R. B. Gordon, M. Bertram, T. E. Graedel, V. Artero, V. De-berardinis et al., Biochemical Laboratory, HO1-[Co{(DO)(DOH)pn}Cl 2 ] REFERENCES BIBLIOGRAPHIQUES Références bibliographiques Références bibliographiques Proc. Natl. Acad. Sci. USA 2006 Proc. Natl. Acad. Sci. USA 200916) INERIS Fiche de données toxicologiques et environnementales des substances chimiques 2011 Liese, A, pp.1209-1214, 1906.

G. Fauque, I. Moura, P. A. Lespinat, Y. Berlier, B. Prickril et al., (39) Fontecilla-Camps, Proc. Natl. Acad. Sci. USA 2011, pp.47-58, 1986.

B. H. Solis and S. Hammes-schiffer, Substituent Effects on Cobalt Diglyoxime Catalysts for Hydrogen Evolution, Journal of the American Chemical Society, vol.133, issue.47, pp.19036-19039, 2005.
DOI : 10.1021/ja208091e

X. L. Hu, B. S. Brunschwig, J. C. Peters, B. H. Solis, and S. Hammes-schiffer, Electrocatalytic Hydrogen Evolution at Low Overpotentials by Cobalt Macrocyclic Glyoxime and Tetraimine Complexes, Journal of the American Chemical Society, vol.129, issue.29, pp.8988-8998, 2007.
DOI : 10.1021/ja067876b

P. Molenveld, W. M. Stikvoort, H. Kooijman, A. L. Spek, J. F. Engbersen et al., Dinuclear and Trinuclear Zn(II) Calix[4]arene Complexes as Models for Hydrolytic Metallo-Enzymes. Synthesis and Catalytic Activity in Phosphate Diester Transesterification, The Journal of Organic Chemistry, vol.64, issue.11, pp.3896-3906, 1999.
DOI : 10.1021/jo982201f

V. Bohmer, Calixarenes, Macrocycles with(Almost) Unlimited Possibilities, Angewandte Chemie International Edition in English, vol.34, issue.7, pp.713-745, 1995.
DOI : 10.1002/anie.199507131

S. Shinkai, T. Yamashita, Y. Kusano, and O. Manabe, Coenzyme models. 26. Facile oxidation of aldehydes and .alpha.-keto acids by flavin as catalyzed by thiazolium ion and cationic micelle, The Journal of Organic Chemistry, vol.45, issue.24, pp.4947-4952, 1980.
DOI : 10.1021/jo01312a024

Y. Murakami, J. Kikuchi, Y. Hisaeda, and O. Hayashida, Artificial Enzymes, Chemical Reviews, vol.96, issue.2, pp.721-758, 1989.
DOI : 10.1021/cr9403704

A. Pordea, M. Creus, C. Letondor, A. Ivanova, and T. R. Ward, Improving the enantioselectivity of artificial transfer hydrogenases based on the biotin???streptavidin technology by combinations of point mutations, Inorganica Chimica Acta, vol.363, issue.3, pp.601-604, 2010.
DOI : 10.1016/j.ica.2009.02.001

C. Letondor, A. Pordea, N. Humbert, A. Ivanova, S. Mazurek et al., Artificial Transfer Hydrogenases Based on the Biotin???(Strept)avidin Technology:?? Fine Tuning the Selectivity by Saturation Mutagenesis of the Host Protein, Journal of the American Chemical Society, vol.128, issue.25, pp.8320-8328, 2006.
DOI : 10.1021/ja061580o

A. Pordea, M. Creus, C. Letondor, A. Ivanova, and T. R. Ward, Improving the enantioselectivity of artificial transfer hydrogenases based on the biotin???streptavidin technology by combinations of point mutations, Inorganica Chimica Acta, vol.363, issue.3, pp.601-604
DOI : 10.1016/j.ica.2009.02.001

