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Abstract

Photovoltaic energy rates among the most mature renewable sources currently available
in the market. However, its growing use in urban environment has met with an important
obstacle: shadows. Their study present a two-fold challenge: understanding what they are
and how they can be mitigated. While many authors have proposed different solutions for
this problem, very few have tried to understand the shadow in its complexity. This thesis
seeks, at the same time, a comprehensive view on the shadow itself while proposing a new
solution to mitigate it.

The comprehensive view of the shadow is proposed through an intermittency theory,
where its optical properties and electrical consequences are taken into account. This theory
provides the elements to review the current literature into a new perspective. The available
solutions are, then, divided into two families: series and parallel. Series solutions employ
several structures, each extracting the power of a reduced number of photovoltaic cells. As
a consequence the impact of the shadow is restricted. Parallel solutions use few structures
to redistribute the current between shaded and unshaded photovoltaic cells, thus sharing
the impact of the shadow.

The new solution proposed to mitigate the shadow is a parallel system called PV Equal-
izer. Inspired from its battery equivalent, it has a different topology with a high integration
potential, easily scalable but seemingly difficult to control. To prove its concept, a study
is conducted to determine its functions. It is found to be capable of not only mitigating
but also detecting the shadow. These functions are characterized and their results used to
conceive a control algorithm. Finally, this algorithm is tested and validated in a prototype
under real operating conditions. The system detected the presence of the shadow, chose
the best way to mitigate it and raised the power output by roughly 40 %.
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Résumé

L’énergie photovoltaïque est à nos jours l’une des sources intermittentes les plus dévelop-
pée. Plusieurs années de recherche confèrent une importante maturité à la fois aux modules
et aux systèmes de extraction et traitement de son électricité. Cependant, il lui reste en-
core un important obstacle à franchir avant son utilisation à large échelle : la présence
des ombres. Alors que plusieurs solutions ont été déjà proposées pour ce problème, la
recherche sur l’ombre en tel que phénomène complexe reste embryonnaire. Cette thèse a
pour but de combler ce besoin à la fois en étudiant la présence d l’ombre et en y proposant
une nouvelle réponse.

L’étude de l’ombre comprend la proposition d’une théorie sur l’intermittence qui prend
en compte des aspect à la fois électriques et optiques. A travers de cette théorie, une
relecture de la littérature est aussi proposée et donne lieu à une classification des solu-
tions existantes en séries ou parallèles. Les solutions séries utilisent plusieurs structures
d’électronique de puissance pour extraire l’énergie d’un nombre plus restreint des cellules
photovoltaïques et par conséquent y confinent l’impact de l’ombre. En contre partie, les
solutions parallèles utilisent des structures spéciales pour redistribuer le courant parmi les
cellules ombrées et illuminées, ce qui amène à lŠeffacement de l’ombre.

La nouvelle réponse à l’ombre proposée dans ce travail s’agit d’une structure parallèle
à forte potentiel d’intégration monolithique. Inspirée de son équivalent pour les batteries,
cette nouvelle topologie est applicable à plusieurs échelles mais sa commande reste un as-
pect à maîtriser. Son concept de base est validé au niveau d’un seul module photovoltaïque
par la création d’un prototype et une validation expérimentale. Sa commande y est ensuite
développée, testée et validée. Le système est capable de détecter la présence de l’ombre,
choisir la meilleure stratégie pour la mitiger et l’implémenter en toute autonomie. Le
résultat final est une augmentation de la puissance de sortie d’environ 40% dans certains
cas.
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Résumé de la thèse

Une grande portion du potentiel photovoltaïque installé dans le monde se trouve en zones
urbaines ou suburbaines. Leur proximité de la charge est un atout important à leur em-
placement, avantage réduit par la présence des ombres. Celles-ci peuvent être issues de la
présence d’arbres, de cheminées ou d’autres obstacles situés aux alentours des installations
photovoltaïques.

Les ombres et leur impact sur la production photovoltaïque ont fait l’objet de plusieurs
études. Cependant, il manque encore une vision globale qui permet à la fois de comprendre
le phénomène d’ombrage et d’évaluer les solutions jusqu’à présent proposées. Sans cette
méthode d’analyse, la question de l’intermittence demeure simplement une motivation
à l’introduction des nouvelles topologies d’électronique de puissance ou algorithmes de
commande.

Dans ce contexte, les travaux de thèse décrits dans ce document ont deux objectifs
complémentaires. D’une part, ils proposent une théorie capable de décrire la totalité des
solutions actuellement disponibles dans la littérature scientifique et d’autre part, il s’en
sert pour proposer une nouvelle solution. Par conséquent, ses contributions sont aussi
divisées en deux parties.

Dans un premier temps, une étude générale des systèmes photovoltaïques et de leur
intermittence sera conduite. Elle propose un modèle d’ombre original qui est capable
de réunir, à la fois la géométrie de l’ombre et les interconnections électriques du module
photovoltaïque. Ce modèle est utilisé pour proposer une théorie sur l’intermittence pho-
tovoltaïque, aussi originale dans le domaine. Ces deux sont réunis pour faire une lecture
des différentes solutions qui figurent dans la littérature au moment de l’écriture de ce doc-
ument, classifiés par la suite en solutions du type séries et parallèles. Suite à une mise
en évidence de leurs points forts et de leurs limitations, le choix a été fait de contribuer
à l’amélioration des solutions de type parallèle. Cette première partie correspond à la
première section de ce résumé ou le chapitre 2 du manuscrit.

Dans un deuxième temps, une étude approfondie d’une solution parallèle innovante ap-
pelée l’Equilibreur PV sera proposée. Le principe de fonctionnement de l’Equilibreur PV
repose sur l’équilibrage de la disparité des courants au sein d’un module photovoltaïque
ombré. Sa topologie d’électronique de puissance est présentée et étudiée en détails per-
mettant la description de ses différentes fonctions. Chacune d’entre elles est analysée
séparément et leurs résultats sont réunis pour la création d’un système de commande pour
l’Equilibreur PV. Cette partie est composée par les reste de ce résumé ou les chapitres 3
à 6 du manuscrit.

Finalement, la conclusion propose une comparaison entre l’Equilibreur PV et les autres
solutions et des perspectives de recherche future.

1
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Chapitre 2 : Les systèmes photovoltaïques

Cette section porte sur l’étude générale des systèmes photovoltaïques (PV) et ses problèmes
d’intermittence. A leur intersection se trouvent plusieurs travaux disponibles dans la
littérature, qui seront aussi étudiés. Les conclusions sont d’autant plus importantes qu’elles
seront utilisées pour justifier les contributions proposées dans les prochaines sections de
ce résumé.

Les principes du PV

Les applications PV convertissent la lumière en électricité par le phénomène appelé effet
photovoltaïque. Son expression, détaillée dans l’équation 1, relie le courant, la tension, la
température et la lumière.

i = iph − i0

(

exp
[

(V + i · Rs)
Vt

]

− 1
)

−
V + i · Rs

Rp

(1)

iph représente le photo-courant, Rp et Rs respectivement la résistance parallèle et série,
i0 le courant de saturation inverse, i et V le courant et la tension de sortie. La variable
Vt symbolise la tension thermique et est décrite par l’équation 2.

Vt =
A · k · Tc

q
(2)

La variable A est le facteur d’idéalité, k constante de Boltzman, Tc la température
d’opération et q la charge électronique. L’énergie dégagée par une source de lumière est
appelée irradiance et mesurée en watt par mètre carré ( W

m2 ).
Pour des questions de simplicité, la production PV est décrite par des courbes carac-

téristiques. A titre d’exemple, deux courbes génériques sont montrées dans la figure 2.3, à
savoir la courbe qui montre la variation du courant en fonction de la tension (I-V) et celle
qui montre la variation de la puissance avec la tension (P-V).
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(b) La courbe P-V

Figure 1: Deux courbes caractéristiques génériques

Il est possible de distinguer trois points communs aux deux courbes ci-dessus. Il s’agit
du courant de court-circuit (iSC) représentée par un cercle, de la tension de circuit ouvert
(VOC) représentée par un triangle et le point de puissance maximale (MPP) représenté
par un carré. Ce dernier représente la tension ou le courant qui maximise la production
d’énergie.

Le MPP d’une application PV peut éprouver des changement selon les conditions de
température et de lumière. Il est, donc, impératif de l’asservir à l’aide des structures
d’électronique de puissance.



LIST OF TABLES 3

Les systèmes PV

L’objectif des systèmes PV est d’extraire l’énergie produite par les modules photovoltaïques
et de l’acheminer jusqu’à une charge ou le réseau électrique. La figure 2 montre une vue
simplifiée du système dans sa totalité.

Réseau 

ou 

charge
Hacheur

Partie DC Partie AC

Bus

DC Onduleur

Figure 2: Le système PV complet

Deux parties sont mises en évidence dans la figure ci-dessus: à gauche la partie DC et à
droite la partie AC. La première est composée par l’application PV, le hacheur DC, le bus
continu et l’entrée de l’onduleur. La deuxième est composée par la sortie de l’onduleur et
le réseau ou la charge. Ce document considère que l’effet de l’ombre est limité à la partie
DC et que la tension du bus continu est fixe.

Pour des contraintes techniques, les études de cette thèse ont été menées à l’échelle d’un
seul module PV, dit module de référence. Ceci est composé par 72 cellules connectées en
série regroupées par groupe de 18 cellules. Dans ce texte, ces groupes PV seront appelés
PVI , PVII , PVIII et PVIV . Leurs symboles figurant dans les schémas électriques sont
montrés dans la figure 3. Les caractéristiques complètes du module sont disponibles dans
l’Annexe B.

PVI

PVIII

PVIV

PVII

+

VIV
-

+

VIII
-

+

VII
-

+

VI
-

Figure 3: Symbole électrique du module PV de référence

Du fait de l’intermittence, le MPP du module PV est susceptible de varier au cours
du temps. Cette forte contrainte fait appel à une loi de commande spéciale pour piloter le
hacheur DC-DC connecté en série au module PV appelée Maximum Power Point Tracking
(MPPT). Elle repose sur le format de la courbe P-V du module montrée à la figure 2.11.
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Tension (V)

P
u

is
sa

n
ce

 (
W

)

P
↑
  V

↑

P
↓

  V
↑
Figure 4: Les deux zones de la courbe P-V

La partie rouge de la figure ci-dessus constitue une zone dans laquelle une augmentation
de la tension conduit à une augmentation de la puissance produite par le module. A
contrario, dans la zone verte une diminution de la tension mène à une augmentation de la
puissance. Le MPPT appliquera des légères variations de tension et observera la réaction
de la puissance de sortie. Si celle-ci monte, le sens de la variation reste inchangé, alors que
si elle baisse, le sens est inversé.

Compte tenu du fait que le module PV peut être vu comme une source de courant,
le système PV total est remplacé par une source de courant variable, comme montre la
figure 5.
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(b) Le système PV sim-
plifié

Figure 5: L’équivalence du système PV

Après l’introduction des simplifications et des principes de la production PV, ses im-
perfections peuvent maintenant être présentées.

Les imperfections de la production PV

Dans ce travail, les imperfections des systèmes PV sont classifiées comme internes et
externes.

Les imperfections internes ont leurs origine à l’intérieur des modules PV. Par
exemple elle, peuvent être dues aux mauvaises soudures, au vieillissement des cellules, aux
impuretés dans les cristaux de silicium ou à la variabilité de la production des modules. Ils
affectent principalement la résistance série (Rs), la résistance parallèle (Rp) et le courant
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de saturation inverse (i0) [van Dyk and Meyer, 2004, Bun, 2012]. Plusieurs auteurs ont
déjà travaillé sur cette problématique [Appelbaum et al., 1995, Junior, 1979, Chamberlin
et al., 1995, Picault et al., 2010b,a, Kaushika and Rai, 2007, Kaplanis and Kaplani, 2011,
Ye et al., 2013]. Quelques techniques pour combattre ce type d’imperfection peuvent être
trouvées dans [Appelbaum et al., 1995, Chamberlin et al., 1995].

Les imperfections externes sont liées aux changement du photo-courant (iph) ou de
la tension thermique (Vth) du module PV. Celles-là peuvent être causées par des fissures
dans les cellules PV suite à un stress mécanique ou thermique [Ramli and Salam, 2011,
Arnett, 1981, Alonso-Garcia et al., 2006] ou par la connexion en série des cellules PV avec
des irradiances différentes [Abdalla et al., 2013, Ramli and Salam, 2011, Wang et al., 2012,
Bidram et al., 2012, Villa et al., 2013]. Dans ce travail, une attention particulière a été
portée sur ses dernières, appelées ombrages partiels.

Lorsqu’un module PV se trouve sous des conditions d’ombrage partiel, une ombre se
trouve sur un ou plusieurs de ses groupes de cellules. Par conséquent, les groupes ombrés
produiront un courant plus faible que les groupes illuminés. Ce fait conduit à une limitation
du courant des groupes illuminés dans le meilleur des cas. Dans le pire cas, le courant
le plus élevé est imposé sur les groupes ombrés qui finissent par être détruits [Kawamura
et al., 2003]. Pendant le reste de ce travail, le MPPT est considéré comme capable d’éviter
le deuxième cas, mais pas le premier.

L’ombre étant un élément clé de ce travail, un effort de modélisation particulier lui a
été dédié par la suite.

Le modèle de l’ombre

Une ombre est considérée dans ce travail comme une projection à deux dimensions d’un
objet à trois dimensions. Elle compte une longueur et une largeur, selon l’objet qui la
projette.

Une autre « dimension » intervient aussi dans le cas des ombres pour le photovoltaïque:
l’opacité. Plus l’ombre est opaque, plus faible est le courant des cellules PV ombrées.

L’opacité est appelée taux d’ombrage (TO) dans ce document et elle est représentée
par un chiffre entre 0 et 1. Un TO de 0 signifie absence de l’ombre, alors qu’un TO de
1 dénote un filtrage total de l’irradiance par l’ombre. Les dimensions géométriques de
l’ombre et son TO sont représentés dans la figure 6.

largeur

lon
gu

eu
r

Objet

(a) La largeur et longueur d’une ombre

0.0 0.25 0.5 0.75 1.0

(b) Le taux d’ombrage

Figure 6: La description de l’ombre

Une quatrième dimension peut être aussi intégrée à l’ombre: le temps. Compte tenu
de l’existence de plusieurs groupes de cellules à l’intérieur du module PV, l’ombre et son
évolution dans le temps seront représentés par des états. Un état est composé par un
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vecteur à quatre chiffres, dont chacun décrit le taux d’ombrage d’un groupe de cellules.
La figure 7 montre l’équivalence entre le module PV de référence et son modèle à états.

(a) Le module PV de référence

[0.0  0.0  0.0  0.0]

(b) Le modèle à états

Figure 7: Le module PV de référence et le modèle à états

Pour simplifier la représentation des états d’ombre, un modèle binaire est aussi utilisé.
Il consiste à utiliser un seuil de référence sur TO et le comparer avec les TO de chaque
groupe PV. Les groupes dont la valeur du TO dépasse celle de référence seront considérés
comme ombrés (1) et ceux dont la valeur du TO se trouve en dessous seront considérés
comme non-ombrés (0).

En guise d’exemple, la figure 8 montre l’application du modèle à états et sa simplifi-
cation en modèle binaire avec un TO de référence de 0.3.

(a) Le modèle à états et son vecteur d’ombre (b) Le modèle binaire et son vecteur équivalent

Figure 8: La simplification du modèle à états en modèle binaire

Dans certains schémas électriques, le modèle à états est utilisé pour faciliter leur lisi-
bilité. La figure 9 montre l’équivalence entre celui-ci et le symbole électrique du module
PV. La valeur précise du TO est donnée pour le circuit où figure l’ombre.
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(a) Un exemple d’ombre décrite par le modèle à états (b) Son circuit électrique
équivalent

Figure 9: L’équivalence entre le module à état et le symbole électrique du module PV

Les modèles ci-dessus impliquent un lien entre l’ombre et les connectiques électriques
internes du système PV. Ce principe est à la base de la théorie d’intermittence proposée
ci-dessous.

Une théorie sur l’intermittence PV

La théorie proposée dans cette thèse affirme que l’intermittence PV est composée de deux
parties: optique et électrique.

L’intermittence optique vient limiter la quantité d’énergie reçue par les cellules PV.
Elle ne peut être résolue que par l’utilisation des solutions externes à l’application PV.
Ces solutions doivent apporter l’énergie perdue, pouvant être composées par du stockage
électrique ou d’autres centrales de production d’électricité. Les applications PV capables
de produire régulièrement de l’énergie en présence des ombrages partiels peuvent être
considérées comme stables. Plus une application PV est stable, moins elle fera recours à
de l’aide externe.

L’intermittence électrique affecte la quantité d’énergie délivrée par les cellules PV.
Elle ne peut être adressée que par des solutions internes à l’application PV. Ces solutions
doivent garantir une extraction maximale de l’énergie PV en présence d’ombre. Les appli-
cations PV capables de produire plus d’énergie lors que la présence des ombrages partiels
sont considérées comme robustes. Plus une application PV est robuste, moins elle a
besoin de modules supplémentaires pour délivrer une même quantité d’énergie.

Les concepts de stabilité et robustesse d’une centrale PV mènent à trois corollaires
de cette théorie. Le premier corollaire affirme qu’une centrale robuste a besoin de moins
d’aide externe pour être stable. Le second corollaire pose qu’il existe une limite pour la
robustesse mais aucune pour la stabilité. Le troisième corollaire défend qu’il n’existe que
quatre méthodes pour augmenter la robustesse d’une centrale photovoltaïque.

Les méthodes citées dans le troisième corollaire consistent à surdimensionner l’application
PV, diminuer le nombre de cellules par groupe, redistribuer le courant entre les groupes
de cellules et court-circuiter les cellules ombrées. Elles regroupent toute la littérature
existante concernant la résolution du problème d’ombrage partiel dans les applications
PV. Dans ce travail, elles seront appelées PRobES (de l’anglais Photovoltaic Robustness
Enhancing Solutions).
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Photovoltaic Robustness Enhancing Solutions - PRobES

La PRobES de référence, largement employée par l’industrie, est la diode de bypass.
Elle devient naturellement passante dans le pire cas d’ombrage naturel, où les cellules illu-
minées imposent leur courant sur celles qui sont ombrées. Les cellules ombrées deviennent
à leur tour court-circuitées et leur puissance est perdue. Par conséquent, les courbes P-V
sont déformées, rajoutant un nouveau challenge au MPPT. Plusieurs chercheurs concen-
trent leurs efforts sur la conception d’algorithmes performants et capables de trouver le
MPP sous n’importe quelle condition d’ombrage [Ramos-Paja et al., 2010, Ishaque, 2012,
Nguyen and Low, 2010].

Après les diodes de bypass, il existe deux grandes familles de PRobES dans la littéra-
ture: séries et parallèles.

Les PRobES séries reposent sur l’utilisation d’un grand nombre de convertisseurs
d’électronique de puissance au sein de l’application PV. Cela permet une diminution du
nombre de cellules asservies par chaque convertisseur et une restriction de l’effet de l’ombre.
Leur défi technologique est concentré sur l’efficacité des convertisseurs à basse puissance.
[Ishaque, 2012, Safari and Mekhilef, 2011, Ramos-Paja et al., 2010, Giral et al., 2011,
Nguyen and Low, 2010, Woyte et al., 2003]

Les PRobES parallèles cherchent à redistribuer le courant entre les cellules ombrées
et non-ombrées, son principe est illustré par la figure 10.
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MPP
PV Compensé

PV Ombré

Légende

Energie 

transférée

(c) Légende

Figure 10: Le principe des PRobES parallèles

La redistribution du courant consiste à répartir l’effet de l’ombre de façon équivalente
entre les cellules PV. Par conséquent, l’énergie disponible dans les cellules ombrées n’est
pas perdue. Cependant, les PRobES parallèles ont deux contraintes technologiques fortes:
la complexité de leurs inductances et de leurs commandes [Kadri et al., 2011, Walker
et al., 2003, Nimni and Shmilovitz, 2010, Shimizu et al., 2001, 2003]. Ces deux verrous les
empêchent d’être utilisées par l’industrie.

Inspiré de ces challenges, la contribution majeure de cette thèse porte sur une PRobES
parallèle, sa topologie innovante et sa commande associée.

Chapitre 3 : L’équilibreur photovoltaïque

L’innovation majeure proposée dans ce document est une PRobES appelée « Equilibreur
PV ». Elle est inspirée d’une topologie appliquée au stockage électrique [Park et al., 2009],
qui est présentée dans cette section avec ses fonctions et caractéristiques.
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Figure 11: La topologie de l’Equilibreur PV

La topologie proposée

La figure 11 présentée la topologie de l’Equilibreur PV. Elle est composée de 8 transistors
(T2 - T9), 10 diodes (D1 - D10), 4 condensateurs (CI - CIV ) et une seule inductance (L).

Le réseau de transistors autour des cellules PV permet le transférer du courant entre
elles à travers de la seule inductance. Les condensateurs CI à CIV ont pour rôle de filtrer
les variations de courant et de tension dans les cellules PV lors des commutations des
transistors. Les diodes D1 et D10 constituent une fonction de sécurité supplémentaire qui
se déclenche automatiquement si la tension du module PV devient négative.

Les fonctions de l’Equilibreur PV

L’Equilibreur PV peut compenser ou détecter la présence de l’ombre. La compensation
est assurée par la fonction d’équilibrage et de bypass, alors que la détection se sert de la
fonction de scrutation. Ces trois fonctions sont introduites dans cette section et étudiées
en détail dans les sections suivantes.

La fonction d’équilibrage

La fonction d’équilibrage utilise une stratégie de commutation et un rapport cyclique pour
faire le transfert d’énergie entre les groupes de cellules PV.

Une stratégie de commutation est composée par une seule charge et décharge de
l’inductance. Elle est appelée BSS, de l’anglais basic switching strategy. Tous les BSS
sont représentés par une notation spéciale présentée par les circuits dans la figure 12. Dans
ces trois cas, l’ombre se trouve sur le groupe de cellules PVIII .
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Figure 12: La notation des stratégies de commutation

Dans le circuit de la figure 12(a), les groupes PVI et PVII sont utilisés pour charger
l’inductance. Lors de la phase de décharge, celle-ci est connectée en parallèle au groupe
PVIII . Cette BSS est représentée par I.II → III, la flèche donnant le sens du transfert
d’énergie. Les groupes qui donnent de l’énergie figurent à gauche et celui qui en reçoit se
trouve à droite. La même convention est utilisée pour l’exemple de la figure 12(b), ce qui
donne IV → III. La stratégie résultante de l’utilisation consécutive des 2 BSS des figures
12(a) et 12(b) est appelée CSS de l’anglais Complex Switching Strategy

Afin d’éviter l’utilisation des CSS, un autre type de stratégie de commutation est
proposé par la figure 12(c). Cette stratégie, dite Universelle, est représentée par All →

III où All fait référence à toutes les groupes de cellules PV.
Le rapport cyclique est calculé selon l’équation 3, où nCH correspond au nombre des

groupes utilisés pour charger l’inductance et nSH au nombre des ceux qui la déchargent.

D =
nDCH

nCH + nDCH

(3)

Les BSS sont considérées comme indépendantes et lorsqu’elles composent une CSS leur
rapport cyclique est calculé séparément.

La fonction de bypass

La fonction de bypass a pour rôle de court-circuiter les groupes de cellules PV ombrés.
Cela permet au MPPT de chercher le MPP le plus haut, comme dans le cas des diodes de
bypass. Pour ce faire, l’Equilibreur PV doit simplement fermer les transistors de décharge
autour des groupes de cellules ombrées. Lorsque le MPPT impose un courant plus élevé
que l’iSC des cellules ombrées, leurs tensions deviennent négatives et un courant circule à
travers de l’inductance. Ce principe est illustré par la figure 13.
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Figure 13: Le principe de la fonction bypass

La fonction de scrutation

Le principe de la fonction de scrutation consiste d’échantillonner l’énergie de chaque groupe
de cellules PV pour en déduire l’emplacement de l’ombre. Cela est fait au travers de
lectures de courant prélevées suite à des charges très courtes de l’inductance par un seul
groupe. Leurs résultats sont comparés entre eux une fois la scrutation finie. La figure 14
illustre ce principe par un exemple où l’ombre est située sur PVI .
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Figure 14: Le principe de la fonction de scrutation

L’évolution dans le temps de la tension et du courant dans l’inductance est illustrés
par la figure 15, où le pic plus bas indique la présence de l’ombre.
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Figure 15: La tension et le courant dans l’inductance pendant la scrutation

Il est important de remarquer que l’utilisation de la fonction de scrutation cause
l’interruption de la production d’énergie. Même si celle-ci dure seulement quelques mi-
crosecondes, son coût énergétique est non nul. Par conséquent, elle doit être utilisée avec
parcimonie.

Validation pratique

Pour valider l’Equilibreur PV, deux séries de mesures ont été réalisées à l’aide du prototype
développé dans ce travail et décrit dans l’annexe B. Leur objectif est de estimer les gains
énergétiques pour différents taux d’ombrage. Chaque série est composée de quatre mesures,
toutes faites avec les mêmes BSS et rapport cycliques. Le tableau 1 en décrit les détails.

Table 1: Les détails des mesures réalisées

Stratégie irr TA TM Taux d’ombrage

de Commutation ( W
m2 ) (℃) (℃) PVI PVII PVIII PVIV

II.III.IV → I

798 34.2 51.4 0.21 0 0 0
773 33.9 51.4 0.36 0 0 0
755 33.9 51.2 0.47 0 0 0
735 33.4 51.3 0.56 0 0 0

III.IV → I.II

851 29.2 47.2 0.21 0.21 0 0
852 29.3 47.2 0.36 0.36 0 0
833 30.6 49.3 0.47 0.47 0 0
834 30.8 49.1 0.56 0.56 0 0

La figure 16 montre la variation de la puissance de sortie en fonction du taux d’ombrage.
Les points représentent les mesures et les lignes leurs projections linéaires.
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Figure 16: L’impact du taux d’ombrage sur la puissance du module de référence

Dans les deux cas, l’utilisation de l’Equilibreur PV augmente la puissance de sortie.
Sur la figure 16(a), le gain maximal est de l’ordre de 15 W ce qui représente environ 18%.
Ce gain est encore plus important pour la figure 16(b) qui compte avec un gain de 18 W
soit 36%. A la vue de ces résultats très encourageants, le potentiel de cette solution est
considéré comme validé. Plus des détails sur la caractérisation des pertes sont disponibles
dans le chapitre 3 Cependant, son utilisation est conditionnée au développement de sa
commande, sujet auquel les prochaines sections sont dédiées.

Chapitre 4 : La compensation de l’ombre

La commande de l’Equilibreur PV doit être capable de localiser l’emplacement de l’ombre
sur l’ensemble des cellules et de choisir la stratégie capable de maximiser la puissance pro-
duite. Cette section présente le premier pas vers son développement par la caractérisation
des fonctions de compensation de l’ombre. Elle est divisée en deux parties: la première sur
le choix de la stratégie de commutation et la deuxième sur le choix du rapport cyclique.

Choix de la stratégie de commutation

La stratégie de commutation a fait l’objet d’une étude quasi-exhaustive qui comprend 20
cas d’ombre et 178 stratégies différentes. Compte tenu de sa complexité, les détails ne
sont pas traités dans ce résumé. A la place, les principaux résultats sont expliqués par
l’intermédiaire de l’algorithme montré dans la figure 17.

Les différents états d’ombre ont été divisés en trois types, à savoir les ombrages contigus,
les non contigus et les modérés. Le choix des stratégies repose sur la comparaison du
nombre de groupes ombrés (NSH) et illuminés (NUSH).

Une seule stratégie n’est pas capable de compenser toutes les types d’ombres. En effet,
chaque cas d’ombre exige une stratégie différente selon son état. Il est donc très important
de détecter la présence de l’ombre correctement.

Après le choix de la stratégie de commutation, son rapport cyclique doit être estimé.

Choix du rapport cyclique

L’impact du rapport cyclique dans la puissance de sortie du module PV est étudié en
théorie, simulation et pratique.
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L’étude théorique du rapport cyclique repose sur une expression mathématique qui
relie celui-ci à la puissance de sortie. La figure 18 montre son résultat pour le BSS I.II →

III.IV .
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Figure 18: La puissance de sortie en fonction du rapport cyclique

La puissance de sortie pendant l’équilibrage est maximale pour un seul rapport cy-
clique. Pour expliquer ce phénomène, une étude par simulation a été conduite et validée
en pratique.

Les conditions lors des mesures sont détaillées dans le tableau 2.

Table 2: Détails des mesures effectuées pour l’étude du rapport cyclique

Case
Duty Irr TA TM SF
Cycle ( W

m2 ) ℃ ℃

I.II → III.IV

0.20 757

34.1 53.9 [0 0 0.76 0.76]
0.24 752
0.28 751
0.30 748
0.40 745

La figure 19 montre l’impact du rapport cyclique sur la courbe P-V du module de
référence.
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Figure 19: Effet du rapport cyclique dans la courbe P-V
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L’augmentation du rapport cyclique fait disparaître les deux MPP figurant dans la
courbe P-V. Ils donnent lieu à un seul MPP, qui est maximale lorsque la valeur optimale
est atteinte. Au-delà de celle-ci, la puissance diminue à cause des diodes de l’Equilibreur
PV. Ces résultats montrent qu’un algorithme du type Disturb & Observe peut être utilisé
pour optimiser le rapport cyclique pour n’importe quelle stratégie de commutation. Il est
appelé ODCT, de l’anglais Optimal Duty Cycle Tracker.

L’algorithme décrit dans la figure 17 et l’ODCT donnent à l’Equilibreur PV la capacité
de réagir à tous les états d’ombres possibles. Il lui reste maintenant à les trouver.

Chapitre 5 : La détection de l’ombre

La détection de l’ombre peut être faite par les méthodes directe, semi-directe et indirecte.
Chacune fait l’objet d’études approfondies dont seuls les résultats sont expliqués dans cette
section.

La méthode directe

La méthode directe repose sur l’utilisation récurrente de la fonction de scrutation et
l’analyse de ses lectures de courant. Celles-ci représentent les écarts de tension entre
les différent groupes de cellules. Cet écart peut changer si l’Equilibreur PV est actif ou
pas.

Dans le cas où l’Equilibreur PV n’est pas actif, l’interprétation des lectures porte
sur leurs écarts. Les valeurs maximale et minimale sont utilisées pour calculer un seuil
d’ombre. Tout groupe de cellules dont la lecture s’en trouve au-delà est considéré comme
non-ombré, alors que celui qui se trouve en deçà est considéré comme ombré. Cette
approche est illustrée par la figure 20.
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Figure 20: Interprétation des pics lorsque l’Equilibreur PV est à l’arrêt

Si l’Equilibreur PV et la fonction d’équilibrage sont actifs, l’interprétation des lectures
est fortement influencée par la stratégie de commutation et l’état de l’ombre. Deux points
de référence peuvent être pris pour évaluer les lectures.

Le premier point la plus haute valeur issue des groupes de cellules considérés comme
illuminés. Une zone d’incertitude est établie autour d’eux, car lorsque l’équilibrage est
réussit, les tensions des groupes de cellules se rapprochent et aucune information peut en
être retirée. Les groupes illuminés dont la valeur des lectures se trouve en deçà de la zone
d’incertitude ont leur état changé vers ombré (0 → 1), alors que les groupes ombrés dont
les lectures se trouvent au-delà deviennent illuminés (1 → 0).

Le deuxième point de référence utilise la valeur la plus faible issue des groupes de
cellules considérés comme ombrés. Le principe de la zone d’incertitude reste inchangé,
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aussi bien que l’interprétation des pics. Un exemple de deux références est disponible dans
la figure 21.
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Figure 21: Interprétation des lectures lors de l’équilibrage

L’utilisation systématique et récurrente de la fonction de scrutation rend la méthode
directe stable mais énergétiquement chère. Ce problème est traité par la méthode semi-
directe.

La méthode semi-directe

Le but de la méthode semi-directe est de trouver une ou plusieurs variables dont le com-
portement peut être observé et lié au mouvement de l’ombre. Cela permet de déclencher
la scrutation seulement si nécessaire. Les variations des valeurs moyennes du courant dans
l’inductance et du courant de sortie portent l’information voulue. Le tableau 3 montre
leur relation avec l’ombre.

Table 3: Les relations entre les changements dans l’ombre et les courants observés

∆iL > 0 ∆iL < 0

∆iOUT > 0
L’ombre se contracte et

son TO est constant.
L’ombre ne se déplace

pas et son TO diminue.

∆iOUT < 0
L’ombre ne se déplace

pas et son TO
augmente.

L’ombre est en
expansion et son TO

est constant.

La détection des mouvements liés à la forme de l’ombre doit être prioritaire car ils
doivent être suivis d’un changement de la stratégie de commutation. Par conséquent,
lorsque des changements avec le même signe sont observés pour les valeurs moyennes des
courants, une scrutation doit être déclenchée. Le taux d’ombrage peut être corrigé par des
changements dans le rapport cyclique, ce qui est fait automatiquement par l’ODCT.

Les méthodes directe et semi-directe partent de l’hypothèse que l’ombre est un phénomène
complètement aléatoire. La méthode suivante cherche à réviser cette idée et à proposer
un modèle qui peut être utilisé par l’Equilibreur PV pour « anticiper » les mouvements
de l’ombre.
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La méthode indirecte

La méthode indirecte cherche à créer un modèle qui lie les états d’ombres entre eux à
travers des probabilités de transitions. Un certain nombre d’ombres et de trajectoires
théoriques sont confrontés au modèle d’état du module PV, ce qui a abouti à la chaîne de
Markov de la figure 22.
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Figure 22: Les résultats de l’étude théorique sur l’ombre

Les traits rouges marquent des transitions avec une probabilité plus forte, suivis par
les traits bleus et verts pour des probabilités de plus en plus faibles.

L’actualisation des liens entre les états peut être faite automatiquement par l’Equilibreur
PV suite à leur détection. Avec le temps, au lieu de déclencher une scrutation celui-ci
pourra tout simplement consulter un tableau de probabilités, changer d’état et choisir la
stratégie correspondante.

La détection est maintenant considérée comme résolue et le prochain pas consiste à
l’intégrer avec les méthodes de compensation d’ombres dans un seul algorithme de com-
mande.

Chapitre 6 : Le système de commande

Le système de commande de l’Equilibreur PV repose sur les résultats des études sur la
compensation et la détection de l’ombre. La figure 23 présente l’algorithme développé. Il
est composé de quatre blocs, à savoir initialisation, attente, détection et exécution.
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Figure 23: L’algorithme de commande

Le bloc d’initialisation lance les routines de configurations propres au microcontrôleur
sur lequel est embarqué le code développé. Il est aussi responsable de la calibration des
lectures de courant et de la validation de leur résistance au bruit. Le bloc d’attente gère
la recherche du rapport cyclique optimal et observe l’évolution des valeurs moyennes des
courants dans l’inducteur et de sortie. Le bloc de détection fait l’acquisition des lectures
de chaque groupe de cellules PV, interprète les résultats, met à jour l’état de l’ombre
et choisit la stratégie de commutation. Le bloc d’exécution calcule la valeur initiale du
rapport cyclique et reprogramme les routines qui envoient directement les impulsions à la
commande rapprochée des transistors.

Cet algorithme est validé par une série de mesures.

Validation expérimentale

Du fait de contraintes de temps, la validation expérimentale de la commande développée
a été limitée aux méthodes directe et semi-directe. L’ombre est placée sur le groupe PVIV

et les conditions pendant les expériences sont décrites dans le tableau 4.

Table 4: Les détails des mesures réalisées

Variable
Méthode utilisée

Direct Semi-direct

Durée 6’07” 5’32”
Apparition de l’ombre 0’47” 0’43”
Disparition de l’ombre 4’40” 4’38”

TO 0.52 0.52
Etat de l’ombre [0001] [0001]

Irradiance 939 950
TA (℃) 38 35
TM (℃) 57 59

Le résultats pour les deux méthodes de commande sont montrés sur la figure 24.
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Figure 24: Comparaison entre les méthodes

Les deux méthodes ont des résultats équivalents. Elles sont capables de trouver l’ombre
et maximiser la puissance produite par le module PV. Cependant, aucune des deux n’a
réussi à arrêter l’équilibrage à cause de la zone d’incertitude autour des lectures.

Chapitre 7 : Conclusions et perspectives

Cette thèse a apporté deux contributions majeures sur l’intermittence de l’énergie photo-
voltaïque.

La première contribution a été la théorie de l’intermittence photovoltaïque qui réunit
toute l’activité de la littérature scientifique en une seule équation. La deuxième a été la
proposition d’une structure d’électronique puissance innovante appelée l’Equilibreur PV.

Les différents tests et études effectuées peuvent maintenant être utilisés pour comparer
l’Equilibreur PV avec d’autres PRobES. Les détails sont disponibles dans le tableau 5.

Table 5: Les conditions équivalentes entre l’Equilibreur PV et d’autres solutions

PRobES TO BSS équivalent

DMPPT 1 [Ramos-Paja et al., 2010] 0.36 I.II.III → IV

DMPPT 2 [Giral et al., 2011] 0.57 I.II → III.IV

DMPPT 3 [Nguyen and Low, 2010] 0.48 I.II.III → IV

GCC 1 [Shimizu et al., 2003] 0.37 I.II.III → IV

GCC 2 [Shimizu et al., 2001] 0.60 I.II → III.IV

REA 1 [Nimni and Shmilovitz, 2010] 0.50 I.II → III.IV

Les résultats se trouvent dans la figure 25.
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Figure 25: La comparaison entre les gains de puissance

Pour plusieurs cas, le gain de puissance de l’Equilibreur PV est inférieur à celui des
autres structures. Cela s’explique parce que les données pour l’Equilibreur PV sont issues
des mesures alors que celles des autres solutions proviennent des simulations qui ne pren-
nent pas en compte les pertes. Les seules deux exceptions sont pour le GCC1 et GCC2
dont les données sont aussi expérimentales. Cependant, leur gain absolu est plus faible et
leur module n’est pas exposé à des conditions environnementales naturelles.

L’amélioration de ces résultats font l’objet d’un certain nombre des perspectives de
recherche. D’abord le remplacement des diodes par des transistors amènera une diminution
significative des pertes de conduction. L’intégration monolithique de cette structure est,
sans doute, la meilleure voie pour augmenter la fiabilité de la topologie proposée. Elle
doit être le prochaine étape dans la recherche de l’Equilibreur PV. La validation de la
méthode indirecte ou la création d’une centrale PV ultra-robuste à partir de l’utilisation
des concepts introduits dans cette thèse constituent des perspectives à plus long terme.
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Chapter 1

Introduction

The world is at an important crossroad: decarbonating its economy or facing the uncer-
tainty of global warming. This complicated choice has important consequences in the very
fabric of society, from the most complex financial transactions to the simplest choices of
everyday life. Aware of these implications, some countries have made efforts in many dif-
ferent fronts. These go from raising efficiency standards for their respective industries to
launch an overall effort to completely change their electricity production.

