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ABSTRACT

his thesis is devoted to themechanisms leading to strong collision rates of
inertial particles in turbulent suspensions. Our work is based on simulat-
ing themotion of particles, using both direct numerical simulations of the
Navier–Stokes equations, and a simplermodel (kinematic simulations). his

subject is important for many applications, in industrial as well as natural
(astrophysical, geophysical) contexts. We revisit the ghost collision approxi-
mation (GCA), widely used to determine the rate of collisions in numerical
simulations, which consists in counting howmany times the centers of two
particles come within a given distance. heoretical arguments suggested
that this approximation leads to an overestimate of the real collision rate.
his work provides not only a quantitative description of this overestimate,
but also a detailed understanding of the error made using the GCA. We ûnd
that a given particle pair may undergo multiple collisions with a relatively
high probability. his is related to the observation that in turbulent �ows,
particle pairs may stay close for a very long time. We have provided a full
quantitative characterization of the time spent together by pairs of particles.
A second class of results obtained in this thesis concerns a quantitative
understanding of the very strong collision rates o�en observed. We demon-

strate that when the particle inertia is not very small, the “sling/caustics ”
eòect, i.e., the ejection of particles from energetic vortices in the �ow, is
responsible for the high collision rates. he preferential concentration of
particles in some regions of space plays in comparison a weaker role.

keywords turbulence, inertial particles, turbulent suspensions, colli-
sions, computational �uid dynamics,multiphase �ow

RESUMÉ

Cette thèse est consacrée au mécanisme conduisant à des taux de collisions
importants dans les suspensions turbulentes de particules inertielles. Le tra-
vail a été eòectué en suivant numériquement des particules, par simulations
directes des équations deNavier–Stokes, et également par étude demodèles
simpliûés. Les applications de ce domaine sont nombreuses aussi bien dans
un contexte industriel que naturel (astrophysique, géophysique). L’approxi-
mation des collisions fantômes (ACF), souvent utilisée pour déterminer les
taux de collision numériquement, consiste à compter dans une simulation,
le nombre de fois que la distance entre les centres de deux particules devient
plus faible qu’une distance seuil. Plusieurs arguments théoriques suggé-
reraient que cette approximation conduit à une surestimation du taux de
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collision. Cette thèse fournit non seulement une estimation quantitative
de cette surestimation,mais également une compréhension détaillée des
mécanismes des erreurs faites par l’ACF. Nous trouvons qu’une paire de
particules peut subir des collisions répétées avec une grande probabilité.
Ceci est relié à l’observation que, dans un écoulement turbulent, certaines
paires de particules peuvent rester proches pendant très longtemps. Une
deuxième classe de résultats obtenus dans cette thèse a permis une com-

préhension quantitative des très forts taux de collisions souvent observés.
Nous montrons que lorsque l’inertie des particules n’est pas très petite, l’eòet
« fronde/caustiques », à savoir, l’éjection de particules par des tourbillons
intenses, est responsable du taux de collision élevé. En comparaison, la
concentration préférentielle de particules dans certaines régions de l’espace
joue un rôlemineur.

mots-clefs turbulence, particules inertielles, suspensions turbulentes,
collisions, simulations numériques d’écoulements turbulents, écoulements
multi-phasiques
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1
INTRODUCTION

Among the unsolved problems in physics, turbulence is probably the one
that aòects our daily life themost. he search for the ultimate components
ofmatter, or for the structure of the universe leads to fundamental questions.
However, our lack of understanding about darkmatter or dark energy comes
in large part from the scarcity of experimental information,which ultimately
originates from the fact that they are relevant at scaleswhich are very remote
from our everyday life. his situation makes the success of the standard
model even more impressive—despite the fact that itmay still be improved,
or that it does not include a theory of gravitation. In comparison, turbulence
is encountered in everyday life, yet,we do not have a fully satisfactory theory
to describe this important phenomenon.

If we ride our bicycle or Vélo’v along the Rhône, we know how diõcult it he Vélo’v is a rental

bike in Lyon.is to gain that extra 5km/h, that would allow us to be in time. he reason is
the air, which we bring into motion bymoving through it—just like the car
in Figure 1.1. Simple dimensional arguments allow us to understand, why it
is so hard to be faster. Riding our bike at speed v and for a time t, we leave
behind us a wake of air in motion of volume Avt, where A is roughly the
cross-sectional area of us facing the direction we are heading to. To estimate

the energy contained in this corridor we need to estimate itsmass, which
is simply Avtρ, where ρ is the density of air. hismass ismoving at speed
v and therefore contains the energy 1⁄2Avtρv2. hismeans the energy we
loose just to agitate the gas surrounding us growswith v3. Going at 25km/h
instead of 20km/h is two times harder. Furthermore the linear prefactor A SeeMacKay (2009) for

similar estimates.explains, why we intuitively duck down, when we try to ride faster or when
we are facing a headwind. Every bit by which we diminish the surface A,
results directly in less energy that we need to disperse for agitating air.

F igure 1 . 1

Photograph of a Citroën DS in a wind tunnel. One can clearly see the agitated �ow
behind the car. © ONERA (2009)
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4 introduction

Looking closely at the wake behind the car in Figure 1.1, one notices that
themotion of the air is not structureless. While themotion seems chaotic
andunpredictable on the one hand, one can on the otherhand clearlydiscern
structures on many length scales. his is one of the intriguing features of
turbulence. A detailed analysis shows that the above estimate for the energy
contained in thewake is too simple. In fact the surfaceAneeds to be replaced
by a sort of eòective surface described by the so-called drag coeõcient. his
drag coeõcient depends on the geometry of the object thatmoves through
the �uid. Tiny changes in the design of vehiclesmay easily lead to changes
in eõciency of the order of 10%. herefore car producers a very interested
in the drag coeõcient of new models they develop. Understanding the
turbulence in the wake is crucial in estimating the drag coeõcient without
costly wind tunnel experiments.

he above is just one example where a complete and fully predictive
theory of turbulence ismissing. here aremany other domains including
weatherprediction or various industrial processes,whichwouldbeneût from
such a theory. But still this phenomenon evades a conclusive description.
In a 1949 review on turbulence John von Neumann expressed “hope tohat review has been

reprinted in
von Neumann (1961).

‘break the deadlock’ by extensive, but well-planned, computational eòorts.”
His wish has been fulûlled in the sense that nowadays extensive numerical
simulations provide deep insights into the phenomenon of turbulence. But
the hope that these computationsmight help answer the “calling for a new
form of statistical mechanics” has notmaterialized yet.

hemost precise simulation of a turbulent �ow up to now used 40963

spatial discretization points in a periodic box (Ishihara et al. 2007; Kaneda
et al. 2003 and later also Bitane et al. 2012;Hackl et al. 2011). he codes are
based on pseudo-spectral methods and eòectively simulate the evolution
equation of approximately 7 × 1010 Fouriermodes. As a comparison, thehe Millenium

Simulation investigates
the evolution of the

matter distribution in

the Universe.

well-known Millennium Simulation (Springel 2005; Springel et al. 2005)
considered interactions between “only” 1 × 1010 particles. And still, the
simulation of Kaneda et al. (2003) achieves a �ow at a Reynolds number¹
Reλ = 1200 which is relatively small in comparison to Reynolds numbers
observed in many natural phenomena (e.g., Reλ = 104 in a typical cloud,
Siebert et al. 2010). he reason why it is so hard to perform simulations of
turbulent �ows at large Reynolds numbers are again the structures, which
are present on a wide range of length scales. An exact simulation must

resolve all these length scales which may span over several decades.

he present study is in a sense in the tradition of the above cited works.
Here also numerical simulations are performed to study turbulent �ows.
But instead of seeking insights into the fundamental structure of turbulence,
this work concentrates on the phenomena that arise when particles are
entrained by turbulent �ows.

1 he Reynolds number, roughly speaking, determines the intensity of turbulence. Refer to
Section 2.1.2 and Equation (2.8) for details.
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1 . 1 particles in turbulence and collisions

In nature,more o�en than not, �uids do transportmaterial in another state
ofmatter (Balachandar & Eaton 2010). Onemay think of aerosol particles
in the atmosphere, plankton in the sea, or pollutants in riverbeds. Evidently,
whether the �uid is turbulent ornot has a big impact on the particulate phase.
Stirring in the ocean enhances themixing of phytoplankton and fertilizers
(Abraham et al. 2000). Also, animals, that rely on olfactory perception,
may need to adapt their strategies in a turbulent environment (Ferner &
Weissburg 2005;Mafra-Neto & Carde 1994).

As long as the entrained objects are small enough, they follow themove-
ments of the �ow exactly. For larger particles however, with a diòerent
density than the �uid, new phenomena emerge. Clustering of particles in
certain regions of the �ow is a well-known example.

In this work we focus in particular on collisions between the entrained
objects. he collisions occurring between particles are important in a wide
range of applications. Many industrial production processes, likemanufac-
turing of titania (Moody & Collins 2003), rely on turbulentmixing to bring
the base products into contact. In all kinds of sprays, the coalescence rate of
the droplets has an impact on their size distribution. his is of importance
for example in diesel engines (Post&Abraham 2002). here, further aspects,
like the evaporation of droplets, providemotivation for interesting research
(Chareyron et al. 2012).

Also in nature formation of larger particles by collision is very frequent.
Wells & Goldberg (1991) ûnd, that there is an abundance of colloidal par-
ticles in sea water. For instance a signiûcant part of the carbon, that is
considered dissolved in the oceans, “may in fact be present in the form of
colloid particles” (Stumm &Morgan 1996, p. 818)². Another example for
the importance of collisions in the dispersed phase of a �uid is provided by
sandstorms, whose intensity can be enhanced by colliding grains (Carneiro
et al. 2013). Even animatematter depends on turbulence induced collisions
as can be seen in the works of Lewis & Pedley (2000) and Rothschild &
Osborn (1988).

Ourmain motivation (discussed in Chapter 3) is provided by two further
domains. On the one hand, collisions between droplets in clouds, contribute
to their growth process and therefore in�uence the onset of rain (Shaw 2003).
hey also aòect the size distribution of drops, which has a strong in�uence
on the re�ection of light from the sun, and thus, on the energy budget of
the earth and on the climate. On the other hand we refer to collisions of
dust grains in protoplanetary disks that play a crucial role in the formation
of planets (Safranov 1972). he contribution of turbulence to the collision
rates has been the subject ofmany studies, in relation to the two problems

referred to here. he aim of this work is to provide further quantitative
understanding of the problem.

2 See also the review by Kepkay (2000).
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1 .2 outline

hiswork is organized in three parts. he ûrstpart includes this introduction

as well as two chapters on fundamental concepts. Chapter 2 introduces

the basic equations and some of the typical reasoning that will be used
throughout the text. he following chapter provides a short review of cloud
physics in Section 3.1. In Section 3.2 diòerent aspects of collision rates of
particles suspended in turbulent �ows are discussed. his section constitutes
the basics which are important to understand our scientiûc work presented
in the second part.
We split our own results in ûve chapters. he ûrst two, Chapters 4 and 5,

describe diòerent aspects of our numerical simulations. Furthermore, we
validate our code, by comparing its results to published data and theoretical
predictions. Additionally we present some simple resultswhichwe obtained
theoretically for ideal gas-like particles in Sections 4.2 and 4.3.
Especially the ûndings from Section 4.3 will be helpful in interpreting

some of the results presented inChapter 6. herewe investigatemultiple col-
lisions between a same pair of particles, which astonishinglymay take place
in a turbulent �ow (Section 6.2). hese multiple collisions are related to
the ghost collision approximation (GCA) in Section 6.1. hat approximation
is o�en made in numerical simulations but is also apparent in theoretical
results. Inspired by the observation of multiple collisions we proceed to
investigate the time that particles stay in contact in Section 6.3. Before
discussing an alternative to the GCA in Section 6.5, we present an interpre-
tation of our results in the light of sling/caustics collisions in Section 6.4.
Section 6.6 concludes that chapter.
In Chapter 7 we come back to the sling/caustics eòect. A subtle post-

processing of our numerical data allows us to conclude on the prevalence of
the sling/caustics eòect over simple shear induced collisions. hese results
are presented in Section 7.1 and conûrmed by additional investigations in
Section 7.2. he analysis performed in this work is in fact fully consistent
with evidence that was already present in previous numerical results, or
anticipated theoretically using simpliûedmodels, aswe explain in Section 7.3.

All our results presenteduntilChapter 8were obtained in directnumerical
simulations (DNS). But we started our investigations using a simplemodel
�ow known as kinematic simulations (KS). In Chapter 8 we discuss how the
lower computational cost of thismodel allows some further investigations
whichwould be prohibitive in DNS. he qualitative results in KS are the same
as presented before for DNS. But quantitatively we ûnd large diòerences
which are shortly discussed in that chapter.

Finally, in the Appendices, we will present two more technical aspects
of our work. Some of the approaches developed for our investigations and
discussed in Appendices A and B,may be interesting for future work.



2FUNDAMENTAL RESULTS

A�er an introduction of the subject from a broader perspective, and a general
presentation of the reasons why it is worthwhile to understand the behavior
of particles in turbulent �ows, we now discuss the relevant results our work

relies on. his presentation does not have the ambition to be exhaustive.
Details not covered here can be found in the literature cited in the text.
Expert readers may skip this chapter and only get back to it, when it is

referenced later on in the text.

2 . 1 navier–stokes equations¹

To derive the basic equations governing themotion of a �uid, one starts from
two balance equations. he ûrst one describesmass conservation in terms

of the density ûeld ρ(x , t), and the other one conservation ofmomentum,

in terms of ρ(x , t)u(x , t), where u(x , t) is the �uid velocity at position x

and time t. For an incompressible �uid, the density is independent of time

and position and the continuity equation derived from mass conservation
simpliûes to

∇ ⋅ u(x , t) = 0. (2.1)

he equation for the momentum has to accurately account for all forces
acting on the �uid’s surface or volume. In case of incompressibleNewtonian
�uids, one obtains

∂

∂t
u(x , t) + u(x , t) ⋅∇u(x , t) = −∇P(x , t) + ν∆u(x , t) +Q(x , t), (2.2)

where the momentum equation has been divided by the constant �uid
density ρ. herefore P(x , t) is the pressure divided by the density, but
usually referred to as just “pressure”. he kinematic viscosity ν = µ/ρ is the
quotient of dynamic viscosity and density, and ûnally Q(x , t) contains all
diòerent external forces like gravitation or the Coriolis force. Equation (2.2)
has ûrst been derived byNavier (1823) and Stokes (1843) and hence is known
as the Navier–Stokes equation.²
Even ignoring external forces, Equation (2.2) may seem to be unclosed

at ûrst sight, because the pressure P(x , t) appears in it. But actually the
pressure is fully determined by Equations (2.1) and (2.2) as can be seen
when one calculates the divergence of the Navier–Stokes equation. In case
of divergence free forces Q(x , t) this yields the Poisson equation

∆P(x , t) = −∇ ⋅ [(u(x , t) ⋅∇)u(x , t)] ,
1 his section and parts of the next one loosely follow a former work, originally written in
German (Voßkuhle 2009).

2 Ormore precisely, as they are actually three diòerential equations for each component of
u(x , t) and need to be combined with Equation (2.1): the Navier–Stokes equations.

7
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which can be solved with the help of Green’s function for the Laplacian (see
Friedrich 2007) or by inversion of the Laplacian in Fourier space (see Frisch
1996).

Furthermore the solution of Equations (2.1) and (2.2) requires the de-
termination of initial and boundary conditions. In realistic problems the
boundary conditions are usually given by impermeability and no-slip walls.
In many computer simulations however, it is convenient to impose peri-
odic boundary conditions in a cube. his method will also be employed
throughout this work.

2 . 1 . 1 The vorticity

For the sake of completeness, we introduce the vorticity ω(x , t) which is
simply the rotation of the velocity ûeld

ω(x , t) = ∇ × u(x , t). (2.3)

In the case of a solid body motion, this deûnition of ω(x , t) is, within a

factor of 2, the deûnition of the rate of rotation. he equation describing
the evolution of the vorticity ω(x , t) is deduced from Equation (2.2) by
applying the rotation operator.
A description of turbulent �uids in terms of “eddies”, or vortices, with

a wide distribution of scales has emerged over the years, starting with the
famous illustrations of Leonardo da Vinci (see Figure 2.1). In fact, the
vorticity ûeld is as fundamental as the velocity ûeld, as the latter can be
obtained from the former by simply inverting Poisson’s equations. Moòatt
(1981) and Saòman (1992) review essential results in this ûeld.

2 . 1 .2 Self similarity and theReynolds number

An adimensional formof theNavier–Stokes equation can be handily derived
by introducing the dimensionless units (see, e.g., Argyris et al. 2010)

ũ = u

U
, t̃ = t

T
, x̃ = x

L
, p̃ = p L

U2
, Q̃ = Q T

U2
,

with some characteristic length, time, and velocity scales L, T , andU = L/T .
Inserting in Equation (2.2) and immediately dropping the tildas, one obtains

∂

∂t
u(x , t)+u(x , t) ⋅∇u(x , t) = −∇P(x , t)+ 1

Re
∆u(x , t)+Q(x , t), (2.4)

where we introduced the dimensionless Reynolds number Re = UL/ν. It
is named a�er Osborne Reynolds (1883), who noticed in experiments on
pipe �ows, that whether the �ow is turbulent or laminar depends only on
the quantity Re. Indeed, Equation (2.4) demonstrates, that �ows with the
same Reynolds number behave similarly. his allows engineers to test new
developments on model vehicles with reduced size in wind tunnels.
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2 .2 turbulence

he observation Reynolds (1883) made in his experiments was the following.
He was pumping a given �uid, at a ûxed viscosity ν, through a cylindrical

tube of diameter L. By increasing the pumping velocity, hence U , he could

increase the value of Re. At low values of Re, the �uid motion is observed to
be laminar. Tiny tracer particles would along straight lines. Above a critical
value of Re, however, Reynolds observed that the tracer trajectories were
no longer straight. he �uid wouldmove in an irregular and unpredictable
way. his state of �uidmotion is known as turbulence. Its emergencemay
become more evident, when one interprets the Reynolds number as the
ratio between the nonlinear convection term u(x , t) ⋅ ∇u(x , t) and the
dissipation term of the Navier–Stokes equations. When the smoothing
action of dissipation is outdone by convection, the �ow becomes turbulent.
We explained in the introduction (Chapter 1) why it is of such an im-

portance to gain a deeper understanding of turbulence. And it was also
discussed, that a satisfactory theory of the phenomenon has not yet been
proposed. Nevertheless, during its long history, research in turbulence has
produced many important results. Nowadays there is a vast number of
textbooks on it, from the classic ones by Batchelor (1959) or Tennekes &
Lumley (1972) to moremodern ones like those from Frisch (1996) or Pope
(2000). Each of these books focuses on some speciûc aspects of the problem.
Here we will only discuss some of themost basic notions, that can be found
in almost all textbooks. he typical reasoning we introduce in the coming
paragraphs will reappear throughout the text.

2 .2 . 1 The cascade picture

he observation that turbulent �ows involvemany length scales is already
obvious in some of Leonardo da Vinci’s writings and drawings. Figure 2.1
shows clearly how the large scale structures at which the turbulence is
generated –in this casewater�owing in a basin– evolve to produce structures
on many length scales. A phenomenological explanation of this fact is
attributed to Richardson (1922), who in his famous adaption of a poem by
Jonathan Swi�, explains his view

We realize thus that: big whirls have little whirls that feed on

their velocity, and little whirls have lesser whirls and so on to
viscosity—in the molecular sense.

What hemeans is that turbulence receives its energy from large scale vortices
(or coherent structures) generated by some external forcing. hese vortices
will then break up into smaller vortices, who themselves get unstable and
break up. he energy gets, in this way, transported to ever smaller scales
until it reaches the smallest scales where viscosity acts and transforms it
into heat.
he above described picture is known as the Richardson cascade; Fig-

ure 2.2 shows a typical illustration. We shall call the length scale atwhich the
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F igure 2 .1

Detail of “Studies ofWater passing Ob-
stacles and falling”, drawings by Leo-
nardo da Vinci (c. 1508–1509). Coher-
ent structures of diòerent sizes are well
brought out.

L

η

⋮ ⋮ ⋮

F igure 2 .2

Typical illustration of the Richardson
cascade. External forcing generates tur-
bulence at length scale L. he large scale
vortices of this size break up to give
ever smaller vortices. Finally, at length
scale η, the energy gets dissipated by vis-
cosity.

turbulence is generated L and the one, where the energy gets dissipated by
viscosity η. he coming sections will show, how these heuristically deûned

scales can get quantiûed.

2 .2 .2 Homogenous and isotropic turbulence

It became clear quite early, that the assumption of turbulence being statisti-
cally homogenous and isotropic leads to signiûcant simpliûcations. Already
Williamhomson (1887), the later Lord Kelvin, supposed that the velocity
ûeld of a turbulent �uid was homogenous and posed the question, in what
situation the assumption of isotropy would be justiûable. Subsequent exper-
imental studies supported the validity of both assumptions. Here we follow
later work by Taylor (1935) to clarify the concept. An interesting account of
the development of the scientiûc ideas leading to our present knowledge
can be found in a recent review of the correspondence between Prandtl and
Taylor (Bodenschatz & Eckert 2011). We start by introducing the spatial
velocity autocorrelation function

Ri j(r, x , t) = ⟨ui(x + r, t)u j(x , y)⟩ . (2.5)

Here, as well as later in the text, the angular brackets ⟨⋅⟩ denote a suitably
deûned average. he velocity correlation function is a very interesting
quantity; it is relatively easy to measure in experiments and numerical
simulations, and also convenient to analyze from amathematical point of
view. Metaphorically speaking, it tells howmuch the velocity at point x is
in�uenced by the velocity at position x + r.

If we assume homogeneity, all points in space become statistically equiva-
lent and the velocity correlation function does not depend on x anymore.
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1

r

Rt t(r)/u2
rms

λ

F igure 2 .3

A parabola, corresponding to the second
term in a Taylor expansion of the trans-
verse velocity autocorrelation function,
intersects the axis at the Taylor length λ,
Equation (2.7).

For stationary statistics, the correlation function does not depend on time.

Finally, if the statistics are assumed to be isotropic³, the second order tensor

Ri j(r) can only take a certain form (see, e.g., Robertson 1940)

Ri j(r) = Rtt(rr)δi j + [Rl l(r) − Rtt(r)] rir j
r2

(2.6)

his is discussed in more detail by, e.g., Batchelor (1953) and Landau &

Lifshitz (1987). Rl l(r) and Rtt(r) are respectively the longitudinal and
transverse autocorrelation functions. Taylor (1935) used them to deûne two
distinct length scales. Both may be deûned for the longitudinal as well as
for the transverse correlation, but we limit ourselves to the latter.

First,we deûne a short length scale. To this end Rtt(r) is developed into a
series. he ûrst term of this series, R′tt(0), vanishes due to incompressibility,
Equation (2.1). he second term can be evaluated, R′′tt(0) = ⟨(∂u1/∂x2)2⟩
(Pope 2000), and used to deûne the length scale4

λ2 = 2u2rms⟨( ∂u1
∂x2
)⟩ . (2.7)

A geometrical interpretation of λ can be found in Figure 2.3. Taylor (1935)
interpreted λ as the length scale of the smallest eddies. his is not correct,
actually λ is intermediate between the smallest and largest turbulent length
scales, η and L respectively (see, e.g., Pope 2000, for details). Despite this
fact, λ is widely used and its simple but exact deûnition is appreciated. he
correspondingly deûned Taylor scale Reynolds number

Reλ = urmsλ

ν
(2.8)

is one of two quasi-standard forms to give the Reynolds number in DNS and
in experiments.

Next, we introduce the integral length scale Lt . he index t does not only
indicate that it is based on the transverse velocity autocorrelation function,
but also diòerentiates it from the conceptual integral length scale L, that has

3 hatmeans invariant under rotation and usually also re�exion.
4 he variable urms denotes the root mean square velocity of one component, i.e., urms =
⟨u(x , t) ⋅ u(x , t)/3⟩1/2 .
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been introduced before. It is a large length scale given by the surface under
the autocorrelation function

Lt = 1

u2rms
∫
∞

0
Rtt(r)dr. (2.9)

he velocity ûeld decorrelates at Lt , which therefore characterizes the length
scale of the largest eddies.
Asmentioned before, corresponding length scales can be derived from

the longitudinal velocity correlation function Rl l(r). It can be shown that
those are not independent from λ and Lt respectively. Indeed, exact relations
can be derived as shown, e.g., in the textbook by Pope (2000).

2 .2 .3 Energy �ux and energy dissipation rate

Before coming to the famous phenomenology of Kolmogorov, we need to
introduce onemore quantity characterizing the cascade process—the energy
dissipation rate ε.

An equation describing the temporal evolution of the average energy per
unitmass, ⟨u2/2⟩, can easily be derived from the Navier–Stokes equation.
To this end, onemultiplies Equation (2.2) by u(x , t)/2 and then averages
the complete equation. By standard techniques, taking into account incom-
pressibility, Equation (2.1), and especially the boundary conditions, one
obtains

d

dt

⟨u(x , t)2⟩
2

= ν⟨u(x , t) ⋅ ∆u(x , t)⟩ + ⟨u(x , t) ⋅ Q(x , t)⟩. (2.10)

Frisch (1996, p. 19) explains the derivation for periodic boundary conditions,
McComb (1992, p. 524) does the calculation in an arbitrary volume with
vanishing velocity at the boundaries. In the stationary case the le�-hand side
of Equation (2.10) is zero and obviously energy production by the external
forces and energy dissipation by viscosity balance. Wemay therefore deûne
the energy dissipation rate per unitmass5

ε = −ν⟨u(x , t) ⋅ ∆u(x , t)⟩ = 1

2
ν∑

i , j

⟨(∂iu j + ∂ jui)2⟩ = ν⟨∣ω∣2⟩, (2.11)

where the latter two equalities can be derived by similar techniques as before
and ω(x , t) is the vorticity as deûned in Equation (2.3).
It is interesting to remark, that the nonlinear and nonlocal terms of the

Navier–Stokes equation do not contribute to the energy budget in Equa-
tion (2.10). Although they neither produce, nor dissipate energy, they do
contribute to the transport of energy between scales. his becomes clear
when one considers the energy balance in Fourier space. Namely, one ob-
serves that

1

2
⟨ui(x , t)ui(x , t)⟩ = 1

2 ∫∫∫
∞

−∞
R̂ii(k, t)dk = ∫ ∞

0
E(k, t)dk,

5 We introduce the notation ∂ i ∶= ∂/∂x i for spatial derivatives.
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k i

F(k) ∼ k2E(k)

E(k)
k

Π(k) = ε

F igure 2 .4

Illustration of the diòerent terms con-
tributing to the energy spectrum bal-
ance, Equation (2.12). he forcing
F(k) injects energy in a band of small
wavenumbers; the energy �ux Π(k)
transports the energy to larger modes,
where viscosity gains in�uence and dis-
sipates it.

where Einstein summation applies to repeated indices in the ûrst two terms.
R̂i j(k, t) is the Fourier transform of the velocity autocorrelation tensor
Ri j(r, t), deûned in Equation (2.6), with respect to r. he energy spectrum
E(k, t) is a deûnition that follows by simply integrating over the angular
components (see, e.g., Tennekes & Lumley 1972). It can be interpreted as

giving the energy contained in each scale k.
An evolution equation for E(k) can be obtained from the Navier–Stokes

equation in Fourier space (see, e.g., Orszag 1977), or directly by Fourier
transformation of the evolution equation for the velocity correlation tensor
Ri j(r, t)

( ∂
∂t
+ 2νk2)E(k, t) = S(k, t) + F(k, t). (2.12)

Here S(k, t) arises from the convection term in Equation (2.2), F(k, t)
corresponds to the external forcing, and contributions from the pressure
term vanish identically. It has been mentioned before, that the nonlinear
term does neither produce, nor dissipate energy. When Equation (2.12) is
integrated, it should give the Fourier transform of Equation (2.10). his
implies that the integral of S(k, t) over k has to vanish

∫
∞

0
S(k, t)dk = 0. (2.13)

S(k, t) can be interpreted as the transfer of energy into mode k.
We shall now follow Lesieur (1997) in a simple but revealing reasoning,

that will ûnally put Richardson’s interpretation on a theoretical basis. To
this end we consider a stationary �ow, i.e., we drop all the t-dependencies
in Equation (2.12) and we deûne the energy �ux

Π(k, t) = ∫ ∞
k

S(k′)dk′ = − ∫ k

0
S(k′)dk′,

where the second equality follows simply from Equation (2.13). he energy
�ux is the amount of energy �owing through the Fouriermode k. If it is
positive, Π(k) > 0, energy �ows towards larger wavenumbers and vice
versa.

Now consider the following situation corresponding to Richardson’s pic-
ture (comp. Figure 2.4). he external forcing is pumping energy into the
system at a small wavelength ki . As we are in a stationary situation, the
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energy injection rate necessarily equals the energy dissipation rate and we
have

ε = ∫ ∞
0

F(k)dk.
hen the balance equation forΠ(k), obtained by integrating Equation (2.10)

Π(k) = ∫ k

0
F(k′)dk′ − 2ν ∫ k

0
k′2E(k′)dk′,

may be investigated for two distinct regions. In the range k < ki , the integral
over the external forcing is zero and in the limiting case of inûnite Reynolds
number, i.e., ν → 0, we obtain

lim
ν→0

Π(k) = −2 lim
ν→0

ν ∫
k<k i

0
k′2E(k′)dk′ = 0.

