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Multi-modal propagation through finite elements applied
for the control of smart structures

Abstract: The analysis of wave propagation in complex structures and its
application for the semi-active control of smart structures and health monitor-
ing of these structures are dealt with in this thesis. The design of composite
structures with shunted piezoelectric patches is one of the main objectives of
all the investigations. This kind of smart composite structures is equipped
with periodically distributed shunted piezoelectric patches. Former studies
have shown the great interest of such a configuration for the active damping
of structural modes at low frequencies. This thesis is focused on the extension
of all these interesting characteristics of the smart structures to a larger fre-
quency band: low and medium frequencies. The mastering of the propagation
parameters and energy diffusion characteristics is targeted.
In this context, the proposed work is based on techniques specifically devel-
oped in the research team "Dynamics of Systems and Structures"(D2S): the
Wave Finite Element(WFE) method and Diffusion Matrix Model(DMM). The
WFE approach is constructed via the finite element model of a unit cell, rep-
resentative of the waveguide structure. It enables the calculation of essential
wave propagation parameters like wavenumbers. The DMM, associated with
the WFE approach, enables the calculation of energy diffusion characteristic-
s like reflection and transmission coefficients of specific wave modes. These
approaches are extended to consider shunted piezoelectric elements and then
to evaluate the performance of shunted piezoelectric patches on the control of
wave propagation in the aforementioned smart composite structures. Inten-
sive optimizations can be carried out, with these tools, so as to obtain optimal
geometric and electric parameters in the design of these smart structures.
The present work is integrated in the CALIOP project in cooperation with
the Laboratory of Applied Mechanics R.Chaléat at FEMTO-ST Institute and
the G.W. Woodruff School of Mechanical Engineering of Georgia Institute of
Technology.
Keywords: Wave propagation, wave finite element, piezoelectricity, semi-
active control, energy diffusion



Propagation multimodale par éléments finis appliquée
au contrôle de structures intelligentes

Résumé: Le sujet de thèse concerne l’analyse de la propagation des ondes
dans les structures complexes et leurs exploitations pour le contrôle semi-
actif et le contrôle de santé de structures intelligentes. Les structures com-
posites munies de patches piézoélectriques sont la cible principale des inves-
tigations. Les patches piézoélectriques sont disposés avec une périodicité.
Des travaux précédents ont montré l’intérêt de ce type de configuration pour
l’amortissement actif de modes de structures en basses fréquences. L’objectif
principal de cette thèse est l’extension de ces constatations dans une bande
de fréquences plus large : basses et moyennes fréquences. La maîtrise des
paramètres de propagation et de diffusion des ondes est la finalité recherchée.
Dans ce cadre, les travaux proposés se baseront sur une technique partic-
ulière développée au sein de l’équipe Dynamique des Systèmes et des Struc-
tures : la technique WFE (Wave Finite Element), Ondes par éléments finis.
Cette approche, construite à l’aide d’un modèle éléments finis d’une cellule
représentative de l’essentiel des paramètres de propagation et de diffusion des
ondes dans les structures. Elle a été validée sur des cas simples de structures,
principalement isotrope monodimensionnel. La modélisation dans ce cas des
sandwichs plaques composites munies de couches piézoélectriques sera opérée.
Des simulations numériques poussées seront effectuées afin de cerner le cadre
d’application de la WFE pour ce type de structures. Des optimisations pour-
ront être réalisées avec ces outils numériques afin d’obtenir des paramètres
géométriques et électriques optimaux dans la conception des structures intel-
ligentes.
Les travaux de cette thèse sont intégrés dans le projet CALIOP en collaborant
avec le laboratoire de Mécanique Appliquée R.Chaléat de l’Institut FEMTO-
ST et G.W. Woodruff School of Mechanical Engineering de Georgia Institute
of Technology.
Mots clés: Propagation d’ondes, wave finite element, piézoélectricité, con-
trôle semi-actif, diffusion d’énergie
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1.1 Smart structures and control architectures

1.1.1 Background

Smart structures have always been a research topic during recent years. They
can offer the opportunity to create engineered material systems that are em-
powered with sensing, actuation, and artificial intelligence features. The typi-
cal smart structure sensors used in discrete or distributed locations to measure
the performance of the system comprise fiber optics, piezoelectric ceramics
and piezoelectric polymers. The actuators used in the smart materials tech-
nologies include applications of piezoelectric ceramics, piezoelectric polymers,
electrostrictive, magnetostrictive materials and piezofibres [1].
Researchers define smart structures in different ways: in the work of Sahin et

al. [1], smart structure is defined as the structure that can sense external dis-
turbance and respond to that with active control in real time to maintain the
mission requirements; according to Bandyopadhyay et al. [2], a smart struc-
ture is a distributed parameter system that employs sensors and actuators
at different finite element locations on it. It then makes use of one or more
microprocessors to analyze the responses obtained from the sensors and uses
different control logics to command the actuators. It can hence apply localized
strains to the plant to respond in a desired fashion and brings the system to
equilibrium. It has been mentioned in the work of Giurgiutiu [3] that there
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are two different ways to define smart structures. "The first definition is based
upon a technology paradigm: the integration of actuators, sensors, and con-
trols with a material or structural component. Multifunctional elements form
a complete regulator circuit resulting in a novel structure displaying reduced
complexity, low weight, high functional density, as well as economic efficiency.
This definition describes the components of an adaptive material system, but
does not state a goal or objective of the system. The other definition is based
upon a science paradigm, and attempts to capture the essence of biologically
inspired materials by addressing the goal as creating material systems with
intelligence and life features integrated in the microstructure of the material
system to reduce mass and energy and produce adaptive functionality. It is
important to note that the science paradigm does not define the type of ma-
terials to be utilized. It does not even state definitively that there are sensors,
actuators, and controls, but instead describes a philosophy of design".
The concept of smart structures is as difficult to describe precisely as it can be
to list all the ways they have been designed and realized. The most important
thing still remains to put the theories into practice. The control law with
the set of embedded or bonded sensors and actuators in the structure can be
very complex in order to achieve objectives like vibration control. Questions
like stability and experimental implementation arise and should be taken into
account carefully.
Recently, a revolution has taken place in the field of integrated micro-
electromechanical systems(MEMS) which offers new opportunities for smart
structure design and optimization. The next generation of smart compos-
ite structures [4, 5] is created via the mechanical integration of active smart
materials, electronics, chip sets and power supply systems. The material’s
intrinsic passive mechanical behavior can be controlled through electrome-
chanical transducers in order to attain new desired functionalities [6]. The
design of this kind of smart structures is addressed in the present work. It
considers the problem of integration of electromechanical smart transducers
into composite or standard materials for controlling their vibroacoustical be-
havior and also optimizes their dynamical response. The main issue of the
proposed design is the optimization and the integration of a dense set of self-
shunted piezoelectric elements for controlling mechanical wave’s diffusion into
beams and plates representing general engineering structural elements. The
chosen technological system, based on self-shunted piezoelectric materials is
well dedicated for mechatronics integration because of its intrinsic simplicity
and its low energy consumption. This proposed architecture could also be
miniaturized and integrated by mean of MEMS technology and could lead us
to create a new class of metamaterials.
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1.1.2 Shunt architectures for the control of smart struc-
tures

Among the control configurations found in published works, a well-known
technique is the piezoelectric damping using external resistor-inductor shunt
circuit [6, 7, 8, 9, 10, 11, 12]. This semi-active configuration has the advan-
tage of guaranteeing stability, and can be obtained by bonding piezoelectric
elements onto a structure and connecting the electrodes to the external shunt
circuit. Due to straining of the host structure, and through the direct piezo-
electric effect, a part of the mechanical energy is converted into electrical en-
ergy. The latter is subsequently dissipated by Joule heating via the connected
resistor. The R − L shunt circuit on piezoelectric patches can be regarded
as light oscillators instead of heavy mass-spring structures. By varying the
inductance L in the shunt circuit, the tuning frequency can be adjusted to the
targeted frequency band. It should be noted that with the R − L resonant
shunt circuit, the controlled frequency band is limited(around the tuning fre-
quency of the circuit).
In order to improve the efficiency of passive connected networks on the piezo-
electric patch, different shunt circuits have been proposed in the literature. In
the work of Tsai and Wang [13], active-passive hybrid piezoelectric network is
proposed. This type of shunt circuit can not only provide passive damping,
but also enhance the active action authority if tuned correctly. Multi-mode
resonant shunt has been studied by Behrens et al. [14] and Wu [15]. This
kind of resonant shunt is able to damp several structural modes with one sin-
gle piezoelectric patch. Wu [15] proposed blocking circuits while Behrens et

al. [14] provided current flowing circuits. It should be mentioned that all
resonant shunt circuits have a major drawback: their damping performance
is very sensitive to the parameters of the system. And in case of mistun-
ing, the resonant shunts won’t provide any damping. Online tuned resonant
shunts [16] were developed to overcome these difficulties, but the suggested
tuning algorithms did not lead to satisfying results as they are slow and diffi-
cult to implement.
Niederberger et al. [17] developed and implemented a novel online-tuned
multi-mode resonant shunts for piezoelectric damping. This resonant shunt
adapts itself for the optimal vibration suppression of one or several modes with
better rapidity and precision. The implementation is feasible with a simple
analogical circuit.
In R−L shunt circuits, energy is dissipated principally through the connect-
ed resistance R. This amount of dissipated energy is not too high because
of the reactive power components of the piezoelectric capacitor. In order to
overcome these limitations, the vibration control of structures through piezo-
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electric shunts with negative capacitance has been developed during recent
years. The negative capacitance eliminates the piezoelectric capacitance and
allows the resistance to maximally dissipate energy. It is considered a promis-
ing technique according to previous work. Theoretical, numerical analysis and
experimental validation are carried out to evaluate and assess the efficiency of
this control technique [6, 18, 19, 20, 21, 22, 23]. Tuning theories developed by
Behrens et al. [24], Park and Palumbo [25] and Cunefare [19] all showed that
a negative capacitance was needed to allow for maximum performance of the
shunt. However, during the experimental implementation, stability problems
can arise if the absolute value of the negative capacitance is smaller than the
piezoelectric capacitance at constant stress. Despite this difficulty, its capa-
bility of tailoring the dynamic behavior of the structure in a large frequency
range [26] makes this technique extremely interesting for numerous industrial
applications.
The shunt techniques mentioned above are mainly linear shunts. There are
also non-linear shunts with switches [27, 28, 29] that can change the dynam-
ics of the shunt to improve vibration damping. They do not require external
power sources. There are also many other shunt architectures, but the most
concerned shunt techniques in the present work are the R−L resonant shunt
and negative capacitance shunt.
Structures with periodically distributed shunted piezoelectric patches using
these two shunt techniques will be considered to obtain intelligent vibroa-
coustical interfaces in order to realize optimal reflection or optimal damping
of unwanted incident energy from excitation sources, which is the main ob-
jective of the CALIOP project presented thereafter. This project aims at
studying all induced problems such as mathematical homogenization, low to
high frequency structural modeling, optimization and of course experimental
tests, characterizations and technological issues.

1.2 CALIOP Project

CALIOP is an ambitious project which involves in-depth theoretical and nu-
merical development as well as advanced technological aspects, which is why
the 4-year ANR French project involves three academic partners: the Labo-
ratory of Applied Mechanics R.Chaléat at FEMTO-ST Institute (Besançon,
France), G.W. Woodruff School of Mechanical Engineering of Georgia In-
stitute of Technology(Atlanta, USA) and the Laboratory of Tribology and
System Dynamics (Lyon, France). It gave the frame of work for this Ph.D.
thesis. The general objectives of the project are to draw together academic
research teams with diverse skills and expertise with a common interest in
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low and mid-frequency vibration and acoustic analysis involving smart ma-
terials and structural design. Bringing the research groups together removes
existing fragmentation and achieve a critical mass of research efforts unparal-
leled anywhere in France. It encourages cross-fertilization of the ideas behind
the various approaches and the emergence of new hybrid integrated material
structures. The specific scientific objectives of the CALIOP project concern
research in the following tasks:

• To determine efficient theoretical active/passive optimization tools for
controlling mechanical power flow in complex structures with respect to
phenomenological criteria (transmission, absorption, damping) and the
corresponding operator for technological implementation. The optimiza-
tion will also adopt a design-oriented perspective in order to facilitate
the choice and the integration of these solutions.

• To understand and to analyze clearly multiphysical interactions between
piezoelectric elements, supporting structures and shunt electrical circuits
when dense distributed integration into composite structures is consid-
ered for physical implementation of optimal control operator.

• To develop integrated electromechanical prototype for characterizing vi-
broacoustical properties of such new generation of hybrid smart materi-
als.

• To explore new concepts in passive, adaptive or active mechanical in-
tegrated composite interfaces with different kinds of electronic circuits
and others electro mechanical transducers with a view toward MEMS
integration in a near future.

• To develop and to improve numerical models in view of the structural
complexity of the components and their assemblies. Significant effort
will be focused on the mid-frequency modeling of systems, including the
development of accurate reduced-order models and the development of
homogenization techniques in the presence of highly fluctuating kine-
matic fields.

• Finally to produce design robust numerical tools for implementing such
hybrid materials for industrial applications.

It is a multidisciplinary project that corresponds to the generic "smart mate-
rials and structure" framework, covering various disciplines such as structural
mechanics, mechatronic interaction, materials science and systems.
The goal of this research project is to cover the main methodological and
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technological aspects of this specific application, with particular attention to
some new and strategic issues, including new materials, reduced models, mid-
frequency and multi-scale approaches and vibroacoustical design optimization
tools. The final deliveries will be:

• New theoretical results concerning generalized impedance differential
and pseudo differential operators and temporal realization.

• Two integrated shunted piezoelectric composite prototypes (one beam
and one plate) demonstrating our capability in designing and realizing
such new generation of smart structures.

• Dedicated numerical robust optimization tools implemented into AE-
SOP software for future industrial design and manufacturing pro-
cess [5, 30].

• New technological methodologies for piezo-composite and electronic in-
tegration.

To achieve these goals, the generic idea proposed in Figure 1.1(a) introduces
the notion of "mechanical hybrid interfaces" often of a "dissipative" nature.
As depicted on Figure 1.1(a), this interface can be made of a simply lay-
ered material or multi-layered hybrid composite system including smart and
passive materials, integrated electronic control devices, potentially fluids, etc.
The interface here is considered as located between two solid media (joints).
Figure 1.1(b) shows the considered interface made of shunted piezoelectric
composite materials. This kind of interface acts on the whole structure as a
"generalized" impedance linking power flow between each separated systems.
The optimization of its "composite material" behavior induces application of
specific interface impedance able to confer specific properties for energy dif-
fusion.
This enables control of numerous desirable engineering properties such as
"insertion loss, absorption, reflection, damping" usually considered as the
design criteria for optimizing structural vibroacoustical behavior. This as-
pect demands to solve different theoretical problems regarding optimization
and realization of complex differential and pseudo differential operators. The
technological implementation of such concepts requires the integration, in the
interface itself, of a hybrid distributed system including smart transducer-
s (here piezoelectric elements) and electronic components (here semi-passive
shunt devices). The global induced structural behavior should exhibit the
desired vibroacoustical properties and should be able to guarantee efficiency,
while limiting structural alterations and modifications.
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(a)

(b)

Figure 1.1: (a)Illustration of a dissipative interface, analyzed by means of the
Kelvin-Voigt model and smart skin for structure-structure interaction prob-
lem. (b)Illustration of a dissipative interface, using shunted piezoelectric ma-
terials.

The feasibility of developing and realizing such materials and these "inte-
grated distributed smart structures" will be studied through the physical im-
plementations on simple examples. The paradigm application concerns the
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implementation of the proposed smart piezo-composite interface into a beam
(Figure 1.2(a)) and a plate (Figure 1.2(b)) for controlling its mechanical pow-
er flow diffusion. The considered piezoelectric control will be based on semi-

(a)

(b)

Figure 1.2: Periodically distributed shunted piezo-composite (a)beam
(b)plate.

active shunt circuit in a decentralized (Figure 1.3(a)) or non-decentralized
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(Figure 1.3(b)) architecture, depending on the order of the corresponding
optimal "impedance" operator. The investigated controlling operator con-

(a)

(b)

Figure 1.3: Description of Integrated and periodically distributed shunted
piezoelectric patches for power flow diffusion optimization (a)Decentralized
architecture (b)First order centralized architecture.

sists of innovative shunt circuits (Figure 1.4) connected to each individual
piezoelectric cell (decentralized approach) or between two nearby cells (non-
decentralized approach). By using the proposed new point of view based on
implementation of distributed shunt circuit, we could also produce "stable"
localized subdomain for sensitive system isolation, wave absorption for panel
stabilization or mechanical energy concentration for energy harvesting device
implementation [6, 31, 32]. Low and mid frequency dynamical characteriza-
tion of such smart piezoelectric composite structure will also be made. The
aim is to experimentally highlight the specific vibroacoustical effect of such
device for controlling the energy diffusion between the passive and active part
of the system. Depending on the applied distributed impedance, absorption
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Figure 1.4: Electro mechanical architecture : piezoelectric patch + negative
capacitance circuit.

and/or reflection of flexural waves will be analyzed.

1.3 Motivation of the work

From the numerical and simulation perspective, many theoretical problems are
to be considered. These fundamental questions are related to the complexity
of the integrated solution shown in Figure 1.1(a) and to the wide frequency
band of analysis (the audible frequency range, strictly speaking). In this con-
text, the dynamical features of a low frequency (LF), medium frequency (MF)
as well as high frequency (HF) (high and uniform modal density) nature arise.
Numerical investigations of the generic problem (Figure 1.1(a)) are complex
in the LF range and it is still a major challenge in the MF domain.
In the LF domain, for the resolution of structural-acoustic vibration prob-
lems, two types of methods can be distinguished, whether they are based on
analytical or numerical discrete approaches. Analytical methods are typical-
ly restricted to simple geometries and boundary conditions. Methods based
on discretization of the structural-acoustic governing equations, such as the
finite element method, are not restricted to specific boundary conditions but
require a higher computational effort. The originality of LF theoretical and
numerical investigations lies in:

1. new modal formulations of the fully coupled electromechanical interface;

2. the development of a computationally inexpensive and accurate adaptive
elements;

3. "smart" substructuring techniques, among other ideas.
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A semi-analytical approach can also be used to reduce computational costs.
In the MF range, fundamental issues should be addressed: the non-validity
of traditional assumptions related to the analytical models regarding smal-
l wavelengths (for instance, the Kirchhoff hypothesis for 1D and 2D elas-
tic systems; the mass law used for complex subsystem modeling [33]); non-
convergence of traditional numerical models and conventional homogeniza-
tion techniques [33], with regards to kinematic fields showing strong gradients
and/or highly oscillating [34]; prohibitive computational time associated with
the simulation of large numerical models; uncertainties (poor understanding
of system complexity) and parametric variability (related to the manufactur-
ing process), whose influence on the dynamic response of systems becomes
significant in the MF domain [33, 35, 36, 37, 38].
One further fundamental difficulty to be tackled is the numerical descrip-
tion of strongly coupled problems. Indeed, there is still a need for fast and
efficient numerical design tools capable of describing the coupling between
multi-physic systems (elastic structures, viscoelastic materials, fluids, electric
fields, electromagnetic fields, discrete electronics...) highlighting multi-scale
behavior. Multi-scale behavior is due to heterogeneities in terms of different
field wavelengths and is also due to the systems and structures. It is obvious
that the size of the interface will be small in comparison with the solid do-
mains covered. Each of these considered domains has its own dynamic and
conventional numerical methods and are thus inappropriate. This property is
known in the open literature as the MF dynamical situation. It concerns for
instance, a deterministic LF structure coupled to complex MF elastic subsys-
tems, or, an elastic flexible HF structure connected to an LF electronic one
(cf. Figure 1.4). One fundamental question will be to determine how refined
the interface modeling, should be to properly integrate it in numerical design.
Dedicated approaches will be carried out for the applications. They should
allow the computation of the obtained structural behavior to evaluate effec-
tive performance of our solutions and potential evolution for MF treatments.
Goals of this task lie also in the development of numerical tools for the LF
and MF - reduced modeling investigations - Model comparisons and validity
domains.
In order to accomplish this task, techniques for the prediction of dynamical
behavior of smart structures need to be developed. In the literature, a lot of
analytical models have been already proposed. A uniform strain model for
a beam with piezoelectric actuators bonded on the surface or embedded in
it was developed by Crawley and de Luis [39]. This model also incorporates
shear lag effects of the adhesive layer the piezoelectric actuator and the beam.
Lee [40] treated the induced strain as equivalent thermal effects, and presented
a model based on classical laminate theory. Zhang and Sun [41] constructed
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a new adaptive sandwich structure using the shear mode of piezoelectric ma-
terials. Governing equations for the proposed beam and its surface-mounted
counterpart are derived based on the variational principle. Later, Hu and
Yao [42] derived the elasticity solution of PZT generated wave propagation
in terms of the wave reflection and transmission matrices based on the Tim-
oshenko beam theory. Hagood and von Flotow [7] provided a comprehensive
description of the dynamic of shunted piezoelectric patch. Based on the work
of Hagood and von Flotow [7], Park [43] studied the vibration attenuation of
beams via shunted piezoelectric elements, and proposed a mathematical mod-
el to describe the flexural vibration behavior of a cantilevered beam system
with resonant shunt circuits.
The development of the finite element method(FEM) enabled the numerical
modeling of various structures with piezoelectric elements [44]. It is an ef-
fective tool for the prediction of structural dynamic behavior as it possesses
the advantages of widespread use in the engineering domain due to its capa-
bility of treating complex geometries. Structures with shunted piezoelectric
elements were properly treated with FEM [10, 11]. However, the excessive
computational time associated with large models constitutes one of the ma-
jor limitations of this approach. As an alternative, the numerical descrip-
tion based on waves traveling into waveguides and slender structures can be
applied. This description provides a low cost and efficient way to capture
the dynamic behavior of those structures as it only requires the treatment
of a typical unit subsystem [45]. The dimensions of this unit cell are re-
lated to the cross-section dynamics only. The Wave Finite Element(WFE)
method [46, 47, 48, 49, 50, 51, 52], which is based on the classic finite element
description of a typical unit cell extracted from a given global system, is an
appropriate tool for the prediction of wave propagation in waveguides such as
beams [53, 54] and plates [55, 56] in a wide frequency band.
During the CALIOP project, Spadoni et al. [9] and Casadei et al. [12] have
studied the control of wave propagation in plates with periodic arrays of shunt-
ed piezoelectric patches. Efforts have been dedicated firstly to developing the
finite element formulation of shunted piezoelectric elements, then to charac-
terizing the dispersion relation of waves propagating over the surface of plate
structures and the band gaps in the frequency domain. An experimental in-
vestigation was carried out in the work of Casadei et al. [12] to test the
performance of shunted piezoelectric patches via the forced response of the
structure. The paper published by the project leaders M. Collet et al. [6]
provided a full finite element description of a beam with periodic shunted
piezoelectric patches via the WFE method, with a particular emphasis was
placed on the optimization of shunt impedance. The energy diffusion is sup-
posed to occur at the interface between the part of the beam without shunted
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piezoelectric patches and the part of the beam with a set of periodic shunted
piezoelectric patches. The energy diffusion related to a unit cell in the set of
periodic patches is not analyzed.
Suitable numerical tools which can characterize energy diffusion properties
for structures with shunted piezoelectric elements still need to be properly
developed. These tools will be applied for intensive computations aiming at
the design of the piezoelectric patch and the electronic shunt circuit on the
patch.
In the present work, general formulations for smart structures with shunted
piezoelectric patches are proposed. These formulations can be applied for all
kinds of slender smart structures. On the whole, this work focuses on two
main objectives:

• Offering efficient numerical tools for the prediction of wave propagation
and diffusion characteristics and dynamic behavior such as reflection
and transmission coefficients of the wave modes, frequency and time re-
sponses of beam structures with shunted piezoelectric patches for design
purpose. Optimization of the unit cell in the periodic set of piezoelectric
patches can be carried out with these tools to obtain optimal geometric
and electric parameters.

• Providing effective verification and validation approaches to evaluate
wave propagation characteristics and dynamic behavior in order to test
the efficiency of all the numerical techniques.

1.4 Organization of the dissertation

This Ph.D. dissertation is organized as follows:

• In Chapter 1, the background and the motivation of this work are briefly
presented, as well as the CALIOP project in which LTDS participates
as the task leader of "Numerical modeling of complex multi-physical
interface".

• Chapter 2 is devoted to introduce the formulations of the numeri-
cal methods applied in this work. The Wave Finite Element (WFE)
method(Subsection 2.1.1) and its associated Diffusion Matrix Mod-
el(DMM)(Subsection 2.1.2) are firstly described. Thereafter, the nu-
merical tool to evaluate the forced response of the structure, namely
the Forced Wave Finite Element(FWFE) approach, is described in Sub-
section 2.1.3. The approach to acquire time response of the structure
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is introduced in Section 2.1.4. Then the Modified Wave Finite Ele-
ment(MWFE) formulation is given in detail(Subsection 2.2), which is
dedicated for the analysis of wave propagation and diffusion character-
istics in multi-layered slender waveguides. And finally in Section 2.3,
finite element modeling of piezoelectric domain is described, and the
approaches to take the shunt circuit into consideration are given. It
should be noted that all kinds of shunt circuits can be considered with
these formulations.

• In Chapter 3, all the numerical techniques provided are applied in vari-
ous simulations. Wave propagation and diffusion characteristics of spe-
cific wave modes propagating in solid beams(Subsection 3.1) and hollow
beams(Subsection 3.2), through the WFE approach and the associat-
ed DMM, so as to investigate the control of propagating waves in such
smart structures.

• Later in Chapter 4, multi-layered beams with R − L shunted piezo-
electric patches are calculated using the MWFE formulation in order
to study the control of wave modes propagating in such heterogeneous
systems. Parametric studies are also carried out to investigate the influ-
ence of reduced local mode bases of the layers on wave propagation and
energy diffusion characteristics in these multi-layered composite smart
structures.

• In Chapter 5, the issue of wave propagation control in smart struc-
tures with shunted piezoelectric patches using negative capacitance is
addressed. In Subsection 5.2, wave energy diffusion characteristics and
forced response of beam structures with R− Cneg shunted piezoelectric
patches are firstly investigated. Subsequently in Subsection 5.3, opti-
mizations of the shunt impedance and the thickness of the piezoelectric
patch are performed via pertinent optimization criterions like power flow
transmission and absorption of specific wave modes propagating in the
system.

• Chapter 6 focuses on the application of the guided waves for the dam-
age detection in stiffened panels at medium frequencies. The novel tech-
nique provided in this chapter, named Inhomogeneous Wave Correlation
(IWC) technique, is able to provide a global vision of the vibration sig-
nature of the structure through a wave propagation approach (instead of
modal analysis) by extracting propagation information like wavenumber
from measurements or simulations. With integrated signal processing
and filtering methods, waves containing no information about defects
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can be eliminated as the influence of local singularities on the vibration
signature of the structure can be highlighted.
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2.1 Wave propagation and energy diffusion
through finite elements in slender structures

The idea of the Wave Finite Element(WFE) method is firstly proposed by
Mead [57] as a general theory in order to determine harmonic wave propa-
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gation characteristics, where both one-dimensional and two-dimensional pe-
riodic systems are considered. Later, a lot of studies have focused on the
extension of this idea to the homogeneous structures rather than the gener-
ally periodic systems comprised of an arbitrary substructure [58, 59]. This
method considers the homogeneous waveguide structure as a periodic system
assembled by identical unit cells representative of the whole structure. Thus
the method for periodic systems can be seamlessly transplanted to the WFE
method for eigenmode extraction. The unit cell can be discretized with the
aid of some commercial FE procedures, rather than the development of a rel-
atively new FE code for specific elements. This allows the existing element
libraries and powerful grid generation procedures to be used for many en-
gineering structures. The WFE method is easy to apply due to its perfect
connection with the standard FE method [60]. This method was applied for
the structural vibration analysis [53, 61, 54, 31, 32], the wave propagation
in elastic waveguides [46, 62, 63]. Mencik and Ichchou [46] proposed a hy-
brid approach to study the diffusion of multiple wave modes based on this
method, and later Ichchou et al. [48] investigated the numerical sensitivity of
this method. The energy propagation features in rib-stiffened panels over a
wide frequency range were studied via this method in the work of Ichchou et

al. [32], where the comparisons of numerical and experimental results are
provided. Huang et al. [64] applied the WFE method and its associated D-
iffusion Matrix Model(DMM) [49] to study the defect detection in damaged
ribbed stiffened panels. Chen and Wilcox [63] applied this method to inves-
tigate the effect of load on guided wave propagating properties in rails. The
method was also implemented for wave propagation and dynamic problems in
the homogeneous structures with internal fluid [38, 65, 47], where the studies
were based on the WFE method for the one-dimensional wave propagation
problem and concentrated on the lower frequency problems. It is also known
that the transfer matrix method can be applied to calculate the wave propa-
gation in periodic or nearly periodic structures [66, 67]. However, this method
is less advantageous than the WFE and DMM approaches, as the latter give
full finite element description of the waveguide’s cross-section dynamics, for
the coupling element as well. Model reduction techniques can also be applied
in the WFE and DMM approaches [68, 49].

