〉,
〈
ρ
1

2
‖v‖2v

〉
=

1

2
〈ρ〉 ‖v‖2 v +

1

2
‖v′′‖2 v − Stv +

1

2
‖v′′‖2v′′,

〈S〉· v = 〈S〉· v + 〈S · v′′〉.

(6.10)

The following definitions are introduced for convenience

k =
1

2
〈ρ〉‖v′′‖2, 〈q〉= −〈κ∇T 〉, and qt = −〈ρh′′v′′〉, (6.11)

which define the turbulent kinetic energy, the averaged heat diffusion flux and the

turbulent enthalpy diffusion flux, respectively. By neglecting the terms ‖v′′‖2v′′ and

〈S · v′′〉, the averaged energy equation can be written as

∂

∂t

(
〈ρ〉(et + k)

)
+∇·

(
〈ρ〉
(
h +

1

2
‖v‖2 + k

))
= ∇·

(
(S+ St) · v − 〈q〉− qt

)
.

(6.12)

The averaging process introduces additional fluxes, but no new equations have

been obtained to take into account for these new unknowns. Turbulence mod-

els provide closure relations for the average equations by modeling the additional

turbulent quantities. The simplest (and the most used) modeling is bases on the

Bousssinesq’s eddy-viscosity concept, which assumes that, in analogy to the viscous

stresses in laminar flows, the turbulent stresses are proportional to the mean veloc-

ity gradient. According to the eddy viscosity model, the Reynolds stress tensor is

written as

St = −〈ρv′′ ⊗ v′′〉= −2

3

(
µt∇· v + 〈ρ〉k

)
I+ µt(∇

Tv +∇v), (6.13)

where the term −2
3
〈ρ〉k ensures that the trace of the Reynolds stress tensor is

−2 〈ρ〉k. The part −2
3
〈ρ〉k of the normal stresses acts like a pressure force and can

be absorbed into the pressure definition by replacing the static pressure with the

following modified pressure

P̂ = P +
2

3
〈ρ〉k. (6.14)

In analogy to the turbulent stresses model, the turbulent heat flux is assumed to

be related to the gradient of the mean quantities. The turbulent heat flux can be

expressed as

qt = 〈ρh′′v′′〉= cp 〈ρ〉T ′′v′′ = −cp 〈ρ〉
µt

Prt
∇T , (6.15)
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with Prt the turbulent Prandtl number.

In conclusion, leaving out the average symbols, the RANS equations read





∂ρ

∂t
+∇·m = 0

∂m

∂t
+∇·

(
m⊗m+ P̂ I

)
= ∇· St

∂Êt

∂t
+∇·

(
Êt + P̂

)m
ρ

= ∇·

(
St ·

m

ρ
− qt

)
(6.16)

where the definition of the total energy has been modified to include the turbulent

kinetic energy

Êt = Et + 〈ρ〉k. (6.17)

Making use of the definitions (6.13) and (6.15), the stress tensor and the heat flux

are written as

St = −2

3
(µ+ µt)(∇· v)I+ (µ+ µt)(∇

Tv +∇v), (6.18)

qt = cp

(
µ

Pr
+

µt

Prt

)
∇T. (6.19)

The system of equations (6.16) can be further simplified since in most cases the

turbulent kinetic energy is small compared to the kinetic energy of the mean flow,

and thus

Êt = Et, and P̂ = P. (6.20)

The system to be solved then reads





∂ρ

∂t
+∇·m = 0

∂m

∂t
+∇·

(
m⊗m+ P I

)
= ∇· St

∂Et

∂t
+∇·

(
Et + P

)m
ρ

= ∇·

(
St ·

m

ρ
− qt

)
(6.21)

which closely resembles to the Navier-Stokes equations, except for the new definition

of the stress tensor and the heat flux.

6.2 The Spalart-Allmaras Turbulence Model

The closure of the RANS equations is obtained by adding one or more turbulence

modeling equations. For aerodynamic applications one of the most used turbulence
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model is the Spalart–Allmaras model [116], which has showed to be quite accurate

for attached and mildly separated flows, keeping reduced the complexity of the

turbulence modeling.

The model consists of a single transport equation for the working variable µ⋆
t

and for fully turbulent simulations it reads

∂µ⋆
t

∂t
+∇·

(
µ⋆
t

m

ρ
− η

σSA
∇

(
µ⋆
t

ρ

))
= SSA, (6.22)

where η = µ+ µ⋆
t and the source term SSA is given by

SSA = cb1ω̂µ
⋆
t − ρcw1fw

(
µ⋆
t

ρ dmin

)2

+
1

σSA
ρcb2

∥∥∥∥∇
(
µ⋆
t

ρ

)∥∥∥∥
2

, (6.23)

the three terms in the source term represent respectively the production, the de-

struction and the diffusion.

The turbulent eddy viscosity µt is calculated from the Spalart–Allmaras working

variable as

µt = µ⋆
t fv1, (6.24)

where fv1 is a dimensionless function, which reads

fv1 =
χ3

χ3 + c3v1
, with χ =

µ⋆
t

µt
. (6.25)

In the production term, the modified vorticity function is expressed as

ω̂ = ‖ω‖+ ω̄ (6.26)

where ‖ω‖ is the magnitude of the vorticity vector, and

ω̄ =
µ⋆
tfv2

ρk2d2min

, with fv2 = 1− χ

1 + χfv1
. (6.27)

The remaining closure functions are

fw = g

(
1 + c6w3

g6 + c6w3

)1
6

, g = r + cw2

(
r6 − r

)
, r =

µ⋆
t

ρω̂k2d2min

, (6.28)

where dmin is the distance to the nearest wall, cb1 = 0.1355, σSA = 2/3, cb2 = 0.622,

k = 0.41, cw1 =
cb1
k2

+
(1 + cb2)

σSA
, cw2 = 0.3, cw3 = 2, cv1 = 7.1.

It is well know that in order to correctly discretize the turbulent boundary layer,

the first grid point off the wall must lie within the viscous sublayer [137]. This

requirement can be very strict for FV schemes which require quite regular elements,

because the grid resolutions on the wall and along the direction orthogonal to the

wall should be the same. This requirement might be circumvented with the use of

wall functions, which model the effect of the boundary layer instead of completely
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solving it, thus the grid resolution near the wall can be reduced. In this work no

wall functions are used, thus the boundary layer is completely resolved. The grid

resolution requirement is reduced with the use of high stretched element on the

wall region, in this way the grid resolution along the normal direction to the wall

is enough to discretized the boundary layer with good accuracy, but at the same

time the number of the elements remains limited. Furthermore, the use of the higher

order discretization of the solution reduces the mesh resolution requirement, making

the grid resolution near the wall region less problematic.

6.2.1 Improvement of the Robustness for Turbulent Flow Simulations

Although the use of the Spalart-Allmaras turbulence model is quite common in the

numerical simulations of aerodynamic flows, getting a robust solver is still a chal-

lenging task. A very important issue of the Spalart-Allmaras model is the behavior

of the turbulent governing equation in zones with high gradients of the working vari-

able. High values of the gradients are generally found near solid walls, where the

turbulent variable rises rapidly from zero to a high value, and in the outer zone of

the boundary layer where the turbulent variable rapidly decrease to the free-stream

value.

While the space discretization is generally such fine in the near-wall zones that

the turbulent variable is computed monotonously, the mesh resolution in the outer

part of the boundary layer may be insufficient to resolve the turbulent field. In

this case, the turbulent field shows numerical oscillations and negative values of the

turbulent variable which can make the algorithm unstable.

One common modification with respect to the original model equation consists

in limiting the value of the eddy viscosity to zero, so it never becomes negative

µt =

{
µ⋆
tfv1, χ > 0,

0, χ ≤ 0.
(6.29)

However it can be observed that for negative values of µ⋆
t the Spalart–Allmaras

model becomes unstable. One of the first modifications introduced to avoid nu-

merical instabilities consists simply in limiting the values of ω̂ such that it always

remains positive [116].

Considering the energy associated with the negative values of the working vari-

ables, it is possible to introduce more sophisticated modifications [86]. One first

multiplies the Spalart–Allmaras equation (6.22) by the turbulent working variable

to obtain the following governing equation for the energy of ν⋆t = µ⋆
t/ρ

1

2

∂ρν⋆t
2

∂t
+

1

2
∇·
(
ν⋆t

2
m
)
− ν⋆t∇·

(
η

σSA
∇ν⋆t

)
= ν⋆t SSA. (6.30)

Defining Ω+ and Ω− the sub-domains of Ω = Ω+ ∪ Ω−, in which ν⋆t is positive and

negative, respectively, and assuming that ∂Ω ∩ ∂Ω− = 0 and that µ⋆
t is C0(Ω), the
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integration of the previous equation over Ω− gives

1

2

∫

Ω−

∂ρν⋆t
2

∂t
dΩ +

1

2

∫

∂Ω−

ν⋆t
2
m ·n d∂Ω−

∫

∂Ω−

ν⋆t
η

σSA
∇ν⋆t · n d∂Ω

+

∫

Ω−

η

σSA
‖∇ν⋆t ‖2 dΩ =

∫

Ω−

ν⋆t SSA dΩ.

(6.31)

The two boundary integrals on the right-hand side of the previous equation are zero

due to the continuity of ν⋆t , i.e., ν
⋆
t |∂Ω− = 0. By using the definition of the source

term (6.23), one obtains

1

2

∫

Ω−

∂ρν⋆t
2

∂t
dΩ =

∫

Ω−

ρcb2ν
⋆
t − η

σSA
‖∇ν⋆t ‖2 dΩ

+

∫

Ω−

ρcb1ω̂ν
⋆
t
2 dΩ−

∫

Ω−

ρcw1fw
d2min

ν⋆t
3 dΩ.

(6.32)

The previous equation represents the rate of change of the energy of negative values

of ν⋆t associated with a control volume moving together with the boundary of Ω−.

In order to have a stable scheme, the right hand side of the previous equation should

be negative for negative values of ν⋆t .

The first integral on the right-hand side of Eq. (6.32) becomes positive for ν⋆t < 0

if (ρcb2ν
⋆
t − η) > 0 and thus the following alternative definition of η is adopted to

assure that the term remains negative

η =





µ(1 + χ), χ ≥ 0,

µ
(
1 + χ+

1

2
χ2
)
, χ < 0.

(6.33)

In order for the second integral on the right-hand side of Eq. (6.32) to be negative

for ν⋆t < 0, the production term is modified as

Pµ⋆
t
=

{
cb1ω̂µ

⋆
t , χ ≥ 0,

cb1ωµ
⋆
tg, χ < 0.

(6.34)

g = 1− 1000χ2

1 + χ2
. (6.35)

where the modified vorticity is re-defined as follows

ω̂ =





‖ω‖+ ω̄, ω̄ > −cv2‖ω‖

‖ω‖+ ‖ω‖
(
c2v2‖ω‖+ cv3ω̄

)

(cv3 − 2cv2)‖ω‖ − ω̄
, ω̄ ≤ −cv2‖ω‖,

(6.36)

with cv2 = 0.7, and cv3 = 0.9.
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Finally since the the last integral on the right-hand side of Eq. (6.32) should be

positive for negative values of ν⋆t , the destruction term is modified as

Dµ⋆
t
=





ρcw1fw

(
µ⋆
t

ρ dmin

)2

, χ ≥ 0,

−ρcw1

(
µ⋆
t

ρ dmin

)2

, χ < 0.

(6.37)

The modifications introduced have the role to make the Spalart–Allmaras equa-

tion stable in the zone with negative µ⋆
t and make the equation continuous and

differentiable at µ⋆
t = 0. However, the modifications remove the negative contribu-

tion from the source term by making the production very strong in the negative χ

region. Although the modification is mathematically stable, it has been observed in

the numerical simulations that the strong effect induced by the modifications of the

production and destruction terms can induce a sudden and strong transient during

the iterative convergence which could make the solver to fail. In order to have a more

robust solver, the elimination of negative values of µ⋆
t must be addressed directly.

In the actual implementation of the Spalart–Allmaras equation, two modifica-

tionshave been adopted which have shown to be very effective. The first modification

consists in replacing the variable χ with the following function

ψµ⋆
t
=

{
0.05 log (1 + e20χ) , χ ≤ 10,

χ, χ > 10,
(6.38)

the same modification has been proposed in [79], and it has the role to deactivate

the production and the destruction terms of the turbulence model equation when µ⋆
t

becomes negative. The function ψµ⋆
t
is continuous and differentiable for all values of

χ as can be observed in Figure 6.1. The form of the turbulence model is identical

to the original form with the exception that the variable χ is replaced by ψµ⋆
t
and

the modified vorticity function (6.36) is retained. The second modification simply

consists in getting rid of the diffusion contribution in the source term when µ⋆
t ≤ 0.

