Bose-Einstein condensate in a dressed trap: collective modes in a two-dimensional superfluid

Karina Merloti

Équipe BEC, Laboratoire de Physique des Lasers CNRS-Université Paris 13, Sorbonne Paris Cité

December 11, 2013

Outline

Introduction

- Producing the condensate
 - Experimental sketch
 - Optically plugged quadrupole trap
- Producing a quasi-2D gas
 - Dressed quadrupole trap
 - Radiofrequency source
 - Quasi-2D regime
 - Collective modes
 - Monopole mode
 - Scissors mode
- 5 Conclusions and prospects

Outline

Introduction

- Producing the condensate
 - Experimental sketch
 - Optically plugged quadrupole trap
- Producing a quasi-2D gas
 - Dressed quadrupole trap
 - Radiofrequency source
 - Quasi-2D regime
- Collective modes
 - Monopole mode
 - Scissors mode
- 5 Conclusions and prospects

Degenerate quantum gases \Rightarrow Bose-Einstein condensate (BEC)

- Thermodynamic phenomenon
- Macroscopic occupation of a single state, due to a saturation of the excited states
- Phase coherence over the sample

- 1924/25 : prediction, Albert Einstein
- 1995 : first realization, Eric Cornell and Carl Wieman

[E. A. Cornell *et al.*, Science **269**, 198 (1995)]

 $1995 \rightarrow 2013$: a lot of achievements !

Superfluidity

[JILA]

 $1995 \rightarrow 2013$: a lot of achievements !

[JILA]

[Munich]

 $1995 \rightarrow 2013$: a lot of achievements !

[JILA]

[Munich]

Quantum gases as a model system

Quantum gases are tunable quantum systems :

- Control of the temperature in the range 10 nK 1 $\mu {\rm K}$
- Possible control of the interaction strength : scattering length a
- Dynamical control of the confinement geometry
- Periodic potentials (optical lattices)
- Low dimensional systems accessible (1D, 2D)
- Several internal states or species available
- Easy optical detection

Toward the realization of quantum simulators

Confining a gas to two dimensions

- Very anisotropic harmonic trap $\omega_z \gg \omega_x, \omega_y$
- Quasi-2D regime : μ , $k_B T \ll \hbar \omega_z$
- Fundamental state size along z : $a_z = \sqrt{\hbar/M\omega_z}$

• Dimensionless coupling constant (no length scale) :

$$ilde{g} = \sqrt{8\pi} rac{a}{a_z}$$

• Scaling invariance : dimensionless thermodynamic properties depend on $\mu/(k_BT)$ and \tilde{g}

The two-dimensional Bose gas

2D is a very special case!

	ideal	interacting
homogeneous	-	BKT
trapped	BEC	BEC,BKT

- No BEC for a homogeneous ideal 2D gas!
- Berezinskii-Kosterlitz-Thouless transition (BKT) : a superfluid transition for a homogeneous 2D gas with repulsive interaction
- The harmonic trapped ideal gas (frequency ω) :

$$k_B T_c \simeq \hbar \omega N^{1/2}$$

• Superfluidity \neq BEC

Berezinskii-Kosterlitz-Thouless transition

- Superfluidity present in the homogeneous interacting 2D gas below $T_{B {\rm K} {\rm T}}$
- 1972/73 : Description of the microscopic mechanism independently by Berenzinskii and Kosterlitz & Thouless
- The transition relies on vortex-antivortex pairing

• 2006 : first experimental evidence for the microscopic mechanism [Z. Hadzibabic *et al.*, Nature **441**, 1118 (2006)]

Berezinskii-Kosterlitz-Thouless transition

- Increase of the range of coherence around BKT transition
- Peak in the momentum distribution before the BKT transition

[T. Plisson *et al.*, PRA **84**, 061606 (2011)]

Superfluidity and Landau criterion

- Dynamic property depending on the excitation spectrum
- No excitation for $v < v_c$
- Landau criterion for the critical velocity :

$$v_c = \operatorname{Min}\left(rac{E(p)}{p}
ight)$$

 $v_c > 0$ for a spectrum linear around p = 0

- Hydrodynamic behaviour
- Vortices in a rotating gas
- Specific collective modes in a trap

