N
N

N

HAL

open science

Performance Evaluation and Prediction of Parallel
Applications

Georgios Markomanolis

» To cite this version:

Georgios Markomanolis. Performance Evaluation and Prediction of Parallel Applications. Other
[cs.OH]. Ecole normale supérieure de lyon - ENS LYON, 2014. English. NNT: 2014ENSL0880 .

tel-00951125

HAL Id: tel-00951125
https://theses.hal.science/tel-00951125
Submitted on 24 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00951125
https://hal.archives-ouvertes.fr

N° attribué par la bibliothéque : 2014ENSLO0880

ECOLE NORMALE SUPERIEURE DE LYON
Laboratoire de I'Informatique du Parallélisme

THESE

en vue d’obtenir le grade de

Docteur

de I’Université de Lyon — Ecole Normale Supérieure de Lyon

Spécialité : Informatique

au titre de ’Ecole Doctorale Informatique et Mathématiques

présentée et soutenue publiquement le 20 Janvier 2014 par

Georgios MARKOMANOLIS

Directeur de thése : Frédéric DESPREZ
Co-encadrant de thése : Frédéric SUTER

Apreés avis de : Emmanuel JEANNOT
Jean-Frangois MEHAUT

Devant la commission d’examen formée de :

Frédéric DESPREZ
Emmanuel JEANNOT
Jean-Frangois MEHAUT
Olivier RICHARD
Frédéric SUTER

Felix WOLF

Performance Evaluation and Prediction of
Parallel Applications

Membre
Membre/Rapporteur
Membre/Rapporteur
Membre
Membre
Membre

Abstract

Analyzing and understanding the performance behavior of parallel applications on various
compute infrastructures is a long-standing concern in the High Performance Computing com-
munity. When the targeted execution environments are not available, simulation is a reasonable
approach to obtain objective performance indicators and explore various “what-if?” scenarios.
In this work we present a framework for the off-line simulation of MPI applications.

The main originality of our work with regard to the literature is to rely on time-independent
execution traces. This allows for an extreme scalability as heterogeneous and distributed re-
sources can be used to acquire a trace. We propose a format where for each event that occurs
during the execution of an application we log the volume of instructions for a computation phase
or the bytes and the type of a communication.

To acquire time-independent traces of the execution of MPI applications, we have to instru-
ment them to log the required data. There exist many profiling tools which can instrument
an application. We propose a scoring system that corresponds to our framework specific re-
quirements and evaluate the most well-known and open source profiling tools according to it.
Furthermore we introduce an original tool called Minimal Instrumentation that was designed
to fulfill the requirements of our framework. We study different instrumentation methods and
we also investigate several acquisition strategies. We detail the tools that extract the time-
independent traces from the instrumentation traces of some well-known profiling tools. Finally
we evaluate the whole acquisition procedure and we present the acquisition of large scale in-
stances.

We describe in detail the procedure to provide a realistic simulated platform file to our trace
replay tool taking under consideration the topology of the real platform and the calibration
procedure with regard to the application that is going to be simulated. Moreover we present
the implemented trace replay tools that we used during this work. We show that our simulator
can predict the performance of some MPI benchmarks with less than 11% relative error between
the real execution and simulation for the cases that there is no performance issue. Finally, we
identify the reasons of the performance issues and we propose solutions.

Résumé

L’analyse et la compréhension du comportement d’applications paralléles sur des plates-
formes de calcul variées est un probléme récurent de la communauté du calcul scientifique.
Lorsque les environnements d’exécution ne sont pas disponibles, la simulation devient une
approche raisonnable pour obtenir des indicateurs de performance objectifs et pour explorer
plusieurs scénarios “what-if?”. Dans cette thése, nous présentons un environnement pour la
simulation off-line d’applications écrites avec MPI.

La principale originalité de notre travail par rapport aux travaux précédents réside dans
la définition de traces indépendantes du temps. Elles permettent d’obtenir une extensibilité
maximale puisque des ressources hétérogénes et distribuées peuvent étre utilisées pour obtenir
une trace. Nous proposons un format dans lequel pour chaque événement qui apparait durant
I’exécution d’une application, nous récupérons les informations sur le volume d’instructions pour
une phase de calcul ou le nombre d’octets et le type d’'une communication.

Pour obtenir des traces indépendantes du temps lors de l'exécution d’applications MPI,
nous devons les instrumenter pour récupérer les données requises. Il existe plusieurs out-
ils d’instrumentation qui peuvent instrumenter une application. Nous proposons un systéme
de notation qui correspond aux besoins de notre environnement et nous évaluons les outils
d’instrumentation selon lui. De plus, nous introduisons un outil original appelé Minimal Instru-
mentation qui a été congu pour répondre au besoins de notre environnement. Nous étudions
plusieurs méthodes d’instrumentation et plusieurs stratégies d’acquisition. Nous détaillons les
outils qui extraient les traces indépendantes du temps a partir des traces d’instrumentations de
quelques outils de profiling connus. Enfin nous évaluons la procédure d’acquisition compléte et
présentons ’acquisition d’instances a grande échelle.

Nous décrivons en détail la procédure pour fournir un fichier de plateforme simulée réaliste
a notre outil d’exécution de traces qui prend en compte la topologie de la plateforme cible ainsi
que la procédure de calibrage par rapport a I’application qui va étre simulée. De plus, nous
montrons que notre simulateur peut prédire les performances de certains benchmarks MPI avec
moins de 11% d’erreur relative entre I’exécution réelle et la simulation pour les cas ou il n'y a pas
de probléme de performance. Enfin, nous identifions les causes de problémes de performances
et nous proposons des solutions pour y remédier.

Contents

Contents 4
(1 _Introductionl 5
L1 Motivationl 5
1.2 Issues on Pertormance Prediction and Evaluation ot Parallel Applications| 6
L3 Contributiond 7
[1.4 Organization of the Document|. 7
2 Background on Performance Evaluation| 9
2.1 Evaluating the Performance of Resources|. 9
2.2 Evaluating the Performance of Applications| 11
[2.3 Assessing the Pertormance ot Applications on Resources| 15
I3 Time-Independent Trace Acquisition Framework| 21
3.1 Instrumenting an Application|o oo 23
8.2 Fvaluation of Instrumentation Methodsl 41
[3.3 Acquisition of Time-Independent Traces| 44
B4 Conclusionl 63
4 Time-Independent Trace Replay| 65
4.1 Realistic Platform Descriptions| 0000, 66
4.2 Simulated Trace Replay| o 75
4.3 Accuracy of Simulation Results] 83
4.4 Simulation Timel o e 94
K45 Conclusionl e e e e 96
5 Conclusions and Perspectives| 97
|Bibliography| 101

Chapter 1

Introduction

1.1 Motivation

Computational Science is the third scientific way to study problems arising in various domains
such as physics, biology, or chemistry. It is complementary to theory and actual experiments and
consists in conducting studies in silico. This approach makes an heavy use of resources located
in computing centers. The efficient execution of a parallel application on a certain massively
parallel hardware architecture demands the user to be familiar not only with domain-specific
algorithms but also parallel data structures [I, 2]. It is not rare to observe situations where an
application can not fully exploit a large number of processors in its execution, thus it does not
scale well [3].Such cases can be caused by a not optimized application, the computer system or
both. However, through performance evaluation a scientist can observe the performance of an
application and can identify bottlenecks [4, Bl 6l [7) 8, ©]. The techniques which constitute the
performance evaluation field can be classified into two categories: measurement and modeling
techniques |10} [IT) [12]. The latter is separated by many scientists into simulation and analytical
modeling. A lot of approaches have been presented to evaluate the performance of an application.
Some of them correlate the performance of an application with its scientific domain [I3]. More
precisely, in this approach the authors take data from three domains, the application’s working
set, the hardware domain of the compute and network devices and the communication domain.
The combination of visualizing and correlating these data, provides useful information about the
behavior of the parallel application. On the other hand some researchers identify bottlenecks
on a specific application which are related to the operating system such as noise, the cluster
manager tool and fix them by applying some techniques to decrease the noise [14].

As the number of scientific domains producing results from in silico studies increases, the
computing centers then have to upgrade their infrastructures in a continuous way. The resources
impacted by such upgrades are of different kinds, e.g., computing, network and storage. More-
over each kind of resource grows more complex with each generation. Processors have more and
more cores, low latency and high bandwidth network solutions become mainstream and some
disks now have access time close to that of memory.

The complexity of the decision process leading to the evolution of a computing center is then
increasing. This process often relies on years of experience of system administrators and users.
The former knows how complex systems work while the latter have expertise on the behavior
of their applications. Nevertheless this process lacks of objective data about the performance

of a given candidate infrastructure. Such information can only be obtained once the resources
have been bought and the applications can be tested. Any unforeseen behavior can then lead to
large but vain expenses. This procedure could be completed with less risks by using simulation
techniques. Simulation may help the dimensioning of compute clusters in large computing
centers. Through simulations the scientists can understand the behavior of large-scale computers.
Moreover it is possible to simulate an application for a platform that is not available yet to
observe the performance and decide what would be the best hardware characteristics for the
needs of the computer center.

Many universities do not provide large-scale computer systems to the researchers and stu-
dents. Clusters are too expensive as also their maintenance. The access to another supercom-
puters could cost also a significant amount of money. In such cases the option to predict the
performance of an application through simulation is really important. A scientist can execute
simulations without using any resource and be able to validate or not his assumptions. Some
times a multi-parameter application is needed to be executed, thus it would take a lot of time
to try different parameters for each execution on a supercomputer. The students can study
concepts of parallel computing without using a cluster but just their simulator. However, the
performance evaluation and prediction are not always easy to be done.

1.2 Issues on Performance Prediction and Evaluation of
Parallel Applications

The first difficult step during the performance evaluation of a parallel application is the
choose of the appropriate metrics. The metrics are essential for understanding the performance
characteristics of applications on modern multicore microprocessor. They can indicate a relation
between the performance bottleneck and the hardware. However, if a user is not familiar it can
be a difficult task. A tool which can help the user was released by Texas Advanced Computing
Center called PerfExpert [15] which basically executes an application four to five times. During
each execution the tool uses different metrics and it measures them periodically. As result it
proposes which metrics represent any performance issue that occur mainly during the execu-
tion of loops in the code. Moreover a tool called AutoScope [16] proposes code optimization
techniques based on the results from PerfExpert. However, performance measurement usually
is not a harmonic task. Different parts of a code can cause non similar behaviors and different
metrics could represent their performance. Computational science applications are constituted
by iterative methods. A common method is to study the performance of each iteration [17, 18]
where in some cases we can observe non similar performance between different iterations. The
further analysis of the performance of an application should be achieved through extensive study
of the measurements. The main issue with a fine grained measurement is the extra overhead
caused by the instrumentation tool. When a user wants to correlate performance measurements
with execution time, can not be sure what percentage of these measurements are caused by the
instrumentation overhead. This makes the study harder and can hide some other phenomena
or create artifacts that are not always easy to explain.

The increase of the hardware complexity raised the difficulty to predict the performance of
an application. Different processors are constituted by different cache memory levels and size.
The performance of an application can depend on the cache size. Moreover there are many
types of networks, Ethernet Gigabit [19], Infiniband [20] etc. Each of them behave different and
thus some analytical models should be created in order to simulate the applications. In this
work we study Ethernet Gigabit networks. The studied parallel applications are based on the
Message Passing Interface (MPI) [2I]. The various implementations of the MPI, MPICH [22],
and OpenMPI [23], can behave a bit different but always respecting the MPI standards. For

6

example some collective communications can behave similarly but not exactly the same. Thus
the simulation of a parallel application is a difficult task where many aspects of the applications
should be taken under consideration to predict correctly the performance.

1.3 Contributions

In this work we propose a new execution log format that is independent of time. This
format includes volumes of computation (in number of instructions) and communications (in
bytes) for each event instead of classical time-stamps. We present in detail an original approach
that totally decouples the acquisition of the trace from its replay. Furthermore, several original
scenarios are proposed that allow for the acquisition of large execution traces. These scenarios
are only possible because of the chosen time-independent trace format and they can not be
applied with other frameworks. We implement a new profiling tool based on our framework
requirements which instruments exactly the necessary information from an application, it saves
the measurement data directly into time-independent traces and it is more efficient than similar
tools. We study the state of the art of the most well known and open sources profiling tools and
we evaluate them with regard to our framework requirements. Moreover we justify which ones
can be used for our work. We use various instrumentation methods and we evaluate them to
show the evolution of the instrumentation overhead. As supporters of the open-science approach,
we provide a step-by-step definition of an appliance to acquire execution traces on the Grid’5000
experimental infrastructure. Moreover we have our files available in public to be used from
other researchers. Some tools were implemented to extract the time-independent traces from
well known profiling tools such as TAU, Score-P and gather them into a single node. We evaluate
the time-independent trace acquisition framework to present the overhead, the advantages and
disadvantages. The trace replay tool is built on top of a fast, scalable and validated simulation
kernel. The implemented simulator tool is analyzed in detail and we describe how to use it
by covering all the procedure from calibrating the simulator till the execution of a simulation.
Finally, we predict through simulation the performance of some non adaptive MPI applications
with small relative error between the real execution and simulation. In the cases that there are
some performance issues, we investigate and figure out what causes any performance issue.

1.4 Organization of the Document

The remaining of this document is organized as follows. Chapter [2] presents an introduction
to some related topics. We present some benchmarks, we analyze some of them and we indicate
which ones we use. Afterwards we present some techniques to evaluate the performance of an
application such as the interface to access the hardware counters of the processors is introduced as
also some instrumentation methods which are used to measure the performance of an application.
We analyze the tracing, profiling, and statistical profiling methods and we explain the advantages
and disadvantages.

In Chapter [B] we explore the time-independent trace acquisition framework. In the begin-
ning we explain the motivation for this work, we introduce the time-independent trace format
and we analyze the advantages. We provide more details about the whole framework and we
mention the trace replay concept. There is an extensive analysis of the instrumentation of an
application where we evaluate many well known tools with a score system which respects the
framework requirements. We present our profiling library which can instrument an application
with less instrumentation overhead and memory requirements. The instrumentation methods
which we used are presented and compared. Moreover the acquisition of time-independent traces

7

is presented with all the execution modes that can be used and also instructions of how to re-
produce the experiments on Grid’5000 platform. We have implemented some tools to extract
time-independent traces from well known profiling tools such as TAU and Score-P as also gather
them from all the participating nodes into a single node. Finally we evaluate the acquisition
procedure to present the overheads of our framework.

Chapter [] presents the time-independent trace replay. First of all the components of the
simulation are introduced with the calibration procedure where is explained to the user how
to calibrate the simulator. Afterwards the simulation backends that were used for the imple-
mentation of the various versions of our simulator are presented with their differences. At last
we present the simulation accuracy of some MPI applications and we show that our framework
predicts their performance.

Finally in Chapter [§] we present the conclusions and future perspectives.

Chapter 2

Background on Performance Evaluation

Chapter [I} analyzing and understanding the performance of a parallel application is a com-
plex task. Some parallel applications may scale well when increasing the number of the processors
while others may suffer from scalability issues. In general we could divide applications in two
categories, those that fully exploit the performance of a computer system and to the ones that
solve a real problem. Performance evaluation is usually performed thanks to various instrumen-
tation methods when an application is executed on a real platform. However, there are two other
approaches that provide insight about the behavior of an application: emulation and simulation.
The purpose of this chapter is to introduce some basic concepts for the better understanding of
the remaining of this document.

This Chapter is organized as follows. Section presents some micro-benchmarks and
benchmarks. We explain why they are used and how useful where for our case. In Section [2.2]
we detail the interface which provides access to the hardware counters of processors to measure
specific metrics. Moreover we investigate available instrumentation methods for the performance
measurement of an application. Finally in Section [2.3] we detail how to assess the performance
on applications on resources. Three methods are analyzed with their advantages and drawbacks.

2.1 Evaluating the Performance of Resources

2.1.1 Micro-benchmarks

A micro-benchmark is a test program designed to measure the performance of a very small
and specific piece of code. Micro-benchmarks tend to be synthetic kernels and can measure a
specific aspect of computer system. Through them we can understand the behavior of major
kernel characteristics.

Netgauge [24] is a high-precision network parameter measurement tool. It supports micro-
benchmarking of many different network protocols and communication patterns. The main focus
lies on accuracy, statistical analysis and easy extensibility. One of the included micro-benchmarks
that we used is OS Noise which measures the noise caused by the Operating System.

OS Noise supports three different micro-benchmarking methods. Selfish Detour (selfish) is a
modified version of the selfish detour benchmark proposed in [25]. The micro-benchmark runs
in a tight loop and measures the time for each iteration. If an iteration takes longer than the
minimum times a particular threshold, then the time-stamp (detour) is recorded. The micro-

9

benchmark runs until it records a predefined number of detours. Fixed Work Quantum (FWQ),
performs a fixed amount of work multiple times and records the time it takes for each run. Due
to the fixed work approach of FWQ, the data samples can be used to compute useful statistics
(mean, standard deviation and kurtosis) of the scaled noise. These statistics then can be used
to characterize and categorize the amount of noise in a hardware and software environments.

During the execution of the Fixed Time Quantum (FTQ) micro-benchmark, a very small
work quantum is performed until a fixed time quantum has been exceeded and for each iteration
it records how many workload iterations were carried out. If there is no noise this number
should be equal for every sample. When there is noise this number varies. Because the start and
end time of every sample is defined, the periodicity of noise can be analyzed with this method.
Finally the FTQ and FWQ micro-benchmarks are proposed from the list of benchmarks for the
sequoia supercomputer [26]. In our studies, we used the FTQ micro-benchmark and the noise
caused by the Operating System on different Grid’5000 clusters was computed to be at most
0.14% of the execution time. It is important to compute the percentage of the noise caused by
external factors such as the operating system to know if the measurement data are biased or not.
The specific amount of noise is not significant on the considered execution platforms. However,
this is not a generic statement. If a scientist wants to apply some statistic methods on some
performance measurement data, then the OS noise may probably be taken into account.

SKaMPI [27] is a micro-benchmark for implementations of the MPI standard. Its purpose
is the detailed analysis of individual MPI operations. SkaMPI can be configured and tuned in
many ways: operations, measurement precision, communication modes, packet sizes, number of
processors used, etc. Moreover SkaMPI provides measurement mechanisms that combine accu-
racy, efficiency, and robustness. Each measurement is derived from multiple measurements of
single calls to particular communication pattern with regard to the requested accuracy. SkaMPI
handles systematic and statistical errors. The systematic error is caused by the measurement
overhead of all calls, it is usually small and can be corrected by subtracting the duration of an
empty measurement and the warm-up of the cache by a dummy call to the measurement routine
before actually starting to measure. The statistical error is checked through the control of the
standard error and the average execution time. We used this micro-benchmark to calibrate our
simulation as presented in Section

2.1.2 Benchmarks

Benchmarks are software packages which can make use of almost all resources in the system.
Various kernels, synthetic programs and application level workloads, are called benchmarks.
A subset of a benchmark can be a micro-benchmark. One main reason for benchmarking a
computer system is to measure the performance and probably compare with other systems.
However, we should be familiar to the kind of applications that are going to be executed on those
systems to execute benchmarks that are representative of these applications. One of the most
well-known benchmarks is High Performance Linpack (HPL) [28] which measures the floating
point execution rate for solving a linear system of equations in double precision arithmetic
on distributed-memory computers. It is used to rank supercomputers in the Top5000 [29] list
which is constituted by the 500 fastest supercomputers of the world. However, this benchmark
does not measure the system performance for a significant collection of important science and
engineering applications. HPL rankings of computer systems are no longer strongly correlated
to real application performance, especially for the broad set of HPC applications governed by
differential equations, which tend to have much stronger needs for high bandwidth and low
latency networks, and tend to access data using irregular patterns. Thus a new benchmark
suite has been proposed, named High Performance Conjugate Gradient (HPCG) [30]. HPCG is
composed of computations and data access patterns commonly found in applications.

10

The NAS Parallel Benchmarks (NPB) [3I] have been developed at NASA Ames Research
Center to study the performance of parallel supercomputers. This is a set of eight benchmark
problems, each focusing on some important aspect of highly parallel supercomputing for aero-
physics applications. The eight problems consist of five “kernels” and three “simulated compu-
tational fluid dynamics (CFD) applications”. The five kernels are relatively compact problems,
each of which emphasizes a particular type of numerical computation. The simulated applica-
tions combine several computations in a manner that are similar to the actual order of execution
in certain important CFD application codes.

Each benchmark can be executed for 7 different classes, denoting different problem sizes: S
(the smallest), W, A, B, C, D, and E (the largest). For instance, between class A and class C,
the problem size is increased by almost 4 times from one class to the next and from class C to
class E the corresponding increase is almost 16 times.

The five kernels are the following:

EP: An “embarrassingly parallel” kernel. It provides an estimate of the upper achievable limits
for floating point performance. This kernel is constituted only from computation and
there is communication only during the verification of the solution. It generates pairs of
Gaussian random deviates according to a specific scheme described in [3I] and tabulates
the number of pairs in successive square annuli;

MG: A simplified “multigrid” kernel. It requires highly structured long distance communication
and tests both short and long distance data communication. Moreover it is memory
intensive;

CG: A “conjugate gradient” method is used to compute an approximation to the smallest eigen-
value of a large, sparse, symmetric positive definite matrix with a random pattern of non
zeros thanks to the inverse power method. This kernel is typical of unstructured grid com-
putations in that it tests irregular long distance communication, employing unstructured
matrix vector multiplication;

FT: This kernel performs the essence of many “spectral” codes. It is a rigorous test of long-
distance communication performance. It solves numerically a certain partial differential
equation (PDE) using forward and inverse FFTs;

IS: A large “integer sort”. This kernel performs a sorting operation that is important in “particle
method” codes. It tests both integer computation speed and communication performance.

The three simulated CFD applications are the following:
BT: Solves a synthetic system of nonlinear PDEs using a block tridiagonal algorithm;
LU: Solve a synthetic system of nonlinear PDEs using a symmetric successive over-relaxation
algorithm;
SP: Solve a synthetic system of nonlinear PDEs using a scalar pentadiagonal algorithm.

Finally there is a benchmark called Data Traffic (DT) which is communication intensive. It
uses quad-trees (black hole and white hole) and binary shuffle as task graphs. It captures core
functionality of distributed data acquisition and processing systems.

In out studies, we focused on the EP, DT, LU, and CG benchmarks. We used EP benchmark
because it is computation intensive, DT is communication intensive, and the last two ones mix
computations and communications.

2.2 Evaluating the Performance of Applications

Depending on the application there are various approaches to understand its behavior. First
of all we should measure some characteristics of the studied application. The simplest perfor-
mance metric is time. This way we can observe in which parts of the code the most time is

11

spent and focus on them to further analyze the performance of the application. However, when
the application is too complex, the time may not provide enough insight on performance. Then
we have to instrument the application to measure other metrics and do further analysis which
will guide us to the reasons that the application may not scale or suffer from other performance
issues. For example we may want to know if some performance issues of the studied application
are influenced by the computation, memory usage, communication between the processes or
other factors.

2.2.1 Hardware Counters

The Performance Application Programming Interface (PAPI) [32] is a middleware that pro-
vides a consistent and efficient programming interface for the performance hardware counters
found in major microprocessors. These counters exist as a small set of registers that count
events, occurrences of specific signals related to the processor’s functions. Monitoring these
events facilitates the correlation between the structure of source/object code and the efficiency
of the mapping of that code to the underlying architecture. PAPI provides a standard set of
over 100 events for application performance tuning but not all of them are necessary available
on every processor. Each event can be mapped to either single or linear combinations of native
counters on each architecture. Hardware performance counters can provide insight into whole
program timing, cache behaviors, branch behaviors, memory and resource contention and access
patterns, pipeline stalls, floating point efficiency, instructions per cycle, subroutine resolution,
process or thread attribution. With the introduction of Component PAPI, or PAPI-C, PAPI
has extended its reach beyond the CPU and can now monitor system information on a range
of components from CPUs to network interface cards to power monitors and more. Figure [2.1
shows the internal design of PAPI.

Low Level User API High Level User API

A A

PAPI Framework

Y Y Y

PAPI Component PAPI Component PAPI Component
(Network) (CPU) (Thermal)

Figure 2.1: Internal deisgn of PAPI architecture.

PAPI provides two interfaces, high level interface for the acquisition of simple measurements
and a fully programmable, low level interface directed towards users with more sophisticated
needs. The Component Layer defines and exports a machine independent interface to machine
dependent functions and data structures. These functions are defined in components, which

12

int foo() {

Exclusive duration -

a=a+l;
return a;

Figure 2.2: Exclusive and inclusive duration of a routine during profiling.

may use kernel extensions, operating system calls, or assembly language to access the hardware
performance counters on a variety of subsystems. PAPI uses the most efficient and flexible of
the three, depending on what is available. An instrumentation method can read the values of
the hardware counters during the execution of an instrumented application.

2.2.2 Tracing

Observing the time-dependent performance behavior of an application requires to trace its
execution. Time-stamped event traces capture what performance is being achieved when and
where in the program’s execution. With the advent of the distributed processing, the tracing
of software events became a dominant technique for performance monitoring [33]. Moreover
software event tracing is the foundation of many parallel debugging techniques [34] [35]. Tracing
has also been used to study the performance of an application [36] [37, B38]. During the tracing
of an application all the executed events are logged except if it is declared otherwise. Each
event is associated to a timestamp and includes information related to the executed process and
optional data depending on the type of the event. Event logging involves several mechanisms.
This includes software instrumentation to generate events and run-time system support to store
the events in a trace buffer. One issue observed on many clusters is the time synchronization
across the participating nodes during an execution. After the execution of a parallel application
each process creates a file that contains all the occurred events. The advantage of tracing is that
we know the performance of an application at each moment for all the execution. For example
if an application is constituted by iterative methods, we can extract the performance of each
single iteration. However, this procedure adds overhead to the execution time and may require
large hard disk space. The tracing procedure is explained in [3.1]

2.2.3 Profiling

The most common way to analyze the performance of an application is the profiling of
routine execution. Basically, profiling produce statistics for each routine call by the application
indicating the number of times this routine is called and the time spent executing its code,
including (or not) the time spent in calls to other routines. Figure shows the exclusive and
inclusive duration of a routine. The exclusive duration is the amount of time spent while within
the foo function excluding the time spent in function bar which is called by foo. The inclusive

13

duration is the amount of execution time spent in foo, including the spent in all the busbroutines
called by foo.

Accesses to times (or to hardware performance counters) are trivially made by inserting
instrumentation probes at the beginning and ending of each routine as it can be seen in Figure[2.3
where a routine named main, calls a function foo with different argument values.

Time

= B EZ

Figure 2.3: Instrumentation during profiling.

The advantage of profiles is that they can be calculated at run-time, require only a small
amount of storage, and they can provide a generic glimpse of the application’s performance.
However, we do not know exactly where a performance issue occurs. In the case of an iterative
method, if there is a performance issue with some specific iterations we can not observe them.
Note that profiles can be extracted through tracing by post-processing the produced trace, but
the opposite is not possible.

2.2.4 Statistical Profiling

Statistical profiling or sampling probes the target program’s counter at regular intervals using
operating system interrupts as we can see in Figure 2.4] where again a routine named main calls
a routine foo with different arguments. Sampling profiles are less accurate and specific than full
profiling, but allow the target program to run without inducing an instrumentation overhead.
Usually this method is used for applications with long execution time where there is no need for
detailed performance analysis.

Time

Figure 2.4: Adding probes at regular intervals for statistical profiling.

14

2.3 Assessing the Performance of Applications on Resources

A user can not be aware of the performance of an application on specific resources if there is
no interaction between them. This interaction can be done either by executing the application
on the real platform, executing the application on a virtual environment that corresponds to
the resources through emulation or simulating the application to predict its performance. These
three approaches constitute the main ways to assess the performance of the applications on the
resources and are detailed hereafter.

2.3.1 Experiments

Large-scale computer experiments are becoming increasingly important in science. An ex-
periment can be executed on the available resources. Thus this is the most accurate approach
for observing the performance of an application on the specific resources. Moreover it is possible
through the experiment to observe some unexpected phenomena that a user was not aware of.
Experiments also are important for validating theories. Experimentation in a real environment
is expensive, because it requires a significant number of resources available for a large amount
of time. It also costs time, as it depends on the application to be actually deployed and exe-
cuted under different loads, and for heavy loads long delays in execution time can be expected.
Moreover the experiments are not repeatable, because a number of variables that are not under
control of the tester may affect experimental results, and elimination of these influences requires
more experiments, making it even more time and resource expensive.

For all our direct experiments we used the Grid’5000 [39, 40] testbed. In 2003, several teams
working around parallel and distributed systems designed a platform to support experiment-
driven research in parallel and distributed systems. This platform, called Grid’5000 and opened
to users since 2005, was solid enough to attract a large number of users. According to [4I], this
platform has led to a large number of research results: 575 users per year, more than 700 research
papers, 600 different experiments, 24 ANR projects and 10 European projects and 50 PhD.
Grid’5000 is located mainly in France (see Figure, with one operational site in Luxembourg
and a second site, not ready yet, in Porto Alegre, Brazil. Grid’5000 provides a testbed supporting
experiments on various types of distributed systems (high-performance computing, grids, peer-
to-peer systems, cloud computing, and others), on all layers of the software stack. The core
testbed currently comprises 10 sites. Grid’5000 is composed of 24 clusters, 1,169 nodes, and
8,080 CPU cores, with various generations of technology (Intel (56.2%), AMD (43.8%), CPUs
from one to 12 cores, Myrinet, Infiniband and 2 GPU clusters). A dedicated 10 Gbps backbone
network is provided by RENATER (the French National Research and Education Network).

From the user point of view, Grid’5000 is a set of sites with the same software environment.
It provides to the users heterogeneity which can be controlled during the experiments. The main
steps identified to run an experiment are (1) reserving suitable resources for the experiment and
(2) deploying the experiment on the resources. The resource scheduler on each site is fed with
the resource properties so that a user can ask for resources describing the required properties
(e.g., 16 nodes connected to the same switch with at least 8 cores and 16 GB of memory). Once
enough resources are found, they can be reserved either for exclusive access at a given time or for
exclusive access when they become available. In the latter case, a script is given at reservation
time, as in classical batch scheduling systems.
Several tools are provided to facilitate experiments. Most of them were originally developed
specifically for Grid’5000. Grid’5000 users select and reserve resources with the OAR batch
scheduler [42] 43]. Users can install their own system image on the nodes (without any virtual-

15

ﬁoutngmpmn LEntw 2 Mechelen:

e gt LA oCologne
2 Portsmouth i . s Mifte . Bonn :
4 aTorauay Lille ™ Belgium { 2!
l o :
hacut Rl : ! Luxerbourg]

Jerse

T"L‘ Le Havie : i)
Guernsey \L Eaen?—.gi"‘“ Gillaume & i Faarbriicken
v o =i S

M-\/"" !
& Morialc 7 :
Brest ; - Straspour
G =0 Nancy
iner Le Mans Troyes—, | Freiburg
-swgmey Rennes @ 22 5 : Q
. ¥ £ Orieans " Basel
Lorient nnes -ANGRTS oy ry i :
ar Nantes 9 it
o
FSwitzer

i’Digers . F ra nce "F-"’L‘

LaRochele
o

Bayof SAngouleme

Bisca)y-

A
Meftantour
Grenohl Matiarial Park |
P

ordeaux
\Agen

Sartander -
o o Donostia-San

=g o ebastiz Toulousé :
Bilbas Sebastian . > /
S - 9PamplonasZ = L Perpignan
Ruirnne Vg Andorra :%\

Figure 2.5: Presentation of the sites and the network of the Grid’5000 testbed.

ization layer) using Kadeploy [44]. Moreover the users can deploy a preconfigured environment
on a node, called production environment.

