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Introduction
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1.1.3 Distributed frequent subgraph mining issue . . . . . . . . . 3

1.1.4 Cost models for distributed pattern mining issue . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 First axis: distributed subgraph mining in the cloud . . . . . 5

1.2.2 Second axis: cost models for distributed pattern mining in
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Goals

This chapter summarizes the contents and describes the plan of the thesis.

First, we highlight the emergence of graph mining and cloud computing. Then,

we state the addressed issues in this thesis.



2 Chapter 1. Introduction

1.1 Context and motivations

1.1.1 Graph mining emergence

Graphs show up in a diverse set of disciplines, ranging from computer networks,

social networks [Faloutsos 2004, Bonchi 2011] to bioinformatics [Saidi 2012,

Pizzuti 2012], chemoinformatics [Goto 2002, Borgelt 2002] and others. These

fields exploit the representation power of graph format to describe their associ-

ated data. In social network analysis, the graph representing a social network

is composed by a set of linked individuals where edges express the relationships

between couples of individuals. In bioinformatics, the graph representing a protein

interaction network is composed by a set of linked proteins where an edge links each

couple of proteins that participate in a particular biological function. Moreover,

the protein structure itself can be considered as a graph where nodes represent

the amino acids and edges represent the links between them. In this scope, graph

mining has become an important topic of research that allows knowledge discovery

from graph data. The main goal of graph mining is to develop algorithms to mine

and analyze graph data. A surge of interest in this area, fueled largely by pattern

mining from graphs, graph clustering and predictive models building for graphs.

Graph mining algorithms are used in several applications such as structural

motif discovery, social network analysis and protein fold recognition. Moreover,

graph data are being generated at unprecedented size. Indeed, graphs are now

measured in terabytes or even petabytes. Analyzing them has become increasingly

challenging. Consequently, it is necessary to provide distributed infrastructures

that allow storing and processing these large volumes of graph data. In this

context, cloud computing constitutes a promising environments for large scale

graph data processing.

1.1.2 Cloud computing emergence

Cloud computing [Armbrust 2010] is a technology that involves a large number of

computers that are connected through a real-time communication network (typi-

cally the Internet network) to maintain data and applications. Cloud computing
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refers to both the applications delivered as services over the Internet and the

hardware and system software in the data centers that provide those services. A

simple example of cloud computing is a web-based email services, e.g., Gmail and

Hotmail. The consumer just need an internet connection and he can start sending

emails. The server and email management software is all on the cloud and is

totally managed by the cloud service providers. The consumer gets to use the

software alone and gains the benefits.

A promising application of cloud computing is large scale graph mining. In

this context, cloud computing provides propitious frameworks that help with the

design of massively scalable graph-based algorithms.

1.1.3 Distributed frequent subgraph mining issue

Finding recurrent and frequent substructures may give important insights on the

data under consideration. These substructures may correspond to important func-

tional fragments in proteins such as active sites, feature positions or junction

sites. In a social network, frequent substructures can help to identify the few

most likely paths of transmission for rumors or jokes from one person to another

[Faloutsos 2004]. Mining these substructures from data in a graph perspective falls

in the field of graph mining and more specifically in frequent subgraph mining.

Frequent subgraph mining is a main task in the area of graph mining and it has

attracted much interest. Consequently, several subgraph mining algorithms have

been developed, such as FSG [Kuramochi 2001], gSpan [Yan 2002], CloseGraph

[Yan 2003], Gaston [Nijssen 2004] and ORIGAMI [Chaoji 2008]. However, exist-

ing approaches are mainly used on centralized computing systems and evaluated

on relatively small databases [Wörlein 2005]. Nowadays, there is an exponential

growth in both size and number of graphs in databases. This makes the above

cited approaches face the scalability issue in addition to the prior storage issue.

To overcome this problem, a distributed frequent subgraph mining approach that

scales with the available huge amounts of graph data is needed. In this context,

several distributed solutions have been proposed [Luo 2011, Hill 2012, Luo 2011].

Nevertheless, the data distribution techniques adopted by these works does not



4 Chapter 1. Introduction

include data characteristics. Consequently, these techniques may face scalability

problems such as load balancing problems. To overcome this obstacle, a data

partitioning technique that considers data characteristics should be applied.

1.1.4 Cost models for distributed pattern mining issue

Recently, distributed pattern mining approaches have become very popular. In

most cases, the distribution of the pattern mining process generates a loss of in-

formation in the output results [Riondato 2012, Aridhi 2013]. Reducing this loss

may affect the performance of the distributed approach and thus, the monetary

cost when using cloud environments. In this context, cost models are needed to

help selecting the best parameters of the used approach in order to achieve a

better performance especially in the cloud [Kashef 2012, Nguyen 2012]. Existing

cost models deal with distributed data mining systems that use classic architec-

tures such as client-server and software agents [Krishnaswamy 2004, Marbán 2008,

Ogunde 2011]. However, the proposed cost models do not include monetary as-

pect of the cloud computing paradigm where users only pay for the resources they

use. Due to this fact, there is an urgent need to define new cost models for

cloud-based pattern mining applications.

1.2 Contributions

This thesis deals with distributed frequent subgraph mining from huge graph

databases. Firstly, we present a scalable and distributed approach for large scale

frequent subgraph mining based on MapReduce framework [Dean 2008]. The pro-

posed approach provides a density-based data partitioning technique that enhances

the default one provided by MapReduce. Secondly, we present new cost models for

cloud-based pattern mining approaches and we apply them to subgraph patterns.
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1.2.1 First axis: distributed subgraph mining in the cloud

In the first axis, we propose a MapReduce-based framework to approximate large

scale frequent subgraph mining. The proposed approach offers the possibility

to apply any of the known subgraph mining algorithms in a distributed way. In

addition, it allows many partitioning techniques for the graph database. In this

thesis, we consider two instances of data partitioning: (1) the default partitioning

method proposed by MapReduce framework and (2) a density-based partitioning

technique. The second partitioning technique allows a balanced computational

loads over the distributed collection of machines. We experimentally show that

the proposed solution is reliable and scalable in the case of huge graph datasets.

This contribution has been published in [Aridhi 2013].

1.2.2 Second axis: cost models for distributed pattern

mining in the cloud

The second axis is dedicated to the monetary aspect of cloud-based pattern min-

ing applications. It addresses the multi-criteria optimization problem of tuning

thresholds related to distributed frequent pattern mining in cloud computing envi-

ronment while optimizing the global monetary cost of storing and querying data in

the cloud. To achieve this goal, we design cost models for managing and mining

graph data with large scale pattern mining framework over a cloud architecture.

We focus on distributed subgraph mining approach in the cloud. We also define

four objective functions, with respect to the needs of customers. These needs can

be expressed by a financial budget limit, a response time limit or a mining quality

limit.

1.3 Outline

This thesis is organized as follows. In Chapter 2, we provide the required material

to understand the basic notions of the graph mining research field. We also give a

survey of the main graph management and mining techniques especially Frequent
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Subgraph Mining (FSM) techniques.

In Chapter 3, we introduce the cloud computing research field and highlight its

interestingness for distributed data mining and graph mining applications. We give

an overview of cloud-based data mining techniques and we focus on distributed

graph mining techniques in the cloud.

In Chapter 4, we propose a novel approach for large scale subgraph mining by

means of a density-based partitioning technique, using the MapReduce framework.

The proposed partitioning technique aims to balance computational load on a

collection of machines to replace the default arbitrary one of MapReduce. We

carry out an experimental study and show that the proposed approach decreases

significantly the execution time and scales the subgraph discovery process to large

graph databases.

In Chapter 5, we define new cost models for managing and mining patterns in

a cloud. We define also a set of objective functions with respect to the needs and

the financial capacity of customers. We carry out an experimental validation of

our cost models.

In Chapter 6, we conclude this thesis by summarizing our contributions and

highlighting some prospects.
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Goals

This chapter introduces the data mining and the graph mining fields. It is

mainly dedicated to present, in a simplified way, the basic notions related to graph

mining. We mainly focus on presenting graph properties and describing graph

mining techniques especially Frequent Subgraph Mining (FSM) techniques.
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2.1 Data mining and graph mining: basic no-

tions

In this section, we present basic notions of graphs. We first present some defini-

tions and notations used throughout this report. Then, we describe some topo-

logical graph properties and attributes.

2.1.1 Data mining

Data mining is a particular step in the process of Knowledge Discovery in Data

(KDD) [Fayyad 1997] that consists of methodologies for extracting useful knowl-

edge from volumes of data. The KDD process is outlined in Figure 2.1.

Figure 2.1: Steps of the KDD process.

The additional steps in the KDD process include the data selection, the pre-

processing and the post-processing steps.

Definition 1 (Pattern) In general, a pattern consists of a non-null finite fea-

ture that can characterize a given population P of objects. This pattern may be
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identified according to its high frequency in P, its rarity in other populations or

based on other parameters.

Definition 2 (Data mining) It consists of applying computational techniques

that, under acceptable computational efficiency limitations, produce a particular

enumeration of patterns (or models) over the data.

Definition 3 (Knowledge discovery in data) It is the non-trivial process of

identifying valid, novel, potentially useful, and ultimately understandable patterns

in data.

2.1.2 Graph mining

Graph mining consists of tools and techniques applied to graph data in order to

discover interesting knowledge.

A graph is a collection of objects . Each object in a graph is called a node (or

vertex). Corresponding to the connections in a network are edges (or links) in a

graph. Each edge in a graph joins two distinct nodes.

Definition 4 (Graph) A graph is denoted as G = (V,E), where:

• V is a set of nodes (vertices).

• E ⊆V ×V is a set of edges (links).

Figure 2.2 illustrates a graph containing five nodes (v1,v2,v3,v4 and v5) and

seven edges ((v1,v2),(v1,v4),(v1,v5),(v2,v4),(v2,v3),(v3,v5),(v4,v5)).

Definition 5 (Labeled Graph) A labeled graph is a graph which is represented

as a four tuple G = (V,E,L, I) where:

• V is a set of nodes.

• E ⊆V ×V is a set of edges.

• L is a set of labels.
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Figure 2.2: A graph with five nodes and seven edges.

• I : V ∪E −→ L is a labeling function.

Figure 2.3 illustrates a labeled graph with V = {v1,v2,v3,v4,v5},

E = {(v1,v2),(v1,v4),(v1,v5),(v2,v4),(v2,v3),(v3,v5),(v4,v5)}, L =

{A,B,C,D,E,1,2,3,4,5,6,7}, I(v1) = A, I(v2) = B,I(v3) = C,I(v4) = D,I(v5) =

E, I((v1,v2)) = 5, I((v1,v4)) = 4, I((v1,v5)) = 7, I((v2,v4)) = 6, I((v2,v3)) = 1,

I((v3,v5)) = 2 and I((v4,v5)) = 3.

Figure 2.3: A labeled graph example.

The definitions of subgraph, graph isomorphism and subgraph isomorphism are
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given as follows.

Definition 6 (Subgraph) A graph G′ = (V ′,E ′) is a subgraph of another graph

G = (V,E) iff:

• V ′ ⊆V , and

• E ′ ⊆ E ∩ (V ′×V ′).

Figure 2.4 presents a subgraph of the graph in Figure 2.3. The presented

subgraph contains three nodes (v1,v2 and v4) and three edges ((v1,v4), (v1,v2)

and (v2,v4)).

Figure 2.4: A subgraph of the graph shown in Figure 2.3.

Definition 7 (Graph isomorphism) An isomorphism of graphs G and H is a

bijection f : V (G)−→V (H) such that any two vertices u and v of G are adjacent

in G if and only if f (u) and f (v) are adjacent in H.

We show in Figure 2.5, an isomorphic graph to the graph presented in Figure

2.3 with f (v1) = v′1, f (v2) = v′2, f (v3) = v′3, f (v4) = v′4 and f (v5) = v′5.

As shown in Figure 2.5, all adjacent vertices of the graph of Figure 2.5 are

adjacent in the graph of Figure 2.4.

Definition 8 (Subgraph isomorphism) A graph G′(V ′,E ′) is subgraph-

isomorphic to a graph G(V,E) if there exists an injective function f : V ′(G′)−→

V (G) such that ( f (u), f (v)) ∈ E holds for each (u,v) ∈ E ′.
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Figure 2.5: An isomorphic graph to the graph in Figure 2.3.

The graph presented in Figure 2.4 is subgraph-isomorphic to the graph pre-

sented in Figure 2.3. In fact, all adjacent vertices of the graph of Figure 2.4 are

adjacent in the graph of Figure 2.3.

Definition 9 (Transitive closure of a graph) The transitive closure of a

graph G = (V,E) is a graph G∗ = (V,E∗) such that E∗ contains an edge (u,v) if

and only if G contains a path (of at least one edge) from u to v.

Definition 10 (Density) The density of a graph G = (V,E) is calculated by

density(G) = 2 ·
|E|

(|V | · (|V |−1))
. (2.1)

The graph density measures the ratio of the number of edges compared to the

maximal number of edges. A graph is said to be dense if the ratio is close to 1,

and is considered as sparse if the ratio is close to 0. For example, the density of

the graph in Figure 2.4 (G) can be calculated by

density(G) = 2 ·
7

(5 · (5−1))
= 0.35.

Definition 11 (Degree) The degree of a node u is the total number of adjacent
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nodes to u and is denoted by degree(u).

For example, the degree of the node A of graph in Figure 2.3 is 3, since the node

A has three adjacent nodes (B, C and D).

Definition 12 (Average degree) Average degree of a graph is the average

value of the degree of all nodes in the graph, i.e. the average degree of a graph

G = (V,E) is calculated by

avgdegree(G) =
∑
|V |
i degree(ui)

|V |
. (2.2)

For example, the average degree of the graph in Figure 2.3 can be calculated by

avgdegree(G) =
degree(A)+degree(B)+degree(C)+degree(D)+degree(E)

5

= 2.8.

Graphs are used to describe a variety of data including chemical data

[Goto 2002, Borgelt 2002], biological data [Saidi 2012, Pizzuti 2012] and social

network data [Faloutsos 2004, Bonchi 2011]. Nowaday, the high availability of

graph data leads us to define graph data management techniques that allow us-

age and analysis of available data.

2.2 Graph data management

Graph data management [Aggarwal 2010] has become a dominant problem in

many application areas, including social graphs [Faloutsos 2004], transporta-

tion networks [Speičys 2008] and biological interaction networks [Blin 2010,

Pizzuti 2012]. These applications led to many new solutions for storing, parti-

tioning, indexing and querying these graphs. In this section, we provide a review

of recent graph data management algorithms and applications, namely, graph

reachability queries, graph matching and keyword search.
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2.2.1 Reachability queries

Graph reachability queries aim to test whether there is a path from one node to

another in a large directed graph. Reachability queries are one of the most basic

building blocks for many advanced graph operations. It is very useful in many

applications, including applications in semantic web, biology networks and XML

query processing. In general, two methods are used to answer reachability queries

[Aggarwal 2010]. The first method consists of traversing the graph from the start

node using breath-first search (BFS) or depth-first search (DFS) to see whether

we can ever reach the end node. The second method consists of computing

and storing the edge transitive closure of the graph. A reachability query can

be answered by the second method by simply checking whether the edge linking

the start node and the end node is in the transitive closure. We notice that for

large graphs, neither of the two methods is feasible. In fact, the first method

is too expensive at query time, and the second takes too much space. For these

reasons, works like [Cheng 2008] and [Wang 2006] propose parallel and distributed

algorithms for reachability.

2.2.2 Graph matching

The problem of graph matching [Aggarwal 2010, de Menibus 2011] consists of

finding an approximate correspondence among the nodes of two graphs. This

correspondence is based on one or more of the following structural characteristics

of the graph:

• The labels on the nodes in the two graphs should be the same.

• The existence of edges between corresponding nodes in the two graphs

should match each other.

• The labels on the edges in the two graphs should match each other.

These three characteristics may be used to define a matching between two

graphs such that there is a one-to-one correspondence in the structures of the two
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graphs. Such problems often arise in the context of several database applications

such as schema matching, query matching, and vector space embedding. Gener-

ally, there are two kinds of graph matching: (1) exact graph matching and (2)

approximate graph matching.

• The exact graph matching aims to determine a one-to-one correspondence

between two graphs. Thus, if an edge exists between a pair of nodes in one

graph, then that edge must also exist between the corresponding pair in the

other graph. This may not be very practical in real applications in which

approximate matches may exist, but an exact matching may not be feasible.

