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Abstract

Novel approaches in the field of memory technology should enable backend

integration, where individual storage nodes will be fabricated during the last

fabrication steps of the VLSI circuit. In this case, memory operation is often

based upon the use of active materials with resistive switching properties.

A topology of resistive memory consists of silver (Ag) as electrochemically

active metal and amorphous germanium disulfide (GeS2) acting as electrolyte

and relies on the reversible formation and dissolution of a conductive filament.

The application potential of these new memories is not limited to stand-

alone (ultra-high density), but is also suitable for embedded applications. By

stacking these memories in the third dimension at the interconnection level of

CMOS logic, new ultra-scalable hybrid architectures becomes possible which

exploit low energy operation, fast write/read access and high performance

with respect to endurance and retention. In this thesis, focusing on memory

technology aspects in view of developing new architectures, the introduction

of non-volatile functionality at the logic level is demonstrated through three

hybrid (CMOS logic + ReRAM devices) circuits: nonvolatile routing switches

in a Field Programmable Gate Array, nonvolatile 6T-SRAMs and stochastic

neurons of an hardware neural network. To be competitive or even improve

existing solutions, limitations on the memory devices performances are

identified and solved by stack engineering of CBRAM devices or providing

fault tolerant circuits.



Résumé

Nouvelles Architectures Hybrides: Logique /

Mémoires Non-Volatiles et technologies associées

Les nouvelles approches de technologies mémoires permettront une intégration dite

back-end, où les cellules élémentaires de stockage seront fabriquées lors des dernières

étapes de réalisation à grande échelle du circuit. Ces approches innovantes sont souvent

basées sur l’utilisation de matériaux actifs présentant deux états de résistance distincts.

Le passage d’un état à l’autre est controlé en courant ou en tension donnant lieu à

une caractéristique I-V hystérétique. Nos mémoires résistives sont composées d’argent

(Ag) en métal électrochimiquement actif et de sulfure de germanium amorphe (GeS2)

agissant comme électrolyte. Leur fonctionnement repose sur la formation réversible et

la dissolution d’un filament conducteur. Le potentiel d’application de ces nouveaux

dispositifs n’est pas limité aux mémoires ultra-haute densité mais aussi aux circuits

embarqués. En empilant ces mémoires dans la troisième dimension au niveau des

interconnections des circuits logiques CMOS, de nouvelles architectures hybrides et

innovantes deviennent possibles. Il serait alors envisageable d’exploiter un fonction-

nement à basse énergie, à haute vitesse d’écriture/lecture et de haute performance

telles que l’endurance et la rétention. Dans cette thèse, en se concentrant sur les

aspects de la technologie de mémoire en vue de développer de nouvelles architectures,

l’introduction d’une fonctionnalité non-volatile au niveau logique est démontrée par trois

circuits hybrides: commutateurs de routage non volatiles dans un Field Programmable

Gate Arrays, une 6T-SRAM non volatile et les neurones stochastiques pour un réseau

neuronal. Pour améliorer les solutions existantes, les limitations des performances des

dispositifs mémoires sont identifiés et résolus en utilisant de nouveaux empilements ou

en fournissant des circuits qui utilisent la variabilité des cellules pour avoir de meilleures

performances.
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Manuscript Outline

This manuscript was submitted in partial fulfillment of the requirements for obtaining

the degree of Doctor of Philosophy of the Grenoble Institute of Technology (Grenoble

INP). The topic addressed in this Ph.D. thesis deals with novel hybrid logic and

nonvolatile memory architectures and associated technologies. The manuscript covers

both emerging memory devices features, in particular related to Conductive Bridge

RAM technology and design/simulation of hybrid circuits such as nonvolatile 6T-SRAM,

nonvolatile routing switches in FPGAs embodiments and neuron circuits. Foreseen

advantages in implementing hybrid architectures are discussed accordingly to electrical

results obtained on several CBRAM technologies. In fact, a part of the thesis was devoted

to electrically characterize several CBRAM cell stacks in view of developing nonvolatile

memory solution for: renovating some of the FPGA blocks, design a nonvolatile SRAM,

or create fault-tolerant designs, that could also exploit non optimized technologies.

It’s well known that intrinsic variability of emerging technologies such as ReRAM

complicates the physical understanding, the prediction of device behavior under different

stresses (thermal, noise) and finally the development of reliable electrical models imple-

mented in commercial IC design tools. Typically, the development of behavioral compact

models is subjected to parameters extracted on a large number of devices but, nowadays,

there is a limited number of hybrid architectures, that could validate, for example,

the performances of a distributed (on logic) memory node. Hence, the integration of

a CBRAM compact model in IC design tools is the critical step for proposing new

concepts, for validating the main operations of new circuits and eventually for launching

the fabrication on silicon.

Chap. 1 of this thesis introduces the international context, the state of the art

for emerging nonvolatile memories, the limitations and the issues due to the aggressive

scaling of 6T-SRAM or due to the excessive power consumption in FPGA. In a second

part, we will discuss the most advanced solutions to design nonvolatile 6T-SRAMs

and to renovate FPGA blocks. We will conclude the chapter with some basic concepts

related to hardware neural networks.

ii



In Chap. 2 we will present some of the results of the electrical characterizations

of Ag/GeS2 based CBRAM devices (integrated in the 1R or the 1T-1R architecture)

and the empirical model used to explain and predict the switching parameters. We will

propose a statistical analysis on the switching probability based on measurements on

8×8 memory arrays to improve the model taking into account cell to cell and cycle to

cycle variability.

Chap. 3 is devoted to find a suitable CBRAM technology in view of design and

optimize a specific block of an FPGA. Electrical results related to several CBRAM

stacks fabricated with a dual-layer based electrolyte will be presented. Among other

CBRAMs technologies, our dual-layer electrolyte stack (2 nm HfO2−30 nm GeS2) is the

most promising. We will demonstrate a resistance ratio (Roff/Ron) higher than 106, a

reset current of 100 µA and no forming step.

In Chap. 4 we will discuss a nonvolatile 6T-SRAM, a nonvolatile routing switch

based on 1T-2R architecture and a stochastic neuron circuit as hybrid architectures.

Operation schemes will be validated by means of Eldo simulations and the effect of

VT MOSFET variability will be introduced, for the 6T-SRAM design, by Monte-Carlo

and worst case simulations. Next, advantages in implementing a 1T-2R nonvolatile

element in FPGA using our dual-layer electrolyte stack will be elucidated. The chapter

ends with a review on a Stochastic Integrate and Fire neuron circuit that exploit the

variability in the time required to set CBRAM devices.

Chap. 5 provides the conclusions, the highlights and the perspective of the research

conducted for this thesis. A description of the on-going activities is given.
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B.1.1 Mémoire ReRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.1.2 SRAM non volatile pour applications embarquées à faible con-
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1

Introduction

This chapter introduces some of the trends in the memory research both at device level

and at the circuit integration level. There are two great motivations that push the

research in finding new memory materials, new storage mechanism and new stacking

architectures: the filling of the latency gap in the memory hierarchy and the replacement

of flash memories for the sub-20 nm node. Both stand-alone and embedded applications

will be renovated by the introduction of nonvolatile, byte addressable, and in place

writable Random Access Memory (RAM), also called Storage Class Memory (SCM).

Moreover, because of the low voltage, CMOS compatibility, projected 10 years retention

at 110 ◦C and good cyclability other important markets such as low power mobile can

be greatly improved. A brief survey of the main emerging non volatile memories such

as: Phase Change RAM (PCM), Ferroelectric RAM (FeRAM), Spin Transfer Torque

RAM (STT-RAM) and Resistive RAM (ReRAM) will be presented. Next, starting

from a description of embedded volatile memories, we will introduce the benefits in

implementing a nonvolatile 6T-SRAM, hence explaining motivations in investigating

further this architecture. Novel 3D hybrid FPGA architectures leading to better

performance than that of existing planar FPGA will also be discussed. We will describe

some of the constraints at memory level in implementing novel architectures in the

main blocks of an FPGA, boosting our research in finding the most suitable ReRAM

technology expected to minimize the power consumption. Finally, a brief introduction

on stochastic neural network will be given to propel the conception of a stochastic

neuron.
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1. INTRODUCTION

Table 1.1: Comparison of metrics for memories on the market.

Metric NAND Flash NOR Flash PCM SRAM DRAM

Technology Node [nm] 22 40 45 22 32

Cell Size 4 F2 10 F2 5.5 F2 120 F2 8 F2

Chip Size 128 Gb 8 Gb 1-8 Gb 30 MB 4 Gb

Write Bandwidth 100 MB/s 2 MB/s 9 MB/s 500 GB/s 1 GB/s

Read Bandwidth 200 MB/s 100 MB/s 266 MB/s 500 GB/s 1 GB/s

Latency 30 us 70 ns 85 ns 5 ns 20 ns

Endurance 104 105 109 1015 1015

1.1 The Memory hierarchy

In recent years, Central Processor Units (CPUs) speeds have increased significantly [1].

On the other hand, memory improvements have mostly been in density rather than

transfer rates (read/write bandwidth) (Fig. 1.1 (a)-(b)). As speeds have increased, the

CPU has spent an increasing amount of time waiting for data to be fetched from memory.

No matter how fast a given CPU can work, in some cases it is limited to the rate of

transfer allowed by the bottleneck between memories and processor (Von Neumann

bottleneck). Currently, state of the art CPUs operate at 5.7 GHz [1], whereas even the

fastest off-chip memories operate between 1 GHz [2] and 2.66 GHz [3]. The memory

hierarchy is an arrangement of different types of memories with different capacities

and operation speeds to approximate the ideal memory request of a processor in a

cost-efficient way [4].

Fig. 1.1(c) shows the typical access latency (in cycles assuming a 4 GHz machine) of

different memory technologies, and their relative place in the memory hierarchy. As

already demonstrated in the case of Phase Change Memories (Sec. 1.2.1) new emerging

memories showing access latency between DRAMs and Hard Disks are expected to bridge

completely the access latency gap (Fig. 1.1(b)). The ultimate target for Von-Neumann

based computing would be replacing DRAMs using nonvolatile memories with the same

bandwidths (1 GB/s for read and write), compatibility with high-speed wired interface

schemes (DDR), endurance of 1015 cycles and exhibiting capacity of TBs [5]. Table 1.1

shows in more details several figures of merit for different kind of memories that we

reported in Fig. 1.1(c).

2



1.2 Overview of next generation of nonvolatile
Random Access Memories (RAM)

Figure 1.1: a) Memory capacity trend of different nonvolatile memory technologies. b)

Comparison of different nonvolatile memory technology as a function of write and read

bandwidth demonstrated at chip level. DDR, DDR2 and DDR3 are the high-speed interface

scheme required for different DRAMs generation [1]. c) Access latency in terms of processor

cycles for a 4 GHz processor [5]. Hybrid solutions Phase Change Memories + DRAM ( two

macro in a single package) have been introduced by Micron.

1.2 Overview of next generation of nonvolatile

Random Access Memories (RAM)

As shown in Fig. 1.1(c) and Tab. 1.1 Flash and PCM do not fulfill all the requirements

to compete with DRAMs. The main limitations are the latency for NAND and the

write bandwidth for NOR and PCM. In addition the endurance is limited to 105 cycles

for NOR, 104 cycles for NAND (considering the 22 nm technological node), and 109 for

PCM, whereas DRAM requires 1015. The high voltage needed for the operation of NOR

and NAND memories is also a strong limitation for future integration with advanced

CMOS logic in embedded systems thus making even more difficult an improvement in

the bandwidth if the nonvolatile memory is used off-chip (i.e. with a serial interface)

3



1. INTRODUCTION

(Sec. 1.3.2). As a result, other memories candidates are currently under investigation to

provide lower latencies, higher bandwidths and compatibility with advanced (beyond

28 nm high-k MOSFETs) CMOS. This research paves the way for non volatility at

several levels of the memory hierarchy and therefore provides a new abstraction on the

memory systems. Integration of nonvolatile, byte addressable memories, supporting

in-place writing is especially required for System on Chip (SoC) and could revolutionize

consolidated architectures such as Field Programmable gate Array (FPGA) both in

memory block and distributed memory cells at the interconnection level of CMOS logic.

Advanced architectural studies have indicated that FPGA can be greatly improved by

emerging memories distributed above the logic, as we will discuss in Sec. 1.9. Because a

large number of novel hybrid (logic and SCM) architecture rely on different emerging

non volatile memories, a brief survey of such technologies is presented in the next

subsections.

1.2.1 Phase Change RAM

In Phase Change memory (PCM) the memory element is an alloy of Ge2Sb2Te5,

GexTe1−x, C doped GexTe1−x or N doped GexTe1−x. PCM utilizes the large resistivity

difference between crystalline (low resistivity) and amorphous (high resistivity) phases of

the phase change material. Set and reset state of PCM refers to low and high-resistance

state, respectively. As fabricated, the phase change material is in the crystalline state.

To reset the PCM cell into the amorphous phase, the programming region is first melted

and then quenched rapidly by applying a large electrical current pulse for a short

time period (Fig. 1.2 left). This operation generates a region of amorphous, highly

resistive material in the PCM cell. To set the PCM cell into the crystalline phase, a

current pulse is applied to anneal the programming region at a temperature between

the crystallization temperature and the melting temperature for a time period long

enough to crystallize (Fig. 1.2 left) [6]. Fig. 1.2 shows the current voltage I-V curve for

the PCM. The set and reset states have two orders of magnitudes resistance difference

for voltages below the threshold switching Vth. If a voltage higher than Vth is applied

for longer than the crystallization time it leads to memory switching to low resistance

state. When the PCM is in the reset state the resistance of the PCM is too high to

conduct enough current to provide Joule heating to crystallize the PCM cell. In fact it

is the electronic threshold switching effect that lower the resistance of the phase change

4



1.2 Overview of next generation of nonvolatile
Random Access Memories (RAM)

Figure 1.2: (Left) Temperature-time and voltage-time diagram to describe set and reset

operations and consequences on the lattice structure of GST material. (Right) Current-

Voltage characteristics of the cell. The electronic switching corresponds to the decrease of

the voltage in the amorphous state and the current increase that leads to the crystallization

of the amorphous region. In the inset: schematic of the PCM structure and TEM of the

integrated structure.

material and enables set programming. Reset programming consumes the largest power

since the cell needs to reach the melting temperature. Reset current is also determined

by material properties (doping) or stoichiometry, but still is in the order of mA or

hundreds of µA. Endurance of 109 and a projected data retention of 10 years at 85 ◦C

have been reported [7]. PCM are fabricated with 20 nm technology with a density of 8

Gb showing 40 MB/s write bandwidth [8]. A nonvolatile 6T-SRAM was proposed in [9].

1.2.2 Ferroelectric RAM

In Ferroelectric RAM (FeRAM) the memory element consists of a ferro-electric material

embedded between metallic electrodes made of Pt, Ir, or oxides of transition metals

such as RuO2 and IrO2. The typical active ferroelectric materials are lead zirconate

titanate (PbZrzTi1−xO3) and strontium bismuth tantalite (SrBi2Ta2O9) that shows

two stable states of polarization corresponding to the two stable configuration of ions

within the unit cell of the crystal lattice. This polarization does not vanish when the

external field is removed (Fig. 1.3). Attainable cell sizes in 1T-1C configuration are in

the range of 4-15 F2. The main attractiveness of this technology is that the read and

programming pulses can be less than 50 ns and it is possible to get endurance typically

5



1. INTRODUCTION

Figure 1.3: Schematic structure of FeRAM cell with capacitors connected in parallel

(chain FeRAM) and TEM cross section of the integrated structure. Polarization-Voltage

curve (P-V) that shows two stable states of remnant polarization (25 µCcm−2) used to

store the information [13], [10].

about 1012 cycles. Dynamic energy can be minimized till 200 fJ/bit and 1.6GB/s

read/write bandwidth has been reported [10], [11]. Main limitations of FeRAM are

related to the the read operation that is destructive, the scalability and the high thermal

budget (600 ◦C - 700 ◦C) due to the crystallization temperature of these materials. 4

Mb embedded FeRAMs (e-FeRAMs) produced using a 180 nm process with a 1.8 V

requirement have become widely deployed in IC cards and RFID tags for improving

traceability and security. 16 Kb e-FeRAM for energy harvesting applications has been

also developed, showing 82µA/MHz dynamic consumption (for comparison SuperFlash

memories have 70µA/MHz dynamic consumption during read operation). The largest

FeRAM chip was fabricated in 130 nm technology with a density of 128 Mb, and 75 ns

read/write cycle [11]. A 512-byte nonvolatile SRAM using 250 nm double metal layer

CMOS process with ferroelectric capacitors is described in [12].

1.2.3 Spin Transfer Torque RAM

In Spin Transfer Torque RAM the memory element is a magnetic tunnel junction

(MTJ) that consists of two magnetic electrodes embedding an insulating MgO tunnel

barrier (Fig. 1.4). The resistance of these magnetic tunnel junctions depends on the

relative orientation of the magnetic moments in the two magnetic electrodes interfacing

with the tunnel barrier. When the magnetic moments of the two magnetic layers are

antiparallel, the resistance of the tunnel junction is significantly higher than when they

are in parallel. A trilayer known as synthetic antiferromagnetic layer is used as reference

to fix the direction of the magnetic moment. Hence, the magnetic moment orientation
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Figure 1.4: TEM cross section of the integrated MRAM structure [15].

Figure 1.5: Spin transfer Torque Magnetization switching. From the left: Anti-Parallel

to Parallel switching, and parallel to antiparallel switching. Example of current-induced

switching. Quasi-static V-I curve show the existence of two available resistance states. The

free layer of the MTJ can be switched parallel or antiparallel to the pinned layer depending

on the direction of the current [15],[16].

of the storage layer will give rise to two states with distinctively different resistance

values, thereby, the two states in binary bit [14]. Typical memory cells consist of

two transistors connected in parallel with the MTJ to provide the current necessary

for programming. The free layer of the MTJ can be switched parallel or antiparallel

to the pinned layer depending on the direction of the current (Fig. 1.5). The injected

current pulse is typically 200 µA in amplitude and 5 ns in duration, corresponding to

a switching energy on the order of pJ [14]. The switching current density is of the

order of 1MAcm−2. The reported endurance is 1015. STT-RAM suffers of poor CMOS

compatibility and active layers roughness that can increase cell to cell variability. The

largest STT-RAM chip was fabricated in 54 nm technology with a density of 64 Mb,

employing a 2T-1MTJ cell; programming and read speeds of 20 ns were achieved [17].

Multi-Context Look-Up Table [18] and nonvolatile Flip-Flop [19] in FPGA have been

proposed using TAS (Thermally Assisted Magnetic) and STT-RAM.

7
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Figure 1.6: Schematic of MIM structure for metal oxide ReRAM and schematic DC I-V

characteristics showing unipolar and bipolar behavior [20].

Figure 1.7: (Left) TEM of the integrated ReRAM. Both the bottom electrode and the

top electrode have been scaled to 10 nm. Switching current vs operational speed.

1.2.4 Resistive RAM

In ReRAM memory elements are typically transition metal oxides embedded between

two metal electrodes. The memory effect relies on the reversible transitions from high

(reset) to low (set) resistive states upon the application of an electric field on the

structure. Thermochemical and/or electrochemical reactions are responsible of the

switching mechanism, which can be triggered by the amplitude of the applied electric

field (unipolar switching mode) or by the polarity of the applied field (bipolar switching

mode). In particular, in bipolar mode, set process can only occur at one polarity and

reset can only occur at the reverse polarity (Fig. 1.6). The switching behavior is not

only dependent on the oxide materials but it is also dependent on the choice of metal

electrodes and the physics at the interfaces. Typical transition metal oxides are TaOx,

HfOx and AlOx that exploit the lattice sub-stoichiometry in oxygens atoms, hence the

mobility of oxygen vacancies. In particular, it was observed that the low resistive state

8
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Table 1.2: Comparison of metrics of largest chip demonstrated for various memory

technologies with focus on evolution of ReRAM in 3 years. Note that the highest density

has been achieved in ReRAM where the memory stack is 1D-1R where D is a bipolar diode

to avoid sneak current.

Metric FeRAM STT-RAM PCM ReRAM ReRAM ReRAM

Year 2009 2010 2009 2010 2012 2013

Technology Node [nm] 130 54 45 130 180 24

Active Stack SRO-PZT/Ir CoFeB-MgO GST MeOx 1D-1R TaOx/Ta2O5 1D-1R MeOx 1D-1R

Half-Pitch, F [nm] 225 54 52 200 N.A. N.A.

Memory Area [µm2] 0.252 0.041 0.015 0.168 0.144 N.A.

Cell Size 5F2 14F2 5.5F2 4.2F 2 N.A. N.A.

Chip Size 128Mb 64Mb 1Gb 64Mb 8Mb 32Gb

Write Speed 83 ns 15 ns 100-500ns 1-10ms N.A. 230us

Read Speed 43ns 20ns 85 ns 100ms 25ns 40us

Vcc [V] 1.9 1.8 1.8 3-4 N.A. N.A.

Reference [11] [17] [7] [26] [27] [23]

can be ascribed to a oxygen poor phase in the insulator (es. Magneli phase in TiO2)

that leads to d-orbitals overlap and hence metallic conduction. In this case the memory

effect is classified as a valence change in the oxide and the ReRAM is usually called

OxRRAM (Oxide Resistive RAM). Moreover, recently, has been shown that the oxygen

vacancies concentration in the insulator can be controlled by an interfacial layer such as

Ti or Zr greatly enhancing the performance of the ReRAM. In particular a switching

speed of 10 ns and endurance of 1010was reported in [21] using Ti/HfOx. Hf/HfOx

based ReRAM has been demonstrated to be scalable to 10nm (Fig. 1.7) [22]. The largest

chip shows a density of 32 Gb and it was fabricated in 24 nm technology [23]. Tab. 1.2

provides a comparison of the fabricated memory arrays that represents a metric to

define the grade of maturity of the different technologies. In this manuscript we focus

on Electrochemical Metallization Cells, also called Conductive Bridge or Programmable

Metallization Cells that is a topology of bipolar ReRAM. The most frequently studied

Conductive Bridge RAM (CBRAM) uses Ag or Cu as electrochemically active metals

and amorphous selenides and sulfide as well as various oxides, acting as electrolytes [24].

Tab. 1.3 shows the main characteristics of fabricated arrays based on 1T-1CBRAM

(1T-1R) architectures. The first 6T-NVSRAM based on Ag/Zn0.4Cd0.6S CBRAM device

was fabricated in 2006 [25].

9
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Table 1.3: Characteristics of fabricated array with CBRAM technology.

Company NEC/JSTA Quimonda Sony

Tested array size 1kbit 2Mbit 4kbit

Technology Node [nm] 250 90 180

Active Stack Cu/Cu2S Ag/GeSe or GeS CuTe/GdOx

Memory structure 1T-1R 1T-1R 1T-1R

Programming HRS→LRS 1 V, 5-32 us 0.6 V, 10 uA, 50 ns 3 V, 110 uA, 5 ns

Erasing LRS→HRS 1.1 V, 5-32 us 0.2 V, 20 uA, 50 ns 1.7 V, 125 uA, 1 ns

Retention 3 months 10 years 10 years

Resistance Ratio 10 106 104

Operating temperature NA 110 ◦C 130 ◦C

Endurance 104 106 107

Reference [28] [29] [30]

1.3 Embedded nonvolatile memories

To meet the increasing demand for higher performance and lower power consumption

in many different system applications, it is often required to have a large amount of

embedded memory to support the need of data bandwidth in a system. The varieties

of embedded memory in a given system range from static to dynamic, volatile to

nonvolatile, one or many times programmable. Among various NVM technologies,

floating-gate-based 1Tr-NOR flash has been the early technology choice for embedded

logic applications. Along with the technology scaling several memories cells have been

extensively explored, including alternative materials for the storage layers, different

architectures and different programming mechanism.

