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Introduction

Bose-Einstein condensation

Degenerate quantum gases ⇒ Bose-Einstein condensate (BEC)

Thermodynamic phenomenon
Macroscopic occupation of a single state, due to a saturation of the
excited states
Phase coherence over the sample

1924/25 : prediction, Albert
Einstein
1995 : first realization, Eric
Cornell and Carl Wieman

[E. A. Cornell et al.,
Science 269, 198 (1995)]
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trapping frequencies of v' ≠ 2p 3 180 Hz in the radial
and v

y

≠ 2p 3 19 Hz in the axial direction. In this
configuration the trap has a magnetic field of 2.5 G at its
minimum.
After the creation of the Bose-Einstein condensate,

the rf field used for evaporative cooling is switched
off, and 50 ms later the radio frequency of the output
coupler is switched on for a time of 15 ms in a
typical experiment. The field of the output coupler is
ramped up to an amplitude of B

rf

≠ 2.6 mG within
0.1 ms. Its frequency follows a linear ramp from 1.752
to 1.750 MHz, to account for the shrinking size of the
condensate, as discussed below. Over this period, atoms
are extracted from the condensate and are accelerated
by gravity. Subsequently, the magnetic trapping field is
switched off, and 3.5 ms later the atomic distribution is
measured by absorption imaging. The atom laser output
is shown in Fig. 1. The beam contains 2 3 10

5 atoms
and its divergence in the plane of observation is below
our experimental resolution limit of 3.5 mrad. We obtain
an output beam over a longer period of time when we
reduce the magnetic field amplitude B

rf

of the rf field.
With absorption imaging we are able to directly image the

FIG. 1(color). Atom laser output: A collimated atomic beam
is derived from a Bose-Einstein condensate over a 15 ms period
of continuous output coupling. A fraction of condensed atoms
has remained in the magnetically trapped jF ≠ 2, m

F

≠ 2l
and jF ≠ 2, m

F

≠ 1l state. The magnetic trap has its weakly
confining axis in the horizontal direction.

continuous output from the atom laser over 40 ms, with
B

rf

≠ 1.2 mG. A more sensitive method is to measure
the number of atoms that remain in the condensate after
a certain period of time. This enables us to monitor
the output coupling process over up to 100 ms, with
B

rf

≠ 0.2 mG. The magnetic field amplitudes have been
calibrated with an accuracy of 20%.
It is instructive to estimate the brightness of the beam

produced by our atom laser. Defining the brightness
as the integrated flux of atoms per source size divided
by the velocity spreads in each dimension Dy

x

Dy
y

Dy
z

[15], we find that the brightness of our beam has to
be at least 2 3 10

24 atoms s2m25. To obtain this lower
limit for the brightness, we estimate that the atomic flux
is 5 3 10

6 atomsys and that the longitudinal velocity
spread is given by Dy

z

≠ 3 mmys. We further assume a
velocity spread Dy

x

≠ 5 mmys for the strongly confining
axis, which corresponds to the chemical potential of the
condensate. Our measurements show that the velocity
spread along the weakly confining axis is less than
Dy

y

≠ 0.3 mmys.
Assuming a Fourier-limited longitudinal velocity width

of Dy
z

≠ 0.3 mmys and diffraction-limited transverse
velocity spreads, a brightness of 4 3 10

28 atoms s2m25

can be reached. Both numbers show that continuous
output coupling from a condensate creates an atomic
beam with a brightness that is orders of magnitude higher
than that of a state-of-the-art Zeeman, slower [18] with
a brightness of 2.9 3 10

18 atoms s2m25, or an atomic
source derived from a magneto-optical trap [19], with a
brightness of 8.5 3 10

