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We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T.S. Eliot – “Little Gidding” (1922)
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Introduction

In recent years, the field of ultracold quantum gases has rapidly expanded. One
of the reasons of this growth is the fact that experiments in the field have the
ability to observe quantum correlations without them being washed out by the
disturbances caused by thermal fluctuations. These quantum correlations arise as
soon as temperatures close to the absolute zero are reached. When a dilute gas is
cooled to these temperatures, the wavefunction of an atom starts to overlap with
the wavefunctions of neighboring atoms. At this point, the system can no longer be
described in terms of individual particles and a formulation in terms of many-body
states is required [1].

A many-body state has to obey particle exchange statistics. In a 3 dimensional
(3d) world, Nature dictates the existence of two types of particles, which behave
differently under particle exchange. These particles are distinguished by a property
called spin. On the one hand, there are bosons with integer spin, on the other
hand fermions with half-integer spin. Bosons preferably occupy the same quantum
state (this behavior is called bunching or bosonic amplification). For fermions,
the occupation of a quantum state by more than one particle is forbidden. This
phenomenon is called Pauli blocking or anti-bunching [2]. These occupation effects
are of purely statistical nature and interactions do not play any role.

Quantum effects due to particle exchange statistics become prominent at low
temperatures, when the thermal deBroglie wavelength λth= h/

√
2πmkBT becomes

of the order of the interparticle distance l ≡ n−1/3, where n is the density, h is
Planck’s constant, kB is Boltzmann’s constant, m is the mass of a particle and T
the temperature of the system.

In dilute ultracold gases, typical densities are in the range of 1012 to 1015 cm−3,
which implies a typical interparticle distance of 0.1 to 1 µm. To have a deBroglie
wavelength comparable to the interparticle distance, the system has to be extremely
cold. The advancement of laser [3] and evaporative [4] cooling techniques led to the
observation of quantum effects in the 10 to 100 nK temperature range. In 1995,
Bose-Einstein condensation (BEC) in 87Rb [5] and 23Na [6] was observed. BEC
was predicted by S. N. Bose and A. Einstein in 1924 [7, 8]. It is a form of bunching,
where a majority of the atoms occupy the same external state. The advancement

xi



xii INTRODUCTION

of cooling techniques in bosonic systems also advanced the cooling of fermionic
gases. This allowed for the observation of the inset of quantum degeneracy in a
fermionic system in 1999 in 40K [9] and shortly afterwards also in 6Li [10, 11].

During my PhD at ENS from december 2010 to december 2013, I worked on
a system of ultracold bosonic 7Li with tunable interactions. In the beginning,
I participated in the measurements of the Lee-Huang-Young corrections due to
increasing two-particle interactions in a BEC. I will not discuss this in detail in
this manuscript, however for the interested reader I have included the paper in
Appendix B.1). The bulk of this thesis is dedicated to the study of the Bose gas with
resonant two-particle interactions. The lifetime of such a gas is limited by three-
particle recombination, which we analyze both experimentally and theoretically in
this manuscript. Finally, I have also worked on the implementation of a new laser
cooling technique, which efficiently cools alkaline atoms below the standard Doppler
limit. This topic will not be covered here and for more information the reader is
revered to the paper in Appendix B.3.

Quantum Many-Body Systems

Due to their complexity, commonly found quantum many-body systems are usually
difficult to study. For example, in High-Tc superconductors, the electron gas is
submerged in a complex lattice structure, forcing the electrons to occupy com-
plex orbits [12]. Furthermore, the description of the movement of conductance
electrons is complicated by impurities. In special cases, impurities can even cause
localization of the wavefunction of the electrons. This phenomenon is called Ander-
son localization [13]. Another striking example of a hard-to-study quantum system
is neutron matter. In this system it is difficult to directly probe interesting observ-
ables. It is proposed that the system is described by a Hamiltonian with short-range
interactions [14], which facilitates the quantum simulation of the problem with a
well controlled quantum gas.

Understanding and probing the detailed properties of the many-body quantum
state in these situations is difficult. Using well-controlled environments to simulate
these systems will help to understand the properties. This is where ultracold dilute
systems come into play, because these systems have quantum correlations together
with an unprecedented degree of control over the system parameters. In quantum
gases, the density of the system can be well controlled [15]. Lasers can be employed
to trap a gas [16], and phase imprinting on these lasers allows to create, among
others, flat-box potentials [17, 18] or tightly confining 2d geometries [19]. A
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retroreflected laser beam has a standing wave intensity pattern that can be used
as a periodic potential that mimics crystal lattices [20]. A major milestone has
been the recent advancement of single site imaging [21, 22] and addressing [23] of
atoms in optical lattices.

In recent years, several interesting systems with quantum correlations have been
studied. The bosonic superfluid-to-Mott-insulator transition [20] was observed in
an optical lattice with ultracold atoms [24]. Similarly, the fermionic equivalent
[25] was studied with fermions in optical lattices. Lattices were also used to sim-
ulate the classic Ising model in frustrated systems [26]. Furthermore, the phase
transition to a quantum anti-ferromagnetic state was simulated using a single-site
imaging system [27]. Additionally, short-range quantum magnetic spin-correlations
in dimerized and anisotropic systems have been observed [28].

The control of the dimensionality opens the opportunity to study low dimen-
sional systems. In a 2d atomic system, the transition from a superfluid to a nor-
mal fluid has been observed through the proliferation of vortex-pairs of oppositely
rotating vortices above the transition temperature Tc. This transition is the so-
called Berezinskii-Kosterlitz-Thouless (BKT) phase transition, which was predicted
in 1972 [29, 30]. In 2d, superfluidity occurs with no long-range order, as in the case
of BEC [31]. The BKT phase transition happens when the 2d phase-space-density
(PSD) reaches the value nλ2th∼ 4. It was observed for the first time in quantum
gases, using the interference of several 2d clouds to probe for coherence and vor-
tices [32]. Afterwards, a direct superfluid signature was seen while stirring an object
in a 2d quantum gas [33]. A 1d gas is an exceptional system that can be described
with a powerful theoretical many-body method (Density Matrix Renormalization
Group (DMRG)) [34]. The Tonk-Girardeau gas, as an example, has been observed
[35, 36] and the process of thermalization of a 1d system has been studied in [37].

The problem of a charged particle in a magnetic field is described by Quantum
Hall physics (QHP) [38, 39]. The energy spectrum of these states is known as the
Hofstadter Butterfly [40].

Neutral atoms in rotating systems can be used to simulate charged particles in
a magnetic field [41–45]. The Coriolis force FC is mathematically analog to the
magnetic Lorentz force FL

FC = −2m(ΩΩΩ× v) ←→ FL = −q(B × v).

The Hamiltonian of a charged particle, with charge q and velocity v , in a magnetic
field B can thus be projected onto the Hamiltonian of a neutral particle, with mass
m and velocity v , in a rotating frame with angular momentum ΩΩΩ.
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QHP can also be simulated with the use of artificial gauge fields, which arise from
the motion of a neutral particle in a properly designed laser field (see [46] for an
extensive review). Quantum gases evolving in gauge fields are an ideal simulator,
because they have the possibility of simulating extremely strong magnetic fields
and reaching interesting regimes with strong interaction between the particles.

In this work, we will use another powerful tool for tuning the parameters of
ultracold atomic systems: Feshbach resonances [47, 48].

Quantum Gases with Feshbach Resonances

By employing a Feshbach resonance, the inter-particle scattering properties can
be tuned using a magnetic field [49]. A Feshbach resonance appears, when a
weakly-bound dimer state approaches the energy of the scattering threshold of the
two-particle system [47, 50]. A magnetic field can be used to change the energy
of this weakly-bound state, which changes the two-particle scattering properties
through the scattering length a. Around a Feshbach resonance, the scattering
length can be tuned from −∞ to +∞. On the negative-a side, the interaction
between the two-particles is attractive and on the positive-a side repulsive.

Feshbach resonances in dilute gases were first considered in 1976 in the context
of hydrogen [51] and first observed in hydrogen in 1986 [52]. The first Feshbach
resonances in ultracold alkali gases were observed in 1998 in 23Na [53] and 85Rb
[54]. In some atomic species, tuning of the interactions using Feshbach resonances
is required to obtain BEC at all, e.g. 85Rb [55], 133Cs [56, 57] and 39K [58] or to
obtain large stable BECs, e.g. 7Li [59–61].

The observation of Feshbach resonances led to the creation of Feshbach molecules
of 85Rb [62] and 133Cs [63, 64]. As well as composite bosonic molecules of 6Li and
40K. These composite molecules turned out to be long-lived and opened up the pos-
sibility to study molecular condensates [65–68]. These Feshbach molecules can be
brought to more deeply bound states using techniques like stimulated Raman adia-
batic passage (STIRAP) [69, 70]. STIRAP enabled the formation of ground-state
molecule of 87Rb2 [71] and 40K-87Rb [72].

Quantum Simulation of the BCS-BEC Crossover

The carriers of electric current in superconducting materials are pairs of electrons,
with weakly attractive interactions. These pairs form Cooper pairs [73], which lie
at the basis of a theory developed by Bardeen, Cooper and Schieffer (BCS) [74].
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BEC and BCS initially seemed like completely different phenomena. Eagles and
Legett [75, 76], however, noticed that the BCS wavefunction also describes a Bose-
Einstein condensate of tightly bound pairs. The transition between these regimes
was termed the BEC-BCS crossover. The phase diagram around the crossover
was first predicted by P. Nozières and S. Schmitt-Rink (NSR), who calculated the
critical temperature for the normal-to-superfluid phase transition as a function of
the interaction strength [77].

In a system of neutral fermions around a Feshbach resonance the scattering
length can be arbitrarily tuned and fermions will either form Cooper pairs or bound
molecules. With a Feshbach resonance in a system of fermions the interaction
could, for the first time, be smoothly tuned across the BEC-BCS crossover [78, 79].

In recent years, the simulator system has been used to observe several interesting
phenomena. Collective oscillation modes in a pair condensate around the BEC-BCS
crossover were first observed by [80]. Afterwards, the frequency of these modes
[81] and the effect of strong interactions [82] were characterized in the crossover.
The superfluid pairing gap, which determines the energy needed to break up the
fermionic pairs, across the crossover was measured using RF-spectroscopy [83].
The superfluidity of fermionic systems around the crossover was probed by observ-
ing vortices, while rotating the system [45]. More recently, the thermodynamic
equation of state was measured across the crossover for 6Li in spin-polarized and
unpolarized systems as well as for varying temperature [84–87]. The results were
compared to Quantum Monte Carlo calculations [88]1.

State of the Art: The Resonant Bose gas

Depending on the strength of the atom-atom interactions bosonic systems can be
classified into several regimes. The zero-temperature Bose gas with no interactions
is a purely statistical form of BEC. Increasing the interactions increases the many-
body effects [89]. For weak interactions, the diluteness parameter na3 vanishes
(na3≪ 1) and a mean-field approximation describes the system remarkably well.
The wavefunction in the mean-field approximation is given by the Gross-Pitaevskii
Equation [90, 91], in which the quantum many-body wavefunction is simply a prod-
uct state of N identical wavefunctions.

The first-order correction to mean-field theory is the Lee-Huang-Yang (LHY)
correction, which was derived in 1957 [92]. The correction is due to interactions

1As implied by the title of the paper “Feynman diagrams versus Fermi-gas Feynman emulator”, a
direct comparison of classical simulation versus quantum simulation was made.
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and quantum-fluctuations and induces a reduction of the condensate fraction. For
weak interactions (n|a|3≪ 1), the systems ground state energy E (per volume V )
is given by the expansion

E

V
=
gn2

2

(

1 +
128

15
√
π

√
na3 + . . .

)

,

where g=4π~2a/m is the coupling constant for particles with mass m. The first
term is the mean-field contribution to the energy. The term proportional to

√
na3

is the LHY correction. The LHY correction to the excitation spectrum of a cloud
was first seen in bosonic 85Rb using Bragg spectroscopy [93]. The correction was
also observed through the modification of the frequency of collective oscillations
with varying interactions in molecules of 6Li on the BEC side of the resonance
[82]. These molecules were also used to probe the corrections of the in situ density
profile [94]. A direct measure of the LHY correction in the equation of state was
measured in [85], also using bosonic molecules of 6Li. In atomic Bose systems, the
LHY correction was measured through the equation of state in 7Li [95], and using
Bragg spectroscopy to determine the LHY correction in Tan’s contact parameter
[96]. In Figure 0.1, the introduction of interactions into the zero-temperature Bose
gas corresponds to a path on the x-axis (∝ 1/(n|a|3)) going from +∞ towards 0.

In this thesis, we take a different approach. We start with a gas with unitary
interaction (a→∞) and cool the system towards quantum degeneracy (see the
arrow along the y-axis (∝ 1/(nλ3th)) in Figure 0.1). Interactions will start to play an
important role when we approach the onset of quantum degeneracy. The equation
of state in the high temperature limit is described by the virial expansion for the
pressure P (see for example [97])

P =
1

βλ3th

∞∑

k=1

b̃ke
kβµ,

where b̃k is the k-th virial coefficient described by the k-particle problem and
β≡ 1/(kBT ). The term eβµ is the fugacity and is used as a small parameter, be-
cause in the high-temperature limit, kBT ≫µ. In the case of a Boltzmann gas, all
terms except for the first vanish, which yields b̃1=1, resulting in the ideal gas law.
Using the two-particle problem, the theoretical prediction of b̃2=9

√
2/8≈ 1.59 can

be found (see for example [98]). Recently, b̃3 was predicted analytically using the
three-particle problem [99].

The hypothetical unitary Bose gas is a system with unitary interactions at zero
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Figure 0.1.: The hypothetical phase diagram of a Bose gas with varying interactions,
n|a|3, and varying temperature, nλ3th. The dotted line shows the critical tem-
perature. The darkness of red indicates the strength of the interactions. The
blue arrow parallel to the x-axis indicates the research on zero-temperature
BECs with increasing interactions. The blue arrow parallel to the y-axis is
the different approach that we will use in this thesis. In this approach, we
will start with a gas with resonant interactions and lower the temperature.

temperature. There is a prediction that the unitary Bose gas is described by the
fermionic equation of state [100], with the only length scale being the interparticle
distance, hence the chemical potential µ is given by

µ = ξEF,

where EF∝ n2/3 is the Fermi energy and ξ is the Bertsch parameter introduced first
for fermions [1, 101]. For a unitary Bose gas, a lower bound on ξ using measure-
ments of the equation of state was experimentally found to be ξ> 0.44(8) [95].
This result is satisfied for both the prediction of ξ=0.66, based on renormalization
group theory [102] and the upper bounds given by variational calculations of ξ< 0.8
[103] and ξ< 2.93 [104]. It was also predicted that the unitary Bose gas, unlike the
unitary Fermi gas, has an interesting first-order quantum phase transition (QPT).
When tuning the interactions across the resonance, there will be a QPT between a
mixture of an atomic and pair superfluid, on the positve-a side, and a pure super-
fluid of pairs, on the negative-a side [105–107]. Afterwards, it was predicted that
this transition should become second-order when thermal functions become more
prominent [108]. In 2009, using the same method as was used by P. Nozières and
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S. Schmitt-Rink for fermions, the critical temperature for a bosonic gas across a
Feshbach resonance was predicted [109]. In the same year, it was predicted that the
momentum distribution tail should also be described by Tan’s contact for resonant
Bose systems [110]. In 2011, predictions about thermodynamical quantities of the
ground state of a Bose system across a Feshbach resonance, such as Tan’s contact
and the chemical potential, were made [111]. In 2012, a generalized NSR method
was used to predict the phase diagram of the ground state for varying interactions
and temperature [112].

Unlike fermionic systems, where Pauli blocking inhibits three-particle recombina-
tion, bosonic systems suffer from severe losses that scale rapidly with increasing
interaction. The change of the density, due to three-particle recombination, is
given by the differential equation

ṅ = −L3n3,

where L3 is the three-particle loss coefficient. For zero-temperature bosons with
scattering length a, the three-particle loss coefficient was initially expected to scale
as L3∝ a4 [113]. Later, several theory groups [48, 114–117] showed that this
prediction is modified by a log-periodic term C(a), whose origin lies in Efimov
Physics

L3(a) = 3C(a)
~

m
a4,

C(a) =

{

67.12 e−2η+
(
cos2 [s0 ln(a/a+)] + sinh

2 η+
)
+ 16.84(1− e−4η+), a > 0

4590 sinh(2η−)/
(
sin2 [s0 ln(a/a−)] + sinh

2 η−
)
, a < 0

where a+ indicate the position and η+ the width of the loss minimum and a−
indicate the position and η− the width of the Efimov resonances, on the positive-a
(+) respectively negative-a (-) side of the Feshbach resonance, for three identical
bosons (s0≈ 1.00624).

In 1970, Efimov predicted that in a system with short-range unitary interactions
(|a|→∞), there exist infinitely many three-particle bound states, without the ne-
cessity of a two-particle bound state [118, 119]. Making this system the quantum
mechanical counterpart of Borromean rings [120].

If E(n)T is the energy of trimer bound state n, then Efimov showed that the ratios
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between the different energy levels in the Efimov spectrum are given by

E
(n)
T

E
(n+1)
T

=
(
e−π/s0

)2 ≈ (1/22.7)2 . (0.1)

This result shows the log-periodic dependence of the energy of the trimer states,
in the limit of unitary interactions (a→∞).

Figure 0.2.: The Efimov bound states as a function of energy and interactions (taken
from [121]). The gray shaded area, with E > 0 corresponds to the three-
particle threshold. The red curves are the bound state energies of the Efimov
states. On the left (a< 0) they cross the three-particle threshold (the gray
region) and on the right (a> 0) they connect to the two-particle bound state
(blue line). Three of the infinitely many Efimov states are shown.

In the zero-energy limit, Efimov introduced the energy spectrum shown in Fig-
ure 0.2. On the y-axis the energy is varied and on the x-axis the inverse scattering
length 1/a across a Feshbach resonance. The zero-energy line marks the energy
of the scattering threshold of three particles. The blue parabola shows the bound
state energy of the dimer associated to the Feshbach resonance, for a> 0. The
red lines indicate the energy of the bound trimer states predicted by Efimov. At
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1/a=0, the energy scaling factor between neighboring states (see Equation (0.1))
is shown. On the negative-a side, these trimer states connect to the zero en-
ergy threshold. These connection points are given by a(n)− = a−e

nπ/s0 with n∈Z.
The oscillating term C(a) of the loss coefficient shows an increase at these points
(a= a(n)− , see the red arrow in Figure 0.2), these are the so called Efimov reso-
nances. On the positive-a side the trimer energy connects to the energy of the
weakly bound dimers state. The signature of Efimov physics in the loss coefficient
on the positive-a side is given by a oscillations in C(a), due to the interference of
two recombination paths [114, 115].

A quantitative experimental study of the three-particle loss coefficient in 133Cs
revealed signatures of Efimov physics in the three-particle losses rate on both the
positive-a (oscillations) and negative-a (loss maximum resonance) side of the res-
onance [122]. This was the first direct observation of Efimov’s prediction. The
same group used a mixture of weakly-bound molecules and atoms in 133Cs on the
positive-a side to probe the connection of the dimer and trimer energy (see the
blue arrow in Figure 0.2). At this scattering length they observed an increase in
the loss rate coefficient for atom-dimer losses [123].

The log-periodic behavior between two consecutive loss features was confirmed
in 7Li [61] and 39K [124] on the positive-a side, where they observed two minima in
the three-particle loss coefficient. On the negative-a side one Efimov resonance was
seen [125] in 7Li. Seeing two Efimov resonances on the negative-a side would be
a more direct verification of the log-periodicity of the energy of the trimer-states,
because on the negative-a the distance between the energy states themselves is
directly probed. Recently, some preliminary evidence for the log-periodicity in two
consecutive resonances in 133Cs was reported [126].

Universality of the position and the width of the Efimov resonance for atoms in
different hyperfine states of 7Li was shown in 2010 [127, 128]. Furthermore, an
Efimov resonance in 85Rb was reported in [96]. Efimov resonances around several
Feshbach resonances in both 133Cs [129] and 39K [130] were reported and the
results suggest a relation between the Efimov resonance position and the van der
Waals length RvdW associated to the two-particle scattering potential [120]. The
relation based on these result and earlier results is given by a−/ā ≃− 9.5 [129],
where ā=0.955978...RvdW [48]. Predictions concerning universality were done in
[131–136].

The systems discussed above only consisted of three identical bosons. However,
in 6Li, Efimov trimers have been created using Radio-Frequency (RF) association
of three distinguishable fermions [137]. In a Bose-Fermi mixture of 87Rb and 40K
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a Feshbach resonance was used to see a Efimov resonance [138, 139].
The measurements in systems with three identical bosons were all performed in

the limit of weak interactions (n|a|3≪ 1) and analyzed using a theory that assumes
|a|≪λth. In this limit, the loss coefficient scales as C(a) a4. However, as soon
as a becomes on the order of λth the loss coefficient will saturate to a unitarity
limited value. This behavior was seen in 133Cs [122], 39K [124], 7Li [61, 125]
and 85Rb, although these were never quantitatively explained nor studied and show
large variations in the value of the loss coefficient close to resonance. Saturation
behavior was predicted theoretically, however the prediction is only valid for in the
weakly interacting limit [140], because the prediction did not take Efimov physics
into account. Additionally, numerical simulations assuming model potentials have
been used to calculate the three-particle loss coefficient, in which case the loss
coefficient shows a discontinuity at unitarity [141, 142]. To summarize, no exact
theory nor thorough experimental study has so far been dedicated to three-particle
losses in a Bose gas with resonant interactions. This motivated the main question
of this thesis:

What happens to the system when a≫λth?

Outline: The Road to the Unitary Bose Gas

This thesis is dedicated to the study of the Bose gas with resonant interactions
(a≪λth). In order to study this state of matter, the stability of the system needs
to be understood. The logical first step in the process is the study of its lifetime.
The limiting process for the lifetime is three-particle loss, which we will analyze in
detail.

In the following, we will describe the different parts of this thesis.

• In Chapter 1, an overview of the quantum mechanical description of the
two-particle scattering problem is given. Useful concepts like the scattering
amplitude, scattering cross section, unitary limit and scattering length are
discussed. We will also mention Feshbach resonances, which we will use to
tune the interactions.

The following two chapters discuss the theory derived by Dmitry Petrov and
Felix Werner, published in [143]. The discussion presented is strongly based on
their notes [144].
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• In Chapter 2, the concepts discussed in Chapter 1 will be extended to un-
derstand three-particle scattering. The special case of Efimov physics will
be covered. Afterwards, the concept of three-particle losses and the adapta-
tion of the three-particle scattering problem to include them is discussed. In
this formulation, the loss coefficient is obtained by comparing the incoming
and outgoing flux of particles. Furthermore, we will extensively discuss the
resulting three-particle loss coefficient. Finally, at unitarity the log-periodic
oscillations in the three-particle loss coefficient when varying the tempera-
ture are shown. Finally, we will numerically study the properties of the loss
coefficient.

• In Chapter 3, the specific details of three-particle losses in a trap are dis-
cussed. Furthermore, we will discuss the heating effects due to three-particle
losses. We will compare these heating effects to evaporation effects due to
finite trap depth.

Chapters 4 and 5 present the experimental results.

• Chapter 4 will describe the Lithium machine in detail. We will discuss the
main steps to obtain an ultracold gas of 7Li. Also, the Feshbach resonance
that we employed for the measurements is discussed.

• Chapter 5 is dedicated to the experimental test of the theory presented in
Chapter 2. We will start by describing the specific experimental conditions
under which the measurements were performed. Afterwards, we portray the
experiments performed by our group and show a quantitative test of the pre-
dicted three-particle loss coefficient. We have a complete model describing a
system with three-particle recombination for a< 0 and across the resonance
that includes Efimov physics and finite temperature effects. Employing the
model, we predict the appearance of a second Efimov resonance for a< 0.
Furthermore, this model is used to quantitatively explain the results of exper-
iments at both Innsbruck using 133Cs and Cambridge using 39K.

• In the Concluding remarks, we give several perspectives for this work.



Part I.

Theory

1





1. Two-Particle Problem

This chapter is dedicated to two-particle scattering. We will remind the reader of
the ideas behind the system. These ideas are used in Chapter 2 to derive the three-
particle scattering. We will discus concepts like the scattering amplitude, scattering
cross-section, unitary limit and scattering length, as well as the zero-temperature
limit, which allows us to only consider scattering in the lowest collisional channel
(s-wave scattering, for bosons). Afterwards, we will summarize the results by
introducing a Zero-Range Model, in which case a boundary condition at r =0
contains all the information about the two-particle scattering. Finally, we will touch
upon the subject of Feshbach resonances, which we will use to tune interactions
between particles.

1.1. Scattering

r1r1r1 r2r2r2

p1 p2

Figure 1.1.: The scattering of two particles.

Consider two particles of mass m. Their quantum state is described by the
Hamiltonian for two particles interacting via a potential U(|r1− r2|):

H =
p21
2m
+
p22
2m
+ U(|r1 − r2|), (1.1)

where pn is the momentum operator and rn the position operator of particle n.
Figure 1.1 depicts this system.

3
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1.1.1. Center of Mass (CoM) Motion

The first step in solving the problem is to separate the center of mass motion from
the relative motion, because we are only interested in the latter. In order to do so,
let us introduce the following CoM variables

rCoM =
r1 + r2
2

pCoM = p1 + p2

and also the relative motion variables

r = r1 − r2
p

µ
=
p1

m
− p2
m
.

Here µ=m/2 is the reduced mass of the system of two particles.

Using the CoM and relative variables introduced above the Hamiltonian can be
written in the following form,

H =
p2CoM
4m

+
p2

2µ
+ U(r)

≡ HCoM +Hrel. (1.2)

Since HCoM commutes with Hrel, we diagonalize them independently. The solutions
of HCoM for the free particle are the plane waves (ϕCoM= e ikCoM·rCoM with kCoM the
wavevector of the CoM system). In the following, we will study the relative motion.

1.1.2. Radial Schrödinger Equation

The Schrödinger Equation for the relative motion can be cast into the following
form

[

− ~
2

2µ
∆∆∆r + U(r)−

~
2k2

2µ

]

ψ = 0, (1.3)

where Ek = ~2k2/(2µ) is the energy of the relative motion for a scattering state
(Ek > 0).

The Laplacian operator ∆r can be rewritten in spherical coordinates using the
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radius r and angular momentum operator1 L. The Schrödinger Equation becomes
[

Tr +
1

2µ

L2

r 2
+ U(r)− ~

2k2

2µ

]

ψ = 0, (1.4)

here the operator Tr = − ~2

2µ

(
∂2

∂r2
+ 2
r
∂
∂r

)

is the radial kinetic energy operator. The

interest of this Schrödinger Equation comes from the separation of the radial and
angular part. Since the operator L2 commutes with the Hamiltonian, the radial
and angular part of the wavefunction can be separated

ψlm = Rl(r)Y
m
l (θ, φ)

Rl(r) =
1

r
ukl(r), (1.5)

where Rl(r) is the radial wavefunction and Y ml (θ, φ) the spherical harmonics. The
spherical harmonics are defined by the following differential equation

L2Y ml (θ, φ) = ~
2l(l + 1)Y ml (θ, φ), (1.6)

where the quantum numbers l give the eigenvalues of the equation. These spherical
harmonics describe the relative angular motion of the two particles.

The quantum number l , indicates in which scattering channel the scattering
takes place (this is usually called s-, p-, d-,... wave scattering, for l =0, l =1,
l =2,..., respectively). The quantum number m is used to describe the motion in
the φ-direction. The possible scattering channels are different for distinguishable
and indistinguishable particles. Distinguishable particle will use all channels, indis-
tinguishable particles, however, either scattering in even (bosons) or odd (fermions)
channels.

When the definition of the spherical harmonics in Equation (1.6) is applied to
the Schrödinger Equation we are left with the radial Schrödinger Equation. The
introduction of the radial wavefunction ukl(r) in Equation (1.5) allows us to write
down the simplified radial Schrödinger Equation







d2

dr 2
− l(l + 1)

r 2
− 2µ
~2
U(r)

︸ ︷︷ ︸

−Ueff(r)

+k2






ukl(r) = 0. (1.7)

1We will see that using this notations simplifies the generalization of the Schrödinger Equation to
more than two particles, see Section 2.1.2 for three particles
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Note that Rl(r) needs to be regular at the origin and to impose this, the condition
ukl(0)=0 is required. The effective potential Ueff(r) is graphically depicted in
Figure 1.2 for different values of l .

Figure 1.2.: The van der Waals potentials with a hard-core at r = b and centrifugal con-
tributions Ueff(r). The solid black line is the potential for l =0 and is mono-
tonic. The black dashed line is the effective potential with l =1 and the
black dotted line the effective potential with l =2. The potentials for l =1
and l =2 are not monotonic and have a maximum. This maximum creates
an effective barrier for particles with an relative energy lower than the barrier.
The purple line shows the energy of such a particle pair in the limit of cold
collisions k→ 0. This shows that for sufficiently cold gases, only the l =0
(s-wave) scattering contributes to the problem.

1.1.3. Scattering Potential

In the previous section, we have introduced the relative potential U(r) without
putting constraints on it. Here we will filter out a certain class of potentials.

In the framework of ultracold atomic gases, we are interested in collisions be-
tween two neutral atoms. This means that the considered interaction is an induced
dipole-dipole interaction and is described by a van der Waals type potential, which
is attractive at the long-range and has a hard-core at r = b. For more detailed
information about the atomic potentials we refer the reader to the following ref-
erences [48, 145–149]. At intermediate-long distances this interaction is described
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by a −C6/R6 potential, which has a length scale given by the C6 parameter: the

van der Waals length RvdW=
1
2

(
2µC6
~2

)1/4
.

This length scale has an interesting physical interpretation [150]. At the length
scale r ∼RvdW, the potential energy becomes comparable to the collision energy
E∼U(RvdW). This means that the effect of the potential outside of this range
vanishes and the wavefunction approximates the free space wavefunction. In other
words, the van der Waals length indicates a range over which the potential mod-
ifies the behavior of the wavefunction. In the following, we will only discuss the
wavefunction outside the range of the interaction and condense the effect of the
potential into a boundary condition at r =0.

1.1.4. Spherical Waves

Outside the range of the potential r≫RvdW the solutions of the problem are given
by a linear combination of an incoming and outgoing wave

ϕlm ≃
r→∞

√

2k2

π
Y ml (θ, φ)

1

2ikr

[
Aoute+i(kr−lπ/2) − Aine−i(kr−lπ/2)

]
,

≡
r→∞

Aoutϕ
(out)
lm − Ainϕ(in)lm . (1.8)

The amplitudes Aout/in are determined by the details of the problem, which we will
see in the following section.

1.1.5. Elastic Scattering

In the above, we have written the solutions of the Schrödinger Equation in the basis
of the spherical harmonics. The next step is to describe the effect of the scattering
potential on each of the spherical waves. We will use the fact that the potential
has a finite range RvdW and start by considering an incoming wave outside of the
range of the potential r≫RvdW. Outside the range of the potential, the incoming
wave is described by the r≫RvdW solution. We will consider a virtual propagation
of the wave to the scattering center and as soon as the wave starts to feel the
potential, it is deformed and finally reflected within the range of the potential. The
potential is norm conserving (elastic scattering), so when the wave is coming back
out of the range of the potential it will again be the r≫RvdW solution, but with
an acquired phase δl due to the potential U(r) in the r <RvdW region. Let us write
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this in terms of the wavefunction

ψlm ≃
r→∞

√

2k2

π
Y ml (θ, φ)

1

2ikr

[

e+i(kr−l
π
2
+2δl ) − e−i(kr−l π2 )

]

, (1.9)

which at far distance will behave as 1/r sin(kr− lπ/2+δl). If we write this in terms
of the incoming and outgoing waves, the wavefunction takes the form

ψlm ≃
r→∞

slϕ
(out)
lm − ϕ(in)lm , (1.10)

where we have introduced sl ≡ Aout/Ain = e2iδl . This sl described the scattering of
a wave in channel l due to the potential U(r). This is a trivial case of the scattering
matrix diagonal (corresponding to one channel), but as we will see in Chapter 2, it
becomes useful when several channels are coupled.

As a final step, let us separate the outgoing wave with no interaction from the
part with the phase factor

slϕ
(out)
lm = ϕ

(out)
lm + (sl − 1)ϕ(out)lm , (1.11)

where (sl − 1)=2ie iδl sin δl . When the result is written into the form of the wave-
function, it is given by

ψlm ≃
r→∞

ϕ
(out)
lm − ϕ(in)lm + (sl − 1)ϕ

(out)
lm

≃
r→∞

ϕlm + 2ie
iδl sin δl ϕ

(out)
lm . (1.12)

This is the result of scattering in a specific channel l . To summarize the elastic
scattering let us note that the scattering potential fixes a boundary condition on
the long-range result.

In the next section we will apply this on the initial condition of the problem: the
plane wave.

1.1.6. Scattering Amplitude

The spherical waves are practical to introduce the effect of the scattering into the
wavefunction, however, the initial condition is the incoming plane wave ψ(0). In
order to use the spherical waves, let us project the plane wave onto the basis of
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spherical waves. The projection is given by

ψ(0) = e+ikz =

∞∑

l=0

i l
√

4π(2l + 1) jl(kr) Y
0
l (θ, φ) =

∞∑

l=0

cl ϕl0(r). (1.13)

The fact that there are only terms with m=0 in the projection of the plane wave,
shows the cylindrical symmetry of the scattering. Here we have made, without
loss of generality, the choice of having an incoming plane wave traveling along the
z-axis towards the center, which means that θ is defined as the angle between r
and z .

To implement what we have derived in Section 1.1.5, let us do the replacement
ϕl0 → ψl0 and write the resulting scattering wavefunction ψ,

ψ =

∞∑

l=0

clψl0(r) =

∞∑

l=0

clϕl0 +

∞∑

l=0

cl 2i e
iδl sin δl ϕ

(out)
l0

= ψ(0) + fk(θ)
e ikr

r
(1.14)

Here fk(θ) is the scattering amplitude given by

fk(θ) ≡
1

k

∞∑

l=0

√

4π(2l + 1)Y 0l (θ)e
iδl sin δl . (1.15)

The scattering amplitude fk(θ) is a measure for the strength of the scattering.
For a more detailed description and higher-order corrections we refer the reader to
[145, 151].

The two parts in Equation (1.14) are the incoming wave ψ(0)= e+ikz and the
outgoing scattered wave ψsc= fk(θ) e ikr/r . This result is the well-known two-
particle scattering wavefunction in the long-range. In Chapter 2 we will use a
similar method to described the scattering of three particles.

1.1.7. Scattering Cross Section

In order to characterize the scattering, an often used property is the scattering
cross section. The total scattering cross section is defined by the amount of initial
plane wave ψ(0) scattered into the scattered wave ψsc. In order to calculate the
total scattering cross section, we have to consider the differential cross section.
This is given by the ratio of the current density of the scattered wave through a
surface element on a sphere and the current density of the incoming wave (see
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Figure 1.3).
Let us start by calculating the incoming current density

jz(r) = +
~

µ
Im
[
(ψ(0))∗∇∇∇z ψ(0)

]

= ẑ
~k

µ
= ẑv . (1.16)

To calculate the outgoing current density, we will use a radial current density op-
erator and the result is given by

jr(r) =
~

µ
Im

[

(ψsc)∗ r̂
∂

∂r
ψsc
]

= |fk |2
jz
r 2
r̂ . (1.17)

The differential cross section dσk is equal to

dσk =
jr(r) · dS

jz
= |fk |2dΩ

dσk
dΩ
= |fk |2, (1.18)

where we have used that the surface dS is given by r 2 n̂ dΩ and ΩΩΩ is the solid angle
given by (θ, φ). The vectors r̂ and n̂ are the same.

n̂

S

dS

z

Figure 1.3.: A two-dimensional representation of the spherical surface S. The small
vectors designate the current density vector jr [ψ] perpendicular to a surface
element dS, with its normal vector given by n̂.

Taking into account indistinguishability and integrating over the solid angle Ω,
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gives the total scattering cross section

σk = 2π

∫ π/2

0

dθ sin θ |fk(θ) + fk(π − θ)|2 . (1.19)

As a final step, we can use the result from Equation (1.15) and plug it into
Equation (1.19). The spherical functions Y 0l (θ) are orthonormal and satisfy Y 0l (π−
θ)= (−1)lY 0l (θ). This allows us to write the total scattering cross section in the
following forms:

for identical bosons : σk =
8π

k2

∑

l even

(2l + 1) sin2 δl(k),

for identical fermions : σk =
8π

k2

∑

l odd

(2l + 1) sin2 δl(k), (1.20)

for distinguishable particles : σk =
4π

k2

∑

l all

(2l + 1) sin2 δl(k).

1.1.8. The Unitary Limit

The Equations (1.20) are bounded by the maximum value of sin2 δl(k), which is 1.
The scattering cross section for a specific partial wave (σk =

∑

l σl) is bounded by

For identical bosons : σl ≤
8π

k2
(2l + 1)

For identical fermions : σl ≤
8π

k2
(2l + 1) (1.21)

For distinguishable particles : σl ≤
4π

k2
(2l + 1).

These inequalities give the maximum value the scattering cross section can attain.
The limit in which the maximum possible cross section is obtained, is the so called
Unitary Limit.

1.1.9. Low-Temperature Limit: Bosons versus Fermions

Let us reconsider Figure 1.2 in the limit of low energy. In the figure, the effective
potentials for l =0, l =1 and l =2 are shown. The purple line shows the energy of
an incoming wave ψ(0), given by ~2k2/(2µ). For l > 0, we can associate a length
scale rl to the rotational barrier by comparing the energy of the incoming wave to
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the rotational energy. Following from the Schrödinger Equation, we find

krl =
√

l(l + 1). (1.22)

The point r = rl corresponds to the classical turning point, where the kinetic energy
is 0 and we neglect the interaction potential U(r) (which is true for rl≫RvdW).
Comparing the two length scales gives

RvdW ≪ rl =

√

l(l + 1)

k
. (1.23)

The first inequality in this equation defines the zero-temperature limit. Following,
this limit can be expressed as kth→ 0. So if this limit is reached, the waves in the
l > 0 channels will avoid the scattering center. This means that for l > 0, the phase
shift δl vanishes i.e. limk→0 δl =0.

