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Résumé

Une nouvelle borne supérieure sur le cardinal des codes de sous-espaces d’un espace
vectoriel fini est établie grâce à la méthode de la programmation semidéfinie positive.
Ces codes sont d’intérêt dans le cadre du codage de réseau (network coding). Ensuite,
par la même méthode, l’on démontre une borne sur le cardinal des ensembles qui évitent
une distance donnée dans l’espace de Johnson et qui est obtenue par une variante d’un
programme de Schrijver. Les résultats numeriques permettent d’améliorer les bornes ex-
istantes sur le nombre chromatique mesurable de l’espace Euclidien. Une hiérarchie de
programmes semidéfinis positifs est construite à partir de certaines matrices issues des
complexes simpliciaux. Ces programmes permettent d’obtenir une borne supérieure sur le
nombre d’indépendance d’un graphe. Aussi, cette hiérarchie partage certaines propriétés
importantes avec d’autres hiérarchies classiques. A titre d’exemple, le problème de déter-
miner le nombre d’indépendance des graphes de Paley est analysé.

Mots clés : théorie des graphes, nombre d’indépendance, nombre chromatique, SDP,
codes projectifs, hiérarchies.
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Abstract

We apply the semidefinite programming method to obtain a new upper bound on the
cardinality of codes made of subspaces of a linear vector space over a finite field. Such
codes are of interest in network coding. Next, with the same method, we prove an upper
bound on the cardinality of sets avoiding one distance in the Johnson space, which is
essentially Schrijver semidefinite program. This bound is used to improve existing results
on the measurable chromatic number of the Euclidean space. We build a new hierarchy of
semidefinite programs whose optimal values give upper bounds on the independence number
of a graph. This hierarchy is based on matrices arising from simplicial complexes. We show
some properties that our hierarchy shares with other classical ones. As an example, we show
its application to the problem of determining the independence number of Paley graphs.

Keywords: graph theory, stable number, chromatic number, SDP, projective codes, hier-
archies.
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Introduction en français

Depuis son essor, dans les années 1950, la programmation linéaire est devenue un
outil fondamental pour modéliser, et souvent résoudre, beaucoup de problèmes dans
le domaine de l’optimisation combinatoire. Dès lors, le sujet n’a pas cessé d’attirer
un fort intérêt, grâce aussi aux progrès réalisés en algorithmique et au développe-
ment de la puissance des moyens de calcul. C’est là que la plupart des problèmes
d’optimisation plongent leurs racines. Outre la programmation linéaire, citons aussi
la programmation entière et la programmation quadratique. Dans ce travail nous
nous intéresserons notamment à la programmation semidéfinie positive (SDP).

Rappelons ici une des formulations possibles pour un programme linéaire : il
s’agit de trouver un vecteur réel aux entrées non négatives qui maximise une fonction
linéaire, le vecteur étant soumis à des contraintes qui sont des inégalités linéaires.
Dans un programme semidéfini positif, les vecteurs sont remplacés par des matrices
réelles symétriques. Une matrice admissible doit alors être semidéfinie positive, c’est-
à-dire que ses valeurs propres doivent être non négatives. Il s’agit d’une généralisation
: en effet, si l’on impose la condition que la matrice soit diagonale, l’on se retrouve
avec un programme linéaire.

Dans les années 1980, des algorithmes basés sur la méthode des points intérieurs
ont vu le jour, d’abord pour les programmes linéaires ([26]) et ensuite pour les pro-
grammes semidéfinis positifs ([4], [37], [38]). Ceux-ci permettent de résoudre les
programmes semidéfinis positifs d’une façon efficace et avec une très bonne approx-
imation. Entretemps, la programmation semidéfinie positive a été appliquée à une
multitude de problèmes, venant d’un vaste éventail de branches des mathématiques.
Aujourd’hui encore, la programmation semidéfinie positive semble être loin d’avoir
épuisé ses champs d’application, notamment en ce qui concerne l’approximation de
problèmes durs à résoudre.

Cette thèse s’inscrit dans une ligne de recherche qui a peut-être son origine dans
le travail de Philippe Delsarte sur les schémas d’association ([14]), où l’on trouve
un programme linéaire dont la valeur optimale donne une borne supérieure sur la
taille maximale d’un code avec distance minimale donnée. Quand ce programme est
appliqué aux codes dans l’espace de Hamming, l’on obtient une borne qui a donné
pendant longtemps les meilleurs résultats numériques et asymptotiques.
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Les inégalités présentes dans le programme linéaire de Delsarte pour l’espace de
Hamming Hn peuvent être obtenues en considérant la distribution des distances d’un
code. La même distribution résulte en prenant les orbites des paires de points sous
l’action du groupe G d’automorphismes de Hn. Les polynômes de Krawtchouk, reliés
à la décomposition en composantes irréductibles sous l’action de G de l’espace de
fonctions à valeurs complexes de Hn, apparaissent dans les inégalités du programme
de Delsarte.

Par ailleurs, la borne de Delsarte peut s’appliquer aux codes d’autres espaces,
comme l’espace de Johnson binaire ou la sphère unité de l’espace Euclidien réel.
Plus généralement, elle s’applique à tous les espaces 2-points homogènes. La quête
de généralisations de cette méthode a conduit à l’utilisation de la programmation
semidéfinie positive. En 2005, Schrijver a établi une borne supérieure pour la taille des
codes dans l’espace de Hamming en utilisant la programmation semidéfine positive.
Dans beaucoup de cas, sa borne donne des résultats meilleurs que celle de Delsarte
([41]). Ensuite, la méthode de Schrijver a été étendue aux codes non-binaires ([22])
et améliorée davantage dans le cas binaire ([21]).

L’idée sous-jacente est de prendre en compte les triplets de points, au lieu des
paires. Avec ceci l’on peut obtenir la borne de Schrijver par une démarche similaire
à celle rappelée ci-dessus pour le programme de Delsarte. Juste, dans ce cas on
considère l’action d’un sous-groupe G′ ≤ G, notamment le sous-groupe stabilisateur
d’un point. L’espace Hn muni de cette action n’est pas 2-points homogène. Par
conséquent, la décomposition en composantes irréductibles de l’espace de fonctions à
valeurs complexes de Hn a des multiplicités plus grandes que 1 et celle-ci est la raison
pour laquelle des matrices apparaissent.

Cette idée a déjà été appliquée, avec succès, à d’autres espaces de la théorie des
codes, comme la sphère unité de l’espace Euclidien réel. Avec ceci, des nouveaux
résultats ont été obtenus pour le problème géométrique du ”kissing number” ([10]).

Un point de vue uniforme nous est donné par la théorie des graphes. En effet,
un espace métrique peut être vu comme l’ensemble des sommets d’un graphe, où les
arêtes correspondent aux distances interdites. Les problèmes cités ci-dessus peuvent
alors être abordés en termes d’ensembles indépendants du graphe donné. Ceci nous
permet d’utiliser le nombre ϑ de Lovász. En 1979, Lovász définit le nombre ϑ d’un
graphe comme la valeur optimale d’un certain programme semidéfini positif associé
au graphe ([34]). Ce nombre possède des propriétés remarquables : entre autres, il
donne une borne supérieure sur le nombre d’indépendance du graphe. Aussi, quand
une petite modification du programme, nommée ϑ′, est appliquée à un certain graphe
dans l’espace de Hamming, l’on retrouve la borne de Delsarte ([36], [40]).

Par ailleurs, les travaux de recherche plus récents se concentrent sur les hiérarchies
de programmes semidéfinis positifs ([23], [32], [35]). En ce qui concerne la détermina-
tion du nombre d’indépendance α d’un graphe, le premier degré d’une telle hiérarchie
donne d’habitude le nombre ϑ de Lovász et les degrés suivants donnent des bornes



supérieures de plus en plus strictes pour α. C’est dans ce contexte qu’on peut voir
les bornes pour les codes dans l’espace de Hamming basées sur les triplets ([41]) ou
les quadruplets ([21]) de points.

Le point de départ de ce travail était l’application de ces méthodes dans le cadre
du codage des réseaux (network coding). Il s’agit d’un domaine récent et dynamique
de la théorie de l’information, qui capture à la fois l’intérêt des informaticiens et
des mathématiciens. Koetter et Kschischang ont formulé le problème d’une com-
munication fiable dans un tel contexte en utilisant des codes de sous-espaces. Cette
formulation établit un lien remarquable avec le cadre classique des codes dans l’espace
de Hamming. Néanmoins, des différences importantes existent entre ces deux cas, ce
qui empêche de réitérer naïvement la même méthode.

Plus précisément, les codes définis par Koetter et Kschischang sont des familles
de sous-espaces vectoriels d’un espace vectoriel fixé sur un corps fini. Ces codes
sont nommés codes projectifs et, dans le cas où tous les sous-espaces ont la même
dimension, codes à dimension constante. Ils sont les analogues q-aires des codes de
Hamming et de Johnson. Ici, q denote le cardinal du corps de base et l’analogie
q-aire consiste à remplacer (sous-)ensembles avec (sous-)espaces vectoriels et, par
conséquent, le cardinal avec la dimension. Au niveau de l’action de groupe, le groupe
symétrique est remplacé par le groupe général linéaire. Il est important, ici, de
remarquer une première différence : l’espace de Hamming Hn est muni d’une action
transitive, tandis que ce n’est pas le cas dans l’espace projectif. Nous voyons par là
que la borne de la programmation linéaire de Delsarte ne peut pas s’appliquer aux
codes projectifs. En revanche, nous allons établir une borne de la programmation
semidéfinie positive en utilisant le nombre ϑ de Lovász. Afin de calculer cette borne
dans des cas non-triviaux, il est nécessaire de symétriser le programme définissant ϑ
sous l’action du groupe général linéaire. En ce qui concerne les codes à dimension
constante, il y a une meilleure analogie avec les codes à poids constant, ce qui a
permis de retrouver la plupart des bornes classiques dans ce cas.

Après cela, nous nous sommes intéressés au nombre chromatique de l’espace Eu-
clidien, dont la détermination est un problème ancien et toujours très ouvert. A
ce propos, Frankl et Wilson ont remarqué le rôle joué par les ensembles qui évitent
une distance donnée dans l’espace de Johnson. Dans [19] ils établissent une borne
supérieure pour le cardinal de tels ensembles, cette borne n’étant valide que pour un
choix limité de paramètres. Par là ils arrivent aussi à un résultat asymptotique sur
le nombre chromatique Euclidien. Leur borne peut être améliorée et élargie à tout
choix de paramètres en utilisant la borne de Delsarte pour les ensembles qui évitent
une distance et aussi une borne du type Schrijver sur les triplets de points. Nous
allons nous concentrer sur cette dernière en donnant la formulation générale en ter-
mes d’un programme semidéfini positif, ainsi que les détails de sa symétrisation. En
raison de l’analogie existante entre l’espace de Hamming et l’espace projectif, cette



symétrisation a plusieurs points en commun avec celle développée pour les codes
projectifs. Plus précisément, les deux peuvent être vues comme des variantes de la
diagonalisation par blocs de l’algèbre de Terwilliger de l’espace de Hamming.

Comme l’on peut le voir par ces applications de la méthode SDP, nous avons
un bon cadre théorique que nous pouvons appliquer aux problèmes extrémaux de la
théorie des graphes mais il est souvent difficile d’obtenir des résultats explicites. En
effet, la plupart du travail nécessaire consiste à réduire le programme général selon les
symétries de l’espace donné. Des travaux récents sur les hiérarchies de programmes
semidéfinis positifs ([23], [32], [35]) peuvent aussi être utilisés pour améliorer certaines
bornes, mais ces programmes ont également besoin d’être réduits avant de pouvoir en
calculer les solutions. En revanche, chaque programme semidéfini positif peut s’écrire
en termes de la plus grande valeur propre de certaines matrices. Pour exemple, dans
le cas de ϑ l’on trouve une relaxation classique que, pour les graphes réguliers, donne
la borne de Hoffman, borne explicite qui s’écrit par moyen des valeurs propres de la
matrice d’adjacence. Notre but est de définir une hiérarchie de programmes semidéfi-
nis positifs qui, tout en améliorant ϑ, se prêtent facilement à l’analyse en termes de
valeurs propres, voire qui donnent des généralisations de la borne de Hoffman. A
notre avis, le contenu du cinquième chapitre est un premier pas dans cette direction.

Nous y définissons une nouvelle hiérarchie de programmes semidéfinis positifs,
dont la valeur optimale donne une borne supérieure sur le nombre d’indépendance
d’un graphe. Pour la définir, nous utilisons le langage des complexes simpliciaux,
lesquels peuvent s’interpréter comme une généralisation des graphes. Par moyen des
opérateurs de bord nous construisons des analogues de deux matrices reliées à ϑ et
à la relaxation de Hoffman, notamment la matrice dont toutes les entrées sont 1 et
le Laplacian du graphe. Avec ceci, nous définissons la hiérarchie et en analysons les
propriétés. Il est naturel qu’une hiérarchie de ce type donne ϑ au premier degré et
qu’elle atteigne le nombre d’indépendance à un certain degré fini. Nous montrons
cette propriété et d’autres aussi qui généralisent des propriétés du nombre ϑ. Nous
ne sommes pas capables de prouver la décroissance de notre hiérarchie, mais nous
montrons comment l’obtenir par le moyen d’une légère modification.

A titre d’exemple, nous calculons les valeurs du deuxième degré de notre hiérarchie
pour les graphes de Paley. Cette famille de graphes est intéressante en raison de
son comportement quasi-aléatoire et de ses applications en théorie des nombres. Il
est très difficile d’estimer la taille de la plus grande clique des graphes de Paley.
Comme ces graphes sont auto-complémentaires, cela revient à en estimer le nombre
d’indépendance. Aussi, en étant fortement réguliers, leur nombre ϑ est donné par la
borne de Hoffman. Au moment où cette thèse se termine, nous ne sommes pas en
mesure d’améliorer les bornes existantes et le problème reste ouvert.



Structure et résultats de la thèse
Le troisième chapitre1 est dédié à l’étude du problème de la détermination de bornes
supérieures pour le cardinal des codes projectifs et des codes à dimension constante
(aussi dits codes de Grassmann). Nous en donnons l’état de l’art et introduisons
une borne SDP qui améliore certains résultats existants. La borne est obtenue en
symétrisant le programme définissant ϑ sous l’action du groupe général linéaire. En
outre, nous montrons que les bornes déjà existantes pour les codes de Grassmann
peuvent s’obtenir comme cas particuliers de la borne de Delsarte, laquelle est à la
fois un cas particulier du nombre ϑ, tout en montrant ainsi l’intérêt de cette méthode.

Le quatrième chapitre est consacré au nombre chromatique de l’espace Euclidien.
Nous y rappelons la définition des graphes de Frankl et Wilson et le rôle qu’ils jouent
dans ce contexte. Nous prouvons une borne SDP sur le cardinal des ensembles qui
évitent une distance donnée dans l’espace de Johnson. Ce programme semidéfini
positif est une variante de celui introduit par Schrijver pour les codes à poids constant
([41]). Le programme est ensuite symétrisé afin de pouvoir en calculer des valeurs
explicites. Les résultats ainsi obtenus améliorent les bornes inférieures pour le nombre
chromatique Euclidien mesurable.

Dans le cinquième chapitre nous définissons une nouvelle séquence, nommée ϑk,
de programmes semidéfinis positifs qui donnent une borne supérieure pour le nombre
d’indépendance d’un graphe. Cette séquence est liée à des matrices venant des com-
plexes simpliciaux. Quelques propriétés de ϑk y sont analysées. En particulier, nous
prouvons le théorème du sandwich pour tout degré k, ainsi qu’un résultat concernant
les homomorphismes de graphes qui généralise une propriété bien connue de ϑ. En-
suite, nous modifions légèrement notre définition de ϑk pour assurer la décroissance
de la valeur optimale à chaque degré. Nous donnons quelques résultats numériques
pour des cycles et des graphes de Paley de petite taille.

Dans le sixième chapitre nous analysons en profondeur le problème de la déter-
mination du nombre d’indépendance des graphes de Paley. Notre programme ϑ2 est
symétrisé, ce qui permet de calculer sa valeur optimale pour un vaste ensemble de
paramètres. Ces valeurs sont comparées à celles obtenues par moyen du programme
L2 du [23], aussi rappelé dans le deuxième chapitre. Nous terminons le chapitre par
quelques observations sur la structure des graphes de Paley.

1Où contenu et résultats de [8] sont reproduits.





Chapter 1

Introduction

Since its development in the 1950’s, linear programming has become a fundamen-
tal tool in combinatorial optimization, as it gives a general formulation in which a
multitude of problems can be expressed and often solved. Research in algorithmic
issues and increased computational power have supported the development of the
field and this approach gained more and more interest, giving rise to several related
optimization problems, like integer programming and quadratic programming. One
succesfull generalization is that of semidefinite programming (SDP).

A linear programming problem can be formulated as: finding a real vector with
non negative entries which maximizes (or minimizes) a linear function, subject to
some given linear inequalities. In a semidefinite programming problem we no longer
consider vectors but symmetric matrices. Then the required condition is that the
matrix is positive semidefinite, which means that all its eigenvalues are non negative.
This is clearly a more general problem: indeed, requiring the matrix to be diagonal,
we go back to a linear program.

In the 1980’s, interior point method algorithms were developed for linear pro-
grams ([26]) and generalized to semidefinite programs ([4], [37], [38]), thus allowing
semidefinite programs to be approximately solved by efficient algorithms. Meanwhile,
SDP was applied to model problems arising in a very wide range of areas. Still nowa-
days, it plays an important role in the development of approximation algorithms for
”hard” optimization problems.

Let us move more specifically to the motivation which is behind this work. In
coding theory, a linear program was established by Delsarte’s work on association
schemes ([14]). Its optimal value gives an upper bound on the maximal size of a code
with prescribed minimum distance. In particular, it has longtime remained one of
the best numerical bounds on the size of codes in the Hamming space, leading also
to the best known asymptotics.

The inequalities involved in Delsarte linear program for the Hamming space Hn

can be derived by considering the distance distribution of a code. This distance
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distribution coincides with the orbit decomposition of pairs of words under the group
G of automorphisms of Hn. Then the so-called Krawtchouk polynomials are strictly
related to the G-irreducible decomposition of the space of complex valued functions
on Hn and they are exactly the polynomials occurring in the inequalities of Delsarte
linear program.

On the other hand, Delsarte bound equally applies to codes in other spaces, as
the binary Johnson space or the real Euclidean unit sphere and, more generally, to all
2-point homogeneous spaces. The quest for generalizations of this method led to use
semidefinite programming. In 2005, Schrijver established an SDP upper bound for
the size of codes in the Hamming space which strictly improves over Delsarte’s one
for several parameters ([41]). Next, Schrijver’s method was extended to non binary
codes ([22]) and it was further improved in the binary case ([21]).

The underlying idea is to consider triples of words instead of pairs. Then it is
possible to obtain Schrijver’s bound using a similar approach to the one recalled
above for Delsarte linear program. The difference is that in this case we consider the
action of a subgroup G′ ≤ G, namely the stabilizer of one point. As Hn is not 2-point
homogeneous for this action, the irreducible decomposition of the space of complex
valued functions on Hn involves multiplicities greater than 1 and, roughly speaking,
this is the reason for which one has to deal with matrices.

This idea has already been successfully applied to other spaces occurring in coding
theory, like the unit sphere of the Euclidean space, providing new results in an old
and still open geometrical problem, namely the kissing number problem ([10]).

One unifying approach is to see all the metric spaces involved as graphs where
edges coincide with forbidden distances. Then these problems can often be formulated
in terms of stable sets in the given graph. This is where Lovász ϑ number comes into
play. In 1979, Lovász associated to each graph a semidefinite program, whose optimal
value he called the ϑ number of the graph ([34]). Among other remarkable properties,
it yields an upper bound on the cardinality of every stable set in the graph. It was
early recognized that when a minor modification, called ϑ′, is applied to a well chosen
graph in the Hamming space, the Delsarte bound is recovered ([36], [40]).

On the other hand, recent research tend to focus on hierarchies of semidefinite
programs ([23], [32], [35]). When applied to the problem of determining the indepen-
dence number α of a graph, the first step of a hierarchy usually coincides with the
Lovász ϑ number and successive steps give tighter upper bounds on α. Bounds for
Hamming codes based on triples ([41]) or quadruples ([21]) of words can be inter-
preted in this context.

The initial motivation and starting point for this thesis was to understand how
this framework could be applied to network coding. Indeed, network coding is a
recent and dynamical field in coding theory which is capturing interest from both
computer scientists and mathematicians. The coding theoretical formulation of the



communication problem in terms of codes of subspaces by Koetter and Kschischang
([29]) establish a parallel with the classical Hamming codes. Nevertheless, important
differences exist between the two cases, so a straightforward application of the same
method is not possible and one needs to be more careful.

More precisely, codes for network coding are given by collections of linear sub-
spaces of a given vector space over a finite field. Such codes are called projective codes
or, if all the subspaces have the same dimension, constant dimension codes. They
are the q-analog of Hamming codes and Johnson codes, respectively. Here, q is the
cardinality of the base field and q-analogy is a combinatorial point of view replacing
sets with subspaces and cardinality with dimension. Also, if we look at the group ac-
tion, the symmetric group is replaced with the general linear group. Here we remark
a first important difference: the Hamming space Hn has a transitive group action
while in the projective space this does not happen. This already tells us that the
Delsarte linear programming bound cannot be applied to projective codes. However,
a semidefinite programming bound coming from Lovász ϑ number can be established.
In order to compute the explicit bound in non trivial cases, the program defining ϑ
needs to be symmetrized using the action of the general linear group. About constant
dimension codes, the analogy with constant weight codes holds in a better way, so all
classical bounds can be generalized and indeed they have already been established.

Next, we remarked that distance avoiding sets in the Johnson space play a role
in determining the chromatic number of the Euclidean space, an old and open geo-
metrical problem. Indeed, this was already recognized by Frankl and Wilson in [19],
where they give an upper bound on the cardinality of such sets for a limited choice of
parameters. With this they obtained an asymptotic result on the chromatic number
of the Euclidean space. Their bound can be improved and extended to all parame-
ters by using the Delsarte bound applied to distance avoiding sets and a Schrijver-like
bound on triples of words. We mainly focus on this last one, giving its general SDP
formulation and the details of the symmetrization of the program. In view of the
analogy between Hamming space and projective space, the group theoretical setting
that we use in the symmetrization has several common points with the one we de-
veloped for projective codes. Actually, both can be seen as variations of the block
diagonalization of the Terwilliger algebra of the Hamming space.

As it can be seen from these applications of the SDP method, there is a good
theoretical setting that we can apply to extremal problems in graph theory, but it is
often hard to obtain explicit results. Indeed, most of the work needed to come up
with explicit values of this kind of bounds consists of reducing the general program
according to the symmetries of the space in which we are working. Also, recent
research on SDP hierarchies ([23], [32], [35]) can be used to improve results in this
kind of problems, but such SDPs are not ready to be computed. On the other
hand, every semidefinite program has a formulation in terms of the largest eigenvalue



of matrices. Looking at ϑ, it is a classical result to get a relaxation which, for
regular graphs, yields the more explicit Hoffman bound, involving eigenvalues of the
adjacency matrix. Our hope is to derive a hierarchy of semidefinite programs which
strengthen ϑ but which remains easy to analyse in terms of eigenvalues and, possibly,
which leads to high-order generalizations of the Hoffman bound. We believe that our
work in chapter 5 is a first step in this direction.

We build a new hierarchy of semidefinite programs whose optimal value upper
bounds the independence number of a graph. To define it, we adopt the framework
of simplicial complexes. Indeed, simplicial complexes can be seen as a generalization
of graphs. By mean of the boundary maps, we can build high order analogs of two
matrices occurring in ϑ and its classical Hoffman relaxation, namely the all one’s
matrix and the Laplacian of the graph. With this, we define the hierarchy and we
discuss its properties. It is natural to ask that a hierarchy of this kind starts from
ϑ and reaches the independence number in finitely many steps. We show that this
is the case, along with other properties that generalize some properties of ϑ. We are
not able to show that our hierarchy is decreasing at any step but we show how this
can be insured with a minor modification.

As an application we focus on Paley graphs, computing some values of the second
step of our hierarchy. Paley graphs are interesting because of their random like
behaviour and their number theoretical meaning. Determine or even estimate their
clique number is a very hard open question. As these graphs are self complementary,
the clique number coincides with the independence number. Moreover, being strongly
regulars, they reach equality in the Hoffman bound so their ϑ number is explicitely
known. At this moment, we are not able to give improvements over the existing
bounds and the problem remains open.

1.1 Overview of the thesis and results
In the third chapter1 we deal with the problem of determining upper bounds on the
cardinality of codes for network coding, namely the class of projective codes and the
subclass of Grassmann codes. We give the state of the art of this problem and we
introduce an SDP bound that, for certain parameters, gives better results than the
existing ones. This SDP is obtained by symmetrizing the ϑ program under the action
of the general linear group. Moreover we show that the existing general bounds for
Grassmann codes can be obtained as particular instances of the Delsarte LP bound,
which is itself a special case of the SDP defining the ϑ number, thus showing the
interest of this approach.

