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Unidimensional and Evolution Methods
for Optimal Transportation

In dimension one, optimal transportation is rather straightfor-
ward. The easiness with which a solution can be obtained in that
setting has recently been used to tackle more general situations,
each time thanks to the same method [4, 19, 49]. First, disintegrate
your problem to go back to the unidimensional case, and apply the
available 1D methods to get a first result; then, improve it gradually
using some evolution process.

This dissertation explores that direction more thoroughly. Look-
ing back at two problems only partially solved this way, I show how
this viewpoint in fact allows to go even further.

The first of these two problems concerns the computation of
Yann Brenier’s optimal map. Guillaume Carlier, Alfred Galichon, and
Filippo Santambrogio [19] found a new way to obtain it, thanks to
an differential equation for which an initial condition is given by the
Knothe—-Rosenblatt rearrangement. (The latter is precisely defined
by a series of unidimensional transformations.) However, they only
dealt with discrete target measures; I generalize their approach to
a continuous setting [10]. By differentiation, the Monge—Ampere
equation readily gives a PDE satisfied by the Kantorovich potential;
but to get a proper initial condition, it is necessary to use the Nash-
Moser version of the implicit function theorem.

The basics of optimal transport are recalled in the first chapter,
and the Nash—Moser theory is exposed in chapter 2. My results are
presented in chapter 3, and numerical experiments in chapter 4.

The last chapter deals with the 1pT algorithm, devised by Fran-
cois Pitié, Anil C. Kokaram, and Rozenn Dahyot [49]. It builds a
transport map that seems close enough to the optimal map for most
applications [50]. A complete mathematical understanding of the
procedure is, however, still lacking. An interpretation as a gradient
flow in the space of probability measures is proposed, with the sliced
Wasserstein distance as the functional. I also prove the equivalence
between the sliced and usual Wasserstein distances.



Méthodes unidimensionnelles
et d’évolution pour le transport optimal

Sur une droite, le transport optimal ne pose pas de difficultés.
Récemment, ce constat a été utilisé pour traiter des problémes plus
généraux. En effet, on a remarqué qu’une habile désintégration per-
met souvent de se ramener a la dimension un, ce qui permet d’utiliser
les méthodes afférentes pour obtenir un premier résultat, que 'on
fait ensuite évoluer pour gagner en précision [4, 19, 49].

Je montre ici Pefficacité de cette approche, en revenant sur
deux problémes déja résolus partiellement de cette maniére, et en
complétant la réponse qui en avait été donnée.

Le premier probléme concerne le calcul de 'application de Yann
Brenier. En effet, Guillaume Carlier, Alfred Galichon et Filippo San-
tambrogio [19] ont prouvé que celle-ci peut étre obtenue grace a
une équation différentielle, pour laquelle une condition initiale est
donnée par le réarrangement de Knothe—Rosenblatt (lui-méme dé-
fini via une succession de transformations unidimensionnelles). Ils
n’ont cependant traité que des mesures finales discrétes ; j’étends
leur résultat aux cas continus [10]. L’équation de Monge—Ampére,
une fois dérivée, donne une EDP pour le potentiel de Kantorovitch ;
mais pour obtenir une condition initiale, il faut utiliser le théoréme
des fonctions implicites de Nash—Moser.

Le chapitre 1 rappelle quelques résultats essentiels de la théorie
du transport optimal, et le chapitre 2 est consacré au théoréme de
Nash—Moser. J’expose ensuite mes propres résultats dans le chapitre
3, et leur implémentation numérique dans le chapitre 4.

Enfin, le dernier chapitre est consacré a I’algorithme 1pT, déve-
loppé par Francois Pitié, Anil C. Kokaram et Rozenn Dahyot [49].
Celui-ci construit une application de transport suffisamment proche
de celle de M. Brenier pour convenir a la plupart des applications [50].
Une interprétation en est proposée en termes de flot de gradients
dans ’espace des probabilités, avec pour fonctionnelle la distance
de Wasserstein projetée. Je démontre aussi I’équivalence de celle-ci
avec la distance usuelle de Wasserstein.



Metodi unidimensionali e di evoluzione
per il trasporto ottimale

Sulla retta reale, il trasporto ottimale non presenta nessuna
difficolta. Questo fatto é stato usato di recente per ottenere risultati
anche in situazioni piu generali. Ogni volta, disintegrando il proble-
ma per tornare alla dimensione uno, in modo da utilizzare metodi
specifici a questo caso, si ottiene una prima soluzione; e poi, con
metodi d’evoluzione, questa viene migliorata [4, 19, 49].

Qui, vorrei mostrare I’efficacia di tale approccio. Rivisito due
problemi che avevano ricevuto, in questo modo, solo soluzioni par-
ziali e, continuando nella stessa direzione, li completo.

11 primo problema riguarda la mappa ottimale di Yann Brenier.
Guillaume Carlier, Alfred Galichon e Filippo Santambrogio [19] han-
no dimostrato che si puo calcolarla con un’equazione differenziale
ordinaria se il riordinamento di Knothe-Rosenblatt ¢ preso come
condizione iniziale. Quest’ultimo viene precisamente definito da una
serie di trasformazioni unidimensionali. Tali autori hanno pero trat-
tato solo il caso delle misure finali discrete; estendo il loro risultato
al caso continuo [10]. Infatti, quando si differenzia I’equazione di
Monge-Ampere, si ottiene una PDE per il potenziale di Kantorovic;
tuttavia, per avere una condizione iniziale assicurando esistenza e
unicita, bisogna usare il teorema di Nash—Moser.

Nel capitolo 1, tratto di qualche risultato essenziale della teoria
del trasporto ottimale. Il teorema di Nash e Moser e 'oggetto del
capitolo 2. Successsivamente, espongo i miei risultati nel capitolo 3,
e la loro implementazione numerica nel capitolo 4.

Infine, nell’ultimo capitolo, studio I’algoritmo 1DT, ideato da
Francois Pitié, Anil C. Kokaram, e Rozenn Dahyot [49]. Tale algo-
ritmo produce una mappa cosi vicina a quella di Brenier, che puo
essere utilizzata al suo posto in varie situazioni [50]. Un’interpre-
tazione di questo algoritmo é proposta come flusso gradiente nello
spazio delle misure di probabilita, rispetto al quadrato della distanza
di Super Wasserstein. Mostro anche 'equivalenza tra quest’ultima e
la distanza di Wasserstein classica.
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Preface

How I learned of optimal transportation is a bit fortuitous. From time to time, a
mathematical education can seem a bit lifeless; at least for me, it felt that way at some
point during my scholarship at the Ecole normale supérieure. Yet when I complained
to Guillaume Carlier, who was my tuteur there, he suggested I should try a new
subject: optimal transportation. As it was rooted in a very simple question—roughly,
how to move stuff efficiently?—but still involved nice mathematics, he thought it
might catch my interest. And it did.

Following his advice, I attended a series of lectures on the subject by Francois
Bolley, Bruno Nazaret, and Filippo Santambrogio—which turned out to be very lively
indeed. A year later, in 2010, I was lucky enough to go to the Scuola Normale Superiore
in Pisa to write my master thesis under the supervision of Luigi Ambrosio. I was to
study one of the most abstract outcome of the theory: gradient flows in the space
of probability measures. The months I spent there were intense, and exciting. I was
therefore very glad to be able to start a Php under the joint supervision of Professors
Ambrosio and Santambrogio.

Over the three years that followed, I came to learn a lot, and not only about
mathematics, but also about perseverance and self-organization, about trust in others’
insights as well as in my own intuition—and about a researcher’s life and my own
aspirations. Of course, going back twice in Pisa for an extended amount of time, I also
had the opportunity to learn more about Italy, its language, its culture, and its people.

It was a wonderful experience, for which I am immensely grateful.

— Communay, August 15, 2013
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Introduction

Many illustrations can be found in the literature that try to simply present the problem
lying at the heart of optimal transportation. Some talk, for instance, of sand piles to
be moved [45, 62], or bread to be sent from bakeries to local cafés [63], or coal to be
delivered from mines to steelworks [56]. Let me indulge, however, in giving another
example. Readers already familiar with the subject might be excused for skipping the

following part; it should get more interesting afterwards.

Imagine you are the head of an industrial complex somewhere in China, maybe
producing electronic components for a company called Appell Inc. The labor comes
from rural areas all over the country, and needs housing close to the factories; there-
fore, the complex not only includes many plants, but also dormitories. Your task is to
assign to each and every one of your workers a bed. But their commuting costs you
money, as you have to pay for buses (or any other transportation system), and you
want to minimize your expenses. How would you achieve it?

Assuming there is barely enough accommodation for everyone, we can represent
the distributions of workers and beds by two measures p and v with the same total
mass. Then, given an area A, the values p(A) and v(A) respectively indicate the
numbers of employees and beds in that area. We will denote by c(x, y) the daily cost
of transportation between the factory x and the dormitory y, back and forth.

Since there are so many workers—that is, so many variables—, you cannot expect
to find a precise solution for everyone, but you need to operate from a “mesoscopic”
level. A way to ease the search for a solution is to group your workers by factories, and
try to send all the people working at the same place x to sleep in the same dormitory
y. In that case, what you are looking for is a mapping, y = T(x), telling you, for each

factory, where to house its staff—that is, you want to find a map T that minimizes the

10



total cost of transportation,

| et T dute.

and such that v(A) = p(T'(A)) for any area A, because T~'(A) is where people
sleeping in A come from. This version of the problem was historically the first to
be studied, by Gaspard Monge [45] in the 18th century—although in term of sand
particles rather than workers—, and has therefore come to be known as Monge’s
problem.

However, there might be no such mapping—for instance, if you have no choice
but to split the workforce of a given factory between many dormitories. Hence, in the
1940s, Leonid Kantorovich [35, 36] proposed instead to model a solution as a measure
¥, such that y(A x B) represents the number of people working in the area A and
sleeping somewhere in B (this implies its marginals should be y and v). The total cost

of transportation for the plan y is then given by

f(r(x,y) dy (x, y).

To find an optimal y is today called the Monge—Kantorovich problem; it really is a
generalization of Monge’s initial question, for if there is an optimal mapping T, then

it corresponds to an optimal measure y such that
Y(AXB) = p(ANT™\(B)),

and the transport costs are the same.

In his papers, Kantorovich also showed you might be able—to keep our story
going—to pass on the problem to the workers: just start charging for the accommo-
dation, introduce fares to the transportation system to cover for its operation, and
generously hand over a subsidy to compensate for all that. Indeed, values may exist
for the subsidies and the bed rates such that the only solution for any employee not
to lose money is to find the right spot to sleep. That is, if S(x) is the additional money
you grant daily to the people working in the factory x, and B(y) is the price you ask

for a bed in the dormitory y, then you could perhaps manage to set S and B in such a

11



way that S(x) < B(y) + c(x, y), with the double assurance that: (1) for any given x,
there is equality for some y’s; (2) if the workers in x comply and go to one of those
y’s, everyone may have a bed. In the end, you pay the difference between what you
hand over and what you get back from the accommodation fares, and if S and B are

correctly set, that should be

f S(x) du(x) - f Bw)dv(y) = min f e(x,y) dy (x. y).

The Monge-Kantorovich would then be solved, in some sense—but the difficulty now
lies in setting the right values for S and B. Those are called, when optimal, Kantorovich
potentials.

With Kantorovich’s approach, you might have therefore to split a group of
coworkers. On the other hand, if the factories are quite small, and not too concentrated,
then there are not that many people working at the same place, so it should be easier
to assign the same dormitory to them all: the solution might still be a mapping. For a
cost equal to the squared distance, this was formally proved by Yann Brenier [13, 14] in
the 1980s, who also showed optimal values exist for the bed rates B and the subsidies
S that force the employees to find the right spot, which they do by simply following
the direction of decreasing subsidies—more precisely, from a factory x, one should go
toy = T(x) = x — VS(x). This was to be expected somehow, as the handouts should

be fewer where there are more beds nearby.

But then, in practical terms, how to compute the optimal mapping T? When both
measures are discrete—that is, when the factories and the dormitories are scattered—,
linear programming provides a solution, as does Dimitri P. Bertsekas’s algorithm [9].
However, when the distributions are more diffuse, the problem is in general hard
to solve—except in dimension one. In that case, there is a formula, which translates
into the following method: if the factories and the dormitories are all aligned along
the same street, you should do the assignment going from one end to the other,
and allocate the first bed you encounter to the first man you meet, and so on. In
other terms, if F and G stand for the cumulative distributions of the workers and

beds—that is, if F(t) and G(t) are respectively the total numbers of workers and

12
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Figure A: Construction of the optimal map T in 1p. The cumulative distributions, F and G,
represent the areas below the graphs of the densities of p and v, denoted by f and
g respectively; the point x is sent onto y, i.e. y = T(x), if and only if F(x) = G(y),
which means the filled areas should be equal.

beds located before the point t—, then people working in x should go to sleep to
y = T(x) = G™! o F(x); see figure A, on this page.

In greater dimensions, even if many numerical methods have been developed [4,
7, 8,11, 37, 40], the problem remains difficult. It is, for instance, possible to start from
a non-optimal mapping, like the Knothe—Rosenblatt rearrangement—which, as we
shall see, applies the previous formula on each dimension—, and then alter it through
a steepest-descent algorithm so as to make it optimal [4]. Or, using the peculiar form
the optimal map should have, T(x) = x — VS(x), one can start from a non-optimal
potential Sy, and then apply Newton’s method to catch the optimal S [40]. By some
aspects, my paper [10] combines these two approaches, since it computes the optimal

potential S rather than the map T directly, but it nevertheless manages to start from
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Knothe’s map. (I will present the results of this paper in chapter 3, with new numerical
experiments in chapter 4).

This Knothe—Rosenblatt rearrangement was devised independently by Herbert
Knothe [38] and Murray Rosenblatt [51] in the 1950s. It is a mapping, assigning to
each worker from your industrial complex a bed in a dormitory—although, a priori,
not in a very cost-effective way—by solving the problem on each dimension one after
the other, thanks to the unidimensional solution to Monge’s problem. Let us assume
the measures p and v have densities, which we denote by f and g; then f(x) is the
number of workers in the factory x, and g(y) is the number of beds in the dormitory y.
If the complex’s roads are divided into avenues (north-south) and streets (west—east),
then the position x = (x1, x2) of a factory is given by the intersection of an avenue x;
and a street x; the same for a dormitory’s position y = (y1, y,). To assign the beds,
we can start by summing up the workforces on each avenue on the one hand, and the
beds on the other hand:

fla) = ff(xl,xz)dXz, g(xy) = fg(yl,yz)dyz.

We denote by F and G the cumulative distributions of f and ¢§. Then, dealing with
each avenue from the west to the east, one after the other, we tell the workers on
the avenue x; to look for a dormitory on the most western avenue with some spare
capacity—and this avenue will be y; = Ty (x;) = G~'o F(x;). Once everybody has a
designated avenue where to find a bed, we proceed likewise to assign a street, and
its intersection with the avenue will yield the dormitory’s position: starting from
the north and moving southward, we tell people working in x = (xy, x3) to go to the
most northern dormitory they can find on the avenue y; = T} (x;) with some beds
left, which will be at the intersection with the street y, = TI% (x1,x2) = é;ll o I:“x1 (x2),
with Fy, and G, the (normalized) cumulative distributions of workers and beds on
the avenues x; and y; respectively. The Knothe-Rosenblatt rearrangement is the
mapping we thus obtain, Tx = (Tg, T¢); see figure B, on the next page. Sadly, as
this transport map deals with each dimension in a certain order, on which the result
strongly depends, it is anisotropic, and thus unsuitable for many applications—e.g., in

image processing—because it creates artifacts.
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Figure B: Construction of the Knothe-Rosenblatt rearrangement (yi, y2) = Tx(xi, x2), de-
fined by y; = Té(xl) and 1, = Tﬁ (x1, x2). For each dimension, the hashed zones
have the same areas, respectively F'(x;) = G'(y1), and F%, (x2) = G} (v).

15



The starting point of the theory I will present in chapter 3 is that this mapping
would however be optimal, should the price of a north—south displacement be a lot
less expensive than a weast—east one—i.e., the rearrangement would be optimal for a
transportation cost c.(x, y) = |x; — y1|2 +E|x2 — 1Yo 12, with ¢ infinitesimally small. But,
increasing ¢ little by little and updating the optimal mapping accordingly, we could get
back the optimal map for a regular quadratic cost, at least if we can get to & = 1. This
was achieved by Guillaume Carlier, Alfred Galichon, and Filippo Santambrogio [19],
under the assumption the target measure is discrete—that is, when the dormitories
are scattered.

Pursuing their work, I was able to deal with more diffuse distributions [10]. They
had found a differential equation satisfied by the Kantorovich potential S; I therefore
sought to do the same. We have seen that, for a cost equal to the squared distance,

c(x,y) = |x — y1|2 + |xg — yzlz, the optimal transport map is:

T(x) = x—VS(x) = x—[ 0i5(x) )

025(x)
But for a cost c.(x,y) = |x; — 1]* + £|x; — y3|*, the optimal map can be written as

015 (x)

n“):x_[@&uve

1 0
] = x — A;'VS.(x) with A, = [ 0 ]
€

Since T, must still send the measure p onto the measure v, that is,
wm=fg@@=f fx)dx = p(T;HA4)  forany area A,
yeA Te(x)€A
the following equality, called a Monge—Ampeére equation, must always hold:
f(x) = g(Te(x)) det(DT,) = g(x — A;'VSe(x)) det(lq A VS (x)).  (a)

This equation, along with the further condition A, — V2S, > 0 (to force uniqueness),
completely determines the potential S.. The implicit function theorem then allows us

to get information on its regularity in the following way: First, for u smooth enough
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such that A, — V2u > 0, we set
Fle,u) = f—g(ld—A;'Vu)det(Iy —A;'V?u),

so that ¥(e,u) = 0 if and only if u = S.. Then, the differential with respect to u,
denoted by D, ¥, is a second-order, strictly elliptic differential operator, which is
invertible; hence, ¢ - S, is at least €. Differentiating the equation (a) with respect

to &, we therefore get a second-order, elliptic partial differential equation:

div ( £ [1a-A7v2s.] 7 Az (vS, - ASAQIVSS)) - 0. (b)
The dotted symbols, S, and A,, represent the derivatives with respect to ¢; the target
density g is here hidden in the determinant of I; —A;!V2S,.

As long as ¢ stays away from zero, this last equation can be solved, and S, is the
unique solution. So, if we know S, for some & > 0, we can get S; back, since we can
obtain S, by solving the elliptic equation (b), and then compute S; = S, + f ;0 S, de.
This is akin to the continuation method, which was used by Philippe Delanoé [23]
and John Urbas [60] from a theoretical point of view, and by Grégoire Loeper and
Francesca Rapetti [40] for numerical computations.

But what happens when ¢ is infinitesimally small, and tends to zero? On the one

hand, we know T, converges to be the Knothe—Rosenblatt rearrangement,
y = Tx(x) = (Té(xl), Té(xl, x2)).
On the other hand, when ¢ is infinitesimally small but still nonzero,
Y =Te(x) = x = (01S(x), 925 (x)/€).

To reconcile this with the previous expression, and cancel the 1/¢, maybe we can

write S (x) = SL(x;) + €S2(x1, x2). Then,

Blsi(xl) + g(')ng(xl, XZ) (%Sé(xl)
Te(x) = x — ) x-

= Tx(x),
6255(x1,xz) 025§(xl,xz) J

17



so this viewpoint covers the case ¢ = 0 as well. This turns out to be the correct
approach: in some sense, S and S? are uniquely determined by their initial conditions
S(l) and S(Z), which come from the Knothe rearrangement Tx = Id —(615(1], (9253).
However, while the implicit function theorem was enough when ¢ stayed away
from zero, results on the behavior of S, = SL + £52 when ¢ goes to zero prove a lot
more difficult to get. The first idea that comes to mind is to try to apply the implicit

function theorem once more, but this time to

G, u' u?) = Fle,u) = f—g(ld—A'Vu,)det(Ily —A.'Vu,),

1

defined for ¢ > 0, with u, := u! + eu?; when ¢ = 0, we can set

G(0,u', u?) := f — g(Id —du) det(Iy —Vou) where du = (Ou', u?).
The problem is, even though it is possible to solve
D(ul,uz)g(ovs(l)’sg)(vl’ 02) = q,

foru',u? € €**? and q € €*, the best we can get for the solution (v!, v?) is v! € €**2,
which is good, and 82,202 € €%, which is very bad: we need v? € €**2. There is,
therefore, a loss of regularity, which prevents us from applying the implicit function
theorem again. To get around such a difficulty, a solution is to work with ¢’* maps,
so0 as to have an infinite source of smoothness. But then, we cannot use the implicit
function theorem any longer, as " is not a Banach space; we need instead to use
the stronger Nash—Moser theorem, which I will present in chapter 2.

After the theoretical aspects presented in chapter 3, I will show how this method
can allow us effectively to compute Brenier’s map for the regular quadratic cost,
y = T1(x), in chapter 4. The idea is the go backward, starting from ¢ = 0 and going
up to ¢ = 1. This numerical material is new, and was not present in my original
paper [10]. It is, however, still sketchy: there is yet a considerable amount of work to

be done in order to obtain something that can be used practically.

Finally, in the last chapter, a second problem, of a different kind, is introduced,;

it is however born out of the same overall approach. Since the optimal transport map
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is so easy to compute in dimension one, and so difficult to get in higher dimensions,
the image processing community has devised a way to build another transport map,
using only unidimensional mappings [49, 50]—not unlike Knothe’s rearrangement
therefore, but without its greatest flaw, which is its being anisotropic. Experimentally,
it works well enough.

Let us again denote by f and g the densities of our two measures, y and v, on

R2. Given any orthonormal basis (e;, e;), we can define
fel(‘xl) = ff(xlel + xze3) dxy and Je (Y1) = fg(ylel + 1ze3) doxy.

Those are similar to the f and g defined in the first step of the construction of the
Knothe rearrangement; they are, in fact, the same when e is the canonical basis,
e; = (1,0) and e, = (0, 1). Then, we have two unidimensional measures, so we know
how to send one onto the other—thanks to the map T, = Ge_ll o F,,, where F,, and G,
denote again the cumulative distributions. This map should also be a good indicator of
how we need to move the original measure y along the direction e; to get v. Likewise,

we can get a map T,, for the direction ey, and then combine those two maps into

Te(x) = T ({erlx)) er + Te,(Cezlx)) €2 (c)

It is important to say, however, that this T, does not send p onto v. It sends y onto
another measure—let us denote it by y;—, which should nevertheless be closer to v.
We can iterate the procedure, with p; instead of y and using a different basis e, and
thus get another map T,; then we define p, as the measure obtain from p4 through
the new T,, and start again. In the end, if all the bases are well chosen, no particular
direction should be privileged, and p, should converge toward v. Notice that, at each
step, there is a transport map sending p onto p,, which is the composition of all the
intermediate T,.

This algorithm was introduced by Frangois Pitié, Anil C. Kokaram, and Rozenn
Dahyot [49], who called it the Iterative Distribution Transfer algorithm. To this day, a
proper mathematical study is still lacking though. Numerical experiments suggest
L converges to v, but it has not been proved yet—except in a very particular case,

when the target measure v is Gaussian. But even though the transport map between
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u and p, does not necessarily converge toward the optimal map between p and v, it
has nevertheless been successfully used as a replacement [50].

I will present in the last chapter some steps toward a more complete under-
standing. This algorithm seems to be connected to a gradient flow in the space of
probability measures—in the sense of the theory developed by Luigi Ambrosio, Nicola
Gigli, and Giuseppe Savaré [3]—with what Marc Bernot called the sliced Wasserstein

distance as the functional,

) 1/p
SWy(u,v) = SWy(f.9) = (JEWp(fel,éel)”de) ;

the usual Wasserstein distance’ being the pth root of the minimum value of the

Monge-Kantorovich problem for the cost ¢(x,y) = |x — y|?:

1/p
Wp(p,v) = (myinflx—ylpdy(x,y)) :

Indeed if, instead of defining the transport map T between u, and p,.1 by (c) with a
random basis e, and hoping for the randomness to homogenize the procedure, we

would rather define

Tx) = f To((erl)) des

then, assuming the measures are sums of N Dirac masses—and therefore assimilable

RdXN_

to vectors of , we obtain that the measure fi,,,; is given by

. 1
fnet 2= o= VE(un) - with  F(u) = ZSWa(u,v)".
This is nothing but the explicit Euler scheme for the gradient flow equation

fr = —VF(p).

'How the name “Wasserstein” came to be associated to this object is a bit strange. According to Ludger
Riischendorf [53], the distance was used in a 1969 paper by Leonid N. Vaserstein [61] and the term
“Vasershtein distance” appears a year later, in a paper by Roland Dobrushin [24]. Today, the term
“Kantorovich-Rubistein distance” is often used for the case p = 1, as the two mathematicians proved
the distance could be extended into a norm. The name “Earth Mover’s distance” is also frequent in
image processing [52]. See Cédric Villani’s book [63, chapter 6, bibliographical notes].
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Following the variational method devised by Richard Jordan, David Kinderlehrer,
and Felix Otto [34], and investigated by Luigi Ambrosio, Nicola Gigli, and Giuseppe

Savaré [3], we can define an implicit Euler scheme,

Hn+1 = Hn — hVF(lanrl)a

by taking

. 1 1
Hns1 € argmm{—Wz(yn,y)z + —SWZ(/J,V)Z}.
. 2k 2

The Wasserstein distance here replaces the usual Euclidean distance, which is used
to define the classical implicit scheme on R¢. Notice this definition works even
if the measures are no longer assumed to be discrete. In any case, the sequences
(1n)nen converge in some sense to a curve (p;),>o when the time step tends to 0.
This viewpoint could yield a theoretical justification of the algorithm, if we were
able to prove the convergence of y; toward v when ¢ tends to infinity; to do so will,

however, require more work still.
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Chapter 1

Optimal transportation

1.0.1. The aim of this chapter is to recall some well-known facts that shall be needed
later on. The presentation has therefore been tailored with a further use in mind,
and proofs are only given when they are either very short or of a special interest.
Notations are also set here.

For a general introduction to optimal transportation, the reader should rather
refer to Cédric Villani’s summae [62, 63] or Filippo Santambrogio’s forthcoming
lecture notes [54]. For a more abstract and more general exposition, see also the

monograph by Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré [3, chapters 5-7].

1.1 The Monge-Kantorovich problem

1.1.1. Monge’s problem. Given two probability measures y and v on R¢ and a cost
function ¢ : R? x R¢ — [0, o], the problem that was first introduced by Gaspard

Monge [45] can be stated in modern terms as follows:

find T:R?— R?
suchthat v = Typ and fc(x, T(x))du(x) is minimal. (1.1.1.a)
The former condition, v = Ty, means that T should transport p onto v; that is, v

should be the push-forward of p by T: for any ¢, f E(y)dv(y) = f E(T(x)) du(x). The

latter asks the total cost of transportation to be minimal.
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Chapter 1. Optimal transportation

1.1.2. Monge—Kantorovich problem. Depending on the measures, there might be
no transport map sending u onto v, for instance if y is discrete and v is uniform.
Hence, the following generalization was proposed by Leonid Kantorovich [35, 36]:

instead of looking for a mapping,
find a measure y € I(y,v) such that f c(x,y)dy(x,y) is minimal, (1.1.2.a)

where I(y, v) stands for the set of all transport plans between p and v, i.e. the
probability measures on R¢ x R with marginals y and v. This problem really extends
Monge’s, for any transport map T sending y onto v yields a measure y € I(y, v),

which is y = (Id, T)s, i.e. the only measure y on R x R such that

VE e 6 R: x RY), f E(r.y) dy(x.y) = f £, T(x)) dp(x).

and the associated costs of transportation are the same. However, unlike in Monge’s
problem, for which there might be no admissible transport map—not to mention an
optimal one—, in Kantorovich’s version there is always a transport plan, for instance

u ® v. Even better, it is not difficult to show there is always a solution:

1.1.3. PROPOSITION. Let yi, v be two Borel probability measures on R%. If the cost
function c : R x R4 — [0, +00) is lower semicontinuous, then there is a solution to the

Monge-Kantorovich problem (1.1.2.a). We denote by T (i, v) the set of all such solutions.

