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We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started

And know the place for the first time.

T.S. Eliot — “Little Gidding” (1922)
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Introduction

In recent years, the field of ultracold quantum gases has rapidly expanded. One
of the reasons of this growth is the fact that experiments in the field have the
ability to observe quantum correlations without them being washed out by the
disturbances caused by thermal fluctuations. These quantum correlations arise as
soon as temperatures close to the absolute zero are reached. When a dilute gas is
cooled to these temperatures, the wavefunction of an atom starts to overlap with
the wavefunctions of neighboring atoms. At this point, the system can no longer be
described in terms of individual particles and a formulation in terms of many-body
states is required [1].

A many-body state has to obey particle exchange statistics. In a 3 dimensional
(3d) world, Nature dictates the existence of two types of particles, which behave
differently under particle exchange. These particles are distinguished by a property
called spin. On the one hand, there are bosons with integer spin, on the other
hand fermions with half-integer spin. Bosons preferably occupy the same quantum
state (this behavior is called bunching or bosonic amplification). For fermions,
the occupation of a quantum state by more than one particle is forbidden. This
phenomenon is called Pauli blocking or anti-bunching [2]. These occupation effects
are of purely statistical nature and interactions do not play any role.

Quantum effects due to particle exchange statistics become prominent at low
temperatures, when the thermal deBroglie wavelength Ay, = h/v/2mmkgT becomes
of the order of the interparticle distance /=n"1/3, where n is the density, h is
Planck's constant, kg is Boltzmann's constant, m is the mass of a particle and T
the temperature of the system.

In dilute ultracold gases, typical densities are in the range of 10'? to 10%*® cm~3,
which implies a typical interparticle distance of 0.1 to 1 um. To have a deBroglie
wavelength comparable to the interparticle distance, the system has to be extremely
cold. The advancement of laser [3] and evaporative [4] cooling techniques led to the
observation of quantum effects in the 10 to 100 nK temperature range. In 1995,
Bose-Einstein condensation (BEC) in 8Rb [5] and 2®Na [6] was observed. BEC
was predicted by S. N. Bose and A. Einstein in 1924 [7, 8]. It is a form of bunching,
where a majority of the atoms occupy the same external state. The advancement

XI



xii INTRODUCTION

of cooling techniques in bosonic systems also advanced the cooling of fermionic
gases. This allowed for the observation of the inset of quantum degeneracy in a
fermionic system in 1999 in *°K [9] and shortly afterwards also in °Li [10, 11].

During my PhD at ENS from december 2010 to december 2013, | worked on
a system of ultracold bosonic “Li with tunable interactions. In the beginning,
| participated in the measurements of the Lee-Huang-Young corrections due to
increasing two-particle interactions in a BEC. | will not discuss this in detail in
this manuscript, however for the interested reader | have included the paper in
Appendix B.1). The bulk of this thesis is dedicated to the study of the Bose gas with
resonant two-particle interactions. The lifetime of such a gas is limited by three-
particle recombination, which we analyze both experimentally and theoretically in
this manuscript. Finally, | have also worked on the implementation of a new laser
cooling technique, which efficiently cools alkaline atoms below the standard Doppler
limit. This topic will not be covered here and for more information the reader is
revered to the paper in Appendix B.3.

Quantum Many-Body Systems

Due to their complexity, commonly found quantum many-body systems are usually
difficult to study. For example, in High-T. superconductors, the electron gas is
submerged in a complex lattice structure, forcing the electrons to occupy com-
plex orbits [12]. Furthermore, the description of the movement of conductance
electrons is complicated by impurities. In special cases, impurities can even cause
localization of the wavefunction of the electrons. This phenomenon is called Ander-
son localization [13]. Another striking example of a hard-to-study quantum system
is neutron matter. In this system it is difficult to directly probe interesting observ-
ables. It is proposed that the system is described by a Hamiltonian with short-range
interactions [14], which facilitates the quantum simulation of the problem with a
well controlled quantum gas.

Understanding and probing the detailed properties of the many-body quantum
state in these situations is difficult. Using well-controlled environments to simulate
these systems will help to understand the properties. This is where ultracold dilute
systems come into play, because these systems have quantum correlations together
with an unprecedented degree of control over the system parameters. In quantum
gases, the density of the system can be well controlled [15]. Lasers can be employed
to trap a gas [16], and phase imprinting on these lasers allows to create, among
others, flat-box potentials [17, 18] or tightly confining 2d geometries [19]. A
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retroreflected laser beam has a standing wave intensity pattern that can be used
as a periodic potential that mimics crystal lattices [20]. A major milestone has
been the recent advancement of single site imaging [21, 22] and addressing [23] of
atoms in optical lattices.