2.1.1 Wave propagation through finite elements in slen-
der structures

This section is concerned with a description of the dynamical behavior of
a slender structure, as illustrated in Figure 2.1, which is composed, along
a specific direction (say X-axis), of N identical substructures. Note that
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this general description can be applied to homogeneous systems whose cross-
sections are constant. The dynamic of the global system is formulated from
the description of the waves propagating along the X-axis. Let us consider

Figure 2.1: An illustration of a periodic waveguide [46].

a finite element model of a given substructure k (k ∈ {1, . . . , N}) belonging
to the waveguide (cf. Figure 2.1). The left and right boundaries of the dis-
cretized substructure are assumed to contain n degrees of freedom (DOFs).
Displacements q and forces F which are applied on these boundaries are de-
noted by (qL,qR) and (FL,FR), respectively. It is assumed that the kinematic
quantities are represented through state vectors u(k)

L = ((q
(k)
L )T(−F

(k)
L )T)T and

u
(k)
R = ((q

(k)
R )T(F

(k)
R )T)T, and that the internal DOFs of substructure k are not

submitted to external forces.
The dynamical equilibrium of any substructure k can be formulated in this
manner (full development of the dynamics can be found in Appendix B):

D∗

(
q
(k)
L

q
(k)
R

)
=

(
F

(k)
L

F
(k)
R

)
, (2.1)

where D∗ stands for the dynamical stiffness matrix of substructure k, con-
densed on the DOFs of the left and right boundaries, and qI represents the
displacements of the internal DOFs of the substructure.
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From equations (2.1) and (2.2), state vector u
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R — in the present case, u(k)
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R )T)T. Hence,
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The matrix J is defined in the following manner:

Jn =

[
0 In

−In 0

]
, JT

n = J−1
n = −Jn. (2.5)

The following boundary value problem issued from equation (2.3) can be es-
tablished as follows:

SΦi = µiΦi , |S− µiI2n | = 0. (2.6)

To avoid numerical ill-conditioning, this problem can be solved using the
approach proposed by Zhong and Williams in reference [45]. Solutions
{(µi,Φi)}i=1,...,2n of equation (2.6) refer to the wave modes of the hetero-
geneous waveguide. For the sake of clarity, it is assumed that eigenvectors
{Φi}i are linearly independent (i.e. eigenvalues {µi}i are distinct).
Alternatively, if the kinematic quantities are represented through state vectors
u
(k)
L = ((q

(k)
L )T(F

(k)
L )T)T and u

(k)
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where
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It can be easily proved that the eigenvalues of matrix S′ are the same of those
of matrix S (see Appendix B). More over, the eigenvalues can be defined such
that:

µn+i =
1

µi

∀n ∈ {1, . . . , n}. (2.9)

Thus, if eigenvalues {µi}i=1,...,n are associated with eigenvectors {Φi}i=1,...,n

traveling in the x−positive direction, eigenvalues {µi}i=n+1,...,2n are associated
with eigenvectors {Φi}i=n+1,...,2n traveling in the x−negative direction. And
as mentioned in reference [6], the sign of the real part of the wavenumber
ki ,Re(ki), represents the direction of the phase velocity of the corresponding
waves: if Re(ki) > 0, the phase propagates in the positive x direction; if
Re(ki) < 0, the phase propagates in the negative direction, and if it is zero,
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ki corresponds to the wavenumber of a pure evanescent wave that only oc-
curs when an undamped system is considered [56]. Hence, matrix Φ of the
eigenvectors can be described in this way:

Φ =

[
Φinc

q Φref
q

Φinc
F Φref

F

]
, (2.10)

where subscripts q and F refer to the components which are related
to the displacements and the forces, respectively; ((Φinc

q )T(Φinc
F )T)T and

((Φref
q )T(Φref

F )T)T stand for the modes which are incident to and reflected by a
specific boundary (left or right) of the heterogeneous waveguide, respectively;
Φinc

q , Φinc
F , Φref

q and Φref
F are n×n matrices. As mentioned in reference [38],

the eigenvalue problem defined by equation (2.6) must be solved at chosen
frequencies. This means that the wave modes established by equation (2.10)
have to be classified at each frequency. The orthogonality properties of eigen-
vectors {Φi}i (see for instance [45]), providing

(Φj )
TJnΦi = 0 for µj 6= 1/µi, (2.11)

allow one to propose a simple criterion to classify the wave modes, as suggested
in [38]. Indeed, if Φi(ω) stands for the ith mode at frequency ω, then the ith
mode Φi(ω + ∆ω) at frequency ω + ∆ω (∆ω represents the frequency step)
must be chosen such that the quantity

Ai(ω) = (Φl(ω))
TJnΦi(ω +∆ω) , µl(ω) = 1/µi(ω) (2.12)

is maximized. In fact, the validity of this criterion is based on the assumption
that frequency step ∆ω remains small enough such that eigenvector Φi varies
weakly between ω and ω +∆ω.

Finally, assuming modal decomposition, state vectors u
(k)
L and u

(k)
R of

any substructures k can be expressed from eigenvectors {Φi}i=1,...,2n [45]:

u
(k)
L = ΦQ(k) , u

(k)
R = ΦQ(k+1) ∀k ∈ {1, . . . , N}. (2.13)

Here, vector Q stands for the amplitudes of the wave modes, which can be
expressed by (cf. equation (2.10)):

Q =

(
Qinc

Qref

)
. (2.14)

Summarizing, it appears that the dynamical behavior of a periodic waveguide
can be simply expressed from a basis of modes representing waves traveling in
the positive and negative directions of the system. An analysis of the dynam-
ical response consists of evaluating a set of amplitudes {(Qinc(k), Qref(k))}k
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associated with the incident and reflected modes. Nevertheless, this evaluation
requires us to formulate the boundary conditions of the system.

2.1.2 Coupling conditions between two periodic waveg-
uides

The present section is concerned with the characterization, in terms of wave
modes, of coupling conditions between two different periodic waveguides. The
two systems are assumed to be connected, in a general manner, through an
elastic coupling element (see Figure 2.2). This study aims to enable a pre-
diction of the dynamics of complex systems which are composed of different
periodic waveguides.

Figure 2.2: An illustration of the coupling between two different periodic
waveguides [46].

Let us consider two periodic waveguides which are coupled through a cou-
pling element and let us consider two corresponding substructures (1 and 2)
which are located at the ends of the waveguides (see Figure 2.2). These sub-
structures are coupled with the coupling element at surfaces Γ1 and Γ2 and
are coupled with the other substructures, into waveguides, at surfaces S1 and
S2. It is assumed that the coupling element is only subject to the coupling
actions (that is, there is no force inside the element).
As mentioned in Mencik and Ichchou [46], the dynamical equilibrium of a dis-
cretized substructure i (i = 1, 2) and the coupling element can be formulated
in this way:
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D(i)




q
(i)
L

q
(i)
I

q
(i)
R


 =




F
(i)
L

0

F
(i)
R


 (i = 1, 2) and K




qc
1

qc
I

qc
2


 =




Fc
1

0

Fc
2


 ,

(2.15)
where matrix K stands for the complex dynamical stiffness of the coupling
element, (qc

1,F
c
1) and (qc

2,F
c
2) represent the displacements and the forces ap-

plied at the DOFs of the coupling element on surfaces Γ1 and Γ2, respectively.
Assuming that the meshes at the interfaces Γ1 and Γ2 between waveguides and
the coupling element are compatible (the same mesh is applied on the inter-
faces), the constraints introduced at these coupling surfaces can be formulated
in this way:

(
F

(1)
R

F
(2)
L

)
= −

(
Fc

1

Fc
2

)
,

(
qc
1

qc
2

)
=

(
q
(1)
R

q
(2)
L

)
, (2.16)

The dynamical equilibrium of the coupling element can be expressed in a
condensed form,

D
c∗

(
qc
1

qc
2

)
=

(
Fc

1

Fc
2

)
, (2.17)

where D
c∗ stands for the dynamical stiffness matrix of the coupling element,

condensed on the DOFs located on surfaces Γ1 and Γ2. The relation between
forces (F

(1)
R ,F

(2)
L ) applied at the right and left boundaries of substructures 1

and 2 and displacements (q
(1)
R ,q

(2)
L ) is easily found by considering equation-

s (2.17) and (2.16):

D
c∗

(
q
(1)
R

q
(2)
L

)
=

(
F

(1)
R

F
(2)
L

)
. (2.18)

In short, a relation is proposed between the forces applied by the com-
mon coupling element to waveguides 1 and 2, on surfaces Γ1 and Γ2, and
for the corresponding displacements as well. In the context of the Subsec-
tion 2.1, it can be shown that the dynamical behavior of a given coupled
periodic waveguide i (i = 1, 2) can be simply expressed in terms of wave
modes ((Φinc(i)

q )T(Φ
inc(i)
F )T)T incident to the coupling element and wave modes

((Φref(i)
q )T(Φ

ref(i)
F )T)T reflected by the coupling element. In this sense, it can be

shown that amplitudes (Qref(1),Qref(2)) of the modes reflected by the coupling
element can be related to amplitudes (Qinc(1),Qinc(2)) of the modes incident
to the coupling element through a diffusion matrix.
Indeed, from equations (2.10) and (2.13), state vectors u

(1)
R and u

(2)
L of sub-
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structures 1 and 2 can be expressed in this manner:
(

q
(1)
R

F
(1)
R

)
=

[
Φinc(1)

q Φref(1)
q

Φ
inc(1)
F Φ

ref(1)
F

](
Qinc(1)

Qref(1)

)
, (2.19)

(
q
(2)
L

F
(2)
L

)
=

[
Φinc(2)

q Φref(2)
q

Φ
inc(2)
F Φ

ref(2)
F

](
Qinc(2)

Qref(2)

)
. (2.20)

Equations ((2.19)) and ((2.20)) lead to:

(
q
(1)
R

q
(2)
L

)
=

[
Φinc(1)

q 0 Φref(1)
q 0

0 Φinc(2)
q 0 Φref(2)

q

]



Qinc(1)

Qinc(2)

Qref(1)

Qref(2)


 , (2.21)

and

(
F

(1)
R

F
(2)
L

)
=

[
Φ

inc(1)
F 0 Φ

ref(1)
F 0

0 Φ
inc(2)
F 0 Φ

ref(2)
F

]



Qinc(1)

Qinc(2)

Qref(1)

Qref(2)


 , (2.22)

From equations (2.21) and (2.22), equation (2.18) can be written in this man-
ner:

D
c∗
[
Ψinc

q Ψref
q

]



Qinc(1)

Qinc(2)

Qref(1)

Qref(2)


 =

[
Ψinc

F Ψref
F

]



Qinc(1)

Qinc(2)

Qref(1)

Qref(2)


 , (2.23)

where matrices Ψinc
q , Ψref

q , Ψinc
F and Ψref

F have been introduced for the sake
of clarity and are expressed by

Ψinc
q =

[
Φinc(1)

q 0

0 Φinc(2)
q

]
, Ψref

q =

[
Φref(1)

q 0

0 Φref(2)
q

]
(2.24)

Ψinc
F =

[
Φ

inc(1)
F 0

0 Φ
inc(2)
F

]
, Ψref

F =

[
Φ

ref(1)
F 0

0 Φ
ref(2)
F

]
.

Finally, equation (2.23) can be expressed in this way,
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[
D

c∗ Ψinc
q +Ψinc

F D
c∗ Ψref

q +Ψref
F

]



Qinc(1)

Qinc(2)

Qref(1)

Qref(2)


 = 0 (2.25)

Assuming that matrix
[
D

c∗ Ψref
F +Ψref

q

]
is invertible, amplitudes

(Qref(1),Qref(2)) of the modes reflected by the coupling element can be
expressed from amplitudes (Qinc(1),Qinc(2)) of the modes incident to the
coupling element through a diffusion matrix, namely C, which expresses the
reflection and transmission coefficients of the wave modes:

(
Qref(1)

Qref(2)

)
= C

(
Qinc(1)

Qinc(2)

)
, (2.26)

where

C = −
[
D

c∗ Ψref
q +Ψref

F

]−1 [
D

c∗ Ψinc
q +Ψinc

F

]
(2.27)

One must keep in mind that diffusion matrix C directly depend on the nor-
malization of eigenvectors {Φ

(1)
j }j and {Φ

(2)
k }k. It seems advantageous to

normalize the eigenvectors of the two waveguides in a similar manner.
If the DOFs at the interfaces Γ1 and Γ2 are not compatible, Lagrange multi-
pliers will be applied to consider this problem and detailed formulations can
be found in Appendix C.

2.1.3 Forced Wave Finite Element formulation

The WFE formulation provides wave propagation predictions under free
boundary conditions. In order to obtain the forced response of the struc-
ture, the Forced Wave Finite Element(FWFE) formulation [47, 69, 70] can
be employed. Based on equation (2.13) and equation (2.26), amplitudes Q(k)

which reflect for instance the kinematic variable u(k)
L for substructure k, are de-

scribed from amplitudes Q(1) and Q(N+1) representing kinematic variables u(1)
L

and u
(N)
R at the waveguide boundaries. According to the coupling relations be-

tween two consecutive substructures k and k−1 (k ∈ {2, . . . , N}),q(k)
L = q

(k−1)
R

and −F
(k)
L = F

(k−1)
R , the following relation can be found:

u
(k)
L = u

(k−1)
R ∀k ∈ {2, . . . , N} (2.28)

which leads to
u
(k)
L = Su

(k−1)
L ∀k ∈ {2, . . . , N} (2.29)
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Equation (2.29) allows to write:

u
(k)
L = Sk−1u

(1)
L ∀k ∈ {1, . . . , N} (2.30)

with S0 = I2n, and:
u
(N)
R = SNu

(1)
L (2.31)

Equation (2.30) and equation (2.31) are projected on the basis {Φi}i consid-
ering equation (2.13). Since matrix Φ is invertible (it has been assumed that
det[Φ] 6= 0), one obtains [71]:

Q(k) = Φ−1Sk−1ΦQ(1) ∀k ∈ {1, . . . , N + 1} (2.32)

that is (cf. Equation (B.18))

Q(k) =

[
Λ 0

0 Λ−1

]k−1

Q(1) ∀k ∈ {1, . . . , N + 1} (2.33)

where Λ stands for the (n × n) diagonal eigenvalue matrix for wave modes
propagating in x positive direction, expressed by equation (2.34) [71].

Λ =




µ1 0 . . . 0

0 µ2 . . . 0
...

...
. . .

...
0 0 . . . µn


 (2.34)

Expressing the boundary conditions of the waveguides in terms of amplitudes
Q(1) and Q(N+1) allows us to express, from equation (2.33), the dynamics of
a given substructure k. In a general manner, the boundary conditions at a
specific boundary of the waveguide can be formulated in this way:

Qref |lim= CQinc |lim +F (2.35)

where C stands for the diffusion matrix of the coupling element, and F de-
notes the effects of the excitations sources [47, 72]. It is demonstrated in the
work of Mencik et al. [72] that the general relation in equation (2.35) can
be applied to describe classical Neumann and Dirichlet boundary conditions.
These conditions can be expressed as follows:

[0 | I]u = F0 (Neumann) (2.36a)

[I | 0]u = q0 (Dirichlet) (2.36b)

They can be rewritten in the following manner via the projection of the state
vector u onto the wave mode basis (see equation (2.13)):

Φinc
F Qinc +Φref

F Qref = F0 (Neumann) (2.37a)

Φinc
q Qinc +Φref

q Qref = q0 (Dirichlet) (2.37b)
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2.1.4 Wave Finite Element method in time domain

Based on frequency response of the structure issued from the FWFE method,
the time response of the structure can be obtained in a rather simple way. For
example, if a structure is subjected to an excitation force fexc in time domain
[tk]k=1...M , through a Discrete Fourier Transform(DFT), the spectrum of this
excitation force f̂exc can be expressed in the frequency domain [ωk]k=1...M .

f̂exc(ωk) =
M∑

m=1

fexc(tm)e
−jtmωk (2.38)

This spectrum is then used in the FWFE approach to calculate the nodal dis-
placement response û(ωm) frequency by frequency. Subsequently, by applying
an Inverse Discrete Fourier Transform(IDFT) to the frequency response, the
time response can be acquired.

u(tk) =
1

M

M∑

m=1

û(ωm)e
−jtkωm (2.39)

It should be noted that M , the number of samples should be large enough to
ensure the quality of the frequency and time response.

2.1.5 Dynamics of the system expressed in reduced
modal basis

The wave formulations established above constitutes the framework of the
WFE formulation and appears well suited for predicting the spatial distri-
bution of the kinematic variables along the global system. The technique is
based on the expansion of either the state vector u(k)

L or the state vector u(k)
R

of any subsystem k on a reduced wave mode basis, say {Φ̃}j=1,...,2m, extracted
from the global wave mode basis {Φ}j=1,...,2n (m ≤ n). In this case, the
following relationship can be written:

u
(k)
L =

(
q
(k)
L

F
(k)
L

)
=

[
Φ̃

inc

q Φ̃
ref

q

Φ̃
inc

F Φ̃
ref

F

](
Q̃inc(k)

Q̃ref(k)

)

u
(k)
R =

(
q
(k)
R

F
(k)
R

)
=

[
Φ̃

inc

q Φ̃
ref

q

Φ̃
inc

F Φ̃
ref

F

](
Q̃inc(k+1)

Q̃ref(k+1)

)
k = 1, . . . , N (2.40)

The diffusion matrix C̃, unlike the diffusion matrix C obtained in equa-
tion (2.27), can thus be rewritten in the following manner:

C̃ = −
[
D

c∗ Ψ̃ref
q + Ψ̃ref

F

]+ [
D

c∗ Ψ̃inc
q + Ψ̃inc

F

]
(2.41)
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The superscript + of a matrix denotes the pseudoinverse of this matrix, and:

Ψ̃inc
q =

[
Φ̃

inc(1)

q 0

0 Φ̃
inc(2)

q

]
, Ψ̃ref

q =

[
Φ̃

ref(1)

q 0

0 Φ̃
ref(2)

q

]
(2.42)

Ψ̃inc
F =

[
Φ̃

inc(1)

F 0

0 Φ̃
inc(2)

F

]
, Ψ̃ref

F =

[
Φ̃

ref(1)

F 0

0 Φ̃
ref(2)

F

]
.

The matrix Q̃ = ((Q̃inc)T (Q̃ref)T )T stand for the modal amplitudes which
can be obtained via the following boundary value problem:

Q̃(k) =

[
Λ̃ 0

0 Λ̃−1

]k−1

Q̃(1) and (2.43)

Q̃ref |lim = C̃Q̃inc |lim +F̃ ∀k ∈ {1, . . . , N + 1}

Here, Λ̃ is the diagonal eigenvalue matrix associated with the eigenvectors
{Φ̃}j=1,...,2m; C̃ and F̃ denote the diffusion matrix and the effects of the

excitation sources. The latter are expressed as F̃(F0) = (Φ̃
ref

F )+F0 for an

imposed force field F0 and F̃(q0) = (Φ̃
ref

q )+q0 for an imposed displacement
field q0 [72].
In general, in order to ensure the validity of the expansion in equation (2.40),
the reduced modal basis must contain the modes which are the most solicited
by the excitation [68], that is, for which the excitation sources {F j}j are
large. This criterion allows in particular the representation of local behavior
around singularities(sharp gradients), since propagating as well as evanescent
and complex wave modes are involved in the boundary value problem (2.43).
From a practical point of view, if the excitations F0 and/or q0 are uniformly
distributed over the cross-section boundaries, the most solicited modes should
be related to wavenumbers with imaginary parts close to zero (propagating
modes or cut-on propagating modes) or nearly close to zero (nearly cutting-on
propagating wave modes) [54].
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2.2 Modified wave finite element formulation

Multi-layered systems are widely used in many engineering domains, offering
structural designers plenty of attractive features like high specific stiffness,
good buckling resistance, formability into complex shapes, easy reparability,
etc. Understanding, predicting and tailoring their vibratory behavior has al-
ways been an important issue in vibroacoustics. With the development of the
finite element method (FEM), the analysis of the dynamic behavior of such
structures is becoming more and more convenient, as this method possessed
the advantages of widespread use in engineering domain and the capabili-
ty of treating complex geometry. However, problems arise when large size
models are treated, as the computational cost of the resolution becomes un-
acceptable, especially for time response calculations. As an alternative, the
dynamic analysis of multi-layered systems based on the numerical descriptions
of waves traveling in these structures can be applied, as it provides a low cost
and efficient way to capture the dynamic behavior with relatively small mod-
els. This technique appears especially well suited for the short wavelength
domain as the dynamics of systems can be accurately described by highly
convergent reduced bases containing essential wave motions.
The study of low-frequency (LF) and mid-frequency (MF) wave propagation
in slender multi-layered elastic systems is focused on in this section. Such sys-
tems exhibit large scale behavior associated with uniform cross-sections where
are confined high regular "rigid body" and elastic modes, and fine scale behav-
ior associated with low regular propagating components [68]. The frequency
ranges can be defined as follows: the LF range refers to the frequency domain
for which a typical cross-section contains a small number of elastic modes, e.g.
the related "cross-section" modal density is small, while the MF range corre-
sponds to an intermediate frequency domain between the LF range and the
high-frequency (HF) range for which the cross-section modal density exhibits
large variations [73]. The WFE method mentioned in Section 2.1, which is
based on the classic finite element description of a typical cell extracted from
a given global system, is developed as an appropriate method for predicting
the propagation in waveguides in a wide frequency range. Nevertheless, the
WFE method suffers from a number of numerical problems especially when
multi-layered structures are concerned. In order to address this issue, Men-
cik and Ichchou [68] developed a substructuring technique named modified
wave finite element (MWFE) for analyzing wave propagation in multi-layered
systems, allowing the standard wave motions of multi-layered systems to be
correctly captured. This technique will be applied in this work to study the
wave propagation in slender multi-layered elastic beams.
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2.2.1 Associated substructuring scheme

We consider a typical multi-layered unit cell, say sub system k, belonging to
a composite structure(see Figure 2.3).
In the present work, the unit cell representative of the composite waveguide

Figure 2.3: An illustration of a multi-layered elastic system with a rectangular
cross-section [68].

is assumed to represent a set of M connected straight homogeneous layers,
whose left and right boundaries are denoted, respectively, as {Si

L} and {Si
R}:

for each layer i(i = 1, . . . ,M), the surfaces {SL} and are assumed to contain
the same number of DOFs, say ni. Let us denote as Γi the coupling interface
between each layer i and its surroundings, that is, the set of coupled layers
{j}j 6=i. qi and Fi are the displacements and the forces applied to the uncou-
pled layer on {Si

L} ∪ {Si
R}.

Following what was previously presented for the WFE approach, the dynam-
ic equilibrium equation of the unit cell is reformulated into a state vector
representation: the displacements qi and forces F

i can be expressed in this
way [45]:

qi =




qi
L

qi
I

qi
R


 F

i =




F
i
L

F
i
I

F
i
R


 i = 1, . . . ,M (2.44)

where, for each layer i, the subscripts L, R and I refer, respectively, to the
nodes which are located on Si

L and Si
R, and to the internal nodes, which don’t
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belong to Si
L and Si

R. Introducing the orthogonal operator L such that




q1

...
qM


 = L




q1
L

...
qM
L

q1
I

...
qM
I

q1
R

...
qM
R




(2.45)

With the operator L, the order of the DOFs in the unit cell will be rearranged.
The following dynamic equilibrium equation of the unit cell extracted from
the multi-layered composite waveguide can be written as follows:

D




q1
L

...
qM
L

q1
I

...
qM
I

q1
R

...
qM
R




=




F
1
L

...
F

M
L

F
1
I

...
F

M
I

F
1
R

...
F

M
R




= G




F1
L

...
FM
L

F1
I

...
FM
I

F1
R

...
FM
R




, (2.46)

D represents the dynamic stiffness matrix, and G imposes the continuity con-
ditions of the forces between the uncoupled layers

D = LT
[
Dlocal +Dcoupling

]
L

G = LT
[
I+ Ecoupling

]
L (2.47)

Detailed deduction of the previous relations can be found in Appendix D.
Assuming that the internal DOFs of the subsystem are not submitted to ex-
ternal forces, that is F i

I = 0 ∀i, leads to the following condensed state vector
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representations for the associated substructuring scheme:




q1
R

...
qM
R

F
1
R

...
F

M
R




= S




q1
L

...
qM
L

−F
1
L

...
−F

M
L




. (2.48)

Here, S is a (2
∑

i n
i × 2

∑
i n

i) matrix, expressed by

S =

[
−(D∗

LR)
−1D

∗
LL −(D∗

LR)
−1

D
∗
RL −D

∗
RR(D

∗
LR)

−1D
∗
LL −D

∗
RR(D

∗
LR)

−1

]
(2.49)

More over, observing that, for each layer i, the contribution of the surround-
ings Θi to the forces applied on a specific boundary, either Si

L or Si
R, is null

except on the boundary SΘi

L or SΘi

R , respectively, leads to the following rela-
tionships:




F
1
R

...
F

M
R


 = G

∗




F1
R

...
FM
R







−F
1
L

...
−F

M
L


 = G

∗




−F1
L

...
−FM

L


 (2.50)

where G
∗ = GLL = GRR. The substructuring scheme provided by equation-

s (2.48) and (2.50) is interesting compared to the classic model as it allows
the local kinematic variables (displacements and forces) of each layer cross-
section to be considered independently from the surroundings. Specifically,
the method appears interesting for constructing the global wave modes of the
multi-layered system from a set of local wave mode bases attached to the lay-
ers with free interfaces {Γi}i and whose dimensions can be individually tuned
to "fit" with each cross-section dynamics. This constitutes the framework of
the MWFE formulation presented below.

2.2.2 Construction of the global wave mode basis

Considering the coupling conditions between two consecutive subsystems k−1

and k, established for each layer i

q
i(k)
L = q

i(k−1)
R F

i(k)
L = F

i(k−1)
R

k = 2, . . . , N i = 1, . . . ,M (2.51)
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and considering, according to Bloch’s theorem [74], wave solutions {Φj}j in
equation (2.48) leads to the following eigenvalue problem

S




(Φq)j|1
...

(Φq)j|M

(ΦF)j|1
...

(ΦF)j|M




= µj




(Φq)j|1
...

(Φq)j|M

(ΦF)j|1
...

(ΦF)j|M




, |S − µjI| = 0 (2.52)

where (Φq)j|i and (ΦF)j|i are (ni×1) vectors which represent the restriction of
the (n×1) global mode components (Φq)j and (ΦF)j to Si

L or Si
R. Furthermore,

expressing equation (2.50) in terms of the wave mode components allows us
to define the set {(ΦF)j|i}i as




(ΦF)j|1
...

(ΦF)j|M


 = G

∗




(ΦF)j|1
...

(ΦF)j|M


 (2.53)

which is related to the set of forces {Fi}i applied to the layers with free in-
terfaces {Γi}i. Hereafter, the global wave modes {Φj}j of the multi-layered

system are constructed from a set of reduced local bases {{Φ̃
i

j}j=1,...,2mi}i =

{{Φ1
j}j, {Φ

2
k}k, . . . , {Φ

M
l }l} attached to the homogeneous uncoupled layers

and having specific dimensions {2mi}i. Two different modelings for the global
wave mode construction are described below: the first MWFE modeling en-
forces the convergence of the wave mode expansion used in the global wave
mode construction, while the second MWFE modeling is based on a relatively
well-conditioned eigenvalue problem.
The first MWFE modeling consists of constructing the global wave modes
{Φj}j from a set of reduced local bases {Φ̃i}i, having specific dimensions
{2mi}, as follows:

(Φq)j|i =
∑

l=1,...,2mi

aijl(Φ̃
i

q)l,

(ΦF)j|i =
∑

l=1,...,2mi

aijl(Φ̃
i

F)l, i = 1, . . . ,M, (2.54)

where the set {aijl} describes generalized coordinates. The expansion (2.54)
is natural as both the global and local wave component sets {(ΦF)j|i}i and
{{(Φi

F)l}l}i reflect the forces applied to the uncoupled layers. The continuity
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of the global wave force component set {(ΦF)j|i}i at the coupling interfaces
{Γi}i is provided by Equation (2.53), which enforces the convergence of the
first MWFE modeling.
According to equation (2.54), the construction of the global wave modes {Φj}j
can be established as follows: accounting for equations (2.53) and (2.54) re-
sults in the following matrix form:




(Φq)j|1
...

(Φq)j|M

(ΦF)j|1
...

(ΦF)j|M




= Baj (2.55)

where the matrix B is written

B =

[
I 0

0 G
∗

] [
Φ̃

local

q

Φ̃
local

F

]
. (2.56)

With the second MWFE formulation, the following expansion is considered,
which is quite different from equation (2.54):

(Φq)j|i =
∑

l=1,...,2mi

aijl(Φ̃
i

q)l,

(ΦF)j|i =
∑

l=1,...,2mi

aijl(Φ̃
i

F)l, i = 1, . . . ,M. (2.57)

The expansion (2.57) doesn’t appear natural since the global and local wave
force component sets {(ΦF)j|i}i and {{(Φi

F)l}l}i are attached to the coupled
and uncoupled layers respectively. As a result, the continuity of the global
wave force component set {(ΦF)j|i}i at the coupling interfaces {Γi}i can’t
be established in the present case, as opposed to the first MWFE expansion,
which might result in poor convergence of the formulation. To solve this
problem, the representation is assumed to include a significant number of
high order MF local modes.
In the present context, equation (2.57) is then expressed from the following
matrix:

B =

[
Φ̃

local

q

Φ̃
local

F

]
. (2.58)
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In the two MWFE formulations, the matrix B is expressed from the following
(
∑

i n
i × 2

∑
i m

i) matrices Φ̃
local

q and Φ̃
local

F

Φ̃
local

q =




Φ̃
1

q 0 . . . 0

0 Φ̃
2

q . . . 0
...

