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Measurement of three-dimensional mirror parameters
by polarization imaging applied to catadioptric

camera calibration
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Abstract. We present a new efficient method for calibration of cata-
dioptric sensors. The method is based on an accurate measurement
of the three-dimensional parameters of the mirror through polariza-
tion imaging. While inserting a rotating polarizer between the cam-
era and the mirror, the system is automatically calibrated without
any calibration patterns. Moreover, this method permits most of the
constraints related to the calibration of catadioptric systems to be
relaxed. We show that, contrary to our system, the traditional meth-
ods of calibration are very sensitive to misalignment of the camera
axis and the symmetry axis of the mirror. From the measurement of
three-dimensional parameters, we apply the generic calibration con-
cept to calibrate the catadioptric sensor. We also show the influence
of the disturbed measurement of the parameters on the reconstruc-
tion of a synthetic scene. Finally, experiments prove the validity of
the method with some preliminary results on three-dimensional
reconstruction. © 2008 SPIE and IS&T. !DOI: 10.1117/1.2958290"

1 Introduction

Conventional perspective cameras have limited fields of
view that make them restrictive in some applications such
as robotics, video surveillance, and so on. One way to en-
hance the field of view is to place a mirror with a surface of
revolution in front of the camera so that the scene reflects
on the mirror omnidirectionally. Such a system, comprised
of both lenses !dioptric" and mirrors !catoptric" for image
formation, is called catadioptric. Several configurations ex-
ist, those satisfying the single-viewpoint constraint are de-
scribed in Ref. 1.

Catadioptric vision systems available on the market have
been extensively studied. Commercial devices are not
adapted to our requirements, because optical components
need to be placed between the camera and the mirror. Mir-
rors have therefore been produced in our own facilities

thanks to the Plateform3D Department.32 A high-speed ma-
chining center has been used to produce a very high-quality
surface, which is polished after production.

We developed a new approach for calibrating catadiop-
tric sensors by polarization imaging. This method enables
the calibration of any mirror shape, since it is based on the
measurement of three-dimensional parameters such as
height and normal orientations of the surface. The only
constraint is that an orthographic camera has to be used. To
calibrate the system, we apply the generic calibration con-
cept developed by Ramalingam and Sturm.2,3

The paper is structured as follows. Section 2 recalls pre-
vious work on paracatadioptric calibration, since the mea-
surement of the surface normals by polarization imaging
induces orthographic projection, and most of the calibration
methods developed for catadioptric systems rely on the
single-viewpoint constraint. We show the misalignment
sensitivity of these methods for the reconstruction of a syn-
thetic scene. Then, after presenting some basic knowledge
about polarization imaging, we detail in Section 3 how to
calibrate the sensor with the generic calibration concept. In
Section 4, we present simulations to illustrate the influence
of the parameter measurement on the quality of the recon-
struction. Preliminary results on a calibrated spherical mir-
ror are also described. The paper ends with a conclusion
and a few words about future work.

2 Calibration of Catadioptric Cameras
2.1 Previous Work
The most obvious calibration method that can be used is an
approach based on the image of the mirror’s bounding
circle.4,5 It has the main advantage of being easily auto-
mated, but the drawbacks are that the surface mirror has to
be very accurate and the mirror boundary has to accurately
encode the intrinsic parameters. Other self-calibration
methods can be found.6,7 Another approach of calibrating
catadioptric sensors is to use geometric invariants on the
image such as lines or circles.8–11 Finally, the sensor can
also be calibrated by using some calibration patterns with
control points whose 3D world coordinates are known.12–16
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Since our approach requires a telecentric lens, we recall
some methods devoted to paracatadioptric camera calibra-
tion !the single-viewpoint constraint involves a telecentric
lens and a paraboloidal mirror". In this case, the more ro-
bust methods are based on the fitting of lines projected onto
the mirror.8,17,18 This approach also has some shortcomings:
Lines have to be precisely detected and the optical axis of
the camera is assumed to be aligned with the symmetry axis
of the paraboloid. To illustrate the misalignment effect, the
three-dimensional reconstructions of a synthetic scene
based on calibrations using the three preceding methods are
simulated !Fig. 1".

The scene represents a room of size 500!500
!250 cm with elements such as windows, doors, and a
table. Three images of the catadioptric sensor are used to
triangulate the points of the scene. For the calibration pro-
cess, 20 lines are computed and perfectly detected on the
mirror. Then the calibration parameters are used to recon-
struct the scene, according to the linear-eigen method.19 As
presented in Fig. 2, the misalignment of the paracatadiop-
tric system leads to the introduction of an important error
on the reconstruction even if the calibration is performed
with perfect line fittings.

To deal with the alignment errors between the mirror
and the lens, more sophisticated algorithms were
introduced.20–22 The calibration process in Refs. 20 and 21,
which requires a large number of parameters to estimate,
involves a three-step algorithm in order to compute all the
extrinsic and intrinsic parameters. Ieng and Benosman pro-
posed a more flexible solution based on caustic curves:22

The main advantage of this method is that it is applicable
for every surface of revolution. In order to relax constraints

on the mirror shape, the method presented here is based on
the generic calibration concept: It leads to a flexible, easy-
to-perform, and shape-independent method of calibration.

2.2 The Generic Calibration Concept
The previous calibration methods for omnidirectional cata-
dioptric sensors assume that !1" the mirror shape is per-
fectly known, !2" the alignment of the sensor is perfect, so
that the single-viewpoint constraint is satisfied, and !3" the
projection model can easily be parameterized. Some meth-
ods relax the second constraint and a few relax the first one,
but prior to recent work,3,12,23 calibrating methods always
underlied an explicit parametric model of projection. This

Fig. 1 Simulation of the three-dimensional reconstruction. The theoretical scene, in blue, represents a
room with elements such as windows, door, and table; black dots depict the sensor’s three locations.
The reconstructed scene with the Vanderportaele calibration method #a 2° misalignment$ is drawn in
red.
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new model has the advantage of working for any type of
camera !catadioptric systems, central cameras with or with-
out distortion, axial cameras, etc." and of handling hetero-
geneous systems2 !for instance, a sensor composed of an
omnidirectional camera and a perspective camera". How-
ever, developing an efficient and easy-to-use calibration
method based on this model is not trivial. Our proposed
new method enables catadioptric sensor calibration by po-
larization imaging. It relaxes the three constraints listed
above, and the calibration can even be performed by a non-
specialist, as it only requires an optical apparatus and no
image processing.

3 Polarization Imaging
Polarization imaging enables the study of the polarization
state of a light wave. The most common applications in
artificial vision involve segmenting dielectric and metallic
objects24 and detecting transparent surfaces. Polarization
imaging likewise enables three-dimensional information of
specular objects to be detected !the “shape from polariza-
tion” method25,26". The physical principle behind “shape
from polarization” is the following: After being reflected,
an unpolarized light wave becomes partially linearly polar-
ized, depending on the surface normal and the refractive
index of the media on which it impinges. Partially linearly
polarized light has three parameters: the light magnitude I,
the degree of polarization ", and the angle of polarization
#.

To calibrate the mirror used in our catadioptric sensor,
the polarization state of the reflected light has to be mea-
sured. A rotating polarizer placed between the camera and
the mirror is used. The complete sensor !mirror and cam-
era" and the polarizer are placed into a diffuse light envi-
ronment composed of a backlit cylindrical diffuser !Fig. 3".
The light intensity of each pixel is linked to the angle of the
polarizer and to the polarization parameters by the follow-
ing equation:

Ip!$" =
I

2
!" cos!2$ − 2#" + 1" , !1"

where $ is the polarizer angle. The purpose of polarization
imaging is to compute the three parameters I, #, and " by
interpolating this formula. Because three parameters need
to be determined, at least three images are required. Images
are taken with different orientations of the polarizer. To get
an automatic calibration of the catadioptric system, a liquid
crystal polarization rotator is used instead of the polarizer.
It acts as a rotating polarizer, which has the ability to be
electrically controlled. Figure 4 shows an image of the de-
gree and the angle of polarization of a spherical mirror.

3.1 The Relationship Between the Polarization
Parameters and the Normals

Wolff and Boult demonstrated how to determine constraints
on surface normals using the Fresnel reflectance model.27

The surface of the mirror is assumed to be continuous and
described by a Cartesian expression: z= f!x ,y". Therefore,
each surface normal is given by the following nonnormal-
ized expression:

Fig. 3 Polarization imaging: After being reflected by the mirror, the
light becomes partially linearly polarized.

Fig. 4 Images of the polarization parameters that are needed to
reconstruct the mirror shape. #a$ Degree of polarization !"! #0,1$";
#b$ angle of polarization !#! #0,%$".
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n" = %
%f!x,y"

%x

−
%f!x,y"

%y

1
& = %p = tan & cos '

q = tan & sin '

1
& . !2"

The aim of the “shape from polarization” technique is to
compute the normals from the angles & and '. By combin-
ing the Fresnel formulas and the Snell–Descartes law, one
can find a relationship between the degree of polarization "

and the zenith angle &.25 For specular metallic surfaces, the
following formula can be applied:28

"!&" =
2n tan & sin &

tan2 & sin2 & + 'n̂'2
, !3"

where n̂=n!1+ i(" is the complex refractive index of the
mirror. In the case of a perfect specular mirror, Eq. !3" can
be directly used if the complex refractive index of the ma-
terial is known. However, if the refractive index is un-
known or if the mirror is not perfectly specular, a pseudo-
refractive index29 can be applied. This consists of
estimating a pseudo-refractive index that best fits the rela-
tion between the angle & and the degree of polarization "
measured on a known shape of the same material. Finally,
this pseudo-refractive index, which has no physical mean-
ing, enables the degree of polarization image of the new
object to be computed using the same relation #Eq. !3"$.

The azimuth angle ' is linked to the angle of polariza-
tion # since the reflected light becomes partially linearly
polarized according to the normal of the plane of incidence.
Because our imaging system uses a telecentric lens, an or-
thographic projection onto the sensor is assumed and the
azimuth angle ' can be inferred from the angle of polar-
ization # according to the following equation:

' = # )
%

2
. !4"

(a)

Fig. 5 Disambiguation of the azimuth angle. #a$ Segmented image
!Iquad! (0,1,2,3)"; #b$ image of the resulting azimuth angle ' !'
! #−% /2 ,3% /2$".

Fig. 6 Description of the 3D ray given by points A and B.
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Fig. 7 Reconstruction error induced by noisy measurement of the
normals’ parameters. #a$ & angle; #b$ ' angle.
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3.2 Disambiguation of the Normals
From Eqs. !3" and !4", the surface normals are determined
with an ambiguity. Since mirrors used in catadioptric vision
are convex and of a revolution shape, a segmented image
Iquad can be directly computed from the near center of the
mirror #Fig. 5!a"$. This segmented image is an image with
four gray levels that represent the four quadrants oriented
with an angle in $0,% /2#. The algorithm of the disambigu-
ation process described in Ref. 29 is applied with the seg-
mented image Iquad and with the angle of polarization im-
age #. The azimuth angle ' is computed as follows:

1. '=#−% /2,
2. '='+% if #!Iquad=0"∧ !'*0"$∨ #Iquad=1$∨ #!Iquad

=3"∧ !'+0"$,

where ∧ and ∨ represent, respectively, the logical operators
AND and OR. The result of the disambiguation is presented
in Fig. 5!b".