For k > ki the integral over the forcing becomes equal to ε and for some
ûnite ki < k ≪∞, one has

lim
ν→0

Π(k) = ε − 2 lim
ν→0

ν ∫
k i<k≪∞

0
k′2E(k′)dk′ = ε.

If however we admit k →∞, the integral in above equation must vanish in
order to secure the validity of Equation (2.10), even when the viscosity ν
tends towards zero, i.e.,

2 lim
ν→0

ν ∫
k→∞

0
k′2E(k′)dk′ = ε.

Summing up, we have for the energy �ux in the three discussed regions in
the limit of vanishing viscosity

lim
ν→0

Π(k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, k < ki
ε, ki < k ≪∞
0, k →∞

herefore the energy, generated at large length scales (i.e., small wavenum-
bers), does �ow towards the small scales, just as Richardson’s intuitive picture
predicted.

2 .2 .4 Kolmogorov scales

“Moreover, I soon
understood that there

was little hope of
developing a pure,
closed theory, and

because of the absence
of such a theory the

investigationmust be
based on hypotheses

obtained in processing
experimental data.”

A.N. Kolmogorov
(Tikhomirov 1991, p. 487)

In his seminal paper, Kolmogorov (1941) introduced two simple and power-
ful hypotheses on the statistics of locally homogenous and isotropic turbu-
lent�ows,which represented a crucial step in ourunderstanding of turbulent
�ows. Kolmogorov (1941) starts by rigorously deûning the terms “locally
homogenous” and “locally isotropic”. he key assumption is that at scales
much smaller than the forcing scale, the �ow properties become homoge-
neous and isotropic. We present here a simpliûed version of the discussion,
and refer to Frisch (1996) for amore thorough presentation.
he main idea is conveyed by Kolmogorov’s (1941) “ûrst hypothesis of

similarity”, which states for distribution functions Fn of small scale velocity
increments
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For the locally isotropic turbulence the distributions Fn are
uniquely determined by the quantities ν and ε.

his statement allows us to ûnd the small length scale η, where energy gets
dissipated by viscosity. It is uniquely deûned by viscosity ν and energy
dissipation rate є and thereforemust be

η = (ν3/є)1/4 .
Likewise, corresponding time and velocity scales can be obtained

τK = (ν/ε)1/2 , uK = η/τK = (εν)1/4 .
hese quantities correctly describe the smallest eddies of the �ow and are
known as the Kolmogorov length, Kolmogorov time, and Kolmogorov ve-
locity respectively.

2 .2 . 5 Kolmogorov spectrum

Kolmogorov’s (1941) “second hypothesis of similarity” extends his ûrst hy-
pothesis and can be rephrased

For intermediate scales, larger than the dissipation scale η, the
distribution laws Fn are uniquely determined by the quantity ε
and do not depend on ν.

his statementmay be used to derive a generic form of the energy spectrum
E(k). Like for the Kolmogorov scales above, one employs simple dimen-
sional reasoning. When in the inertial range the spectrum E(k) does only
depend on the wavenumber k and, according to Kolmogorov’s hypothesis,
on the energy dissipation rate ε, it can only take the form

E(k) = CKε
2/3k−5/3. (2.14)

Here CK is the dimensionless Kolmogorov constant. Sreenivasan (1995)
reviews a large amount of data from experiments as well as numerical simu-
lations and concludes, that the Kolmogorov constant is universally CK ≈ 1.5.
Figure 2.5 shows the energy spectrum obtained in a famous wind-tunnel
experiment byComte-Bellot&Corrsin (1971). See also the energy spectrum
obtained from our own numerical simulations in Figure 5.1. Typically a
scaling according to Equation (2.14) becomes only clearly visible for very
large Reynolds numbers.

Interestingly Equation (2.14), was not given by Kolmogorov himself, but
has been derived independently byObukhov (1941),Onsager (1945, 1949),
and in collaboration byHeisenberg (1948) and vonWeizsäcker (1948).



16 fundamental results

10−2
10−1
100
101
102
103

10−2 10−1 100
E
(k)ε

−
2/
3
η
5/
3

kη

Reλ = 71.6
Reλ = 60.7

F igure 2 .5

Data from an experiment by Comte-
Bellot&Corrsin (1971). he straight dot-
ted line gives the expected Kolmogorov
scaling ∼ k−5/3. Typically for lower
Reynolds numbers, this scaling is only
valid in a limited range. hat range ex-
tends for larger Reynolds numbers.

2 .3 motion of spheres in a turbulent flow—the maxey–
riley equations

In his paper entitled “On the Eòect of the Internal Friction of Fluids on the
Motion of Pendulums” Stokes (1851) derives the drag force acting on a small
sphere of radius a, which moves uniformly with low velocity V through a

�uid at rest. He obtains (Eq. (126) in the paper of 1851)

Fdrag = 6πaµV , (2.15)

where µ = νρ f is the dynamic �uid viscosity. From this result we can obtain
in a hand-waving manner the equation ofmotion of a (small) particlemov-
ing freely in a turbulent �ow. We assume that the size of the particle ismuch
smaller than the smallest length scale of the �ow, i.e., a ≪ η. It therefore
sees a laminar �ow around itself and wemay apply Equation (2.15). he rel-
evant velocity is the diòerence between the particle velocity V and the �uid
velocity u(X , t) at the particle position X. In addition, we have to account
for the (reduced) gravitational force acting on the particle 4⁄3πa3(ρp− ρ f )G.
Assuming ρ f ≪ ρp and therefore neglecting terms proportional to ρ f /ρp,
we obtain

d

dt
X = V , (2.16)

d

dt
V = u(X , t) − V

τp
+G , (2.17)

where we introduced the time scale

τp =
4
3
πa3ρp

6πaνρ f
= 2

9

ρp

ρ f

a2

ν
. (2.18)

he time τp is obtained by comparing themass of the particle, 4⁄3πa3ρp and
the friction force, as expressed in the ûrst equality in Equation (2.18).
his verymuch simpliûed approach misses several eòects, such as the

“added mass” or the “Basset history force” (Basset 1888; Boussinesq 1885;
Oseen 1927). When the particle becomes bigger, further eòects described
by the Faxén (1922) corrections come into play. Maxey & Riley (1983) and
Gatignol (1983) independently derived the full set of equations for freely
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moving particles. Assuming ρ f ≪ ρp and a ≪ η in their results, all addi-
tional terms vanish, leading again to Equations (2.16) and (2.17). hey are
therefore o�en referred to as the Maxey–Riley equations. Also, throughout
the work at hand, we only consider small (a ≪ η) but heavy (ρ f ≪ ρp)

particles. Consequently the above set of equations in combination with
the knowledge of the �uid velocity u(x , t) at arbitrary points in space x,
fully determines the trajectories of particles in the studied cases. he work

of Daitche & Tél (2011) is a reminder that the history term, neglected in

Equations (2.16) and (2.17), becomes important when the particle radius
becomes comparable to or larger than η. For further information and an
overview of recent advances, we refer the reader to the review article by
Toschi & Bodenschatz (2009).

2 .3 . 1 The Stokes number

he particle relaxation time τp, Equation (2.18), may be compared to the

shortest (fastest) time scale of the �ow τη = (ν/є)1/2. heir ratio deûnes the
dimensionless Stokes number

St = τp

τη
= 2

9

ρp

ρ f
(a
η
)2 , (2.19)

which, in a sense, measures the particles’ inertia. For St → 0 the particles

behave like tracer particles and follow the streamlines of the �ow exactly.
We underline again, that our deûnition of τp, Equation (2.18), is only valid

for heavy particles with ρp ≫ ρ f . For light particles its deûnition changes

and therefore also the right-hand side of Equation (2.19).

Another handy dimensionless quantity is the particle Reynolds number

Rep = 2a∣u(X) − V ∣/ν.
It tellswhether the assumption of smooth �ow on the particle scale is valid—
Rep ≪ 1 in that case. herefore it is good practice to observe Rep, when one
is using Equations (2.16) and (2.17), e.g., in a numerical simulation.

2 .3 .2 The particle velocity gradient tensor

For reasons that will become clear only later, we also introduce the particle
velocity gradient tensor σi j = ∂ jVi . Taking the partial derivative on both
sides of Equation (2.17) and rearranging, yields

d

dt
σi j = Ai j(X , t) − σi j

τp
− σikσk j (2.20)

where the velocity gradient tensor of the �uid Ai j(x , t) = ∂ jui(x , t) was
introduced. his equation has themathematical form of aMatrix Riccati
equation. he solutions of this type of diòerential equation typically display
singularities. his type of behaviormay at ûrst seem surprising, but it has
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physical signiûcance, that will be discussed in Section 3.2.5. Furthermore,
in Appendix B we discuss two ways to numerically overcome the caveat of
those singularities.



3
INERTIAL PARTICLE COLLISIONS IN TURBULENT FLOWS

In the introduction (Section 1.1), we presented several problems, whose
description relies on a good understanding of collisions between particles
in a turbulent environment. Here, we discuss one of them, rain formation
in clouds, in more detail. Another domain, the formation of planets in
protoplanetary disks, will be rapidly reviewed. It will serve as justiûcation
for our choice of a broader parameter range than is of interest in the formerly
mentioned context. Most technical aspects discussed in the coming sections
are similarly applicable in other domains as well.

3 . 1 droplets in turbulent clouds—an overview

he enormous range of involved length scales is commonly described as
one of the most fascinating aspects of cloud microphysics, but it is also
one of the most diõcult to understand in quantitative terms. When ap-
proaching Earth from space, clouds are one of the ûrst distinct features
one can perceive. hey can expand over lengths of hundreds of kilometers,

while individual droplets and aerosol particles have radii of only several
tenths ofmicrometers (Bodenschatz et al. 2010). Depending on what ef-
fects are taken into consideration, this rangemay even be extended in both
directions (Siebesma et al. 2009). Evidently, clouds have a huge impact
on our climate system and a better understanding is not only necessary for
improved short term weather predictions, but also for long term projections
of climate change—notably when aspects like “climate engineering” are
discussed (Rickels et al. 2011). Consequently the interest in cloud physics
has intensiûed in recent years. Particularly the in�uence of turbulence has
been widely discussed and related progress is documented in many review
articles.¹ Especially physicists started to adopt the topic, as can be seen for
example in the focus issue, that Falkovich &Malinowski (2008) edited for
the New Journal of Physics. Further reasons for the increased interest in
cloud turbulence are certainly the improved numerical and experimental
possibilities (Devenish et al. 2012). Here we shall present only the basic
notions necessary for the understanding of the discussion of ourwork in the
coming chapters. For individual details, we refer the reader to the already
mentioned review articles.

1 A non-exhaustive list includes the papers of Beard & Ochs 1993; Blyth 1993; Devenish et al.
2012; Grabowski &Wang 2013; Jonas 1996; Pinsky & Khain 1997; Shaw 2003; Vaillancourt &
Yau 2000.
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3 . 1 . 1 The droplet size distribution

he life of a raindrop, from the moment it is formed by condensation to

the time it has grown large enough to fall on Earth can be simpliûed as
follows. First, it forms by condensation of vapor on tiny aerosol particles.
hose are called cloud condensation nuclei (CCNs) and have sizes < 1 µm
(Devenish et al. 2012). hen comes a stage, where the droplets, continue
to grow from initially ∼ 1 µm to a few tens ofmicrons. his step is in the
beginning stilldominated by condensation, but the range between 15 µm and
40 µm, known as the “size gap”, is not very well understood (Grabowski &
Wang 2013). Larger droplets can continue to grow by gravitational collisions
in which they capture smaller ones with whom they coalesce. Diòerent
mechanisms have been proposed, that could drive droplet growth through
the bottleneck of the size gap. One of them is turbulence,which can enhance
the collision rate between medium sized droplets.

he whole process described above is conveyed for the ensemble of drops
in a cloud by the droplet size distribution f (a, x , t). It gives the number
density of droplets of radius a at position x and time t, in the sense that

∫
∞
0 f (a′)da = n,where n is thenumberdensity of alldroplets in the volume
(Shaw 2003). We will focus on warm clouds, that is clouds, whose top is still
below the freezing level and assume a spatially homogenous distribution. In
this case the droplet size distribution obeys the Boltzmann-type equation

∂ f (a)
∂t

= J(a) − ∂

∂a
[ȧ f (a)]

+ 1

2 ∫
a

0

a2

a′′2
Γ(a′′, a′) f (a′′) f (a′)da′

− ∫ ∞
0

Γ(a, a′) f (a) f (a′)da′, (3.1)

where we introduced the substitution a′′ = (a3 − a′3)1/3. he terms on the
right-hand side consist of a particle source in form of the activation rate
J(a), a term representing growth by condensation and the two integral
terms, which convey production and destruction of particles of radius a by
collisions. We refer the interested reader to Shaw (2003) for amore detailed
discussion.

In terms of the droplet size distribution, the aforementioned “size gap”
problem corresponds to the question, how a distribution, that is initially
sharply peaked around some smallish value of a, can develop into a broader
distribution displaying a ûnite probability for largerdroplet sizes. he ûgures
of Berry & Reinhardt (1974a,b) illustrate this evolution nicely.

3 . 1 .2 The collision kernel

he integrands in the two integrals on the right-hand side of Equation (3.1)
depend on the collision kernel Γ(a, a′). It is deûned as the proportionality
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between the collision rate per unit volume of particles of radius a and a′

and their respective number densities per unit volume

Nc = nn′Γ(a, a′). (3.2)

In themonodisperse case, i.e., a = a′, a factor of 1⁄2 has to be added to the
right-hand side to avoid double counting.
In realistic situations various phenomena contribute to Γ(a, a′). For

example, larger particles falling faster in the gravitational ûeld collect smaller
ones, thus enhancing theirmutual collision kernel. On the other hand, not
all particles that come into contact will necessary coalesce—a fact typically
accounted for by introducing a coagulation eõciency (see Section 3.2.7).
In the remainder of this work, we will entirely concentrate on geometric
collisions due to particle–turbulence interactions. All other eòects, although
important in more sophisticatedmodels, will be neglected. his is a well
established approach² allowing us to concentrate on a limited number of
eòects. We achieve a further simpliûcation by limiting ourselves to the case
ofmonodisperse solutions, thus writing simply Γ(a) in that case.
Note that describing the droplet size distribution with Equation (3.1) re-

quires the knowledge of the collision kernel Γ(a, a′) for diòerent particle
radii a and a′. Technically, this can be determined from numerical sim-
ulations of bidisperse solutions. Such simulations have been carried out,
for example, by Bec et al. (2005). Typically the collision kernel is larger
for solutions with particles of diòerent sizes than formonodisperse ones.
he review of variousmodels for the collision kernel Γ(a, a′) presented by
Ayala et al. (2008) reveals some of the diòerences between monodisperse
and bidisperse solutions.

3 . 1 .3 Typical values

Having brie�y introduced the basicprinciples of droplet growth in clouds,we
now discuss typical values of the two dimensionless quantities introduced in
the last chapter—the Reynolds number and the Stokes number. Both depend
implicitly on the energy dissipation rate ε found in clouds and the kinematic
viscosity ν of air. he latter is tabulated and varieswith temperature (Haynes
2012). We assume an intermediate value of ν = 1.7 × 10−5m2/s. Measuring
the energy dissipation rate in clouds is a complicated task. Usually, ûrst the
energy spectrum is determined from velocitymeasurements during �ights
by balloon (Kitchen&Caughey 1981), aircra� (Smith& Jonas 1995), ormore
recently by helicopter (Siebert et al. 2006b)³, through clouds. hen, from the
spectrum, using Equation (2.14) with some empirical Kolmogorov constant,
the energy dissipation rate ε is determined. he measured value diòers

2 See for example theworks of Sundaram&Collins (1997),Wang et al. (2000), andWilliams&

Crane (1983). But we also note the studies of Rosa et al. (2013) andWoittiez et al. (2009),
which suggest, that the combined eòects of gravity and turbulence cannot be understood
independently.

3 In fact, Siebert et al. (2006b) use a diòerent, but conceptually similar approach.
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depending on the type of cloud, its age, the region within the cloud, and

other factors. In general, the energy dissipation rate ε has been documented
to vary in between 10−3m2/s3 and at least 10−1m2/s3 (see Grabowski &
Wang 2013; Pinsky & Khain 1997, and references therein).

Making use of the relation λ/urms = (15ν/ε)1/2 (Pope 2000, p. 200), the
energy dissipation rate ε and the rootmean square velocity urms suõce to
determine the Taylor scale Reynolds number Reλ—see Equation (2.8). It is,
again depending on the same various factors as ε, of the order of 103 to 104

(Siebert et al. 2010; Siebert et al. 2006a).

To estimate the Stokes number of droplets, we further need the densities
ofwater and air, as well as the size of the droplets. he range of the latter has
already been mentioned. he density of water at typical temperature and
pressure is roughly ρW ∼ 1000kg/m3, the density of air can be estimated
ρA ∼ 1 kg/m3 (Haynes 2012). With these valueswe ûnd from Equation (2.19)
an upper bound for the Stokes number of about St < 1.

Another important dimensionless number is the volume fraction Φ. Con-
sider a given volume V containing Np particles of size a, then the volume

fraction is Φ = Np 43πa
3/V . Its exact value depends on the droplet size

and the type of cloud, but is typically of order 10−6 (Grabowski & Wang
2013). For amore detailed discussion, we refer to Pruppacher & Klett (1997,
Sec. 2.1.3).

A word of caution

he simplifying approach o�en employed by physicists has repeatedly been
criticized by the atmospheric research community (e.g., Grabowski & Vail-
lancourt 1999; Khain et al. 2007). his criticism is certainly justiûed, when
one attempts to transpose the results to the cloud physical context without
any further discussion. We argue however, that these simpliûcations are
necessary to isolate diòerent phenomena and to gain a deeper insight. In a

second step, the improved understanding can be adopted in more complete
models. herefore, when in the coming chapters we present our results, we
will deliberately extent the investigated range of Stokes numbers and neglect,
as has been mentioned, aspects, like gravitation, that are incontrovertibly of
huge importance in the context of clouds.

Dust grains in protoplanetary disks

Furthermotivation for our choice of an extended parameter range is pro-
vided by the fact that larger Stokes numbers may be important in other
domains. In the astrophysical context where turbulence induced particle
collisions are discussed as a possibly important factor in the formation of
planets (Johansen et al. 2007; Safranov 1972; Shariò 2009), the experimental
data ismuch more uncertain. But Stokes numbers ofO(1) and larger are
expected (Pan et al. 2011;Wilkinson et al. 2008). For a short overview of
the domain, the interested reader is referred to Beckwith et al. (2000). We
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⟨w⟩dt

F igure 3 .1

Consider a sphere of radius a moving
on a straight line with average relative
velocity ⟨w⟩ (with respect to the other
particles). Such a sphere can collide per
unit time with all particles in a cylinder
of radius 2a and length ⟨w⟩ around its
trajectory.

also note with anticipation that novel experimental work is under way by
Capelo et al. (2013).

3 .2 analytical results on collision kernels

he collision kernel Γ has been deûned in Section 3.1.2. In this section, we
present diòerent limiting cases,where the collision kernel can be analytically
derived, as well as other important results.

3 .2 . 1 Collision kernel for an ideal gas

To get a feeling for the typical reasoning, we start by deriving the collision
rate in an ideal gas. To this end we follow the textbook byMoore (1972).
he result obtained in this section will be used later, to verify our numerical
collision detection scheme.

Imagine particles with a number density n, each moving with a constant
normally distributed velocity V . he collision rate for any such particle can
be calculated by considering the collision cylinder as shown in Figure 3.1. If
all other particles were at rest, the considered particle would collide with
all particles in a cylinder with radius 2a around its trajectory. herefore,
the corresponding collision rate per unit time would be n⟨∣V ∣⟩π(2a)2. he
other particles do howevermove and hence the correct velocity to determine
the cylinder’s height is themean relative velocity ⟨w⟩ = 21/2⟨∣V ∣⟩. To obtain
the total collision rate per unit volume, the above quantity needs to be
multiplied by n/2, ûnally leading to

Nc = 1

2
n2
√
2π(2a)2⟨∣V ∣⟩. (3.3)

Based on this result and according to Equation (3.2) we can then deûne the
collision kernel for an ideal gas Γig = 21/2π(2a)2⟨∣V ∣⟩.
3 .2 .2 Zero inertia

Owing to its importance, but also to the diõculties involved in this task,
much eòort has been made to determine the collision kernel for turbulent
�ows. he paper by Saòman&Turner (1956) introduces some of the seminal
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a

F igure 3 .2

Illustration of the integral in Equa-
tion (3.4). Shown is a central particle
surrounded by the collision sphere of
radius 2a, as well as streamlines of the
�ow. Arrows pointing radially outward,
represent the out�ow. Inward pointing
arrows represent the radial component
of the velocity ûeld where it enters the
shell—those are added up by the integral
in Equation (3.4).

ideas. It describes a way to theoretically derive an estimate for the collision
kernel of two particles of identical size, which follow the �ow exactly, i.e.,
for the case St→ 0. hemain idea is illustrated in Figure 3.2. For a sphere
of two times the particle radius a around one central particle, the total rate
of in�ow is determined. Multiplied by n, the number density of particles in
the �ow, this quantity determines the rate of collisionR for the particle at
the center. Mathematically this idea is described with the help of an integral
over the surface of the sphere Ω

R = n ∫ −wr(2a,Ω)Θ[−wr(2a,Ω)]dΩ. (3.4)

his integral sums the radial component of the �uid velocitywr(x , t) on the
sphere, whenever it is negative—theHeaviside step function Θ(⋅) assures
that condition.

For an incompressible �uid the in�ow and the out�ow into a given volume
cancel exactly. herefore the integral in Equation (3.4) simpliûes to

∫ −wr(2a,Ω, t)Θ[−wr(2a,Ω)]dΩ = 1

2 ∫ ∣wr(2a,Ω, t)∣dΩ. (3.5)

Up to this point, only one central particle has been considered. To obtain
an estimate for the overall collision rate, it is necessary to averageR. his
further simpliûes the situation, because for isotropic statistics it is now
suõcient to consider ⟨∣wx(2a)∣⟩. For small particles with radius a ≪ η this
can be identiûed with ⟨∣wx(2a)∣⟩ = 2a⟨∣∂ux/∂x∣⟩. Taylor (1935) had found⟨(∂ux/∂x)2⟩ = ε/15ν. With this result, assuming Gaussian statistics for the
velocity gradients, Saòman & Turner (1956) ûnally obtain

Nc = 1

2
n2ΓST , with ΓST = (2a)3

τK
(8π
15
)1/2 . (3.6)

In their paper Saòman&Turner go on to present a derivation of the collision
rate for inertial particles—see Section 3.2.8 for a short comment on that
part.

3 .2 .3 Inûnite inertia

Abrahamson (1975) noted thatmost previous studies aiming atmodeling
the collision kernel for particles in a turbulent �ow dealt with the case of
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particles following the �ow (St → 0). He argued that this condition is
however not fulûlled in many situations and therefore derived the collision
rate for a “vigorously turbulent �uid”, which corresponds to the case St→∞. In such a situation, particle velocities, even for those passing close to
each other, can be considered randomly distributed. he correct approach
to derive the corresponding collision rate is the same as for the ideal gas
described in Section 3.2.1. Hence the problem reduces to estimating the
average relative velocity between the particles. Assuming the velocities are
Gaussian distributed, the average velocity can be related to the rootmean
square of its components

⟨∣V ∣⟩ = 2
√

2

π
Vrms. (3.7)

Based on Corrsin’s hypothesis on the relation between Lagrangian and Eule-
rian correlation functions and following former work by others, Abraham-
son (1975) obtains from a simpliûed version of theMaxey–Riley equations
(Section 2.3), adequate for particles with large Stokes numbers,

V 2
rms = u2rms

1 + 3
2
τpε/u2rms

= ( η

τK
)2 Reλ

2
√
15 + 45 St/Reλ ,

where in the second step ε = η2/τ3K and (uK/urms)2 = 151/2/Reλ (see, e.g.,
Pope 2000) have been used. Given the empirical reasoning involved in the
derivation of the above result, the exact factorsmay vary, but it is important
to note the functional formVrms = (η/τK)γ(St,Reλ). Combining this result
with Equations (3.3) and (3.7), Abrahamson (1975) obtains the collision
kernel

ΓA = 4√π(2a)2 η

τK
γ(St, Reλ), (3.8)

which diòers from Saòman & Turner’s result by a factor ∼ η/a.
Mehlig et al. (2007) point out, that Abrahamson did not account for the

“multiscale nature of the �ow”. hey provide a diòerent approach based on
Kolmogorov-type reasoning: In the inertial range, Vrms can only depend
on the dissipation rate ε and the particle relaxation time τp. By dimen-

sional analysis they ûnd γ(St,Reλ) ∼ St1/2 with a possibly Reynolds number
dependent prefactor.

3 .2 .4 Preferential concentration

In both turbulent cases presented above—zero and inûnite inertia—the
particles are distributed homogeneously. Maxey (1987) however noted, that
for inertial particles with intermediate Stokes numbers, the particle velocity
ûeld becomes compressible and particles tend to cluster in certain regions
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of the �ow. his becomes obvious, when one writes the formal solution of

Equation (2.17)4

V(t) = ∫ t

0
e(t
′−t)/τp (u(t′)

τp
+G) dt′.

Assuming small inertia, the above equation can be developed in τp by
consecutive integration by parts

V = u + τpG − τpu̇ +O(τ2p), (3.9)

where u̇ has to be interpreted as thematerial derivative ∂tu+u ⋅∇u. Taking
the divergence of Equation (3.9) yields

∇ ⋅ V = −τp∇ ⋅ (u ⋅∇u) = −τp(∂iu j)(∂ jui)
= τp

4
[(∂iu j + ∂ jui)2 − (∂iu j − ∂ jui)2].

he ûrst term in the square brackets can be related to the so called “rate of
strain tensor”, the second term to the vorticity (see Section 2.1.1). Maxey

(1987) concluded, that the particle velocity ûeld is divergent in regions of
high vorticity, while it is convergent in regions of high strain. herefore
the particles would get ejected from vortices and cluster in regions of low
vorticity.

Later work byWilkinson et al. (2007) and Gustavsson &Mehlig (2011b)
provides an alternative approach. heir analytical results, which they obtain
for amodel �ow, are able to explain features present in numerical simulations
of turbulent �ows.

he clustering, or preferential concentration, evidently needs to be taken
into account, when one determines the collision kernel. In the following,
we present the approach introduced by Sundaram & Collins (1997), which
is based on ideas from statistical mechanics.

radial distribution function Consider a system with Np parti-
cles. We deûne the probability that particle “1” is in dX1 at X1, particle “2”
is in dX2 at X2, etc. P

(Np)(X1, . . . XNp). hen the probability that any two
particles are in dX1 at X1 and in dX2 at X2 is (e.g.,McQuarrie 1976)

ϖ(2)(X1, X2) = Np(Np − 1)P(2)(X1, X2). (3.10)

A further useful deûnition is the radial distribution function (RDF)

g(2)(X1, X2) = n−2ϖ(2)(X1, X2).
For isotropic statistics all above quantities only depend on the two particles’
distance r = X2 − X1. In this case one has P(2)(X1, X2) = P(r)/V and can
deûne

g(r) = Np(Np − 1)
n2V

P(r), (3.11)

where we dropped the upper index for simplicity.

4 Here we omit the argument X(t), which should in principle appear in V and u. See the
original paper byMaxey (1987) for amore rigorous treatment.
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joint probability To decide whether two particles are about to
collide, one needs, aside from their distance, knowledge about the rela-
tive velocity w = V 2 − V 1. herefore, instead of the above probability
P(2)(X1, X2), one has to consider the joint probability of position and ve-
locity P(2)(X1,V 1; X2,V 2). Here again, we can make use of isotropy, which
means P(r,w) is enough to describe the statistics. he latter can be beneû-
cially rewritten with the help of the conditional probability P(w∣r)

P(r,w) = P(w∣r)P(r) = P(w∣r)g(r) n2V

Np(Np − 1) , (3.12)

where in the second equality the RDF from Equation (3.11) was introduced.

collision operator It is convenient to introduce a function that,
based on the values of r and w, recognizes whether a pair of particles is
going to collide. Sundaram & Collins (1997) rigorously construct a function
ψ(r,w; τ), which returns 1 if the particles collide within a time τ, and 0 if
not. We shall see, that the derivativewith respect to τ is enough to determine
the collision rate. Sundaram & Collins (1997) obtain

dψ(r,w; 0)
dτ

= −wrΘ(−wr)δ(2a − r), (3.13)

where

wr = (V 2 − V 1) ⋅ (X2 − X1)∣X2 − X1∣
is the radial relative velocity (RRV) and Θ(⋅) and δ(⋅) are respectively the
Heaviside and Dirac functions. Note that this is again simply Saòman &

Turner’s (1956) integral kernel—see Equation (3.4).

collision rate Now we put together Equations (3.10) and (3.12), as
well as the collision operator, to determine the number of collisions that
happen in a time τ

Nc(τ) = 1

2
Np(Np − 1) ∫∫ ψ(r,w; τ)P(w∣r)g(r) n2V

Np(Np − 1) dr dw .

FromNc(τ) the collision rate per unit volumemay be obtained by derivation
with respect to τ and division by V

Nc = 1

V
lim
τ→0

Nc(τ)
τ
= 1

V

dNc(τ)
dτ

.

Noting that ψ(r,w; τ) is the only τ-dependent term and introducing Equa-
tion (3.13), Sundaram & Collins (1997) ûnally obtain

Nc = 1

2
n24π(2a)2g(2a) ∫ 0

−∞
−wrP(wr ∣2a)dwr .