In recent years, several interesting systems with quantum correlations have been
studied. The bosonic superfluid-to-Mott-insulator transition [20] was observed in
an optical lattice with ultracold atoms [24]. Similarly, the fermionic equivalent
[25] was studied with fermions in optical lattices. Lattices were also used to sim-
ulate the classic Ising model in frustrated systems [26]. Furthermore, the phase
transition to a quantum anti-ferromagnetic state was simulated using a single-site
imaging system [27]. Additionally, short-range quantum magnetic spin-correlations
in dimerized and anisotropic systems have been observed [28].

The control of the dimensionality opens the opportunity to study low dimen-
sional systems. In a 2d atomic system, the transition from a superfluid to a nor-
mal fluid has been observed through the proliferation of vortex-pairs of oppositely
rotating vortices above the transition temperature T.. This transition is the so-
called Berezinskii-Kosterlitz-Thouless (BKT) phase transition, which was predicted
in 1972 [29, 30]. In 2d, superfluidity occurs with no long-range order, as in the case
of BEC [31]. The BKT phase transition happens when the 2d phase-space-density
(PSD) reaches the value n\3, ~4. It was observed for the first time in quantum
gases, using the interference of several 2d clouds to probe for coherence and vor-
tices [32]. Afterwards, a direct superfluid signature was seen while stirring an object
in a 2d quantum gas [33]. A 1d gas is an exceptional system that can be described
with a powerful theoretical many-body method (Density Matrix Renormalization
Group (DMRG)) [34]. The Tonk-Girardeau gas, as an example, has been observed
[35, 36] and the process of thermalization of a 1d system has been studied in [37].

The problem of a charged particle in a magnetic field is described by Quantum
Hall physics (QHP) [38, 39]. The energy spectrum of these states is known as the
Hofstadter Butterfly [40].

Neutral atoms in rotating systems can be used to simulate charged particles in
a magnetic field [41-45]. The Coriolis force Fc is mathematically analog to the
magnetic Lorentz force F_

Fc=-2m(Q2xv) <+— F.=—q(Bxv).

The Hamiltonian of a charged particle, with charge g and velocity v, in a magnetic
field B can thus be projected onto the Hamiltonian of a neutral particle, with mass
m and velocity v, in a rotating frame with angular momentum .
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QHP can also be simulated with the use of artificial gauge fields, which arise from
the motion of a neutral particle in a properly designed laser field (see [46] for an
extensive review). Quantum gases evolving in gauge fields are an ideal simulator,
because they have the possibility of simulating extremely strong magnetic fields
and reaching interesting regimes with strong interaction between the particles.

In this work, we will use another powerful tool for tuning the parameters of
ultracold atomic systems: Feshbach resonances [47, 48].

Quantum Gases with Feshbach Resonances

By employing a Feshbach resonance, the inter-particle scattering properties can
be tuned using a magnetic field [49]. A Feshbach resonance appears, when a
weakly-bound dimer state approaches the energy of the scattering threshold of the
two-particle system [47, 50]. A magnetic field can be used to change the energy
of this weakly-bound state, which changes the two-particle scattering properties
through the scattering length a. Around a Feshbach resonance, the scattering
length can be tuned from —oo to +o00. On the negative-a side, the interaction
between the two-particles is attractive and on the positive-a side repulsive.

Feshbach resonances in dilute gases were first considered in 1976 in the context
of hydrogen [51] and first observed in hydrogen in 1986 [52]. The first Feshbach
resonances in ultracold alkali gases were observed in 1998 in 2*Na [53] and ®Rb
[54]. In some atomic species, tuning of the interactions using Feshbach resonances
is required to obtain BEC at all, e.g. ®Rb [55], 133Cs [56, 57] and **K [58] or to
obtain large stable BECs, e.g. "Li [59-61].

The observation of Feshbach resonances led to the creation of Feshbach molecules
of ®Rb [62] and *3Cs [63, 64]. As well as composite bosonic molecules of °Li and
40K. These composite molecules turned out to be long-lived and opened up the pos-
sibility to study molecular condensates [65—68]. These Feshbach molecules can be
brought to more deeply bound states using techniques like stimulated Raman adia-
batic passage (STIRAP) [69, 70]. STIRAP enabled the formation of ground-state
molecule of 8’Rb, [71] and *°K-8"Rb [72].