Fig. 8 Three-dimensional parameters used. #a$ Normals &, ', and
surface height z; #b$ only normals &, ' #without integration process$.
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Fig. 10 Measurement errors of the three-dimensional parameters.
#a$ Angle &; #b$ angle '; and #c$ deviation map of the mirror z.
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3.3 Calibration

To calibrate our imaging system, we use the generic cali-
bration concept introduced by Sturm and Ramalingam.30

The concept considers an image as a collection of pixels,
and each pixel measures the light along a particular 3D ray.
Thus, calibration can be seen as the determination of all
projection rays and their correspondence with pixels. A 3D
ray is represented here by two points !A ,B" that belong to
the ray. The points’ coordinates are defined as described in
Eq. !5":

A = %xa

ya

za
&, B = %xb

yb

zb
& . !5"

To calibrate the sensor, let us take point A, which be-
longs to both the mirror surface and the 3D ray, to be the
first point of the ray !Fig. 6". Since an orthographic projec-
tion is assumed, the xA- and yA-coordinates can be directly
deduced from the !u ,v"-coordinates of each pixel !up to a
scale factor given by the lens". Finally, the computation of
the za-coordinate requires the determination of the 3D mir-
ror surface. The 3D surface of the mirror can be computed
from the normals !given by polarization imaging" thanks to
the Frankot–Chellappa algorithm.31 Denoting the Fourier
transforms of, respectively, the surface height and the x, y
gradients as f̃ , p̃, and q̃, we have

∀!u,v" & !0,0", f̃!u,v" =
− jup̄ − jvq̄

u2 + v2 . !6"

The three-dimensional surface is obtained by taking the in-
verse Fourier transform of the former equation. This inte-
gration process gives us the surface height of the mirror
with a constant of integration. Nevertheless, this constant is
not required, because of the orthographic projection as-
sumption.

As shown in Fig. 6, the second point B of the ray can be
written as

B = A + k%tan 2& cos '

tan 2& sin '

1
& , !7"

where k is a nonnull constant.

4 Experiments
In the previous section, we showed that the three-
dimensional parameters of the mirror, &, ', and z, are re-
quired to calibrate the catadioptric system, according to the
generic calibration concept introduced by Sturm. The azi-
muth and zenith angles, ' and &, are directly given by the
measurement of the polarization parameters !" ,#" of the
light reflected by the mirror. The surface height z, which
represents the 3D shape of the mirror, is obtained by an
integration process.

In this section, simulations are presented to illustrate the
influence of the parameters on reconstruction quality. Then,

Fig. 11 Simulation of the three-dimensional reconstruction by using the calibration from the polariza-
tion imaging.
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Fig. 12 Three-dimensional reconstruction of a real scene with the catadioptric system. #a$ Experimen-
tal setup; #b$–#d$ points of interest.

Fig. 13 Results of the three-dimensional reconstruction. Reconstruction according to the linear-eigen
and midpoint methods are respectively drawn in red and blue, while the gray points represent the
sensor’s 3 positions.
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preliminary results on a calibrated spherical mirror show
the good accuracy of the three-dimensional parameters
measurement by polarization imaging. Experiments on the
reconstruction of a real scene are also presented.

4.1 Simulations
To simulate the three-dimensional reconstruction error, the
synthetic scene introduced in Section 2 !Fig. 1" is recon-
structed thanks to the generic calibration concept. The nor-
mals’ angles & and ' were computed from a perfect para-
bolic mirror with a 7° misalignment between the optical
axis and the symmetry axis of the mirror. The parameters
are then disturbed by adding various levels of Gaussian
noise. At each level of noise, the experiment is regenerated
50 times, and the average error reconstruction is computed.
Figures 7!a" and 7!b", respectively, show the reconstruction
error of the scene induced by noisy measurement of & and
'. The synthetic scene is reconstructed with or without
mirror reconstruction, depending or whether or not the in-
tegration process from Eq. !6" is carried out !Fig. 8".

Figure 7 shows that scene reconstruction is quite sensi-
tive to the measurement of the parameters & and '; on the
other hand, the integration process is not required, and we
can assume that the z parameter is negligible. In addition,
Fig. 9 shows the reconstruction error of the scene by only
adding Gaussian noise to the mirror height z. In this case,
the normals are assumed to be perfectly measured and
noise is only added on the surface height of the mirror. The
reconstruction quality remains good even if the mirror
height is very noisy !the mirror height is 1 cm and the
radius is 2 cm" or badly reconstructed.

4.2 Preliminary Results
4.2.1 Simulated scene
Preliminary results were carried out with a catadioptric sen-
sor made of a camera with a telecentric lens and a cali-
brated spherical mirror !radius=1 cm". Let us notice that
our system does not satisfy the single-viewpoint constraint.
Nevertheless, this property is not required here for the
three-dimensional reconstruction of the scene. As described
in Section 3, our catadioptric sensor is calibrated by mea-
suring the three-dimensional parameters of the mirror with
a liquid crystal polarization rotator placed between the
camera and the mirror. To evaluate the accuracy of our
system, we compare the parameters !&, ', and z" obtained
with our system to the theoretical parameters of the mirror
!Fig. 10".

The mean quadratic errors of the angles & and ' are,
respectively, 0.49° and 1.02°. Figure 11 shows the recon-
struction of the synthetic scene by using the calibration
made by polarization imaging. Since the mirror is spherical,
three-dimensional reconstruction errors greatly increase.
Nevertheless, the synthetic science is well reconstructed,
with an average error of 9.68 cm.

4.2.2 Real scene
As presented in Fig. 12, the three-dimensional reconstruc-
tion of a real scene was also carried out. The imaging sys-
tem is made of a CCD camera with a telecentric lens and a
spherical mirror. In order to precisely control its displace-
ment, it has been placed on a precise three-axes stage. The

x!y!z operating area is 1.5 m!1.6 m!0.4 m, and the
x!y!z room size to reconstruct is about 6 m!5 m
!2.5 m. After calibrating our catadioptric sensor by polar-
ization imaging, 3D points of interest have been triangu-
lated by moving the system.

Once the imaging system is automatically calibrated by
polarization imaging, three images with three different
known positions have been acquired. Several points of in-
terest were picked on each image: four rectangular targets,
two edges of the ceiling, three windows, and one fluores-
cent light #Figs. 12!b"–12!d"$. The result of the triangula-
tion process presented in Fig. 13 shows that the reconstruc-
tion is qualitatively satisfactory. The global topology of the
scene and the relative distances are respected; right angles
appear as !near-" right angles. In fact, the overall recon-
struction is as expected, considering

• the small displacement of the sensor in comparison
with the size of the scene,

• the fact that we only performed linear triangulation
without refinement, and

• the reconstruction also depends on the accuracy of
point picking !the correspondence has been estab-
lished manually and a slight error in the location of 2D
points led to erroneous 3D reconstruction".

5 Conclusion
We presented, a new efficient calibration method for cata-
dioptric sensors. This method is based on the measurement
of three-dimensional parameters of the mirror thanks to po-
larization imaging. The calibration can be performed “in
one click” even by a nonspecialist, because it only requires
an optical apparatus—no image processing and no calibra-
tion pattern. Contrary to traditional methods, it deals with
misalignment of the sensor and works for any shape mirror
!regular or not". Experimental results prove that the sensor
is properly calibrated and a satisfactory three-dimensional
reconstruction of the scene can be obtained. We have also
shown that the 3D shape of the mirror can be neglected
in comparison with the normals’ orientations. The
Plateform3D Department is currently manufacturing a para-
bolic mirror, and future work will consist of creating a pa-
racatadioptric sensor in order to compare our method to
other methods known in the literature for real scenes.
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Abstract

We propose an algorithm for the on-line automatic registration of multiple 3D surfaces acquired in a sequence by a new hand-held laser
scanner. The laser emitter is coupled with an optical lens that spreads the light forming 19 parallel slits that are projected to the scene and
acquired with subpixel accuracy by a camera. Splines are used to interpolate the acquired profiles to increase the sample of points and Delaunay
triangulation is used to obtain the normal vectors at every point. A point-to-plane pair-wise registration method is proposed to align the surfaces
in pairs while they are acquired, conforming paths and eventually cycles that are minimized once detected. The algorithm is specially designed
for on-line applications and can be classified as a closing-the-loop technique, where there are not that many competing methods, though it has
been compared to the literature. Experiments providing qualitative and quantitative evaluation are shown by means of synthetic and real data
and we demonstrated the reliability of our technique.
" 2007 Elsevier Ltd. All rights reserved.

Keywords: Computer vision; 3D registration; Multi-view; Closing-the-loop

1. Introduction

The complete 3D acquisition of a given object, surface or
even scene has many research challenges and it is definitely in
the research interests of the computer vision community. Be-
sides, there are several applications which may benefit by such
complete acquisition such as reverse engineering, modeling,
metrology, visual inspection and even robot navigation.

Overall, there are diverse 3D acquisition systems which are
basically based on laser triangulation [1,2] and pattern projec-
tion [3], especially when dense images are required. These sys-
tems gather range images from which 3D information can be
extracted. Besides, other acquisition systems are based on pro-
cessing one or many 2D images captured by cameras. One of
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these techniques is Shape from Silhouettes, in which several im-
ages of the measuring object are acquired and the complete 3D
model of the object is computed by means of its silhouette at
every image. Although some authors tend to use this technique
without knowing the camera poses from where images were ac-
quired [4], such positions are usually required and only a rough
accuracy is obtained. Other techniques are based on directly
processing the set of images by means of solving the matching
problem [5]. In this case, features such as points/lines/regions
of interest must be determined within the images reducing dras-
tically the resolution and hence obtaining a sparse acquisition.
In conclusion, laser triangulation is considered one of the most
reliable techniques of acquiring 3D data, so that data is dense
and accurate and the correspondence problem alleviated.

In general, laser triangulation techniques are based on the use
of a laser emitter coupled to a cylindrical lens that spreads the
light forming a plane that is projected to the measured surface.
The projection of a laser plane only lets us acquire a profile of
the measuring surface. Hence, in most cases a mechanical sys-
tem is added to permit the scanning, so that: (a) the laser plane
is projected onto a rotating mirror and reflected towards the



2056 C. Matabosch et al. / Pattern Recognition 41 (2008) 2055–2067

surface; (b) the laser beam is attached to a moving worm gear;
(c) the laser beam keeps motionless while the object is placed
on a rotating table, obtaining dense acquisitions. However, the
accuracy of the 3D acquisition depends on the mechanical sys-
tem as potential vibrations are likely to produce misalignments.
Furthermore, the sequence of images that are captured in the
scanning process forces the object to be motion controlled re-
ducing the number of potential applications. Finally, an un-
completed acquisition of the object is usually obtained due to
object occlusions and the limited field of view of the sensor.

Summarizing, laser triangulation is a reliable technique to
acquire dense and accurate 3D data. However, existing com-
mercial sensors usually only acquire a partial view of the object,
others are constraint to mechanical structures such as rotating
tables and moving gears. There are few sensors that can com-
pute their ego-pose in a free space. For instance, the ZScan-
ner700 of ZCorporation [6] can compute such ego-pose, but a
set of reflective targets must be stuck on the measuring surface.
The set of views are directly aligned once the ego-pose is com-
puted. Registration is a technique that can permit to perform
such alignment without adding markers or any other reference
to the object or to the measuring scenario.

Pair-wise registration is a well-studied problem in the litera-
ture. It is known that the published techniques can be classified
in coarse and fine registration techniques depending on the way
of solving the registration: (a) in a closed-form solution from a
reduced set of points of interest obtained from surface features
and solving a global matching; (b) in an iterative minimiza-
tion solution using a sample of points and solving the match-
ing locally. Multi-view registration is a more difficult problem
and there are two strategies to solve the alignment: local (se-
quential) and global (multi-view). The sequential registration
of views does not give an optimal solution due to the accumula-
tion and propagation of errors. Besides, global registration tries
to distribute the registration errors evenly among all the views
but it is not suitable for on-line registration since all the views
are first required to initiate the registration. In this paper, we
propose a closing-the-loop technique for the on-line registra-
tion of sequence of views in which cycles are minimized once
detected preserving an optimal solution. The pair-wise registra-
tion is solved by using a variant of the point-to-plane technique
and cycles are minimized considering only the views involved
constricting the computing time.

The remaining of the paper is structured as follows. First, a
brief overview of registration techniques is presented in Section
2, discussing the pros and cons of the existing methods with
the aim of justifying our proposal. Then, Section 3 presents
our proposal including pair-wise registration, cycle detection
and cycle minimization. Experimental results provided by both
synthetic and real data are presented in Section 4. The article
ends with conclusions.