Making the same argument as in Equation (3.5), one can write for the colli-
sion kernel

ΓSC = 2π(2a)2⟨∣wr ∣⟩g(2a), (3.14)
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he collision kernel as determined in
a numerical simulation by Rosa et al.
(2013) at Reλ ∼ 200. Note the strong
increase at about St ∼ 0.5. For larger
Stokes numbers the collision rate de-
creases only slowly.

which diòers from Saòman & Turner’s collision kernel, Equation (3.6), only
by the appearance of the RDF, that accounts for preferential concentration.

But note also, that—as opposed to the former results—no explicit expression

is given for the RRV ⟨∣wr ∣⟩.
3 .2 .5 Caustic/sling collisions and random uncorrelatedmotion

Falkovich et al. (2002) andWilkinson et al. (2006) noticed independently
that the enhancement of the collision rate may not be solely due to the
preferential concentration eòect. In fact, they predicted anothermechanism,

which could explain the very strong increase in the concentration rate

observed at St ∼ 0.5 (Figure 3.3). his eòect is due to an increase of the RRV,

independently of the clustering of particles. It has recently been veriûed
experimentally by Bewley et al. (2013).

A third independent approach to describe the same phenomenon was

presented by Février et al. (2005) and Simonin et al. (2006). It has become

known as “random uncorrelatedmotion” (Reeks et al. 2006), and will be
discussed shortly towards the end of this section.

caustics Wilkinson et al. (2006) remind that according to the ap-
proach ofMaxey (1987) the clustering should bemost pronounced for St ∼ 1.
Numerical results, like those shown in Figure 3.3, however show that the col-
lision rate starts to grow explosively for St≪ 1. Furthermore, the collision
rate does not abruptly fall for St > 1, but slowly approaches Abrahamson’s
(1975) prediction for St→∞.Wilkinson et al. (2006) argue further, that the
usual clustering process could only bring together particles on a distance
similar to the smallest scales of the �ow. In a typical cloud however—see

Section 3.1.3—there is on average only one droplet per cube of edge size η.
hereforeWilkinson et al. (2006) provide a diòerent explanation for the
observed enhancement of the collision rate.

An initially single valued distribution of inertial particles in phase space
may becomemultivalued due to the formation of so-called “caustics”. his
eòect is similar to the formation of shocks in Burgers’ equation (Frisch &

Bec 2001) or to the formation of the characteristic light pattern that can be

observed on the ground of a swimming pool, fromwhich this eòect borrows
its name (Berry 1981). Consider the one-dimensional example depicted in
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he particle phase space is spanned by
their position X and velocity V . he

lines may be interpreted as manifolds
onwhich the particles are distributed ho-
mogeneously. Although initially there
is only one particle at each position,
particles overtake each other leading to
the formation of a fold caustic (comp.
Wilkinson et al. 2006).

Figure 3.4. Over the course of time, faster particles will overtake slower
ones. hosewith negative velocitieswill move to the le�, thosewith positive
velocities will move to the right. hus a region, where the particle velocity
ûeld ismultivalued develops in coordinate space. his has two consequences,
which can potentially lead to collisions. On the one hand, particles may

ûnd themselves close to each other, but with largely diòering velocities. In
this case Abrahamson’s (1975) approach for uncorrelated particlemotion
ismore appropriate to describe the collision rate, than Saòman & Turner’s
(1956). On the other hand, the number density of particles diverges at the
edges of the caustics. Wilkinson &Mehlig (2005) had investigated this in
an earlier publication, but do consider its contribution to the collision rate

negligible in systems, where nη3 ≪ 1.
In the presence of caustics, an obvious decomposition of the collision

kernel is
Γ = ΓST g(2a) + ΓA hS(St, Reλ), (3.15)

where the RDF g(2a) has been introduced according to (3.14) to account for
the eòect of preferential concentration, which aòects only shear induced
collisions. he function hS(St, Reλ) can be interpreted as the fraction of
position space, where the velocity has becomemultivalued due to the forma-
tion of caustics (Wilkinson et al. 2006). his quantity can be related to the
rate of caustic formation,whichWilkinson&Mehlig (2003) had determined
analytically for amodel �ow in a previous publication. From their results
it is ûnally concluded, that hS(St, Reλ) = exp(−C/St) with some universal
dimensionless constant C. Duncan et al. (2005) determined this constant
for particles advected by a three-dimensional random vector ûeld. In a

subsequent work Falkovich & Pumir (2007) could conûrm the functional
form of hS(St, Reλ) in a DNS of turbulent �ow. hey found in addition, that
the constant C falls with growing Reλ.

sling effect Falkovich et al. (2002) predicted the sharp increase in the
collision rate using a diòerent string of arguments. hey imagine particles

getting ejected out of vortices, like stones from a sling. hese particles

will have a large RRV when they collide, as well as a totally uncorrelated

motion with the particles they collide with. he caustics and sling eòects

turn out to be essentially the same, despite the two diòerent approaches and

presentations.
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relation to particle velocity gradient Consider Figure 3.4
again. It is obvious that the formation of a caustic is accompanied by the
divergence of the quantity dV/dX on its edges. In three dimensions this
translates to singularities of the particle velocity gradient tensor σi j as intro-
duced in Equation (2.20). herefore this quantity was used by Falkovich &

Pumir (2004, 2007) to study the sling eòect. If one has access to σi j for each
particle in every collision, it is even possible to estimate the ratio of sling
collisions. his has been done by Ducasse & Pumir (2009) in amodel �ow
(kinematic simulations).

random uncorrelated motion Yet another way of describing
essentially the same phenomenon has been proposed by Février et al. (2005)
and Simonin et al. (2006). hey note that the velocity ûeld describing the
motion of inertial particles can be decomposed into two contributions. One
describing the smooth spatially correlatedmovement of the particles and
another one describing “random uncorrelatedmotion” (Reeks et al. 2006).
he latter is responsible for caustics and sling collisions.

Ĳzermans et al. (2010) present amethod to study similar eòects based
on the deformation of an inûnitesimal volume around a particle along
its trajectory. his work was extended by Meneguz & Reeks (2011). he

relationship between the diòerent interpretations described in this section
is discussed and studied in two model �ows by Gustavsson et al. (2012).

3 .2 .6 Ghost collision approximation

A typical simpliûcation, when studying collisions in numerical simulations
is the so-called “ghost collision approximation” (GCA). A collision is de-
tected whenever the distance between two particles falls below the collision
radius 2a, but the particles do not interact in any way and are allowed to
overlap. When the particles separate and collide again a�erward, either
with each other or with further particles, these contacts are counted as new
collisions. Evidently, this approximation leads to an overestimation of the
collision rate—this has been noted by Zhou et al. (1998). Also the preferen-
tial concentration eòect is aòected by the GCA, as Reade & Collins (2000)
show. hey compare the RDF obtained from simulations with ghost parti-
cles and from simulations, where particles bounce oò each other like hard
spheres. he two values for g(r) diòer with a dependence on the Stokes
number St and the particle size a.

he inaccuracy of the GCA is by no means restricted to a particular nu-
merical algorithm. In fact, Andersson et al. (2007) and Gustavsson et al.
(2008) point out, that all theories based on similar reasoning as introduced
by Saòman & Turner (1956) suòer from this inaccuracy. When in Equa-
tion (3.4) the amount of in�owing �uid is summed up by the integral, it is
not asked, whether it is “fresh �uid”, which enters the sphere. In a turbu-
lent �ow it is however possible, that a parcel of �uid traverses the collision
sphere several times. In this case, only the ûrst passage should be counted
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in for the collision rate. Saòman & Turner considered a locally hyperbolic
�ow as shown in Figure 3.2, which they assumed to be persistent. his is
however incorrect: a turbulent �ow is neither at every instant and space
point hyperbolic (Bec 2005; Chong et al. 1990) nor is its structure persistent
in time (Brunk et al. 1998b). To circumvent the problems associated with
�uid elements that pass the collision spheremultiple times, Andersson et al.
(2007) propose to incorporate an indicator function in Equation (3.4), such
that

R = n ∫ −wr(2a,Ω)Θ[−wr(2a,Ω)]χ(2a,Ω)dΩ. (3.16)

he indicator function χ is unity only if the point reaching the surface of
the sphere at (Ω, 2a) has not previously traversed it, elsewise it is zero.
his function is analytically hard to determine though, as in principle it
necessitates knowledge about the full history of every �uid element.

We ûnally mention the work by Wang et al. (2005b) who study the
combined eòect of the GCA and hydrodynamic interactions in terms of a
collision eõciency (see next section). heir work is interesting from an
engineer’s point of view, as it provides a simple way to compensate the
bias introduced by the GCA. From a physical point of view it is however
unsatisfactory as it seems to miss a conclusive explanation of the origins
of that bias. One of themain objectives of this work has been to provide a
better understanding of the biases introduced by the GCA. Our results are
presented in Chapter 6.

3 .2 .7 Collision eõciency

In most of the work dealing with collisions in turbulent �ows, the inter-
actions between particles are eòectively neglected. In particular, hydrody-
namic forces are not taken into account. hese interactionsmay however
cause a reduction of the collision rate (Brunk et al. 1998a,b, demonstrate this
for coagulating particles). Usually these eòects are described with the help
of an eòective collision radius, from which the collision eõciency 0 ≤ Ec ≤ 1
can be obtained (Pruppacher&Klett 1997). his eòective collision eõciency
is then introduced in the above expressions for the collision kernel as a
multiplicative factor. We refer the interested reader to Pruppacher & Klett
(1997) for an overview.

3 .2 .8 Two interesting remarks

In the late 1990s and early 2000s some interesting remarks concerning the
derivation of collision kernels were made by L.-P. Wang and co-workers.
Here we brie�y summarize two important results that will be helpful in the
coming chapters.

Wang et al. (1998b) noted that two diòerentways tomodel collisionswere
used in theoretical descriptions of the collision kernel. On the one hand,
there is the “cylindrical formulation”, similar to the one we presented in
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Section 3.2.1, on the other hand there is the “spherical formulation” as used

by Saòman & Turner (Section 3.2.2). he former makes the assumption

of uniform relative velocity w, at least on the scale of the collision radius

2a. his assumption is correct in the case ofMaxwellian particles, it fails

however for turbulent �ows at intermediate Stokes numbers. In addition to
the onewe presented in Section 3.2.2, Saòman&Turner (1956) give a second
derivation of the collision kernel, this time for inertial particles. hat result
diòers from the one in Equation (3.6), but they explain the discrepancy
with inexact assumptionsmade on the turbulent �ow. Wang et al. (1998b)
show that actually Saòman & Turner’s (1956) second derivation diòers from
the ûrst, in that itmakes use of the “cylindrical formulation”. he correct
approach is however, as Wang et al. (1998b) go on to demonstrate, the
“spherical formulation”.

Another remarkwith practical importance ismade byWang et al. (2000).
It explains an eòectwhichmay seempuzzling at ûrst: When one determines,
for example in a numerical simulation, the average radial relative particle
velocity ⟨∣wr ∣⟩c , based only on colliding particles, then the result diòers
from the one obtained, when one takes into account all pairs at a distance
2a. Obviously, the correct average ⟨∣wr ∣⟩ is the one that considers all pairs,
but interestingly the two values can be related. To this end it is helpful
to re�ect the procedure, how ⟨∣wr ∣⟩c would be calculated. Consider again
Saòman & Turner’s (1956) picture of one central particle and especially
only one surface element dΩ of the collision sphere. For each such surface

element, the radial relative velocity ∣wr ∣ is registered and summed up at

a rate dR = −nwr(2a,Ω)Θ[−wr(2a,Ω)]dΩ (comp. Equation (3.4)). By
integrating over the sphere, averaging, andmultiplying 1⁄2n to account for
all particles, one obtains the sum of ∣wr ∣ from all collisions per volume and
time, (VT)−1 ∑

collisions

∣wr ∣ ≈ n2π(2a)2⟨∣wr ∣2⟩.
In this casual notationV and T simplymean the observation volume and
time. From the above quantity the average radial relative velocity condi-
tioned on collisions, ⟨wr⟩c , is obtained by normalizing with the number of
collisions per volume and timeNc—Equation (3.6). One ûnally obtains

⟨∣wr ∣⟩c = ⟨w2
r ⟩⟨∣wr ∣⟩ , (3.17)

which is the result given byWang et al. (2000). Although maybe confus-
ing at ûrst, this result is numerically veriûed and will be of importance in
Section 4.3. Furthermore Ducasse (2009) discusses interesting implications
that arise from this result for the PDFs of collision angles.
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4
COLLISION DETECTION AND IDEAL GAS PARTICLES

he work carried out in this thesis is based on numerical simulations of
turbulent �ows, in which we follow particles. he detection of collisions
between particles requires some careful treatment of the numerical data,
which we explain in this chapter. Some more technical aspects will be
discussed in the appendix.

In Section 3.2.1 the collision kernel for an ideal gas was derived. his
simple case will be used in the following to check our scheme. In addition
some results, which are of interest in the coming chapters, will be derived
for this simple example.

4 . 1 collision detection scheme

To detect collisions in a system of Np particles, onemay want to check all
particle pairs, which requires of the order ofO(N2

p) operations. In some

of our simulations we have up toO(107) particles. With such a number of
particles, the simple-minded approach leads to a prohibitively expensive
computational cost. It is however common to use a technique originally
developed in molecular dynamics simulations called “cell linked-list” algo-
rithm (Allen & Tildesley 1989) to reduce that cost. Sundaram & Collins
(1996) describe an implementation of this technique to study collisions of
inertial particles in a turbulent �ow.

4 . 1 . 1 Cell linked-list algorithm

he basic idea of the cell list algorithm is, that only particles in a certain
region around one central particle can collide with that particle during the
next time-step. To make use of this observation, the (cubic) computational
domain is divided into Nd

b boxes, where d is the dimensionality of the
system—in our case d = 3. In a ûrst step, a list of particles in each box is
generated. hen, each particle in every box is checked for a collision with
any particle in the (3d − 1) surrounding boxes. In the ideal case, Nb would
be chosen such that each box contains only one particle (or even less). hen
the computational cost would reduce to amereO(Np). here is however
aminimal size for the boxes, which is given by themaximal distance, one
particle can travel within one time-step. When the simulation domain has
length Lsys in all directions, each box has length Lb = Lsys/Nb . Now consider
the situation illustrated in Figure 4.1—two particles move with maximal
velocity Vmax perpendicular to the cell. One particle is located at the far
end of the cell under consideration, the other one on the near end of the
next but one cell. If the collision between these two particles would take
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Vmax ∆t Vmax ∆t

Lsys/Nb
F igure 4.1

Illustration of a limiting case, where a
collision may take place, but would not
be detected because the box size of the
cell list algorithm is too large.

place within the next time-step, it would bemissed by the cell list algorithm.
herefore themaximal number of boxes per direction is

Nb = Lsys/[2(Vmax ∆t + a)],
where ∆t is the time-step and a is the particle radius. Typically this con-
straint is not too restrictive. But other eòects, like particle clustering can
reduce the eõciency of this approach.

here are other algorithms, like k-d trees, which require of the order of
Np logNp operations to determine nearest neighbors, and can therefore
further reduce the computational cost of detecting collisions. But in systems,

where the particles are suõciently homogeneously distributed and where
the constraint on Nb is not too strong, they are unlikely to perform better

than the cell linked-list algorithm. his showed also in some comparative
tests we did with a freely available implementation of the k-d tree algorithm
(Kennel 2004).

4 . 1 .2 Trajectory interpolation

In Section 4.1.1 it has been described, how the number of particle pairs that
need to be checked for eventual collisions can be reduced. It was however
not explained, how a collision could be detected for a given pair. Simply
measuring the distance between the two particles is not enough, because
one cannot tell whether they have been in contact before. Amore elaborate
approach consists in taking into account the two particles’ positions and
velocities at one time-step. hen one can extrapolate their trajectories lin-
early and determine whether they approach closer than 2a within the next
time-step. With a suõciently small time-step, this approach is correct. But
usually one has interest to keep the time-step as large as possible. In this case
problems like the one illustrated in Figure 4.2may arise. herefore we used
amore sophisticated approach in our simulations. Particle positions and
velocities of two consecutive time-steps are stored. his allows a third-order
interpolation of the trajectories,which ismore accurate. Comparing the two
approaches in a typical situation, we found that the linear extrapolation de-
tected up to 5% collisions in excess andmissed a few others. In Appendix A
both approaches are discussed in more detail.
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Figure 4.2

he dashed line shows the exact dis-
tance between a pair of particles over the
course of two time-steps. he straight
line corresponds to a linear extrapo-
lation at time-step t(n). his falsely
predicts a collision. At the next time-
step t(n+1) a second collision would be
counted.

4.1 .3 Numerical determination of themain variables

he variables we aremost interested in are the collision kernel Γ, themean
RRV ⟨∣wr ∣⟩, and the RDF g(2a) at the collision distance 2a. All these quan-
tities have been introduced in Chapter 3. In the following paragraphs we
explain how they are determined numerically.

collision kernel he collision detection scheme allows to determine
the number of collisions Nc(τ) that take place in a time interval of length τ.
hen the collision rate per time and volume in this interval is

Nc = Nc(τ)
τVsys

, (4.1)

whereVsys is the volume investigated for collisions. From Equation (4.1)
the instantaneous collision kernel can be derived

Γτ = 2VsysNc(τ)
τN2

p

. (4.2)

heûnal value for the collision kernel Γ is obtained by averaging over consec-
utive intervals. his procedure also provides an estimate for the uncertainty
in the determination of the collision kernel, namely the standard error of
themean (Sachs &Hedderich 2006).

For the length τ of the interval, we usually choose a large time scale of
the �ow. In the DNS, which will be introduced in the next chapter, we use
the large eddy turnover time TL.

radial distribution function To determine the RDF at contact
g(2a), the cell-linked list algorithm gets employed again, but this time to
detect all particle pairs that have a separation 2a − ∆r/2 < r < 2a + ∆r/2,
where ∆r is some very small distance. Diòerent values of ∆r were tested. If
the value is chosen too small, one will detect almost no pairs and therefore
introduce a large statistical uncertainty. If on the other hand ∆r is too large,
the variation of the function g(r) can not be neglected anymore in the
range 2a ± ∆r/2. All results reported on in this work were obtained with
∆r = 0.04a, which was found to give correct results. Given the number N2a
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of particle pairs with a separation 2a at one time-step, the momentary RDF

can be obtained from Equation (3.11)

g(2a)∆t = N2aVsys

V⊚N2
p/2 , (4.3)

whereV⊚ = 43π[(2a + ∆r)3 − (2a + ∆r)3] is the volume of the shell around
each particle, in which other particles were searched. Note that Equa-
tion (4.3) gives the RDF at one instant in time, i.e., at one time-step. It
is not necessary to apply the interpolation used to detect collisions in be-
tween time-steps. Again, the ûnal result g(2a) is obtained by averaging
over all time-steps.

radial relative velocity As before, all particle pairs in a distance
2a of each other are detected. For each such pair the RRV ∣wr ∣ is calculated
and by averaging over all pairs and all time-steps, one obtains ⟨∣wr ∣⟩.
4 .2 particles with gaussian velocity distribution

In this sectionwe consider a systemof particles,whose velocity components
are distributed according to a Gaussian

p(Vi) = 1

ς
√
2π

exp(−Vi
2

2ς2
) , (4.4)

where the notation ς = Vrms was introduced for clarity of presentation. his
situation corresponds to the classicmodel for an ideal gas. In Section 3.2.1,
the collision kernel for this casewas derived. We chose this special system for
two reasons: First, it is useful to calibrate our collision detection algorithms.
Second, itwill allow a relatively simple access to a ûrst theoretical description
of some not yet studied aspects.

4 .2 . 1 Veriûcation of collision detection scheme

We applied our implementation of the techniques described in the above
sections, to a set of particles with constant (in time) velocities according to
Equation (4.4). he expectedmean velocity is ⟨∣V ∣⟩ = 23/2ςπ−1/2. herefore
the collision kernel can be expressed in terms of ς as

Γig = 4√πς(2a)2.
We have determined the collision kernel in our numerical simulations by
counting the number of collisions per time and volume. Table 4.1 shows a
comparison between the results and the theoretical predictions for three
diòerent ratios of the particle radius a over the size of the simulation box Lsys.
he boundary conditions were, as always throughout this work, periodic.
he results conûrm the correctness of our implementation.
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a/Lsys Γ/4√πσ(2a)2
2.1 × 10−4 0.9995 ± 0.0003
3.0 × 10−4 1.0001 ± 0.0007
3.8 × 10−4 1.0003 ± 0.0014

Table 4.1

he theoretical prediction and our
measured collision kernel match very
well, conûrming our collision detection
scheme. he uncertainty increases due
to slightly poorer statistics for larger par-
ticles.

4.3 contact times

In Section 6.3 we will be interested in the time τc that two inertial particles
spend closer than a certain distance dc in a turbulent �ow. For the choice
dc = 2a this time corresponds to the contact time of particles. In this section
wewill derive the PDF of this quantity for an ideal gas of particleswith radius
a. To this end we start by deriving the PDF of relative velocities only for
collisions.

4 .3 . 1 Probability of relative velocity and statistics conditioned on collisions

he PDF of the relative velocity w = V 2 − V 1 between two particles in
a Maxwellian gas can be determined from Equation (4.4). Elementary
algebraicmanipulations lead to

p(w) = 1(2√πς)3 exp(−w ⋅w4ς2
) , (4.5)

where it was assumed that all particles and all velocity components are
independent.

To determine the PDF of w, conditioned on the fact that the particles are
about to collide, one proceeds as described in Section 3.2.8. One obtains in
analogy to Equation (3.17)

pc(wc) = ∫ δ(w −wc)−2wrΘ(−wr)⟨∣wr ∣⟩ p(w)d3w , (4.6)

where theHeaviside step function Θ(⋅) picks only negative RRVs. he index
c indicates that the PDF is restricted to collision events.

Equation (4.6) can be evaluated for an ideal gas, if one takes into account
isotropy. Without loss of generality onemay assume thatwr = wz . Inserting
Equation (4.5) yields

pc(w) = w ⋅ ẑ
23ς4π

Θ(w ⋅ ẑ) exp(−w ⋅w
4ς2
) , (4.7)

where ẑ designates the unit vector in z-direction. Note that we dropped the
index c on the relative velocity w, assuming that it suõces to indicate it at
the probability distribution itself.
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F igure 4.3

Numerical veriûcation of Equation (4.8) shown here
as lines. hepoints represent the results of anumerical
simulation.

10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

0 2 4 6 8 10{w ,wc}/σ

σ p(w)
σ pc(w)

At this point it is instructive to perform a simple numerical experiment.
To this end we ûrst transform Equations (4.5) and (4.7) to spherical coordi-
nates

w ⋅ x̂ = w sin(θ) cos(ϕ),
w ⋅ ŷ = w sin(θ) sin(ϕ),
w ⋅ ẑ = w cos(θ).

hen we integrate the polar and azimuthal contributions to obtain the PDFs

of the absolute value of the relative velocity. he ûnal results are

p(w) = w2

2
√
πς3

e−w
2/(2ς)2 and pc(w) = 2w3

(2ς)4 e−w2/(2ς)2 . (4.8)

We estimated both PDFs in a numerical simulation, taking into account all
particle pairs in the one case, and only colliding pairs in the other. he

results, shown in Figure 4.3, support our reasoning.

4 .3 .2 Probability of contact times

A�er the validation of our collision detection algorithm, we discuss now
the PDF of the contact time τc as deûned in the beginning of this chapter.
We restrict ourselves to dc = 2a, but obviously more general resultsmay be
obtained by simple substitution. In the case of particles that are moving
with a constant velocity without changing direction, the collision time can
be easily related to their relative velocity (see Figure 4.4)

τc = 4a cos θ∣w∣ = 4awr∣w∣2 ,

where θ is the collision angle.

So the contact time is entirely determined by the relative velocityw at the
moment of collision. herefore wemay obtain its PDF with the help of the
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a F igure 4.4

Illustration of the calculation of the contact time τc .
Two particlesmovingwith a relative velocityw are just
about to collide. he thick line passing through the
point where both particles touch, gives the distance
D = 4a cos θ for which both particles will intersect.
Dividing this distance by their relative velocity gives
the contact time τc .

Dirac delta function from Equation (4.7). We start by placing ourselves in a

spherical coordinate system

p(τc) = ∫ ∞
0
∫

π/2

0
∫

2π

0
δ (τc − 4a cos(θ)

w
)

× w cos(θ)
23ς4π

exp(− w2

4ς2
)w2 sin(θ)dw dθ dϕ. (4.9)

he Heaviside function from Equation (4.7) has already been evaluated,
such that the θ-integration spans only the interval [0, π/2]. Note also that
the index c at the probability itself has been omitted. he integration in θ
can be further simpliûed

∫
π/2

0
δ (τc − 4a cos(θ)

w
) cos(θ) sin(θ)dθ

= ∫ 1

0
δ(τc − 4a

w
ξ)ξ dξ = w

4a ∫
1

0
δ (wτc

4a
− ξ) ξ dξ

=
⎧⎪⎪⎨⎪⎪⎩
( w
4a
)2 τc if w ≤ 4a/τc ,

0 else.

Introducing this in Equation (4.9) leads to

p(τc) = τc(2ς)4(2a)2 ∫
4a/τc

0
w5 exp(− w2

4ς2
) dw ,

which can be solved by standard techniques

p(τc) = τc ( ς
a
)2 {1 − [1 + ( 2a

ςτc
)2 + 1

2
( 2a
ςτc
)4] exp [−( 2a

ςτc
)2]}

Finally introducing the dimensionless quantity ζ = 2a/(ςτc) we obtain
p(τc) = 2 ς

a

1

ζ
{1 − e−ζ2 [1 + ζ2 + 1

2
ζ4]} . (4.10)

Note that Jørgensen et al. (2005) derive a very similar PDF for a slightly
diòerent situation.
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F igure 4.5

he contact time PDF from Equation (4.10), shown
here as a thick continuous line. he symbols indicate
results from two numerical simulations with diòer-
ent size particles. Furthermore two pointed lines are
shown to guide the eye along the limiting behavior
for small (∼ τc) and large (∼ τ−5c ) contact times.
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Again we performed numerical analysis. he results shown in Figure 4.5
conûrm our derivation. he PDF consists basically of an increasing branch
proportional to τc for small τc to and a rapidly decreasing branch propor-
tional to τ−5c for large contact times. It peaks at about τc = 2a/ς, a value that
is small compared to the typical time-step in a numerical simulation.



5
DIRECT NUMERICAL SIMULATIONS

In the last chapter we described, how collisions are detected given the trajec-
tories of particles. To actually determine these trajectories,we integrated the
Maxey–Riley equations (2.16) and (2.17), which in turn necessitates knowl-
edge of the �uid velocity at arbitrary points in space. In this and the coming
chapters we present results for which the �uid velocity ûeld was obtained
by direct numerical simulation (DNS). Later, in Chapter 8, ûndings from a

diòerent approach, using a simplemodel for the �uid ûeld, will be shown.
Here we start with a summary of our DNS.

5 . 1 a short introduction to our dns

We obtained the velocity ûeld u(x , t) with the help of a standard pseudo-
spectral code. his numerical methodmakes use of the fast Fourier trans-
form (FFT) to integrate theNavier–Stokes equation (2.2) in Fourier space.
We note that one such code has been made publicly available under the GPL

by Chumakov (2012) and refer the reader to the introductory book by Boyd
(2001) for further information. he codewe usewas originally developed by
Emmanuel Lévêque and Christophe Koudella at the ENS Lyon. It has been
used in several publications (e.g., Calzavarini et al. 2009) andwas optimized
to be especially eõcient on the cluster of the PSMN. A periodic cube of 3843

grid points was used in our simulations with a dealiasing following Orszag’s
(1971) two-thirds rule, therefore leaving eòectively 2563 modes. he forcing
term was chosen to continuously excite a small band of low wavenumbers

such that the energy injection rate ε remains constant (Lamorgese et al.
2005). he energy injection rate and the viscosity can be freely chosen
and were in our simulations ε = 10−3 and ν = 4 × 10−4 respectively. hese

values are given in dimensionless (or rather DNS) units. As explained in Sec-
tion 2.1.2 onemay scale length and time in order to compare our results to
diòerent systemswith the same Reynolds number. heTaylor scale Reynolds
number of our homogenous isotropic turbulent �ow is Reλ = 130. In Fig-
ure 5.1 the energy spectrum from one of our DNS is shown. It corresponds
well to classical experimental data (Comte-Bellot & Corrsin 1971) and is
typical for this type of simulation. We ûnally note that time-stepping was
achieved with a second order Adams–Bashforth scheme bearing in mind
the Courant–Friedrichs–Lewy condition Co = urmskmax ∆t ≲ 0.1 (Courant
et al. 1928) for the time-step ∆t.

43



44 direct numerical simulations

10−6
10−4
10−2
100
102
104

10−2 10−1 100
E
(k)ε

−
2/
3
η
5/
3

kη

F igure 5 . 1

Typical energy spectrum in our DNS

(line) compared to an experimental spec-
trum (Comte-Bellot & Corrsin 1971,
Reλ = 71.6, symbols). he inset shows
the same spectra compensated accord-
ing to theKolmogorov scaling, see Equa-
tion (2.14), alongwith the valueCK = 1.5
(comp. Sreenivasan 1995).

Table 5 . 1

Characteristic values of theDNS. Given are the energy injection rate ε, the kinematic
viscosity ν, the rootmean square velocity urms, the Taylor scale Reynolds number
Reλ , the Kolmogorov length scale η, the Kolmogorov time τK , the longitudinal
integral length L l , and the integral (or large eddy turnover) time TL .

