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Chapter 1

Introduction

1.1 Nanostructured Materials for Spintronics

Spintronics, a neologism for spin electronics, is a relatively new and rapidly

growing branch of study in condensed matter physics. Until now, conven-

tional solid-state devices, based on Si and GaAs, made use of only the fun-

damental charge of the electron. The whole idea behind spintronics is to

incorporate the spin degree of freedom and its associated magnetic moment,

and this is believed to lead to a significant advancement over existing semi-

conductor technology. This may offer several benefits such as nonvolatile

memories, increased data processing speed and decreased power consump-

tion, among others. The spin field-effect-transistor (SPINFET), proposed by

Datta and Das in 1990 [1], can be considered as one of the earliest sugges-

tions for the use of semiconductors for spintronics. A sketch of the device

is shown in Figure 1.1. The most important advantage of the SPINFET

is the efficient spin injection from the ferromagnetic source into the chan-

nel (a 2 dimensional electron gas). One of the major breakthroughs in the

field of spintronics came with the discovery of the Giant Magneto Resistance

(GMR) effect in 1988 by A. Fert and P. Grünberg, which earned them the

2007 Nobel Prize in Physics. The GMR effect is observed in alternating

stacks of magnetic and non-magnetic metallic multilayers. The conductance

of a GMR device depends strongly on an applied magnetic field, which can
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Figure 1.1: Original design of the SPINFET, as proposed by Datta and Das,
from Ref. [1].

switch the interlayer exchange coupling. This phenomenon is applied in the

spin-valve device used in the red heads of a hard disk drive. This has led to

a considerable increase in the memory density of hard disk drives. Figure 1.2

shows an illustration of this new memory technology known as magnetoresis-

tive random-access memory (MRAM). Now when the non-magnetic layer is

insulating instead of metallic, it leads to another effect known as the Tunnel

Magneto Resistance (TMR), which can result in a more enhanced magneto-

resistance. More detailed reviews on spintronics and its applications can be

found in Ref. [2, 3, 4].

Figure 1.2: A schematic representation of magnetoresistive random-access
memory (MRAM), which is based on the principle of GMR.

One of the major challenges in the field of spintronics was the search for

materials which could combine semiconducting properties (for information

processing) with robust magnetism (for information storage and retrieval).

12



It is now a well known fact that in order to make realistic applications fea-

sible, spintronics require robust materials that show magnetic ordering at

and above room temperature. One of the 125 critical unanswered scientific

questions posed in Science[5] a few years back was, “Is it possible to cre-

ate magnetic semiconductors that work at room temperature?” The hope

for high TC values, predicted by Dietl et al.[6], in some materials such as

(Ga,Mn)N and (Zn,Mn)O could not be further substantiated by either exper-

imental or theoretical studies. For a long time the major focus of spintronics

research was on homogeneously diluted magnetic systems (magnetic atoms

randomly distributed on the host lattice), without taking into consideration

other possibilities such as metallic inclusions or simple concentration mod-

ulation. It was firmly believed that materials devoid of any kind of defects

or inhomogeneities would ideally lead to room-temperature ferromagnetism.

Unfortunately this proposition could not be realized in practice.

This led to more intensive research in other possible directions in the

ultimate quest for room-temperature ferromagnetism. Experimental studies

using transmission electron microscopy revealed the presence of coherent Mn-

rich spherical nanocrystals in (Ga,Mn)As[7, 8], which exhibited a Curie tem-

perature of 360 K. Similar Mn-rich clusters were also reported in (Ga,Mn)N

by applying synchrotron radiation microprobe analysis[9]. In this case, the

hexagonal symmetry of the host lattice was found to be preserved in both

cluster-free and Mn rich regions. This kind of nanoscale spinodal decom-

position into regions with high and low concentration of magnetic ions was

speculated to be the possible reason for the apparently high Curie tempera-

tures. Hence this led to the idea that nanoclusters formation could lead to

promising materials for next generation spintronics. Nevertheless, the fabri-

cation of such structures, typically of the order of a few nanometers, was not

so simple a task. Self-assembled growth of nanoclusters on a periodic surface

was shown to be a reliable approach[10]. However, the growth of ordered

nanocluster arrays with identical size and adjustable composition was even

more challenging.

In a very interesting study, Long Li and co-workers[11] showed that it was

possible to obtain periodically ordered nanocluster arrays on a Si(111) sub-

13



Figure 1.3: (a) Mixed array of equal-size In and Mn clusters, (b) Identical
In/Ag alloy cluster array, and (c) STM image for the surface with low In/Ag
coverage, demonstrating that the nanoclusters in (b) are In/Ag alloy. (From
Ref.[11]).

strate by delicate control of the growth parameters. The substrate-induced

spontaneous clustering was believed to be responsible for this. Figure 1.3(a)

shows a complex array of two equivalent In and Mn cluster triangular lat-

tices formed by depositing Mn on a pre-existing array of In clusters. The

blue semi circle highlights the In cluster, and the green semi circle highlights

the Mn cluster. Instead of Mn if Ag is deposited an array of identical sized

In/Ag alloy clusters were formed, as shown in Figure 1.3(b). The In cluster

array were found to dictate the growth of the Ag cluster array. This feature

was illustrated at lower In/Ag coverage where the In clusters appear as a

three-spot triangle indicated by the yellow triangle in Figure 1.3(c), while

the In/Ag alloy clusters show four-spot triangles (indicated by the blue tri-

angle). A high thermal stability of the ordered nanocluster arrays was also

observed. Hence this method was shown to be very efficient for fabricating

uniform nanocluster arrays with atomic precision.

In another recent study, based on scanning tunneling microscopy (STM),

the structural transformation of heavily boron-doped diamond[12] was ob-

served. On the surface of diamond films, grown by chemical vapor deposi-

tion (CVD), boron induced insulator-to-metal transition was found to facil-

itate the self-assembly of spatially ordered uniform-sized nanocrystals. Fig-
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Figure 1.4: STM images on the surface of boron-doped diamond microcrys-
tals. The image sizes are (a)620×500 Å2, and (b)1300×1300 Å2. (From
Ref.[12]).

ure 1.4 show the STM images obtained on the top surface of such diamond

microcrystals. In the figure we can see periodically ordered parallelogram-

shaped nanoscale diamond grains. The formation of these periodic super

structures was believed to be caused by the Fermi-sea-induced quantum elec-

tronic growth mechanism. This study of uniform-sized nanocrystals on the

surface of boron-doped metallic diamond, demonstrated that the interplay of

structural and electronic properties of materials is greatly enhanced at the

nanometer scale.

Hence we see that the formation of inhomogeneous structures, at the

nanoscale, is indeed possible. With the advent of efficient growth techniques

the manipulation of the structure and composition of these nano-arrays can

also be controlled. Now, from the fundamental point of view, it would be

very interesting to observe the correlations of these inhomogeneous structures

with different physical properties in disordered systems.
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1.2 Signature of inhomogeneities in a wide

variety of materials

The presence of inhomogeneities has been often detected in several dis-

ordered materials, such as manganites, diluted magnetic semiconductors

(DMSs), superconductors, and many more. The formation of these inho-

mogeneous structures in these materials can be due to several reasons. For

example, in the case of DMSs the out-of-equilibrium growth techniques, such

as molecular beam epitaxy (MBE), required to grow the samples can lead to

the formation of metastable phases. These phases can show high concentra-

tions of magnetic atoms locally, and at the same time be coherent with the

surrounding matrix. In manganites, they can arise due to the interplay be-

tween the charge, spin, orbital, and lattice degrees of freedom. This can lead

to the coexistence of metallic and insulating phases in the system. It can also

lead to the formation of Griffiths phases, which in turn can cause anomalous

behavior of the magnetic susceptibility above the critical temperature. Hence

the presence of such inhomogeneities, of the nanoscale order, cannot be com-

pletely ignored in these disordered magnetic systems. These heterogeneous

structures can give rise to rich and interesting properties in these materials.

The physics of these inhomogeneous materials is complex and interesting at

the same time, from a fundamental point of view. It is due to this reason that

these inhomogeneous disordered systems have started to attract considerable

interest recently. In the following we give a brief overview of the effects of

inhomogeneities observed in a wide variety of disordered magnetic systems.

1.2.1 High TC Superconductors

Superconductors are one of the most widely studied materials in condensed

matter physics. These materials can conduct electricity with almost no re-

sistance, but only at sufficiently low temperatures. The discovery of high

temperature superconductivity in copper oxides (better known as cuprates)

led to extensive research in these materials, both from the theoretical as well

as experimental point of view. The applications are widespread, for example
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superconducting wires can be used for lossless power transmission. They can

also be used to built very powerful electromagnets, which are used in MRI

scanners. However, the origin of high-temperature superconductivity still

remains unclear as several mechanisms have been proposed, as well as the

search for room-temperature superconductivity remains one of the primary

goals in this field.

Figure 1.5: Evolution of the superconducting gap distribution with temper-
ature in Bi2Sr2CaCu2O8+δ. (a) Map of the local pairing temperature (Tp).
(b)–(o) A 25×28 nm “gap-map” taken at different temperatures showing the
distribution of gaps in real space. (From Ref.[13]).

In a recent study[13] Parker et al. used scanning tunneling microscopy

(STM), to focus on the interplay between naturally inhomogeneous nanoscale

regions in the high-temperature superconductor Bi2Sr2CaCu2O8+δ. Figure

1.5(a) shows the spatial distribution of the local pairing temperature Tp

for this material. Tp is determined from the sequence of images in Figure

1.5(b)–(o) by finding the temperature above which there is no maximum in
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the conductance on the positive bias side. Figures 1.5(b)–(o) show the spatial

distribution of the gaps in a 25×28 nm grid at fourteen different tempera-

tures from 50 to 76 K. It is found that regions of the sample with a small gap

magnitude surrounded by larger gapped regions (the box in the upper right

side of the panels) survive to higher temperatures compared to regions with

similar gap sizes bordered by smaller gapped regions (the oval shaped region

in the upper left of the panels). In other words, regions with weak supercon-

ductivity can persist to higher temperatures if bordered by regions of strong

superconductivity. These measurements show that nanoscale inhomogeneous

regions can affect each other via the proximity effect. The authors speculate

that the collapse of superconductivity is caused not just by local thermal pair

breaking, but also with phase fluctuations. The possibility of increasing the

maximum transition temperature by the controlled distribution of dopants

is also suggested.

1.2.2 CMR compounds: The manganites

Another class of materials which have been extensively studied over the last

few decades is manganites of the type R1−xAxMnO3, where R is a trivalent

rare-earth ion and A is a divalent alkaline-earth ion such as Ca2+, Sr2+, Ba2+.

As a result of the substitution of R3+ by A2+ disorder as well as local distor-

tions are induced. A metal-insulator transition (MIT) is found to occur for

intermediate doping ranges in these rare-earth manganites. The phenomenon

of colossal magneto-resistance (CMR), observed in these materials, helped to

draw even more attention.

In Ref.[14], the authors have used scanning tunneling spectroscopy (STS)

to study single crystals and thin films of La1−xCaxMnO3 (LCMO), which is

is known to exhibit CMR behavior. Figure 1.6 shows the STS images of a

thin film of La0.7Ca0.3MnO3 taken just below the critical temperature, for

different magnetic fields between 0 and 9 T. We can see the inhomogeneous

nature of the local electronic structure, showing the coexistence of metallic

(ferromagnetic) and insulating (paramagnetic) regions, with intermediate re-

gions as well. The typical size of these intermediate regions were found to
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Figure 1.6: STS images of the local electronic structure of La0.7Ca0.3MnO3

taken just below TC in magnetic fields from 0 to 9 T. Light (dark) colors
correspond to the insulating (metallic) parts of the surface. (From Ref.[14]).

be few tens of nanometers. Thus, below TC a phase separation is clearly

observed. In addition a strong field dependence was also found, when on in-

creasing the magnetic field a significant proportion of the insulating regions

(light color) could be converted into metallic regions (dark color). These

results suggested that the MIT and the associated CMR behavior should be

interpreted in terms of a percolation of metallic ferromagnetic domains.

In a more recent study[15], Tao et al. studied the mixed-phase regions

in the phase diagram of LCMO (at x=0.45), using scanning electron nanod-

iffraction techniques. At x=0.45, LCMO exhibits a CMR effect around the

transition temperature from the ferromagnetic(FM) ground state to the para-

magnetic(PM) state. A third mixed-phase is also found to coexist here, which
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Figure 1.7: Intensity maps of the superlattice reflections in La0.55Ca0.45MnO3

at different temperatures moving across FM-PM phase transition. Each map
is from an area of 12×12 nm2. (From Ref.[15]).

is characterized by unique superlattice reflections having a correlation length

of a few nanometers. Figure 1.7 shows the intensity images of these super-

lattice reflections in La0.55Ca0.45MnO3, as the temperature is raised through

the FM-PM transition. The mixed-phase clusters were found to be ∼3−4

nm in diameter from the images. In the figure we observe that the density of

these clusters is maximum at T=253 K. This was found to coincide exactly

with the maximum in the CMR effect. The volume fraction of this nanoscale

mixed-phase was found to peak at the CMR critical temperature and was

sufficiently large to make a significant contribution to the CMR peak. The

authors also argued that this nanoscale mixed-phase did not originate from

chemical inhomogeneities.

1.2.3 A novel class of materials: The Topological In-

sulators

A fairly new class of electronic materials which has generated tremendous

interest recently is the topological insulators[16]. These materials resem-

ble ordinary insulators with a similar bulk band gap but surprisingly allows

metallic conduction on their surface or edges due to the presence of topo-

logically protected conducting states. These novel states arise due to the

combination of spin-orbit interactions and time-reversal symmetry. Topo-

logical surface states were detected in several compounds such as Bi1−xSbx,

Bi2Se3, Bi2Te3, and Sb2Te3 by angle-resolved photoemission spectroscopy
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(ARPES). This new class of states were found to be helical Dirac fermions,

which are massless relativistic particles with their intrinsic spin locked to the

linear momentum. These materials can have huge potential for applications

in spintronics and quantum computation if superconductivity or magnetism

is induced on the surface sates via proximity effect and doping. However,

this requires a better understanding of the local electronic properties of these

sates at the Dirac energy of their band structure.
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Figure 1.8: (a) STM images on the surface of Mn and Ca doped Bi2Te3 and
Mn doped Bi2Se3. (b)-(d) Conductance maps taken at high, intermediate
and low sample biases. (From Ref.[17]).

In a very recent study[17] by Beidenkopf et al., spectroscopic mapping

with STM was used to study the response of these surface states to magnetic

and non-magnetic bulk doping in Bi2Te3 and Bi2Se3. Distinct nanoscale spa-

tial fluctuations of energy, momentum and helicity were observed close to the

Dirac energy. Figure 1.8(a) shows the STM topography for Bi2−xMnxTe3,

Bi2−xCaxTe3, and Bi2−xMnxSe3. Figures 1.8(b)-(d) show energy resolved

conductance (dI/dV ) maps for the corresponding samples at different ener-

gies. The bulk doping leads to spatial interference patterns which can be

seen in the conductance maps in Figure 1.8(b) and (c). In Figure 1.8(d) we

observe that the conductance maps, at low energies, are rather controlled by

an inhomogeneous nature of the local density of states, which vary on a typ-

ical length scale of a few tens of nanometers. These features were found to
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be present irrespective of the fact whether the dopants were magnetic or not.

The authors also found that on tuning the chemical potential to the Dirac

energy the surface states electronic structure oscillates between electron-like

and hole-like doped regions which have opposite helicity. It was concluded

that the topological surface states are sensitive to charge inhomogeneities

induced due to the bulk doping, and a reduction of this bulk charge defects

is required in order to tune the chemical potential to the Dirac energy and

to achieve high carrier mobility of these surface states, for making potential

applications feasible.

1.2.4 Diluted magnetic semiconductors

It can be safely said that the field of DMSs has continued to attract con-

siderable interest ever since the first report of ferromagnetism in (In,Mn)As

in 1992[18]. This is true even today despite the discovery of several novel

materials in the past few years. However, the ultimate goal to achieve room-

temperature ferromagnetism in these materials has continued to elude re-

searchers for a very long time. Room-temperature would hugely enhance

their potential application in the field of spintronics.

Only recently, Jamet and co-workers[19] reported a high TC ferromag-

netic phase in the Group IV semiconductor (Ge,Mn) for a Mn content of

6%. The Curie temperatures were found to be higher than 400 K. A careful

structural analyses, in this case, revealed the Mn distribution to be strongly

inhomogeneous, with the formation of self assembled Mn rich nanocolumns.

Figure 1.9 shows the transmission electron microscopy (TEM) images of the

(Ge,Mn) thin film, where we can clearly see these nanocolumns extending

throughout the whole sample. The average diameter of the nanocolumns

were reported to be 3 nm and their spacing 10 nm. Magnetotransport trans-

port measurements showed a large anomalous Hall effect up to room temper-

ature, and a giant positive magnetoresistance was also found. The high Curie

temperature was attributed to the formation of these nanocolumns, however

the exact origin of ferromagnetism inside the columns was not clearly un-

derstood. Similar kind of inhomogeneous structures have also been detected
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Figure 1.9: TEM images of a Ge0.94Mn0.06 film. (a) Plane view where the dark
spots are nanocolumns. (b) Cross-sectional view, where the nanocolumns are
the dark lines which appear perpendicular to the film plane. (From Ref.[19]).

in other diluted systems such as (Ga,Mn)N, Zn(Cr,Te), and (Zn,Co)O. The

effects of these will be discussed later in the manuscript.

Hence we see that the existence of inhomogeneities can indeed give rise

to a myriad of interesting properties in a wide variety of materials. With

the latest advancements in growth techniques, the formation of these inho-

mogeneities can be controlled to a fairly good extent. However, a proper

understanding of the origin of these effects still remains an open issue on the

theoretical front. This serves as the primary motivation behind the research

work we are going to present in a major part of this thesis.
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1.3 An Overview of the Present Work

This work is mainly devoted to the study of nanoscale inhomogeneities in

diluted magnetic systems. But first and foremost, one has to take into ac-

count the disorder effects in these diluted systems properly. The failure of

this might lead to an incorrect estimation of the physical properties. The

importance of disorder and percolation, and the need for a reliable tool for

a proper treatment of these effects will be discussed in Chapter 2. The self-

consistent local random phase approximation (SC-LRPA) is shown to be the

best available method in this context. We will provide a detailed account

of the spin excitation spectrum in the diluted nearest-neighbor Heisenberg

model, within the SC-LRPA. It will be seen that the percolation threshold

can be reproduced accurately within this approach. Chapter 3 would deal

with a minimal model study of diluted magnetic semiconductors in general.

We lay special emphasis on the particular case of (Ga,Mn)As. The Curie tem-

peratures and the magnetic excitations of optimally annealed (Ga,Mn)As is

calculated within this simple model. The results obtained are in excellent

conformity with first-principles based calculations as well as experimental

data. The model is shown to bridge the gap between first-principles based

studies and minimal model approaches. Following this we come to the more

important and exciting part of this work, which deals with nanoscale inhomo-

geneities. In Chapter 4 we present an elaborate and comprehensive study on

the effects of inhomogeneities on the magnetic properties of diluted systems

from a generalized perspective. The possibility of room-temperature ferro-

magnetism in these materials is put forward. Some discrepancies between

theoretical predictions and experimental data are clarified as well. In addi-

tion, we will try to provide a plausible explanation of the various interesting

effects observed on the temperature dependent magnetization, magnon ex-

citation spectrum, and the spin-stiffness. The essential role of the relevant

physical parameters are discussed. We finally conclude with the important

findings of this research summarized in Chapter 5 and discuss the possible

future directions that this work presents.
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Chapter 2

Disorder effects and percolation

in diluted magnetic systems

2.1 Introduction

Disorder in magnetic systems has been one of the prime areas of inter-

est in condensed matter research over the last few decades. A significant

amount of work was previously done to study the disorder effects in met-

als and nonmagnetic semiconductors[20, 21]. However, the effects of disor-

der and the role it plays in the transport and magnetism in diluted mag-

netic systems has attracted considerable interest from both the fundamen-

tal point of view as well as the exciting prospect of technological applica-

tions, in recent times. Disorder effects can arise due to several reasons in

a wide class of materials. As for example in transition metal alloys like

FexNi1−x, FexCo1−x, NixCu1−x, two types of atoms randomly occupy the

lattice sites[22, 23, 24, 25] giving rise to disorder. The substitution of a

non-magnetic atom by another one with a different size and/or valency in-

duces disorder in manganites R1−xAxMnO3 (where R is a rare earth element

and A is a divalent alkaline earth metal)[26, 27, 28, 29, 30]. This leads to

a metal-insulator phase transition, unusual behavior of the magnetic exci-

tation spectrum, or even formation of inhomogeneities in these materials.

A relatively new class of materials known as d0 compounds (HfO2, ZrO2,
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TiO2), are reported to exhibit high Curie temperatures even in the absence

of any magnetic impurities[31, 32, 33, 34, 35, 36]. This is attributed to the

formation of intrinsic defects, such as vacancies, during the growth process

of these materials. The random spatial distribution of magnetic impurities

in a non-magnetic matrix gives rise to disorder effects in the widely stud-

ied diluted magnetic semiconductors, such as In1−xMnxAs, Ga1−xMnxAs,

Zn1−xCrxTe, Ge1−xMnx. Also relevant in these materials is the formation of

intrinsic defects, like Mn interstitials and As antisites in Ga1−xMnxAs, due

to the non-equilibrium growth conditions. The Curie temperatures as well

as other magnetic and transport properties are found to be very sensitive to

the presence of disorder[37].

Another very important aspect of diluted magnetic systems which needs

particular attention is the percolation phenomenon. A formal study of perco-

lation thresholds can be traced back to 1957 when Broadbent and Hammersley[38]

introduced a simple “lattice percolation” model for the flow of fluid through

a static random medium. They showed that no fluid will flow if the con-

centration of active medium is smaller than some non-zero threshold value.

The most common statistical assumptions considered were the bond percola-

tion model and the site percolation model. In the former, when a fraction

of the bonds, randomly distributed, are absent in the lattice no fluid can

flow through them. While in the latter, if a fraction of the sites are missing,

no current can flow through any of the bonds which join these sites to their

respective neighbors. In order to describe this picture, the authors consider

a lattice containing N sites, where N is a large number. The concentration

of ‘allowed’ sites is given by x, and the quantities relevant to percolation

depend upon this concentration and the geometry of the lattice. For a low

concentration, x≪xc, the allowed sites appear in small isolated clusters. On

increasing x, larger clusters occur and the mean size of a cluster increases

monotonically. In the limit N→∞, as x approaches xc, the bigger clusters

begin to merge and the mean cluster size diverges at xc. This leads to the

fact that for any finite N , there is a fully connected path of allows sites ex-

tended over the system which makes the flow through the system possible.

For x≫xc and for a sufficiently large N , it is believed that only one large
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cluster exists with other small ones. The ratio of the number of sites in this

single large cluster to the number of sites in the lattice is defined as the site

percolation probability P (s)(x). This represents the fraction of the volume

of the system in which conduction is allowed. P (s)(x) was found to follow a

simple power law, near the threshold, given by

P (s)(x) ∝ (x− xc)
s (2.1)

where s was found to be approximately the same for all three lattices (simple

cubic (sc), body-centered cubic (bcc) and face-centered cubic(fcc)), 0.3≤s≤0.4.

The threshold concentrations, xc, satisfying the above power law form were

found to be 0.312±0.002, 0.248±0.003, and 0.2±0.002 for sc, bcc, and fcc

lattices respectively[39, 40].
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Figure 2.1: Schematic representation of finite-sized sections of an infinite
square lattice for La2Cu1−x(Zn,Mg)xO4, for different site dilution levels. In-
set: Close-up view for x=40.7%, showing the role of magnetic Cu ions and
non-magnetic Zn/Mg ions. (From Ref.[41]).

The problem of magnetic percolation appears to be of significant impor-

tance in disordered and diluted systems. For example in a clean system, when

the concentration of impurities is 100%, there is a perfect ferromagnetic net-

work. However, on dilution this network is weakened and for concentrations
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below a certain percolation threshold the ferromagnetic ordering ceases to

exist in the system, since due to missing longer ranged interactions the mo-

ments cannot align anymore. For example in the nearest neighbor Heisenberg

model the percolation threshold, xc, is known to be 20% for the fcc lattice.

But in realistic diluted systems, such as DMSs, the relevant concentration

range is much lower than 20%, and it is the weaker and more long ranged

interactions that dominate the ferromagnetism instead of the strong nearest-

neighbor couplings. This implies that the real percolation threshold should

also be lower in this case. As we shall see later, the improper treatment of the

percolation effects can lead to strong overestimations of the Curie tempera-

tures and other magnetic properties of these systems. In this context it is also

interesting to note the case of the spin-1/2 two-dimensional Heisenberg anti-

ferromagnet La2Cu1−x(Zn,Mg)xO4. It was shown to be a model example of

a 2D quantum antiferromagnet, for square-lattice site percolation[41]. Here

both Zn2+ and Mg2+ are nonmagnetic, and they do not introduce any charge

carriers on substitution. It was found that this nearest-neighbor square lat-

tice undergoes a structural transition with dilution x, in the absence of quan-

tum fluctuations, at the percolation threshold xp ≈ 40.725%. As can be seen

in Figure 2.1, below xp there is an infinite cluster of connected sites. On

approaching the percolation, more disconnected clusters are found to appear

and above xp the lattice is fully spanned by finite-sized disconnected clusters.

The possibility of a quantum critical point below the percolation threshold

was ruled out in the extreme quantum limit of S=1/2.

Hence we see that disorder effects and percolation appear to be very

important in these systems. A proper treatment of these effects calls for a

reliable and accurate tool. Among the available theoretical approaches, the

Monte Carlo (MC) calculations are widely considered as exact. The disor-

der effects are treated exactly as well as the spin fluctuations are properly

accounted for, within the MC studies. Although powerful, this approach has

some deficiencies when it comes to the study of diluted systems. For exam-

ple it is restricted to relatively small system sizes and the calculations are

expensive in terms of computational resources. We shall discuss this in more

detail a little later.
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2.2 Which Theoretical Approaches to handle

large scale systems

Now we discuss some of the theoretical methods that have been applied

to study the role of disorder and to calculate the magnetic properties of

diluted magnetic systems in general. These approaches are an alternative to

the in principle exact MC studies. We discuss the pros and cons of these

methods with respect to the treatment of disorder and spin fluctuations, and

the reliability of their predicted results.

2.2.1 The basic Mean Field Approximation

The mean-field theory was originally proposed by Weiss[42] for the case of

ferromagnetic systems without disorder. The main idea is to describe the

interactions between the magnetic atoms in terms of an average or effective

interaction, known as a molecular field. Thus the effective field acting on

all the particles of the system is identical. This oversimplification has some

advantages in the sense that it can provide a basic understanding of the mag-

netism at a fairly low cost. However, this approach has several shortcomings,

like the spin fluctuations (thermal and transverse) are underestimated and

the Mermin-Wagner theorem[43] and the Goldstone theorem[44] are not ful-

filled. Moreover the Curie temperatures calculated within the mean-field

theory often results in strong overestimations in most cases.

One of the most frequently used and often cited studies in DMSs is

based on the mean-field treatment of the Zener model[6]. The thermal as

well as transverse fluctuations of the impurity spins and the charge carriers

are treated within the mean-field theory. The disorder in this case is handled

within the Virtual Crystal Approximation (VCA). This is also sometimes

referred as the ‘average lattice model’ or ‘continuous media approximation’.

The VCA treats the potential experienced by an electron as the average of the

two extreme elements where the concentration of impurities is given by x=0

and x=1 respectively. The multiple scattering effects on the impurities are

not considered and the percolation effects are not taken into account. Also
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the couplings between the localized impurity spins and the charge carriers are

treated in a perturbative manner. These approximations led to the prediction

of above room temperature ferromagnetism in (Ga,Mn)N and (Zn,Mn)O for

5% Mn content[6]. Unfortunately, this could not be realized till date. The

Curie temperature within the mean-field(MF) VCA is given by the following

expression

TMF−V CA
C =

2

3
S(S + 1)x

∑

i

J0i (2.2)

where x is the concentration of magnetic impurities and J0i is the effective

exchange interactions (see Appendix A). As one can clearly see, the expres-

sion does not take into account the nature or the range of the exchange

interactions. This is of particular importance in diluted systems where the

TC ’s and other magnetic properties are mainly determined by the exchange

interactions close to the average separation between the magnetic impurities

and the nearest-neighbor interactions are not so important. The MF-VCA,

on the other hand, treats all interactions on an equal footing, thus giving

an undue importance to the nearest-neighbor interactions in the dilute limit.

This leads to the strong overestimations in the Curie temperatures and other

relevant properties.

