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Measurement of three-dimensional mirror parameters
by polarization imaging applied to catadioptric

camera calibration
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Abstract. We present a new efficient method for calibration of cata-
dioptric sensors. The method is based on an accurate measurement
of the three-dimensional parameters of the mirror through polariza-
tion imaging. While inserting a rotating polarizer between the cam-
era and the mirror, the system is automatically calibrated without
any calibration patterns. Moreover, this method permits most of the
constraints related to the calibration of catadioptric systems to be
relaxed. We show that, contrary to our system, the traditional meth-
ods of calibration are very sensitive to misalignment of the camera
axis and the symmetry axis of the mirror. From the measurement of
three-dimensional parameters, we apply the generic calibration con-
cept to calibrate the catadioptric sensor. We also show the influence
of the disturbed measurement of the parameters on the reconstruc-
tion of a synthetic scene. Finally, experiments prove the validity of
the method with some preliminary results on three-dimensional
reconstruction. © 2008 SPIE and IS&T. !DOI: 10.1117/1.2958290"

1 Introduction

Conventional perspective cameras have limited fields of
view that make them restrictive in some applications such
as robotics, video surveillance, and so on. One way to en-
hance the field of view is to place a mirror with a surface of
revolution in front of the camera so that the scene reflects
on the mirror omnidirectionally. Such a system, comprised
of both lenses !dioptric" and mirrors !catoptric" for image
formation, is called catadioptric. Several configurations ex-
ist, those satisfying the single-viewpoint constraint are de-
scribed in Ref. 1.

Catadioptric vision systems available on the market have
been extensively studied. Commercial devices are not
adapted to our requirements, because optical components
need to be placed between the camera and the mirror. Mir-
rors have therefore been produced in our own facilities

thanks to the Plateform3D Department.
32

A high-speed ma-
chining center has been used to produce a very high-quality
surface, which is polished after production.

We developed a new approach for calibrating catadiop-
tric sensors by polarization imaging. This method enables
the calibration of any mirror shape, since it is based on the
measurement of three-dimensional parameters such as
height and normal orientations of the surface. The only
constraint is that an orthographic camera has to be used. To
calibrate the system, we apply the generic calibration con-
cept developed by Ramalingam and Sturm.

2,3

The paper is structured as follows. Section 2 recalls pre-
vious work on paracatadioptric calibration, since the mea-
surement of the surface normals by polarization imaging
induces orthographic projection, and most of the calibration
methods developed for catadioptric systems rely on the
single-viewpoint constraint. We show the misalignment
sensitivity of these methods for the reconstruction of a syn-
thetic scene. Then, after presenting some basic knowledge
about polarization imaging, we detail in Section 3 how to
calibrate the sensor with the generic calibration concept. In
Section 4, we present simulations to illustrate the influence
of the parameter measurement on the quality of the recon-
struction. Preliminary results on a calibrated spherical mir-
ror are also described. The paper ends with a conclusion
and a few words about future work.

2 Calibration of Catadioptric Cameras

2.1 Previous Work

The most obvious calibration method that can be used is an
approach based on the image of the mirror’s bounding
circle.

4,5
It has the main advantage of being easily auto-

mated, but the drawbacks are that the surface mirror has to
be very accurate and the mirror boundary has to accurately
encode the intrinsic parameters. Other self-calibration
methods can be found.

6,7
Another approach of calibrating

catadioptric sensors is to use geometric invariants on the
image such as lines or circles.

8–11
Finally, the sensor can

also be calibrated by using some calibration patterns with
control points whose 3D world coordinates are known.

12–16
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Since our approach requires a telecentric lens, we recall
some methods devoted to paracatadioptric camera calibra-
tion !the single-viewpoint constraint involves a telecentric
lens and a paraboloidal mirror". In this case, the more ro-
bust methods are based on the fitting of lines projected onto
the mirror.

8,17,18
This approach also has some shortcomings:

Lines have to be precisely detected and the optical axis of
the camera is assumed to be aligned with the symmetry axis
of the paraboloid. To illustrate the misalignment effect, the
three-dimensional reconstructions of a synthetic scene
based on calibrations using the three preceding methods are
simulated !Fig. 1".

The scene represents a room of size 500!500
!250 cm with elements such as windows, doors, and a
table. Three images of the catadioptric sensor are used to
triangulate the points of the scene. For the calibration pro-
cess, 20 lines are computed and perfectly detected on the
mirror. Then the calibration parameters are used to recon-
struct the scene, according to the linear-eigen method.

19
As

presented in Fig. 2, the misalignment of the paracatadiop-
tric system leads to the introduction of an important error
on the reconstruction even if the calibration is performed
with perfect line fittings.

To deal with the alignment errors between the mirror
and the lens, more sophisticated algorithms were
introduced.

20–22
The calibration process in Refs. 20 and 21,

which requires a large number of parameters to estimate,
involves a three-step algorithm in order to compute all the
extrinsic and intrinsic parameters. Ieng and Benosman pro-
posed a more flexible solution based on caustic curves:

22

The main advantage of this method is that it is applicable
for every surface of revolution. In order to relax constraints

on the mirror shape, the method presented here is based on
the generic calibration concept: It leads to a flexible, easy-
to-perform, and shape-independent method of calibration.

2.2 The Generic Calibration Concept

The previous calibration methods for omnidirectional cata-
dioptric sensors assume that !1" the mirror shape is per-
fectly known, !2" the alignment of the sensor is perfect, so
that the single-viewpoint constraint is satisfied, and !3" the
projection model can easily be parameterized. Some meth-
ods relax the second constraint and a few relax the first one,
but prior to recent work,

3,12,23
calibrating methods always

underlied an explicit parametric model of projection. This

Fig. 1 Simulation of the three-dimensional reconstruction. The theoretical scene, in blue, represents a
room with elements such as windows, door, and table; black dots depict the sensor’s three locations.
The reconstructed scene with the Vanderportaele calibration method #a 2° misalignment$ is drawn in
red.
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new model has the advantage of working for any type of
camera !catadioptric systems, central cameras with or with-
out distortion, axial cameras, etc." and of handling hetero-
geneous systems

2 !for instance, a sensor composed of an
omnidirectional camera and a perspective camera". How-
ever, developing an efficient and easy-to-use calibration
method based on this model is not trivial. Our proposed
new method enables catadioptric sensor calibration by po-
larization imaging. It relaxes the three constraints listed
above, and the calibration can even be performed by a non-
specialist, as it only requires an optical apparatus and no
image processing.

3 Polarization Imaging

Polarization imaging enables the study of the polarization
state of a light wave. The most common applications in
artificial vision involve segmenting dielectric and metallic
objects

24
and detecting transparent surfaces. Polarization

imaging likewise enables three-dimensional information of
specular objects to be detected !the “shape from polariza-
tion” method

25,26". The physical principle behind “shape
from polarization” is the following: After being reflected,
an unpolarized light wave becomes partially linearly polar-
ized, depending on the surface normal and the refractive
index of the media on which it impinges. Partially linearly
polarized light has three parameters: the light magnitude I,
the degree of polarization ", and the angle of polarization
#.

To calibrate the mirror used in our catadioptric sensor,
the polarization state of the reflected light has to be mea-
sured. A rotating polarizer placed between the camera and
the mirror is used. The complete sensor !mirror and cam-
era" and the polarizer are placed into a diffuse light envi-
ronment composed of a backlit cylindrical diffuser !Fig. 3".
The light intensity of each pixel is linked to the angle of the
polarizer and to the polarization parameters by the follow-
ing equation:

Ip!$" =
I

2
!" cos!2$ − 2#" + 1" , !1"

where $ is the polarizer angle. The purpose of polarization
imaging is to compute the three parameters I, #, and " by
interpolating this formula. Because three parameters need
to be determined, at least three images are required. Images
are taken with different orientations of the polarizer. To get
an automatic calibration of the catadioptric system, a liquid
crystal polarization rotator is used instead of the polarizer.
It acts as a rotating polarizer, which has the ability to be
electrically controlled. Figure 4 shows an image of the de-
gree and the angle of polarization of a spherical mirror.

3.1 The Relationship Between the Polarization
Parameters and the Normals

Wolff and Boult demonstrated how to determine constraints
on surface normals using the Fresnel reflectance model.

27

The surface of the mirror is assumed to be continuous and
described by a Cartesian expression: z= f!x ,y". Therefore,

each surface normal is given by the following nonnormal-
ized expression:

Fig. 3 Polarization imaging: After being reflected by the mirror, the
light becomes partially linearly polarized.

Fig. 4 Images of the polarization parameters that are needed to
reconstruct the mirror shape. #a$ Degree of polarization !"! #0,1$";
#b$ angle of polarization !#! #0,%$".
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n" = %
%f!x,y"

%x

−

%f!x,y"
%y

1

& = %
p = tan & cos '

q = tan & sin '

1
& . !2"

The aim of the “shape from polarization” technique is to
compute the normals from the angles & and '. By combin-
ing the Fresnel formulas and the Snell–Descartes law, one
can find a relationship between the degree of polarization "

and the zenith angle &.
25

For specular metallic surfaces, the
following formula can be applied:

28

"!&" =
2n tan & sin &

tan2 & sin2 & + 'n̂'2
, !3"

where n̂=n!1+ i(" is the complex refractive index of the

mirror. In the case of a perfect specular mirror, Eq. !3" can
be directly used if the complex refractive index of the ma-
terial is known. However, if the refractive index is un-
known or if the mirror is not perfectly specular, a pseudo-
refractive index

29
can be applied. This consists of

estimating a pseudo-refractive index that best fits the rela-
tion between the angle & and the degree of polarization "
measured on a known shape of the same material. Finally,
this pseudo-refractive index, which has no physical mean-
ing, enables the degree of polarization image of the new
object to be computed using the same relation #Eq. !3"$.

The azimuth angle ' is linked to the angle of polariza-
tion # since the reflected light becomes partially linearly
polarized according to the normal of the plane of incidence.
Because our imaging system uses a telecentric lens, an or-
thographic projection onto the sensor is assumed and the
azimuth angle ' can be inferred from the angle of polar-
ization # according to the following equation:

' = # )
%

2
. !4"

(a)

Fig. 5 Disambiguation of the azimuth angle. #a$ Segmented image
!Iquad! (0,1,2,3)"; #b$ image of the resulting azimuth angle ' !'
! #−% /2 ,3% /2$".

Fig. 6 Description of the 3D ray given by points A and B.
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Fig. 7 Reconstruction error induced by noisy measurement of the
normals’ parameters. #a$ & angle; #b$ ' angle.
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3.2 Disambiguation of the Normals

From Eqs. !3" and !4", the surface normals are determined
with an ambiguity. Since mirrors used in catadioptric vision
are convex and of a revolution shape, a segmented image
Iquad can be directly computed from the near center of the
mirror #Fig. 5!a"$. This segmented image is an image with
four gray levels that represent the four quadrants oriented
with an angle in $0,% /2#. The algorithm of the disambigu-

ation process described in Ref. 29 is applied with the seg-
mented image Iquad and with the angle of polarization im-
age #. The azimuth angle ' is computed as follows:

1. '=#−% /2,
2. '='+% if #!Iquad=0"∧ !'*0"$∨ #Iquad=1$∨ #!Iquad

=3"∧ !'+0"$,

where ∧ and ∨ represent, respectively, the logical operators
AND and OR. The result of the disambiguation is presented
in Fig. 5!b".

Fig. 8 Three-dimensional parameters used. #a$ Normals &, ', and
surface height z; #b$ only normals &, ' #without integration process$.
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Fig. 10 Measurement errors of the three-dimensional parameters.
#a$ Angle &; #b$ angle '; and #c$ deviation map of the mirror z.
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3.3 Calibration

To calibrate our imaging system, we use the generic cali-
bration concept introduced by Sturm and Ramalingam.