1.3.1 Mask-programmable ROM

For defined programs and data, which have no need of code-updating after manufacturing,

embedded read-only-memory (ROM) provide a cost-effective and reliable solution for on-

chip non volatile storage due to its small macro area, high reliability (data retention time)

and process that does not require high voltage (HV) devices. There are three types of

embedded mask-programmed read-only memories (ROM): NOR-ROM, NAND-ROM and

flat-cell ROM. NOR-ROMs commonly appear in high-speed, small-capacity applications.

NAND-ROM has the advantages of a small cell area, low power consumption, and a
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1.3 Embedded nonvolatile memories

small stand-by current. The flat-cell ROM is a popular solution for-low cost non high

speed mid-capacity (1Mb - 32Mb) embedded applications due to its ultra-small cell

area, and a logic compatible flat cell manufacturing process [31].

1.3.2 Electrically programmable FLASH

Electrically re-programmable, embedded non volatile memory technologies usually

deviate from discrete memory technologies such as NOR and NAND flash memories,

because of specific requirements like CMOS process full compatibility, low access time

(up to 20 ns for automotive) for in place code execution, minimum area and power

consumption. Moreover, the major constraint for embedded nonvolatile memory is

minimum additional cost, including fewer process steps to the base CMOS logic [4].

The 1Tr-NOR cell structure has been widely used also for on chip code storage because

of random access and reading latency of 70 ns with up to 105 times of program/erase

covering different markets with different requirements from automotive to smart cards.

The memory cell consists of a floating gate structure, which stores charge in the

floating polysilicon gate to alter the threshold voltage of n-channel memory transistor.

Nevertheless, the 1Tr-NOR floating-gate flash technology suffers from scalability issues

beyond the 40 nm technological node. Innovations at the device level led to the

introduction of Split gate memories 20 years ago. Fig. 1.8 shows different geometry

for such memories compared to the 1Tr-NOR cell. Due to the process simplicity, high

endurance (1M E/P cycles at 40 nm), and the use of low current source-side injection

(SSI) (1 µA/bit and 40 p J/cell) split-gate discrete charge-trapping cell with TG-first

structure are widespread used for low power applications and in smart card. Accordingly

to Silicon Storage Technology (SST), 45% of all smartcard devices uses SST SuperFlash

Technology. New generations of SuperFlash are expected to be scalable beyond 40 nm

and compatible with LV CMOS such as FDSOI, high-k metal gate and FinFET due to

the read voltage between 0.9V and 1.2V allowing also high performance CMOS devices

to be used for the read path.
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Figure 1.8: Physical mechanism for program and erase and device geometry of 1Tr-NOR

cell, split gates cell and Split gate memory technologies. Charge trap memories such as

SONOS or nanodot based have been merged with split gate. It is presented the first

generation of SuperFlash memories [4].

1.4 Embedded volatile memories

1.4.1 6T-Static Random Access Memories (6T-SRAM)

1.4.1.1 Architecture of a 6T-SRAM

The storage element of an SRAM consists of two inverters and two access NMOS. A pair

of inverters is cross-coupled such that it has the output of one inverter going into the

input of the other and vice-versa. The CMOS cross-coupled inverters can hold a logical

1 or a logical 0 state as long as SRAM is powered up. SRAM elements are arranged in

an array of rows and columns. Each row of bit cells shares a common word-line (WL),

while each column of bit cells shares a common bit-line (BL)(Fig. 1.9). SRAM is used

for the register file and caches memories of all levels from first to third in the embedded

memory system, providing the highest random access speed (up to 500 GB/s) and a

12



1.4 Embedded volatile memories

Figure 1.9: TEM image of an array of 6T-SRAM. Layout of a 6T-SRAM cell. Schematic

structure of the cell. Adapted from [32].

seamless integration with logic circuits due to its compatibility of process and operating

voltage. As multiple processing cores are being integrated into one chip, the demand for

integrated on-chip SRAM has become even higher to provide a sufficient data stream

and to keep up with an increasing demand of memory capacity and bandwidth. In

particular, the total percentage of occupied SRAM area of overall chip size is increasing

and has been reached 70%. In 2008, a 128 Mb SRAM was typically implemented in an

area of 100mm2 at the 45 nm process node (Fig. 1.10). In today’s high-end CPUs there

are more than 30 MB total of SRAMs that occupies over 70% of the total chip area.

1.4.1.2 Scaling issues and power consumption

SRAM leakage has become very important with technology scaling for many reasons.

In fact, since the geometry of the transistor keeps shrinking, higher leakage current in

channel, gate and junction is measured. Leakage current can be limited using high-k

MOSFET, FinFET or UTBB-FDSOI and/or reducing the nominal voltage. Nevertheless,

the threshold voltage VT variability also becomes a problem (Fig. 1.10 left down). This

is mostly caused by Random Dopant Fluctuations (RDF) in the channel region, but also

by oxide thickness variation, Line Edge Roughness and TiN grains with different work

functions. The relation between process related parameters is typically defined as the

Pelgrom coefficient (AVT), which is proportional to the magnitude of threshold voltage

variation. Since the σVT is also inversely proportional to the root square of the product

of transistor size the SRAM becomes particularly susceptible to VT variability as it

typically uses smallest possible transistors to increase density. As a consequence both
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Figure 1.10: (Left up) SRAM memory cell scaling trend. (Right up) SRAM operating

voltage scaling trend. (Left down) Standard deviation of threshold voltage variation vs

channel length, for square planar bulk MOSFETs. Constant gate line edge roughness (4

nm) is assumed. (Right down) Data Retention Voltage (DRV) degradation vs. technology

node for various Pelgrom coefficients AVT values. Adapted from [32].

the nominal voltage scaling and the Data Retention Voltage (DRV) scaling are limited

by stability constraints (Fig. 1.10 right down). Stability is measured in terms of the

Signal to Noise Margin. Obviously, SRAM power savings are particularly important for

battery-operated mobile applications. Scaling of the supply voltage greatly minimizes

active and leakage power. Hence, highly energy-constrained systems, where performance

requirements are secondary, benefit greatly from SRAMs that provide a DRV at the

lowest possible voltage, particularly down to 0.3V (Fig. 1.10). Moreover portable

applications have relaxed workloads for the vast majority time, but can provide bursts

of high performance right after the power up thus techniques such as Dynamic Voltage

Scaling and ultra-dynamic voltage scaling are employed.
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1.5 Embedded nonvolatile SRAM (NV-SRAM) for mo-

bile applications

Many portable chips employ power management techniques such as dynamic voltage

scaling (DVS) scheme or low supply voltage to reduce power consumption and extend

battery lifetime [33]. These approaches reduce dynamic power and active-mode leakage

current. Hence, low minimum operation nominal voltage single eNVM macros are

needed for these DVS and low voltage devices. Unfortunately, many eNVM designs

cannot achieve low VDD min due to read failure noises. In particular, the current mode

sensing scheme, frequently used by embedded NVM, is not suitable for ultra low VDD

operations. This is because the eNVM Icell is small (< 1 µA) at a low VDD and the

current-mode sensing scheme cannot increase the sensing margin with tradeoff in speed

[31]. Additionally a large program current for channel hot electrons sets an obstacle in

achieving low-power program operations. As a result eNVMs have become a bottleneck

in achieving a lower VDD min for low voltage chips. For these reasons, serial Flash and

SRAMs in a two macro approach are preferred to a single embedded NVM macro in low

power mobile applications. Flash memory uses a serial interface SPI which sequentially

accesses data. This solution lead to a reduction in board space, less power consumption

contributing to lower overall system cost. The two macro scheme also reduces the

number of NVM accesses and relaxes the endurance requirements for NVM; however,

it requires long store and restore time due to serial SRAM read write and long NVM

write read procedures. This results in long power off-on time thus requiring a power

intensive task during the transfer operation limiting the battery life time (Fig. 1.11 left).

Nonetheless, this operation implies a power gain if the stand-by operation operated at

0.2V take an amount of time larger than 103 s as reported in Fig. 1.11 (right) for 65 nm

CMOS technology. Moreover, since the DRV typically occurs in subthreshold, its value,

among cells in the array, is highly affected by process variations (i.e. by the Pelgrom

Coefficient, Fig. 1.10) that increase with scaling [4]. For these reasons a NV-SRAM that

integrates SRAM cells and NVM devices within a single cell, forming a direct bit-to-bit

connection in a 3D or vertical arrangement to achieve fast parallel data transfer and fast

power on/off speed has been proposed. Various types of NVM devices, such as SONOS

[34], FeRAM [12], MRAM [35], and ReRAM [33], have been employed in NV-SRAM

macro so far, but the use of ReRAM is the most promising. In particular, a 16Kb HfO2
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Figure 1.11: (Left) Power consumption of DVS-SRAM, two macro solution, and NV-

SRAM (Rnv8TSRAM) during active and stand-by modes. (Right) Comparison of standby

mode energy consumption [33].

based OxRRAM chip demonstrated that power off-on procedure (including store and

restore operations) contribute to power gain, if the corresponding stand-by operation

take an amount of time larger than 2ms. This feature mainly depends on the switching

energy to set/reset the non volatile device and hence on the inherent logic (i.e the

transistors in the latch). The HfO2 based OxRRAM used in this NV-SRAM shows

25 µA set/reset current, a set time of 1 ns at 3V with a resistance ratio Roff/Ron of only

5 and a switching energy of 0.1 p J [33].

1.6 Field Programmable Gate Array (FPGA)

A Field Programmable Gate Array (FPGA) consists of programmable logic resources

embedded in an array of programmable interconnections. The programmable logic

resources can be programmed to implement any logic function, while the interconnects

provide the flexibility to connect any signal in the design to any logic resource. The

memory technologies for the logic and interconnect resources can be: static random

access memory (SRAM), flash or antifuse. SRAM-based FPGAs offer reconfigurability at

the expense of being volatile, while antifuse are One Time Programmable (OTP) devices.

Flash-based FPGAs provide an intermediate alternative by providing reconfigurability

as well as non volatility at the cost of scalability issues [36].
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Figure 1.12: Structure of an island-type FPGA to show the periodic fabric. 6T-SRAM

(M) controls both pass gates in Connection Blocks (CB) and Switching Blocks to define the

general routing. Look up tables implemented with memories and multiplexer are used to

store the result of a defined function.

FPGAs circuits are composed of switching blocks (SB), connection blocks (CB),

logic blocks (LB) and embedded memories (Block memory). Every LB is formed by a

group of basic logic elements (BLE). The most simple BLE includes a Look-up table

(LUT) a D flip-flop (register) and a multiplexer.

A look-up table implements a truth table, that can be considered a function generator:

in particular the truth table for a K-input logic function is stored in an array of dimension

2k ×1 constituted by 6T-SRAM cells or by Flash cells or antifuse cells. Considering the

truth table of the logic function f = ab+c; if this logic function is implemented using

a three-input LUT, then the SRAM would have a 0 stored at address 000, a 1 at 001

and so on, as specified by the truth table; clearly specific inputs are used to select the

corresponding memory cell to define the output. During the run time the LUT outputs

the result of the function; the D flip-flop saves the result temporarily and synchronizes

it with the global clock.

The conventional structure of a D Flip-Flop includes two elements: Master and slave,

which are both clock-controlled Latch. The master part is used to write the information

in Flip-Flop and the slave part is used to output the information toward a multiplexer.

To build large logic structures, FPGAs use vertical and horizontal routing signals
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in a matrix arrangement that are paired with switch boxes at intersections to support

FPGA element interconnection. Switch boxes are located at the intersection of rows

and columns. A switch box is used to route between the inputs/outputs of a logic block

to the general on-chip routing network. The switch box is also responsible for passing

or stopping signals from wire segment to wire segment. The wire segments can be short

(span a couple of logic blocks) or long (run the length of the chip). All interconnections

on FPGAs are active: pass transistors behave as switches thus the configuration memory

controlling the pass transistors is distributed over the chip. Hence, every time a signal

crosses a switch it suffers of the RC delay. This adds up quickly on long routes. Thus

in FPGA there is a fundamental trade off in the amount of flexibility, speed, area and

power consumption.

1.7 6T-SRAM based FPGA

In 6T-SRAM based FPGA, 6T-SRAM cells are used as distributed configuration bits.

Since 6T-SRAMs can be reprogrammed many times (1015) this architecture gives the

highest grade of flexibility among FPGA types, at the cost of volatility. In fact, SRAM

based FPGAs have to be configured every time the system is powered up. Configuration

is the process of downloading configuration data into an FPGA using an external,

usually on board, source such as a flash memory device.

The configuration bitstream is loaded at every power-up into the device through

a configuration interface that links the external nonvolatile device with the FPGA.

Modern FPGAs such as Xilinx 7 series offers both serial and parallel configurations.

The highest throughput and speed is achieved with a parallel scheme, while the serial

interface reduces the number of pins of the flash device and surface on the board. The

Master Byte Peripheral Interface (BPI) flash configuration mode with a 16x data bus is

widespread used as a parallel interface.

For this programming solution, the user configures the FPGA with a bitstream that

serves as a bridge between the JTAG bus and the parallel NOR flash bus interface.

This solution is referred to as indirect programming because the flash is not directly

programmed but is programmed through the FPGA itself. This programming scheme is

also used by ALTERA [37]. Using a synchronous read of the NOR flash at 100MHz and

an external oscillator at 80MHz the configuration time for a 16Mb bitstream loaded
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1.7 6T-SRAM based FPGA

from a NOR Flash Memory to the FPGA is 126 ms [38]. This time is quite high for

application that requires instantly on capabilities.

The maximum FLASH NOR density used by Xilinx in 7 series is 1Gb while ALTERA

provides also external NAND Flash memories to achieve very high capacity (up to

16Gb).

At the board level (i.e not integrated on the FPGA architecture) emerging technolo-

gies have been introduced: Xilinx Nexys3 development board uses both 16 MB Parallel

and Quad-mode SPI PCM.

1.7.1 Power consumption in 6T-SRAM based FPGA

As the technology is scaled down, the oxide thickness tox in MOSFET is also shrunk.

The scaling down of tox results in an exponential increase in the gate oxide leakage

current. Moreover, to maintain the switching speed improvement of the scaled CMOS

devices, the threshold voltage VT of the devices is reduced to keep a constant device

overdrive.

Decreasing VT results in an exponential increase in the subthreshold leakage current.

As a result of the continuous scaling of tox and Vth, the contribution of the total leakage

power to the total chip power dissipation is increasing even if the nominal voltage is

decreasing.

The average leakage power dissipation of a typical 90-nm SRAM based FPGA at

25◦C and 85◦C, was calculated to be 4.25 µW and 18.9 µW respectively [36], for a

utilization of a single CLB of the 75%. Hence, the leakage power dissipation for a

1000-CLB FPGA would be in the range of 4.2mW. If these FPGAs have to be used in

a mobile application, which has a typical leakage current of 300 µA then the maximum

number of CLBs that can be used would be 86 CLBs for the 25◦C and only 20 CLBs at

85◦C.

Furthermore in [36], it was reported that for a 50% CLB utilization, 56% of the

leakage power was consumed in the unused part of the FPGA. The consumption in

the unused part of the FPGA is a recurrent problem in such type of architecture, that

is the cost of flexibility. In fact almost 40% of the FPGA consumes stand-by leakage

current without delivering useful output. Hence solutions to suppress leakage currents

are strongly required.
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Moreover, FPGAs used in wireless applications can go into idle mode for long

periods of time [36]. In such designs, even the utilized resources need to be forced into

a low-power (standby) mode during their idle periods to save leakage power. One of

the most popular techniques used in leakage power reduction is multi-threshold CMOS

(MTCMOS) [36]. In an MTCMOS implementation, a high-VT MOSFET called the

sleep transistor connects the pull-down network using low-VT devices of a circuit to

the ground. When the sleep transistor is turned OFF, the circuit subthreshold leakage

current is limited to that of the sleep transistor, which is significantly low. Hence, the

circuit benefits from the high performance of the low-VT pull-down network when the

sleep transistor is turned ON, while limiting the circuit sub-threshold leakage current

when the sleep transistor is turned OFF. This approach is utilized for CLBs but can

not be used for the configuration bits in the programmable interconnect.

Moreover as reported in [39], 38% of the total leakage power in 1.2V SRAM-based

FPGAs built in 90 nm CMOS process is due to the configuration bits distributed in the

FPGA and continuously read during FPGA run time. Obviously, inside the routing

resources the SRAM cells are designed using high-VT to minimize the leakage that can

vary between 10 and 100 pA for a nominal voltage of 1.2V on every single 6T-SRAM,

thus there is a consistent research on the minimization of leakage at the device level

and/or at the architecture level.

For example, at the device level the introduction of low power FinFET technology

at the 16 nm technology node is foreseen by Xilinx for the 2014. FinFET, that replaces

high-k 28nm CMOS technology in 6 series Xilinx, should enable a consistent diffusion in

the mobile market, such as portable ultrasound equipment consuming less than 2 watts.

Power consumption can be ascribed to five main components: Static power (leakage),

Dynamic Power (frequency dependent), Power-up (inrush power), Configuration power,

sleep mode power and can be calculated as:

Ptot =Plogic,dyn + Pmem,dyn + Pnet,dyn + Pclk,dyn =

=Plogic,dyn + Pmem,dyn + βV 2
DDfnet

∑

allnets

Cnet + CclkV
2
DDfclk + IleakVDD

(1.1)

where Plogic,dyn is the dynamic energy consumed in the logic circuits (including the

non configurable blocks), Pmem,dyn in the memory elements, Pnet,dyn in the intercon-

nection wires and Pclk,dyn in the clock network. The ratio between Plogic,dyn, Pmem,dyn,
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Pnet,dyn, Pclk,dyn is estimated to be 0.3 : 0.15 : 0.4 : 0.15 using Xilinx X-Power Tool [40].

Hence, the reduction of Pnet,dyn should be targeted with the shrinking of the FPGA

architecture by using new emerging integration schemes (such as 3D) that uses new

emerging memories fully compatible with CMOS process flow.

The advantage in using 3D integration is the reduction of Cnet and Cclk because

memory can be stacked in the third dimension, thus achieving a smaller die area

reducing the power consumption or improving the circuit speed at the same power.

For example, in monolithical stacking, electronic components and their connections are

lithographically built in layers on a single wafer.

The predicted advantage in using emerging memories is still a reduction of Cnet

and Cclk but also the suppression of the static power when the circuit is IDLE, with

data kept in the SRAMs applying the data retention voltage (strongly dependent on

the technological node and Pelgrom coefficient). Keep the information in volatile

SRAM/DRAM is essential to have a fast loading in the CPU of the last context saved in

the memory. Thus, providing a massively parallel and fast bit transfer from nonvolatile

memories to the logic, every IDLE operation can be avoided and substituted with

a power off thus potentially reducing the power consumption. We used the term

potentially because also the contribution of static power consumption during circuit

activity should be analyzed and is strongly dependent on the architecture implemented

for the configuration bits as will be explained in Sec. 1.9.

1.8 FPGA in mobile applications

In section 1.7.1 we have claimed that historically FPGA are not suitable for mobile

applications, because of the very large power consumption and area. In fact, aggressive

mobile applications require an on-chip nonvolatile memories with ideally zero stand-by

current, minimum area and scalable with the same trend as the MOSFETs. Moreover

a sufficient bandwidth to support execute in place operation thus avoiding shadowing

the context in to DRAMs and enough storage capacity is also required. In the last

years, one solution for mobile applications was provided by antifuse FPGA. Unlike

SRAM-based devices, which are programmed by the user himself, antifuse-based devices

are programmed directly by the foundry. In the 2T architecture used in Antifuse

based FPGA the circuit is in high resistive state to begin with and is programmed by
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applying electrical stress that creates a low resistance conductive path. These FPGAs

are nonvolatile, do not require external Flash and are radiation tolerant. State of the art

ultra power 40 nm FPGA, proposed by Lattice Semiconductor (SiliconBlue), consumes

42 µW in stand-by at the nominal voltage of 1.2V. Dissipation is mainly due to the

640 logic cells (i.e. BLE 4 input LUT and Flip-Flop) and 32Kb of volatile RAM [41].

A One Time Programmable (OTP) based memory is used inside this FPGA. OTP

antifuse non volatile memories are scalable till 20 nm, show densities up to 32 Mb and

depending on the capacity and the size of the boot code multiple programming cycles

can be obtained. In fact, though Antifuse is an OTP, it can emulate a Multiple Time

Programmable MTP for a few cycles of endurance. In fact, 1Mb memory can be chosen

if 128Kb of code may need to be updated up to 8 times in the field [42]. The area of an

OTP memory is 0.8mm2 for 1 Mb density. State of the art OTP memories are slower

than SRAM, DRAM, or even plain old ROM, but they are usually fast enough to allow

firmware to execute in place (XIP), without copying the code into DRAM and in some

cases even skip the SRAM based L2 Cache. Memory array connects to the system over

a 32-bit parallel interface that runs synchronously with the on-chip bus, so it’s four

times faster than quad serial flash memory or serial EEPROM, giving 40 ns as random

access time. Besides the low endurance, the OTP requires an internal charge pumping

thus increasing the area consumption.

Flash-based FPGAs are similar to their SRAM counterparts in that their configu-

ration cells are connected together in a long shift-register-style chain. These devices

can be configured off line using a device programmer or by the user. State of the

art Flash based FPGA are commercialized by Microsemi. In IGLOO nano FPGA a

130 nm, 7 metal layers, Flash-based CMOS process is used. This FPGA consumes

only 5 µW in stand-by at the nominal voltage of 1.2V with 10k LUT and FF [43].

Microsemi flash-based IGLOO nano allows 1us instant on. This feature helps in system

component initialization, execution of critical tasks before the processor wakes up, setup

and configuration of memory blocks, clock generation, and bus activity management.

Others solutions are instead optimized to operate reactively or periodically. Rapid

stopping and starting of the FPGA fabric and related IOs while preserving the state of

the FPGA fabric is possible with Flash-based FPGA. In State of the art technologies 100

us are requested to enter in or exit from the sleep mode, moreover only 1 mW in sleep

mode and 10 mW static power dissipation during operation of 50 K LUT and FF are
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Figure 1.13: Grade of maturity in the process flow for many hybrid NVM FPGA with

different technologies (adapted from [46]).

achieved. The main concerns related to the integration of Flash on chip are related both

to the Flash cells that require high quality tunnel oxide, interpoly dielectric and two

polisilicon layers (control gate and floating gate) that require additional thermal budget.

Moreover high voltage transistors are required. Hybrid technology: SRAM and Flash

have also been fabricated. State of the art Lattice XP2 FPGA offers instant-on and non

volatility of Flash and the reconfigurability of SRAM in one chip [44]. Densities from 5K

to 40K with 4-input Look-up Tables (LUTs) and instant on (1 ms) are achieved. Update

logic configuration while equipment continues to operate is possible, thus giving the

flexibility to load a new bitstream when the processor is running. This FPGA consumes

102 µW in stand-by at the nominal voltage of 1.2V. Usually the Flash architecture is a

NOR but also NAND is available [45].