2.2.2 The effective medium approach: Coherent Po-

tential Approximation

The Coherent Potential Approximation (CPA) is a single-site effective medium

theory[45, 46, 47]. In the CPA, this effective medium is given by a spin-

dependent local self-energy
∑

σ(ω), which is determined from the condition

that the averaged t matrix of a single impurity immersed in this medium is

zero. This describes the configuration average properties of disordered sys-

tems. The average includes the spatial average over all sites of the system,

including the random impurity positions, as well as the thermal average over

the relative spin orientations. The method is built within the framework

of multiple-scattering theory, and the electronic structure of the system is

30



described by the atomic t matrices, which include the multiple scattering

effects off a single impurity. In the case of an alloy, for example A1−xBx,

the scattering path operator τ is calculated from the atomic t matrix (tCPA)

corresponding to a hypothetical atom in the CPA medium. This is given by

the weighted average of the single-site scattering path operators (τA and τB)

in the effective CPA medium, which implies τ=(1− x)τA+ xτB. Now this is

evaluated iteratively for a self-consistent tCPA.

Figure 2.2: Magnetization of a Ni-Mn system, calculated within the KKR-
CPA method, as a function of the Ni concentration. The triangles represent
experimental data from Ref.[49]. (From Ref.[48]).

The CPA method has been used extensively in ab initio calculations,

in combination with the Korringa-Kohn-Rostoker (KKR) method[51] and

the linear muffin-tin orbital (LMTO) method[52], to successfully calculate

the properties of disordered magnetic systems like ferromagnetic alloys[48]

as well as DMSs. Figure 2.2 shows the average magnetization of a Ni-Mn

alloy[48] calculated from the KKR-CPA method in combination with the

local spin density formalism. This shows that the CPA can reproduce the

observed magnetization quite well and can describe the average quantities

with good accuracy. A detailed review of the first principle calculations

of DMS properties based on the KKR-CPA and LMTO-CPA can be found
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eters which mimics a ferrimagnetic behavior with compen-
sation point. Additionally, the parameters are such that TC

A
TC
B . While the temperature dependence of mA follows a

standard behavior, mB(T) starts to strongly decrease even at
low temperature. For example, at T 2.5, mA is reduced by
less that 20% while mB 0.5mB(0). As a result of our
choice of parameters we see that the averaged magnetization
ma cAmA cBmB is nonmonotonic and vanishes for an
intermediate temperature value compensation point . It is
found that the function (mB /mA)(T) decreases monotoni- cally with temperature. As a result, and since at T 0,

mB/mA SB /SA , thus if SB /SA cA /cB then ma will not
have a compensation point. However, the condition that
SB /SA cA /cB is not sufficient to get one, it is also required
that mB /mA(TC) cA /cB .In Fig. 5 we now show the magnon spectral density
MSD (E) ImG (E)/x c as a function of E. We con-
sider three different cases: almost clean A and B a and
c , and the intermediate situation cA cB 0.5. In both
Figs. 5 a and c we observe that the MSD is very similar to
the clean case. This is clearer in case c than a ; it is easy to
understand that when doping A with B the difference in en-
ergy with the undoped case is only of order 10%
JAA(SA)2 0.8 and JABSASB 0.9 while when doping B
with A the change is more drastic about 100%). To get a
similar MSD to Fig. 5 c for a weakly doped B sample, one
should take c 0.005.

In Fig. 6 we show the spectral function S (q,E) as a
function of energy for different values of the momentum q.
This quantity is more interesting that the integrated MSD
since it provides direct information about the elementary ex-
citation dispersions and their spectral weight. Additionally it
is directly related to inelastic neutron-scattering measure-
ments. Let us now briefly discuss Fig. 6. At precisely q 0
momentum, in both S A ,B , we observe two peak structures:i a well defined peak19 at E 0, as expected since our

FIG. 5. Magnetic spectral density (E) ImG (E)/x c as a
function of E. The continuous line corresponds to A and the
dashed line to B for three different concentration of A: c
0.05, 0.5, and 0.95. The parameters are SA 2, Sb 3, JAA
0.2, JBB 0.05, JAB 0.15, and T TC .

FIG. 6. Spectral function S (q,E) (1/ )ImG (q,E) as a
function of E for different momentum q where q q(1,1,1). The
continuous line corresponds to A and the dashed line to B .
The spins are SA 2 and Sb 3, the exchange couplings are JAA

0.2, JBB 0.10, JAB 0.15, and cA 0.50. We have taken
T TC . For clarity of the picture a small imaginary part 0.1
have been added.

FIG. 4. Magnetizations mA , mB , and averaged one ca
cAmA cbmB as a function of temperature. The spins are SA
1 and Sb 3, the exchange couplings are JAA 1.2, JBB
0.10, and an antiferromagnetic coupling between A and B is

taken JAB 0.15. The concentration of A atoms is cA 0.70.

G. BOUZERAR AND P. BRUNO PHYSICAL REVIEW B 66, 014410 2002

014410-8

Figure 2.3: Spectral function Sλ(q, E) of a binary alloy A1−cBc as a function
of energy for different momenta q, where q=(1,1,1), calculated within the
RPA-CPA method. The solid (dashed) lines correspond to λ=A (λ=B).
(From Ref.[50]).

in Ref.[53]. The advantages of the method are that it is relatively fast,

and is able to handle arbitrary concentration levels. However, due to the

single-site approximation in the CPA it is not able to account for the short

range order and the localization effects are neglected. This could prove to

be a severe limitation especially in the case of diluted systems. Also the

spatial distribution of defects cannot be described due to the effective medium

approach.

The CPA was combined in a self-consistent manner with the random

phase approximation (RPA) to study the magnetic properties in disordered
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Heisenberg systems with long-range exchange integrals[50]. The RPA is

based on the Green’s function formalism using the Tyablicov decoupling

procedure[54] and is already known to be reliable for evaluating the magnetic

properties of clean ferromagnetic systems. The advantage of this approach is

its ability to treat quantum fluctuations, as well as the fact that it satisfies

both the Mermin-Wagner and the Goldstone theorems, which is not possi-

ble within the mean-field approach. In Ref.[50], the authors generalize the

RPA to the case of disordered binary systems and the disorder effects are

treated within a modified cumulant CPA approach. The advantage of the

cumulant expansion method[55, 56] is its ability to tackle “environmental”

disorder effects, which is a characteristic of Goldstone systems like phonons

and magnons. By the simultaneous and self-consistent treatment of the RPA

and CPA, the authors were able to calculate the Curie temperatures, spec-

tral functions and the temperature dependent magnetization as a function of

the impurity concentrations. Figure 2.3 shows the spectral function Sλ(q, E)

of the disordered binary alloy A1−cBc on a simple cubic lattice, as a func-

tion of the energy for different values of the momentum q, calculated within

the RPA-CPA theory[50]. The exchange integrals are restricted to nearest

neighbor only. As can be clearly seen from the figure, at q=0 there is well

defined peak at E=0 in both the spectral functions corresponding to the

atoms A and B. This is consistent with the fact that the theory satisfies

the Goldstone theorem. For intermediate values of the momentum we see

a single broad peak. We also note that the dispersion of the second peak

is almost flat, whereas the Goldstone mode E1(q) shifts from E=0 to E≈2,

when moving in the (111) direction. This spectral function can provide rele-

vant information about the elementary spin excitations in the system and can

be directly accessible by inelastic neutron scattering experiments. Although

this approach proved to be promising for the study of disordered magnetic

systems, it does not allow to include the effects of correlated disorder or the

presence of inhomogeneities in the system.
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2.2.3 The Self-Consistent Local Random Phase Ap-

proximation

From the previous approaches what we clearly understand is that the disor-

der effects have to be treated carefully and reliably in these systems. Thus

it becomes imperative to go beyond a simplified approach, which can treat

the disorder accurately as well as account for the thermal or transverse fluc-

tuations, and the phenomena of localization and percolation in these diluted

systems. In 2005, Bouzerar et al.[57] proposed a new method to calculate

the Curie temperatures in III-V diluted magnetic semiconductors. Within

this method, known as the self-consistent local random phase approxima-

tion (SC-LRPA), the spin fluctuations (thermal/transverse) are treated in

the framework of the RPA, and the effects of disorder or dilution are treated

exactly in real space. This method is essentially an extension of the stan-

dard RPA to the case of disordered systems. As we shall see throughout

this manuscript, the SC-LRPA is a very efficient and powerful tool at the

same time. This approach has several advantages like it is semi-analytical,

fast and allows to reach large system sizes. Also the computational require-

ments are much less in comparison to the standard Monte Carlo methods.

This method has been successfully implemented to calculate the magnetic

properties of a wide class of magnetic systems from DMSs[57, 58, 59] to

manganites[60] as well as the novel d0 materials like HfO2 and ZrO2[35]. In

the following we briefly discuss a few cases which demonstrate the accuracy

of the method, when compared to the essentially exact Monte Carlo studies

as well as experiments.

Comparison between SC-LRPA and Monte Carlo studies

In Figure 2.4 the Curie temperatures of (Zn,Cr)Te are shown as a function

of the Cr concentration[58]. We notice that the TC obtained within the mean

field VCA (MFA-VCA) is almost always above the room temperature. On

the other hand, the SC-LRPA and the Monte Carlo (MC) results yield much

lower values of the Curie temperatures. The TC ’s are strongly reduced due

to the approach of the percolation regime. Moreover the calculated Curie
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Figure 2.4: Curie temperatures of Zn1−xCrxTe as a function of x, within the
MFA-VCA, SC-LRPA, and MC simulations. (From Ref.[58]).

temperatures are also in very good agreement with those obtained experi-

mentally, for about 20% Cr content it was found that TC≈300 K[61]. The

MF-VCA strongly overestimates the TC ’s as it does not take the disorder

effects (percolation, localization) and the thermal fluctuations into account

and hence is not a reliable tool to calculate the properties of these diluted sys-

tems. This again demonstrates the importance of disorder and the necessity

to treat them reliably and accurately. The important thing to observe here

is the excellent agreement between the exact MC results and the SC-LRPA

values.

Comparison between ab initio based approach and experimental

studies

Figure 2.5 shows the Curie temperatures for different samples of (Ga,Mn)As

as a function of the Mn concentration (from Ref.[57]). The theoretical results

are obtained using the SC-LRPA treatment of the disordered Heisenberg

Hamiltonian, where the exchange couplings were calculated in the framework
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Figure 2.5: Curie temperature of Ga1−xMnxAs as a function of x. The tri-
angles denote the calculated values within the SC-LRPA. The other symbols
correspond to the experimental values. (From Ref.[57]).

of the tight binding linear muffin tin orbital (TB-LMTO) method of ab initio

based studies assuming no compensating defects, such as Mn interstitials or

As antisites. This corresponds to the case of fully or optimally annealed

samples. As can be seen, an excellent agreement between the calculated

Curie temperatures and those measured for optimally annealed samples is

obtained for a wide range of Mn concentration. The exception being the case

of 9%, for which the authors suggest that at this concentration the annealing

is not complete. The theory also correctly predicts a percolation threshold,

of about 1%, below which there is no ferromagnetism. Hence we see that this

two-step approach, couplings obtained from ab initio studies combined with

the SC-LRPA treatment of the effective Heisenberg Hamiltonian, could very

well reproduce the experimentally measured Curie temperatures. Within this

approach, disorder is treated in a reliable manner as is evident from the fact

that the percolation threshold could also be reproduced.
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2.3 Benchmarking an efficient self-consistent

method

In this section we will see a few cases which further establish the accuracy

and the reliability of the SC-LRPA in treating the disorder effects. The

advantages of this method over the Monte Carlo calculations for diluted

systems will also be demonstrated.

2.3.1 The one-band disordered Double Exchange

model

We consider the simple case of a system of classical spins interacting with

itinerant carriers, in the absence of any disorder[60]. The Hamiltonian which

describes this is a one-band model on a simple cubic lattice given by

H = −
∑

ijσ

(tijc
†
iσcjσ + hc)− JH

∑

i

Si · si (2.3)

where tij=t for i and j nearest neighbors only, Si is a classical spin localized

at site i (|Si|=1), and si=c
†
iα(σ)αβciβ, (σ=(σx,σy,σz) are the Pauli matrices).

This can be used to study systems like manganites (R1−xAxMnO3, where

R is a rare-earth element and A an alkaline element), where the dominant

exchange mechanism is the double exchange. In the case of manganites, JH

represents the Hund coupling between the localized spins associated with the

t2g orbitals (S=3/2) and the itinerant carriers associated with the eg orbitals.

In the double exchange limit, JHS ≫ W (W is the bandwidth) and JH is set

to infinity in the calculations.

Now a two-step approach (TSA) was adopted to study this model. In the

first step the Hamiltonian given by Equation 2.3 is diagonalized in real space

for a given configuration of disorder, assuming a fully polarized ground state

at T=0 K. This leads to an effective Heisenberg Hamiltonian for classical
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Figure 2.6: TC for the double exchange model as a function of nh correspond-
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with the MF, MC, and RPA treatments, respectively. The symbols indicate
the MC treatment of the full double exchange model. (From Ref.[60]).

spins

Heff =
∑

〈ij〉

JijSi · Sj (2.4)

where the exchange couplings Jij are calculated in the limit JH→ ∞. In the

double exchange limit, the couplings between the nearest neighbors, for a

given hole density nh, is given by

J(nh) =
1

4
t〈c†i↑cj↑〉 (2.5)

which can also be expressed as

J(nh) = − 1

4z

〈K〉
N

(2.6)

where the kinetic energy 〈K〉 depends on nh and z is the lattice coordination

number. The second step consists of treating the effective Heisenberg model
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within the SC-LRPA scheme or by Monte Carlo simulations. Now the Curie

temperature within the SC-LRPA is given by the following expression

T SC−LRPA
C =

1

3
S(S + 1)

1

N

∑

i

1

Fi

(2.7)

where the sum over i is for all sites (non-dilute regime), and

Fi =

∫ ∞

−∞

Aii(E)

E
dE (2.8)

The local quantity Fi have to be determined self-consistently at each tem-

perature (more details can be found in Appendix B).

Figure 2.6 shows the Curie temperatures, corresponding to the clean case,

as a function of the hole density in the double exchange model. The different

lines represent the values obtained by treatingHeff within the mean-field the-

ory (TMF
C (nh)=4J(nh)), Monte Carlo simulations (TMC

C (nh)=2.88J(nh)[62]),

and the local RPA (TRPA
C (nh)=2.66J(nh)[63]). We note that the SC-LRPA

reduces to the standard RPA value (2.66J(nh)) for the case of clean systems,

where the TC can be obtained analytically by the following formula

TRPA
C =

2

3
S(S + 1)

1

N

(
∑

q

1

E(q)

)−1

(2.9)

where E(q)=zJ [1− γ(q)], and γ(q)=1
z

∑
ri
eiq.ri (z is the coordination num-

ber). We observe that the RPA values are in fairly good agreement with those

obtained from the Monte Carlo treatment of the effective Heisenberg model,

while the mean-field approximation overestimates the Curie temperatures.

Now this two-step approach is compared to the Monte Carlo treatment of

the full double exchange model. This involves diagonalizing the Hamiltonian

given by Equation 2.3, completely within Monte Carlo simulations without

mapping to any effective Hamiltonian. This is denoted as FMC or the “Full

Monte Carlo”, to avoid confusing it with the Monte Carlo treatment of the

effective Heisenberg Hamiltonian. The FMC method is expensive both in

terms of memory as well as CPU time, but nevertheless it is considered in
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principle exact. The symbols in Figure 2.6 denote the values obtained from

FMC treatment of the double exchange model. We immediately observe an

excellent agreement between the FMC treatment and the TSA adopted in

this case. The difference between the results was found to be within 10%.

This indicates the reliability of this approach in the case of ordered systems.
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Figure 2.7: TC for the double exchange model as a function of (∆/t)2 (∆
is the on-site potential) for uncorrelated Anderson disorder. The solid line
corresponds to the SC-LRPA and the squares represent values from MC
simulations[64]. (From Ref.[60]).

Now in order to extend this study to the case of disordered systems, the

following term is added to the Hamiltonian in Equation 2.3,

HD =
∑

iσ

ǫic
†
iσciσ (2.10)

where ǫi are the random on-site potentials which may correspond to the

chemical substitution of R3+ by A2+ in the case of manganites. The ǫi are

uncorrelated variables and uniformly distributed within the interval
[
−∆

2
, ∆
2

]
.

Now this is treated within the TSA where the effective Hamiltonian is di-

agonalized within the SC-LRPA. The results are compared with the FMC
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simulations of the double exchange model in presence of disorder. Figure

2.7 shows the Curie temperature (scaled by TC(∆ = 0)) as a function of the

square of the on-site potential width ∆, at a fixed hole density of nh=0.3[60].

The calculations were performed on relatively large systems and a system-

atic average over a few hundred configurations of disorder were done for each

value of ∆. As can be clearly seen from the figure, that the values obtained

within the SC-LRPA treatment is found to be in excellent agreement with

those obtained from the FMC treatment of the disordered double exchange

Hamiltonian[64]. This shows that not only the thermal fluctuations but also

the spatial fluctuations due to disorder are treated properly within this ap-

proach. At the same time this establishes the accuracy and the reliability of

the SC-LRPA in the case of disordered systems as well.

2.3.2 Crucial role of Disorder and Thermal/Transverse

Fluctuations

We now try to analyze the importance of disorder and thermal/transverse

spin fluctuations and the role they play in determining the magnetism in

disordered and diluted materials. For this we take the case of the Curie

temperatures of the diluted magnetic semiconductor (Ga,Mn)As calculated

within three different treatments of the disorder[57] as shown in Figure 2.8.

The exchange couplings were obtained from the TB-LMTO approach, where

the multiple scattering effects are treated within the CPA.

Now consider the equation of motion within the SC-LRPA (see Appendix

B for details), which is given by

(ω − heffi )Gij(ω) = 2〈Sz
i 〉δij − 〈Sz

i 〉
∑

l

JilGlj(ω) (2.11)

where Gij(ω) represents the Fourier transform of the retarded Green’s func-

tion,

Gij(t) = −iθ(t)〈[S+
i (t), S

−
j (0)]〉 (2.12)
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and 〈Sz
i 〉 and heffi denote the local magnetization and the local effective field

at each site, respectively. The second term on the right side of Equation

2.11 describes the transverse fluctuations. Ignoring this leads to what is

denoted as “Ising-disorder” in Figure 2.8. This Ising-like mean-field theory
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Figure 2.8: Curie temperature of (Ga,Mn)As as a function of x, for three
different approximations , “Ising-disorder”, MF-VCA, and the SC-LRPA.
(From Ref.[57]).

includes the disorder effects correctly but does not take into account the

transverse spin fluctuations. As we can clearly see from the above figure, this

approximation leads to extremely high and unreliable Curie temperatures.

This is due to the influence of the sites in large local effective fields due to the

strong short-range ferromagnetic interactions. The second approximation is

the MF-VCA, which also neglects the transverse fluctuations but the disorder

is now treated as a simple effective medium. As discussed before, within

the VCA all sites of the system are considered as equivalent. The MF-

VCA largely overestimates the critical temperatures. For only about 5% of

Mn, the Curie temperature is already found to exceed the room-temperature

value. On the other hand, the SC-LRPA takes the transverse fluctuations

into account and the disorder is treated exactly. The TC ’s obtained within

this approach are found to be strongly reduced in comparison to the other
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approximations (almost three times less than the MF-VCA values). It should

be noted that these values were found to be in good agreement with those

obtained from Monte Carlo studies. We also observe that the self-consistent

approach is able to predict a percolation threshold, of about 1%, below which

the Curie temperature vanishes and there is no ferromagnetic order. This is

beyond the scope of the mean-field like approximations.

Thus the relevance of disorder and thermal/transverse fluctuations are

established and the need to treat them reliably and accurately is essential

to give a correct account of the relevant properties of these systems. The

SC-LRPA clearly has an upper hand over the other approaches. Within this

approach the transverse fluctuations are treated within the RPA and the

effects of disorder (percolation, localization) are properly taken into account.

2.3.3 Dramatic finite size effects and importance of

proper statistical sampling

The Monte Carlo (MC) simulations are considered as a powerful and reliable

tool to calculate the different properties of the diluted spin systems and the

method is widely regarded as in principle exact. The spin fluctuations are

taken into account and the disorder effects are treated exactly by means

of configurational averaging over many disorder configurations. However,

in the MC simulations a finite-size scaling of the data obtained is essential

due to the limited size of supercells used in the calculations. Here we focus

on the Curie temperature obtained within the MC methods in comparison

with the SC-LRPA values in some realistic cases, and discuss the possible

drawbacks of this method. Unlike the self-consistent approach, where the

critical temperature is given by a semi-analytical formula, in the case of MC

studies the Curie temperature needs to be extracted. In most of the cases

this is done by using the cumulant crossing method, proposed by Binder[65].

In this method, the fourth-order cumulant U4 of the order parameter, in this

case the magnetization, is given by

U4(T ) = 1− 〈M(T )4〉
3〈M(T )2〉2 (2.13)
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The thermal average of the magnetization and its associated powers are cal-

culated within the Metropolis algorithm. Now U4 is calculated for different

lattice sizes and plotted as a function of the temperature. All the U4 curves,

corresponding to different sizes, cross each other at the temperature T=TC .

Thus the Curie temperature is extracted from this unique intersection point

of the U4 curves from different lattice sizes (usually three). Although accu-

rate this method is costly in terms of computational time due to the need

for finite size effect analysis. In some cases, it is also possible to extract the

Curie temperature from the peak of average thermodynamic quantities like

the specific heat or the susceptibility. However, this may not be reliable due

to the change in the peak positions with the size of the system, and this calls

for additional calculations with high statistical accuracy. This proves to be

quite heavy in terms of both memory and CPU time. As we shall see in the

following, in the case of dilute magnetic systems the finite size effects and

proper statistical sampling appears to be of crucial importance.

In a recent study, Bouzerar and Bouzerar[66] adopted a two-step ap-

proach (TSA) to calculate the magnetic properties of dilute systems of lo-

calized spins interacting with itinerant carriers (holes/electrons), and the

results were compared to those obtained from Monte Carlo (MC) studies.

The minimal one-band model considered for this case is given by

H = −
∑

ijσ

tijc
†
iσcjσ +

∑

i

piJiSi · si +
∑

iσ

ǫic
†
iσciσ (2.14)

The last term in the above equation is the on-site potential, which describes

the disorder effects due to the substitution of a cation by another one. In

this study, the last term is neglected. Now in the TSA, first the Hamiltonian

(Equation 2.14) was diagonalized for a given configuration of disorder, at

T= 0 K assuming a fully polarized ground state. Following this the mag-

netic couplings between the localized spins is calculated from the spin re-

solved one-particle Green’s functions of the itinerant carriers, and finally one

ends up with the effective disordered Heisenberg Hamiltonian, same as the

one discussed in Section 2.3.1. In this study, the magnetic couplings were

provided by ab initio based calculations. In the second step, the effective
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Heisenberg Hamiltonian is treated within the SC-LRPA. The authors found

that in the case of clean systems (non-dilute) and in the double exchange

regime, the finite size effects are completely negligible. This could explain

the good agreement found between the TSA performed on relatively large

systems (N≈203 sites) and the full MC calculations done for much smaller

sizes (N≈53 sites) in clean cases. However, for diluted systems the finite size

effects were found to be rather large. Hence using too small system sizes and

an insufficient statistical sampling could affect the results in a drastic way.

Figure 2.9: Curie temperature (in units of the bandwidth W ) within SC-
LRPA as a function of JS/W for a fixed x=6.5%. The hole concentration per
impurity is (a)γ= 0.125, and (b)γ= 0.25. The insets show the MC results for
a two-band model (Nb=2) where the density of holes ph=2γ. (From Ref.[66]).
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Figure 2.10: Curie temperature (in units of the bandwidth W ) as a function
of JS/W for different system sizes N=L3, (L=5 to 20). (From Ref.[66]).

Figure 2.9 shows the Curie temperatures as a function of the local cou-

pling JS, at a fixed concentration of magnetic impurities x=0.065, for two

different hole concentrations per impurity, (a)γ= 0.125, and (b)γ= 0.25[66].

For both γ values, the TC is found to increase with an increase in JS until it

reaches a maximum, and then it gradually decreases again. The highest TC

values, as can be seen from the figure, are 3×10−4 and 5×10−4 for γ=0.125

and 0.25 respectively. The insets in the figure correspond to the full MC sim-

ulations of the diluted Hamiltonian (Equation 2.14) performed by Popescu

et al.[67]. In this MC study, the authors considered a two-band model where

each independent band is filled with a density of holes p. Hence in order to

make a direct comparison with the TSA in the one-band model, the Curie

temperature and the hole density from the MC calculations is simply di-

vided by two. We immediately notice that for both carrier densities, the

MC calculations yield much higher critical temperatures in comparison to

the SC-LRPA values. The highest TC values are almost 20 times larger than

those predicted by the self-consistent scheme. We also observe a strong sup-
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pression in these TC values for large JS and it almost vanishes for JS≈2W ,

but the MC values decrease more slowly and kind of saturate at large JS

values. It is to be noted that the MC calculations were performed on system

sizes with N=53 and N=63 sites, and the average over disorder was done over

seven configurations only. For x=0.065, the systems with N=53 and 63 sites

contain only 8 and 14 magnetic impurities respectively. On the other hand,

the self-consistent calculations were performed on a system size N=163 and

the disorder average was done over few hundred configurations of disorder.

Now the huge difference observed between the SC-LRPA and the full MC

results was attributed to mainly two reasons : (i) strong finite size effects,

and (ii) an insufficient averaging over too few disorder configurations. Figure

2.10 shows the average Curie temperatures for various system sizes calculated

within the SC-LRPA. A systematic average was done over a few thousand

disorder configurations for the smallest systems and a few hundred for the

largest systems. We immediately observe that the Curie temperatures are

strongly size dependent. For JS=0.7 W , the TC for L=5 is more than five

times larger than the one for L=20. This shows the large impact of the finite

size effects in the case of diluted systems. Now to stress the importance

of sampling over disorder, Figure 2.11 shows the distribution of the Curie

temperatures obtained from different system sizes. As can be seen from the

figure, for the smallest system size (L=4) a wide distribution of the critical

temperatures is obtained, which can vary by at least one order of magnitude.

Thus it is easy to realize that averaging over a small number of configurations

(about 10) would lead to an overestimation of the critical temperature by

a factor of about 10-20 compared to that obtained by averaging over a few

thousand configurations. We also observe that with the increase in the system

size the width of the TC distributions decreases sharply, and almost tends

to zero in the thermodynamic limit, which is the case for L ≥16. It was

concluded that in order to obtain reliable estimates the size of the systems

considered, L, should be at least five to six times larger than the typical

distance between the impurities. This also showed that averaging over only

a few configurations of disorder for small systems is definitely insufficient to

provide a reliable value of the Curie temperatures. The other essential aspect
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of the MC calculations[67] is the determination of the Curie temperatures. In

Ref.[67] TC was extracted from an inaccurate approximative criteria on the

magnetization curves, which is apparently not very accurate. As discussed

previously, extraction of the critical temperature is such an approximate

manner could incur serious errors due to the finite size effects as well as

insufficient statistical sampling. On the other hand, within the self-consistent

theory the critical temperature is directly obtained by using a semi-analytical

formula and hence the possible errors due to any kind of extraction do not

arise.

Figure 2.11: Distribution of the Curie temperatures (the x-axis is TC in units
of W ) for different system sizes N=L3 , where L varies from 4 to 20. The
parameters are given in the figure. (From Ref.[66]).

In another study based on MC calculations[68], the authors applied the

dilute Kondo model to the case of Mn doped GaAs on a fcc lattice, including

a realistic band structure and spin-orbit coupling. The Curie temperatures

were calculated as a function of the local coupling J , for a fixed concentra-
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tion of magnetic impurities x=0.085 and a hole density ph≈0.75. However,

the calculations were performed assuming for the local couplings JS=1.2 eV,

which is about three times smaller compared to the realistic value of 3 eV.

(Since the widely accepted value for the local p-d coupling is J≈1.2 eV, and

the spin of Mn2+ is S=5/2). Assuming this correct value for the coupling the

calculations would lead to TC ≈ 700 K, which is about five times larger than

those experimentally observed. Thus this model was considered as inappro-

priate for Ga1−xMnxAs. (For more details one can refer to the comment[69]).

Also the value of J considered in Ref.[68] corresponds to the weak coupling

regime (perturbative limit), where the Mn-Mn couplings may develop an

RKKY-like tail. This leads to a strong suppression of TC or finally to no fer-

romagnetic phase in the thermodynamic limit. These MC calculations were

also found to have similar drawbacks as those discussed previously. The sys-

tems considered contained typically 20 localized spins and the average was

done over five configurations of disorder only. Due to the small size of the

systems considered in the MC simulations, the effects of the RKKY tail are

suppressed which leads to finite and large values of the Curie temperatures.

