G. E. Alexander and M. D. Crutcher, Functional architecture of basal ganglia circuits: neural substrates of parallel processing, Trends in Neurosciences, vol.13, issue.7, pp.266-271, 1990.
DOI : 10.1016/0166-2236(90)90107-L

L. Altenberg, Modularity in Evolution : Some Low-Level Questions, Modularity, Understanding the Development and Evolution of Natural Complex Systems, pp.1-32, 2004.

S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biological Cybernetics, vol.13, issue.2, pp.77-87, 1977.
DOI : 10.1007/BF00337259

E. Antonelo, B. Schrauwen, X. Dutoit, D. Stroobandt, and M. Nuttin, Event Detection and Localization in Mobile Robot Navigation Using Reservoir Computing, Artificial Neural Networks?ICANN 2007, pp.660-669, 2007.
DOI : 10.1007/978-3-540-74695-9_68

T. Bäck, Evolutionary algorithms in theory and practice, 1996.

T. Bäck and F. Hoffmeister, Extended selection mechanisms in genetic algorithms, Proceedings of the Fourth International Conference on Genetic Algorithms, pp.92-99, 1991.

T. Bäck, F. Hoffmeister, and H. P. Schwefel, A survey of evolution strategies, Proceedings of the 4th International Conference on Genetic ALgorithms and their Applications, 1991.

T. Bäck and H. Schwefel, An Overview of Evolutionary Algorithms for Parameter Optimization, Evolutionary Computation, vol.1, issue.1, pp.1-23, 1993.
DOI : 10.1162/evco.1993.1.1.1

A. Baddeley, Working memory, Science, vol.255, issue.5044, pp.556-559, 1992.
DOI : 10.1126/science.1736359

J. Bader and E. Zitzler, HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization, Evolutionary Computation, vol.19, issue.1, 2011.
DOI : 10.1109/TEVC.2003.810758

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. E. Baker, Reducing bias and inefficiency in the selection algorithm, Proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and their application, pp.14-21, 1987.

W. Banzhaf, J. Koza, C. Ryan, L. Spector, J. et al., Genetic programming, IEEE Intelligent Systems, vol.15, issue.3, pp.74-84, 2000.
DOI : 10.1109/5254.846288

R. D. Beer, On the Dynamics of Small Continuous-Time Recurrent Neural Networks, Adaptive Behavior, vol.2, issue.3, pp.469-509, 1995.
DOI : 10.1177/105971239500300405

R. D. Beer, Toward the evolution of dynamical neural networks for minimally cognitive behavior. From animals to animats, pp.48-53, 1996.

R. D. Beer, The Dynamics of Active Categorical Perception in an Evolved Model Agent, Adaptive Behavior, vol.11, issue.4, pp.209-243, 2003.
DOI : 10.1177/1059712303114001

R. D. Beer, Parameter Space Structure of Continuous-Time Recurrent Neural Networks, Neural Computation, vol.76, issue.12, pp.3009-3051, 2006.
DOI : 10.1016/0167-2789(93)90207-H

H. C. Berg and D. A. Brown, Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking, Nature, vol.90, issue.5374, pp.500-504, 1972.
DOI : 10.1038/239500a0

N. Bergfeldt and F. Linaker, Self-organized modulation of a neural robot controller, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290), pp.495-500, 2002.
DOI : 10.1109/IJCNN.2002.1005522

N. Beume, B. Naujoks, and M. Emmerich, SMS-EMOA: Multiobjective selection based on dominated hypervolume, European Journal of Operational Research, vol.181, issue.3, pp.1653-1669, 2007.
DOI : 10.1016/j.ejor.2006.08.008

N. Beume and G. Rudolph, Faster S-Metric Calculation by Considering Dominated Hypervolume as Klee's Measure Problem, Proceedings of the Second IASTED Conference on Computational Intelligence, pp.231-236, 2006.

A. Billard and A. J. Ijspeert, Biologically inspired neural controllers for motor control in a quadruped robot, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, pp.637-641, 2000.
DOI : 10.1109/IJCNN.2000.859467

J. Blynel and D. Floreano, Exploring the T-maze: Evolving learning-like robot behaviors using CTRNNs. Lecture notes in computer science, pp.593-604, 2003.

J. Bongard, Innocent Until Proven Guilty: Reducing Robot Shaping From Polynomial to Linear Time, IEEE Transactions on Evolutionary Computation, vol.15, issue.4, pp.1-15, 2011.
DOI : 10.1109/TEVC.2010.2096540

J. Bongard, Morphological change in machines accelerates the evolution of robust behavior, Proceedings of the National Academy of Sciences, pp.1234-1239, 2011.
DOI : 10.1073/pnas.1015390108

J. Bongard and R. Pfeifer, Relating Neural Network Performance to Morphological Differences in Embodied Agents, Proceedings of the Sixth International Conference on Cognitive and Neural Systems, 2002.

V. Braitenberg, Vehicles: Experiments in synthetic psychology, 1986.

T. Braver, J. Cohen, and D. Servan-schreiber, A computational model of prefrontal cortex function Advances in neural information processing systems, Nips, pp.141-148, 1995.

N. Bredeche, J. Montanier, W. Liu, and A. F. Winfield, Environment-driven distributed evolutionary adaptation in a population of autonomous robotic agents, Mathematical and Computer Modelling of Dynamical Systems, vol.1, issue.3, pp.101-129, 2012.
DOI : 10.1162/EVCO_a_00025

URL : https://hal.archives-ouvertes.fr/inria-00531450

A. Brindle, Genetic algorithms for function optimization, 1981.

D. Brockhoff and E. Zitzler, Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods, 2007 IEEE Congress on Evolutionary Computation, pp.2086-2093, 2007.
DOI : 10.1109/CEC.2007.4424730

R. Brooks, Intelligence without reason Artificial intelligence: critical concepts, pp.569-595, 1991.

R. A. Brooks, Intelligence without representation, Artificial Intelligence, vol.47, issue.1-3, pp.139-159, 1991.
DOI : 10.1016/0004-3702(91)90053-M

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. D. Buhmann, Radial basis functions: theory and implementations, 2003.
DOI : 10.1017/CBO9780511543241

G. Capi and K. Doya, Evolution of recurrent neural controllers using an extended parallel genetic algorithm, Robotics and Autonomous Systems, vol.52, issue.2-3, pp.148-159, 2005.
DOI : 10.1016/j.robot.2005.04.003

K. Cheng, T. Collett, A. Pickhard, and R. Wehner, The use of visual landmarks by honeybees: Bees weight landmarks according to their distance from the goal, Journal of Comparative Physiology A, vol.159, issue.3, pp.469-475, 1987.
DOI : 10.1007/BF00603972

N. Chomsky, Aspects of the Theory of Syntax, 1965.

A. Clark and J. Toribio, Doing without representing? Synthese, pp.401-431, 1994.
DOI : 10.1007/bf01063896

D. Cliff, P. Husbands, I. Harvey, and O. , Evolving visually guided robots. From animals to animats, pp.374-383, 1993.

J. Clune, B. E. Beckmann, C. Ofria, and R. T. Pennock, Evolving coordinated quadruped gaits with the HyperNEAT generative encoding, 2009 IEEE Congress on Evolutionary Computation, pp.2764-2771, 2009.
DOI : 10.1109/CEC.2009.4983289