 Direct observation of the superfluid character of a 2D Bose gas

Excitation spectrum in a 2D isotropic trap :

- dipole mode (m = 1), both superfluid and thermal : centre of mass oscillation

Excitation spectrum in a 2D isotropic trap :

- dipole mode (m = 1), both superfluid and thermal : centre of mass oscillation - monopole (m = 0) : superfluid and thermal

Excitation spectrum in a 2D isotropic trap :

- dipole mode (m = 1), both superfluid and thermal : centre of mass oscillation - monopole (m = 0) : superfluid and thermal

Excitation spectrum in a 2D isotropic trap :

- dipole mode (m = 1), both superfluid and thermal : centre of mass oscillation - monopole (m = 0) : superfluid and thermal

- scissors for $\omega_x \neq \omega_y$ superfluid only

My thesis

 Production of a ⁸⁷Rb Bose-Einstein condensate in a optically plugged quadrupole trap

- Trap characterization
- Majorana losses

Iransfer of the condensate into a quadrupole dressed trap

- Trap characterization
- Landau-Zener transitions
- Trap tuning and quasi-2D regime
- Degenerate gas with a superfluid fraction
- Study of low energy collective modes
 - Excitation of collective modes by controlling the radiofrequency field
 - Monopole : dimensionality and third dimension effect
 - Quadrupole and scissors mode : superfluidity

Outline

- Producing the condensate
 - Experimental sketch
 - Optically plugged quadrupole trap
- Producing a quasi-2D gas
 - Dressed quadrupole trap
 - Radiofrequency source
 - Quasi-2D regime
- Collective modes
 - Monopole mode
 - Scissors mode
- 5 Conclusions and prospects

Experimental sketch

$$^{37}\mathsf{Rb}$$
, $|{\it F}=1, m_{\it F}=-1
angle$ state

Experimental sequence :

- Loading the 3D magneto-optical trap
- 2 Transfer to a magnetic trap
- Magnetic transport
- Transfer to a quadrupole optically plugged trap
- Evaporative cooling to quantum degeneracy
- Absorption imaging of the atoms

Sketch of the vacuum chamber and magnetic coils :

In real life

Vacuum chamber and magnetic coils :

In real life

Laser source :

Overview :

Optically plugged quadrupole trap

 $\begin{array}{l} \mbox{Misaligned laser beam} \Rightarrow \\ \mbox{2 asymmetric minima} \end{array}$

Absorption imaging :

Evaporative cooling

- BEC every 45 s
- $\sim 2 \times 10^5$ atomes à 140 nK
- Trap bottom : \sim 300 kHz
- Lifetime : $20 \pm 2 s$

[R. Dubessy, K. Merloti et al., PRA **85**, 013643 (2012)]

Outline

- 2 Producing the condensate
 - Experimental sketch
 - Optically plugged quadrupole trap
- Producing a quasi-2D gas
 - Dressed quadrupole trap
 - Radiofrequency source
 - Quasi-2D regime

Collective modes

- Monopole mode
- Scissors mode
- Conclusions and prospects

Dressed quadrupole trap

The atoms are transferred to a dressed quadrupole trap

- Zeeman states coupled through a radiofrequency field ω_{rf}
- Naturally very anisotropic
- Smooth adiabatic potentials
- Excellent lifetime
- Geometry can be modified dynamically \Rightarrow collective modes

Principle of rf-induced adiabatic potentials

• 2001 : First proposal with rf fields [O. Zobay and B. Garraway, PRL **86**, 1195 (2001)] :

 $\mathbf{B}(\mathbf{r}) + \mathbf{B}_{rf} \cos(\omega_{rf} t)$

inhomogeneous magnetic field + rf field

- Strong coupling regime (large $\Omega_0 \propto B_{rf}$) \Rightarrow avoided crossing at the resonance points
- Atoms trapped at the isomagnetic surface of an inhomogeneous magnetic field set by ω_{rf} :

surface
$$B(\mathbf{r}) = \frac{\hbar}{|g_F|\mu_B} \omega_{rf}$$

Rf-induced adiabatic potentials

2003 : First experimental realization with a rf field

[Y. Colombe *et al.*, Europhys. Lett. **67**, 593 (2004)] Several trap geometries : bubble, double well (atom chip), ring and lattice