When considering bosons, the scattering cross section can, in the limit of cold-
collisions, be written as

σk ≃
k→0

8π

k2
sin2 δ0(k). (1.24)

From here on, we will, unless otherwise specified, assume s-wave scattering of
identical bosons.

1.1.10. Scattering Length

In the previous section, we have seen that the limit of cold-collisions greatly simpli-
fies the problem, because we only need to consider s-wave scattering. This same
limit allows us to further simplify the problem. In order to do so, let us define a
which is the zero-temperature limit of fk [151],

a ≡ − lim
k→0

fk = − lim
k→0

δ0(k)

k
. (1.25)

The length scale that is defined here is the scattering length a, which is a measure
of the strength of the scattering. When this result is plugged into Equation (1.24),
the zero-energy limit of the collisional cross section is found

σk ≃
k→0
8πa2. (1.26)

To physically understand the scattering length, we will consider the long-range
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Figure 1.4.: (a) Interatomic induced dipole-dipole interaction potential Ueft(r). (b) Nu-
merical solution of the wavefunction uk0(r) for the interatomic potential
(solid blue line) and the long-range solution extended towards r =0: vk0(r)
(dashed red line). In the low energy limit, the red dot corresponds to
r = rP≡ a and geometrically shows the scattering length a as the distance
between the point rP and the origin.
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behavior of the wavefunction (see Equation (1.5) for the definition of uk0(r)) and
extend that to the short range region:

vk0(r) ≡ lim
r→∞

uk0(r)

= C sin (kr + δ0(k)) . (1.27)

In Figure 1.4, the long-range behavior extended to the short-range is depicted.
The red dot in the figure corresponds to the point r = rP≡ − δ0/k . In the limit of
cold collisions k→ 0 this point corresponds to the scattering length a (see Equa-
tion (1.25)).

We can also define a in a different manner, which, in the limit of cold-collisions,
is equivalent to the above definition. In order to do so let us look at the expansion
of vk0(r) (Equation (1.27)) in terms of k up to first order in k

vk0(r) ≃
k→0

kr cos δ0 + sin δ0. (1.28)

In this case, the zero-crossing is given by rP= − (1/k) sin δ0/ cos δ0= − tan δ0/k .
So an equivalent definition of the scattering length a is

a = − lim
k→0

tan δ0(k)

k
. (1.29)

This definition shows that δ0(k) needs to be defined up to a factor of π and it is
sufficient to consider δ0(k) to be between −π/2 and π/2. This statement can be
graphically interpreted by considering Figure 1.4 and imagining that π was added
to δ0. This would shift the wavefunction and change the slope direction of the first
intersection, but it would not change the position of the intersection.

Using the previous results, we are in a position to write down the wavefunction
vk0. Here we have chosen the normalization vk0(0)=C.

vk0(r) =







C
(
1− r

a

)
if k = 0

C
(
sin(kr+δ0(k))
sin δ0(k)

)

if k 6= 0,
(1.30)

where the first case follows directly from Equations (1.28) and (1.29).

The result for k =0 is the Bethe-Peierls boundary condition for two particles
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[152]. In terms of the wavefunction, this condition is written as

ψ ≃
r→0

C

(
1

r
− 1
a

)

. (1.31)

This result includes all the information about the short-range in a single condition
close to zero. In the rest of this thesis, we will be interested in the long-range
behavior of the two-particle system and use the boundary condition to include the
short-range physics.

1.2. Feshbach Resonances - Tuning the Scattering Length

1.2.1. Two-Channel Model

In this section, we will consider a simple model to understand the properties and
the physical origin of Feshbach resonances. For a more elaborated discussion, we
refer the reader to a review on Feshbach resonances [48].

In Figure 1.5a we have plotted two molecular potentials: Vbg(r) (the entrance or
open channel) and Vc(r) (the closed channel). Let us consider to be in the limit of
ultracold collisions, then the collisional energy E≈ 0. When there is a bound state
in the closed channel, with energy Ec, that is close to the asymptotic potential
energy in the open channel (by definition E=0) the scattering in the open channel
is modified. Due to the different magnetic moments of the two channels, the
relative offset of the closed channel can be modified by changing the magnetic
field, which will change the value of Ec. Around the point Ec=0 the scattering
length can be tuned from −0 to +0, through ±∞. This resonant behavior is called
a Feshbach-resonance and is described by the following equation [153],

a(B) = abg

(

1− ∆

B − B0

)

, (1.32)

where abg is the background scattering length, ∆ is the width of the resonance in
magnetic field and B0 is the resonance position.

In order to have a Feshbach resonance, however, there needs to be a small
coupling of the bound state to the open channel threshold. Usually in alkali atoms,
this coupling is mediated by hyperfine interactions between the nuclear spin and
the spin of the valence electrons of the colliding atoms. The state of the coupled
system2, is the so called dressed state with energy Eb. The coupling strength of

2The coupling of a discrete state to the continuum is described in [154]
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the bound state to the continuum determines the width of the resonance. When
Eb is positive the dressed bound state is “virtual”, meaning that it influences the
scattering, but it is not an accessible state. This situation corresponds to the right
side of Figure 1.5b. The other situation is a negative Eb, in this case there is a real
bound state, because it is below the continuum. This state is a molecular state
and named the weakly bound dimer. In Figure 1.5b this situation corresponds to
the left side of the Feshbach resonance or the positive-a side.

The energy of the dressed state on the positive-a side is indicated by the blue solid
line in Figure 1.5b. Far away from the resonance, the dressed state is dominated by
the closed channel, indicated by the linear slope given by the difference in magnetic
moment of the molecule in the closed channel an the free atoms in the open channel
dµ. Closer to the resonance the behavior becomes quadratic and the weakly bound
dimer becomes a dressed state, see the inset of Figure 1.5b. Even closer to the
resonance, the dimer energy approaches the continuum energy and its character
becomes open channel dominated. At the resonance, the dressed state crosses
the continuum. These different regimes are determined by the strength of the
resonance sres, which is related to the width of the resonance, the background
scattering length abg and dµ [48].

Close to the resonance, when a≫RvdW, the scattering becomes universal. This
means that all the scattering properties are described by a universal parameter: the
scattering length a. The energy of the weakly bound dimer is given by

Eb = −
~
2

2µa2
= − ~

2

ma2
, (1.33)

which varies quadratically with the scattering length. This is depicted in the inset
of Figure 1.5b.

1.2.2. Determining the Position and Width

Theoretically predicting the position and width of a Feshbach resonance is difficult,
because the calculation of the scattering length depends on complex atom-atom
interaction potentials and is very sensitively upon the details of the long-range
potentials. To fully characterize the Feshbach resonance we need the position of
the resonance B0, the background scattering length abg and the resonance width
∆, see Equation (1.32).

The background scattering length abg is usually determined away from Feshbach
resonances by thermalization measurements [48].
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Figure 1.5.: Simplified two-channel model for Feshbach resonances (images taken from
[48]). (a) Two-channel model for describing Feshbach resonances (in our
notation r =R). The molecular potential Vbg(R) (black) is the potential that
two free-particles enter by coming from R→∞: it is termed the entrance
or open channel. The atomic potential Vc(R) (red) is a potential that has a
bound state with energy Ec. At low energy, a Feshbach resonance appears
when the energy Ec→ 0. The relative energy of the bound state can be tuned
with a magnetic field. (b) Scattering length and dressed bound state energy
as a function of magnetic field. Varying the magnetic field allows us to tune
the offset of the closed channel potential with respect to the open channel.
This moves the bound state and modifies the scattering properties through
a. The red line is the scattering length a and the blue line is the energy
of the dressed bound state Eb (i.e. weakly bound dimer) as a function of
magnetic field. The inset shows the quadratic behavior close to the Feshbach
resonance of the dressed bound state. Around the point Eb=0 or B=B0
a Feshbach resonance appears.
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There are several methods to determine the position of the Feshbach resonance
B0. A rough indication of the position can be given by characterizing the inelastic
losses [53, 56, 155–157]. This technique is based on the direct relation between
three-particle losses and the scattering length a: L3∝ a4 [113]. Hence, on reso-
nance the particle losses are most severe and a rough indication of the resonance
position can be given.

Furthermore, the bound state energy of the dimer is converted into kinetic energy.
These dimers might also collide with the other atoms and heat up the cloud. Three-
particle recombination is more severe in high density parts of a cloud, which in a
trap correspond to the atoms with low potential energy. Hence, on average the
particles with less potential energy are lost and anti-evaporation takes place [56].
These two heating effects can also be used to determine the resonance position
[54, 63].

A more accurate method to determine the resonance position is to measure the
binding energy of the weakly bound dimer using Radio Frequency (RF) spectroscopy
[158–160]. RF-radiation tuned to the binding energy of the weakly bound dimer
stimulates the formation of the dimer, on resonance (hν=−Eb), this results in
an increased loss of free atoms. Recently, this technique was used to determine
the position of the Feshbach resonance between the states |1〉 and |2〉 in 6Li. The
result is B0=832.18(8) G, with a remarkable precision of 80 mG [161].

The width of the resonance is given by the difference in magnetic field between
the position of the resonance B0 and the zero-crossing of the scattering length.
The zero-crossing is usually determined by monitoring elastic collisions, through the
thermalization rate [78, 78, 162–167]. When the scattering length crosses zero the
rethermalization rate vanishes and no evaporation occurs.

Combining the results of both photo-association spectroscopy and these precision
measurements, theorists predict a(B) using multi-channel analysis (see for example
[48]).

Together the Feshbach resonance position B0, the resonance width ∆ and the
background scattering length abg fully characterize the properties of the Feshbach
resonance.

1.3. Summary

In this chapter, we have discussed two-particle scattering. We have derived the
effect of scattering from first principle and by doing so introduced the concepts
scattering amplitude, scattering cross section and scattering length. These prop-
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erties are useful in the many-particle scattering problem, as we will see for the
three-particle problem in Chapter 2.

To summarize the results of this chapter let us construct a Zero Range Model
(ZRM), which condenses all the information about the scattering potential into a
boundary condition at r =0

1. Free particle Hamiltonian: when the two particles i and j are not on top of
each other (ri j > 0):

− ~
2

2m

2∑

i=1

∆∆∆ri ψ = E ψ (1.34)

2. Two-particle contact condition: when the two particles i and j come close
to each other (i.e. ri j→ 0):

ψ(ri j) ≃
ri j→0

C

(
1

ri j
− 1
a

)

. (1.35)

The usage of a ZRM turns out to be useful in the extension of few- to many-particle
physics.

Finally, we have discussed the tuning of the scattering length through the usage
of Feshbach resonances and introduced the weakly bound dimer state.
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2. Three-Particle Scattering

In this chapter, we are going to investigate the quantum mechanical three-particle
problem as a first step towards many-particle systems. In quantum mechanics, the
three-particle problem initially became of interest to describe the orbit of electrons
around the nucleus of an atom. Later on, the nuclear physics community grew in-
terested in the three-particle problem for better describing the interactions between
nuclei and between quarks in these nuclei.

In the following, we will describe the scattering of three particles in free space. We
will derive the quantities of interest using the analogies to the two-particle scattering
system. We will start with the introduction of the three-particle Hamiltonian, which
will then be written in hyperspherical coordinates. To solve the Hamiltonian, we
will consider three scattering regimes: the range of the interaction, the short-range
and the long-range.

In this limit the short-distance (R≪ a), the system simplifies to the unitary
interactions case (a→∞). The wavefunction is greatly simplified due to the pos-
sibility to separate the hyperradial from the hyperangular part. The hyperradial
Schrödinger Equation is written down and a set of effective potentials, due to
geometrical effects, is identified. These potentials have a 1/R2 behavior. In the
case of three identical bosons, there is one attractive 1/R2 potential, the Efimov
channel [118]. We will give the solutions of the radial Schrödinger equation and
identify them as incoming and outgoing waves. The incoming and outgoing hy-
perradial waves are used to include the effect of the scattering center by adding a
phase factor to the outgoing wave. Afterwards, we will introduce a toy model to
understand the physical meaning of the phase shift. Then, the full model is used to
show that the potential allows for infinitely many trimer bound states: the Efimov
trimers. These trimer states are separated in energy by a universal factor.

In the long-range there are two possible cases: unitary (a→∞, hence R≪a)
and finite (R≫ a) interactions. We will couple both cases to the short-range and
show that the coupling is analogues for both cases.

Afterwards, inelastic scattering is introduced into the three-particle scattering
problem. We will replace the results obtained in the elastic scattering problem by
an analog for inelastic scattering. Furthermore, the flux of the wavefunction is used

21
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to calculate the three-particle loss coefficient, which is discussed in great detail.
Finally, we will show that at unitarity the three-particle losses show log-periodic
oscillation behavior.

The theory that will be presented in this chapter was derived by Dmitry Petrov
and Felix Werner; cf. [143], and are strongly based on their unpublished notes
[144].

2.1. Elastic Scattering

Having discussed the two particle scattering problem, in Chapter 1, we are now in
a position to extend this to the three-particle problem. We will start by introducing
the hyperspherical Hamiltonian in the two-particle Zero-Range model (ZRM) and
introduce an additional three-particle condition to the ZRM. In order to find the
wavefunction of the problem, we will apply a separability of coordinates ansatz (in
Appendix A.4, we show the validity of this ansatz). Finally, the wavefunctions are
given and the properties of the three-particle scattering system are discussed (for
more information about the three-particle problem, we refer the reader to a review
of the subject in [168]).

2.1.1. Three-Particle Hamiltonian

r1r1r1 r2r2r2
rrr

r3r3r3

√
3

2
ρρρ

Figure 2.1.: The three-particle system. The vectors ri with i ∈ {1, 2, 3} correspond to
the positions of the individual particles. The Jacobi coordinates r and ρ are
defined by r = r111− r222 and

√
3/2 ρ= r333− (r111+ r222) /2, respectively.

The three-particle Hamiltonian in the center of mass frame is given by
[

−~
2

m
(∆r + ∆ρ) + V (r , ρ)

]

ψ(r , ρ) = E ψ(r , ρ),
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where we have introduced the Jacobian coordinates r = r1− r2 and
ρ=2/

√
3 (r3− (r1+ r2)/2). V (r , ρ) is the interaction potential for the three parti-

cles. The kinetic part of this Hamiltonian includes two terms: on the one hand the
relative motion r through ∆r and on the other hand the relative motion ρ through
∆ρ. In Figure 2.1, these relative coordinates are depicted.

2.1.2. Hyperangular Problem

In order to solve the problem, we use a new set of coordinates: the hyperspheri-
cal coordinates. In the Jacobian coordinate system, the coordinates are given by
{r , ρ}= {r, r̂ , ρ, ρ̂}. Transforming these coordinates to hyperspherical coordinates
gives us R= {R,α, r̂ , ρ̂}, where R is the hyperradius given by
R=

√

(r 2 + ρ2)/2 and α= arctan(r/ρ) ∈ [−π/2, π/2] is the angle that marks
the ratio between the distances r and ρ. It is practical to use the hyperspherical
angles: ΩΩΩ= {α, r̂ , ρ̂}.

Using the notation introduced in [168], the Hamiltonian can be rewritten in the
following form:

(

TR + Tα +
1

2m

Λ2

R2
+ V (R,ΩΩΩ)

)

ψ(R,ΩΩΩ) = E ψ(R,ΩΩΩ), (2.1)

where we have separated the distance parts TR and Tα from the angular part given
by the generalized angular momentum operator Λ2.

Λ2 =
L2r
sin2 α

+
L2ρ
cos2 α

,

TR = −
~
2

2m

[
∂2

∂R2
+
5

R

∂

∂R

]

,

Tα = −
~
2

2m

1

R2

[
∂2

∂α2
+ 4cot(2α)

∂

∂α

]

.

Λ2 is the sum of the angular momentum of each pair weighted by their relative
pair sizes. TR is the kinetic energy associated to the hyperradial movement, Tα
is the kinetic energy associated to the relative pair movement. It is convenient to
combine the relative pair and angular movement into one hyperangular operator
TΩΩΩ≡R2Tα+ 1

2m
Λ2.

In general, the solution ψ(R,ΩΩΩ) is not factorizable into a hyperradial and hyper-
angular part. A convenient way of writing the wavefunction, is to use the adiabatic
hyperspherical representation [168], which expresses the wavefunction ψ in each
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point R in terms of the orthonormal set of hyperangular functions Φn(R,ΩΩΩ),

ψ(R,ΩΩΩ) = R−5/2
∑

n

fn(R)Φn(R,ΩΩΩ). (2.2)

where Φn(R,ΩΩΩ) are the solutions of the hyperangular equation

[
TΩΩΩ
R2
+ V (R,ΩΩΩ)

]

Φn(R,ΩΩΩ) = Vn(R)Φn(R,ΩΩΩ), (2.3)

where Vn(R) are the eigenvalues for a specific hyperradius R.

2.1.3. Scattering Regimes

R

I II III

0 Rc Rm

Figure 2.2.: The scattering regimes. I. the range of the interactions, typically Rc∼RvdW.
II. the short-range Rc<R<Rm, where Rm≡ min(|a|, 1/kth). III. the long-
range R>Rm

The three-particle problem can be separated into three-regimes (see Figure 2.2):
I. range of the interactions, typically R≪Rc∼RvdW; II. short-range (SR):
Rc≪R≪Rm≡ min(|a|, 1/kth); III. long-range (LR): Rm≪R. In the two-particle
problem, Regime II and III are combined, because the solutions are known over the
whole range. In other words, there is only the range of the interaction defined by
the van der Waals length RvdW and the long-range. In the three-particle problem,
the solutions, in general, are not analytically known across the boundary between
Regimes II and III. However, the limiting cases R≪ a and R≫ a are analytically
solvable. The first case corresponds to the solutions in Regime II and the second
case to the solutions in Regime III. Let us note that for resonant interactions a→∞
the condition R≪ a is always fulfilled and the solutions are known over the whole
range. It would then not be necessary to consider Regime II and III separately.
However, to keep the analogy with the finite interactions case we will use it. When
the solutions in both regimes are known, we will connect the long-range regime III
to the short-range regime II. Let us start with the resonant interactions case.
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2.2. Unitary Interactions - Efimov’s Ansatz

The solutions of Equation (2.1) are, in general, not factorizable and solving the
hyperangular problem is difficult (see, for example [168], and references therein).
However, in 1970, Efimov showed that the problem is simplified if unitary two-
particle interactions are considered (a→∞). In this case, a separability Ansatz
can be used (see Appendx A.4). For all R, the wavefunction can then be projected
onto the orthonormal set of hyperangular Efimov states lima→∞Φn(R,ΩΩΩ)=φn(ΩΩΩ)
which do not depend on the hyperradius R,

ψ(R,ΩΩΩ) = R−2
∑

n

Fn(R)φn(ΩΩΩ). (2.4)

The hyperradial wavefunctions Fn(R) are the known solutions of the one-dimensional
hyperradial Schrödinger Equation

− ~
2

2m

[
∂2

∂R2
+
1

R

∂

∂R
− λ2n
R2

]

Fn(R) = E Fn(R), (2.5)

and the hyperangular wavefunctions φn are the solutions of the hyperangular equa-
tion

TΩΩΩ φn(ΩΩΩ) = λn φn(ΩΩΩ).

The projection of the wavefunction onto these states we will call a wave in Channel
n. For three identical bosons the spectrum of solutions is given by

λ = {i s0, s1, s2, . . .},

where sn ∈R+. The 0th-channel with s0≈ 1.00624 indicates the Efimov Channel.

2.2.1. Hyperspherical Waves

In Equation (2.5), we see that the term s2n/R
2 can be regarded as a potential term,

which is graphically depicted in Figure 2.3a. The potentials with λ∈R are purely
repulsive at R→ 0 and do not support any bound states. We will ignore these
potentials and focus on the attractive − s20/R2 Efimov potential, which has some
interesting properties.

Let us consider the case where the particles are outside of the range of the
interactions, in Regime II. The solutions of the hyperradial Schrödinger Equation
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Figure 2.3.: The potentials corresponding to the Efimov potential channels in Equa-
tion (2.5). In (a) we see a selection of Efimov potentials where the dashed
blue lines correspond to the collection of repulsive potentials given by the
spectrum {s1, s2, s3, ...}= {4.47, 6.82, 9.32, ...} [169]. In bold red, we depict
the attractive −s20/R2 potential giving rise to Efimov physics. In (b) only
the attractive −s20/R2 is shown (bold red), and in dashed gold we render
part of the infinite spectrum of three-particle bound states supported by the
Efimov potential.

for s0 with E > 0 are given by a linear combination of Bessel functions Jν(x)

Fi s0(R) = AJ+i s0(kR) + B J−i s0(kR), (2.6)

where k is the hyperradial wavenumber defined by the hyperspherical plane wave
energy E= ~2k2/(2m), evolving in a 6d space. We will solve the problem for any
value of k and later on integrate over k to describe finite temperature effects. The
solution consists of two parts: a wave going towards the center (R=0): J−i s0(kR)
and a wave going away from the center: J+i s0(kR) (see Appendix A.2 for the
behavior of these “waves”). The coefficients A and B are the amplitudes of the
waves.

2.2.2. Short-Distance Scattering - R<Rm

We will start this section by discussing Regime II. In that regime the Schrödinger
Equation is simplified and we are able to write down the solution in the form of
an incoming and outgoing wave. The effect of Regime I is imposed by a boundary
condition at R=0 in Regime II (see Section 1.1.5, for analogy with two-particle
scattering) and used to show the existence of trimer bound-states (the Efimov
trimers). To do so let us look at the short-range solutions of Equation 2.6.
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Close to R=0, but still outside of the range of the interactions, R≫Rc, the
hyperradial wavefunction is given by

Fi s0(R) ≃
R→0

1√
s0

[
Ain1 (kR)

+i s0 + Aout1 (kR)
−i s0
]

=
R→0

1√
s0

[
Ain1 e

+i s0 ln(kR) + Aout1 e−i s0 ln(kR)
]
. (2.7)

The amplitudes Ain1 and Aout1 are introduced to define the solution in the short-range
(Regime II, which is indicated by the index 1). In terms of the wavefunction, this
becomes

ψ(R,ΩΩΩ) ≃
R→0

Ain1 ϕ
in
1 + A

out
1 ϕout1 , (2.8)

where we have used the following definitions for the incoming and outgoing waves:

ϕin1 ≡ φi s0(ΩΩΩ)
(kR)+i s0

R2
√
s0
,

ϕout1 ≡ φi s0(ΩΩΩ)
(kR)−i s0

R2
√
s0
= (ϕin1 )

∗. (2.9)

We have defined incoming and outgoing waves with respect to the boundary be-
tween Regime II and III (R=Rm). This means that waves going away from R=Rm
are outgoing waves and waves coming towards R=Rm are incoming. In Ap-
pendix A.2, we will show that these waves have a flux vector in the radial direction,
which distinguishes the incoming from the outgoing wave. With the short-range
non-interacting wavefunctions at hand, we are now able to introduce elastic scat-
tering, coming from Regime I, into the problem.

2.2.2.1. Elastic Scattering

In Section 1.1.5, we have seen the procedure to include scattering into the two-
particle problem. This was done by a phase factor between the incoming and
outgoing waves. This phase was acquired in the interaction regime, but only used
outside the range of the interactions. A boundary condition at r =0 contained all
the information about the interactions.

For the three-particle system, we will employ the same principle. The interactions
from Regime I are included by introducing a phase factor between the incoming and
outgoing waves in Regime II (outside the range of the interactions).

In Equation (2.7), the radial wavefunction was given and if we include a phase
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Elastic
k1

k2

k3

Figure 2.4.: Elastic scattering. The total kinetic energy and total momentum are con-
served. The incoming and outgoing wavefunctions differ only by a phase
factor.

due to scattering into that equation, the following is obtained:

Fi s0(R) ≃
R→0

Aout1√
s0

[
e−i s0 ln(kR) + e+i s0 ln(kR)+i 2δ(k)

]
.

Following Efimov, let us cast δ into the form δ(k)≡− s0 ln kRt+π/2. Here Rt is the
three-particle Efimov parameter. We can then reformulate the radial wavefunction
as:

Fi s0(R) ≃
R→0

Aout1√
s0

[
e−i s0 lnR/Rt − e+i s0 lnR/Rt

]
.

The physical meaning of Rt will be extensively discussed in Section 2.2.2.2.
In terms of the full wavefunction the effect of the elastic scattering can be written

as:

ψ ≃
R→0

Aout1
[
ϕout1 +Aelϕin1

]
, (2.10)

where Ael≡− (kRt)−2is0 can be considered as the boundary condition of the prob-
lem at R=0. This is analogous to the sl in Section 1.1.5.

2.2.2.2. Efimov Bound States

The− 1/R2 potential is scale-invariant1, which means that there is no characteristic
scale of the potential (unlike RvdW for a −1/R6 van der Waals potential) and the
potential supports an infinite number of bound states. The introduction of Rt into
the wavefunction gives a characteristic scale to the −1/R2 potential and fixes the

1If the Hamiltonian is of the form H(x)= p2

2m + V (x) and V (x) has the form V (x)∝ 1/x2, then
for a scaling parameter λ, we can write H(λx)= 1

λ2H(x). This marks the scale invariance of
the Hamiltonian.
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positions of the bound states.

R

V (R)

Rb

Figure 2.5.: A toy-model describing the physics of the three-particle problem using a
wall at R=Rb. The blue curve is the −s20/R2 potential describing the
Efimov physics. The red lines are graphical representations of the bound
states of the Efimov potential given by Equation (2.11). Imposing a node
for the wavefunction at R=Rb implies that the three-particle parameter
Rt=Rbe

ins0 with n∈Z.

To get a more physical meaning of this Rt let us look at a toy model. This
system has a potential barrier placed at some distance R=Rb from the origin.
The potential is shown in Figure 2.5 and it shows that the energy of the bound
states is bounded from below and that Rb is a characteristic length scale of the
potential.

The infinite wall at R=Rb implies that the wavefunction has a node at Rb. At
the points R=Rb, the wavefunction reads

ψ(Rb,ΩΩΩ) ≃
R→0

A
φi s0(ΩΩΩ)

R−5/2
[
e−i s0 lnRb/Rt − e+i s0 lnRb/Rt

]

from here we can see that Rb should be equal to Rt for the wavefunction to vanish.

Returning to the full problem the energy spectrum is given by [168]

Et =
~
2

m

2

R2t
e−(2π/s0)(n−nt)+2 arg Γ(1+i s0)/s0 with n ∈ Z, (2.11)

which is defined up to a factor e2π/s0 ≈ (22.7)2. The integer number nt is the energy
state with characteristic length Rt. This is the infinite serie of Efimov states as
predicted in [118]. For the toy model, we use n∈N, because the energy spectrum
is bounded from below by the barrier at R=Rb. The resulting bound states are
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graphically depicted in Figure 2.3 and for the toy model with a barrier at Rb in
Figure 2.5.

The parameter Rt is predicted to depend on the characteristic length scale of
the two-particle problem RvdW [131–136]. Initial experiments on different atoms
suggested this remarkable universality (see for a comparison [121]). Experiments on
133Cs with six different Feshbach resonances found that a−/ā ≃− 9.5(4) [121, 129].
For 39K five intermediate Feshbach resonances were studied and they also found
values close to a−/ā ≃− 9.5. The parameters a− and ā are the position of the
Efimov resonance2 and the mean scattering length3, respectively. This topic is still
debated and a strong motivation to further explore three-particle physics.

2.2.2.3. Zero-Range Model

The result from Section 2.2.2.1, includes elastic scattering of three-particles into
the wavefunction. This result can be used in a ZRM as a three-particle contact
condition at R=0. Together with the condition from the ZRM for two-particle
scattering these conditions form a ZRM for three-particle systems. Let us list the
conditions for the three-particle ZRM:

1. Free particle Hamiltonian: when two particles are not on top of each other
(ri j > 0):

− ~
2

2m

2∑

i=1

∆∆∆ri ψ = E ψ (2.12)

2. Two-particle contact condition: when ri j→ 0:

ψ ≃
ri j→0

A

(
1

ri j
− 1
a

)

. (2.13)

3. Three-particle contact condition: when R→ 0:

ψ(R,ΩΩΩ) ≃
R→0

Aout1
φi s0
R−5/2

[
e−i s0 lnR/Rt − e+i s0 lnR/Rt

]
(2.14)

For simplicity, the last condition can also be written as ψ=Aout1
[
ϕout1 +Aelϕin1

]
,

where Ael=− (kRt)−2is0.
2a− is related to Rt via Rt= a− exp (−(δ0 − π/2)/s0) ≈ 0.983a−, where δ0=1.588 [170]
3ā is related to RvdW via ā=

[
4π/Γ(1/4)2

]
RvdW



2.2 Unitary Interactions - Efimov’s Ansatz 31

From now on, the scattering will be considered in the ZRM, meaning that we work
under the conditions above. The result of the scattering problem is summarized by
the following: If the amplitude and phase of the incoming wave are known, the full
wavefunction in the short-range (Regime II) is known.

2.2.3. Long-Distance Scattering

In Section 2.2.2, the short-distance scattering was considered (Regime II). The
result of that section is a boundary condition at R=0. This boundary condition
determines the wavefunction in the short-range, with the only degree of freedom the
amplitude Aout1 of the wave going into the short-range, according to Equation (2.7).

In the following, we will describe Regime III and find the solutions of the Schrödinger
Equation in this regime. These solutions are then coupled to Regime II, through
an s-matrix formalism, which will provide us with a relation between Aout1 and the
amplitude of the incoming wave in Regime III (R≫Rm).

2.2.3.1. Long-Range Wavefunction

In the long-range, with resonant interactions, the system is correctly described by
the hyperradial Schrödinger Equation given in Equation (2.5), with the solutions
being the hyperradial wavefunctions given by Equation (2.6). However, the Bessel
functions in the limit kR→∞ are different and the long-distance wavefunctions
are given by the linear superposition

Fi s0(R) ≃
R→∞

1√
kR

[
Aout3 e+ikR + Ain3 e

−ikR] , (2.15)

where Aout3 and Ain3 are the amplitudes of, respectively, the incoming and outgoing
waves4. These terms are incoming and outgoing hyperspherical waves with relative
momentum k = |k | in the long-distance. In terms of the wavefunction, we can write
this as

ψ(R,ΩΩΩ) =
R→∞

Aout3 ϕout3 + A
in
3 ϕ

out
3 , (2.16)

4The index 3 is used to indicate that we use these in the long-range (Regime III)
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where we have introduced the incoming and outgoing waves by,

ϕin3 ≡ φi s0
e−ikR

R2
√
kR

ϕout3 ≡ φi s0
e+ikR

R2
√
kR
=
(
ϕin3
)∗
. (2.17)

In the following, we will show how these waves couple to the short-range in Regime
II.

2.2.3.2. Coupling of the Long-Range to the Short-Range

To describe the coupling between the long-range and the short-range, we will em-
ploy an s-matrix technique. In order to do so, we need to define the channels
that are available for the scattering. In the short-range, there is only the Efimov
Channel (Channel 1) with incoming and outgoing waves, which are given by Equa-
tion (2.9). For unitary interactions in the long-range, there is also only one channel
with an incoming and an outgoing wave, which are given by Equation (2.17), this
is Channel 3.

In order to define the s-matrix and obtain information about the system, we will
describe the stationary flow of atoms which are injected at the origin R=0 (see
Figure 2.2) and see how it evolves into the system. The wavefunction describing
this is given by

ψ1

{ ≃
R→0

ϕin1 + s11ϕ
out
1

≃
R→∞

s31ϕ
out
3

. (2.18)

The short-range wavefunction shows a wave going away from the center and part of
it being reflected back into the short-range. The parameter s11 indicates the reflec-
tion from Channel 1 back into Channel 1. The long-range part of the wavefunction
shows that a part of the wavefunction is transmitted from the short-range into the
long-range. The transmission is given by the parameter s31. The full s-matrix is
given by,

s =

(
s11 s13
s31 s33

)

. (2.19)

The s-matrix was shown to be unitary [143], meaning that the total flux is con-
served. Physically, the system has time reversal symmetry, which means that the
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matrix is symmetrical, s13= s31.

Using our knowledge about the s-matrix, we can write down the relations between
the amplitudes of all the waves:

Aout1 = s11A
in
1 + s13A

in
3 ,

Aout3 = s31A
in
1 + s33A

in
3 . (2.20)

We can use this to obtain the following relation, between the incoming and outgoing
waves

Aout3 =

[

s33 +
(s13)

2Ael
1− s11Ael

]

Ain3 ,

Aout3 = s
′Ain3 (2.21)

This is a direct relation, in Regime III, between the amplitude of the incoming wave
and the amplitude of the outgoing wave.

2.3. Finite-a - Hyperspherical Channels

On the positive-a side, there exists a weakly bound dimer with energy ∝ 1/a2. The
three-particle scattering must then include atom-dimer scattering, which compli-
cates the derivation. To circumvent this, we will only consider the negative-a side,
where this dimer is absent. The three-particle recombination rate that we derive
now, thus describes direct recombination into deeply-bound dimer states. In Sec-
tion 2.5.1, we will briefly touch upon the case where this weakly bound dimer is
present.

2.3.1. Long-Distance Scattering

In general, the solution of Equation (2.1) is not factorizable, but for the following
it suffices to only know the short- and long-range limits (R≪ a and R≫ a, re-
spectively). In the short-range, we already found the solutions (see Section 2.2.2).
Hence, it only remains to connect the long-range to the short-range. In other
words, we will consider Regime III and connect that to Regime II (see Figure 2.1.3
for the regimes).
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2.3.1.1. Long-Range Wavefunction

In the long-range limit R≫ a, the hyperspherical harmonics are the solutions of
Equation (2.3), with V (R,ΩΩΩ)=0. They only depend on the hyperangles ΩΩΩ, i.e.

Φn(R,ΩΩΩ)→Φn(ΩΩΩ) (see Appendix A.1.4). In this limit, the wavefunction can be
factorized into a hyperradial and hyperangular part. The resulting wavefunction is
given by

ψ(R) ≃
R→∞

∑

n∈C∞

(
Aoutn ϕinn + A

in
nϕ
out
n

)
. (2.22)

Here we have introduced the incoming and outgoing waves

ϕinn ≡
R→∞

Φ∗n(ΩΩΩ)
e−ikR

R2
√
kR

,

ϕoutn ≡
R→∞

Φn(ΩΩΩ)
e+ikR

R2
√
kR
= (ϕinn )

∗.

The wavefunction above is projected onto the basis of hyperspherical harmonics,
given by {Φn(ΩΩΩ)}n∈C∞. The set of integer numbers C∞= {3, 4, . . .} was defined
to identify the long-range channels. The hyperspherical harmonics have the fol-
lowing properties: they are an orthonormal complete set of functions, with respect
to the inner product given by (φ1|φ2)≡

∫
dΩΩΩφ∗1(ΩΩΩ)φ2(ΩΩΩ). A

out
n and Ainn are the

amplitudes of the outgoing and incoming waves in the long-range Channel n. Hav-
ing defined the wavefunction in the long-range, the next step is to connect the
long-range to the short-range.

2.3.1.2. Coupling of the Long-Range to the Short-Range

In order to couple the long-range to the short-range, we will use the s-matrix
technique (see Section 2.3.1.2). In the short-range, the waves in Channel 1 are
given by Equation (2.9). In the long-range, the waves are given by Equation (2.22).
There are infinitely many channels in the long-range, which are all coupled to the
Channel 1 in the short-range. The set C ≡{1; 3, 4, . . .} is a list of integers defining
all the channels. To define the s-matrix and obtain information about the system,
we have to look at the system by injecting a stationary flow of particles and see
how the system evolves.

Consider a stationary flow of particles that is injected into Channel 1. In the
short-range, there is a wave going towards the long-range regime and a wave re-
flected back into the short-range with phase s11. In the long-range, part of the
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wave in Channel 1 will be transmitted into Channel n, with an amplitude given by
sn1.

On the other hand, when a stationary flow of particles is injected into the long-
range Channel n∈C∞, there will be a wave traveling towards the short-range and
a part that has been reflected back into the long-range Channel m∈C∞. The
projection of this reflected wave is given by smn. The part of the wave that is
transmitted into Channel 1 will have the projection s1n.

Let us summarize these rules with a wavefunction describing the injection of a
stationary flow of particles in Channel n∈C:

ψn

{ ≃
R→0

δn,1ϕ
in
1 + s1nϕ

out
1

≃
R→∞

(1− δn,1)ϕinn +
∑

m∈C∞ smnϕ
out
m .

(2.23)

The transmission and reflection coefficients form the s-matrix given by

s =









s11 s13 s14 · · ·
s31 s33 · · · · · ·
s41

... s44
...

...
. . .









. (2.24)

By definition, there is only coupling from the long-range states into the short-range
states. Also important to notice is that due to the conservation of flux between the
short- and long-range the matrix is unitary, and the sum of the amplitudes squared
∑

n∈C |sn1|2=1. The matrix has time-reversal symmetry, which implies that it is
symmetrical with s1n= sn1 for n∈C.

The relations between the amplitudes of the different waves are also described by
the s-matrix. Let us combine the knowledge of the wavefunctions in the short-range
for Equation (2.8) and in the long-range from Equation (2.22):

ψn

{ ≃
R→0

Ain1ϕ
in
1 + A

out
1 ϕout1

≃
R→∞

Ainnϕ
in
n +

∑

m∈C∞ A
out
m ϕoutm

. (2.25)

Comparing Equation (2.23) with Equation (2.25) gives the following relation be-
tween the amplitude Aoutn and Ainn (n∈C):

Aoutn =
∑

m∈C
snmA

in
m. (2.26)
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It is straight-forward to combine these relations with the boundary condition in the
short-range limit and obtain in an “industrial way” the solution to the scattering
problem. However, in the following we will introduce a basis change which simplifies
the problem to a two-channel problem, which is a direct analog to the unitary case
(see Section 2.2).

2.3.1.3. Effective Two-Channel System

Equation (2.26) includes the coupling of the long-range channels n∈C∞ to the
short-range Efimov channel. This suggests that it should be possible to use a dif-
ferent basis, where, instead of looking at all the long-range channels and calculating
how they couple to the short-range, we instead consider an effective Channel 3̃,
with a hyperangular wavefunction given by Φ̃3. This channel will have an effective
coupling to the short-range given by s̃31. This effective channel can be defined by

s̃31Φ̃3(ΩΩΩ) =
∑

m∈C∞
sm1Φm(ΩΩΩ).