J. Clune, J. Mouret, and H. Lipson, The evolutionary origins of modularity, Proceedings of the Royal Society B: Biological Sciences, vol.19, issue.2, pp.1-17, 2012.
DOI : 10.1162/EVCO_a_00025

URL : https://hal.archives-ouvertes.fr/hal-01300705

J. Clune, J. Mouret, and H. Lipson, The evolutionary origins of modularity, Proceedings of the Royal Society B: Biological Sciences, vol.19, issue.2, 1755.
DOI : 10.1162/EVCO_a_00025

URL : https://hal.archives-ouvertes.fr/hal-01300705

A. Cochocki and R. Unbehauen, Neural networks for optimization and signal processing, 1993.

C. A. Coello, Evolutionary multi-objective optimization: a historical view of the field, IEEE Computational Intelligence Magazine, vol.1, issue.1, pp.28-36, 2006.
DOI : 10.1109/MCI.2006.1597059

C. A. Coello, A. D. Christiansen, and A. H. Aguirre, Multiobjective design optimization of counterweight balancing of a robot arm using genetic algorithms, Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, pp.20-23, 1995.
DOI : 10.1109/TAI.1995.479374

C. A. Coello and G. B. Lamont, Applications of multi-objective evolutionary algorithms, World Scientific Publishing Company Incorporated, vol.1, 2004.

D. Corne, N. R. Jerram, J. D. Knowles, M. J. Oates, J. et al., PESA-II: Region-based Selection in Evolutionary Multiobjective Optimization, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'2001, pp.283-290, 2001.

D. W. Corne, J. D. Knowles, and M. J. Oates, The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation, Proceedings of the 6th International Conference on Parallel Problem Solving from Nature, PPSN VI, pp.839-848, 2000.

K. J. Craik, The nature of explanation, pp.46-47, 1943.

N. L. Cramer, A Representation for the Adaptive Generation of Simple Sequential Programs, Proceedings of the 1st International Conference on Genetic Algorithms, pp.183-187, 1985.

M. Dacke, D. Nilsson, C. H. Scholtz, M. Byrne, and E. J. Warrant, Animal behaviour: Insect orientation to polarized moonlight, Nature, vol.424, issue.6944, pp.42433-42466, 2003.
DOI : 10.1038/424033a

C. Darwin, On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 1859.

Y. Davidor, Genetic Algorithms and Robotics: A heuristic strategy for optimization, 1991.
DOI : 10.1142/1111

P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, 2005.

D. Jong and K. , Evolutionary computation: a unified approach, 2006.

D. Jong and K. A. , An analysis of the behavior of a class of genetic adaptive systems, 1975.

K. Deb, Multi-objectives optimization using evolutionnary algorithms, pp.76-93, 2001.

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: Nsga-ii, Parallel Problem Solving from Nature PPSN VI, pp.849-858, 2000.

K. Deb, M. Mohan, and S. Mishra, Evaluating the ??-Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions, Evolutionary Computation, vol.26, issue.4, pp.501-525, 2005.
DOI : 10.1109/TEVC.2003.810758

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, vol.6, issue.2, pp.182-197, 2002.
DOI : 10.1109/4235.996017

G. Deco and E. T. Rolls, Attention, short-term memory, and action selection: A unifying theory, Progress in Neurobiology, vol.76, issue.4, pp.236-256, 2005.
DOI : 10.1016/j.pneurobio.2005.08.004

S. Deneve, P. Latham, and A. Pouget, Efficient computation and cue integration with noisy population codes, Nature Neuroscience, vol.4, issue.8, pp.826-831, 2001.
DOI : 10.1038/90541

S. Deneve, P. E. Latham, and A. Pouget, Reading population codes: a neural implementation of ideal observers, Nature neuroscience, vol.2, issue.8, pp.740-745, 1999.

S. Doncieux and J. Mouret, Behavioral diversity measures for Evolutionary Robotics, IEEE Congress on Evolutionary Computation, pp.1303-1310, 2010.
DOI : 10.1109/CEC.2010.5586100

URL : https://hal.archives-ouvertes.fr/hal-00687641

S. Doncieux and J. Mouret, Behavioral diversity measures for Evolutionary Robotics, IEEE Congress on Evolutionary Computation, pp.1-8, 2010.
DOI : 10.1109/CEC.2010.5586100

URL : https://hal.archives-ouvertes.fr/hal-00687641

S. Doncieux and J. Mouret, Behavioral diversity with multiple behavioral distances, 2013 IEEE Congress on Evolutionary Computation, pp.1-8, 2013.
DOI : 10.1109/CEC.2013.6557731

URL : https://hal.archives-ouvertes.fr/hal-01300703

S. Doncieux, J. Mouret, N. Bredeche, and V. Padois, Evolutionary Robotics: Exploring New Horizons, pp.3-25, 2011.
DOI : 10.1007/978-3-642-18272-3_1

URL : https://hal.archives-ouvertes.fr/inria-00566896

J. Drchal, O. Kapral, J. Koutník, and M. ?norek, Combining Multiple Inputs in HyperNEAT Mobile Agent Controller, Proceedings of the 19th International Conference on Artificial Neural Networks, pp.775-783, 2009.
DOI : 10.1162/neco.2007.19.3.757

J. A. Edlund, N. Chaumont, A. Hintze, C. Koch, G. Tononi et al., Integrated Information Increases with Fitness in the Evolution of Animats, PLoS Computational Biology, vol.131, issue.4, p.1002236, 2011.
DOI : 10.1371/journal.pcbi.1002236.s007

A. Eiben, I. Sprinkhuizen-kuyper, and B. Thijssen, Competing crossovers in an adaptive GA framework, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), pp.787-792, 1998.
DOI : 10.1109/ICEC.1998.700152

A. E. Eiben and C. A. Schippers, On evolutionary exploration and exploitation, Fundamenta Informaticae, vol.35, issue.1, pp.35-50, 1998.

A. E. Eiben and J. E. Smith, Introduction to evolutionary computing, 2003.

J. Elman, Finding Structure in Time, Cognitive Science, vol.49, issue.2, pp.179-211, 1990.
DOI : 10.1207/s15516709cog1402_1

R. Everson and J. Fieldsend, Full Elite Sets for Multi-objective Optimisation, Acdm), pp.1-12, 2002.
DOI : 10.1007/978-0-85729-345-9_29

D. Filliat, J. Kodjabachian, M. , and J. , Incremental evolution of neural controllers for navigation in a 6-legged robot, on Artificial Life and Robots, 1999.

M. Fleischer, The Measure of Pareto Optima Applications to Multi-objective Metaheuristics, Evolutionary Multi-Criterion Optimization, pp.74-74, 2003.
DOI : 10.1007/3-540-36970-8_37

D. Floreano, Automatic creation of an autonomous agent: Genetic evolution of a neural-network driven robot. From animals to animats, 1994.