...
. . .

...

0 0 . . . Φ̃
M

q




Φ̃
local

F =




Φ̃
1

F 0 . . . 0

0 Φ̃
2

F . . . 0
...

...
. . .

...

0 0 . . . Φ̃
M

F



. (2.59)

In equation (2.55), {aj}j stands for the set of (2
∑

i m
i × 1) generalized coor-

dinate vectors

aj =




a1
j

a2
j
...

aM
j


 , ai

j =




aij1
aij2
...

ai
jmi


 i = 1, . . . ,M. (2.60)

which has to be determined in the MWFE context by means of the substruc-
turing scheme described below: Inserting equation (2.55) into equation (2.52)
results in the following (2

∑
i n

i × 2
∑

i m
i) overdetermined system:

SBaj = µjBaj (2.61)

The overdetermined system (2.61) can be simplified and reduced to a square
(2
∑

i m
i × 2

∑
i m

i) system when it is projected on the space spanned by
the adjoint reduced basis −JB. Multiplying equation (2.61) by [−JB]T and
considering that −JT = J, results in

B
TJSBaj = µjB

TJBaj (2.62)

Thus, the set of modal participations {aj}j can be evaluated by solving a
square (2

∑
i m

i × 2
∑

i m
i) classic eigenvalue problem

SMWFEaj = µjaj, |SMWFE − µjI| = 0 (2.63)

where
SMWFE =

[
B

TJB
]−1

B
TJSB (2.64)

The eigenvalue problem (2.63) in central to the MWFE formulation. Given

a set of reduced local bases {{Φ̃
i

j}j}i having appropriate dimensions, the for-
mulation consists of finding the eigenvalues {µj}j, which describe the global
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wave mode velocities, and the eigenvectors {aj}j, providing, by means of e-
quation (2.52), the restrictions of the global wave mode shapes, say {{Φj|i}i}j,
to the set of surfaces {Si

L} or {Si
R}.

The frequency revolution of the global wave mode parameters, obtained using
the MWFE formulation, can not be performed in a standard manner using
the criterion provided by equation (2.12), as the operator SMWFE is not sym-
plectic [68]. Instead, an alternative criterion based on the Hermitian scalar
product of the wave displacement components is suggested: for global wave
mode j defined at the angular frequency ω, we find global wave mode j at the
angular frequency ω +∆ω such that:

AMWFE
j (ω) = (Baj(ω +∆ω))

H
q(Baj(ω))q (2.65)

is maximized. Here, (Baj(ω))q = ((Φq)
T
j|1 . . . (Φq)

T
j|M)T . The choice of a small

frequency step ∆ω and the normalization of each modal displacement com-

ponent (Baj)q relative to the adimensioned Hermitian norm
√

(Baj)Hq (Baj)q

enforce the validity of the criterion; however, unlike the classic criterion pro-
vided by equation (2.12), the criterion provided by equation (2.65) does not
make any distinction between incident and reflected waves, which means that
this former classification [38, 46] has to be completed in a first step, before
the use of the criterion (2.65).
In brief, the advantages of the MWFE formulation compared to the WFE
formulation are [68]:

• The size of the eigenvalue problem (2.63) corresponds to a sum of dimen-
sions which exactly capture the dynamics of the layer cross-section: the
dependency between eigenvectors is removed and the essential behavior
is captured.

• The size of the eigenvalue problem (2.63) is generally smaller than the
classic eigenvalue problem (2.6), allowing a reduction of the numerical
cost.

• All the components of the operator SMWFE are homogeneous and are not
partitioned into displacement and force components: the problem of the
ill-conditioned classic operator S is removed, a priori.
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2.3 Finite element modeling of piezoelectric
structures

2.3.1 Variational principle

The three-dimensional piezoelectric constitutive law can be written as:

Tij = cEijklSkl − ekijEk (2.66a)

Di = eiklSkl + εSikEk (2.66b)

where E denotes the electric field, T the mechanical stress, S the mechanical
strain, and D the electric displacement; cE represents the material stiffness,
e describes the piezoelectric stress coupling, and εS is the permittivity under
constant strain. Equation (2.66a) represents the indirect piezoelectric effect,
whereas equation (2.66b) characterizes the direct piezoelectric effect.
Considering that this flexible piezoelectric continuum is occupying the volume
Vs with regular boundary surface Ss, the governing equations of mechanical,
dynamic and electrostatic equilibriums are given as follows:

Tij,j + fi = ρüi (2.67)

Di,i − q = 0 (2.68)

where fi, q and ρ are mechanical body force components, electric body charge
and mass density, respectively. Tij and Di are related to the components of lin-
ear Lagrange symmetric tensor Sij and electric field vector Ei through the con-
verse and direct linear piezoelectric constitutive equations (2.66a) and (2.66b).
The strain tensor and electric field vector components are linked to mechani-
cal displacement components ui and electric field potential ϕ via the following
relations:

Sij =
1

2
(ui,j + uj,i) (2.69)

Ei = −ϕ,i (2.70)

The piezoelectric domain Vs could be subjected to either essential or natural
mechanical and electric boundary conditions on its boundary surface Ss:

ui = Ui on Su (2.71a)

Tijnj = Fi on Sf (2.71b)

ϕ = V (2.72a)

or

Dini = −Q on Sq (2.72b)
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where Ui, Fi, V and ni are specified mechanical displacement and surface force
components, electric potential and surface charge, and outward unit normal
vector components.
For arbitrary space-variable and admissible virtual displacement δui and po-
tentials δϕ, equations (2.67) and (2.68) are equivalent to:

∫

Vs

(Tij,j + fi − ρüi)δuidVs +

∫

Vs

(Di,i − q)δϕdVs = 0 (2.73)

Integrating by parts and using the divergence theorem, this equation leads to:

−

∫

Vs

Tij,jδui,jdVs +

∫

Ss

TijnjδuidSs +

∫

Vs

fiδuidVs

−

∫

Vs

ρüiδuidVs −

∫

Vs

Diδϕ,idVs +

∫

Ss

DiniδϕdSs

−

∫

Vs

qδϕdVs = 0 (2.74)

Using the symmetry property of the stress tensor, the natural boundary con-
ditions (2.71b) and (2.72b) and the electric field-potential relation (2.70), the
following relation can be obtained:

−

∫

Vs

TijδSijdVs +

∫

Ss

FiδuidSs +

∫

Vs

fiδuidVs

−

∫

Vs

ρüiδuidVs −

∫

Vs

DiδEidVs −

∫

Ss

QδϕdSs

−

∫

Vs

qδϕdVs = 0 (2.75)

The dynamic equations of a piezoelectric continuum can also be derived from
the Hamilton principle, in which the Lagrangian and the virtual work are
properly adapted to include the electrical contributions as well as the me-
chanical ones [44]. The dymanic equations of a piezoelectric continuum can
be derived using Hamilton’s principle:

δ

∫ t2

t1

(L+W)dt = 0 (2.76)

where t1 and t2 define the time interval (all variations must vanish at t = t1 and
t = t2), L is the Lagrangian and W is the virtual work of external mechanical
and electrical forces.
According to the Hamilton’s principle (2.76), the Lagrangian L can be written
as the difference between the kinetic energy J and extended potential energy
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U(including the electric contribution), defined by the following expressions:

J =
1

2

∫

Vs

ρu̇2
i dVs (2.77)

U =
1

2

∫

Vs

TijSijdVs −
1

2

∫

Vs

DiEidVs (2.78)

L = J − U (2.79)

The virtual work done by the external mechanical forces and the applied elec-
tric charges for an arbitrary variation of the displacement field δu and of the
electric potential δϕ both compatible with the essential boundary condition-
s (2.71a) and (2.72a) can be written as:

δW =

∫

Vs

fiδuidVs +

∫

Sf

FiδuidSf −

∫

Sq

δϕQdSq −

∫

Vs

qδϕdVs (2.80)

Noting that by integrating the variation of kinetic energy J by part over the
time interval, one gets:

∫ t2

t1

ρu̇iδu̇idt = [ρu̇iδui]
t2
t1
−

∫ t2

t1

ρüiδu̇idt (2.81)

of which the first term vanishes as δui being equal to 0 in t = t1 and t = t2.
The Hamilton’s principle (2.76) can finally be written in the following manner,
for admissible δui and δϕ:

δJ − δU + δW = 0 (2.82)

Taking into account the consititutive equations (2.66a) and (2.66b) and sub-
stituing the Lagrangian and virtual work into equation (2.82) yields:
∫

Vs

[
ρüiδui − δSijc

E
ijklSkl + δSijekijEk + δEkeiklSkl + δEkε

S
ikEk + δuifi − δϕq

]
dVs

−

∫

Sf

FiδuidSf +

∫

Sq

δϕQdSq = 0 (2.83)

In matrix form, equation (2.83) can be written as:
∫

Vs

[
ρ{δu}T {ü} − {δS}T cE{S}+ {δS}T eT {E}+ {δE}T e{S}+ {δE}TεS{E}+ {δu}T {f} − δϕq

]
dVs

−

∫

Sf

{δu}T {F}dSf +

∫

Sq

δϕQdSq = 0 (2.84)

2.3.2 Finite element formulation

The displacement field {u} and the electric potential ϕ over an element are
related to the corresponding node values {ui} and {ϕi} by the mean of the
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shape functions Nu and Nv:

{u} = Nu{ui} (2.85)

ϕ = Nv{ϕi} (2.86)

Therefore, the strain field {S} and the electric field {E} are related to the
nodal displacements and potential by the shape functions derivatives Bu and
Bv defined by:

{S} = D
pNu{ui} = Bu{ui} (2.87)

{E} = −∇Nv{ϕi} = −Bv{ϕi} (2.88)

D
p is the linear differential operator matrix which relates the strains to the

structural displacements {u} in this manner: {S} = D
p{u}:

D
p =




∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x




(2.89)

Substituting expressions (2.85) to (2.89) into the variational principle (2.84)
yields:

{δui}
T

∫

Vs

ρNT
uNudVs{üi}+ {δui}

T

∫

Vs

BT
uc

EBudVs{ui}

{δui}
T

∫

Vs

BT
ue

TBvdVs{ϕi}+ {δϕi}
T

∫

Vs

BT
v eBudVs{ui}

−{δϕi}
T

∫

Vs

BT
v ε

SBvdVs{ϕi} − {δui}
T

∫

Vs

NT
u{f}dVs

−{δui}
T

∫

Sf

NT
u{F}dSf + {δϕi}

T

∫

Sq

NT
vQdSq + {δϕi}

T

∫

Vs

NT
v qdVs = 0

(2.90)

which must be verified for any arbitrary variation of the displacements {δui}

and electrical potentials {δϕi} compatible with the essential boundary condi-
tions.
The discretized electro-elastic system of equations can be written in the form
shown in equations (2.91a) and (2.91b).

Muu{üi}+Kuu{ui}+Kuv{ϕi} = {fi} (2.91a)

KT
uv{ui}+Kvv{ϕi} = {qi} (2.91b)
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with:

Muu =

∫

Vs

NT
u ρNudVs (2.92a)

Kuu =

∫

Vs

BT
u c

EBudVs (2.92b)

Kuv =

∫

Vs

BT
u e

TBvdVs (2.92c)

Kvv = −

∫

Vs

BT
v ε

sBvdVs (2.92d)

respectively the element mass, stiffness, piezoelectric coupling and capacitance
matrix, and:

{fi} =

∫

Sf

NT
u {F}dSf +

∫

Vs

NT
u {f}dVs (2.93a)

{qi} = −

∫

Sq

NT
vQdSq −

∫

Vs

NT
v qdVs (2.93b)

the external mechanical force and electric charge.
Each element k of the mesh is connected to its adjoint elements at the global
nodes and the displacement is continuous from one element to the next. The
element degrees of freedom (DOFs)({ui}

(k), {ϕi}
(k)) are related to the global

DOFs ({U}, {V}) by means of the localization matrices L
(k)
u and L

(k)
v [75]:

{ui}
(k) = L(k)

u {U} (2.94)

{ϕi}
(k) = L(k)

v {V} (2.95)

The element ij of L(k)
u is equal to 1 if the ith mechanical DOFs of the element

k corresponds to the jth global DOFs and is 0 otherwise. The element ij of
L

(k)
v is equal to 1 if the ith electric DOFs of the element k is connected to the

jth global electric DOFs and is zero otherwise.
The Hamilton’s principle (2.76) must be verified for the whole structure, which
results in (by summation of the contribution of each finite element):

{δU}T

{[
∑

k

L(k)T
u M(k)

uuL
(k)
u

]
{Ü}+

[
∑

k

L(k)T
u K(k)

uuL
(k)
u

]
{U}+

[
∑

k

L(k)T
u K(k)

uv L
(k)
v

]
{V} −

∑

k

L(k)T
u {fk}

}

+ {δV}T

{[
∑

k

L(k)T
v K(k)T

uv L(k)
u

]
{U}+

[
∑

k

L(k)T
v K(k)

vv L
(k)
v

]
{V} −

∑

k

L(k)T
v {qk}

}

(2.96)
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In matrix form, equation (2.96) can be written as:

MUU{Ü}+KUU{U}+KUV {V} = {F} (2.97)

KT
UV {U}+KV V {V} = {Q} (2.98)

where the assembled matrices are:

MUU =
∑

i

LT
uiM

(i)
uuLui (2.99a)

KUU =
∑

i

LT
uiK

(i)
uuLui (2.99b)

KUV =
∑

i

LT
uiK

(i)
uvLvi (2.99c)

KV V =
∑

i

LT
viK

(i)
vvLvi (2.99d)

{F} =
∑

i

LT
ui{fi} (2.99e)

{Q} =
∑

i

LT
vi{qi} (2.99f)

2.3.3 Shunt circuit on piezoelectric element

The finite element model of the beam with R−L shunted piezoelectric patch-
es is represented in Figure 2.4. This model contains two beam waveguides

Figure 2.4: Finite element model of a coupled beam system with a pair of
R− L shunted piezoelectric patches.

with 3D linear brick finite elements and a coupling element with 3D linear
brick piezoelectric finite elements. The piezoelectric element has 8 nodes and
4 degrees of freedom(DOFs) per node. Each node has 3 structural DOFs and
1 electrical DOF (electrical potential). All electrical potential DOFs that are
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placed on electrode surfaces of the patches are reduced such that only one
potential master DOF remains on each piezoelectric patch. All electrical po-
tential DOFs on the patch surfaces bonded to the beam are grounded. The
whole structure has free mechanical boundary conditions.
After finite element assembly, the discretized coupled piezoelectric and struc-
tural field equations are finally given in terms of nodal displacements {U} and
nodal electric potential {V}. Following the electrode definitions mentioned in
the work of [11], the electrical potential DOFs in the piezoelectric patches are
partitioned into three different groups:

• For nodes on the outer surfaces of the piezoelectric patches, their associ-
ated electrical DOFs are called {V}p, and they have the same electrical
potential;

• For nodes on the inner surfaces of the piezoelectric patches bonded to
the beam, their associated electrical DOFs are called {V}g, and they are
grounded ({V}g = 0);

• For nodes inside the piezoelectric patches, their associated electrical
DOFs are called {V}i.

The equations of motion are subsequently written in the form shown in equa-
tion (2.100).




MUU 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0







¨{U}
¨{V}i
¨{V}p
¨{V}g


+




KUU KUi KUp KUg

KT

Ui Kii Kip Kig

KT

Up KT

ip Kpp Kpg

KT

Ug KT

ig KT

pg Kgg







{U}

{V}i
{V}p
{V}g


 =




{F}

{Q}i
{Q}p
{Q}g




(2.100)

As {V}g = 0, the fourth equation and fourth column in the mass and stiffness
matrices can be eliminated. Internal potential DOFs can be determined by
exact static condensation from Equation (2.100) since internal electric charges
{Q}i = 0:

{V}i = −K−1
ii K

T
Ui{U} −K−1

ii Kip{V}p (2.101)

Since all the nodes on the potential electrode surfaces have identical poten-
tials, an explicit transformation matrix Tm can be used to define the master
potential DOF {V}m, as shown in equation (2.102).

{V}p = Tm{V}m (2.102)

The use of equation (2.102) yields the fully coupled dynamics:

[
MUU 0

0 0

] [ ¨{U}
¨{V}m

]
+

[
HUU HUp

HT
Up Hpp

] [
{U}

{V}m

]
=

[
{F}

{Q}m

]
(2.103)
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with

HUU = KUU −KUiK
−1
ii K

T
Ui (2.104a)

HUp = (KUp −KUiK
−1
ii Kip)Tm (2.104b)

Hpp = TT
m(Kpp −KT

ipK
−1
ii Kip)Tm (2.104c)

{Q}m = TT
m{Q}p (2.104d)

After the definition of the master DOF, the R-L shunt circuit can be consid-
ered. The electrical impedance of the circuit under harmonic excitation can
be written as:

Zsh = R + jωL (2.105)

If only one Master electric DOF is considered, Qm and Vm become scalar, the
current Ish in the shunt circuit can be expressed as Equation (2.90)

Ish = jωQm =
Vm

Zsh

(2.106)

By substituting Equation (2.106) into Equation (2.103), the electrical DOFs
can be condensed and the equation that governs the structural dynamics under
harmonic excitation is shown in Equation (2.107).

[HUU − ω2
MUU +HUp(

1

jωZsh

−Hpp)
−1

HT
Up]{U} = D

c{U} = {F} (2.107)

Here matrix D
c represents the dynamical stiffness matrix of the coupling ele-

ment. Equation (2.107) gives a full finite element description of the coupling
element with two shunted piezoelectric patches, which can be applied in the
DMM mentioned in Subsection 2.1.2.
If multiple master electrical DOFs are defined, the above formulation is s-
lightly different. Assuming that there are k piezoelectric patches with their
independent shunt circuit, the electric potential on the electrodes {V}m and
the associated electric charge {Q}m can be written in the following manner:

{V}m =




Vm1

Vm2
...

Vmk


 {Q}m =




Qm1

Qm2
...

Qmk


 (2.108)

In the same way, equation (2.102) can be applied to define Master DOF for
each piezoelectric patches. The impedance in the shunt circuit of the patch p

can be expressed in this way:

Zshp = Rp + jωLp (2.109)
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And the current Ishp in the pth shunt circuit can be written as:

Ishp = jωQmp =
Vmp

Zshp

(2.110)

By substituting equation (2.110) into equation (2.103), with equation (2.108),
the following relation can be obtained:

[HUU − ω2
MUU +HUp(Ysh −Hpp)

−1
HT

Up]{U} = D
c{U} = {F} (2.111)

where

{Y}sh =




1
jωZsh1

1
jωZsh2

...
1

jωZshk


 (2.112)

With these relations, the shunt circuit on the piezoelectric patches can be
considered properly.

2.4 Conclusions

In this chapter, general formulations of the numerical tools for the characteri-
zation of wave propagation and energy diffusion properties in smart structures
with shunted piezoelectric patches are proposed. The WFE method and the
associated DMM (Section 2.1) are generalized, through the finite element
modeling of shunted piezoelectric patches (Section 2.2). The combination of
these two numerical tools enables the evaluation of the control efficiency of
the smart structures, in both frequency and time domains. Numerical appli-
cations of these numerical tools are carried out in the following chapters to
study the control of propagation and diffusion parameters.
The procedure for the numerical applications of the numerical tools can be
summarized as follows:

1. Calculation of dispersion curves using WFE. Distinction of wave modes
with their deformed modal shapes. Selection of wave modes propagating
in the smart structure.

2. Analysis of energy diffusion in smart structures with shunted piezoelec-
tric patches via the DMM: reflection and transmission coefficients of
specific wave modes propagating in the structure will be obtained.

3. Calculation of the forced response of the structure under different types
of excitations in the frequency domain (white noise, wave packet).
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4. Calculation of the time responses of the structure by applying IDFT on
the frequency response. Identification of reflection coefficients through
an extraction procedure based on time response.
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3.1 Numerical simulations of solid beams with
shunted piezoelectric patches

In this section, the DMM with shunted piezoelectric elements is firstly em-
ployed to calculate the reflection and transmission coefficients of the Z-axis
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flexural wave and the X-axis tension/compression wave in solid beams. The
influence of the shunted piezoelectric patches on the propagation of these wave
modes is carefully investigated, and an analytical model is developed to verify
the numerical results. Subsequently, the FWFE approach is applied for the
evaluation of the dynamical behavior of the structure in frequency domain.
Unlike the DMM approach which gives predictions for the beam structure
with free boundary conditions, frequency response functions can be obtained
for the beam structure with forced boundary conditions. Waveguides are of
finite length in this case. Thereafter, based on the frequency responses, the
calculation of time responses of the structure under wave packet excitation is
carried out. An extraction procedure is proposed to calculate reflection co-
efficients of the X-axis tension/compression mode so as to verify the results
issued from the DMM approach.
It should be mentioned that the problem of a piezoelectric patch shunted
through a R − L circuit that acts as a vibration absorber or noise controller
has been used extensively in the past and its behavior has been examined
thoroughly via analytical or numerical models. However, no numerical tools
that can predict wave propagation and diffusion in a unit cell belonging to a
set of periodically distributed shunted piezoelectric patches are proposed in
the literature. The effects of a piezoelectric patch shunted through a R − L

circuit as a vibration absorber on the energy diffusion of a specific wave mod-
e propagating in a slender system are never studied in detail. The focus of
the present work lies in the wave propagation and energy diffusion problems
in such systems, and new efficient numerical tools aiming at achieving these
goals are provided and tested in this section.

3.1.1 DMM approach applied for Z-axis flexural wave

The structures to be studied here are beams with two symmetric bonded R−L

shunted piezoelectric patches. The finite element model of the couple system is
shown in Figure 3.1. In the first case of study (Case A), the widths of the beam
and the patches are the same. The finite element model of the coupling ele-
ment is shown in Figure 3.2, with the definition of geometric parameters. The
parameter Lbeam represents the length of the beam involved in the coupling el-
ement. Numerical values of those geometric parameters are listed in Table 3.1.
The material of the beam is aluminium and considered as isotropic, with Y-
oung’s modulus Ebeam = 70 GPa and Poisson’s ratio νbeam = 0.34, and density
ρbeam = 2700 kg/m3. The piezoelectric patches are fabricated by Saint Gob-
ain Quartz (type SG P189) and the corresponding material characteristics are
listed in Appendix A. This type of piezoelectric patch works mainly in the 3-1
mode, and the two piezoelectric patches should work in phase (both stretched
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Figure 3.1: Finite element model of a coupled beam system with a pair of
R− L shunted piezoelectric patches.

Figure 3.2: Finite element model of the coupling element and definition of
geometric parameters in case A.

or compressed) for the control of the tension/compression wave, whereas for
the flexural mode, they should work in opposite phase (one stretched, the
other compressed). At first, the beam is treated as a waveguide and the
corresponding dispersion curves of the wave modes propagating in the beam
are extracted via the WFE approach, as shown in Figure 3.3. Based on this
calculation, the mesh resolution is chosen to be 0.005 × 0.005 × 0.002 m3,
as the minimum wavelength of the Z-axis flexural wave mode is about 0.1m
in the concerned frequency band. The DMM calculation of this wave mode
gives the reflection and transmission coefficients as displayed in Figure 3.4,
with R = 100 Ω and L = 2 H. The tuning frequency ftune of the piezoelectric
patches is about 1340 Hz. In fact, around this frequency, the impedance of the
structure is greatly modified by the shunted piezoelectric patches so that the
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Table 3.1: Numeric values of the geometric parameters in the coupling element
shown in Figure 3.2(case A), Figure 3.7(a)(case B) and Figure 3.7(b)(case C).
The units of all the parameters are in meter (m).

Case Lbeam Lpatch bbeam bpatch hbeam hpatch

A 0.04 0.04 0.02 0.02 0.004 0.002
B 0.03 0.03 0.03 0.01 0.003 0.001
C 0.03 0.01 0.03 0.03 0.003 0.001

Figure 3.3: Dispersion curves of the wave modes propagating in the beam in
case A: (1)Tension/compression wave in X-axis (2)Torsional wave in X-axis
(3)Flexural wave in Y -axis (4)Flexural wave in Z-axis. These wave modes
are identified through their mode shapes (eigenvectors) issued from the WFE
approach.
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Figure 3.4: Reflection and transmission coefficients of the Z-axis flexural wave
mode propagating in the beam in case A. (Solid line)With R-L shunt circuit
(Dashed line)Open circuit (Dash-dotted line)Beam without piezopatches.

wave propagation characteristics change significantly. The tuning frequency
can be calculated according to equation (3.1):

ftune =
1

2π
√

2LCS
p3

(3.1)

where CS
p3 = (1−k2

31)C
T
p3 is the capacitance of the piezoelectric patch measured

at constant strain, and the 2 in front of L is due to the fact that the two
piezoelectric patches are connected in parallel. If each piezoelectric patch
has an independent shunt circuit, the 2 in front of L will disappear. The
subscript 1 represents the X-axis direction while the subscript 3 denotes the
Z-axis direction. k31 is the electromechanical coupling coefficient. CT

p3 is the
capacitance of the piezoelectric patch measured at constant stress. It can be
calculated in the following manner:

CT
p3 =

εTA3

L3

(3.2)

where A3 is the area of the surface of the piezoelectric patch perpendicular
to Z-axis, L3 = hpatch is the length of the piezoelectric patch in Z-axis di-
rection. Thereafter, these numerical results are compared to results derived
from an analytical beam model. This beam can be divided into 3 propagation
mediums, as shown in Figure 3.5. It is a combination of 3 analytical models:

• For wave propagation in the beam, the classical Euler-Bernoulli beam
model [76] is employed;
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Figure 3.5: Homogenized Euler-Bernoulli beam model with two symmetric
R-L shunted piezoelectric patches.

• For the part of the beam covered with 2 piezoelectric patches (Medium
2), a homogenization procedure [77] is applied;

• For the piezoelectric patches with shunted circuit, the model in the work
of Hagood and von Flotow [7] is used.

This homogenized Euler-Bernoulli beam model with shunted piezoelectric
patches offers analytical solutions to the reflection and transmission coeffi-
cients of the flexural wave. Assuming that the Young’s modulus and density
of the shunted piezoelectric patches are Epatch and ρpatch. According to Ha-
good and von Flotow [7], the shunt circuit modifies the material properties of
the piezoelectric patch in the following way:

sshpatch jj = sEpatch jj − Z̄el
i

d2ij
εTi

(3.3a)

Esh
patch jj =

cEpatch jj

1− k2
ijZ̄

el
i

(3.3b)

where sshpatch jj represents the shunted piezoelectric compliance in the jth di-
rection and sEpatch jj the mechanical compliance in the jth direction, while
Esh

patch jj denotes the shunted piezoelectric stiffness in the jth direction, and
cEpatch jj the mechanical stiffness in the jth direction. kij is the electrome-
chanical coupling coefficient defined as shown in equation (3.4a), and dij is
the piezoelectric strain coupling coefficient. Z̄el

i denotes the relative electrical
impedance defined as shown in equation (3.4b). εTi is the permittivity under
constant strain in the ith direction.

kij =
dij√
sEjjε

T
i

(3.4a)

Z̄el
i =

jωCT
piZshi

jωCT
piZshi + 1

(3.4b)
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In the case of this work, there is no shunt circuit in the 1st(X-axis) and 2nd(Y -
axis) directions, so Zsh1 = Zsh2 = ∞ and then Z̄el

1 = Z̄el
2 = 1. CT

pi is the
capacitance between the surfaces of the piezoelectric patch perpendicular to
ith direction (at constant stress). For the considered beam to be homogenized,
only the loading in the 1st direction (X-axis) is taken into account, thus the
Young’s modulus of the piezoelectric patch can be calculated as Epatch =
Esh

patch 11. The effective Young’s Modulus Eeff of Medium 2 can subsequently
be expressed in the form shown in equation (3.5).

Eeff = Ebeam

12

h3
eff

(
h3
1

6
+ 2d21h1) + Epatch

12

h3
eff

(
h3
2

6
+ 2d22h2) (3.5)

where

heff = hbeam + 2hpatch, h1 =
1

2
hbeam, h2 = hpatch

d1 =
1

4
hbeam, d2 =

1

2
(hbeam + hpatch) (3.6)

The effective density ρeff , area Aeff and moment of inertia Ieff are shown in
equations (3.7a), (3.7b), and (3.7c) respectively.

ρeff =
hbeamρbeam

hbeam + 2hpatch

+
2hpatchρpatch

hbeam + 2hpatch

(3.7a)

Aeff = bbeam(hbeam + 2hpatch) (3.7b)

Ieff =
bbeam(hbeam + 2hpatch)

3

12
(3.7c)

Reflection and transmission coefficients of the flexural wave propagating in
the beam in case A are calculated analytically and the results are compared
to those acquired through the DMM approach, as shown in Figure 3.6. The
results issued from the DMM approach and those from the homogenized Euler-
Bernoulli model correspond well below 2 kHz. However, at higher frequencies,
as the homogenization method becomes inaccurate [78, 79], those two ap-
proaches give different predictions of reflection and transmission coefficients
of the flexural wave. Furthermore, the Euler-Bernoulli analytical model be-
comes also incorrect at middle and high frequencies, as its plane wave descrip-
tion of the bending mode is not a priori satisfied in this frequency range [46].
Nevertheless, these two different approaches give the same tuning frequency
ftune. On the whole, the prediction performance of the DMM approach is well
manifested in this case.
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Figure 3.6: Comparison of reflection and transmission coefficients of the flex-
ural mode in Z-axis between the results of the homogenized Euler-Bernoulli
beam model and those of the DMM approach in case A. (Solid line)DMM
results (Dashed line)Homogenized model results.