In the wake of these changes, renewable energies have moved from mild contributors to
major players in the world energy mix. Among them a special attention can be brought to
photovoltaic energy. Rating among the most mature renewable energies currently available
in commercial scale, photovoltaic energy has the potential of effectively helping answering
the problems of energy production in the world. It could be, ideally, installed directly on
rooftops in order to tackle the immense amount of energy shinning over cities all over the
world everyday. This proximity with the load, could reduce losses and create a new offer
of abundant energy. And, as of this moment, one thing stands on its way: shadows.

Urban and suburban environments are ridden with all sorts of obstacles to light: tree,
chimneys, details in the facades of the buildings. This issue has been studied by researchers
in the field of photovoltaics for the past few decades, yielding many interesting results.
However, there is no consensus in the current literature as to what intermittency really is
or how all the different approaches developed so far are related to each other.

In this context, this work proposes contributions in both theoretical and practical
aspects of partial shading mitigation.

The theoretical aspect is addressed in chapter 2, by introducing the problem of shad-
ing through an unique perspective. Allying the effect of the shadow on PV systems with
its physical properties, an new shadow model is proposed. Along with it, a theory on the
PV intermittency is also proposed, putting it into a different perspective from the current
literature. Finally, a qualitative method for evaluating solutions to the partial shading
phenomena is also developed and applied on the current literature. From its overall con-
clusions, the needs of innovation are identified and used to propose a practical contribution
which will be explored during this work.

This contribution is called PV Equalizer , being an adaptation of its battery equivalent.
This solution is capable of accessing any group of PV cells within a given PV module and
redistribute their current. In the presence of shadow, the PV Equalizer brings the values of
these currents very close to one another, effectively equalizing them. Its power electronics
structure is described into detail in chapter 3, along with its principle of operation. This
principle is expanded into several functions, which are used as a basis for assessing the
current and voltage constraints of the system.
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There are two types of functions: shadow mitigation and diagnosis. The first intervene
in the PV module in order to reroute the current among the cell groups and raise power
production. The second are used to find the shadow and estimate its characteristics.
They provide the data for calculating PV Equalizer losses, giving way to a discussion of
its limitations.

The shadow mitigation functions are the focus of chapter 4. They are characterized
through the study of several switchings conditions under many different shadow scenarios.
They yield an algorithm for finding the optimal response to a given shadow.

Chapter 5 studies the shadow diagnosis functions. Three diagnosis methods are
proposed: direct, semi-direct and indirect. The first uses the recurrent observation of
current peaks acquired by using the PV Equalizer. The second uses the observation of
certain specific electric variables to determine the best moment to acquire the current
peaks. The third is based on the prediction of the shadow state through the use of natural
shadow observations. All these methods provide a wealth of data and insight that, together
with the correction functions, are put together into a single control algorithm.

The control algorithm of the PV Equalizer is developed in chapter 6. It is based
on the three diagnosis methods and the two mitigation functions. They are validated
through measurements and a discussion concerning their limitations follows, putting the
PV Equalizer and its concept in perspective.

Finally, a conclusion based on all the provided data is given in chapter 7. It summa-
rizes the characteristics of the PV Equalizer and compares it to other solutions, proposing
perspectives and ideas for future work.



Chapter 2

PV Systems and Intermittency

This chapter is dedicated to introduce the main concepts of the photovoltaic systems,
explain the current visions and evaluate the work of the scientific community on the PV
intermittency issue.

The first aspect to be treated is the PV system itself and its principles of operation.
This is followed by the proposition of a new shadow model. Most authors are quick

to attach the shadow with a simple model, usually linked to how much light it filters.
They are, thus, free to focus their work on the exquisite solutions to mitigate its effects.
The model proposed in this work is issued from a cross comparison of the shadow and
the electric connections of a PV module. Generic but simple, this model portraits the
shadow on a new perspective fusing it with the PV module itself. It yields a numeric
representation that can be easily called upon for later studies and developments.

After addressing the shadow, the intermittency itself is studied. There is a vast wealth
of work on it, but no overall consensus. Thus, a theory linking the shadow and the
power production capabilities of the PV system is proposed, translating this bond into the
concept of robustness.

The current literature is then reviewed under the light of this theory and a method for
comparing its different contributions is proposed. Based on this comparison, a potentially
interesting research theme is unveiled, being explored further in the next chapters.
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2.1 Overview of PV systems

The systems needed to harvest and convert sunlight into electricity are composed of many
elements. This section introduces them, their terminologies and characteristics. They will
be used later as a basis for understanding the phenomena of intermittency.

2.1.1 The PV physics

The photovoltaic effect, which drives the power production of PV plants, can be modeled
by the known expression shown in equation 2.1 [Picault et al., 2010b] .

i = iph − I0

(

exp
[

(V + I · Rs)
Vt

]

− 1
)

−
V + I · Rs

Rp

(2.1)

The Iph stands for the photo-current, Rp for the parallel resistance and Rs for the
series resistance. The i is the output current, V is the output voltage and I0 is the reverse
saturation current. The variable Vt, or thermal voltage, is defined by equation 2.2:

Vt =
A · k · Tc

q
(2.2)

The variable A stands for the ideality factor, k is the Boltzman’s constant, Tc is the
operating temperature of the PV module and q is the electronic charge.

These parameters vary with the materials used to manufacture the PV system [Tyagi
et al., 2013]. They also change with time due to diverse factors such as aging [Kaplanis
and Kaplani, 2011] or degradation due to exposure to light [Kuznicki et al., 1999]. These
imperfections will be explored in more detail further below.

These equations can be converted into a circuit representation, which is more suitable
for simulations or for studying complex PV applications.

Equivalent Circuit model

The equivalent circuit model of equation 2.1 is represented in figure 2.1. This is called the
one-diode model and will be used throughout this work.

Diph Rp

Rs

+

V

-

i

Figure 2.1: The one-diode model

The diode in the circuit models the non-linear behavior of the output current and
voltage. The series and parallel resistances model imperfections of the PV model, such
as solder bonds or crystalline impurities. The current source represents the photo-current
[Karatepe et al., 2007, Ikegami et al., 2001].
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For applications in electrical engineering, a more simplified and intuitive representation
is proposed through a set of characteristic curves.

PV characteristic curves

The photovoltaic effect described by equation 2.1 defines a non-linear dependency between
current and voltage. In the PV domain this dependency is expressed by the current versus
voltage curve, as showed in figure 2.2 .

Figure 2.2: A generic I-V curve

This curve extends itself over three different quadrants. Quadrant I represents the
positive power section of the curve, where voltage and current are both positive. Most of
the analysis proposed in this work will concentrate itself in this quadrant.

The other two represent the negative power sections of the curve. Either the current
or the voltage are negative. The conditions for a PV application to operate into quadrants
II or III are explained further below.

Commercial PV applications use the curve drawn in quadrant I along with another
typical curve representing the power versus voltage evolution of the module. Both curves
are drawn in figure 2.3

(a) The I-V curve (b) The P-V curve

Figure 2.3: The characteristic PV curves

Three important points can be identified in both curves. First, at zero voltage, is the
short circuit current (iSC), represented by a circle. Second, at zero current, is the
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open circuit voltage (VOC), represented by a triangle. Finally, between them is the
maximum power point (MPP), represented by a square.

As its name states, at MPP the power production of the PV module is maximized
[Farret and SimÃţes, 2006]. However, it is by no means constant, changing with the
external conditions of the PV module. Two variables have a very important influence over
the MPP: light and temperature.

The influence of light and temperature

The amount of power delivered by a light source is called irradiance and can be expressed
in watts per square meter( W

m2 ). The inclination and orientation of the PV module have
a direct influence over the irradiance it receives. Ideally, the module should be oriented
towards the equator, its inclination rising with the latitude [Farret and SimÃţes, 2006].
As irradiance varies, so does the photo-current in equation 2.1. As a consequence, the ISC

is directly affected by variations in the irradiance. Figure 2.4 illustrates the influence of
the irradiance over the characteristic curves of the PV module.
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Figure 2.4: Influence of the irradiance over the PV module

Temperature has a direct influence over the thermal voltage, in equation 2.2. making
the VOC the variable mainly sensitive to variations in temperature [Ichida et al., 2009]. As
the PV module heats up, its voltage falls along with its power production. This effect is
represented in figure 2.5.
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Figure 2.5: Influence of temperature over the PV module
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Ideally, a PV module should operate at cool temperatures and high irradiance. How-
ever, the losses in voltage due to first are largely offset by the gain in current due to
the second [Ye et al., 2013]. Thus, sunny locations while hot are still preferable for the
installation of PV modules.

This analysis gives a first hint to the influence of shadows in PV applications. Their
inherited sensitivity to light variations make them particularly vulnerable to shadows.
This weakness will be explored into further detail in section 2.1.3.

2.1.2 PV power harvesting

The model and curves introduced above show that a PV application is a light-dependent
and voltage-controlled current source. Thus, its power output is totally dependent, at the
same time, on its irradiance, temperature and load. The first two have an influence over
what is called, in this work, PV power production. The load influences another aspect
called PV energy conditioning. Together they harvest the power from the light and carry
it to the end-user. Their description is necessary to fully understand the influence of
intermittency in photovoltaic power production.

PV power production

In order to produce a certain power a PV system must attain a certain voltage and current.
These, in turn, require a certain surface. Since semiconductor wafers have a limited section,
the entire power production unit must be composed of many little contributions from many
small cells.

The smallest part of the PV system is the cell. Its area depends on the technology
used to produce it. The material composing it also varies, having a direct impact over its
series and parallel resistances. Both have, direct or indirectly, an influence in the output
current of the PV cell [Bun, 2012].

When cells are put together, the overall I-V curve changes. Connecting them in series
raises the VOC , while connecting them in parallel raises the iSC . The I-V curves for such
connection schemes between two identical PV cells under the same irradiance are shown
in figure 2.6 (a) and (b).

(a) Parallel connection (b) Series connection

Figure 2.6: Types of connections among PV cells and their respective I-V curves

When connected in series to attain a certain voltage, the PV cells form a module. The
number of cells within a single module depends on the manufacturer. Some modules give
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the user the flexibility of changing the output current or voltage by allowing access to
groups of cells.

During this work, a polycrystalline PV module was used in simulations and measure-
ments. Its picture and I-V curves are drawn in figure 2.7

(a) A picture of the ref-
erence module

0 10 20 30 40
0

1

2

3

4

5

Voltage (V)

C
u

rr
en

t 
(A

)

 

 

Reference
Module

(b) Its characteristic I-V curve

Figure 2.7: The PV module used in this work

To build a PV plant, several modules are connected in series to reach a certain volt-
age, composing strings. Strings are then connected in parallel to reach a certain current,
according to desired power output. This power output, however, will change according to
the temperature and irradiance of the PV central. Thus, it is essential to conceive appli-
cations capable of adapting themselves to these changes and always draw the maximum
power available at the PV plant. Once the PV power plant is installed and operational, a
conditioning system will connect it to a load.

PV energy conditioning

Consider that a PV plant is connected directly to a certain load. What would be its output
current, voltage and power?

To answer this question, figure 2.8 shows the PV module connected directly to three
types of load along with their impact over the I-V curve. The PV module is represented
by the element to the left that looks like an envelope. The circles, triangles and squares
still represent the iSC , VOC and MPP, respectively. The X represent the point where the
PV module is operating. The three different loads impose different operation conditions
to the PV module.
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Figure 2.8: Operation conditions for different loads

Figure 2.8(a) shows the PV module connected directly to a resistive load. This resistive
load will impose a fixed relation, yield a single voltage and current pair. It imposes a non-
optimal power point, as shown in figure 2.8(b).

The inductive load is represented by a fixed current source, as shown in figure 2.8(c).
It imposes a fixed current (iload), as shown in figure 2.8(d).

The capacitive load is represented by a fixed voltage source, as shown in figure 2.8(e).
It imposes the fixed voltage (Vload),as shown in figure 2.8(f).

In all of these three cases, there is a weak chance for the X to cross the square. In
other words, it is difficult to maximize power output with a fixed load. This is due to
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the fact that the PV module is a power source that always adapts its operation
conditions to its load.

Now, imagine that the resistive load is fixed in order to draws the maximum power
from the PV module. What happens if the light changes? Figure 2.9 shows this effect for
different irradiances.
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Figure 2.9: The influence of light variation on a fixed load

The load is only optimal for the irradiance of 1000 W
m2 . In order to understand what

this represents in terms of energy, consider that the optimal irradiance is only available at
noon. Thus, the fixed load is non-optimal during the morning and the afternoon. Figure
2.10 shows the daily power production of the PV module used in this work. It is superposed
with the power that would be harvested by the direct connection of a fixed load.

Figure 2.10: Comparison of daily power productions

The full line represents the maximum power output, which follows a similar pattern to
the movement of the Sun. On the left side is the energy available in the morning, on the
top is the energy at noon and on the right side is the energy during the afternoon.

The dashed line represents the power output of the fixed load shown in figure 2.9. Since
the load is fixed, the actual power production of the PV plant does not follow the solid
line and it is not optimal during the day. Only at noon and during a brief period of time
do these meet. As a consequence, an important amount of energy remains unharvested,
as shown by the orange zones.
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Theoretically, the best solution would be to have a load constantly changing and op-
timal. Such a solution is unfeasible in reality. However, a power electronics converter can
be connected between the load and the PV module in order to constantly adapt one to the
other. Such power electronics converter can provide the necessary flexibility to constantly
keep the operation point of the PV module near to its MPP.

This solution is called a MPPT, having many different topologies and algorithms
[Ishaque, 2012]. It can be considered, from the PV plant point of view, as an exter-
nal current source which constantly maximizes the power production. Its algorithm is
based on the particular shape of the P-V curve, as shown in figure 2.11.
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Figure 2.11: The two zones of the P-V curve

On the red part of figure 2.11, the power rises with the voltage. On the green part,
the power drops as the voltage increases. Thus, if the voltage is raised by a small step and
the power also raises, then the voltage should keep rising. If, on the contrary, the voltage
is raised by a small step and the power lowers, then the voltage should be stop rising and
start being reduced. This algorithm is called disturb and observe, since it advances by
creating small disturbances in the system and observing its behavior.

The output of the MPPT chopper is directly connected to a DC bus. It serves as an
interface between the PV and other direct current type sources of energy or batteries. Its
voltage is stable and controlled by one of the elements of the entire system.

In alternative current (AC) applications, the DC bus is controlled by an inverter. It
injects the power output of the PV system into the grid or an alternative load, generating
active power, reactive power or even both. The inverter may come in many different shapes,
sizes, nominal power and efficiencies [Cacciato et al., 2010, Picault, 2010, de Cardona and
LÃşpez, 1998].

Finally, a complete PV system is shown in figure 2.12.
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Figure 2.12: A complete PV system

On the DC side is the PV plant is the PV module or plant. The MPPT, DC bus and
the input of the inverter follow suit. On the AC side is the three phased output of the
inverter and the AC grid or load.

The DC bus decouples both sides, making their behavior quasi-independent. The AC
side of the PV system is mostly affected by changes in the grid or the load. The DC side
is affected by changes in the energy source. These changes are first explained locally and
then generalized through the shadow model.

2.1.3 The imperfections of PV power production

The ideal power production situation is to have every single cell of the entire PV plant
to be identical and constantly working at their own MPP. In reality each cell is slightly
different from one another and may receive different irradiances.

As different parts of the entire plant react differently to the light received, they can
cause power oscillations and lower power production. These operating irregularities are
sometimes called PV mismatch in the literature, but there is currently no consensus
about it.

The PV mismatch is the key to explaining how the intermittency affects PV production.
Its definition proposed in this work is the difference between expected and actual
power outputs of a PV system. It can classified as internal or external, according to
its origin.

Internal mismatch - Cell mismatch

Imperfections within PV modules or cells, induced by aging, poor solder bonds, impurities
in the silicon crystal or variability in production result in different performances of the
modules connected in series. The parameters from the model 2.1 affected are the series
resistance (Rs), parallel resistance (Rp) and the reverse saturation current (i0) [van Dyk
and Meyer, 2004, Bun, 2012].

Since their origin are more linked to production processes, the internal PV mismatch
has been widely analyzed in the literature [Appelbaum et al., 1995, Junior, 1979, Cham-
berlin et al., 1995, Picault et al., 2010b,a, Kaushika and Rai, 2007, Kaplanis and Kaplani,
2011, Ye et al., 2013] . Some techniques to mitigate it can be found in [Appelbaum et al.,
1995, Chamberlin et al., 1995]. It is considered to be responsible for nearly 2% of the



36 CHAPTER 2. PV SYSTEMS AND INTERMITTENCY

overall losses in the PV systems and most precautions needed to avoid it must be taken
during cell production.

External mismatch - Source mismatch

All conditions leading to a change in the photocurrent (iph) or thermal voltage (Vth) of a
part or the whole PV plant are considered as external mismatch. They can be affected by
several sources.

Mechanical or thermal stresses, may lead to cell cracking [Ramli and Salam, 2011,
Arnett, 1981, Alonso-Garcia et al., 2006]. Poor efficiency of the MPPT associated topology
or program may lead to extra losses [Ishaque, 2012, Ramos-Paja et al., 2010, Safari and
Mekhilef, 2011]. These two can be mitigated by a careful planning and care during the
sizing and deployment of the PV plant [Picault, 2010, Villa et al., 2012].

Inhomogeneous irradiances on cells connected in series may create partial shading
conditions and hot-spots [Abdalla et al., 2013, Ramli and Salam, 2011, Wang et al., 2012,
Bidram et al., 2012, Villa et al., 2013]. While careful site study is still an important
method to avoid partial shading, it is still an unresolved issue which with a non-negligible
destructive potential.

A PV module is partially shaded when the light cast upon some of its cells is obstructed
by some object, creating a shadow. The shaded PV cells will produce less current than
the others, which leads to several different problems [Kawamura et al., 2003]. Figure 2.13
shows the I-V curves of two PV cells connected in series before and during partial shading.
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The dotted part of the graphs represent the great voltage distance between VOC and
the avalanche voltage. Considering that the system is connected to a MPPT, the operation
of two PV cells in series may only lead to one of the two scenarios represented in figure
2.14. Where the output current is represented by iOUT .
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Figure 2.14: Two possible scenarios for the mismatch

In figure 2.14(a), the MPPT tracks the unshaded cells MPP, imposing its higher current
and making the unshaded cell work under a highly negative voltage. It starts dissipating
power and risk being destroyed by heat or hot-spots[Appelbaum et al., 1995, Junior, 1979,
Arnett, 1981]. This is usually a transitory situation, since the MPPT will not remain at
an operation point which greatly limits power production.

In figure 2.14(b), the MPPT tracks the MPP of the shaded cell, imposing its lower
current. The unshaded cell in then forced to produce less energy. In this situation there is
no risk of destruction and the MPPT will tend remain in it while the shadow is cast over
the PV module [Ubisse and Sebitosi, 2009, Picault et al., 2010b].

Now that the effects of the shadow have been introduced, this chapter takes a closer
look at what shadow is and how it can be modeled from a PV perspective.

2.2 The Shadow Model

The development of the shadow model suits many different purposes for this work.
First, having a coherent and simple shadow model allow the analysis of the intermit-

tency as a general phenomenon. It provides the basis for evaluating the trends in the
current literature and discerning interesting lines of research.

Second, a model can transform a physical phenomenon into a mathematical expression.
They can be translated into information that can be manipulated by a microcontroller,
thus aiding in the development of new solutions. They are also useful for organizing studies
about how the shadow impacts power production.

Third, there is no consensus in the literature. Some authors only take the geometry of
the shadow into consideration [Picault, 2010, Wang and Hsu, 2009, Ubisse and Sebitosi,
2009, Drif et al., 2008, Fujisawa and Ohya, 2003, Kovach and Schmid, 1996]. While others
focus themselves on the opacity of the shadow [Alonso-Garcia et al., 2006, Safari and
Mekhilef, 2011, Ramos-Paja et al., 2010]. Just a few authors have tried to integrate both
aspects in their shadow models [Lin et al., 2012, Patnaik et al., 2011] and usually without
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any clear regard to the propagation of the shadow. In any case, there is no general shadow
model.

This section will propose a shadow model which will be used throughout this work.
First, a general shadow concept will be presented. It takes into account the length,

width and depth of the shadow, along with their variation over time. All these aspects
make this first view of the shadow complex but complete.

The interaction between the PV module and this general shadow is then brought to
focus. As the details from the PV systems are included in the analysis, the shadow model
comes to being, revealing a simpler yet complete model. Its potential is discussed in a
final summary.

2.2.1 General shadow concept

In this work, the shadow is considered as the obstruction of a light source by any given
object. An example of such objects can be filters, which partially obstruct light or polarize
it, depending on how it is designed. The objects commonly surrounding a photovoltaic
application and susceptible of casting their shadow over it tend to be opaque, such as
chimneys or buildings.

Casting a shadow implies in the 2-D projection of a 3-D object. Thus, the shadow has
a shape, which can be roughly simplified by two dimensions: length and width. This idea
is represented in figure 2.15

Figure 2.15: The projection of a shadow, showing its length and width.

A shadow also has a depth or opacity, called shading factor (SF). The more opaque the
shadow, the less light passes trough it. Thus, a higher shading factor mean less irradiance
for the shadow, giving equation 2.3.

Irradianceshadow = Irradiancetotal · (1 − SF ) (2.3)

The shading factor is considered as linear, ranging from zero to one. When zero, there
is no obstruction. When one, all light is blocked by the object projecting the shadow. This
is represented by figure 2.16.
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Figure 2.16: The shading factor

The shadow also has a fourth dimension: time.
The dynamics of optical shading depend on the movements of both the light source

and the object obstructing it. The light source in this work is the Sun and its movement
is well known and studied. A static object obstructing sunlight will have a shadow that
varies over time according to its shape and the position of the Sun. Figure 2.17 illustrates
their influence.

(a) Cylindrical object (b) Rectangular object (Partial movement)

Figure 2.17: Example of a shadow from an static object

In figure 2.17(a), both the shading factor and the length of the shadow have changed
with the position of the Sun. However, its width remained constant. This is not the case of
the shadow in figure 2.17(b), where the rectangular shape of the object has an important
impact over the shape of its shadow. The shadow is shown only from sunrise to noon to
ease its analysis.

As the Sun moves with the seasons, its arc will change and so will the shadows it
projects, as shown in figure 2.18.
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(a) Winter shadow trajectory (b) Summer shadow trajectory

Figure 2.18: Example of season influence over the shadow

The impact these changes will have over a PV module will depend on its location
relative to the object and their orientation relative to the Sun. This is usually taken into
account when installing a PV plant, but there are cases in which unsuspecting objects
have cast shadows over PV plants, having devastating effects on their power production.

As for moving objects, these must fly. This restrains the possibilities to either clouds
or birds, both of them moving much faster than the Sun. In these cases, it is the Sun that
is considered as fixed. Clouds will slowly cover the totality of the PV central, while the
shadow of the birds will most probably have no measurable impact in power production.

Static shadows are considered resting directly over the glass that covers the PV module,
such as dirt, snow or bird droppings. In their case, time is not an issue and they are
represented only by its length, width and shading factor.

All these characteristics compose a general shadow model which is a moving 2-D pro-
jection with varying shading factor. Putting all of them together makes the description of
shading phenomenon seem, at first, to have a deterministic and well defined approach. It
suffices to know the latitude and longitude of the site, the date of the year, time of day,
the position of the objects around the site, their shape, the position of the clouds in the
sky, the wind speed and its direction.

However precise, this exhaustive approach does require a large set of data which is not
always (or even never) available, especially at the scale of a single PV module. Thus, a
paradigm shift is necessary to further simplify this general model. Instead of taking the
shadow as a reference, the model should describe it from the PV plant perspective.

2.2.2 Geometric shadow

Geometrically speaking, the PV plant is a group of flat plates, each of seemingly square
shape. Within them, many cells are arranged to occupy as much of the surface as possible.
The geometric representation of a single PV plant can, thus, go from several modules down
to each cell.

During this thesis, a technological choice was made to work on the PV module scale.
This choice leads to the adoption of the geometric model shown in figure 2.19.
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(a) The reference PV module (b) The geometric PV module

Figure 2.19: The PV module and its geometric equivalent

When a shadow is cast upon the PV module, it covers the cells in some particular
geometrical shape and with a particular shading factor. To understand how this impacts
the PV module, the general shadow model will be cross-compared with the geometric PV
module. The shadow that will be used to make this comparison is shown in figure 2.20.

(a) Time-continuous shadow (b) Time-discrete shadow

Figure 2.20: Example of a shadow projection over the geometric model of the PV module

The object used to cast the shadow in figure 2.20 is cylindrical, represented by the
white circle. Its shadow is a continuous variation of length, width and shading factor over
time, shown in figure 2.20(a). Since the power conditioning system consist of electronics
sensors which acquire data on a discrete basis, the shadow will be considered a succession
of states. Its discrete representation is composed of four states, shown in figure 2.20(b).
It moves from left to right, starting at the low, long and dark projection and finishing at
the higher, shorter and lighter one.

Each state of the shadow is shown in detail in figure 2.21.
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(a) State 1 (b) State 2

(c) State 3 (d) State 4

Figure 2.21: Decomposition of the dynamic shadow over time

The impact of the length and width of the shadow will depend on its position relative
to the PV module. In the case of state 1, the shadow seen by the PV module has a width
of 8 cells and a length of 1 cell. They change to 8 by 2, 5 by 3 and 2 by 3 for states 2, 3
and 4, respectively.

The point of origin for the length and the width of the shadow is considered to be the
lower left corner of the PV module. The shadow can then be represented by a Cartesian
projection with width on the x axis and length on the y axis. Thus, a shadow covering
several cells in the x axis can be seen as wide, while those covering several cells in the y
axis can be seen as long.

In terms of shading factor, its impact changes as the shadow moves over the module.
In this example, the SF decreases as the shadow moves, which is seen by the cells as a
change in their individual shading factor.

The trajectory of the shadow is linked to the distance of the object and the succession
of states. While its speed does not show directly on the example. Of course, faster shadows
mean less energy loss but they can be expressed by the same four states shown above.

This geometric cross-over gives the SF of each cell composing the PV module. In
practice, their electrical connections also play an important role in determining the impact
of shadows.

2.2.3 Electrical shadow

If each cell were independent, their current production would react according to their own
shading factor. In reality, several cells are connected in series to reach a certain voltage
output. However, depending on how the connections are oriented, the impact of the
shadow changes. Two different and yet simple electrical connection schemes are presented
in figure 2.22.
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(a) The geometric PV module (b) First electrical PV module

(c) Second electrical PV module

Figure 2.22: The geometric PV module and two electrical equivalents, with the cell groups indi-
cated.

The reference PV module, shown in figure 2.22(a), has 72 cells disposed in 8 lines and
9 columns. These cells are connected to each other vertically, forming columns. Each
column pair constitutes a cell group, from PVI to PVIV as seen in figure 2.22(b). Within
these cell groups, all cells share the same current and the most shaded cell imposes its low
current over all the others. The groups, however, are considered as independent among
themselves.

This module is then pivoted by 90° in figure 2.22(c). Because of different orientations,
a same shadow will not have the same impact over both connection schemes.

Figure 2.23 projects the shadow example over the first electrical connection scheme.
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(a) A shadow cast over the first electric scheme

PVI PVII PVIII PVIV PVI PVII PVIII PVIV

PVI PVII PVIII PVIV PVI PVII PVIII PVIV

(b) The four states decomposition

Figure 2.23: Impact of a shadow over the first electric scheme

The width of the PV module is no longer the same, changing the impact of the shadow
over it. In the first and second states the shadow touches all the cell groups, imposing
their shading factor over the totality of the PV module. In the third state, groups PVII ,
PVIII , and PVIV are all affected by the shadow. Even if only the fourth column is touched
by the shadow, the totality of group PVII has its current production blocked. The fourth
state shows that the shadow is now cast only over cell group PVIV . From its 18 cells, 5
are shaded and the other 13 blocked.

Pivoted the PV module by 90° changes the effect of the shadow, as shown in figure
2.24

(a) A shadow cast over the first electric scheme (b) The four states decomposition

Figure 2.24: Impact of a shadow over the second electric scheme

In figure 2.24, it is the width of the PV module that is no longer the same. In the
first state, only half of group PVIV is shaded, meaning that the current of all cells are
limited to the same SF. The second state shows groups PVI , PVII and PVIII touched
by the shadow. The third state has a similar situation, but it is only PVIV that remains
unshaded. Finally, even though the shadow is cast over a reduced number of cells, groups
PVI and PVII have their currents limited by it.

Despite their differences, both connection schemes share a common characteristic: their
shadows loose a dimension due to the electric connections among the PV cells. The length
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for the first and the width for the second. Furthermore, their remaining dimension was
reduced from 8 lines/columns to 4 cell groups. Hence, the electrical interconnection of the
PV cells has a direct impact in the shadow model.

The connection scheme used in this work is the one in figure 2.23. It can be used to
express a mathematical shadow model, as shown below.

2.2.4 Numeric and digital shadow

In mathematical terms, the electrical shadow can be represented by a numeric vector,
where each element represents the shading factor of a different cell group. An example of
such vector is proposed in figure 2.25.

(a) The PV module electric connection scheme (b) The numerical shadow model

Figure 2.25: The electrical PV module and its numerical equivalent

The elements in the vector seen in figure 2.25(b) represent the shading factor of the
rectangles directly below them. Each represents a cell group of the PV module. Their
values can range continuously from 0 to 1, giving infinite combinations of shadows.

The impact of the shadow over the numeric shadow model is shown in figure 2.26. Its
states are decomposed for a better representation. Since each cell group has the SF of its
most shaded cell, their rectangles are painted in uniform shades of gray according to their
SF.

(a) First state (b) Second state
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(c) Third state (d) Fourth state

Figure 2.26: Impact of the dynamic shadow over the numeric model

The movement of the shadow is translated into a variation in the value of the elements
composing the vector. Between the first and second states, figures 2.26(a) and 2.26(b), the
only visible variation is the shading factor. In both cases the width of the shadow remains
the same. In figure 2.26(c) the first cell group is unshaded, represented by its zero SF.
The same trend continues as three groups are shown unshaded in 2.26(d).

Due to its many possible scenarios, a simplification of the numeric shadow model will
be used in many occasions throughout this work. It consists of converting the elements
of the numeric vector from a continuous representation to binary. It reduces the number
of possibilities to only 16: [0 0 0 0] to [1 1 1 1]. This simplification can be achieved by
comparing the original vector with an arbitrary threshold, labeling 0 the values below and
1 those above it. As an example, the numeric shadows shown in figure 2.26 are simplified
to binary equivalents in figure 2.27.

(a) First state (b) Second state

(c) Third state (d) Fourth state

Figure 2.27: Impact of the dynamic shadow as seen by the binary model

The thresholds used in the figures 2.27(a), 2.27(b), 2.27(c) and 2.27(d) are 0.8, 0.6, 0.5
and 0.3, respectively. They were chosen according to their respective SF.

The binary representation concentrates itself on the evolution of the shadow shape
rather than the shading factor. This represents a further simplification of the shadow
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model, which can now be seen as having a more limited influence of the shading factor. It
will be used extensively in chapters 3, 4 and 5.

2.2.5 Summary of the shadow model

The shadow model of this work is a cross-analysis of an optical model of the shadow, the
geometry of the PV module and its electric connections. By taking these into consideration,
the shadow can be simplified from a continuous, space and time variant phenomenon to
a discrete succession of states. They are represented by vectors of data, whose elements
represent the shading factor of the cell groups composing the PV module.

Each vector represents the shadow in a certain moment in time, as the shadow moves
the vector changes accordingly. Its elements are considered to vary continuously from
0.0 to 1.0, yielding a great number of possible states. They can be simplified by using
thresholds to convert them to any n-nary representation deemed interesting. In this work,
the choice was made to use a binary representation, restricting the number of possible
states to 16, from [0 0 0 0] to [1 1 1 1].

Finally, figure 2.28 illustrates the numeric and binary shadow models proposed in this
work.

(a) The numeric shadow model (b) The binary shadow model

Figure 2.28: The shadow model

Even if this shadow model was developed at the scale of a PV module, it can be
expanded to engulf the totality of a PV plant. It is used in the next section to propose a
general theory on PV intermittency.

2.3 A theory of PV intermittency

One of the greatest difficulties surrounding the study of intermittency is the lack of a
comprehensive theory regarding its effect on PV systems. Some authors in the scientific
community see it as a power source mismatch, meaning that its origin is the uneven
distribution of light among the cell groups[Patnaik et al., 2011, Ramli and Salam, 2011,
Sun and Yang, 2010, Deline, 2009]. Others see it as a power production problem, mainly an
inefficient MPPT algorithm, incapable of finding the optimal power production [Abdalla
et al., 2013, Wang and Hsu, 2009, Eltawil and Zhao, 2010, Ramos-Paja et al., 2010].
Both visions are still lacking an overall comprehension of the phenomenon, which the
intermittency theory proposed in this work seeks to provide.

The theory proposed in this work is that PV intermittency is a two-fold issue:
optical and electrical.

Optical intermittency limits the amount of energy received by the PV cells. It can only
be addressed through means outside of the PV plant, such as energy storage. PV plants
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which are capable of yielding extra power during partial shading conditions are considered
to be stable. Stable PV plants are reliable sources of energy, producing its nominal power
more often.

Electrical intermittency limits the amount of energy delivered by the PV cell. It is
intimately linked to how the PV cells composing the plant are connected among themselves.
Plants whose connections allow a maximum harvest of the available energy under partial
shading conditions are called robust. Robust PV plants are efficient sources of energy,
harvesting more power per square meter.

A first corollary of this theory is that: a robust PV plant requires less storage to be
stable. If the same number of cells can produce more power and more often, less storage
is needed to stabilize them.

A second corollary of this theory is that: there is a limit to robustness and none to
stability. While more storage can always be added to a PV plant, the plant itself cannot
produce more power than what is shinning over its cells. Thus, robustness is intimately
linked to structure of the plant itself.

An example, composed of a PV plant and a shadow, is proposed to illustrate this
theory.

The PV plant is made of 4 PV modules similar to the one used throughout this work.
Each is composed of 72 cells disposed in 9 lines by 8 columns. They are placed side by
side as shown in figure 2.29(a).

The shadow will be consider to propagate itself from the bottom left to the upper right
corner of the PV plant. It will move one cell at a time on the Y axis until filling up a
column, as shown in figure 2.29(b). Once the column is full, it will start propagating from
the bottom of the next column, as shown in figure 2.29(c). Its shading factor is fixed at
0.5.

(a) The PV plant un-
shaded

(b) The shadow propagating in
the y axis

(c) The shadow propagating in
the x axis

Figure 2.29: The propagation of the shadow in the example (SF of 0.5)

The cells of the PV plant will be considered, at first, as not connected among them-
selves. As the shadow spreads itself over the PV plant, the number of shaded cells rises
and the total power available falls as shown in figure 2.30(b). The grey region represents
the power produced by the shaded cells. The green region represents the power that must
be supplied by outside means, such as storage.
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(a) The cells of the PV plant
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(b) Power production variation with the shadow (SF
0.5)

Figure 2.30: A PV plant, its cells and variations of power production

The total number of cells is represented by ntot. The PMAX represents the power
available with no shadow and PMIN represents the power if all cells are shaded. Their
expressions are given by equations 2.4 and 2.5, respectively.

PMAX = PUSH · ntot (2.4)

PMIN = PSH · ntot (2.5)

The variable PUSH represents the power available at the unshaded cell groups and PSH

is given by equation 2.6.

PSH = (1 − SF ) · PUSH (2.6)

The sum of the white and grey areas in figure 2.30(b) represents the maximum amount
of power per cell available. It is considered as its highest robustness possible and its
expression is given by equation 2.7.

RobMAX = n2

tot ·
(PUSH + PSH)

2
(2.7)

The cells of the plant are connected together to reach a certain voltage, forming groups.
As a consequence, the overall robustness falters. Since all cells within a group share the
same current, if the shadow touches one, its SF will limit the current of all the others. As
the groups are connected further together, this effect aggravates itself, as shown in figure
2.31.
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(a) The cell groups of the PV plant
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(b) Power production variation with the shadow

Figure 2.31: A PV plant and its cell groups
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(b) Power production variation with the shadow

Figure 2.32: A PV plant and its modules
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(b) Power production variation with the shadow

Figure 2.33: A PV plant and its strings
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(b) Power production variation with the shadow

Figure 2.34: A totally interconnected PV plant

Figures 2.31(a), 2.32(a), 2.33(a) and 2.34(a) show the composition of a PV plant by
connecting its cells together in groups, modules, strings and plant, respectively. Their
impact over the robustness is represented by the red triangles in figure 2.31(b), 2.32(b),
2.33(b) and 2.34(b). The dashed lines represent the power of the groups which are com-
pletely shaded.

The area of a red triangle can be calculated as seen in figure 2.35.
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Figure 2.35: The details of the triangle representing robustness losses

Its basis is the number of cells per group (ncpg) and its height is the difference between
the power before and after the shadow reaches the group. The number of shaded groups is
given by ngSH . The power for a given number of shaded cell groups is given by equation
2.8.

P (ngSH) = ncpg · [ngtot · PUSH + ngSH · (PSH − PUSH)] (2.8)

The variable ngtot represents the total number of cell groups. Calculating the area lost
by all the triangles, adding them to equation 2.7 and dividing the whole by RobMAX , gives
equation 2.9. More details are given in appendix D.

Rob = 1 −

(

ncpg

ntot
·

PUSH − PSH

PUSH + PSH

)

(2.9)
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An analysis of equation 2.9 gives the third corollary of the PV intermittency theory.
There are only four methods to raise the robustness of a PV plant. The first is
to raise the number of cells within the PV plant, thus oversizing the plant. The second is
to minimize the number of cells per group, thus confining the effect of the shadow. The
third is to redistribute the power between the shaded and unshaded cells, thus erasing the
presence of the shadow. The fourth is to drive the power of the shaded cell groups to zero,
thus ignoring their presence.

This work claims that the second, third and fourth methods drive the overall research
on robustness enhancement in the current literature.

2.4 Photovoltaic Robustness Enhancing Solutions - PRobES

The intermittency theory has shown that there are four possible ways to raise the ro-
bustness of a photovoltaic power plant. Three of them regroup the overall work of the
literature: reducing the number of cells per group, redistributing their available power
or ignoring shaded cell groups. The first two provide the basis for two families of PV
robustness enhancing solutions or PRobES, namely, series and parallel. The last one is
the idea behind bypass diodes.