In conclusion, in the improved version of the Spalart–Allmaras turbulence model

equation, the eddy viscosity is given by

µt = µψµ⋆
t
fv1, (6.39)

and the turbulent model equations is written as

∂µ⋆
t

∂t
+∇·

(
µ⋆
t

m

ρ
− η

σSA
∇

(
µ⋆
t

ρ

))
= SSA, (6.40)

with η = µ(1 + ψµ⋆
t
) and the source term given by

SSA =





cb1ω̂µψµ⋆
t
− ρcw1fw

(
µψµ⋆

t

ρ dmin

)2

+
1

σSA
ρcb2

∥∥∥∥∇
(
µ⋆
t

ρ

)∥∥∥∥
2

, χ > 0,

cb1ω̂µψµ⋆
t
− ρcw1fw

(
µψµ⋆

t

ρ dmin

)2

χ ≤ 0,

(6.41)
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Figure 6.1: Comparison between ψµ⋆
t
(solid line) and χ (dashed line) as function of µ⋆t /µ.

and the different functions involved are defined as

ω̂ =





‖ω‖+ ω̄, ω̄ > −cv2‖ω‖,

‖ω‖+ ‖ω‖
(
c2v2‖ω‖+ cv3ω̄

)

(cv3 − 2cv2)‖ω‖ − ω̄
, ω̄ ≤ −cv2‖ω‖,

(6.42)

ω̄ =
µψµ⋆

t
fv2

ρ k2 d2min

, fv1 =
ψ3
µ⋆
t

ψ3
µ⋆
t
+ c3v1

, fv2 = 1− ψµ⋆
t

1 + ψµ⋆
t
fv1

,

fw = g

(
1 + c6w3

g6 + c6w3

)1
6

, g = r + cw2

(
r6 − r

)
, r =

µψµ⋆
t

ρ ω̂ k2 d2min

.

(6.43)

Note that with the definition (6.41), the source term tends to zero when µ⋆
t becomes

negative. In the approach of [40], the source term is directly set to zero for negative

values of µ⋆
t .

6.2.2 Dimensionless Form of the Spalart–Allmaras Equation

The non-dimensionalization of the RANS equations is obtained with same approach

shown in Section 5.1.3. In particular, considering the equation for the momentum

in Eq. (6.16) and letting µtr be the reference turbulent viscosity, one has

∂m̃

∂t̃
+ ∇̃·

(
m̃⊗ m̃+

[
Pr

ρrv2r

]
P̃ I

)
=

[
µr

ρrvrlr
+

µtr

ρrvrlr

]
∇̃·S̃. (6.44)
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Since the momentum equation must recovers the same form of the dimensional

counterpart, in the previous equation the terms in the square brackets must amount

to unity, namely

Pr

ρrv2r
= 1,

µr

ρrvrlr
= 1 and

µtr

ρrvrlr
= 1. (6.45)

The first two conditions have been already seen in the case of the Navier-Stokes

equations, while the last relation gives an additional condition for the reference

eddy viscosity, namely

µtr = ρrvrlr = µr. (6.46)

Consider now the Spalart–Allmaras Equation, with Eq. (6.39) in mind, the non-

dimensional eddy viscosity is given by

µ̃t =
µt

µtr

=
µψµ⋆

t

µtr

fv1 = µ̃ψµ⋆
t
fv1. (6.47)

With this definition of the dimensionless eddy viscosity and with the dimensionless

quantity defined for the Navier-Stokes equation, it is possible to write the dimen-

sionless Spalart–Allmaras equation exactly as its dimensional counterpart 1.

6.3 Spatial Discretization of the RANS Equations

The complete set of the governing equations for RANS simulations is given by the

equations for the mean quantities (6.21) and the equations for the turbulence mod-

eling, in the case considered here the one equation Spalart–Allmaras model (6.22).

Generally, two approaches are followed in the discretization of the RANS equa-

tions. In the fist approach [16, 17, 30, 51] the equations for the turbulence modeling

are fully coupled with the mean flow equations and the problem is solved for both

the mean flow quantities and turbulence variables. In the second approach [15, 19]

the governing equations for the mean flow are solved first, the mean flow quantities

are then used as inputs for the solver of the turbulence equations and the process is

generally reiterated for a certain number of iterations.

Despite the difference of the two approaches, there seems to be no firm analytical

basis on how to couple the RANS equations and the turbulence model equations. For

example, in a loosely coupled approach the turbulence equations might be discretized

with a scheme different from that used for the mean flow equations; usually a more

dissipative scheme is used for the turbulence equations to improve the robustness

of the numerical solver. However, it has been observed that using a fully coupled

1Note that in Eq. (6.47) the term µ̃ is generally very small, for this reason in the numerical

code instead of solving directly for µ̃⋆

t
it is better to solve for µ̄⋆

t
= (Re∞/M∞)µ̃⋆

t
, cf Eq. (5.35),

and then compute µ̃⋆

t
.
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approach might improve the iterative convergence of the scheme [72], especially when

the turbulent kinetic energy contributions are considered in the equations for the

mean flow, and there would not be much gain by using the strongly coupled method

when the turbulent kinetic energy contribution is ignored.

In this work the Spalart–Allmaras equation is fully coupled with the RANS

equations and the whole set of the governing equations is discretized with the RD

scheme described in Chapter 5 for the Navier-Stokes equations. This approach

guaranties that both the mean flow variables and the Spalart–Allmaras working

variable are discretized with the same level of accuracy, Furthermore, the numerical

implementation of the turbulence model is straightforward in the Navier-Stokes

solver.

With respect to the Navier-Stokes equations, the set of the unknowns includes

the turbulence working variable and the advective and viscous flux functions are aug-

mented to include the advective and viscous terms of the Spalart–Allmaras equation,

furthermore the source has to be also considered. In vector form one can writes

∂u

∂t
+∇· f

a(u)−∇· f
v(u,∇u) = S(u,∇u) (6.48)

with

u =




ρ

m

Et

µ⋆
t




, f
a(u) =




m

m⊗m

ρ
+ P I

(
Et + P

)m
ρ

µ⋆
t

m

ρ




, f
v(u,∇u) =




0

S

S ·
m

ρ
+ κ∇T

η

σa
∇

(
µ⋆
t

ρ

)




,

(6.49)

and S(u,∇u) = (0, 0, 0, SSA)
T. The definitions of the eigen-structure and the homo-

geneity tensor associated with the new definition of the advective and viscous flux

functions, respectively, are reported in Appendix B.

The total residual for a generic element e is computed as

Φe =

∮

∂Ωe

(
f
a(uh)−K(uh)∇̃uh

)
· n̂ d∂Ω−

∫

Ωe

S(uh, ∇̃uh), (6.50)

note that in order to improve the accuracy of the numerical discretization, the

reconstructed gradient is used in the calculation of the source term, even if the

integral is strictly defined on the interior of the element.

Analogously to the Navier-Stokes equation, the centred linear scheme reads

Φe,LW
i =

Φe

N e
dof

+

∫

Ωe

A · ∇ψi Ξ
(
A · ∇uh −∇·

(
K∇̃u

)
− S(uh, ∇̃uh)

)
dΩ

+

∫

Ωe

K∇ψi ·

(
∇uh − ∇̃uh

)
dΩ

(6.51)
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and the limited non-linear scheme reads

Φ̂e,Rv
i = Φ̂e

i

+ ε e
h(uh)

∫

Ωe

(
A·∇ψi−K∇ψi

)
Ξ
(
A·∇uh−∇·

(
K∇̃uh

)
−S(uh, ∇̃uh)

)
dΩ,

+

∫

Ωe

K∇ψi ·

(
∇uh − ∇̃uh

)
dΩ

(6.52)

with Φ̂e
i the limited version of the residual distributed with the Rusanov scheme.

The boundary conditions are imposed in the same way showed for the Navier-

Stokes equations, with the addition of the condition µ⋆
t = 0 on the wall, which is

imposed in a strong way. At the far-field, the free-stream value of µ⋆
t is weakly

imposed, and as suggested by Allmaras and coworkers [14], the free-stream value

µ⋆
t/µ = 3− 5 is imposed for fully turbulent simulations.

6.4 Non-Linear LU-SGS Implicit Solver

The equations for the turbulence model make the system of the governing equations

stiffer compared to the Navier-Stokes equations, in addition, since in turbulent flows

the variation of the solution in the direction normal to wall is much higher than that

in the tangential direction, very stretched grids are generally used in numerical sim-

ulations of turbulent flows. These factors, makes the solution of turbulent problems

much more difficult than laminar ones and the robustness of the numerical solver is

drastically reduced.

Since high-order methods are generally less robust than standard low-order meth-

ods, the construction of a reliable numerical scheme becomes crucial. In fact, it has

been observed in numerical simulations of turbulent flows at vary high Reynolds

number, typical of aerodynamic applications, that the iterative scheme is very prone

to fail with a sudden breakdown of the solver or it stagnates at high values of the

residual. A possible explanation for this behavior is strictly related to the nature of

the implicit solver described in Section 5.4.1. In the matrix-free approach, the Ja-

cobian matrix is approximated with a finite difference method, this approach might

produce ill conditioned Jacobian matrices for very stiff problems that results in a

failure of the numerical solver. Furthermore, since the computed Jacobian used as

preconditioning matrix is only an approximation of the true Jacobian of the nu-

merical scheme, the use of more sophisticated preconditioning techniques will be

probably ineffective.

For thees reasons, instead of using a matrix-free based Newton Krylov method,

a new strategy has been adopted for the solution of the non-linear system obtained

from the discretization of the RANS equations. The new approach is based on the
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manipulation of the Gauss-Seidel method in order to avoid the calculation of the

off-diagonal elements in the Jacobian matrix.

Consider the solution of the non linear system with the Newton’s scheme (5.77),

which is re-written here for convenience(
I

∆tn
+
∂R

∂u

)
∆unh = −R(unh), (6.53)

The previous equation can be recasted in the following form
(

I

∆tn
+
∂Ri

∂ui

)
∆uni = −Ri(u

n)−
∑

j∈N i
h

j 6=i

∂Ri

∂uj
∆unj , ∀ i ∈ Nh. (6.54)

When the Gauss-Seidel method is applied to solve (6.54), the forward and backward

sweep steps read
(

I

∆tn
+
∂Ri

∂ui

)
∆u∗i = −Ri(u

n)−
∑

j∈N i
h

j<i

∂Ri

∂uj
∆u∗j , i = 1, 2, . . . , Ndof , (6.55)

(
I

∆tn
+
∂Ri

∂ui

)
(∆uni −∆u∗i ) = −

∑

j∈N i
h

j>i

∂Ri

∂uj
∆unj , i = Ndof , . . . , 2, 1. (6.56)

A better scheme can be obtained by applying a symmetric variation of the Gauss-

Seidel method, in which both forward and backward steps are applied alternatively.

The forward and backward sweep steps can be written in concise form as
(

I

∆tn
+
∂Ri

∂ui

)
∆u

(k+1)
i = −Ri(u

n)−
∑

j∈N i
h

j 6=i

∂Ri

∂uj
∆u

(∗)
j , ∀ i ∈ Nh, (6.57)

where k is an inner iteration index, the superscript (∗) indicates the most recently

updated solution, and ∆u(0) = 0. At the end, un+1 = un +∆u(k+1).