The effective coupling can then be defined by imposing that the scalar product
(Φ̃3|Φ̃3)=1,

|s̃31|2 =
∑

m∈C∞
|sm1|2.

The incoming and outgoing waves at R→∞ are in this case defined by

ϕ̃inn ≡ Φ̃∗n(ΩΩΩ)
e−ikR

R2
√
kR

,

ϕ̃outn ≡ Φ̃n(ΩΩΩ)
e+ikR

R2
√
kR
=
(
ϕ̃inn
)∗
.

The s̃-matrix now becomes

s̃ =








s̃11 s̃13 0 · · ·
s̃13 s̃33 0 · · ·
0 0 s̃44
...

...
. . .







. (2.27)
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This matrix has only coupling between Channel 1 and Channel 3̃, hence, it suffices
to only consider the 2× 2-matrix in the upper left corner. Since, Channel 1 is still
given by the Efimov channel the reflection s̃11 is the same as s11.

In order to calculate the ratio of the incoming and outgoing amplitudes we use
the s̃-matrix relations between the amplitudes:

Ãout1 = s11Ã
in
1 + s̃13Ã

in
3

Ãout3 = s̃31Ã
in
1 + s̃33Ã

in
3

and the boundary condition given by Equation (2.14). These equations have ex-
actly the same form as the Equations (2.20). Thus the result of the scattering is
analogous to the resonant case Equation (2.21)

Ãout3 =

[

s̃33 +
(s̃13)

2Ael
1− s11Ael

]

︸ ︷︷ ︸

s̃ ′

Ãin3 , (2.28)

but now s̃ is a function of ka.

2.4. Inelastic Three-Particle Processus

In Sections 2.1 - 2.3, we considered the three-particle problem under the influence
of elastic scattering. The next step is to introduce inelastic scattering. We will
start this section by describing an inelastic scattering process common to the three-
particle problem and introduce this into the analysis of the short-range physics. The
losses occur in the lowest Efimov channel and we will use this knowledge to derive
the three-particle loss coefficient.

2.4.1. Elastic versus Inelastic Scattering

In Figure 2.6b, the formation of a bound state of two particles (dimer) is sketched.
During this process, the bound state energy is transferred to kinetic energy of the
atom-dimer pair. However, since the total momentum needs to be conserved, both
the atom and dimer will carry away equal but oppositely directed momenta.

The decay can only happen into two-types of bound-dimer states: a deeply
bound dimer state or a weakly bound (shallow) dimer state (when it exists). In
the simple two-channel Feshbach resonance picture, as presented in Section 1.2,
the weakly bound dimer is the molecular state in the closed channel with coupling
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Elastic

Inelastic

a

b

k1

k2

k3

Figure 2.6.: Three-particle scattering. There are two possible processes denoted by a and
b. a. Elastic scattering. The total kinetic energy and total momentum
are conserved. The incoming and outgoing wavefunctions differ only by a
phase factor. b. Inelastic scattering. Two of the three particles form a
bound-state. The bound state energy is transferred to kinetic energy of the
particle-dimer pair.

to the continuum (threshold). This state is a non-virtual state on the positive-
a (molecular) side of the Feshbach resonance, with energy Eb∝ 1/a2. Close to
the resonance or on the negative-a side of the resonance, the energy of the state
vanishes, rendering the state virtual. The deeply bound dimers are all the lower
lying bound states, that are not (directly) involved in the appearance of a Feshbach
resonance.

This results in decay into weakly and deeply bound dimers, on the positive-a side,
whereas, on the negative side and at resonance, only recombination into the deeply
bound dimers is present. In the following, we will focus on the negative-a side.

The change of density due to three-particle recombination into deeply bound
dimers in a homogeneous gas is given by

dn

dt
= −L3n3, (2.29)

where n is the density and L3 is the three-particle loss coefficient. In the following,
we will derive L3 for a cloud with scattering length a and temperature T .
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2.4.2. Short-Range

We will now introduce inelastic scattering into the three-particle scattering formal-
ism, which was derived in Section 2.2. The short-range physics will be modified by
changing the boundary condition at R=0.

2.4.2.1. Elastic → Inelastic Scattering

In Section 2.2.2, elastic scattering of three particles was examined. It was intro-
duced by considering the incoming and outgoing wavefunction outside the range
of the potential and arguing how the outgoing wavefunction is modified with re-
spect to the incoming. The modification was done by introducing a phase shift
δ(k)=−s0 ln(kRt)+π/2 to the outgoing wavefunction. In this section, we will
proceed analogously, but in addition to a phase shift we will also reduce the am-
plitude of the outgoing wavefunction. Following the convention of Braaten and
Hammer [168], the reduction of the amplitude is given by e−2η∗. The limit η∗=0,
corresponds to no three-particle losses. The limit η∗→∞ on the other hand causes
all particles reaching R=0 to be lost. In other words, it creates an absorbing wall
at R=0.

The resulting effect on the hyperradial wavefunction is given by

Fi s0(R) ∝
R→0

e−i s0 lnR/Rt − e−2η∗ e+i s0 lnR/Rt. (2.30)

The resulting outgoing hyperradial wavefunction has log-periodic behavior in R and
its amplitude is reduced by an amount of e−2η∗ per scattering event.

2.4.2.2. Inelastic Zero-Range Model (ZRM)

In Section 2.2.2.3, we now replace in Condition 3 Ael by Ainel

3. Three-particle contact condition: when R→ 0:

ψ(R,ΩΩΩ) ≃
R→0

A
φi s0
R−5/2

[
e−i s0 lnR/Rt − e−2η∗ e+i s0 lnR/Rt

]
(2.31)

For simplicity, the last condition can also be written as ψ=Aout1
[
ϕout1 +Ainelϕin1

]
,

where Ainel=−e−2η∗(kRt)−2is0.
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2.4.3. Long-Range

In the previous section, we have described the behavior of the three-particle in-
elastic scattering in the short-range. In this section, we will use the results from
Section 2.3.1, in which the short-range was coupled to the long-range, for both
resonant (Section 2.4.3.1) and finite elastic scattering (Section 2.4.3.2).

In the short-range, we have seen that it suffices to change from Ael to Ainel to
introduce losses. In the long-range, since nothing has changed about the coupling
between the short- and the long-range, the same replacement will be employed.

2.4.3.1. Resonant Interactions: Efimov Physics

The changes of the long-range resonant interactions case (a→∞) are summarized
by the replacement of Ael by Ainel in Equation (2.21) for the relation between the
incoming and outgoing waves

Aout3 =

[

s33 +
(s13)

2Ainel
1− s11Ainel

]

Ain3 ,

Aout3 = s
′Ain3 . (2.32)

2.4.3.2. Finite Interactions

Extending the inelastic scattering problem to finite interactions is also straightfor-
ward. We start with the relation between the incoming and outgoing waves in the
long-range (see Section 2.3.1.2) and replace Ael by Ainel

Ãout3 =

[

s̃33 +
(s̃13)

2Ainel
1− s11Ainel

]

Ãin3 ,

Ãout3 = s̃
′Ãin3 . (2.33)

Other quantities are obtained by simply using this relation.

2.4.4. Flux and Recombination

Above, we have derived the relation between the amplitude of the incoming and out-
going waves in the long-range limit for inelastic scattering (see Sections 2.4.3.1 and 2.4.3.2).
These amplitudes can be used to calculate the losses at R=0 by looking at the
flux through a hypersphere S centered at R=0.
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Let us first define the flux density vector for an arbitrary wavefunction ψ

j [ψ] ≡ ~
m
Im(ψ∗∇∇∇R ψ). (2.34)

The flux ϕloss can then be written as

ϕloss = −
∮

S
j [ψ] · d5S,

=
~

m

∣
∣Ain3
∣
∣
2

(

1−
∣
∣
∣
∣

Aout3
Ain3

∣
∣
∣
∣

2
)

=
~

m

∣
∣(Ain3 )0

∣
∣
2 (
1− |s ′|2

)
, (2.35)

where S is the surface of a hypersphere and d5S≡ n̂ d5S is an infinitesimal surface
area on the hypersphere S with normal vector n̂ pointing away from the center
(see a 2d representation in Figure 1.3). Note that the result is also valid for finite
interactions by replacing Ain3 by Ãin3 and s ′ by s̃ ′. Here we see an important result:
if we know the amplitude of the incoming wave (Ain3 )0 (or (Ãin3 )0 in the case of
finite interactions), we can calculate the flux. Thus, in the end, all we need to
do is connect the initial conditions given by the plane wave ψ(0) in the long-range
limit to the incoming wave ϕin3 (or in the case of finite interactions to ϕ̃in3 ). The
amplitudes of the initial incoming waves are obtained with the Saddle Point Method
(see Appendix A.3):

(Ain3 )0 =
(2π)5/2e+i5π/4

k2
φi s0(−k̂),

(Ãin3 )0 =
(2π)5/2e+i5π/4

k2
Φ̃3(−k̂).

We have to relate the loss coefficient L3(k) to the lost flux ϕloss

L3(a, k) =
3
√
3

2
〈ϕloss〉k̂ , (2.36)

where 〈.〉k̂ is given by the average over the hyperangle k̂ . The term 3
√
3/2 comes

from the Jacobian, when the coordinate system is transformed into the center of
mass frame.
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2.4.5. Temperature Average

As mentioned earlier, our derivation focusses on a thermal non-degenerate gas
of atoms. In this case, the particles momenta are distributed over a Boltzmann
distribution for a given temperature T . This will relate the loss coefficient for
a specific momentum L3(a, k) with relative energy ǫk = ~2k2/m to the thermally
averaged L3(a, T )

L3(a, T ) =

∫∞
0
dk k e−βǫk L3(a, k)
∫∞
0
dk k e−βǫk

. (2.37)

To summarize, let us write the full formula for the three-particle losses using the
knowledge about the amplitudes

L3(a, T ) = L
max
3 (T )

(
1−e−4η∗

) 2

k2th

∫ ∞

0

(1− |s11|2)ke−k2/k2th
|1−e−2η∗(kRt)−2is0s11|2

dk, (2.38)

This is the central formula of this chapter.
The maximum value, as defined by [140], is given by

Lmax3 (T ) = 36
√
3π2
~
5

m3
1

(kBT )2
. (2.39)

Around unitarity, the three-particle loss constant is well approximated by

L3(T ) ≡ L3(∞, T ) = Lmax3 (T )
(
1−e−4η∗

)
, (2.40)

because |s11(∞)| ≈ 0.04 becomes negligible.
For weak interactions, the three-particle loss coefficient recovers the zero-temperature

model [114–117]

L3(a) = lim
kth|a|→0

L3(a, T ). (2.41)

Important properties of Equation (2.38):

• The result is valid for the direct calculation of the resonant (a→∞) and the
finite-a interactions cases, with the only parameter being s11(ka).
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Figure 2.7.: Graphical representation of |s11(ka)| for three identical bosons. For small
values of ka, s11(ka) reaches s11(ka)≈ (k |a|)2is0e−2iδ0 (dotted lines), with
δ0≈ 1.588 [170]. For large values of ka, s11(ka) is approximated by
s11(ka)≈ s11(∞)(1−Cs0/ka) (dashed lines), with C≈ 2.1126716 . . . [171].
At unitarity, the modulus |s11(∞)|=0.04. The inset shows arg[s11(ka)].

• The unitarity limited value scales as ∝ 1/k4th∝ 1/T 2

• The unitarity limited value is different by a factor (1−e−4η∗) compared to the
prediction of Mehta et al. [140] and this factor is due to Efimov physics.

• At unitarity log-periodic behavior shows itself through the term (kRt)−2is0 in
the form of oscillations (see Section 2.4.7).

• For η∗=0, there would be no losses.

• For η∗→∞, the unitarity limited value Lmax3 (T ) has the same form as the
formula by Mehta et al. [140], although their result is only valid in the weakly
interacting limit (a→ 0).

2.4.6. Optical Resonator Analogy

Let us reconsider the scattering matrix s ′. The quantity has the mathematical form
of an optical resonator, because when we look at the absolute square of s ′, the
following equation is found, which resembles the equation of an optical resonator:

∣
∣
∣
∣

Aout3
Ain3

∣
∣
∣
∣

2

=

∣
∣
∣
∣
s33 +

(s13)
2Ainel

1− s11Ainel

∣
∣
∣
∣

2

.
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s33 s13As13 s13As11As13

Figure 2.8.: The terms in Equation (2.42) are pictorially represented here. The mirror
on the left corresponds to the range of interaction typically Rc∼RvdW. The
right mirror is given by the region around Rm= min(|a|, 1/k). The outer left
image shows the scattering at the outer mirror, with s33 being the reflection
term. The middle image represents transmission into the inner region, given
by s13. Followed by, reflection and transmission at the R=0 mirror that are
given by A≡Ainel. Finally, transmission back into the outer region given by
s13. The last image is the same as the middle one, except for an extra term
A s11, which corresponds to the reflection and transmission on the R=0
mirror and a reflection on the outer mirror, respectively.

To see the analogy with the optical resonator equation, let us expand it

∣
∣
∣
∣

Aout3
Ain3

∣
∣
∣
∣

2

= |s33 + s13Ainel s13 + s13Ainel s11Ainel s13 + · · · |2 . (2.42)

The result is artistically depicted in Figure 2.8. For a particle view of the scattering,
see Figure 2.9.

2.4.7. Oscillations of L3(T ) at Unitarity

In the following, we will show that at resonance a→∞, apart from the overall
1/T 2 behavior, the three-particle loss constant L3(T ) is log-periodic in T . This is
due to the Efimov effect. To show this behavior, let us start with Equation (2.38)
and remove the overall 1/T 2 and ζ≡ (1− e−4η∗) behavior

L3(T )

Lmax3 (T )ζ
=
2

k2th

∫ ∞

0

1− |s11(∞)|2
|1− e−2η∗(kRt)−2is0 · s11(∞)|2

ke−k
2/k2thdk.

At unitarity, the value |s11(∞)| ≈ 0.04 is negligible. This suggests an expansion
to first order in s11(∞). Using the asymptotic value of s11(∞), we are able to
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Figure 2.9.: Three-particle losses depicted through the analogy with the optical resonator
(see Section 2.4.6). On the right-hand side, we see the three-particle plane
wave coming into the R∼Rm≡ min(|a|, 1/k) range. While part of the wave
is reflected and obtains a phase shift, some part is transmitted into resonator
Rc<R<Rm, where Rc is the range of the interactions. On the left side of
the resonator, we see that part of the wave inside the resonator is leaking out
of the resonator (R<Rc), where the particles are lost, and part is reflected
back into the resonator. Changing ka corresponds to changing the round-
trip phase shift, which in this figure corresponds to changing the position
of the mirror at R=Rm. For specific values of ka, the resonator becomes
resonant and this corresponds to enhanced losses at R=0, corresponding
to the Efimov loss resonances for a< 0.
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Figure 2.10.: The log-periodic behavior of L3(T ) expressed through 1 − L3(T )
ζLmax3 (T ) to re-

move the overall 1/T 2 behavior, for η∗=0.21.

analytically solve the integral and the result is

L3(T )

Lmax3 (T )ζ
= 1 +

s11(∞)
2

e−2η∗(kthRt)
−2is0 Γ(1− i s0) +

s∗11(∞)
2

e−2η∗(kthRt)
+2is0 Γ(1 + i s0),

= 1 + A∞(η∗) cos [2s0 ln (kthRt) + ϕ]

The amplitude A∞(η∗) and phase ϕ are given by:

A∞(η∗) = e
−2η∗ ([Im s11(∞) Re Γ(1−i s0)+Re s11 Im Γ(1−i s0)]2

+ [Re s11(∞) Re Γ(1−i s0)− Im s11(∞) ImΓ(1−i s0)]2
)1/2

,

ϕ = arctan

[
Im s11(∞) Re Γ(1−i s0)+Re s11(∞) ImΓ(1−i s0)
Re s11(∞) Re Γ(1−i s0)− Im s11(∞) ImΓ(1−i s0)

]

.

The result is shown in Figure 2.10. The oscillations are log-periodic in kth, hence
in T . The amplitude of the oscillation is A∞(η∗)≃ 0.022e−2η∗, which gives for 7Li,
A∞(0.21)≈ 0.014, for 39K [172], A∞(0.09)≈ 0.018 and for 133Cs [173], A∞(0.04)≈ 0.020.
Thus these oscillations as a function of T are small and constitute a real challenge
for their experimental observation. Another possibility for having larger oscillations
is the value of s11(∞) or s0, which are different for heteronuclear systems.
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2.4.8. Numerical Analysis of L3(T, a)

The numerical calculator, discussed in this section, was first developed by Dmitry
Petrov for the publication in [143]. We have further optimized it for usage.

To calculate L3(a, T ) (see Equation (2.38)) and the excess heat (see Equa-
tion (3.7)), we need to do some numerical calculations. For convenience, we intro-
duce a new index d , which lets us write generic form for Equations (2.38) and (3.7)

Ed(a, T,Rt, η∗) ≡ Lmax3
(
1− e−4η∗

) 2

k2th

∫ ∞

0

1−|s11(ka)|2

|1+(kRt)−2is0e−2η∗s11(ka)|2k
1+de−k

2/k2thdk.

Three-particle loss constant L3 is obtained by L3(a, T )= E0(a, T,Rt, η∗).
The scattering matrix s11(ka) was numerically calculated by Dmitry Petrov (see

Supplemental Material of [143]) and the result is shown in Figure 2.7. It is a
function of the dimensionless parameter ka, so let us replace this by z ≡ ka and
write the integral in dimensionless form,

Ed(a, T,Rt, η∗) = 72
√
3π2~
m

ζ 1

k6+dth

∫ ∞

0

1− |s11(z)|2
|1 + (kRt)−2is0e−2η∗s11(z)|2

(
z
a

)1+d
e−z

2/(ktha)
2 dz
a
.

This function depends on four variables: a, T , Rt, and η∗. The parameter η∗ is
dimensionless and independent of the others. The others, however, can be cast
into two dimensionless parameters, which describe the full behavior: x ≡ ktha and
y ≡ kthRt. With these variables we can cast Ed into

Ed(x, y , η∗) = 72
√
3π2~
mk4th

ζ 1
x2+d

∫ ∞

0

1−|s11(z)|2
∣
∣
∣1+(z

y
x
)−2is0e−2η∗s11(z)

∣
∣
∣

2 z
1+de−z

2/x2dz.

Normalizing this function to the maximum attainable value Lmax3 (T )=
36
√
3π2~
mk4th

, will
help to show the saturation behavior of L3,

Ed(x, y , η∗)
Lmax3 (T )

= ζ 2
x2+d

∫ ∞

0

1−|s11(z)|2
∣
∣
∣1+(z

y
x
)−2is0e−2η∗s11(z)

∣
∣
∣

2 z
1+de−z

2/x2dz. (2.43)

To give an example, we have taken the case 7Li in the state |F =1, mF =1〉,
with the Efimov parameters from [128].

In Figure 2.11a, we have fixed the inelasticity parameter η∗=0.21 governing the
width of the Efimov resonance and varied Rt through
Rt= a− exp (−(δ0 − π/2)/s0) ≈ 0.983a−, δ0=1.588 [170]. In the figure, the log-
periodicity is shown by the appearance of four different Efimov resonances. At a
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(a)

(b)

Figure 2.11.: To give an example, the numerical calculations of L3(a, T ) of 7Li. For
weak interactions, both figures show the behavior of L3(a)∝C(a)a4 and
for unitary interactions (a→∞) the saturation of L3(a) to L3(T ) is shown.
(a) Fixing the elasticity parameter η∗=0.21, while varying the position of
the Efimov resonance through ktha− and the scattering length through
ktha. Four Efimov resonances are showing the log-periodicity. (b) Fixing
the Efimov resonance a−=− 274a0, varying the width parameter η∗. At
resonance, the three-particle loss coefficient saturates to the value L3(T ),
which varies with 1−e−4η∗ . For smaller η∗, the Efimov resonance becomes
more pronounced and a second resonance becomes visible. For larger η∗,
the Efimov resonance is fully washed out (η∗≃ 1).
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given ktha−, there are maximally two Efimov resonances on the curve. For weak
interactions, the L3(a) is found with a slope of a4 and oscillations given C(a). For
unitary interactions (a→∞), L3(a) saturates to the value L3(T ).

In Figure 2.11b, we fixed the Efimov resonance position a−=−274 a0 and varied
the inelasticity parameter η∗. For weak interactions, we recover L3(a) and for
increasing interactions L3(a) saturates to L3(T ). However, at resonance, we see
that L3(T ) decreases with (1− e−4η∗) and the second Efimov resonance becomes
more pronounced for smaller η∗. For large η∗, the Efimov resonance is fully washed
out and L3(a) saturates to Lmax3 (T ).

2.5. Three-Particle Losses on the Positive-a Side

2.5.1. Weakly Bound Dimer

The analysis of the positive-a side is more complicated, because there appears
a (weakly) bound state under the scattering threshold with bound state energy
Eb=− ~2/(ma2). In this case, losses are not only due to direct recombination
into deeply bound dimers. We have to also consider the possible loss channel of a
weakly bound dimer being formed and directly lost from the trap. As well as, the
weakly bound dimer being formed and decaying into a deeply bound dimer.

The kinetic energy that a weakly bound dimer acquires in a recombination event
has to be compared with the trap parameters in order to argue whether it is lost or
not. In Section 3.1.2, we will explain in detail this comparison using the knowledge
of the trap. Let us now focus on the limit of strong interactions (a→∞). In this
case the direct loss of the weakly bound dimer vanishes, because the bound state
energy vanishes. In the following, we will show that the decay to deeply bound
dimers through the weakly bound dimer state vanishes.

2.5.2. Weakly Bound Dimers and the Efimov Channel

The wavefunction of the weakly bound dimer is given by

Ψ2(R) =
e−|r2−r1|/a√
2πa

e ip0R√
24πp0R

, (2.44)

where the index 2 to the dimer-atom channel and p0=
√

k2 + 1/a2>k is the rel-
ative momentum of the atom and dimer.

The coupling of the atom-dimer channel to the Efimov channel is given by s12.
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The strongly interacting limit (ka→∞) of s12(ka) was calculated in the Supple-
mental Material of [143]. The modulus square is given by

|s12|2 ≃
ka→∞

2Cs0
1 + e−2πs0

ka
, (2.45)

which show that |s12|→ 0, as one approaches the resonance.

2.5.3. Atom-Dimer Decay with Chemical Equilibrium

Let us assume that there is chemical equilibrium between atoms and weakly bound
dimers. The weakly bound dimer density nD is related to the atomic density through

nD = n
2λ3th2

√
2eβEb ≃

a→∞
n2λ3th2

√
2. (2.46)

Since there is chemical equilibrium (see the Supplemental Material of [143]), the
process of three atoms forming an atom-dimer pair exactly balances the inverse
process. Hence, the change of atom number is given by the sum of three-particle
losses to deeply bound dimers L3 and the formation of a deeply bound dimer through
the weakly bound dimer state LAD2

dn

dt
= −L3n3 − LAD2 n nD. (2.47)

The expression for L3(T ) for a> 0 is obtained using the energy dependent result
from [174] and doing a thermal average. For the positive-a side, we need to change
1 − |s11|2 to 1 − |s11|2 − |s12|2 in Equation 2.38. The atom-dimer loss coefficient
LAD2 is given by

LAD2 (T ) =
3
√
3~2 (1− e−4η∗)
2(mkBT )3/2

e−βEb
∫ ∞

−Eb

|s12|2
|1 + (|k |Rt)−2is0e−2η∗s11|

eβǫdǫ, (2.48)

where ǫk = ~2k2/m is the total relative energy of the three atom system. For ǫk > 0,
we have seen that |s12| vanishes as ∝ 1/a (see Section 2.5.2), hence LAD2 vanishes
as ∝ 1/a close to resonance. For ǫk < 0, the integrant gives a contribution ∝ 1/a2
to LAD2 . Therefore, LAD2 can be neglected in Equation (2.47) and the equation
simplifies to Equation (2.29), for direct decay into deeply bound dimers. Hence,
only deeply bound dimers are probed.
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2.6. Summary

In this chapter, we have treated the quantum-mechanical three-particle problem.
We have started by introducing the problem and transforming it to hyperspherical
coordinates. We considered the case of resonant interactions and this allowed us
to write down the solutions of the problem. These solutions were identified as
incoming and outgoing waves, which were used to introduce scattering due to the
interactions at R=0. In close proximity of the scattering center the scattering
can be described by a Zero-Range model using the boundary conditions from the
two-particle scattering in addition to a three-particle boundary condition

ψ(R) = Ain3
[
ϕin3 +Aelϕout3

]

Using this result we were able to find the energy spectrum of the problem and show
that there is an infinite number of trimer bound states with a log-periodic energy
behavior characterize by the factor e2π/s0.

Furthermore, we added inelastic scattering to the problem. This was simply
done by changing the boundary condition at R=0 to allow for losses at the center
(Ael→Ainel). Afterwards, the difference in amplitude between the incoming and
outgoing waves in the long-range was used to quantify the losses caused by inelastic
scattering. This enabled us to write down the three-particle loss coefficient

L3(a, T ) = L
max
3 (T )

(
1−e−4η∗

) 2

k2th

∫ ∞

0

(1− |s11|2)ke−k2/k2th
|1−e−2η∗(kRt)−2is0s11|2

dk, (2.38)

Lmax3 (T ) = 36
√
3π2
~
5

m3
1

(kBT )2
. (2.39)

The result has some remarkable features: The unitarity limited value L3(T ) scales
as ∝ 1/T 2(1 − e−4η∗). This factor (1 − e−4η∗), comes from Efimov physics at
short distances. The term (kRt)−2is0 gives the characteristic log-periodic behavior
associated with Efimov physics.

In Section 2.4.6, we have seen that the three-particle loss coefficient has math-
ematical analogous behavior to the optical resonator. With a mirror at R=0
and R=Rm≡ min(|a|, 1/k). Changing s11, changes the position of the mirror at
R=Rm and changing Rt effectively changes the position of the mirror at R=0.
Furthermore, changing η∗ changes the transmission of the mirror at R=0. For
η∗→ 0 the losses vanish and for η∗→∞ the point R=0 acts as an absorbing wall.

Afterwards, we have shown the log-periodic behavior of the three-particle losses
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at unitarity

L3(T )

Lmax3 (T )ζ
= 1 + A∞(η∗) cos [2s0 ln (kRt) + ϕ] ,

where ζ≡ (1− e−4η∗) and A∞(η∗)≈ 0.022e−4η∗.
Finally, we have discussed the three-particle losses on the positive-a side of the

Feshbach resonance. Close to the resonance the three-particle loss coefficient
is given by the coefficient at unitarity, hence the three-particle loss coefficient is
smooth across the resonance.

In the following chapter, we will extend these results for a homogeneous gas to
the trapped gas.



3. Three-Particle Recombination in a Harmonic Trap

The theory in Chap 2 derives the three-particle loss coefficient as a function of k
and a for a homogeneous density (free space). In this chapter, we will discuss the
considerations for three-particle losses in a trapped gas.

First, the properties of a typical trap in a quantum gas system is discussed. These
properties are then used to derive an equation for the change of total particle num-
ber in the trap. Second, we will study the heating effects due to three-particle
recombination in a trap. These effects will then be combined into an equation
that describes the change of temperature of a trapped cloud. Finally, these heat-
ing effects will be compared to evaporation effects and the result will be used
to estimate the effect of evaporation on the measurements of the three-particle
losses. We will also show the results of simulations on the combined heating and
evaporation effects.

3.1. Three-Particle Losses in a Trap

In an ultracold quantum gas system, inelastic scattering can be probed by moni-
toring the number of particles in a cloud as a function of time. However, to probe
the scattering product through loss measurements, the products need to leave the
trap. This introduces a new energy scale to the system, the trap depth U. Let us,
in the following, discuss the trapping potential.

3.1.1. Trapping Potential

A common trapping potential used in ultracold gases (see for example Section 4.1.7)
can be characterized by two properties: a harmonic potential in the center and a
finite depth.

The harmonic potential in the center is given by

U(x, y , z) =
1

2
m
(
ω2xx

2 + ω2yy
2 + ω2zz

2
)
, (3.1)

where m is the mass of a particle and ωi is the angular frequency in the direction

53
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i ∈{x, y , z}. The finite depth of the trap is given by the truncation parameter
η=U/kBT . As an example, for our experiments a trap with a Gaussian shape and
cylindrical symmetry is used (see Section 4.1.7).

3.1.2. Weakly and Deeply Bound Dimers in a Trap

The trap depth needs to be much smaller then the kinetic energy T of the scattering
products (U≪T ), otherwise the products are not lost from the trap and the number
probing technique does not work.

In general, having enough kinetic energy is not a problem for the scattering
product after recombination into deeply bound dimer states1, because the bound
state energy is much larger than the trap depth.

For weakly bound dimers the kinetic energy scales as Eb∝ 1/a2, this means that
there are different regimes. For weak interactions, Eb≫U, hence all the weakly
bound dimers are directly lost and the zero-temperature model for L3(a) is valid.
In the strongly interaction limit (a→∞), the decay through the weakly-bound
dimer state vanishes, hence for k |a|≫ 1 the unitarity prediction L3(T ) is valid (see
Section 2.5). The difficult regimes is when Eb≃U (or since U is on the order
of kBT : Eb≃kBT ), because then there is decay through the weakly-bound dimer,
however the reaction product stays trapped.

In the weakly interacting limit (a→ 0), there have been numerous studies of
the three-particle losses (see Introduction). Therefore, we will focus on the full
negative-a side of the resonance and around unitarity, with on the positive-a side
the condition a≫λth.

3.1.3. Number Decay

In a homogeneous density system, three-particle losses are described by an equation
for the change of density

dn(t)

dt
= −L3n3(t), (3.2)

where n(t) is the density and L3 the three-particle loss coefficient as discussed in
Section 2.4. If the cloud is in a thermal equilibrium, we can integrate Equation (3.2)
over the space of the cloud. This gives an equation for the change of total particle

1In a recent work by Härter et al., the decay product was ionized depending on its molecular state
energy, and then trapped in a linear Paul trap. This allowed the authors to study the occupation
of the product states [175].
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number in the cloud

dN(t)

dt
= −L3〈n2(t)〉N(t),

where 〈.〉 is the mean value integrated over space and N(t) the total number of
particles in the cloud at time t. For a non-degenerate gas with temperature T ,
the equilibrium density distribution for a harmonic potential U(x, y , z) (see Equa-
tion (3.1)) is given by

n(x, y , z) = n0e
− m
2kBT
(ω2x x2+ω2y y2+ω2z z2),

where n0 is the central density given by n0=Nω̄/(2πkBT/m)3/2, with ω̄=(ωxωyωz)1/3,
the mean angular frequency. We can use this result to relate the mean density
squared to the total number squared

〈n2(t)〉 = A/T 3N(t)2,

where A=(mω̄2/2πkB)3/
√
27. The change of total number is then described by

dN(t)

dt
= −AL3

N3(t)

T 3
. (3.3)

This differential equation describes the change of total particle number for a trapped
gas. In the following, we will look at temperature effects due to three-particle losses
in a trap.

3.2. Heating Effects

In the following, we will study heating of the cloud due to three-particle losses. To
do this, the changes in energy, caused by the loss processes, need to be analyzed.

We will start by deriving a heating model in the weakly-interacting limit intro-
duced by Weber et al. [56]. Afterwards, we will extend this model to include the
temperature dependence of L3, which we will then study in the limit strong inter-
acting limit (k |a|→∞).

3.2.1. Weakly-Interaction Limit

In the weakly-interacting limit (|a|→ 0), the three-particle losses are described by
L3(a), which is calculated using a zero-temperature model [114–117]. In order to



56 Chapter 3. Three-Particle Recombination in a Harmonic Trap

describe the heating due to three-particle recombination, we will closely follow the
model introduced in [56]. In this model, the three-particle recombination is de-
scribed by Equation (3.3), where the three-particle loss coefficient L3 only depends
on a and not on T (neglecting density independent loss effects)2:

dN

dt
= −AL3(a)

N3

T 3
, (3.4)

where a non-degenerate gas in an harmonic trap was assumed.

The mean amount of potential energy lost per atom can be calculated by inte-
grating over a thermal distribution with a weight proportional to n3. This gives a
mean potential energy lost per particle of 1

2
kBT and, since the ensemble average

is 3
2
kBT , an effective kBT of excess energy remains in the cloud. Phenomenologi-

cally, the heating comes from the fact that atoms that are trapped in a harmonic
trap are lost in the region of highest density, because the recombination rate is the
highest in this region (γ3=L3(a)〈n2〉 ∝ n2). This process is “anti-evaporation” and
induces heating, because atoms that experience the highest three-particle loss rate
are located near the trap center and have a potential energy less then the average
potential energy of 3

2
kBT . Hence, increasing the average energy per particle in the

trap.

In the model from [56], an ad hoc parameter to describe recombination heating
is added. Recombination heating is caused by the reaction products colliding with
the cloud after the loss process, with kBTh being the energy deposited after the
collisions. The change of temperature is then described by Ṫ /T =−(Ṅ/N)(T +
Th)/3T .

Finally, this allows us to write down a differential equation describing the change
of temperature:

Ṫ

T
= A L3(a)

N2

T 3
T + Th
3T

≃
Th→0

A L3(a)

3

N2

T 3
. (3.5)

The recombination heating was measured for three-particle losses in 133Cs in [56]
by using Th as a fitting parameter in the fit procedure of the temperature changes.
In the following, we will assume that the scattering product directly leaves the
trap, such that the recombination heating can be neglected, e.g. Th=0. Equa-
tions (3.4) and (3.5) are coupled should be solved consistently.

2Note that in [56], the authors used the definition γ=A L3. We have chosen a different notation
to be consistent throughout this thesis.
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3.2.2. Extending the Model to Include Strong Interactions

In the formalism of Weber et al. [56] (see Section 3.2.1), the assumption was made
that the collisions are in the low-temperature limit. This makes the recombination
independent of the kinetic energy. Extending this to include kinetic energy effects
is straightforward, with the theory from Chapter 2.

Let us start by calculating the energy lost from the system per particle:

Ė3P

Ṅ3P
=

∫ [∏3
i=1 d

3ri d
3ki n(ri) exp

(

−β ~
2k2i
2m

)]
∑3
i=0

(
~2k2i
2m
+ V (ri)

)

L3(k)

∫ [∏3
i=1 d

3ri d3ki n(ri) exp
(

−β ~
2k2i
2m

)]

3 L3(k)
,

where ri is the position and ki is the momentum vector of particle i , β≡ 1/(kBT ),
and L3(k) is the loss coefficient for the relative momentum of the three par-
ticles k (see Equation (2.36)). The next step is to switch from momentum
to energy and separate the center of mass motion from the relative motion via
∫
d3ki =

∫
dE dǫk DCoM(E)Drel(ǫk),

Ė3P

Ṅ3P
=

∫
d3r dE dǫk ǫ

2
k e
−βǫk

√
E e−βE [E + ǫk + 3V (r)]L3(ǫk) n

3(r)
∫
d3r dE dǫk ǫ

2
k e
−βǫk

√
E e−βE 3 L3(ǫk) n3(r)

,

where we have introduced the center of mass energy E≡
∑

i ~
2k2i /2M and the

relative energy ǫk ≡ ~2k2/m. M is the total mass. Solving this equation yields,

Ė3P

Ṅ3P
= kBT

[

1 +
1

3
B(kth)

]

(3.6)

The first part comes from the potential energy and kinetic energy of the center
of mass motion. The second part comes from the kinetic energy of the relative
motion, where we have introduced

B(kth) =
1

k2th

(∫

dk
(1− |s11|2)

|1 + (kRt)−2 i s0e−2η∗ · s11|2
k3e−k

2/k2th

)

,

/(∫

dk
(1− |s11|2)

|1 + (kRt)−2 i s0e−2η∗ · s11|2
ke−k

2/k2th

)

, (3.7)

=

{

3 if k |a| → 0
≈ 1 if k |a| → ∞.

In Equation (3.6), the amount of energy lost per particle in a three-particle
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recombination event is introduced. This energy has to be compared to the average
total energy per particle in the trap of 3kBT . This gives the excess heat created
per particle in a three-particle recombination event

Eex = 3kBT −
Ė3P

Ṅ3P
= kBT

(

2− 1
3
B(kth)

)

≡ δ(a, T )kBT (3.8)

δ(a, T ) =

{

1 if k |a| → 0 we find the same as in Section 3.2.1

5/3 if k |a| → ∞,

This is a more generalized form of the excess heat δ(a, T ) in units of kBT . In Sec-
tion 3.2.1, the excess heat was 1kBT and this corresponds to the weakly-interacting
limit. As an illustration, we plot in Figure 3.1 the case of 7Li close to a Feshbach
resonance.
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Figure 3.1.: Illustration of Equation (3.8) for the particular case of 7Li. Shown is the
excess heat δ in units of kBT (blue line). The red dashed lines correspond
to the limits |a|→ 0 with δ=1 and |a|→∞ with δ=5/3. The gray dotted
line indicates the position of −1/kth= − 810 a0 for T =6 µK. The heating
maxima around a= − 200 a0 and a= − 5.0× 103 a0 are due to the Efimov
resonances.

Finally, casting this into a differential equation for the change of temperature,
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we find

Ṫ

T
= −Ṅ

N

δ(a, T )T + Th
3T

,

= A L3(a, T )
N2

T 3
δ(a, T )T + Th

3T
. (3.9)

This form together with Equation (3.4) contains, in principle, all the temperature
dependence of the losses, but in order to measure L3, we have to assume a relation
between L3 and T .

The first obvious case is the weakly-interacting case given by L3(a), with L3(a)
being independent of T .

However, to find a temperature dependence of L3, we devised a new experimental
technique, in which L3 is measured at constant temperature. Then, repeating the
measurement for different temperatures, we will reveal L3(a, T ), see Section 5.2.

Keeping the temperature constant induces evaporative losses, which are relatively
small, because the energy lost per evaporation event is larger then the energy gained
per loss event. As we will see, this ratio is determined by the trap depth.

3.3. Evaporation

First, we will use the condition of approximate constant temperature during a
measurement, and then use an energy balance to estimate the correction of L3.
Secondly, we will model the evaporation process and use the result in Section 5.2.2
to reanalyze the data. We find a “magic” trap depth that holds the temperature
constant, which confirms the validity of our assumption of constant temperature.
The evaporative model is studied in detail in [176, 177].