In the fourth chapter we deal with the Euclidean chromatic number. We recall the
1This chapter reproduces contents and results of [8].



definition of Frankl-Wilson graphs and the role that they play in this problem. We
prove a more general SDP upper bound on the independence number of sets avoiding
one distance in the Johnson space. This SDP is a variation of the one introduced
by Schrijver for constant weight codes ([41]). The program is symmetrized in order
to compute explicit values. The results obtained in this way give improvements on
lower bounds for the measurable Euclidean chromatic number.

In the fifth chapter we define a new sequence ϑk of semidefinite programs which
upper bound the independence number of a graph. It is related to matrices arising
from abstract simplicial complexes. Some properties of ϑk are discussed. In partic-
ular, we prove that the sandwich theorem holds for any step of the new sequence,
along with a result involving graph homomorphisms which generalizes one well known
property of ϑ. Also, we slightly modify the formulation of ϑk to insure that the op-
timal value decreases at each step. We give some numerical results for small cycles
and Paley graphs.

In the sixth chapter we analyse in a deeper way the independence number of Paley
graphs. Our program ϑ2 is symmetrized, thus allowing its explicit computation for
a wider range of parameters. Then these values are compared to the ones of the
program L2 given in [23] and recalled in chapter 2. We end the chapter by sketching
some further considerations on the structure of Paley graphs.



1.2 Notation
• for a natural number n, [n] denotes the set {1, 2, . . . , n}.

• for 0 − 1 vectors, 0m or 1m means that m consecutive coordinates are 0 or 1
respectively. So, for example, 021301 = (0, 0, 1, 1, 1, 0, 1).

• I denotes the identity matrix, whose size will be clear from the context.

• J denotes the square (sometimes rectangular) matrix with all 1’s entries.

• 〈, 〉 denotes the scalar product of matrices: given A,B matrices of the same
size, 〈A,B〉 := Tr(ABT ).

• given a finite set X, we denote RX the real vector space of dimension |X| whose
basis elements are indexed by the set X; the space RX×X is then identified with
the vector space of real square matrices with rows and columns indexed by X.
Of course, Rn×n = R[n]×[n].

• a symmetric matrix A ∈ Rn×n is positive semidefinite, noted A � 0, if one of
the following equivalent conditions holds:

(i) vTAv ≥ 0 for all vectors v ∈ Rn,
(ii) all eigenvalues of A are non negative,
(iii) A = BBT for some B ∈ Rn×m with m ≤ n.

We mention that semidefinite matrices form a self-dual cone. We write A � B
to signify A−B � 0.

• for X a finite set, we will often identify functions F : X×X → R with matrices
F ∈ RX×X , by F (x, y) = Fx,y. Positive semidefiniteness remains valid in both
notations.

• when considering complex matrices, all works the same replacing symmetric
with hermitian and transpose with conjugate transpose.



Chapter 2

Background

In this chapter we give the necessary background material. The first part is nothing
else that basic representation theory. The results that we recall there will be used
in chapter 3, 4 and 6 to decompose certain group representations. The second part
sets up some basic vocabulary of graph theory. The third part is about semidefinite
programming and it is at the core of what is done in this thesis. The classic Lovász
ϑ number is introduced. Although all definitions and results are commonly known in
the literature, they are reproduced here, along with some proofs, as they will serve as
a model for the work that we present further on in chapter 5. In particular, we briefly
sketch the Lasserre hierarchy for the independence number ([32]), along with a variant
given by Gvozdenović, Laurent and Vallentin ([23]). We then outline, following [6],
a general strategy to symmetrize the ϑ program under a group action, using tools of
representation theory. A section on coding theory will serve to introduce some basic
vocabulary and to give the first example of symmetrization of an SDP, showing that
in the Hamming space the ϑ′ program coincides with Delsarte program. Finally, the
block diagonalization of the Terwilliger algebra of the Hamming scheme ([41], [45])
is explained, as it will serve to establish some results in chapter 4.

2.1 Representation theory of finite groups

We will consider here the representation theory of finite groups in characteristic zero,
in particular over the complex field C. A classic reference is given by the book of
Jean-Pierre Serre, [42], which we will essentially follow for this introductory part.
The goal is to understand how a given representation decomposes into irreducible
subrepresentations and how to find such decomposition in an explicit way.

7



2.1.1 First definitions
Definition 2.1.1. Let k be a field and G a finite group. A representation of G over
k is a homomorphism ρ : G→ GL(V ), where V is a vector space over k.

If V has finite dimension n over k, we say that the representation has degree n.
The choice of a basis of V allows us to express ρ(g) as an invertible matrix and to
define a matrix representation ρ′ : G → GLn(k). Different choices of basis result in
representations which are isomorphic in the sense of the following definition.

Definition 2.1.2. Two representations of the same group G, ρ : G → GL(V ) and
ρ′ : G→ GL(V ′), are said to be isomorphic if there exists an isomorphism τ : V → V ′,
such that, for every g ∈ G the following diagram is commutative:

V

τ

��

ρ(g) // V

τ

��
V ′

ρ′(g) // V ′

Clearly, isomorphic representations have the same degree. From the matrix point
of view, ρ(g) and ρ′(g) are conjugated by an invertible matrix.

Examples :

• The trivial representation of G of degree n is defined by ρ(g) := Id(V ) for
every g ∈ G, where dim(V ) = n. Of course, this definition is given modulo
isomorphism, as it depends on the choice of V .

• Let V be the vector space over k whose basis vectors are indexed by elements
of G: V := 〈eh : h ∈ G〉. The regular representation of G is defined by
ρ(g)(eh) := egh extended by linearity. Its degree is |G|.

Definition 2.1.3. Given two representations of the same group G, ρ : G→ GL(V )
and ρ′ : G→ GL(V ′), we define their sum (ρ⊕ρ′) : G→ GL(V ⊕V ′) by (ρ⊕ρ′)(g) =
(ρ(g), ρ′(g)).

The degree of the sum is the sum of the degrees. If ρ and ρ′ are given in matrix
representation, then a corresponding matrix for (ρ⊕ ρ′)(g) is(

ρ(g) 0
0 ρ′(g)

)



Definition 2.1.4. Let ρ : G → GL(V ) be a representation of G and W a linear
subspace of V . If W is stable with respect to the action of G, that is, if for every
g ∈ G, ρ(g)(W ) ⊂ W then the restriction ρ|W : G → GL(W ) is a subrepresentation
of ρ, of degree dim(W ).

Every representation has two trivial subrepresentations: the ones defined by the
trivial subspaces {0} and V .

Definition 2.1.5. A representation is irreducible if it doesn’t have non trivial sub-
representations.

Examples :

• Every representation of degree 1 is irreducible.

The following lemma is a basic result which plays a central role in the development
of representation theory.

Lemma 2.1.6 (Schur). Let ρ : G→ GL(V ) and ρ′ : G→ GL(V ′) be two irreducible
representations and let f : V → V ′ be a linear homomorphism which commutes with
the action of G, that is, f ◦ρ(g) = ρ′(g)◦f for every g ∈ G. Then f = 0 unless ρ ' ρ′,
in which case f is an isomorphism. If moreover the ground field is algebraically closed
and V = V ′, then f is a scalar multiple of the identity.

For the rest of the chapter we will consider only finite dimensional representations
over the complex field C, which is enough for the purpose of this thesis.

2.1.2 Decomposition of a representation
Theorem 2.1.7. Let ρ : G → GL(V ) be a reducible representation and ρ|W : G →
GL(W ) one of its non trivial subrepresentations. There exists a linear subspace W ′

which is a complement of W in V and which is stable with respect to the action of
G. In other words, V = W ⊕W ′ and ρ = (ρ|W ⊕ ρ|W ′).

Proof. Let 〈, 〉 be a scalar product on V . We define a G–invariant scalar product 〈, 〉G
by setting

〈v, v′〉G := 1
|G|

∑
g∈G
〈ρ(g)(v), ρ(g)(v′)〉

Then the orthogonal complement ofW with respect to 〈, 〉G has the desired properties.
�

Iterating the theorem above yields the following classical result.

Corollary 2.1.8 (Maschke theorem). Every representation decomposes as a direct
sum of irreducible subrepresentations.



Remark 2.1.9. This theorem remains valid for any base field k, as long as its charac-
teristic doesn’t divide |G|.
Remark 2.1.10. From another equivalent point of view we can think about represen-
tations of G over k as modules of the group algebra k[G]. In this case, Maschke
theorem states that k[G] is a semisimple algebra.
Remark 2.1.11. The decomposition announced in the previous corollary is in general
not unique. Uniqueness is provided by the decomposition into isotypic components,
as we explain next.

Let V = V1 ⊕ · · · ⊕ Vm be a decomposition of V in irreducible subrepresentations
and let {W1,W2, . . .Wr} be the collection of irreducible subrepresentations of V ,
modulo isomorphism. The isotypic components of V are defined by Ij := ⊕i:Vi'Wj

Vi.
So Ij ' mjWj where mj := card{i : Vi ' Wj} is the multiplicity of Wj in V . We
obtain that

V = ⊕jIj ' ⊕jmjWj (2.1.1)
This decomposition is unique in the sense that each Ij is uniquely determined and
does not depend on the original decomposition of V into irreducibles. In general,
every isotypic component Ij has several irreducible decompositions but clearly all of
them are isomorphic. In particular, the multiplicity and the dimension of every Wj

are uniquely determined.

2.1.3 Characters
As we will see, characters encode a lot of properties of representations and they are
a fundamental tool for performing calculations. We list here the main results.
Definition 2.1.12. The character of a representation ρ : G→ GL(V ) is the function
χρ : G→ C defined by χρ(g) := Tr(ρ(g)).

From a well known property of the trace, it follows that characters are class
functions, that is, they are invariant on conjugacy classes of G. Moreover,
Theorem 2.1.13. The characters of irreducible pairwise non isomorphic represen-
tations of G form a basis of the space of class functions on G.
Corollary 2.1.14. The number of irreducible pairwise non isomorphic representa-
tions of G equals the number of conjugacy classes of G.

Given two characters χρ, χρ′ we consider their scalar product, given by

〈χρ, χρ′〉 = 1
|G|

∑
g∈G

χρ(g)χρ′(g)

where · means the complex conjugate.
Then the next result says that the basis of theorem 2.1.13 is an orthonormal one.



Theorem 2.1.15. If ρ is an irreducible representation, then 〈χρ, χρ〉 = 1. If ρ 6' ρ′,
then 〈χρ, χρ′〉 = 0.

Corollary 2.1.16. Consider the decomposition (2.1.1). For every j, we have that
〈χV , χWj

〉 = mj.

Corollary 2.1.17. A representation ρ is irreducible if and only if 〈χρ, χρ〉 = 1.

By computing the character of the regular representation of a group G, we see that
every irreducible representation Wj of G is contained in the regular representation
with multiplicity equal to its degree nj. This yields the sum of squares formula:

Proposition 2.1.18. Let {W1,W2, . . .Wr} be the collection of irreducible represen-
tations of a group G, modulo isomorphism. Set nj := deg(Wj). Then

|G| =
r∑
j=1

n2
j

The next theorem reveals the importance of characters in the study of represen-
tations.

Theorem 2.1.19. Two representations are isomorphic if and only if they have the
same character.

2.1.4 Restriction and induction
Here we see how representations of a group can be constructed from those of its
subgroups or from those of larger groups. Let H ≤ G be two finite groups.

Definition 2.1.20. If ρ : G→ GL(V ) is a representation of G, then the restriction
ρ|H : H → GL(V ) is a representation of H, denoted ResGH(ρ) or ρ ↓GH .

Definition 2.1.21. If µ : H → GL(V ) is a representation ofH, then the induced rep-
resentation is built as follows. Consider the space V ′ := ⊕mi=1xiV , where {x1, . . . , xm}
is a system of representatives of G/H. For g ∈ G and for every i, there exists an index
j and an element h ∈ H such that gxi = xjh. Then we obtain a representation of G,
µ′ : G → GL(V ′) by setting µ′(g)(xiv) := xj(µ(h)v). The induced representation is
denoted IndGH(µ) or µ ↑GH .

Using an analog notation for characters, we can mention the following result which
shows the duality between restriction and induction.

Theorem 2.1.22 (Frobenius reciprocity). Let χ be a character of G and ψ be a
character of H. We have

〈χ, IndGH(ψ)〉 = 〈ResGH(χ), ψ〉



2.2 Notations and basic definitions of graph the-
ory

A graph consists of a set V of vertices together with a set E ⊂
(
V
2

)
of edges. The

notation is G = (V,E). If not explicitely stated, all graphs which appear in this thesis
will be finite graphs, i.e. with a finite number of vertices. Moreover, the definition
implies that all graphs appearing here will be undirected, without loops and multiple
edges. In chapter 3 we will define a network as a directed graph, where E is taken to
be a collection of ordered pairs of vertices.

We will usually simplify the notation, writing edges as vv′ instead of {v, v′}. Given
two vertices v, v′ ∈ V , we say that v is adjacent to v′ if vv′ ∈ E. This is a symmetric
relation and it can be encoded in the adjacency matrix A(G) of G, defined as the
matrix whose rows and columns are indexed by V and whose entries are

A(G)v,v′ :=
{

1 if vv′ ∈ E
0 otherwise.

Thus, A(G) is a real symmetric matrix and we mention that its spectrum encodes
some important properties of the graph.

An adjacent vertex is called a neighbour. The number of neighbours of a vertex v is
called the degree of v, noted deg(v). A graph is called regular if all of its vertices have
the same degree d, which in this case is also the largest eigenvalue of the adjacency
matrix. Some easy examples of regular graphs are complete graphs Kn = ([n],

(
[n]
2

)
),

null (or empty) graphs ([n], ∅) and cycles Cn = ([n], {ij : j − i = 1}).
A graph is called strongly regular if it is regular and moreover the number of

common neighbours of a pair of vertices v, v′ depends only on whether vv′ is an edge
or not, hence taking only two values λ, µ, respectively. In that case, the graph is said
to be (n, d, λ, µ)-strongly regular, where n is the number of vertices and d the degree.

A subgraph of G is a graph H whose vertex and edge sets are subsets of those
of G. The subgraph H = (V ′, E ′) is called an induced subgraph of G = (V,E) if
E ′ = E ∩

(
V ′

2

)
. If V ′ = V , then H is called a spanning subgraph of G.

Two graphs G,G ′ are isomorphic if there exists a bijection between their vertex
sets which preserves the adjacency relation. Such a map is called an isomorphism
and we write G ' G ′. When G = G ′, we talk about automorphisms of G.

Given a graph G = (V,E), the complement graph is defined as G = (V,E) where
E is the complement of E in

(
V
2

)
.

A set of pairwise non adjacent vertices of G is called a stable set (or independent
set) of G. The cardinality of the largest independent set is called the independence
number of G, noted α(G). The dual concept is that of a clique. A set of pairwise
adjacent vertices of G is called a clique of G. So a clique is an induced subgraph which



Figure 2.a: The cycle of length 5 is isomorphic to its complement

is isomorphic to a complete graph. The cardinality of the largest clique is called the
clique number of G, noted ω(G). We note that an independent set of G is a clique of
G, so that α(G) = ω(G).

A k-colouring of G is a map c : V → [k] such that c(v) 6= c(v′) for all vv′ ∈ E.
In other words, it is a partition of the vertex set into k independent sets. The least
integer k such that a k-colouring exists is called the chromatic number of G and
denoted χ(G).

Determining α and χ is a fundamental problem in theoretical computer science,
which is known to be NP-hard ([27]).

2.3 Semidefinite programming and Lovász ϑ num-
ber

In this third part we introduce some of the main tools that we will use in this thesis,
namely linear programs (LPs) and semidefinite programs (SDPs). We mention that
they are particular convex programs and thus can be analyzed in the general setting
of convex optimization problems ([46]), although this point of view is more general
and not needed for our work. A link between graphs and SDPs is provided by
the ϑ number, introduced by Lovász in 1979. This number have several interesting
properties. What will be more interesting here is that, for any graph, the optimal
value of the program defining ϑ gives an upper bound on its independence number.
Stronger upper bounds are provided by some hierarchies of SDPs and we recall two
of them.

2.3.1 LPs and SDPs
A linear program (LP) is an optimization problem in which we ask for maximizing
(or minimizing) a linear function under some constraints given by linear inequalities.



A linear program can be given in its classical primal form:

sup
{
cTx subject to : x ≥ 0

Ax ≤ b
} (2.3.1)

where c, x, b ∈ Rn and A ∈ Rm×n, x1, . . . , xn being the variables. The dual of the
above program is the following:

inf
{
yT b subject to : y ≥ 0

yTA ≥ cT
}

A vector x satisfying all constraints in 2.3.1 is called a feasible solution. The
program is called feasible or unfeasible according to the existence of such a vector.
The scalar product cTx is called the objective function and, for x feasible, cTx is
called the objective value of x. A vector x is optimal if its objective value is maximal
amongst all objective values of feasible solutions. In such case, cTx is called the
optimal value of 2.3.1. A feasible problem is said to be unbounded if the objective
function can assume arbitrarily large positive objective values. Otherwise, it is said
to be bounded. The same vocabulary (with the obvious variations) is used for the
dual program.

A pair of primal and dual linear programs are moreover related by two duality
theorems called weak duality and strong duality. The weak duality theorem says that
any objective value of the dual is larger than any objective value of the primal. The
strong duality theorem states that if one of the programs is bounded feasible, then
the other is also bounded feasible and their optimal values coincide.

A real semidefinite program (SDP) is an optimization problem of the following
form:

sup
{
〈C,X〉 subject to: X � 0,

〈Ai, X〉 = bi for i = 1, . . . ,m

}
(2.3.2)

where

• C,A1, . . . , Am are given symmetric matrices,

• b1, . . . , bm are given real values,

• X is a variable matrix,

• 〈A,B〉 = trace(AB) is the usual scalar product between matrices,

• X � 0 means that X is symmetric positive semidefinite.



This formulation includes linear programming as the special case when all matrices
involved are diagonal matrices. A program like (2.3.2) is called in primal form. A
semidefinite program can also be expressed in its dual form:

inf
{
bTy subject to: ∑m

i=1 yiAi � C
}

(2.3.3)

So, given (C,A1, . . . , Am, b1, . . . , bm) we will talk about the two programs above as the
pair of primal and dual SDP’s associated to such data. The definitions of feasibility
and optimality for semidefinite programs are the same as for linear programs. We
refer to the vaste literature on SDP (e.g. [44], [47]) for further details on this topic.
Let us just mention that semidefinite programs can be approximated in polynomial
time within any specified accuracy by the ellipsoid algorithm or by practically efficient
interior point methods.

The duality theory holds as well in this case.

Proposition 2.3.1 (Weak duality). For every X primal feasible and for every y dual
feasible, we have

〈C,X〉 ≤ bTy (2.3.4)

In particular, the optimal value of the primal program is less or equal than the optimal
value of the dual program. Moreover, whenever we have feasible solutions X and y
such that equality holds in 2.3.4, then they are optimal solutions for their respective
programs.

The quantity bTy−〈C,X〉 is called duality gap between the primal feasible solution
X and the dual feasible solution y. To announce the strong duality theorem for SDP,
we need one last definition: we say that (a solution of) the program 2.3.2 or 2.3.3
is strictly feasible if the matrix is positive definite, i.e. positive semidefinite and non
singular.

Proposition 2.3.2 (Strong duality). If one of the primal or of the dual program is
bounded and strictly feasible, then the other one is bounded feasible, it has an optimal
solution and the two optimal values coincide.

2.3.2 Lovász ϑ number
2.3.2.1 Shannon capacity

Given two graphs G = (V,E) and H = (V ′, E ′), their strong product G � H is
defined as the graph with vertex set the cartesian product V × V ′ and with edges
{(a, b)(a′, b′) : a = a′ or aa′ ∈ E and b = b′ or bb′ ∈ E}. Let Gk denote the strong
product of G with itself k times.



Definition 2.3.3. The Shannon capacity of a graph G is defined by

Θ(G) = sup
k

k

√
α(Gk) = lim

k→+∞
k

√
α(Gk)

The number Θ(G) was introduced by Shannon in 1956 ([43]) with the following
interpretation. Suppose that vertices of the graph G represent letters of an alphabet
and that the adjacency relation means that one letter can be confused with the
other. Then α(Gk) is the maximum number of messages of length k such that no
two of them can be confused and Θ(G) can be seen as an information theoretical
parameter representing the effective size of an alphabet in a communication model
represented by G.

We have that α(G) ≤ Θ(G) and equality does not hold in general. For instance,
consider C5, the cycle of length 5. Clearly α(C5) = 2 and Lovász showed that
Θ(C5) =

√
5 ([34]). He obtained this result by introducing a general upper bound on

Θ, for any graph. This upper bound is called the Lovász ϑ function.

2.3.2.2 Definition and properties of ϑ

There are several equivalent definitions for Lovász ϑ function. Here we list only the
two that are more suitable to handle and which we will consider all along this thesis.

Definition 2.3.4 ([34], theorem 4). Let G = (V,E) be a graph, then

ϑ(G) := max{ ∑
x,y∈V F (x, y) : F ∈ RV×V , F � 0∑

x∈V F (x, x) = 1
F (x, y) = 0 if xy ∈ E }

(2.3.5)

Equivalently, by duality,

Lemma 2.3.5 ([34], theorem 3). Let G = (V,E) be a graph, then

ϑ(G) = min{ λmax(Z) : Z ∈ RV×V , Z symmetric
Zx,y = 1 if x = y or xy ∈ E } (2.3.6)

where λmax(Z) denotes the largest eigenvalue of Z.

Remark 2.3.6. Taking F = (1/|V |)I, we see that a strictly feasible solution exists for
the primal program defining ϑ(G), hence strong duality holds and the definition of
ϑ(G) carries no ambiguity.

This function is interesting as it can be used to approximate numbers which
are hard to compute, like the independence number or the chromatic number of a
graph, as we will see next. Moreover, being formulated as the optimal value of a
semidefinite program, an approximation is computable in polynomial time in the size
of the graph. Finally, we notice that every feasible solution of the primal or of the
dual gives respectively a lower or an upper bound of the optimal value.



Proposition 2.3.7 ([34], lemma 3). For any graph G, α(G) ≤ ϑ(G).

Proof. Let S ⊂ V be an independent set. Let 1S ∈ RV be its characteristic vector
(with 1 in entries indexed by elements of S and 0 elsewhere). Define the matrix

XS := 1
|S|

1S1TS ∈ RV×V .

By construction, this matrix is positive semidefinite of trace 1 and its entries are
0 when at least one of the indices lies outside S. So it fulfils the condition of the
program (2.3.5) and it has objective value |S|. The optimal value being the maximum
among all feasible values, we have |S| ≤ ϑ(G) for any independent set S, from which
we derive the announced inequality. �

Remark 2.3.8. The program given in 2.3.5 is one of the equivalent formulations of
Lovász original ϑ(G). If the additional constraint that F takes non negative values is
added, the optimal value gives a sharper bound for α(G) denoted ϑ′(G).

Proposition 2.3.9 ([34], theorem 1). For any graph G, Θ(G) ≤ ϑ(G).

Proof. By previous proposition and the inequality ϑ(G �H) ≤ ϑ(G)ϑ(H) proved in
[34] (lemma 2), we have α(Gk) ≤ ϑ(Gk) ≤ ϑ(G)k. �

Now we recall and prove another famous result, known as the sandwich theorem.

Proposition 2.3.10 ([34], corollary 3). For any graph G, α(G) ≤ ϑ(G) ≤ χ(G).

Proof. The first inequality has already been established. We prove the second one. A
coloring of G of size c := χ(G) is a partition (C1, . . . , Cc) of the vertex set in cliques of
G. We can reorder the vertex set according to such partition. Then the block matrix

Z :=


I J J . . .
J I J . . .

J J I
. . .


where blocks correspond to sets of the partition, is feasible for the program (2.3.6).
Here we abuse a little of the notation of J , as the non diagonal blocks need not be
square blocks. Consider the matrix cI − Z which has diagonal blocks of the form
(c − 1)I and non diagonal blocks of the form −J . As all of its minors are positive,
cI − Z is positive semidefinite and thus the largest eigenvalue of Z is less than or
equal to c. As Z is feasible for (2.3.6), we have ϑ(G) ≤ λmax(Z) ≤ c = χ(G). �

Now we show how ϑ behaves when two graphs are related by homomorphism in
the sense of the following definition.



Definition 2.3.11. Let G = (V,E) and H = (V ′, E ′) be two graphs. A graph
homomorphism ϕ : G → H, is an application ϕ from V to V ′, which preserves edges,
that is (i, j) ∈ E ⇒ (ϕ(i), ϕ(j)) ∈ E ′.

Proposition 2.3.12. If there exists a homomorphism ϕ : G → H, then ϑ(G) ≤ ϑ(H).

Proof. Take any feasible solution F of the program defining ϑ(G). In particular
Fi,j = 0 whenever i 6= j, ij 6∈ E. Define F ′ ∈ RV ′×V ′ by

(F ′)u,v :=
∑

i : ϕ(i)=u

j : ϕ(j)=v

Fi,j

Then, using the fact that (u, v) 6∈ E ′ ⇒ (i, j) 6∈ E for all i, j such that ϕ(i) =
u, ϕ(j) = v we see that F ′ is a feasible solution of the program defining ϑ(H) and
that its objective value is the same as the one of F . The announced inequality
follows. �

We conclude this overview of classical facts about the ϑ function recalling two
more results from the original paper of Lovász.