The right-hand side of the previous equation can be further manipulated as

follows. Denoting the latest available solution as u(∗) = un +∆u(∗), it is possible to

linearize Ri

(
u(∗)
)
as

Ri

(
u(∗)
)
≈ Ri

(
un
)
+
∑

j∈N i
h

∂Ri

∂uj
∆u

(∗)
j

= Ri

(
un
)
+
∂Ri

∂ui
∆u

(∗)
i +

∑

j∈N i
h

j 6=i

∂Ri

∂uj
∆u

(∗)
j ,

(6.58)

and the following relation is obtained

Ri

(
un
)
+
∑

j∈N i
h

j 6=i

∂Ri

∂uj
∆u

(∗)
j = Ri

(
u(∗)
)
− ∂Ri

∂ui
∆u

(∗)
i . (6.59)
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Substituting the previous relation in Eq. (6.57), one obtains the following scheme

[
I

∆tn
+
∂Ri

∂ui

]
∆u

(k+1)
i − ∂Ri

∂ui
∆u

(∗)
i = −Ri

(
u(∗)
)
, (6.60)

which at last can be recasted as

[
I

∆tn
+
∂Ri

∂ui

](
∆u

(k+1)
i −∆u

(∗)
i

)
= −Ri

(
u(∗)
)
+

∆u
(∗)
i

∆tn
. (6.61)

The Eq. (6.61) is solved with the forward and backward sweeps, at the beginning

of each step the small diagonal blocks of the Jacobian matrix in the left-hand side

can be inverted using LU decomposition. Note that the right-hand side of the

previous equation is nothing but the residual evaluated with the latest available

solutions. The last term in the right hand side of the (6.61) is usually dropped for

steady simulations, in order to accelerate the convergence rate. When the symmetric

Gauss-Seidel converges, one is actually solving the original equation (5.76) instead

of the linearized version (6.54), for this reason the algorithm is called non-linear

LU-SGS [120].

The expression (6.61) still requires the diagonal blocks of the Jacobian matrix,

in some works [92, 120] the diagonal blocks of the Jacobian are approximated with

a finite difference method, however this strategy has been found unsatisfactory for

RANS simulations, thus the diagonal of the approximated Jacobian is used.

6.5 Numerical Results

6.5.1 High Reynolds Number Flow over a Flat Plate

The two dimensional, turbulent flow over a flat plate is here considered. This test

case is widely used for the verification and the validation of numerical schemes and

turbulence models, furthermore, it is also useful to study the accuracy of numerical

schemes in resolving boundary layer features.

The free-stream Mach number is M = 0.2 and the Reynolds number, computed

with the free-stream conditions and a unity length of the plate, is Re = 5 × 106,

and the length of the plate is L = 2. The range of the computational domain in

the x-direction is [−0.33, 2] with the leading edge of the flat plate at x = 0. The

size of the computational domain in the y-direction is 1, which is about 66 times

the boundary layer thickness at x = 2. At the inlet, the inflow boundary condition

is imposed, while at the top and the exit, the static pressure is imposed. Along

the plane y = 0, the symmetry boundary condition is imposed for −0.33 ≤ x ≤ 0

and the adiabatic wall no-slip boundary condition is imposed for 0 ≤ x ≤ 2. The

free-stream value of the turbulent working variable is such that µ⋆
t/µ∞ = 3.
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A sequence of uniformly refined grids is considered. The coarsest grid is obtained

by the triangulation of a 35 × 25 structured grid; the first number refers to the

number of nodes on the horizontal boundaries, with 29 nodes along the plate, the

second number refers to the number of nodes on the vertical boundaries. The grid

is stretched in the wall-normal direction, and is also clustered near the plate leading

edge; the height of the elements along the wall is 8.32×10−6. Finer grids are obtained

by applying successive uniform refinements to the coarsest grid. The grids used are

the same reported on the NASA Turbulence Modeling Resource repository [107].

Except for the singularity of the solution at the leading edge of the plate, the

flow is smooth and for this reason the linear scheme is used, with the SPR-ZZ

method. Despite the high aspect ratio of the elements, this test case is not very

problematic for the non-linear solver, thus the Jacobian-free method with the LU-

SGS preconditioner is used, for this particular test case. For each grid, simulations

with linear and quadratic approximation of the solution are performed, and the L2

norm of the residuals of the mean flow and turbulence equations is reduced by ten

orders of magnitude.

The skin friction distributions along the plate for the linear and quadratic ap-

proximation of the solution, for grids with different resolutions, are reported in

Figure 6.2 as function of the quantity Rex = x‖v∞‖/µ∞; for reference, the experi-

mental measures of Wieghardt [136] are also reported. It is worth noting that the

experimental data were obtained in a essentially incompressible regime (M = 0.096),

however in the numerical simulations, although the Mach number is low (M = 0.2),

compressibility effects cannot be disregarded.

Note that the linear approximation of the solution gives a quite poor resolution of

the friction coefficient along the plate; the distribution is not regular and the solution

is still far from a grid independent value, even for the finest grid. The quadratic

approximation of the solution, on the other hand, gives a very regular profile of the

friction coefficient. The values agree well with the experimental measures and it is

also clear that a reasonable accurate solution is already obtained on the coarsest

mesh.

A quantitative comparison between the linear and quadratic approximation of

the solution is reported in Figure 6.3-a, where the values of the drag coefficient are

reported as function of the number of the degrees of freedom. Two reference values

of the drag coefficient are also reported; the first one was computed with the NASA’s

unstructured FV code FUN3D [80] on a finer grid [108], the second reference value

was obtained with a Richardson extrapolation [100] of the drag coefficients computed

with quadratic elements. The difference between the two values is about 0.17%.

It is evident how, for the same number of degrees of freedom, the solution com-

puted with the quadratic elements converges faster to the reference value, than the

solution computed with the linear approximation. Thus, a second order scheme

requires much more degrees of freedom than the third order scheme, to get a grid

independent and accurate solution. This can be observed also in figure Figure 6.3-b,

where the error for the drag coefficient is reported as function of the number of
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Figure 6.2: Friction coefficient along the plate for the turbulent flow over a flat plate, with

different grid resolutions and with linear (a) and quadratic (b) approximation

of the solution.
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Figure 6.3: Effects of the grid and polynomial refinement on the solution accuracy for

the turbulent flow over a flat plate: (a) drag coefficients (b) error on the

computation of the drag coefficient.
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Figure 6.4: Dimensionless axial velocity profiles in the boundary layer at the point x =

0.97 for the turbulent flow over a flat plate, with different grid resolutions and

with linear (a) and quadratic (b) approximation of the solution.

the degrees of freedom. The error is computed as the absolute values of the dif-

ference between the numerical value of the drag coefficient and the reference one,

i.e., errCD = |cD − cDref
|. The reference drag coefficient used for the calculation of

the error is the value obtained with the Richardson extrapolation, because the FV

reference value is reported with not enough digits, and an early stagnation of the

error for the solution obtained with quadratic elements would be observed.

In Figure 6.4 are also reported the profiles of the axial velocity in the boundary

layer at the station x = 0.97, in terms of dimensionless quantities. The dimension-

less distance from the plated is defined as y+ = yρuτ/µ, with the friction velocity

given by uτ =

√(
µ∂vx

∂y

)∣∣∣
wall

, the dimensionless velocity is defined as u+ = vx/uτ .

The figures report also the law-of-wall profiles computed according to the following

equations [97]





u+ = y+, in the viscous sublayer

u+ =
1

κ
log y+ +B, in the loglayer

(6.62)

where κ = 0.41 is the von Karman constant and B = 5. Since the friction velocity is

based on the computed skin friction values at the wall, the dimensionless quantity

depends on the accuracy of the solution. For the linear approximation of the solu-

tions, a good agreement with the theoretical profiles in the viscous sub-layer and in

the log-layer regions is obtained, also in the outer part of the boundary layer the

velocity profiles dependent only a little on the grid resolution. Differences in the

velocity profiles for quadratic elements can hardly observed from the figure.

Since no wall-functions have been used for the turbulent equation, it is important
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Grid 35× 25 Grid 69× 49 Grid 137× 97 Grid 273× 193

y+1P1
1.500 0.722 0.359 0.182

y+1P2
0.765 0.372 0.184 –

Table 6.1: Values of the dimensionless heights of the elements on the wall at x = 0.97

for the turbulent flow over a flat plate, for different grids and for linear and

quadratic elements.
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Figure 6.5: Dimensionless turbulent working variable profiles in the boundary layer at

the point x = 0.97 for the turbulent flow over a flat plate, with different

grid resolutions and with linear (a) and quadratic (b) approximation of the

solution.

to verify that the height of the elements on the wall is contained within the viscous

sub-layer. In Table 6.1 are reported the values of the dimensionless heights of the

element on the wall, computed at x = 0.97, for different grids, and for linear and

quadratic elements. Note that in the case of quadratic elements, the height of the

elements is computed as the distance from the plate of the middle node on the edge

of the element, this means that the distance from the wall is half the height of the

element.

In Figure 6.5 are reported the profiles of the quantity χ = µ⋆
t/µ at the station

x = 0.97, to show the value of the turbulent working variable along the boundary

layer. Note that when the spatial resolution is poor (generally at the outer part

of the boundary layer) negative values of the turbulent working variable might be

obtained, however this effect is canceled out with the mesh refinement and/or the

order increment of the numerical solution.
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Figure 6.6: An example of coarse grid used for the numerical simulation of a turbulent

flow over the RAE2822 airfoil and a zoom of the mesh near the leading edge

of the airfoil to show the curvilinear elements.

6.5.2 Subsonic Flow over a RAE2822 Airfoil

The second test case considered is the subsonic flow over a RAE2822 airfoil at angle

of incidence α = 2.79◦, the Mach number based on the free-stream conditions is

M = 0.4 and the Reynolds number based on the free-stream conditions and the

airfoil chord is Re = 6.5× 106.

The problem is solved, with the linear scheme and the SPR-ZZ method, on a

sequence of unstructured grids of triangles obtained with subsequent uniform refine-

ments of the coarsest grid, shown in Figure 6.6, which is made of 4 048 elements. As

practice in this work, an isoparametric representation is used for the solution and

the geometry. Due to the strong stretching of the boundary layer elements, some

of the quadratic elements have curved boundaries non only on the airfoil wall but

also at the interior. The solution is converged using the non-linear LU-SGS method;

solutions are considered to be at convergence when the L2 norm of the residual of

all the variables (mean flow and turbulence equation) is reduced by ten orders of

magnitude.

In Figure 6.7 are reported the contours of the Mach number and of the turbulence

variable χ = µ⋆
t/µ for the third order simulation on a fine grid, and Figure 6.8

shows the pressure and friction coefficient along the airfoil computed with linear

and quadratic elements on two different grids, such that the number of degrees of

freedom of the two simulations is the same (Ndof = 32 784); the respective iterative

convergence histories are reported in Figure 6.9.

For completeness, in Figure 6.10 are reported the values of the lift and drag

coefficients computed on different grids with linear and quadratic elements. Note
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(b)

Figure 6.7: Mach number (a) and turbulent working variable (b) contours for the subsonic

flow over a RAE2822 airfoil discretized with quadratic elements.
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Figure 6.8: Pressure (a) and friction (b) coefficient along the RAE2822 airfoil with linear

and quadratic elements on two different grids, such that Ndof = 32784.
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Figure 6.9: Iterative convergence for the simulation of the subsonic flow over the RAE2822

aifoil with linear (a) and quadratic (b) elements on two different grids, such

that Ndof = 32784.

how the use of quadratic elements allows a faster convergence with the mesh re-

finement of the lift and drag coefficients to their respective asymptotic values. In

addition, Figure 6.11 reports the errors for the force coefficients; the error for the lift

coefficient is computed as errCL = |cLh
−cLex |, where cLh

is the value of the lift coeffi-

cient computed numerically and cLex is a reference value obtained with a Richardson

extrapolation [100] of the lift coefficients computed with quadratic elements. The

same procedure is also used to compute the error on the drag coefficient. For the

lift coefficient, it is clear the advantage of using a high-order approximation over

standard second order schemes even for the simulations of RANS equations. For the

drag coefficient, the difference between second and third order schemes reduces but

nevertheless the quadratic approximation of the solutions gives a smaller error, for

the same number of degrees of freedom.

6.5.3 Transonic Flow over a RAE2822 Airfoil

In this test case a transonic, turbulent flow over a RAE2822 airfoil is considered.

The free-stream Mach number is M = 0.734, the angle of incidence and the Reynolds

number are the same of the previous test case, namely α = 2.79◦ and Re = 6.5×106.

In these conditions, the upper surface of the airfoil is characterized by the presence

of a shock wave which impinges the boundary layer, generating a small recirculation

bubble behind the shock.