2. Overview of range image registration techniques

According to a recent study of the state-of-art concerning
surface registration techniques [7], all the existing methods
are classified in two main groups of techniques: (a) Coarse

Registration and (b) Fine Registration. In the following part,
pros and cons of these techniques are described and every tech-
nique is summarized.

Coarse registration techniques obtain a rough alignment by
means of finding correspondences between two surfaces. Most
coarse registration techniques are based on searching for points
(curves) in the second surface that are similar to points (curves)
in the first surface. Overall, there are only two different methods
to choose the interest points: (a) feature-to-points and (b) point-
to-features. The first selects points in the first surface that are
similar to a predefined feature [8,9]. In the second, some points
in the first surface are arbitrarily selected and characterized
considering the position of its neighbors and searched in the
second surface [10–12]. In both techniques, all points in the
second surface must be compared with the selected points to
establish correspondences. Once the correspondence problem
is solved, the Euclidean motion that aligns both surfaces is
computed in a closed-form solution.

Coarse registration techniques have two main drawbacks.
The long time required to solve the matching among points and
the poor quality of the registration. Hence, a fine registration
technique is usually applied a posteriori to improve the results
by minimization.

Fine registration techniques search for an accurate alignment
of two acquired surfaces by minimizing the distance between
both surfaces iteratively. Such distance is computed in each
iteration by means of temporal matching among points from
both surfaces. Overall, the existing techniques solve the tem-
poral matching using one of the following three approaches:
(1) point-to-point, in which correspondences are established by
searching for the points in the second surface that are closest
to a set of points in the first [13]; (2) point-to-plane, in which
the points in the second surface are computed at every step by
the intersection of a plane and a line. The line is defined by a
point and a vector, so that the point is a given point in the first
surface; and the vector is orthogonal to the surface defined by
a neighborhood around the given point. The plane is located
where that line intersects with the second surface and it is ori-
ented in such a way that the plane is tangent to that surface
[14]; and finally (3) point-to-projection, in which correspon-
dences are established between points in the first surface and
the points obtained by projecting the first points onto the sec-
ond surface using the point of view of the second surface [15].

Although point-to-projection is the fastest technique because
searching is avoided, results obtained are not very satisfactory.
Besides, point-to-plane provides the best results because it is
not influenced by local minima [12,16]. Despite the difficulty
in determining the intersection of a line with a cloud of points
in 3D, several authors have presented proposals to facilitate this
computation [17,18].

One-to-one alignment of views in a sequence causes a drift
that is propagated throughout the sequence. Hence, some tech-
niques have been proposed to reduce the propagating error ben-
efiting from the existence of cycles and re-visited regions and
considering the uncertainty in the alignment.

In order to minimize the propagating error, some authors have
improved their algorithms by adding a final step that aligns all
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the acquired views at the same time. This approach spreads one-
to-one pair-wise registration errors throughout the sequence of
views, known as multi-view registration [19].

Early approaches proposed the aggregation of subsequent
views in a single metaview which is progressively enlarged each
time another view is registered [14]. Here, the main constraint
is the lack of flexibility to re-register views already merged in
the metaview due to the greedy approach of the technique. In
1999, Pulli proposed an ICP1 relaxation method based on the
previous metaview approach but considering all the potential
alignments between views before proceeding with the multi-
view registration. In addition this method takes into account the
information of all the overlapping areas and the already regis-
tered regions can be analyzed again for further transformations
[20]. Later on, Nüchter proposed a global relaxation method
based on Pulli’s approach with the main difference that no iter-
ative pair-wise alignment is required. However the success of
this method drastically depends on the disposal of an accurate
initial estimation of the pose [21].

A different approach was proposed by Bergevin [22], who
presented a multi-view registration technique based on the
graph theory: views are associated to nodes and transforma-
tions to edges. Authors consider all views as a whole and
align all of them simultaneously. The same idea was proposed
later on by Silva [23], Huber [24] and Krishnan [25]. Besides,
Masuda presented a multi-view registration algorithm based
on the Matching Signed Distance Fields in which outliers are
automatically removed obtaining a more robust method [26].
Lu’s technique is based on cycle minimization, though the
relationship (edges) among views (nodes) are established prior
to minimization [27]. Overall, multi-view techniques suffer
two main drawbacks: (a) the whole set of 3D views has to be
acquired before the algorithm starts; (b) an accurate estima-
tion of the motion between views is needed as initial guesses
to ensure convergence. Thus, multi-view techniques are not
considered for on-line applications.

Few authors have faced the challenge of registering 3D views
in a sequence while they are acquired avoiding or at least con-
trolling error propagation. For instance, Sharp [28] proposed
the registration of pairs of consecutive views until a cycle is
found. Since only pair-wise registration is required, the method
becomes very fast. Here, the interest is in the way of distribut-
ing the motion (and hence the propagation error) among the
different views. The author proposed to use weights directly
related to the residue obtained in the pair-wise registration.
Actually, this is not very accurate especially in the pres-
ence of misalignments between end views in the cycle as a
matter of noise and object occlusions. In this case, the whole
motion of such a cycle is also distributed to all the views
increasing the error in the registration.

Finally, in the last few years, a photogrammetric technique
called Bundle Adjustment has increased popularity in the
computer vision community and it is growing in interest in
robotics. Bundle adjustment is the problem of refining a visual
reconstruction to produce jointly optimal 3D structures and

1 Iterative closest point.

viewing parameter (camera pose and/or calibration) estimates
[29]. Therefore, bundle adjustment techniques can be used in
both robot/camera localization and 3D mapping in many fields
such as camera calibration, robot navigation, and scene recon-
struction. Since bundle adjustment is a non-linear minimization
problem, it is solved by means of iterative non-linear least
squares or total squares methods such as Levenberg–Marquardt
or M-estimator techniques [7,30]. Although bundle adjust-
ment is commonly classified as a multi-view technique, some
authors have used it in consecutive pair-wise alignment as a
technique to reduce error propagation [31].

In summary, we conclude that methods based on the
metaview approaches present good results when initial guesses
are accurate and the surface to be registered does not have a
large scale. Otherwise, the method suffers a large propagation
error producing drift and misalignments and its greedy ap-
proach usually falls in local minima. The use of methods based
on graphs has the advantage of minimizing the error in all
the views simultaneously but these techniques usually require
a previous pair-wise registration step, whose accuracy can
be determinant in the global minimization process. Besides,
closing the loop strategies provide trustworthy constraints for
error minimization but require a huge amount of memory and
usually involve a high computational cost. Bundle adjustment
techniques provide good results in the presence of outliers, but
need a good enough initial guess and it is hardly used in large
robot missions or large scale objects.

All these pros and cons of the existing methods have been
considered to present a new surface registration technique
which is presented and discussed in the rest of the paper.

3. Registering a sequence of surfaces

This section describes the proposing method for continuously
registering a sequence of 3D views while they are acquired. The
method first aligns the consecutive views by means of point-to-
plane pair-wise registration. When a cycle is detected, a multi-
view technique is applied only in the views conforming to the
cycle leading to fast and accurate results and preserving the on-
line registration for many and varied applications (see Fig. 1).

3.1. Pair-wise registration

Pair-wise registration is divided into a first coarse registra-
tion to estimate an initial alignment, followed by a fine regis-
tration computed by means of minimization techniques. In our
case, views are acquired consecutively and a slight movement
between views is assumed. Slight movement is defined like the
movement that guarantees at least a 60% of overlapping with
consecutive views. We initialize fine registration considering
motionless views, avoiding the expensive computation required
to compute initial guesses and preserving a high accuracy, as
demonstrated in the following paragraphs and shown in the ex-
perimental results.

Point-to-plane has been chosen as the most suitable fine reg-
istration technique as discussed in the previous section. The
technique we propose is based on the fast variant proposed
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Fig. 1. Flow diagram of the proposed method.

by Park [18] from the original point-to-plane registration pro-
posed by Chen [14], although some modifications have been
implemented to increase accuracy, which are explained in the
following paragraph.

First, we remove the non-overlapping area of the present view
before this view is registered with the former. In theory, this area
is unknown because the movement is also unknown. However,
as the views are taken in a sequence with slight movements
between them, we can assume that points located in the center
of the view are good candidates for the matching. Besides,
most of the points located in the boundary of the surface might
be hardly matched. In consequence, the boundary area of the
present view is not considered in the fine registration step.
In fact, the bounding area coincides with the boundary in the
image formed by projecting the present view to the XY plane
of the camera (orthogonal to the focal axis), so the selection of

points to remove becomes very easy. In the image plane, the
bounding box is computed. A rectangle whose dimensions are
80% of the bounding box is centered to the image projection
and all points out of this rectangle are not taken into account
in the registration step.

Second, only a sample of the remaining points of the present
view is preserved for the fine registration. There are several
types of sampling: uniform sampling [26,32], random sampling
[33], and normal sampling [16], among others. Although sam-
pling is normally used to speed up the algorithm by selecting a
reduced set of points, sampling can be also used to increase ac-
curacy by selecting also the most appropriate points. Note that,
in smooth surfaces with even shape registration becomes dif-
ficult. In this situation, only a small percentage of points give
useful shape information. For instance, consider a flat surface
with two perpendicular cuts. If all the points are considered in
the registration, results are not accurate because of the low in-
fluence of points in cuts with respect to the rest of the points.
However, if the registration is done with a high percentage of
points on the uneven area, accuracy increases (see Fig. 2).

The goal of normal sampling is to select the most represen-
tative points to increase the quality of the registration. Hence,
all points are first transformed to a 2D normal space defined
by ! and " as follows:

! = a tan 2
(
nx,

√
n2

z + n2
y

)
,

" = a tan 2(ny, nz), (1)

where ! and " are the coordinates in the normal space, and nx ,
ny and nz are the three components of the normal vector of
each point. Then, every point is placed in a 2D grid. Finally
only one point from every grid cell is randomly selected, so that
a single point is chosen among all points with similar normal
vectors. These selected points actually conform to the reduced
set of points used to register the present surface. The percentage
of points that remains after the sampling step depends a lot on
the unevenness of such surface but tends to be between a 20%
and a 30% of the total points.

As stated before, the fine registration technique we propose is
based on the fast variant proposed by Park [18] from the original
point-to-plane registration proposed by Chen [14]. Here we use
a recursive method to compute the intersection between lines
and surfaces which is actually the main difficulty of the method.
Hence, initially the selected points of the previous view are
projected orthographically onto the XY plane of the camera.
A grid composed of 50 × 50 square cells is scaled so that it
contains the projection of all points. Second, a point p0 of the
current view is projected to such a grid, in whose cell we search
for the closest point obtaining the point qp0 in the previous
surface. The projection of point qp0 to the normal vector of
p0 defines a new point p1, which is actually an approximation
of the intersection. This approximation is refined recursively
by projecting new points pi until norm(pi − qpi ) is smaller
than a threshold (see Fig. 3). Finally, the process is repeated
for all the points conforming to the current view and a set of
correspondences is obtained.
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Fig. 2. Effects of sampling: (a) Original surface; (b) Random sampling; (c) Normal sampling.

Fig. 3. Strategy used to compute the intersection between the tangent plane
and the surface Sq along the orthogonal vector p̂. See Park [18] for a extended
review.

Once correspondences are established, minimization is ap-
plied to compute the motion between both surfaces (the previ-
ous and the current) as defined by Eq. (2).

f = 1
Np

Np∑

i=1

∥mi − Rpi − t∥2, (2)

where Np is the number of correspondences; mi is the set of
points selected in the former view that have a correspondence in
the present view; pi are the correspondences of mi in the present
view; and R and t are the rotation matrix and the translation
vector that aligns both views, respectively.

Eq. (2) is minimized by means of quaternions [13] so that
R and t are refined iteratively. In each iteration, the correspon-
dences must be recomputed because initial correspondences are
not usually correct. The algorithm stops when: the mean of the
square errors (distances between correspondences) is smaller
than a given threshold; or the mean of the square errors does
not decrease.