D. Floreano and C. Mattiussi, Bio-inspired artificial intelligence: Theories, methods, and technologies, 2008.

D. Floreano and F. Mondada, Evolution of homing navigation in a real mobile robot, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.26, issue.3, pp.396-407, 1996.
DOI : 10.1109/3477.499791

D. Floreano and S. Nolfi, Evolutionary Robotics, 2000.
DOI : 10.1007/978-3-540-30301-5_62

D. Fogel, Introduction to evolutionary computation. Evolutionary Computation 1: Basic algorithms and operators, p.1, 2000.
DOI : 10.1002/9780470225868.ch1

D. B. Fogel, System Identification through Simulated Evolution: A Machine Learning Approach to Modeling, 1991.

D. B. Fogel, Evolutionary Computation, Evolutionary Computation, 2006.
DOI : 10.1002/9781119214403.ch10

L. J. Fogel, Autonomous automata, Industrial Research, vol.4, pp.14-19, 1962.

C. M. Fonseca and P. J. Fleming, Genetic Algorithms for Multiobjective Optimization: Formulation : Discussion and Generalization, Proceedings of the 5th International Conference on Genetic Algorithms, pp.416-423, 1993.

C. M. Fonseca, L. Paquete, and M. López-ibáñez, An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator, 2006 IEEE International Conference on Evolutionary Computation, pp.1157-1163, 2006.
DOI : 10.1109/CEC.2006.1688440

A. S. Fraser, Simulation of Genetic Systems by Automatic Digital Computers I. Introduction, Australian Journal of Biological Sciences, vol.10, issue.4, pp.484-491, 1957.
DOI : 10.1071/BI9570484

J. Gallagher, Evolution and analysis of dynamical neural networks for agents integrating vision, locomotion, and short-term memory, Proceedings of the Genetic and Evolutionary Computation Conference, pp.34-53, 1999.

M. Gardner and S. Dorling, Artificial neural networks (the multilayer perceptron)???a review of applications in the atmospheric sciences, Atmospheric Environment, vol.32, issue.14-15, pp.14-152627, 1998.
DOI : 10.1016/S1352-2310(97)00447-0

O. Gigliotta and S. Nolfi, On the Coupling Between Agent Internal and Agent/ Environmental Dynamics: Development of Spatial Representations in Evolving Autonomous Robots, Adaptive Behavior, vol.11, issue.2-3, pp.148-165, 2008.
DOI : 10.1177/1059712308089184

O. Gigliotta, G. Pezzulo, and S. Nolfi, Emergence of an internal model in evolving robots subjected to sensory deprivation. From Animals to Animats 11, pp.575-586, 2010.

O. Gigliotta, G. Pezzulo, and S. Nolfi, Evolution of a predictive internal model in an embodied and situated agent, Theory in Biosciences, vol.68, issue.1431, pp.259-276, 2011.
DOI : 10.1007/s12064-011-0128-x

D. E. Goldberg, Simple genetic algorithms and the minimal, deceptive problem. Genetic algorithms and simulated annealing, p.88, 1987.

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, 1989.

D. E. Goldberg and J. Richardson, Genetic algorithms with sharing for multi-modal function optimization, Proceedings of the Second International Conference on Genetic Algorithms, pp.148-154, 1987.

F. J. Gomez, Sustaining diversity using behavioral information distance, Proceedings of the 11th Annual conference on Genetic and evolutionary computation, GECCO '09, pp.113-120, 2009.
DOI : 10.1145/1569901.1569918

S. J. Gould and E. S. Vrba, Exaptation???a Missing Term in the Science of Form, Paleobiology, vol.76, issue.01, pp.4-15, 1982.
DOI : 10.2307/2412538

C. Grosan and M. Oltean, Improving the performance of evolutionary algorithms for the multiobjective 0/1 knapsack probl em using epsilon-dominance, Computational Science-ICCS, pp.674-677, 2004.

R. Groß, M. Bonani, F. Mondada, and M. Dorigo, Autonomous selfassembly in swarm-bots, Robotics IEEE Transactions on, vol.22, issue.6, pp.1115-1130, 2006.

F. Gruau, Automatic Definition of Modular Neural Networks, Adaptive Behavior, vol.3, issue.2, pp.1-44, 1994.
DOI : 10.1177/105971239400300202

F. Gruau, Automatic Definition of Modular Neural Networks, Adaptive Behavior, vol.3, issue.2, pp.151-183, 1995.
DOI : 10.1177/105971239400300202

K. Gurney, T. J. Prescott, R. , and P. , A computational model of action selection in the basal ganglia. I. A new functional anatomy, Biological Cybernetics, vol.84, issue.6, pp.401-410, 2001.
DOI : 10.1007/PL00007984

K. Gurney, T. J. Prescott, R. , and P. , A computational model of action selection in the basal ganglia. I. A new functional anatomy, Biological Cybernetics, vol.84, issue.6, pp.401-410, 2001.
DOI : 10.1007/PL00007984

T. Hafting, M. Fyhn, S. Molden, M. Moser, and E. I. Moser, Microstructure of a spatial map in the entorhinal cortex, Nature, vol.30, issue.7052, pp.801-806, 2005.
DOI : 10.1016/S0896-6273(02)00784-5

J. B. Haldane, The causes of evolution, 1932.

N. Hansen and P. Koumoutsakos, Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), Evolutionary Computation, vol.11, issue.1, pp.1-18, 2003.
DOI : 10.1162/106365601750190398

N. Hansen and . Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies, Evolutionary Computation, vol.9, issue.2, pp.159-95, 2001.
DOI : 10.1016/0004-3702(95)00124-7

T. F. Hansen, Is modularity necessary for evolvability?, Biosystems, vol.69, issue.2-3, pp.83-94, 2003.
DOI : 10.1016/S0303-2647(02)00132-6

S. Harnad, The symbol grounding problem, Physica D: Nonlinear Phenomena, vol.42, issue.1-3, pp.335-346, 1990.
DOI : 10.1016/0167-2789(90)90087-6

C. Hartland, N. Bredeche, and M. Sebag, Memory-enhanced evolutionary robotics: the echo state network approach In In proc. of IEEE-CEC'09, number section IV, pp.2788-2795, 2009.

L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray, From molecular to modular cell biology, Nature, vol.402, issue.supp, pp.47-52, 1999.
DOI : 10.1038/35011540

I. Harvey and P. Husbands, Evolutionary robotics, Proceedings of IEE Colloquium on Genetic Algorithms for Control Systems Engineering, pp.1-4, 1992.

I. Harvey, P. Husbands, D. Cliff, and A. Thompson, Evolutionary robotics: the Sussex approach, Robotics and Autonomous Systems, vol.20, issue.2-4, pp.205-224, 1997.
DOI : 10.1016/S0921-8890(96)00067-X

S. Haykin, Neural Networks: A Comprehensive Foundation, 1998.

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, pp.500-544, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

F. Hoffmann and G. Pfister, Evolutionary learning of a fuzzy control rule base for an autonomous vehicle, Management of Uncertainty in Knowledge-Based, 1996.