Due to the presence of the shock, the problem is discretized with the non-linear

scheme, and the SPR-ZZ method is used for the gradient reconstruction. Further-

more, the solution is converged using the non-linear LU-SGS method; the L2 norm
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Figure 6.10: Values of the lift (a) and drag (b) coefficients as function of the number of

the degrees of freedom, for the subsonic turbulent flow over the RAE2822

airfoil, with linear and quadratic elements.
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Figure 6.11: Errors with linear and quadratic elements on the lift (a) and drag (b) coeffi-

cients for the subsonic turbulent flow over the RAE222 airfoil.
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Figure 6.12: Mach number contours (a) and iterative convergence history (b) for the tran-

sonic turbulent flow over a RAE2822 airfoil computed with quadratic ele-

ments.

of the residual of the mean flow and of the turbulent equation is reduced at least by

nine orders of magnitudes.

The same type of grids used in the previous test case is adopted and three levels

of refinement are considered. In Figure 6.12 are reported the Mach number contours

for the solution on the fine grid (64 768 elements) with quadratic elements, together

with the iterative convergence history. Note that the shock is sharply captured, and

the number of iterations to reach the steady state is much higher compared to the

subsonic test case, due to the presence of the shock and also due to the use of the

non-linear scheme.

In Figure 6.13 are shown the pressure and the friction coefficients along the airfoil

with linear elements on a finer grid and quadratic elements on a coarse grid, such that

the number of degrees of freedom in the two cases is the same: 32 784. The values

of the computed pressure coefficient agree very well with the experimental data and

with the quadratic discretization of the solution, the agreement is even improved.

The shock is sharply captured and its position correctly predicted. The leading edge

suction peak of the pressure is slightly under-predicted by the numerical simulations,

due to the fact that the simulations have been performed in a fully turbulent regime.

Even the friction coefficient agrees well with the experimental data. On the upper

part of the airfoil, note the negative values of the friction coefficient just behind the

shock, obtained with the quadratic approximation of the solution, that identify the

separation bubble induced by the shock.

Finally, in Figure 6.14 are reported the values of lift and drag coefficients for lin-

ear and quadratic approximation of the solution with three levels of grid refinement;

the quadratic solution reaches much faster than the linear one the reference values,

for the same number of degrees of freedom.



158 Simulations of Turbulent Flows

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

Experiments
P2
P1

(a)

x/c
C

f
0 0.2 0.4 0.6 0.8 1

-0.005

0

0.005

0.01
Experiments
P2
P1

(b)

Figure 6.13: Pressure (a) and friction (b) coefficients over the RAE2822 airfoil, for the

transonic turbulent flow computed with linear and quadratic elements on

two grids, such that Ndof = 32784.
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Figure 6.14: Lift (a) and drag (b) coefficients on different grids, for the transonic turbulent

flow over the RAE2822 airfoil, with linear and quadratic elements.
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(a) (b)

Figure 6.15: Unstructured grid used for the simulation of the turbulent flow over the L1T2

multi-element airfoil, and zoom of the grid near the slat.

6.5.4 Subsonic Flow over a Multi-Element Airfoil

The flow over the three elements airfoil L1T2 is computed with a free-stream Mach

number M = 0.197, angle of attack 4.01◦ and Reynolds number Re = 3.52 × 106,

based on the free stream values and the chord of the retracted airfoil. The main

difficulty of this problem is the flow complexity which involves strong interacting

wakes. This test case has been computed with the linear scheme, using linear and

quadratic approximation of the solution on an unstructured grid of 33 3384 elements,

see Figure 6.15. The solution has been converged with the non linear LU-SGS

method; the residual of the solution is reduced by ten orders of magnitude with

linear elements and eight orders of magnitudes with quadratic elements.

In Figure 6.16 are depicted the Mach number contours for the simulation with

quadratic elements and stream lines which shown the strong recirculation region in

the flap-cove. In Figure 6.17 are depicted the contours of the turbulent working

variable near the slat and the flap of the airfoil. Finally, in Figure 6.18 the values

of the pressure coefficient, computed with linear and quadratic elements, are com-

pared against experimental data, showing a good agreement between the numerical

solutions and the experimental data.

6.5.5 Transonic Flow around the ONERA M6 Wing

As last test case, the simulation of the transonic turbulent flow over the ONERA

M6 wing is performed. The free-stream Mach number is M = 0.8395, the angle of

incidence is α = 3.06◦ and the Reynolds number based of the free-stream values

and the mean aerodynamic chord is Re = 11.72 × 106. The grid is composed by
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Figure 6.16: Mach number contours (a) and streamlines (b) over the L1T2 multi-element

airfoil, for the solution with quadratic elements.
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Figure 6.17: Zoom of the contours of the turbulent working variable near the leading (a)

and trailing (b) of the airfoil

123 444 tetrahedra, and the mean height of elements on the wing in dimensionless

units is approximately y+1 = 5. Far-field boundary conditions are applied on the

outer part of the domain and the wing surface is modeled as a non-slip adiabatic

wall. In Figure 6.19 are reported the grid used for the simulation, and the pressure

coefficient contours for the third order simulation.

The non-linear solver has been used to discretize the governing equations with the

SPR-ZZ gradient reconstruction method, and the non-linear LU-SGS method has

been used to make the scheme converge to the steady state solution. Convergence
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Figure 6.18: Pressure coefficient distribution over the L1T2 multi-element airfoil for the

solution with linear (a) and quadratic (b) elements.

is considered achieved when the L2 residual of all the equations is dropped by eight

orders of magnitude. Simulations have been performed in parallel on 64 processors.

In figure Figure 6.20, the values of the pressure coefficient for the third order

simulation at different stations along the spanwise direction of the wing are compared

against the experimental data. Despite the quite coarse mesh, a good agreement with

the experimental data is obtained and even the lambda shock is well represented.

However, a finer grid is required to better capture the shock structure at wing tip

and also to better resolve the complex shock-boundary layer interaction occurring

here. Finally, in Table 6.2 are reported the values of lift and drag coefficients for

the second and third order simulations.

N. DoF CL CD

P1 22 276 0.268231 0.019002

P2 170 751 0.270758 0.018554

Table 6.2: Lift and drag coefficients for the second and third order turbulent simulations

over the M6 wing.
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Figure 6.19: Computational mesh used for the simulation of the turbulent flow over the M6

wing (a) and pressure coefficient contours (b) for the third order simulation.
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Figure 6.20: Pressure coefficient distribution at different spanwise locations over the M6

wing, for the third order simulation.
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Simulations of Dense Gas Flows

In this section inviscid numerical simulations of dense gas flows are reported. Dense

gases are single-phase vapors whose properties deviate significantly from the ideal

gas law, operating at temperatures and pressures of the order of magnitude of the

critical ones. For a class of dense gases, known as BZT, non-classical gasdynamic

behaviors are theoretically predicted: for particular values of pressure and temper-

ature, compression shocks of the perfect gas theory violate the entropy inequality

and are therefore inadmissible. Such non-classical phenomena may have some poten-

tial advantages in turbomachinery applications due the possibility to reduce losses

caused by wave drag and shock/boundary layer interactions. The complexity of

performing experimental studies with this class of fluids, motivates the development

of accurate numerical solvers which make easier to isolate differences due to the

physical modeling from numerical errors.

Here second and third order simulations with the non-linear RD scheme are

performed, for two and three dimensional problems, with complex thermodynamic

laws. The ability of the numerical solver to preserve the monotonicity of the solutions

near strong shocks and the good convergence properties of the scheme for fluids

which require more complex model that the ideal gas are verified.

This part of the work has been done in collaboration with P. M. Congedo and

N. Razaaly.

7.1 Introduction to Dense Gas Flows

In numerical simulations of compressible flows for standard aerodynamic applica-

tions the ideal gas model, despite its simplicity, represents an acceptable approxi-

mation. However, the ideal gas approximation cannot be considered accurate when

pressures and temperatures are of the order of magnitude of their liquid-vapor sat-

uration curve. This thermodynamic region is generally called dense gas region, in

contrast to the dilute gas region where the use of the ideal gas model can be retained



166 Simulations of Dense Gas Flows

valid.

Fluids in dense regime may display so-called non-classical gas dynamic phenom-

ena. In these cases dense gases may have significantly different properties from

dilute gases, from a quantitative and qualitative point of view. For example, for

fluids with complex molecules near the saturation curve, at high pressure and tem-

perature, in an isentropic expansion, the speed of sound increases with decreasing

density, differently from what happens in the ideal gas model [38]. The opposite

trend in the variation of the speed of sound with the density may produce new ef-

fects like the impossibility of compression shocks in that region or the suppression

of shock-induced separation [139].

The dynamic of dense gases is governed by a thermodynamic parameter known

as the fundamental derivative of gasdynamics [122]

Γ = 1 +
ρ

c

(
∂c

∂ρ

)

s

, (7.1)

where ρ is the density, c is the speed of sound and s is the entropy. For ideal gas

Γ = (γ + 1)/2 > 1. For some complex fluids, Γ may be lower that one, imply-

ing that (∂c/∂ρ)s < 0. This means that the behavior of the speed of sound upon

isentropic perturbations is reversed with respect to classical fluids. For a particular

class of highly-complex heavy fluids Γ may have negative values in a subset of the

dense gas region next to the saturation curve. Such fluids are usually referred to as

Bethe-Zel’dovich-Thompson fluids, from the researchers who first postulated their

existence; the thermodynamic region characterized by negative values of Γ is called

the inversion zone. It has been theoretically shown that, for Γ < 0, compression

waves are smoothed out. As a consequence, compression shocks within the inver-

sion zone violate the entropy inequality, and are therefore inadmissible; conversely,

rarefaction shocks are allowed [38, 39, 122, 139].

The interest in BZT fluids is motivated by the potential benefits in the use of

such class of fluids in energy applications. For instance, in turbo-machinery flows

the shock formation and the consequently loss of energy could be ideally suppressed

if the turbine expansion could happen with the inversion zone.

Good candidates for BZT fluids are organic compounds with complex molecular

structures. In particular, siloxanes are possibly the most suitable fluids from an

engineering point of view, due to their nontoxicity, excellent thermal and chemi-

cal stability, and limited flammability. Siloxanes are a class of fluids composed of

molecules containing alternate silicon and oxygen atoms in either a linear or cyclic

arrangement, usually with one or two organic groups attached to each silicon atom.

For example, cyclic molecules D4 (octamethylcyclotetrasiloxane, C8H24O4Si4) and

D5 (decamethylcyclopentasiloxane, C10H30O5Si5) may be used for non-classical gas-

dynamic studies. In Table 7.1 are reported the relevant thermophysical property

data of some cyclic siloxanes.
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Fluid MW Tc Pc vc
[kg/kmol] [K] [kPa] [m3/kmol]

D4 296.62 586.5 1332.0 0.958

D5 370.77 619.2 1160.0 1.267

D6 444.92 645.8 961.0 1.594

Table 7.1: Thermophysical property data for some cyclic siloxanes. MW is the molecular

weight, Tc, Pc, and vc the critical temperature, pressure, and volume, respec-

tively [35].

7.2 Thermodynamic models

Several thermodynamic models, with different levels of complexity, have been pro-

posed in literature. In particular, in this work two equations of state are considered:

the cubic Peng-Robinson-Stryjeck-Vera (PRSV) [119] and the 12-parameter techni-

cal equation of state proposed by Span and Wagner (SW) [117].

The form of the governing equations is not changed with respect to the ideal

gas model formulation. For instance, the form of the Euler equations is exactly

the same presented in Eq. (5.1), the only difference is in the expression of the

equations of state. Namely, in Eq. (5.3) other relations must be used according the

thermodynamic model adopted. For dense gas flows, it is convenient to make the

governing equations dimensionless by using the following set of reference quantities

lr = l, ρr = ρc, Pr = Pc and Tr = Tc, (7.2)

where ρc, Pc, Tc are the critical density, pressure and temperature, respectively, and

lr is some characteristic length of the problem.

It is worth noting that the Jacobian matrix of the advective flux function and the

relative eigen-structure involve thermodynamic relations, thus the Jacobian matrix

and its eigenvectors should be computed for a generic gas, to avoid model-depending

implementations, see Appendix C.