1.9 Hybrid architectures: FPGA and ReRAM

The improvement of FPGA performances by using nonvolatile emerging memories is

gaining importance in recent years and can be considered one of the key features of this

thesis. The possibility of integrating memory and logic in a distributed way without

silicon area overhead will give rise to disruptive hybrid architectures both inside the
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FPGA BLE (such as: nonvolatile Flip-Flop [47] [18] or nonvolatile Look-up-Table)

and/or in the routing resources (SBs or CBs). By stacking emerging memories with

CMOS devices, new routing switches can be achieved to reduce FPGA area, remove

external Flash, thus reducing board area and obtain instantly-on capability. As a

consequence we expect to reduce the power consumption related to the in-rush and

SRAM reconfiguration after power up, and dynamic power consumption due to the area

shrinking (Sec. 1.7.1). In [48] it is estimated that a 3D-FPGA with the configuration

memory stacked on top of FPGA logic and routing can achieve 57% smaller area than

a baseline 2D-FPGA in 65nm CMOS technology. It is shown that the size of the

configuration memory cell plays a key role in the degree of performance improvement

achieved by a monolithically stacked 3-D FPGA. For a memory cell that is <0.7 the

area of an SRAM cell, a 3D-FPGA can achieve 3.2 times higher logic density, 1.7 times

lower critical path delay, and 1.7 times lower total dynamic power consumption than

the baseline 2-D FPGA at the 65-nm technology node. The size of the configuration

memory is determined by the design rules of the specific process design kit and usually

is larger than the physical dimensions of the plug or the via between metal lines (Fig. 4.9

left). Fig. 1.13 shows the grade of maturity of hybrid FPGA architectures. A full

physical implementation was demonstrated in [49], using a novel architecture to replace

6T-SRAM based configuration cells that will be explained in Sec. 1.9.2.

1.9.1 ReRAM in switching blocks: 2T-1ReRAM architecture

As described in Sec. 1.6 currently used CMOS routing switch consist of a pass transistor

controlled by a 6T-SRAM cell to provide the routing function. The 2T-1R switch

utilizes a ReRAM cell in the signal path removing both the 6T-SRAM and the pass

gate. The main advantage of this solution is the area gain, from 120F 2 to 4F 2 and

the reduced RC if the ReRAM resistance in the low resistive state is below the on

resistance of the pass gate (1 kΩ). Nonetheless, speed gain saturation is obtained since

repeater buffers for driving interconnect circuit have on-resistance of order of 1 kΩ thus

limiting the delay reduction [50]. The architecture that has been introduced using

the 2T-1R structure is called crossbar. This architecture is composed of a bistable

memory element (typically a ReRAM, Sec 1.2.4) embedded by two sets of parallel

conductive interconnects crossing perpendicularly (Fig. 1.14). The crossbar architecture

is programmed by applying voltage pulses to horizontal and vertical lines. In Fig. 1.14
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switch S00 can be programmed to be on by applying VPP to X0, grounding Y0 and

applying VPP/2 to the other lines, where VPP is the programming pulse for the ReRAM

and has to be greater than the threshold to have the switching for a defined pulse width.

VPP/2 is less than the threshold. Since the voltage difference between the two terminals

of S00 would become VPP, S00 will be turned on. With respect to all the other switches,

since the voltage difference for them would be VPP/2 or zero their states will not change

[28]. ReRAMs that do not show high non linearity between the off and the on state

can be used to implement such architecture if the crossbar does not exceed a specific

density (i.e the power consumption due to the leakage in the off path is acceptable).

For instance a 32×32 crossbar has been fabricated leading to a 72% reduction in chip

area [51]. Moreover, the programming conditions used to switch the ReRAM must be

carefully chosen, because the amount of current that can flow after the programming

time and before the end of the pulse can lead to an important power consumption. The

choice of the programming conditions is even more difficult because the time required to

program ReRAM devices usually follows a statistical distribution, thus the pulse width

should cover the worst case with consequences on the power consumption ([28] and

Sec. 2.3). Finally, it is worth to note that with this solution the programming current

and the signal trasmission current share the same path. Thus, during the programming

stage, the programming voltage propagates to the other circuits connected to the routing

switch, which might cause degradations and failures [52]. Some studies [53], [54] propose

also the use of crossbar arrays for high density storage applications without integrated

bipolar diode. In this case several constraints relies on the switching device that must

exhibits Ron higher than MΩ, non linearity, and a sufficient Roff/Ron ratio.

1.9.2 ReRAM in switching and logic blocks: 1T-2ReRAM architec-

ture

In [47], [49], [55] the 6T-SRAM cell is replaced by a structure consisting of one transistor

and two ReRAM cells in a voltage divider configuration (1T-2R NVE) to control the pass

gate or to store the data in a Look-Up Table (Fig. 1.15). Compared to the 6T-SRAM

routing switch, 1T-2R NVE switch leads to a density enhancement, since the two

ReRAM cells can be easily integrated between two metal levels in a standard CMOS

process flow. In [49] it was demonstrated that a 3D-FPGA with stacked configuration

memory, based on ReRAM technology, can achieve up to 40% smaller die area and
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Figure 1.14: (Left) Crossbar switch [28]. (Right) TEM image and schematic of a 48nm ×

48nm crossbar architecture.

up to 28% lower energy delay product than a baseline 2D-FPGA. Smaller area also

allows a reduction of the interconnection capacitance thus reducing the dynamic power

consumption and enabling same operational speeds at lower power [56]. Although

the 1T-2R NVE solution eliminates stand-by power consumption, the leakage current

through the ReRAM during run time (i.e. in continuous read operation) depends on

the resistance of the high resistive state. Maximizing the high resistive state is essential

to reduce the static power consumption during FPGA run time. Hence, materials

engineering and/or specific programming conditions (compatible with logic) are required

to provide a competitive solution with respect to SRAM based FPGA. In particular in

[49] an optimized ReRAM stack composed of nitrogen-doped AlOx was adopted showing

sub-µA programming currents, 10 years retention at 125 ◦C, 105 switching cycles, and

an Roff of 1GΩ (Fig. 4.13). Our research to satisfy the aggressive requirement on Roff

will be discussed in Chap. 3. In 6T-SRAM leakage current strongly depend on Vth, the

oxide thickness, and the feature size and vary in the range of pAs [57], [58]. This implies

that an Roff value higher than 1012Ω at a read voltage of 1V should be targeted to

reduce the power consumption during FPGA run time.
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+ - + -
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Figure 1.15: Configuration memory on a pass gate to establish connectivity between Logic

blocks. (Left) 6T-SRAM based. (Right) 1T-2R based with Nonvolatile Voltage divider

Element (NVE) using bipolar ReRAMs.

1.10 Main concepts on stochastic neural networks

In Sec. 1.1 we emphasized the poor efficiency of Von Neumann architecture because of

the sequential processing of fetch, decode and execute instructions that relies on the

read/write bandwidth between the processor and the memories. Not surprisingly, brains

of biological creatures are configured differently from the Von Neumann architecture.

The key to the high efficiency of biological systems is the large connectivity between

neurons that offers highly parallel processing power. The brain is thus a large neural

network. A neural network is composed of neurons and synapses. Neurons are the

basic processing units of the brain (Fig. 1.16). Each neuron receives electrical inputs

from about 1000 other neurons. Impulses arriving simultaneously are added together

and if sufficiently strong (i.e above a defined threshold) lead to the generation of an

action potential (i.e. neuron spike). Neurons communicate through structure called

synapses in a process called synaptic transmission. When an action potential reaches a

synapse, pores in the cell membrane are opened allowing an influx of calcium ions into

the pre-synaptic terminal. This causes a small packet of a chemical neurotransmitter to

be released into a small gap between the two cells. The neurotransmitter interacts with

receptors that are embedded in the post synaptic membrane. These receptors are ion

channels that allow certain types of ions to pass through a pore within their structure.

The pore is opened following interaction with the neurotransmitter allowing an influx of

ions into the post-synaptic terminal. It has been shown that a single voltage-dependent

ion channel exhibits probabilistic gating which is recorded as random opening and
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Figure 1.16: Human brain can be considered as a large neural network. Circle and

connections represent the neurons and the synapses respectively. Sketch of a biological

neuron showing the nucleus and the axon.

closing of an ion channel (Fig. 1.17). The opening of a single ion channel is capable of

triggering action potentials spike. Considering that only 100 ion channels are open at

the same time the stochastic behaviour of a single ion channel adds noise to the total

membrane current of the neuron and can change the transmembrane voltage dynamics

at and close to the threshold of firing [59]. This stochastic component motivates our

research in designing a neuron intrinsically stochastic as we will discover in Sec. 4.6.

Neuromorphic hardware research has gained a lot of importance in recent years due

to its promising low-power, fault-tolerant, and ultra-adaptative computing paradigms

[60],[61],[62],[63],[64]. Neural networks are employed to classify patterns based on learn-

ing from examples. Learning rules define and allow a modification of the synaptic

conductance on which relies the memory effect in biological brains. Long Term Potenti-

ation (LTP)/Long Term Depression (LTD) rules define an enhancement/depression in

signal transmissions between two neurons. Different neural network paradigms employ

different learning rules, but all in some way determine pattern statistics from a set of

training samples and then classify new patterns on the basis of these statistics. Current

methods such as back propagation use heuristic approaches to discover the underlying

class statistics. The heuristic approach usually involve many small modifications to the

system parameters that gradually improve system performance. Besides requiring long

computation times for training, the incremental adaption approach of back-propagation

is susceptible to false minima [65]. To improve this approach, many algorithms exploits
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Figure 1.17: Ion channel and patch clamp recordings of single channel activity: the

current flow through an ion channel over time shows a stochastic behaviour.

random numbers to improve learning. In particular, literature in the fields of neural

networks [66],[67] and of biology [68] suggests that in many situations, actually providing

a certain degree of stochastic, noisy or probabilistic behavior in their building blocks

may enhance the capability and stability of neuroinspired systems. Some kind of neural

networks even fundamentally rely on stochastic neurons, like Boltzmann machines [69].

In neuromorphic hardware, providing stochastic behavior to neurons using pseudo-

random number generators or thermal noise amplifiers will lead to significant overheads.

This explains interest in developing silicon neurons with an intrinsic stochastic behavior,

but which may be controlled.

1.11 Conclusions

In this chapter, we reviewed emerging storage class memories such as PCM, FeRAM,

STT-RAM and ReRAM as possible candidates both to fill the latency gap in the

memory hierarchy and to introduce new hybrid architectures to improve, for example,

existing FPGA embodiments. Concerning embedded volatile memories (i.e. 6T-SRAM)

we emphasized the problems related to the scaling of the voltage supply, the power

consumption due to leakage and variability due to advanced nodes. Advantages in

implementing a nonvolatile SRAM based on ReRAM were discussed as a background to

start our analysis on this architecture both related to the logic and to the switching

properties of ReRAM devices. We also provided an overview of several types of FPGA,

to identify possible paths of innovations on some blocks of the FPGA leading to area

and power gain. The implementation of new architectures such as 1T-2R or 2T-1R was

critically discussed to outline the constraints at memory level, hence define a strategy

for developing new CBRAM stacks that could satisfy these requirements. Finally,

29



1. INTRODUCTION

motivations and advantages in using stochasticity in hardware neural network were

briefly introduced in view of developing an extremely compact hybrid neuron that

exploits unavoidable variability in CBRAM devices.
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2

Characterization and modeling of

Ag-GeS2 based CBRAM devices

In this chapter, we introduce the empirical model used to explain and predict the main

switching parameters in CBRAM devices measured by electrical characterization. To

this aim a thermally activated hopping model is chosen to describe the ion migration and

the consequent filament growth/dissolution during set/reset process. The dependence

of Ron resistance (LRS) and the reset current on the compliance current is also take

into account. Parameters of the equations were mainly extracted by fitting of electrical

characteristics obtained both by DC quasi-static measurements and by pulse measure-

ments. Temperature effects will be also considered. Next, results of the electrical tests

on 8×8 1T-1R NOR memory array will be introduced.

A statistical analysis on the correlation between the programming conditions and

the percentage of CBRAM devices in the memory array that reversibly switch from

high resistive state (HRS) to low resistive state (LRS) will be performed. The cell to

cell and cycle to cycle variability of the switching parameters observed among different

CBRAM will be empirically explained. We conclude the chapter with a comparison

between the electrical performance of W-GeS2-Ag and Ta-GeS2-Ag based CBRAM to

gain new insights on the role of the inert electrode that rules the electron transfer and

the nucleation of the Ag phase leading to the filament growth and the switching from

HRS to LRS.
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CBRAM DEVICES

Figure 2.1: Steps of the switching process for W-GeS2-Ag based CBRAM devices and

corresponding DC Current-Voltage characteristic (main switching parameters are indicated).

First step: oxidation of the Ag top electrode and diffusion into the GeS2 electrolyte. Second

step: Reduction of Ag+ ions at the bottom electrode and nucleation of the new phase.

Third step: Ag-rich CF formation at the set event and switching from high resistive state

(HRS) to low resistive state (LRS). Fourth step: dissolution of the CF with re-oxidization

of Ag during the reset event. Fifth step: reduction of Ag+ ions at the top electrode.

2.1 W-GeS2-Ag based CBRAM devices

Fig. 2.1 displays a typical current-voltage characteristic of a Ag-GeS2 CBRAM device

obtained in DC regime applying a voltage sweep. At the beginning the cell is in the high

resistive state (HRS). To switch the cell from HRS to low resistive state (LRS) a positive

voltage is applied to the silver anode which oxidizes, generating Ag+ ions (step 1). These

cations under the influence of the electric field, migrate by hopping to the W cathode

where they are reduced (gain electrons) and nucleate, building-up the Ag-rich CF (step

2). After the CF has grown to make a metallic contact to the opposite electrode, the

cell switches to the LRS at the set voltage (Vset). The on conductance is limited by

the compliance current Icomp, that can be applied with the external semiconductor

parameter analyzer (SPA) or an integrated MOSFET. The cell retains the LRS unless a

sufficient voltage of opposite polarity is applied. To switch the cell from LRS to HRS

a negative voltage is applied. During the reset process, besides an electronic current
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Figure 2.2: Schematic representation of W-GeS2-Ag based CBRAM device. A Tungsten

(W) plug is used as bottom electrode. The electrolyte consists of a 50 nm thick GeS2 layer

deposited by RF-PVD and a thin layer of Ag deposited by a DC PVD process. The thin

Ag layer is dissolved into the GeS2 using the photo-diffusion process, as described in [75].

Then a 2nd layer of Ag is deposited to act as top electrode. The Ag-rich CF is considered

cylindrical with height h(t) and radius r(t).

flowing in the CF (step 3), an electrochemical current gives rise to Ag+ ions that, not

contributing at the metallic conduction in the CF, replate on the Ag electrode. In this

phase, the cell switches from LRS to HRS. Conventionally, Vreset and Ireset are defined as

the peak of the reset curve. In the HRS the CF can be partially or completely dissolved

inside the GeS2 depending on several factors (step 4) [70]. During this thesis, both

isolated 1CBRAM cell (1R) and 1T-1CBRAM (1T-1R) cells were electrically measured.

2.1.1 Empirical model of the resistive switching in W-GeS2-Ag

The CF formation is determined by the mass redistribution associated to the Ag+ ion

current J(t). Different approaches exist to describe J(t) depending on the step that

rule the kinetics of the filament growth [71, 72, 73, 74]. If the switching speed during

the program/erase process is related to the reaction rate at the cathode, Butler-Volmer

equation applies [71, 72]. The ion diffusion in the electrolyte is another possible growth

limiting step [72, 73, 74]. In this case the Mott-Gurney ionic hopping current can be

adopted to describe J(t). In this manuscript, we consider the CF as cylindrical, with

a radius r(t) and height h(t) (Fig. 2.2) we assume that the vertical and lateral time

evolution of the CF are proportional to the ion current density. Namely, dh/dt ∝ Jh(t)

and dr/dt ∝ Jr(t) [72].
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To reproduce some experimental evidences, we introduce an empirical parameter

(∆) in the expression of the Mott-Gurney ionic hopping current (Eq. 2.1). In particular,

if V (t) < ∆ some processes or combination of them related to the silver oxidation,

the migration of the ions through the chalcogenide, the electron transfer between the

incoming ions and the cathode or the nucleation of a new phase on the cathode are not

sufficiently activated to allow the switching from HRS to LRS. To obtain simulated

DC I-V characteristics, we describe the CF evolution with three stages: 1) the vertical

growth; 2) the lateral growth; 3) the lateral dissolution. The CF vertical (dh/dt) and

lateral (dr/dt) time evolutions are thus described as follow:

dh

dt
=

Jh(t)

qNi
= vh exp

(

−EA

kBT

)

sinh

(

αq
Vc(t)−∆

kBT

)

(2.1)

dr

dt
=

Jr(t)

qNi
= vr exp

(

−EA

kBT

)

sinh

(

βq
Vc(t)−∆

kBT

)

(2.2)

where q is the elementary charge, Ni is the density of the metal ions in the solid

electrolyte, vh and vr are fitting parameters for the vertical and lateral evolution

velocities, EA is the activation energy for overcoming energy barriers in the electrolyte

lattice (considered isotropic), kB is the Boltzmann constant, T is the temperature and

α and β are fitting parameters to take into account vertical and lateral electric field

dependencies. Once h(t) and r(t) of the conductive filament are evaluated, the resistance

of the cell is simply calculated as the sum of two series resistors:

Rc =
ρonh(t) + ρoff(L− h(t))

πr2(t)
(2.3)

where ρon is the resistivity of the Ag-rich nanofilament, ρoff is the resistivity of the

chalcogenide and L is the chalcogenide thickness. Since our measured values for Rset are

in the order of few kΩ, Joule heating effect is neglected. Indeed, as shown in [73], the

temperature increase in the CF becomes relevant for filament resistances in the order

of few tens of Ohm. Moreover, in [72] the Joule heating effect was introduced with an

empirical formula to take into account the non-simmetry of the DC I-V set and reset

curves, in our equations this feature is introduced by the parameter ∆ itself. Table 2.1

shows the parameters used in our simulations extracted by fitting of the electrical

measurements (both quasi-static and dynamic) of GeS2 (50 nm) based CBRAM devices.

The value of ρoff can be estimated considering that in the pristine state the chalcogenide
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Figure 2.3: Simulated sequence of the set and reset transients: (a) Up-down voltage sweep

applied to the GeS2 (50 nm) based CBRAM cell; (b) vertical and (c) lateral evolution of

the corresponding CF. The set occurs when the CF reaches the top electrode h(t) = L.

Since the compliance current is enforced into the device, the applied voltage, Vc, decreases

abruptly to a constant value: Vc=RsetIcomp and the CF radius is expected to grow laterally

[79]. At the beginning of the reset process the CF starts to laterally dissolve and the reset

occurs when the CF radius shrinks to zero.

measured resistance is above 1 GΩ, while the value of ρon has been extrapolated assuming

a CF radius ≃1 nm from resistivity measurements of Ag nanofilaments reported in [76].

Similar values for ρon were also reported in [77] for GeSe and [78] for GeS2. Note that

in the pristine state Roff is higher with respect to the measured values obtained after

few cycles. This can be due to a modification of the chalcogenide resistive properties

due to diffusion of the Ag cations. Hence, other values of ρoff will be used in simulating

the electrical behavior of devices previously cycled (Sec. 4.6).

2.1.2 Set and reset operation in quasi-static mode

Fig. 2.3 illustrates the procedure adopted to simulate a DC (or quasi-static) set/reset

transient: the double voltage sweep Vc(t) applied to the GeS2 (50 nm) based CBRAM is
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Table 2.1: Parameters used in the simulations for Ag-GeS2(50 nm)-W 1R CBRAM devices

Parameter Value Parameter Value

vh 0.07 m/s vr 0.05 m/s

ρon 2.3 × 10−6 Ω m ρoff 8 × 103 Ω m

α 0.4 β 0.35

EA 0.4 eV L 50 nm

A 0.2 V ∆ 0.15 V

illustrated in (a) as well as the corresponding simulated vertical h(t) (b) and lateral r(t)

(c) evolution of the CF according to Eqs. 2.1 and 2.2 solved analytically. During the

program or set phase a positive staircase from 0 V to 0.55 V is applied to the top electrode

of the CBRAM. Under the positive bias the CF starts to grow according to Eq. 2.1 and

the set event occurs when the filament reaches the top electrode (i.e. h(t) = L). After

the set, the external Semiconductor Parameter Analyzer (SPA) regulates the applied

voltage to provide a compliance current (Icomp) until the end of the positive ramp.

Consequently, Vc decreases abruptly to the value Vc = RsetIcomp. In this second phase,

the CF grows laterally according to Eq. (2.2) starting from a initial value dependent on

the compliance current. Then a staircase down signal is applied to the top electrode to

enable the reset process: the CF tends to laterally dissolve by oxidation of Ag atoms of

the CF and the reset occurs when the radius shrinks to zero.

Fig. 2.4 (left) shows experimental and simulated quasi-static I-V characteristic

obtained when applying to the top electrode the double sweep voltage shown in Fig. 2.3.

An asymmetry of the set and reset voltages appears, in particular (Vset ≃ 350 mV and

Vreset ≃ -80 mV), which was also reported for the same stack in [73]. Simulations with

different ∆ values were performed to fit the experimental Vset and Ireset. An increase

of the parameter ∆ reduces the effective voltage drop inside the solid electrolyte, thus

decelerating the vertical and lateral growth of the CF. Therefore, the higher ∆ is, the

higher set voltages and lower Rset values are, if the filament is assumed to grow laterally.

As a consequence of the lower Rset, a larger current and voltage need to be applied to

dissolve the conductive filament during the reset (Fig. 2.4). Simulations well reproduce

data when ∆ is fixed to 0.15 V. Fig. 2.4 (right a) shows the set resistance obtained by

programming our devices with different values of external Icomp. For these measurements

the positive voltage ramp is stopped at compliance, preventing the expected lateral
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Figure 2.4: (Left) Experimental (symbols) and simulated (lines) current-voltage curves

obtained by applying a voltage sweep as illustrated in Fig. 2.3. The compliance current was

1 µA (Icomp= 1 µA). Experimental data shows a strong asimmetry for the set and reset

voltage. Different ∆ values impact on Vset, Vreset and Ireset. Data are best fitted fixing

∆ equals 0.15 V. (Right a) Rset dependence on Icomp. The experimental data (symbols)

are fitted with the inversely proportional relationship Rset=A/Incomp where A = 0.2 V and

n = 1. The value of the radius corresponding to the obtained Rset is also shown. (Right b)

Ireset as a function of Icomp enforced during the previous set operation.

growth of the CF. The dependence of Rset on the compliance current follows an empirical

power-law relationship [80]:

Rset =
A

Incomp

(2.4)

A and n being the fitting parameters. It is noteworthy that our experimental data at

room temperature are best fitted with A = 0.2 V and n = 1. Note that A corresponds to

the voltage applied on the cell after the set occurrence during quasi-static programming

(Fig. 2.3 (a)). The CF radius at t = tset can be calculated by introducing Eq. 2.4

in Eq. 2.3 as illustrated in Fig. 2.4 (right). Moreover, experimental data show that

larger Icomp determines a larger reset current (Ireset), which is defined as the maximum

current flowing into the CBRAM during the reset phase. Fig. 2.4 (right b) shows that

the simulated Ireset reproduces the experimental data for several orders of magnitude

of Icomp. Due to the very low value of the reset current that we achieved, the reset

mechanism should be based on electrochemical reactions, and a thermal rupture of

the CF should be excluded (at least for low Icomp) [81]. In order to investigate the
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Figure 2.5: (Left a) Experimental (symbols) and simulated (lines) switching voltage

Vset versus sweep voltage rate. The inclusion of ∆ in the model allows to reproduce the

saturation of Vset for low sweep voltage rates. (Left b) Experimental setup to perform

pulsed test. (Right) Experimental (symbols) and simulated (lines) switching time tset as a

function of the applied voltage amplitude. Simulation carried with ∆ = 0.15 V reproduces

the abrupt increasing of tset when VA ≃ 0.2. In the inset typical oscilloscope trace of Vc

and VA during a set operation.

dependence of Vset with the kinetic of the switching process, we varied the sweep rate

γ of the ramp voltage signal over seven orders of magnitude recording the obtained

set voltages. Tests performed with a ramp rate γ < 1 V/s were conducted with a

parameter analyzer, while a pulse generator was used for higher ramp rate. We used a

series resistance of 1 kΩ is added in series to the cell while an active probe measures the

voltage drop on the memory device (Fig. 2.5 left b). The series resistance limits the

current overshoot during set transient and allows the detection of the set event as a

drop of voltage detected by the probe with respect to the input signal. Fig. 2.5 (left)

shows that Vset increases with the ramp speed of the applied voltage, but for ramp rate

below 1 V/s, Vset ≃ 0.2 V approaching a saturation value. This behavior is captured by

our simulations by fixing ∆ equal to 0.15 V.