Proof. On one hand, as p and v are inner regular, the set I(y, v) is tight and thus,
being obviously closed, compact according to Prokhorov’s theorem. On the other
hand, as c is lower semicontinuous, the map y f c(x,y) dy(x,y) is also lower

semicontinuous; for if

cnlx,y) = ;ng {c()?, g)+n (|x —x*+ ly — g|2)} ,

then ¢, is continuous, ¢, (x,y) < ¢(x,y), and ¢, converges pointwise to ¢, and this,

as soon as yx — y, implies

fcdy < liminffcn/\ndy < liminf Iiminffcn/\nd)/k < liininffcdyk

n—oo k— o0
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Chapter 1. Optimal transportation

Thus, any minimizing sequence converges, up to an extraction, to a minimizer. O

1.1.4. Dual formulation. As will be shown in proposition 1.1.6 on the following
page, there is a form of duality between the Monge—Kantorovich problem and the

following other problem:

find ¥,¢ € €,(RY) suchthat ¥(x)+e(y) < c(x,y)

and f¢ du +f(p dv is maximal. (1.1.4.a)

This is often called the dual or sometimes primal problem, because they are linked (see
proposition 1.1.6 on the next page), and the space of signed Radon measures—where
the Monge—Kantorovich problem is defined—is the dual of the space of continuous
functions vanishing at infinity—where this new problem is defined, even though the
condition to vanish at infinity is irrelevant. Whatever the naming, the requirement

v, € CKO(ROI) can be relaxed, so that (1.1.4.a) becomes:
find ¢ € L'(y), ¢ € L'(v) suchthat ¢(x)+¢(y) < c(x,y)
and ftﬁ du +f(p dv  is maximal. (1.1.4.b)

1.1.5. Kantorovich potential and c-transform. Its seems natural to look for a
solution of the new problem (1.1.4.b) among the pairs (¢, ¢) that saturate the condition,

and therefore satisfy
¢(y) = inflcCe.y) =y} and  ylx) = inflctr.y) - o)}

The first equality, when holding, will be written ¢ = ¢, where ¥/ is called the
c-transform of /. Similarly, for the second we shall write iy = ¢°. If both are verified—
that is, if = /°“—, then ¢/ is said to be c-concave. Then, the problem (1.1.4.b) becomes

find ¢ € L'(y) such that fgb du +f¢c dv is maximal. (115.2)

Any solution ¥ is called a Kantorovich potential between y and v.
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Chapter 1. Optimal transportation

1.1.6. PROPOSITION. Let j1,v be two Borel probability measures on R%. If the cost

function ¢ : R4 x R — [0, +00) is lower semicontinuous and

[[ v avy) < e

then there is a Borel map ¢y : R — R that is c-concave and optimal for (1.1.5.a).
Moreover, the resulting maximum is equal to the minimum of the Monge—Kantorovich

problem (1.1.2.a):

yéﬁi,f,lv> f(r(x,y) dy(x,y) = Jhax {fq)(x) du(x)+f<p°(y) dV(y)}-

Ify € I(u, v) is optimal, then Y/ (x) + Y °(y) = c(x,y) almost everywhere fory.

For a proof of this proposition, see the monograph by Luigi Ambrosio, Giuseppe
Savaré, and Nicola Gigli [3, Theorem 6.1.5].
1.2 Solution on the real line

1.2.1. In dimension one—that is, when p and v are probability measures on the
real line—, a solution to the Monge—Kantorovich problem (1.1.2.a) can very often
be explicitly computed, and turns out to be a solution of Monge’s problem (1.1.1.a)
as well. As we will see in chapter 3, my computation of the solution relies on the

unidimensional case.

1.2.2. Cumulative distribution and generalized inverse. If y is a probability

measure on R, its cumulative distribution is the map F : R — [0, 1] defined by

F(x) = p((=00,x]).

Its is an nondecreasing and right-continuous function. For such a map, it is possible

to define a generalized inverse F~!, also called quantile function, by setting

F7'(y) = min{x € [~o0,00] | y < F(x) }.
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The values of F~! give the different quantiles: for instance, F~(3/4) yields the third

quartile—hence the alternate name.

1.2.3. Lemma. IfF is a cumulative distribution, theny < F(x) if and only if F(y) <

X.

Proof. Since the minimum in the definition of F~! is attained, y < F(F~!(y)) for any
y. Thus, if F7!(y) < x for some x, then y < F(F~!(y)) < F(x), as F is nondecreasing.
Conversely, if y < F(x), then the definition of F~! implies F'(y) < x. o

1.2.4. PROPOSITION. Let h € ¢(R) be a nonnegative, strictly convex function. Let j1

and v be Borel probability measures on R such that

ffh(x —y)du(x)dv(y) < oo. (1.2.4.2)

If p has no atom, and F and G stand for the respective cumulative distribution of u
and v, then T := G™' o F solves Monge’s problem for the cost c(x,y) = h(x — y).
If 'y is the induced transport plan, that is, y = (Id, T)su, then y is optimal for the

Monge-Kantorovich problem.

Proof. To begin with, notice T is well defined almost everywhere for p. Indeed, there

might be a problem only when F(x) = 0, for G™1(0) = —co. But F = 0 only on (-0, a]

for some a € R, and, by the very definition of F, we have u((—o0, a]) = F(a) = 0.
Notice also that, as F and G are nondecreasing, T must be nondecreasing as well.

Then, lemma 1.2.3 on this page applied to the cumulative distribution G yields

T7((~o0,y]) = {x €[-0,+00] | GT(F(x)) <y}
{ x € [~o0, +00] | F(x) <G(y) }.

First, this set has to be an interval, as T is nondecreasing. Second, since y has no
atom, F is increasing and continuous, so this interval must be closed. Thus, if x is its

supremum, we must have F(x) = G(y), and therefore

p(T7H((=00,y])) = p((—e0,x]) = F(x) = G(y) = v((-,y]).
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This is enough to show v = Typ.
Now, let us prove T is optimal. On the one hand, if u > x, then, as T and h’ are
nondecreasing, h’(u — T(u)) < h’(u — T(x)). Integrating between x and some y > x,

we get

IA

fy B (u—-T(u))du fy h(u—-T(x))du

h(y = T(x)) = h(x = T(x)).

IA

On the other hand, if u < x, then h’(u — T(u)) > h’'(u — T(x)); integrating bewteen x

and y < x, we again get

fy hKW(w-T(w))du < - fx h'(u-T(x))du < h(y — T(x)) — h(x — T(x)).

y

Thus, if we set

Yy
V) = fo B — T(w)) du,

then, in any case, ¥(y) — ¥ (x) < h(y — T(x)) — h(x — T(x)), which implies
YT (x)) = iI;f {h(y = T(x)) =y (@)} = h(x - T(x)) - ¢(x),

and this yields ¥ is c-concave. On the other hand, the condition (1.2.4.a) ensures that

there are xy and y, such that

fh(x—yo) du(x) < o and fh(xo—y) dv(y) < oo.

Since h(x — yo) — ¥°(yo) = ¥(x), and h(xg — T(x)) — ¥(x0) = ¥°(T(x)), and also
Y(x) = =¥ °(T(x)), we have

h(x = yo) = ¥“(yo) = ¥(x) 2 —h(xo — T(x)) + ¥ (x0)
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and as Typ = v, this implies ¢ € L'(y). Similarly, /¢ € L'(v). Therefore, integrating
the equality ¢/(x) + ¥°(x) = h(x — T(x)) with respect to y gives

f y(x) da(x) + f V() dv(y) = f (. T(x)) dpu(x).

Since ¥ (x) + ¥°(y) < c(x,y) for all pair (x, y), if y is any other transport plan, the

associated total transport cost is necessarily greater, and thus T is optimal. O

1.3 Yann Brenier’s map and its regularity

1.3.1. Gaspard Monge [45] formulated his original problem in the 1780s with the
distance as a cost function. But for such a cost, the question is particularly difficult:
to give an idea, his characterization of the transport rays was rigorously proved only
a century later, by Paul Appell [5, 6]; and in the 1970s, Vladimir Sudakov [58] claimed
to have proved the existence of an optimal mapping, but a point in his demonstration
was unconvincing—it was corrected by Luigi Ambrosio in 2000 [2], just after another
method had been successfully used by Lawrence C. Evans and Wilfrid Gangbo, with
stronger assumptions [27].

For a strictly convex cost, however, things are somewhat easier. At the end of
the 1980s, Yann Brenier [13, 14] gave a general answer when the cost function is the
squared Euclidean distance, and showed the key role convex functions play in that
case. Since, his theorem has been extended to arbitrary, strictly convex cost functions,
and for measures defined on a variety of domains; those cases will be studied in

section 1.4 on page 31.

1.3.2. Subdifferential of a convex function. Let ¢ : R — (—o0, +c0] be a convex,
lower semicontinuous function. Then, it follows from the Hahn-Banach theorem
applied to the epigraph of ¢ that, if x belongs to the interior of the domain of ¢, there
is p € R such that

VyeRY, o@y) = o)+ (ply - x).
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The set of all those p’s is called the subdifferential of ¢ at x, and is denoted by d¢(x). It
can be shown that ¢ is locally Lipschitz on the interior of its domain, and therefore is
differentiable almost everywhere on it. Should that be the case in x, the subdifferential

is then a singleton: do(x) = {Ve(x)}.

1.3.3. THEOREM (Brenier). Let ;i and v be two Borel probability measures on R¢ with

finite second-order moments—that is, such that

j‘lxl2 du(x) < o0 and flylzdv(y) < oo,

Then, if i is absolutely continuous, there is a unique T : R — R? such thatv = Ty

[-teoraue = min [ -yl are.
yel(p,v)

Moreover, there is only one optimal transport plan y, which is thus necessarily (Id, T)sp,

and

and T is the gradient of a convex function ¢, which is therefore unique up to an additive
constant. There is also a unique (up to an additive constant) Kantorovich potential ,

which is locally Lipschitz and linked to ¢ through the relation

o) = =0,

Proof. We know from proposition 1.1.6 on page 25 that, for a cost ¢(x, y) = %Ix - y|?,

there is a c-concave function ¢ such that

[v@aue+ [yemaw = 5 [x-vlaey (13:3:)

for some optimal transport plan y € Iy, v). We set

o) = Il — Y ().

Then, since °“ = 1, this function ¢ is convex and lower semicontinuous, being a

supremum of affine maps:
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1 1
sup {5 1xl* = 21 =y + < (o)
gy 2 2

1
= sup {0 - (Slyl® - vew) |
y
This computation also yields the Legendre transform of ¢, which is

00) = el - Y.

As ¢ is convex and lower semicontinuous, it is differentiable almost everywhere in
the interior of its domain—that is, almost everywhere at least in the interior of the
convex hull of the support of y, since p is absolutely continuous. All we have to do

now is to show that the optimal transport map is
T(x) = Vo(x) = x - V§(x).

Notice that equality (1.3.3.a) translates into

f o) dp(x) + f 0" (y) du(y) = f (i) dy (x. y).

As p(x) + ¢*(y) = (ylx), this implies that for y-a.e. pair (x, y), there is equality. Thus,

VzeRY, (ylz) - o(z) < (ylx) - p(x),

which, in turn, means y € d¢(x). But ¢ is differentiable for a.e. x in the support of
1, and in that case the subdifferential is reduced to Vo(x). Therefore, y = (Id, V)sp.
This also shows the uniqueness of y and T = V¢. This ¢ is unique up to an additive

constant as well, and so is /. O

1.3.4. Monge-Ampére equation. Regularity results regarding the convex map ¢
and the optimal map T = V¢ have been obtained, most notably by Luis A. Caffarelli [16,
17, 18], using the Monge—-Ampeére equation: if we denote by f and g the respective

densities of y and v, then, if it is smooth enough, ¢ must solve

fx) = g(Vo(x)) det(VZp(x)).
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1.3.5. THEOREM (Caffarelli). Let U and V be two bounded, open subsets of R¢, and
let y1 and v be two probability measures respectively on U and V, with densities f and g.
If those densities are bounded and bounded away from 0, and if V is convex, then ¢ is
strictly convex and €% on U. Moreover, if f and g are €% with k > 1, then ¢ is €**2.

If both U and V are strictly convex with smooth boundaries, the regularity of ¢
holds even on the boundary of U. In that case, Vo and Vo* are diffeomorphisms, and

inverse of each other.

1.4 Extension to the torus

1.4.1. Existence of an optimal map. Following Yann Brenier’s article, an alternate,
more general proof was found by Robert J. McCann [42], who then extended it to

cover the case of measures defined on a Riemannian manifold" [43].

1.4.2. THEOREM (McCann). Let u and v be two probability measures on a compact,
connected, ¢’ manifold without boundary, with i absolutely continuous. Ifd(x, y) stands
for the Riemannian distance between x and y, then there is a unique optimal transport
plany € I(p, v) for the cost c(x,y) = %d(x, y)?, which is induced by the transport map
T(x) = exp,[-V{/(x)], with ¢ Lipschitz and c-concave’. The Kantorovich potential

is unique up to an additive constant.

1.4.3. Regularity. The regularity of the Kantorovich potential, for an arbitrary cost,
is also very difficult question. During the past decade, a lot of progress has been made:
a quite general theorem has been obtained by Xi-Nan Ma, Neil S. Trudinger, and
Xu-Jia Wang [41]; a more specific result, on products of spheres, has been recently
proved by Alessio Figalli, Young-Heon Kim, and Robert J. McCann [29].
Fortunately, chapter 3 does not require a very abstract theory: all we need is
contained in the next theorem (§1.4.5, on page 33), based on Dario Cordero-Erausquin’s

pioneering work [21]. It gives the existence and regularity of the Kantorovich potential

'Dario Cordero-Erausquin [21] had already provided an extension to periodic measures.
20On a Riemannian manifold M, for any v € TyM, the point exp, (v) is defined as the value at time 1 of
the geodesic starting from x with initial velocity v.
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for a quadratic cost ¢ : T¢ x T¢ — [0, o0) induced by ¢ : R x R? — [0, o) given by
_ o1 2
¢(x,y) = inf —A(x-y-k)°,
kezd 2

where A € Scf is a symmetric, positive-definite matrix, and Az? is a shorthand for
(Az|z). Such a cost arises when one changes the usual metric on T? with the one
induced by A in the canonical set of coordinates, and then takes half the resulting
squared distance as a cost function.

Before stating and proving the theorem, we however need to adapt Yann Brenier’s
convex point of view to the torus. We have seen in section 1.3 that ¢/ is a c-concave map
if and only if ¢(x) := %lxl2 — ¥(x) is a lower semicontinuous convex map. Something

similar is going on here for a quadratic cost, namely:

1.4.4. Lemma. A mapy : T? — R is c-concave for the cost ¢ induced by A € S**, if

and only if p(x) = %sz — () is lower semicontinuous and convex on R¢. Then,

VW) = 4 -0 ).

where @* is the Legendre transform of ¢ for the scalar product induced by A. If { is €
and such that A — V2 > 0, then x + x — A"'Vi)(x) is a diffeomorphism T¢ — T¢.

Proof. If {/ is c-concave, then ¢ is convex and lower semi-continuous, for it can be

written as a Legendre transform:

plx) = 54X — ()
= SAx — inf {e(x,9) - ¥ (0))
yel
= sup sup {lez - %A(X —y—k)?+ ‘ﬁc(y)}
yeR4 kez?
_ _ 1 2 _ ¢
= :euugd {(AXIy> [sz ¥ (y)]} :

This also shows ¢*(y) = 2Ay? — ¥°(y).

2
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Conversely, if ¢ is convex and lower semi-continuous, then it is equal to its

double Legendre transform:

¢(x) = sup {(Ax|y> — sup [<A2|y>—</)(2)]}-
yeR4 zeRd

Therefore,

¥ (x)

%Ax2 — sup {(Axly) — sup [(Azly) - §0(Z)]}

yeRN zeR4

in {%A(x -y)? - %Ay2 + sup [(Azly) - <p(Z)]}

yeRd 2cRd
= inf {1A(x— ) — inf [lA(z— )2 —1//(,—;)]}
B yeRd 2 v zeRd L2 v ’

ie ¥(x) = ¥°(x).

If ¢ is 4 and such that A — V?¢/ > 0, then A — V2 > ¢1, for some ¢ > 0. Thus,
as ¢ is convex with a super-linear growth, V¢ : R¢ — R is a diffeomorphism, and
soisthemap T : x = x — A'Vi/(x). Notice that, if k € Z¢, then T(x + k) = T(x) + k;
therefore, T induces a diffeomorphism T4 > 19, O

1.4.5. PROPOSITION. Let i and v be two probability measures on T¢ with smooth,
strictly positive densities, and let ¢ be the quadratic cost on T* X T% induced by a definite-
positive, symmetric matrix A. Then there is a unique c-concave function  : T — R
with f Y dy =0 such that T : T? — T¢ defined by T(x) := x — A7'Vi/(x) sends y onto
v. The function y is a Kantorovich potential; it is smooth, and ¢ : x — %sz —yY(x)isa
smooth, strictly convex function on R¢. Moreover, the transport map T is optimal for the

cost ¢, and there is no other optimal transport plan but the one it induces.

Proof. Let us denote by V4 the gradient for the metric induced by A. Then according
to Robert J. McCann’s theorem (§1.4.2, on page 31), there is a Lipschitz function
¥ : TY — R that is c-concave and such that T : x — exp, [-Vay(x)] pushes
u forward to v. It is uniquely defined if the condition f Y dy = 0 is added, and

moreover it is optimal for the Monge—Kantorovich problem. Here on the torus,
exp, [-Vay(x)] = x - A7'VY (x).
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For any x € RY, let ¢(x) := %sz — Y(x). Then T(x) = A™'Vo(x) sends p
onto v, seen as periodic measures on R¢. Moreover, according to lemma 1.4.4 on
page 32, ¢ is a convex function. Now, let V be an open, convex subset of R¢, and
define U = (V) }(V). Then V¢ sends p|y onto Azv|y, and both measures are still
absolutely continuous with smooth, bounded, strictly positive densities. Therefore
we are entitled to apply Luis A. Caffarelli’s theorem (§1.3.5, on page 31), and thus we
get that ¢ is strictly convex and smooth on U. As U is arbitrary, ¢ is strictly convex

and smooth on R?. Thus, ¥ is also smooth, and T is a diffeomorphism. O

1.5 The Wasserstein space

1.5.1. Wasserstein distance W,,. If ; and v are two probability measures on a space
X, which will be either the Euclidean space or a Riemannian manifold, then the
minimal value for the Monge—Kantorovich problem defines a distance, dubbed the

Wasserstein distance, when the cost is ¢(x, y) = d(x, y)? with d the distance of X:
1/p
Wy (u,v) o= ( min f d(x, y)? dy(x, y)) :
yellp,v)

1.5.2. Wasserstein space #,(X). For the Wasserstein distance between y and v to
be finite, it is enough for them to have finite pth-order moments. In other words, W,
is a distance on the following subset of the space #(X) of Borel probability measures
on X:

Pp(X) = {;1 € P(X) ‘on € X,fd(x,xo)[’ du(x) < 00}.

Thanks to the triangular inequality, the condition “for all x,” can be replaced by “there

is at least one x;”.

1.5.3. PROPOSITION. Forany p,v € P (X),

> _V
Wil '//€L1P1(X)f vl

Proof. This follows from proposition 1.1.6 on page 25, for if ¢ is 1-Lipschitz, then
-¢¥(y) < d(x,y) — ¥(x) for any x, and thus ¢ = —¢. ]
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1.5.4. PROPOSITION. A sequence (i,)nen converges for the Wasserstein distance if and
only if it narrowly converges and the pth-order moments converge as well. Therefore, if

is X compact, then P»(X) = P(X) is also compact.
Proof. See Cédric Villani’s first book [62, Theorem 7.12]. O

As will be shown by the next three propositions, optimal transport lies at the

heart of the properties of the Wasserstein distance.

1.5.5. PROPOSITION. Let g, jiy € Pp(Rd). Then, any y € I(u,v) optimal for the
Monge—Kantorovich problem induces a constant-speed geodesic (i;):c[0.1], defined by

pe = [A=)X+ Y]y,

where X(x, y) := x and Y(x, y) := y; that is,

VEeq, f £(z) dur(2) = f E((1 - Dx + ty) dy (x. y).

Conversely, any constant-speed geodesic between iy and p is induced by an optimal
transport plany € I(u, v). Therefore, if 1 is absolutely continuous, there is an optimal
transport map T between uy and iy, and the geodesic is p; == [(1 — t) Id +¢T], po.

This shows the Wasserstein space is a length space: the Wasserstein distance

coincides with the distance induced by the geodesics.

Proof. Let y be an optimal transport plan between p and p;. Let also ¢ € [0, 1], and
define Z, := (1 — )X + tY. Then, u; = [Z,;]sy, and, for any s € [0,1], (Zs, Z;)sy is a

transport plan between 5 and y;. Therefore,

IA

f 11— s)x + sy] = [ = D+ ]| dy (x.y)

|t = s1P Wy (o, )",

WP(I”S? l’lt)p

IA

that is W, (is, p1¢) < |t — s|Wp (1o, p11). Were that inequality to be strict for a pair (s, ¢),
the triangular inequality would yield W), (1o, 1) < W), (1o, p11), which is obviously not
possible. Thus,

W (s, p1e) = |t = sIWp(po, p11).
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Conversely, if (11/)se[0.,1] is a constant speed geodesic, then, for any ¢ € [0,1], it
is possible to “glue” together two optimal transport plans to form 7 € T(uo, ¢, f11)
such that (X, )« and (Y, Z)sr are optimal plans between, respectively, o and y; on

the one hand, and p; and p; on the other hand—where
X(x,y,z) = x, Y(x,y,2) =y, Z(x,y,z) = z.

We refer to Cédric Villani’s first book on optimal transportation [62, Lemma 7.6] for

a proof of this gluing lemma3. Then,

Wp(tos 1) < IIX=Zlleory < IX=YllLogry + 1Y = ZllLe(r
< Wp(ﬂo’ﬂt)"'wp(llt’lll) < Wp(llo,lll)-

Thus, all the inequalities are, in fact, equalities. This implies (X, Z)s7 is optimal and
there is € [0,1] such that Y = (1 — @)X + aZ in L?(rr). Therefore, W, (o, yi;) =
tW) (pho, p1) yields a = t. O

1.5.6. PROPOSITION. Let y1,v € P(K), with K a compact subset of R or a compact
manifold. Then, for any fi € P(K), there is a Kantorovich potential i between y and v
for the cost c¢(x,y) = d(x,y)?/p such that:

lim Wo((1— &) + ef1,v)* = Wa(u, v)? _ fl//d(ﬁ ).

£—0* 2¢

A priori, the potential ¢/ may depend on ji. However, it is obviously no longer
the case if the Kantorovich potential is uniquely defined—e.g. if i1 or v is absolutely

continuous and strictly positive.

Proof. Let i, be a Kantorovich potential between (1 — ¢)p + ¢fi and v:

[pedta e em s [yeav = Jw(a - e ey

3The same lemma allows to prove W}, is a distance
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Then,
Wo((1— &)y + efi, v)* — Wa(p, v)?
2¢e

< [ved-n.
Since ¥/, is c-concave,
px) = inf {Sdee ) - )}

and consequently, as K is bounded, ¥/, is Lipschitz with a constant that does not
depend on ¢; so is {/¢. By the Arzela—Ascoli theorem, the family {(/,, ¢/¢)} is therefore
relatively compact. Let (¢, ¢) be a limit point such that

hmsupfwgdm—u) - fwd@—u).

£—0*

Then, since ¥/ (x) + ¢(y) < %lx — y|?, we have

IA

1
liminf =Wy ((1 — &) + €2, v)*
e—>0" 2

= 11?3)%)1}16 {f‘t,bgd((l—g),u+g,a)+fx//gC dv}
f¢dy+f<pdv

1
< EWZ(IIe v)?.

1
“W, (1,
B 2 (1, v)

IA

Thus, ¢ is a Kantorovich potential between p and v, and

IA

Wa((1 - 1,v)? — Wa(p, v)?
lim sup 2((1 = &)+ et v) 24, v) limsupflﬁgd(ﬂ—y)

£e—0* 2¢ £—0*

[vag-w.
[vaa-apeem [year

W) +ef¢d<ﬂ ~ ).

IA

On the other hand,

v

1
sz((l — &)y +efi, v)?

v
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and this yields
Wy ((1 - i, v)% — Wy (p, v)?
lim%nf 2(( £),u+£/; v) 2(p.7) > flﬁd(ﬂ_ﬂ)- i
£—0* £

1.5.7. PROPOSITION. Let yi,v € P(K), with K a compact subset of R¢ or K = T¢,

and assume 1 is absolutely continuous. Let 1 is the (unique up to an additive constant)

Kantorovich potential between pi and v for the cost c(x,y) = d(x,y)P/p. If{ isa
diffeomorphism of K, then

W ([1d V)2 = Wa(p, v)?

lim 2(d +el]4p, v) 2(p, v)

>0 2¢e

. f VYI0) d.

Proof. As i is a Kantorovich potential between y and v,

Wa([1d +egJep, v)® = Wa(u, v)* f Ylx+ e((ogc)) ~y(x) ().

2¢e

Since ¢ is Lipschitz (because K is compact), it is differentiable almost everywhere.

Thus, Lebesgue’s dominated convergence theorem yields

2 2
i inf Wa([Id +e{sp, v)* = Wa(p, v)
e—0* 2¢e

> f V() | L)) dp).

Conversely, Id -V is an optimal map between p and v, so (Id +e{,1d =V¢/)spu is a
transport plan between [Id +¢{]+p and v, and thus

Wa(lid el ? < [ Joxe e ] - [ - 9y duto
< [l b= eI + 247000 | £0) + L) bt
< Wagur ve [ (T [ 26 duta) + 2 [ GO duto).

Hence

imsap ML =W gy [ au.

£—0* 2e
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1.6 The Benamou-Brenier formula

1.6.1. According to proposition 1.5.5 on page 35, the geodesics in Pp(Rd) are all
induced by optimal transport plans. Jean-David Benamou and Yann Brenier [7] found
another characterization, namely that the geodesics should minimize the average
kinetic energy of the particles through the transport. That is, the geodesics should
minimze

1
() reo,) f0f|vt(x)|2dllt(x)dt,

among all the absolutely continuous curves (yi;)e[0,1] With (v;);e[0,1] the associated
velocity field given by the continuity equation:

do

P +div (vp) = 0.

From this, they derived a method to numerically solve the Monge-Kantorovich

problem.

1.6.2. Metric derivative. If ()7 is an absolutely continuous curve in £, (X), i.e.

if there is g € L'(I) such that

Vs, t €I, Wy(us,py) < f g(w) dw,
[s,t]
then, for almost every t € I, the limit

. . Wp(/lt’/JHh)
Jile = limsup —-7
h—0 |h|

exists, and is called the metric derivative or y. Then, |i| < g and W, (us, pi;) < fst ]

Proof. Let {t,}nen be a dense subset of I, and let d,,(t) := Wy (ps,,, pi¢). Thenif s < t,
we have |d,(s) — dn(t)] < Wp(ps, pir) < fst g, so d, is absolutely continuous and
|d; (t)] < g(t). We set e(t) := sup |d,,(t)|. If all the d, are differentiable in t—this is
the case almost everywhere—, then

- W B +
|d,n(t) aln(t+h>lshrtni(glf p<#|th|#t h)

e(t) = sup |d),(t)| = sup lim
neN neN h—0 |h|
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But {t,} is dense in I, so

neN neN

Wy, (te, fiesn) = sup |dp(t + h) — dp(t)] < supf ld),(w0)| do < f e(w) dw.
(t,t+h] [t,t+h]

By the Lebesgue differentiation theorem, this shows that || exists almost everywhere,

il = e, and since Wy, (i, pisip) < f[t,t+h] g, this also shows || < g. m]

1.6.3. Lemma. Let (u;);e; be an absolutely continuous curve in Pp(Rd). Then, there is
a vector fieldv : I X R? — RY such that Ll = ||'Ut||Lp(ut)f0r almost allt € I. Moreover,
in the distributional sense,

d
d—l; +div(op) = 0.

Conversely, if there is a vector field v : I x R? — R? such that, in the distributional

sense,
du

” +div(op) =0 with ﬁllvtlle(m) di < o0,

then (11;) ey is absolutely continuous, and ||, < loellLe(p,) for almost all't € 1.
For the proof of this lemma, we refer to the monograph by Luigi Ambrosio,

Nicola Gigli, and Giuseppe Savaré [3, Theorem 8.3.1].

1.6.4. THEOREM (Benamou-Brenier). Let p € (1,00) and pg, jy € P,(X) with
X = R? orX = T%. Then

W, (po, )P = in£f flvt(x)lpdyt(x)dt,
o X

[0.1]

where the infimum runs among all pairs (1, v) such that (j1;)e[0.1] is a continuous curve
between 1y and py, and v : [0,1] x X — R? is a vector field such that v; € LP(u;) for

almost all t € [0,1], and, in the distributional sense,
d
d_ltl +div(op) = 0.
Proof. The case X = R¢ directly follows from lemma 1.6.3 on the current page,

equality being reached with a constant speed geodesic. Let us nevertheless give a

demonstration for X = T¢, inspired from the original article by Jean-David Benamou
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and Yann Brenier [7], and the aforementioned book by Luigi Ambrosio, Nicola Gigli,
and Giuseppe Savaré [3, Chapter 8]. The reader may also refer to a proof by Kevin
Guittet [32].

1. Let (i4) be a curve of absolutely continuous, smooth probability measures

on T%, and let v be a vector field smooth in space that, together with (1), solve the

1
fnvtn(gl dt < oo.
0

Then, the solution t — X ;(x) of the equation dX ,/dt = v;(Xs ¢), with X, s(x) = x,

continuity equation. Assume

is defined for all t € [0, 1] (if we were not working on a compact space without
boundary, there would be a difficulty here). For & € €°([0,1] x T%), we set

1
p1(x) = —f Es(Xy s(x)) ds.