Thus we see that the in principle exact MC simulations suffer from serious

numerical shortcomings when it comes to the study of diluted magnetic sys-

tems. Unlike the case of non-dilute systems, the finite size effects and proper

statistical sampling play a crucial role in diluted systems. Within the MC

calculations, the system sizes considered are often relatively small due to the

requirement for considerable computational resources, averaging over only a

few disorder configurations leads to an insufficient sampling and the Curie

temperatures are determined from approximative procedures. The combined

effect of these may lead to strong overestimations of the critical temperatures.

Moreover the MC simulations are not able to reproduce properly the limit-

ing regimes of strong and weak couplings. However, within some large-scale

MC simulations it is possible to study relatively large systems. These in-

clude the hybrid Monte Carlo (HMC) method[70], the polynomial expansion

Monte Carlo (PEMC) method[71], and the truncated polynomial expansion

Monte Carlo (TPEMC) method[64]. The self-consistent treatment, on the

other hand, allows the study of much larger system sizes and is relatively
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fast. The computational requirements are much less in comparison to the

MC calculations. The Curie temperature is provided by a semi-analytical

formula, which is also found to be in good agreement with the experimen-

tally measured values. Hence to conclude we have demonstrated here the

reliability and the accuracy of the SC-LRPA method by direct comparison

with the MC simulations in the case of diluted magnetic systems.

2.4 Magnetic excitation spectrum of the

nearest-neighbor diluted Heisenberg

model

The SC-LRPA is already known to be efficient to determine the critical

temperatures in disordered and diluted systems. Here we show the effi-

ciency and the accuracy of this approach to determine the magnetic excita-

tion spectrum. To demonstrate this we have studied the spin excitations in

the three-dimensional (3D) diluted Heisenberg model with nearest-neighbor

ferromagnetic interactions[72]. Until now most of the theoretical studies

within the classical MC methods focus on the equilibrium properties of the

Ising model[73, 74], and there are very few dealing with the 3D site diluted

Heisenberg model[75]. However, probably due to the heavy requirements of

both memory as well as CPU time, the spin excitation spectrum of the 3D

diluted Heisenberg model has so far not been studied. In this section we are

going to present a detailed study of the magnetic excitation spectrum in this

model, where the disorder effects arising from dilution are treated accurately

within the SC-LRPA approach. We are going to provide a detailed analysis

of the magnon density of states and the magnon spectrum as a function of

the dilution. In addition, we also estimate the spin-stiffness which is found

to vanish at the percolation threshold exactly.

To start with we introduce the diluted Heisenberg Hamiltonian which

describes Nimp interacting quantum/classical spins randomly distributed on
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a lattice of N sites, given by

HHeis = −
∑

i,j

JijpipjSi · Sj (2.15)

The sum ij runs over all sites and the random variable pi is 1 if the site is

occupied by a spin otherwise it is 0. Here all the calculations are performed

at T=0 K, the quantum/classical nature of the spins is irrelevant. Hence

we have assumed classical spins with |Si|=1. Here the couplings Jij are are

restricted to nearest neighbor only (J). Note that the exchange couplings can

be very general in nature (short or long ranged) in realistic systems and can

be provided by first-principle based calculations or model studies, as we shall

discuss later. Now within the SC-LRPA, the retarded Green’s functions are

introduced to describe the transverse spin fluctuations (Equation 2.12). The

higher order Green’s functions in the equation of motion are decoupled using

the Tyablicov decoupling scheme[54] (random phase approximation). The

effective Hamiltonian matrix elements are now given by (Hc
eff )ij = -〈Sz

i 〉Jij+
δij
∑

l〈Sz
l 〉Jlj and (D)ij=2〈Sz

i 〉δij, where “c” denotes the configuration of

disorder (for details see Appendix B). 〈Sz
i 〉 is the local magnetization which

has to be calculated self-consistently at each temperature and for a given

configuration of disorder. This is evaluated from a Callen-like expression[63]

〈Sz
i 〉 =

(S − Φi)(1 + Φi)
2S+1 + (1 + S + Φi)Φi

2S+1

(1 + Φi)2S+1 − Φ2S+1
i

(2.16)

where Φi is the local effective magnon occupation number given by

Φi = − 1

2π〈Sz
i 〉

∫ +∞

−∞

ℑGii(ω)

exp(βω)− 1
dω (2.17)

Now the matrix Hc
eff is non-Hermitian (real and non-symmetric) but it has

the property of bi-orthogonality[76]. Hence we have to define the the right

and left eigenvectors of Hc
eff denoted by |ΨR,c

α 〉 and |ΨL,c
α 〉 respectively, both

associated with the same eigenvalue ωc
α. The retarded Green’s functions can
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now be expressed in terms of the right and left eigenvectors as

Gc
ij(ω) =

∑

α

2〈Sz
j 〉

ω − ωc
α + iǫ

〈i|ΨR,c
α 〉〈ΨL,c

α |j〉 (2.18)

Despite the matrix being non-Hermitian, the spectrum is real and positive at

each temperature in the ferromagnetic phase. A negative eigenvalue would

indicate an instability of the ferromagnetic phase, as would be the case in the

presence of frustration. However, since the exchange couplings we use here

are all ferromagnetic, there is no possible frustration and the system exhibits

long-range ferromagnetic order beyond the percolation threshold. Now since

we are interested in the excitation spectrum at T=0 K, the matrix Hc
eff is

real symmetric and hence the right and left eigenvectors are identical. Thus

Equation 2.18 becomes

Gc
ij(ω) =

∑

α

2〈Sz
j 〉

ω − ωc
α + iǫ

〈i|Ψc
α〉〈Ψc

α|j〉 (2.19)

However, it is important to note that within the SC-LRPA one can also

calculate the spin excitation spectrum as a function of the temperature, and

analyze the evolution of the spin dynamics with increase in temperature.

In the following we calculate the magnon density of states, the dynamical

spectral function, the spin-stiffness as well as the Curie temperature as a

function of the concentration of localized spins x=
Nimp

N
. The localized spins

are randomly distributed over a simple cubic lattice and periodic boundary

conditions have been implemented.

2.4.1 Dilution effects on the average magnon density

of states

Magnons are associated with the elementary excitations of a spin system

which have a wave-like form. These spin waves are low lying oscillations in

the relative orientations of the spins on a lattice. Magnons are essentially

quantized spin waves. Here we are interested in the magnon density of sates
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(DOS) which is given by

ρ(ω) =
1

Nimp

∑

i

ρi(ω) (2.20)

where ρi(ω) is the local magnon DOS given by

ρi(ω) = − 1

2π〈Sz
i 〉
ℑGii(ω) (2.21)
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Figure 2.12: Magnon density of states ρ(ω) as a function of the energy ω for
four different x. The energy axis (x-axis) is in units of ω/J . (From Ref.[72]).

Figure 2.12 shows the magnon (DOS) as a function of the energy, for

four different concentrations of localized spins. Here x=1.0 corresponds to

the clean case (no dilution). With increasing dilution we observe a significant

change in the shape of the magnon DOS as well as a reduction of the band-

width. We also notice an increase in the weight of the low-energy DOS for

higher dilutions. As we approach the percolation threshold which is located

at xc=0.31[40], we observe that for the lowest concentration, x=0.4, a sharp
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peak develops at ω=0. This feature is attributed to the formation of several

isolated clusters which have their own zero energy modes. Additional peak

structures are found to be located at ω=J and 2J respectively for higher

energies. These peaks are due to the non-zero eigenmodes of these isolated

clusters. However, this average DOS does not provide any information on

the nature (extended/localized) of the magnon modes. This would require

a more careful analysis and study. One could determine this either by the

calculation of the inverse participation ratio (IPR) or evaluation of the typ-

ical magnon DOS[77] which provide a direct access to the “mobility edge”

separating the localized magnon modes from the extended ones. The IPR is

defined as

IPR(n) =

(
∑

r

| ψn(r) |4
)−1

(2.22)

where ψn(r) are the normalized eigenfunctions. The IPR is directly propor-

tional to the volume of the system for extended states but is independent of

the system size for localized states. The typical magnon DOS is given by

ρtyp(ω) = exp(〈lnρi(ω)〉c) (2.23)

where the notation 〈...〉c represents the average over disorder configurations

and ρi(ω) is the local magnon DOS. The mobility edge is expected to vanish

at the percolation threshold exactly.

2.4.2 Dynamical Spectral Function

The dynamical spectral function, also known as the dynamical structure fac-

tor, provides direct insight into magnetic excitation spectrum of the system.

This can be accessed most directly by inelastic neutron scattering experi-

ments. The averaged spectral function is given by

Ā(q, ω) = − 1

π〈〈Sz〉〉ℑḠ(q, ω) (2.24)
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where Ḡ(q, ω) is the averaged Fourier transform of the retarded Green’s

functions

Ḡ(q, ω) =

〈
1

Nimp

∑

ij

eiq(ri−rj)Gc
ij(ω)

〉

c

(2.25)

and

〈〈Sz〉〉 = 1

Nimp

∑

i

〈Sz
i 〉 (2.26)

is the total magnetization averaged over all spin sites.
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Figure 2.13: Spectral function A(q, ω) as a function of the energy ω in the
(1 0 0) direction for different values of qx, and for four different x. (Here
L=28). (From Ref.[72]).

In Figure 2.13 we have plotted the spectral function Ā(q, ω) as a function

of energy for different values of the momentum q in the (1 0 0) direction. The
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Figure 2.14: Spectral function Ā(q, ω) in the (q, ω) plane for three different
values of x. (Here L=32). (From Ref.[72]).

spectral functions shown here correspond to four different concentrations of

localized spins x, where x=1.0 denotes the clean case. The size of the simple

cubic lattice considered here is L=28 and periodic boundary conditions have

been implemented. Note that for x=0.8, the system contains approximately

18000 spins, which can be considered as quite large. We have performed sim-

ilar calculations for system sizes L=20 and L=24 to analyze the finite-size

effects. It was concluded that L=28 is sufficiently large for the following dis-

cussions. A systematic average was done over 50 configurations of disorder.

However, on checking for the necessary number of random configurations it
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was found that 20 configurations are sufficient for the L=28 system. An in-

sufficient sampling over disorder can lead to an error in the estimation of the

spin-stiffness, which we shall see later. Now as we can clearly see from the fig-

ure that well defined excitations exist only for small values of the momentum

q, except for the clean case where we observe sharp peaks for all values of

the momentum. As the momentum increases the peak becomes broader and

develops a tail extending towards higher energies, with increase in dilution.

On approaching the percolation threshold, for sufficiently low concentration

of spins, the magnetic excitation peaks become strongly asymmetric. Similar

asymmetric peaks were also observed in the magnetic excitation spectrum for

the diluted antiferromagnet MnxZn1−xF2 [78]. This increase in asymmetry

with the momentum corresponds to a crossover from propagating spin waves

to localized excitations (fractons)[79, 80].

In Figure 2.14, we show the spectral function in the (q, ω) plane, corre-

sponding to three different concentrations of localized spins, x=0.8, 0.6, and

0.35 respectively. The spectral function is plotted over the entire Brillouin

zone. In contrast to the case of non-dilute systems, well defined excitations

are found to exist in the dilute case only in a restricted region of the Bril-

louin zone close to the Γ point [q=(0 0 0)]. From the figure we conclude

that well defined excitations cease to exist as we go to higher dilutions. Also

the broadening of the excitation spectrum increases significantly as we move

away from the Γ point. As we get closer to percolation threshold, this broad-

ening can be attributed to the formation of localized modes. We believe

that the momentum cut-off below which well defined excitations exist should

be related to the percolation correlation length. A somewhat similar kind

of behavior was observed in the excitation spectrum of the diluted mag-

netic semiconductor Ga1−xMnxAs[81]. However the exchange couplings in

that case were obtained from ab initio based studies, and the couplings were

rather extended and dependent on the concentration of localized spins. We

shall discuss this in more detail in the following chapter.
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2.4.3 Spin-stiffness and percolation threshold

As already stated the SC-LRPA is consistent with the Goldstone theo-

rem. Now as we know according to the Goldstone theorem, the spontaneous

breaking of any continuous symmetry is associated with the appearance of

low energy excitations, known as the Goldstone modes. In the case of the

Heisenberg Hamiltonian, this spontaneous symmetry breaking is related to

the rotation invariance of the spins. The low lying excitations which arise as

a result of this are better known as magnons. Now in the case of ferromag-

netic systems, the magnon excitation energy in the long wavelength limit (q

→ 0) is quadratic in q,

ω(q) ∼ Dq2 (2.27)

The coefficient D is known as the spin-stiffness and it can be obtained by

inelastic neutron scattering experiments or by ferromagnetic resonance mea-

surements. Inelastic neutron scattering experiments are able to measure the

magnon dispersion curves, from which the spin-stiffness coefficient can be

extracted. Note that for the antiferromagnetic case the magnon dispersion

relation is linear in q. The spin-stiffness constant is of general importance in

a wide class of systems. For example, it is used to identify the quantum phase

transitions in systems with metal-insulator transitions. In the present case,

we are interested in estimating the spin-stiffness for the nearest neighbor

Heisenberg model and study its variation with respect to the concentration

of localized spins.

To begin with we plot the magnon energy ω(q) for different concentra-

tions of localized spins as a function of q2, as shown in Figure 2.15. In fact

what we actually plot is the energy of the first peak in A(q, ω) in the (1 0

0) [q=( 2π
La0

0 0)] direction as a function of q2. The system size varies from

L=20 to L=32. As can be seen from the figure for small momentum (q → 0),

ω(q) ≈ D(x)q2. Hence from the slope of these curves we can extract the spin

stiffness D(x) for different x. We observe a strong decrease of the slope as we

approach the percolation threshold. Note that, the perfect linear behavior

of ω(q) as a function of q2 vindicates the fact that the average over disorder
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Figure 2.15: Magnon energy ω(q) as a function of q2 for different values of
x. Here L=20, 24, 28, and 32. (From Ref.[72]).

configurations was obviously sufficient. An insufficient averaging would lead

to some kind of fluctuations in the dispersion curves. In Figure 2.16 we have

plotted the spin stiffness D(x) as a function of the concentration of the lo-

calized spins x. We find that the spin stiffness is almost linear from x = 1.0

down to x = 0.5 and only forms a concave toe close to the percolation (de-

noted by xc in the figure). We have also shown the spin stiffness obtained by

Kirkpatrick [40]. The author had used site percolation statistics on random

resistor networks, as a natural generalization of lattice models, and obtained

a relation between the site percolation probability P (s)(x), the conductance

G(x) and the spin stiffness coefficient D(x). We find that our results are in

very good agreement with those of Ref.[40]. The important thing to note here

is that the method we have used is entirely different from that adopted in

Ref.[40], since we extract the spin-stiffness directly from the curvature of the

magnon excitations. We have also plotted the MF-VCA value which is given

by DMF−V CA(x)=xD(x = 1). For a decreasing concentration of localized

spins the difference between the MF-VCA and the SC-LRPA value increases
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significantly. Below x=0.5, the DMF−V CA(x) drastically overestimates the

values obtained within the SC-LRPA. The percolation effects are clearly not

reproduced. Thus the failure of the MF-VCA treatment to handle disorder

effects in the diluted magnetic systems is established once again.

Note that the spin stiffness curve shown here is very different from what

was obtained in the case of optimally annealed samples of the diluted mag-

netic semiconductor Ga1−xMnxAs [81]. This difference of behavior is due

to the fact that in the case of Ga1−xMnxAs the concentrations were much

smaller and that the couplings were rather extended and spin concentration

dependent. We will come back to this later in this manuscript.

2.4.4 Curie temperature as a function of localized spins

After analyzing the magnon excitation spectrum and extracting the spin-

stiffness we now discuss the critical temperatures of the nearest neighbor

diluted Heisenberg model. Figure 2.17 shows the Curie temperature plotted
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as a function of the concentration of localized spins. The symbols in the

figure correspond to the TCs calculated within the self-consistent approach.

The system size considered here is L=32 and a systematic average over a

few hundred configurations of disorder was performed. Here again we notice

that the Curie temperature corresponding to the clean case (x=1) reduces to

that of the standard RPA value (1.32J) for the nearest neighbor simple cubic

lattice. For increasing dilution we observe a non-linear decrease in the critical

temperatures. This decrease is rather fast as we approach the percolation

threshold (denoted by xc in the figure) from above. The Curie temperature

appears to vanish at the percolation threshold exactly, below which there

is no ferromagnetic order. This once again proves the reliability and the

accuracy of the SC-LRPA to treat dilution and/or disorder effects. For the

sake of comparison we have also shown the Curie temperatures calculated

within the MF-VCA, denoted by the solid line in the figure. As can be

clearly seen, the MF-VCA always overestimates the critical temperatures

for all finite dilutions. The disorder effects are evidently not taken into
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consideration within the MF-VCA treatment, as it predicts a finite critical

temperature even below the percolation threshold. The actual nature of

the exchange couplings are not accounted for and the concentration of the

spins only appear as a prefactor in the calculation of the Curie temperature

within the MF-VCA formalism, as was the case seen in the estimation of the

spin-stiffness.

2.5 Conclusions

Following the success of the SC-LRPA to determine the Curie temperatures

in various disordered and diluted materials, we have tried to demonstrate

here its ability to determine the magnetic excitation spectrum. For this we

have considered the very general 3D diluted Heisenberg model with nearest

neighbor ferromagnetic interactions. The excitation spectrum was almost

impossible to study within the existing theoretical approaches, until now.

However, within the semi-analytical we are able to provide a detailed and

accurate analysis of the magnon excitation spectrum as well as the magnon

DOS with respect to the change in dilution. We see that a proper treatment

of disorder leads to an unusual behavior of the magnetic excitation spectrum

compared to what is usually observed in non-dilute systems. The zone of

stability of the well-defined magnon modes is found to shrink drastically

as we approach the percolation threshold. The observed broadening in the

excitation spectrum close to the percolation threshold is attributed to the

formation of localized modes. We have also calculated the spin-stiffness,

without any adjusting parameters, and found that our results are in very good

agreement with those obtained from an earlier study, based on an entirely

different theoretical approach. The calculated spin-stiffness is found to vanish

at the percolation threshold exactly, which was not predicted within the

MF-VCA approach. Similar to the case of Curie temperatures, the MF-

VCA largely overestimates the spin-stiffness. This once again shows the

importance of the disorder effects and spin fluctuations, and the need to

treat them in a reliable manner. The self-consistent approach proves to be

a reliable and accurate tool to determine the spin excitation spectrum in
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diluted magnetic systems. The accuracy of the method can be further tested

by directly measuring the excitation spectrum by experimental methods, such

as inelastic neutron scattering.

Thus we can conclusively say that the SC-LRPA is one of the best avail-

able tools to deal with diluted magnetic systems. The efficient and accu-

rate treatment of the disorder and/or dilution effects definitely gives this

an edge over other existing methods. In the remaining part of this work,

this approach shall be used quite extensively to determine various proper-

ties, such as the Curie temperatures, magnetic excitation spectrum, magnon

DOS, spin-stiffness, and magnetization, for different kinds of diluted systems.
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Chapter 3

Comparison between model

and ab initio approach: The

case of (Ga,Mn)As

3.1 Introduction

In the previous chapter, we have shown a detailed study of the the magnetic

excitation spectrum in the diluted nearest-neighbor Heisenberg model[72].

The disordered Heisenberg model is very general and can be used to study

any kind of system with a finite concentration of interacting localized spins.

Now to describe and analyze the underlying physical principles in realistic

diluted materials we need model approaches, which allows one to identify the

most relevant physical parameters that control both the magnetic and the

transport properties. In this chapter, we shall focus mainly on the well known

and widely studied diluted magnetic semiconductors (DMSs), in particular

(Ga,Mn)As, in the framework of a minimal model approach and try to iden-

tify the crucial parameters which control the ferromagnetism in these mate-

rials. The prospect of manipulating the electronic spin for spintronics appli-

cations and the possibility of room-temperature ferromagnetism has contin-

ued to attract considerable interest in DMSs over the past few years[53, 83].

Now it is well established that the ferromagnetism in these materials is medi-
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ated by carriers (mainly holes) coupled antiferromagnetically to the localized

spins. The magnetic and transport properties in these materials are found to

be sensitive to the dilution effects as well as to the presence of compensating

defects. Several theoretical studies, based on model approaches, have been

performed to study and predict the properties of DMSs. Among them, one

of the most frequently used models found in the literature is based on the re-

alistic six- or eight-band Kohn-Luttinger k.p Hamiltonian[84] which includes

a p-d exchange interaction between the localized spins and the itinerant car-

riers. Figure 3.1 shows the calculated Curie temperatures obtained within
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Figure 3.1: Predicted critical temperatures for different DMSs doped with
5% of Mn and containing 3.5 x 1020 holes/cm3. (From Dietl et al.[6]).

this model[6]. The authors have predicted above room-temperature ferro-

magnetism in GaN and ZnO for a nominal concentration of 5% Mn atoms.

However, the following approximations were adopted in the treatment of the

Hamiltonian, (i) the local coupling (Jpd) is treated perturbatively, (ii) the dis-

order effects are treated within the VCA and effectively neglected, and (iii)

the thermal fluctuations are treated within the MFA. These oversimplified

approximations can lead to severe consequences such as strong overestima-

tions of the Curie temperatures as well as the ferromagnetic zone of stability.
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A perturbative treatment of the local coupling, within this approach, leads

to RKKY (Ruderman-Kittel-Kasuya-Yosida) interactions for the magnetic

couplings. The approach is based on the assumption that the states near

the Fermi level have the same character as the host valence band and thus

the influence of the impurity perturbation on the host band structure is ne-

glected. However, for realistic DMS systems first principles calculations, in

good agreement with experimental studies, suggest otherwise (as we shall

see in the following section). Moreover, it was already shown that RKKY

exchange interactions are inappropriate to account for the ferromagnetism in

DMS systems as it leads to an instability of the ferromagnetic phase[85].

Hence we see that a reliable and robust model study calls for a non-

perturbative treatment of the local couplings as well as an appropriate treat-

ment of the disorder effects resulting from dilution. But before we dive into

the details of our model approach, let us go first go through a brief overview

of some relevant results obtained from ab initio based calculations for the

case of DMSs.

3.2 An overview of ab initio calculations

First-principles calculations, based on DFT[86, 87], is in principle exact

and entirely free of phenomenological parameters. DFT based calculations

have proved to be an efficient tool to study the origin of magnetism and to

predict the electronic and ground state properties of a wide class of diluted

materials, and in particular DMSs. The basic idea behind DFT is to study a

quantum mechanical many-body problem by using functionals based on the

electron density of states (DOS) of the system. For more details on DFT

we refer to the review article by Jones and Gunnarrson[88]. As discussed

before one of the important aspects to be taken into account in the case

of DMSs is the disorder that arises due to the random substitution of the

lattice sites by the impurity atoms. Disorder plays a vital role in these

materials[37] and hence it is necessary to average over several realizations of

the particular system to obtain reliable estimates of the physical quantities.

Within the DFT calculations, disorder is treated within the framework of
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the coherent potential approximation (CPA)[45, 46]. In addition supercell

calculations are used to study the nature of the magnetic interactions and

the type of magnetic order[89, 90, 91]. In the following, we shortly discuss

some important properties of DMSs obtained within this approach.

3.2.1 Electronic structure of Mn in DMSs

In DMSs several exchange mechanisms, like the double-exchange, the p-d

exchange, or the superexchange, can play a role in determining the magnetic

properties. These exchange mechanisms may depend on several factors, such

as the lattice constant, the symmetry of the lattice, the electronic nature and

concentration of the magnetic impurities as well as the concentration of any

other impurities present in the host. The advantage of the first-principles

calculations is that all these complexities of the real materials are taken into

account.
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Now when Mn or any other transition metal impurity is introduced in

a semiconductor host at the substitutional site, which has an environment

of tetrahedral symmetry, a 3d orbital (3dxy, 3dyz, 3dzx) strongly hybridizes

with the host p orbitals leading to the formation of a bonding state (tb)

in the valence band, and an anti-bonding state (ta) higher up in the band

gap. Also a highly localized non-bonding (e) state results from the small p-d

hybridization from a doublet 3d orbital (3dx2−y2 , 3dz2). Figure 3.2 shows the

spin-polarized DOS for (Ga,Mn)N, (Ga,Mn)P, (Ga,Mn)As, and (Ga,Mn)Sb

each containing 5% of Mn. The solid curves represent the local Mn DOS

while the dotted curves give the total DOS. As we can see the local Mn

DOS vary quite drastically in different materials, and this depends on the

position of the host p level with respect to the Mn d level. In the case of

(Ga,Mn)N, the N p level is located within the band gap and it lies below the

Mn impurity bands, whereas in (Ga,Mn)Sb the center of the p band of Sb

is located above the large peak of the majority d DOS. For (Ga,Mn)P and

(Ga,Mn)As, we observe a clear two-peak structure in the majority d DOS

of Mn, a weaker resonance at the Fermi level, and a large d peak at lower

energies. Note that we observe the presence of a preformed impurity band

in the case of (Ga,Mn)N, (Ga,Mn)P, as well as (Ga,Mn)As. The presence of

the impurity band plays a significant role in these materials as we shall see

in the following.

3.2.2 Non-RKKY nature of the exchange interactions

in DMSs

The exchange interactions between the magnetic atoms is one of the most

important features in the case of DMSs. A proper determination of the ex-

change integrals helps us to reliably estimate the critical temperatures, the

magnon excitation spectrum, the spin-stiffness, and other important prop-

erties. Also the exchange interactions give us an idea of the stability of the

magnetic state in these systems.

The exchange couplings for three typical DMSs, (Ga,Mn)As, (Ga,Mn)N,

and (Zn,Cr)Te are shown in Figure 3.3. The concentration of impurity atoms
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Figure 3.3: Mn-Mn exchange interactions, scaled by a RKKY-like factor
(d/a)3, in the (1 0 0) direction for (Ga,Mn)As, (Ga,Mn)N, and (Zn,Cr)Te.
(From Ref.[92]).

in each case is 5%. In order to perceive the presence of any RKKY oscilla-

tions the couplings are scaled by the factor (d/a)3, where d is the distance

between the magnetic impurities and a is the lattice constant. The calcu-

lations were performed on a fcc lattice. We immediately observe that the

couplings are free from any oscillations and they are ferromagnetic in na-

ture. In (Ga,Mn)As the spatial extent of the interactions is larger as com-

pared to (Ga,Mn)N, where it is relatively short ranged. While in the case of

(Zn,Cr)Te, we notice that the couplings are somewhat intermediate. The rel-

atively short-range nature of the interactions in DMSs makes the percolation

effects very important in the dilute regime, and this emphasizes the need to

treat disorder effects correctly. In the next figure, Figure 3.4, the exchange

interactions for (Ga,Mn)As are shown along the dominating (100) direction,

for different concentrations of Mn. We observe a decrease in the extent of the

couplings with increasing concentration of Mn for relatively large distances.

This reduction is due to the increase in the disorder and the half-metallic

character of the host semiconductor with increasing concentration of Mn.
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Figure 3.4: Exchange interactions in (Ga,Mn)As, along the (100) direction,
for different Mn concentrations, as a function of the distance between the
magnetic impurities. Inset: Same interactions scaled by a RKKY-like factor
(d/a)3. (From Ref.[92]).

On increasing the impurity concentration we increase the multiple scattering

of the carriers on the impurities, which effectively reduces the size of the

exchange couplings. The inset in the figure shows the same couplings but

scaled by a RKKY-like factor (d/a)3. Here also we notice the absence of any

oscillations in the exchange interactions for all Mn concentrations.

Thus we see that the exchange couplings obtained from ab initio studies

for DMSs are essentially ferromagnetic, relatively short ranged, and almost

exponentially decaying. They are also found to depend on the concentration

of magnetic impurities. These couplings were used to obtain Curie tem-

peratures accurately, which were found to be in very good agreement with

experiments. Here we have primarily discussed the case of III-V DMSs, but

an ab initio study on the exchange couplings in II-VI semiconductors can be

found in Ref.[93]. A more extensive review on the first-principles calculations

of DMSs is given by Sato et al.[53]. Although in principle exact, the first

principles calculations are essentially material specific. Despite the fact that
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several physical aspects (hybridization, band structure, correlations) are in-

cluded in this approach, it is difficult to identify their relevant contributions

separately. Moreover the ab initio calculations are restricted by the size of

the supercells on which the calculations are performed. Also, it is almost

beyond the reach of ab initio techniques to reliably treat the effects of inho-

mogeneities in DMSs, as we shall see later. This makes the role of a minimal

model approach absolutely indispensable.