ε ν urms Reλ η τK L l TL

1.0 × 10−3 4.0 × 10−4 0.14 130 0.016 0.64 0.97 6.7

Table 5.1 summarizes the values that characterize our DNS. Among these
values the longitudinal integral length Ll is given, which is calculated in the
DNS according to the Fourier space equivalent of Equation (2.9)

Ll = π

2u2rms
∫ k−1E(k)dk (5.1)

(e.g., Batchelor 1953). he large eddy turnover time TL = L/urms is derived
from this value and the rootmean square velocity urms.

5 . 1 . 1 Particle trajectories

Once the DNS had reached a statistically steady state, Np particles were
introduced. We performed several runs with particles of diòerent Stokes
numbers, but in each such run, all particles had the same Stokes number.
More details about the runs will be given in the next section.

he particle trajectories were integrated by the velocity Verlet algorithm
(Press et al. 2007; Swope et al. 1982)—a second order scheme—and the
�uid velocity at each particle’s exact position was obtained by tri-cubic
interpolation. A�er a transient time of the orderof 10TL, all particle positions
and velocities were stored at a rate of one per 0.055τK , although the actual
time-step used in the integration was a factor 10 smaller. his data was then
post-processed for all subsequent studies. At ûrst this proceduremay seem
cumbersome, but it allowed us to adapt our treatment of the data without
the additional cost of integrating the trajectories anew.
he abovementioned transient time is necessary, because particles are

inserted homogeneously distributed in the �uid and with velocities equal
to the �uid velocity. It has however been described before, that inertial
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Figure 5.2

he collision kernel Γ during the ini-
tial time period. he result is shown
for diòerent sampling rates τ, according
to Equation (4.2). he initial transient
takes at least 5TL . In our simulations,we
wait for 10TL before recording Γ with a
sampling rate of τ = TL .

particles in a turbulent �ow are not homogeneously distributed, but tend to
cluster in certain regions. Also, their velocities are diòerent from the �uid
velocity. herefore the freshly introduced particles need a time of the order
of a few large eddy turnover times to “ûnd their places” in the �ow. his
transient time is illustrated by Figure 5.2, which shows the evolution of the
instantaneous collision rate during this period.

Due to the very long integration time and aminor neglect in the setup,
very few particle trajectories (less than 2% of thewhole population) became

deûcient a�er a certain simulation time. As we could deal with this on
the level of the collision detection scheme, we decided not to repeat the
integration of the trajectories. In the collision detection code, we check,
whether any particle runs the risk of becoming deûcient. If that is the case,
the corresponding particle is replaced, by one additional particle that had
not been under consideration for collisions before. he disqualiûed particle
gets then ignored for the rest of the simulation. his approach was easy

to implement, because we usually track more (ca. 10%) particles than are

actually considered for collisions. he reasons for this procedurewillbecome

clear in Section 6.5.1.

5 .2 description of the different runs

Asmentioned above, several runs were performed at diòerent Stokes num-
bers (Section 2.3.1). he diòerent runs are summarized in Table 5.2. he

number of particles was determined by our choice of the volume fraction
Φ = N ′p 43πa3/L3sys, where Lsys = 2π in DNS. he volume fraction was typi-

cally Φ0 = 4.5 × 10−5, except for three cases, where it was Φ0 = 4.5 × 10−6.
Both values can be considered dilute and eòects involving three particles
andmore can be a priori neglected. In Section 6.5.2 we will discuss a case
though, where such eòects have ameasurable in�uence. Instead of simply
integrating the N ′p particle trajectories necessary to achieve those volume

fractions, we integrated an additional 10% of particles amounting to a total
ofNp = 10⁄9N ′p particles. he reason for thiswill be explained in Section 6.5.1.

Usually it is assumed in our post-processing, that the density ratio is
ρp/ρ f = 1000, which corresponds to raindrops in air. But for every Stokes
number, onemay consider diòerently sized particles by varying the density
ratio. his fact will be used in Chapter 7. In all cases we assured that the
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Table 5 .2

Summary of the basic DNS runs. Given are the Stokes number St, the volume
fraction occupied by the particles Φ0, the total time ttot, for which the trajectories
have been integrated a�er the initial phase of 10TL , and ûnally the total number of
collisions detected in the ghost collision approximation NGCA, when assuming a
density ratio of ρp/ρ f = 1000.

St 0.0 0.10 0.20 0.30 0.51 0.76 1.01

Φ0 × 106 4.5 4.5 45 4.5 45 45 45
ttot/TL 15.5 15.5 4.2 31.4 15.9 10.4 47.6
NGCA/104 0.6 1.3 29 3.3 200 180 400

St 1.27 1.52 2.03 2.53 3.04 4.05 5.07

Φ0 × 106 45 45 45 45 45 45 45
ttot/TL 13.0 52.4 52.1 52.5 52.3 53.1 42.1
NGCA/104 81 250 150 99 72 42 22

conditions necessary for the application of the simple form of theMaxey–

Riley equations (2.16) and (2.17), namely a ≪ η and ρ f ≪ ρp, were fulûlled.

Table 5.2 also lists the special case St = 0,which corresponds to Lagrangian
tracer particles, that follow the �ow exactly. In principle those particles do
have no extent, but it was necessary to assume a ûnite size, to be able to
detect collisions. herefore in terms of the collision detection algorithm,

the radius of these particles was chosen to be the same as for particles with
St = 0.1.

5 .3 verification of results

he DNS code described above has been used in various scientiûc publica-
tions. It has been validatedmany times, and its results have been demon-
strated to be correct. he post-processing code however, that does the
collision detection and all particle statistics, has been written for this pur-
pose and needs proper checking. To this end we will compare diòerent
exemplary results to published data. We start with the RDF.

5 .3 . 1 Radial distribution function

Since Sundaram & Collins (1997) ûrst used it to study particle collisions,
many studies have been devoted to a precise determination of the RDF. In
one of the earlier extensive publications, Reade & Collins (2000) give the
functional form

g(r) = c′g ,0(r/η)−c′g ,1 exp (−c′g ,2(r/η)) + 1,
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(a)he RDF for, from top to bottom, St = 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0. Smaller Stokes numbers were omitted,
because the slopes do not behavemonotonically in the whole range (comp. Figure 5.3b). Additionally to the
numerical results (symbols), power law ûts according to Equation (5.2) (lines) are shown. his law holds
only true for r < η; larger values are grayed out in the plot. (b)he power law coeõcient cg ,1 as deûned in
Equation (5.2) from our DNS in comparison to other published results. Shown is data from Bec et al. (2007,
B+a), Bec et al. (2010, B+b), and Rosa et al. (2013, R+).

which gives the correct asymptotic behavior for large distances r. Most
recent studies however content themselveswith the simpler functional form,

which holds for r/η≪ 1

g(r) = cg ,0(r/η)−cg ,1 (5.2)

and so do we. Results of our DNS and ûts according to Equation (5.2) are
shown in Figure 5.3a.

As pointed out by Bec et al. (2005), the latter formulation of the RDF

in Equation (5.2) stands in close relation to the correlation dimensionD2

known from dynamical systems theory (Grassberger & Procaccia 1983).
his allows us to compare our results to those in Bec et al. (2010, 2007)
by the simple transformation cg ,1 = 3 −D2. he comparison is shown in
Figure 5.3b, where we also show data from Rosa et al. (2013). Our results
are in good correspondence with the published data.

As explained in Section 3.2.4, sole the value of the RDF at the collision
radius, g(2a), enters in the kinematic determination of the collision rate.
In Figure 5.4a we compare our results again to data from Rosa et al. (2013)
and, in addition, fromWoittiez et al. (2009). We ûnd a good agreement,
although the results ofWoittiez et al. (2009) are smaller than ours.

5 .3 .2 Radial relative velocity

Next, we want to check our results for the RRV, which presents the second
ingredient of the kinematic formulation of the collision kernel. In this case
we determine the mean value directly without passing by the PDF. he

latter could again be ût similarly to Equation (5.2) (see Rosa et al. 2013).
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We content ourselves however with comparing the mean value ⟨∣wr ∣⟩ to
published data, again from Rosa et al. (2013) andWoittiez et al. (2009), in
Figure 5.4b. In this case the values fromWoittiez et al. (2009) lie above ours,
but the correspondence with the results from Rosa et al. (2013) is very good.

5 .3 .3 Dynamic andKinematic Collision kernel

Finally, to verify our collision detection scheme, we compare in Figure 5.5
the kinematic and the dynamic collision kernel. Up to a tiny uncertainty,
the two ways of determining the collision kernel, give the same result. Also
the comparison to the results of Rosa et al. (2013) displays no problems.

We conclude thus, that our post-processing gives the correct results and
we proceed with themain scientiûc questions treated in this thesis.



6MULTIPLE COLLISIONS AND SHORTCOMINGS OF THE

GHOST COLLISION APPROXIMATION

Section 3.2.6 introduced the ghost collision approximation (GCA), which
consists in counting every collision between a given pair of particles as a
new collision, even though the pairmay have already collided before. In
this chapter we quantify the error, which this simpliûcation introduces in
the estimation of the collision kernel. his error will be related to multiple
collisions between a same pair of particles, which in turn is closely related to
a tendency of particles to stay in proximity for long times. We will present
the contact time, which has been introduced in Section 4.3, for inertial
particles in turbulent �ows. Finally, diòerent alternative algorithms will be
discussed.

6 . 1 ghost collision and first collision kernel

We introduce ΓGCA, the collision kernel obtained by using the GCA. he rate

ΓGCA can be compared to Γ1, which counts only the ûrst collisions occurring
between a given pair of particles. he deûnition of Γ1 can be generalized in
a straightforwardmanner to ΓNc , which counts the number of times that a
particle collides for the Nc-th time. To determine ΓNc ,we store for every pair
the number of collisions it has undergone with each other. If a new collision
of that pair is detected, the corresponding number of collisions of this pair
is incremented as well as the number of collisions used to determine the
corresponding ΓNc .
he rates ΓNc in fact allow us to decompose ΓGCA systematically as

ΓGCA = ∞∑
Nc=1

ΓNc .

We argue, that in a system, where particles react upon their ûrst contact, e.g.,
a cloud where droplets coalesce (assuming unity eõciency), the collision
kernel of ûrst contacts, Γ1, is amore appropriate estimate for the “real” colli-
sion kernel. Our arguments will be presented in more detail in Section 6.5.
With these deûnitions, one obtains that

ΓGCA = Γ1 + Γm , Γm = ∞∑
Nc=2

ΓNc . (6.1)

Figure 6.1a shows the ghost collision kernel, ΓGCA, and compares it with
the value of Γ1. Clearly, ΓGCA overestimates the real collision kernel, the
diòerence being due to themultiple collisions collected in Γm. To quantify
the error introduced by the GCA, Figure 6.1b shows the ratio Γm/Γ1 for a
range of Stokes numbers. It shows that the GCA overestimates the collision

49
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(a)he collision kernel as obtained in the GCA in comparison to the collision kernel of ûrst collisions. he
dotted line on the bottom gives the value expected for St → 0 according to the Saòman–Turner theory
(Section 3.2.2). (b) Ratio of themultiple collision kernel Γm , representing the spurious contribution of ΓGCA,
and Γ1.

kernel bymore than 15% for small Stokes numbers. he error diminishes

when Stokes increases, and seems to tend to zero for large values of the

Stokes number. Gustavsson &Mehlig (2013a) conûrm this behavior for a

random �owmodel.

For particles without inertia (St = 0) errors of comparable magnitude

have been reported byWang et al. (1998a) and in a slightly diòerent setup
by Brunk et al. (1998b), see in particular their Fig. 4. Andersson et al. (2007)
predict ûrst collisions of particles advected in Gaussian random �ows. he

collision rate in the GCA corresponds to what they call the “initial transient”.
Andersson et al. (2007) provide numerical results for a three-dimensional
Gaussian random �ow at small Kubo number.¹ In this limit, they ûnd a ratio
that corresponds to Γm/Γ1 ≈ 5 (comp. Fig. 1b in Andersson et al. 2007). his
ismuch larger than what we ûnd in our DNS, but in their system the Kubo
number is only Ku = 0.04. For Ku = 1, Gustavsson &Mehlig (2013a) ûnd in
a similar but two-dimensional model Γm/Γ1 ≈ 0.6 (see their Fig. 1a). his
is already closer to our ûndings. It would be very interesting to check this
model in three dimensions and at Ku = 1.
6 .2 multiple collision pdf

he results from Figure 6.1 demonstrate thatmultiple collisions between a

given pair of particles play a signiûcant role in the estimates obtained with

1 heKubo numberKu is o�en used in plasma physics and diòusion processes. It compares the
length a particle travels during the correlation time of the �ow urmsτcor with the correlation
length of the �ow ℓcor (e.g., Bakunin 2008)

Ku =
urmsτcor
ℓcor

.

In turbulent �ows Ku is typically of order unity (Wilkinson et al. 2006).



6.2 multiple collision pdf 51

a)

10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101

0 2 4 6 8 10

P
(N c
∣N c
≥1)

Nc

0.5
1.0
2.0
4.0

0.05

0.1

0.15

0.2

0 1 2 3 4 5

α

St

b)

0

1

2

3

4

5

6

0 1 2 3 4 5

Γ
τ K
/(2a
)3

St

Γ1βα
2/(1 − α)

Γm (measured)

Figure 6 .2

(a)he conditional PDF for a pair to undergo Nc collisions a�er one initial collision. he data (symbols) is
ûtted very well by Equation (6.2) (lines). One of the corresponding ût parameters, α, is shown in the inset.
(b) Veriûcation of Equation (6.3).

the GCA. To further describe this eòect, we introduce the PDF for a pair to

undergo Nc collisions with each other, conditioned on the fact, that the pair

collides at least once. his PDF P(Nc ∣Nc ≥ 1) is shown in Figure 6.2a and
interestingly obeys a law

P(Nc ∣Nc ≥ 1) = βαNc , (6.2)

for Nc ≥ 2. his result can be interpreted in aMarkovian sense: A�er a pair

has collided at least two times, it has a probability (1 − α) to separate and
not collide again, and a probability α to undergo more collisions. Together

with our data Figure 6.2a shows ûts according to Equation (6.2) and the

corresponding ût parameter α. he probability varies with the Stokes num-

ber, such thatmultiple collisions are less probable for particles with larger

Stokes numbers. his agrees with the ûndings of the last section, where it

was found that the spurious eòect of the GCA diminishes with growing St.

Combining Equations (6.1) and (6.2), we may re-express the collision rate

of multiple collisions

Γm = Γ1 ∞∑
Nc=2

βαNc = Γ1 βα2
1 − α . (6.3)

As a test for consistency, we present in Figure 6.2b a comparison between

Equation (6.3) and the numerical results for Γm. he diòerence between the

two is less than 10%.

6.2 . 1 An example of a trajectory displayingmultiple collisions

Aside the striking functional form of P(Nc ∣Nc ≥ 1), Figure 6.2a reveals

another astonishing feature. Even forparticleswith a relatively strong inertia,

e.g., St = 1, we ûnd cases, where a same pair collides eight times. Figure 6.3

illustrates the diòerence between pairs of particles that experience either
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Figure 6 .3

he distance between two diòerent pairs of particles over the course of time, both with St = 1. he distance
for the one pair is given as full lines, the distance for the other as dashed lines. Panel (a) shows the entire
runtime of the simulation and the distance in units of the box size 2π. he dotted line gives the expected
average distance for a pair in a periodic cube. In (b) a zoom of the data is shown. Here the distance is given in
units of the collision radius, which is also highlighted by a dotted line. In both cases the time is given in units
of the large eddy turnover time.

only one collision, ormany collisions. It shows the distance r(t) between
two particles. he dashed lines correspond to a pair of particles that collides
only once, and separates right a�er this collision. he full lines correspond,
on the contrary, to a pair of particles that stays in proximity a�er an initial
collision. he distance r(t) �uctuates around the collision radius of 2a, thus
causing several events which are interpreted as diòerent collisions when
using the GCA. Overall, this pair stays closer than 4a for a time of 6TL,
whereas the contact time of the other pair is orders ofmagnitude smaller.
his observation motivates the investigation of the contact time presented
in the next section.

he fact that particles in turbulent �owsmay stay close for relatively long
times has been noted before, for example by Jullien et al. (1999), Rast &
Pinton (2011), or Scatamacchia et al. (2012). But up to now, this feature
wasmostly documented for Lagrangian tracer particles. he trajectories in
Figure 6.3 are from particles with St = 1. hus here we report on the novel
fact, that also inertial particlesmay exhibit this feature.

6 .3 contact time statistics

he contact time τc has been introduced in Section 4.3 for ideal gas particles
with only one consecutive collision in mind. Figure 6.3 shows however,
that the situation for particles in a turbulent �ow ismore complicated. We

therefore reûne the deûnition of the contact time as illustrated in Figure 6.4.
With these deûnitions,we can for example express the contact time during an
i-th collision as τc,i = ts,1 − te ,1. Similarly the time between two consecutive
encounters can be expressed as te ,i+1 − te ,i .



6.3 contact time statistics 53

dc

te ,1 ts ,1 te ,2 ts ,2 te ,3 ts ,3

d
is
ta
n
ce

time

ts ,1 − te ,1
te ,2 − te ,1

ts ,2 − te ,2
te ,3 − te ,2

⋯
⋯

F igure 6 .4

Illustration of our deûnition of the diòerent “contact”
times. Shown is the distance between a pair of parti-
cles over time. When it falls below some value dc for
the i-th time,we term this an encounter and name the
corresponding moment te , i . We proceed correspond-
ingly with the times, when the particles separate, and
name them ts , i . From these deûnitions diòerent time
intervals, like the contact time τc , i = ts ,1 − te ,1 can be
derived.
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he PDF of the ûrst contact time for diòerent critical distances in semi-logarithmic (a) and doubly-
logarithmic (b) scaling.

We have seen that the contact timesmay be relatively large, therefore we
express them in terms of the large eddy turnover time. Another plausible
choice could be the inverse of the dominant Lyapunov exponent of the
particles (Bec et al. 2006). hese two time scales are very similar for the
Reynolds number considered here. Deciding which is the proper time scale
would require simulations at diòerent Reynolds number, which were not
performed in the realm of this work.

Figure 6.5 shows the PDF of the ûrst contact time τc,1, which we have
determined for diòerent values of the critical distance dc . In the investigated
range with dc ≪ η, the results depend only very slightly on this parameter,

which will be set to dc = 2a in the following.

he data shown in Figure 6.5 was obtained for particles with St = 1.5
(the Stokes number dependence will be discussed later). As it was the
case for the ideal gas particles, see Figure 4.5, the PDFs exhibit a power law
behavior for a range of values of τc,1. he constraint that the PDF has to
be normalizable imposes that the scaling law cannot extend all the way to
τc,1 = 0 when the exponent is larger than 1. We suspect that the functional
form changes again for very small times, as was the case for the ideal gas
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Figure 6 .6

he PDFs for the second, third, and fourth contact time, as well as the PDF for the ûrst contact time con-
ditioned on the fact, that the same pair will collide at least one further time. he data is shown in both
semi-logarithmic (a) and doubly-logarithmic (b) scaling. he Stokes number is St = 1.5.

particles (comp. Section 4.3.2). We do however not resolve such small times

in our DNS.

Contrary to the results obtained for the ideal gas, the PDFs in Figure 6.5
display exponential tails at long contact times, revealing a ûnite probability
for particles to stay close for several large eddy turnover times. his feature
seems to be related to the phenomenon of multiple collisions. Further
evidence for this conclusion comes from Figure 6.6,which shows the contact
time probabilities for second and higher collisions. Here the power law
behavior vanishes. his behaviorwas interpreted as being related to ideal gas
particles—that is particles, which collide once and separate right a�erward.
he fact that it disappears formultiple collisions conûrms our interpretation.
he exponential tails for long contact times however rest, conûrming again
the interpretation, that those are related to multiple collisions.

A further interesting conclusion from Figure 6.6 is, that also for the ûrst
contact time PDF, the power law vanishes, if it is conditioned on having
further collisions a�er the initial one. Remarkably, this conditional PDF is
very similar to the PDFs of higher contact times. Figure 6.7 further illustrates
this phenomenon, by comparing the usual ûrst contact time PDF to two
conditional PDFs: Once conditioned on having one unique contact, the
other time conditioned on having multiple contacts.

We go on by presenting the PDF of time in between collisions in Figure 6.8.
Evidently, the typical timescales become larger, i.e., the PDFs get shi�ed to the
right with respect to the contact time PDFs presented up to this point. Even
the cutoò at small times gets resolved in this case. here is howeverno power
law for intermediate times, which is in accordance with our interpretation,
that it is related to ideal gas like collisions. he exponential tails remain.
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he ûrst contact time PDF for St = 1.5, as well as the same PDF conditioned on two diòerent facts. One time,
that pairs will collide only once, P(τc ,1∣Nc = 1). he other time, that pairs collide several times, P(τc ,1∣Nc > 1).
Again the data is shown in semi-logarithmic (a) as well as doubly-logarithmic (b) scaling.
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PDFs of the time between contacts for the ûrst and second, second and third, as well as for the third and fourth
contacts. he data is for St = 1.5 and shown in semi-logarithmic (a) and doubly-logarithmic (b) scaling.
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Figure 6 .9

he ûrst contact time PDF for diòerent Stokes numbers as indicated in the legend. Alongside the data (symbols)
ûts according to Equation (6.4) (lines) are shown. he data is given in semi-logarithmic (a) and doubly-
logarithmic (b) scaling.

6 .3 . 1 Dependence on the Stokes number

Up to here, all shown contact time PDFswere for the case St = 1.5. Figure 6.9
shows the ûrst contact time PDF for diòerent Stokes numbers. he qualitative
appearance does not change. But the overall probability for long contact
times decreases with increasing St, whereas the range of the power law
extends and its slope steepens. We ûnd that all these PDFs can be ûtted by

P(τc,1) ∼ (τc,1/TL)−ξ exp (−κτc,1/TL) , (6.4)

where the omitted proportionality constant is determined by the correct
normalization. he lines in Figure 6.9 show ûts of this form. hey all work
very well, but the quality of the ûts degrades for St < 0.3 (not shown).

he two ût parameters κ and ξ are shown in Figure 6.10 as a function of
the Stokes number. As noted before, the slope of the power law conveyed
by the parameter ξ steepens and onemay suspect that it reaches ξ = 5 for
St→∞ according to our ûndings for the ideal gas particles in Section 4.3.2.
he exponential law seems to vanish.

6 .4 relation to sling/caustics collisions

In Equation (3.15) a decomposition of the collision kernel into one contri-
bution from shear induced collisions, and another one from sling/caustics
collisions, was proposed. It is interesting to ask, whether themultiple colli-
sions we report on in this chapter, belong mainly to one of these two groups.
An evident assumption is, thatmultiple collisions aremainly due to shearing
motion. Sling/caustics collisions happen between particles originating from
diòerent regions of phase space, at large RRV. It is probable that those parti-
cles will continue their trajectories a�er the collision and separate quickly
without further collisions. his reasoning is conûrmed by the results shown
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he ût coeõcients according to Equation (6.4) for our
data.
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he PDF of the RRV obtained for all colliding particles
as in the GCA (full lines) and for only ûrst collisions
(dashed line). he inset shows the same PDFs in a
wider range and in semi-logarithmic scaling. hese
results are for St = 1.0.

in Figure 6.11, which shows the PDF of the absolute value of the RRV. his

PDF was obtained once, taking into account all collisions, as in the GCA, and

another time, taking into account only ûrst collisions. Both PDFs are sharply

peaked at low RRV and have exponential tails. A close comparison however

reveals, that the PDF for ûrst collisions lies below the other PDF for small RRV

and above it for larger RRV. As the diòerence between the two PDFs must be

attributed to multiple collisions, on may therefore conclude, that multiple

collisions happen at small RRV. A strong evidence for this conclusion is

provided by Figure 6.12. here the ratio of themean RRV of ûrst collisions,⟨∣wr ∣⟩c,1, and the mean RRV of all collisions, ⟨∣wr ∣⟩c,GCA, is shown. At small

values of the Stokes number, themean RRV of ûrst collisions is larger, hinting

again thatmultiple collisions have on average small RRV. At larger Stokes

numbers the diòerence between the ûrst collision kernel Γ1 and the ghost

collision kernel ΓGCA vanishes and so does the diòerence in themean RRVs.

he inset of Figure 6.12 shows themean RRV for onlymultiple collisions,

in comparison to the mean RRV of ûrst collisions. he value formultiple

collisions ismuch smaller than the one for ûrst collisions. he assumption,

thatmultiple collision are not due to sling/caustics collisions, which happen

at large RRV, but rather due to shear induced collisions is therefore fully

consistent with our numerical results.
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Figure 6 .12

he ratio of themean values of the RRV in the GCA and
for only ûrst collisions as a function of the Stokes num-
ber. In the inset themean values are shown for only
ûrst collisions (circles) and for all multiple collisions
(triangles) in units of the Kolmogorov velocity uK .

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

0 1 2 3 4 5

⟨∣w r
∣⟩ c,1/
⟨∣w r
∣⟩ c,G

C
A

St

0
1
2
3
4
5

0 1 2 3 4 5

⟨∣w r
∣⟩ c,i/

u
K

St

i = 1
i = m

6 . 5 alternative algorithms

In the introduction to this chapter it has been argued, that the collision
kernel, for which only ûrst collisions were taken into account, was amore
realistic estimate than the collision kernel obtained in the GCA. his ar-
gumentation was based on a system, where particles react upon their ûrst
collision. To bemore precise one should deûne, what kind of reaction the
particles undergo. Krstulovic et al. (2013) investigate a system, where the
unique species of particles Λ reacts with each other by disappearing, or in
other terms Λ + Λ = ∅. In this case Γ1 is certainly a better estimate, but

it is not clear, if it is the correct estimate. In such a system it is not only
impossible that a pair collides with each other a second time. Actually each
of the particles is not allowed to collide with any further particle a�er an
initial collision. To investigate such a system, we propose to mimic it with
the help of the algorithm described in the following section.

6 . 5 . 1 Replacement algorithm

It has been mentioned before thatwe usually integrate a total of N ′p particles
in our simulations. Nevertheless, we restrict ourselves to a subset of Np

particles to check for collisions. herefore wemay, at each collision, replace
the two colliding particles by two of the additional N ′p − Np particles. Re-
placing the particles instead of just “deleting” them, has the advantage, that
the system stays in a stationary state with respect to the number of particles
Np. We will refer to this algorithm, that replaces both colliding particles, as
R2 and to the corresponding collision kernel as ΓR2.

A second similar algorithm consists in replacing only one arbitrarily
chosen particle of each colliding pair. We will refer to this algorithm and
the corresponding collision kernel as R1 and ΓR1 respectively. his algorithm
could be seen as representing a system, where the particles react such that
Λ +Λ = Λ. Of course one would need to take into account other eòects like
momentum conservation in amore realisticmodel.
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Here the same data as in Figure 6.1a is shown. Ad-
ditionally the collision kernels ΓR1 and ΓR2 that were
obtained with the replacement algorithm described
in Section 6.5.1 are shown.

We ûnally note that for tracer particles, it is not necessary to integrate ad-
ditional trajectories. In this case two new particlesmay be placed randomly
in the �ow and their velocities are fully determined by the �uid velocity
ûeld at that instant. For inertial particles however, themomentary velocity
depends on their history and therefore it is necessary to keep the additional
particles in the �ow. Wang et al. (1998a) investigated such an algorithm and
their results are in accordance with ours. In a companion paper Zhou et al.
(1998) investigate particles with ûnite inertia. here, they use a further algo-
rithm. hey simply remove all colliding particles and take the diminishing
number of particles into account when calculating the collision kernel.

6 . 5 .2 Dynamic collision kernel with the alternative algorithms

We have implemented the alternative algorithms described in the last section
and calculated the corresponding collision kernels. Our results are shown
in Figure 6.13. As expected, we ûnd that the results obtained with the new
algorithms R1 and R2 lie below those obtained within the GCA. However,
they lie even below the collision kernel for only ûrst collisions, which seems

puzzling at ûrst. Before explaining the observed diòerence between Γ1 and
ΓRi , i = 1, 2, we note that also ΓR1 and ΓR2 diòer from each other. When we

replace both colliding particles, fewer collisions take place.

To explain the diòerence between the diòerent algorithms, consider the
following situation: Two groups (“jets”) of particles, originating from diòer-
ent regions in phase space, are brought into proximity by the sling/caustics
eòect. In the GCA, as the two jets cross each other, any one particle from
one group,may collide with several other particles from the other group.
he same is true, of course, for any particle with which that particle collided.
Now in this special case, Γ1 and ΓGCA would not diòer at all, because none
of the multiple collisions that any particle undergoes takes place with a

particle it collided with before. he collision kernels obtained in the two
new algorithms however will diòer from ΓGCA. With the algorithm R1 only
one of the colliding pairs has the chance to collide with further particles,
explaining,why ΓR1 is smaller than Γ1. he other algorithm, R2, replaces both
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he collision kernel obtained in the GCA, ΓGCA; the collision kernel for only ûrst
collisions, Γ1; the collision kernel for only multiple collisions, Γm = ΓGCA − Γ1; and
the collision kernels for the replacement algorithms introduced in Section 6.5.1, ΓR1
and ΓR2. All these collision kernels are shown for two diòerent volume fractions,
once for Φ0 as given in Table 5.2 and once for half that value. As in Figure 6.1a, the
dashed line represents the expected result for ΓGCA, when St→ 0.

colliding partners, therefore none of them will participate in any further
collisions. hat is why ΓR2 is even smaller than ΓR1.

he above interpretation relies on some very particular hypothetical as-
sumption, namely that there are events in a turbulent �ow, where jets of
particles collide with each other. he assumption used here suggests in
fact that the algorithms R1 and R2 aòect the number of collisions, insofar
as groups of three particles (ormore) are concerned; namely the two par-
ticles that initially collide and at least one other particle. If this is the case,
the obtained collision kernel should depend on the number density n of
the particles. Remember, that the rate of collisions is proportional to n2.
his proportionality is broken, if we suppress some collisions with a rate

proportional to n3. herefore the collision kernel, which was deûned as

precisely the proportionality constant joining the rate of collisions and n2,
will depend on n.