Proposition 2.3.13 ([34, corollary 2 and theorem 8]). For all graphs G = (V,E),
ϑ(G)ϑ(G) ≥ |V |. If moreover the graph is vertex transitive, equality holds.

There are few families of graphs for which the ϑ number is established. One of
these is the family of cycles Cn. If n = 2m is even, then C2m is a bipartite graph and
it is easy to see that α(C2m) = ϑ(C2m) = m.

Proposition 2.3.14 ([34], corollary 5). For n odd,

ϑ(Cn) = n cos(π/n)
1 + cos(π/n)

2.3.3 Hierarchies of SDPs for the independence number
In many combinatorial problems it is helpful to obtain an efficient description of an
approximation P (1) of a certain polytope P . For example, P can be given as the
convex hull of the solution vectors of a linear 0 − 1 program, and P (1) ⊇ P can be
obtained by mean of linear (or semidefinite) constraints. In this case, P (1) is called
a linear (or semidefinite) relaxation of P . More generally, given an optimization
problem written in the form of a (linear, semidefinite, ...) program P , a relaxation of
P is another program P(1) with the properties that the feasible region of P(1) contains
the feasible region of P . A sequence of the kind

P (1) ⊇ P (2) ⊇ · · · ⊇ P (α) = P



is called a hierarchy of relaxations of the polytope P . Analogously, if dealing with
programs, we will talk about hierarchies of relaxations of a program P . This is a
large domain in optimization theory, but for the purpose of this thesis, we restrict
ourselves to hierarchies of semidefinite programs.

Lovász and Schrijver ([35]) and Lasserre ([32]) have defined hierarchies of semidef-
inite programs, as relaxations of (linear or non linear) 0−1 programs. The hierarchy
of Lasserre refines the one of Lovász and Schrijver, as it is shown in [33]. In [23], the
authors introduced a new hierarchy. They then applied the second and third steps
of their hierarchy to the problem of calculating the independence number of Paley
graphs. Here we sketch the details of the Lasserre hierarchy for the independence
number ([32]), along with the variant of Gvozdenović, Laurent and Vallentin ([23]).

2.3.3.1 The Lasserre hierarchy for the independence number

Given a graph G = (V,E), the stable set problem is: find a stable subset S ⊂ V of
maximal cardinality |S| = α(G). The stable set polytope is defined as the convex hull
of the characteristic vectors of all stable subsets of V :

STAB(G) := conv{1S ∈ {0, 1}V : (S × S) ∩ E = ∅}

Then we have
α(G) = max{

∑
i∈V

xi : x ∈ STAB(G)} (2.3.7)

Lasserre hierarchy applies to the stable set problem, giving approximations of STAB(G).
As a consequence of 2.3.7, it applies to bound the independence number. We are going
to describe this last formulation.

Given a finite set V , let
(
V
t

)
denote the collection of subsets of V with cardinality

t and
(
V
≤t

)
the collection of subsets of V with cardinality less or equal than t. The

Lasserre hierarchy is based on moment matrices:

Definition 2.3.15. The moment matrix of a vector y ∈ R( V
≤2t) is the matrixMt(y) ∈

R( V≤t)×( V≤t) defined by:
Mt(y)I,J := yI∪J

Definition 2.3.16. Given a graph G = (V,E), for any t ∈ N we define

`(t)(G) := sup
{∑

i∈V yi : y ∈ R( V
≤2t)

Mt(y) � 0
y∅ = 1
y{i,j} = 0 if ij ∈ E

} (2.3.8)



The program 2.3.8 is called the t-th iterate (or step) of the Lasserre hierarchy for
the stable set problem. It can be verified that `(1)(G) = ϑ(G), so we can see `(t) as a
generalization of Lovász ϑ number. It is worth to notice that, for a feasible solution
y, the second and fourth constraints imply that yI = 0 whenever I contains an edge.
The next results show the interest of this hierarchy.

Lemma 2.3.17. For any t, α(G) ≤ `(t)(G), with equality for t ≥ α(G).

Proof. For the first statement, it suffices to show that |S| ≤ `(t)(G) whenever S ⊂ V

is a stable set. For this, we fix S stable and we define a vector yS ∈ R( V
≤2t) by

(yS)A :=
{

1 if A ⊂ S
0 if not

Then Mt(yS) is positive semidefinite as it is a submatrix of yTS yS. The two last
constraints are obviously verified. So yS is a feasible solution and ∑i∈V (yS)i = |S|.
The second statement follows from the fact that the Lasserre hierarchy refines the
Sherali-Adams hierarchy (see [33] for details). �

The following proposition is easy to establish.

Proposition 2.3.18. For any t, `(t+1)(G) ≤ `(t)(G).

Remark 2.3.19. If in 2.3.8 we add the constraint that the entries ofMt(y) are non neg-
atives, then the new program `

(t)
≥0 gives a stronger upper bound on the independence

number of graphs. Moreover, `(1)
≥0 coincides with ϑ′ as defined in remark 2.3.8.

2.3.3.2 The hierarchy Lt for the independence number

Note that the computation of 2.3.8 involves a matrix of size O(|V |t) and O(|V |2t)
variables. In [23], the authors considered a less costly variation of the Lasserre hier-
archy, denoted Lt. Let us sketch their construction. As before, we restrict to the case
of upper bounds on the independence number. We need to consider the following
principal submatrices of moment matrices:

Definition 2.3.20. Given a vector y ∈ R( V
≤2t) and a subset T ⊂ V of cardinality

|T | = t− 1 we define the matrix M(T, y) as the principal submatrix of Mt(y) whose
rows and columns are indexed by the following set:⋃

S⊂T
{S, S ∪ {i}}i∈V

Note that to defineM(T, y) for a set T of cardinality t−1, we use only the entries
of y indexed by

(
V
≤t+1

)
. Then we can define the new hierarchy:



Definition 2.3.21. Given a graph G = (V,E), for any t ∈ N we define

Lt(G) := sup
{∑

i∈V yi : y ∈ R( V
≤t+1)

M(T, y) � 0 ∀ T ∈
(
V
t−1

)
y∅ = 1
y{i,j} = 0 if ij ∈ E

} (2.3.9)

The following properties are easily verified:

Proposition 2.3.22. For any graph G, for any t ∈ N, the number Lt(G) has the
following properties:

• for t = 1, L1(G) = `(1)(G) = ϑ(G);

• `(t)(G) ≤ Lt(G);

• α(G) ≤ Lt(G), with equality for t ≥ α(G);

• Lt+1(G) ≤ Lt(G).

So the bound on the independence number provided by this hierarchy is not as
good as the one of Lasserre `(t) but we note that the complexity has decreased.
Indeed, the program 2.3.9 involves |V |

t+1

(t+1)! +O(|V |t) variables and (with some further
manipulation) 2t−1|V |t−1

(t−1)! +O(|V |t−2) matrices of size n+ 1 (see [23] for details).

2.4 Symmetrization and examples
To symmetrize a semidefinite program means to exploit its symmetries (coming from
some group action) in order to obtain another program which is easier to compute
and equivalent to the original one, in the sense that the symmetrization transforms
feasible solutions in feasible solutions and leaves the objective value invariant. As
a consequence, the symmetrized program will have the same optimal value as the
original one. Consider the ϑ program (2.3.5). In order to be calculated explicitely
for ”big” graphs, ϑ needs to be defined by a less costly program. This can be done
thanks to automorphisms of the graph and using tools from representation theory. We
explain how in this final part of chapter 2, giving the link to one of the fundamental
problems in coding theory. We follow [6], to which we refer for a more complete
treatment of the subject. At the end, we sketch the block diagonalization of the
Terwilliger algebra of the Hamming scheme, because we will need it in chapter 4.
It was first obtained by Schrijver ([41]) in order to derive a bound for codes in the
Hamming space which improves over Delsarte’s one. Here we follow the equivalent
reformulation in terms of group representations given in [45].



2.4.1 Symmetrization of the SDP defining ϑ

Fix a graph G = (V,E) and a subgroup G of its automorphism group. The group
G acts on RV×V by (g.F )(x, y) = F (g−1.x, g−1.y). The program 2.3.5 is invariant
under this action: this means that for all g ∈ G and for all feasible solution F , g.F
is still feasible and it has the same objective value as F . It follows that 2.3.5 has an
optimal solution which is G-invariant. In order to prove this, remark that starting
from a feasible F , we can build its average over G,

1
|G|

∑
g∈G

g.F ,

which is feasible, G-invariant and with the same objective value as F . It follows
that the original program is equivalent to the one where the constraint that F is
G-invariant is added. A G-invariant function satisfies F (x, y) = F (g.x, g.y) for every
g ∈ G and so it takes constant values f1, . . . , fm on the orbits V1, . . . , Vm of G on
pairs of elements of V . Assume that V1 ∪ · · · ∪ V` = {(x, x) : x ∈ V }. Then the
program 2.3.5 is equivalent to the following one:

max{ ∑m
i=1 |Vi|fi : F ∈ (RV×V )G, F � 0∑`

i=1 |Vi|fi = 1
fi = 0 if Vi ⊂ E }

(2.4.1)

where (RV×V )G denotes the G-invariant real matrices. The space of G-invariant
complex matrices (CV×V )G is a matrix ∗-algebra, i.e. a vector space which is closed
under taking conjugate transpose and under multiplication. Note that I ∈ (CV×V )G.
Then the Artin-Wedderburn theorem says that (CV×V )G is isomorphic to a direct
sum of matrix algebras

ϕ : (CV×V )G −→
d⊕

k=1
Cmk×mk

F −→ (Fk)dk=1

The isomorphism ϕ preserves eigenvalues and hence positive semidefiniteness. The
matrix ϕ(F ) is in block diagonal form, so

F � 0 ⇔ ϕ(F ) � 0 ⇔ Fk � 0 ∀ k = 1, . . . , d .

The advantage of considering the matrices Fk is that it is computationally easier to
solve a SDP program involving several smaller blocks than a SDP program involving
one large matrix.

Now we sketch a general method to construct such an isomorphism. Consider
the space CV with the action of G given by (g.f)(x) = f(g−1.x) and the G-invariant



inner product 〈f, f ′〉 := 1
|V |
∑
x∈V f(x)f ′(x). This gives a representation of G which

we can decompose in irreducibles

CV =
(
H1,1 ⊥ · · · ⊥ H1,m1

)
⊥ · · · ⊥

(
Hd,1 ⊥ · · · ⊥ Hd,md

)
where parentheses correspond to isotypic components, i.e. we have Hk,i ' Hk′,i′ if
and only if k = k′.

For all k, i we choose an orthonormal basis (ek,i,1, . . . , ek,i,dk) of Hk,i, such that
the complex numbers 〈g.ek,i,s, ek,i,t〉 do not depend on i (such a basis exists precisely
because the G-isomorphism class of Hk,i does not depend on i). From this data, we
introduce the mk ×mk matrices Ek(x, y) with coefficients Ek,i,j(x, y):

Ek,i,j(x, y) :=
dk∑
s=1

ek,i,s(x)ek,j,s(y) (2.4.2)

These matrices are sometimes called zonal matrices to say that they are G-invariant.
Moreover, it can be proven that the matrices Ek,i,j form a basis of the algebra of
G-invariant matrices, hence

F ∈ (CV×V )G ⇔ F (x, y) =
∑
k

〈Fk, Ek(x, y)〉

and sending F to (Fk)dk=1 gives the announced isomorphism.
The theorem which characterizes positive definite G-invariant functions is known

as Bochner theorem:

Theorem 2.4.1 ([11]). A function F ∈ CV×V is G-invariant and positive semidefi-
nite if and only if it can be written as

F (x, y) =
d∑

k=1
〈Fk, Ek(x, y)〉 (2.4.3)

where Fk ∈ Cmk×mk is hermitian positive semidefinite.

Note that the entries of each Fk can be written as the scalar product of F and
Ek,i,j, so that they can be expressed as a function of the variables yi := |Vi|fi. Once
this description is obtained, program 2.3.5 becomes

max{ ∑m
i=1 yi : Fk � 0 ∀ k = 1, . . . , d∑`

i=1 yi = 1
yi = 0 if Vi ⊂ E }

(2.4.4)

The size of the program has been reduced from |V |2 variables to m = ∑d
k=1(mk)2.

Remark 2.4.2. Of course, in 2.4.4 we consider only the Fk such that the corresponding
F has real entries. Whenever the group G has only real representations, we can start
from decomposing RV and work only in the real case.



2.4.2 Application to coding theory
A code C is a subset of a metric space (X, d). The minimum distance of C, denoted
d(C) is the least value of pairwise distances of elements of C. The classic framework
is that of the (binary) Hamming space Hn = {0, 1}n, i.e. the n-tuples of 0− 1 words,
together with the Hamming distance

d(x, y) := |{1 ≤ i ≤ n : xi 6= yi}|

The Hamming weight of a word x is defined as |x| := d(x, 0n). A scalar product is
defined on Hn by x.y := ∑n

i=1 xiyi mod 2. The cardinality of the intersection of the
support of x and the support of y is denoted |x ∩ y|.

Intuitively, as the cardinality of a code grows, its minimum distance decreases.
So it is interesting to study the number A(X, d) := max{|C| : C ⊂ X, d(C) = d},
the maximal cardinality of a code of X with prescribed minimum distance d. The
determination of this number is hard, so the goal is usually to find lower and upper
bounds on it. While lower bounds mainly come from explicit constructions, upper
bounds need to be set up by theoretical arguments. One of the best upper bounds for
binary Hamming codes was established by Delsarte and it is obtained as the optimal
value of a linear program.

Theorem 2.4.3. (Delsarte linear programming upper bound, [14])

A(Hn, d) ≤ sup
{

1 +∑n
i=1 xi : xi ≥ 0

x1 = · · · = xd−1 = 0
1 +∑n

i=1 xiKk(i) ≥ 0 ∀ k = 0, . . . , n
} (2.4.5)

where Kk are the Krawtchouk polynomials defined by

Kk(i) =
k∑
j=0

(−1)j
(
i

j

)(
n− i
k − j

)

Lovász ϑ′ program applies to bound the maximal cardinality A(X, d) of codes in a
metric space X with prescribed minimal distance d. Indeed A(X, d) = α(G) where
G is the graph with vertex set X and edges set {xy : 0 < d(x, y) < d}. So, we obtain

Theorem 2.4.4. (The semidefinite programming bound for codes)

A(X, d) ≤ sup
{∑

X2 F (x, y) : F ∈ RX×X , F � 0, F ≥ 0,∑
X F (x, x) = 1

F (x, y) = 0 if 0 < d(x, y) < d
} (2.4.6)



A(X, d) ≤ inf
{
t/λ : F ∈ RX×X , F − λ � 0

F (x, x) ≤ t for all x ∈ X
F (x, y) ≤ 0 if d(x, y) ≥ d

} (2.4.7)

The second inequality (2.4.7) is obtained with the dual formulation of the semidef-
inite program (2.4.6). It should be noted that any feasible solution of the semidefinite
program in (2.4.7) leads to an upper bound for A(X, d).

Most of the spaces occurring in coding theory are of exponential size but they are
endowed with group actions which allow to reduce the size of the SDP above. The
Hamming space is endowed with the Aut(Hn) = T o Sn action, where T ' (Hn,+)
acts by translations and Sn by permuting the coordinates. It was first recognized
in [36] and [40] that in the Hamming space, the program 2.4.6 symmetrized by the
T o Sn action coincides with the Delsarte linear program 2.4.5. As an application of
the method introduced in section 2.4.1, we sketch the symmetrization process.

Let X denote Hn. The program 2.4.6 is invariant for the action of G := T o Sn
and thus we can restrict to G-invariant functions F . As the G-orbits of pairs are
characterized by the pairwise distance, such F satisfies

F (x, y) = F̃ (d(x, y))

and takes n + 1 values f0, f1, . . . , fn on the respective orbits. Then we can imme-
diately translate the program 2.4.6, except for the semidefiniteness constraint which
we analyse separately. Indeed, the values of the function verify:

f0 = 1
|X|

f1 = · · · = fd−1 = 0 fd, . . . , fn ≥ 0

and the objective function writes as

|X|f0 +
n∑
i=1
|Vi|fi = 1 +

n∑
i=1
|Vi|fi

where Vi := {(x, y) ∈ X ×X : d(x, y) = i}.
The set of irreducible characters {χz : z ∈ Hn} is an orthonormal basis of CX .

Remember that these characters are given by χz(x) := (−1)z.x. Putting together
characters where z has the same weight, we obtain

CX = P0 ⊕ P1 ⊕ · · · ⊕ Pn (2.4.8)

where Pk := ⊕
|z|=k Cχz is G-irreducible of dimension

(
n
k

)
.



Next, we build the zonal functions. As the decomposition 2.4.8 is multiplicity
free, the zonal functions are 1× 1-matrices. They are given by:

Ek(x, y) :=
∑
|z|=k

χz(x)χz(y)

Denote Kk(d(x, y)) := Ek(x, y). The function Kk is well defined and it can be proved
that it is a polynomial of degree k. Explicitely:

Kk(i) =
k∑
j=0

(−1)j
(
i

j

)(
n− i
k − j

)

Then we know, by theorem 2.4.1, that F is positive semidefinite if and only if it
writes as a linear combination of the functions Kk with positive coefficients. These
coefficients are given by

1
|X|2

∑
(x,y)∈X

F (x, y)Kk(d(x, y)) = 1
|X|2

n∑
i=0
|Vi|fiKk(i)

Now, calling xi = |Vi|fi we find exactly program 2.4.5.

Indeed, it is a general fact that for 2-point homogeneous spaces, the program ϑ′

after symmetrization, reduces to a linear program where different families of orthogo-
nal polynomials come into play. Here, a 2-point homogeneous space is a metric space
(X, d) on which a group G acts transitively and such that the orbits on pairs are
parametrized by the distance, i.e. (x, y) ∼G (x′, y′)⇔ d(x, y) = d(x′, y′).

Apart from the Hamming space, another example of 2-point homogeneous space
is given by the binary Johnson space Jwn , defined as the set of 0 − 1 words with
Hamming weight w, together with the action of the symmetric group Sn.

2.4.3 Block diagonalization of the Terwilliger algebra of Hn

The reduction of the ϑ′ program for the Hamming space amounts to block diago-
nalize the algebra (CHn×Hn)Aut(Hn). In this section we replace Aut(Hn) with one
of its stabilizer subgroups, namely Sn = StabAut(Hn)(0n). The algebra (RHn×Hn)Sn
coincides with the so called Terwilliger algebra of Hn. Its block diagonalization is
originally contained in the paper of Schrijver, [41], where it is applied in order to
obtain improvements on Delsarte LP bound. Here we adopt an equivalent point of
view, but different from Schrijver’s original one, which allows us to use the frame-
work introduced in section 2.4.1. For notations and main results we follow [45] and
the references therein. The decomposition 2.4.9 and the link with Hahn polynomials
were proven by Delsarte in [15].



Take the notation X := Hn. The space X splits into the Sn-orbits X0, . . . , Xn,
where Xw = Jwn is the Johnson space. Hence

RX = RX0 ⊕ RX1 ⊕ · · · ⊕ RXn

The irreducible modules for the action of the symmetric group on n elements
are the Specht modules Sλ. They are indexed by partitions λ of n. The following
decomposition is a classical fact:

RXw =
{
H0,w ⊕ · · · ⊕Hw,w if 0 ≤ w ≤ bn/2c
H0,w ⊕ · · · ⊕Hn−w,w else (2.4.9)

where Hk,w := S(n−k,k) is of dimension dk :=
(
n
k

)
−
(

n
k−1

)
.

The isotypic components of RX are

Ik := Hk,k ⊕ · · · ⊕Hk,n−k ' Hmk
k,k

for k = 0, . . . , bn/2c. Here the multiplicity is given by mk := n − 2k + 1. Now, let
{ekk1, . . . , ekkdk} be an orthonormal basis of Hk,k. Applying the valuation operator

ψk,i : RXk −→ RXi

f −→ [ x→ ∑{f(y) : |y| = k, y ⊂ x} ]

we obtain an orthogonal basis {eki1, . . . , ekidk} of Hk,i, whenever i > k (see [15]).
To each isotypic component we associate the zonal matrix Ek ∈ Rmk×mk as ex-

plained in 2.4.2:

Ek,i,j(x, y) := 1
|X|

dk∑
`=1

eki`(x)ekj`(y)

The zonal matrices have an explicit description in terms of Hahn polynomials.

Definition 2.4.5. The Hahn polynomials associated to the parameters n, i, j with
0 ≤ i ≤ j ≤ n are the polynomials Qk(n, i, j; z) with 0 ≤ k ≤ min(i, n− j) uniquely
determined by the properties:

• Qk has degree k in the variable z

• They are orthogonal polynomials for the weights

0 ≤ h ≤ i w(n, i, j;h) =
(
i

h

)(
n− i

j − i+ h

)

• Qk(0) = 1.



Theorem 2.4.6. If k ≤ i ≤ j ≤ n− k, |x| = i, |y| = j, we have

Ek,i,j(x, y) = |X|

(
j−k
i−k

)(
n−2k
j−k

)
(
n
j

)(
j
i

) Qk(n, i, j; i− |x ∩ y|)

If |x| 6= i or |y| 6= j then Ek,i,j(x, y) = 0.

This explicit description along with Bochner theorem 2.4.1 gives a block diagonal-
ization of the algebra of Sn-invariant matrices, together with a description of those
who are positive semidefinite.



Chapter 3

Bounds for projective codes from
semidefinite programming

3.1 Introduction
In network coding theory, as introduced in [3], some information is transmitted
through a network (i.e. a directed graph), possibly having several sources and several
receivers, and a certain number of intermediate nodes. Such information is mod-
eled as vectors of fixed length over a finite field Fq, called packets. To improve the
performance of the communication, intermediate nodes should forward random lin-
ear Fq-combinations of the packets they receive. This is the approach taken in the
non-coherent communication case, that is, when the structure of the network is not
known a priori [24]. Hence, if no errors occur, what is globally preserved all along the
network is the vector space spanned by the packets injected at the sources. This ob-
servation led Koetter and Kschischang [29] to model network codes as subsets of the
projective space P(Fnq ), the set of linear subspaces of Fnq , or of the Grassmann space
Gq(n, k), the subset of those subspaces of Fnq having dimension k. Subsets of P(Fnq )
are called projective codes while subsets of the Grassmann space will be referred to
as constant-dimension codes or Grassmann codes.

As usual in coding theory, in order to protect the system from errors, it is desirable
to select the elements of the code so that they are pairwise as far as possible with
respect to a suitable distance. The subspace distance defined by

dS(U, V ) = dim(U + V )− dim(U ∩ V ) = dimU + dim V − 2 dim(U ∩ V )

was introduced in [29] for this purpose. It is then natural to ask how large a code
with a given minimal distance can be. Formally, we defineAq(n, d) := max{|C| : C ⊂ P(Fnq ), dS(C) ≥ d}

Aq(n, k, 2δ) := max{|C| : C ⊂ Gq(n, k), dS(C) ≥ 2δ}

29



where dS(C) denotes the minimal subspace distance among distinct elements of a
code C. In this chapter we will discuss upper estimates for these numbers.

The Grassmann space Gq(n, k) is a homogeneous space under the action of the
linear group GLn(Fq). Moreover, this group acts distance transitively when this space
is endowed with the subspace distance. We mean here that the orbits of GLn(Fq)
acting on pairs of elements of Gq(n, k) are characterized by the value that this distance
takes on them; in other words the Grassmann space is 2-point homogeneous under
this action. Due to this property, codes and designs in this space can be analysed
in the framework of Delsarte theory, in the same way as for other classical spaces in
coding theory such as the Hamming space and the binary Johnson space. In fact,
Gq(n, k) turns out to be a q-analog in the sense of combinatorics of the binary Johnson
space as shown in [15]. The linear group plays the role of the symmetric group for
the Johnson space, while the dimension replaces the weight function.

Unsurprisingly, the classical bounds (anticode, Hamming, Johnson, Singleton)
have been derived for the Grassmann codes [29, 48, 49]. The more sophisticated
Delsarte linear programming bound was already obtained in [15]; however numerical
computations indicate that it is not better than the anticode bound. Moreover, the
Singleton and anticode bounds have the same asymptotic which is attained by a
family of Reed-Solomon like codes built in [29] and closely connected to the rank-
metric Gabidulin codes.

In contrast, the projective space has a much nastier behaviour, essentially because
it is not 2-point homogeneous, in fact not even homogeneous under the action of a
group. For example, the balls in this space have a size that depends not only on
their radius, but also on the dimension of their center. Consequently, bounds for
projective codes are much harder to settle. Etzion and Vardy in [17] provide a bound
in the form of the optimal value of a linear program, which is derived by elementary
reasoning involving packing issues. The Etzion-Vardy bound is the only successful
generalization of the classical bounds to the projective space.

In this chapter we settle semidefinite programming bounds for projective codes
and we compare them with the above mentioned bounds. For the projective space,
the symmetrization was announced in [9] (see also [5]). The program remains a
semidefinite program but fortunately with polynomial size.