2.3.2 Emulation

Emulation [45] [46] is an experimental approach allowing to execute real applications in a vir-
tual environment. This allows us to reach the experimental settings wanted for an experiment.
Most of the emulation solutions rely on a heavy infrastructure and mandate the use of a cluster
and an emulation layer to reproduce the wanted environment. Emulators let unmodified appli-
cations run in a specific environment where relevant system calls are intercepted and mediated.
So basically an emulator is used to replace a system and execute an application on the virtual
system.

There are many frameworks which propose their own emulator. The Emulab-Planetlab por-
tal [47] allows to use the interface of the Emulab [48] emulator to access the Planetlab [49]
experimental platform, to emulate applications based on this platform. This helps the scientists
to emulate applications considering an existing platform. EMUSIM [50] integrates emulation
and simulation environments in the domain of cloud computing applications and provides a
framework for increased understanding of this type of systems. Furthermore, Netbed [4§] is a
platform based on Emulab that combines emulation with simulation to build homogeneous net-
works using heterogeneous resources. Another emulator is Distem [5I] which builds distributed
virtual experimental environments. This tool is easily deployed on Grid’5000 platform and it can
emulate a platform composed of heterogeneous nodes, connected to a virtual network described
using a realistic topology model. An open problem is still the mapping of a virtual platform
on a set of physical nodes. In the case that many virtual machines are on the same physical
node there are limitations on the inter-node bandwidth and communication time that should be
taken into account during the designing of the experiment.

16

2.3.3 Simulation

Simulation is a popular approach to obtain objective performance indicators on platforms
that are not at one’s disposal. Simulation has been used extensively in several areas of computer
science for decades, e.g., for microprocessor design and network protocol design. Moreover
simulation can be used to evaluate a concept in early development stage. Simulations can
also be used to study the performance behavior of an application by varying the hardware
characteristics of a hypothetical platform. However, an application should be properly modeled,
otherwise the simulation will not be accurate. A simulation is reproducible in comparison to
real experiments or emulation. Furthermore, access to large-scale platforms is typically costly
(possible access charges to the user, electrical power consumption). The use of simulation can
not only save time but also money and resources.

The Message Passing Interface (MPI) is the dominant programming model for parallel sci-
entific applications. Given the role of the MPI library as the communication substrate for
application communication, the library must ensure to provide scalability both in performance
and in resource usage. MPI development is active with an important role in the community
and the new version MPI-3.0 [52] was released on September 2012 with intention to improve the
scalability, performance and some other issues. Many frameworks for simulating the execution of
MPI applications on parallel platforms have been proposed over the last decade. They fall into
two categories: on-line simulation or “simulation via direct execution” |53} [54) 551 56} 57, 58] [59],
and off-line simulation or “post-mortem simulation” [60, 61, 62 63, 64]. In on-line simulation
the actual code, with no or only marginal modification, is executed on a host platform that
attempts to mimic the behavior of a target platform, i.e., a platform with different hardware
characteristics. Although it is powerful, the main drawback of on-line simulation is that the
amount of hardware resources required to simulate application execution at a given scale is com-
mensurate to that needed to run the application on a real-world platform at that scale. Even
though a few solutions have been proposed to mitigate this drawback and allow execution on a
single computer [65] [66], the simulation time can be prohibitively high when applications are not
regular or have data-dependent behavior. Part of the instruction stream is then intercepted and
passed to a simulator. LAPSE is a well-known on-line simulator developed in the early 90’s [53]
(see therein for references to precursor projects). In LAPSE, the parallel application executes
normally but when a communication operation is performed a corresponding communication
delay is simulated for the target platform using a simple network model (affine point-to-point
communication delay based on link latency and bandwidth). MPI-SIM [54] builds on the same
general principles, with the addition of I/O subsystem simulation. A difference with LAPSE is
that MPI processes run as threads, a feature which is enabled by a source code preprocessor.
Another project similar in intent and approach is the simulator described in [57]. The BigSim
project [56], unlike MPI-SIM, allows the simulation of computational delays on the target plat-
form. This makes it possible to simulate “what if?” scenarios not only for the network but also
for the compute nodes of the target platform. These computational delays are based either on
user-supplied projections for the execution time of each block of code, on scaling measured exe-
cution times by a factor that accounts for the performance differential between the host and the
target platforms, or based on sophisticated execution time prediction techniques such as those
developed in [55]. The weakness of this approach is that since the computational application
code is not executed, the computed application data is erroneous. Data-dependent behavior is
then lost. This is acceptable for many regular parallel applications, but is more questionable for
irregular applications (e.g., branch-and-bound or sparse matrices computations). Going further,
the work in [58] uses a cycle-accurate hardware simulator of the target platform to simulate
computation delays, which leads to a high ratio of simulation time to simulated time.

One difficulty faced by all above MPI-specific on-line simulators is that the simulation, be-

17

cause done through a direct execution of the MPI application, is inherently distributed. Parallel
discrete event simulation raises difficult correctness issues pertaining to process synchronization.
For the simulation of parallel applications, techniques have been developed to speed up the sim-
ulation while preserving correctness (e.g., the asynchronous conservative simulation algorithms
in [67], the optimistic simulation protocol in [56]). A solution could be to run the simulation on
a single node but it requires large amounts of CPU and RAM resources. For most aforemen-
tioned on-line approaches, the resources required to run a simulation of an MPI application are
commensurate to those needed to run the application on a real-world platform. In some cases,
those needs can even be higher [58, [59]. One way to reduce the CPU needs of the simulation is
to avoid executing computational portions of the application and simulate only expected delays
on the target platform [56]. Reducing the need for RAM resources is more difficult and if the
target platform is a large cluster, then the host platform must then be a large cluster. SMPI [66],
which builds on the same simulation kernel as this work, implements all the above techniques
to allow for efficient single-node simulation of MPI applications.

An alternate approach is off-line simulation in which a log, or trace, of MPI communication
events (time-stamp, source, destination, data size) is first obtained by running the application
on a real-world platform. A simulator then replays the execution of the application as if it
were running on a target platform. This approach has been used extensively, as shown by
the number of trace-based simulators described in the literature since 2009 [60, 611 62 63
64]. The typical approach is to decompose the trace in time intervals delimited by the MPI
communication operations. The application is thus seen as a succession of computation bursts
and communication operations. An off-line simulator then simply computes simulated delays in
a way that accounts for the performance differential between the platform used to obtain the
trace and the platform to be simulated. Computation delays are typically computed by scaling
the durations of the CPU bursts in the trace [61} [62] 64]. Network delays are computed based on
a simulation model of the network. The main advantage when compared to on-line simulation
is that replaying the execution can be performed on a single computer. This is because the
replay does not entail executing any application code, but merely simulating computation and
communication delays.

One limitation of these off-line simulators is that trace acquisition is not scalable. To simu-
late the execution of an application on a platform of a given scale, the trace must be acquired on
a homogeneous platform of that same scale, so that time-stamps are meaningful. In some cases,
extrapolating a smaller trace to larger numbers of compute nodes is feasible [60], but not gen-
erally applicable. Furthermore, the use of time-stamps requires that each trace be accompanied
with a description of the platform on which it was obtained, so as to allow meaningful scaling
of computation delays. In this work we address the trace acquisition scalability limitation by
using time-independent traces.

Another limitation is that these simulators typically use simplistic network models, because
they are straightforward to implement and scalable. Possible simplifications include: not using
a network model but simply replay original communication delays [64]; ignoring network con-
tention because it is known to be difficult and costly to simulate [60} 63} 68]; using monolithic
performance models of collective communications rather than simulating them as sets of point-
to-point communications [61} [64) [69]. Other simulators opt for accurate packet-level simulation,
which is not scalable and leads to high simulation times [62].

One well-known challenge for off-line simulation is the large size of the traces, which limits the
scalability of trace acquisition and can prevent running the simulation on a single node. Mech-
anisms have been proposed to improve scalability, including compact trace representations [6I]
and replay of a judiciously selected subset of the traces [63].

In this work, we focus on off-line simulation, by which a trace of a previous execution of the

18

application is “replayed” on a simulated platform.

SiMmGrid

SiMGrid [70] is a scientific instrument to study the behavior of large-scale distributed systems
such as Grids, Clouds, HPC or P2P systems. It can be used to evaluate heuristics, prototype
applications or even assess legacy MPI applications. SiMGrid was conceived as a scientific
instrument, thus the validity of its analytical models was thoughtfully studied [71I], ensuring
their realism.

Some of the key features of SIMGrid are:

— A scalable and extensible simulation engine that implements several validated simulation
models, and that makes it possible to simulate arbitrary network topologies, dynamic
compute and network resource availabilities, as well as resource failures;

— High-level user interfaces for distributed computing researchers to quickly prototype sim-
ulations either in C or in Java;

— APIs for distributed computing developers to develop distributed applications that can
seamlessly run in “simulation mode” or in “real-world mode”.

SiMGrid offers four user interfaces as it can be seen in Figure

XBT
Grounding features (logging, etc.), data structures (lists, etc.) and portability

Figure 2.6: SiIMGrid components.

MSG module provides an API for the easy prototyping of distributed applications by letting
users focus solely on algorithmic issues. Simulations are constructed in terms of concurrent
processes, which can be created, suspended, resumed and terminated dynamically, and can
synchronize by exchanging data. Moreover it proved perfectly usable in other contexts, such
as desktop grids [72]. An important difference between MSG and SMPI, is that all simulated
processes are in the same address space. This simplifies development of the simulation by
allowing convenient communications via global data structures. In other words, while MSG
can accurately simulate the interactions taking place in a distributed application, including
communication and synchronization delays, the simulated application can be implemented with
the convenience of a single address space.

SMPI [66] is a simulator for MPI applications. Its first version provided only on-line simu-
lation, i.e., the application is executed but part of the execution takes place within a simulation
component. In Chapter [f] we present our off-line simulator based on SMPI backend. SMPI sim-

19

ulations account for network contention in a fast and scalable manner. SMPI also implements
an original and validated piece-wise linear model for data transfer times between cluster nodes.
Finally SMPI simulations of large-scale applications on large-scale platforms can be executed
on a single node thanks to techniques to reduce the simulation’s compute time and memory
footprint.

StmDag is designed for the investigation of scheduling heuristics for applications as task
graphs. SimDag allows to prototype and simulate scheduling heuristics for applications struc-
tured as task graphs of (possibly parallel) tasks. With this API one can create tasks, add
dependencies between tasks, retrieve information about the platform, schedule tasks for execu-
tion on particular resources, and compute the DAG execution time.

SURF considers the platform as a set of resources, with each of the simulated concurrent tasks
utilizes some subset of these resources. SURF computes the fraction of power that each resource
delivers to each task that uses it by solving a constrained maximization problem: allocate as
much power as possible to all tasks in a way that maximizes the minimum power allocation
over all tasks, also called Max-Min fairness. SURF provides a fast implementation of Max-Min
fairness. Via Max-Min fairness, SURF enables fast and realistic simulation of resource sharing
(e.g., TCP flows over multi-link LAN and WAN paths, processes on a CPU). Furthermore,
it enables trace-based simulation of dynamic resource availability. Finally, simulated platform
configurations are described in XML using a syntax that provides an unified abstract basis for
all other components of the SIMGRID project (MSG and SMPI).

XBT is a “toolbox” module used throughout the software, which is written in ANSI C for
performance. It implements classical data containers, logging and exception mechanisms, and
support for configuration and portability.

Now that the basic concepts of our work are analyzed, we can continue in the next chapter
with the presentation of the time-independent trace acquisition framework.

20

Chapter 3

Time-Independent Trace Acquisition
Framework

All the off-line MPI simulators that were reviewed in [2.3.3] rely on timed traces, i.e., each
occuring event is associated to a time-stamp. The duration of each computation or communi-
cation operation is then defined by the interval between two time-stamps. When it simulates
an execution on a target platform that is different of the one used to get the trace, a simulator
then has to apply a correction factor to these intervals. This implies to know precisely what are
the respective characteristics of the host and target platforms. In other words, each execution
trace must come with an accurate description of how it has been acquired. Finally, determining
the right scaling factor can be tedious depending on the degree of similarity of both platforms.

In this chapter we introduce a new off-line simulation framework, that free ourselves of time-
stamps by relying on time-independent traces. For each event occurring during the execution of
the traced application, e.g., a CPU burst or a communication operation, we log the volume of
the operation (in number of instructions or bytes) instead of the time when it begins and ends.
Indeed this type of information does not vary with the characteristics of the host platform. For
instance, the size of the messages sent by an application is not likely to change according to the
specifics of the network interconnect, while the computation amount performed within a for
loop does not increase with the processing speed of a CPU. This claim is not valid for adaptive
MPI applications that modify their execution path according to the execution platform. This
type of applications, that represents only a small fraction of all MPI applications, is not covered
by our work.

Another advantage of this approach is the lack of clock synchronization across all the par-
ticipating nodes. This can be done because we do not need to extract the durations of the
communications that occur during the execution of the parallel application. This is important
as there can be many issues about clock synchronization [73] that are sometimes very difficult
to identify.

A time-independent trace can been seen as a list of actions, e.g., computations and commu-
nications, performed by each process of an MPI application. An action is described by the id
of the process that does this action, a type, e.g., a computation or a communication operation,
a volume, of instructions or bytes, and some action specific parameters such as the id of the
receiving process for a one-way communication.

Furthermore it is mandatory to know the sequence of the events, otherwise it is not pos-

21

sible to create the list of the actions which constitutes the time-independent traces. The only
instrumented mode that provides analytic measurement data, is the tracing one. Thus we need
a profiling tool that provides tracing functionalities.

The left hand side of Figure shows a simple computation executed on a ring of four
processes. Each process computes one million instructions and sends one million bytes to its
neighbor. The right hand side of this figure displays the corresponding time-independent trace.

0 init
0 compute 1e6
0 send 1 1le6
0 recv 3
0 finalize
for (i=0; i<4; i++){ 1 init
if (myId == 0){
. . 1 recv O
/* Compute 1M instructions */ 1 compute 1e6
MPI_Send(1MB,..., (myId+1)); b
1 send 2 1e6
MPI_Recv(...); 1 finalize
} else {
MPI_Recv(...); .
. . 2 init
/* Compute 1M instructions */ 2 recv 1
MPI_Send(1MB,...,
(myId+1)\% nproc); 2 compute 1e6
y > P ’ 2 send 3 le6
} - -
2 finalize
}
3 init
3 recv 2
3 compute 1le6
3 send 0 1le6
3 finalize

Figure 3.1: MPI code sample of some computation on a ring of processes (left) and its equivalent
time-independent trace (right).

Note that, depending on the number of processes and the number of actions, it may be
preferable to split the time-independent trace to obtain one file per process. Indeed Figure [3.1
shows a simple example where all the actions can be included in the same file. However, typical
MPI applications are likely to be executed by dozen of processes that perform millions of actions
each. Then it is often easier to split (or actually not merge as it will be explained later) the
trace to have one file per process, like in the Figure [3.2

0 init 1 init 127 init

0 compute 1le6 1 recv O 127 recv 2

0 send 1 le6 1 compute 1e6 . 127 compute 1le6
0 recv 3 1 send 2 1e6 127 send 0 1e6
0 finalize 1 finalize 127 finalize

Figure 3.2: Example of a split time-independent trace corresponding to a larger application
execution with 128 processes.

In this section we mention the main steps of the acquisition process. As it is shown in the
Figure[3.3] in the beginning it is mandatory to instrument an application in order to record all the
events that will occur during its execution. Afterwards, we execute the instrumented application
on a parallel platform. Then from the acquired traces, we extract the time-independent traces,
which are gathered into a single node.

22

A Time [-]
Application Instrvemr:ir;t:d }—){ Ex_rercalételcs)n }—){ Independent }-’l Replay
Traces L

Figure 3.3: Overview of the Time Independent Trace Replay Framework.

In order to replay the time-independent traces, the following requirements should apply.
For the computation actions, we know the amount of instructions, and the processing speed
of the CPU, so we can determine the time to complete the computation. However, some al-
gorithms should be implemented for the communication actions in order to calculate the time
needed to transfer the message from the sender to the receiver in the case of a point-to-point
communication and similar for other type of communications. As there are no time-stamps in
the execution traces, we should take under consideration the latency and the bandwidth of the
network. Furthermore it is really important to simulate also the contention that may occur
during the exchange of the data between the nodes. Thus, if a simulation model can handle
all the mentioned factors, then it can use the time-independent traces in order to predict the
performance of the corresponding application.

The remaining of this Chapter is organized as follows. Section describes the instru-
mentation of an application and evaluates some tracing tools. instrumentation methods. In
Section [3:2] we evaluate the quality of different instrumentation methods in terms of overhead
and skew. Section details and evaluates the subsequent parts of the proposed trace acqui-
sition framework. This presentation is illustrated by the deployment of our framework on the
Grid’5000 platform. Finally, Section [3.4] concludes this chapter. Note that the replay of the
time-independent traces will be covered in the next chapter.

3.1 Instrumenting an Application

Instrumenting an application to obtain an execution trace consists in adding probes to its
code. For instance, such probes can be accesses to hardware counters or logs of the beginning and
end of a function. Thanks to them, all the actions, i.e., computations or communications, can be
traced in a chronological order. For every function enter/exit events are saved. The information
which is logged for each event are the time-stamp, event type and event-related information such
as the sender of a message, the receiver, etc. A crucial difference with other instrumentation
modes such as profiling and statistical profiling, is that we know the chronologically ordered
sequence of the events that occur during the execution.

The left-hand side of Figure shows an example of what occurs during tracing. We have
two processes, called A and B. The first one calls the function foo, sends a message to process
B, and then exits. Similarly process B calls the function bar, receives a message from process A
and exits. However, it is mandatory to monitor the time through a synchronization mechanism
as we need to know when a communication starts and ends.

On the right-hand side of Figure[3.4] we can observe the sequence of events per process where
the name of the functions and information on events are locally encoded. In the case of merged
traces, we can observe the global sequence of events for both processes thanks to the recorded
time-stamps and the synchronization. The unification takes place to globally declare functions
and other important information.

23

Process A

id fool){ Local trace A —
void foo Global trace

trc_enter("foo");

N 58 ENTER 1

trc_send(B); > MOICE 62 SEND B 58 A ENTER 1

send(B,tag,buf); 64 EXIT 1 60 B ENTER 2

62 A SEND B

trc_exit("foo"); 64 A EXIT 1
} N, 68 B RECV A
—— [0} 69 B EXIT 2

A N 1 foo I
C
e A
. g merge
y >
Y & -
@ Local trace B
Process B ¢ unify

void bar(){ 60 ENTER 1

trc_enter("bar"); 68 RECV a % I)Oa‘:_

recv(A,tag,buf); >| MONIEE e

trc_recv(A);

't.r.c_exit("bar");

1 bar |

Figure 3.4: Example of tracing for two processes A and B that both call a function and exchange
a message.

Our off-line simulation framework expresses the following requirements for time-independent
traces:

For compute parts, the trace should contain the id of the process that executes the in-
structions and the corresponding amount;

For point-to-point communications, it is mandatory to know both the sender and the
receiver of the message, the type (MPI_Send, MPI_Recv, etc.) and the message size in
bytes;

For collective communications, it is important to know at least the size of the message
and the type of the MPI communication (MPI_Broadcast, etc.). However, there are some
MPIT calls such as MPI_Allreduce, where the participating processes execute also some
computation, summing values or determining a maximum for example. In this case, it is
mandatory to log the number of executed instructions in order to simulate the compute
part;

For synchronization calls such as MPI_Barrier, it is mandatory to know the MPI Com-
municator.

Currently our framework does not support all the MPI calls but the most common ones.
Table lists all the MPI functions for which there is a corresponding action implemented in
our framework. For the collective operations, we consider that all the processes are involved
as the MPI_Comm_split function is not implemented. When it is not possible to extract from
the instrumented execution the information about the root process that initiates a collective
operation, we assume that this process is the one of rank 0. Finally the init and finalize
actions have to appear in the trace file associated to each process to respectively create and
destroy some internal data structures that will be needed during the replay of the traces.

3.1.1 Evaluation Criteria and Scoring Method

Many profiling tools can provide useful information about the behavior of parallel applica-
tions and record the events that occur during their execution. PAPI[32] provides access to the

24

Table 3.1: Time-independent counterparts of the actions performed by each process involved in
an MPI application.

’ MPI actions ‘ Trace entry ‘
’ CPU burst ‘ <id> compute <volume> ‘
MPI_Send <id> send <dst_id> <volume>
MPI_TIsend <id> Isend <dst_id> <volume>
MPI_Recv <id> recv <src_id>
MPI_TIrecv <id> Irecv <src_id> <volume>
MPI_Broadcast <id> bcast <volume>
MPI_Reduce <id> reduce <vcomm> <vcomp>
MPI_Reduce_scatter | <id> reduceScatter <recv_counts>
<vcomp>
MPI_Allreduce <id> allReduce <vcomm> <vcomp>
MPI_Alltoall <id> allToAll <send_volume> <receive_volume>
MPI_Alltoallv <id> allToAllv <send_buffer> <send_counts>

<send_displs> <receive_buffer> <recv_counts>
<recv_displs>

MPI_Gather <id> gather <send_buffer> <recv_buffer>
MPI_Allgatherv <id> allGatherV <send_count> <recv_counts>
<recv_disps>
MPI_Barrier <id> barrier
MPI_Wait <id> wait
MPI_Waitall <id> waitAll
MPI_Init <id> init
MPI_Finalize <id> finalize

hardware counters of a processor. In our prototype framework we measured the compute parts
of an application in numbers of floating point operations (or flops). However, using another
counter, such as the number of instructions, has no impact on the instrumentation overhead as
long as the chosen measure does not combine the values of several counters. To select the tool
that corresponds the most to the requirements expressed by our time-independent traces replay
framework, we conducted an evaluation based on the following criteria and scoring method:

Profiling Features

Many tools exist to profile parallel applications, i.e., get an idea of the behavior of the
application over its execution time. A classification of these tools can be made following two
axes. The first distinction depends on the type of output produced by the considered tool. It
can be either a profile or a trace. A profile gives a higher view of the behavior of an application
as information is grouped according to a type of operation or to the call tree. A trace gives lower
level information as every event is logged without any aggregation. The second way to classify
tools depends on the kind of events they can be profiled or traced. Such events are mainly related
to communication or computation. A third important parameter for this evaluation is the type
of value associated to each logged event, e.g., volumes or timings. Finally, the instrumentation
of an application is mandatory to obtain a profile or a trace. Such a instrumentation can be
applied to the entire application or to a specific block of code, e.g., , a particular function or a
MPI call. In this evaluation we give a higher score to tools offering an automatic instrumentation

25

feature. Such a feature lighten the burden of getting a profile from a user point of view.
With regard to the specific requirements of our time-independent trace replay framework,
we adopt the following scoring scheme for the Profiling feature criterion:

— Tracing — 2 points
— Information on communication — 1 point
— Information on computation — 1 point
— Information on communication volumes (in bytes) — 1 point
— Information on computation volumes (in flops) — 1 point
— Automatic instrumentation of the complete application — 1 point
— Automatic instrumentation of a block of code — 1 point

Each tool can then obtain a score ranging from 0 to 8, the higher being the better.

Quality of Output

Profiling tools usually output the results in files. These files could be of various formats
such as plain text, XML, or binary formats. As mentioned earlier our objective is to convert
such output files into set of actions to be replayed by SiMGrid. The readability of the output
files is then a very important requirement. However, tools that produce binary files often come
with an application or an API to extract the required information. Finally we aim at replaying
executions that involve large numbers of processes. To ensure a good scalability, it is important
that the trace of each process is stored in a separate file. Indeed a tool enforcing a unique trace
file for the complete execution will have a poor scalability due to merging overhead. Moreover
as we intend to read these traces and extract the time-independent ones, if there is at least one
trace file per node, then we can use the same number of nodes with a parallel application to
achieve our purpose. This means that even for large trace sizes we would be able to use many
processors and hard disks. So the conversion will be much faster than using just one node. Then
we propose the following scoring scheme (ranging from 0 to 3) for the Output quality criterion:

— Capacity to extract the required information — 1 point
— Direct extraction — 1 point
— One pass conversion — 1 point

Space and Time Overheads

As already mentioned, files that contain all the relevant information are created during the
tracing or profiling of an application. Profiling provides aggregated data about an application.
This means for example that it records the number of times a function is called and its average
duration. Conversely tracing records each call independently with the timestamp and some other
information which depend on what the user wants to measure. The source of the time overhead
for an instrumented application are the measurement of a PAPI counter on the processor, the
instrumentation of the MPI communications, and writing traces on disks. In terms of space
overhead, profiling obviously leads to smaller traces, as logged events are aggregated.

Then, for Space and Time overhead, we adopt the following scoring scheme:

— Overhead < 50% of the initial execution time — 2 points

— 50% < Owverhead < 100% of the initial execution time — 1 point

The executed time of the instrumented application includes the time needed to write the
produced traces on disk.

— Linear increase of the overhead — 1 point
— Constant overhead — 2 points
— Linear decrease of the overhead — 3 points
— Linear increase of trace size with regard to problem size — 1 point

26

— Linear increase of trace size with regard to number of processes — 1 point
— Any special technique integrated in the tool to reduce the time overhead — 1 point
Each tool can then obtain a score ranging from 0 to 8, the higher being the better.

Software Quality

Sometimes installing a profiling tool is not just a simple procedure such as executing the
commands ./configure, make, and make install in a Linux environment. In some cases many
flags should be added to install a tool, or dependencies on other tools should be taken under
consideration. Moreover the tools that are released under open source license are preferred
compared to the ones with any non open source license. Every tool should support a variety
of hardware e.g., processors and software developed under various programming languages e.g.,
C/C++/Fortran or implementations of the Message Passing Interface e.g., Mpich, OpenMPI.
A well written manual is also always helpful for both installing and using a tool. It also has to
be up to date and inform the user about new features. Finally it is desirable that the tool is
maintained in order to support all the new versions of MPI and PAPI. As result for the software
quality criterion we adopt the following scoring scheme:

— Ease of installation — 1 point
— Software dependencies — 1 point
— License — 1 point
— Hardware compatibility — 1 point
— Support of C/C++ /Fortran programming language, 1 point for each — 3 points
— Compatibility with the major MPI implementations, i.e., Mpich or OpenMPI — 1 point
— Documentation — 1 point
— The project is active — 1 point
— There is a support team for this tool — 1 point

Each tool can then obtain a score ranging from 0 to 11, the higher being the better.

3.1.2 Evaluation of Tracing and Profiling Tools

Based on the aforementioned evaluation criteria, we studied in [74] the following tools:
PAPI [32] which gives access to the performance counters, PerfBench [75] which can instru-
ment only compute parts, PerfSuite [76] that provides statistical profiling for the compute parts,
MpiP [77] which can apply statistical profiling for the MPI communication, MPE [78] [79] that
instruments MPI communication operations, IPM [80] which supports profiling for MPI com-
munication and compute parts. The other tools provide both profiling for communication and
compute parts: Extrae [81], Scalasca [82], TAU [83|, VampirTrace |84} 85], Score-P[86], and our
contribution, called Minimal Instrumentation. In this section, we only include the evaluations
of a selected subset of tools that are representative.

PAPI

The Performance Application Programming Interface (PAPI) is a tool developed at the
University of Tennessee, Knoxville [32]. We based our evaluation on the version 3.7.0 while
the last one is version 5.1.0. The differences with the last version are the support of multiple
components, or counting domains, the possibility of developing new components and the support
of more platforms. These recent additions do not impact our evaluation. PAPI relies on the
hardware performance counters that are available on most processors. It provides the connection
between software and hardware performance counters.

27

Properties of a subset of the events are presented in Listing [3.I} First the name of each
hardware counter is given along with its internal code. The Avail column declares if the event
is available and the Deriv column shows if this PAPI counter uses two or more counters to
produce a value or there is a hardware counter that provides this information directly. Finally,
the last line presents how many counters are available for the used processor.

Listing 3.1: Subset of the counters accessed by PAPI on a AMD processor.

The following correspond to fields in the PAPI event info t structure.

Name Code Avail Deriv Description (Note)
PAPI L1 DCM 0x80000000 Yes No Level 1 data cache misses
PAPI L1 ICM 0x80000001 Yes No Level 1 instruction cache misses
PAPI 12 DCM 0x80000002 Yes No Level 2 data cache misses
PAPI 12 ICM 0x80000003 Yes No Level 2 instruction cache misses

PAPI _TOT IIS 0x80000031 No No Instructions issued
PAPI TOT INS 0x80000032 Yes No Instructions completed
PAPI INT INS 0x80000033 No No Integer flops
PAPI FP INS 0x80000034 Yes No Floating point flops
PAPI TOT CYC 0x8000003b Yes No Total cycles

Of 103 possible events, 36 are available, of which 8 are derived.

So by using this metric, it is possible to create traces with the exact amount of executed
flops.

Profiling features With regard to the profiling features evaluation criterion, PAPI obtains
a score of 4 points. Indeed, PAPI offers tracing facilities (2 points), that allows us to obtain
information about the computation (1 point) and especially about volume for each computation
event (1 point). However, PAPI does not provide any mechanism to trace communication events
and there is no way to trace an application automatically using only PAPI. Nevertheless it is
possible to instrument an application manually.

Listing[3.2) presents an example of how to measure the number of flops computed by a block of
code. In order to trace a block of code, some commands should be inserted at the beginning and
the end of it. If we want to measure the amount of executed flops for the function ssor (itmax)
in the LU benchmark, the commands PAPIF_start and PAPIF_stop should be inserted as shown
in Listing [3.2]

Lines [0}ff] declare the events array in which are saved the codes of the events to be measured.
The variable numevents declares the number of events that PAPI should monitor and the variable
check is used for checking the status of the commands. Furthermore the EventSet is the set
with all events that are going to be used. The values from the counters are saved in the array
Values. Line [declares two strings for printing the number of flops and the rank of the process.
Line [3] declares the number of events that are going to be monitored. Line [] sets EventSet to
PAPI_NULL on the next line, the event PAPI_FP_0PS is saved to the events array. The variable
check on the line[f]is always equal to the code of the current PAPI’s version. Between the lines
[7 and [I2] the following commands are executed: the initialization of PAPI, the creation of the
null set, the event is added to the null set, the measurement starts, the ssor function is called,
and the measurement stops respectively. Finally from lines [I3] to [L6] the value of the counter is
saved to the string ch, the id which is the rank of the process is saved to the string ch2 and

28

0 3 O Tt i Wi+~ O

Listing 3.2: Example of measuring the flops for the ssor iteration.

integer events (1), numevents, check, EventSet

integer Values (1)

character (15) ch,ch2

numevents=1

EventSet = PAPI NULL

events (1) = PAPI FP_OPS

check = PAPI VER CURRENT

call PAPIf library init(check)

call PAPIF create eventset(EventSet, check)

call PAPIF add event(EventSet, events(1l),check)

call PAPIF start(EventSet,check)

call ssor (itmax)

call PAPIF stop(EventSet, Values,check)

write(ch, (i10)’) Values(1)

write(ch2,’(i6)) id

write (x,100) trim(ch2),’_compute_’,trim(ch)
100 format (A,A9,A)

with the last two lines the number of the flops and the rank are printed with the format “rank
compute value” which is the format of time-independent traces.

Moreover each process saves its own trace to a separate file so if the application is executed
on N processes, then there are N trace files.