2.1.3 Set and reset operation in pulse mode

In this section results of the pulse mode programming are presented. Inset of Fig. 2.5

(right) shows a typical programming pulse. Right after the set, which is evidenced

by a sudden drop of the signal on the device because of the configuration reported in

Fig. 2.5 (left b), the cell voltage slightly decreases as a consequence of the supposed
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lateral growth.

To simulate the AC transient we calculate the vertical and lateral growth of the CF

when a rectangular pulse VA(t) is applied to the series of the CBRAM and the load

resistor. Before the set, as the cell resistance is in the order of GΩ we can assume that

Vc = VA. After the set, the voltage on the CBRAM cell can be calculated with the

voltage divider formula. In this case Vc(t) is a function of both r(t) and VA(t) so the

lateral evolution is the solution of the system of Eqs. 2.2 and 2.3 and must be solved

numerically. Fig. 2.5 (right) displays the switching time as a function of the voltage

applied to the cell. The inverse of the switching time exponentially depends on the

applied voltage when VA is above 0.2 V. However, at lower voltages tset increases much

faster, indicating that a much longer time is required to set the cell. This behaviour

has been widely reported in the literature [73, 74, 80]. Fig. 2.5 (right) also shows that

simulations well reproduce the experimental data. For voltage value between 0.2V and

1V, the dependence of tset versus VA (i.e. the slope of the curve d(ln t)/dV ) is determined

by the fitting parameter α in Eq. 2.1, while at lower voltages the introduction of the ∆

parameter allows to reproduce the abrupt increase of the switching time. Fig. 2.6 (left)

shows the evolution of the CBRAM resistance Rc after the set event for different load

resistances (RL). By decreasing RL a lower Rc is obtained. Indeed the effect of RL is to
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Figure 2.7: Flow chart of the compact model for Ag/GeS2 CBRAM cells.

reduce Vc(t) thus preventing the radius growth (Fig. 2.6 left down). We also show that

simulations well reproduce both the kinetics of the Rc evolution and the asymptotic

resistance values obtained with different RL. Fig. 2.6 (right) reports the time evolution

of the simulated RC (up) and r(t) (down) for different applied voltages VA. A load

resistance of 1 kΩ has been used. As expected VA influences the value of Rc.

2.1.4 Flow chart of the compact model

The proposed model explains the time dependent switching process of CBRAM cells

and it has been implemented in Verilog-A language for electrical simulations in the

process design kit of ALTIS Semiconductor [82]. Fig. 2.7 shows the flow chart of the

implemented model: the input of the device is the voltage V (t) and the output is the

current I(V (t)). A memory module stores the quantities h(t), r(t). The value of r(t = 0)

is determined by the current compliance, and the initial height (h(t = 0)) is assumed

to be zero. The evolution of these two internal quantities is used to calculate Rc(t)

according to Eq. 2.3. At each time step, if h(t) < L (i.e. the cell is in the off state),

Eq. 2.1 is used to calculate the new h(t). If h(t) = L (i.e. the cell is in the on state),

Eq. 2.2 is used to calculate the new r(t). When the RESET occurs (r(t) = 0), h and

r have to be reinitialized: h is set to zero and r is evaluated substituting Eq. 2.4 in

Eq. 2.3. The inclusion of the cell to cell variability in the model will be considered in

Sec. 2.2, after measurements of 8×8 memories array.
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characteristics obtained for the sample with thickness 30 nm at 27 ◦C and 130 ◦C. The

compliance current was 30 µA. Lower Vset were observed at 130 ◦C.

2.1.5 Temperature effects on the switching kinetics

In this section, we will describe the temperature effects on the switching parameters of

Ag/GeS2 CBRAM devices. As described in Sec. 2.1.2 and in [80, 70, 83] the set Resistance

(Rset) can be tailored over a wide range using the compliance current of an external

semiconductor parameter analyzer (SPA) or using an integrated transistor [84, 85] during

the set operation. At room temperature this dependence can be fitted with Eq. 2.4

and it was reported in Fig. 2.4 (right a). This equation has been demonstrated to be

independent of the material composition and the set voltage. Fig. 2.8 (left) displays Rset

obtained when programming a W-GeS2(30 nm)-Ag based CBRAM device with different

external compliance currents. The test has been performed at three temperatures,

namely 27, 85 and 130 ◦C, and indicate that for a defined value of the compliance

current, lower resistance values are obtained when increasing the temperature; hence

the exponent n, that gives the slope of the fitting curve, is no longer equal to 1. It

is worth noting that the pristine resistance is around 1 GΩ for all temperatures and

current compliance values. Fig. 2.8 (right) shows the measured and simulated current

voltage (I-V) switching characteristics performed at 27 ◦C and 130 ◦C in W-GeS2(30

nm)-Ag. These curves were obtained by applying a triangular voltage sweep with ramp
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Figure 2.9: (Left) Experimental (symbols) and simulated (lines) Vset (a) and Vreset (b)

versus temperature. (Right) Experimental (symbols) and simulated (line) Rset (a) and

Ireset (b) versus temperature obtained applying on the cell a compliance current of 30 µA.

Table 2.2: Parameters used in the simulations for Ag-GeS2(30 nm)-W 1R CBRAM devices

to take into account temperature effects.

Parameter Value Parameter Value

vh (m/s) 0.07 vr (m/s) 0.005

ρon (T = 300 K) (Ω m) 2.3 × 10−6 α 0.4

ρon (T = 400 K) (Ω m) 93 × 10−6 β 0.35

EA (eV) 0.4 ρoff (Ω m) 8 × 102

A (V) 0.2 ∆ (V) 0.15

rate dV/dt = 1 V/s and compliance current equal to 30 µA. Fig. 2.9 (left) displays

the measured (symbols) and calculated (lines) set and reset voltages (Vset, Vreset) as

a function of the temperature. As the temperature increases, the Vset decreases while

Vreset remains almost constant. The experimental results are well reproduced by the

simulations. The model predicts an increase of Vset for lower temperature. Experimental

results reported in [86] for Cu-Cu2S based CBRAM devices show the same trend.

Clearly, in the proposed model the ions diffusion is enhanced at higher temperatures

(Eq. 2.1) thus speeding up the set process and explaining the Vset decreasing. The weak

dependence on temperature measured for Vreset is attributed to the lower set resistance

values collected at high temperatures (Fig. 2.9 right a), that could veil the impact of

the temperature on Vreset. It is worth noting that in order to capture the experimental
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Ireset values we used a resistivity ρon of the CF increasing with temperature (Tab. 2.2).

This seems reasonable since a metallic behavior for the conduction has been measured

for both CBRAM and even OxRRAM in the low resistive state [87, 88, 85].

2.2 Switching probability in W-GeS2-Ag based

CBRAM devices

After having investigated isolated 1R and 1T-1R devices, we characterized the switching

behavior of 64 cells organized in a 1T-1R NOR 8×8 memory array. The transistor

in series has length L=140 nm and width W=500 nm. The aim of this section is to

provide a statistical analysis on the correlation between the programming conditions

and the percentage of CBRAM devices in the memory array that reversibly switch

from high resistive state (HRS) to low resistive state (LRS) and vice-versa. In fact,

CBRAM devices exhibits cell to cell variability in the set and reset voltage/time both

inside the same memory array and among memories array of different dies in the wafer.

A statistical analysis on the switching conditions is required to improve the model

described in Sec. 2.1.4 taking into account the cell to cell variability. In this case, the

model describes the switching parameters of the memory defining the programming

conditions that lead to the highest switching percentage on a total of 64 devices.

The cell to cell variability is generally corroborated by the cycle to cycle variability

both for the set and the reset operation, thus complicating the statistical analysis or

the development of compact models.

On 1T-1R structures organized in a memory array the programming conditions

include: the polarization of the transistor i.e. the pulse amplitude (Vg) and width

applied at the gate (tpw), the voltage on the bitline (V BL) and the polarization of the

anode (top electrode) (Va) of the CBRAM device (Fig. 2.10). During the set operation,

the bitline is grounded, the anode is polarized and the 8 wordlines are sequentially pulsed.

During the read operation, the bitline and the wordline are polarized and the current

is measured at the anode of the CBRAM. During the reset operation, the anode is

grounded, the bitline is polarized and the 8 wordlines are sequentially pulsed (Fig. 2.10).

Programming conditions can be defined as strong (high voltage, long pulse width) or

weak (low voltage, short pulse width). Weak programming conditions determine a

percentage of devices reversibly switched that is lower than 100%. To characterize the
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Figure 2.10: (Left up) Schematic of the 1T-1R structure. (Right up) Schematic of the

8×8 NOR memory array (only three lines represented). During the read operation (right

up), the anode (Va) is grounded, the bitline (V BL) is polarized to 0.1V and the wordline

to 1.5V. During the set operation (left down), the bitline is grounded, the gate is pulsed

(Vg, tpw) and the anode is polarized. During the reset operation (right down), the anode is

grounded, the gate is pulsed and the bitline is polarized.

cell to cell and the cycle to cycle variability related to the set process we proceed as

follows: the resistance values of the 64 devices in the memory array in the HRS are

measured. Next, we switch the 64 devices applying a pulse amplitude on the wordline

of 1.5V, a defined pulse width (tpw) and voltage on the anode (Va) and we measure

the final resistance of all the devices (first set). A reset with a strong condition is then

applied. Using the same set condition of the first cycle we set the devices again. Finally

a last reset is performed. The strong condition used in the reset ensure the switching

from LRS to HRS for all the previously switched devices in the memory array. Fig. 2.11

reports the Cumulated Distribution Functions (CDF) of the resistance values obtained
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Figure 2.11: (Left) Empirical CDF on 52 devices of the LRS and the HRS after two

set cycles and two reset cycles. A pulse of 100 µs and a voltage on the anode of 2V were

applied. (Right) Empirical CDF on 22 devices of the LRS and the HRS after two set cycles

and two reset cycles. A pulse of 400 ns and a voltage on the anode of 1.5V were applied.

after the two set/reset cycles for the cells switched in a reversible way. In particular,

in Fig. 2.11 (left) a strong set programming conditions was used corresponding to a

pulse width tpw of 100 µs and a voltage on the anode of 2V (Vg=1.5V). In Fig. 2.11

(right) a weak condition was used corresponding to a pulse width tpw of 400 ns and a

voltage on the anode of 2V (Vg=1.5V). Accordingly to the these distributions the

number of two times switched devices is lower if weaker conditions are applied. Mean

Ron and Roff values are reported in Fig. 2.12. Note that these values were calculated

considering the population of the two times switched devices (as reported by the CDF),

thus the total number varies depending on the applied condition (strong or weak).

Several set conditions, specified on the x-axis of Fig. 2.12, were applied to investigate

the set efficiency, the Ron and Roff values. Between every test, strong programming

conditions were applied to the memory array to reinitialize the 64 CBRAM devices in

the HRS. Fig. 2.13 shows the mean Ron and Roff values when 1.1V were applied on the

wordline (Vg). In this case slightly higher Ron values with respect to values of Fig. 2.12

were measured, regardless of the conditions used on the pulse width and on the anode.

This is because of the lower current value that flows into the device. The efficiency in

the set operation is reported in Fig. 2.14. The set efficiency is defined as the mean of

the percentage of the cells that switched during the first (or the second cycle) and the

percentage of cells that switched in both cycles. For example on 64 cells, a total of

42 cells switched in the first set or in the second set operation, while 36 switched in
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Figure 2.12: Mean Roff and Ron after two set/reset cycles for the switched devices. On

the x axis the conditions used during the set operation are reported (voltage on the gate

1.5V). A fixed strong reset conditions was applied.

both cycles. The set efficiency will be 60%. Conventionally, cells are considered in LRS

if the resistance is lower than 20 kΩ, while are considered in HRS if the resistance is

higher than 200 kΩ. Fig. 2.14 displays the set efficiency as a function of the voltage on

the anode for a constant wordline voltage of 1.5V (left) and 1.1V (right) (pulse width

on the gate specified in the legend, tpw). The efficiency raises with the voltage on the

anode and also the pulse width, even if the impact of the voltage is stronger. Longer

pulses increase the set efficiency, when the same Va is applied. Next, we investigate the

effects of programming conditions on the reset process analyzing the reset efficiency,

the Ron and Roff values. Mean Ron and Roff values are reported in Fig. 2.15 applying a

voltage of 2.5V (left) and 2V (right) at the wordline. Both the pulse width and the

bitline voltage (V BL) were varied accordingly to the x-axis of Fig. 2.15 while a fixed
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Figure 2.13: Mean Roff and Ron after two set/reset cycles for the switched devices. On

the x axis the conditions used during the set operation are reported (voltage on the gate

1.1V). A fixed strong reset conditions was applied.

strong set conditions was applied to ensure the switching from HRS to LRS. The Roff

value does not depend on the Vg, but the reset efficiency is strongly dependent on this

value, because it raises the voltage on the bottom electrode (Fig. 2.16). Note also that

the reset efficiency is constant when bitline voltages higher than Vg are applied. Longer

pulses increase the reset efficiency, when the same V BL is applied (Fig. 2.16).

2.3 Phenomenological explanation of variability in the

switching time

In Sec. 2.2 we claim that the applied set/reset conditions can control the set/reset

efficiency values. These values are related to the cell to cell and cycle to cycle dispersion
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Figure 2.14: Set efficiency (Switching probability) for 64 devices of the matrix varying

the voltage on the anode (voltage on the gate 1.5V (left) or 1.1V (right)). Switching being

considered successful if Ron lower than 20 kΩ and Roff higher than 200 kΩ.

of the switching parameters. In fact, measured quantities such as Roff or tset shows a

distribution both when the same device is cycled many times and when many devices

are cycled one time with the same condition. In the model that we proposed in Sec. 2.1,

Eq. 2.3 provides the most simply way to link the resistance to the filament shape. By

inserting, the measured distribution of Roff on a single cell cycled many times, we were

able to compute a list of the initial filament height of the CF. In this calculation the

resistivity of the chalcogenide (ρoff = 10−3Ωm) was used to provide a mean filament

height between 0 nm and 27 nm (L=30 nm). The filament radius was assumed to be

2.2 nm. The calculated filament height distribution was used as the initial condition

to solve Eq. 2.1 to evaluate the distribution of set time/voltage. The set process was

simulated both in quasi-static and pulse mode. In quasi-static mode the simulated ramp

rate was 0.6V/s. Similarly, the distribution of the time required to set the CBRAM was

computed assuming a pulse amplitude of 1V. The dispersion of tset is consistent with

results reported in Fig. 3.2 (right) for GeS2 thickness (L) of 30 nm. Calculations results

are reported in Fig. 2.17 and provide an empirical explanation of the distributions of

measured quantities in CBRAM devices. Clearly, also other parameters of the model

are influenced by statistical fluctuations with an effect on the measured quantities.

Moreover, we lumped the dispersion in Roff with the filament height, but we can expect

also a distribution of radii of the filament or different geometries. All these phenomena

should be taken into account for a more realistic description of the source of variability
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Figure 2.15: Mean Roff and Ron after two set/reset cycles for the switched devices. On

the x axis the conditions used during the reset operation are reported (wordline voltage

Vg=2.5V (left) or 2V (right)). A fixed strong set conditions was applied.

in GeS2 based CBRAM devices.

2.4 Ta-GeS2-Ag based CBRAM

In this section a Ta-GeS2-Ag based CBRAM is presented. A Tantalum plug was

fabricated instead of the Tungsten one of the CBRAM discussed so far. Deposition

of Tantalum gives a better control of the surface roughness at the interface with the

GeS2, thus is expected to improve uniformity in the switching parameters from device

to device and from cycle to cycle. The aim of this section is the comparison of the

electrical performances of the new stack with respect to the previous one. In both the

stacks the GeS2 has a thickness of 30 nm. DC sweep I-V characteristic for 1R devices are

reported in Fig. 2.18 using a compliance current of 30 nA. A mean reset current of only

6 nA was measured. Similar results were obtained for W-GeS2-Ag as shown in Fig. 2.4

(right). This demonstrates that external current compliance is effective in limiting the

current also in this stack and the potential interest in developing both the technologies

for ultra-low power applications. Fig. 2.19 (left) displays the I-V characteristics for

1T-1R devices (100 cycles). Set/reset voltage of 0.3V/−0.2V were measured. Fig. 2.19

(right) reports the Roff and Ron distributions measured on 100 cycles. A mean Roff/Ron

of 500 kΩ/5 kΩ is reported, similarly to the W-GeS2-Ag CBRAM (Fig. 3.8).

In Sec. 2.1 we introduced the parameter ∆ to take into account several features

of the electrical behavior of our devices such as: the asymmetry in the measured I-V
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Figure 2.16: Reset efficiency (Switching probability) for 64 devices of the matrix varying

the voltage on the bitline (voltage on the gate 2.5V (left) or 2V (right)). Switching being

considered successful if Ron lower than 20 kΩ and Roff higher than 200 kΩ.

curves (Fig. 2.4), the increase in tset in dynamic measurements for voltage lower than

0.2V (Fig. 2.5 right) and the voltage saturation for low ramp speed (Fig. 2.5 left). We

claimed that parameter ∆ can be related to the overpotential at the cathode to allow

the reduction of incoming Ag ions, but also on the nucleation and the growth of the new

phase on the bottom electrode. Quasi-static I-V measurements showed same set/reset

voltages for both Ta-GeS2-Ag and W-GeS2-Ag (Fig. 2.19 and Fig. 3.7 left up) with a

memory window of 102. For this reason, we decided to perform dynamic measurements

as described in Sec. 2.1.3. Results are reported in Fig. 2.20 and compared with the

W-GeS2-Ag stack. Note that for voltage applied higher than 0.3V, the experimental

data overlap among each other, thus no difference in tset exists between the two stacks.

We also investigate further at very low voltages (at the tset saturation limit) using the

electrical protocol described in Sec. 2.4.1.

2.4.1 Low-voltage pulse measurements

We characterized Ta-GeS2-Ag based 1T-1R devices organized in the 8×8 memory array

to obtain statistical results on the tset. We measured the resistance of the devices

in their pristine state. We chose the pristine state because, at our knowledge, the

mechanism for the switching would be the diffusion by hopping of the silver ions towards

the cathode and the reduction, thus we expect to investigate only the reduction and the

nucleation process. The migration component should be equal between Ta-GeS2-Ag and
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Figure 2.17: (Left up) Roff distributions as obtained in cycling many times GeS2 based

CBRAM devices. A log-normal distributions was used to fit the experimental values. (Right

up) Calculated left over filament height as could be obtained after a reset operation. (Left

down) Distribution of the time required to set the device starting from different left over

filament heights the pulse amplitude used was 1V. (Right down) Distribution of the voltage

required to set the device starting from different left over filament heights, when a staircase

ramp of 0.6V s is used.

W-GeS2-Ag because the GeS2 and the top electrode thicknesses are the same. Even the

photodissolution of Ag inside the GeS2 was kept equal (i.e same process parameters)

for the two stacks. In a first part of the test a constant voltage is applied at the anode

(V PL in Fig. 2.21), the in series transistor is on (Vg=2V) and the bitline is grounded

(Fig. 2.10). We measure the current through the devices with logarithmically spaced

reading operation. The total time of the measure depends on the applied voltage stress.

The test ends with a functional check that consists in resetting/setting the devices 2

times each. Fig. 2.21 shows a schematic of the electrical protocol used. The set time

(tset) was defined as the time required to decrease the resistance by a factor of 5 but also

10 was considered. The mean tset for a given applied stress was extracted at 30% and

45% of the tset distribution obtained on the 64 cells of the memory array (Fig. 2.22).

Fig. 2.22 (right) shows that when 190mV are applied at the anode tset is in the order
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Figure 2.18: DC I-V characteristics for Ta-GeS2-Ag 1R CBRAM devices. A current

compliance of 30 nA was used.
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Figure 2.19: (Left) DC I-V characteristics for Ta-GeS2-Ag 1T-1R CBRAM devices.

(Right) Resistance values Ron and Roff after set and reset respectively.

of 105 s considering the 45% of the distribution of the switched W-GeS2-Ag. When

the same stress was applied to Ta-GeS2-Ag devices we measured a tset in the order of

3× 103 s. We can conclude that the tset in W-GeS2-Ag is slightly higher with respect

to Ta-GeS2-Ag if very low voltages are considered (below 200mV). In other words,

considering the same set time a voltage difference of 10mV difference is required to

switch the same percentage of devices for the two studied stacks.
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Figure 2.20: Oscilloscope trace from dynamic measurements of Ta-GeS2-Ag: set (left)

reset (right). Time required to set versus voltage applied for 1R Ta-GeS2-Ag and W-GeS2-

Ag based CBRAM devices. Arrows indicate the difference in tset of the two stacks to achieve

the same percentage of CBRAM in LRS.

2.5 Conclusions

In this chapter, we provided a thermally activated hopping model to describe the ion

migration and the consequent filament growth/dissolution during set/reset process in

W-GeS2-Ag based CBRAM devices. The dependence of LRS resistance and the reset

current on the compliance current and the impact of the temperature on the switching

parameters was also explained by the model corroborating the electrical results on

1R and 1T-1R devices. The extracted parameters were used to implement a compact

model written in Verilog-A [82]. Next, by using a statistical analysis we analyzed the

correlation between the programming conditions used in 8×8 memory array and the

switching efficiency, providing an empirical explanation of the causes of variability in

the switching parameters. Results based on the statistical analysis were used to provide

a more reliable compact model that include the cell to cell variability in the memory

array. The chapter ends with a comparison between W-GeS2-Ag and Ta-GeS2-Ag based
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Figure 2.21: Schematic of the electrical test performed both on Ta-GeS2-Ag and W-GeS2-

Ag 1T-1R devices in the memory array to understand the role of different cathodes in the

tset. A constant voltage stress is applied at the plate line (anode) to switch the devices

from pristine state to LRS. Current is measured through logarithmically spaced readings.

CBRAM to gain new insights on the role of the inert electrode that rules the electron

transfer and the nucleation of the Ag phase that lead to the filament growth and the

switching from HRS to LRS.
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Figure 2.22: Time to set versus applied voltage in W-GeS2-Ag and Ta-GeS2-Ag based

CBRAM devices extracted at 30% (left) and 45% (right) of the tset distribution obtained

on the 64 cells of the matrix. A changing of 5 (10) times the initial resistance (Ri) have

been considered as switching criteria from HRS to LRS.
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3

CBRAM stack engineering for

increasing Roff

In hybrid (nonvolatile memory and logic) systems the circuit functionality is strongly

dependent on the switching characteristics of the integrated ReRAM cells that in turn

depend on the logic (i.e the type of the access MOSFETs) used to program the resistive

device. The circuit performance can be enhanced by material engineering of the resistive

switching memory cell, to satisfy the specific requirements of the targeted application.