3.1.2 Application of DMM and FWFE for the choice of
configuration

3.1.2.1 Prediction of reflection and transmission coefficients with

DMM

Two other numerical simulations are performed for an aluminium beam with
two symmetric bonded shunted piezoelectric patches. All the material prop-
erties are the same as those used in case A, but the dimensions piezoelectric
patch in these two cases (case B and case C) are 0.03× 0.01× 0.001 m3, and
the dimensions of the beam section are 0.03 × 0.003 m2. These values are
defined according to available materials in the laboratory so that the numeri-
cal results can be later validated experimentally. Two different configurations
are tested: in case B, the two piezoelectric patches are bonded in the lon-
gitudinal direction of the beam, as shown in Figure 3.7(a), whereas in case
C, these patches are bonded transversally on the same beam, as displayed in
Figure 3.7(b). Numerical values of the geometric parameters are listed in Ta-
ble 3.1, and there definitions can be found in Figure 3.7(a) and Figure 3.7(b).
At first, the dispersion curves of the wave modes propagating in the beam
in case B and case C are calculated using the WFE approach. The results
are shown in Figure 3.8. The wavelength of the flexural mode in Z-axis is
shown in Figure 3.9. According to the wavelength, the mesh resolution in
these two cases is chosen as 0.005 × 0.005 × 0.0015 m3 for the beam, and
0.005× 0.005× 0.001 m3 for the patches. In the frequency band from 0 to 5
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(a)

(b)

Figure 3.7: Finite element model of the coupling element and definition of
geometric parameters (a)in case B: the two piezoelectric patches are placed
longitudinally (b)in case C: the two piezoelectric patches are placed transver-
sally.
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Figure 3.8: Dispersion curves of the wave modes propagating in the beam in
case B and case C: (1)Tension/compression mode in X-axis (2)Torsional wave
in X-axis (3)Flexural wave in Y -axis (4)Flexural wave in Z-axis. These wave
modes are identified through their mode shapes (eigenvectors) issued from the
WFE approach.

kHz, for the Z-axis flexural wave mode, this mesh resolution is fine enough.
The DMM approach is applied subsequently to calculate the reflection

and transmission coefficients of the Z-axis flexural wave in the two cases,
with R = 100 Ω and L = 2 H in the shunt circuit. The results are shown
in Figure 3.10. It can be observed from the DMM results that the propa-
gation of the flexural wave is tuned around 1.5 kHz, as the reflection and
transmission coefficients vary significantly. The tuning frequency calculated
according to Equation (3.1) is about 1550 Hz, which is quite consistent with
the results Figure 3.10(a) and Figure 3.10(b). It can also be concluded that
the longitudinally bonded shunted piezoelectric patches (case B) results in a
higher reflection of the flexural wave mode in the beam than those bonded
transversally (case C).

3.1.2.2 Forced response prediction with FWFE

In order to predict the forced response of the beam with shunted piezoelectric
patches, the FWFE method mentioned in Chapter 2 Subsection 2.1.3 can be
applied. The same beam with a pair of shunted piezoelectric patches in case B
is taken as an example, as displayed in Figure 3.11(a). To calculate the forced
response, boundary conditions and the lengths of the waveguides should be
specified. As shown in Figure 3.11(a), one extremity of the beam is excited
by a punctual force Fexc, and the other extremity is free. The amplitude



3.1. Numerical simulations of solid beams with shunted
piezoelectric patches 57

Figure 3.9: Wavelength of the flexural wave in Z-axis in case B and case C.

of the excitation force remains constant in the frequency domain. The first
waveguide consists of N1 identical unit cells while the second one consists
of N2 identical unit cells. The part of the beam covered with the pair of
shunted piezoelectric patches is considered to be the coupling element. For
the sake of simplicity, it is assumed that N1 = N2 = N . The two waveguides
are identical as they belong to the same beam, thus Λinc

1 = Λref
2 = Λ, and

Λref
1 = Λinc

2 = Λ−1(see equation (2.34)). The boundary conditions of the
system can be written in the following manner:

Φinc
F1Q

inc(1)
1 +Φref

F1Q
ref(1)
1 = Fexc (3.8a)

Φinc
F2Q

inc(N+1)
2 +Φref

F2Q
ref(N+1)
2 = 0 (3.8b)

The boundary condition at the left extremity of Waveguide 1 is a Dirichlet
boundary condition(equation (3.8a)), whereas the boundary condition at the
right extremity of Waveguide 2 is a Neumann one(equation (3.8b)).
The continuity conditions of displacement and force between the waveguides
and the coupling element form the coupling condition and can be expressed
as:

[
qLC

FLC

]
=

[
q
(N+1)
R1

−F
(N+1)
R1

]
(3.9a)

[
qRC

FRC

]
=

[
q
(1)
L2

−F
(1)
L2

]
(3.9b)

where qLC and FLC stand for the nodal displacement and the nodal force at the
left boundary of the coupling element, and qRC and FRC at the right boundary
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(a)

(b)

Figure 3.10: Reflection and transmission coefficients of the Z-axis flexural
wave mode propagating in the beam (a)Case B (b)Case C. (Solid line)With
R-L shunt circuit. (Dashed line)Open circuit.
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(a)

(b)

Figure 3.11: WFE model for the calculation of the forced response of the
beam with shunted piezoelectric patches (a)in case B (b)in case C



60
Chapter 3. Wave propagation and diffusion in smart homogeneous

beam structures with R− L shunted piezoelectric patches

of the coupling element.
By substituing these continuity conditions into the dynamics of the coupling
element(see equation (2.107)), the boundary conditions at the right extremity
of Waveguide 1 and those at the left extremity of Waveguide 2 can be obtained,
as shown in Equation (3.10). D

∗ denotes the dynamic stiffness matrix of the
coupling element condensed on the DOF located on the interfaces between
the waveguides and the coupling element itself.

D
∗

[
q
(N+1)
R1

q
(1)
L2

]
= −

[
F

(N+1)
R1

F
(1)
L2

]
(3.10)

Combined with the boundary conditions in Equation (3.8a) and Equa-
tion (3.8b) and the propagation relation(see equation (2.33)), an equation
system which gives the wave amplitudes Q in both waveguides under the
excitation force Fexc can be developed as follows:

A













Q
inc(1)
1

Q
ref(1)
1

Q
inc(1)
2

Q
ref(1)
2













=









Fexc

0

0

0









(3.11)
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11Φ
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11Φ
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12Φ
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12Φ
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22Φ
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F2 Λ−N Φref

F2 ΛN











The resolution of this equation system provides the wave amplitudes at the left
boundary of the waveguides 1 and 2, and via equation (2.33), wave amplitudes
at any node in the two waveguides can be obtained. The nodal displacement
in Z-axis at the center of the free extremity of the beam is used for the
calculation of the frequency response function(FRF) of the beam. As an
example, the length of the beam is chosen to be 1 m, thus N = 97. The
pair of piezoelectric patches share the same shunt circuit with R = 100 Ω and
L = 2.8251 H, in order to tune a flexural mode around 1350 Hz. The FRF
with shunt circuit and without shunt circuit (open circuit case) are calculated
numerically. Additionally, a classical finite element harmonic analysis has been
performed using ANSYS to extract the FRF of the same structure in the open
circuit condition. SOLID45 elements [80] are used for the beam, and SOLID5
elements [80] with electric potential DOF are applied for the piezoelectric
patches. The finite element mesh resolutions are the same as those mentioned
in subsection 3.1.1. The comparison results are displayed in Figure 3.12. As
shown in Figure 3.12(a), the FWFE results correspond very well to the finite
element results in the frequency band from 0 to 5 kHz. The attenuation effect
of the shunted piezoelectric patches around the tuning frequency (1350 Hz),
which is close to the eigenfrequency of one of the flexural modes, is rather
evident, as shown in Figure 3.12(b). In the same manner, another analysis is
performed for the beam with a pair of shunted piezoelectric patches in case
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(a)

(b)

Figure 3.12: Comparison of the frequency responses in case B: (a)Frequency
band from 0 to 5 kHz (b)Zoom around the tuning frequency (1350 Hz).(Solid
line)FWFE with shunted circuit. (Dashed line)FWFE without shunt circuit.
(◦ markers)ANSYS results without shunt circuit.
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C displayed in Figure 3.11(b). The comparison results of the FRF is shown
in Figure 3.13. These results reveal again that FWFE can predict correctly
the frequency response of the structure. It is an effective approach that can
be employed to estimate the influence of the shunted piezoelectric patches
on the flexural modes of the beam. It can be concluded from Figure 3.12(b)
and Figure 3.13(b) that the longitudinally placed pair of piezoelectric patches
lead to a larger attenuation frequency band than the transversally placed
patches. It should also be noted that the FWFE formulation requires much
less computational time compared to ANSYS. Furthermore, ANSYS is not
capable of analyzing shunt circuits with negative capacitance, but the FWFE
method is able to deal with all kinds of shunt impedance.

3.1.3 Time response calculation and reflection coefficient
verification

In Subsection 3.1.2, the frequency responses are calculated with an excitation
force of constant amplitude in the frequency domain. In order to evaluate the
time response, the approach mentioned in Chapter 2 Subsection 2.1.4 is car-
ried out. The reflection coefficients can be extracted from the time response
and then be compared to those calculated with the DMM approach. This ex-
traction technique can equally be applied in experiments to validate numerical
results. Let’s consider an aluminium beam with a pair of longitudinally placed
R−L shunted piezoelectric patches. According to the dispersion curves shown
in Figure 3.8, it can be noted that in the frequency band from 0 to 20 kHz, the
bending modes are dispersive as their dispersion curves are not linear, where-
as the tension/compression mode is non-dispersive as its dispersion curve is
linear. As non-dispersive waves can maintain their wave form during the prop-
agation, and their group velocity is almost constant, it will be much easier to
track them in the structure. The group velocity of the tension/compression
mode is shown in Figure 3.14. It is almost constant in the frequency band
from 0 to 20 kHz. As the wavenumber of the X-axis tension/compression
mode is smaller than the Z-axis bending mode, the wavelength of the for-
mer mode is larger than the latter mode. So the same mesh resolution can
be applied for the finite element models. Based on this group velocity, the
length of the beam is chosen to be 3 meters which is large enough so that
incident and reflected waves can be clearly distinguished. To minimize the
effect of induced dispersion by the piezoelectric patches, narrow band signals
are used, composed of 2.5 cycles modulated by a Hanning window with the
central frequency f0 equal to 9 kHz. The time wave form and the spectrum of
this wave packet excitation force is displayed in Figure 3.15. The maximum
amplitude is 100 N and the sampling frequency is 20 times greater than the
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(a)

(b)

Figure 3.13: Comparison of the frequency responses in case C: (a)Frequency
band from 0 to 5 kHz (b)Zoom around the tuning frequency (1350 Hz). (Sol-
id line)Piezoelectric patches with shunted circuit. (Dashed line)Piezoelectric
patches without shunt circuit. (◦ markers)ANSYS results without shunt cir-
cuit.
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Figure 3.14: Group Velocity of the tension/compression wave in X-axis in
case B.

(a) (b)

Figure 3.15: The time wave form and the spectrum of the wave packet exci-
tation. (a)Time wave form (b)Spectrum.

central frequency in order to guarantee the signal quality of the wave packet.
This excitation force is applied to one extremity of the beam as the input, and
the displacement of the measure point is taken as the output, as shown in Fig-
ure 3.16. The measure point lies at 25 cm from the extremity with excitation
force. Subsequently, the forced response of the structure under white noise
excitation is calculated, as shown in Figure 3.17. As an example, the mode at
9350 Hz is targeted, and then the shunt circuit is tuned to this frequency, with
R = 100 Ω and L = 0.0575 H. From Figure 3.17(b), it can be seen that with
the shunted piezoelectric patches, only a damping effect is obtained for the
tension/compression mode, but for the flexural mode, a stronger attenuation
effect is achieved, as shown in Figure 3.12(b), where the shunted piezoelectric
patches play the role of a dynamic damper which creates an added DOF in
the system. With the transfer function, the wave packet excitation is applied
to the system in order to acquire the frequency response. Then the IDFT of
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Figure 3.16: Configuration for the time response simulation of the ten-
sion/compression wave in X-axis.

this frequency response is carried out to calculate the time response of the
structure, as displayed in Figure 3.18. As those wave packets are apparently
unconnected in this case, no wave packet decomposition techniques are need-
ed. It can be noted that when the beam is equipped with the piezoelectric
patches, the reflection of the
tension/compression wave is no longer null due to the added mass and stiff-
ness. When the shunt circuit is applied onto the piezoelectric patches, the
reflection becomes stronger and the damping effect can be observed in the
reflected packet.
In order to verify the reflection coefficients calculated via the DMM approach
and provide an effective experimental evaluation technique for the reflection
coefficient based on time response of the structure, the following extraction
procedure is proposed:

1. The Hilbert Transform is applied to the time response of the structure,
and its absolute value is representative of the envelope of the signal.
The first peak represents the maximum amplitude of the incident wave,
and the second peak for the reflected wave, as shown in Figure 3.19.

2. The imaginary part of the wavenumber k calculated with the WFE
method is used to calculate the spatial damping. As the propagation of
this mode can be characterized by an exponential law A = A0e

ikx, the
spatial damping ratio γx = − | Im(k) |.

3. With the group velocity Vg of this wave mode, the damping ratio in time
domain can be calculated as γt = − | Im(k)Vg |.

4. On the plot of the Hilbert Transform result, a damping curve can be
drawn to take into account the damping effect caused by the distance
between the measure point and the piezoelectric patches so as to evalu-
ate the reflection coefficient correctly. This curve passes the first peak of
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(a)

(b)

Figure 3.17: The forced response of the structure under white noise excitation
(transfer function) tuned at 9350 Hz. (a)Frequency response (b)Zoom around
the tuning frequency. (Solid line)Piezoelectric patches with shunted circuit.
(Dashed line)Beam without piezoelectric patches.
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Figure 3.18: Time response of the structure under wave packet excitation.
(Solid line)Piezoelectric patch with shunt circuit. (Dashed line)Piezoelectric
patches without shunt circuit. (Dash-dotted line)Beam without piezoelectric
patches.

Figure 3.19: Hilbert Transform of the time response and the damping curve
to extract the reflection coefficient of the tension/compression wave. (Solid
line)Absolute value of the Hilbert Transform of the time response. (Dashed
line)Damping curve based on spatial damping.
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Figure 3.20: Comparison of reflection coefficients of the tension/compression
wave in X-axis calculated through the DMM approach and the extraction pro-
cedure. (Solid line)Calculation with DMM, piezoelectric patch with shunt cir-
cuit. (Dashed line)Calculation with DMM, piezoelectric patch without shunt
circuit. (× markers)Calculation with extraction procedure. (Dash-dotted
line)Envelope of the extracted reflection coefficients.

the Hilbert Transform result and follows the exponential decreasing law
defined by A = A0e

γtt. Ar denotes the amplitude of the reflected wave,
and Ai represents the amplitude of the incident wave with the attenu-
ation effect taken into account, as shown in Figure 3.19. The reflection
coefficient can be calculated as R = Ar/Ai.

5. By varying the central frequency f0 of the wave packet excitation, re-
flection coefficients at different frequencies can be acquired frequency by
frequency in order to verify the reflection coefficients calculated with the
DMM approach.

The reflection coefficients of the tension/compression mode tuned at 9350 Hz
are calculated via the DMM approach, and then compared to those obtained
through the extraction procedure. It should be mentioned that this extraction
procedure is a rather coarse evaluation tool for the reflection coefficients. If
an error of ±10% is applied to each extracted reflection coefficient, then the
envelope of the extracted reflection coefficients can be obtained. The results
are shown in Figure 3.20. For the frequency band below 7 kHz, it is difficult
to evaluate correctly the reflection coefficient with the extraction procedure
as the span of the wave packet in time domain becomes so large that it’s hard
to distinguish incident and reflected waves, unless the length of the beam
becomes larger. And for the frequency band around the tuning frequency, it
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is also difficult to evaluate precisely the reflection coefficient with the Hilbert
Transform, as the added damping effect needs to be considered properly. But
globally, the results issued from the DMM approach are verified by those
through the extraction procedure, as the envelope covers most of the DMM
results in the open circuit case. This procedure will be employed for the
experimental validation of numerically calculated reflection coefficients.
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3.2 Traveling wave control in thin-walled beam
structures through R−L shunted piezoelec-
tric patches

Thin-walled structures are widely used nowadays, especially in aerospace engi-
neering domain, where we should solve materials-consumption problems with
preservation of necessary strength and sufficient lightness. The aeronautical
structures are often large and complex, where the propagation phenomena
play an important role in the dynamical behavior of these structures. The
thin-walled components, especially straight ones of constant cross-section that
can be regarded as one-dimensional waveguides, are often carriers of mechan-
ical energy from the source. The energy transfer leads to sound radiation
and unwanted vibration, and then problems like fatigue and structural borne
sound will appear. Mastering the dynamical behavior of thin-walled struc-
tures can provide efficient and satisfactory means for the structure design.
For this purpose, prediction and evaluation tools should be developed for
thin-walled structures. As waveguides, their dynamic properties can be de-
scribed by dispersion curves, for which many approaches are available. The
most well-known methods are based on theories like Euler-Bernoulli and Tim-
oshenko beams. However, these beam theories are limited by the hypothe-
sis of undeformed cross-section, which is only valid at low frequencies and
for compact cross-sections. In the work of Gavric [81], it is mentioned that
when thin-walled beams are concerned, even a relatively low-frequency exci-
tation can produce transfer of mechanical energy by propagating waves asso-
ciated with deformed cross-section modes. The application of finite element
method(FEM) somehow solved this kind of problem, and can give precise
prediction of propagational wavenumbers and modes of thin-walled beam-
s. Gavric [81, 82] proposed a particular finite element scheme allowing the
extraction of wavenumbers from the resolution of a four-order matrix equa-
tion. Gendy et al. [83] presented a three-dimensional, two-field variational
formulation and the corresponding finite element discretization for free vibra-
tion analysis of coupled extensional/flexural/torsional modes of curved beams
with arbitrary thin-walled sections. Mitra et al. [84] developed a composite
thin wall beam element of arbitrary cross-section with open or closed contour.
Later, Houillon et al. [61] provided a propagative approach in order to extract
propagation parameters and the dispersion curves of thin-walled structures of
any cross-section. The formulations applied in this work can be referred as
wave finite element(WFE) method [46, 47, 48], which has been initiated by
Mead [57] and Zhong and Williams [45] for wave mode description into elas-
tic systems with complex cross-sections. This method is not constrained by
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low-frequency analytical assumptions and can be applied in the mid-frequency
range, where cross-section modes propagate [46, 68].
In this section, the DMM with shunted piezoelectric elements is firstly em-
ployed to calculate the reflection and transmission coefficients of the pumping
wave mode and the X-axis extensional wave mode. A full finite element de-
scription that takes the mechanical-electrical coupling into account is given to
the thin-walled beams. The influence of the shunted piezoelectric patches on
the propagation of these wave modes is carefully investigated. Subsequently,
the FWFE approach is applied for the evaluation of the dynamical behav-
ior of the structure in frequency domain. Unlike the DMM approach which
gives predictions for the beam structure with free boundary conditions, fre-
quency response functions can be obtained for the thin-walled beam structure
with forced boundary conditions. Waveguides are of finite length in this case.
Thereafter, based on the frequency responses, the calculation of time respons-
es of the structure under wave packet excitation is carried out. The same
extraction procedure presented in Subsection 3.1.3 is used to calculate reflec-
tion coefficients of the X-axis extensional mode so as to verify the results
issued from the DMM approach.

3.2.1 DMM approach applied for pumping wave and X-
axis extensional wave

The structures to be studied here are thin-walled beams with 4 identical R−L

shunted piezoelectric patches. The finite element model of the coupled system
is shown in Figure 3.21. The connection between the 4 piezoelectric patches
and the R − L shunt circuit is displayed in Figure 3.22. It should be men-
tioned that by choosing the polarities of the piezoelectric patches, different
wave modes can be targeted and controlled. The finite element model of the
coupling element is shown in Figure 3.23, with the definition of geometric pa-
rameters. Two different cases are studied: in Case A the piezoelectric patches
are bonded in a longitudinal way (see Figure 3.23(a)), while in Case B, these
patches are bonded in a transversal way (see Figure 3.23(b)). Definitions and
numerical values of the geometric parameters are listed in Table 3.2. The
parameter Lb represents the length of the thin-walled beam involved in the
coupling element. The material of the beam is aluminium and considered as
isotropic, with Young’s modulus Eb = 70 GPa and Poisson’s ratio νb = 0.34,
and density ρb = 2700 kg/m3. The piezoelectric patches are fabricated by
Saint-Gobain Quartz (type SG P189) and the corresponding material char-
acteristics are listed in Appendix A. This type of piezoelectric patch works
mainly in the 3-1 mode.

At first, the thin-walled beam is regarded as a waveguide and the cor-
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Figure 3.21: Finite element model of a thin-walled beam with symmetric
shunted piezoelectric patches. The coupling element is the part of the beam
with 4 identical piezoelectric patches.

Figure 3.22: Configuration of the connection between the 4 piezoelectric
patches and the R− L shunt circuit.
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(a)

(b)

Figure 3.23: Finite element model of the coupling element and definition of
geometric parameters in (a)Case A(longitudinally bonded patches) (b)Case
B(transversally bonded patches).
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Table 3.2: Numeric values of the geometric parameters in the coupling element
shown in Figure 3.23. The units of all the parameters are in meter (m).

Case Lb Lp bb bp hb eb ep
A 0.03 0.03 0.042 0.02 0.032 0.001 0.001
B 0.03 0.02 0.042 0.03 0.032 0.001 0.001

Figure 3.24: Dispersion curves of the wave modes propagating in the thin-
walled beam in case A: (1)1st Torsional wave in X-axis (2)Extensional wave
in X-axis (3)Flexural wave in Y -axis (4)Flexural wave in Z-axis. (5)2nd
Torsional wave in X-axis. (6)Symmetric pumping mode. (7)Higher order
cross-section mode. These wave modes are identified through their mode
shapes (eigenvectors) issued from the WFE approach.

responding dispersion curves of the wave modes propagating in the struc-
ture are extracted via the WFE approach, as shown in Figure 3.24. These
curves describe the evolution of the wavenumber k in the frequency domain.
The wavelength(λ) of each mode can be calculated based on these results, as
λ = 2π/k. The global mesh resolution is chosen to be 0.003×0.005×0.001 m3,
as the minimum wavelength of the concerned wave modes is about 0.04m in
the concerned frequency band(from 0 to 12 kHz). In the finite element model
of the waveguide there are 128 nodes/32 elements while in the coupling ele-
ment there are 924 nodes/480 elements. The mode shapes of the wave modes
propagating in the thin-walled beam are shown in Figure 3.25. For the con-
trol of the symmetric pumping mode (Mode 6), the 2 horizontal piezoelectric
patches should work in compression mode, whereas the 2 vertical piezoelectric
patches should work in tension mode; for the control of the extensional mode,
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Figure 3.25: Mode shapes of the waves propagating in the thin-walled beam
in case A: (1)1st Torsional wave in X-axis (2)Extensional wave in X-axis
(3)Flexural wave in Y -axis (4)Flexural wave in Z-axis. (5)2nd Torsional wave
in X-axis. (6)Symmetric pumping mode. (Solid line)Deformed mode shape.
(Dashed line)Non-deformed section.

all the 4 patches should work in the same mode (tension or compression).
The DMM method is subsequently applied to the thin-walled beam in Case A
for analyzing the symmetric pumping wave mode, and gives the reflection and
transmission coefficients, as displayed in Figure 3.26(a), with R = 10 Ω and
L = 0.016 H. The results for the X-axis extensional wave mode are shown
in Figure 3.26(b). The tuning frequency ftune of the piezoelectric patches is
about 9 kHz. Around this frequency, the impedance of the structure is greatly
modified by the shunted piezoelectric patches so that the wave propagation
characteristics change significantly. The tuning frequency can be calculated
according to equation (3.12):

ftune =
1

2π
√

4LCS
p3

(3.12)

where CS
p3 = (1−k2

31)C
T
p3 is the capacitance of the piezoelectric patch measured

at constant strain, and the 4 in front of L is due to the fact that the 4
piezoelectric patches are connected in parallel. If each piezoelectric patch
has an independent shunt circuit, the 4 in front of L will disappear. The
subscript 1 represents the X-axis direction while the subscript 3 denotes the
Z-axis direction. k31 is the electromechanical coupling coefficient. CT

p3 is the
capacitance of the piezoelectric patch measured at constant stress. It can be
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(a)

(b)

Figure 3.26: Reflection and transmission coefficients of wave modes in the
thin-walled beam in Case A. (a)Symmetric pumping wave mode. (b)X-
axis extensional wave mode. (Solid line)With R-L shunt circuit. (Dashed
line)Shunt circuit open. (Point-dashed line)Beam without piezoelectric patch-
es.
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calculated in the following manner:

CT
p3 =

εTA3

L3

(3.13)

where A3 is the area of the surface of the piezoelectric patch perpendicular to
Z-axis, L3 = ep is the thickness of the piezoelectric patch in Z-axis direction.
Equally for the thin-walled beam in Case B, the reflection and transmission
coefficients of the symmetric pumping mode and the extensional mode are
shown in Figure 3.27. It can be observed that the piezoelectric patches in
Case A have a totally different effect on the symmetric pumping mode from
the patches in Case B. This wave mode cuts on from about 5.6 kHz. In Case A,
the piezoelectric patches are the most efficient around 8.5 kHz in the frequency
band from 6 to 12 kHz, when the shunt circuit is open. In Case B, the shunted
piezoelectric patches become less efficient from the cut-on frequency to about
7.5 kHz, and then the efficiency turns out to be better at higher frequencies.
And in both cases, around the tuning frequency(about 9 kHz), the effect of
the R − L shunt circuit on the piezoelectric patches is rather evident. By
simply varying the inductance L in the circuit, this tuning frequency can be
displaced to desired frequency band. For the extensional wave in X-axis, in
both cases, the shunted piezoelectric patches have similar influence on this
wave mode. Around the tuning frequency, the patches in Case A results in
a slightly stronger variation in the reflection and transmission coefficients,
which indicates that the configuration in Case A is better for the control of
the extensional wave in X-axis in this thin-walled beam.

3.2.2 Forced WFE applied for the control of symmetric
pumping wave

For the calculation of the forced response of the thin-walled beam with shunt-
ed piezoelectric patches, the FWFE method mentioned in Chapter 2 Subsec-
tion 2.1.3 can be applied. The thin-walled beam to be studied is displayed
in Figure 3.28. In the formulation of FWFE, the lengths of the waveguides
are no longer infinite and should be specified, as well as the boundary con-
ditions. As shown in Figure 3.28, one extremity of the beam is excited by
imposed displacement qexc, and the other extremity is free. The amplitude of
the excitation displacement remains constant in the frequency domain. The
imposed displacement is chosen to be one of the modal displacements so that
only the mode with this modal displacement is excited in the thin-walled
beam. The first waveguide consists of N1 identical unit cells while the second
one consists of N2 identical unit cells. The part of the beam covered with
shunted piezoelectric patches is considered to be the coupling element. For
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(a)

(b)

Figure 3.27: Reflection and transmission coefficients of wave modes in the
thin-walled beam in Case B. (a)Symmetric pumping wave mode. (b)X-
axis extensional wave mode. (Solid line)With R-L shunt circuit. (Dashed
line)Shunt circuit open. (Point-dashed line)Beam without piezoelectric patch-
es.
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Figure 3.28: Finite element model for the calculation of the forced response
of the thin-walled beam with 4 identical shunted piezoelectric patches.

the sake of simplicity, it is assumed that N1 = N2 = N . The two waveguides
are identical as they belong to the same beam, thus Λinc

1 = Λref
2 = Λ, and

Λref
1 = Λinc

2 = Λ−1(see equation (2.34)). The boundary conditions of the
system can be written in the following manner:

Φinc
q1 Q

inc(1)
1 +Φref

q1 Q
ref(1)
1 = qexc (3.14a)

Φinc
F2Q

inc(N+1)
2 +Φref

F2Q
ref(N+1)
2 = 0 (3.14b)

The boundary condition at the left extremity of Waveguide 1 is a Dirichlet
boundary condition(equation (3.14a)), whereas the boundary condition at the
right extremity of Waveguide 2 is a Neumann one(equation (3.14b)).
The continuity conditions of displacement and force between the waveguides
and the coupling element form the coupling condition and can be expressed
as:

[
qLC

FLC

]
=

[
q
(N+1)
R1

−F
(N+1)
R1

]
(3.15a)

[
qRC

FRC

]
=

[
q
(1)
L2

−F
(1)
L2

]
(3.15b)

where qLC and FLC stand for the nodal displacement and the nodal force at the
left boundary of the coupling element, and qRC and FRC at the right boundary
of the coupling element. By substituing these continuity conditions into the
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dynamics of the coupling element(see equation (2.107)), the boundary condi-
tions at the right extremity of Waveguide 1 and those at the left extremity
of Waveguide 2 can be obtained, as shown in equation (3.16). D

∗ denotes
the dynamic stiffness matrix of the coupling element condensed on the DOF
located on the interfaces between the waveguides and the coupling element
itself.