Series PRobES seek to raise the number of power electronics structures within the
a single PV plant. Each would be able to track the local MPP, no matter the shadow,
thus harvesting more power per cell. However, less number of cells per group means less
power. Their challenge is, thus, making power electronics converters more efficient at low
power applications. [Ishaque, 2012, Safari and Mekhilef, 2011, Ramos-Paja et al., 2010,
Giral et al., 2011, Nguyen and Low, 2010, Woyte et al., 2003]

Parallel PRobES aim at redistribute the available power of the system. They
reroute the current distribution among the cells, reducing the difference of power between
those shaded and unshaded. Their challenge is the optimization of the topologies capable
of such current distribution[Kadri et al., 2011, Walker et al., 2003, Nimni and Shmilovitz,
2010, Shimizu et al., 2001, 2003].

Bypass diodes have been used, for the past decades, as the de facto PRobES by the
industry. It becomes naturally biased when the voltage of the shaded cell group becomes
negative, short-circuiting them and ignoring their power [Woyte et al., 2003, Acciari et al.,
2011]. They will be used as the reference solution in this work.

A method to compare the solutions from the two families is currently inexistent in the
literature. Thus, this work proposes one based on their similar challenges. Its objective is
to assess possible room for improvement which can yield new research themes.

2.4.1 Analysis method and criteria

The analysis below is based on the challenges common to all the existing PRobES. Some
of its criteria are more quantitative while others are grant a more qualitative view. They
are, namely, granularity, efficiency, power gain, reliability, integration potential and control
complexity.

Granularity is the number of cells operating independently. More granular systems
have less cells per group, tend to harvest more energy per cell and are more robust to
shadows.

Passive components describes the number and complexity of passive components in
the solution. They lead to more volume, cost, losses and reduce the integration potential
of the system.
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Efficiency is the relation between power input and output during the PRobES oper-
ation. Since PV modules do not have a high efficiency themselves it is paramount that
their PRobES do.

Power gain is the surplus power actually collected by the solution in comparison with
a reference. The common reference used to compare all PRobES is presented below.

Reliability is the capacity of the system to remain functional in the case one or more
element faults. More complicated solutions tend to require more maintenance, cost more
and break more often, undermining their robustness.

Integration potential evaluates how feasible it is to integrate the active and passive
elements of the system within a chip. Integration means less volume, better efficiency, less
cost and more reliability.

Control simplicity evaluates the cost in energy, sensors and time that the system
actually requires to perform its functions. Complex solutions may require dedicated and
often complicated algorithms to operate. On top of that, their control system may need
many sensor which lower the overall reliability.

The use of these criteria require a precise and well defined evaluation scale. The one
used in this work is detailed in table 2.1.

Table 2.1: The evaluation scale

Analysis criteria Very Low (1) Very High (4)

Granularity Several modules One single cell
Passive components Many and complex Single and simple

Efficiency Lower than 80% Higher than 90%

Power gain 0% over reference
Higher than 90% over

reference

Reliability
A fault in an active element

stops the system
A fault in 4 or more active
elements stops the system

Integration potential No element can be integrated
All elements can be

integrated

Control simplicity
Several sensors and a

complex algorithm required
No control required

After a review of the PRobES state-of-the-art, a graph will be traced to compare their
performances.

2.4.2 The reference PRobES- Bypass and blocking diodes

The PRobES used as a reference in this work is the de facto solution used by the industry:
bypass diodes. They are installed in PV modules to protect the shaded cells from being
destroyed and to minimize losses in power production Ho [2013]. They prevent the shaded
cells from working under reverse bias by short-circuiting them. This effect is illustrated
by the example in figure 2.36.
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Figure 2.36: The working principle of the bypass diode

The output current, iOUT , is represented in red. Due to the presence of the bypass
diodes, it is divided between the shaded cells in green and the bypass diodes in blue. They
are represented by iSH and ibypass respectively.

The scenario shown in figure 2.36 shows a high current being imposed over the two
cells by the MPPT. The unshaded cell have no problem supplying such a current, but the
one shaded is forced in reverse bias. Its voltage becomes negative, naturally activating
the bypass diode. Once short-circuited, the shaded cells supplies its iSC , while the excess
current flows through the diode. Some authors work on replacing them with active switches
to reduce losses [Acciari et al., 2011].

The consequence of this approach is that the effect of the shadow is confined to the
shaded cell, creating a control challenge. The activation of bypass diodes deforms the I-V
and P-V curves of a PV plant. By doing so, they change the specific shape of the P-V
curve upon which the MPPT algorithm is based. As the shadow propagates itself, the
maximum power point of the system changes, making it virtually impossible for a simple
disturb and observe algorithm to track it. Thus, other methods are required, yielding a
vast range of contributions from the literature [Woyte et al., 2003]. The challenge of the
authors working with bypass diodes is to always find the highest available power, no matter
the shadow shape or shading factor [Ramos-Paja et al., 2010, Ishaque, 2012, Nguyen and
Low, 2010].

To illustrate this situation, figure 2.37 shows two examples of shadows cast over the
reference plant used in the previous section. The plant is now equipped with bypass diodes.
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(b) Shadow 2

Figure 2.37: Two examples of shadow over the PV plant

The influences of these shadows in the I-V and P-V curves of the PV plant are shown
in figure 2.38.
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(b) P-V curve of the PV plant under shadow 1
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(c) I-V curve of the PV plant under shadow 2
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(d) P-V curve of the PV plant under shadow 2

Figure 2.38: Impact of the shadows on the characteristic curves of the PV plant

Two operating points are distinguishable in both I-V curves in figure 2.38.
At point A the output current of the entire module is limited by the shaded cells.

This is usually the point found by a simple disturb and observe algorithm, which becomes
blocked and cannot go further. In figure 2.38(a), where the highest power point is B,
staying at A represents a loss of power. The opposite is true for figure 2.38(c).

When the plant is operating at point B, its bypass diodes become active. The shaded
cells are short circuited and the output current is equal to that of the unshaded cells. In
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figure 2.38(a), this represents a gain in power. However, point B is not recommended in
the case shown in figure 2.38(c).

From a robustness point of view, bypass diodes give the PV plant the possibility of
ignoring the shaded cells, reducing their power to zero. However, with the shaded cells
short-circuited their number is constantly zero, reducing the total number of cells. Thus,
there is a gain in robustness by using bypass diodes but it is limited by how many cells
are short-circuited. The robustness diagram of the plant used in figure 2.37 is shown in
figure 2.39.
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Figure 2.39: The robustness diagram of a PV plant equipped with bypass diodes

There is an inherent loss of robustness due to the electrical connections withing the
PV plant, shown in red. The blue line shows the challenge faced by the researchers that
propose new algorithms for tracking the MPPT under partial shading conditions. It uses
the bypass diodes to automatically ignore the shaded cells, following the unshaded slope
on the left side of the figure, represented by point B on figure 2.38(a). As the shadow
expands, the algorithm will eventually start tracking point A on figure 2.38(c), always
staying at the maximum power available.

The use of bypass diodes, however, leads to another problem: return currents. It
happens when an unshaded PV string is connected in parallel with another one having a
shaded and bypassed cell group or module. Since the shaded cells were short-circuited,
bringing their voltage to zero, the string containing it will have a lower voltage. Thus,
a current will start flowing between the two strings due to their voltage differences Bun
[2012]. This effect is shown in figure 2.40.
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Figure 2.40: An example of the effect of reverse currents and blocking diodes
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The I-V effect of these return currents is shown in figure 2.40(b). The shaded string
may be forced to work at a higher voltage, reaching into Quadrant II, where its current is
negative. In this situation, the PV module will consume power not due to a reverse bias,
but rather due to negative current and positive voltage Bun [2012].

The answer to avoid this problem: more diodes! Figure 2.41 shows the use of blocking
diodes in series with the shaded module to avoid the reverse currents. The great disad-
vantage of this effect is that a shadow over a single cell may finally completely jeopardize
the power production of an entire string.
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Figure 2.41: An example of the effect of reverse currents and blocking diodes

In terms of robustness, blocking diodes reduce the unshaded power available over the
cells.

Finally, the robustness diagram of a PV plant equipped with bypass and blocking
diodes along with a single MPPT chopper is shown in figure 2.42. It will be considered,
in this work, as the reference to evaluate all other PRobES.
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Figure 2.42: The reference PRobES and its robustness diagram

The PRobES shown in figure 2.42(b) will be used as a reference and called central
inverter. It is the cheapest and simplest solution available as of the moment this work was
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written. Since it is a single chopper, it can easily achieve 96% to 98% efficiency Woyte
et al. [2003], being the most efficient alternative. It also gets a high score for its passive
component, since it has only one chopper. Its control is somewhat simple, requiring some
special algorithm to always find the highest MPP. It has a very low integration potential
due to its high power. Its reliability is also low since if the chopper fails, the entire power
production stops.

Using this reference, the other PRobES can now be presented.

2.4.3 Series PRobES

Series PRobES use power electronics topologies connected to as few cells as possible within
the PV plant. They track the MPP locally, either converting the output DC current
directly to AC or converting it to another DC level, which is then sent to the DC bus.
They are often called distributed MPPT (DMPPT) or micro-converters in the current
literature Bidram et al. [2012].

This work considers that there are three types of series PRobES: multi-string, module
embedded and micro-converters. They are all based on the same principle: reducing the
number of cells per group. Figures 2.43, 2.44 and 2.45 illustrate their application over the
reference PV plant.
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(b) Multi-string series PRobES robustness diagram

Figure 2.43: Multi-string series PRobES and their robustness diagrams
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(b) Module series PRobES robustness diagram

Figure 2.44: Module series PRobES and their robustness diagrams

Interconnection

µ µ µ µ

Interconnection

µ µ µ µ

Interconnection

µ µ µ µ

Interconnection

µ µ µ µ

(a) PV plant equipped with micro-converters series
PRobES and no bypass diodes

Number of shaded cells

P
o
w
e
r 
(W

)

ntot

PMAX

Number of shaded groups

PMIN

Unshaded power

Optical intermittency

Electrical intermittency

Legend

Shaded power

Optimal MPPT Extra intermittency

(b) Micro-converters series PRobES robust-
ness diagram

Figure 2.45: Micro-converter series PRobES and their robustness diagrams

As the series PRobES approach the cell, their granularity raises. By handling smaller
groups of cell, their control system can use less complex algorithms. Smaller groups mean
for smaller choppers. These have a higher integration potential, driving up their reliability.

On the opposite sense, smaller chopper have lower efficiency rates. As their efficiency
falters, it reduces their power gains. This is illustrated by the pink zones in figures 2.43(b),
2.44(b) and 2.45(b).

Finally, with the multiplication of choppers, the number of passive components also
increases and, along with them, the losses.

Figure 2.46 shows a diagram that superposes the evaluation of these series PRobES
and the reference.
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Figure 2.46: Comparison of the different series solutions

The great challenge remaining to the scientific community in this area is to raise the
efficiency of micro-converters.

2.4.4 Parallel PRobES

Parallel applications use inductors to share the energy among PV cell groups. They
eliminate local MPP created by the shadow, replacing them with one global MPP. This
principle is shown in figure 2.47. The new MPP, represented by point C, maximizes the
output power for all cells but a series PRobES must be used to track it.
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Figure 2.47: The principle of parallel PRobES

In terms of robustness, parallel PRobES seeks to make PUSH as close to PSH as
possible. Its effect over the reference PV plant is shown in figure 2.48.
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Figure 2.48: The impact of parallel PRobES over the robustness

By replacing the bypass diodes with parallel PRobES, the PV plant can dramatically
raise its robustness without even replacing its central chopper. This is represented by
the pink zone in figure 2.48(b). The robustness of such PV plant would only depend on
the efficiency and reliability of the parallel PRobES. Thus, the efficiency of large series
PRobES can be combined with the granularity of parallel PRobES to yield a more robust
PV plant.

In the literature, parallel PRobES do not have a common denomination, with authors
calling their own approaches differently. The main contributions as of the moment of this
work are either based on two power electronics topologies. The first is the Cùk con-
verter, its applications are called Generation Control Circuit (type B), Active bypass or
Non Dissipative String Current Inverters [Shimizu et al., 2001, Giral et al., 2011, Kadri
et al., 2011]. The second is based on the Flyback converter and its applications are called
Generation Control Circuit (type A), PV String Per-module Maximum Power Point En-
abling Converter, Return Energy Current Converters or Submodule Integrated Converters
[Shimizu et al., 2001, Walker et al., 2003, Nimni and Shmilovitz, 2010, Olalla et al., 2012].

Figure 2.49 shows the topologies of these solutions. In it, the small PV modules
represent the cell groups, their voltages are represented by VP V and the current leaving
the system is represented by iP V .
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Figure 2.49: Topologies of the typical parallel solutions
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The transistors are denoted by Ti, capacitors by Ci and inductors by Li, where i can
go from 1 to 4. In the Flyback based application, the inductor coupled with all the others
is called Lfly.

The concepts based on the Cùk converter are better crafted to share current among
adjacent cell groups. Its control is based on the search of the optimal voltage distribution
through the correction of the duty cycle driving all its transistors [Shimizu et al., 2003]
They all share a similar efficiency problem: its current must flow through all switches.
Furthermore, their integration is limited due to the floating potential between their tran-
sistors.

The Flyback-based concept has a too cumbersome inductor to allow integration. Its
efficiency, however, is higher since its current flows through fewer switches. Its control
system is more complicated and does not provide clues as to how the shadow can be found
and which cell group should be chosen to receive current [Nimni and Shmilovitz, 2010].

Their characteristics are compared in figure 2.50.
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Figure 2.50: Comparison of the different parallel solutions

The lack of integration potential and the complexity of the passive components are
the great drawbacks of all these structures. If they are not integrated, their power gain,
efficiency and reliability cannot be improved. Without these improvements, these solutions
are bound to never make it to the factory floor or deployed in large scale on the existing
PV plants.

2.5 Conclusion

This chapter has proposed an overall study of the problem of intermittency in photovoltaic
systems. Its objective was to propose a new perspective for understanding the current
literature and find themes that need further improvement and research.

An overview of photovoltaic systems was conducted to understand intermittency from
the PV plant point of view. Its result is a shadow model, which cross-analyzes the shadow
as an optical and electrical phenomenon.
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It was followed by an intermittency theory capable of regrouping the overall contribu-
tions of the literature under a single and comprehensive point of view. This theory states
that the photovoltaic intermittency is a two-fold issue: optical and electric.

Optical intermittency relates to a PV plant stability or how close to its nominal power
a PV plant can be under shaded conditions. Stability can only be achieved by acting
outside the PV plant, such as using storage or other sources of energy.

The electric intermittency regulates its robustness or how much power per square meter
the PV plant is capable of delivering while shaded. Robustness, however, was proven to
be only solved within the PV plant and by four possible means: making PV plants bigger,
controlling the power of smaller cell groups, redistributing the power among cell groups
or ignoring the shaded cell groups. All contributions in the literature are, to some extent,
a declination of one of these techniques.

These solutions to the partial shading problem were called Photovoltaic Robustness
Enhancement Systems or PRobES. They were classified in two families: series and parallel
solutions.

While series PRobES have arrived at a certain stage of maturity, parallel PRobES
seem blocked by their design limitations. Contributing to the former implies a further
development of integration techniques to tackle the efficiency challenge. Contributions to
the latter require a different approach to the conception of the entire system in order to
break free from its topological constraints. In this work, the second path was chosen over
the first.

This necessary topological breakthrough is proposed in the next chapter.
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Chapter 3

The Photovoltaic Equalizer

The previous chapter has proposed a theory for analyzing the intermittency in photovoltaic
systems. It was shown that there are few techniques capable of granting a maximal power
production under shading conditions. Two of them are the basis for the overwhelming
majority of current scientific activity in the literature. One is the reduction of cells per
power electronics chopper connected in series, leading to a close-up control of their maximal
power point and confinement of the shading problem. The other is to use specialized
circuits parallel to the main current production loop to redistribute the power among cells
as to erase the effects of shading. These techniques were called Photovoltaic Robustness
Enhancement Solutions or PRobES.

PRobES were found to be divided into two families: series and parallel. Their state-
of-the-art was described and discussed, showing the general challenges of each. Parallel
PRobES are those who have caught the interest of this work for they require a paradigm
breakthrough in terms of topology and control techniques.

This chapter proposes a topological breakthrough for the parallel PRobES called Pho-
tovoltaic Equalizer. This chapter is dedicated to explain its topology and its advances
in comparison with the literature.

To do so, the topology in itself will be introduced along with its switching rules. From
these will be deduced a series of potentially interesting functions. These functions will
be, in turn, used in an extensive study of the system losses and limitations. Finally,
a conclusion will describe its challenges and provide the steps to be taken in the next
chapters.

65
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3.1 Circuit representations used in this chapter

Most of the attention in this chapter is dedicated to a new power electronics topology and
its inherent functions to deal with partial shading. It is expected, thus, that many circuits
will be drawn. To ease their drawing, some circuit representations involving photovoltaic
systems will be introduced and explained in this section.

PV module circuit representation

Chapter 2 has shown that a PV module is constituted of a certain number of cells connected
in series to attain a certain voltage under the nominal cell current. It was also shown that in
order to protect the cells and raise PV robustness, manufacturers equip their PV modules
with bypass diodes. To reduce costs, however, commercial PV modules are equipped with
only a few diodes, changing their granularity from PV cells to PV cell groups. The
number of PV cells per PV cell group varies with the model and manufacturer of the PV
module.

The reference PV module adopted in this work has 72 cells connected in series. They
are bundled into 4 cell groups, which will be labeled as PVI , PVII , PVIII and PVIV in
Roman numerals. Figure 3.1 shows the circuit representation of the reference module.

(a) PV module connection
points with bypass diodes

(b) Circuit representation
with bypass diodes

(c) Circuit representation
without bypass diodes

Figure 3.1: Equivalence between the real PV module and its circuit representation

The real PV module, its electrical connections and bypass diodes are shown in figure
3.1(a). The points A through E represent the connections available at the rear of the PV
module. Thus, the positive (+) extreme terminal is shown over point A, while the negative
(-) one is shown over point E. The four bypass diodes are labeled DAB, DBC , DCD and
DDE according to the points they are connected to.

The circuit representation of its four cell groups are the four mini PV modules con-
nected in series and shown in figure 3.1(b). The points A through E in both figures 3.1(a)
3.1(b) are the same, just as their respective bypass diodes.

Finally, the circuit shown in figure 3.1(c) is used in this chapter. It has no bypass
diodes and the PV Equalizer will be connected to its available connection points. The
voltage of each cell group is represented by VI to VIV , respectively. The total voltage of
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the system is represented by VP V . A complete set of characteristics, including various I-V
curves, of this PV module are available in Appendix B.

Shadow circuit representation

The shadow was introduced in the previous chapter through an extended cross-analysis
between optical shadow and its effects on the reference PV module. This analysis issued a
shadow model consisting of a numeric vector whose elements represent the shading factor
of each cell group. A similar representation will be used throughout this chapter, but on
a circuit version, as shown in figure 3.2.

(a) A numeric shadow example (b) Its electric circuit repre-
sentation

Figure 3.2: Examples of the shadow shape

The grey mini PV modules represent the location of the shadow, while their contrast
represents the shading factor. The precise SF value will be given separately, according to
the example.

Simplified circuit representation of the PV power conditioning system

The whole PV system includes the MPPT chopper, the DC bus, the inverter and the grid.
While complete, such an extensive representation is considered unnecessary, in this work,
to study the partial shading phenomena.

Considering that the DC bus is fixed and controlled by the inverter allows the DC
chopper to focus its MPPT control on its own duty cycle. Variations in the DC chopper
duty cycle imply in changes in the current and voltage of the PV module. As a consequence,
the equivalent load seen by the PV module can be represented by either a voltage or a
current source.

Since the shadow has a direct effect on the current production of the PV system,
it is more convenient to analyze it from the current perspective. Thus, a current source
representation of the power conditioning system was chosen in this work. Their equivalence
is shown in figure 3.3(b).
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(a) Complete PV system (b) Simplified PV system

Figure 3.3: PV system equivalence

Now that these circuit representations are set, the PV Equalizer can be introduced.

3.2 The PV Equalizer

The parallel PRobES studied in this work is called PV Equalizer , inspired from its
equivalent battery equalizer Park et al. [2009]. As its name suggests, this structure equal-
izes the uneven current distribution among the shaded and unshaded cell groups of a PV
module. This redistribution is achieved by surrounding the PV cell groups with transistors,
all connected to a single inductor. This creates a modular and elementary PV Equalizer,
as shown in figure 3.4. This elementary PV Equalizer can be connected to as many cell
groups as needed, giving it an important modular feature.
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L

Figure 3.4: The elementary PV Equalizer

To explain the switching rules of the PV Equalizer, an example with only two cell
groups is shown in figure 3.7. Cell group PVII is shaded while cell group PVI is unshaded.
There are two possible states according to the energy flow within the inductor: charge or
discharge.
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Figure 3.5: The two possible states of the inductor current paths

Figure 3.6 shows how each state affects the voltage and current in the inductor.
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Figure 3.6: Qualitative effect each state over the inductor voltage and current

When in Charge, a positive voltage is applied to the inductor. Current starts flowing
through the provided loop, accumulating energy. This charge is only possible by activating
even transistors connected to the positive voltage of the PV cell group and odd transistors
connected to its negative voltage, as shown in figure 3.5(a).
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When in Discharge, a negative voltage is applied to the inductor. The loop now allows
the inductor current to flow while liberating energy. This discharge is only possible by
activating even transistors connected to the negative voltage of the PV cell group and odd
transistors connected to its positive voltage, as shown in figure 3.5(b).

In both cases the current across the transistors remains unidirectional, while the volt-
age may inverse itself as in the case of T4. Moreover, the presence of the shadow can briefly
inverse the voltage of the shaded cell groups also inversing the voltage across the tran-
sistors. It this happens, current may flow across the body diodes within the transistors,
creating undesired short-circuits. The answer to this problem is to force the switching legs
to be voltage-bidirectional but current-unidirectional. This is achieved in this through the
use of a diode in series with the transistor, as shown in figure 3.7.

(a) Switching leg open (b) Switching leg conduct-
ing

Figure 3.7: A generic voltage-bidirectional but current-unidirectional switching leg

Applying the elementary PV Equalizer to the reference PV module gives the final
topology used in this work. It is shown in figure 3.8.
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Figure 3.8: PV equalizer topology

The PV Equalizer used in this work has 8 transistors (T2 - T9), 10 diodes (D1 - D10),
4 capacitors (CI - CIV ) and a single inductor (L).

The use of diodes D1 and D10 grant a security feature, acting as a global discharge.
In the case of a control failure and no path is offered to the inductor current, then these
diodes will automatically discharge it over the entire PV module.

While the structure is active, the high switching frequency imposes rapid variations in
current to the cell groups. Acting as filters, capacitors are connected in parallel to each
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cell group, represented respectively by CI to CIV . They interact closely with the inductor,
transferring instantaneous power to and from it.

The single inductor is capable of accessing any number of cell groups due to the tran-
sistor network. It can be used to transfer energy to and from any of the four PV cell
groups. Thus, not only the PV Equalizer is modular, but also it is flexible.

The description of the equations associated to the PV Equalizer will be done through
the analysis of a working example.

3.2.1 Working example

Figure 3.9 shows an example where only cell group PVIV is shaded by a certain shading
factor (SF). Its current is reduced according to equation 3.1.

iSH = (1 − SF ) · iUSH (3.1)

Where iUSH represents the current of any unshaded PV cell group and iSH of those
shaded.

In this example, groups PVI , PVII and PVIII are used to charge the inductor while
PVIV is used to discharge it. The current flow during charge and discharge of the inductor
are shown in figures 3.9(a) and 3.9(b), respectively.
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Figure 3.9: Working example of the equalizer topology switching
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The current and voltage in the inductor in steady-state are shown in figure 3.10. In it,
D represents the duty cycle of the system and T its period. The time scale is not specified
for this example.

Figure 3.10: Steady-state voltage and current in the inductor during a switching period

The circuit equations of the charge and discharge periods from figure 3.10 are given in
table 3.1.

Table 3.1: Circuit equations

Charge Phase Discharge Phase

VLCH
= VICH

+VIICH
+VIIICH

(3.2) VLDCH
= VIVDCH

(3.3)
iOUT + iL = iUSH + iCUSHCH

(3.4) iOUT = iUSH − iCUSHDCH
(3.5)

iOUT = iSH + iCSHCH
(3.6) iOUT − iL = iSH − iCSHDCH

(3.7)

The indexes used in these equations are listed below.

•
CH

and
DCH

represent a variable during charge and discharge phase, respectively

• USH and SH represent variables related to the unshaded and shaded cell groups,
respectively

• iOUT is the current imposed by the external MPPT

• VL and iL are the voltage and current of the inductor

• VC and iC are the voltage and current of the capacitors

• Vi and ii represent the voltage and current of the ith cell group

To analyze the equations of the PV Equalizer, a few simplifying hypothesis will be
considered.

First, the system will be considered to be operating in steady-state conditions and at
its maximum power point. This allows to consider iOUT , iL, Vi and ii to be constant
during an entire switching period.

Second, the current in all unshaded cell groups (PVI , PVII , PVIII) is considered equal.
They will all be represented by iUSH in 3.4 and 3.5. Their capacitor currents are also
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considered equal and represented by iCUSH . In the case of the shaded cell group PVIV

and its capacitor, their currents will be represented by iSH and iCSH , respectively.
Third, the analysis of these equations will consist in defining the duty cycle, mean

output current and mean inductor current of the PV Equalizer under ideal conditions.
They will be specially useful in sizing the passive components. These will be revised later
to include losses and other imperfections.

A summary is given in page 78.

Duty cycle

Ideally, the steady-state duty cycle of the PV Equalizer is calculated based on the inductor
average voltage in figure 3.9(c). The average charge and discharge voltages are given by
equations 3.8 and 3.9.

VLCH
= VLCH

· D (3.8)

VLCH
= VLDCH

· (1 − D) (3.9)

Considering steady-state conditions the average inductor voltage is zero and combining
the two equations above gives equation 3.10.

VLCH
· D = VLDCH

· (1 − D) (3.10)

By replacing equations 3.2 and 3.3 into 3.10 gives the equation for the duty cycle,
shown in 3.11.

D =
VIVDCH

VICH
+ VIICH

+ VIIICH
+ VIVDCH

(3.11)

If the voltages in each cell group are considered equal, than this equation can be
simplified as follows. Its variable nDCH represents the number of cell groups receiving
energy from the inductor, while nCH represents the number of cell groups providing energy
to it.

D =
nDCH

nCH + nDCH

(3.12)

This result means that, ideally, the duty cycle of the PV Equalizer is independent from
the operating conditions of the PV module. It can be estimated by knowing the number
of shaded and unshaded cell groups.

To understand the consequences of this fact, consider the case where the voltages across
the cell groups are NOT equal. Theoretically, if the duty cycle is not correctly controlled
in these circumstances the inductor average current will be non-zero. This would lead
to its indefinite rise, ultimately destroying the inductor. An example of such situation is
when the inductor is simply connected to an ideal voltage source.

However, PV modules are NOT ideal voltage sources. As shown by its I-V curves, PV
voltage falls as its current rises. This means that if the inductor current starts to rise,
the voltage of the PV cell group to which it is connected will fall. Thus, the current and
voltage outputs of a given PV cell group adapt themselves to the PV Equalizer duty cycle.

The consequence is that the PV Equalizer can operate at a fixed duty cycle.
Whether the ideal duty cycle maximizes power production or not under real operating
conditions is a different issue, which will be explored further in chapter 4.
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Average inductor current

The average inductor current can be calculated by analyzing the charging and discharging
capacitor currents. The current within a capacitor is given by equation 3.13, where Ci

refers to the ith capacitance and t denotes the time.

iCi = Ci ·
dVCi

dt
(3.13)

By using equation 3.13 along with the capacitor currents defined in 3.4 and 3.5 will
give current iICH

and iIDCH
can be described as follows.

CI ·
dVCICH

dt
= iOUT − iUSH + iL (3.14)

CI ·
dVCIDCH

dt
= −iOUT + iUSH (3.15)

Considering the system in steady-state, the variations in the capacitor voltage can be
described as follows.

∆VCICH
=

D · T

CI

· (iOUT − iUSH + iL) (3.16)

∆VCIDCH
=

(1 − D) · T

CI

· (−iOUT + iUSH) (3.17)

Since ∆VCICH
is equal to ∆VCIDCH

, equations 3.16 and 3.17 can be combined to yield
equation 3.18.

D · iL = iUSH − iOUT (3.18)

A similar analysis with equations 3.6 and 3.7 yields equation 3.19.

(1 − D) · iL = iOUT − iSH (3.19)

Adding up equations 3.18 and 3.19 gives the expression of iL.

iL = iUSH − iSH (3.20)

Which can be simplified by using equation 3.1, giving the mean inductor current.

iL = SF · iUSH (3.21)

Equation 3.21 leads to two important conclusions.
First, the current flowing through the inductor depends on the shading factor. Its

influence in the efficiency of the PV Equalizer will be studied in detail later in this chapter.
Second, the inductor current can be used to detect changes in the shading factor. Such

detection functions will be studied in chapter 5.
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Output current

The next step into understanding how the Equalizer improves power production is to
estimate its impact in the output current. It can be deduced from equation 3.18, with the
system in steady-state, yielding:

iOUT = iUSH − D · iL (3.22)

Replacing the mean inductor current by its definition found in equation 3.21 gives:

iOUT = (1 − SF · D) · iUSH (3.23)

Equation 3.23 shows that the Equalizer has a direct impact on the shading factor
perceived by the MPPT, effectively reducing it. Thus, the MPPT becomes capable of
tracking a higher current while preserving all cell groups in operation. Under these ideal
conditions the currents in the unshaded and shaded cell groups are the same raising the
system robustness to one, according to equation 2.9 in page 51.

To understand what happens to the current of each PV cell group, both equations 3.18
and 3.19 will be expanded by using the inductor and output current definitions from 3.21
and 3.23, yielding:

iUSH = (1 − SF · D) · iUSH + D · SF · iUSH (3.24)

iSH = (1 − SF · D) · iUSH − (1 − D) · SF · iUSH (3.25)

Simplifying these equations give the average local current of each cell group.

iUSH = iUSH (3.26)

iSH = (1 − SF ) · iUSH (3.27)

Equations 3.26 and 3.27 shows the cell groups producing at their local maximum
current in steady-state. This is further evidence that the PV Equalizer can, theoretically,
rise the robustness of the system to one. Its imperfections must be studied to determine
how well it can really perform this task.

3.2.2 Passive components

Deducing the equations related to the design of the passive components L and C is a
necessary step to create a prototype of the system. They give clues to the choices available
for designers to size the PV Equalizer and shed some light on its limitations.

Capacitance

The general capacitance expression was recalled previously in equation 3.13. Replacing it
in 3.6 and 3.7 while solving for C gives:

CUSH = (iUSH − iOUT ) ·
dt

dVCUSH

(3.28)

CSH = (iOUT − iSH) ·
dt

dVCSH

(3.29)
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With the system in steady state, the definitions of iUSH , iSH and iOUT given by
equations 3.26, 3.27 and 3.23 can be used to give:

CUSH = (1 − D) · D · SF ·
iUSH · T

∆VCUSH

(3.30)

CSH = (1 − D) · D · SF ·
iUSH · T

∆VCSH

(3.31)

These equations show some important facts to take into consideration while sizing the
capacitors of the PV Equalizer. First, all capacitors are sized by the same rule, no matter
if they are charging or discharging. Second, the shading factor and the duty cycle have an
influence in the sizing of the capacitors. Thus, bigger capacitors are required for covering
a broader range of both. Finally, the choices made during the sizing of the PV Equalizer
will have a direct impact over how it improves the robustness of its PV module.

Inductance

The inductor voltage is defined by equation 3.32.

VL = L ·
diL

dt
(3.32)

With the system in steady state, using the definition of the duty cycle given in equation
3.12 and considering the voltages in all cell groups as equal to VUSH gives the expression
of the inductance.

L = (nCH · D) ·
VUSH · T

∆iL

(3.33)

L = (nCH · D) ·
VUSH · T

∆iL

(3.34)

An important conclusion can be drawn from these equations: the inductance does
not depend on the shading factor. Rather, it depends on how many cell groups are
used during the charge phase and their duty cycle. Again, choices done during the sizing
of the system have a direct impact over its control possibilities.

3.2.3 Overview

Based on the ideas above, the following table gives an overview of the important equations
and their associated conclusions.

The most important conclusion from this section is that the design of a PV Equalizer
depends on how it will be used to compensate the shadow. Passive components are affected
by either the presence of the shadow or the strategies chosen to mitigate it. Thus, capacitor
or inductor sized for a certain shadow state and switching strategy might be ineffective
when either or both change. And since the objective of this work is raising robustness as
a whole, the PV Equalizer should be designed to be effective against any shadow state.

Further studies will correlate the use of the PV Equalizer with its performance.
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Table 3.2: Overview of the working variables

Equation
Eq.

Number
Conclusion

D =
nSH

nSH + nUSH
3.12

The equalizer can work at a fixed
duty cycle.

iL = SF · iUSH 3.21
Losses in the inductor are directly
proportional to the shading factor.

iOUT = (1 − SF · D) · iUSH 3.23
The output current rises and all
the cells are producing at their

local maximum.

C = (1 − D) · D · SF ·
iUSH · T

∆VC

3.31
Higher SF requires bigger

capacitors.

L = (nUSH · D) ·
VUSH

∆iL · f
3.33

The size of the inductor depends
only on the shape of the shadow.

3.3 Circuit functions

The high flexibility of the transistor network within the equalizer allows it to access any
PV cell group in any order. The previous section has given the basis for exchanging energy
to and from the inductor. The next step is to use these to describe the functions through
which the circuit mitigates the presence of shadows.

The PV Equalizer can perform three types of functions: shadow correction, shadow
diagnosis and idle. The shadow correction functions have the objective of erasing the
presence of the shadow. They are marked by the use of a switching strategy and duty
cycle, which are chosen according to the shadow state. These functions are, namely,
equalize and bypass.

The diagnosis functions have the objective of acquiring information on the shadow and
estimating its state. Several techniques may be used to accomplish this, but this chapter
will only present the most intrusive one, called the search function.

While idle the PV Equalizer does not use any of its functions. Its transistors are all
blocked but ready to perform any needed task.

The bypass and equalize functions will be characterized in specific provided in chap-
ters 4 and 5. Their description in this chapter is introductory and aimed at providing
information on how they impact the PV Equalizer losses. The idle function will have an
important role during the design of the control system in chapter 6. Its energy require-
ments are considered as negligible in comparison to other functions, and it will not be
presented further in this chapter.

3.3.1 Equalize function

The equalize function handles the transfer of energy from unshaded to shaded cell groups.
It is driven by switching strategies whose complexity may vary significantly according to
the shadow state. Their fundamental block is called basic switching strategy or BSS,
which has only one charge and discharge period.

In this work, the BSS will be represented by a specific notation. For example, when cell
groups PVI and PVII are used to charge the inductor while cell groups PVIII and PVIV

are used to discharge it, their BSS is represented by “I.II → III.IV ”. In this notation,
the arrow represents the flow of energy, pointing who receives it. The roman numerals
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represent their respective cell groups and when these are used together in either charge or
discharge they are separated by a point.

Table 3.3 provides other examples of BSS to illustrate the flexibility of the PV Equal-
izer. They are ranked by the number of cell groups discharging the inductor.

Table 3.3: A few examples of BSS

Cell groups Cell groups
BSS

Duty
Figure

charging discharging Cycle

II, III & IV I II.III.IV → I 0.25 3.11(a)
III & IV II III.IV → II 0.33 3.11(b)

IV I IV → I 0.50 3.11(c)
II & III I & II II.III → I.II 0.50 3.11(d)

IV II &III IV → II.III 0.66 3.11(e)
I II, III & IV I → II.III.IV 0.75 3.11(f)

The circuit representation of all of the examples are shown in figure 3.11.

(a) II.III.IV → I (b) III.IV → II (c) IV → I

(d) II.III → I.II (e) IV → II.III (f) I → II.III.IV

(g) Legend
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Figure 3.11: Circuit representations showing the active switches and inductor current path for each
BSS example

The examples above confirm the high flexibility provided by the transistor network of
the PV Equalizer. They also show that the number of cell groups charging and discharging
in a BSS can vary from 2, as in figure 3.11(c), to 7 as in figure 3.13(c). Their duty cycle
also changes, which will have an impact in the size of the capacitors and the inductor.
Thus, each of them should be taken into consideration during the design of the prototype.

Complex Switching Strategies

The two BSS presented in figure 3.12 can be used to create a switching strategy that
harvests all the surplus energy in groups PVI , PVII and PVIV . It is called a complex
switching strategy or CSS, being composed of the two BSS and represented by I.II →

III and IV → III. Their impact on the power production is studied into detail in chapter
4.

(a) I.II → III (b) IV → III (c) Legend

Figure 3.12: Circuit representation of a CSS

Universal BSS (All → X)

There are strategies which use the whole PV module either during the charge or the
discharge phase, called Universal BSS. Denoted as All → III, All → II.III and All →

I.II.III, these strategies are investigated as a possible “Universal” substitute to the CSS.
Table 3.4 shows three examples.

Table 3.4: A few examples of BSS

Cell groups Cell groups
BSS

Duty
Figure

charging discharging Cycle

All III All → III 0.20 3.13(a)
All II & III All → II.III 0.33 3.13(b)
All I, II & III All → I.II.III 0.43 3.13(c)

Figure 3.13 shows their circuit representation.
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(a) All → III (b) All → II.III (c) All → I.II.III

Figure 3.13: Circuit representations showing the active switches and inductor current path for the
Universal BSS

The equations defining the current in the inductor and the output current change in
these cases. This is due to the fact that equation 3.6 is replaced by 3.35.

iOUTCH
+ iLCH

= iIVCH
+ iCIVCH

(3.35)

Using this equation and the deduction procedures from section 3.2, leads to equations
3.36 and 3.37.

iL =
SF · iUSH

(1 − D)
(3.36)

iOUT =
(

1 − SF ·

(

D

1 − D

))

· iUSH (3.37)

Equation 3.36 shows that the use of the Universal BSS implies a rise in the inductor
current. It constitutes, thus, a trade-off: higher losses against an easier response to shad-
ows. Its implications will be taken into account during the study of the PV Equalizer
performance.

3.3.2 Bypass function

The second correction function is called bypass. As its name indicates, it allows the
equalizer to short circuit any cell group, having a similar effect that of bypass diodes. It is
useful for situations where the equalize function might not be effective, such as very high
SF or actual defaults in the cells. Figure 3.14 shows its principle.
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(a) Switching sequence (b) Legend

(c) Operation point before activating the
switches

(d) Operation point after activating the
switches

Figure 3.14: Bypass principle

Consider that a shadow is cast over cell group PVIII in figure 3.14(a). Under normal
conditions, the output current is limited by the shaded cell group as shown in figure 3.14(c).
By activating the switches in figures 3.14(a), a new current path, shown in red, becomes
available.