This chapter is organized as follows. In Section 2 we review the classical bounds
for constant dimension codes and the Etzion-Vardy bound for projective codes. In
Section 3 we show that most of the bounds for Grassmann codes can be derived from
the semidefinite programming method. In Section 4 we reduce the ϑ program by
the action of the group GLn(Fq). In Section 5 we present some numerical results
obtained with this method and we compare them with the Etzion-Vardy method for
q = 2 and n ≤ 16. Another distance of interest on the projective space, the so-called
injection distance was introduced in [30]. We show how to adapt the Etzion-Vardy
bound as well as the semidefinite programming bound to this case.



3.2 Elementary bounds for Grassmann and pro-
jective codes

3.2.1 Bounds for Grassmann codes
In this section we review the classical bounds for Aq(n, k, 2δ). We note that the
subspace distance takes only even values on the Grassmann space and that one can
restrict to k ≤ n/2 by the relation Aq(n, k, 2δ) = Aq(n, n − k, 2δ), which follows by
considering orthogonal subspaces.

We recall the definition of the q-analog of the binomial coefficient that counts the
number of k-dimensional subspaces of a fixed n-dimensional space over Fq, i.e. the
number of elements of Gq(n, k).

Definition 3.2.1. The q-ary binomial coefficient is defined by[
n
k

]
q

= (qn − 1) . . . (qn−k+1 − 1)
(qk − 1) . . . (q − 1)

The sphere-packing bound [29]

Aq(n, k, 2δ) ≤
|Gq(n, k)|
|Bk(δ − 1)| =

[
n
k

]
q∑b(δ−1)/2c

m=0

[
k
m

]
q

[
n−k
m

]
q
qm2

. (3.2.1)

It follows as usual from the observation that the balls of radius δ− 1 centered at the
elements of a code C ⊂ Gq(n, k) with minimal distance 2δ, are pairwise disjoint, and
have the same cardinality ∑b(δ−1)/2c

m=0

[
k
m

]
q

[
n−k
m

]
q
qm

2 .

The Singleton bound [29]

Aq(n, k, 2δ) ≤
[
n− δ + 1
k − δ + 1

]
q

. (3.2.2)

It is obtained by the introduction of a “puncturing” operation on the code.

The anticode bound [48]

An anticode of diameter e is a subset of a metric space whose pairwise distinct
elements are at distance less or equal than e. The general anticode bound ([14])
states that, given a metric space X which is homogeneous under the action of a



group G, for every code C ⊂ X with minimal distance d and for every anticode
A ∈ X of diameter d− 1, we have

|C| ≤ |X|
|A|

.

Spheres of given radius r are one example of anticodes of diameter 2r: indeed if we
take A to be a sphere of radius δ−1 in Gq(n, k), we recover the sphere-packing bound.
Obviously, to obtain the strongest bound, we have to choose the largest anticodes
of given diameter, which in our case are not the spheres. The largest anticode A of
diameter 2δ − 2 in the finite Grassmannian was described in [20]: it consists of all
elements of Gq(n, k) which contain a fixed (δ− 1)-dimensional subspace. Taking such
A in the general anticode bound, we recover the (best) anticode bound for Gq(n, k):

Aq(n, k, 2δ) ≤

[
n

k − δ + 1

]
q[

k
k − δ + 1

]
q

= (qn − 1)(qn−1 − 1) . . . (qn−k+δ − 1)
(qk − 1)(qk−1 − 1) . . . (qδ − 1) (3.2.3)

It follows from the previous discussion that the anticode bound improves the sphere-
packing bound. Moreover, the anticode bound is usually stronger than the Singleton
bound, with equality only in the cases n = k or δ = 1 ([49]).

The first and second Johnson-type bound [49]

Aq(n, k, 2δ) ≤
⌊

(qn − 1)(qk − qk−δ)
(qk − 1)2 − (qn − 1)(qk−δ − 1)

⌋
(3.2.4)

as long as (qk − 1)2 − (qn − 1)(qk−δ − 1) > 0, and

Aq(n, k, 2δ) ≤
⌊
qn − 1
qk − 1Aq(n− 1, k − 1, 2δ)

⌋
. (3.2.5)

These bounds were obtained in [49] through the construction of a binary constant-
weight code associated to every constant-dimension code. Iterating the latter, one
obtains

Aq(n, k, 2δ) ≤
⌊
qn − 1
qk − 1

⌊
qn−1 − 1
qk−1 − 1 . . .

⌊
qn−k+δ − 1
qδ − 1

⌋
. . .

⌋ ⌋
. (3.2.6)

If the floors are removed from the right hand side of (3.2.6), the anticode bound is
recovered, so (3.2.6) is stronger. In the particular case of δ = k and if n 6≡ 0 mod k,
(3.2.6) was sharpened in [17] to:

Aq(n, k, 2k) ≤
⌊
qn − 1
qk − 1

⌋
− 1 (3.2.7)



In contrast, for δ = k and if k divides n, we have equality in (3.2.6), because of the
existence of spreads (see [17]):

Aq(n, k, 2k) = qn − 1
qk − 1

Summing up, the strongest upper bound for constant dimension codes reviewed
so far comes by putting together (3.2.6) and (3.2.7):

Theorem 3.2.2. If n− k 6≡ 0 mod δ, then

Aq(n, k, 2δ) ≤
⌊
qn − 1
qk − 1

⌊
. . .

⌊
qn−k+δ+1 − 1
qδ+1 − 1

(⌊
qn−k+δ − 1
qδ − 1

⌋
− 1

)⌋
. . .

⌋⌋

otherwise

Aq(n, k, 2δ) ≤
⌊
qn − 1
qk − 1

⌊
. . .

⌊
qn−k+δ+1 − 1
qδ+1 − 1

⌊
qn−k+δ − 1
qδ − 1

⌋⌋
. . .

⌋⌋
.

3.2.2 A bound for projective codes
Here we turn our attention to codes whose codewords have not necessarily the same
dimension, and we review the bound obtained by Etzion and Vardy in [17] for these
codes. The idea is to split a code C into subcodes Ck = C ∩ Gq(n, k) of constant
dimension, and then to design linear constraints on the cardinality Dk of each Ck,
coming from packing constraints.

Let B(V, e) := {U ∈ P(Fnq ) : dS(U, V ) ≤ e} denote the ball of center V and radius
e. If dim V = i, we have that

|B(V, e)| =
e∑

k=0

k∑
j=0

[
i

j

]
q

[
n− i
k − j

]
q

qj(k−j)

We define c(i, k, e) := |B(V, e) ∩ Gq(n, k)| for V of dimension i. It is not difficult
to prove that

c(i, k, e) =
min{k,i}∑
j=d i+k−e2 e

[
i

j

]
q

[
n− i
k − j

]
q

q(i−j)(k−j). (3.2.8)

Theorem 3.2.3 (Linear programming upper bound for codes in P(Fnq ), [17]).

Aq(n, 2e+ 1) ≤ sup
{ n∑

k=0
xk : xk ≤ Aq(n, k, 2e+ 2) ∀ k = 0, . . . , n

n∑
i=0

c(i, k, e)xi ≤
[
n

k

]
q

∀ k = 0, . . . , n
}



Proof. For C ⊂ P(Fnq ) of minimal distance 2e + 1, define D0, . . . , Dn by Dk = |C ∩
Gq(n, k)|. Then ∑n

k=0Dk = |C| and each Dk represents the cardinality of a subcode
of C of constant dimension k, so it is upper bounded by Aq(n, k, 2e + 2). Moreover,
balls of radius e centered at the codewords are pairwise disjoint, so the sets B(V, e)∩
Gq(n, k) for V ∈ C are pairwise disjoint subsets of Gq(n, k). So∑

V ∈C
|B(V, e) ∩ Gq(n, k)| ≤ |Gq(n, k)|.

Because the number of elements of B(V, e)∩Gq(n, k) only depends on i = dim(V ), k
and e and equals c(i, k, e) by definition, we obtain the second constraint

n∑
i=0

c(i, k, e)Di ≤
[
n

k

]
q

.

So |C| is upper bounded by the optimal value of the announced linear program in
real variables xi. �

Remark 3.2.4. Of course, in view of explicit computations, if the exact value of
Aq(n, k, 2e+ 2) is not available, it can be replaced in the linear program of Theorem
3.2.3 by an upper bound.

3.3 The semidefinite programming method on the
Grassmannian

The Grassmann space Gq(n, k) is 2-point homogeneous for the action of G = GLn(q)
and its associated zonal polynomials are computed in [15]. They belong to the family
of q-Hahn polynomials, which are q-analogs of the Hahn polynomials related to the
binary Johnson space and introduced in definition 2.4.5.

Definition 3.3.1. The q-Hahn polynomials associated to the parameters n, s, t with
0 ≤ s ≤ t ≤ n are the polynomials Qk(n, s, t;u) with 0 ≤ k ≤ min(s, n− t) uniquely
determined by the properties:

• Qk has degree k in the variable [u] = q1−u
[
u
1

]
q

• They are orthogonal polynomials for the weights

0 ≤ i ≤ s w(n, s, t; i) =
[
s

i

]
q

[
n− s

t− s+ i

]
q

qi(t−s+i)

• Qk(0) = 1.



To be more precise, in the Grassmann space Gq(n, k), the zonal polynomials are
associated to the parameters s = t = k. The other parameters will come into play
when we will analyse the full projective space in Section 4. The resulting linear
programming bound is explicitly stated in [15]:
Theorem 3.3.2. (Delsarte’s linear programming bound [15]).

Aq(n, k, 2δ) ≤ inf
{

1 + f1 + · · ·+ fk : fi ≥ 0 ∀ i = 1, . . . , k

F (u) ≤ 0 ∀ u = δ, . . . , k
}

where F (u) = 1 +∑k
i=1 fiQi(u) and Qi(u) = Qi(n, k, k;u) as in Definition 3.3.1.

3.3.1 Bounds for Grassmann codes
In order to show the power of the semidefinite programming bound, we will verify
that most of the bounds recalled in section 3.2 for Grassmann codes can be obtained
from Corollary 2.4.4 or Theorem 3.3.2. To that end, in each case we construct a
suitable feasible solution of (2.4.7).

The Singleton bound.

The function

F (x, y) =
∑

dim(z)=n−δ+1

∑
w⊂z,

dim(w)=k−δ+1

1(z ∩ x = w)1(z ∩ y = w)

where x → 1(z ∩ x = w) denotes the characteristic function of the set
{x ∈ Gq(n, k) : z ∩ x = w}, is obviously positive semidefinite. One can verify
that F is a feasible solution of (2.4.7) and leads to the Singleton bound (3.2.2).

The sphere-packing and anticode bounds.

The sphere-packing bound and the anticode bound in Gq(n, k) can also be obtained
directly, with the functions

F (x, y) =
∑

dim(z)=k
1B(z,δ−1)(x)1B(z,δ−1)(y)

and
F (x, y) =

∑
dim(z)=k−δ+1

1(z ⊂ x)1(z ⊂ y) .

In general, the anticode bound |C| ≤ |X|/|A| can be derived from (2.4.7), using the
function F (x, y) = ∑

g∈G 1A(g.x)1A(g.y).



Remark 3.3.3. An interesting open point is to prove whether or not the anticode
bound coincides with the Delsarte bound for constant dimension codes. We already
proved one inequality and in our numerical computations the two bounds give the
same value for several different parameters.

The first Johnson-type bound.

We want to apply Delsarte’s linear programming bound of Theorem 3.3.2 with a
function F of degree 1, i.e. F (u) = f0Q0(u) + f1Q1(u). According to [15] the first
q-Hahn polynomials are

Q0(u) = 1 , Q1(u) =
(

1− (qn − 1)(1− q−u)
(qk − 1)(qn−k − 1)

)
.

In order to construct a feasible solution of the linear program, we need a pair (f0, f1)
of positive numbers for which F (u) = f0 + f1Q1(u) is non-positive for u = δ, . . . , k.
Then 1 + f1/f0 will be an upper bound for Aq(n, k, 2δ). As Q1(u) is decreasing,
the optimal choice of (f0, f1) satisfies F (δ) = 0. So f1/f0 = −1/Q1(δ) and we need
Q1(δ) < 0. We obtain (3.2.4):

Aq(n, k, 2δ) ≤ 1 + f1

f0
= 1− 1

Q1(δ) = (qn − 1)(qk − qk−δ)
(qk − 1)2 − (qn − 1)(qk−δ − 1) .

The second Johnson-type bound.

Here we recover an inequality on the optimal value Bq(n, k, 2δ) of (2.4.7) in the case
X = Gq(n, k) (with the subspace distance) which is similar to (3.2.5):

Bq(n, k, 2δ) ≤
qn − 1
qk − 1Bq(n− 1, k − 1, 2δ).

Let (F, t, λ) be an optimal solution for the program (2.4.7) in Gq(n−1, k−1) relative
to the minimal distance 2δ, i.e. F satisfies the conditions: F � λ, F (x, x) ≤ t,
F (x, y) ≤ 0 if d(x, y) ≥ 2δ, and moreover t/λ = Bq(n− 1, k − 1, 2δ).

We consider the function G on Gq(n, k)× Gq(n, k) given by

G(x, y) =
∑
|D|=1

1(D ⊂ x)1(D ⊂ y)F (x ∩HD, y ∩HD)

where, for every one-dimensional space D, HD is an arbitrary hyperplane such that
D ⊕ HD = Fnq . It can be verified that the function G is a feasible solution of the
program (2.4.7) in Gq(n, k) for the minimal distance 2δ, and we obtain that

Bq(n, k, 2δ) ≤
t

λ

qn − 1
qk − 1 = qn − 1

qk − 1Bq(n− 1, k − 1, 2δ) .



Remark 3.3.4. in [17], another Johnson-type bound is given:

Aq(n, k, 2δ) ≤
qn − 1
qn−k − 1Aq(n− 1, k, 2δ) .

which follows easily from the second Johnson-type bound combined with the equality
Aq(n, k, 2δ) = Aq(n, n − k, 2δ). Similarly as above, one can show that an analogous
inequality holds for the semidefinite programming bounds.

3.4 Semidefinite programming bounds for projec-
tive codes

In this section we reduce the semidefinite programs (2.4.6), (2.4.7) for the entire
projective space, using the action of the group G = GLn(Fq). We follow the general
method described in section 2.4.1. As we saw, the semidefinite program can be
restricted to G-invariant functions F . It remains to obtain an explicit description of
theG-invariant positive semidefinite functions on the projective space. The projective
space endowed with the G action is the q-analog of the Hamming space where the
action is restricted to Sn. So the symmetrization process is analog to the one given in
section 2.4.3. Indeed, in [15], Delsarte treats the two cases in a common framework.

3.4.1 The G-invariant positive semidefinite functions on the
projective space

In order to obtain a suitable expression for these functions, we exploit the decom-
position of the space of real-valued functions under the action of G. We take the
following notations: let X = P(Fnq ), Xk = Gq(n, k) and let RX = {f : X → R}. In
the paper [15], Delsarte showed that the irreducible decomposition of the RXk under
the action of G is given by the harmonic subspaces Hk,i:

RXk = H0,k ⊕H1,k ⊕ · · · ⊕Hmin{k,n−k},k (3.4.1)

Here, Hk,k is the kernel of the differentiation operator

δk : RXk −→ RXk−1

f −→ [ x→ ∑{f(y) : |y| = k, x ⊂ y} ]

and Hk,i is the image of Hk,k under the valuation operator

ψki : RXk −→ RXi

f −→ [ x→ ∑{f(y) : |y| = k, y ⊂ x} ]



for k ≤ i ≤ n− k. Because δk is surjective, we have hk := dim(Hk,k) =
[
n
k

]
q
−
[
n
k−1

]
q
.

Moreover, ψki commutes with the action of G so Hk,i is isomorphic to Hk,k. Putting
together the spaces RXk one gets the global picture:

RX = RX0 ⊕ RX1 ⊕ . . . ⊕ R
Xbn2 c ⊕ . . . ⊕ RXn−1 ⊕ RXn

I0 = H0,0 ⊕ H0,1 ⊕ . . . . . . . . . ⊕ H0,(n−1) ⊕ H0,n
I1 = H1,1 ⊕ . . . . . . . . . ⊕ H1,(n−1)
I2 = . . . . . . . . .
... . . .
... . . .
Ibn2 c = Hbn2 c,bn2 c

Here, the columns give the irreducible decomposition (3.4.1) of the spaces RXk . The
irreducible components which lie in the same row are all isomorphic, and together
they form the isotypic components

Ik := Hk,k ⊕Hk,k+1 ⊕ · · · ⊕Hk,n−k ' Hn−2k+1
k,k .

Starting from this decomposition, we build the zonal matrices Ek(x, y) [6, section
3.3] in the following way. We take an isotypic component Ik and we fix an orthonor-
mal basis (ekk1, . . . , ekkhk) of Hk,k. Applying the valuation operator ψki, we get an
orthogonal basis (eki1, . . . , ekihk) of Hk,i. Then we define

Ekst(x, y) = 1
hk

hk∑
i=1

eksi(x)ekti(y) .

Theorem 2.4.1 gives the expression of the G-invariant positive semidefinite functions
in terms of the matrices Ek(x, y):

Theorem 3.4.1. The function F ∈ RX×X is positive semidefinite and G-invariant
if and only if it can be written as

F (x, y) =
bn/2c∑
k=0
〈Fk, Ek(x, y)〉 (3.4.2)

where Fk ∈ R(n−2k+1)×(n−2k+1) and Fk is positive semidefinite.

Now we need to compute the Ek’s. They are zonal matrices: in other words,
for all k ≤ s, t ≤ n − k, for all g ∈ G,Ekst(x, y) = Ekst(gx, gy). This means that



Ekst is actually a function of the variables which parametrize the orbits of G on
X ×X. It is easy to see that the orbit of the pair (x, y) is characterized by the triple
(dim(x), dim(y), dim(x ∩ y)).

The next theorem gives an explicit expression of Ekst, in terms of the polynomials
Qk of Definition 3.3.1.

Theorem 3.4.2. If k ≤ s ≤ t ≤ n− k, dim(x) = s, dim(y) = t,

Ekst(x, y) = |X|

[
t−k
s−k

]
q

[
n−2k
t−k

]
q[

n
t

]
q

[
t
s

]
q

qk(t−k)Qk(n, s, t; s− dim(x ∩ y))

If dim(x) 6= s or dim(y) 6= t, Ekst(x, y) = 0.

We note that the weights involved in the orthogonality relations of the polynomials
Qk have a combinatorial meaning:

Lemma 3.4.3. [16] Given x ∈ Xs, the number of elements y ∈ Xt such that dim(x∩
y) = s− i is equal to w(n, s, t; i).

Proof. (of Theorem 3.4.2) By construction, Ekst(x, y) 6= 0 only if dim(x) = s and
dim(y) = t, so in this case Ekst is a function of (s − dim(x ∩ y)). Accordingly, for
k ≤ s ≤ t ≤ n− k, we introduce Pk,s,t such that Ek,s,t(x, y) = Pk,s,t(s− dim(x ∩ y)).
Now we want to relate Pk,s,t to the q-Hahn polynomials. We start with two lemmas:
one obtains the orthogonality relations satisfied by Pk,s,t and the other computes
Pk,s,t(0).

Lemma 3.4.4. With the above notations,

Pk,s,t(0) = dim(x)

[
t−k
s−k

]
q

[
n−2k
t−k

]
q[

n
t

]
q

[
t
s

]
q

qk(t−k). (3.4.3)

Proof. We have Pk,s,t(0) = Ek,s,t(x, y) for all x, y with dim(x) = s, dim(y) = t, x ⊂ y.



Hence

Pk,s,t(0) = 1[
n
t

]
q

[
t
s

]
q

∑
dim(x)=s
dim(y)=t
x⊂y

Ek,s,t(x, y)

= 1[
n
t

]
q

[
t
s

]
q

∑
dim(x)=s
dim(y)=t
x⊂y

1
hk

hk∑
i=1

ek,s,i(x)ek,t,i(y)

= 1[
n
t

]
q

[
t
s

]
q

1
hk

hk∑
i=1

∑
dim(y)=t

( ∑
dim(x)=s
x⊂y

ek,s,i(x)
)
ek,t,i(y)

= 1[
n
t

]
q

[
t
s

]
q

1
hk

hk∑
i=1

∑
dim(y)=t

ψs,t(ek,s,i)(y)ek,t,i(y)

With the relation ψs,t ◦ ψk,s =
[
t−k
s−k

]
q
ψk,t,

ψs,t(ek,s,i) = ψs,t ◦ ψk,s(ek,k,i) =
[
t− k
s− k

]
q

ψk,t(ek,k,i) =
[
t− k
s− k

]
q

ek,t,i,

and we obtain

Pk,s,t(0) = 1[
n
t

]
q

[
t
s

]
q

1
hk

hk∑
i=1

∑
dim(y)=t

[
t− k
s− k

]
q

ek,t,i(y)ek,t,i(y)

=

[
t−k
s−k

]
q[

n
t

]
q

[
t
s

]
q

1
hk

hk∑
i=1
|X|(ek,t,i, ek,t,i) = |X|

[
t−k
s−k

]
q

[
n−2k
t−k

]
q[

n
t

]
q

[
t
s

]
q

qk(t−k)

where the last equality follows from [15, Theorem 3]. �

Lemma 3.4.5. With the above notations,

s∑
i=0

w(n, s, t; i)Pk,s,t(i)Pl,s,t(i) = δk,l|X|2
[
n−2k
s−k

]
q

[
n−2k
t−k

]
q
qk(s+t−2k)[

n
s

]
q
hk

. (3.4.4)

Proof. We compute Σ := ∑
y∈X Ek,s,t(x, y)El,s′,t′(y, z).



Σ =
∑
y∈X

1
hk

hk∑
i=1

1
hl

hl∑
j=1

ek,s,i(x)ek,t,i(y)el,s′,j(y)el,t′,j(z)

= 1
hk

hk∑
i=1

1
hl

hl∑
j=1

ek,s,i(x)el,t′,j(z)
( ∑
y∈X

ek,t,i(y)el,s′,j(y)
)

= 1
hk

hk∑
i=1

1
hl

hl∑
j=1

ek,s,i(x)el,t′,j(z)|X|(ek,t,i, el,s′,j)

= 1
hk

hk∑
i=1

1
hl

hl∑
j=1

ek,s,i(x)el,t′,j(z)|X|
[
n− 2k
t− k

]
q

qk(t−k)δk,lδt,s′δi,j

= δk,lδt,s′|X|

[
n−2k
t−k

]
q
qk(t−k)

h2
k

hk∑
i=1

ek,s,i(x)el,t′,i(z)

= δk,lδt,s′|X|

[
n−2k
t−k

]
q
qk(t−k)

hk
Ek,s,t′(x, z).

We obtain, with t = s′, t′ = s, x = z ∈ Xs, taking account of El,t,s(y, x) = El,s,t(x, y),

∑
y∈Xt

Ek,s,t(x, y)El,s,t(x, y) = δk,l|X|

[
n−2k
t−k

]
q
qk(t−k)

hk
Ek,s,s(x, x).

The above identity becomes in terms of Pk,s,t

∑
y∈Xt

Pk,s,t(s− dim(x ∩ y))Pl,s,t(s− dim(x ∩ y)) = δk,l|X|

[
n−2k
t−k

]
q
qk(t−k)

hk
Pk,s,s(0).

Taking account of (3.4.3) and Lemma 3.4.3, we obtain (3.4.4). �

We have proved that the functions Pk,s,t satisfy the same orthogonality relations
as the q-Hahn polynomials. So we are done if Pk,s,t is a polynomial of degree at
most k in the variable [u] = [dim(x ∩ y)]. This property is proved in the case s = t
in [15, Theorem 5] and extends to s ≤ t with a similar line of reasoning. The
multiplicative factor between Pk,s,t(u) and Qk(n, s, t;u) is then given by Pk,s,t(0) and
the proof of Theorem 3.4.2 is completed. �

3.4.2 The reduction of the program (2.4.6) for projective
codes

A function F ∈ RX×X is G-invariant if it can be written as

F (x, y) = F̃ (dim(x), dim(y), dim(x ∩ y))



So we introduce a function F̃ with the property that F̃ (s, t, i) = F (x, y) for x, y ∈ X
with dim(x) = s, dim(y) = t, dim(x ∩ y) = i. Let

Nsti := |{(x, y) ∈ X ×X : dim(x) = s, dim(y) = t, dim(x ∩ y) = i}|

and

Ω(d) := {(s, t, i) : 0 ≤ s, t ≤ n, i ≤ min(s, t), s+ t ≤ n+ i, (3.4.5)
either s = t = i or s+ t− 2i ≥ d}.

Then, (2.4.6) becomes:

Aq(n, d) ≤ sup
{∑
s,t,i

NstiF̃ (s, t, i) : F̃ ∈ R[n]3 , F̃ � 0, F̃ ≥ 0,
n∑
s=0

NsssF̃ (s, s, s) = 1,

F̃ (s, t, i) = 0 if (s, t, i) /∈ Ω(d)
}

where, of course, F̃ � 0 means that the corresponding F is positive semidefinite.
Then, we introduce the variables xsti := NstiF̃ (s, t, i). It is straightforward to

rewrite the program in terms of these variables, except for the condition F̃ � 0.
From Theorem 4.1, this is equivalent to the semidefinite conditions Fk � 0, where
the matrices Fk are given by the scalar product of F and Ek:

(Fk)lj = 1
|X|2

∑
X2

F (x, y)Ek(x, y)lj = 1
|X|2

∑
s,t,i

xstiẼk(s, t, i)lj.