Since X; (Xo,:(x)) = Xo,s(x),

do; d
d_(pt(XO,t) + (v (Xo.1) | Voi(Xo,1)) = in [0:(Xo,0)] = &(Xo.1),

and as x — Xy ;(x) is a diffeomorphism, this implies dg/dt + (v ’ Vo) = &. Thus,

L T do, !
ﬁf[(% x)+<vt(x)|qot(x))] dp:(x)dt = j(;fgt(x)d:”f(x)dt'

On the other hand, since (y, v) solves the continuity equation and ¢; = 0,

1 do,
fo f [d—‘i<x>+<vt<x>lv¢t<x>>] dye(x)dt = - f 90(x) dpo ).

This implies y; = [Xo,:]spt0. Indeed, let f; := [Xo ¢]spo, and o = g — p. Then,
according to the previous computations, which also hold for j, for any & € ([0, 1] X

—[rd)y
1
ff@(x)dcn(x)dt = —fq)o(x)dao(x) = 0.
0
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Therefore, since [Xo 1]sp0 = 11,

1
W (po, )P < f Xo.1(x) — xI? duo(x) < f f X, ()P dt dpo )

and thus, as X; , = v,(Xs ;) and pt; = [Xo,¢]4 po,

1 1
WGt ) < fo f o0 (Ko, GNP dpio () dt < fo f [0 (0) [P djag (x) .

2. We no longer assume anything about y and g, but that they are probability
measures on T¢. If (u;) is a continuous curve between them, and if v is a vector field
solving the continuity equation, with v, € L?(u,), then, taking a positive mollifier ¢.,
we set u§ = @, * f1y. As ¢, * (vy1;) is absolutely continuous, it has a density v} with
respect to pf, which is positive. Thus, (1, v*) also solves the continuity equation,
and (p;) is still a continuous curve. Moreover, setting m, = min ¢,,

el < e el (me + ltlle
t = .

me

But, ||uill¢r < C, and, as

0 * (Vo) () f 0e(x — )or(y) due (v)

IA

llge(x — - )”L‘I(yt)”UtHLP(pt)

IA

Nlpellzolloellie )

we must also have ||¢, * (V)| < CellvtllLe(y,)- We can therefore assume

1 1 1 1/p
f 1ol dt < C, f loellipg di < C. ( f [0 ()P dpy(x) dt) < co.
0 0 0

Then, according to the previous computations,

1
Wl i) < [ [ o5 duso .
0
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According to Jensen’s inequality, since (a, b) > |a|?/b? ! is convex and homogeneous

of degree 1on R X (0, o), and ¢.(x — -)y; is a bounded measure,

_ e @eetx - ) duew)]”
(f petx =) due@)’”

[0t (O 1P4E (x) < f 0 )1P e (x - ) dyse ().

Thus,

IA

j;lflvt(y)|p dp, () dt.

1
Wy (s 1) < fo [t dus

Then, letting ¢ — 0, we finally get

1
W (o, )P < foflvt(y)lpdut(y)dt-

3. Conversely, if po and p; are absolutely continuous, with strictly positive,
smooth densities, then according to Yann Brenier’s theorem (§1.3.3, on page 29) and
Luis A. Caffarelli’s theorem (§1.3.5, on page 31), there is a diffeomorphism T : T¢ — T¢
such that p; = Typo. Then, if we set v; = (T —1Id) o [(1 — t) Id +¢T] ! and let y, be the
density of [(1 — t) Id +tT], u, we get

d 1
Tedven =0 and Wy’ = [ Il duto
0

4. In the general case, let y € I, (10, p11) be an optimal plan, and let (p1;);¢[0,1) be
the geodesic induced by y. Define then a probability measure 7 on [0, 1] x T¢ with

| 1 [ eeaquear

1
= f(;f§(t,(1—t)x+ty)dy(x,y)dt.

ff(t,z) dr(t, z)

Then, if £ € €2((0,1) x T9),

f (Eean(2) - £(2)) dr(t.2)
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- f ( [ e@dusa- | §t(x)d/1t(2))dt

1
< [ f {§t<l<1—t+h>x+<t—h>y>—§t<<1—t>x+ty>}dy<x,y>dt
shfoffo (VE((1 =t +sh)x + (t — sh)y) | x — y)dsdy(x,y) dt .

-
< hW, (o, 1) (foffo |V§t((1—t+sh)x+(t—sh)y)|qudy(x,y)dt)
and thus, dividing by h and letting h — 0,
[ 26@ WD) < Wyl I Eat.
For & € €°°((0,1) x T9), we set
LvE) = - [ B dn.a)

then this L can be extended into a continuous linear form on L9(rr). Thus, there is

v € LP(r) such that ||v|ys(r) < Wp(po, 1) and

VE e €°0,1) x TY), f {d_dtgt(z) +{(v4(z) | V§t(z)>} dn(t,z) = 0.

This implies that

d 1
edven =0 ad [ [w@rdu@d < Wlom?. o
0
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The inverse function theorem
of Nash and Moser

2.0.1. The Nash—-Moser theorem is an extension of the well-known inverse function
theorem to maps between Fréchet spaces. The first steps toward such a theorem were
made in 1956 by John Nash [48], in his proof that one could embed any Riemannian
manifold into some Euclidean space. A decade later, Jirgen Moser [46, 47] exposed a
general method, which has ever since known many applications and developments.
We will here follow the presentation made by Richard S. Hamilton [33], though
keeping only the elements required to come to a minimal working statement, which

is enough to satisfy our needs.

2.0.2. Compared with the standard inverse function theorem, two conditions need
to be added for a map { between two Fréchet spaces to be invertible near 0: first,
that D{ itself be invertible on a whole neighborhood, since this does not follow any
longer from the invertibility of D{(0); second, there should be “reasonable” bounds on
{,D¢, and [D{]7}, ice. [|{(u)||,, for instance should be bounded at most by 1+ ||u]| .,
for some constant r > 0 independent of n. In mathematical terms, we will say that

{,D¢ and [D]7! need to satisfy some “tame” estimates.
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If {(0) = 0, and v is fixed and close to 0, a way to get u such that v = {(u) is to

use a continuous version of Newton’s method" and find a solution of the equation

u'(t) = A[DE (u(t)] 7 (v = {(u(t)),

starting for instance from u(0) = 0, since then ¢ (u(t)) = (1 — e **)v — v. As such
an oDE might not have a solution if { is a map between Fréchet spaces, we will use a
smooth family of operators (S;);»¢ such that S; — Id when t — oo and each S, takes

its values in a finite-dimensional subspace, and then solve

u'(t) = ADE(S:u(t)]7'Se (v = {(u(®))).

The existence of an appropriate family of finite-dimensional subspaces will be guaran-
teed by working on a particular class of Fréchet spaces, the so-called “tame” Fréchet
spaces. Fortunately, the Fréchet space we are interested in, namely € (T%), is tame—

as will be shown in the last section.

2.1 Definitions and statements

2.1.1. We will now state the theorem and its implicit-function corollary, but, before-

hand, we need to introduce a few definitions.

2.1.2. Graded Fréchet space. This is the name given to a Fréchet space F endowed

with a family of increasingly stronger seminorms (|||l ,en), so that
YueF, llully < flully <--- < llull, <---
For any g € N and p > 0, we set

By(p) = {n€F|lklly <p}  and  By(p) = {h e Fllhll, < p}.

'Ivar Ekeland recently showed this is not the only way, by proving a more general inverse function
theorem using his variational principle instead of Newton’s method [26].
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2.1.3. Tame linear map, tame isomorphism. A tame linear map L : F — G is
a linear map between two graded Fréchet spaces such that, for some r,b € N, the
following tame estimate is satisfied:

Vn>b, 3C, >0, Yy eF, ||Lu||S < Cpllulf

n+r:

Such a map L is a tame isomorphism if it is invertible, and both L and L™! are tame

linear maps.

2.1.4. Set of exponentially decreasing sequences X(E). For a Banach space
(E, |I-llg), the set of exponentially decreasing sequences in E is defined by:

(o)

S(B) = {ue EN|VneN, |lull, <o) where [lull,:= ) e fuxll
k=0
Endowed with the seminorms (||-]|,)nen, it is a graded Fréchet space. Notice that the

seminorms could also be defined for n < 0.

2.1.5. Tame Fréchet space. A graded Fréchet space F is called a tame Fréchet space
if there is a Banach space E and two tame linear maps L : F — Z(E) and K : 3(E) —» F
such that K o L is the identity of F.

2.1.6. Tame map, tame estimate. Let F and G be two graded Fréchet spaces, and
Q C F be an open subset. A map { : Q — G is said to be tame if it is continuous and,
for every point uy € Q, there is a neigkorhood Uj of uy and some r, b € N such that

Vn2b, AC, >0, Yu e Uy, IE@)IG < Cp (1+ l1ullfy,,) -

n+r

2.1.7. Smooth tame map. Let F and G be two graded Fréchet spaces, and Q C F be
an open subset. A map { : Q — G is said to be a smooth tame map if it is smooth and

all its Gateau derivatives are tame.

2.1.8. THEOREM (Nash—Moser). Let F and G be two tame Fréchet spaces, and Q C F
an open subset. Let { : Q — G be a smooth tame map such that, for anyu € Q,
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D{(u) : F — G is invertible. If [D{]™': Q X G — F is a smooth tame map, then { is

locally invertible, and, locally, its inverse is always a smooth tame map.

2.1.9. COROLLARY (implicit functions theorem). Let F, G and H be tame spaces,
Uy an open subset of F, V an open subset of G. Assume that ¢ : Uy x Vj - Hisa
smooth tame map, and that there are uy € Uy, vy € Vy such that &(ug, vy) = 0. If, for
allu € Uy, v € Vy, w € H, there is a unique h € G such that D,{(u,v)h = w, and
h, seen as a function of u, v and w, is a smooth tame map, then there are U C U, an
open neighborhood of uy, V.C Vy an open neighborhood of vy, and a smooth tame map
v:U — V such that

YueU,VoveV, &uv)=0 v=v(u).
Proof of the corollary. We define a smooth tame map { : Uy X Vo — F X H by setting

{(u,v) = (u, &(u, v)).
Then, for all (u,v) € Uy X V,,

Id 0

P = b ) Dot 0)

is invertible, and (u, v, g, w) = [D{(u,v)] (g, w) is a smooth tame map. Therefore,
according to the Nash—-Moser theorem, in a neighborhood Uy X V of (ug, vy), { is
invertible, and { ™! : {(U; x V) — U; XV is a smooth tame map. Let U, x W C {(U; X V)
be a neighborhood of (ug, 0),and U X V’ c { }(U; x W) be a neighborhood of (ug, vp).
We then take v : U — V such that

(u,v(u)) = g_l(u,O). |

2.2 Organization of the proof

2.2.1. In the next paragraphs, let us simplify the proof we need to give by a sequence

of reductions to easier situations. The injectivity of { will then be proved in section 2.3
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(proposition 2.3.1 on page 51). In section 2.4, we will introduce the smoothing operators
that will allow us to prove the surjectivity in section 2.5 (proposition 2.5.7 on page 63).
At last, we will deal with the smooth-tameness of { ™! in section 2.6 (proposition 2.6.3

on page 66).

2.2.2. Lemma. It is possible to assume 0 € Q, with {(0) = 0, and F = G = Z(E), for

some Banach space E.

Proof. Since D{(0) : F — G is linear tame and invertible, with an inverse map
[DZ(0)]7' : G — F which is also linear tame, F and G are isomorphic and can be
identified. Since F is a tame Fréchet space, we can assume F = G = X(E) for some

Banach space E. O

2.2.3. Lemma. One can assume that there isry € N such that, for alln > 0, there is
Cn > 0 such that, if ||ull,, <1, forallh, k € £(E),

I < Chllullnir,, (2.2.3.2)

IDZ @, < Co (Whllnery + Illolallery) (2.23b)
ID*{ (hihzll, < Can (||h1||0||h2||n+r0 + hallnery [1R2 1o + ||hl||0||h2||0||u”n+r0) ;

(2.2.3.c)

NIDL@I ™kl < Co (Kl + 1Kol ey (2.23.)

Proof. Since {,D{,D?{ and [D{] 7! are all tame, there is a neighborhood Uj of 0, and
r,b € N such that, if u, h, hy, hy, k € Uy, for any n > b,

@)l

IDZ (u)hll,
ID?¢ (w)hihal
IDE ()]~ kIl

IA

Cn (1+ llull s r) 5

Crn 1+ NAllpsr + llull e r) 5

Cn L+ Nhall e r + b2l r + el sr) 5
Cn L+ Nlkllpsr + llull e r) -

IN A

IA

This neighborhood Uy necessarily contains a small ball B,(2p), and we can assume

a > r. Then, since for any h € 2(E), the vector ph/||hl|, is in Uy, we obtain that for
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any u € X(E) such that ||ul|, < p and any h, hy, hz, k € Z(E),

1E @)l

IDZ (Al
ID*¢ (w)hihall,
DS )]kl ,

IA

Cn 1+ llullpsr) 5

Cn (1Rl r + Rl Ml o)

Chn (IIhllnsrllh2ll o + Tl allh2ll e + il all B2l oMl s )
Crn (el ner + 1kl gllell sy -

INIA

IA

For any g € Z, we define 7 : %(E) — X(E) by 74(u)x = e?%uy. Then,
lrg@lly = > ™ Dugll = Jullg
k=0

Thus, 7, is a tame linear map. So, for any p, g € Z, the map 7, o { o 74 is still smooth

tame, and

D(zp 0 { o 1g)(u)h
Dz(rp o { o14)(u)hihy

[D(zp 0 { 0 7g) ()] 'k

7y (DL (r@)]zg(h)) .
tp (ID*¢ (rq(@)]rg ()7 (h2)) ,
7_g (DL (rg ()] '7_ (k) .

Therefore, if we replace { with 7, 0 { o 7, for some p, g, and compose with a dilatation

so as to have an estimate on a ball of radius 1, then, if n+p > bandn — g > b and

[ull grg < 1,
IZ@) < Co (1+ Nl nepireg) »
IDE@hl, < Co (1hllnepereg + Il arglullnepereq)
||D2§(u)h1hz||n < Cn (||h1||n+p+r+q||h2”a+q+ ”h1||a+q”h2”n+p+r+q

il asgllall as gl neperaq) -

1D @)] Kl < Co (Iklln—ger—p + klla—pliull n—gereq) -

IA
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Increasing a, b, and r if necessary, we will assume a = b = r. Then, for p = 2r,q = -,

we get that,ifn >b—-—p=—-randn>qg+b =0, and if |Jull, <1,

IA

Crn (1+ llull ps2r) »

Cn (Al nszr + [Ihllolull nrzr)

Cn (1Al nezrllh2llo + hallolh2llnezr + hrllo lh2llolull nazr)
Cr (Il + 1Kl =2l s r) -

G @)l

IDZ (w)hll,
ID? (w)hihall,
IIDZ ()] ™k,

INIA

IA

We then set ry = 2r. As {(0) =0,
1
{(u) = f D{(tu)udt,
0
and thus, if ||u|l, < 1,
1@ < Co (Haller + Nallollullnery) < 2Callullner,- 0

2.3 Injectivity

2.3.1. PROPOSITION. If{ satisfies the assumption of theorem 2.1.8 on page 47 and of

the previous section, then there exist ¢ > 0 and some C > 0 such that
Vu,v € By(e), llu—-ollp < CliZ(u) - @)llo-

Proof. Letu, v € B,,(¢) for some ¢ € (0, 1) that will be fixed later on. Then, according

to Taylor’s formula,

1
{(v) = g(u)+D§(u)(v—u)+v[;ng((l—t)u+tv)(v—u)2(1—t)dt.

This implies

1
v—u = [DL(u)]! {{(v)—é’(u)—j(:ngv((l—t)u+tv)(v—u)2(1—t)dt}.
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Using (2.2.3.d), since ||(1 — t)u + tv||,, < & we get

1
llo—ully < Co(1+€)(ll§(u)—§(U)I|o+f0IIDZ§((1—t)u+tv)(v—u)zllodt)-

(2.3.1.2)
According to (2.2.3.c),

ID*C((1 = t)u + tv) (v — u)?|l

< Cr, (2l = ullolio = ull,, + llo = uli§li(t = t)u + toll,, )
which, since u, v € B,,(¢), implies
ID?J((1 = tyu + tv) (v —u)’lly < Cello —ull,. (2.3.1.b)
Thus, (2.3.1.a) becomes
lo—ulle < CUIZW) = @)l + ello —ullp)
and the result follows as soon as Ce < 1/2. Then, (2.3.1.b) becomes

ID*C((1 = t)u + to) (v —w)?lly < [l —ullp.

Let us put the last inequality into
2.3.2. Lemma. Ife is given by proposition 2.3.1 on the preceding page, then

Vu,v € By (e), IID*{((1-t)u+tv)(w-u)lly < llv—ull.

2.4 Smoothing operators

2.4.1. In this section, we introduce the operators (S;);»( that will enable us to prove

{ is surjective in the next section. In particular, we will study the solutions of the
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equation
x'(t) + ASx(t) = y(1),

and give estimates on |[x(t)]l -

2.4.2. Smoothing operator. Let o : R — [0, +00) be a smooth function such that
o(t) = 0 whent < 0 and o(¢) = 1 when ¢t > 1, with o strictly increasing on (0, 1).
The smoothing operator S, : 2(E) — X(E) is defined by:

(S;u) = o(t —k)uy forallk € Nandu € Z(E).
2.4.3. Lemma. Letn,q € N. Then, foranyu € 2(E),
VieR, [Swullpg <elllull, and llu-Swull, < Coe” U lull g
Proof. Since o < 1always, and o(t — k) = 0 assoonast < k,

ISetllneg < > e DX lugll < e ) e lluell < e llull,.

k<t k<t

On the other hand, since o(t — k) = lassoonast —1 > k,

k —q(t-1 k -
= Seully < ) ™ llugll < e N DK juy]| < el flullg. O
t-1<k t-1<k

2.4.4. Lemma. Let T > 0. Then fort < T, the smoothing operator S, takes its values
into a finite-dimensional subspace X1(E) := Span{e; | i < T}, where we have set

e; = (Ok,i)keN-

2.4.5. Lemma (Landau-Kolmogorov inequalities). Let p,q € N. Then, for any
0e(0,1),if1—-60)p+0qeN,

VueSE), lula—gpog < Cnp.qllully Cllull.

The name is usually used for such equalities in € with || fl|, := ||f]l¢» or

1f Il = 11 f Il
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Proof. Let n = (1 — 0)p + 0q, and assume p < g. According to lemma 2.4.3 on the

previous page,
lull, < NSwully + llu = Seull, < C (" Pllull, + e~ ull,).

Then, if t is such that et("_f’)llullp = e‘t(q_”)llullq, ie. ef@p) = lullg/llull 5, since

n—-p=0(qg—p)andqg—n=(1-0)(q — p), we get the desired result. O
2.4.6. Lemma. LetA > 0,x € ([0, T];2(E)), andy € €°([0, T]; (E)) be such that
Vte[0,T], x'(t)+ASix(t) = y(¢),

where S; is the operator introduced in definition 2.4.2 on the preceding page. Then, for

any n,q € N and assuming q € (0, 1),

fo et (el dt < Cy (||x<o>||n+q + fo Iy Ollney + eIy, dt) ,
where the constant Cg » does not depend on T.
Proof. We set ay(s,t) := exp (—/1 fst o(w—k) da)) for s < t. Then, since
ar(t,t) =1 and d—ia(s, t) = ASsaf(s, t),
the equation x’(t) + AS;x(t) = y(t) yields

xi(t) = ax(t, H)xx(t)

ax (0, £)x1(0) + fo 4 a5, Dxe(s)] ds

ds

ar(0, t)x(0) + j(;t ASsar(s, t)xi(s) + ar(s, t)x;(s) ds

ak(O,t)xk(0)+‘£ ar(s, t)yr(s)ds,
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and therefore

T T Tt
[ emxoinde < [ erlao.ox)ades [ [ et oyl dsar
0 0 0 Jo
(2.4.6.2)
First of all, notice that ai(s,t) < 1. Butas o(w — k) =1 when w > k + 1,

«ifs<k+1<t then [ o(w-k)do > (t -k —1) and ax(s, t) < e A=k-D
« ifk+1<s, then ar(s, t) < e 279,

Thus, assuming T > k +1,and 1 > g > 0,

T k+1 T
f e?ar(0,t)dt f eqtdt+f edte~MI=k-D gy
0 0 k+1

Cq 3 {eq(k+1) + e)L(k+1)e—(/1—q)(k+l)}

IA

IA

IA

k
Cq.2e7".

Therefore,

T T o0

f ¢9"[1a(0, H)x(0)]l,, dt = f e > e a0, )xk ()l < Cqalx(0)]peq-
0 0 k=0
All we have to do now is to bound the second part in (2.4.6.a). By Fubini’s theorem,
T o T AT
[ emtasnyeiadsar = [ vl ny@lludeds. sob)
0 Jo 0Js

Letusfixs € [0,T]and k € N. If s < k + 1, then

T k+1 +00
f e'ay(s, t)dt f e'ai(s,t) dt+f e'lay(s, t)dt
s N k+1

k+1 +00
f el dt+f elde=Mt=k=1) g4
s k+1

quqk + Cq7,16qk,

IA

IA

IA

55



Chapter 2. The Nash—Moser inverse function theorem

andifk+1<s,

T T
f e'ap(s,t)dt < f elde 179 dt < Cq.re®
N N

We can sum up the situation with the following bound,

T
f e'lai(s,t)dr < Cy.a {eqk+eqs}.
S

Thus,

e*ay (s, t)llyx(s)Il dt

s

T
L
s

(o)

T
Zekn”yk(s)llf e ax(s,t) dt

k=0
Caqa {IY($) g + e Ny()1la} »

T
f e la(s. £)y(s)ll

a
1l

0

IA

and this, injected into (2.4.6.b), completes the proof. O

2.5 Surjectivity

2.5.1. To show that, for every o close to 0, there is #, also close to 0, such that { (@) = 9,

we will solve the following oODE:

u'(t) = A[D(S:u(t)]7'S:( = {(u(1))),

and show that the solution u(t) is defined on [0, +c0) and converges to some # when ¢
tends to infinity, with (@) = o.
estimates involving u(t), x(t) = © — {(u(t)), and y(t) = [D{(S,;u(t)) — D (u(t))]u’(t).

It will be shown that

s
The convergence will be proved thanks to a series of

x'(t) + ASyx(t) = y(t)

and this second opE will provide useful estimates, thanks to lemma 2.4.6 on page 54.
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2.5.2. Lemma. Let us fix A € R. Then, possibly decreasing ¢ (initially given by
proposition 2.3.1 on page 51) and increasing ro (from lemma 2.2.3 on page 49), for any

0 € By, (€), for some § > 0 there is a unique u € ¢*([0, 5);1_3r0 (¢)) such that
u(0) =0 and u'(t) = A[DL(Swu(t)] ™ {S; (0 = {(u(t)))} fort € [0,9).

Proof. We divide the proof in four steps.

1 If ®,(u) := (S:(u),S:(9 — {(u)) and ¥(v)h := A[D{(v)]'h, then u(t) is a
solution if and only if u’(t) = ¥ o ®;(u(t)) and u(0) = 0.

2. According to lemma 2.4.4 on page 53, for any ¢ < T the smoothing operator
Sy : 2(E) — Z(E) takes its values into a finite-dimensional subspace 31 (E) where all
the seminorms are equivalent norms. Since D, ® : [0, T] X Q X 2(E) — Z1(E) X Z7(E)

is a smooth tame map, increasing ry and decreasing ¢ if necessary, for any t € [0, T],
Vu € B, (26), Vhe By(2p),  [DuDe(whlly < C (1+ 1Al + lull,).

Then, as for any h € %(E), we always have ph/||hll,, € B, (2p), we can, more
generally, say that

Yu € By, (2¢), Yhe 2(E), [IDu®@(u)hlly < CliAll,,
and therefore,
Vu,v€B(e),  [1P:(u) = @e(0)llo < Cllu = vl
Notice that, if ®;(u) = (v, h), then ||v||y = ||S:(W)llo < llully < €, and
Al < 10 =C@)llo < I1Dllo + Cllull,, < Coe.

Thus, maybe decreasing ¢ again, as ¥ : (27(E) N By (2¢)) X (Z1(E) N By(2Cype) — 2(E)
is also smooth tame and all the seminorms are equivalent on %1 (E), we could in the

same way show

You,w,e Z7(E) N EO(E), Yh,keXr(E) ﬁEO(COE),
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¥(w)h = ¥(w)kll,, < C(llo—wllo+Ilh=kllo).

3. If for some § > 0 we set X = (Z7(E) N By(¢)) X (E7(E) N By(Coe) and

t
E(v, h)(t) == Dy (f Y(v(s))h(s) ds) for v, h € €°([0, 8];X),
0
then E is well-defined and is a contraction, at least for § small enough, since
IZ2(v, h) = E(W, k)lleo < CI(|lv = Wil + 17 = klloo).

Moreover, if § is small enough, then €°([0, 5]; X) is stable, as [|v(s)]l,, < Crllv(s)llo
and thus

t S
[ reereras| < c [T (Il + B IeI,) ds < Coe.
0 0

0

and we can take § such that C§ < 1.
4. By the fixed-point theorem, there is a unique (v, h) € €°([0, §]; X) such that
=(v, h) = (v, h). Then the curve

u(t) == LtT(v(s))h(s) ds

is such that (v(t), h(t)) = ®;(u(t)), so u(t) = ﬁ)t ¥ o ®&,(u(s)) ds. This proves the
existence of a solution, at least on some interval [0, §]. Moreover, § has also been
chosen so as to ensure u(t) € Ero (¢).

O

2.5.3. Lemma. Letu € €'([0,T), Ero(s)) be the curve given by lemma 2.5.2 on page 56,
defined on some interval [0, T). Then, if x(t) = 0 — {(u(t)),

Yn>0,VqeN, 1C, 4>0, YVt € [0,T),

1 D) llneg < Cng.ae? (1) + 1), 12D o) -
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Since |lu(t)ll,, < &, this implies
1 (£)ll4 < Cae"l1x(t)llo-

There is no particular condition on q, and C,, 4 5 does not depend on T.

Proof. Let x(t) = © — {(u(t). Then u’(t) = A[DI(S,u(t))] ™" S;x(t). According to

(2.2.3.d), since ¢ < 1, for any n > 0, we have

”ul(t)Hq = AH[Dg(stu(t))]_lstx(t)||n+q
< ACniq (1862 () lnug + USex (oS r2e() e gery ) -

Now, the result follows from lemma 2.4.3 on page 53. O

2.5.4. Lemma. Letu € €*([0,7), Ero (¢)) be the curve given by lemma 2.5.2 on page 56,
defined on some interval [0, T). Then, if

x(t) = 0 —{(u(t)) and  y(t) = [DJ(S:u(t)) — DI (u(t))]u'(t),
we have
Vg=>0,3Cy>0, V€ [0,T), lly@)llg < Cqllu)llger,llx(@)llo-

Once again, there is no condition on g, and the constant Cy does not depend on T.

Proof. Notice that:

[DI(v) =DI(w)] = fo D (1 = w)u + wo) (v — u) do,

therefore

1
y(t) = fo D{ (1~ w)u(t) + wSu(t))(Seu(t) — u(t))u' () do.

Using (2.2.3.c), we get that, for g > 0,

ly®llq < Cq{lISiu(t) = u@)llollw’ ()l ger,
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+ 11Seu(t) = w(®)ll gor ' ()1l

+ [1Ssu(t) — u(t)lloIIU'(t)IIoIIu(t)IIq+r0} :

According to lemma 2.4.3 on page 53, ||S;u(t) — u(t)|lp < e~™ ||u(t)|| », and therefore

”y(t)”q < C{e_(q+ro)tllu(t)||q+r0||u’(t)||q+ro + ||u(t)||q+r0”u/(t)”0
+ lu@llolle (llglu®)llgur, | -

Now, lemma 2.5.3 on page 58 yields [|u’ ()| ,, < Cpe™ [|x(t)ll, and thus, as [[u(t)]],, <

£, we get:

ly@)lly < C {20 ger Ix(@)llg + ellx@llolu(®)ll gor, ) - o

2.5.5. Lemma. Letu € €'([0,T), §r0 (€)) be the curve given by lemma 2.5.2 on page 56.
Then, if A > ry and if ||9||,, is small enough,

T
acso. [ eMix@lodr < Cllol,
0

The constant does not depend on T.