7.2.1 PRSV equation

Peng and Robinson (1976) proposed a cubic equation of state of the form:

P (T, v) =
RT
v − b

− a

v2 + 2bv − b2
, (7.3)

with P the pressure, v specific volume and T the temperature of the fluid, and

where a and b are substance-specific parameters related to the fluid critical-point

properties (Pc, Tc) and are representative of the attractive and repulsive molecular

forces

a = 0.457235
R2T 2

c

Pc
α(T ), and b = 0.077796

RTc
Pc

. (7.4)
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These parameters are not completely independent, since isothermal lines in the

P–v plane should satisfy the thermodynamic stability conditions of zero curvature

and zero slope at the critical point. Such conditions allow computing the critical

compressibility factor Zc = (Pcvc)/(RTc) as the solution of a cubic equation. The

correction factor α is given by

α(T ) =
(
1 +K(1− T 1/2

r )
)2
, (7.5)

with

K = 0.378893 + 1.4897153ω − 0.17131848ω2 + 0.0196554ω3, (7.6)

where the parameter ω is the fluid acentric factor. The other needed information to

complete the thermodynamic model, is approximated through a power law, namely

cv,∞(T ) = cv,∞(Tc)

(
T

Tc

)n

(7.7)

with n a fluid-dependent parameter. The equation of the state for the internal

energy, e, is computed by exploiting the compatibility relations, namely

e(T, v) = er +

∫ T

Tr

cv,∞(T )dT −
∫ ρ

ρr

1

ρ2

(
T
∂P

∂T
− P

)
dρ, (7.8)

where cv,∞ is the low-pressure, i.e. ideal-gas, specific heat at constant volume, and

the subscript r indicates a reference state.

7.2.2 SW equation

The state-of-the art multi-parameter thermodynamic model is represented by the

Span-Wagner (SW) equation of state. The SW equation is defined as follows

ψ(τ, δ) = ψ0(τ, δ) + ψr(τ, δ)

= ψ0(τ, δ) + n1δτ
0.25 + n2δτ

1.125 + n3δτ
1.5 + n4δ

2τ 1.375+

n5δ
3τ 0.25 + n6δ

7τ 0.875 + n7δ
2τ 0.625 + n8δ

5τ 1.75 + n9δ
5τ 1.75+

n10δ
4τ 3.625e−δ2 + n11δ

3τ 14.5e−δ3 + n12δ
4τ 12e−δ3 ,

(7.9)

where ψ is the reduced Helmoltz energy (i.e., normalized with RT ), ψ0 is the ideal-

gas contribution to the Helmholtz free energy, and the remaining terms represent a

real-gas correction, which depend on the reduced density δ = ρ/ρc and on the inverse

of the reduced temperature τ = Tc/T . The terms n1, . . . , n12 are substance-specific

coefficients. The SW equation is valid for many classes of non-polar and weakly

polar fluids and its parameters have been determined in the literature for different

classes of fluids.

For the calculation of caloric properties, the SW model is supplemented by the

ideal gas contribution to the specific heat at constant pressure, approximated by a

polynomial function of the temperature

cp,∞ = cv,∞ +R = η1 + η2T + η3T
2 + η4T

3, (7.10)
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where the polynomial coefficients η1, . . . , η4, depend on the substance under consid-

eration. With the previous definition of the specific heat, the internal energy can be

computed using Eq. (7.8), while the pressure is given by as following equation

Pv

RT = 1 + δ

(
∂ψr

∂δ

)

τ

. (7.11)

7.3 Numerical Results

7.3.1 Transonic Flow over a NACA0012 Airfoil

The transonic flow over the NACA-0012 airfoil at zero angle of incidence and free-

stream Mach number M = 0.985 is now considered. The D5 siloxane working fluid

is used with the PRSV and the SW functional forms, furthermore simulations with

the ideal gas (γ = 1.4) are also performed. For dense gas simulations, the thermody-

namic conditions at the free-stream are taken as P∞/Pc = 0.985 and v∞/vc = 0.622,

Figure 7.1-a.

In the PRSV model for the D5 siloxane, the acentric factor is ω = 0.6658, the

exponent and the ideal-gas specific heat in Eq. (7.7) are n = 0.5208 and cv∞(Tc) =

76.0R, respectively. The parameters of the SW model for the D5 siloxane are listed

in Table 7.2

n1, . . . , n6 n7, . . . , n12 η1, . . . , η4, ω and Zc

n1 = 1.40844725 n7 = 0.82412481 η1 = −34.898

n2 = −2.29248044 n8 = 0.15214274 η2 = 1861.5 × 10−3

n3 = 0.42851607 n9 = −0.68495890 η3 = −1403.4 × 10−6

n4 = −0.73506382 n10 = −0.55703624 × 10−1 η4 = 500.0 × 10−9

n5 = 0.16103808 n11 = 0.13055391 × 10−1 ω = 0.6658

n6 = 0.29643278 × 10−3 n12 = −0.31853761 × 10−1 Zc = 0.285883427

Table 7.2: Parameters for the SW equation of state for the D5 siloxane [36].

The simulation are performed on an unstructured grid made of 22 784 triangles,

(Figure 7.1-b), with the non-linear RD solver, with linear and quadratic approxima-

tion of the solution. The Jacobian-free approach with the LU-SGS preconditioner

is used to make the simulations converge to the steady state, which is considered

to be reached when the L2 norm of the density is dropped at least by nine orders

of magnitude. Convergence histories are reported in Figure 7.2 for the simulations

with the three equations of state, at the second and third order.
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Figure 7.1: Working point (a) and grid (b) used for the numerical simulations of dense

gases flows over the NACA0012 airfoil.

In Figure 7.3, for the three equations of state, are reported the contours of the

pressure coefficient and Mach number for the simulations with quadratic approxi-

mation of the solution. Note the wide shocks that appear at the trailing edge of

the airfoils; the shocks are captured very sharply and within one single element.

The profiles of the pressure coefficient over the airfoil are reported in Figure 7.4-a–c

for the three equations of state and results with P1 and P2 approximation are com-

pared against each other. Note that increasing the order of approximation the shock

becomes sharper and remains essentially non oscillatory.

Finally, in Figure 7.4-d the pressure coefficient profiles with P2 elements are
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Figure 7.2: Convergence histories of the second and third order simulations (order se-

quencing used) with the PRSV (a), SW (b), and perfect gas (c) models.
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reported together for the three equations of state. Note that the shock obtained with

the SW model is more intense of that given by the PRSV equations and is located

forward, while in the case of ideal gas shock originates from the trailing edged of the

airfoil. For completeness, in Table 7.3 are reported the values of the drag coefficients

for the three equations of state and with linear and quadratic elements.

SW PRSV PG

P1 0.111117 0.130794 0.112375

P2 0.113070 0.133935 0.109838

Table 7.3: Drag coefficients of the NACA0012 airfoil with the D5 fluid, using the PRSV

and the SW equations, and for the perfect gas model.

7.3.2 Gas Flows through Turbine Cascades

The flow over a two-dimensional turbine cascade with real gas effects is now con-

sidered. The configuration studied is the VKI LS-59 plane cascade of rotor blades,

with the PRSV and the SW equations of state. Simulations have been performed

on a sequence of three grids uniformly refined. The coarsest grid, made of 2 241

triangles, is shown in Figure 7.5, finer grids are obtained by splitting each triangle

with four elements.

On the left boundary of the domain, inflow boundary conditions are imposed.

Since the inflow boundary is subsonic, three quantities must be specified for a two di-

mensional problem. For turbomachines, it is common practice to impose stagnation

thermodynamic conditions and the flow direction. Here, the imposed thermody-

namic quantities are the inlet entropy and the inlet stagnation enthalpy. On the left

boundary of the domain, outflow boundary conditions are imposed. For a subsonic

flow, at the at the outflow boundary, one condition must be imposed, typically the

static pressure, while the others are extrapolated from the interior. Here, the veloc-

ity components and the entropy are extrapolated. Note that the extrapolation of

the entropy requires the solution of the following non-linear system of equations
{
s = s(ρ, T )

P = P (ρ, T )
(7.12)

to computed the conservative variables at the boundary. If the density is extrapo-

lated instead of the entropy, the determination of the conservative variables at the

boundary is straightforward. In [37], with a FV solver, it was observed that when

the density is extrapolated, spurious oscillations of the entropy and static enthalpy

appear at the outflow boundary. With the present RD solver such oscillations were

not observed, independently from the quantities extrapolated, but the entropy ex-

trapolation is retained for a fair comparison with the results presented in [37]. For
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Figure 7.3: Contours of the pressure coefficient (left column) and of the Mach number

(right) column for the NACA0012 simulation with quadratic elements. First

row PRSV gas model for the D5 fluid, second row SW gas model for the D5

fluid, third row perfect gas model.
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Figure 7.4: Pressure coefficient distribution over the NACA0012 airfoil: (a,b,c) solutions

with linear and quadratic elements for the PRSV, SW and perfect gas model,

(d) comparison between the different thermodynamic models for the quadratic

approximation of the solution.
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Figure 7.5: Coarsest grid used for the simulations of the turbine cascade.

the blade, no-slip wall boundary conditions are applied, while on the top and bottom

boundaries of the domain, periodic boundary conditions are used.

Simulations are performed with the PRSV and the SW equations of state, for

the D5 working fluid. In all the cases, the operating condition is chosen such that

at the inlet boundary P/Pc = 0.6217864 and ρ/ρc = 0.2759043 and the flow angle

is 30◦, at the outflow boundary the pressure ratio P t
in/Pout = 1.82 is imposed, where

P t
in is the total pressure at the inflow and Pout is the static pressure at the outflow.

The Jacobian-free method with the LU-SGS preconditioner is used to make the

scheme converge to the steady state, which is considered to be reach when the L2

norm of the density residual is dropped at least by ten orders of magnitude. In

Figure 7.6 and are reported the convergence histories on the three levels of grids

for the PRSV model, a similar behavior is obtained with the SW equation of state.

Note that the residual of the second order simulation on the coarsest grid could not

be reduce more than four orders of magnitude.

In Figure 7.7 are reported the Mach number contours of the third order simula-

tions on the finest grid, for the PRSV equations of state. From the inflow boundary

on the left hand side of the domain, the fluid accelerates through the passage formed

by the blade cascade to supersonic velocities. At the blade trailing edge, an over-

expansion region can be observed and a weak shock appears downstream.

In Figure 7.8 are reported the distributions of the Mach number for the different

grids and orders, with the PRSV and SW models. The oscillations of the Mach

number observed at the trailing edged are due to the fact that the inviscid flow

model cannot correctly capture the separation around the blunt trailing edge of the

blade, as also observed in [37]. Increasing the order of approximations allows one

to reach faster a grid independent solution than refining the mesh. Furthermore,

the discontinuities are better resolved with the high-order approximation than the

second order one, for the same number of degrees of freedom.

Finally, in Figure 7.9 are reported the distributions of Mach number and pres-

sure over the blade, for the third order RD solutions on the different grids and the
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Figure 7.6: Convergence histories of the second and third order simulations (order se-

quencing used) with the PRSV models for three uniformly refined girds.
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Figure 7.7: Mach number contours over the turbine cascade for the third order simulation

on the finest grid. Streamlines are also reported.
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Figure 7.8: Mach number profiles over the blade on different grids with linear and

quadratic approximation of the solution. Top row: PRSV, bottom row: SW

models.
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solutions obtained with the cell-centered FV solver of [37] are reported for compar-

ison. Taking the third order simulation on the finest grid as reference, it can be

observed that, for approximately the same number of degrees of freedom along the

blade, the third order RD simulation is closer to the reference value with respect to

the FV solution. Note also that the shock is always much better resolved with the

third order RD scheme.
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Figure 7.9: Mach number (a) and pressure (b) distributions along the blade for the third

order RD solution and the cell-centered FV solver. In the legend is reported

the number of degrees of freedom along the blade of the different simulations.

7.3.3 Transonic Flow over the M6 Wing

The transonic flow over the ONERA M6 swept wing is now considered. The free-

stream Mach number and the angle of attack are M = 0.8395 and α = 3.06◦,

respectively, while the yaw angle is zero. The effect of using a real gas model for

the simulation over the M6 wing is here considered. Transonic flows of dense gases

over finite wings have been studied in reference [32] considering the Martin-Hou

equation. Here the Peng-Robinson equation is considered for the D5 working fluid.

The free-stream values of density and pressure are taken as ρ∞/ρc = 0.6433 and

P∞/Pc = 0.9285, respectively, for which the free-stream value of the fundamental

derivative of gasdynamics is Γ∞ ≈ 0.1, see Figure 7.10-a.

Results using linear and quadratic interpolation of the solution have been ob-

tained on an unstructured grid of tetrahedra composed by 582 752 elements (108 396

nodes), see Figure 7.10-b. The non-linear RD scheme has been used in combination

with the matrix-free method with the LU-SGS preconditioner to make the solution

converge to the steady state; in the simulations the L2 norm of the density residual

has been reduce by ten orders of magnitudes.
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Figure 7.10: Working point used in the flow simulation over the M6 wing for the Peng-

Robinson with the D5 working fluid (a), and grid used for the numerical

simulation (b).