3.3 A unifying minimal Hamiltonian

for DMSs: The V -J model

The ideal tool to identify and analyze the effects of the relevant physi-

cal parameters in these diluted systems is a minimal model approach. The

one-band V -J model is a prime example of such a model which involves a

minimum number of independent parameters, and at the same time can pro-

vide a very good qualitative and quantitative understanding of the intriguing

physics of these systems. The V -J model differs from the other commonly

used impurity-band models[94, 95, 96] in the fact that it takes into account

the Coulomb potential V due to the chemical substitution of a cation in the

host lattice with a magnetic impurity. The one-band V -J Hamiltonian de-

scribing the interaction between the carriers and the localized impurity spins

is given by

H = −
∑

ijσ

(tijc
†
iσcjσ + hc) +

∑

i

JiSi.si +
∑

iσ

Vic
†
iσciσ, (3.1)

The hopping term tij=t for i and j nearest neighbors only, otherwise zero.

c†iσ (ciσ) is the creation (annihilation) operator of a hole of spin σ at site

i. Ji is the local p-d coupling between a localized impurity spin Si and an

itinerant spin carrier si (p- band). In the case of Mn doped III-V materials,

|Si|=5/2. The on-site potential Vi describes the effects of substitutional

disorder. Ji=piJpd and Vi=piV , where the random variable pi=1 if the site

is occupied by an impurity, otherwise zero. It should be noted that this
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minimal one-band model can be used to study the properties of a wide class

of disordered magnetic systems, such as manganites as well as the novel d0

materials. But here we shall restrict ourselves to the case of DMSs only. The

calculations are performed on a simple cubic lattice, where x and p denote

the impurity concentration and the hole density respectively. In the absence

of compensating defects (optimally annealed case) p=x. A non-perturbative

treatment of the local coupling combined with an exact treatment of the

disorder and dilution effects makes this model a reliable tool. This treatment

also allows to take into account the localization of the itinerant carriers which

can strongly affect the magnetic as well as transport properties, as we shall

see later.

3.3.1 The key physical parameter: On-site scattering

potential V .

Before going into the detailed calculations, we need to fix the model param-

eters. The above Hamiltonian (3.1) is characterized by three independent

parameters, t, Jpd, and V . First the hopping term t is chosen according to

the bandwidth W of the GaAs host. In III-V semiconductors the bandwidth

is more or less close to that of GaAs (∼7-8 eV). As mentioned earlier since the

calculations are performed on a simple cubic lattice, whereW=12t, the value

of t is fixed to 0.7 eV for all (III,Mn)V compounds. In realistic materials,

such as (Ga,Mn)As, the underlying lattice structure is fcc. However, in the

dilute regime the impurity concentrations and the carrier densities are quite

low for the lattice structure to play any significant role. This simplification

does not have any drastic effect on the results as we shall see in the follow-

ing. It should be noted that a variation of about ±10% in t does not affect

the results considerably. In both Mn doped II-VI and III-V compounds, the

value of Jpd is about 1 eV. Now the value of Jpd is taken as 1.2 eV, which is

the well known value for the local coupling in (Ga,Mn)As[98, 99]. Thus we

are left with the last parameter, the on-site potential V , which appears to

be the crucial one. This is set in order to reproduce the bound hybridized

p-d states energy (Eb) with respect to the top of the valence band, which is
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Figure 3.5: Mn acceptor level Eb (eV) as a function of V/t in III-V hosts
(assuming t≈0.7 eV and JpdS=4.3t). Inset: Spin splitting ∆ as a function x
in Ga1−xMnxAs. (From Ref.[97]).

measured experimentally or obtained from ab initio studies. Now this bound

state is threefold degenerate (see Fig. 3.6). At a small but finite concentra-

tion of Mn, since each Mn2+ provides a single hole, it leads to a one-third

filled impurity band. Now, for a single Mn impurity in GaAs, the value of

Eb is found to be approximately 110 meV[100, 101, 102]. Figure 3.5 shows

the calculated Mn acceptor level (Eb) as a function of V /t in different III-V

semiconductors. The realistic values of Eb for various hosts were obtained ei-

ther experimentally or from first-principles calculations. From this the value

of V is found to be 1.8t for (Ga,Mn)As and 5t for (Ga,Mn)N. The inset

shows the spin splitting calculated for Ga1−xMnxAs as a function of x. It

is given by ∆(x)=E↑
max-E

↓
max, where E

σ
max is the largest eigenvalue in the σ

sector. As can be seen, the results obtained within the V -J model are in

excellent agreement with those from first principle based LSDA calculations.

The MF-VCA value on the other hand (dashed line in the figure), given by

∆(x)=xJpdS, is found to strongly underestimate the real splitting. Hence

the mean-field expression is not a reliable manner to extract the value of Jpd

in III-V materials. However, this is found to be a good approximation for
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(II,Mn)VI materials, which have small |V | values.

3.3.2 Calculation of exchange couplings and compari-

son with ab initio and experimental results

Now in order to calculate the exchange couplings between the magnetic

impurities, we assume a fully polarized ground state with all the impurity

spins perfectly aligned in one direction, suppose Sz
i =S. Within this approx-

imation, the second term on the right hand side of Equation 3.1 acts as an

effective on-site potential, and the Hamiltonian can now be written as

Hσ = −
∑

ijσ

(tijc
†
iσcjσ + hc) +

∑

iσ

V σ
i c

†
iσciσ, (3.2)

At each site occupied by an impurity, a random on-site spin-dependent po-

tential appears, which is given by

V ±
i = V ± JpdS

2
(3.3)

Here V +
i and V −

i are the effective potentials acting on the majority and

minority spin carriers, respectively. Now this Hamiltonian (Equation 3.2)

is diagonalized exactly in both spin sectors (σ=↑, ↓), for a given impurity

concentration x and disorder configuration c. The diagonalization provides

us with the eigenvalues and eigenvectors denoted by {ωc
σ,α, |Ψc

σ,α〉}, where
α=1,2,...,N (N=L3 is the total number of sites on the simple cubic lattice),

which in turn can be used to evaluate the couplings as well as the optical

conductivity. The magnetic coupling between two localized spins is given by

the generalized susceptibility[103]

J̄ij(x, p̄) = − 1

4πS2
ℑ
∫ EF

−∞

Tr(ΣiG
↑
ij(ω)ΣjG

↓
ji(ω))dω (3.4)

where the Green’s functions are defined as

Gσ
ij(ω) =

〈
iσ

∣∣∣∣
1

ω − Ĥσ + iǫ

∣∣∣∣ jσ
〉

(3.5)
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and Tr(Â)=
∑

i〈i|Â|i〉. Within this model the local exchange splitting at

Valence Band

n  p-d states per Mn
∆

preformed 

impurity band

E

ρ ρ 

E
F

p = x

2+

l
E
b

Figure 3.6: Left panel: Schematic representation of the 3 p-d states near the
top of the valence band for (III,Mn)V compounds. Right panel: Spin resolved
DOS and the formation of an impurity band for a finite Mn concentration
(From Ref.[97]).

each site occupied by an impurity reduces to Σi=V
+
i − V −

i =JpdS, which is

a constant. The couplings are calculated on considerably large system sizes

and a systematic averaging is performed over a few hundred configurations of

disorder. The finite size effects on the magnetic couplings are also analyzed.

Now in order to facilitate a direct comparison between the model calcu-

lations and those obtained from ab initio based studies or experimental ob-

servations, the following point needs to be considered. As mentioned above,

in the realistic case each Mn2+ provides nl= 3 degenerate p-d states near the

top of the valence band (see left panel of Figure 3.6). These states are known

as Dangling Bond Hybrid states[104]. For a small but finite concentration of

Mn2+, an impurity band is formed (right panel of Figure 3.6) which merges

into the valence band when x is large enough. Since each Mn2+ introduces

a single hole, the resulting hybridized p-d states impurity band is one-third

filled. Now in the one-band V -J model each Mn2+ provides a single state.

Thus for reasons of consistency the model calculations for optimally annealed
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samples (p=x) are performed for the hole density p̄=p/nl. Then in both cases

the impurity band is one-third filled. Similarly the exchange couplings used

to calculate the Curie temperatures and other magnetic properties are given

by

Jij(x, p) = nlJ̄ij(x, p/nl) (3.6)

and accordingly the optical conductivity is given by

σ(ω, p) = nlσ̄(ω, p/nl) (3.7)

where J̄ij(x, p/nl) and σ̄(ω, p/nl) correspond to the values obtained within

the one-band model. We will come back to the definition of the optical

conductivity in a short while. In what follows next, we shall discuss some of

the magnetic and transport properties of DMSs, obtained within this one-

band V -J model. We will observe an excellent agreement between the model

calculations and those obtained from first-principle based studies as well as

experimental results.

3.3.3 Curie temperatures in III-V DMSs: RKKY to

Double exchange systems

As an example of the magnetic properties obtained within the one band V -J

model, the Curie temperatures for different (III,Mn)V materials as a function

of the bound state energy Eb is shown in Figure 3.7[97]. The concentration

of Mn is fixed at x=5% and the calculations are performed assuming the

case of optimally annealed samples, i.e. p=x. A two-step approach was

adopted in this case to calculate the TC ’s. The exchange couplings were

obtained from the V -J model (Equation 3.6) followed by the treatment of

the effective diluted Heisenberg Hamiltonian within the SC-LRPA. The TC ’s

calculated from the ab initio exchange integrals are also shown in the figure.

We observe a very good agreement between the model calculations and those

obtained from ab initio based studies. We also observe a clear resonant

peak structure in the TC curve and the calculations predict that (Ga,Mn)As

77



Figure 3.7: TC as a function of the bound state Eb and for a Mn concentration
of 5% in well annealed samples. The filled (open) symbols correspond to the
TC from the V -J model (ab initio exchange integrals). (From Ref.[97]).

has the highest critical temperature among the (III,Mn)V compounds. The

narrow resonant peak (30 ≤ Eb ≤ 200 meV) is found to be located in the

metallic phase but close to the metal-insulator phase transition. This could

explain the experimental findings of both metallic and insulating compounds,

and the observation of insulator-metal transition after annealing of as-grown

samples. Now for small values of Eb (or V ), the couplings are RKKY-like and

hence the Curie temperatures obtained in this case are quite low. This region

corresponds to the case of II-VI materials such as (Zn,Mn)Te or (Cd,Mn)Te,

in which the critical temperatures are relatively small. With increasing Eb the

critical temperatures are found to increase. This is due to the suppression of

the RKKY oscillations and the couplings become relatively short ranged, as

a result of the resonant states due to the preformed impurity band. Further

increase in Eb leads to a strong reduction in the range of the couplings, the

relevant couplings controlling the critical temperatures become smaller and

hence the TC values also reduce significantly. For very large values of Eb,

the interactions become more double-exchange like which leads to very small
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values of the Curie temperatures. In this regime the percolation effects play

a very important role, which is included in this approach. It is found that

(Ga,Mn)P is an insulator, which was also reported experimentally[105]. The

TC ’s predicted for (Ga,Mn)P (∼ 50 K) and (In,Mn)As (∼ 60 K) are found to

be close to the experimental maximum value, which is ∼ 60 K for annealed

samples containing 6% of Mn[105, 106, 107, 108].

Thus we see that the Curie temperatures calculated within the one-

band V -J model are found to be in very good agreement with first-principles

based studies and experimental observations alike. It should be noted that

the calculations do not involve any adjustable parameters. Also the resonant

structure of the critical temperatures, with varying the bound state Eb (or

effectively the local potential V ), shows that (Ga,Mn)As is close to optimality

among the (III,Mn)V compounds. (Ga,Mn)As is found to exhibit the highest

Curie temperature, however it is still far below the room-temperature.

3.3.4 Comparsion between theory and experiment for

the Optical conductivity

In this part we are going to study the feasibility of the V -J model to deter-

mine the transport properties in DMSs. In order to study this, the optical

conductivity was calculated as a function of the frequency ω for the well

annealed cases of (In,Mn)As, (Ga,Mn)As, and (Ga,Mn)P, at a fixed Mn con-

centration of 5%[97]. This is shown in Figure 3.8. As discussed shortly

before, the optical conductivity is given by σ(ω, p)=nl

∑
σ σ̄σ(ω, p/nl), where

the subscript σ denotes the spin index. The regular part of the optical con-

ductivity is given within the Kubo formalism, defined as

σ̄σ(ω, p/nl) =
σ0
N

∑

α 6=β

(nσ
α − nσ

β)A
σ
αβδ(~ω − Eσ

α + Eσ
β ) (3.8)

Here σ0=πe
2/~a, where a is the simple cubic lattice parameter, N=L3 is the

total number of sites, and nσ
α is the occupation number of the state |Ψσ

α〉
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corresponding to the energy Eσ
α. The matrix element Aσ

αβ is given by

Aσ
αβ =

| 〈Ψσ
α | ĵσx | Ψσ

β〉 |2
Eσ

β − Eσ
α

(3.9)
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Figure 3.8: Optical conductivity as a function of ω/t for optimally annealed
(In,Mn)As, (Ga,Mn)As, and (Ga,Mn)P, for a Mn concentration of 5%. The
symbols correspond to experimental data for (Ga,Mn)As. (From Ref.[97]).

where ĵσx is the x component of the current operator in the σ sector

(σ=↑, ↓), given by

ĵσx = −it
∑

ij

(c†i,jσci+x̂,jσ − h.c) (3.10)

Now coming back to the figure, the symbols represent the experimental

data obtained for (Ga,Mn)As[109]. A very good quantitative agreement was

obtained with the model calculations over almost the entire frequency range.

Moreover the peak position at 0.2 eV in the optical conductivity could be

exactly reproduced. For the case of (In,Mn)As, the conductivity is higher

than the other two compounds at low frequencies. This is attributed to the
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fact that the Fermi level is deeper in the valence band for (In,Mn)As, which

means more extended states. The optical conductivity peak is located at 0.11

eV. Now in the case of (Ga,Mn)P, the optical conductivity exhibits a double

peak structure. The principal peak is located at ω ≃ 0.2 eV while the sec-

ondary one lies around ω ≃ 1.2 eV. For this Mn concentration, in (Ga,Mn)P

the impurity band just separates from the valence band. This secondary

peak is believed to originate from the electronic transitions between the sep-

arated impurity band and the top of the valence band. Detailed experimental

studies for the two latter materials would help to further substantiate these

predictions.

It is worth mentioning that only recently the one-band V -J model was

implemented to study the effects of compensating defects on the transport

properties of (Ga,Mn)As and an excellent qualitative and quantitative agree-

ment with experimental results was obtained[110]. The Drude weight (or-

der parameter) is calculated as a function of the hole density and from the

metal-insulator phase diagram it is shown that (Ga,Mn)As is indeed close to

the metal-insulator transition. The model calculations are shown to repro-

duce the experimentally observed red-shift of the broad conductivity peak

with increasing hole density from compensating to well annealed samples of

(Ga,Mn)As. This feature is consistent with the fact that a preformed impu-

rity band exists in the case of (Ga,Mn)As. It is shown that a non-perturbative

treatment, beyond the valence band picture, is essential to capture the rele-

vant physical features, which would otherwise lead to an incorrect blue-shift

in the conductivity.
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3.4 Dynamical magnetic properties

of (Ga,Mn)As within the V -J model

In this section we are going to study the dynamical magnetic properties of

Mn doped GaAs, obtained within the framework of the one-band V -J model.

As seen in the previous section, the V -J model could be successfully used

to estimate the Curie temperatures and the optical conductivity in a wide

range of (III,Mn)V materials. The model calculations were found to be in

very good agreement with ab initio based studies as well as experimental

observations. Now the question is whether this simple model could be effec-

tively implemented to study the nature of the magnetic excitations in these

systems, and whether it can reproduce the spin-stiffness values obtained from

first principle calculations and those measured experimentally. This was the

primary motivation which led us to the current study[111].

Here we focus on the case of (Ga,Mn)As, which has been the most

widely studied III-V DMS over the last decade. As already known, the

substitution of Ga3+ by Mn2+ introduces a localized spin (S=5/2) as well as

a hole. Disorder and spin fluctuations are found to play a very important

role in this material. Ab initio based calculations show that Mn strongly

affects the nature of the states close to the Fermi level (EF ) leading at low

impurity concentrations to a preformed impurity band[90, 112]. Infrared

and optical spectroscopy measurements have also shown that the EF resides

indeed in a Mn induced impurity band in (Ga,Mn)As[109]. However, most

of the existing model studies[6, 83] are based on a perturbative treatment

of Mn in GaAs, which is consistent with the valence band picture. The

valence band theory cannot capture the essential features in this case, it is

inconsistent with the ab initio based studies and it also fails to explain the

proximity of (Ga,Mn)As to the metal-insulator transition. This calls for a

model approach based on a non-perturbative treatment of the substitution

effects as well as a proper account of the disorder and thermal fluctuations.

In order to calculate the magnetic properties of (Ga,Mn)As, we follow a

two-step approach as discussed previously. This involves, as a first step,

the calculation of the exchange interactions between the magnetic impurities
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within the V -J model, which is followed by the SC-LRPA treatment of the

effective dilute Heisenberg Hamiltonian to calculate the Curie temperatures

and other magnetic properties.

3.4.1 Mn-Mn Exchange couplings in (Ga,Mn)As

In Figure 3.9 we have shown the exchange couplings, calculated within the

one-band V -J model, for well annealed Ga1−xMnxAs for three different Mn

concentrations. Note that here we focus on optimally annealed cases, which

implies that the concentration of compensating defects (As anti-sites or Mn

interstitials) is negligible. We would also like to remind that the systems

are homogeneously diluted with no correlations in disorder (absence of in-

homogeneities). The model parameters are fixed at t=0.7 eV, Jpd=1.2 eV

(JpdS=3 eV), and V=1.8 t, as discussed in Section 3.3.1. The couplings are

calculated for random distribution of magnetic impurities on simple cubic

lattices, whose sizes vary between L=16 and L=24. A systematic average
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Figure 3.9: Exchange couplings in well annealed Ga1−xMnxAs as function of
the distance between the impurities, for three different x. (From Ref.[111]).

over a few hundred configurations of disorder is performed and a careful study
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of the finite size effects on the magnetic couplings is also made. Since our

calculations are performed on a simple cubic lattice (1 atom per unit cell),

for the value of the lattice parameter we take a = a0
41/3

= 3.55 Å, where a0

= 5.65 Å, is the lattice constant in the real zinc-blende GaAs (4 Ga per unit

cell). As can be seen from the figure, the couplings obtained for well annealed

Ga1−xMnxAs are relatively short-ranged and essentially ferromagnetic. They

are exponentially damped with increasing distance between the Mn impuri-

ties. These are similar in nature to those obtained from first-principles based

calculations[92], although not exactly the same. The slight disagreement may

be due to the fact that we consider only a single band in our simplified model

and also the calculations are performed on simple cubic systems instead of

the real fcc lattice, as is done in the ab initio based studies. However, as we

shall see, these simplifications do not play any major role when it comes to

the determination of the Curie temperatures and other magnetic properties.

It is also worth noting that calculating the exchange couplings and the cor-

responding magnetic quantities simultaneously for a given configuration and

then averaging these obtained quantities over several configurations leads to

the same results as the ones we show here.

3.4.2 Comparsion between ab initio and model calcu-

lation of the Curie temperature

Figure 3.10 shows the Curie temperature as a function of the Mn concentra-

tion for optimally annealed Ga1−xMnxAs. To evaluate the TC , the effective

dilute Heisenberg Hamiltonian HHeis=−∑i,j pipjJi,j(x, p)Si · Sj, is treated

within the SC-LRPA formalism. The calculations are performed on very

large systems (typically L=50) together with a systematic average over a

few hundred configurations of disorder, for each impurity concentration. We

immediately observe that our model calculations are in very good agreement

with the TC ’s obtained from ab initio exchange integrals[57, 113, 114], over

the entire range of Mn concentration. These ab initio results could in turn

reproduce accurately the experimental data[115, 116, 117, 118]. We again

stress the fact that our model calculations are free from any adjustable pa-
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rameters. These results clearly indicate that the model is able to accurately

capture the physics in these dilute materials. For the sake of comparison, we

have shown the TC obtained from the MF-VCA in the inset of figure 3.10.

As can be seen, it already leads to room-temperature for only 2% of Mn.

Once again this shows the clear overestimations in the critical temperatures

and hence the failure of the MF-VCA in treating thermal fluctuations and

disorder effects reliably.

3.4.3 Average and typical magnon density of states

Next we study the magnon DOS in (Ga,Mn)As for different concentrations

of Mn. Figure 3.11 shows the average and typical magnon DOS as a function

of the energy ω. The DOS are calculated in a similar fashion as was discussed

in Section 2.4.1. But this time the exchange couplings are obtained from the

V -J model, they are rather extended and not restricted to nearest neighbors
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Figure 3.11: Magnon density of states as a function of the energy for four
different x. The solid (dashed) lines represent the typical (average) density
of states. Ec denotes the magnon mobility edge. (Here N = 443). (From
Ref.[111]).

only. The size of the simple cubic lattice we consider here is L=44 and

the average over disorder is done for a few hundred configurations. We see

that the average DOS (ρavg(ω)), represented by the dashed line in the figure,

exhibits a multi-peak structure, which changes significantly with increasing

dilution. For sufficiently high dilution, close to the percolation threshold, we

observe a drastic increase in the low energy DOS. This can be attributed to

the formation of isolated impurity clusters at low concentrations which have

their own zero-energy eigenmodes, which in turn contribute to the average

magnon DOS. However, as discussed previously, the average magnon DOS is

not able to provide any information on the nature of the magnon states, that

is whether they are extended or localized. In order to evaluate this, we have

calculated the typical magnon DOS (ρtyp(ω))[77] in (Ga,Mn)As, shown by the

solid (red) line in the figure. The typical magnon DOS, unlike ρavg(ω), is a
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local quantity and it provides direct access to the “mobility edge” separating

the localized modes from the extended ones. From the figure we see that there

is no significant change in the overall shape of ρtyp(ω) with varying dilution.

But from the ρtyp(ω) curves we have extracted the energy Ec, which separates

the localized states from the extended ones. For each Mn concentration the

corresponding values of Ec are indicated in the figure. With increase in the

Mn concentration Ec is found to vary from 8 meV for x = 0.02 to 32 meV

for x = 0.08. This not so significant increase in Ec values suggests that even

for relatively large concentrations of Mn majority of the magnon excitations

in (Ga,Mn)As consist of localized states (fractons)[79, 80].

3.4.4 Magnon spectral function in optimally

annealed (Ga,Mn)As

The dynamical spectral function, as we know, provides direct insight into

the magnetic excitations spectrum of a system. In Figure 3.12 we show the

magnon spectral function A(q, ω) (see Equation 2.45) in the (q, ω) plane over

the entire Brillouin zone corresponding to three different concentrations of

Mn in (Ga,Mn)As. The calculations are performed on L=44 simple cubic

systems and a few hundred configurations are considered for the disorder

averaging. However, we found that increasing the number of configurations

beyond fifty does not have any significant effect on the results obtained.

From the figure, we observe that well defined excitations exist only in a re-

stricted region of the Brillouin zone essentially around the Γ-point [q=(000)].

This is in contrast to what is usually observed in the case of weakly disor-

dered systems, such as manganites. From this we realize that the nature of

ferromagnetism in these diluted systems is very different from what is ob-

served in non-dilute materials. A significant broadening in the excitation

spectrum is also observed as we move away from the Γ point. This is con-

sistent with our typical DOS calculations shown in Figure 3.11. Now similar

results for the excitation spectrum of (Ga,Mn)As were obtained using the

couplings from first-principles based tight-binding linear-muffin-tin-orbital

approach[81]. In Ref.[81], the excitation spectrum was calculated in a similar
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Figure 3.12: Spectral function A(q, ω) in the (q, ω) plane for three different
Mn concentrations (x). The energy axis (y axis) is in meV. (Here N = 443.
(From Ref.[111]).

manner based on the SC-LRPA treatment of the effective dilute Heisenberg

Hamiltonian. Hence we find that the magnon spectrum obtained within our

one-band model is in very good agreement with that provided by first prin-

ciples based studies. This also shows that this model can be used in general

to study the magnetic spin excitations in a wide class of DMS materials, as

it was already shown to be successful in predicting the Curie temperatures

in several (III,Mn)V materials[97]. This spectral function is directly accessi-

ble by inelastic neutron scattering experiments. Hence detailed experimental

studies in this direction would be very useful in confirming our predictions

of the excitation spectrum in optimally annealed samples of (Ga,Mn)As.
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3.4.5 Calculated and measured Spin-stiffness in Mn

doped GaAs

Now we proceed to calculate the spin-stiffness in the case of optimally an-

nealed (Ga,Mn)As within the framework of our one-band V -J model. For

this we adopt a similar approach as was used in the case of the nearest-

neighbor diluted Heisenberg model (Section 2.4.3), which was shown to be

reliable and accurate. As a first step, we have plotted the spin wave energy

ω(q) as a function of q2 for different concentrations of Mn x, as shown in

Figure 3.13. ω(q) is extracted from the first peak of A(q, ω) in the (100) di-
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Figure 3.13: Magnon energy ω(q) as a function of q2 for different concentra-
tions of Mn (x). (N=L3, where L=32, 36, 40, and 44). (From Ref.[111]).

rection. Here the system sizes vary from L=32 to L=44. The slope of these

curves gives the spin stiffness D(x) for different values of x. It is important

to note that the perfect quadratic nature of the dispersion curves shown here,

corroborates the fact that the average over disorder was sufficient.

Figure 3.14 shows the spin-stiffness D (in meV.Å2) extracted from the

above dispersion curves as a function of the Mn concentration. As mentioned

earlier, the lattice parameter for our simple cubic system is a= a0
41/3

=3.55Å,

which has also been used to calculate the spin-stiffness here. We would like to

remind that using the real zinc blende lattice parameter (a0) instead would
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lead to stiffness values ∼2.5 times larger than the ones shown here. Now we

found that the spin-stiffness is sensitive to the couplings at comparatively

large distances which appear to be strongly finite size dependent. Thus in

order to make a correct estimation of D(x), the couplings used are obtained

from different system sizes ranging from L=16 to L=24. This leads to the
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Figure 3.14: Spin-stiffness (in meV.Å2) as a function of x. Squares corre-
spond to the V -J model, hexagons to ab initio values[81] and circles [a,b]
to experimental values from Ref.[119, 120]. The green shaded region corre-
sponds to the errors bars for the V -J model (see text for details). (Note the
circles with a cross represent the annealed samples from Ref.[120]). (From
Ref.[111]).

error bars for D(x) as shown by the shaded region in the figure. On the

other hand it should be noted that the exchange couplings obtained from

different system sizes do not have a significant effect on the calculated Curie

temperatures. In the figure we have shown the D(x) values obtained using

the couplings from ab initio based studies[81]. The stiffness values shown

in Figure 4 of Ref.[81] actually correspond to DS where S=5/2, hence the

values we have plotted here have been scaled by a factor of S. We also

show available experimental data for well annealed and as-grown samples of

(Ga,Mn)As[119, 120]. We find a very good agreement between the stiffness

values from our model calculations and those obtained from first principles
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based studies, especially for relatively low concentrations of Mn. Thus the

V -J model is once again able to successfully reproduce the results obtained

within the ab initio based studies. Now concerning the experimental results

of Sperl et al.[120], we find that the agreement for the 6% case corresponds

to the well annealed sample of thickness 200 nm. This is consistent with

the fact that our couplings are calculated for optimally annealed cases of

(Ga,Mn)As. In Ref.[119], the authors reported a value of D≈100 meV.Å2

measured by ferromagnetic resonance in as-grown samples for x=0.05, which

is also in good agreement with our model calculations but then the error bar

in this case is about 40% and in all probability this stiffness would increase

if the sample is subjected to optimal annealing. The deviation between our

results and some experimental data can be explained by the fact that our

calculations are performed for the optimally annealed case.

Thus we find an overall very good agreement for the spin-stiffness values

obtained from our minimal model approach with those from first-principles

based studies as well as experimental results. The model was already shown

to be reliable to calculate the critical temperatures and optical conductivity

in different (III,Mn)V compounds, as discussed previously. Here we have

shown that it is equally reliable to determine the spin-stiffness values in

optimally annealed samples of (Ga,Mn)As, and can as well be used to predict

the same in other DMS materials.

3.5 Conclusion

In this part of the work, we have shown that the role of a minimal model

approach to study the magnetic and transport properties in diluted magnetic

systems is almost indispensable. This proves to be the ideal tool to identify

and analyze the relevant physical parameters which control the underlying

physics of these systems. The one-band V -J model is shown to provide an

overall understanding of the magnetic and transport properties, both qual-

itatively as well as quantitatively, for a wide range of (III,Mn)V materials.