16 atoms s2m25.
Let us now consider the geometry of the trap with

respect to the output coupling mechanism in more detail.
The magnetic field Bsrd gives rise to a harmonic trapping
potential which confines the condensate in the shape
of a cigar, with its long axis oriented perpendicular to
the gravitational force. The rf field of frequency n

rf

induces transitions from the magnetically trapped jF ≠
2, m

F

≠ 2l state to the untrapped jF ≠ 2, m

F

≠ 0l state
via the jF ≠ 2, m

F

≠ 1l state. Here F denotes the total
angular momentum and m

F

is the magnetic quantum
number. The resonance condition 1

2

m
B

jBsrdj ≠ hn
rf

,
where m

B

is the Bohr magneton, is satisfied on the
surface of an ellipsoid which is centered at the minimum
in the magnetic trapping field [20]. Without gravity
the condensate would have the same center, so that an
undirected output could be expected [11]. The frequency
range in which significant output coupling occurs would
then be determined by the magnetic field minimum B

off

and by the chemical potential m of the condensate:
1

2

m
B

B

off

# hn
rf

# 1

2

sm
B

B

off

1 md.
Because of gravity, the minimum of the trapping po-

tential is displaced relative to the minimum of the mag-
netic field. With g being the gravitational acceleration,
this displacement is given by gyv2

', which is 7.67 mm
for our trapping parameters. The confinement of the trap
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Introduction

Quantum gases as a model system

Quantum gases are tunable quantum systems :

Control of the temperature in the range 10 nK – 1 µK
Possible control of the interaction strength : scattering length a
Dynamical control of the confinement geometry
Periodic potentials (optical lattices)
Low dimensional systems accessible (1D, 2D)
Several internal states or species available
Easy optical detection

Toward the realization of quantum simulators
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Introduction

Confining a gas to two dimensions

Very anisotropic harmonic trap ωz � ωx , ωy

Quasi-2D regime : µ, kBT � ~ωz

Fundamental state size along z : az =
√

~/Mωz

  

a
z

y

x

Dimensionless coupling constant (no length scale) :

g̃ =
√
8π

a
az

Scaling invariance : dimensionless thermodynamic properties depend
on µ/(kBT ) and g̃
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Introduction

The two-dimensional Bose gas

2D is a very special case !

ideal interacting
homogeneous - BKT

trapped BEC BEC,BKT

No BEC for a homogeneous ideal 2D gas !
Berezinskii-Kosterlitz-Thouless transition (BKT) : a superfluid
transition for a homogeneous 2D gas with repulsive interaction
The harmonic trapped ideal gas (frequency ω) :

kBTc ' ~ωN1/2

Superfluidity 6= BEC
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Introduction

Berezinskii-Kosterlitz-Thouless transition

Superfluidity present in the homogeneous interacting 2D gas below
TBKT

1972/73 : Description of the microscopic mechanism independently by
Berenzinskii and Kosterlitz & Thouless
The transition relies on vortex-antivortex pairing

2006 : first experimental evidence for the microscopic mechanism
[Z. Hadzibabic et al., Nature 441, 1118 (2006)]
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Introduction

Berezinskii-Kosterlitz-Thouless transition

Increase of the range of
coherence around BKT
transition
Peak in the momentum
distribution before the BKT
transition

[T. Plisson et al.,
PRA 84, 061606 (2011)]

RAPID COMMUNICATIONS

T. PLISSON et al. PHYSICAL REVIEW A 84, 061606(R) (2011)

xy

z

FIG. 1. (Color online) Scheme of the experimental setup. The
atom cloud, initially trapped in a harmonic 2D trap with frequencies
8 Hz × 15 Hz × 1.5 kHz, is dropped for 83.5 ms before shining
a fluorescence beam situated 3.4 cm below the initial position.
The fluorescence signal is recorded from above with an electron-
multiplying CCD camera.

polarized saturating retroreflected laser beams, resonant with
the |5S1/2,F = 2〉 → |5P3/2,F

′ = 3〉 transition and with the
|5S1/2,F = 1〉 → |5P3/2,F

′ = 2〉 transition allow the atoms
to fluoresce for 100 µs. The fluorescence signal is recorded on
an electron-multiplying CCD camera placed along the vertical
axis, thus imaging the horizontal profile.