In Figure 7.11 are reported the contours of the Mach number and of pressure

coefficient over the wing for the perfect gas and the D5 fluid using the Peng-Robinson

equation, for the third order simulations. In the case of the perfect gas, the flow

is supersonic at the leading edge of the wing upper surface, with a maximum value

of the Mach number about M = 1.6 at the wing tip, the flow becomes subsonic

in the rear part of the wing after passing across a λ-shock structure. In the case

of the dense gas, the flow reaches the sonic point at the leading edge of the wing

upper surface, but the flow over the wing remains shock-free. This behavior can

be observed better in Figure 7.12, where the distributions of the pressure coefficient

over the wing at different spanwise locations are reported. Note that for the real gas,

although the pressure peak at the leading edge is higher, there is no shock formation.

The fact that the flow in the case of real gas is shock-free can be justified by the

fact that the value of the fundamental derivative of gasdynamics, Γ, remains always

bounded between zero and one for the condition chosen, while with perfect gas Γ is

constant and always bigger than one. In Figure 7.13 the contours of Γ < 1 over the

wing are reported, and can be observed that, except for a region along the leading

edge of the wing, Γ is always smaller than one. For completeness, in Table 7.4 are

reported the values of the force coefficients and efficiency obtained with the perfect

gas and the Peng-Robinson models.
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CL CD CL/CD

Perfect Gas P1 0.28989 0.018142 15.978

Perfect Gas P2 0.29185 0.011766 24.804

Peng-Robinson P1 0.26448 0.013919 19.002

Peng-Robinson P2 0.26823 0.0067518 39.728

Table 7.4: Values of lift and drag coefficients, and efficiency for the flow over the M6 wing

with the perfect gas and D5 fluid using the Peng-Robinson equation.
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Figure 7.11: Contours of the Mach number (a, b) and of the pressure coefficient (c, d) for

the flow over the M6 wing with the perfect gas (a, c) and the Peng-Robinson

equation (b, d), for the third order simulations.
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Figure 7.12: Pressure coefficient distribution over the M6 wing at different spanwise lo-

cations, with the perfect gas and the Peng-Robinson equation, for the third

order simulations.
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Figure 7.13: Contours of the fundamental derivative of gasdynamics for 0 < Γ < 1 over

the M6 wing with the Peng-Robinson equation.
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Conclusions and Perspectives

8.1 Summary

This thesis focuses on the development and the application of Residual Distribu-

tion (RD) schemes with second and third order accurate discretization of steady

advection-diffusion problems, including scalar equations and the simulation of com-

pressible viscous flows. Several numerical experiments are used to investigate the

properties of the proposed approach and its applicability to complex fluid problems,

like transonic turbulent flows.

This work has been motivated by the recent need to increase the predictive

accuracy of simulations of complex flows over complex geometries or (in case of the

same accuracy) to alleviate the computational cost compared to existing numerical

schemes. In this respect, high-order methods seem to be potentially superior to

Finite Volume (FV) schemes, which require extremely fine grids to compute the

solution with a sufficiently small level of error, hence with high computational time

and memory usage.

Among high-order schemes, the Discontinuous Galerkin (DG) method has drawn

the attention of many researchers over the last decade, due to the capability of this

approach to combine high-order discretization with an extreme flexibility. However,

these advantages come at the price of a very high computational cost and memory

requirement. Furthermore, when shocks are present in the flow field, the robustness

of DG schemes may be seriously compromised if the discretization is not properly

modified near the discontinuities; namely, some amount of additional dissipation

must be added into high-order numerical schemes to avoid spurious oscillations of the

solution. This approach may reduced the benefit of using high-order discretization

and also introduce problem-dependent tuning parameters.

The RD approach based on the continuous formulation of the problem, introduces

less degrees of freedom than DG methods. In addition, with the possibility to

construct non-linear RD schemes, the discretization of continuous and discontinuous

solutions within the same numerical scheme is straightforward, without the necessity
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to add artificial viscosity or empirical shock capturing procedures.

RD methods have been largely applied to inviscid problems, but their use in

viscous applications remains limited. In fact, differently from the continuous and

discontinuous finite element-based approaches, which are on firm ground in the

discretization of both advective and viscous terms, the discretization of advection-

diffusion problems with RD schemes is still an issue. Moreover, the classical multidi-

mensional RD approach is limited to simplexes and to the second order of accuracy.

While the limitations of the multidimensional schemes can be overcome using high-

order central schemes, the extension to viscous problems still represents a barrier

that must be leaped over in order to apply RD method to practical problems. For

this reason, the work considered first simple scalar advection-diffusion problems, in

order to have in hand the strategy for the discretization of more complex problems.

For advection-diffusion problems, coupling RD schemes for advective terms with

a Galerkin method for the diffusion should be avoided due to the loss of accuracy

when the two schemes are combined. An accurate solution requires that advective

and diffusive terms are discretized with the same RD method. In order to compute a

total residual which includes both advective and diffusive contributions, a continuous

value of the gradient must be reconstructed for each element, due to the fact that

the normal component of the gradient of the numerical solution is discontinuous

at the faces of the elements. This approach requires that the gradient has to be

reconstructed with the same order of accuracy of the solution, otherwise the accuracy

of the method is spoiled by the poor approximation of the diffusive terms. On the

other hand, reconstruction procedures which involves large stencils should be avoided

to preserve the compactness of the numerical scheme.

In this work different gradient reconstruction procedures are tested. Second

order of accuracy, for advection-diffusion problems, is obtained with all the ap-

proaches, but actual third order discretization is obtained only with the so-called

Super-convergent Patch Recovery (SPR) method. The SPR allows to reconstruct

the gradient of the numerical solution with the same accuracy of the solution, this

guarantees an uniform order of accuracy of the numerical method for all the ap-

plications, ranging from the pure diffusive to the pure advective limits, including

advection-diffusion problems. The SPR method is as compact as possible since, for

each node of the grid, it involves only the neighboring elements that share that node,

and it can be used with structured, unstructured and hybrid grids, regardless the

number of spatial dimensions, with the same effort of a classical least-square ap-

proach. The proposed approach is also more efficient than the First Order System

formulation, giving the same level of accuracy with a largely reduced computational

cost.

The extension of the proposed RD approach to Navier-Stokes equations is straight-

forward. Through the use of the manufactured solutions, it has been observed that

linear and non-linear RD schemes are able to approximate the governing equations

with the optimal order of accuracy when the SPR method is used for the gradient

reconstruction. In addition, the gradient of the numerical solution is computed with
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the same order of accuracy of the solution, this means that important quantities

like the shear and thermal stresses can be computed with a higher level of accuracy

compared to other approaches.

The high-order discretization of the Navier-Stokes equations introduces addi-

tional complications, like the necessity to have a high-order representation of the

boundaries and the need to use implicit solvers.

Differently from low-order methods, high-order schemes are sensible to the bound-

ary discretization of the domain, and if a high-order description of the geometry is

not adopted, spurious oscillations of the solution may appear at the boundary. In

this work an isoparametric formulation is adopted, this means that solution and ge-

ometry are described with the same order of accuracy. Although also a second order

RD schemes may benefit from high-order representation of the geometry, the use of

isoparametric elements simplifies the code implementation of the scheme. For high-

order elements, the nodes on the faces of the elements belonging to the boundary

are placed on the real geometry, however some curved elements must be generated

also at the interior of the domain in order to have non overlapping elements. The

Gmsh library has been used to generate most of the high-order grids used in this

work.

Implicit schemes are required to accelerate the convergence of the solution to

the steady state. The backward Euler method is generally used for the solution of

steady problems, due to its good stability properties. The solution of the resulting

non-linear problem with a Newton’s method requires the calculation and the inver-

sion of the Jacobian matrix. Since for typical applications the Jacobian matrix is

very large and sparse, iterative methods are preferred over direct methods for the

matrix inversion. In order to make the non-linear scheme converge, the linearization

of the residuals should be as accurate as possible, however an accurate lineariza-

tion may be very expensive if not impossible, especially for non-linear schemes. In

this work a matrix-free approach is used to avoid the computation of the Jacobian

matrix. This approach exploits the fact that, when the GMRES approach is used

to invert the Jacobian matrix, the matrix-vector products, used to construct the

Krylov vectors, are approximated with a finite difference-like method. However, for

practical applications a preconditioning matrix is still required, and the LU-SGS

method has been used here for this purpose, since it is much cheaper compared to

other preconditioners and is still very effective.

The resulting solver has been successfully used to perform simulations of sev-

eral problems, including a three dimensional flow over a delta wing and the laminar

shock-boundary layer interaction. The work shows that from a robustness point

of view, high-order RD schemes are able to capture shock waves using high dis-

cretization orders and the implicit scheme is able to make the solution converge

quickly to the steady state with a reduced memory usage. In terms of accuracy, it

has been shown that employing RD schemes with the SPR method for the gradient

reconstruction gives an optimal order of accuracy for the solution, and in addi-

tion, a super-optimal accuracy for the gradient is obtained with respect to other
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schemes. Furthermore, it has been shown that the use of a high-order approxima-

tion of the solution allows not only to increase the accuracy respect to low-order

schemes, but, for the same number of degrees of freedom, high-order schemes have

smaller discretization errors than low-order ones. In addition, the use of non-linear

RD schemes shows that a monotone approximation of discontinuous solutions can

be obtained without the necessity to add further stabilization or shock capturing

terms; boundary layer and shock related phenomena are handled within the same

numerical method without any special treatment.

The proposed RD scheme has been used also for the simulations of compress-

ible turbulent flows, at the second and third order of accuracy, with the RANS

approach. In this work, the one equation Spalart-Allmaras turbulence model has

been adopted as closure model for the eddy viscosity. Despite the fact that the

Spalart-Allmaras model has been widely used for aerodynamic applications, it is

well known that this model induces spurious oscillations of the turbulent working

variables at the edges of the boundary layers and wakes, where the grid is usually

not sufficiently resolved, and negative values of the turbulent working variables may

appear. Although the eddy viscosity used in the RANS equation is always forced

to remain positive, negative values of the turbulent variable in the Spalart-Allmaras

equation can compromise the robustness and the iterative convergence of the nu-

merical scheme. This aspect becomes even more critical for high-order methods,

since they are less robust than classical FV schemes, and if this issue is not properly

addressed, numerical simulations will very likely blow up. In this work, particular

effort has been put into the construction of a robust solver for turbulent flows, and

some modifications of the Spalart-Allmaras equation introduced in the contest of

DG methods have been adopted. In particular, the modifications aim to reduce to

zero the source term of the turbulence model when the turbulent working variable

becomes negative, preserving at the same time the differentiability of the equation

in order to avoid a deterioration of the iterative convergence.

By discretizing the turbulence equation fully-coupled with the RANS equations,

the extension of the RD spatial discretization from laminar to turbulent flows is

straightforward. However, simulations of turbulent flows have additional difficulties,

due to the high stiffness of the problems, caused by high values of the gradient of

the solution in combination with stretched grids used in the simulations of turbulent

flows, and by the turbulence equation itself. In the construction of an implicit solver

for the simulations of turbulent flows, it has been found that the Jacobian-free

approach is not as robust as observed for laminar flows, especially when transonic

flows are considered. The non-linear LU-SGS method, on the other hand, although

more expensive than the Jacobian-free approach, has showed to be very robust for

turbulent flows simulations with a good iterative convergence for both the mean flow

and turbulence model equations. Several applications have been considered to test

the accuracy and the robustness of the numerical scheme for the turbulent flows.

It has been found that the solver is able to compute complex flows over complex

geometries, with high accuracy and a reasonable level of robustness. In particular, it
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has been shown that using a high-order discretization gives more accurate solutions

than the low-order one, for the same number of degrees of freedom, even for non

smooth solutions, like turbulent flows.

As first step to extend the numerical solver to more complex flow phenomena,

dense gas flows have been simulated. For working conditions in which pressures

and temperatures are of the order of magnitude of their liquid-vapor critical point

values, the ideal gas model is no longer valid and more complex thermodynamic laws

have to be considered to take into account real gas effects. Although, for typical

aerodynamic applications using the ideal gas model can be retained reasonable,

there are several cases for which the work conditions are not in the range of validity

of the ideal gas model. These include organic Rankine cycle engine which utilizes

high-density working fluids and hypersonic vehicles entering planetary atmospheres.