Quality of output About the quality of output evaluation criterion, PAPI obtains a score of
3 points. PAPI allows for the extraction of information on computations (1 point). By using
appropriate commands such as those in Listing it is possible to print the number of flops
according to the time-independent trace format (1 point). As result there is no need for any
conversion (1 point).

Example of traces for the LU benchmark

Table presents the first four lines of the traces of the LU benchmark, class C, executed on
4 nodes. The benchmark was traced with PAPI, hence there is no info about the communication.
After each MPI call we start measuring the executed flops and stop just before the next MPI
call, where we save the corresponding action into our traces.

Space and time overhead Thanks to papi_cost, it is possible to compute the minimal,
maximal, mean and the standard deviation of the execution time of basic PAPI operations, e.g.,
start/pairs and reads. The results are presented in Table More details are given in [74].

With regard to the space and time overheads, PAPI obtains the score of 6 points. In Table[3.4]
we see that the time overhead is less than 50% for the LU benchmark class C (2 points). While
slightly increasing, the time overhead remains in the 5-7% range, then we consider it as constant
(2 points).

In Table we can observe that when the number of the nodes is doubled then the size of
the traces is almost two times bigger. We can thus claim that the increase is linear (1 point).
Moreover with 32 nodes, the difference of the trace sizes from class A to C is of 25 MB per class,
so the trace size increases linearly with the problem size, except for class D. Compared to the

29

Table 3.2: The first lines of the time-independent traces of LU benchmark, class C, 4 nodes.

compute 10632621
compute 244390418
compute 11612863
compute 6492893

compute 10633358
compute 244372181
compute 9328093
compute 2284893

o O O O
I

compute 10633400
compute 244372720
compute 9328049
compute 2284855

compute 10632459
compute 244394098
compute 9327954
compute 6492794

NN NN
w w ww

Min cycles | Max cycles | Mean cycles | std. deviation
Papi_start/stop 9 26381 12 26.73
Papi_read 111 28568 114 81.9
Addition 235 9537 254 10

Table 3.3: Overhead in cycles of basic PAPI operations as measured with papi_cost

Nodes Execution time Execution time Time Overhead
w/o tracing (in sec.) | w tracing (in sec.) (in %)
4 685.18 696 1.58
8 345.2 362.5 5.01
16 184 195.4 6.2
32 100.1 106.6 6.5
64 53.08 56.8 7

Table 3.4: Time overhead of PAPI for the LU benchmark, Class C.

other classes, Class D works on larger matrices (14 times bigger than class C) and needs more
iterations (300 vs. 250). The observed can then easily be justified and we give 1 point on this
criterion.

LU, C'laSS'C LU, 32 nodes
Nodes | Size (in MB) Class | Size (in MB)
4 11 A 36
8 23 B 59
16 46 C 94
32 94 D 299
64 193

Table 3.5: Space overhead of PAPI for the LU benchmark.

30

Software quality Considering the software quality, PAPI obtains the score of 11 points. The
installation of the PAPI is easy without any problem but there are some restrictions by the soft-
ware dependencies (1 point). PAPI depends on linux performance counters driver (perfctr) [87]
or performance monitoring interface (perfmon2) [88|. For the kernels older than 2.6.30 it is
needed to patch the kernel, otherwise there is at least support for perfmon2. In the case that
a patch is needed, the configuration of the kernel has to be changed. The monitoring counters
should be enabled through the make oldconfig command and afterwards to build and install
the modified kernel (1 point). Moreover PAPI is released under the New BSD license template
which is a GPL-compatible software license (1 point). PAPI is the standard tool to access the
hardware counters of the CPU and it is compatible with the major platforms as shown in Ta-
ble (1 point). Furthermore PAPI supports the C/C++ and Fortran programming languages
(3 points). About the documentation, the installation process is well documented on the official
web page (1 point), the usage of PAPI is well explained through the PAPI references, the
Presentations and the Doxygen docs that are available under the Documentation menu of the
official web page (1 point). Finally the project is active, patches are released often (1 point) and
there is a support team answering any question (1 point).

Hardware Operating Requirements
System
AMD Athlon/Opteron, Linux 2.2, Mikael Pettersson’s PerfCtr

Intel thru Pentium III, 2.4,2.6 kernel patch for Linux

Pentium M, Core2 Series (included)

AMD Opteron, Linux 2.6 Stephane Eranian’s
Intel Pentium M, Perfmon2 kernel patch
Core2 Series from sourceforge

Intel Pentium IV, D Linux 2.2,2.4,2.6 | Mikael Pettersson’s PerfCtr
2.6.x kernel patch

for Linux (included)
Intel Itanium II, Linux 2.4, 2.6 none

Montecito, Montvale

Table 3.6: Principal Hardware/OS combinations supported by PAPI.

Table B.7 summarizes the results of the evaluation of PAPI.

Profiling features | Quality of output | Overheads | Quality of Software | Total
4 3 6 11 24

Table 3.7: Summary of the evaluation of PAPI.

Scalasca

Scalasca [82, [89] is an open-source toolset that can profile and trace an application. It is
developed by the Forschungszentrum Jiilich, Jiilich Supercomputing Centre and the German
Research School for Simulation Sciences, Laboratory for Parallel Programming. We based our
evaluation on version 1.3.3 while the latest is version 1.4.3. When the execution of an instru-
mented application ends, a parallel automatic event trace analysis tool called SCOUT is executed.

31

This tool identifies and reports any logical clock violations. Since the version 1.3.3, a new envi-
ronment variable is introduced that disables the execution of this tool as it does not influence the
creation of the traces. The Program Database Toolkit (PDToolkit) (J90], [91]) is a framework
for analyzing source code written in several programming languages and for making rich pro-
gram knowledge accessible to developers of static and dynamic analysis tools. This framework
is partially supported by Scalasca.

Profiling features Regarding the profiling features, Scalasca obtains a score of 6 points. This
tool can trace an application (2 points), but it is not possible to trace the size of the message
for a MPI_Recv call. Thus it can not extract from the trace files all the required data related to
communication (0 point). All the required data about computation (1 point), the volumes in
bytes (1 point) and the volumes in flops (1 point) are respectively recorded into the trace files.
Finally, Scalasca can automatically trace an application (1 point).

Quality of output Scalasca provides the PEARL API [92] to create a C++/MPI tool to
extract the required data from the traces (1 point). Thanks to the format of the trace files, it is
possible to convert them in one pass (1 point).

Space and time overhead Considering the space and time overhead, Scalasca obtains a score
of 8 points. According to Table the time overhead stays under 50% (2 points). Moreover,
we see that it linearly decreases as the number of participating processes increases (3 points).
As we execute the benchmark with one process per node, there is always one disk per process
onto which flush the traces. The size of the trace produced by a single process decreases as the
total number of processes grows, hence the reduction of the overhead.

LU benchmark, class C
Nodes Execution time Execution time Time Overhead
w/o tracing (in sec.) | w tracing (in sec.) (in %)
4 685.18 893 30.33
8 345.2 449 30.07
16 184 216 17.39
32 100.1 110 9.89
64 53.08 58.6 10.39

Table 3.8: Time overhead of Scalasca for the LU benchmark, Class C.

In terms of space overhead, the evolution of the trace size is correlated to that of the size
of the instance (1 point). Class D is much bigger than the other instances (larger matrices and
more iterations). This bigger gap is also observed in the size of the traces. From class A to class
C, size grows by a factor of 2.3 and 2.6, while from class C to class D, the trace grows by a factor
of 4.7. When the number of processes is increased for a given class, we observe a linear increase
of the trace size (1 point). However, a large part of the trace size comes from the tracing of a
function that does not depend on the number of processes and is not relevant for our studies.
Scalasca allows the user to declare that some functions do not have to be traced, which allows
for a reduction the space overhead (1 point).

Software quality Although some flags have to be set to install the tool, the installation was
easy (1 point). It depends on 1libbfd and libiberty libraries but both libraries are part of

32

LU, c.lass'C LU, 32 nodes
Nodes | Size (in MB) Class ,Size (in MB)
4 2,100 A 476
) 2,200 B 1,100
16 2,500 C 27900
32 2,900 D 363 000
64 3,900 ’

Table 3.9: Space overhead of Scalasca for the LU benchmark.

standard distributions (1 point). Furthermore Scalasca is released under the New BSD license
which is a GPL-compatible free software license and has been vetted as open source by the
Open Source Initiative (1 point). According to Table Scalasca is compatibile with a lot
of hardware (1 point). Scalasca can trace applications which are implemented in C/C++ and
Fortran (3 points) and is compatible with MPICH and OpenMPI (1 point). The documentation
is well written and covers a lot of topics about the installation and usage of the tool (1 point).
Finally the project is active (1 point) and there is a team providing support to the users (1
point).

Hardware Operating Requirements
System

AMD Athlon/Opteron,

Intel thru Pentium III, x86-Linux

Pentium M, Core2 Series
AMD Opteron,

Intel Pentium M, x86 64-Linux | PAPI, PDToolkit,
Core2 Series libbfd,libiberty,Qt4
Intel Pentium IV, D
Intel Itanium II, IA 64-Linux

Montecito, Montvale

Table 3.10: Principal Hardware/OS combinations supported by Scalasca.

Table B.11] shows the overall results of the evaluation of Scalasca.

Profiling features | Quality of output | Overheads | Software Quality | Total
6 2 8 11 27

Table 3.11: Summary of the evaluation of Scalasca.

TAU

TAU |83, 93] is an advanced profiling and tracing toolkit for the performance analysis of
parallel programs. It is developed by the Department of Computer and Information Science,
University of Oregon, the Forschungszentrum Jiilich, Jiilich Supercomputing Centre, ZAM and
the Advanced Computing Laboratory, Los Alamos National Laboratory. The evaluation is based
on TAU version 2.21 while the last one is version 2.22.2 which suppors new technologies and

33

processors and a new implementation of the MPI wrapper. According to our experiments these
changes do not influence the current results.

Profiling features Regarding the profiling features, TAU obtains a score of 8 points. TAU
can trace an application (2 points), and logs data related to the computation (1 point) and
the communication (1 point) into trace files. Moreover the volumes of the communication and
computation are in bytes (1 point) and flops (1 point) respectively. TAU supports the PDToolkit
framework so it provides the user with a method to trace all the application (1 point) or only a
block of code (1 point).

Quality of output The binary trace files produced by TAU contain all the required data for
the simulation. It is possible to extract them with the help of the TAU trace format reader
library [94] (1 point). We used the API to implement a tool that converts TAU traces into
time-independent traces in one pass (1 point).

Space and time overhead The time overhead of TAU is given in Table It is under
50% of the execution time of the application (1 point) but does not decrease as the number of
processes grows. In terms of space overhead, the size of the traces increases linearly along with
both the number of processes (1 point) and the problem size (1 point), as shown by Table
Finally, TAU provides a way to declare that some functions are not to be traced in order to
decrease the time and space overheads (1 point).

LU benchmark, class C
Nodes Execution time Execution time Time Overhead

w/o tracing (in sec.) | w tracing (in sec.) (in %)
4 685.18 983 43.46
8 345.2 493.5 42.96
16 184 239.3 30.05
32 100.1 128.8 28.67
64 53.08 71.1 33.94

Table 3.12: Time overhead of TAU for the LU benchmark, Class C.

LU, class C
—— LU, 32 nodes
Nodes | Size (in MB) —
Class | Size (in MB)
4 5,100
A 1,300
8 5,400
B 2,700
16 6,000
C 7.300
32 7,300 D 37200
64 9,900 :

Table 3.13: Space overhead of TAU for the LU benchmark.

Software quality The installation of TAU is easy. It can be configured thanks to compilation
flags (1 point). It has a software dependency on the PDToolkit which can be respected (1
point). TAU is free under BSD style license which is GPL-compatible (1 point). According to

34

Table it supports various hardware configurations (1 point). Moreover all the programming
languages C/C++ and Fortran (3 points) and the major MPI implementations such as MPICH
and OpenMPI (1 point) are supported. The official web site gives access to manuals about usage
and installation of this tool (1 point). Finally the project is active (1 point) and there is a team
for answering any question (1 point).

Hardware Operating Requirements
System

AMD Athlon/Opteron,
Intel thru Pentium III, x86-Linux
Pentium M, Core2 Series
AMD Opteron,

Intel Pentium M, x86 _64-Linux | PAPI, PDToolkit (optional)
Core2 Series
Intel Pentium IV, D
Intel Itanium II, TA 64-Linux
Montecito, Montvale

Table 3.14: Principal Hardware/OS combinations supported by TAU.

The overall results of the evaluation are presented in Table

Profiling features | Quality of output | Overheads | Software Quality | Total
8 2 5 11 26

Table 3.15: Summary of the evaluation of TAU.

Score-P

Score-P [806], 5] has been developed by the German BMBF project SILC and the US DOE
project PRIMA. It is a highly scalable tool suite for profiling, tracing, and the online analysis of
HPC applications. The evaluated version is the 1.0-beta while the latest one is 1.1.1 that corrects
some bugs not related with our usage. This tool is the result of the collaboration between the
researchers involved in the development of many well known tools such as TAU, Scalasca and
VampirTrace.

Profiling features With regard to profiling features criterion, Score-P achieves the score of
7 points. It can trace an application (2 points) and record all the computation (1 point) and
communication events (1 point) with their volumes in flops by using PAPI (1 point) and bytes
(1 point) respectively. It can automatically instrument an application (1 point).

Quality of output The Score-P tool achieves the score of 2 points for the criterion of quality
of output. The format of the generated traces is the Open Trace Format Version 2 (OTF2) [96]
which is a highly scalable, memory efficient event trace data format and will become the new
standard trace format for TAU, Vampir and Scalasca. It is the common successor format for
the Open Trace Format (OTF) and the Epilog trace format [97]. When the execution ends, the
traces comprise the computation and the communication events with all the necessary data (1

35

point). From the OTF?2 files it is possible to acquire the time-independent traces by using the
OTF2 API and only one pass (1 point).

Space and time overhead Table shows that the time overhead is less than 50% (2
points). Moreover the overhead decreases linearly as the number of the processes increases (3
points).

Nodes Execution time Execution time | Time Overhead (in %)
w/o tracing (in sec.) | w tracing (in sec.) (in %)
4 685.16 915.919 33.67
8 345.2 443.59 28.5
16 184 220.78 19.99
32 100.1 109.95 9.84
64 53.08 58.16 9.57

Table 3.16: Time overhead of Score-P for the LU benchmark, Class C.

According to Table the increase of the number of the processes causes a linear increase
of the size of the traces (1 point). Similarly, when the size of the problem increases, then the size
of the traces increases also linearly (1 point). With the combination of PDT and the Score-P
user API, code regions can be excluded from the instrumentation (1 point).

LU, c.lass .C LU, 32 nodes
Nodes | Size (in mb) Class | Size (in mb)
4 2800 A 583
8 2900 B 1400
16 3200 C 3700
32 3700 D 48000
64 4900

Table 3.17: Space overhead of Score-P for the LU benchmark.

Software quality Score-P achieves the score of 11 points regarding the software quality crite-
rion. There is no issue about the installation (1 point) and no dependency on other libraries (1
point). It is available in Open Source under a BSD license (1 point). The tool is compatible with
various hardware and is supported on many platforms (1 point) as it can be seen in Table

It is compatible with the C/C++ and Fortran programming languages (3 points) and with
the major MPI implementations (1 point). There is a manual which describes many different
aspects of what this tool can do, how to install it and how to use it (1 point). This is a new
project which aims at providing the best characteristics of some well known tools (1 point) and
there is a support team for solving any problem (1 point). We aggregate the results of the
evaluation in Table B.19

36

Hardware Operating Requirements
System

AMD Athlon/Opteron,
Intel thru Pentium IIT, x86-Linux
Pentium M, Core2 Series
AMD Opteron,

Intel Pentium M, x86 64-Linux | PAPI, PDToolkit
Core2 Series
Intel Pentium IV, D

Intel Itanium II, [A 64-Linux
Montecito, Montvale

Table 3.18: Principal Hardware/OS combinations supported by Score-P.

Profiling features | Quality of output | Overheads | Software Quality | Total
7 2 8 11 28

Table 3.19: Summary of the evaluation of Score-P.

Minimal Instrumentation (MinlI)

There are two undesirable side effects caused by complex profiling tools. First, they may
induce a large time overhead. Second, the measure of hardware counters may be skewed, as
the flops caused by the tool itself are also measured. Unnecessary instrumentation, in our
case instrumentation that generates trace data beyond the information strictly needed for our
replay framework, would then unnecessarily increase overhead and skew. In order to control the
instrumentation at a lower level, we implemented our own instrumentation method, called Minl.
The MPI standard exposes two interfaces for each MPI function, one prefixed with MPI_ and
the other prefixed with PMPI_, the former calling the latter directly. This provides developers
with the opportunity to insert their own code, e.g. for profiling purposes, in the implementation
of all MPI_ functions. This mechanism is used by several of the aforementioned tools, and we
ourselves use it to insert code that is executed upon entry and exit for all MPI calls. This code
retrieves hardware counters through PAPI, and generates event traces such as those in Figure
[3:1] This approach is guaranteed to perform the minimal amount of instrumentation needed for
our purpose.

According to both MPICH and OpenMPI implementations, the Fortran PMPI layer calls C
PMPI either directly or through C MPI layer. Thus we just have to provide profiling wrappers
in C to trace an application. Furthermore, to decrease the I/O overhead, we implement a simple
buffering mechanism. We can declare how many events are saved in the memory before flushing
them to the hard disk.

Listing [3.3] presents the instrumentation of the MPI_Send call, with this minimal instrumen-
tation. The general concept is that when there is an MPI_Send call, we create a compute action
with the amount of flops computed since the last MPI call. Then, PMPI_Send is called, and the
corresponding send action is created, saved in the buffer and it starts measuring again the flops.
We use the PAPI_accum_counters command which measures the corresponding PAPI metric
since the beginning of the execution and increases monotonically.

37

Listing 3.3: Handling MPI Send function with Minl.

int MPI_Send(buf, count, datatype, dest, tag, comm)

{

if (PAPI_accum_counters(values, 1)!=PAPI OK) {
printf ("PAPI does not support this metric\n");
}

counter2=values [0];

MPI Type get name(datatype,t data,&np);
this type=encode datatype(&t data);
PMPI Comm rank(MPI COMM WORLD, &llrank);

sprintf (msg,"%d compute %lld\n" llrank ,counters2—counterl);
strcat (longmsg ,msg) ;

returnVal=PMPI Send(buf, count, datatype, dest, tag, comm);

if (this type==0) sprintf(msg, "%d send %d %d\n",
llrank , dest ,count);
else sprintf(msg, "%d send %d %d %d\n",
llrank ,dest ,count ,this type);
strcat (longmsg , msg) ;

if (PAPI accum_counters(values, 1)!=PAPI OK) {
printf ("PAPI does not support this metric\n");

}

counterl=values [0];

Profiling features With regard to the profiling features evaluation criterion, the minimal
instrumentation tool, obtains a score of 7 points. This tool can trace an application (2 points)
and record the communication (1 point) and computation information (1 point) with the corre-
sponding data in bytes (1 point) and flops (1 point). Moreover it can instrument automatically
an application (1 point), but all the application has to be traced.

Quality of output Regarding the quality of output, it achieves a score of 3 points. This
tool can record all the required information (1 point), it saves directly the measured data into
time-independent traces (1 point), thus there is no need to read the traces at all (1 point).

Space and time overhead About the space and time overheads evaluation criterion, our
minimal instrumentation obtains a score of 6 points. The time overhead in Table is around
4-5% in all the cases, then smaller than 50% (2 points) and constant (2 points). The trace sizes
are given in Table When the number of processes is doubled, the size of the traces is

38

Nodes Execution time Execution time | Time Overhead (in %)
w/o tracing (in sec.) | w tracing (in sec.) (in %)
4 685.18 695.8 1.55
8 345.2 360 4.29
16 184 191.63 4.15
32 100.1 105.2 5.09
64 53.08 55.8 5.12

Table 3.20: Time overhead of Minl for the LU benchmark, Class C.

increased linearly (1 point). With regard to the problem size, by changing only the class of the
problem, the size of the traces is increased linearly (1 point).

LU, class C

. - LU, 32 nodes
Nodes | Size (in MB) Class | Size (in MB)
4 20
A 99
8 49
B 161
16 120
C 257
32 257 D 304
64 049

Table 3.21: Space overhead of Minl for the LU benchmark.

Software quality Minl achieves a score of 10 points regarding the software quality criterion.
There is no need to install the tool, just to compile it (1 point). There is no dependency except on
PAPI (1 point). Minl is released under the LGPL license (1 point). Table [3.22]shows that MinI
has no hardware compatibility issues (1 point). It supports C/C++ and Fortran programming
languages (3 points). The Minl tool is developed according to the MPI standards, thus it
supports both MPICH and OpenMPI (1 point). There are instructions on how to compile and
use it (1 point). Moreover this project is active (1 point) there is a support team for answering
any question (1 point).

Hardware Operating Requirements
System

AMD Athlon/Opteron,
Intel thru Pentium III, x86-Linux
Pentium M, Core2 Series
AMD Opteron,

Intel Pentium M, x86 64-Linux PAPI
Core2 Series
Intel Pentium IV, D
Intel Itanium II, IA 64-Linux
Montecito, Montvale

Table 3.22: Principal Hardware/OS combinations supported by Minl.

39

Finally we aggregate the results of the evaluation in the Table [3.23]

Profiling features | Quality of output | Overheads | Software Quality | Total
7 3 6 10 26

Table 3.23: Summary of the evaluation of Minl.

3.1.3 Final Scores and Discussion

The final score for all the tools is presented in Table [3:24]

Tool Profiling | Quality of Space and Quality of | Total
features output Time Overheads | Software
PerfBench 2 0 0 5 7

PerfSuite 2 0 0 10 12
MpiP 2 0 0 11 13
IPM 3 0 0 11 14
MPE 4 1 2 10 17
PAPI 4 3 6 11 24
Extrae 7 2) 11 25
VampirTrace 7 2) 11 25
Minl 7 3 6 10 26
TAU 8 2) 11 26
Scalasca 6 2 8 11 27
Score-P 7 2 8 11 28

Table 3.24: Summary of the evaluation of the studied instrumentation tool.

First, we recall the evaluation criteria we used are driven by the requirements of our frame-
work. Then, it is not an exhaustive evaluation of all the features of each tool. About the score,
PAPI achieves a high score. However, it only provides information about computation with man-
ual instrumentation. Then, Extrae needs a lot of time to convert the trace files into Paraver files
and depending on the application, traces can be large. As the conversion to time-independent
traces should be done by a serial application, the demanded time could be significant with regard
to the execution of an application. Reading the provided OTF files of VampirTrace instrumen-
tation, requires to merge them, so a global file system is demanded, or at least to gather all
the traces into a single node. This is a procedure that we want to avoid because the global file
system is not supported by default by all our clusters and the gathering of the traces would
consume a lot of time. Although Scalasca is an efficient tool, it does not comply with all the
necessary requirements expressed by our framework. TAU, is one of the tools that provide all
the features and it is efficient enough according to our requirements. However, there are some
cases which are going to be described later, where it demands a lot of memory in comparison
with other tools. One of the newest tools, named Score-P, seems to be promising. It provides
all the required information and with the OTF2 API it is possible to extract time-independent
traces without the need for a global file system. The Minl tool succeeded to most of our tests.
It has been developed to fulfill our framework requirements. It provides the time-independent
traces directly after the application’s execution, just by compiling MPI applications against our

40

tool with less overhead than any other tool. The TAU, Score-P, and Minl can be used for our
framework but with some restrictions. For example if we want to create an action correspond-
ing to communication such as MPI_Alltoallv, then we need to know some specific information
about the MPI call that only Minl provides directly.

While Minl does not achieve the highest score, it is the most efficient with regard to our
framework requirements. It leads to smaller time and space overhead than other tools. Fur-
thermore it creates the time-independent traces directly during the execution of the application,
thus it needs less space to save trace files on hard disks. The instrumentation skew is also
smaller than other tools, so the traces represent accurately the performance of an application.
Another advantage is its lack of dependencies and it is easy to use by linking Minl to the desired
application. For our prototype we used the TAU tool, as Score-P was not mature at that time.
However, the need for an even more efficient profiling tool, led us to develop Minl.

3.2 Evaluation of Instrumentation Methods

In our prototype framework it was necessary to validate our methodology on various bench-
marks. The benchmarks are constituted by computation and/or communications parts and
declarations of variables and initialization /finalization phases. To validate our framework, spe-
cially as the simulation did not take memory footprint under consideration, we had to acquire the
time-independent traces for specific parts of applications. The usual approach is called selective
instrumentation. There is another reason to apply selective instrumentation. Some applications
can be constituted by large number of calls to a function which does only compute and total
duration whose is not significant in comparison to application’s execution time. Such functions
can create both time and space overhead during the instrumentation of an application. We
figured out another method to decrease such time and space overhead. The main idea came
out from the structure of the time-independent traces as there is no need to know when a non
MPI function is called. From the computation point of view we only need to know the total
amount of instructions between two successive MPI calls. We combine TAU with PDToolkit to
instrument only MPI calls, leading to a more efficient instrumentation called “TAU-reduced”.
However, when we tried to test the scaling capabilities of our framework by using hundreds
of nodes, TAU demands a lot of memory. This occurs because TAU provides more complex
profiling features than the ones that are required by our framework. To address this issue we
developed the minimal instrumentation Minl which instruments only the MPI calls of an appli-
cation and saves the logged events into time-independent traces directly. This tool is the most
efficient with regard to our framework requirements and requires less memory than other tools.
In the next section we detail the "Selective" and "Tau-Reduced" instrumentation methods+

3.2.1 Selective Instrumentation

An interesting feature provided by TAU, is selective instrumentation. It can be done in
different ways. One consists in listing in a separate file which functions have (or have not) to be
traced. All the functions in the call path of the listed functions will also be traced. However,
this technique may not be enough to isolate a given call, e.g., if a function is called twice but
only one call has to be traced. A solution is then to insert two macros provided by the TAU
API, namely TAU_ENABLE_INSTRUMENTATION and TAU_DISABLE_INSTRUMENTATION in the source
code.

The following example illustrates the instrumentation of the SSOR (itmax) function call in a
LU factorization.

41

1 call TAU_ENABLE_INSTRUMENTATION ()
2 call ssor(itmax)
3 call TAU_DISABLE_INSTRUMENTATION()

One additional call to each of these macros is required to define neat disable/enable sections.
Such slight modifications of the source code can be handled by the pre-processor. Indeed the
initial program has to be compiled using one of the scripts provided by TAU, i.e., tau_cc.sh
and tau_£77.sh for C and Fortran codes respectively.

3.2.2 TAU-reduced

While selective instrumentation logs only the events of specific parts of an application, it
still includes time overhead to instrument all the enter/exit events of a function that is called
many times. For instance, this overhead may come from the instrumentation of functions that
do not include MPI calls and are located within loops. While this information may be useful
to users aiming at identifying performance bottlenecks in their application, it is useless to our
specific usage of the produced traces.

However, the selective instrumentation feature provided by TAU gives us a way to obtain
all this required information, and only it. We modified our instrumentation method as follows.
First we create a file, named exclude.pdt, in which we indicate to TAU the list of source files
that have to be excluded from the detailed instrumentation. Actually, we exclude all the source
files using the special character ’x’.

BEGIN_FILE_EXCLUDE_LIST
*

END_FILE_EXCLUDE_LIST

Then, we add the following option to the command line to take this exclusion file into
account.

-optTauSelectFile=/path/exclude.pdt

Thanks to this straightforward modification, the instrumentation is “reduced” with regard
to our specific needs. Indeed the performance hardware counter that measures the number of
executed instructions will be triggered only when entering and exiting MPI functions. All the
information related to MPI calls, i.e., id of the process that calls this function and the function
name and calling parameters, are traced exactly as in the previous implementation.

We expect this simple modification to have an impact on both the execution time overhead
and the skew of measured numbers of instructions between non-instrumented and instrumented
versions of an application. This instrumentation method is called “TAU-reduced”.

3.2.3 Evaluation of the instrumentation methods

We execute four different versions of the LU factorization from the NPB suite, all compiled
with the highest level of compiler optimization. The first version is the original benchmark
augmented with two calls to PAPI inserted at the beginning and the end of the LU computation
to measure the total number of executed instructions. Since the overhead and skew due to these
two calls are negligible, we call this version “original”. The second version is called “TAU-full”
and corresponds to the benchmark instrumented using TAU with default configuration settings.
The third version is called “TAU-reduced” and corresponds to the benchmark instrumented using

42

TAU but enabling instrumentation exclusion to reduce overhead and skew. The fourth version
is called “minimal” and corresponds to the benchmark instrumented using the Minl tool. We
execute all versions on the same cluster, called graphene, that comprises 144 2.53GHz Quad-Core
Intel Xeon x3440 nodes. Each core has a L2 cache of 2 MB. The nodes are spread across four
cabinets, and interconnected by a hierarchy of 10 Gigabit Ethernet switches.

We compute the instrumentation overhead as the percentage difference in execution time
between an instrumented version and the original version. For each MPI process, we compute
the instrumentation skew as the percentage difference in total number of instructions between
an instrumented and the original application. For the instrumented application this number is
computed as the average of the numbers of instructions for all the CPU bursts.

Figure |3.5] shows the skew for various instances of the LU benchmark. Each data point
is obtained as an average over ten executions and aggregates the skews measured on all the
processes. As expected, the TAU-full instrumentation method leads the highest skew as it is
the most intrusive methods. The induced skew ranges from 3.66% to 21.62%. As the number of
instructions is a fundamental component in our replay framework, the higher the skew, the less
accurate the simulations will be. In other words, our framework will simulate the instrumented
application rather than the original application. The TAU-reduced and Minimal instrumentation
methods greatly reduce the skew (on average by a factor of 3.69 and 8.97, respectively). The
lowest skew is achieved by the Minimal instrumentation method. It is always under 5% and
in most of the cases under 2%. The highest skew caused by the Minimal instrumentation
method (4.76%) is obtained for the B-128 instance. In this particular case a relatively small
input data is distributed among 128 processes, so that each process holds only less than a hundred
kilobytes of data. As a result each process performs a small volume of computation and the
instrumentation instructions represents a non-negligible fraction of the executed instructions.

T T
TAU-full — Class B e

TAU-full — Class C -
20 "TAU-Reduced — Class B —e—]
TAU-Reduced —— Class C —eo—i
s Minimal — Class B —A—
‘= 15 [Minimal — Class C A -
z
[}
%4
[}
e 10]
o)
>
<
5 — —
0 !

8 16 32 64 128
Number of processes

Figure 3.5: Instrumentation skew for the three instrumented LU benchmarks.

Figure shows the overhead in terms of execution time induced by the TAU-reduced and
Minimal instrumentation methods for various instances of the LU benchmark. The TAU-Full
instrumentation method is not displayed here, as its high skew discards it as a valid choice for
our off-line simulation framework. As for the skew, we see that the Minimal instrumentation
we implemented reduces the overhead (on average by a factor of 1.6) with regard to the TAU-
reduced method. While this figure indicates that the overhead can become large (up to 23.5%
for the B-128 instance), in general it remains low. Indeed, the overhead induced by the Minimal

43

instrumentation method ranges from 1.55 to 2.01 seconds for class B instances and from 0.8
to 2.6 seconds for class C instances. But as the original execution time of the application
greatly decreases as more processes are used, the relative overhead increases. Since large number
of processes are generally used to solve only large problem instances, unlike the class B LU
benchmark, we conclude that the instrumentation overhead is well within acceptable limits.