The non-perturbative treatment of the substitution effects combined with

a proper treatment of the disorder effects within the V -J model, definitely
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gives it an advantage over other existing model studies. For example, this is

consistent with the impurity band picture in the case of (Ga,Mn)As, which

was reported by first principles based calculations as well as experimental

measurements. It is also able to explain the proximity of (Ga,Mn)As to

the metal-insulator transition. The model was successful in reproducing the

Curie temperatures obtained from first principles based studies for several

DMS compounds. It could also reproduce accurately the measured optical

conductivity in (Ga,Mn)As, as well as predict those for other materials such

as (In,Mn)As and (Ga,Mn)P. Here we have successfully implemented the V -J

model to study the Curie temperatures and the magnetic excitation spectrum

in optimally annealed (Ga,Mn)As. The calculated Curie temperatures are

found to be in excellent agreement with those from ab initio based studies,

which could accurately reproduce the experimental values. We have also pro-

vided a detailed account of the magnon excitation spectrum and evaluated

the spin-stiffness as a function of the Mn concentration. Surprisingly we also

obtain a remarkable agreement between our model calculations and ab initio

based studies for the spin-stiffness. In addition, we are also able to repro-

duce most of the available experimental values for the stiffness. This shows

that our simple model is able to capture the relevant physics in these diluted

materials. The power of this model lies in its ability to be generalized for a

wide class of diluted magnetic materials, and thus it bridges the gap between

first principles calculations and model approaches.

However, the question that still remains unanswered is whether it is

possible to attain room temperature ferromagnetism in these materials. We

have seen from the previous results that (Ga,Mn)As exhibits the highest

Curie temperature among these materials, which has also been supported

by experimental studies. But this is still far below the much coveted room

temperature. This search for room temperature ferromagnetism serves as

one of the motivations for the next portion of this work, which forms an

essential part of this thesis. Here we would like to remind that so far we

have only considered homogeneously diluted systems in all cases, without

any correlations in the impurity positions. Now what happens if we have an

inhomogeneous distribution of magnetic impurities, or in other words if we
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have correlated disorder ? This forms the basis of our study which we are

going to present in the following chapter.
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Chapter 4

Nanoscale Inhomogeneities in

diluted magnetic systems

4.1 Introduction

Until now we have primarily focussed on systems that were homogeneously

diluted, that is the magnetic impurities were randomly distributed on the

lattice. For a long time people had a firm notion that samples free from any

kind of defects and inhomogeneities should lead to room-temperature ferro-

magnetism, and accordingly huge efforts were made to grow samples as clean

as possible. However, for these kind of clean dilute samples, the highest Curie

temperatures measured so far is in (Ga,Mn)As which is ∼170 K for about

7% of Mn[121, 116]. This is also confirmed by our model calculations[111].

Another material which has drawn considerable interest is (Ga,Mn)N, a

wide band gap DMS. Different experimental groups have reported TCs vary-

ing surprisingly as wide as 10 K to 940 K[122, 123, 124, 125, 126] with a

typical Mn content between 7 and 9%. Whereas recent theoretical stud-

ies, based on model calculations, predict a TC of 30 K in homogeneously

diluted and uncompensated Ga1−xMnxN for x=0.06[97], which is in good

agreement with those obtained from ab initio based studies combined with

the SC-LRPA method[57]. Monte Carlo calculations lead to a TC of 35 K

for x=0.06[113, 114] in Ga1−xMnxN, using the same ab initio exchange cou-
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plings. These theoretical calculations predict the highest attainable TC in

homogeneously diluted Ga1−xMnxN. These observations obviously lead to

some crucial questions. How do we explain the huge fluctuations of the crit-

ical temperatures in these materials? Is there a systematic way to boost

the critical temperatures beyond that reported in the homogeneously diluted

compounds? The main objective here is to provide an appropriate answer

and look into the possible origins of the discrepancies between the theoretical

predictions and experimental observations.

As it turns out, the assumption of the homogeneous nature of the sam-

ples does not appear to be feasible in realistic cases. Based on first-principles

calculations, Sato et al.[127] suggested that it is difficult to obtain com-

pletely random distribution owing to the strong attractive chemical interac-

tions between the impurities (transition metal ions in the case of DMSs). By

calculating the mixing energies of the magnetic impurities in several DMS

compounds, such as (Ga,Mn)N, (Ga,Cr)N, (Ga,Mn)As, and (Zn,Cr)Te, the

authors showed a strong tendency toward spinodal decomposition in DMSs,

which leads to an inhomogeneous distribution of magnetic impurities. (Spin-

odal decomposition implies alternating regions of low and high concentra-

tion of magnetic impurities in the system). Hence it would be unrealistic to

completely discard the possibility of such inhomogeneities in these diluted

materials. After observation of ferromagnetic order in Mn-doped Germa-

nium (TC=116 K for x=0.035)[128], several experimental studies reported

relatively high critical temperatures (∼ 280 K for x=0.06) in Ge1−xMnx

films[129, 130, 131, 132]. However, once again the underlying reasons were

not obviously clear. In Ref.[133], scanning photoelectron microscopy mea-

surements revealed stripe-shaped Mn rich micro-structures which was be-

lieved to be the origin of ferromagnetism in (Ge,Mn). As discussed earlier,

in Chapter 1, recent experimental studies have revealed the formation of self-

organized Mn rich nanocolumns in Ge1−xMnx, which gave rise to a very high

TC (≥400 K)[19] for x=0.06. Magnetotransport measurements, in this case,

have also shown a large anomalous Hall effect up to room temperature. The

spinodal decomposition was suggested to be the reason for the high temper-

ature ferromagnetism in this case. Similar nanometer-sized clusters, with in-
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Figure 4.1: Snapshots (Ga,Mn)N for 5% Mn in (a) and (b), and 20% in (c)
and (d). Random distributions in (a) and (c), and spinodal decomposition
phases (after 100 MC steps) in (b) and (d). (From Ref.[134]).

creased Mn content compared to the surrounding matrix, were also detected

by transmission electron microscopy (TEM) analysis in Ge0.95Mn0.05[135]. In

a different class of diluted materials, the diluted magnetic oxides, recent ex-

perimental studies on (Zn,Co)O[136] have claimed the existence of two types

of nanoscale ferromagnetic Co clusters. The first were spherical with diame-

ters of about 5 nm leading to critical temperatures of ∼100 K and the others

were columnar about 4 nm wide, with a maximum height of 60 nm, leading

to significantly larger critical temperatures of ∼300 K. These results were

confirmed by high-resolution transmission electron microscopy (HRTEM).

Similar inhomogeneous impurity distributions have been experimentally de-

tected in several other DMSs, such as (Al,Cr)N[137], (Ga,Mn)N[138], and

(Zn,Cr)Te[139], by the use of TEM and energy-dispersive x-ray spectroscopy

(EDS). Hence the presence of this kind of anisotropic nanoscale inhomogene-

ity has been established beyond doubt and this can certainly give rise to

interesting magnetic and transport properties in these materials.

Now despite the existence of a large body of experimental work, the
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effect of impurity clustering in these materials has been weakly studied on

the theoretical front. Ab initio based studies for these type of inhomoge-

neous disordered systems are almost impossible to realize due to the large

size of supercells required and standard methods are yet to be prescribed.

In Ref.[134] the authors have simulated the spinodal decomposition in DMSs

by using Monte Carlo (MC) simulations. Figure 4.1 shows the snapshots of

this simulated spinodal decomposition phase, corresponding to 5 and 20% of

Mn in (Ga,Mn)N. The initial completely random distribution of Mn (after

0 MC steps) are shown in Figure 4.1 (a) and (c), while (b) and (d) indicate

the spinodal decomposition phase after 100 MC steps. Interestingly above

room-temperature TC ’s were predicted for this spinodal phase in (Ga,Mn)As

and (Ga,Mn)N, as shown in Figure 4.2. However, the critical temperatures

in this case were calculated within the “standard” random phase approxi-

mation (RPA). Here by the term “standard” we imply that the crucial self-

consistency was not implemented in the calculations. The importance of this

aspect will be discussed a little later. As we can see from Figure 4.2, the

high TC ’s were reported for samples containing sufficiently high concentra-

tions of Mn, above 20%, which is far from the dilute regime. On the other

hand in the dilute case, for approximately 5% of Mn, a suppression of the

critical temperatures were observed in the presence of spinodal decomposi-

tion phases. This decrease was attributed to the absence of a percolating

path for a Mn concentration of 5%. We would also like to emphasize that

these calculations were performed on relatively small system sizes (17 × 17

× 17 fcc cells) and the average was done over only 10 configurations. In

another work, Rao and Jena[140] have performed DFT based calculations of

N-doped Mn clusters and given a hypothesis that a high Curie temperature

detected in some of the (Ga,Mn)N samples is a result of the formation of

small Mn clusters carrying giant magnetic moments. They attributed the

large variation in Curie temperatures to the formation of N induced Mn

clusters of different sizes in samples grown under different conditions. Their

analyses suggests the importance of the growth mechanism in these kind of

materials. Similar density-functional calculations on the effect of microscopic

Mn clustering on the Curie temperatures of (Ga,Mn)N were also reported in
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Figure 4.2: Curie temperatures of (a) (Ga,Mn)N and (b) (Ga,Mn)As as
function of the number of Monte Carlo steps. (From Ref.[134]).

Ref.[141], but then the TC ’s were calculated from mean-field approximation,

which is already known to strongly overestimate the critical temperatures

in homogeneously diluted systems. In Ref.[142], a theoretical investigation

of the impurity correlations and magnetic clustering effects in DMSs was

presented from a model Hamiltonian based approach considering classical

Heisenberg spins with RKKY-like interactions. However, in this case, the

authors found that the impurity correlations have only mild effects on the

critical temperatures while the case of random disorder produced the highest

TC .

Hence we see there are several discrepancies and dissensions among the

existing theoretical studies, and a proper understanding is still essentially

missing. In the following sections, we are going to present a generalized and

detailed study of the effect of nanoscale inhomogeneities on the Curie tem-
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peratures, the spontaneous magnetization, and the spin excitation spectrum

in diluted magnetic systems. As we shall see, the inhomogeneous impurity

distribution gives rise to new and interesting features in these systems. For

example, in contrast to previous observations, we find a colossal increase in

the critical temperatures in presence of inhomogeneities. There are several

factors which are found to play an important role, such as the concentration

of inhomogeneities in the system, the relative size of the inhomogeneities,

the concentration of magnetic impurities inside the inhomogeneities as well

as the range of the effective exchange interactions. We try to provide a de-

tailed analyses of the combined effects of these physical parameters on the

different properties of these inhomogeneous diluted systems.

4.2 Effect of nanoclusters on the critical tem-

peratures

In this section we will study the effects of inhomogeneities on the critical

temperatures in diluted magnetic systems. For reasons of simplicity we have

assumed here a simple cubic lattice for all calculations but it is important to

note that the conclusions that will be drawn are general in nature. The inho-

mogeneities that we consider here are of spherical shape of radii r0. In order

to avoid additional parameters, in all our calculations the total concentration

of impurities in the system is fixed to x=0.07. In the following we denote the

concentration of nanospheres by xns=NS/N , where NS is the total number

of sites included in all the nanospheres and N=L3 is the total number of sites

in the system. The concentration of impurities inside each nanosphere is de-

noted by xin. The total number of impurities in the system and the number

of impurities inside the nanospheres is given by N tot
imp and N in

imp (=xinNS)

respectively. Now, as a first step, the nanospheres are generated randomly

on the simple cubic lattice subject to the restriction that there is no overlap

between them. Figure 4.3 shows snapshots of four typical random configura-

tions corresponding to four different concentrations of nanospheres xns (0.02,

0.04, 0.06, and 0.08)[143]. As we increase the number of nanospheres in the
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Figure 4.3: Snapshots corresponding to four different concentrations of
nanospheres xns (a) 0.02, (b) 0.04, (c) 0.06 and (d) 0.08. The grey (red)
atoms denote the impurities inside (outside) the nanospheres. (Here L=36,
r0=2a, and xin=0.8). (From Ref.[143]).

system, xns increases and consequently the concentration of impurities out-

side decreases, since the total concentration of the system (x) is fixed. Now

in order to evaluate the Curie temperatures, we treat the effective diluted

Heisenberg Hamiltonian HHeis=-
∑

i,j Jij Si ·Sj, within the SC-LRPA theory.

We have already established the accuracy and reliability of the SC-LRPA to

treat disorder and/or dilution effects in these systems, as shown in the pre-

vious chapters. The TC is calculated for each random configuration and then

averaged over a few hundred configurations of disorder. A proper sampling

over disorder is very essential as the Curie temperatures can be sensitive to

the kind of configurations in these inhomogeneous diluted systems, as we

shall see shortly.

Now as we have seen previously, the exchange couplings in DMSs, ob-

tained from ab initio based studies, are relatively short range in nature, al-
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most exponentially decaying and ferromagnetic in nature[92, 113, 114]. Thus,

without any loss of generality, for our study we have considered here gener-

alized couplings of the form Jij=J0 exp(− |r|/λ), where r=ri-rj and λ is the

damping parameter. Now in the case of (Ga,Mn)As, for about 5% Mn a fit

of the ab initio magnetic couplings provides a value of λ of the order of a/2.

It should be noted that in the case of (Ga,Mn)N the ab initio couplings are

of even shorter range. We will focus here on two particular cases, λ=a and

λ=a/2, where a is the lattice spacing. Although these length scales seem to

be comparable, in the presence of inhomogeneities the effects on the critical

temperatures as well as other magnetic properties can be very drastic. Now

in order to measure directly the effects of the nanoscale inhomogeneities,

we scale the averaged Curie temperatures of the inhomogeneous case 〈T inh
C 〉

with respect to the averaged Curie temperatures of the homogeneously di-

luted system 〈T hom
C 〉 for the same concentration x=0.07, and we denote their

ratio by 〈RC〉. The averaged Curie temperatures 〈T hom
C 〉 for the homoge-

neously diluted case are found to be 0.9 J0 and 0.05 J0, for λ=a and a/2

respectively, for x=0.07.

In Table 4.1 we have provided the averaged Curie temperatures for sys-

tems containing 80%, 70%, 60%, and 40% homogeneously distributed mag-

netic impurities scaled with respect to that of the 7% homogeneous case,

for λ=a and a/2 respectively. This ratio is denoted by 〈Rhom〉. As stated

earlier, the concentration of impurities within the inhomogeneities can also

have a non-trivial effect on the critical temperatures. So the reason to con-

sider the critical temperatures for such high concentrations will become clear

in the discussions to follow, where we will assume similar kind of impurity

concentration inside the nanospheres and try to analyze their relative effects

on TC .

4.2.1 Systems with relatively extended couplings

We begin with the case of the relatively long ranged couplings correspond-

ing to λ=a. In Figure 4.4 we show 〈RC〉 as a function of N in
imp/N

tot
imp. In

this case, we fix the concentration inside the nanospheres to xin=0.8 and the
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x 〈Rhom〉 (λ=a) 〈Rhom〉 (λ=a/2)
0.8 9.7 22

0.7 8.9 20

0.6 7.9 17

0.4 5.2 11

Table 4.1: The ratio, 〈Rhom〉, of the homogeneous Curie temperatures for
different x to that of x=0.07, for λ=a and a/2 respectively.

TC ’s are calculated for spheres of different radii. For this xin, each nanosphere

contains 5, 15, 26, 45 and 64 impurities for r0=a,
√
2a, 2a,

√
5a and

√
6a

respectively. N in
imp/N

tot
imp=0 corresponds to the homogeneously diluted case.

A clear increase in the critical temperatures is observed with increasing frac-

tion of impurities inside the nanospheres as well as with the nanospheres’

size. For about 80% of the total impurities inside the nanospheres, TC is

enhanced by up to 150% for the smallest nanospheres with r0=a and almost

350% for the ones with r0=
√
6a, which is already significant. This increase,

for r0=
√
6a, is more than one-third of that found for the 80% homogeneously

distributed case (Table 4.1). Hence this shows that clustering of magnetic

impurities can lead to a considerable increase of the critical temperatures

due to the strong interactions within the nanospheres. The other important

thing which we observe here is the TC predicted by the mean-field virtual

crystal approximation (VCA). As we have already seen, in many previous

cases, the MF-VCA overestimates the true critical temperatures and often

very strongly. However, in this case, our results show that in the presence

of inhomogeneities the VCA value can no longer serve as an upper bound.

Indeed, as can be seen from the figure, even for relatively small concentra-

tions of nanospheres (xns∼0.2) we already surpass the VCA value, and for

higher density of nanospheres the VCA in fact strongly underestimates the

critical temperatures in these systems. This is contrary to what is generally

observed in the case of homogeneously diluted systems, and at the same time

103



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
imp

/ N
imp

1

1.5

2

2.5

3

3.5

4

〈 
R

C
〉

r
0
=a

r
0
=√2a

r
0
=2a

r
0
=2a

r
0
=√5a

r
0
=√6a

r
0
=√6a

VCA

x
in

=0.8

r
0

in tot

0.01750 0.035 0.0525 0.07
x

ns

Figure 4.4: 〈RC〉 as a function of N in
imp/N

tot
imp=(xin/x)xns for λ=a. For a fixed

xin=0.8 and different radii r0. The upper x-axis represents the values of xns
corresponding to xin=0.8. The solid red line indicates the T V CA

C scaled w.r.t
〈T hom

C 〉. (Here squares and circles correspond to L=32 and L=36). (From
Ref.[143]).

this also establishes the inaccuracy of the mean-field VCA to determine the

critical temperatures in systems with inhomogeneities.

In the previous figure, we have shown the effects of the size of the inho-

mogeneities on the Curie temperatures, for a fixed xin. Now what happens

if we change the concentration of impurities inside the nanospheres ? For

this we consider the case of nanospheres with fixed radii r0=2a and varying

concentrations xin. Figure 4.5 shows 〈RC〉 as a function of N in
imp/N

tot
imp for

different xin. We see an overall monotonous increase in the Curie temper-

atures with increasing the concentration of nanospheres. However, what is

interesting to observe here is that the enhancement of the critical tempera-

tures also depends on the concentration of impurities inside the nanospheres.

Decreasing the concentration inside the nanospheres effectively means re-
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Figure 4.5: 〈RC〉 as a function of N in
imp/N

tot
imp for λ=a, for a fixed r0=2a and

different xin. The solid red line indicates the T V CA
C scaled w.r.t 〈T hom

C 〉. (Here
squares correspond to L=32 and circles to L=36). (From Ref.[143]).

ducing the number of impurities inside a cluster of the same size and thus

less inter-nanosphere interactions. This could possibly explain the relatively

small increase in the TC values with decreasing xin. However, as we will

see in what follows, the variation of the critical temperatures can be more

complex than this simple picture. Hence we find that not only the relative

concentration of nanospheres in the system but also the concentration inside

the nanospheres can have a significant effect on the critical temperatures.

4.2.2 The case of short-ranged couplings

Now we move to the case of the shorter ranged couplings, λ=a/2, which will

appear even more interesting and leads to surprising effects. Figure 4.6 shows

the 〈RC〉 as a function of N in
imp/N

tot
imp for a fixed xin=0.8. TC is calculated

for nanospheres of different radii (r0=a,
√
2a, 2a,

√
5a and

√
6a). We have
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Figure 4.6: 〈RC〉 as a function of N in
imp/N

tot
imp=(xin/x)xns corresponding to

λ=a/2. For a fixed xin=0.8 and different r0. The upper x-axis represents
the values of xns corresponding to xin=0.8. The solid red line indicates the
T V CA
C scaled w.r.t 〈T hom

C 〉. (Here squares correspond to L=32, circles to
L=36, triangles to L=40 and diamonds to L=44). (From Ref.[143]).

considered system sizes varying from L=32 to L=44 to check for the finite

size effects. The L=44 systems typically contain ∼6000 impurities. In con-

trast to the case of λ=a discussed above, the variation of TC with N in
imp/N

tot
imp

is not monotonous anymore. Here we see a colossal effect of the size of the

nanospheres on the TC . For the smallest nanospheres (r0=a) there is hardly

any noticeable effect, the critical temperatures remaining close to that of the

homogeneous case. Now as we increase the radius of the nanospheres for a

given concentration of nanospheres, there is a sharp and strong increase in

the TC values. As can be seen, even for a reasonably small concentration

of nanospheres (xns∼0.2) we obtain a remarkable jump of almost 900% for

r0=2a and even 1600% for r0=
√
6a, compared to that of the homogeneous

case. This gigantic increase in the presence of nanospheres with r0=
√
6a,
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is more than 70% when compared to the TC of the 80% homogeneous case

(Table 4.1), which is rather extraordinary. This implies that in materials

like (Ga,Mn)N, where the exchange interactions are really short ranged, it

would be possible to reach a TC≥500 K (as TC for homogeneously diluted

Ga1−xMnxN=40 K for x=0.07[58, 57, 66]) by inducting nanoscale inhomo-

geneities. The presence of such nanoclusters may also explain the very high

TC ’s observed in Ga1−xMnxN by some experimental groups[126]. Hence it

should be of great interest to analyze experimentally the effect of such nan-

oclusters on the critical temperatures in these kind of materials. Here again

the mean field VCA is found to strongly underestimate the critical temper-

atures for most cases. This is expected since the mean-field VCA treatment

is unable to capture all the relevant physical effects in both homogeneously

disordered as well as inhomogeneous systems. Thus it becomes clear that

in systems with relatively short ranged couplings the size of the inhomo-

geneities plays a very important role in controlling the critical temperatures.

The non-monotonous behavior observed here indicates that several physical

parameters such as typical length scales and relevant couplings compete to

give rise to this new physics. Hence it is not straightforward to explain this

variation by assuming the inhomogeneities to behave as ‘super-spins’ only.

In Figure 4.7 we consider the case of nanospheres of fixed radii r0=2a,

which is particularly interesting. 〈RC〉 is shown as a function of N in
imp/N

tot
imp

for different xin (0.8, 0.7, 0.6 and 0.4). For a fixed xin, we observe a grad-

ual increase in the critical temperatures with increasing concentration of

nanospheres and then it decreases with xns increasing further. In contrast to

the case of λ=a, there is a clear maximum in the TC around N in
imp/N

tot
imp∼0.2

for xin=80% and 70%. For this value of N in
imp/N

tot
imp as we increase the con-

centration inside the nanospheres we observe a huge jump in the critical tem-

peratures, from a small increase for xin=40% to almost 900% for xin=80%,

compared to that of the homogeneous case. It should be noted that for

N in
imp/N

tot
imp=0.9 and xin=80% the increase is reduced to about 600%, which

is still considerably large. Whereas for xin=40% we hardly obtain any signif-

icant increase compared to that of the homogeneous case. Hence in this case

the concentration inside the nanospheres is found to have a crucial effect on
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imp/N
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imp corresponding to λ=a/2. For a
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gles to L=40). (From Ref.[143]).

determining the critical temperatures of the system. Now in order to under-

stand this unusual behavior, we have performed a careful statistical analysis

of the TC ’s for the particular case of r0=2a. In the following we provide a

detailed study of the Curie temperature distributions and try to analyze the

reasons for the origin of this kind of behavior.

4.2.3 Detailed analyses of the critical temperature dis-

tributions

1. Case of λ=a

First we show the normalized RC distributions corresponding to the case of

λ=a, r0=2a, and xin=0.8 in Figure 4.8. The distributions shown correspond

to an averaging over several hundred configurations of disorder (∼500). We
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observe that for all concentrations of nanospheres, the distributions are fairly

uniform and relatively narrow. In fact the width of the distributions are

comparable for each case. For xns=0.02, the RC distribution is somewhat

asymmetric, but with increase in the inhomogeneities concentration they

become more symmetric. This regular nature of the distributions is consistent

with the monotonous increase of the Curie temperatures, seen in Figure 4.5.

We do not notice any unusual or unexpected behavior in this case. We can

also say that for larger values of λ, the critical temperature distributions

should exhibit even more symmetric behavior.
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2. Case of λ=a/2

Now in Figure 4.9 we show the corresponding distributions for the case of

λ=a/2, r0=2a, and xin=0.8. Here too the distributions are obtained using

a sampling over several hundred configurations of disorder . In this case we

obtain very interesting wide distributions for the different concentrations of

nanospheres. For xns=0.02, we observe a kind of bimodal distribution, one

peak with a large weight at high TC (T high
C ∼11〈T hom

C 〉) values and another

one at low TC (T low
C ∼2〈T hom

C 〉) with a much smaller weight. When increasing

xns to 0.04, the width of the distribution is almost unaffected but we no-

tice a clear transfer of weight from the high TC values to the lower one. By

further increasing xns to 0.06, the transfer of weight increases further, the
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low TC region has a significantly larger weight. Finally for relatively high

xns (∼0.08), the weight is now concentrated around the lower TC values and

the distribution exhibits a tail like structure at higher critical temperatures.

This transfer of weight is the reason for the maximum in the TC observed in

Figure 4.7. The origin of this kind of distribution is not so obvious in the

beginning. However, the analysis of the configurations revealed an interest-

ing feature. We have considered two different kinds of configurations. The

first set of configurations of nanospheres corresponds to the situation where

the distance between the nanospheres is restricted to small separation. The

second kind corresponds to large separations between the nanospheres. First

it is found that in both cases the distribution of TC is relatively narrow and

unimodal. However in the first case the TC distribution is centered around

T low
C whereas in the second case it is centered around T high

C . It is somehow

surprising and counter-intuitive that the largest TCs are obtained from the

configurations where the inter-nanosphere couplings are weaker. Now the

nature of distributions shown in Figure 4.9 can be explained as follows. In

the case of low concentration of nanosphere (Figure 4.9 (a)) the probability

to find the nanospheres relatively far apart from each other is high and re-

spectively the probability to find them close to each other is relatively small.

Hence this leads, in the distribution, to a significant weight around the high

TC values. As we gradually increase xns, the probability to find configura-

tions with the nanospheres at relatively large separation decreases while those

corresponding to small separation increases. As a consequence the weight in

the distribution around T high
C reduces and that corresponding to the low TC

increases, as observed in Figure 4.9 (b)-(c). Finally for the largest xns(∼0.08)

the weight is mainly concentrated around the low TC region (Figure 4.9 (d)).

Interestingly this kind of behavior is not observed in the case of λ=a (Fig-

ure 4.8). In that case, the distribution of the critical temperatures is always

found to be relatively narrow and unimodal. This implies that all kinds of

configurations (nanospheres far apart or close to each other) leads to similar

values of the critical temperature.
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4.2.4 Crucial role and importance of self-consistency

in inhomogeneous systems

Let us now briefly discuss the importance of the self-consistent treatment

within the RPA, which we have adopted throughout all the calculations per-

formed till now. In order to demonstrate the effects of the self-consistency on

the calculation of the Curie temperatures, we have plotted in Figure 4.10(a)
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Figure 4.10: (a)〈RC〉NS−RPA as a function of N in
imp/N

tot
imp corresponding to

λ=a. For a fixed xin=0.8 and different r0. (b) 〈RC〉LRPA/〈RC〉NS−RPA for
the same parameters. (Here L=32). (From Ref.[144]).

〈RC〉NS−RPA as a function of N in
imp/N

tot
imp, corresponding to the case of λ=a.
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Here the subscript ‘NS-RPA’ stands for the non-self-consistent RPA. In the

self-consistent LRPA expression for the Curie temperature, the parameters

λi=limT→TC
〈Sz

i 〉/m, (i=1,2,...Nimp) are determined self-consistently at each

temperature (see Equation B.22 in Appendix B). Whereas in the NS-RPA

approach, λi=1 for all values i. The localization effects are taken into con-

sideration but the self-consistency is excluded. Now in the present case, the

concentration inside the nanospheres is kept fixed at xin=0.8 and the TC ’s are

calculated for different r0. These parameters are chosen in order to facilitate

a direct comparison with the results corresponding to the SC-LRPA, shown

in Figure 4.5. At a first glance we indeed observe a monotonous increase

of the Curie temperatures with increasing fraction of impurities within the

nanospheres as well as the size of the nanospheres. The qualitative nature of

the curves is similar to what is observed in Figure 4.5. However if we plot the

ratio of the Curie temperatures obtained within our self-consistent approach

and those determined from the NS-RPA, as shown in Figure 4.10(b), we find

that the NS-RPA underestimates the critical temperatures by a fair amount.

The magnitude of this underestimation increases with the increase in the size

of the inhomogeneities. For example, in the case of the smallest nanospheres

with r0=a, for N
in
imp/N

tot
imp ∼ 0.3, the TC is underestimated by only about

5%. But for larger radii of nanospheres, such as r0=2a, this underestima-

tion is about 15%, and for r0=
√
6a, this is almost up to 35%. This already

shows the importance of the self-consistent treatment as well as the fact that

the NS-RPA approach is not adequate to calculate the critical temperatures

reliably in these inhomogeneous systems.