Note that the views are registered consecutively, so that ev-
ery registered view is referenced with respect to the first by

means of the product of all the consecutive Euclidean motions
defined by the sequence of views. Hence, registration inaccu-
racies are propagated through the sequence. In the following
sections, we aim to minimize the propagation error by detect-
ing cycles and minimizing the views conforming the cycle all
together.

3.2. Cycle detection

Now the interest is to detect every time the scanner re-visits
the same object surface obtaining cycles of views that are used
to reduce the propagation error significantly.

Cycle detection complexity varies depending on whether
views are unorganized or views are acquired sequentially. In
the former, the relationship among views is unknown and each
view has to be registered to all the others to detect potential
links [34]. The problem is simplified when such relationship
is previously known [27]. However, in the latter, error propa-
gation requires a robust cycle detection method. Nüchter pro-
posed the registration of the last view to some of the already
acquired views to detect such cycles [35], in which such views
are selected based on some hypotheses concerning the laser
range and the sensor pose.

Note that once any two views are registered, the Euclidean
transformation between them is known and a link established.
These links form paths through the views in which the motion of
the scanner can be estimated from the product of the consecutive
Euclidean transformations. Hence, the translation vector of such
movement is considered, so that if this vector is smaller than
a threshold and the views are not neighbors, a potential cycle
is considered. The given threshold is computed dynamically
considering the object scale and the number of views forming
the potential cycle, so that the threshold increases proportional
to the propagation error.

However, a sequence of views with an overall slight trans-
lation does not always conform a cycle, especially when ro-
tation is relevant. Hence, the total rotation within the path is
computed, so that such rotation has to be close to identity to
consider the path like a cycle.

Finally, a cycle is detected if both end views also share a
common surface, that is a significant overlapping area.
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Fig. 4. Example of the projection of the bounding boxes of two different
views in the XY, XZ and YZ planes. The grey area represents the overlapping.

The accurate computation of the percentage of overlapping
would imply the fine registration between both end views and
the computation of corresponding points. In order to avoid this
expensive step, a fast technique is proposed based on the over-
lapping of bounding boxes, which is just an approximation of
the convex hull of both surfaces, but accurate enough to detect
cycles.

The bounding box of a given surface is defined as the mini-
mum parallelepiped that contains all the points of the surface.
The intersection of 3D bounding boxes is complex so that it is
alleviated by projecting such boxes to the planes XY, XZ and
YZ (see Fig. 4), defining two 2D bounding boxes in every plane
and thus computing three overlapping areas. If the maximum
of the three overlapping areas exceeds a given threshold of the
total area and the distance between both bounding box centers
is small enough, a cycle is considered.

The reason to choose the maximum overlapping value among
the three planes instead of the product of overlapping values
is in virtue of preserving the detection of potential cycles in
the presence of almost flat surfaces. In this case, the bounding
boxes in some of the three planes are usually not relevant.

3.3. Cycle minimization

Cycle minimization consists of a simultaneous minimization
of all the correspondences between points of all the views that
conform the cycle. In cycle minimization we assume that the
overall motion in the cycle is null and hence the position of
both end views coincides. This is actually impossible and that
is the reason why a virtual view is added between both end
views. This virtual view is nothing other than the first view of
the cycle registered to the last one. We can assume that the
overall motion in the cycle is null which means that the motion
between both end views must be zero.

The significant points for every view are used to search for
correspondences among all the other views in the cycle by us-
ing again our variant of the point-to-plane registration tech-
nique. This technique is based on the iterative minimization of
the distances between temporal correspondences. However, at
last iteration, temporal correspondences can be assumed to be
accurate correspondences.

A threshold in the relative motion between views is used to
ensure a significant overlapping area between views and hence
many point correspondences. Obviously, this decision leads
to a quite fast method without losing robustness. Otherwise,
the algorithm wasted a lot of time searching for correspon-
dences where it was known they are either not available or not
significant.

Finally, a Levenberg–Marquardt minimization is applied to
determine a more accurate registration among views in the cy-
cle. The minimizing parameters are the rotation matrices (rep-
resented as quaternion vectors) and translation vectors of the
Euclidean transformations between consecutive views. The
minimizing function is the sum of distances between point
correspondences because the distance between point corre-
spondences should be minimized, and hopefully may reach
zero, as shown in the following equation:

min

⎧
⎨

⎩

N−1∑

i=1

N∑

j=i+1

Np∑

k=1

∥Pi(k) − T i
j × Pj (k)∥

+∥T j
i × Pi(k) − Pj (k)∥

⎫
⎬

⎭ , (3)

where Pi(k) and Pj (k) are the points that configure the k cor-
respondence between views i and j; Np is the number of points
correspondences; N is the number of views; and T

j
i and T i

j
are the Euclidean motions that transform points from i to j and
from j to i, respectively, computed as follows:

T i
j =

j∏

k=i+1

T k−1
k , (4)

and

T
j
i =

⎛

⎝
N−1∏

k=j

T k
k+1

⎞

⎠ T N
1

(
i∏

k=2

T k−1
k

)

, (5)

where j > i.
The closing-the-loop constraint #cr is added to the optimiza-

tion function in Eq. (3), where

#cr = #R + sf #T , (6)

where #R is the rotation constraint; #T is the translation
constraint; and sf is the scale factor that weights the trans-
lation constraint to be adequately compared to the rotation
constraint.
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The rotation constraint #R is

#R = sum(abs(Raccum − I3×3)), (7)

where Raccum is the product of all the rotation matrices con-
forming the cycle, and I3×3 is the identity matrix.

The translation constraint #T is

#T = norm(t), (8)

where t is the translation vector between both initial and end
views of the cycle, computed as follows:

[
R t

0 1

]
= Tcycle =

(
n∏

i=2

T i−1
i

)

· T 1
n . (9)

The whole process leads to quite accurate results, but if they
are not good enough, they can be repeatedly refined by select-
ing new significant point correspondences at the end of every
refinement.

4. Experimental results

The proposed method has been implemented and compared
to one of the most similar methods present in the literature, the
method proposed by Sharp et al. in 2004 [28]. Both methods
have been tested under the same conditions in order to evaluate
their advantages and constraints. So, we have used the same
point-to-plane method to determine the motion between con-
secutive views.

A low-cost multi-slit laser acquisition system has been used.
The set-up is composed of an off-the-self camera, a 635 nm
laser emitter and an optical lens that spreads the laser beam
conforming 19 parallel planes. The depth field of the system
is in the range of 100 to 300 mm in the Z-axis of the cam-
era, which is limited due to system baseline, laser power, and
camera focus. The camera and the laser emitter conform the
one-shot hand-held 3D acquisition system especially developed
to test our proposal. The 19 parallel planes are projected onto
the measuring surface obtaining 19 profiles with subpixel ac-
curacy. 3D profiles are obtained by triangulation and finally
splines are used to interpolate a surface, increasing the sample
of points used in the registration process. Once the 3D sur-
face is acquired, the Delaunay triangulation is applied to obtain
triangles and hence estimate the normal vector at every sur-
face point which is used further on in the pair-wise alignment.
Fig. 5 shows an acquired image and the process of spline in-
terpolation. The reader is pointed to Matabosch [36] for more
details about the acquisition sensor.

The performance of our method has been compared to the
method of Sharp [28] both quantitatively and qualitatively. Our
cycle detection method has been used in both methods, so
they are tested in the presence of the same number of cycles.
Note that in the method of Sharp cycles are detected manu-
ally. Experiments and results are presented in the following
paragraphs.

4.1. Quantitative evaluation

Quantitative evaluation is analyzed from both synthetic and
real data. Synthetic data is obtained from the 3D synthetic
models courtesy of INRIA.2 A synthetic scanner has been
programmed to simulate the acquisition of a set of consecutive
views acquired by the one-shot hand-held scanner (see Fig. 6).
Here, the pose of the scanner for every acquisition is obviously
given by the simulator. So, the accuracy of the registration can
be precisely evaluated. The experiment is repeated adding some
Gaussian noise to the 3D points. In addition, a real object has
been placed on a motion-controlled table in which our one-shot
hand-held scanner has been attached (see Fig. 7). The object
is moved in three degrees of freedom (X, Y and Z) so that 29
consecutive views are acquired. In this case, the position of the
sensor is given by the mechanics of the table.

Parameters and thresholds used during this experiment are
reported in Table 1. Their value differs depending on the size
of the measuring object. NSSgrids specifies the number of cells
used in the normal space sampling grid. Intersectionerror is the
threshold used in the point-to-plane registration and it corre-
sponds to the maximum value of norm(pi −qi), so that a small
value increases registration accuracy but decreases the number
of correspondences, specially in case of important misalign-
ments. Concerning cycle detection, the first parameter fixes the
minimum number of views to consider a potential cycle. Trans-
lation error specifies in millimeters the maximum distance be-
tween both end-views in a cycle to be considered a potential
cycle. Overlapping area specifies the minimum overlapping re-
quired between both end-views of a potential cycle. Finally,
a scale factor is introduced in the cycle minimization step to
normalize translation and rotation errors.

In order to provide quantitative evaluation, the motion esti-
mated by registration has to be compared to the real motion
provided by the simulator or the 3D table in terms of both
translation and rotation. Rotation is represented as a directional
vector which can be easily extracted from any rotation matrix.
Then, the estimated rotation is compared to the known one. So,
the error is determined as the norm of the difference between
both axes of rotation. The translation error is defined as the
distance between the origin of the coordinate system estimated
by registration with respect to the known origin, which is the
norm of the difference between both translation vectors.

Additionally, the MSE (mean squared error) is computed.
For each point of the registered acquisition, the nearest point
in the set composed by the rest of acquisitions is found, deter-
mining a correspondence. The mean of all distances give us the
estimation of the discrepancy between registered views.

Finally, our proposed method and Sharp’s method are both
compared to the precise alignment in terms of accuracy so
that quantitative results are reported in Table 2 and Fig. 8. In
Table 2 we have also included a fast variant of our approach.
This fast variant differs only in the cycle minimization step, so
that the minimization uses the correspondences previously ob-
tained by the pair-wise registration avoiding the search for new

2 http://www-c.inria.fr/gamma/download/download.php
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Fig. 5. Acquisition examples: (a) Acquired cloud of points from the 19 slits; (b) Spline curve computation (in blue the acquired profiles, in red and black two
samples of splines); (c) Cloud of points obtained after spline sampling (in blue the original points, in red the new points computed).

matching among all the views in the cycle. Actually, matching
is one of the most expensive steps. So, the fast variant approach
consumes a computing time similar to Sharp’s approach but
preserves a good accuracy, as shown in Table 2.

Table 2 shows for every experiment the mean and the stan-
dard deviation computed from the set of rotation and translation
errors. Note that both methods obtain similar results when ac-
quisition noise is unimportant. When the acquisition noise be-
comes significant, pair-wise registration is not accurate enough
and hence Sharp’s approach distributes a large error in the cy-
cle. Besides, it is shown that our proposal obtains better results
in both synthetic and real data. A special attention requires the
results obtained when noise was 1.25% and 3.75%. In both
cases, pair wise registrations between both end-views of cycles

were not accurate enough. Such inaccuracies produce signifi-
cant errors in the method of Sharp that are minimized by our
method thanks to the multi-view registration performed inside
every cycle.

Fig. 8 presents the MSEs after register all views with our
robust method and Sharp’s method. Cycle detection algorithm
determines a cycle between views 1 and 23. Our robust method
obtained better results on these views. Sharp’s method obtains
good results results in the last view of the cycle, due to the
closing-the-loop constrain. However, inside the cycle, propaga-
tion error is not always correctly distributed through the views.
After view 23, all methods obtain the same results, because
there is no cycle, and results are directly obtained from the
pair-wise registration.
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Fig. 6. Left: Path described by the simulator to scan a synthetic object (Beethoven). Right: Some of the acquired synthetic images.

Fig. 7. Accurate motion-controlled table used in the quantitative evaluation.