To check our reasoning we performed the same analysis, that led to the
results shown in Figure 6.13, for half the number density as before. In other
terms, we reduced the number of particles considered in the collision detec-
tion scheme by a factor of two, resulting in a halved volume fraction Φ0/2.
he results are shown in Figure 6.14. First of all, one notices, that as expected
neither ΓGCA, nor Γ1, nor Γm depend on the volume fraction Φ. he collision
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he ratios ΓRi/Γ1, i = 1, 2 for three diòerent volume
fractions and for diòerent Stokes numbers are rep-
resented by symbols as indicated in the legend. We
excluded the two points, where according to Table 5.2
Φ0 is smaller than for the rest. he full lines aremeant
as a guide for the eye. hey are chosen, such that the
distance between these curves and 1 falls by a factor
of two for the next higher line.

kernels obtained with the alternative algorithms, ΓR1 and ΓR2, however do
change, when we vary Φ. his is in accordance with our reasoning.
Interestingly, looking closely one realizes, that the collision kernel ob-

tained by replacing both particles coincides with the collision kernel ob-
tained by replacing only one particle at double the volume fraction. his
observation as well is in accordance with the above argumentation, that the
discrepancy between the ΓRi , i = 1, 2, and Γ1 stems from eòects involving
three andmore particles. In fact, according to our reasoning, the diòerence
Γ1 − ΓRi , i = 1, 2, should be to leading order linear in n and therefore in Φ.
his is investigated in more detail in Figure 6.15, which shows the ratios
ΓRi/Γ1, i = 1, 2 for three diòerent volume fractions all within a factor two of
each other. We empirically ûnd the two rules

ΓR2(Φ/2) = ΓR1(Φ) and ΓRi − Γ1 ∼ Φ for i = 1, 2. (6.5)

he latter seems to be only approximately valid, but both conûrm our argu-
mentation.

To make our explanation more clear, let us present it oncemore, but from
another perspective. We try to explain, why ΓR1 and ΓR2 are smaller than
Γ1 and why the former two vary with the volume fraction Φ. To this end,
let us follow a particle along its trajectory. he rate of collision along this
trajectoryR as been introduced in Section 3.2.2. It is proportional to n, and
therefore to Φ, namelyR = Γn. his is exactly true for collisions in the GCA,
but also when counting only ûrst collisions. he two alternative algorithms

introduced in Section 6.5 however necessitate a correction. When the parti-
cle we follow collides, the algorithm R2 changes its position and its (former)
surroundings, by replacing also the colliding partner. he algorithm R1

changes only one of these, either the surroundings, or the position of the
particle. Both approaches certainly prevent any further collisions between
the two colliding particles. But they also suppress collisions between the test
particle and a third particle, at least for the time, the �ow needs to reorganize
a�er the “perturbation” of replacing one or two particles. During this time,

which we shall call τR, a part of the collisions, which would take place at
a rateR, are suppressed. With respect to the collision kernel, that counts
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(a)he kinematic and dynamic collision kernel for the three diòerent algorithms, GCA, R1, and R2. (b)he
RDF for the two replacement algorithms R1 (ûlled symbols) and R2 (open symbols).

only ûrst collisions, we therefore expect a correction of the order ofRτR, or
more precisely

ΓRi = Γ1 [1 −O(iRτR)] . (6.6)

Asmentioned above, the rateR is proportional to Φ and therefore Equa-
tion (6.6) fulûlls the two empirically found laws (6.5).

he above explanation of the discrepancy between the collision kernel Γ1
and the two collision kernels obtained with the alternative algorithm, ΓR1
and ΓR2, implies that this diòerence is proportional to the volume fraction Φ.
As a consequence, the discrepancymust vanish in the very dilute limit, i.e.,
Φ → 0. herefore, in this limit the two algorithms R1 and R2 give the correct
result.

6 . 5 .3 Kinematic collision kernel with the alternative algorithms

One disadvantage of the replacement algorithm is illustrated by Figure 6.16a.
he collision kernel cannot be determined kinematically, that is with the
help of Equation (3.14), anymore. For the GCA, the dynamic collision kernel,
determined by counting collisions, and the kinematic kernel coincide. For
both alternative algorithms, R1 and R2, however, the kinematic collision
kernel is too small. he reason for this becomes clear in Figure 6.16b, which
shows the RDF in case of the replacement algorithm. By replacing the
particles, an artiûcial drop in the RDF at r = 2a is created. herefore the RDF
at the collision radius g(2a), shown in Figure 6.17a, cannot be estimated

correctly. he same is true for the RRV at contact, shown in Figure 6.17b.

It would be desirable to have a better understanding of how the replace-
ment algorithm aòects the estimation of g(2a) and ⟨∣wr ∣⟩. At themoment
we cannot provide a conclusive explanation.
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he RDF (a) as well as themean RRV (b) at contact. Shown is data obtained in the GCA and in the alternative
algorithms from Section 6.5.

6 .6 conclusion and perspectives

We have discussed two striking eòects, that can be observed for inertial
particles in turbulent �ows. hose particles have a tendency to stay in
proximity for very long times of the order of the large eddy turnover time.
his eòect had been reported for tracer particles, but we have shown, that
it remains valid for particles with inertia. It slowly decays with growing
Stokes number. We presented a thorough study, especially in terms of the
contact time PDF. he latter shows some features, which are related to the
motion of ideal gas-like particles. But additionally, the contact time PDF

shows exponential tails for long contact times.

he fact, that the particles have a certain probability to stay close for long
times, has as a consequence that multiple collisions between these particles
take place. his eòect was studied as well and the corresponding PDF of the
number of collisions per pair was discussed. It displays exponential tails
leading to a simplemodeling of the collision rate formultiple collisions.

hesemultiple collisions lead to an overestimation of the collision kernel
in the GCA. An improved estimate, namely the collision kernel for only ûrst
collisions Γ1 was proposed. Determining the latter is however a tedious task.
herefore an alternative algorithm was proposed, which delivers the correct
result in the limit of very dilute suspensions.

perspectives An important aim for future work is to gain a better

understanding of themultiple collision events. One can imagine that these
events are related to coherent structures in the �ow. For instance, the parti-
cles which stay together for a long time could be trapped in a strong vortex
tube. Answering these questions would necessitate the knowledge of typ-
ical �uid parameters, like the �uid velocity or vorticity, along the particle
trajectories. his has not yet been implemented, but is in principle feasible
and can be envisaged for subsequent work.
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In Section 6.1 we compared, asmuch as feasible, our results to those of
Andersson et al. (2007) and Gustavsson &Mehlig (2013a). his theoretical
work is based on simplifying assumptions (small Kubo numbers), and it has
only been tested in Gaussian random �ows. It would be interesting to test
the validity of the theoretical approach, at small Kubo numbers, with the
help of DNS.
Recently Gustavsson &Mehlig (2011a, 2013b) have developed a theory

which describes the PDF of the RRV. At themoment, we do only determine
this PDF for colliding particles, as presented in Figure 6.11. Applying tech-
niques along the lines of Section 3.2.8 to obtain the PDF for colliding particles
from the results of Gustavsson &Mehlig (2011a, 2013b) proves nontrivial.
But it is feasible to calculate exactly those quantities for which their theory
holds in our simulations. his necessitates the implementation of additional
features, which can be envisaged as a future project.
Let us conclude this section by noticing that several signiûcant approxi-

mations have been used here, and that it would be important to quantify
the errors they induce. For cloud physics applications, the in�uence of
gravity on the eòects described in this chapter would need to be studied
(Grabowski & Vaillancourt 1999). Also, the role of polydispersity is known
to be very important, so similar studies should be carried out for bidisperse
solutionswith awide range of particle size diòerences. he particles that stay
together are those which simply follow the �ow. We know that for Stokes
numbers ofmoderate size, a fraction of the particle population essentially
follows the �ow. herefore we do expect to observe the eòects described
in this chapter for polydisperse suspensions as well. But they remain to be
quantiûed.
Finally the role of hydrodynamic interactions (see Section 3.2.7) should

be studied. his would demand the implementation of slightlymore com-
plicatedmodels, like the one by Ayala et al. (2007) and Wang et al. (2005a).
hemost interesting question in this realm is probably, in how far the phe-
nomenon ofmultiple collisions aòects the collision eõciency (introduced
in Section 3.2.7).



7PREVALENCE OF THE SLING/CAUSTICS EFFECT

In Section 3.2.4 we presented the decomposition of the collision kernel

ΓSC = 2π(2a)2⟨∣wr ∣⟩g(2a), (7.1)

which was rigorously derived by Sundaram & Collins (1997). It has been
demonstrated to give the correct results (see also Figure 5.5). he aim of
introducing this composition was to study the in�uence of the preferential
concentration eòect on the collision rate. But the interpretation of Equa-
tion (7.1) is actuallymore subtle, and the aim of this section is to reconsider
it in light of our own numerical results.
We begin by noting that, of course, by the introducing of the RDF, the

clustering eòect is correctly taken into account by Equation (7.1). Also, the
RDF at contact g(2a) grows with the Stokes number, as can be seen in, e.g.,
Figure 5.4a. herefore the clustering of particles enhances the collision rate

to some extent. But at the same time also the mean RRV ⟨∣wr ∣⟩ increases
(Figure 5.4b) thereby additionally enhancing the collision rate. he increase
of the mean RRV is due to the presence of a further eòect, which is—like
the preferential concentration—not present at St = 0, namely the sling/caus-
tics eòect as presented in Section 3.2.5. his eòect was ûrst described by

Falkovich et al. (2002) and independently byWilkinson &Mehlig (2005)
and Wilkinson et al. (2006).
Equation (7.1), while correctly describing the collision rate in the GCA,

does not distinguish the two eòects, and simply rests on an “eòective theory”.
It is therefore diõcult to evaluate precisely which of the two eòects accounts
for the enhancement of the collision rate as a function of the Stokes number.
In this chapter, we demonstrate that our numerical data show very clearly
that the sling/caustics contribution provides the dominantmechanism en-
hancing the collision rate, even at relatively small Stokes numbers. We also
show that our results can be best understood with a representation of the
collision rate as introduced in Equation (3.15).

he decomposition (7.1) describes the collision rate in the GCA, hence all
collision kernels presented in this chapter are obtained in this approximation
and suòer from the insuõciencies discussed in Chapter 6. his fact will
however not aòect the conclusions, which are based on qualitative features
of the results, rather than on exact quantitative values.

7. 1 different scaling of the collision kernels

Remember the decomposition proposed by, e.g., Gustavsson & Mehlig
(2011a) or Ducasse & Pumir (2009)

Γ = ΓST g(2a) + ΓA hS(St,Reλ) (7.2)

65
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from Section 3.2.5 [there printed as Equation (3.15)]. It states that the total
collision kernel in a turbulent �ow is a combination of Saòman & Turner’s
(1956) and Abrahamson’s (1975) collision kernels. It is interesting to note
that the ûrst term, which is due to shearing motion and aòects particles
that follow the �ow, scales like ΓST ∼ (2a)3/τK—see Equation (3.6). he

other term however, which describes particles that are decorrelated from
the �uidmotion andmay collide with large relative velocities, scales like
ΓA ∼ (2a)2η/τK—see Equation (3.8). Both terms have a prefactor, but
only one of them depends on the particle radius a. It has been shown
in Section 5.3.1 that g(r) ∼ r−cg ,1 . herefore the entire ûrst part scales
like ΓST g(2a) ∼ (2a)3−cg ,1 , which is always diòerent from ΓA ∼ (2a)2 as
cg ,1 < 1 (see Figure 5.3b). Hence both terms on the right-hand side of
Equation (7.2) behave diòerently when the size of the particles is changed.
he dimensionless Stokes number, St = 29(ρp/ρ f )(a/η)2, introduced in
Section 2.3.1, is the crucial parameter that speciûes the dynamics of the
particles. hismeans that the particle size a can be changedwithout aòecting
the value of the Stokes number, if at the same time the density ratio ρp/ρ f is
varied. We used this fact to investigate the scalingwith regard to the particle
radius a of the collision kernel in our DNS. To this end we post-processed
our data as described in Chapters 4 and 5, but here under the assumption
of three diòerent density ratios. hese ratios were chosen such that the
according particle radii are within a factor two of each other.

he collision kernel obtained for the three diòerent particle radii is shown
in Figure 7.1. Both scalings, the one according to ΓST and the one according
to ΓA, are presented. Saòman & Turner (1956) obtained their result for
St → 0 and in this limit the scaling of their collision kernel, ∼ (2a)3/τK ,
works perfectly. But already for relatively small Stokes numbers our results
start to diverge, demonstrating that the scaling is not valid anymore. he

scaling which one expects for sling/caustics collisions is correct for larger
Stokes number, as can be seen from the good correspondence of our results
in Figure 7.1b.

he work of Abrahamson (1975) has been criticized as being inexact,
because it takes not into account themultiscale structure of turbulent �ows.
herefore alternative versions of the function hS(St,Re) have been proposed,
e.g., byVölk et al. (1980). Mehlig et al. (2007) derive by dimensional analysis
hS(St,Re → ∞) ∼ St1/2. Such a behavior is not present in Figure 7.1b,
possibly due to a too small Reynolds number in our simulations.

From Figure 7.1 it becomes clear that for St→ 0 the shear induced colli-
sions describe the overall collision kernel correctly and that for larger Stokes
numbers the sling/caustics eòect ismore important. But the in�uence of the
preferential concentration eòect described by g(2a) is not evident. here-
fore we plotted in Figure 7.2 the ratio of the collision kernels obtained for
two diòerent density ratios. In each case the particle radii diòer by a factor of
two. Hence one would expect a value of 1⁄8 , if (2a)3/τK was the correct scal-
ing and a value of 1⁄4 for (2a)2η/τK . he entire ûrst term of Equation (7.2)
including g(2a) leads to a value of (1/2)3−cg ,1 . Figure 7.2 shows these three
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he collision kernel for three diòerent particle radii (tuned with the help of the density ratio ρp/ρ f ). In
panel (a) it is shown in the scaling according to ΓST and only for a range of small Stokes numbers. he value
of ΓST is also shown as a straight dotted line. Panel (b) shows the full range of Stokes numbers in the scaling
imposed by ΓA.
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Ratios of the collision kernels of particles with the
same Stokes number, but whose radii diòer by a fac-
tor two. If the collisions according to the descrip-
tion by Saòman & Turner (1956) dominate, one ex-
pects a value of 0.125; else, if most collisions corre-
spond to the description by Abrahamson (1975), the
expected value is 0.25. We compare raindrop-like
particles (ρp/ρ f = 1000) once to two times larger par-
ticles (ρp/ρ f = 250) and once to two times smaller
particles (ρp/ρ f = 4000). he dashed line represents
the expected scaling of the ûrst termon the right-hand
side of Equation (7.2).

values as well as the ratios of the collision kernels we obtained in our DNS.
For St < 0.2 the numerical results follow the dashed line given by (1/2)3−cg ,1 .
his means that in this range the enhancement of the collision kernel is
almost entirely due to the eòect of preferential concentration. At larger
Stokes numbers however, the dashed line and the numerical results start to
diverge. For St ≳ 0.75 the curve (1/2)3−cg ,1 has reached itsmaximum and
starts to fall. Nevertheless the numerical results continue to grow and reach
the value 1⁄4 , which is expected for sling/caustics collisions. his leads to
the conclusion that at larger values of the Stokes number the majority of
collisions is due to the sling/caustics eòect.
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F igure 7.3

he cumulative PDF of the RRV F(∣wr ∣) as deûned in
Equation (7.3) and the contribution of RRVs smaller
than ∣wr ∣ to the �ux entering the collision sphere
φ(∣wr ∣) deûned in Equation (7.4). Both are shown for
St = 0.5 and in two diòerent scalings: Once in units of
the Kolmogorov velocity uK (bottom axis) and once
in units of the shear rate at the particle size 2a/τK (top
axis).
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7.2 cumulative pdf

To provide further evidence for the prevalence of the sling/caustics eòect,
we calculated the cumulative PDF of the RRV, deûned as

F(∣wr ∣) = ∫ ∣wr ∣

0
p(∣w′r ∣)dw′r . (7.3)

he cumulative PDF F(∣wr ∣) allows us to see,which values of ∣wr ∣ are themost
probable. For instance, one can read from Figure 7.3 that for St = 0.5 only
about 5% of the particles have relative velocities larger than ∣wr ∣ ≳ 2a/τK .
In addition to F(∣wr ∣), we calculated the ratio of particles entering the

collision sphere with RRV smaller than ∣wr ∣
φ(∣wr ∣) = ∫ ∣wr ∣

0

∣w′r ∣⟨∣wr ∣⟩ p(∣w′r ∣)dw′r . (7.4)

his can be interpreted as the contribution of velocities smaller than ∣wr ∣ to
the total collision rate. Along the lines of Sections 3.2.8 and 4.3.1, φ(∣wr ∣)
can also be seen as the cumulative PDF of the RRV conditioned on collisions.
Figure 7.3 shows that at St = 0.5, although rare, particles with ∣wr ∣ ≳ 2a/τK
contribute about 50% of the collisions. he collisions with larger RRV are

likely to be sling/caustics collisions. herefore, the numerical values pre-
sented here provide a strong evidence that the sling/caustics eòect starts
to become the leading mechanism enhancing the collision rates already at
relatively small Stokes numbers.

Figure 7.4 shows F(∣wr ∣) and φ(∣wr ∣) for two further Stokes numbers,

St = 0.1 and St = 0.75. By comparing the two, the transition from small to
large Stokes values becomes evident—note especially the change of scale in
the horizontal axes. At small values of St shear induced collisions prevail.
Almost all particles have very low RRV and almost all collisions take place at
such low RRV. For increasing Stokes numbers however,more particlesmove
at larger RRV and even more collisions are contributed by these particles.
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F igure 7.4

he same quantities as in Figure 7.3, but here in (a) for St = 0.1 and in (b) for St = 0.75.
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F igure 7.5

he RDF at contact g(2a) for diòerently sized particles
(as tuned by the density ratio ρp/ρ f ). he smaller the
particles, the larger g(2a).

7.3 comparison to published results

In Section 7.1 the prevalence of the sling/caustics eòect for particle collisions
in turbulent�owswas deduced from an analysis of the scaling dependence of
the collision rate as a function of the particle radius a. To this end numerical
simulations of particles with the same Stokes number but varying radii were
carried out. Looking again at past numerical and theoretical results, we
explain in this section that our conclusions are in fact fully supported by

numerical evidence obtained in previous works.

Equation (7.1) reduces the collision kernel to two quantities which have
been the subject ofmany studies, namely g(2a) and ⟨∣wr ∣⟩. Both quantities
depend on the particle radius a as can be seen in Figures 7.5 and 7.6, but
in diòerent ways. While the RDF becomes larger with decreasing particle
radius, the RRV grows with increasing radius. According to Equation (7.1)
these opposing behaviorsmust cancel exactly for larger Stokes values, in
order to give the correct scaling of the collision kernel ∼ a2. Figure 7.7
demonstrates that this is indeed the case.

A similar observation allows to conûrmour results concerning the scaling
of the collision kernel by comparison with published data. he RDF g(r)
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he RRV at contact for particles of diòerent radii, shown in panel (a) in linear scaling and in panel (b) in
logarithmic scaling. he radius was changed at constant Stokes number by varying the density ratio ρp/ρ f .
For growing radii, the RRV increases.
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Figure 7.7

he RRV multiplied by the RDF at contact. Both scale diòerently with the particle radius as can be seen in
Figures 7.5 and 7.6. Nevertheless for larger Stokes numbers the three curves, which are for particles of diòerent
sizes, coincide. Only for small Stokes numbers a diòerence is present. his can be seen from the zoom in
panel (b) which gives the same data as panel (a) but in logarithmic scaling.
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he exponent of the scaling of the kinematic collision
kernel with the particle radius a (circles). Shown is
data from Rosa et al. (2013), who report on cg ,1 and
cw ,1. he straight dotted lines correspond to the scal-
ings for shear collisions (∼ a3) and sling/caustics col-
lisions (∼ a2). he dashed line is the scaling of shear
induced collisions including the preferential concen-
tration eòect.

obtained in our DNS was shown in Figure 5.3. For small distances r ≪ η it
is described very well by a power-law g(r) ∼ r−cg ,1 . herefore g(2a)must

scale like (2a)−cg ,1 . Up to now, only the RRV at contact ⟨∣wr ∣⟩ was discussed
in this work. But it is a known fact, that for small separations the RRV scales
with the distance at which it is calculated as ⟨∣wr(r)∣⟩ ∼ r+cw ,1 (e.g., Bec et al.
2010). heories to predict this power law behavior have been proposed by

Gustavsson &Mehlig (2011a, 2013b), who studied in fact a simpler random
�ow model. As a consequence the collision kernel must scale with the
particle radius as ΓSC ∼ a2−cg ,1+cw ,1 .

Rosa et al. (2013) present a thorough study of the collision kernel in
DNS. Among others, they show data for cg ,1 and cw ,1. From that data we
obtained the scaling of the collision kernel 2 − cg ,1 + cw ,1, which we present
in Figure 7.8. heir results conûrm ours from Section 7.1. For very small
Stokes numbers the scaling of the collision kernel approaches the value
expected from Saòman & Turner (1956). But for growing values of the
Stokes number, the scaling exponent quickly approaches 2. In this sense, the
results of Rosa et al. (2013) provide evidence that for St ≳ 0.75 the collision
rate is determined predominantly by sling/caustics collisions. We note that
this phenomenon had in fact been predicted, in the case of simple �ow
models by Gustavsson &Mehlig (2011a, 2013b) in the spirit of earlier work
byWilkinson et al. (2006).

7.4 conclusion and perspectives

We investigatedhere collision rates in turbulent�ows. Two eòects are known
to lead to a strong enhancement, with respect to the Saòman–Turner pre-
diction, of the collision rate. On the one hand shear induces collisions of
particles which are already in proximity. his eòect is enhanced by prefer-
ential concentration which augments the particle density in certain regions.
On the other hand the sling/caustics eòect describes how particles, which
come from diòerent regions of phase space,may collide with large RRV. We

have shown that for small Stokes numbers an enhancement of the collision
rate is due to preferential concentration. But as the Stokes number increases
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the sling/caustics eòect becomesmore andmore important, whereas the

eòect of preferential concentration looses in�uence. We could identify the
region St ≳ 0.75 as the one where the majority of collisions is due to the

sling/caustics eòect.

Our conclusions rely on two arguments. First, the scaling of the collision

kernelwith the particle radius is diòerent for the two eòects. But for St ≳ 0.75
our numerical results reach the value imposed by the sling/caustics eòect.

Secondly, the cumulative PDF of the RRV F(∣wr ∣) and a derived quantity
φ(∣wr ∣) allowed us to show that for growing Stokes numbers an increasing

ratio of collisions happens at large RRV. hese collisions are induced by the

sling/caustics eòect.

perspectives As was the case in Chapter 6, it would be interesting to

study the in�uence of the diòerent approximations that lead to themodel in-

vestigated numerically. In particular, neglecting gravity tends to “artiûcially”
enhance the collision rate (see, e.g., Rosa et al. 2013). herefore an important
question would be, which of the two diòerent contributions ismore aòected
by the inclusion of gravity. Also the investigation of polydisperse solutions
could provide interesting insights. Generally, the collision kernel Γ(a, a′) is
a complicated function of both variables, especially in the presence of gravity
(see, e.g., Grabowski & Wang 2009; Woittiez et al. 2009). It is therefore
diõcult to predict, whether the sling/caustics eòect is of similar importance
in bidisperse solutions—a thorough investigation would be necessary.



8
KINEMATIC SIMULATIONS

When we started our investigations of the collision rates of particles in
turbulent �ows,we did not yet use DNS. Insteadwe used a simplemodel �ow
introduced by Fung et al. (1992) known as kinematic simulations (KS). We

learnedmuch from thismodel, as it allowed us to perform simulations with
a very low numerical eòort. Also, essentially all the qualitative information
we obtained with KS turned out to be in full agreement with the results we
obtainedwithDNS. However, in quantitative terms,we ûnd a large diòerence
between the two approaches. It is the objective of this chapter to discuss
the similarities and diòerences in the KS and DNS problems. he essential
conclusion of our comparison is that the sling/caustics eòect, as well as
preferential concentration, play amuch reduced role in KS as compared to
DNS. In the light of these observations, studying collisions using KS instead
of exact DNS leads to results which should be interpreted with care.
In this chapter we shortly introduce KS before presenting results analo-

gous to those from Chapters 6 and 7. We will focus especially on diòerences
in comparison to the results obtained with DNS. Although a complete un-
derstanding of the origin of this diòerence is still missing, we will present
several remarks, aimed at explaining the observed discrepancies.

8 . 1 description of the approach

he basic idea of KS is to obtain the �uid velocity ûeld u(x , t) as a sum of
Nk random Fouriermodes

u(x , t) = Nk∑
n=1

an cos(kn ⋅ x + ωn t) + bn sin(kn ⋅ x + ωn t). (8.1)

hesemodes kn and the corresponding coeõcients an and bn are chosen
such that the resulting �ow fulûlls certain properties. he wave vectors
kn = kn k̂n are pointing in random directions k̂n. To assure incompressibility
the directions of the coeõcients need to fulûll

ân ⋅ k̂n = b̂n ⋅ k̂n = 0.
he amplitudes of these coeõcients govern the energy spectrum of the �ow

E(kn)∆kn = a2n = b2n. We impose a spectrum E(kn) = E0k−5/3n and deûne
the discrete diòerences between the wave vectors

∆kn =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(k2 − k1)/2, n = 1(kn+1 − kn−1)/2, n ∈ [2,Nk − 1](kNk

− kNk−1)/2, n = Nk .

73
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Diòerent choices of the energy spectrum, as discussed byMalik&Vassilicos
(1999), are possible.
For the amplitudes of the wave vectors there are two possibilities. We

choose a geometric distribution

kn = k1 (L
η
)(n−1)/(Nk−1)

, k1 = 2π

L
, kNk

= 2π

η
. (8.2)

he alternative would be an algebraic distribution as discussed by, e.g.,
Fung & Vassilicos (1998). In Equation (8.2) L denotes a large and η a small
length scale. heymay be interpreted as the integral and the Kolmogorov
length respectively [note however, that L does not fulûll Equation (5.1)]. We

have L/η = 64 in all simulations discussed here. Malik & Vassilicos (1999)
present a comparison between KS and DNS. hey obtain a good agreement
for a total number ofmodes Nk ≳ 100. herefore we chose Nk = 109 which
assures 18modes in each band [k, 2k].
he frequencies ωn in Equation (8.1) are deûned to be proportional to

the eddy turnover time on the corresponding length scale

ωn = λ
√

k3nE(kn).
he unsteadiness parameter in our simulations was λ = 0.5. his value
is expected to give results similar to those obtained from DNS concerning
Lagrangian dispersion (Malik&Vassilicos 1999;Nicolleau&ElMaihy 2004).
All parameters are determined in the initial phase of each simulation.

hey are not changed for the rest of the run time. herefore the “random-
ness” in each run is limited and results do vary with the initial state of the
random number generator (RNG). We use thewell-knownMersenne twister
(Matsumoto & Nishimura 1998) as RNG. For each set of parameters we

perform 10 runs initializing the RNG with a diòerent seed. We obtain our
ûnal results by averaging over the individual runs.
Our simulations are based on those described by Ducasse (2009) and

Ducasse & Pumir (2009). Further detailsmay be found there.

8 . 1 . 1 Integration of particle trajectories

Equation (8.1) provides a complete representation of the velocity ûeld at any
point in space. his is a big advantage over DNS which rely on interpolation
schemes to calculate the velocity in between grid points. To obtain the
particle trajectories, we integrate Equations (2.16) and (2.17) with a low
storage Runge–Kutta scheme of fourth order. his scheme is presented in
detailbyGottlieb et al. (2001) basedonworkbyCarpenter &Kennedy (1994).
As a rule of thumb we use for the time-step ∆t =min(τp/5, τK/5). We also
integrate the particle velocity gradient tensor σi j as deûned in Section 2.3.2
with the same scheme. his quantitymay diverge, therefore its integration
demands some special care. he technical details of this procedure are
described in Appendix B.
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Figure 8 .1

Panel (a) shows four diòerent collision kernels obtained in KS. ΓGCA has been obtained in the GCA, Γ1 takes
into account only ûrst collisions of a same pair, Γm representsmultiple (i.e., at least two) collisions between
a same pair, and ΓR1 was determined with the alternative algorithm R1. he straight dotted line gives the
Saòman–Turner estimate for St→ 0 (Section 3.2.2). Panel (b) shows the ratio Γm/Γ1. As always in this chapter,
ûlled symbols represent data obtainedwith a volume fraction Φ = 1.2× 10−5 and empty symbols such obtained
with Φ = 1.2 × 10−4.