• In approximate graph matching, the main idea is to define an objective

function which determines the similarity in the mapping between the two

graphs. Fault tolerant mapping is a much more significant application in

the graph domain, because common representations of graphs may have

many missing nodes and edges.

2.2.3 Keyword search

The problem of keyword search [Aggarwal 2010] aims to determine small groups

of link-connected nodes which are related to a particular keyword. For example, a

web graph or a social network may be considered a massive graph, in which each

node may contain a large amount of text data.

Because the underlying data assumes a graph structure, keyword search be-

comes much more complex than traditional keyword search over documents. The

challenges lie in three aspects:

• Query semantics: the input data is often a single graph, so the algorithms

must return subgraphs as answers. The keyword search algorithm must

decide what subgraphs are qualified as answers.

• Ranking strategy: Based on the query semantics, answers of a keyword

query are likely to be many subgraphs. However, each subgraph has its own

underlying graph structure, with subtle semantics that makes it different
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from other subgraphs that satisfy the query. Thus, the keyword search algo-

rithm must take the graph structure into consideration and design ranking

strategies that find most meaningful and relevant answers.

• Query efficiency: Many real life graphs are extremely large. A major chal-

lenge for keyword search over graph data is query efficiency, which, to a

large extent, hinges on the semantics of the query and the ranking strategy.

2.3 Graph pattern mining

In this section, we first present graph patterns and their associated tasks and

applications. Then, we present the frequent subgraph mining (FSM) task and we

survey some recent FSM approaches.

2.3.1 Applications of graph patterns

Graph patterns aim to characterise complex graphs. They help finding proper-

ties that distinguish real-world graphs from random graphs and detect anomalies

in a given graph. Graph patterns are important for many applications such as

chemoinformatics, bioinformatics and machine learning.

Chemical patterns: Chemical data is often represented as graphs in which

the nodes correspond to atoms, and the links correspond to bonds between the

atoms [Miyashita 1989, Ranu 2012, Wegner 2012]. In some cases, chemical pat-

terns may be used as individual nodes. In this case, the individual graphs are quite

small, though there are significant repetitions among the different nodes. This

leads to isomorphism challenges in applications such as graph matching. The iso-

morphism challenge is that the nodes in a given pair of graphs may match in a

variety of ways. The number of possible matches may be exponential in terms of

the number of the nodes.

Figure 2.6 illustrates the graph representation of a real chemical compound.

Biological patterns: From a computer science point of view, the protein

structure can be viewed as a set of elements. Each element can be an atom,
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(a) A chemical compound (b) A graph representation of a chemical
compound

Figure 2.6: Graph representation of a chemical compound.

an amino acid residue or a secondary structure fragment. Hence, several graph

representations have been developed to preprocess protein structure, ranging from

coarse representations in which each vertex is a secondary structure fragment

[Auron 1982, Zuker 1984] to fine representations in which each vertex is an atom

[Saidi 2010, Saidi 2012]. Indeed, a protein interaction network can be represented

by a graph where an edge links a couple of proteins when they participate in

a particular biological function. Biological patterns may correspond to important

functional fragments in proteins such as active sites, feature positions and junction

sites.

Computer networked and Web data patterns: In the case of computer

networks and the web, the number of nodes in the underlying graph may be

massive [Erciyes 2013]. Since the number of nodes is massive, this can lead to a

very large number of distinct edges. This is also referred to as the massive domain

issue in networked data. In such cases, the number of distinct edges may be so

large, that it may be hard to hold in the available storage space. Thus, techniques

need to be designed to summarize and work with condensed representations of

the graph data sets. In some of these applications, the edges in the underlying

graph may arrive in the form of a data stream. In such cases, a second challenge

arises from the fact that it may not be possible to store the incoming edges for

future analysis. Therefore, the summarization techniques are especially essential



20 Chapter 2. Graph mining

for this case. The stream summaries may be leveraged for future processing of

the underlying graphs.

Figure 2.7 depicts the pipeline of graph applications built on frequent patterns.

Figure 2.7: Graph patterns application pipeline.

In this pipeline, frequent patterns are mined first; then significant patterns are

selected based on user-defined objective functions for different applications.

2.3.2 Frequent Subgraph Mining (FSM)

This section describes in details the frequent subgraph mining task [Cook 1994,

Cook 2000]. First, it presents the motivations behind FSM. Then, it defines the

problem of FSM. Finally, it describes some FSM algorithms.

2.3.2.1 Notations and FSM problem definition

There are two separate problem formulations for FSM: (1) graph transaction based

FSM and (2) single graph based FSM. In graph transaction based FSM, the input

data comprises a collection of medium-size graphs called transactions. In single

graph based FSM the input data, as the name implies, comprise one very large

graph.

In this work, we are interested in large scale graph transaction based FSM. The

definitions of subgraph support and the graph transaction based FSM are given

as follows.
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Definition 13 (Subgraph relative support) Given a graph database DB =

{G1, . . . ,GK}, the relative support of a subgraph G′ is defined by

Support(G′,DB) =
∑k

i=1 σ(G′,Gi)

|DB|
, (2.3)

where

σ(G′,Gi) =







1, if G′ has a subgraph isomorphism with Gi,

0, otherwise.

In the following, support refers to relative support.

Definition 14 (Graph transaction based FSM) Given a minimum support

threshold θ ∈ [0,1], the frequent subgraph mining task with respect to θ is

finding all subgraphs with a support greater than θ , i.e., the set SG(DB,θ) =

{(A,Support(A,DB)) : A is a subgraph of DB and Support(A,DB)≥ θ}.

2.3.2.2 Properties of FSM techniques

Frequent subgraph mining approaches perform differently in order to mine fre-

quent subgraphs from a graph dataset. Such differences are related to the search

strategy, the generation of candidate patterns strategy and the support computing

method.

Search strategy There are two basic search strategies employed for mining

frequent subgraphs [Jiang 2013, Suryawanshi 2013]: the depth first search (DFS)

strategy and the breadth first search (BFS) strategy.

The DFS strategy is a method for traversing or searching tree or graph data

structures. It starts at the root (selecting a node as the root in the graph case)

and explores as far as possible along each branch before backtracking. For the

graph presented in Figure 2.3, a depth-first search starting at vertex B, which is

adjacent to vertices A, C and D, we push D onto the stack, then C, then A. Next,

we pop vertex A and iteratively process 2. Since A is connected to D and also E,

we push E and then D onto the stack. Note that D is in the stack twice. Now
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the important part is that since we added vertex E and D after adding vertex C,

those will be processed before vertex C. That is, the neighbors of more recently

visited vertices (vertex A) have a preference in being processed over the remaining

neighbors of earlier ones (vertex B). This is precisely the idea of recursion: we do

not finish the recursive call until all of the neighbors are processed, and that in

turn requires the processing of all of the neighbors’ neighbors, and so on.

The BFS strategy is limited to essentially two operations:

1. Visit and inspect a node of a graph,

2. Gain access to visit the nodes that neighbor the currently visited node.

The BFS begins at a root node and inspects all the neighboring nodes. Then

for each of those neighbor nodes in turn, it inspects their neighbor nodes which

were unvisited, and so on. Let us reexamine the graph of Figure 2.3. Starting

again with vertex B, we add D, C, and A (in that order) to our data structure,

but now we prefer the first thing added to our data structure instead of the last.

That is, in the next step we visit vertex D instead of vertex A. Since vertex D

is adjacent to nobody, the recursion ends and we continue with vertex C. Now

vertex C is adjacent to E, so we add E to the data structure. That is, and this

is the important bit, we process vertex A before we process vertex E. Notice the

pattern here: after processing vertex B, we processed all of the neighbors of vertex

B before processing any vertices not immediately adjacent to vertex one.

Generation of candidate patterns The generation of candidate patterns

is the core element of the frequent subgraph discovery process. In this work, we

consider two types of approaches: Apriori-based and pattern growth-based. Figure

2.8 shows the difference between the two approaches.

Apriori-based approaches share similar characteristics with Apriori-based fre-

quent itemset mining algorithms [Agrawal 1994]. The search for frequent graphs

starts with graphs of small size, and proceeds in a bottom-up manner. At each

iteration, the size of the newly discovered frequent substructures is increased by

one (see Figure 2.8b). These new substructures are first generated by joining

two similar but slightly different frequent subgraphs that were discovered already.
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(a) Apriori-based approach (b) Pattern growth-based approach

Figure 2.8: Apriori-based vs pattern growth-based approach.

The frequency of the newly formed graphs is then checked. The Apriori-based

algorithms have considerable overhead when two size-k frequent substructures are

joined to generate size-(k+1) graph candidates. Typical Apriori-based frequent

substructure mining algorithms are discussed in the following paragraphs.

The pattern-growth mining algorithm extends a frequent graph by adding a

new edge, in every possible position as shown in Figure 2.8b. A potential problem

with the edge extension is that the same graph can be discovered many times.

The gSpan [Yan 2002] algorithm solves this problem by introducing a right-most

extension technique, where the only extensions take place on the rightmost path.

A right-most path is the straight path from the starting vertex to the last vertex,

according to a depth-first search on the graph.

Support computing Several methods are used for graph counting. Some

frequent subgraph mining algorithms use transaction identifier (TID) lists for fre-

quency counting. Each frequent subgraph has a list of transaction identifiers

which support it. For computing frequency of a k subgraph, the intersection of
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the TID lists of (k−1) subgraphs is computed. Also, DFS lexicographic ordering

can be used for frequency evaluation. Here, each graph is mapped into a DFS

sequence followed by construction of a lexicographic order among them based on

these sequences, and thus a search tree is developed. The minimum DFS code

obtained from this tree for a particular graph is the canonical label of that graph

which helps in evaluating the frequency. Embedding lists are used for support

computing. For all graphs, a list is stored of embedding tuples that consist of (1)

an index of an embedding tuple in the embedding list of the predecessor graph

and (2) the identifier of a graph in the database and a node in that graph. The

frequency of a structure is determined from the number of different graphs in its

embedding list. Embedding lists are quick, but they do not scale very well to large

databases. The other approach is based on maintaining a set of active graphs in

which occurrences are repeatedly recomputed.

Types of patterns Several kinds of subgraph patterns can be mined

with existing frequent subgraph mining algorithms. Algorithms including gSpan

[Yan 2002] and FFSM [Huan 2003a] aim to mine frequent subgraphs. A frequent

subgraph is a subgraph whose support is no less than a minimum support thresh-

old.

Definition 15 (Frequent subgraph) For a given graph database DB =

{G1, . . . ,GK} with K graphs and a minimum support threshold θ ∈ [0,1], G′

is a frequent subgraph if Support(G′,DB)≥ θ .

Another type of subgraph patterns that can be mined is the closed frequent

patterns.

Definition 16 (Closed frequent subgraph) A frequent subgraph G′ is closed

if and only if there is no supergraph G that has the same support as G.

CloseGraph method [Yan 2003] was developed for mining closed frequent sub-

graphs by extension of the gSpan algorithm. A set of closed subgraph patterns

has the same expressive power as the full set of subgraph patterns under the same

minimum support threshold, because the latter can be generated by the derived

set of closed graph patterns.
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Algorithms like SPIN [Huan 2004] and MARGIN [Thomas 2010] aim to mine

maximal frequent subgraphs.

Definition 17 (Maximal frequent subgraph) A frequent subgraph G is max-

imal if and only if there is no frequent subgraph that contains G.

The maximal pattern set is a subset of the closed pattern set. It is usually more

compact than the closed pattern set. However, we cannot use it to reconstruct

the entire set of frequent patterns.

Although the set of closed or maximal subgraphs is much smaller than the set

of frequent ones, real-world graphs contain an exponential number of subgraphs.

A subgraph miner called ORIGAMI has been proposed in [Chaoji 2008] which

discover representative subgraph patterns called α-orthogonal, β -representative

graph patterns.

Definition 18 (α-orthogonal subgraph) Two subgraph patterns are α-

orthogonal if their similarity is bounded by a threshold α .

Definition 19 (β -representative subgraph) A subgraph pattern is a β -

representative of another pattern if their similarity is at least β .

The orthogonality constraint ensures that the resulting pattern set has con-

trolled redundancy. For a given α , more than one set of graph patterns qualify as

an α-orthogonal set.

2.3.2.3 FSM algorithms

In this section, we detail three existing subgraph miners, namely FSG

[Kuramochi 2001], gSpan [Yan 2002] and Gaston [Nijssen 2004].

FSG algorithm. FSG [Kuramochi 2001] uses the Apriori level-wise approach

[Agrawal 1994] to find frequent subgraphs. In this algorithm, edges in a graph are

considered as frequent items in traditional itemset mining. Hence, the size of a

graph can be increased only by adding a single edge to the subgraph. Each time,

candidate subgraphs are generated by adding edges to previous subgraph. Hence,
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candidate subgraph generated in the current step must be greater in size than the

subgraph generated before. FSG uses sparse graph representation to store input

graph transactions, intermediate candidate graphs and frequent subgraphs. Adja-

cency list representation is used to store each transaction graph. To check unique

subgraph, FSG uses canonical labeling technique in which each graph has unique

canonical label. Canonical labels of two graphs are the same only when both

graphs have the same topological structure, edges and vertices labels. This tech-

nique is used to check isomorphic graphs. The subgraph mining process adopted

by FSG incorporates various optimizations for candidate generation and frequency

counting which enables it to scale to large graph datasets [Kuramochi 2001].

gSpan algorithm. gSpan [Yan 2002] is an algorithm for frequent graph-

based pattern mining in graph datasets based on DFS lexicographic order and its

properties [Yan 2002]. gSpan discovers frequent substructures without candidate

generation, which aims to avoid the candidate generation phase and the subgraph

isomorphism test [Kijima 2012]. Based on DFS, a hierarchical search tree is con-

structed. By pre-order traversal of the tree, gSpan discovers all frequent subgraphs

with a support greater than a support threshold. Since the design of the algorithm

combines the subgraph isomorphism test and frequent subgraph growth into one

procedure, gSpan accelerates the mining process [Yan 2002].

Gaston algorithm. Gaston [Nijssen 2004] is a substructure/subgraph-finding

algorithm that uses steps of increasing complexity to generate frequent substruc-

tures. Gaston searches first for frequent paths, then frequent free trees and finally

cyclic subgraphs [Nijssen 2004]. It stores all embeddings, to generate only refine-

ments that actually appear and to achieve fast isomorphism testing. The main

insight is that there are efficient ways to enumerate paths and trees. By consider-

ing fragments that are paths or trees first, and by only considering general graphs

with cycles at the end, a large fraction of the work can be done efficiently. Gaston

defines a global order on cycle-closing edges and only generates those cycles that

are larger than the last one. Duplicate detection is done in two phases: hashing

to pre-sort and a graph isomorphism test for final duplicate detection. We notice

also that the frequency counting process for Gaston is carried out with the help of

embedding lists, where all the occurrences of a particular label are stored in the
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embedding lists.

In order to give a summary, we present in Table 2.1 the details of recent

algorithms for frequent subgraph discovery with respect to properties of frequent

subgraph mining techniques presented in Section 2.3.2.2. We notice that the

algorithms presented in Table 2.1 output a set of frequent subgraphs.

2.4 Conclusion

In this chapter, we presented preliminary notions of graphs and we described

graph data mining and management techniques. We focused on frequent

subgraph mining, one of the main goal of this thesis. A notable issue in this

context is that existing approaches are mainly used on centralized computing

systems and evaluated on relatively small databases. In addition, the exponential

growth in both the graph size and the number of graphs in databases makes

the existing approaches face the scalability issue. To overcome this issue, a

distributed subgraph mining approach that scales with the available huge amount

of graph data is needed especially with the advent of cloud computing. In the

next chapter, we will present the cloud computing domain and we will discuss

some cloud-based subgraph mining techniques.
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Table 2.1: Algorithmic aspects of three popular algorithms.

Algorithm Graph representation Search strategy
Generation of

candidate patterns
Support computing

gSpan Adjacency list Depth first search (DFS) Pattern growth approach DFS lexicographic ordering

FSG Adjacency list Depth first search (DFS) A priori-based approach Transaction identifier (TID) lists

Gaston Hash table Depth first search (DFS) Pattern growth approach Embedding lists
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Key points

• We presented basic notions of graphs that help understanding

graph related aspects. These notions will be used throughout

this manuscript.