Proof. According to lemma 2.4.6 on page 54, as long as A > ry > 0,

T T
fo e llx(®)llodt < cm,a(llx(onlm+ fo {lly<t>llro+e’°tlly<f>“°}dt)

Notice that x(0) = ©. Thanks to lemma 2.5.4 on the preceding page, we get

T
f e [x(D)lo dt
0

T
< cro,a(n@nmf {||u<t>||2ro||x<t>||o+er°f||u<t>||,0||x<t>||o}dt).
0

Since according to lemma 2.5.3 on page 58, ||u’(t)||q < Ce?'||x(t)|l, we have

t t
Nlu(ll,, < Cer‘)tf e”[|x(s)llo ds, lu@®ll,, < Cf e"|lx(s)llo ds.
0 0
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Thus,

T T 2
f e™ |Ix(t)llpdt < CS DIy, +2(f e |Ix(8)llo dt) .
0 0

If we set k = fOT e"™||lx(t)llo dt, then k < C(||9ll,, + 2k*). Therefore, k — 2Cx* <
Cll?ll,,- But we always have x — 2Cx? < 1/8C with equality only for k = 1/4C, so
if C||9||,, < 1/8C, we can ensure « € [0,1/4C], as k depends continuously on T and
k = 0 for T = 0. But then

Clloll,
T 1-2Ck

< 2Cloll,,. o

2.5.6. Lemma. Letu € €'([0,T), Ero (£)) be the curve given by lemma 2.5.2 on page 56.

We assume A > ro + 1. Then, if ||9||,, is small enough,
t
VYn>ry, ¥qeN, 3C, 4 >0, YVt €[0,7), f ||u'(s)||n+q ds < Cn,qeqt”z}Hn.
0

There is no condition on g, and C,, 4 does not depend onT.

Proof. We proceed by induction on n, starting from n = r,.
According to lemma 2.5.3 on page 58, ||t/ ()l ;)+q < Ce"0* D x(t)|ly; therefore,

assuming [|9||,,, small enough and using lemma 2.5.5 on the preceding page,

t t
[ G ds < et [ ix@lods < Cetloll,. s
0 0

The case n = ry is thus proved.
Let us now proceed with the induction, and assume that, for some n > ry, we
have fotllu’(s)llmq ds < Ce?'||9||,, for any g > 0. From lemma 2.5.3 on page 58, as

n—ry =0, we get

t
f |Iu,(s)”n+1+q ds
0

IA

C fo [ a0 (11x($)llner, + 1811 allx(s)llo) } ds.  (2.5.6.D)
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Since A > ry + 1, lemma 2.4.6 on page 54 yields

t t
f €(r0+l)s||x(s)||n—r0 dS S C (Hﬁ”m-l + f {”y(s)”nﬂ + e(r0+1)s||y(s)||n—r0} ds) .
0 0

But, using lemma 2.5.4 on page 59, as ||u(s) |l pim < Ce™||D||,,, we get

ly$)lner < Cllal) perery Ix)llo < CeT V53], 11x(5) o,
Iy lner, < Cllus)llallx@G)lly < Cllall,l1x(s)llo-

Thus,
t t
f el ()], ds < C(||77||n+1+2||17||n f e<’°”>3||x<s>||ods),
0 0
and (2.5.6.b) becomes
t t
f 4/ () pareqds < Ceqf(||z7||n+1+3||ann f e<’°+l>sux<s>uods). (2.5.6.¢)
0 0

Using lemma 2.4.6 on page 54 once again, we obtain

¢ t
[ e s ixtods < C0(||17||r0+1+ I {lly<s>llro+1+e"°””lly<3>“°}ds)'
0 0

From lemma 2.5.4 on page 59, as [|u(s)|l ;y+m < Ce™*||0||,, , it follows

Iyl a1 < Collu(s)llarsallx(s)lle < Coe™ V5|3, 1x(5)lo,

ly)lry < Collul)ll lIx$)llo < Collolly, llx(s)llo-

This yields

¢ t
f eS| x(s)llo ds < co(||6||m+1+||z7||m f e"ﬂ*”snx(s)nods)-
0 0

Thus, if ||9]| ,, is small enough,

t
f e lx(s)llods < ClIDll o,
0
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and with this estimate, (2.5.6.c) becomes

fo N lenegds < CeT (10l + 120, 11)
However, setting 0 = 1/(n + 1 —ry), as
ro+1 = (1—0)rog+0(n+1) and n=20r+1-0)m+1),
we infer from lemma 2.4.5 on page 53 that
1217 1llOlln < N2l 10l < ClIOl - o

2.5.7. PROPOSITION. For o with ||9||,, small enough, there is a unique @i € %(E) such
that { (@) = 0, and

Vn>ry, llall, <Culloll,.

Proof. Let © € B,,(5) with § small enough and A > ry + 1. If u € ([0, T), By, (¢)) is
given by lemma 2.5.2 on page 56, and is defined on a maximal interval [0, T), then
according to lemma 2.5.6 on page 61 (u(t))se[o, 1) is Cauchy when t — T, and thus

converges to some ur. From lemma 2.5.6 on page 61, it follows that
Vnzry, lall, < Culloll,.

Thus, by taking [|9]|,, small enough, we can ensure ur € Ero(e /2). But this implies
T = oo, since if it were not the case, by starting over from ur, we could extend u in
B,,(¢) beyond T, contradicting its maximality.

Asu'(t) = A[DL(S;u(t)]71{S: (8 — {(u(t)))}, we get u’(t) also converges when
t tends to infinity. On the other hand, since the constants from lemma 2.5.6 on page 61
do not depend on T, fooollu’(s) ||,, ds < o0, and therefore u’(t) — 0 when t — oo. This,
in turn, implies {(u(t)) = 0 = {(Uoo).

Uniqueness follows from proposition 2.3.1 on page 51. O
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Chapter 2. The Nash—Moser inverse function theorem

2.6 Smoothness and tame estimates

2.6.1. Lemma. Let e > 0 be the radius given by proposition 2.3.1 on page 51. Then, for
allu,v € B, (¢) andn € N,

||u - UHn < Cn [”g(u) - g(v)“n + (||u||n+r0 + ”U||n+ro) ”év(u) - g(v)HO] .

Proof. As in the proof of proposition 2.3.1 on page 51, we start from Taylor’s formula,

which yields

1

v—u = [ng(u)]_1 {{(v)—{(u)—f(;ngv((l—t)u+tv)(v—u)2(1—t)dt}.

and, using (2.2.3.d), we get

1
lo = ull, < cn[ng’(u)—g(v)nw f D% ((1 = Bu + to) (0 — w)?||, dt
0
1
+||u||n+,0(||§<u)—§<v>||o+ fo ||D2§<<1—t>u+tv><v—u>2||0dt)]. (2.6.1.2)

On the one hand, from (2.2.3.c) it follows

[D?¢((1 = tyu + to) (v — w)?|,

2
< Cu (2l = vl = 0l s, + llu = 2IENA = O + 101l s, )

< C(Nullory + 101 rry ) 1t = llo-

Thanks to the bounds from proposition 2.3.1 on page 51, this yields

ID*2((1= )+ t0) (@ = w)?]|,, < Co (Il sy + 10llnry ) 1S @) = Z@)llos (26.1D)

On the other hand, from lemma 2.3.2 on page 52 we get

ID2C((1 = t)u + tv) (v — u)?lly < llv—ully < ClI{() = (W)l

Putting the last two inequalities into (2.6.1.2), we get the result. O
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2.6.2. Lemma. Let e > 0 be the radius given by proposition 2.3.1 on page 51. Then, for

u,v € By, (¢), we have

V20, llo-u-[D{w] (@) ~{w)l,

< Cn (”u - U”n+r0”u - Z}HO + ||u||n+r0”u - U”g«o) .
Proof. Once again, we start from Taylor’s formula
1
{(v) = {(u)+D{(u)(v—u)+ f D20 ((1 - t)u + tv)(v — u)*(1 - t) dt,
0

which yields

v—u-[D{@)]™ (@) - W)
= -[D{@]™ ( f DR - u+ 1) — w1 - 1) dt) :
0

Then, using (2.2.3.d), we get

lo—u—[D{@)] ™ (@) = @),
= O (fl”Dst((l — t)u + tv) (v — u)®|l,(1 - t) dt
0

1
+lull e r,y f ID*Z((1 = t)u + to) (v — u)?|lo(1 - 1) dt) :
0
Thanks to (2.2.3.c),

ID*Z((1 = t)u + tv) (0 = w)*ll,
< Cn (2||U - u||n+r0||v - u“O + “(1 - t)u + tv||n+r0||v - u”(Z))

2
< Cn ((2 + t”u - U”O)”U - u“n+r0”z) - u”O + ||u”n+r0”z) - u”o) ’
and thus, since [|lu — v||,, < 2¢,

ID*Z((1 = tyu + to)(© = u)?lly < C (0 = ey, o = ully + Nallery ll0 = ullf) -
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Chapter 2. The Nash—Moser inverse function theorem

Now, (2.2.3.c) yields

ID?S((1 = t)u + tv) (v = u)?llg
< Co (200 = ullgllv = ull,, + 110 = Du + toll, llo - ull)

< Cn(2+8)|lv- ullzro. O

2.6.3. PROPOSITION. For any © let i = {71(9) be the unique antecedent given by
proposition 2.5.7 on page 63. Then { ™! is smooth, and all its derivatives satisfy a tame

estimate.

Proof. From proposition 2.5.7 on page 63, we already know there is an estimate
Vn 2 2r,  IZ7 @l < Callully.

Then, lemma 2.6.1 on page 64 also shows that { ™! is continuous. Furthermore,

lemma 2.6.2 on page 64 yields

177+ h) = 7 w) = [DZE T @)] " hlly < Co (Bl ey Ikllo + 2l A1)

which proves that { ! is Gateaux-differentiable, and

DI wh = [DIEC W) k.

Thus ¢ 7! is smooth, and the tames estimates for its derivatives follow from the tames
estimates of [D{] ™! and { . O

2.7 Tameness of some usual spaces

2.7.1. This chapter would not be complete if we did not show that €' (T?) is tame.
This is done in three steps: first, we introduce a space F and prove it is tame; then,
thanks to the Fourier transform, which sends the space € (B) of smooth functions
over the closed unit ball B into F, we show % *(B) is also tame; at last, thanks to
Nash’s embedding theorem, we conclude that for any compact riemannian manifold

M, the space (M) is also tame.
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Chapter 2. The Nash—Moser inverse function theorem

2.7.2. Lemma. Let (X, ;1) be a measure space, and let w : X — R be a positive weight
function. For any map f € LY(y), we set || f||,, = fe"w(x)lf(x)l du(x). Then,

F:= {feLl(,u)‘VneN,llflln<oo} is a tame space.
Proof. For any k € N, let
Xp = {xeX|k<wx)<k+1},
and define

L :{ Foo 2 and K:

S(L) — F
f = (]]ka)keN

(fdken X filx,

Then, for any n > 0, as w(x) > k for x € Xy,

ol < e [ b @IFduco

This implies
ILFl, = D e It fll < f ™) dux) < 1Ifllns
k=0 X

so L is a tame linear map. Conversely,

[SGAESH

[ em > b Aol o

k=0

> [ el duo
k=0 ¥ Xk
e" > el ficlly

k=0
Cull(fi)kenllns

IA

IA

IA

so K is also tame linear. Since K o L = Idg, we conclude F is a tame space. O
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2.7.3. Lemma. Let B be the closed unit ball in R?. Then
%y (B) = {f € ¢ |supp f C B}
is a tame space, if endowed with

Ifll, = max sup [D*f(x)],

|a|<n xeB
Proof. Let w(x) = %ln(l + |x|%). Then, if f € ©,°(B) and f denotes the Fourier

transform of f, we have

f "™ f ()l dx = f (1 1) ") f ()] dx.

Notice, however, that for any a € N9,

|B|
<
< 2ﬂ_”f”|a|’

RUF = 5| [ D) ae

and therefore, for any m € N,

A+ 1xP)™F) < Coull fllzm:

Thus,

(1+ |x|z)(d+1+n)/2 )
(1+ |x|?)(d+D)/2 |f(x)] dx

S l2r(ds1en) /27
C[(d+1+n)/2]dex

f e™ )| f(x) dx <

IA

IA

Cn”f”n+d+2'

This proves that the Fourier transform ¥ : ¢;°(B) — F is tame, if F stands for the
tame space introduced in lemma 2.7.2 on the previous page. Conversely, if u € F and
a € N9,

IDea(é)| = U(—Zinx)au(x)e—zm<§|x> dx
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IA

Ca f (L )12 ()] dx

Callull|q)

IA

and this proves ||F ~'ul|,, < Cpllull,. As F is a tame space, ©,°(B) is also tame. O

2.7.4. PROPOSITION. Let M be a compact Riemannian manifold. Then € (M) is a

tame space.

Proof. According to Nash’s embedding theorem, M can be isometrically embedded
into a bounded subset of RY, for some d € N. Thanks to Whitney’s extension
theorem, "* (M) can therefore be tamely embedded into ¢°(B), which is a tame

space according to lemma 2.7.3 on page 67. O
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Chapter 3

From Knothe’s rearrangement
to Brenier’s optimal map

3.0.1. A few years ago, Guillaume Carlier, Alfred Galichon, and Filippo Santam-
brogio [19] proved the existence of a connection between the Knothe-Rosenblatt
rearrangement (which will be defined in §3.1.3) and Yann Brenier’s map, in the form
of a differential equation—at least, when one of the two measures is discrete. In this
chapter, I extend their result to the case of absolutely continuous measures. Most of

what follows is taken from my article [10].

3.1 The Knothe-Rosenblatt rearrangement

3.1.1. As we have seen in section 1.2, if y and v are Borel probability measures on
R, with y atomless, and F and G are their respective cumulative distributions, then
G o F sends y onto v. In greater dimensions, the Knothe-Rosenblatt rearrangement
is a mapping that intends to use this result to send a measure onto an other. To work

with unidimensional measures, we first need to disintegrate them both.

3.1.2. Disintegration of a measure. Let X = R or X = T. Any Borel measure y on
X4 can then be disintegrated according to the axes: there exists a family {z, ..., u?},
with yk s Xk-1 P(X) Borel, such that, for all £ € CKbO (Xd),
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Chapter 3. From Knothe’s rearrangement to Brenier’s map

For the sake of clarity, let us now assume d = 2. If y is absolutely continuous, and
f stand for its density, then the disintegrated measures p!, ,uil also have densities,

namely:

£ (1, x2)

) = ff(xbxz)dxz and  fi(x) = i)

3.1.3. The Knothe—-Rosenblatt rearrangement. This transport map was defined
in the 1950s, separately by Murray Rosenblatt [51] and by Herbert Knothe [38]. The
former had in mind applications to probability theory and statistics; the later used
it to study convex bodies and prove an improved isoperimetric inequality'—an idea
later popularized by Mikhail Gromov [44].

In dimension two, the rearrangement is defined as follows: Let y and v be two
absolutely continuous measures on X?, with X = R or X = T. Let {¢!, 4} and {v!, v?}
be their disintegrations, and let F 1 F)zc1 and G!, th be the cumulative distributions of
u, yil and 11, vgl. Then, we set

-1 1
Te(x) = [G'] o Fl(x),  TE(rxp) := [Gié(xl)] o F (xz),
and Ty := (Tg, TZ). The same procedure can be applied in any dimension.

3.1.4. Lemma. The rearrangement Tx thus defined maps p onto v.

Proof. We give a proof only for d = 2. Let & € € (X?). Then,

| ( [ e(rion. . x) du;(xg))dul(xl)

([ e, w)aiw.

. Likewise, as Ty sends ' onto v', we get

f E(Tk () du(x)

2 2 2
for T (x1, x2) sends 3, onto VT%(Xl)

f E(Tk()) dp(x) = f ( f f(yl,y»dv;(yz)) &' (). -

'Brenier’s map turned out to be more suited to deal with the isoperimetric inequality than Knothe’s
rearrangement: Alessio Figalli, Francesco Maggi, and Aldo Pratelli [30, 55] were able to obtain a
sharp inequality using Optimal Transport.

71



Chapter 3. From Knothe’s rearrangement to Brenier’s map

3.1.5. The starting point of our investigation is the proof, by Guillaume Carlier, Alfred
Galichon, and Filippo Santambrogio [19], that this “rearrangement” is the limit of
Brenier’s map when the quadratic cost degenerates. We have seen in section 1.4 that,

if ;1 and v are probability measures on T¢ with strictly positive densities, and

At

All‘"'A?_l

with A : R — [0, +00) such that )L]l? = 0 only for t = 0, then, for any t > 0, there is a
unique optimal transport map T; between p and v for the quadratic cost ¢; induced

by A, ie.

,111‘...11;—1

. 1
ci(x,y) = inf EAt(x—y—k)Z = Td(xk,yk)z,

d
d
kezZ =1

with d the usual distance on T.

3.1.6. THEOREM (Carlier—-Galichon-Santambrogio). When ¢ tends to zero, the

map T, converges in L?(u) to the Knothe—Rosenblatt rearrangement.

Proof. As the proof is much easier for d = 2, we give a proof for d = 3 to account for
the additional difficulty in greater dimensions. We therefore work on the torus T°,
and proceed in 7 steps.

1. Let y; := (Id, T;)sp be the optimal transport plan for the quadratic cost c;,
and let yy := (Id, Tx)#p be the plan corresponding to the rearrangement. Up to a
subsequence, y; converges narrowly to some y € I(y, v). On the one hand, y; is

optimal for ¢, so

f (d(xl, y)’ + -+ | | Adxa, yd)z] dy:(x.y)

k<d

< f (d(xl, y)e+ -+ l_l /llfd(xd, ya)? dyg(x,y). (3.1.6.a)

k<d
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Chapter 3. From Knothe’s rearrangement to Brenier’s map

On the other hand,

[ a0y = tim [ den ) dritw).

Therefore, taking the limit,

f dy( ) dy () < f dy (. 11)? Ay, ).

Thus, denoting by X and Y the projectors, we can say y' := (X1, Y;)sy is optimal
between the first marginals of y and v. Let y! and v! be those first marginals; then y?
is equal to yg := (Xq, Yo)syg = (Id, Tg)sp'.

2. Since inequality (3.1.6.a) and the optimality of y! = (X1, Y;)syy imply

f 41, ) dy (x. y)

+/1tf(d(x2,y2)2+"'+ l_[ Altcd(xd,yd)z] dy:(x,y)

1<k<d

< [ atendn.
we also have
[ttty < [ dewr drxw). (31.6b)
We now disintegrate y!'2 := ((X, Xz), (Y1, Y2)). v:

[ ear = [[ et art om0 dy' .

Let us, for a moment, assume that for y!-almost all (x;, y;), the marginals of Y)ch,yl are
p%, and v}, . Then, by the very definition of the rearrangement T, since y' = yy, for

y!-almost every pair (x1, y1),

[ dbnwr dlns, e < [ donw?ad yonm. Gaeo
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Chapter 3. From Knothe’s rearrangement to Brenier’s map

If we then integrate this with respect to y' = y}, we get

fd(xz,yz)zdyK(x,y) Sfd(xz,yz)zdyl’z(x,y)-
e T2

But we have just seen the converse inequality, given by equation (3.1.6.b). This is only
possible if, y'-almost everywhere, there is equality in (3.1.6.c). Therefore for y!-almost
all (x1, y1), the measure y)zq,yl is also optimal. Thus, y** = ((X1, X2), (Y1, Y2))s Y-

3. We must still prove the marginals of yil’yl are y% and szw at least almost
everywhere for y'. Since the measure y' = y is concentrated on the graph y; = Tg (x1),

and p' is absolutely continuous, all there is to check is that

2 _ 2 2 — .2
[Xz]#yxlj]l((xl) = Hx and [YZ]#Yxl,TIyxl) = V()

for almost every x;. As v! is absolutely continuous, Té is a bijection; denoting by S!

its inverse, the second equality can be replaced with

2 _ 2
[YZJ#Ysl(yl),yl = Vy

which should stand for almost every y;. By symmetry, we thus need to check only

one of the two—for instance, that for almost every xj, for any continuous function
¢ =E(xa),
[ rar e = [ e o,

Equivalently, we need only to show that for all n = 7(x;) belonging to a proper

countable subset of continuous functions, for all & = &(x3),

([ rmeear? ey aitea = ([ mowee i, auo.

It is now clear why the conclusion should holds, since

[ roear e = [ neee arew.

74



Chapter 3. From Knothe’s rearrangement to Brenier’s map

4. We now proceed with the third component. Let y; % be an optimal transport

plan between (X1, Xz)su and (Y1, Y2)sv for the cost
e = I — il + Allxp — ol

3

Yyse WE define a

Then, if py, x,,4,,y, denotes an optimal plan between 13, ., and v

transport plan 7; € Iy, v) by setting

f FGr,y) dmi(x,y) = f f ECe, ) dbay 0 (652 93) Ay 2 et %20 41 02).

Now,

f Clt’z d)’;’z‘LAlt/ﬁf lxs — ysl* dy(x,y) < f c;dy: < f c; dmy,
T2 T3 T3 NE

and

fw c dm; = ﬁz 2 dy)? +)tltﬂztf Ix3 — ys|* dp(x3, y3) Ay

j‘ﬂ; clt’z d)/zl"z + ZAltA% j‘ﬂ"z WZ(#S,Cl,Xz’ VZl,yz) d)_/t(xl’ X2, yl’ y2)

Thus,

IA

fwlxa —y3l2 dy:(x, y) wa Wo (13, 2y Vi )"y (er X2, Y1, 2).

Let us, for an instant, assume

f s — a2 dy(r,y) < 2 f Wi, v )P 2, ). (31.6)

We then disintegrate y with respect to y*? = ((X;, X2), (Y1, Y2)). ¥, so that

f E(r.y) dy(x.y) = f f EGe ) Ay, s uran (05, 95) A 20, 0, 11, 02).
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. 3 3 3
Then, assuming Yy € F(yxl,xz, vyl’yz), for any xy, x2, y1, Y2,

1
3 3 2 2 3
W2 (luxl,XZ’ Vyl,yz) S 5 f|X3 - y3| d)/xl,xz’ylsyz (x3’ y3)

Thus, (3.1.6.d) implies there must be equality for y!'2-almost every xi, x, yi, y». This,
in turn, means y° is optimal almost everywhere, and thus y = yy.

5. We therefore need to prove y3 € T, ., Vzl,yz)' This is done as

X2, Y12
previously (see the 3rd step).

6. We must still prove (3.1.6.d). Let £ > 0. Since (x1, x3) ,uil’xz and (y1,y2) —
vzl .y, are measurable, according to Lusin’s theorem there is a compact K of T! such

that y!(K) > 1— ¢ and v}(K) > 1 - ¢, and

are continuous.

{KXK - P {KxK - P(TY

(xl’ x2) = )ug)q,xz (yl’ y2) = Vzl,yz
We now extend those two maps into two continuous maps /i* and #* on T?, such that

i® =y and #* = v® on K x K. Then,

Wz(ﬁ?)’ 173)2 dy;,Z N f WZ(/]39 1;3)2 d)/l’z.
‘D’Z ‘H’Z

On the other hand, since W, is bounded on P (T?),

[ v - [ a2 an? < cnkx k)
T T

and

y+(T*\ K x K)

IA

Y (CK X Tl) - (Tl X CK)
4 (CK) +(C5)

2¢.

IA

IA

For the same reason,

[ w2 aye - [ w2 eyt < ace
T T
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as well. Thus,

[t o [ wagohrare,
T2 T2

7. At last,

f d(T,(x), T () du(x) = f d(y. Te(x))? dys(x. )

- f d(y. Te(x))? dyg(x.y) = 0.

and this shows T; converges to T in L2. m|

3.2 A PDE for positive times

3.2.1. We know from the theorem of Guillaume Carlier, Alfred Galichon, and Filippo
Santambrogio (§3.1.6, on page 72) that there is a link between Knothe’s rearrangement
and Brenier’s map for very degenerate costs. Before investigating this relationship
any further, we will now examine the dependency of the optimal map on the quadratic
cost.

According to proposition 1.4.5 on page 33, given two smooth, positive measures on
T4, for any cost matrix A € S}, there is a smooth Kantorovich potential ¥y : T 5> R.
What can we say of the regularity about ¥ : A — ¥4? Since the optimal map
x > x — AT'V¥,(x) sends one measure onto the other, we know that a Monge-

Ampére equation is satisfied: denoting by f and g the densities, we have
flx) =¢ (x - A_1V‘I’A(x)) det (Iz —A_IVZ‘PA) .

Thus, to get any regularity of ¥4 with respect to A, the implicit function theorem

seems a good idea. We therefore set
F(A.u) = f-g(Id=A7'Vu) det (I, ~A™'V?u) ,

and intend to show D, (A, ¥4) is an isomorphism.
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3.2.2. Zero-mean-value functional spaces. Since the potential is uniquely deter-
mined up to an additive constant, it seems more appropriate to work only with maps
with zero mean values. Likewise, 7 obviously takes it values in a space of zero-mean-
value maps. To be of zero mean value is thus a property we shall meet very often;
there is hence a need for a specific notation. Given any functional space X, we will
denote the space formed by the elements of X having a zero mean value with a ¢

subscript—for instance, ¢? will be the space of all u € %? such that f u=0.

3.2.3. Lemma. For any A € S**, ifu € €2(T?) is such that A — V’u > 0, then
F(u, A) = 0 if and only if u is the Kantorovich potential between y and v for the cost
induced by A.

Proof. This follows from proposition 1.4.5 on page 33 and the characterization given

by lemma 1.4.4 on page 32. O

3.2.4. Lemma. The operator ¥ is smooth. For any A € S*, ifu € €2(T%) is such
that A—V?u > 0, and v € €*(T?), then

D F(A, o = div (( f-FAw) [a-vu]” Vv)
= deltA div (g (Id —A_IVu) [Co (A - Vzu)] ) Vv) .

We denote by M* the transposed matrix of M, and by Co M its cofactor matrix—

that is, the matrix formed by the cofactors (first minors).

Proof. The smoothness of ¥ is clear. By substitution, for any & € €,

[ = amvuw) @ - Fa e ax = [ Ewew

Therefore, if we conveniently set Tqu(x) := x — A"'Vu(x) and differentiate the

previous equation with respect to u along the direction v, we get

—f(Vg(TAu) |A_1Vv> (f — F(A, u))—fff(TAu)DuT(A,u)v = 0.
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Since V[ o Tau] = [VTau]*VE(Tau),

(VE(Tau) | A7V0) = (V[ o Tau] | [VTau] "A™'Vo)

(VIE o Tau] | [lg —A™'V2u] A7'VD),

and this yields

f E(Tau)D, F(A, Ya)v = f E(Taw) div ((f = F(A, w) [Ig—A"'V?u] "A7'Vo) .

Therefore, as £ o T4u is arbitrary, we get the first equality. Then, the second expression
quickly follows, thanks to the formula M~ = [Co M]*/ det(M). O

3.2.5. Lemma. Lete > 0and A€ S;". Ifue €>(T) is such that
A—-V2u > e(detA)V9 1,
then for any q € [H.(T9)]*, there is a unique v € H(T%) such that
D, (A, u)v = gq. (3.2.5.2)

Moreover, ||v]|q < Cellqll(Hg)*, and the constant C, does not depend upon u.

Proof. Since A — V2u > e(det A)V/(¢~D I, the lowest eigenvalue of Co (A — V2u) is
bounded by ¢?~! det A. Since g > & for some § > 0, for any & € F>(T9),

sd_ldetAf|V§|2 < f([cO(A—Vzu)]*V§|V§>
< % f g (1d=A"'Vu) ([Co (A - V*u)]'VE | VE),
and thus .
[wer < s [ urawe (325b)

Therefore, thanks to the existence of a Poincaré inequality for H.(T%), the map
(&,n) f nD,F(A, u)¢ induces a coercive, continuous bilinear form on H.. We are

thus entitled to apply the Lax-Milgram theorem, which yields the existence and the
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uniqueness, for every q € (H.)*, of a v € H} satisfying (3.2.5.2). Moreover, (3.2.5.b)
immediately gives us ||[v|[g < ﬁHqH(H}))*. O

3.2.6. Lemma. With the same assumptions and notations as in lemma 3.2.5, for any
n>1,ifu€¢"? and q € H* ! satisfy ||ul|4s + ||q||(H3>)* < M, thenv € H™!, and

ollsnet < Ceonron {Ngllggnos + ltllgomee) (32.6.2)
Proof. We proceed by induction. Let n > 1, u € 4/**%, and q € H” such that
A-Viu>e(det AV VT, and  lullgs + llgllgny < M.
Let us assume we already know the solution v is in H?, and that
0llgn < Centnoa {liglizns + lullgna} (32.6.b)

(We do have such an inequality for n = 1, according to the previous lemma, but with

||q||(H10)* instead of ||g||yz-1.) Let us now show it implies v € H”*! and
IVl < Cem,n {llglln-1 + Nullgne2} .
First, we set Bau := (f — F(A, u))[A — V?u] ™, so that (3.2.5.2) now reads
D,F(A,u)v = div(BauVv) = q. (3.2.6.¢)

Next, for h € R4 and & € HY, we define

EGe ) = E(x).

hé(x) == E(x + h) and Sné(x) := -

Then, 6,(n&) = nén& + (Snn)7hé, and 16¢llLe < 1€ ]le-
Let v € N9 be a d-index, with |v| :== v; + - + vg = n — 1, and assume h € R? is

small enough. We can apply the operator §y, to (3.2.6.c), and thus obtain

div(BauVdyv) = dpq — div [(6pBau) Vo]
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Then, by applying 8, = 8!"1/0x* - - - dx, we get

d >’

div(BAuVS,0,0) = Spdyg — ) | (;) div [(S48y—aBatt) Vipdav]

0<a<v

) (V) div [(9y—oBau) Vordav]. (3.2.6.d)

0<a<v

According to lemma 3.2.5 on page 79, this implies

16n0vollm < Cell6ndvll )

L C, Z ( )lldw [(5h0y—aBaw) VTrda0]ll gz

0<a<v

+Co Y ( )lldw [(y—aBau) Vel gy

0<a<v

Since [1840,qllg) < 10vglli2, this bound is uniform in h. Therefore, v € H**! and

0<k<n-1

|lo|lgna < C {HqHHn—l + Z (1+ ||u”(gn—k+2)||U”Hk+1} . (3.2.6.€)

When n > 1, the following inequalities hold:

k

(gruz >
k

[ollgen < Crnllvlly? IIvllHn

lullgn-r- < Cknllull "1||u||

These are Landau-Kolmogorov inequalities; we have already met them in lemma 2.4.5

on page 53. They can be easily proved by induction from

€1l < V2[iEllgollélle and — [[Elle < VIl 1€ w2,

for & smooth enough satisfying [ & = 0. Still, since a'~*b’ < (1 - t)a + tb, we get

k k
u n-k+2||0 k1 < u 3|0 n+|l——— u n+2 |0 1,
[ullign-rellvllpges < ——— llullgs 2l ( n—l)” llgnellvlln
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and therefore
[ollgna < C{uann-l + (14 llullegs ) ol + ||u||sgn+z||v||Hl}.