C. Lo, M. R. Ringenberg, D. Gnandt, Y. Wilson, and T. R. Ward, Artificial metalloenzymes for olefin metathesis based on the biotin-(strept)avidin technology, Chemical Communications, vol.81, issue.44, pp.12065-12067
DOI : 10.1039/c1cc15004a

M. V. Cherrier, E. Girgenti, P. Amara, M. Iannello, C. Marchi-delapierre et al., The structure of the periplasmic nickel-binding protein NikA provides insights for artificial metalloenzyme design, JBIC Journal of Biological Inorganic Chemistry, vol.38, issue.5, pp.817-829
DOI : 10.1007/s00775-012-0899-7

URL : https://hal.archives-ouvertes.fr/hal-01062724

R. Ricoux, R. Dubuc, C. Dupont, J. Marechal, A. Martin et al., Xylanase A and Iron(III)-Carboxy-Substituted Porphyrins, Bioconjugate Chemistry, vol.19, issue.4, pp.899-910, 2008.
DOI : 10.1021/bc700435a

J. J. Woodward, N. I. Martin, and M. A. Marletta, An Escherichia coli expression???based method for heme substitution, Nature Methods, vol.252, issue.1, pp.43-45, 2007.
DOI : 10.1046/j.1365-2958.1999.01175.x

T. B. Pinter, E. L. Dodd, D. S. Bohle, M. J. Stillman, S. Abe et al., Spectroscopic and Theoretical Studies of Ga(III)protoporphyrin-IX and Its Reactions with Myoglobin, Inorganic Chemistry, vol.51, issue.6, pp.3743-3753, 2007.
DOI : 10.1021/ic202731g

P. Haquette, B. Dumat, B. Talbi, S. Arbabi, J. Renaud et al., Synthesis of N-functionalized 2,2???-dipyridylamine ligands, complexation to ruthenium (II) and anchoring of complexes to papain from papaya latex, Journal of Organometallic Chemistry, vol.694, issue.6, pp.937-941, 2009.
DOI : 10.1016/j.jorganchem.2008.11.052

URL : https://hal.archives-ouvertes.fr/hal-00376082

N. Madern, B. Talbi, M. Salmain, A. Onoda, and T. Hayashi, Aqueous phase transfer hydrogenation of aryl ketones catalysed by achiral ruthenium(II) and rhodium(III) complexes and their papain conjugates, Applied Organometallic Chemistry, vol.280, issue.1, pp.6-12, 2011.
DOI : 10.1002/aoc.2929

J. C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff et al., A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis, Nature, vol.178, issue.4610, pp.662-666, 1958.
DOI : 10.1002/hlca.19490320118

Y. Watanabe, H. Nakajima, and T. Ueno, Reactivities of Oxo and Peroxo Intermediates Studied by Hemoprotein Mutants, Accounts of Chemical Research, vol.40, issue.7, pp.554-562, 2007.
DOI : 10.1021/ar600046a

J. A. Sigman, B. C. Kwok, and Y. Lu, Center into Sperm Whale Myoglobin, Journal of the American Chemical Society, vol.122, issue.34, pp.8192-8196, 2000.
DOI : 10.1021/ja0015343

H. Sato, M. Watanabe, Y. Hisaeda, T. Hayashi, and T. Hayashi, Unusual Ligand Discrimination by a Myoglobin Reconstituted with a Hydrophobic Domain-Linked Heme, Journal of the American Chemical Society, vol.127, issue.1, pp.56-57, 2004.
DOI : 10.1021/ja044984u

H. Sato, T. Hayashi, T. Ando, Y. Hisaeda, and Y. Watanabe, Hybridization of Modified-Heme Reconstitution and Distal Histidine Mutation to Functionalize Sperm Whale Myoglobin, Journal of the American Chemical Society, vol.126, issue.2, pp.436-437, 2004.
DOI : 10.1021/ja038798k