Under this bypass-equivalent condition, the MPPT is now free to seek another MPP
if its algorithm allows it. As it does so, the operating point of the system changes to that
in figure 3.14(d). This effect is similar to the one provided by bypass diodes, as shown in
figure 2.36 on page 54.

The bypass function can also be applied to several cell groups, requiring only prior
knowledge about the location of the shadow. If the different shaded cell groups have the
same shading factor, the bypass principle is exactly the same as in figure 3.14. However,
if these groups have two different SF or are non-contiguous, the result is slightly different.
Figure 3.15 shows an example.
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(a) Bypass P VIV (b) Bypass P VII

Figure 3.15: Bypass principle for non-contiguous shaded cell groups

The equations associated with this bypass technique are described in table 3.5.

Table 3.5: Transistor equations

Bypass PVIV Bypass PVII

iOUT − iL = iIV + iCIV (3.38) iOUT − iL = iII + iCII (3.39)
iOUT = iII + iCII (3.40) iOUT = iIV + iCIV (3.41)

The time during which the inductor is connected to group PVII is represented by
TII and its equivalent for PVIV by TIV . The total bypass period is their sum, given by
T . Using these when combining equations 3.38 with 3.41 and 3.40 with 3.39 allows the
description of the system currents in steady state as follows.

iOUT = iIV + TIV · iL (3.42)

iOUT = iII + TII · iL (3.43)

If the system is considered in its MPP, its output current will be equal to that of an
unshaded cell group. With the inductor current being the same for both expressions, they
can be used to yield two expressions.

iL = iUSH · (SFIV + SFII) (3.44)

TII

TIV

=
SFIV

SFII

(3.45)

Equations 3.44 and 3.45 show the consequence and condition for bypassing non-contiguous
cell groups. Its consequence is a steep rise in the inductor current, which becomes the sum
of the current needed by both cell groups. The condition for it to work is respecting the
equality in equation 3.45, where highly shaded cell groups require proportionally more
bypass time.

As a result, the current flowing through the inductor may be several fold that of the
unshaded cell groups, raising questions about bypassing non-contiguous cell groups at all.
In the prototype devised for this work, the number of cell groups is limited to four, which
reduces the possible number of non-contiguous shadow occurrences. However, this should
be taken in consideration for bigger applications.
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Thus, in this work, the bypass function will be restricted to contiguous shadow states.
Their maximum current flowing through the inductor would occur only when the shading
factor is one or that of an unshaded cell group.

3.3.3 Search function

The diagnosis functions are used to detect the presence and movement of the shadow. One
of these is a direct sampling of the energy available in each cell group through the use
of the search function. Its principle is to use the highly flexible transistor network of the
equalizer to access each cell group individually and briefly connect it to the inductor. This
will trigger a current peak, which will be used to determine the presence of the shadow.

The example shown in figure 3.16 illustrates its general idea. In it, a shadow of 0.8 SF
is located at the cell group PVI . The search function is triggered to sweep the entire PV
module.

(a) Search on P VI (b) Search on P VII

(c) Search on P VIII (d) Search on P VIV

Figure 3.16: General idea of the search function

The search samples the energy by connecting to a single cell group to promptly return
it afterwards. The expected result of the search is a different reaction in the first current
peak, signaling the presence of a shadow over its corresponding cell group, shown in figure
3.17.
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Figure 3.17: Expected search result

The search function represents an interruption in the current output. If its charge
period is long enough, all the current available in the cell group being searched flows
through the inductor. When the shading factor of this cell group is zero, the inductor
current will reach its maximum.

Other aspects of the search function, as well as other techniques for diagnosing the
shadow will be presented and studied in chapter 5.

3.3.4 Summary of the functions

The PV Equalizer can perform three functions: equalize, bypass and search. The first
erases the presence of the shadow, the second short-circuits a given cell group and the
third extracts peaks to deduce the shadow state. Their analysis has shown that each one
imposes specific voltage and current conditions to the components of the PV Equalizer.
Table 3.6 summarizes them according to each function

Table 3.6: Conditions imposed by each function

Function Restrictions

Equalize
The maximum inductor current varies from 1 to X times iUSH .

The maximum forward and reverse voltages seen by the
switching leg are VP V .

Bypass
If only one cell group is bypassed, the maximum inductor current

is iUSH . If n groups are shaded, it will be n · iUSH .

Search
The maximum steady-state inductor current will be iUSH for

long searches over cell groups with a SF of 1.

These conditions provide the basis for sizing a prototype, study its performance and,
utterly, determining its benefits to the PV system robustness.

3.4 Efficiency study

The previous sections have presented the PV Equalizer power electronics structure, op-
erating principle and functions. Their gathered knowledge has provided enough elements
to push the analysis further and take into account imperfections. As shown previously by
the intermittency theory, these are the only obstacle in the way of a perfect robustness for
parallel PRobES. Their assessment is proposed below through an efficiency study.

However, an efficiency study depends heavily on design choices and their consequences.
These will be clarified first by an overview of the prototype used in this work. They will
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be followed by the description and estimation of the losses. Finally, a description of the
PV module power production as a function of the shadow will be presented.

The result will be an estimation of the benefits brought by the PV Equalizer to the
robustness of its PV module.

3.4.1 Prototype Overview

The components chosen for the prototype used in this work are the basis to determine its
losses, and, by consequence its efficiency. Its design answered to some rules that were set
according to certain performance criteria.

The first performance criterion relates to the voltage and current ripple of the
PV Equalizer. They are of the utmost importance, due to their direct impact over power
production. If the PV Equalizer induces important current or voltage ripples on any of
the I-V curves, the MPPT system is incapable of tracking the MPP. Specially when it
comes to the variable used by the MPPT to control the PV module. If it is voltage-based,
a special attention should be given to attenuating the voltage ripple. The same is true for
current-based MPPT.

They are estimated through I-V curves, as shown in figure 3.18 were used as a reference.
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Figure 3.18: The I-V curve of the reference PV module

Using the knees of the I-V curves as a reference, it is possible to see that small voltage
variations lead to large current disturbances.

The second performance criterion was related to choosing which shading factors
and functions should be used by the PV Equalizer. Considering the high current needed
by non-contiguous bypass, it was ruled out for the moment. Universal BSS will also not
be used, even if they will be studied in later chapters. As for shading factors, the PV
Equalizer will be designed to address their full scale, from 0 to 1.

The third performance criterion is transparency from the outside. The PV Equal-
izer should not interfere in the normal operation of the MPPT. Thus, the switching fre-
quency of the former must be several fold higher than of the latter.

The design rules are summarized in table 3.7.
These rules guided the choice of the transistors, diodes and capacitors of the PV Equal-

izer, along with the construction of its inductor. All their technical details are available
in appendix B and will not be presented here. Their main characteristics, however, are
summed up in table 3.8.
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Table 3.7: Equalizer design rules

Design variable Desired value

Maximum inductor current 5A

Inductor current ripple (∆iL) 1A

Capacitor voltage ripple
(∆VC)

50mV

Transistor reverse and direct
voltage

60V

Working frequency (f) 100kHz

Operation modes availability
All but non-contiguous

bypass and Universal BSS
Shading factors All

Table 3.8: The values adopted for the components in this work

Component Variable Value Unit

Diode
Diode threshold voltage (Vth) (1 + 0.1 · iL) · 0.55 V

Diode recovery time (trr) 25 ns

Diode recovery current (irrm) iF + 2 A

P-MOS
Transistor rise time (tPr) 55 ns

Transistor fall time (tPf ) 41 ns

Transistor Transistor ON resistance (RPdsON ) 100 mΩ

N-MOS
Transistor rise time (tNr) 27 ns

Transistor fall time (tNf ) 25 ns

Transistor Transistor ON resistance (RNdsON ) 110 mΩ

Inductor
Inductance (L) 100 µH

Inductor resistance (RL) 20 mΩ

Capacitor
Capacitance (C) 220 µF

Capacitor resistance (RC) − −

PV module
PV module voltage (VP V ) 30 V

PV cell group voltage (VP V g) 7.5 V

PV unshaded current (iUSH) 4.2 A

An important note should be given about the choice of the transistors. The PV Equal-
izer uses both N-MOS and P-MOS transistors to guarantee the unidirectional behavior of
the inductor current. Their in-built diodes must be in opposition with their corresponding
diodes in the same switching leg. Thus, odd transistors are P-MOS while even transistors
are N-MOS.

The next step is to provide the equations that calculate the losses of the system.

3.4.2 Prototype Losses

The losses of a power electronics structure are composed by the sum of its conduction and
switching losses. Their equations depend on how the structure switches and its current
path. Figure 3.19 shows these for the PV Equalizer.
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(a) Charge phase (b) Discharge phase

Figure 3.19: The charge and discharge switching and current path for the PV Equalizer

In the example shown above, two switching legs are systematically used during charge
and discharge. They are activated together and must connected in series. In the worst
case scenario, a total of four switch during a full period.

The estimation of the conduction and switching losses will be done separately in the
sections below and added up in the end.

Using these assumptions, the losses can be estimated.

Conduction Losses

The conduction losses are estimated by adding up the contributions from the diodes, the
switches and the inductor. They are detailed in equations 3.46, 3.47 and 3.48.

PCONDdiodes
= 1.1 · [(iLRMSCH

+ iLRMSDCH
) + 0.1 · (i2

LRMSCH
+ i2

LRMSDCH
)] (3.46)

PCONDswitches
= 2 · RdsON · (i2

LRMSCH
+ i2

LRMSDCH
) (3.47)

PCONDL
= RL · (i2

LRMSCH
+ i2

LRMSDCH
) (3.48)

The inductor RMS current is calculated based on figure 3.20.

Figure 3.20: The graph used as a base to calculate the RMS current

The expression of the inductor maximum and minimum current, along with its cur-
rent variation during charge and discharge are given by equation 3.49, 3.50 and 3.51,
respectively.
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iLMAX
= iL +

∆iL

2
(3.49)

iLMIN
= iL −

∆iL

2
(3.50)

∆iL =
nCH · VP V g · D · T

L
(3.51)

Using these equations, it is possible to deduce the RMS currents of the PV Equalizer
during charge and discharge. They are expressed by equations 3.52 and 3.53, respectively.

iLRMSCH
=

√

√

√

√D ·

(

iL
2 +

∆i2

L

12

)

(3.52)

iLRMSDCH
=

√

√

√

√(1 − D) ·

(

iL
2 +

∆i2

L

12

)

(3.53)

The average inductor current is recalled in equation 3.54, its expression for the Uni-
versal BSS is recalled in equation 3.55.

iL = SF · iUSH (3.54)

iLUniversal
=

SF · iUSH

(1 − D)
(3.55)

The RMS current puts in evidence that conduction losses depend largely on the shading
factor and slightly on its shape.

Besides the RMS current, the conduction conditions for each BSS are also needed to
estimate the conduction losses. They regroup the number of cell groups participating in
the charge (nCH) and discharge (nDCH) phases, the duty cycle (D) and the shadow state,
varying with each switching strategy. They are detailed in table 3.9.

Table 3.9: The conduction conditions for different BSS

Switching
Strategy

D nCH nDCH Shadow Shape

II.III.IV → I 0.25 3 1 [1 0 0 0]
III.IV → II 0.33 2 1 [- 1 0 0]

IV → I 0.50 1 1 [0 - - 1]
II.III → I.II 0.50 2 2 [1 1 0 0]
IV → II.III 0.66 1 2 [- 1 1 0]

I → II.III.IV 0.75 1 3 [0 1 1 1]

All → III 0.20 4 1 [0 0 1 0]
All → II.III 0.33 4 2 [0 1 1 0]

All → I.II.III 0.43 4 3 [1 1 1 0]

A few CSS will also be used in this study to assess their impact on switching losses.
The first two CSS are related to some special shadow states, while the third is used to
study losses for long CSS. Their conduction conditions are detailed table 3.10
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Table 3.10: The conduction conditions for the CSS

Switching
Strategy

D nCH nDCH Shadow Shape

II.III → I 0.33 2 1 [1 0 0 -]
II.III → IV 0.33 2 1 [- 0 0 1]

I → II.III 0.66 1 2 [0 1 1 -]
IV → II.III 0.66 1 2 [- 1 1 0]

I → II 0.50 1 1 [0 1 - -]
I → III 0.50 1 1 [0 - 1 -]
I → IV 0.50 1 1 [0 - - 1]

Finally, the same current will be considered flowing through the components during
switch ON. The same is true during switch OFF.

The bypass mode is considered to have only conduction losses.

Switching Losses

The estimation of the switching losses for the PV Equalizer is complex, requiring a series
of assumptions about how its components operate.

The first assumption concerns how the different time responses of the active com-
ponents affect their switching losses. During switch ON, the faster transistor will close
before the totality of the current is established, having less losses. However, since the faster
transistor will also open first, it is the slower transistor that will finish its switching at
zero current and reduce its losses during switch OFF. As for the diodes, only its switching
OFF losses will be taken into account.

The second assumption concerns the distribution of voltage during switching. Dur-
ing switch ON, the voltage across the two transistors will be considered equal and half of
the total. During switch OFF, the voltage will be considered as divided evenly across the
two diodes and two transistors.

Finally, the third assumption is that charging and discharging losses are composed
of the turning ON and OFF of a different number of transistors according to the switching
strategy. Tables 3.11 shows how many N or P transistors are turned ON or OFF during
each phase of the BSS. Their diodes are also listed by a Di and, when two are turned OFF,
they are noted by 2Di.
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Table 3.11: The switching conditions for different BSS

Switching Charge Discharge
Strategy ON OFF ON OFF

II.III.IV → I P Di − P
III.IV → II P P+Di P P+Di

IV → I N+P N+P+2Di N+P N+P+2Di
II.III → I.II P Di − P
IV → II.III P P+Di P P+Di

I → II.III.IV N Di − N+Di

All → III N+P N+P+2Di N+P N+P+2Di
All → II.III N+P N+P+2Di N+P N+P+2Di

All → I.II.III N+P N+2Di N N+P+2Di

The switches used during CSS are listed in table 3.12. The switching losses of all BSS
composing a CSS are summed up to deduce the total switching losses.

Table 3.12: The switching conditions for the CSS

Switching Charge Discharge
Strategy ON OFF ON OFF

II.III → I N Di − P+Di
II.III → IV P Di − N+Di

I → II.III N N+Di N N+Di
IV → II.III P P+Di P P+Di

I → II N+P P+2Di N N+Di
I → III N N+Di N+P N+P+2Di
I → IV N+P N+P+2Di P N+P+2Di

Using these assumptions, the diode switching losses are estimated by equation 3.56.
The total switching losses in the transistors are given by equation 3.57.

PSW IT CHdiode
= trr · [nDCH · (iLMIN

+ 2) + nCH · (iLMIN
+ 2)] · VP V g · f (3.56)

PSW IT CHswitches
= SWCHON

+ SWCHOF F
+ SWDCHON

+ SWDCHOF F
(3.57)

The different contributions are given by equations 3.58 through 3.61. In them, the
N and P denote the transistor used during the specific switching action their equation
describe. There are a total of four, one ON and one OFF during CHARGE plus one ON
and one OFF during DISCHARGE. For example, N or P transistors that are turned ON
during the CHARGE phase will be used in equation 3.58.

The denominators (1+N) and (1+P) represent the reduction of losses when both tran-
sistors switch together. The (N+P+Di) denominator translates the division of voltage
along all the components switching together. The diode only appears in the OFF switch.
If two are used, Di is replaced by 2Di.

SWCHON
=

f · iLMIN
· VP V g

2 · (N + P )
·

(

N

1 + P
· nCH · tNr + P · nCH · tP r

)

(3.58)
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SWCHOF F
=

f · iLMIN
· VP V g

2 · (N + P + Di)
·

(

N · nDCH · tNr +
P

1 + N
· nDCH · tP r

)

(3.59)

SWDCHON
=

f · iLMAX
· VP V g

2 · (N + P )
·

(

N

1 + P
· nDCH · tNf + P · nDCH · tP f

)

(3.60)

SWDCHOF F
=

f · iLMAX
· VP V g

2 · (N + P + Di)
·

(

N · nCH · tNf +
P

1 + N
· nCH · tP f

)

(3.61)

The switching losses are influenced by both the shape of the shadow and its shading
factor. However, they can be greatly reduced in certain switching strategies where certain
switching legs are permanently ON.

Losses and Shadow

Both the conduction and switching losses were found to be influenced by the shading factor
and the shadow shape. To verify them, the evolution of the losses with the shadow will be
traced for all BSS and CSS listed in tables 3.11 and 3.12. Figure 3.21 shows the results.
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Figure 3.21: Equalizer losses
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Figure 3.21(a) shows that the BSS and CSS have, basically, the same losses. This is
explained when comparing the conduction losses in figure 3.21(c) with the switching losses
in figure 3.21(d). For SF between 0 and 0.4, the switching losses represent 30% to 10% of
total losses, respectively. However, as the shading factor rises it drives the current flowing
through the inductor up. Thus, for SF between 0.8 and 1, the switching losses represent
less than 10% to less than 5%, depending on the switching strategy.

The Universal BSS have higher conduction losses since they force the inductor current
higher than the other strategies. However, as will be shown below, they also transfer more
power between unshaded and shaded cell groups. Thus, their use must still be studied
further.

In the case of the PV module used in this work, each cell group produces around 40 W

under 1000
W

m2
. Thus, if these are shaded beyond an SF of 0.75 or 0.80, then the equalizing

is not energy efficient. As a conclusion, most of the effort during the conception of the
Equalizer must be concentrated into lowering its conduction losses. This is important
because if the PV Equalizer is more efficient, it can compensate higher SF. As
a consequence, it will have a higher robustness enhancement.

3.4.3 Effects of the shadow in power production

With the description of the losses as a function of the shading factor for different shapes,
the overall efficiency of the PV Equalizer can now be estimated. To do so, a series of curves
will compare the evolution of power production with the shadow for equalizing, bypassing
and doing nothing. Their comparison shows how much power is gained by using the PV
Equalizer providing clues to how it improves the robustness of the PV module.

The results are shown in figure 3.22, according to the number of cell groups receiving
energy from the Equalizer.

Figure 3.22 shows that the switching strategies which use all the cell groups at least
once while minimizing the number of transistors switching have a higher power production.
It also shows that different switching strategies have different SF beyond which equalizing
is no longer energy efficient. It can be as high as 0.9 for I → II.III.IV or as low as 0.45
for IV → I.

When compared to bypassing or doing nothing, the PV Equalizer is most effective for
shadows covering half of the PV module. It can theoretically raise power output by 30
W for the III.IV → I.II at a SF of 0.55. As the shadow becomes wider, the Equalizer
becomes more efficient for higher SF values, but its contribution is much smaller.

To confirm some of these results, an experimental validation of two BSS will be con-
ducted.

Practical validation

To validate these curves, a few measurements were made using the prototype developed in
this work. Due to the challenge of making photovoltaic measurements in stable conditions,
the number of switching strategies was reduced.

The weather conditions and shading factor of the measurement are detailed in table
3.13. The ambient temperature is represented by TA, while the module temperature is
represented by TM. The shading factor of the measurements were provided by using plastic
sheets whose characteristics are detailed in Appendix B.

Their results are shown in figure 3.23, where the lines are linear expansion fitted to
the measured points.
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Figure 3.22: Overall power production of the Equalizer according to its operation

Table 3.13: The measurement conditions

Switching Irr TA TM SF (plastic layers)
Strategy ( W

m2 ) (℃) (℃) PVI PVII PVIII PVIV

II.III.IV → I

798 34.2 51.4 0.21 0 0 0
773 33.9 51.4 0.36 0 0 0
755 33.9 51.2 0.47 0 0 0
735 33.4 51.3 0.56 0 0 0

III.IV → I.II

851 29.2 47.2 0.21 0.21 0 0
852 29.3 47.2 0.36 0.36 0 0
833 30.6 49.3 0.47 0.47 0 0
834 30.8 49.1 0.56 0.56 0 0
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Figure 3.23: Validation of the influence from the shadow in power production

The measurements in 3.23(a) had a greater irradiance fluctuation, explaining the
spreading of its points. The weather conditions varied less during the measurements
for the BSS III.IV → I.II, leading to a more accurate curve. Both results confirm the
tendency of the PV Equalizer to best perform at wider shadows. The linear estimation of
the results show that the SF after which the PV Equalizer is no longer efficient is located
expands for wider shadows and is located at roughly 0.7 for the first BSS and 0.9 to the
second.

While these results are not exhaustive they give an important first impression, con-
firming the potential of the PV Equalizer concept in raising the robustness of PV modules.

3.4.4 Summary of the Efficiency study

This efficiency study has estimated of the losses in the PV Equalizer and their effect in
its robustness enhancement. Based on the constraints imposed by the use of its functions
and the imperfections of its components, a series of equations were proposed. While the
values of the components are specific for the prototype sized in this work, the method used
to estimate the losses can be expanded for other applications.

The results have pointed out the potential of the PV Equalizer in mitigating the
presence of the shadow. Several shadow shapes and switching strategies were used to
corroborate this idea, with two of them being validated through experiments.

3.5 Conclusion

This chapter has introduced a new concept in parallel PRobES called PV Equalizer
. Its topology, based on a battery equalizer, was presented and analyzed. Based on its
switching principles, its use was generalized into four functions: equalize, bypass, search
and idle. The first two mitigate the presence of the shadow, the third detects its presence
and the fourth represents a stand-by between the other three.

By analyzing the topology of the PV Equalizer a few characteristics can be outlined:

• Smaller cell groups can support larger ones. The main advantage of doing so is to
keep the output voltage from falling below a certain critical level. Since most MPPTs
have a voltage threshold below which they are unable to operate this can effectively
help keeping the PV system running even if on a degraded state.
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• Non-contiguous shadows can be addressed across PV plants of any size. Any shadow
can be compensated, given the right CSS. To do so, it is crucial to know where the
shadow is located.

• Most shading factors can be compensated. Even if the entire PV plant is shaded,
the equalizer can detect which parts are less shaded than others and use them to
raise overall output. Depending on its shading factor, however, certain shadows are
better left uncompensated. These should be bypassed instead.

• Any shadow can be bypassed. Contiguous shadows can be bypassed together as long
as they have the same shading factor. If they do not, then a special bypass mode
can be activated, granting bypass to any shadow shape. However, it comes with an
important cost: a much higher current flowing through the inductor, incurring into
higher losses.

• Shadow detection depends on power production. The search function can access any
cell group and sample its energy state through a current peak. These peaks have a
very specific pattern, which will be studied in detail in chapter 5 to determine the
location of the shadow.

• The sizing of passive components in the system has a direct impact on the use of
operation modes and switching strategies.

Each function imposes different current and voltage constraints over the PV Equalizer
components. They were used, along with a description of the prototype components used
in this work, to estimate the losses of the PV Equalizer. These losses provided the basis
for describing the power benefits of the PV Equalizer in comparison with bypassing and
doing nothing. Some of the results were validated through measurements, confirming an
important potential of the PV Equalizer to raise the robustness of its PV module.

It is important to note, though, that all these results were acquired through the use of
the PV Equalizer in controlled shadow conditions. The voltages across the cell groups were
considered as fixed and the equations were deduced to work in steady state. Thus, the
results from this chapter can be considered as the theoretical maximum the PV Equalizer
can provide if it mitigates the shadow perfectly.

Now the challenge of this work can be split into three blocks.
First, both the equalize and bypass functions should be characterized with different

shadows. An specific attention should be given to the choice of the switching strategies
and duty cycles that can maximize the power production of the PV module. This should
provide more insight over how the PV Equalizer finds the optimal operating conditions
for maximizing the power production of the PV module. Their effects over the operating
conditions of the PV Equalizer should be tested further.

Second, the diagnosis of the shadow should be studied in more detail. The search
function introduced in this chapter gives a starting point as to how to find the shadow.
However, it costs energy by cutting production, even if for short periods of time. Its energy
cost should be compared to the quality of the information it provides, and other potential
diagnosis methods should also be provided.

Finally, the potential of the PV Equalizer can only be totally fulfilled if its is capable of
allying all its functions under a sturdy and reliable control algorithm. Designing, testing
and validating such algorithm is an important feature to assess the true robustness en-
hancement. For the prototype used in this work to be largely improved, its control system
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should be mature enough to provide a framework of control for any future PV Equalizer
application.
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Chapter 4

Mitigating Shadows: The Equalize

and Bypass Functions

The previous chapter presented the PV Equalizer and described its main characteristics.
Starting by its switching rules, its working principles were described as a set of function
which can be used for different purposes. Two functions are responsible for mitigating the
presence of the shadow, namely equalize and bypass. The first uses switching strategies
to equalizer the current differences between unshaded and shaded cell groups within a
PV module, effectively erasing the presence of the shadow. The second can short-circuit
any cell group, contiguous or not. It was also pointed out that knowing the location and
intensity of the shadow was essential for the Equalizer, since different shadow states require
different switching strategies.

This chapter has the objective of characterizing the impact of the shadow over the
operating conditions of the equalize and bypass functions. Both functions require the use
of switching strategies and duty cycles, thus these will be the focus of this chapter. Their
study will be guided by two questions:

• What is the relation between the shadow and switching strategies?

This question focuses on how similar switching strategies have different effects on
different shadows. It is essential to understand how the switching strategy can
raise power production and what are the criteria for choosing the optimal switching
strategy for a given shadow.

• The equalizer can operate at a fixed duty cycle. Can any duty cycle guarantee a
maximum power output?

The previous chapter has also shown that the PV Equalizer can operate at a fixed
duty cycle. However, it is important to understand if it is also optimal. If not, clues
must be given as to how it can be optimized.

Each of these questions will be addressed in a different section. Their answers will
provide the basis for automatically answering to a shadow once it is found. This is an
important feature for controlling the PV Equalizer and guaranteeing its maximal perfor-
mance.

In an important note, the shadow is considered static in this chapter. This means that
while a myriad of cases will be used throughout the next two sections, they will be static
over time. Dynamic phenomena such as movement or changes in the shading factor will
be studied into detail in the next chapter.
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4.1 Choosing an appropriate switching strategy

Both equalize and bypass functions handle the shadow through the use of switching strate-
gies. Introduced in chapter 3, these are responsible for determining which cell group gives
and which receives energy in the case of the equalize function. For the bypass, they
determine which group will be short-circuited.

The switching strategies are the focus of this section, whose contribution will be driven
by the following question:

• What is the relation between the shadow and switching strategies?

Considering the knowledge dispensed about the shadow in the previous sections, this
question can be further detailed into the following subsidiary questions.

1. Is there a “generic” switching strategy that can be used to compensate all the shad-
ows?

2. If not, does each shadow have its own specific switching strategy to maximize the
power output?

3. Can shadows with different shading factors but similar shapes be treated with the
same switching strategy?

4. Is the shading factor important for choosing a switching strategy?

5. Is there a simple and efficient algorithm for choosing a switching strategy?

Answering these questions requires studying a large number of shadow scenarios, all
equalized using many different switching strategies. Since the possibilities are infinite,
this approach cannot pretend to be exhaustive but rather quasi-exhaustive. The ratio-
nale is that if it covers many possibilities, its conclusions will be used as solid clues for
understanding the influence of the shadow over the switching strategies.

This section will, thus, start by recalling the characteristics of the switching strategy.
This will be followed by a description of the shadow scenarios, which are regrouped into
blocks to compose the quasi-exhaustive setup. An analysis of simulation results will follow
suit, split into an overview and a block-by-block part. A reduced number of measurements
will be used to validate its conclusions. Finally, the questions above are answered by an
algorithm designed to aid the PV Equalizer to choose the optimal switching strategy based
on the shadow shape.

4.1.1 Quasi-exhaustive study setup

The most important issue of a quasi-exhaustive study is to determine how many scenarios
are needed to reach plausible conclusions. In the case of switching strategies this issue
is twofold, as the shadow scenarios and switching strategies must be chosen together.
Limiting both of them is paramount, otherwise thousands of simulations would be neces-
sary to reach any conclusion at all. The principles and conditions used to achieve these
simplifications are proposed in this study setup.
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Switching Strategies reminder: definitions and conventions

The switching strategies are divided in two: basic and complex.
The Basic switching strategies (BSS) have only one charge and discharge period. Two

examples of BSS are given in figure 4.1(a) and 4.1(b).
Complex switching strategies (CSS) are those where two or more BSS are needed. The

greater number of switches participating in the CSS tend to rise switching losses. As an
example, the two BSS in figure 4.1 can be combined into a CSS.

(a) P VI and P VII charging (b) P VIV charging

(c) Legend

Figure 4.1: Two BSS, which can be combined into a CSS

During this section, a large number switching strategies will be handled. To avoid
confusion their convention is recalled in figure 4.2.

(a) I.II → III.IV (b) IV → All (c) All → I.II.III

Figure 4.2: Three examples of the proposed convention

Figure 4.2(a) represents a BSS, which charges with groups PVI and PVII , while dis-
charging over groups PVIII and PVIV . The equalizing process is represented by an arrow,
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going from the charging to the discharging cell groups. The groups are represented by
roman numerals, from I to IV. When they are used together during charge or discharge
their numbers are separated by a point, as in I.II or III.IV. Figure 4.2(b) represents an-
other BSS, but with other characteristics. In it, the discharge over the entire group of
cells is not represented by I.II.III.IV but rather by All. It is used for a more compact
notation. Figure 4.2(c) shows another example of the use of All, where the three cell
groups discharging are represented by I.II.III.

In this section, BSS or CSS will be presented as in table 4.1 to save space. It shows
the result of applying this convention to figure 4.1.

Table 4.1: Example of coded table based on the example of figure 4.1

Figure
Switching Strategies

1st 2nd 3rd

4.1(a) I.II → III − −

4.1(b) IV → III − −

4.1 I.II → III IV → III −

The CSS of figure 4.1 is represented by its two BSS, namely 1st and 2nd. In table 4.1,
a third BSS, represented by 3rd, is not used and expressed by the − symbol. This allows
representing BSS and CSS in the same table and will be used later in this section.

The duty cycle of the switching strategies will be considered fixed. They will be
calculated using equation 3.12 introduced in chapter 2 and recalled below. In the case of
the CCS the duty cycle will also be independent. Thus, a single CSS may have up to 3
different duty cycles.

D(i) =
n(i)SH

n(i)SH + n(i)USH

(3.12)

Where nSH represents the number of shaded cells and nUSH represents the number
of unshaded ones. The (i) represent the number of the BSS to which the duty cycle is
attributed.

Shadow scenarios

The shadow is a random phenomenon with random properties. It is completely dependent
on the environmental conditions and objects surrounding the PV module. In this work,
the presence of a shadow over a PV module constitutes a shadow case, composed of a
shadow shape and shading factors for each PV cell group.

It is clearly difficult to choose which shadow cases are “representative” of the majority
of occurrences. Furthermore, for each shadow scenario, a virtually infinite number of
switching strategies can be applied. Thus, a special care should be taken while devising
the simplifying hypothesis used to limit their number.

The first hypothesis is that not all shading factors need to be simulated, since their
effect on current is considered as linear. Previous work Wang et al. [2012] support this
hypothesis, which is confirmed through the characteristics of the PV module used in this
work, as shown in appendix B. Thus, only four SF were chosen to study the shadow: 0.0,
0.2, 0.5 and 0.8.

The second hypothesis is that since the shadows are considered binary in occurrence.
Thus, there can only be 16 possible shapes: [0 0 0 0] to [1 1 1 1].
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Table 4.2: The shading factors of the shadow scenarios

Block Case
Shading factor

Description Objective
PVI PVII PVIII PVIV

1

1 0 0 0 0.8
One cell group is
shaded. Only one
SF.

Determine the
effectiveness of BSS or
CSS against local and
small shadows.

2 0 0 0 0.5
3 0 0 0 0.2
4 0 0 0.8 0
5 0 0 0.2 0

2

6 0.8 0 0.8 0.8 Two or three cell
groups are
shaded. Only one
SF.

Study how the
effectiveness of the BSS
and CSS change with
the shadow shape.

7 0 0.8 0.8 0
8 0 0.8 0.8 0.8
9 0.8 0 0 0.8

3

10 0 0 0.8 0.2
Two or three cell
groups are
shaded. Different
SFs.

Study the effectiveness
of BSS and CSS against
the shadow shape and
SF at the same time.

11 0 0.2 0.5 0.8
12 0 0 0.2 0.5
13 0 0.5 0.5 0.8
14 0 0.2 0 0.8
15 0 0.2 0.5 0

4

16 0.2 0.5 0.8 0.8
All four cell
groups are
shaded. Different
SFs.

Study if mildly shaded
cell groups can be used
to equalize heavily
shaded ones.

17 0.2 0.2 0.5 0.5
18 0.2 0.5 0.2 0.5
19 0.2 0.5 0.8 0.5
20 0.2 0.2 0.5 0.8

Finally, the third hypothesis states that certain shadow shapes are considered equiv-
alent. Shadow cases such as [1 0 0 0] or [0 0 0 1], will, then, use similar switching strategies.

After using these hypothesis, 20 shadow cases have been chosen, as shown in table 4.2.
To facilitate their study, they are regrouped into four blocks, according to their similarities
and purposes.

The switching strategies will be chosen according to each shadow scenarios and their
number will be limited.

Switching strategies scenarios

Choosing the switching strategies is also challenging, as each shadow scenario can be
treated in many different ways. To limit their number, another set of hypothesis is pro-
posed.

The first hypothesis is that the CSS will be composed by no more than 3 BSS. The
second hypothesis is that the BSS will try to involve as many cell groups as possible
during the equalizing. The third and final hypothesis is that Universal strategies must
also be used during the study.

Even with these simplifications, a total of 178 cases have been chosen. Their complete
list with all their results is available at the Appendix C. For the purpose of studying the
effect of the shadows over the switching strategies, only the best results will be used in this
chapter, as listed in table 4.3. Their results will be studied in detail in a block-by-block
analysis.

It is important to note that the ranking of the best switching strategies might be done
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Table 4.3: The best rating switching strategies used in the block-by-block analysis

Case
Switching Strategies

Case
Switching Strategies

1st 2nd 3rd 1st 2nd 3rd

1
I.II.III → IV − −

11
I.II.III → III.IV − −

All → IV − − I.II → IV − −

2
I.II.III → IV − −

12
I.II → IV − −

All → IV − − I.II.III → III.IV − −

3
I.II.III → IV − −

13
I → IV − −

All → IV − − I.II.III → II.III.IV − −

4
All → III − −

14
All → IV − −

I.II → III − − I.II.III → IV − −

5
All → III − −

15
I → III IV → III −

I.II → III IV → III − All → III − −

6
II → All − −

16
I.II → II.III.IV − −

II → I II → III.IV − I → III.IV − −

7
I → II.III IV → II.III −

17
I.II → III.IV − −

All → II.III − − All → III.IV − −

8
I → All − −

18
I → II III → IV −

All → II.III.IV − − I → II I → IV −

9
II.III → I II.III → IV −

19
I → III − −

II.III → All − − All → III − −

10
I.II → III − −

20
I.II.III → III.IV − −

I.II.III → III − − I.II → IV − −

under non-optimal duty cycle conditions. The next section will address the effects of the
duty cycle and an overall analysis will be proposed in the end of this chapter.

4.1.2 Simulation results

Due to the important amount of data, this quasi-exhaustive study requires a steady and
structured analysis to mine all important information from the simulations. An indicator
of the switching strategy efficiency, proposed by equation 4.1, is used to rank them from
most to least efficient.

η =
PP roduced

∑n
i=1(SFi · Piunshaded

)
(4.1)

In this expression, the denominator is the sum of the power available in each cell group
of the PV module. The power of each cell group is considered as the product of its own
shading factor with a reference power. This reference power, considered as unshaded, is
the power of the cell groups at 1000 W

m2 . Thus, an η of 1 means that the switching strategy
delivers all the power that the PV module can produce.

The model used during the simulations is described in detail in appendix A. The nu-
merator is the output power calculated by using the simulation results once it reaches
steady-state conditions. These simulation take losses into consideration through the im-
perfections of the components used in the model.



106CHAPTER 4. MITIGATING SHADOWS: THE EQUALIZE AND BYPASS FUNCTIONS

The results will be studied in five parts: a general and four per-block analyses. The
conclusions will be summed up at the final part of this section and validated in the next
through measurements.

General Analysis

A general analysis is proposed first. In it, the switching strategies are regrouped into five
categories according to their complexity. The categories related to the BSS are shown in
table 4.4, where ntot represents the total number of cell groups within the PV module.

Table 4.4: The categories of the BSS

Category Criteria
Switching Strategies

1st 2nd 3rd

Complete nCH + nDCH = ntot
II.III.IV → I − −

I.II → III.IV − −

Incompl. nCH + nDCH 6= ntot
II.III → I − −

II.III.IV → I.II − −

Universal nCH or nDCH = ntot
All → II − −

I → All − −

The BSS are divided into Simple, Incomplete and Universal. The Simple BSS are
those that involve all of the cell groups (I.II.III → IV ). The Incomplete BSS are those
in which either not all groups participate(I → II) or some groups participate more than
once (I.II.III → III.IV ). The Universal BSS are those in which all cell groups either
charge (All → I) or discharge (IV → All) together.

The categories related to the CSS are shown in table 4.5.

Table 4.5: The categories of the CSS

Category Criteria
Switching Strategies

1st 2nd 3rd

CSS2 Two BSS
I → II.III IV → II.III −

All → II All → IV −

CSS3 Three BSS
I.II → II I.II → III I.II → IV

I → IV I → IV I → II.III

The CSS are divided into CSS2 and CSS3, composed of two and three BSS respectively.
Figure 4.3 shows the mean efficiency for each category with their minimum and maxi-

mum (min/max) scatter.
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Figure 4.3: The average efficiency per category with the maximum and minimum scattering

The BSS strategies have a higher average efficiency, the majority of their occurrences
being concentrated between 0.8 and 0.9. The Incomplete BSS delivers more power, and
its occurrences are largely concentrated beyond 0.8. However, it has a min/max scatter
ranging from 0.35 to 0.99, similar to the Universal strategies. The Simple BSS have a
slightly lower average but a lower scatter.

These results show that no single switching strategy works for all of the shadow
scenarios. Thus, shadows are best compensated by specific and well thought strategies.

The CSS2 have an overall efficiency similar to the Universal BSS, with different min/max
scatters. This shows that the latter are not so “Universal” after all. It may work well in
some cases, but its use should be analyzed further and compared with CSS2. The CSS3
strategies have a low average efficiency and a large min/max scatter. They work very well
in some specific cases, which will be described further in detail in the block analyses.

The idea of a well thought strategy is reinforced by these results. But that does not
mean complicated, as complicated CSS have a lower probability of success.