In this work the Peng-Robinson-Stryjeck-Vera and the Span-Wagner equations are

used for simulations with the D5 siloxane working fluid, of two and three dimensional

inviscid cases. The RD scheme confirmed to be robust and accurate even when

more complex thermodynamic phenomena are considered. In particular, in flows

with intense shocks, the discontinuities are sharply computed and the monotonicity

of the solution is maintained.

8.2 Conclusions

In this work the issue of the discretization of advection-diffusion problems within

the RD framework has been addressed. First, the discretization of scalar prob-

lems has been considered, and than the resulting schemes have been applied to the

discretization, at the second and third order of accuracy, of steady laminar and

turbulent compressible flows, as well as inviscid problems.

The work shows that, by using a proper reconstruction procedure for the gradi-

ent of the numerical solution, a high-order discretization of the problems with the

RD method can be obtained. The proposed approach guarantees that the order of

accuracy of the numerical scheme is preserved independently on the relative impor-

tance of the advection and diffusion, thus overcoming the problem of loss of accuracy

in the advection-diffusion regime observed with blended RD-Galerkin schemes. In

addition, the preservation of the monotonicity of the solution over discontinuities

has been another important issue addressed in this work. In this respect, RD meth-

ods seem to have a great potential respect to other high-order methods, like DG

schemes for example, due to the possibility to construct non-linear schemes which

avoid the need to introduce artificial viscosity terms for the high-order and robust

discretization of discontinuous solutions without spurious oscillations.

The subject of the discretization of the viscous terms leaves a somewhat less

definitive conclusion when RD methods are compared to other high-order methods.

Although it has been shown that the SPR method for the gradient reconstruction
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Figure 8.1: Convergence of the lift (a) and drag (b) coefficient as function of the number of

degrees of freedom, for the transonic turbulent flow over the RAE-2822 airfoil.

Contribution of different research groups to the 2nd High-order Workshop.

DLR: DG code with the k−ω turbulence with transition, and FV code with the

Spalart-Allmaras turbulence model fully turbulent. INRIA: RD code with the

Spalart-Allmaras turbulence model fully turbulent. University of Michigan:

DG code with the Spalart-Allmaras turbulence model fully turbulent.

is accurate and robust enough for simulations of complex flows, the reconstruction

procedure makes the numerical scheme more sensitive to the quality of the grid.

In fact, a degradation of the accuracy of the reconstruction procedure is unavoid-

able in regions with high curvature and stretched elements, unless the stencil of

the reconstruction procedure is enlarged. Thus, the present approach results less

appealing respect to continuous or discontinuous finite element methods. On the

other hand, fair comparisons between different approaches for complex test cases

have been missing. A first attempt to compare high-order methods for complex ap-

plications has been done in the 1st and 2nd International Workshop on High-Order

CFD Methods [135]. For example, in Figure 8.1 are reported the variations of the

lift and drag coefficients with the number of degrees of freedom, for the transonic

turbulent flow over the RAE-2822 airfoil (see Section 6.5.3); the results have been

produced by different research groups who contributed to this test case at the 2nd

High-Order Workshop. Although the same type of grids has been used by all the

partners, different turbulence models have been adopted, making difficult to isolate

the differences due to the numerical discretization only.

An other important aspect to consider for a numerical scheme is the compu-

tational effort, both in terms of CPU time and memory requirement. Continuous

approaches introduce less degrees of freedom and have fewer non-zero entries in the

Jacobian matrix than discontinuous methods, for the same degree of approximation
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of the solution. However, RD schemes suffer of the serious drawback of a poor itera-

tive convergence, due to the fact that the evaluation of an accurate Jacobian matrix

remains a very difficult task. For non-linear RD schemes, the exact linearization

of the residual is made impossible by the use of the limiting technique (done in

the space of the characteristic variables), but also for linear schemes, an accurate

linearization cannot be computed due to gradient reconstruction procedure. These

difficulties requires approaches that circumvent the explicit calculation of the Jaco-

bian entries, like for example matrix-free or non-linear LU-SGS methods. However,

the price to pay for these strategies is an increment of the number of evaluations

of the residual of the scheme, with an increment of the computational cost. These

approaches remain effective only if the number of non-linear iterations is drastically

reduced respect to a matrix-based formulation.

In summary, this work has shown that RD methods can be made robust and

efficient for CFD applications, as demonstrated by the application of the numerical

method to a variety of flow problems. The approach has potential advantages, but

the efficiency and the benefits respect to others current approaches still need to be

evaluated.

8.3 Perspectives

There exists a number of directions for future work focusing on the improvement and

extension of the methods developed in this thesis. A few ideas for future research

in the short term are listed here.

Extension to unsteady problems

Extension of RD methods to unsteady problems has been always a challeng-

ing task. Achieving higher order of accuracy in time dependent computations

requires the time derivative to be consistently introduced in the element resid-

ual. A consistent discretization in space, leads to the appearance of a mass

matrix multiplying the time derivative. The existence of a mass matrix intro-

duces additional complexity to the method. First of all, it requires at each

time-step the solution of an implicit system of equations, even if an explicit

time discretization is used, and lumping the matrix may cause loss in spatial

accuracy.

An alternative approach makes use of space-time discretization, however some

kind of decoupling in time has to be introduced, otherwise the discrete problem

would involve all the degrees of freedom of all the time levels at once. In the

classical space-time finite element approach this is achieved by assuming that

the numerical solution is discontinuous in time. In a different approach used

to decouple the solution in time, for space-time meshes composed of linear

space-time elements, the time coordinate is treated as an additional spatial
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coordinates and decoupling is achieved naturally thanks to multidimensional

upwinding. The levels of the space-time mesh are decoupled under certain

constraints for the time-step, (past-shield condition), of the same form of the

CFL condition.

All these approach are valid for second order in space and in time, but their

extension to higher orders is still unclear.

Improvement of the implicit solver

To improve the efficiency of the numerical scheme it is important to speed up

the iterative convergence of the solver. The implicit approaches adopted in

this work are quite satisfactory, but further acceleration techniques should be

considered to increase the performances of the solver. The first approach that

should be used the accelerate the convergence of the implicit solver is based

on the line-implicit method. The main idea of the line-implicit solver is to

couple together elements connected along directions of strong convection or

grid anisotropy. Much faster convergence rate is obtained than an classical

implicit schemes since the flow solutions on the lines are solved in a coupled

manner, furthermore, the resultant block tri-diagonal system can be solved

efficiently. Such approach is expected to be very effective in alleviating the

stiffens generated by the use of stretched grids used to resolve the boundary

layer. Subsequently, a geometric multigrid algorithm could be used to further

accelerate the convergence to the steady state, with a line-implicit method as

smoother.

Improvement of the parallel scalability

Although some of the numerical simulations presented here have been per-

formed in parallel, the development of an effective parallel solver has been out

of the scope of the present work. Nevertheless, the construction of a highly

scalable solver is a very important aspect for practical applications. The first

issue that need to be considered is the mesh partition. In the present ap-

proach the Scotch [93] library is used to partition the grid considering only

the graph associated to degrees of freedom of the linear representation of the

solution. The extra degrees of freedom introduced by the high-order represen-

tation of the solution are then added to the obtained partitions. The approach

is not optimal since non well balanced partitions are obtained and the parallel

scalability is compromised. A more efficient approach should considered the

partition of the graph associated to the whole set of degrees of freedom. In

addition, since the scalability of the solver is also affected by the linear solver

and the preconditioners used, the implicit solver should be constructed also in

the perspective of a good parallel scalability.

Extension to very higher-order discretization

After the improvement of the parallel performances and efficiency of the im-

plicit scheme, numerical discretization with higher orders (more than three)
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could be considered. Although the extension to arbitrary orders is straightfor-

ward, in practice the code implementation requires particular care, otherwise

the computational cost could become not affordable increasing the polynomial

order. Another aspect that should be considered is the decoupling of the order

of accuracy of the solution from that of the geometry. Even this aspect does

not require theoretical effort, but it is only matter of implementation.

Grid adaptation

Adaptive mesh refinement is a well know strategy for minimizing the cost of

a computational simulation while achieving a given level of accuracy. Several

adaptation techniques have been developed to refine and de-refine portions

of the computational grid. Adaptation criteria based on the residual or the

gradient of physical quantities may not be optimal for complex flows, while

adjoint-based approaches could be more powerful, as shown for (continuous

and discontinuous) finite elements and finite volume methods. In the contest

of the RD methods, however, it is not clear if the adjoint-based grid adaptation

could effective, due to the non-differentiability of the numerical schemes.

More complex physical models

The extension of the numerical scheme to more complex physical models is

a another area of future research. This includes the implementation of more

sophisticated turbulence models, like k − ω for example, or even different ap-

proaches for the turbulence modeling, like detached eddy simulation. Another

very challenging research field could be the simulations of non-equilibrium

hypersonic flows, in this case the use of a non-linear RD method could be ad-

vantageous due to the robustness and the monotonicity preserving character

of this approach.
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Homogeneity Tensor of the Navier-Stokes

Viscous Flux Function

The element of the homogeneity tensor of the Navier-Stokes flux function are com-

puted by applying the following definition

Kijrs(u) =
∂f v

ij(u,∇u)

∂

(
∂ur
∂xs

)

with i, r = 1, . . . , Neq and j, s = 1, . . . , Ndim and where f v
ij are the components of

the viscous flux function for the Navier-Stokes equations.

For sake of clarity, the elements of the tensor K are grouped in the following

matrices:

K11 = K j=1
s=1
, K12 = K j=1

s=2
, K13 = K j=1

s=3

K21 = K j=2
s=1
, K22 = K j=2

s=2
, K23 = K j=2

s=3

K31 = K j=3
s=1
, K32 = K j=3

s=2
, K33 = K j=3

s=3

The following notation is assumed: x1 = x, x2 = y, x3 = z, the velocity vector is

v = (vx, vy, vz)
T, the momentum is m = (mx, my, mz)

T. The components of the

stress tensor are

σxixj
= µ

(
∂vxi

∂xj
+
∂vxj

∂xi
− 2

3

∂vxk

∂xk
δij

)
,

where µ is the viscosity coefficient, δij is Kronecker delta and the summations con-

vention on repeated indices is used. The components of the heat flux are

qxi
= −κ∂T

∂xi
,

with κ the thermal conductivity.
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The components of the tensor K are now explicitly derived for the x-component

of the flux function, namely

fv1 =




0

σxx

σxy

σxz
mx

ρ
σxx +

my

ρ
σxy +

my

ρ
σxz − qx




,

such that f v
i1 = Ki1rs

∂ur
∂xs

, i, r = 1, . . . , Neq and s = 1, . . . , Ndim. The elements in the

vector f v
i1 can be written in terms of the conservative variables as follows

f v
11 = 0

f v
21 = σxx =

µ

ρ

[
4

3

(
∂mx

∂x
− mx

ρ

∂ρ

∂x

)
− 2

3

(
∂my

∂y
− my

ρ

∂ρ

∂y

)
− 2

3

(
∂mz

∂z
− mz

ρ

∂ρ

∂z

)]

f v
31 = σxy =

µ

ρ

[
∂mx

∂y
− mx

ρ

∂ρ

∂y
+
∂my

∂x
− my

ρ

∂ρ

∂x

]

f v
41 = σxz =

µ

ρ

[
∂mx

∂z
− mx

ρ

∂ρ

∂z
+
∂mz

∂x
− mz

ρ

∂ρ

∂x

]

f v
41 =

mx

ρ
σxx +

my

ρ
σxy +

my

ρ
σxz − qx

=µ
mx

ρ

[
4

3

(
∂mx

∂x
− mx

ρ

∂ρ

∂x

)
− 2

3

(
∂my

∂y
− my

ρ

∂ρ

∂y

)
− 2

3

(
∂mz

∂z
− mz

ρ

∂ρ

∂z

)]
+

µ
my

ρ

[
∂mx

∂y
− mx

ρ

∂ρ

∂y
+
∂my

∂x
− my

ρ

∂ρ

∂x

]
+

µ
mz

ρ

[
∂mx

∂z
− mx

ρ

∂ρ

∂z
+
∂mz

∂x
− mz

ρ

∂ρ

∂x

]
+

κ
γ − 1

Rρ

[(
∂Et

∂x
− Et

ρ

∂ρ

∂x

)
−

(
mx

ρ

∂mx

∂x
− m2

x

ρ2
∂ρ

∂x
+
my

ρ

∂my

∂x
− m2

y

ρ2
∂ρ

∂x
+
mz

ρ

∂mz

∂x
− m2

z

ρ2
∂ρ

∂x

)]

Regarding at the previous expressions it is easy to see that the matrices K11, K12,
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and K13 read

K11 =
µ

ρ




0 0 0 0 0

−4
3
mx

ρ
4
3

0 0 0

−my

ρ
0 1 0 0

−mz

ρ
0 0 1 0

K5111

(
4
3
− κ(γ−1)

µR

)
mx

ρ

(
1− κ(γ−1)

µR

)
my

ρ

(
1− κ(γ−1)

µR

)
mz

ρ
κ(γ−1)
µR




,

with

K5111 = −1
3
m2

x

ρ2
− µ‖m‖2

ρ2
− κ(γ−1)

µR

(
Et

ρ
− ‖m‖2

ρ2

)

K12 =
µ

ρ




0 0 0 0 0

−2
3
my

ρ
0 −2

3
0 0

−mx

ρ
1 0 0 0

0 0 0 0 0

−1
3
mxmy

ρ2
my

ρ
−2

3
mx

ρ
0 0




,

K13 =
µ

ρ




0 0 0 0 0

2
3
mz

ρ
0 0 −2

3
0

0 0 0 0 0

−mx

ρ
1 0 0 0

−1
3
mxmz

ρ2
mz

ρ
0 −2

3
mx

ρ
0




.