M. Ohashi, T. Koshiyama, H. Fujii, and Y. Watanabe, Preparation of Artificial Metalloenzymes by Insertion of Chromium(III) Schiff Base Complexes into Apomyoglobin Mutants, Angewandte Chemie International Edition, vol.42, issue.9, p.1005, 2003.
DOI : 10.1002/anie.200390256

S. Abe, T. Ueno, P. A. Reddy, S. Okazaki, T. Hikage et al., -Myoglobin Scaffold, Inorganic Chemistry, vol.46, issue.13, pp.5137-5139, 2007.
DOI : 10.1021/ic070289m

URL : https://hal.archives-ouvertes.fr/in2p3-00459284

F. Ascoli, M. R. Fanelli, and E. Antonini, [5] Preparation and properties of apohemoglobin and reconstituted hemoglobins, Methods Enzymol, vol.76, pp.72-87, 1981.
DOI : 10.1016/0076-6879(81)76115-9

M. Jamin and R. L. Baldwin, Two forms of the pH 4 folding intermediate of apomyoglobin, Journal of Molecular Biology, vol.276, issue.2, pp.491-504, 1998.
DOI : 10.1006/jmbi.1997.1543

Y. Omata, S. Asada, H. Sakamoto, K. Fukuyama, and M. Noguchi, Crystallization and preliminary X-ray diffraction studies on the water soluble form of rat heme oxygenase-1 in complex with heme, Acta Crystallographica Section D Biological Crystallography, vol.54, issue.5, pp.1017-1019, 1998.
DOI : 10.1107/S0907444998003448

S. Hirotsu, G. C. Chu, M. Unno, D. S. Lee, T. Yoshida et al., The Crystal Structures of the Ferric and Ferrous Forms of the Heme Complex of HmuO, a Heme Oxygenase of Corynebacterium diphtheriae, Journal of Biological Chemistry, vol.279, issue.12, pp.11937-11947, 2004.
DOI : 10.1074/jbc.M311631200

T. Dartigalongue, C. Niezborala, and F. Hache, Subpicosecond UV spectroscopy of carbonmonoxy-myoglobin: absorption and circular dichroism studies, Physical Chemistry Chemical Physics, vol.415, issue.13, pp.1611-1615, 2007.
DOI : 10.1039/b616173a

URL : https://hal.archives-ouvertes.fr/hal-00824060

. Schrauze, . Gn, L. P. Lee, J. W. Sibert, Q. Raffy et al., Alkylcobalamins and alkylcobaloximes. Electronic structure, spectra, and mechanism of photodealkylation, Journal of the American Chemical Society, vol.92, issue.10, pp.2997-3016, 1970.
DOI : 10.1021/ja00713a012

S. Y. Bi, L. Ding, Y. Tian, D. Q. Song, X. Zhou et al., Investigation of the interaction between flavonoids and human serum albumin, Journal of Molecular Structure, vol.703, issue.1-3, pp.37-45, 2004.
DOI : 10.1016/j.molstruc.2004.05.026

R. Jaiswal, M. A. Khan, and . Musarrat, Photosensitized paraquat-induced structural alterations and free radical mediated fragmentation of serum albumin, Journal of Photochemistry and Photobiology B: Biology, vol.67, issue.3, pp.163-170, 2002.
DOI : 10.1016/S1011-1344(02)00321-4

J. Niklas, K. L. Mardis, R. R. Rakhimov, K. L. Mulfort, D. M. Tiede et al., The Hydrogen Catalyst Cobaloxime: A Multifrequency EPR and DFT Study of Cobaloxime???s Electronic Structure, The Journal of Physical Chemistry B, vol.116, issue.9, pp.2943-2957, 2012.
DOI : 10.1021/jp209395n

A. Bakac, M. E. Brynildson, J. H. Espenson, and L. P. Lee, Characterization of the structure, properties, and reactivity of a cobalt(II) macrocyclic complex, Inorganic Chemistry, vol.25, issue.23, pp.4108-4114, 1970.
DOI : 10.1021/ic00243a012