Quantum Simulation of the BCS-BEC Crossover

The carriers of electric current in superconducting materials are pairs of electrons,
with weakly attractive interactions. These pairs form Cooper pairs [73], which lie
at the basis of a theory developed by Bardeen, Cooper and Schieffer (BCS) [74].
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BEC and BCS initially seemed like completely different phenomena. Eagles and
Legett [75, 76], however, noticed that the BCS wavefunction also describes a Bose-
Einstein condensate of tightly bound pairs. The transition between these regimes
was termed the BEC-BCS crossover. The phase diagram around the crossover
was first predicted by P. Noziéres and S. Schmitt-Rink (NSR), who calculated the
critical temperature for the normal-to-superfluid phase transition as a function of
the interaction strength [77].

In a system of neutral fermions around a Feshbach resonance the scattering
length can be arbitrarily tuned and fermions will either form Cooper pairs or bound
molecules. With a Feshbach resonance in a system of fermions the interaction
could, for the first time, be smoothly tuned across the BEC-BCS crossover [78, 79].

In recent years, the simulator system has been used to observe several interesting
phenomena. Collective oscillation modes in a pair condensate around the BEC-BCS
crossover were first observed by [80]. Afterwards, the frequency of these modes
[81] and the effect of strong interactions [82] were characterized in the crossover.
The superfluid pairing gap, which determines the energy needed to break up the
fermionic pairs, across the crossover was measured using RF-spectroscopy [83].
The superfluidity of fermionic systems around the crossover was probed by observ-
ing vortices, while rotating the system [45]. More recently, the thermodynamic
equation of state was measured across the crossover for °Li in spin-polarized and
unpolarized systems as well as for varying temperature [84-87]. The results were
compared to Quantum Monte Carlo calculations [88]*.

State of the Art: The Resonant Bose gas

Depending on the strength of the atom-atom interactions bosonic systems can be
classified into several regimes. The zero-temperature Bose gas with no interactions
is a purely statistical form of BEC. Increasing the interactions increases the many-
body effects [89]. For weak interactions, the diluteness parameter na® vanishes
(na® < 1) and a mean-field approximation describes the system remarkably well.
The wavefunction in the mean-field approximation is given by the Gross-Pitaevskii
Equation [90, 91], in which the quantum many-body wavefunction is simply a prod-
uct state of N identical wavefunctions.

The first-order correction to mean-field theory is the Lee-Huang-Yang (LHY)
correction, which was derived in 1957 [92]. The correction is due to interactions

LAs implied by the title of the paper “Feynman diagrams versus Fermi-gas Feynman emulator”, a
direct comparison of classical simulation versus quantum simulation was made.
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and quantum-fluctuations and induces a reduction of the condensate fraction. For
weak interactions (n|al® < 1), the systems ground state energy E (per volume V)
Is given by the expansion

E gn? 128
A RV B
Vo o2 <+15\/% nat )

where g=4mh?a/m is the coupling constant for particles with mass m. The first
term is the mean-field contribution to the energy. The term proportional to v/na3
is the LHY correction. The LHY correction to the excitation spectrum of a cloud
was first seen in bosonic 8Rb using Bragg spectroscopy [93]. The correction was
also observed through the modification of the frequency of collective oscillations
with varying interactions in molecules of °Li on the BEC side of the resonance
[82]. These molecules were also used to probe the corrections of the in situ density
profile [94]. A direct measure of the LHY correction in the equation of state was
measured in [85], also using bosonic molecules of °Li. In atomic Bose systems, the
LHY correction was measured through the equation of state in “Li [95], and using
Bragg spectroscopy to determine the LHY correction in Tan's contact parameter
[96]. In Figure 0.1, the introduction of interactions into the zero-temperature Bose
gas corresponds to a path on the x-axis (o< 1/(n|al®)) going from +oo towards 0.

In this thesis, we take a different approach. We start with a gas with unitary
interaction (a— oo) and cool the system towards quantum degeneracy (see the
arrow along the y-axis (oc 1/(nX3)) in Figure 0.1). Interactions will start to play an
important role when we approach the onset of quantum degeneracy. The equation
of state in the high temperature limit is described by the virial expansion for the
pressure P (see for example [97])

1 =~
P:WZbkekﬁu,

th =1

where Bk is the k-th virial coefficient described by the k-particle problem and
B=1/(ksT). The term €P* is the fugacity and is used as a small parameter, be-
cause in the high-temperature limit, kg T > . In the case of a Boltzmann gas, all
terms except for the first vanish, which vields b; = 1, resulting in the ideal gas law.
Using the two-particle problem, the theoretical prediction of b, = 9\/§/8 ~1.59 can
be found (see for example [98]). Recently, bs was predicted analytically using the
three-particle problem [99].