We can substitute the value of Ẽk(s, t, i)lj using Theorem 4.2; in particular it is 0
when (l, j) 6= (s, t), and, when (l, j) = (s, t):

(Fk)st = 1
|X|

∑
i

xsti

[
t−k
s−k

]
q

[
n−2k
t−k

]
q[

n
t

]
q

[
t
s

]
q

qk(t−k)Qk(n, s, t; s− i). (3.4.6)

Finally we obtain:

Theorem 3.4.6.

Aq(n, d) ≤ sup
{ ∑

(s,t,i)∈Ω(d)
xsti : (xsti)(s,t,i)∈Ω(d), xsti ≥ 0,

n∑
s=0

xsss = 1,

Fk � 0 for all k = 0, . . . , bn/2c
}

where Ω(d) is defined in (3.4.5) and the matrices Fk are given in (3.4.6).



Remark 3.4.7. A projective code C with minimal distance d provides a feasible solution
of the above program, given by:

xsti = 1
|C|
|{(x, y) ∈ C : dim(x) = s, dim(y) = t, dim(x ∩ y) = i}.

In particular, we have ∑
t,i

xsti = |C ∩ Gq(n, s)|,

so, if Aq(n, s, d) (or an upper bound) is known, the additional inequality∑
t,i

xsti ≤ Aq(n, s, d)

can be added to the semidefinite program of Theorem 3.4.6 in order to tighten the
upper bound for Aq(n, d).

3.5 Numerical results
Here we give the explicit results obtained for the upper bounds on A2(n, d), hence
for q = 2. In Table 1, we consider the subspace distance dS while Table 2 is related
to the injection distance di recently introduced in [30].

3.5.1 The subspace distance
The first column of Table 3.1 displays the upper bound obtained from Etzion-Vardy
linear program recalled in Theorem 3.2.3. The second column contains the upper
bound from the semidefinite program of Theorem 3.4.6, strengthened by the inequal-
ities (see Remark 3.4.7):∑

t,i

xsti ≤ A2(n, s, 2dd/2e) for all s = 0, . . . , n.

In both programs, A2(n, k, 2δ) is replaced by its upper bound in Theorem 3.2.2.

3.5.2 Some additional inequalities
In [17], Etzion and Vardy have found additional inequalities on the unknowns of their
linear program in the specific case of n = 5 and d = 3. With this, they could improve
their bound to the exact value A2(5, 3) = 18. In this section we establish analogous
inequalities for other values of the parameters (n, d).



E-V LP SDP
A2(4, 3) 6 6
A2(5, 3) 20 20
A2(6, 3) 124 124
A2(7, 3) 832 776
A2(7, 5) 36 35
A2(8, 3) 9365 9268
A2(8, 5) 361 360
A2(9, 3) 114387 107419
A2(9, 5) 2531 2485
A2(10, 3) 2543747 2532929
A2(10, 5) 49451 49394
A2(10, 7) 1224 1223
A2(11, 5) 693240 660285
A2(11, 7) 9120 8990
A2(12, 7) 323475 323374
A2(12, 9) 4488 4487
A2(13, 7) 4781932 4691980
A2(13, 9) 34591 34306
A2(14, 9) 2334298 2334086
A2(14, 11) 17160 17159
A2(15, 11) 134687 134095
A2(16, 13) 67080 67079

Table 3.1: Bounds for the subspace distance

Theorem 3.5.1. Let C ⊂ P(Fnq ), of minimal subspace distance d, and let Dk :=
|C ∩ Gq(n, k)|. Then, if

d+ 2 dd/2e+ 2 < 2n < 2d+ 2 dd/2e+ 2,

we have:

• D2n−d−dd/2e−1 ≤ 1;

• if D2n−d−dd/2e−1 = 1 then

Ddd/2e ≤
qn − q2n−d−dd/2e−1

qdd/2e − qn−d−1 .

Proof. It is clear that Di ≤ 1 for 0 ≤ i < dd/2e. Moreover, for all x, y ∈ C ∩
G(n, dd/2e), dim(x ∩ y) = 0. We want to show that D2n−d−dd/2e−1 ≤ 1. Indeed



assume by contradiction x 6= y ∈ C ∩ G(n, 2n− d− dd/2e − 1), we have{
4n− 2d− 2 dd/2e − 2 ≤ n+ dim(x ∩ y)
d ≤ 4n− 2d− 2 dd/2e − 2− 2 dim(x ∩ y)

leading to {
2 dim(x ∩ y) ≥ 6n− 4d− 4 dd/2e − 4 (∗)
2 dim(x ∩ y) ≤ 4n− 3d− 2 dd/2e − 2 (∗∗)

To obtain a contradiction, we must have (∗) > (∗∗) which is equivalent to the hy-
pothesis 2n > d+ 2 dd/2e+ 2.

With a similar reasoning, we prove that, for all x ∈ C ∩ G(n, dd/2e) and w ∈
C ∩ G(n, 2n− d− dd/2e − 1), dim(x ∩ w) = n− d− 1. Indeed,{

2n− d− 1 ≤ n+ dim(x ∩ w)
d ≤ 2n− d− 1− 2 dim(x ∩ w)

so {
dim(x ∩ w) ≥ n− d− 1
dim(x ∩ w) ≤ n− d− 1/2

which yields the result.
Now we assume D2n−d−dd/2e−1 = 1. Let w ∈ C ∩ G(n, 2n − d − dd/2e − 1).

Let U denote the union of the subspaces x belonging to C ∩ G(n, dd/2e). We have
|U| = 1 +Ddd/2e(qdd/2e− 1) and |U ∩w| = 1 +Ddd/2e(qn−d−1− 1). On the other hand,
|U\(U ∩ w))| ≤ |Fnq \w|, leading to

Ddd/2e(qdd/2e − qn−d−1) ≤ qn − q2n−d−dd/2e−1 .

�

In several cases, adding the inequalities proved in the above theorem to the pro-
grams lead to a lower optimal value, however we found that only in one case other
than (n, d) = (5, 3), the final result, after rounding to the previous integer, is im-
proved. It is the case (n, d) = (7, 5), where D3 ≤ 17 and, by Theorem 3.5.1, if D5 = 1
then D3 ≤ 16. So we can add D3 +D5 ≤ 17 and D2 +D4 ≤ 17, leading to:

Theorem 3.5.2.
A2(7, 5) ≤ 34.

This bound can be obtained with both the linear program of Theorem 3.2.3 and
the semidefinite program of Theorem 3.4.6.



3.5.3 The injection distance
Recently, a new metric has been considered in the framework of projective codes,
the so-called injection metric, introduced in [30]. The injection distance between two
subspaces U, V ∈ P(Fnq ) is defined by

di(U, V ) = max{dim(U), dim(V )} − dim(U ∩ V )

When restricted to the Grassmann space, i.e. when U, V have the same dimension,
the new distance coincides with the subspace distance (up to multiplication by 2) so
nothing new comes from considering one distance instead of the other. But in general
we have the relation ([30])

di(U, V ) = 1
2dS(U, V ) + 1

2 | dim(U)− dim(V )|

where dS denotes the subspace distance.
It is straightforward to modify the programs in order to produce bounds for codes
on the new metric space (P(Fnq ), di). Let

Ainjq (n, d) = max{|C| : C ⊂ P(Fnq ), di(C) ≥ d}.

For constant dimension codes, we have Ainjq (n, k, d) = Aq(n, k, 2d).
To modify the linear program of Etzion and Vardy for this new distance, we need

to write down the "sphere-packing" like constraint. The cardinality of balls in P(Fnq )
for the injection distance can be found in [28]. Let Binj(V, e) denotes the ball of
center V and radius e. If dim(V ) = i, we have

|Binj(V, e)| =
e∑
r=0

qr
2
[
i

r

]
q

[
n− i
r

]
q

+
e∑
r=0

r∑
α=1

qr(r−α)

[i
r

]
q

[
n− i
r − α

]
q

+
[

i

r − α

]
q

[
n− i
r

]
q

 .
We define cinj(i, k, e) := |Binj(V, e)∩Gq(n, k)| where dim(V ) = i. We set α := |i−k|.

cinj(i, k, e) =


∑e
r=0 q

r(r−α)
[
i
r

]
q

[
n−i
r−α

]
q

if i ≥ k∑e
r=0 q

r(r−α)
[

i
r−α

]
q

[
n−i
r

]
q

if i ≤ k

We obtain:
Theorem 3.5.3 (Linear programming upper bound for codes in P(Fnq ) for the in-
jection distance).

Ainjq (n, d) ≤ sup
{∑n

k=0 xk : xk ≤ Ainjq (n, k, d) ∀ k = 0, . . . , n∑n
i=0 c

inj(i, k, e)xi ≤
[
n
k

]
q
∀ k = 0, . . . , n

}



For the semidefinite programming bound, we only need to change the definition
of Ω(d); let

Ωinj(d) := {(s, t, i) : 0 ≤ s, t ≤ n, i ≤ min(s, t), s+ t ≤ n+ i, (3.5.1)
either s = t = i or max(s, t)− i ≥ d}.

Then, we have:
Theorem 3.5.4.

Ainjq (n, d) ≤ sup
{ ∑

(s,t,i)∈Ωinj(d)
xsti : (xsti)(s,t,i)∈Ωinj(d), xsti ≥ 0,

n∑
s=0

xsss = 1,

Fk � 0 for all k = 0, . . . , bn/2c
}

where Ωinj(d) is defined in (3.5.1) and the matrices Fk are given in (3.4.6).

Table 3.2 displays the numerical computations obtained from the two programs,
in the same manner as for Table 1.

E-V LP SDP
Ainj2 (7, 3) 37 37
Ainj2 (8, 3) 362 364
Ainj2 (9, 3) 2533 2536
Ainj2 (10, 3) 49586 49588
Ainj2 (10, 4) 1229 1228
Ainj2 (11, 4) 9124 9126
Ainj2 (12, 4) 323778 323780
Ainj2 (12, 5) 4492 4492
Ainj2 (13, 5) 34596 34600
Ainj2 (14, 6) 17167 17164
Ainj2 (15, 6) 134694 134698
Ainj2 (16, 7) 67087 67084

Table 3.2: Bounds for the injection distance

Remark 3.5.5. We observe that the bound obtained for A2(n, 4e + 1) is most of the
time slightly larger than the one obtained for Ainj2 (n, 2e + 1). In [28], the authors
notice that their constructions lead to codes that are slightly better for the injection
distance that for the subspace distance. So both experimental observations tend to
indicate that A2(n, 4e+ 1) should be larger than Ainj2 (n, 2e+ 1).



Note: All values of the linear programs have been obtained with the free solver LRS
4.2, while all values of the semidefinite programs have been obtained with the solvers
SDPA or SDPT3, available on the NEOS website (http://www.neos-server.org/neos/).



Chapter 4

The chromatic number of the
Euclidean space

The motivation for the work presented in this chapter is the problem of determining
the chromatic number of the Euclidean space Rn, that is, the least number of subsets
which partition Rn in such a way that no one of them contains points at distance 1.
When trying to solve this problem, the idea of using well chosen embeddings in Rn

of some finite abstract graphs arises in a natural way. Indeed, in 1951, De Bruijn
and Erdös ([12]) proved that the chromatic number of Rn can be determined, at least
theoretically, by using this approach.

Using a so called ”intersection theorem”, Frankl and Wilson ([19]) established a
bound on the cardinality of sets avoiding one distance in the Johnson space and, as a
consequence, they derived an aymptotic result on the chromatic number of Rn which
is still the best known. The drawback of their approach is that their bound is not
good in low dimensions and moreover it works only for a limited choice of parameters.

On the other hand, bounds in the Johnson space coming from the semidefinite pro-
gramming method apply to all possible parameters, as we show in the third section.
The Delsarte linear programming bound is recalled. We prove a new semidefinite
programming bound on sets avoiding one distance in the Johnson space by consider-
ing triples of words. This bound is a variant of Schrijver’s bound on constant weight
codes ([41]) and it is at least as good as Delsarte’s one. We symmetrize it using a
group theoretical setting in the spirit of this thesis. In most of the cases we computed,
it improves the bound of Frankl and Wilson.

In [13], the authors established a linear program whose optimal value gives a
lower bound for the measurable chromatic number of Rn. Also, they showed how
to strengthen it by including constraints on regular simplices. In the fifth section
we show how our bounds on sets avoiding one distance in the Johnson space can be
used in their linear program. Better results than the existing ones are obtained for
n = 9, . . . , 23.
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4.1 Introduction
Definition 4.1.1. The chromatic number of the real Euclidean space Rn, denoted
χ(Rn), is the minimum number of colors needed to color Rn in such a way that points
at distance 1 receive different colors.

In other words, consider the unit distance graph of Rn: it is the (infinite) graph
with vertex set Rn and edges between points at Euclidean distance 1. Then χ(Rn)
is the chromatic number of this graph according to the definition given in chapter 2.
It is an old and open problem to determine χ(Rn), even for small dimensions.

The easiest case is that of n = 1, where the chromatic number of the real line is
2. The classes of coloring are ⋃i∈N[2i, 2i+ 1[ and its complement (up to translation).
So χ(R) = 2. Surprisingly, no other value is known. Consider for instance the plane:
determining the chromatic number of R2 is known as the Hadwiger–Nelson problem.
Looking at an equilateral triangle with side length 1, it becomes clear that in a
coloring of the plane, the three vertices will receive different colors. This allows us
to establish the lower bound χ(R2) ≥ 3. The role played by the triangle can be
generalized as follows.

Definition 4.1.2. A unit distance graph in Rn is a finite graph which can be embed-
ded in Rn in such a way that its adjacent vertices are exactly the vertices at Euclidean
distance 1. In other words, it is a finite induced subgraph of the unit distance graph
of Rn.

Clearly, every cycle graph is a unit distance graph in the plane when seen as a
regular polygon of side length 1. But, as the chromatic number of a graph is 2 or 3,
according to the parity of n, we cannot hope to use cycles to improve the previous
bound.

The Moser graph is a unit distance graph in R2 whose chromatic number is 4,
thus leading to the lower bound 4 ≤ χ(R2).

Figure 4.a: Moser unit distance graph



On the other hand, the classic hexagonal tiling of the plane realizes a 7-coloring
leading to the upper bound χ(R2) ≤ 7. No better bounds are known in dimension 2.

Figure 4.b: Hexagonal tiling

Let us mention also that, up to now, the best estimate in dimension 3 is given by
6 ≤ χ(R3) ≤ 15 (see the overview in [31]).

In general, it is known by the De Bruijn-Erdos theorem ([12]) that χ(Rn) is
attained by a finite unit distance graph G ⊂ Rn.

4.2 Frankl-Wilson graphs
Of course, for any graph G = (V,E) we have

χ(G)α(G) ≥ |V |

In particular, if G is a unit distance graph embedded in Rn, we find

χ(Rn) ≥ χ(G) ≥ |V |
α(G) (4.2.1)

so any upper bound on α(G) will result in a lower bound for χ(Rn).

Definition 4.2.1 ([19]). Given n, let p < (n + 1)/2 be a power of a prime number.
The Frankl-Wilson graph associated to the pair (n, p) is the graph J(n, p) with vertex
set V = 1√

2pJ
2p−1
n and edges set E = {xy : x.y = (p− 1)/2p}.



So we are considering vectors of length n with weight 2p−1 where non zero entries
take the constant value 1/

√
2p. Note that Frankl-Wilson graphs can be embedded in

Rn as unit distance graphs. In fact, denoting x the image of x in Rn, we see that

d(x,y) = 1 ⇔
√∑

i

(xi − yi)2 =
√

2p ⇔ |x ∩ y| = p− 1 ⇔ xy ∈ E

Moreover, as all words have constant weight, they can actually be embedded in Rn−1.
Following the previous discussion, we find that

χ(Rn−1) ≥

(
n

2p−1

)
α(J(n, p))

Let us now focus on α(J(n, p)). Applying their intersection theorem ([19]), Frankl
and Wilson found

α(J(n, p)) ≤
(

n

p− 1

)
(4.2.2)

which, optimizing over p, leads to χ(Rn) ≥ (1.207+o(1))n, provided n is large enough.
In 2000, Raigorodskii improved the lower bound to (1.239 + o(1))n ([39]).

In what follows, we will compare the Frankl-Wilson bound 4.2.2 to other bounds
coming from SDP. Notably, we have the ϑ′ number which, after symmetrization,
reduces to a linear program, and the Schrijver-like bound involving triples of words.

The independent sets of the Frankl-Wilson graph J(n, p) are the constant weight
codes in the Johnson space Jwn , for w = 2p− 1, with no words at Hamming distance
d = 2p (i.e. Johnson distance δ := d/2 = p). Thus the independence number
of J(n, p) is the maximal size of such a code. While the Frankl-Wilson bound is
restricted to the choice of parameters of definition 4.2.1, the bounds that we give in
the next section apply to all choices of parameters w ≤ n/2 and δ.

4.3 Bounds for sets avoiding one distance in the
Johnson space

Let w ≤ n/2 and define J(n,w, i) as the graph with vertex set Jwn with an edge xy
whenever |x∩y| = i. Frankl-Wilson graphs correspond, up to a normalization factor,
to J(n, 2p − 1, p − 1) and this is precisely the case in which the bound 4.2.2 holds.
With the corresponding normalization factor, these graphs J(n,w, i) are also unit
distance graphs in Rn. Moreover, as they have constant weight, they can actually be
embedded in Rn−1.



4.3.1 The LP bound
As the Johnson space Jwn is 2-point homogeneous for the action of the symmetric
group Sn, the ϑ′ number for graphs in this space reduces to Delsarte linear program.
The reduction, contained in [15], is essentially the same as for the symmetrization
of the Grassmann space, which indeed is the q-analog of Jwn (see section 3.3.3). It
involves a simplified version of the Hahn polynomials, namely the family associated
to parameters n,w,w in definition 2.4.5.

Definition 4.3.1. The Hahn polynomials associated to the parameters n,w with
0 ≤ w ≤ n are the polynomials Qk(t) with 0 ≤ k ≤ w uniquely determined by the
properties:

• Qk has degree k,

• for all 0 ≤ k < l ≤ w,
w∑
i=0

(
w

i

)(
n− w
i

)
Qk(i)Ql(i) = 0

• Qk(0) = 1.

Theorem 4.3.2. (Delsarte’s linear programming bound [15]).
The maximum number of words in Jwn avoiding Johnson distance δ is upper bounded
by the optimal value of the following linear program:

inf
{

1 + f1 + · · ·+ fw : fk ≥ 0 ∀ k = 1, . . . , w
F (t) ≤ 0 ∀ t = 1, . . . , δ − 1, δ + 1, . . . , w}

where F (t) = 1 +∑w
k=1 fkQk(t) and Qk(t) is as in the definition above.

Remark 4.3.3. From the previous discussion, applying theorem 4.3.2 with δ = w − i
yields an upper bound on α(J(n,w, i)) which in the rest of the chapter will be referred
to as LP bound.

4.3.2 The SDP bound on triples of words
The bound that we establish in this section is a strengthening of the ϑ′ number,
obtained by constraints on triples of words. It was first obtained in [41], where it
is applied to constant weight codes. We will see that the symmetrization needed is
closely related to the block diagonalization of the Terwilliger algebra (section 2.4.3),
from which we take some notations and results. We restrict here to the case w < n/2.
Set X := Jwn and fix z0 := 1w0n−w. Then Sn acts on X and StabSn(z0) = Sw × Sn−w.
We start by giving the general SDP formulation of our bound.



Theorem 4.3.4. (The SDP bound on triples).
The maximum number of points in a metric space X avoiding distance δ is upper
bounded by the optimal value of the following semidefinite program:

sup
{∑

X2 F (x, y, x) : F (x, y, z) = F ({x, y, z})

∀ z ∈ X,
[
(x, y)→ F (x, y, z)

]
� 0

F (x, y, z) ≥ 0 ∀ x, y, z∑
X F (x, x, x) = 1

F (x, y, z) = 0 if δ ∈ {d(x, y), d(x, z), d(y, z)}
}

(4.3.1)

where the first constraint means that F is invariant under permutation of the vari-
ables, that is, the value of F (x, y, z) depends only on the set {x, y, z}.

Proof. For every C ⊂ X with no words at pairwise distance δ, the function

F (x, y, z) :=
{

1/|C| if all x, y, z ∈ C
0 else

is feasible for the program 4.3.1 and its objective value is

∑
X2

F (x, y, x) = 1
|C|
|C|2 = |C| .

�

Remark 4.3.5. It is easily seen that this bound improves the bound of ϑ′ (remark 2.3.8)
applied to the corresponding graph. Indeed, for a feasible F , set G(x, y) := F (x, y, x).
Then G is feasible for ϑ′ and its objective value is the same as the one of F . In the
Johnson space, this means that the SDP bound on triples is always at least as good
as Delsarte LP bound.

In the case of the Johnson space, the program 4.3.1 need to be symmetrized to
reduce its size in order to compute explicit optimal values. This can be done similarly
to what we explained for ϑ in section 2.4.1.

Description of the orbits and first reduction

Consider the action of Sn on triples of words. For (x, y, z) ∈ X3 we define a := |x∩z|,
b := |y ∩ z|, c := |x ∩ y|, d := |x ∩ y ∩ z| and we have:



Theorem 4.3.6. Two elements of X3 are in the same orbit under the action of Sn
if and only if they give rise to the same 4-tuple (a, b, c, d). Moreover the collection of
orbits is parametrized by the following set:

Ω(n,w) :=
{

(a, b, c, d) : 0 ≤ d ≤ a, b, c ≤ w

max{a+ b, a+ c, b+ c} ≤ w + d
2w ≤ n+ min{a, b, c}
3w + d ≤ n+ a+ b+ c

} (4.3.2)

Proof. The action of the symmetric group preserves cardinality of intersection of
words, so the ”only if” part obviously holds. Conversely, let us define the standard
representative (x0, y0, z0) of the Sn-orbit parametrized by (a, b, c, d) as:

x0 := 1d1a−d0b−d0w−a−b+d1c−d1w−a−c+d0w−b−c+d0 . . . 0

y0 := 1d0a−d1b−d0w−a−b+d1c−d0w−a−c+d1w−b−c+d0 . . . 0

z0 := 1d1a−d1b−d1w−a−b+d0c−d0w−a−c+d0w−b−c+d0 . . . 0

Then it is clear that for any other triple with the same parameters (a, b, c, d)
we can act with Sn by permuting each 0-1 block to transform such triple into the
standard one (x0, y0, z0).

As for the second statement of the proof, given (a, b, c, d) satisfying the constraints
in 4.3.2 we can build (x0, y0, z0) as above. Conversely, given any triple (x, y, z), the
first constraint is clear, the second one comes by putting together relations of the
kind (x ∩ z) ∪ (y ∩ z) ⊂ z, the third simply by |x ∪ z| ≤ n and the last one by
|x ∪ y ∪ z| ≤ n. �

The program 4.3.1 is invariant for the action of Sn, so we can restrict to con-
sider Sn-invariant functions F . From the preceding theorem, these functions satisfy
F (x, y, z) = F̂ (a, b, c, d). Let xabcd denote the cardinality of the respective orbit for
the action of Sn on X. Then, program 4.3.1 is equivalent to:

sup
{ w∑

b=0
xwbbbF̂ (w, b, b, b) : F̂ (a, b, c, d) = F̂ ({a, b, c}, d)

∀ z ∈ X,
[
(x, y)→ F (x, y, z)

]
� 0

F̂ (a, b, c, d) ≥ 0 ∀ (a, b, c, d) ∈ Ω(n,w)
xwwwwF̂ (w,w,w,w) = 1
F̂ (a, b, c, d) = 0 if δ ∈ {w − a, w − b, w − c}

}
Now we focus on the second constraint. The following proposition is easy to prove.



Proposition 4.3.7. If the function (x, y, z) → F (x, y, z) is G-invariant, then for
any z0 ∈ X, the function (x, y)→ F (x, y, z0) is StabG(z0)-invariant.

So we need a description of the positive semidefinite functions which are invari-
ant under the stabilizer of one point. As Sn acts transitively on X, all the stabi-
lizer subgroups are conjugated. In what follows we fix the point z0 := 1w0n−w and
StabSn(z0) = Sw×Sn−w. We are going to block diagonalize the algebra (RX×X)Sw×Sn−w
with an explicit isomorphism which preserves positive semidefiniteness. To do this,
we can follow the method given in sections 2.4.1 and 2.4.3. It will turn out that we
are in fact block diagonalizing a tensor product of Terwilliger algebras, namely the
ones associated to Hw and Hn−w. As a consequence, the zonal functions that we
build will be a product of zonal functions of the respective spaces.