3.3.1. A Simple Evaporation Model

Experimentally, we will see that by choosing the right barrier height, it is possible
to keep the temperature constant during the relevant time scales in our experi-
ment (see Section 5.1.5). This suggests that there should be an energy balance
between the excess heat of the recombination processes and the heat removed by
evaporation processes,

Eex3BodyṄ3Body = E
ex
evapṄevap. (3.10)

The left hand side is given by Equation (3.8). To obtain the energy lost per
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evaporation event on the right hand side, we need to consider evaporative cooling
processes. Let us determine the amount of excess heat taken away by evaporative
cooling. Evaporative cooling was treated in full detail using kinetic theory in [178].
In the paper, it was shown that the mean energy lost per particle lost through an
evaporation process is given by

Ėevap

Ṅevap
=

∫∞
ηkBT

E e−E/kBT
∫∞
ηkBT

e−E/kBT
= (η + κ) kBT,

Eexevap =
Ėevap

Ṅevap
− 3kBT = (η + κ− 3)kBT, (3.11)

where κ denotes the difference between the average energy of an evaporated par-
ticle and the trap depth η≡U/kBT . The κ, for 3d evaporation in a harmonic trap,
is given in [178] by3 4

κ = 1− P (5, η)

ηP (3, η)− 4P (4, η) . (3.12)

The P (a, η) introduced here is the regularized lower incomplete gamma function5.
The behavior of κ is shown in Figure 3.2.

In a paper by Luo et al. [180], the authors reasoned that for a Boltzmann gas
with unitary interactions the energy lost per evaporation event is the same as in the
case of weakly interacting gases, hence Equations (3.11) and (3.11) are generally
valid. In their model, only the rethermalization rate is changed. Two-particle
collisions leading to evaporative loss occur mainly in the cloud center where the
trap is harmonic, and the relative momentum for such a collision is approximately
fixed by the trap depth so that the result for κ above is applicable.

Since we are making the assumption in Equation 3.10 the rethermalization rate
is directly used. In Section 3.3.2, we will give a more elaborate model and consider
the rethermalization rate.

At this point, let us write the energy conservation in Equation (3.10) in terms

3Note that κ≡Wev/Vev, with δ=3/2 for a harmonic trap in the notation of [178].
4The evaporation in our trap is actually a 2d process, because the trap is, practically infinitely

deep along the magnetic field curvature (see Section 4.1.7), this would give a small correction
to κ.

5This regularized lower incomplete gamma function is defined by P (a, η)≡ 1
Γ(a)

∫ η

0 t
a−1e−tdt, see

[179].
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Figure 3.2.: The relation between additional energy taken away during an evaporation
event κ (see Equation (3.11)) and the trap depth η, calculated using Equa-
tion (3.12), which is taken from [178]. In [180], the authors used the approx-
imation κ≃ (η − 5)/(η − 4), which is true for η≫ 6, shown by the dashed
red line. In the limit η→∞, the value of κ reaches 1. The blue shaded
area shows our working range of η. This κ is calculated for a 3d evaporation
process

of change of atom number, using Equations (3.8) and (3.11).

δ kBT Ṅ3Body = (η + κ− 3) kBT Ṅevap
Ṅevap

Ṅ3Body
=

δ(a, T )

η + κ− 3 . (3.13)

In other words: each particle lost in a three-particle recombination event is followed
by an amount δ(a, T )/(η+κ−3) of particles lost through evaporation, in order to
keep the temperature constant. To translate this into the total change of atoms
we have,

Ṅtot = Ṅ3Body + Ṅevap = Ṅ3Body

[

1 +
δ(a, T )

η + κ− 3

]

, (3.14)

which we can directly use to correct the measured Lexp3 and obtain the real L3,

L3(a, T ) = L
exp
3 (a, T )

1

1 + δ(a,T )
η+κ−3

. (3.15)

We arrive at a general formula for predicting a corrected value of L3 for evaporative
losses.
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In order to derive this correction, we had to assume constant temperature. This
assumption allowed us to use the energy balance in Equation (3.10). This enabled
us to derive the correction in Equation (3.15).

3.3.2. More Advanced Model of Evaporation Effects

In the following, we will relax the constant temperature condition and solve the
coupled equations for change of atom number and temperature.

The evaporation model is based on the models introduced in [178, 180, 181].
We will closely follow the derivation in [176, 177].

The model requires the following conditions:

1. Resonant scattering (a≫λth).

2. The temperature dependence of the three-particle loss coefficient is given by
L3(T )∝ 1/T 2.

3. The temperature is always much smaller than the trap depth (U≫ kBT or
η≫ 1)

4. The evaporative process is 3d, i.e. the trap depth is given by η3d (this con-
dition is relaxed at the end to include 2d evaporation).

To describe the evaporation, let us consider the total energy of N particles in a
harmonic trap,

E = 3NkBT.

Differentiation of this equation makes it possible to derive Ė/Ṅ. If we relate this
to Equation (3.11), we find

3T + 3N
Ṫ

Ṅ
= (η3d + κ)T,

(
Ṫ

T

)

ev

=
η3d + κ− 3

3

(
Ṅ

N

)

ev

.

The number of particles lost through the evaporation process is given by [181]

(
Ṅ

N

)

ev

= −Γev, (3.16)
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with Γev= n0 σ v̄ e−η3d Vev/Ve, where η3d is the barrier height for a 3d evapora-
tion event, n0=N(mω̄2/2πkBT )3/2 is the peak density for a non-degenerate gas,
v̄ =(8kBT/πm)

1/2 is the average thermal velocity, σ is the collisional cross section
σ=8πa2 in the limit of a≪λth. In the limit a≫λth, the scattering cross section
is bounded by the relative momentum of the collision particles. Since the collisions
will happen in the center of the potential, the relative momenta of the collision part-
ners are bounded by the trap height, the cross section is given by σ=16π~2/(mU)
[180]. Vev/Ve is the ratio of the effective evaporation volume and the cloud volume,
which is related to κ

Vev
Ve
=
P (3, η3d)

P (5, η3d)
(1− κ).

This allows us to write
(
Ṫ

T

)

ev

= −Γev
η3d + κ− 3

3
.

The full differential equations for number and temperature, using both the three-
particle recombination and evaporative cooling, are

Ṅ

N
= −AL3(T )

N2

T 3
− Aev

(
e−η3d (1− κ)

) N

T
, (3.17)

Ṫ

T
=
1

3

[

δ(a, T )AL3(T )
N2

T 3
− Aev

(
e−η3d (1− κ)

)
(η3d + κ− 3)

N

T

]

. (3.18)

Here Aev was introduced to include all the geometrical effects. This Aev can be
calculated in two limiting regimes:

Aev =

{
8a2 ~2ω̄3/(πkB) P (3, η3d)/P (5, η3d) when a≪ λth,

16 ~2ω̄3/(kBU) P (3, η3d)/P (5, η3d) when a≫ λth.

This means that the fitting with the full heating model can only be done at reso-
nance or far away, because it is hard to calculate the specific geometric effects over
the whole range. For now, we will restrict ourselves to the resonant interactions
case.

We remark that this formulation is done for a 3d evaporative process. In order
to go from 3d to 2d, it was shown that it suffices to use the equality η3d= ηreal+1,
where ηreal is the parameter that needs to be compared to the experimental values,
see [177, 182] for more information about 1d- and 2d-evaporation. The next step
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is to fit the data to these two coupled non-linear differential equations.

3.3.3. “Magic” η

(a) Temperature evolution (b) Number decay

Figure 3.3.: The curves shown each correspond to a specific initial temperature and ηm:
(blue) T =3 µK, ηm=7.4; (red) T =5 µK, ηm=9.4; (green) T =7 µK,
ηm=10.5; (purple) T =9 µK, ηm=11.4. These ηms are found by numeri-
cally solving the differential Equations (3.17) and (3.18), for different initial
ηs, while minimizing the dT/dt at t =0. For an initial particle number of
2× 105.

This section treats the result of numerical simulations as described in [176], which
were done for 7Li. Numerically solving the differential Equations (3.17) and (3.18)
shows us that the choice of a specific barrier height is a good approximation to keep
a constant temperature during the measurements, see Figure 3.3a. In Figure 3.3a,
we have plotted the temperature behavior for four specific initial temperatures
T =3 µK, T =5 µK, T =7 µK, and T =9 µK, where for each initial temperature,
we have numerically found a “magic” barrier height ηm, that minimizes the change
of temperature at t =0. In Figure 3.3b, we have shown the change of atom number
as a function of time. In Figure 3.4, we have plotted the numerically found ηm as a
function of initial temperature T . Each ηm corresponds to a curve that minimizes
the initial change of temperature.

There is also some work in progress on the losses for a gas of 133Cs with unitary
interactions, where these simulation have been used and show promising results
[173].
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Figure 3.4.: The ηm found for a specific initial temperature T . These ηms are found by
minimizing dT/dt at t =0. For an initial particle number of 2× 105.

3.4. Summary

This chapter was dedicated to three-particle recombination in a trap.

In the first part, we have introduced the characteristics of a commonly used trap
in quantum gases. This trap was then used to explain the change of atom number
for a non-degenerate cloud. The result is given by Equation (3.3)

dN(t)

dt
= −AL3

N3(t)

T 3
, (3.3)

where A includes the effects of the trap and the non-degeneracy of the cloud.

In the second part, we studied the evolution of the temperature during three-
particle loss events. Initially, we considered the model for weak interactions intro-
duced by Weber et al. [56]. Then we extended this model using a temperature
dependent L3(a, T ) and considered the limit of strong interactions (|a|→∞). The
change of temperature was described by Equation (3.9)

Ṫ

T
= A L3(a, T )

N2

T 3
(δ(a, T )T + Th)

3T
, (3.9)

where A includes the effects from the trap and non-degeneracy of the cloud and
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Th is the recombination heating.
In the last part, we considered evaporation effects. First, the evaporation ef-

fects were estimated using the assumption of constant temperature. The result
is a correction formula to account for evaporative losses in the three-particle loss
coefficient

L3(a, T ) = L
exp
3 (a, T )

1

1 + δ(a,T )
η+κ−3

, (3.15)

where Lexp3 (a, T ) is the uncorrected value. The correction factor contains the excess
heat δ(a, T ) in units of kBT , the trap depth parameter η and the average extra
amount of heat taken away per evaporation event κ.

Second, we relaxed the constant temperature condition and modeled the evapo-
ration effects. The result of this is a more accurate correction of the three-particle
loss coefficient. We have also shown that there is a “magic” ηm that can be used
to keep the temperature approximately constant.
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4. The Road to Strongly Interacting Bose Gases

In the following, we will describe the experimental sequence to create ultracold Bose
gases of 7Li and discuss the tunability of this system. With this tunable system,
we will test three-particle physics. For references containing a more elaborate
description of the experimental setup, the reader is referred to the theses of F.
Schreck [59], L. Tarruell [183], S. Nascimbène [184], and N. Navon [185]. We will
concentrate on a detailed description of the setup for 7Li.

4.1. Experimental sequence

In this section, we will describe the different stages of cooling and trapping of 7Li.

4.1.1. Lithium-7

Lithium is the lightest alkaline element and the third element in the periodic table
after Hydrogen and Helium. There are two stable isotopes, the bosonic 7Li and the
fermionic 6Li, which have a natural abundance of 92.4% and 7.6%, respectively
[186]. The mass of 7Li is 7.016 mu, with mu=1.661× 10−27 kg [187]. Alkaline
atoms have one electron occupying the outer shell. For lithium, this is a 2s-state
and the excitation of the electron to the 2p-state is an optical transition, with
a wavelength of ≈ 671 nm. Lithium is a soft light metal with its melting point
at 181 ◦C. 7Li has three protons and four neutrons with nuclear spin I=3/2 and
electron spin S=1/2, in the ground state.

4.1.2. Laser System

The laser system consists of commercially available diodes1 that have a maximum
output of 135 mW in addition to several Tapered Amplifiers (TA)23.

1Hitachi HL6545MG
2Eagleyard TPA-0670-0500 Tapered Amplifier Diode
3In a future modification, we will use a newly developed solid state laser operating at a wavelength

of 1342 nm is doubled to 671 nm, putting out a maximum power of 800 mW [188]. A second
version of this laser has already achieved a maximum of >3 W of red light [189].

69
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Figure 4.1.: The energy spectrum of 7Li.

In Figure 4.1, the energy spectrum of 7Li is shown, both the cooling and repump-
ing is done on the D2-line. The ground-state hyperfine splitting is 803.5 MHz,
whereas the excited state hyperfine splitting is only 9.2 MHz between the states
|F ′=2〉 and |F ′=3〉. The line-width of the D-transitions is Γ=5.9 MHz, which
means that the hyperfine states in 22P3/2-manifold are not optically resolved.

For lithium 7, we use one master laser, which is frequency locked using saturated
absorption spectroscopy on the D2-line. For this master laser, we use an Anti-
Reflection (AR) coated diode4. The diode is used in an External Cavity Diode
Laser (ECDL) setup in Littrow configuration. A reflective holographic grating5 with
∼ 20% reflectivity is used to create the external cavity, which is used to tune the
wavelength. The current versus power output of the ECDL is given in Figure 4.2.

4.1.3. Zeeman slower

The saturated vapor pressure of lithium is the lowest of all the alkali atoms
(4.4× 10−19 Torr at 300 K) and in order to create an atomic beam with sufficient

4Eagleyard EYP-RWE-0670-00703-2000-SOT02-0000
5Thorlabs GH13-18V perpendicular polarization
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Figure 4.2.: The threshold for the used AR coated diode. We shown the behavior of the
AR coated diodes for power versus current. The blue curve is the path going
up in current and in red is the curve for going down in current. The difference
between the two curves is caused by hysteresis. The measurement is done
in an ECDL setup with ∼ 20% reflectivity of the grating and a wavelength
around the transition for lithium: 671 nm.

flux, an oven operating around 500 ◦C is required (7.3× 10−3 Torr at 800 K).
The oven consists of one reservoir tube, with lithium, and a small collimation tube
creating the atomic beam. There is a temperature gradient across the length of
the collimation tube, which goes from 500 ◦C in the oven down to ∼ 180 ◦C at
the end of the tube. Together with a titanium mesh on the inside of the tube, this
temperature gradient will recycle liquid lithium back into the oven. However, it is
really important that the mesh is well placed inside the tube, with nothing sticking
out, because otherwise the mesh might be colder than the tube and blocking of
the oven can occur, due to the formation of solid lithium.

The atomic beam is directed through a spin-flip Zeeman slower6, which uses a
magnetic field to compensate the Doppler shift, occurring due to the slowing down
of the atoms by resonant laser light. To slow the atoms down, two lasers are
required. First, cooling light detuned by δ=− 350 MHz from the D2-line on the
transition between the stretched states |F =2, mF =2〉→ |F ′=3, mF ′ =3〉. Sec-
ond, a repumping laser on the |F =1, mF =1〉→ |F ′=2, mF ′ =2〉-transition is used
to prepare atoms in the oven in the |F =2, mF =2〉 ground state and to pump
atoms, that were lost in the spin-flip region, back into this state. The Zeeman

6For more information about the operation of a Zeeman Slower [190]
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Slower has a capture velocity of 1100 m/s and the captured atoms are slowed
down by the Zeeman slower to a nominal speed of 50 m/s. At this point, the
atoms are slow enough to be captured by the MOT.

4.1.4. Magneto-Optical Trap (MOT)

The slow atomic beam is captured in a MOT created by a linear magnetic field gra-
dient together with six circularly polarized laser beams, as is shown in Figure 4.3a.
The laser beams consist of cooling light detuned by δ≈−6.7 Γ from the stretched
state transition |F =2, mF =2〉→ |F ′=3, mF ′ =3〉 with an intensity I/Isat≈ 0.79,
where Isat=2.54 mW/cm2. However, since the hyperfine states cannot be optically
resolved, the manifolds |F ′=1〉, |F ′=2〉 and |F ′=3〉 in 22P3/2 are all excited. This
means that there is no closed cycling transition and there is an equal chance of
either falling back into the |F =1〉 or |F =2〉 manifold. In order to keep cycling, a
repumper laser detuned by δ≈−5.9 Γ from the |F =1, mF =1〉→ |F ′=2, mF ′ =2〉-
transition with, in practice, the same power as the cooling light (I/Isat≈ 0.79), is
needed.

After the MOT cooling stage, the cloud contains ≈ 109 atoms at a temperature
of ≈ 1 mK. To decrease the temperature further it is then compressed (CMOT) in
8 ms by detuning the cooling and repumper lasers closer to resonance δ≈ − 3.5 Γ
and δ≈ − 3.5 Γ, respectively. During the CMOT, the power in the repumping
laser beam is reduced to zero, this pumps all the atoms into the |F =1〉 manifold.
This manifold only has three mF states, compared to the five mF states in the
|F =2〉 manifold. The cloud will end up in an equal mix of mF states in the
|F =1〉 manifold, which has a lower entropy than an equal mix of mF states in the
|F =2〉manifold, because there are fewer state to occupy. Afterwards, fewer optical
pumping transition cycles are required to spin-polarize the cloud into the state
|F =2, mF =2〉, hence less heating. After the CMOT stage, the cloud consists of
≈ 4 × 108 atoms at a temperature of ≈ 600 µK, which is roughly four times the
Doppler temperature TD= ~Γ/2kB ≈ 150 µK for the D2-line of 7Li.

4.1.5. Optical Pumping

In order to magnetically trap the atoms, the cloud needs to be spin-polarized into
a low-field seeking state, because no static magnetic field maxima are allowed by
the Maxwell equations [191]. The spin-polarization is achieved using two circu-
larly σ+-polarized laser beams: a D2 pumping beam resonant on the transition
|F =1, mF 〉→ |F ′=2, mF ′ =mF +1〉-transition and a D1 pumping beam far red
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(a) MOT and CMOT stages (b) Magnetic Transport

(c) Magnetic trapping and Radio-Frequency
evaporation

(d) Optical trapping

Figure 4.3.: The experimental sequence
Light gray is the glass cell; Dark gray the atoms; Red are the laser beams
(in (a) the MOT beams and in (d) the optical dipole trap); Orange are the
coils which create the MOT trapping field; Blue are the coils, which create
the Transfer quadrupole and Feshbach bias field; Green are the coils which
create the curvature field during both the Ioffe-Pritchard and in the optical
trapping stage. Brown are the Ioffe bars which create a radial quadrupole
field; Yellow are the precision offset coils which create a small field with high
speed.
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detuned from the |F =2, mF 〉→ |F ′=2, mF ′ =mF +1〉-transition. This makes the
state |F =2, mF =2〉 a dark state, hence, after several pumping cycles all the atoms
end up in the dark state. As mentioned before, having all the atoms initially in the
|F =1〉 manifold reduces the entropy and less cycles of optical pumping (heat-
ing) are necessary. The next step in the cooling process is magnetic trapping and
evaporation.

4.1.6. Magnetic Trapping and Evaporation

The magnetic trapping stage consists of three steps: a magnetic quadrupole trap
[192], a magnetic transport and a Ioffe-Pritchard (IP) trap [193], these stages are
shown in Figures 4.3b and 4.3c.

After the atoms are spin-polarized in the state |F =2, mF =2〉, they are captured
in a quadrupole trap formed by the two coils in anti-Helmholtz configuration, which
are used for the MOT, see Figure 4.3a. The field created by the coils is linear along
the axis of the coils (we take this to be the z-axis) Bz ẑ and leads to a potential
U(r)=−µ ·B(r), which traps low-field seeking states.

This trap is not suitable to further cool down the atoms because, first of all, at
B=0 Majorana spin-flips, that lead to trap losses, become more severe at lower
temperatures, because the atoms will on average spent more time in the center
of the trap. Second, the scattering rate of 7Li is extremely small at low magnetic
field [59] and the quadrupole trap is not confining enough to have a sufficiently
high collision rate. In this experiment, the choice was made to use a IP trap. To
get a confinement that is as strong as possible, the coils need to be as close to
the atoms as possible (in the current setup, the distance from the Ioffe-bars to
the atoms is 10 mm [183]), which is why a special small sized glass appendage is
placed above the MOT area, see Figure 4.3c. This allows for good optical access
to the MOT region and tight confinement in the IP region.

To bring the atoms into this appendage, they are magnetically transported over
a distance of 5.65 cm, see Figure 4.3b. At the highest gradients possible, the cloud
is still too large to fit into the appendage and about 50% of the atoms are lost
during the transport. This loss of atoms is caused by the fact that the cloud is too
hot and, therefore too large. After the transport, the cloud is loaded into the IP
trap, see Figure 4.3c. The base IP trap consists of four Ioffe-bars (brown bars),
for radial trapping, and two pinch coils (green coils), for axial trapping. In addition,
two compensation coils (blue coils) are added to undo the bias created by the pinch
coils.

At this point, the temperature of the cloud is on the order of a few mK, which
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corresponds to the minimum in the scattering cross section for lithium. In order to
start the evaporation with a more favorable scattering cross section, an extra stage
of in situ Doppler cooling is applied. This technique was developed in the lithium
group at the ENS during the theses of F. Schreck and G. Ferrari [59, 194, 195].
The cooling technique is based on the fact that with a strong magnetic field (in this
case 505 G), the transition |F =2, mF =2〉→ |F ′=3, mF ′ =3〉 becomes a closed
cycling transition, allowing for a more efficient cooling. Also, only a single beam
is necessary for the cooling, due to the strong anharmonicity of the trap. After
two stages of cooling, the final temperature of 110 µK in the axial and 370 µK in
the radial direction, is reached. These results are obtained in a highly compressed
trap (ωz =2π× 122 Hz and ΩR=2π× 353 Hz). After the Doppler cooling stage
the bias field is removed and the cloud is further compressed (ωz =2π× 70 Hz
and ΩR=2π× 3.1 kHz). Empirically, this is found to be a good starting point for
evaporative cooling.

The evaporative cooling technique is based on spin-flipping the atoms from the
state |F =2, mF =2〉 (a low field seeking state) into the state |F =1, mF =1〉 (a
high field seeking state) using Radio-Frequency (RF) radiation. The evaporation
is started by dressing state |F =2, mF =2〉 with the state |F =1, mF =1〉, using a
RF photon blue detuned from the hyperfine transition in the cloud, meaning that
for a specific magnetic field, outside of the cloud, the potential is, effectively, cut
off. When an atom has enough energy to reach this cutoff, its spin is flipped and
the atom is pushed out of the trap. By slowly reducing the detuning of the RF-
radiation, the cutoff energy is lowered and starts to cut away atoms with lower
energies. This process is continued until a temperature below 20 µK is reached
and we are left with 2× 106 atoms. The next step will be to load the atoms into
an optical dipole trap.

4.1.7. Optical Dipole Trap (ODT)

The ODT uses the dipole force to create a conservative potential on the atoms
[16]. The dipole force, for a two-level atom and a single frequency laser beam, with
wavelength λ and detuning ∆ from the resonance ω0, is given by

Udip(r) ≃
RWA

3πc2

2ω30

Γ

∆
I(r),

where c is the speed of light, Γ the natural line width of the resonance, and I(r)
is the intensity profile given by the laser beam. The detuning determines whether
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the potential is attractive ∆< 0 (red-detuned) or repulsive ∆> 0 (blue-detuned).
A laser beam around its focus, is given by a Gaussian (cf. [196]), with 1/e2-radius
w(z) and power P :

I(r, z) =
2P

πw 2(z)
e
−2 r2

w2(z) ,

where w 2z =w
2
0 (1+ z

2/z2R) is the axial waist, w0 is the waist and zR=πw 20 /λ is the
Rayleigh range. Close to the center of the focus, the potential can be approximated
by a harmonic potential

U(r, z) ≃ −U0
[

1− 2
(
r

w0

)2

−
(
z

zR

)2
]

,

We are using a commercial fiber laser7 at a wavelength of 1071 nm and a maxi-
mum rated power of 120 W. During the studies on Bose gases the maximum power
used was about 15 W, with a waist8 of 43(1) µm. The reason for this is that 7Li
in the state |F =2, mF =2〉 experiences strong dipolar losses when the density be-
comes to high [197]. The axial confinement is rather small. To increase it, we add
an axial magnetic curvature.

Before the ODT loading, the axial confinement of the IP trap is changed from
strongly confining with a small bias field to only a small curvature field. Afterwards,
the current in the Ioffe-bars is turned off and, at the same time, the dipole trap is
turned on, in 50 ms. There are no Feshbach resonances in the state |F =2, mF =2〉.
In order to have Feshbach resonances, the atoms are transferred into one of the
high-field seeking states. The atoms are transferred from the state |F =2, mF =2〉
into the state |F =1, mF =1〉 via a RF induced Landau-Zener sweep [198, 199].
Note that the transfer is done from a low-field to a high-field seeking state, meaning
that the axial curvature needs to be inverted after the transfer [185].

We use a Feshbach resonance in the |F =1, mF =1〉-state of 7Li around
B0=737.8(3) G (see Section 4.2) to tune the scattering length for evaporation.
The bias magnetic field is increased to ∼ 718 G, where the scattering length is
≈ 200 a0, which was empirically found to be the optimum for evaporation. In an

7IPG YLR-120-LP
8Note that we measured the waist using the beam profile directly, but also via power and trap

frequency measurement. Between these measurements we found, at that time, a discrepancy of
≈
√
2, which is probably due to the profiling camera not being at the focus. In the following of

this thesis, we have used the more accurate measure, from the power and trapping frequencies,
when necessary.
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optical trap, in principle, all hyperfine states are trapped, which means that it is not
possible to use the spin-flipping to untrappable states technique for evaporation.
An optical trap, however, has the advantage that the potential depth is compara-
ble to the thermal energy. This means that by tuning the power of the laser, we
can tune the depth of the trap, hence force the evaporation. The disadvantage of
this process is that while reducing the power in the trap, the confinement is also
reduced, which makes the trapping frequency in the axial direction especially small.
This will reduce the elastic scattering processes that are necessary for rethermalisa-
tion. To overcome this, it is common to use a crossed dipole trap. In that case, the
trapping frequencies in all three-directions become comparable. In our experiment,
however, the already existing magnetic curvature along the axial direction (coming
from the IP trap) is used to add extra confinement. This, though, implies that the
evaporation becomes 2d (see [200] for more information about dimensionality in
evaporation), because the magnetic trap is deeper than the ODT.

We first evaporatively cool the cloud to ∼ 1 µK in ∼ 5 seconds. Afterwards, we
can recompress the trap to the desired depth or trapping frequency.

In Section 5.1.3, we will describe the specific measurement procedure.

4.1.8. Radio-Frequency (RF) Transitions

In the current setup, we are able to create any possible combination of (in)coherent
spin mixtures. We have two methods at hand: Rabi oscillations or Landau-Zener
sweeps. Both methods use RF-photons to couple one hyperfine state to another.

Rabi oscillations are coherent oscillations of the population, between two states
that are coupled via a coupling ΩR. On resonance, the population of the final state
is given by

P|m〉→|m±1〉 = sin
2

(
ΩR t

2

)

.

Changing the pulse duration t, allows the creation of any superposition of states.
Landau-Zener sweeps [198, 199] are induced by adiabatically sweeping the fre-

quency of the RF radiation over the resonance. The transition probability for
Landau-Zener sweeps is given by:

P|m〉→|m±1〉 = 1− e−2π
Ω2
R
ω̇ ,

where ΩR is the Rabi-frequency, ω̇ the sweep rate and |m〉 either |mF 〉 at low-field or
|mI +mJ〉 at high-field. As we can see, for diabatic passage ω̇→∞ the probability
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P =0, so no atoms are transferred, for adiabatic sweeps ω̇→ 0, on the other hand,
the probability P =1, so for sufficiently high ΩR the full population is transferred.
Note that these sweeps are coherent single particle processes, which means that
any superposition of the two states can be created. However, due to waiting in a
trap with inhomogeneous magnetic fields these coherent states will decay (for our
trap in about 10 ms) into an incoherent mixture.

The advantage of Rabi oscillations is that the method is, in general, fast (typically
< ms), however also sensitive to detuning, magnetic field and power fluctuations.
The Landau-Zener sweep method on the other hand is slower (typically 50 - 500
ms), though, the method is less sensitive to detuning, magnetic field and power
fluctuations.

In Figure 4.4, the different hyperfine states in the ground and excited 22P3/2
state are depicted up to a 1000 G. The different hyperfine-transitions of interest
are:

• Low-field (around 0 G):

– |F =2, mF 〉→ |F =1, mF ± 1〉: which at low-field has a transition fre-
quency around 803.5 MHz (the hyperfine splitting). This transition is
both used for evaporation (see Section 4.1.6) and preparation of the
atoms in the ODT (see Section 4.1.7).

• High-field (around 737.8 G):

– |1〉→ |2〉: typical frequency: ∼ 170 MHz

– |2〉→ |3〉: typical frequency: ∼ 210 MHz

– |3〉→ |4〉: typical frequency: ∼ 270 MHz

– |1〉→ |5〉: the transition from an high-field seeking to a low-field seeking
state. This transition is sensitive to magnetic field changes and useful for
the characterization of the magnetic field strength. Typical frequency:
∼ 2.7 GHz.

– |1〉→ |Eb〉: the transition, on the positive-a side of the Feshbach res-
onance, into the weakly bound dimer dressed state. Typical frequency
range: 0− 10 MHz.

These frequencies can be roughly classified into three categories: low-frequency
(0−50MHz), mid-frequency (50−500MHz) and high-frequency (500−3500MHz).



4.1 Experimental sequence 79

We have, for each of these frequency ranges, synthesizers9, amplifiers10 and an-
tennas11.

4.1.9. Imaging

To do a measurement, the resulting cloud needs to be analyzed. This is done by
taking an image of the cloud. There are several imaging techniques, e.g., phase-
contrast imaging, fluorescence imaging, ionization and absorption imaging. In our
experiment, we use the latter. The idea behind absorption imaging is to shine
resonant laser light through the cloud and image the shadow cast by the cloud
on a CCD camera (let us say that the propagation direction is the y -axis). The
cloud will absorb an amount of light proportional to the density in a certain region.
The camera will in that case provide us with an image I(x, z). When this image
is compared to a reference image I0(x, z) without atoms, we obtain the optical
density profile of the cloud integrated along the propagation direction of the laser,
which is directly related to the integrated density in the following way

OD(x, z) = − ln
(
I(x, z)

I0(x, z)

)

= σA

∫

dy n(x, y , z), (4.1)

where σA is the absorption cross section. Equation (4.1) only holds if the Lambert-
Beer law holds, which means that the images need to be taken in the linear ab-
sorption regime (I ≪ Isat the saturation intensity). The intensity for imaging is
I/Isat≃ 0.01, with Isat=2.54 mW/cm2.

Figure 4.4 shows the energy dependence of the 7Li energy state in the D2-
line system. The red arrows, in the Figure, are indicating the imaging transitions
used for imaging at both low- and high-field. The low-field probe cycles on the
|F =2, mF =2〉→ |F ′=3, mF ′ =3〉 transition using σ+-polarized light. The three
high-field probes cycle on the following three transitions: |1〉→ |9〉, |2〉→ |10〉 and

9Rohde Schwarz SMT 03 (5 kHz - 3 GHz);
Rohde Schwarz SML 01 (9 kHz - 1.1 GHz);
Marconi 2030 (10 kHz - 1.35 GHz)

10MiniCircuits ZHL-30W (30 W 700 - 2500 MHz);
MiniCircuits ZHL-50W (50W 50-500 MHz);
MiniCircuits ZHL-42W (10-4200 MHz);
Nucletudes ALP 6050 (10 W 1 - 500 MHz)

111x 1 turns - 10 mm diameter;
1x 10 turns - 10 mm diameter;
1x 100 turns - 10 mm diameter;
1x wire for linear-polarization
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Figure 4.4.: The energy spectrum E of the D2-line of 7Li for a magnetic field of 0
to 1000 G. The red arrows indicate the transitions used for the imaging.
The outermost left arrow indicates the low-field imaging on the transi-
tion |F =2, mF =2〉 → |F ′=3, mF ′ =3〉. The other three arrows indicate
the high-field imaging transitions, which are from left-to-right: |1〉 → |9〉,
|2〉→ |10〉 and |3〉→ |11〉. For most of the measurements, the imaging tran-
sition |1〉→ |9〉 was used. Inset: the different Zeeman states used in the
high-field imaging.
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|3〉→ |11〉. In the following, we will only use the |1〉→ |9〉-transition.

A recurring problem in ultracold gases is the determination of σA. The absorption
cross section σA is given by

σA =
C2λ2

2π
[

1 +
(
4π∆
Γ

)2
] =
∆=0

C2λ2

2π
, (4.2)

where C is the Clebsch-Gordan (CG) coefficient. The imaging is perpendicular to
the magnetic field axis. Hence, for linear polarization perpendicular to the magnetic
field direction the CG coefficient equals 1/2. The determination of σA is, in general,
rather difficult (e.g. due to the laser frequency linewidth and precise knowledge of
the magnification factor of the imaging system), so a calibration of the atom
number is needed. Our calibration method is extensively described in Section 5.1.4
and [95].

z Ha.u.L

O
D

Figure 4.5.: A typical integrated optical density profile, for a non-degenerate gas of
∼ 1.5× 105 7Li atoms at T =10 µK. The total number is obtained by inte-
grating along the z-axis and the temperature by fitting a Gaussian (red line).
Extracting the width and using Equation (4.3) gives the temperature.

Using this, each image provides us with information about the cloud. The number
of atoms can be extracted by simply integrating over the OD of the cloud. Because
the cloud is non-degenerate, the width of the cloud is obtained by a Gaussian fit.
In a non-degenerate gas in equilibrium the temperature is related to the width of
the cloud via

T =
mω2zσ

2
z

kB
, (4.3)
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where σz is the width obtained from the fit.
As an example, we have shown a typical integrated absorption profile in Fig-

ure 4.5. The blue dots correspond to the integrated density profile along the y-axis
and the red line to the fitted Gaussian.

4.2. Feshbach Resonance in 7Li

In this section, we will discuss the Feshbach resonance specific to 7Li. For more
information about Feshbach resonances in general, the reader is referred to Section
1.2 or, for a detailed review of the subject, to [48].

Around a Feshbach resonance, the scattering length behaves as

a = abg

(

1− ∆

B − B0

)

, (4.4)

where abg is the background scattering length, ∆ is the width and B0 is the position
of the Feshbach resonance.

Predicting the position and width of a Feshbach resonance is difficult, because
the calculation of the scattering length is very sensitive to the details of the atom-
atom potential. Usually, the fine tuning of these parameters is performed using the
input of experimental measurements.

There are several methods to experimentally detect Feshbach resonances. The
fastest and most popular method is to do inelastic loss spectroscopy. However, the
disadvantage is that it is rather inaccurate. We have used this method to roughly
determine the position of the resonance. Afterwards, binding energy measurements
were used to characterize the full resonance.

We use the Feshbach resonance in the state |F =1, mF =1〉LF or |1〉HF of 7Li.
Before the measurements were done in our group [95, 185], there were two in-
dependent measurements of this resonance, which were disagreeing in resonance
position by ≈ 1.5 G. The first measurement was done in Rice [61]. They fitted a
Thomas-Fermi profile to an in situ BEC to determine the scattering length as a
function of the magnetic field, thus characterizing the resonance position and width.
They found the resonance position B0=736.8(2) G and width ∆=−192.3(3) G.
The second measurement was done in Bar-Ilan [128], using RF-spectroscopy on the
weakly bound dimer state to determine a, close to the Feshbach resonance, as a
function of the magnetic field. They found the resonance position B0=738.3(3) G.

In our group, we used the latter method and found a result similar to one obtained
by the Bar-Ilan group [95, 185]. After our measurements, the group in Rice remea-
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sured the Feshbach resonance position using weakly bound state RF-spectroscopy
and found a matching position [125]. The most accurate determination of the
Feshbach resonances in 7Li was done in [201]. The authors used spectroscopic
data of three Feshbach resonances in the two lowest hyperfine states of 7Li to fit
to a coupled channel calculation. The resonance position is B0=737.88(2)G, the
background scattering length abg=−20.98 a0 and resonance width ∆=−171.0 G.

Figure 4.6.: Absorption images of interacting BECs, with from top to bottom increas-
ing interactions. 7Li in the state |F =1, mF =1〉, on the positive-a side of
the Feshbach resonance at B0=737.88(2)G. The images have a scattering
length a of 200, 520, 1420 and 2940 a0, respectively. With increasing inter-
actions the size of the cloud increases. Red corresponds to high and blue to
low density regions.

At the original resonance position of the Rice group, the scattering length corre-
sponds to a(736.8G)=3300 a0. Hence, the resonance was remeasured [125] and
the results from [202] corrected.

In Figure 4.6, we have shown the result of increasing interactions on a BEC of
7Li.

4.3. Summary

In this chapter, we have discussed the different stages of the experiment, which are
schematically depicted in Figure 4.3. Let us here summarize the different stages:

1. Zeeman Slower: An atomic beam coming from an oven at 500 ◦C is slowed
down from 1100 m/s to 50 m/s.

2. MOT: The atomic beam is captured using laser light and magnetic field
gradients and cooled to ≈ 600 µK.
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3. Magnetic trapping and Evaporative cooling: The atoms are spin-polarized,
magnetically trapped and cooled using RF-evaporation. The final temperature
is ≈ 20 µK.

4. Hybrid Magnetic and Optical Trapping: A dipole trap together with a mag-
netic field curvature is used to trap the atoms. A bias magnetic field is used
to change the collision properties and forced spilling of atoms evaporatively
cools the cloud further down to ≈ 1-15 µK.

5. Measurements: The measurement is done at and around the Feshbach res-
onance described in Section 4.2.

6. Imaging: An absorption image is taken after a sequence and the atom num-
ber and temperature of the cloud are extracted.

In Chapter 5, we will describe in detail the results of measurements that were
done at and around the Feshbach resonance.



5. Lifetime of the Resonant Bose Gas

This chapter is dedicated to the experimental study of the lifetime of Bose gases
with resonant interactions. This study will focus on the dominating three-particle
losses in the non-degenerate regime (T ≫Tc). In Chapter 2, a theoretical model
for three-particle losses was derived. In order to test the predictions arising from
this model, we will consider two situations.

In the first situation, we will focus on the limit of unitary interactions (a→∞)
and study the temperature behavior of the three-particle losses. In this experimental
study, we will for the first time quantitatively test the 1/T 2 law expected for three-
particle losses at unitarity.