To confirm some of these general results, each block of shadow scenarios will be ana-
lyzed separately.

First Block - Small shadows

The first block concentrates its attention in small and simple shadows. Table 4.6 shows
the two best strategies for each of its shadow scenarios.

The first three cases have their best results by using Complete BSS, while the last two
have a better performance by using the Universal one. This points to an influence of the
shadow shape in the efficiency of a given strategy. In cases 1, 2 and 3 the shaded and
unshaded groups are contiguous, having a clear separation between them. In all of them
the simple BSS is the best choice. In cases 4 and 5, the shaded cell group is located in
between two unshaded blocks, thus being non-contiguous. In these cases, the universal
BSS is the best choice.

Thus, the continuity of the shadow must be taken into account when choos-
ing the switching strategy.

Second Block - Non-contiguous and homogeneous shadows

The second block of shadow scenarios proposes more insight about non-contiguous shad-
ows. Table 4.7 shows its best strategies.
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Table 4.6: The best results for the first block

Case
Shading Factor

η
Switching Strategies

PVI PVII PVIII PVIV 1st 2nd 3rd

1 0 0 0 0.8
0.97 I.II.III → IV − −

0.93 All → IV − −

2 0 0 0 0.5
0.99 I.II.III → IV − −

0.96 All → IV − −

3 0 0 0 0.2
0.99 I.II.III → IV − −

0.97 All → IV − −

4 0 0 0.8 0
0.91 All → III − −

0.90 I.II → III − −

5 0 0 0.2 0
0.99 All → III − −

0.99 I.II → III IV → III −

Table 4.7: The best results for the second block

Case
Shading Factor

η
Switching Strategies

PVI PVII PVIII PVIV 1st 2nd 3rd

6 0.8 0 0.8 0.8
0.82 II → All − −

0.77 II → I II → III.IV −

7 0 0.8 0.8 0
0.85 I → II.III IV → II.III −

0.84 All → II.III − −

8 0 0.8 0.8 0.8
0.82 I → All − −

0.76 All → II.III.IV − −

9 0.8 0 0 0.8
0.85 II.III → I II.III → IV −

0.84 II.III → All − −

In all cases, the universal BSS is the best choice or very close to it. In cases 7 and 9,
both CSS2 and Universal have similar efficiencies. These cases are also the first to have
similar ratings to what could have been achieved by using bypass diodes.

Thus, the universal BSS is systematically the best choice to non-contiguous
shadows.

Third Block - Non-homogeneous shadows

All of these shadow scenarios above have only one SF. This might not be the case under real
conditions, making it necessary to understand the response of the system not only under
non-homogeneous shadow shapes but also under different SF. The third block proposes
several examples of such conditions and its best switching strategies are listed in table 4.8.
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Table 4.8: The best results for the third block

Case
Shading Factor

η
Switching Strategies

PVI PVII PVIII PVIV 1st 2nd 3rd

10 0 0 0.8 0.2
0.93 I.II → III − −

0.90 I.II.III → III − −

11 0 0.2 0.5 0.8
0.92 I.II.III → III.IV − −

0.86 I.II → IV − −

12 0 0 0.2 0.5
0.98 I.II → IV − −

0.97 I.II.III → III.IV − −

13 0 0.5 0.5 0.8
0.92 I → IV − −

0.92 I.II.III → II.III.IV − −

14 0 0.2 0 0.8
0.92 All → IV − −

0.91 I.II.III → IV − −

15 0 0.2 0.5 0
0.95 I → III IV → III −

0.92 All → III − −

Cases 10, 12, 14 and 15 have two shaded cell groups. In all of them, the cell group
with a SF of 0.2 does not need to participate in equalizing. The best choices are those that
focus their energy of the unshaded cell groups into the highly shaded one, either through
CSS2 or the Universal strategies.

Thus, compensating a highly shaded cell group should be the priority during
the equalizing process. This can be acknowledged as evidence supporting the use of a
binary shadow model.

Cases 11 and 13 have the same shape but different SF. In them cell groups with a SF
of 0.5 are found to participate either during charge and discharge or not at all. In case 11,
if the cell group with a SF of 0.2 does not participate in the equalizing, the efficiency of
the system diminishes.

It is extremely important to properly choose which groups are considered
unshaded and which are considered shaded. Failure to do so may incur in an
important loss in efficiency. Thus, the more precise is the information about the shadow
location, the more efficient the equalizing may be.

Fourth Block - Mild shadows

To further explore the challenge of telling the difference between shaded and unshaded cell
groups, the last block proposes shadow scenarios where all cell groups are shaded. The
best strategies for this block are listed in table 4.9.
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Table 4.9: The best results for the fourth block

Case
Shading Factor

η
Switching Strategies

PVI PVII PVIII PVIV 1st 2nd 3rd

16 0.2 0.5 0.8 0.8
0.93 I.II → II.III.IV − −

0.91 I → III.IV − −

17 0.2 0.2 0.5 0.5
0.99 I.II → III.IV − −

0.98 All → III.IV − −

18 0.2 0.5 0.2 0.5
0.95 I → II III → IV −

0.93 I → II I → IV −

19 0.2 0.5 0.8 0.5
0.94 I → III − −

0.87 All → III − −

20 0.2 0.2 0.5 0.8
0.95 I.II.III → III.IV − −

0.92 I.II → IV − −

Cases 16, 19 and 20 confirm that cell groups with a SF of 0.5 should either charge and
discharge or do nothing. They also confirm that strategies focusing on the highest shaded
cell group tend to have a high efficiency.

Case 17 confirms that if the shaded and unshaded groups are contiguous then the
Complete BSS is the best choice.

Finally, Case 18 shows that the CSS2 can work if it profits from the symmetries
of the shadow to minimize its switching losses. A total of 5 transistors and 1 diode
are used in the best switching strategy (T2, T3, T5, T7 and D10). However, they only switch
4 times, because T3, T5 and T7 are used in both BSS.

Simulation conclusions

The general conclusion from the simulations is that no single switching strategy works
for all shadow scenarios. This implies that there is a direct relationship between the
shadow and the switching strategies. The impact of the homogeneity and continuity of
the shadows on the performance of the switching strategies was studied, giving place to
five specific conclusions.

1. The Complete BSS is systematically the best choice to contiguous shadows

2. The Universal BSS is systematically the best choice to non-contiguous shadows

3. When equalizing non-homogeneous cell groups, those highly shaded should be the
priority.

4. It is extremely important to properly choose which groups to consider unshaded or
shaded.

5. The CSS works better if it profits from the symmetries of the shadow to minimize
its switching losses

The experimental validation that follows seeks to validate these results and formalize
them into overall criteria for choosing the switching strategies.
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4.1.3 Experimental validation

The series of experiments proposed below have the objective of validating the simulations
results proposed in this section.

Since measuring several switching strategies and shadow cases under the same weather
conditions can be very difficult, their number has been limited. For each block, only one
case is studied. For each case, the two most efficient strategies is measured and compared.
Their details and weather conditions are shown in table 4.10. Where TM represents the
module temperature, TA represents the ambient temperature and Irr represents the irra-
diance during the measurements.

Table 4.10: Measured scenarios and their BSS

Case
Shading Factor Switching Strategies Irr TA TM

PVI PVII PVIII PVIV 1st 2nd ( W
m2 ) (℃) (℃)

2
0 0 0 0.55

I.II.III → IV − 550 32.7 45.9
All → IV − 564 33.0 46.6

Bypass − − 568 33.1 47.0

7
0.76 0 0 0.76

II.III → I II.III → IV 829 36.3 54.1
II.III → All − 873 38.8 58.5

Bypass − − 823 36.2 54.5

12
0 0 0.21 0.55

I.II → IV − 897 32.0 54.6
I.II.III → III.IV − 941 31.6 55.2

Bypass − − 935 32.6 55.8

18
0.21 0.55 0.21 0.55

I → II III → IV 830 35.0 53.1
I → II I → IV 841 36.4 54.3

Bypass − − 856 36.0 54.7

For each case, an estimation of the maximum theoretical power was calculated. It serves
as a reference power to which all measurements of its corresponding case are compared.
To calculate it, the power of each cell group is estimated separately according to its SF,
which requires their local current and voltage.

The current of each cell group is estimated from I-V measurements using bypass diodes,
shown in figure 4.4. The values used are detailed in table 4.11.
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Figure 4.4: I-V curves of the bypass measurements
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The voltage is more difficult to estimate since a single I-V curve was traced. The
voltage of a cell group fluctuates approximately between 8.5 V and 6.5 V. This variation
is essentially due to the irradiance and shading factor of the cell group. A value of 7.5
V was adopted for all groups, representing a compromise and a conservative estimation.
Thus, the theoretical power is expected to be overestimated.

The theoretical power for each case is calculated in table 4.11

Table 4.11: Maximum theoretical power for each case

Cell group
Case 2 Case 7 Case 12 Case 18

I(A) P(W) I(A) P(W) I(A) P(W) I(A) P(W)

PVI 2.60 19.50 0.75 5.62 4.00 30.00 2.20 16.50
PVII 2.60 19.50 3.61 27.10 4.00 30.00 3.35 25.13
PVIII 2.60 19.50 3.61 27.10 3.09 23.18 2.20 16.50
PVIV 0.99 7.43 0.75 5.62 1.80 13.50 3.35 25.13

Total Ptheo (W) 65.93 65.40 96.68 83.26

The measurements were conducted under different irradiation conditions, which may
cause difficulties in their comparison and lead to false conclusions. To avoid these, a cor-
rection will be applied to their measured power. Since the theoretical power was calculated
based on the currents produced by the bypass diodes measurements, it is logical to use
the same irradiance as reference. Thus, the irradiance of the switching strategies will be
corrected to that of the bypass diode for each case according to equation 4.2.

Irrcorrected = Irroriginal + (Irrdiode − Irroriginal) (4.2)

Where the Irrcorrected is the irradiance after correction, Irrdiode is the irradiance mea-
sured during the tracing of the I-V curve using bypass diodes and Irroriginal is the irra-
diance measured with the switching strategies. This correction is applied for each case
independently.

The efficiency levels obtained by measurements, along with their measured and cor-
rected power are shown in table 4.12.

Table 4.12: Efficiency of each measured scenario

Case
Shading Factor Switching Strategies Power (W)

Eff.
PVI PVII PVIIIPVIV 1st 2nd Meas. Corr.

2
0 0 0 0.55

I.II.III → IV − 56.51 58.36 0.89
All → IV − 53.62 54.00 0.82

Bypass − − 56.16 − 0.85

7
0.76 0 0 0.76

II.III → I II.III → IV 49.84 49.48 0.76
II.III → All − 50.45 47.56 0.73

Bypass − − 44.76 − 0.68

12
0 0 0.21 0.55

I.II → IV − 69.45 72.39 0.75
I.II.III → III.IV − 69.37 68.93 0.71

Bypass − − 68.60 − 0.71

18
0.21 0.55 0.21 0.55

I → II III → IV 56.03 60.41 0.72
I → II I → IV 64.47 63.34 0.76

Bypass − − 67.57 − 0.81



4.1. CHOOSING AN APPROPRIATE SWITCHING STRATEGY 113

To complement the efficiency results, the P-V curves of each case are shown in figure
4.5. They are analyzed together to give a clear idea of the changes inflicted by the switching
strategies on the power production of the PV module.
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Figure 4.5: The experimental P-V curves of each case

The maximum theoretical power is represented by the Max dashed line. The results
for the bypass diodes are also shown for comparison.

The switching strategies of cases 2, 7 and 12 have lower efficiencies than in the sim-
ulations, can be due to an overestimation of the maximum theoretical power. Still, their
ranking is the same. Only case 18 has different results.

Case 2, shown in figure 4.5(a), confirms the Complete BSS as the most straightforward
answer to the homogeneous shadows, having a better efficiency than the Universal BSS.
Although their power peak is similar to the one obtained with the bypass diodes, both
strategies gain nearly 8 V (20% of the module VOC), sparing the MPPT of operating at
lower voltages.

The strategies for case 7, shown in figure 4.5(b), show that the Universal BSS and the
CSS2 may have similar results, the latter performing better when exploring the symmetries
of the shadow. The Universal strategy may be used for such shadows if a quick reaction
to the shadow is needed. The gain in voltage is more important in this case, nearly 12 V
(30% of the module VOC).

Case 12, shown in figure 4.5(c), has two strategies with very close performances. This
confirms the idea that a mildly shaded cell group should either participate during charge
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and discharge or not at all. Thus, properly detecting these groups can be confirmed as an
important issue. Its voltage gains are less important, around 4 V.

Finally, figure 4.5(d) has a different result from the simulations. The more specific
switching strategy, (II.III → I and II.III → IV ) which explores the symmetries of the
shadow is less efficient than the other. By closely looking at the P-V curve, an indentation
can be seen at peak power. This may be due to small fluctuations of irradiance which were
not perceived during the measurements. The PV module performs much better without
any equalizing at all, as it can be seen from the bypass curve. Thus, the Equalizer should
be capable of determining if it is appropriate to compensate a shadow and stop in case
power production falls.

Based on these results, the conclusions from the simulations can be considered as
accurate and valid. A summary of all the results discussed in this section is proposed
below.

4.1.4 Summary of the results

The results of this study are summarized in table 4.13, which elaborates the criteria for
choosing the optimum switching strategy according to three shadow types: contiguous,
non-contiguous and mildly shaded. Their length is described by nUSH and nSH , which
are the number of unshaded and shaded cells respectively.

Table 4.13: Optimal switching strategies

Shadow Shadow Solution State Optimal Switching Strategies
Type Length Category Example 1st 2nd

Contiguous
nUSH > nSH

Simple
[0 0 0 1] I.II.III → IV −

nUSH < nSH [0 1 1 1] I → II.III.IV −

nUSH = nSH [1 1 0 0] III.IV → I.II −

Non nUSH > nSH Universal
[0 1 0 0] All → II −

Contiguous nUSH < nSH [1 1 0 1] III → All −

nUSH = nSH CSS2 [0 1 0 1] I → II III → IV

Mildly
nUSH > nSH

Incomplete
[0 0 0.5 1] I.II → IV −

nUSH < nSH [0 0.5 1 1] I → III.IV −

nUSH = nSH [0 0.5 1 0.5] I → III −

Now, the subsidiary questions stated in the beginning of this section may be answered.

1. Is there a “generic” switching strategy that can be used to compensate all the shad-
ows?

No. The closest to a “generic” switching strategy is the principle used to determine
the Universal BSS. But it was proven to not be Universal at all.

2. If not, does each shadow have its own specific switching strategy to maximize the
power output?

Each of the 16 binary shadows can be considered as having its own specific switching
strategy. In cases where the distinction is not as clear (non-homogeneous shadows)
it is paramount to properly define which groups will participate during equalizing
and which will not.
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3. Can shadows with different shading factors but similar shapes be treated with the
same switching strategy?

It depends on the detection and representation of the shadow. Those with the same
shape but different SF might be considered as different binary shadow cases. Cases
10 and 12 are examples of similar shadow shapes with different SF being treated
with different switching strategies. Conversely, cases 1 trough 5, 11 and 13 show
similar shapes that might be treated with the same switching strategy.

4. Is the shading factor important for choosing a switching strategy?

It depends on how many levels of representations are used in the shadow model. In
the case of a binary shadow model, the priority is to clearly estimate the shadow
shape. The more complex the shadow representations become, the more important
it will be to precisely estimate the shading factor.

In either case, a failure to properly estimate the shadow shape may incur in choosing
a wrong strategy, ultimately leading to a poor efficiency of the equalizer. An special
attention should be given to non-homogeneous and non-contiguous shadows. They
were found to be much more complicated to clearly detect and compensate than
others.

5. Is there a simple and efficient algorithm for choosing a switching strategy?

Yes, but only if the shadow has been detected correctly. The criteria described in
table 4.13 can be used to choose the appropriate strategy directly from the vector
representing the shadow.

These results also provide some important elements to the detection of the shadow.
First, it should be as precise as possible to raise the chances of properly choosing which

cell group is unshaded and which is shaded. In practice either the second search routine
can be used, allying the search peaks with iOUT measurements, or the charge time may
be chosen as to give the first search routine enough precision.

Second, the binary shadow model might be expanded to ternary, quaternary or more.
The middle values may be attributed to mildly shaded cell groups. Adding new levels raise
the complexity of the switching strategies but grants a better power output in the case of
shadow scenarios with mildly shaded cell groups.

Finally, an algorithm for choosing the optimal switching strategy for a given shadow
is proposed in figure 4.6. It proposes solutions for binary or more complex shadow repre-
sentations.

A final and important remark is to remember that these tests were performed for
fixed duty cycles. Their impact on the power production is, as of this moment, unclear.
Thus, the next sections should look back in these results to confirm them or revisit these
ideas through other methods. This brings forth the two final step remaining before the
development of a control algorithm for the Equalizer: how to choose its duty cycle? And,
how does it change the efficiency of a given switching strategy?

4.2 Choosing the duty cycle

In order to compensate the shadow, the Equalizer must make two choices. First, it must
choose the switching strategy as explained in the previous section. Then, a duty cycle
must be assigned to it, according to a certain criteria. Finding this criteria is the objective
of this section.
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This section proposes a study guided by the following question:

• The equalizer can operate at a fixed duty cycle. Can any duty cycle guarantee a
maximum power output?

This study will be conducted in two parts. First a more detailed theoretical description
of the duty cycle will be proposed. Its expression will be rewritten, taking losses and
imperfections of the equalizer into consideration. Its objective is to give a global overview
of the impact of the duty cycle in the equalizing. Second, a simulation and experimental
study will describes its effect in the form of P-V curves. A final summary of this section
details the finding and conclusions from this study.

4.2.1 Theoretical study

In chapter 3 the equalizer was shown to be able to work at fixed duty cycle. This is only
possible because the PV module is a voltage controlled current source, capable of adapting
itself to any operating point imposed by the MPPT. However, this does not mean any duty
cycle value is appropriate for maximizing the power output of the PV Equalizer.

A simple approach to calculate the duty cycle was proposed in chapter 3, based on
equation 3.12. In this equation, n represents the number of cell groups participating in
the charge (CH) or discharge (DCH) phases of the BSS and the average inductor voltages
is equal to zero.

D =
nDCH

nCH + nDCH

(3.12)

However, under real operating conditions the losses of the components have an influence
over the voltage drop during charge and discharge of the Equalizer. Figure 4.7 proposes a
simplified circuit to describe them.

Figure 4.7: Simplified equalizer circuit with losses in red. The grey module represents the shaded
cells.

By taking into consideration these imperfections, the duty cycle of the equalizer that
guarantees a zero-sum voltage across the inductor for a given BSS and operating voltage
can be described by equation 4.3.

D =
VSH+RDCH · iL + VDDCH + VDL

VUSH + VSH+δV
(4.3)
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Where RDCH , RCH , δV and iL are defined by the equations 4.4 to 4.7.

RDCH = RTDDCH + RTDL + RL (4.4)

RCH = RTDCH + RTDL + RL (4.5)

δV = (RCH − RDCH) · iL + (VDDCH − VDCH) (4.6)

iL = iUSH − iSH (4.7)

Equation 4.3 shows that the duty cycle is influenced by the imperfections of the Equal-
izer. Its value, thus, depends on the internal resistances of the transistors and voltage
threshold of the diodes, shown in bold. These tend to drift under different temperatures,
vary for different technologies and differ from component to component. Since there are
infinite possible scenarios, the duty cycle cannot be studied with the same quasi-exhaustive
approach proposed for the switching strategy study. It requires a more general approach
that relates the power output and the duty cycle for any condition.

The general expression of the PV module power output is described by equation 4.8.

POUT = iOUT · VOUT (4.8)

For Simple BSS, VUSH + VSH is determined by equation 4.9, while the current output
of the system is described by equation 4.10.

VOUT = VUSH + VSH (4.9)

iOUT = (1 − SF · D) · iUSH (4.10)

Putting equations 4.10 and 4.3 together is troublesome since there is no explicit ex-
pression of VOUT as a function of the duty cycle. Thus, a different approach is proposed
to calculate POUT , composed of four premises.

First, the Equalizer is considered in steady-state where the voltage is considered evenly
shared across all cell groups. Second, the values of VOUT will vary from 0 to VOC . Third,
for each chosen VOUT there are two average current values iUSH and iSH , chosen according
to the reference I-V curve shown in figure 4.8. Fourth, the imperfections of the equalizer
are similar to those in Appendix B and recalled in table 4.14.
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Table 4.14: The imperfections of the PV equalizer

Variable Value

VD(V ) 1.1
RT (mΩ) 220
RL(mΩ) 20

Based on these premises, choosing the charge and discharge voltage of the system
defines VOUT and a pair of charge and discharge currents. For each voltage and current
pair there is only one possible duty cycle value. Using it in equation 3.23 gives the output
current of the system which can be used to calculate a single output power value. By
calculating many of these, a tendency of how the duty cycle influences the power output
can be estimated.

This method is applied to the two BSS and shadow conditions described in table 4.15.

Table 4.15: Details of the theoretical scenario

BSS
Shading factor

PVI PVII PVIII PVIV

I.II → III.IV 0 0 0.5 0.5
I.II.III → IV 0 0 0 0.5

The variation of power with the duty cycle is given in figure 4.9.
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Figure 4.9: The influence of the duty cycle in the power output

For both BSS used in this example, a maximum power point is visible at a duty cycle
value nearly 15% higher than the value calculated by using equation 3.12. Thus, for a
given BSS there is a duty cycle that compensates the imperfections of the system and
maximizes the power output.

As for the CSS, expressing equation 4.8 is much more complicated. Thus, the results
from the BSS will be considered as potentially the same for the CSS. Their validation will
be made directly through simulation and measurements.
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4.2.2 Simulation study

The simulations proposed below have the objective of validating the existence of a single
duty cycle that maximizes the power output of an equalized PV module. In it each shadow
scenario will have a corresponding fixed switching strategy and a variable duty cycle. Two
BSS and a single CSS are considered enough to validate the principle since it is considered
inherent to the equalizing process.

The details of the simulations are described in table 4.16.

Table 4.16: Details of the duty cycle study scenario

BSS
Shading factor

PVI PVII PVIII PVIV

I.II → III.IV 0 0 0.8 0.8
I.II.III → IV 0 0 0 0.8

I → II.III
0 0.8 0.8 0

IV → II.III

The results will consist of P-V curves, one for each duty cycle value and are confronted
to those of the theoretical study. They are shown in figure 4.10.
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The duty cycle has a clear impact in the presence of the several local maximum power
points. If it is underestimated, the P-V curves show several MPPs as in duty cycles 0.4,
0.1 and 0.3. Since the charge phase is largely underestimated, the equalizer behavior
approaches that of the bypass mode.

As the duty cycle approaches its optimum, the current from the unshaded groups is
gradually transfered to the shaded ones. As their currents draws close their local MPP
disappear, leaving the P-V curves with a single MPP. It rises until compensating the
imperfections, thus reaching a single optimum duty cycle around 0.6, 0.3 and 0.7 for
figures 4.10(a), 4.10(b) and 4.10(c) respectively.

If the duty cycle is overestimated, the current iOUT cannot flow because of the equalizer
diodes. Their unidirectional current sense makes the equalizer become the equivalent of an
open circuit, stopping power production. This explains the voltage loss in figures 4.10(a),
4.10(b) and 4.10(c) around a duty cycle of 0.70, 0.40 and 0.8, respectively.

Thus, the choice of the duty cycle is seen to have a double influence over the output
of the PV module. First, it changes the internal distribution of current among unshaded
and shaded cells. Second, it imposes the same voltage across the different cell groups,
confirming the premises from the theoretical study.

Figure 4.10(c) shows that the CSS may also have a duty cycle that maximizes power
production. The values of the two duty cycles composing the CSS were kept the same to
reduce the number of curves.

In order to compare the simulations with the theory the MPP of each duty cycle are
extracted and plotted over figure 4.9, yielding figure 4.11. In it, the simulation results are
plotted in dashed lines and identified by a (sim).
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Figure 4.11: Comparison of the theoretical and simulation results

All the scenarios have a duty cycle that maximizes the power output. Their theoretical
estimation is close but not exact. The CSS also follow the same tendency. To validate
these effects, measurements are proposed in the next section.

4.2.3 Experimental study

The objective of this experimental study is to validate the fact that the variation of the
Equalizer duty cycle has the effect of “erasing” the local MPP caused by shading on a PV
module. The limited number of cases used during the duty cycle study allow for a full
reproduction of the simulated results.
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The shading factor used in the measurements is shown in table 4.17. For the charac-
teristics of the plastic layers used to simulate the shadow, refer to Appendix B.

Table 4.17: Duty cycle scenarios

Case
Switching Sequences

SF
1st 2nd

1 I.II.III → IV − [0 0 0 0.76]
2 I.II → III.IV − [0 0 0.76 0.76]
3 I → II.III IV → II.III [0.76 0 0 0.76]

The irradiance and temperature changes are described in table 4.18.

Table 4.18: Weather conditions during the duty cycle measurements

Case
Duty Irr TA TM

Cycle ( W
m2 ) ℃ ℃

1

0.30 820

37.2 57.4
0.50 820
0.55 780
0.60 778
0.70 818

2

0.20 757

34.1 53.9
0.24 752
0.28 751
0.30 748
0.40 745

3

0.30 684

35.8 55.1
0.65 681
0.70 676
0.75 675

The results are presented in figures 4.12 and 4.13. several P-V curves per case, one for
each duty cycle.
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Figure 4.12: Experimental P-V curves for the BSS
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Figure 4.13: Experimental P-V curves for the CSS
Case 3 - I → II.III and IV → II.III

Figure 4.12 and 4.13 validate the duty cycle choice simulation results for all the scenar-
ios. For low duty cycles, the system behaves as if equipped with bypass diodes. There is
only one duty cycle that maximizes power output, considered optimal. For a higher value
of the duty cycle, its open circuit voltage starts to shrink, showing signs that the system
becomes an open circuit.

The comparison between the simulation and the measurements is shown in figure 4.14.
It validates the existence of an optimal duty cycle. It is important to note that these
results were obtained under different irradiance condition from the simulations, which also
shows that the optimal duty cycle is independent of the SF.
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Figure 4.14: Comparison between simulation and experimental results

With all the needed data and conclusions, a summary of the duty cycle study can link
these findings with the development of the Equalizer control system.

4.2.4 Summary of results

The main conclusion of the duty cycle study concerns its role during equalizing. It was
found that the duty cycle controls the amount of energy being transferred from the un-
shaded to the shaded cell groups. To resume this effect, three values can be considered:
zero, optimal and one.
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When zero, the duty cycle forces the shaded PV cell group to behave as if bypassed.
When optimal, the energy drawn from the unshaded cell groups offsets the losses of the
Equalizer, all the rest being shared with the shaded cell groups. When equal to one, the
duty cycle forces the unshaded PV cell group to behave as an open circuit.

As a consequence, only one duty cycle can maximizes the power output for a given
switching sequence. It can be found by a disturb and observe algorithm, similar to
the one used by the MPPT. This control method will be called Optimal Duty Cycle
Tracker (ODCT) in the rest of this work. An alternative method is to apply an offset
to the duty cycle, sparing the effort of controlling its duty cycle. Both solutions can be
used together, the offset giving an initial estimate close to the maximum and the ODCT
making small corrections around it.

The ODCT can also be applied to CSS. It is recommended, however, to control all
duty cycles together to simplify the problem.

As for its possible influence in the ranking of the switching strategies, there are a few
reasons to believe that it is not the case. First, it is important to note that the adjustment
of the duty cycle starting from the value calculated by equation 3.12 leads to small gains
of power. It could break a tie between two good strategies but it cannot allow a poorly
chosen strategy to have a much better performance. Second, the measurements shown in
figure 4.5 do not display important deformations in their P-V curves. This would show a
too low duty cycle. Finally, all the duty cycles used during the switching strategy study
were slightly underestimated. This has applied a similar handicap to all the strategies.

As all the aspects of the equalizing process studied and known, all that is left is to put
them together to design a control algorithm for the Equalizer.

4.3 Conclusion

This chapter has characterized the impact of the shadow over the equalize and bypass
functions provided by the PV Equalizer. Their study was guided by two questions, one
focusing on the switching strategies and the other on the duty cycle. Their results can are
summed up in their answers below.

• What is the relation between the shadow and switching strategies?

The switching strategy depends on the shadow state and none is capable of addressing
all possible shadows. An algorithm for choosing the optimal switching strategy
according to the shadow state was proposed in figure 4.6, page 116. It is the result
of a quasi-exhaustive study involving 20 shadow cases and 178 different switching
strategies.

• The equalizer can operate at a fixed duty cycle. Can any duty cycle guarantee a
maximum power output?

No. For a given switching sequence, there is only one duty cycle that maximizes the
power output of the PV module. Two techniques were proposed to find it.

The first is disturb and observe algorithm, similar to the one used by the MPPT.
It should, however, be designed to avoid interfering with iOUT . Thus, the control
of the duty cycle must be designed to be slower than that of the MPPT, giving it
plenty of time to reach the steady-state before applying a new disturbance. This
control method is called Optimal Duty Cycle Tracker (ODCT).

The other method is a simple offset. It could be given to the duty cycle, sparing
the effort of controlling it. This offset should be between 10% to 15% of the duty
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cycle theoretical value, but it may be calibrated with time through a trial and error
algorithm.

Ideally, both solutions can be used together. The offset would give the ODCT an
initial estimate close to the maximum, reducing the time needed to find the optimal
duty cycle.

A CSS can also have its duty cycles controlled, but controlling them independently
adds another degree of freedom to the ODCT. A simple, albeit not optimal, solution
to this potential problem is to control all the duty cycles of a given CSS simultane-
ously.

Both answers must be taken into consideration when devising the control system for
the PV Equalizer.

Now that any shadow state can be mitigated the next step is to find it, for accurate
detection is the prerequisite of optimal mitigation.
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Chapter 5

Finding Shadows: Search Function

and Other Diagnose Methods

The previous chapter has characterized the influence of the shadow over the current com-
pensation functions of the PV Equalizer. They were shown to be highly dependent on a
correct diagnosis of the shadow. A wrong estimation of the shadow shape may lead to the
choice of an incorrect switching strategy, ultimately leading to a lower power output.

This works presents three diagnose methods going from highly intrusive to highly
predictive. They are called: direct, semi-direct and indirect diagnosis. This chapter will
describe and study them in detail through the following set of questions.

• How can the search function be used to find the shadow?

The search function provides current peaks that used to find the shadow. By studying
how these peaks vary under different conditions, a useful pattern can be deduced for
later use.

• How are the electric variables of the PV module affected by changes in the shadow?

If certain electric variables are found to be dependent on the shadow, they can be
observed and their behavior used for control purposes.

• Is there any general rule to the shadow behavior? If so, how can the Equalizer predict
it?

Recurrent behavior can be memorized and predicted. The development of a predic-
tive model can be of interest for long-term operation of the PV Equalizer.

This chapter is composed of a total of three section, each addressing a different method
and its question. Their results are summed up in the end of each section and the conclusion
of this chapter will use all its evidence to provide clues to the development of a control
algorithm.

127
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5.1 Direct shadow diagnosis: search function

The numeric shadow model introduced in chapter 2 allows the Equalizer to express the SF
and the shadow shape as a data vector. Its binary equivalent is determined based on the
application of a threshold to the components of the data vector. A method for acquiring
the information on the shadow and building this data vector, called the search function,
was already introduced in chapter 3. It is based on the successive acquisition of current
peaks, one per cell group connected to the PV Equalizer. The purpose of this section is
to study these current peaks in detail and link them to the numeric shadow model and
estimate how they impact the PV module power production by answering the following
question:

• How can the search function be used to find the shadow?

Figure 5.1 recalls the principle of the search function. It considers the cell group PVI

to be shaded by a SF of 0.5.

(a) Search on P VI (b) Search on P VII

(c) Search on P VIII (d) Search on P VIV

Figure 5.1: The principle of the search function

To search for a shadow over a PV cell group, the PV Equalizer connects the inductor
to it for a certain period of time. The inductor current value is acquired and the energy
is immediately returned to the concerned cell group through a discharge. Their expected
result is shown in figure 5.2. The dead time between peaks guarantees a total discharge
of the inductor before the acquisition of a new peak.
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Figure 5.2: Expected result of the search function

A careful analysis of both figures 5.1 and 5.2 indicates that four variables may influence
the current peaks during the search: the duration of the charge, the output current, the
shadow shape and the shading factor. To properly detect the shadow, it is important to
tell the difference between the first and last two. Consequently, the first question of this
section must be decomposed into a new series of questions which take these four variables
into consideration.

1. What is the effect of the duration of the charge over the current peaks?

2. How do the shading factor and the shadow shape influence the current peaks? Can
their effects be easily discerned?

3. How does the output current influence the current peaks?

4. How does the equalize function influence the current peaks?

Their answers are proposed through theoretical and simulation studies which will be
in turn validated through measurements.

5.1.1 Theoretical study

The theoretical study seeks to understand the influence of several variables over the search
through a simplified circuit analysis. The search will be studied for a single cell group and
only during the charge phase as shown in figure 5.3.
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Figure 5.3: PV system equivalent circuit

In figure 5.3, the current source iOUT represents the chopper connected in series with
the PV module. The resistance in the circuit represents the sum of the resistances in the
active and passive components. The influence of the diodes is not taken into consideration
in this simplified circuit.

In this second order circuit, the capacitor voltage and inductor current of the system
are described by equations 5.1 and 5.2.

δiL

δt
+

R · iL

L
−

VP V

L
= 0 (5.1)

δVP V

δt
−

(iOUT − iP V )
C

−
iL

C
= 0 (5.2)

Equations 5.1 and 5.2 can be combined to yield equation 5.3.

δ2iL

δ2t
+

δiL

δt
·

R

L
+

iL

L · C
= −

(iOUT − iP V )
L · C

(5.3)

To find the solution to this equation, the attenuation of the system must be estimated.
This can be done by using the attenuation factor (α) and natural frequency (ω0) of equation
5.3, which are described as follows.

ω2

0 =
1

L · C
(5.4)

α =
R

2 · L
(5.5)

Typical values for the elements of the equivalent circuit are given in table 5.1.

Table 5.1: The variables of the PV model

Variable Value

Resistance - R 400mΩ
Inductance - L 100µH

Capacitance - C 220µF
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Using the values from table 5.1, the circuit can be considered as underdamped, since α

is 1000 and ω0 is 6742. In this case, the solution for this second order differential equation
is proposed by equation 5.6.

iL(t) = VP V · A(t) + (iOUT − iP V ) · B(t) (5.6)

Where VP V and iP V are the voltage and current in the cell group, respectively.
The constants A and B are given by equations 5.7 and 5.8.

A(t) =
[

e−α·t · sin(ωd · t)
L · ωd

]

(5.7)

B(t) =
[

1 − e−α·t · cos(ωd · t) −
α

ωd
· e−α·t · sin(ωd · t)

]

(5.8)

The ωd is defined as follows:

ωd =
√

(α)2 − (ω0)2 (5.9)

Equation 5.6 can only be calculated by adopting a certain set for VP V , iP V and iOUT .
The first two are linked to the shading factor, while the third is independent. They are
studied in two theoretical scenarios.

In the first scenario, the shading factor varies. This is expressed by a variation in
the VP V and iP V . Their values are extracted from the I-V curves of the PV module to
which the Equalizer prototype was designed. Its characteristics are detailed in Appendix
B.

In the second scenario, it is iOUT that varies. Both scenarios are detailed table 5.2,
the bold variables are those allowed to vary.

Table 5.2: The two theoretical scenarios

Scenario Variable Values

1

SF 1.0 0.8 0.6 0.4 0.2 0.0
VP V (V ) 5.43 7.28 7.44 7.53 7.59 7.65
iP V (A) 0.03 0.88 1.8 2.72 3.61 4.53
iOUT (A) fixed - 0.5

2

SF fixed - 0.4
VP V (V ) fixed - 7.53
iP V (A) fixed - 2.72

iOUT (A) 0.5 1 1.5 2 2.5 3.0

In both scenarios, the search will be calculated for a “short” and “long” time. The
objective is to determine which is the most convenient for finding the shadow. This initial
estimation of the charge time will be used as a basis for further studies.

The time needed by the system to converge to 5% of its final current value is nearly 3
ms. Thus, the “short” charge time is considered to be 400 µs, while the “long” one is 5
ms. The first does not allow the circuit enough time to start its own damping. The second
gives enough time for the damping of the system to pass.

The results for first scenario are shown in figure 5.4.
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Figure 5.4: The influence of SF in the circuit response

In figure 5.4(a) as the difference between iOUT and iP V approach zero, the peaks
become lower. However, the difference between the responses for a SF of 0.8 and 0.0 is 3
A at 200µs, falling for faster search times. As a consequence, detecting the shading factor
is easier for long searches.

The results in steady state are shown in figure 5.4(b). The inductor current at 5
ms rises by regular steps for different SF. They converge to roughly iP V minus iOUT , as
expected from equation 5.6. Thus, longer searches may provide a direct estimation of the
shading factor, provided that iOUT remains stable.

The results for the second scenario are shown in figure 5.5. The inductor current follows
the pattern of the precedent scenario. As the iOUT raises and approaches iP V the system
becomes less excited and its steady state current value is lower.
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Figure 5.5: The influence of iOUT in the circuit response

Based on these results, an important fact about the influence of the charge time on
the search can be deduced. Faster searches are largely influenced by the voltage. In the
case of longer searches, they are influenced by the currents of the PV system.

The search time should be chosen taking into consideration its impact on the prototype
sizing. A longer charge time will require less precision but greater ranges, while shorter ones
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will restrain the range but require greater precision. Longer searches will put enormous
constraints in the sizing of capacitors, forcing them to reduce sizes for faster performances.
However, smaller capacitors imply in higher voltage and current ripples during equalizing.
The current overshoot during the search will also impose a certain stress over the inductor
and influence its sizing. The implications of these facts in the sizing of the prototype
discourage longer searches, as described in appendix B.

Another interesting insight, this time concerning the deduction of the shading factor,
can be drawn from these results. There are, basically, two possible ways to determine the
shading factor from the current peaks. The first is to perform a search on each cell group
as quickly as possible in order to have a similar iOUT . Once the readings are compared, the
highest peaks will be considered as unshaded while the lowest peaks will be considered as
shaded. However, since this technique gives an estimation of the shaded voltage, it is not
precise in terms of shading factor. Its results are best suited for determining the shadow
shape.

The second is to know the unshaded short circuit current of the PV module, perform
a long search and read iL . Using these three, the information concerning the SF can be
estimated directly. The advantage of this technique is that it gives a direct indication of the
shading factor. However, it requires a priori knowledge, a second reading and no changes
in iOUT . All of these conditions make this method unfeasible in practice. Thus, due to its
simplicity, the first method will be studied into further detail through the simulations and
measurements.