To analyze the experimental data, we perform an azimuthal
averaging of the single pictures, as described in [12], in order
to extract radial profiles corresponding to the momentum dis-
tributions n(|k|), where k is the atom wave vector. Experimen-
tally, we weight every point of the profile by its experimental
standard deviation (coming from the photon shot noise, the
camera dark noise, and the number of averaging points). Such
profiles are presented in Fig. 2. For a low atom number
[see Fig. 2(e)], the distribution is approximately Gaussian
and relatively broad. For a higher atom number [Figs. 2(c)
and 2(d)], the curve progressively peaks and deviates from
a Gaussian. At high atom number [Figs. 2(a) and 2(b)], a
sharp feature develops at very low momentum and grows with
increasing atom number. Its width tends to a constant and
agrees with our resolution in momentum space (half-width of
∼0.3 µm−1) coming essentially from our imaging resolution
and from the initial size of the cloud. Since the peak at
low momentum develops on top of a distribution that is
not a Gaussian, it is hard to precisely pinpoint when it first
appears.

In order to attribute a temperature to each profile, we have to
rely on a model. More precisely, we fit the Hartree-Fock mean-
field model to the wings of the momentum distribution data.
This model has already been used for in situ density profiles
[11,12,20] but needs to be extended to get the momentum
distribution. We proceed as follows. The density distribution
in HFMF theory, in the local density approximation, reads

n(r) = 1
(2π )2

∫ ∞

0

2πk dk

eβ[h̄2k2/2m+2gn(r)−µ(r)] − 1
, (1)

where β = 1/kBT , and µ(r) = µ0 − mω2
xx

2/2 − mω2
yy

2/2 is
the local chemical potential with µ0 the chemical potential at

c 57.1=N/N

c 23.1=N/N

]2
m

µ3 01[
)

k(
n

c 62.1=N/N

c 90.1=N/N

]1−mµ[k

c 38.0=N/N

FIG. 2. (Color online) Radial profiles of the momentum distri-
bution for five different atom numbers at constant temperature T =
64.5 ± 2.0 nK. The atom number N is given in units of the critical
number for the ideal gas Bose-Einstein condensation Nc ≈ 3 × 104

and the superfluid phase transition is expected for N/Nc ≈ 1.26 (see
text). In each plot, we present the experimental data (black dots), the
mean-field profiles (blue dashed line) resulting from the fit in the
wings (i.e., for k > 2 µm−1), and the corresponding quantum Monte
Carlo profiles (green continuous line) with the same temperature and
the measured atom number.

the trap center. After integration, this leads to the following
equation relating µ(r) and n(r) [25]:

βµ(r) = 2βgn(r) + ln
(
1 − e−λ2

dBn(r)), (2)

where λdB =
√

2πh̄2/mkBT is the thermal de Broglie wave-
length. Writing the momentum distribution

n(k) = 1
(2π )2

∫
dx dy

eβ[h̄2k2/2m+2gn(r)−µ(r)] − 1
(3)

and making the change of variables from (x,y) to µ, we obtain
n(k) after integration. By taking into account the thermally
populated vertical levels but neglecting the interaction in these

061606-2
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Introduction

Superfluidity and Landau criterion

Dynamic property depending on
the excitation spectrum
No excitation for v < vc

Landau criterion for the critical
velocity :

vc = Min
(

E (p)

p

)
vc > 0 for a spectrum linear
around p = 0
Hydrodynamic behaviour
Vortices in a rotating gas
Specific collective modes in a
trap

Direct observation of the
superfluid character of a 2D
Bose gas

[R. Desbuquois et al.,
Nat. Phys. 8, 645 (2012)]
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Introduction

Low energy collective modes of a superfluid

Excitation spectrum in a 2D isotropic
trap :

1.0 1.2 1.4 1.6 1.8
1.2

1.4

1.6

1.8

2.0

2.2

2.4

Anisotropy wxêw y

F
re

q
u
en

cy
@w 0

D

wQ

wS

wM

- dipole mode (m = 1), both
superfluid and thermal : centre of
mass oscillation

- monopole (m = 0) :
superfluid and thermal

- quadrupole (m = 2)
superfluid only

- scissors for ωx 6= ωy
superfluid only
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Introduction