• We described the graph pattern mining field and its related no-

tations and applications.

• We focused on the frequent subgraph mining task by presenting

its problem definition and by presenting a review of frequent

subgraph mining techniques.

• We highlighted the raised issue with existing subgraph mining

techniques in the case of large scale data. At the end of this

chapter, we mentioned the need of distributing the task of fre-

quent subgraph mining in order to handle scalability issues.
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Goals

This chapter introduces the cloud computing research field and highlights its

interestingness for distributed data mining and graph mining applications. We

describe cloud computing models such as the deployment model, the business

model and the programming models. We give an overview of cloud-based data

mining techniques and we focus on distributed graph mining techniques in the

cloud.
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3.1 What is cloud computing?

Cloud computing [Armbrust 2010] is a technology that involves a large number of

computers that are connected through a real-time communication network (typi-

cally the Internet network) to maintain data and applications. Cloud computing

refers to both the applications delivered as services over Internet and the hardware

and systems software in the data centers that provide those services.

This promising technology allows much more efficient computing by centraliz-

ing data storage, processing and bandwidth. A simple example of cloud computing

is a Web-based email services, e.g., Gmail and Hotmail. They deliver a cloud com-

puting service: users can access their email "in the cloud" from any computer with

a browser and Internet connection, regardless of what kind of hardware is on that

particular computer. The emails are hosted on provider’s servers, rather than

being stored locally on the client computer.

Nowadays, businesses are moving to the cloud because it helps improving cash

flow and offers much more benefits.

3.2 Cloud benefits

The following are some of the possible benefits for those who offer cloud

computing-based services and applications:

• On demand self services Computer services such as email, applications,

network or server service can be provided without human interaction with

each service provider.

• Cost savings Initial expense is really cost effective. Cloud computing uses

the "pay as you go" billing model which has a per usage basis. This pay-as-

you-go model means that usage is metered and you pay only for what you

consume. The maintaining and service costs are much lower compared to

traditional computing methods.

• Rapid elasticity Cloud services can be rapidly and elastically provisioned,

in some cases automatically, to quickly scale-out and rapidly released to
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quickly scale-in. If we consider industrial level, companies can start with a

small deployment and grow to a large deployment fairly rapidly, and then

scale back if necessary.

• Reliability We can use multiple redundant clouds to do our computation

purposes. This supports business continuity and disaster recovery.

• Maintenance Cloud service providers (CSPs) do the system maintenance,

and access is through application programming interfaces (APIs) that do not

require application installations onto PCs, thus further reducing maintenance

requirements.

The success of cloud computing comes not only from the above mentioned

benefits, but also from its related models such as the deployment model, the

business model and the programming models.

3.3 Cloud computing deployment models

Cloud services can be deployed in different manners, depending on the organiza-

tional structure and the provisioning location [Armbrust 2009]. Four deployment

models are usually distinguished, namely public, private, community and hybrid

cloud service usage.

3.3.1 Public cloud

In a public cloud, services are rendered over a network that is open for pub-

lic use. Public cloud allows the users to access various important resources on

cloud, such as software, applications or stored data. Generally, public cloud ser-

vice providers (CSPs) like Amazon AWS [Inc 2013a], Microsoft [Inc 2013c] and

Google [Inc 2013b] own and operate the infrastructure and offer access only via In-

ternet. Figure 3.1 illustrates a public cloud where users from different organisation

(users with three different colors) can access to cloud services.
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Figure 3.1: Public cloud.

3.3.2 Private cloud

Private cloud computing systems emulate public cloud service offering within an

organization’s boundaries to make services accessible for one specific organization.

Private cloud computing systems make use of virtualization solutions and focus on

consolidating distributed information technology (IT) services often within data

centers belonging to the company. Figure 3.2 presents a private cloud where users

from a specific company (users with green color) can access only to the private

cloud of their company.

3.3.3 Community cloud

A community cloud is a generalization of a private cloud in which the cloud in-

frastructure is shared by organizations with similar requirements. A community

cloud differs from private cloud by the fact that the cloud infrastructure is accessi-

ble by more than one organization. Figure 3.3 illustrates community cloud where

the cloud infrastructure is shared between three organizations and user from each

organization accesses to services provided by the three organizations.
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Figure 3.2: Private cloud.

Figure 3.3: Community cloud.

3.3.4 Hybrid cloud

Hybrid cloud is a composition of cloud services of different cloud computing sys-

tems, e.g., private and public cloud services. A hybrid cloud service deployment

model offers the benefits of multiple deployment models. Such composition ex-
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pands deployment options for cloud services, allowing organizations to use public

cloud computing resources to meet temporary needs. This capability enables hy-

brid clouds to employ cloud bursting for scaling across clouds. Figure 3.4 presents

a hybrid cloud where users can access not only to their related private cloud but

also to public or community cloud.

Figure 3.4: Hybrid cloud.

As shown in Figure 3.4, the user colored in blue can access to the private cloud

related to his company and also to the public and the community cloud.

3.4 Cloud computing business model

Cloud computing is not a stand-alone technology. It is a business and deliv-

ery model enabled by existing technologies modified for remote, on-demand, and

fractional consumption. In this section we describe basic cloud computing service

models and we detail some pricing policies of cloud service providers.
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3.4.1 Basic cloud computing service models

Cloud computing providers offer their services according to three fundamental

models: infrastructure as a service (IaaS), platform as a service (PaaS), and

software as a service (SaaS) where IaaS is the most basic and each higher model

abstracts from the details of the lower models (see Figure 3.5).

Figure 3.5: Cloud computing layers.

Infrastructure as a Service (IaaS) Different from conventional hosting ser-

vices, IaaS comprises the sharing of infrastructure resources for running software

in the cloud that would ordinarily be deployed and operated on-premise. IaaS

provides consumers with the processing, storage, networks, and other fundamen-

tal computing resources required for running applications. The channel is both

a provider and broker of IaaS by building and delivering cloud-based infrastruc-

tures, reselling infrastructure services, and supporting organizations in their use

and operations of the services.
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Platform as a Service (PaaS) A platform upon which users can develop

and deploy services for consumption. PaaS providers include Microsoft Azure,

Salesforce.com’s [Woollen 2010], Google’s App Engine [Ciurana 2009] and Heroku

[Middleton 2013]. The channel can either use PaaS to develop its own unique

offerings or resell capacity and support to organizations that require PaaS services.

For the channel, PaaS is about exercising expertise to both leverage platforms and

support cloud-based platforms.

Software as a Service (SaaS) Applications running on a cloud infrastructure

via a thin client or browser. SaaS includes such services as managed email, cus-

tomer relationship management (CRM), and office productivity applications. Ven-

dors providing such services are reselling their offerings through solution providers

who can add deployment, migration, training, and support services on top of the

core offering.

The economics of its underlying sales model are what separates cloud comput-

ing from the conventional, on-premise technology model. Since cloud computing

is essentially a subscription-based service, it is sold and billed as a recurring oper-

ational expense (as opposed to a one-time or limited capital expense).

3.4.2 Pricing policies

Cloud service providers supply a variety of resources, such as hardware (CPU,

storage, networks), development platforms with different services and pricing. In

order to have an overview of such a pricing policy, the following examples present

a simplified version of both Windows Azure offer [Inc 2013c] and Amazon Web

Service (AWS) offer [Inc 2013a]. The objective of this description is indeed not to

compare the different providers, but to provide an idea about CSPs pricing offers1.

3.4.2.1 Windows Azure offer

Windows Azure provides a variety of computing resources that can be rented (very

small, small, medium, large and very large) at various prices, as illustrated in Table

3.1.

1The presented prices were taken on September 2013



40 Chapter 3. Cloud-based graph mining

Table 3.1: Windows Azure computing prices.

Type Virtual cores RAM Price per hour

Very small shared 768MB $0.02

Small 1 1.75GB $0.08

Medium 2 3.5GB $0.16

Large 4 7GB $0.32

Very large 8 14GB $0.64

Bandwidth consumption is billed with respect to data volume (see Table 3.2).

In this model, input data transfers are free, whereas output data transfer cost

varies with respect to data volume, with an earned rate when volume increases.

Table 3.2: Windows Azure bandwidth prices (output data).

Data volume Price per month

First 5GB per month free

5GB-10TB per month $0.12 per GB

40TB per month $0.09 per GB

100TB per month $0.07 per GB

350TB per month $0.05 per GB

Finally, Windows Azure Storage provides storage of non-relational data, includ-

ing storage blob2, table and disk. It introduces two options for storage: locally and

geographically redundant. The locally redundant storage option allows multiple

copies of data within a single sub-region to provide the highest level of durability.

The geographically redundant storage option offers an extra level of durability by

replicating data between two remote sub-regions.

In this model, the price varies with respect to data volume, with an earned

rate when volume increases (see Table 3.3).

2A blob is a collection of binary data stored as a single entity in a database management
system.
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Table 3.3: Windows Azure storage prices.

Price per month

Data volume Geographically
redundant storage

Locally redundant
storage

First 1TB per month $0,095 per GB $0,07 per GB

Next 49TB per month $0,08 per GB $0,065 per GB

Next 450TB per month $0,07 per GB $0,06 per GB

Next 500TB per month $0,065 per GB $0,055 per GB

Next 4PB per month $0,06 per GB $0,045 per GB

Next 4PB per month $0,055 per GB $0,037 per GB

3.4.2.2 Amazon Web Service offer

Amazon Web Service (AWS) provides a variety of computing resources that can

be rent (extra small, small, large and extra large) at various prices, as illustrated

in Table 3.4.

Table 3.4: Amazon Elastic Compute Cloud (EC2) computing prices.

Type Virtual cores RAM Price per hour

Small 1 1.7GB $0.042

Medium 1 3.75GB $0.085

Large 2 7.5GB $0.17

Extra large 4 15GB $0.339

For example, the costs for a small instance (1.7GB RAM, 1 virtual core) is

$0.042 per hour.

Table 3.5 presents EC2 bandwidth prices with respect to data volume.

Table 3.5: EC2 bandwidth prices (output data).

Data volume Price per month

First 1GB per month free

2GB-10TB per month $0.12 per GB

40TB per month $0.09 per GB

100TB per month $0.07 per GB

350TB per month $0.05 per GB
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In this model, input data transfers are free, whereas output data transfer cost

varies with respect to data volume, with an earned rate when volume increases.

Finally, AWS Storage provides storage capabilities. Amazon EBS proposes a

fixed price ($0.10 per GB), whereas Amazon S3 (Table 3.6) enables an earned

rate when volume increases.

Table 3.6: Amazon S3 storage prices.

Data volume Price per month

Frist 1TB $0,14 per GB

Next 49TB $0,125 per GB

Next 450TB $0,11 per GB

The choice of the cloud service providers depends not only on the pricing offer

but also on the studied problem and the used programming models.

3.5 Cloud computing programming models

Cloud computing offers multiple programming models in order to facilitate the

efficient design of cloud-based applications. Cloud programming models often

take existing programming models as their base and adapt them a bit for cloud

usage. In this section, we present the three main cloud programming models,

namely Web Services programming model, composite applications programming

model and MapReduce programming model.

3.5.1 Web services programming model

Service oriented architecture (SOA) [Erl 2004] is the underlying structure support-

ing communications between services, which preceded cloud computing and has

definitely influenced it [Barry 2013]. SOA allows easy cooperation of a large num-

ber of connected computers. Thus, every computer can run an arbitrary number

of services. SOA is a very recommended programming model in the cloud thanks

to its related standards [Erl 2004]. However, it presents major limitation related
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to fault tolerance. In fact, SOA do not provide fault management component that

helps development of fault-tolerant applications in the cloud.

3.5.2 Composite applications programming model

Composite applications are techniques for composing applications together from

multiple components. As it is the case, they are closely related to SOA and benefit

from cloud-driven standardization in the same way [Tejedor 2011, Eidson 2001].

We identify a couple of composite types:

• A composite that tries to orchestrate components to achieve some batch

jobs.

• An interactive composite (called also mash-ups). This type involves a user

interface and interacts with a user. It must deal with the fact that contracts

are loose and failure of some components is to be expected. This is especially

significant when you cannot wait since the user wants a response.

• A combination of batch and interactive components.

The composite applications programming model is a simple way to design

cloud-based applications. Nevertheless, it is not used in the context of very large

scale cloud-based applications since it does not provide a robust framework for

procesing huge amount of data.

3.5.3 MapReduce programming model

MapReduce [Dean 2008] is a framework for processing highly distributable prob-

lems across huge datasets using a large number of computers (nodes). It was

developed within Google as a mechanism for processing large amounts of raw

data, for example, crawled documents or web request logs. This data is so large,

it must be distributed across thousands of machines in order to be processed in

a reasonable amount of time. This distribution implies parallel computing since

the same computations are performed on each CPU, but with a different dataset.

MapReduce is an abstraction that allows to perform simple computations while
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hiding the details of parallelization, data distribution, load balancing and fault

tolerance [Dean 2008]. The central features of the MapReduce framework are

two functions, written by a user: Map and Reduce. The Map function takes as

input a pair and produces a set of intermediate key-value pairs 〈key,value〉. The

MapReduce library groups together all intermediate values associated with the

same intermediate key I and passes them to the Reduce function. The Reduce

function accepts an intermediate key I and a set of values for that key. It merges

these values together to form a possible smaller set of values.

Figure 3.6 shows an execution workflow of a MapReduce program.

Figure 3.6: MapReduce execution overview.

The different tasks in Figure 3.6 are numbered as means of identifying the

tasks in the following description. The execution workflow is made-up of two

main phases:

• Map phase, which contains the following steps:

1. The input file is splitted into several pieces of data. Each piece is called
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a split or chunk.

2. Each node hosting a map task, called a mapper, reads the content of

the corresponding input split from the distributed file system.

3. Each mapper converts the content of its input split into a sequence of

key-value pairs 〈k,v〉 and calls the user-defined Map function for each

key-value pair. The produced intermediate pairs 〈I,v′〉 are buffered in

memory.

4. Periodically, the buffered intermediate key-value pairs are written to

r local intermediate files, called segment files, where r is the number

of reducer nodes. The partitioning of data into r regions is achieved

by a partitioning function which ensures that pairs with the same key

are always allocated to the same segment file. In each partition, the

data items are sorted by values. The sorted chunks are written to local

storage.

• The reduce phase, made of the following steps:

5. On the completion of a map task, the reducers (i.e., nodes executing

the reduction function), will pull over their corresponding segments.

6. When a reducer read all intermediate data, it sorts the data by the

intermediate keys so that all occurrences of the same key are grouped

together. If the amount of intermediate data is too large to fit in

memory, an external sort is used. The reducer then merges the data

to produce for each intermediate key I a single pair 〈I, list(v′)〉.

7. Each reducer iterates over the sorted intermediate data and passes

each pair 〈I, list(v′)〉 to the user’s reduce function.

8. Each reducer writes its final results to the distributed file system.

All these programming models have been used for building reliable, efficient and

scalable cloud-based applications. In the context of this thesis, we are interested

in cloud-based data mining applications especially the distributed subgraph mining
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techniques in the cloud. The next section provides a survey of recent cloud-based

data mining applications.

3.6 Cloud-based techniques

As cloud computing is penetrating more and more in all ranges of business and

scientific computing, it becomes a great area to be focused by data mining and

especially by graph mining. The distribution of data mining techniques through

cloud computing will allow the users to retrieve meaningful information from vir-

tually integrated data that reduces the costs of infrastructure and storage. In

this section, we survey distributed data mining and graph mining techniques in

cloud. We focus on cloud-based subgraph mining algorithms which constitutes

the addressed issue in this thesis.

3.6.1 Cloud-based data mining techniques

In this section, we present an overview of distributed data mining and machine

learning techniques. Then, we give a summary of the described approaches with

respect to the format of the input data and the output patterns.

3.6.1.1 Distributed data mining techniques

Data mining and machine learning hold a vast scope of using the various aspects

of cloud computing for scaling existing algorithms and solving some of the related

challenges.

NIMBLE. NIMBLE [Ghoting 2011a] is a portable infrastructure that has been

specifically designed to enable the implementation of parallel machine learning and

data mining algorithms. The NIMBLE approach allows to compose parallel data

mining algorithms using reusable (serial and parallel) building blocks that can

be efficiently executed using MapReduce and other parallel programming models.