[T. Schumm et al., Nat. Phys. 1 57, (2005)]

Rf dressed atom in a quadrupole field

 Atoms trapped at the isomagnetic surface :
 ⇒ Ellipsoid with radius

$$R\propto rac{\omega_{rf}}{b'}$$

Rf dressed atom in a quadrupole field

 Atoms trapped at the isomagnetic surface :
 ⇒ Ellipsoid with radius

$$R\propto rac{\omega_{rf}}{b'}$$

• Control of the temperature : rf knife at $\omega_{rf} + \Omega_0 + x$

Trap potential

Taking account of gravity :

- Trap position : $R \propto \frac{\omega_{rf}}{b'}$
- Frequencies : $\omega_z \propto \frac{b'}{\sqrt{\Omega_0}} \sim 400 \,\text{Hz} - 2 \,\text{kHz}$ $\omega_{x,y} \propto \sqrt{\frac{g}{R}} \sim 20 - 50 \,\text{Hz}$
- Anisotropy $\frac{\omega_x}{\omega_y}$: depends on polarization

[K. Merloti et al., NJP 15, 033007 (2013)]

Rf antennas

- Two squared antennas
- Linear polarization
 - In phase signal
 - Anisotropic trap, $\omega_x \neq \omega_y$
 - The trap axis can be controlled
- Circular polarization
 - Signal in quadrature
 - Equal amplitudes
 - Isotropic trap, $\omega_x = \omega_y$

\Rightarrow Fine control of the trap geometry

Trap potential

Very smooth trap : no damping of the dipole modes in the xy plan !

Oscillation frequencies :

$$\omega_{x} = 24,7 \pm 0,1\, ext{Hz}$$
 $\omega_{y} = 25,3 \pm 0,1\, ext{Hz}$

Home-made synthesizer

- Supplies two rf antennas with the same frequency
- Independent amplitude and phase
- Linear ramps for frequency, amplitude and phase

Quasi-2D regime

 $\mu, \textit{k}_{B}\textit{T} \ll \hbar\omega_{\textit{z}}$

- Temperature : controlled by rf knife
- Chemical potential :

$$\frac{\mu_{3D}}{\hbar\omega_z} \propto \left(\frac{\omega_x^2 \omega_y^2}{\omega_z^3}\right)^{\frac{1}{5}} \propto \left(\frac{\Omega_0^{3/2}}{\omega_{rf}^2 b'}\right)^{\frac{1}{5}}$$

(Thomas-Fermi approximation)

•
$$\omega_z \gg \omega_x, \omega_y$$

• $\downarrow \Omega_0, \uparrow \omega_{rf}, \uparrow b'$

 $b^\prime = 55, 4 \,\mathrm{G\cdot cm^{-1}}$, $\omega_{rf} = 600 \,\mathrm{kHz}$

$$b^\prime=216\,{
m G\cdot cm^{-1}}$$
, $\omega_{rf}=2336\,{
m kHz}$

Quasi-2D regime

- First 2D magnetic trap !
- Oscillation frequencies :

$$\begin{array}{rcl} \omega_r &=& 27\,\mathrm{Hz} \\ \omega_z &=& 1,93\pm0,01\,\mathrm{kHz} \end{array}$$

• Chemical potential, temperature

$$\mu_{2D} = 0,37\hbar\omega_z$$
$$k_BT = 1,2\hbar\omega_z$$

Outline

- 2 Producing the condensate
 - Experimental sketch
 - Optically plugged quadrupole trap
- 3 Producing a quasi-2D gas
 - Dressed quadrupole trap
 - Radiofrequency source
 - Quasi-2D regime