Decomposition of RX under Sw × Sn−w

Clearly, X has a partition into orbits Xi := {x ∈ X : |x ∩ z0| = i} which yields

RX = RX0 ⊕ RX1 ⊕ · · · ⊕ RXw

Yet, this decomposition is not irreducible. To decompose it further, note that

RXi ' RJiw ⊗ RJw−in−w

The irreducible decomposition of the Johnson space into Specht modules was
given in 2.4.9:

RJiw =
{
Hw

0,i ⊕ · · · ⊕Hw
i,i if i ≤ bw/2c

Hw
0,i ⊕ · · · ⊕Hw

w−i,i else

RJw−in−w =
{
Hn−w

0,w−i ⊕ · · · ⊕Hn−w
w−i,w−i if w − i ≤ b(n− w)/2c

Hn−w
0,w−i ⊕ · · · ⊕Hn−w

n−2w+i,w−i else

where Hw
k,i ' S(w−k,k) and Hn−w

h,w−i ' S(n−w−h,h). So we get

RXi =
(
Hw

0,i ⊕ · · · ⊕Hw
min{i,w−i},i

)
⊗
(
Hn−w

0,w−i ⊕ · · · ⊕Hn−w
min{w−i,n−2w+i},w−i

)
'

(
Hw

0,i ⊗Hn−w
0,w−i

)
⊕ · · · ⊕

(
Hw

min{i,w−i},i ⊗Hn−w
min{w−i,n−2w+i},w−i

)
We know that the irreducible modules for the action of the direct product of

groups are the tensor products of irreducible modules for the action of each of the
group factor. We know that Specht modules are the irreducible modules for the
action of the symmetric group. So, in the case of the product of symmetric groups
Sw × Sn−w we have decomposed each RXi in its irreducible components.



Theorem 4.3.8. The irreducible decomposition of the space RX under the action of
Sw × Sn−w is given by:

RX =
w⊕
i=0

min{i,w−i}⊕
k=0

min{w−i,n−2w+i}⊕
h=0

Hw
k,i ⊗Hn−w

h,w−i

'
bw/2c⊕
k=0

b(n−w)/2c⊕
h=0

H
mk,h
k,h

where
Hk,h := Hw

k,k ⊗Hn−w
h,h ' S(w−k,k) ⊗S(n−w−h,h)

is of dimension

dk,h :=
[(w
k

)
−
(

w

k − 1

)]
·
[(n− w

h

)
−
(
n− w
h− 1

)]

and the multiplicity is given by

mk,h := |{k, . . . , w − k} ∩ {h, . . . , n− w − h}|
= max

{
min{w − k, n− w − h} −max{k, h}, 0

}
Proof. From the previous discussion. To prove the multiplicity formula, it is enough
to remark that (an isomorphic copy of) Hk,h is contained in RXw−j if and only if
j ∈ {k, . . . , w − k} ∩ {h, . . . , n− w − h}. Note that, depending on n and w, some of
the multiplicities can be 0. �

Construction of the zonal matrices

Recall from section 2.4.3 the following facts:

• For 0 ≤ k ≤ bw/2c, we can take an orthonormal basis {ewk,k,1, . . . , ewk,k,dk} for
Hw
k,k inside RJkw .

• Analogously, for 0 ≤ h ≤ b(n − w)/2c, we can take an orthonormal basis
{en−wh,h,1, . . . , e

n−w
h,h,dh

} for Hn−w
h,h inside RJhn−w .

• Here dk =
(
w
k

)
−
(
w
k−1

)
and dh =

(
n−w
h

)
−
(
n−w
h−1

)
.

• Whenever i > k and j > h, by mean of the corresponding valuation operators,
we obtain basis {ewk,i,1, . . . , ewk,i,dk} of H

w
k,i and {en−wh,j,1 , . . . , e

n−w
h,j,dh
} of Hn−w

h,j .



With this we can build a basis for the copy Hw
k,i ⊗Hn−w

h,w−i of Hk,h inside RXi as

{ewk,i,1en−wh,w−i,1, . . . , e
w
k,i,dk

en−wh,w−i,dh}

Now, the zonal matrices satisfy:

Ek,h ∈ Rmk,h×mk,h for k = 0, . . . , bw/2c
h = 0, . . . , b(n− w)/2c

Ek,h,i,j(x, y) 6= 0 only if |x ∩ z0| = i, |y ∩ z0| = j

and they are given by:

Ek,h,i,j(x, y) = 1
|X|

dk∑
`=0

dh∑
`′=0

ewk,i,`(x)en−wh,w−i,`′(x)ewk,j,`(y)en−wh,w−j,`′(y)

= 1
|X|

(∑
`

ewk,i,`(x)ewk,j,`(y)
)(∑

`′
en−wh,w−i,`′(x)en−wh,w−j,`′(y)

)
= 1
|X|

Ew
k,i,j(x, y)En−w

h,w−i,w−j(x, y)

where, by theorem 2.4.6,

Ew
k,i,j(x, y) = |Hw|

(
j−k
i−k

)(
w−2k
j−k

)
(
w
j

)(
j
i

) Qk(w, i, j; i− |x ∩ y ∩ z0|)

and

En−w
h,w−i,w−j(x, y) = |Hn−w|

(
w−j−h
w−i−h

)(
n−w−2h
w−j−h

)
(
n−w
w−j

)(
w−j
w−i

) Qh(n−w,w− i, w− j; w− i−|x∩y∩ z0|)

The final reduction

We go back to program 4.3.1. By Bochner theorem 2.4.1 we know that the function
Fz(x, y) := F (x, y, z) is positive semidefinite and (Sw×Sn−w)-invariant if and only if
there exist positive semidefinite matrices Fk,h such that

Fz(x, y) =
∑
〈Fk,h, Ek,h(x, y)〉 .

We can recover the matrices Fk,h by mean of the scalar product

Fk,h = 1
|X|2

∑
x,y∈X

Fz(x, y)Ek,h(x, y)

thus obtaining an explicit formula in terms of the variables yabcd := xabcdF̂ (a, b, c, d).
This yields the final reduction of program 4.3.1 in Jwn :



Theorem 4.3.9. The maximum number of words in Jwn avoiding Johnson distance
δ is upper bounded by the optimal value of the following semidefinite program:

sup
{ w∑

b=0
ywbbb : yabcd = yσ(a)σ(b)σ(c)d ∀ σ ∈ S3

Fk,h � 0
yabcd ≥ 0 ∀ (a, b, c, d) ∈ Ω(n,w)
ywwww = 1
yabcd = 0 if δ ∈ {w − a, w − b, w − c}

}
where, for 0 ≤ k ≤ bw/2c, 0 ≤ h ≤ b(n− w)/2c, Fk,h ∈ Rmk,h×mk,h is defined by:

(Fk,h)a,b =
∑
c,d

yabcd

(
b−k
a−k

)(
w−2k
b−k

)(
w−b−h
w−a−h

)(
n−w−2h
w−b−h

)
(
w
b

)(
b
a

)(
n−w
w−b

)(
w−b
w−a

)
Qk(w, a, b; a− d)Qh(n− w,w − a, w − b; w − a− c+ d)

Remark 4.3.10. From the previous discussion, applying theorem 4.3.9 with δ = w− i
yields an upper bound on α(J(n,w, i)) which in the rest of the chapter will be referred
to as SDP bound.

4.4 Numerical results
In the following table we compare

• the Frankl-Wilson bound 4.2.2,

• the linear programming bound of theorem 4.3.2,

• the SDP bound of theorem 4.3.9

on the independence number of graphs J(n,w, i) for some choice of parameters. We
recall that the F-W bound applies only in the case (w, i) = (2p− 1, p− 1) for some p
power of a prime. Apart from these cases, we have chosen the graphs J(n,w, i) that
we will use later on in tables 4.2 and 4.3.

Remark 4.4.1. Here we see that for small parameters the SDP bound is stronger than
the bound of Frankl and Wilson. What is not known is the asymptotic behaviour of
the SDP bound. In particular, can it beat the (1.207)n obtained with Frankl-Wilson
graphs?



(n,w, i) α(J(n,w, i)) F-W bound LP bound SDP bound
(6, 3, 1) 4 6 4 4
(7, 3, 1) 5 7 5 5
(8, 3, 1) 8 8 8 8
(9, 3, 1) 8 9 11 8
(10, 5, 2) 27 45 30 27
(11, 5, 2) 37 55 42 37
(12, 5, 2) 57 66 72 57
(12, 6, 2) 130 112
(13, 5, 2) 78 109 72
(13, 6, 2) 191 148
(14, 7, 3) 364 290 184
(15, 7, 3) 455 429 261
(16, 7, 3) 560 762 464
(16, 8, 3) 1315 850
(17, 7, 3) 680 1215 570
(17, 8, 3) 2002 1090
(18, 9, 4) 3060 3146 1460
(19, 9, 4) 3876 4862 2127
(20, 9, 3) 13765 6708
(20, 9, 4) 4845 8840 3625
(21, 9, 4) 5985 14578 4875
(21, 10, 4) 22794 8639
(22, 9, 4) 7315 22333 6480
(22, 11, 5) 36791 11360
(23, 9, 4) 8855 32112 8465
(23, 11, 5) 58786 17055
(24, 9, 4) 10626 38561 10796
(24, 12, 5) 172159 53945
(25, 9, 4) 12650 46099 13720
(26, 13, 6) 230230 453169 101494
(27, 13, 6) 296010 742900 163216

Table 4.1: Upper bounds for α(J(n,w, i))



4.5 Density of sets avoiding distance 1
The lower bounds on the Euclidean chromatic number obtained by the results of
table 4.1 together with the inequality 4.2.1 don’t improve over the existing ones. In
this section we will explain how those results can be used to improve bounds on the
so-called measurable chromatic number of the Euclidean space, that is in the case
when the color classes are required to be measurable with respect to the Lebesgue
measure of Rn.
Definition 4.5.1. The measurable chromatic number of the real Euclidean space
Rn, denoted χm(Rn), is the minimum number of colors needed to color Rn in such a
way that points at distance 1 receive different colors and so that points receiving the
same color form Lebesgue measurable sets.

Clearly, we have the inequality χm(Rn) ≥ χ(Rn). For the plane, it is only known
that 5 ≤ χm(R2) ≤ 7 ([18]). We introduce the density of a measurable set A:

δ(A) := lim sup
r→+∞

vol(A ∩Bn(r))
vol(Bn(r))

and the extreme density of a set avoiding distance 1:

m1(Rn) := sup
{
δ(A) : A ⊂ Rn is measurable, d(x, y) 6= 1 ∀ x, y ∈ A

}
As a coloring gives a partition of Rn and δ(Rn) = 1, we have the relation

χm(Rn) ·m1(Rn) ≥ 1

so we can focus on upper bounds for the extreme density of sets avoiding distance 1
in order to find lower bounds for the measurable chromatic number.

In [13], an upper bound on m1 is given in the form of the optimal value of a linear
program (see [13] for the definition of the function Ωn):
Theorem 4.5.2 ([13], theorem 1.1).

m1(Rn) ≤ inf
{
z0 : z0 + z1 ≥ 1

z0 + Ωn(t)z1 ≥ 0 ∀ t ≥ 0
} (4.5.1)

Moreover, an explicit optimal solution of the program above can be described in terms
of the absolute minimum of Ωn.

The linear program above can be strengthened by adding linear inequalities com-
ing by well chosen finite unit distance graphs in Rn. Indeed, in [13] it is shown how the
bound 4.5.1 can be modified by using the regular simplex. With this new program,
improvements are obtained on m1(Rn) (hence also on χm(Rn)) for n = 4, . . . , 24.

The same reasoning can be applied with a unit distance graph other than the
regular simplex and theorem 4.5.1 becomes:



Theorem 4.5.3. If G = (V,E) is a unit distance graph in Rn, then

m1(Rn) ≤ inf
{
z0 + z2

α(G)
|V | : z2 ≥ 0

z0 + z1 + z2 ≥ 1
z0 + z1Ωn(t) + z2

1
|V |
∑|V |
i=1 Ωn(rit) ≥ 0

for all t > 0
} (4.5.2)

where, for xi ∈ V , ri := ‖xi‖.

Remark 4.5.4. The program 4.5.2 involves an uncountable set of linear constraints.
The method to solve a linear program of this kind is to discretize an interval ]0,M ],
then solve the linear program for t restricted to such discretized values and finally (if
needed) adjust the optimal solution by adding a constant factor.

At this point, it is clear how to use the upper bounds on α(J(n,w, i)) of table 4.1
in theorem 4.5.2 to upper bound m1(Rn).

4.6 Numerical results
In the following two tables we give improved upper bounds on m1(Rn) and lower
bounds on χm(Rn). For n = 9, . . . , 23 we give:

• the best previously known bound (from the table in [13]),

• the bound of theorem 4.5.2 applied with regular simplices, established in [13],

• the bound of theorem 4.5.2 together with our choice of the unit distance graph
G = J(n,w, i). The ”*” indicates that the upper bound on α(G) from our
theorem 4.3.9 is used.



n previous (4.5.2) with
G simplex

(4.5.2) with
G = J(n,w, i) J(n,w, i)

9 0.0288215 0.0187324 0.01678 J(10,5,2)
10 0.0223483 0.0138079 0.01269 J(11,5,2)
11 0.0178932 0.0103166 0.0088775 J(12,6,2)*
12 0.0143759 0.00780322 0.006111 J(13,6,2)*
13 0.0120332 0.00596811 0.00394332 J(14,7,3)*
14 0.00981770 0.00461051 0.00300286 J(15,7,3)*
15 0.00841374 0.00359372 0.00242256 J(16,8,3)*
16 0.00677838 0.00282332 0.00161645 J(17,8,3)*
17 0.00577854 0.00223324 0.00110487 J(18,9,4)*
18 0.00518111 0.00177663 0.00084949 J(19,9,4)*
19 0.00380311 0.00141992 0.00074601 J(20,9,3)*
20 0.00318213 0.00113876 0.00046909 J(21,10,4)*
21 0.00267706 0.00091531 0.00031431 J(22,11,5)*
22 0.00190205 0.00073636 0.00024621 J(23,11,5)*
23 0.00132755 0.00059204 0.0002122678 J(24,12,5)

Table 4.2: Upper bounds for m1(Rn)

n previous (4.5.2) with
G simplex

(4.5.2) with
G = J(n,w, i) J(n,w, i)

9 35 54 60 J(10,5,2)
10 48 73 79 J(11,5,2)
11 64 97 113 J(12,6,2)*
12 85 129 164 J(13,6,2)*
13 113 168 254 J(14,7,3)*
14 147 217 334 J(15,7,3)*
15 191 279 413 J(16,8,3)*
16 248 355 619 J(17,8,3)*
17 319 448 906 J(18,9,4)*
18 408 563 1178 J(19,9,4)*
19 521 705 1341 J(20,9,3)*
20 662 879 2132 J(21,10,4)*
21 839 1093 3182 J(22,11,5)*
22 1060 1359 4062 J(23,11,5)*
23 1336 1690 4712 J(24,12,5)*

Table 4.3: Lower bounds for χm(Rn)





Chapter 5

Hierarchy of semidefinite programs
from simplicial complexes

In this chapter we introduce a new sequence ϑk of semidefinite programs whose opti-
mal value upper bound the independence number of a graph. To define it, we adopt
the framework of simplicial complexes, which we introduce in the second section. In
the third section we give the definition of ϑk. We show that, as for the hierarchies
recalled in chapter 2, the first step coincides with the ϑ number and, for a graph G,
the α(G)-th step yields the exact value α(G). We prove that the sandwich theorem
holds for any step of the new sequence ϑk, along with a result involving graph homo-
morphisms which generalizes one well known property of ϑ. A drawback is that we
don’t know whether this ”hierarchy” is decreasing at any step or not. To insure the
decreasing property, in the fourth section we slightly modify the SDP formulation
of ϑk and we show that this modification is compatible with all the properties of ϑk
proved before. In the fifth section, some values of the second step of our hierarchy are
computed for cycle graphs and Paley graphs. They show significant improvements
over the first step.

5.1 Introduction
Let A be the adjacency matrix of a graph G = (V,E) and D be the diagonal matrix
with Di,i = deg(i). The matrix L0 := D − A is called the Laplacian of the graph G.
Recall the dual formulation for Lovász ϑ number of G:

ϑ(G) = min{λmax(Z) : Zi,j = 1 if i = j or ij ∈ E} (5.1.1)

We note that the constraint on Z is that Z = J outside of the support of A. So it is
natural to optimize over the set

Z = J + γA, γ ∈ R.
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Also, the eigenvalues of Z are much easier to analyse if J and A commute i.e. if the
graph is regular. To make the connection with the Laplacian introduced above, it is
the case L0 = dI − A if d is the degree of G. We can rewrite

Z = J + γdI − γL0, γ ∈ R.

If λ1 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues of L0, because L0J = 0 we have λn = 0
and the eigenvalues of Z are: n+ γd, γ(d− λi) (1 ≤ i ≤ n− 1). The optimal choice
for γ is obtained for

min
γ

{
max{n+ γd, γ(d− λi) (1 ≤ i ≤ n− 1)}

}
which is equal to

n(λmax(L0)− d)
λmax(L0)

in which we recognize the expression of the well-known Hoffman bound:

Theorem 5.1.1. (Hoffman bound) Let G be a regular graph of degree d, let A be its
adjacency matrix. We have

α(G) ≤ ϑ(G) ≤ nλmin(A)
λmin(A)− d.

Moreover, the last inequality is an equality for edge transitive graphs and for strongly
regular graphs.

In general, L0 and J commute between them, so restricting to matrices

Z = J +
∑
i≥0

γiL
i
0

in 5.1.1, we obtain a linear program.
The original motivation for the work in this chapter is an attempt to build a SDP

hierarchy based on generalizations of matrices J and L0, with the hope to get high
order Hoffman-like eigenvalues bounds. We give the details of the construction of
this new SDP hierarchy, then we discuss its properties and some possible modifica-
tions. High order generalizations of matrices J and L0 arise in a natural way when
considering simplicial complexes.

5.2 Simplicial complexes
An abstract simplicial complex is a family ∆ of finite subsets of a given set V such
that whenever A ∈ ∆ and B ⊂ A, then B ∈ ∆. Elements of a simplicial complex



are called faces and the dimension of a face A ∈ ∆ is defined as dim(A) := |A| − 1.
The set of faces of dimension k is denoted by ∆k. We remark that abstract simplicial
complexes can be thought of as a generalization of graphs. Indeed, a graph is nothing
else than a complex with faces of dimension 0 (vertices) and 1 (edges), apart from
the empty set. For more details on simplicial complexes, see [25].

The goal of this section is to define a pair of matrices associated to a simplicial
complex, one of which is a generalization of the Laplacian of a graph. For the rest of
this section, take V = {v1, . . . , vn} to be a finite set of cardinality n.

LetW := RV , let ∧kW denote the k-th exterior power ofW and let the boundary
operator δk be defined as:

δk : ∧k+1W −→ ∧kW
s0 ∧ · · · ∧ sk −→

∑k
j=0(−1)j(s0 ∧ · · · ∧ sk)j

(5.2.1)

where {s0, . . . , sk} ⊂ {v1, . . . , vn} and (s0∧· · ·∧sk)j means that sj has been removed
from s0∧· · ·∧sk, leaving the others in place. The above definition makes sense because
δk(sσ(0) ∧ · · · ∧ sσ(k)) = ε(σ)δk(s0 ∧ · · · ∧ sk) for all permutation σ of {0, . . . , k}. We
set δ0(s0) = 1 ∈ R = ∧0W .

We have for all k ≥ 1,
δk−1 ◦ δk = 0.

The real vector spaces ∧kW are endowed with the standard inner product. The
adjoint operator δ∗k is given by:

δ∗k : ∧kW −→ ∧k+1W
s0 ∧ · · · ∧ sk−1 −→

∑
v∈V v ∧ s0 ∧ · · · ∧ sk−1.

(5.2.2)

Let ∆ be an abstract simplicial complex on V , let Ck be the subspace of ∧k+1W
generated by s0 ∧ · · · ∧ sk where {s0, . . . , sk} ∈ ∆k (in particular C−1 = R = ∧0W ).
The dimension dk of Ck is obviously equal to the number of faces of ∆ of dimension
k. We remark that δk(Ck) ⊂ Ck−1. We keep the same notation δk for the restricted
application δk : Ck → Ck−1 and δ∗k for its adjoint operator, which is given by

δ∗k(s0 ∧ · · · ∧ sk−1) =
∑

v∈V : {v,s0,...,sk−1}∈∆
v ∧ s0 ∧ · · · ∧ sk−1 .

We introduce
Lk−1 := δkδ

∗
k : Ck−1 −→ Ck−1

and
L′k−1 := δ∗k−1δk−1 : Ck−1 −→ Ck−1.

In order to write Lk−1 and L′k−1 in matrix form, we need to choose basis of the
spaces Ck. For that we put an arbitrary order relation among elements of V and we



will express all matrices of linear transformations of the spaces Ck in the standard
basis, given by the faces s0 ∧ · · · ∧ sk where s0 < · · · < sk. Let Nk ∈ Rdk−1×dk be the
matrix of δk. We have δk−1 ◦ δk = 0 so Nk−1Nk = 0. The matrices Lk−1 of Lk−1 and
L′k−1 of L′k−1 are then:

Lk−1 := NkN
T
k L′k−1 := NT

k−1Nk−1 (5.2.3)

We have
Lk−1, L

′
k−1 ∈ Rdk−1×dk−1 Lk−1L

′
k−1 = L′k−1Lk−1 = 0. (5.2.4)

For all s ∈ ∆k−1, let deg(s) denote the number of k-dimensional faces that contain
s. We note that the number of (k − 2)-dimensional faces that are contained in s is
necessarily equal to k as all subsets of s belong to ∆. Moreover, for s, s′ ∈

(
V
k

)
, such

that |s ∩ s′| = k − 1, we define a sign rule ε(s, s′) ∈ {−1,+1} as follows: let s ∪ s′ =
{s0 < · · · < sk} ∈

(
V
k+1

)
and (s ∪ s′)\(s ∩ s′) = {si, si′}. Then ε(s, s′) := (−1)i+i′−1.

We compute, for s, s′ ∈ ∆k−1:

(L′k−1)s,s′ =
∑

r∈∆k−2

(Nk−1)r,s(Nk−1)r,s′

=


k if s = s′

ε(s, s′) if |s ∪ s′| = k + 1
0 otherwise

(5.2.5)

and
(Lk−1)s,s′ =

∑
t∈∆k

(Nk)s,t(Nk)s′,t

=


deg(s) if s = s′

−ε(s, s′) if s ∪ s′ ∈ ∆k

0 otherwise

(5.2.6)

We remark that the entries corresponding to (s, s′) with |s∪ s′| ≥ k+ 2 are equal
to zero in both matrices, and that (Lk−1)s,s′ = −(L′k−1)s,s′ if s ∪ s′ ∈ ∆k.

5.2.1 Examples
Example 1: Let G = (V,E) be a graph and take ∆ = {E, V, ∅}. We have δ1(s0∧s1) =
s1 − s0 and δ0(sk) = 1.

C1
δ1

N1
// C0

δ0

N0
// R (5.2.7)

We have
L′0(v) = δ∗0δ0(v) = δ∗0(1) =

∑
u∈V

u



while

L0(v) = δ1δ
∗
1(v) = δ1(

∑
u∈V : uv∈E

u ∧ v)

=
∑

u∈V : uv∈E
(v − u)

= deg(v)v −
∑

u∈V : uv∈E
u

so, in terms of matrices, we see that

L′0 = J and L0 = D − A (5.2.8)

where D is the diagonal matrix with deg(u) on the diagonal and A is the adjacency
matrix of G. We recognize in L0 the Laplacian of G.

Example 2: Let G = (V,E) be a graph with no isolated vertex. Let ∆ be the set
T of 3-sets of vertices t = {v1, v2, v3} such that t contains at least an edge, together
with all subsets of elements of T .

C2
δ2

N2
// C1

δ1

N1
// C0

δ0

N0
// R (5.2.9)

with δ2(s0 ∧ s1 ∧ s2) = s1 ∧ s2 − s0 ∧ s2 + s0 ∧ s1. We have

L′1(u ∧ v) = δ∗1δ1(u ∧ v) = δ∗1(v − u)
=
∑
w∈V

(w ∧ v − w ∧ u)

= 2(u ∧ v) +
∑

w∈V, w 6=u,v
(w ∧ v − w ∧ u)

and

L1(u ∧ v) = δ2δ
∗
2(u ∧ v)

= δ1(
∑

w∈V : uvw∈T
w ∧ u ∧ v)

=
∑

w∈V : uvw∈T
(u ∧ v − w ∧ v + w ∧ u)

= deg(uv)(u ∧ v)−
∑

w∈V : uvw∈T
(w ∧ v − w ∧ u)

where deg(uv) = |{t ∈ T : uv ⊂ t}|. We note that

(L1 + L′1)(u ∧ v) = (deg(u ∧ v) + 2)(u ∧ v) +
∑

w∈V : uvw/∈T
(w ∧ v − w ∧ u).



For the matrices,

(L′1)x∧y,u∧v =


2 if xy = uv
0 if |xyuv| = 4
±1 if |xyuv| = 3

(5.2.10)

where |xyuv| stands for the the cardinal of {x, y, u, v}, and the − sign occurs in the
last case iff x < y = u < v or u < v = x < y.

(L1)x∧y,u∧v =


deg(xy) if xy = uv
0 if |xyuv| = 4
0 if |xyuv| = 3 and xyuv /∈ T
±1 if |xyuv| = 3 and xyuv ∈ T

(5.2.11)

and the + sign occurs in the last case iff x < y = u < v or u < v = x < y.