The hypothetical unitary Bose gas is a system with unitary interactions at zero
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1 la| ~ A
n)\gh Thermal
""""""""""""""""""""""" BEC
1
n|al3
Unitary? LHY GP Ideal BEC

Figure 0.1.: The hypothetical phase diagram of a Bose gas with varying interactions,
n|a|?, and varying temperature, nAf’h. The dotted line shows the critical tem-
perature. The darkness of red indicates the strength of the interactions. The
blue arrow parallel to the x-axis indicates the research on zero-temperature
BECs with increasing interactions. The blue arrow parallel to the y-axis is
the different approach that we will use in this thesis. In this approach, we
will start with a gas with resonant interactions and lower the temperature.

temperature. There is a prediction that the unitary Bose gas is described by the
fermionic equation of state [100], with the only length scale being the interparticle
distance, hence the chemical potential w is given by

w = &EF,

where Eg  n?/3 is the Fermi energy and € is the Bertsch parameter introduced first

for fermions [1, 101]. For a unitary Bose gas, a lower bound on £ using measure-
ments of the equation of state was experimentally found to be &> 0.44(8) [95].
This result is satisfied for both the prediction of £ =0.66, based on renormalization
group theory [102] and the upper bounds given by variational calculations of £ < 0.8
[103] and £ <2.93 [104]. It was also predicted that the unitary Bose gas, unlike the
unitary Fermi gas, has an interesting first-order quantum phase transition (QPT).
When tuning the interactions across the resonance, there will be a QPT between a
mixture of an atomic and pair superfluid, on the positve-a side, and a pure super-
fluid of pairs, on the negative-a side [105-107]. Afterwards, it was predicted that
this transition should become second-order when thermal functions become more
prominent [108]. In 2009, using the same method as was used by P. Noziéres and
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S. Schmitt-Rink for fermions, the critical temperature for a bosonic gas across a
Feshbach resonance was predicted [109]. In the same year, it was predicted that the
momentum distribution tail should also be described by Tan's contact for resonant
Bose systems [110]. In 2011, predictions about thermodynamical quantities of the
ground state of a Bose system across a Feshbach resonance, such as Tan's contact
and the chemical potential, were made [111]. In 2012, a generalized NSR method
was used to predict the phase diagram of the ground state for varying interactions
and temperature [112].

Unlike fermionic systems, where Pauli blocking inhibits three-particle recombina-
tion, bosonic systems suffer from severe losses that scale rapidly with increasing
interaction. The change of the density, due to three-particle recombination, is
given by the differential equation

n= —L3n3,

where L3 is the three-particle loss coefficient. For zero-temperature bosons with
scattering length a, the three-particle loss coefficient was initially expected to scale
as Lzoca® [113]. Later, several theory groups [48, 114—117] showed that this
prediction is modified by a log-periodic term C(a), whose origin lies in Efimov
Physics

Ls(a) = 3C(a)%a4,

(@ 67.12 €727 (cos? [spIn(a/ay)] +sinh® 7)) + 16.84(1 — e™*™), a>0
a) =
4590 sinh(2n_)/ (sin® [soIn(a/a_)] + sinh®n_) , a<o0

where a, indicate the position and 7n, the width of the loss minimum and a_
indicate the position and 7_ the width of the Efimov resonances, on the positive-a
(+) respectively negative-a (-) side of the Feshbach resonance, for three identical
bosons (so~1.00624).

In 1970, Efimov predicted that in a system with short-range unitary interactions
(]a] = o0), there exist infinitely many three-particle bound states, without the ne-
cessity of a two-particle bound state [118, 119]. Making this system the quantum
mechanical counterpart of Borromean rings [120].

If E%”) is the energy of trimer bound state n, then Efimov showed that the ratios
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between the different energy levels in the Efimov spectrum are given by

E—(I—n) / 2 2

— —T/ S ~

0D~ (e7™)" ~ (1/22.7)%. (0.1)
This result shows the log-periodic dependence of the energy of the trimer states,

in the limit of unitary interactions (a — 00).

a<0 Energy a>0

Figure 0.2.: The Efimov bound states as a function of energy and interactions (taken
from [121]). The gray shaded area, with E >0 corresponds to the three-
particle threshold. The red curves are the bound state energies of the Efimov
states. On the left (a<0) they cross the three-particle threshold (the gray
region) and on the right (a > 0) they connect to the two-particle bound state
(blue line). Three of the infinitely many Efimov states are shown.