This last inequality also holds when n = 1, thanks to (3.2.6.€). As ||v||m < Cellgllg—

and ||lullys + |lgllg-1 < M, using our assumption (3.2.6.b) we get

0l < Coont,n {llglln-1 + llullgnez} . m

3.2.7. Lemma. Let « € (0,1). For anyu € €™%% with A — V*u > 0, and any
q € €(TY), there is a unique v € €. *(T%) such that

D, F (A, u)v = q.

Proof. 1If ¢ € €,"%, then q € H”, and thus according to lemma 3.2.6 on page 8o,
there is v € H™*? such that D, (A, u)v = q in [H.]*. But since fq = 0, such an
equality in fact holds in H™!. Thus, locally, in a weak sense, D, (A, u)v = g. Then,
since u € €22 the coefficients of the operator D, (A, u) are &% this implies
v € "% % (see for instance the monograph by David Gilbarg and Neil S. Trudinger
[31, Theorem 6.13 and 6.17 and 8.22]). O

3.2.8. THEOREM. For any A € S, let ¥4 be the Kantorovich potential between the
probability measures y and v, which are assumed to have smooth, strictly positive

densities. Then, for anyn > 0 and a € (0,1), the map

is €.

- ng N cgn+2,a(-]]-d)
A ¥y

Proof. Let us denote by Q be the set of all (A,u) € S;* X €2 *(T9) such that
A —V?u > 0. Then Q is open, the operator ¥ : Q — €% (T¢), defined by

F(Au) = f-g (Id —A_qu) det (IZ —A_leu) ,
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is smooth and, according to lemma 3.2.7 on the preceding page,
DuF (A Ya) : €15 (T) — €(TY)

is a bijection. From the Banach-Schauder theorem, we infer it is an isomorphism.
Since F(A, ¥4) = 0, according to the implicit function theorem, there is a ¢ map
® such that, for any (u, B) € U, we can have F(B,u) = 0 if and only if u = ®p.
According to lemma 3.2.3 on page 78, necessarily then ®p = ¥g. Thus, ¥ = ® is a ¢
map S;* — € (T9). O

3.2.9. We are now going to apply this result to a cost c; defined by

1 1...9d-1

1 A
C[(x9 y) = Ed(xl’ yl)z + ?td(XZa yZ)z +oee+ ;d(Xd, yd)za

2

that is, a cost induced by the diagonal matrix A, := diag(1, )th, /llt)tzt, ol /1;) We
assume A', ..., A1 R > [0, +00) are smooth, with /1’; = 0ifand only if t = 0.
For now, we are only interested in positive times. The behavior when ¢ = 0 will

be studied in the next section.
3.2.10. PROPOSITION. The mapy : t — ¥y, is € on (0, +o0), and satisfies:
. 2 -1 . S
div {f [At -V 1#,«] (Vlﬁt —AA; Vlﬁt)} =0. (3.2.10.2)
Moreover, ifu : (0, +00) — €% (T9) is €' and satisfies
2 . 2 17 i 41
A —Vu>0 and div {f [At -V ut] (Vut - AA, Vut)} =0 (3.2.10.b)

forallt € (0,+), and uy, = Yy, for somety > 0, then u; = ¢, foranyt > 0.

Proof. If ; := Wy, then F(A;, ;) = 0 for all ¢ > 0. If we differentiate with respect
to t, we get

D F(As, V) + DaF(As, Y1) A; = 0.

33



Chapter 3. From Knothe’s rearrangement to Brenier’s map

On the one hand, it follows from lemma 3.2.4 on page 78 that
D F(Ar Yo = div (f 4, - vy, Vl/}t).
On the other hand, a direct computation yields
DAF(Ar Y0)A; = —div (f A - V2] _1AtA‘1V¢t) .

We thus get (3.2.10.a).
Conversely, if u : (0, +00) — €*2%(T?) is " and satisfies (3.2.10.b), with u;, =
V4, for some ¢y > 0, then F(A;, u;) must be constant and equal to F(A;,, u;,) = 0.

Thus, according to lemma 3.2.3 on page 78, u; = ¥4, for all times. O

3.3 Initial condition in two dimensions

3.3.1. Due to the very technical nature of the proofs in this section we will only deal
with the dimension 2. Then, in section 3.4, we shall explain what changes in higher

dimensions.

3.3.2. Let A : R — [0, +00) be a smooth function such that A; = 0 if and only if t = 0.

From now on, we will only consider the cost induced by

1 0
At:: s
.

1 A
cr(x,y) = Ed(xlayl)z + ?td(xz,yz)z-

which is

For t nonzero, let {/; be the associated Kantorovich potential between the probability
measures p and v. We assume they have the same properties as before—that is, they
are absolutely continuous with strictly positive, smooth densities. Let T; be the
corresponding optimal transport map. Then, according to proposition 3.2.10 on the
preceding page, t — 1/, and t — T, are € on R \ {0}. Moreover, we know from the

theorem of Guillaume Carlier, Alfred Galichon, and Filippo Santambrogio (page 72),
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Chapter 3. From Knothe’s rearrangement to Brenier’s map

that, as ¢ tends to zero, the map T, converges to the Knothe-Rosenblatt rearrangement
Rin L2(p).

3.3.3. Potentials for Knothe’s map. By construction, the Knothe-Rosenblatt rear-
rangement can be written as T (x7, x2) = (Té(xl), TI% (x1, x2)), where x; Té(xl) is
the optimal map between p' and v', and x, — T (xi, x2) is the optimal map between
pfq and vil ()" Recall {}, y?} and {v!, v?} are the disintegrations of, respectively, y
K\A1
and v (definition 3.1.2 on page 70). Thus, there must exist Kantorovich potentials

X1 = ¢1(x1) and x; — ¢2(x1, X3) such that

Té(xl) X1 — (91¢1(x1),
Té(xl,xz) = X2 — (92¢2(x1,x2).

Those potentials are normalized so that f @ (x1) dx; = 0, and f $?(x1, x2) dxy = 0 for

almost all x;.

3.3.4. Ast tends to zero, the optimal map T, = Id —(01¢;, 921, /A;) converges toward
Tx = Id— (69", .¢°). A first-order expansion might therefore be dy1/; ~ A,0:¢°.
Since ¢! does not depend on x;, we could simply have /; ~ ¢ + 1,¢?. This leads us
to a priori write:

l//t(xl’xz) = ¢}(x1)+1t‘//?(x1,x2),
with
U = [l and g = 5 (0 - gha)

Thus,
fl//%(xl)dxl =0 and fl//f(xl,xz) dx, = 0.

Such a decomposition allows us to extend our analysis up to t = 0.

3.3.5. Notations. Let us denote by E the set of all (¢, u!, u?) € R x € (T?) x € (T?)
such that
ful(xl) dx; =0 and fuz(xl,xg)dxz =0,
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and by Q the open subset of E formed by the tuples (¢, u!, u?) such that:

o either t # 0, and then A; — VZ(u! + 1,u?) > 0;
« ort =0,and then1— 8, ;u' > 0and 1 - 8, yu® > 0.

Next, we define an operator G : Q — ¢ (T?). When t is nonzero,
G(t.u'.u®) = FlAnu' + 2u"),
where ¥ is the operator introduced in section 3.2:
FAu) = f—-g (Id —A_IVu) det (Ig —A_lvzu) .
We then extend G to include the case t = 0; indeed, notice

A_lV(u1 + )Ltuz) = [ ' + Ay Oy’ ]

62112

and ATV + 1) =
(' + ) o

If we use the shorthand du := (du!, d,u?), then Ty = Id —H¢, and
G(0,u!,u?) = f - g(Id-0u)det (I, —Ddu) .

Thus, we can just take i) := ¢' and y/§ = ¢*.

81,1111 + Atﬁl,luz

(3-3.5.2)

/1;61’2112

(92,21,{2

(3.3.5.b)

3.3.6. Lemma. Forany (t,u',u?) € Q, we have G(t,u',u®) = 0 if and only ifu1 = lﬁ%

and u* = 2.

Proof. As u!,u? are uniquely determined by the values of u; := u! + A,u?, thanks to

the formulae

ul(xl) = fut(xl,xz)dxz and Uz(x) = i(ut(x)—ul(xl)),

At

the lemma follows directly from lemma 3.2.3 on page 78.

86



Chapter 3. From Knothe’s rearrangement to Brenier’s map

3.3.7. Alas, the continuity method here seems to fail us: we cannot do the same
as in the previous section and apply the implicit function theorem, for if we solve
D.G(0, 5, &) (v', v*) = ¢, then a priori the solution v? is not smooth enough. Indeed,
as we will see later, if g € H", then o' € H™2, but we can only get v% € H". We can,
however, bypass this difficulty by considering ¢ functions, so as to have an infinite
source of smoothness, and use the Nash—Moser implicit function theorem (§2.1.9, on

page 48) instead of the usual implicit function theorem.

3.3.8. We need only to use this theorem in a neighborhood of (0, ¢;, ¥¢) € Q. Let us
define this neighborhood, which we denote by Q, in the following way: first, take
¢ > 0 such that 1 — 8y 1y > e and 1 — 5 2y > ¢; then, define Q as the set of all

(t,u}, u?) € Q such that:

1-0;ul > ¢

if t =0, then 1’1 (3.3.8.a)
1- 62,2u2 > €,
1- 0 qut — A,0,1u° > ¢

if t#0, then L oLt 1/2 (3.3.8.b)
At — Vz(ul + Atuz) > f)‘.t Iz .

3.3.9. Zero mean value w.r.t. the 2nd variable. Recall that we denote with a ¢
subscript the sets of maps with zero mean value: %,° is thus the set formed by the
smooth functions u such that f u = 0. When dealing with a space of functions with

two variables, we also denote by a “x, ¢” subscript, as in 6,7, (T?) the set formed by

the & such that f E(-,x2) dxy = 0.

3.3.10. THEOREM. For all (t,u',u?) € Qo, for any q € €°(T?), there is a unique
(', v?) € € (T') x 67°,(T?) such that

D.G(t,u',u®) (v, v%) =g, (3.3.10.2)

Moreover, the inverse operator

is smooth tame.

g, ] QXEE@) o T X ET)
| (uhu?)g) = @)
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See definition 2.1.7 on page 47 for the precise definition of a smooth tame map.

Proof. We report the proof of the existence of (v!,v?) and of the following “tame”

estimate
1 2 1 2
10 g + 1020% [k < Co (It g + Nt llgnes + ligllgen ) -

to the next two subsections. Let us conclude from that point on. Then, all that remains
to show is that S is continuous, and that al the derivatives D¥S are tame.

First, if (¢, u}c,ui, qr) € Qo converges toward (¢, ul,u?,q) € Qo, for each k
let (v}(, vi) be the corresponding inverse. Thanks to the tame estimate (which we
have not proved yet), v}c and vi are bounded in all the spaces H". Hence, compact
embeddings provide convergence, up to an extraction, to some v', v? as strongly as we
want, which, as DG is continuous, must be the solution of DG(t, u!, u?)(v!, v?) = q.

Then, all the derivative DS are also tame, since they give the solution to the

same kind of equation as (3.3.10.a). Indeed, by differentiating (3.3.10.a), we get
D,GDS =Dg-D([D,G)S. O

R — €2(T" x €2,(T%)
t o (YhLy?)

Proof. On some interval (-7, 7), this is a direct consequence of corollary 2.1.9 on

3.3.11. COROLLARY. The map { is smooth.

page 48, theorem 3.3.10 on the preceding page, and lemma 3.3.6 on page 86. For larger
t, it follows from theorem 3.2.8 on page 82. O

3.3.12. THEOREM. The curve formed by the Kantorovich potentials (i;) is the only
curve in 62(T?) defined on R such that, fort # 0,

A — Vzg&t >0 and div (f [At - Vzl//t] - (Vx/}t - AtA;IVIpt)) =0, (3.3.12.2)
and that can be decomposed into two smooth curves (}) and (y/?) such that

Vie(x1, x2) = l//}(xl) + At‘ﬁ(xl,xz),

with ) and y¢ the Kantorovich potentials for the Knothe rearrangement.
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Proof. Letu, = ui +A tu% be such a curve, and let us check that u, = 1/;. Since u(l) and

ug are the potentials for the Knothe rearrangement, (0, u}], u(z)) € Qy, so (t, ult, u?) is

in Q at least for ¢ small. For ¢ # 0, (3.3.12.a) is equivalent to
Duf(-:(t, ut)l:lt + Dt?'(t, ut) = O,

and therefore
Dug(tv u}’ u?)(ui’ u?) + Dtg(tv u}‘s u%) = 0

By assumption, G(0, u,u2) = 0. Integrating in time, we get G(¢, u}, uf) = 0. There-
fore, according to lemma 3.3.6 on page 86, we have u} = ¢} and u? = ¥, i.e. u; = ¢.

For larger t’s, we apply proposition 3.2.10 on page 83. O

Proof of the invertibility

3.3.13. Letusrecall F(A,u) = f — ¢ (Id —A‘qu) det (Iz —A‘lvzu), and

1 0
G(t,u', u?) == F(A;, u' + L,u?) with A; = ( 0 1 ] . (3.3.13.2)
t

We want to prove the invertibility of D, G(t, u', u?). The first lemma (§3.3.14, on the
current page) will consider the case t # 0, the second (§3.3.15, on the following page)
the case t = 0.

3.3.14. Lemma. For any (t,u',u?) € Qq witht # 0, for all ¢ € €°(T?), there is a
unique (v',v?) € €°(T') x €°,(T?) such that

D.G(t, u', u®) (!, v?) = q. (3.3.14.2)

Proof. If we set u; := u' + A,u?, then lemma 3.2.7 on page 82 tells us that there is a
unique v; € €:°(T?) such that

div ((f - G(t,u', uz)) [12 —A;lvzut] - A;1Vvt) =q. (3.3.14.b)
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Let us define

V)= [ o) and o) = 5 (o) - ol(x).

t

Then, by construction, (v!, v?) is the unique pair solving (3.3.14.a). O

3.3.15. Lemma. For any (0,u',u?) € Qq, for all ¢ € €>(T?), there is a unique
(', v?) € € (T') x 6.7°,(T?) such that

D,G(0,u',u®)(v", %) = q.

Proof. By substitution, for any & € €, from (3.3.5.b) we get

fg(x—au(x)) [f(x)—g(O,ul,uz)(X)] dx = fé(y)g(y)dy,

with du := (d1u!, d,u?). Therefore, if we differentiate this with respect to u along the

direction v, we get

- f (VE(Id —0u) | 9oy (f - G(0,u',u))
- fg(ld —0u)D,G(0,u', u?) (', %) = 0.
Since V[£ o (Id —9u)] = [I, ~DAu]*VE(Id —du), we have
(VEd -du) | dvy = <V[§ o (Id -9u)] | [Tl ~Ddu] 'dv)
and this yields
D,G(0,u',u*)(v",v%) = div ((f - G(0,u',u*)) [l ~-Du] ' dv) .
Notice, then,

1- 82’2142 0

- G(0,u",u?)) [I, -Dou] ™ = g (Id -0
(f - 6(0.u",u?) I, -Ddu] ™" = g (1d —u) ot 1y
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Thus,

D,G(0,u', u?) (', v?)
= i[9 (x = 9u(x) (1= G0t (1)) o' (er) | + Ba oo ].

Therefore, if D, G(0, u!, u?) (v}, v?) = g, integrating with respect to x, yields
[ &gt - o) (1- b @) )| e = [ o) de

which then brings about
& [{ [ o= aut) (1- o) dxz} alzﬂ(xl)] - [awan.  Gasa)

As f q(x) dx = 0, there is a smooth Q : T' — R such that 8,Q(x;) = f q(x1, x2) dxz,
and it is unique if we require Q(0) = 0. Thus, taking a primitive of (3.3.15.a), we

obtain

[fg (x — du(x)) (1 - 62,2u2(x)) dx2] ' (x1) = Qx1) +c,

G(x1)

for some c € R. Since G(x;) > 0, we get

517)1 = QG .

and this yields the unique possible value for ¢, since the integral with respect to x; of
the right hand side must be zero. Combined with the condition f v'dx; = 0, we thus
have completely characterized v!.

Now, let us do the same for v2. We have to solve the equation

9z | (1d =0u) (1- 8y 1u') 9,07 |
= q— 01 [g(1d-0u) (1- 0,.2u%) 810" | - 02 |g (1d ~0u) &y 20”610 | ,

and this is exactly the same kind of equation as (3.3.15.a). If we fix x; € T!, the same

reasoning can be applied , and in this way we get v* as well. O
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Proof of the tame estimates

3.3.16. We refer to definition 2.1.6 on page 47 for a precise definition of what a tame
estimate is. Basically, our aim here is to show that, locally on (¢, u!, u?) € Qy and

qe€ € (T?), for any n € N, there is a constant C,, > 0 such that, if
D,G(t,u',u?)(v',v*) = ¢ (3.3.16.a)
for some (v',0%) € €°(T") x €°,(T?), then
0 lmez + 1Pl < Co (15 161+ lulgms + [l + ligllin) -

In fact, we will prove something slightly stronger:

10! gz + 100 ltn < Co (g + 16 lgmss + ligllan) (3.3.16.b)
Indeed, as f v?(x1, x2) dx, = 0, a Poincaré inequality implies

0% llgn < call020?(lyan.

Notice also that (3.3.16.b) would by itself yields uniqueness in lemma 3.3.14 on page 89.

3.3.17. We start with the case t # 0. As the bound for ||0!|[n2 simply follows from
lemma 3.2.6 on page 8o and an integration with respect to x;, we just have to find a

bound for ||d,v?||iz=. Let us begin with ||8,v?||;2; we will then proceed by induction.

3.3.18. Lemma. Let M, ¢ > 0. There is a constant C, which depends on M and ¢, such
that, for any (t,u',u®) € Qg witht # 0 and for all q € € (T?) satisfying

ligllee + llu'llgs + 1u?llgs < M, (3.3.18.a)
if (01, 0%) € €X(TY) X € (T?) is a solution of (3.3.16.a), then

18,0% |2 < C. (3.3.18.b)
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Proof. We set u; := ul + A,u? and v; := v} + A,0%. Then, D, F(A;, us)vr = ¢, and

(3.3.8.b) in the definition of Qg ensures we an apply lemma 3.2.6 on page 8o and get

el < Cen {ligliee + lluellgs} < C. (3-3.18.¢)

We now set
By = (f - G(t.u'u?)) [ -A7'VPu, | A7
f_ g(t’ ul’uz) 2 *
AL LN ISV
det(A; — VZu,) [Co = Viu)]

_g(d —-A;'Vu,)

Qi A, [Co (A; — Vzut)]*

so that, according to (3.3.13.2) and lemma 3.2.4 on page 78, (3.3.16.a) becomes
diV(BtV'Ut) = q.

Notice det A; = A; and

At_)ttaz,Zuz Atal,2”§ )

Co (A, — Viu,) =
( ! t) ( )L,al,zu% 1- 61’114}

Therefore, we can write

By = U+ Vi/As (3.3.18.d)
1=y u* 0y 2u°
with U; == g(ld —A;qut){ 2,2214 .24 ), (3.3.18.€)
61,211 0
0 0
V; = g(Id-A;'Vu : 3.18.f
¢ = g(d—A; t)[o 1_61’%] (3.3.18.f)

Thus, .
q = diV(BtVUt) = diV(U[VUt) + A_ diV(VtV'Ut).
t
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As 050! = 0, we have V,Vo! = 0. Since v; = v! + 1,02, we get
div(U;Vo,) + div(V;Vo?) = g,
that is,
92 |g(d —A7'Vu) (1= 81.4u)0,0* | = q - div(U,Vo,). (3.318.8)

Since g > ¢ for some &, and as (3.3.8.b) in the definition of Qy means 1 — 0; ju; > ¢,

allowing the constant C to change from line to line we get

2|12
10207 Iz

IA

c _
&fg(ld —A7'Vu,) (1 = 01 1ur)| 0,07

IA

Cf [q - diV(UtV'Ut)] '02

C(liglie + 11U Vo) 110% 2.

IA

0 implies ||0?||;2 < C||020?||2. Therefore,

However, f 02 (x1, x2) dx,
10:0% Iz 10%[lz < ClA2% I < Cllgllz + 11U Vo) 11072
Thus, since ||U;|lyr < C(1+ ||ut]lgs + ||u?|l3) < C follows from (3.3.18.¢€), we obtain
100l < CA{liglle + llvellge} -
Then, using (3.3.18.c), we get the result. O

3.3.19. Lemma. Under the same assumptions as in the previous lemma, for anyn € N,

there is a constant C,, = C,,(M, ¢€) such that
1020% I < Con (lgllggn + 12! legmss + | [lgms) - (3.319.2)

Proof. Let us assume (3.3.19.2) has been proved for some n € N, and let us show it

holds even for n + 1. Let v € N? be such that |v| := v; + v; = n + 1. Recall (3.3.18.2):

9z |9(1d —A™'Vu,) (1 = By 1u,)0p0* | = q = div(UVoy).
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Chapter 3. From Knothe’s rearrangement to Brenier’s map

We already know from lemma 3.2.7 on page 82 that v, = v'+1,0? is smooth, therefore,

if we apply 8, = 0!"/ox," - - dx ), we get

05 [g(Id —A‘qut)(l - 51,1ut)c9zc’)vvz]
= — Z (;)82 [c‘)v_a {g(Id —A7'WVu,)(1 - 51,1ut)} 3Zaavz]
0<a<v

+0,q — 0, div(U; Vo).

On the other hand, since g > § and 1 — 9, ju; > ¢, we have

A

1 -
||52(9v02||12; = Efg(ld—A 1V’«lt)(l—51,11«11‘)|523v712|2

1
< -5 f 0y [9(1d —AT'Vu,) (1 = 0y 1u1)9,0,0° | 9,0,
£

Thus,
”aZavUZH;
V —
= O;V (a) f [a"_“ {g(Id -A lvut)(l - al,lut)} azaavz] 0,0,0°

1
s f [0,q — 0, div(U;Vv,)] 8,0,

and therefore

HazavUZH%
L

< Y c

0<a<v

By {9(1d =A7Vu) (1 = 0y )} 820,07, (|20
+C||ovg — 8, div(U,Voy)||,, [|0v0?) . -

As 10,0212 < c||020,0% |2, we get

10,0, 0%le < € ) lg(d =A7Vur) (1 = 1 110)|| s 02075

0<k<n

+ C{llqllgn+ + [|U Vo, llgne2} . (3.3.19.b)
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Chapter 3. From Knothe’s rearrangement to Brenier’s map

On the one hand, we can use the same Landau-Kolmogorov inequalities as in the
proof of Lemma 3.2.6, and a'"’b* < (1 —t)a + tb, to get, for 0 < k < n, the following
bound:

l9(d —A7'V1,) (1 = 8y 1110) || g [|020%] g
< cn ([lgd ~A7Vu) (1 = 8 )| e [| 0207,
+ |lgd —A7Vu,) (1 = 8y 1up)|| 1 || 0227

)

Recall we have assumed (3.3.19.a) holds true for n; therefore, using (3.3.18.a), we get

lg(1d —A™'Vu,) (1 = 61 1))

2
enni 0205

< c¢p (l + |lqllgn + ||u1||<gn+3 + ||u2||<gm3) . (3.3.19.¢)
On the other hand,

1U: Vo, llgnse ||Dn+1(UtVUt)”H1

CHllUtlgn1Vorll + [[Utllg | Vorllgnez}

IA

which, since ||ul|lys + ||u?|lys < M, implies
U, Vol < C{ (14 ' llgmes + 16 llgnes ) Ioelle + 0l |
Then, using Lemma 3.2.6 we get
UV llgne < e (gl + ' llgnas + 16 llgnes) . (3:319.d)
Bringing together (3.3.19.b), (3.3.19.c), and (3.3.19.d), we get the estimate we seek. O

3.3.20. Lemma. The result of lemma 3.3.19 on page 94 still stands when t = 0, with

the same constants.

Proof. Let (0,u!,u?) € Qg and q € €°(T?) such that

gl + lu'llgs + llu?llys < M, (3-3.20.2)
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Chapter 3. From Knothe’s rearrangement to Brenier’s map

Then, since (s, u!, u?) € Qo for s small enough, we can proceed by approximation.
Indeed, if (vi, v?) is the solution to D, G (s, u!, uZ)(vi, v?) = g, where u!, u?, ¢ have
been all fixed, then all the H” norms of v}, v? are bounded according to lemma 3.3.19
on page 94. Up to an extraction, there is convergence, which by compact embedding
is as strong as we want. But the convergence can only be toward the solution of

D,G(0,u!, u?)(v!, v?) = g, hence estimate (3.3.19.a) is still valid for the limit. O

3.4 Higher dimensions

3.4.1. The difficulty in extending those results in higher dimension only comes
from the technical nature of section 3.3. We need a decomposition, not only of the
potential, but also of the matrix field B, extending (3.3.18.d). The existence of such a

decomposition is the only additional difficulty.

Setting and notations

3.4.2. Cost matrix. We consider d — 1 smooth maps A!, ... AR S [0, +00)
such that Ak = 0 if and only if t = 0. We then define

[ 4

i<d

3.4.3. New decomposition of the potential. In that setting, the decomposition of

the Kantorovich potential 1; becomes

Yelai,....xa) = ¢}<xl>+w5<xl,x2>+...+[HA@] PG xw).

i<d
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Chapter 3. From Knothe’s rearrangement to Brenier’s map

where /¥ depends only on the k first variables xi, . . ., xx, and is such that

VX1, Xket, flﬁtk(xl,...,xk_l,yk) dyi = 0.

For convenience, we set
lj;k = ¢k+lk¢k+1+...+( l_[ Ai]lﬁd,
k<i<d
so that we may have

l,bl — lﬁ, lﬁk — ¢k+/1k¢k+l, ]ﬁd — ],bd,

and

VX1, .., Xk—1, f---fl/}tk(xl,...,xk_l,yk,...,yd)dyk...dyd:0.

For instance, if d = 3,

1131 — ¢1 + /111#2 4 /11/121#3
Y = ¢+ AP+ 2% and g2 = g%+ A2y
P =y
3.4.4. Domain. We denote by E the set of all (¢,u', ..., u%) € R x [ €*(T¥) such
that

Vkel{l,...,d), fukdxk=0.
Then, if(t,ul,...,ud) € E, we set

a9 =44, TRy L Lo
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Chapter 3. From Knothe’s rearrangement to Brenier’s map

This is consistent with the previous notation. Notice

oot o'
19242 d01*
Vu = MNA26;0° and A'WVu = 04 = B> ,
1 Ako a4 dqi?
and thus,
0y 211! 0 0
0L 0% Oy 2112
ATWi = Doa = | T TR (3.4.4.2)
: : 0
O.qu? 9y g0t - 04q0¢

We define Q as the open subset of E formed by the (¢, ) such that:
« either t # 0, and then A; — V?u > 0;

« ort =0,and then1 - 8k,kuk > 0 for all k.

As previously, we need only to work on a neighborhood Q of the tuple (0, uj, u2),

with uj and u? the Kantorovich potentials for the Knothe-Rosenblatt rearrangement.
This neighborhood will be defined later on.