The programming abstractions of NIMBLE have been designed with the inten-

tion of parallelizing data mining computations and allow users to specify data

parallel, iterative, task parallel, and even pipelined computations. The NIMBLE
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approach has been used to implement some popular data mining algorithms such

as k-Means clustering [MacQueen 1967] and pattern growth-based frequent item-

set mining [Han 2000], k-Nearest Neighbors [Coomans 1982] and random decision

trees [Breiman 2001].

Figure 3.7: An overview of the software architecture of NIMBLE [Ghoting 2011a].

As shown in Figure 3.7, NIMBLE is organized into four distinct layers:

1. The user API layer, which provides the programming interface to the users.

Within this layer, users are able to design tasks and directed acyclic graphs

(DAGs) of tasks to express dependencies between tasks. A task processes

one or more datasets in parallel and produces one or more datasets as output.

2. The architecture independent layer, which acts as the middleware between

the user specified tasks/DAGs, and the underlying architecture dependent

layer. This layer is primarily responsible for the smart scheduling of tasks,

and delivering the completion notifications of these tasks to the users.

3. The architecture dependent layer, which consists of harnesses that allow
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NIMBLE to run portably on various platforms. Currently, NIMBLE only

supports execution on the Hadoop platform.

4. The hardware layer, which consists of the used cluster.

Mahout. The Apache’s Mahout project [Foundation 2010] provides a library

of machine learning implementations. The primary goal of Mahout is to create

scalable machine learning algorithms that are free to use under the Apache license.

It contains implementations for clustering [Esteves 2011, Esteves 2011], catego-

rization [Ericson 2013], and dimension reduction. In addition, Mahout uses the

Apache Hadoop library to scale effectively in the cloud. Mahout’s primary features

are:

• Scalable machine learning libraries. The core libraries of Mahout are highly

optimized for good performance and for non-distributed algorithms.

• Several MapReduce enabled clustering implementations, including

k-Means [MacQueen 1967], fuzzy k-Means [Ahmed 2002] and Mean-Shift

[Cheng 1995].

• Distributed Naive Bayes [Zhang 2004] implementation.

• Distributed Principal Components Analysis (PCA) [Pearson 1901] tech-

niques for dimensionality reduction [Ye 2005].

SystemML. SystemML [Ghoting 2011b] is a system that enables the devel-

opment of large scale machine learning algorithms. It first expresses a machine

learning algorithm in a higher-level language called Declarative Machine learning

Language (DML). Then, it executes the algorithm in a MapReduce environment.

This DML language exposes arithmetical and linear algebra primitives on matrices

that are natural to express a large class of machine learning algorithms.

As shown in Figure 3.8, SystemML is organized into distinct layers:

• The Language component: It consists of user-defined algorithms written in

DML.
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Figure 3.8: An overview of the software architecture of SystemML
[Ghoting 2011b].

• The High-Level Operator Component (HOP): It analyzes all the operations

within a statement block and chooses from multiple high-level execution

plans. A plan is represented in a directed acyclic graph of basic operations

(called hops) over matrices and scalars.

• The Low-Level Operator Component (LOP): It translates the high-level ex-

ecution plans provided by the HOP component into low-level physical plans

on MapReduce.

• The runtime component: It executes the low-level plans obtained from the

LOP component on Hadoop.

Another attention was carried to the distribution of data mining tech-

niques on multicore architectures [Negrevergne 2013, Laurent 2012, Qiu 2008,

Négrevergne 2010]. For example, in [Laurent 2012], the authors propose an en-

hanced version of GRITE [Di Jorio 2009], an existing algorithm of gradual pattern
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mining, on multicore processors. In [Sicard 2010], the authors propose a method

for parallelizing fuzzy tree mining on multicore architectures. Gradual patterns con-

sists of set of patterns in which an order is defined between them [Di Jorio 2010].

3.6.1.2 Summary of cloud-based data mining approaches

Table 3.7 presents the above mentioned cloud-based data mining techniques. It

describes the implemented techniques, the programming languages and the used

programming model of each approach.

Table 3.7: Summary of recent cloud-based data mining techniques.

Approach
Implemented
techniques

Langage
Programming

model

NIMBLE [Ghoting 2011a]
Clustering and itemset

mining techniques
JAVA

MapReduce, OpenCL,
MPI

Mahout [Foundation 2010]
Classification,

clustering and itemset
mining techniques

JAVA MapReduce

SystemML [Ghoting 2011b]
Regression and ranking

techniques
JAVA and DML MapReduce

We notice that the input and the output of the above presented approaches

are user-defined. The works presented in Table 3.7 consists of programming in-

terfaces that enable the implementation of distributed data mining algorithms.

Nevertheless, they do not provide implementations of distributed subgraph mining

algorithms which is one of the addressed issue in this thesis.

3.6.2 Cloud-based graph mining techniques

In this section, we first present an overview of distributed graph mining algorithms.

Then, we present an overview of cloud-based subgraph mining algorithms. Finally,

we summarize recent cloud-based graph mining approaches with respect to the

format of the input data and the output patterns.
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3.6.2.1 Distributed graph mining techniques

PEGASUS. In [Kang 2009, Kang 2013], a description of PEGASUS is proposed,

an open source peta graph mining library which performs typical graph mining tasks

such as computing the diameter of a graph, computing the radius of each node

and finding the connected components. The main idea of PEGASUS is the GIM-

V primitive, standing for Generalized Iterative Matrix-Vector multiplication, which

consists of a generalization of normal matrix-vector multiplication. PEGASUS

customizes the GIM-V primitive and uses MapReduce in order to handle with

important large scale graph mining operations.

PREGEL. In [Malewicz 2010], the authors present PREGEL, a computational

model suitable for large scale graph processing. Programs are expressed as a

sequence of iterations, in each of which a vertex can receive messages sent in the

previous iteration, send messages to other vertices, and modify its own state and

that of its outgoing edges or mutate graph topology. This vertex centric approach

is flexible enough to express a broad set of algorithms. Implementing a large scale

graph processing algorithm consists of creating a PREGEL program.

Cohen etal.’s approach. In the work of [Cohen 2009], the authors give an

investigation into the feasibility of decomposing useful graph operations into a

series of MapReduce processes. Such a decomposition could enable implementing

graph mining algorithms on a cloud, in a streaming environment, or on a single

computer.

HADI. In [Kang 2008], the authors propose HADI algorithm, a solution for

mining diameter in massive graphs on the top of MapReduce. HADI has been

used to analyze the largest public web graph, with billions of nodes and edges.

Another attention was carried to the computing of eigenvalue in massive graphs

[Zhao 2007] and to the counting triangles in massive graphs such as the DOULION

method [Tsourakakis 2009].

3.6.2.2 Distributed frequent subgraph mining techniques

With the exponential growth in both the graph size and the number of graphs in

databases, several distributed solutions have been proposed for frequent subgraph
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mining on a single large graphs and on massive graph databases. Here we present

an overview of research works in the area of large scale subgraph mining.

MRPF. In [Liu 2009], the authors propose the MRPF algorithm for finding

patterns from a complex and large network. As illustrated in Figure 3.9, the algo-

rithm is divided into four steps: distributed storage of the graph, neighbor vertices

finding and pattern initialization, pattern extension, and frequency computing.

Each step is implemented by a MapReduce pass. In each MapReduce pass,

the task is divided into a number of sub-tasks of the same size and each sub-task

is distributed to a node of the cluster. MRPF uses an extended mode to find the

target size pattern. That is trying to add one more vertex to the matches of i-size

patterns to create patterns of size i+ 1. The extension does not stop until the

patterns reach the target size. The proposed algorithm is applied to prescription

network to find some commonly used prescription network motifs that provide the

possibility to discover the law of prescription compatibility.

Figure 3.9: An overview of the software architecture of MRPF [Liu 2009]. Adja-
cent vertices table contains adjacent neighbor of each vertex of the input network.
Match set and Pattern set contain the intermediate results.
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Hill etal.’s approach. The work presented in [Hill 2012] presents an iterative

MapReduce-based approach for frequent subgraph mining. The authors propose

two heterogeneous MapReduce jobs per iteration: (1) gathering subgraphs for the

construction of the next generation of subgraphs, and (2) counting these structures

to remove irrelevant data.

1. First MapReduce job The first MapReduce job aims to construct the next

generation of subgraphs. Its associated Map function sends the subgraph

to the correct reducer using the graph identifier as a key. All the subgraphs

of size k− 1 with the same graph identifier are gathered for the Reduce

function. Single edges in these subgraphs are used to generate the next

generation of possible subgraphs of size k. The subgraph is encoded as a

string. All labels alphabetized are kept and the special markers are used to

designate different nodes with the same labels. The results of this step are

subgraphs of size k and graph identifiers.

2. Second MapReduce job The second MapReduce job aims to output the

frequent subgraphs. The map function of this job has the responsibility of

taking in the encoded strings representing subgraphs of size-k and corre-

sponding graph identifiers as well as outputting the subgraph as a key and

the node identification numbers and graph identifiers as values. The reduce

function gathers (per iteration) on label only subgraph structures. The main

task of the reduce function is to compute the support of these subgraphs.

The label markers are removed at this point. The outputs of iteration k are

all subgraphs of size k that meet the given user defined support.

Wu etal.’s approach. In [Wu 2010], the authors propose a MapReduce-

based algorithm for frequent subgraph mining. The algorithm takes a large graph

as input and finds all subgraphs that match a given motif. The input large graph

is represented as Personal Centre Network of every vertex in the graph [Wu 2010].

For each vertex in the graph, the algorithm calculates the candidate subgraph

according to graph isomorphism algorithms. It outputs the candidate subgraphs

if they are isomorphic with the motif.
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Luo etal.’s approach. In [Luo 2011], the authors propose an approach to

subgraph search over a graph database under the MapReduce framework. The

main idea of this approach is first to build inverted edge indexes for graphs in the

database, and then to retrieve data only related to the query subgraph by using

the built indexes to answer the query.

Another attention was carried to the discovery and the study of dense sub-

graphs from massive graphs. For example, in [Bahmani 2012], an algorithm for

finding the densest subgraph in a massive graph is proposed. The algorithm is

based on the streaming model of MapReduce.

3.6.2.3 Summary of cloud-based graph mining approaches

Table 3.8 presents the above mentioned cloud-based graph mining techniques.

It describes the input, the output of each approach and the used programming

model.

As mentioned before, we focus our study on distributed FSM techniques. As

one can see in Table 3.8, most distributed FSM approaches use a single large graph

as input [Malewicz 2010, Tsourakakis 2009, Wu 2010, Liu 2009, Bahmani 2012].

They search frequent subgraphs in a large single graph or for subgraphs that match

a given motif. Only a few works include the FSM from large graph databases.

These attempts suffer from three crucial problems:

First, they try to construct the final set of frequent subgraphs iteratively us-

ing MapReduce, possibly resulting a big number of MapReduce passes and an

exponential growth of intermediate data especially with large scale datasets.

Second, none of the presented distributed FSM solutions have discussed the

distribution of the input data according to data characteristics. They simply

use the data partitioning schema proposed by the used programming model

such as MapReduce. Such partitioning may be the origin of imbalanced com-

putational load among map tasks. This problem is known by map− skew

[YongChul K. 2011, Kwon 2012] and it refers to highly variable task runtimes

in MapReduce applications. In most cases, skew is originating from the charac-

teristics of the algorithm and dataset. Accordingly, it is recommended to define
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Table 3.8: Summary of recent cloud-based graph mining approaches.

Approach Input Output Programming model

PEGASUS [Kang 2009] A graph database Diameter and radius of each graph MapReduce

Pregel [Malewicz 2010] A single graph
Depends on the user-defined

pregel program
MapReduce and Pregel

HADI [Kang 2008] A graph database Diameter of each graph MapReduce

Zhao etal.’s approach [Zhao 2007] A graph database Eigenvalue of each graph MPI and OpenMP

DOULION [Tsourakakis 2009] A single graph Triangles MapReduce

MRPF [Liu 2009]
A single graph and a subgraph

model
Frequent subgraphs MapReduce

Hill etal.’s approach [Hill 2012]
A graph database and a subgraph

model
Frequent subgraphs MapReduce

Wu etal.’s approach [Wu 2010]
A single graph and a subgraph

model
Frequent subgraphs MapReduce

Luo etal.’s approach [Luo 2011] A graph database Frequent subgraphs MapReduce

Bahmani etal.’s approach
[Bahmani 2012]

A single graph Densest subgraphs MapReduce
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a preprocessing step that distributes the data according to data characteristics

which constitutes one of the best practices to alleviate skew problems in the map

phase [YongChul K. 2011]. This preprocessing step consists of extracting proper-

ties of the input data and appropriately partitioning the data before starting the

computations.

Third, the above presented solutions do not include the monetary aspect. It

is necessary to design cost models for managing and mining subgraph patterns in

a cloud architecture. Such cost models consider the needs of customers such as

budget limit, response time limit and quality of the result limit.

3.7 Conclusion

In this chapter, we have introduced the concept of cloud computing. We have

presented its associated models, namely deployment models, business models and

programming models. We have also presented some popular cloud-based data min-

ing and graph mining techniques. We tried to categorize distributed data mining

and graph mining approaches according to the input data, the output patterns and

the used programming model. The raised issue is that few works have addressed

the problem of distributed frequent subgraph mining in the cloud which constitutes

the addressed problem of this thesis. In addition, the data distribution technique

adopted by these works does not include data characteristics. To overcome this

obstacle, a data partitioning technique that considers data characteristics should

be applied.

In the next part of the thesis, we will present our proposed approach (see

Chapter 4), a scalable and distributed approach for large scale frequent subgraph

mining based on MapReduce. The proposed approach provides a density-based

partitioning technique of the input data. Such a partitioning technique allows a

balanced computational loads over the distributed collection of machines. We

will also present in Chapter 5 new cost models for managing and mining subgraph

patterns in a cloud setting. We notice that our contributions are located in

the Platform as a Service (PaaS) layer of the cloud computing service model layers.



3.7. Conclusion 57

Key points

• We presented the field of cloud computing and its benefits. We

give an overview of its associated models, namely business model,

deployment models, and programming models.

• We studied existing works on the field of distributed data mining

approaches in the cloud.

• We focused on cloud-based subgraph mining approaches and we

presented a summary of most popular ones.

• We highlighted the raised issues with existing distributed sub-

graph mining techniques.

• We concluded this chapter by mentioning the need not only to

propose a large scale cloud-based subgraph mining technique,

but also to include data characteristics in the partitioning step.

Also, we mentioned the need to define cost models that consider

the needs of customers such as budget limit, response time limit

and quality of the result limit.
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Goals

Recently, graph mining approaches have become very popular, especially in

certain domains such as bioinformatics, chemoinformatics and social networks.

As mentioned in Chapter 1 and 2, frequent subgraph discovery is one of the

most challenging tasks. This task has been highly motivated by the tremendously

increasing size of existing graph databases. Due to this fact, there is urgent

need for efficient and scaling approaches for frequent subgraph discovery. In this

chapter, we propose a novel approach for distributed large scale subgraph mining

in the cloud. The proposed approach allows the use of different subgraph mining

algorithms and different partitioning methods. We present an experimental study

and we show that our approach decreases significantly the execution time and

scales the subgraph discovery process to large graph databases.



4.1. Formulation of the distributed subgraph mining problem 63

4.1 Formulation of the distributed subgraph

mining problem

In this work, we are interested in frequent subgraph mining in large scale graph

databases.

Let DB = {G1, . . . ,GK} be a large scale graph database with K graphs, SM =

{M1, . . . ,MN} a set of distributed machines, θ ∈ [0,1] is a minimum support

threshold. For 1 ≤ j ≤ N, let Part j(DB) ⊆ DB be a non-empty subset of DB.

We define a partitioning of the database over SM by the following: Part(DB) =

{Part1(DB), . . . ,PartN(DB)} such that

•
⋃N

i=1{Parti(DB)}= DB,and

• ∀i 6= j,Parti(DB)∩Part j(DB) = /0.

In the context of distributed frequent subgraph mining, we propose the follow-

ing definitions.

Definition 20 (Globally frequent subgraph) For a given minimum support

threshold θ ∈ [0,1], G′ is globally frequent subgraph if Support(G′,DB) ≥ θ .