30

The concept considers an image as a collection of pixels,
and each pixel measures the light along a particular 3D ray.
Thus, calibration can be seen as the determination of all
projection rays and their correspondence with pixels. A 3D
ray is represented here by two points !A ,B" that belong to

the ray. The points’ coordinates are defined as described in
Eq. !5":

A = %
xa

ya

za

&, B = %
xb

yb

zb

& . !5"

To calibrate the sensor, let us take point A, which be-
longs to both the mirror surface and the 3D ray, to be the
first point of the ray !Fig. 6". Since an orthographic projec-
tion is assumed, the xA- and yA-coordinates can be directly
deduced from the !u ,v"-coordinates of each pixel !up to a

scale factor given by the lens". Finally, the computation of
the za-coordinate requires the determination of the 3D mir-
ror surface. The 3D surface of the mirror can be computed
from the normals !given by polarization imaging" thanks to
the Frankot–Chellappa algorithm.

31
Denoting the Fourier

transforms of, respectively, the surface height and the x, y

gradients as f̃ , p̃, and q̃, we have

∀!u,v" & !0,0", f̃!u,v" =
− jup̄ − jvq̄

u2 + v
2 . !6"

The three-dimensional surface is obtained by taking the in-
verse Fourier transform of the former equation. This inte-
gration process gives us the surface height of the mirror
with a constant of integration. Nevertheless, this constant is
not required, because of the orthographic projection as-
sumption.

As shown in Fig. 6, the second point B of the ray can be
written as

B = A + k%
tan 2& cos '

tan 2& sin '

1
& , !7"

where k is a nonnull constant.

4 Experiments

In the previous section, we showed that the three-
dimensional parameters of the mirror, &, ', and z, are re-
quired to calibrate the catadioptric system, according to the
generic calibration concept introduced by Sturm. The azi-
muth and zenith angles, ' and &, are directly given by the
measurement of the polarization parameters !" ,#" of the

light reflected by the mirror. The surface height z, which
represents the 3D shape of the mirror, is obtained by an
integration process.

In this section, simulations are presented to illustrate the
influence of the parameters on reconstruction quality. Then,

Fig. 11 Simulation of the three-dimensional reconstruction by using the calibration from the polariza-
tion imaging.
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Fig. 12 Three-dimensional reconstruction of a real scene with the catadioptric system. #a$ Experimen-
tal setup; #b$–#d$ points of interest.

Fig. 13 Results of the three-dimensional reconstruction. Reconstruction according to the linear-eigen
and midpoint methods are respectively drawn in red and blue, while the gray points represent the
sensor’s 3 positions.
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preliminary results on a calibrated spherical mirror show
the good accuracy of the three-dimensional parameters
measurement by polarization imaging. Experiments on the
reconstruction of a real scene are also presented.

4.1 Simulations

To simulate the three-dimensional reconstruction error, the
synthetic scene introduced in Section 2 !Fig. 1" is recon-
structed thanks to the generic calibration concept. The nor-
mals’ angles & and ' were computed from a perfect para-
bolic mirror with a 7° misalignment between the optical
axis and the symmetry axis of the mirror. The parameters
are then disturbed by adding various levels of Gaussian
noise. At each level of noise, the experiment is regenerated
50 times, and the average error reconstruction is computed.
Figures 7!a" and 7!b", respectively, show the reconstruction
error of the scene induced by noisy measurement of & and
'. The synthetic scene is reconstructed with or without
mirror reconstruction, depending or whether or not the in-
tegration process from Eq. !6" is carried out !Fig. 8".

Figure 7 shows that scene reconstruction is quite sensi-
tive to the measurement of the parameters & and '; on the
other hand, the integration process is not required, and we
can assume that the z parameter is negligible. In addition,
Fig. 9 shows the reconstruction error of the scene by only
adding Gaussian noise to the mirror height z. In this case,
the normals are assumed to be perfectly measured and
noise is only added on the surface height of the mirror. The
reconstruction quality remains good even if the mirror
height is very noisy !the mirror height is 1 cm and the
radius is 2 cm" or badly reconstructed.

4.2 Preliminary Results

4.2.1 Simulated scene

Preliminary results were carried out with a catadioptric sen-
sor made of a camera with a telecentric lens and a cali-
brated spherical mirror !radius=1 cm". Let us notice that

our system does not satisfy the single-viewpoint constraint.
Nevertheless, this property is not required here for the
three-dimensional reconstruction of the scene. As described
in Section 3, our catadioptric sensor is calibrated by mea-
suring the three-dimensional parameters of the mirror with
a liquid crystal polarization rotator placed between the
camera and the mirror. To evaluate the accuracy of our
system, we compare the parameters !&, ', and z" obtained
with our system to the theoretical parameters of the mirror
!Fig. 10".

The mean quadratic errors of the angles & and ' are,
respectively, 0.49° and 1.02°. Figure 11 shows the recon-
struction of the synthetic scene by using the calibration
made by polarization imaging. Since the mirror is spherical,
three-dimensional reconstruction errors greatly increase.
Nevertheless, the synthetic science is well reconstructed,
with an average error of 9.68 cm.

4.2.2 Real scene

As presented in Fig. 12, the three-dimensional reconstruc-
tion of a real scene was also carried out. The imaging sys-
tem is made of a CCD camera with a telecentric lens and a
spherical mirror. In order to precisely control its displace-
ment, it has been placed on a precise three-axes stage. The

x!y!z operating area is 1.5 m!1.6 m!0.4 m, and the
x!y!z room size to reconstruct is about 6 m!5 m
!2.5 m. After calibrating our catadioptric sensor by polar-
ization imaging, 3D points of interest have been triangu-
lated by moving the system.

Once the imaging system is automatically calibrated by
polarization imaging, three images with three different
known positions have been acquired. Several points of in-
terest were picked on each image: four rectangular targets,
two edges of the ceiling, three windows, and one fluores-
cent light #Figs. 12!b"–12!d"$. The result of the triangula-
tion process presented in Fig. 13 shows that the reconstruc-
tion is qualitatively satisfactory. The global topology of the
scene and the relative distances are respected; right angles
appear as !near-" right angles. In fact, the overall recon-
struction is as expected, considering

• the small displacement of the sensor in comparison
with the size of the scene,

• the fact that we only performed linear triangulation
without refinement, and

• the reconstruction also depends on the accuracy of
point picking !the correspondence has been estab-
lished manually and a slight error in the location of 2D
points led to erroneous 3D reconstruction".

5 Conclusion

We presented, a new efficient calibration method for cata-
dioptric sensors. This method is based on the measurement
of three-dimensional parameters of the mirror thanks to po-
larization imaging. The calibration can be performed “in
one click” even by a nonspecialist, because it only requires
an optical apparatus—no image processing and no calibra-
tion pattern. Contrary to traditional methods, it deals with
misalignment of the sensor and works for any shape mirror
!regular or not". Experimental results prove that the sensor
is properly calibrated and a satisfactory three-dimensional
reconstruction of the scene can be obtained. We have also
shown that the 3D shape of the mirror can be neglected
in comparison with the normals’ orientations. The
Plateform3D Department is currently manufacturing a para-
bolic mirror, and future work will consist of creating a pa-
racatadioptric sensor in order to compare our method to
other methods known in the literature for real scenes.
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Abstract

We propose an algorithm for the on-line automatic registration of multiple 3D surfaces acquired in a sequence by a new hand-held laser

scanner. The laser emitter is coupled with an optical lens that spreads the light forming 19 parallel slits that are projected to the scene and

acquired with subpixel accuracy by a camera. Splines are used to interpolate the acquired profiles to increase the sample of points and Delaunay

triangulation is used to obtain the normal vectors at every point. A point-to-plane pair-wise registration method is proposed to align the surfaces

in pairs while they are acquired, conforming paths and eventually cycles that are minimized once detected. The algorithm is specially designed

for on-line applications and can be classified as a closing-the-loop technique, where there are not that many competing methods, though it has

been compared to the literature. Experiments providing qualitative and quantitative evaluation are shown by means of synthetic and real data

and we demonstrated the reliability of our technique.

" 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The complete 3D acquisition of a given object, surface or

even scene has many research challenges and it is definitely in

the research interests of the computer vision community. Be-

sides, there are several applications which may benefit by such

complete acquisition such as reverse engineering, modeling,

metrology, visual inspection and even robot navigation.

Overall, there are diverse 3D acquisition systems which are

basically based on laser triangulation [1,2] and pattern projec-

tion [3], especially when dense images are required. These sys-

tems gather range images from which 3D information can be

extracted. Besides, other acquisition systems are based on pro-

cessing one or many 2D images captured by cameras. One of
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these techniques is Shape from Silhouettes, in which several im-

ages of the measuring object are acquired and the complete 3D

model of the object is computed by means of its silhouette at

every image. Although some authors tend to use this technique

without knowing the camera poses from where images were ac-

quired [4], such positions are usually required and only a rough

accuracy is obtained. Other techniques are based on directly

processing the set of images by means of solving the matching

problem [5]. In this case, features such as points/lines/regions

of interest must be determined within the images reducing dras-

tically the resolution and hence obtaining a sparse acquisition.

In conclusion, laser triangulation is considered one of the most

reliable techniques of acquiring 3D data, so that data is dense

and accurate and the correspondence problem alleviated.

In general, laser triangulation techniques are based on the use

of a laser emitter coupled to a cylindrical lens that spreads the

light forming a plane that is projected to the measured surface.

The projection of a laser plane only lets us acquire a profile of

the measuring surface. Hence, in most cases a mechanical sys-

tem is added to permit the scanning, so that: (a) the laser plane

is projected onto a rotating mirror and reflected towards the

http://www.elsevier.com/locate/pr
mailto:cmatabos@eia.udg.es
mailto:d.fofi@iutlecreusot.u-bourgogne.fr
mailto:qsalvi@eia.udg.es
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surface; (b) the laser beam is attached to a moving worm gear;

(c) the laser beam keeps motionless while the object is placed

on a rotating table, obtaining dense acquisitions. However, the

accuracy of the 3D acquisition depends on the mechanical sys-

tem as potential vibrations are likely to produce misalignments.

Furthermore, the sequence of images that are captured in the

scanning process forces the object to be motion controlled re-

ducing the number of potential applications. Finally, an un-

completed acquisition of the object is usually obtained due to

object occlusions and the limited field of view of the sensor.

Summarizing, laser triangulation is a reliable technique to

acquire dense and accurate 3D data. However, existing com-

mercial sensors usually only acquire a partial view of the object,

others are constraint to mechanical structures such as rotating

tables and moving gears. There are few sensors that can com-

pute their ego-pose in a free space. For instance, the ZScan-

ner700 of ZCorporation [6] can compute such ego-pose, but a

set of reflective targets must be stuck on the measuring surface.

The set of views are directly aligned once the ego-pose is com-

puted. Registration is a technique that can permit to perform

such alignment without adding markers or any other reference

to the object or to the measuring scenario.

Pair-wise registration is a well-studied problem in the litera-

ture. It is known that the published techniques can be classified

in coarse and fine registration techniques depending on the way

of solving the registration: (a) in a closed-form solution from a

reduced set of points of interest obtained from surface features

and solving a global matching; (b) in an iterative minimiza-

tion solution using a sample of points and solving the match-

ing locally. Multi-view registration is a more difficult problem

and there are two strategies to solve the alignment: local (se-

quential) and global (multi-view). The sequential registration

of views does not give an optimal solution due to the accumula-

tion and propagation of errors. Besides, global registration tries

to distribute the registration errors evenly among all the views

but it is not suitable for on-line registration since all the views

are first required to initiate the registration. In this paper, we

propose a closing-the-loop technique for the on-line registra-

tion of sequence of views in which cycles are minimized once

detected preserving an optimal solution. The pair-wise registra-

tion is solved by using a variant of the point-to-plane technique

and cycles are minimized considering only the views involved

constricting the computing time.

The remaining of the paper is structured as follows. First, a

brief overview of registration techniques is presented in Section

2, discussing the pros and cons of the existing methods with

the aim of justifying our proposal. Then, Section 3 presents

our proposal including pair-wise registration, cycle detection

and cycle minimization. Experimental results provided by both

synthetic and real data are presented in Section 4. The article

ends with conclusions.