In the zero-energy limit, Efimov introduced the energy spectrum shown in Fig-
ure 0.2. On the y-axis the energy is varied and on the x-axis the inverse scattering
length 1/a across a Feshbach resonance. The zero-energy line marks the energy
of the scattering threshold of three particles. The blue parabola shows the bound
state energy of the dimer associated to the Feshbach resonance, for a>0. The
red lines indicate the energy of the bound trimer states predicted by Efimov. At
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1/a=0, the energy scaling factor between neighboring states (see Equation (0.1))
is shown. On the negative-a side, these trimer states connect to the zero en-
ergy threshold. These connection points are given by " = a_e™/% with ne7Z.
The oscillating term C(a) of the loss coefficient shows an increase at these points
(a:a(_”), see the red arrow in Figure 0.2), these are the so called Efimov reso-
nances. On the positive-a side the trimer energy connects to the energy of the
weakly bound dimers state. The signature of Efimov physics in the loss coefficient
on the positive-a side is given by a oscillations in C(a), due to the interference of

two recombination paths [114, 115].

A quantitative experimental study of the three-particle loss coefficient in *33Cs
revealed signatures of Efimov physics in the three-particle losses rate on both the
positive-a (oscillations) and negative-a (loss maximum resonance) side of the res-
onance [122]. This was the first direct observation of Efimov’s prediction. The
same group used a mixture of weakly-bound molecules and atoms in *3Cs on the
positive-a side to probe the connection of the dimer and trimer energy (see the
blue arrow in Figure 0.2). At this scattering length they observed an increase in
the loss rate coefficient for atom-dimer losses [123].

The log-periodic behavior between two consecutive loss features was confirmed
in ’Li [61] and 3°K [124] on the positive-a side, where they observed two minima in
the three-particle loss coefficient. On the negative-a side one Efimov resonance was
seen [125] in “Li. Seeing two Efimov resonances on the negative-a side would be
a more direct verification of the log-periodicity of the energy of the trimer-states,
because on the negative-a the distance between the energy states themselves is
directly probed. Recently, some preliminary evidence for the log-periodicity in two
consecutive resonances in 133Cs was reported [126].

Universality of the position and the width of the Efimov resonance for atoms in
different hyperfine states of “Li was shown in 2010 [127, 128]. Furthermore, an
Efimov resonance in 3Rb was reported in [96]. Efimov resonances around several
Feshbach resonances in both 133Cs [129] and 3°K [130] were reported and the
results suggest a relation between the Efimov resonance position and the van der
Waals length R,qw associated to the two-particle scattering potential [120]. The
relation based on these result and earlier results is given by a_/3a ~—9.5 [129],
where 3=0.955978...R,qw [48]. Predictions concerning universality were done in
[131-136].

The systems discussed above only consisted of three identical bosons. However,
in °Li, Efimov trimers have been created using Radio-Frequency (RF) association
of three distinguishable fermions [137]. In a Bose-Fermi mixture of 8’Rb and “°K
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a Feshbach resonance was used to see a Efimov resonance [138, 139].

The measurements in systems with three identical bosons were all performed in
the limit of weak interactions (n]a|® < 1) and analyzed using a theory that assumes
|a] < Aw. In this limit, the loss coefficient scales as C(a) a*. However, as soon
as a becomes on the order of A, the loss coefficient will saturate to a unitarity
limited value. This behavior was seen in 133Cs [122], 3°K [124], "Li [61, 125]
and 8°Rb, although these were never quantitatively explained nor studied and show
large variations in the value of the loss coefficient close to resonance. Saturation
behavior was predicted theoretically, however the prediction is only valid for in the
weakly interacting limit [140], because the prediction did not take Efimov physics
into account. Additionally, numerical simulations assuming model potentials have
been used to calculate the three-particle loss coefficient, in which case the loss
coefficient shows a discontinuity at unitarity [141, 142]. To summarize, no exact
theory nor thorough experimental study has so far been dedicated to three-particle
losses in a Bose gas with resonant interactions. This motivated the main question
of this thesis:

What happens to the system when a>> A\y,?

Outline: The Road to the Unitary Bose Gas

This thesis is dedicated to the study of the Bose gas with resonant interactions
(a<< Atn). In order to study this state of matter, the stability of the system needs
to be understood. The logical first step in the process is the study of its lifetime.
The limiting process for the lifetime is three-particle loss, which we will analyze in
detail.