Due to the limitations of the circuit model used in this theoretical study, the next steps
will be given using the simulation model developed in this work. Its details are given in
appendix A.

5.1.2 Simulation study

The theoretical study has reached two important conclusions. First, shorter searches are
preferable but its current peaks are less precise in terms of shading factor. Second, the
method for deducing the location of the shadow is to cross-compare these peaks. The
objective of this simulation study is to further understand the influence of the shadow
over the voltage of the PV cell groups and their current peaks.

Four variables were found to influence the current peaks: the charging time, the shading
factor, iOUT and the shadow shape. Each will be allowed to vary in a separate simulation
scenario. Their details are shown in table 5.3, where the bold variables are those allowed
to vary in each scenario.

The first scenario verifies the influence of the charge time. Two SF are used, 0.2 and
0.8, the first being more difficult to detect than the second. The iOUT is chosen to allow
both SF to work under the same conditions. The charge times assumes three values: 10
µs, 40 µs and 200 µs. They are chosen to determine their precision and range, which will
later be the basis for sizing the sensor of the prototype. The shadow shape remains the
same.

In the second scenario, the influence of the SF will be verified. Four different SF will
be used to limit the number of simulations. The value of iOUT was chosen to be lower than
all the iP V . This was done to allow all SF to react to the search, since the diodes on the
switching legs of the Equalizer would block if iOUT was higher than iP V . The charge time
of 40 µs was chosen for being an intermediate speed value, representing a compromise
between speed and precision easier to reproduce later, during the measurements. The
shape of [0 0 0 1] was chosen because all cell groups being identical, only the study of a
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Table 5.3: The four simulation scenarios

Scenario Variable Values

1

ChargeT ime(µs) 10,40 and 200
SF fixed - 0.2 and 0.8

IOUT (A) fixed - 1.0
Shape fixed - 0 0 0 1

Function fixed - OFF

2

ChargeT ime(µs) fixed - 40
SF 0.2, 0.4, 0.6 and 0.8

IOUT (A) fixed - 0.5
Shape fixed - 0 0 0 1

Function fixed - OFF

3

ChargeT ime(µs) fixed - 40
SF fixed - 0.4

IOUT (A) 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0
Shape fixed - 0 0 0 1

Function fixed - OFF

4

ChargeT ime(µs) fixed - 40
SF fixed - 0.4

IOUT (A) fixed - 2.5
Shape 0010, 0101, 1011 and 0110

Function fixed - OFF

5

ChargeT ime(µs) fixed - 40
SF fixed - 0.4

IOUT (A) variable

Shape
0011, 0001, 0000, 1011, 1001,

1000, 1111, 1101 and 1100
Function fixed - Equalize

single peak is necessary.
The purpose of the third scenario is to validate the influence of the iOUT . An SF of

0.4 was chosen because its iP V is near to 2.5, which reduces the number of iOUT values.
They evolve in steps of 0.5 A from 3.0 A to 0.5 A. The charge time and shadow shape
remain the same as in the second scenario, for the same reasons.

The fourth scenario studies the influence of the shape. The SF of 0.4 is used together
with an iOUT of 2.5 A, so that the PV module is considered to be operating exactly on
its MPP. The charge time used is the intermediate speed of 40 µs. The first and second
shadow shapes, [0 0 1 0] and [0 1 1 0], represents an isolated shadows. The second and
third shapes, [0 1 0 1] and [1 0 1 1], represent non-contiguous shadows. All the cell groups
are shaded at least once.

The fifth and final scenario studies the influence of the equalize function over the
current peaks. The SF of 0.4 is used together with an iOUT slightly superior to it of 3.3
A, so that the now Equalized PV module is considered to be operating close to its MPP.
The charge time used is the intermediate speed of 40 µs. The shadow shape used will be
[0 0 1 1], associated with a fixed BSS. The equalizer function will require certain changes
to the shadow in order to study the effect of wrong detections.
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Scenario 1 - Variable charge time

The influence of the charge time for different SF is shown in figure 5.6. In each figure, the
results for an SF of 0.2 are traced in a solid line, while those for an SF of 0.8 are traced in
a dashed one. An overall observation of these curves shows a similar effect of the search
in all of them. The difference in the fourth peak is barely perceptible for a low SF and is
clearly distinguishable for a high SF.
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Figure 5.6: Simulation results for the variable charge time

The similar response of all the three simulated charge times confirm the clear domi-
nance of the voltage in the short search. This can be validated by a closer analysis of the
I-V curves used in the simulations, shown in figure 5.7. With the iOUT at 1 A, the voltage
difference between the cell group with a SF of 0.2 and those unshaded is below 100 mV.
When the SF raises to 0.8, this difference grows up to 7 V. Thus, any of the search times
used above are bound to have their results driven by the voltage of the cell group or, more
indirectly, by iOUT .
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Figure 5.7: Detail of the I-V curves used in the simulation

In terms of precision, choosing a charge time has an important impact over design of
the sensor monitoring the inductor current. In figures 5.6(a), 5.6(b) and 5.6(c) the current
variation is of 200 mA, 3 A and 10 A, respectively. The necessary range and precision to
detect them are easily available in commercial sensors. For shortest search noise might be
an important issue, which needs to me confirmed during the measurements.

Another criteria that can be used is the current for which the inductor was sized. The
prototype used in this work was designed for operating at 5 A or nearly the short circuit
current of the PV module at 1000 W

m2 . Stressing the inductor with an overshoot of current
such as the one provided by the long search might heat it up, raise losses or simply saturate
its core.

Finally, the criteria that will decide between the two shortest searches will be their
resistance to noise, which will be provided during the experimental validation.

Scenario 2 - Variable SF

Figure 5.8 shows the results for the impact on the search of variations in the shading
factor. The peak on the right in figure 5.8(a) corresponds to the shaded cell group, which
reacts as the SF rises. Its detail in figure 5.8(b) shows that the peak is sensitive to the SF
closer to the fixed iOUT , with very small variations for the other SF. Zooming in further
in figure 5.8(c) confirms this reaction.
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Figure 5.8: Simulation results for the variable SF

The direct interpretation of these results is that the search is more precise as iOUT draws
closer to iP V . As a consequence, the search should not be conducted while the MPPT is
in transitory state and seeking a new MPP. Somehow, the Equalizer is required to “know”
the state of the MPPT, either by communicating directly with it or by monitoring iOUT .

These results confirm that the closer iOUT is from the iP V of the shaded cell group,
the easier the detection becomes. This effect is linked to the excitation of the RLC circuit
composed by the capacitor, inductor and the sum of resistances. This can be better
explained by recalling the expression inductor current, but considering it for a fixed time.

iL(40µs) = VP V · A(40µs) + (iOUT − iP V ) · B(40µs) (5.10)

Both A and B can now be seen as fixed values, both depending only on the circuit
constants. Thus, what will determine the height of the current peak is the cell group
voltage and the proximity between iOUT and iP V . Figure 5.9 shows how the voltage
changes with the shading factor for the fixed iOUT , corresponding to the current peaks.
The operating point of the shaded cell group is much closer to its local MPP for a SF of
0.8.
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Figure 5.9: The reaction for different SF I-V curves

A similar phenomenon occurs when iOUT varies for a fixed shading factor.
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Scenario 3 - Variable iOUT

The influence of iOUT is further explored in figure 5.10. The shaded current peak shape is
on the right of figure, 5.10(a). For a better visibility, figure 5.10(b) shows only the peak
corresponding to the shaded cell group. Its variation is very subtle from 0.5 A to 2.5 A
and it suddenly goes to zero at 3.0 A. Figure 5.10(c) provides a closer zoom.
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Figure 5.10: Simulation results for the variable iOUT

To explain this behavior, figure 5.11 shows how the voltage of the shaded cell group
varies as iOUT raises. Its voltage is roughly 9.5 V for and iOUT of 0.5 and 8.5 V for 2.5
A, explaining the slight variation in the peaks. When iOUT becomes 3 A, the shaded cell
group becomes unable to react for its voltage is negative.

These results confirm that the current peak reacts to iOUT as it approaches the iMP P T

of the shaded cell group. Another way of putting it is that the peaks carry more information
about the shadow as the system draws closer to its local MPP. This reinforces the fact
that the search should be conducted only when the system is in steady-state.
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Figure 5.11: The reaction for different iOUT

Scenario 4 - Variable shadow shape

The shadow shape of the system is linked to the binary representation proposed in this
chapter. By validating its capacity to represent the shadow, the correlation between the
search function and the shadow model can be completely achieved. From all the 16 possible
binary cases, only 4 will be shown in this study to simplify the analysis, figure 5.12 shows
the results.
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Figure 5.12: Simulation results for the variable shapes
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The shadow shapes are clearly identifiable. All peaks react to the shadow and cor-
respond to their binary representation, validating its use in the detection when the PV
Equalizer is idle. It is also important to validate this behaviour during equalizing to know
how the system should react in the case of a change in the shadow.

Scenario 5 - The influence of the equalizing function

Another important element of the detection is to identify the effects of the equalizing
function in the current peaks. Any differences or similarities with the previous results
could lead to new criteria for detection the shadow shape or SF. In addition, they should
also be studied for clues to when to stop equalizing.

The equalize function was shown, in chapter 3, to induce changes the operating condi-
tions of the cell groups. In steady-state conditions, the cell groups were found to operate
at a local current, different from iOUT and close to the local MPP. They will create a slight
difference in equation 5.11, as shown below.

iLk
(40µs) = VP Vk

· A(40µs) + (ilocalk − iP Vk
) · B(40µs) (5.11)

Where k is the cell group over which the search is taking place. This makes the peaks
no longer comparable among themselves as they represent how much energy is available,
at that discharge rate, locally. However, they still bear information that can be helpful
during Equalizing. Specially if the shadow was wrongly estimated.

To show how they can be used to correct the initial shadow estimation, all possible
errors must be simulated and studied. The example that will be used is shown in figure
5.13(a), where cell groups PVIII and PVIV are shaded and receiving energy from groups
PVI and PVII . The other cases shown in figure 5.13 are eight possible error cases. All of
the cases are equalized by a fixed BSS of I.II → III.IV , represented by the arrow above
the figures.

The cases are organized according to the number of shaded cell groups charging and
discharging the inductor. On the first line, the reference case and errors 1 and 2 show
two unshaded cell groups supporting either none, one or both shaded, respectively. The
second line shows the same discharge pattern, but for a combination of one shaded and
one unshaded cell group charging. Finally, the third line uses two shaded cell groups to
charge the inductor, discharging over the same as before. The results will show the search
peaks of each case and their interpretation using I-V curves.

The reference case in figure 5.14 show that the shadow was correctly estimated, the
lower peaks corresponding to the shaded cell groups. The I-V curve shown in figure
5.14(b) illustrates how the distribution of current within the cell groups influence their
local voltage. With equalizing taking place, the local current rises to its local optimum
while their voltage falters. In this case, the peaks draw close together making their cross-
comparison different from previous cases.
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(a) Reference case - 0 0 1 1 (b) Error case 1 - 0 0 0 1 (c) Error case 2 - 0 0 0 0

(d) Error case 3 - 1 0 1 1 (e) Error case 4 - 1 0 0 1 (f) Error case 5 - 1 0 0 0

(g) Error case 6 - 1 1 1 1 (h) Error case 7 - 1 1 0 1 (i) Error case 8 - 1 1 0 0

Figure 5.13: The eight error cases
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Figure 5.14: The results for the reference case - [0 0 1 1]
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When the shadow moves away from cell group PVIV , its peak becomes higher than
the other three, as shown in figure 5.15(a). This is explained by the fact that its local
voltage rises as the cell group is forced to operate together with cell group PVIII , which is
shaded, due to equalizing. Thus, if a peak considered shaded becomes much higher than
the others, it can be interpreted as unshaded and its state should be changed from one to
zero.
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Figure 5.15: The results for cases 1 - [0 0 1 0]

Once the shadow is completely gone, the PV Equalizer should be able to realize it is
unshaded and stop. In this case, the current peaks of the cell groups considered unshaded
is slightly higher than those considered shaded, as shown in figure 5.16(a). This behavior
is due to the fact that the equalizing forces their current to be different as shown in figure
5.16(b). This situation is delicate because it can also be achieved during equalizing as the
duty cycle approaches its optimum. A special care should be taken when interpreting this
result.

0 100 200 300 400 500 600
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Time (µs)

C
ur

re
nt

 (
A

)

(a) Current peaks

7 7.15 7.3 7.45 7.6 7.75 7.9 8.05 8.2 8.35 8.54.4
4.44
4.48
4.52
4.56
4.6
4.64
4.68
4.72
4.76
4.8

Voltage (V)

C
ur
re
nt
(A
)

iOUT

iIII & iIV

iI & iII

(b) Operating conditions

Figure 5.16: The results for cases 2 - [0 0 0 0]

When the shadow moves over the cell groups considered unshaded, all the peaks will
react as shown in figure 5.17(a). With cell group PVI shaded, the MPPT will track its
current. As a consequence all the other peaks rise, each for different reasons. Group PVII
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is still unshaded and has a much higher voltage, leading to a higher peak. The iSH of
groups PVIII and PVIV is forced below their MPP, leading to higher voltages and higher
peaks.
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Figure 5.17: The results for case 3 - [1 0 1 1]

In case 4, the shadow moves away from group PVIV leading it to have more voltage
and a higher peak, as shown in figure 5.18.
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Figure 5.18: The results for case 4 - [1 0 1 0]

When the shadow has moved away from both groups PVIII and PVIV , their peaks
match that of group PVII for their voltage difference is below 100 mV. Cell group PVI is
still holding the iOUT down and displaying a low peak due to its low voltage.
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Figure 5.19: The results for case 5 - [1 0 0 0]

If the shadow eventually covers the totality of the PV module, equalizing becomes
pointless and should also stop. Its peaks, shown in figure 5.20(a) resemble those in figure
5.14(a). In both cases, their voltages are drawn very close, making the interpretation of
the peaks difficult. If equalizing is halted when the PV module is actually shaded, iOUT

would track again the current of the shaded cell groups and power production would fall.
Thus, interpreting peaks very close to each other is tricky and should be done carefully.

0 100 200 300 400 500 600
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Time (µs)

C
ur

re
nt

 (
A

)

(a) Current peaks

3 4 5 6 7 8 9 102.2
2.24
2.28
2.32
2.36
2.4
2.44
2.48
2.52
2.56
2.6

Voltage (V)

C
ur
re
nt
(A
)

Unshaded
SF 0.5

iOUT

iIII & iIV

iI & iII

(b) Operating conditions

Figure 5.20: The results for case 6 - [1 1 1 1]

With the shadow gone from group PVIV , both its voltage and current peak rise, as
shown in figure 5.21. This confirms that cell groups receiving energy with peaks higher
than those giving can be taken as a sign of a change in the shadow.
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Figure 5.21: The results for case 7 - [1 1 1 0]

Finally, figure 5.22 shows when the situation is totally reversed. In it, shaded cell
groups find themselves supporting unshaded ones with an important consequence to their
peaks. Such a high difference among them is a clear sign that the cell groups considered
as zero should be switched to one and vice-versa.

0 100 200 300 400 500 600
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Time (µs)

C
ur

re
nt

 (
A

)

(a) Current peaks

3 4 5 6 7 8 9 102.2
2.24
2.28
2.32
2.36
2.4
2.44
2.48
2.52
2.56
2.6

Voltage (V)

C
ur
re
nt
(A
)

Unshaded
SF 0.5

iOUT

iIII & iIV

iI & iII

(b) Operating conditions

Figure 5.22: The results for case 8 - [1 1 0 0]

With the interpretation of the peaks done for many different scenarios, all their results
can now be summarized into a method for interpreting the current peaks.

Summary of the simulation study

The main conclusion of this study is that there is a clear difference between the interpre-
tation of the peaks before and after equalizing.

While the PV Equalizer is idle, the current peaks give a direct estimation of the shadow
shape. To do so requires a threshold to be calculated based on their value. An average
between the highest and lowest peak can be used, as the example shows in figure 5.23.
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Figure 5.23: Interpretation while idle

Every peak higher than the threshold is consider unshaded, while all those below are
shaded. The height of the shaded peaks can be used as a criteria to chose between Equalize
and Bypass mode. Under average peaks use the first, much lower ones use the second.

If equalizing is taking place, then the interpretation of the peaks change. Their local
shadow state must be taken into account and their verification is done in four steps. As
an example, figure 5.24 shows peaks in the case of a switching strategy of I.II → III.IV

is being used.

C
u

rr
e
n

t 
(A

)

Time (µs)

PVI PVII PVIII PVIV

Reference - Max Unshaded
Uncertainty zone

Correction zone

1 → 0

0 → 1
Correction zone

(a) Using the unshaded cells as reference

C
u
rr
e
n
t 
(A
)

Time (µs)

PVI PVII PVIII PVIV

Reference - 

Min Shaded

Correction zone

1 → 0

Uncertainty zone

0 → 1
Correction zone

(b) Using the shaded cells as reference

Figure 5.24: Interpretation while equalizing

The first and second verifications are represented in figure 5.24(a). They are done using
the highest peak value of the unshaded cell groups as a reference. The first verification is
to check the peaks of the other unshaded cell groups and determine if they were wrongly
estimated. In the example, cell group PVI is much lower than the reference peak, meaning
it is actually shaded. This correction is effectuated in the red correction zone, bringing
the local state from zero to one. The second verification checks the peaks from the shaded
cell groups. If their value is too high, they are considered as unshaded and corrected from
one to zero. This is represented by the green correction zone.

The third and fourth verification steps use the lowest peak of the shaded cell groups as
a reference, as shown in figure 5.24(a). They first check if any shaded cell groups are much
higher than the reference, potentially indicating a zero wrongly estimated as one. This is
represented by the green correction zone in figure 5.24(b). The final step is to determine
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if any unshaded cell group is much lower than those shaded. This means that the local
state is actually zero, and should be corrected as shown by the red zone in figure 5.24(b).

In both cases, there is a grey zone of uncertainty within which it is impossible to tell
if the system is correctly equalized or wrongly shaded. If the peaks are within this zone,
no action correction should be performed.

This criteria must be validated through measurements.

5.1.3 Experimental validation

The simulation study found two different criteria for interpreting the results from the
current peaks. It has also determined that further studies are still necessary to determine
which “short” time is better suited for the search. Thus, the objective of this experimental
study is two-fold: confirm the simulations results through reproduction and determine
which time is best suited for detection.

These experiments will try to reproduce as closely as possible the simulation setups and
parameters. Their experimental equivalents are detailed in table 5.4. All measurements
were performed under similar irradiance and temperature conditions of 600 W

m2 and 28 ℃,
respectively.

Plastic layers are used during the experiments to simulate the shadow. Their equivalent
SF are characterized in detailed in Appendix B.

The first scenario reproduces the impact of the charge time in the search. The times
are slightly different for the sake of simplicity of implementation, and their conclusions
are considered as equivalent. The second scenario has a shading factor similar to its
simulation equivalent. However, the currents are slightly different due to the irradiance
available during the measurements. The third scenario has very similar conditions to the
simulation. The fourth and last scenario seeks to reproduce the same shapes as in the
simulations.

Scenario 1 - Variable time

The first scenario studies the impact of the charge time in the search. Unlike the simula-
tion results, the graphs issued from the two shading factors will not be traced together,
essentially due to the noise from the switching of the transistors. The results are shown
in figures 5.25, 5.26 and 5.27.
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Figure 5.25: Experimental results for the variable time
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Table 5.4: The four experimental scenarios

Scenario Variable Values

1

ChargeT ime(µs) 4, 40 and 400
SF fixed - 0.56 and 0.35

IOUT (A) fixed - 1.5
Shape fixed - 0 0 0 1

Function fixed - OFF

2

ChargeT ime(µs) fixed - 40
SF 0.78, 0.69, 0.56 and 0.35

IOUT (A) fixed - 0.5
Shape fixed - 0 0 0 1

Function fixed - OFF

3

ChargeT ime(µs) fixed - 40
SF fixed - 0.35

IOUT (A) 0.5, 1.0, 1.5, 2.0, 2.2 and 2.3
Shape fixed - 0 0 0 1

Function fixed - OFF

4

ChargeT ime(µs) fixed - 40
SF fixed - 0.56

IOUT (A) fixed - 1.0
Shape 0010, 0101, 1011 and 0110

Function fixed - OFF

5

ChargeT ime(µs) fixed - 40
SF fixed - 0.56

IOUT (A) variable

Shape
0011, 0001, 0000, 1011, 1001,

1000, 1111, 1101 and 1100
Function fixed - Equalize
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Figure 5.26: Experimental results for the variable time
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Figure 5.27: Experimental results for the variable time

In an overall analysis, the same SF has a proportionally similar impact in all the charge
times, showing that the voltage has a major impact on the peaks. It is also clear that the
higher SF is easier to detect than the lower one.

These figures also provide the final criterion to choose the charge time for the search
function. The noise due to the switching of the transistors has an important impact over
the fastest search, as shown in figure 5.25(a). This is mitigated for 40 µs search, as shown
in 5.25(b). Combining a reduced impact over the voltage, a range within the scope of the
short circuit current of the PV module (5 A) and a higher resistance to noise, the 40 µs
search is the natural choice for the search.

Another important aspect brought forth by the noise is the moment when the reading
should take place. To avoid the switching noise, the reading should happen slightly before
or right after it.

Scenario 2 - Variable SF

The second scenario reproduces impact of SF variations over the current peaks. Its results
are shown in figure 5.28.
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Figure 5.28: Experimental results for the variable SF

The current peaks of all cell group are shown in figure 5.28(a), the shaded one being
located on the right. Its details are shown in figure 5.28(b).The intermediate SF are all
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bundled together while the lowest and highest ones are well separated, making any precise
estimation of the SF very difficult. These results confirm that the closer iOUT is from the
iP V of the shaded cell group, the easier the detection becomes.

Scenario 3 - Variable iOUT

The study of the influence of iOUT in the variations of the search current peaks is shown
in figure 5.29.
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Figure 5.29: Experimental results for the variable iOUT

The four peaks are shown in figure 5.29(a), and detailed further in figures5.29(b).As
iOUT draws closer to the iP V of the shaded cell group, its peak lowers, suddenly disap-
pearing between currents 2.2 A and 2.3 A. These results confirm the simulations.

Scenario 4 - Variable shape

The same 4 shadows shapes are used to validate the simulation results, as shown in figure
5.30.
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Figure 5.30: Experimental results for the variable shapes

All the shadow shapes can be clearly detected by a margin of nearly 300 mA. This
validates the use of the binary model in the representation of the shadow.

Scenario 5 - Equalize function

The experimental results for the influence of the equalize function on the current peaks are
shown in figure 5.31. The reference case is the same, where cell groups PVI and PVII are
giving energy to cell groups PVIII and PVIV . The BSS used is fixed at I.II → III.IV .

The same patterns are shown in all cases, confirming the interpretation of the peaks
deduced from the simulation results. However, the current peak from cell group PVI is
shown to be systematically lower than its counterparts, indicating a potentially smaller
capacitor. Such imperfections must be taken into account when designing the control
system of the PV Equalizer.

Finally, all the conclusions from the simulations and theoretical studies are considered
as confirmed, which allows to proceed to a general summary of this section.

5.1.4 Summary of the results

The search study was conducted to understand how four different variables can impact
the search technique. The inductor charge time, the shading factor, the shadow shape
and the output current. They have been studied in a series of theoretical, simulation
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(c) Error case 2 - 0 0 0 0
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(d) Error case 3 - 1 0 1 1
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(e) Error case 4 - 1 0 0 1
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(f) Error case 5 - 1 0 0 0
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(g) Error case 6 - 1 1 1 1
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(h) Error case 7 - 1 1 0 1
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Figure 5.31: The experimental validation of the eight error cases

and experimental studies. Taking their conclusions into account, the questions from the
beginning of this section can now be answered.

• What is the effect of the duration of the charge over the current peaks?

The charge time has an important impact in the components of the PV Equalizer
and the power production of the PV module. Longer searches bring the voltage
of the cell group close to zero and require a total discharge of the capacitors. It
may lead to an important current overshoot in the inductor, stressing it in terms of
current. Shorter searches can be used to avoid this current overshoot, but allow only
the detection of the shadow shape. Finally, the choice of the search time will have
an impact in both the design of the PV Equalizer and its control system. .

• How do the shading factor and the shadow shape influence the current peaks? Can
their effects be easily discerned?

The current peaks were found to be dependent, at the same time, from the SF and
the iOUT . Similar peaks were read for different SFs, making its direct estimation
difficult. By comparing iOUT and the PV module short circuit current at the moment
the peaks react the most may give a rough estimation of the SF. The shape can be
found by cross-comparison between the current peaks, making it much easier to
detect than the shading factor.
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• How does the output current influence the current peaks?

At MPP, iOUT is considered very close to iMP P and the current peak corresponding
to the shaded cell group will be smaller compared to the others. Thus, detection of
the shadow shape is guaranteed. If the MPPT is in a transitory state away from its
MPP, then the search might be completely ineffective. The Equalizer must wait for
a steady state before conducting a search.

• How does the equalize function influence the current peaks?

The method for interpreting the current peaks changes when the equalize function is
active. This is largely due to the fact that the currents of the shaded and unshaded
cell groups will be different and close to their local iMP P . Furthermore, if the shadow
changes during equalizing the peaks can be used, to a certain degree of precision, to
detect these changes and change the switching strategy accordingly. Figure 5.24 in
page 147 explains the method for interpreting them in detail.

Other less intrusive methods are also proposed in this work.

5.2 Semi-Direct shadow diagnosis: observing variables

The direct shadow diagnosis was shown to be an intrusive but precise method for assessing
the existence of shadows in the PV module. It has, however, an uncertainty zone within
which no conclusion can be drawn about the shadow. This could lead to situations where
the PV Equalizer would be unable to determine if it should turn itself back to idle, po-
tentially wasting energy in the process. Moreover, the recurrent use of the search function
may lead to delays between the manifestation of the shadow and the reaction of the PV
Equalizer. In order to solve these issues, another diagnosis method is proposed in this
section.

The semi-direct diagnosis is based on the observation of electric variables to deduce
changes in the shadow state and studied through the following question:

• How are the electric variables of the PV module affected by changes in the shadow?

Considering the shadow as a phenomenon spanning several minutes, observing elec-
tric variables linked to it may avoid useless searches. However, it is important to
determine which variables can be observed and what does their behavior correspond
to in terms of shadow movement.

A theoretical study will be conducted to determine which variables should be observed,
followed by an experimental validation.

5.2.1 Theoretical study

The shadow movement is a succession of changes in the shadow state. To go from one state
to another implies a change either in the shading factor or in the width of the shadow.
Sometimes even both. This makes any electric variable directly affected by them is a
potential candidate for observation.

Observing variables brings forth the important issue of time span and their relation.
Shadow movement can be considered as dependent on the Sun, spanning several dozen of
seconds or minutes. Voltages and currents are several orders of magnitude faster, changing
in a matter of micro or miliseconds. Thus, it is the evolution of the average and steady-state
values of the electric variables that must be observed.
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To assess which variable is better suited for being used, the electric variables of the
PV Equalizer are listed and evaluated in table 5.5. Where Vout and iOUT stand for the
average output voltage and current. Those in the shaded cell groups are represented by
VSH and iSH and their unshaded counterparts are represented by VUSH and iUSH . The
duty cycle is represented by D, while the shading factor is represented by SF . The losses
during charge and discharge are represented by VlossesCH

and VlossesDCH
.

Table 5.5: The electric variables of the Equalizer

Electric Variable (ref.) Information

VUSH + VlossesCH

VSH + VlossesDCH

=
(1 − D)

D
(5.12)

The voltage distribution among the cell
groups depends on the duty cycle.

Vout =
VUSH

(1 − D)
(5.13)

The output voltage depends on the voltage
of the unshaded cell group and the duty

cycle.

iL = SF · iUSH (5.14)
The current in the inductor is directly

dependent on the shading factor and the
current in the unshaded cell group.

iOUT = (1 − SF · D) · iUSH (5.15)
The output power is dependent, at the same
time, on the shading factor, the duty cycle
and the current in the unshaded cell group.

All voltages present no direct information about either the SF or the shadow width.
They are rather dependent on the value of the output current and the duty cycle, requiring
their knowledge for comparison.

The inductor and output currents are directly linked to the shading factor, making
them good candidates for observation. However, neither seem to have a direct relation to
the shadow width. To find out which variable carries indirect information about it, an
example is proposed in figure 5.32.

The shadow is at first confined to cell groups PVIII and PVIV in figure 5.32. It then
moves over cell group PVII in figure 5.32(b). The PV Equalizer is active and equalizing
by using a fixed switching strategy of I.II → III.IV .

When the shadow expands, its width is considered to rise over time having a positive
time variation. Its new state now covers cell group PVII which is being used to charge the
inductor, denoted by a red “X” over it. With the expansion of the shadow width, a cell
group which was previously considered unshaded becomes shaded. This can be translated,
in terms of electric variables, as a reduction of iUSH . Thus, observing the evolution of
iUSH over time is an indirect way of observing the evolution of the shadow width.
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[  0    0     1     1  ]

} }I.II III.IV

(a) Initial shadow state

[  0    1     1     1  ]

} }I.II III.IV

(b) Shadow state after expansion

Figure 5.32: Example of a variation in the shadow width

Both the mean inductor and output currents are affected, at the same time, by the
shading factor and the current of the unshaded cell group. This makes it necessary to
observe both together and cross comparing their results to deduce if its is the SF or the
shadow width that changes. Their dynamic behavior is be expressed by equations 5.16
and 5.17.

∆iL = ∆SF · iUSH + SF · ∆iUSH (5.16)

∆iOUT = (1 − SF · D) · ∆iUSH − D · iUSH · ∆SF (5.17)

Once again is important to remember that both equations denote variations in average
currents and that their behavior is considered as changing slowly over time. Variations in
the duty cycle will be considered as too fast and ignored in this analysis.

The minus sign in equation 5.17 shows that the influence of the shadow over the currents
is not the same. It can be expected, then, that they will have a complementary behavior
which can be used to clearly distinguish changes in the shadow width from those in the
shading factor. Their cross analysis will be conducted by systematically considering a part
of their equation as fixed and allow the others to vary. As a first approach, variations in
the shading factor, or ∆SF , will be considered zero, giving equations 5.18 and 5.19.

∆iL = SF · ∆iUSH (5.18)

∆iOUT = (1 − SF · D) · ∆iUSH (5.19)

In this case, both iOUT and iL will rise or fall together with iUSH since SF is fixed. If
both current rise, the shadow width is shrinking. For example, going from [0011] to [0001].
On the contrary, when both current fall the shadow width is expanding, as from [0011] to
[0111].

If the variations in the current of the unshaded cell group, or ∆iUSH , are considered
zero, the equations 5.16 and 5.17 become:

∆iL = ∆SF · iUSH (5.20)

∆iOUT = −D · iUSH∆SF (5.21)
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Now, the iOUT and iL will have complementary behaviors, depending on the variation
of the shading factor. If iOUT rises and iL falls, the shading factor is diminishing. On
the contrary, when iOUT falls and iL rises, the shading factor is rising. In both cases, the
shadow width remains constant.

If either only ∆iOUT or only ∆iL is zero, then the dynamic behavior of the system
is physically inconsistent during equalizing. While idle, however, there is no current in
the inductor and only the output current mean value can be observed. Its expression is
different, given by equation 5.22.

∆iOUT = ∆iUSH (5.22)

In this case, the MPPT is considering all cell groups unshaded. Thus, if the output
current falls suddenly, it means a shadow has appeared.

Summary of the theoretical analysis

To summarize this analysis, table 5.6 resumes the conditions in which the currents vary
over time during equalizing.

Table 5.6: Correlation between the shadow and the currents durring equalizing

∆iL > 0 ∆iL < 0

∆iOUT > 0
∆iUSH > 0 ∆iUSH = 0
∆SF = 0 ∆SF < 0

∆iOUT < 0
∆iUSH = 0 ∆iUSH < 0
∆SF > 0 ∆SF = 0

Its interpretation in terms of movement is detailed in table 5.7.

Table 5.7: Shadow movements based on current changes during equalizing

∆iL > 0 ∆iL < 0

∆iOUT > 0
The shadow width is

shrinking and its SF is
constant.

The shadow width is
stopped and its SF

falling.

∆iOUT < 0
The shadow width is
stopped and its SF is

rising.

The shadow width is
expanding and its SF is

constant.

When the shadow width is expanding or shrinking, a search could be triggered to
check its the new state. If only the shading factor is changing, corrections in the duty
cycle during equalizing should suffice to handle it.

In order to validate these tables, an experiment will be conducted.

5.2.2 Experimental study

This experimental study has the objective of confirming the correlations between the
variations in the shadow, the output current and the inductor current. To do so a particular
shadow setup will be used and its results will consist of a trace over time of the output
and inductor currents.
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Shadow setup

The experiment will use a fixed BSS of I.II → III.IV . The shadow described in figure
5.33 is composed of four parts. The first and last are dedicated to changes in the shading
factor, while the second and third are to changes in the shadow width. The decomposition
of the shadow over time is shown in figure 5.33 and its corresponding time trace in figure
5.33(c).

} }I.II III.IV

[  0    0     1     1  ]

Trajectory

(a) Overview of the shadow state studied
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(b) Decomposition of the shadow
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Figure 5.33: The shadow movement studied

The temperature of the module was 51.3 ℃ and the ambient temperature was 32.5 ℃.
The irradiance received was 813 W

m2 and the SF varied from 0.21 to 0.56.

Experimental results

The results are shown in figure 5.34.
At first, the MPPT takes its time to find the MPP with no shadow, as shown between

0 and roughly 30 seconds. Once the MPP is found, only a small current is flowing through
the inductor.

The first part of the curve, between 60 and 120 seconds, shows the appearance of the
shadow and its shading factor rising over time. During this part, the average inductor
current rises while the average output current falls, as expected.
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The second and third parts, between 120 and 168 seconds, show both currents falling
and rising together. In this part, the shadow was moved back and forth, from cell groups
PVI and PVII to groups PVIII and PVIV .

Finally, in the fourth part from 168 to 220 seconds, the shadow was removed and the
MPPT found the original MPP again.
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Figure 5.34: The experimental results

These results confirm the use of the average inductor and output currents to observe
changes in the shadow over long spans of time. They should be used during the conception
of the control algorithm as an alternative to the direct diagnosis mode.

5.2.3 Summary of the semi-direct detection

The semi-direct diagnosis is a less intrusive method for detecting the presence of the
shadow. It is based on the observation of the average values of the inductor and output
currents, allowing the PV Equalizer to monitor the evolution of the shadow in real-time
with little energy cost.

Two variables were found to carry information about the shadow: the inductor and
output currents. Both are affected by the shading factor and the shadow width at the same
time. However, their cross-comparison can be used to clearly distinguish which change in
the shadow is taking place. The correlation is clearly shown in table 5.7 in page 157.

Still, this method uses the search to determine the changes in the shadow width. Could
these changes be anticipated with a certain precision, no search would be required at all.
This possibility is explored further in the next section.

5.3 Indirect shadow diagnosis: deducing changes

The direct and semi-direct diagnosis methods rely on the sampling of the energy state
within the cell groups to estimate the presence of the shadow. While the first does so
recurrently, the second observes the mean inductor and output currents in order to deter-
mine when is the best moment to trigger a search. Neither approach considers any prior
knowledge of the shadow. Furthermore, both direct and semi-direct methods consider,
implicitly, that all shadow states are equally likely to occur anytime.

But with shadows being guided by the Sun and objects around the PV module con-
sidered fixed, there is a likelihood that their behavior is not totally random. This section
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seeks to study the shadow and its propagation over the PV module to determine how
closely linked the shadow states are. Its studies are guided by the following question:

• Is there any general rule to the shadow behavior? If so, how can the Equalizer predict
it?

By describing a general rule for the shadow behavior, the PV Equalizer could an-
ticipate expansions or contraction in the shadow width and automatically change
its switching strategy. It could mean, eventually, dispensing the use of searches to
ambiguous cases.

To answer this question, a theoretical study of the shadow movement with the shadow
model will determine correlations among the 16 binary states of the PV module used in
this work. It will be followed by the observation of a natural shadow and its impact on
the MPP of the PV module to validate its premises.

5.3.1 Theoretical study

This theoretical study seeks to determine, through the evaluation of movement scenarios
involving different shadow shapes, the correlation between the 16 binary shadow states.
The shadow shapes were chosen to reflect the possible widths of the shadow and its eventual
discontinuities and are shown in figure 5.35.

Figure 5.35: The shadows used in this theoretical study

In terms of movement, two types were studied: translation and rotation. The first
refers to fast shadows, such as clouds, passing over the PV module, while the second are
related to static shadows. Two examples are described in figure 5.36.
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[0     0      0    0]

a b

(a) Translation movement

[0     0      0    0]

c

(b) Rotation movement

Figure 5.36: The two types of movement

Translation movement requires a path, in figure 5.36(a) represented by the arrow going
from point a to b. Rotation requires a pivot point, which is represented by point c in figure
5.36(b). The states that compose their movement are given in figure 5.37.

[  0    0     0     0  ] [  1    0     0     0  ] [  1    1     0     0  ]

[  0    1     0     0  ] [  0    1     1     0  ] [  0    0     1     0  ]

[  0    0     1     1  ] [  0    0     0     1  ] [  0    0     0     0  ]

(a) Decomposition of the translation movement

[  0    0     0     0  ] [  1    0     0     0  ] [  1    1     0     0  ]

[  1    1     1     0  ] [  1    1     1     1  ] [  0    1     1     1  ]

[  0    0     1     1  ] [  0    0     0     1  ] [  0    0     0     0  ]

(b) Decomposition of the rotation movement

Figure 5.37: The decomposition of the shadow movement

To simplify the representation of the states, a more compact representation method is
shown in figure 5.38. The shadow states are shown within circles and disposed in a way
that non-contiguous shadows are either within or outside of the circle formed in figure
5.38(b).
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(a) The translation movement in compact notation
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(b) The rotation movement in compact notation

Figure 5.38: Compact shadow state representation

All the seven types of shadows were studied, their results are shown in figure 5.39
according to the type of movement.
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(c) Color legend of the figures

Figure 5.39: The theoretical results of shadow movement

It is possible to see that both the translation and rotation are characterized by a full
turn of the circle composed by the contiguous states. Non-contiguous shadows states are
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more used by the translation than by the rotation. These results show that there are
a certain number of base states which are used by all the shadows studied while others
are rarely used, if not at all. Using these cases as a base to estimate the probability of
transition between states yields the Markov chain model shown in figure 5.40. The red
lines compose what can be considered as the most probable path of the majority of shadow
scenarios. The blue lines are other less likely but still probable scenarios. The green lines
represent rare transitions, that are very specific to certain locations and objects projecting
the shadow.