Table 1
Quantitative experiment settings

Steps Parameter Beethoven Sun/moon

Pair-wise NSSgrids 2500 2500
Intersectionerror 0.3 6.0

Cycle detection Minimum number views 8.0 8.0
Translation error 7.0 15.0
Overlapping area 50% 50%

Cycle minimization Sf 1.0 0.1

4.2. Qualitative evaluation

In order to evaluate the performance of the methods, it is
also useful to observe the registration of a real object and
analyze it from a qualitative point of view. In this experiment,

the one-shot hand-held scanner is coupled to a FANUC
industrial manipulator. The manipulator describes a trajectory
so that a given object is scanned obtaining a sequence of views.
As the kinematics of the manipulator is known, the views can
be aligned without applying any registration and hence such
raw alignment is provided for comparison.

Note that the kinematics of the manipulator provides the
position of the robot hand H with respect to the coordinate
frame of the robot base R (see Fig. 9). Besides, registra-
tion is referenced with respect to the frame S of the camera
of the one-shot hand-held scanner. The rigid transforma-
tion between H and S is unknown and hence has to be first
estimated.

The computation of H TS is known as the eye-to-hand prob-
lem in the robotics community and it is based on solving equa-
tion AX = XB, where X is the matrix we are looking for. So,
X transforms points from the coordinate frame of the scanner
S to the coordinate frame of the hand H, A is the motion of the
hand between two different positions of the robot given by the
robot control system, and B is the motion computed by means
of triangulating the movement in the image of the one-shot
hand-held scanner.

There are several papers addressing the computation of AX=
XB [37,38]. In our case, we have acquired 10 views of a cal-
ibrating pattern and the X matrix is estimated by using the al-
gorithm of Shiu [38]. First, the algorithm determines a set of A
and B matrices from every view. Then, a system of equations
with the form AX − XB = 0 is defined and solved. Theoret-
ically X can be computed with only three views, though it is
more accurate to solve the equation of an over-determined sys-
tem by using singular value decomposition.

Once X is known, all views can be represented in the same
reference using the following equation:

WTS = WTR × RTH × X, (10)
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Table 2
Quantitative results

Scene Our method Fast variant Sharp’s method

errorR errorT MSE errorR errorT MSE errorR errorT MSE

$ = 0 0.516 0.008 0.003 0.339 0.079 0.001 0.511 0.074 0.002
1.120 0.004 0.003 0.867 0.191 0.006 1.006 0.034 0.002

$ = 1.25% 0.675 0.154 0.004 1.177 0.459 0.006 2.225 4.403 0.026
1.115 0.305 0.005 1.388 0.265 0.006 1.385 1.196 0.051

$ = 2.5% 1.1286 0.4698 0.005 1.202 0.316 0.002 1.472 1.367 0.001
1.1905 0.2149 0.005 1.410 0.217 0.006 1.202 0.704 0.002

$ = 3.75% 0.246 0.056 0.003 1.552 0.875 0.007 2.601 3.485 0.026
0.732 0.024 0.002 1.169 0.425 0.006 1.134 2.106 0.046

$ = 5.0% 1.570 0.890 0.005 1.533 0.828 0.007 2.753 3.126 0.017
1.284 0.682 0.005 1.144 0.497 0.006 1.212 2.225 0.020

1.2804 5.063 0.334 1.3485 5.4103 0.389 1.3863 4.640 0.432
0.303 2.459 0.335 0.285 2.425 0.529 0.291 2.308 0.380

Both our original method and its fast variant are compared to the method of Sharp: errorR is the norm of the difference between both axes of rotation; errorT

is the norm of the difference between both translation vectors (distance between the points of origin of both coordinate systems); MSE is the mean squared
error. Every table cell indicates the mean (up) and standard deviation (down) of the error for a set of synthetic experiments varying the Gaussian noise ($)

and one experiment with real data. The synthetic object (Beethoven) consists in 48 views composed of about 5000 points per view and with the presence of 6
detected cycles. The real object (sun/moon) consists in 27 views composed of about 8000 points per view and with the presence of 1 detected cycle between
views 1 and 23.
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Fig. 8. Evolution of the MSE registration errors in the registration of the
real object (sun/moon). Scale of the measured object: 180 mm (width) ×
200 mm (height) × 56 mm (depth).

where WTS is the Euclidean motion that transforms points in S
to the world coordinate system W (used by the one-shot hand-
held scanner to refer 3D points), WTR is the Euclidean motion
that relates the world coordinate system W to the robot base R,
RTH is the motion given by the kinematics of the robot arm,
and X is the Euclidean transformation between the camera of
the one-shot hand-held scanner and the robot hand.

Fig. 9. Industrial manipulator used in experiments. The four coordinate frames
are represented: W (world), R (robot), H (Hand) and S (Scanner).

Now we can proceed with the experiment. The parameters of
that experiment are presented in Table 3. The manipulator has
been programmed so that an 8-shape trajectory is done over a
ceramic object acquiring up to 41 images and hence 41 3D par-
tial views of the object. Note that the trajectory ensures cycles
which will be used in the registration. First, all the views are
referenced with respect to the same frame by means of the X



C. Matabosch et al. / Pattern Recognition 41 (2008) 2055–2067 2065

Table 3
Qualitative experiment settings

Steps Parameter Value

Pair-wise NSSgrids 2500
Intersectionerror 6.0

Cycle detection Minimum number views 8.0
Translation error 15.0
Overlapping area 50%

Cycle minimization Sf 0.1

matrix. Second, a volumetric integration algorithm is applied to
get a continuous surface [39]. Third, the sequence of views are
aligned according to: (a) the registration algorithm proposed
in this article; (b) the multi-view algorithm proposed by Sharp
[28]; and (c) the kinematics of the robot. Finally, any surface
smooth technique is applied to enhance the visualization. Qual-
itative results are shown in Fig. 10. Registration really improves
the alignment provided by the kinematics of the robot. Note
that the alignment directly obtained from the kinematics of the
robot suffers not only from inaccuracies given by the mechanics
but especially inaccuracies in the computation of X. Besides,
the experiment also shows that our approach provides a surface
with more details and less artefacts compared to the method
proposed by Sharp. Registration time is presented in Table 4.
These experiments are performed using Matlab 6.5 in a pentium
IV 2.6 GHz.

The acquisition system obtains the structure of the surface
with a single-shot and hence vibrations produced by a human
operator do not affect the acquisition. Actually, there is no dif-
ference in the obtained results performing the experiments by
a manipulator or by a human operator.

Fig. 10. Results of the registration: (a) Our method; (b) Sharp’s method; (c) Mechanical alignment; (d) Real object.

Table 4
Registration time

Method Time (s)

Robust 1192.47
Fast 900.69
Sharp 642.66

5. Conclusions

There are several techniques to register a set of views, though
most of them are based on the multi-view approach. In gen-
eral, multi-view techniques are constrained by the following
drawbacks: (a) all the views must be first acquired before the
aligning algorithm starts leading to off-line applications; (b)
guesses to roughly align the views are needed to initialize the
algorithm so that an expensive coarse registration technique is
needed; and (c) matching is searched among all the views with-
out considering neighborhood which is inefficient and comput-
ing intensive, especially in large data sets. Besides, multi-view
techniques are not suitable for registering views that form se-
quences and loops because of the error propagation problem.

This paper presents a new multi-view registration technique
which includes cycle minimization and it is updated in the
measure that new views are acquired. Although the technique
can be applied in short sequences of views, it is designed to
deal with large data sets and with the presence of multiple cy-
cles. First, a fast point-to-plane with normal space sampling
and non-overlapping area removal is applied between consec-
utive views to obtain an accurate alignment. Second, in the
measure that new views are acquired, the method searches for
cycles considering neighborhood and overlapping percentage.
Finally, once a cycle is detected it is minimized by means of
a Levenberg–Marquardt approach, so that the system always
ensures the most accurate global registration.
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Experiments with both synthetic and real data have been
overcome. Synthetic data has been downloaded from well-
known databases. A one-shot hand-held scanner composed of a
camera and a multi-slit laser emitter has been developed to ac-
quire real data. The scanner has been coupled to a commercial
manipulator to acquire sequences of views. Our approach has
been compared to: (a) the mechanical alignment provided by
the kinematics of the manipulator; and (b) the multi-view align-
ment method proposed by Sharp [28], which from our point
of view is one of the most similar. Results show from both a
quantitative and a qualitative point of view that our approach
provides a more accurate alignment.
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Abstract

Euclidean reconstruction from two uncalibrated stereoscopic views is achievable from the knowledge of geometrical con-
straints about the environment. Unfortunately, these constraints may be quite di"cult to obtain. In this paper, we propose an
approach based on structured lighting, which has the advantage of providing geometrical constraints independent of the scene
geometry. Moreover, the use of structured light provides a unique solution to the tricky correspondence problem present in
stereovision. The projection matrices are !rst computed by using a canonical representation, and a projective reconstruction
is performed. Then, several constraints are generated from the image analysis and the projective reconstruction is upgraded
into an Euclidean one—as we will demonstrate, it is assumed that the sensor behaviour is a"ne without loss of generality so
that the constraints generation is simpli!ed. The method provides our sensor with adaptive capabilities and permits to be used
in the measurement of moving scenes such as dynamic visual inspection or mobile robot navigation. Experimental results
obtained from both simulated and real data are presented.
? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Uncalibrated system; Projective reconstruction; Euclidean constraints; Structured light; Computer vision

1. Introduction

The perception of the three-dimensional structure of the
environment is an important task in computer vision. In mo-
bile robotics, it forms the basis of obstacle detection, map
building, scene analysis, etc. The challenge is to infer 3D in-
formation of a scene by starting from at least two images of
it [1]. From two images, the reconstruction is thus possible
but we need to calibrate the cameras, i.e. determining its op-
tical parameters and internal geometry (focal distance, prin-
cipal point, pixel adjustment) and its geometrical parameters
(position and orientation with respect to a reference frame).
The correspondence among the 3D object points and their
projections has to be established; the obtained matrix makes

∗ Corresponding author. Tel./fax: +33-3-22-82-76-68.
E-mail address: mouaddib@u-picardie.fr (E.M. Mouaddib).

possible to relate each point to its line of sight [2]. This tech-
nique is named hard-calibration and is carried out o#-line
by using a calibrating pattern whose 3D points co-ordinates
of interest are precisely known. This process has to be re-
peated each time that one of the parameters of the camera
is modi!ed. Hard-calibration is exclusively adapted to ap-
plications that keep the sensor unchanged during the mea-
suring process. Nevertheless, a visual adaptation to the en-
vironment is essential in the measurement of moving scenes
such as dynamic visual inspection or mobile robot naviga-
tion. Then, the visual adaptation permits to use a camera
with auto-focus (to increase the quality of the image), zoom
(to concentrate on relevant regions of the image) and aper-
ture (in case of illumination changes), which is the !rst step
to develop strategies of observation and/or exploration.
It is well known that the major drawback of stereoscopy

is the correspondence problem, i.e. the matching of homo-
logue points among the images. With the aim of reducing

0031-3203/03/$30.00 ? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
PII: S0031 -3203(02)00288 -1
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Fig. 1. The structured light system: (a) the geometrical principle; (b) the colour-encoded pattern.

this problem, coded structured light techniques have been
developed [3]. In a structured light system, the second cam-
era is replaced by a light source that projects a known pat-
tern of light onto the scene, as shown in Fig. 1a. Since a
projector can be seen as a camera acting in reverse, it can
be modeled in the same way a camera is.
Our pattern is composed by a set of vertical and horizontal

slits, uniquely colour-encoded in a single pattern projection
(Fig. 1b). The reader is pointed to Salvi et al. [4] to get
deeper into the pattern design. The coloured codi!cation
permits to solve the correspondence problem !nding out for
each imaged point, its corresponding point in the projecting
plane.
The main goal of this paper is, !rstly, to provide adaptive

capabilities to our structured light vision sensor and, sec-
ondly, to adapt the techniques of uncalibrated reconstruc-
tion to structured light. Our contribution is to demonstrate
how the projection of a grid of light and the analysis of the
coded images permit to generate Euclidean constraints for
a three-dimensional reconstruction of the scene and, more
generally, to show how to self-calibrate a structured light
sensor. It is assumed throughout the paper that the cam-
era and the projector behaviour can be approximated by an
a"ne model. However, no assumption on the scene geom-
etry is imposed, although a planar piece-wise environment
ensures a major number of constraints.
The next points summarize our approach:

• Extraction of the image points by a speci!c image pro-
cessing (see the section experimental results).