We analyse the spectrum of L′1: from the above expressions it is easy to check
that L′1NT

1 = nNT
1 , hence (L′1)2 = nL′1, from which we derive that L′1 has eigenvalues

n and 0. The multiplicity of n is Tr(L′1)/n = n−1 and the eigenspace of n is Im(NT
1 ).

Example 3: The above example extends to (k + 1)-subsets. We define ∆ as the set
T of (k + 1)-subsets of V that contain at least an edge, together with all subsets of
V with at most k elements. Then Lk−1, L

′
k−1 ∈ R(Vk)×(Vk) and

(L′k−1)s,s′ =
∑

r∈( V
k−1)

(Nk−1)r,s(Nk−1)r,s′

=


k if |s ∪ s′| = k i.e. s = s′

0 if |s ∪ s′| ≥ k + 2
ε(s, s′) if |s ∪ s′| = k + 1

(5.2.12)

and

(Lk−1)s,s′ =
∑
t∈T

(Nk)s,t(Nk)s′,t

=


deg(s) if |s ∪ s′| = k i.e. s = s′

0 if |s ∪ s′| ≥ k + 2
0 if |s ∪ s′| = k + 1 and s ∪ s′ /∈ T
−ε(s, s′) if |s ∪ s′| = k + 1 and s ∪ s′ ∈ T

(5.2.13)

We note that {∆i, i ≤ k − 1} is the complete complex which has trivial ho-
mology. We analyse the spectrum of L′k−1: from (5.2.5) it is easy to check that
L′k−1N

T
k−1 = nNT

k−1 hence (L′k−1)2 = nL′k−1 from which we derive that L′k−1 has eigen-
values n and 0. The multiplicity of n is Tr(L′k−1)/n = k

(
n
k

)
/n and the eigenspace of



n is Im(NT
k−1).

Example 4: Another complex of great interest is the cliques complex, where for
i ≤ k, ∆i is the set ∆cl

i of cliques on (i + 1) vertices in the graph. We note that the
union of two k-cliques that intersect on k − 1 vertices is a clique if and only if the
two vertices that do not belong to the intersection are connected. The formulas for
the coefficients of Lk−1 and L′k−1 are the same as above.

Example 5: More generally, if G is a (k+1)-uniform hypergraph, i.e. a set of vertices
V together with a set S of (k + 1)-subsets of V called hyperedges, we can take for
∆ the set S of hyperedges together with all their subsets. For example S can be the
set of induced subgraphs of G that belong to a given isomorphism class. The same
formulas as in Example 3 give the coefficients of Lk−1 and L′k−1. The matrix Lk−1
(sometimes Lk−1 + L′k−1) is called the Laplacian of G.

5.3 Generalized ϑ numbers
Recall from chapter 2 the following formulations for Lovász ϑ number of a graph
G = (V,E):

ϑ(G) = max{ 〈J,X〉 : X � 0
〈I,X〉 = 1
Xi,j = 0 if ij ∈ E }

= min{ t : tI − J +
∑
ij∈E

xi,jEi,j � 0 }

= min{ λmax(Z) : Zi,j = 1 for i = j and ij ∈ E }
= min{ λmax(Z) : Z = J + T, Tij = 0 for ij /∈ E }

By analogy, we introduce, with the notations of Example 3, a new function ϑk:

Definition 5.3.1. For any graph G, we define

ϑk(G) := max
{
〈L′k−1, X〉 : X � 0,

〈I,X〉 = 1,
Xs,s′ = 0 if |s ∪ s′| ≥ k + 2 or

s ∪ s′ contains an edge
ε(s, s′)Xs,s′ = ε(t, t′)Xt,t′ if s ∪ s′ = t ∪ t′

and |s ∪ s′| = k + 1
}

Since this program is not strictly feasible, we don’t know if strong duality holds.
However, its dual formulation is given in the following lemma:



Lemma 5.3.2. For any graph G, we have

ϑk(G) ≤ min
{
t : tI − L′k−1 +M +

∑
xtrr′(Etr − Etr′) � 0

}
where M is supported on the pairs (s, s′) such that |s ∪ s′| ≥ k + 2 or s ∪ s′ contains
an edge, the sum runs over the set

{(t, r, r′) : |t| = k + 1, t without edges , |r| = |r′| = k − 1, r 6= r′}

and Etr denotes the matrix with a single upper non zero coefficient corresponding to
indices s, s′ such that s ∩ s′ = r, s ∪ s′ = t and equal to ε(s, s′). Equivalently:

ϑk(G) ≤ min
{
λmax(Z) : Z = L′k−1 + T,

Ts,s = 0 if s does not contain an edge
}

where, for k ≥ 2, T verifies ε(s, s′)Ts,s′ + ε(v, v′)Tv,v′ = 0 for all {s, s′} 6= {v, v′} such
that s ∪ s′ = v ∪ v′ has cardinality k + 1 and contains no edges.

At this point, several remarks are needed.

Remark 5.3.3. Clearly, ϑ1 = ϑ. For k = 2 we are considering a matrix X whose rows
and columns are indexed on pair of vertices; the only entries of X that are not set to
zero are the diagonal ones corresponding to an index which does not contain an edge,
and the ones whose union of row index and column index is a triangle without edges.
In this last case, entries corresponding to the same triangle have the same absolute
value, the sign is given according to the rule we introduced in section 5.2.

Remark 5.3.4. If we partition the set
(
V
k

)
into two subsets, the subset of cocliques

and the subset of k-tuples containing at least one edge, then a feasible matrix X for
(5.3.1) satisfies Xs,s′ = 0 if one of s, s′ is in the second part. So X has the form:

X =
(
X ′ 0
0 0

)

and we can replace in ϑk(G) all matrices by matrices indexed by cocliques. In this
way we obtain a program which is equivalent to ϑk. Moreover in this case, strong
duality holds with the same argument as for ϑ. In particular, for k = 2, the restricted
matrix X ′ is indexed by the set E of non-adjacent pairs.

Remark 5.3.5. Note that ϑk(G) = −∞ whenever k > α(G), so from now on we restrict
ourselves to the cases k ∈ {1, 2, . . . , α(G)}.



We want to construct some feasible matrices Z for the dual formulation of ϑk.
More precisely, because L′k−1 and Lk−1 commute, we want Z to be a linear combina-
tion of L′k−1, and powers of Lk−1. So we introduce:

ϑLPk (G) := min
{
λmax(Z) : Z = γ−1L

′
k−1 +

∑
i≥0

γiL
i
k−1

(γ−1 − 1)L′k−1 +
∑
i≥0

γiL
i
k−1)s,s′ = 0 for

(|s ∪ s′| ≤ k + 1 containing no edges
}

Then ϑLPk (G) is the optimal value of a linear program.

5.3.1 Properties of ϑk

We are going to see that the number ϑk conserve some well-known properties of ϑ,
recalled in section 2.2.

Proposition 5.3.6. For all k ≤ α(G), α(G) ≤ ϑk(G), with equality when k = α(G).

Proof. Let S be an independent set of G. Let V Gk denote the set of all k-subsets of
vertices of G. Define the matrix XS

k ∈ RV G
k
×V G

k by:

(XS
k )s,s′ =

{
(L′k−1)s,s′ if s ∪ s′ ⊂ S
0 else

Because XS
k is a submatrix of L′k−1, it is positive semidefinite. We compute

〈XS
k , I〉 = k

(
|S|
k

)
(5.3.1)

and, with (5.2.12),

〈XS
k , L

′
k−1〉 = k2

(
|S|
k

)
+

∑
|s∪s′|=k+1
s∪s′⊆S

1

= k2
(
|S|
k

)
+ (k + 1)k

(
|S|
k + 1

)

= k

(
|S|
k

)
|S|.

(5.3.2)

Moreover, from the definition of XS
k and the fact that S is an independent set, it is

clear that (XS
k )s,s′ = 0 if s ∪ s′ contains an edge, or if |s ∪ s′| ≥ k + 2. So the matrix

XS
k /(k

(
|S|
k

)
) is feasible for ϑk(G), its objective value is |S| and we can conclude that



α(G) ≤ ϑk(G).
Now, if k = α(G), a subset of V (G) of size greater or equal to k + 1 must contain an
edge. So, if s 6= s′ ∈ V Gk , s∪ s′ contains an edge, and the non diagonal coefficients of
a primal feasible matrix X of (5.3.1) are equal to zero. So, taking account of the fact
that the diagonal coefficients of L′k−1 are equal to k, we have 〈L′k−1, X〉 = k〈I,X〉 =
k = α(G). �

For the rest of the chapter we take the following notation. Let V Gk denote the
set of all k-subsets of vertices of G. For any k, a graph homomorphism ϕ : G → H
induces a linear application ϕ̃k of RV G

k
×V G

k into RVHk ×V
H
k , which goes as follows:

ϕ̃k(X)u,u′ :=
∑

s : ϕ(s)=u

s′ : ϕ(s′)=u′

Xs,s′

where u, u′ ∈ V Hk and s, s′ ∈ V Gk .
Then the next theorem generalizes proposition 2.3.12.

Theorem 5.3.7. If there exists a graph homomorphism ϕ : G → H, then, for any k,
ϑk(G) ≤ ϑk(H).

Proof. We begin the proof by two remarks. The first is that, given an order on
the vertices of H, we can order the vertices of G in such a way that ϕ becomes an
increasing function; it follows that ε(ϕ(s), ϕ(s′)) = ε(s, s′) for all s, s′ ∈ V Gk such
that |s ∪ s′| = k + 1, ϕ(s), ϕ(s′) ∈ V Hk , |ϕ(s) ∪ ϕ(s′)| = k + 1.
Now, let X be a feasible solution of (5.3.1) with respect to the graph G. The second
remark is that Xs,s′ = 0 if ϕ(s) 6∈ V Hk or ϕ(s′) 6∈ V Hk , because in that case s or
s′ contains an edge of G. For the same reason, Xs,s′ = 0 if s 6= s′ are such that
ϕ(s) = ϕ(s′). We will use these two facts all along the proof. Our goal now is to
show that the matrix ϕ̃k(X) is feasible for the program (5.3.1) with respect to the
graph H. Such matrix is clearly symmetric, let us see that it is positive semidefinite:
for all vector α ∈ RVHk ,∑

u,u′
αu(ϕ̃k(X))u,u′ αu′ =

∑
u,u′

αu(
∑

s : ϕ(s)=u

s′ : ϕ(s′)=u′

Xs,s′) αu′

=
∑

s,s′∈V G
k

ϕ(s),ϕ(s′)∈VHk

αϕ(s)Xs,s′ αϕ(s′)

=
∑

s,s′∈V G
k

αϕ(s)Xs,s′ αϕ(s′) ≥ 0



Let us see also that ϕ̃k(X) has trace 1:
Tr(ϕ̃k(X)) =

∑
u

(ϕ̃k(X))u,u =
∑
u

∑
s : ϕ(s)=u

s′ : ϕ(s′)=u

Xs,s′

=
∑
u

∑
s : ϕ(s)=u

Xs,s =
∑

s : ϕ(s)∈VH
k

Xs,s = Tr(X) = 1 .

Next, if |u ∪ u′| ≥ k + 2, then |s ∪ s′| ≥ k + 2 for all s, s′ such that ϕ(s) = u and
ϕ(s′) = u′, hence (ϕ̃k(X))u,u′ = 0. Also, s∪ s′ contains an edge of G if u∪u′ contains
an edge of H, so (ϕ̃k(X))u,u′ = 0 also in this case.
Finally, take u ∪ u′ = v ∪ v′ of cardinality k + 1. Then the collection of s ∪ s′ where
(s, s′) is an inverse image of (u, u′) and the collection of t∪ t′ where (t, t′) is an inverse
image of (v, v′), coincide. So we verify that

ε(u, u′)(ϕ̃k(X))u,u′ =
∑

ϕ(s)=u

ϕ(s′)=u′

ε(u, u′)Xs,s′

=
∑

ϕ(s)=u

ϕ(s′)=u′

ε(s, s′)Xs,s′

=
∑

ϕ(t)=v

ϕ(t′)=v′

ε(t, t′)Xt,t′

=
∑

ϕ(t)=v

ϕ(t′)=v′

ε(v, v′)Xt,t′ = ε(v, v′)(ϕ̃k(X))v,v′ .

Up to now, we have shown that the matrix ϕ̃k(X) is a feasible solution of the program
(5.3.1) with respect to the graph H. Now we calculate its objective value:

〈L′k−1, ϕ̃k(X)〉 = 2 +
∑
u6=u′

ε(u, u′)(ϕ̃k(X))u,u′

= 2 +
∑
u6=u′

∑
ϕ(s)=u

ϕ(s′)=u′

ε(u, u′)Xs,s′

= 2 +
∑
u6=u′

∑
ϕ(s)=u

ϕ(s′)=u′

ε(s, s′)Xs,s′

= 2 +
∑
s 6=s′

ε(s, s′)Xs,s′ = 〈L′k−1, X〉 .



Every feasible matrix for ϑk(G) gives a feasible matrix for ϑk(H) with the same
objective value. This concludes the proof. �

Now we want to establish an analog of the sandwich theorem 2.3.10 for every ϑk.
For this, we need the following equivalent definition of the chromatic number of a
graph.

Proposition 5.3.8. The chromatic number χ(G) of a graph G is the least natural
number ` such that there exists a homomorphism G → K` where K` denotes the
complete graph on ` vertices.

Lemma 5.3.9. If ` = χ(G), then ϑk(G) ≤ ϑk(K`).

Proof. By previous definition and theorem 5.3.7. �

Proposition 5.3.10. If n is the number of vertices of G, then ϑk(G) ≤ n for all k.

Proof. A feasible solution of the dual program is given by the matrix L′k−1 itself,
which has largest eigenvalue n. �

Corollary 5.3.11. For all k, ϑk(K`) = `.

Proof. By proposition 5.3.6 together with proposition 5.3.10. �

From all previous results, we obtain the sandwich theorem for ϑk.

Theorem 5.3.12. For all graph G and all k, α(G) ≤ ϑk(G) ≤ χ(G).

Remark 5.3.13. To prove corollary 5.3.11 we only need the special case of proposition
5.3.6 when G = K`. Then the general inequality α(G) ≤ ϑk(G) can also be derived
from theorem 5.3.7 and corollary 5.3.11 via the clique number ω. By definition, ω(G)
is the largest cardinality of a clique of G and it can also be defined as the largest
natural number m such that there exists a homomorphism Km → G. As independent
sets correspond to cliques in the complement graph, ω(G) = α(G).

5.4 A decreasing hierarchy
We have seen that the sequence of programs ϑk defined in the previous section has
some remarkable properties, namely the sandwich theorem and the fact that for any
graph G we reach the exact value α(G) at the α(G)-th step. Nevertheless another
desirable property for a sequence of this kind would be to be decreasing as a function
of k. At the moment we are not able neither to prove nor to disprove this in the
general case, although practical computations show ϑ2 < ϑ1. So in this section we
consider a slightly different program obtained from ϑk by adding the requirement



that certain matrices are positive semidefinite. We show that this new sequence of
programs conserve all properties of the original one and, moreover, it is decreasing
with k.

Recall that V Gk denotes the set of all k-subsets of vertices of G. For each k ≥ 2
we define the following linear application

τk,k−1 : RV G
k
×V G

k → RV G
k−1×V

G
k−1

by

• if u ∈ V Gk−1, then τk,k−1(X)u,u := 1
k

∑
u⊂sXs,s

• if u, u′ ∈ V Gk−1 are such that |u ∪ u′| = k, then

ε(u, u′)τk,k−1(X)u,u′ := 1
k(k − 1)Xu∪u′,u∪u′+

1
(k + 1)k(k − 1)

∑
|s∪s′|=k+1

u∪u′⊂s∪s′

ε(s, s′)Xs,s′

• τk,k−1(X)u,u′ := 0 elsewhere.

Remark that ε(u, u′)τk,k−1(X)u,u′ is a function of u ∪ u′. For each k > h ≥ 2, we
denote by τk,h the composition τh+1,h ◦ · · · ◦ τk−1,k−2 ◦ τk,k−1.

Definition 5.4.1. For each graph G we define ϑ̂k(G) as the optimal value of the
program 5.3.1 to which we add the constraints τk,k−1(X) � 0, τk,k−2(X) � 0, . . . ,
τk,1(X) � 0.

Proposition 5.4.2. For all k ≤ α(G), α(G) ≤ ϑ̂k(G), with equality when k = α(G).

Proof. Almost all has already been proved in Proposition 5.3.6. Let S be an inde-
pendent set of G of maximal size and recall the definition of XS

k :

(XS
k )s,s′ =

{
(L′k−1)s,s′ if s ∪ s′ ⊂ S
0 else

It remains to show that all matrices τk,h(XS
k ) are positive semidefinite. It is not diffi-

cult to see that τk,k−1(XS
k )u,u = |S|−k+1 whenever u ⊂ S and that τk,k−1(XS

k )u,u′ =
|S|−k+1
k−1 ε(u, u′) whenever u ∪ u′ ⊂ S and that all other entries are zero. So we rec-

ognize that τk,k−1(XS
k ) = |S|−k+1

k−1 XS
k−1 which is positive semidefinite. Iterating this

computation, we find that all others τk,h(XS
k ) are positive scalar multiples of XS

h

respectively, hence positive semidefinite. This concludes the proof. �



Theorem 5.4.3. For all k, ϑ̂k(G) ≤ ϑ̂k−1(G).

Proof. Let X be a feasible solution of the program ϑ̂k(G) and note Y the matrix
τk,k−1(X). We will see that this matrix is a feasible solution of ϑ̂k−1(G). Let us verify
that Y has trace 1, as the other constraints are easily seen to be satisfied.

Tr(Y ) =
∑
u

Yu,u =
∑
u

1
k

∑
s : u⊂s

Xs,s

=
∑
s

Xs,s

(1
k

∑
u : u⊂s

1
)

=
∑
s

Xs,s = Tr(X) = 1

The objective value of this solution is

〈L′k−2, Y 〉 = (k − 1)Tr(Y ) +
∑

u,u′ : |u∪u′|=k
ε(u, u′)Yu,u′

= (k − 1) +
∑

s : |s|=k
Xs,s

( 1
k(k − 1)

∑
u,u′ : u∪u′=s

1
)

︸ ︷︷ ︸
Tr(X)=1

+
∑

u,u′ : |u∪u′|=k

1
(k + 1)k(k − 1)

∑
|s∪s′|=k+1

u∪u′⊂s∪s′

ε(s, s′)Xs,s′

= k +
∑

s,s′ : |s∪s′|=k+1
ε(s, s′)Xs,s′

( 1
(k + 1)k(k − 1)

∑
|u∪u′|=k

u∪u′⊂s∪s′

1
)

= k +
∑

s,s′ : |s∪s′|=k+1
ε(s, s′)Xs,s′

= 〈L′k−1, X〉

and this yields the announced inequality. �

Remark 5.4.4. Obviously, ϑ̂k(G) ≤ ϑk(G). Although the optimal solutions of both
programs coincide in the cases we computed, it seems that to insure the decreasing of
our programs, ϑ̂k need to be considered, as the condition τk,k−1(X) � 0 is not always
satisfied when X is a feasible solution of ϑk. Of course, for practical computations
one can consider simply ϑk.

Recall that a graph homomorphism ϕ : G → H induces a linear application ϕ̃k of
RV G

k
×V G

k into RVHk ×V
H
k .



Proposition 5.4.5. The following diagram is commutative:

RV G
k
×V G

k RV G
k−1×V

Gk−1

RVHk−1×V
H
k−1RVHk ×V

H
k

τk,k−1

ϕ̃k−1

τk,k−1

ϕ̃k

Proof. Take X ∈ RV G
k
×V G

k . Let us call Y = τk,k−1(ϕ̃k(X)) and Z = ϕ̃k−1(τk,k−1(X)).
Along this proof we will make use of the remarks which appear in the proof of theorem
(5.3.7). We calculate

Yr,r = 1
k

∑
v : r⊂v

(ϕ̃k(X))v,v = 1
k

∑
v : r⊂v

∑
s : ϕ(s)=v

Xs,s = 1
k

∑
s : r⊂ϕ(s)

Xs,s

and, for |r ∪ r′| = k,

ε(r, r′)Yr,r′ = 1
k(k − 1) ϕ̃k(X)r∪r′,r∪r′ +

1
(k + 1)k(k − 1)

∑
r∪r′⊂v∪v′

ε(v, v′)ϕ̃k(X)v,v′

= 1
k(k − 1)

∑
ϕ(s)=r∪r′

Xs,s + 1
(k + 1)k(k − 1)

∑
r∪r′⊂v∪v′

∑
ϕ(s)=v

ϕ(s′)=v′

ε(s, s′)Xs,s′

On the other hand,

Zr,r =
∑

u : ϕ(u)=r

1
k

∑
u : u⊂s

Xs,s = 1
k

∑
s : ϕ−1(r)⊂s

Xs,s

and, for |r ∪ r′| = k,

Zr,r′ =
∑

ϕ(u)=r

ϕ(u′)=r′

(τk,k−1(X))u,u′

=
∑

ϕ(u)=r

ϕ(u′)=r′

1
k(k − 1)Xu∪u′,u∪u′ +

∑
ϕ(u)=r

ϕ(u′)=r′

1
(k + 1)k(k − 1)

∑
u∪u′⊂s∪s′

ε(s, s′)Xs,s′

Now it is easy to see that Y = Z. �



Corollary 5.4.6. If there exists a graph homomorphism ϕ : G → H, then, for any
k, ϑ̂k(G) ≤ ϑ̂k(H).

Proof. It follows from theorem 5.3.7 and proposition 5.4.5, taking account of the
fact that ϕ̃k preserves positivity of matrices, as it is shown in the proof of theorem
5.3.7. �

The sandwich theorem for ϑ̂k holds as well with the same proof as for ϑk.

Theorem 5.4.7. For all graph G and all k, α(G) ≤ ϑ̂k(G) ≤ χ(G).

5.5 Numerical results
In this section we first introduce another program strictly related to ϑk and then give
some numerical results on two classical families of graphs.

ϑ+
k (G) := max

{
〈L+

k−1, X〉 : X � 0,
〈I,X〉 = 1,
Xs,s′ = 0 if |s ∪ s′| ≥ k + 2 or

s ∪ s′ contains an edge,
Xs,s′ = Xt,t′ if s ∪ s′ = t ∪ t′

and |s ∪ s′| = k + 1
}

(5.5.1)

where all matrices are indexed on V Gk and L+
k−1 := (N+

k−1)T (N+
k−1) with N+

k−1 ∈
RV G

k−1×V
G
k defined by (N+

k−1)r,s := 1 if and only if r ⊂ s, and (N+
k−1)r,s := 0 elsewhere.

So

(L+
k−1)s,s′ =


k if |s ∪ s′| = k i.e. s = s′

0 if |s ∪ s′| ≥ k + 2
1 if |s ∪ s′| = k + 1

(5.5.2)

In other words, ϑ+
k is the program ϑk on which we have forgotten all sign relations.

Proposition 5.3.6 and theorem 5.3.7 hold also in this case. Although this program
does not have a clear algebraic description, it is interesting for computations, as it
seems to be competitive with the original one.

In table 5.1 we compare the optimal values of ϑ = ϑ1, ϑ2 and ϑ+
2 for some cycle

graphs Cn and Paley graphs P (n). See next chapter for more details on this last
family.

Note: All values of the semidefinite programs have been obtained with the solvers
SDPA or SDPT3, available on the NEOS website (http://www.neos-server.org/neos/).



ϑ ϑ2 ϑ+
2

C5 2.236 2 2
C7 3.317 3 4
C9 4.36 4.019 4.119
C11 5.386 5 5
C15 7.417 7.007 7.021
C23 11.446 11.003 11.016
P (13) 3.605 3 4
P (17) 4.123 3.242 4.044
P (29) 5.385 4.443 4.228
P (37) 6.082 4.611 4.354
P (41) 6.403 5.177 5
P (53) 7.280 5.438 5.756

Table 5.1: Values of ϑ, ϑ2, ϑ+
2 on some cycles and Paley graphs

5.6 Bounds for generalized independence numbers
We define the generalized independence number αk(G) to be the maximal number of
elements of a subset S of V (G) such that S does not contain any (k + 1)-clique. So
α1(G) is the usual independence number α(G). Here we use a degenerated version of
the cliques complex considered in Example 4. More precisely, we take for ∆k the set
of (k + 1)-cliques and for ∆k−1 the set of all k-subsets. We note that then L′k−1 is
the same as before, while

Lk−1 =
(
Lclk−1 0

0 0

)

where we have partitioned the index set ∆k−1 in cliques and non-cliques, and Lclk−1 is
the Laplacian matrix for the cliques complex. Then:

ϑclk (G) := max
{
〈L′k−1, X〉 : X � 0,

〈I,X〉 = 1,
Xs,s′ = 0 if |s ∪ s′| ≥ k + 2 or

s ∪ s′ ∈ ∆k

ε(s, s′)Xs,s′ = ε(t, t′)Xt,t′ if s ∪ s′ = t ∪ t′

and |s ∪ s′| = k + 1
}

(5.6.1)

Proposition 5.6.1. For all k ≤ αk(G), αk(G) ≤ ϑclk (G)

Proof. The same as for Proposition 5.3.6. �



Open questions
In our opinion, this chapter has some points that deserve further discussion.