J. H. Holland, Adaptation in Natural and Artificial Systems. Number 53, 1975.

J. Horn, N. Nafpliotis, and D. Goldberg, A niched Pareto genetic algorithm for multiobjective optmization, First IEEE Conference on Evolutionary Computation, 1994.

G. S. Hornby, Measuring, enabling and comparing modularity, regularity and hierarchy in evolutionary design, Proceedings of the 2005 conference on Genetic and evolutionary computation , GECCO '05, pp.1729-1736, 2005.
DOI : 10.1145/1068009.1068297

G. S. Hornby and H. Lipson, Evolution of generative design systems for modular physical robots, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), pp.4146-4151, 2001.
DOI : 10.1109/ROBOT.2001.933266

G. S. Hornby and J. B. Pollack, Creating High-Level Components with a Generative Representation for Body-Brain Evolution, Artificial Life, vol.27, issue.3, pp.223-246, 2002.
DOI : 10.1162/106454601300328034

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. S. Hornby, S. Takamura, J. Yokono, O. Hanagata, T. Yamamoto et al., Evolving robust gaits with AIBO, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), pp.3040-3045, 2000.
DOI : 10.1109/ROBOT.2000.846489

S. Huband, P. Hingston, and L. While, An evolution strategy with probabilistic mutation for multi-objective optimisation, The 2003 Congress on Evolutionary Computation, 2003. CEC '03., 2003.
DOI : 10.1109/CEC.2003.1299373

E. Hutchins, Cognition in the Wild, 1995.

C. Igel, N. Hansen, R. , and S. , Covariance Matrix Adaptation for Multi-objective Optimization, Evolutionary Computation, vol.15, issue.1, pp.1-28, 2007.
DOI : 10.1109/TEVC.2003.810758

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Ishibuchi, N. Tsukamoto, and Y. Nojima, Evolutionary manyobjective optimization: A short review, Evolutionary ComputationIEEE World Congress on Computational Intelligence). IEEE Congress on, pp.2419-2426, 2008.

A. Ishiguro, S. Tokura, T. Kondo, Y. Uchikawa, and P. Eggenberger, Reduction of the gap between simulated and real environments in evolutionary robotics: a dynamically-rearranging neural network approach, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028), pp.239-244, 1999.
DOI : 10.1109/ICSMC.1999.823189

H. Jaeger, Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the" echo state network" approach. GMD-Forschungszentrum Informationstechnik, p.32, 2002.

H. Jaeger, M. Luko?evi?ius, D. Popovici, and U. Siewert, Optimization and applications of echo state networks with leaky- integrator neurons, Neural Networks, vol.20, issue.3, pp.335-352, 2007.
DOI : 10.1016/j.neunet.2007.04.016

N. Jakobi, Evolutionary Robotics and the Radical Envelope-of-Noise Hypothesis, Adaptive Behavior, vol.161, issue.4, pp.325-368, 1997.
DOI : 10.1177/105971239700600205

N. Jakobi, Running across the reality gap: Octopod locomotion evolved in a minimal simulation, Evolutionary Robotics, 1998.
DOI : 10.1007/3-540-64957-3_63

T. Jansen and I. Wegener, On the analysis of evolutionary algorithms a proof that crossover really can help. Algorithms-ESA'99, p.700, 1999.

M. Jensen, Reducing the Run-Time Complexity of Multiobjective EAs: The NSGA-II and Other Algorithms, IEEE Transactions on Evolutionary Computation, vol.7, issue.5, pp.503-515, 2003.
DOI : 10.1109/TEVC.2003.817234

M. T. Jensen, Helper-objectives: Using multi-objective evolutionary algorithms for single-objective optimisation, Journal of Mathematical Modelling and Algorithms, vol.3, issue.(4), pp.323-347, 2004.
DOI : 10.1007/s10852-005-2582-2

Y. Jin, Evolutionary Optimization in Uncertain Environments???A Survey, IEEE Transactions on Evolutionary Computation, vol.9, issue.3, pp.264-317, 2005.
DOI : 10.1109/TEVC.2005.846356

Y. Jin, M. Olhofer, and B. Sendhoff, Dynamic weighted aggregation for evolutionary multi-objective optimization: Why does it work and how, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'2001), pp.1042-1049, 2001.

P. N. Johnson-laird, Mental Models in Cognitive Science, Cognitive Science, vol.18, issue.2, pp.71-115, 1980.
DOI : 10.1207/s15516709cog0401_4

P. N. Johnson-laird, Mental models: Towards a cognitive science of language , inference, and consciousness. Number 6, 1983.
URL : https://hal.archives-ouvertes.fr/hal-00702919

M. I. Jordan, Serial order: A parallel distributed processing approach Advances in Connectionist Theory Speech, pp.471-495, 1986.

N. Kashtan and U. Alon, Spontaneous evolution of modularity and network motifs, Proceedings of the National Academy of Sciences, vol.102, issue.39, pp.13773-13781, 2005.
DOI : 10.1073/pnas.0503610102

F. Keijzer, Representation in dynamical and embodied cognition, Cognitive Systems Research, vol.3, issue.3, pp.275-288, 2002.
DOI : 10.1016/S1389-0417(02)00043-8

V. Khare, X. Yao, D. , and K. , Performance Scaling of Multi-objective Evolutionary Algorithms, Evolutionary Multi-Criterion Optimization, pp.72-72, 2003.
DOI : 10.1007/3-540-36970-8_27

D. Kim, Evolving internal memory for T-maze tasks in noisy environments, Connection Science, vol.7, issue.3, pp.183-210, 2004.
DOI : 10.1177/1059712302010003003

J. Knowles and D. Corne, Properties of an adaptive archiving algorithm for storing nondominated vectors, IEEE Transactions on Evolutionary Computation, vol.7, issue.2, pp.100-116, 2003.
DOI : 10.1109/TEVC.2003.810755

J. D. Knowles, Local-search and hybrid evolutionary algorithms for Pareto optimization, p.15, 2002.

J. D. Knowles and D. Corne, Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy, Evolutionary Computation, vol.8, issue.2, pp.149-172, 2000.
DOI : 10.1109/4235.797969

J. D. Knowles, R. Watson, C. , and D. , Reducing local optima in singleobjective problems by multi-objectivization, EMO'01: Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, pp.269-283, 1993.