Here, θ is called global minimum support threshold (GS).

Definition 21 (Locally frequent subgraph) For a given minimum support

threshold θ ∈ [0,1] and a tolerance rate τ ∈ [0,1], G′ is locally frequent sub-

graph at site i if Support(G′,Parti(DB)) ≥ ((1− τ) · θ). Here, ((1− τ) · θ) is

called local minimum support threshold (LS).

Definition 22 (Loss Rate) Given S1 and S2 two sets of subgraphs with S2 ⊆ S1

and S1 6= /0, we define the loss rate in S2 compared to S1 by

LossRate(S1,S2) =
| S1−S2 |

| S1 |
, (4.1)

We define the problem of distributed subgraph mining by finding a good parti-

tioning of the database over the set of distributed machines (SM) and by minimiz-

ing a defined approximation of the complete set of frequent subgraphs extracted

from the DB database (SG(DB,θ)).
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Definition 23 (an ε-approximation of a set of subgraphs) Given a pa-

rameter ε ∈ [0,1] and SG(DB,θ). An ε-approximation of SG(DB,θ) is a subset

S⊆ SG(DB,θ) such that

LossRate(SG,S)≤ ε. (4.2)

We measure the cost of computing an ε-approximation of SG(DB,θ) with a

given partitioning method PM(DB) by the standard deviation of the set of runtime

values in mapper machines.

Definition 24 (Cost of a partitioning method) Let R = {Runtime1(PM),

. . . ,RuntimeN(PM)} be a set of runtime values. Runtime j(PM) represents the

runtime of computing frequent subgraphs in the partition j (Part j) of the database.

The operator E denotes the average or expected value of R. Let µ be the mean

value of R:

µ = E[R]. (4.3)

The cost measure of a partitioning technique is:

Cost(PM) =
√

E[(R−µ)2]. (4.4)

A large cost value indicates that the runtime values are far from the mean

value and thus imbalanced computational load among the distributed machines.

A small cost value indicates that the runtime values are near the mean value and

thus balanced computational load. The smaller the value of the cost is, the more

efficient the partitioning is.

4.2 Density-based partitioning for large scale

subgraph mining with MapReduce

In this section, we present our approach for large scale subgraph mining with

MapReduce. It first describes the proposed framework to approximate large scale
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frequent subgraph mining [Aridhi 2013]. Then, it presents our density-based par-

titioning technique.

4.2.1 A MapReduce-based framework to approximate

large scale frequent subgraph mining

In this section, we present the proposed framework for large scale subgraph mining

with MapReduce (see Figure 4.1).

Figure 4.1: A system overview of our approach. In this figure, ellipses and cylinders
represent data, squares represent computations on the data and arrows show the
flow of data.

As shown in Figure 4.1, our method works as follows:
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1. Input graph database is partitioned into N partitions. Each partition will be

processed by a mapper machine.

2. Mapper i reads the assigned data partition and generates the cor-

responding locally frequent subgraphs according to a local support.

Mapper i outputs 〈key,value〉 pairs of locally frequent subgraphs

〈subgraph,Support(subgraph,Parti(DB))〉.

3. For each unique intermediate key, the reducer passes the key and the

corresponding set of intermediate values to the defined Reduce func-

tion. According to these 〈key,value〉 pairs, the reducer outputs the fi-

nal list of 〈key,value〉 pairs after filtering according to the global support

〈subgraph,Support(subgraph,DB)〉.

In the following sections, we give a detailed description of our approach.

4.2.1.1 Data partitioning

In the data partitioning step, the input database is partitioned into a user-

specified number of partitions N. The input of this step is a graph

database DB = {G1, . . . ,GK} and the output is a set of partitions Part(DB) =

{Part1(DB), . . . ,PartN(DB)}. Our framework allows many partitioning techniques

for the graph database. In our work, we consider two instances of data partitioning.

The first partitioning method is the default one proposed by MapReduce frame-

work that we called MRGP (which stands for MapReduce Graph Partitioning). It

arbitrarly constructs the final set of partitions according to chunk size. Though,

MRGP does not consider the characteristics of the input data during partition-

ing. Besides the standard MRGP partitioning, we propose a partitioning technique

that takes into account the characteristics of the input data during the creation of

partitions. We termed it Density-based Graph Partitioning (shortly called DGP).

More precisely, DGP tends to balance graph density distribution in each partition

(for more details, see Section 4.2.2).
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4.2.1.2 Distributed subgraph mining

The distributed subgraph mining step consists of mining the set of globally fre-

quent subgraphs. The input of this step is a set of partitions Part(DB) =

{Part1(DB), . . . ,PartN(DB)} and the output is the set of globally frequent sub-

graphs. The execution of the distributed subgraph mining step is resumed by a

MapReduce pass. In the Map step, we use a frequent subgraph mining technique

that we run on each partition in parallel. In the Reduce step, we compute the

final set of globally frequent subgraphs. The Algorithms 1 and 2 present our Map

and Reduce functions:

Algorithm 1 Map function.

Require: A partitioned graph database DB = {Part1(DB), . . . ,PartN(DB)}, min-
imum support threshold θ , tolerance rate τ , key = i, value= graph partition
Parti(DB)

Ensure: Locally frequent subgraphs in Parti(DB)
1: Si← FSMLocal(Parti(DB),θ ,τ)
2: for all s in Si do
3: EmitIntermediate(s,Support(s,Parti(DB)))
4: end for

Algorithm 2 Reduce function.

Require: Minimum support threshold θ , key=a subgraph s, values=local sup-
ports of s

Ensure: Globally frequent subgraphs in DB

1: GlobalSupportCount← 0

2: for all v in values do
3: GlobalSupportCount← GlobalSupportCount + v

4: end for
5: GlobalSupport← GlobalSupportCount

N

6: if GlobalSupport >= θ then
7: Emit(s,GlobalSupport)
8: end if

In the Map function, the input pair would be like 〈key,Parti(DB)〉 where

Parti(DB) is the graph partition number i. The FSMLocal function applies the
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subgraph mining algorithm to Parti(DB) with a tolerance rate value and pro-

duces a set Si of locally frequent subgraphs. Each mapper outputs pairs like

〈s,Support(s,Parti(DB))〉 where s is a subgraph of Si and Support(s,Parti(DB))

is the local support of s in Parti.

The Reduce function receives a set of pairs 〈s,Support(s,Parti(DB))〉 and

computes for each key (a subgraph), the global support GlobalSupport. Only

globally frequent subgraphs will be kept.

4.2.1.3 Analysis

The output of our approach is an ε-approximation of the exact solution SG(DB,θ).

Algorithms 1 and 2 do not offer a complete result since there are frequent sub-

graphs that cannot be extracted. The decrease in the number of ignored frequent

subgraphs can be addressed by a good choice of tolerance rate for the extraction

of locally frequent subgraphs. Theoretically, we can achieve the exact solution

with our approach (which refers to LossRate(S,SG) = 0) by adjusting the toler-

ance rate parameter to τ = 1 which mean a zero value of ε (ε = 0). This means

that the set of locally frequent subgraphs contains all possible subgraphs (Local

support equal to zero LS = 0) and the set of globally frequent subgraphs contains

the same set as SG(DB,θ). In this case, the value of the loss rate is zero. How-

ever, the generation of the exact solution can cause an increase of the running

time.

In the distributed subgraph mining process of our approach, we perceive the

following lemma:

Lemma 1 If a subgraph G′ is globally frequent then G′ is locally frequent in at

least one partition of the database.

Proof 1 Let DB = {G1, · · · ,GK} be a graph database with K graphs, let G′ be a

globally frequent subgraph of DB, let θ ∈ [0,1] be a minimum support threshold,

let Part(DB) = {Part1(DB), · · · ,PartN(DB)} be a partitioning of the database

and let τ ∈ [0,1] be a tolerance rate, let LS be the local support in the different

partitions, let si be the support of G′ in Parti(DB) and let s be the support of G′

in DB.
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Assume that G′ is not locally frequent in all the partitions Parti(DB) then we

have si ≤ LS, for all i ∈ [1,N]. Thus, ∑N
i=1 si

N
≤ ∑N

i=1 LS

N
and therefore, s ≤ LS. We

have LS = (1−τ) ·θ and therefore LS≤ θ , for all τ ∈ [0,1]. Thus, we have s≤ θ

and so G′ is not globally frequent, contradicting our assumption.

4.2.2 The density-based graph partitioning method

4.2.2.1 Motivation and principle

The motivation behind dividing the input data into partitions is to effectively

reduce the computation space by dealing with smaller graph databases that need

to be processed in parallel. However, we need to combine intermediate results to

get the overall one. Using this approach, we can decrease the subgraph mining

complexity, knowing that the time complexity of the subgraph mining process is

proportional to the size of the input data. However, this data decomposition is the

origin of a loss of the global vision in terms of support computing. In addition, the

arbitrary partitioning method of MapReduce that we called MRGP (which stands

for MapReduce Graph Partitioning) may be the origin of map-skew which refers

to imbalanced computational load among map tasks [Kwon 2012].

Considering the fact that the task of frequent subgraph mining depends on

the density of graphs [Wörlein 2005, Huan 2003b], we propose a density-based

partitioning method that we called DGP (which stands for Density-based Graph

Partitioning) which consists of constructing partitions (chunks) according to the

density of graphs in the database. The goal behind this partitioning is to ensure

load balancing and to limit the impact of parallelism and the bias of the tolerance

rate. Figure 4.2 gives an overview of the proposed partitioning method.

Our partitioning technique consists of two levels: (1) dividing the graph

database into B buckets and (2) constructing the final list of partitions.

The first level of our partitioning method consists of two steps: graph densities

computing and density-based decomposition. The graph densities computing step

is performed by a MapReduce pass that we called DensitiesComputing. This

MapReduce pass computes the densities of all instances in the database. Algorithm

3 presents the Map function of this step.
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Figure 4.2: The DGP method. In this figure, ellipses and cylinders represent data,
squares represent computations on the data and arrows show the flow of data.

Algorithm 3 Map function of DensitiesComputing.

Require: A graph database DB = {G1, . . . ,GK}
Ensure: Annotated and sorted graph database ADB = {{d1,G1}, . . . ,{dK,GK}}

1: for all Gi in DB do
2: di← density(Gi)
3: EmitIntermediate(di,Gi)
4: end for

The Reduce function is the identity function which output a sorted list of

graphs according to the densities values. In fact, the sorting of graphs is done

automatically by the Sort function of MapReduce since we used the density value

as a key (see Algorithm 3). In the second step, a density-based decomposition

is applied which divides the sorted graph database into B buckets. The output
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buckets contain the same number of graphs.

The second level of our partitioning method is to construct the output par-

titions. To do this, we first divide each bucket into N sub-partitions Bi =

{Pi1, · · · ,PiN}. We then construct each output partition by appending one sub-

partition from each bucket. Each output partition contains one sub-partition from

each bucket. Thus, each partition has almost the portion of dense graphs and

sparse graphs.

4.2.2.2 Illustrative example

In this section, we give an illustrative example to explain the principle of the two

partitioning techniques. Given a graph database of 12 graphs DB= {G1, · · · ,G12}.

Table 4.1 presents the size on disk and the density of each graph in the database.

Table 4.1: Graph database example.

Graph Size (KB) Density

G1 1 0.25

G2 2 0.5

G3 2 0.6

G4 1 0.25

G5 2 0.5

G6 2 0.5

G7 2 0.5

G8 2 0.6

G9 2 0.6

G10 2 0.7

G11 3 0.7

G12 3 0.8

Considering that we are running our example in a four nodes cloud environ-

ment. Using the MRGP method, the graph database will be divided into four

partitions of six KB each:

Part(DB) = {{G1,G2,G3,G4},{G5,G6,G7},{G8,G9,G10},{G11,G12}}.
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Figure 4.3: Example of DGP method.

Using the DGP method with two buckets, we first compute graph den-

sities and we sort the database according to graph densities. Then, we di-

vide the graph database into two buckets B1 = {G1,G2,G4,G5,G6,G7} and

B2 = {G3,G8,G9,G10,G11,G12}. Bucket B1 contains the first six graphs and

bucket B2 contains the last six graphs in the database. Finally, we construct the

four graph partitions from B1 and B2 (see Figure 4.3).

As shown in Figure 4.3, each partition contains a balanced set of graphs in

terms of density. Each partition contains the same portion of dense graphs and

sparse graphs from B1 and B2. The final set of partitions will be:

Part(DB) = {{G1,G2,G3,G8},{G4,G5,G9,G10},{G6,G11},{G7,G12}}.

Our method is sound and correct, and will always produce a balanced set of

partitions in terms of density.
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4.3 Experiments

This section presents an experimental study of our approach on synthetic and

real datasets. It first describes the used datasets and the implementation details.

Then, it presents a discussion of the obtained results.

4.3.1 Experimental setup

4.3.1.1 Datasets

The datasets used in our experimental study are described in Table 4.2.

Table 4.2: Experimental data.

Dataset Type Number of graphs Size on disk Average size

DS1 Synthetic 20,000 18 MB [50-100]

DS2 Synthetic 100,000 81 MB [50-70]

DS3 Real 274,860 97 MB [40-50]

DS4 Synthetic 500,000 402 MB [60-70]

DS5 Synthetic 1,500,000 1.2 GB [60-70]

DS6 Synthetic 100,000,000 69 GB [20-100]

The datasets described in Table 4.2 are composed of synthetic and real ones.

The synthetic datasets are generated by the synthetic data generator GraphGen

provided by Kuramochi and Karypis [Kuramochi 2001]. We generate various syn-

thetic datasets (DS1, DS2, DS4, DS5 and DS6) according to different parameters

such as: the number of graphs in the dataset, the average size of graphs in terms of

edges and the size on disk. Varying datasets allows us to avoid specific outcomes

to data and to have better interpretations.

The real dataset (DS3) we tested is a chemical compound dataset which

is available from the Developmental Therapeutics Program (DTP) at National

Cancer Institute (NCI)1.

1http://dtp.nci.nih.gov/branches/npb/repository.html
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4.3.1.2 Implementation platform

We implemented our approach in Perl language and we used Hadoop, (Hadoop

0.20.1 release), an open source version of MapReduce. The databases files are

stored in the Hadoop Distributed File System (HDFS), an open source implemen-

tation of GFS [Ghemawat 2003].

All the experiments of our approach were carried out using a virtual cluster of

five virtual machines. The processing nodes used in our tests are equipped with

a Quad-Core AMD Opteron(TM) processor 6234 2.40 GHz CPU and 4 GB of

memory for each node.

4.3.1.3 Experimental protocol

The experimental evaluation of our approach focuses on three main aspects.

First, we tested the result quality of our approach in terms of number of

generated subgraphs. To do this, we first compared the proposed partitioning

method DGP with MRGP, the default partitioning method of MapReduce. Then,

we compared our method with the random sampling method in terms of loss rate

and number of false positives. The results of the sampling method are obtained

after performing a sampling of the input data. For each dataset, we conducted

a sampling and we generated several subsamples. We calculated the loss rate

for each subsample and their average value. The loss rate is calculated for each

subsample using all k subgraphs generated from the entire sample and the top-k

subgraphs generated from the subsample.

Second, we conducted a performance evaluation of our approach in terms

of execution time and scalability. We tested the ability of the DGP method to

balance the computational load over the used distributed machines. To do this,

we compared DGP with MRGP in terms of execution time. In addition, we studied

the impact of the number of machines used in the process of distributed frequent

subgraph mining with both methods, DGP and MRGP.

Third, we studied the impact of some MapReduce parameters on the perfor-

mance of our approach. In this context, we tested the impact of the block size

and the number of copies of data (replication factor) on the execution time of our
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approach.

4.3.2 Experimental results

4.3.2.1 Result quality

Table 4.3 shows the obtained results using the sequential version of the used

subgraph extractors.