• Projective reconstruction from one view and one pattern
projection using the canonical representation.

• Automatic generation of constraints in order to reach an
Euclidean reconstruction of the scene.

This article is organized as follows. Section two presents
the related work about reconstruction methods that could be
adapted to a structured light system. Then, section three de-

tails the Euclidean reconstruction through structured light-
ing, which contains the major contribution of this paper.
Furthermore, section four deals with some experimental re-
sults considering both simulated and real scenes. The article
ends with conclusions.

2. Reconstruction and structured light system

This section goes deeper into what has been proposed on
structured light, taking advantages of the speci!cities of pro-
jection and pattern structure and considering that the princi-
ple of calibration is known. For instance, Salvi et al. [4] pro-
posed to model the projector like a camera acting in reverse.
First, they calibrate the camera by using a calibrating plane
and then an image of the projected pattern on the calibrating
plane is grabbed and used to get the 3D points to calibrate the
projector. Proesmans et al. [5] proved that the reconstruction
could be performed whether the angle between directions of
projection and capture is known, assuming an orthographic
model. This particular way to calibrate consists in observ-
ing a blank calibration pattern whose angle, made up by the
two planes that compose it, is precisely known. Sotoca et al.
[6] proposed a calibration method adapted to large surface.
Beforehand, the pattern is projected onto a base plane and
onto a reference plane and an image is grabbed for each of
these planes. By positioning the object to analyze between
these planes, the authors show that it is possible to obtain
a depth image through some simple calculations based on
the similarity of triangles. Finally, let us conclude by the
method developed by Huynh et al. [7] which has been pro-
posed for light plane projections but it can be generalized to
pattern projections. Four sets of three coplanar points, whose
coordinates are precisely known, are positioned on the two
planes of a calibration pattern, depicting four lines on it.
While the light plane intersects these lines, a fourth point
is obtained on each of them: the cross-ratio of these points
is equal to the cross-ratio of the images of these points. It
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provides a 3D measurement of the lighted traces fairly pre-
cise (up to the stability of cross-ratios). A classical calibra-
tion process is performed from these measurements.
Uncalibrated vision has generated an increasing num-

ber of publications since the end of the 1980s. Aware of
the drawbacks of hard-calibration for some applications in
which the sensor has to adapt its behaviour to the variations
of the environment and to the strategy of observation, many
authors looked into the problem that consists of inferring 3D
structure of the scene from the pixel coordinates only. It is
proved that an Euclidean reconstruction cannot be obtained
without calibrating but, at best, a projective one [2]; this re-
construction has to be constrained by means of additional
information or assumptions (about the intrinsic parameters,
the movement of the sensor, the scene geometry) to achieve
the self-calibration of the sensor, i.e. the Euclidean recon-
struction of the scene.
Koenderink and Van Doorn [8] can be regarded as pio-

neers. In 1989, they proposed a method which allows to
recover the a"ne scene structure from at least two images
of it, by using a shape invariant computed from a reference
plane. Later, Faugeras [2] and, independently, Hartley et al.
[9] proved that from a weakly calibrated sensor (i.e. which
epipolar geometry is known) a projective reconstruction is
possible. Mohr et al. [10] reached similar results through a
global estimation of the unknowns by minimizing the resid-
ual errors between image points and their back-projections.
However, these methods do not allow to compute the
Euclidean structure of the environment. With this aim,
Faugeras et al. [11] proposed a method that takes advantage
of the invariance under similarities of the absolute conic
(in other words, the image of the conic only depends on
intrinsic parameters of the camera). By such performing,
the authors have rediscovered the Kruppa equations. Be-
sides, Hartley [12] demonstrated that these equations could
be explicitly obtained through the singular value decompo-
sition of the fundamental matrix F. In order to solve them,
three fundamental matrices have to be computed, which are
given from a single displacement of the stereo head.
A second class of methods assumes that intrinsic param-

eters remain constant during the measuring process. A pro-
jective reconstruction is !rst performed. Then, the constancy
assumption leads to an equation solvable from three views
of the scene; the reader can refer to the work of Hartley
[13] or Heyden and Astr$om [14]. At last, if the constancy
of intrinsic parameters cannot be assumed, it is possible to
upgrade a projection reconstruction into an Euclidean one
by generating Euclidean constraints grabbed from the scene
geometry. Boufama et al. [15] pioneered this method; Zhang
et al. [16] later on proposed a similar method.
Some considerations have to be taken in mind when struc-

tured light is used. Any movement of the sensor, and partic-
ularly of the projector, produces a sliding of the projected
points on the observed surfaces. That is to say, the points
illuminated before the movement are di#erent than the ones
illuminated after the movement. As a consequence, stere-

ovision algorithms using more than two views cannot be
adapted to structured light vision. Besides, due to the het-
erogeneity of the sensor, composed by a camera and a pro-
jector, the constancy of intrinsic parameters cannot be as-
sumed either. Hence, methods based on Kruppa’s equations
and methods based on constant intrinsic parameters are un-
suited to structured light vision.
There is only one choice left: performing a projective re-

construction !rst and rectifying it by using Euclidean con-
straints grabbed from the scene geometry. It is shown in the
next section what kind of projective reconstruction method
may be used and how to generate constraints by using the
geometry of light patterns.

3. Uncalibrated reconstruction and structured light
system

This section details a method that permits to locate a point
in the three-dimensional space from a pair of uncalibrated
perspective views (which is equivalent to one view from a
camera and a known projected pattern). First, the method
performs a reconstruction in a projective frame. Then, the
reconstruction of the scene is transformed to an Euclidean
frame by using some a priori knowledge between the view
of the scene and the projected pattern, less restrictive than
point co-ordinates, such as parallelism, orthogonality, an-
gles, length ratio, and so on.
The following section presents the theoretical basis and

methods about the uncalibrated reconstruction adapted to
structured light. Then, Section 3.5 details the proposed al-
gorithm that describes the whole process.

3.1. Projective reconstruction

It is known, since the work of Luong and Vieville about
the canonical representation of the geometry of multiple
views [17], that it is possible to estimate the camera pro-
jection matrices from the knowledge of epipolar geometry.
Then, considering two 2D images (an image of the scene
and the projected pattern), we have:

Pproj = [M e]; P′
proj = [I 0]

with M =− 1
∥e∥2 [e]×F; (1)

where F denotes the fundamental matrix and e the epipole of
the !rst image, P is the camera matrix and P′ the projector
matrix. Subscript proj denotes matrices, vectors or scalars
expressed in a projective frame, in contrast with eucl which
will denote matrices, vectors or scalars expressed in an
Euclidean frame.
Whereas FTe = 0, so that the coordinates of the epipole

are given by the eigenvector of the matrix FFT associated
with the smallest eigenvalue. Numerically, better results are
obtained by normalizing the epipole in the way that ∥e∥=1.
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Fig. 2. Reference frames and projection matrices for the projective
reconstruction.

This formulation satis!es the epipolar constraint and !xes
the projective basis on the camera frame; where the projec-
tion matrices are computed so that the 3D observed points
could be reconstructed with respect to that frame. We will
perform it in two steps: !rst, by a linear method, fast but
not accurate enough; then, by a non-linear method initial-
ized with the results of the linear method. We describe the
two steps in the following notations and reference frames
are depicted in Fig. 2.

3.1.1. Linear method
Given a pair of points in correspondence, m = [u v 1]T

and m′ = [u′ v′ 1]T, and their corresponding 3D point in
space Mproj = [x y z t]T expressed in the projective frame,
it is obtained:

![u v 1]T = Pproj[x y z t]T (2)

!′[u′ v′ 1]T = P′
proj[x

′ y′ z′ t′]T (3)

where ! and !′ are two non-zero scale factors. Eliminat-
ing the scale factors and re-arranging equations (2) and (3)
yields to

QMproj = 0: (4)

Q is a 4× 4 matrix given by
Q= [p1 − up3 p2 − vp3 p′1 − u′p′3 p′2 − v′p′3]; (5)

where pi and p′i are the vectors corresponding to the ith row
of P and P′, respectively. AsMproj is de!ned up to a scale
factor, we can impose ∥M∥=1. The solution is given by the
eigenvector of the matrix QTQ associated to the smallest
eigenvalue.

3.1.2. Non-linear method
It seems di"cult, in the previous approach, to give a

good physical interpretation to the criterion that is mini-
mized. Besides, the accuracy of the results can be signi!-
cantly improved. A way to alleviate these drawbacks is to

use a non-linear iterative method of minimization. The error
to minimize is the di#erence between the observation and
the back-projection of the reconstructed points or residual
error; in other words:
(

u− pT1Mproj

pT3Mproj

)2

+
(

v− pT2Mproj

pT3Mproj

)2

+
(

u′ − p′T1 Mproj

p′T3 Mproj

)2

+

(

v′ − p′T2 Mproj

p′T3 Mproj

)2

: (6)

In practice, a traditional algorithm of minimization like
Levenberg–Marquardt is used [18]. The results provided by
the direct method are used to initialize the algorithm.

3.2. Towards an Euclidean reconstruction

It is known that the Euclidean geometry is a particular case
of the projective geometry. In other words, a collineation
exists which brings the solution to an Euclidean one. Finding
this collineation, it is thus possible to recover the Euclidean
structure of the scene.
Let us considerMproj , a point with projective co-ordinates,

and Meucl the same point with Euclidean co-ordinates.

Mproj =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

xproj′

yproj

zproj

tproj

⎞

⎟

⎟

⎟

⎟

⎟

⎠

; Meucl =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

xeucl

yeucl

zeucl

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

: (7)

The problem is to determine W such as

Meucl =W ·Mproj: (8)

With the aim of computing the collineation, geometrical
knowledge about the scene is translated into constraints on
the entries of W.
We have to !x a"ne or Euclidean constraints, which re-

ports geometrical properties of the scene extracted from the
images.W has 15 degrees of freedom; therefore 15 indepen-
dent and coherent constraints have to be found. Hereafter,
a non-exhaustive list of constraints with their mathematical
formulations is given and it is shown how the use of struc-
tured light leads to generate such constraints.

3.3. Euclidean constraints from grid coding

As described in Section 1, grid coding is the way a grid
of light is projected onto the scene to be analyzed. It is the
sub-class of structured light techniques that used a grid pat-
tern. It is shown in this section how geometrical knowledge
about the scene can be obtained analyzing the grid-coded
images. This knowledge can be used as constraints to bring
a projective reconstruction to an Euclidean one.

3.3.1. Plane detection in space
The elementary cell of a grid is a square. Each cell pro-

jected onto a planar surface is captured by the camera as a
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Fig. 3. Some of the geometrical constraints used in Euclidean reconstruction: (a) Parallelogram constraint; (b) Horizontal and vertical plane;
(c) Orthogonality.

quadrilateral. Quadrilaterals can theoretically either be cap-
tured as squares, rectangles, rhombuses, parallelograms or
trapezoids, depending on the position and orientation of the
camera and projector, and the planar surface observed. Al-
though quadrilateral detection within the image is not equiv-
alent to plane detection in 3D space (there are con!gurations
of curved surfaces that can yield quadrilaterals in the im-
age), it is quite probable that a quadrilateral within the image
corresponds to a plane in space: the equivalence is assumed
throughout the paper and, moreover, this can be veri!ed,
thanks to the test of coplanarity we propose in Section 4.1.