By considering also the derivatives of the viscous flux function along the y and z

directions it is possible to obtain the other components of the tensor K, namely

K21 =
µ

ρ




0 0 0 0 0

−my

ρ
0 1 0 0

2
3
mx

ρ
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3
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0 0 0 0 0

−1
3
mxmy

ρ2
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3
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ρ
mx

ρ
0 0




,

K22 =
µ

ρ




0 0 0 0 0

−mx

ρ
1 0 0 0

−4
3
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ρ
0 4

3
0 0

−mz

ρ
0 0 1 0
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(
1− κ(γ−1)

µR

)
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ρ

(
4
3
− κ(γ−1)

µR

)
my

ρ

(
1− κ(γ−1)

µR

)
mz

ρ
κ(γ−1)
µR




,
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with

K5212 = −1
3

m2
y

ρ2
− µ‖m‖2

ρ2
− κ(γ−1)

µR

(
Et

ρ
− ‖m‖2

ρ2

)

K23 =
µ

ρ



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2
3
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ρ
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3
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3
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ρ
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3
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ρ
0




,

K31 =
µ

ρ




0 0 0 0 0

−mz

ρ
0 0 µ 0

0 0 0 0 0

2
3
mx

ρ
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3
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3
mxmz

ρ2
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3
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ρ
0 mx

ρ
0




,

K32 =
µ

ρ




0 0 0 0 0

0 0 0 0 0

−mz

ρ
0 0 µ 0

2
3
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ρ
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3
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ρ
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ρ
0




,

K33 =
µ

ρ




0 0 0 0 0

−mx

ρ
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−my

ρ
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−4
3
mz

ρ
0 0 4

3
0

K5313

(
1− κ(γ−1)

µR

)
mx

ρ

(
1− κ(γ−1)

µR

)
my

ρ

(
4
3
− κ(γ−1)

µR

)
mz

ρ
κ(γ−1)
µR




,

with

K5313 = −1
3
m2

z

ρ2
− µ‖m‖2

ρ2
− κ(γ−1)

µR

(
Et

ρ
− ‖m‖2

ρ2

)
.

The reduction to the two dimensional case is trivial, it requires only to discard

the contributions K13, K23, K31, K32, K33 and in the remaining matrices the fourth

rows and columns must be eliminated.
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Structure of the RANS Equations Fully

Coupled with the Spalart-Allmaras Model

When the RANS equations are fully coupled with the Spalart-Allmaras turbulence

model, the system of the governing equations reads

∂u

∂t
+∇· f

a(u)−∇· f
v(u,∇u) = S(u,∇u)

with

u =




ρ

m

Et

µ⋆
t




, f
a(u) =




m

m⊗m

ρ
+ P I

(
Et + P

)m
ρ

µ⋆
t

m

ρ




, f
v(u,∇u) =




0

S

S ·
m

ρ
+ κ∇T

η

σa
∇

(
µ⋆
t

ρ

)




,

and S(u,∇u) = (0, 0, 0, SSA)
T, where f

a(u), fv(u,∇u) are the advective and the

viscous flux functions respectively and S(u,∇u) is the source term.

The Jacobian matrix of the advective flux function is defined as A = ∂fa/∂u.

Introducing for convenience the vector of the primitive variables density, velocity,

enthalpy and turbulent working variable, w = (ρ, v, ht, ν
⋆
t )

T, the explicit expression

of the Jacobian matrix is found by direct differentiation

A(u(w),n) =




0 nx ny nz 0 0

(γ−1)qnx−vxvn vn−(γ−2)unx uny−(γ−1)vxnx unz−(γ−1)vznx (γ−1)nx 0

(γ−1)qny−vyvn unx−(γ−1)vxny vn−(γ−2)vyny unz−(γ−1)vzny (γ−1)ny 0

(γ−1)qnz−vzvn wnx−(γ−1)vxny wny−(γ−1)vynz vn−(γ−2)vznz (γ−1)ny 0

((γ−1)q−ht)vn htnx−(γ−1)vxvn htny−(γ−1)vyvn htnz−(γ−1)vzvn γvn 0

−vnν⋆t ν⋆t nx ν⋆t ny ν⋆t nz 0 vn




,
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where ht =
Et+P

ρ
, ν⋆t =

µ⋆
t

ρ
, q = 1

2
‖v‖2 and vn = v · n.

The eigenvalues of A(u,n) are

λ1 = vn − c, λ2 = vn, λ3 = vn + c, λ4 = vn, λ5 = vn, λ6 = vn,

with c is the speed of sound. The matrix of the associated right eigenvectors is

R(u(w),n) =




1 1 1 0 0 0

u− cnx u u+ cnx ny −nz 0

v − cny v v + cny −nx 0 0

w − cnz w w + cnz 0 nx 0

ht − cvn q ht + cvn uny − vnx wnx − unz 0

ν⋆t 0 ν⋆t 0 0 1




.

and the matrix of the left eigenvectors is given by

L(u(w),n) = 1
2c2




(γ−1)q+cvn (1−γ)u−cnx (1−γ)v−cny (1−γ)w−cnz γ−1 0

2((1−γ)q+c2) 2(γ−1)u 2(γ−1)v 2(γ−1)w 2(1−γ) 0

(γ−1)q−cvn (1−γ)u−cnx (1−γ)v+cny (1−γ)w+cny 1−γ 0

2c2
(v−vnny)

nx
2c2ny 2c2

n2
y−1

nx
2c2

nynz
nx

0 0

2c2
(vnnz−w)

nx
−2c2nz −2c2

nynz

nx
−2c2

1−n2
z

nx
0 0

2q(1−γ)ν⋆t 2(γ−1)ν⋆t u 2(γ−1)ν⋆t v 2(γ−1)ν⋆t w 2(1−γ)ν⋆t 2c2




,

such that RL = LR = I.

In the matrix of the left eigenvectors there are singular terms when nx = 0 (as

in the Euler equations), however the singularity can be avoided remembering that

the eigenvectors of repeated eigenvalues λ4 and λ5 are not distinct, thus any linear

combination of the 4th and 5th column of the matrix R is itself an eigenvector. A

new set of right eigenvectors and the corresponding left eigenvector can be written

to avoid the singularity [105]. Note that in the case of two spatial dimensional, the

are no singular terms.

The homogeneity tensor of the viscous flux function can be easily calculated from

its definition, the matrices K11, K22 and K33 reads

K11 =
µ

ρ




0 0 0 0 0 0

−
4
3
mx

ρ
4
3

0 0 0 0

−
my

ρ
0 1 0 0 0

−
mz

ρ
0 0 1 0 0

K5111

(
4
3
−
κ(γ−1)
µR

)
mx

ρ

(
1−

κ(γ−1)
µR

)
my

ρ

(
1−

κ(γ−1)
µR

)
mz

ρ
κ(γ−1)
µR

0

− η

ρ2σSA
µ⋆
t 0 0 0 0 η

ρσSA




,
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K22 =
µ

ρ




0 0 0 0 0 0

−
mx

ρ
1 0 0 0 0

−
4
3

my

ρ
0

4
3

0 0 0

−
mz

ρ
0 0 1 0 0

K5212

(
1−

κ(γ−1)
µR

)
mx

ρ

(
4
3
−
κ(γ−1)
µR

)
my

ρ

(
1−

κ(γ−1)
µR

)
mz

ρ
κ(γ−1)
µR

0

− η

ρ2σSA
µ⋆
t 0 0 0 0 η

ρσSA




,

K33 =
µ

ρ




0 0 0 0 0 0

−
mx

ρ
1 0 0 0 0

−
my

ρ
0 1 0 0 0

−
4
3
mz

ρ
0 0

4
3

0 0

K5313

(
1−

κ(γ−1)
µR

)
mx

ρ

(
1−

κ(γ−1)
µR

)
my

ρ

(
4
3
−
κ(γ−1)
µR

)
mz

ρ
κ(γ−1)
µR 0

− η

ρ2σSA
µ⋆
t 0 0 0 0 η

ρσSA




,

while the remaining matrices are simple obtained by framing the right and the

bottom parts of the matrices computed for the Navier-Stokes equations with a row

and a column of zeros.





Appendix C

Jacobian Matrix and Eigenstructure of the

Euler Equations for a Generic Gas

In this appendix the Jacobian matrix and the eigen-structure of the Euler flux

function for a generic gas are reported. The Jacobian matrix reads

A(u(w),n) =




0 nx ny nz 0

−vxvn+nxP∂ρ vn+vx(1−P∂Et )nx vxny−vynxP∂Et vxnz−vznxP∂Et nxP∂Et

−vyvn+nyP∂ρ vynx−vxnyP∂Et vn+vy(1−P∂Et )ny vynz−vznyP∂Et nyP∂Et

−vzvn+nzP∂ρ vznx−vxnzP∂Et vzny−vynzP∂Et vn+vz(1−P∂Et )nz nzP∂Et

−vn(ht−P∂ρ) htnx−vxvnP∂Et htny−vyvnP∂Et htnz−vzvnP∂Et vn(1+P∂Et )



,

where the notation P∂(.) = ∂P/∂(.) has been used. The matrices of the right and

left eigenvectors read respectively

R(u(w),n) =




1 nx 1 ny nz

vx−cnx vxnx vx+cnx vxny−nz vxnz+ny

vy−cny vynx+nz vy+cny vny vynz−nx

vz−cnz vznx−ny vz+cnz vzny+nx vznz

ht−cvn ξnx+vynz−vzny ht+cvn ξny+vznx−vxnz ξnz+vxny−vynx



.

L(u(w),n) =




1
2c2

(P∂ρ+cvn) − 1
2
vx(P∂Et+cnx) − 1

2
vy(P∂Et+cny) − 1

2
vz(P∂Et+cnz)

1
2
PρEt

−Φnx−c2(vnz−wny) vxnxP∂Et vynxP∂Et+c2nz wnxP∂Et−c2ny −nxP∂Et

1
2
P∂ρ−cvn

1
2
(−vxP∂Et+cnx)

1
2
(−vyP∂Et+cny)

1
2
(−vzP∂Et+cnz)

1
2
P∂Et

−Φny−c2(vznx−vxnz) vxnyP∂Et−c2nz vynyP∂Et vznyP∂Et+c2nx −nyP∂Et

−Φnz−c2(uny−vnx) vxnzP∂Et+c2ny vynzP∂Et−c2nx vznzP∂Et −nznzP∂Et



.

where the following auxiliary variables have been introduced

Φ = P∂ρ − c2 and ξ = ‖v‖2 − P∂ρ/P∂Et .

The corresponding eigenvalues of the Jacobian matrix, A, are

λ1 = vn − c, λ2 = vn, λ3 = vn, λ4 = vn, λ5 = vn + c.
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[41] Á. Cśık, H. Deconinck, and S. Poedts. Monotone residual distribution schemes

for the ideal magnetohydrodynamics equations on unstructured grids. AIAA

Journal, 39(8):1532 – 1541, 2001.
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