Table 4.3: Experimental results of classic subgraph extractors.

gSpan FSG Gaston

Dataset
Support

θ (%)
Number of

subgraphs

Runtime

(s)

Number of

subgraphs

Runtime

(s)

Number of

subgraphs

Runtime

(s)

DS1
30 372 31 352 9 352 5

50 41 6 23 5 23 7

DS2
30 156 171 136 235 136 17

50 26 9 9 165 9 4

DS3
30 98 138 93 111 93 17

50 38 106 35 61 35 9

For each dataset and support value, we note the results of the classic subgraph

mining algorithm and those of the proposed method. We indicate that the sets

of frequent subgraphs generated by the sequential implementations of the three

algorithms are not the same. In fact, gSpan generates all frequent subgraphs

including the ones formed by a single node, while the used FSG and Gaston

implementations generate all frequent subgraphs without considering the ones

formed by a single node. Thus, the set of frequent subgraphs generated by FSG

or Gaston is a subset of the set of frquent subgraphs generated by gSpan.

Table 4.4 shows the obtained results using our proposed approach with the

default MapReduce partitioning technique and those obtained with the density-

based partitioning technique with two buckets.

We mention that we could not conduct our experiment with the sequential

algorithms in the case of DS4, DS5 and DS6 due to the lack of memory. However,

with the distributed algorithm we were able to handle those datasets. We notice

that the number of subgraphs generated by the distributed solution is, in general,

smaller than the number generated by the sequential version of the algorithm. This

is related to the application of subgraph mining process on each partition separately



76 Chapter 4. Density-based partitioning for frequent subgraph mining

Table 4.4: Experimental results of the proposed approach.
Number of subgraphs

MRGP DGPDataset
Support
θ (%)

Tolerance
rate τ

gSpan FSG Gaston gSpan FSG Gaston

DS1

30
0 82 61 61 198 179 179

0.3 227 207 207 364 344 344
0.6 312 352 352 371 351 351

50
0 17 0 0 23 6 6

0.3 41 23 23 41 23 23
0.6 41 23 23 41 23 23

DS2

30
0 145 124 124 146 125 125

0.3 156 136 136 156 136 136
0.6 156 136 136 156 136 136

50
0 25 7 7 25 7 7

0.3 26 9 9 26 9 9
0.6 26 9 9 26 9 9

DS3

30
0 77 70 70 80 77 77

0.3 97 92 92 88 93 93
0.6 97 93 93 97 93 93

50
0 36 31 31 37 32 32

0.4 38 35 35 38 35 35
0.6 38 35 35 38 35 35

DS4

30
0 137 116 116 78 117 117

0.3 155 135 135 78 135 135
0.6 155 135 135 155 135 135

50
0 24 6 6 24 6 6

0.3 26 9 9 26 9 9
0.6 26 9 9 26 9 9

DS5

30
0 131 121 121 104 118 118

0.3 155 135 135 104 135 135
0.6 155 135 135 155 135 135

50
0 24 7 7 18 6 6

0.3 26 9 9 18 9 9
0.6 26 9 9 18 9 9

DS6

30
0 66 0 0 104 3 3

0.3 66 0 0 104 3 3
0.6 66 0 0 104 3 3

50
0 4 0 0 17 0 0

0.3 4 0 0 17 0 0
0.6 4 0 0 17 0 0

with a local support. Similarly, in the reduce phase, we ignore subgraphs which

are frequent in the whole dataset but infrequent in the partitions. This loss can

be decreased by the use of a maximal value of tolerance rate, i.e., which means

a minimal value of local support (see Table 4.4). For example, in Table 4.4, for

DS1 and with θ = 0.3, we generate 372 subgraphs with the sequential algorithm

gSpan, but we just generate 198 subgraphs with the distributed solution (with the

density-based graph partitioning and a tolerance rate τ = 0). By increasing the

tolerance rate to τ = 0.6, we restore 173 of previously ignored subgraphs and we

practically reach the number of subgraphs generated by the sequential algorithm.

As shown in Table 4.4, the density-based partitioning method allows a decreas-

ing number of lost subgraphs compared to the default MapReduce partitioning
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method, in almost all cases. We illustrate in Figure 4.4 the effect of the proposed

partitioning methods on the rate of lost subgraphs.

(a) DS1

(b) DS2

(c) DS3

Figure 4.4: Effect of the partitioning method on the rate of lost subgraphs.

We can easily see in Figure 4.4 that the density-based graph partitioning allows

low values of loss rate especially with low values of tolerance rate. We also notice
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that FSG and Gaston present a higher loss rate than gSpan in almost all cases.

We recall that our distributed frequent subgraph mining method is an ap-

proximation method. In order to compare our method with other approximation

methods, we present in the Table 4.5, the number of subgraphs obtained with the

sampling method and the number of false positives that correspond to frequent

subgraphs in the subsample but infrequent in the overall sample. The numbers of

subgraphs presented in the table are the average values of the number of subgraphs

generated from different subsamples constructed for each data sample.

Table 4.5: Number of false positives of the sampling method.
gSpan FSG Gaston

Dataset
Support
θ (%)

Number of
subgraphs

Number of
false positives

Number of
subgraphs

Number of
false positives

Number of
subgraphs

Number of
false positives

DS1
30 4421 4078 4401 4078 4401 4078
50 194 155 174 153 174 153

DS2
30 164 139 144 58 144 58
50 29 4 12 4 12 4

DS3
30 264 195 258 193 258 193
50 62 30 59 30 59 30

As shown in Table 4.5, the sampling method has a major problem. In fact,

it leads to a high number of false positives in contrast to our method which

generates a set of globally frequent subgraphs over the overall sample data (see

Section 4.2.1.3). We present in Figure 4.5, a comparison of our method with

random sampling method in terms of loss rate. The presented loss rate values

of the sampling method correspond to the average values of the loss rate of the

various subsamples of each sample.

As shown in Figure 4.5, the random sampling technique leads, in almost all

cases, to a loss in the quality of the obtained results compared to MRGP and

DGP. This loss is expressed in Figure 4.5 by high values of loss rate compared to

those obtained with the MRGP and DGP methods. This can be explained by the

non-representative subsamples of data generated by the random sampling method.

We note that the random sampling method allows, in some cases, low loss rates

values compared to the MRGP method (see Figure 4.5a). However, these loss

rates values are always accompanied by high values of false positives (see Table

4.5).
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(a) gSpan, θ = 30% (b) FSG and Gaston, θ = 30%

(c) gSpan, θ = 50% (d) FSG and Gaston, θ = 50%

Figure 4.5: Comparison of our method with the random sampling method.

4.3.2.2 Speedup

Figure 4.6 shows the effect of the density-based partitioning method on the distri-

bution of workload across the used worker nodes in comparison with the default

MapReduce partitioning method. Figure 4.7 shows the effect of the number of

buckets in the density-based partitioning method on the distribution of workload

across the used worker nodes.

As illustrated in figures 4.6 and 4.7, the density-based partitioning method

allows a balanced distribution of workload across the distributed worker nodes

especially with high number of buckets. We note also that the use of the pro-

posed density-based partitioning method significantly improves the performance

of our approach. This improvement is expressed by the decrease in the runtime

in comparison with results given by the default MapReduce partitioning method.

This result can be explained by the fact that each partition of the database con-

tains a balanced set of graphs in term of density. Consequently, this balanced

distribution of the data provides an effective load balancing scheme for distributed

computations over worker nodes.
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Figure 4.6: Effect of the partitioning method on the distribution of computations.
We used θ = 30% and τ = 0.3.

Figure 4.7: Effect of the number of buckets of the density-based partitioning
method on the distribution of computations. We used gSpan as a subgraph ex-
tractor, θ = 30% and τ = 0.3.

In order to evaluate the capability of the density-based partitioning method to

balance the computations over the used nodes, we show in Figure 4.8 the cost

of this partitioning method in comparison with the MapReduce-based partitioning

method. In addition, we show in Figure 4.9 the effect of the number of buckets

in the density-based partitioning method on the cost of the partitioning method.
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For each partitioning method and for each dataset, we present the mean value

of the set of runtime values in the used set of machines and the cost bar which

corresponds to the error bar. This cost bar gives a general idea of how accurate

the partitioning method is.

Figure 4.8: Cost of partitioning methods. We used θ = 30% and τ = 0.3.

Figure 4.9: Effect of the number of buckets on the cost of the density-based
partitioning method. We used gSpan as a subgraph extractor, θ = 30% and
τ = 0.3.

As shown in figures 4.8 and 4.9, the density-based partitioning method allows
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minimal cost values in almost all datasets and all thresholds setting especially

with high numbers of buckets. This can be explained by the balanced distribution

of graphs in the partitions and thus by the balanced workload insured by a high

number of buckets. It is also clear that FSG and Gaston present a shorter runtime

than gSpan (see Figure 4.8).

In order to study the scalability of our approach and to show the impact of the

number of used machines on the large scale subgraph mining runtime, we present

in Figure 4.10 the runtime of our approach for each number of mapper machines.

Figure 4.10: Effect of the number of workers on the runtime. We used DGP as a
partitioning method, gSpan as a subgraph extractor, θ = 30% and τ = 0.3.

As illustrated in Figure 4.10, our approach scales with the number of machines.

In fact, the execution time of our approach is proportional to the number of nodes

or machines.

4.3.2.3 Chunk size and replication factor

In order to evaluate the influence of some MapReduce parameters on the perfor-

mance of our implementation, we conducted two types of experiments. Firstly,

we varied the block size and calculated the runtime of the distributed subgraph

mining process of our system. In this experiment, we used five datasets and varied
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the chunk size from 10MB to 100MB. Secondly, we varied the number of copies

of data and calculated the runtime of the distributed subgraph mining process.

Figure 4.11: Effect of chunk size on the runtime. We used DGP as a partitioning
method, gSpan as a subgraph extractor, θ = 30% and τ = 0.3.

Figure 4.12: Effect of replication factor on the runtime. We used DGP as a
partitioning method, gSpan as a subgraph extractor, θ = 30% and τ = 0.3.

The experimentations presented in Figure 4.11 show that with small values
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of chunk size and with big datasets, our approach present high runtime values.

Otherwise, the other values of chunk size do not notably affect the results.

As shown in Figure 4.12, the runtime of our approach is slightly inversely

proportional to the replication factor (number of copies of data). This is explained

by the high availability of data for MapReduce tasks. Also, a high replication factor

helps ensure that the data can survive the failure of a node.

4.4 Conclusion

In this chapter, we addressed the issue of distributing the frequent subgraph mining

process which is the first axis of this thesis. We have described our proposal

for distributed subgraph mining from large scale graph databases in the cloud.

The proposed approach relies on a density-based partitioning to build balanced

partitions of a graph database over a set of machines. By running experiments on

a variety of datasets, we have shown that our method is interesting in the case of

large scale databases.

In the next chapter, we will address the monetary aspect of cloud-based

applications. We will propose cost models for the distributed subgraph mining

task in the cloud. These cost models are intended to assist users to configure the

proposed approach of distributed frequent subgraph mining according to one (or

more) objective(s). Such objectives include financial budget, response time and

quality of the result constraints.
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Key points

• We propose a MapReduce-based framework for approximate large

scale frequent subgraph mining.

• We propose a density-based data partitioning technique using

MapReduce in order to enhance the default data partitioning

technique provided by MapReduce.

• We experimentally show that the proposed solution is reliable

and scalable in the case of huge graph datasets.
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Goals

In most cases, the distribution of the pattern mining process generates a loss

of information in the output results. Reducing this loss may affect the perfor-

mance of the distributed approach and thus, the monetary cost when using cloud

environments. In this context, cost models are needed to help selecting the best

parameters of the approach in order to achieve better performance. In this chap-

ter, we define new cost models for managing and mining patterns. These cost

models consist of monetary cost components that are primordial in a cloud. We

define also a set of objective functions with respect to the needs and the financial

budget of customers.



5.1. Background and related works 89

5.1 Background and related works

In this section, we present a description of works that propose cost models for

distributed data mining techniques. We first survey existing works. Then, we

summarize them according to the associated technique, the used architecture

model and the defined cost model.

5.1.1 Existing cost models for distributed data mining

techniques

Several Distributed Data Mining (DDM) systems have been proposed

[Ghoting 2011a, Chu 2006, Riondato 2012, Foundation 2010]. However, they do

not incorporate an optimiser to be able to estimate the costs associated with

the various distributed data mining scenarios. Consequently, several cost models

have been developed for estimating costs of distributed data mining applications

[Krishnaswamy 2004, Marbán 2008, Ogunde 2011, Nguyen 2012].

Krishnaswamy etal.’s approach. In [Krishnaswamy 2004], the authors de-

velop a priori estimates of the computation and communication components of

response time as the costing strategy to support optimization in distributed data

mining. The authors define the response time of a task in a distributed data

mining context as the sum of three components: communication, computation

and knowledge integration. The response time for distributed data mining T is

computed as follows:

T = tdm + tcom + tki

where tdm is the time taken to perform data mining, tcom is the time involved in

communication and tki is the time taken to perform knowledge integration (the

time taken to integrate the results from the distributed datasets).

DMCOMO. In [Marbán 2008], the authors propose DMCOMO, a cost model

for data mining applications. DMCOMO aims to estimate the global cost of a

generic data mining project. The authors proposed six cost drivers of the proposed

model such as:

• Data cost drivers: It makes reference to the effort of data management in
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the project.

• Data mining models: It makes reference to the number of data mining

models to be created.

• Platform: It makes reference to the development platform. It includes the

number of data sources where data are stored, the number of different data

servers and the communication effort.

• Techniques and tools: It considers the effort of deciding which tool, tech-

nique and machine will be used to generate the models.

• Project: Features of the project such as the number of participating de-

partments must be considered to estimate the effort of the data mining

project.

• Staff: It considers the required effort from staff to reach an agreement in

decisions of the project staff.

Once cost drivers have been defined and information about the cost drivers were

gathered, the equation of DMCOMO was created through a multivariate linear

regression [Griffiths 1993, Weisberg 1985]. The equation will be similar to:

y = a0 +
n

∑
i=1

aixi + ei,

where y is the dependent variable that corresponds to the effort measured in

men×month (MM) that one wishes to estimate, xi is the ith independent variable

that corresponds to the ith cost driver, n is the number of independent variables

(number of cost drivers), ai are constants and ei is the error in the ith estimation.

As a result of linear regression, ai values are obtained and hence, the effort is

computed.

Ogunde etal.’s approach. In [Ogunde 2011], the authors present an op-

timized model for estimating the response time of Distributed Association Rule

Mining (DARM). In this work, three estimates were defined:
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• The communication cost estimates: They involve the time needed for

the computing agent to travel from the agent zone (AZ) to the data sources.

• The local association rule mining costs: They make reference to the

time needed for mining association rule locally at each data source.

• The results information transfer costs: They make reference to the

time needed for the computing agent to travel back to the agent zone with

results information concerning each local mining.

The overall response time for the distributed association rule mining T would

be calculated as follows:

T = tdarm + tdki,

where tdarm is the time taken to perform mining in a distributed environment and

tdki is the time taken to perform distributed knowledge integration and return the

results to the requesting server. The term tdarm is defined by:

tdarm = t1(AZ, i)+
n

max
i=1

t2(i)+ t3(i,AZ)

where the first term is the time taken by the computing agent to travel from the

agent zone to data source i. The second term is the maximum of the times taken

by the computing agent to mine at all data sources. The third term is the time

taken for the agent to travel from the data source back to the agent zone with

the results information. The authors discussed the values of tdki according to the

number of used data servers and the number of data mining agents.

MRShare. In [Nykiel 2010], the authors propose the MRShare framework

that transforms a batch of MapReduce queries into a new batch that will be

executed more efficiently, by merging jobs into groups and evaluating each group

as a single query. The authors define a cost model for MapReduce that provide a

solution that derives the optimal grouping of queries. The total cost of executing

a set J of n individual jobs is the sum of the cost Tread to read the data, the cost

Tsort to do the sorting and copying at the map and reduce nodes, and the cost Ttr



92 Chapter 5. Cost models for distributed pattern mining in the cloud

of transferring data between nodes. Thus, the cost in MapReduce is:

T (J) = Tread(J)+Tsort(J)+Ttr(J)

where the values of Tread(J), Tsort(J) and Ttr(J) with grouping of queries are not

the same without grouping.

Another attention was carried by [Nguyen 2012] to data management cost

models in cloud environments. In their work, the authors propose new cost models

that fit into the pay-as-you-go paradigm of cloud computing. They addressed the

multi-criteria optimization problem of selecting a set of materialized views while

optimizing the global monetary cost of storing and querying a database in a cloud

environment. The total cloud data management cost C is defined by:

C =Cc +Cs +Ct

where Cc is the sum of computing costs, Cs is the sum of storage costs and Ct

is the sum of data transfer costs. The proposed cost models complement the

existing materialized view cost models with a monetary cost component that is

primordial in the cloud [Nguyen 2012].