40

T T

TAU-Reduced — Class B —e—i
35 FTAU-Reduced —— Class C —e— —
Minimal — Class B —A—
30 FMinimal —— Class C H—A— -

25
20 -
15

10 -

Instrumentation overhead (in \%)

0 ! ! ! ! !
8 16 32 64 128

Number of processes

Figure 3.6: Instrumentation overhead for the reduced and minimal instrumented LU bench-
marks.

3.3 Acquisition of Time-Independent Traces

When an application is instrumented then a procedure should be followed for the acquisition
of the time-independent traces. As mentioned in Figure the instrumented application is
executed, afterwards the action lists is extracted from the instrumentation traces if necessary,
and finally the time-independent traces are gathered into a single node.

3.3.1 Execution

There are only two requirements for obtaining a valid time-independent trace in a view to
simulate an MPI application with n processes on an arbitrary platform: (i) the instrumented
application must be executed with n processes; and (ii) each process must fit in main memory.
This is in sharp contrast with time-dependent traces, which must be obtained on homogeneous
platforms with as many compute nodes as that in the simulated platform. In particular, our
method makes it possible to execute the instrumented application in four ways:

Regular mode: execution on a single homogeneous cluster with one MPI process per processor.
This is the way in which off-line simulators obtain time-stamped traces. This mode requires as
many processors as that in the platform to be simulated, which limits its scalability. All three
modes hereafter are only applicable to time-independent traces.

Folded mode: execution on a single homogeneous cluster with more than one MPI process per
processor. This allows for the acquisition of traces for larger instances of the application than
can be executed in regular mode on the same cluster. The folding factor is only limited by the
available amount of memory on the processors.

44

Composite mode: execution on heterogeneous or multiple non-identical clusters. In this mode,
the user can aggregate disparate processors together, such as those in multiple homogeneous
clusters, so as to augment the scale of the trace without requiring a single (large) homogeneous
cluster. The only constraint is to select processors of a same family to prevent inconsistencies
in the execution.

Composite and folded mode: a combination of folded and composite mode. This mode
further increases the scalability of trace acquisition by executing multiple MPI processes per
processor in a non-homogeneous platform.

3.3.2 Using the Grid’5000 Platform to Acquire Time-Independent Traces
Building an Appliance

Several base system images are made available by the Grid’5000 technical staff. Most of the
images are based on the Debian Linux distribution and can be deployed on all Grid’5000 sites.
There exist images based on three different versions of the Debian distribution, but one of them
is aging (Lenny), the Squeeze is the one used for our experiments and the Wheezy image is the
latest Debian release at the time of writing.

— squeeze-x64-base is a minimal environment with no support of NFS and LDAP services.
Only the drivers necessary to the support of the Grid’5000 infrastructure and high-speed
network interconnect are installed.

— squeeze-x64-nfs is based on squeeze-x64-base and enables the LDAP and NF'S services.

— squeeze-x64-big is based on squeeze-x64-nfs and includes various pre-installed pack-
ages such as cmake, gfortran, OpenMPI, taktuk [98], as well as several packages for devel-
opment, system tools, and editors. All these tools provide a stable platform for configuring
the operating system and execute various experiments.

In [99] are presented all the procedures to build an image that could be used to acquire
time-independent traces. Initially we describe how to deploy an image on Grid’5000. In the
case where the kernel is earlier than version 2.6.31, we provide instructions to patch the kernel
to enable access to the hardware counters of the processor. Then we detail all the steps to
install the tracing tools, instrument and compile an application. Moreover the tools for trace
post-processing should be installed on the deployed image. It is needed to save the image for
future deployment and set the appropriate environment variables for TAU. Finally, we give all
the commands to execute an instrumented application and acquire the time-independent traces
for all the available execution modes.

3.3.3 Trace Extract Tools

One of the tasks that may be needed after the execution of an instrumented application, is
the conversion of the instrumented traces into time-independent ones. This is necessary only if
the Minl tool is not used, otherwise the time-independent traces are created automatically. We
are going to describe the tools that convert instrumentation traces into time-independent ones
by presenting how they handle some of the MPI calls.

TAU

When the execution of a program instrumented with TAU completes, many files are pro-
duced. They fall in two categories: trace files and event files. The generated trace files are
named:

tautrace.<node>.<context>.<thread>.trc,

45

where <node> is the rank of the MPI process whose execution is logged in the file. The two other
fields, i.e., <context> and <thread>, are only used for multi-threaded applications. In this case,
TAU distinguishes each thread and groups the threads according to the virtual address space
they share.

A trace file is a binary file that includes all the events that occur during the execution of
the application for a given process. For each event, this file indicates when this event (e.g., a
function call or an instrumented block) starts and finishes. The time spent and the number of
computed instructions between these begin/end tags are also stored. For MPI events all the
parameters of the MPI call, including source, destination, and message size, are stored.

To reduce the size of the trace files, TAU stores a unique id for each distinct traced event
instead of its complete signature. The matching between the ids and the functions descriptions
can be found in the event files. These files are named:

events.<node>.edf.

There is only one event file per MPI process. Each event file contains information about each
traced function. For any function, an event file stores its numerical id, the group it belongs
to, e.g., MPI for all MPI functions, a tag to distinguish TAU events from those defined by
the user, and the name type which is the actual name of the traced function. Some extra
parameters required by TAU can also be stored into an event file. For instance, the keyword
EntryExit is used to declare a function that occurs between two separate events, i.e., entry and
exit. Conversely the TriggerValue keyword typically corresponds to a counter that increases
monotonically from the beginning of the execution. Such a trigger has to be activated twice to
determine the evolution of the counter value during the corresponding period of time.

Figure [3.7] presents some entries of an event file generated by TAU that corresponds to some
MPI functions. An entry corresponding to the access to a hardware counter that measures
the number of instructions, some user events related to the size of the messages for some MPI
communications as it is mentioned by their names.

4 MPI O "MPI_Init() " EntryExit

19 MPI O "MPI_Send() " EntryExit

21 MPI 0 "MPI_Irecv() " EntryExit

22 MPI 0 "MPI_Wait() " EntryExit

26 MPI 0 "MPI_Allreduce() " EntryExit
28 MPI 0 "MPI_Barrier() " EntryExit
30 MPI 0 "MPI_Finalize() " EntryExit

1 TAUEVENT 1 "PAPI_TOT_INS" TriggerValue

DefUserEvent event id 8 user event name "Message size sent to all nodes",
monotonically increasing = 0

DefUserEvent event id 11 user event name "Message size for broadcast",
monotonically increasing = 0

DefUserEvent event id 27 user event name "Message size for all-reduce",
monotonically increasing = 0

DefUserEvent event id 9 user event name "Message size for all-to-all",
monotonically increasing = 0

Figure 3.7: TAU - Entries example from an event file.

As the trace files generated by TAU are binary files, there is a need for an interface to extract
information. Such an APT is provided by the TAU Trace Format Reader (TFR) library [94]. This
tool provides the necessary functions to handle a trace file, including a function to read events.

46

It also defines a set of eleven callback methods, that correspond to the different types of events
that appear in a TAU trace file. For instance there are callbacks for entering or exiting a function
and triggering a counter. The implementation of these callback methods is let to the charge of
the developer.

We thus developed a C/MPI parallel application, that implements the different callback
methods of the TFR library. This program basically opens, in parallel, all the TAU trace
files and read them line by line. For each event, the corresponding callback function is called.
To illustrate how this tool extracts the necessary data to produce a time-independent trace,
we detail the case of some calls to MPI functions. Figure [3.8] presents the parameters of the
different callbacks related to the MPI_Send function call on process 1 in a readable format. Each
line starts by the process id, the thread id, the time (in ms) at which the event occurred and
the name of the event. The remaining fields are event dependent.

1 1 0 91832 EnterState 19

2 1 0 91832 EventTrigger 1 93686103

3 1 0 91840 EventTrigger 8 8

4 |1 0 91843 SendMessage 00 8 1 0 1 send 08
5 1 0 91993 LeaveState 19

6 1 0 91832 EventTrigger 1 93686172

Figure 3.8: TAU - List of callbacks related to a call to the MPI_Send function and the corre-
sponding time-independent trace.

As mentioned earlier, the event that corresponds to a MPI_Send is tagged as EntryExit in
the event file with the event id 19. The first occurring callback will then be on the EnterState
event (line 1). The matching LeaveState event (line 5) defines the scope of events related to the
function call. There are more four events, two of them (lines 2 and 6) correspond to the hardware
counter measuring the number of instructions, as identified in the event file. These two events
are used to respectively end the CPU burst preceding the MPI call and starts the next one. The
number of instructions computed within an MPI call, mainly due to buffer allocation costs, are
ignored as they are accounted for by the network model. The last two events are related to the
sent message. The EventTrigger on line 3 only provides the size of the message (8 bytes), which
is not enough to build an entry in the time-independent trace. The SendMessage event (line
4) gives more information, namely the process and thread ids of the receiver, the size of the
message, and the MPI tag and communicator for this communication.

Note that for asynchronous and collective communications, the extraction process is more
complex. For instance, the mandatory information to write the entry corresponding to a
MPI_TIrecv, e.g., the receiver id, are given by a RecvMessage event which generally occurs within
the MPI_wait function. This implies to implement some lookup techniques to retrieve all the
necessary parameters. Figure [3.9| presents the parameters of the different callbacks related to
the MPI_Irecv and MPI_Wait functions calls on process 1 in a readable format. TFR provides
a method to seek the current position during the reading of the traces to a specific event. Thus
during the call to the MPI_Irecv function, the position of the next event is saved. When the tool
reads the call to the MPI_Wait function it creates the corresponding time-independent actions
and it moves back to the position of the saved event to continue reading the trace.

Similarly, the callbacks for the MPI_Bcast function are presented in Figure B.I0] with its
corresponding time-independent trace. The difference is that the line 3 calls the EventTrigger
with id 11 which declares the size of the message for broadcast procedure (4 bytes).

The MPI_Allreduce function is presented in Figure On line 3 there is a call to

47

1 1 0 91800 EnterState 6

2 1 0 91800 EventTrigger 1 93675408
3 1 0 91817 LeaveState 6

4 1 0 91832 EventTrigger 1 93678423
5 ..

6 |10 92009 EnterState 9 i ‘Iéjzv 08
7 1 0 92009 EventTrigger 1 93743774
8 1 0 92021 EventTrigger 10 8

9 1 0 92025 RecvMessage 0 0 8 0 1

10 1 0 92047 LeaveState

11 1 0 92047 EventTrigger 1 93767165

Figure 3.9: TAU - List of callbacks related to calls to the MPI_Irecv and MPI_Wait functions
and the corresponding time-independent trace.

1 0 147298 EnterState 10

1 0 147298 EventTrigger 1 22336408

1 0 147440 EventTrigger 11 4 1 bcast 4
1

1

0 147441 LeaveState 10
0 147441 EventTrigger 1 22336512

TR W N =

Figure 3.10: TAU - List of callbacks related to a call to the MPI_Bcast function and the corre-
sponding time-independent trace.

EventTrigger with id 27 which declares the size of the message for all-reduce procedure (40
bytes). Moreover in the time-independent trace we declare the amount of executed instructions
to complete the reduction operation (600,124 instructions). The action comm_size declares the
total number of processes that participate to this collective communication (4 processes in this
case).

.133e+06 EnterState 26

.133e+06 EventTrigger 1 1231991913
.143e+06 EventTrigger 27 40
.143e+06 LeaveState 26

.143e+06 EventTrigger 1 1232592037

1 comm_size 4
1 allReduce 40 600124

T W N =
[
O O O oo
NN DNDNDN

Figure 3.11: TAU - List of callbacks related to a call to the MPI_Allreduce function and the
corresponding time-independent trace.

However, this callback mechanism is not always sufficient. For instance, as shown by Fig-
ure the information extracted from the textttMPI Alltoallv function only gives the total
number of bytes exchanged during the execution of this function and not the size of each ex-
changed message.

We do not know the values of the displacements of the array that are given as input during
the call to the MPI_Alltoallv function. Also the value 4196661 corresponds to the sum of the
elements that the process exchanges with other participating processes.

48

1 0 359590 EnterState 8

1 0 359590 EventTrigger 1 373796917
1 0 382392 EventTrigger 9 4196661

1 0 382400 LeaveState 8

1 0 382400 EventTrigger 1 373815406

TR W N

Figure 3.12: TAU - List of callbacks related to a call to the MPI_Alltoallv function.

Score-P

Similarly, after the execution of an instrumented program with Score-P, many files are pro-
duced. Initially, there is the anchor file named <archive_name>.otf2 which contains meta data
related to the archive organization, declaring where are stored the other files. The global defi-
nition file <archive_name>.def stores all global and unified definition records. There are also
local definition and trace files, one for each MPI process. The file <node>.def stores mapping
tables used to map identifiers that are not global during the measurement. The <node> is the
rank of the MPI process whose execution is logged in the files. The trace file <node>.evt is
constituted by all the local event records that occur during the execution of the application.
There is only one event file per MPI process. Each event file contains information about all the
traced functions. For any function, an event file stores its locationID which is the rank of the
MPI process that called this function and the time-stamp in ticks. The rest are event dependent,
it can be the regionID which is the name of the function, or the metricID which is the id of
the used PAPI counter. It is important to mention that the global definition file contains the
time resolution used for the measurement of time, thus the time-stamps of the events should be
divided by the time resolution in order to extract the time in seconds.

Score-P creates binary files, so it is mandatory to use the OTF2 reading interface [100] to
extract the required information. We developed a C/MPI parallel application with a similar
number of callbacks as for TAU. This program opens, in parallel, all the local definition and
trace files and read them line by line. However, we had to copy the anchor and the global
definition files across all the nodes with the help of the taktuk tool because they only exist
on the root node. This happens because Score-P is considering the existence of a global file
system. However, thanks to the structure of the OTF2 file format we can read the traces in
parallel.

We present hereafter some examples of MPI functions to illustrate how our
trace_extract_scorep extraction tool works. The following example in Figure shows
the callbacks related to the MPI_Send function in a readable format.

1 METRIC 1 33410119812629 0 1 1819794045

2 ENTER 1 33410119812629 MPI_Send 114

3 MPI_SEND 1 33410119817713 0 0 1 8 1 send O 8 ‘
4 METRIC 1 33410119848237 0 1 1819796231

5 LEAVE 1 33410119848237 MPI_Send 114

Figure 3.13: Score-P - List of callbacks related to a call to the MPI_Send function and the
corresponding time-independent trace.

The first column declares the name of the event, then are the process id, the time in ticks
and the event dependent data. For the METRIC events (lines 1 and 4), are declared the id of the
measured hardware counter, and its value. For the ENTER/EXIT events (lines 2 and 5), there are

49

© 00 N O U W N =

=
=

DUt e W N =

the name of the function with its id. Finally for the event MPI_Send after the time are declared
the thread id of the receiver, the MPI communicator, the MPI tag and the size of the message

(in bytes).

Figure presents the parameters of the different callbacks related to the MPI_Irecv
and MPI_Wait functions calls on process 1 in a readable format. The data layour is similar.
The OTF2 reading interface provides a method to seek to a specific event during the reading of
the local event trace file. Thus the procedure is similar to the one described for TAU.

METRIC 1 33410119788305 0 1 1819790170
ENTER 1 33410119788305 MPI_Irecv 91
MPI_TRECV_REQUEST 1 33410119799825 106
METRIC 1 33410119805525 0 1 1819792897
LEAVE 1 33410119805525 MPI_Irecv 91
1 Irecv 0 8
METRIC 1 33410119857221 0 1 1819797299 1 wait
ENTER 1 33410119857221 MPI_Wait 129
MPI_TRECV 1 33410119876577 1 0 1 8 106
METRIC 1 33410119879337 0 1 1819800706
LEAVE 1 33410119879337 MPI_Wait 129

Figure 3.14: Score-P - List of callbacks related to a call to the MPI_Irecv and MPI_Wait functions
and the corresponding time-independent trace.

On the line 3 the MPI_TRECV_REQUEST event, declares that the MPI_Irecv function was called.
Then, the event MPI_IRECV (line 9) marks the end of this MPI function while the MPI_Wait
function has already been called.

The MPI_Bcast function is presented in Figure [3.15] The events MPI_COLLECTIVE_BEGIN
and MPI_COLLECTIVE_END declare the start and the end of an MPI collective communication
MPI_Bcast function. This event provides the MPI communicator, the root node, the sent and
the received sizes of the messages (in bytes).

METRIC 1 31463791461307 0 1 64206241

ENTER 1 31463791461307 MPI_Bcast 11
MPI_COLLECTIVE_BEGIN 1 31463791461307 1 beast 4
MPI_COLLECTIVE_END 1 31463791511091 BCAST 0 0 0 4

METRIC 1 31463791511091 0 1 64210570

LEAVE 1 31463791511091 MPI_Bcast 11

Figure 3.15: Score-P - List of callbacks related to a call to the MPI_Bcast function and the
corresponding time-independent trace.

The MPI_Allreduce function is presented in Figure On line 4, after the name of the
MPI function, are declared the MPI communicator and the sum of sent and received bytes.
In this example four processes were involved, thus the size of each message for the allreduce
action is 40 bytes. Moreover from the METRIC events we calculate how many instructions are
computed during the reduction operation.

As for TAU, it is not possible to extract all the necessary data regarding a call to the
MPI_Alltoallv function and other similar collective operations because the traces provide only
generic values about the size of the messages. For example Figure [3.17] presents callbacks related
to the MPI_Alltoallv function. The alltoallv event provides the MPI communicator and the
sum of the sent and received size of the messages (in bytes).

50

D U W N

METRIC 1 31469683710435 0 1 1455206247
ENTER 1 31469683710435 MPI_Allreduce 3

MPI_COLLECTIVE_BEGIN 1 31469683710435

MPI_COLLECTIVE_END 1 31469701519843 ALLREDUCE O 160 160 1 allReduce 40 525200
METRIC 1 31469701519843 0 1 1455731447

LEAVE 1 31469701519843 MPI_Allreduce 3

Figure 3.16: Score-P - List of callbacks related to a call to the MPI_Allreduce function and the
corresponding time-independent trace.

1 METRIC 0 25779008790450 O 1 18240739155

2 ENTER 0 25778956847070 MPI_Alltoallv 5

3 MPI_COLLECTIVE_BEGIN O 25778956847070

4 MPI_COLLECTIVE_END 0 25779008790450 ALLTOALLV O 8388608 8398040
5 METRIC 0 25779008790450 O 1 18240984476

6 LEAVE 0 25779008790450 MPI_Alltoallv 5

Figure 3.17: Score-P - List of callbacks related to a call to the MPI_Alltoallv function.

In this case we do not know exactly the size of the messages that a process sends or receives
and the displacements of the array that are given as input in the MPT_Alltoallv function. We
should mention that the last two elements of the MPI_COLLECTIVE_END declare the size of the
messages (in bytes) that were sent and received respectively.

MinI

An application instrumented with Minl directly produces time-independent traces during its
execution, thus there is no need for a separate tool. Nevertheless, we present how Minl handles
calls to some MPI functions. This is a more generic approach and for sake of simplicity we do
not show the whole code for each MPI call, e.g., all the variables are considered as declared.

One of the main advantages in comparison to the previous tools is that we can extract the
data type of each message for all the MPI communications. In order to use this information into
the time-independent traces, we use the function encode_data_type which basically maps each
MPI data type to an integer (Figure .

Minl creates the time-independent traces as a wrapper on calls to PMPI. Figure [3.19] shows
the corresponding code for the MPI_Send function.

On line 3 the value of the PAPI counter is saved into the values array and we declare
that only one counter is used. On line 4 we the save the data type of the sent data in the
variable t_data. We obtain the rank of the MPI process through a call to PMPI_Comm_rank
(line 6) and produce the compute action that preceeds this send (line 8). From lines 11 to 16,
we produce the send action that comprises the rank of the sender, the send keywork, the rank
of the receiver, the message syze, and optionally the message type. The type is optional to
reduce the size of the produce traces when the same type is used by the whole application, e.g.,
MPI_DOUBLE_PRECISION. On line 16, PMI_Send is called to actually perform the communication.
The last two lines initiate the count of the number of instructions that will be stopped in the
next MPI call.

In the calles to MPI_Irecv and MPI_wait, we rely on a temporary buffer to save a local time-
independent trace between these two calls. We obtain the id of the sender from the MPI_Status
data structure during the MPI_Wait call.

51

int encode_data_type(const char *dat) {

int res=0;

char datat[30];

if (!strcmp ("MPI_DOUBLE_PRECISION",dat) || !strcmp("MPI_DOUBLE",dat))
res=0;

else if (!strcmp("MPI_INTEGER",dat) || !strcmp("MPI_INT",dat))
res=1;

else if (!strcmp("MPI_CHARACTER",dat) || !strcmp("MPI_CHAR",dat))
res=2;

else if (!strcmp("MPI_SHORT",dat))
res=3;

else if (!strcmp("MPI_LONG",dat))
res=4;

else if (!strcmp("MPI_REAL",dat) || !strcmp("MPI_FLOAT",dat))
res=5;

else if (!strcmp("MPI_BYTE",dat))
res=6;

return res;

Figure 3.18: Minl — Encoding MPI data types to an integer.

1 int MPI_Send(buf, count, datatype, dest, tag, comm){

2 PAPI_accum_counters(values, 1);

3 MPI_Type_get_name(datatype,t_data,&np);

4 this_type=encode_datatype (&t_data);

5 PMPI_Comm_rank(MPI_COMM_WORLD, &llrank);

6

7 sprintf (msg,"%d compute %11d\n",llrank, values[0]-previous_value);
8

9 if('this_data)
10 sprintf (msg, "%d send %d %d\n", llrank,dest,count);

11 else

12 sprintf (msg, "%d send %d %d %d\n", llrank,dest,count,this_type);
13

14 returnVal = PMPI_Send(buf, count, datatype, dest, tag, comm);

15

16 PAPI_accum_counters(values, 1);

17 previous_value=values[0];

18 |}

Figure 3.19: Minl — Example of code for the MPI_Send function and the corresponding time-
independent trace.

The MPI_Bcast function is given in Figure 3.23. Here we just show another way to reduce
trace size thanks to default values. If a collective is rooted in process of rank 0 and the data
type is MPI_DOUBLE_PRECISION, we do not include this information in the trace. Otherwise a
bcast action will have two more entries.

For the MPI_Allreduce function, presented in Figure 3.24, each process computes the number
of instructions it has executed during this call and report it in the produced action. Again, saving
the data type is optional.

Similar the MPI_Bcast function, is presented in Figure The most details are similar to

52

W O Uk W=

I e e e e e el
O © 00O U kW~ OO

other MPI functions and are not presented, however we wanted to show that during a collective
communication the root node is known. We considered the default value of the root node equal
to zero, thus are not declared into the time-independent traces in the case that the values of
both root node and the this_type are equal to zero. In this example the message size is 4 bytes,
the root node is equal to one and the data type value is equal to two, which means from the
function encode_data_type that the message’s data type is MPI_CHAR.

sprintf (msg, "%d bcast %d\n",llrank,count,root,this_type);

1 int MPI_Bcast(buffer, count, datatype, root, comm){

2 if ('root || !this_type)

3 sprintf (msg, "%d bcast %d %d %d\n", llrank,count); 1 beast 4 1 2
4 else

5

6

Figure 3.20: Minl — Example of code for the MPI_Bcast function and the corresponding time-
independent trace.

Similar the MPI_Allreduce function, is presented in Figure B.21] In this case, we compute
the instructions that the call to the MPI_Allreduce function executes and are declared in the
corresponding action with the message’s data type if is not the default one.

int MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm){
PAPI_accum_counters(values, 1);
insl=values[0];

returnVal = PMPI_Allreduce(sendbuf, recvbuf, count,
datatype, op, comm) ;

PAPI_accum_counters(values, 1);

sprintf (msg, "%d comm_size %d\n",llrank,global);
if ('this_type)
sprintf (msg, "%d allReduce %d %11d %d\n",
llrank,count,values[0]-ins1);

1 allReduce 40 525200

else
sprintf (msg, "%d allReduce %d %11ld\n",
llrank,count,values[0]-ins1,this_type);

PAPI_accum_counters(values, 1);
insi=values[0];

Figure 3.21: Minl — Example of code for the MPI_Allreduce function and the corresponding
time-independent trace.

The code for the function MPI_Alltoallv in Minl is more complicated. hen we only present
in Figure the output of this wrapper.

1 allToAllV 2106083 524214 529389 523091 520458 0 524214 1053603 1576694
2100323 524214 525845 524419 525031 0 524214 1050059 1574478 1

Figure 3.22: Minl — Action corresponding to a call to MPI_Alltoallv in a time-independent
trace.

93

The elements of this action depend on the number of participating processes. In this ex-
ample we execute this collective operation on 4 processes. The first element after the name
of the action is the length of the send buffer, the next four values correspond to the number
of elements respectively sent to the other processes, then the other four values correspond to
the displacements according to the MPI standards. Symmetrically we find the length of the
receive buffer, and the values of the number of elements that the processors can receive and
their displacements. The last value which is equal to one, declares that all the previous values
are integers.

Once extracted, and whatever the extraction method, time-independent traces can be in-
jected into the simulation framework. However, they first have to be gathered on a single node
onto which the simulation will take place.

3.3.4 Trace Gathering

One challenge for trace acquisition is the time needed to aggregate (potentially large) trace
files generated on a large number of compute nodes. This corresponds to a standard “gather”
collective communication operation. The Grid’5000 platform provides a tool called kaget to
gather remote files into a single node. This tool is based on taktuk and provides a simple in-
terface without the need for the user to be familiar with the complicated commands of taktuk.
We tested this tool to assess its performance and unfortunately the performance was not sat-
isfying. Then, we implemented another tool based on a different gathering algorithm called
trace_gather. It is based on a K-nomial reduction tree that allows for an efficient gathering of
the files in log (g 1) IV steps, where N is the number of files and K is the arity of the tree. This
tool can be efficient by picking an appropriate K value given to the number of trace files and
the number of compute nodes. Figure shows how this tool handles the traces produced on
16 nodes.

2

Traces: 0-3 Traces: 4-7 Traces: 8-11 races: 12 - 15
Node: 0 Node: 4 Node: 8 Node: 12
1

Traces: 0-15
Node: 0

Figure 3.23: Example of the gathering algorithm for 16 nodes and arity of tree equal to four.

Table presents a comparison of the relative performance of kaget and trace_gather.
Our tool is 2.46 and 2.11 times faster than kaget on average for the instances B-64 and C-64
respectively. The results indicate that we should use our implementation to gather the time-
independent traces into a single node. Moreover our tool can compress data before the first step
to transfer less data between the nodes.

54

Gathering time for LU (in sec)

B-64 C-64
Kaget | Trace gather #ﬂm Kaget | Trace gather #ﬂm
min | 12.33 4.93 2.5 19.27 10.06 1.92
max | 13.98 5.7 2.45 23.98 10.4 2.31
avg | 13.07 5.32 2.46 21.6 10.26 2.11
std | 0.51 0.25 2.04 1.51 0.12 12.58

Table 3.25: Comparing the gathering tools kaget and trace_gather for the LU benchmark, 64
nodes, and classes B and C.

3.3.5 Analysis of Trace sizes

We used two instrumentation methods with TAU. Table [3.26] shows the TAU trace sizes with
both methods. With TAU-reduced the trace sizes are decreased from 35% to 44% in comparison
to the selective instrumentation. This leads to smaller time and space overheads.

Table 3.26: TAU trace sizes and number of actions for different instances of the LU benchmark.

TAU trace size (in MB)
4 Processes Selective TAU-reduced

Instrumentation

Class B | Class C | Class B | Class C
8 334 531 188 298
16 741 1,200 450 714
32 1,600 2,500 973 1,600
64 3,200 5,100 2,100 3,300
128 6,600 11,000 4,300 6,800

One issue with off-line simulation is the large size of the traces. The time-independent trace
format was improved through our different versions of our framework. Although we studied
various benchmarks we present the time-independent trace sizes only for the LU benchmark.
For EP, each process executes a big block of instructions. Then the trace of a given process has
only one line. For DT, the number of actions is also relatively small. The processes that execute
the most actions are comparators that receive data from four other processes, merge them, and
forward the aggregated data. Consequently the total trace size for both benchmarks is at most
a few hundreds of kilobytes for class C instances. With LU, computations and communications
are interleaved and each process logs a lot of actions. The size of the time-independent traces
depends on the number of actions executed by the processes. Table [3.27] shows trace sizes for
different instances of the LU benchmark as well as the number of actions in each trace for the
prototype framework [T0T].

The size of time-independent traces grows linearly with the number of processes which is
explained by the evolution of the number of traced events. We also see that the size of the
time-independent traces grows from a constant factor of 1.6 from class B to class C which
is also directly related to the number of actions. Table [3:27] presents the trace sizes for the
selective instrumentation method. The ratio of size to the number of actions, that denotes the
average number of characters per action, is roughly constant (from 14.72 to 15.29). Moreover the
traces are extracted from the main core of the benchmark. It does not include the initialization

95

Table 3.27: Sizes of time-independent traces and number of actions for different instances of the
LU benchmark for the prototype framework.

Processes Trace size (in MiB) | #Actions (in millions)
Class B | Class C | Class B Class C
8 29.9 48.4 2.03 3.23
16 72.6 117 4.87 7.75
32 161.3 256.8 10.55 16.79
64 344.9 552.5 22.73 36.17

and finalization phases. Table [3.28] shows trace sizes obtained with the Minl instrumentation
method for the whole benchmark. Then there are more actions for each instance in comparison
to Table Dividing the trace size by the number of actions also leads to a roughly constant
ratio (between 14.45 and 15.94). Note that while the number of the actions are increased from
0.3% up to 0.5%, the trace sizes are globally decreased from 0.2% to 1.7%.

Table 3.28: Sizes of time-independent traces and number of actions for different instances of the
LU benchmark produced with the Minl tool.

Trace size (in MB) | #Actions (in millions)
#Processes Class B | Class C | Class B Class C
8 29.6 48 2.04 3.24
16 72 116.8 4.89 7.78
32 159 255 10.6 16.87
64 339 550 22.83 36.33
128 711 1,200 47.3 75.25

However, our trace format is not optimized for space. Authors have proposed compact trace
representations [61) [I02]. In our case, we could devise a binary trace format that would remove
most of the redundant characters. Alternately, we can simply use compression algorithms for our
text trace files, which reduces trace file size significantly but not as much as if a custom compact
trace format were used. When showing the scalability of our trace acquisition procedure in the
next section we first present results without any compaction/compression, and then some results
using compression. Now that the whole acquisition procedure has been presented in detail, we
can evaluate it in order to identify any bottleneck.

3.3.6 Evaluation of the Acquisition Procedure
Trace Acquisition Scalability

We have already mentioned the three different instrumentation methods, selective instru-
mentation, TAU-reduced, and Minimal Instrumentation where each one evolves the previous
one. We studied our prototype framework (that uses the selective instrumentation) mainly on
AMD processors, thus we used the bordereau [103] cluster. The bordereau cluster comprises
93 2.6 GHz Dual-Proc, Dual-Core AMD Opteron 2218 nodes. All these nodes are connected
to a single 10 Gigabit switch. One way to demonstrate the scalability of our trace acquisition
procedure is to investigate the distribution of elapsed times for each step of the procedure, i.e.,
execution, instrumentation, extraction, and gathering. Figure [3.:24] shows this distribution for
the acquisition of time-independent traces for the most demanding NPB benchmark among those

o6

we used in our experiments, i.e., LU, for classes B and C and for different number of processes.
These results were obtained in the Regular acquisition mode, meaning that there was exactly
one MPI process on each compute node. We performed trace acquisition 10 times and we show
the average value for each step.