In the second situation, we will consider finite-a and study the saturation behavior
around |a| ∼ 1/kth of the three-particle losses. We will measure the three-particle
losses while varying the scattering length at a fixed temperature and give a quan-
titative comparison of the results with the theory.

Furthermore, we use the theory from Chapter 2 to quantitatively explain results
in previous studies. A group in Innsbruck [122, 203] did quantitative measurements
on the change of the position of a Efimov resonance due to saturation of the three-
particle losses. We will compare these measurements with the theory presented in
Chapter 2. The result is a remarkable quantitative agreement between, on the
one hand, the temperature effects seen in the experiments and, on the other, the
theoretical explanation of these effects.

After our publication [143], a second study of the three-particle losses in a sys-
tem with resonant interactions was performed in Cambridge [172]. In this study,
the 1/T 2 behavior was verified using a different method. We will discuss these
measurements and show that the theory quantitatively explains their results.

We will start by explaining the experimental setup specific to our measurements.
More precisely, we will describe the quasi-thermal and constant temperature con-
ditions and explain the atom number calibration.

85
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5.1. Recombination Rate Measurements and Assumptions

In the following, we will explain under which conditions our measurements were
done and how we calibrate the measurements. We will start by introducing the
quasi-thermal equilibrium condition. This condition will be important to extract the
density and temperature from an in situ density profile. Moreover, the quantitative
1/T 2 behavior is derived under the condition of quasi-equilibrium. Afterwards, we
will talk about the different time scales of N-particle processes. We will discuss
the specific experimental procedure for the loss measurements. Thereafter, the
number calibration is described. Finally, we will discuss the constant temperature
condition and explain the data analysis procedure.

5.1.1. Quasi-Thermal Equilibrium Condition

In order to describe the losses, we need to compare the time scales of elastic and
inelastic collisions. The reason for this is that the elastic collisions determine the
reaction time of the cloud to reach its equilibrium state, whereas inelastic collisions

Figure 5.1.: The quasi-thermal equilibrium condition diagram, which is based on the
quasi-thermal equilibrium conditions, see Equation (5.1), at resonance (y-
axis), and Equation (5.2), at zero-temperature (x-axis). On the x-axis the
interaction parameter is plotted and on the y-axis the degeneracy parame-
ter. The origin corresponds to the unitary Bose gas and the red region to
the regime, where the gas is unstable and theories for L3(T ) and L3(a) are
not valid. The shaded green area corresponds to the validity region of the
theory in Chapter 2, the blue arrows correspond to our loss measurement at
resonance and at finite interactions. The dashed quarter circle corresponds
to γ3/γ2≃ 1 and sets limits to the quasi-thermal equilibrium condition.
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are driving the cloud away from equilibrium. Hence, elastic collisions need to occur
much faster than the inelastic collisions in order to have equilibration. If this would
not be the case, and the inelastic collisions would be dominating over the elastic
collisions, then inelastic processes would trigger dynamic macroscopic processes,
which are, in general, difficult to describe without doing a full dynamical simulation.
Operating under these conditions can be considered as working in a quasi-thermal
equilibrium. The word quasi marks the important fact that there are still losses.

Assuming that we have a non-degenerate cloud (nλ3th≪ 1), with unitary inter-
actions. The ratio of interest is given by the elastic two-particle scattering rate
γ2= nσvth and the inelastic three-particle scattering rate γ3=L3n2. Here σ is
the scattering cross section and v the thermal velocity of the atoms. Neglecting
the log-periodic term in γ3, the quasi-thermal equilibrium condition reads (using
Equation (2.38) for L3):

γ3/γ2 ∝
a→∞

nλ3th
(
1− e−4η∗

)
≪ 1. (5.1)

In the zero-temperature weakly-interacting limit (k |a| → 0), a similar condition is
derived. The three-particle loss coefficient is given L3∝ ~/m a4 [56, 113–115, 117]
and for the elastic scattering the characteristic reaction time of a BEC is given by
γ2∝µ/h ≃

a→0
ng/h=4π(~/m)na. Hence, the condition becomes

γ3/γ2 ∝
kth→0

na3 ≪ 1. (5.2)

In Figure 0.1 of the Introduction, we have plotted the different regimes of the
scattering problem as a function of both interactions (na3) and temperature (nλ3th).
The quasi-thermal equilibrium conditions Equations (5.1) and (5.2) allow us to
graphically depicted the regions of stability (see Figure 5.1). The dashed quarter
circle corresponds to γ3/γ2=1 and inside this circle (γ3/γ2≫ 1) is the unstable
region and outside this circle (γ3/γ2≪ 1) is the stable region. The horizontal
dotted line corresponds to the critical temperature Tc, the solid black line is the
condition λth= |a|.

The general expectation, in the limit T → 0 and a→∞, is that the losses will be
limited by the bosonic Fermi energy EF∝ n2/3 (see for example [204]). However,
we will limit ourselves to the measurement of the losses in the non-degenerate gas,
see the shaded green region in Figure 5.1.
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5.1.2. Separation of Time Scales

As we have seen in Section 5.1.1, for the non-degenerate gas with unitary interac-
tions, the time scales of the two- and three-particle processes are separated by the
degeneracy parameter nλ3th. In the non-degenerate gas, nλ3th can be considered as
a small parameter and allows for the separation of the time scales between different
order processes.

Since N-particle losses provide us with interesting information about the N-
particle inelastic scattering problem, let us consider the expansion of many-particle
recombination into N-particle recombination problems. Then, N-particle losses are,
in general, well described by the following differential equations:

ṅ(t) = −
∑

k∈N
Lkn

k(t)

Ṅ(t)

N(t)
= −

∑

k∈N
Lk〈nk−1(t)〉,

where N(t) is the total number of atoms after a wait time t, 〈nk−1〉 is the av-
erage density to the power (k − 1), describing the average probability to have
(k − 1)-particles together. The conditions that we work under are the following:

• Negligible density-independent loss processes.

• Internal ground-state: negligible spin-changing (inelastic two-particle) col-
lisions.

• Non-degenerate gases: negligible higher-order, e.g. N > 3, inelastic colli-
sions.

Finally, in a harmonic trap there is another time-scale determined by the trapping
frequencies ωr and ωz . In our trap configuration the most stringent trap time-scale
is given by the axial trapping frequency, which is in the worst case ωz =2π× 18 Hz,
so the three-particle loss rate needs to be slower than this: γ3/ωz≪ 1 (see Sec-
tion 5.1.3 for the other trap parameters).

5.1.3. Starting Point for the Measurements

The experimental setup is described in Chapter 4. The initial condition for the
experiments is a spin-polarized (in state |1〉) non-degenerate gas, which we load
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into the optical dipole trap (ODT). At this point, we have ≃ 2× 106 atoms at
≃ 30 µK.

Using the Feshbach resonance at B0=737.8(4) G (see Section 4.2) the scat-
tering length can be tuned to the desired value. For evaporative cooling of bosons,
an empirical optimum is found near 200 a0, which corresponds to a magnetic field
of B≃ 718 G. Evaporative cooling is then forced by reducing the power in the laser
beam of the ODT. By choosing the appropriate final power, the potential depth U ′

and thus the final temperature can be controlled. When the cloud is thermalized
the ODT is recompressed to the height U = ηkBT >U ′ with 6≤ η≤ 8. At a specific
T the height U is chosen such that the temperature is kept constant during the
three-particle loss measurement, as we have shown to be possible in Section 3.3.3.

The typical trapping frequencies lie in the range of 0.87<ωr/(2π)< 3.07 kHz
with an error of ∼ 5 % and 18<ωz/(2π)< 49Hz with an error of < 1 %, which
we have measured both with parametric heating and center of mass oscillations.
After recompression, the temperature varies between 1 and 10 µK, with an atom
number between 0.5 and 3.0× 105. In this range of parameters, the phase-space
density (PSD) varies between 7× 10−4 and 1.1× 10−2. Since the PSD is ≪ 1, we
stay in a regime where a quasi-thermal equilibrium can be maintained and where
4-particle or higher-order particle losses are negligible.

The next step in the measurement procedure, is to ramp the magnetic field to
its final value B in 100-500 ms. At this point the scattering length is given by
a(B) (see Equation (4.4)). For the measurements at resonance the magnetic field
is B=B0, while the temperature is varied. For the measurements away from the
resonance, the temperature is kept around T ≃ 5.9(6) µK and the scattering length
a(B) is changed using B.

The ramp to a specific a always starts at the positive a side of the resonance
and then sweeps across the resonance to the final value of a. This is to avoid the
adiabatic formation of weakly-bound dimers, when scanning from the negative- to
the positive-a side [205–207]. The magnetic field ramp time is much longer than the
characteristic times associated to the trapping frequencies and elastic scattering.
This condition needs to hold in order to avoid fast variations of the density profile
that induce strong particle currents in the trap making the loss process difficult to
analyze.

After the ramp, the cloud is kept at a magnetic field B for a variable hold
time t after which an in situ image is taken to extract both atom number and
temperature from a Gaussian fit to the density profile. A typical decay curve is
shown in Figure 5.3.
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To check for independence of the preparation procedure, we have prepared the
gas in a non-interacting state (state |2〉 of 7Li) at the magnetic field corresponding
to unitary interactions in the state |1〉. Afterwards the atoms are transferred into
the interacting state using an RF-pulse. This method gave the same result as the
other preparation method.

5.1.4. Number Calibration

This section is based on unpublished notes of Andrew Grier [208]. Accurately
determining the number of atoms is a difficult problem and usually the associated
error is quite large. We have overcome this problem by calibrating our system using
a weakly interacting BEC, as introduced in [95]. The method is based on mea-
surements of the equation of state [84, 85, 87] of a BEC in the zero-temperature
limit using in situ imaging techniques to extract the pressure as a function of the
interaction parameter. The pressure can be written as

P (µ, a) =
~
2

ma5
· h
(

ν ≡ µ

g
a3
)

, (5.3)

Figure 5.2.: The pressure measurement of h(ν) as defined by Equation (5.3). The black
dots are the result of the pressure measurement. The red dashed line corre-
sponds to the mean field prediction. A scaling factor ξ was used to overlap
the data with the mean-field prediction for a→ 0, we find ξ=2.45(60). The
red solid line includes the first order corrections (LHY) measured in [95]. We
have only used the range 0≤ ν≤ 1× 10−4 for the calibration.
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where we have introduced the dimensionless pressure h, the grand canonical inter-
action parameter ν, which becomes na3 in the limit of weak interactions, and the
coupling constant g=4π~2a/m. In the mean field limit (a→ 0), the normalized
pressure is given by h(ν)=2πν2 and this result is used to calibrate the number of
atoms. The pressure is then written as

P (µ) ≃
a→0

µ2

2g
.

Let us use this to calibrate the system and analyze potential error sources in the
determination of the loss coefficient L3.

5.1.4.1. Pressure calibration

Let us introduce the experimentally measured pressure Pexp and chemical potential
µexp, which are related to the real pressure and chemical potential through the
calibration factor ξ,

P (µ, a)

µ2
= ξ

Pexp(µexp, a)

µ2exp
.

The starting point for the determination of the calibration quantities is the relation
between the pressure and the doubly-integrated density n(z) [84, 85, 87],

P (µz) =
mω2r
2π

n̄(z),

where ωr is the radial frequency of the trap and n̄(z)=
∫
dx dy n(x, y , z) is the

integrated density. The two quantities prone to errors in this formulae are ωr and
n̄(z). ωr is a known quantity with a known error (see Section 4.1.7). The doubly-
integrated density depends on several parameters and in order to find its dependence
on the experimental observables, we need to look at the imaging process.

The imaging was described in Section 4.1.9. We can directly relate the number
of missing photons on a pixel of the imaging system to the number of particles in
the region that the imaging beam passes through. Let ODi j be the optical density
measured in pixel (i , j). Using the Lambert-Beer law, the relation between the
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density of particles and the number of missing photons can be written as,

σANi j = (lpx)
2 ODi j

N =
∑

i j

Ni j =
(lpx)

2

σA

∑

i j

ODi j , (5.4)

where σA is the absorption cross section of a particle, Ni j is the number of particles
in the imaged region corresponding to pixel (i , j), and lpx being the pixel size.

In order to understand the calibration, let us introduce a notation to signify the
calibration factors: C [X]. Let X be some quantity to be measured and Xexp the
experimentally measured value, then

C [X] =
X

Xexp
(5.5)

is the calibration factor between the measured value of X and the real value.

Let us have a look at the total number calibration factor and relate this to
calibration factor for the doubly integrated density n̄(z). In Equation (5.4), the
ODi j is a measured quantity and the calibration and errors of the relation are only
in the pre-factor. From this it follows that the calibration factor in N is given by

C [N] =
C [lpx]

2

C [σA]
.

Following a similar reasoning, the doubly integrated density n̄(z) is related to the
number of atoms per pixel through,

n̄(z) =
1

lpx

∑

j

Ni j =
lpx
σA

∑

j

ODi j

C [n̄(z)] =
C [lpx]

C [σA]
.

So the two quantities here that are prone to errors are lpx and σA (see Section 4.1.9).
Translating this into the pressure relation and using the calibration-notation gives,

C [P (µz)] = C [ωr ]
2 C [lpx]

C [σA]
.

In the local density approximation the chemical potential is given by
µz =µ0 − 1

2
mω2zz

2→C [µz ] =C [ωz ]
2 C [lpx]

2. Putting everything together the cal-
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ibration parameter of the pressure is given by,

C

[
P (µz)

µ2z

]

=
C [ωr ]

2

C [ωz ]
4

1

C [lpx]
3 C [σA]

. (5.6)

The temperature for a non-degenerate gas in a harmonic trap is directly related to
the size of the cloud (here along the z-axis):

1

2
kBT =

1

2
mω2zσ

2
z

→ C [T ] = C [ωz ]
2 C [σz ]

2 .

In the following, we will use this result and compare it to the calibration factor of
the pressure.

5.1.4.2. Recombination and Temperature calibration

A similar procedure can be followed to estimate the calibration error in L3, thus
allowing the derivation of the calibration factor of L3T 2. When taking the solution
of the number of particles as a function of time N(t)/N0=(2ÃN20L3t +1)

−1/2,
where 〈n2〉= Ã N2 defines Ã and C

[
Ã
]
= (C [ωr ] /C [ωz ])

4 × 1/C [lpx]6. The fit will
be done on Lfit3 = Ã N

2
0 L3 so in order to get the real L3 we need several quantities.

In the calibration notation this becomes

C [L3] =
1

C [A(T )]C [N0]
2 =

(
C [ωz ]

C [ωr ]

)4

(C [lpx]C [σA])
2

C
[
L3T

2
]
=
C [ωz ]

8

C [ωr ]
4 C [lpx]

6 C [σA]
2 . (5.7)

Finally, comparing Equations (5.7) and (5.6), we arrive at the remarkable property

(

C
[
P (µz )
µ2z

])−2
= C

[
L3T

2
]
. (5.8)

We will use the factor ξ which calibrates the relation between the pressure and the
chemical potential and use it directly to calibrate the recombination constant times
the temperature squared. In the experiment, we can measure the trap frequencies
with great accuracy. This means that the calibration is likely related to the absorp-
tion cross section and the magnification factor of the imaging system. For unitary
interactions the calibration can be applied to the L3 versus T behavior. However,
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away from the resonance, we will assume that the calibration comes from the num-
ber counting. This means that we will use the calibration in the recombination
coefficient

L3 = ξ
−2Lexp3 . (5.9)

Here Lexp3 is taken to be the uncalibrated L3 measurement.
Using the mean-field fit of h(ν) to the data in Figure 5.2, we find ξ=2.45(60).

When the necessity of the calibration is only due to the number calibration this
gives an extra 20 % uncertainty, arising on L3T 2 from the T 2 scaling with l4px.

Let us note here that for the unitarity measurements of L3, in principle, we
do not have to assume anything about where the error comes from, because the
error is directly related to L3T 2. Which means that λ3 can be directly given and
corrected for each point. This also means that the fitted value of λ3 will not change
depending on where the error comes from. This reduces the error on λ3.

5.1.5. Constant Temperature

In Section 3.2, we have seen that three-particle losses intrinsically heat the cloud
(see Equation (3.9)). So in order to predict the dynamics, one would have to
solve and fit the two coupled Equations (5.10) (number) and (3.9) (temperature).
For this we would have to assume that the three-particle losses follow the model
derived in Chapter 2. To avoid this assumption, we have experimentally kept the
temperature constant1, by allowing relatively small evaporative losses. These losses
will add to the uncertainty of the result, but an estimation of the losses due to
evaporation can be made based on the comparison of the amount of heat added per
particle in a recombination event with the amount of heat taken away per particle
in an evaporation event. Doing this reduces the systematical effects and allows
us to measure the loss coefficient, while making relatively small model dependent
assumptions, for more details we refer the reader to Section 3.3.1. Afterwards, we
have also modeled the evaporation using the theory from Section 3.3.2.

5.1.6. Data Analysis

In Section 4.1.9, we have discussed how to obtain the temperature and number of
a cloud from an absorption image. In Figure 5.3, these results have been plotted
for different wait times t. In Figure 5.3a, the number of particles is plotted (blue

1we have also reproduced this in simulations (see Section 3.3.3)
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dots) as a function of wait time and we see a clear decrease of atom number with
time. In Figure 5.3b, the temperature is plotted as a function of wait time. The
temperature is kept approximately constant with an increase in the temperature
spread over time due to the difficulty of doing a fit to an image with a low number
of particles. The red line corresponds to a fit of a constant to the temperature.

In Figure 5.3a, the theory that was fitted to the data (red line) is described by
three-particle recombination losses under a quasi-thermal equilibrium. The change
of particle number is given by

Ṅ

N
= −L3(a, T )〈n2(t)〉.

The only other loss process present is induced by evaporative losses, which will

Figure 5.3.: Time-dependence of the atom number (a) and temperature (b) of a
non-degenerate cloud at unitarity. The fitted temperature corresponds
to T =5.2(4) µK, for potential U = ηkBT with η=7.4. The fitted
Lmeas3 =1.2(2)stat× 10−21 cm6s−1. The dotted line in (a) shows the long
time t−1/2 behavior of the number of atoms.
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depend on the trap depth. In Section 3.2, we have both estimated and modeled
these losses and we will take the corrections due to evaporation into account in
Sections 5.2 and 5.3, respectively.

The fact that we use dilute non-degenerate gases further simplifies the problem
in the sense that 〈n2〉 is proportional to N2 and the geometrical effects are easily
calculated. The differential equation for the losses becomes

Ṅ

N
= −A L3(T )

N2

T 3
, (5.10)

where A=(mω̄2/2πkB)3/
√
27, with ω̄= (ω2r ωz)

1/3, was introduced to include the
temperature independent geometrical effects.

Keeping the temperature constant during the measurement allows us to simplify
the Equation (5.10) and solve it exactly

Ṅ

N
=
t→∞

−Ã L3 N2,
N

N0
=
t→∞

(
2 Ã L3 N

2
0 t + 1

)−1/2
,

∝
t→∞

t−1/2

where we have introduced the constant Ã=A/T 3 and N0 to be the total atom
number at time t =0. Fitting this to the data gives Lexp3 for a specific temperature
T , the result of which is shown in Figure 5.3a (red line). In the limit of long waits
times, the number decay scales as t−1/2, which is shown in Figure 5.3a (red dotted
line). We have included all the other fits in Appendix C.1.

Next, the calibration correction is applied to the measured Lexp3 ,

Lξ3 = ξ
−2Lexp3 , (5.9)

where ξ is the calibration factor obtained in Section 5.1.4.2.

Afterwards, we apply the correction due to evaporation effect (see Equation (3.15))

L3 = L
ξ
3

[

1

1 + δ(a,T )
η+κ−3

]

, (3.15)

where η is the depth of the potential, κ the additional heat lost per evaporation
event given by Equation (3.12) and δ(a, T ) the excess heat in units of kBT , given
by Equation 3.8.
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As an example the systematic overestimation of L3, due to evaporation effects,
for typical trap depths of η=6 and η=8 are 50% and 30%, respectively. Finally,
we have a method to obtain L3 for any value of the temperature T and scattering
length a.

5.2. Results - Unitary Interactions

5.2.1. Temperature Dependence of L3 at Unitarity

Figure 5.4.: The green dashed line shows a fit to the functional form
L3(T )=λ3/T

2, with the experimentally determined value
λ3=2.5(3)stat(6)syst× 10−20(µK)2cm6s−1. The shaded green band
shows the 1 − σ uncertainty (which is given by a quadrature sum of both
the statistical and systematical uncertainty). The solid blue line corresponds
to the theory prediction of λ3=1.52× 10−20(µK)2cm6s−1, where we have
taken η∗=0.21 from [127, 128, 201].

In these first measurements the scattering length diverges (a→∞), while the
temperature is varied. Then for each temperature we have done a loss measurement
as shown in Figure 5.3. For each temperature T , we obtain the three-particle loss
coefficient L3(T ). This measured value is then corrected using the calibration
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factor for L3T 2 (see Section 5.1.4.2) and for evaporation (see Section 3.3.1). The
result is plotted in Figure 5.4 (black dots with error bars).

The green dashed line is the result of a fit, on the logarithmic scale, of the data
to the functional from L3(T )=λ3/T

2. The result is:
λ3=2.5(3)stat(6)syst× 10−20(µK)2cm6s−1. We have taken into account both sta-
tistical errors, which are due to the fitting procedure of N(t) (12 %) and systematic
errors (due to finite-range corrections (14 %), trap-frequency (16 %) and uncer-
tainty in the density profile fit (10 %), giving a total error of 25 %), due to uncer-
tainty in the number calibration and temperature measurement. When we compare
the measured result with the theory prediction λ3=1.52× 10−20(µK)2cm6s−1, we
find that the theory is slightly outside the 1 − σ confidence interval of the result
of the fit. We consider this result, without any adjustable parameter and consid-
ering the difficulty of exact quantitative measurements of the loss coefficient, as
satisfactory.

5.2.2. Reanalysis using the Advanced Evaporation Model

In the previous section, we have estimated the effects of evaporation by assuming
that the heating due to three-particle losses is directly compensated by evaporation.
This gives an estimate of the extra losses due to evaporation (see Section 5.1.6).
However, we have also introduced a full heating and evaporation model (see Sec-
tion 3.3.2). In the following, we will show the results of the fits using this model
and compare that with our results that were obtained by estimating the evaporative
losses.

Using the model from Section 3.3.2, we have refitted all the data points on both
atom number and temperature change, with the only free parameter being the depth
of the trapping potential. The full description of the procedure is discussed in [176].
The results of the fitting are presented in Figure 5.5, indicated by the black dots.
These results are then fitted to the functional form L3(T )=λ3/T

2 with the result
given by λ3=2.6× 10−20(µK)2cm6s−1. Comparing this to the result obtained by
estimating the evaporative losses, λ3=2.5(3)stat(6)syst× 10−20(µK)2cm6s−1, we
find that both results agree within the error bars.

To calculate the spread of the loss coefficient, let us calculate λ3=L3(T )T 2

for each point and then compute the mean value and standard deviation. The
results from Section 5.2.1 have a mean value of 〈λ3〉=2.7× 10−20(µK)2cm6s−1
and a standard deviation of σλ3 =1.21× 10−20(µK)2cm6s−1. The results from
this section have a mean value of 〈λ3〉=2.8× 10−20(µK)2cm6s−1 and a standard
deviation of σλ3 =1.23× 10−20(µK)2cm6s−1. We find that both agree extremely



5.2 Results - Unitary Interactions 99

102

10-21

10-20

T @ΜKD

L
3
@c

m
6 s-

1 D

Figure 5.5.: The results of fitting with the full temperature model (see Section 3.3.2
and [176]). The results are given by the black dots and a fit to the
data points is shown by the black line. A fit was done to the functional
form L3(T )=λ3/T

2. The fitted value is λ3=2.6× 10−20(µK)2cm6s−1,
which is in good agreement with the value obtained by estimating the
evaporation effects, which is depicted by the green dashed line with
error bars given by the shaded green area. The original result was
λ3=2.5(3)stat(6)syst× 10−20(µK)2cm6s−1. The solid blue line corresponds
to the theory prediction of λ3=1.52× 10−20(µK)2cm6s−1, where we have
taken η∗=0.21 from [127, 128, 201].
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well within error bars.
In the end, we can conclude that the estimation of the evaporative losses is jus-

tified and can also be used for the measurements performed away from resonance.
In the intermediate regime k |a| ≈ 1, the usage of this full model is complicated,
because the scattering cross section in the intermediate regime is, to our knowl-
edge, unknown. Therefore, we will rely on our estimation method in this interaction
regime.

5.3. Results - Finite Interactions

5.3.1. Saturation of L3 for Resonant Interactions

For these measurements, we have varied the scattering length a and kept the
temperature T the same for each measurement of L3. In Figure 5.6, the results
of the measurements are shown. Each point corresponds to a measurement as
depicted in Figure 5.3 and gives a point {a, L3}. The result of the fits for all the
points are given in Appendix C.2.

The red dashed line is the zero-temperature theory with the Efimov parameters
from [201]2. For weak interactions (|a|≪ 1/kth), the zero-temperature is valid.
However, when the scattering length becomes on the order of the thermal wave-
length (|a| ∼ 1/kth) the data points deviate from zero-temperature L3(a). In the
resonant interactions limit (|a|≫ 1/kth), the data shows a maximum attainable
value. This behavior is called saturation and it occurs when |a|≫ 1/kth. The max-
imum value is given by L3(T ), whose temperature dependence we have tested at
unitarity in Section 5.2.

These are the two limiting cases of L3(a, T ), however, the theory developed in
Chapter 2 is smooth across the resonance and holds for the full negative-a side and
in the regime a≫ 1/kth on the positive-a side. The result of the theory is shown
by the blue solid line for a temperature of T =5.9 µK and the Efimov parameters
from [201]. The shaded blue area corresponds to the 1−σ temperature spread of
the data points. As we can see there is a excellent agreement between theory and
experiment, with no adjustable parameter.

There are some interesting features to be seen in the theory curve for L3(a, T ).
For weak-interactions the theory connects to the zero-temperature theory. Close
to the point a≈−300 a0, there is a Efimov resonance, which shows a reduced loss

2Note that we used η∗=0.21, which is the average value of η∗ on the negative and positive side.
Since we are interested in the saturation regime and there is a priori no difference in this regime
between positive- or negative-a side we have taken the mean value.
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Figure 5.6.: a) 7Li scattering-length dependence of the three-particle loss coefficient
L3(a) for constant T =5.9(6) µK (filled and open circles). For small
positive a, L3(a) for a low temperature condensate is also shown (green
squares). The solid blue line corresponds to the theoretical prediction in
Equation (2.38) for T =5.9 µK. The blue shaded region is the same theory
for 5.3 to 6.5 µK. The dashed lines show the zero-temperature prediction for
L3(a) [168] fitted to the measurements in [127, 128, 201] with the param-
eters η∗=0.21 and a−=−274 a0. The vertical dotted lines correspond to
kth|a|=1. The open circles in the range 1500 a0<a< 5000 a0 are not cor-
rected for residual evaporation as our model is not applicable. b) Logarithmic
plot of the a< 0 side, displaying the two Efimov loss resonances.
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coefficient with respect to zero-temperature (saturation), even though |a|< 1/kth.
The first indication of a second Efimov resonance around a≈−5000 a0 (the
expected position is at a(2)− = a

(1)
− e

π/s0 ≈−6218 a0). Across the resonance, the
L3(a, T ) varies smoothly. On the positive-a side, for weak interactions, we used a
BEC at zero-temperature (see green squares) to confirm the zero-temperature the-
ory for L3(a) and we have also used thermal gases to show the smooth connection
from unitary to weak interactions (black open circles).

The saturation behavior of the Efimov resonance brings us to the next section,
where we will quantitatively describe the movement of the position of the Efimov
resonance with temperature as was observed in 133Cs.

5.3.2. Comparison with Previous Data - 133Cs

In the following, we will look at some specific experiments done on Efimov res-
onances. We will compare the experimental results to the theory, described in
Chapter 2, and see the effect of temperature on both the saturation of L3 and the
position of the Efimov resonances.

5.3.2.1. The First Efimov Resonance

The first direct evidence for a universal three-particle bound state was found in
three-particle recombination losses in cold-atomic gases by a group in Innsbruck
[122]. They used a Feshbach resonance to vary the interactions between the parti-
cles, and characterized the losses as a function of the scattering length a. Doing so
revealed a clear resonance signature at a= a−=−872 a0 3. The data from that pa-
per is shown in Figure 5.7, for different temperatures. At that time, the same mea-
surement was done for different temperatures, however, only a zero-temperature
theory was available. The coldest data (T =10 nK the blue points) was used to fit
the theory and the following parameters were found (which is already taking into
account the newly determined Feshbach resonance position [209]): a−=− 872 a0,
and η∗=0.10.

Furthermore, the higher temperature data, T =200 nK and T =250 nK (shown
in Figure 5.7 by the red and yellow points respectively), was used to show the
reduction of the loss coefficient (saturation), due to temperature, but no quantita-
tive theory was available at that time. The saturation data was used to show the
importance of having cold enough temperatures. We can now compare the data

3In [122] the Efimov resonance parameters were determined to be a−=−850a0 and η∗=0.06.
We show the newer calibration from [129] using the parameters a−=−872a0 and η∗=0.10.
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Figure 5.7.: L3(a, T ) for three different temperatures taken from [122]. The different col-
ors correspond to L3(a, T ) for different temperatures, which are T =10 nK
(blue dots), T =200 nK (red squares), and T =250 nK (gold diamonds).
The solid curves with corresponding color, are the theory curves for the re-
spective temperatures. We have used the new calibration for a−=−872 a0
and η∗=0.10 [129]. The gray dashed line is the zero-temperature curve with
the same parameters. The three vertical lines indicate the position of λth for
the three temperatures. The values are: λth=4.6× 103 a0 for T =10 nK,
λth=1.0× 103 a0 for T =200 nK, and λth=9.1× 102 a0 for T =250 nK.

to the theory in Equation (2.38), for L3(T, a) using the fit parameters from the
T =10 nK data and the resulting curves are plotted as solid lines in Figure 5.7.
The light blue curve corresponds to the T =10 nK data and one clearly sees an
excellent agreement and also nearly no saturation of the Efimov resonance due to
temperature. The light red curve corresponds to the theory for T =200 nK and
the light yellow curve to T =250 nK. These curves show strong saturation of the
Efimov resonances, due to temperature. However, the quantitative agreement,
without any adjustable parameter, is excellent.

Next, let us use the theory from Chapter 2 to quantify a “cold enough tempera-
ture”.
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5.3.2.2. Resonance Position

Figure 5.8.: The position of the Efimov resonance as a function of temperature for 133Cs.
The green dots correspond to the data from [203]. The red circle corre-
sponds to the point that was used, for calibrating the experimental data
and the numerical results. The parameters that were used for the numerical
calculations are a−=−872 a0 and η∗=0.10. As can be seen the tempera-
ture behavior seems to be in good agreement. The inset shows the small T
behavior and marks when the asymptotic zero-temperate regime is reached.

The authors of 5.7 have noted a temperature dependence of the Efimov reso-
nance position, which was quantitatively studied in [203]. Using the theory from
Chapter 2, we will quantitatively reproduce this dependence.

In Figure 5.8, we have plotted the position of the Efimov resonance determined
experimentally in [203] (green dots, corrected using [209]) and compared that to
the finite temperature theory. The resonance position is determined by numerically
calculating the theory around the Efimov peak and then finding the local maximum.
For the numerical calculations, we used the Efimov parameters: a−=−872 a0 and
η∗=0.10. Let us call the experimentally found position of the Efimov resonance
rexp and the numerically calculated maximum rnum.

To given an example, let us look at the data for 10 nK from Figure 5.7. The
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experimentally found maximum in that curve is at rexp=−896.7 a0, whereas the
numerically calculated value rnum=−865 a0. The difference between the two we
will consider as a systematical effect due to the method of maxima finding and we
will use this to shift the experimental data points for rexp. The result of this is shown
in Figure 5.8. The green dots are the values of rexp for different temperatures and
the blue dots are the numerically calculated points rnum. The red dot corresponds
to the calibrating point at T =10 nK, from the example above. The shift of these
points is due to the slight saturation of the Efimov resonance, as can be seen in
Figure 5.7. The shifting factor is 1.04, which corresponds to a magnetic field shift
of 0.27 G.

The agreement is remarkable. The numerical resolution used to calculate the
maxima is 1 a0. In the inset the small temperature range was studied with a higher
resolution of 0.25 a0 to see the asymptotic behavior of the Efimov resonance posi-
tion. The red circle corresponds to the 10 nK data in Figure 5.7. Here one clearly
sees that the temperature at which the resonance was measured was sufficiently
cold, with a calculated correction on a− of less than 1 %. It is safe to assume that
the fitted values correspond to the asymptotic zero-temperature parameters.

Refitting existing Efimov resonance data, using the theory for L3(a, T ) from
Chapter 2, will lead to improved values for both Efimov resonance position and
width. This is interesting for future studies.

The thermal wavelength corresponding to 10 nK is around 1/kth ≃ 4.6× 103 a0,
so it seems at least in the case of 133Cs that with an a−=−872 a0 and an η∗=0.06
the saturation starts to already set in when ktha−≃ 0.19. An interesting remark to
make here is that for a−=−872 a0 the highest point of the Efimov peak saturates
when T < 10 nK at a value around rnum=−860.5 a0. This shift is probably due to
the overall a4 slope of the L3 measurement.

Recently, a second Efimov peak on the negative-a side of the resonance in 133Cs
has been seen [126] and verified with the theory as presented in Chapter 2.

5.3.3. Temperature Behavior of L3 - 39K

In a recent work at Cambridge [172], the authors studied the stability of a non-
degenerate resonant Bose gas of 39K atoms. The measurements were done in a
tight and deep trap, where evaporative losses could be neglected (trap parameters:
geometric mean trap frequency ω=2π × 185 Hz and trap depth U ≈ kB × 30 µK
with a temperature of 1 to 2 µK.). The Feshbach resonance that was used, is in
the state |F =1, mF =1〉 with B0=403.4(7) G and ∆ ≃ 52 G [210]. They have
studied the behavior of three-particle losses and heating due to these losses on both
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Figure 5.9.: The exponent β, as defined by Equation (5.11). The black dots and circles
correspond to the measurement of the β, using N versus T curves of which
two are depicted by the plot, on log scale, in the inset. We will limit ourselves
to the negative side, for information about the positive side, see [172]. The
red dashed line corresponds to the limit of k |a|→ 0. The red star is our
prediction of β=9/5 at the unitary value, see Equation (5.13). In the paper
the thermal wavelength is λth≈ 5 × 103a0, which is assumed to only vary
weakly during the measurement and the horizontal error bars on the data
points correspond to its variation.
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Figure 5.10.: The exponent ν, as defined by Equation (5.15), versus λ/a, which is a direct
measure of the exponent of the N dependence. The black dots are the
result of the fits of their data. If we just concentrate on the point λ/a=0,
see the red star indicating the theory prediction ν=3 + 5/β, taking the
measured β. There is an excellent agreement between the theory prediction
and the measured value.
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sides of the Feshbach resonance. From these measurements, at unitarity, they were
able to extract the temperature behavior of the three-particle loss coefficient.

In their measurements the main experimental observable is

β = −d [ln(N)]
d [ln(T )]

, (5.11)

which corresponds to the slope of a plot of N versus T on log-scale (see for
example the inset of Figure 5.9). To compare this with our theory we look at the
equation that describes the change of temperature in three-particle loss events (see
Equation (3.9)),

Ṫ

T
=
d [ln(T )]

dt
= −Ṅ

N

1

3

[

δ(a, T ) +
Th
T

]

, (3.9)

Ṅ

N
=
d [ln(N)]

dt
,

where Th is the ad hoc parameter to describe recombination heating due to the
collisions of the recombination products with the rest of the cloud. Taking the
ratio of both equations directly leads to an equation for β,

β =
3

δ(a, T ) + Th/T
≃ 3

δ(a, T )
. (5.12)

In the paper, they are forced to make the assumption that there is no recombination
heating Th, which can be justified somewhat on the negative-a side, where there is
no shallow dimer state. It needs to be noted that, since their trap is rather deep,
there might still be some recombination heating effect, as was shown in [56] for
caesium, due to deeply bound dimers colliding with the cloud before leaving the
trap. Let us assume that they are small.

Equation (5.12) has the two limiting cases (see Equation 3.8)

β =

{

3 if k |a| ≪ 1
9/5 if k |a| → ∞.

(5.13)

This means that β can be considered as a constant at unitarity and far away from
the resonance. Then we expect a simple scaling law

NT β = const. (5.14)
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It is relatively easy to see that this holds at unitarity, because in the case |a|→∞
a temperature increase only strengthens the k |a|→∞ requirement. The cloud will
always be in the high-temperature limit k |a|→∞. In the cold temperature regime,
the condition k |a|≪ 1 needs to stay valid when the temperature changes.

In Figure 5.9 the results of the measurements are shown. At resonance the red
star depicts the prediction in Equation (5.13) of β=9/5=1.8. The measured value
β=1.94(9) is in excellent agreement with theory. Providing another strong test
for the theory in Chapter 2, using a different system and a different experimental
method.

5.3.3.1. Validating the 1/T 2 Law for L3(T )

The other observable in their experiments is ν (see Figure 5.10), which is defined
by the equation describing the change of the atom number

Ṅ = −C Nν, (5.15)

where C is some constant that does not change during the decay.

Together with β, ν gives a direct measure of the temperature dependence of L3.
In order to see this, let us consider the equation describing the change of atom
number during three-particle losses (see Equation (5.10)

Ṅ

N
= −A L3(T )

N2

T 3
. (5.10)

In the limiting cases (a→ 0 and a→∞), the temperature behavior of L3(T ) can
be written as L3(T )=C/T α, with C some constant and α=0 for a→ 0 or α=2
for a→∞.

Let us restrict ourselves to unitarity (a→∞). Assuming the validity of Equa-
tion (5.14) and ignoring the constants, we can write

Ṅ ∝ − N3

T 3+α
,

∝ −N3+ 3+αβ ,

hence ν=3+ 3+α
β

. When ν and β are directly measured this should give the value
of α and hence test the 1/T 2 prediction.