Invertibility

3.4.5. We want to solve, for (0, u) € Qy, the equation D,G(0, u)v = q. For t > 0,
. “1g2. 171 41
DGt u)o = div ((f - G(tw) [la-A"V2] " A Vz;) .
Replacing A™'VZu and A~'Vou with D34 and 99, we get
D.G(t, w)v = div ((f - G(t,u)) 14 -Da] " §9) .
When ¢ = 0, we have 4% = u* and 84 = du, so this becomes

q =DuG(0,u)v = div ((f - G(0,u)) [la ~Ddu] " ) .
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Chapter 3. From Knothe’s rearrangement to Brenier’s map

The trick is to integrate with respect to X1, . . . , Xq to get an equation on o', . . ., vk,

If v, ..., v*! have already been found, [I; —DAu] ™" being lower triangular thanks
to (3.4.4.a), the resulting equation on v is of the same kind as the one we have dealt

with in lemma 3.3.15 on page 9o. The same reasoning can thus be applied.

Tame estimate

3.4.6. As in the two-dimensional case, we need only to find a tame estimate when ¢

is nonzero for the solution (v, ..., v%) of

_g(d —A"Vu)

= div(BV ith B:
q iv(BVov) wi Tet A

[Co (A- Vzu)] "

First, by integrating with respect to x4, we obtain the same problem as in dimension
d — 1. Therefore, we can proceed by induction on d.

So let us assume we already have a tame estimate for o', .. ., 0971 To get an

d

estimate for v? = 99, we will find one for each 9, this time by induction on k. Since

9! = v satisfies a nice strictly elliptic equation, and thus comes with a tame estimate,

we need only to show how to get one for O if we have one for 0!, ..., 9%,

3.4.7. The key lies in the following decomposition of the matrix B: for any k,

B=B1+le+LB3+ +
1 A2 L. k2 LT S S

where the coefficients (b("x ,8) of B! are zero except when min(«, ) = i, and where

the coeflicients (B’;{ [3) of B are zero except for min(a, ) > k :

i e i hk ... Pk

Bi bi,i bi,d Bk bk,k bk,d
i Lk ... Pk

bd,i bd,k bd,d

The point is that all the coefficients b {’x L I;Z 5

the u’ in 4"*? uniformly in ¢, at least for small ¢.

can be bounded in " by the norms of
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Chapter 3. From Knothe’s rearrangement to Brenier’s map

3.4.8. Let us assume such a decomposition exists; then,

. 1 . i 1 o
div(BVv) = Z T div(B'Vv)| + PR div(B*Vo),

i<k

and thus, since
v = o'+ \o? +...+)Ll---)tk_gvk_1+/11---)Lk_lz3k,

with ;07 = 0if i > j and as that implies d;0 = A' - - - 11719,9?, we have

div(BVo) = [Z div(BiVoY) | + div(B*VoF). (3.4.8.2)

i<k

On the one hand, the matrix B is symmetric and non-negative, and we can chose

the neighborhood Q so that to ensure

VEeR?, E(Z|§i|2) < (B*¢16).

i~k

On the other hand, since
VXD, Xkt f---fﬁk(xl,...,xd)dxk...dxd=O,

we have a Poincaré inequality:

2
e

o

L <c X ot

i~k
Therefore,

,&k

and this shows how we can deduce a L? estimate for 9% from (3.4.8.a) and a series of

C (4 ¢ ;
o= [ dvotiven < Cfaniatvet ol

estimates for 97, for i < k. Estimates for the norms H", n > 0, easily follow, by the

same reasoning as in lemma 3.3.19 on page 94.
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Chapter 3. From Knothe’s rearrangement to Brenier’s map

3.4.9. Thus, all we need to do is to prove the existence of the following decomposition:

1

_ nl 2, 3, d
B =8B +ﬁB _/11)[28 +—/11,,,/1d—1B ,
with
B - bzl:,i bzl:,d
by
Remember
_g(d —A"Vu)

Y [Co(a- Vzu)]* :

and det A = A1 (1122) -+ (2'--- 2971). Therefore, all we have to do is to show how
in Co (A — V?u) we can gather the A* so as to get the decomposition we seek. Since

ai,ju — /11 . ')Lmax(l j)— 6 {ymax 1])

| co (A—Vzu)]l.’ﬁ D, @) [ ] (A= Vo

aepd 1<k<d
o(i)=j k#i
— Z e(o) l_l AL Amax(k,a(k))—l (5k o ak max(k O'(k'))) )
oeCGy 1<k<d
o(i)=j k#i

Thus, for i < j, we set wq,p = A% - . Amax(a.f)-1 (50, p— 0q ,gumax(“ ﬁ)) Then,

g Z (o) 1_[ Al"'ﬂk_la)k,a(k)

[Co (A= V2u)]

ceCy 1<k<d
o(i)=j k#i
_ 8(0') /11
B Z ..yt l_l 1_[ Wk, (k)
o‘E\,d 1<k<d 1<k<d
o(i)=j k#i
det A
= 2 @ [ ] erew
oceGy 1<k<d
o(i)=j k#i

Since we have assumed i < j, this is exactly what we wanted.
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Chapter 3. From Knothe’s rearrangement to Brenier’s map

3.5 An open problem

3.5.1. In this chapter, we have studied the behavior of the optimal transport map
when the cost matrix degenerates. But we have done so only for a diagonal cost matrix.
It would, however, be possible to consider more general situations; for instance, we
could take a cost matrix A that is diagonal in another base {uy, - - , ug}.

In dimension two, this other base can be written as
u; := (cos 0, sin 0), Uy := (—sin 9, cos 0).

Then, the following matrix is diagonal in this basis:
A o | cos 0 —sind 10 cosf sind
27 sing cosd 0 A —sinf cosf |’

s = (cos0)? + A(sinf)?> (1—A)cosOsind
AT (1-A)cosOsinf A(cosB)? + (sin)? |

that is,

Let us assume 0 € (—/2, 71/2), and set y = tan 6. Then,

s = (cos@)z( L+ Ay (1= Ay )

1=y A+x°
We must then pay 1 for each length unit we travel in the direction u;, and A in the
direction u,. The associated transport cost is thus

. 1 . 1 A
CA(X,!/) = ,3?52 EAA (x = Y- k)2 = klngz 5<u1|x -y- k>2 + E(U2|x —-y- k>2-

3.5.2. If y is rational, e.g. y = p/q, then the situation remains basically the same.
Indeed, considering our two measures as Z2-periodic measures defined on R? and
setting Z = \/p2+—qz(Zu1 + Zuy), we can see they are also Z-periodic. Then the
results of this chapter apply verbatim on R?/Z.
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Chapter 3. From Knothe’s rearrangement to Brenier’s map

Figure 3.a: When y = tan 0 is rational, we can work on a bigger torus.
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3.5.3. But when y is irrational, then the trajectory Ruy is dense in T?. As moving
along that direction costs less and less as A tends to zero, the associated cost tends to

zero as well:

3.5.4. PRoPosITION. [ftanf € R\ Q, then cy(x,y) — 0 when A — 0.

Proof. Without loss of generality, we can assume y = 0. Then,

1
e(x,0) = inf [ Gulx = k) + 2w lx = kY]
) cos 0)?
= inf ( ) [(xl + xxy — k1 — sz)z + A(xz — yx — kg + Xx1)2] .
kez? 2

Thus, for any ¢ > 0, we can find ki, k; such that [x; + yx, — k; — )(kzlz < ¢, because

Z + yZ is dense in R. Then, taking A small enough, we get c)(x,0) < e(cos ). O

3.5.5. On the other hand, the associated optimal transport map is bounded in L?. So
what are its limit points? Is there convergence?

One approach could be to study the I'-convergence” of the functionals

Fy - Hu,v) — [0,00),
y e [ty dyxy).

Sadly, even though there are I'-limit points—there always are—, to identify one of
them is not trivial at all. The nature of the irrationality of y seems to be of some
importance, but that makes the problem quite complex.

For more information about I'-convergence, we refer to Andrea Braides’s book

on the subject [12].

2The I in “T-convergence” has nothing to do with the set I{y, v)!
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Numerical computations

4.0.1. When both the source and target measures are discrete, many algorithms
already exist for computing the solution to the optimal transport problem, the most
famous perhaps being the auction algorithm due to Dimitri Bertsekas [9]. This al-
gorithm was also used by Damien Bosc [11] to deal with continuous measures, by
approximation. When only one of the two measures is discrete, Guillaume Carlier, Al-
fred Galichon, and Filippo Santambrogio [19] showed the optimal transport map could
be computed by solving an oDE, starting from the Knothe-Rosenblatt rearrangement.
In the general case, Jean-David Benamou and Yann Brenier [7] proposed a method
based on their formula (see theorem 1.6.4 on page 40). Sigurd Angenent, Steven Haker,
and Allen Tannenbaum [4] developed a steepest-descent algorithm, also starting from
the Knothe—Rosenblatt rearrangement. Grégoire Loeper and Francesca Rapetti [40],
on the other hand, were able to compute the solution using Newton’s method, which

is akin to a continuation method.

4.1 A new method

4-1.1. The results exposed in chapter 3 can effectively be applied to compute Brenier’s
optimal map. This section intends to show how, at least when the underlying space is
the torus T? and the target measure is uniform. More general cases should be within

our reach, even though their implementation is a bit more complex.
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4.1.2. As Sigurd Angenent, Steven Haker, and Allen Tannenbaum [4], we start from
the Knothe-Rosenblatt rearrangement Tx, which is given by two Kantorovich poten-

tials ¢!, p*:
x1 = 01 (x1)
Tk (x1,x2) = ) .

Xo — 020%(x1, x2)

Then, as Grégoire Loeper and Francesca Rapetti [40], we use a continuation method:
we first set ug = ¢! and vy = ¢?; we then increase ¢ little by little, and update u; and

v, in such a way that u, + tv, is always the Kantorovich potential for the cost

ci(x,y) = %|x1 - y1|2 + é’xz - y2|2.

Thus, for t = 1 we get the Kantorovich potential for the usual quadratic cost, and at
that point Brenier’s map is just Ty := Id =V (g + v1).

In order to update u; and v,, we follow the same method as in chapter 3: we use
the Monge—Ampére equation. Denoting by f the density of the initial measure, for

any t, we should have
f= (1-07u — 10} jv,)(1 - 85 yor) — 1(0] yo1)°.

Therefore, the time derivatives u;, 0; are given by the following linearized Monge-

Ampere equation:

(1 - 622’20t)312’11§tt
2 2 2 2 2 2 2
+ (1= 03 ,0;)07 1Or + (1= 0 Uy — 105 101) 03 ,0r — 2t07 , U105 50y

= (0} 01)* = (1= 05 )0} v, (4.1.2.2)

This equation, with the aforementioned initial condition, can be broken down as

follows:
512,175¢t(x1) = fPt(xh xz) dxz, (41.2b)
div(A,Vo;) = qq,
with .
pr = det(Viv,) + tdiv([Co Vzvt] Vz')t) ,
(4.1.2.c)
q: = det(Vzvt) — (1 - 322’201«)812’1111‘ - (912’1'Ut,
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and

a - [ H1- 92 ,v) to? v ]

2 2 2
tal’zv 1- amu - tﬁl’lv

under the conditions
fut(xl) dx; =0 and fvt(xl,xz) dx, = 0. (4.1.2.d)

We therefore have four unknown—that is, u;, v;, 4, ,—and four equations, given by
(4.1.2.b) and (4.1.2.d).

4.1.3. Discretization. We proceed with an explicit discretization with respect to
time. Given a time step h > 0 such that 1/h € N, we compute four sequences of maps:
(Uy) and (U,,), depending only on the variable xy, and (V;,) and (V,,), depending on x;
and x,. The maps U, and V,, will represent u,; and v,;, and U, and V,, will represent

Upp and 0,, for n € {0, ..., 1/h}. To that end, we first set
U U 0,

0 and 0
Vo Vo 0.

The values of Uy and Vj, are, in fact, of no consequence. Then, by induction, given the

I
=

Il
-~
Do

values of Uy, Uy, Vy,, V,,, we solve

aZ’ Un+1 = an dxg
{ diV(Ané‘l'/,m) = qn (413.2)
with
pn = det (Van) + ni; diV([CO szn]* VVn) , (413b)
Gn = det (V2V,) = 02,V — (1= 02,V,) (62, [pndz)
and

>

A - nh(1 -85 ,Vy) nhd; ,Vy
" nho?,V,  1- 02U, — nhd?,V,
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under the conditions
f Upa(r)dx =0 and f Vo (1, 22) ey = 0. (4130)

The last requirement can be a bit difficult to enforce numerically. However, the

following lemma allows us to get U,.1 and V,,,; from any pair (Un+1, le) solving

(4.1.3.2):

4.1.4. Lemma. Let (Un+1, Yn+1) solve

(4.1.4.a)

812’1Un+1 = an dx2’
diV(AnVYm—l) qn,

without any further condition. Then, (4.1.3.c) is satisfied by
Un+1 = Un+1 - fUml dx; + nh (f Yn+1 dxy — ffYnu dx; dxz)
Vn+1 = Yn+1 - fYrHl dox,.

Proof. We set

Qn+1 = Upar — fUnH dx; + nh (f Vo1 dxp — ffYrH—l dx dx2)

Vn+1 = Yn+1 - fYnH dx.

Then, if I,,;1 := fY,,+1 dx, since (Upa1, Vysr) is a solution of (4.1.4.a), we have

af,1gn+1 = 812’1Un+1 + nh812,1 Ing = fpn dxy + nhalz,l Ina,

qn = diV(AnVYnﬂ) = diV(AnVYnH) +div(A, Vi) .
Notice that, if w is a function of x; only, then

div(A,w) = nh(1- azz,zvn)((’)lz,l"")'
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Therefore,
diV(AnVUn+1) = nh(1- 55,2Vn) (612,1 fp”)

diV(AannJrl) = nh(l - 622,2Vn) (612’1 fpn de + nh@f’llnﬂ)

div(AnVVni1) = qn—nh(1— 85 ,Vs) (67 1) -
Then, using (4.1.3.b), we get

diV(AnV[U,,+1 + nhyml]) = diV(AnV[U,M + nhVn+1]) .

Since A, is a positive-definite, symmetric matrix, and both (:Jn+1 + nhyml and U nel +
nhV .1 have a zero mean value, they must be equal. Then, it follows from (4.1.3.c)
that

Un+1 = [:jn+1 and Vn+1 = le- ]

4-1.5. Thus, we obtain algorithm 4.4, on the next page. How to compute the potentials
for the Knothe—-Rosenblatt rearrangement is not detailed, as it as been explained

elsewhere (see §3.3.3 on page 85).

4.2 Results

4.2.1. FreeFem++. The following results have been obtained with FreeFem++. It is
a free software' developed at the Jacques-Louis Lions laboratory, in Paris. Its purpose
is to solve partial differential equations using the finite-element method. Roughly,

this method allows to numerically solve an equation

div(AVu) = q, u € H (4.2.1.2)

'FreeFem++ is free in the sense that it can be obtained free of charge, but it also means it is open-source
and can be freely shared, studied and modified. It is released under the GNU lesser general public
license.
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Require: f > Source density
Require: N > Number of time iterations
t<20
U,V « KnoTHEPOTENTIALS(f,1) > Target is the uniform density
dUu,dV <« 0,0 > This does not really matter

for k from 0 to N — 1do
p < det(V?V) + t div(|Co V2V| VdV)
dU « SOLVE(alz’ldU = f pdx;) > No control over the result
q « det(V?V) - ailV -(1- (922’2\/) (ﬁil pdx,)
A « Matrix([[t(1 - 82 ,V), t02 V], [t0Z,V,1— 82, U — t02,V]])
dV « SOLVE(diV(AVdV,) =q) ’ , > No control over the result
dU « dU - [dUdx; +t [ dVdx, —t [[ dV dx; dx;
dV « dV - [ dV dx,
U«—U+dU/N
V < V+dV/N
t—t+1/N
end for
return U +V

Algorithm 4.a: Computation of the potential for Brenier’s map, Ty = Id =V(U + V)
by looking at its variational formulation

1
ue argmin{— f(AVU|VU> - fqv}.
veH) 2

(If we work on the torus, there is a priori no boundary condition.) The set H} is then

replaced with a finite-dimensional subspace V' C H}, for if this subspace V is well

uy € argmin{1f<AVv|Vv>— fqv}
veV 2

should be a good approximation of the real solution. Then, if we denote by ey, ..., en

chosen, then

an orthonormal basis of V, the problem is then equivalent to solve a system

a,r o 4N 231 q1

, (4.2.1.b)

adNg ' 4NN UN qN
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Figure 4.B: A 10 X 10 mesh on the torus. The space P; on this mesh is of dimension N = 100.

ajj= f(AVeiIVej>, up = f(Veleu>, qk = fqek,
u = Zukek and q = que*k.

Solving (4.2.1.a) is therefore reduced to solving the (rather big) linear system (4.2.1.b).

with

because

The space V used here is P, the set of continuous map u over T? that are affine on

each of the cells of a given mesh—as the one represented on figure 4.8, on this page.

4.2.2. We have tested our algorithm on a 24 X 24 mesh, with a time step h = 1/200,

with four initial densities:

1. The first one is a tensor product,

sin(27x) . sin(27y)
7))

e = o
On figure 4.c, on page 114, it is possible to compare this density f and the

density we get with our computation of Brenier’s map, that is det(VTg). It

is not difficult to check that the Knothe—Rosenblatt rearrangement is then
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theoretically optimal. Indeed, we see on figure 4.0 that Brenier’s map is very

close. The L? error that is given is

_ 1If — det(VD)l:
| 11l

. The second initial density the algorithm was tested with is:

cos(27x) + cos(2my)
3 .

fley) =1

Notice on figure 4.F, on page 115 that the computation of Brenier’s map is
symmetric, as it should, while Knothe’s rearrangement is not. We can see an

artifact the left, which is unaccounted for.
. The third initial density is

sin(27x) sin(27y)

fley) =1+ 5 :

This case is interesting, because the projections on the first axis are constant,

[revay=1,

and as a consequence the Knothe-Rosenblatt rearrangement’s first component
is zero (see figure 4.H, on page 116). As can be seen on figure 4.G, there are
more pronounced artifacts on the left and right boundaries, which are hard to

explain since all the computations are made on the torus.

. For the last initial density, we have taken two Gaussian measures that have

been made periodic. Artifacts are still present (see figure 4.1, on page 117).

All the FreeFem++ scripts can be found on my website:

http://www.normalesup.org/~bonnotte/thesis/
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Figure 4.c: The density is f(x,y) = (1 + sin(27x)/2)(1 + sin(27y)/2). Left: initial density.
Right: density reconstructed using the computed potential. The error in L? is
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0 0
0 5 10 15 20 0 5 10 1 20

Figure 4.E: The density is f(x,y) = 1 — (cos(2zx) + cos(2ry))/3. Left: initial density. Right:
density reconstructed using the computed potential. The error in L2 is £ = 7.2%.
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Figure 4.F: The Knothe rearrangement (gray) is close to be optimal, but is not ; compare with
the computation of Brenier’s map (black), which is symmetric.
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Figure 4.G: The density is f(x,y) = 1+ sin(2zx) sin(27y)/2. Left: initial density. Right:
density reconstructed using the computed potential. The error in L? is ¢ = 13%.
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0 0
0 5 10 15 20 0 5 10 15 20

Figure 4.1: Two gaussians, turned periodic. Left: initial density. Right: density reconstructed
using the computed potential. The error in L? is & = 1.7%.
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Figure 4.J: The Knothe rearrangement (gray) was not symmetric; Brenier’s map (black) is.
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4.3 Open questions

In order to have a proper evaluation of this method, four questions need to be ad-

dressed:

1. Where do the artifacts come from? Why do they appear on the left and right
boundaries, whilst the domain is periodic? An explanation might come from
our using an explicit discretization in time; an implicit discretization would

probably better, but the computations would become a lot harder.

2. Those numerical experiments presented here were always obtained for a uni-
form target measure. Is it possible to deal with more general situations? In that
case, both the differential equation and the initial condition satisfied by the
Kantorovich potential are much more complex, and may need to be carefully

handled.

3. Does this method give better results than other algorithms? It would be specially
interesting to compare it with the methods of Sigurd Angenent, Steven Haker,
and Allen Tannenbaum [4] on the one hand, and Grégoire Loeper and Francesca
Rapetti [40] on the other, since both compute the optimal transport map as
well. A comparison with the method of Jean-David Benamou and Yann Brenier
[7], which computes the geodesic rather than the optimal map, would be less

straightforward.

4. At last, numerical convergence and numerical stability are two crucial issues

that have been left entirely untouched.
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An isotropic version
of the IDT algorithm

5.0.1. In image processing, it is often necessary to transfer the color palette of a
reference picture to a target picture—for instance, to homogenize the aspect of a series
of shots, e.g. in a film. The two color palettes can be described by measures on the space
of all the colors, and any transport map between them yields a possible transfer of
coloring. In 2006, Francois Pitié, Anil C. Kokaram, and Rozenn Dahyot [49] proposed
an algorithm to compute such a transfer, which they called “Iterative Distribution
Transfer” algorithm. It is based on a succession of unidimensional optimal matching
between the projections of the distributions along different axes.

The idea was later taken up by Marc Bernot, who noticed the procedure could
be somehow homogenized—indeed, the result of the initial 1DT algorithm seems
to depend very much on the particular set of axes chosen at each iteration. His
remedy was, at each step, to compute matchings for all the axes—instead of selecting
a particular subset—, and then average the result. This new version, briefly exposed
in a paper he wrote with Julien Rabin, Gabriel Peyré, and Julie Delon [50], can be
seen as an explicit Euler scheme for the squared sliced Wasserstein distance. Alas, no
proof exist for the general convergence of the algorithm toward the target measure,
neither for the original nor the homogenized—i.e. isotropic—version.

In this chapter, I would like to present a continuous version of the isotropic
IDT algorithm, defined as a gradient flow for the squared sliced Wasserstein distance

in the space of probability measures, in the sense of the theory developed by Luigi
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Ambrosio, Nicola Gigli and Giuseppe Savaré [3]. I was unable to get convergence

toward the target measure, but this point of view might still provide a way to get it.

5.1 The sliced Wasserstein distance

5.1.1. Sliced Wasserstein distance. For any direction § € S?7', let us denote by
0" the orthogonal projection on R#, that is, 8*(x) := (0|x). Given two probability

measures p and v, the sliced Wasserstein distance between them is defined as

1/p
SW, (4, v) = [JC W, (051, 0;v)P dO
gd—l

At first sight, the adjectif “sliced” does not seem to properly describe what
the distance represents. It might be more appropriate to talk about a “projected
Wasserstein distance” or “Radon-Wasserstein distance”, as the projections 6; ;1 and
0;v are sometimes called the Radon transforms of 1 and v. However, in Fourier mode,
it does result in a slicing, since F(0;11)(s) = Fu(s0). This is quite convenient, as we

can see in the proof of the next statement.

5.1.2. PROPOSITION. The sliced Wasserstein distance is, indeed, a distance.

Proof. The triangular inequality is trivial; all there is to show is that SW,,(y, v) = 0
implies y = v. But if SW,(y, v) = 0, then 0; 1 = 0;v for almost every 0 € S and
this, in turn, yields
Fust) = [ e dutx) = FOE) = FONG) = F60).
R

Since the Fourier transform is injective, we get y = v. O

5.1.3. PROPOSITION. [t i, v € Pp(Rd), then SWy, (1, v)P < cq , Wy (i, v)P, with

1
Cap = wgd_lwvgde < 1.

Noticecq,p < 1/d as soon asp > 2.
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Proof. Lety € I,(u, v) be an optimal transport plan. Then (6* ® 6*).y is a transport

plan between 0y and 0;v, so
Wy0im. 000" < [ (01 - Ol ay(x.)

1
Hence, as f(@lz)p do = Elzlp JC|9|§ df = cq,plz|?,

sy 0500 < [ (f|<9|x>—<9|y>|"de) dy (x. )

IA

f b — gl dy(x.)

ca,pWp(p, v)?. O

IA

5.1.4. Lemma. There is a constant Cy > 0 such that, for all yi, v supported in B(0, R),
\Nl(,u, 1/) < Cde/(d+1) SWl(,U, V)l/(d+1),

Proof. First, let us recall proposition 1.5.3 on page 34:

Wi(n.v) = sup { f Yd(u-v) |y e Lip1<Rd>}.

Then, if we take ¢ € €>(R%) such that ¢ is radial, ¢ > 0, suppp C B(0,1) and
f(p =1, and set ¢ (x) := ¢(x/A)/A%, and pi) := @ *p, and v = @, * v, then, denoting
also by f the Fourier transform of f,

fllfd(/u —va) = f@ﬁ(é) [4(&) = 0(5)] p(A8) dE
= f f ) ¥ (r0) [(r0) — v(r0)] p(Ar)r® " dr do
S4-1Jo
= %Ldlfuj(re) [F(O0; 1) (r) — F(O;v)(r)] §(Ar)r®~" dr do,

which implies
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fl// d(pr—va)

= % L fR [Jr0)e? ™™ = (r0)e* ™| p(Ar)r~" dr dyo(u,v) dO, (5.1.4.2)

where, for each 0, we have taken yg € I,(6; 11, 0;v) optimal. However,

f []ﬁ(re)e%nru _ ]ﬁ(re)ezm'rv:l (/A)(/lr)rd—l dr
R
= ff [l//(x)ezi”"(u—(elx)) _ gb(x)2i7z'(v—<9|x))] ([)(/b’)rd_l dx dr.

Dividing the integral in two parts, and replacing x with x + u0 in the first part, and x

with x + v0 in the second part, we get

f I:l/;(re)eﬂnru _ ]/;(re)eZiﬂrv:I (ﬁ(/l}")rd_l dr
R
= ff [ (x +ub) — ¥(x + v0)] e 27O G(Ar)rd =1 dx dr.

Since yg is supported in [-R, R]?, and p,, v, are supported in B(0,R + 1), we can
assume the map x — ¥ (x + u8) — ¥ (x + v0) is supported in B(0, 2R + A) for almost

every u, v, and

f [lﬁ(re)eZinru _ lﬁ‘(re)eZinrv] e—nxlrzrd—l dr
R

IA

(2R+A)d|§d—1|f|u—v|¢(/1r)|r|d-1dr

dygd-
@R+ DS (f o(r)lr| 4! dr) lu — vl

< 0
(2R + 1)%Cy
< ——|u-1v|.
14
Thanks to (5.1.4.a), this yields
Ca(2R + 1)¢
Wi(pp,va) = sup f‘/f d(pa—va) < %SWNH, v), (5.1.4.b)
1

although perhaps with a different constant Cy.
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Let us now find an upper bound on W;(p, v) — Wi(p5, v3). Notice

[vaw-n- [vag-v

fw—ww)d(u—v).

IA

f V(- v) - Wil 1)

IA

But
f(np—mw)d(u—v) - ffw(x)—w(x—y)] 02(9) dy d (i — v)(x)
- f f [9(0) — (x — 29)] () dy d (- v) ).

and for any y € B(0, 1),

IA

f [V(0) =¥ (x = Ay)] d(p - v)(x) f|¢(X) — (= )| d(u +v)(x)

2Ayl,

IA

thus
fl//d(p—v)—wl(m,m) < ZAflquo(y)dy-

Taking the supremum over ¢, we get Wi(p, v) — Wi(pa, vy) < Cgh.
Combining this last inequality with (5.1.4.b), we obtain
(2R + 1) )

—dSW1(;1, V) +A

Wiy, v) < Cd( 1

If we take A = R/ (@*DSW, (u, v)/ (4D we get

2R + 1)
( +d) +1)Rd/(d+1)swl(y’v)1/(d+1).

Wi(p,v) < Cq (

As SWj(u,v) < 2R, we have 4 < 21/(d+*) R hence the announced inequality, with

maybe yet another constant Cg. O
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5.1.5. THEOREM (Equivalence of SW, and Wp,). There is a constant Cgq , > 0 such
that, for all i, v € P(B(0, R)),
SWp(u, V)P < capWp(u, V)P < Cg pRP 7Y@ SW, (1, v) /(@D
Proof. This follows from the previous lemma, as on the one hand,
W, (1, )P < (2R)P "Wy (p, v),

and on the other hand
SWi(p, v) < SWy(u,v). O

Notice the exponent p — 1/(d + 1) on R is the only one for which the inequality

would be preserved by dilations, given the exponent on SW,.

5.1.6. PROPOSITION. Let i, v € P(K), with K a compact subset of R?, and assume v
absolutely continuous. Then, for each direction 0 € S?~, there is a Kantorovich potential

o between 0} 1 and 0 v for the cost co(s, t) = |s — t|*/2, and, if i € P(K),
# #

SW. - + e, v)? — SWy(u, v)?
i SWAZ e 1) = ST ) =Jgd1 fK Yo ((01x)) d(ji - 1) (x) .

This is to be compared to proposition 1.5.6 on page 36, which dealt with a similar

result for the usual Wasserstein distance.