In the following, we will describe the different parts of this thesis.

e In Chapter 1, an overview of the quantum mechanical description of the
two-particle scattering problem is given. Useful concepts like the scattering
amplitude, scattering cross section, unitary limit and scattering length are
discussed. We will also mention Feshbach resonances, which we will use to
tune the interactions.

The following two chapters discuss the theory derived by Dmitry Petrov and
Felix Werner, published in [143]. The discussion presented is strongly based on
their notes [144].
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e In Chapter 2, the concepts discussed in Chapter 1 will be extended to un-

derstand three-particle scattering. The special case of Efimov physics will
be covered. Afterwards, the concept of three-particle losses and the adapta-
tion of the three-particle scattering problem to include them is discussed. In
this formulation, the loss coefficient is obtained by comparing the incoming
and outgoing flux of particles. Furthermore, we will extensively discuss the
resulting three-particle loss coefficient. Finally, at unitarity the log-periodic
oscillations in the three-particle loss coefficient when varying the tempera-
ture are shown. Finally, we will numerically study the properties of the loss
coefficient.

In Chapter 3, the specific details of three-particle losses in a trap are dis-
cussed. Furthermore, we will discuss the heating effects due to three-particle
losses. We will compare these heating effects to evaporation effects due to
finite trap depth.

Chapters 4 and 5 present the experimental results.

e Chapter 4 will describe the Lithium machine in detail. We will discuss the

main steps to obtain an ultracold gas of “Li. Also, the Feshbach resonance
that we employed for the measurements is discussed.

Chapter 5 is dedicated to the experimental test of the theory presented in
Chapter 2. We will start by describing the specific experimental conditions
under which the measurements were performed. Afterwards, we portray the
experiments performed by our group and show a quantitative test of the pre-
dicted three-particle loss coefficient. We have a complete model describing a
system with three-particle recombination for a <0 and across the resonance
that includes Efimov physics and finite temperature effects. Employing the
model, we predict the appearance of a second Efimov resonance for a < 0.
Furthermore, this model is used to quantitatively explain the results of exper-
iments at both Innsbruck using 33Cs and Cambridge using 3°K.

e In the Concluding remarks, we give several perspectives for this work.
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1. Two-Particle Problem

This chapter is dedicated to two-particle scattering. We will remind the reader of
the ideas behind the system. These ideas are used in Chapter 2 to derive the three-
particle scattering. We will discus concepts like the scattering amplitude, scattering
cross-section, unitary limit and scattering length, as well as the zero-temperature
limit, which allows us to only consider scattering in the lowest collisional channel
(s-wave scattering, for bosons). Afterwards, we will summarize the results by
introducing a Zero-Range Model, in which case a boundary condition at r=20
contains all the information about the two-particle scattering. Finally, we will touch
upon the subject of Feshbach resonances, which we will use to tune interactions
between particles.

1.1. Scattering

r1 r2

P4 P2

Figure 1.1.: The scattering of two particles.

Consider two particles of mass m. Their quantum state is described by the
Hamiltonian for two particles interacting via a potential U(|r — r2|):

2 2
p1 P>
H=—+——+4+U(ln — n|), 1.1
2 22U - ) (L.1)
where p, is the momentum operator and r, the position operator of particle n.
Figure 1.1 depicts this system.
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1.1.1. Center of Mass (CoM) Motion

The first step in solving the problem is to separate the center of mass motion from
the relative motion, because we are only interested in the latter. In order to do so,
let us introduce the following CoM variables

n+n
2
Pcom = P1 + P2

rcom =

and also the relative motion variables

r=n-—nn
LA A
o m m

Here u=m/2 is the reduced mass of the system of two particles.
Using the CoM and relative variables introduced above the Hamiltonian can be
written in the following form,

2

2
Pcom p
H =M | B
am top T u(r)

= HCOM + Hrel- (12)

Since Hcom commutes with H,e, we diagonalize them independently. The solutions
of Hcom for the free particle are the plane waves (pcom = e'kcomcom with ke the
wavevector of the CoM system). In the following, we will study the relative motion.