D
∗

[
q
(N+1)
R1

q
(1)
L2

]
= −

[
F

(N+1)
R1

F
(1)
L2

]
(3.16)

Combined with the boundary conditions in equation (3.14a) and equa-
tion (3.14b) and the propagation relation(see equation (2.33)), an equation
system which gives the wave amplitudes Q in both waveguides under the
excitation displacement qexc can be developed as follows:









Φinc
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q1 0 0
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q1 +Φinc
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ref
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(3.17)

The resolution of this equation system provides the wave amplitudes at the
left boundary of the waveguides 1 and 2, and via equation (2.33), wave am-
plitudes at any node in the two waveguides can be obtained. As shown in
Figure 3.28, the Z-axis component of the nodal displacement qout at the free
extremity of the beam is used for the calculation of the frequency response
function(FRF) of the thin-walled beam. As an example, the length of the
waveguides is chosen to be 0.6 m, and the length of the unit cell in X-axis
is 3 mm, thus N = 200. The pair of piezoelectric patches share the same
shunt circuit with R = 10 Ω and L = 0.016 H, in order to tune the wave
modes around 9 kHz. The symmetric pumping mode is targeted, and its
modal displacement at a fixed frequency(about 7 kHz) is taken as the im-
posed displacement excitation qexc. The FRF with shunt circuit and open
circuit case are calculated numerically. Results for the beam in Case A are
displayed in Figure 3.29. As shown in Figure 3.29, the attenuation effect of
the shunted piezoelectric patches around the tuning frequency (9 kHz), which
is close to one of the eigenfrequencies of one of the symmetric pumping mode,
is rather evident. In the same manner, another analysis is carried out for the
thin-walled beam in case B(see Figure 3.23(b)). The comparison results of
the FRF are shown in Figure 3.30. In both Figure3.29(a) and 3.30(a), it is
clear that the pumping mode cuts on at about 5.6 kHz as the amplitude of the
response becomes much larger from this frequency. These results reveal that
FWFE can predict correctly the frequency response of the structure, and the
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(a)

(b)

Figure 3.29: Comparison of the frequency responses in case A: (a)Frequency
band from 6 to 12 kHz (b)Zoom around the tuning frequency (9 kHz). (Solid
line)FWFE with shunted circuit. (Dashed line)FWFE without shunt circuit.
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(a)

(b)

Figure 3.30: Comparison of the frequency responses in case B: (a)Frequency
band from 6 to 12 kHz (b)Zoom around the tuning frequency (9 kHz). (Solid
line)FWFE with shunted circuit. (Dashed line)FWFE without shunt circuit.
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efficiency of the FWFE formulation has already been tested and compared
to classical FE method [51] or transfer matrix method [69]. It is an effec-
tive approach that can be employed to estimate the influence of the shunted
piezoelectric patches on the symmetric pumping mode of the beam. It can
also be concluded from Figure 3.29(b) and Figure 3.30(b) that the longitudi-
nally bonded piezoelectric patches in Case A lead to a stronger attenuation
effect than the transversally bonded patches in Case B.
It should also be noted that the FWFE formulation requires much less com-
putational time compared to ANSYS, especially at high frequencies, where
very small element size is required to guarentee the computational precision
with classical finite element method. Furthermore, ANSYS is not capable of
analyzing shunt circuits with negative capacitance, but the FWFE method is
able to deal with all kinds of shunt impedance.

3.2.3 Time response calculation and reflection coefficient
verification

In Subsection 3.2.2, the frequency responses are calculated with an excita-
tion displacement of constant amplitude in the frequency domain. In order
to evaluate the time response, the approach mentioned in Chapter 2 Subsec-
tion 2.1.4 is adopted. The reflection coefficients can be extracted from the
time response and then be compared to those calculated with the DMM ap-
proach. This extraction technique can equally be applied in experiments to
validate numerical results. Let’s consider an aluminium beam with 4 identical
longitudinally placed R−L shunted piezoelectric patches in Case A. Accord-
ing to the dispersion curves shown in Figure 3.24, it can be noted that in
the frequency band from 0 to 12 kHz, except the extensional mode in X-axis,
the other modes are dispersive as their dispersion curves are not linear. As
non-dispersive waves can maintain their wave form during the propagation,
and their group velocity is almost constant, it will be much easier to track
them in the structure. The group velocity of the extensional wave mode is
shown in Figure 3.31. It is almost constant in the frequency band from 0 to
10 kHz. Based on this group velocity, the length of the waveguides is chosen
to be 2.4 meters which is large enough so that incident and reflected waves
can be clearly distinguished. The same mesh resolution as that in the forced
response calculation in Subsection 3.2.2 is utilized. The structure is excited
by uniformly distributed force in X-axis at one extremity. To minimize the
effect of induced dispersion by the piezoelectric patches, narrow band signals
are used, composed of 2.5 cycles modulated by a Hanning window with the
central frequency f0 equal to 7 kHz. The time wave form and the spectrum of
this excitation force is displayed in Figure 3.32. The maximum amplitude is
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Figure 3.31: Group Velocity of the X-axis extensional wave.

0.1 N and the sampling frequency is 20 times greater than the central frequen-
cy in order to guarantee the signal quality of the wave packet. This excitation
force is amplified (by multiplying a constant gain G to the amplitude) and
then applied to one extremity of the thin-walled beam as the input, and the
X-axis component of the nodal displacement at the measure point is taken as
the output, as shown in Figure 3.33. The measure point lies at 30 cm from
the extremity with the imposed force. Subsequently, the transfer function is
calculated, as shown in Figure 3.34. The shunt circuit is tuned to about 9
kHz, with R = 100 Ω and L = 0.016 H, as one of the eigenfrequencies of this
mode is close to 9 kHz. With the shunted piezoelectric patches, a damping
effect is obtained for the X-axis extensional mode around the tuning frequen-
cy. With this transfer function, the wave packet excitation is applied to the
system in order to acquire the frequency response. Then the IDFT of this fre-
quency response is carried out to calculate the time response of the structure,
as displayed in Figure 3.35. As those wave packets are apparently uncon-
nected in this case, no wave packet decomposition techniques are needed. In
order to verify the reflection coefficients calculated via the DMM approach
and provide an effective experimental evaluation technique for the reflection
coefficient based on time response of the structure, the following extraction
procedure is proposed:

1. The Hilbert Transform is applied to the time response of the structure,
and its absolute value is representative of the envelope of the signal.
The first peak represents the maximum amplitude of the incident wave,
and the second peak for the reflected wave, as shown in Figure 3.36.

2. The imaginary part of the wavenumber k calculated with the WFE
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(a)

(b)

Figure 3.32: The time wave form and the spectrum of the wave packet exci-
tation. Central frequency f0 = 7 kHz. (a)Time wave form. (b)Spectrum.

Figure 3.33: Configuration for the time response simulation of the X-axis
extensional wave.
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Figure 3.34: The forced response of the structure under white noise excitation
(transfer function) tuned at 9 kHz. (Solid line)Piezoelectric patches with
shunted circuit. (Dashed line)Shunt circuit open.

Figure 3.35: Time response of the structure under wave packet excitation.
(Solid line)Piezoelectric patch with shunt circuit. (Dashed line)Piezoelectric
patches with open shunt circuit. (Dash-dotted line)Beam without piezoelec-
tric patches.
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Figure 3.36: Hilbert Transform of the time response and the damping curve
to extract the reflection coefficient of the X-axis extensional wave. (Solid
line)Absolute value of the Hilbert Transform of the time response. (Dashed
line)Damping curve based on spatial damping calculation.

method is used to calculate the spatial damping. As the propagation of
the mode can be characterized by an exponential law A = A0e

ikx, the
spatial damping ratio γx = − | Im(k) |.

3. With the group velocity Vg of the wave mode, the damping ratio in time
domain can be calculated as γt = − | Im(k)Vg |.

4. On the plot of the Hilbert Transform result, a damping curve can be
drawn to take into account the damping effect caused by the distance
between the measure point and the piezoelectric patches so as to evalu-
ate the reflection coefficient correctly. This curve passes the first peak of
the Hilbert Transform result and follows the exponential decreasing law
defined by A = A0e

γtt. Ar denotes the amplitude of the reflected wave,
and Ai represents the amplitude of the incident wave with the attenu-
ation effect taken into account, as shown in Figure 3.36. The reflection
coefficient can be calculated as R = Ar/Ai.

5. By varying the central frequency f0 of the wave packet excitation, re-
flection coefficients at different frequencies can be acquired frequency by
frequency in order to verify the reflection coefficients calculated with the
DMM approach.

The reflection coefficients of the extensional wave mode tuned at 9 kHz are
calculated via the DMM approach, and then compared to those obtained
through the extraction procedure. It should be mentioned that this extraction
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Figure 3.37: Comparison of reflection coefficients of the extensional wave
in X-axis calculated through the DMM approach and the extraction pro-
cedure. (Solid line)Calculation with DMM, piezoelectric patch with shunt cir-
cuit. (Dashed line)Calculation with DMM, piezoelectric patch without shunt
circuit. (× markers)Calculation with extraction procedure. (Dash-dotted
lines)Envelope of the extracted reflection coefficients.

procedure is a rather coarse evaluation tool for the reflection coefficients.
If an error of ±15% is applied to each extracted reflection coefficient, then
the envelope of the extracted reflection coefficients can be obtained. The
results are shown in Figure 3.37. For the frequency band below 6 kHz, it
is difficult to evaluate correctly the reflection coefficient with the extraction
procedure as the span of the wave packet in time domain becomes too large
to distinguish incident and reflected waves, unless the length of the beam
becomes larger. And for the frequency band around the tuning frequency, it
is also difficult to evaluate precisely the reflection coefficient with the Hilbert
Transform, as the added damping effect needs to be considered properly.
On the whole, the results issued from the DMM approach are verified by
those through the extraction procedure, as the envelope covers most of the
DMM results in the open circuit case. This procedure will be employed
for the experimental validation of numerically calculated reflection coefficients.
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3.3 Concluding remarks

Effective prediction tools for wave propagation characteristics and dynam-
ic behavior of smart structures equipped with R − L shunted piezoelectric
elements are provided in this work, and general formulations which can be
applied for all kinds of slender homogeneous smart structures(solid, hollow)
are developed. The main results can be summarized as follows:

• The finite element based WFE approach is developed and its corre-
sponding DMM is extended to consider shunted piezoelectric elements
in beam structures. The wave modes propagating in the structure are
correctly captured and the influence of the shunted piezoelectric patches
on the control of the Z-axis flexural wave mode is investigated through
the reflection and transmission coefficients of this wave mode.

• An analytical model based on Euler-Bernoulli beam theory, the homog-
enization of sandwich beams and Hagood’s shunted piezoelectric patch
model is developed to verify numerically calculated reflection and trans-
mission coefficients of the Z-axis flexural mode.

• The forced responses of the beam structure excited in the Z-axis flexu-
ral mode and the X-axis tension/compression mode are calculated via
the FWFE formulation, and the results for the Z-axis flexural mode
correspond very well with those issued from a classical FE harmonic
analysis.

• Time response of the structure excited in the X-axis ten-
sion/compression mode with wave packet is evaluated via an IDFT ap-
proach applied to the frequency response. By following an extraction
procedure, reflection coefficients of this wave mode can be evaluated ac-
cording to the time response of the structure so as to verify the reflection
coefficients calculated through the DMM approach.

The numerical techniques presented in this work enable the evaluation of
the performance of shunted piezoelectric patches on the control of wave
propagation, and facilitate design modifications and systematic investigations
of geometric and electric parameters of beam structures with shunted
piezoelectric patches.
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In this Chapter, wave propagation and diffusion in heterogeneous waveg-
uides (multi-layered) will be investigated, through the Modified Wave Finite
Element method in Subsection 2.2. Firstly the WFE method is applied for
the analysis of wave propagation in the multi-layered composite beam. Then
the MWFE formulation is applied to the same structure and results like dis-
persion curves issued from these two different approaches are compared. The
DMM with shunted piezoelectric elements is subsequently employed to calcu-
late the reflection and transmission coefficients of the Z-axis bending wave in
the multi-layered beam. The influence of the shunted piezoelectric patches on
the propagation of this wave mode is carefully investigated with DMM. The
finite element model of the multi-layered beam with symmetric R−L shunted
piezoelectric patches is shown in Figure 4.1.
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Figure 4.1: Finite element model of a multi-layered beam with symmetric
R− L shunted piezoelectric patches.

4.1 Dispersion analysis with WFE and MWFE

The structure to be studied here is a 3-layered beam with 2 identical R − L

shunted piezoelectric patches. The finite element model of the waveguide is
shown in Figure 4.2, with the definition of geometric parameters. Numerical
values of the parameters are listed in Table 4.1.

Figure 4.2: Finite element model of the unit cell representative of the multi-
layered beam as a waveguide.
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Table 4.1: Numeric values of the geometric parameters in the waveguide shown
in Figures 4.2 and 4.8. The units of all the parameters are in meter (m).

dx bb h1 h2 h3 Lb hp

0.001 0.02 0.001 0.004 0.001 0.01 0.001

The material of the outer layers of the multi-layered beam is steel and con-
sidered as isotropic, with Young’s modulus Eb = 210 GPa and Poisson’s ratio
νb = 0.33, and density ρb = 7850 kg/m3. The core of the multi-layered
beam is much softer and lighter than the skin layers, with Young’s modulus
Eb = 2 MPa and Poisson’s ratio νb = 0.3, and density ρb = 1000 kg/m3. A
loss factor η = 0.001 is added to the finite element model as the system is
considered to be dissipative.
Both the WFE and MWFE approaches are applied to the same structure.
The analysis is carried out on the frequency band from 0 to 3 kHz so that
several cross-section modes can appear. First of all, the dispersion curves of
the uncoupled layers are calculated via the WFE approach. The results are
shown in Figure 4.3.
Later the second MWFE modeling is applied and full wave mode bases of

all the 3 uncoupled layers are used. The dimension of the MWFE problem
is
∑

i m
i = 105, which is considerably larger than the dimension of the WFE

problem(n = 75), due to the substructuring technique. By looking at the
dispersion curves provided by the second MWFE modeling in Figure 4.4, it
is clear that the two methods give nearly identical results. This validates the
underlying substructuring technique of the MWFE formulation.

Unlike the WFE formulation, the MWFE formulation is able to capture
the essential global wave modes of the multi-layered system. For each layer,
the chosen local wave modes are expected to significantly contribute to the
dynamics of the system. Specifically, for the outer layers in steel, these local
wave modes represent rigid cross-section wave motions, while for the soft mid-
dle layer, these local wave modes represent not only rigid cross-section wave
motions but also a set of contributing cross-section modes. The first MWFE
modeling is used to construct the global wave modes, from the set of reduced
wave mode bases attached to the uncoupled layers, with m1 = m3 = 4 and
m2 = 30. Now the dimension of the MWFE problem is

∑
i m

i = 38, which
appears much smaller than the dimension of the WFE problem(n = 75). The
dispersion curves associated with the global wave modes are displayed in Fig-
ure 4.5.
It can be noticed from Figure 4.5 that for the 4 rigid cross-section modes

(Modes 1 to 4) and the shearing mode (Mode 5), MWFE and WFE give sim-
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(a) Layers 1 and 3

(b) Layer 2

Figure 4.3: Dispersion curves of wave modes propagating in(a)Layers 1 and 3
(b)Layer 2, in the frequency band from 0 to 3 kHz, using the WFE approach.
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Figure 4.4: Dispersion curves for the global waveguide obtained using the
second MWFE modeling, based on the full wave mode basis of each uncoupled
layer. (solid lines)MWFE results (dashed lines)WFE results.

Figure 4.5: Dispersion curves for the global waveguide obtained using the first
MWFE modeling, based on the reduced wave mode basis of each uncoupled
layer. (solid lines)MWFE results (dashed lines)WFE results.
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(a) Mode 2

(b) Mode 7

Figure 4.6: Deformed modal shapes of (a)the Y -axis bending wave mode
(Mode 2) and (b)the 2nd X-axis torsional wave (Mode 7), at the frequency
f0 = 2000 Hz. (solid line)Deformed mode shape (dashed line)undeformed
cross-section.

ilar results; however, for the other 3 cross-section modes (Modes 6 to 8), with
the MWFE method, their cutting-on frequencies are generally smaller than
those obtained with the WFE method.
It should also be noticed that for Mode 2 and Mode 7, their dependency at
about 2.2 kHz with the WFE method can be removed through the local wave
mode basis truncation of the first MWFE formulation. When the sizes of the
mode bases overestimate the dynamics of each layer, the mode dependency
will occur. In this case, the wave mode classification criterion is not capa-
ble of distinguishing theses two wave modes around this frequency, as their
deformed shapes are similar to each other, as shown in Figures 4.6 and 4.7.

It should be mentioned that the deformed shapes are obtained using the
second MWFE modeling. The continuity of displacement components at the
coupling interfaces is well respected.
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(a) Mode 2

(b) Mode 7

Figure 4.7: Deformed modal shapes of (a)the Y -axis bending wave mode
(Mode 2) and (b)the 2nd X-axis torsional wave (Mode 7), at the frequency
f0 = 2780 Hz. (solid line)Deformed mode shape (dashed line)undeformed
cross-section.
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Figure 4.8: Finite element model of the coupling element in the three-layered
system with 2 shunted piezoelectric patches.

The physical wave behavior of the three-layered system is correctly captured
with the reduced mode basis, and the gain of computational time is rather
evident, which represents another advantage of the MWFE modeling.

4.1.1 Energy diffusion analysis with DMM for the Z-axis
bending mode

In this section, the energy diffusion problem is dealt with via the DMM pro-
posed in Subsection 2.1.2 of Chapter 2.
The three-layered beam is equipped with two identical R − L shunted piezo-
electric patches. These piezoelectric patches are fabricated by Saint-Gobain
Quartz (type SG P189) and the corresponding material characteristics are
listed in Appendix A. This type of piezoelectric patch works mainly in the 3-1
mode. The finite element model of the coupling element and the definition
of geometric parameters are displayed in Figure 4.8. Numerical values of the
parameters are listed in Table 4.1.

As in this work, the mostly concerned mode is the Z-axis bending wave
mode (Mode 4), and with the MWFE modeling, this mode can already be
successfully captured, the dimension of the MWFE problem stays the same
for the moment(m1 = m3 = 4 and m2 = 30). The deformed modal shapes
of the Z-axis bending mode issued from the WFE and MWFE methods are
displayed in Figure 4.9(a) and Figure 4.9(b) respectively.
The reflection and transmission coefficients of the Z-axis bending wave mode
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(a) WFE

(b) MWFE

Figure 4.9: Deformed modal shapes of the Z-axis bending wave mod-
e (Mode 4) issued from (a)WFE formulation (b)first MWFE formulation,
at the frequency f0 = 380 Hz. (solid line)Deformed mode shape (dashed
line)undeformed cross-section.
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can be calculated with the DMM of the two different formulations(WFE and
MWFE). In the shunt circuit, a resistance R = 10 Ω and an inductance of
L = 3 H are used, to obtain a tuning frequency at about 2.2 kHz. The tuning
frequency can be calculated according to Equation (4.1):

ftune =
1

2π
√

LCS
p3

(4.1)

where CS
p3 is the capacitance of the piezoelectric patch measured at constant

strain. The subscript 1 represents the X-axis direction while the subscript 3

denotes the Z-axis direction. It can be calculated in the following manner:

CS
p3 =

εS × A3

L3

(4.2)

where A3 = bb × Lb is the area of the surface of the piezoelectric patch
perpendicular to Z-axis, L3 = hp is the thickness of the piezoelectric patch in
Z-axis direction.
For the two different formulations WFE and MWFE, the corresponding
DMM are obtained in slightly different ways: with the WFE formulation,
the coupling element in the DMM is treated in a traditional manner, with
all the structural and electric DOF condensed to the DOF at left and right
boundaries; however, with the MWFE formulation, the coupling element is
treated layer by layer: for the layer with bonded shunted piezoelectric patch,
the structural and electric DOF in the piezoelectric patch are condensed,
and only the structural DOF of the layer remain; for the layer not connected
to the piezoelectric patches, it is modeled in a general manner. Then all
the layers are assembled with the MWFE formulation, and the DOF in the
set of layers are condensed to the DOF at the left and right boundaries. It
should also be mentioned that the diffusion matrix C depends not only on the
dynamics of the coupling element, but also on the wave modes extracted after
the calculation of the eigenvalue problem in equation (2.63) in Chapter 2
associated to the waveguides. In fact, the dimension of C depends directly on
the number of wave modes retained nc after the calculation of the eigenvalue
problem (2.63) in Chapter 2 (nc < 2

∑
i m

i), which can be chosen according
to the number of propagating wave modes in the waveguides in the frequency
band of interest for example. In the WFE and MWFE approaches, the
dimension of the diffusion matrix C is chosen to be the same(nc × nc).
Firstly, the first MWFE formulation is applied, with m1 = m3 = 4 and
m2 = 30, and results are compared to those issued from the WFE method,
as shown in Figure 4.10.

It can be noted that generally, the reflection coefficients obtained via the
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Figure 4.10: Reflection and transmission coefficients of the Z-axis bending
wave mode using the first MWFE formulation and WFE method.

WFE approach are bigger than those issued from the MWFE approach.
This fact might be due to the continuity conditions imposed by the two
approaches: WFE method used classical finite element model of the coupling
element, the layers are bonded together, while the MWFE method used
Boolean operators to consider the continuity conditions between the layers,
then the coupling element in the WFE approach seems to be more rigid than
that in the MWFE approach.
Subsequently, the first MWFE formulation (with m1 = m3 = 4 and m2 = 30)
is used and reflection and transmission coefficients are compared to those
issued from the second MWFE formulation (with m1 = m3 = 30 and
m2 = 45, full mode bases of the 3 layers), as displayed in Figure 4.11.

It can be seen from Figure 4.11 that with the DMM of the first MWFE
formulation, greater reflection coefficients are obtained than that of the
second MWFE formulation. This might be explained as follows: as in the
first MWFE modeling, there are much less wave modes than in the second
MWFE modeling, and the dependency of global wave modes is removed
thanks to the truncation of local wave mode bases of each uncoupled layer,
the energy of the incident Z-axis bending wave will not be distributed to
high order parasite wave modes. Both in Figure 4.10 and 4.11 there are some
fluctuations in the transmission coefficients obtained via the first MWFE
modeling. This might result from numerical error during the computation.
Globally, the first and second MWFE modelings give similar results, espe-
cially for the frequency band around the tuning frequency f = 2.2 kHz.
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Figure 4.11: Reflection and transmission coefficients of the Z-axis bending
wave mode using the first MWFE formulation and second MWFE method.

4.2 Parametric studies

In Subsection 4.1, it has been observed that with the second MWFE
formulation, when full modal bases are applied for the layers, it gives nearly
the same dispersion curves as the WFE formulation. However, when the first
MWFE formulation is applied, as truncated modal bases of the layers are
applied, this method gives different results from the WFE formulation. For
the cross-section modes (Modes 6 to 8 in Figure 4.5), the cut-on frequencies
predicted with MWFE formulation and WFE formulation are quite distinct.
Additionally, as mentioned in Subsection 4.1.1, with the MWFE formula-
tions, fluctuations in the transmission coefficients can be noted. In order to
understand the influence of the parameters applied in the MWFE modeling
on the prediction of dispersion curves and diffusion coefficients, and at the
same time try to improve the quality of the numerical results, it’s interesting
to perform several parametric studies.

4.2.1 Parametric studies on dispersion curves

Here the influence of the sizes of the local wave mode bases on dispersion
curves will be investigated. In Subsection 4.1, with the first MWFE modeling,
the sizes of the modal basis of each layer are m1 = m3 = 4 and m2 = 30, and
the dimension of the MWFE problem is

∑
i m

i = 38. If larger modal basis is
used for the outer layers 1 and 3, for example, m1 = m3 = 6 and m2 = 30,
the results are closer to WFE results, as displayed in Figure 4.12. The cut-on
frequency of Mode 8 calculated with the new wave mode bases using the first
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(a) original view

(b) zoom

Figure 4.12: Dispersion curves in the waveguide using the first MWFE formu-
lation with different mode bases and WFE method. (solid lines)first MWFE
results (dashed lines)WFE results.

MWFE method is almost the same as that calculated with WFE method.
However, for the cut-on frequency of Mode 7, there is always a difference
between the two methods. When the sizes of the modal bases are applied in
the second MWFE modeling, similar results can be found, except for Mode
2 and Mode 7, as the mode dependency occurs between these two modes, as
displayed in Figure 4.13. If even larger wave mode bases are used in the second
MWFE formulation, for example, m1 = m3 = 6 and m2 = 45, MWFE results
converge to WFE results. In this case, full mode wave basis is applied for
Layer 2 (m2 = 45). The resulted dispersion curves are shown in Figure 4.14.
It can be concluded from the previous results that the sizes of the mode basis
of Layers 1 and 3 have a direct influence on the Mode 8, while the size of
the mode basis of Layer 2 has an effect on the Mode 7. The deformed shape
of Mode 8 is given in Figure 4.15. The other cross-section modes (Mode 5
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Figure 4.13: Dispersion curves in the waveguide using the second MWFE
formulation with different mode bases and WFE method. (solid lines)second
MWFE results (dashed lines)WFE results.

and Mode 6) can be correctly captured in all cases with proper mode basis
sizes. With the MWFE modeling, dependent wave modes should be avoided
in the mode bases of the 3 layers in order to guarantee the convergence of this
method, thus the size of the mode basis of each layer should not be too large
so as not to overestimate the dynamics of each layer.

4.2.2 Parametric studies on diffusion coefficients

Here, a set of mode bases of different sizes are given in Table 4.2. The effect
of the mode basis size on the calculation of the reflection and transmission
coefficients of the bending mode in Z-axis (Mode 4) is then investigated in
detail.
Firstly, the influence of the dimension of the inner layer (Layer 2) is analyzed.

Mode bases 1, 2 and 3 are used, as the dimension of the mode bases in layers
1 and 3 are the same (m1 = m3 = 6), and the dimension of the layer 2 m2

varies from 30 to 45. It should be mentioned that m1 larger than 6 is never
used as in the frequency band of interest, the number of propagating modes
is 4. Only the 4 propagating modes and 2 evanescent modes (X-axis torsion
and Z-axis bending) are retained as the imaginary parts of their wavenumbers
are not too far away from 0. The wavenumber of other wave modes are with
a large imaginary part and will not be taken into the mode basis. All the
wave modes in the mode bases are classified according to the imaginary part
of their wavenumber: wavenumber with smaller imaginary part is on the top
of the mode basis. The reflection coefficients calculated with the 3 different
mode bases using MWFE formulation, as well as those obtained via the WFE
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(a) original view

(b) zoom

Figure 4.14: Dispersion curves in the waveguide using the first MWFE formu-
lation with different mode bases and WFE method. (solid lines)first MWFE
results (dashed lines)WFE results.

approach, are compared in Figure 4.16.
It can be seen from Figure 4.16 that mode basis 1(m2 = 40) and mode basis

2(m2 = 30) give nearly the same reflection coefficients as those issued from the
WFE method, while mode basis 3(m2 = 45) results in much lower reflection
coefficients. The fluctuations in the transmission coefficients becomes weaker
when m2 becomes larger. Here, according to this comparison, in order to
capture correctly the diffusion characteristic of the Z-axis bending wave, m2 =

30 is likely to be the best mode basis dimension for layer 2 when m1 = m3 = 6

for the outer layers 1 and 3.
Later the influence of the sizes of the outer layers 1 and 3 is studied. Mode
bases 3, 4 and 5 are applied, as the dimension of the mode basis in layer 2

stays the same m2 = 45, and m1 varies from 4 to 6. The reflection coefficients
calculated with the 3 different mode bases using MWFE formulation, as well
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(a) WFE

(b) MWFE

Figure 4.15: Deformed modal shapes of Mode 8 issued from (a)WFE formu-
lation (b)second MWFE formulation, at the frequency f0 = 2780 Hz. (solid
line)Deformed mode shape (dashed line)undeformed cross-section.

as those obtained via the WFE approach, are compared in Figure 4.17. It can
be seen from Figure 4.17 that with m2 = 45, reflection coefficients obtained via
the MWFE approach are generally larger than WFE results, and for the results
with mode bases 4 and 5(m1 = m3 = 5 and 4 respectively), the transmission
coefficients are not accurate. Here the best mode basis dimension for outer
layers 1 and 3 is m1 = m3 = 6, when m2 = 45. If the mode basis dimension of
the inner layer 2 is changed to m2 = 30, the results are displayed in Figure 4.18.
With m2 = 30, the reflection coefficients obtained with mode bases 2, 8 and 9
are much closer to WFE results than those acquired with m2 = 45. And with
mode basis 2(m1 = m3 = 6), the reflection coefficients are nearly the same as
WFE results, and the fluctuation in transmission coefficients is not too strong.
It can be noted that in order to correctly capture the global dynamics of the
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Table 4.2: Size of mode bases
Mode Basis m1 m2 m3

1 6 40 6

2 6 30 6

3 6 45 6

4 5 45 5

5 4 45 4

6 5 40 5

7 4 40 4

8 5 30 5

9 4 30 4

10 5 36 5

Figure 4.16: Reflection coefficients using the second MWFE formulation with
different mode bases (1, 2 and 3) and WFE method. (solid line)Mode basis
2(m2 = 30) (dashed line)Mode basis 1(m2 = 40) (point-dashed line)Mode
basis 3(m2 = 45) (point markers)WFE results. m1 = m3 = 6.

multi-layered system, a "rich" mode basis is not necessarily the best choice.
Proper dimensions of local mode bases should be used.
By following the same procedure, if m2 is fixed to 40, and by varying m1 = m3

from 4 to 6, it is interesting to see from Figure 4.19 that only with the mode
basis 1(m1 = m3 = 6), the transmission coefficients can be acquired correctly.
The last parametric study case is carried out with m1 = m3 = 5 and by
varying m2 from 30 to 45, using mode bases 6, 8 and 10. The results are
given in Figure 4.20. It can be noted that with mode basis 6(m2 = 40) and
mode basis 10(m2 = 36), the transmission coefficients are more accurate. If
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Figure 4.17: Reflection coefficients using the second MWFE formulation with
different mode bases (3, 4 and 5) and WFE method. (solid line)Mode basis
5(m1 = m3 = 4) (dashed line)Mode basis 4(m1 = m3 = 5) (point-dashed
line)Mode basis 3(m1 = m3 = 6) (point markers)WFE results. m2 = 45.