S. Koos, J. Mouret, and S. Doncieux, The Transferability Approach: Crossing the Reality Gap in Evolutionary Robotics, IEEE Transactions on Evolutionary Computation, vol.17, issue.1, p.1, 2012.
DOI : 10.1109/TEVC.2012.2185849

URL : https://hal.archives-ouvertes.fr/hal-00687617

K. P. Körding and D. M. Wolpert, Bayesian decision theory in sensorimotor control, Trends in Cognitive Sciences, vol.10, issue.7, p.319, 2006.
DOI : 10.1016/j.tics.2006.05.003

J. R. Koza, Genetic programming as a means for programming computers by natural selection, Statistics and Computing, vol.4, issue.2, 1992.
DOI : 10.1007/BF00175355

T. Kyriacou, Using an evolutionary algorithm to determine the parameters of a biologically inspired model of head direction cells, Journal of Computational Neuroscience, vol.23, issue.8, 2011.
DOI : 10.1007/s10827-011-0352-x

L. Ladage, T. Roth, A. Cerjanic, B. Sinervo, and V. Pravosudov, Spatial memory: are lizards really deficient?, Biology Letters, vol.118, issue.1, pp.939-941, 2012.
DOI : 10.1016/S0166-4328(00)00308-9

P. Larranaga and J. A. Lozano, Estimation of distribution algorithms: A new tool for evolutionary computation, 2002.
DOI : 10.1007/978-1-4615-1539-5

M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, Combining Convergence and Diversity in Evolutionary Multiobjective Optimization, Evolutionary Computation, vol.9, issue.3, pp.263-82, 2002.
DOI : 10.1109/4235.797969

M. Laumanns, L. Thiele, and E. Zitzler, An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method, European Journal of Operational Research, vol.169, issue.3, pp.932-942, 2006.
DOI : 10.1016/j.ejor.2004.08.029

Y. Lecun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard et al., Backpropagation Applied to Handwritten Zip Code Recognition, Neural Computation, vol.1, issue.4, pp.541-551, 1989.
DOI : 10.1007/BF00133697

Y. Lee, Nearest-Neighbor, Radial-Basis Function, and Backpropagation Neural Networks, Neural Computation, vol.3, issue.3, pp.440-449, 1991.
DOI : 10.1162/neco.1989.1.1.1

J. Lehman, Exploiting open-endedness to solve problems through the search for novelty, Proceedings of Alife XI, pp.71-80, 2008.

J. Lehman, S. Risi, D. B. D-'ambrosio, and K. O. Stanley, Rewarding Reactivity to Evolve Robust Controllers without Multiple Trials or Noise, Artificial Life 13, pp.379-386, 2012.
DOI : 10.7551/978-0-262-31050-5-ch050

J. Lehman and K. O. Stanley, Abandoning Objectives: Evolution Through the Search for Novelty Alone, Evolutionary Computation, vol.7, issue.3, pp.189-223, 2010.
DOI : 10.1016/0165-6074(93)90215-7

J. Liénard, A. Guillot, and B. Girard, Multi-objective Evolutionary Algorithms to Investigate Neurocomputational Issues: The Case Study of Basal Ganglia Models, From animals to animats 11, LNAI, 2010.
DOI : 10.1007/978-3-642-15193-4_56

F. Linaker and H. Jacobsson, Mobile robot learning of delayed response tasks through event extraction: A solution to the road sign problem and beyond, International Joint Conference On Artificial Intelligence, pp.777-782, 2001.

R. P. Lippmann, Pattern classification using neural networks, IEEE Communications Magazine, vol.27, issue.11, pp.2747-50, 1989.
DOI : 10.1109/35.41401

H. H. Lund and O. Miglino, From simulated to real robots, Proceedings of IEEE International Conference on Evolutionary Computation, 1996.
DOI : 10.1109/ICEC.1996.542390

W. Maass, T. Natschläger, and H. Markram, Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations, Neural Computation, vol.7, issue.11, pp.2531-2560, 2002.
DOI : 10.1038/35009102

M. Maniadakis and J. Tani, Acquiring Rules for Rules: Neuro-Dynamical Systems Account for Meta-Cognition, Adaptive Behavior, vol.10, issue.1, pp.58-80, 2009.
DOI : 10.1177/1059712308101739

M. Maniadakis, P. Trahanias, T. , and J. , Self-organized executive control functions, The 2010 International Joint Conference on Neural Networks (IJCNN), pp.1-8, 2010.
DOI : 10.1109/IJCNN.2010.5596529

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Marr, Vision: A computational investigation into the human representation and processing of visual information, henry holt and co, Inc, p.47, 1982.
DOI : 10.7551/mitpress/9780262514620.001.0001

L. Marstaller, A. Hintze, and C. Adami, Cognitive systems evolve complex representations for adaptive behavior. arXiv preprint arXiv:1206.5771, pp.53-100, 2012.

L. Marstaller, A. Hintze, and C. Adami, The Evolution of Representation in Simple Cognitive Networks, Neural Computation, vol.155, issue.2, 2013.
DOI : 10.1126/science.7569931

M. Mataric and D. Cliff, Challenges in evolving controllers for physical robots, Robotics and Autonomous Systems, vol.19, issue.1, pp.67-83, 1996.
DOI : 10.1016/S0921-8890(96)00034-6

C. Mattiussi, Evolutionary Synthesis of Analog Networks, 2005.

C. Mattiussi and D. Floreano, Analog Genetic Encoding for the Evolution of Circuits and Networks, IEEE Transactions on Evolutionary Computation, vol.11, issue.5, pp.596-607, 2007.
DOI : 10.1109/TEVC.2006.886801

H. Mayer, F. Gomez, D. Wierstra, I. Nagy, A. Knoll et al., A system for robotic heart surgery that learns to tie knots using recurrent neural networks, Advanced Robotics, vol.22, pp.13-141521, 2008.

E. Mayr, Systematics and the origin of species, from the viewpoint of a zoologist, Harvard Univ Pr, 1942.

J. Mccarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, p.12, 1955.

W. S. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical Biophysics, vol.5, issue.4, pp.115-133, 1943.
DOI : 10.1007/BF02478259

L. Mcnally, S. P. Brown, J. , and A. L. , Cooperation and the evolution of intelligence, Proceedings of the Royal Society B: Biological Sciences, vol.366, issue.1567, pp.3027-3061, 1740.
DOI : 10.1098/rstb.2010.0304

B. L. Mcnaughton, C. Barnes, J. L. Gerrard, K. Gothard, M. W. Jung et al., Deciphering the hippocampal polyglot: the hippocampus as a path integration system, The Journal of experimental biology, pp.199173-85, 1996.

B. L. Mcnaughton, F. P. Battaglia, O. Jensen, E. I. Moser, and M. Moser, Path integration and the neural basis of the 'cognitive map', Nature Reviews Neuroscience, vol.290, issue.8, pp.663-678, 2006.
DOI : 10.1038/nrn1932

L. Meeden and D. Kumar, Trends in evolutionary robotics. Soft computing for intelligent robotic, 1998.

G. Mendel, Experiments in plant hybridization (1865) In Read at the meetings of February 8th, 1865.

J. Meyer, P. Husbands, H. , and I. , Evolutionary robotics: A survey of applications and problems, Evolutionary Robotics, pp.1-22, 1998.
DOI : 10.1007/3-540-64957-3_61

O. Miglino, D. Denaro, G. Tascini, and D. Parisi, Detour Behavior in Evolving Robots: Are Internal Representations Necessary? In Evolutionary Robotics, pp.59-70, 1998.