My thesis

1 Production of a 87Rb Bose-Einstein condensate in a optically plugged
quadrupole trap

Trap characterization
Majorana losses

2 Transfer of the condensate into a quadrupole dressed trap
Trap characterization
Landau-Zener transitions
Trap tuning and quasi-2D regime
Degenerate gas with a superfluid fraction

3 Study of low energy collective modes
Excitation of collective modes by controlling the radiofrequency field
Monopole : dimensionality and third dimension effect
Quadrupole and scissors mode : superfluidity
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Producing the condensate

Outline

1 Introduction

2 Producing the condensate
Experimental sketch
Optically plugged quadrupole trap

3 Producing a quasi-2D gas
Dressed quadrupole trap
Radiofrequency source
Quasi-2D regime

4 Collective modes
Monopole mode
Scissors mode

5 Conclusions and prospects
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Producing the condensate Experimental sketch

Experimental sketch

87Rb, |F = 1,mF = −1〉 state

Experimental sequence :
1 Loading the 3D

magneto-optical trap
2 Transfer to a magnetic trap
3 Magnetic transport
4 Transfer to a quadrupole

optically plugged trap
5 Evaporative cooling to

quantum degeneracy
6 Absorption imaging of the

atoms

Sketch of the vacuum chamber and
magnetic coils :

y 
x 

!"#$%& 
("#$%& 

s*+e-*e *e.. 

/0 s1ur*e 

15 / 49



Producing the condensate Experimental sketch

In real life

Vacuum chamber and magnetic coils :
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Producing the condensate Experimental sketch

In real life

Laser source :
Overview :
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Producing the condensate Optically plugged trap

Optically plugged quadrupole trap

-100 -50 0 50 100

-100

-50

0

50

100

Misaligned laser beam ⇒
2 asymmetric minima

Absorption imaging :
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Producing the condensate Optically plugged trap

Evaporative cooling

BEC every 45 s
∼ 2× 105 atomes
à 140 nK
Trap bottom :
∼ 300 kHz
Lifetime : 20± 2 s

[R. Dubessy, K. Merloti
et al.,
PRA 85, 013643 (2012)]

a
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Producing a quasi-2D gas

Outline

1 Introduction

2 Producing the condensate
Experimental sketch
Optically plugged quadrupole trap

3 Producing a quasi-2D gas
Dressed quadrupole trap
Radiofrequency source
Quasi-2D regime

4 Collective modes
Monopole mode
Scissors mode

5 Conclusions and prospects

20 / 49



Producing a quasi-2D gas Dressed quadrupole trap

Dressed quadrupole trap

The atoms are transferred to a dressed quadrupole trap

Zeeman states coupled through a radiofrequency field ωrf

Naturally very anisotropic
Smooth adiabatic potentials
Excellent lifetime
Geometry can be modified dynamically ⇒ collective modes
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Producing a quasi-2D gas Dressed quadrupole trap

Principle of rf-induced adiabatic potentials

2001 : First proposal with rf fields
[O. Zobay and B. Garraway, PRL 86, 1195 (2001)] :

B(r) + Brf cos(ωrf t)

inhomogeneous magnetic field + rf field

Strong coupling regime (large Ω0 ∝ Brf )
⇒ avoided crossing at the resonance points
Atoms trapped at the isomagnetic surface of an
inhomogeneous magnetic field set by ωrf :

surface B(r) =
~

|gF |µB
ωrf

RF 

W0 

mF = 1 

W0 

mF = -1 

mF = 0 

mF = 1 
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Producing a quasi-2D gas Dressed quadrupole trap

Rf-induced adiabatic potentials

2003 : First experimental realization
with a rf field

[Y. Colombe et al., Europhys.
Lett. 67, 593 (2004)]