For example, a nonvolatile SRAM should integrate ReRAM cells with very low switching

power both for set and reset, to be competitive with the consumption of a SRAM kept in

stand-by at the Data Retention Voltage (DRV) (Sec. 1.5). According to our simulations

(Sec. 4.1.2) a ratio Roff/Ron of 100 between the HRS and LRS is enough for a reliable

recovery operation considering our NV-SRAM architecture. Hence, Ag-GeS2(30 nm)-

W based CBRAM, characterized in Chap. 2, can be adopted for the development of

NV-SRAM designs, because of a resistance ratio of 200 and no forming step. On the

other hand, in the 1T-2CBRAM non volatile routing switch, proposed to control the

pass gate in FPGA, the maximization of Roff is mandatory while the switching power

consumption is not a primary concern (Sec. 1.9.2). This architecture requires research

at device level to increase the Roff value, otherwise can not be competitive with existing

(SRAM based) solutions. In the literature it is reported that the scaling of the device in

the horizontal dimension is effective in increasing the Roff value [89]. Our test structures

have a 200 nm plug (Fig. 2.2), thus the aim of this chapter is to find alternative solutions

to maximize the resistance ratio in view of developing hybrid routing switches. Increase
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Figure 3.1: (Left) Experimental (symbols) and simulated (lines), Vforming, Vset (a) and

Vreset (b) versus thickness. Two different initial conditions for solving Eq. (2.1) are used to

take into account the increase of Vforming and the saturation of Vset observed for thicknesses

between 50 and 150 nm. (Right) Experimental (symbols) and simulated (line) Rset (a) and

Ireset (b) versus thickness. A compliance current of 30 µA is used. Constant Rset values

are observed for the different samples.

of the chalcogenide thickness and the W-GeS2 or Ta-GeS2 interface engineering are the

two solutions explored in this chapter. In particular, four different CBRAM cell stacks

are investigated: i) W-GeS2-Ag, ii) Ta-TaOx-GeS2-Ag, iii) W-SiOx-GeS2-Ag and iv)

W-HfO2-GeS2-Ag.

3.1 GeS2 thickness effects on the switching kinetics

First we investigated the impact of GeS2 layer thickness (L) on the switching char-

acteristics of W-GeS2-Ag 1R based CBRAM cell both DC quasi-static and pulsed

measurements were performed. Fig. 3.1 (left a) shows that Vforming, defined as the first

Vset on a virgin cell, monotonically increase from 0.4 V for the device with L = 20 nm

up to 0.5 V for the sample with L = 150 nm, while Vset, measured in the following

cycles, saturates to approximately 0.4 V for thicknesses between 50 and 150 nm. These

results may be interpreted assuming that for L < 50 nm, the CF in the reset state is

almost completely dissolved, leading to a dependence between Vset and the thickness,

while for higher L values a portion of the filament might subsist on the W electrode,

or in the electrolyte as dispersed Ag-rich conductive clusters, acting as a new cathode

in the following cycles [90, 70]: thus reducing the effective distance the ions have to
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cover in the following set cycle to shunt bottom and top electrode. In particular, the

set voltage saturation seems to indicate that during this reset process, up to ≃ 50 nm

of filament is dissolved, regardless of the GeS2 thickness. To simulate the saturation on

Vset (Fig. 3.1 left a) we analytically solve Eq. 2.1 with the following initial conditions:

h(t = 0) = f(L) =











0, 0 < L < 50 nm,

50, L = 100 nm,

100, L = 150 nm,

Vreset is less sensitive to L that is in agreement with the constant measured Rset (Fig. 3.1

right a). To validate our hypothesis of a non complete dissolution of the CF in the cells

with thick active layer, we reset the cells in the sample with L = 100 nm applying two

different DC conditions. Reset states were obtained through a reset sweep starting from

the same initial set state (same compliance current) and interrupting the sweep at two

different voltages (Vstop): namely, -0.5 and -1 V. I-V curves acquired are displayed in

Fig. 3.2 (left) where we observed, in some cases, that for increasing Vstop, Roff increases

from 3MΩ to 50MΩ and the following Vset from 0.3V to 0.5V. The growth of Vset with

respect to Vstop for the sample with L = 100 nm can be explained by an increasing gap

between the top electrode and the residual portion of the CF, due to the increasing

final voltage in the reset sweep. On the contrary, sample with L = 20 nm exhibits a

Vset almost indipendent of Vstop, thus confirming that the CF is dissolved for both the

applied reset conditions. According to this test we observe a modulation of the off state

in CBRAM devices based on GeS2 thicknesses of 100 nm and 150 nm, but not for 20 nm,

30 nm and 50 nm. This result obtained in quasi-static measurements was not observed

performing reset operation in pulse mode, where the Roff was around 5MΩ for all the

considered stacks. The possibility to tune the Roff value in quasi-static mode with a

very long negative ramp is not of practical interest in designing hybrid architectures.

We also investigated the dependence of the tset with respect to the chalcogenide

thickness. Fig. 3.2 (right) shows the set time versus the applied voltage as obtained

during programming in the pulsed mode. A reduction of tset of about a factor 10 occurs

when decreasing the GeS2 thickness from 50 to 30 nm and similar results have been

reported in [74]. This enforce the hypothesis that the CF after reset is completely

dissolved, thus leading to the thickness dependence that is also confirmed by the model,

that takes into account the distance that ions have to cover. Considering valid the
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Figure 3.2: (Left) Experimental I-V electrical characteristics for GeS2 (L = 100 nm)

obtained stopping the reset sweep to -0.5 V (red dashed line) and -1 V (black dashed line).

(Right) Experimental (symbols) and simulated (lines) switching time as a function of the

applied voltage amplitude VA on the cell. Inset: oscilloscope trace of VA and Vc during a

pulse-mode set operation. A reduction of tset of about a factor 10 occurs when decreasing

the GeS2 thickness from 50 nm to 30 nm.

hypothesis of a non complete dissolution of the CF, we expect that the tset would

be almost constant for 100 nm and 150 nm even if dynamic measurements were not

performed. To conclude, the increase of chalcogenide thickness in W-GeS2-Ag based

CBRAM devices seems not a suitable approach to increase the Roff, hence we were

forced to search for other solutions.

It is worth to note that in the literature several reports show that dual-layer

electrolytes based on buffer oxide layers and chalcogenides [91], [89], [81], [92] or buffer

oxidizable metal layers and oxide [93] employed in ReRAM suppress leakage current

(Ioff) in the HRS, reduce the variability in set/reset voltages and improve data retention

characteristics. In cycled Cu-GeSex-TaOx-W based CBRAM, Cu ions were found

in the buffer layer and the reduction of variability was due to an enhanced control

and confinement of the nanofilament inside the TaOx layer. Average resistance ratios

of 85, 6.5× 104 and 1.6× 104 at compliance current of 1 nA, 50 µA and 500 µA were

measured [77]. In [91] and [92], Roff of 2× 105Ω and 107Ω in Cu-GeSe-Ta2-O5-W and

Cu-Cu:GeSe-SiOx-Pt were measured respectively. From these promising results we

decided to investigate the impact of buffer layers at the Ta-GeS2 and W-GeS2 interfaces.
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Figure 3.3: (Up) DC I-V characteristics for 1T-1R Ta-TaOx-GeS2-Ag based CBRAM

devices. A compliance current of 100 µA (left) and 130 µA (right) was used. (Down)

Schematic of the double set process (left). Roff and Ron values, obtained through low-field

measurements, corresponding to the I-V characteristics obtained with a compliance current

of 100 µA (right).

3.2 Ta-TaOx-GeS2-Ag based CBRAM

In this section we present a CBRAM stack that consists of Ta-TaOx-GeS2-Ag as possible

solution to increase the Roff. After the definition of the plug the Tantalum was oxidized

and the final thickness of the TaOx was 2 nm. A 30 nm thick GeS2 electrolyte was

deposited by RF-PVD. DC I-V characteristics are reported in Fig. 3.3 for 1T-1R devices

using a current compliance of 100 µA (up left) and 130 µA (up right). It is interesting

to note that during the first cycles a first set appears at around 0.5V and a second set

around 2V or 1.5V. The following cycles show that the device switches at the same

voltage of the first set (Vset 1). Only few reset cycles show a very low Ioff, then the

ratio Roff/Ron is strongly reduced because of the decrease of Roff (Fig. 3.3 right down).

The double set voltage could be explained with a soft breakdown of the GeS2 layer

followed by the breakdown of the TaOx layer at higher voltage. We believe that Ag ions
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Figure 3.4: Stochastic switching of 1T-1R Ta-TaOx-GeS2-Ag based CBRAM devices

during 2000 cycles using progressively stronger set conditions (or weaker reset conditions).

The set probability increases from 16% (left up) to 99% (right down).

diffuse into the TaOx layer degrading the oxide after few set/reset cycles, thus the role

of the TaOx as a barrier for the conduction in the off state is ineffective (Fig. 3.3 left

down). The effect of weak and strong conditions was also investigated on isolated 1T-1R

devices through endurance tests in pulse mode to corroborate the results obtained on

the memory arrays of W-GeS2-Ag. Fig. 3.4 shows a progressive increasing of successful

set operations applying 4 different set/reset conditions on the same device. Note the

increase in the set probability depending on the programming conditions: from weak

(left up) to strong (right down) that lead to a set probability of 99%.

3.3 W-SiOx-GeS2-Ag based CBRAM

In [92] a Cu-Cu:GeSe-SiOx-Pt based CBRAM was fabricated and the typical Roff/Ron

ratio of the memory cells written with programming current 100 µA was found around

104. For this reason, we decided to fabricate a CBRAM stack that consists of W-SiOx-

GeS2-Ag. The thickness of the GeS2 and SiOx layer were 30 nm and 3 nm respectively.

Both layers were deposited by RF-PVD. DC I-V characteristics are reported in Fig. 3.5
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Figure 3.5: (Left) DC I-V characteristics for 1T-1R W-SiOx-GeS2-Ag based CBRAM

devices (100 cycles). (Right) Evolution of Ron and Roff values by cycling of the device.

Low-field measurements.

(left) for 1T-1R devices using a current compliance of 200 µA. The CBRAM cell requires

a forming operation at a voltage of 1.3V. The first 40 cycles shows a very high Roff/Ron

ratio of 106, then the memory window is reduced and the Roff stabilizes around 100 kΩ.

Fig. 3.5 (right) also shows that the on resistance slightly decreases because of the

degradation of the oxide. Forming free CBRAM stacks are more suitable for embedded

applications, because of the fully logic compatibility that can avoid charge pumping

circuitry, thus gaining area and reducing cost.

3.4 W-HfO2-GeS2-Ag based CBRAM

In the last section of this chapter we investigate three different CBRAM stacks. The first

stack is the canonical W-GeS2-Ag based CBRAM here characterized as a reference. The

second and the third stacks consisted of an additional 1 nm and 2 nm HfO2 layer inserted

between the W-plug and the 30 nm GeS2 layer respectively (Fig. 3.6). The HfO2 layer was

deposited by atomic layer deposition (ALD). We performed electrical measurements both

on isolated 1T-1R devices and in 8×8 memory array. Typical DC-sweep current-voltage

(I-V) curves are shown in Fig. 3.7. Mean set/reset voltages of 0.35V/−0.2V (GeS2)

(Fig. 3.7 left up), 0.4V/−0.3V(HfO2(1 nm)+GeS2) (Fig. 3.7 right up), 0.5V/−0.4V

(HfO2(2 nm)+GeS2) (Fig. 3.7 left down) are reported. Interestingly no forming step

was required even for the HfO2(2 nm)+GeS2 sample. The compliance current (Icomp)

was fixed to 240 µA during the set operation and the measured reset current (Ireset)
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Figure 3.6: (Left) TEM cross section of HfO2(2 nm)+GeS2 based CBRAM device. (Right)

Schematic of the set and reset operations and qualitative band diagram assuming GeS2 a

p-type semiconductor and Φ(W)>Φ(Ag).

was 100 µA. This implies that the MOSFET is effective in limiting the current through

the CBRAM during the set event avoiding current overshoot. While Ron is around

5 kΩ for the three stacks, Roff significantly increases with the HfO2 barrier insertion. A

resistance ratio of two, five and more than six orders of magnitude were obtained in

GeS2, HfO2(1 nm)+GeS2 and HfO2(2 nm)+GeS2 respectively, through low-field (0.1V)

ramp measurement (Fig. 3.8 left). On 65 quasi-static and more than 1k cycles in pulse

mode we did not observe any degradation of the Roff value in HfO2(2 nm)+GeS2 memory

device. We believe that the working principle of the proposed memory stack relies on

the reversible formation of the CF inside the GeS2 layer without diffusion of Ag+ ions

in the HfO2 layer. The Ag+ ion hopping process in the HfO2 could be suppressed by

higher energy barriers in the potential energy surface of HfO2 with respect to GeS2.

We used a physical model to gain better insight on the improved memory ratio of

the optimized dual layer CBRAM devices. The model takes into account both direct

tunneling (DT) and the multi phonon Trap Assisted Tunneling (TAT) as conduction

mechanisms in the HRS simulated as a metal (W) - insulator (HfO2) - semiconductor

(GeS2) (MIS) structure [94], [95]. The GeS2 was assumed to be a p-type semiconductor

with a carrier concentration of 6× 1017 cm3. In the LRS, the structure relies on a metal

(W) - insulator (HfO2) - Metal (Ag), (MIM) structure, because of the metallic behavior

of the CF inside the GeS2. The DT current was calculated through the semi-classical

approach in the WKB approximation [96]. In the TAT model, the capture and emission
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Figure 3.7: DC I-V characteristics for GeS2 (left up), HfO2(1 nm)+GeS2 (right up) and

HfO2(2 nm)+GeS2 (left down) based CBRAM devices. Comparison of the three stacks

(right down).

rates are calculated by accounting for both the electron-phonon coupling and the lattice

relaxation required to accommodate the trapped charge during capture and emission

events [94], [97]. Fig. 3.8 (right) shows the simulated and experimental I-V curves of the

HfO2(1 nm)+GeS2 and HfO2(2 nm)+GeS2 cells in the HRS and in the LRS. Calculations

to evaluate the total (DT+TAT) current revealed that the increase of HfO2 barrier from

1nm to 2 nm reduces the Ioff current of 1.5 orders of magnitude. On the other hand, the

contribution of the HfO2 barrier on the total current in the on-state is almost negligible

because of the increased carriers concentration. For this reason, in the on-state HfO2

acts as a transparent barrier with respect to the conduction.

Ramped voltage-pulse measurements on 8×8 array of 1T-1R devices were performed

to identify the set/reset voltages conditions. In all cases, the pulse width (tpw) used

was 100 µs. Note that between every applied set pulse, we reset the devices with a

constant reset pulse and vice-versa. Applied voltages/time and polarization lines are
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Figure 3.8: (Left) Resistance values Ron and Roff after set and reset respectively. Roff/Ron

increases accordingly to the thickness of HfO2 barrier. In HfO2(2 nm)+GeS2 Roff/Ron of 106

is demonstrated. (Right) Experimental and simulated current in the HRS and in the LRS

before the set and the reset event in HfO2(1 nm)+GeS2 and HfO2(2 nm)+GeS2 devices. In

the HRS, simulated current is the sum of direct tunneling (DT) and trap assisted tunneling

(TAT) contributions, through a MIS structure and increasing the barrier thickness reduces

the leakage current of 1.5 orders of magnitudes. HfO2 traps have been modeled according

to [94], [97]. In the simulated LRS, because of the increased carriers concentration, the

difference in barrier thicknesses do not lead to distinct current levels.

summarized in Tab. 3.1. A read operation was performed to verify the resistance value

of the CBRAM after every set/reset operation. The purpose of these measurements

was to identify the programming conditions for an optimized resistance ratio. First,

we study the impact of the set conditions on the LRS values. Fig. 3.9 (left up) shows

that, once the LRS state achieved, the increasing of Vanode from 1.4V to 2.4V is not

effective in modulating the Ron values in GeS2 and HfO2(1 nm)+GeS2 CBRAM devices.

However, in HfO2(2 nm)+GeS2, Ron slightly decreases with the applied voltage, showing

a weak modulation from 7 kΩ to 3 kΩ. Fig. 3.9 (right down) shows that using different

gate voltages (Vgate) LRS can be modulated in a range of values from 100 kΩ to 2 kΩ

for all the three stacks. A slightly higher Ron was measured in HfO2(2 nm)+GeS2

when Vgate ranges from 1V to 2V. The decreasing of Ron in Fig. 3.9 (right down)

can be explained, considering that a larger compliance current would supply more

electrons to reduce more Ag+ in the electrolyte, thus creating a larger CF during

the set process [72]. An estimation of the current flowing through the CBRAM just

after the set event is reported on the top axis of Fig. 3.9 (right down). Further, we
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Table 3.1: Programming conditions used in 8×8 NOR memory array and isolated 1T-1R

devices.

8×8 Matrix

SET RESET

Vgate [V] Vanode [V] tpw [µs] Vbitline [V] Vgate [V] Vbitline [V] tpw [µs] Vanode [V]

Fig. 3.9 (left up) 1.5 1.4→2.4 100 0 2.5 2 100 0

Fig. 3.9 (right down) 0.6→2 2.5 100 0 2.5 2 100 0

SET RESET

Fig. 3.9 (left down) 1.5 2.5 100 0 1.6→2.6 2.5 100 0

Fig. 3.9 (right up) 1.5 2.5 100 0 2.5 1→2.4 100 0

1T-1R

Fig. 4.12 1 2.5 100 0 2.5 2 10 0

investigated the dependence of resistance levels in HRS with the applied reset condition.

In GeS2 and HfO2(1 nm)+GeS2 we found that for applied pulse on the gate higher

than 2.2V Roff saturates at 6× 105Ω and 2× 106 respectively. On the contrary, in

HfO2(2 nm)+GeS2, Roff achieves a resistance of 2× 108Ω when 2.6V is applied. We

performed Eldo simulations using the model of the integrated 130 nm MOSFET, to

evaluate, for different values of Vgate, the effective voltage drop on the CBRAM cell

before the reset event. The CBRAM cell resistance value used in the simulations was

10 kΩ. Results are shown on the top axis of Fig. 3.9 (left down). A voltage drop of about

1.3V on HfO2(2 nm)+GeS2 based CBRAM is required to obtain an Roff of 2× 108Ω.

Fig. 3.9 (right up) shows that Roff saturates for bitline voltages higher than 1.8V. This

is related to the saturation of the voltage drop on the CBRAM when the bitline voltage

lies between 1.8V and 2.4V for a fixed Vgate of 2.5V (Fig. 3.9 top axis). From the

above considerations the HfO2(2 nm)+GeS2 stacks was selected as the most promising

candidate for the 1T-2R NVE application. In Sec. 4.4 we will discuss in more details

the architecture and the foreseen advantages with respect to existing solutions.

3.5 Conclusions

In this chapter some of the electrical performances of CBRAM cells were studied

through DC I-V quasi static measurements and dynamic measurements. Interface

engineering effects in W-GeS2 or Ta-GeS2 based CBRAM were analyzed. Among other

measured CBRAMs technologies, our dual-layer electrolyte stack (2 nm HfO2−30 nm

GeS2) leads to a resistance ratio (Roff/Ron) higher than 106, reset current of 100 µA
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using a compliance current of 240 µA without forming step. We explained the improved

memory resistance ratio by means of physical modeling. Expected benefits of this

technology on 1T-2R NVE architecture will be discussed in the next chapter. It is worth

to note that our HfO2 based CBRAM paves also the way for multi-level storage in high

density applications.
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Figure 3.9: (Left up) Measured LRS for the three different studied CBRAM stacks as a

function of the voltage applied at the anode during the set operation. (Right up) Measured

HRS for three different studied CBRAM stacks as a function of the voltage applied at the

bitline during the reset operation. Effective voltage drop calculated for HfO2(2 nm)+GeS2

before the reset event is shown on the top axis. (To calculate VBE we used an Ron =10 kΩ).

(Left down) Measured HRS for three different studied CBRAM stacks as a function of the

voltage applied at the gate during the reset operation. Effective voltage drop calculated for

HfO2(2 nm)+GeS2 before the reset event is shown on the top axis. (Right down) Measured

LRS for the three different studied CBRAM stacks as a function of the voltage applied at

the gate during the set operation. Ron can be reduced by increasing the voltage on Vgate.

Compliance current flowing in the CBRAM just after the set event and corresponding to

Vgate is shown on the top axis.
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4

Nonvolatile hybrid (logic and

ReRAM) architectures

Back-End-of-the-Line integration, CMOS compatible voltage, fast programming time,

low power consumption and scalability are interesting features of ReRAM that are

pushing the development of new hybrid architectures. These architectures are also

expected to boost specific markets such as low power (mobile) embedded (Sec. 1.5),

reconfigurable logic (Sec. 1.9) or even in neuromorphic computing (Sec. 1.10). For this

reason, in this chapter, we will propose and discuss three architectures that belongs to

the three categories cited above. The first design that we will present is a nonvolatile

SRAM based on OxRRAM devices. We are going to show a methodology to verify the

robustness of this architecture in the case of variability of the logic. We will use an

advanced design kit (22 nm FDSOI) to set up worst case and Monte-Carlo simulations

in order to understand the critical points for reliable operations in this architecture.

This analysis will give us some indications on the most suitable ReRAM technology for

such application and the constraints on the logic. Hence, experimental results that we

obtained in Chap. 2 and 3 helped us in suggesting the most appropriate technology.

Based on these results, a new NV-SRAM based on CBRAM has been designed, simulated

using our compact model in CADENCE environment workflow, and finally fabricated

due to a bilateral project with ALTIS semiconductor. Next, we will discuss a Nonvolatile

element (1T-2R NVE) that could be used to control a pass gate in an FPGA switching

block or to store a data in a Look-Up Table (LUT). In this case, advantages in using our

optimized HfO2/GeS2 CBRAM will be highlighted. Finally, a circuit will be proposed
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ARCHITECTURES

that exploits the unavoidable intrinsic variability occurring in CBRAM devices. This

architecture, which can implement stochastic firing and might be useful for stochastic

hardware neural network, will be simulated and discussed.

4.1 OxRRAM based nonvolatile SRAM (8T2R NV-SRAM)

The structure of the nonvolatile 8T2R NV-SRAM cell is presented in Fig. 4.1. The cell

is designed with a 6T-SRAM cell (M1-M6) along with two additional p-type control

transistors (CM1 and CM2) connected between the data nodes (D,DN) of the SRAM

cell and the OxRRAMs (R1, R2). R1 and R2 are made accessible to the SRAM cell by

CM1 and CM2. TE and BE represent the top and bottom electrodes of the OxRRAMs.

Conventionally, a store (set) operation on the OxRRAM corresponds to a logical 1 and

the reset corresponds to a logical 0. All the simulations were performed using Eldo

simulator. The results are obtained using our 22 nm CMOS–FDSOI process design kit.