O. Miglino, K. Nafasi, T. , and C. E. , Selection for Wandering Behavior in a Small Robot, Artificial Life, vol.2, issue.1, pp.101-116, 1994.
DOI : 10.1088/0954-898X/1/2/003

B. L. Miller and D. E. Goldberg, Genetic Algorithms, Selection Schemes, and the Varying Effects of Noise, Evolutionary Computation, vol.4, issue.2, pp.113-131, 1995.
DOI : 10.1162/evco.1996.4.2.113

M. Mitchell, An introduction to genetic algorithms, 1998.

H. Moriguchi and S. Honiden, Sustaining behavioral diversity in NEAT, Proceedings of the 12th annual conference on Genetic and evolutionary computation, GECCO '10, 2011.
DOI : 10.1145/1830483.1830595

J. Mouret, Pressions sélectives multiples pour l'évolution de réseaux de neurones destinés à la robotique, Thèse de doctorat, p.75005, 2008.

J. Mouret, Novelty-based Multiobjectivization In New Horizons in Evolutionary Robotics: Extended Contributions from the, Studies in Computational Intelligence, vol.341, issue.67, pp.139-154, 2009.

J. Mouret and S. Doncieux, Incremental Evolution of Target-Following Neuro-controllers for Flapping-Wing Animats, From Animals to Animats 9, pp.606-618, 2006.
DOI : 10.1007/11840541_50

URL : https://hal.archives-ouvertes.fr/hal-01300724

J. Mouret and S. Doncieux, Incremental evolution of animats' behaviors as a multi-objective optimization. From Animals to Animats 10, pp.210-219, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00687647

J. Mouret and S. Doncieux, MENNAG: a modular, regular and hierarchical encoding for neural-networks based on attribute grammars, Evolutionary Intelligence, vol.87, issue.9, pp.187-207, 2008.
DOI : 10.1007/s12065-008-0015-7

URL : https://hal.archives-ouvertes.fr/hal-00687646

J. Mouret and S. Doncieux, Evolving modular neural-networks through exaptation, 2009 IEEE Congress on Evolutionary Computation, pp.26-136, 2009.
DOI : 10.1109/CEC.2009.4983129

URL : https://hal.archives-ouvertes.fr/hal-00473135

J. Mouret and S. Doncieux, Overcoming the bootstrap problem in evolutionary robotics using behavioral diversity, 2009 IEEE Congress on Evolutionary Computation, 2009.
DOI : 10.1109/CEC.2009.4983077

URL : https://hal.archives-ouvertes.fr/hal-00473147

J. Mouret and S. Doncieux, Sferesv2: Evolvin' in the Multi-Core World, IEEE Congress on Evolutionary Computation, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00687633

J. Mouret and S. Doncieux, Encouraging Behavioral Diversity in Evolutionary Robotics: An Empirical Study, Evolutionary Computation, vol.341, issue.1, pp.91-133, 2012.
DOI : 10.1016/0020-0190(92)90136-J

URL : https://hal.archives-ouvertes.fr/hal-00687609

J. Mouret and S. Doncieux, Encouraging Behavioral Diversity in Evolutionary Robotics: An Empirical Study, Evolutionary Computation, vol.341, issue.1, pp.22-24, 2012.
DOI : 10.1016/0020-0190(92)90136-J

URL : https://hal.archives-ouvertes.fr/hal-00687609

J. Mouret, S. Doncieux, and B. Girard, Importing the computational neuroscience toolbox into neuro-evolution-application to basal ganglia, Proceedings of the 12th annual conference on Genetic and evolutionary computation, GECCO '10, pp.39-40, 2010.
DOI : 10.1145/1830483.1830592

URL : https://hal.archives-ouvertes.fr/hal-00687639

N. G. Müller, M. Mollenhauer, A. Rösler, and A. Kleinschmidt, The attentional field has a Mexican hat distribution, Vision Research, vol.45, issue.9, pp.1129-1137, 2005.
DOI : 10.1016/j.visres.2004.11.003

R. U. Muller, M. Stead, and J. Pach, The hippocampus as a cognitive graph, The Journal of General Physiology, vol.107, issue.6, pp.663-694, 1996.
DOI : 10.1085/jgp.107.6.663

H. Nakamura, A. Ishiguro, and Y. Uchikawa, Evolutionary construction of behavior arbitration mechanisms based on dynamically-rearranging neural networks, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), pp.158-165, 2000.
DOI : 10.1109/CEC.2000.870290

A. L. Nelson, G. J. Barlow, and L. Doitsidis, Fitness functions in evolutionary robotics: A survey and analysis, Robotics and Autonomous Systems, vol.57, issue.4, pp.345-370, 2009.
DOI : 10.1016/j.robot.2008.09.009

A. L. Nelson and E. Grant, Aggregate selection in evolutionary robotics In Mobile Robots: The Evolutionary Approach, pp.63-87, 2007.

S. Nolfi, Power and the limits of reactive agents, Neurocomputing, vol.42, issue.1-4, pp.119-145, 2002.
DOI : 10.1016/S0925-2312(01)00598-7

S. Nolfi, Categories formation in self-organizing embodied agents. Handbook of categorization in cognitive science, pp.869-889, 2005.

S. Nolfi, D. Floreano, O. Miglino, and F. Mondada, How to evolve autonomous robots: Different approaches in evolutionary robotics, Artificial Life IV, 1994.

S. Nolfi and J. Tani, Extracting Regularities in Space and Time Through a Cascade of Prediction Networks: The Case of a Mobile Robot Navigating in a Structured Environment, Connection Science, vol.11, issue.2, pp.125-148, 1999.
DOI : 10.1080/095400999116313

O. 'keefe, J. Nadel, and L. , The hippocampus as a cognitive map, pp.48-50, 1978.

C. Ollion and S. Doncieux, Why and how to measure exploration in behavioral space, Proceedings of the 13th annual conference on Genetic and evolutionary computation, GECCO '11, pp.22-27, 2011.
DOI : 10.1145/2001576.2001613

C. Ollion and S. Doncieux, Towards Behavioral Consistency in Neuroevolution, From Animals to Animats: Proceedings of the 12th International Conference on Adaptive Behaviour, pp.1-10, 2012.
DOI : 10.1007/978-3-642-33093-3_18

C. Ollion, T. Pinville, and S. Doncieux, With a little help from selection pressures: evolution of memory in robot controllers, Artificial Life 13, pp.1-8, 2012.
DOI : 10.7551/978-0-262-31050-5-ch054

O. Reilly, R. C. Frank, and M. J. , Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia, Neural Computation, vol.19, issue.2, pp.283-328, 2006.
DOI : 10.1002/syn.890200402

V. Pareto, Cours d'Economie Politique, F. Rouge & Cie, vol.2, 1897.
DOI : 10.3917/droz.paret.1964.01

G. Parker and R. Georgescu, Using cyclic genetic algorithms to evolve multi-loop control programs, IEEE International Conference Mechatronics and Automation, 2005, 2006.
DOI : 10.1109/ICMA.2005.1626532

R. Pfeifer and J. C. Bongard, How the body shapes the way we think: a new view of intelligence, p.46, 2006.

R. Pfeifer, F. Iida, and J. Bongard, New Robotics: Design Principles for Intelligent Systems, Artificial Life, vol.83, issue.1-2, pp.99-120, 2003.
DOI : 10.1016/S0921-8890(96)00072-3

T. Pinville, Robotique évolutionniste : influence des pressions de sélection sur l'émergence d'une forme de mémoire interne, These de doctorat, ISIR / UPMC, 4 Place JUSSIEU 75005, pp.54-106, 2013.