Proof. Since v is absolutely continuous, for each 6 the projected measure 0;v is also
absolutely continuous on 6*(K); therefore, there is indeed a Kantorovich potential /g

between 04 and 0;v. Since )y is, a priori, not optimal between (1 — ¢)u + eji and v,

L SWo (1 —&)p + efi, V)2 — SW, (1, v)?
hm%r}f e
£

> f Yo ({01 d(i — ) (x) do.

Conversely, let i/, be a Kantorovich potential between 05 (1 — €)p + efi and 6;v,
with f Y5 dO;[(1 - e)p + efi] = 0. Then,

CSWa((1 = )+ eff, 1) = ZSWau, ) 2 € f Y5 (O1x)) d( - 1) (x) dO.
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As in the proof of proposition 1.5.6 on page 36, ¥/, uniformly converges, when ¢ — 0
to a Kantorovich potential for the pair (0;y, 8;v). Then, by Lebesgue’s dominated

convergence theorem,

. SWo((1 - e)p + f1, v)* = SWa(u, v)?
lim sup
£—0* 2¢e

< f Yo((01x) d(i — p)(x) 6. O

5.1.7. PROPOSITION. Let i andv € P(K), with K a compact subset of R, and assume
ut is absolutely continuous. For any 6 € S\, let g is the (unique up to an additive
constant) Kantorovich potential between 01 and 0;v. If { is a diffeomorphism of K,
then
lim SWa([Id +eTept, v)* = Wa(p, v)?

e—0 2¢e

= f f Y ((01)) (01 (x)) d6 du().
This is the sliced equivalent of proposition 1.5.7 on page 38.

Proof. As ¢ is a Kantorovich potential between 0}y and 0 v,

SW,([Id +e{ Tup, v)? — Wo (1, v)?
2¢

> f Yollblx + e¢(x))) — YOI ().

2¢

Since ¢ is differentiable almost everywhere, Lebesgue’s dominated convergence

theorem ensures

o SWy(d +elTept, v)? — Wy, v)?
hm{)nf 5
e—0* £

> [ v500m) (0129 d0 aut).
Conversely, let yg € I,(0;, 6;v) be an optimal plan. Then, we can extend yy into

7y € I(y, v) such that (6 ® 6%).7p = yp; for instance, by disintegrating y ® v with
respect to 6" ® 6%,

f ECray) d(u @ V) (x. y)

- f ( f EO + £.00 + §) Al @ V]u.o(5.9) | d[(0" @ 0°)s( @ )] (1. 0).

125



Chapter 5. Isotropic IDT algorithm

and then replacing (6* ® 6*)+(u ® v) with yg:

fg(x, y)drme(x,y) = f(frf(uﬁ +X,00 + ) d[p ® v]y, (X, g)) dye(u, v).
Now, [(0" +€07({)) ® 0" ]47g is a transport plan between 0;[Id +e{J4p and 0;v; hence,

SWa ([Id +&{ Jupt, v)? — SWy(p1, v)?

< fﬂ(mx +el(x) - g = [(Blx - p)[* dro(x, ) do.

But for 7g-almost every pair (x, y), we have (0]y) = (0]x) — ¢, ((0]x)), so

SWa ([Id +&{ Jupt, v)? — SWy(p1, v)?

< £ [ Wakorn - 0l - (o[ drote.y) o

This immediately yields

I SWo ([Id +el Jept, v)? = Wo(u, v
im sup
£—0* 2¢e

2
L f fwg«wx» 01¢(x)) d0 du(x). O

5.2 The Iterative Distribution Transfer algorithm

5.2.1. The algorithm proposed by Francois Pitié, Anil C. Kokaram, and Rozenn
Dahyot [49] starts from a given measure p, and, for any target measure v, builds a
sequence (i) nen such that po = p and p, seems to tend to v when n tends to infinity.
Convergence, however, is assured only empirically, as the authors were able to prove
it only when v is a Gaussian measure.

If u, has been set, then p,,; is defined as follows. First, chose an orthogonal
basis B, = (e/", ..., 63) in R4, and take the projections e;l:,un and e;’:v. For each axis
i, there is an unidimensional optimal matching between the projections, which we

will denote by ten : R — R. Let
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and set fins1 = Tpytn. Then e ppeg = (€' |Tn) pin = [te;l ) e;’*]#yn = e",v. Thus,
Lin+1 should be closer to v than p,,.

5.2.2. THEOREM (Pitié-Kokaram-Dahyot). We assume yu is absolutely continuous,
and v is a Gaussian measure. Then,
1 If B, are independent, uniform random variables on the set of all orthonormal
basis, i.e. on O(d), then pu, — v almost surely.

2. Alternatively, if the bases B,, are dense, then pi, — v.

It may be said that the original proof by Francois Pitié, Anil C. Kokaram, and
Rozenn Dahyot lacks in precision, on two counts:
+ The absolute continuity of the measures p, is crucial, but not proved.
+ The reader might be misled into believing some kind of uniform continuity for
(0, 1) — Ent(0:p|0sv) is used, which, of course, is not possible.

The following proof addresses both issues.

Proof. The first thing to check is that the measures y,, are always absolutely continu-
ous. If we know p, is absolutely continuous, then the transport map T,,, which is such
that f1,,.1 = Tpufin, is W1, Moreover, it is easy to check from its definition that T}, is
injective on the support of y,. Then, there is a y,-negligible set N,, and a sequence

(Ag)ken of disjoint Borel sets such that

Rd:NnUUAk and T"Ak:ak
keN

with ar € €' and |det(Day)| > ex  pn-ae.,

see the book by Lawrence C. Evans & Ronald F. Gariepy [28, Section 6.6.3]. Thus, if
N is a negligible set for the Lebesgue measure, and p,, stands for the density of y,,

pra®) < Y2 [ Ilac(e)pa () det(Da)] dr =
keN €k J A

Therefore, y,.1 is also absolutely continuous.
Now, the key property of v is that, being a Gaussian measure, it enjoys a tensoriza-

tion property: for any basis B = (ey, ..., e4), we always have v =¢[ ,v ® - - - ® €7 v
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Therefore, if (x;) are the coordinates of x in the base B and if we denote by f,, fu.i,

and g, g; the respective densities of 1y, €] ,pn, and v, €7 ,v, we get

Ent(yn|v)=ffnhl[fn1 fnd] ffn [fnl fnk]

Ent (/Jrl ‘ eik#ﬂN QR - ® eZI#:u") + Z Ent (e“;#,un | e;f#v) .
i-

If B is now the basis chosen to build y1,41,i.e. B= B, = (e, .. ., eg), we have

Ent (e{’:yml ef;v) = 0.

On the other hand,

Snn(y)
fln [Hfrul i( l)] d‘unﬂ(y)
fnn(T(x))
fln[]_[fnﬂ,, tei xj))} d,un(x)’

and as DT is diagonal, with t/,, ..., ., on the diagonal, and f;, ; = (fn1,i © £, )téi,
1 d no€én

Ent (/«ln+1 | eln;;,unﬂ - ® es:/«lnH)

we get

_ fu(x) _ fn(x) freni( te z))
fan(T6) = LF7s = R ]‘[ e

This implies Ent(pp.1lef’ spina ® - ® ed#,uml) = Ent(pnle/;pun®- -+ ® e”*yn) Hence,

n*
e; #v)

eln;:,unﬂ ®---® es:,unﬂ) + Z Ent (ein:;:unﬂ
i=1

Ent (pn+ | v) = Ent (,un+1

Ent (,un | efiln ® - ® e;':,un)
d
Ent (p, |v) - Z Ent elipin ' e; #v)

i=1
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As the entropy is nonnegative, Ent(y,|v) is nonincreasing, and so converges. But,

according to Michel Talagrand’s inequality [59],
Wa(elspn, elsv)? < CEnt (e{’zu,, ' elf‘:v) )

Thus,

d
D Walel s esv)? < C(Ent ([ v) = Ent (p [ V) — 0.
i=1

Then:
1. IfB, = (e/,..., eg) is independent from p,, with a uniform law on O(d), then
E [Waleipn efiv)?| = E [Walefipn, efs0)* | n| = SWalun, v)?,
and thus, by Lebesgue’s dominated convergence theorem, E[SW, (i, v)?] — 0.

2. The sequence (,)n>1 is tight, because for any n > 1,

[ = [ Z

Let u be a limit point. If all the bases (B,,) form a dense subset of all orthogonal bases

“xy) dun 1(x) flyl dv(y).

of R4, then for any 0 € S9! we can find an extraction ni — oo such that eln" — 0,

and p1,, — p still. Let € > 0, then for n; big enough,
Wz( fk:ynk, 1"";1/) < ¢ and W (pin,, 1) < &,
and since e can be as close to 6 as we may desire, we can also impose
Wz(eln":v, 0;‘1/) <& and W( W #;1) <e
as well. Because Wz(eln":pnk, eln":;p) < Wa(tin,.. 1), we get

Wy (Ospt, 02v) < 4e.
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Letting ¢ — 0, we obtain SW,(p, v) = 0. ]

5.2.3. If we work only with discrete measures that are sums of N Dirac masses, as

1
Z Oxps with xi € RY,

N
=%
Nk:1

then, setting x := (x1, ..., xN), We get a vector of (RYN. Letting &, . . ., dn be the

canonical basis of RN, we can write

N
X = Zxk ® 0.
k=1

We will write the correspondence between p and x as p ~ x.

5.2.4. Lemma. The solution to the Monge—Kantorovich problem between two discrete

measures |t ~ X and v ~ y is given by a transport map T, such that

T(xk) = Yor(k)-

for an optimal permutation ot € Sy, such that

N N
Wz([l, V)Z = Z|xk ~ Yor(k) 2 = 1’1’1};1’1 lek - yd(k)lz‘
k=1 7N =

Proof. This follows immediately from Choquet’s and Birkhoff’s theorems (see Cédric
Villani’s book [62, p. 5]). O

We will conveniently set y, = (Y51, - - ., Ys(n)) for any o € Sy, so that, in
particular, Wy (i1, v)? = |x — y5,|%/2. Notice v ~ y, as well.

5.2.5. If j1 is the sum of N Dirac masses, then, for any 8 € S%~1, the projected measure

0y p is also a sum of Dirac masses:

1 N
ip = N;&mxk»
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and, with our notation, we can write

N N
Oip ~ D Ol = Y (0" @In)(xk ® &) = (0" @ In)x.
k=1 k=1

The 10T algorithm builds a sequence i, ~ x", from an initial point yo ~ x° and

a reference target measure v ~ y, by setting u,.1 := Tpap, with

d
Ty i= ) (teno el )el,

1

where t» is the optimal map between e[y, and e];v. The basis e” = (ef', ..., e]))

changes at each iteration.

5.2.6. Lemma. Let P, denote the permutation matrix associated to a permutation o,

defined by P;6 = 65(k). Then, y, = (Ig ®P;1)y. If og is the optimal permutation
between O 1 ~ (0" ® In)x and 0;v ~ (0" ® In)y ~ (0" ® IN)ys,, we have

* * * 2

Wa (05, 0v)* = |07 @ In) (x = yo)| -

Proof. Let 0 € Sy. Then,

N N N
Yo = D Uk ® g = D Uk @ Py "0k = ) (14®P,")(yk ® 5) = (14 ®P,)y.
k=1 k=1 k=1

As the optimal map tg between 6; 1 and 6;v is given by a permutation o9 € Sy, such
that (0]xy) is sent to t9({(0]xx)) = (0lys,(k)) Wwe have

|2

N
Wo(03 0, 05v)% = D KOk = Yoo = (0" @ TN (x =y
k=1

5.2.7. PROPOSITION. We set, for allx € (RN and o € 6;{1 and any basis e,

d
Fox.0) = 5 > |(e; @1 - yo)"
i=1
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Then, if e™ is the basis which allows us to define u™*! from u", we have

Fen(x",0en) = min Fen(x",0) =

=d
TELY

d
* * 2
Z Walel siins €] 4v)"
i=1

N | =

If o.n represent the sequence of optimal permutations, then

1
X" = X" — V Fon (X", 0en) and 2 x™ X"|2 = Fen (X", Oen).

Thus, the IDT algorithm can be seen as a kind of steepest-descent method. If it
were not to depend on an ever-changing basis e”, it would be (close to) an explicit

Euler scheme for a gradient flow.
Proof. On the one hand, x"*! is defined by
d d d
xpth = T(x) = Z ten(Ceflx)) el = Z <€?|yaeln(k)>€? = Z e?ef*yae?(k),
i=1 i=1 i=1

where on is the optimal permutation associated to z.n. Thus,

N d d N
= D D (erel o, n(i) ® Ok = DD (erel ®In) Yo, i) © Ok
k=1 i=1 i=1 k=1 !
d d
= D (el @11 ®PL)y = ) (efel" ® Py,
i=1 ! i=1
On the other hand,
d
ViFelx,0) = > (i ®In)"(e] @ In) (X - ¥o,)

i=1

d
> (eie; ®In) (x - yo,)
i=1

d
- ) (e} @ In) (14 ®P;))y

i=1
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d
= [x - Z(e,—e? ® P;il)y] .
i=1

Thus, Vi Fen(x", 0en) = (x™ — x™*1). Moreover,

1 n n+1|2 d 2
E|x -x ’ = Z(ee ®IN( —yge?)
i=1
d 2

= Ze ®IN( —yge?)

i=1

= Fen(x", 0en).

5.3 Marc Bernot’s isotropic definition

5.3.1. To remove the dependence vis-a-vis the bases e”, Marc Bernot suggested to

replace ¥, with
1 x
F(x.0) = _Jf 10" ® In) (x - yor,)| 0,
2 §d-1

defined for x € ([R{d)N and o : S¢7! > Gy. In other words,

1

?(X,O’) = g o)

¢( (6619"'aaed))de.
Then, if g ~xand v ~ y,
. 1 2
min F (x,0) = ESWZ(,U, V)2,
o
We can introduce a parameter h > 0, and define a sequence (x") by
Xn+1 = X" _ hvxq_'(xn’o,n),

where o is the optimal permutation between 0y, and 6;v, such that

1
ESWZ (g, v) = F ", 0").
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5.3.2. Lemma. We have, for anyh € (R%)V,

F(x"+h,0") = Fx",o")+ f

§d-1

* n 1
(00" © In)(x" ~ y5,) [ 1) d0 + —h[”.

Therefore

n+ h n * -
<M = (1—3))( +h (00 ®Palz)y,

§d-1
and SW; (i, v) is nonincreasing if h < 2d.

Proof. The expression for x**! comes from f@&* dd =1,/d, and

ViF (x",0™)

f (00" ® In) (X" = yon) do
_ %x" _ Jf (06" ® In)(1; 8P} )y df
_ éx" - f (00" ® P;1)y do.

As for the nonincreasingness of SW,(u,, v),

1
ESWZ(;J,M, v)? = min ¥ (x"*}, o)
o

IA

F(x" - hVF (x",0"),0™)

IA

’2

2
F(x", 0™ - h[V.F (x", 0™ + ;’—d|vx¢(x", oM.

5.4 Implicit version

5.4.1. Equation (5.3.1.a) defines an explicit Euler scheme for the sliced Wasserstein
distance. On R?, given a smooth functional F : R¢ — R, the explicit Euler scheme

yields a sequence (x,)nen, given a starting point xy and a time step h > 0, by setting
Xns1 = Xp — hVF(xy).
The implicit Euler scheme, on the other hand,

Xna = Xp — hVF(xp41),
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can be obtained by, at each step, taking
. [ 1 2
Xp+1 € argmin {—Ix - xp|° + F(x)} .
x 2h

In our case, we can define a sequence y, ~ x" using such an implicit scheme, by
taking
. 1 2 .
x™! € argmin {—|x - x”| + min F (x, 6)} .
X 2h 4

n

This corresponds to ours setting

. 1 1
Uns1 € argmin {EWZ(;{, [in)? + ESWZ(,u, v)z} . (5.4.1.2)
i

5.4.2. One of the difficulties of working discrete measures, is that the (sliced) Wasser-
stein distance is given by an optimal map—or many, for the sliced distance—, but a
bijection on a discrete space can only be a permutation. It is hard to find any smooth-
ness of the optimal map with respect to the measures under such circumstances.
Things are simpler when the measures are absolutely continuous, as there is some
regularity (see the article by Grégoire Loeper [39]). Furthermore, (5.4.1.2) does not
lose any meaning if we drop the assumption the measures are all discrete—that is
even the starting point of the theory of gradient flows in the space of probability
measures, as developed by Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré [3].
In the rest of this section, we will therefore show that, given two absolutely

continuous measures p and v, we can define a sequence (in,)nen With

. 1
Un+1 € arg min {—Wz(y,yn)z + F(,u)} ,
4 2h

where h > 0 is a time step and

F(i) = SWalu, )"

We will work on the closed unit ball B = E(O, 1), and assume v has a strictly positive,
smooth density on B. As the algorithm may force y, to venture out of B, we will
allow it to be defined on rB, with r > Vd.
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5.4.3. Lemma. Let us fix a time step h > 0, and a radius r > Vd. For a probability
measure ji on rB = B(0, r) that is absolutely continuous with a strictly positive, smooth

density py, there is a probability measure yi on rB minimizing

G = F) + - Wa(u ) + SH(p),

[ pmnptdx if dutn) = o) d,

+00 otherwise.

with H(u) :=

Moreover, this optimal p has a Lipschitz density p, which is strictly positive on rB and
such that
d
lpllps < (1+h/Vd)" llpollpe.

Proof. We follow methods developed by Guillaume Carlier and Filippo Santambro-
gio [20], and Giuseppe Buttazzo and Filippo Santambrogio [15].

It is well known the entropy H is lower semicontinuous for the Wasserstein
distance (see, for instance, the article by Richard Jordan, David Kinderlehrer, and Felix
Otto [34, Proposition 41]). Therefore, if (11,)nen is @ minimizing sequence in P (rB),
then, up to an extraction, it converges toward a minimizer y, which must necessarily
have a density p.

We denote by 1y the Kantorovich potential between 0}y and 0;v, and ¢ the
Kantorovich potential between p and pp.

Let j be another probability measure on rB, absolutely continuous with a density

p. Then, proposition 1.5.6 on page 36 and proposition 5.1.6 on page 124 together yield

timsup T U= e L | #e0p) - pien e
rB

e—0" &

1
where ¥(x) := JE Yo ((O]x)) db + —p(x).
§d-1 h
Since t > tInt is convex, setting p. = (1 — €)p + £p, we can write

plnp—p.Inp, > e(1+1Inp.)(p - p).
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If p(x) > p(x), then p.(x) > p(x), and thus

plnp—p,Inp, > e(1+Inp)(p—p).

Where p(x) < p(x), this last inequality still holds, because then ln p.(x) < In p(x),
and p(x) — p(x) < 0.

In particular, if we take ji uniform on rB, i.e. 5(x) = 1/(r|B|), then,

\%

plnp—p.lnp, ell+1Inpl(p +p) when p > 0,

plnp—p.lnp, > —(1+1n(ép))ep when p = 0.

\%

Integrating, since p is constant we get

H(p) —H((1— e)p + efi) > —21+lnp| -1+ ln(eﬁ))l{pd;o}l
. ré|B

As we have an upper bound when ¢ — 0, necessarily |[{p = 0}| = 0,i.e. p > 0 almost
everywhere.

Now, let p = np with n € L. Then,

In(p + &(p — p)) = In((1 + e(n — 1))) + In(p).

Therefore, thanks to Lebesgue’s dominated convergence theorem,

frBu I p)(p - p) ygéf(l Inpe)(p - )

y H(p) — H((1 = e)p + efi)
im sup
£—0 £

%f‘l’(ﬁ—p),

IA

IA

and this yields

f [P(x) + SIn p(x)] p(x)dx > f [P(x) + 8 In p(x)] p(x) dx.
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We set m = essinf{¥ + §In p}. For any m’ > m, by definition, A := {m’ >
¥ + 6 In p} has a nonzero measure, so we can take n = A14 with A such that np is still

a probability measure. Then, the previous inequality gives

m' > f[‘l’+5lnp]r1p > f[‘l’+5lnp]p > m.

Letting m’ converge toward m, we get ¥ + § In p is constant, and equal to m almost

everywhere. This implies

p = exp((m = ¥)/6).

As V¥ is Lipschitz, so is p. It then follows from theorem 1.3.5 on page 31 that the
potential ¢ between p and g is 6%, and I; —D?¢p > 0 and 1 — g > 0.

Let us denote by fy and gy the densities of 0,y and 0;v, and Fy and Gy their
cumulative distributions. If m¢ and m4 stand for the minima of f and g, and My and

M, for their maxima, then

meV1—12 < fo(t) < MpV1—12,
mgV1—s2 < gg(s) < MgV1—s2.

Let Fg and Gy be the cumulative distributions of fp and gg. If we define

Us = {xerB|V0eS™ Fo(blx)) € (e.1-¢) ],
Ve = {yeB | V0eS' Gy((Oly) € (e.1-¢) |

then fp and gy are uniformly bounded and bounded above on 6*(U,) and 6*(V,)
respectively. Moreover, it follows from the definition of the optimal map, ty := G,'oFp,
that t9((0|x)) € 6*(V,) for any x € U,. Then, thanks to theorem 1.3.5 on page 31 again,
we get that (g 0 0* is €% on U,, and 1 — Y, > 0. Since tp = 1d -y, = G;l o Fg, we
also have 1y o 0* is ¢'** on rB, up to the boundary. By a consequence of Lebesgue’s
dominated convergence theorem, ¥ = ¢/h f g 0 0*d0 is €* on U,, and €% up to

the boundary. Moreover,

Va0 = <L £ 00 do.
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V2P(x) = T“’ f¢ ((61x))0 ® 6 db.

Therefore, p = exp((m — ¥)/8) is € in the interior, €*** up to the boundary, and

vy
Vp = - 5 and Vip = p

Vo VY V2P
P

If p is maximum in x( on the boundary, i.e. for x| = 7, then, as t — p(tx,) is maximal

for t = 1, we must have (Vp(xp)|xo) > 0. Thus,

(V¥(x0)lx0) <0 (5.4.3.)

But, the transport map Id —V¢ between u and g takes its values in supp po = rB, so

R P —V¢(xo)|2
> [x0l? + [V (x0) 1> — 2(Vep(x0)]x0)
> r® — 2(Ve(xo)lxo)-

Hence, (Vo (xo)|x0) > 0. Likewise, for any direction 6, the map ty = Id —lﬁé takes its
values in 6*(B) = [—1,1], so

(£ v

= f‘//é(<9|xo>)(9|x0) do

=
(=)
—_
|

v

: f O1x0) % — (010} — ¥, ((O1xo)) I dO

: (JC|<9|XO>|2 a6 - 1)
1,
A7)

As we have assumed r > Vd, we finally get (V¥(x¢)|xo) > 0, and this contradicts

v

(5.4.3.a). Thus, p is maximum in a point xj in the interior. Since Vp(xy) = 0 and
VZp(xp) < 0, we must have V>¥(xy) > 0. Hence, as Yy <1,

Jclﬁ ((01x0))0 ® 6d0
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—hf9®9d9

h
> ——14.

Vd

v

This, in turn, yields:

d
Pl = p(x0) = polxo = Vep(xo)) det (Tq ~V?p(x)) < (1%) lpolle. O

5.4.4. PROPOSITION. For any time step h > 0, and any probability measure y, €
P(rB) that is absolutely continuous with a density po € L, there is uy € P(rB)
minimizing

1
F(p) + ﬁWz(u,uo)Z,

which is absolutely continuous, with a density p € L™ such that
d
lplls < (1+h/Vd)" llpollpe.

Proof. Let us first assume py € € (rB). Then, according to lemma 5.4.3 on page 136,

for any § > 0, there is 5 minimizing
1 2
B Fp)+ ﬁwz(#,llo) +8H (),
with a Lipschitz density ps such that
d
lpslis < (1+h/Vd) llpollLe.

Up to an extraction, we can assume 5 converges toward p in (rB) and ps converges
toward p for the weak-star topology of L™, with p the density of u. Then, ||p|li~ <
1+ h/\/c_l)dllpolle, and this implies

G < |1+ (1w V) ol [ 1|1+ (1 V@) ool | < oo,

because t - tInt is increasing on (1/e, o) and positive on (1, o).
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Let i be such that F(i) + Wa(f, o)%/(2h) is minimal, and let e; be the heat
kernel, e;(x) = exp(—ﬁlxlz/t)/\/?. We set ji; = e; * i. Then, fi; — jin P(rB), and if
H(jfi) = oo, then H(ji;) — oo as well. Let t5 be such that H(ji;;) < 1/V$; then,

IA

Fu) + — Wy po)?

. . 1
- lim inf {F(,ua) + —Wa (s, po)? + 5H(.Uc$)}
5—0

2h

. _ 1 _ _
timinf {F(ie,) + >-Waiey, jo)? + SH i, |

1
F(p) + %Wz(ﬁ,ﬂo)z-

IA

IA

Thus, p is a minimizer as well.

We now drop the assumption py € €. Then, for any ¢ > 0, there is a minimizer
u; € P(rB) for u — F(u) + Wa(u, u;)?/(2h), which has a density p, € L* with
lpelle < (1 + h/\/a)dllpollLoo. Up to an extraction, y; converges toward p in P (rB)

and p; converges toward p for the weak-star topology of L. This implies
d
lplly < (1+h/Vd)" llpolly.

And if i is a minimizer for p — F(u) + Wy (u, p10)?/(2h), then

IA

1 o 1
F(u) + EWZ(%HO)Z hrén_}glf {F(ﬂt) + ﬁwz(,ut’ er * Ho)’ + 5H(Ilt)}

1
lim inf {F(p) bW e )’ + 5H(p)}

5—0

IA

1
F(fz) + ﬁWz(ﬁ’llo)z-

IA

So p is a minimizer as well. i

5.5 Continous version

5.5.1. Generalized minimizing movements. Given a metric space X, a functional
F :[0,00) X N X X X X — [—00,00], and an initial point x, € X, a minimizing
movement (MM) relative to # and starting from xq is a curve x : [0, 00) — X that is
pointwise limit of a family xj, : [0, c0) — X indexed by h > 0 such that:

« x,(0) = x for every h > 0;
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« xp, is constant on each interval [nh, (n + 1)h), so x(t) = x(nh) for n = [t/h];
« xp(t + h) minimizes y — F (h,n,y, x(t)),if n = | t/h].
When x is limit of only a sequence xp, , with hy — 0, then x is called a generalized

minimizing movement (GMM).

5.5.2. The concept of minimizing movements was introduced by Ennio De Giorgi
[22], and developed furthermore by Luigi Ambrosio [1]. It is a fundamental tool for
the theory of gradient flows in metric spaces, as developed by the latter with Nicola
Gigli and Giuseppe Savaré [3, 57].

Indeed, a gradient flow x = —VF(x) in R is the limit of the Euler implicit scheme:
if xp(t +h) = x,(t) — hVF(x(t)), with x;, constant on each interval [nh, (n+1)h), then

xp(t) — x(t); and x,(t + h) is just obtained from xj(t) as a minimizer of
1
y — F(h,n,y,xpt)) with ¥ (h,n,y,x) = E|y — x|* + F(y).

Thus, a gradient flow in R9 is a minimizing movement. But, unlike differentiation,
minimization can be performed in quite a general framework, as in a metric space.
There it is enough to replace the Euclidean distance with the metric distance in the

previous expression of ¥ .

5.5.3. THEOREM. Let v be a probability measure on B = B(0,1), with a strictly positive,
smooth density. Given an absolutely continuous measure py € P (rB), with a density
po € LP, there is a Lipschitz generalized minimizing movement (11;);o in P (rB) starting
from py for the functional

1

h s MUy H— =
F(h,n, po, p-) 7

1
W (e, po)* + FGue),  with FQu) = 2SWa(e,v)%,
Moreover, for each time t > 0, the measure ji; has a density p; € L?, and
lpelie < Y4/ 9lipolly.

Proof. For any time step h > 0, we use proposition 5.4.4 on page 140 to build a curve

(1M}, of absolutely continuous measures by induction, such that:

(] )uél:)u():
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. /J? is constant on [nh, (n + 1)h);
. ,u;:h minimizes p — F(u) + Wz(y,,ui’)z/(Zh);
- denoting by p" the density of u", and n = [t/h],

)nd/q

okl < (1+h/Nd) ™ llpolive. (5532)

For an arbitrary T > 0, we define a measure " on [0, T] x rB with

0 dh — dh di
VEe s, J;ijBﬂnx>y(ux> J;jhﬁBﬂtx)#AX)t

and it has a density p* € L?([0, T] x rB), defined by p"(t,x) = pl’f(x). Then, there is
h, — 0 such that y"= — ;1 in P (rB); moreover, the limit i has necessarily a density
p, and p" weakly converges to p in L” for any finite r € [1, p], with a weak-star
convergence in L™ when p is infinite.