5.1.2 Summary of existing cost models

Table 5.1 presents the above mentioned cost models approaches. It describes the

associated technique, the used architecture model and the defined cost model.

As shown in Table 5.1, the works [Krishnaswamy 2004, Marbán 2008,

Ogunde 2011] deal with cost models of classic architectural models used in the

development of DDM systems namely, client-server and software agents. However,

the proposed cost models in these works do not fit into cloud computing paradigm

where the users only pay for the resources they use.

In [Nguyen 2012, Nykiel 2010], the authors deal with data management and

execution aspect of MapReduce framework in a cloud setting. However, they

do not include cost models for data mining processes in the top of MapReduce.

1Cost models are computed by application of linear regression to correlated variables.
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Table 5.1: Summary of recent cost models for cloud-based techniques.

Approach Associated technique Architecture model Cost models

Krishnaswamy etal.’s approach
[Krishnaswamy 2004]

All data mining tasks Client-server and mobile agent Response time

DMCOMO [Marbán 2008] All data mining tasks No architecture model used 1 men×month

Ogunde etal.’s approach
[Ogunde 2011]

Association rule mining task Mobile agent Response time

MRShare [Nykiel 2010] A MapReduce job MapReduce Response time
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Moreover, they do not consider monetary costs in the case of cloud-based data

mining applications.

To the best of our knowledge, cost models for MapReduce-based pattern min-

ing applications in cloud environments have not been developed.

5.2 Cost models for distributed pattern mining

in the cloud

In this section, we first introduce a simple use case that serves as a running

example throughout this chapter. Then, we present the proposed cost models for

distributed pattern mining in the cloud.

5.2.1 Running example

In order to illustrate our cost models, we rely on a subgraph mining example.

Considering a graph dataset containing a set of community networks of a social

network (nodes represent people and edges represent interactions between them).

Social network analysts need to examine the community networks patterns per day,

month, and year. The analysis consists of extraction of frequent subgraph patterns

in community networks. It includes queries like “frequent subgraphs that occur in

more than 30% of graphs in the database”. Let us apply this pricing model onto

our use case running on two small instances of the Windows Azure offer presented

in Chapter 3. We suppose that our dataset contains ten million graphs and its size

on disk is 100GB. The query example consists of retrieving community networks

patterns that occur in more than 30% of graphs in the database and of producing

a query result of 10GB.

According to the Windows Azure offer, the costs of the two small instances,

used in our example, is $0.008 · 2 = $0.016 per hour. The cost of bandwidth

consumption (query result of 10GB) is (10− 5) · $0.12 = $0.60. In Chapter 3,

we mention that Windows Azure Storage provides storage of non-relational data,

including storage blob, table and disk. It provides two options for storage: lo-
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cally and geographically redundant. The locally redundant storage option allows

multiple replicas of data within a single sub-region to provide the highest level

of durability. The geographically redundant storage option offers an extra level

of durability by replicating data between two remote sub-regions. In our running

example, the monthly storage price of our data (100GB dataset) with the locally

redundant storage option is $0.07 ·100 = $7.

5.2.2 Distributed pattern mining cost

Let Cdm be the data management cost and Cc be the cost of computing patterns

in a distributed environment. We define the total cost C of distributed pattern

mining by:

C =Cdm +Cc. (5.1)

Depending on the model used to distribute the computations (i.e. MapReduce

or other) and the different parameters within each model, the factors which deter-

mine Cdm and Cc change. In our work, we consider MapReduce-based approaches.

Two types of parameters setting are required in this setting. First, parameters

related to the pattern mining process such as the support threshold and the size

of the database. Second, a number of choices are essential to fully specify how

the MapReduce job should execute the distributed subgraph mining process:

• RF : The replication factor (number of copies of data),

• m: number of map tasks in the MapReduce job,

• r: number of reduce tasks in the MapReduce job, and

• CP: whether the output data from the map (reduce) tasks should be com-

pressed before being written to disk.

Let us define some functions that we use to express our cost models.

• Function s(·) returns the size in GB of any dataset, e.g., s(DS) is the size

of the dataset DS and s(R) is the size of the result data R,
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• Function ts(·) returns the storage time of any dataset, e.g., ts(DS) is the

storage time of the dataset DS in the cloud and ts(R) is the storage time of

the result data R,

• Function tmap(i,Parti(DS)) returns the runtime taken by the map task to

process the ith partition of DS,

• Function treduce(k) returns the runtime taken by the reduce task of the kth

reducer.

5.2.2.1 Data management cost

We define the data management cost Cdm as the sum of data transfer cost Ct and

storage cost Cs. Formally, the data management cost is:

Cdm =Ct +Cs. (5.2)

Data transfer cost depends on several parameters: the size of the dataset, the

size of the results and the pricing model applied by the Cloud Service Providers

(CSP). The total data transfer cost Ct is the sum of the input data transfer and

the output data transfer costs. The input data transfer cost is the product of the

CSP’s atomic transfer cost cti of the input data and the total size of input data.

The output data transfer cost is the product of the CSP’s atomic transfer cost cto

of the output data and the total size of result data (s(R)):

Ct = cti · s(DS)+ cto · s(R). (5.3)

As illustrated in equation (5.3), the total data transfer cost is proportional to

the total size of input and output data. We notice that most cloud providers such

as Windows Azure and Amazon Web Service (AWS) do not charge for input data

transfers. Consequently, total data transfer cost Ct become:

Ct = cto · s(R). (5.4)
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Example 1 In our example, with 10GB of bandwidth consumption, data transfer

cost is calculated by Ct = s(R) ·cto=(10−1) ·$0.09= $0.81 in the case of Amazon

Web Service pricing model and by Ct = s(R) · cto = (10−5) ·$0.12 = $0.6 in the

case of Windows Azure pricing model.

Storage cost depends on parameters such as the size of the dataset, the storage

time, the type of data replication (locally redundant storage or globally redundant

storage) and the CSP’s pricing policy. We assume that the storage period in the

cloud is divided into intervals. In each interval, the size of the stored data is fixed.

The total storage cost (Cs) is the CSP’s fixed price per GB (cCSP
s ) multiplied by

the size of intial s(DS) and result data s(R), multiplied by the sum of sizes of

the initial dataset and the result data, multiplied by their respective storage time

during the intervals:

Cs = ∑
Intervals

cCSP
s · (s(DS)+ s(R)) · (tend− tstart), (5.5)

where tstart , tend are start and end point of an interval.

Example 2 Considering that 100GB of data has been stored for 12 months. At

the beginning of the eighth month, we generate 10 GB of result data in the cloud.

Thus, we have two intervals. The first with tend = 8 and tstart = 0 and the second

with tend = 12 and tstart = 8. Using Amazon S3 storage pricing (cCSP
s = $0,14 per

GB for the first TB), the storage cost is: Cs = 100 · $0.14 · (8−0)+110 · $0.14 ·

(12−8) = $173.6. In the case of Windows Azure storage pricing (cCSP
s = $0,07

per GB for the first TB and with the locally redundant storage option), the storage

cost is: Cs = 100 ·$0.07 · (8−0)+110 ·$0.07 · (12−8) = $86.8.

By combining equations (5.2), (5.3) and (5.5), the total data management

cost is:

Cdm = ∑
Intervals

cCSP
s · (s(DS)+ s(R)) · (tend− tstart) + ct · (s(DS) + s(R)). (5.6)
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As illustrated in equation (5.6), the data management cost depends essentially

on the size of input data and result data. Indeed, it depends on the nature of data

under consideration.

Beside the data management cost, it is necessary to study the computing cost

on the data. In the context of our work, this computing cost consists of pattern

mining cost.

5.2.2.2 Mining cost

In a cloud environment, mining processes are executed on computing instances

{Ii}i=1···n with different performances in terms of number of CPUs, available RAM,

etc., and thus, with different costs.

The cost for renting instance Ii is denoted by c(Ii). This cost must be paid at

each connection to the cloud. We define the cost of computing patterns by:

Cc =
n

∑
i=0

c(Ii) ·Tmining, (5.7)

where

Tmining = (tpart +
m

max
j=0

(tmap( j,Part j(DS))) +
r

max
k=0

(treduce(k)) +CP · tcompress),

(5.8)

where tpart is the partitioning time, tmap( j,Part j(DS)) is the time taken by the

jth Map task to process the jth partition of DS, treduce(k) is the time taken by the

kth Reduce task, tcompress is the compression time of the result files and m is the

number of map tasks, and r is the number of reduce tasks. The values of tpart ,

tmap( j,Part j(DS)) and treduce(k) are estimated experimentally.

In our work, we assume that mining processes are executed on a constant

number of instances (n) with the same performances. Let c(I), be the cost for

renting one instance. The computing cost defined in equation (5.7) is:

Cc = c(I) ·n ·Tmining, (5.9)
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5.3 Optimization process

In this section, we investigate how the parametrization of the pattern mining ap-

proach and of MapReduce framework may impact the mining process performance.

We first present our objective functions. Then, we discuss the resolution methods.

5.3.1 Objective functions

Based on the ideas in [Nguyen 2012], we distinguish in this section four objective

functions with respect to the needs and capacity of customers. Such needs include

budget limit, response time limit and mining quality limit.

5.3.1.1 Response time

The idea here is to achieve better performance in terms of reponse time. Given a

predefined financial budget B and a predefined mining quality limit Q, our objective

in this scenario is to select the best parameters that minimize the mining process

in the cloud:

Ob j1 =



















minimize Tmining,

C =Cdm +Cc ≤ B,

MiningQuality≥ Q.

(5.10)

Figure 5.1 presents the feasible solutions that minimize the response time with

respect to financial budget B and a predefined mining quality limit Q. Each point

in Figure 5.1 corresponds to a feasible solution of our objective function without

considering constraints defined in equation (5.10). The red points correspond to

solutions that verify our mining quality limit (X axis) and budget limit (Y axis)

constraints.

We notice that each point in Figure 5.1 corrsponds to a response time value.

The optimal solution in this context is the solution that presents the lower value

of the response time.
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Figure 5.1: Minimizing response time under monetary cost and mining quality
constraints.

5.3.1.2 Monetary cost

For a predefined response time limit T and a predefined mining quality limit Q,

the objective in this scenario is to select the best parameters that minimize the

monetary cost of the mining process in the cloud:

Ob j2 =



















minimize C =Cdm +Cc,

Tmining ≤ T,

MiningQuality≥ Q.

(5.11)

Figure 5.2 presents the set of feasible solutions that minimize the monetary

cost with respect to a response time limit T and a predefined mining quality limit

Q. In the Figure 5.2, red points correspond to solutions that verify our mining

quality limit (X axis) and response time (Y axis) constraints.

From the set of feasible solutions, we select the optimized solution that presents

the lower value of monetary cost.
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Figure 5.2: Minimizing monetary cost under mining quality and response time
constraints.

5.3.1.3 Mining quality

The goal of this objective function is to achieve the optimized quality of results

(the mining quality). Given a predefined response time limit T and a predefined

financial budget B, our objective in this scenario is to select the best parameters

that maximize the mining quality of the distributed pattern mining method in the

cloud:

Ob j3 =



















maximize MiningQuality,

Tmining ≤ T,

C =Cdm +Cc ≤ B.

(5.12)

In the case of the distributed subgraph mining task, the mining quality is

defined by the LossRate measure (see Definition 22 in Chapter 4). Therefore our

objective in this scenario is to select the best parameters that minimize the value

of LossRate(S1,S2) where S1 is the set of frequent subgraph generated by the

exact solution and S2 is the set of frequent subgraph generated by the distributed

approach. Thus, the objective function (equation (5.12)) is given by:
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Ob j3 =



















minimize LossRate(S1,S2),

Tmining ≤ T,

C =Cdm +Cc ≤ B.

(5.13)

We show in Figure 5.3, the set of feasible solutions that maximize the mining

quality with respect to a financial budget B and a predefined response time limit T .

Points represented in Figure 5.3 corresponds to feasible solutions of our objective

function without considering the constraints defined in equation (5.13). The red

points correspond to solutions that verify our mining quality limit (X axis) and

budget limit (Y axis) constraints.

Figure 5.3: Maximizing mining quality under monetary cost and response time
constraints.

The optimized solution here is the one that presents the higher value of mining

quality. In the case of the distributed subgraph mining task, the optimized solution

is the one that presents the lower value of LossRate.

5.3.1.4 Response time vs. monetary cost vs. mining quality tradeoff

Our objective in this scenario is to select the best parameters that offer the best

tradeoff between query processing time, mining quality of the distributed pattern
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mining method and financial cost:

Ob j4 =































minimize (Tmining,C) and maximize (MiningQuality),

Tmining ≤ T,

C =Cdm +Cc ≤ B,

MiningQuality≥ Q.

(5.14)

In the case of the distributed subgraph mining task, the objective function

(equation (5.14)) will be:

Ob j4 =































minimize (Tmining,C,LossRate(S1,S2)),

Tmining ≤ T,

C =Cdm +Cc ≤ B,

LossRate(S1,S2)≤ Q.

(5.15)

The above presented objective function consists of multi-objective function

since more than one objective function to be optimized simultaneously. In the

next section, we discuss the resolution of such objective function.

5.3.2 Optimization algorithm

Solving our multi-objective optimization problem can be done in different ways.

A possible method is to scalarize the problem [Zlochin 2004]. To do this, we

convert the original problem into a single-objective optimization problem. We

introduce weight parameters on processing time (α), mining quality (β ) and fi-

nancial cost (γ) in order to give the user control over this process. The objective

function presented in equation (5.14) will be:



104 Chapter 5. Cost models for distributed pattern mining in the cloud

Ob j4 =































minimize (α ·Tmining +β ·C+ γ · (1−MiningQuality)),

Tmining ≤ T,

C =Cdm +Cc ≤ B,

MiningQuality≥ Q.

(5.16)

The resolution of such scalarized problem is simply done using the theory and

methods of single criterion optimization [Zlochin 2004]. However, appropriate

values of parameters of the scalarized problem (α , β , and γ in our case) should

be found.

Another method to solve our multi-objective optimization problem is to com-

pute all or a representative set of Pareto optimal solutions [Ehrgott 2005]. A

Pareto optimal solution can be identified as non-dominated if none of the ob-

jective functions can be improved in value without degrading some of the other

objective values (see Definition 25).

Definition 25 (Pareto optimal solution, Pareto front) Let X be a set of

feasible solutions, fi is the ith objective function and k ≥ 2 is the number of

objective functions. A feasible solution x1 ∈X is said to (Pareto) dominate another

solution x2 ∈ X , if:







fi(x
1)≤ fi(x

2) for all indices i ∈ {1,2, · · · ,k}, and

f j(x
1)< f j(x

2) for at least one index i ∈ {1,2, · · · ,k}.

A solution x1 ∈ X is called Pareto optimal, if there does not exist another

solution that dominates it. The set of Pareto optimal solutions is called the

Pareto front.

Pareto optimal solutions are very useful for decision makers who are faced with

multiple objectives to make appropriate compromises, tradeoffs or choices.
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5.4 Experimental validation

In this section, we first describe the overall setup of our preliminary experimen-

tation effort. Then, we present the results we have obtained. We focused our

experiments on solving the problem of distributed subgraph mining in the cloud.

We adopted the Pareto-based multi-objective optimization solution which aim to

produce all Pareto optimal solutions.

5.4.1 Experimental setup

All experiments of our approach were carried out using a virtual cluster composed

of five virtual machines. Each virtual machine is equipped with a Quad-Core

AMD Opteron(TM) processor 6234 2.40 GHz vCPU and 4 GB of RAM. All used

machines feature Hadoop (version 0.20.2) and operate on Linux Ubuntu.

For our experiments, we have generated our data based on the obtained results

from our proposed approach for distributed subgraph mining in the cloud. We used

results that correspond to the distributed subgraph mining from the DS2 dataset

(see Section 4.3.2.1 of Chapter 4) to form our set of multi-objective points. For

each set of parameters, we noticed the values of our objectives such as the response

time (Tmining), the monetary cost (C) and the mining quality (LossRate in the case

of subgraph patterns). The used parameters include MapReduce parameters (see

Section 5.2.2) and distributed subgraph mining approach parameters (see Chapter

4). Monetary cost values are estimated based on the Windows Azure pricing model

(see Chapter 3, Section 3.4.2). We suppose that our experimental environment

is close to the large cloud instances provided by Windows Azure. Consequently,

we use the corresponding costs to compute the values of the monetary cost C of

each experiment using our virtual cluster.