2. Overview of range image registration techniques

According to a recent study of the state-of-art concerning

surface registration techniques [7], all the existing methods

are classified in two main groups of techniques: (a) Coarse

Registration and (b) Fine Registration. In the following part,

pros and cons of these techniques are described and every tech-

nique is summarized.

Coarse registration techniques obtain a rough alignment by

means of finding correspondences between two surfaces. Most

coarse registration techniques are based on searching for points

(curves) in the second surface that are similar to points (curves)

in the first surface. Overall, there are only two different methods

to choose the interest points: (a) feature-to-points and (b) point-

to-features. The first selects points in the first surface that are

similar to a predefined feature [8,9]. In the second, some points

in the first surface are arbitrarily selected and characterized

considering the position of its neighbors and searched in the

second surface [10–12]. In both techniques, all points in the

second surface must be compared with the selected points to

establish correspondences. Once the correspondence problem

is solved, the Euclidean motion that aligns both surfaces is

computed in a closed-form solution.

Coarse registration techniques have two main drawbacks.

The long time required to solve the matching among points and

the poor quality of the registration. Hence, a fine registration

technique is usually applied a posteriori to improve the results

by minimization.

Fine registration techniques search for an accurate alignment

of two acquired surfaces by minimizing the distance between

both surfaces iteratively. Such distance is computed in each

iteration by means of temporal matching among points from

both surfaces. Overall, the existing techniques solve the tem-

poral matching using one of the following three approaches:

(1) point-to-point, in which correspondences are established by

searching for the points in the second surface that are closest

to a set of points in the first [13]; (2) point-to-plane, in which

the points in the second surface are computed at every step by

the intersection of a plane and a line. The line is defined by a

point and a vector, so that the point is a given point in the first

surface; and the vector is orthogonal to the surface defined by

a neighborhood around the given point. The plane is located

where that line intersects with the second surface and it is ori-

ented in such a way that the plane is tangent to that surface

[14]; and finally (3) point-to-projection, in which correspon-

dences are established between points in the first surface and

the points obtained by projecting the first points onto the sec-

ond surface using the point of view of the second surface [15].

Although point-to-projection is the fastest technique because

searching is avoided, results obtained are not very satisfactory.

Besides, point-to-plane provides the best results because it is

not influenced by local minima [12,16]. Despite the difficulty

in determining the intersection of a line with a cloud of points

in 3D, several authors have presented proposals to facilitate this

computation [17,18].

One-to-one alignment of views in a sequence causes a drift

that is propagated throughout the sequence. Hence, some tech-

niques have been proposed to reduce the propagating error ben-

efiting from the existence of cycles and re-visited regions and

considering the uncertainty in the alignment.

In order to minimize the propagating error, some authors have

improved their algorithms by adding a final step that aligns all
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the acquired views at the same time. This approach spreads one-

to-one pair-wise registration errors throughout the sequence of

views, known as multi-view registration [19].

Early approaches proposed the aggregation of subsequent

views in a single metaview which is progressively enlarged each

time another view is registered [14]. Here, the main constraint

is the lack of flexibility to re-register views already merged in

the metaview due to the greedy approach of the technique. In

1999, Pulli proposed an ICP1 relaxation method based on the

previous metaview approach but considering all the potential

alignments between views before proceeding with the multi-

view registration. In addition this method takes into account the

information of all the overlapping areas and the already regis-

tered regions can be analyzed again for further transformations

[20]. Later on, Nüchter proposed a global relaxation method

based on Pulli’s approach with the main difference that no iter-

ative pair-wise alignment is required. However the success of

this method drastically depends on the disposal of an accurate

initial estimation of the pose [21].

A different approach was proposed by Bergevin [22], who

presented a multi-view registration technique based on the

graph theory: views are associated to nodes and transforma-

tions to edges. Authors consider all views as a whole and

align all of them simultaneously. The same idea was proposed

later on by Silva [23], Huber [24] and Krishnan [25]. Besides,

Masuda presented a multi-view registration algorithm based

on the Matching Signed Distance Fields in which outliers are

automatically removed obtaining a more robust method [26].

Lu’s technique is based on cycle minimization, though the

relationship (edges) among views (nodes) are established prior

to minimization [27]. Overall, multi-view techniques suffer

two main drawbacks: (a) the whole set of 3D views has to be

acquired before the algorithm starts; (b) an accurate estima-

tion of the motion between views is needed as initial guesses

to ensure convergence. Thus, multi-view techniques are not

considered for on-line applications.

Few authors have faced the challenge of registering 3D views

in a sequence while they are acquired avoiding or at least con-

trolling error propagation. For instance, Sharp [28] proposed

the registration of pairs of consecutive views until a cycle is

found. Since only pair-wise registration is required, the method

becomes very fast. Here, the interest is in the way of distribut-

ing the motion (and hence the propagation error) among the

different views. The author proposed to use weights directly

related to the residue obtained in the pair-wise registration.

Actually, this is not very accurate especially in the pres-

ence of misalignments between end views in the cycle as a

matter of noise and object occlusions. In this case, the whole

motion of such a cycle is also distributed to all the views

increasing the error in the registration.

Finally, in the last few years, a photogrammetric technique

called Bundle Adjustment has increased popularity in the

computer vision community and it is growing in interest in

robotics. Bundle adjustment is the problem of refining a visual

reconstruction to produce jointly optimal 3D structures and

1 Iterative closest point.

viewing parameter (camera pose and/or calibration) estimates

[29]. Therefore, bundle adjustment techniques can be used in

both robot/camera localization and 3D mapping in many fields

such as camera calibration, robot navigation, and scene recon-

struction. Since bundle adjustment is a non-linear minimization

problem, it is solved by means of iterative non-linear least

squares or total squares methods such as Levenberg–Marquardt

or M-estimator techniques [7,30]. Although bundle adjust-

ment is commonly classified as a multi-view technique, some

authors have used it in consecutive pair-wise alignment as a

technique to reduce error propagation [31].

In summary, we conclude that methods based on the

metaview approaches present good results when initial guesses

are accurate and the surface to be registered does not have a

large scale. Otherwise, the method suffers a large propagation

error producing drift and misalignments and its greedy ap-

proach usually falls in local minima. The use of methods based

on graphs has the advantage of minimizing the error in all

the views simultaneously but these techniques usually require

a previous pair-wise registration step, whose accuracy can

be determinant in the global minimization process. Besides,

closing the loop strategies provide trustworthy constraints for

error minimization but require a huge amount of memory and

usually involve a high computational cost. Bundle adjustment

techniques provide good results in the presence of outliers, but

need a good enough initial guess and it is hardly used in large

robot missions or large scale objects.

All these pros and cons of the existing methods have been

considered to present a new surface registration technique

which is presented and discussed in the rest of the paper.

3. Registering a sequence of surfaces

This section describes the proposing method for continuously

registering a sequence of 3D views while they are acquired. The

method first aligns the consecutive views by means of point-to-

plane pair-wise registration. When a cycle is detected, a multi-

view technique is applied only in the views conforming to the

cycle leading to fast and accurate results and preserving the on-

line registration for many and varied applications (see Fig. 1).

3.1. Pair-wise registration

Pair-wise registration is divided into a first coarse registra-

tion to estimate an initial alignment, followed by a fine regis-

tration computed by means of minimization techniques. In our

case, views are acquired consecutively and a slight movement

between views is assumed. Slight movement is defined like the

movement that guarantees at least a 60% of overlapping with

consecutive views. We initialize fine registration considering

motionless views, avoiding the expensive computation required

to compute initial guesses and preserving a high accuracy, as

demonstrated in the following paragraphs and shown in the ex-

perimental results.

Point-to-plane has been chosen as the most suitable fine reg-

istration technique as discussed in the previous section. The

technique we propose is based on the fast variant proposed
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Fig. 1. Flow diagram of the proposed method.

by Park [18] from the original point-to-plane registration pro-

posed by Chen [14], although some modifications have been

implemented to increase accuracy, which are explained in the

following paragraph.

First, we remove the non-overlapping area of the present view

before this view is registered with the former. In theory, this area

is unknown because the movement is also unknown. However,

as the views are taken in a sequence with slight movements

between them, we can assume that points located in the center

of the view are good candidates for the matching. Besides,

most of the points located in the boundary of the surface might

be hardly matched. In consequence, the boundary area of the

present view is not considered in the fine registration step.

In fact, the bounding area coincides with the boundary in the

image formed by projecting the present view to the XY plane

of the camera (orthogonal to the focal axis), so the selection of

points to remove becomes very easy. In the image plane, the

bounding box is computed. A rectangle whose dimensions are

80% of the bounding box is centered to the image projection

and all points out of this rectangle are not taken into account

in the registration step.

Second, only a sample of the remaining points of the present

view is preserved for the fine registration. There are several

types of sampling: uniform sampling [26,32], random sampling

[33], and normal sampling [16], among others. Although sam-

pling is normally used to speed up the algorithm by selecting a

reduced set of points, sampling can be also used to increase ac-

curacy by selecting also the most appropriate points. Note that,

in smooth surfaces with even shape registration becomes dif-

ficult. In this situation, only a small percentage of points give

useful shape information. For instance, consider a flat surface

with two perpendicular cuts. If all the points are considered in

the registration, results are not accurate because of the low in-

fluence of points in cuts with respect to the rest of the points.

However, if the registration is done with a high percentage of

points on the uneven area, accuracy increases (see Fig. 2).

The goal of normal sampling is to select the most represen-

tative points to increase the quality of the registration. Hence,

all points are first transformed to a 2D normal space defined

by ! and " as follows:

! = a tan 2
(

nx,

√

n2
z + n2

y

)

,

" = a tan 2(ny, nz), (1)

where ! and " are the coordinates in the normal space, and nx ,

ny and nz are the three components of the normal vector of

each point. Then, every point is placed in a 2D grid. Finally

only one point from every grid cell is randomly selected, so that

a single point is chosen among all points with similar normal

vectors. These selected points actually conform to the reduced

set of points used to register the present surface. The percentage

of points that remains after the sampling step depends a lot on

the unevenness of such surface but tends to be between a 20%

and a 30% of the total points.

As stated before, the fine registration technique we propose is

based on the fast variant proposed by Park [18] from the original

point-to-plane registration proposed by Chen [14]. Here we use

a recursive method to compute the intersection between lines

and surfaces which is actually the main difficulty of the method.

Hence, initially the selected points of the previous view are

projected orthographically onto the XY plane of the camera.

A grid composed of 50 × 50 square cells is scaled so that it

contains the projection of all points. Second, a point p0 of the

current view is projected to such a grid, in whose cell we search

for the closest point obtaining the point qp0 in the previous

surface. The projection of point qp0 to the normal vector of

p0 defines a new point p1, which is actually an approximation

of the intersection. This approximation is refined recursively

by projecting new points pi until norm(pi − qpi
) is smaller

than a threshold (see Fig. 3). Finally, the process is repeated

for all the points conforming to the current view and a set of

correspondences is obtained.
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Fig. 2. Effects of sampling: (a) Original surface; (b) Random sampling; (c) Normal sampling.

Fig. 3. Strategy used to compute the intersection between the tangent plane

and the surface Sq along the orthogonal vector p̂. See Park [18] for a extended

review.

Once correspondences are established, minimization is ap-

plied to compute the motion between both surfaces (the previ-

ous and the current) as defined by Eq. (2).

f =
1

Np

Np
∑

i=1

∥mi − Rpi − t∥2, (2)

where Np is the number of correspondences; mi is the set of

points selected in the former view that have a correspondence in

the present view; pi are the correspondences of mi in the present

view; and R and t are the rotation matrix and the translation

vector that aligns both views, respectively.

Eq. (2) is minimized by means of quaternions [13] so that

R and t are refined iteratively. In each iteration, the correspon-

dences must be recomputed because initial correspondences are

not usually correct. The algorithm stops when: the mean of the

square errors (distances between correspondences) is smaller

than a given threshold; or the mean of the square errors does

not decrease.