T. Pinville and S. Doncieux, Automatic synthesis of working memory neural networks with neuroevolution methods, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00553407

T. Pinville, S. Koos, J. Mouret, and S. Doncieux, How to promote generalisation in evolutionary robotics, Proceedings of the 13th annual conference on Genetic and evolutionary computation, GECCO '11, pp.25-74, 2011.
DOI : 10.1145/2001576.2001612

URL : https://hal.archives-ouvertes.fr/hal-00633928

S. Platek, Foundations in evolutionary cognitive neuroscience, 2009.
DOI : 10.1017/CBO9780511626586

D. K. Pratihar, Evolutionary robotics???A review, Sadhana, vol.2, issue.6, pp.999-1009, 2003.
DOI : 10.1007/BF02703810

P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants, 1990.
DOI : 10.1007/978-1-4613-8476-2

D. Quagliarella and A. Vicini, Coupling genetic algorithms and gradient based optimization techniques. Genetic Algorithms and Evolution Strategy in Engineering and Computer Science -Recent advances and industrial applications, pp.289-309, 1997.

J. Quinton, Exploring and optimizing dynamic neural fields parameters using Genetic Algorithms, The 2010 International Joint Conference on Neural Networks (IJCNN), pp.0-6, 2010.
DOI : 10.1109/IJCNN.2010.5596293

URL : https://hal.archives-ouvertes.fr/inria-00488914

J. Quinton, Exploring and optimizing dynamic neural fields parameters using Genetic Algorithms, The 2010 International Joint Conference on Neural Networks (IJCNN), pp.1-7, 2010.
DOI : 10.1109/IJCNN.2010.5596293

URL : https://hal.archives-ouvertes.fr/inria-00488914

S. Ranjithan, J. Eheart, and J. Liebman, Incorporating fixed-cost component of pumping into stochastic groundwater management: A genetic algorithmbased optimization approach, Eos Transactions AGU, vol.74, p.125, 1992.

I. Rechenberg, Cybernetic solution path of an experimental problem, In Royal Aircraft Establishment Translation No. 1122, B. F. Toms, Trans. Ministry of Aviation, Royal Aircraft Establishment, Farnborough Hants, 1965.

I. Rechenberg, Evolutionsstrategie ? Optimierung technisher Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, 1973.

P. Redgrave, T. J. Prescott, and K. Gurney, The basal ganglia: a vertebrate solution to the selection problem?, Neuroscience, vol.89, issue.4, pp.1009-1023, 1999.
DOI : 10.1016/S0306-4522(98)00319-4

A. Redish, Contributions to a Computational Neuroscience Theory of Rodent Navigation, 1994.

T. Reil and P. Husbands, Evolution of central pattern generators for bipedal walking in a real-time physics environment, IEEE Transactions on Evolutionary Computation, vol.6, issue.2, pp.159-168, 2002.
DOI : 10.1109/4235.996015

S. Risi, Enhancing es-hyperneat to evolve more complex regular neural networks, Proceedings of the 13th annual conference on Genetic and evolutionary computation, GECCO '11, 2011.
DOI : 10.1145/2001576.2001783

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Risi and K. O. Stanley, Indirectly Encoding Neural Plasticity as a Pattern of Local Rules, pp.533-543, 2010.
DOI : 10.1007/978-3-642-15193-4_50

F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain., Psychological Review, vol.65, issue.6, 1958.
DOI : 10.1037/h0042519

N. P. Rougier and J. Vitay, Emergence of attention within a neural population, Neural Networks, vol.19, issue.5, pp.49-59, 2006.
DOI : 10.1016/j.neunet.2005.04.004

URL : https://hal.archives-ouvertes.fr/inria-00000143

D. E. Rumelhart, G. E. Hinton, W. , and R. J. , Learning representations by back-propagating errors, Nature, vol.85, issue.6088, pp.533-536, 1986.
DOI : 10.1038/323533a0

R. M. Rylatt and C. A. Czarnecki, Embedding Connectionist Autonomous Agents in Time: The 'Road Sign Problem, Neural Processing Letters, pp.145-158, 2000.

E. Salinas and L. Abbott, Vector reconstruction from firing rates, Journal of Computational Neuroscience, vol.66, issue.1-2, pp.89-107, 1994.
DOI : 10.1007/BF00962720

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Schwefel, Numerical Optimization of Computer Models, 1981.

H. Seok, K. Lee, and B. Zhang, An on-line learning method for objectlocating robots using genetic programming on evolvable hardware, Symposium on Artificial Life and Robotics, 2000.

S. J. Shettleworth and . Usa, Cognition, evolution, and behavior, pp.47-48, 2009.

W. Singer and C. M. Gray, Visual feature integration and the temporal correlation hypothesis. Annual review of neuroscience, pp.555-586, 1995.
DOI : 10.1146/annurev.ne.18.030195.003011

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. C. Slocum, D. C. Downey, and R. D. Beer, Further Experiments in the Evolution of Minimally Cognitive Behavior: From Perceiving Affordances to Selective Attention, pp.430-439, 2000.

T. F. Smith and M. S. Waterman, Comparison of biosequences, Advances in Applied Mathematics, vol.2, issue.4, pp.482-489, 1981.
DOI : 10.1016/0196-8858(81)90046-4

N. Srinivas and K. Deb, Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms, Evolutionary Computation, vol.27, issue.3, pp.221-248, 1994.
DOI : 10.1162/evco.1994.2.3.221

K. O. Stanley, Exploiting regularity without development, Proceedings of the AAAI Fall Symposium on Developmental Systems, 2006.

K. O. Stanley, Compositional pattern producing networks: A novel abstraction of development, Genetic Programming and Evolvable Machines, pp.131-162, 2007.
DOI : 10.1007/s10710-007-9028-8

K. O. Stanley, D. D. Ambrosio, and J. Gauci, A Hypercube-Based Indirect Encoding for Evolving Large-Scale Neural Networks, Artif. Life, vol.15, issue.138, pp.1-39, 2009.