5.4.2 Experimental results

During our experimental study, we examined the four objective functions described

in Section 5.3.1.
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Figure 5.4 draws the set of feasible solutions that minimize the response time

(the Ob j1 objective function) of our distributed subgraph mining approach under

monetary cost (C) and mining quality (LossRate) constraints. Each solution is

represented by two points (a blue square point and a red diamond point). The

blue square point corresponds to monetary cost in function of response time. The

red diamond point corresponds to the loss rate in function of response time. Thus,

the two points representing a solution have the same value of response time.

(a) Budget limit = $0.16 and LossRate limit = 7%

(b) Budget limit = $0.20 and LossRate limit = 10%

Figure 5.4: Minimizing response time under monetary cost and loss rate con-
straints.

Optimal solutions are determined by selecting solutions that present lower

values of response time. For example, with budget limit = $0.16 and loss rate

limit = 7% (see Figure 5.4a), we distinguish one optimal solution (surrounded by
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an ellipse) which allows the lower value of response time. We notice that we can

find more than one solution that allows a lower response time value.

In the Figure 5.5, we present the set of feasible solutions to solve the objective

function associated to the monetary cost (Ob j2). Feasible solutions are repre-

sented by couples of points. Each couple consists of one blue square point and

one red diamond point. The blue square point corresponds to response time in

function of monetary cost. The red diamond point corresponds to the loss rate in

function of monetary cost.

(a) Response time limit = 15 and LossRate limit = 20%

(b) Response time limit = 10 and LossRate limit = 30%

Figure 5.5: Minimizing loss rate under monetary cost and response time con-
straints.

As shown in Figure 5.5, we can identify optimal solutions by selecting the

solutions that present lower values of monetary cost in comparision with the set
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of feasible solutions. For example, with response time limit = 15 and loss rate

limit = 20% (see Figure 5.5a), we select one optimal solution (surrounded by an

ellipse) which allows the lower value of loss rate.

Figure 5.6 illustrates the set of feasible solutions that optimize the objective

function (Ob j3) related to the loss rate of our subgraph mining approach in the

cloud. Similarly, feasible solutions are represented by couples of points. A couple of

points contains one blue square point and one red diamond point. The blue square

point corresponds to response time in function of loss rate. The red diamond point

corresponds to the monetary cost in function of loss rate.

(a) Budget limit = $0.17 and Response time limit = 90

(b) Budget limit = $0.17 and Response time limit = 50

Figure 5.6: Minimizing loss rate under monetary cost and response time con-
straints.

We recall that each feasible solution consists of a parametrization of the cloud-
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based subgraph mining approach. As illustrated in Figure 5.6a, the set of optimal

solutions (surrounded by an ellipse) contains more than one optimal solution (six

optimal solutions) that minimize the loss rate. Therefore, we have six possible

parametrizations of our cloud-based subgraph mining approach.

In order to solve the multi-objective function defined in Section 5.3.1.4, we

computed all Pareto optimal solutions from our data (a set of multi-objective

points). Figure 5.7 presents the set of feasible solutions and distinguishes the set

of Pareto optimal solutions. Feasible solutions are represented by blue points while

Pareto optimal solutions are represented by red points.

Figure 5.7: A Pareto optimal solutions for minimizing loss rate, monetary cost
and response time. We used Response time limit = 200s, Budget limit = $0.50
and Mining quality limit = 30%.

The Pareto optimal solutions illustrated in Figure 5.7 aim to quantify the

trade-offs in satisfying the different objectives (response time, monetary cost and
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mining quality). As shown in Figure 5.7, we have three Pareto optimal solutions

(colored in red). We show in Table 5.2 the details (parameters values) of our

Pareto optimal solutions:

Table 5.2: Pareto optimal solutions.

Cloud parameters
Optimal
solution

Number of cloud
instances

Data compression
(CP)

Replication
factor (RF)

Mining approach
parameters

First solution 4 No 3 τ = 60%

Second solution 4 Yes 3 τ = 0%

Third solution 4 No 3 τ = 0%

We notice that the above presented optimal solutions may help the

parametrization of cloud-based subgraph mining applications. They provide sug-

gestions for the choice of parameters (cloud parameters and mining approach

parameters). However, it is suitable to provide one suggestion instead of many.

This can be done by ranking optimal solutions based on a user-defined parameter.

5.5 Conclusion

In this chapter, we presented the second contribution of this thesis. It consists of

two levels. The first level is novel cost models for pattern mining in the cloud. We

focused the defined cost models on subgraph patterns in cloud computing. The

proposed cost models consist of monetary cost components that are primordial in

the cloud.

The second level consists of the definition of a set of objective functions with

respect to the needs and the financial capacity of customers. An experimental

study was carried out in the case of cloud-based subgraph mining. It provided a

first evaluation of our approach by selecting the optimal solutions that minimize

our objectives such as the monetary cost, the response time and the loss rate.

By this chapter, we finish with the second axis of this thesis. However, several

other extensions are open and under development. We give more details about

these ongoing works in the concluding chapter.
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Key points

• We presented the background information related to cost models

for distributed pattern mining in the cloud.

• We defined a set of objective functions with respect to the needs

and the financial capacity of customers.

• We discussed the resolution of the defined objective functions.

• We present experimental results that provide a first evaluation

of the proposed cost models.





Chapter 6

Conclusion and prospects

Contents

6.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . 114

6.1.1 A framework for distributing frequent subgraph mining in

the cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.2 Cost models for distributing frequent pattern mining in the

cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Future works and prospects . . . . . . . . . . . . . . . . . . . . . 115

6.2.1 First axis: improvement of the distributed frequent subgraph

mining in the cloud . . . . . . . . . . . . . . . . . . . . . . 115

6.2.2 Second axis: improvement of cost models . . . . . . . . . . 117

Goals

In this chapter, we conclude the thesis by summarizing our contributions.

Then, we highlight the ongoing works we are conducting in extension to this

thesis.
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6.1 Summary of contributions

This thesis deals with distributed frequent subgraph mining from huge graph

databases in the cloud. Firstly, it attends to propose a scalable approach for

large scale frequent subgraph mining in the cloud. Secondly, it handles with mon-

etary cost models for distributed pattern mining in the cloud and it focuses on

subgraph patterns.

In this section, we recall the main lines that trace the results of our research.

We first present the proposed framework for distributing frequent subgraph mining.

Then, we give an overview of the proposed cost models for distributed pattern

mining in the cloud.

6.1.1 A framework for distributing frequent subgraph

mining in the cloud

The first contribution of this thesis consists of a MapReduce-based framework to

approximate large scale frequent subgraph mining. The proposed approach allows

many partitioning techniques of the input graph database. In this thesis, we

proposed a data partitioning technique that considers data characteristics. It uses

the density of graphs in order to partition the graph database. Such a partitioning

technique allows a balanced computational load over the distributed collection of

machines. We experimentally show that the performance and scalability of our

approach are satisfying for large scale graph databases.

6.1.2 Cost models for distributing frequent pattern min-

ing in the cloud

We addressed the multi-criteria optimization problem of tuning thresholds of dis-

tributed frequent pattern mining in the cloud. The purpose is to optimize the

global monetary cost of storing and querying data in the cloud. We designed cost

models for managing and mining graph data with a large scale subgraph mining

framework over a cloud architecture. Besides, we defined objective functions that
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consider the needs of customers such as budget limit, response time limit and re-

sult quality limit. We discussed the use of the proposed cost models in the case of

subgraph patterns and we discussed the resolution of the defined multi-objective

functions. We validated experimentally the defined cost models and objective

functions in the case of distributed subgraph mining in the cloud.

6.2 Future works and prospects

In this section, we present the main axes of our future works. We are currently

working on two major axes. In the first axis, we are working on improving the

distributed framework for large scale frequent subgraph mining. The second axis

aims to improve the proposed cost models.

6.2.1 First axis: improvement of the distributed frequent

subgraph mining in the cloud

The distributed frequent subgraph mining approach consists of two main steps:

(1) the partitioning step and (2) the distributed computing step. Improvements

of our approach will focus on both steps.

Improvements of the partitioning method: In the partitioning step of

our approach, we divide the graph database into a set of buckets that serve to

construct the final set of partitions. In the experimental study, we varied the

number of buckets from two to five buckets. We have shown that the use of high

number of buckets increases balancing. An extended experimental study might be

carried out to give more precisions about our observations and answer questions

like:

• What is the maximum number of buckets and/or partitions to use in order

to reach best performance?

• What is the relation between the number of buckets and the chunk size

and/or the number of partitions?,
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• What is the size of chunk to use in the partitioning step and in the distributed

subgraph mining step?

• How to tune the tolerance rate value in order to achieve better performance

and result quality?.

Future works include the generalization of the partitioning method in order

to offer the possibility of using different topological graph properties [Li 2012]

instead of the density. Such partitioning method will provide the possibility to use

a panoply of topological graph attributes in the partitioning step. The choice of

the property basically depends on the data under consideration.

Another possible future work in this context is the study of the relation between

database characteristics and the choice of the partitioning technique. This study

aims to help the user to choose the appropriate partitioning method according to

data characteristics.

Improvements of the distributed subgraph mining step: This step is a

two stage body. The first stage consists in applying an existing frequent subgraph

mining technique on each partition of the input database in parallel. A set of locally

frequent subgraphs is produced from each partition. The second stage consists in

generating the set of globally frequent subgraphs. Experiments of our approach

have shown that the result quality of the distributed subgraph mining depends on

the tolerance rate threshold. This threshold determines the minimum support in

the stage of mining locally frequent subgraphs. Otherwise, tolerance rate values

are fixed by the user. In future works, we will first study the behavior of our

approach according to various tolerance rate values. Then, we plan to automatize

the selection of tolerance rate values. This selection depends essentially on the

size and the number of partitions.

In the following, another future directions related to the improvement of our

approach:

Performance and scalability improvement: This direction consists of

improving the runtime of our approach with task and node failures [Yang 2010,

Quiane-Ruiz 2011]. This task can be done by incorporating mechanisms of task

and node failures management. Such mechanisms should ensure minimal loss of
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information in the case of failures. Moreover, our approach should continue to

operate without interruption during the repair process.

Portability improvement: Future works include the extension of our ap-

proach to different parallel programming models such as Open Computing Lan-

guage (OpenCL) and Message Passing Interface (MPI). This extension will allow

our approach to run portably on various architectures and platforms.

Deployment of the approach: We aim to study the integration of our ap-

proach to recent distributed machine learning toolkits such as the Apache Mahout

project and SystemML. Such integration can be done by the adaptation of our

calculations to Mahout primitives [Foundation 2010] in the case of Mahout and

to DML primitives [Ghoting 2011b] in the case of SystemML.

6.2.2 Second axis: improvement of cost models

As mentioned in Section 6.1.2, the second axis of this thesis consists of the design

of cost models of mining pattern in a cloud setting. Improvements of the proposed

cost models can be resumed into several points:

First, we aim to extend the experimental validation of the proposed cost models

to a wider-scale experimentation. In this context, additional experiments will be

carried out in which we solve the defined objective functions using more methods

of solving multi-objective optimization problems. Several solving methods can be

used:

• A priori methods: using these methods, the preferences of the decision maker

are first asked and then a solution best satisfying these preferences is found.

• A posteriori methods: in this setting, a representative set of Pareto optimal

solutions is first found and then the decision maker must choose one of

them.

• Interactive methods: these methods allow the decision maker to iteratively

search for the most preferred solution. In each iteration of the interactive

method, the decision maker is shown Pareto optimal solutions and describes

how the solutions could be improved.
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Beside using more methods of solving multi-objective optimization problems,

we aim to run experiments on a variable number of cloud cloud instances, thus,

experimenting the effect of primordial elasticity characteristic of the cloud on our

cost models.

Second, we plan to study the possibility of bringing the problem of reaching a

tradeoff between the frequent subgraph mining process in the cloud under budget

and mining quality constraints to a machine learning problem. This will allow the

use of machine learning techniques in order to predict parameters and thresholds

of the distributed mining process. A possible way to do this is to use a supervised

classifier and to generate a classification model that allows prediction of parameters

values for frequent subgraph mining process in the cloud.

Third, we aim to improve our cost models and generalize it to different cloud

service providers. It is necessary to update our cost models in order to make our

cost models compatible with different cloud service providers.
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Distributed Frequent Subgraph Mining in the Cloud

Abstract: Recently, graph mining approaches have become very popular, especially

in certain domains such as bioinformatics, chemoinformatics and social networks. One of

the most challenging tasks in this setting is frequent subgraph discovery. This task has

been highly motivated by the tremendously increasing size of existing graph databases.

Due to this fact, there is urgent need of efficient and scaling approaches for frequent

subgraph discovery especially with the high availability of cloud computing environments.

This thesis deals with distributed frequent subgraph mining in the cloud. First, we provide

the required material to understand the basic notions of our two research fields, namely

graph mining and cloud computing. Then, we present the contributions of this thesis.

In the first axis, we propose a novel approach for large-scale subgraph mining, us-

ing the MapReduce framework. The proposed approach provides a data partitioning

technique that consider data characteristics. It uses the densities of graphs in order to

partition the input data. Such a partitioning technique allows a balanced computational

loads over the distributed collection of machines and replace the default arbitrary parti-

tioning technique of MapReduce. We experimentally show that our approach decreases

significantly the execution time and scales the subgraph discovery process to large graph

databases.

In the second axis, we address the multi-criteria optimization problem of tuning

thresholds related to distributed frequent subgraph mining in cloud computing environ-

ments while optimizing the global monetary cost of storing and querying data in the

cloud. We define cost models for managing and mining data with a large scale subgraph

mining framework over a cloud architecture. We present an experimental validation of

the proposed cost models in the case of distributed subgraph mining in the cloud.

Keywords: frequent subgraph mining, graph partitioning, graph density,

MapReduce, cloud computing, cost models.



Fouille de sous-graphes fréquents dans les nuages

Résumé: Durant ces dernières années, l’utilisation de graphes a fait l’objet de nom-

breux travaux, notamment en bases de données, apprentissage automatique, bioinfor-

matique et en analyse des réseaux sociaux. Particulièrement, la fouille de sous-graphes

fréquents constitue un défi majeur dans le contexte de très grandes bases de graphes.

De ce fait, il y a un besoin d’approches efficaces de passage à l’échelle pour la fouille de

sous-graphes fréquents surtout avec la haute disponibilité des environnements de cloud

computing. Cette thèse traite la fouille distribuée de sous-graphe fréquents sur cloud.

Tout d’abord, nous décrivons le matériel nécessaire pour comprendre les notions de base

de nos deux domaines de recherche, à savoir la fouille de sous-graphe fréquents et le

cloud computing. Ensuite, nous présentons les contributions de cette thèse.

Dans le premier axe, une nouvelle approche basée sur le paradigme MapReduce pour

approcher la fouille de sous-graphes fréquents à grande échelle. L’approche proposée

offre une nouvelle technique de partitionnement qui tient compte des caractéristiques

des données et qui améliore le partitionnement par défaut de MapReduce. Une telle

technique de partitionnement permet un équilibrage des charges de calcul sur une collec-

tion de machine distribuée et de remplacer la technique de partitionnement par défaut

de MapReduce. Nous montrons expérimentalement que notre approche réduit consid-

érablement le temps d’exécution et permet le passage à l’échelle du processus de fouille

de sous-graphe fréquents à partir de grandes bases de graphes.

Dans le deuxième axe, nous abordons le problème d’optimisation multi-critères des

paramètres liés à l’extraction distribuée de sous-graphes fréquents dans un environnement

de cloud tout en optimisant le coût monétaire global du stockage et l’interrogation des

données dans le nuage. Nous définissons des modèles de coûts de gestion et de fouille

de données avec une plateforme de fouille de sous-graphe à grande échelle sur une

architecture cloud. Nous présentons une première validation expérimentale des modèles

de coûts proposés.

Mots-clés: Fouille de sous-graphes, partitionnement de graphes, densité de

graphe, MapReduce, Informatique dans les nuages, modèles de coûts.
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