In KS the system size Lsys can be an arbitrarymultiple of L. In our sim-
ulations it is Lsys = 2L. Specifying the system size and a volume fraction
Φ determines the number of particles Np at a certain Stokes number. Due
to numerical constraints, we divided the range of Stokes numbers we in-
vestigated in DNS into two overlapping regions. In the range St ≤ 1.25 we
performed simulations with Φ = 1.2 × 10−5. In the range St ≥ 0.5 we did
another set of simulations with Φ = 1.2 × 10−4. he smaller volume frac-
tion is represented by ûlled symbols in all graphics in this chapter. Empty
symbols, if they correspond to data obtained in KS, represent values from
simulations with the higher volume fraction. We used again the alternative
algorithm R1 introduced in Section 6.5.1. In the corresponding simulations
10% additional particle trajectories were integrated.

8 .2 collision kernels

We determined the diòerent collision kernels deûned in Chapter 6 for KS.
he results are shown in Figure 8.1a. First of all one notes that the general
aspect is the same in KS as it was in DNS. Of all the collision kernels ΓGCA is
the largest. he two corrected collision kernels Γ1 and ΓR1 are smaller than
ΓGCA. In contrast to our DNS results, here Γ1 and ΓR1 coincide although the
volume fraction is even higher. In Chapter 6 we had shown that ΓR1 was
smaller than Γ1 by a factor proportional to the volume fraction Φ. A further
diòerence becomes obvious, when one compares the quantitative values.
he collision kernels we found in DNS were larger bymore than one order
ofmagnitude for St ≳ 1.5. For St → 0 the prediction of Saòman & Turner
(1956) is correctly reproduced in both approaches.
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F igure 8 .2

he RDF (a) and the RRV (b) at contact as obtained in our KS in comparison to results from DNS. he diòerence
between ûlled and empty symbols is explained in the caption of Figure 8.1.

Figure 8.1b shows the ratio Γm/Γ1 as in Figure 6.1b, but here for KS. Again
the qualitative features are similar, but here we ûnd amaximal error intro-

duced bymultiple collisions which is almost 50%. For comparison, in DNS

the maximal error was around 15%. We conclude that while the overall

number of collisions is reduced in KS, the ratio ofmultiple collisions is higher

than in DNS.

he reasons for the large quantitative diòerences between KS and DNS

become a bit clearer from Figure 8.2. here the two constituents of the

formulation of the collision kernel as proposed by Sundaram & Collins

(1997) [Equation (3.14)] are shown. In comparison to DNS there is almost
no clustering in KS, as can be seen from the RDF shown in Figure 8.2a. Also
the RRV ismuch smaller (Figure 8.2b). Apparently both eòects leading to
an enhancement of the collision rate—preferential concentration and the
sling/caustics eòect—are strongly reduced in KS.
Further evidence is provided to some extent by Figure 8.3. It shows the

ratio of themean collision velocity for only ûrst collisions and for all colli-
sions in the GCA. he corresponding data was shown for DNS in Figure 6.12.
Becausemultiple collisions are so rare for larger Stokes values and because

the statistics is dominated by sling/caustics collisions, this ratio drops very
quickly in the case of DNS. For KS however, this ratio stays signiûcant even
for larger values of the Stokes number. his underlines again the suppression
of sling/caustics collisions in KS.

he reduced preferential concentration provides also an explanation why
we ûnd in Figure 8.1a that ΓR1 ≈ Γ1. he diòerence between these two
collisions kernels was shown to be proportional to the volume fraction in
Chapter 6. More precisely it depends on the eòective volume fraction in
the region of a particle, namely g(r)Φ. herefore, if g(r) is smaller in KS,

as was shown in Figure 8.2a, also the diòerence between Γ1 and ΓR1 will be
reduced.

Finally, in Figure 8.4, we show the PDF of the collision velocity for St = 1.0.
It is qualitatively similar to the one for DNS shown in Figure 6.11. But it
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he ratio of the mean collision velocities for only ûrst
collisions and in the GCA. Results from KS and DNS

are compared. Filled and empty symbols have the
meaning as speciûed in the caption of Figure 8.1
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F igure 8 .4

he PDF of the RRV conditioned on the fact that two
particles collide. To determine this PDF once all colli-
sions detected in theGCAwere taken into account (full
lines). Another time only ûrst collisions of a same pair
were considered to determine the statistics (dashed
lines). he data is for St = 1.0 and was obtained in KS.
his ûguremay be compared to Figure 6.11 where the
same quantity is shown for DNS.

peaks at amuch smaller velocity and the exponential tails are shorter by an
order ofmagnitude. his provides further conûrmation that there are fewer
sling/caustics collisions in KS.

8 .3 multiple collisions

he presence ofmultiple collisions in KS has become obvious in the previous
section. Here we present the statistics of thesemultiple collisions. In Fig-
ure 8.5we show the PDF of undergoing Nc collisions a�er an initial one in KS,

P(Nc ∣Nc ≥ 1). he same PDF has been shown forDNS in Figure 6.2a. Weûnd
again, that this PDF can be described by a function P(Nc ∣Nc ≥ 1) = βαNc ,

although there are larger deviations in the tails as was the case for DNS. For
KS we ûnd in general a larger probability formultiple collisions. his is espe-
cially evident in the values of the ût coeõcient α which is shown in the inset
of Figure 8.5. It is roughly two times larger than in DNS. he high probability
formultiple collisions underlines again the fact that sling/caustics collisions
are less probable in KS. he sling/caustics collisions do not contribute to the
multiple collisions and would therefore diminish their probability.
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F igure 8 .5

he probability for a pair of particles to undergo an
Nc-th collision conditioned on the fact that it collided
at least once. he data shown here was obtained in
KS. he diòerent lines show ûts according to Equa-
tion (6.2). In the inset the ût coeõcient α is shown.
here the full and empty symbols have again themean-
ing as explained in Figure 8.1. An analogous graph
was shown for DNS in Figure 6.2a.
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F igure 8 .6

he ûrst contact time PDF obtained in KS for diòerent Stokes numbers as indicated in the legend. he data is
given in semi-logarithmic (a) and doubly-logarithmic (b) scaling. he same quantity is shown in Figure 6.9
for DNS.

8 . 3 . 1 Contact time pdf

We also determined the contact time PDF as deûned in Section 6.3 for KS.

It is shown in Figure 8.6 for the ûrst contact and for diòerent values of the
Stokes number. As in DNS, we ûnd exponential tails for long contact times

(Figure 8.6a). he dependence on the Stokes number seems to be a bit less
pronounced. he most striking diòerence however is the absence of the
power law behavior for intermediate contact times, even at large Stokes
numbers (Figure 8.6b). In Section 6.3 it was explained that this feature of
the PDF ismainly due to sling/caustics collisions. herefore the absence of
the power law emphasizes again the lack of this eòect in KS. Furthermore it
is interesting to note that in KS our temporal resolution suõces to see that
the PDF reaches τc,1 = 0 with a negative slope.
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he PDF of the ratio 2ar̂ ⋅ σ ⋅ r̂/wr for St ∈{0.5, 1.0, 2.0, 4.0} as obtained in our KS. he peak at 1
corresponds to shear induced collisions, the peak at 0
corresponds to sling/caustics collisions. We show the
PDF obtained in the GCA aswell aswith the alternative
algorithm R1.

8 .4 detecting sling/caustics collisions with the parti-
cle velocity gradient tensor

Typically the particle velocity gradient tensor σi j can be used to obtain a

good estimate for the RRVwr(r) ≈ r ⋅ σ ⋅ r̂ as long as the separation r is small

enough. If two particles however collide due to the sling/caustics eòect,
they come from diòerent regions in phase space. his has been explained in
Section 3.2.5. heir velocity gradients are diòerent and lead to an estimate

that ismuch smaller than the real RRV between them. his provides ameans
to decide at every collision, whether it is a shear induced or a sling/caus-
tics collision. One simply has to compare the estimate with the actually
measured RRV, i.e., calculate 2ar̂ ⋅ σ ⋅ r̂/wr . If this ratio is close to one, the
collision is induced by shear. If the ratio is close to zero, thismeans that the
actual collision velocity ismuch larger than the estimate suggests and the
collision is therefore a result of the sling/caustics eòect. Instead of doing
this for every collision it is of course simpler to determine the PDF of the
ratio 2ar̂ ⋅ σ ⋅ r̂/wr . Ducasse & Pumir (2009) present this PDF in a detailed
numerical study of collision rates in KS. Here we use the same quantity to
reason once again that the spurious eòect ofmultiple collisions is due to
shear induced collisions.

In Figure 8.7 we show the PDF of the ratio 2ar̂ ⋅ σ ⋅ r̂/wr as obtained in our
KS for several Stokes numbers. We estimated the eòective gradient tensor σ
as the average of the two individual particle velocity gradient tensors σ 1 and
σ2, i.e., σ = 12(σ 1+σ2). he PDF displays two peaks: One at 2ar̂ ⋅σ ⋅ r̂/wr = 1
which corresponds to shear induced collisions; another broader one around
zero which corresponds to sling/caustics collisions. he sling/caustics eòect
becomesmore important as the Stokes number grows. his has also been
found by Ducasse & Pumir (2009).

Furthermore Figure 8.7 displays for every Stokes number the ratio as

determined in the GCA and as determined in the alternative algorithm
R1. he diòerence between the two sheds light on the nature of multiple
collisions which are not present in R1. he peak at 1 diminishes when the
alternative algorithm is used, while the peak at 0 increases. herefore the
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multiple collisions correspondmainly to shear induced collisions. his is in
accordance with the results we found before in Chapter 6.
We did not determine the same quantity in DNS. In the light of our

results from Section 8.2, it would however be very interesting to compare
the ratio 2ar̂ ⋅ σ ⋅ r̂/wr in DNS and KS. We concluded in Chapter 7 that the
sling/caustics eòect is the dominant contribution to the collision rate in DNS,

even at relatively small Stokes numbers. In Section 8.2 it was demonstrated
that in comparison to DNS there are very few sling/caustics collisions in KS.
herefore one should expect that the PDF from Figure 8.7 would show a

very pronounced peak around zero in DNS even for relatively small Stokes
numbers.

8 . 5 conclusion and perspectives

In this section we presented results obtained in a simple, but established,
model for turbulent �ows, namely kinematic simulations. On a general
perspective these results conûrm those from DNS which we presented ear-
lier. But we ûnd a striking discrepancy in quantitative terms. All aspects
we investigated conûrm an absence or at least a strong suppression of the
sling/caustics eòect in KS. Also the preferential concentration ismuch less
pronounced. he reason for this could be that themodes in Equation (8.1)
are chosen randomly. herefore it is very unlikely that one ûnds in KS the co-
herent structures which are so typical for real turbulent �ows. According to
the sling interpretation these structures are responsible for the sling/caustics
eòect. hey can also be seen as being at the origin of the preferential con-
centration eòect. herefore the absence of coherent structures in KS would
ultimately result in the suppression of the two eòects. Future investigations
may shedmore light on these relationships.
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A
INTERPOLATION OF PARTICLE TRAJECTORIES

In Section 4.1.2 two diòerentways to detect a collision based on the positions
and velocities of two particles at consecutive time-steps were introduced.
Here, we describe both techniques in more detail.

a . 1 linear extrapolation

How can one determine that two particles in a distance r = X2 − X1 moving
in relativemotion to each otherwith velocityw = V 2−V 1 eventually collide?
To answer this question consider Figure A.1. here, two such particles with
radius a are shown. In the following we will consider this situation in the
frame of reference where the ûrst particle is at rest. A necessary condition his is the usual

approach also used in
the well-known paper
by Saòman & Turner
(1956)—see
Section 3.2.2.

for a collision to take place is that theminimal distance rmin between the
centers of the particles (given the relative velocity w is constant) is smaller
than two times their radius, rmin < 2a. heminimal distance is the distance
between the center of the ûrst particle P1 and its orthogonal projection onto
the hypothetical relative trajectory of the second particle M. Initially the
distance P2M is given by the dot product between the relative distance
and the relative velocity P2M = r ⋅w/∣w∣. So theminimal distance can be

obtained by the help of the Pythagorean theorem

r2min = ∣r∣2 − (r ⋅w)2∣w∣2 !< (2a)2. (A.1)

Deûning δ = ∣w∣2[(2a)2 − r2min], Equation (A.1) becomes simply δ > 0.
To introduce a suõcient condition, we have to ask on which timescale

τ our hypothesis of a constant relative velocity is satisûed. In numerical
simulations this timescale can usually be identiûed with the time-step. A
collision takes place, if the relative distance between the particles falls below
2a within a time τ̃ < τ given the particles move constantly with relative
velocityw. Taking a look at Figure A.1 again, one can determine the point C,

P1
P2

r

w

C
M

rmin
y

2a a

F igure A .1

Two particles of radius a before an even-
tual collision. heir vectorial distance is
r = X2 − X 1 and they move relative to
each other with velocity w = V 2 − V 1.
More details are given in the text.

83



84 interpolation of particle trajectories

where the particle distance is smaller than 2a for the ûrst time. To reach this
point the second particle has to move a distance y. his distance is equal to

y = P2M − CM = [(r ⋅w)2∣w∣2 ]
1/2 −√(2a)2 − x2 = r ⋅w∣w∣ −

√
δ∣w∣ ,

where the Pythagorean theorem was used on the triangle (P1,C ,M). Fi-
nally the time to travel this distance is given by τ̃ = y/∣w∣, which has to be
compared to the “minimal” timescale τ. If however the collision has already
happened in the past, the distance y will be negative and so will be the time

τ̃. herefore to avoid double counting, i.e., counting the same collision two
times in succeeding time-steps, one should also check if τ̃ > 0.
a .2 third order method

hemethod discussed in the above section is ûrst order in the sense that
the particle trajectories are linearly extrapolated in time to detect if they
collide within the (up)coming time-step. It is convenient to use, because
it only necessitates the knowledge of the particles’ position and velocity at
one time-step. Unfortunately, as has been explained in Section 4.1.2, this
comes notwithout cost. hat iswhy in this sectionwe present a higher order
method.

Using such an interpolation scheme is numerically however relatively
costly, therefore it is beneûcial to decide early, whether it is necessary to
calculate it. To this end Wang et al. (1998a) deûne three diòerent types
of collisions, that can happen in between two time-steps, depending on
the initial and the ûnal particle distance, r(t(n)) and r(t(n+1)) respectively,
where r(t) = ∣r(t)∣.

1. he easiest case is the one, when the particle distance was initially
greater than the particle diameter, but is smaller at the end of the
time-step, i.e., r(t(n)) > 2a and r(t(n+1)) ≤ 2a. In this case, which
Wang et al. (1998a) refer to as type I, (at least) one collision evidently
took place.

2. Type II collisions are those,when the initial and ûnal distance are both
greater than the particle diameter, r(t(n)) > 2a and r(t(n+1)) > 2a,
but the distance becomes smaller than 2a at an intermediate time t∗,
i.e., r(t∗) ≤ 2a for one t∗ ⊂ [t(n), t(n+1)].

3. Type III collisions are, as deûned by Wang et al. (1998a), just the
opposite of type II ones, i.e., r(t(n)) ≤ 2a and r(t(n+1)) ≤ 2a, but
d(t∗) > 2a for one t∗ ⊂ (t(n), t(n+1)).

To detect collisions of type II and type III, knowledge of the particles position
in between time-steps is needed. In these cases it is necessary to perform
the interpolation.
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a .3 the third order interpolation and its bounds

In this section, the
notation diòers slightly
from the one in the
main content.

Here the interpolation is derived. he two particles’ spatial distance in
dimension i (i = 1, d) in between two time-steps will be denoted as f i(t)
and we seek a representation matching

f i(t) = a + bt + ct2 + dt3.
he coeõcients a, b, c, d can be found, by solving the linear system

f i(0) = X i
2(0) − X i

1(0) = a ∶= α
f ′i(0) = V i

2 (0) − V i
1 (0) = b ∶= β

f i(∆t) = X i
2(∆t) − X i

1(∆t) = a + b∆t + c∆t2 + d∆t3 ∶= γ
f ′i(∆t) = V i

2 (∆t) − V i
1 (∆t) = b∆t + 2c∆t + 3d∆t2 ∶= δ

Here ∆t denotes the length of a time-step and the X i
j(t) and V i

j (t) ( j = 1, 2)
are the i-components of the two particles’ position and velocity at time t
respectively. Finally one obtains

a = α b = β
c = 3γ − α

∆t2
− 2β + δ

∆t
d = −2γ − α

∆t3
+ β + δ

∆t2

Putting this together and sorting for appearances of α, γ, β, and δ one obtains

f (t) = α (1 − 3 t2

∆t2
+ 2 t3

∆t3
) + γ (3 t2

∆t2
− 2 t3

∆t3
)

+ β (t − 2 t2
∆t
+ t3

∆t2
) + δ (− t2

∆t
+ t3

∆t2
)

= α + (γ − α)(3 t2

∆t2
− 2 t3

∆t3
) + β (t − t2

∆t
) + (β + δ)(− t2

∆t
+ t3

∆t2
)

(A.2)

Itmay be useful to know upper and lower bounds of f (t) in the interval[0, ∆t], so one can decide whether it is necessary to proceed with the colli-
sion checking. To this end one can make use of the following facts,¹ which
hold for arbitrary functions gk(t)

min(∑
k

gk(t)) ≥ ∑
k

min (gk(t))
and

max(∑
k

gk(t)) ≤ ∑
k

max (gk(t)) . (A.3)

1 In moremathematical terms, these equations can be derived from the triangle inequality
using the uniform (or supremum) norm. For the present purpose the given simple form
should suõce.
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In this plot the third order polyno-
mial interpolation for some arbitrary
α, β, γ, and δ is shown. Also shown are
the diòerent versions of the upper and
lower bounds, given by Equations (A.4)
and (A.5)

Hencewe can estimate the bounds by calculating the extrema of each term in
Equation (A.2). Doing themath² and taking into account, that even if there
is no extremum within the interval (0, ∆t) the function might be extremal
at the interval’s borders, one ûnally obtains the following two values as lower
and upper bounds

f̄lwr =min(α, γ) +min(0, 1
4
β ∆t) +min(− 4

27
(β + δ)∆t, 0)

f̄upr =max(α, γ) +max(0, 1
4
β ∆t) +max(− 4

27
(β + δ)∆t, 0) (A.4)

or another version (with diòerent, but equally correct values)

¯̄flwr =min(α, γ) +min(0, 4
27

β ∆t) +min(− 4

27
δ ∆t, 0)

¯̄fupr =max(α, γ) +max(0, 4
27

β ∆t) +max(− 4

27
δ ∆t, 0) (A.5)

he two diòerent versions stem from the two diòerent representations of
Equation (A.2). he above results are illustrated in Figure A.2.

A lower bound for the real particle distance in three dimensions can now
be deduced from the above values. herefore we want to use the relation
min ( f (t)2) = [min ( f (t))]2, which is valid if f (t) ≥ 0 or f (t) ≤ 0 in the
whole domain. To circumvent the resulting problems, one needs to re-deûne
f̄lwr and f̄upr in the following way

if ( f̄lwr f̄upr < 0){ f̄upr =max (∣ f̄lwr∣, ∣ f̄upr∣)
f̄lwr = 0 } else { f̄upr = f̄upr

f̄lwr = f̄lwr
} .

With this re-deûnition a lower bound for the particle distance is given by

(using Equation (A.3) again)

rmin = [∑
i

min ( f̄ ilwr f̄ ilwr, f̄ iupr f̄ iupr)]
1/2

.

his estimate can be used in a code to decide if amore thorough check for
a type II collision (see Appendix A.2) is needed. Equally the analogically
deûned estimate rmax can be used for type III collisions.

2 hismeans calculating the derivative of the function, ûnding the time(s) t∗ for which this
equals zero and, given t∗ ∈ [0, ∆t], deducing the function’s value at this point.



BGIP INTEGRATORS

As discussed in Section 3.2.5 the particle velocity gradient tensor σi j can
diverge when the nonlinear term in Equation (2.20) becomes dominant.
Physically this is related to the formation of a caustic. Based on this in-
terpretation Falkovich & Pumir (2007) developed a technique that allows
to integrate σi j despite the singularities. hey drew inspiration for their
method from earlier work by Girimaji & Pope (1990). Here we present their
approach as well as an alternative approach and compare them shortly.

b . 1 physically inspired approach

he temporal evolution of the gradient tensor σ is given by Equation (2.20).
Neglecting the time-dependance of Ai j, and limiting oneself to the one-
dimensional case, this equation becomes

σ̇ = A− σ
τp
− σ2.

If now σ becomes smaller than −τ−1p this equation is governed by the non-
linear term and its solution is σ(t) = 1/(t − τp). he local evolution of the
particle density n(t) is described by the equation

ṅ(t) = −n(t)σ(t),
which can now be solved as well. One obtains n(t) = −n0τp/(τp − t).

So the particle velocity gradient as well as the density diverge both in
ûnite time. his, of course, is physically not possible. hemaximal allowed
particle density is one particle per volume of a particle, i.e., 1/a. So the
equations need to be regularized at the time t∗ when this value is reached

n(t∗) = 1

a
= − τpn0

τp − t∗ ⇒ t∗ = n0a + τp .
his time also deûnes the maximal velocity gradient σ(t∗) = (n0aτp)−1.
Assuming as a realistic value for the initial density n0 = 1/η one ûnally ob-
tains the estimate from Falkovich & Pumir (2007), namely σmax = η/(aτp).
If this value is reached the sign of σ has to be inverted. In physical terms

this corresponds to a situation where the observed particle is overtaken by

another particle.
In a three-dimensional system the scalar σ is replaced by the norm of the

matrix ∥σ∥. he norm ∥⋅∥ is in principle the Euclidean norm ∥⋅∥2, but in
practice the Frobenius norm ∥σ∥ = [∑i , j∣σi j∣2]1/2 is suõcient. When this
norm reaches themaximal value η/(aτp) the signs of all components σi j
should be �ipped.

87
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F igure B .1

his plot shows all components of the velocity gradi-
ent tensor σi j for one particle (thin shaded lines) as
well as the norm of that tensor ∥σ∥ (thick line) ob-
tained from a numerical simulation (KS). In this case∥σ∥ was allowed to surpass the prescribed value of
η/(aτp) (straight dashed line) by one order ofmagni-
tude.
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We implemented this approach and show one short example trajectory in
Figure B.1. In that case we allowed the norm of the particle velocity gradient
tensor to be atmost ∥σ∥ = 10η/(aτp). As soon as it surpassed that value
the signs of all components σi j were inverted. his example shows nicely
that, as soon as the limiting value is exceeded, ∥σ∥ is bound to diverge. On
the other hand the �ipping of the signs of the components σi j makes sure
that it returns to physical values.

b . 1 . 1 Shortcomings of the approach

he sign-�ipping method works quite good in simulations of the particle
gradient tensor as can be seen in Figure B.1. It avoids getting inûnite values
and therefore assures successful numerical integration. However its results
are not necessarily as precise as they could be. In his section we will explain
some of the shortcomings of this technique and illustrate them in a simple
example.

In Appendix B.1 a possible way to determine a physically soundmaximal
value at which the signs of the particle velocity gradient tensor σ should be

inverted was derived. But in reality, no matter, how good the estimate of
thismaximal value, one will always �ip the signs “too early”. Consequently
all following values of σi j will suòer from errors. his is impressively seen,
if one tries this technique in a simple one-dimensional case with known
solution, e.g.,

x′(t) = 1 + x(t)2, x(0) = 0 ⇒ x(t) = tan(t) (B.1)

Now, if one tries to reproduce this result employing the sign-�ipping tech-
nique, one will ûnd that the determination of the ûrst singularity’s t-value is
relatively exact. But the location of all subsequent singularitieswill vary with
the choice of themaximal x at which its sign is changed, as well as with the
time-step. Two cases are presented in Figure B.2. here, Equation (B.1) was
integrated by a simple Euler scheme, employing two diòerent techniques:
he sign-�ipping and a so-called GIP integrator. he latter will be discussed
in Appendix B.2 and here we will only be concerned with the former. As in
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Equation (B.1) has been integrated numerically with a simple Euler scheme. Here we compare the sign-
�ipping technique with the GIP integrator described in Appendix B.2. Full lines represent the exact solution
x(t) = tan(t), dotted and dashed lines give the results from sign-�ipping and the GIP scheme respectively.
he straight dotted line gives themaximal value at which the sign of x was �ipped [out of range in (b)].

this case the exact solution is known, it is possible to determine the “optimal”
maximal value. It is given by the solution, two time-steps before a singularity
is reached, i.e., in our case tan(π/2 − 2∆t). A�er the sign of x has been
changed, it is as if the numerical integration would start anew with a new
initial condition. he real solution however lags behind this initial condition
by 2∆t. he thusly generated oòset increases at every singularity resulting in
a delay between the numerical integration and the exact solution. his eòect
persists, of course, also for small time-steps as can be seen from Figure B.2b.

b .2 gip integrators

here are quite a few integrators that were developed for matrix Riccati

equations like Equation (2.20). Most of them, as for example the Möbius

scheme by Schiò & Shnider (1999), present a full specialized time-stepping

method. But there is one interesting publication by Garrett & Li (2011),

that provides a way to turn every ordinary Runge–Kuttamethod into an

integrator that reliably integratesmatrix Riccati equations and even steps
over singularities in the solutions. Here we will discuss the basic ideas of

this method on the basis of Equation (2.20). he interested reader is referred

to Garrett & Li (2011) and Li & Kahan (2012) for details andmathematical

proofs.

By the help of the Bernoulli substitution σ = P2P1
−1, Equation (2.20) can

be transformed into a linear homogeneous diòerential equation

d

dt
P = BP, (B.2)
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where the 6 × 6 and 6 × 3 matrices

B = ⎛⎝
1

2τp
I3 I3

[ 1
τp
A + β ( D

DtA +AA)] − 1
2τp

I3

⎞
⎠ and P = (P1

P2
) (B.3)

respectively, were introduced. Here I3 designates the 3 × 3 identitymatrix.

Simply integrating Equation (B.2) may lead to numerical instabilities. But

one has the freedom to scale thematrix P by any non-singular 3 × 3matrix

M in order to prevent these problems. Because P2P1
−1 = (P2M)(P1M)−1

such a scaling does not in�uence the results. In fact onemay even rescale P
at every time-step. Garrett & Li (2011) explain thatM = P1

−1 is an especially
convenient choice.

hese observations lead to the following recipe: Integrate Equation (B.2)
with an ordinary Runge–Kutta scheme and regularly rescale P such that
P1 = I3. Whenever necessary extract σ by calculating σ = P2P1

−1.
Garrett & Li (2011) show that with this recipe one can simply step over

all singularities without any further knowledge about the details. As can
be seen in Figure B.2 it works correctly and especially it does not display
the problem of shi�ed singularities, as discussed in Appendix B.1.1We have
implemented this technique in our code and the results shown in Chapter 8
were obtained with it. We also compared the two approaches—the GIP

integrator and the sign-�ipping—in our numerical simulations of particles
entrained in amodel �ow. But we could not ûnd any obvious diòerences.
Probably the problem of the shi�ed singularities regularizes itself in amore
complex environment. Nevertheless, the GIP integrator rests a convenient
technique for integrating Equation (2.20).



LITERATURE CITED

his is the complete list of cited articles, books, and other resources. For the
comfort of the reader I tried to include a digital object identiûer (doi) where
possible. his should allow a stable (in time) access to articles published online. For
other online resources,which do not have a doi, like books that are freely available
on the internet, I included a simple url. hese are however, unfortunately not
guaranteed to persist for long times. Actually I noticed some already disappearing
over the process of writing thismanuscript. A good and usually successful practice
in these situations, is to head to a web archiving service like the Wayback Machine
(http://archive.org).

Abraham ER et al. (2000). “Importance of stirring in the development of an iron-
fertilized phytoplankton.” In: Nature 407, pp. 727–730. doi: 10.1038/35037555
(cit. on p. 5).

Abrahamson J (1975). “Collision rates of small particles in a vigorously turbulent
�uid.” In: Chem. Eng. Sci. 30, pp. 1371–1379. doi: 10.1016/0009-2509(75)
85067-6 (cit. on pp. xviii, 24, 25, 28, 29, 66, 67).

AllenMP, TildesleyDJ (1989). Computer Simulation of Liquids. Oxford: Clarendon
Press (cit. on p. 35).

Andersson B, Gustavsson K, Mehlig B, Wilkinson M (2007). “Advective colli-
sions.” In: EPL 80, p. 69001. doi: 10.1209/0295-5075/80/69001 (cit. on pp. 30,
31, 50, 64).

Argyris J, Faust G,HaaseM, Friedrich R (2010). Die Erforschung des Chaos: Eine
Einführung in die Theorie nichtlinearer Systeme. 2nd ed. Heidelberg: Springer
(cit. on p. 8).

Ayala O, GrabowskiWW,Wang L-P (2007). “A hybrid approach for simulating
turbulent collisions of hydrodynamically-interacting particles.” In: J. Comput.
Phys. 225, pp. 51–73. doi: 10.1016/j.jcp.2006.11.016 (cit. on p. 64).

Ayala O, Rosa B, Wang L-P (2008). “Eòects of turbulence on the geometric
collision rate of sedimenting droplets. Part 2. Theory and parameterization.”
In: New J. Phys. 10, p. 075016. doi: 10.1088/1367-2630/10/7/075016 (cit. on
p. 21). Corrigendum in: New J. Phys. 10 (2008), p. 099802. doi: 10.1088/
1367-2630/10/9/099802.

Bakunin O (2008). Turbulence and Diòusion: Scaling Versus Equations. Springer
complexity. Springer-Verlag Berlin Heidelberg (cit. on p. 50).