Note that the views are registered consecutively, so that ev-

ery registered view is referenced with respect to the first by

means of the product of all the consecutive Euclidean motions

defined by the sequence of views. Hence, registration inaccu-

racies are propagated through the sequence. In the following

sections, we aim to minimize the propagation error by detect-

ing cycles and minimizing the views conforming the cycle all

together.

3.2. Cycle detection

Now the interest is to detect every time the scanner re-visits

the same object surface obtaining cycles of views that are used

to reduce the propagation error significantly.

Cycle detection complexity varies depending on whether

views are unorganized or views are acquired sequentially. In

the former, the relationship among views is unknown and each

view has to be registered to all the others to detect potential

links [34]. The problem is simplified when such relationship

is previously known [27]. However, in the latter, error propa-

gation requires a robust cycle detection method. Nüchter pro-

posed the registration of the last view to some of the already

acquired views to detect such cycles [35], in which such views

are selected based on some hypotheses concerning the laser

range and the sensor pose.

Note that once any two views are registered, the Euclidean

transformation between them is known and a link established.

These links form paths through the views in which the motion of

the scanner can be estimated from the product of the consecutive

Euclidean transformations. Hence, the translation vector of such

movement is considered, so that if this vector is smaller than

a threshold and the views are not neighbors, a potential cycle

is considered. The given threshold is computed dynamically

considering the object scale and the number of views forming

the potential cycle, so that the threshold increases proportional

to the propagation error.

However, a sequence of views with an overall slight trans-

lation does not always conform a cycle, especially when ro-

tation is relevant. Hence, the total rotation within the path is

computed, so that such rotation has to be close to identity to

consider the path like a cycle.

Finally, a cycle is detected if both end views also share a

common surface, that is a significant overlapping area.
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Fig. 4. Example of the projection of the bounding boxes of two different

views in the XY, XZ and YZ planes. The grey area represents the overlapping.

The accurate computation of the percentage of overlapping

would imply the fine registration between both end views and

the computation of corresponding points. In order to avoid this

expensive step, a fast technique is proposed based on the over-

lapping of bounding boxes, which is just an approximation of

the convex hull of both surfaces, but accurate enough to detect

cycles.

The bounding box of a given surface is defined as the mini-

mum parallelepiped that contains all the points of the surface.

The intersection of 3D bounding boxes is complex so that it is

alleviated by projecting such boxes to the planes XY, XZ and

YZ (see Fig. 4), defining two 2D bounding boxes in every plane

and thus computing three overlapping areas. If the maximum

of the three overlapping areas exceeds a given threshold of the

total area and the distance between both bounding box centers

is small enough, a cycle is considered.

The reason to choose the maximum overlapping value among

the three planes instead of the product of overlapping values

is in virtue of preserving the detection of potential cycles in

the presence of almost flat surfaces. In this case, the bounding

boxes in some of the three planes are usually not relevant.

3.3. Cycle minimization

Cycle minimization consists of a simultaneous minimization

of all the correspondences between points of all the views that

conform the cycle. In cycle minimization we assume that the

overall motion in the cycle is null and hence the position of

both end views coincides. This is actually impossible and that

is the reason why a virtual view is added between both end

views. This virtual view is nothing other than the first view of

the cycle registered to the last one. We can assume that the

overall motion in the cycle is null which means that the motion

between both end views must be zero.

The significant points for every view are used to search for

correspondences among all the other views in the cycle by us-

ing again our variant of the point-to-plane registration tech-

nique. This technique is based on the iterative minimization of

the distances between temporal correspondences. However, at

last iteration, temporal correspondences can be assumed to be

accurate correspondences.

A threshold in the relative motion between views is used to

ensure a significant overlapping area between views and hence

many point correspondences. Obviously, this decision leads

to a quite fast method without losing robustness. Otherwise,

the algorithm wasted a lot of time searching for correspon-

dences where it was known they are either not available or not

significant.

Finally, a Levenberg–Marquardt minimization is applied to

determine a more accurate registration among views in the cy-

cle. The minimizing parameters are the rotation matrices (rep-

resented as quaternion vectors) and translation vectors of the

Euclidean transformations between consecutive views. The

minimizing function is the sum of distances between point

correspondences because the distance between point corre-

spondences should be minimized, and hopefully may reach

zero, as shown in the following equation:

min

⎧

⎨

⎩

N−1
∑

i=1

N
∑

j=i+1

Np
∑

k=1

∥Pi(k) − T i
j × Pj (k)∥

+∥T
j
i × Pi(k) − Pj (k)∥

⎫

⎬

⎭

, (3)

where Pi(k) and Pj (k) are the points that configure the k cor-

respondence between views i and j; Np is the number of points

correspondences; N is the number of views; and T
j
i and T i

j

are the Euclidean motions that transform points from i to j and

from j to i, respectively, computed as follows:

T i
j =

j
∏

k=i+1

T k−1
k , (4)

and

T
j
i =

⎛

⎝

N−1
∏

k=j

T k
k+1

⎞

⎠ T N
1

(

i
∏

k=2

T k−1
k

)

, (5)

where j > i.

The closing-the-loop constraint #cr is added to the optimiza-

tion function in Eq. (3), where

#cr = #R + sf #T , (6)

where #R is the rotation constraint; #T is the translation

constraint; and sf is the scale factor that weights the trans-

lation constraint to be adequately compared to the rotation

constraint.
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The rotation constraint #R is

#R = sum(abs(Raccum − I3×3)), (7)

where Raccum is the product of all the rotation matrices con-

forming the cycle, and I3×3 is the identity matrix.

The translation constraint #T is

#T = norm(t), (8)

where t is the translation vector between both initial and end

views of the cycle, computed as follows:

[

R t

0 1

]

= Tcycle =

(

n
∏

i=2

T i−1
i

)

· T 1
n . (9)

The whole process leads to quite accurate results, but if they

are not good enough, they can be repeatedly refined by select-

ing new significant point correspondences at the end of every

refinement.

4. Experimental results

The proposed method has been implemented and compared

to one of the most similar methods present in the literature, the

method proposed by Sharp et al. in 2004 [28]. Both methods

have been tested under the same conditions in order to evaluate

their advantages and constraints. So, we have used the same

point-to-plane method to determine the motion between con-

secutive views.

A low-cost multi-slit laser acquisition system has been used.

The set-up is composed of an off-the-self camera, a 635 nm

laser emitter and an optical lens that spreads the laser beam

conforming 19 parallel planes. The depth field of the system

is in the range of 100 to 300 mm in the Z-axis of the cam-

era, which is limited due to system baseline, laser power, and

camera focus. The camera and the laser emitter conform the

one-shot hand-held 3D acquisition system especially developed

to test our proposal. The 19 parallel planes are projected onto

the measuring surface obtaining 19 profiles with subpixel ac-

curacy. 3D profiles are obtained by triangulation and finally

splines are used to interpolate a surface, increasing the sample

of points used in the registration process. Once the 3D sur-

face is acquired, the Delaunay triangulation is applied to obtain

triangles and hence estimate the normal vector at every sur-

face point which is used further on in the pair-wise alignment.

Fig. 5 shows an acquired image and the process of spline in-

terpolation. The reader is pointed to Matabosch [36] for more

details about the acquisition sensor.

The performance of our method has been compared to the

method of Sharp [28] both quantitatively and qualitatively. Our

cycle detection method has been used in both methods, so

they are tested in the presence of the same number of cycles.

Note that in the method of Sharp cycles are detected manu-

ally. Experiments and results are presented in the following

paragraphs.

4.1. Quantitative evaluation

Quantitative evaluation is analyzed from both synthetic and

real data. Synthetic data is obtained from the 3D synthetic

models courtesy of INRIA.2 A synthetic scanner has been

programmed to simulate the acquisition of a set of consecutive

views acquired by the one-shot hand-held scanner (see Fig. 6).

Here, the pose of the scanner for every acquisition is obviously

given by the simulator. So, the accuracy of the registration can

be precisely evaluated. The experiment is repeated adding some

Gaussian noise to the 3D points. In addition, a real object has

been placed on a motion-controlled table in which our one-shot

hand-held scanner has been attached (see Fig. 7). The object

is moved in three degrees of freedom (X, Y and Z) so that 29

consecutive views are acquired. In this case, the position of the

sensor is given by the mechanics of the table.

Parameters and thresholds used during this experiment are

reported in Table 1. Their value differs depending on the size

of the measuring object. NSSgrids specifies the number of cells

used in the normal space sampling grid. Intersectionerror is the

threshold used in the point-to-plane registration and it corre-

sponds to the maximum value of norm(pi −qi), so that a small

value increases registration accuracy but decreases the number

of correspondences, specially in case of important misalign-

ments. Concerning cycle detection, the first parameter fixes the

minimum number of views to consider a potential cycle. Trans-

lation error specifies in millimeters the maximum distance be-

tween both end-views in a cycle to be considered a potential

cycle. Overlapping area specifies the minimum overlapping re-

quired between both end-views of a potential cycle. Finally,

a scale factor is introduced in the cycle minimization step to

normalize translation and rotation errors.

In order to provide quantitative evaluation, the motion esti-

mated by registration has to be compared to the real motion

provided by the simulator or the 3D table in terms of both

translation and rotation. Rotation is represented as a directional

vector which can be easily extracted from any rotation matrix.

Then, the estimated rotation is compared to the known one. So,

the error is determined as the norm of the difference between

both axes of rotation. The translation error is defined as the

distance between the origin of the coordinate system estimated

by registration with respect to the known origin, which is the

norm of the difference between both translation vectors.

Additionally, the MSE (mean squared error) is computed.

For each point of the registered acquisition, the nearest point

in the set composed by the rest of acquisitions is found, deter-

mining a correspondence. The mean of all distances give us the

estimation of the discrepancy between registered views.

Finally, our proposed method and Sharp’s method are both

compared to the precise alignment in terms of accuracy so

that quantitative results are reported in Table 2 and Fig. 8. In

Table 2 we have also included a fast variant of our approach.

This fast variant differs only in the cycle minimization step, so

that the minimization uses the correspondences previously ob-

tained by the pair-wise registration avoiding the search for new

2 http://www-c.inria.fr/gamma/download/download.php

http://www-c.inria.fr/gamma/download/download.php
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Fig. 5. Acquisition examples: (a) Acquired cloud of points from the 19 slits; (b) Spline curve computation (in blue the acquired profiles, in red and black two

samples of splines); (c) Cloud of points obtained after spline sampling (in blue the original points, in red the new points computed).

matching among all the views in the cycle. Actually, matching

is one of the most expensive steps. So, the fast variant approach

consumes a computing time similar to Sharp’s approach but

preserves a good accuracy, as shown in Table 2.

Table 2 shows for every experiment the mean and the stan-

dard deviation computed from the set of rotation and translation

errors. Note that both methods obtain similar results when ac-

quisition noise is unimportant. When the acquisition noise be-

comes significant, pair-wise registration is not accurate enough

and hence Sharp’s approach distributes a large error in the cy-

cle. Besides, it is shown that our proposal obtains better results

in both synthetic and real data. A special attention requires the

results obtained when noise was 1.25% and 3.75%. In both

cases, pair wise registrations between both end-views of cycles

were not accurate enough. Such inaccuracies produce signifi-

cant errors in the method of Sharp that are minimized by our

method thanks to the multi-view registration performed inside

every cycle.

Fig. 8 presents the MSEs after register all views with our

robust method and Sharp’s method. Cycle detection algorithm

determines a cycle between views 1 and 23. Our robust method

obtained better results on these views. Sharp’s method obtains

good results results in the last view of the cycle, due to the

closing-the-loop constrain. However, inside the cycle, propaga-

tion error is not always correctly distributed through the views.

After view 23, all methods obtain the same results, because

there is no cycle, and results are directly obtained from the

pair-wise registration.
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Fig. 6. Left: Path described by the simulator to scan a synthetic object (Beethoven). Right: Some of the acquired synthetic images.

Fig. 7. Accurate motion-controlled table used in the quantitative evaluation.