Now we come to the more interesting case of the relatively short ranged

couplings (λ=a/2). Figure 4.11(a) shows 〈RC〉NS−RPA as a function of the

N in
imp/N

tot
imp, for a fixed xin=0.8 and different values of r0. Unlike the case of

λ=a, the qualitative nature of the curves shown here bear no resemblance

to what was obtained within the self-consistent treatment. We observe a

steady increase in the Curie temperatures with increase in the fraction of the

impurities inside the clusters as well as increase in the size of the clusters, in

this case. The NS-RPA calculations fails to reproduce the non-monotonous

behavior which was observed in certain cases, as shown in Figure 4.7. More-
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Figure 4.11: (a)〈RC〉NS−RPA as a function of N in
imp/N

tot
imp corresponding to

λ=a/2. For a fixed xin=0.8 and different r0. (b) 〈RC〉LRPA/〈RC〉NS−RPA for
the same parameters. (Here L=32). (From Ref.[144]).

over this approach can also lead to some serious underestimations. To analyze

this we have plotted in Figure 4.11(b), the ratio 〈RC〉LRPA/〈RC〉NS−RPA as

a function of N in
imp/N

tot
imp, for the same parameters and corresponding val-

ues of r0, as shown in Figure 4.11(a). We immediately observe that the

critical temperatures are underestimated strongly for increasing size of the

nanospheres. For r0=a, there is hardly any noticeable difference between the

two approaches. However, for N in
imp/N

tot
imp ∼0.2, we find that the NS-RPA un-
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derestimates the critical temperatures by more than 50% for r0=2a, and by

almost 80% for r0=
√
6a. The underestimations can be found to be relatively

small for larger fraction of impurities within the nanospheres. Neverthe-

less, this shows that the NS-RPA, underestimates the critical temperatures

significantly, in certain cases, in systems with effective short ranged interac-

tions. Hence this is not the best tool to calculate the Curie temperatures

in systems with inhomogeneities as it can lead to strong underestimations of

the true critical temperatures. Thus the importance and the validity of the

self-consistent treatment adopted within our approach stands vindicated.

4.2.5 Remarks on measured TC in (Ga,Mn)N and

(Ge,Mn)

In the context of the above results, we would like to draw attention to

the following important point. We have found that in systems with effec-

tive short ranged exchange interactions it is possible to obtain two different

critical temperatures depending on the size and concentration of the inho-

mogeneities and also the typical separation between them. For example, in

the case of λ=a/2, for nanospheres of radii r0=2a, xns=0.02 and xin=0.8, the

T high
C value is almost five times that of the T low

C value. This could possibly

explain the wide range of TC values observed experimentally for materials

like (Ga,Mn)N[122, 123, 124, 125, 126] and the apparent dissension between

theoretical predictions and experimental observations for these kind of mate-

rials. It is interesting to note in this context, that Li et al.[145] proposed two

different ordering temperatures in Ge1−xMnx, TC and T ∗
C with TC≪T ∗

C . The

higher critical temperature T ∗
C is associated with the ferromagnetic ordering

temperature within isolated spin clusters and the onset of global ferromag-

netism only occurs at TC . For x=0.05 the values of TC and T ∗
C were found

to be 12 K and 112 K respectively. However, further detailed experimental

studies on these materials would help to substantiate these results.
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4.3 Unconventional Temperature dependence

of the Spontaneous Magnetization

As we know, owing to the strong motivation of attaining room-temperature

ferromagnetism for possible spintronics applications, the Curie temperature

has been the primary focus of research in the diluted magnetic materials.

In the previous section we have seen that the presence of nanoscale inho-

mogeneities can lead to very high TC ’s (often above room-temperature) in

diluted magnetic systems with very short ranged exchange couplings. How-

ever, another important aspect which can help to further reveal the nature

of ferromagnetism in these strongly disordered systems is the temperature

dependence of the spontaneous magnetization M(T ). Among the many in-

teresting features that magnetization possesses, some worth noting are the

concavity/convexity of the curve and the critical behavior near the tran-

sition point. In the particular case of DMSs, one of the very first ob-

servations of ferromagnetism in (In,Mn)As[18], revealed a surprising non-

mean-field like behavior of the spontaneous magnetization with tempera-

ture. The experimentally determined magnetization curve had an unusual

outward concave-like shape which is in stark contrast to the typical convex

behavior obtained within the standard Weiss mean-field theory[146] as well

as that observed in conventional ferromagnetic materials. The (In,Mn)As

samples studied in Ref.[18] were reported to be insulating, and similar con-

cave M(T ) behavior was also observed in insulating samples of Ge1−xMnx

determined by superconducting quantum interference device (SQUID) mag-

netometry and magnetotransport measurements[128]. Theoretical predic-

tions, based on a percolation transition of bound magnetic polarons in the

strongly localized regime[147], were made to explain this non-mean-field like

magnetization behavior. Similar magnetization behavior in DMS systems, in

the insulating regime, was also predicted by other theoretical studies based

on numerical calculations[148, 149, 150]. The deviation in the M(T ) be-

havior from the standard Brillouin-function shape is believed to be partly

due to the small carrier density compared to the localized spin density,

as well as due to the wide distribution of the exchange interactions and
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hopping integrals[150]. On the other hand, in metallic DMSs, for example

Ga1−xMnxAs for x=0.05−0.10, the magnetization behavior is found to be

almost linear in temperature[151, 152]. This behavior is somewhat interme-

diate between the concave-like M(T ) curves in the insulating regime and the

classic convex magnetization. However, experimental studies suggest that

annealing treatments can have a strong effect on the nature of the magneti-

zation behavior[115, 153]. Upon optimal annealing the magnetization curves

are found to become more convex and Brillouin-function-like compared to

their linear behavior before annealing. This anomalous behavior of the mag-

netization once again highlights the importance of disorder in these systems.

In this section we are going to study the spontaneous magnetization

in diluted magnetic systems from a generalized perspective. Our main fo-

cus is to analyze the effect of nanoscale inhomogeneities on the spontaneous

magnetization behavior in these systems, which has rarely been studied un-

til now. Most of the theoretical studies mentioned before were based on

mean-field-like theories, which we know is inadequate to treat disorder in

these systems. In Ref.[154], the authors have used some complementary the-

oretical approaches in addition to the mean-field theory, which include the

dynamical mean-field theory (DMFT), to study the magnetization in doped

magnetic semiconductors. However, their DMFT results were found to be

qualitatively similar to those of the standard mean-field theory. Also the

effects of correlations in disorder have hardly been considered in any of the

previous studies. Here we first study the nature of the magnetization in

homogeneously diluted systems with no correlation in impurity positions,

and then extend this to systems containing clusters of magnetic impurities.

We will observe interesting deviations from the homogeneous magnetization

curves. The presence of inhomogeneities gives rise to unusual and anomalous

behavior of the temperature dependent magnetization. Again this is found

to depend on the several relevant physical parameters, as was observed in

the case of the Curie temperatures.
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4.3.1 Summary of the calculation procedure

Now to calculate the spontaneous magnetization, we start with the effective

diluted Heisenberg Hamiltonian HHeis=−∑i,j Jij Si · Sj, which is treated

within the SC-LRPA theory (as in Section 4.2). The impurity spins are

assumed to be classical, although this theory is valid for quantum spins as

well. We consider a fully polarized, collinear ferromagnetic ground state at

T=0 K, assumed in the z-direction. Within the SC-LRPA formalism, for a

given disorder configuration, the local magnetizations 〈Sz
i 〉 (i=1, 2, ..., Nimp)

are calculated self-consistently at each temperature. The local magnetization

is evaluated using the Callen like expression[63],

〈Sz
i 〉 =

(S − Φi)(1 + Φi)
2S+1 + (1 + S + Φi)Φi

2S+1

(1 + Φi)2S+1 − Φ2S+1
i

(4.1)

where

Φi =

∫ +∞

−∞

ρi(ω)

exp(ω/kBT )− 1
dω (4.2)

and ρi(ω)=− 1
2π〈Sz

i 〉
ℑGii(ω) is the local magnon DOS at site i. Following this

the average magnetization of the system is given by

〈Savg
z 〉 = 1

Nimp

∑

i

〈Sz
i 〉 (4.3)

Here again we assume a simple cubic lattice with periodic boundary condi-

tions. We fix the total concentration of impurities in the system to x=0.07,

as before. The inhomogeneities are assumed to be of spherical shape of radii

r0. The concentration of impurities inside each nanosphere is denoted by

xin. In this case, to avoid additional parameters and for the sake of simplic-

ity, we restrict ourselves to nanospheres of fixed radii r0=2a (a is the lattice

spacing) and xin=0.8. The concentration of nanospheres in the system is

defined by xns=NS/N , where NS is the total number of sites included in all

the nanoclusters and N=L3 is the total number of sites in the system. The

configurations are generated in a similar fashion as described in the previ-
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ous section. Now concerning the exchange interactions, we have assumed

isotropic interactions of the form Jij=J0exp(− |r|/λ), same as the ones we

had used to calculate the Curie temperatures. The justification to consider

these type of couplings in the case of DMSs were discussed in the previous

section. In the following we consider a range of λ’s (the damping parameter),

corresponding to relatively long-ranged couplings down to short-ranged ones,

and try to analyze their effects on the magnetization behavior.

4.3.2 Magnetization curves in Homogeneous systems

We first consider the homogeneously diluted case where the magnetic impu-

rities are randomly distributed on the simple cubic lattice. Figure 4.12 shows

the average magnetization for different values of λ, corresponding to one con-

figuration of disorder, as a function of the reduced temperature T/T ∗, where

T ∗ is the temperature corresponding to the situation when 〈Savg
z 〉=0.001S.

We consider the temperature T ∗, instead of the actual TC , as it is difficult to

obtain an absolute convergence of the average magnetization as T→TC , as

also the fact that here we are interested to study the nature of the magne-

tization curves and not the exact critical temperatures. Now as we can see

from the figure, for relatively long-ranged couplings (λ=2a), the magnetiza-

tion curve has a typical convex shape which is the usual behavior predicted

by the standard mean-field theories[146], and observed frequently in con-

ventional ferromagnetic materials. Now on decreasing λ, we notice that the

convexity decreases sharply and for λ=a/3 the magnetization is almost linear

over a broad temperature range. In fact similar behavior (linearity) of the

magnetization was observed in metallic samples of (Ga,Mn)As by magnetic

circular dichroism (MCD) studies[151]. This shows that the relatively short-

ranged interactions are more relevant for the case of DMS materials and also

vindicates the choice for our exchange couplings. In order to have a qualita-

tive idea of the relative change in the behavior of the magnetization with λ,

we have plotted in the inset of Figure 4.12 the curvature (κ) of the magneti-

zation curves at the specific value of T/T ∗=0.5. The curvature is defined by

κ=
∣∣∣∂

2〈Savg
z 〉/S
∂u2

∣∣∣
(
1 +

[
∂〈Savg

z 〉/S
∂u

]2)−3/2

, where u= T
T ∗
. As can be clearly seen,
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Figure 4.12: Average magnetization as a function of T/T ∗ for different values
of λ, corresponding to the homogeneous case for one configuration. (Inset)
Curvature of the 〈Savg

z 〉 curves as a function of λ, calculated at T/T ∗=0.5.
(Here N=243). (From Ref.[155]).

with increase in λ the curvature changes significantly, increasing by almost

a factor of five from λ=a/3 to λ=2a. For λ≥2a, one sees that κ has al-

ready saturated and the magnetization has a standard Brillouin shape. This

implies that λ≥2a corresponds to the long range coupling regime. It is al-

ready known that the nature and extent of the magnetic interactions in these

materials play a vital role in determining the critical temperatures. Here it

becomes evident that the range of the interactions also have an important

contribution in the spontaneous behavior of the magnetization.

In Figure 4.12, we have shown the magnetization for only one configu-

ration in a homogeneously diluted system. However, we know that for these

diluted materials disorder plays an important role and the properties can be

sensitive to the random impurity configurations. Hence it would be worth

observing the effects of disorder configurations on the nature of the mag-

netization. Figure 4.13 shows the average magnetization calculated for 25
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Figure 4.13: Average magnetization for the homogeneous case calculated for
25 configurations, for (a)λ=a, (b)λ=a/2, and (c)λ=a/3. The thick black lines
with symbols indicate the configuration averaged magnetization. ∆S

〈Savg
z 〉

is a

measure of the fluctuation at T/T ∗=0.6. (Here N=243). (From Ref.[155]).

configurations of disorder corresponding to three different values of λ. We

have also calculated ∆S

〈Savg
z 〉

, which gives a measure of the fluctuations of the

extremal magnetization curves from the configuration averaged one (〈Savg
z 〉),

at the particular value of T/T ∗=0.6. For λ=a (Figure 4.13(a)), we observe

that the spontaneous magnetization is weakly sensitive to the disorder con-

figurations, the overall shape of the curves is unchanged. ∆S

〈Savg
z 〉

is found

to vary within 10% of the configuration averaged magnetization. For λ=2a

(not shown here), these fluctuations were found to be even smaller, varying

within less than 5%. For the short ranged couplings, λ=a/2, the magneti-

zation curves are still convex but the fluctuations are stronger now. ∆S

〈Savg
z 〉

is

more than doubled as compared to the intermediate range of λ=a. As can be

seen from Figure 4.13(b), some of the curves have a regular convex behavior

while some are more linear in nature. Now on further reducing λ (Figure

4.13(c)), the deviations become even stronger, and a significant number of

configurations exhibit a clear linear temperature dependence. The fluctua-

tion at T/T ∗=0.6 increases by almost a factor four, compared to the case

of λ=a. Even, in some cases, the magnetization profiles are slightly concave

toward the high temperature. It should be noted that the more linear or

concave magnetization curves correspond to relatively high TC ’s. This figure

clearly shows that the disorder effects are significantly enhanced in the case of

short-ranged interactions. The primary reason is that the probability to find
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regions of weakly interacting impurities increases significantly for the case

of short-ranged interactions. This is the case in most of the DMSs, where

a non-trivial behavior of the magnetization is observed. From Figure 4.13

one can also see that the configuration averaged magnetizations are similar

in nature to the single configuration magnetization, for the corresponding

values of λ, shown in Figure 4.12.

4.3.3 Effects of inhomogeneities

So far we have only considered homogeneously diluted systems assuming

a fully random distribution of the impurities. Now we move to the case

of clustered magnetic defects, which is the primary objective of our study.

As stated earlier, the inhomogeneities considered here are in the form of

nanoscale spherical clusters of radii r0=2a, and the concentration inside each

cluster is fixed at xin=0.8. Figure 4.14 shows for λ=a, the average magneti-

zation of the whole system, 〈Stot
z 〉, as a function of T/T ∗, for four different

concentrations of nanospheres, xns=1%, 3%, 5%, and 7%. In addition, we

have also shown the average magnetization inside and outside the clusters de-

noted by 〈Sin
z 〉 and 〈Sout

z 〉, respectively. The curves shown here correspond to

a single configuration of disorder, the variation with disorder configurations

will be discussed later. We immediately observe that in the presence of in-

homogeneities the spontaneous magnetization has a non-trivial behavior and

exhibits a drastically different nature when compared to the homogeneous

case (Figure 4.12). This can be clearly seen even for the lowest concentra-

tion of nanospheres. For xns=0.01, for which 11% of the total impurities

are inside the nanospheres, 〈Stot
z 〉 decreases rapidly till about T/T ∗∼0.5,

then it becomes concave and decays slowly toward the higher temperatures.

By gradually increasing the concentration of the nanospheres, an interest-

ing change in the average magnetization behavior is observed. For xns=3%

(PN=0.34), 〈Stot
z 〉 falls off less sharply at low temperature, for 5% it is al-

most linear over the entire temperature range, and for 7% it becomes more

convex. Thus a crossover in the curvature of 〈Stot
z 〉 appears at xns≈0.05. On

the other hand, 〈Sin
z 〉 exhibits a clear convex nature which does not change
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Figure 4.14: 〈Sc
z〉 stands for the total average magnetization (〈Stot

z 〉), magne-
tization inside the nanospheres (〈Sin

z 〉) and outside (〈Sout
z 〉), for four different

concentrations of nanospheres (xns): (a) 0.01, (b) 0.03, (c) 0.05, and (d) 0.07.
PN is the percentage of total impurities contained in the nanospheres. Here
λ=a, r0=2a, xin=0.8 and N=243. The x-axis is in units of T/T ∗. (From
Ref.[155]).

with xns. This indicates that the average magnetization inside the clusters

remains almost uniform and is mainly controlled by the intra-cluster cou-

plings. We can clearly see that the inhomogeneities have a very strong effect

on the impurities outside the clusters. 〈Sout
z 〉 has a very pronounced concave

nature which can even be seen for relatively small xns. The slope at low

temperatures becomes steeper with increasing concentration of nanospheres.

For example, at T/T ∗∼0.3, 〈Sout
z 〉 has a value of 0.85 for xns=0.01, 0.62 for

xns=0.03, and about 0.4 for xns=0.05. Similar concave behavior of the tem-

perature dependent magnetization is observed in the case of some insulating

DMS materials. However, in most of the cases studied until now clustering
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effects have hardly been considered. Note that we have also performed the

calculations for λ=2a (not shown here). In this extended coupling regime,

it was found that the effect of inhomogeneities are very weak. 〈Stot
z 〉, 〈Sin

z 〉,
and 〈Sout

z 〉 exhibit a convex nature and were found to be relatively close to

each other.
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Figure 4.15: Total average magnetization as a function of T/T ∗ for xns=0.05
calculated for 50 configurations (thin continuous lines), for λ=a. The thick
black lines with symbols indicate the configuration averaged magnetization
〈Stot

z 〉. ∆S

〈Stot
z 〉

is a measure of the fluctuation at T/T ∗=0.6. (Here r0=2a,

xin=0.8 and N=243). (From Ref.[155]).

Now, it would also be interesting to observe the effect of the random

cluster configurations on the magnetization behavior. For this we consider

the particular case of xns=0.05, and we have shown the average magnetiza-

tion calculated for 50 configurations of disorder in Figure 4.15, for the case

of λ=a. We see that 〈Stot
z 〉 is very sensitive to the disorder configurations,

in the presence of inhomogeneities. The curves have a more or less simi-

lar shape over the entire temperature range. However, the deviations from

the configuration averaged magnetization are quite large when compared to

the corresponding homogeneous case (Figure 4.13(a)). As can be seen, the
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fluctuation at T/T ∗=0.6 is almost three times to that observed in the ho-

mogeneous case. This once again illustrates the importance of disorder in

these inhomogeneous systems and a proper treatment of these effects is very

crucial. At the same time it should be noted that the configuration averaged

magnetization shown here is qualitatively similar to the single configuration

magnetization shown in Figure 4.14(c). Moreover the somewhat similar na-

ture of the magnetization curves is also consistent with our TC calculations in

the previous section, where we saw that for relatively long ranged couplings

the critical temperatures do not vary drastically with the disorder configura-

tions. Note that we have only shown here 〈Savg
z 〉 for different configurations

for the ease of visualization, but we would like to remark that 〈Sin
z 〉 and

〈Sout
z 〉 also show similar sensitivity to the cluster disorder configurations.

As we have seen in the case of the Curie temperatures, the relatively

short-ranged couplings appeared to be more interesting (Section 4.2.4) in the

presence of inhomogeneities. This is also important from the practical point

of view, as the exchange couplings in some DMS materials are effectively

short-ranged in nature. Hence it would be interesting to analyze the effects

of this kind of interaction on the magnetization behavior in inhomogeneous

systems. In Figure 4.16 we show 〈Stot
z 〉, 〈Sin

z 〉, and 〈Sout
z 〉 as a function of

T/T ∗, for four different concentrations of nanospheres, in the case of relatively

short-ranged couplings, namely λ=a/2. To start with, we first discuss the

results for a single configuration of disorder. For the lowest xns (Figure

4.16(a)), the behavior of 〈Stot
z 〉 is almost similar to that observed in the case

of λ=a (Figure 4.14(a)). But on increasing xns further (Figure 4.16(b)),

we immediately observe that 〈Stot
z 〉 decreases much more rapidly at lower

temperatures followed by a slow decay toward the high temperatures. Also,

in Figures 4.16 (c) and (d), an inflection appears in 〈Stot
z 〉 around T/T ∗∼0.6.

In this case 〈Sin
z 〉 too exhibits a non-trivial behavior for all values of xns,

which is unlike the case of λ=a. For example, for xns=0.05 (Figure 4.16(c)),

there is a shoulder-like feature in 〈Sin
z 〉 around T/T ∗∼0.05, which is absent for

λ=a (Figure 4.14(a)). Thus unlike the case of λ=a, where the intra-cluster

couplings dominate, there are other relevant couplings, like the inter-cluster

ones and those between the cluster impurities and bulk impurities, which
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Figure 4.16: 〈Sc
z〉 stands for the total average magnetization (〈Stot

z 〉), magne-
tization inside the nanospheres (〈Sin

z 〉) and outside (〈Sout
z 〉), for four different

concentrations of nanospheres (xns): (a) 0.01, (b) 0.03, (c) 0.05, and (d) 0.07.
PN is the percentage of total impurities contained in the nanospheres. Here
λ=a/2, r0=2a, xin=0.8 and N=243. The x-axis is in units of T/T ∗. (From
Ref.[155]).

come into play. On the other hand, the 〈Sout
z 〉 curves are typically concave

for all considered xns, and exhibit a long tail toward the higher temperatures.

They exhibit a sharp fall-off at low temperatures with increasing xns. At

T/T ∗∼0.2, for xns=0.01, the value of 〈Sout
z 〉 is about 0.8 which falls rapidly to

almost 0.3 for xns=0.05. With increasing xns, the concentration of impurities

outside the clusters gradually decreases, leading to an increase of the typical

distance between them. Consequently the impurities outside interact more

weakly with each other and this explains the sharp fall-off in 〈Sout
z 〉 at lower

temperatures.

Now to study the magnetization for different configurations, in Figure
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Figure 4.17: Total average magnetization as a function of T/T ∗ for xns=0.05
calculated for 50 configurations (thin continuous lines), for λ=a/2. The thick
black lines with symbols indicate the configuration averaged magnetization
〈Stot

z 〉. ∆S

〈Stot
z 〉

is a measure of the fluctuation at T/T ∗=0.6. (Here r0=2a,

xin=0.8 and N=243). (From Ref.[155]).

4.17 we have shown the average magnetization calculated for 50 disorder

configurations for the particular case of xns=0.05, corresponding to λ=a/2.

In contrast to the case of λ=a (Figure 4.15), we observe a drastic variation

in the magnetization curves for different configurations which reflects the

strong sensitivity of these inhomogeneous systems to disorder. For example,

the fluctuation at T/T ∗=0.6 is found to increase by more than a factor of

four compared to that for λ=a. Also the fluctuations from the configuration

averaged magnetization are significantly large, over the entire temperature

range, when compared to the corresponding homogeneous case for λ=a/2

(Figure 4.13(b)). This increase in fluctuation can be seen to be more than

five times at T/T ∗=0.6. Some of the magnetization curves are concave in

nature, while some exhibit a more linear behavior and a few of them even

show a convex-like nature toward the higher temperatures for T/T ∗≥0.6. It is

important to remind here that in systems with effective short-range exchange
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interactions the typical separations between the clusters play a decisive role,

which we have already seen in the previous section concerning the Curie

temperatures. In this context it should be noted that the more concave-like

curves shown here correspond to higher critical temperatures, while the more

linear or convex-like ones coincide with the low TC ’s.

4.3.4 Surface imaging of local magnetizations

On analyzing the temperature dependent magnetization, in the presence of

inhomogeneities, we have found very interesting and non-trivial behavior in

the nature of the magnetization curves which show strong deviations from

those of the homogeneous case. However, so far we have only studied the

average magnetization of the system which actually depends on the local

magnetizations, Si
z’s, at each impurity site. At this point, it would be worth-

while to study the nature of these local magnetizations which might help in

providing a better understanding of the observed anomalous magnetization

behavior.

The homogeneous case

To begin with, we first focus on the homogeneously diluted systems for fully

random distribution of impurities. Figure 4.18 shows the snapshots of the

local magnetizations in a 2D-plane corresponding to two different values of

λ. The top panel in the figure corresponds to the case of λ=a, while the

bottom panel represents the case of λ=a/2. The distributions are plotted at

three intermediate temperatures T1, T2, and T3 (shown from left to right in

the figure), which correspond to the situation when 〈Savg
z 〉=0.75S, 0.4S, and

0.1S respectively. The results shown here correspond to one and the same

configuration of disorder for the two λ’s. As we can see from the figure there

is hardly any noticeable difference, for the change in the local magnetizations

with temperature, between the two cases corresponding to λ=a and λ=a/2.

At low temperature the local magnetizations remain relatively large, and a

gradual thermal decay is observed with increasing temperatures. For the

temperature T3, which is sufficiently close to the critical temperature, we see
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Figure 4.18: Snapshots of Si
z’s corresponding to the homogeneous case. The

top (bottom) panels correspond to λ=a (λ=a/2). From L-R: T1, T2, and
T3 denote the temperatures when 〈Savg

z 〉=0.75S, 0.4S and 0.1S respectively.
(Here L=24). (From Ref.[155])

that the local magnetizations at each site are very small, which is as expected.

However, on taking a closer look at the figure, we notice that the impurities

which are relatively close to each other tend to have a higher magnetization

at low temperatures compared to the impurities far away. This is due to the

fact that the closer the impurities are, the stronger the exchange interactions,

as they are exponentially decaying with the distance between the impurities.

The local magnetizations corresponding to the two different λ’s appear to

be almost similar in behavior, and this seems insufficient to account for the

observed different natures of the average magnetization for λ=a and λ=a/2

(Figure 4.12). However, it should be noted that the distributions shown here

correspond to just one particular plane of the system which typically contains

only a small fraction, typically 5% in this case, of the total impurities in the

system. The average magnetization, on the other hand, is determined by

the local contributions of all the impurities in the system. Nevertheless, it is
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useful to have a qualitative idea of the behavior of the local magnetizations

in the absence of any impurity correlations.

Inhomogeneous case

Now moving to the case of the inhomogeneous systems, Figure 4.19 shows

the local magnetizations in a 2D-plane corresponding to the particular case

of xns=0.05, for relatively long ranged couplings (λ=a). This corresponds to

the case of the average magnetization shown in Figure 4.14(c). The snap-

shots are taken for three different temperatures, T1, T2, and T3, similar to

what is shown in the previous figure. We choose the plane in a way such that

it contains the maximum number of clusters for this particular configuration.

The impurity clusters can be clearly identified from the impurities outside

as can be seen in the figure. At low temperature (T1), we see that the local

magnetizations for the impurities inside the nanospheres are relatively higher

than the ones outside, by almost a factor three in some cases. (The color bar

in the figure indicates the relative intensities of the local magnetizations).

For an intermediate temperature T2, the magnetization for the impurities

outside gradually weakens but the cluster impurities still tend to retain rela-

tively higher magnetization values, due to the strong intra nanosphere inter-

actions. Now at a relatively high temperature T3, which corresponds to the

situation when 〈Savg
z 〉=0.1S, most of the impurities outside the clusters are

found to lose their magnetization almost entirely. However, even then, inside

the nanospheres the local magnetizations are comparatively high, with some

clusters retaining higher values than the other ones. This may be due to the

fact that some of the clusters experience the effects of the cluster impurities

coming from the other planes, above or below the particular plane shown

here, and hence they are strongly coupled compared to the impurities within

the other clusters which may not be experiencing similar effects. This also

shows that the strong intra cluster couplings dominate the magnetic ordering

at relatively high temperatures, which controls the spontaneous magnetiza-

tion behavior in these inhomogeneous systems. The impurities outside, on

the other hand, are weakly coupled with each other and they tend to lose
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their magnetizations much faster with increasing temperatures. This is re-

flected in the sharp fall off of 〈Sout
z 〉, shown in Figure 4.14(c). Thus we see

that the behavior of the local magnetizations is consistent with our results

for the average magnetization, which we have discussed in Section 4.3.3.

Figure 4.19: Snapshots of Si
z’s corresponding to the case of xns=0.05 for λ=a.

From L-R: T1, T2, and T3 denote the temperatures when 〈Savg
z 〉=0.75S, 0.4S

and 0.1S respectively. (Here r0=2a, xin=0.8 and L=24). (From Ref.[155]).

Now in Figure 4.20 we show the local magnetizations corresponding to

the case of relatively short ranged couplings, λ=a/2, with the other param-

eters being the same as that of Figure 4.19. We observe a somewhat similar

behavior of the local magnetizations as was seen for the case of λ=a. For the

low temperature T1, the impurities within the nanospheres are found to ex-

hibit higher magnetization values compared to the impurities outside. With

increase in temperature, the local magnetization for the impurities outside

is found to decay rather fast while the ones inside the clusters still tend to

retain relatively high magnetizations. However, the distribution correspond-

ing to the situation at the high temperature T3, appears to be interesting.