Figure 4.18: Reflection coefficients using the second MWFE formulation with
different mode bases (2, 8 and 9) and WFE method. (solid line)Mode basis
2(m1 = m3 = 6) (dashed line)Mode basis 8(m1 = m3 = 5) (point-dashed
line)Mode basis 9(m1 = m3 = 4) (point markers)WFE results. m2 = 30.

the evanescent X-axis torsion wave (5th mode in the mode bases, the 6th being
the evanescent Z-axis bending wave) is taken into the mode basis of the outer
layers 1 and 3, smaller dimension of the mode basis of layer 2 should be chosen.
From all the parametric studies performed here, it can be concluded that the
most important mode basis dimension is m2. With a proper m2 chosen (m2 <

40 for example), reflection and transmission coefficients are less sensitive to
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Figure 4.19: Reflection coefficients using the second MWFE formulation with
different mode bases (1, 6 and 7) and WFE method. (solid line)Mode basis
1(m1 = m3 = 6) (dashed line)Mode basis 6(m1 = m3 = 5) (point-dashed
line)Mode basis 7(m1 = m3 = 4) (point markers)WFE results. m2 = 40.

Figure 4.20: Reflection coefficients using the second MWFE formulation with
different mode bases (6, 8 and 10) and WFE method. (solid line)Mode basis
8(m2 = 30) (dashed line)Mode basis 10(m2 = 36) (point-dashed line)Mode
basis 6(m2 = 40) (point markers)WFE results. m1 = m3 = 5.

m1 and m3. However, if m2 is larger and overestimates the dynamics of
the inner layer 2, m1 and m3 should be properly chosen to obtain correct
results(m1 = m3 = 6 for example). Generally speaking, larger mode basis
dimension for outer layers 1 and 3 tends to give transmission coefficients with
less fluctuation.
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4.3 Concluding remarks

In this chapter, multi-layered beams with R−L shunted piezoelectric patches
are calculated using the MWFE formulation adjusted to consider piezoelectric
elements. The control of energy diffusion parameters of wave modes propa-
gating in such composite beams has been studied with two different kinds of
MWFE formulation and the associated DMM approach. A modal reduction
technique has been applied in the MWFE formulation so as not to overesti-
mate the dynamics of the multi-layered system. Pertinent local wave mode
bases of the uncoupled layers with correct dimensions should be applied in
the MWFE formulation.
Through parametric studies on the dimensions of local wave mode bases in
the MWFE formulations, several conclusions can be drawn:

• For the analysis of wave dispersion, it can be concluded that the dimen-
sions of the local mode bases of outer Layers 1 and 3 have an impact
on Mode 6 and Mode 8, while the dimension of the local mode basis
of the inner Layer 2 influences mainly the Mode 7. Mode conversion
between Mode 2 and Mode 7 occurs when the dimension of the local
mode basis of the inner Layer 2 is too large, or the MWFE formulation
itself does not guarantee the continuity of the forces at the interfaces of
the uncoupled layers (second MWFE).

• For the analysis of energy diffusion, it can be summarized that the di-
mension of the local mode basis of Layer 2 is the most important pa-
rameter. If the dimension of this mode basis doesn’t overestimate the
dynamics of this layer, reflection coefficients issued from the MWFE
formulations are close to those issued from the classical WFE method.
Additionally, when the dimension of the local mode basis of Layer 2 is
smaller, the reflection and transmission calculated for the Z-axis bend-
ing wave are less sensitive to dimensions of the local wave mode bases
of Layers 1 and 3. These dimensions influence mainly the fluctuation in
transmission coefficients.
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5.1 Introduction

The issue of wave propagation control in smart structures with shunted piezo-
electric patches using negative capacitance is addressed in this chapter. The
vibration control of structures through piezoelectric shunts with negative ca-
pacitance has always been a research topic during recent years, as its ca-
pability of tailoring the dynamic behavior of the structure in a large fre-
quency range makes this technique extremely interesting for numerous in-
dustrial applications. It is considered a promising technique according to
previous work, and theoretical, numerical analysis and experimental valida-
tion are carried out to evaluate and test the efficiency of this control tech-
nique [18, 19, 6, 20, 21, 22, 23]. Tuning theories developed by Behrens et

al. [24], Park and Palumbo [25] and Cunefare [19] all showed that a nega-
tive capacitance was needed to allow for maximum performance of the shunt.
Structures with periodically distributed shunted piezoelectric patches will be
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designed to obtain intelligent vibroacoustic interfaces in order to realize opti-
mal reflection or optimal damping of unwanted incident energy from excitation
sources.
In this chapter, numerical tools developed in previous chapters are applied to
analyze the effect of only one unit cell in the smart structure with periodic
shunted piezoelectric patches. This unit cell contains only one shunted piezo-
electric patch or a pair of shunted piezoelectric patches. A simple system of
a beam structure with piezoelectric patches can be firstly studied with these
numerical approaches. The analysis of the effect of the shunt circuit with
negative capacitance on the wave modes propagating in the system is first-
ly carried out. Then intensive calculations such as parametric optimizations
to be carried out to obtain optimal geometric and electric parameters in the
smart structure through appropriate optimization procedures and criterions.

5.2 Energy diffusion analysis and forced re-
sponse of beam structures with R − Cneg

shunted piezoelectric patches

The finite element model of the coupled system and the definitions of geo-
metric parameters of the coupling element are given in Figure 5.1. The mesh
resolution is 5mm×5mm×1.5mm for the beam and 5mm×5mm×1mm for
the piezoelectric patches. Linear 8-node solid elements are applied for both
the structural and piezoelectric domains. The beam is in aluminium and con-
sidered as isotropic, with Young’s modulus Eb = 70 GPa and Poisson’s ratio
νb = 0.34, and density ρb = 2700 kg/m3. The characteristics of the piezo-
electric patch are listed in Appendix A. Numerical values of the geometric
parameters are given in Table 5.1.

Lbeam bbeam hbeam bpatch hpatch

0.03 0.03 0.004 0.01 0.001

Table 5.1: Numeric values of the geometric parameters in the waveguide and
the coupling element shown in Figure 5.1. The units of all the parameters are
in meter (m).

In contrast to the R−L shunt circuit on the piezoelectric patch, the R−Cneg

circuit has the advantage of large frequency band effect. Detailed theoretical
studies of Cneg can be found in the work of Collet et al. [85], and extracted
in Appendix E. According to the conclusions in this work, there are two d-
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(a) Coupled system

(b) Coupling element

Figure 5.1: Finite element model of the coupled system with a pair of R−Cneg

shunted piezoelectric patches.

ifferent effects of the negative capacitance on the mechanical characteristics
of the piezoelectric patch: softener and stiffener. If Cneg < −CT

p (CT
p is the

capacitance of the piezoelectric patch under constant stress), the stiffness of
the piezoelectric patch becomes smaller. The effects are studied here through
the numerical tools developed previously, by carrying out two numerical sim-
ulations with two Cneg lying in the softener and stiffener domain respectively.
The targeted wave mode to be controlled is the Z-axis bending wave. Reflec-
tion and transmission coefficients are calculated with the DMM of the system,
and the comparison of results is displayed in Figure 5.2. Via a propagation
point of view, the softening effect results in a smaller reflection shown in Fig-
ure 5.2(a), while the stiffening effect leads to a stronger reflection shown in
Figure 5.2(b).
Later, beam structures of finite length can also be studied with the Forced
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(a) Cneg = −6.008 nF Softener

(b) Cneg = −5.019 nF Stiffener

Figure 5.2: Reflection and transmission coefficients of the Z-axis bending wave
with Cneg as (a)Softener (b)Stiffener, in the frequency band from 0 to 15 kHz,
using the WFE approach. CT

p = 5.7566 nF , CS
p = 3.5488 nF . The resistance

in the shunt circuit R = 10 Ω.

WFE formulation [47]. The finite element model in the FWFE formulation is
given in Figure 5.3, with boundary conditions displayed. If Cneg = −6.008 nF

is taken as a softener, and N1 = N2 = 25, the forced response of the struc-
ture can be calculated with the FWFE formulation. The total length of the
coupled beam is 25 cm. The forced response of the coupled system is shown
in Figure 5.4. It can be seen that with the shunted negative capacitance,
the structure becomes softer as the resonance frequencies are smaller than
the uncontrolled case. The alternatively controlled resonant peaks are due
to the position of the shunted piezoelectric patches, as they can only control
"symmetric" bending modes, as shown in Figure 5.5.
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Figure 5.3: Finite element model of the coupled system with a pair of R −

Cneg shunted piezoelectric patches. The beam is of finite length, with forced
boundary condition at one extremity and free boundary condition at the other
extremity.

Figure 5.4: Forced response of the finite beam system with a pair of R−Cneg

shunted piezoelectric patches. The amplitude of the force applied to one
extremity of the beam is considered to be constant in the whole frequency
band from 0 to 15 kHz, and the nodal displacement of the other extremity
with free boundary condition is regarded as the output of the system.
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(a) (b)

Figure 5.5: Bending modes of the beam with a pair of shunted piezoelectric
patches (a)Symmetric mode (b)Anti-symmetric mode.

5.3 Optimization of shunt impedance and patch
thickness

The final objective of the development of all the formulations and numerical
tools is to design smart structures with shunted piezoelectric patches. These
numerical tools enable intensive calculations such as optimizations so as to
obtain optimal geometric or electric parameters of the smart structures such
as the thickness of the shunted piezoelectric patches, or the shunt impedance
in the circuit.
In order to achieve these goals, firstly, pertinent optimization criterions should
be defined. Here, two different types of optimization criterion are applied: the
transmission criterion and the absorbed active electrical power criterion. All
these criterions are based on power flow in the coupled system, but consider
the effect of the shunted piezoelectric patches on the control of the Z-axis
bending wave in different ways.
The definitions of the state vectors and the power flows in the coupled system
is demonstrated in Figure 5.6. The power flows in the system can be calculated
in the following manner:

P
(1)
Ri =

1

2
Re{iωq

(1)∗
Ri F

(1)
Ri }

P
(2)
Li =

1

2
Re{iωq

(2)∗
Li F

(2)
Li } (5.1)
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Figure 5.6: Definitions of the state vectors and the power flows in the coupled
system.

Three kinds of power flow can be distinguished as follows:
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(5.2)

The power flow entering into the coupling element from waveguide 1 be cal-
culated in the following way:

Pentr =
1

2
Re{iωq

(1)∗
R F

(1)
R } (5.3)

=
1

2
Re{iω(Φinc(1)

q Qinc(1) +Φref(1)
q Qref(1))∗(Φ

inc(1)
F Qinc(1) +Φ

ref(1)
F Qref(1))}

In the same manner, the power flow getting out of the coupling element into
waveguide 2 can be obtained as follows:

Pexit =
1

2
Re{iωq

(2)∗
L F

(2)
L } (5.4)

=
1

2
Re{iω(Φinc(2)

q Qinc(2) +Φref(2)
q Qref(2))∗(Φ

inc(2)
F Qinc(2) +Φ

ref(2)
F Qref(2))}

The power flow dissipated and absorbed by the coupling element Pabsorb =

Pentr −Pexit, and finally, the power flow absorbed by the shunt circuit can be
calculated in this way:

Pabsorb−elec = Pshunt
absorb −P

open
absorb (5.5)

Pshunt
absorb is the power flow calculated when the shunt circuit is connected to the

piezoelectric patches, while Popen
absorb is the power flow obtained when the circuit

is open. The two optimization criterions can be defined as follows:

• The relative transmission criterion Trrel can be defined in this way:

Trrel(ω) =
Pshunt

exit (ω)−P
open
exit (ω)

Pshunt
inc (ω)

= f1(R,Cneg) (5.6)



118
Chapter 5. Wave propagation control in smart structures using

shunted piezoelectric patches with negative capacitance

• The absorbed electric power flow criterion:

Pabsorb−elec(ω) = f2(R,Cneg) (5.7)

The structure to be optimized is also a beam, but with only one shunted
piezoelectric patch. The finite element model of the coupling element is shown
in Figure 5.7. The piezoelectric patch covers the whole surface of the beam.
Geometric parameters are also defined in Figure 5.7 and numerical values are
given in Table 5.2. The thickness of the piezoelectric patch hp is a variable.
During the optimization process, the thickness will be fixed and corresponding
optimal impedance will be calculated thickness by thickness.

Figure 5.7: Finite element model of the coupling element in the coupled system
with one R− Cneg shunted piezoelectric patches.

Lb bb hb hp

0.05 0.05 0.003 variable

Table 5.2: Numeric values of the geometric parameters in the coupling ele-
ment shown in Figure 5.7. The units of all the parameters are in meter (m).

The mesh resolution is chosen to be 0.005 × 0.005 × 0.0015 m3 for the beam
and 0.005× 0.005× hp m3 for the patch. A loss factor η = 0.002 is added to
the finite element model. The relative negative capacitance is defined in the
following way:

Cneg =
Cneg

CT
p

(5.8)
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Firstly, the relative transmission criterion is applied, and the optimization is
carried out using the classical minimization algorithm based on the Nelder-
Mead simplex method. The thickness of the piezoelectric patch hp varies from
0.1 mm to 1.0 mm. Here the resistance R and the negative capacitance Cneg

are both variables during the optimization process in the frequency band from
0 to 5 kHz.
The evolution of the optimal relative negative impedance C

opt

neg in the frequen-
cy domain for all the tested thicknesses is shown in Figure 5.8(a), and the
evolution of the optimal resistance Ropt is shown in Figure 5.8(b). It can

(a) C
opt

neg

(b) Ropt

Figure 5.8: Evolution of optimal (a)relative negative capacitance (b)resistance
in the shunt circuit in the frequency domain for each patch thickness.

be concluded that C
opt

neg is almost constant in the frequency band from 0 to
5 kHz, and lies in the "stiffener" range −CT

p < Cneg. When the patch thick-
ness is bigger, the optimal Cneg tends to −CT

p . And for the optimal resistance
in the shunt circuit, it is generally negative in order to compensate for the
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structural damping [6]. If the structure is less damped, the absolute value of
Ropt becomes smaller. And for a smaller thickness, the absolute value of Ropt

is smaller.
The evolution of the optimization criterion in the frequency domain is given
in Figure 5.9. It can be noted that at lower frequencies, the transmission is

(a) Original view

(b) Zoom

Figure 5.9: Evolution of the relative transmission optimization criterion in
the frequency domain for each patch thickness.

much larger than higher frequency results. However, it is difficult to evaluate
the effect of the thickness on the transmission through these results. The
relative transmission Trrel is then averaged over the frequency band from 0

to 5 kHz for each thickness, and the evolution of the averaged relative trans-
mission with the patch thickness is given in Figure 5.10. It can be concluded
that within the frequency band from 0 to 5 kHz and loss factor η = 0.002, an
optimal thickness can be found at 0.6 mm for the shunted piezoelectric patch.
Subsequently the absorbed electric power flow criterion is applied to carry out
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Figure 5.10: Evolution of the averaged relative transmission optimization cri-
terion with patch thickness.

similar optimizations. This time, the patch thickness hp varies in a larger band
from 0.1 mm to 1.6 mm. The resistance R and the negative capacitance Cneg

are both variables during the optimization process in the frequency band from
0 to 5 kHz. The evolution of the optimal relative negative impedance C

opt

neg in
the frequency domain for all the tested thicknesses is shown in Figure 5.11(a),
and the evolution of the optimal resistance Ropt is shown in Figure 5.11(b). It
can also be noted that, just as in the previous case using the relative transmis-
sion criterion, C

opt

neg is almost constant in the frequency band from 0 to 5 kHz,
and lies in the "stiffener" range −CT

p < Cneg. And when the patch thickness
is bigger, the optimal Cneg tends to −CT

p . Nevertheless, for the optimal re-
sistance in the shunt circuit, it is generally positive, and at lower frequencies,
the optimal R is larger for all the tested thicknesses. For larger thicknesses,
the optimal R is also larger.
The evolution of the optimization criterion in the frequency domain is given
in Figure 5.12. It can be noted that at higher frequencies, the absorption is
much larger than lower frequency results. And for a bigger patch thickness,
the absorption is larger. However, there is no "optimal thickness" that gen-
erates optimal absorption within the frequency range of interest, at least for
all the tested patch thicknesses in this case.
During the optimization process, the resistance in the shunt circuit can be
fixed, and if the absorption criterion is applied, optimization results for the
relative negative capacitance are similar to those obtained by varying the re-
sistance and capacitance at the same time through the Nelder-Mead simplex
method. These results are displayed in Figure 5.13. The evolution of C

opt

neg is
almost constant in the frequency band from 0 to 5 kHz, and lies always in the
"stiffener" range −CT

p < Cneg. The evolution of the absorption optimization
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(a) C
opt

neg

(b) Ropt

Figure 5.11: Evolution of optimal (a)relative negative capacitance
(b)resistance in the shunt circuit in the frequency domain for each patch thick-
ness.

criterion is given in Figure 5.14. As there is only one variable parameter(Cneg),
if the average of the absorbed electric power flow in the shunt circuit in the
frequency domain is taken as the optimization criterion, the evolution of this
averaged power flow with the relative negative capacitance can be obtained,
as shown in Figure 5.15. The same optimal relative negative capacitance C

opt

neg

can be found for each patch thickness. And this time, an optimal thickness
can be targeted at 0.6 mm, as it gives the largest absorbed electric power flow
among all the tested patch thicknesses. However, it should be mentioned that
this "optimal thickness" changes with the fixed R. In a realistic synthetic
circuit that can generate the Cneg effect, there is always a residual resistance
that varies with the frequency, and the negative capacitance is not constant
in the frequency band of interest. All these influences should be taken into
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(a) Original view

(b) Zoom

Figure 5.12: Evolution of the relative transmission criterion in the frequency
domain for each patch thickness (a)Original view (b)Zoom

account correctly in order to get the real optimal parameters.
Anyway, with the numerical tools proposed in this work, optimal geometric
and electric parameters can be obtained through rigorous optimization pro-
cess with appropriate optimization criterions. This is the final objective of
this work.

5.4 Conclusions

The performance of shunted piezoelectric patches with negative capacitance
is numerically investigated. Both the softening and stiffening effects are ob-
served via reflection and transmission coefficients as well as frequency response
function. Due to the capability of control on large frequency band by using
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Figure 5.13: Evolution of the optimal relative negative capacitance in the
frequency domain for each patch thickness, R = 20 Ω.

Figure 5.14: Evolution of the absorption optimization criterion in the frequen-
cy domain for each patch thickness. R = 20 Ω.

negative capacitance in the shunt circuit on piezoelectric patches, optimiza-
tions have been carried out to obtain optimal electric and geometric parame-
ters in the smart beam structure to achieve optimal control effect. Different
optimization criterions based on power flow analysis are defined to realize
maximum transmission or absorption of incident power flow when the struc-
ture is excited on Z-axis bending mode. Optimization results are consistent
with previous studies by Colletet al. [6]. The potential of these numerical
tools for the design of smart structures is well revealed, and the optimization
approaches based on other types of criterions can be integrated in the design
procedure for smart structures with shunted piezoelectric patches so as to
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Figure 5.15: Evolution of the averaged absorption optimization criterion in
the frequency domain for each patch thickness. R = 20 Ω.

obtain desired control effects on different kinds of wave modes.
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6.1 Introduction

The safety of structures is of great concern in aerospace and civil engineering.
Structures which are both light and resistant is one of the most important ob-
jectives to achieve in structure designing. Stiffened structures are extensively
used as they can ensure a good compromise between the structural rigidity
and the weight. In addition to the issue of designing stiffened structures, the
maintenance of stiffened structures is another tricky problem. And therefore
the detection of defects in such structures draws more and more attention.
In order to perform the defect detection with precision and without caus-
ing any damage to structures, the technology of non-destructive testing
(NDT) [86] is one of the most important methods in use. For example, a-
mong all the classical NDT methods, the ultrasound testing method [87, 88],
is widely used and has been proved to be efficient and precise. However, it is
considered to be a local method, since if a very dispersive area of the wave
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mode is used, it will be difficult to achieve global damage detection as vibra-
tion amplitudes decay very fast in the structure.
In thin plate-like structures, the plate’s thickness behaves like a wave
guide [89, 90] for waves called Lamb waves [91]. These propagating waves
have shown a great potential[92, 90] in the NDT domain. The attractive fea-
tures of guided waves include sensitivity to a variety of damage types, as well
as the ability to travel over relatively long distances [93] within the structure
under investigation. The guided waves’ interaction with the structure’s dam-
age [94] can be studied to determine the existence, type, localization and size
of damage. Besides these local methods which are signal-based, there are also
global methods which are model-based [95].
Although global methods and local methods are based on different approaches,
these methods face the same physical difficulties and are sensitive to common
phenomena. Local defects can lead to a change of stiffness in the structure [95],
and this change has an influence on the global mechanical behavior, resulting
in a variation of dynamical characteristics like eigenfrequencies of the struc-
ture. Unlike ultrasound waves, waves at low and medium frequencies (under
5kHz with a material thickness of several millimeters) are less used for damage
detection as they appear to be less sensitive to defects. It is due to the fact
that their wavelength is bigger than the size of defects, and for the targeted
applications, the background noise at these frequencies is relatively high. But
for structures which have 2-scale dynamic behaviors [96, 97] such as stiffened
panels, waves at medium frequencies can possibly be applied to detect defects
in the structure. As revealed in Ichchou et al. [31], at low and medium fre-
quencies, two wave modes can exist at the same time: the waves related to the
structural orthotropy (global mode, first scale dynamics) and waves guided by
the ribs, which belong to the second scale dynamics. This latter exhibits guid-
ed waves propagating in the rib’s direction and stationary waves propagating
in the direction perpendicular to the ribs. The guided waves’ wavelength is
much smaller than that of the structural orthotropy wave modes. At very low
frequencies, the propagation behavior is mainly carried by the global mode.
At medium frequencies, the second propagation behavior (guided waves) ap-
pears. This behavior can possibly be used to investigate the structural health
of stiffened panels. A local change in the ribs might influence the stationary
waves and subsequently leads to a change in the second scale dynamical be-
havior. Waves at medium frequencies can also be used for damage detection
in some other places if the influence of local singularities on global vibration
signature can be properly captured.
Techniques for the analysis of full wave field data in the wavenum-
ber/frequency domain are effective tools for damage detection, visualization
and characterization [98]. In the work of Sharma et al. [99] and Ichchou et



6.1. Introduction 129

al. [31], a scanning laser Doppler vibrometer (SLDV) was used to measure
the velocity of the inspected surface in points belonging to a predefined grid.
Scanning the grid and post-processing the data allow the detection and the
visualization of the full wavefield as it propagates in the structure [98]. The
resulting images describe the main features of the propagating wave and show
its interactions with discontinuities that may be encountered along the wave
path. The damage can be immediately detected and located by means of limit-
ed processing. The wavefield time-domain data can be fed to signal processing
algorithms to obtain detailed images of the defect. The application of multi-
dimensional Fourier transforms (FTs) in space and time can then provide
the representation of the component response in the frequency/wavenumber
domain. In this domain, all wave components propagating in directions op-
posite to the direction of propagation of the main injected pulse are clearly
highlighted. As a consequence, the presence of reflections and mode conver-
sions caused by the presence of damage are immediately noticeable [100]. The
application of two-dimensional FT (2D FT) has previously been proposed in
the work of Alleyne and Cawley [101] for the analysis of multi-mode wave
signals for the identification of dispersion relations and the characterization
of various modes. The 2D FT was also applied to treat the displacement of
a stiffened panel and to obtain the panel’s wavenumber characteristics in the
wavenumber/frequency domain [31]. A filtering in the wavenumber/frequency
domain can be carried out to eliminate waves that contain no damage infor-
mation [98, 31].
This chapter aims at explaining in detail a novel application of the guided
waves for the damage detection in stiffened panels at medium frequencies.
This relatively new technique, named Inhomogeneous Wave Correlation (I-
WC) technique [31, 36, 102], is able to provide a global vision of the vibration
signature of the structure through a wave propagation approach (instead of
modal analysis) by extracting propagation information like wavenumber from
measurements or simulations. With integrated signal processing and filtering
methods, waves containing no information about defects can be eliminated as
the influence of local singularities on the vibration signature of the structure
can be highlighted.
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6.2 Outline of some K-space tools

The k-space discussed here is a 2D plane containing wavenumber vectors
−→
k (kx, ky), and the corresponding k-space tools can be defined as techniques
which provide wavenumber information in the (kx, ky) plane. Among several
conventional k-space tools, this section presents also a new technique that
can provide wave propagation constants like wavenumbers for 1D and 2D
structures. As explained in Ichchou et al. [31], the 2D structures are defined
below in the (x, y) plane. The method assumes a harmonic field ŵ(x, y)(where
hat symbol .̂ states for the ω-dependence of w(x, y)), either from a harmonic
field or from a temporal Fourier transform, given by:

w(x, y, t) =

∫ +∞

0

ŵ(x, y)eiωtdω (6.1)

The new technique, named Inhomogeneous Wave Correlation (IWC) tech-
nique, extends available k-space tools through a rigorous optimization
process. Among such available k-space tools, the Discrete Fourier Transform
(DFT) and the Continuous Fourier Transform (CFT) are the most frequently
employed methods for extracting wavenumber content in structures. For the
sake of clarity, DFT and CFT are briefly described in order to underline the
novelty of the proposed IWC approach [36].

6.2.1 Discrete and Continuous Fourier Transform

Discrete Fourier Transform (DFT) is an extensively used transform in many
engineering areas. Its applications cover signal processing and all related
technical areas. In practice, the DFT assumes that:

1. (H1) The displacement field ŵ(x, y) is given over a uniform spatial grid(
xi = i∆x, yj = j∆y

)
0≤i≤N1−1
0≤j≤N2−1. ∆x and ∆y are the space increments

along x and y axis respectively, N1 and N2 are the number of measured
data along x and y axis respectively.

2. (H2) Outside this grid the field is assumed to be 2D−periodic (\ symbol
defines the euclidian ratio residue), namely :

∀i, j ∈ N
2 , ŵ(i∆x, j∆y) = ŵ

(
(i\N1)∆x, (j\N2)∆y

)
(6.2)

It can be readily shown that the family of exponential functions with discrete
wavenumbers: (

kxp = p∆kx, kyq = q∆ky

)
0≤p≤N1−1
0≤q≤N2−1
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with ∆kx = 2π
N1∆x

and ∆ky = 2π
N2∆y

form a basis for complex functions space,
so that the field ŵ can be written in a single format :

ŵ(xi, yj) =

N1−1∑

p=0

N2−1∑

q=0

̂̂w(kxp, kyq) ei(kxpxi+kyqyj) (6.3)

The Discrete Fourier Transform ŵ −→ ̂̂w is thus the following :

̂̂w(kxp, kyq) =
1

N1N2

N1−1∑

i=0

N2−1∑

j=0

ŵ(xi, yj)e
−i(kxpxi+kyqyj) (6.4)

The DFT presents two major advantages. Firstly, it is bijective, an inverse
transform is possible (Inverse DFT, IDFT). This inverse transform allows easy
filtration in the k-space. And secondly, it is very rapid. Through Fast Fourier
Transform (FFT) like algorithm, very fast data processing can be achieved.
However, this method has some drawbacks. The first one is aliasing : due to
the field discretization, its DFT is 2π

∆x
-periodic :

̂̂w(kx, ky) = ̂̂w(kx + 2π
∆x

, ky) = ̂̂w(kx, ky + 2π
∆y

)

This property implies erroneous DFT treatments for fields comprising

wavenumbers kx outside the domain
[
− π

∆x
π
∆x

]
or ky outside

[
− π

∆y
π
∆y

]
. The

second drawback is leakage: since the field ŵ is given in a finite space, a singu-
lar wave (kx, ky) which should appear in the k-space as a Dirac distribution,
will appear with a cardinal-sine shape. Finally, as the wave content of the
given field ŵ is only known over a k-space grid, the k-space discrimination is
then very weak and wave-vectors are therefore poorly estimated.
The Continuous Fourier Transform (CFT) aims mainly to improve the k-space
discrimination described above. The CFT tries, thus, to estimate the wave
content of a given spatial field function for all possible values of (kx, ky). For
this reason, the assumption (H2) is not considered. The field is considered
nil outside measurements locations. The CFT definition is thus the following
:

̂̂w(kx, ky) =
N1−1∑

i=0

N2−1∑

j=0

ŵ(xi, yj)e
−i(kxxi+kyyj) (6.5)

Such a transform is not yet bijective as new information is artificially invented
in the CFT process, but the CFT can be evaluated for any wavenumber
value, making it very accurate. Moreover, the treated field does not need to
be given in a uniform grid. However, for each measured location (xi, yi)i∈NN

the corresponding elementary surface dSi should be estimated.
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6.2.2 Inhomogeneous Wave Correlation method (IWC)

We now introduce an inhomogeneous wave, noted ôk,γ,θ (a wave with heading
θ, γ wave attenuation and apparent wavelength equal to 2π

k
). In fact, the

wave attenuation is a way of introducing damping. Lyon and Dejong [103]
formulates the link between this wave attenuation and the classical damping
loss factor as : γ = ηcϕ

2cg
, with cϕ and cg being the phase and group velocities

respectively.
The inhomogeneous wave is defined as follows:

ôk,γ,θ(x, y) = e−ik(θ)
(
1+iγ(θ)

)(
x. cos(θ)+y. sin(θ)

)
(6.6)

Thereafter, the correlation between this inhomogeneous wave and the com-
plete wave field is calculated, like a Modal Assurance Criterion[104], using the
following formula:

IWC(k, γ, θ) =

∣∣∣
∫∫

S
ŵ.ô∗k,γ,θ dxdy

∣∣∣
√∫∫

S
|ŵ|2dxdy.