A behavioral bipolar OxRRAM model, calibrated on the experimental results obtained

on TiN/HfO2/Ti based OxRRAM devices was used (Fig. 4.2). Accordingly to the model

the threshold voltage for the OxRRAM store and reset operations are 0.7V and −0.7V

respectively. This is because a set voltage of 0.7V has been obtained applying a voltage

ramp of 107V s−1 (Fig. 4.2 right). No pulse measurements were available at the time of

developing the model, thus the set operation is determined by the rising part of the

applied pulse (typically around 108V s−1). Moreover, the model predicts a continuos

change of the resistance from the HRS to the LRS and the final LRS is determined

by the current flowing into the OxRRAM. On the contrary, the switching from LRS

to HRS is abrupt and the HRS has been fixed to 88 kΩ. This value was obtained as a

mean of low-field measurements during quasi-static DC measurements. In the proposed

6T-SRAM the ratio W/L of pull-up (M2 and M4), pull-down (M1 and M3), transfer

transistor (M5 and M6) and control transistors (CM1 and CM2) of the NV-SRAM are

set to: 100 nm/25 nm, 260 nm/25 nm, 100 nm/25 nm, and 220 nm/25 nm, respectively

(Fig. 4.1). The transistors are operated at a voltage of 1.1V accordingly to process

design kit. The NV-SRAM cell operation follows the sequence: normal (read/write),

reset (switching from LRS to HRS), store (switching from HRS to LRS), power-down,

power-up and restore.
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Figure 4.1: Schematic representation of Nonvolatile 8T2R SRAM (NV-SRAM) cell.

Dashed lines show the current path during RESET operation (left) and store operation

(right).

Before storing the information in the OxRRAMs, the reset operation was simulated

to ensure the HRS for the corresponding OxRRAM device. When the nodes D and

DN are equals to 0 and 1, respectively, R1 can be resetted by turning on the control

transistors CM1 and CM2 and putting CTRL2 line to 1.5 V. At this point, the resistance

of R2 remains unchanged due to the low voltage drop on it. At the same time, R1 faces

a negative voltage drop (0.8 V) that, if required, switches the OxRRAM into the HRS.

Similar to the R1 case, R2 can be reset if the SRAM nodes are flipped and the sequence

is repeated.

During the store operation, the logic state of the SRAM cell is stored in the

OxRRAMs R1 and R2. Let us assume that the node D has 1 and DN has 0. To backup

the information in the OxRRAM, the control transistors are turned on by lowering

CTRL1 to 0V and grounding CTRL2. The potential difference at the top and bottom

electrode of R1 results in a positive voltage drop across R1 which sets the resistance to

a LRS thereby, storing the information in the OxRRAM (Fig. 4.3). At the same time,

since there is no voltage drop across R2, its value remains unchanged in high resistive

state thereby storing the value 0. We used a pmos instead of a nmos to build a sufficient

voltage on the TE net.

Normally, a power-down in a circuit is performed by putting all the control lines to

ground. In our simulations, however, the power-down operation is performed by raising

the VSS pin of the cell to VDD and hence, the nodes D and DN are pulled up to VDD.
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Figure 4.2: (Left) Voltage ramp of 106 V s−1 applied to 1R-OxRRAM devices. The Set

Voltage is 0.7V. The experimental setup used has been defined in Fig. 2.5. (Right) Set

voltage VSet as a function of voltage ramp speed.

This is done to avoid resetting the state of the OxRRAM during the restore operation

that would cancel the resistance asymmetry between R1 and R2 and could compromise

the correct level restoration. The control lines BL/BLN and CTRL2 are also raised

to VDD to reduce the leakage through the transfer transistors and control transistors,

respectively.

The logic state of the SRAM has to be restored at power-up according to the

following sequence (Fig. 4.3): CTRL1 is lowered to ground turning on the control

transistors, VSS is pulled down to 0 V with a delay of 5 ns with respect to CTRL1,

and CTRL2 is kept at VDD as it was during power-down. As VSS is pulled down to 0

V, the resistance difference results in different discharging currents and difference in

voltage between D and DN, which is amplified by the SRAM latch. The low resistance

of R keeps D node at 1 while DN in pulled down to 0 through M3 due to the high

resistance of R2. In this way the logic levels in NV-SRAM are restored.

Before a new store operation the OxRRAM in the LRS must be switched to HRS.

This is possible forcing a logical 0 in the latch side where the OxRRAM is in LRS and

then raising CTRL2 with the control transistor in on state.

4.1.1 8T2R NV-SRAM cell static noise margin

The 6T-SRAM cell core of the 8T2R NV-SRAM has to be optimized such that even

under the worst-case conditions, it still functions properly. The sizing of the 6T core of
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Figure 4.3: (Up) Transient analysis of the OxRRAM based NV-SRAM to demonstrate

reset and store operations. The Store operation starts at 100 ns. The maximum current

flowing into the OxRRAM is 16 µA. (Down) Restore of the data after power-down. The

RESET operation at 4.04 µs shows that in the HRS state a current of 12 µA still flows

in the OxRRAM (R1) before the end of the pulse on CTRL1. A new store operation is

simulated on R2.

the 8T2R cell does not comply with the typical sizing of the pull-up pmos in 6T-SRAM,

which is usually kept at minimum due to area and stability constraints. The reason for

having a wider pmos transistor in the 8T2R NV-SRAM comes from the requirement

of a current of a few µA in order to write the OxRRAM during the store operation

as predicted by the model used. Since in the 22 nm FDSOI technology used in this

work, the pmos has a high threshold voltage of approximately 500mV, the store current

could only be met by increasing the pmos width. However, a lower threshold for pmos

would lead to a decrease of the sizing of these transistors. The pull-up and the transfer

transistors are considered to have the same strength to enable a reasonable value for
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Figure 4.4: (Left) Ron time evolution during store operation. The width of the pmos M2

is sampled in a range between 80 nm and 200 nm. (Right) Store time as a function of Rdrop.

the Read Static Noise Margin (RSNM) and Write Static Noise Margin (WSNM). The

Static Noise Margins (SNMs) are key parameters in the SRAM analysis and can be

defined as the highest value of noise between the two cell inverters for which the proper

functionality in each operation mode is maintained. The SNMs can be defined as

the largest (for retention and read) or the smallest (for write) square that can be

fitted between the butterfly curves consisting of the inverted and non-inverted curves

corresponding to respective operation mode. With the above mentioned sizing, the

NV-SRAM cell has a pull-up ratio of 1 (defined as the ratio of W/L between the pull-up

and transfer transistors and a cell ratio of 2.6 (defined as the ratio of W/L between the

pull down and transfer transistors) ensuring a RSNM of 180mV and WSNM of 320mV.

The addition of the control transistors and the OxRRAM does not affect the normal

operation of the SRAM cell as well as the SNMs. This is because of the use of CM1 and

CM2 which block the current leakage path through the OxRRAMs during the normal

operation.

4.1.2 The influence of VT variability on the stability of 8T2R NV-

SRAM

The impact of VT variability on the NV-SRAM operation is expected to be a major

constraint for obtaining a high yield. This is caused both by the potential difficulty in

ensuring reliable NV-SRAM specific operation modes, if mismatch is considered and

by the unorthodox 6T SRAM core sizing, with a larger than minimum pmos which
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degrades the write stability in the typical SRAM operation. The key yield-limiting

factor of the 8T2R OxRRAM based NV-SRAM is the reliability of the restore operation

as it strongly depends on the Roff/Ron ratio. Simulated store operation never fails as

the positive voltage applied on an OxRRAM device in HRS is always going to lower

its resistance by some value in a continuos model after the set threshold is reached.

However, under the random VT variations, the obtained Ron for a fixed operation time

will vary and therefore, the restore reliability may be compromised. The optimization

of store operation from the perspective of maximizing the cell Roff/Ron under timing

and transistor sizing (and hence stability) constraints becomes therefore the starting

point for the 8T2R NV-SRAM reliability analysis.

In particular, the Ron value that can be obtained in the store operation is determined

by two key parameters: the sizing of the pull-up transistor in the SRAM cell, here

analyzed only through its width, and by the duration of a store operation (i.e the time

in which the CM pmos is on). Fig. 4.4 (left) presents the dependence of the OxRRAM

resistance as a function of time during store for different values of the width of the

pmos in the latch. Accordingly to the behavioral model the decrease of resistance can

be separated into two different parts: the abrupt resistance drop in the first 20 ns and

the saturation of the resistance value as the store time increases.

The extracted Rdrop as a function of the store time shows clearly a threshold-like

behavior for both widths of the pull-up transistor. Once the decrease of the resistance

enters the saturation region the time that is necessary for obtaining a significant Rdrop

exponentially increases (Fig. 4.4 right). A consequence of the results presented in

Fig. 4.4 is that if a specific, high, Rdrop from the Roff is targeted, either the store time

or the width of the pmos have to be increased. The former solution however, would

cause a significant increase in the power consumption during store operation. The latter

solution would lead to the increase of the cell pull-up ratio, decreasing the SRAM cell

reliability during write operation and to the increase of the current flowing through the

OxRRAM. As depicted in Fig. 4.4 (right), if a significant Rdrop is targeted, the use of a

large width for the pmos can still lead to a more energy-efficient store operation due

to a much shorter store time. In order to illustrate this, let us assume that a 35 kΩ

Ron should be obtained and that the increase of the width linearly affects the current

during store operation. Decrease of the width from 200 nm to 100 nm leads therefore to

a 2× reduction in store current. At the same time though, such change of the width
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Figure 4.5: (Left) Variation of ±σVT a VT fail point as a function of the resistance ratio

in the worst case variation analysis. (Right) Distributions of store time required to obtain

various Rdrop obtained from a 10k samples Monte Carlo simulation for pmos width of

100 nm.

increases the required store operation time from 16 ns to 110 ns. As a consequence,

despite the lower magnitude of the current flowing through the OxRRAM, the energy of

store operation increased by approximately 5× for pmos width = 100 nm as compared

to the 200 nm. This behavior indicates that the store time is the dominant factor in

power optimization and should be minimized, as was described in Sec. 1.5.

The magnitude stability drop caused by the larger width of the pmos will also

depend on the initial VT ratio between the nmos and pmos transistors, but should the

width increase from the 100 nm to 200 nm, it will always be non-negligible. In our case,

with the VTP approximately 50% larger than the VTN and the transfer nmos width of

100 nm, changing the width between 100 nm and 200 nm leads to the stability factor

drop (represented as the µ/σ extracted from the statistical distributions of write static

noise margin in such a way, that the tail is properly evaluated) from 12.3 to 9.22. In

order to meet the typical 6σ yield target, the stability factor (µ/σ) should be higher

than 6. In this particular case the SRAM yield is therefore still maintained, but the

magnitude of this stability factor drop indicates a high importance of this analysis. The

only way to avoid an excessively high pmos width and a long store time is therefore to

reduce the targeted Roff/Ron. This is in turn limited by the minimum Roff/Ron required

to ensure the reliability of restore operation.

In order to investigate the stability in restore mode, a worst case (±nσVT) analysis

on VT was applied to each transistor in the 6T-SRAM cell, thus creating a situation
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where each device is working against the restore of the correct values in the nodes of

the SRAM cell. Increasing the value of n leads to a larger worst case mismatch and

allows analyzing the ±nσVT point where the proposed restore operation fails. The data

restore operation in our proposed scheme does not affect the resistance value of the

OxRRAM, so the use of passive elements should correspond exactly to the case with

OxRRAM devices. Moreover, substituting the OxRRAM devices with resistors allows

including Roff/Ron cases not covered by our OxRRAM model. Fig. 4.5 (left) depicts the

values of ±nσVT fail points for different Roff/Ron ratios. The reference resistance value

in this analysis was the Roff. Decrease of Ron aids the restore operation therefore in two

ways: lower Ron means larger current and stronger impact on data restore and larger

difference between Roff and Ron increases the current difference on both sides of the cell.

Both phenomena increase the stability of restore operation, exemplified by a larger n.

Accordingly to the model used, even for a pmos width of 200 nm and the delay of 200

ns, Ron during store reaches only 21 kΩ, corresponding to a ratio Roff/Ron of four. The

worst case mismatch analysis reveals that for this resistance ratio the restore operation

fails for n= 2 (Fig. 4.5 left) which is low from the stability point of view.

In order to correlate the worst-case analysis result with a typical yield evaluation, a

Monte Carlo (MC) simulation with random Gaussian variation applied to all transistors

of the SRAM cell was performed. This MC simulation was performed for a Roff/Ron

of four corresponding to n=2, as this is the maximum resistance ratio obtainable

in our 8T2R NV-SRAM. In this analysis, 41 failures in 10k samples were observed,

corresponding approximately to a 3σ yield. Since in the typical SRAM design, a yield

of 5 to 6σ is targeted, it can be expected that in the worst-case analysis the value of n

should be equal to at least 3 or 4. However, as depicted in Fig. 4.5 (left), the value of n

equal to 3 and 4 occurs only for a Roff/Ron of 10 and 20, respectively.

Yet another constraint for a reliable OxRRAM-based SRAM operation becomes

evident in the Monte Carlo analysis of the store mode. Fig. 4.5 (right) depicts a set

of histograms from a 10k sample Monte Carlo analysis for a pmos width of 100 nm

demonstrating the spread of store time required to obtain a Rdrop between 30 kΩ and

50 kΩ. Clearly, if a low Ron is targeted to satisfy restore conditions, the spread of the

required store time increases significantly, especially as the saturation region (above

20 ns in Fig. 4.4) of the resistance curve is reached.
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Figure 4.6: Transient parametric analysis of 1T-1R structure that shows both the time

required to set the CBRAM and the final resistance value. No modulation of Ron is obtained

increasing the voltage on the gate.

The stability of the restore operation, as demonstrated before, strongly depends on

the minimization of the Ron because the Roff was fixed by the model and by the selected

OxRRAM technology. In order to ensure that the expected, low Ron is obtained, the

length of the CTRL1 signal should be extended accordingly up to the worst case store

time in the far tail of statistical distribution (Fig. 4.5 right). The minimization of the

difference between the mean and the worst case far tail store times is therefore important

to reduce the power overhead coming from the operation time extension required for

reliable restore. As a result, the only efficient method to obtain a high ratio and hence

a high restore stability, is either by increasing the width of the pmos, or improving the

OxRRAM or use another type of resistive memory with higher Roff as will be described

in Sec. 4.3.

4.2 Simulations of 1T-1CBRAM structure

Development of behavioral compact models for a specific CBRAM technology usually

require a large variety of logic and CBRAM structures to achieve a good comprehension

of the device response to programming conditions or to size and/or type of the in series
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transistor. For example in [98] a specialized integrated circuit was used to program

the CBRAM devices. In this work we dispose of 1R devices, 1T-1R devices and 8×8

memory array. The model described in Sec. 2.1.4 was refined with electrical results on

8×8 memory array to include the cell to cell variability. The time required to set the

device was assumed to be the pulse width applied at the gate of the transistor in series

(Sec. 2.2). This is a conservative assumption that does not correspond to the real set

time, which can be precisely measured as described in Sec. 2.1.3. The efficiency curves

were used to establish the conditions that give more than 70% set/reset efficiency on 64

devices (Sec. 2.2). In implementing the model we defined a pulse width of 60 µs and a

voltage on the anode of 1.5V as the programming condition that gives 70% set efficiency

on 64 devices (Fig. 2.14 left). Fig. 4.6, obtained through a parametric transient analysis,

shows a tset of 11 µs when the voltage on the anode is raised to 1.6V. Thus the model

predicts a lower tset when the voltage on the anode is raised and the set efficiency is

around 80%. Modulation of Ron with respect to Vgate has not been taken into account

so far in the proposed model. The Ron value (CBRAM switched in the LRS) is 4300Ω

(Fig. 4.6). In a similar way, to establish reset conditions, we defined a pulse width of

10 µs and a voltage on the bitline of 2.5V. This condition gives 95% reset efficiency on

64 devices (Fig. 2.16 left). Fig. 4.7 shows that the time required to reset the CBRAM is

50 µs when the voltage on the bitline is 1.5V. The model still predicts a treset higher

when the voltage on the bitline is decreased. The Roff value (CBRAM switched in the

HRS) is 8.8MΩ.

4.3 CBRAM based 8T2R NV-SRAM

In Sec. 4.1.2 we analyzed the critical points in designing a nonvolatile SRAM with respect

to stability of the normal operations (read/write margins) and reliability of specific

operations such as store operation and data restore after power up. One important

conclusion was done on the ratio Roff/Ron that should be greater than 100 for a 6σ yield

as we predicted using the FDSOI 22 nm technological node design kit. Hence, using our

W-GeS2-Ag based CBRAM device we re-designed a 8T2R NV-SRAM. This CBRAM

stack is promising for this application because of several reasons: i) no forming step

is required. ii) CMOS compatible voltages are required to program the device. iii) an

Roff/Ron ratio of 100 can be obtained thus making the restore operation highly reliable.
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Figure 4.7: Transient parametric analysis of 1T-1R structure that shows both the time

required to reset the CBRAM and the final resistance value. Note the changing of VBE

before and after the switching.

Accordingly to our previous analysis this resistance ratio is sufficient and no stack

engineering of the CBRAM is required. Unfortunately, the higher tset with respect to

OxRRAM devices lead to a power consumption during the store and restore operations

that can be higher with respect to the consumption during a classical stand-by operation

as we discussed in Sec. 1.5.

The entire CADENCE workflow from schematic to layout verification (Layout Versus

Schematic) and Design Rule Checking was performed in the framework of the Design Kit

provided by ALTIS Semiconductor. The Design Kit is based on 130 nm technological

node and include CBRAM behavioral compact model for electrical simulation based

on our experimental results. The 6T-SRAM core was reoptimized because of the

different technological node. The ratio W/L of pull-up (M2 and M4), pull-down (M1

and M3), transfer transistor (M5 and M6) and control transistors (CM1 and CM2)

of the NV-SRAM are set to: 480 nm/120 nm, 1250 nm/120 nm, 480 nm/120 nm, and

800 nm/120 nm, respectively. The transistors are operated at a voltage of 1.5V. The

WSNM and the RSNM are 0.518V and 0.318V respectively. As described in Sec. 4.1

the NV-SRAM cell operation follows the sequence: normal (read/write), reset (switching

from LRS to HRS), store (switching from HRS to LRS), power-down, power-up and
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Figure 4.8: Transient analysis of the CBRAM based NV-SRAM to demonstrate the main

operations. The Store operation starts at 130 µs. After the set operation a current of

100 µA flows in the CBRAM. The restore operation starts at 400 µs. The reset operation

of the CBRAM requires a logical 0 in the latch to establish the voltage drop between the

bottom electrode (CTRL2) and the top electrode and ends at 430 µs. A new set operation

is applied at 510 µs.

restore. Fig. 4.8 shows the transient simulation of the designed NV-SRAM. Fig. 4.9

(left) shows the final layout of the fabricated structure. The two CBRAMs consist of

the orange square connected to the CTRL2 line and the control pmos. Fig. 4.9 (right)

is a magnified picture of the fabricated designs. The final scribe includes 24 pads for

electrical testing.

4.4 1T-2CBRAM as nonvolatile memory element in FPGA

In this section we discuss a possible integration of CBRAM devices in a voltage divider

configuration to control a pass gate or to store the data in a Look-Up Table (LUT)

(Fig. 4.10). For this design the stack engineering and hence the maximization of Roff is

extremely important to reduce the power consumption. In fact, although the 1T-2R

NVE solution eliminates stand-by power consumption, the leakage current through the
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Figure 4.9: (Left) Layout of the designed and fabricated 8T2R NV-SRAM. Accordingly to

the design rules the instantiation of the CBRAM takes an area of 0.25 µm in the back-end

(square orange connected to the CTRL2 line). (Right) Layout of the designed and fabricated

structures with the integrated CBRAM. Two pads for electrical measurements appear on

the left corners.

ReRAM during run time (i.e. in continuous read operation) depends on the resistance of

the high resistive state. Maximizing the high resistive state is essential to reduce the static

power consumption during FPGA run time. In Sec. 3.4 we discussed set/reset conditions

and their effect on the resistance levels (Fig. 3.7) claiming that HfO2(2 nm)+GeS2

is a promising solution to obtain a very high Roff. To demonstrate the concept, we

report Eldo transient simulation of the programming scheme to achieve complementary

resistance levels in CBRAMs (Fig. 4.11). We used the compact model calibrated on our

GeS2 memory devices [82], since the programming scheme is independent of the chosen

stack. We simulate the switching from HRS to LRS and vice-versa in the CBRAM-2

(Fig. 4.10), where the top electrode is directly connected to the polarization line Vanode

(as in the experimental case). Initially both the CBRAMs are in HRS (Fig. 4.10 (a)).

When Vanode and Vgate are raised (tpw=100 µs) the CBRAM cell switches in the LRS in

50 µs. In this case the 1T-2R NVE is configured to a logic zero on Vnet during FPGA

run time. A logical one can be obtained by resetting CBRAM-2 and then applying

set pulses on CBRAM-1. After having proposed a suitable scheme to program the two

CBRAMs in two different states, we have to clarify which advantages can be obtained

by using the HfO2(2 nm)+GeS2 stack with respect to the reference stack.
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Vnet in continuous read operation, after switching the CBRAM-2 from HRS to LRS.

4.4.1 Pulsed-tests and read disturb analysis

For reconfigurable logic architecture a cycling endurance of about 103 is required [99].

Hence, a cycling test was performed on GeS2 and HfO2(2 nm)+GeS2 1T-1R devices

with programming conditions that allow to maximize the Roff/Ron ratio (Tab. 3.1).

Experimentally obtained resistance pairs (Roff and Ron) were used to calculate the

voltage between the two CBRAMs connected in series (Vnet in Fig. 4.10) to estimate

the deviations from a logical zero. The worst case corresponds to the voltage calculated

with the lowest resistance ratio in the cycling test. In GeS2 and HfO2(2 nm)+GeS2 the

maximum voltage on Vnet are 60mV and 18mV respectively (Fig. 4.12). It is worth

to note that in continuous read operation at Vdd, the voltage on Vnet may lead to an

unwanted switching from LRS to HRS, thus potentially erasing the logical content in

the 1T-2R NVE. Unwanted switching may occur because a non-zero DC voltage is

always present on the bottom electrode of the CBRAM-2. To further investigate this

point, we performed DC read disturb tests on 8×8 array. The cells were programmed

in the LRS state. The switching time (tswitch) was defined as the time required to

increase the resistance by a factor of 10. The mean tswitch for a given applied stress

was extracted at 50% of the tswitch distribution obtained on the 64 cells of the memory

array. In Fig. 4.13 (left) we extrapolated 10 years read disturb immunity at 40mV

and 6mV for HfO2(2 nm)+GeS2 and GeS2 respectively. The projected 10 years read

disturb in HfO2(2 nm)+GeS2 is higher than the calculated worst case voltage. Thus,

with the optimized HfO2 barrier, not only the devices can be programmed more than

85



4. NONVOLATILE HYBRID (LOGIC AND RERAM)
ARCHITECTURES

1

2

V anode [V]

1
2
3

V gate [V]

1

2

V bitline [V]

1

2

V bottom [V]

0

10
-3

I(CBRAM-2) [A]

0 2×10
-4

4×10
-4

Time [s]

10
3

10
6

10
9

R(CBRAM-2) [Ω]

t set

t reset

R
on R

off
R

pristine

Figure 4.11: Transient simulation of the GeS2 based CBRAM complementary program-

ming scheme in 1T-2R NVE. The time required to switch the CBRAM-2 (Fig. 4.10) from

HRS to LRS is 50 µs with Vanode=1.5V. In the LRS, Ron is 3 kΩ. Reset operation requires

50 µs with Vbitline=1.5V. In the HRS, Roff is 2× 106 Ω.