At this temperature, as can be seen from the figure, it is not only the impu-

rities outside the clusters which carry very small magnetization but also the

impurities belonging to one of the clusters (seen in the bottom left corner

of the snapshots) appear to lose their magnetization almost entirely. This

is unlike the case of λ=a, where most of the impurities inside the clusters

were always found to carry a relatively higher value compared to the ones

outside even at the high temperature T3. Now, this may be attributed to the
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Figure 4.20: Snapshots of Si
z’s corresponding to the case of xns=0.05

for λ=a/2. From L-R: T1, T2, and T3 denote the temperatures when
〈Savg

z 〉=0.75S, 0.4S and 0.1S respectively. (Here r0=2a, xin=0.8 and L=16).
(From Ref.[155]).

fact that since the effective exchange interactions are of short-range in this

case, the impurities outside as well as the impurities within some particular

cluster, which may be far away from the other cluster impurities, are weakly

interacting. This results in a rapid decay of their respective local magnetiza-

tions, in comparison to the other clusters which are relatively close to each

other and which tend to retain higher values of local magnetizations due to

the strong cluster interactions. The distributions shown here are consistent

with the average magnetization behavior for the corresponding case shown

in Figure 4.16(c). For higher temperatures, we can see that it is only some of

the impurities within the nanospheres with strong interactions which seem

to carry most of the magnetization. Thus for relatively high concentration of

nanospheres it is the strong intra cluster couplings which tend to dominate

the spontaneous magnetization behavior and this results in a slow decay of

the average magnetization close to the critical temperatures (Figure 4.16(c)).

On the other hand, the fast and strong decay of the local magnetizations for

the impurities outside the clusters could explain the rapid initial fall off ob-

served in 〈Sout
z 〉 at relatively low temperatures in Figure 4.16(c).
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4.3.5 Some general remarks

We can briefly make the following remarks from the above results. The

behavior of the local magnetizations appears to be interesting from a fun-

damental perspective. It helps to furnish an overall better understanding,

though qualitative in nature, of the anomalous magnetization behavior in

these inhomogeneous systems. The local magnetizations provide direct in-

sight into the real physical intricacies of the system, which in turn are re-

sponsible for the average magnetization response. The range of the effective

exchange interactions is found to play an important role in determining the

spontaneous magnetization. Although we have shown here the local magne-

tizations corresponding to one particular value of xns, it can be said that the

same corresponding to the other xns should be qualitatively similar in nature

and consistent with the respective average magnetization behavior.

Now in all the above calculations for the inhomogeneous systems, we have

mainly focused on the nanoclusters of radii r0=2a and a fixed xin=0.8. It

would be equally interesting to perform similar calculations for nanospheres

of other radii and with different concentrations of impurities inside. We

certainly expect similar unconventional behavior of the spontaneous magne-

tizations. However, the quantitative nature of this magnetization response

can only be confirmed by further detailed calculations.

4.4 Spin-wave excitations in inhomogeneous

systems

After analyzing the effects of nanoscale inhomogeneities on the Curie temper-

atures and the spontaneous magnetization behavior in the preceding sections,

we focus here on the magnetic spin excitations in the inhomogeneous diluted

systems. As seen before, in the case of homogeneously diluted systems, a de-

tailed investigation of the magnon excitation spectrum can provide valuable

insight into the role and importance of disorder in these diluted magnetic sys-

tems. The emerging physical phenomena can become even more interesting

and complex in the presence of inhomogeneities. However, until now, most of
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the studies, experimental as well as theoretical, dealing with inhomogeneous

systems have focused either on the Curie temperatures or on the spontaneous

magnetization behavior. The effects of impurity clustering on the spin-wave

excitations can be scarcely found in the literature. A meticulous study of

these excitations might reveal further interesting properties of these inhomo-

geneous systems as well as provide a better understanding of the interplay

between several physical parameters. This was the main motivation behind

the study we are going to discuss here.

In this section, we will present a detailed study of the magnon DOS,

the magnon spectral function and the spin-stiffness as a function of the con-

centration of inhomogeneities. We find interesting and significant variations

in these properties when compared to those of the homogeneously diluted

cases. A similar method is adopted here, as used in the previous cases (Sec-

tions 4.2 and 4.3), considering a simple cubic lattice with periodic boundary

conditions. The basic approach is same as before with disorder being treated

within the SC-LRPA theory. All the calculations are performed at T=0 K.

Once again the inhomogeneities are in the form of nanospheres with radii r0,

which are randomly distributed on the lattice. We work at a fixed concentra-

tion of impurities in the system, x=0.07, similar to the previous cases. The

notations of the other relevant phenomenological parameters remain consis-

tent with what we have used earlier in this chapter, unless otherwise stated.

Finally for the exchange couplings too, we use the same isotropic interactions

of the form Jij=J0 exp(-|r| /λ). We consider here two typical values of λ: (i)

λ=a, for relatively long-ranged couplings, and (ii) λ=a/2, for short-ranged

ones.

4.4.1 Resolved magnon DOS in presence of

inhomogeneities

We begin with the calculation of the magnon DOS for the homogeneous

case. Figure 4.21 shows the average magnon DOS (ρavg) as a function of

the energy ω, corresponding to the two different values of λ. The system

size considered here is L=56, and the disorder averaging is performed for
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Figure 4.21: Average magnon DOS corresponding to the homogeneous case
for (a) λ=a, and (b) λ=a/2. The average concentration is x=0.07. The
x axis is in units of ω/W , where W is the magnon spectrum bandwidth.
W≈4J0 and 0.8J0, for λ=a and a/2 respectively. The system size is N=563.
(From Ref.[156]).

few hundred configurations. ρavg is found to exhibit a regular Gaussian-

like shape for the case of λ=a (Figure 4.21(a)). The broad peak is located

at 0.42W with a half-width of about 0.36W (W is the magnon excitation

bandwidth). For longer ranged couplings, ρavg remains essentially similar to

that of λ = a. On the other hand, for short-ranged couplings (λ = a/2), ρavg

has a more irregular and richer structure (Figure 4.21(b)). The peak in ρavg

is now located at much lower energy, 0.06W , and a clear long tail extending

toward the high energies with multiple shoulders appears. These additional

features result from clusters of impurities weakly coupled to the rest of the

system. These shoulders become even more pronounced for shorter ranged

interactions. It is interesting to note that a somewhat similar kind of magnon

DOS was obtained in the case of (Ga,Mn)As (see Figure 3.11). However, it is

not exactly the same, since in that case realistic couplings, calculated within

the V -J model, were used to calculate the DOS. Although the magnon DOS
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shown here do not provide enough quantitative information, they will be

useful in the discussions to follow.
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Figure 4.22: ρα denotes the average magnon DOS (ρavg), local magnon DOS
inside (ρin), and outside the nanospheres (ρout), for four different xns. PN

is the percentage of total impurities inside the nanospheres. The shaded
regions in (a) correspond to the calculated eigenmodes of a single isolated
nanosphere. The parameters are λ=a, r0=2a, and xin=0.8. The x axis is in
units of ω/W , where W≈4J0 is homogeneous magnon bandwidth. The blue
dashed curve indicates the homogeneous ρavg from Figure 4.21(a). (From
Ref.[156]).

Now moving on to the magnon DOS in the inhomogeneous case, we con-

sider the case of nanospheres with fixed radii r0=2a and xin=0.8. In Figure

4.22 we have plotted, in addition to ρavg, the local magnon DOS inside the

nanospheres (ρin) as well as the local DOS outside (ρout) as a function of

the energy, for four different concentrations of nanospheres, corresponding to

λ=a. The respective average DOS for the homogeneous case is also shown in

the figures (blue dashed curves) to facilitate comparison. We should specify
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here that ρin denotes the local magnon DOS averaged over all the impuri-

ties contained within the nanospheres, and similarly ρout denotes the local

magnon DOS averaged over all impurities outside. Let us first focus on ρavg.

From Figure 4.22(a), we immediately notice that a relatively small concentra-

tion of inhomogeneities (xns∼0.02) causes a significant change in the magnon

DOS. Indeed, in comparison to the homogeneous case, the excitations spec-

trum bandwidth is now doubled, and ρavg has a bimodal structure, with a

broader peak at higher energies. With increasing xns, we observe a gradual

transfer of weight from the low to high energy peak. The low energy peak

shifts to smaller energies which is consistent with the decrease in the con-

centration of impurities outside the nanospheres. In order to have a better

understanding of the features seen in ρavg, we now analyze ρin and ρout. We

observe that ρin remains unchanged in all cases and exhibit a very small

weight from 0 to 0.7W . Thus the high energy peak seen in ρavg can clearly

be attributed to the nanocluster modes. A careful analysis of a single iso-

lated cluster reveals that the first non-zero eigenmodes are located at 0.7W ,

which explains the very small weight in ρin below this value. Note that in

Figure 4.22(a), the shaded regions correspond to the discrete spectrum of

an isolated single nanosphere, which is calculated over a few hundred con-

figurations (random position of the impurities inside the nanosphere). The

weak variation of ρin with respect to xns, indicates that the disappearance of

the discreteness in ρin (as seen in the isolated nanosphere spectrum) results

mainly from the interactions between the cluster impurities and those out-

side. The above discussion of ρavg and ρin explains naturally the behavior of

ρout. In the case of more extended couplings, it is expected that (i) ρavg loses

progressively the bimodal nature, (ii) the pseudo-gap in ρin at low energies is

filled gradually, and (iii) the second peak in ρin becomes narrower and shifts

to higher energies with respect to the spectrum of a single isolated cluster.

In the next figure, Figure 4.23, we show ρavg, ρin, and ρout for four differ-

ent values of xns, but this now corresponds to the case of the relatively short

ranged interactions, λ=a/2. The other parameters being the same as used

in the previous case. In this case, we observe even more interesting changes

in the average DOS as compared to the homogeneously diluted case. The
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Figure 4.23: ρavg, ρin, and ρout for λ=a/2, for four different xns. The shaded
regions in (a) correspond to the calculated eigenmodes of a single isolated
nanosphere. The other parameters being same as in Figure 4.22. The homo-
geneous magnon bandwidth is W≈0.8J0. The blue dashed curve indicates
the homogeneous ρavg from Figure 4.21(b). (From Ref.[156]).

magnon bandwidth increases by 250% with respect to that of the homoge-

neous system. As seen before, we observe a clear transfer of weight in ρavg,

from the low to higher energies with increasing xns. In contrast to the bi-

modal nature observed for λ=a, ρavg now exhibits a long wavy tail, extending

toward higher energies. ρin shows (i) a clear multiple peak structure now, (ii)

is independent of xns, and (iii) a well defined gap of approximately 0.5W is

observed. The reasons for the appearance of these multiple peaks in ρin are

the enhanced discreteness (larger sub-gaps) of the eigenmodes of the single

isolated nanosphere and the reduced interactions of the cluster impurities

with those outside. Concerning ρout, besides a shift to lower energies as seen

for λ=a, we now observe that the peak becomes narrower with increase in

138



xns. (The latter feature was absent for the longer ranged couplings). The

reason for this is with increasing xns, the concentration of impurities out-

side decreases and the effective interactions between them become weaker.

This effect will be even more pronounced for shorter ranged couplings. Even

though the couplings are comparable, drastic changes between Figures 4.22

and 4.23, shows that λ=a corresponds to the intermediate range couplings

and λ=a/2 definitely to the short range regime. Similar kind of dramatic

effects have also been reported on the effects of nanoscale inhomogeneities

on critical temperatures[143].

4.4.2 Dynamical magnon spectral function

In this part we will focus on the nature of the magnon spectral function

in the presence of inhomogeneities. As seen before, the spectral function

can provide valuable insight into the spin excitation spectrum of the system.

Now to compare the effects of inhomogeneities, we first calculate the spectral

function for the homogeneously diluted case.

In Figure 4.24 we show the average magnon spectral function Ā(q, ω)

as a function of the energy for different values of the momentum q in the

(1 0 0) direction, corresponding to the case of λ=a. The corresponding ho-

mogeneous case for λ=a/2 is plotted in Figure 4.25. The calculations are

performed on a system size of L=66 and a systematic average over a few

hundred configurations of disorder is done. However, it is found that increas-

ing the number of configurations beyond 50, for this system size, does not

affect the results considerably. First in both cases, as q increases the peaks

become broader and more asymmetric with a tail extending toward higher

energies. Well-defined excitations exist only for relatively small values of the

momentum, beyond qxa ≈ 0.24π no well-defined magnons exist. However,

for λ=a, the well-defined excitations persist up to energy values of about

0.25W , whilst for λ=a/2 the excitations reaches only up to 0.035W , where

W is the λ-dependent magnon spectrum bandwidth. We remind that W≈
4J0 and 0.8J0, for λ=a and a/2, respectively. These homogeneous spectral

functions serve as a standard of comparison to what follows next.

139



0 0.05 0.1 0.15 0.2 0.25
ω/W

0

50

100

150

200

250

300
A

(q
,ω

)

q
x

λ = a

q
x
= π

33
n

a

(a)n=0

n=1

n=2

n=3

n=4
n=5

n=6

(×1.5)

(×2)

(×2.5)

(×3)

Figure 4.24: Average spectral function Ā(q, ω) as a function of the energy
in the (1 0 0) direction for different values of qx, corresponding to the ho-
mogeneous case for λ=a. The energy axis (x-axis) is in units of ω/W . The
system size is N=663. (The intensity of the peaks have been multiplied by
the factors indicated in the parentheses). (From Ref.[156]).

Now coming to the case of the nanoclusters, Figure 4.26 shows the av-

erage spectral function Ā(q, ω) as a function of the energy in the (1 0 0)

direction, corresponding to the case of λ=a. The results are shown for four

different values of xns: 0.02, 0.04, 0.06, and 0.08. As we increase xns, there is

a broadening in the excitations, accompanied with an increase in asymmetry

and a shift toward the lower energies is observed. These effects are already

pronounced even for the lowest concentration of nanospheres. For instance,

for qxa ≈ 0.12π, the magnon energies are 0.09W , 0.075W , and 0.067W ,

for xns=0, 0.02, and 0.04, respectively. In order to analyze the effects of

inhomogeneities on the magnon lifetime for a given q, we define the ratio

R(q) = γ(q)/ω(q), where γ(q) is the half-width of the excitations. The ex-

citations are well-defined in character only when R(q) < 1. For the aforesaid

qx, the corresponding R(q)’s are 0.2, 0.33, and 0.66, for xns=0, 0.02, and

0.04, which corresponds to an increase of about 60% and 200% respectively,
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Figure 4.25: Average spectral function Ā(q, ω) as a function of the energy
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geneous case for λ=a/2. The energy axis (x-axis) is in units of ω/W . The
system size is N=663. (The intensity of the peaks have been multiplied by
the factors indicated in the parentheses). (From Ref.[156]).

compared to the homogeneous case, for these two values of xns. It is interest-

ing to note that these effects could hardly be anticipated from the magnon

DOS results (Fig. 2). In fact the analyses of the DOS suggested that the low

energy excitations should be weakly affected by the inhomogeneities. In the

following, we discuss the spectral function in the presence of short-ranged

interactions, shown in Figure 4.27. As in the previous case, well-defined ex-

citations exist only for small values of the momentum. However, here we

find that the shift toward the lower energies is strongly enhanced. If we

consider the particular case of qxa ≈ 0.12π, the magnon energies are shifted

by 30% and 60% respectively, for xns=0.02 and 0.04, with respect to that

of the homogeneous case. The R(q)’s for this value of qx are 0.4, 0.8, and

1.3 for xns=0, 0.02, and 0.04. This indicates that the excitations have dra-

matically lost their well defined character as compared to the previous case

(Figure 4.26). Hence we see that the presence of inhomogeneities can alter
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Figure 4.26: Average spectral function Ā(q, ω) as a function of the energy
in the (1 0 0) direction, for four different xns. PN indicates the percentage
of total impurities inside the nanospheres. The parameters are λ=a, r0=2a,
xin=0.8, and N=523. The x axis is in units of ω/W . (The intensity of
the peaks have been multiplied by the factors indicated in the parentheses).
(From Ref.[156]).

the nature of the spin excitations significantly in these diluted systems. At

the same time it should be noted that the spectral functions, in the figures

shown here, is plotted only in the (1 0 0) direction. Now it would be interest-

ing to observe the change in the excitation spectrum over the entire Brillouin

zone.

Figure 4.28 shows the spectral function in the (q, ω) plane, plotted over

the entire Brillouin zone, for the homogeneously diluted case. This corre-

sponds to the case of λ=a. The system size considered here is L=44 and the

average over disorder is performed for few hundred configurations. From the

figure we see that well-defined excitations only exist almost till half of the
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Figure 4.27: Average spectral function Ā(q, ω) for the case of λ=a/2, with
the other parameters same as in Figure 4.26. (From Ref.[156]).

first Brillouin zone. The spectrum shows a uniform broadening on moving

further away, around an energy value of 1.5J0. This is consistent with the

Ā(q, ω) results shown in Figure 4.24, where more asymmetric peaks were

observed for increasing values of q in the (1 0 0) direction. We also find that

the relevant energy range for the magnon excitations is in accordance with

the homogeneous magnon DOS results, shown in Figure 4.21(a). Now to an-

alyze the effects of the nanoscale inhomogeneities, we show in Figure 4.29 the

corresponding spectral functions in the (q, ω) plane, for four different con-

centrations of nanospheres. We immediately observe that the clusters have a

significant impact on the magnon excitation spectrum. For a relatively low

xns (∼0.02), the effects can be hardly noticed, with well-defined excitations

still existing around a restricted region of the first Brillouin zone. However,

with increasing concentration of nanospheres, drastic changes accompanied
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Figure 4.28: Spectral function A(q, ω) in the (q, ω) plane, corresponding to
the homogeneous case for λ=a. The energy axis (y-axis) is in units of ω/J0.
(Here N = 443). (From Ref.[157]).

with the appearance of prominent features in the spectrum are observed.

The well-defined excitations are also found to be strongly reduced and the

spectrum shows considerable broadening. Some characteristic excitations are

found to appear at comparatively higher energies between 3J0 and 6J0. The

intensity of these excitations increases with increasing xns as can be seen

from Figures 4.29(b)-(d). This may be accounted for by the increasing local-

ization of the magnon modes within the nanospheres with increasing cluster

concentration. This gives rise to the relatively high energy excitations in the

magnon spectrum around the middle of the Brillouin zone. These features

also point to the crossover from extended states to localized magnon modes

with increase in the clustering phenomenon. We observe, interestingly, a kind

of ‘gap’ appearing in the excitations around energies of 2J0, at xns=0.06 and

above. This feature is consistent with the very low weight observed in the

average magnon DOS around the same energies for the corresponding xns

values (Figure 4.22). Hence we see that the presence of nanoscale impurity
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Figure 4.29: Spectral function A(q, ω) in the (q, ω) plane corresponding to
λ=a, for four different xns : (a) 0.02, (b) 0.04, (c) 0.06, and (d) 0.08. The
energy axis (y-axis) is in units of ω/J0. (Here r0=2a, xin=0.8, and L=44).
(From Ref.[157]).

clusters can lead to very interesting and new features in the spin excitation

spectrum of these diluted magnetic systems.

Now we analyze the same excitation spectrum but in the case of relatively

short-ranged couplings, for λ=a/2, which is found to be more relevant for

some realistic materials. First we show the spectral function in the (q, ω)

plane, corresponding to the homogeneous distribution of impurities, in Figure

4.30. The same system size and number of disorder configurations is used to

obtain A(q, ω) here, as used in the previous case. We observe a very different

behavior, compared to the case of λ=a (Figure 4.28). Well-defined excitations

can be seen to exist only in a restricted region of the Brillouin zone, around

the Γ point [q=(0 0 0)]. We find a very large and non-uniform broadening of
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Figure 4.30: Spectral function A(q, ω) in the (q, ω) plane, corresponding to
the homogeneous case for λ=a/2. The energy axis (y-axis) is in units of
ω/J0. (Here N = 443). (From Ref.[157]).

the spectrum which indicates that the magnon lifetime is strongly reduced

in this case. We also observe low-lying excitations around the center of

the Brillouin zone corresponding to low energy values, which is found to

be absent in the case of λ=a. This shows that the effective range of the

exchange interactions also plays a significant role in determining the spin

dynamics, namely the magnon excitations, in these diluted systems. Now it

is interesting to note that the spectral function shown here is very similar to

the spectral function obtained for the case of optimally annealed (Ga,Mn)As

(see Figure 3.12). Here we work at a fixed concentration of x=0.07, which is

close to the Mn concentrations used for (Ga,Mn)As. However, as we know,

the exchange couplings in (Ga,Mn)As were obtained within the one-band

V -J model. Nevertheless, the similar nature of the spectral function justifies

once again the choice of our generalized couplings.

Now moving to the case of inhomogeneities, Figure 4.31 shows the spec-
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Figure 4.31: Spectral function A(q, ω) in the (q, ω) plane corresponding to
λ=a/2, for four different xns : (a) 0.02, (b) 0.04, (c) 0.06, and (d) 0.08. The
energy axis (y-axis) is in units of ω/J0. (Here r0=2a, xin=0.8, and L=44).
(From Ref.[157]).

tral function in the (q, ω) plane, corresponding to the case of λ=a/2, for four

different values of xns. Here too we observe interesting and strong deviations

in the excitation spectra as compared to the homogeneous case (Figure 4.30).

The effects of the inhomogeneities are relatively feeble for a small concen-

tration of nanospheres (xns∼0.02). Some excitations of low intensity can be

seen to appear at relatively higher energies for xns=0.04. These excitations

become more and more conspicuous with increasing values of xns, as can be

seen from Figures 4.31(c) and (d). Well-defined excitations, close to the Γ

point, also cease to exist with increasing xns and we observe a full suppres-

sion of the low lying excitations at high xns. This may be again due to the

localization of the magnons inside the clusters, which is enhanced with the
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increase in the concentration of nanospheres. The magnon excitations in this

case exhibit a qualitatively different nature from what is observed in the case

for λ=a (Figure 4.29). More localized excitations are found to exist over the

entire Brillouin zone, for both relatively low and high energy values, which

is unlike the case of λ=a. The occurrence of these characteristic excitations,

typically between energy values of 0.5 and 2J0, is found to be consistent with

the multiple peak structure of the magnon DOS observed in Figure 4.23.

The results for the spin excitation spectrum obtained here, within our sim-

ple model approach, could be further substantiated by detailed experimental

studies on these inhomogeneous diluted systems. Inelastic neutron scattering

measurements have proved to be an efficient tool in this context.

4.4.3 Spin-wave stiffness suppression by

inhomogeneities

After analyzing the magnon DOS and the spin excitation spectrum, it would

be interesting to observe the effects of inhomogeneities on the spin-stiffness

in these materials. We have already seen (Section 4.2) that in the presence

of these nanoscale inhomogeneities the Curie temperatures can be enhanced

drastically, especially in systems with short-ranged interactions. However,

one can not say instinctively what to expect in the case of the spin-stiffness.

Experimental studies measuring the spin-stiffness in inhomogeneous systems

are also lacking. We have calculated here the spin-stiffness in the presence of

nanoclusters, as a function of the concentration of inhomogeneities. Now in

order to gauge the effects of the inhomogeneities, we show here the normal-

ized spin-stiffness coefficient Dn=D
inh/Dhom, where Dinh denotes the spin-

stiffness of the inhomogeneous system, and Dhom that of the homogeneously

diluted system. The values of the spin-stiffness Dhom are found to be 2.9 J0

and 0.07 J0, for λ=a and a/2 respectively, for x=0.07. The spin-stiffness is

in fact extracted from the magnon excitation curves, in a similar fashion as

discussed in Sections 2.4.3 and 3.4.5.

In Figure 4.32 we show the normalized spin-stiffness Dn as a function

of the concentration of nanospheres, corresponding to the case of λ=a. The
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Figure 4.32: Normalized spin-stiffness Dn as a function of xns, for three
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√
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√
2a. (Here λ=a and xin=0.8). (From Ref.[156]).

results are shown here for three different radii of nanospheres, where the

concentration of impurities inside the nanospheres in each case is fixed at

xin=0.8. We observe a very interesting and surprising decrease of the spin-

stiffness coefficient in the presence of inhomogeneities. The decrease is found

to be almost monotonous with increase in xns. (xns=0 corresponds to the

homogeneously diluted case). In fact, even more surprisingly, we notice that

the suppression of the spin-stiffness is more for the spheres with larger radii.

For xns∼0.03, the spin-stiffness is reduced by almost 15% compared to the

homogeneous value for r0=
√
2a, and almost by 30% for r0=

√
6a. This is in

contrast to what is observed in the case of the Curie temperatures, although

the effects are not as drastic. The decrease in the spin-wave stiffness, observed

here, is consistent with the shift in the excitation peaks at low q values seen

in Figure 4.26. It is interesting to note here that similar decrease in the spin-

stiffness values was reported in double exchange systems in the presence of

short-range correlated disorder[60], and the small ratios of D/TC were found

to be in very good agreement with those measured in manganites. But those
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systems correspond to the clean limit, and cannot be compared to the diluted

regime discussed here.
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Figure 4.33: Normalized spin-stiffness Dn as a function of xns, for three
different r0:

√
6a, 2a, and

√
2a. (Here λ=a/2 and xin=0.8). (From Ref.[156]).

Now in Figure 4.33 we plot the normalized spin-stiffness Dn, correspond-

ing to the case of the short-ranged couplings for λ=a/2. In this case too, we

observe a similar monotonous decrease in the spin-stiffness coefficient with

increase in the concentration of nanospheres. The decrease is found to be

almost linear till xns=0.04. Compared to the case of λ=a, the suppression

in the spin-stiffness values is found to be even more here. For xns∼0.03,

the spin-stiffness is reduced by more than 40% of the homogeneous value

for the largest nanospheres with r0=
√
6a. This is again consistent with our

initial expectation, when we observed a strong shift of the low momentum

A(q, ω) peaks toward lower energies with increasing xns (Figure 4.27). The

effects of the nanoscale clusters on the spin-stiffness are in striking contrast

to that observed on the critical temperatures, where we have observed an in-

crease by almost one order of magnitude. These results show that in systems

with effective short-ranged exchange interactions the spin-stiffness can be
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significantly reduced in the presence of nanoscale inhomogeneities. However,

detailed experimental studies, using inelastic neutron scattering or ferromag-

netic resonance measurements, would prove to be very useful in confirming

our predictions.

4.4.4 General Remarks

In the context of the results shown here we would like to mention that all

these calculations were performed very recently, and the results are yet to

be published [156]. A better understanding of the precise origin of these ef-

fects calls for a more detailed analysis. We are in course of investigating the

different features discussed here by performing other detailed calculations.

For example, in the inhomogeneous systems we have focused only on the

particular case of nanospheres with radii r0=2a and xin=0.8. Now it would

be very useful to consider nanospheres of other radii and with different con-

centrations of impurities inside, to analyze the nature of the magnon DOS

and the excitation spectrum. Also interesting to observe would be the sensi-

tivity of the spin-stiffness coefficient to the variation of the concentration of

impurities inside the nanospheres,

As mentioned before, all the above calculations are performed at T= 0

K. Now it is possible to extend this study to the case of finite temperatures as

well. It would be very interesting to analyze the effects of temperature on the

spin dynamics of these inhomogeneous systems. This might further reveal

newer and yet unknown properties of these complex systems. We believe

that the finite temperature spin excitations, especially close to the critical

temperatures, might help in providing a better understanding of the likely

origin of anomalous magnetization behavior observed in these inhomogeneous

systems.

4.5 Conclusion

To conclude, we have presented here a detailed and extensive study of the

effects of nanoscale inhomogeneities on the Curie temperatures, the sponta-
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neous magnetization, and the spin-wave excitations from a generalized per-

spective. We have shown that the presence of inhomogeneities can indeed

lead to rich and interesting physics in these diluted magnetic systems. The

important findings of this study can be summarized as the following:

• In materials with effective short ranged exchange interactions it is in-

deed possible to go beyond room-temperature ferromagnetism by in-

ducting nanoscale clusters of magnetic impurities. A gigantic increase

in the critical temperatures of up to 1600%, compared to that of the

homogeneously diluted case, is obtained in certain cases.

• A plausible explanation for the wide variation of TC ’s, observed ex-

perimentally, in some materials like (Ga,Mn)N is provided. Our study

reveals that the relative separation between the inhomogeneities can

play a decisive role in controlling the Curie temperatures.

• The temperature dependent magnetization is found to exhibit a non-

trivial non-mean-field like behavior in the presence of inhomogeneities.

A distinctly slow decay is observed in the average magnetization in

systems with short ranged exchange couplings. This may be attributed

to the strong couplings within the nanospheres which tend to prolong

magnetic order near the critical temperatures.

• The nature of the local magnetizations is shown to provide a better

qualitative understanding of the spontaneous magnetization of the sys-

tems. The effective exchange interactions are found to play an im-

portant role in controlling the magnetization behavior, consistent with

what is found in the case of TC .

• The average magnon DOS reveal interesting features and strong devi-

ations when compared to that of the homogeneous case. Even for a

relatively small concentration of inhomogeneities (∼2%) the magnon

bandwidth is found to be increased by almost a factor of three in sys-

tems with short-ranged interactions. We find that the average magnon
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DOS resembles more the local DOS inside the nanoclusters at rela-

tively high xns. This indicates the importance of the cluster impurities

in determining the nature of the magnon DOS.

• The nanoscale inhomogeneities give rise to interesting features in the

spin-wave spectrum. With increasing concentration of nanoclusters,

well-defined excitations are strongly reduced and prominent excita-

tions are found to appear at relatively higher energies in the spectrum.