Table 1

Quantitative experiment settings

Steps Parameter Beethoven Sun/moon

Pair-wise NSSgrids 2500 2500

Intersectionerror 0.3 6.0

Cycle detection Minimum number views 8.0 8.0

Translation error 7.0 15.0

Overlapping area 50% 50%

Cycle minimization Sf 1.0 0.1

4.2. Qualitative evaluation

In order to evaluate the performance of the methods, it is

also useful to observe the registration of a real object and

analyze it from a qualitative point of view. In this experiment,

the one-shot hand-held scanner is coupled to a FANUC

industrial manipulator. The manipulator describes a trajectory

so that a given object is scanned obtaining a sequence of views.

As the kinematics of the manipulator is known, the views can

be aligned without applying any registration and hence such

raw alignment is provided for comparison.

Note that the kinematics of the manipulator provides the

position of the robot hand H with respect to the coordinate

frame of the robot base R (see Fig. 9). Besides, registra-

tion is referenced with respect to the frame S of the camera

of the one-shot hand-held scanner. The rigid transforma-

tion between H and S is unknown and hence has to be first

estimated.

The computation of H TS is known as the eye-to-hand prob-

lem in the robotics community and it is based on solving equa-

tion AX = XB, where X is the matrix we are looking for. So,

X transforms points from the coordinate frame of the scanner

S to the coordinate frame of the hand H, A is the motion of the

hand between two different positions of the robot given by the

robot control system, and B is the motion computed by means

of triangulating the movement in the image of the one-shot

hand-held scanner.

There are several papers addressing the computation of AX=

XB [37,38]. In our case, we have acquired 10 views of a cal-

ibrating pattern and the X matrix is estimated by using the al-

gorithm of Shiu [38]. First, the algorithm determines a set of A

and B matrices from every view. Then, a system of equations

with the form AX − XB = 0 is defined and solved. Theoret-

ically X can be computed with only three views, though it is

more accurate to solve the equation of an over-determined sys-

tem by using singular value decomposition.

Once X is known, all views can be represented in the same

reference using the following equation:

WTS =
WTR × RTH × X, (10)
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Table 2

Quantitative results

Scene Our method Fast variant Sharp’s method

errorR errorT MSE errorR errorT MSE errorR errorT MSE

$ = 0 0.516 0.008 0.003 0.339 0.079 0.001 0.511 0.074 0.002

1.120 0.004 0.003 0.867 0.191 0.006 1.006 0.034 0.002

$ = 1.25% 0.675 0.154 0.004 1.177 0.459 0.006 2.225 4.403 0.026

1.115 0.305 0.005 1.388 0.265 0.006 1.385 1.196 0.051

$ = 2.5% 1.1286 0.4698 0.005 1.202 0.316 0.002 1.472 1.367 0.001

1.1905 0.2149 0.005 1.410 0.217 0.006 1.202 0.704 0.002

$ = 3.75% 0.246 0.056 0.003 1.552 0.875 0.007 2.601 3.485 0.026

0.732 0.024 0.002 1.169 0.425 0.006 1.134 2.106 0.046

$ = 5.0% 1.570 0.890 0.005 1.533 0.828 0.007 2.753 3.126 0.017

1.284 0.682 0.005 1.144 0.497 0.006 1.212 2.225 0.020

1.2804 5.063 0.334 1.3485 5.4103 0.389 1.3863 4.640 0.432

0.303 2.459 0.335 0.285 2.425 0.529 0.291 2.308 0.380

Both our original method and its fast variant are compared to the method of Sharp: errorR is the norm of the difference between both axes of rotation; errorT

is the norm of the difference between both translation vectors (distance between the points of origin of both coordinate systems); MSE is the mean squared

error. Every table cell indicates the mean (up) and standard deviation (down) of the error for a set of synthetic experiments varying the Gaussian noise ($)

and one experiment with real data. The synthetic object (Beethoven) consists in 48 views composed of about 5000 points per view and with the presence of 6

detected cycles. The real object (sun/moon) consists in 27 views composed of about 8000 points per view and with the presence of 1 detected cycle between

views 1 and 23.
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Fig. 8. Evolution of the MSE registration errors in the registration of the

real object (sun/moon). Scale of the measured object: 180 mm (width) ×

200 mm (height) × 56 mm (depth).

where WTS is the Euclidean motion that transforms points in S

to the world coordinate system W (used by the one-shot hand-

held scanner to refer 3D points), WTR is the Euclidean motion

that relates the world coordinate system W to the robot base R,
RTH is the motion given by the kinematics of the robot arm,

and X is the Euclidean transformation between the camera of

the one-shot hand-held scanner and the robot hand.

Fig. 9. Industrial manipulator used in experiments. The four coordinate frames

are represented: W (world), R (robot), H (Hand) and S (Scanner).

Now we can proceed with the experiment. The parameters of

that experiment are presented in Table 3. The manipulator has

been programmed so that an 8-shape trajectory is done over a

ceramic object acquiring up to 41 images and hence 41 3D par-

tial views of the object. Note that the trajectory ensures cycles

which will be used in the registration. First, all the views are

referenced with respect to the same frame by means of the X
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Table 3

Qualitative experiment settings

Steps Parameter Value

Pair-wise NSSgrids 2500

Intersectionerror 6.0

Cycle detection Minimum number views 8.0

Translation error 15.0

Overlapping area 50%

Cycle minimization Sf 0.1

matrix. Second, a volumetric integration algorithm is applied to

get a continuous surface [39]. Third, the sequence of views are

aligned according to: (a) the registration algorithm proposed

in this article; (b) the multi-view algorithm proposed by Sharp

[28]; and (c) the kinematics of the robot. Finally, any surface

smooth technique is applied to enhance the visualization. Qual-

itative results are shown in Fig. 10. Registration really improves

the alignment provided by the kinematics of the robot. Note

that the alignment directly obtained from the kinematics of the

robot suffers not only from inaccuracies given by the mechanics

but especially inaccuracies in the computation of X. Besides,

the experiment also shows that our approach provides a surface

with more details and less artefacts compared to the method

proposed by Sharp. Registration time is presented in Table 4.

These experiments are performed using Matlab 6.5 in a pentium

IV 2.6 GHz.

The acquisition system obtains the structure of the surface

with a single-shot and hence vibrations produced by a human

operator do not affect the acquisition. Actually, there is no dif-

ference in the obtained results performing the experiments by

a manipulator or by a human operator.

Fig. 10. Results of the registration: (a) Our method; (b) Sharp’s method; (c) Mechanical alignment; (d) Real object.

Table 4

Registration time

Method Time (s)

Robust 1192.47

Fast 900.69

Sharp 642.66

5. Conclusions

There are several techniques to register a set of views, though

most of them are based on the multi-view approach. In gen-

eral, multi-view techniques are constrained by the following

drawbacks: (a) all the views must be first acquired before the

aligning algorithm starts leading to off-line applications; (b)

guesses to roughly align the views are needed to initialize the

algorithm so that an expensive coarse registration technique is

needed; and (c) matching is searched among all the views with-

out considering neighborhood which is inefficient and comput-

ing intensive, especially in large data sets. Besides, multi-view

techniques are not suitable for registering views that form se-

quences and loops because of the error propagation problem.

This paper presents a new multi-view registration technique

which includes cycle minimization and it is updated in the

measure that new views are acquired. Although the technique

can be applied in short sequences of views, it is designed to

deal with large data sets and with the presence of multiple cy-

cles. First, a fast point-to-plane with normal space sampling

and non-overlapping area removal is applied between consec-

utive views to obtain an accurate alignment. Second, in the

measure that new views are acquired, the method searches for

cycles considering neighborhood and overlapping percentage.

Finally, once a cycle is detected it is minimized by means of

a Levenberg–Marquardt approach, so that the system always

ensures the most accurate global registration.
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Experiments with both synthetic and real data have been

overcome. Synthetic data has been downloaded from well-

known databases. A one-shot hand-held scanner composed of a

camera and a multi-slit laser emitter has been developed to ac-

quire real data. The scanner has been coupled to a commercial

manipulator to acquire sequences of views. Our approach has

been compared to: (a) the mechanical alignment provided by

the kinematics of the manipulator; and (b) the multi-view align-

ment method proposed by Sharp [28], which from our point

of view is one of the most similar. Results show from both a

quantitative and a qualitative point of view that our approach

provides a more accurate alignment.
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Abstract

Euclidean reconstruction from two uncalibrated stereoscopic views is achievable from the knowledge of geometrical con-

straints about the environment. Unfortunately, these constraints may be quite di"cult to obtain. In this paper, we propose an

approach based on structured lighting, which has the advantage of providing geometrical constraints independent of the scene

geometry. Moreover, the use of structured light provides a unique solution to the tricky correspondence problem present in

stereovision. The projection matrices are !rst computed by using a canonical representation, and a projective reconstruction

is performed. Then, several constraints are generated from the image analysis and the projective reconstruction is upgraded

into an Euclidean one—as we will demonstrate, it is assumed that the sensor behaviour is a"ne without loss of generality so

that the constraints generation is simpli!ed. The method provides our sensor with adaptive capabilities and permits to be used

in the measurement of moving scenes such as dynamic visual inspection or mobile robot navigation. Experimental results

obtained from both simulated and real data are presented.

? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Uncalibrated system; Projective reconstruction; Euclidean constraints; Structured light; Computer vision

1. Introduction

The perception of the three-dimensional structure of the

environment is an important task in computer vision. In mo-

bile robotics, it forms the basis of obstacle detection, map

building, scene analysis, etc. The challenge is to infer 3D in-

formation of a scene by starting from at least two images of

it [1]. From two images, the reconstruction is thus possible

but we need to calibrate the cameras, i.e. determining its op-

tical parameters and internal geometry (focal distance, prin-

cipal point, pixel adjustment) and its geometrical parameters

(position and orientation with respect to a reference frame).

The correspondence among the 3D object points and their

projections has to be established; the obtained matrix makes

∗ Corresponding author. Tel./fax: +33-3-22-82-76-68.

E-mail address: mouaddib@u-picardie.fr (E.M. Mouaddib).

possible to relate each point to its line of sight [2]. This tech-

nique is named hard-calibration and is carried out o#-line

by using a calibrating pattern whose 3D points co-ordinates

of interest are precisely known. This process has to be re-

peated each time that one of the parameters of the camera

is modi!ed. Hard-calibration is exclusively adapted to ap-

plications that keep the sensor unchanged during the mea-

suring process. Nevertheless, a visual adaptation to the en-

vironment is essential in the measurement of moving scenes

such as dynamic visual inspection or mobile robot naviga-

tion. Then, the visual adaptation permits to use a camera

with auto-focus (to increase the quality of the image), zoom

(to concentrate on relevant regions of the image) and aper-

ture (in case of illumination changes), which is the !rst step

to develop strategies of observation and/or exploration.

It is well known that the major drawback of stereoscopy

is the correspondence problem, i.e. the matching of homo-

logue points among the images. With the aim of reducing

0031-3203/03/$30.00 ? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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Fig. 1. The structured light system: (a) the geometrical principle; (b) the colour-encoded pattern.

this problem, coded structured light techniques have been

developed [3]. In a structured light system, the second cam-

era is replaced by a light source that projects a known pat-

tern of light onto the scene, as shown in Fig. 1a. Since a

projector can be seen as a camera acting in reverse, it can

be modeled in the same way a camera is.

Our pattern is composed by a set of vertical and horizontal

slits, uniquely colour-encoded in a single pattern projection

(Fig. 1b). The reader is pointed to Salvi et al. [4] to get

deeper into the pattern design. The coloured codi!cation

permits to solve the correspondence problem !nding out for

each imaged point, its corresponding point in the projecting

plane.

The main goal of this paper is, !rstly, to provide adaptive

capabilities to our structured light vision sensor and, sec-

ondly, to adapt the techniques of uncalibrated reconstruc-

tion to structured light. Our contribution is to demonstrate

how the projection of a grid of light and the analysis of the

coded images permit to generate Euclidean constraints for

a three-dimensional reconstruction of the scene and, more

generally, to show how to self-calibrate a structured light

sensor. It is assumed throughout the paper that the cam-

era and the projector behaviour can be approximated by an

a"ne model. However, no assumption on the scene geom-

etry is imposed, although a planar piece-wise environment

ensures a major number of constraints.