450
Application =
Tracing overhead 222171 —
400 Extraction ! i
Gathering I
350 4
300 4
%)
2
g 250 |
[0}
2]
E [
o 200 | | ! |
E
=

B LU C

Figure 3.24: Distribution of the acquisition time for different instances of the LU benchmark in
the regular acquisition mode, on bordereau cluster with selective instrumentation.

The acquisition time is strictly related to the production of the time-independent traces i.e.,
the instrumentation, extraction, and gathering represent at most 53.34% of the total acquisition
time. The worst value is obtained for class B with 64 processes where the benchmark execution
time is the smallest. However, large number of processes are generally used to solve large problem
instances. Then we can conclude that the extra overhead required to get a time-independent
trace can be afforded. Moreover such traces need to be acquired only once and can then be used
to explore much more “what-if” scenarios that with timed traces.

As the bordereau cluster was aging with many technical issues and we wanted to evaluate
also our framework on Intel processors, we used for the next version of our framework the
graphene cluster. It has been already mentioned that the nodes of this cluster are spread over
four cabinets, thus we expect to have some communication delays in comparison to the bordereau
cluster. However, thanks to the TAU-reduced instrumentation method, the trace sizes are smaller
than before, so the instrumentation overhead should be smaller with regard to both time and
space.

o7

160
Application s s
Tracing overhead ©

Extraction iz

Gathering

140 -

120 - B

100 - —

80 |- —

Time (in seconds)

60 - —

40 - ‘ I

20 | i T]

,,,,,

8 16 32 64 128 8 16 32 64 128
LU

B C

Figure 3.25: Distribution of the acquisition time for different instances of the LU benchmark in
the regular acquisition mode on graphene cluster with TAU-reduced instrumentation.

In Figure@the instrumentation, extraction, and gathering represent at most 76.24% of the
total acquisition time for class B with 64 processes. 77% of this time overhead is caused by the
gathering procedure which depends on the network speed and topology. To compare the first two
versions of our framework, we executed some experiments on the graphene cluster. Figure [3:20]
shows the evolution of the instrumentation overhead. With the first implementation of our
framework, the overhead goes from 9.8% to 37.9%, which is consistent with the experiments
on the bordereau cluster. The proposed modifications make the overhead range shrink to [0.7%
- 27.1%|. More interestingly, we can see a stable growth of this overhead as the number of
processes increases.

Moreover the TAU-reduced method instruments only the MPI calls of an application. Ac-
cording to Table [3.20] the trace sizes are smaller, then the extraction of the time-independent
traces from these TAU traces takes less time than the prototype implementation of our frame-
work. However, the gathering of the traces takes more time because of the graphene’s network
topology.

Then we used the Minl tool for acquiring the time-independent traces. It has been already
mentioned that an instrumented application with Minl produces directly the time-independent
traces, thus there is no extraction step. Considering that it uses only the absolute necessary
features to profile an application, Minl is also more efficient than TAU. Moreover we used
a compression option in the gathering tool to decrease the duration of this procedure. The
obtained results are presented in Figure [3.27]

o8

40

T
Class B - Selective Instrumentation ——
Class B - TAU-reduced —a—
Class C - Selective Instrumentation —
35 IClass C - TAU-reduced —— 1

Instrumentation overhead (in \%)

0 1 ! !
8 16 32 64 128

Number of processes

Figure 3.26: Evolution of the instrumentation overhead induced by the selective instrumentation
and the TAU-reduced when the number of processes varies. Results obtained on graphene.

160

Application
Tracing overhead © a

140 L Gathering 777 i

120 - —

100 - B

80 - = b

Time (in seconds)

8 16 32 64 128 8 16 32 64 128
B LU C

Figure 3.27: Distribution of the acquisition time for different instances of the LU benchmark in
the reqular acquisition mode on graphene cluster with minimal instrumentation.

99

The main observation on the results in Figure [3:27]is that when more processes are used the
acquisition overhead increases while the time to execute the application decreases. The time
to gather traces on a single node becomes more and more prevalent, and even dominates the
total trace acquisition time as more processes are involved, accounting for up to 62.02% of the
acquisition time. This is expected since the size of each independent trace grows as more actions
are logged and the depth of the reduction tree also increases. Data compression and/or a more
compact trace format would help to reduce that trace gathering time. For instance, the horizontal
line displayed in the gathering part of Figure indicates the time needed to gather the same
traces but with a preliminary gzip compression step. For large numbers of processes, the trace
gathering time can then be divided by up to three. Nevertheless, for realistic instances, i.e., for
instances in which a small amount of work is not distributed over a large number of processes, the
most time-consuming component of the trace acquisition process is the unavoidable application
execution. The tracing overhead represents between 1.75% and 10.55% of the trace acquisition
time. The higher values, as already explained for the results in Figure [3.6] are due to cases
in which each process performs little computation due to distribution of a small dataset across
many processes. Thus our final framework provides less tracing overhead than TAU and direct
compatibility with the appropriate trace format.

The results in Figure [3.27] are for at most 128 processes. To further evaluate the scalability
of our trace acquisition procedure, and also to demonstrate how our trace acquisition framework
can be used to acquire traces for simulating platforms that are not actually available, we perform
two larger-scale experiments. In the first experiment, we use folded execution to execute the
instrumented LU benchmark on a single node of a cluster called St-Rémi. This node comprises
two twelve-core processors that share 48 GiB of memory. Thanks to folding, we can obtain traces
for the largest possible number of processes for classes B and C and a large class D instance of the
benchmark on that single node. Table [3.29|shows the obtained results in terms of time needed to
acquire the trace and memory footprint in GiB. For comparison purposes, we also include results
when obtaining traces with the TAU (with selective instrumentation enabled), the Scalasca, and
the Score-P profiling tools. We find that TAU cannot produce traces (i.e., it fails) for the larger
benchmark instance due to large memory footprint. The results for our minimal instrumentation
are in line with those achieved by Scalasca, with some improvement over Scalasca in all cases.
But it is important to remind that Scalasca does not produce traces with all the information we
need for our purpose, so the Scalasca results in the table are optimistic. The memory footprint
of Score-P is three to four times larger than that of our minimal instrumentation. For large
instances, such as the class D executed with 256 processes, Score-P begins to swap, leading to
prohibitively long acquisition times. We conclude that although profiling tools exist, and in
fact provide capabilities well beyond what is needed in this work, our minimal instrumentation
method is useful to achieve better scalability.

Table 3.29: Executing the instrumented LU benchmark using folding on a single node.

Time in minutes / Memory footprint in GiB
Instance TAU Minimal Scalasca Score-P
Reduced | Instrumentation
B-256 |28 /214 1.9 / 1.65 2.1/28 1.8 /5.2
C-1024 N/A 12.9 / 7.95 16.3 / 12.9 | 27.3 /29.3
D - 256 N/A 474 / 154 55.2 / 16.9 | > 420 / N/A

In the second experiment, we run a very large-scale application on a heterogeneous platform,
i.e., combining the folded and composite modes. More specifically, we run class E of the LU

60

benchmark, with 16,384 processes. To run this large instance, we distributed trace acquisition
across 778 compute nodes in 18 clusters at 9 geographically distant sites of the Grid’5000 exper-
imental testbed. The set of clusters being heterogeneous, the MPI processes were not uniformly
distributed across the clusters. Instead, they were distributed according to the memory capacity
of each cluster, attempting to maximize usage of main memory without overcoming its capacity.
As a result, we used a different folding factor on each cluster. As for the previous experiment,
TAU fails to produce a trace due to its large memory footprint. We did not use Scalasca as it
does not meet all the requirements for obtaining a useful trace. We stopped the execution with
Score-P after more than nine hours, without obtaining the desired trace. Our minimal instru-
mentation method was successful in acquiring the trace, producing a 1.45 TiB time-independent
trace. 53 minutes were needed to execute the instrumented application. 16 minutes were needed
to gather and aggregate individual trace files on a single node using a K-nomial tree. This time
includes a gzip compression step. Decompressing the files on a single node is a more expensive
process that added around 40 minutes of computation. For such a large trace, using compres-
sion/decompression was worthwhile. Note that systems exist for adaptive compression so as to
achieve a good trade-off between compression time and data transfer time [I04]. In the end, our
approach was sufficiently scalable to acquire a trace for a 16,384-process MPI application using
9 different clusters over a wide-area network in less than two hours.

Evaluation of the Execution Modes

To acquire trace-independent traces with our first prototype framework, we used two clusters
of the Grid’5000 experimental testbed: bordereau and gdx. The gdx cluster comprises 186 2.0
GHz Dual-Proc AMD Opteron 246 scattered across 18 cabinets. Two cabinets share a common
switch and all these switches are connected to a single second level switch through Ethernet 1
Gigabit links. Consequently a communication between two nodes located in two distant cabinets
goes through three different switches. These two clusters are interconnected through a dedicated
10 Gigabit network.

Table shows the execution time of the LU benchmark (class B) for the Regular (R),
Folded (F-z), Composite (C-y), and Composite and Folded (CF-(u,v)) acquisition modes, in-
strumented with the selective instrumentation. The last row of the table shows the slowdown
relative to the regular mode. When processes are folded on a smaller number of nodes, = de-
notes the folding factor. For instance F-4 means that four processes are executed on a single
CPU. In the composite mode, y is the number of sites used for the acquisition. Finally when
both modes are combined, CF-(u,v) means that the execution is distributed over u sites and
that v processes run on each CPU. In the composite mode, y is the number of sites used for
the acquisition. Finally when both modes are combined, CF-(u, v) means that the execution is
distributed over u sites and that v processes run on each CPU. Again, we use only one core per
node.

We see that the time needed to execute the instrumented application increases linearly with
the folding factor (F-*). This was expected as several processes have to compete for a single
CPU. However, there is no extra overhead induced by folding. When the execution is scattered
across two clusters (C-2), the overhead comes from two factors. First, some communications are
made on a wide area network and then take more time to complete. Second, the progression of
the execution is limited by the slowest cluster (gdz). While this overhead remains lower than
the number of sites, further experiments showed that it increases with the number of sites and
is also greater for smaller problem classes. Indeed, a lower amount of computations leads to a
greater impact of wide area communications. Finally with the combination of process folding
and scattering (CF-(2,*)), the overhead costs are cumulated. If we divide the ratios to regular
mode by the value obtained for C-2, we still observe that the execution time increases with the

61

Table 3.30: Evolution of the execution time of instrumented class B instance of EP, DT and LU
executed by 64 processes (43 for DT) with regard to the acquisition mode. Results obtained on
the bordereau and gdz clusters using one core per node.

Acquisition mode R F-2 F-4 F-8 F-16 F-32 C-2 CF-(2,2) | CF-(2,4) | CF-(2,8) | CF-(2,16)
Number of nodes 64 32 16 8 4 2 (32,32) || (16,16) (8,8) (4,4) (2,2)
= | Execution Time (in sec.) | 20.73 || 52.96 | 88.66 | 179.07 | 347.27 | 689.18 || 37.54 79.19 134.05 277.25 505.64
= [Ratio to regular mode 1 2.55 | 4.28 8.64 16.75 | 33.25 1.81 3.82 6.47 13.37 24.39
o, | Execution Time (in sec.) | 1.99 4.06 | 833 | 16.29 | 36.42 | 69.05 2.67 5.38 10.77 21.52 43.09
= [MRatio to regular mode 1 2.04 | 4.18 8.18 18.3 34.7 1.34 2.7 5.41 10.81 21.65
Acquisition mode R [F2.625 | F-5.25 | F-10.5 | F21 | G2 || CF-(2,2.625) | CF-(2,5.25) | CF-(2,10.5) | SF-(2,21)
Number of nodes 43 16 8 4 2 (22,21) (8,8) (4,4) (2,2) (1,1)
= | Execution Time (in sec.) | 4.56 12.62 18.67 32.2 58.8 10.66 31.277 41.06 47.49 66.93
~ [Ratio to regular mode 1 2.76 4.09 7.06 | 12.89 2.33 6.86 9 10.4 14.67

folding factor in a roughly linear way. For DT we used different folding factors to ensure that
the load is well balanced among processes. Compared to the other benchmarks, folding has a
smaller impact on execution time as this benchmark is dominated by communications, while
Scattering is more detrimental for the same reason. Large buffer allocations can prevent folding
for big DT instances.

An interesting property of time-independent traces is exemplified by these experiments. A
tracing tool such as TAU will produce traces with some erroneous timestamps for most sce-
narios, due to external load on the system and or transient operating systems behaviors. An
off-line simulator using these traces would then predict an execution time close to that of the
corresponding acquisition scenario instead of the targeted Regular mode execution time. Pre-
venting such a behavior would require an accurate description of the acquisition platform along
with the trace. With time-independent traces, the simulated time is totally independent of the
acquisition scenario. Only slight variations (under 1%) are observed caused by hardware counter
accuracy issue, and in fact a dedicated platform is not even required.

Similarly, Table shows the execution time of the LU benchmark (class B) instrumented
with the Minl tool. The execution times are obtained on the graphene cluster and, when
composite execution takes place, also on the paradent cluster that comprises 64 2.5GHz Dual
Quad-Core Intel Xeon L5420 nodes. The nodes of these two clusters have very similar peak
performance, around 8Gflop/s per core, as measured with the HPLinpack benchmark, and we
use one core per node in this experiment.

Table 3.31: Execution time and slowdown relative to the regular acquisition mode for instru-
mented runs of the LU NAS benchmark (class B) executed with 64 processes, for several acqui-
sition modes. Results obtained on the graphene and paradent.

Acquisition mode R F-2 F-4 F-8 F-16 F-32 C-2 CF-(2,2) | CF-(2,4) | CF-(2,8) | CF-(2,16)

Number of nodes 64 32 16 8 4 2 (32,32) || (16,16) (8,8) (4,4) (2,2)
> | Execution Time (in sec.) | 11.52 || 24.45 | 43.89 | 78.67 | 148.95 | 288.54 23.8 39.97 72.14 133.31 220.18
~ [Ratio to regular mode 1 212 | 3.80 | 6.82 | 1292 | 25.03 2.09 3.47 6.26 11.57 19.17

We obtained results and trends similar to those in Table [3.30] with regard to the slowdown
factors. However, we observed an impact of the network of the second cluster, paradent on the
performance of the different acquisition modes. Indeed, while the performance of the folded
mode is improved (from 11.21% to 24.72%) thanks to the minimal instrumentation, the com-
posite mode takes more time (around 15%). Moreover, when both modes are combined, the
improvement is lower than with the folded mode alone (from 3.24% to 21.4% only). Nerverthe-
less, the benefits offered by the minimal instrumentation in terms of overhead and skew do not
compromise the use of the folded and composite acquisition modes.

62

3.4 Conclusion

In this chapter we presented in detail the different steps of our time-independent trace ac-
quisition framework. We explained what occurs during the instrumentation of an application
and introduced the time-independent trace format. We analyzed all the possible actions of a
time-independent trace to show the corresponding requirements that a tracing tool should re-
spect to produce such traces. According to these requirements we evaluated many open source
profiling tools among the most popular. As none of the studied fulfilled our requirements with-
out inducing important overheads, instrumentation skew, and/or large memory footprint, we
also proposed another instrumentation method to decrease the instrumentation overhead and
improve the accuracy of the measured values both for time and hardware counters. This original
instrumentation method is called Minl. This tool was developed with the necessary options only
and provides a direct compatibility with the time-independent traces as this is its default trace
output format, leading to minimal instrumentation overhead and skew. Moreover four execution
modes were proposed and we showed how we can take advantage of most of them in comparison
to other frameworks. We also explained how we can use our framework on the Grid’5000 plat-
form. Furthermore we presented in detail two tools, one for extracting time-independent traces
produced by TAU and Score-P and another one for gathering these traces into one single node.
We did further analysis of trace sizes for both TAU tool and time-independent trace framework.
An evaluation of the full acquisition procedure was conducted to show the improvement of our
framework since the prototype version and present in detail the corresponding overheads. Finally
we succeed in applying our framework on 778 compute nodes by executing an instrumented ap-
plication with 16,384 processes and acquire the corresponding time-independent traces to prove
its scalability. Now that time-independent traces can be acquired for an application, we can use
them to predict the performance of applications. The replay of time-independent traces will be
detailed in the next Chapter.

63

Chapter 4

Time-Independent Trace Replay

In the previous Chapter we described the time-independent trace acquisition framework. We
detailed all the procedures required to obtain a time-independent trace from an application.
In the current Chapter we present how to replay time-independent traces by using a simulator
based on the SIMGrid simulation toolkit.

Since release 3.3.3, SIMGrid allows users to describe an applicative workload as a time-
independent trace. As shown in the upper part of Figure three input files are needed to
replay such traces with SIMGrid. Apart from the time-independent trace(s), descriptions of
the simulated platform and of the deployment of the application, i.e., how simulated processes
are mapped onto simulated processors, are also needed. These input are passed to the trace
replay tool which, in turn, is built on top of the simulation kernel in SIMGrid. Decoupling the
simulation kernel, and then the simulator, from the simulation scenario offers flexibility. A wide
range of “what if?” scenarios can be explored without modifying of the simulator and instead
simply changing the input files.

The platform file on the upper left part of Figure declares a cluster of 4 nodes with
the cluster tag. This tag is used to quickly declare a bunch of homogeneous machines. The
cluster is a meta-tag from SimGrid point of view. It represents an Autonomous System (AS)
in which is defined some optimized routing mechanisms. There are have four nodes in this
cluster, named c-[0-3].me, whose processing power is one billion instructions per second. The
cluster’s network bandwidth is 1Gb/s (or 1.25E8B/s), the latency for both the cluster links
and the backbone are 15 microseconds, and the backbone bandwidth is 10Gb/s (or 1.25E9B/s).
The time-independent trace in the upper middle part correspond to the example in Figure (3.1}
where each process on a ring computes one million instructions and sends one million bytes to
its neighbor. The deployment file on the upper right corner of Figure maps the simulated
processes on the platform. For example the simulated process of rank 0 is mapped to the node
c-0.me. Our replay framework can produce various types of output as indicated in the bottom
part of Figure First we can obtain a simulated execution time, which serves as a prediction
of the execution time of the target application in the particular experimental scenario described
by the platform and deployment files. It is also possible to generate a time-stamped trace that
corresponds to this particular scenario by adding timers (measuring simulated time) in the trace
replay tool. Finally it is possible to visualize the trace as a Gantt chart, thanks to a built-in
tracing mechanism provided by SiMGrid that produce traces in the Pajé format [T05].

The remaining of this Chapter is organized as follows. In Section [l.I] we go further than the

65

0 compute le6
0 send 1 le6
0 recv 3 le6

1 recv 0 leé
1 compute leé6
1 send 2 1leé6

<?xml version='1.0"7?> <?xml version='1.0"7?>
<!DOCTYPE platform SYSTEM "simgrid.dtd"> 2 recv 1 leé6 <!DOCTYPE platform SYSTEM "simgrid.dtd">
<platform version="3"> 2 compute le6 <platform version="3">
<cluster id="cluster" prefix="c-" 2 send 3 leé6 <process host="c-0.me" function="0"/>
suffix=".me" radical="0-3" <process host="c-1.me" function="1"/>
power="1E9" bw="1.25E8" lat="15E-6" 3 recv 2 leé6 <process host="c-2.me" function="2"/>
bb_bw="1.25E9" bblat="15e-6"/> 3 compute le6 <process host="c-3.me" function="3"/>
</platform> 3 send 0 le6 </platform>

Platform
Topology

Time-Independent Trace(s) J gppllcatwnl

Trace ReplayTool J ((—g Mi\j R| D

Simulation Kernel J
~—
http://simgrid.gforge.inria.fr
Gantt E— — J Timed J
imulates Xecution 1ime
http://paje.sourceforge.net —JChart flivace

m la Simulated time: [0.001000] 0 compute le6 0.01000
0.0401133 [0.010028] 0 send 1 le6 0.009028
[CRHTE [0.040113] 0 recv 3 le6 0.030085

[0.010028] 1 recv 0 le6 0.010028

Figure 4.1: Overview of the time-independent replay framework.

simple platform description given in Figure by detailing how to describe and instantiate real-
istic platforms. Section [.2) details how is implemented the trace replay tool. Finally Section 3]
presents some simulation results.

4.1 Realistic Platform Descriptions

Reflecting Hierarchical Topologies

Before illustrating on an example how to describe compute clusters in order to replay time-
independent, we recall the motivations that led to the proposition of a scalable multi-purpose
representation of network topologies in the SIMGrid toolkit [TI06]. The key concept is to provide
users with the ability to adapt the representation to their needs. Most current distributed
systems mainly rely on three types of possible interconnected and mixed networks:

— System and local area networks (SAN and LAN) are organized in a very hierarchical way

or with large switches;

— National Research and Education Networks (NRENSs) interconnect systems through their
gateways on a higher level of networks, called backbone which are scattered at national
scale;

— Privately and idenpendently managed networks.

Such networks are interconnected in a hierarchical way ans large scale distributed systems
can thus be seen as a hierarchical aggregation of networks. Each network is independent of the
others and can have a different structure, hence the name of Autonomous Systems (AS). Each
AS can be connected with lower or higher level ASes. For each AS there is at least one gateway to
compute the route between two ASes even if the one is on higher level. There are various graph
representations for the network topology and routing such as Flat, Dijkstra [107], Floyd [107]
etc., but one main problem is that they do not exploit the hierarchy and the regularity of the

66

© 00 N O G W N =

platform [108]. The SimMGrid toolkit handles most of these routing schemes and can determine
routes between hosts belonging to different ASes by looking for the first common ancestor in the
hierarchy.

In what follows, we detail the different steps that allowed us to propose a highly realistic
description of the graphene cluster that was used in many of our experiments. As mentioned
in the previous Chapter, graphene comprises 144 2.53GHz Quad-Core Intel Xeon x3440 nodes.
Each core has a L2 cache of 2 MB. The nodes are spread across four cabinets, and interconnected
by a hierarchy of 10 Gigabit Ethernet switches. The simplest description of this cluster is given

by Figure [4.2]

<?xml version=’1.0’7>
<!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
<platform version="3">
<AS id="AS_graphene" routing="Full" >
<cluster id="AS_sgraphenel"
prefix="graphene-" suffix=".nancy.grid5000.fr" radical="0-143"
power="1E9" bw="1.25E8" lat="15E-6" bb_bw="1.25E9" bb_lat="15E-6"/>
</AS>
</platform>

Figure 4.2: Simplest platform file describing the graphene cluster.

The different attributes of the <cluster> tag provide the minimal information to describe
the cluster’s characteristics and performance. The name of the nodes that compose the cluster
and formed from the prefix, suffix, and radical attributes. The radical is a classical regular
expression that allows users to describe non-contiguous ranges of nodes. In this example, the
names are then graphene-[0-143] .nancy.grid5000.fr. The power attribute indicates the
processing speed of a node in number of instructions processed per second. The four remaining
attributes respectively define the latency and bandwidth of the network links the connect each
node to a backbone (prefixed by bb_). The main problem with this simplistic description is that
it does not reflect the hierarchical organization in cabinets of the cluster.

Figure improves this description by distinguishing the four cabinets as four ASes named
AS_graphene[1-4], each having a different range of nodes. These four ASes belong to a single
AS, called AS_graphene, that represents the whole cluster. Each cabinet is connected to a
central backbone, called switch-graphene, with its own bandwidth and latency. As the main
AS follows the Full routind method, we have to declare how cabinets are interconneted, thank
to the <ASroute> tags. For sake of simplicity we show only the connection between two pair of
cabinets. The <ASroute> tag declares a route between two ASes. In our example, this route is
between AS_graphenel and AS_graphene2. The access point (or gateway) of the source (resp.
destination) AS is given in the gw_src (resp. gw_dst) attribute. There is a single link between
these two gateways, namely switch-graphene.

As mentioned in Figure another input file is required by our trace reaply tool. It is the
deployment file that maps each simulated process on a node of the platform. A typical example
of deployement for the graphene cluster is presented in Figure [£.4] It shows that the the process
of rank 0 is mapped onto the graphene-0.nancy.grid5000.fr node. Similar information is
given for all the other nodes in the cluster.

67

© 0N O U R W N =

WoW oW oW NN NN NNNRNRNLN R B o e e e e e
OO R O © 0N dE W RO ©O0 N GAE WD O

© 00 N O U W N =

<?xml version=’1.0’7>
<!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
<platform version="3">
<AS id="AS_graphene" routing="Full" >
<cluster id="AS sgraphenel"
prefix="graphene-" suffix=".nancy.grid5000.fr" radical= "0-38"
power="1E9" bw="1.25E8" lat="15E-6" bb_bw="1.25E9" bb_lat="15E-6"/>
<cluster id="AS sgraphene2"
prefix="graphene-" suffix=".nancy.grid5000.fr" radical= "39-73"
power="1E9" bw="1.25E8" lat="15E-6" bb_bw="1.25E9" bb_lat="15E-6"/>
<cluster id="AS sgraphene3"
prefix="graphene-" suffix=".nancy.grid5000.fr" radical= "74-103"
power="1E9" bw="1.25E8" lat="15E-6" bb_bw="1.25E9" bb_lat="15E-6"/>
<cluster id="AS sgraphene4"
prefix="graphene-" suffix=".nancy.grid5000.fr" radical= "104-143"
power="1E9" bw="1.25E8" lat="15E-6" bb_bw="1.25E9" bb_lat="15E-6"/>

<link id="switch-graphene" bandwidth="1.25E9" latency="5E-4" />

<ASroute src="AS sgraphenel" dst="AS sgraphene2"
gw_src="graphene-AS sgraphenel router.nancy.grid5000.fr"
gw_dst="graphene-AS sgraphene2 router.nancy.grid5000.fr">
—n

<link ctn id="switch-graphene" />
< /ASroute>

<ASroute src="AS_sgraphenel" dst="AS_sgraphene3"
gw_src="graphene-AS_sgraphenel_router.nancy.grid5000.fr"
gw_dst="graphene-AS_sgraphene3_router.nancy.grid5000.fr">
<link_ctn id="switch-graphene"/>
</ASroute>
</As>
</platform>

Figure 4.3: Example - Platform file for graphene cluster with network topology.

<?xml version=’1.077>

<!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
<platform version="3">

<process host="graphene-0.nancy.grid5000.fr" function="0"/>

<process host="graphene-1.nancy.grid5000.fr" function="1"/>

<process host="graphene-142.nancy.grid5000.fr" function="142"/>
<process host="graphene-143.nancy.grid5000.fr" function="143"/>
</platform>

Figure 4.4: Deployment file for graphene cluster.

68

W N =

© 00 g O ut

10
11
12
13
14
15
16
17
18
19
20

Calibration and Instantiation

A necessary step for obtaining accurate performance predictions through simulation is the
calibration of the simulation tool. In our context, calibration is used to determine the rate
at which a CPU processes instructions, the latency and bandwidth of communication links,
and some other factors. These values are then used to instantiate the platform description file
shown in Figure Such a calibration strongly depends on both application and execution
environment. Indeed different types of computation may lead to different processing rates on a
given CPU. This is mainly due to how efficiently the computation can use the different levels of
cache. Moreover the performance of a given computation may differ with regard to the processor
brand.

Calibration of the CPU processing power To instantiate the power attribute of the
<cluster> tag that represents the processing power of each host in the cluster, we proceed as
follows. A small instrumented instance of the target application, e.g., a class A instance for NAS
parallel benchmarks, is run on a small version of the cluster to describe, e.g., on up to four nodes.
This allows us to determine the number of instructions of each event as long as the time spent
to computed them. Then we can determine a processing rate of each single action, compute a
weighted average on each process, and get an average processing rate for all the process set. To
smooth the runtime variations, we repeat this procedure five times and compute an average over
the five runs. We use this final value to instantiate the SiMGrid platform file. It depends on the
application, compilation options and target cluster characteristics. This calibration step allows
us to acquire time-independent traces on any execution environment, as explained in Chapter [3]
and simulate their compute part on a correctly instantiated description of the target cluster.
For instance, the description given in Figure [£.5 has been updated with a processing power that
correspond to a calibration of LU benchmark on the graphene cluster. The obtained rate is of
3.68E9 instructions per second and is homogeneous across the nodes.

<?xml version=’1.077>
<!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
<platform version="3">

<AS id="AS_graphene" routing="Full" >
<cluster id="AS_sgraphenel"
prefix="graphene-" suffix=".nancy.grid5000.fr" radical="0-38"
power= "3.68E9" bw="1.25E8" lat="15E-6" bb_bw="1.25E9" bb_lat="15E-6"/>
<cluster id="AS_sgraphene2"
prefix="graphene-" suffix=".nancy.grid5000.fr" radical="39-73"
power= "3.68E9" bw="1.25E8" lat="15E-6" bb_bw="1.25E9" bb_lat="15E-6"/>
<cluster id="AS_sgraphene3"
prefix="graphene-" suffix=".nancy.grid5000.fr" radical="74-103"
power= "3.68E9" bw="1.25E8" lat="15E-6" bb_bw="1.25E9" bb_lat="15E-6"/>
<cluster id="AS_sgraphene4"
prefix="graphene-" suffix=".nancy.grid5000.fr" radical="104-143"
power= "3.68E9" bw="1.25E8" lat="15E-6" bb_bw="1.25E9" bb_lat="15E-6"/>
</AS>
</platform>

Figure 4.5: Updating the processing power after the calibration of the LU benchmark.

When analyzing the simulation results obtained for the LU benchmark in cite [101], we
observed that the calibration procedure described above prevented us to obtain accurate pre-

69

dictions for some specific conditions on specific models of processors. More precisely we noted
that we were generally overestimating the processing rate, leading to shorter simulated times.
For instance, on some simulated clusters, using a calibration based on the execution of a class
A instance with 4 processes prevented us to correctly predict the execution time of a class C
instance executed with 8 processes. We suspected the large difference of data size managed by
each process between the two instances to be the source of this inaccuracy. Then we investi-
gated the use of additional hardware counters, such as the number of L2 cache misses or stalled
cycles, to find some correlation with the processing rate. Even though we did not find anything
relevant, having to rely on this counter would have been detrimental to our framework. Indeed,
we explained in Section [3:3] that one of the acquisition mode allowed by time-independent traces
consists in executing several MPI processes on a single core. In this case, the processes compete
for the cache and the values of the hardware counters cannot be used anymore. Then we have to
propose another method that does not compromise the benefit of the time-independent traces.

The rationale of the calibration method was to limit the number of resources and the time
needed to do the calibration as much as possible. Experiments shown that while using only as
few resources as four cores does not raise any issue, limiting the calibration to a small problem
size hide some important phenomena. As already mentioned, in the particular case of the LU
factorization, as soon as the share of the matrix owned by each process exceeds the capacity of
the L2 cache, the performance drops, with a direct impact on the instruction rate. To circumvent
this issue, we propose to complete our calibration procedure, when it is needed, with runs on
larger problem sizes but on the same number of resources. In practical terms, we run the class B
and C instances in addition to the class A instance, still on four nodes. Then we determine three
different instruction rates, one per studied class. Depending on whether the current instance
handles data that fit in the L2 cache or not, we use the rate coming from the calibration based
on class A or the one that corresponds to the instance class.

Note that the use of this cache-aware calibration is mandatory only for the cases where the
L2 cache of a processor is small (1IMB per core only). On the graphene cluster that has a L2
cache of 2MB per core, all the instances do fit in cache. Calibrating the simulator with a run of
the class A instance with four processes is then enough.