R. D. Jones, D. A. Summerville, and F. Basolo, Synthetic oxygen carriers related to biological systems, Chemical Reviews, vol.79, issue.2, pp.139-179, 1979.
DOI : 10.1021/cr60318a002

K. A. Lance, K. A. Goldsby, and D. H. Busch, Effective new cobalt(II) dioxygen carriers derived from dimethylglyoxime by the replacement of the linking protons with difluoroboron(1+), Inorganic Chemistry, vol.29, issue.22, pp.4537-4544, 1990.
DOI : 10.1021/ic00347a041

A. Adin and J. H. Espenson, Kinetics of some oxidation reactions of diaquocob(II)aloxime, Inorganic Chemistry, vol.11, issue.4, pp.686-688, 1972.
DOI : 10.1021/ic50110a004

H. W. Hwang, J. R. Lee, K. Y. Chou, C. S. Suen, M. J. Hwang et al., Oligomerization Is Crucial for the Stability and Function of Heme Oxygenase-1 in the Endoplasmic Reticulum, Journal of Biological Chemistry, vol.284, issue.34, pp.22672-22679, 2009.
DOI : 10.1074/jbc.M109.028001

T. Uzawa, T. Kimura, K. Ishimori, I. Morishima, T. Matsui et al., Time-resolved Small-angle X-ray Scattering Investigation of the Folding Dynamics of Heme Oxygenase: Implication of the Scaling Relationship for the Submillisecond Intermediates of Protein Folding, Journal of Molecular Biology, vol.357, issue.3, pp.997-1008, 2006.
DOI : 10.1016/j.jmb.2005.12.089

Z. N. Zahran, L. Chooback, D. M. Copeland, A. H. West, and G. B. Richter-addo, Crystal structures of manganese- and cobalt-substituted myoglobin in complex with NO and nitrite reveal unusual ligand conformations, Journal of Inorganic Biochemistry, vol.102, issue.2, pp.216-233, 2008.
DOI : 10.1016/j.jinorgbio.2007.08.002

T. Hayashi, D. Murata, M. Makino, H. Sugimoto, T. Matsuo et al., Crystal Structure and Peroxidase Activity of Myoglobin Reconstituted with Iron Porphycene, Inorganic Chemistry, vol.45, issue.26, pp.10530-10536, 2006.
DOI : 10.1021/ic061130x

T. Ueno, M. Ohashi, M. Kono, K. Kondo, A. Suzuki et al., (Schiff-Base) by Mutation of Ala71 to Gly in Apo-Myoglobin, Inorganic Chemistry, vol.43, issue.9, pp.2852-2858, 2004.
DOI : 10.1021/ic0498539

X. Y. Yang, G. Tian, N. Jiang, B. L. Su, M. Pandelia et al., Immobilization technology: a sustainable solution for biofuel cell design, Energy Environ. Sci., vol.2, issue.2, pp.5540-5563, 0199.
DOI : 10.1039/C1EE02391H

S. A. Kumar, S. F. Wang, Y. T. Chang, H. C. Lu, and C. Yeh, Electrochemical properties of myoglobin deposited on multi-walled carbon nanotube/ciprofloxacin film, Colloids and Surfaces B: Biointerfaces, vol.82, issue.2, pp.526-531, 2011.
DOI : 10.1016/j.colsurfb.2010.10.011

H. J. Duchstein, H. Fenner, P. Hemmerich, and W. R. Knappe, (Photo)chemistry of 5-Deazaflavin. A Clue to the Mechanism of Flavin-Dependent (De)hydrogenation, European Journal of Biochemistry, vol.25, issue.1, pp.167-181, 1979.
DOI : 10.1016/0005-2728(68)90119-9

C. E. Lubner, R. Grimme, D. A. Bryant, and J. H. Golbeck, Wiring Photosystem I for Direct Solar Hydrogen Production, Biochemistry, vol.49, issue.3, pp.404-414, 2010.
DOI : 10.1021/bi901704v