∫∫
S
|ôk,γ,θ|2dxdy

(6.7)

where ∗ denotes the complex conjugate. The identifica-
tion of a complex wave number for a given direction θ

leads to maximization (with a fixed θ) of the function
(k, γ) −→ IWC(k, γ, θ). To apply the IWC method in practice, it is
first assumed that the wave field ŵ is known on arbitrary data points
(xi, yi)i∈Nn

. The integrations over the whole surface S in equation 6.7 are
replaced by a finite weighted sum:

∫∫
S
• dxdy −→

∑
n • ρiSi (6.8)

where ρi is the coherence of measurement data at point Mi (ρi = 1 if the
coherence is not available), and Si is an estimation of the surface around
point Mi. The algorithm first puts angle θ into a discrete set of values (θj).
For each of these angles, the maximum of IWC is located at a value (kj, γj).
Thus the method creates two functions θ → k(θ) and θ → γ(θ) defined on a
set of discrete values (θj). Finally, the trio (θj0 , kj0 , γj0) is removed from the
list if γj0 is greater than 1. The identified wavenumber corresponds to a wave
heading in the structure. The optimization process can be used to remove
fictitious waves. In fact, if γ(θ) is set to zero, the IWC method is totally
equivalent to the DFT and CFT methods. Extending the DFT and CFT,
the IWC method employs similarly arbitrary distributed data points, with
the possibility of using measured coherence signals (if available). In practice,
the spacing resolution needed depend on the quality of expected wavenumber



6.2. Outline of some K-space tools 133

estimation. Indeed, the estimation error follows an inverse spacing tendency.
Previous work [105] windowed the field to avoid the effect of near-field due to
sources and boundary conditions. But the near-field mainly corresponds to
imaginary wavenumbers. The introduction of a loss factor makes it possible
to distinguish near-field from far-field: the near-field corresponds to a high
apparent loss factor (imaginary part of the wavenumber greater than its real
part). The algorithm using the IWC method can eliminate the identified
wavenumbers with high apparent loss factors. This allows the use of the
vibrational field of the whole surface S of the structure. It should be noted
that the input field can be either experimental or numerical. In the following
section, this technique will be applied to numerically tested stiffened panels.
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6.3 Stiffened panel case study: numerical ex-
periments

In this section, the previously introduced methods are applied to three cases of
stiffened panels in order to study the interaction between defects and guided
waves in stiffened panels.

6.3.1 Damage detection in stiffened panels using guided
waves at low and medium frequencies

Three study cases were performed. Finite element models of the stiffened pan-
els were built for each case and the models in case A are shown in Figure 6.1(a)
(for the panel without defect) and 6.1(b) (for the panel with defects). The
geometry definition and geometric parameters of the stiffened panels in the
three cases A, B and C are shown in Figure 6.1(c) and Table 6.1. The ribs are

Case Area (m2) H (m) A (m) B (m) P (m)
A 4 0.005 0.001 0.015 0.25
B 4 0.005 0.001 0.015 0.5
C 4 0.005 0.001 0.015 0.125

Table 6.1: Geometric parameters of the ribbed panels in the three cases stud-
ied.

made of steel while the panel is made of aluminium. This choice of materials
has been made because of two reasons:

• Experiment on a structure of this material choice will be done as nu-
merical simulations have already been done in our previous work [31]
and this present work;

• The "two-scale" dynamics of the stiffened panel needs to be shown:
under excitations of a certain frequency band and with certain geometric
sizes, the panel itself is in high (or medium) frequency band while the
ribs remain in the low frequency band.

The finite element models and numerical experiments were realized in ANSYS
using SOLID45 elements with a global element size of 0.02× 0.02× 0.005 m3

for the panel and 0.02 × 0.015 × 0.001 m3 for the ribs. The computations
aimed to obtain the displacement field of the stiffened panels under harmonic
excitation (a punctual force was applied at the center of the panel). Along
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(a) Panel without defect

(b) Panel with defects

(c) Ribbed panel geometry

Figure 6.1: The finite element model and geometry of the ribbed panel without
and with defects in case A.

the edges of the stiffened panel, free boundary conditions were used. In order
to avoid resonance at eigenfrequencies, a constant modal damping of 0.004
was used in the numerical computation. After that, the nodal displacement
in z-axis was extracted numerically over a frequency range from 0 to 4 kHz.
At first, a numerical simulation was performed on the stiffened panel with-
out defect in case A. The displacement field was obtained by a harmonic
analysis with ANSYS and processed using the IWC method presented in Sub-
section 6.2.2. The k-space plot was subsequently extracted, which contains
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the information about the wave propagation constants in the stiffened panel.
In the k-space plot, the numerically obtained results were compared to the
structural orthotropy model [106], which comes from the homogenized model
proposed long ago by Timoshenko [107, 108]. The model used here was de-
duced from a quasi-static homogenization process, where the equivalent mass
density and stiffness were calculated as a function of the parameters of the
ribs and the plate. Figure 6.3(a) shows the k-space obtained at 2kHz, which is
the IWC result of the displacement field displayed in Figure 6.2(a). The black
dotted lines in Figure 6.2 represent the ribs. The white dashed line in Fig-

(a) Panel without defect

(b) Panel with defects

Figure 6.2: Case A: Displacement field of the ribbed panel without and with
defects at 2kHz. The unit in z-axis is in meter.

ure 6.3(a) represents the homogenized model, and the white straight lines in
this figure correspond to the ribs (more precisely, to the kx = 2π

P
and kx = −2π

P

branches, with P defined in Table 6.1), the remaining results are those of the
IWC method. Then, a filtering process of the k-space was realized: only the
two "vertical bars" around the ellipse were retained. This filtering process can
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(a) Panel without defect

(b) Panel with defects

(c) Filtered k-space of the panel without defect

Figure 6.3: Case A: k-space of the ribbed panel without and with defects at
2kHz. The unit in z-axis is in meter.

be done by setting such threshold values that wave numbers kx > threshold+

or kx < threshold− are set to zero, as shown in Figure 6.3(c). The Inverse
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Discrete Fourier Transform (IDFT) process was subsequently applied to the
filtered k-space data, and guided waves can be seen clearly in the rib direction
x on the newly obtained displacement field in Figure 6.4(a). The black dotted
lines in this figure represent the ribs. In order to assess the ability of defect

(a) Panel without defect

(b) Panel with defects

Figure 6.4: Case A: IDFT of the filtered k-space: guided waves in the ribbed
panel without and with defects at 2kHz. The unit in z-axis is in meter. The
black dotted lines represent the ribs.

detection by guided waves, two symmetric defects are applied on the two ribs
in the middle of the panel for each case, and the finite element model used
in case A is shown in Figure 6.1(b). The geometry and the corresponding
geometric parameters of the defects are listed in Figure 6.5 and Table 6.2.
The defect size is 0.12 m, which seems to be exaggerative, was chosen after
an estimation of the wavelength of guided waves from the k-space plot dis-
played in Figure 6.3(a). Another way to calculate λ will be given later in
subsection 6.3.2. Following the same steps as for the stiffened panel without
defect, the k-space (see Figure 6.3(b)) was extracted from the calculated dis-
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Figure 6.5: Geometry of defects in ribs.

L (m) D (m) W (m)
total length of the rib distance off the rib edge width of the defect

2 0.44 0.12

Table 6.2: Geometrical parameters of the defects in the ribs.

placement field (see Figure 6.2(b)) of the stiffened panel with defects, at the
same frequency 2kHz.
Thereafter, a comparison has been done between the results of the stiffened
panel without defect and those of the stiffened panel with defects, and it
can be seen from Figure 6.3 that the structural orthotropy stays almost un-
changed, on the contrary, the two bars (representing guided waves) around the
ellipse (representing the structural orthotropy) are different. The influence of
the defects on the displacement field can be seen after the IDFT process, as
displayed in Figure 6.4. For the panel with defects, three bright stripes can
be seen in the displacement field, but for the stiffened panel without defect,
there are only two bright stripes. The difference between the displacement
fields of the two stiffened panels indicates that, defects have an important in-
fluence on the dynamical behavior of the panels, and the excited guided waves
are sensitive to structure defects at this frequency. At higher frequencies, for
example, at 3.6kHz, on the k-space plot, two new vertical bars appeared (see
Figure 6.6). The filtering process and IDFT were applied to each pair of
bars and the results were shown in Figure 6.7(a) (for the pair close to the
ellipse) and in Figure 6.8(a) (for the pair farther from the ellipse). The two
figures 6.7(a) and 6.8(a) both show the guided waves in the stiffened panel.
Actually, the two guided waves are of different levels. Here two kinds of levels
can be defined: the level of bars and the level of guided waves. The level
of bars can be determined according to the appearance sequence of the bars
in the k-space: for example, in Figure 6.6(a), the pair nearer to the ellipse
is of a higher level (level-2) as it appears at a higher frequency, while the
pair farther to the ellipse represents a lower level pair (level-1). The level of
guided waves can be determined according to the number of node lines of the
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(a) Panel without defect

(b) Panel with defects

Figure 6.6: Case A: k-space of the ribbed panel without and with defects at
3.6kHz. The unit in z-axis is in meter.

stationary wave perpendicular to the rib direction: for example, the guided
wave in Figure 6.7(a) is of level-3 as two node lines can be seen between the
two ribs, and in Figure 6.8(a) the guided wave is of level-1 as no node line
can be observed between the two ribs. Another computation was done for the
same stiffened panel with defects in Figure 6.1(b) at 3.6kHz and similar results
have been found, as shown in Figure 6.7(b) and Figure 6.8(b). In Figure 6.7,
the difference between the displacement field is very clear; on the contrary,
in Figure 6.8, this difference is less evident, which means that in this case,
the guided waves of level-3 are more sensitive to the defects than the guided
waves of level-1.
Other stiffened panels with different rib distances have also been studied, as
in cases B and C. The k-spaces of the panels without defect in these two cases
are shown in Figure 6.9. As the distance between the ribs increases from case
C (0.125m) to case A (0.25m), then case B (0.5m), the stiffness of the stiffened
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(a) Panel without defect: level-2 pair

(b) Panel with defects: level-2 pair

Figure 6.7: Case A: IDFT of the level-2 pair of bars in the k-space at 3.6kHz.
The unit in z-axis is in meter. The black dotted lines represent the ribs.

panel changes, so does the stationary wave in the direction orthogonal to the
ribs (y direction), and different guided waves are excited (see Figure 6.10 for
case B, and Figure 6.11 for case C). In case B, the IDFT of the level-1 bars
is nearly the same for the two panels. However, if this displacement field is
filtered by setting the displacement between the two ribs in the middle to zero,
as the amplitude is the strongest, then the displacement field between other
ribs can be observed clearly, and another propagation style can be found, as
shown in Figure 6.10(b) and Figure 6.10(c). In Figure 6.10(b), the guided
waves in the panel can be regarded as a pure phenomenon of propagation, but
in Figure 6.10(c), the propagation feature is combined with a phase difference,
and it looks like the wave scattering effect: guided waves are scattered by the
defects. The filtering process in the new displacement field is often needed to
observe the "scattered waves", as their amplitude is often much smaller than
that of the excited guided waves. It should also be noticed that this filter-
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(a) Panel without defect: level-1 pair

(b) Panel with defects: level-1 pair

Figure 6.8: Case A: IDFT of the level-1 pair of bars in the k-space at 3.6kHz.
The unit in z-axis is in meter. The black dotted lines represent the ribs.

ing process is totally different from the k-space filtering, and it can be called
"displacement field filtering". In case C, as shown in Figure 6.11(a) and Fig-
ure 6.11(b), guided waves are much less sensitive to defects than those in case
B, as the difference between the filtered displacement fields are not so obvious,
nor is the wave scattering effect. As a conclusion, first and foremost, the
use of guided waves for the defect detection is feasible and the four steps for
implementing the treatment process of the IWC method can be summarized
as follows:

• Extraction: k-space is extracted from the measured or calculated dis-
placement field of the stiffened panel in following an optimization pro-
cess;

• Filtering: the structural orthotropy is "filtered" from the k-space, only
the guided wave feature in the k-space is retained;
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(a) Case B: panel without defect

(b) Case C: panel without defect

Figure 6.9: k-space of the ribbed panels in case B and case C at 2kHz. The
unit in z-axis is in meter.

• IDFT: the filtered k-space is dealt with using IDFT, and a new displace-
ment field can be obtained, which represents the propagation of guided
waves in the stiffened panel;

• Comparison: the difference between the newly obtained displacement
field of a stiffened panel without defect and that of the damaged stiffened
panel are analyzed and the sensitivity of the guided waves to defects can
be determined. If the difference is obvious enough, the corresponding
guided wave is sensitive to defects.

Secondly, the distance of ribs has an influence on the level of the excited guided
waves: higher level guided waves are observed with a bigger rib distance, as the
cut-off frequency of the waveguide (the ribs and the panel) is lower. Moreover,
defects tend to have a bigger influence on a less rigid panel, as in case B, there
are only 4 ribs in the panels, while in case C, there are 16 ribs in the panels,
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(a) Case B: with defects

(b) Case B: without defect (filtered)

(c) Case B: with defects (filtered)

Figure 6.10: Cases B: IDFT of the level-1 pair of bars in the k-space at 2kHz.
The unit in z-axis is in meter. The black dotted lines represent the ribs.

and guided waves are the least sensitive in case C. Almost all discontinuities
such as joints, manholes, if they are in the simulated or measured zone of the
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(a) Case C: without defect

(b) Case C: with defects

Figure 6.11: Cases C: IDFT of the level-1 pair of bars in the k-space at 2kHz.
The unit in z-axis is in meter. The black dotted lines represent the ribs.

panel, can be dealt with by the IWC technique. However, for plate edges, as
mentioned in Section 6.2, there is a periodic hypothesis which indicates that
the displacement field is supposed to be 2D periodic outside the simulated or
measured displacement field. Thus plate edges are not taken into consideration
if the IWC technique is applied.

6.3.2 Analysis of energy diffusion in damaged stiffened
panels

In order to interpret the phenomenon observed in the previous subsection and
to better understand the interaction between guided waves and the defects in
the stiffened panel, the finite element diffusion model proposed in Mencik and
Ichchou [46] was used. The reflection coefficient of a specific incident wave or
several specific incident waves propagating in the damaged stiffened panel can
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be calculated so as to reveal the influence of the damage on wave propagation
(see Ichchou et al. [49]).
Here, the propagation of guided waves in damaged stiffened panels is analyzed
with an energy diffusion model representative of the stiffened panel. For the
sake of simplicity, a plate made of aluminium with only two ribs made of s-
teel was chosen for the numerical simulation. The definition of the geometric
parameters of the stiffened panel and their values are the same as those indi-
cated in Figure 6.1(c) and in case A in Table 6.1. The finite element model of
this simplified stiffened panel (see Figure 6.12) was realized in ANSYS using
SOLID45 elements with a global mesh resolution of 0.01 × 0.02 × 0.005 m3

in the panel and 0.01 × 0.001 × 0.005 m3 in the ribs. The diffusion model
of the damaged stiffened panel (see Figure 6.13) was also created in ANSYS
with the same element type and mesh resolution. The defect in the stiffened
panel lies in the rib and its size is 0.12 m in the rib direction, just as the two
symmetric defects in the stiffened panel displayed in Figure 6.1(b). The mass
and stiffness matrices of the diffusion model were extracted and imported into
MATLAB for post-treatments of the energy diffusion problem. As displayed

Figure 6.12: Finite Element model of the simplified ribbed panel.

in Figure 6.3 and Figure 6.6, the wavenumber of guided waves can be read di-
rectly from the k-Space. In fact, there is another way to analyze propagating
wave modes and calculate their wavenumber: the resolution of the eigenval-
ue problem shown in (2.6) provides not only the incident and reflected wave
modes (eigenvectors), but also the associated wavenumbers (eigenvalues). Af-
ter that, dispersion curves describing the evolution of wavenumbers of the
wave modes propagating in the waveguides can be drawn, as shown in Fig-
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Figure 6.13: Diffusion model of the damaged ribbed panel.

ure 6.14. In the considered frequency band (0-4kH Hz), several types of waves

Figure 6.14: Dispersion curves of the wave modes in the waveguide: (1)1st
Traction/Compression (2)1st Bending wave in y-axis (3)1st Bending wave in
z-axis (4)1st Torsional wave in x-axis (5)2nd Bending wave in z-axis (6)1st
antisymmetric Torsional wave in y-axis (7)1st symmetric Torsional wave in
y-axis (8)2nd antisymmetric Torsional wave in y-axis (9)2nd symmetric Tor-
sional wave in y-axis (10)3rd antisymmetric Torsional wave in y-axis (11)3rd
symmetric Torsional wave in y-axis (12)3rd Bending wave in y-axis (13)4th
Bending wave in y-axis (14)4th symmetric Torsional wave in y-axis

can propagate at the same time in x direction. By comparing the displace-
ment fields in Figures 6.4 and 6.7 with the wave modes calculated from the
eigenvalue problem (see equation (2.10)), four types of incident wave modes
propagating in the rib direction and representative of the displacement fields
of the stiffened panels were chosen, and the reflection coefficients of these wave
modes were calculated with the diffusion model of the damaged stiffened pan-
el. The deformed shape of the four wave modes are displayed in Figure 6.15
(1st and 2nd bending mode in z-axis) and Figure 6.16 (1st and 2nd symmet-
ric torsional mode in y-axis). The solid lines represent the deformed shape
while the dashed lines represent the non-deformed shape. These four wave
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modes can be identified by comparing the displacement fields in Figures 6.4
and 6.7 with the deformed shape of the wave modes. For instance, from the
displacement displayed in Figure 6.4(b), the 1st bending mode (mode 3) can
be identified and its wavenumber is around 40 rad/m. Moreover, as shown
in Figure 6.14, at 2kHz, the wavenumber of the 1st bending mode (mode 3)
is slightly smaller than 40 rad/m, which corresponds to a wavelength around
0.15 m. This fact explains why a defect size of 0.12 m, which seems exagger-
ative but close to the wavelength of the guided waves, was applied in the ribs
of the panel. Then a comparison of the reflection coefficient between the case

(a) 1st Bending wave

(b) 2nd Bending wave

Figure 6.15: Deformed shape of the two Bending wave modes in z-axis at
2kHz.

without defect and the case with defect was carried out in order to reveal the
influence of the defect on the wave reflection for specific incident wave modes.
As the reflection coefficient should be calculated frequency by frequency, at a
specific frequency, symmetric wave modes which are propagating were chosen
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(a) 1st symmetric Torsional wave

(b) 2nd symmetric Torsional wave

Figure 6.16: Deformed shape of the two symmetric Torsional wave modes in
y-axis at 3.6kHz.

as incident wave modes in waveguide 1 with an wave amplitude Qinc(1) = 1.
This choice of incident modes is due to the fact that as mentioned in Subsec-
tion 6.3.1, the stiffened panel was excited by a punctual force applied at the
center of the panel, thus antisymmetric modes with no displacement at the
central point would not be excited. It was also assumed that there were no
incident waves in waveguide 2 (see Figure 6.13 for the waveguides), therefore
Qinc(2) = 0. After that, the reflection coefficients of the four representative
modes were calculated through equation (2.14) and presented in Figures 6.17
and 6.18. Here solid lines indicate the case with defect while dashed lines
indicate the case without defect. According to the comparison, the defect in
the stiffened panel does influence the reflection of the incident wave modes,
as the difference between the case without defect and the case with defect is
rather clear. For the case without damage, there is no wave reflection; when
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(a) 1st Bending wave

(b) 2nd Bending wave

Figure 6.17: Diffusion of the two Bending wave modes in z-axis.

damage exists in the stiffened panel, it influences the wave propagation. The
value of the reflection coefficient gives an idea of the influence level: if the
value is relatively big, the influence of the defect on this wave mode is strong;
if the value is rather small, the influence of the defect on this wave mode is
low. This influence depends on the damage size, on frequency, and on wave
modes. If the influence can be properly observed, for example, by means of
the reflection coefficient, the presence of defect can be detected. The incidents
wave modes propagating in the rib direction are actually guided waves, and
according to their interaction with the defect, their sensitivity to defects can
be determined.
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(a) 1st symmetric Torsional wave

(b) 2nd symmetric Torsional wave

Figure 6.18: Diffusion of the two symmetric Torsional wave modes in y-axis.

6.4 Conclusions

New insights into the use of guided waves at medium frequencies for the dam-
age detection in stiffened panels were provided in this work. The sensitivity
of guided waves to defects in ribs of the stiffened panel at medium frequency
range has been carefully analyzed. The main results can be summarized as
follows:

• The IWC technique can be used to extract the k-space of two-
dimensional structures, like panels, from their displacement field un-
der harmonic excitation. With the help of a filtering process in the
k-space and the IDFT, two dynamical behaviors can be found in the
k-space of stiffened panels: one with an elliptic form being related to
the structural orthotropy, and another one with a shape of symmetri-
cal bars being related to guided waves in the stiffened panel. A new
(reconstructed) displacement field can be obtained, which shows guid-
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ed waves with a pure propagative feature along the rib direction x and
a stationary feature in the direction y which is orthogonal to the ribs.
The number of guided wave modes increases with the frequency, which
leads to a multi-mode wave propagation phenomenon in the rib-
stiffened plate. Those guided waves can subsequently be used for dam-
age detection in stiffened panels at medium frequencies through a signal
processing technique linking the displacement field and the wavenumber
domain (the k-space). The presence of defects in structure is determined
by comparing the new displacement field to the reference one.

• The IWC technique is able to provide a global vision of the structural
vibration signature which can be influenced by the dynamical behav-
ior of local singularities. By applying a propagative approach (instead
of the modal approach), information like wavenumber can be extracted
from experimental measurements or numerically simulated data (dis-
placement field). For these extracted parameters, the previously quoted
filtering process can highlight local singularities and hence defect lo-
cations. The sensitivity of guided waves to defects depends on many
parameters, especially those who have an important influence on the
stiffened panel’s dynamics.

• The interaction between defects and guided waves in stiffened panels are
also studied by using an energy diffusion analysis. The impact of defects
on the propagation of guided waves along the rib can be observed by
studying the energy diffusion of waves propagating in the stiffened panel
through a finite element diffusion model. For a specific incident wave
mode, or several specific incident wave modes, the reflection coefficient
can be calculated and after that, a comparison between the case of a
stiffened panel without defect and the case with defect can be performed
to determine the influence of defects on the propagation of guided waves.

Finally, it must be mentioned that a frequency band from 0 to 4 kHz has
been used throughout this work because in this frequency band, there is a
limited number of modes that coexist. Thus, energy is shared only between
these modes. This fact simplifies largely the capture of wave modes and their
energy diffusion features. Further investigations should be done to complete
the present work, as in this paperwork, the study of the sensitivity of guided
waves to defects in stiffened panels is limited to numerical analysis. Physical
models should also be established to explain the observed phenomena. Exper-
iments will also be carried out not only to validate analytical and numerical
results, but also to determine the effective area of local singularities’ influence
on the global structure’s dynamics. Sensors could then be installed to right



6.4. Conclusions 153

places in order to properly capture the global displacement field and tell if
defects exist in the structure. The localization of defects as well as their
severity should also be considered in the future.
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7.1 General conclusions

This Ph.D. dissertation gives detailed formulations for the effective prediction
tools of wave propagation(WFE) and diffusion(DMM) characteristics, as well
as those for the dynamic behavior(FWFE) of smart structures equipped with
shunted piezoelectric elements. These general formulations can be applied for
all kinds of slender smart structures(solid, hollow, multi-layered, etc.), and
take into account all kind of shunt circuits.
In Chapter 2, the finite element based WFE approach is developed and its
corresponding DMM is extended to consider shunted piezoelectric elements
in beam structures. Detailed description of the WFE approach is given for
the analysis of solid and hollow beam structures. The MWFE formulation is
also depicted carefully for the analysis of multi-layered composite structures.
Finally, the finite element formulation for the piezoelectric field is described,
with the shunt circuit taken into account.
Subsequently, in Chapters 3 and 4, all these aforementioned formulations are
applied in three different situations (solid beam, hollow beam, and 3-layered
composite beam). It can be noted that the wave modes propagating in the
structure are correctly captured and the influence of the shunted piezoelectric
patches on the control of specific wave modes can be investigated through
the reflection and transmission coefficients. During the analyses of solid and
hollow beams, the forced responses of the smart structures are calculated via
the FWFE formulation. Then the time responses of the structure are eval-
uated via the IDFT approach applied to the frequency response. Reflection
coefficients can be evaluated in another way according to the time response
of the structure via a specific extraction technique proposed in this work. For
the analysis of multi-layered composite structures, emphasis is put on the
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parametric study of the dimensions of wave mode bases. The influence on
the prediction of wave propagation and diffusion characteristics is investigat-
ed with care by varying the dimensions of the wave mode basis of each layer.
In Chapter 5, the performance of shunted piezoelectric patches with negative
capacitance on the control of propagation and diffusion parameters is numer-
ically analyzed and both the softening and stiffening effects are observed via
the reflection and transmission coefficients as well as the frequency response
function. In order to achieve desired functionalities of the smart structure,
proper optimization criterions are defined through power flow analysis in the
coupled system. The obtained optimization results in this chapter reveal the
potential of the numerical tools proposed in the present work for the design of
smart structures. Optimal electric and geometric parameters can be obtained
via rigorous optimization procedures. Finally, in the design of smart struc-
tures with shunted piezoelectric patches, optimal parameters will be applied
to control wave propagation and energy diffusion characteristics in a large
frequency range.
In Chapter 6, the damage detection in stiffened panels using guided waves at
medium frequencies is analyzed carefully with the IWC technique to extract
the k-space from the displacement field under harmonic excitation. With a
filtering process in the k-space and the IDFT, a reconstructed displacement
field can be obtained to determine the presence of defects in structure. WFE
and DMM are also applied to study the wave propagation and diffusion along
the ribs of the stiffened panel in order to explain the observed phenomena.
This technique can potentially be applied for the structural health monitoring
of smart composite structures.
All the numerical techniques presented in this work enable the evaluation of
the performance of shunted piezoelectric patches on the control of wave prop-
agation, and facilitate design modifications and systematic investigations of
geometric and electric parameters of smart structures with shunted piezoelec-
tric patches. The performance of the intelligent vibroacoustic interface on
wave propagation control and on structural health monitoring can firstly be
evaluated numerically with all these techniques, and then be tested experi-
mentally in the future work.

7.2 Future work

Experimental validation of the numerical results will be the first concern in
the future work. Two different types of test will be carried out:

• Excitation with white noise to obtain the Frequency Response Func-
tion(FRF). The excitation point can be placed at any point along the
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central axis of the beam, with a shaker(low frequencies) or piezoelectric
patch(medium and high frequencies).

• Excitation with wave packet to obtain the reflection coefficient. The
excitation point can be placed at one extremity of the beam, with a
piezoelectric patch or a pair of piezoelectric patches.

The experiment layout is defined in Figure 7.1. The shunted piezoelectric
patches are placed in the middle of the beam. This experiment configuration

Figure 7.1: Defined experiment layout.

is realized by suspending the beam vertically, as shown in Figure 7.2. The

Figure 7.2: Realized experiment layout. Excitation with a shaker or piezo-
electric patch. Measurement of vibration velocity with a laser vibrometer.

R − L shunt circuit is realized via a synthetic circuit(Antoniou’s circuit) dis-
played in Figure 7.3. The measurement of the FRF is much easier to realize
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Figure 7.3: Antoniou’s circuit.

than the measurement of the reflection coefficient with wave packet excita-
tion. As the extensional wave in the beam is non-dispersive, it’s much easier
to capture the incident and reflected wave packets with the vibrometer, if the
beam is long enough; however, for the dispersive bending wave modes, it’s dif-
ficult to correctly capture the incident and reflected wave packets. Geometric
parameters should be defined carefully to obtain desired results.
Wave propagation and energy diffusion in 2D smart structures will be the
second concern in our future work. The wave propagation in 2D smart struc-
tures with periodically shunted piezoelectric patches has already been studied
by Spadoni et al. [9] and Casadei et al. [12], etc. However, numerical tools
for the evaluation of energy diffusion in such structures should be properly
developed.
At last, the experiment on the energy diffusion in 1D smart structures with
periodically shunted piezoelectric patches should be carried out. Thorp et al.

[8] has already studied the wave propagation in such structures. The effect of
periodic structure on energy diffusion should be investigated experimentally
as well.