Communication Calibration For network resources, SIMGrid uses an analytical network
contention model. This model was developed for arbitrary network topologies with end-points
that use standard network protocols, such as TCP/IP, and are connected via multi-hop paths.
Instead of being packet-based, the model is flow-based, meaning that at each instant the band-
width allocated to an active flow (i.e., a data transfer occurring between two end-points) is
computed analytically given the topology of the network and all currently active flows. This
generic model is well suited for networks ranging from local-area to wide-area networks. In [66],
a simulator called SMPI, was added to the SiMGrid toolkit for the on-line simulation of MPI
applications on a single node. In order to specialize the generic network model for cluster inter-
connects, a model has been added to the SIMGrid simulation kernel that takes into account the
specifics of MPI implementations that use TCP on cluster interconnects. In [I09] we propose a
hybrid network model where more parameters are used to take under consideration the conges-
tion which can occur during the execution of a parallel application. For the declared bandwidth
in the <cluster> tags, the nominate value of the link is used. The measurements presented
in Figure were obtained according to the following protocol. To avoid any measurement
bias, the message size is exponentially sampled from 1 byte to 100MiB. We ran two "ping" and
one "ping-pong" experiments. The ping experiments aim at measuring the time spent in the
MPI_Send (respectively MPI_Recv) function by ensuring that the receiver (respectively sender) is
always ready to communicate. The ping-pong experiment allows us to measure the transmission

70

delay. We ran our analysis on the whole set of raw measurements rather than on averaged values
for each message size to prevent behavior smoothing and variability information loss. The ratio-
nale is to study the asynchronous part of MPI (from the application point of view) without any
a priori assumptions of where switching may occur. We distinguish three modes of operation
in Figure asynchronous, detached, and synchronous. The variable k is the message size
(in bytes), Sg, and Sy are the size thresholds of the asynchronous communication and detached
communication respectively. In Figure [f.7] Ps and P, represent the processes of the send and
receiver respectively and the variable T; declares the durations of the corresponding task. More
information about this hybrid network model can be found in [I09].

MPI_Send MPI_Recv
etached etached
1e-02 Meaumﬁ Meaumﬁ
Medium1 Medium1
% group
g Small Small Small
8 - Medium1
&K
% Medium2
5 le-04 - s Detached
5
a Large
I I I I I I
1e+01 1e+03 1e+05 1e+01 1e+03 1e+05

Message size (bytes)

Figure 4.6: MPI_Send and MPI_Recv duration as a function of message size.

As illustrated by Figure [4.6] the duration of each mode can be accurately modeled through

linear regression. It allows us to clearly identify different modes interpreted as follows:

— Small (when k£ < 1,420): this mode corresponds to messages that fit in a TCP packet
and are sent asynchronously by the kernel. As it induces memory copies, the duration
significantly depends on the message size;

— Medium (when 1,420 < k < 32,768 or 32,768 < k < 65,536 = .S;): these messages are
still sent asynchronously but incur a slight overhead compared to small messages, hence
a discontinuity at k = 1420. The distinction at kK = 32,768 does not really correspond

BN L

el | T_1 ! | |
-— e | s
$T_18 $T_3% ST_4$ $T_28 T_4 T_2
(a) SMPI Asynchronous (b) SMPI Detached (¢c) SMPI Synchronous
mode (k < Sq) mode (S, < k < Sq) mode (k > Sq)

Figure 4.7: The "hybrid" network model of SMPI in a nutshell.

71

© 00 N O Ul A W N

W oW W oW W W NNNNNDNNDNDLN = R e R e e e e
AR DR R OO DTS AR WN RO © 0O W N = O

to any particular threshold on the sender side but is visible on the receiver side where a
small gap is noticed. Accounting for it is harmless and allows for a better linear fitting
accounting for MPI/TCP peculiarities;

— Detached (when 65,536 < k& < 327,680 = Sy): this mode corresponds to messages
that do not block the sender but require the receiver to post the reception before the
communication actually takes place;

— Large (when k > 327,680): for such messages, both sender and receiver synchronize using
a rendez-vous protocol before sending data. Except for the waiting time, the durations on
the sender side and on the receiver side are very close.

All the parameters and values for the instantiation of this hybrid for the described cluster

can be declared thanks to a configuration header in the XML file, as shown in Figure

<?xml version=’1.077>
<!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
<platform version="3">
<config id="General">
<prop id="workstation/model" value="compound"/>
<prop id="network/model" value="SMPI"/>

<prop id="smpi/async_small thres" value="65536"/>
<prop id="smpi/send is detached thres" value="327680"/>

<prop id= "smpi/os"
value="0:8.93009e-06:7.654382e-10; 1420:1.396843e-05:2.974094e-10;
32768:1.540828e-05:2.441040e-10; 65536:0.000238:0; 327680:0:0"/>
<prop id= "smpi/or"
value="0:8.140255e-06:8.395881e-10; 1420:1.269952e-05:9.092182e-10;
32768:3.095706e-05:6.956453e-10; 65536:0:0; 327680:0:0"/>

<prop id="smpi/bw factor"
value="0:0.400977; 1420:0.913556; 32768:1.078319; 65536:0.956084; 327680:0.929868"/>

<prop id= "smpi/lat factor"
value="0:1.35489; 1420:3.437250; 32768:5.721647;65536:11.988532; 327680:9.650420"/>
</config>

<AS id="AS_graphene" routing="Full" >
<cluster id="AS_sgraphenel"
prefix="graphene-" suffix=".nancy.grid5000.fr" radical="0-38"
power="3.68E9" bw="1.25E8" lat="15E-6" bb_bw="1.25E9" bb_lat="15E-6"/>
<cluster id="AS_sgraphene2"
prefix="graphene-" suffix=".nancy.grid5000.fr" radical="39-73"
power="3.68E9" bw="1.25E8" lat="15E-6" bb_bw="1.25E9" bb_lat="15E-6"/>

</AS>
</platform>

Figure 4.8: Configuring the hybrid network model.

First, we have to declare that the default network model is not the one to used by creat-
ing a compound (combination of CPU and network models) using the SMPI hybrid network
model (lines 5 and 6). Then we declare the message size at which the protocol change from
eager to rendez-vous (async_small_thres at 65,536 bytes) and from rendez-vous to detached
(send_is_detached_thres at 327,680 bytes) (lines 7 and 8). From line 10 to line 17, we declare

72

the values for the sender and receiver overheads (smpi/os and smpi/or. The values of these
parameters are given by triplets x : y : z. For messages whose size is greater than x, the simula-
tion kernel applies a delay of z 4+ z x y. This delay, that depends on the message size, basically
corresponds to copying the message in memory. Finally, correction factors for the latency and
bandwidth are declared from lines 19 to 23. This allows the model to mimic the behavior shown
by Figure 4.6l They are declared as couples = : y. For messages whose size is greater than z,
the factor y is applied to the nominal bandwidth (resp. latency).

All the presented values were obtained on the graphene cluster. The “ping” measurements
are used to instantiate the values of os, Og, 0,, and O, for small to detached messages which
are the sender overhead, the overhead per byte at the sender side, the receiver overhead and the
overhead per byte at the receiver side respectively. By subtracting 2(o, + k.O,) from the round
trip time measured by the “ping-pong” experiment, and thanks to a piece-wise linear regression,
we can deduce the values of latency and bandwidth correction factors.

The last phenomenon to reflect in our description to become completely realistic is the
impact of network contention on a point-to-point communication between two processors in a
same cabinet and between two processors in two different cabinets. To quantify this impact,
we artificially create contention and measure the bandwidth as perceived by the sender and the
receiver. We place ourselves in the large message mode where the highest bandwidth usage is
observed and transfer 4 MiB messages.

In a first experiment we increase the number of concurrent pings from 1 to 19, i.e., half the
size of the cabinet. As the network switch is well dimensioned, this experiment fails to create
contention: We observe no bandwidth degradation on either the sender side or the receiver side.
Our second experiment uses concurrent MPI_Sendrecv transfers instead of pings. We increase
the number of concurrent transfers from 1 to 19 and measure the bandwidth on the sender (Bs)
and receiver (B,) side. A multi-port model, as assumed by delay models, would estimate that
Bs + B, = 2 x B since communications do not interfere with each other. However, both fail to
model what actually happens, as we observe that Bs; + B, =~ 1.5 x B on this cluster.

We model this bandwidth sharing effect by enriching the simulated cluster description, as
seen in Figure[£.9] Each processor is provided with three links: an uplink and a downlink, so that
send and receive operations share the available bandwidth separately in each direction; and a
specific link, whose bandwidth is 1.5 x B, shared by all the flows to and from this processor. The
consequence is that there is no more backbone (and thus no more bb_lat and bb_bw attributes
in the <cluster> tag. Experiments shown it was more realistic to connect the nodes directly
to the router of the cluster and model communications as follows. The sharing_policy of the
links that connect the nodes to the router is declared to FULLDUPLEX. This means that two
links (named UP and DOWN) are created during the parsing of the XML file to model pertubation
coming from ACK returning packets [I10]. Then the limiter_link attribute creates a pseudo-
shared link to limit the bandwidth that can achieved with the fullduplex links. This link has no
latency and a bandwidth of 1.875E8 B/s (that is 1.5 x 1.25E8B/s) and it will create contention
when messages are sent from both directions with a new peak bandwidth value. When the
messages are sent only to one direction the initial bandwidth value is respected. Finally, the
loopback_lat and loopback_bw atributes respectively declare the values of the latency and the
bandwidth of the link used when a process sends a message to another process mapped on the
same node.

Preliminary experiments on other clusters show that this contention parameter seems con-
stant for a given platform, with a value somewhere between 1 and 2. Determining this parameter
requires benchmarking each cluster as described in this section. The set of experiments is avail-
able on this web page [111].

This modification is not enough to model contention at the level of the whole graphene

73

OO0~ U W

<?7xml version=’1.0’7>
<!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
<platform version="3">

<config id="General">
<prop id="workstation/model" value="compound"/>
<prop id="network/model" value="SMPI"/>

<prop id="smpi/async_small_thres" value="65536"/>
<prop id="smpi/send_is_detached_thres" value="327680"/>

<prop id="smpi/os"
value="0:8.93009e-06:7.654382e-10; 1420:1.396843e-05:2.974094e-10;
32768:1.540828e-05:2.441040e-10; 65536:0.000238:0; 327680:0:0"/>

<prop id= "smpi/or"
value="0:8.140255e-06:8.395881e-10; 1420:1.269952e-05:9.092182e-10;
32768:3.095706e-05:6.956453e-10; 65536:0:0; 327680:0:0"/>

<prop id= "smpi/bw_factor"
value="0:0.400977; 1420:0.913556; 32768:1.078319; 65536:0.956084; 327680:0.929868"/>

<prop id= "smpi/lat_factor"
value="0:1.35489; 1420:3.437250; 32768:5.721647;65536:11.988532; 327680:9.650420"/>
</config>

<AS id="AS_graphene" routing="Full" >
<cluster id="AS_sgraphenel" prefix="graphene-" suffix=".nancy.grid5000.fr"
radical="0-38" power="3.68E9" bw="1.25E8" lat="15E-6"
sharing policy="FULLDUPLEX" limiter link="1.875E8"
loopbacﬂ_lat:"l.SE-Q" loopback_bw:"60_00000000"></c1uster>

<cluster id="AS_sgraphene2" prefix="graphene-" suffix=".nancy.grid5000.fr"
radical="39-73" power="3.68E9" bw="1.25E8" lat="15E-6"
sharing policy="FULLDUPLEX" limiter link="1.875E8"
loopbacE_lat:"l.SE—Q" loopback_bw:"60_00000000"></c1uster>

<cluster id="AS_sgraphene3" prefix="graphene-" suffix=".nancy.grid5000.fr"
radical="74-103" power="3.68E9" bw="1.25E8" lat="15E-6"
sharing policy="FULLDUPLEX" limiter link="1.875E8"
loopback lat="1.5E-9" loopback bw="6000000000"></cluster>
<cluster id="AS_sgraphene4" prefix="graphene-" suffix=".nancy.grid5000.fr"
radical="104-143" power="3.68E9" bw="1.25E8" lat="15E-6"
sharing policy="FULLDUPLEX" limiter link="1.875E8"
loopback lat="1.5E-9" loopback bw="6000000000"></cluster>

<link id="switch-backbonel" bandwidth="1162500000" latency—="1.5E-6"
sharing policy="FULLDUPLEX" />

<link id="switch-backbone2" bandwidth—="1162500000" latency="1.5E-6"
sharing policy="FULLDUPLEX" />

<link id="explicit-limiterl" bandwidth="1511250000" latency="0"
sharing policy="SHARED" />

<link id="explicit-limiter2" bandwidth="1511250000" latency="0"
sharing policy="SHARED" />

<ASroute src="AS_sgraphenel" dst="AS_sgraphene2"
gw_src="graphene-AS_sgraphenel_router.nancy.grid5000.fr"
gw_dst="graphene-AS_sgraphene2_router.nancy.grid5000.fr"
symmetrical="NO"
<link ctn id="switch-backbonel" direction="UP" />
<link ™ ctn id="explicit-limiter1" /> <link ctnid="explicit-limiter2"/>
<link:ctn id="switch-backbone2" direction="DOWN" />

</ASroute>
<ASroute src="AS_sgraphene2" dst="AS_sgraphenel"
gw_src="graphene-AS_sgraphene2_router.nancy.grid5000.fr"
gw_dst="graphene-AS_sgraphenel_router.nancy.grid5000.fr"
symmetrical="NO"
<link ctn id="switch-backbone2" direction="UP" />
<link ctn id= "explicit-limiter2" /> <link ctnid="explicit-limiter1"/>
<link ctn id="switch-backbonel" directio_n:"DOWN"/>
</ASroute> -

</AS>
</platform>

Figure 4.9: Realistic description of the graphene cluster.

74

© 00 N O U R W N =

cluster. As said eralier, this cluster is made of four cabinets interconnected through 10Gb links.
Experiments show that these links become limiting when shared between several concurrent pair-
wise communications between cabinets. This effect is captured by describing the interconnection
of two cabinets as three distinct links (uplink, downlink, and limiting link). In Figure this
correspond to lines 49 to 76. The links named explicit-1limiter[1-2] induce the same behavior
as the limiter_link attribute of the <cluster> tag. The bandwidth of the limiting links is set
to 13 Gb/s as measured. But experiments shown that application are never able to use more
than 93% of the nominal bandwidth across cabinets. Then we applied this correction directly
in the XML file (lines 49, 51, 54, and 56). Finally note that the routes between two cabinets are
not symmetrical anymore (see lines 63 and 72) to take the uplink, downlink, and limiting links
into account.

If we refer to Figure we now have all the necessary inputs to replay a time-independent
trace: a realistic and carefully instantiated description of the target cluster (Figure , a
deployment file (Figure @, and time-independent trace acquired according to the framework
described in Chapter [3| In the next Section, we introduce the simulation backends used in the
different implementations of our time-independent replay tool.

4.2 Simulated Trace Replay

Our simulation framework is tightly connected to the SiMGrid project [70] that provides
core functionalities for the simulation of distributed applications in heterogeneous distributed
environments. SIMGrid relies on a scalable and extensible simulation engine and offers several
user APIs. The MSG API allows users to describe an application as a set of concurrent processes
and provides a simple mailbox-based communication protocol. While initially aimed at studying
scheduling algorithms, the MSG API proved to be perfectly usable in other contexts and became
the most widely used API of SIMGrid. Then, to replay time-independent traces, we first wrote
a simulator, on top of the simulation kernel using the MSG API.

This simulator had to include a function that corresponds to the expected behavior of a given
action. This has to be done for each action that may appear in a trace. We present hereafter
the implementation of some typical and representative actions.

Figure shows the necessary code for the compute action. The format of this action is
<id> compute <volume of instructions>, and is passed to this function as an array of strings
(action), one for each field of the entry. Once the amount of instructions to compute has been
extracted (line 2), it is possible to create the corresponding SiMGrid task (line 3). The task is
executed (line 6) and destroyed (line 7) as soon as the computation of amount instructions has
been simulated. The duration of the action is logged on line 8.

static void action_compute(const char *const *action) {
const char *amount = action[2];
msg_task_t task = MSG_task_create("task", parse_double(amount), 0, NULL);
double clock = MSG_get_clock();

MSG_task_execute(task) ;
MSG_task_destroy(task) ;
log_action(action, MSG_get_clock() - clock);

Figure 4.10: MSG code for the compute action.

75

© 0N O O W N

= =
N o= O

© 00 N O U R W N =

e e
G W N = O

Figure [I1] shows the implementation of the send action whose format is
<id> send <dst_id> <volume>. Line 3 retrieves the message size while line 6 creates the
name of the mailbox in which the message will be sent. This name combines the rank of the
sender and that of the receiver. Line 8 creates a MSG communication task and sends it in the
mailbox. Finally line 11 calls a function that check is some asynchronous communications are
completed and can be cleaned.

static void action_send(const char *const *action) {
char to[250];
double size = parse_double(action[3]);
double clock = MSG_get_clock();

sprintf (to, "%s_%s", MSG_process_get_name(MSG_process_self()), action[2]);
MSG_task_send (MSG_task_create(to, 0, size, NULL), to);

log_action(action, MSG_get_clock() - clock);
asynchronous_cleanup();

Figure 4.11: MSG code for the send action.

Figure shows the MSG commands for the Isend action whose format is very similar
to that of its synchronous equivalent <id> Isend <dst_id> <volume>. For sake of simplicity,
we only comment the additional code needed to handle asynchronous communications. Each
simulated process has access to a shared data structure, called globals, that comprises different
counters and two dynamic arrays, isends and irecvs that respectively contain the pending
asynchronous sends and receives. The MSG_task_isend function returns a handler (lines 9-10)
that is pushed at the ends of the isends dynamic array (line 11).

static void action_Isend(const char *const *action) {
char to[250];
souble size = parse_double(action[3]);
double clock = MSG_get_clock();
process_globals_t globals =
(process_globals_t) MSG_process_get_data(MSG_process_self());

sprintf (to, "Ys_%s", MSG_process_get_name(MSG_process_self()), action[2]);
msg_comm_t comm =

MSG_task_isend (MSG_task_create(to, 0, size, NULL), to);
xbt_dynar_push(globals->isends, &comm) ;

log_action(action, MSG_get_clock() - clock);
asynchronous_cleanup() ;

Figure 4.12: MSG code for the Isend action.

The Irecv action (<id> Irecv <src_id> <volume>) depicted in Figure [1.13]is a bit more
complex. The basic principle of this action is to retrieve the MSG communication task sent
by the sender. To do this, we build the name of the mailbox for this communication from the
ranks of the sender and receiver (line 7). Then we use another dynamic array of the global
data structure to store the MSG task. First we add an empty task at the end of the dynamic

76

© 00 N O Uk W N =

e e e N e e
© 00 N O U W N = O

© 00O TR W N

e e e
© 00N U WN = O

array (line 10), and then we use give a pointer on it as parameter of the MSG_task_irecv
function (lines 11-14). Finally, line 15 stores the handle on the asynchronous communication in
the irecvs dynamic array.

static void action_Irecv(const char *const *action) {
char mailbox[250];
double clock = MSG_get_clock();
process_globals_t globals =
(process_globals_t) MSG_process_get_data(MSG_process_self());

sprintf (mailbox, "Ys_%s", action[2],
MSG_process_get_name (MSG_process_self()));

msg_task_t t = NULL;

xbt_dynar_push(globals->tasks, &t);

msg_comm_t ¢ =

MSG_task_irecv(xbt_dynar_get_ptr

(globals->tasks, xbt_dynar_length(globals->tasks) - 1),
mailbox) ;

xbt_dynar_push(globals->irecvs, &c);

log_action(action, MSG_get_clock() - clock);
asynchronous_cleanup();

Figure 4.13: MSG code for the Irecv action.

In time-independent traces, as in MPI applications, Irecv actions are usually followed by
wait actions that act as synchronization barriers for asynchronous communications. Figure [{.14]
presents the code for the wait action (<id> wait). After having checked that this wait was
precedeed by an Irecv (lines 8-10), this function gets the last element from the globals->irecv
dynamic array (line 12) and waits for its completion (line 13). Lines 14-16 clean up things, one
the asynchronous communication has completed and released the MSG_comm_wait function.

static void action_wait(const char *const *action) {
msg_task_t task = NULL;
msg_comm_t comm;
double clock = MSG_get_clock();
process_globals_t globals =
(process_globals_t) MSG_process_get_data(MSG_process_self());

xbt_assert (xbt_dynar_length(globals->irecvs),
"action wait not preceded by any irecv: %s",
xbt_str_join_array(action, " "));

comm = xbt_dynar_pop_as(globals—>irecvs, msg_comm_t);
MSG_comm_wait (comm, -1);
task = xbt_dynar_pop_as(globals->tasks, msg_task_t);
MSG_comm_destroy (comm) ;
MSG_task_destroy(task);

log_action(action, MSG_get_clock() - clock);

Figure 4.14: MSG code for the wait action.

We complete this presentation of the implementation of some actions using the MSG API
with a collective communication operation, namely the bcast action (<id> bcast <volume>).

7

© 00 N O G W N =

e e el =
B W N = O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Such functions are more complex, as shown in Figure .15} Moreover, the MSG API forces us to
make some unrealistic assumptions. For instance, a flat tree rooted in process of rank 0 is used
to implement the broadcast operation, while actual MPI implementations adapt the diffusion
algorithm to the message size and number of participating processes, and can be initiated by
any process. This implementation first checks that the size of the MPI communicator has been
declared (thanks to a comm_size action in the trace) on lines 13-14. Then each process builds a
specific mailbox name to receive data from the root process (lines 18 and 26 or 36). The behavior
is different for the process of rank 0 that sends asynchronously a message to every other processes
and then waits for their reception (lines 20-34). The other processes just synchronously receive
the sent message (line 37).

static void action_bcast(const char *const *action){
int i;
char *bcast_identifier;
char mailbox[80];
double size = parse_double(action[2]);
msg_task_t task = NULL;
const char *process_name;
double clock = MSG_get_clock();

process_globals_t counters =
(process_globals_t) MSG_process_get_data(MSG_process_self());

xbt_assert (communicator_size, "Size of Communicator is not defined, "
"can’t use collective operations");

process_name = MSG_process_get_name (MSG_process_self());
bcast_identifier = bprintf("bcast_%d", counters->bcast_counter++);

if (!strcmp(process_name, "0")) {
XBT_DEBUG("%s: %s is the Root", bcast_identifier, process_name);

msg_comm_t *comms = th_newo(msg_comm_t, communicator_size - 1);

for (i = 1; i < communicator_size; i++) {
sprintf (mailbox, "%s_0_%d", bcast_identifier, i);
comms[i - 1] =
MSG_task_isend (MSG_task_create(mailbox, 0, size, NULL),
mailbox) ;
}
MSG_comm_waitall (comms, communicator_size - 1, -1);
for (i = 1; i < communicator_size; i++)
MSG_comm_destroy(comms[i - 1]);
xbt_free(comms) ;
} else {
sprintf (mailbox, "Y%s_O_%s", bcast_identifier, process_name);
MSG_task_receive(&task, mailbox);
MSG_task_destroy(task) ;
}

log_action(action, MSG_get_clock() - clock);
xbt_free(bcast_identifier);

Figure 4.15: MSG code for the becast action.

78

S UL R W N

TR W N =

Once all the actions are implemented, the trace replay tool has to register all of them thanks
to the MSG_action_register function. These calls made in the main function of the simulator
link the action keywords (as defined in Table to the functions presented above. For instance
the main function of the simulator includes the following calls:

xbt_replay_action_register("compute", action_compute);
xbt_replay_action_register("send", action_send);
xbt_replay_action_register("Isend", action_Isend);
xbt_replay_action_register("Irecv", action_Isend);
xbt_replay_action_register("wait", action_wait);
xbt_replay_action_register("bcast", action_bcast);

The last step consists in calling function MSG_action_trace_run that takes either a trace
file name or NULL as input. When no file name is given, it means that there is one trace file per
process, whose name is given in the platform file, as shown below.

<process host="graphene-1.nancy.grid5000.fr" function="1"/>
<argument value=“SG_processl.trace”/>
</process>

This first implementation of the trace replay tool based on the MSG API forced us to mimic
the behavior of MPI primitives, e.g., collectives operations or protocols depending on the message
size, with crude simplifications. Moreover it decouples this effort on the off-line simulation of
MPI applications to that on on-line simulation also taking place within the SIMGrid project
with SMPI. Consequently we completely rewritten our tool between the publications of [T0T]
and [I12] to change the simulation backend and rely on SMPI instead of MSG.

As explained in Chapter [2l SMPI is another user API of SIMGrid dedicated to the on-line
simulation of MPI applications [66]. It is, as the present off-line approach, built on top of the
simulation kernel of the SIMGrid toolkit and thus also benefits of its fast, scalable, and validated
network models. A salient property of SMPI is its capacity to simulate MPI applications on a
single node. SMPI implements about 80% of the MPI 2.0 standard, including most of the network
communication related functions. To leverage the accurate network models underlying SMPI,
remove unwanted simplifactions, and factor the efforts on the simulation of MPI applications,
we have reimplemented the trace replay mechanism directly within SMPI. This rewriting leads
to many beneficial changes. First, it simplifies the way actions, i.e., events stored in the trace
are passed to the simulation kernel.

To illustrate this, we show the implementations of some actions that correspond to specific
MPI calls. Figure [A.16] presents the new version of the compute action. Lines 2 and 4 log the
duration of this action. This action is actually a simple wrapper on the smpi_execute_flops
function that belongs to the internal API of SMPI. It simulates the execution of a certain amount
of flops (the default unit in SIMGrid), or any other work unit provided that the processing power
of processors is declared in a coherent unit.

static void action_compute(const char *const *action){
double clock = smpi_process_simulated_elapsed();
smpi_execute_flops(parse_double(action[2]));
log_timed_action (action, clock);

}

Figure 4.16: SMPI version of the compute action.

79

© 00 N O GR W N =

= = e e
w N = O

© 00 N O G W N =

e T e e
N O Utk W N = O

The send action shown in Figure has a slightly different format compared to the
MSG version: <id> send <dst_id> <volume> [<datatype_id>]. Indeed, instrumentation
tools such as TAU, Score-P, and Scalasca express the message size in bytes which is the de-
fault data type used by our replay tool. However, the Minl can also log the data type of the
message buffer. Then we added a correspondance table that maps each MPI data type to an
integer. If this integer is given in the last field of the action then the correct data type is
used (lines 6-9). This is done whenever the data type can be extracted. Again, the new version
is just a wrapper on the appropriate SMPI internal function (line 11).

static void action_send(const char *const *action){
int to = atoi(action[2]);
double size=parse_double(action[3]);
double clock = smpi_process_simulated_elapsed();

if (action[4])
MPI_CURRENT_TYPE

else
MPI_CURRENT_TYPE

decode_datatype(action[4]);

MPI_DEFAULT_TYPE;

smpi_mpi_send (NULL, size, MPI_CURRENT_TYPE, to , O, MPI_COMM_WORLD);
log_timed_action (action, clock);

Figure 4.17: SMPI version of the send action.

The difference in the Isend action (<id> Isend <dst_id> <volume> [<datatype_id>])
shown in Figure is that we store the MPI_Request built by the SMPI function in a global
array of arrays (line 14). Each position corresponds to a process and contains all the pending
requests for this process.

static void action_Isend(const char *const *action){
int to = atoi(action[2]);
double size=parse_double(action[3]);
double clock = smpi_process_simulated_elapsed();
MPI_Request request;

if (action[4])
MPI_CURRENT_TYPE

else
MPI_CURRENT_TYPE = MPI_DEFAULT_TYPE;

decode_datatype(action[4]) ;

request = smpi_mpi_isend(NULL, size, MPI_CURRENT_TYPE, to, O,MPI_COMM_WORLD);
xbt_dynar_push(reqq[smpi_comm_rank (MPI_COMM_WORLD)],&request) ;

log_timed_action (action, clock);

Figure 4.18: SMPI version of the Isend action.

The implementation of the Irecv action presented in Figure [£.19] (<id> Irecv <src_id>
<volume> [<datatype_id>] is very similar. It just calls the smpi_mpi_irecv function (line 12)

80

that builds a MPI_Request which is stored at the right position, i.e., given by the receiver’s
rank, in the global array (line 14). This request will be handled by the wait action.

static void action_Irecv(const char *const *action){

WO TR W N

e e e
N OO W= O ©

int from = atoi(action[2]);

double size=parse_double(action[3]);

double clock = smpi_process_simulated_elapsed();
MPI_Request request;

if (action[4])
MPI_CURRENT_TYPE = decode_datatype(action[4]);
else
MPI_CURRENT_TYPE = MPI_DEFAULT_TYPE;
request = smpi_mpi_irecv(NULL, size, MPI_CURRENT_TYPE, from, O, MPI_COMM_WORLD);
xbt_dynar_push(reqq[smpi_comm_rank (MPI_COMM_WORLD)] ,&request) ;

log_timed_action (action, clock);

Figure 4.19: SMPI version of the Irecv action.

As mentioned earlier, the wait action retrieves the last posted irecv request (line 9) and
then waits for its completion (line 11). A check is done to ensure that there were an asynchronous
receive to wait for (lines 6-7).

static void action_wait(const char *const *action){

© 00 N O G W N =

e e el =
B W N = O

double clock = smpi_process_simulated_elapsed();
MPI_Request request;
MPI_Status status;

xbt_assert (xbt_dynar_length(reqq[smpi_comm_rank (MPI_COMM_WORLD)]),
"action wait not preceded by any irecv: %s", xbt_str_join_array(action," "));

request = xbt_dynar_pop_as(reqq[smpi_comm_rank (MPI_COMM_WORLD)], MPI_Request);
smpi_mpi_wait (&request, &status);

log_timed_action (action, clock);

Figure 4.20: SMPI version of the wait action.

We end this presentation of the SMPI versions of actions with the bcast action whose
format is <id> bcast <volume> [<root>] [<datatype_id>]. This action has two optional
parameters to explicitely declare which process initiates the broadcast and the type of data to
communicate. This removes one of the unrealistic assumption made in the MSG version, i.e.,
having the collective operations always rooted on process of rank 0. The other issue related to the
underlying algorithm is directly solved by SMPI. Indeed, calling the smpi_mpi_bcast function
allows the trace replay tool to benefit of the adaptive selection of algorithms for collective
operation implemented by SMPI. Depending on the message size, the number of processes,
and the MPI implementation (OpenMPI, MPICH, or StarMPI), the best algorithm will be
automatically selected in a seamless way.

81

© 00 N O Ul A W N

e e e e
D U W N = O

static void action_bcast(const char *const *action){
double size = parse_double(action[2]);
double clock = smpi_process_simulated_elapsed();
int root=0;
MPI_CURRENT_TYPE= MPI_DEFAULT_TYPE;

if(action[3]) {
root= atoi(action[3]);
if (action[4])
MPI_CURRENT_TYPE = decode_datatype(action[4]);
}

smpi_mpi_bcast(NULL, size, MPI_CURRENT_TYPE, root, MPI_COMM_WORLD);

log_timed_action (action, clock);

Figure 4.21: SMPI version of the bcast action.

This presentation showed that SMPI already implements a lot of functionalities in compar-
ison to MSG. It is a better choice to use SMPI as it prevents the development of simplistic
equivalents of MPI routines. It is also less error prone and difficult than relying on a pro-
gramming interface that has not been designed to simulate parallel MPI applications. Using
MSG means to rethink complex mechanisms such as buffering or RDMA in terms of processors
putting tasks in mailboxes. On the contrary, the new implementation allows us to benefit of all
the complex optimizations already offered and validated by SMPI in a seamless way.