• First of all, can one prove or disprove the decreasing property for ϑk? Alterna-
tively, is there an easier practical way to insure it?

• Secondly, it would be nice to have an explicit formula of ϑ2(G) when G runs
over some families of graphs, e.g. cycle graphs.

• Next, can one find an analog of Hoffman bound for ϑ2? If yes, which property
should the graph have in order to reach equality in the given bound?

• Finally, the relation with existing hierarchies has still to be investigated.



Chapter 6

Some results on Paley graphs

In this final chapter we focus on Paley graphs. It is an open and interesting problem
to determine their clique number, also in view of number theoretical applications.
As these graphs are self complementary, the clique number coincides with the inde-
pendence number. In the second section we symmetrize our program ϑ2 for Paley
graphs and we calculate some explicit values. In the third section we explore the
circulant structure of a Paley graph and its subgraphs. We show that we can reduce
the problem of determining the independence number from the original graph to the
induced subgraph of non squares. In the fourth and last section, we show that the ϑ
number of a circulant graph is in fact a linear program.

6.1 Introduction
Definition 6.1.1. Let q ≡ 1 mod 4 be a power of a prime. The Paley graph of order
q is P (q) := (V,E) where V = Fq and E = {xy : x− y is a square mod q, x 6= y}.

In other words, P (q) is the Cayley graph on the additive group Fq with generating
set Q, the subgroup of squares in F×q . The condition q ≡ 1 mod 4 is equivalent to
say that −1 is a square modulo q and this is needed in order to get undirected edges.
The Paley graph P (q) is isomorphic to its complement, via multiplication by a non
square. The automorphism group of P (q) contains Γ(q) := (Fq,+) o Q and acts
transitively on the edges as well as on the non edges. So P (q) is a strongly regular
graph. If q = 4t + 1, its parameters are v = 4t + 1, k = 2t, λ = t − 1, µ = t. Being
strongly regular, its ϑ number reaches the Hoffman bound

ϑ(P (q)) = √q

Noting that ϑ(P (q))ϑ(P (q)) = |V | = q because P (q) is vertex transitive and that
P (q) ' P (q) leads to the same conclusion.
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Figure 6.a: Paley graphs of order 13 and 17

Paley graphs are interesting because of their quasi-random behaviour. The inde-
pendence number of Paley graphs P (p) has been calculated for primes p up to 7000
by James B. Shearer ([1]); Geoffrey Exoo extended it to p < 10000 ([2]). If q = q2

0 is
a square, then the subfield Fq0 is a clique of size √q so in this case α(P (q)) = √q. If
q is not a square, α(P (q)) is not known.

In the remaining we restrict to the case when q = p is a prime number. We
already calculated some values of ϑ and ϑ2 for Paley graphs in table 5.1. In order
to compute more values of ϑ2(P (p)) we need to symmetrize it under Aut(P (p)). We
analyse this action in the next section.

6.2 Symmetry reduction of ϑ2 for Paley graphs
Let us take the following notations: Zp := Z/pZ, Γ0 := Zp o Q and Γ := Zp o Z×p .
We let α denote a primitive element in Zp. An element of Γ is denoted (t, s) with
t ∈ Zp and s ∈ Z×p . The group multiplication is (t, s)(t′, s′) = (t + st′, ss′) and the
inverse is (t, s)−1 = (−ts−1, s−1). The action of Γ on Zp is given by (t, s).x = t+ sx.
We sometimes simplify (t, 1) to t and (0, s) to s.

6.2.1 Orbits
The group Γ0 acts transitively on V := Zp. The 2-subsets split into two orbits:
the edges and the non-edges of P (p). Let us now consider the orbits on 3-subsets
(also called triangles). It is clear that the number of edges in each triangle is an
invariant. For i = 0, 1, 2, 3, let Ti denote the set of triangles containing i edges.
Multiplication by α sends bijectively T0 to T3 and T1 to T2. Using the property that
P (p) is strongly regular with parameters (p, (p− 1)/2, (p− 5)/4, (p− 1)/4), we count
|T3| = |T0| = p(p− 1)(p− 5)/48 and |T1| = |T2| = p(p− 1)2/16. The following lemma
describes the orbits of Γ0 on T0 and on T1:



Lemma 6.2.1. For the action of Γ0 on T1, we have:

(1) Every orbit contains an element of the type {0, 1, β} where β ∈ Q and β−1 ∈ Q.

(2) The triangle {0, 1, β′} is in the same orbit as {0, 1, β} if and only if β′ belongs
to {β, 1− β}.

(3) The stabiliser of {0, 1, β} is trivial, unless 2 ∈ Q and β = 2−1, in which case it
is of order 2 and is equal to {(0, 1), (1,−1)}.

For the action of Γ0 on T0, we have:

(1) Every orbit contains an element of the type {0, α, β} where β ∈ Q and β−α ∈ Q.

(2) The triangle {0, α, β′} is in the same orbit as {0, α, β} if and only if β′ belongs
to {β, α2β−1, α− β, α2(α− β)−1, αβ−1(β − α), αβ(β − α)−1}.

(3) The stabiliser of {0, α, β} is trivial, unless we are in one of the following cases:

(i) 2 ∈ Q and β = 2α,−α, α/2, all three triangles are in the same orbit, and
the stabiliser is {±1}.

(ii) 3 ∈ Q and α2 + β2 − αβ = 0, the two corresponding triangles are in the
same orbit, and the stabiliser has order 3 generated by γ := (α,−αβ−1).

To summarize, every orbit except maybe one or two has length p(p− 1)/2 so the
number of orbits of Γ0 acting on T0 is essentially (p− 5)/24.

6.2.2 The irreducible representations of Γ0

The irreducible representations of Γ0 are the following:

• We have the characters of degree one lifted from Q, through the quotient map
Γ0 → Γ0/Zp ' Q. There are (p− 1)/2 such characters.

• We have the induced representations from characters of (Zp,+). Let χ be a
non trivial character of (Zp,+). To fix ideas, let ζp ∈ C be a p-th root of 1 and
χ(t) := ζtp. The representation IndΓ0

Zpχ is irreducible and has degree (p − 1)/2.
It can be described as R = ⊕a∈QCea with the action (t, 1).ea = χ(ta−1)ea and
(0, s).ea = esa (and thus (t, s).ea = χ(ts−1a−1)esa). We see from its characters
that among IndΓ0

Zpχ
r, r ∈ Z×p , there are two classes of isomorphism corresponding

to r ∈ Q and r ∈ Q.

To summarize, we have (p−1)/2 representations of degree 1 and 2 representations of
degree (p− 1)/2. It matches with |Γ0| = p(p− 1)/2 = 12 · (p− 1)/2 + ((p− 1)/2)2 · 2.



6.2.3 The decomposition of ∧2 CZp under Γ0

Let W = CZp = ⊕p−1
i=0Cei. The action of γ = (t, s) ∈ Γ0 on ei is thus γei = et+si

and on ei ∧ ej it is γ(ei ∧ ej) = et+si ∧ et+sj. In view of the symmetrization of ϑ2
we need a precise description of the irreducible decomposition of ∧2W , namely we
need an explicit orthonormal basis for each irreducible subspace, and when there are
isomorphic irreducible subspaces, we need basis in which the action of Γ0 is expressed
by the same matrices.

We consider the natural ordering 0 < 1 < · · · < (p−1) for the elements of Zp and
thus the standard basis of Λ2W is {ei ∧ ej, 0 ≤ i < j ≤ (p− 1)}.

Theorem 6.2.2. The irreducible characters appearing in the decomposition of Λ2W
under the action of Γ0 are:

• the (p − 1)/4 characters lifted from characters ψ of Q such that ψ(−1) = −1,
each with multiplicity 2,

• the characters IndΓ0
Zpχ and IndΓ0

Zpχ
α, where χ is a character of (Zp,+), each with

multiplicity (p− 1)/2.

Proof. Let ψ be a multiplicative character of Q. We again denote ψ its lift to Γ0. We
apply the idempotent 1

|Γ0|
∑
γ∈Γ0 ψ(γ−1)γ to e0 ∧ e1 leading to

vψ1 := 1
|Γ0|

∑
s∈Q

ψ(s−1)
∑
t∈Zp

et ∧ et+s

We see that et ∧ et+s = ±e0 ∧ e1 if and only if (t, s) = (0, 1) or (t, s) = (1,−1). In
the last case et ∧ et+s = e1 ∧ e0 = −e0 ∧ e1 so vψ1 6= 0 if and only if ψ(−1) = −1.
Moreover, if ψ(−1) = −1, the expression of vψ1 on the standard basis is:

vψ1 = 1
|Γ0|

∑
i<j

j−i∈Q

2ψ((j − i)−1)(ei ∧ ej).

So vψ1 6= 0 and γvψ1 = ψ(γ)vψ1 . That is, the space generated by vψ1 is G-stable and G
acts on it with character ψ. In a similar way, we construct an element vψ2 such that
γvψ2 = ψ(γ)vψ2 :

vψ2 := 1
|Γ0|

∑
s∈Q

ψ(s−1)
∑
t∈Zp

et ∧ et+sα

= 1
|Γ0|

∑
i<j

j−i∈Q

2ψ((j − i)−1α)(ei ∧ ej).



We note that it is orthogonal to vψ1 .
Now we look for the subspaces isomorphic to IndΓ0

Zpχ, where χ is a character of
(Zp,+). We consider, for ` 6= 0,

uχ` := 1
p

∑
t∈Zp

χ(−t)(et ∧ et+`).

We have that t.uχ` = χ(t)uχ` , u
χ
` = −χ(`)uχ−` and 〈u

χ
` , u

χ
`′〉 = 0 if ` 6= ±`′ mod p. So

the character χ of Zp occurs with multiplicity (p−1)/2 in 〈uχ` : ` = 1, . . . , (p−1)/2〉.
The character IndΓ0

Zpχ of Γ0 occurs with multiplicity at least (p − 1)/2. Indeed, the
subspaces R` := ⊕s∈Qs.uχ` for ` = 1, . . . , (p − 1)/2, realize this representation, and
the action of Γ0 in the basis {s.uχ` , s ∈ Q} is as described in the subsection 6.3.2.
Moreover, the vectors {s.uχ` , s ∈ Q, ` = 1, . . . (p − 1)/2} are pairwise orthogonal:
〈s.uχ` , s.u

χ
`′〉 = 〈uχ` , u

χ
`′〉 = 0 if ` 6= `′ and 〈s.uχ` , t.u

χ
`′〉 = 0 if s 6= t because Zp acts with

different characters on this vectors. It remains to express s.uχ` in the standard basis.
We have

s.uχ` = 1
p

∑
t∈Zp

χ(−t)(est ∧ est+s`)

= 1
p

∑
t∈Zp

χ(−ts−1)(et ∧ et+s`)

= 1
p

( ∑
i<j

j−i=s`

χ(−is−1)(ei ∧ ej)−
∑
i<j

j−i=−s`

χ(−js−1)(ei ∧ ej)
)

To summarize, we have found in ∧2W : the (p − 1)/4 characters ψ of Q such that
ψ(−1) = −1, each of dimension 1 and with multiplicity 2 and the characters IndΓ0

Zpχ

and IndΓ0
Zpχ

α, each of dimension (p− 1)/2 and with multiplicity (p− 1)/2. Indeed,

dim(
∧2

W ) =
(
p

2

)
= 2 · (p− 1)/4 + 2 · ((p− 1)/2) · ((p− 1)/2)

so the lower bounds found for the multiplicities are equalities. �

6.2.4 Expression of the Γ0-invariant matrices

Let X ∈ R(p2)×(p2), then by theorem 2.4.1 we know that X is Γ0-invariant and positive
semidefinite if and only if

X(ij, k`) =
∑

ψ : ψ(−1)=−1
〈Aψ, Eψ(ij, k`)〉+ 〈Aχ, Eχ(ij, k`)〉+ 〈Aχα , Eχα(ij, k`)〉



where Aψ, Aχ, Aχα are hermitian positive semidefinite matrices of size respectively
2, (p− 1)/2, (p− 1)/2.

For 1 ≤ a, b ≤ 2,(
Eψ
)
a,b

(ij, k`) = 〈vψa /‖vψa ‖, ei ∧ ej〉〈v
ψ
b /‖v

ψ
b ‖, ek ∧ e`〉

=


4ψ((j−i)−1(l−k)αa−b)

p(p−1) if


(
j−i
p

)
= (−1)a−1(

l−k
p

)
= (−1)b−1

0 otherwise

For 1 ≤ a, b ≤ (p− 1)/2,(
Eχ
)
a,b

(ij, k`) =
∑
s∈Q
〈s.uχa/‖s.uχa‖, ei ∧ ej〉〈s.u

χ
b /‖s.u

χ
b ‖, ek ∧ e`〉

=


1
p

(
χ((k − i)s−1) + χ((j − l)s−1)

)
if a−1(j − i) = b−1(l − k) =: s and s ∈ Q

−1
p

(
χ((l − i)s−1) + χ((j − k)s−1)

)
if a−1(j − i) = −b−1(l − k) =: s and s ∈ Q

0 otherwise

The same formula holds for Eχα replacing χ with χα.

6.2.5 The final reduction
We are now ready to symmetrize the program 5.3.1 for Paley graphs for the case
k = 2. Recall the original formulation:

ϑ2(P (p)) = max
{
〈L′1, X〉 : X ∈ R(p2)×(p2) � 0

〈I,X〉 = 1
Xs,s′ 6= 0 only if s = s′ ∈ E or s ∪ s′ is

a triangle without edges
Xab,ac = −Xab,bc = Xac,bc ∀ a < b < c

}
This program is clearly invariant for the Γ0 action. Then, using the definition of

L′1 and lemma 6.3.1, the objective function writes as

〈L′1, X〉 = 2
∑
a<b

Xab,ab + 6
∑
a<b<c

Xab,ac

= 2Tr(X) + 6
∑

a<b<c : abc∈T0

Xab,ac

= 2 + 6
∑
β∈Ω

CβX0α,0β



where Ω is such that {(0, α, β) : β ∈ Ω} is the collection of the canonical repre-
sentatives of the orbits of Γ0 on T0, and Cβ is the cardinality of the corresponding
orbit.

The trace of X is given by

Tr(X) =
∑

a<b : ab∈E

Xab,ab = p(p− 1)
4 X0α,0α

Then, with the zonal matrices for the action of Γ0 derived before, we can announce
the final reduction of the program:

Theorem 6.2.3. With the previous notation, for every p prime,

α(P (p)) ≤ 2 + 6 max
{∑

β∈ΩCβX0α,0β : Aψ, Aχ, Aχα � 0
p(p−1)

4 X0α,0α = 1
}

where Aψ, Aχ, Aχα are obtained as the scalar product of X with Eψ, Eχ, Eχα respec-
tively: (

Aρ
)
a,b

= 1
dim(ρ)

∑
i<j, k<`

X(ij, kl)
(
Eρ
)
a,b

(ij, k`).

In the following table we compare the bound of theorem 6.3.3 with the bound
L2(P (p)) in [23] (see section 2.2.3) for several values of p. The reason is that both
bounds involve triples of words.



p
√
p ϑ2(P (p)) L2(P (p)) α(P (p))

61 7.810 5.874 5.465 5
73 8.544 6.236 5.973 5
89 9.433 6.304 6.304 5
97 9.848 7.517 7.398 6
101 10.049 6.898 6.611 5
109 10.440 7.366 7.366 6
113 10.630 7.676 7.599 7
137 11.704 8.623 8.200 7
149 12.206 8.750 8.231 7
157 12.529 8.851 8.707 7
173 13.152 10.020 9.426 8
181 13.453 9.466 9.112 7
193 13.892 9.301 9.210 7
197 14.035 9.902 9.226 8
229 15.132 10.707 10.290 9
233 15.264 10.537 10.182 7
241 15.524 10.073 9.891 7
257 16.031 10.469 10.247 7
269 16.401 11.450 10.624 8
277 16.643 11.282 10.340 8
281 16.763 11.034 10.605 7
293 17.117 11.706 10.937 8
313 17.691 12.182 11.551 8
317 17.804 12.535 12.337 9
337 18.357 12.129 11.658 9
401 20.024 13.329 12.753 9
509 22.561 14.974 14.307 9
601 24.515 16.694 16.077 11
701 26.476 17.581 16.857 10
809 28.442 18.439 17.371 11

Table 6.1: Values of ϑ2(P (p))

Note: All values of the semidefinite programs have been obtained with the solvers
SDPA or SDPT3, available on the NEOS website (http://www.neos-server.org/neos/).



6.3 Circulant subgraphs of Paley graphs
Definition 6.3.1. Given n ≥ 2 and J ⊂ {1, . . . , n − 1} such that J = −J , the
circulant graph Cn(J) is the graph with vertices Z/nZ and edges {ij : i− j ∈ J}.

Equivalently, a circulant graph is a graph whose adjacency matrix is circulant, i.e.
all of its rows are obtained by a cyclic shift of the first one. In particular, a circulant
graph is a Cayley graph on an additive group with generating set J . Clearly, Cn(J)
is regular of degree |J |.

Let J = {1, . . . , n− 1} \ J ; then Cn(J) is the complementary graph of Cn(J). We
introduce J0 = J ∩{1, . . . , bn/2c} and note that J = J0 ∪−J0. We have |J0| = |J |/2
if n/2 /∈ J and |J0| = (|J |+ 1)/2 otherwise. Obviously Cn(J) ' Cn(aJ) for a ∈ Z×n .

Because translations by Zn act transitively on vertices of Cn(J), we have

ϑ(Cn(J))ϑ(Cn(J)) = n. (6.3.1)

Let Q be the subgroup of squares of Z×p and Q = Z×p \ Q, so that we have the
disjoint union Zp = Q ∪Q ∪ {0}.

Proposition 6.3.2. The induced subgraphs Q and Q of the Paley graph P (p) are
circulant graphs of order n = (p− 1)/2.

Proof. If α is a primitive element of Zp and β = α2, then Q is the graph with vertices
{βi, 0 ≤ i ≤ (p − 3)/2} and edges between βi and βj if and only if βi − βj ∈ Q,
or equivalently βi−j − 1 ∈ Q. So Q is isomorphic to the circulant graph of order
(p− 1)/2 with associated set

J(Q) = {j ∈ [(p− 3)/2] : βj ∈ 1 +Q}

and similarly Q ' C(p−1)/2(J(Q)) for

J(Q) = {j ∈ [(p− 3)/2] : βj ∈ 1 +Q}.

We note that |J(Q)| = (p− 5)/4 and |J(Q)| = (p− 1)/4, due to strong regularity of
Paley graphs. �

On the other hand we have

Theorem 6.3.3.
α(P (p)) = α(Q) + 1

Proof. An independent set for P (p) can be assumed to contain 0 after translation.
Then the non zero elements are contained in Q. Conversely, the union of an inde-
pendent set of Q and {0} makes an independent set of P (p). �

So, α(P (p)) ≤ ϑ(Q) + 1 and, as Q is a subgraph of P (p), ϑ(Q) ≤ ϑ(P (p)).



6.4 Formulations for the ϑ number of a circulant
graph

Remember that Q is a circulant graph of even order n = (p− 1)/2. So for the rest of
the section we assume that n is even and we look at ϑ(Cn(J)) more in details. Due
to transitivity of Zn, the ϑ number is a linear program.

Theorem 6.4.1.

ϑ(Cn(J)) = max{ nf0 : f ∈ R1+n/2

f0, f1, . . . , fn/2 ≥ 0
n/2∑
`=0

f` cos
(2π`j

n

)
= δj,0 j ∈ {0} ∪ J0 }

(6.4.1)

ϑ(Cn(J)) = min{ ng0 : g ∈ R1+|J0|∑
j∈{0}∪J0

gj cos
(2π`j

n

)
≥ δ`,0 ` ∈ [0, . . . , n/2] } (6.4.2)

Proof. By definition, we have

ϑ(Cn(J)) = max{ ∑F (γ, δ) : F ∈ Rn×n, F � 0∑
F (γ, γ) = 1

F (γ, δ) = 0 if γ − δ ∈ J }

Such program is invariant for the additive action of Z/nZ on itself, thus we can restrict
to consider functions F such that F (γ + x, δ + x) = F (γ, δ) for any x ∈ Z/nZ. Such
functions can be written as F (γ, δ) = F̃ (γ − δ) for some F̃ : Z/nZ → R such that
F̃ (−j) = F̃ (j).

Recall that the characters of Z/nZ are given by:

χ` : Z/nZ −→ C×

j −→ e2iπj`/n

for ` = 0, . . . , n− 1. Then F̃ expands as

F̃ (j) =
n−1∑
`=0

f`χ`(j) =
n−1∑
`=0

f`e
2iπj`/n

with the following properties:

• F � 0⇔ f` ≥ 0 ∀ `



• F̃ real-valued implies that f` = fn−` ∀ `

• it follows that F̃ (j) = f0 +∑n/2
`=1 2f` cos(2πj`/n)

• we have

∑
γ,δ∈Z/nZ

F (γ, δ) = n
∑

j∈Z/nZ
F̃ (j) = n

(
nf0 +

∑
`

2f`
n−1∑
j=0

cos(2πj`/n)
)

= n2f0

∑
γ∈Z/nZ

F (γ, γ) = nF̃ (1) = n(f0 + 2f1 + · · ·+ 2fn/2)

F̃ (j) = 0 for j ∈ J0

So, renaming f0 = nf0 and f` = 2nf` for ` = 1, . . . , n− 1, we find 6.5.1. By duality,
6.5.2 follows. �

We note J c0 = {1, . . . , n/2} \ J0. For the Paley graph, J c0(Q) = J0(Q). For
p ≡ 1 mod 8 they have the same number of elements. For p ≡ 5 mod 8 they differ
by 1. Then the idea is that the two optimal values ϑ(Q) and ϑ(Q) are rather close
because the sets J0(Q) and J0(Q) are random enough, with the consequence that the
cosinus are ”interlaced” enough.

We have computed some values of the linear program ϑ(Q) up to p < 20000. The
optimal value is around

√
(p− 1)/2, but it doesn’t seem to converge.

Remark 6.4.2. The optimal value of (6.5.1) for Q is obtained for f ∗ such that some
of the coordinates f ∗` = 0. Let us denote {0} ∪L the support of the optimal solution
f ∗. Then |L| = |J0| so that f ∗ is uniquely obtained by solving a linear system (this is
because the vertices of the polytope on which we are optimizing are all obtained this
way: by setting an appropriate number of coordinates to zero). Then the optimal
value for Q has support {0} ∪ L. However we couldn’t so far find a relationship
between J0 and L.

Here the discussion remains open. From the relation ϑ(Q)ϑ(Q) = (p − 1)/2 and
the considerations above, one can hope that, roughly speaking,

ϑ(Q) ≈ ϑ(Q) ≈
√

(p− 1)/2

This would lead to a minor improvement on the estimate of α(P (p)) with respect
to the known bound α(P (p)) ≤ √p. Nevertheless it seems that it is really hard to
improve this bound, especially with a multiplicative factor. In [7] the authors prove
α(P (p)) ≤ √p− 1 under some conditions on p.
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Programmation semidéfinie positive dans l’optimisation combinatoire avec
applications à la théorie des codes correcteurs et à la géométrie.

Résumé : Une nouvelle borne supérieure sur le cardinal des codes de sous-espaces d’un
espace vectoriel fini est établie grâce à la méthode de la programmation semidéfinie positive. Ces
codes sont d’intérêt dans le cadre du codage de réseau (network coding). Ensuite, par la même
méthode, l’on démontre une borne sur le cardinal des ensembles qui évitent une distance donnée
dans l’espace de Johnson et qui est obtenue par une variante d’un programme de Schrijver. Les
résultats numeriques permettent d’améliorer les bornes existantes sur le nombre chromatique
mesurable de l’espace Euclidien. Une hiérarchie de programmes semidéfinis positifs est construite
à partir de certaines matrices issues des complexes simpliciaux. Ces programmes permettent
d’obtenir une borne supérieure sur le nombre d’indépendance d’un graphe. Aussi, cette hiérarchie
partage certaines propriétés importantes avec d’autres hiérarchies classiques. A titre d’exemple,
le problème de déterminer le nombre d’indépendance des graphes de Paley est analysé.

Mots clés : théorie des graphes, nombre d’indépendance, nombre chromatique, SDP, codes
projectifs, hiérarchies.

Semidefinite programming in combinatorial optimization with applications to
coding theory and geometry.

Abstract: We apply the semidefinite programming method to obtain a new upper bound
on the cardinality of codes made of subspaces of a linear vector space over a finite field. Such
codes are of interest in network coding. Next, with the same method, we prove an upper
bound on the cardinality of sets avoiding one distance in the Johnson space, which is essentially
Schrijver semidefinite program. This bound is used to improve existing results on the measurable
chromatic number of the Euclidean space. We build a new hierarchy of semidefinite programs
whose optimal values give upper bounds on the independence number of a graph. This hierarchy
is based on matrices arising from simplicial complexes. We show some properties that our
hierarchy shares with other classical ones. As an example, we show its application to the problem
of determining the independence number of Paley graphs.

Keywords: graph theory, stable number, chromatic number, SDP, projective codes, hierarchies.
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