1.1.2. Radial Schrodinger Equation

The Schrodinger Equation for the relative motion can be cast into the following
form

2 2,2
A, _
oL +U(r) om

Y =0, (1.3)

where E, =h?k?/(2u) is the energy of the relative motion for a scattering state
(Ek > O)
The Laplacian operator A, can be rewritten in spherical coordinates using the
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radius r and angular momentum operator! L. The Schrodinger Equation becomes

1 L2 h? k?
T+ —— -
[ + e + U(r) m

]w =0, (1.4)

here the operator T, = — % (g—; + %(%) is the radial kinetic energy operator. The

interest of this Schrodinger Equation comes from the separation of the radial and
angular part. Since the operator L?> commutes with the Hamiltonian, the radial
and angular part of the wavefunction can be separated

Yim = RiI(r)Y,"(0, ¢)

RI(r) = (1) (1.5)

where R,(r) is the radial wavefunction and Y;(0, ¢) the spherical harmonics. The
spherical harmonics are defined by the following differential equation

L?Y;™(8,¢) = 0*I(1 + 1)Y"(6, ¢). (1.6)

where the quantum numbers / give the eigenvalues of the equation. These spherical
harmonics describe the relative angular motion of the two particles.

The quantum number /, indicates in which scattering channel the scattering
takes place (this is usually called s-, p-, d-,... wave scattering, for /=0, /=1,
1=2,..., respectively). The quantum number m is used to describe the motion in
the ¢-direction. The possible scattering channels are different for distinguishable
and indistinguishable particles. Distinguishable particle will use all channels, indis-
tinguishable particles, however, either scattering in even (bosons) or odd (fermions)
channels.

When the definition of the spherical harmonics in Equation (1.6) is applied to
the Schrodinger Equation we are left with the radial Schrodinger Equation. The
introduction of the radial wavefunction uy,(r) in Equation (1.5) allows us to write
down the simplified radial Schrodinger Equation

? I(+1) 2p
dr2  r? 12

—Uer (1)

U(r) +k2 uk/(r) = 0. (17)

J

We will see that using this notations simplifies the generalization of the Schrodinger Equation to
more than two particles, see Section 2.1.2 for three particles
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Note that R;(r) needs to be regular at the origin and to impose this, the condition
ug(0)=0 is required. The effective potential Ues(r) is graphically depicted in
Figure 1.2 for different values of /.

Uese(r) [a.u.]

0 b
r [a.u.]

Figure 1.2.: The van der Waals potentials with a hard-core at r = b and centrifugal con-
tributions Uer(r). The solid black line is the potential for /=0 and is mono-
tonic. The black dashed line is the effective potential with /=1 and the
black dotted line the effective potential with /=2. The potentials for /=1
and /=2 are not monotonic and have a maximum. This maximum creates
an effective barrier for particles with an relative energy lower than the barrier.
The purple line shows the energy of such a particle pair in the limit of cold
collisions k — 0. This shows that for sufficiently cold gases, only the /=0
(s-wave) scattering contributes to the problem.

1.1.3. Scattering Potential

In the previous section, we have introduced the relative potential U(r) without
putting constraints on it. Here we will filter out a certain class of potentials.

In the framework of ultracold atomic gases, we are interested in collisions be-
tween two neutral atoms. This means that the considered interaction is an induced
dipole-dipole interaction and is described by a van der Waals type potential, which
Is attractive at the long-range and has a hard-core at r=>b. For more detailed
information about the atomic potentials we refer the reader to the following ref-
erences [48, 145-149]. At intermediate-long distances this interaction is described
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by a —Cs/R° potential, which has a length scale given by the Cs parameter: the

van der Waals length Rygw =3 (2’;2&5)1/4.

This length scale has an interesting physical interpretation [150]. At the length
scale r ~ R.,qw, the potential energy becomes comparable to the collision energy
E ~U(Ryaw). This means that the effect of the potential outside of this range
vanishes and the wavefunction approximates the free space wavefunction. In other
words, the van der Waals length indicates a range over which the potential mod-
ifies the behavior of the wavefunction. In the following, we will only discuss the
wavefunction outside the range of the interaction and condense the effect of the
potential into a boundary condition at r=0.

1.1.4. Spherical Waves

Outside the range of the potential r > R,qw the solutions of the problem are given
by a linear combination of an incoming and outgoing wave

2k? 1 , o
~ Ym(g Aout +i(kr—Im/2) Aln —i(kr—Im/2)
Pim \ o 7 ( '¢)_2/'kr [A"e € ],

r—oo

= Aout(pgfnUt) _Ain(PE,i:,)- (18)

The amplitudes A%“Y/I" are determined by the details of the problem, which we will
see in the following section.