Several trap geometries : bubble,
double well (atom chip), ring and
lattice ARTICLES
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Figure 2 The splitting of BECs is controlled over a wide spatial range. By adjusting amplitude and frequency of the RF field, we have been able to reach splitting
distances of up to 80 µm. a, A comparison of the measured splitting distances (red circles) to the theoretical expectation (black lines) yields good agreement for three
different strengths of transverse confinement (gradients 1.1,1.9 and 2.4 kG cm−1, top to bottom). b, The experimental data are derived from in situ absorption images (Roper
Scientific MicroMAX: 1024BFT). c, The fringe spacing is plotted as a function of RF amplitude (red circles). A simple approximation of the expected fringe spacing based on an
expansion of a non-interacting gas from two points located at the two double-well minima agrees well with the data for sufficiently large splittings (solid line). For small
splitting distances (large fringe spacings), inter-atomic interactions affect the expansion of the cloud. A numerical integration of the time-dependent Gross–Pitaevskii
equation using our experimental parameters takes this effect into account (dotted line). d, Interference patterns obtained after 14 ms potential-free time-of-flight expansion
of the two BECs. For splittings below our imaging resolution (d < 6 µm), the splitting distances can be derived from these interference patterns.

sinusoidally alternating current through this wire provides the RF
field that splits the trap. For small splitting distances (<6 µm) we
ramp the amplitude of the RF current from zero to its final value
(typically 60–70 mA) at a constant RF frequency (∼500 kHz). This
frequency is slightly below the Larmor frequency of the atoms at the
minimum of the static trap (∼1 G corresponding to ∼700 kHz). By
applying the ramp, we smoothly split a BEC confined in the single-
well trap into two. The splitting is performed transversely to the
long axis of the trap, as shown in Fig. 1b. The distance between
the two wells can be further increased by raising the frequency
of the RF field (up to 4 MHz in our experiment). The atoms are
detected by resonant absorption imaging (see Fig. 2) along the weak
trapping direction, that is, integrating over the long axis of the one-
dimensional clouds. The images are either taken in situ or after
time-of-flight expansion.

Unbalanced splitting can occur owing to the spatial
inhomogeneity of the RF field, owing to asymmetries in the
static magnetic trap and owing to gravity. Although the splitting
process itself is very robust, imbalances lead to a rapid evolution
of the relative phase of the two condensates once they are
separated. The influence of gravity can be eliminated by splitting
the trap horizontally. In the experiment we balance the double

well by fine-tuning the position of the original trap relative to
the RF wire.

To characterize the splitting, the split cloud is detected in situ.
We are able to split BECs over distances of up to 80 µm without
significant loss or heating (determined in time-of-flight imaging).
The measured splitting distances are in very good agreement with
the theoretical expectations for different configurations of the
initial single well (Fig. 2a).

To study the coherence of the splitting process we recombine
the split clouds in time-of-flight expansion after a non-adiabatically
fast (<50 µs) extinction of the double-well potential. Typical
matter-wave interference patterns obtained by taking absorption
images 14 ms after releasing the clouds are depicted in Fig. 2d.
The transverse density profile derived from these images contains
information on both the distance d of the BECs in the double-
well potential and the relative phase φ of the two condensates. We
determine the fringe spacing "z and the phase φ by fitting a cosine
function with a gaussian envelope to the measured profiles (Fig. 3).
For large splittings (d > 5 µm for our experimental parameters),
the fringe spacing is given by "z = ht/md, where h is Planck’s
constant, t is the expansion time and m is the atomic mass. This
approximation of a non-interacting gas expanding from two point
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[T. Schumm et al., Nat. Phys. 1 57, (2005)]
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Producing a quasi-2D gas Dressed quadrupole trap

Rf dressed atom in a quadrupole field

Atoms trapped at the
isomagnetic surface :
⇒ Ellipsoid with radius

R ∝ ωrf

b′

Control of the temperature :
rf knife at ωrf + Ω0 + x

a

A

B

R

z

x

rf knife 

@ wrf + W0 + x W0 

mF = 1 

R R 
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Producing a quasi-2D gas Dressed quadrupole trap

Trap potential

Taking account of gravity :

Trap position :
R ∝ ωrf

b′

Frequencies :

ωz ∝
b′√
Ω0
∼ 400Hz−2 kHz

ωx ,y ∝
√

g
R
∼ 20− 50Hz

Anisotropy
ωx

ωy
:

depends on polarization

[K. Merloti et al., NJP 15, 033007 (2013)]
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Producing a quasi-2D gas Dressed quadrupole trap

Rf antennas

Two squared antennas
Linear polarization

In phase signal
Anisotropic trap, ωx 6= ωy
The trap axis can be
controlled

Circular polarization
Signal in quadrature
Equal amplitudes
Isotropic trap, ωx = ωy

⇒ Fine control of the trap
geometry

H1
H2

Horizontal 
Imaging

Vertical 
Imaging

x

yz
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Producing a quasi-2D gas Dressed quadrupole trap

Trap potential

Very smooth trap : no damping of the dipole modes in the xy plan !