Balachandar S, Eaton JK (2010). “Turbulent DispersedMultiphase Flow.” In: Annu.
Rev. FluidMech. 42, pp. 111–133. doi: 10.1146/annurev.�uid.010908.165243
(cit. on p. 5).

Basset AB (1888). A treatise on hydrodynamics, with numerous examples.
Vol. 2. Cambridge: Deighton, Bell and Co. url: http://archive.org/details/
atreatiseonhydr02bassgoog (cit. on p. 16).

Batchelor GK (1959). Theheory of Homogeneous Turbulence. Cambridge Univer-
sity (cit. on p. 9).

Batchelor GK (1953). The theory of homogenous turbulence. Cambridge University
Press (cit. on pp. 11, 44).

Beard KV, Ochs HT (1993). “Warm-Rain Initiation: An Overview of Micro-
physical Mechanisms.” In: J. Appl. Meteor. 32, pp. 608–625. doi: 10.1175/
1520-0450(1993)032<0608:WRIAOO>2.0.CO;2 (cit. on p. 19).

91

http://archive.org
http://dx.doi.org/10.1038/35037555
http://dx.doi.org/10.1016/0009-2509(75)85067-6
http://dx.doi.org/10.1016/0009-2509(75)85067-6
http://dx.doi.org/10.1209/0295-5075/80/69001
http://dx.doi.org/10.1016/j.jcp.2006.11.016
http://dx.doi.org/10.1088/1367-2630/10/7/075016
http://dx.doi.org/10.1088/1367-2630/10/9/099802
http://dx.doi.org/10.1088/1367-2630/10/9/099802
http://dx.doi.org/10.1146/annurev.fluid.010908.165243
http://archive.org/details/atreatiseonhydr02bassgoog
http://archive.org/details/atreatiseonhydr02bassgoog
http://dx.doi.org/10.1175/1520-0450(1993)032<0608:WRIAOO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1993)032<0608:WRIAOO>2.0.CO;2


92 Literature cited

Bec J, Biferale L, Cencini M, Lanotte AS, Toschi F (2010). “Intermittency in the
velocity distribution of heavy particles in turbulence.” In: J. Fluid Mech. 646,
pp. 527–536. doi: 10.1017/S0022112010000029 (cit. on pp. 47, 71).

Bec J, Celani A, Cencini M, Musacchio S (2005). “Clustering and collisions of
heavy particles in random smooth �ows.” In: Phys. Fluids 17, p. 073301. doi:
10.1063/1.1940367 (cit. on pp. 21, 47).

Bec J (2005). “Multifractal concentrations of inertial particles in smooth random
�ows.” In: J. Fluid Mech. 528, pp. 255–277. doi: 10.1017/S0022112005003368
(cit. on p. 31).

Bec J et al. (2006). “Lyapunov exponents of heavy particles in turbulence.” In:
Phys. Fluids 18, p. 091702. doi: 10.1063/1.2349587 (cit. on p. 53).

Bec J et al. (2007). “Heavy Particle Concentration in Turbulence at Dissipative and
Inertial Scales.” In: Phys. Rev. Lett. 98, p. 084502. doi: 10.1103/PhysRevLett.
98.084502 (cit. on p. 47).

Beckwith SVW,Henning T, Nakagawa Y (2000). “Dust Properties and Assembly
of Large Particles in Protoplanetary Disks.” In: Protostars and Planets IV.
Ed. by VMannings, AP Boss, S Russell. he University of Arizona Press. url:
http://www.uapress.arizona.edu/onlinebks/PPIV/contents.php (cit. on p. 22).

BerryEX,Reinhardt RL (1974a). “AnAnalysis of CloudDropGrowth byCollection:
Part I. Double Distributions.” In: J. Atmos. Sci. 31, pp. 1814–1824. doi:
10.1175/1520-0469(1974)031<1814:AAOCDG>2.0.CO;2 (cit. on p. 20).

——(1974b). “An Analysis of Cloud Drop Growth by Collection Part II. Single
Initial Distributions.” In: J. Atmos. Sci. 31, pp. 1825–1831. doi: 10.1175/
1520-0469(1974)031<1825:AAOCDG>2.0.CO;2 (cit. on p. 20).

Berry MV (1981). “Singularities in Waves and Rays.” In: Physique des défauts:
Physics of defects. Ed. by R Balian,MKléman, J Poirier. Les Houches Session
XXXV. North-Holland, Amsterdam, pp. 453–543. url: http://www.phy.bris.
ac.uk/people/berry_mv/publications.html (cit. on p. 28).

Bewley GP, Saw E, Bodenschatz E (2013). “Observation of the sling eòect.” In:
New J. Phys. 15, p. 083051. doi: 10.1088/1367-2630/15/8/083051 (cit. on p. 28).

Bitane R,Homann H, Bec J (2012). “Time scales of turbulent relative dispersion.”
In: Phys. Rev. E 86, p. 045302. doi: 10.1103/PhysRevE.86.045302 (cit. on p. 4).

Blyth AM (1993). “Entrainment in Cumulus Clouds.” In: J. Appl. Meteor. 32,
pp. 626–641. doi: 10.1175/1520-0450(1993)032<0626:EICC>2.0.CO;2 (cit. on
p. 19).

Bodenschatz E, Malinowski SP, Shaw RA, Stratmann F (2010). “Can We Un-
derstand Clouds Without Turbulence?” In: Science 327, pp. 970–971. doi:
10.1126/science.1185138 (cit. on p. 19).

Bodenschatz E, EckertM (2011). “Prandtl and the Göttingen school.” In: A Voyage
hrough Turbulence. Ed. by PA Davidson, Y Kaneda, KMoòatt, KR Sreeni-
vasan. Cambridge Univ. Press, Oct. 2011, pp. 40–100 (cit. on p. 10). Dra�
avail. in: ArXiv e-prints (July 2011). arXiv: 1107.4729 [physics.�u-dyn].

Boussinesq J (1885). “Sur la résistance qu’oppose un �uide indéûni au repos, sans
pesanteur, aumouvement varié d’une sphère solide qu’il mouille sur toute
sa surface, quand les vitesses restent bien continues et assez faibles pour que
leurs carrés et produits soient négligeables.” French. In: C. R. Acad. Sci. 100,
pp. 935–937. url: http://gallica.bnf.fr/ark:/12148/bpt6k3056t (cit. on p. 16).

Boyd JP (2001). Chebyshev and Fourier Spectral Methods. 2nd ed. New York:
DoverPublications. url: http://www-personal.umich.edu/~jpboyd/BOOK_
Spectral2000.html (cit. on p. 43).

Brunk BK, Koch DL, Lion LW (1998a). “Observations of coagulation in
isotropic turbulence.” In: J. Fluid Mech. 371, pp. 81–107. doi: 10.1017/
S0022112098002183 (cit. on p. 31).

http://dx.doi.org/10.1017/S0022112010000029
http://dx.doi.org/10.1063/1.1940367
http://dx.doi.org/10.1017/S0022112005003368
http://dx.doi.org/10.1063/1.2349587
http://dx.doi.org/10.1103/PhysRevLett.98.084502
http://dx.doi.org/10.1103/PhysRevLett.98.084502
http://www.uapress.arizona.edu/onlinebks/PPIV/contents.php
http://dx.doi.org/10.1175/1520-0469(1974)031<1814:AAOCDG>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1974)031<1825:AAOCDG>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1974)031<1825:AAOCDG>2.0.CO;2
http://www.phy.bris.ac.uk/people/berry_mv/publications.html
http://www.phy.bris.ac.uk/people/berry_mv/publications.html
http://dx.doi.org/10.1088/1367-2630/15/8/083051
http://dx.doi.org/10.1103/PhysRevE.86.045302
http://dx.doi.org/10.1175/1520-0450(1993)032<0626:EICC>2.0.CO;2
http://dx.doi.org/10.1126/science.1185138
http://arxiv.org/abs/1107.4729
http://gallica.bnf.fr/ark:/12148/bpt6k3056t
http://www-personal.umich.edu/~jpboyd/BOOK_Spectral2000.html
http://www-personal.umich.edu/~jpboyd/BOOK_Spectral2000.html
http://dx.doi.org/10.1017/S0022112098002183
http://dx.doi.org/10.1017/S0022112098002183


Literature cited 93

——(1998b). “Turbulent coagulation of colloidal particles.” In: J. Fluid Mech. 364,
pp. 81–113. doi: 10.1017/S0022112098001037 (cit. on pp. 31, 50).

Calzavarini E et al. (2009). “Acceleration statistics of ûnite-sized particles in
turbulent �ow: the role of Faxén forces.” In: J. Fluid Mech. 630, pp. 179–189.
doi: 10.1017/S0022112009006880 (cit. on p. 43).

Capelo H, Xu H, LambrechtsM, Johansen A, Bodenschatz E (2013). Studies of gas-
particle interaction: Implications for the streaming instability in protoplanetary
disks. Talk given at the European Turbulence Conference 14, 1–4 September
2013, Lyon, France (cit. on p. 23).

Carneiro MV, Araújo NAM, Pähtz T,Herrmann HJ (2013). “Midair Collisions En-
hance Saltation.” In: Phys. Rev. Lett. 111, p. 058001. doi: 10.1103/PhysRevLett.
111.058001 (cit. on p. 5).

CarpenterMH,KennedyCA (1994). Fourth-order 2N-storageRunge–Kutta schemes.
NASA Technical Memorandum 109112. NASA (cit. on p. 74).

Chareyron D et al. (2012). “Testing an in-line digital holography ‘inversemethod’
for the Lagrangian tracking of evaporating droplets in homogeneous nearly
isotropic turbulence.” In: New J. Phys. 14, p. 043039. doi: 10.1088/1367-2630/
14/4/043039 (cit. on p. 5).

Chong MS, Perry AE, Cantwell BJ (1990). “A general classiûcation of three-
dimensional �ow ûelds.” In: Phys. Fluids A 2, pp. 765–777. doi: 10.1063/1.
857730 (cit. on p. 31).

Chumakov S (2012). Homogeneous Isotropic Turbulence in 3D (incompressible).
Comp. so�ware. Version r115. July 2012. url: http://hit3d.googlecode.com/
(cit. on p. 43).

Comte-Bellot G, Corrsin S (1971). “Simple Eulerian time correlation of full-and
narrow-band velocity signals in grid-generated, turbulence.” In: J. FluidMech.
48, pp. 273–337. doi: 10.1017/S0022112071001599 (cit. on pp. 15, 16, 43, 44).

Courant R, Friedrichs K, Lewy H (1928). “Über die partiellen Diòerenzengle-
ichungen dermathematischen Physik.” German. In: Math. Ann. 100, pp. 32–
74. url: http://resolver.sub.uni-goettingen.de/purl?GDZPPN002272636 (cit.
on p. 43). Trans. as “On the Partial Diòerence Equations ofMathematical
Physics.” In: IBM J. Res. Dev. 11, pp. 215–234. doi: 10.1147/rd.112.0215.

da Vinci L (c. 1508–1509). Studies ofWater passing Obstacles and falling. Retrieved
from the internet. url: http://commons.wikimedia.org/w/index.php?
title=File:Studies_of_Water_passing_Obstacles_and_falling.jpg&oldid=
70966304 (visited on 08/01/2013) (cit. on p. 10).

Daitche A, Tél T (2011). “Memory Eòects are Relevant for Chaotic Advection of In-
ertial Particles.” In: Phys. Rev. Lett. 107, p. 244501. doi: 10.1103/PhysRevLett.
107.244501 (cit. on p. 17).

Devenish BJ et al. (2012). “Droplet growth in warm turbulent clouds.” In: Q. J. R.
Meteorol. Soc. 138, pp. 1401–1429. doi: 10.1002/qj.1897 (cit. on pp. 19, 20).

Ducasse L (2009). “Mouvements collectifs de particules en turbulence : collisions
et concentration préférentielle.” French. hèse pourobtenir le titre deDocteur
en Sciences. Universitée de Nice-Sophia Antipolis, Dec. 2009 (cit. on pp. 32,
74).

Ducasse L, Pumir A (2009). “Inertial particle collisions in turbulent synthetic
�ows: Quantifying the sling eòect.” In: Phys. Rev. E 80, p. 066312. doi:
10.1103/PhysRevE.80.066312 (cit. on pp. 30, 65, 74, 79).

Duncan K, Mehlig B, Östlund S, Wilkinson M (2005). “Clustering by Mixing
Flows.” In: Phys. Rev. Lett. 95, p. 240602. doi: 10.1103/PhysRevLett.95.240602
(cit. on p. 29).

http://dx.doi.org/10.1017/S0022112098001037
http://dx.doi.org/10.1017/S0022112009006880
http://dx.doi.org/10.1103/PhysRevLett.111.058001
http://dx.doi.org/10.1103/PhysRevLett.111.058001
http://dx.doi.org/10.1088/1367-2630/14/4/043039
http://dx.doi.org/10.1088/1367-2630/14/4/043039
http://dx.doi.org/10.1063/1.857730
http://dx.doi.org/10.1063/1.857730
http://hit3d.googlecode.com/
http://dx.doi.org/10.1017/S0022112071001599
http://resolver.sub.uni-goettingen.de/purl?GDZPPN002272636
http://dx.doi.org/10.1147/rd.112.0215
http://commons.wikimedia.org/w/index.php?title=File:Studies_of_Water_passing_Obstacles_and_falling.jpg&oldid=70966304
http://commons.wikimedia.org/w/index.php?title=File:Studies_of_Water_passing_Obstacles_and_falling.jpg&oldid=70966304
http://commons.wikimedia.org/w/index.php?title=File:Studies_of_Water_passing_Obstacles_and_falling.jpg&oldid=70966304
http://dx.doi.org/10.1103/PhysRevLett.107.244501
http://dx.doi.org/10.1103/PhysRevLett.107.244501
http://dx.doi.org/10.1002/qj.1897
http://dx.doi.org/10.1103/PhysRevE.80.066312
http://dx.doi.org/10.1103/PhysRevLett.95.240602


94 Literature cited

Falkovich G, Fouxon A, Stepanov MG (2002). “Acceleration of rain initiation
by cloud turbulence.” In: Nature 419, pp. 151–154. doi: 10.1038/nature00983
(cit. on pp. 28, 29, 65).

Falkovich G, Malinowski SP (2008). “Focus on Cloud Physics (Editorial).” In:
New J. Phys. 10, p. 075012. doi: 10.1088/1367-2630/10/7/075012 (cit. on p. 19).

Falkovich G, Pumir A (2004). “Intermittent distribution of heavy particles in
a turbulent �ow.” In: Phys. Fluids 16, pp. L47–L50. doi: 10.1063/1.1755722
(cit. on p. 30).

——(2007). “Sling Eòect in Collisions of Water Droplets in Turbulent Clouds.” In:
J. Atmos. Sci. 64, pp. 4497–4505. doi: 10.1175/2007JAS2371.1 (cit. on pp. 29,
30, 87).

Faxén H (1922). “Der Widerstand gegen die Bewegung einer starren Kugel
in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden
eingeschlossen ist.” In: Ann. Phys. 373, pp. 89–119. doi: 10.1002/andp.
19223731003 (cit. on p. 16).

FernerMC,Weissburg MJ (2005). “Slow-moving predatory gastropods track prey
odors in fast and turbulent �ow.” In: J. Exp. Biol. 208, pp. 809–819. doi:
10.1242/jeb.01438 (cit. on p. 5).

Février P, Simonin O, Squires KD (2005). “Partitioning of particle velocities in
gas–solid turbulent �ows into a continuous ûeld and a spatially uncorrelated
random distribution: theoretical formalism and numerical study.” In: J. Fluid
Mech. 533, pp. 1–46. doi: 10.1017/S0022112005004088 (cit. on pp. 28, 30).

Friedrich R (2007). “Turbulenz.” Lecture notes taken in a course during winter
semester 2007/08 at WestfälischeWilhelms-UniversitätMünster (cit. on p. 8).

Frisch U, Bec J (2001). “Burgulence.” In: New trends in turbulence. Turbulence:
nouveaux aspects. Ed. by M Lesieur, A Yaglom, F David. Vol. 74. LesHouches
– École d’Été de Physiquehéorique. Springer Berlin Heidelberg, pp. 341–383.
doi: 10.1007/3-540-45674-0_7 (cit. on p. 28).

Frisch U (1996). Turbulence: The Legacy of A. N. Kolmogorov. Cambridge
University Press, Jan. 1996 (cit. on pp. 8, 9, 12, 14).

Fung JCH, Hunt JCR, Malik NA, Perkins RJ (1992). “Kinematic simulation of
homogeneous turbulence by unsteady random Fouriermodes.” In: J. Fluid
Mech. 236, pp. 281–318. doi: 10.1017/S0022112092001423 (cit. on p. 73).

Fung JCH, Vassilicos JC (1998). “Two-particle dispersion in turbulentlike �ows.”
In: Phys. Rev. E 57, pp. 1677–1690. doi: 10.1103/PhysRevE.57.1677 (cit. on
p. 74).

Garrett CK, Li R (2011). GIP Integrators for Matrix Riccati Diòerential Equations.
Mathematics Preprint Series 5. he University of Texas Arlington. url:
http://www.uta.edu/math/preprint/rep2011_05.pdf (cit. on pp. 89, 90).

Gatignol R (1983). “Faxen Formulae for a Rigid Particle in an Unsteady Non-
uniform Stokes Flow.” In: J. Méc. héor. Appl. 1, pp. 143–160 (cit. on p. 16).

Girimaji SS, Pope SB (1990). “Material-element deformation in isotropic turbu-
lence.” In: J. FluidMech. 220, pp. 427–458. doi: 10.1017/S0022112090003330
(cit. on p. 87).

Gottlieb S, Shu C, Tadmor E (2001). “Strong Stability-Preserving High-Order
Time Discretization Methods.” In: SIAM Rev. 43, pp. 89–112. doi: 10.1137/
S003614450036757X (cit. on p. 74).

GrabowskiWW,Wang L-P (2009). “Diòusional and accretional growth of water
drops in a rising adiabatic parcel: eòects of the turbulent collision kernel.” In:
Atmos. Chem. Phys. 9, pp. 2335–2353. doi: 10.5194/acp-9-2335-2009 (cit. on
p. 72).

GrabowskiWW,VaillancourtP (1999). “Comments on ‘PreferentialConcentration
of Cloud Droplets by Turbulence: Eòects on the Early Evolution of Cumulus

http://dx.doi.org/10.1038/nature00983
http://dx.doi.org/10.1088/1367-2630/10/7/075012
http://dx.doi.org/10.1063/1.1755722
http://dx.doi.org/10.1175/2007JAS2371.1
http://dx.doi.org/10.1002/andp.19223731003
http://dx.doi.org/10.1002/andp.19223731003
http://dx.doi.org/10.1242/jeb.01438
http://dx.doi.org/10.1017/S0022112005004088
http://dx.doi.org/10.1007/3-540-45674-0_7
http://dx.doi.org/10.1017/S0022112092001423
http://dx.doi.org/10.1103/PhysRevE.57.1677
http://www.uta.edu/math/preprint/rep2011_05.pdf
http://dx.doi.org/10.1017/S0022112090003330
http://dx.doi.org/10.1137/S003614450036757X
http://dx.doi.org/10.1137/S003614450036757X
http://dx.doi.org/10.5194/acp-9-2335-2009


Literature cited 95

Cloud Droplet Spectra’.” In: J. Atmos. Sci. 56, pp. 1433–1436. doi: 10.1175/
1520-0469(1999)056<1433:COPCOC>2.0.CO;2 (cit. on pp. 22, 64).

GrabowskiWW, Wang L-P (2013). “Growth of Cloud Droplets in a Turbulent
Environment.” In: Annu. Rev. Fluid Mech. 45, pp. 293–324. doi: 10.1146/
annurev-�uid-011212-140750 (cit. on pp. 19, 20, 22). Erratum in: Annu. Rev.
Fluid Mech. doi: 10.1146/annurev-�-45-021013-200001.

Grassberger P, Procaccia I (1983). “Characterization of Strange Attractors.” In:
Phys. Rev. Lett. 50, pp. 346–349. doi: 10.1103/PhysRevLett.50.346 (cit. on
p. 47).

Gustavsson K,Mehlig B (2011a). “Distribution of relative velocities in turbulent
aerosols.” In: Phys. Rev. E 84, p. 045304. doi: 10.1103/PhysRevE.84.045304
(cit. on pp. 64, 65, 71).

——(2011b). “Ergodic and non-ergodic clustering of inertial particles.” In: EPL 96,
p. 60012. doi: 10.1209/0295-5075/96/60012 (cit. on p. 26).

——(2013a). “Collisions and recollisions of identical inertial particles in random
velocity ûelds.” In: ArXiv e-prints (Sept. 2013). doi: http://arxiv.org/abs/1307.
0462 (cit. on pp. 50, 64).

——(2013b). “Relative velocities of inertial particles in turbulent aerosols.” In:
ArXiv e-prints (July 2013). arXiv: 1307.0462 [physics.�u-dyn] (cit. on pp. 64,
71).

Gustavsson K,Mehlig B,Wilkinson M (2008). “Collisions of particles advected in
random �ows.” In: New J. Phys. 10, p. 075014. doi: 10.1088/1367-2630/10/7/
075014 (cit. on p. 30).

Gustavsson K,Meneguz E, ReeksM,Mehlig B (2012). “Inertial-particle dynamics
in turbulent �ows: caustics, concentration �uctuations and random uncorre-
latedmotion.” In: New J. Phys. 14, p. 115017. doi: 10.1088/1367-2630/14/11/
115017 (cit. on p. 30).

Hackl JF, Yeung PK, Sawford BL (2011). “Multi-particle and tetrad statistics in
numerical simulations of turbulent relative dispersion.” In: Phys. Fluids 23,
p. 065103. doi: 10.1063/1.3586803 (cit. on p. 4).

HaynesW, ed. (2012). CRCHandbook of Chemistry and Physics 2012–2013. 93rd ed.
CRCHandbook of Chemistry and Physics. Boca Raton, FL: CRC Press (cit.
on pp. 21, 22).

HeisenbergW (1948). “Zur statistischen Theorie der Turbulenz.” In: Z. Phys. 124,
pp. 628–657. doi: 10.1007/BF01668899 (cit. on p. 15).

Ĳzermans RHA,Meneguz E, ReeksMW (2010). “Segregation of particles in incom-
pressible random �ows: singularities, intermittency and random uncorrelated
motion.” In: J. Fluid Mech. 653, pp. 99–136. doi: 10.1017/S0022112010000170
(cit. on p. 30).

Ishihara T, Kaneda Y, YokokawaM, Itakura K, Uno A (2007). “Small-scale statis-
tics in high-resolution direct numerical simulation of turbulence: Reynolds
number dependence of one-point velocity gradient statistics.” In: J. Fluid
Mech. 592, pp. 335–366. doi: 10.1017/S0022112007008531 (cit. on p. 4).

Johansen A et al. (2007). “Rapid planetesimal formation in turbulent circumstellar
disks.” In: Nature 448, pp. 1022–1025. doi: 10.1038/nature06086 (cit. on
p. 22).

Jonas PR (1996). “Turbulence and cloudmicrophysics.” In: Atmos. Res. 40, pp. 283–
306. doi: 10.1016/0169-8095(95)00035-6 (cit. on p. 19).

Jørgensen JB,Mann J,Ott S, Pécseli HL, Trulsen J (2005). “Experimental studies of
occupation and transit times in turbulent �ows.” In: Phys. Fluids 17, p. 035111.
doi: 10.1063/1.1863259 (cit. on p. 41).

http://dx.doi.org/10.1175/1520-0469(1999)056<1433:COPCOC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1999)056<1433:COPCOC>2.0.CO;2
http://dx.doi.org/10.1146/annurev-fluid-011212-140750
http://dx.doi.org/10.1146/annurev-fluid-011212-140750
http://dx.doi.org/10.1146/annurev-fl-45-021013-200001
http://dx.doi.org/10.1103/PhysRevLett.50.346
http://dx.doi.org/10.1103/PhysRevE.84.045304
http://dx.doi.org/10.1209/0295-5075/96/60012
http://dx.doi.org/http://arxiv.org/abs/1307.0462
http://dx.doi.org/http://arxiv.org/abs/1307.0462
http://arxiv.org/abs/1307.0462
http://dx.doi.org/10.1088/1367-2630/10/7/075014
http://dx.doi.org/10.1088/1367-2630/10/7/075014
http://dx.doi.org/10.1088/1367-2630/14/11/115017
http://dx.doi.org/10.1088/1367-2630/14/11/115017
http://dx.doi.org/10.1063/1.3586803
http://dx.doi.org/10.1007/BF01668899
http://dx.doi.org/10.1017/S0022112010000170
http://dx.doi.org/10.1017/S0022112007008531
http://dx.doi.org/10.1038/nature06086
http://dx.doi.org/10.1016/0169-8095(95)00035-6
http://dx.doi.org/10.1063/1.1863259


96 Literature cited

Jullien M-C, Paret J, Tabeling P (1999). “Richardson Pair Dispersion in Two-
Dimensional Turbulence.” In: Phys. Rev. Lett. 82, pp. 2872–2875. doi: 10.
1103/PhysRevLett.82.2872 (cit. on p. 52).

Kaneda Y, Ishihara T, YokokawaM, Itakura K, Uno A (2003). “Energy dissipation
rate and energy spectrum in high resolution direct numerical simulations
of turbulence in a periodic box.” In: Phys. Fluids 15, pp. L21–L24. doi:
10.1063/1.1539855 (cit. on p. 4).

Kennel MB (2004). “KDTREE 2: Fortran 95 and C++ so�ware to eõciently search
fornearneighbors in amulti-dimensionalEuclidean space.” In: ArXiv e-prints
(Aug. 2004). arXiv: physics/0408067 [physics.data-an] (cit. on p. 36).

Kepkay P (2000). “Colloids and the Ocean Carbon Cycle.” In: Marine Chemistry.
Ed. by PWangersky. Vol. 5D. heHandbook of Environmental Chemistry.
Springer Berlin Heidelberg, pp. 35–56. doi: 10.1007/10683826_2 (cit. on p. 5).

Khain A et al. (2007). “Critical comments to results of investigations of drop
collisions in turbulent clouds.” In: Atmos. Res. 86, pp. 1–20. doi: 10.1016/j.
atmosres.2007.05.003 (cit. on p. 22).

Kitchen M, Caughey SJ (1981). “Tethered-balloon observations of the structure
of small cumulus clouds.” In: Q. J. R. Meteorol. Soc. 107, pp. 853–874. doi:
10.1002/qj.49710745407 (cit. on p. 21).

Kolmogorov AN (1941). “The Local Structure of Turbulence in Incompressible
Viscous Fluid for Very Large Reynolds Numbers.” In: Dokl. Akad. Nauk
SSSR 30.4 (cit. on pp. 14, 15). Trans. from the Russian by V Levin. In: Proc. R.
Soc. London Ser. A 434 (1991), pp. 9–13. doi: 10.1098/rspa.1991.0075.

Krstulovic G, Cencini M, Bec J (2013). “Eòective Rates in Dilute Reaction-
Advection Systems for the Annihilation Process A + A → ∅.” In: J. Stat.
Phys. 153, pp. 530–550. doi: 10.1007/s10955-013-0823-8 (cit. on p. 58).

Lamorgese AG, Caughey DA, Pope SB (2005). “Direct numerical simulation of
homogeneous turbulence with hyperviscosity.” In: Phys. Fluids 17, p. 015106.
doi: 10.1063/1.1833415 (cit. on p. 43).

Landau LD, Lifshitz EM (1987). Fluid Mechanics: Vol 6 (Course of Theoretical
Physics). 2nd ed. Pergamon Press (cit. on p. 11).

LesieurM (1997). Turbulence in Fluids. 3ed. Kluwer Academic Publishers (cit. on
p. 13).

LewisDM, PedleyTJ (2000). “PlanktonicContact Rates inHomogeneous Isotropic
Turbulence: Theoretical Predictions andKinematic Simulations.” In: J. heor.
Biol. 205, pp. 377–408. doi: 10.1006/jtbi.2000.2073 (cit. on p. 5).

Li R, KahanW (2012). “A family of Anadromic numerical methods formatrix
Riccati diòerential equations.” In: Math. Comp. 81, pp. 233–265. doi: 10.
1090/S0025-5718-2011-02498-1 (cit. on p. 89).

MacKay DJC (2009). Sustainable Energy – without the hot air. 3rd ed. Cambridge:
UIT. url: http://www.withouthotair.com (cit. on p. 3).

Mafra-Neto A, Carde RT (1994). “Fine-scale structure of pheromone plumes
modulates upwind orientation of �ying moths.” In: Nature 369, pp. 142–144.
doi: 10.1038/369142a0 (cit. on p. 5).

Malik NA,Vassilicos JC (1999). “A Lagrangianmodel for turbulent dispersionwith
turbulent-like �ow structure: Comparison with direct numerical simulation
for two-particle statistics.” In: Phys. Fluids 11, pp. 1572–1580. doi: 10.1063/1.
870019 (cit. on p. 74).