The next points summarize our approach:

• Extraction of the image points by a speci!c image pro-
cessing (see the section experimental results).

• Projective reconstruction from one view and one pattern
projection using the canonical representation.

• Automatic generation of constraints in order to reach an
Euclidean reconstruction of the scene.

This article is organized as follows. Section two presents

the related work about reconstruction methods that could be

adapted to a structured light system. Then, section three de-

tails the Euclidean reconstruction through structured light-

ing, which contains the major contribution of this paper.

Furthermore, section four deals with some experimental re-

sults considering both simulated and real scenes. The article

ends with conclusions.

2. Reconstruction and structured light system

This section goes deeper into what has been proposed on

structured light, taking advantages of the speci!cities of pro-

jection and pattern structure and considering that the princi-

ple of calibration is known. For instance, Salvi et al. [4] pro-

posed to model the projector like a camera acting in reverse.

First, they calibrate the camera by using a calibrating plane

and then an image of the projected pattern on the calibrating

plane is grabbed and used to get the 3D points to calibrate the

projector. Proesmans et al. [5] proved that the reconstruction

could be performed whether the angle between directions of

projection and capture is known, assuming an orthographic

model. This particular way to calibrate consists in observ-

ing a blank calibration pattern whose angle, made up by the

two planes that compose it, is precisely known. Sotoca et al.

[6] proposed a calibration method adapted to large surface.

Beforehand, the pattern is projected onto a base plane and

onto a reference plane and an image is grabbed for each of

these planes. By positioning the object to analyze between

these planes, the authors show that it is possible to obtain

a depth image through some simple calculations based on

the similarity of triangles. Finally, let us conclude by the

method developed by Huynh et al. [7] which has been pro-

posed for light plane projections but it can be generalized to

pattern projections. Four sets of three coplanar points, whose

coordinates are precisely known, are positioned on the two

planes of a calibration pattern, depicting four lines on it.

While the light plane intersects these lines, a fourth point

is obtained on each of them: the cross-ratio of these points

is equal to the cross-ratio of the images of these points. It
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provides a 3D measurement of the lighted traces fairly pre-

cise (up to the stability of cross-ratios). A classical calibra-

tion process is performed from these measurements.

Uncalibrated vision has generated an increasing num-

ber of publications since the end of the 1980s. Aware of

the drawbacks of hard-calibration for some applications in

which the sensor has to adapt its behaviour to the variations

of the environment and to the strategy of observation, many

authors looked into the problem that consists of inferring 3D

structure of the scene from the pixel coordinates only. It is

proved that an Euclidean reconstruction cannot be obtained

without calibrating but, at best, a projective one [2]; this re-

construction has to be constrained by means of additional

information or assumptions (about the intrinsic parameters,

the movement of the sensor, the scene geometry) to achieve

the self-calibration of the sensor, i.e. the Euclidean recon-

struction of the scene.

Koenderink and Van Doorn [8] can be regarded as pio-

neers. In 1989, they proposed a method which allows to

recover the a"ne scene structure from at least two images

of it, by using a shape invariant computed from a reference

plane. Later, Faugeras [2] and, independently, Hartley et al.

[9] proved that from a weakly calibrated sensor (i.e. which

epipolar geometry is known) a projective reconstruction is

possible. Mohr et al. [10] reached similar results through a

global estimation of the unknowns by minimizing the resid-

ual errors between image points and their back-projections.

However, these methods do not allow to compute the

Euclidean structure of the environment. With this aim,

Faugeras et al. [11] proposed a method that takes advantage

of the invariance under similarities of the absolute conic

(in other words, the image of the conic only depends on

intrinsic parameters of the camera). By such performing,

the authors have rediscovered the Kruppa equations. Be-

sides, Hartley [12] demonstrated that these equations could

be explicitly obtained through the singular value decompo-

sition of the fundamental matrix F. In order to solve them,

three fundamental matrices have to be computed, which are

given from a single displacement of the stereo head.

A second class of methods assumes that intrinsic param-

eters remain constant during the measuring process. A pro-

jective reconstruction is !rst performed. Then, the constancy

assumption leads to an equation solvable from three views

of the scene; the reader can refer to the work of Hartley

[13] or Heyden and Astr�om [14]. At last, if the constancy

of intrinsic parameters cannot be assumed, it is possible to

upgrade a projection reconstruction into an Euclidean one

by generating Euclidean constraints grabbed from the scene

geometry. Boufama et al. [15] pioneered this method; Zhang

et al. [16] later on proposed a similar method.

Some considerations have to be taken in mind when struc-

tured light is used. Any movement of the sensor, and partic-

ularly of the projector, produces a sliding of the projected

points on the observed surfaces. That is to say, the points

illuminated before the movement are di#erent than the ones

illuminated after the movement. As a consequence, stere-

ovision algorithms using more than two views cannot be

adapted to structured light vision. Besides, due to the het-

erogeneity of the sensor, composed by a camera and a pro-

jector, the constancy of intrinsic parameters cannot be as-

sumed either. Hence, methods based on Kruppa’s equations

and methods based on constant intrinsic parameters are un-

suited to structured light vision.

There is only one choice left: performing a projective re-

construction !rst and rectifying it by using Euclidean con-

straints grabbed from the scene geometry. It is shown in the

next section what kind of projective reconstruction method

may be used and how to generate constraints by using the

geometry of light patterns.

3. Uncalibrated reconstruction and structured light

system

This section details a method that permits to locate a point

in the three-dimensional space from a pair of uncalibrated

perspective views (which is equivalent to one view from a

camera and a known projected pattern). First, the method

performs a reconstruction in a projective frame. Then, the

reconstruction of the scene is transformed to an Euclidean

frame by using some a priori knowledge between the view

of the scene and the projected pattern, less restrictive than

point co-ordinates, such as parallelism, orthogonality, an-

gles, length ratio, and so on.

The following section presents the theoretical basis and

methods about the uncalibrated reconstruction adapted to

structured light. Then, Section 3.5 details the proposed al-

gorithm that describes the whole process.

3.1. Projective reconstruction

It is known, since the work of Luong and Vieville about

the canonical representation of the geometry of multiple

views [17], that it is possible to estimate the camera pro-

jection matrices from the knowledge of epipolar geometry.

Then, considering two 2D images (an image of the scene

and the projected pattern), we have:

Pproj = [M e]; P
′

proj = [I 0]

with M =−
1

∥e∥2
[e]

×
F; (1)

where F denotes the fundamental matrix and e the epipole of

the !rst image, P is the camera matrix and P′ the projector

matrix. Subscript proj denotes matrices, vectors or scalars

expressed in a projective frame, in contrast with eucl which

will denote matrices, vectors or scalars expressed in an

Euclidean frame.

Whereas FTe = 0, so that the coordinates of the epipole

are given by the eigenvector of the matrix FFT associated

with the smallest eigenvalue. Numerically, better results are

obtained by normalizing the epipole in the way that ∥e∥=1.
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Fig. 2. Reference frames and projection matrices for the projective

reconstruction.

This formulation satis!es the epipolar constraint and !xes

the projective basis on the camera frame; where the projec-

tion matrices are computed so that the 3D observed points

could be reconstructed with respect to that frame. We will

perform it in two steps: !rst, by a linear method, fast but

not accurate enough; then, by a non-linear method initial-

ized with the results of the linear method. We describe the

two steps in the following notations and reference frames

are depicted in Fig. 2.

3.1.1. Linear method

Given a pair of points in correspondence, m = [u v 1]T

and m′ = [u′ v′ 1]T, and their corresponding 3D point in

space Mproj = [x y z t]
T expressed in the projective frame,

it is obtained:

![u v 1]
T
= Pproj[x y z t]

T
(2)

!
′
[u

′
v
′

1]
T
= P

′

proj[x
′

y
′

z
′

t
′
]
T

(3)

where ! and !′ are two non-zero scale factors. Eliminat-

ing the scale factors and re-arranging equations (2) and (3)

yields to

QMproj = 0: (4)

Q is a 4× 4 matrix given by

Q= [p1 − up3 p2 − vp3 p
′

1 − u
′
p
′

3 p
′

2 − v
′
p
′

3]; (5)

where pi and p
′

i are the vectors corresponding to the ith row

of P and P′, respectively. AsMproj is de!ned up to a scale

factor, we can impose ∥M∥=1. The solution is given by the
eigenvector of the matrix QTQ associated to the smallest

eigenvalue.

3.1.2. Non-linear method

It seems di"cult, in the previous approach, to give a

good physical interpretation to the criterion that is mini-

mized. Besides, the accuracy of the results can be signi!-

cantly improved. A way to alleviate these drawbacks is to

use a non-linear iterative method of minimization. The error

to minimize is the di#erence between the observation and

the back-projection of the reconstructed points or residual

error; in other words:
(

u−
pT1Mproj

pT3Mproj

)2

+

(

v−
pT2Mproj

pT3Mproj

)2

+

(

u
′ −

p′T1 Mproj

p
′T
3 Mproj

)2

+

(

v
′ −

p′T2 Mproj

p
′T
3 Mproj

)2

: (6)

In practice, a traditional algorithm of minimization like

Levenberg–Marquardt is used [18]. The results provided by

the direct method are used to initialize the algorithm.

3.2. Towards an Euclidean reconstruction

It is known that the Euclidean geometry is a particular case

of the projective geometry. In other words, a collineation

exists which brings the solution to an Euclidean one. Finding

this collineation, it is thus possible to recover the Euclidean

structure of the scene.

Let us considerMproj , a point with projective co-ordinates,

and Meucl the same point with Euclidean co-ordinates.

Mproj =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

xproj′

yproj

zproj

tproj

⎞

⎟

⎟

⎟

⎟

⎟

⎠

; Meucl =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

xeucl

yeucl

zeucl

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

: (7)

The problem is to determine W such as

Meucl =W ·Mproj : (8)

With the aim of computing the collineation, geometrical

knowledge about the scene is translated into constraints on

the entries of W.

We have to !x a"ne or Euclidean constraints, which re-

ports geometrical properties of the scene extracted from the

images.W has 15 degrees of freedom; therefore 15 indepen-

dent and coherent constraints have to be found. Hereafter,

a non-exhaustive list of constraints with their mathematical

formulations is given and it is shown how the use of struc-

tured light leads to generate such constraints.

3.3. Euclidean constraints from grid coding

As described in Section 1, grid coding is the way a grid

of light is projected onto the scene to be analyzed. It is the

sub-class of structured light techniques that used a grid pat-

tern. It is shown in this section how geometrical knowledge

about the scene can be obtained analyzing the grid-coded

images. This knowledge can be used as constraints to bring

a projective reconstruction to an Euclidean one.

3.3.1. Plane detection in space

The elementary cell of a grid is a square. Each cell pro-

jected onto a planar surface is captured by the camera as a
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Fig. 3. Some of the geometrical constraints used in Euclidean reconstruction: (a) Parallelogram constraint; (b) Horizontal and vertical plane;

(c) Orthogonality.

quadrilateral. Quadrilaterals can theoretically either be cap-

tured as squares, rectangles, rhombuses, parallelograms or

trapezoids, depending on the position and orientation of the

camera and projector, and the planar surface observed. Al-

though quadrilateral detection within the image is not equiv-

alent to plane detection in 3D space (there are con!gurations

of curved surfaces that can yield quadrilaterals in the im-

age), it is quite probable that a quadrilateral within the image

corresponds to a plane in space: the equivalence is assumed

throughout the paper and, moreover, this can be veri!ed,

thanks to the test of coplanarity we propose in Section 4.1.

3.3.2. Parallelogram constraints

Assuming that the projector have an approximately a"ne

behaviour, we obtain that if a square is projected onto a

planar surface, the more generic quadrilateral formed on

the surface is a parallelogram. Furthermore, a parallelogram

captured by an a"ne camera forms a parallelogram onto the

retina. Hence, a parallelogram within the image corresponds

to the image of a parallelogram on a 3D plane. Geometrical

knowledge about the scene can thus be deduced.