(a) The final result (b) Color legend

Figure 5.40: The assembled results from the shadow study

Using this model as a reference, the movement of a natural shadow will be studied in
the next section. Its objective is to ascertain the basic principles of shadow movement
upon which the model was built.

5.3.2 Experimental validation: Natural shadow observations

Observing natural shadows is a challenging feat that requires observing the right PV
system, at the right time with the right equipment. With these conditions in mind, the
observation of the reference PV module are conducted in two parts.

The first part is to find the right time to observe the shadow. In this phase consist
of constantly tracing the I-V curves of the PV module during a bright and cloudless day
during regular intervals of several minutes. The only disturbances will be due to the
presence of static shadows giving a good indication of what is the best time window to
observe their movement into more detail.

The second part is to observe the shorter time window in detail. Based on the results
of the first part, I-V curves will be traced in intervals of 10 seconds during a shorter time
window. Its analysis will give a clear evolution of the shadow shape over time and help
determine if it follows a similar path given by its Markov Chain.

During this experiment, the PV module will be equipped with bypass diodes. Their
use allows a clear view of the shadow width through I-V traces.

The PV module used in this results for the first part are given in figure 5.41. It traces
the MPP current and voltage for each I-V curve measured during the day. There are two
clear reductions before 11:00 and around noon.
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Figure 5.41: The MPP variation during the day

The results from the second part are concentrated between 10:30 and 13:00. Again
I-V curves are traced, but this time every 10 seconds to extract the evolution of the MPP
with the shadow. The results are shown in figure 5.42.

Three periods can be distinguished from the evolution of the MPP. Before 11:30, when
the shadow is covering the totality of the module with small oscillations in power pro-
duction. Between 11:30 and 11:50 when the shadow is clearly moving away from the PV
module. After 11:50 when the shadow is present but does not seem to activate the bypass
diodes. The second period is studied further to observe the transitions in the shadow.
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(b) MPP current and voltage variation

Figure 5.42: The MPP variation during a shorter window of time

Figure 5.43 zooms in between 11:30 and 11:45. It puts into evidence, through colored
circles, clear voltage steps that show transitions in the shadow. It employs certain colored
circles which will be described further below.
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(b) MPP current and voltage variation

Figure 5.43: The MPP variation during shadow transition

The steady rise in power production is characterized by steps, as can be seen in its
voltage curve. Some specific time windows can be picked as examples. For instance, 11:36
to 11:38, 11:40 to 11:42 and 11:44 to 11:50. Among these steps are oscillating transitions,
as can be seen in the time windows 11:34 to 11:36, 11:38 to 11:40 and 11:42 to 11:44. These
were caused by the wind that shook the tree during the measurements. Four colored circles
highlight moments which the system can be considered stable between oscillations. Their
I-V curves serve to study the steady-state evolution of the shadow. The result, matching
the colors used in the circles, are shown in figure 5.44.

The evolutions of the I-V curves show the shadow disappearing over time, going steadily
from [0111] to [0000]. They give an important evidence of the veracity of the Markov Chain.
Further studies should be conducted, however, to validate other state transitions. These
are not in the scope of this work.

5.3.3 Summary of the indirect detection

This section has proposed a study of the correlation among shadow states in order to
deduce a general model of shadow movement. By analyzing several different shadow
shapes and movement scenarios, a Markov Chain was built putting into evidence that
transition between contiguous shadow states are more likely than those between those
non-contiguous. A natural shadow was observed and the transition between states [0111],
[0011], [0001] and [0000] were confirmed through their respective I-V curves.

The Markov chain proposed in this section gives the PV module the possibility of
guessing the next state without using the search function. Another potential use is for the
PV Equalizer to gradually migrate from the direct diagnosis to its indirect equivalent by
calibrating its own Markov Chain. This could bring a long time adaptation of the system
to its local and potentially recurrent shadow.

However, more data should be acquired to test other transitions of the table, with
especial attention to non-contiguous shadows.

5.4 Conclusion

This chapter has proposed and studied three diagnosis methods for the PV Equalizer:
direct, semi-direct and indirect. Each was studied by a different section and their results
can be summed up in the answer to the questions below.
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Figure 5.44: The shadow variation over a long period of time

The semi-direct method observes the mean inductor and output currents in order to
determine changes in the shadow shape prior to the use of the search function, triggering
it less often.

The indirect method uses a Markov Chain model to automatically switch after a shadow
transition without the use of the search function.

Finally, the original questions of this section may be answered.

• How can the search function be used to find the shadow?

The search function is the basis of the direct diagnosis method. Through its recurrent
use, current peaks can be acquired and analyzed to determine the shadow shape.
Their interpretation, however, was found to change according to the function being
performed by the PV Equalizer.

While idle, the peaks can be used to calculate an average for cross-comparison.
During equalizing, their local shadow state must be taken into account to determine
if the shadow has moved or not. In the case of bypassing, the output current forces
the shaded cell group in reverse bias and they have no peaks.

By using these criteria, the PV Equalizer can track movements on the shadow and
adapt itself to changes in the shadow state. However, if the peaks are too close to one
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another their information about the shadow is inconclusive. The “proximity” above
which their information can be considered as useful should be taken into account
when using the direct search for controlling the PV Equalizer.

• How are the electric variables of the PV module affected by changes in the shadow?

Only two variables were found to carry information about the shadow: the inductor
and output currents. Both are affected by the shading factor and the shadow width
at the same time, which characterize changes in the shadow. However, their cross-
comparison can be used to clearly distinguish which change in the shadow is taking
place. The correlation is clearly shown in table 5.7 in page 157. It is important to
note that due to the long time spans involved, variations are better observed through
the mean values of the currents.

The observation of these currents can be used to trigger searches only when the
shadow width changes. This allows changes in the switching strategy to better
mitigate the new shadow. Changes in the shading factor can be tackled by changes
in the duty cycle, which are already controlled by the optimal duty cycle tracker.

Is there any general rule to the shadow behavior? If so, how can the Equalizer predict
it?

Yes. The study of different shadow shapes and movement scenarios has shown that
there is a clear correlation between certain shadow states. Their transitions have
been described in terms of a Markov Chain in figure 5.40 in page 163. A natural
shadow was observed to verify some of the transitions given, showing an interesting
potential for the model developed. However, a more extensive study of the shadow
should be conducted to verify other transitions, specially for non-contiguous shadows.

This Markov Chain can be used to predict the next state of the shadow according
to its movement. It can also be calibrated by the PV Equalizer itself over time to
eventually stop using the search function.

Using the conclusions from this chapter and chapter 4, the shadow state can be esti-
mated, its corresponding switching strategy chosen and an appropriate duty cycle sought.
Now all the elements are in place to design a control system for the PV Equalizer.
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Chapter 6

Control Algorithm

Previous chapters have characterized the PV Equalizer in relation to the shadow. Based
on their findings, any shadow cast over the PV module can be found by means of one of
three diagnosis methods and mitigated either through equalizing or bypassing.

The objective of this chapter is to put their knowledge together in order to propose a
control algorithm capable of finding the shadow and reacting to its movement.

169
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6.1 Algorithm Overview

The control algorithm proposed in this chapter is shown in figure 6.1. It has four basic
blocks: Initialize System, Wait, Detect and Execute. Each one bears a contribution from
the results of one or more previous sections of this chapter.

;

Initialize system

Wait block

Detection block

Execution block

Figure 6.1: Control algorithm overview

The Initialize System block depends on the technology on which the Equalizer is im-
plemented. It sets up all the initial configurations needed to perform its tasks, such as
timers and analog-to-digital converters. It also handles the initial calibration of the search
function.

The Wait block waits for a predetermined length of time, handles the tracking of the
optimal duty cycle and observes the evolution of the average inductor and output currents.

The Detection block regroups all intelligent functions of the algorithm. For the direct
and semi-direct diagnosis methods, it acquires the current peaks by triggering the search,
calculates the threshold based on the current peaks and estimates the binary shadow
vector. It also chooses between the equalize, bypass and OFF modes or corrects the
shadow. For the indirect diagnosis method, it seeks out data from the Markov Chain and
decides which transition has taken place.

The Execution block turns the equalizing ON and OFF, chooses its switching strategy
and duty cycle based on the shadow binary vector. Their choice is conditioned by the
function chosen to be used by the Detection block.

These blocks and their respective algorithms will be described in detail in the sections
below.

6.2 Initialize System Block

The algorithm of the Initialize block is shown in figure 6.2.
The Initialize System block starts by turning the whole Equalizer system ON and set-

ting up the operating conditions of its embedded digital microcontroller. Most of it is
specific to the technology used, and further information can be found in the prototype de-
scribed in appendix B. However, there is one aspect that should be taken into consideration
and applies to any version of the Equalizer: the calibration of the search peaks.

Current peaks bear differences among themselves even in the absence of shadow. This
can be due to many different elements, such as noise from the chopper controlling the PV
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;
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Wait block

Detection block

Execution block

Initialize System Block

Figure 6.2: Algorithm of the Initialize System block

module, thermal drift in the component of the Equalizer or even differences in the charac-
teristics of the PV cells composing the different cell groups, called internal mismatch.
Thus, it should be expected that the peaks will never be equal and the procedure described
below must be taken in order to mitigate this problem.

After the initial setup, the algorithm waits for a few minutes. During this time, the
MPPT is expected to converge to a steady state. Once the power production is stable,
the calibration begins. This procedure is important, because it is imperative that the
Equalizer does not turn on accidentally, for it would deliberately reduce the overall power
production of the PV system.

As an example, consider the current peak measurements shown in figure 6.3. These
were done over a time period of nearly 5 minutes, under a constant irradiance of 900 W

m2 ,
module temperature of 60 ℃ and no shadow.
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Figure 6.3: The search results of the prototype with no shadow

Both groups PVI and PVIV are lower than the others. Thus, an initial calibration of
the Equalizer must be done to guarantee a certain proximity of the peaks. This is done by
acquiring the peaks for a certain period, calculating their average, choosing the higher as
reference peak and adding the different to the others. In the example above, the average
of the readings is shown in table 6.1.

Table 6.1: The average offset in the readings

Cell group Peak average (A)

PVI 1.34
PVII 1.42
PVIII 1.43
PVIV 1.23

The results of the search after calibration are shown in 6.4.
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Figure 6.4: The search results after calibration

While the averages are much closer, there are still differences among the readings. To
solve this problem, an idle zone can be implemented around 10% of the maximum peak
value. If all the current peaks fall into it, the Equalizer will use the idle function, thus
avoiding inconsistent shadow detections.
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Figure 6.5: The algorithm of the wait block

Another benefit from the idle zone is avoiding low SF shadows. Chapter 3 has shown
that, due to its losses, the Equalizer is not effective against them. By using both the initial
calibration and the idle zone, the chances of prematurely activating the Equalizer become
nil, as will be shown in the experimental section.

Once the Equalizer is calibrated, the algorithm can proceed to the detection block.

6.3 Wait block

As its name indicates, the most important function of this block is to wait. However, wait-
ing does not necessarily imply in being idle. The wait block performs two other functions
in the meanwhile: tracking the optimal duty cycle and monitoring the PV module. The
algorithm of this block is detailed in figure 6.5.

This section describes these two functions and determine how long the wait function
should last depending on their time needs.

6.3.1 Monitoring function

Monitoring depends on the type of diagnosis that is being used by the PV Equalizer.
If the direct diagnosis is being used, two aspects should be taken into consideration

to determine the time between searches: the response of the MPPT and the propagation
of the shadow. The response of the MPPT determines when a new steady state is found.
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This is an important variable, considering the dependence of the current peaks on a stable
output current shown in section 5.1.

To determine how long this represents, the MPPT was characterized under an irradi-
ance of 954 W

m2 . A shadow was installed over the cell group PVIV , first with an SF of 0.36
at 45 seconds and then 0.60 at 75 seconds. The shadow was removed at 120 seconds. The
results are shown in figure 6.6.
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Figure 6.6: Characterization of the time response of the MPPT

Figure 6.6(c) shows the evolution of the MPPT duty cycle. It takes nearly 12 seconds
to converge to the MPP from zero. When the shadow is cast over the PV module, the
MPPT takes nearly 10 seconds to converge to a new reference. If the SF is reinforced the
answer is even faster: nearly 5 seconds. After removing of the shadow, the MPPT takes
again nearly 12 seconds to converge.

The propagation of the shadow determines how fast the peaks should be acquired
to reproduce its movement. To have an idea of the how much time this represents, the
movement of a natural shadow studied in section 5.3 will be used as a reference. Its result,
recalled in figure 6.7, shows the evolution of the shadow through the changes in the I-V
curves of the PV module. The time between changes is roughly 2 minutes.
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Figure 6.7: The time response of a shadow

Thus, direct diagnosis monitoring should be slower than the time constant of the MPPT
but faster than the shadow.

For both the semi-direct and indirect diagnosis, waiting is performed differently. They
constantly observe the average inductor and output currents to determine movements of
the shadow. Its principle is recalled in table 6.2, which was first defined in section 5.2.
Where ∆iOUT and ∆iL represents the variation in the average output current and inductor
current, respectively.

Table 6.2: The correlation between the inductor, output current and movement

∆iL > 0 ∆iL < 0

∆iOUT > 0
The shadow width is

shrinking and its SF is
constant.

The shadow width is stopped
and its SF falling.

∆iOUT < 0
The shadow width is stopped

and its SF is rising.

The shadow width is
expanding and its SF is

constant.

Both iOUT and iL are calculated from the average of several measurements. Noise or
MPPT oscillations can be a problem since both create variations in both curves. To avoid
detecting inconsistent shadow movement, a certain variation threshold will be used. So,
the current must not only vary, but vary more than this threshold to be considered as
shadow movement.

If the shadow is expanding or contracting, the algorithm goes to the detection block. In
the cases where only the shading factor changes the algorithm remains in the wait block
and the optimal duty cycle tracker (ODCT) is considered to be enough to mitigate its
effects.

6.3.2 ODCT function

After the shadow is found and the equalize function activated, power production can be
optimized by using the Optimal Duty Cycle Tracker (ODCT). Its principle, similar
to the MPPT, resided on the influence the duty cycle has over the power output of the
PV module. Unveiled, in section 4.2, its main idea is recalled in figure 6.8.
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Figure 6.8: Simulation results showing the influence of the duty cycle over the P-V curve of the
reference PV module

The influence of the duty cycle in the presence of the local MPP is shown in figure
6.8(a). When the duty cycle is underestimated (0.40), the PV module behaves as if
bypassed. As the duty cycle rises (0.45 and 0.50), the two local MPP begin to disappear.
Once the system approaches the optimal duty cycle (0.55 and 0.60), the transfer of energy
from unshaded to the shaded cell groups approaches its maximum. If the duty cycle
continues to rise (0.70), the diodes in the switching legs of the Equalizer begin to choke
iOUT and reduce the power output. This principle is resumed by plotting the power output
as a function of the duty cycle, as in figure 6.8(b). Its global maximum is the optimal
duty cycle (ODC).

Finding the ODC can be achieved by applying small disturbances in the duty cycle
and observing the reaction of the power output. If power raises, then the disturbance is
leading the system into the good direction and should be reinforced. On the contrary, if
power falters, then the disturbance should be inversed.

Tracking the optimal duty cycle also depends on the MPPT. At each disturbance, it
must be given enough time to converge to the new MPP. Since the MPPT takes about
12 seconds to converge to a new MPP during steady-state, the duty cycle might only be
changed a few times before the next measurement routine. This could be extended over
longer periods of time if the shadow does not change.

6.3.3 Choice of the wait period

The choice of the time window will depend on which diagnosis function is being used.
For the direct diagnosis, the PV Equalizer should wait the time of the MPPT to

converge to a new MPP and for the ODCT to get closer to the optimal duty cycle. However,
the time should be no more than a minute, otherwise the reaction to the changes of the
shadow risks being too slow, wasting power. Thus, a compromise time of 24 seconds was
adopted for this method.

For the semi-direct and indirect diagnosis, the waiting time does not need to be that
long. They can be constantly monitoring the evolution of the mean inductor and output
currents every few seconds allowing a faster reaction to the appearance of the shadow.
Thus, their waiting period will be 2 seconds. However, once movement has been detected,
the semi-direct diagnosis should give the MPPT enough time to converge to a new MPP
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before triggering a search. This time was chosen to be 12 seconds being of the slowest
answer of the MPPT.

6.4 Detection block

The entry to this block depends on which diagnosis method is being used. The direct
method goes directly to the search and calculate peaks function. The semi-direct method
will wait a few seconds, giving the MPPT enough time to converge, before triggering the
search. The indirect method will access its Markov Chain and determine the next shadow
state.

This creates two separate branches within the detection block, one based on the analysis
of the current peaks and the other based on the Markov chain. The first branch interprets
the peaks according to the function currently being used. The second simply analyzes a
table whose values correspond to the transition probabilities between shadow states. The
highest value is used to choose the next state. These two branches will be explained in
detail in this section.

The algorithm of the detection block is shown in figure 6.9.
Once the shadow is detected, a binary vector is sent to the execution block for further

processing.

6.4.1 Current analysis branch

Either the direct or the semi-direct diagnosis method base their decision on the use of
current peaks. These are acquired in a burst of measurements giving a vector of values
which will be used to determine the location of the shadow. However, their interpretation
changes according to the function that is currently being used by the PV Equalizer.

There are a total of three functions: equalize, bypass or idle. Each one has its own
path, as explained below.

Equalize path

This path is taken if the system is equalizing. As shown in chapter 5, equalizing changes
the currents within each cell group, also having an effect on their peaks. This is recalled
by the example in figure 6.10, where cell groups PVI and PVII are giving energy to cell
groups PVIII and PVIV through the switching strategy I.II → III.IV .
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Figure 6.10: Interpretation of the peaks during equalizing
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Figure 6.9: Detection algorithm

In figure 6.10(a), the peak in cell group PVII is used as a high reference to analyze the
other three peaks. Unshaded cell groups (0) whose peaks are lower than the high reference
are switched to shaded (1), as shown in the red correction zone. Shaded cell groups (1)
whose peaks are higher than the high reference are switched to unshaded (0), as shown in
the green correction zone.

In figure 6.10(b), the peak from cell group PVIV is used as a low reference to analyze
the other three peaks. Shaded cell groups whose peaks are higher than the low reference
are switched to unshaded (0), as shown by the green correction zone. Unshaded cell groups
(0) whose peaks are lower than the low reference are switched shaded (1), as shown by the
red correction zone.

In both correction cases, there is a grey uncertainty zone which refers to the fact that
no conclusion can be drawn by peaks which are too close to each other.

This correction is shown in the algorithm as finding the minimum shaded peak (MINSH),
the maximum unshaded peak (MAXUSH), checking the shaded cell groups and then those
unshaded. As the algorithm checks, it also corrects the peaks accordingly. The new state
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is then sent to the compose shadow state function.

Bypass path

If the bypass function is operating, there are no current peaks over the shaded cell groups
because these have slightly negative voltages. However, if a peak does appear, it means
that the shading factor of the cell group is no longer high enough to justify bypassing it.
In this case, the system stops bypassing and the equalize function is activated.

Idle path

The idle branch is responsible for finding the shadow and choosing the function to be used
to mitigate it. First the function is chosen, according to the differences between the peaks.
Thus, there are three possible cases, as shown in figure 6.11.

(a) Into the idle zone (b) Into the equalize zone

(c) Into the bypass zone

Figure 6.11: The three mode zones around the current peaks

In figure 6.11(a), the peaks are too close together, falling all into the idle zone. In this
case there is no shadow, and the PV Equalizer remains idle.

In figure 6.11(b), the peaks fall within the equalize zone. This means that there is a
shadow and equalizing it is the best solution. In this case, the shadow is detected through
the use of a threshold, calculated from the average between the highest and lowest peak.
All peaks below the threshold are considered shaded and all those above are considered
unshaded. In the example, cell groups PVII and PVIV would be considered shaded.

In figure 6.11(c), the shaded peaks are too low, falling into the bypass zone. Although
the shadow is present, equalizing it is not the best solution. The detection is also done
through the use of a threshold.

With the shadow and the function chosen, the information is sent to the function that
composes the binary shadow state vector.
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6.4.2 Markov chain branch

This branch uses the Markov Chain model proposed in chapter 5 to determine the next
state of the system. It is translated, in practice, by a table whose values determines the
probabilities of transition between two different states.

The diagonal of the table is the correlation of the state with itself and has no meaning.
If the shadow is expanding, the values sought are located above the diagonal. If the shadow
is contracting, the values are located below it. The highest transition value is chosen and
the branch sends the information to the function that composes the shadow state.

The Markov chain branch will be considered to always use the equalize function in this
work for simplicity.

6.5 Execution block

The Execution block translates the choices of the Detection block into real control com-
mands to the Equalizer transistors. Based on the shadow state and the operation mode,
this block makes two choices: the switching strategy and its duty cycle. They are then
translated into commands that are sent to the transistors themselves. Its algorithm is
shown in figure 6.12.

6.5.1 Switching strategy choice

The shadow state received from the Detection block carries all the information needed to
choose the best strategy. This choice can be made through two different approaches.

The first is to implement the algorithm issued from the conclusions of section 4.1. In
it, the shape of the shadow is opposed to its representation, leading to an algorithm than
can be adapted to any Equalizer application. It is recalled in in figure 4.6 in page 116.

The second is to pre-code the results in a fixed table, whose size will vary according to
the number of cell groups and was chosen for simplicity. The correspondence between the
switching strategies and the 16 binary shadow states is shown in table 6.3.

Table 6.3: Pre-coded switching strategies for the 2-level detection

Shadow Switching Strategies Shadow Switching Strategies
State 1st 2nd Case 1st 2nd

[0000] − − [1000] II.III.IV → I −

[0001] I.II.III → IV − [1001] II.III → I II.III → IV

[0010] All → III − [1010] II → I III → IV

[0011] I.II → III.IV − [1011] II → All −

[0100] All → II − [1100] III.IV → I.II −

[0101] I → II III → IV [1101] III → All −

[0110] I → II.III IV → II.III [1110] IV → I.II.III −

[0111] I → II.III.IV − [1111] − −

From the eight non-contiguous shadow states, half use the Universal strategy while the
rest use the CSS. From the eight remaining cases, [0000] and [1111] were considered as
non-equalizable, instantaneously triggering the idle function. The rest use BSS strategies.

The choice of the switching strategy is followed by the estimation of the duty cycle,
according to the function used.
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Figure 6.12: Execution algorithm

6.5.2 Duty cycle choice

The choice of the duty cycle is mainly influenced by the function chosen by the Detection
block.

The idle function commands all switches to be turned off. There is no switching and
the system simply remains idle at it heads back into the Wait block.

The equalize function calculates the initial duty cycle in two steps. First, equation
6.1 is used to calculate the theoretical duty cycle(s). In this equation, nCH represents
the number of cells charging, nDCH represents the number of those discharging and (i)
represents the number of the BSS to which the duty cycle is attributed in the case of the
CSS. It will be used by BSS, CSS and Universal strategies.

D(i) =
n(i)DCH

n(i)CH + n(i)DCH

(6.1)

As was shown in section 4.2, the theoretical duty cycle is not enough to assure the full
transfer of current between shaded and unshaded cell groups. To attain it and maximize
the power production, the optimal duty cycle tracker (ODCT) is used by the Wait block.
As the ODCT requires time to converge, the initial estimation of the duty cycle may help
making it faster.
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This initial estimation was also studied in section 4.2. It was found that adding 10%
to 15% of the theoretical duty cycle may suffice to get the ODCT an starting point a few
disturbances closer to the optimum duty cycle.

For the bypass function, the duty cycle is set to zero. The PV Equalizer considers, in
this case, that the MPPT is capable of tracking the highest power peak of the PV module
and simply waits for the moment when the shadow is gone.

6.5.3 Send commands function

With the switching strategy chosen and the initial duty cycle estimated, the control system
is now ready to send the signals to the transistors. Two pairs of transistors are needed
during the equalizing, one during charge and the other during discharge. The PV Equalizer
has 8 transistors indexed going from 2 to 9.

To illustrate the relation between the transistor indexes and shadow, an example is
provided in figure 6.13. In it, the number of shaded cell groups is represented by nSH and
their initial position is called posSH . The position is numbered from 1 to 4, representing
cell groups PVI to PVIV , respectively. The same logic applies to the number of unshaded
cell groups, called nUSH , and their initial position, called posUSH .

Figure 6.13: Example used to illustrate the definition of the shadow position

In figure 6.13, groups PVIII and PVIV are unshaded, making nUSH equals to 2. They
start in cell group PVIII , making their posUSH equals to 3. The indexes of the transistors
used during charge are T6 and T9. A similar analysis can be made for the shaded part,
having nSH equals to 2 and posSH equals to 1. The indexes of the active components used
during discharge are D1 and T6.

Using nSH , nUSH , posSH and posUSH to deduce the indexes of the transistors pairs
gives the equations in table 6.4. These equations use T1CH and T2CH as the transistor
pair used during the charge phase, while T1DCH and T2DCH represent the transistor pair
used during the discharge phase.

Table 6.4: Transistor equations

Charge Phase Discharge Phase

T1CH = (2 · posUSH) (6.2) T1DCH = (2 · posSH) − 1 (6.3)
T2CH = 2 · (posUSH + nUSH) − 1 (6.4) T2DCH = 2 · (posSH + nSH) (6.5)

Once the commands are calculated, the system upon which they are implemented is
programmed to repeat them until further notice. The duty cycle is converted from its 0 to
1 format into a number best handled by the microcontroller in the embedded Equalizer.
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The algorithm cycle is now complete and the system moves back into the Wait block.
Now the control algorithm will be tested on the prototype and under real shading condi-
tions for validation.

6.6 Experimental validation

Due to time constraints, the experimental validation of the control algorithm will be limited
to the direct and semi-direct methods. The shadow setup used during the experiments
will be presented first, followed by the weather conditions. The results will be shown in
terms of power production, shadow detection and the influence of the PV Equalizer over
the MPPT.

6.6.1 The shadow setup

This test consists of letting the whole system operate with no shadow, suddenly shade cell
group PVIV for a given time and then swiftly remove the shadow. The PV Equalizer is
expected to find the shadow, compensate it, detect its absence and switch back into idle.
The expected output of this test is shown in figure 6.14 and described below.

Figure 6.14: The shadow setup used in this experiment

The shadow is cast over the PV module at point a and disappears at point b. Its
shading factor, shown in gray, has a slight ascending curve that represents the time it
takes for setting up the shadow. In experimental conditions this may represent several
seconds, being the reason for using a slope instead of a step.

The line in blue shows the power output of the system without the use of the Equalizer.
Its recess from point a to b represents the impact of the shadow in power production.

The dashed line in red shows the power available by adding the local power productions
of each cell group. It represents the maximum theoretical power available. The gap
between the blue and red in this area represents the power that can actually be gained
by using the Equalizer. An efficient Equalizer is expected to get the most out it, being as
close as possible to the red line.

The green line shows a hypothetical power production yielded by the use of the PV
Equalizer. It is expected to not turn on before the shadow, represented by the matching of
the green and blue lines before point a. Once the shadow appears, some time is expected
to pass before detection, as represented by the gap between green and red right after point
a. While on, the Equalizer will seek the optimal duty cycle, represented by the oscillation
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of the green curve between points a and b. Finally, it is expected to turn back into idle
function once the shadow is gone, with a certain loss of power in the process.

6.6.2 Experimental setup

There is a total of four separate measurement sets. The first is done without the PV
Equalizer to assess the power loss imposed by the shadow. The second is conducted with
a switching strategy considered to be “near optimal”, it is used as a reference to the
power that can be potentially harvested. The third and fourth are done using the direct
and semi-direct diagnosis methods, respectively. The indirect diagnosis, better suited for
moving shadows, was not tested in these conditions.

The measurements details for each of the five sets are described in table 6.5.

Table 6.5: The time variables used during the experiments

Condition
Experimental set

No
Equalizer

Optimal Direct Semi-direct

Duration 5’06” 5’07” 6’07” 5’32”
Shadow in 0’48” 0’53” 0’47” 0’43”

Shadow out 4’25” 4’30” 4’40” 4’38”

SF
8 layers
(0.52)

8 layers
(0.52)

8 layers
(0.52)

8 layers
(0.52)

Shadow state [0001] [0001] [0001] [0001]

The weather conditions for each measurement are described in table 6.6.

Table 6.6: The weather conditions during the experiments

Measurement
Weather conditions

Irradiance TA TM

( W
m2 ) (℃) (℃)

No equalizing 951 38 58
Fixed equalizing 943 39 58
Direct diagnosis 939 38 57

Semi-Direct diagnosis 950 35 59

6.6.3 Experimental results

The first experimental results, shown in figure 6.15 is composed by the reference mea-
surements. It shows, in blue, the effect of the shadow over the power production of the
PV module. The power yield by using the PV Equalizer with its corresponding optimal
switching strategy is shown in red.
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Figure 6.15: Reference power curve

There is a clear power gain between roughly 60 and 270 seconds. This power gain is
the reference and the control algorithm should be capable of attaining it.

The results obtained using the direct diagnosis method are shown in figure 6.16.
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Figure 6.16: Power yield using the direct diagnosis method

The shadow is set at around 60 seconds, driving the power production down. The
control system takes about 30 seconds to identify the presence of the shadow, with the
power shooting up to the reference at nearly 90 seconds. When the shadow is removed,
however, power production falls down to nearly 78 W.

To better understand these results, figure 6.17 provides further information about the
duty cycle of both PV Equalizer and MPPT. It shows that the shadow is actually found at
30 seconds, but the equalizing saturates the MPPT control. Since the voltage distribution
among the cells change abruptly, the MPPT looses its reference.
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Figure 6.17: Evolution of other variables during the direct diagnosis experiment

The power results for the semi-direct diagnosis method are shown in figure 6.18.
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Figure 6.18: Power yield using the semi-direct diagnosis method

The response of the system is very similar to the direct method. There is a flat power
variation between roughly 60 and 90 seconds, due to the 12 seconds the algorithm waits.
Thus, the system detects variations in both the inductor and output currents three times
during this period. More details of the evolution of the system during the experiment are
shown in figure 6.19
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Figure 6.19: Evolution of other variables during the semi-direct diagnosis experiment

The steps showing the transition between 60 and 90 seconds show that the system
detects a shadow, calls for a search and waits for 12 seconds. During this period, no
readings take place which is shown by the flat lines in both curves. As both ∆iOUT and
∆iL rise, the system triggers new searches, causing more flat periods. Finally the system
stabilizes and no new searches are called.

At nearly 270 seconds, the shadow is removed, causing the inductor current to fall. No
search is called at this moment because the variation in the output current falls within
the current threshold limit. Since ∆iL with zero ∆iOUT are considered as physically
inconsistent, the system does nothing in these cases.

Comparing the results from both diagnosis methods yields figure 6.20.

0 30 60 90 120 150 180 210 240 270 3000

13

26

39

52

65

78

91

104

117

130

time (s)

Po
w
er
(W
)

Direct diagnosis
Semi-direct diagnosis

Figure 6.20: Comparison of the direct and semi-direct diagnosis method

The two diagnosis method take a similar time to react to the presence of the shadow.
This confirms that the recurrent use of the search might be avoided by the observation of
the average inductor and output currents.

Neither method is capable of detecting of stopping the PV Equalizer once it is on. It
is an important feature that should be developed in further research.
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6.7 Conclusion

This chapter has proposed a control algorithm for the PV Equalizer based on the techniques
and methods developed in chapters 4 and 5. This algorithm is structured in four blocks,
namely: initialize, wait, detect and execute. Each block is built based on some data or
fact shown in previous chapters.

The initialize block starts up the control system upon which the PV Equalizer is coded.
The wait block handles the monitoring of the system and the optimal duty cycle tracker.
The detection block applies the different diagnosis methods to the data acquired by the
PV Equalizer, determines the shadow state and the mitigating function to be applied. The
execution block uses the shadow state to determine the switching strategy and duty cycle.

Their experimental validation was conducted only with the direct and semi-direct meth-
ods. Its results have shown that both methods were capable of finding and mitigating the
presence of the shadow. Neither was able, however, to stop the PV Equalizer after the
shadow was removed.

Time constraints have not yet allowed experiments using the indirect diagnosis method
and moving shadows. These remain as perspective for comparing the three diagnosis
methods under dynamic shadow conditions.

With the control system developed and validated, a final comparison of the PV Equal-
izer with other PRobES can now take place.
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Chapter 7

Conclusion and Future Work

This thesis had the objective of proposing a new solution to the problem of intermittency
in photovoltaic plants. Its approach was to change the topology of parallel PRobES from
Cùk or Flyback based converters to a PV Equalizer inspired from a Buck-Boost. The
several upgrades brought forth by this topology were offset by its major difficulty: control.
In order to operate properly, the PV Equalizer needs to choose a switching strategy and
duty cycle adapted to the shadow cast upon it. Thus, its control challenge was two-fold,
finding the shadow and then determining the strategy best suited to mitigate it.

Several techniques were investigated throughout this work and their results were used
to set up a control system capable of finding the shadow, detecting its movement and
choosing the optimal strategy to mitigate it. With their results, this work comes full-circle
and it is time to compare the gains brought by the PV Equalizer to other applications in
the literature. In extension of this analysis, it is also time to determine the next steps to
be taken, either in improving the current prototype and control system or in more broader
and bolder research perspectives.
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7.1 Conclusions on the PV Equalizer

The conclusions concerning the potentials of the PV Equalizer are proposed in this section
through two parts. First, its overall evaluation is conducted following the method used
in chapter 2 that was applied to the other PRobES available in the current literature.
Second, a comparison shows the improvements granted by the PV Equalizer and pave the
way for future work.

7.1.1 Overall evaluation of the PV Equalizer

The criteria used in this overall evaluation are based on the method proposed in chapter
2. There are a total of seven criteria: Granularity, Passive Components, Efficiency, Power
Gain, Reliability, Integration Potential and Control Simplicity. Each will be analyzed
separately first, and then put together to compare the benefits of the PV Equalizer with
those of other PRobES.

Granularity

The PV Equalizer is based on a highly granular topology. By adding new switching legs to
its main concept, designers can go all the way down to a few cells. It is limited, however,
to a certain number of cells because the discharge voltage must be higher than a two-diode
forward-bias voltage. This can be improved, however, by certain changes in the topology
which will be suggested in the next section.

Another element that grants it a high granularity is its diagnosis methods. By using
current peaks, the PV Equalizer can control any number of cell groups with a single current
sensor. Adding an extra sensor, to the output current, may provide even less losses on the
long run by using the semi-direct diagnosis method.

Passive components

The passive components of the PV Equalizer are one of its greatest forces and weaknesses.
Using a single inductor is clearly an important improvement brought by this application

to the current literature. Although it cannot be integrated, it is now no longer an obstacle
to the integration of the system.

The capacitors, however, are still a great challenge. So far in this work, chemical and
ceramic capacitors were tested. Both were destroyed in several occasions. Their short
life-span and fragility are an important obstacle to this or any parallel PRobES. Further
improvements to this issue are also described in the next section.

Efficiency

The efficiency of the PV Equalizer was found, in chapter 3, to vary according to the shading
factor and width of the shadow. The technology used greatly contributed to cripple the
performance of the prototype developed in this work. Improvements, such as changing
transistors and diodes or integrating the structure could provide an important upgrade to
its ratings.

Power Gain

While the prototype proposed in this work is by no means efficient, it did raise the power
output of a PV plant by almost 40% is certain measurements, as shown in figures 3.23(a)
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and 3.23(b) in page 95.
But its power gain can really be put in perspective when compared to other PRobES

under equivalent shadow and equalizing conditions. Some of the results from data pub-
lished in the literature can be picked as a means of comparison. Table 7.1 shows six
PRobES, along with their equivalent shading conditions and switching strategies. It is
important to clearly state that from all of these, only the works of Shimizu et al. [2001,
2003] have results issued from measurements. The others are all simulations and do not
take into consideration the system losses.

Table 7.1: Equivalent shading conditions

PRobES SF Equivalent BSS

DMPPT 1 [Ramos-Paja et al., 2010] 0.36 I.II.III → IV

DMPPT 2 [Giral et al., 2011] 0.57 I.II → III.IV

DMPPT 3 [Nguyen and Low, 2010] 0.48 I.II.III → IV

GCC 1 [Shimizu et al., 2003] 0.37 I.II.III → IV

GCC 2 [Shimizu et al., 2001] 0.60 I.II → III.IV

REA 1 [Nimni and Shmilovitz, 2010] 0.50 I.II → III.IV

Their power gain comparison yields figure 7.1.
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Figure 7.1: Relative power gain comparison among PRobES

There are three cases where the Equalizer had a performance lower than the other
PRobES. For the DMPPT 1 the shading factor is very low and the simulation does not
take losses into consideration. For the two GCC, their structure has only two transistors
and one inductor. However, when compared in terms of real power gain, the PV Equalizer
has similar ratings, as shown in figure 7.2.
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Figure 7.2: Absolute power gain comparison between the PV Equalizer and the GCC

Reliability

The reliability of the PV Equalizer depends on how its components behave over time. This
work did not study their operation over long periods, but the experience acquired with
the prototype has shown that its most fragile components are the capacitors. Transistors,
diodes and the inductor are rather robust and did not posed problem during this work.
Other less important elements are the sensors and the microcontroller, both upon with the
operation of the system relies completely. The important number of components in the
PV Equalizer make it even more important the perspective of integrating it monolithically.

However, considering the active components, the loss of one of them may still allow the
PV Equalizer to operate in a degraded condition. This can be provided by adding special
features to its control algorithm which would enable it to auto-diagnose faults in itself.
Possible actions would be to trigger signals that would eventually bring in maintenance
intervention.

Integration potential

Previous work has shown that the same switching leg used by the PV Equalizer has
an interesting integration potential [?]. This interesting feature gives it an important
advantage over other parallel PRobES currently available in the literature and should be
explored in further work.

Control Simplicity

Finally, this feature was one of the contributions sought out by this thesis. The control
algorithm proposed in this work has shown an important potential for enabling the PV
Equalizer to control itself with very few sensors. The three diagnosis methods can also
acquire information over time and learn from the recurrence of the local shadows with the
potential of reducing control cost over time.

Comparison with other PRobES

Using the overall evaluation of the PV Equalizer and the other PRobES, a final cross-
comparison is proposed in figure 7.3.
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This final comparison shows that the PV Equalizer represents a mix from the best
qualities of the other parallel PRobES, while providing an important control contribution
and displaying an interesting integration potential.

There is still improvements to be made in all of the issues shown in figure 7.3. The
next section list several ideas to seek them.

7.2 Research Perspectives

One of the main objectives of this thesis was to provide evidence that the breakthrough
in the topological concept of parallel PRobES provided by the PV Equalizer is actually
feasible. This has lead to several ideas and possibilities to make its use a reality in field
applications. Their list, provided in this section is by no means exhaustive, but are consid-
ered are the most important blocking points and ideas that once sought would definately
provide great ground for improvement.