Matsumoto M, Nishimura T (1998). “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator.” In: ACM Trans.
Model. Comput. Simul. 8, pp. 3–30. doi: 10.1145/272991.272995 (cit. on p. 74).

http://dx.doi.org/10.1103/PhysRevLett.82.2872
http://dx.doi.org/10.1103/PhysRevLett.82.2872
http://dx.doi.org/10.1063/1.1539855
http://arxiv.org/abs/physics/0408067
http://dx.doi.org/10.1007/10683826_2
http://dx.doi.org/10.1016/j.atmosres.2007.05.003
http://dx.doi.org/10.1016/j.atmosres.2007.05.003
http://dx.doi.org/10.1002/qj.49710745407
http://dx.doi.org/10.1098/rspa.1991.0075
http://dx.doi.org/10.1007/s10955-013-0823-8
http://dx.doi.org/10.1063/1.1833415
http://dx.doi.org/10.1006/jtbi.2000.2073
http://dx.doi.org/10.1090/S0025-5718-2011-02498-1
http://dx.doi.org/10.1090/S0025-5718-2011-02498-1
http://www.withouthotair.com
http://dx.doi.org/10.1038/369142a0
http://dx.doi.org/10.1063/1.870019
http://dx.doi.org/10.1063/1.870019
http://dx.doi.org/10.1145/272991.272995


Literature cited 97

MaxeyMR (1987). “The gravitational settling of aerosol particles in homogeneous
turbulence and random �ow ûelds.” In: J. Fluid Mech. 174, pp. 441–465. doi:
10.1017/S0022112087000193 (cit. on pp. 25, 26, 28).

Maxey MR, Riley JJ (1983). “Equation of motion for a small rigid sphere in a
nonuniform �ow.” In: Phys. Fluids 26, pp. 883–889. doi: 10.1063/1.864230
(cit. on p. 16).

McComb WD (1992). The Physics of Fluid Turbulence (Oxford Engineering Science
Series, 25). Oxford University Press, USA,Mar. 1992 (cit. on p. 12).

McQuarrie D (1976). Statistical Mechanics. New York: Harper & Row (cit. on
p. 26).

Mehlig B, Uski V,Wilkinson M (2007). “Colliding particles in highly turbulent
�ows.” In: Phys. Fluids 19, p. 098107. doi: 10.1063/1.2768931 (cit. on pp. 25,
66).

Meneguz E, ReeksMW (2011). “Statistical properties of particle segregation in
homogeneous isotropic turbulence.” In: J. FluidMech. 686, pp. 338–351. doi:
10.1017/jfm.2011.333 (cit. on p. 30).

MoòattHK (1981). “Some developments in the theory of turbulence.” In: J. Fluid
Mech. 106, pp. 27–47. doi: 10.1017/S002211208100150X (cit. on p. 8).

Moody EG, Collins LR (2003). “Eòect ofMixing on the Nucleation and Growth
of Titania Particles.” In: Aerosol. Sci. Tech. 37, pp. 403–424. doi: 10.1080/
02786820300979 (cit. on p. 5).

Moore WJ (1972). Physical Chemistry. 4th. Prentice-Hall chemistry se-
ries. Prentice-Hall, p. 1458. url: http://www.archive.org/details/
physicalchemistr029701mbp (cit. on p. 23).

Navier CLMH (1823). “Mémoire sur les lois dumouvement des �uides.” In: Mem.
Acad. Sci. Inst. Fr. 6, pp. 389–440. url: http://gallica.bnf.fr/ark:/12148/
bpt6k3221x.image.f577 (cit. on p. 7).

Nicolleau FCGA, ElMaihy A (2004). “Study of the development of three-
dimensional sets of �uid particles and iso-concentration ûelds using kine-
matic simulation.” In: J. Fluid Mech. 517, pp. 229–249. doi: 10.1017/
S0022112004000898 (cit. on p. 74).

Obukhov AM (1941). “On the distribution of energy in the spectrum of turbulent
�ow.” In: Dokl. Akad. Nauk SSSR 32.1 (cit. on p. 15).

ONERA (2009). Photograph of a CitroënDS in awind tunnel. Retrieved from the in-
ternet. url: http://www.onera.fr/images-science/tunnel-hydrodynamique/
images/ds-aerodynamique-ds19.jpg (visited on 04/06/2013) (cit. on p. 3).

Onsager L (1945). “The Distribution of Energy in Turbulence.” In: Phys. Rev. 68.
Abstract, p. 286. doi: 10.1103/PhysRev.68.281 (cit. on p. 15).

——(1949). “Statistical Hydrodynamics.” English. In: Nuovo Cimento Suppl. 6,
pp. 279–287. doi: 10.1007/BF02780991 (cit. on p. 15).

Orszag SA (1971). “On the Elimination of Aliasing in Finite-Diòerence Schemes
by Filtering High-Wavenumber Components.” In: J. Atmos. Sci. 28, pp. 1074–
1074. doi: 10.1175/1520-0469(1971)028<1074:OTEOAI>2.0.CO;2 (cit. on
p. 43).

——(1977). “Lectures on the Statistical Theory of Turbulence.” In: Fluid Dynamics
1973. LesHouches Summer School ofheoretical Physics. Ed. by R Balian,
J Peube. New York: Gordon and Breach, pp. 237–374 (cit. on p. 13).

Oseen CW (1927). NeuereMethoden und Ergebnisse in der Hydrodynamik. Ger-
man. Vol. 1. Mathematik und ihre Anwendungen in Monographien und
Lehrbüchern. Leipzig: Akademische Verlagsgesellscha� m. b. H. (cit. on
p. 16).

http://dx.doi.org/10.1017/S0022112087000193
http://dx.doi.org/10.1063/1.864230
http://dx.doi.org/10.1063/1.2768931
http://dx.doi.org/10.1017/jfm.2011.333
http://dx.doi.org/10.1017/S002211208100150X
http://dx.doi.org/10.1080/02786820300979
http://dx.doi.org/10.1080/02786820300979
http://www.archive.org/details/physicalchemistr029701mbp
http://www.archive.org/details/physicalchemistr029701mbp
http://gallica.bnf.fr/ark:/12148/bpt6k3221x.image.f577
http://gallica.bnf.fr/ark:/12148/bpt6k3221x.image.f577
http://dx.doi.org/10.1017/S0022112004000898
http://dx.doi.org/10.1017/S0022112004000898
http://www.onera.fr/images-science/tunnel-hydrodynamique/images/ds-aerodynamique-ds19.jpg
http://www.onera.fr/images-science/tunnel-hydrodynamique/images/ds-aerodynamique-ds19.jpg
http://dx.doi.org/10.1103/PhysRev.68.281
http://dx.doi.org/10.1007/BF02780991
http://dx.doi.org/10.1175/1520-0469(1971)028<1074:OTEOAI>2.0.CO;2


98 Literature cited

Pan L, Padoan P, Scalo J, Kritsuk AG, Norman ML (2011). “Turbulent Clustering
of Protoplanetary Dust and Planetesimal Formation.” In: ApJ 740, p. 6. doi:
10.1088/0004-637X/740/1/6 (cit. on p. 22).

Pinsky MB, Khain AP (1997). “Turbulence eòects on droplet growth and size
distribution in clouds–A review.” In: J. Aerosol Sci. 28, pp. 1177–1214. doi:
10.1016/S0021-8502(97)00005-0 (cit. on pp. 19, 22).

Pope SB (2000). Turbulent Flows. 1st. Cambridge University Press, Jan. 2000
(cit. on pp. 9, 11, 12, 22, 25).

Post SL, Abraham J (2002). “Modeling the outcome of drop-drop collisions in
Diesel sprays.” In: Int. J. Multiphase Flow 28, pp. 997–1019. doi: 10.1016/
S0301-9322(02)00007-1 (cit. on p. 5).

Press WH, Teukolsky SA, VetterlingWT, Flannery BP (2007). Numerical Recipes:
The Art of Scientiûc Computing. 3rd ed. Cambridge University Press (cit. on
p. 44).

Pruppacher H, Klett J (1997). Microphysics of Clouds and Precipitation. Atmo-
spheric and oceanographic sciences library. Kluwer Academic Publishers
(cit. on pp. 22, 31).

RastMP, Pinton J-F (2011). “Pair Dispersion in Turbulence: The Subdominant
Role of Scaling.” In: Phys. Rev. Lett. 107, p. 214501. doi: 10.1103/PhysRevLett.
107.214501 (cit. on p. 52).

ReadeWC, Collins LR (2000). “Eòect of preferential concentration on turbulent
collision rates.” In: Phys. Fluids 12, pp. 2530–2540. doi: 10.1063/1.1288515
(cit. on pp. 30, 46).

ReeksMW, Fabbro L, SoldatiA (2006). “In search of random uncorrelated particle
motion (RUM) in a simple random �ow ûeld.” In: Proc. 2006 ASME Joint US
European Fluids Engineering SummerMeeting. (July 17–20, 2006). Miami, FL,
pp. 1755–1762 (cit. on pp. 28, 30).

Reynolds O (1883). “An Experimental Investigation of the Circumstances Which
DetermineWhether theMotion ofWater Shall Be Direct or Sinuous, and
of the Law of Resistance in Parallel Channels.” In: Phil. Trans. R. Soc. 174,
pp. 935–982. url: http://www.jstor.org/stable/109431 (cit. on pp. 8, 9).

Richardson LF (1922). Weather prediction by numerical process. Cam-
bridge: Cambridge Univ. Press, p. 236. url: http://archive.org/details/
weatherpredictio00richrich (cit. on p. 9).

Rickels W et al. (2011). Large-Scale Intentional Interventions into the ClimateSys-
tem? Assessing the Climate Engineering Debate. Scoping report conducted
on behalf of the German Federal Ministry of Education and Research
(BMBF). Kiel Earth Institute, Kiel. url: http://www.kiel-earth-institute.
de/scoping-report-climate-engineering.html (cit. on p. 19).

Robertson HP (1940). “The invariant theory of isotropic turbulence.” In: Math.
Proc. Cambridge. 36, pp. 209–223. doi: 10.1017/S0305004100017199 (cit. on
p. 11).

Rosa B, Parishani H, Ayala O, GrabowskiWW,Wang L-P (2013). “Kinematic and
dynamic collision statistics of cloud droplets from high-resolution simula-
tions.” In: New J. Phys. 15, p. 045032. doi: 10.1088/1367-2630/15/4/045032
(cit. on pp. 21, 28, 47, 48, 71, 72).

Rothschild B, Osborn T (1988). “Small-scale turbulence and plankton contact
rates.” In: J. Plankton Res. 10, pp. 465–474. doi: 10.1093/plankt/10.3.465
(cit. on p. 5).

Sachs L,Hedderich J (2006). Angewandte Statistik – Methodensammlung mit R.
Zwöl�e, vollständig neu bearbeitete Au�age. Springer Berlin Heidelberg,
p. 702. doi: 10.1007/978-3-540-32161-3 (cit. on p. 37).

http://dx.doi.org/10.1088/0004-637X/740/1/6
http://dx.doi.org/10.1016/S0021-8502(97)00005-0
http://dx.doi.org/10.1016/S0301-9322(02)00007-1
http://dx.doi.org/10.1016/S0301-9322(02)00007-1
http://dx.doi.org/10.1103/PhysRevLett.107.214501
http://dx.doi.org/10.1103/PhysRevLett.107.214501
http://dx.doi.org/10.1063/1.1288515
http://www.jstor.org/stable/109431
http://archive.org/details/weatherpredictio00richrich
http://archive.org/details/weatherpredictio00richrich
http://www.kiel-earth-institute.de/scoping-report-climate-engineering.html
http://www.kiel-earth-institute.de/scoping-report-climate-engineering.html
http://dx.doi.org/10.1017/S0305004100017199
http://dx.doi.org/10.1088/1367-2630/15/4/045032
http://dx.doi.org/10.1093/plankt/10.3.465
http://dx.doi.org/10.1007/978-3-540-32161-3


Literature cited 99

Saòman PG (1992). Vortex dynamics. 1st pbk. ed., with corrections. Cambridge
monographs on mechanics and applied mathematics. Cambridge: Cam-
bridge University Press, p. 311. url: http://www.loc.gov/catdir/toc/cam024/
95138986.html (cit. on p. 8).

Saòman PG, Turner JS (1956). “On the collision of drops in turbulent clouds.” In:
J. Fluid Mech. 1, pp. 16–30. doi: 10.1017/S0022112056000020 (cit. on pp. xix,
23–25, 27–32, 66, 67, 71, 75, 83). Corrigendum in: J. Fluid Mech. 196 (1988),
pp. 599–599. doi: 10.1017/S002211208800285X.

Safranov V (1972). Evolution of the Protoplanetary Cloud and Formation of the
Earth and the Planets. Trans. from the Russian by Israel Program for Scientiûc
Translations. Jerusalem: Keter Press. url: http://www.archive.org/details/
nasa_techdoc_19720019068 (cit. on pp. 5, 22).

Scatamacchia R, Biferale L, Toschi F (2012). “Extreme Events in the Dispersions
of Two Neighboring Particles Under the In�uence of Fluid Turbulence.” In:
Phys. Rev. Lett. 109, p. 144501. doi: 10.1103/PhysRevLett.109.144501 (cit. on
p. 52).

Schiò J, Shnider S (1999). “A Natural Approach to the Numerical Integration of
Riccati Diòerential Equations.” In: SIAM J. Numer. Anal. 36, pp. 1392–1413.
doi: 10.1137/S0036142996307946 (cit. on p. 89).

Shariò K (2009). “FluidMechanics inDisks Around Young Stars*.” In: Annu. Rev.
Fluid Mech. 41, pp. 283–315. doi: 10.1146/annurev.�uid.010908.165144 (cit. on
p. 22).

Shaw RA (2003). “Particle-Turbulence Interactions in Atmospheric Clouds.” In:
Annu. Rev. Fluid Mech. 35, pp. 183–227. doi: 10.1146/annurev.�uid.35.101101.
161125 (cit. on pp. 5, 19, 20).

Siebert H, Shaw RA, Warha� Z (2010). “Statistics of Small-Scale Velocity Fluc-
tuations and Internal Intermittency in Marine Stratocumulus Clouds.” In: J.
Atmos. Sci. 67, pp. 262–273. doi: 10.1175/2009JAS3200.1 (cit. on pp. 4, 22).

Siebert H, Lehmann K, Wendisch M (2006a). “Observations of Small-Scale
Turbulence and EnergyDissipation Rates in the Cloudy Boundary Layer.” In:
J. Atmos. Sci. 63, pp. 1451–1466. doi: 10.1175/JAS3687.1 (cit. on p. 22).

Siebert H et al. (2006b). “Probing Finescale Dynamics and Microphysics of
Clouds with Helicopter-BorneMeasurements.” In: Bull. Amer. Meteor. Soc.
87, pp. 1727–1738. doi: 10.1175/BAMS-87-12-1727 (cit. on p. 21).

Siebesma AP et al. (2009). “Cloud-controlling Factors.” In: Clouds In he Per-
turbed Climate System. heir Relationship to Energy Balance, Atmospheric
Dynamics, and Precipitation. Ed. by J Heintzenberg, RJ Charlson. MIT Press,
pp. 269–290 (cit. on p. 19).

Simonin O, Zaichik LI, Alipchenkov VM, Fevrier P (2006). “Connection between
two statistical approaches for themodelling of particle velocity and concen-
tration distributions in turbulent �ow: Themesoscopic Eulerian formalism
and the two-point probability density function method.” In: Phys. Fluids 18,
p. 125107. doi: 10.1063/1.2404947 (cit. on pp. 28, 30).

Smith SA, Jonas PR (1995). “Observations of the turbulent �uxes in ûelds of
cumulus clouds.” In: Q. J. R. Meteorol. Soc. 121, pp. 1185–1208. doi: 10.1002/
qj.49712152602 (cit. on p. 21).

Springel V (2005). “The cosmological simulation code gadget-2.” In: Mon. Not. R.
Astron. Soc. 364, pp. 1105–1134. doi: 10.1111/j.1365-2966.2005.09655.x (cit. on
p. 4).

Springel V et al. (2005). “Simulations of the formation, evolution and clustering of
galaxies and quasars.” In: Nature 435, pp. 629–636. doi: 10.1038/nature03597
(cit. on p. 4).

http://www.loc.gov/catdir/toc/cam024/95138986.html
http://www.loc.gov/catdir/toc/cam024/95138986.html
http://dx.doi.org/10.1017/S0022112056000020
http://dx.doi.org/10.1017/S002211208800285X
http://www.archive.org/details/nasa_techdoc_19720019068
http://www.archive.org/details/nasa_techdoc_19720019068
http://dx.doi.org/10.1103/PhysRevLett.109.144501
http://dx.doi.org/10.1137/S0036142996307946
http://dx.doi.org/10.1146/annurev.fluid.010908.165144
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161125
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161125
http://dx.doi.org/10.1175/2009JAS3200.1
http://dx.doi.org/10.1175/JAS3687.1
http://dx.doi.org/10.1175/BAMS-87-12-1727
http://dx.doi.org/10.1063/1.2404947
http://dx.doi.org/10.1002/qj.49712152602
http://dx.doi.org/10.1002/qj.49712152602
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://dx.doi.org/10.1038/nature03597


100 Literature cited

Sreenivasan KR (1995). “On the universality of the Kolmogorov constant.” In:
Phys. Fluids 7, pp. 2778–2784. doi: 10.1063/1.868656 (cit. on pp. 15, 44).

Stokes GG (1843). “On some cases of FluidMotion.” In: Trans. Cambridge Phil.
Soc. 8, p. 105 (cit. on p. 7). Repr. in Mathematical and Physical Papers by
George Gabriel Stokes. Vol. I. Cambridge Univ. Press, 1880.

——(1851). “On the Eòect of the Internal Friction of Fluids on the Motion of
Pendulums.” In: Trans. Cambridge Phil. Soc. 9, pp. 8–106 (cit. on p. 16).
Repr. inMathematical and Physical Papers by George Gabriel Stokes. Vol. III.
Cambridge Univ. Press, 1901.

StummW,Morgan J (1996). Aquatic Chemistry: Chemical Equilibria and Rates in
NaturalWaters. 3rd. Environmental science and technology. Wiley, p. 1040
(cit. on p. 5).

Sundaram S, Collins LR (1996). “Numerical Considerations in Simulating a Tur-
bulent Suspension of Finite-Volume Particles.” In: J. Comput. Phys. 124,
pp. 337–350. doi: 10.1006/jcph.1996.0064 (cit. on p. 35).

——(1997). “Collision statistics in an isotropic particle-laden turbulent suspension.
Part 1. Direct numerical simulations.” In: J. FluidMech. 335, pp. 75–109. doi:
10.1017/S0022112096004454 (cit. on pp. xix, 21, 26, 27, 46, 65, 76).

SwopeWC, Andersen HC, Berens PH,Wilson KR (1982). “A computer simulation
method for the calculation of equilibrium constants for the formation of
physical clusters of molecules: Application to small water clusters.” In: J.
Chem. Phys. 76, pp. 637–649. doi: 10.1063/1.442716 (cit. on p. 44).

Taylor GI (1935). “Statistical Theory of Turbulence.” In: Proc. R. Soc. London Ser.
A 151, pp. 421–444. url: http://www.jstor.org/stable/96557 (cit. on pp. 10, 11,
24).

TennekesH, Lumley JL (1972). A First Course in Turbulence. heMIT Press,Mar.
1972 (cit. on pp. 9, 13).

ThomsonW, 1stBaronKelvin (1887). “XLV. On the propagation of laminarmotion
through a turbulently moving inviscid liquid.” In: Phil. Mag. 24, pp. 342–353.
doi: 10.1080/14786448708628110 (cit. on p. 10).

Tikhomirov V, ed. (1991). Selected Works of A. N. Kolmogorov. Volume I:
Mathematics and Mechanics. Kluwer Academic Publishers. doi: 10.1007/
978-94-011-3030-1 (cit. on p. 14).

Toschi F, Bodenschatz E (2009). “Lagrangian Properties of Particles in Turbu-
lence.” In: Annu. Rev. FluidMech. 41, pp. 375–404. doi: 10.1146/annurev.
�uid.010908.165210 (cit. on p. 17).

VaillancourtPA,YauMK(2000). “Review ofParticle–Turbulence Interactions and
Consequences forCloud Physics.” In: Bull. Amer. Meteor. Soc. 81, pp. 285–298.
doi: 10.1175/1520-0477(2000)081<0285:ROPIAC>2.3.CO;2 (cit. on p. 19).

Völk HJ, Jones FC,Morûll GE, Röser S (1980). “Collisions between grains in a
turbulent gas.” In: Astron. Astrophys. 85, pp. 316–325. url: http://adsabs.
harvard.edu/abs/1980A&A....85..316V (cit. on p. 66).

von Neumann J (1961). “Recent theories of turbulence.” In: J. von Neumann.
Collected works. Ed. by AH Taub. Vol. VI. 32. Report originally written in
1949 for the Oõce of Naval Research. Oxford: Pergamon Press, pp. 437–472
(cit. on p. 4).

von Weizsäcker CF (1948). “Das Spektrum der Turbulenz bei großen Reynoldss-
chen Zahlen.” In: Z. Phys. 124, pp. 614–627. doi: 10.1007/BF01668898 (cit. on
p. 15).

VoßkuhleM (2009). “Statistische Analysen zweidimensionaler Turbulenz.” Diplo-
marbeit. WestfälischeWilhelms-Universität, Aug. 2009 (cit. on p. 7).

http://dx.doi.org/10.1063/1.868656
http://dx.doi.org/10.1006/jcph.1996.0064
http://dx.doi.org/10.1017/S0022112096004454
http://dx.doi.org/10.1063/1.442716
http://www.jstor.org/stable/96557
http://dx.doi.org/10.1080/14786448708628110
http://dx.doi.org/10.1007/978-94-011-3030-1
http://dx.doi.org/10.1007/978-94-011-3030-1
http://dx.doi.org/10.1146/annurev.fluid.010908.165210
http://dx.doi.org/10.1146/annurev.fluid.010908.165210
http://dx.doi.org/10.1175/1520-0477(2000)081<0285:ROPIAC>2.3.CO;2
http://adsabs.harvard.edu/abs/1980A&A....85..316V
http://adsabs.harvard.edu/abs/1980A&A....85..316V
http://dx.doi.org/10.1007/BF01668898


Literature cited 101

Wang L-P, Ayala O, Grabowski WW (2005a). “Improved Formulations of the
Superposition Method.” In: J. Atmos. Sci. 62, pp. 1255–1266. doi: 10.1175/
JAS3397.1 (cit. on p. 64).

Wang L-P, Ayala O, Kasprzak SE, Grabowski WW (2005b). “heoretical For-
mulation of Collision Rate and Collision Eõciency of Hydrodynamically
Interacting Cloud Droplets in Turbulent Atmosphere.” In: J. Atmos. Sci. 62,
pp. 2433–2450. doi: 10.1175/JAS3492.1 (cit. on p. 31).

Wang L-P,Wexler AS, Zhou Y (1998a). “On the collision rate of small particles in
isotropic turbulence. I. Zero-inertia case.” In: Phys. Fluids 10, pp. 266–276.
doi: 10.1063/1.869565 (cit. on pp. 50, 59, 84).

——(1998b). “Statistical mechanical descriptions of turbulent coagulation.” In:
Phys. Fluids 10, pp. 2647–2651. doi: 10.1063/1.869777 (cit. on pp. 31, 32).

——(2000). “Statistical mechanical description andmodelling of turbulent colli-
sion of inertial particles.” In: J. Fluid Mech. 415, pp. 117–153. doi: 10.1017/
S0022112000008661 (cit. on pp. 21, 32).

WellsML, Goldberg ED (1991). “Occurrence of small colloids in sea water.” In:
Nature 353, pp. 342–344. doi: 10.1038/353342a0 (cit. on p. 5).

Wilkinson M,Mehlig B (2003). “Path coalescence transition and its applications.”
In: Phys. Rev. E 68, p. 040101. doi: 10.1103/PhysRevE.68.040101 (cit. on
p. 29).

——(2005). “Caustics in turbulent aerosols.” In: EPL 71, p. 186. doi: 10.1209/epl/
i2004-10532-7 (cit. on pp. 29, 65).

Wilkinson M,Mehlig B, Östlund S, Duncan KP (2007). “Unmixing in random
�ows.” In: Phys. Fluids 19, p. 113303. doi: 10.1063/1.2766740 (cit. on p. 26).

Wilkinson M,Mehlig B, Uski V (2008). “Stokes Trapping and Planet Formation.”
In: Astrophys. J. Suppl. 176, p. 484. doi: 10.1086/533533 (cit. on p. 22).

WilkinsonM,Mehlig B, Bezuglyy V (2006). “Caustic Activation ofRain Showers.”
In: Phys. Rev. Lett. 97, p. 048501. doi: 10.1103/PhysRevLett.97.048501 (cit. on
pp. 28, 29, 50, 65, 71).

Williams JJE, Crane RI (1983). “Particle collision rate in turbulent �ow.” In: Int. J.
Multiphase Flow 9, pp. 421–435. doi: 10.1016/0301-9322(83)90098-8 (cit. on
p. 21).

Woittiez EJP, Jonker HJJ, Portela LM (2009). “On the Combined Eòects of
Turbulence andGravity onDropletCollisions inClouds: ANumerical Study.”
In: J. Atmos. Sci. 66, pp. 1926–1943. doi: 10.1175/2005JAS2669.1 (cit. on pp. 21,
47, 48, 72).

Zhou Y,Wexler AS,Wang L-P (1998). “On the collision rate of small particles in
isotropic turbulence. II. Finite inertia case.” In: Phys. Fluids 10, pp. 1206–1216.
doi: 10.1063/1.869644 (cit. on pp. 30, 59).

The dizzying thought that the sea obeyed no rules at all returned.
He dismissed it from hismind quickly. He wanted to understand.

He had to solve the mystery of the sea to be able to like it[. . .]

— Tove JanssonMoominpappa at Sea

http://dx.doi.org/10.1175/JAS3397.1
http://dx.doi.org/10.1175/JAS3397.1
http://dx.doi.org/10.1175/JAS3492.1
http://dx.doi.org/10.1063/1.869565
http://dx.doi.org/10.1063/1.869777
http://dx.doi.org/10.1017/S0022112000008661
http://dx.doi.org/10.1017/S0022112000008661
http://dx.doi.org/10.1038/353342a0
http://dx.doi.org/10.1103/PhysRevE.68.040101
http://dx.doi.org/10.1209/epl/i2004-10532-7
http://dx.doi.org/10.1209/epl/i2004-10532-7
http://dx.doi.org/10.1063/1.2766740
http://dx.doi.org/10.1086/533533
http://dx.doi.org/10.1103/PhysRevLett.97.048501
http://dx.doi.org/10.1016/0301-9322(83)90098-8
http://dx.doi.org/10.1175/2005JAS2669.1
http://dx.doi.org/10.1063/1.869644

	Dedication
	Abstract
	Resumé
	Publications
	Acknowledgments
	Contents
	Acronyms
	Notation
	Review of fundamental results
	1 Introduction
	1.1 Particles in turbulence and collisions
	1.2 Outline

	2 Fundamental results
	2.1 Navier–Stokes equations
	2.1.1 The vorticity
	2.1.2 Self similarity and the Reynolds number

	2.2 Turbulence
	2.2.1 The cascade picture
	2.2.2 Homogenous and isotropic turbulence
	2.2.3 Energy flux and energy dissipation rate
	2.2.4 Kolmogorov scales
	2.2.5 Kolmogorov spectrum

	2.3 Motion of spheres in a turbulent flow
	2.3.1 The Stokes number
	2.3.2 The particle velocity gradient tensor


	3 Particle collisions in turbulent flows
	3.1 Droplets in turbulent clouds—An overview
	3.1.1 The droplet size distribution
	3.1.2 The collision kernel
	3.1.3 Typical values

	3.2 Analytical results on collision kernels
	3.2.1 Collision kernel for an ideal gas
	3.2.2 Zero inertia
	3.2.3 Infinite inertia
	3.2.4 Preferential concentration
	3.2.5 Caustic/sling collisions and random uncorrelated motion
	3.2.6 Ghost collision approximation
	3.2.7 Collision efficiency
	3.2.8 Two interesting remarks



	Main scientific work of the thesis
	4 Collision detection and ideal gas particles
	4.1 Collision detection scheme
	4.1.1 Cell linked-list algorithm
	4.1.2 Trajectory interpolation
	4.1.3 Numerical determination of the main variables

	4.2 Particles with Gaussian velocity distribution
	4.2.1 Verification of collision detection scheme

	4.3 Contact times
	4.3.1 Probability of relative velocity and statistics conditioned on collisions
	4.3.2 Probability of contact times


	5 Direct Numerical Simulations
	5.1 A short introduction to our DNS
	5.1.1 Particle trajectories

	5.2 Description of the different runs
	5.3 Verification of results
	5.3.1 Radial distribution function
	5.3.2 Radial relative velocity
	5.3.3 Dynamic and Kinematic Collision kernel


	6 Multiple collisions
	6.1 Ghost collision and first collision kernel
	6.2 Multiple collision PDF
	6.2.1 An example of a trajectory displaying multiple collisions

	6.3 Contact time statistics
	6.3.1 Dependence on the Stokes number

	6.4 Relation to sling/caustics collisions
	6.5 Alternative algorithms
	6.5.1 Replacement algorithm
	6.5.2 Dynamic collision kernel
	6.5.3 Kinematic collision kernel

	6.6 Conclusion and Perspectives

	7 Prevalence of the sling/caustics effect
	7.1 Different scaling of the collision kernels
	7.2 Cumulative PDF
	7.3 Comparison to published results
	7.4 Conclusion and Perspectives

	8 Kinematic Simulations
	8.1 Description of the approach
	8.1.1 Integration of particle trajectories

	8.2 Collision kernels
	8.3 Multiple collisions
	8.3.1 Contact time PDF

	8.4 Detecting sling/caustics collisions
	8.5 Conclusion and perspectives


	Appendices
	A Interpolation of particle trajectories
	A.1 Linear extrapolation
	A.2 Third order method
	A.3 The third order interpolation and its bounds

	B GIP integrators
	B.1 Physically inspired approach
	B.1.1 Shortcomings of the approach

	B.2 GIP integrators

	Literature cited