1k cycles keeping a very high resistance ratio, but also immunity to DC read disturb is

demonstrated. On the contrary, in standard GeS2 memory device a voltage of 60mV

can be sustained for only one day, before switching the CBRAM to HRS.

4.4.2 Comparison and leakage currents estimations

Fig. 4.13 (right) provides a comparison of Roff and Ron mean values obtained during

pulsed cycling tests for our 2 nm HfO2 devices and other state of the art ReRAM

technologies, as reported in: [21], [22], [100, 101, 102, 103, 104, 105, 106, 107, 108], [7],

[30]. These data refer to sub-µm devices cycled at least 1k times in pulse mode. The

proposed solution offers the best Roff/Ron ratio presented so far to our knowledge. It

is worth to note that the OxRRAM based on N-doped AlOx presented in Fig. 4.13

(down) was used to demonstrate the first nonvolatile 3D-FPGA reported in [49]. Tab. 4.1

reports leakage currents for 6T-SRAM and 1T-2R NVE. In 6T-SRAM leakage current

strongly depend on Vth, the oxide thickness, and the feature size and vary in the range

of pAs [57], [58]. This implies that an Roff value higher than 1012Ω at a read voltage of
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Figure 4.12: (a) Pulse cycling test for GeS2 (left) and HfO2(2 nm)+GeS2 (right) based

CBRAM devices. (b) Voltage between two GeS2 (left) and HfO2(2 nm)+GeS2 (right) based

CBRAM devices in a 1T-2R NVE (Vnet in Fig. 4.10) calculated using every resistance pair

of the cycling test in (a).

Table 4.1: Comparison of 6T-SRAM and proposed 1T-2R NVE for reconfigurable logic

applications.

Ref. Architecture Technology Ileak. at Vdd [pA] Vdd [V] Volatility Standby Cons.

[57] 6T-SRAM - 25 1.2 yes yes

[58] 6T-SRAM - 12-50 1.2 yes yes

[109] 1T-2PCM GST 5× 107 1 no no

[47] 1T-2CBRAM W−GeS2−Ag 107 1 no no

[55] 1T-2CBRAM Pt−ZnCdS−Ag 106 1 no no

[This PhD] 1T-2CBRAM W−HfO2−GeS2−Ag 1300 1 no no

1V should be targeted to further improve this specification. In this work, considering

the HfO2(2 nm)+GeS2 stack, we report a mean leakage current of 1.3 nA at 1V reverse

read operation (Fig. 3.7), the lowest compared to other 1T-2R NVE solutions reported

so far [55], [47], [109]. In conclusion, we demonstrated that HfO2(2 nm)+GeS2 based

CBRAM is a promising candidate to implement the 1T-2R NVE architecture. As we

discussed in Sec. 1.7.1 we can obtain a density enhancement because of the integration

in the third dimension, hence reduction of dynamic power consumption is expected.

4.5 Stochastic synapses for neuromorphic applications

In this section we discuss how weak programming conditions could help in implement

stochastic hardware neural networks using the results presented in Sec. 2.2. An intro-
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Figure 4.13: (Up) Switching time (tswitch) from LRS to HRS during low negative stress

bias for GeS2 and HfO2(2 nm)−GeS2 samples. Each point corresponds to the mean of 64

cells. Projected 10 years disturb immunity of 6mV and 40mV were extracted for GeS2

and HfO2(2 nm)+GeS2 respectively. (Down) Benchmark of LRS (Ron) and HRS (Roff) for

several ReRAMs reported in the literature obtained with cycling test (more than 1k cycles).

Mean values are reported.

duction on neural network was provided in Sec. 1.10. In [110] we propose to implement

synapses using CBRAM devices. The synaptic weight is represented by the resistance

values of the CBRAM cells. In a deterministic hardware neural network there are some

learning rules that define the changing in the synaptic conductance between two neurons

and the synaptic programming is physically achieved using voltage pulses. Usually the

synaptic programming is not supposed to fail i.e. the CBRAM cell that implements the

synapse is going to be (strong) programmed by a signal that leaves the input neuron.

Finally, in this way, a part of the CBRAM cell will be in the LRS and the others in HRS

(accordingly to the rule ex. LTP or LTD). On the other hand, if the signal that leaves
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the neuron is based on weak programming conditions we will obtain a probabilistic

switching of the device. In particular for a population of synapses supposed to switch

to LRS, only a percentage will effectively switch (Sec. 2.2). In few words: even if the

Long Term Potentiation rule was satisfied the CBRAM will not switch to the LRS

because of the distribution of tset (i.e. the time required to set the memory). Another

solution to introduce the stochasticity is the use of a Pseudo Random Number Generator

(PRNG). The PRNG output allows or blocks the input neuron signals according to

the defined probability levels randomly generated. In few words: even if the Long

Term Potentiation rule was satisfied the CBRAM will not switch to the LRS because

of the switching probability enforced by the PRNG that tune the signal entering in

the CBRAM [110]. Exploiting the intrinsic CBRAM switching probability avoids the

presence of the PRNG circuits, thus saving important silicon footprint. It also reduces

the programming power, as the programming pulses are weaker compared with the ones

used for deterministic switching. It might, however, be difficult to precisely control

the switching probability of individual synapse using weak conditions in a large-scale

system. When weak programming conditions are used, both device to device and cycle

to cycle variations contribute to probabilistic switching, hence can be difficult to chose

the right weak condition that is effective to be weak also after many cycles. Decoupling

the effect of the types of variations is not straightforward in CBRAM devices thus also

the choice of the programming conditions can be difficult. In Sec. 4.6 we will provide

another solution for implementing stochasticity in hardware neural networks.

4.6 Stochastic neurons

In Sec. 4.5 we provide two solutions to implement a stochastic hardware neural network.

Even if the conditions for the application of a learning rule are satisfied, the probabilistic

switching of the device, determined by extrinsic or intrinsic ways, will impact the final

state of the CBRAM. In the extrinsic way a PRNG was used that tune the (strong) signal

entering into the synapse, in the intrinsic way a weak signal enters in the synapse and the

synapse itself will decide if it will switch to another state or not. We claimed that weak

conditions can switch a percentage of devices lower than 100%. In this section, we will

discuss another possibility that does not require neither PRNG nor weak conditions. We

can foresee an area gain, because PRNG can be avoided and the implementation of the
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stochastic neuron is more robust with respect to the application of weak conditions that

suffer of cycle to cycle instability. In the literature, different techniques to implement

controlled stochasticity in hardware neural networks have been proposed. It is possible

to exploit the thermal noise in the CMOS but this may lead to silicon overheads and

unwanted correlations [66]. Other techniques exploit CMOS circuits with using noise

but have significant area overhead [111], or the noise of photons with photodetectors

[112] or even special kinds of ‘noisy transistors’ [113]. Finally it was proposed to use

fundamentally probabilistic nanodevices like single electron transistors [114], but which

might suffer from poor CMOS compatibility and room temperature operation. As was

reported in Sec. 2.3 by cycling many times CBRAM devices a statistical distribution

of the high resistive state (ROff) is usually obtained regardless of the programming

conditions used. Dispersion in ROff was interpreted in terms of stochastic breaking of

the filament during the reset process, due, for example, to the unavoidable defects close

to the filament which act as preferential sites for dissolution. In Sec. 2.3 we showed,

with the help of modeling, that a distribution in ROff leads to a spread in others physical

quantities like, for example, the left-over filament height (h) and the tset. To validate

the operation of a stochastic neuron we characterized the kinetic of the set operation

by pulse measurements as was described in Sec. 2.1.3. Fig. 4.14 (left b inset) shows an

example of the oscilloscope trace for the evolution of voltage drop across the cell (Vc)

during a set pulse. Starting from some of the measured values of ROff (Fig. 4.14 left

a) we collected the spread in tset when the applied pulses were Va=3V and tpulse=5 µs

(Fig. 4.14 left b). The dotted line in Fig. 4.14 (left b), shows the simulated values of

tset. To obtain the simulated curve of tset, first the distribution of h was calculated

and then the tset was calculated using Eq. 2.1 and Eq. 2.3. It is worth to note that

in designing a stochastic neuron the key aspect is the dispersion in tset and not the

relation (if any) between ROff and the tset. In fact we simply propose a methodology to

obtain a tset distribution starting from the measured ROff. This methodology can be

integrated in the compact model to exploit variability when designing and simulating

new architectures. Nevertheless, as a proof of concept assuming a distribution of tset

is enough to introduce the stochasticity in the neuron circuit and even the CBRAM

compact model can be skipped for a proof-of-concept simulation.

The complexity of a neuron circuit depends on the overall functionality of the neural

network and of the chosen biological models. For our purpose of concept validation,
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Figure 4.14: (Left) (a) ROff distribution (cycle to cycle) obtained in Ag-GeS2-W based 1R
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cycling the CBRAM cell with a pulse amplitude Va=3V. (b in the inset) Example of a

typical oscilloscope trace tracking the voltage on the CBRAM (Vc) and the applied pulse

(Va). Between every set operation a reset operation was performed (not shown). (Right)

(a) Schematic image shown the basic concept of a Integrate and Fire neuron [115]. (b)

Schematic showing the basic concept of our proposed Stochastic Integrate-Fire neuron

(S-IF).

we chose one of the simplest, the Integrate and Fire neuron model. Fig. 4.14 (right a)

shows the concept of a simple Integrate and Fire neuron model. It constantly sums

(integrates) the incoming synaptic-inputs or currents (excitatory and inhibitory) inside

the neuron integration block using a capacitor. More advanced designs also work with

this principle [115]. This integration leads to an increase in the membrane potential of

the neuron Vmem. When the membrane potential reaches a certain threshold value Vth,

the neuron generates an output spike (electrical signal). After the neuron has fired the

membrane potential goes back to a resting value (initial state), through discharging of

the capacitor Cmem. Usually, the output firing activity of a Integrate and Fire neuron

is deterministic because the neuron fires every time the membrane potential reaches a

defined threshold value.

To introduce non-deterministic or stochastic behavior in Integrate and Fire neuron,

we propose to connect a CBRAM device to the capacitor Cmem, such that Cmem could

only discharge through the CBRAM device by switching it to the low-resistive state
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(Fig. 4.14 right b). The anode of the CBRAM and the Vmem net of the capacitor

should be connected. The duration for which current can flow through the low-resistive

CBRAM device can be controlled using a transistor. In such a configuration, the spread

on the tset of the CBRAM would translate to a spread on the discharge-time (tdsc) of

the capacitor. For consecutive neuron spikes, this would lead to different initial state

of Cmem, thus making the firing of the neuron stochastic. Fig. 4.15 (left) illustrates

conceptually the impact of four different values of tset (keeping constant pre-synaptic

weights), on the inter-spike interval. In case (a), tset is very long thus the capacitor has

a very weak discharge. As a consequence just few additional incoming pre-neuron spikes

are required to charge back the Vmem to the level of Vth, thus leading to an output

pattern with the shortest inter-spike interval. In case (b), tset was the shortest, and

hence the capacitor discharged the most. Thus for this case, more incoming pre-neuron

spikes are needed to recharge Vmem. Case (c) represents a deterministic Integrate

and Fire situation with full Vmem discharge. Finally, case (d) depicts a situation with

different tset durations for consecutive output spikes. It is a possible representation of

neuron inter-spike intervals for a random sequence of tset values that can be obtained

by cycling the CBRAM device multiple times (note the experimental dispersion of tset

in Fig 2.20). The circuit equivalent of the Stochastic-Integrate and Fire neuron concept

shown in Fig. 4.14 (right) is presented in Fig. 4.15 (right). It consists of a current-source

to simulate input currents coming from synapses and pre-neurons, a capacitor Cmem

to integrate the current and build up the neuron membrane-voltage Vmem, a nMOS

transistor M1 to perform set operation, two nMOS transistors M2 and M3 to perform

the reset operation, a comparator block, a spike-generation block, a delay-element ∆t

and a CBRAM device. The delay element is used to perform the reset operation of the

CBRAM device at the end of each neuron spike.

In Fig. 4.15, initially the CBRAM is in high-resistive state. As incoming pre-synaptic

current is accumulated in Cmem, Vmem would constantly build up at the anode of the

CBRAM. During this time M1, M2 and M3 are off. When the neuron spikes, the

spike-generation block will generate an output-spike and two additional pulsed-signals

(S1, S2) going to M1 and ∆t respectively. S1 acts as a gating signal to turn on M1.

Vmem build-up and switching on of M1 will enable set-operation of the CBRAM since

a positive voltage drop is established between the anode and the cathode. However

during the set-operation, M2 and M3 are not turned on, as ∆t delays the signal S2.
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Figure 4.15: (Left) (a)-(d) Schematic of output neuron firing patterns for different example

test cases. Proposed circuit-equivalent of the S-IF neuron.

At the end of the set-operation, the signal S2 will turn on M2 and M3 thus building

up the voltage at the cathode to switch the CBRAM to the off-state (reset). Thus,

before the next consecutive neuron spikes the CBRAM device is automatically reset and

reprogrammed to a different initial ROff state. Note that the flow of current through

the CBRAM, during the set-operation, leads to a discharge of the capacitor Cmem

thus decreasing the membrane voltage Vmem. The amount of decrease in Vmem can be

estimated by calculating the total duration (tdsc) for which current flows through the

switched CBRAM. tdsc is the difference of the pulse-width of the signal S1 and the tset

(inset of Fig. 4.14 left b). Depending on the value of tset every time the neuron spikes,

different amount of Cmem discharge will occur. Thus, in between any two firing cycles,

the neuron may require different amount of incoming current to charge Vmem to the

level of Vth.

We performed Eldo transient simulation to validate the proposed concept using a

simplified circuit shown in Fig. 4.16 (left). Transistors and capacitors sizing were not

optimized with respect to a real implementation, but to give a simple proof-of-concept.

Fig. 4.16 (right a) shows a simulated train of incoming pulses (excitatory currents) and

the corresponding evolution of the Vmem (Fig. 4.16 right b) between two consecutive

neuron spike-cycles. When Vmem reaches a threshold voltage Vth (Vth ≃ 3.5V in our

simulation), the CBRAM device undergoes set-operation, and Cmem begins to discharge.

Fig. 4.16(right b) shows the discharging and re-charging of Cmem for four different

simulated values of tset (in the range 300 ns - 600 ns). Fig. 4.16 (right c), shows the

expected output of the neuron. Note that different number of incoming pulses are
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Figure 4.16: (Left) Circuit used to demonstrate the concept of a S-IF effect when the

CBRAM is in the set state. (Right) Full evolution of Vmem simulating the circuit shown

on the left. (a) Pre-neuron incoming pulses are used to build up Vmem. (b) Initially

Vmem builds up as consequence of incoming currents (charging phase). Set operation lead

to different discharge of Cmem (tdsc). During the recharging phase a different number

of incoming pulses will raise Vmem till Vth. (c) Expected different inter-spike intervals

depending on the tset.

required to reach the neuron firing threshold again, since the initial Vmem value is

dominated by the stochasticity in tset. Five additional incoming pulses are needed to

reach the threshold for the shortest value of tset (300 ns). Fig. 4.17 (right) shows the

zoomed version of Cmem discharging for the different simulations shown in Fig. 4.16.

Note that the longest tset (600 ns) corresponds to the least amount of Cmem discharge,

and vice-versa. To simulate the reset operation, a pulse of 45 ns with an amplitude

of 3V was applied at M2 and M3, while keeping M1 off. Such high voltage on M3 is

required to build up a voltage on Vcathode. Fig. 4.17 (right) shows the time evolution of

Vcathode and Vmem when the initial value of Vmem was generated by a tset of 300 ns for

two different width of M3. The actual voltage drop on the CBRAM can be increased

increasing the size of the nMOS as shown in Fig. 4.17 (right a). Moreover, during the

reset, an additional discharge of Vmem is possible depending on the size of M3, since

M2, that is directly connected to Vmem, is turned on by S2.

Due to the intrinsic physics of CBRAM device, some constraints in implementing

the proposed circuit should be considered. In particular, Vth has to be greater than

the minimum value of the voltage-drop required to set the CBRAM device for a given

pulse-width. The amplitude of S1 should be sufficient to turn on the gate of M1, while
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Figure 4.17: (Left) (a) Pre-neuron incoming pulses are used to build up Vmem. (b) Zoom

on Vmem during the discharging phase for different tset in the range 300 ns-600 ns. Lower

tset leads to lower residual membrane voltage Vmem. (Right) (a) Time-evolution of Vmem

and Vcathode that establish a voltage drop on the CBRAM to enable reset operation. Larger

M3 increase the voltage drop, since Vcathode builds up more. Vmem corresponding to a tset

of 300 ns is considered. (b) Pulse applied to M3.

the pulse-width of S1 depends on the Vth and the spread on tset. If S1 pulse-width is

very long it would always lead to a complete discharge of Cmem and the tset stochasticity

cannot be exploited. However S1 cannot be arbitrarily small, it has to be greater than

the minimum tset value at a given voltage applied on the anode of the CBRAM device.

In [104], we have shown the dependence of applied pulse-width and the amplitude of Va

for the CBRAM set-operation. Thus, by tuning the characteristics of S1, the stochastic

response of the neuron can be controlled. The amplitude of S1 would determine the

amount of current flowing through M1 (compliance current) and thus the final value of

the CBRAM resistance in the set state. The set state resistance would determine the

programming conditions for the consecutive reset-operation. Thus, the characteristics of

S2 can be tuned based on the final CBRAM resistance obtained after the set-operation.

For the proposed S-IF, additional energy consumption per spiking cycling of the neuron

will be devoted to perform set and reset operation. The extra-energy consumption is

dependent on the ratio ROff/ROn; in particular on ROn since hundreds of µA can flow

before M1 would be turned off, if the low resistance state is ≃ 104Ω, thus raising the

power consumption. We estimated the energy consumption during the set operation

using: Eset=Vset Iset tset. In our simulations we used Vset=3.5V (i.e. Vth), Iset=350 µA,

tset in a range between 300 ns and 600 ns that gives a Eset energy mean value of 55 n J.
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The energy devoted to reset the CBRAM is negligible. For a real system, Eset can be

strongly reduced increasing the resistance of the low resistive value thus reducing Iset,

since for the proposed application the ratio ROff/ROn is not a major constraint.

4.7 Conclusions

In this chapter we discussed three hybrid architectures. In Sec. 4.1 a NV-SRAM based

on OxRRAM memories was presented. In this case, the constraints on the logic (size of

the pmos in the latch) to achieve a reliable store operation and the minimum resistance

ratio to achieve a reliable restore operation were identified by parametric transient

simulations, worst case analysis and Monte-Carlo simulations. In Sec. 4.4 a 1T-2R NVE

was analyzed. The architecture requires very high ROff to be competitive with state

of the art FPGA based on volatile 6T-SRAM, in which leakage current is minimized

(Sec. 1.7.1). Using our experimental results we suggested that HfO2(2 nm)+GeS2 is,

at our knowledge, the most promising technology to renovate some parts of FPGA

embodiments. Finally, we exploited the variability in tset to design a stochastic neuron

that can be integrated in stochastic harware neural networks (Sec. 4.6). The proposed

circuit offers several advantages with respect to the other ways to implement stochasticity

such as PRNG or weak programming conditions discussed previously. In fact, it is

extremely compact (1R-3T), and the energy consumption is dominated by the CBRAM

set process, hence can be minimized providing an high ROn.
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Conclusions

This manuscript addresses CBRAM technology aspects in view of developing hybrid

architectures. CBRAM stacks were electrically characterized to understand the pro-

gramming conditions and to reveal the main switching parameters, the memory ratio

and the reset current. A thermally activated hopping model was used to describe the

ion migration and the consequent filament growth/dissolution during set/reset processes.

The model parameters extracted by both DC quasi-static and pulse measurements were

used to implement a compact model for electrical simulations of the main operations

of the circuits. Hence, using compact modeling and circuit level simulations, we show

that CBRAM devices can be integrated in hybrid architectures such as nonvolatile

SRAM, routing switches that consists of 1T-2CBRAM architectures and even in neurons

of hardware neural network. We showed performance and reliability improvement of

Ag-GeS2 based CBRAM devices by addition of a 2 nm thick HfO2 layer between the

electrolyte and the W bottom electrode and the foreseen advantages in using this stack in

1T-2CBRAMs hybrid routing switches were elucidated. We also exploited the intrinsic

variability of CBRAM devices in designing fault tolerant ultra-scalable architectures for

neuromorphic computing, highlighting the benefits of novel non memory technologies,

whose impact may go beyond traditional memory markets.

In Chap. 1 we introduced the state of the art in memory research to introduce non

volatility at several levels of the memory hierarchy with the integration of ultra-scalable

(sub 20 nm), low power, byte addressable and supporting in-place writing emerging

memories. We focused on nonvolatile SRAM that integrates 6T-SRAM cells and NVM

devices forming a direct bit-to-bit connection in a 3D or vertical arrangement to achieve
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fast parallel data transfer and fast power on/off speed. By stacking emerging memories

with CMOS devices, new routing switches can be achieved to reduce FPGA area,

remove external Flash, thus reducing board area and obtain instantly-on capability.

As a consequence we expect to reduce the power consumption in SRAM based FPGA

related to the in-rush and SRAM reconfiguration after power up, and dynamic power

consumption due to the area reduction. Although hybrid routing solutions eliminate

stand-by power consumption, the leakage current through the ReRAM during run time

depends on the resistance of the high resistive state. We have concluded the chapter

with a remark on the high resistive state that should be maximized to reduce the static

power consumption during FPGA run time.

Chap. 2 introduces the equations of the empirical model used to explain and

predict the main switching parameters in CBRAM devices measured by electrical

characterization both in quasi-static and pulse configuration. We performed a statistical

analysis on the correlation between the programming conditions and the percentage of

CBRAM devices in a 8×8 NOR memory array that reversibly switch from high resistive

state (HRS) to low resistive state (LRS). Some of the possible causes of the cell to cell

and cycle to cycle variability were discussed. We exploited the cell to cell variability

using CBRAM as stochastic synapse in neuromorphic applications.

In Chap. 3 four different CBRAM stacks: i) W-GeS2-Ag, ii) Ta-TaOx-GeS2-Ag,

iii) W-SiOx-GeS2-Ag, iv) W-HfO2-GeS2-Ag were investigated in view of developing

hybrid architectures. This was mainly done to improve the 1T-2R NVE architecture

developed for FPGA embodiments. Among the characterized CBRAMs technologies,

our dual-layer electrolyte stack (2 nm HfO2−30 nm GeS2) leads to a resistance ratio

(Roff/Ron) higher than 106, reset current below 100 µA enforcing a compliance current

(Icomp) of 240 µA. Moreover, no forming step is required. We have also explained the

improved memory resistance ratio by means of physical modeling.

In Chap. 4 three hybrid architectures were described and the circuits operation

was demonstrated by electrical simulations. Critical points (both related to logic and

memory characteristics) to obtain reliable operations in NVSRAM were elucidated

through worst case and Monte-Carlo analysis. Using our optimized 2 nm HfO2−30 nm

GeS2 stack, we defined foreseen advantages in implementing a hybrid 1T-2R routing

switch for an FPGA with respect to SRAM based solutions. Finally, we exploited

the variability in switching parameters of the CBRAM to design a stochastic neuron
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that can be useful in hardware neural networks. The proposed circuit offers several

advantages with respect to the other ways to implement stochasticity such as PRNG or

weak programming conditions of CBRAM devices used as synapse.