The measured values are β=1.94(9) and ν=5.4(2), which gives the value
α=1.7(3). The result at unitarity is in excellent agreement without any adjustable



5.3 Results - Finite Interactions 109

parameter. In the following, we will release the unitarity condition and study the
negative-a side.

5.3.3.2. Excess Heat Measurements

Let us now restrict ourself to the negative-a side and compare that with the theory
described in Chapter 2.

In the intermediate regime, with a≃λth, the assumption for Equation (5.14)
that β=const. is not necessarily true, however empirically this seems to be true.

Let us, in the following, show that the scaling law in Equation (5.14) approx-
imately holds even when β changes with temperature. The scaling law implies
that the derivative of Equation (5.14) equals zero, so let us write this, using the
log-derivative:

˙(NT β)

NT β
=
Ṅ

N
+ β

Ṫ

T
+ β̇ lnT

= β̇ lnT → 0. (5.16)

From this equation it becomes clear that, for the scaling law in Equation (5.14) to
hold, β̇ needs to vanish.

In Figure 5.11 the behavior of β while varying T for 1 to 2 µK is shown for
different values of a around the Efimov resonance a−. The parameters here are
taken such that it mimics the experiments done in [172]. The results of Figure 5.11
are summarized in Figure 5.12. Here the mean value of β in the temperature range
1 to 2 µK is shown (blue dots). The bars around the mean value indicate the
minimum and maximum value of β in this temperature range. As expected for
a→ 0, β=3 and does not vary, which is also true for the other limit a→∞, for
which β=9/5.

The numerically calculated trajectory with the biggest change of β, has a β that
changes from 2.5 to 2.9. The change of β (indicated by the bars around the blue
dots) is biggest in the region |a| ∼ 1/kth. The result of the numerical analysis is
compared to the measured data from [172] (purple dots). The theory seems to be
in good agreement with the data.

However, there are situations where β varies considerably. In Figure 5.13 the
temperature varies from 1 to 10 µK and it shows large changes of β, which violates
the condition in Equation (5.16).

In conclusion, the numerical results show that the variation of β for a temper-
ature variation of 1 to 2 µK is small compared to the experimental error bars.
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Figure 5.11.: The slope β as given by Equation (5.12). The blue lines are the values
for β(a, T ), for a heating event from 1 to 2 µK, and a specific value of
the scattering length a. The a− indicates the position of the Efimov res-
onance. The Efimov resonance parameters used are: a−=− 690a0 [130]
and η∗=0.09 [172].

(a)

Figure 5.12.: The average value of β for the temperature range 1 to 2 µK from
[172] (blue dots). Using the Efimov parameters a−=− 690 a0 [130] and
η∗=0.09 [172]. The bars correspond to the change of β in the 1 to 2 µK
range of temperature, as depicted in Figure 5.11. The purple dots are
the data from [172]. The minimum at a/a−=1 is due to the Efimov
resonance. The increase of β from 1.8 to 3 happens in the range where
|a| ∼ 1/kth≈ 8× 102 a0 (see gray dashed line).
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Figure 5.13.: Based on Figure 5.12a, but for a temperature range of 1 to 10 µK. The
red point corresponds to the maximum change of β and it changes from
2.3 to 3, which is a change of 23%.

This validates the usage of the scaling law in Equation (5.14). For larger tem-
perature changes β changes considerably and the condition β̇=0, coming from
Equation (5.16), is violated. Hence, the scaling law in Equation (5.14) is valid for
the measurements in [172], however, this is not generally the case.

Finally, let us note that in the paper the authors claim that, in the negative-a
range, four-particle losses were seen. As a next step, it is interesting to use the
knowledge of the three-particle loss theory to extract a more accurate measure of
four-particle losses.

5.4. Summary

This chapter is dedicated to the saturation of three-particle losses in a finite tem-
perature system near a Feshbach resonance.

We have shown measurements for two specific scattering cases.

• Unitary interactions:

– We have shown that there is good agreement between the theory pre-
diction of L3∝ 1/T 2 and the measurements.

– A full analysis of the losses using simulations for the evaporative losses
was used to determine the three-particle loss coefficient.
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• Finite interactions:

– The three-particle recombination shows that for resonant interactions
the three-particle loss coefficient saturates to it unitarity limited value
L3(T ).

– We have used the theory from Chapter 2 to explain temperature satu-
ration effects of three-particle loss coefficient L3 as measured in [122].

– We have used the theory from Chapter 2 to explain the shift of a Efimov
resonance due to temperature as measured in [203].

– We have compared our theory with N versus T measurements done in
[172] and concluded that the measurements are in good agreement with
the theory.

In Appendix D, we discuss the saturation effects seen by other experiments.



Concluding remarks

This work was dedicated to the theoretical and experimental study of the life-
time of the Bose gas with resonant interactions in the non-degenerate regime.
We started by recalling two-particle scattering and extended it to three-particle
scattering. The richness of the three-particle scattering exhibits itself not only in
Efimov trimer bound states, but also in three-particle recombination. In the limit
of weak interactions and zero-temperature, varying the scattering length a revealed
three-particle loss resonances, which marked the first direct observation of Efimov
physics. However, in the strongly interacting limit, no quantitative prediction nor
quantitative experimental study was dedicated to three-particle losses.

In this thesis, we have performed the first quantitative comparison between theory
and experiment as a function of both scattering length a and temperature T for the
three-particle loss coefficient L3(a, T ). We have discussed the theoretical derivation
of L3(a, T ), which is given by

L3(a, T ) = L
max
3 (T )

(
1−e−4η∗

) 2

k2th

∫ ∞

0

(1− |s11|2)ke−k2/k2th
|1−e−2η∗(kRt)−2is0s11|2

dk, (2.38)

Lmax3 (T ) = 36
√
3π2
~
5

m3
1

(kBT )2
. (2.39)

This formula accommodates some interesting properties.

The unitarity limited value Lmax3 (T ) is proportional to ∝ 1/T 2(1− e−4η∗) and we
have directly measured this behavior using a non-degenerate gas of 7Li atoms. For
the quantitative prediction of the temperature behavior we used L3(T )=λ3/T 2.
The experimentally measured value of λ3=2.5(3)stat(6)syst×10−20(µK)2cm6s−1 is,
without any adjustable parameter, in good agreement with the theory prediction
λth3 =1.52×10−20(µK)2cm6s−1. We have used a special trapping situation in which
the temperature was kept constant in order to test the 1/T 2 law.

Furthermore, we extended our measurements to arbitrary values of the scat-
tering length a. In the weakly interacting limit, we recover the zero-temperature
prediction L3(a). In the strongly interacting limit, we observed saturation of three-
particle recombination to the unitarity limited L3(T ). These limiting cases are
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smoothly connected in the range |a| ∼ 1/kth. A measurement of the loss coefficient
at T =6 µK for varying scattering length a tested the prediction and excellent quan-
titative agreement between the theory prediction and experimental measurements
was found. Furthermore, for weak interactions we have experimentally verified the
zero-temperature model with non-degenerate gases on both sides of the resonance
and with BECs, on the positive-a side.

Apart from the comparison of the theory with measurements obtained by our
group, we also compared it with measurements done by other groups. Highlighting
two interesting results from Innsbruck and Cambridge, we used the theory to show
the observed temperature dependence of three-particle losses. In Innsbruck, the
effects of the temperature on the first Efimov resonance position on the negative-a
side in 133Cs were measured, but never quantitatively explained. The theory enabled
us to explain the observed temperature dependence on the resonance position.

In Cambridge, an independent quantitative test of the temperature behavior of
L3(T ) was performed with 39K and they found the theory to be in remarkable agree-
ment with the experiment. Furthermore, the heating per loss event was directly
measured for different values of the scattering length. We demonstrated that on
the negative-a side of the resonance, these measurements are in good agreement
with the theory.

Overall, the theory in Chapter 2 is found to be in good agreement with exper-
iment, both according to measurements done at the ENS and elsewhere. These
lifetime measurements open up the possibility to explore new regimes in the quest
for the unitary Bose gas. Let us finish by reconsidering Figure 5.1. The theory
that we explained in Chapter 2 is valid in the green region. The zero-temperature
theory is valid close to the x-axis and far away from the strongly interacting region
(k |a|→ 0). The open question remains, what happens in the strongly interacting
zero-temperature “unstable” region.

Perspectives

The Lithium experiment at ENS

With the results discussed in this thesis in hand, the next step would be to try to
measure the corrections to the equation of state of an ideal gas due to resonant
interactions. In the introduction, we have already shown the virial expansion of the

114



pressure P (β≡ 1/(kBT ))

P =
1

βλ3th

∞∑

k=1

b̃ke
kβµ,

where b̃k is the k-th virial coefficient described by the k-particle problem. An inter-
esting direction of research would be to measure the 2nd and 3rd virial coefficients
using the pressure measurement technique [87, 95]. Preliminary results have been
discussed in [211]. The result b̃2=1.8(2.7) therein agrees, within error bars, with
both b̃2=0 and the theoretical prediction of b̃2=9

√
2/8≈ 1.59 [98], so the error

bar has to be reduced to get a significant measurement of b̃2 and b̃3. During
the writing of this thesis, a theoretical study on calculating the influence of the
three-particle losses on both the coefficients b̃2 and b̃3 was started [176].

In the theory curve for T =6 µK, a second Efimov resonance starts to be visible.
Hence, another possible direction would be the study of the second Efimov reso-
nance at the negative-a side, which should be observable for a temperature around
T ≃ 1 µK, in 7Li. It would then be interesting to see if the universal Efimov scaling
(a(n)− =(22.7)

na−) is valid for lithium. Preliminary results on the second Efimov
resonance in 133Cs have been presented [126].

General Trends in the Study of Unitary Bose gases

After our publication [143], the interest in the unitary Bose gas steadily increased.
Several theoretical papers predicted equilibrium properties of the unitary Bose gas
[112, 212]. Notably, in [213] the authors used Quantum Monte Carlo simulations
to predict the existence of a first-order Quantum Phase Transition (QPT) to a
superfluid Efimov liquid, however a stable system with unitary two-particle inter-
actions is required to explore this phase. On the experimental side of research,
there were the excess heat measurements [172] in 39K (which were discussed in
Chapter 5), showing interesting properties (the Efimov parameter η∗=0.09(4) be-
ing small) for studying equilibrium effects. In combination with a flat box potential
[17], in which BEC occurs without condensation in position space [18], this system
might be favorable to study the onset of degeneracy in unitary Bose gases. In this
experiment it would also be interesting to use the theory of Chapter 2 to fix L3
and extract a more accurate value of the four-particle loss coefficient L4. It would
be also interesting to study Efimov physics in heteronuclear systems with either
comparable masses like 6Li-7Li or very different masses 6Li-133Cs.

In recent experiments at JILA [214], the interactions in an ultracold BEC of 85Rb
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were quenched to resonance. At resonance, the density in momentum space n(k)
was measured as a function of time. In an equilibrium situation, the high-k tail of
the distribution is proportional to 1/k4 [110, 215, 216]. This high momentum tail
is associated with Tan’s two-particle contact, which is a thermodynamic measure
of two-particle correlations. The results of the measurements on the unitary Bose
gas show a build up of this high momentum tail on a shorter timescale than the
timescale of the losses [214].

The question, whether the unitary Bose gas exists and can be made stable,
remains. In all the situations studied so far, the three-particle losses are the limiting
factor. Could there be a more favorable situation, in an atom with a very small η∗?
To our knowledge, the smallest measured η∗ has a numerical value of η∗≈ 0.057(2)
in 85Rb [96]. Are there interesting elements that have Feshbach resonances with
an even smaller η∗? For example Erbium, which seems to exhibit a rich structure of
Feshbach resonances [217]. A different approach would be to try and use narrow
(sres≪ 1) Feshbach resonances, which are expected to have reduced losses [131].
Finally, there might also be the possibility of artificially engineering η∗, with ideas
similar to the blue shielding technique. This technique has so far been used to avoid
inelastic collisions [218]. The populations of different deeply-bound dimer states
after three-particle recombination were measured. The result of this study is that
many molecular states are occupied after inelastic three-particle scattering [175].

Finally, to get back to the experiment at the ENS, mixtures of 6Li and 7Li also
offer interesting possibilities, because there are some candidates for overlapping
Feshbach resonances in both isotopes. A possible situation would be to use the
resonance in the mixture |1〉− |2〉 (with B0=832.18(8) G) of 6Li and the resonance
in the state |2〉 (with B0=893.95(5) G) in 7Li. In this situation, the possibility of
creating a mixture of strongly interacting degenerate Fermi gases in combination
with an interacting Bose gas opens up. This mixture can, for example, be used
to simulate QCD [219]. Another interesting possibility would be the use of the
Bose gas to create a homogeneous potential for a unitary Fermi gas [220], which
is based on a study of mixed Bose gases [221].
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A. Technical Details - Theory

A.1. Jacobian and Hyperspherical Coordinates

A.1.1. Jacobian Coordinates

For three-particle with positions r1, r2 and r3 the center of mass and relative motion
can be separated. The center of mass motion is described by the vector C

C = 1
3
(r1 + r2 + r3) .

The relative motion of the particles is described by the Jacobian coordinates,

ri j = ri − rj

ρk =
2√
3

(

rk −
ri + rj
2

)

.

In Figure A.1, the different permutations of the Jacobi coordinates for the three-
particle problem are shown. All the information about the relative motion in this
system is given by the two distances ri j and ρk and the four angles given by r̂i j and
ρ̂k .
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√

3

2
ρ2

r31

(c) Jacobi coordinates 3

Figure A.1.: The three Jacobi coordinate systems used for the permutations of the three-
particle problem. The coordinate vectors are defined by the cyclic permuta-

tions the vectors ri j = ri − rj and ρk =
2√
3

(

rk − ri+rj2
)

.
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The position transformation matrix is given by





C

ri j

ρk



 =






1
3

1
3

1
3

1 −1 0

− 1√
3
− 1√

3
2√
3






︸ ︷︷ ︸

M

.





ri

rj

rk



 ,

with the Jacobian given by det(M)= − 2√
3
. The three-particle vector for the

relative motion is given by

R = 1√
2
{ri j , ρk} =

{
1√
2
ri j ,

1√
2
ρk , r̂i j , ρ̂k

}

The result can be used to define the momentum operators of the three-particle
system. Let us define the momentum operator for the center of mass motion
P ≡ − i~∇∇∇C and the Jacobi momenta ΠΠΠri j ≡ − i~∇∇∇ri j and ΠΠΠρk ≡ − i~∇∇∇ρk . The
transformation from the momenta of the three-particle p1, p2 and p3 can be trans-
formed to the center of mass and relative momenta using

p ≡





pi

pj

pk



 =M⊤.





P

ΠΠΠri j
ΠΠΠρk



 .

The matrix above allows us to directly write the kinetic energy operator

T =
p21 + p

2
2 + p

2
3

2m
=

P 2

2(3m)
︸ ︷︷ ︸

Tcom

+
Π2ri j +Π

2
ρk

m
︸ ︷︷ ︸

Trel

.

The relative motion of the system is given by the kinetic energy operator Trel and
the interaction potential V (ri j , ρk) in the for of the Hamiltonian of the relative
motion

Hrel =
Π2ri j +Π

2
ρk

m
+ V (ri j , ρk),

= −~2
m

(
∆∆∆ri j + ∆∆∆ρk

)
+ V (ri j , ρk).

As in the case of the two-particle Hamiltonian, the radial and angular motion in
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both ri j and ρk can be separated

Hrel = −
1

m

(

p2ri j +
Lri j

r 2i j
+ p2ρk +

Lρk
ρ2k

)

+ V (ri j , ρk), (A.1)

where p2x =
(
∂2

∂x2
+ 2
x
∂
∂x

)

.

A.1.2. Jacobian → Hyperspherical Coordinates

Translating this into hyperspherical coordinates is done via

R2 = 1
3

(
r 2i j + r

2
jk + r

2
ki

)
= 1
2

(
r 2i j + ρ

2
k

)

αi = arctan

(
ri j
ρk

)

.

The inverse transformation is given by

ri j =
√
2R sinαi

ρk =
√
2R cosαi .

The hyperspherical radius R does not depend on the permutations and is fixed for
the three-particle system. The hyperangle αi , on the other hand, does depend on
the exact configuration, because it relates the lengths of ri j and ρk . The three-
particle vector R can be translated into hypersherical coordinates, the result is

R = {R,αi , r̂i j , ρ̂k} .

The next step is to transform the Hamiltonian into these coordinates.

A.1.3. Jacobian → Hyperspherical Hamiltonian

In Equation A.1, we have seen the Hamiltonian in Jacobian coordinates. The next
step is to transform the Hamiltonian into hyperspherical coordinates. The radial
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part of the kinetic energy is given by

Tri j ,ρk = −
~
2

m

[
∂2

∂r 2i j
+
∂2

∂ρ2k
+
2

ri j

∂

∂ri j
+
2

ρk

∂

∂ρk

]

,

= − ~
2

2m

[
∂2

∂R2
+
5

R

∂

∂R
+
1

R2

(

4 cot 2αi
∂

∂αi
+

∂2

∂α2i

)]

,

= TR + Tαi ,

where we have introduced the kinetic energy operators associated to the hyperradius

through TR≡ − ~2

2m

[
∂2

∂R2
+ 5
R
∂
∂R

]

and to the relative distance of the three-particles

through Tαi ≡− ~2

2mR2

[

4 cot 2αi
∂
∂αi
+ ∂2

∂α2i

]

. The hyperspherical Hamiltonian is given

by

H = TR + Tαi +
1

2mR2
Λ2

︸ ︷︷ ︸

TΩΩΩ/R2

+V (ri j , ρk)

with Λ2≡ L2ri j

sin2 αi
+

L2ρk
cos2 αi

.

A.1.4. Hyperradial and Hyperangular Schrödinger Equations

To separate the hyperradial from the hyperangular part of the wavefunction we
will insert the adiabatic hyperspherical representation of the wavefunction into the
Schrödinger Equation. The adiabatic hyperspherical representation is given by

ψ(R,ΩΩΩ) = R−5/2
∑

n

fn(R)Φn(R,ΩΩΩ).

Using this representation the solutions of Φn(R,ΩΩΩ) for a specific value of R are
given by the hyperangular equation

[
TΩΩΩ
R2
+ V (R,ΩΩΩ)

]

Φn(R,ΩΩΩ) = Vn(R)Φn(R,ΩΩΩ),

where the term Vn(R) is the eigenvalue depending on R. Far away from the scatter-
ing center (for R→∞ we have V (R,ΩΩΩ)=0) the equation becomes the equation
of the hyperspherical harmonics

TΩΩΩ
R2
Φn(ΩΩΩ) = Vn(R)Φn(ΩΩΩ).
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In the other limit, R≪ a, the equation turns into the equation that defines the
Efimov channels

TΩΩΩ
R2
φn(ΩΩΩ) = snφn(ΩΩΩ).

The Ansatz for this limit is shown to be valid in Appendix A.4.
These function have the property that they are orthonormal under hyperangular

integral

(Φn|Φm) ≡
∫

d5ΩΩΩΦ∗nΦm = δnm.

The Efimov channel are given by the functions

φn(ΩΩΩ) = (1 + Q̂)
ϕn(α)

sin(2α)
Y ml (ρ̂),

where Q̂= P̂13 + P̂23 is the exchange operator giving all the different possible per-
mutations of the Jacobian coordinates (See Section A.1.1). We have also used to
notation α≡α1 and ρ̂≡ ρ̂3 and the permutation operator takes care of the different
possibilities. The functions ϕn(α) are given by

[

− ∂2

∂α2
+
l(l + 1)

cos2 α

]

ϕn(α) = s
2
nϕn(α).

We have used the results of this section in the main text.

A.2. Incoming and Outgoing waves

Let us consider the incoming and outgoing waves in the three-particle problem:

ψin/out ≃
R→0

1

R2
1

Γ(1∓ i s0)

(
kR

2

)∓is0
φis0.

To see that these are incoming and outgoing waves let us consider the flux through
a sphere around the origin (see Figure 1.3):

ϕin/out = − ~
m

∮

Im((ψin/out)∗
∂

∂R
ψin/out) d5S,

∝ ~
m
(∓s0) in the limit R→ 0.
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Here we can clearly see that the incoming wave has a flux towards R=0 and the
outgoing wave a flux away from the center.

A.3. Saddle Point Method

To project the hyper spherical plane wave onto the basis of either hyperspherical har-
monics or the Efimov waves, we need to calculate the inner product (f (ΩΩΩ)|Ψk(R)),
where f (ΩΩΩ) is one of these channels or some other function that is not to singular.
The hyperspherical plane wave is given by

Ψk(ΩΩΩ) = e
ik·R,

where k is the relative momentum vector of the three-particle problem and R is
the hyper spherical position vector. The projection of (f (ΩΩΩ)|Ψk(R)) is given by:

(f (ΩΩΩ)|Ψk(R)) =
∫

d5ΩΩΩf (ΩΩΩ)e ik·R.

This integral is the integral over a sphere S and the main contribution of the
integral comes from the poles, where k is parallel with the vector d5ΩΩΩ. This region
is indicated by ΩΩΩ = ±k̂ + δΩ. So let us write k ·R and f (ΩΩΩ) as:

k ·R = ±kR cos |δΩ| ≈ ±(kR − kR
2
δ2Ω)

f (ΩΩΩ) ≈ f (±k̂).

Using these results the projection can be written as:

(f (ΩΩΩ)|Ψk(R)) = f (±k̂)e±ikR
∫

d5δΩ e∓i
kR
2
(δΩ)2

= f (+k̂)
e+ikR

R2
√
kR

(2π)5/2

k2
e−i5π/4 + f (−k̂) e

−ikR

R2
√
kR

(2π)5/2

k2
e+i5π/4.

Giving the amplitudes of the waves:

Ain = f (−k̂) e
−ikR

R2
√
kR

(2π)5/2

k2
e+i5π/4, (A.2)

Ain = f (+k̂)
e+ikR

R2
√
kR

(2π)5/2

k2
e−i5π/4. (A.3)

This result can be used for the initial conditions.
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A.4. Efimov’s Ansatz

The wavefunction Ψ for the three-particle problem is given by the sum of all the
possible permutations of the problem in Jacobian coordinates:

Ψ = χ(r12, ρ3) + χ(r23, ρ1) + χ(r31, ρ2) ≡ (1 + Q̂)χ(r , ρ), (A.4)

with ri j = ri − rj , ρk = 2/
√
3(rk − (ri + rj)/2), i , j, k ∈ {1, 2, 3} and r = r12 and

ρ = ρ3. The operator Q̂ is the permutation operator given by Q̂ = P̂13 + P̂23. The
function χ can be written in terms of the hyper spherical coordinates, but to do
this we need to introduce χ0(r , ρ) = rρ χ(r , ρ). This wave function can be written
as χ0(r , ρ) = F (R)ϕ(α), which is the Efimov Ansatz [118].

In order to fulfill the two-particle scattering condition the Bethe-Peierls boundary
condition [152] needs to valid. The Bethe-Peierls condition reads:

∂(ri jΨ)

∂ri j

∣
∣
∣
∣
ri j→0

= −1
a
ri jΨ

∣
∣
∣
∣
ri j→0

∀i , j ∈ {1, 2, 3}.

Using the permutation notation in Equation (A.4) gives,

∂(ri j(1 + Q̂)χ)

∂ri j

∣
∣
∣
∣
∣
ri j→0

= −1
a
ri j(1 + Q̂)χ

∣
∣
∣
∣
ri j→0

(1 + Q̂)χ
∣
∣
ri j→0 + ri j

∂((1 + Q̂)χ)

∂ri j

∣
∣
∣
∣
∣
ri j→0

= −1
a
ri j(1 + Q̂)χ

∣
∣
∣
∣
ri j→0

(1 + Q̂)χ
∣
∣
ri j→0 + ri j

∂χ(ri j , ρk)

∂ri j

∣
∣
∣
∣
ri j→0

= −1
a
ri jχ(ri j , ρk)

∣
∣
∣
∣
ri j→0

The χ terms that have dropped out of the equation above are regular in the origin
ri j → 0 and thus becomes zero. The Bethe-Peierls condition then can be written
is terms of χ0 as

χ0
ri j

∣
∣
∣
ri j→0
+ ρk
ρi

χ0
rjk

∣
∣
∣
ri j→0
+ ρk
ρj

χ0
rki

∣
∣
∣
ri j→0
+ ∂
∂ri j
(χ0(ri j , ρk))

∣
∣
∣
ri j→0
− 1
ri j
(χ0(ri j , ρk))

∣
∣
∣
ri j→0

= −1
a
χ0(ri j , ρk)

∣
∣
ri j→0
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Replacing χ0 by F (R)ϕ(α) and using ri j → 0 gives

ρk
ρi

F (R)ϕ(π/3)
rjk

∣
∣
∣
ri j→0
+ ρk
ρj

F (R)ϕ(π/3)
rki

∣
∣
∣
ri j→0
+ ∂α
∂ri j
F (R)ϕ′(0)

∣
∣
∣
ri j→0

= −1
a
F (R)ϕ(0)

8√
3
ϕ(π/3)+ϕ′(0) = −R

a
ϕ(0). (A.5)

This equation is only true for allR if R≪ a, hence the Efimov Ansatz χ0(r , ρ)=F (R)ϕ(α)
is only valid when R≪ a.

When R≪ a is validated, then Equation (A.5) becomes a boundary condition for
ϕ(α)

ϕ′(0)

ϕ(π/3)
= − 8√

3
. (A.6)

This is a boundary condition for three-particle scattering, due to the Bethe-Peierls
condition.

A.5. The s-matrix at Unitarity

To find s11(∞), let us start with the general result at unitarity for the three-particle
problem:

Fis0(R) = AJ+is0(kR) + BJ−is0(kR). (A.7)

The two-limiting cases of the Besselfunction are given by

Jν(x)







≃
x→0

1
Γ(1+ν)

(
x
2

)ν

≃
x→∞

√
2
πx
cos
(
x − νπ

2
− π
4

)
=
√

1
2πx

(
e+i(x−νπ/2−π/4) + e−i(x−νπ/2−π/4)

) .

Let us take the wave function for an outgoing particle (kR)is0 and write Equa-
tion (A.7) using this form for R→ 0 (we will forget about the normalization factor):

Fis0(R) ≃
R→0
(kR)is0 +

B

A

Γ(1 + i s0)

Γ(1− i s0)
22is0(kR)−is0,

≃
R→0
(kR)is0 + s11(∞) (kR)−is0.

When a particle is added to the center of the problem we have the boundary
condition that there should be no incoming wave (e−ikR/

√
kR) at large distance.

This will determine the ratio of A and B. Using the large-x behavior of the Bessel
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function the radial wave function becomes (again forgetting about the normalization
factor):

Fis0(R) ≃
R→∞

1√
kR

[
(Ae+s0π + B)e ikR + i(A+ Be+s0π)e−ikR

]

↓
R→∞

(A+ Be+s0π) =
R→∞

0→ B

A
= −e−s0π

Finally, the result for s11(∞) is given by

s11(∞) = −e−s0π
Γ(1 + i s0)

Γ(1− i s0)
22is0. (A.8)

For completeness, these are the values of s13 and s33

s13 = s31 = 2
is0
√

2/πs0Γ(1 + i s0) sinh(πs0)e
−πs0/2−iπ/4,

s33 = −
s13
s∗13
s∗11 =
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We measure the zero-temperature equation of state of a homogeneous Bose gas of 7Li atoms by

analyzing the in situ density distributions of trapped samples. For increasing repulsive interactions our

data show a clear departure from mean-field theory and provide a quantitative test of the many-body

corrections first predicted in 1957 by Lee, Huang, and Yang [Phys. Rev. 106, 1135 (1957).]. We further

probe the dynamic response of the Bose gas to a varying interaction strength and compare it to simple

theoretical models. We deduce a lower bound for the value of the universal constant � > 0:44ð8Þ that
would characterize the universal Bose gas at the unitary limit.

DOI: 10.1103/PhysRevLett.107.135301 PACS numbers: 67.85.�d, 05.30.Jp, 32.30.Bv, 67.60.Fp

From sandpiles to neuronal networks, electrons in met-

als, and quantum liquids, one of the greatest challenges in

modern physics is to understand the behavior of strongly

interacting systems. A paradigmatic example is superfluid
4
He, the understanding of which has resisted theoretical

analysis for decades. Early attempts to address the problem

of the strongly interacting Bose liquid focused on the dilute

limit. A seminal result for the thermodynamics of the dilute

Bose gas was the expansion of the ground state energy (per

volume V), first obtained in the late 1950s [1]:

E

V
¼ gn2

2

�

1þ 128

15
ffiffiffiffi

�
p

ffiffiffiffiffiffiffiffi

na3
p

þ � � �
�

; (1)

where n is the density of the gas, g ¼ 4�@2a=m is the

coupling constant for particles with mass m, and a is the

s-wave scattering length, which characterizes the low-

energy interactions. The first term in Eq. (1) is the mean-

field energy, while the Lee-Huang-Yang (LHY) correction,

proportional to
ffiffiffiffiffiffiffiffi

na3
p

, is due to quantum fluctuations [1].

Up to this order, the expansion is universal, in the sense

that it depends solely on the gas parameter na3 and not on

microscopic details of the interaction potential [2–4].

Despite its fundamental importance, this expansion was

never checked experimentally before the advent of ultra-

cold quantum gases, where it became possible to tune the

value of the scattering length using magnetic Feshbach

resonances [5,6]. A first check of the LHY prediction

was provided by recent experiments on strongly correlated

Fermi gases [7–9] that behave as a gas of tightly bound

dimers in the limit of small and positive values of a
[10–12]. By contrast, early studies of Bose gases in the

strongly interacting regime were plagued by severe inelas-

tic atom loss [13], but recent experiments at JILA and Rice

have revived interest in these systems and showed the onset

of beyond mean-field effects [14,15]. Here we report on a

quantitative measurement of the thermodynamic equation

of state (EOS) of a strongly interacting atomic Bose gas in

the low-temperature limit. We show that the EOS follows

the expansion (1), and the comparison with fermionic

systems illustrates the universality of the LHY correction.

In the first part, we restrict ourselves to a moderately

interacting gas with negligible 3-body atom loss: a=a0 �
2000, a0 being the Bohr radius. In this regime our EOS

reveals the Lee-Huang-Yang correction due to quantum

fluctuations. We perform quantum Monte Carlo (QMC)

simulations to support our zero-temperature approxima-

tion. We then test our assumption of thermal equilibrium

by dynamically bringing the gas into a more strongly

interacting regime where atom loss is no longer negligible.

Finally, we explore the unitary regime where the scattering

length is infinite.

Our experimental setup was described in [16]. Starting

from a 7
Li cloud in a magneto-optical trap, we optically

pump the atoms into the jF ¼ 2; mF ¼ 2i hyperfine state

and transfer them into a magnetic Ioffe trap. After evapo-

rative cooling to a temperature of �4 �K, the atoms are

loaded into a hybrid magnetic/optical trap and then trans-

ferred to the jF ¼ 1; mF ¼ 1i state. The radial optical

confinement of the trap is provided by a single laser

beam of 35 �m waist operating at a wavelength of

1073 nm, while the weak axial confinement is enhanced

by an additional magnetic-field curvature. We apply a

homogeneous magnetic field to tune the interaction

strength by means of a wide Feshbach resonance that we

locate at 737.8(2) G. The final stage of evaporation in the

optical trap is carried out at a bias field of 717 G, where

the scattering length has a value of about 200a0, and results
in a Bose-Einstein condensate of �6� 104 atoms with

no discernible thermal part. In the final configuration the

trapping frequencies are given by !r ¼ 2�� 345ð20Þ Hz
in the radial and !z ¼ 2�� 18:5ð1Þ Hz in the axial direc-
tion. The magnetic bias field is then adiabatically ramped

PRL 107, 135301 (2011) P HY S I CA L R EV I EW LE T T E R S
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to the vicinity of the Feshbach resonance in 150 ms and the

density distribution is recorded using in situ absorption

imaging (Fig. 1). As the EOS critically depends on the

scattering length, a precise knowledge of the latter close to

the Feshbach resonance is essential. In view of the discrep-

ancy between two recent works [15,17], we have indepen-

dently calibrated the scattering length aðBÞ as a function of
magnetic field B by radio-frequency molecule association

spectroscopy [18], as described in the Supplemental

Material [19].

For the measurement of the EOS, we follow the method

of [9,20–23]. Accordingly, the local pressure PðzÞ along
the symmetry axis of a harmonically trapped gas is related

to the doubly integrated in situ density profile �nðzÞ ¼
R

dxdynðx; y; zÞ:

Pð�zÞ ¼
m!2

r

2�
�nðzÞ: (2)

This formula relies on the local-density approximation in

which the local chemical potential is defined as �z ¼
�0 � 1

2
m!2

zz
2, where �0 is the global chemical potential

of the gas.

To measure the pressure at different interaction strengths

we have selected images with atom numbers in the range of

3–4� 10
4 in order to avoid high optical densities during

absorption imaging while keeping a good signal-to-noise

ratio. A total of 50 images are used, spanning values of

a=a0 from 700 to 2150. We calibrate the relation between

the integrated optical density and the pressure of the gas

at weak interaction, well described by mean-field theory

(inset of Fig. 2). The density profiles then generate the

EOS (2). The global chemical potential �0 remains to be

determined. For this work, we infer �0 self-consistently in

a model-independent way from the density profiles (see the

Supplemental Material [19]).

In the dilute limit na3 � 1, where the EOS is universal,

dimensional analysis can be used to write the grand

canonical EOS of the homogeneous Bose gas at zero

temperature in the form

Pð�; aÞ ¼ @
2

ma5
hð�Þ; (3)

where � � �a3=g is the (grand canonical) gas parameter

and hð�Þ is the normalized pressure. This EOS contains all

thermodynamic macroscopic properties of the system. For

example, the energy can be deduced from the pressure

using a Legendre transform detailed in the Supplemental

Material [19], and in particular, its LHYasymptotic expan-

sion (1). According to the above definition of h, the mean-

field EOS simply reads hð�Þ ¼ 2��2. These predictions

for hð�Þ are compared to the experimental data points in

Fig. 2, and to our QMC calculation. We observe a clear

departure of the EOS from the mean-field prediction

[dashed gray line (dashed red online)]. At the largest

measured value of � ¼ 2:8� 10
�3 our data show a reduc-

tion of 20% of the pressure with respect to the mean-field

result.

We observe that LHY theory accurately describes our

experimental data and is hardly distinguishable from the
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FIG. 1 (color online). Doubly integrated density profile of a

trapped Bose gas at a scattering length a=a0 ¼ 2150, used to

measure the LHY expansion (1). The average over 5 experimen-

tal images is shown in black points. The QMC predictions for

3:9� 104 atoms are plotted in a solid line for T=Tc ¼ 0:75 in

red, 0.5 in orange, 0.25 in green, and 0.125 in purple (solid lines

from bottom to top). Inset: �2 deviation per degree of freedom of

a single experimental density profile with QMC results at differ-

ent temperatures. The excellent agreement between experimen-

tal profiles and QMC validates the zero-temperature assumption

for the EOS measurement.
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FIG. 2 (color online). Equation of state of the homogeneous

Bose gas expressed as the normalized pressure h as a function of

the gas parameter �. The gas samples for the data shown in the

main panel (inset) have been prepared at scattering lengths of

a=a0 ¼ 1450 and 2150 (a=a0 ¼ 700). The gray (red online)

solid line corresponds to the LHY prediction, and the gray

(red online) dashed line to the mean-field EOS hð�Þ ¼ 2��2.

In the weakly interacting regime the data are well described by

mean-field theory (inset), in opposition to stronger interactions

where beyond-mean-field effects are important (main panel).

The QMC EOS at T=Tc ¼ 0:25 (solid black line) is nearly

indistinguishable from the LHY EOS. The shaded (green online)

area delimits the uncertainty of 5% on the value of a.
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QMC in the studied range of interaction strength, a point

already put forward in a diffusion Monte Carlo simulation

at even higher values of the gas parameter [24]. We can

quantify the deviation of our data from mean-field theory

by fitting the measured EOS with a function that includes

a correction of order
ffiffiffiffiffiffiffiffi

na3
p

. For this purpose we convert

the energy E=N ¼ ½2�@2=ðma2Þ�na3½1þ �ðna3Þ1=2� to

the grand canonical EOS (see the Supplemental Material

[19]) and use � as a fit parameter in the resulting pressure

Pð�Þ. The fit yields the value � ¼ 4:5ð7Þ, which is in

excellent agreement with the theoretical result

128=ð15 ffiffiffiffi

�
p Þ � 4:81 in Eq. (1). Together with the mea-

surement with composite bosons of [9], this provides a

striking check of the universality predicted by the expan-

sion (1) up to order
ffiffiffiffiffiffiffiffi

na3
p

[11].

In the above interpretation we assumed that the zero-

temperature regime has effectively been reached. To

check this crucial assumption, we have performed finite-

temperature path-integral quantum Monte Carlo simula-

tions [25] in the anisotropic harmonic trap geometry of the

experiment with continuous space variables. The experi-

mental atom number can be reached without difficulty and

pair interactions are described by a pseudopotential. All

thermodynamic properties of the gas at finite temperature

are obtained to high precision and without systematic

errors. As seen in Fig. 1, we find good agreement between

the experimental density distributions and the QMC pro-

files at temperatures up to 0:25Tc, where Tc is the con-

densation temperature of the ideal Bose gas. This shows

that thermal effects are negligible and lead to an error in

the EOS much smaller than the statistical error bars in

Fig. 2.

We now assess the adiabaticity of the interaction sweep

in the measurements described above. A violation of adia-

baticity could lead to nonequilibrium density profiles that

distort the measured EOS. We study the dynamics of the

Bose gas subjected to time-dependent interaction sweeps

into increasingly strongly interacting regimes, where the

enhanced three-body loss rate limits the practical duration

of the sweep. In Fig. 3 we plot the axial cloud size deter-

mined by a Thomas-Fermi fit as a function of the sweep

duration. The magnetic field is ramped approximately

linearly in time, sweeping a=a0 from an initial value of

200 to different final values. Besides the experimental data

we present theoretical results from a mean-field scaling

solution [26,27] and from a solution of the hydrodynamic

equations incorporating the LHY EOS based on a varia-

tional scaling ansatz [28]. The latter shows a remarkable

agreement with our experimental data for a 	 3000a0. For
scattering lengths a=a0 	 840 the radius is nearly constant

for sweep durations �!z=ð2�Þ> 1:5 (� > 80 ms), indicat-

ing that the cloud follows the interaction strength adiabati-

cally. For the largest value used in the EOS study

(a=a0 ¼ 2150), the atom loss is less than 4% and the cloud

size after the � ¼ 150 ms sweep [�!z=ð2�Þ * 2:8] is 2.5%

smaller than the equilibrium value. We have corrected for

this systematic effect by rescaling the measured density n0
for the determination of the EOS, �n ¼ ��1 �n0ð�zÞ (with
� ¼ 0:975 for a=a0 ¼ 2150).