The second main change implied by this rewriting is the user view of the replay framework.
In the former version everything was exposed to the user. Everything is now embedded and
replaying a Time-Independent Trace with SimGrid simply amounts to run the following program.

int main(int argc, char *argv([]){

smpi_replay_init (&argc, &argv);
smpi_action_trace_run(NULL);
smpi_replay_finalize();

return O;

}

This code, that initializes some data structures, loads a trace, and destroys the data struc-
tures, is considered as a regular SMPI program. Then it is compiled with the smpicc wrapper
and launched thanks to the smpirun command (see [66] for details), as follow

smpirun -np 8 -hostfile hostfile \
-platform platform.xml \
./smpi_replay trace_description

where np and hostfile are classical parameters of mpirun. Our replay tool needs a single
extra parameter, i.e., a file that lists the names of the trace files to associate to each process. If
this file contains a single entry, all the processes will look for the actions they have to perform
into the same trace. Otherwise, each process parses actions for its own trace file.

82

In the next section, we evaluate the accuracy of the simulation results achieved by the trace
replay tool we just detailed. We present results obtained with the first prototype written with
MSG as well as with the new SMPI version. Then we show how the accuracy was greatly
improved thanks to a better calibration procedure and an adapted simulation backend.

4.3 Accuracy of Simulation Results

Our first prototype framework [I0I] was implemented with MSG API and time-independent
traces were acquired with the selective instrumentation method described in Moreover the
calibration of the processing rate was not aware of the processor’s cache. For the computation
calibration of our prototype framework we used the already mentioned approach in Section
without the cache-aware method. The instantiation of the network parameters of the platform
file was done in two steps. To set the bandwidth, we used the nominal value of the links,
e.g., 1 Gib for GigaEthernet links. For the latency of a communication link, we relied on the
Pingpong_Send_Recv experiment of the SKaMPI [27] benchmark suite. Only two nodes of the
target platform were then needed here to calibrate the network. We took the value obtained
for a 1-byte message and divided it by six. This factor of six comes from two sources. We
have to divide the ping-pong time by two to obtain the latency of a one-way message. Then we
divide it by three to take the topology of a the network interconnect into account. Indeed, two
nodes in a compute cluster are generally connected through two links and one switch. In case of
hierarchical network, we account for this hierarchy in the determination of the latency. Finally
we were studying AMD processors then we conducted our experiments on the bordereau cluster.

The second step consists in instantiating the piece-wise linear model offered by SiMGrid that
is dedicated to MPI communications on compute clusters. SiMGrid provides a Python script
that takes as input the latency and bandwidth determined as above, the output of the SKaMPI
run, and the number of links connecting the two nodes used for the ping-pong. This script
determines latency and bandwidth correction factors that lead to a best-fit of the experimental
data for each segment of this piece-wise linear model.

10000 | Class B — Execution time —t .
i Class B — Simulated time |
Class C — Execution time —k—

r Class C — Simulated time —8—]

. 1000 - Class D — Execution time -

—§ L Class D — Simulated time -

E 100 | 4
Q
£
F

1 I I
8 16 32 64

Number of processes

Figure 4.22: Comparison of simulated and actual execution time for the EP benchmark on the
bordereau cluster.

83

100 T T

Execution time —+—
- Simulated time =~ —>—

10 3 E
g L]
= L]
5] L |
2
k= Le E
Py - .
g]
H - .

0.1

0.01 ' '
11 21 43

[oe]
()}

Number of processes

Figure 4.23: Comparison of simulated and actual execution time for the DT benchmark on the
bordereau cluster.

400 T T
Class B — Execution time —t

350 - Class B — Simulated time -
Class C — Execution time —k—
300 | Class C — Simulated time —8—

250
200

150

Time (in seconds)

100 |

50

8 16 32 64
Number of processes

Figure 4.24: Comparison of simulated and actual execution time for the LU benchmark on the
bordereau cluster.

Figures [£.22] [4.23] and [.24] show the accuracy of the time-independent trace replay by com-
paring the actual execution time respectively of the EP, DT and LU benchmarks on the bordereau
cluster for various classes with the simulated time obtained with SIMGrid. EP (Embarrassingly
Parallel) consists of only computations, DT (Data Traffic) consists of only communications,
while LU (LU Factorization) mixes computation and communication. For DT, the class refers
not only to the data size but also the number of communicating processes: classes A, B, and
C involve 21, 43, and 85 processes respectively. Moreover three different communication graphs

84

can be used for this benchmark. We chose the Black Hole (BH) communication graph that
collects data from multiple sources in a single sink. We see that the simulated execution time
is very accurate with low relative errors for EP (up to 1.71% for class B on 64 processes) and
DT (up to -8.99%) that are dominated either by computation or communication. For LU, which
is composed of millions of interleaved computation and communication actions, the obtained
results are more ambivalent. Here the trace replay is able to predict the correct evolution trend,
but the local relative error may be quite high (up to 47.1% for Class B on 64 processes) and
more importantly is not constant. This prevents our tool to provide predictions within a fixed
interval of confidence. We can see that for 8 and 16 processes mainly for class C, the absolute
difference of the execution and simulated time represents a significant amount of time.

40 T T T
ClassB —®&—
ClassC —o—

30 N
S
=

= 20 n
o
E
=

° 10 -
5]
=
[
o

2 0r n
=
o
a7

-10 N

-20 I I I I

oo

16 32 64
Number of processes

Figure 4.25: Evolution with regard to the number of processes of the relative error between
execution and simulated times for the execution of the LU factorization on the bordereau cluster.

Figure shows the results of Figure from a different perspective. It shows the
evolution of the relative error between the time to compute a LU factorization and its simulated
counterpart when the number of involved processes vary. We see that the inaccuracy of the
simulated version is not stable, but increases rather linearly with the number of processes.
Moreover, our tool underestimates the execution time for small number of processes, i.e., when
each process owns a larger share of data, and then overestimates the execution as the number
of processes grows.

This inaccuracy may have different origins related either to computations or communications.
For instance it may come from the discrepancy of the measured number of instructions. Indeed
this discrepancy directly impacts the calibration of the replay tool that determines the rate
at which each machine can process instructions. Among other potential sources, we assume
that every part of the application can be processed at the same rate while it may not be
the case for some applications, due to cache affinity for instance. However, the general trend
shown by Figure seems to indicate that the main source of inaccuracy comes from a bad
estimation of communication times. To confirm this impression, we made simulations in which
each compute action was replaced by a delay that corresponds exactly to the time spent for
this compute part during the trace acquisition. The obtained results, in which computations
are thus perfectly simulated, show a similar trend. The most probable source might then be

85

that the LU factorization, as implemented in the NAS Parallel Benchmark suite, implies a lot
of small messages (less than 64 KiB). Then most of the point-to-point communications use the
eager mode of MPI in which the sender copies the data directly into the memory of the receiver
without having to wait for it to post the corresponding receive. This particular communication
protocol was implemented in a too simple way, based on asynchronous communications in the
first implementation of our framework. As the number of small messages increases with the
number of involved processes, small inaccuracies tend to accumulate and lead to a large overall
relative error.

In the second version of our framework [I12] we combined the compiler optimization flag,
the TAU-reduced instrumentation detailed in Section B:2.2] and the cache-aware calibration
method to improve the quality of the simulation of the compute part of the application. For
the communication part, we benefit of the quality of the underlying SMPI layer that provides
better estimations for the point-to-point communication of small messages and a tuned piece-
wise linear network model. Moreover the tag called async_small_thres is used as described in
Section .11

Figure [£.26] shows the impact of the whole set of modifications on the accuracy of the simu-
lated executions of the LU factorization. These results, obtained on the bordereau cluster, have
to be compared to those presented by Figure .25

15 T T T T
ClassB —%®—
ClassC —o—
10 = N
S
=
< 5+ _
Q
£
: e
c 0 v
e
)
[0
Z -5F .
=
o
[a'
-10 F _
~15 I I I I
8 16 32 64

Number of processes

Figure 4.26: Evolution w.r.t. the number of processes of the relative error between execution
and simulated times for the execution of the LU factorization with the new replay framework.
Results obtained on the bordereau cluster.

The first outcome is a drastic reduction of the inaccuracy. With our initial implementation,
the relative error linearly increased from -2.7% to 38.9% for class B and from -15.8% to 32.5% for
class C. Now, the error varies between -9.5% and 11.5% for class B and between -6.1% and 8.1%
for class C. Moreover, the linear increase of the error along with the number of processes, that
indicated a bad simulation of the communication part, disappeared. We even note an opposite
trend for class B. This can be explained by the fact that this configuration of SMPI does not
capture the time to copy data in memory in the MPI_Send function. This leads to a slight
underestimation of the simulation time that increases as more small messages are exchanged for
large numbers of processes.

86

As the bordereau cluster is now aging and prone to failures and suspect behaviors. Then
we completed our study with results obtained on the more recent graphene cluster. Figure [4.27]
shows the relative error achieved under the same experimental conditions as for Figure [£:26] As
on the bordereau cluster, the error is in a narrow interval ranging from ~11.4% and -2%. Results
for class B are even more stable. Again the underestimation of the simulated time should be
compensated by taking memory copy into account.

T T T T T
10 F ClassB —®— |
ClassC —@—
2
= S5r i
Py
£
g
°c 0
e
b5}
o
2
E st §
()
(a2
-10 - n
I I I I

8 16 32 64 128
Number of processes

Figure 4.27: Evolution w.r.t. the number of processes of the relative error between execution
and simulated times for the execution of the LU factorization with the new replay framework.
Results obtained on the graphene cluster.

These results are not perfect yet, as some fluctuations or linear trends are still there, but
there are a great improvement towards an accurate and trustworthy performance prediction tool.
The reduction of around 10% of the overall inaccuracy allowed by the proposed modifications
may sound common in the domain of trace-based simulation. But in our case, recall that we
deal with time-independent traces that are based only on volumes and totally oblivious to both
acquisition and replay platforms. For such traces a good accuracy is then harder to achieve.
These results show that the more flexible approach offered by time-independent traces becomes
a sound alternative for prediction only thanks to these modifications. Some issues still have to
be addressed, but most of them have been identified. Finally the factorization of the code, and
thus of the efforts with those made on the SMPI project will help to improve the quality of our
Time-Independent Trace replay tool.

For the last version of our framework we used all the features presented in Figure related
to communications. We took under consideration the cost to copy data in memory and the
network congestion that may occur during the execution. Moreover the time-independent traces
that are now used are acquired by instrumenting the whole benchmarks and not by applying
selective instrumentation. Thus the traces include initialization and finalization phases.

Figures [£.284.29[4.30] and [.31] show the actual and simulated execution times for various
classes of the EP, DT, LU, and CG benchmarks on the graphene cluster. The presented execution
times are average values over ten “clean” runs, i.e., the standard deviation is negligible. The
graphene is a cluster shared by multiple users and accessed through a resource management
system. Then some experiments may be impacted by other jobs as network resources are shared.

87

To obtain these ten undisturbed runs, we usually had to execute three to four extra runs.

10000

—
=]
(=)
S
»

Time (in seconds)

100 [

T
Class B — Execution time

Class B — Simulated time
Class C — Execution time
Class C — Simulated time
Class D — Execution time
Class D — Simulated time

8 16 32

64

Number of processes

Figure 4.28: Comparison of simulated and actual execution time for the EP benchmark on the

graphene cluster.

10 F
Z [
=} L
o
Q
2 1F
g .
© L
k= I
H -
0.1

E Execution time
L Simulated time

T
S — T

— .

0.01
11

21

43

Number of processes

[oe]
()}

Figure 4.29: Comparison of simulated and actual execution time for the DT benchmark on the

graphene cluster.

Results for the EP and DT benchmarks show that the simulated execution times track
the actual execution times closely, with maximum absolute relative error of 1.35% and 6.33%
(corresponding to an absolute error of 2.2 ms only), respectively. As already mentioned, these
two benchmarks are dominated either by computation or communication and are then simpler

to simulate.

For the LU and CG benchmarks, the simulation is less accurate with maximum absolute

88

T T T
Class B — Execution time —8—

Class B — Simulated time ——
100 Class C — Execution time —o—
Class C — Simulated time ——

Time (in seconds)

10

1 1 1
8 16 32 64 128
Number of processes

Figure 4.30: Comparison of simulated and actual execution time for the LU benchmark on the
graphene cluster.

100 T T T

c

=

]

3

RS

by

=

H

10 HClass B — Execution time —B8—

[Class B — Simulated time —— |
- Class C — Execution time —6— 1
I Class C — SimulatedI time —— | | 1
8 16 32 64 128

Number of processes

Figure 4.31: Comparison of simulated and actual execution time for the CG benchmark on the
graphene cluster.

relative error of 10.17% and 29.95% respectively.Figure is similar to Figures and
but with a well calibrated network model.

We see another improvement in terms of accuracy with regard to the version and even more
stable predictions. However, the simulated execution time is still underestimated. A next step,

detailed in the next section is to attempt to identify (and remedy) the sources of the inaccuracies
observed for the LU and CG benchmarks.

89

—
9}

ClassB —®—
ClassC —@—

—_
o
T
|

(9]
T
|

b
T

Relative error on time (in \%)
=)

L
)
T

_15 ! ! !
8 16 32 64 128

Number of processes

Figure 4.32: Evolution w.r.t. the number of processes of the relative error between execution
and simulated times for the execution of the LU benchmark.

4.3.1 Sources of Inaccuracy

To better understand the sources of inaccuracy in the presented simulation results, we fur-
ther analyze those obtained for the LU benchmark. The LU iterative benchmark alternates
computations and communications at a high rate. Similar or close completion times as shown
by Figure may hide a bad, but lucky, estimation of each component of the execution time.
To be sure that estimation errors on computation times are not compensated by errors on the
communication times, we propose to compare (a part of) the Gantt charts of the actual and
simulated executions. Such a comparison is given by Figure that shows a period of 0.2
seconds of the execution of the LU benchmark with 32 processes. The upper part of this figure
displays the actual execution while the lower corresponds to the simulation of the same phase
with the simulation.

Value
7| compuing
MPI_Irecy
HWPI_Recy
MPI_Send
MPI_Wai

Figure 4.33: Part of the Gantt chart of the execution of the LU benchmark with 32 processes.
The upper part displays the actual execution while the lower is the simulation.

Such Gantt charts are difficult to align perfectly due to the size of the initial execution traces

90

and clock skew that requires a synchronization for the real trace. Real executions are also subject
to system noise that does not occur in simulation causing some small discrepancies related to the
computation time. This then prevents the observation of a perfect match. However, Figure [1.33]
clearly shows that despite the small time scale, the simulation correctly renders the general
communication pattern of this benchmark.

One approach to identify which aspect of the simulation, computation or communication,
is not accurately predicted is to fake a perfect simulation of the computation times. To do
this, when we acquire the time-independent traces in regular mode, we save the duration of
each compute action in addition of the volume of computed instructions. Then we replace the
number of instructions with the duration times the processing rate. Thus the simulated times of
the compute actions correspond exactly to the measured ones. Figure £.34] presents the results
of such a “perfect” simulation.

15 T T T
ClassB —®—

ClassC —o—
10 -]

Relative error on time (in \%)
o
K
&

~10 -

_15 | | |
8 16 32 64 128

Number of processes

Figure 4.34: Evolution w.r.t. the number of processes of the relative error between execution
and perfect simulation for the execution of the LU benchmark.

The maximum absolute relative error is 2.82%. This indicates that the network model
predicts the communication with good accuracy while the calibration of the computation part
could be improved. This is the cost of using a single processing rate for the whole application
while it depends on many factors such as cache misses, stalled cycles on any resource, etc. One
approach would be to use a probabilistic model based on the measurements of the instance used
for the calibration procedure but we are still looking for an appropriate solution.

The measured times of the compute actions include a small instrumentation overhead, then
the relative error for the “perfect” simulation can be positive wihtout any issue with the com-
munication model. However, the predictions for class B with 32 processes and class C with 128
processes are less accurate. A further analysis show that these instances handle two specific
message sizes. For class B, 32 processes there are message of 204,000 and 212,160 bytes and for
class C and 128 processes there are message sizes of 129,600 and 142,560 bytes. Thus we should
focus in a future work to study exactly the simulation prediction on a range of message sizes
from 129,000 to 215,000 bytes.

Another issue is that calibration for hierarchical networks is a complex procedure. The
instances with 64 processes use two cabinets with 8% of the communication occuring between

91

cabinets. With 128 processes it represents 22% of the communications. However, our network
calibration mainly performs the ping-pong tests within a single cabinet. Moreover 99% of the
exchanged messages are small, i.e., less than 65,536, and fall in the asynchronous category. Small
variations in the calibration may then have a great impact of the simulation accuracy. However,
the communication predictions remains pretty accurate for most of the instances.

Figure shows the relative error between the real execution and the simulated times for
the CG benchmark. We see a large error (close to 30%) with 128 processes while it remains
under 9% for the other instances. Then we have to determine if the source of this gap comes
from a bad estimation by the model or a problem during the actual execution. Our main suspect
was the actual execution.

T T T
ClassB —®&—

10 1= Class C —@— |
S
= 0$=
by
£
=
S _10 .
5]
=)
[#]
(0]
2
£ 20 .
[}
(a4

-30 -
I I I
8 16 32 64 128

Number of processes

Figure 4.35: Evolution w.r.t. the number of processes of the relative error between execution
and simulated times for the execution of the CG benchmark.

First experiments showed a relative error for class C with 128 processes of 56%. Then
we observed the communication pattern of the CG benchmark to understand better what was
happening. We extracted the communication pattern for a small part of CG benchmark which is
given in Figure This sample last from time 0.178 to time 0.187. The red links correspond
message sizes of 75,000 bytes and the blue ones of messages of 8 bytes. Thanks to the knowlegde
of this particular communication pattern we adapted the mapping of processes to minimize
communication across cabinets. The new mapping is the presented in Table It improved
the execution time of the benchmark and also reduced the relative error from 56% to 30%.

Cabinet id Nodes
0 1-28, 33-34, 65-66, 97-98
1 35-62
2 67-92
3 29-32,93-96,99-128

Table 4.1: Specific process mapping on nodes of the graphene cluster for the CG benchmark.

92

CG - Communication pattern, c-128

20 -

40

60

Ranks

80

100 -

120

0.178 0.179 0.18 0.181 0.182 0.183 0.184 0.185 0.186 0.187

Time (in sec.)

Figure 4.36: Communication pattern of a class C instance of CG for 128 processes.

To find the source of the unexpected inaccuracy for instances with 128 processes, we analyzed
the Gantt chart of the execution of a class B instance (Figurd4.37)).

0- il f|1(w 1‘." i e ?“| J_‘H‘H : ':-ﬁ_”}m.\‘ i
§i§+ | 33;35'% ?}.E’! ;!Eﬁiimfi !;!g : ,;;'-,{;'f . j,sm —g;‘lfﬂ'& . f@};%ﬁjzf ?,ﬂ-jmg e ;; |
!Jf‘ ?ﬁﬁ‘! ii}i' !i 1"‘5 A53!1; i i!i:!'-‘lil:;, 1 ';i'IL'.:-;lr' ! :“;i” “E”'z [:a“;;!u;(iu'. :.-;: ."J
Lol =l
- !&;;ﬁiigﬁém- e "(Jéiﬁ.f:.:f%ijﬂJig*.!ngée = gf.%{_;;ﬂiiﬂ.%ﬁ;f;@sw |-
i . f-s-"g??‘fiiﬁsévm:i;&%ﬁf%@ﬁ%‘?ﬁi;e;:}ﬁ%;.s;;ﬂ;;:’ mm =
i ’-'f'\-"ﬂ?{‘”'&fh‘ T — iR
AR HEELA F Rl it P”‘ 'ﬂhi‘tj“‘" iy
. ;_ =i
it Nl.u.uim Ll " i J -;’-J i
lhii”i’%;‘ﬂw |l“ “ﬁi ﬂ*}f””l‘u? '9 XH gsk 21% e ;ijiw t), Ix{ '\f‘}i i 111”‘,'.}%&%&‘1 M iﬂ 1
huM {'{lﬁur‘}é L’.h*l Hn‘“ {c' 2 ':ﬁ Feifl h"’]r “im r!(nm;{ ‘Mu’ gl M 7\5]

Figure 4.37: Two seconds Gantt-chart of the real execution of a class B instance of CG for 128
processes.

The execution time is 14.4 seconds while the simulated time is only of 9.9 seconds. We see two
outstanding zones of MPI_Send and MPI_Wait. Such operations typically take few microseconds
to less than a millisecond. Here they take 0.2 seconds. Our guess is that, due to a high congestion,
the switch drops packets and slows down one (or several) process to the point where it stops
sending until a timeout of .2 seconds is reached. Because of the communication pattern, blocking
one process impacts all the other processes. This phenomenon occurs 24 times leading to a delay
of 4.86 seconds. Without this bad behavior, the real execution would take 9.55 seconds, which

93

is extremely close to the corresponding simulated time. The same phenomenon was observed
for class C. This behavior of the interconnection network can be considered as a bug that needs
to be fixed in a production environment.

So we are able to predict the performance of MPI applications and indicate the reasons when
there are some performance issues. Our next step is to study how much time do we need to
simulate these applications.

4.4 Simulation Time

The time to replay a time-independent trace is directly related to the number of actions.
As mentioned in Section the traces for the EP and DT are relatively small, up to a few
hundreds of kilobytes, and are composed of a small number of actions, up to a few thousands
for DT. Consequently EP and DT traces for 128 processes can be replayed in less than 0.2
seconds. The large number of actions in the LU traces (see Tables and implies a
larger simulation time. Figure presents the evolution of the simulation time as the number
of processes increases for classes B and C instances of the LU benchmark. These timings were
obtained on one node of the bordereau cluster with our prototype simulator. We should mention
that this cluster is constituted by one cabinet, thus the format of the platform file is similar to
that detailed in Figure

400
350
2300
[=]
S
2 250
=
£ 200
E
2150
E
5 100
50
07 | |
8 16 32 64

Number of processes

Figure 4.38: Evolution of the trace replay time with the number of processes executing a LU
benchmark with the prototype simulator.

We see that the simulation time grows linearly with the number of processes. Moreover
it confirms the relation between simulation time and number of actions. The average time to
process with one million of actions is around 10 seconds.

The second version of our simulator was based on the SMPI layer which allowed us to save
some internal context switches. These improvements lead to faster simulations. Figure
shows the simulation times. These timings were obtained on a laptop with a 2.5GHz Intel i5-
3210M processor, 8 GiB of RAM and a Samsung SSD 830 hard disk. In this case we include
results with 128 nodes because the time-independent were acquired from graphene cluster. This
cluster is constituted by four cabinets and the format of the platform file is similar to the one

94

given in Figure £.3] This has to ne noted as more complicated network topologies and other
related features increase the simulation.

900 T T T 3
—®— (Class B

800 - —@— Class C N
700 - 1
600
500
400

300

Simulation time (in seconds)

200

100

0 I I
8 16 32 64 128

Number of processes

Figure 4.39: Evolution of the trace replay time with the number of processes executing a LU
benchmark with the simulator based on the SMPI layer.

Similarly, the simulation time grows linearly with the number of processes for the class B and
up to 64 processes for class C instances. The simulation time is more important for the C-128
instance, whose trace size is more than 1 GiB. The average time to process one million of actions
is around 8 seconds for instances with up to 64 processes. For 128 processes, the processing time
is a slightly higher, around 11 seconds per million of actions. These data obtained for small
and medium size instances allow us to estimate the simulation time from the size of the time-
independent trace. For instance, replaying the 1.45 TiB trace of a class E instance of the LU
benchmark executed with 16,384 processes would take around 8 days on a single laptop (provided
it has a large storage space). Indeed, such a huge trace contains roughly 70 billions of actions.
This simulation time may seem prohibitive but, as mentioned earlier, neither the trace format
nor the trace loading mechanism have been optimized for performance. Moreover, current efforts
in the SIMGrid project aim at enabling the distribution of a simulation of several compute nodes.
Our time-independent replay framework would be a good candidate to benefit of this capacity.
Traces could be distributed on several disks to allow for concurrent accesses and the time to
process the traces should be greatly reduced.

Finally, when we represent the real platform as accurate as it can be, such as in Figure
then the simulation time increases due to the simulation of finer details. This is the cost that
we have to pay to get even better simulation accuracy. Figure [£.40] presents the corresponding
simulation times.

Again the simulation time grows linearly with the number of processes for the class B and
up to 64 processes for class C instances. The average time to proceed with one million of
actions is 8.6 seconds for instances with up to 64 processes. With 128 processes, the processing
time is higher, around 13 seconds per million of actions. It should be noted that the time-
independent traces for this case are 0.5% larger than the previous ones as we did not apply
selective instrumentation, thus the traces correspond to the whole benchmark. The timings
were also obtained on a laptop with a 2.5GHz Intel i5-3210M processor, 8 GiB of RAM and a
Samsung SSD 830 hard disk.

95

T T T
1200 F —®— (Class B

—&— (lass C 3

1000

800 [~

600 -

400 -

Simulation time (in seconds)

200 -

0 I I
8 16 32 64 128

Number of processes

Figure 4.40: Evolution of the trace replay time with the number of processes executing a LU
benchmark with our SMPI simulator and calibrating all the network parameters.

4.5 Conclusion

In this chapter we presented all the aspects of our trace replay framework and its issues. We
explained how to declare to our simulator a platform file that represents the network topology of a
cluster. The calibration procedure was detailed and analyzed step-by-step to be easy for a reader
to understand and follow the same procedure. We also explained how to take into account the
cache memory of a processor with regard to application and the problem size. The implemented
simulators were analyzed in details and some examples were given to illustrate their capabilities.
Moreover we mentioned some cases for which well-known profiling tools can not really provide
enough data according to our requirements in comparison to the Minimal Instrumentation tool
presented in the previous Chapter. We showed that our trace replay tool is able to predict the
performance of MPI applications such as the EP, DT, LU, and CG benchmarks. The various
implemented simulators were analyzed to show the improvement that occurred thanks to the
applied modifications. We observed some performance issues and we identified the reasons that
cause them. For the LU benchmark we know that we should integrate another model for the
computation part to increase further the performance prediction accuracy. Moreover for the CG
benchmark we figured out an improved mapping approach to increase the performance and we
identified hardware issues related to high congestion and drop packets from the side of switch.
The performance prediction for most instances of the studied benchmarks is accurate and we
know which parts should be improved. Finally, we presented the simulation time which is the
time needed to execute a simulation. We discussed also that although the simulation time was
improved because of some modifications, in the case that we want to declare a more analytical
platform file to improve the accuracy then we pay this cost by increasing the simulation time.

96

Chapter 5

Conclusions and Perspectives

Massive parallel computer systems are necessary in many scientific fields. A lot of compu-
tational science applications are executed on clusters or supercomputers to provide results on
many different topics such as weather modeling, life sciences, etc. Moreover, researchers are
investigating various related fields where the behavior of parallel computer systems is studied
and new programming models to take into account the next generations of supercomputers are
developed. The difficulty of achieving a good scale during the execution of some parallel appli-
cations while we increase the number of the processors is known and depends on many factors.
Performance evaluation can provide an insight about the performance of an application and
indicate possible bottlenecks. However, supercomputers are not available to all the researchers.

The work presented in this Thesis focuses on the performance evaluation and prediction of
parallel applications. Simulation is a popular approach to obtain objective performance indica-
tors platforms that are not at one’s disposal. As presented in Chapter |1} there are numerous
issues that increase the difficulty of our task. Our purpose was to acquire time-independent
traces for an application and predict its performance through simulation. The prediction of the
performance with good accuracy was really challenging and we had to address many issues.

In order to clarify the context of the current work, in Chapter 2] we presented some necessary
concepts for our framework. Two micro-benchmarks were introduced, the OS Noise and SkaMP1.
We used the first one to measure the noise caused by the Operating System on Grid’5000
platform. The second one was used to measure the latency of the network and some other data
for the calibration of the communication. Moreover we mentioned the various benchmarks that
constitute the NAS Parallel Benchmarks suite as our main work is based on the benchmarks EP,
DT, LU and CG that belong to this suite. Three instrumentation methods, tracing, profiling
and statistical profiling were introduced with the PAPI interface for handling the values of the
hardware counters on the processors. We described also the advantages and disadvantages of the
instrumentation methods. Similarly we analyzed the three methods for assessing the performance
of applications on the resources, experiments, emulation, and simulation. Our simulator is built
on top of the SIMGrid simulation toolkit, thus we introduced further the SiMGrid layers.

Although all the available off-line simulators which simulate MPI applications use time-
stamp traces, we developed a different approach. In Chapter 3] we detailed the time-independent
trace acquisition framework. We proposed a new execution log format that is time independent.
Thus, the acquisition procedure of this trace is totally decoupled from its replay. Heterogeneous
and distributed platforms with processors that belong to the same processor family, e.g., 1386 or

97

amd64, can then be used to get traces without impacting the quality of the simulation which is
not possible with other tool. We defined the requirements for our framework and we evaluated
accordingly most of the well-known and open-source profiling tools. Our requirements were
decomposed to a score system to allow the evaluation of the tools and their easy comparison.
Moreover we have developed our own profiling tool which is more efficient than similar tools
for our framework. This tool is memory efficient, instruments only the necessary data and
it provides some internal information from the MPI profiling layer that can not be extracted
automatically from other tools. For the scientists that want to use some of the well-known
profiling tools such as TAU and Score-P, we have developed the corresponding tools to extract
the time-independent traces, however all the necessary information for some MPI collective
communications are not provided by all the tools. We identified issues with instrumentation time
overhead and a discrepancy of the measured number of instructions. We proposed a different
instrumentation method to decrease these issues and we compared with the initial one. The
issue with the extra measured amount of instructions was important because the computation
workload was close to the one of the instrumented application but we improved it. One more
important contribution of our framework is the option to use various execution modes. In this
way we can use even different hardware or a smaller platform to acquire the time-independent
traces and predict the performance of an application for a different platform. All the experiments
were carried out on Grid’5000 experimental testbed. We support open-science, thus we have
documented all of our work to be able for other scientists to build an appliance to acquire
time-independent traces on Grid’5000 experimental infrastructure. The acquisition framework
was evaluated with the various instrumentation methods and different clusters to show that
the overhead is acceptable considering that the time-independent traces can be used for many
different simulations. Finally we tested our framework for large-scale experiments and our tools
behave pretty efficient. We succeed in applying our framework on 778 compute nodes in 18
clusters at 9 geographically distant sites of the Grid’5000 experimental testbed.

When the time-independent traces are acquired, the next step is to replay them with our
off-line simulator to predict the performance of the corresponding application. For this task
we developed a simulator based on the SiMGrid simulation toolkit. Chapter [] presents the
time-independent trace replay framework. First of all we had to declare the topology of the
cluster under some specifications to be handled correctly from the simulator. The calibration
of the simulator is an important procedure. We presented one procedure for the computation
calibration based on weighted average of the computed instructions and another one for the
communication calibration which is based on a more complicated procedure with a piece-wise
linear model. We have described the implementation of a proposed network model that im-
proves on this situation within SMPI, and shown that SMPI-based simulations do a better job
of tracking real-world behavior than those implemented using competing simulation toolkits.
Afterwards we presented the incremental procedure of developing our off-line simulator with dif-
ferent simulation back-ends and we showed the improvements that occurred. We also identified
the reasons that the performance of some benchmarks such as LU and CG were not the expected
ones. We used a calibration method which is cache-aware and figured out some switch issues.
We have demonstrated that accurate modeling and performance prediction for a wide range
of parallel applications requires proper consideration of many aspects of underlying communi-
cation architecture, including the breakdown of collective communication into their component
point-to-point messages, the interconnect topology, and contention between competing messages
that are sent simultaneously over the same link. Our priority in this work was the validation of
the model at a small scale and for TCP over Ethernet networks. Such a tool would prove very
useful for efforts such as the European Mont-Blanc project [I13] [114], which aims to prototype
exascale platforms using low-power embedded processors interconnected by Ethernet.