1.1.5. Elastic Scattering

In the above, we have written the solutions of the Schrodinger Equation in the basis
of the spherical harmonics. The next step is to describe the effect of the scattering
potential on each of the spherical waves. We will use the fact that the potential
has a finite range R,qw and start by considering an incoming wave outside of the
range of the potential r > R,qw. Outside the range of the potential, the incoming
wave is described by the r > R,qw solution. We will consider a virtual propagation
of the wave to the scattering center and as soon as the wave starts to feel the
potential, it is deformed and finally reflected within the range of the potential. The
potential is norm conserving (elastic scattering), so when the wave is coming back
out of the range of the potential it will again be the r> R,qw solution, but with
an acquired phase 9, due to the potential U(r) in the r < R,qw region. Let us write
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this in terms of the wavefunction

2k2 m 1 +’ s H us
~ = - (kr—1%+208)) _ —i(kr—1%)
Yim =/ - Y, (9'¢)2/kr e 2 e 2|, (1.9)
which at far distance will behave as 1/rsin(kr—Im/2+9;). If we write this in terms
of the incoming and outgoing waves, the wavefunction takes the form

Yim = 5/@5?,7”0 - wﬁz). (1.10)

where we have introduced s; = AUt /A" = 2% This s; described the scattering of
a wave in channel / due to the potential U(r). This is a trivial case of the scattering
matrix diagonal (corresponding to one channel), but as we will see in Chapter 2, it
becomes useful when several channels are coupled.

As a final step, let us separate the outgoing wave with no interaction from the
part with the phase factor

(out) _  (out)

sl = ol + (51— D™, (1.11)

where (s, — 1) =2ie'% sing;. When the result is written into the form of the wave-
function, it is given by

Yim = @i — o) + (s = Dej”
= i+ 2iesing oj. (1.12)

This is the result of scattering in a specific channel /. To summarize the elastic
scattering let us note that the scattering potential fixes a boundary condition on
the long-range result.

In the next section we will apply this on the initial condition of the problem: the
plane wave.

1.1.6. Scattering Amplitude

The spherical waves are practical to introduce the effect of the scattering into the
wavefunction, however, the initial condition is the incoming plane wave w(o)_ In
order to use the spherical waves, let us project the plane wave onto the basis of
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spherical waves. The projection is given by

[e.9]

Y@ = et = N7 i /Ar 21+ 1) ji(kr) Y26, 0) = Y crpn(r): (1.13)
=0

/=0

The fact that there are only terms with m=0 in the projection of the plane wave,
shows the cylindrical symmetry of the scattering. Here we have made, without
loss of generality, the choice of having an incoming plane wave traveling along the
z-axis towards the center, which means that 8 is defined as the angle between r
and z.

To implement what we have derived in Section 1.1.5, let us do the replacement
©0 — Yo and write the resulting scattering wavefunction ¥,

P = Z a(r) = Z P+ Z ¢ 2i esing, (pfé’”t)
=0 1=0 =0

eikr
=@ + £(0) (1.14)
Here f(6) is the scattering amplitude given by
1 & 5
fi(0) = ¢ > VAm(21+1)YP(6)e” sin§. (1.15)

/=0

The scattering amplitude f(6) is a measure for the strength of the scattering.
For a more detailed description and higher-order corrections we refer the reader to
[145, 151].

The two parts in Equation (1.14) are the incoming wave 9%(® =e*’*? and the
outgoing scattered wave ¥%°=f(8) e*"/r. This result is the well-known two-
particle scattering wavefunction in the long-range. In Chapter 2 we will use a
similar method to described the scattering of three particles.

1.1.7. Scattering Cross Section

In order to characterize the scattering, an often used property is the scattering
cross section. The total scattering cross section is defined by the amount of initial
plane wave (9 scattered into the scattered wave 9. In order to calculate the
total scattering cross section, we have to consider the differential cross section.
This is given by the ratio of the current density of the scattered wave through a
surface element on a sphere and the current density of the incoming wave (see
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Figure 1.3).
Let us start by calculating the incoming current density

J.(r) = +§ Im [(¢(0))* v, w(o)]
hk

=Z— = 2v. 1.16
U (1.16)

To calculate the outgoing current density, we will use a radial current density op-
erator and the result is given by

H ﬁ sC */\a sC
i) = im0 70
- |fk|2fr—;f. (1.17)

The differential cross section doy is equal to

i.(r)-dS

do, =395 e 200

dO'k i 2

i |fe|”, (1.18)

where we have used that the surface dS is given by r? A dQ2 and Q is the solid angle
given by (6, ¢). The vectors ¥ and i are the same.