K. O. Stanley and R. Miikkulainen, Evolving Neural Networks through Augmenting Topologies, Evolutionary Computation, vol.7, issue.2, pp.99-127, 2002.
DOI : 10.1016/S0096-3003(97)10005-4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. O. Stanley and R. Miikkulainen, Evolving Neural Networks through Augmenting Topologies, Evolutionary Computation, vol.7, issue.2, pp.99-127, 2002.
DOI : 10.1016/S0096-3003(97)10005-4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. O. Stanley and R. Miikkulainen, Evolving adaptive neural networks with and without adaptive synapses, The 2003 Congress on Evolutionary Computation, 2003. CEC '03., 2003.
DOI : 10.1109/CEC.2003.1299410

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Suchorzewski, A novel generative encoding for evolving modular, regular and scalable networks, Proceedings of the 13th annual conference on Genetic and evolutionary computation, GECCO '11, pp.1523-1530, 2011.
DOI : 10.1145/2001576.2001781

J. Tani and S. Nolfi, Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems, Neural Networks, vol.12, issue.7-8, pp.1131-1141, 1999.
DOI : 10.1016/S0893-6080(99)00060-X

J. S. Taube, R. U. Muller, R. , and J. , Head-direction cells recorded from the postsubiculum in freely moving rats. i. description and quantitative analysis, The Journal of Neuroscience, vol.10, issue.2, pp.420-435, 1990.

J. Teo and H. Abbass, Multiobjectivity and Complexity in Embodied Cognition, IEEE Transactions on Evolutionary Computation, vol.9, issue.4, pp.337-360, 2005.
DOI : 10.1109/TEVC.2005.846902

E. C. Tolman, Cognitive maps in rats and men., Psychological Review, vol.55, issue.4, pp.189-208, 1948.
DOI : 10.1037/h0061626

P. Tonelli, Relations entre plasticité synaptique et régularité des codages en neuro-évolution, Thèse de doctorat, 2012.

D. S. Touretzky, A. D. Redish, W. , and H. S. , Neural Representation of Space Using Sinusoidal Arrays, Neural Computation, vol.13, issue.6, pp.869-884, 1993.
DOI : 10.1002/hipo.450010303

L. Trujillo, G. Olague, E. Lutton, and F. De-vega, Discovering several robot behaviors through speciation. Applications of Evolutionary Computing, pp.164-174, 2008.
DOI : 10.1007/978-3-540-78761-7_17

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

O. Trullier, S. I. Wiener, A. Berthoz, M. , and J. A. , BIOLOGICALLY BASED ARTIFICIAL NAVIGATION SYSTEMS: REVIEW AND PROSPECTS, Progress in Neurobiology, vol.51, issue.5, pp.483-544, 1997.
DOI : 10.1016/S0301-0082(96)00060-3

URL : https://hal.archives-ouvertes.fr/hal-00618346

C. Ulbricht, Handling time-warped sequences with neural networks, From animals to animats, pp.180-192, 1996.

M. Van-dartel, I. Sprinkhuizen-kuyper, E. Postma, and J. Van-den-herik, Reactive Agents and Perceptual Ambiguity, Adaptive Behavior, vol.13, issue.3, pp.227-242, 2005.
DOI : 10.1177/105971230501300304

F. J. Varela, E. Thompson, and E. Rosch, The embodied mind: Cognitive science and human experience, 1991.

E. A. Variano, J. H. Mccoy, and H. Lipson, Networks, dynamics, and modularity. Physical review letters, p.188701, 2004.
DOI : 10.1103/physrevlett.92.188701

R. Vickerstaff, D. Paolo, and E. , An evolved agent performing efficient path integration based homing and search Advances in Artificial Life, pp.221-230, 2005.

R. J. Vickerstaff, D. Paolo, and E. A. , Evolving neural models of path integration, Journal of Experimental Biology, vol.208, issue.17, pp.3349-3366, 2005.
DOI : 10.1242/jeb.01772

J. Walker, S. Garrett, and M. S. Wilson, Evolving Controllers for Real Robots: A Survey of the Literature, Adaptive Behavior, vol.11, issue.3, pp.179-203, 2003.
DOI : 10.1177/1059712303113003

S. L. Wang, K. Shafi, C. Lokan, and H. A. Abbass, An agent-based model to simulate and analyse behaviour under noisy and deceptive information, Adaptive Behavior, vol.36, issue.2, pp.96-117, 2013.
DOI : 10.1007/978-1-4757-0450-1

R. Watson, Embodied Evolution: Distributing an evolutionary algorithm in a population of robots, Robotics and Autonomous Systems, vol.39, issue.1, pp.1-18, 2002.
DOI : 10.1016/S0921-8890(02)00170-7

R. Wehner and M. V. Srinivasan, Path integration in insects, 2003.
DOI : 10.1093/acprof:oso/9780198515241.003.0001

S. Whiteson, P. Stone, K. O. Stanley, R. Miikkulainen, and N. Kohl, Automatic feature selection in neuroevolution, Proceedings of the 2005 conference on Genetic and evolutionary computation , GECCO '05, pp.1225-1232, 2005.
DOI : 10.1145/1068009.1068210

S. I. Wiener and J. S. Taube, Head Direction Cells and the Neural Mechanisms of Spatial Orientation, 2005.

S. W. Wilson, The animat path to AI, Proceedings of the first international conference on simulation of adaptive behavior on From animals to animats, pp.15-21, 1991.

D. Wolpert, Z. Ghahramani, J. , and M. , An internal model for sensorimotor integration, Science, vol.269, issue.5232, p.1880, 1995.
DOI : 10.1126/science.7569931

B. G. Woolley and K. O. Stanley, Evolving a single scalable controller for an octopus arm with a variable number of segments. Parallel Problem Solving from, Nature?PPSN XI, pp.270-279, 2011.

B. Yamauchi and R. D. Beer, Spatial learning for navigation in dynamic environments, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.26, issue.3, pp.496-505, 1996.
DOI : 10.1109/3477.499799

Q. Yang and S. Ding, Novel Algorithm to Calculate Hypervolume Indicator of Pareto Approximation Set, ICIC, 2007.
DOI : 10.1007/978-3-540-74282-1_27

L. Yujian and L. Bo, A normalized levenshtein distance metric. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.29, issue.6, pp.1091-1095, 2007.

T. Ziemke, Towards adaptive behaviour system integration using connectionist infinite state automata, From animals to animats 4, 1996.

T. Ziemke, Remembering How To Behave, Recurrent neural networks: Design and applications, pp.355-389, 1999.
DOI : 10.1201/9781420049176.ch13

T. Ziemke, N. Bergfeldt, G. Buason, T. Susi, and H. Svensson, Evolving cognitive scaffolding and environment adaptation: a new research direction for evolutionary robotics, Connection Science, vol.16, issue.4, pp.339-350, 2004.
DOI : 10.1080/09540090412331314821

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Ziemke and M. Thieme, Neuromodulation of Reactive Sensorimotor Mappings as a Short-Term Memory Mechanism in Delayed Response Tasks, 2002.

E. Zitzler and S. Künzli, Indicator-based selection in multiobjective search. Parallel Problem Solving from Nature-PPSN VIII, pp.1-11, 2004.

E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm, Computer Engineering, TIK-Report, vol.16, issue.103, pp.1-21, 2001.

E. Zitzler and L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE Transactions on Evolutionary Computation, vol.3, issue.4, pp.257-271, 1999.
DOI : 10.1109/4235.797969

J. Zufferey, D. Floreano, M. V. Leeuwen, and T. Merenda, Evolving Vision-Based Flying Robots, Evolutionary Computation, pp.592-600, 2002.
DOI : 10.1007/3-540-36181-2_59

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=