Relative positioning of the four points A, B, C and D of

the parallelogram (see Fig. 3a) in space is such as

AB = CD; AC = BD; (9)

(AB)==(CD); (AC)==(BD): (10)

It leads to a redundant set of constraints on W . Besides,

knowing Eq. (11), parallelism constraints can be simpli!ed

as shown in Eqs. (11) and (12):

(AB)==(CD) ⇔

−→

AB

∥
−→

AB∥
=

−→

CD

∥
−→

CD∥
; (11)

(xB − xA)
2
+ (yB − yA)

2
+ (zB − zA)

2

=(xD − xC)
2
+ (yD − yC)

2
+ (zD − zC)

2
;

(xC − xA)
2
+ (yC − yA)

2
+ (zC − zA)

2

=(xD − xB)
2
+ (yD − yB)

2
+ (zD − zB)

2
; (12)

(xB − xA) = (xD − xC); (yB − yA) = (yD − yC); (zB − zA)

= (zD − zC);

(xC − xA) = (xD − xB); (yC − yA) = (yD − yB); (zC − zA)

= (zD − zB): (13)

Since projective geometry keeps unchanged the alignment

and the coplanarity, Eqs. (12) and (13) determine the same

con!guration of points (redundant constraints). Note that a

parallelogram completely determines a 3D plane. Therefore,

for each plane composing the scene, a unique set of paral-

lelogram constraints is su"cient.

Now, let us consider the two con!gurations of points

shown in Fig. 4. Whether the points oi, pi, qi, ri and si
(i=1 or 2) are projected onto a plane, the cross-ratio within

the pattern is equal to the c ross-ratio of the !ve points

formed onto this plane; moreover, the cross-ratio of the

homologue points within the image is equal to both. The

change from projected points to imaged points is obtained

by two successive homographies. It can be deduced that if
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Eq. (14) is veri!ed, the corresponding object points O, P,

Q, R and S are coplanar.

{oi;pi ; qi ; ri ; si}= {o′i ;p
′

i ; q
′

i ; r
′

i ; s
′

i} with i = 1 or 2:

(14)

3.3.3. Horizontal and vertical plane

If a point P belongs to the horizontal plane passing

through the origin, then zP = 0, which permits to obtain the

following linear constraint (Fig. 5):

w31xP′ + w32yP′ + w33zP′ + w34tP′ = 0: (15)

Replacing w3i by w2i or w1i, the homologue constraints

for yP=0 or xP=0, respectively, are expressed. Noting that

each projected horizontal line of the pattern generates a light

plane in space, which can be considered as a 3D horizontal

plane in the projector co-ordinate system (see Fig. 3b). And

each projected vertical line of the pattern generates a light

plane in space, which can be considered as a vertical 3D

plane in the projector co-ordinate system (considering either

an a"ne or projective camera model). Their corresponding

lines captured by the camera can be used to generate such

kind of constraints. Indeed, what it is imaged by the camera

are the intersections of the projecting planes of light with

the scene surfaces, therefore points belong to horizontal or

vertical planes.

Furthermore, an arbitrary distance can be set between

two successive horizontal or vertical planes. If the distance

between two points A and B is assumed to be d. Then,

(xA − xB)
2 + (yA − yB)

2 + (zA − zB)
2 = d2 and, as a conse-

quence, the following non-linear constraint is obtained:

(

w11xA′ + w12yA′ + w13zA′ + w14tA′

w41xA′ + w42yA′ + w43zA′ + w44tA′

−
w11xB′ + w12yB′ + w13zB′ + w14tB′

w41xB′ + w42yB′ + w43zB′ + w44tB′

)2

+

(

w21xA′ + w22yA′ + w23zA′ + w24tA′

w41xA′ + w42yA′ + w43zA′ + w44tA′

−
w21xB′ + w22yB′ + w23zB′ + w24tB′

w41xB′ + w42yB′ + w43zB′ + w44tB′

)2

+

(

w31xA′ + w32yA′ + w33zA′ + w34tA′

w41xA′ + w42yA′ + w43zA′ + w44tA′

−
w31xB′ + w32yB′ + w33zB′ + w34tB′

w41xB′ + w42yB′ + w43zB′ + w44tB′

)2

= d
2
: (16)

This constraint permits to assign a metric to the 3D space.

It is possible to give an arbitrary value to d but the recon-

struction will be achieved up to a scale factor.

Without particular knowledge, a plane can be arbitrarily

chosen as a horizontal or vertical plane; in this case, the
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reconstruction will be performed up to a rotation and a trans-

lation along the z-axis.

3.3.4. Fixing the origin

If the Euclidean co-ordinates of a point p in space are

known, it is obtained that

xp =
w11xp′ + w12yp′ + w13zp′ + w14tp′

w41xp′ + w42yp′ + w43zp′ + w44tp′
;

yp =
w21xp′ + w22yp′ + w23zp′ + w24tp′

w41xp′ + w42yp′ + w43zp′ + w44tp′

zp =
w31xp′ + w32yp′ + w33zp′ + w34tp′

w41xp′ + w42yp′ + w43zp′ + w44tp′
: (17)

Then, these equations give three linear constraints. As we

said before, this knowledge is barely available; nevertheless,

we can !x the origin of the Euclidean co-ordinates frame

by equaling these equations to zero. The cross-point (which

appears in the image as the intersection of two light stripes)

of the planes y= 0 and x= 0 is considered to be the origin

of the Euclidean co-ordinate frame.

3.3.5. Orthogonality constraint

Orthogonality is an important feature in Euclidean recon-

struction. The detection of orthogonal planes permits to de-

!ne, at least partially, a 3D Euclidean frame of the scene.

Let us consider again an a"ne model for the projector. The

projection of a line produces a light plane in space. The pro-

jection of two orthogonal lines (AB) and (AC) produces two

orthogonal light planes (Fig. 3c). When the projecting light

planes intersect planar surfaces, they produce light stripes

on them which will be imaged by the camera. We have

thus two lines (A′B′) and (A′C′) in space, which belong

to orthogonal planes. Since A′ and B′ belong to the same

horizontal plane and A′ and C′ belong to the same vertical

plane, considering the world co-ordinate system is !xed at

the projector, it is obtained

xA′ = xB′ ; yA′ = yC′ ; (18)

−−→
A
′
B
′ ·

−−→
A
′
C

′
= (xA′ − xB′)(xA′ − xC′)

+ (yA′ − yB′)(yA′ − yC′)

+ (zA′ − zB′)(zA′ − zC′)

= (zA′ − zB′)(zA′ − zC′): (19)

So

(A
′
B
′
) ⊥ (A

′
C

′
) ⇔ zA′ = zB′ or zA′ = zC′ : (20)

If the conditions imposed by (21) are satis!ed, we obtain

an orthogonality constraint, otherwise we obtain a reduced

orthogonality constraint:

(xA′ − xB′)(xA′ − xC′) + (yA′ − yB′)(yA′ − yC′) = 0:

(21)

3.4. Resolution of the system

The projective reconstruction is !rst performed by

solving the set of equations (1) previously described. In

a least-squares optimization, it leads to minimize the

following error:

(Â; P̂) = argmin
A;P

(p− AP)TC−1
(p− AP); (22)

where Â and P̂ are the estimated values of A and P, respec-

tively; and C is the covariance matrix. As the location of

points within the images is the major factor of noise, all the

other factors are neglected. Then, C is a diagonal matrix

and its elements are all equal to the variance since imprecise

location induces decorrelated noise.

The Levenberg–Marquardt algorithm [18] is used to solve

this set of non-linear equations. As 3D points and projective

matrices can only be known up to a scale factor, a scale

constraint must be added for each point and each matrix in

order to lead to a unique solution. Eq. (23) is the constraint

for points and Eq. (24) for matrices:

x
2
i + y

2
i + z

2
i + t

2
i − 1 = 0; (23)

m
( j)
34 = 1; j = 1; : : : ; s: (24)

Once the projective reconstruction is performed, the

matrix W has to be estimated to obtain the Euclidean re-

construction. The Levenberg–Marquardt algorithm is also

used. Equations which should be minimized are the ones

that provide Euclidean constraints (Eqs. (14)–(18) and

(22)). The scale constraint that has to be added is given by

Eq. (25).

∑

i; j

(wij)
2
= 1: (25)

3.5. Algorithm

Let us now summarize the steps that are necessary to

perform an Euclidean reconstruction without any a priori

knowledge about the observed scene, but a single image.

1. Image processing

Input: camera image and projected pattern

Output: the two sets of matched points (Uij , Vij , the

co-ordinates of the ith point in the jth image)

• Segmentation and decoding.
• Solve the correspondence problem decoding the pattern.

2. Projective reconstruction (Section 3.1):

Input: matching points

Output: 3D reconstructed points in a projective frame

• Estimation of the fundamental matrix.
• Estimation of the projection matrices.
• 3D reconstruction by linear method.
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• 3D reconstruction by iterative method (using the previous
method as initialization).

3. Euclidean reconstruction:

Input: 3D projective points and projection matrices, seg-

mented and decoded lines and cross-points.

Output: 3D reconstructed points in a Euclidean frame.

• Fix an arbitrary point as the origin of the world co-ordinate
system (Section 3.3.4)

• Fix the horizontal (in the pattern) line to which it belongs
as the y = 0 plane in space (Section 3.3.3).

• Fix the vertical (in the pattern) line to which it belongs
as the x = 0 plane in space (Section 3.3.3).

• Extract parallelograms within the image and generate par-
allelogram constraints, if the test of coplanarity is ok (Sec-

tion 3.3.2).

• Extract crossing lines within the image and generate (re-
duced) orthogonality constraints (Section 3.3.5).

• Fix an arbitrary distance d between two points in space
(Section 3.3.5).

• Compute the collineation in order to upgrade the projec-
tive reconstruction into Euclidean one (Section 3.2).

4. Experimental results

First of all, the stability of cross-ratio is discussed in order

to evaluate the e"ciency of our test of coplanarity and some

results are presented. Then, experiments on reconstruction

have been performed with simulated data. A set of 3D points

is !xed with respect to a world co-ordinate system and these

points are observed by two virtual cameras. Five of these

points are chosen as the reference basis; all the other ones

are reconstructed using the method previously described, i.e.

by using only their pixel coordinates and the matching in

both images. Euclidean reconstruction by adding geomet-

rical constraints is obtained and results validated. Further-

more, we have performed the reconstruction method with

real images using our structured light sensor. In the follow-

ing, we detailed the implementation of the algorithm and

we summarize the experimental results obtained. Quantita-

tive results are given for the experiments performed with

simulated data; since we do not have reliable measurements

of the real scenes, only qualitative results are given for the

experiments with real data.

All the experiments have been performed by using Mat-

lab, so time consuming is not very signi!cant. The test of

coplanarity and the linear method for projective reconstruc-

tion, based on matrix algebra, are achieved in less than one

second. In contrast, the Euclidean reconstruction (i.e. the

Levenberg–Marquardt algorithm) is performed in a few

iterations (from 5 to 20, depending on the Euclidean

constraints), that is, in a few minutes. Of course, by pro-

gramming the algorithm in C/C++ code, it is possible to

considerably improve time consuming (a set of non-linear

equations can be solved in less than one second

in C/C++).

4.1. Test of coplanarity

We have tested the stability of the cross-ratio for the con-

!gurations of points required by the test of coplanarity. We

took !ve points separated by the distance d (on Fig. 4, d

is the distance o1p1; o2p2, etc.) A gaussian noise, varying

from 0 to 0:5× d, is added on the points co-ordinates. The
results are depicted by Fig. 6. The left part shows the sta-

bility of cross-ratio with a noise of ±5% for 100 computed

values (theoretically, cross-ratio is 2 in this example). The

right part shows the evolution of the error against the noise

level (which depends on d).