Oscillation frequencies :

ωx = 24, 7± 0, 1Hz ωy = 25, 3± 0, 1Hz
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Producing a quasi-2D gas Radiofrequency source

Home-made synthesizer

s
e
ri
a

l
p
o
rt

Memory

MSP430

Clock frequency

PC DDS board

TTL : digital control
Phase (1Ch),

Amplitude (4 Ch)
Frequency (1 Ch)

DDS device

4 RF outputs
0.1 - 6 MHz

Ethernet
port

AD 9959
DDS chip

m-controleur

Pre-amp+
low-pass
x4

x 4
Frequency multiplier

Tabor WW1072 /SCLK

2-120 MHz

[Paul-Éric Pottie,
Fabrice Wiotte]

Supplies two rf antennas with the same frequency
Independent amplitude and phase
Linear ramps for frequency, amplitude and phase
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Producing a quasi-2D gas Quasi-2D regime

Quasi-2D regime

µ, kBT � ~ωz

Temperature : controlled by rf knife

Chemical potential :

µ3D

~ωz
∝
(
ω2

xω
2
y

ω3
z

) 1
5

∝
(

Ω
3/2
0

ω2
rf b
′

) 1
5

(Thomas-Fermi approximation)

ωz � ωx , ωy
↓ Ω0, ↑ ωrf , ↑ b′

b′ = 55, 4G·cm−1, ωrf = 600 kHz

b′ = 216G·cm−1, ωrf = 2336 kHz

29 / 49



Producing a quasi-2D gas Quasi-2D regime

Quasi-2D regime

Image after time-of-flight (25ms)

First 2D magnetic trap !
Oscillation frequencies :

ωr = 27Hz
ωz = 1, 93± 0, 01 kHz

Chemical potential, temperature

µ2D = 0, 37~ωz

kBT = 1, 2~ωz
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Collective modes Monopole mode

Monopole mode : a probe of dimensionality

  

In phase oscillation of the radii
Compression mode
⇒ ωM related to the equation of state µ(n)

Anisotropic 3D condensate (ωr � ωz) :

ω3D
M =

√
10
3
ωr

Isotropic 2D gas :
ω2D

M = 2ωr

No damping
Linked to scaling invariance
Quantum anomaly : 0, 2% positive shift of ωM
⇒ too small to be detected
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Collective modes Monopole mode

Excitation of the monopole

Circular polarization ⇒ 2D isotropic trap, frequency ωr

Very low temperature (no thermal fraction)

Excitation :
Sudden increase of ωrf ⇒ decrease of ωr (∼ 15%)

5 ms
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Collective modes Monopole mode

Observation of the monopole mode

ωr = 2π × (24, 21± 0, 03)Hz
ωM/2π = (48, 1± 0, 2)Hz

Prediction for a 2D gas :
ω2D

M /2π = (48, 42± 0, 06) Hz

Prediction for a 3D condensate :
ω3D

M /2π = (44, 20± 0, 05) Hz

ωM close to 2ωr ⇒ 2D gas
No measurable damping ⇒ quality factor > 150
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Collective modes Monopole mode

Breakdown of scale invariance

Finite frequency ωz ⇒ modified equation of state
Monopole frequency versus αµ = µ

2~ωz

Negative shift of ωM , in fair
agreement with the prediction

[K. Merloti et al., PRA submitted, arxiv :1311.1028, (2013)]
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Collective modes Scissors mode

Scissors mode : a probe of superfluidity

  

Oscillation of the anisotropic cloud axis
Mean frequency : ω0 =

√
ωxωy

Superfluid :