Collective modes

- Monopole mode
- Scissors mode

Monopole mode : a probe of dimensionality

- In phase oscillation of the radii
- Compression mode
 - $\Rightarrow \omega_M$ related to the equation of state $\mu(n)$
- Anisotropic 3D condensate ($\omega_r \ll \omega_z$) :

$$\omega_M^{3D} = \sqrt{\frac{10}{3}}\omega_r$$

Isotropic 2D gas :

$$\omega_M^{2D} = 2\omega_r$$

- No damping
- Linked to scaling invariance
- Quantum anomaly : 0, 2% positive shift of ω_M ⇒ too small to be detected

Excitation of the monopole

- **Circular** polarization \Rightarrow 2D isotropic trap, frequency ω_r
- Very low temperature (no thermal fraction)
- Excitation :
 - Sudden increase of $\omega_{rf} \Rightarrow$ decrease of $\omega_r \ (\sim 15\%)$

Observation of the monopole mode

 $\omega_r = 2\pi imes$ (24, 21 \pm 0, 03) Hz $\omega_M/2\pi =$ (48, 1 \pm 0, 2) Hz

Prediction for a 2D gas : $\omega_M^{2D}/2\pi = (48, 42 \pm 0, 06)$ Hz

Prediction for a **3D condensate** : $\omega_M^{3D}/2\pi = (44, 20 \pm 0, 05)$ Hz

- ω_M close to $2\omega_r \Rightarrow 2D$ gas
- No measurable damping \Rightarrow quality factor > 150

Breakdown of scale invariance

- Finite frequency $\omega_z \Rightarrow$ modified equation of state
- Monopole frequency versus $\alpha_{\mu} = \frac{\mu}{2\hbar\omega_z}$

Negative shift of ω_M, in fair agreement with the prediction

[K. Merloti et al., PRA submitted, arxiv :1311.1028, (2013)]

Scissors mode : a probe of superfluidity

Oscillation of the anisotropic cloud axis Mean frequency : $\omega_0 = \sqrt{\omega_x \omega_y}$

• Superfluid :

$$\omega_{\mathcal{S}} = \sqrt{\omega_x^2 + \omega_y^2}$$

• Classical gas : Harmonic modes similar to scissors mode (collisionless regime) :

$$\omega_{S1} = \omega_x + \omega_y, \omega_{S2} = |\omega_x - \omega_y|$$

• Use the scissors mode as a signature of superfluidity across the BKT transition

Scissors mode versus temperature : state of the art

Exciting the scissors mode

- Linear polarization $\Rightarrow \omega_x \neq \omega_y$
- Anisotropy $\omega_x/\omega_y=1,28\pm0,04$
- Control of the eigenaxes through the two rf antenna amplitudes
- Control of the temperature through rf knife
- Excitation :
 - We exchange the rf amplitudes \Rightarrow sudden rotation of the trap (10° in 0.4 ms)

Observation of the scissors mode

Dressing frequency 1 MHz, Rabi frequency 31,5 kHz

Low temperature :

 $\begin{array}{l} \mathsf{Rf \ knife \ @1.045 \ MHz} \\ = \omega_{rf} + \Omega_0 + 2\pi \times 13,5 \ \mathsf{kHz} \end{array} \end{array}$

Higher temperature

Superfluid and thermal gas

Rf knife @1.057 MHz = $\omega_{rf} + \Omega_0 + 2\pi imes 25,5$ kHz

Thermal gas :

Scissors mode versus temperature

NB : The slow oscillation of the thermal gas is not observable

$$rac{|\omega_{\mathrm{x}}-\omega_{\mathrm{y}}|}{2\pi}\sim$$
 10 Hz

[Article in preparation]

Damping of the scissors mode

- Increase in the damping rate with temperature
- Qualitative understanding (Landau damping)
- No quantitative interpretation

Outline

- 2 Producing the condensate
 - Experimental sketch
 - Optically plugged quadrupole trap
- 3 Producing a quasi-2D gas
 - Dressed quadrupole trap
 - Radiofrequency source
 - Quasi-2D regime
- 4 Collective modes
 - Monopole mode
 - Scissors mode

Fast production of a Bose-Einstein condensate in a optically plugged quadrupole trap
 [R. Dubessy, K. Merloti *et al.*, PRA **85**, 013643 (2012)]