Improvements in Power Electronics

There are three important power electronics improvements that could definitely change
the ratings of the PV Equalizer. The first is the use of Schottky diodes in the switching
legs. The second is to not use diodes at all.

As shown in chapter 2, losses are widely driven by the diode. Thus the first improve-
ment would be to upgrade the switching leg of the system by replacing the diode with
another transistor, the losses of the system are expected to be greatly reduced.

Another important improvement would be to totally integrate the structure into a
single monolithic block. Certain authors such as have already proposed similar studies
on the field.

These two improvements would greatly improve losses and reliability, actually pushing
the Equalizer into a more satisfying performance.

The third issue is the capacitors. Electrolitic and ceramic capacitors were used in this
work, but both were destroyed on several occasions. The eventual use of two electrolitic
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capacitors in series with their negative part interconnected might be a solution for this
problem. Once they are interconnected, their voltage polarity is no longer an issue. Their
use should be investigated in further research.

The use of bidirectional chemical capacitors could provide a

Interactions with the MPPT

Throughout this study, interactions between the MPPT and the Equalizer were not taken
into account. However, they happen in many levels and influence the overall system more
than first expected.

In the hardware level, the capacitors of the Equalizer could be helpful during the
sizing of the MPPT chopper. Their presence stabilizes the PV module voltage, which
in turn requires a smaller inductor to be controlled. By cross analyzing both structures,
an optimal system could be dimensioned where the losses of both the Equalizer and the
system chopper can be reduced.

In the software level, the lack of communication between them was sometimes a barrier,
especially during the detection of the shadow. If they could communicate, the Equalizer
could effectively search at a constant output current, leading to a faster search of the
shadow. The MPPT could also signal directly to the Equalizer when a change in its
switching strategy becomes harmful to power production.

Mixed control algorithms

This work has focused its attention to the proposition and validation of three detection
methods: direct, semi-direct and indirect. The first two were validated by the control
algorithm separately, yielding different and interesting results. However, it would be in-
teresting to improve the control algorithm in order to use them together. Cross comparing
their results could be a way of rendering the control algorithm less prone to false detections
and wrong diagnosis.

Validate the system with moving shadows

While moving shadows was an important issue during this work, getting the PV Equalizer
prototype to work under moving shadow conditions revealed itself to be a difficult chal-
lenge. Experiments were performed but found inconclusive, specially due to the difficulty
of moving shadows over the PV module. Validating the use of all the diagnosis functions
under moving shadow conditions would give further information concerning the best way
to use them together.

Multi-Agent Systems in PV plants

By reshaping the PV plant, new questions concerning its control system would inevitable
rise. The plant could be seen as a multi-agent system, composed of different layers of
reaction. The chopper could have different control strategies, based on the seasons or the
architecture of the plant. The Equalizer could learn the recurrence of the local shadows
over time and tune its Markov model to maximize the efficiency of the guesses as different
parts of the same PV central could be shaded differently.

Finally, the data from the PV plant could be retrieved and more efficient Markov
models could be recalculated off-line.
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New Architectures for PV plants

By considering the PV plant a whole system, composed by Equalizers, Choppers and PV
modules a new paradigm of plant can be conceived. The maximum robustness can be the
center of a PV plant architecture. A single PV module can be considered to produce more,
thus reducing the sizes of the PV plants for the same load.

Further research should include these new architectures along with the redefinition of
the PV module. Smaller modules with a dedicated connectivity could replace bigger ones
and allow an extended connectivity to the Equalizer system.

Validation of the Shadow Model

The Markov model itself could be the object of a further experimental research. There
is not enough gathered field measurement data with the purpose of studying and under-
standing the shadow stochastic behavior from the PV module point of view. Observations
should be focused on urban environments, where the occurrence of shadow is more likely.

7.3 Final Remarks

This work has addressed the problems of intermittency in PV plants. While a broad
range of data and work is available on the field, an all-comprehensive theory capable of
understanding this wealth of contributions. Thus, this thesis started by a bibliographic
review of the shadow phenomenon in PV systems. From this review, a complete shadow
model intertwining geometric elements of the shadow and electric connections of the PV
module was proposed. The shadow model was used as a basis to create a theory on the
intermittency of PV systems.

The theory proposed in this work states that the intermittency in PV systems is a two-
fold issue: optical and electric. The optical intermittency can only be offset by elements
external to the PV plant. The electric intermittency can only be addressed within the PV
plant itself.

Among the existing methods in the literature, the Photovoltaic Robustness Enhance-
ment Systems (PRobES) were those studied in this work. Two families of PRobES were
identified, namely series and parallel. Each have their own advantages and inconveniences,
which were studied in detail through a new comparison method. The parallel PRobES
were found to be in a more disadvantaging position, requiring a total change in paradigm.
Thus, we have chosen to focus our contribution into these by proposing the PV Equalizer.

The PV Equalizer is based on its battery equivalent and uses a singe inductor to
equalize the uneven current distribution among the cell groups caused by the presence of
the shadow. The modular concept use allows the PV Equalizer to be expanded from a few
PV cells, to a module or an entire plant. It can also be easily integrated monolithically,
paving the way for possible industrial applications.

The many advantages of the PV Equalizer were offset by a single problem: its control
complexity. To solve this issue, its switching was studied and the equations of the system
composed by the PV module and PV Equalizer were described. This description led
to the definition of two functions types: mitigation and detection. Mitigation functions
compensate the presence the shadow, while detection functions determine its location.

Mitigation functions were defined as composed by a switching strategy and a duty
cycle. The switching strategies were linked to the shape of the shadow and an algorithm
was proposed to properly choose them. The duty cycle was found to have a global optimum
which can be reached by a disturb and observe algorithm.
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Three types of detection methods were proposed and studied: direct, semi-direct and
indirect.

The direct detection method consists of briefly connecting the PV Equalizer inductor
to each cell group and acquire current peaks. The location of the shadow can, then, be
deduced by the analysis of these peaks. Theoretical, simulation and experimental studies
were thoroughly conducted to deduce the best way of using the information from these
peaks. However, this method requires the recurrent acquisition of the peaks, leading to
an energy cost.

The second method, called semi-direct, sought to avoid unnecessary acquisitions. It
is based on the observation of the average inductor and output currents. Their behavior
is such that their mutual rise or fall can be interpreted as shadow movement, which is
used to trigger the acquisition of peaks. Measurements using a PV module and artificial
shadows were performed to confirm their behavior.

The first two detection methods do not use any prior knowledge of the shadow. More-
over, they consider that all shadow cases have the same probability of happening. In
the indirect method, these premises are reviewed and the shadow is studied based on its
geometric passage over the reference PV module. The result is a Markov chain model ca-
pable of taking into consideration the probabilities of transition between different shadow
scenarios. The observation of natural shadows has partially confirmed this model, which
should be studied further for bigger PV centrals.

The mitigation and detection functions were used to design the control algorithm of
the PV Equalizer. The general flowchart of the algorithm was presented and its aspects
described. Its experimental validation was conducted using only the direct and semi-
direct detection methods. The algorithm was capable of finding the shadow, choosing the
correct switching strategy and optimizing the duty cycle. However, it couldn’t stop the PV
Equalizer after the shadow was removed. Further studies and validations of the algorithm
should be sought by future work.

While this work has shown what the PV Equalizer is capable of doing, its has also
shown what it should not do. It is clear that this solution is best adapted for environments
with a highly concentration of shadows, such as urban areas. These areas represent a
great potential for using PV systems currently unexplored. Since urban PV plants find
themselves closer to the load, they represent less losses and infrastructure for the use of
PV systems.

This author firmly believes that the gains associated to the use of the PV Equalizer are
not limited to the energy. Its deployment on an experimental level would allow a better
mapping of the shadows over cities. It could also generally change the way of designing
PV plants by introducing new degrees of freedom.

If combined with a general review in the current paradigms used in the conception
of PV plant, the PV Equalizer could actually be an important part of the answer to the
problems of partial shading. A change which this work hopes to have introduced the basis
to happen.
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Appendix A

The Simulation Model

This appendix gives the details on the simulation model developed during this work. It
was coded in Matlab/Simulink using the PLECs toolbox. Figure A.1 gives an overview of
the system.

Figure A.1: The overview diagram of the simulation model

The simulation system is divided in two blocks: Physical and Control. The Physical
block holds the circuit of the PV Equalizer drawn using the PLECS tool. It sends the
output voltage and current along with the inductor voltage and current to the control
block, while the readings from the cell groups are sent to the workspace. The Control
control the PV Equalizer, the MPPT chopper and calculates the currents within the PV
modules.

Throughout this appendix, simulink systems will be shown to explain how the model
works. They follow a color code: data sinks are red, data sources are green, systems are
cyan, switches are purple and PLECS related blocks are light yellow.
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A.1 Physical System

The physical system is composed by the PV module, the PV Equalizer circuit and the
MPPT chopper. They are shown in figure A.2 in parallel with a PV Equalizer figure for
comparison.

(a) The circuit model
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(b) The PV Equalizer circuit

Figure A.2: A comparison between the circuit model and the theoretical circuit

Each cell group, in figure A.2(a) is composed by a current source which receives the
current value from the Control System. This was chosen so for speed during the simula-
tions.

Three are acquired from each cell group and sent to the workspace: the current over
the cell group itself, the current in the capacitors and their voltage. These can be used to
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study what happens to each cell group individually after the simulation is finished. Figure
A.3 shows I-V curves of a cell group and how they vary with irradiance.
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Figure A.3: The circuit of the MPPT chopper

The currents are calculated through a Lambert-W function which was developed by
Damien Picaul [Picault, 2010].

The switching legs are composed by generic MOSFETs and diodes, with impulses
coming from the Control System. The model allows the resistance of the MOSFETs and
the forward voltage of the diodes to be set in order to estimate conduction losses. It
cannot, however, be used to estimate losses due to switching.

The inductor is represented by a perfect inductance and a resistance that simulates its
losses. Its voltage and current are acquired and sent to the Control System.

The MPPT is composed by the boost chopper shown in figure A.4.

Figure A.4: The circuit of the MPPT chopper

It is controlled by a Disturb and Observe algorithm in the Control block. Its input
is connected to the PV modules and its output to a fixed voltage source, simulating the
DC bus. Both the input and output data are acquired and sent to the workspace for later
study.

A.2 Control System

The control system of the model is composed of three parts, as shown in figure A.5
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Figure A.5: The overview diagram of the control system

First, on the upper part, is the PV Equalizer control with its two sub-blocks: Decision
and Action. Second, on the lower right part, is the PV Current Estimation sub-block.
Finally, on the lower left part, is the Boost Control sub-block.

A.2.1 PV Equalizer control

The control system of the PV Equalizer is based on the idea that the decision sub-block
configures the action sub-block. Once it is configured, the decision sub-block waits for the
next moment to reconfigure it.

The decision sub-block determines if the action sub-block should be turned on, which
function it will perform, the switching strategy and duty cycle. It receives the output and
inductor current as well as the current peaks to control the PV Equalizer.

The action sub-block receives this information and translates them in commands that
are sent to the transistors in the Physical block. This principle is shown in figure A.6.

The far command translates the information of this block into a vector of duty cycles
with signs indicating if the inductors are charging or discharging. The previous period
and the time are used to keep track of the moment when the impulses must change.

The close command translates the information it receives in zeros or ones, which are
sent to the transistors.

A.2.2 PV current estimation

The current uses voltage from each cell group and their shading factor to calculate their
current. The data is then sent to the Physical System.
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Far command Close command

Figure A.6: The action sub-block

A.2.3 Boost control

The control system of the MPPT chopper can either follow a fixed current or track the
MPP of the PV module through a disturb and observe algorithm. It is regulated by a PID
controller whose parameters are set prior to the simulation.

Figure A.7: The overview diagram of the control system



206 APPENDIX A. THE SIMULATION MODEL



Appendix B

The Experimental Prototype

This appendix describes the prototype developed in this work and its elements. Its
overview is proposed in figure B.1, showing three parts: Auxiliary Elements, PV Equalizer
and Test Bench. Each will be described in detail below.
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Figure B.1: Prototype overview

B.1 Auxiliary elements

Composed by a PC, an oscilloscope and an outside feeder, this part of the prototype
mainly provides data acquisition and feeding support. The PC used has a C++ algorithm
capable of communicating with the control card of the PV Equalizer and acquiring data.
The Outside Feeder is eventually used in place of the Feeder Card for low irradiance
experiments.

B.2 Test Bench

Before sizing the equalizer, its bench characteristics must be defined. The bench can be
seen as everything surrounding the equalizer, thus the PV module, its MPPT and the
shadows.

The PV module is a Photowatt PW1650, shown in figure B.2. It has 72 cells, organized
in columns 8 of 9 cells.

207
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Figure B.2: The reference PV module

The I-V traces of the module and its cell groups are shown in figure B.3. The irradiance
under which these measurements was done is detailed in table B.1.
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Figure B.3: The I-V traces of the reference PV module

Table B.1: Irradiance during I-V tracing

Group
measured

Irradiance ( W
m2 )

All 930
PVI 510
PVII 570
PVIII 600
PVIV 610

Some I-V curves were made by using the PVPM1000C40 I-V tracer. Its reference cell,
shown in figure B.4, was used to measure the irradiance.
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Figure B.4: The reference cell

The PV module came from the factory with four bypass diodes welded into its junction
box, as shown in figure B.5. This diode disposition allows access to four cell groups, each
containing 18 PV cells. The two halves of the PV module can be connected in series or
parallel, allowing the PV module to have different ratings according to the needs of the
designer. During this work, all groups will be connected in series and their diodes removed.
The junction box was equipped with cables, connecting each cell group directly to the PV
Equalizer.

Figure B.5: The junction box with the bypass diodes

There are two types of shadow: natural or artificial. Natural shading is random and
its shading factor is not controllable. Whenever it is used, a careful diagnosis procedure
will estimate its characteristics as well as possible. Artificial shadow, however, can be
controlled in shape and shading factor. During this work, plastic sheets have been used
to craft shadows that can fit one cell group. They can then be put parallel to each other
to simulate longer shadows. Figure B.6 illustrates them along with a graph characterizing
their shading factor.
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Figure B.6: Artificial shadow used in the experimental bench

The DC chopper used in this work is a reversible Buck-Boost, shown in figure B.7. It
can act as a Buck when its source is connected on the high voltage side to its right, or as
a Boost when connected to the low voltage side to its left. It uses two Bipolar transistors,
its inductor is not fixed and it has filtering capacitors on both the low voltage and high
voltage sides. The drivers and measurements are concentrated on the lower left corner,
and the control impulses arrive from the PV Equalizer through a dedicated connector.

Figure B.7: The DC Chopper

The load connected to the DC chopper is a Eco 2 tubes variable resistance of 23.4 Ω
and a maximum current capacity of 7.5 A.

B.3 PV Equalizer

The PV Equalizer is composed of six different cards, namely: Debug, Feeder, Control,
Acquisition, Power Electronics and Interconnection. This modular approach was chosen
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to ease eventual maintenance. Due to their specific design constraints, each card will be
presented separately.

B.3.1 Debug Card

The debug card, shown in figure B.8, allows access to all variables related to the PV Equal-
izer. It is used by the oscilloscope to easily acquire, through its pins, the measurements
from the acquisition card. The voltage at each cell group, the current and voltage in the
inductor, the output current or the transistor impulses are available as identified in figure
B.8. This card can also be used to easily feed the system from outside sources or measure
the voltages from the feeder card. The pins dedicated to these are shown in the Feeder
voltage square.

Figure B.8: The debug card

B.3.2 Feeder Card

The feeder card has a two stage DC-DC converter which uses the energy from the PV
module to generate the voltages needed by the system to function. The first stage is a
buck-boost which can operate between roughly 5 V and 50 V. It is connected directly to
the output voltage of the PV module and its output is a stable 24 V. The second stage
is connected to the output of the first stage. It generates +/- 15 V, which is used by the
acquisition card and 5 V which is used by the control card.
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Figure B.9: The feeder card

Due to a late technical development the feeder has not yet been tested.

B.3.3 Control Card

The control card is responsible for communicating with a computer, controlling the MPPT
and the PV Equalizer. It is shown in figure B.10 with each of its parts highlighted.
Its interface with the outside is done through a PIC24FJ16GA002, which sends data
either through the USB or to a SD card. The control system itself is composed by a
PIC33FJ16GS610 mounted on a special board. The interface with the MPPT is done
through a connector which sends the control impulses to the DC chopper.

Figure B.10: The control card
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B.3.4 Acquisition Card

The acquisition card is responsible for measuring several electrical variables of the PV
Equalizer. It measures the voltages in each cell group and the total voltage of the PV
module. The inductor current is measured through a LEM and its voltage is also available.
The output current is measured in either forward or reverse, both through a shunt.

Figure B.11: The acquisition card

Their ratings were measured and are shown in figures B.12 and B.13.
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Figure B.12: Ratings for the different voltages
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Figure B.13: Ratings for the different currents

All measurements are put into a 3.0 V scale because the maximum acceptable by the
microcontroller is 3.3 V. The inductor current was not measured up to 10 A for a lack
of current sources. The green line in figure B.13(a) is a linear trend line based on the
measurements. The voltage in the inductor was not characterized for it was finally not
used during this work.

B.3.5 Power Electronics Card

The Power Electronics card holds all the active switches, their current drivers, the capac-
itors and the inductor. They are highlighted in figure figure B.14.

Figure B.14: The power electronics card

The information issued from the analysis performed in chapter 3 were used to design
this card. Its design rules are defined using the characteristics from the test bench. They
are summed up in table B.2.

The passive components of the equalizer power electronics circuit can be sized based
on these design rules, equations 3.31 and 3.33 in page 77. Their values depend on the
switching strategy. To calculate them, the BSS presented in chapter 3 will be used as a
reference, giving table B.3.
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Table B.2: Equalizer design rules

Design variable
Desired

value
Explanation

Inductor current ripple
(∆iL)

1A

It has a low impact in power
production, making this value

acceptable

Capacitor voltage
ripple (∆VC)

50mV

It has a hight impact in power
production, making a strict control

of its value necessary

Working frequency (f) 100kHz
Compatible with current

commercial micro-controllers

Functions available All
The equalizer must be capable of

using any of its function, switching
sequences and duty cycles

Shading factors All
The equalizer must be capable of

addressing any shading factor

Table B.3: Value of the components for the equalizer mode

Switching Sequence L(µH) Max iL C(µF )

BSS

II.III.IV → I 65.60 5.00 187.50
III.IV → II 58.30 5.00 222.20

IV → I 43.75 5.00 250.00
II.III → I.II 87.50 5.00 250.00
IV → II.III 58.30 5.00 222.20

I → II.III.IV 65.60 5.00 187.50

Universal
All → III 70.00 6.25 800.00

All → II.III 116.70 7.50 666.60
All → I.II.III 150.00 8.70 571.40

CSS
II.III → I II.III → IV 60.00 5.00 250.00
I → II.III IV → II.III 60.00 5.00 250.00
I → II I → III I → IV 60.00 5.00 250.00

The active components must be able to withstand, during certain BSS, to the voltage
of all four PV groups together or ±VOC . Their current is the same that flows through
the inductor. Thus, the values used to choose the components are described in table B.4.
They represent a compromise between the volume of the components and the equalizer
performance during BSS and CSS.

Table B.4: Chosen values for the components

Variable Chosen value

Inductance 100µH

Max iL, iMOSF ET and idiode 5A

Capacitance 220µF

Active component voltage ±60V
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Table B.6: The values of the active components imperfections

Component Variable Value Unit

Diode
Diode threshold voltage (Vth) (1 + 0.1 · iL) · 0.55 V

Diode recovery time (trr) 25 ns

Diode recovery current (irrm) iF + 2 A

P-MOS
Transistor rise time (tPr) 55 ns

Transistor fall time (tPf ) 41 ns

Transistor Transistor ON resistance (RPdsON ) 100 mΩ

N-MOS
Transistor rise time (tNr) 27 ns

Transistor fall time (tNf ) 25 ns

Transistor Transistor ON resistance (RNdsON ) 110 mΩ

The inductor was built using the ferrite core ETD29-3C90 and single copper wire with
a width of 1.25 mm2. Its series resistance (RS) is low due to the combination of a reduced
number of turns and a large wire section. The final result are a 20 turns and a 0.18 mm
air gap. Its characteristics were measured with an Aglient 4294A Precision Impedance
Analyzer and are given in table B.5.

Table B.5: Inductor characteristics

Inductance (L) Resistance (RL)
100µH 20mΩ

The ceramic capacitors with a rated capacitance of 22µF each were combined to reach
the needed capacitance. Their performance for higher frequencies is poor and a total of
20 capacitors were needed.

The active components chosen were the fast diodes BYW29F, the P-MOS IRF9Z34N
and the N-MOS IRFI530N. The two types of mosfet were used due to the position of the
diodes. Two switching legs with their specific transistors and diodes are shown in figure
B.15.

D4  

T4  

D3  

T3  

Figure B.15: The real switching leg

Their ratings are given in table B.6.
The expression for the diode losses were derived from its datasheet.

B.3.6 Interconnection Card

This card, shown in figure B.16, allows all the others to communicate among themselves.
It is composed of a total of 6 64-pin connectors with all their pins connected in parallel.
Thus, the other cards can be connected in any order.
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Figure B.16: The interconnection card

Figure B.17 shows all cards plugged into the the interconnection card.

Figure B.17: All cards connected to the interconnection card

The total system, once all the elements are connected among themselves is shown in
figure B.18.
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Figure B.18: The PV prototype



Appendix C

Quasi-exhaustive simulation

results

This appendix details the results of the quasi-exhaustive simulation conducted in chapter
4. It shows all the switching strategies studied for each shadow case, their efficiency and
output power. The shadow scenarios are recalled in table C.1.

The efficiency of each switching strategy is calculated according to equation C.1.

η =
PP roduced

∑n
i=1(SFi · Piunshaded

)
(C.1)

Table C.1: The shading factors of the shadow scenarios

Block Case
Shading factor

Description Objective
PVI PVII PVIII PVIV

1

1 0 0 0 0.8
One cell group is
shaded. Only one
SF.

Determine the
effectiveness of BSS or
CSS against local and
small shadows.

2 0 0 0 0.5
3 0 0 0 0.2
4 0 0 0.8 0
5 0 0 0.2 0

2

6 0.8 0 0.8 0.8 Two or three cell
groups are
shaded. Only one
SF.

Study how the
effectiveness of the BSS
and CSS change with
the shadow shape.

7 0 0.8 0.8 0
8 0 0.8 0.8 0.8
9 0.8 0 0 0.8

3

10 0 0 0.8 0.2
Two or three cell
groups are
shaded. Different
SFs.

Study the effectiveness
of BSS and CSS against
the shadow shape and
SF at the same time.

11 0 0.2 0.5 0.8
12 0 0 0.2 0.5
13 0 0.5 0.5 0.8
14 0 0.2 0 0.8
15 0 0.2 0.5 0

4

16 0.2 0.5 0.8 0.8
All four cell
groups are
shaded. Different
SFs.

Study if mildly shaded
cell groups can be used
to equalize heavily
shaded ones.

17 0.2 0.2 0.5 0.5
18 0.2 0.5 0.2 0.5
19 0.2 0.5 0.8 0.5
20 0.2 0.2 0.5 0.8

219
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To estimate the sum in the denominator, four reference simulations were made where
all the cell groups were shaded with the same SF. Their results, shown in table C.2, will
be used as the reference power for this study.

Table C.2: The reference ratings of the PV module

SF Pgroup(W ) igroup(A) Vgroup(V )

0.0 34.25 4.48 7.64
0.2 27.35 3.58 7.64
0.5 16.8 2.2 7.64
0.8 6.36 0.89 7.15

The switching strategies are shown per scenario, as some were studied into more detail
than others. Their power

C.1 First Block

Table C.3: The switching sequences used in the shadow case 1

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

1 [0 0 0 0.8]
109.3 106.3 0.99 I.II.III → IV − −

109.3 101.7 0.98 All → IV − −

109.3 89.2 0.82 I.II.III → All − −

Table C.4: The switching sequences used in the shadow case 2

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

2 [0 0 0 0.5]
0.99 0.97 0.99 I.II.III → IV − −

0.96 0.97 0.99 All → IV − −

Table C.5: The switching sequences used in the shadow case 3

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

3 [0 0 0 0.2]
0.99 0.97 0.99 I.II.III → IV − −

0.97 0.97 0.99 All → IV − −
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Table C.6: The switching sequences used in the shadow case 4

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

4 [0 0 0.8 0]

109.31 98.93 0.91 All → III − −

109.31 98.67 0.90 I.II → III − −

109.31 97.82 0.89 I.II → III IV → III −

109.31 94.06 0.86 I.II → III IV → III IV → III

109.31 93.68 0.86 I.II.III → III − −

109.31 93.13 0.85 I → III II → III IV → III

109.31 83.00 0.76 I → III − −

109.31 77.25 0.71 I.II → III.IV − −

109.31 64.74 0.64 All → All − −

Table C.7: The switching sequences used in the shadow case 5

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

5 [0 0 0.2 0]

130.27 129.6 0.99 All → III − −

130.27 129.5 0.99 I.II → III IV → III −

130.27 129.3 0.99 I.II → III − −

130.27 129.2 0.99 I → III II → III I → III

130.27 129 0.99 I.II → III IV → III IV → III

130.27 129.2 0.99 I.II.III → III − −

130.27 127.3 0.98 I → III − −

130.27 125.7 0.96 I.II → III.IV − −

130.27 117 0.90 All → All − −

C.2 Second Block

Table C.8: The switching sequences used in the shadow case 6

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

6 [0.8 0 0.8 0.8]

53.57 43.82 0.82 II → All − −

53.57 41.41 0.77 II → I II → III.IV −

53.57 40.44 0.75 II → I II → III II → IV

53.57 27.17 0.51 All → All − −
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Table C.9: The switching sequences used in the shadow case 7

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

7 [0 0.8 0.8 0]

81.44 65.16 0.80 I → II.III IV → II.III −

81.44 65.13 0.80 All → II.III − −

81.44 59.36 0.73 I → II.III − −

81.44 55.26 0.68 I.II → II.III III.IV → II.III −

81.44 55.21 0.68 I → II IV → III −

81.44 48.04 0.59 All → II All → III −

81.44 47.87 0.59 I.II.III → II.III II.III.IV → II.III −

81.44 43.15 0.53 I.II → II III.IV → III −

81.44 43.03 0.53 I.II → III III.IV → II −

81.44 28.94 0.36 I → II II → III −

Table C.10: The switching sequences used in the shadow case 8

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

8 [0 0.8 0.8 0.8]

53.57 44.00 0.82 I → All − −

53.57 40.81 0.76 All → II.III.IV − −

53.57 40.44 0.75 I → II.III.IV − −

53.57 40.08 0.75 I → II I → III I → IV

53.57 30.33 0.57 All → II All → III All → IV

53.57 27.29 0.51 All → All − −

Table C.11: The switching sequences used in the shadow case 9

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

9 [0 0.8 0.8 0]

81.44 68.9 0.85 II.III → I II.III → IV −

81.44 68.64 0.84 II.III → All − −

81.44 66.46 0.82 I.II.III → I II.III.IV → IV −

81.44 62.16 0.76 II → I III → IV II.III → All

81.44 58.39 0.72 II → I III → IV −

81.44 52.74 0.65 All → I All → IV −

81.44 46.72 0.57 II → I III → IV All → All

81.44 28.63 0.35 All → All − −
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C.3 Third Block

Table C.12: The switching sequences used in the shadow case 10

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

10 [0 0 0.8 0.2]

102.4 95.48 0.93 I.II → III − −

102.4 91.96 0.90 I.II.III → III − −

102.4 90.55 0.88 All → III − −

102.4 80.93 0.79 I.II → III I.II → IV I.II → IV

102.4 71.24 0.70 IV → III − −

102.4 69.82 0.68 I → III II → III I → IV

102.4 69.81 0.68 I → III II → III II → IV

102.4 68.98 0.67 All → III.IV − −

102.4 67.39 0.66 I.II → III I.II → IV −

102.4 57.09 0.56 I → III II → IV −

102.4 45.36 0.44 I.II.III → III.IV − −

Table C.13: The switching sequences used in the shadow case 11

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

11 [0 0.2 0.5 0.8]

84.99 78.35 0.92 I.II.III → III.IV − −

84.99 72.72 0.86 I.II → IV − −

84.99 71.88 0.85 I → IV − −

84.99 71.86 0.85 I.II.III → II.III.IV − −

84.99 69.48 0.82 I.II → III.IV − −

84.99 67.51 0.79 I.II → II.III.IV − −

84.99 64.24 0.76 All → III.IV − −

84.99 63.11 0.74 I.II.III → II I.II.III → III I.II.III → IV

84.99 61.56 0.72 All → IV − −

84.99 61.47 0.72 I → IV II → IV III → IV

84.99 60.28 0.71 I → III.IV − −

84.99 59.84 0.70 I.II.III → IV − −

84.99 54.80 0.64 I → IV II → III −

84.99 51.30 0.60 I.II → II I.II → III I.II → IV

84.99 43.50 0.51 I → II.III.IV − −

84.99 42.70 0.50 All → II.III.IV − −

84.99 41.89 0.49 I → II I → III I → IV

84.99 31.94 0.38 All → II All → III All → IV

Table C.14: The switching sequences used in the shadow case 12
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Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

12 [0 0 0.2 0.5]

112.85 110.6 0.98 I.II → IV − −

112.85 109.2 0.97 I.II.III → III.IV − −

112.85 104.6 0.93 I → IV − −

112.85 104.4 0.93 All → IV − −

112.85 102.9 0.91 I.II.III → IV − −

112.85 102 0.90 I.II → III.IV − −

112.85 98.21 0.87 All → III.IV − −

112.85 97.44 0.86 I.II → III I.II → IV −

112.85 87.61 0.78 All → III All → IV −

112.85 91.8 0.81 I → IV II → III −

Table C.15: The switching sequences used in the shadow case 13

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

13 [0 0.5 0.5 0.8]

74.47 68.26 0.92 I → IV − −

74.47 68.24 0.92 I.II.III → II.III.IV − −

74.47 64.64 0.87 I.II.III → II.III I.II.III → IV −

74.47 61.52 0.83 I → IV I → IV II → III

74.47 59.72 0.80 All → IV − −

74.47 58.86 0.79 I.II.III → IV − −

74.47 56.09 0.75 II.III → IV − −

74.47 52.38 0.70 I.II → II.III I → IV −

74.47 51.84 0.70 I → II.III − I → IV

74.47 51.77 0.70 I → IV I → II.III −

74.47 50.42 0.68 I.II → III.IV − −

74.47 43.47 0.58 I → II.III.IV − −

74.47 42.22 0.57 All → II.III.IV − −

74.47 40.52 0.54 All → II.III All → IV −

Table C.16: The switching sequences used in the shadow case 14

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

14 [0 0.2 0 0.8]

112.85 104.3 0.92 All → IV − −

112.85 103.1 0.91 I.II.III → IV − −

112.85 102.7 0.91 I.II.III → IV − −

112.85 100.2 0.89 I.II.III → II III → IV I → IV

112.85 99.57 0.88 I → II III → IV III → IV

112.85 99.3 0.88 I → II III → IV −

112.85 92.02 0.82 I → II − −

112.85 87.93 0.78 All → II All → IV −

112.85 83.16 0.74 All → II.III.IV − −
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Table C.17: The switching sequences used in the shadow case 15

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

15 [0 0.2 0.5 0]

112.85 107.5 0.95 I → III IV → III −

112.85 104.2 0.92 All → III − −

112.85 103.6 0.92 I.II → II.III IV → II.III −

112.85 103 0.91 I → III I.II → III.IV IV → III

112.85 101.1 0.90 I.II → III − −

112.85 96.62 0.86 All → II.III − −

112.85 86.79 0.77 All → III All → II −

C.4 Fourth Block

Table C.18: The switching sequences used in the shadow case 16

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

16 [0 0.5 0.8 0.8]

57.12 53.38 0.93 I.II → II.III.IV − −

57.12 51.77 0.91 I → III.IV − −

57.12 51.16 0.90 I.II → II I.II → III.IV I.II → III.IV

57.12 48.57 0.85 I.II → III.IV − −

57.12 48.4 0.85 All → III.IV − −

57.12 48.21 0.84 I.II → III I.II → IV −

57.12 47.76 0.84 I → III I → IV −

57.12 45.6 0.80 I.II → II I.II → III I.II → IV

57.12 43.43 0.76 I → II I → III.IV I → III.IV

57.12 42.98 0.75 All → III All → IV −

57.12 40.41 0.71 All → II.III.IV − −

57.12 39.52 0.69 I → II.III.IV − −

57.12 39.12 0.68 I → II I → III I → IV

57.12 39.07 0.68 All → III All → III.IV All → III.IV

57.12 31.09 0.54 All → II All → III All → IV

Table C.19: The switching sequences used in the shadow case 17

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

17 [0.2 0.2 0.5 0.5]

88.53 88.07 0.99 I.II → III.IV − −

88.53 86.79 0.98 All → III.IV − −

88.53 86.55 0.98 I.II → III I.II → IV −

88.53 86.47 0.98 I → III II → IV I.II → III.IV

88.53 86.25 0.97 I → III.IV II → III.IV −

88.53 84.30 0.95 I → III II → IV −

88.53 83.46 0.94 I → III.IV − −

88.53 82.29 0.93 I → III I → IV −

88.53 82.22 0.93 All → III All → IV −

88.53 81.22 0.92 II.III.IV → III.IV − −

88.53 80.98 0.91 I.II.III → III.IV − −

88.53 73.06 0.83 I.II → III − −

88.53 73.05 0.83 I.II.III → III − −
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Table C.20: The switching sequences used in the shadow case 18

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

18 [0.2 0.5 0.2 0.5]

88.53 84.30 0.95 I → II III → IV −

88.53 82.29 0.93 I → II I → IV −

88.53 82.23 0.93 All → II All → IV −

88.53 80.37 0.91 I.II.III → IV I.II.III → IV −

88.53 80.19 0.91 I.II → II III.IV → IV −

88.53 80.19 0.91 I.II → IV III.IV → II −

88.53 69.45 0.78 I.II.III → IV − −

Table C.21: The switching sequences used in the shadow case 19

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

19 [0.2 0.5 0.8 0.5]

67.57 63.80 0.94 I → III − −

67.57 58.98 0.87 All → III − −

67.57 57.89 0.86 I.II → III IV → III −

67.57 57.41 0.85 I.II → III − −

67.57 55.98 0.83 I.II.III → III − −

67.57 50.14 0.74 I.II → III.IV − −

67.57 40.99 0.61 All → II.III.IV − −

67.57 40.40 0.60 I → II.III.IV − −

67.57 40.01 0.59 I → II I → III I → IV

67.57 30.46 0.45 All → II All → III All → IV

Table C.22: The switching sequences used in the shadow case 20

Case
Shading

Ptheo Pprod η
Switching Strategies

Factor 1st 2nd 3rd

20 [0.2 0.2 0.5 0.8]

78.08 74.49 0.95 I.II.III → III.IV − −

78.08 72.13 0.92 I.II → IV − −

78.08 67.69 0.87 I → IV − −

78.08 65.92 0.84 I.II → III.IV − −

78.08 61.47 0.79 All → IV − −

78.08 60.99 0.78 All → III.IV − −

78.08 60.04 0.77 I.II → III I.II → IV −

78.08 59.80 0.77 I.II.III → IV − −

78.08 52.84 0.68 I → IV II → III −

78.08 47.53 0.61 All → III All → IV −



Appendix D

Details of the robustness surface

calculation

This appendix gives the details for the calculation of the robustness shown in chapter 2.
It is based on the sum of the power lost by all the shaded cell groups and its comparison
with the maximum robustness.

First, the power lost will be estimated through the use of figure D.1. It shows the power
as a function of the number of shaded cells or cell groups. The objective is to describe an
expression for the red triangle. The variable P means power, ngSH means the number of
groups actually shaded, ncpg means the number of cells per group, h means the height, b
means the bas.

Number of shaded cells
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Figure D.1: The power lost due to one group

The surface determined by the red triangle is given by equation D.1. It represents the
robustness lost due to the shading of a single cell group, being called Roblostg.

Roblostg =
b · h

2
(D.1)

The expression of the base and the height are given by equations D.2 and D.3.
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b = (ngSH + 1) · ncpg − ngSH · ncpg (D.2)

h = P (ngSH − 1) − P (ngSH) (D.3)

By replacing the two equations above into equation D.1 gives:

Roblostg =
ncpg · (P (ngSH − 1) − P (ngSH))

2
(D.4)

The expression of the power as a function of the number of shaded cell groups was
given in 2 and is recalled below.

P (ngSH) = ncpg · (ngtot · PUSH + ngSH · (PSH − PUSH)) (D.5)

By replacing equation D.5 into equation D.4 and rearranging gives:

Roblostg =
n2

cpg · (PUSH − PSH)
2

(D.6)

Equation D.6 gives the power lost by one cell group. It can be used to calculate the
total robustness of a PV plant only if this power is multiplied by the number of cell groups.

The maximum robustness was defined in chapter 2 and its expression is recalled in
equation D.7.

RobMAX = n2

tot ·
(PUSH + PSH)

2
(D.7)

To determine the robustness of the PV plant, the robustness lost by its cell groups
must be subtracted from the maximum robustness, giving equation D.8.

Rob = RobMAX − Roblost (D.8)

The total robustness lost is the sum of all the contributions from each cell group,
yielding equation D.9. In it, ngtot represents the total number of cell groups in the PV
plant.

Rob = RobMAX −

ngtot
∑

1

Roblostg (D.9)

Since the expression of the robustness lost by one group does not depend on the total
number of cell groups, equation D.9 is equivalent to:

Rob = RobMAX − ngtot · Roblostg (D.10)

By replacing equation D.6 into equation D.10 gives:

Rob = RobMAX −
ngtot · n2

cpg · (PUSH − PSH)
2

(D.11)

Dividing both sides of equation D.11 by RobMAX and gives:

Rob

RobMAX

= 1 −
ngtot · n2

cpg · (PUSH − PSH)
RobMAX · 2

(D.12)

Using the definition of the maximum robustness into equation D.12 gives:
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Rob

RobMAX

= 1 −
ngtot · n2

cpg · (PUSH − PSH) · 2

n2
tot · (PUSH + PSH) · 2

(D.13)

Considering that the relation between ntot, ngtot and ncpg is given by equation D.14.

ntot = ngtot · ncpg (D.14)

Equation D.13 can be simplified to:

Rob

RobMAX

= 1 −

(

ncpg · (PUSH − PSH)
ntot · (PUSH + PSH)

)

(D.15)

This results is the definition of the robustness for PV systems.
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