Let ps(x) := p(t,x). We want to show ,uff converges (rB), and p? weakly
converges to p; in L” for all t € [0, T] and for any finite r € [1, p] (even though
we might have to redefine y; and p; on a negligible set of times t). First, there is a
measure y; whose density is p;, at least for almost any t, since

t+6 t+6

1 h
1 = — —_
25 ). s py(x)dxdt o s pi(x) dx dt,

and this implies p, is indeed a probability density. Next, we show p" must converge
to p,. If € € €' (rB),

[ eaute= [ caute

" 1 t+6 L
dul - — dun d
f§ )ut 25 s g/ls S

< +

b 1 t+6 L
dpltm — — dulm d
f§ :ut 25 —s é/.us S

1 t+8 N 1 t+d N
+ %f Edplnds — 2% Edplmds|. (5.5.3.b)

t-6 5 t-9
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But, by taking y € T, (u®, u"), we can first obtain

|[eaut - [eaut

then, as ,ui‘ = '”Zn, for n; = | t/h], and

< f () — E@)|dy(ray) < IVENWa G 1b;

1
F(,uZ(nH)) + ﬁwz(yh(nﬂ),uhn)z < F(,uZn) for every n,

we get

Wa(uy, u)? = Waup, o g, )’

2w (”Z(km’“zk)]z

< Ine = ngl ZWZ (uZ(kH)’”Zk)z
2hln, = ngl|F(ugt) = F(ub)|
Chin, — ng[Wa(ult, ul)

C (It = s| + h) Wa(ul', u,

INIA A IA

IA

which implies

Thus,

Wy (ul, pt) < C(lt—sl+h). (5.5.3.)
1 t+5
< —

ho h
< g5 ) |[eant - [eaud

ClIVE oo f“5
< 25 - (It —s| +h)ds

< ClIVEllw 5+ h).

L 1 t+6 L
Ugdut—ﬁ et ds

-5

Because y/'7 converge to f,

1 t+6 1 t+6

— duln d — dyg ds;
25 t_§ g )us s — 25 t_§ g lu S
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therefore, (5.5.3.b) shows f 3 dy?" is Cauchy. But for almost all ¢ € [0, T], the limit
can only be f Edp,. Thus, ,u?" converges to p;, and this, with (5.5.3.a), implies the
densities p?" weakly converge to p; in all L” for all finite r € [1, p], with

pelle < eV 9 polly.
Moreover, (5.5.3.c) yields

Wo (s, pr) < hgggf“&04“,u?ﬂ < Clt —s|. O

5.6 Continuity equation

5.6.1. THEOREM. Let (i;);>0 be a generalized minimizing movement given by theo-
rem 5.5.3 on page 142. We denote by p; the density of ji;. As previously, let ; ¢ stand for
the Kantorovich potential between 051, and 0;v such that f Vr.0d0;p; = 0. Then, ina

weak sense,
é)pt di _ . . ’
W+ iv(uepr) = 0 with v(x) == — " Yy o((O1x))6 db.

More precisely, for any & € €.°([0, 00) X B(0,r)),

L ,
[7L L |Greo- £, viatomeme.n do) piasar

- - [ Hoxp dx.
B(0,r)

The vector field v, is a tangent vector for the Riemannian structure of P (R%);
see the book by Luigi Ambrosio, Nicolas Gigli and Giuseppe Savaré [3, chapter 8] for

definitions. Indeed, since ; ¢ is Lipschitz, if we set

Yi(x) = s Vr,0((01x)) do,

then ¥, is also Lipschitz, and v; = —=V¥,.

Proof. We will proceed in four steps.
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1. On the one hand, since y"» — i for some sequence h, — 0,

. 0
f f —(t xpt "(x)dxdt — f f —g(t,x)pt(x)dxdt.
B(,r) Ot o JB@,r Ot

On the other hand,

f f %(t,x)pf"(x) dx dt

o JB@,r) Ot
© (k+1)hp,
=> f f aér(t x)pn (x) dx dt
= Jn B(0.r) Ot

n

Zf ((k + Dhp, x) = E(khn, x)] pl (x) dx dt,
B(0,r) "

=0

because p" is constant on each interval [kh, (k + 1)h). Then,
0 0
[ [ Zenplrwaa
o JB(,r) Ot

- - [Eonplrerac= Y, [ ewhnn ol 00l 0] axa,
k=1

and this means, if we set £}'(x) := &(khp, x),

ff(O,x)po(x)dx+£ f%(t,x)pt(x)dxdt

S e () =y, ()
~ —hnZ ER(x) ; dxdt. (5.6.1.2)
k=1 n

n—oo

2. For any 6 € S%!, we can find

Yo,h,¢t € F(Q:H?, ;‘,ut,@kv)

such that, if u, @, v stand for the variables and U, U, V for the corresponding projectors,
then (U, V)syg.n.r and (U, V)syg.p.r and (U, U)syg,p.; are all optimal; indeed, if F, G, H
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Chapter 5. Isotropic IDT algorithm

stand for the cumulative distributions of the three 1p measures, then we can just take
Yone = (F7L,GTLH ™)L,

Then, yg n ; can then be extended into a measure 79 5 ; € I“(,uil, Uz, v): first, take
a measure 7 € [(u", j1;) optimal between p" and y,; next, disintegrate 7 ® v with

respect to (6%, 0%, 0%) into a family {[# ® v],.4.0}, such that, for any #,

f 1. £, y) d[7 © v](x. %)

= [RS (f(Rd_l)aq(uGH%, a0 + x, 00 + D) d[ﬁ®V]u,a,v(3€,fc, g))
d[(e=, 6%, 6"u(z ® v)1(u, @, v);

then define g p, ; by replacing (6%, 6%, 6*):(7 ® v) with yg,p.; in the previous expres-

sion:

f’?(x,f’y)dﬂe,h,t(x,f,y)
:f (f ry(u@+3?,L't9+fc,v@+z§)d[ﬁ'®v]u,agv(£,fc,y))
R3 (Rd—l)S

dY@,h,t(us a’ U)'

Now, let ¢/ f o be the Kantorovich potential between 6 p" and 6} v, and, taking back

the same & as in the first point, set

fl;(o ) Jgdl (wth,e), (<€|X>) <0|V§(t, X)> do dll?(X),

Ih,t

I; L(O’r) f§‘d—1 (¢t,9) (<9|X'>) <0|V§(t’ i))d@ dﬂt(f);

we can write

Ih,t

f f (Olx — ) (OIVE(t. X)) drg .1 (x) do.

I f f (015 — ) BIVE(t. %)) dmg s, 1(x) do.

147



Chapter 5. Isotropic IDT algorithm

We conveniently define ®g  ; ,(x) := (0]x — y)}O|VE(t, x)); then,

IA

ha-tf < £ f [Bo.h0.y () = Do ey (D) dmop1(x. 7, ) dO

Cgfflx—ilzdﬂg’h,t(x,f,y) do

Cs f f 200l — ) + 215 — #2 dmg_p 4 (x, %, y) do,

IA

IA

where x = (0]x)0 + % and ¥ = (|x)0 + x. Thus,

c f ( f fu — @l dyo i (u, i, 0) + f e - 5P dfm,h,t<x,x>) a6

C (SWalpf, pe)* + Waluf', 1r)?)

|Ih,t _It|2

IA

IA

As supp & C [0,T] x B(0,r),

o0 T
2
f In,.. — L] dt < cf Wo (', pp)? dt,
0 0

and since W, (,u?", ;) tends to zero, by Lebesgue’s dominated convergence theorem
we get fIt dt ~ fIhn,t dt, which means

fowff (Vr.0)" ((O1%)) (OIVE(t, %)) dO dp, (%) dt

o fom £ (v22) omn o9t 0p a0 auln o .

Recall ,ui'" is constant on each interval [kh,, (k + 1)h,); hence,

fo f (Yr.0)" ((B1%)) (OIVE(t, %)) 46 dpi, () dt
~ h, gt ) ((61x)) (BIVET (x)) dO dul™ (x),
n—sco ;ff( khn,G) k kh,

where we have set
1 (ks)h,

Ep(x) = h—nf E(t, x)dt.

khn
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Chapter 5. Isotropic IDT algorithm

However,
1 (k+1) hy,
|VE(khn, x) - VER(x)| < = |VE(khn, x) - VE(t, x) dx| dt
n Jkh,
< Cghn,

so, since &(x) = &(khn, x),

fooof (Vr.0)" ((O1%)) (OIVE(t, %)) dO dp, () dt
~ Y ghn V0% 0verydodur . (5.6.1b)
n—oo ;ff( khn,e) k iukhn 5.0.1

3. Using to proposition 1.5.7 on page 38 and proposition 5.1.7 on page 125 and the
optimality of ,u,t’h, if q)Z denotes the Kantorovich potential between u ]’Zh and ,u(hk_l) B

Let y be an optimal transport plan between p” oy and ul (k-1) B> then,

)
fgk P, p(’” - —f £1(y) - 200 dy (v, ),

- f (Vopn(x) |V§k @) dpy (x) = W f (VER(X)ly — x) dy (x, ).

d'ukh = ff wkh 9 <9|V'§k>d0dukh

and, since | (y) — £7(x) = (VER(0)ly — x)| < Clx -yl

f |2 () - £2 () = VEROly - 0| dy () < CWa(uley, ol )Y

s0, using (5.5.3.c), we get

h h
Pin ) = Pl ), () :
‘ [ oo T g [ (gl ) @) 09ED doauly,

< Chy,.
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Chapter 5. Isotropic IDT algorithm

This immediately yields

by, [ £ 0k, @) omepdoduly,
k=1
hn

N pZZ (x) “ Pk-1)h (x)
e =D [ 0= D 4o (5610
k=1

hn

4. Combining (5.6.1.a), (5.6.1.b), and (5.6.1.c), we get the result. O

5.7 Open questions

5.7.1. The first and main question that still need to be investigated, is the convergence
of y; toward the target measure v when ¢ tends to infinity. When working with discrete
measures only, we should not expect any convergence, as symmetry is preserved
by the algorithm and a discrete solution might require it to be broken. Nonetheless,
convergence might still happen when the measures are absolutely continuous.

The first step toward convergence could be to study the stationary points. We

know from theorem 5.6.1 on page 145 that

0
% +div(vgp,) = 0 with vi(x) = _J( 1//; o((01x))6 do.
sd-1 ’

But, does f Y, 0(07)0d0 = 0 implies y; = v? An answer can easily be given though,

if y; is absolutely continuous with a strictly positive density:

5.7.2. Lemma. For any u € P(B(0,r)), if u is absolutely continuous with a strictly
positive density, then y = v if and only if

f Yp((Blx))0d0 =0 forp-ae. x,
§d-1

with ¢ the unidimensional Kantorovich potential between 0,1 and 0;v.

Proof. If u = v, obviously the integral is zero. Conversely, let

¥ = o Yolo) o,
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Chapter 5. Isotropic IDT algorithm

Then, ¥ is Lipschitz, differentiable almost everywhere, and

V¥(x) = Jg | (010 do.

Thus, if V¥ = 0 almost everywhere, ¥ is constant, and

[ran - fg [ ot dtezyir a0 =o.

yields ¥ = 0. On the other hand,

R ACTRRO f VoD [0:1] + f ye dlo:vl. (5:7.2.3)

and .
Vu,ve[-rr]l, o) +yy(v) < Elu—vlz.

Taking u = v = (0|y) and averaging the last inequality with respect to 6, we get

Yy e B(0,r), Y(y)+ Jgd—l Yp(0"(y))do < 0.

Then, since ¥ = 0, integrating with respect to v we get

[fuewwaw <o

Then, averaging (5.7.2.a) with respect to 8, we also obtain

1 £
35Wu)’ = [ Y50 ) o adviy) < o
As the sliced Wasserstein distance is a distance, this implies p = v. ]

5.7.3. Another question, although a less important one, regards uniqueness. To obtain
the generalized minimizing movement (y;);>¢, we have used the compactness of
P(B(0,r)) so many times, that there could be a great number of such curve for any
given starting point y and any target measure v. For gradient flows in the space of

probability measures, uniqueness often comes from the convexity of the functional.
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Chapter 5. Isotropic IDT algorithm

However, like the usual Wasserstein distance, it is not difficult to show the sliced
Wasserstein distance is 2-concave along geodesics: if (y;) is a geodesic between

and i, then
SWZ(}lt, V)2 > (1 - t)SWz('Uo, V)z + tSWz(/ll, V)z - t(l — t)Wz(/lo,/Jl)z.

This does not prevent uniqueness, but if there is only one possible curve (y;), we will

have to prove it by other means.
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Synthese

Beaucoup d’illustrations ont déja été proposées pour présenter simplement le pro-
bléme du transport optimal. On a pu parler de tas de sables a déplacer [45, 62], de
cafés parisiens a fournir en pain [63], de charbon a amener depuis les mines jusqu’aux
centrales électriques [56], etc. Dans un soucis d’originalité, qu’il soit permis d’ajouter
a cette liste I'exemple suivant.

Il existe en Chine de gigantesques complexes industriels, regroupant plusieurs
centaines de milliers d’ouvriers sur quelques kilometres carrés [25]. Ceux-ci sont logés
sur place, dans des dortoirs. Dans un soucis d’efficacité, il convient donc d’attribuer a
chaque ouvrier un lit qui ne soit pas trop éloigné de son lieu de travail. Admettons
qu’assigner a quelqu’un travaillant sur la ligne de montage x un lit dans le dortoir y
engendre pour entreprise un cout ¢(x, y), correspondant par exemple aux frais de
fonctionnement d’un systéme de navettes. Quelle est alors la meilleure maniere de
loger tous les employés ?

La répartition des travailleurs et celle des lits peuvent étre représentées par deux
mesures p et v, de sorte que p(A) représente le nombre d’ouvriers travaillant dans la
zone A et v(B) le nombre de lits disponibles dans la zone B. Supposons qu’il n’y ait
pas de logements superflus, et que la capacité des dortoirs corresponde exactement

aux besoins d’accueil ; cela se traduit par I’égalité

a0 = [aviw.

Nous pouvons donc considérer que p et v sont des mesures de probabilité. La solution
a notre probléeme est a rechercher sous la forme d’une mesure de probabilité y sur
Pespace produit, telle que y(A X B) donne le nombre — ou plutdt, la proportion —

d’ouvriers travaillant dans la zone A et logeant dans la zone B ; ceci implique que p et
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v doivent étre les marges de y :

WA) = f ey e ) - f dy(r.).
xe ye

Notons I, v) ensemble de ces mesures vy, appelés « plans de transport ». Le dépla-
cement quotidien des ouvriers entre leur dortoir et leur poste de travail entrainera

alors toujours une dépense au moins égale a

nt [etendvixw). (a)
Il n’est pas difficile de montrer que cet infimum est toujours atteint : il existe toujours
au moins un plan de transport y correspondant a une allocation optimale des lits. Il
est cependant tres difficile de caractériser a priori les solutions ; I’enjeu est justement
de calculer un plan y optimal.

C’est a Leonid Kantorovitch, mathématicien soviétique et récipiendaire du prix
Nobel d’économie en 1975, que 'on doit cette formulation du probléme du transport
optimal — non pas en termes d’ouvriers, mais de mesures de probabilité. Pour continuer
dans la veine industrielle chinoise, Kantorovitch a montré dans les années quarante
[35, 36] que le probléme pouvait en quelque sorte étre transféré sur les employés. Il
suffit en effet de leur faire porter le colit du transport, de leur faire payer un loyer
pour leur logement, et de compenser cela pour eux par une subvention. Il ne s’agit
pas de gagner de 'argent ainsi, mais d’inciter les ouvriers a trouver eux-méme le
lit e mieux placé; le prix du transport sera donc égal a son cout de fonctionnement
c(x, y). Notons S(x) la subvention accordée aux employés de la chaine de montage x,
et L(y) le loyer d’un lit dans le dortoir y; Kantorovitch a montré que la valeur des
subventions S et celle des loyers L peuvent étre fixées judicieusement, de telle sorte
que :

— les travailleurs recoivent toujours moins que ce qu’ils ont a dépenser, c’est-a-dire
S(x) < L(y) + c(x, y) quels que soient x et y;

— chaque ouvrier peut cependant trouver un lit idéal qui ne lui fera pas perdre
d’argent, pour lequel S(x) = L(y) + c(x,y) ;

— il est possible que les employés réussissent tous a trouver un lit idéal.
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Kantorovitch a montré que, dans ce cas, le cout total de I'opération pour I’entreprise,
qui est donné par la différence entre le montant total des subventions et la somme

récupérée par les loyers, est alors

[swaw - [toow = min [y,

Les potentiels S et L sont alors appelés des « potentiels de Kantorovitch ».

Notons que si les chaines de montages sont de petits ateliers qui ne sont pas trop
concentrés, il est envisageable que les ouvriers travaillant ensemble en x puissent se re-
trouver dans le méme dortoir y = T(x). Une telle application T fait alors correspondre

1 et v, ce qui se traduit par
v(B) = p(T™'(B)) quel que soit B,

ou encore

jkwmww:jkna»@an

on dit alors que T envoie p sur v, et 'on note v = Txp. Notons qu’a une telle application

est associé un plan de transport yr, défini par
Yr(A X B) = p(ANnT7'(B)).

L’intuition que le transport optimal prend la forme d’une telle application si la source
est suffisamment diffuse se traduit mathématiquement par un résultat démontré par
Yann Brenier [13, 14] & la fin du xx¢ siécle : si le cout de transport est égal au carré
de la distance, c¢(x, y) = |x — y|?, et si p est absolument continue, alors il existe une
application T envoyant p sur v qui résout le probléme du transport optimal, c’est-a-dire

que le plan de transport yt est optimal, et le cotit total de transport est

mgfmmwmw=ﬁmwmmw=fmmmww

Yel(p,v
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De plus, les potentiels de Kantorovitch S et L sont alors reliés a 'application T par les

relations
y =T(x) = x — VS(x) et x =T (y) =y + VL(y).

Celles-ci traduisent le fait que, pour trouver un logement, il est intéressant d’aller dans
la direction des subventions décroissantes, puisque les subventions sont moindres
lorsque des dortoirs sont proches. Inversement, des loyers plus élevés signalent une
plus grande demande, et donc un plus grand nombre d’ateliers.

Le résultat de M. Brenier résout ainsi un probléme ancien, posé d’abord par
Gaspard Monge [45] a la fin du xviie siécle. Celui-ci avait en effet essayé de résoudre
le probleme du transport optimal en cherchant la solution, non pas sous la forme
d’un plan de transport y comme Kantorovitch plus tard, mais sous la forme d’une

application T. Le cotit total de transport est alors au minimum

inf fc(x, T(x)) du(x). (b)

Puisque chaque application T qui fait correspondre p et v donne un plan de transport
yT, le probléme de Kantorovitch (a) est en fait une extension du probléme initial de
Monge (b). Cependant, a I'inverse du premier, le second peut ne pas avoir de solution ;
il peut méme ne pas y avoir d’application T telle que v = Tsp, par exemple si p est
discrete et que v est uniforme. Mais si p est absolument continue, et pour un cotit
quadratique, I'application de M. Brenier est solution du probléme de Monge, et résout
aussi le probléme de Kantorovitch.

11 faut noter qu’en dimension un, il est trés facile de résoudre le probleme de

Monge. S’il on note par F et G les fonctions de répartition de p et v respectivement,

F(x) = p(J—co,x]) et G(y) = v(] oo, y]),

alors la solution au probléme de Monge pour n’importe quel cout strictement convexe,
c’est-a-dire n’importe quel cout défini par c(x,y) = h(y — x) avec h positive et
strictement convexe, est

T(x) = G™'(F(x)). ()
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En dimension plus grande, il est beaucoup plus difficile de calculer cette solution.
Quelques méthodes ont cependant été développées au fil des années :

— lorsque les mesures de départ et d’arrivées sont discrétes, un algorithme célébre
a été mis au point par Dimitri Bertsekas [9] ;

— cet algorithme a ensuite été utilisé par Damien Bosc [11] pour traiter le cas de
mesures continues, par approximation ;

— toujours dans le cadre continu, Jean-David Benamou et Yann Brenier [7] ont
aussi proposé une méthode, basée sur une interprétation en termes de méca-
nique des fluides ;

— Sigurd Angenent, Steven Haker et Allen Tannenbaum [4] ont, eux, réussi a
utiliser une méthode de descente de gradient;

— enfin, Grégoire Loeper et Francesca Rapetti [410] ont pu utiliser avec succés la

méthode de Newton.

Il y a quelques années, Guillaume Carlier, Alfred Galichon et Filippo Santam-
brogio [19] ont cependant proposé une nouvelle méthode pour calculer 'application
optimale de M. Brenier. Leur approche repose sur l'introduction d’un parametre

t € [0,1] dans la fonction de cout : par exemple, en dimension deux,

c(x,y) = |, pl? + tlx — yol

Ceci revient a dire qu’un déplacement suivant ’axe vertical (nord-sud) coute moins
qu’un déplacement suivant ’axe horizontal (est-ouest). La solution au probleme du
transport optimal pour le cout c¢; est encore donnée par une application, que 'on
notera T;. Pour t = 1, il s’agit bien entendu de I’application de M. Brenier ; pour
t €]0,1], cette application est aussi reliée a un potentiel de Kantorovitch S; via la

relation

1 0
Ti(x) = x — A;'VS,(x) avec A, = [ . ]
t

MM. Carlier, Galichon et Santambrogio ont montré que, lorsque t tend vers zéro, T,
converge vers le réarrangement de Knothe-Rosenblatt.
Ce « réarrangement », introduit dans les années cinquante séparément par Her-

bert Knothe [38] et Murrey Rosenblatt [51], envoie encore i sur v, et s’obtient par une
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succession de transformations unidimensionnelles. Par exemple, en dimension deux,

si f(x1,x2) et g(y1, y2) sont les densités de p et v, alors

X1 ff(xl,t)dt et Yy fg(yl,t)dt

sont deux mesures de probabilité sur la droite réelle, et nous savons comment envoyer
la premiere sur la seconde, grace a la formule (c) ; notons x; — T%<(x1) Papplication

ainsi obtenue. Alors,

I R G COR T
i ff(xl, t)dt ? fg(T%((xl), t)dt

sont aussi deux mesures de probabilités; si 'on note x, +— Tx(x1,xz) I'applica-
tion envoyant 'une sur Iautre, alors le réarrangement de Knothe-Rosenblatt est
Tk (x1, x2) = (Ty(x1), T (1, x2)).

Contrairement a I’application de M. Brenier, ce réarrangement est donc tres
facile a calculer explicitement. MM. Carlier, Galichon et Santambrogio ont pourvé que,
lorsque 'une des deux mesures est discréte, ’évolution de I’application T, entre le

réarrangement et 'application de M. Brenier est guidée par une équation différentielle.

La premieére partie de cette these a été consacrée a 'extension de leurs résultats
aux cas de mesures absolument continues. Le probléme gagne alors notablement en
complexité.

Tant que t demeure strictement positif, il n’y a pas de grande difficulté. Notons
f et g les densités respectives de p et v. Puisque T;(x) = x — VS,(x) envoie p sur v,

pour n’importe quelle fonction test € nous avons

[ewatrdy= [ewavw = [ememem = [arenswar
Un changement de variable donne alors une équation de Monge-Ampeére :
fx) = g(x - VS,(x)) det (I-A;'V?S,(x)) .

Appliquer le théoreme des fonctions implicites permet d’obtenir que t +— S; est

réguliére, et dériver ’équation de Monge—Ampere donne alors une équation aux
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dérivées partielles :
div ( Flla-A7vs, | agt (v8, —AtAfVSt)) - 0. (d)

Cette équation devient cependant singuliére lorsque ¢ s’annule, puisque A;' est une
matrice diagonale dont les coefficients font intervenir 1/¢.

Ce probleme de singularité peut cependant étre contourné en faisant un dévelop-
pement de S; au premier ordre vis-a-vis du parameétre t. Supposons que nous soyons en
dimension deux ; puisque I'application T, = Id —A;'VS; converge vers le réarrange-
ment de Knothe-Rosenblatt, et que celui peut s’écrire Tx (x1, x2) = (T%<(x1), T12< (x1, x2)),
nous écrirons

St (x1, x2) = us (1) + tvs(x1, x2).

Cette décomposition est unique si 'on impose

fut(xl)dxl = fSt(x)dx et fvt(x)dxg =0,

car dans ce cas

wie) = [Samdn e s = 2E 200,

Alors
TGt x,) = Id - ( O1us(x1) + 1010 (x1, x2) ] ’

021 (31, Xx7)

et I’équation (d) perd sa singularité. Elle peut alors étre étudiée lorsque t tends vers
zéro. Notons que ce raisonnement se peut transposer en n’importe quelle dimension
d>2.

Il faut noter que 'aspect le plus délicat de cette étude lorsque ¢ tends vers zéro
provient alors d’une perte de régularité vis-a-vis de la seconde variable, qui empéche
d’appliquer le théoréeme des fonctions implicites classique comme précédemment.
Cette difficulté peut étre contournée en utilisant une version plus forte du théoréme,
due a John Nash et Jirgen Moser ; celle-ci nécessite néanmoins de ne plus travailler
qu’avec des mesures extraordinairement réguliéres, absolument continues, strictement

positives et de classe €.
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Il a cependant été possible d’utiliser cette méthode pour calculer numériquement
le transport optimal. L’équation (d), ou S;(xy, x2) a été remplacé par u,(x1) +tv,(x1, X2),

peut étre décomposé, ce qui donne le systéme suivant :

3i111t(x1) = fpt(xl, xz) dxz,
div(A;Vo;) = qq,
avec i
pr = det(V?v,) + tdiv([Co VZUt] Vz)t) ,
q: = det(Vzvt) — (1 — 83’2%)8%’1% - af’lvt,

Le potentiel S; = u; + tv, n’étant défini qu’a une constante prés, les deux équations

suivantes peuvent étre ajoutées :

f wn)de = 0 et f Ve, x2) dxy = 0.

Une discrétisation explicite en temps permet alors d’obtenir les résultats présentés

dans le chapitre 4.

Dans la derniére partie de cette thése, nous avons étudié ’algorithme 1pT (Itera-
tive Distribution Transfer), développé par Francois Pitié, Anil C. Kokaram et Rozenn
Dahyot [49]. Cet algorithme construit une application de transport suffisamment
proche de celle de M. Brenier pour convenir a la plupart des applications [50]. Cepen-
dant, ses caractéristiques mathématiques sont encore assez mal connues.

Considérons une mesure de référence v sur R? de densité g, et fixons une mesure
de départ g de densité fp, ainsi qu’une premiére base orthonormale € = (e}, . . ., eg)
de R9. 1l est possible de projeter chacune des deux mesures sur les axes donnés par
e’ ; nous obtenons ainsi d couples de mesures unidimensionnelles f; et g%, qui sont

données par

o= 0= |  dw@x) et el,v=g0) = f dv(y).
yi=t

x;i=t i=
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Nous savons envoyer 'une sur 'autre, grace & une application ¢ ; posons alors

d

To(x) = ) t(x)el.

i=1
Cette application n’envoie pas i sur v, mais la mesure image 1 := Tosp semble
néanmoins plus proche de v que py. Nous pouvons alors choisir une suite de base (e")
et, en répétant I’opération, construire une suite d’applications (T,) et une suite de
mesures ([, telles que p4q := Tpypy, ou Papplication T, a été construite a I’aide de la
base e”, et les mesures p,, semblent alors se rapprocher empiriquement de v si les bases
(e™) forment une suite dense dans ’espace des bases. La convergence mathématique
n’a pu cependant étre démontrée par MM. Pitié, Kokaram et Dahyot [49] que dans le
cas de mesures gaussiennes.

Il se trouve que 'algorithme DT peut étre interprété en termes de flot de gradients
pour une fonctionnelle faisant intervenir une certaine distance. En effet, dans le
probléme du transport optimal, la valeur minimale du cout de transport induit une
distance, appelée distance de Wasserstein, entre les deux mesures p et v; notamment,

lorsque ce cout est égal au carré de la distance euclidienne, on définit

Wy, v)? := min flx—ylzdv(x,y)~

L’algorithme 1DT correspond alors a un schéma d’Euler explicite pour un flot de

gradients pour la fonctionnelle

(IL-(}J) = dJC Wz(e#p., 9#\1)2 de,
§d-1

ou la fonctionnelle F est aussi discrétisée a chaque étape n et approchée par
d
2
F () ~ D Walelp el v

i=1

Il se trouve que

w
g
~~
Ry

<
N

oo
I

W (B4p1, 04v)2 dO,
§d-1
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définit une nouvelle distance, appelée distance de Wasserstein projetée (ou distance
de Super-Wasserstein), qui est équivalente avec la distance de Wasserstein usuelle —
comme je I’ai démontré dans le théoréme 5.1.5 (page 123).

Les dernieres sections sont consacrées a ’étude du flot de gradients pour la fonc-
tionnelle # dans I'espace des mesures de probabilité, au sens de la théorie développée
par Luigi Ambrosio, Nicola Gigli et Giuseppe Savaré [3]. Ce flot, défini comme étant
la limite d’un schéma d’Euler implicite pour ¥, pourrait en effet permettre de mieux

comprendre le comportement de I’algorithme 1DT.
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