The properties of the Bose gas for very large values of

na3 constitute a challenging open problem. Because of the
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FIG. 3 (color online). Radius R of the Bose gas as a function of

the duration � of the interaction sweep. The radius R is normal-

ized to the radius R
 ¼ ahoð15	2NÞ1=5 [where aho ¼ ð@=m!zÞ1=2
and 	 ¼ !r=!z]. N is the measured atom number at the end

of each sweep. The final values of a=a0 are 380 (blue dots),

840 (purple squares), 2940 (red diamonds), and 4580 (green

triangles). The solid (dashed) lines show the solution of a varia-

tional hydrodynamic approach (mean-field scaling solutions).

The crosses show the predicted equilibrium beyond-mean-field

radii.
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FIG. 4 (color online). Normalized cloud radius RTF=R

 (filled

purple circles) and normalized atom number (open black

squares) as a function of the inverse scattering length aho=a at

the end of a 75-ms magnetic-field sweep. The static mean-field

prediction is plotted in a solid black line, the mean-field scaling

solution in a dashed red line, and the beyond mean-field scaling

ansatz in a solid gray line (green online). Inset: Zoom around the

unitary limit. Predictions for the universal constant � are shown

in an up triangle [34], down triangle [33], and square [32]. The

filled (empty) circles correspond to the radii normalized to the

final (initial) atom number (see [31]). The dashed black line is

the linear interpolation at unitarity.
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experimental limitation imposed by three-body recombi-

nation, we access this region with a shorter sweep of

duration �!z=ð2�Þ ¼ 1:35 (� � 75 ms). In Fig. 4 we

plot the normalized radius of the Bose gas as a function

of the inverse scattering length aho=a. Deep in the mean-

field regime (a & 800a0) the ramp is adiabatic as the data

match the equilibrium Thomas-Fermi prediction. As the

scattering length is increased, both nonadiabaticity and

beyond mean-field effects become important. A departure

from the equilibrium result becomes evident above a scat-

tering length of ’ 2000a0. Taking into account the mean-

field dynamics gives an improved description of our data

(red dashed line). Even better agreement (up to values of

a=a0 ’ 5000) is obtained with the variational approach

incorporating the LHY correction as presented above

[gray solid line (green online)] [28]. Probing larger values

of the scattering length enables us to gain further insight

into the unitary Bose gas, a ¼ 1. Because of the low

densities of our samples, only half of the atoms are lost

at the end of the sweep to the resonance (see squares in

Fig. 4). Universal thermodynamics at unitarity have been

conjectured for quantum gases [29] and successfully

checked experimentally for Fermi gases [30]. In the case

of bosonic atoms the existence of a many-body universal

state at unitarity is still unknown. Under the assumption of

universality, the only relevant length scale should be the

interparticle spacing n�1=3 and the EOS would take the

form � / @
2

m
n2=3. Up to a numerical factor, this EOS is

identical to that of an ideal Fermi gas and we can write

� ¼ �EF [where EF ¼ @
2=2mð6�2nÞ2=3]. As we increase

the scattering length towards the unitarity regime, the

cloud is expected to grow in size. Because of the finite

response time of the gas, it is reasonable to assume that the

measured radius R is smaller than the equilibrium radius.

From this inequality, in the spirit of variational methods,

we deduce a lower bound for the value of � by interpolating

our data at unitarity [black dashed line in the inset of

Fig. 4]: � > 0:44ð8Þ [31]. This bound is satisfied for the

predictions � ¼ 0:66 [32] and for the upper bounds from

variational calculations, 0.80 [33] and 2.93 [34].

Future work could focus on the measurement of the

condensate fraction since the quantum depletion is ex-

pected to be as large as �8% for our most strongly inter-

acting samples in equilibrium, and on finite-temperature

thermodynamic properties [35]. Our measurements on

resonance as well as future theoretical studies should

give crucial insights on the unitary Bose gas.
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We study the lifetime of a Bose gas at and around unitarity using a Feshbach resonance in lithium 7. At

unitarity, we measure the temperature dependence of the three-body decay coefficient L3. Our data follow

a L3 ¼ �3=T
2 law with �3 ¼ 2:5ð3Þstatð6Þsyst � 10�20 ð�KÞ2 cm6 s�1 and are in good agreement with our

analytical result based on zero-range theory. Varying the scattering length a at fixed temperature, we

investigate the crossover between the finite-temperature unitary region and the previously studied regime

where jaj is smaller than the thermal wavelength. We find that L3 is continuous across the resonance, and

over the whole a < 0 range our data quantitatively agree with our calculation.

DOI: 10.1103/PhysRevLett.110.163202 PACS numbers: 34.50.Lf, 03.65.Nk, 31.15.xj, 67.85.�d

Recent advances in manipulating cold atomic vapors

have enabled the study of Fermi gases at the unitary limit

where the scattering length a describing two-body interac-

tions becomes infinite. It has been demonstrated both

experimentally and theoretically that in this limit the system

is characterized by a scale invariance leading to remarkably

simple scaling laws [1]. In contrast, most experimental

results on Bose-Einstein condensates were obtained in the

weakly interacting regime. Recent experimental results on

bosons near Feshbach resonances have revived the interest

in strongly interacting bosons [2]: the development of

experimental tools has enabled a precise test of the

Lee-Huang-Yang corrections [3,4], and several theoretical

papers have studied the hypothetical unitary Bose gas at

zero [5–8] or finite [9] temperature. The strongly interacting

Bose gas is one of the most fundamental quantum many-

body systems, yet many open questions remain. Examples

include the prediction of weakly bound Efimovian droplets

[10,11], the existence of both atomic and molecular super-

fluids [12], and the creation of strongly correlated phases

through three-body losses [13].

Experimental investigation of ultracold bosons near

unitarity has been hampered by the fast increase of the

three-body recombination rate close to a Feshbach reso-

nance [14,15]. In this case, the number of trapped atoms

NðtÞ follows the usual three-body law

_N ¼ �L3hn2iN; (1)

where hn2i ¼ R
d3rn3ðrÞ=N is the mean square density

and L3 is the three-body loss rate constant. In the zero-

temperature limit L3 increases as @a4=m [16] multiplied

by a dimensionless log-periodic function of a revealing

Efimov physics [17–26]. At finite temperature, L3 saturates

when a becomes comparable to the thermal wavelength

�th ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�mkBT

p
, and L3 � @a4=m� @

5=m3ðkBTÞ2
[9,27,28]. This saturation suggests that a non-quantum-
degenerate Bose gas near a Feshbach resonance will main-
tain thermal quasiequilibrium [9]. Indeed, in this regime,
jaj * �th and n�3

th � 1. Thus, the elastic collision rate

�2 / @�thn=m is much higher than the three-body loss rate
�3 ¼ L3n

2 / @�4
thn

2=m. Experimental and numerical evi-

dence for a saturation of L3 was reported in Refs. [3,22,27].
A theoretical upper bound compatible with this scaling was
derived in Ref. [29] assuming that only the lowest three-body
hyperspherical harmonic contributes, an assumption which
breaks down when jaj exceeds �th.

In this Letter, we measure the temperature dependence
of the unitary three-body recombination rate and find
agreement with a L3 / 1=T2 scaling law. In a second set
of measurements performed at constant temperature, we
study L3 versus a. We show how this function smoothly
connects to the zero-temperature calculations when
jaj � �th. These observations are explained by a general
theoretical result for L3ða; TÞ, exact in the zero-range
approximation, that we derive in the second part. Our
theory allows for a complete analytic description of the
unitary case and, in particular, predicts (weak) log-periodic
oscillations of the quantity L3T

2. Our findings quantify the
ratio of good-to-bad collisions in the system and provide
solid ground for future studies of strongly interacting Bose
gases. Furthermore, on the a < 0 side, experiments have
so far detected a single Efimov trimer [3,23–25,30]. Our
analysis predicts that a second Efimov trimer of very
large size should be detectable in 7Li at temperatures on
the order of a few microkelvins.

Our experimental setup was presented in Ref. [4]. After

magneto-optical trapping and evaporation in an Ioffe

magnetic trap down to ’30 �K, ’2� 106 7Li atoms

are transferred into a hybrid magnetic and dipole trap in
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the state j1; 1i. The transverse confinement is obtained by a

single laser beam of waist 43ð1Þ �m and wavelength

1073 nm, while the longitudinal trapping is enhanced by a

magnetic field curvature. The resulting potential has a cylin-

drical symmetry around the propagation axis of the laser and

is characterized by trapping frequencies 0:87<!�=2�<

3:07 kHz and 18<!z=2�< 49 Hz. Further cooling is

achieved by applying a homogeneous magnetic field B ’
718 G for which the scattering length is ’ 200a0, and

decreasing the depth of the trapping potential down to a

variable value U0 allowing us to vary the final temperature

of the cloud. Afterwards, the dipole trap is recompressed to

a value U >U0, to prevent significant atom loss due to the

enhanced evaporation rate; see below. At each T we choose

U so as to maintain the temperature constant during the

three-body loss rate measurement. Finally, the magnetic

field is ramped in 100–500 ms to B0 ’ 737:8ð3Þ G, where
the scattering length a diverges [4]. We then measure the

total atom number N remaining after a variable waiting

time t and the corresponding T, using in situ imaging of

the thermal gas.

Our data are limited to the range of temperature 1 �
T � 10 �K. For T * 1 �K, the rate �3 ¼ � _N=N remains

small with respect to other characteristic rates in our

cloud (elastic scattering rate, trapping frequencies), which

guarantees that a thermal quasiequilibrium is maintained.

We check that for these parameters the in situ integrated

density profile is indeed Gaussian, and we use it to extract

the temperature of the cloud, found to be in agreement with

that of time of flight. The peak phase-space density varies

within 0:07� 10�2 < n0�
3
th < 1:1� 10�2. A typical time

dependence of N and T is shown in Fig. 1. The time

dependence of the atom number is fitted using the usual

three-body recombination law Eq. (1) [31]. For a nondegen-

erate gas of temperature T, the density profile is Gaussian,

and we have hn2i ¼ N2AðTÞ ¼ N2ðm �!2=2�
ffiffiffi

3
p

kBTÞ3, with
�! ¼ ð!2

�!zÞ1=3 being themean trapping frequency.We then

have

_N ¼ �L3ðTÞAðTÞN3: (2)

Assuming constant temperature, integrating Eq. (2) gives

NðtÞ ¼ Nð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2AðTÞL3ðTÞN2ð0Þt
p ; (3)

which we use as a fitting function to analyze NðtÞ, and
extract L3ðTÞ as shown in Fig. 1.
Because of their n3=T2 dependence, three-body losses

preferentially remove atoms of low kinetic energy and

those located at the center of the trap where the density

is the highest and potential energy is the smallest. As a

result, three-body loss events heat up the cloud [16]. We

ensure constant temperature by operating with a typical

trap depth U ’ �kBT with 6 � � � 8, for which the re-

sidual evaporation then balances recombination heating;

see Fig. 1(b). This ensures that L3 is time independent, but,

as a drawback, evaporation contributes to losses. To quan-

tify the relative importance of evaporative and three-body

losses, we first note that an atom expelled by evaporation

removes on average an energy ’ð�þ �ÞkBT, where,

taking � from Ref. [32], we follow Ref. [33]. Typically,

we have � ’ 0:68 for � ¼ 6 and � ’ 0:78 for � ¼ 8 [34].

In comparison, each three-body event leaves on average an

excess heat of �kBT per particle. Extending the derivation

of Ref. [16] to the case of an energy dependent three-body

loss rate / E�2, we obtain � ¼ 5=3 [34]. The energy

balance required to keep the temperature constant thus

implies that the evaporation rate is ’�=ð�þ �� 3Þ times

smaller than the three-body loss rate. Neglecting this effect

would induce a systematic overestimation of L3 of about

50% for � ¼ 6 and 30% for � ¼ 8. Therefore, we apply

this systematic correction to our data.

The temperature dependence of L3 obtained from our

measurements at unitarity is shown in Fig. 2. It is well fit by

the scaling law L3ðTÞ ¼ �3=T
2, with �3 ¼ 2:5ð3Þstat �

10�20 ð�KÞ2 cm6 s�1 as the best-fit value. In order to

discuss the systematic uncertainty of this measurement,

we note that the quantity L3T
2 scales in all experimental

parameters identically to the thermodynamic quantity

ð�2=PÞ2 of a zero-temperature Bose-Einstein condensate

with chemical potential� and pressure P [34]. We use this

relation to calibrate our experimental parameters [4] and

obtain a systematic uncertainty on �3 of � 25% resulting

in �3 ¼ 2:5ð3Þstatð6Þsyst � 10�20 ð�KÞ2 cm6 s�1.

We now study the a dependence of L3 on both sides of

the resonance by employing the same experimental proce-

dure as in the unitary case. We tune the scattering length

while keeping the temperature within 10% of 5:9 �K; see
Fig. 3. The excess heat � entering in the correction now

depends on the value of ka. The correction is applied to

all data points (filled circles) except in the range 1500a0 <
a< 5000a0 (open circles), where the assumptions of our
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FIG. 1 (color online). Time dependence of the atom number

(a) and temperature (b) for U ¼ �kBT, with T ¼ 5:2ð4Þ �K,
� ¼ 7:4, and (uncorrected) L3 ¼ 1:2ð2Þstat � 10�21 cm6 s�1.

The dotted line shows the long time t�1=2 dependence of the

number of atoms.
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model are not applicable [34]. In the limit jaj � �th, we

observe that L3ðaÞ saturates to the same value on both sides

of the resonance. In the opposite limit jaj � �th, our data

connect to the zero-temperature behavior [20] studied

experimentally in Refs. [22–26]. On the a < 0 side, the

dashed line is the zero-temperature prediction for L3 from

Ref. [20]. We clearly see that finite temperature reduces the

three-body loss rate. On the a > 0 side, temperature effects

become negligible for a < 2000a0, as testified by our mea-

surements performed on a low-temperature Bose-Einstein

condensate (green squares), which agree with the total

recombination rate to shallow and deep dimers calculated

at T ¼ 0 in Ref. [20] (dashed line). The data around uni-

tarity and on the a < 0 side are seen to be in excellent

agreement with our theory Eq. (4) described below.

In order to understand the dependence L3ða; TÞ theoreti-
cally, we employ the S-matrix formalism developed in

Refs. [20,35,36]. According to themethod, at hyperradiiR �
jaj one defines three-atom scattering channels (i ¼ 3; 4; . . . )
for which the wave function factorizes into a normalized

hyperangular part �iðR̂Þ and a linear superposition of the

incoming, R�5=2e�ikR, and outgoing, R�5=2eþikR, hyperra-

dial waves. The channel i ¼ 2 is defined for a > 0 and

describes the motion of an atom relative to a shallow dimer.

The recombination or relaxation to deep molecular states

(with a size of order the van der Waals range Re) requires

inclusion of other atom-dimer channels. In the zero-range

approximation, valid when Re � Rm � minð1=k; jajÞ, the
overall effect of these channels and all short-range physics

in general can be taken into account by introducing a single

Efimov channel (i ¼ 1) defined for Re � R � Rm: the

wave function at these distances is a linear superposition of

the incoming, �1ðR̂ÞR�2þis0 , and outgoing, �1ðR̂ÞR�2�is0 ,

Efimov radial waves. Here s0 � 1:00624. The notion

‘‘incoming’’ or ‘‘outgoing’’ is defined with respect to the

long-distance region Rm & R & jaj, so that, for example,

the incoming Efimovwave actually propagates towards larger

R whereas incoming waves in all other channels propagate

towards smaller hyperradii. The matrix sij relates the incom-

ing amplitude in the ith channel with the outgoing one in the
jth channel and describes the reflection, transmission, and

mixing of channels in the long-distance region. This matrix

is unitary and independent of the short-range physics. The

short-range effects are taken into account by fixing the relative

phase and amplitude of the incoming and outgoing Efimov

waves R2� / ðR=R0Þis0 � e2�	ðR=R0Þ�is0 , where R0 is the

three-body parameter and the short-range inelastic processes

are parametrized by �	 > 0, which implies that the number

of triples going towards the region of R� Re is by

the factor e4�	 larger than the number of triples leaving this

region [37]. Braaten et al. [36] have shown that for a given

incoming channel i 
 2 the probability of recombination

to deeply bound states is Pi ¼ ð1� e�4�	Þjsi1j2=j1þ
ðkR0Þ�2is0e�2�	s11j2 [38]. For a < 0, by using the fact

that s11 is unitary (
P1

i¼1 js1ij2 ¼ 1) and averaging over the

FIG. 3 (color online). (a) 7Li scattering-length dependence of

the three-body rate constant L3ðaÞ for constant T ¼ 5:9ð6Þ �K
(filled and open circles). For small positive a, L3ðaÞ for a low-

temperature condensate is also shown (green squares). The solid

blue line corresponds to our theoretical prediction Eq. (4) for

T ¼ 5:9 �K. The blue range is the same theory for 5.3 to

6:5 �K. The dashed lines show the zero-temperature prediction

for L3ðaÞ [20] fitted to the measurements in Refs. [30,39] with

the parameters �	 ¼ 0:21 and R0 ¼ 270a0. The vertical dotted

lines correspond to jaj=�th ¼ 1. The open circles in the range

1500a0 < a< 5000a0 are not corrected for residual evaporation

as our model is not applicable. (b) Logarithmic plot of the a < 0
side, displaying the two Efimov loss resonances.
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FIG. 2 (color online). Temperature dependence of the

three-body loss rate L3. Filled circles, experimental data;

green dashed line, best fit to the data L3ðTÞ ¼ �3=T
2 with �3¼

2:5ð3Þstatð6Þsyst�10�20 ð�KÞ2cm6s�1; the shaded green band

shows the 1	 quadrature sum of uncertainties. Solid line,

prediction from Eq. (5), �3 ¼ 1:52� 10�20 ð�KÞ2 cm6 s�1

with �	 ¼ 0:21 from Refs. [30,39].

PRL 110, 163202 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

19 APRIL 2013

163202-3



Boltzmann distribution, we then obtain the total loss rate

constant

L3 ¼
72

ffiffiffi

3
p

�2
@ð1� e�4�	Þ
mk6th

�
Z 1

0

ð1� js11j2Þe�k2=k2
thkdk

j1þ ðkR0Þ�2is0e�2�	s11j2
; (4)

where kth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT

p
=@.

Note that in deriving Eq. (4) we closely followed [36]

where the scattering length was assumed to be finite.

However, we easily generalize this derivation to the case

a ¼ 1, in which the channels become decoupled at dis-

tances R � 1=k and the long-distance region can now be

defined by R� 1=k. A less trivial result of our analysis is

that for any ka there exists a unitary transformation of the

matrix sij which leaves the element s11 invariant, but all

channels with i > 3 become decoupled from the Efimov

channel [34]. This transformation constructs a new large-R
channel characterized by a certain hyperangular wave

function ~�3ðR̂Þ. For negative or infinite a this is the only

channel that can ‘‘talk’’ to the lossy short-distance Efimov

channel via a unitary 2� 2 matrix. Therefore, the three-

body loss rate cannot exceed the so-called maximum value

Lmax
3 ¼ 36

ffiffiffi

3
p

�2
@
5ðkBTÞ�2=m3 reached in the case when

the outgoing flux in this newly constructed channel van-

ishes. Previous derivations of Lmax
3 [29] essentially implied

that ~�3ðR̂Þ is the lowest noninteracting hyperspherical

harmonics. This approximation can be made only for

kjaj � 1. In general, ~�3ðR̂Þ is not an eigenstate of the

angular momentum operator. In particular, at unitarity
~�3ðR̂Þ ¼ �1ðR̂Þ [34].
The function s11ðkaÞ is calculated in Ref. [34]. At unitar-

ity it equals s11ð1Þ ¼ �e��s0e2i½s0 ln2þarg�ð1þis0Þ�, and from

Eq. (4) one sees that L3T
2 should be a log-periodic function

of T. However, due to the numerically small value of js11j �
0:04, in the case of three identical bosons the oscillations are
very small and L3 is well approximated by setting s11 ¼ 0:

L3 �
@
5

m3
36

ffiffiffi

3
p

�2
1� e�4�	

ðkBTÞ2
: (5)

This explains theL3 / T�2 experimental observation seen in

Fig. 2 at unitarity. Taking�	 ¼ 0:21, which is the average of
two measurements made for our 7Li Feshbach resonance in
Refs. [30,39], we get L3 ¼ �3=T

2 with �3 ¼ 1:52�
10�20 ð�KÞ2 cm6 s�1. This is 40%below the experimentally

determined value without any adjustable parameter and the

agreement between theory and experiment is 1:4	.
We should point out that Eq. (4) can be easily general-

ized to the case of other three-body systems with smaller

s0. Then, the terms neglected in Eq. (5) can become

important. They also become important in our system of

three identical bosons when departing from resonance in

the direction of a < 0. Then js11ðkaÞj monotonically

increases as a function of 1=kjaj reaching 1 in the limit

ka ! 0�, the argument of s11 also being a monotonic

function of 1=kjaj [34]. The solid dark gray (blue) line in

Fig. 3 is the result obtained from Eq. (4) using the same �	
as above and R0 ¼ 270a0 also taken from Refs. [30,39].

The shaded blue area reflects our experimental range of

temperatures. More or less visible maxima of L3 appear

when the denominator in the integrand of Eq. (4) reaches

its minimum, i.e., becomes resonant. The approximate

condition for this is args11ðkaÞ ¼ �þ 2s0 lnkR0, and the

features become increasingly more pronounced for larger

js11j and smaller �	. Note that from the viewpoint of the

visibility of the maxima, decreasing jaj is equivalent to

decreasing
ffiffiffiffi

T
p

. Figure 3(b) shows the pronounced reso-

nance at a ¼ a� � �274a0 observed in Refs. [30,39].

This resonance is associated with the passage of an

Efimov trimer through the three-atom threshold. Another

Efimov trimer, larger in size by a factor of e�=s0 ¼ 22:7,
is expected to go through the threshold at around

a � �6350a0, leading to another zero energy resonance.

As we deduce from Eq. (4) and show in Fig. 3 for 5:9 �K,
the thermally averaged remnants of this predicted reso-

nance lead to a maximum of L3 at a � �5100a0. As seen
in Fig. 3(b), the agreement between theory and experiment

is very good over the entire a < 0 range.

Because of the existence of a shallow dimer state, the case

a > 0 becomes, in general, a complicated dynamical prob-

lem which should take into account the atom-dimer and

dimer-dimer relaxation as well as various nonuniversal

factors: the finite trap depth, chemical imbalance between

trapped shallow dimers and free atoms, and deviations from

thermal equilibrium which possibly depend on the prepara-

tion sequence. These issues require an extensive discussion

beyond the scope of this Letter. The situation obviously

simplifies in the case of very small a when the system is

purely atomic and the three-body recombination to deep and

shallowmolecules leads to an immediate loss of three atoms.

Discussing the opposite limit of large a > 0, we first

note that dimers are well defined when their size �a is

smaller than n�1=3, which we assume in the following

(the limit na3 � 1 is equivalent to the case a ¼ 1). In

the regime a � �th we find using the Skorniakov-Ter-

Martirosian equation that s12 ! 0 for ka ! 1, which

implies that the atom-dimer relaxation rate vanishes;

shallow dimers then remain at chemical quasiequilibrium

with the decaying atomic ensemble, with a molecular

fraction / n�3
th � 1 (for the data of Fig. 3 with a > �th,

the molecular fraction is 0.6%) [34]. Shallow dimer for-

mation and breakup are then balanced, so that the atomic

decay is just given by Eq. (1). The expression of L3 for

a > 0 was obtained in Ref. [36] and reduces to Eq. (4) for

s12 ! 0. We conclude that the loss rate must be

continuous across the resonance, in accordance with our

experimental data. Therefore, in Fig. 3(a) the result of

Eq. (4) is simply continued to positive a for a � �th.

In summary, we have systematically studied the depen-

dence of the three-body loss rate on T and a in a Bose gas
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near unitarity. Equation (5) shows that, at unitarity, L3

never reaches Lmax
3 , and one can hope to produce quantum

degeneracy in a unitary Bose gas using atomic species with

a particularly small �	. Note that the loss mechanism in

our system drastically differs from a chemical reaction

with finite activation energy �E characterized by the

well-known Arrhenius law L3 / expð��E=kBTÞ. In our

case, instead of a potential hill there is an effective three-

body R�2 attraction leading to �ðRÞ / ð�th=RÞ2 at

distances Re & R & �th, where we normalized the three-

body wave function � to unit volume and omitted its log-

periodic R dependence. We clearly see that the probability

of finding three atoms in the recombination region is

enhanced at small temperatures and scales as j�j2 / �4
th /

1=T2. More subtle is a quantum interference effect in

Efimov three-body scattering, which leads to an enhanced

decay rate at a negative a, suggesting the possibility to

observe the signature of a second Efimov trimer of large

size. Another future direction is to explore the approach to

the quantum-degenerate regime and test whether the virial

expansion of the unitary Bose gas [40] can be measured

by using quasiequilibrium thermodynamics [9].
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Nägerl, and R. Grimm, Nature (London) 440, 315 (2006).

[23] M. Zaccanti, B. Deissler, C. D’Errico, M. Fattori, M. Jona-

Lasinio, S. Müller, G. Roati, M. Iguscio, and G. Modugno,

Nat. Phys. 5, 586 (2009).

[24] S. E. Pollack, D. Dries, and R.G. Hulet, Science 326, 1683

(2009).

[25] N. Gross, Z. Shotan, S. Kokkelmans, and L. Khaykovich,

Phys. Rev. Lett. 103, 163202 (2009).

[26] F. Ferlaino, A. Zenesini, M. Berninger, B. Huang, H. C.
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Following the bichromatic sub-Doppler cooling scheme on the D1 line of 40K recently demonstrated

in Fernandes et al. [Europhys. Lett. 100, 63001 (2012)], we introduce a similar technique for 7Li atoms and obtain

temperatures of 60 μK while capturing all of the 5 × 108 atoms present from the previous stage. We investigate

the influence of the detuning between the the two cooling frequencies and observe a threefold decrease of the

temperature when the Raman condition is fulfilled. We interpret this effect as arising from extra cooling due

to long-lived coherences between hyperfine states. Solving the optical Bloch equations for a simplified �-type

three-level system we identify the presence of an efficient cooling force near the Raman condition. After transfer

into a quadrupole magnetic trap, we measure a phase space density of ∼10−5. This laser cooling offers a promising

route for fast evaporation of lithium atoms to quantum degeneracy in optical or magnetic traps.

DOI: 10.1103/PhysRevA.87.063411 PACS number(s): 37.10.De, 32.80.Wr, 67.85.−d

I. INTRODUCTION

Lithium is enjoying widespread popularity in the cold-atom

trapping community thanks to the tunability of its two-body

interactions and its lightness. Both the fermionic and the

bosonic isotopes of lithium feature broad, magnetically tunable

Feshbach resonances in a number of hyperfine states [1].

The presence of these broad resonances makes lithium

an attractive candidate for studies of both the Fermi- and

Bose-Hubbard models [2] and the strongly correlated regime

for bulk dilute gases of Fermi [3] or Bose [4–6] character. Its

small mass and correspondingly large photon-recoil energy

are favorable factors for large area atom interferometers [7]

and precision frequency measurements of the recoil energy

and fine structure constant [8]. Under the tight-binding

lattice model, lithium’s large photon-recoil energy leads to a

larger tunneling rate and faster time scale for superexchange

processes, allowing for easier access to spin-dominated

regimes [9]. Finally, lithium’s small mass reduces the heating

due to nonadiabatic parts of the collision between ultracold

atoms and Paul-trapped ions. This feature, together with Pauli

suppression of atom-ion three-body recombination events

involving 6Li [10], potentially allows one to reach the s-wave

regime of ion-atom collisions [11].

However, lithium, like potassium, is harder to cool using

optical transitions than the other alkali-metal atoms. The

excited-state structure of the D2 transition in lithium lacks the

separation between hyperfine states for standard sub-Doppler

cooling techniques such as polarization gradient cooling

[12–14] to work efficiently. Recently, it has been shown by

the Rice group that cooling on the narrow 2S1/2 → 3P3/2

transition produces lithium clouds near 60 μK, about half

the D2-line Doppler cooling limit [15], and can be used for

fast all-optical production of a 6Li quantum degenerate Fermi

gas. However, this approach requires special optics and a

coherent source at 323 nm, a wavelength range where power

is still limited. Another route is to use the three-level structure

of the atom as implemented previously in neutral atoms

*Corresponding author: agrier@lkb.ens.fr

and trapped ions [16–22]. The three-level structure offers

the possibility of using dark states to achieve temperatures

below the standard Doppler limit, as evidenced by the use

of velocity-selective coherent population trapping (VSCPT)

to produce atomic clouds with subrecoil temperatures [23]. In

another application, electromagnetically induced transparency

has been used to demonstrate robust cooling of a single ion to

its motional ground state [19,24].

In this paper, we implement three-dimensional bichromatic

sub-Doppler laser cooling of 7Li atoms on the D1 transition.

Figure 1 presents the 7Li level scheme and the detunings

of the two cooling lasers that are applied to the atoms after

the magneto-optical trapping phase. Our method combines

a gray molasses cooling scheme on the |F = 2〉 → |F ′ =
2〉 transition [25,26] with phase-coherent addressing of the

|F = 1〉 → |F ′ = 2〉 transition, creating VSCPT-like dark

states at the two-photon resonance. Instead of UV laser

sources, the method uses laser light that is conveniently

produced at 671 nm by semiconductor laser sources or solid-

state lasers [27,28] with sufficient power. This enables us to

capture all of the ≃5 × 108 atoms from a MOT and cool them

to 60 μK in a duration of 2 ms.

We investigate the influence of the relative detuning

between the two cooling lasers and observe a threefold

decrease of the temperature in a narrow frequency range

around the exact Raman condition. We show that extra cooling

arises due to long-lived coherences between hyperfine states.

We develop a simple theoretical model for a sub-Doppler

cooling mechanism which occurs in atoms with a �-type

three-level structure, in this case, the F = 1, F = 2, and

F ′ = 2 manifolds of the D1 transition in 7Li. The main physical

cooling mechanism is contained in a 1D bichromatic lattice

model. We first give a perturbative solution to the model and

then verify the validity of this approach with a continued

fraction solution to the optical Bloch equations (OBEs).

II. EXPERIMENT

The stage preceding D1 sub-Doppler cooling is a com-

pressed magneto-optical trap (CMOT) in which, starting

from a standard MOT optimized for total atom number, the

063411-11050-2947/2013/87(6)/063411(8) ©2013 American Physical Society
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FIG. 1. (Color online) The D1 line for 7Li. The cooling scheme

has a strong coupling laser (principal beam, black solid arrow) δ2

blue detuned from the |F = 2〉 → |F ′ = 2〉 transition and a weak

coupling laser (repumper, gray solid arrow) δ1 blue detuned from

the |F = 1〉 → |F ′ = 2〉 transition. The repumper is generated from

the principal beam by an electro-optical modulator operating at a

frequency 803.5 + δ/2π MHz, where δ = δ1 − δ2.

frequency of the cooling laser is quickly brought close to

resonance while the repumping laser intensity is diminished

in order to increase the sample’s phase space density [29].

The CMOT delivers 5 × 108 7Li atoms at a temperature of

600 μK. The atoms are distributed throughout the F = 1

manifold in a spatial volume of 800 μm 1/e width. Before

starting our D1 molasses cooling, we wait 200 μs to allow any

transient magnetic fields to decay to below 0.1 G. The light

used for D1 cooling is generated by a solid-state laser presented

in [27]. The laser is locked at frequency ω2, detuned from

the |F = 2〉 → |F ′ = 2〉 D1 transition in 7Li by δ2. It is

then sent through a resonant electro-optical modulator (EOM)

operating at a frequency near the hyperfine splitting in
7Li, νEOM = 803.5 MHz + δ/2π . This generates a small-

amplitude sideband, typically a few percent of the carrier,

at frequency ω1. We define the detuning of this frequency

from the |F = 1〉 → |F ′ = 2〉 transition as δ1 (such that

δ = δ1 − δ2), as shown in Fig. 1. Using about 150 mW of

671-nm light we perform a three-dimensional D1 molasses

as in [25], with three pairs of σ+ − σ− counterpropagating

beams. The beams are of 3.4-mm waist and the intensity

(I ) of each beam is I � 45Isat, where Isat = 2.54 mW/cm2

is the saturation intensity of the D2 cycling transition in

lithium.

We capture all of the atoms present after the CMOT stage

into the D1 gray molasses. The 1/e lifetime of atoms in the

molasses is �50 ms. After being cooled for 1.5–2.0 ms, the

temperature is as low as 40 μK without optical pumping or

60 μK after optical pumping into the |F = 2,mF = 2〉 state

for imaging and subsequent magnetic trapping. In contrast

with [25], we find no further reduction in the steady-state

temperature by slowly lowering the light intensities after the

initial 2.0 ms.

During the molasses phase, we find a very weak dependence

on the principal laser detuning for 3Ŵ � δ2 � 6Ŵ. For the

remainder of this article, we use a principal laser detuning of

δ2 = 4.5Ŵ = 2π × 26.4 MHz. In Fig. 2(a), the temperature

dependence upon the repumper detuning is displayed for

(a)

(b) (c)

FIG. 2. (Color online) (a) Typical temperature of the cloud as

a function of the repumper detuning for a fixed principal beam

detuned at δ1 = 4.5Ŵ = 2π × 26.4 MHz. The dashed vertical line

indicates the position of the resonance with transition |F = 2〉 →
|F ′ = 2〉, the dotted horizontal line shows the typical temperature of

a MOT. (b) Magnification of the region near the Raman condition

with well-aligned cooling beams and zeroed magnetic offset fields.

(c) Minimum cloud temperature as a function of repumper power.

typical conditions. For −9 � δ/Ŵ � −6, the temperature

drops from 600 μK (the CMOT temperature) to 200 μK as gray

molasses cooling gains in efficiency when the weak repumper

comes closer to resonance. For −6 � δ/Ŵ � −1, the cloud

temperature stays essentially constant but, in a narrow range

near the position of the exact Raman condition (δ = 0), one

notices a sharp drop of the temperature. For δ slightly blue

of the Raman condition, a strong heating of the cloud occurs,

accompanied by a sharp decrease in the number of cooled

atoms. Finally for δ � Ŵ, the temperature drops again to a level

much below the initial MOT temperature until the repumper

detuning becomes too large to produce significant cooling

below the CMOT temperature.

Figures 2(b) and 2(c) show the sensitivity of the temperature

minimum to repumper deviation from the Raman condition

and repumper power, respectively. The temperature reaches

60 μK in a ±500-kHz interval around the Raman resonance

condition. After taking the data for Fig. 2(a), the magnetic field

zeroing and beam alignment were improved, which accounts

for the frequency offset and higher temperature shown in

Fig. 2(a) relative to Figs. 2(b) and 2(c). The strong influence

of the repumper around the Raman condition with a sudden

change from cooling to heating for small and positive Raman

detunings motivated the study of the bichromatic-lattice effects

induced by the �-type level configuration which is presented

in the next section.

III. MODEL FOR HYPERFINE RAMAN COHERENCE

EFFECTS ON THE COOLING EFFICIENCY

In order to understand how the addition of the second

manifold of ground states modifies the gray molasses scheme,
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FIG. 3. The � level scheme. An intense standing wave with Rabi

frequency 	2 and a weaker standing wave with Rabi frequency 	1,

detuning δ1, illuminate an atom with three levels in a � configuration.

we analyze a one-dimensional model based on a �-type

three-level system schematically represented in Fig. 3.

A. The model

This model includes only the F = 1,2 hyperfine ground

states and the F ′ = 2 excited state ignoring the Zeeman

degeneracy; hence, standard gray molasses cooling [26] does

not appear in this model. The states are addressed by two

standing waves with nearly the same frequency ω1 ≃ ω2 ≃
ω = kc but spatially shifted by a phase φ. The principal

cooling transition F = 2 → F ′ = 2 is labeled here and below

as transition 2, between states |2〉 and |3〉 with a Rabi frequency

	2 = Ŵ
√

I/2Isat, where I is the laser light intensity and Isat the

saturation intensity on this transition. The repumper transition

is labeled 1, between states |1〉 and |3〉 with Rabi frequency

	1 much smaller than 	2.

The corresponding Hamiltonian for the light-atom interac-

tion in the rotating wave approximation (at ω) is

Ĥa.l. = h̄	2cos(kz) (|2〉〈3| + H.c.)

+ h̄	1 cos(kz + φ) (|1〉〈3| + H.c.)

+ h̄δ2|2〉〈2| + h̄δ1|1〉〈1|. (1)

The usual formalism used to compute the atom’s dynamics

is to consider the light force as a Langevin force. Its mean value

is F(v), and the fluctuations around this mean will give rise to

diffusion in momentum space, characterized by the diffusion

coefficient Dp(v) � 0. In order to calculate an equilibrium

temperature, one needs F(v) and Dp(v). In the limit of small

velocities the force reads

F(v) ≃ −α v, (2)

with α the friction coefficient. If α > 0 the force is a

cooling force; in the opposite case it produces heating. For

a cooling force the limiting temperature in this regime is

given by

kBT ≃ Dp(0)/α. (3)

However, since our model (1) is a gross simplification of the

physical system, we do not expect to be able to quantitatively

predict a steady-state temperature. Instead, in order to reveal

the physical mechanisms in action, we only calculate the force

F(v) and the excited state population ρ33. Restricting our

analysis to the force and photon scattering rate, Ŵρ33, suffices

to determine whether the action of the weak repumper serves

to heat or cool the atomic ensemble.