3.3.2. Parallelogram constraints
Assuming that the projector have an approximately a"ne

behaviour, we obtain that if a square is projected onto a
planar surface, the more generic quadrilateral formed on
the surface is a parallelogram. Furthermore, a parallelogram
captured by an a"ne camera forms a parallelogram onto the
retina. Hence, a parallelogram within the image corresponds
to the image of a parallelogram on a 3D plane. Geometrical
knowledge about the scene can thus be deduced.
Relative positioning of the four points A, B, C and D of

the parallelogram (see Fig. 3a) in space is such as

AB = CD; AC = BD; (9)

(AB)==(CD); (AC)==(BD): (10)

It leads to a redundant set of constraints on W . Besides,
knowing Eq. (11), parallelism constraints can be simpli!ed

as shown in Eqs. (11) and (12):

(AB)==(CD) ⇔
−→
AB

∥
−→
AB∥

=
−→
CD

∥
−→
CD∥

; (11)

(xB − xA)2 + (yB − yA)2 + (zB − zA)2

=(xD − xC)2 + (yD − yC)2 + (zD − zC)2;

(xC − xA)2 + (yC − yA)2 + (zC − zA)2

=(xD − xB)2 + (yD − yB)2 + (zD − zB)2; (12)

(xB − xA) = (xD − xC); (yB − yA) = (yD − yC); (zB − zA)

= (zD − zC);

(xC − xA) = (xD − xB); (yC − yA) = (yD − yB); (zC − zA)

= (zD − zB): (13)

Since projective geometry keeps unchanged the alignment
and the coplanarity, Eqs. (12) and (13) determine the same
con!guration of points (redundant constraints). Note that a
parallelogram completely determines a 3D plane. Therefore,
for each plane composing the scene, a unique set of paral-
lelogram constraints is su"cient.
Now, let us consider the two con!gurations of points

shown in Fig. 4. Whether the points oi, pi, qi, ri and si
(i=1 or 2) are projected onto a plane, the cross-ratio within
the pattern is equal to the c ross-ratio of the !ve points
formed onto this plane; moreover, the cross-ratio of the
homologue points within the image is equal to both. The
change from projected points to imaged points is obtained
by two successive homographies. It can be deduced that if
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Eq. (14) is veri!ed, the corresponding object points O, P,
Q, R and S are coplanar.

{oi;pi; qi; ri; si}= {o′i ;p′
i ; q

′
i ; r

′
i ; s

′
i} with i = 1 or 2:

(14)

3.3.3. Horizontal and vertical plane
If a point P belongs to the horizontal plane passing

through the origin, then zP = 0, which permits to obtain the
following linear constraint (Fig. 5):

w31xP′ + w32yP′ + w33zP′ + w34tP′ = 0: (15)

Replacing w3i by w2i or w1i, the homologue constraints
for yP=0 or xP=0, respectively, are expressed. Noting that
each projected horizontal line of the pattern generates a light
plane in space, which can be considered as a 3D horizontal
plane in the projector co-ordinate system (see Fig. 3b). And
each projected vertical line of the pattern generates a light

plane in space, which can be considered as a vertical 3D
plane in the projector co-ordinate system (considering either
an a"ne or projective camera model). Their corresponding
lines captured by the camera can be used to generate such
kind of constraints. Indeed, what it is imaged by the camera
are the intersections of the projecting planes of light with
the scene surfaces, therefore points belong to horizontal or
vertical planes.
Furthermore, an arbitrary distance can be set between

two successive horizontal or vertical planes. If the distance
between two points A and B is assumed to be d. Then,
(xA − xB)2 + (yA − yB)2 + (zA − zB)2 = d2 and, as a conse-
quence, the following non-linear constraint is obtained:
(

w11xA′ + w12yA′ + w13zA′ + w14tA′
w41xA′ + w42yA′ + w43zA′ + w44tA′

−w11xB′ + w12yB′ + w13zB′ + w14tB′
w41xB′ + w42yB′ + w43zB′ + w44tB′

)2

+
(

w21xA′ + w22yA′ + w23zA′ + w24tA′
w41xA′ + w42yA′ + w43zA′ + w44tA′

−w21xB′ + w22yB′ + w23zB′ + w24tB′
w41xB′ + w42yB′ + w43zB′ + w44tB′

)2

+
(

w31xA′ + w32yA′ + w33zA′ + w34tA′
w41xA′ + w42yA′ + w43zA′ + w44tA′

−w31xB′ + w32yB′ + w33zB′ + w34tB′
w41xB′ + w42yB′ + w43zB′ + w44tB′

)2

= d2: (16)

This constraint permits to assign a metric to the 3D space.
It is possible to give an arbitrary value to d but the recon-
struction will be achieved up to a scale factor.
Without particular knowledge, a plane can be arbitrarily

chosen as a horizontal or vertical plane; in this case, the
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reconstruction will be performed up to a rotation and a trans-
lation along the z-axis.

3.3.4. Fixing the origin
If the Euclidean co-ordinates of a point p in space are

known, it is obtained that

xp =
w11xp′ + w12yp′ + w13zp′ + w14tp′
w41xp′ + w42yp′ + w43zp′ + w44tp′

;

yp =
w21xp′ + w22yp′ + w23zp′ + w24tp′
w41xp′ + w42yp′ + w43zp′ + w44tp′

zp =
w31xp′ + w32yp′ + w33zp′ + w34tp′
w41xp′ + w42yp′ + w43zp′ + w44tp′

: (17)

Then, these equations give three linear constraints. As we
said before, this knowledge is barely available; nevertheless,
we can !x the origin of the Euclidean co-ordinates frame
by equaling these equations to zero. The cross-point (which
appears in the image as the intersection of two light stripes)
of the planes y= 0 and x= 0 is considered to be the origin
of the Euclidean co-ordinate frame.

3.3.5. Orthogonality constraint
Orthogonality is an important feature in Euclidean recon-

struction. The detection of orthogonal planes permits to de-
!ne, at least partially, a 3D Euclidean frame of the scene.
Let us consider again an a"ne model for the projector. The
projection of a line produces a light plane in space. The pro-
jection of two orthogonal lines (AB) and (AC) produces two
orthogonal light planes (Fig. 3c). When the projecting light
planes intersect planar surfaces, they produce light stripes
on them which will be imaged by the camera. We have
thus two lines (A′B′) and (A′C′) in space, which belong
to orthogonal planes. Since A′ and B′ belong to the same
horizontal plane and A′ and C′ belong to the same vertical
plane, considering the world co-ordinate system is !xed at
the projector, it is obtained

xA′ = xB′ ; yA′ = yC′ ; (18)

−−→
A′B′ ·

−−→
A′C′ = (xA′ − xB′)(xA′ − xC′)

+ (yA′ − yB′)(yA′ − yC′)

+ (zA′ − zB′)(zA′ − zC′)

= (zA′ − zB′)(zA′ − zC′): (19)

So

(A′B′) ⊥ (A′C′) ⇔ zA′ = zB′ or zA′ = zC′ : (20)

If the conditions imposed by (21) are satis!ed, we obtain
an orthogonality constraint, otherwise we obtain a reduced
orthogonality constraint:

(xA′ − xB′)(xA′ − xC′) + (yA′ − yB′)(yA′ − yC′) = 0:
(21)

3.4. Resolution of the system

The projective reconstruction is !rst performed by
solving the set of equations (1) previously described. In
a least-squares optimization, it leads to minimize the
following error:

(Â; P̂) = argmin
A;P

(p− AP)TC−1(p− AP); (22)

where Â and P̂ are the estimated values of A and P, respec-
tively; and C is the covariance matrix. As the location of
points within the images is the major factor of noise, all the
other factors are neglected. Then, C is a diagonal matrix
and its elements are all equal to the variance since imprecise
location induces decorrelated noise.
The Levenberg–Marquardt algorithm [18] is used to solve

this set of non-linear equations. As 3D points and projective
matrices can only be known up to a scale factor, a scale
constraint must be added for each point and each matrix in
order to lead to a unique solution. Eq. (23) is the constraint
for points and Eq. (24) for matrices:

x2i + y
2
i + z

2
i + t

2
i − 1 = 0; (23)

m( j)34 = 1; j = 1; : : : ; s: (24)

Once the projective reconstruction is performed, the
matrix W has to be estimated to obtain the Euclidean re-
construction. The Levenberg–Marquardt algorithm is also
used. Equations which should be minimized are the ones
that provide Euclidean constraints (Eqs. (14)–(18) and
(22)). The scale constraint that has to be added is given by
Eq. (25).
∑

i; j

(wij)2 = 1: (25)

3.5. Algorithm

Let us now summarize the steps that are necessary to
perform an Euclidean reconstruction without any a priori
knowledge about the observed scene, but a single image.
1. Image processing
Input: camera image and projected pattern
Output: the two sets of matched points (Uij , Vij , the

co-ordinates of the ith point in the jth image)

• Segmentation and decoding.
• Solve the correspondence problem decoding the pattern.

2. Projective reconstruction (Section 3.1):
Input: matching points
Output: 3D reconstructed points in a projective frame

• Estimation of the fundamental matrix.
• Estimation of the projection matrices.
• 3D reconstruction by linear method.
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• 3D reconstruction by iterative method (using the previous
method as initialization).

3. Euclidean reconstruction:
Input: 3D projective points and projection matrices, seg-

mented and decoded lines and cross-points.
Output: 3D reconstructed points in a Euclidean frame.

• Fix an arbitrary point as the origin of the world co-ordinate
system (Section 3.3.4)

• Fix the horizontal (in the pattern) line to which it belongs
as the y = 0 plane in space (Section 3.3.3).

• Fix the vertical (in the pattern) line to which it belongs
as the x = 0 plane in space (Section 3.3.3).

• Extract parallelograms within the image and generate par-
allelogram constraints, if the test of coplanarity is ok (Sec-
tion 3.3.2).

• Extract crossing lines within the image and generate (re-
duced) orthogonality constraints (Section 3.3.5).

• Fix an arbitrary distance d between two points in space
(Section 3.3.5).

• Compute the collineation in order to upgrade the projec-
tive reconstruction into Euclidean one (Section 3.2).

4. Experimental results

First of all, the stability of cross-ratio is discussed in order
to evaluate the e"ciency of our test of coplanarity and some
results are presented. Then, experiments on reconstruction
have been performed with simulated data. A set of 3D points
is !xed with respect to a world co-ordinate system and these
points are observed by two virtual cameras. Five of these
points are chosen as the reference basis; all the other ones
are reconstructed using the method previously described, i.e.
by using only their pixel coordinates and the matching in
both images. Euclidean reconstruction by adding geomet-
rical constraints is obtained and results validated. Further-
more, we have performed the reconstruction method with
real images using our structured light sensor. In the follow-
ing, we detailed the implementation of the algorithm and
we summarize the experimental results obtained. Quantita-
tive results are given for the experiments performed with
simulated data; since we do not have reliable measurements
of the real scenes, only qualitative results are given for the
experiments with real data.
All the experiments have been performed by using Mat-

lab, so time consuming is not very signi!cant. The test of
coplanarity and the linear method for projective reconstruc-
tion, based on matrix algebra, are achieved in less than one
second. In contrast, the Euclidean reconstruction (i.e. the
Levenberg–Marquardt algorithm) is performed in a few
iterations (from 5 to 20, depending on the Euclidean
constraints), that is, in a few minutes. Of course, by pro-
gramming the algorithm in C/C++ code, it is possible to
considerably improve time consuming (a set of non-linear

equations can be solved in less than one second
in C/C++).