To be able to compare the theoretical cross-ratios with the

cross-ratios computed from the images (i.e. to compute the

error) we used a projective distance based on the method

of the random cross-ratios, detailed in Ref. [19]. The tol-

erance error is empirically !xed to 5 × 10−3. Under these
conditions, a noise up to 15% is allowed to well discrimi-

nate con!gurations of coplanar points. Obviously, as it can

be deduced from the results of Fig. 6: the larger the distance

d is, the more robust the measure of cross-ratio will be. The

left part of Fig. 6 shows that, with a moderate noise (±5%),
the measured cross-ratio is very near to the theoretical one.

Hence, the stability of cross-ratio is good enough for appli-

cations of uncalibrated reconstruction.

We have tried out the test of coplanarity by performing

three experiments. In the !rst one, a planar con!gura-

tion of points is detected (theoretical cross−ratio = 2,

measured cross−ratio=1:96, projective error=2:2×10−3).
In the second one, the pattern is projected onto an irregular

surface and the test classi!es these points as non-coplanar

(theoretical cross−ratio=2, measured cross−ratio=2:186,
projective error = 5:9 × 10−3). Finally, in the last ex-

periment, the points are projected onto a cube corner

(clearly not coplanar) and the points are well-classi!ed

(theoretical cross−ratio=2, measured cross−ratio=2:2055,
projective error = 9:9 × 10−3). As this test is only

based on cross-ratio computing, its time computing is

near-instantaneous.

4.2. Simulated data

4.2.1. Five known points

It is assumed here that !ve points of the scene are taken

as landmarks whose Euclidean co-ordinates are known. Let

us assume that the camera is set at the origin of the world

co-ordinate system. Only four independent parameters have

to be estimated in order to obtain the projection matrix of the

camera. The co-ordinates of the principal point are initialized

with the co-ordinates of the geometrical image centre. The

3D point co-ordinates are initialized as the co-ordinates of

the barycentre of the points to be reconstructed. Obviously,

with simulated data and no noise, the discrepancy between
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Fig. 6. Cross-ratio stability. 100 computations with a 5% noise level (left) and measuring error with a noise varying from 0% to 50% (right).

the real 3D points and the reconstructed 3D points is nearly

zero. The error is due to round o# in digital computation.

So, in order to analyze the robustness of the method, noise

is added on pixel co-ordinates. In a structured light system,

the projected image is perfectly known so that error is not

present when the point co-ordinates are measured. Then,

noise is only added on the pixel co-ordinates of the camera.

The reconstruction was performed on 40 points. Table 1

presents the result for 10 of these 40 points with a uniform

noise of ±1%.
It has to be noticed that using !ve known 3D points re-

sults degrade quickly. This method appears to be very sen-

sitive to the location of the !ve points used as landmarks:

better results are obtained if no noise is added on landmarks

co-ordinates even if noise is added on the co-ordinates of

the rest of points.

4.2.2. Euclidean constraints

The reconstruction is performed in two steps: a pro-

jective reconstruction assigning the reference points to an

arbitrary projective basis and then an Euclidean reconstruc-

tion performed from the previous projective reconstruction

to which geometrical knowledge about the scene is added.

Projective reconstruction provides projection matrices and

3D co-ordinates with respect to a projective frame. In or-

der to validate this reconstruction, the 3D co-ordinates are

back-projected onto the image planes through the projec-

tion matrices and the residual error is evaluated (see Fig. 7,

where projection parameters are given by Pproj and P
′

proj).

Our conclusion is that projective reconstruction performed

well in most cases. However, in order to ensure conver-

gence of the algorithm, the relative positioning of the 3D

points must correspond more or less to the con!guration of

the chosen basis i.e. the Euclidean reference points must be

in adequacy with the projective co-ordinates given to them.

We have used di#erent Euclidean constraints as !x-

ing the origin, parallelism, distance, etc. Re-scaling and

re-positioning the computed reconstruction, it is possible

to validate Euclidean reconstruction. In a representative

example of our experimental results, we found that mean

absolute error is less than 8 mm and max absolute error

is about 45 mm; the standard deviation is 7.42, 4.76, and

27:08 mm for, respectively, the x-, y- and z-component.

The range of each component is [100; 1000 mm] for x,

[− 400; 1000 mm] for y and [500; 4000 mm] for z.

4.3. Real data

Hereafter, we present some results achieved from real

images. The image processing method is described in Ref.

[20]. Let us recall the key points. The original coloured

image is !rst converted into the CIE-Lab space. Within

the L-image, a self-adaptive thresholding is performed, fol-

lowed by a morphological squeletization, a Hough trans-

form and the recovering of intersecting points. Within the

ab-image, a process to determine the projected colours from

the apparent ones is performed which permits to decode the

pattern.

The structured light system is composed by an RGB

camera, a computer and an electronic slide projector. The

coloured pattern is shaped in a 512×512 RGB image which
is projected on the measuring scene using the projector, and

the scene is then captured by the camera into the computer

memory. The reader is pointed to Refs. [4,20] to focus on

pattern segmentation and decoding.

In the following, we go on to the reconstruction results,

giving some qualitative results.

4.3.1. Scene I

The scene is composed by three geometric and achromatic

objects illuminated by the coloured pattern, as shown in

Fig. 8. We proceeded in two steps: !rst a projective re-

construction using the canonical representation, and then a

Euclidean reconstruction by adding constraints obtained
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Table 1

Errors on reconstruction with uniform noise ±1

Real co-ordinates Errors on estimate co-ordinates

X Y Z %X %Y %Z

100 −50 4000 0.518 −0:267 3.95

300 −50 2000 −0:65 −0:242 −1:5

700 −50 4000 0.614 −0:33 6.43

500 −400 4020 −1:132 −1:768 −4:332

300 50 4000 0.091 0.397 2.597

500 50 2000 0.076 −0:119 0.449

900 50 4000 0.13 0.171 2.007

300 −430 3000 0.505 −0:911 5.079

450 75 2500 0.76 −1:154 4.016

705 −120 1000 0.603 −0:827 0.829

Mean relative error (%) 0.518 1.539 0.169

Standard deviation 0.610 0.655 3.222
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Fig. 7. Validation of the projective reconstruction, left and right image planes. Circles represent real image points and crosses represent

projectively reconstructed ones.

Fig. 8. Structured lighted image of the !rst scene.

from image analysis (note that, at the time, the constraints

are generated manually).

In Fig. 9, we present the back-projection of the projec-

tive reconstruction onto the image plane and the projec-

tor plane obtained with the linear method (through Pproj
and P′

proj). Circles represent the real 2D points and crosses

the back-projected ones. The projection matrices and the

3D projective points computed with the linear method are

used as initializations for the iterative method: the results

are clearly improved as shown in Fig. 10 and quanti!ed in

Table 2 (this time Pproj and P
′

proj are given by the non-linear

method). The maximum absolute 2D error is 3.069 pixels

and the mean absolute 2D error is 0.204 pixels in the pro-

jector plane and 2.715 pixels and 0.169 pixels, respectively,

in the image plane.

At this point, the projective reconstruction is validated

(the point 2 in Section 3.5 is performed). We now have to
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Fig. 9. Back-projection of the linear reconstruction method. Image plane (left) and projector plane (right).

Fig. 10. Back-projection of the non-linear reconstruction method. Image plane (left) and projector plane (right).

Fig. 11. Two views of the reconstructed scene (I).
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Table 2

Residual 2D error

Max. absolute Mean absolute

error (pixels) error (pixels)

Linear Camera 50.084 18.428

method Projector 88.143 32.751

Iterative Camera 3.069 0.204

method Projector 2.715 0.169

rectify it into the Euclidean space by following the steps of

point 3 in Section 3.5: !x the origin, !x horizontal and ver-

tical planes, generate parallelogram and orthogonality con-

straint, !x an arbitrary scale factor, etc. The results obtained

are shown in Fig. 11. It can be seen that the three objects

are globally well-reconstructed. Parallelism and orthogonal-

ity are recovered with a su"cient precision and proportions

seem to be preserved.

4.3.2. Scene II

The goal of this experimentation is to validate the recon-

struction method on a more realistic scene. The one shown

in Fig. 12 is grabbed under real conditions of illumination;

its size is about 1 m × 1 m. It is in an o"ce environment,
the image has been shot under the desk.

The highlighted lines of the !gure have been recon-

structed; the results are presented in Fig. 13. An arbitrary

metric has been assigned, parallelogram and orthogonality

Fig. 12. Structured lighted image of the second scene.

constraints have been generated. Vertices of highlighted

polygons are the reconstructed points and the lines which

compose it show the geometrical constraints (parallel lines

give parallelism constraints, orthogonal lines give orthogo-

nality constraints, etc.)

Similarly to the previous scene, it can be noticed that par-

allelism and orthogonality are satisfactorily reconstructed,

as well as the image proportion.

5. Conclusions

This article presents a method to perform Euclidean re-

construction from an uncalibrated structured light sensor

independently of the scene geometry, by assuming that the

sensor behaviour is a"ne or that it can be approximated by

an a"ne camera model. Through pixel correspondences and

without knowing neither extrinsic nor intrinsic parameters

of the sensor, a projective reconstruction is !rst computed

by choosing !ve arbitrary points of the scene as a reference

frame. Such a reconstruction is only possible up to a projec-

tive transformation, which depends on the world reference

frame that it has been chosen. Since Euclidean geometry is a

particular case of projective geometry, a collineation exists

which brings projective reconstruction to Euclidean recon-

struction. This collineation can be assessed by translating

geometrical information about the scene into constraints on

the elements of the collineation matrix. Besides, we show

that projecting a known grid pattern of light onto the scene

permits to retrieve intrinsic geometrical knowledge about

this scene as parallelism and orthogonality. The major
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Fig. 13. Two views of the reconstructed scene (II).

contribution of the paper is to show that structured light

can be used to deduce geometrical constraints of the

scene, which are used to reconstruct the scene without any

previous calibration. As no constraint is required on the

projection matrices, this approach allows us to reconstruct

without considering potential change of the focus, the aper-

ture and the zoom of both the camera and the projector.

Structured lighting permits to ensure there is known scene

structure which can be used to upgrade the reconstruction

to Euclidean and provides numerous constraints which

are useful for the convergence of non-linear optimisation

methods as Levenberg–Marcquardt algorithm.

Experimental results validate the method. However, the

automation of the whole process is necessary. A particu-

lar care has to be taken in image segmentation, e.g. straight

lines, parallels, crossing lines and parallelograms must be

accurately extracted from the image. As a further work, we

intend to automate the constraints generation, that is, to for-

mulate them mathematically and to solve them from the

image segmentation and decoding.

6. Summary

This paper deals with uncalibrated reconstruction through

structured lighting. In a structured light system, unlike clas-

sical stereovision, the second camera is replaced by a light

source that projects a known pattern of light onto the scene.

The main goal of this work is to provide adaptive capabili-

ties to this kind of sensor which allows to use it in mobile

robotics or dynamic visual inspection. First, we present a

survey of the most relevant techniques of uncalibrated recon-

struction. It is shown that, due to the fact that any movement

of the light source produces a movement of the pattern (i.e.

of the 3D points), the reconstruction has to be performed

from a single camera shot and a single pattern projection.

Thus, we !rst focus on a projective reconstruction method

based on the canonical representation of views, which re-

quires only pixel correspondences, one view and one pattern

projection. The reconstruction is performed in a projective

frame, up to a projective transformation.

An Euclidean reconstruction can be recovered from

a projective one since Euclidean transformations are a

sub-group of projective transformations. In other words,

there exists a collineation matrix which permits to pass

from projective to Euclidean. This matrix can be assessed

by constraining its entries with geometrical knowledge

grabbed from the scene. We describe how the pattern

projection is used to acquire geometrical knowledge

as parallelism, orthogonality, horizontality and verti-

cality. Moreover, structured lighting permits to ensure

there is known scene structure which can be used to

upgrade the reconstruction to Euclidean and provides

numerous constraints which are useful for the conver-

gence of non-linear optimisation methods as Levenberg–

Marcquardt algorithm. Experimental results, performed

both on simulated and real data, are presented and

discussed.
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