Although the exact origin is not so clear, these high energy excita-

tions may be associated with the increasing localization of the magnons

within the clusters. These findings can be further confirmed by detailed

experimental studies, using inelastic neutron scattering measurements.

• Interestingly a decrease in the spin-stiffness coefficient is observed with

increase in the concentration of inhomogeneities. We have found that

in certain cases, the spin-stiffness can be reduced by almost 40% of the

value corresponding to the homogeneous case. This relatively strong

suppression of the spin-stiffness due to the clustering phenomenon is

found to be exactly opposite to what is found in the case of the Curie

temperatures. This clearly underlines the importance of disorder and

highlights the competition between several relevant length scales (ex-

change couplings, size of inhomogeneities, etc.) in these complex inho-

mogeneous systems.
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Chapter 5

General conclusion and

Perspectives

5.1 Conclusions

This work mainly concerns the magnetic properties of diluted and disor-

dered systems, and lays special emphasis on the effects of nanoscale inhomo-

geneities. The importance of disorder and percolation effects in these systems

is outlined in the very beginning. In this context, we have discussed some

of the theoretical approaches used very frequently in the literature. It is

proved, beyond doubt, that the SC-LRPA is the most reliable and accurate

tool to deal with these systems. Within this approach, the spin fluctua-

tions are treated within the RPA and the disorder effects are almost exactly

treated in real space. Also important is the fact that the localization and

always leads to an incorrect estimation of the Curie temperatures and other

magnetic properties. Now one might be tempted to use the Monte Carlo

calculations, considered as in principle exact. However, we have seen that

the SC-LRPA enjoys distinct advantages over the MC methods, in terms of

finite size effects, reliable statistical sampling, and more importantly com-

putational resources. Here we have further established the efficiency and

accuracy of the SC-LRPA to study the magnetic excitation spectrum in di-

luted systems, for which we have considered the 3D nearest-neighbor diluted
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Heisenberg model. A broadening in the excitation spectrum is observed close

to the percolation threshold, which is attributed to the formation of local-

ized magnon modes. We have also extracted the spin-stiffness values, which

was found to vanish at the percolation threshold exactly. In addition, the

calculated spin-stiffness was found to be in very good agreement with those

obtained from a different theoretical approach. Hence we have successfully

demonstrated that a proper treatment of the disorder and/or dilution effects

is required for an accurate estimation of the relevant properties, and the

SC-LRPA is the best tool for this.

Following this we have shown the indispensable role of a minimal model

approach to study various properties of diluted magnetic systems. The V -J

model had already been successfully implemented to ascertain the magnetic

and transport properties in a wide range of III-V DMSs. We have studied here

the Curie temperatures and the magnetic excitation spectrum for optimally

annealed (Ga,Mn)As, within this one-band model. An excellent agreement

was achieved between our calculated TC ’s and those obtained from ab initio

exchange integrals, as well as experimental values. We have also obtained a

remarkable agreement for the spin-stiffness calculated from this model with

those from ab initio couplings. We could as well reproduce most of the ex-

perimentally measured spin-stiffness in optimally annealed (Ga,Mn)As. The

main feature of the V -J model is the non-perturbative treatment of the

substitution effects in addition to the proper and reliable treatment of the

disorder effects (percolation, localization). The Coulomb potential V was

shown to play a crucial role in understanding the origin of ferromagnetism

in DMSs. Although the V -J model has been primarily discussed in the con-

text of DMSs here, it can be generalized to a wide class of diluted magnetic

systems which makes it all the more powerful. This essentially helps to nar-

row down the gap between first-principles based studies and minimal model

approaches.

Finally we have studied the effects of nanoscale inhomogeneities in di-

luted magnetic systems, which as already mentioned is the primary objective

of this research work. The formation and appearance of inhomogeneities in

various materials was already observed experimentally, and different inter-
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esting properties were also reported. The most appealing among them was

the room-temperature ferromagnetism observed in some cases. However, the

exact origin of these high TC ’s was not well understood and a proper theo-

retical description of the effects of this kind of impurity clustering was also

lacking for a long time. In a major part of this manuscript, we have tried

to provide a generalized and comprehensive study of the effects of nanoscale

inhomogeneities on different magnetic properties of the diluted systems. We

have proposed an innovative path to room-temperature ferromagnetism in

these diluted materials, by the possible inclusion of nanoscale impurity clus-

ters. It is shown that the Curie temperatures in some particular cases can

be enhanced by up to 1600% compared to that of the homogeneously diluted

case. This kind of phenomenal boost in the ordering temperatures of diluted

magnetic systems have not been reported so far theoretically. We have also

provided a credible explanation for the wide variation of the critical tem-

peratures measured experimentally in certain materials. The effects of the

inhomogeneities on the temperature dependent magnetization have been an-

alyzed in details. The magnetizations are found to exhibit an anomalous

non-mean-field like behavior, which also effectively depends on the range of

the exchange interactions. The strong intra cluster couplings, which tend to

prolong magnetic order, are believed to be one of the reasons for this anoma-

lous magnetization behavior. Apart from these, we have also observed very

interesting and unusual features in the magnetic excitation spectrum as com-

pared to that of the homogeneous systems. The appearance of prominent

high energy excitations, with increasing concentration of inhomogeneities,

could be possibly attributed to the increasing localization of magnons in the

nanoclusters. At the same time it was rather surprising to observe the effect

on the spin-stiffness coefficient, which was found to be suppressed with an

increase in the concentration of inhomogeneities. All our findings reported

herein could be further corroborated by more detailed experimental and the-

oretical studies.

Thus in a nutshell we can say that the nanoscale inhomogeneities can

give rise to very rich and new physics in these diluted magnetic systems. If,

by proper control of the growth conditions the formation of these inhomo-
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geneities can be manipulated, it will possibly open up a whole new branch of

condensed matter physics, which had hitherto been almost unexplored. We

believe that this study will pave the way for a better understanding of the

impurity clustering effects and in particular help to identify the origin of high

temperature ferromagnetism in dilute magnetic systems. These systems in

turn can serve as potential building blocks for future spintronic devices.

5.2 Some future perspectives

5.2.1 Nanocolumns

In all our calculations, concerning inhomogeneous systems, the inhomo-

geneities are assumed to be in the form of nanospheres. Now it is possible to

extend this study to a different kind of inhomogeneity − the nanocolumns.

The presence of nanocolumns was already detected experimentally in some

Figure 5.1: Snapshot of a simple cubic lattice containing nanocolumns. The
grey (red) atoms denote the impurities inside (outside) the nanocolumns.

materials like (Ge,Mn)[19] and (Zn,Co)O[136]. In both the cases, as dis-

cusse before, room-temperature ferromagnetism has been reported. The
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nanocolumns can lead to a magnetocrystalline anisotropy in the system,

since the columns are fully extended in only one direction. This is essen-

tially different from the case of the systems containing nanospheres. Thus

the nanocolumns appear to be interesting from a fundamental perspective

as well. We believe that a detailed analyses of the effects of nanocolumns

would yield quantitatively new features in the Curie temperature, the spon-

taneous magnetization, the spin dynamics and a host of other properties in

these materials. Hence we intend to perform similar calculations, as done

within the framework of this thesis, assuming inhomogeneities in the form of

nanocolumns in the near future.

5.2.2 Effect of inhomogeneities on transport

properties

As already seen, in a major part of this thesis, nanoscale inhomogeneities

can have quite drastic and interesting effects on the magnetic properties of

the disordered and diluted systems. This gives rise to rich and fascinating

physics in these systems. Now, from this perspective, it would be equally

interesting to study the effects of these inhomogeneities on the transport

properties, such as optical conductivity, resistivity, etc. We firmly believe

that the transport properties will show interesting and new features in the

presence of impurity clustering effects. Here we would like to focus on the

particular case of the optical conductivity and the associated Drude weight.

As discussed previously (Section 3.3.4), the optical conductivity calculated

within the one-band V -J model[110] was found to explain the measured red-

shift in the conductivity peak in (Ga,Mn)As (consistent with the impurity

band scenario). Also the Drude weight calculations revealed the proximity of

(Ga,Mn)As to the metal-insulator transition. Thus the optical conductivity

can be an interesting quantity to start with. The effects of the nanoclusters

on the behavior of the conductivity peaks can give rise to interesting physics

in these complex systems, which has hardly been studied until now. The

total optical conductivity is given by σ(ω)=
∑

σ σσ(ω), where the subscript σ
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denotes the spin index and σσ(ω) is given by

σσ(ω) = Dσδ(ω) + σreg
σ (ω) (5.1)

Dσ is the Drude weight (contribution at zero frequency) in the σ-sector, and

σreg
σ (ω) is the regular part of the optical conductivity. The Drude weight is

the order parameter which determines the metal-insulator transition. Now

in order to separate the regular part (finite frequency) from the dc part (zero

frequency), periodic boundary conditions should be implemented. The Drude

weight is then calculated from the following sum-rule

Dσ = −
∫ ∞

0

σreg
σ (ω)dω − σ0

~

〈K̂x
σ〉
N

(5.2)

where 〈K̂x
σ〉 is the average kinetic energy in the x-direction and σ-sector,

N=L3 is the total number of sites, and σ0=πe
2/~a, (a is the simple cubic

lattice parameter). Now the regular part of the optical conductivity, σreg
σ (ω),

was obtained within the Kubo formalism in Ref.[110]. This involves matrix

diagonalization in order to calculate the required eigenvalues and eigenfunc-

tions. Now to study systems with inhomogeneities in a reliable way, the typ-

ical size of the systems should be sufficiently large in comparison to the size

of the impurity clusters. This implies that the matrices to be diagonalized

are also very big, and this can be quite expensive in terms of computational

resources. Hence we need some alternative tool or method to efficiently deal

with these problems. We will come back to this in the following.

5.2.3 Exchange couplings in presence of

inhomogeneities

Throughout this study we have assumed the exchange interactions in inho-

mogeneous systems to be of a generalized isotropic form with an exponential

decay. This, as we have demonstrated, was found to be a reasonably good

choice with respect to the real couplings in several diluted materials. How-

ever, in order to have an even better quantitative idea of the effects of in-
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Figure 5.2: Schematic diagram showing the different kind of couplings in a
system with inhomogeneities.

homogeneities, it would be vastly useful to calculate the magnetic couplings

in the presence of inhomogeneities. These couplings can then be used to

calculate the different properties of the systems. One of the advantages of

this is we can identify the relevant couplings related to the impurities inside

and outside the clusters. This would help us understand in a better way the

possible origin of several interesting features as already observed. Figure 5.2

shows a schematic representation of the different type of couplings that one

can obtain in a system with impurity clusters. In the figure, the intra cluster

couplings are denoted by JAA, the inter cluster couplings by JAA′ , the cou-

pling between an impurity inside and one outside by JAB, and the couplings

between two impurities outside by JBB, respectively.

5.2.4 Efficient method to calculate couplings and

optical conductivity

The idea that we put forward here is to calculate the exchange couplings

as well as the optical conductivity within the one-band V -J model[97] in

presence of inhomogeneities. This model has already been shown to be very

efficient and reliable to obtain the magnetic and transport properties in a
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wide class of homogeneously diluted magnetic systems (Section 3.3). Now,

the couplings and the optical conductivity need to be calculated on consider-

ably large system sizes compared to the typical size of the inhomogeneities,

in order to have reliable estimates and account for finite size effects. These

calculations require diagonalization of the Hilbert space, which is propor-

tional to the number of sites in the system. For a system size of L=40, the

matrix to be diagonalized is already on the order of 64000×64000. This can

be computationally very expensive in time. Hence we suggest to use a dif-

ferent approach based on the kernel polynomial method (KPM)[158], which

is comparatively much faster and at the same time accurate. The exchange

coupling between two magnetic impurities can be expressed in terms of the

matrix elements of the local density of states ρij(E), as

Jij = − J2

4πS2

∫

E<EF

∫

E
′
>EF

Fij(E,E
′

)

E − E ′
dEdE

′

(5.3)

where

Fij(E,E
′

) = Re[ρ↑ij(E)ρ
↓
ji(E

′

)] (5.4)

and ρσij(E) = 〈i|δ(E− Ĥσ)|j〉. Here J is the local coupling constant between

the localized impurities and the itinerant carriers, S denotes the magnetic

impurity spin, and Ĥ corresponds to the V -J Hamiltonian. Now within

the KPM, the local density of states is calculated very efficiently from the

following relation

ρij(E) ≈
1

π
√
1− E2

[
g0µ

ij
0 + 2

M∑

l=1

glµ
ij
l Tl(E)

]
(5.5)

where Tl(E) are the Chebyshev polynomials of the first kind, given by

µij
l = 〈i|Tl(Ĥ)|j〉 (5.6)

and gl are the Jackson kernel coefficients. M is a cutoff number used to

truncate the polynomial sum. The coefficients µij
l are obtained from the
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recurrence relation of Chebyshev polynomials, given by

Tl+1(Ĥ) = 2ĤTl(Ĥ)− Tl−1(Ĥ) (5.7)

with T0(Ĥ)=1, and T1(Ĥ)=Ĥ.

The regular part of the optical conductivity can be calculated using the

following relation

σreg(ω) =
1

ω

∫ ∞

−∞

j(y + ω)[fEF
(y)− fEF

(y + ω)]dy (5.8)

where j(x, y) is the matrix element density and fEF
represents the Fermi

distribution function. Now j(x, y) can be expanded by using a polynomial

expansion of order M ,

j(x, y) =
M−1∑

m,n=0

µmnhmngmgnTm(x)Tn(y)

π2
√
(1− x2)(1− y2)

(5.9)

where the expansion coefficients are given by

µmn = Tr[Tn(Ĥ)JTm(Ĥ)J ] (5.10)

This trace is then calculated by using an average over some random vectors

(for more details see Ref.[158]).

Now the calculation of these coefficients from the recurrence relations

of Chebyshev polynomials represents the most time consuming part of this

approach. However, as we can see, the KPM does not involve matrix di-

agonalization and hence very large systems can be studied at the expense

of relatively less computational time. Note that a similar kind of numerical

approach, based on an expansion of orthogonal polynomials, was proposed

in Ref.[159] to study RKKY interactions in aperiodic systems. Thus, within

KPM approach, we can efficiently calculate the exchange couplings and the

optical conductivity, within the one-band V -J model, for realistic materials

containing inhomogeneities. Using these couplings one can then calculate

the Curie temperatures and other magnetic properties, in a similar fashion
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as described in this manuscript. This would definitely lead to interesting

quantitative results, and also help to confirm the predictions made in this

work.
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Appendix A

TC from the Mean field and

Virtual Crystal

Approximation

In this annexe, we will derive the expression for the Curie temperature

obtained within the mean field and virtual crystal approximation. For this

we start with the effective Heisenberg Hamiltonian given by

HHeis = −
∑

i,j

pipjJi,jSi · Sj (A.1)

where Si is a localized spin (can be classical or quantum) at site i, and the

random variable pi is 1 if the site is occupied by a spin otherwise it is 0. Now

assuming the ground state of the system to be completely ferromagnetic

and saturated along the z-axis, the effective Hamiltonian within the MF

approximation can be written as

HMF = −
∑

i

hMF
i Sz

i (A.2)

where the local effective field is defined by

hMF
i =

∑

j

Jij〈Sz
j 〉 (A.3)
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Now within the VCA, all sites of the system are considered as equivalent

and the sum over the occupied sites is replaced by a sum over all sites with a

weight proportional to the concentration of the spins. Then the local effective

field at each site becomes

hMF−V CA = 2x
∑

j

Jij〈Sz〉 (A.4)

Note that the sum now extends over all sites and the factor 2 arises as a

result of double counting in the Heisenberg Hamiltonian. Now the average

magnetization is given by

〈Sz〉 = Tr(e−βHMF−V CA
Sz)

Tr(e−βHMF−V CA)
(A.5)

From the above equation further calculations yield the following expression

for 〈Sz〉,

〈Sz〉 = SBS(βh
MF−V CA) (A.6)

where BS is the Brillouin function defined by

BS(z) =
2S + 1

S
coth

(
2S + 1

2S
z

)
− 1

2S
coth

( z

2S

)
(A.7)

As known when the temperature approaches the Curie temperature, the mag-

netization tends to zero. Thus in the limit z → 0 the Brillouin function

becomes

BS(z) ≈
1

3
S(S + 1)z (A.8)

Hence for the expression of the Curie temperature, within the MF and VCA,

we finally obtain

kBT
MF−V CA
C =

2

3
S(S + 1)x

∑

i

J0i (A.9)
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Appendix B

Summary of the SC-LRPA

method

In this annexe we present a summary of the SC-LRPA formalism. The SC-

LRPA is essentially an extension of the standard RPA, which was successfully

used for ordered systems[63, 160], to the case of disordered systems. For

this we consider a system of Nimp interacting spins (quantum or classical)

randomly distributed on a lattice of N sites, which is given by the effective

diluted Heisenberg Hamiltonian

H = −
∑

i,j

JijpipjSi · Sj (B.1)

where the localized spins Si and Sj are situated at the sites i and j of the

host lattice respectively. The random variable pi is 1 if the site is occupied

by an impurity otherwise it is 0. We introduce the retarded Green’s function,

which describe the transverse spin fluctuations, as

Gij(t) = −iθ(t)〈[S+
i (t), S

−
j (0)]〉 (B.2)
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where [Â,B̂] denotes the commutator and the expectation value of an oper-

ator Â is given by

〈Â〉 = Tr(e−βHÂ)

Tr(e−βH)
(B.3)

The Fourier transform of the above Green’s function is defined as

Gij(ω) =

∫ +∞

−∞

Gij(t)e
iωtdt = 〈〈S+

i ;S
−
j 〉〉 (B.4)

The exact equation of motion of Gij(ω) in real space is

ωGij = 2〈Sz
i 〉δij + 〈〈[S+

i ,H];S−
j 〉〉 (B.5)

Now the commutator on the right hand side of the above equation is given

by

[S+
i ,H] =

∑

l

Jil(S
z
i S

+
l − Sz

l S
+
i ) (B.6)

This gives rise to higher order Green’s functions of the form 〈〈S+
i S

z
l ;S

−
j 〉〉, in

the equation of motion. This is decoupled using the Tyablicov decoupling[54]

or random phase approximation (RPA). Within this procedure the correla-

tions between Sz
l and S

+
i are neglected and the higher order Green’s functions

〈〈S+
i S

z
l ;S

−
j 〉〉 are replaced by 〈Sz

l 〉〈〈S+
i ;S

−
j 〉〉,

〈〈S+
i S

z
l ;S

−
j 〉〉 −→ 〈Sz

l 〉〈〈S+
i ;S

−
j 〉〉 (B.7)

〈Sz
l 〉 represents the local magnetization at each site for a diluted system and

this has to be evaluated self-consistently at each temperature and for each

configuration of disorder. Within the self-consistent local RPA, the equation

of motion (B.5) becomes

(ω − heffi )Gij(ω) = 2〈Sz
i 〉δij − 〈Sz

i 〉
∑

l

JilGlj(ω) (B.8)
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where heffi =
∑

l Jil〈Sz
l 〉 is the local effective field at site i. Now we can write

Equation B.8 in a concise form,

(ωI−Heff )G = D (B.9)

where Heff ,G and D are Nimp × Nimp matrices. The effective Hamiltonian

matrix elements are given by

(Heff )ij = −〈Sz
i 〉Jij + δij

∑

l

〈Sz
l 〉Jlj (B.10)

and

(D)ij = 2〈Sz
i 〉δij (B.11)

We immediately observe from the above equations that

∑

j

(Heff )ij = 0 (B.12)

which in turn implies that zero (Goldstone mode) is an eigenvalue of Heff .

Hence the SC-LRPA treatment is found to be consistent with the Goldstone

theorem. It is interesting to note that the matrix Heff is non-Hermitian (real

and non-symmetric) but the spectrum is real and positive at each temper-

ature. Actually this matrix has the property of bi-orthogonality[76]. Hence

one needs to define the right and left eigenvectors of Heff denoted by |ΨR
α 〉

and 〈ΨL
α| respectively, both associated with the same eigenvalue ωα, which

satisfy the following

Heff |ΨR
α 〉 = ωα|ΨR

α 〉 (B.13)

〈ΨL
α|Heff = ωα〈ΨL

α| (B.14)
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These vectors obey the relation

〈ΨL
α|ΨR

β 〉 = δα,β (B.15)

which indicate that two eigenvectors belonging to to the same family (L or

R) are not orthogonal to each other in general. Now inserting the L and R

eigenvectors in Equation B.9, the retarded Green’s functions can be written

as

Gij(ω) =
∑

α

2〈Sz
j 〉

ω − ωα + iǫ
〈i|ΨR

α 〉〈ΨL
α|j〉 (B.16)

Now in the case of disordered systems, the local magnetization 〈Sz
i 〉 is evalu-

ated from an expression similar to that given by Callen[63] for clean systems.

This relates the local Green’s function at site i to the local magnetization at

this site,

〈Sz
i 〉 =

(S − Φi)(1 + Φi)
2S+1 + (1 + S + Φi)Φi

2S+1

(1 + Φi)2S+1 − Φ2S+1
i

(B.17)

where the local effective magnon occupation number is given by

Φi = − 1

2π〈Sz
i 〉

∫ +∞

−∞

ℑGii(ω)

exp(βω)− 1
dω (B.18)

Note that - 1
2π〈Sz

i 〉
ℑGii(ω) is actually the local magnon DOS ρi(ω) at site i.

The equations B.8, B.16, B.17 and B.18 form the basis of the SC-LRPA

scheme, which has been used extensively throughout this manuscript.

Expression for the Curie temperature

Now when the temperature of the system approaches the Curie tempera-

ture TC , the local magnetization 〈Sz
i 〉 goes to zero, and the local density of

magnons diverges, Φi → ∞. From Equation B.17, we obtain

〈Sz
i 〉 ≈

1

3
S(S + 1)

1

Φi

(B.19)
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We define the average magnetization of the system as

m = 〈〈Sz〉〉 = 1

Nimp

∑

i

〈Sz
i 〉 (B.20)

and introduce the reduced variables

E =
ω

m
(B.21)

λi = limT→TC

〈Sz
i 〉
m

(B.22)

From Equation B.17, the effective number of magnons now becomes

Φi =
TC
m

∫ +∞

−∞

Aii(E)

E
dE (B.23)

where Aii(E) is given by the equation

Aii(E) = − 1

2πλi
ℑGii(E) (B.24)

Now from equations B.18 and B.22, we obtain a semi-analytic expression for

the critical temperature,

kBTC =
1

3
S(S + 1)

1

Nimp

∑

i

1

Fi

(B.25)

where

Fi =

∫ ∞

−∞

Aii(E)

E
dE (B.26)

This quantity Fi depends on the local parameters λi (i=1,2,...Nimp), which

have to be determined self-consistently at each temperature. Now, if we

rewrite this equation in terms of the eigenvalues and eigenvectors of the

effective Hamiltonian Heff , we get

Fi =
∑

α 6=0

〈i|ΨR
α 〉〈ΨL

α|i〉
Eα

(B.27)
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where Eα=ωα/m and E0=0 is the Goldstone mode. Then the expression for

the Curie temperature becomes

TC =
1

3
S(S + 1)

1

Nimp

∑

i

(
∑

α 6=0

〈i|ΨR
α 〉〈ΨL

α|i〉
Eα

)−1

(B.28)

Note that the Goldstone mode is excluded from the sum in Equation B.26.

This is essential as the inclusion of this mode always leads to a zero critical

temperature in the case of finite size systems. From the expression of TC

(Equation B.27), we see that the critical temperature depends both on the

excitation spectrum as well as the nature of the magnetic excitations. There

is a contribution from both the localized states and the extended states.

However, it is not an easy task to determine the contribution of each type

of excitation to the magnitude of the Curie temperature. Hence a proper

description of the nature of the magnetic excitations is essential to provide

a correct estimate of the Curie temperatures.

Thus we have obtained a semi analytic expression for the Curie temper-

ature in disordered systems within the SC-LRPA formalism. It should be

noted that the formalism shown here is general in nature as we can calculate

the complete Green’s functions of a system and hence evaluate other prop-

erties like the average magnetization, and the magnetic excitation spectrum

of a system.
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Abstract

This thesis is mainly devoted to the study of nanoscale inhomogeneities in diluted

and disordered magnetic systems. The presence of inhomogeneities was detected experi-

mentally in several disordered systems which in turn gave rise to various interesting and

unexpected properties. In particular, the possibility of room-temperature ferromagnetism

generated a huge thrust in these inhomogeneous materials for potential spintronics ap-

plications. However, a proper theoretical understanding of the underlying physics was a

longstanding debate. In this manuscript we provide a detailed theoretical account of the

effects of these nanoscale inhomogeneities on the magnetic properties of diluted systems.

First we show the importance of disorder effects in these systems, and the need to treat

them in an appropriate manner. The self-consistent local RPA (SC-LRPA) theory, based

on finite temperature Green’s function, is found to be the most reliable and accurate tool

for this. We have successfully implemented the SC-LRPA to study the dynamical mag-

netic properties of the 3D nearest-neighbor diluted Heisenberg model. The percolation

threshold is found to be reproduced exactly in comparison with previous existing stud-

ies. Following this, we discuss the essential role of a minimal model approach to study

diluted magnetic systems. The one-band V -J model, has been used to calculate the Curie

temperature and the spin excitation spectrum in (Ga,Mn)As. An excellent agreement is

obtained with first principles based calculations as well as experiments. Finally we propose

an innovative path to room-temperature ferromagnetism in these materials, by nanoscale

cluster inclusion. We find a colossal increase in TC of up to 1600% compared to the ho-

mogeneous case in certain cases. Also the spontaneous magnetization is found to exhibit

anomalous non-mean-field like behavior in the presence of inhomogeneities. In addition

we observe a complex nature of the magnon excitation spectrum with prominent features

appearing at high energies, which is drastically different from the homogeneous case. Our

study interestingly reveals a strong suppression of the spin-stiffness in these inhomoge-

neous systems. The results indicate toward the strong complexities associated with the

interplay/competition between several typical length scales. We believe this work would

strongly motivate detailed experimental as well as theoretical studies in this direction in

the near future.

Keywords: nanoscale inhomogeneities, diluted magnetic systems, Curie tempera-

ture, magnon excitation spectrum, spin-stiffness, magnetization, disordered systems, per-

colation, thermal and transverse fluctuations, self-consistent local RPA, Green’s functions,

model approach
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Résumé

Cette thèse est principalement consacrée à l’étude des inhomogénéités de taille nano-

métrique dans les systèmes magnétiques désordonnés ou dilués. La présence d’inhomo-

généités, souvent mise en évidence dans de nombreux matériaux, donne lieu à des pro-

priétés physiques intéressantes et inattendues. La possibilité de ferromagnétisme à l’ambian-

te dans certains matéraux a généré un grand enthousiasme en vue d’application dans la

spintronique. Cependant, d’un point de vue fondamental la physique de ces systèmes reste

peu explorée et mal comprise. Dans ce manuscrit, on se propose de fournir une étude

théorique complète et détaillée des effets des inhomogenéités de tailles nanométriques

sur les propriétés magnétiques dans les systèmes dilués. Tout d’abord, on montre que

l’approche RPA locale autocohérente est l’outil le plus adapté et fiable pour un traite-

ment approprié du désordre et de la percolation. Nous avons implémenté cet outil et

étudié dans un premier temps, les propriétés magnétiques dynamiques d’un modèle Heisen-

berg dilué (couplages premiers voisins) sur un reseau cubique simple. Nous avons re-

produit précisémment la disparition de l’ordre à longue portée au seuil de percolation

et comparé ce travail à des études précédentes. Dans le cadre d’un Hamiltonien min-

imal (modèle V -J) nous avons ensuite étudié en détails les propriétés magnétiques de

(Ga,Mn)As (température critique, excitations magnétiques, stiffness,..). Nous avons obtenu

de très bon accords avec les calculs ab initio et les résulats expérimentaux. Finalement,

nous avons étudié les effets des inhomogénéités dans les sytèmes dilués. Nous avons montré,

qu’inclure des inhomogenéités pourrait s’averer être une voie très efficace et prometteuse

pour dépasser l’ambiante dans de nombreux matériaux. Nous avons pu obtenir une aug-

mentation colossale de la température critique dans certains cas comparée à celle des

systèmes dilués homogènes. Nous avons atteint une augmentation de 1600% dans cer-

tains cas. Nous avons également analysé les effets des inhomogénéités sur les courbes

d’aimantations, elles sont inhabituelles et peu conventionelles dans ces systèmes. Les

spectres d’excitations magnétiques sont très complexes, avec des structures très riches, et

présentent de nombreux modes discrets à haute energie. De plus, nos calculs ont montré

que la “spin-stiffness” est fortement supprimé par l’introduction d’inhomogénéités. Il reste

encore de nombreuses voies à explorer, ce travail devrait servir de base à de futures études

théoriques et expérimentales des systèmes inhomogènes.
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