4.1. Test of coplanarity

We have tested the stability of the cross-ratio for the con-
!gurations of points required by the test of coplanarity. We
took !ve points separated by the distance d (on Fig. 4, d
is the distance o1p1; o2p2, etc.) A gaussian noise, varying
from 0 to 0:5× d, is added on the points co-ordinates. The
results are depicted by Fig. 6. The left part shows the sta-
bility of cross-ratio with a noise of ±5% for 100 computed
values (theoretically, cross-ratio is 2 in this example). The
right part shows the evolution of the error against the noise
level (which depends on d).
To be able to compare the theoretical cross-ratios with the

cross-ratios computed from the images (i.e. to compute the
error) we used a projective distance based on the method
of the random cross-ratios, detailed in Ref. [19]. The tol-
erance error is empirically !xed to 5 × 10−3. Under these
conditions, a noise up to 15% is allowed to well discrimi-
nate con!gurations of coplanar points. Obviously, as it can
be deduced from the results of Fig. 6: the larger the distance
d is, the more robust the measure of cross-ratio will be. The
left part of Fig. 6 shows that, with a moderate noise (±5%),
the measured cross-ratio is very near to the theoretical one.
Hence, the stability of cross-ratio is good enough for appli-
cations of uncalibrated reconstruction.
We have tried out the test of coplanarity by performing

three experiments. In the !rst one, a planar con!gura-
tion of points is detected (theoretical cross−ratio = 2,
measured cross−ratio=1:96, projective error=2:2×10−3).
In the second one, the pattern is projected onto an irregular
surface and the test classi!es these points as non-coplanar
(theoretical cross−ratio=2, measured cross−ratio=2:186,
projective error = 5:9 × 10−3). Finally, in the last ex-
periment, the points are projected onto a cube corner
(clearly not coplanar) and the points are well-classi!ed
(theoretical cross−ratio=2, measured cross−ratio=2:2055,
projective error = 9:9 × 10−3). As this test is only
based on cross-ratio computing, its time computing is
near-instantaneous.

4.2. Simulated data

4.2.1. Five known points
It is assumed here that !ve points of the scene are taken

as landmarks whose Euclidean co-ordinates are known. Let
us assume that the camera is set at the origin of the world
co-ordinate system. Only four independent parameters have
to be estimated in order to obtain the projection matrix of the
camera. The co-ordinates of the principal point are initialized
with the co-ordinates of the geometrical image centre. The
3D point co-ordinates are initialized as the co-ordinates of
the barycentre of the points to be reconstructed. Obviously,
with simulated data and no noise, the discrepancy between
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Fig. 6. Cross-ratio stability. 100 computations with a 5% noise level (left) and measuring error with a noise varying from 0% to 50% (right).

the real 3D points and the reconstructed 3D points is nearly
zero. The error is due to round o# in digital computation.
So, in order to analyze the robustness of the method, noise
is added on pixel co-ordinates. In a structured light system,
the projected image is perfectly known so that error is not
present when the point co-ordinates are measured. Then,
noise is only added on the pixel co-ordinates of the camera.
The reconstruction was performed on 40 points. Table 1

presents the result for 10 of these 40 points with a uniform
noise of ±1%.
It has to be noticed that using !ve known 3D points re-

sults degrade quickly. This method appears to be very sen-
sitive to the location of the !ve points used as landmarks:
better results are obtained if no noise is added on landmarks
co-ordinates even if noise is added on the co-ordinates of
the rest of points.

4.2.2. Euclidean constraints
The reconstruction is performed in two steps: a pro-

jective reconstruction assigning the reference points to an
arbitrary projective basis and then an Euclidean reconstruc-
tion performed from the previous projective reconstruction
to which geometrical knowledge about the scene is added.
Projective reconstruction provides projection matrices and
3D co-ordinates with respect to a projective frame. In or-
der to validate this reconstruction, the 3D co-ordinates are
back-projected onto the image planes through the projec-
tion matrices and the residual error is evaluated (see Fig. 7,
where projection parameters are given by Pproj and P′

proj).
Our conclusion is that projective reconstruction performed
well in most cases. However, in order to ensure conver-
gence of the algorithm, the relative positioning of the 3D
points must correspond more or less to the con!guration of
the chosen basis i.e. the Euclidean reference points must be
in adequacy with the projective co-ordinates given to them.
We have used di#erent Euclidean constraints as !x-

ing the origin, parallelism, distance, etc. Re-scaling and

re-positioning the computed reconstruction, it is possible
to validate Euclidean reconstruction. In a representative
example of our experimental results, we found that mean
absolute error is less than 8 mm and max absolute error
is about 45 mm; the standard deviation is 7.42, 4.76, and
27:08 mm for, respectively, the x-, y- and z-component.
The range of each component is [100; 1000 mm] for x,
[− 400; 1000 mm] for y and [500; 4000 mm] for z.

4.3. Real data

Hereafter, we present some results achieved from real
images. The image processing method is described in Ref.
[20]. Let us recall the key points. The original coloured
image is !rst converted into the CIE-Lab space. Within
the L-image, a self-adaptive thresholding is performed, fol-
lowed by a morphological squeletization, a Hough trans-
form and the recovering of intersecting points. Within the
ab-image, a process to determine the projected colours from
the apparent ones is performed which permits to decode the
pattern.
The structured light system is composed by an RGB

camera, a computer and an electronic slide projector. The
coloured pattern is shaped in a 512×512 RGB image which
is projected on the measuring scene using the projector, and
the scene is then captured by the camera into the computer
memory. The reader is pointed to Refs. [4,20] to focus on
pattern segmentation and decoding.
In the following, we go on to the reconstruction results,

giving some qualitative results.

4.3.1. Scene I
The scene is composed by three geometric and achromatic

objects illuminated by the coloured pattern, as shown in
Fig. 8. We proceeded in two steps: !rst a projective re-
construction using the canonical representation, and then a
Euclidean reconstruction by adding constraints obtained
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Table 1
Errors on reconstruction with uniform noise ±1

Real co-ordinates Errors on estimate co-ordinates

X Y Z %X %Y %Z

100 −50 4000 0.518 −0:267 3.95
300 −50 2000 −0:65 −0:242 −1:5
700 −50 4000 0.614 −0:33 6.43
500 −400 4020 −1:132 −1:768 −4:332
300 50 4000 0.091 0.397 2.597
500 50 2000 0.076 −0:119 0.449
900 50 4000 0.13 0.171 2.007
300 −430 3000 0.505 −0:911 5.079
450 75 2500 0.76 −1:154 4.016
705 −120 1000 0.603 −0:827 0.829

Mean relative error (%) 0.518 1.539 0.169
Standard deviation 0.610 0.655 3.222
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Fig. 7. Validation of the projective reconstruction, left and right image planes. Circles represent real image points and crosses represent
projectively reconstructed ones.

Fig. 8. Structured lighted image of the !rst scene.

from image analysis (note that, at the time, the constraints
are generated manually).
In Fig. 9, we present the back-projection of the projec-

tive reconstruction onto the image plane and the projec-
tor plane obtained with the linear method (through Pproj
and P′

proj). Circles represent the real 2D points and crosses
the back-projected ones. The projection matrices and the
3D projective points computed with the linear method are
used as initializations for the iterative method: the results
are clearly improved as shown in Fig. 10 and quanti!ed in
Table 2 (this time Pproj and P′

proj are given by the non-linear
method). The maximum absolute 2D error is 3.069 pixels
and the mean absolute 2D error is 0.204 pixels in the pro-
jector plane and 2.715 pixels and 0.169 pixels, respectively,
in the image plane.
At this point, the projective reconstruction is validated

(the point 2 in Section 3.5 is performed). We now have to
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Fig. 9. Back-projection of the linear reconstruction method. Image plane (left) and projector plane (right).

Fig. 10. Back-projection of the non-linear reconstruction method. Image plane (left) and projector plane (right).

Fig. 11. Two views of the reconstructed scene (I).
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Table 2
Residual 2D error

Max. absolute Mean absolute
error (pixels) error (pixels)

Linear Camera 50.084 18.428
method Projector 88.143 32.751

Iterative Camera 3.069 0.204
method Projector 2.715 0.169

rectify it into the Euclidean space by following the steps of
point 3 in Section 3.5: !x the origin, !x horizontal and ver-
tical planes, generate parallelogram and orthogonality con-
straint, !x an arbitrary scale factor, etc. The results obtained
are shown in Fig. 11. It can be seen that the three objects
are globally well-reconstructed. Parallelism and orthogonal-
ity are recovered with a su"cient precision and proportions
seem to be preserved.

4.3.2. Scene II
The goal of this experimentation is to validate the recon-

struction method on a more realistic scene. The one shown
in Fig. 12 is grabbed under real conditions of illumination;
its size is about 1 m × 1 m. It is in an o"ce environment,
the image has been shot under the desk.
The highlighted lines of the !gure have been recon-

structed; the results are presented in Fig. 13. An arbitrary
metric has been assigned, parallelogram and orthogonality

Fig. 12. Structured lighted image of the second scene.

constraints have been generated. Vertices of highlighted
polygons are the reconstructed points and the lines which
compose it show the geometrical constraints (parallel lines
give parallelism constraints, orthogonal lines give orthogo-
nality constraints, etc.)
Similarly to the previous scene, it can be noticed that par-

allelism and orthogonality are satisfactorily reconstructed,
as well as the image proportion.

5. Conclusions

This article presents a method to perform Euclidean re-
construction from an uncalibrated structured light sensor
independently of the scene geometry, by assuming that the
sensor behaviour is a"ne or that it can be approximated by
an a"ne camera model. Through pixel correspondences and
without knowing neither extrinsic nor intrinsic parameters
of the sensor, a projective reconstruction is !rst computed
by choosing !ve arbitrary points of the scene as a reference
frame. Such a reconstruction is only possible up to a projec-
tive transformation, which depends on the world reference
frame that it has been chosen. Since Euclidean geometry is a
particular case of projective geometry, a collineation exists
which brings projective reconstruction to Euclidean recon-
struction. This collineation can be assessed by translating
geometrical information about the scene into constraints on
the elements of the collineation matrix. Besides, we show
that projecting a known grid pattern of light onto the scene
permits to retrieve intrinsic geometrical knowledge about
this scene as parallelism and orthogonality. The major
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Fig. 13. Two views of the reconstructed scene (II).

contribution of the paper is to show that structured light
can be used to deduce geometrical constraints of the
scene, which are used to reconstruct the scene without any
previous calibration. As no constraint is required on the
projection matrices, this approach allows us to reconstruct
without considering potential change of the focus, the aper-
ture and the zoom of both the camera and the projector.
Structured lighting permits to ensure there is known scene
structure which can be used to upgrade the reconstruction
to Euclidean and provides numerous constraints which
are useful for the convergence of non-linear optimisation
methods as Levenberg–Marcquardt algorithm.
Experimental results validate the method. However, the

automation of the whole process is necessary. A particu-
lar care has to be taken in image segmentation, e.g. straight
lines, parallels, crossing lines and parallelograms must be
accurately extracted from the image. As a further work, we
intend to automate the constraints generation, that is, to for-
mulate them mathematically and to solve them from the
image segmentation and decoding.

6. Summary

This paper deals with uncalibrated reconstruction through
structured lighting. In a structured light system, unlike clas-
sical stereovision, the second camera is replaced by a light
source that projects a known pattern of light onto the scene.
The main goal of this work is to provide adaptive capabili-
ties to this kind of sensor which allows to use it in mobile
robotics or dynamic visual inspection. First, we present a
survey of the most relevant techniques of uncalibrated recon-
struction. It is shown that, due to the fact that any movement
of the light source produces a movement of the pattern (i.e.
of the 3D points), the reconstruction has to be performed
from a single camera shot and a single pattern projection.

Thus, we !rst focus on a projective reconstruction method
based on the canonical representation of views, which re-
quires only pixel correspondences, one view and one pattern
projection. The reconstruction is performed in a projective
frame, up to a projective transformation.
An Euclidean reconstruction can be recovered from

a projective one since Euclidean transformations are a
sub-group of projective transformations. In other words,
there exists a collineation matrix which permits to pass
from projective to Euclidean. This matrix can be assessed
by constraining its entries with geometrical knowledge
grabbed from the scene. We describe how the pattern
projection is used to acquire geometrical knowledge
as parallelism, orthogonality, horizontality and verti-
cality. Moreover, structured lighting permits to ensure
there is known scene structure which can be used to
upgrade the reconstruction to Euclidean and provides
numerous constraints which are useful for the conver-
gence of non-linear optimisation methods as Levenberg–
Marcquardt algorithm. Experimental results, performed
both on simulated and real data, are presented and
discussed.
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