Appendix A

Material properties of the

piezoelectric patch (type SG

P189)

Mass density ρ: ρ = 7650 kg/m3.
Material stiffness matrix cE :

cE = 1010 ×




15.37 8.23 8.06 0 0 0

8.23 15.37 8.06 0 0 0

8.06 8.06 13.74 0 0 0

0 0 0 4.59 0 0

0 0 0 0 4.59 0

0 0 0 0 0 3.57




Pa

The piezoelectric stress coupling matrix e:

e =




0 0 0 0 12.88 0

0 0 0 12.88 0 0

−6.187 −6.187 12.80 0 0 0


 N/(V ·m)

The piezoelectric strain coupling matrix d:

d = 10−10 ×




0 0 0 0 2.806 0

0 0 0 2.806 0 0

−0.920 −0.920 1.984 0 0 0


 m/V

The permittivity matrix under constant strain εS :

εS = 10−8 ×




1.011 0 0

0 1.011 0

0 0 0.591


 C/(V ·m)

The permittivity matrix under constant stress εT :

εT = 10−8 ×




1.372 0 0

0 1.372 0

0 0 0.959


 C/(V ·m)





Appendix B

Full development of the dynamic

equilibrium of the unit cell in the

WFE method

The dynamical equilibrium (before condensation) of any substructure k dis-
played in Figure 2.1 in Subsection 2.1.1 can be formulated in this manner:
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where qI represents the displacements of the internal DOFs of the substructure
and D is a symmetric matrix DT = D, representing the complex dynamical
stiffness of the substructure:

D = −ω2M+K(1 + iη). (B.2)

Precisely, equation (B.1) is formulated in this way:
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Equation (B.3) can be simplified by expressing displacements qI from the
other kinematic quantities. Indeed, it can be shown that
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and finally we will be able to obtain equation (2.1) and equation (2.2) de-
scribing the condensed dynamical relation of substructure k on the DOFs of
the left and right boundaries. According to the symmetry of matrix D and
considering equation (B.4), it appears that matrix D∗ in equation (2.1) is
symmetric.
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It can be shown that matrix S in equation (2.3) and equation (2.4) is sym-
plectic. Indeed,

JnS =

[
D∗

RL −D∗
RR(D

∗
LR)

−1D∗
LL −D∗

RR(D
∗
LR)

−1

(D∗
LR)

−1D∗
LL (D∗

LR)
−1

]
, (B.5)

and

STJnS =




−(D∗

LL)
T(D∗

LR)
−TD∗

RL (D∗

LL)
T(D∗

LR)
−TD∗

RR(D
∗

LR)
−1

+(D∗

LL)
T(D∗

LR)
−TD∗

RR(D
∗

LR)
−1D∗

LL +(D∗

RL)
T(D∗

LR)
−1

+(D∗

RL)
T(D∗

LR)
−1D∗

LL −(D∗

LL)
T(D∗

LR)
−T(D∗

RR)
T(D∗

LR)
−1

−(D∗

LL)
T(D∗

LR)
−T(D∗

RR)
T(D∗

LR)
−1D∗

LL

−(D∗

LR)
−TD∗

RL (D∗

LR)
−TD∗

RR(D
∗

LR)
−1

+(D∗

LR)
−TD∗

RR(D
∗

LR)
−1D∗

LL −(D∗

LR)
−T(D∗

RR)
T(D∗

LR)
−1

−(D∗

LR)
−T(D∗

RR)
T(D∗

LR)
−1D∗

LL




.

(B.6)

Observing that matrix D∗ is symmetric,

(D∗
LL)

T = D∗
LL , (D∗

LR)
T = D∗

RL , (D∗
RL)

T = D∗
LR , (D∗

RR)
T = D∗

RR ,

(B.7)
it can be easily seen that

STJnS =

[
0 In

−In 0

]
. (B.8)

From the coupling conditions — q
(k)
L = q

(k−1)
R and −F

(k)
L = F

(k−1)
R (cf.

Figure 2.1) — two consecutive substructures k and k − 1 are related through
the following expression,

u
(k)
L = u

(k−1)
R ∀k ∈ {2, . . . , N}, (B.9)

which leads to (cf. equation (2.3))

u
(k)
L = Su

(k−1)
L . (B.10)

The analysis of the dynamical behavior of the waveguide is based on Bloch’s
theorem [74], which states that solutions uL are of the form

u
(k)
L = µu

(k−1)
L ∀k ∈ {2, . . . , N}. (B.11)

From equation (B.10), the boundary value problem in equation (2.6) can be
established.
If the kinematic quantities are represented through state vectors u

(k)
L =

((q
(k)
L )T(F

(k)
L )T)T and u

(k)
R = ((q

(k)
R )T(−F

(k)
R )T)T, with the definition in equa-

tion (2.7), it can be shown that matrix S′ is symplectic. And in order to
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prove that the eigenvalues of matrix S′ are the same of those of matrix S,
let us consider the wave modes {(µi ,Φi)}i, solutions of matrix S. A specific
mode i is associated to the following equation :

S

(
(Φq)i
(ΦF)i

)
= µi

(
(Φq)i
(ΦF)i

)
. (B.12)

Observing that

(
(Φq)i
(ΦF)i

)
=

[
In 0

0 −In

](
(Φq)i
−(ΦF)i

)
, (B.13)

it can be easily shown that

S′

(
(Φq)i
−(ΦF)i

)
= µi

(
(Φq)i
−(ΦF)i

)
. (B.14)

Thus, it has been demonstrated that the wave modes which are solutions of
matrix S′ are defined by {(µi ,Φ

′
i)}i where

Φ′
i =

(
(Φq)i
−(ΦF)i

)
∀i. (B.15)

Finally, it can be shown that amplitudes Q associated with eigenvectors Φ of
matrix S are the same as those associated with eigenvectors Φ′ of matrix S′.
Indeed, the state vector of a substructure k can be described by:

(
q
(k)
L

−F
(k)
L

)
=

[
Φq

ΦF

]
Q(k). (B.16)

Observing that

(
q
(k)
L

−F
(k)
L

)
=

[
In 0

0 −In

](
q
(k)
L

F
(k)
L

)
and

[
Φq

ΦF

]
=

[
In 0

0 −In

] [
Φ′

q

Φ′
F

]
,

(B.17)
it appears that

(
q
(k)
L

F
(k)
L

)
=

[
Φ′

q

Φ′
F

]
Q(k), (B.18)

which leads to

Q′(k) = Q(k) (B.19)

Let us consider a specific eigenvalue, say µi , of problem (equation (2.6)), that
is,
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SΦi = µiΦi . (B.20)

Multiplying equation (B.20) by STJn leads to

STJnSΦi = µiS
TJnΦi . (B.21)

Considering the fact that matrix S is symplectic (cf. equation (B.8)), equa-
tion (B.21) is written

JnΦi = µiS
TJnΦi . (B.22)

Considering the transpose of equation (B.22) and the properties of matrix Jn

(equation (2.5)), the following relationship can be established:

(ΦT
i Jn)S =

1

µi

(ΦT
i Jn) (B.23)

Hence, (Φi)
TJn is a left eigenvector of matrix S, meaning that 1/(µi) is then

an eigenvalue of S. In this way, the eigenvalues can finally be defined in
equation (2.9) in Subsection 2.1.1.



Appendix C

Diffusion Matrix in case of non

compatible meshes at interfaces Γi

In a general manner, it can be supposed that, on a specific coupling surface
Γi, the number of DOFs of the coupling element, say ni

c, is different from
that of the coupled substructure (say ni). Nevertheless, the continuity of
the displacement field on coupling surfaces Γ1 and Γ2 can be ensured by the
introduction of two Lagrange multiplier fields λ1 and λ2 [109]. The variational
formulation of the two substructures coupled with the coupling element can
then be established in the following form [109, 110]:

∑

i=1,2

(
−ω2

∫

Ωi

ρ(δw(i))Tw(i) dx+

∫

Ωi

(ε(δw(i)))Tσ(w(i)) dx

)

+

(
−ω2

∫

Ωc

ρ(δwc)Twc dx+

∫

Ωc

(ε(δwc))Tσ(wc) dx

)

+

∫

Γ1

(δλ1)
T(wc −w(1)) ds(x) +

∫

Γ2

(δλ2)
T(wc −w(2)) ds(x)

+

∫

Γ1

(δwc − δw(1))λ1 ds(x) +

∫

Γ2

(δwc − δw(2))λ2 ds(x) (C.1)

=

∫

S1

(δw(1))Tf (1) ds(x) +

∫

S2

(δw(2))Tf (2) ds(x),

where w(i) and wc stand for the displacement field of substructure i (i =

1, 2) and the displacement field of the coupling element, defined in Ωi and
Ωc respectively; f (i) (i = 1, 2) stands for the force applied to substructure
i on Si. In the context of the Finite Element Method, substructures 1, 2
and the coupling element are discretized into several elements {Ω

(1)
e }e=1,...,m1 ,

{Ω
(2)
e }e=1,...,m2 and {Ωc

e}e=1,...,mc
:

w(i) = N(i)
e q(i)

e in Ω(i)
e (i = 1, 2) , wc = Nc

eq
c
e in Ωc

e , (C.2)

where N
(i)
e and Nc

e stand for the matrices of the interpolation functions of
element Ω

(i)
e (i = 1, 2) and Ωc

e, respectively, defined such that
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N(i)
e (x) = 0 for x /∈ Ω(i)

e (i = 1, 2) , Nc
e(x) = 0 for x /∈ Ωc

e . (C.3)

Moreover, it is assumed that the Lagrange multiplier fields λ1 and λ2 can be
discretized in the following way:

λ1 = ξ1p1 on Γ1 , λ2 = ξ2p2 on Γ2 , (C.4)

where p1 and p2 are s1×1 and s2×1 vectors, respectively. Thus, according to
equations (C.2) to (C.4), equation (C.1) can be written in the discrete form:

∑

i=1,2

[
(δq(i))TD(i)q(i)

]
+ (δqc)TKqc

+(δp1)
T

[
mc∑

e=1

∫

Γ1

(ξ1)
TNc

e ds(x) q
c
e −

m1∑

e=1

∫

Γ1

(ξ1)
TN(1)

e ds(x) q(1)
e

]

+(δp2)
T

[
mc∑

e=1

∫

Γ2

(ξ2)
TNc

e ds(x) q
c
e −

m2∑

e=1

∫

Γ2

(ξ2)
TN(2)

e ds(x) q(2)
e

]

+

[
mc∑

e=1

(δqc
e)

T

∫

Γ1

(Nc
e)

T(ξ1) ds(x)−

m1∑

e=1

(δq(1)
e )T

∫

Γ1

(N(1)
e )T(ξ1) ds(x)

]
p1 (C.5)

+

[
mc∑

e=1

(δqc
e)

T

∫

Γ2

(Nc
e)

T(ξ2) ds(x)−

m2∑

e=1

(δq(2)
e )T

∫

Γ2

(N(2)
e )T(ξ2) ds(x)

]
p2

=

m1∑

e=1

(δq(1)
e )T

∫

Γ1

(N(1)
e )Tf1 ds(x) +

m2∑

e=1

(δq(2)
e )T

∫

Γ2

(N(2)
e )Tf2 ds(x).

Expressing displacements q
(i)
e of an element Ω

(i)
e (i = 1, 2) and displacements

qc
e of an element Ωc

e from displacements q(i) of substructure i and displace-
ments qc of the coupling element [111],

q(i)
e = L(i)

e q(i) and qc
e = Lc

eq
c, (C.6)

allows one to reformulate equation (C.5) in this way:

∑

i=1,2

[
(δq(i))TD(i)q(i)

]
+ (δqc)TKqc

+(δp1)
T
[
Bc

1q
c −B

(1)
1 q(1)

]
+ (δp2)

T
(
Bc

2q
c −B

(2)
2 q(2)

)

+
[
(δqc)T(Bc

1)
T − (δq(1))T(B

(1)
1 )T

]
p1 +

[
(δqc)T(Bc

2)
T − (δq(2))T(B

(2)
2 )T

]
p2

= (δq(1))TF(1) + (δq(2))TF(2) (C.7)

where



167

Bc
1 =

mc∑

e=1

∫

Γ1

(ξ1)
TNc

e ds(x) L
c
e , Bc

2 =
mc∑

e=1

∫

Γ2

(ξ2)
TNc

e ds(x) L
c
e ,(C.8)

B
(1)
1 =

m1∑

e=1

∫

Γ1

(ξ1)
TN(1)

e ds(x) L(1)
e , B

(2)
2 =

m2∑

e=1

∫

Γ2

(ξ2)
TN(2)

e ds(x) L(2)
e .

According to the convention q(i) =
[
(q

(i)
L )T(q

(i)
I )T(q

(i)
R )T

]T
(i = 1, 2) and

qc = [(qc
1)

T(qc
I)

T(qc
2)

T]
T and according to the definitions of the interpolation

functions (cf. equation (C.3)), it appears that matrices Bc
1, B

c
2, B

(1)
1 and B

(2)
2

are expressed in this way:

Bc
1 =

[
B∗c

1 0
]
, Bc

2 =
[
0 B∗c

2

]
, B

(1)
1 =

[
0 B

∗(1)
1

]
, B

(2)
2 =

[
B

∗(2)
2 0

]
,

(C.9)
where B∗c

1 , B∗c
2 , B

∗(1)
1 and B

∗(2)
2 are s1 × n1

c, s2 × n2
c, s1 × n1 and s2 × n2

matrices, respectively.

The equation of motion of each substructure, diplayed in equation (2.15) in
Subsection 2.1.2, is deduced from the variational formulation, equation (C.7).
Identifying the corresponding terms, the coupling forces are expressed in
terms of the Lagrange multipliers:

F
(1)
R = (B

∗(1)
1 )Tp1 , F

(2)
L = (B

∗(2)
2 )Tp2 , Fc

R = −(B∗c
2 )Tp2 , Fc

L = −(B∗c
1 )Tp1

(C.10)
Assuming that matrices B∗c

1 and B∗c
2 are square — that is, s1 = n1

c and
s2 = n2

c — and invertible, then forces F
(1)
R and F

(2)
L applied at the right and

left boundaries of substructures 1 and 2 can be expressed from forces Fc
1 and

Fc
2 applied to the coupling element. Hence,

F
(1)
R = −(B

∗(1)
1 )T(B∗c

1 )−TFc
1 and F

(2)
L = −(B

∗(2)
2 )T(B∗c

2 )−TFc
2. (C.11)

Alternatively, on coupling surfaces Γ1 and Γ2, the displacements of substruc-
tures 1 and 2 can be related to the displacements of the coupling element.
Indeed, the variational formulation, equation (C.7), furnishes the following
additional expressions:

Bc
1q

c −B
(1)
1 q(1) = 0 and Bc

2q
c −B

(2)
2 q(1) = 0. (C.12)

According to equation (C.9), this leads to:



168
Appendix C. Diffusion Matrix in case of non compatible meshes

at interfaces Γi

B∗c
1 qc

1 −B
∗(1)
1 q

(1)
R = 0 and B∗c

2 qc
2 −B

∗(2)
2 q

(1)
L = 0, (C.13)

and then,

qc
1 = (B∗c

1 )−1B
∗(1)
1 q

(1)
R and qc

2 = (B∗c
2 )−1B

∗(2)
2 q

(2)
L . (C.14)

To summarize, the constraints introduced at the coupling surfaces Γ1 and Γ2

using the Lagrange multipliers can be formulated in this way:

(
F

(1)
R

F
(2)
L

)
= −TT

(
Fc

1

Fc
2

)
,

(
qc
1

qc
2

)
= T

(
q
(1)
R

q
(2)
L

)
, (C.15)

where matrix T is written

T =

[
(B∗c

1 )−1B
∗(1)
1 0

0 (B∗c
2 )−1B

∗(2)
2

]
. (C.16)

The dynamical equilibrium of the coupling element can be expressed in a
condensed form (see equation (2.17) in Subsection 2.1.2), with all the DOFs
condensed on the DOFs located on surfaces Γ1 and Γ2.
The relation between forces (F

(1)
R ,F

(2)
L ) applied at the right and left bound-

aries of substructures 1 and 2 and displacements (q(1)
R ,q

(2)
L ) is easily found by

considering equations (2.17) and (C.15):

−TT
D

c∗T

(
q
(1)
R

q
(2)
L

)
=

(
F

(1)
R

F
(2)
L

)
. (C.17)

In short, it is proposed, by the use of Lagrange multipliers, a relation between
the forces applied by the common coupling element to waveguides 1 and 2,
on surfaces Γ1 and Γ2, and the corresponding displacements. From equation-
s (2.21) and (2.22) in Subsection 2.1.2, equation (C.17) can be written in this
manner:

−TT
D

c∗T
[
Ψinc

q Ψref
q

]



Qinc(1)

Qinc(2)

Qref(1)

Qref(2)


 =

[
Ψinc

F Ψref
F

]



Qinc(1)

Qinc(2)

Qref(1)

Qref(2)


 ,

(C.18)
Finally, using the expressions in equation (2.24), equation (C.18) can be ex-
pressed in the following way,

[
TT

D
c∗TΨinc

q +Ψinc
F TT

D
c∗TΨref

q +Ψref
F

]



Qinc(1)

Qinc(2)

Qref(1)

Qref(2)


 = 0 (C.19)
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Assuming that matrix
[
TT

D
c∗TΨref

F +Ψref
q

]
is invertible, amplitudes

(Qref(1),Qref(2)) of the modes reflected by the coupling element can be ex-
pressed from amplitudes (Qinc(1),Qinc(2)) of the modes incident to the coupling
element through a diffusion matrix, namely C, which expresses the reflection
and transmission coefficients of the wave modes:

(
Qref(1)

Qref(2)

)
= C

(
Qinc(1)

Qinc(2)

)
, (C.20)

where

C = −
[
TT

D
c∗TΨref

q +Ψref
F

]−1 [
TT

D
c∗TΨinc

q +Ψinc
F

]
(C.21)





Appendix D

Detailed formulations of the

substructuring scheme in the

MWFE method

Detailed MWFE formulations and discussions are given in the work of Mencik
and Ichchou [68].
The typical multi-layered subsystem, say sub system k, belonging to a com-
posite structure is displayed in Figure 2.3 in Subsection 2.2.1. The subsystem
represents a set of M connected straight homogeneous layers, whose left and
right boundaries are denoted respectively as {Si

L} and {Si
R}: for each layer

i(i = 1, . . . ,M), the surfaces {SL} and are assumed to contain the same num-
ber of DOFs, say ni. Let us denote as Γi the coupling interface between each
layer i and its surroundings, that is, the set of coupled layers {j}j 6=i.
The MWFE formulation consists of constructing the global wave mode ba-
sis {Φj}j, attached to the heterogeneous multi-layered subsystems k, from
a set of reduced local wave mode basis {{Φ̃i

j}j=1,...,2mi}, having specific di-
mensions {2mi}(mi ≤ ni ∀i) and attached to the set of homogeneous layers
{i}i with free interfaces {Γi}. For each uncoupled layer i, the reduced basis
{Φ̃i

j}j=1,...,2mi is assumed to support the cross-section (either {Si
L} and {Si

R})
dynamics within the given frequency band and is extracted from the full local
basis {Φ̃i

j}j=1,...,2ni which is obtained using the WFE formulation(see equa-
tion (D.1)):

SiΦi
j = µi

jΦ
i
j, |Si − µi

jI| = 0 i = 1, . . . ,M. (D.1)

For each uncoupled layer i, the eigenvalues {µi
j}j relate the speeds of waves

traveling along the x-axis, and the reduced local wave model matrix, say {Φ̃i},
can be typically expressed from the (ni × 2mi) matrices {Φ̃i

q} and {Φ̃i
F}, re-

flecting the displacement and force components.
The dynamic equilibrium of the subsystem k consists of formulating a set of
local dynamic equilibrium equations, attached to the set of uncoupled homo-
geneous layers.

Diqi = Fi i = 1, . . . ,M. (D.2)
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and subjected to the set of constraints:

qi
Γi = qΘi

Γi i = 1, . . . ,M. (D.3)

For each layer i belonging to the subsystem k:qi and Fi are the displacements
and the forces applied to the uncoupled layer on {Si

L} ∪ {Si
R}; Θ

i represents
the surroundings of the layer i, that is, the set of coupled layers {j}j 6=i; Γi

denotes the coupling interface between the layer i and the surroundings Θi;
qΘi

stands for the displacements of the surroundings Θi; finally,qi
Γi qΘi

Γi are
the restrictions of the displacements qi and qΘi

to the coupling interface Γi.
Here three Boolean operators are defined:

• Li
Γi : qi

Γi = Li
Γiq

i

• LΘi

Γi : qΘi

Γi = LΘi

Γi q
Θi

• L
Θi

Γi : qΘi

Γi = L
Θi

Γi qΘi

By introducing them into equation (D.3), leads to

Li
Γiq

i = LΘi

Γi q
Θi

i = 1, . . . ,M. (D.4)

Relaxing the linear constraints (D.4) to determine the displacement solutions
qi and qΘi

leads to the following variational problem formulated ∀δqi, ∀δqΘi

and ∀δpi(see for instance reference [109]):

−(δqi)TDiqi − (δqΘi

)TDΘi

qΘ
i

+ (δqi)TFi + (δqΘi

)TFΘi

+δ((pi)T(Li
Γiq

i − LΘi

Γi q
Θi

)) = 0 i = 1, . . . ,M. (D.5)

Here, pi is a Lagrange multiplier field defined on the coupling interface Γi.
Since the variational formulation (D.5) is defined for arbitrary δqi, δqΘi

and
δpi, one obtains





Diqi = Fi + (Li
Γi)Tpi

DΘi

qΘ
i

= FΘi

− (LΘi

Γi )Tpi i = 1, . . . ,M

Li
Γiq

i − LΘi

Γi q
Θi

= 0

(D.6)

Multiplying the second equation of the system (D.6) by the Boolean operator
LΘi

Γi leads to:

pi = −LΘi

Γi D
Θi

qΘi

+ LΘi

Γi F
Θi

i = 1, . . . ,M. (D.7)

By introducing the following notation:

DΘi

qΘi

=

[
DΘi

Γi CΘi

Γi

(CΘi

Γi )T D
Θi

Γi

](
qΘi

Γi

qΘi

Γi

)
i = 1, . . . ,M (D.8)
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and observing that:

LΘi

Γi D
Θi

qΘi

= DΘi

Γi q
Θi

Γi +CΘi

Γi q
Θi

Γi i = 1, . . . ,M. (D.9)

where qΘi

Γi stands for the displacements of the nodes of Θi which don’t belong
to Γi, results in:

pi = −DΘi

Γi q
Θi

Γi −CΘi

Γi q
Θi

Γi + LΘi

Γi F
Θi

i = 1, . . . ,M. (D.10)

that is:

pi = −DΘi

Γi L
Θi

Γi q
Θi

−CΘi

Γi q
Θi

Γi + LΘi

Γi F
Θi

i = 1, . . . ,M. (D.11)

and by introducing the Boolean operator L
Θi

Γi defined in Subsection 2.2.1 into
equation (D.11) leads to:

pi = −DΘi

Γi L
Θi

Γi q
Θi

−CΘi

Γi L
Θi

Γi q
Θi

+ LΘi

Γi F
Θi

i = 1, . . . ,M. (D.12)

Finally, by introducing equation (D.12) into the first equation of the equation
system (D.6), the dynamic equilibrium equation of each layer i connected to
the surrounding Θi can be obtained:

[
Di + (Li

Γi)TDΘi
ΓiL

i
Γi

]
qi + (Li

Γi)TCΘi
ΓiL

Θi

Γiq
Θi = F

i i = 1, . . . ,M (D.13)

where
F

i = Fi + Li
ΓiL

Θi
ΓiF

Θi

i = 1, . . . ,M (D.14)

stands for the restriction of the global forces F (cf.equation (B.1)), applied
to the multi-layered subsystem k, to layer i. Equation (D.14) enforces the
continuity of the global forces {F i}i at the coupling interfaces {Γi}i. In matrix
form, the dynamic equilibrium of the set of coupled layers can be written in
two parts, a local part and a coupling part:

[
Dlocal +Dcoupling

]



q1

...
qM


 =




F
1

...
F

M


 =

[
I+ Ecoupling

]



F1

...
FM




(D.15)
The matrix Dlocal in equation (D.15) is expressed from the set of dynamic
stiffness operators Di=1,...,M associated with the uncoupled layers,

Dlocal =




D1 0 . . . 0

0 D2 . . . 0
...

...
. . .

...
0 0 . . . DM


 . (D.16)
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in the MWFE method

while the matrix Dcoupling describes the inertial, elastic and damping coupling
forces between layers, at the interfaces {Γi}i=1,...,M :

Dcoupling =



















D
coupling

Layer1−Layer1 D
coupling

Layer1−Layer2 0 . . . 0

D
coupling

Layer2−Layer1 D
coupling

Layer2−Layer2 D
coupling

Layer2−Layer3 . . . 0

0 D
coupling

Layer3−Layer2 D
coupling

Layer3−Layer3 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 . . . D
coupling

LayerM−LayerM



















, (D.17)

where

D
coupling

Layer1−Layer1 = (L1
Γ1)TD2

Γ1L
1
Γ1

D
coupling

Layeri−Layeri = (Li
Γi)TDi−1

Γi Li
Γi + (Li

Γi)TDi+1
Γi Li

Γi i = 2, . . . ,M − 1

D
coupling

LayerM−LayerM = (LM
ΓM )TDM−1

ΓM LM
ΓM (D.18)

D
coupling

Layeri−Layeri−1 = (Li
Γ1)TCi−1

Γi Li−1
Γi i = 2, . . . ,M

D
coupling

Layeri−1−Layeri = (Li−1
Γi−1)

TCi
Γi−1Li

Γi−1 i = 2, . . . ,M

The matrix Ecoupling in equation (D.15) can be expressed as follows:

Ecoupling =























0 (L1
Γ1 )

TL2
Γ1 0 . . . 0 0

(L2
Γ2 )

TL1
Γ2 0 (L2

Γ2 )
TL3

Γ2 . . . 0 0

0 (L3
Γ3 )

TL2
Γ3 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 (LM−1
ΓM−1 )

TLM
ΓM−1

0 0 0 . . . (LM
ΓM )TLM−1

ΓM 0























.

(D.19)



Appendix E

Finite Element modeling of

shunted piezoelectric patches with

negative capacitance

In this appendix the theoretical modeling of shunted piezoelectric patches with
negative capacitance using the FE method is considered by extracting a part
of the work done by Collet et al. [85].
By applying the finite element method on a piezoelectric domain, a discretized
system can be written in the following form [85]:

Mẅ(t) +Cẇ(t) +Kw(t) + ewvV(t) = F(t) (E.1a)

− eTwvw(t) +CS
pV(t) = Q(t) (E.1b)

where M, C, K stand respectively for mass, damping and open circuit stiffness
matrices, ewv is the piezoelectric coupling matrix depending on piezoelectric
material coefficients e but also on geometric and support characteristics, CS

p

is the diagonal matrix of each equivalent piezoelectric capacitances for wero
strain. w represents the vector of mechanical degrees of freedom and V, the
vector of the applied upper electrode voltage, whereas Q is the dual measured
current. The main difference between the full (or well condensed) 3D and the
simplified beam or plate approaches is located in evaluation of CS

p and ewv

matrices.
If we now consider a serial R −Cneg shunt circuit, the electronic introduced
feedback can be formulated as follows:

V(t) = −((Cneg)
−1Q(t) +R

dQ(t)

dt
) (E.2)

Then, based on the system equilibrium equations (E.1a) and (E.1b), the con-
trolled equations are:

Mẅ(t) +Cẇ(t) + (K+ eTwv(C
S
p +Cneg)

−1ewv)w(t) = −ewvCneg(Cneg +CS
p )

−1V(t) + F(t)

(E.3a)

− eTwvCneg(Cneg +CS
p )

−1w(t) +CS
pCneg(Cneg +CS

p )
−1V(t) = Q(t) (E.3b)

V(t) = −R ˙Q(t) (E.3c)

By comparing with equation (E.1a), we can show that this last system cor-
responds to a piezomechanical system in which we would have modified



176
Appendix E. Finite Element modeling of shunted piezoelectric
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the initial short circuit stiffness K to K + eTwv(C
S
p + Cneg)

−1ewv. Thus if
eTwv(C

S
p +Cneg)

−1ewv is a negative matrix, we can easily demonstrate that we
could decrease the corresponding short circuit eigenfrequencies. By applying
the model in the work of Hagood and Von Flotow [7], the effective stiffness
introduced for the shunted piezoelectric laminated composite can be plotted
in Figure E.1. For Cneg between CT

p and CS
p , the system is unstable as the

effective stiffness becomes negative.

Figure E.1: The effective shunted piezoelectric composite stiffness as a func-
tion of the connected negative capacitance term [85].
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Papiers publiés:

• T.L. Huang, M.N. Ichchou and O. Bareille, Multi-mode wave propaga-
tion in damaged stiffened panels, Structural Control and Health Moni-

toring, 19(5)(2012) 609-629.(Reference [64])

• T.L. Huang, M.N. Ichchou, O. Bareille, M. Collet and M. Ouisse, Trav-
eling wave control in thin-walled structures through shunted piezo-
electric patches, Mechanical Systems and Signal Processing, 2012,
doi:10.1016/j.ymssp.2012.06.014.

Papiers soumis:

• T.L. Huang, M.N. Ichchou, O. Bareille, M. Collet and M. Ouisse, Multi-
modal wave propagation in smart structures with shunted piezoelectric
patches, Journal of Computational Mechanics. Under review.
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Congrès:
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International Conference on Adaptive Modeling and Simulation, Paris,
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