From (1) the mean light force on the atoms is computed by

taking the quantum average of the gradient of the potential,

F = 〈−∇Ĥa.l.〉 = −Tr[ ρ̂ Ĥa.l.], with ρ the density matrix,

yielding the wavelength-averaged force F ,

F(v) =
k

2π

∫ 2π
k

0

dz F (z,v), (4)

F(v) =
h̄k2

π

∫ 2π
k

0

dz sin(kz)(	2Reρ23 + 	1Reρ12). (5)

The spontaneous emission rate averaged over the standing

wave is simply given by the linewidth of the excited state

multiplied by its population:

Ŵ′ =
k

2π

∫ 2π
k

0

dz Ŵ ρ33. (6)

So, both the force and the spontaneous emission rate are

functions of the density matrix ρ, the evolution of which is

given by the OBEs,

i
d

dt
ρ =

1

h̄
[ĤAL,ρ] + i

(

dρ

dt

)

spont. emis.

. (7)

As we are focusing on the sub-Doppler regime, we assume

v ≪ Ŵ/k, (8)

with v being the velocity. The inequality holds for T ≪ 13 mK

for lithium. This inequality allows us to replace the full time

derivative in the left-hand side of (7) by a partial spatial

derivative times the atomic velocity,

d

dt
→ v

∂

∂z
.

Using the notation 	i(z) = 	i cos(z + φi) and setting h̄ =
k = 1 from here on,

iv
∂ρ22

∂z
= −2i	2(z) Im(ρ23) + i

Ŵ

2
ρ33, (9)

iv
∂ρ11

∂z
= −2i	1(z) Im(ρ13) + i

Ŵ

2
ρ33, (10)

iv
∂ρ23

∂z
=

(

δ2 − i
Ŵ

2

)

ρ23 + 	2(z) (ρ33 − ρ22) − 	1(z)ρ21,

(11)

iv
∂ρ13

∂z
=

(

δ1 − i
Ŵ

2

)

ρ13 + 	1(z) (ρ33 − ρ11) − 	2(z)ρ12,

(12)

iv
∂ρ21

∂z
= (δ2 − δ1)ρ21 + 	2(z)ρ31 − 	2(z)ρ23. (13)

The solution of these equations yields the expression of

F(v) and Ŵ′. This semiclassical model is valid only for veloc-

ities above the recoil velocity vrec = h̄k/m (corresponding to

a temperature mvrec/kB of about 6 μK for lithium). Different

theoretical studies [17,18,20,22,30,31] as well as experiments

[16,32] have been performed on such a � configuration

in standing waves or similar systems. However, in our 7Li

experiment, we have the situation in which the � configuration

is coupled to a gray molasses scheme which involves a different

set of dark states. This fixes the laser light parameters to

values that motivate our theoretical exploration. Thus, we
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concentrate on the situation corresponding to the conditions of

our experiment.

To solve the OBEs (9)–(13), we first introduce a per-

turbative approach that enables us to point out the relevant

physical mechanisms. We further extend the analysis by an

exact approach in terms of continued fractions.

B. Perturbative approach

In our perturbative approach we choose a Rabi frequency

	2 between 2Ŵ and 4Ŵ and 	1 ≪ Ŵ,	2,δ2 as the ratio of

the repumper to principal laser power is very small, typically

(	1/	2)2 � 0.03, under our experimental conditions. We

further simplify the approach by considering only the in-phase

situation φ = 0; any finite phase would lead to divergencies of

the perturbative approach at the nodes of wave 1. The validity

of these assumptions are discussed in Sec. III C.

We perform an expansion in powers of the Rabi frequency

	1 and the atomic velocity such that the complete expansion

reads

ρij =
∑

n,l

ρ
(n,l)
i,j (	1)n(v)l . (14)

This expansion of ρ allows us to recursively solve the OBEs.

Using an expansion similar to Eq. (14) for the force, we find

α = −
∞

∑

n=0

F (n,1)(	1)n. (15)

We plug the perturbative solution of the OBEs into Eq. (5) and

find, to the lowest order (n = 2) in 	1,

α ≃ −
(	1)2

2π

∫ 2π

0

dz sin(z)
(

	2Re ρ
(2,1)
23 + Re ρ

(1,1)
13

)

. (16)

The spontaneous emission rate to lowest order in v and 	1

reads

Ŵ′ = Ŵ
(	1)2

2π

∫ 2π

0

dz ρ
(2,0)
33 . (17)

Figure 4 presents the results from (15) and (17) compared

with the experimental data. It shows that indeed a narrow

cooling force appears near the Raman resonance condition

and that the photon scattering rate vanishes at exact res-

onance, hinting at an increase of cooling efficiency with

respect to the gray molasses Sisyphus cooling mechanism

which achieves a temperature near 200 μK over a broad

range. The strong heating peak for small, positive repumper

detuning is also a consequence of the negative value of

α, and the heating peak shifts towards higher frequency

and broadens for larger intensities of the principal laser. In

contrast, the friction coefficient and scattering rate in the

range −6 � δ/Ŵ � −3, which correspond to a repumper near

resonance, do not seem to significantly affect the measured

temperature.

To gain further physical insight into this cooling near the

Raman condition, it is useful to work in the dressed-atom

picture. Given the weak repumping intensity, we first ignore

its effect and consider only the dressing of the states |2〉 and

|3〉 by the strong pump with Rabi frequency 	2. This dressing

FIG. 4. (Color online) Comparison of experimental data with

the perturbative approach results for a detuning of the pump δ2 =
2π × 26.4 MHz = 4.5Ŵ. (a) Temperature versus repumper detuning,

experiment; we indicate the MOT temparature by the dotted line.

Panels (b) and (c) show, respectively, the friction coefficient α and

photon scattering rate Ŵ′ for 	2 = 3.4Ŵ (red dashed curve) and 2.1Ŵ

(blue solid curve). The intensity ratio (	1/	2)2 is 0.02. The vertical

dashed line indicates the position of δ1 = 0.

gives rise to an Autler-Townes doublet structure which follows

the spatial modulation of the standing wave:

|2′〉 ∝ |2〉 − i	2(z)/δ2|3〉, (18)

|3′〉 ∝ −i	2(z)/δ2|2〉 + |3〉. (19)

Since the pump is relatively far detuned (in the conditions

of Fig. 4 	2/δ2 � 0.45), the broad state |3′〉 carries little |2〉
character. Conversely, the narrow state |2′〉 is mostly state

|2〉. It follows that |3′〉 has a lifetime Ŵ|3′〉 ≃ Ŵ, while |2′〉
is relatively long lived with a spatially dependent linewidth

Ŵ|2′〉 = Ŵ(	2(z)/δ2)2, which is always �Ŵ/6 for the param-

eters chosen here. In order to reintroduce the effects of the

repumping radiation, we note that the position in δ of the

broad state is δ|3′〉 ≃ −δ2 − 	2(z)2/δ2 and the narrow state

δ|2′〉 ≃ 	2(z)2/δ2. As coherent population transfer between

|1〉 and |2′〉 does not change the ensemble temperature, we

consider only events which couple atoms out of |2′〉 to |1〉
through spontaneous decay and therefore scale with Ŵ|2′〉.
The rates of coupling from |1〉 into the dressed states can

be approximated by the two-level absorption rates:

γ|1〉→|2′〉 ∼
	1(z)2

2

Ŵ|2′〉(z)

[Ŵ|2′〉(z)/2]2 + [δ − δ|2′〉(z)]2
, (20)

γ|1〉→|3′〉 ∼
	1(z)2

2

Ŵ

(Ŵ/2)2 + [δ − δ|3′〉(z)]2
. (21)

Finally, these results are valid only in the limit |δ| > Ŵ	2
2/δ

2
2

(see, e.g., [33]) when state |1〉 is weakly coupled to the radiative

cascade. Near the Raman resonance, the dressed state family

contains a dark state which bears an infinite lifetime under the

assumptions made in this section but is, in reality, limited by
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FIG. 5. (Color online) The cascade of levels dressed by transition

2 with a schematical representation of state |1〉. Traces show typical

cycles of atoms pumped from |1〉 and back depending on the detuning

of wave 1. The detuning of the repumper modulates the entry point

into the cascade of the dressed states, leading either (a) heating or (b)

cooling processes.

off-resonant excitations and motional coupling. This dark state

reads

|NC〉 = (	2|1〉 − 	1|2〉)
/

√

	2
1 + 	2

2, (22)

which we must add in by hand.

Using this toy model, we now explain the features of Fig. 4

and Fig. 2. Figure 5 represents the cascade of dressed levels

where each doublet is separated by one pump photon. It gives

rise, for example, to the well-known Mollow triplet. Condition

(8) states that if an atom falls in state |3′〉 it will rapidly decay to

|2′〉 without traveling a significant distance. However, the atom

will remain in |2′〉 long enough to sample the spatial variation

of the standing wave and gain or lose energy depending on the

difference of light shift between the entry and the departure

points, as in most sub-Doppler cooling schemes.

Let us first analyze the spontaneous emission rate shown

in Fig. 4(c). It reaches two maxima, the first one for δ ∼ δ|3′〉

and the second one for δ ∼ δ|2′〉, and it goes to exactly zero at

δ = 0. The two maxima are simply due to scattering off the

states |2′〉 and |3′〉. At δ = 0, Ŵ′ goes to zero due to coherent

population trapping in |NC〉. It is the presence of this dark state

which leads to the reduced scattering rate of photons around

δ = 0 and the suppression of the final temperature of the gas

in the region around the Raman condition.

The friction coefficient, Fig. 4(b), displays a more com-

plicated structure with variations in δ. It shows a dispersive

shape around δ|3′〉, remains positive in the range δ|3′〉 < δ < 0,

diverges at δ = 0, and reaches negative values for δ > 0 up

to δ|2′〉, where it drops to negligible values. This structure for

α can be explained using our toy model. Let us consider the

different scenarios corresponding to both sides of δ near 0,

they follow formally from Eqs. (20) and (21) and the spatially

varying linewidth of |2′〉.
For the case of the repumper tuned slightly blue of the

narrow doublet state, δ > δ|2′〉, shown in Fig. 5(a), the atoms

are pumped directly from |1〉 into |2′〉. However, this pumping

happens preferentially at the antinodes of the standing wave

as the repumper intensity is greatest, the linewidth of |2′〉 is

the largest, and the light shift minimizes the detuning of the

repumper from the |1〉 → |2′〉 transition for the φ = 0 case

considered here. On average, the atoms exit this state at a

point with a smaller light shift through a spontaneous emission

process either into the cascade of dressed states or directly back

to |1〉. As a result, we expect heating and α < 0 in this region.

For repumper detunings between δ|3′〉 and 0, Fig. 5(b), we

predict cooling. For this region, the atoms are initially pumped

into |3′〉. Here the light shift modifies the relative detuning,

favoring coupling near the nodes of the light. Spontaneous

decay drops the atoms near the nodes of the longer-lived |2′〉,
and they travel up the potential hill into regions of larger light

shift before decaying, yielding cooling and a positive α. These

sign changes of α and the decreased scattering rate due to |NC〉
in the vicinity of the Raman condition explain the features of

our perturbative model.

We conclude this section by stating that the experimentally

observed change of sign of the force close to the Raman

condition is well described in our perturbative model. The

model further reveals the importance of Raman coherence and

the existence of a dark state. The dark state together with

the friction coefficient associated with cycles represented in

trace 5(b) correspond to a cooling mechanism analogous to

that of gray molasses. In this way, the bichromatic system

provides an additional gray molasses scheme involving both

hyperfine states which complements the gray molasses cooling

scheme on the principal transition. On the other hand, when the

friction coefficient is negative in the vicinity of the two-photon

resonance, it turns into a heating mechanism that overcomes

the standard gray molasses operating on the F = 2 → F ′ = 2

transition.

The perturbative approach successfully revealed the mech-

anisms giving rise to the experimentally observed additional

cooling. However, it also possesses some shortcomings. First,

the divergence of α at δ = 0 is not physical; the assumption

that 	1 is the smallest scale in the problem breaks down when

δ → 0. Alternatively, it can be seen as the failure of our model

based on nondegenerate perturbative theory in the region

where |1〉 and |2〉 become degenerate when dressed with ω1 and

ω2, respectively. Second, we have only addressed the φ = 0

case. Since the experiment was done in three dimensions with

three pairs of counterpropagating beams, the relative phase
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FIG. 6. (Color online) Comparison of results using the perturba-

tive calculation (dashed), and the continued fractions (solid) for the

φ = 0 case, with the same parameters as in Fig. 4 and 	2 = 2.1Ŵ.

between the two frequencies varies spatially, and we must test

if the picture derived at φ = 0 holds when averaging over all

phases. In order to address these limitations and confirm the

predictions of the perturbative approach, we now present a

continued-fractions solution to the OBEs which does not rely

on 	1 being a small parameter.

C. Continued fractions approach

The limitations listed above can be addressed by using a

more general approach, namely, an expansion of the density

matrix in Fourier harmonics:

ρij =
n=+∞
∑

n=−∞
ρ

(n)
ij einkz. (23)

Injecting this expansion in (9)–(13) yields recursive rela-

tions between different Fourier components of ρ. Kozachiov

et al. [17,30] express the solutions of these relations for a

generalized � system in terms of continued fractions. Here

we use their results to numerically solve the Bloch equations.

We then compute the force F(v) to arbitrary order of 	1 and

extract α by means of a linear fit to the small-v region. We

then compute F(v) and the photon scattering rate Ŵ′ averaged

over the phase between the two standing waves.

Figure 6 compares α(δ) obtained through the continued-

fractions approach with the results of the perturbative expan-

sion for the φ = 0 case. The continued-fractions approach has

removed the divergence at δ = 0 and α crosses zero linearly.

The overall friction coefficient is reduced but the two methods

show qualitative agreement in the range of δ considered. At

the Raman condition the interaction with light is canceled due

to the presence of |NC〉; thus, the diffusion coefficient Dp in

momentum space also cancels. To lowest order, the diffusion

and friction coefficients scale as

Dp ≃ δ2, (24)

α ≃ δ; (25)

according to (3) the temperature scales as

T ≃ δ. (26)

Through this qualitative scaling argument, we show that

even though the light action on the atoms is suppressed

FIG. 7. (Color online) 〈F〉φ in units of 1/h̄kŴ as a function of v

for different values of δ around δ = 0. The horizontal scale is in units

of the thermal velocity at T = 200 μK, vth =
√

kBT/m.

when approaching the Raman condition, we expect that the

temperature will drop when approaching from the δ < 0 side,

completing the physical picture derived in the previous section.

Next, we analyze how a randomized phase between the

repumping and principal standing waves, φ, modifies F(v). In

order to take this into account, we calculate the phase-averaged

force:

〈F(v)〉φ =
1

2π

∫ 2π

0

F(v,φ) dφ. (27)

In Fig. 7, the phase-averaged force is plotted for various

detunings near the Raman condition. It can be seen that a

cooling force is present for small detunings, qualitatively

in agreement with our perturbative model and with the

experimental data. The force, however, changes sign to heating

for small blue detuning, close to δ = 0.6 Ŵ, also in qualitative

agreement with the experimental data. We note that the

cooling slope very close to zero velocity in the δ = 0.8 Ŵ

plot corresponds to a velocity on the order of or below the

single-photon recoil velocity, i.e., is nonphysical.

Finally, for the φ �= 0 case, |NC〉 varies in space and

the motion of the atoms can couple atoms out of |NC〉
even at the Raman condition. In Fig. 8 we verify that the

rate of photon scattering retains a minimum near the δ = 0

region after averaging over φ by plotting 〈Ŵ′〉φ = Ŵ〈ρ33〉φ
calculated with the continued fractions approach. Overall, the

friction coefficient α and photon scattering rate Ŵ′ confirm

the existence of a cooling force associated with a decrease in

photon scattering in the vicinity of the Raman condition for

the 1D bichromatic standing-wave model. Thus, the continued

fractions calculation has confirmed the physical mechanisms

revealed by the perturbative expansion and that the lowest
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FIG. 8. (Color online) Continued fractions solution of the photon

scattering rate Ŵ′ = Ŵ ρ33 averaged over all relative phases of the

repumper and principal standing waves as a function of the two-

photon detuning δ. Velocity-dependent effects are taken into account

here by computing an average of 〈Ŵ′〉φ(v) weighed by a Maxwell-

Boltzmann velocity distribution at 200 μK.

temperatures should be expected close to δ = 0, as seen in the

experiment.

IV. CONCLUSION

In this study, using bichromatic laser light near 670 nm,

we have demonstrated sub-Doppler cooling of 7Li atoms

down to 60 μK with near unity capture efficiency from a

magneto-optical trap. Solving the OBEs for a simplified �

level structure, we have analyzed the detuning dependence

of the cooling force and photon scattering rate. Our analysis

shows that the lowest temperatures are expected for a detuning

of the repumping light near the Raman condition, in agreement

with our measurements. There the � configuration adds a

new set of long-lived dark states that strongly enhance the

cooling efficiency. For 7Li, this addition results in a threefold

reduction of the steady-state temperature in comparison with

an incoherently repumped gray molasses scheme. This atomic

cloud at 60 μK is an ideal starting point for direct loading into a

dipole trap, where one of the broad Feshbach resonances in the

lowest-energy states of 7Li or 6Li could be used to efficiently

cool the atoms to quantum degeneracy [15,34]. Alternatively,

when the atoms are loaded into a quadrupole magnetic trap,

we measure a phase space density of ≃10−5. This �-enhanced

sub-Doppler cooling in a D1 gray molasses is general and

should occur in all alkali metals. Notably, we have observed its

signature in a number of the alkali-metal isotopes not amenable

to polarization gradient cooling: 7Li (this work), 40K [25], and
6Li [35].
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Île de France (IFRAF-C’Nano), EU (ERC advanced grant

Ferlodim), Institut de France (Louis D. Foundation), and

Institut Universitaire de France.

[1] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod.

Phys. 82, 1225 (2010).

[2] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008).

[3] S. Nascimbène, N. Navon, K. J. Jiang, F. Chevy, and C. Salomon,

Nature (London) 463, 1057 (2010).

[4] N. Navon, S. Piatecki, K. Günter, B. Rem, T. C. Nguyen,

F. Chevy, W. Krauth, and C. Salomon, Phys. Rev. Lett. 107,

135301 (2011).

[5] R. J. Wild, P. Makotyn, J. M. Pino, E. A. Cornell, and D. S. Jin,

Phys. Rev. Lett. 108, 145305 (2012).

[6] B. S. Rem, A. T. Grier, I. Ferrier-Barbut, U. Eismann, T. Langen,

N. Navon, L. Khaykovich, F. Werner, D. S. Petrov, F. Chevy

et al., Phys. Rev. Lett. 110, 163202 (2013).

[7] S. Lepoutre, A. Gauguet, G. Trénec, M. Büchner, and J. Vigué,
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D. Efimov resonances

In this chapter, we will discuss the results previously obtained by several groups. The
data is taken for the following atomic species from (in order of first appearance):
133Cs Kraemer et. al. (2006), and Nägerl et. al. (2006), and Berninger et. al.

(2011) [122, 129, 203]; 7Li Pollack et. al. (2009) and Dyke et. al. (2013)
[125, 202]; 39K Zaccanti et. al. (2009) and Roy et. al. (2013) [124, 130]; 7Li
Gross et. al. (2009) and Gross et. al. (2010) [127, 128], 85Rb Wild et. al. (2012)
[96]; 39K Fletcher et. al. (2013) [172].

The chapter is divided into sections each centered around a specific atom. The
sections themselves are again divided by the type of measurements that have been
done. These measurements that we performed can roughly be categorized by three
themes:

1. Zero-temperature Efimov resonance position.
These measurements were done for all the considered species [61, 96, 122,
124, 125, 127, 128, 130];

2. Efimov resonance position as a function of temperature
These measurements have, in particular, been done for 133Cs [122, 203];

3. Unitarity saturation effects of the losses
Interestingly enough these measurements have not been done explicitly, but
several experiments display saturation effects that were not interpreted quan-
titatively [61, 96, 122, 172].

We will primarily focus on the last two categories, however we will use category 2
to estimate the error caused by finite temperature effects on the determination of
the position in category 1.

D.1. Caesium-133

In 2006, the group in Innsbruck for the first time found evidence for an Efimov
resonance in 133Cs [122]. Their research opened up a rapidly expanding research
field in few-particle systems with cold atoms.

159
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D.1.1. Universality of the Efimov resonances

Fig D.1 mF B0 (G) sres a−(a0) η∗ T (nK)

(a) +3 -12.3 560 -872(22) 0.10(3) 10

(b) +3 550 0.9 -1029(58) 0.12(1) 15

(c) +3 550 170 -957(80) 0.19(2) 15

(d) +3 820.33 1470 -955(80) 0.08(1) 15

Table D.1.: The measured Efimov resonances in 133Cs from [129]. The actual data with
the theory comparison is shown in Figure D.1.

After the measurements on 7Li in two different hyperfine states [127, 128] (see
Section D.2), triggered the suggestion of a universal behavior of a−, the group in
Innsbruck started doing measurements on different Feshbach resonances in 133Cs
[129]. The results of these measurements are shown in Figure D.1 and Table D.1.
In the figure we have again used our finite temperature theory for the specific
temperatures of the measurement. As can be seen from the figure the saturation
effects are small, when looking at Figure 5.8 (which was taken with the parameters
corresponding to Figure D.1(a)) the shift of the position of the Efimov resonance
even for T = 15 nK is less then ∼ 1%. Note that Figure D.1(a) corresponds
directly to the same Efimov resonance in Figure 5.7.

D.2. Lithium-7

Lithium-7 is a rather interesting atomic species, because it has several relatively
large (considering the width in magnetic field) Feshbach resonances, with the res-
onant strength parameter sres∼ 1, which indicates an intermediately strong reso-
nance. Prior to our work, two experimental groups have characterized the recom-
bination losses as a function of the scattering length.

The first experiment was done by a group in Rice [61], where they looked at
the Feshbach resonance in the hyperfine state |F =1, mF =1〉 at temperatures in
the range of 1 µK≤T ≤ 3 µK. In order to measure the characteristics of the
Feshbach resonance, however, they used the size of a BEC and extracted a as a
function of magnetic field using the Thomas-Fermi approximation, with beyond-
mean-field corrections. This measurement determined the Feshbach resonance to
be at 736.97(7) G, but the accuracy of the method was hard to quantify. The result
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Figure D.1.: The data for four different intermediate and strong resonances in 133Cs
from [129].



162 Appendix D. Efimov resonances

æ

æ

æ æ
æ

æ

æ
æææ

æ
æ

æ
ææ

æ

à

à

à
à à à

à à ààà

àà

ààà
à

à

àà

-104 -103 -102
10-26

10-25

10-24

10-23

10-22

10-21

10-20

10-19

10-18

a @a0D

L
3
@c

m
6 s-

1 D

Figure D.2.: L3 vs. a for two different hyperfine states of 7Li (|F = 1, mF = 1〉 red
squares [128] and |F = 1, mF = 0〉 blue dots [127]). The gray dashed
line is the zero temperature theory with the parameters a− = −274 a0 and
η = 0.25. The light blue curve is our temperature dependent theory (see
Chapter 2) with the same parameters and a temperature of T = 1.3 µK.
The dotted vertical line indicates the value of λth = 1.1× 104 a0. We have
chosen to only show the theory for |F = 1, mF = 1〉, this makes the picture
clearer and also shows in how close agreement both measurements are.
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Figure D.3.: L3 vs. a (negative a side) for one hyperfine state |F =1, mF =1〉 for 7Li
taken from [61, 125]. In a the fitting parameters found in [61] are used,
meaning that a−=− 252 a0 and η∗=0.17. The temperature range in the
paper goes from T =1 µK to T = 3 µK, which is depicted in the blue band
with the upper limit of the band corresponding to 1 µK and the lower band
to 3 µK. In b the same data was plotted but the theory parameters were
taken from [128], which are a−= − 274 a0 and η∗=0.25. The vertical
lines correspond to the values of the thermal wavelengths for T = 1 µK
(blue dashed) and T =3 µK (red dashed) respectively λth=1.2× 104 a0
and λth=7.2 × 103 a0. The red and orange marked zones correspond
to values above the maximum unitary values (η∗ → ∞). The Lmax3 is
these cases correspond to Lmax3 (1 µK)=2.7 × 10−20 cm6 s−1 (red) and
Lmax3 (3 µK)=3.0× 10−21 cm6 s−1 (orange), respectively.
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Figure D.4.: The position of the Efimov resonance as a function of temperature for
7Li (We chose to only show the Efimov resonance in |F =1, mF =1〉, since
both measured Efimov resonances have similar parameters). We have taken
the parameters from [127, 128, 201] (a−=− 274 a0 and η∗=0.21, we
have used our η∗ in order to compare both measurements) and numerically
calculated the L3 vs. a curve for different temperatures T as was done in
Figure 5.8 for caesium. The green circle indicates the temperature limits
of the measurements in [61, 125], which where T =1 µK and T =3 µK.
The red circle corresponds to the temperature in [127, 128, 201], which was
T =1.3 µK. The inset shows the low temperature limit.

of the Efimov resonance measurement, is given by a−=− 298 a0 and η∗=0.13.
Also in the paper a second Efimov peak was claimed to have been seen with the
following parameters: a2−=− 6301 a0 and the same η∗ as for the first resonance.

Following these measurements, the Bar-Ilan group did the same measurement
on the |F =1, mF =0〉-state and found a−=− 274 a0 and η∗=0.253(62)1. They
were, however, using Radio-Frequency association of molecules [158] as a more
precise measurement to determine the position of the Feshbach resonance [127]
(the resonance is found at 894.63(24) G). This triggered the group to do the

1Note here that we used the results after doing a coupled channel calculation on three resonances
in two hyperfine states of 7Li [201]
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same measurement on the Feshbach resonance in the |F =1, mF =1〉-state and use
the new calibration method to determine the position of the Feshbach resonance.
Then loss spectroscopy was used to measure the position and width of the Efimov
resonance. They found a−=− 274 a0 and η∗=0.180(48), with the Feshbach
resonance at 738.3(3) G. Finally, the group in Bar-Ilan did a fit of the full coupled-
channel calculations on the three Feshbach resonances in Lithium-7 [201] (two
moderately broad and one narrow). This determined the Feshbach resonances at
845.54 G (narrow resonance in the state |F =1, mF =0〉), 893.95(5) G (moderately
strong resonance in the state |F =1, mF =0〉) and 737.88(2) G (moderately strong
resonance in the state |F =1, mF =1〉). This last resonance was used in our group
in [95] and also found to be at 737.8(2) G [185].

Finally, the initial measurement of the Feshbach resonance in the Rice group [61]
has been redone using the molecule association method and they also found the
resonance to be at 737.67(10) G. Their measurement of the Efimov resonance
gives the following parameters: a−=− 252 a0 and η∗=0.17. In has to also be
noted that the observation of the 2nd Efimov resonance was actually an artifact
of the wrong calibration and was the real position of the Feshbach resonance.

D.2.1. L3 vs. a

Next, we will have a look at the data from Rice as given in [125], with the improved
resonance position. The result is plotted in Figure D.3. The blue dots correspond
to the data from the paper. We have taken the fitting results from the paper
a−= − 241 a0 and η∗=0.12 and plotted a band for the temperature range of
1 µK≤T ≤ 3 µK. If we compare this directly to b, where the parameters from
the Bar-Ilan group were taken (a−=− 274 a0 and η∗=0.25), we can see that the
data fits very well with the parameters from the Bar-Ilan group and worse with the
old parameters.

Another puzzling feature shows up in the saturation regime, when a≫ 1/kth. The
red and orange zones in the figure mark the region above the absolute maximum
unitary value Lmax3 from Equation (2.39), corresponding respectively to
Lmax3 (3µK)=3.0×10−21cm6s−1. Close to unitarity the measured L3 clearly exceeds
even the absolute maximum for the lowest temperature. One could argue that when
the temperature changes during the measurement the L3 changes as well. However,
three-particle recombination intrinsically heats up the cloud (see Chapter 5), which
in itself lowers the L3 meaning that this process is not very likely to cause the high
value.

In Figure D.4 we have also marked (with green circles) the range of temperatures
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probed by the Rice group. In the best case T =1 µK their data is in the saturated
regime and the correction is less then 1 % also in the worst case T =3 µK the
correction is less then 3 %, which is within the error bars of the determination of
their Efimov resonance position.

We can clearly see that the data overshoots the unitary limit by more than a
factor 10. This overshoot is not well understood, but it might be due to effect
of four-particle losses. The phase-space density measured in those experiments is
in the range 0.02<nλ3th< 0.54, which is rather high and close to unity and might
already cause some four-particle inelastic scattering to show up. In [124], using
39K, probably similar effects close to resonance have been seen. More recently, in
[172] also evidence for four-particle scattering has been seen (see Section 5.3.3).
For their lowest temperatures, quasi-equilibrium might already be violated.

D.3. Rubidium-85

Rubidium-85 has a rather large and negative scattering length at zero field (a ≃
−470 a0[222]), this initially hampered the efforts to obtain a BEC. In 2000, how-
ever, the group in Boulder used a Feshbach resonance to stabilize the BEC [55].
This Feshbach resonance, in the state |F =2, mF =2〉, is now well characterized
[222], with the following parameters: abg= − 443(3) a0, ∆=10.71(2) G and
B0=155.041(18) G, where we have used the notation for the Feshbach resonance
from equation (4.4).

The knowledge about the Feshbach resonance has been used in [96] to measure
the three-particle recombination losses as a function of scattering length. We have
taken the data from that paper and plotted these in Figure D.5 (the blue dots)
and compared it with the zero-temperature theory (gray dashed curve) and our
temperature dependent theory. In the paper they found the following parameters
for this specific Efimov resonance: a−= −759 a0, η∗=0.06 and the measurements
were done at temperatures starting from T =80 nK. Our theory does fit correctly
in the zero-temperature limit ka → 0, but around the Efimov resonance already
clear saturation effects are appearing. This shows that the condition a ≪ λth is
somewhat violated, but we should note that the correction to the position of the
Efimov resonance position are rather small ∼ 2 % as shown in Figure D.6. In this
figure the shift of the Efimov resonance maximum value is plotted as a function of
temperature (blue dots). The measurements of the Boulder group correspond to
the red circle.

Note that the saturation regime seems to follow the shape of curve quite well, and
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Figure D.5.: We have plotted recombination the data from [96] in the form of L3 vs. a.
The blue dots are the data taken from that paper. The measurements were
done at T =80 nK and fitted to the zero-temperature theory to determine
the parameters of the Efimov resonance (a−=− 759 a0 and η∗=0.06).
We have used this information and calculated the expected theory curve for
L3 at a temperature of T =80 nK, which is shown as the light blue solid
line. The vertical dashed light gray line indicates the thermal wavelength
λth=1.3× 104.
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Figure D.6.: The position of the local maximum of the Efimov resonance as a function of
temperature. We have used the theory (see Chapter 2), with the parameters
from [96]: a−=− 759 a0 and η∗=0.06, to determine the local maximum of
the curve at the Efimov resonance as a function of temperature, which are
indicated by the blue dots. The red circle corresponds to the temperature at
which the measurements in Figure D.5 were done. The point corresponds
to {80 nK,− 738.6 a0}, whereas the saturation value for T → 0 goes to
a−=− 751.5 a0 which is a correction of less than 2 %.



168 Appendix D. Efimov resonances

since the data was probably shifted by some offset to match the zero-temperature
data, this might be the reason why the finite temperature theory does not fully
describe the data.

D.4. Potassium-39

D.4.1. Efimov resonance

In 2009, the group in Florence for the first time saw two Efimov resonances on the
positive-a side [124]. Their data on the negative side however showed two peaks,
which were interpreted as an Efimov feature and a related four-body resonance.
The position of the Efimov feature seemed to be somewhat away from the expected
position and also raised a lot of questions. To overcome all the questions and issues
the same group again did measurements, in 2013, on the negative-a side of several
Efimov resonances [130], where they argued that the features they initially saw
might have been some artifacts of their measurement, although this could also be
due to different regimes for nλ3th in the two experiments.

In the later paper they have measured the Efimov resonances for five intermedi-
ately strong Feshbach resonances which we will consider in the following.

D.4.2. Universality of the Efimov resonances in 39K

Fig D.7 mF B0 (G) sres a−(a0) η∗ T (nK)

(a) +1 402.6(2) 2.8 690(40) 0.145(12) 90(6)

(b) 0 471.0(4) 2.8 640(100) 0.065(11) 50(5)

(c) -1 33.64(15) 2.6 830(140) 0.204(10) 120(10)

(d) -1 560.72(20) 2.5 640(90) 0.22(2) 20(7)

(e) -1 162.35(18) 1.1 730(120) 0.26(5) 40(5)

Table D.2.: The measured Efimov resonances in 39K from [130]. The actual data with
the theory comparison is shown in Figure D.7.

In [130] the authors have looked at a total of 7 resonances: five moderately strong
resonances 1.1<sres< 2.8 and two weak resonances sres=0.11 and sres=0.14. In
Figure D.7 the five intermediately strong resonances are shown. In the plots we
have compared the data (blue dots) with both zero temperature theory (dashed
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Figure D.7.: The data for five different intermediate resonances taken from [130]. The
details about the measurements in the individual figure (a) - (e) are given
in Table D.2. In all the blue dots correspond to the measurements. The
dashed blue line to the zero-temperature theory and solid blue lines with the
shaded region to the finite temperature theory with 40<T < 200 nK.
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blue line) and finite temperature theory for the temperature range 40<T < 200 nK
(solid blue lines and blue shaded region). The exact parameters for each figure can
be found in Table D.2. We can clearly see that the finite temperature saturation
effects are rather small, meaning that a− is only very slightly modified by the finite
temperature, which is within their error bars.

D.5. How to determine the Efimov parameters

First of all, and most trivially, when measuring the position of the Efimov resonance
one has to be far away from the inset of unitarity, in practice this means |a|≪ 1/kth.
Quite often it might be even more practical to do the measurements for different
temperatures and determine the exact saturation value (for T → 0) of a−. The
finite temperature theory should then be used to calculate the shift of the Efimov
peak with temperature and fit this result. This procedure should give an accurate
value of a− and an initial value for η∗.

Secondly, a second way of determining η∗ is through the unitarity limited value
of L3, when measurements are done for different temperatures at unitarity, one
should be able to determine η∗ with great accuracy. In [172] they where even able
to completely remove evaporative losses (but not have constant temperature) and
use the exponents β and ν to find the value of η∗ for 39K at unitarity.

Together these methods should improve both the accuracy on a− and η∗.

D.6. Summary

In this chapter, we have been comparing previous experiments with the theory
developed in our group (see Chapter 2). This was done for different atomic species,
each corresponding to a section:

• 133Cs in the state |F =3, mF =3〉

• 7Li in the states |F =1, mF =1〉 and |F =1, mF =0〉

• 85Rb in the state |F =2, mF = − 2〉

• 39K in the states |F =1, mF = +1〉, |F =1, mF =0〉, and |F =1, mF = − 1〉.

The type of measurements that have been done could be classified into three
categories:

• Zero-temperature Efimov resonance position
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• Efimov resonance position as a function of temperature, which has in partic-
ular been done for 133Cs

• Unitarity saturation effects on the losses.
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Abstract

Ultracold gases have become versatile systems to study quantum many-body effects. Their high
degree of control and the tunability of the atomic interactions led to important advances in the
understanding of strongly correlated matter. In the regime of strong interactions, unlike fermions,
the study of bosons is hampered by three-particle recombination that leads to atom losses and keeps
the system from reaching a real equilibrium state.

In this thesis, we have performed the first quantitative comparison between theory and experiment
on the three-particle loss coefficient L3(a, T ), for arbitrary scattering length a and temperature T .
For unitary two-particle scattering (|a|→∞), we show that the three-particle loss coefficient follows
the law L3(∞, T )=λ3/T 2, that we have tested using a trapped non-degenerate 7Li gas maintained
at constant temperature. The measured value of λ3=2.5(3)stat(6)syst× 10−20(µK)2cm6s−1 is, within
the error bars in good agreement with the theory prediction λth3 =1.52× 10−20(µK)2cm6s−1.

We have extended our measurements to arbitrary values of the scattering length a. For a< 0,
the theory predicts a smooth connection between the previously derived zero-temperature model
for L3(a, 0) and the unitarity limited loss coefficient L3(∞, T ). We also show that a second Efimov
resonance in 7Li should be observable near a∼− 500 a0 for a temperature of 1 µK. Finally, we compare
our theoretical prediction with measurements performed at Innsbruck with 133Cs and at Cambridge
with 39K. The theory also shows remarkable quantitative agreement with these measurements.

Keywords: ultracold gases - strongly interacting Bose gas - Efimov Physics - three-particle problem
- three-particle recombination - few-particle physics.

Résumé

Les gaz d’atomes ultra-froids sont devenus des systèmes polyvalente pour l’étude des effets à N
corps. Le haut degré de contrôle qu’ils offrent ainsi que la possibilité de modifier les interactions inter-
atomiques ont permis des avancées importantes dans la compréhension des états fortement corrélés
de la matière. Dans le régime d’interactions fortes, l’étude des bosons, contrairement à celle des
fermions, est entravée par la recombinaison à trois particules qui induisent des pertes d’atomes et
empêche le système d’atteindre un réel état d’équilibre.

Dans cette thèse, nous présentons la première comparaison théorie-expérience quantitative du co-
efficient de perte à trois corps L3(a, T ), pour des valeurs arbitraires de la longueur de diffusion
a et de température T . Pour la diffusion à deux corps unitaire (|a|→∞), nous montrons que le
coefficient de pertes à trois corps suit la loi L3(∞, T )=λ3/T 2, ce que nous avons testé en étu-
diant un gaz piégée non-dégénéré de 7Li maintenu à température constante. La valeur mesurée de
λ3=2.5(3)stat(6)syst× 10−20(µK)2cm6s−1 est, à la précision expérimentale, en bon accord avec la
prédiction théorique λth3 =1.52× 10−20(µK)2cm6s−1.

Nous avons étendu ces mesures à des valeurs arbitraires de la longueur de diffusion. Pour a< 0, la
théorie se raccorde à un modèle à température effective nulle pré-existant et le régime unitaire. Nous
montrons aussi qu’une seconde résonance d’Efimov devrait être observable autour de a=−500 a0
pour une température de 1 µK. Finalement, nous comparons la prédiction théorique est confirmée
par les mesures effectuées à Innsbruck avec le 133Cs et à Cambridge avec le 39K.

Mots-clés : gaz quantiques, Gaz de Bose en interactions fortes, physique d’Efimov, problème à
trois corps, recombinaison à trois corps, physique à peu de corps.
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