98

Perspectives

The work of this Thesis can be the base for the next version of our framework. A new
computation model could be introduced to predict more accurate the performance as the power
rate of a real execution usually is not stable. Our framework can support more MPI calls
as both the simulator and our profiling tool can be easily extended and are available to the
potential users. Moreover the simulation of a real application is one of our priorities. A next
step will be to analyze its adequacy for simulating larger platforms when we can get access
to such large machines for experimental purposes. The study should then extend to other
kinds of interconnects (such as Infiniband) and more complicated topologies. One significant
advantage is that the our time-independent traces used for the current work can be simulated
with Infiniband network model. In general some techniques should be investigated to decrease
the trace sizes and simulation time as we intend to simulate large scale instances of applications
and we should avoid a huge simulation time specially compared to the real execution. In this case
the parallel simulation which is under investigation could help to speed up our framework. While
experimental data have been collected by hand for the present analysis, the need to collect more
traces to test against various platforms is a strong incentive to automate this task. Thus, one
future work will be to build a systematic validation/invalidation framework based on automatic
collection of traces.

A challenge would be to investigate our framework model with regard to multicore processors
and take into account the shared cache memory and all the related issues.

The proposed time-independent replay framework is freely distributed as part the SiMGrid
project under the LGPL license. It can be downloaded from http://simgrid.gforge.inria.
fr/download.html. Moreover, the process to acquire a time-independent is fully described
in [99).

99

http://simgrid.gforge.inria.fr/download.html
http://simgrid.gforge.inria.fr/download.html

Bibliography

1]

2]

3]

4]

[5]

(6]

7]

18]

19]

[10]

Krzystof Kurowski, Walter Back, Werner Dubitzky, Laszlo Gulyas, George Kampis, Mar-
iusz Mamonski, Gabor Szemes, and Martin Swain. Complex system simulations with
qoscosgrid. In Proceedings of the 9th International Conference on Computational Science:
Part I, ICCS ’09, pages 387-396, Berlin, Heidelberg, 2009. Springer-Verlag.

K. Kurowski, T. Piontek, P. Kopta, M. Mamoriski, and B. Bosak. Parallel large scale
simulations in the pl-grid environment. Computational Methods in Science and Technology,
Vol. spec. iss.:47-56, 2010.

Umakishore Ramachandran, H. Venkateswaran, Anand Sivasubramaniam, and Aman
Singla. Issues in understanding the scalability of parallel systems. In in: Proceedings
of the First International Workshop on Parallel Processing, pages 399-404, 1994.

Xu Liu, Jianfeng Zhan, Kunlin Zhan, Weisong Shi, Lin Yuan, Dan Meng, and Lei Wang.
Automatic performance debugging of spmd-style parallel programs. J. Parallel Distrib.
Comput., 71(7):925-937, July 2011.

Philipp Gschwandtner, Thomas Fahringer, and Radu Prodan. Performance analysis and
benchmarking of the intel scc. In Proceedings of the 2011 IEEE International Conference
on Cluster Computing, CLUSTER ’11, pages 139-149, Washington, DC, USA, 2011. IEEE
Computer Society.

Aleksey Pesterev, Nickolai Zeldovich, and Robert T. Morris. Locating cache performance
bottlenecks using data profiling. In Proceedings of the 5th European conference on Com-
puter systems, EuroSys "10, pages 335-348, New York, NY, USA, 2010. ACM.

Mark Roth, Micah J. Best, Craig Mustard, and Alexandra Fedorova. Deconstructing the
overhead in parallel applications. In IISWC, pages 59-68, 2012.

Hung-Hsun Su, M. Billingsley, and A.D. George. A generalized, distributed analysis system
for optimization of parallel applications. In Parallel Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, pages 1-8, 2009.

Jeff R. Hammond, Sriram Krishnamoorthy, Sameer Shende, Nichols A. Romero, and
Allen D. Malony. Performance characterization of global address space applications: a case
study with nwchem. Concurrency and Computation: Practice and Experience, 24(2):135—
154, 2012.

R. K. Jain. The Art of Computer Systems Performance Analysis: Techniques for Experi-
mental Design, Measurement, Simulation, and Modeling. Wiley, 1 edition, April 1991.

101

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook, and William E.
Weihl. Proteus: A high-performance parallel-architecture simulator. Technical Report
MIT/LCS/TR-516, MIT Laboratory for Computer Science, 1991.

Domenico Ferrari, Giuseppe Serazzi, and Alessandro Zeigner. Measurement and tuning of
computer systems. In Int. CMG Conference, pages 793-794, 1984.

Martin Schulz, Joshua A. Levine, Peer-Timo Bremer, Todd Gamblin, and Valerio Pascucci.
Interpreting performance data across intuitive domains. In ICPP, pages 206-215, 2011.

Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. The case of the missing super-
computer performance: Achieving optimal performance on the 8,192 processors of asci q.
In Proceedings of the 2003 ACM/IEEE conference on Supercomputing, SC ’03, pages 55—,
New York, NY, USA, 2003. ACM.

Martin Burtscher, Byoung-Do Kim, Jeff Diamond, John McCalpin, Lars Koesterke, and
James Browne. Perfexpert: An easy-to-use performance diagnosis tool for hpc applications.
In Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10, pages 1-11, Washington, DC, USA,
2010. IEEE Computer Society.

Olalekan Sopeju, Martin Burtscher, Ashay Rane, and James Browne. AutoSCOPE: Auto-
matic Suggestions for Code Optimizations using PerfExpert. In 2011 International Con-

ference on Parallel and Distributed Processing Techniques and Applications, pages 19-25,
July 2011.

H. Kotakemori, H. Hasegawa, and A. Nishida. Performance evaluation of a parallel iterative
method library using openmp. In High-Performance Computing in Asia-Pacific Region,
2005. Proceedings. Fighth International Conference on, pages 5 pp.—436, 2005.

Sameer Shende, Allen D. Malony, Alan Morris, Steven Parker, and J. Davison de St. Ger-
main. - performance evaluation of adaptive scientific applications using {TAU}. In Anil
Deane, Akin Ecer, James McDonough, Nobuyuki Satofuka, Gunther Brenner, David R.
Emerson, Jacques Periaux, and Damien Tromeur-Dervout, editors, Parallel Computational
Fluid Dynamics 2005, pages 421 — 428. Elsevier, Amsterdam, 2006.

Gigabit ethernet. In The 2001 IEEE International Symposium on Clircuits and Systems
(ISCAS). Tutorial Guide, pages 9.4.1-9.4.16, 2001.

G.F. Pfister. Aspects of the infiniband architecture. In Cluster Computing, 2001. Proceed-
ings. 2001 IEEE International Conference on, pages 369-371, 2001.

Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance, portable imple-
mentation of the mpi message passing interface standard. Parallel Computing, 22:789-828,
1996.

R. Frost. Mpich performance characteristics and considerations. In MPI Developer’s
Conference, 1996. Proceedings., Second, pages 199-202, 1996.

Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jef-
frey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine,
Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S. Woodall. Open
MPI: Goals, concept, and design of a next generation MPI implementation. In Proceed-
ings, 11th European PVM/MPI Users’ Group Meeting, pages 97-104, Budapest, Hungary,
September 2004.

102

[24]

[25]

[26]
[27]

28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm. Netgauge: A network performance
measurement framework. In Proceedings of High Performance Computing and Communi-
cations, HPCC’07, volume 4782, pages 659-671. Springer, Sep. 2007.

P Beckman, K Iskra, K Yoshii, S Coghlan, and A Nataraj. Benchmarking the effects
of operating system interference on extreme-scale parallel machines. Cluster Computing,
11(1):3-16, 2008.

Sequoia Benchmarks. https://asc.11lnl.gov/sequoia/benchmarks/.

Ralf Reussner, Peter Sanders, and Jesper Larsson Traff. SKaMPI: a Comprehensive Bench-
mark for Public Benchmarking of MPI. Scientific Programming, 10(1):55-65, 2002.

Piotr Luszczek, Jack J. Dongarra, David Koester, Rolf Rabenseifner, Bob Lucas,
Jeremy Kepner, John Mccalpin, David Bailey, and Daisuke Takahashi. Introduction
to the hpc challenge benchmark suite. Available at http://icl.cs.utk.edu/news_pub/
submissions/hpcc-challenge-intro.pdf} 2005.

The Top 500 List. http://www.top500.org,.

Jack Dongarra, Michael A. Heroux. Toward a new metric for ranking high perfor-
mance computing systems. Technical Report SAND2013-4744, UTK EECS and San-
dia National Labs, 2013. http://www.netlib.org/utk/people/JackDongarra/PAPERS/
HPCG-Benchmark-utk. pdf.

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, R. A. Fatoohi, P. O.
Frederickson, T. A. Lasinski, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The
nas parallel benchmarks. Technical report, The International Journal of Supercomputer
Applications, 1991.

Shirley Browne, Jack Dongarra, Nathan Garner, George Ho, and Philip Mucci. A Portable
Programming Interface for Performance Evaluation on Modern Processors. International
Journal of High Performance Computing Applications, 14(3):189-204, 2000.

Marc Abrams. Design of a measurement instrument for distributed systems. In SIGMET-
RICS, page 274, 1988.

Jason Gait. A debugger for concurrent programs. Software: Practice and Experience,
15(6):539-554, 1985.

P. A. Emrath, S. Chosh, and D. A. Padua. Event synchronization analysis for debugging
parallel programs. In Proceedings of the 1989 ACM/IEEE conference on Supercomputing,
Supercomputing '89, pages 580-588, New York, NY, USA, 1989. ACM.

Allen D. Malony, James W. Arendt, Ruth A. Aydt, Daniel A. Reed, Dominique Grabas,
and Brian K. Totty. An Integrated Performance Data Collection, Analysis, and Visualiza-
tion System. Technical Report TTR11, Department of Computer Science, Urbana, Illinois,
USA, March 1989.

S. Moore, D. Cronk, S. Shende, and A. Malony. Loop-level profiling and analysis of dod
applications using tau. In HPCMP Users Group Conference, 2006, pages 378-383, 2006.

Brian J. N. Wylie, Felix Wolf, Bernd Mohr, and Markus Geimer. Integrated runtime
measurement summarisation and selective event tracing for scalable parallel execution
performance diagnosis. In Proc. of the 8th International Workshop on State-of-the-Art in
Scientific and Parallel Computing (PARA), Umea, Sweden, June 2006, volume 4699 of
Lecture Notes in Computer Science, pages 460-469. Springer, 2007.

103

https://asc.llnl.gov/sequoia/benchmarks/
http://icl.cs.utk.edu/news_pub/submissions/hpcc-challenge-intro.pdf
http://icl.cs.utk.edu/news_pub/submissions/hpcc-challenge-intro.pdf
http://www.top500.org
http://www.netlib.org/utk/people/JackDongarra/PAPERS/HPCG-Benchmark-utk.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/HPCG-Benchmark-utk.pdf

[39]

[40]
[41]

[42]

[43]
[44]

[45]

[46]

147]

48]

[49]

[50]

[51]

F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. Primet, E. Jeannot, S. Lanteri,
J. Leduc, N. Melab, G. Mornet, R. Namyst, B. Quetier, and O. Richard. Grid’5000:
A large scale and highly reconfigurable grid experimental testbed. In Proceedings of the
6th IEEE/ACM International Workshop on Grid Computing, GRID ’05, pages 99-106,
Washington, DC, USA, 2005. IEEE Computer Society.

Grid’5000. http://www.grid5000.fr/.

Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric Desprez, Em-
manuel Jeannot, Emmanuel Jeanvoine, Adrien Lébre, David Margery, Nicolas Niclausse,
Lucas Nussbaum, Olivier Richard, Christian Pérez, Flavien Quesnel, Cyril Rohr, and Luc
Sarzyniec. Adding Virtualization Capabilities to Grid’5000. Rapport de recherche RR-
8026, INRIA, July 2012.

N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin, G. Mounie, P. Neyron, and
O. Richard. A batch scheduler with high level components. In Proceedings of the Fifth
IEEFE International Symposium on Cluster Computing and the Grid (CCGrid’05) - Volume
2 - Volume 02, CCGRID ’05, pages 776783, Washington, DC, USA, 2005. IEEE Computer
Society.

The OAR Project. http://oar.imag.fr/.

Emmanuel Jeanvoine, Luc Sarzyniec, and Lucas Nussbaum. Kadeploy3: Efficient and
Scalable Operating System Provisioning for HPC Clusters. Rapport de recherche RR-
8002, INRIA, June 2012.

Neelam Saboo, Arun Kumar Singla, Joshua Mostkoff Unger, and Laxmikant V. Kalé.
Emulating petaflops machines and blue gene. In Proceedings of the 15th International
Parallel & Distributed Processing Symposium, IPDPS 01, pages 195—, Washington, DC,
USA, 2001. IEEE Computer Society.

Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kosti¢, Jeff Chase, and
David Becker. Scalability and accuracy in a large-scale network emulator. SIGOPS Oper.
Syst. Rev., 36(S1):271-284, December 2002.

Kirk Webb, Mike Hibler, Robert Ricci, Austin Clements, and Jay Lepreau. Implementing
the emulab-planetlab portal: Experience and lessons learned. In In Workshop on Real,
Large Distributed Systems (WORLDS, 2004.

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold,
Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated experimental environment
for distributed systems and networks. In In Proc. of the Fifth Symposium on Operating
Systems Design and Implementation, pages 255-270, 2002.

Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike Wawr-
zoniak, and Mic Bowman. Planetlab: an overlay testbed for broad-coverage services.
SIGCOMM Comput. Commun. Rev., 33(3):3-12, July 2003.

Rodrigo N. Calheiros, Marco Aurélio Stelmar Netto, César A. F. De Rose, and Rajku-
mar Buyya. Emusim: an integrated emulation and simulation environment for modeling,
evaluation, and validation of performance of cloud computing applications. Softw., Pract.
Ezper., 43(5):595-612, 2013.

21st Furomicro International Conference on Parallel, Distributed, and Network-Based Pro-
cessing, PDP 2013, Belfast, United Kingdom, February 27 - March 1, 2013. IEEE Com-
puter Society, 2013.

104

http://www.grid5000.fr/
http://oar.imag.fr/

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version
3.0, Sep. 2012. Chapter author for Collective Communication, Process Topologies, and
One Sided Communications.

Phillip Dickens, Philip Heidelberger, and David Nicol. Parallelized Direct Execution Sim-
ulation of Message-Passing Parallel Programs. IFEFE Transactions on Parallel and Dis-
tributed Systems, 7(10):1090-1105, 1996.

Rajive Bagrodia, Ewa Deelman, and Thomas Phan. Parallel Simulation of Large-Scale
Parallel Applications. International Journal of High Performance Computing and Appli-
cations, 15(1):3-12, 2001.

Allan Snavely, Laura Carrington, Nicole Wolter, Jests Labarta, Rosa Badia, and Avi
Purkayastha. A Framework for Application Performance Modeling and Prediction. In Proc.
of the ACM/IEEE Conference on Supercomputing (SC’02), Baltimore, MA, November
2002.

Gengbin Zheng, Gunavardhan Kakulapati, and Laxmikant Kale. BigSim: A Parallel Sim-
ulator for Performance Prediction of Extremely Large Parallel Machines. In Proc. of the
18th International Parallel and Distributed Processing Symposium, Santa Fe, NM, April
2004.

Rolf Riesen. A Hybrid MPI Simulator. In Proc. of the IEEE International Conference on
Cluster Computing, Barcelona, Spain, September 2006.

Edgar Ledn, Rolf Riesen, and Arthur Maccabe. Instruction-Level Simulation of a Cluster
at Scale. In Proc. of the International Conference for High Performance Computing and
Communications, Portland, OR, November 2009.

Brad Penoff, Alan Wagner, Michael Tiixen, and Irene Riingeler. MPI-NetSim: A network
simulation module for MPI. In Proc. of the 15th International Conference on Parallel and
Distributed Systems (ICPADS), Shenzen, China, December 2009.

Torsten Hoefler, Christian Siebert, and Andrew Lumsdaine. LogGOPSim - Simulating
Large-Scale Applications in the LogGOPS Model. In Proc. of the ACM Workshop on
Large-Scale System and Application Performance, pages 597604, Chicago, IL, June 2010.

Mustafa Tikir, Michael Laurenzano, Laura Carrington, and Allan Snavely. PSINS: An
Open Source Event Tracer and Execution Simulator for MPI Applications. In Proc. of
the 15th International EuroPar Conference, volume 5704 of LNCS, pages 135-148, Delft,
August 2009.

Alberto Nunez, Javier Fernandez, José-Daniel Garcia, Felix Garcia, and Jestis Carretero.
New Techniques for Simulating High Performance MPI Applications on Large Storage
Networks. Journal of Supercomputing, 51(1):40-57, 2010.

J. Zhai, W. Chen, and W. Zheng. PHANTOM: Predicting Performance of Parallel Ap-
plications on Large-Scale Parallel Machines Using a Single Node. In Proc. of the 15th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
305-314, January 2010.

Marc-André Hermanns, Markus Geimer, Felix Wolf, and Brian Wylie. Verifying Causality
between Distant Performance Phenomena in Large-Scale MPI Applications. In Proc. of
the 17th Euromicro International Conference on Parallel, Distributed and Network-based
Processing, pages 78-84, Weimar, Germany, February 2009.

105

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]
73]

[74]

[75]
[76]

[77]

(78]

[79]

V. S. Adve, R. Bagrodia, E. Deelman, and R. Sakellariou. Compiler-Optimized Simulation
of Large-Scale Applications on High Performance Architectures. Journal of Parallel and
Distributed Computing, 62(3):393-426, 2002.

Pierre-Nicolas Clauss, Mark Stillwell, Stéphane Genaud, Frédéric Suter, Henri Casanova,
and Martin Quinson. Single Node On-Line Simulation of MPI Applications with SMPI.
In Proc. of the 25th IEEE International Parallel and Distributed Processing Symposium
(IPDPS), Anchorage, AK, May 2011.

Sundeep Prakash, Ewa Deelman, and Rajive Bagrodia. Asynchronous Parallel Simulation
of Parallel Programs. IEEE Transactions on Software Engineering, 26(5):385-400, 2000.

Gengbin Zheng, Terry Wilmarth, Praveen Jagadishprasad, and Laxmikant Kalé.
Simulation-Based Performance Prediction for Large Parallel Machines. International Jour-
nal of Parallel Programming, 33(2-3):183-207, 2005.

Rosa Badia, Jesiis Labarta, Judit Giménez, and Fransesc Escalé. Dimemas: Predicting
MPI applications behavior in Grid environments. In Proc. of the Workshop on Grid Ap-
plications and Programming Tools, 2003.

Henri Casanova, Arnaud Legrand, and Martin Quinson. SimGrid: a Generic Framework
for Large-Scale Distributed Experiments. In Proceedings of the 10th IEEFE International
Conference on Computer Modeling and Simulation, March 2008.

Pedro Velho and Arnaud Legrand. Accuracy study and improvement of network sim-
ulation in the simgrid framework. In Proceedings of the 2nd International Conference
on Simulation Tools and Techniques, Simutools ’09, pages 13:1-13:10, ICST, Brussels,
Belgium, Belgium, 2009. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering).

D. Kondo. Simboinc. http://simboinc.gforge.inria.fr.

T. Hoefler, T. Schneider, and A. Lumsdaine. Accurately Measuring Overhead, Com-
munication Time and Progression of Blocking and Nonblocking Collective Operations
at Massive Scale. International Journal of Parallel, Emergent and Distributed Systems,
25(4):241-258, Jul. 2010.

Frédéric Desprez, George S. Markomanolis, and Frédéric Suter. Evaluation of Profiling
Tools for the Acquisition of Time Independent Traces. Rapport technique, July 2013.

PerfBench. http://icl.cs.utk.edu/papi/custom/index.html?1id=51&s1id=71.

Rick Kufrin. Perfsuite: An Accessible, Open Source Performance Analysis Environment
for Linux. In Proceedings of the 6th International Conference on Linux Clusters: The HPC
Revolution 2005 (LCI-05), Chapel Hill, NC, April 2005.

Jeffrey Vetter and Michael Mccracken. Statistical Scalability Analysis of Communication
Operations in Distributed Applications. In Proccedings of the 2001 ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPOPP’01), pages 123-132,
Snowbird, UT, Jun 2001.

Anthony Chan, William Gropp, and Ewing Lusk. User’s Guide for MPE: Extensions
for MPI Programs. Argonne National Laboratory, Mathematics and Computer Science
Division, 1998.

Anthony Chan, William Gropp, and Ewing Lusk. An Efficient Format for Nearly Constant-
Time Access to Arbitrary Time Intervals in Large Trace Files. Scientific Programming,
16(2-3):155-165, 2008.

106

http://simboinc.gforge.inria.fr
http://icl.cs.utk.edu/papi/custom/index.html?lid=51&slid=71

[80]

[81]
[82]

[83]

[84]

[85]

[36]

[87]

[33]
[39]
[90]

[91]

192]

193]
[94]

Nicholas J. Wright, Shava Smallen, Catherine Mills Olschanowsky, Jim Hayes, and Allan
Snavely. Measuring and understanding variation in benchmark performance. HPCMP
Users Group Conference, 0:438—-443, 2009.

Extrae. http://www.bsc.es/ssl/apps/performanceTools/.

Markus Geimer, Felix Wolf, Brian Wylie, and Bernd Mohr. A Scalable Tool Architec-
ture for Diagnosing Wait States in Massively Parallel Applications. Parallel Computing,
35(7):375-388, 2009.

Sameer Shende and Allen Malony. The Tau Parallel Performance System. International
Journal of High Performance Computing Applications, 20(2):287-311, 2006.

Andreas Kniipfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Hol-
ger Mickler, Matthias Miiller, and Wolfgang Nagel. The Vampir Performance Analysis
Tool-Set. In Proceedings of the 2nd International Workshop on Parallel Tools for High
Performance Computing, pages 139-155, Stuttgart, Germany, July 2008.

Matthias S. Miiller, Andreas Kniipfer, Matthias Jurenz, Matthias Lieber, Holger Brunst,
Hartmut Mix, Wolfgang E. Nagel, C. Bischof, M. Biicker, P. Gibbon, G. R. Joubert,
B. Mohr, F. Peters (eds, Matthias S. Miiller, Andreas Kniipfer, Matthias Jurenz, Matthias
Lieber, Holger Brunst, Hartmut Mix, and Wolfgang E. Nagel. Developing scalable appli-
cations with vampir.

Dieter an Mey, Scott Biersdorff, Christian Bischof, Kai Diethelm, Dominic Eschweiler,
Michael Gerndt, Andreas Kniipfer, Daniel Lorenz, Allen D. Malony, Wolfgang E. Nagel,
Yury Oleynik, Christian Rossel, Pavel Saviankou, Dirk Schmidl, Sameer S. Shende, Michael
Wagner, Bert Wesarg, and Felix Wolf. Score-P—A unified performance measurement system
for petascale applications. In Proc. of the CiHPC: Competence in High Performance
Computing, HPC' Status Konferenz der Gauf-Allianz e. V., Schwetzingen, Germany, pages
1-12. Gaufs-Allianz, Springer, June 2010. (to appear).

Mikael Pettersson. Perfctr: the Linux Performance Monitoring Counters Driver. http:
//user.it.uu.se/ "mikpe/linux/perfctr/2.6/.

Perfmon2. http://perfmon2.sourceforge.net/.
Scalasca. http://www.scalasca.org.

Performance Research Lab. University of oregon: Tau reference guide, chapter tau
instrumentaton options, http://www.cs.uoregon.edu/research/tau/docs/newguide/
bk03ch02.html.

Performance Research Lab. University of oregon: Tau user guide, chapter selectively
profiling an application, http://www.cs.uoregon.edu/research/tau/docs/newguide/
ch03s03.html.

Markus Geimer, Felix Wolf, Andreas Kniipfer, Bernd Mohr, and Brian J. N. Wylie. A
parallel trace-data interface for scalable performance analysis. In Proceedings of the 8th
international conference on Applied parallel computing: state of the art in scientific com-
puting, PARA’06, pages 398-408, Berlin, Heidelberg, 2007. Springer-Verlag.

Tuning and Analysis Utilities. http://www.cs.uoregon.edu/research/tau/home. phpl

Performance Research Lab. TAU User Guide, chapter Tracing, TAU Trace Format
Reader Library. University of Oregon. http://www.cs.uoregon.edu/research/tau/
docs/newguide/ch06s02.html.

107

http://www.bsc.es/ssl/apps/performanceTools/
http://user.it.uu.se/~mikpe/linux/perfctr/2.6/
http://user.it.uu.se/~mikpe/linux/perfctr/2.6/
http://perfmon2.sourceforge.net/
http://www.scalasca.org
http://www.cs.uoregon.edu/research/tau/docs/newguide/bk03ch02.html
http://www.cs.uoregon.edu/research/tau/docs/newguide/bk03ch02.html
http://www.cs.uoregon.edu/research/tau/docs/newguide/ch03s03.html
http://www.cs.uoregon.edu/research/tau/docs/newguide/ch03s03.html
http://www.cs.uoregon.edu/research/tau/home.php
http://www.cs.uoregon.edu/research/tau/docs/newguide/ch06s02.html
http://www.cs.uoregon.edu/research/tau/docs/newguide/ch06s02.html

[95]
[96]

197]

98]

[99]

[100]

[101]

102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Score-P. http://www.score-p.org.

Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Kniipfer, Wolfgang E.
Nagel, and Felix Wolf. Open trace format 2 - the next generation of scalable trace formats
and support libraries. In Proc. of the Intl. Conference on Parallel Computing (ParCo),
Ghent, Belgium, 2011. (to appear).

F. Wolf and B. Mohr. EPILOG binary trace-data format. Technical report // Zentralin-
stitut fiir Angewandte Mathematik, Forschungszentrum Jiilich. FZJ-ZAM, 2004.

Benoit Claudel, Guillaume Huard, and Olivier Richard. Taktuk, adaptive deployment
of remote executions. In Proceedings of the 18th ACM international symposium on High
performance distributed computing, HPDC 09, pages 91-100, New York, NY, USA, 2009.
ACM.

George Markomanolis and Frédéric Suter. Time-Independent Trace Acquisition Framework
— A Grid’5000 How-to. Rapport Technique RT-0407, INRIA, May 2011. GRID5000.

OTF2 Reading Interface. http://wwwpub.zih.tu-dresden.de/"silctest/otf2/user/
current/html/usage_reading_page.htmll

Frédéric Desprez, George S. Markomanolis, Martin Quinson, and Frédéric Suter. Assessing
the Performance of MPI Applications Through Time-Independent Trace Replay. In Proc.
of the 2nd International Workshop on Parallel Software Tools and Tool Infrastructures
(PSTI), pages 467476, Taipei, Taiwan, September 2011.

Michael Noeth, Frank Mueller, Martin Schulz, and Bronis R. de Supinski. Scalable Com-
pression and Replay of Communication Traces in Massively Parallel Environments. In Pro-
ceedings of the 21th International Parallel and Distributed Processing Symposium (IPDPS
2007), Long Beach, CA, March 2007.

Technical specification of the network interconnect in the bordereau cluster of grid’5000.
https://www.grid5000.fr/mediawiki/index.php/Bordeaux:Network.

Emmanuel Jeannot. Improving Middleware Performance with AdOC: An Adaptive Online
Compression Library for Data Transfer. In Proc. of the 19th International Parallel and
Distributed Processing Symposium (IPDPS, Denver, CO, April 2005.

Jacques Chassin De Kergommeaux and Benhur De Oliveira Stein. Pajé, an Extensible
and Interactive and Scalable Environment for Visualizing Parallel Program Executions.
Rapport de recherche RR-3919, INRIA, 2000.

Technical specification of the network interconnect in the graphene cluster of grid’5000.
https://www.grid5000.fr/mediawiki/index.php/Nancy:Network.

Silas De Munck, Kurt Vanmechelen, and Jan Broeckhove. Improving the scalability of sim-
grid using dynamic routing. In Proceedings of the 9th International Conference on Com-
putational Science: Part I, ICCS 09, pages 406415, Berlin, Heidelberg, 2009. Springer-
Verlag.

L. Bobelin, A. Legrand, D.A.G. Marquez, P. Navarro, M. Quinson, F. Suter, and C. Thiery.
Scalable multi-purpose network representation for large scale distributed system simula-
tion. In Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM Interna-
tional Symposium on, pages 220-227, 2012.

Paul Bedaride, Stéphane Genaud, Augustin Degomme, Arnaud Legrand, George Marko-
manolis, Martin Quinson, Lee Stillwell, Mark, Frédéric Suter, and Brice Videau. Improving

108

http://www.score-p.org
http://wwwpub.zih.tu-dresden.de/~silctest/otf2/user/current/html/usage_reading_page.html
http://wwwpub.zih.tu-dresden.de/~silctest/otf2/user/current/html/usage_reading_page.html
https://www.grid5000.fr/mediawiki/index.php/Bordeaux:Network
https://www.grid5000.fr/mediawiki/index.php/Nancy:Network

[110]

[111]

112]

[113]
[114]

Simulations of MPI Applications Using A Hybrid Network Model with Topology and Con-
tention Support. Rapport de recherche RR-8300, INRIA, May 2013.

Pedro Velho, Lucas Schnorr, Henri Casanova, and Arnaud Legrand. On the Validity of
Flow-level TCP Network Models for Grid and Cloud Simulations. ACM Transactions on
Modeling and Computer Simulation (TOMACS) — Under revision, 2013.

How to instantiate the parameters of the SMPI model. http://mescal.imag.fr/membres/
arnaud.legrand/research/smpi/smpi_loggps.php.

Frederic Desprez, George S. Markomanolis, and Frédéric Suter. Improving the accuracy
and efficiency of time-independent trace replay. In SC' Workshops, 2012.

The mont-blanc project. http://www.montblanc-project.eu.

Nikola Rajovic, Nikola Puzovic, Lluis Vilanova, Carlos Villavieja, and Alex Ramirez. The
low-power architecture approach towards exascale computing. In Proceedings of the second
workshop on Scalable algorithms for large-scale systems, ScalA ’11. ACM, 2011.

109

http://mescal.imag.fr/membres/arnaud.legrand/research/smpi/smpi_loggps.php
http://mescal.imag.fr/membres/arnaud.legrand/research/smpi/smpi_loggps.php
http://www.montblanc-project.eu

	Contents
	Introduction
	Motivation
	Issues on Performance Prediction and Evaluation of Parallel Applications
	Contributions
	Organization of the Document

	Background on Performance Evaluation
	Evaluating the Performance of Resources
	Evaluating the Performance of Applications
	Assessing the Performance of Applications on Resources

	Time-Independent Trace Acquisition Framework
	Instrumenting an Application
	Evaluation of Instrumentation Methods
	Acquisition of Time-Independent Traces
	Conclusion

	Time-Independent Trace Replay
	Realistic Platform Descriptions
	Simulated Trace Replay
	Accuracy of Simulation Results
	Simulation Time
	Conclusion

	Conclusions and Perspectives
	Bibliography