ωS =
√
ω2

x + ω2
y

Classical gas :
Harmonic modes similar to scissors mode
(collisionless regime) :

ωS1 = ωx + ωy ,

ωS2 = |ωx − ωy |

Use the scissors mode as a
signature of superfluidity
across the BKT transition
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Collective modes Scissors mode

Scissors mode versus temperature : state of the art

3D : observed negative shift

[Marago, PRL 86, 3938 (2001)]

2D : positive shift expected

Figure 7
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Collective modes Scissors mode

Exciting the scissors mode

Linear polarization ⇒ ωx 6= ωy

Anisotropy ωx/ωy = 1, 28± 0, 04
Control of the eigenaxes through the two rf antenna amplitudes
Control of the temperature through rf knife

Excitation :
We exchange the rf amplitudes ⇒ sudden rotation of the trap (10◦ in
0.4ms)
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Collective modes Scissors mode

Observation of the scissors mode

Dressing frequency 1MHz, Rabi frequency 31,5 kHz

Low temperature :
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Collective modes Scissors mode

Superfluid and thermal gas

Rf knife @1.057MHz = ωrf + Ω0 + 2π × 25, 5 kHz

Superfluid :

0 20 40 60 80

10

20

30

40

 A
ve

ra
ge

d 
ce

nt
ra

l p
ea

k 
an

gl
e 

[d
eg

re
e]



rf knife: 1.057 MHz
frequency: 56.0 ± 0.9 Hz
damping rate: 20 ± 6 Hz

  Holding time [ms]

 

 

Thermal gas :
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Collective modes Scissors mode

Scissors mode versus temperature

Superfluid / Thermal gas
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  NB : The slow
oscillation of the
thermal gas is not
observable
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[Article in preparation]
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Collective modes Scissors mode

Damping of the scissors mode

Superfluid damping
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Conclusions and prospects

Conclusions

Fast production of a Bose-Einstein condensate in a
optically plugged quadrupole trap
[R. Dubessy, K. Merloti et al., PRA 85, 013643 (2012)]

Production of a degenerate quasi-2D Bose gas
presenting a superfluid phase in a rf dressed trap :
tunable geometry and smooth traps for the study of
low energy collective modes
[K. Merloti et al., NJP 15, 033007 (2013)]

Breakdown of scale invariance in a quasi-2D gas due to
the third dimension on the monopole mode
[K. Merloti et al., PRA submitted, arxiv :1311.1028, (2013)]

Scissors mode as a signature of superfluidity ; damping
induced by temperature
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Conclusions and prospects

Prospects

Detection of the quantum anomaly effect in the monopole mode

BKT transition : superfluid to normal transition through scissors mode
Measure of the temperature by analyzing in situ images

New panorama : quasi-2D gas in ring traps
Persistent currents
Superfluid properties according to dimensionality

  

Vertical optical confinement
produced with a phase plate

Translation of the « bubble » with a
magnetic offset
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Characteristics

3D magneto-optical trap
∼ 109 87Rb atoms

Magnetic transport
Gradient radial : b′ = 74G·cm−1

Distance : 28 cm
Duration : 1, 05 s

Optically plugged trap
Radial gradient : b′ = 216G·cm−1

∼ 2× 108 atoms in the |F = 1,mF = −1〉
state
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Majorana losses in quadrupole trap

Model :

N(t) = N0
e−Γbt(

1 + γt
T 2

0

) 9
8

T (t) =
√

T 2
0 + γt

Majorana heating γ :

γ =
8
9
χ
~
M

(
2µmb′

kB

)2
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Optically plugged quadrupole trap

Plug :

Laser beam focused
near ~B = ~0
532 nm
(blue-detuned,
transition at 780 nm)
Waist : 46µm
Power : 6W

49 / 49


	Introduction
	Producing the condensate
	Experimental sketch
	Optically plugged quadrupole trap

	Producing a quasi-2D gas
	Dressed quadrupole trap
	Radiofrequency source
	Quasi-2D regime

	Collective modes
	Monopole mode
	Scissors mode

	Conclusions and prospects