- Fast production of a Bose-Einstein condensate in a optically plugged quadrupole trap [R. Dubessy, K. Merloti *et al.*, PRA **85**, 013643 (2012)]
- Production of a degenerate quasi-2D Bose gas presenting a superfluid phase in a rf dressed trap : tunable geometry and smooth traps for the study of low energy collective modes

[K. Merloti *et al.*, NJP **15**, 033007 (2013)]

- Fast production of a Bose-Einstein condensate in a optically plugged quadrupole trap [R. Dubessy, K. Merloti *et al.*, PRA **85**, 013643 (2012)]
- Production of a degenerate quasi-2D Bose gas presenting a superfluid phase in a rf dressed trap : tunable geometry and smooth traps for the study of low energy collective modes
 [K. Merloti *et al.*, NJP **15**, 033007 (2013)]
- Breakdown of scale invariance in a quasi-2D gas due to the third dimension on the monopole mode
 [K. Merloti *et al.*, PRA submitted, arxiv :1311.1028, (2013)]

- Fast production of a Bose-Einstein condensate in a optically plugged quadrupole trap [R. Dubessy, K. Merloti *et al.*, PRA **85**, 013643 (2012)]
- Production of a degenerate quasi-2D Bose gas presenting a superfluid phase in a rf dressed trap : tunable geometry and smooth traps for the study of low energy collective modes
 [K. Merloti *et al.*, NJP **15**, 033007 (2013)]
- Breakdown of scale invariance in a quasi-2D gas due to the third dimension on the monopole mode
 [K. Merloti *et al.*, PRA submitted, arxiv :1311.1028, (2013)]
- Scissors mode as a signature of superfluidity; damping induced by temperature

Prospects

• Detection of the quantum anomaly effect in the monopole mode

Prospects

- Detection of the quantum anomaly effect in the monopole mode
- BKT transition : superfluid to normal transition through scissors mode
 Measure of the temperature by analyzing *in situ* images

Prospects

- Detection of the quantum anomaly effect in the monopole mode
- BKT transition : superfluid to normal transition through scissors mode
 - Measure of the temperature by analyzing in situ images
- New panorama : quasi-2D gas in ring traps
 - Persistent currents
 - Superfluid properties according to dimensionality

Vertical optical confinement produced with a phase plate

Translation of the « bubble » with a magnetic offset

Acknowledgments

www-lpl.univ-paris13.fr/bec

T. Badr

H. Perrin R. Dubessy P.E. Pottie* A. Perrin V. Lorent L. Longchambon K. Merloti

Technical and administrative staff

Albert Kaladjian

Fabrice Wiotte

Best wishes to Camilla de Rossi and Dany Ben Ali

Characteristics

3D magneto-optical trap $\sim 10^9$ $^{87}{\rm Rb}$ atoms

 $\begin{array}{l} \mbox{Magnetic transport}\\ \mbox{Gradient radial}: b' = 74\,\mbox{G} \cdot\mbox{cm}^{-1}\\ \mbox{Distance}: 28\,\mbox{cm}\\ \mbox{Duration}: 1,05\,\mbox{s} \end{array}$

Optically plugged trap Radial gradient : $b' = 216 \,\text{G}\cdot\text{cm}^{-1}$ $\sim 2 \times 10^8$ atoms in the $|F = 1, m_F = -1\rangle$ state

Majorana losses in quadrupole trap

Model :

• Spin flips near $\mathbf{B} = \mathbf{0}$

$$N(t) = N_0 \frac{e^{-\Gamma_b t}}{\left(1 + \frac{\gamma t}{T_0^2}\right)^{\frac{9}{8}}}$$
$$T(t) = \sqrt{T_0^2 + \gamma t}$$

Majorana heating γ :

$$\gamma = \frac{8}{9} \chi \frac{\hbar}{M} \left(\frac{2\mu_m b'}{k_B} \right)^2$$

• Trap decompression essential for BEC!

Optically plugged quadrupole trap

Plug :

- Laser beam focused near $\vec{B} = \vec{0}$
- 532 nm (blue-detuned, transition at 780 nm)
- Waist : 46 µm
- Power : 6 W