5.1 Perspectives

Monolithically stacked 3-D FPGA [49] and Nonvolatile SRAM [33] have demonstrated

the integration of logic and emerging memories. Behind the performance of the fabricated

circuits a huge research at the memory device level was mandatory and it is expected

to play a fundamental role also in the next years. Process and material optimization,

effects of scaling, reduction of variability and physical understanding are key aspects that

need to be addressed more. During this thesis we were able to fabricate and measure

CBRAM stacks to optimize specific applications or to use non optimized CBRAM stacks

to build fault tolerant designs and, even more, exploiting the variability to enhance

artificial neural networks performances. We designed and taped-out both nonvolatile

6T-SRAM and fundamental blocks of an FPGA to collect new experimental data that

could increase the knowledge of the memory devices and the cross-effects between

memories and logic. Electrical measurements on these prototypes should be the focus

of the research in hybrid architectures in our group in the next months, providing new

feedbacks for the optimization of the memory stacks.
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Appendix B

Résumé en Français

B.1 Introduction

L’intégration lors des dernières étapes de réalisation du circuit VLSI, la tension

d’alimentation compatible CMOS, le temps de programmation rapide, ainsi que la

miniaturisation sont les caractéristiques recherchées pour la conception de nouvelles

architectures hybrides de mémoires résistives (ReRAM). Ces architectures pourront etre

utilisées dans différentes applications telles que la faible puissance embarquée, la logique

reconfigurable, ou encore les circuits neuromorphiques.

B.1.1 Mémoire ReRAM

Les matériaux actifs utilisés dans les mémoire ReRAM sont généralement des oxy-

des de métaux de transition incorporés entre deux électrodes métalliques. L’effet

mémoire s’appuie sur la transition réversible entre un état fortement résistif (reset)

et un état faiblement résistif (set) suite à l’application d’ un champ électrique sur la

structure. Ce mécanisme de commutation est l’effet de réactions thermochimiques

et/ou électrochimiques; il peut être déclenché soit par l’amplitude du champ électrique

appliqué (commutation unipolaire) soit par la polarité du champ appliqué (commuta-

tion bipolaire). En particulier, en mode bipolaire, le processus dit du set ne peut se

produire qu’avec une seule polarité alors que la réinitialisation se produit uniquement

avec l’inversion de polarité (Fig. B.1). Par ailleurs, le comportement de commutation ne

dépend pas seulement des oxydes utilisés mais dépend également du choix des électrodes

métalliques et de la physique au niveau des interfaces. Les Oxydes de métaux de
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Figure B.1: Représentation schématique de la structure MIM pour l’oxyde métallique

ReRAM et caractéristiques typiques I-V en régime DC présentant un comportement

unipolaire et bipolaire [20].

transition les plus utilisés sont ceux qui exploitent le réseau sous-stoechiométrique en

atomes d’ oxygène, tels que TaOx, HfOx ou AlOx. En particulier, il a été observé que

l’ état résistif faible peut être attribué à une phase pauvre en oxygène dans l’isolant

qui mène à la conduction métallique. En outre, il a été démontré récemment que la

concentration des lacunes d’oxygène dans l’isolant peut être contrôlée par une couche

d’interface tels que le Ti ou le Zr, ce qui améliore sensiblement les performances de

la cellule ReRAM. Une récente étude rapportée dans [21] sur une mémoire résistive

utilisant l’empilement Ti/HfOx. Hf/HfOx a montré une vitesse de commutation 10 ns et

une endurance de 1010. De plus, elle a pu etre miniaturisé jusqu’à 10 nm [22]. Un autre

type de ReRAM avec une densité de 32 Gb a été fabriqué en technologie 24 nm [23].

Dans cette thèse, nous nous intéressons en particulier aux mémoires ReRAM bipo-

laires de type CBRAM (Conductive Bridge RAM). Les structures CBRAM étudiées

dans ce cadre utilisent l’argent (Ag) comme métaux électrochimiquement actifs et de

sulfure amorphe, agissat comme électrolyte.

B.1.2 SRAM non volatile pour applications embarquées à faible con-

sommationes

Dans les applications mobiles à faible puissance on trouve souvent des mémoires Flash

et des mémoires SRAM créées par deux différent macros, qui utilise une interface en

série pour transférer l’information entre eux. Cette approche consomme de la puissance

soit pour écrire la mémoire Flash avant extinction du dispositif soit pour restaurer les

données dans la mémoire SRAM après avoir allumé le dispositif. De cette manière,

on va limiter la durée de vie de la batterie. Néanmoins, cette opération implique un
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Figure B.2: (Gauche) Consommation de potence pour SRAM, la solution avec deux macro

et nonvolatile SRAM pendant la phase active et du stand-by. (Droite) Comparaison du

consommation pendant la phase du standby [33].

gain de puissance si le stand-by fonctionnant à 0.2V prendre un temps plus grand que

103 s comme indiqué dans la Fig. B.2 (à droite) pour la technologie 65 nm CMOS. Pour

ces raisons, on trouve dans [33] une mémoire SRAM de type non volatile qui intègre

les cellules SRAM et le cellules ReRAM. Celles ci sont integrées dans le niveau des

interconnections de la logique et vont permettre un transfert rapide de données de façon

parallèle. En particulier, une SRAM non volatile basée sur des cellules ReRAMs à

démontré que la procédure d’ extention et d’ allumage du dispositif vont contribuer au

gain de puissance, si le correspondant stand-by prendre un temps plus grand que 2ms.

Cette fonction dépend principalement de l’énergie de commutation pour écrire et effacer

la mémoire non volatile. Les operations de programmation de la mémoire SRAM non

volatile et aussi la tolérance aux fautes seront expliquées dans la Sec. B.4.1.

B.1.3 Architecture hybride de type FPGA et ReRAM

L’amélioration des performances du FPGA en utilisant des dispositifs non volatiles de

type ReRAM gagne en importance ces dernières années et peut être considérée comme

un des sujets principaux de cette thèse avec le developpement de mémoire de type SRAM

non volatile. Dans les FPGA, la possibilité d’intégration de la mémoire et la logique

de manière distribuée sans surcoût en surface silicium donnera lieu à des architectures

hybrides à l’intérieur des éléments de logique (comme non volatile Flip-Flop [47] [18] ou

non volatile Look-up-Table) et des ressources de routage. Les nouveaux commutateurs

de routage peuvent être réalisés en empilant mémoires émergents et dispositifs CMOS:
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Figure B.3: Structure des blocs dans un FPGA. Les cellules 6T-SRAM (M) commandont

les portes de routage dans les blocs de connexion (CB) et des blocs de commutation pour

définir le routage général et pourront etre substitue par des éléments des commutations

1T-2CBRAM avec une configuration à pont diviseur.

pour réduire la consommation dans les FPGA, eliminer la mémoire flash à l’exterieur

de la puce, pour obtenir un allumage instantané. En conséquence, nous nous attendons

à réduire la consommation d’énergie liée à la reconfiguration des SRAM après la mise

sous tension, et la consommation d’énergie dynamique en raison de la surface inférieure.

Dans des FPGA basés sur des cellules SRAM, le transistor de routage (pass gate)

est gerée par une cellule 6T-SRAM. En utilisant deux mémoires de type CBRAM avec

une configuration à pont diviseur au-dessus de la partie logique on peut développer des

éléments de commutation non volatile avec une amélioration de la densité par rapport

à la solution 2D. On appellera ces mémoire de configurations 1T-2R NVE. Dans [49]

il a été démontré que le 3D-FPGA basé sur la technologie ReRAM, peut atteindre

un gain de surface de 40% et un gain de 28% du produit délai énergie par rapport à

une référence 2D-FPGA. Bien que la solution de NVE 1T-2R élimine la consommation

d’énergie en mode stand-by, le courant de fuite à travers la ReRAM lors de l’exécution

(c’est à dire en fonctionnement continue de lecture) dépend de la résistance de l’état

résistif élevé. Maximiser l’état résistif élevé est essentiel pour réduire la consommation

d’énergie statique lors de l’exécution FPGA. Par conséquent, l’ingénierie des matériaux

et des conditions spécifiques de programmation, les quels devont etre compatible avec la

logique, sont tenus de fournir une solution compétitive par rapport aux FPGA basées

sur la technologie SRAM. Les résultats éléctriques obtenus sur different empilement
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de type CBRAM pour augmenter le valeur du Roff seront discuté dans la Sec. B.3.3.

Néanmoins, la courant de fuite dans les 6T-SRAM dépend fortement du Vth, l’épaisseur

d’oxyde, et la taille, et va varier dans la gamme du picoampere [57], [58]. Cela implique

qu’un Roff de plus que 1012Ω à une tension de lecture de 1V devrait être ciblé afin de

réduire la consommation d’énergie lors de l’exécution du FPGA.

B.1.4 Systeme neuromorphiques

La recherche dans le domaine neuromorphique a gagné beaucoup d’importance au cours

des dernières années en raison de la faible puissance requise, la tolérance au pannes,

et algorithmes ultra-adaptatifs [60],[61],[62],[63],[64]. Les réseaux de neurones sont

utilisés pour classer des modèles basés sur l’apprentissage à partir d’exemples. Règles

d’apprentissage définissent et ainsi permettent une modification de la conductance

synaptique sur lequel repose l’effet de mémoire dans le cerveau biologiques. Règles de

potentialisation à long terme (LTP) ou dépression de longue durée (LTD) définissent

une amélioration ou dépression dans la transmission du signal entre deux neurones.

Différents paradigmes de réseaux de neurones utilisent différentes règles d’apprentissage,

mais dans la majorite de cas les règles vont déterminer les statistiques de motif à partir

d’un ensemble d’échantillons de formation et ensuite classer de nouveaux modèles sur la

base de ces statistiques. Les méthodes actuelles comme arrière propagation utilisent

des approches heuristiques pour découvrir les statistiques. L’approche heuristique

impliquent généralement beaucoup de petites modifications aux paramètres du système

qui améliorent progressivement les performances du système. De plus, l’approche de

l’adaptation progressive des back-propagation est susceptible de faux minima [65]. Pour

améliorer cette approche, de nombreux algorithmes exploite nombres aléatoires pour

améliorer l’apprentissage. En particulier, la littérature dans les domaines des réseaux de

neurones [66], [67] et de la biologie [68] suggère que dans de nombreuses situations, en fait

fournir un certain degré de stochastique, bruyant ou le comportement probabiliste dans

leurs blocs de construction peut améliorer la capacité et la stabilité des systèmes neuro-

morphique. Certains types de réseaux neuronaux même fondamentalement s’appuyer

sur les neurones stochastiques, comme les machines de Boltzmann. Pour cette raison

on proposera dans la Sec. B.5 un neurone qui utilise la variabilite dans le temps de

programmation pour montrer des characteristiques stochastiques.
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Figure B.4: Étapes du processus de commutation pour des cellules CBRAM à base de

W-GeS2-Ag et la caractéristique courant-tension correspondante (les paramètres principaux

de commutation sont indiqués). Première étape: l’oxydation de l’électrode supérieure

d’argent (Ag) et diffusion dans l’électrolyte GeS2. Deuxième étape: réduction des ions Ag+

dans l’électrode inférieure et nucléation de la nouvelle phase. Troisième étape: formation

du filament conducteur (FC) riche en Ag (set) avec la commutation de l’état hautement

résistif (HRS) vers l’état faiblement résistif (LRS). Quatrième étape: dissolution du FC

avec ré-oxydation de l’Ag pendant le reset. Cinquième étape: réduction des ions Ag+ dans

l’électrode supérieure.

B.2 Caractérisation et modélisation de mémoire CBRAM

basée sur Ag-GeS2

Fig. B.4 affiche une caractéristique courant-tension pour une mémoire CBRAM à base de

Ag-GeS2 obtenu en régime continu. Au départ la cellule se trouve dans l’état hautement

résistif (HRS). Pour faire passer la cellule de l’état HRS à l’état faiblement résistif

(LRS), une tension positive est appliquée à l’anode d’argent qui s’oxyde, générant de

l’Ag+ ions (étape 1). Ces cations sous l’influence du champ électrique, migrent vers

la cathode W où ils sont réduits pendant la formation du Filament Conducteur (FC)

riche en Ag (étape 2). Au moment où le FC est assez grand pour créer un contact

métallique avec l’électrode opposée, la cellule passe à l’état LRS à la tension de set

(Vset). La conductance est limitée par le courant Icomp, qui peut être appliqué via le

semi-conducteurs (SPA) ou un MOSFET intégré. Pour passer de l’etat LRS à HRS,

une tension négative est appliquée. Pendant le processus de reset (étape 3), un courant

électrochimique introduit des ions Ag +. Ces derniers ne contribuent pas à la conduction
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Figure B.5: Représentation schématique de la cellule CBRAM à base de W-GeS2-Ag. On

utilise un plug de tungstène (W) comme électrode inferieur. L’électrolyte est constitué de

50 nm de GeS2 déposé par RF-PVD. Une couche d’argent est déposée en tant qu’électrode

supérieure. Le FC est supposé cylindrique avec une hauteur h(t) et un rayon r(t). Une

séquence simulée des opérations de set et de reset: (a) Tension DC appliquée à la cellule

CBRAM; (b) évolution verticale et (c) évolution latérale du FC. Le set se produit lorsque

le FC atteint l’électrode supérieure h(t) = L. Etant donné que le courant appliqué dans le

dispositif est à sa valeur de saturation, la tension appliquée, Vc, diminue brusquement à

une valeur constante: VC=RsetIcomp et le rayon du FC peut crôıtre latéralement [79]. Au

début du processus de reset, le FC commence à se dissoudre latéralement.

métallique dans les FC et sont réduits dans l’électrode d’Ag. Durant ce processus, la

cellule passe de l’état LRS à HRS. Lors du reset, le FC peut être partiellement ou

complètement dissous dans le GeS2 dépendant de plusieurs facteurs (étape 4). Dans ce

manuscrit, les cellules 1CBRAM isolées (1R) et les cellules 1T-1CBRAM (1T-1R) ont

été mesurées électriquement.

La formation des FC est déterminée par la redistribution de masse associé au courant

ionique J(t). Dans ce manuscrit, nous considérons le FC cylindrique, avec un rayon r(t)

et une hauteur h(t) (Fig. B.5), nous supposons que l’évolution verticale et latérale

du FC sont proportionnelles à la densité de courant ionique [72]. Pour reproduire

les conditions expérimentales, nous introduisons un paramètre (∆) dans l’expression

de Mott-Gurney (Eq. 2.1). En particulier si V (t) < ∆, certains processus comme

l’oxydation de l’argent, la migration des ions à travers le chalcogénure, le transfert

d’électrons entre les ions et la cathode ou la nucléation d’une nouvelle phase à travers la
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Figure B.6: (Gauche) Courbes expérimentales (symboles) et simulées (lignes) courant-

tension obtenues en appliquant une rampe de tension. Les données expérimentales montrent

une forte asymétrie pour la tension de set et du reset. Différents ∆ changent Vset, Vreset

et Ireset. (Droit a) Dépendance du Rset avec Icomp. (Droit b) Ireset en fonction de Icomp

forcée lors de l’opération de set précédent.

cathode ne sont pas suffisamment activées pour permettre le passage de l’état HRS vers

l’état LRS. Fig. B.5 illustre la procédure adoptée pour simuler une transition set/reset

en DC (ou quasi-statique). La tension appliquée aux CBRAM à base de GeS2 (50 nm)

est illustrée en (a) ainsi que la hauteur verticale h(t) correspondante (b) et latérale r(t)

(c) évolution des FC selon les équations Eq. 2.1 et Eq. 2.2.

Fig. B.6 (gauche) montre la caractéristique IV quasi-statique expérimentale et simulée.

Une asymétrie dans le set et le reset apparâıt. Des simulations avec différents ∆ ont été

effectuées pour s’adapter aux résultats expérimentaux Vset et Ireset. Une augmentation

de ∆ réduit la chute de tension efficace à l’intérieur de l’électrolyte solide, la décélération

ainsi que la croissance verticale et latérale du FC. Fig. B.6 (droite) montre la résistance

d’ensemble obtenue en programmant des CBRAM avec différentes valeurs de Icomp.

Pour étudier la dépendance de Vset avec la cinétique du processus de commutation,

on a fait varier la pente γ du signal de tension sur sept ordres de grandeur tout en

enregistrant les tensions de set obtenues (Fig. B.7). Fig. B.7 (droite) affiche le temps de

commutation en fonction de la tension appliquée à la cellule. L’inverse du temps de

commutation est une fonction exponentielle de la tension appliquée. Cependant, à des

tensions inférieures, tset augmente beaucoup plus rapidement. Le paramètre ∆ peut

expliquer la saturation à faible tension pour les deux courbes.

L’effet de la température sur les caractéristiques IV a été aussi étudié. Lorsque la

température augmente, Vset diminue tandis que Vreset reste à peu près constante. Les
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Figure B.7: (Gauche a) Tensions de commutation expérimentales (symboles) et simulées

(lignes) Vset en fonction de la pente de la rampe. L’introduction du paramètre ∆ dans le

modèle permet de reproduire la saturation de Vset pour les pentes très faibles. (B gauche).

Représentation schématique du protocole expérimental pour effectuer un test pulsé. (Droite)

Temps de commutation tset expérimentaux (symboles) et simulés (lignes) en fonction de

la valeur de la tension appliquée. Les simulations réalisées avec ∆ = 0.15 V reproduisent

l’augmentation brusque de tset lorsque VA ≃ 0.2. L’inset est un signal d’oscilloscope typique

de Vc et VA lors d’une opération de set.

résultats expérimentaux sont bien reproduits par les simulations. Le modèle est capable

de prédire une augmentation de Vset pour les basses températures.

Nous avons caractérisé le comportement de la commutation de 64 cellules organisées

dans une matrice mémoire 1T-1R NOR 8×8. Le transistor en série a une longueur

L=140 nm et une largeur W=500 nm. Le but de ce paragraphe est de fournir une analyse

statistique de la corrélation entre les conditions de programmation et le pourcentage de

cellule CBRAM dans le réseau de mémoire qui peuvent basculer entre l’état HRS et

LRS (et vice-versa). L’efficacité du set est rapporté dans la Fig. B.10. L’efficacité du

set est défini comme la moyenne du pourcentage de cellules qui commutent pendant

le premier (ou le second cycle) et le pourcentage de cellules qui commutent dans les

deux cycles. Par exemple, sur 64 cellules, un total de 42 cellules sont activées dans le

premier set ou dans la seconde opération du set, tandis que 36 commutent dans les

deux cycles. L’efficacité de l’ensemble est donc de 60%. Par convention, les cellules sont

prises en compte dans l’état LRS si la résistance est inférieure à 20 kΩ, ou dans l’état

HRS si la résistance est supérieure à 200 kΩ. Fig. B.10 (gauche) affiche l’efficacité du set

en fonction de la tension sur l’anode pour une tension de wordline constante de 1.5V

(à gauche). L’efficacité augmente avec la tension sur l’anode et aussi avec la largeur
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Figure B.8: (Gauche) Vset (a) et Vreset (b) expérimentaux (symboles) et simulées (lignes)

en fonction de la température. (Droite) Courbe expérimentale (symboles) et simulée (ligne)

de Rset (a) et Ireset (b) en fonction de la température.

d’impulsion, même si l’effet de la tension est plus fort. Des impulsions plus longues

augmentent l’efficacité de set, lorsque la même tension Va est appliquée. Fig. B.10

(droit) affiche l’efficacité du reset.

B.3 Ingénierie de l’empilement pour augmenter Roff

Dans les systèmes hybrides (mémoires non volatiles et logiques) la fonctionnalité du

circuit est fortement dépendante des caractéristiques de commutation des cellules

ReRAM intégrés. Ces dernières dépendent elles-mêmes du circuit logique (tel que les

MOSFET d’accès) utilisé pour programmer la mémoire. La performance du circuit

peut être améliorée en utilisant différents matériaux actifs pour les CBRAMs, afin de

satisfaire les spécifications de l’application visée. Par exemple, il a été proposé pour

les circuits FPGA de gérer les éléments de routage avec deux CBRAM en séries en

utilisant une configuration type pont diviseur de tension. Dans ce cas-là, l’optimisation

du Roff est très importante. Cette architecture nécessite des recherches au niveau de la

mémoire résistive pour augmenter la valeur de l’état HRS, autrement dit elle ne peut

pas être compétitive avec les solutions existantes. Le but de ce chapitre est de trouver

des solutions au niveau des empilements pour augmenter la résistance du off en vue de

développer des commutateurs de routage.
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Figure B.9: (Gauche haut) Schéma de la structure 1T-1R. (Droit haut) Schéma du réseau

mémoire 8×8 NOR (seulement trois lignes représentées). Lors de la lecture (droit haut),

l’anode (Va) est à la masse, la bitline (V BL) est polarisée à 0.1V et la wordline à 1.5V.

Pendant le set (gauche bas), la bitline est à la masse, la grille est en pulsée (Vg, tpw) et l’

anode est polarisée à 1.5V. Pendant le reset (droite bas), l’anode est à la masse, la grille

est en pulsée et la bitline est polarisée.

B.3.1 Ta-TaOx-GeS2-Ag CBRAM

Nous proposons une CBRAM constituée de Ta-TaOx-GeS2-Ag comme solution possible

pour augmenter Roff. Les caractéristiques IV en statique sont présentées dans la Fig. B.11

pour des structures 1T-1R. Il est intéressant de noter que pendant les premiers cycles

la tension de set apparâıt aux alentours de 0.5V et un second Vset autour de 2V. Les

cycles suivants montrent une tension de set équivalente à la première (Vset1). Seulement

quelques cycles montre un Ioff très faible. De ce fait, le rapport Roff/Ron est fortement

réduit dû à la diminution de Roff. La double tension de set pourrait s’expliquer par

une légère rupture du GeS2 suivie par la rupture de la couche TaOx à tension plus

élevée. Nous supposons que les ions Ag diffusent dans le TaOx et dégradent l’oxyde

après quelques cycles Set/Reset, de ce fait le TaOx, censé agir comme un obstacle à la

conduction à l’état bloqué devient inefficace.
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Figure B.10: (Gauche) Efficacité du set (probabilité de commutation) pour 64 cellules de

la matrice tout en variant la tension appliquée sur l’anode (tension de grille 1.5V. Efficacité

du reset (probabilité de commutation) pour 64 cellules de la matrice tout en faisant varier

la tension sur la bitline (tension de grille 2.5V). Une commutation est considérée comme

réussie si Ron inferieur à 20 kΩ et Roff supérieur à 200 kΩ.
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Figure B.11: (Gauche) La caractéristique I-V en statique pour une CBRAM à base de

1T-1R Ta-TaOx-GeS2-Ag. (Droite) Schéma des étapes pendant le set et le reset.

B.3.2 W-SiOx-GeS2-Ag CBRAM

Nous avons aussi développé une CBRAM composée de W-SiOx-GeS2-Ag. Les car-

actéristiques IV en statique sont présentées dans la Fig. B.12 pour le dispositif 1T-1R.

La cellule CBRAM nécessite une opération de forming à une tension de 1.3V. Les 40

premiers cycles montrent un rapport Roff/Ron très élevé de 106, après que la fenêtre de

mémoire soit réduite, le Roff stabilise autour de 100 kΩ.

B.3.3 W-HfO2-GeS2-Ag CBRAM

Nous avons étudié trois empilements de matériaux actifs différents dans les CBRAM.

Le premier empilement est le W-GeS2-Ag utilisé comme référence. Le deuxième et le
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Figure B.12: (Gauche) Caractéristiques I-V en statique pour une CBRAM à base de

W-SiOx-GeS2-Ag (100 cycles). (Droit) Evolution du Ron et Roff lors du cyclage.

troisième empilement ont des couche de HfO2 supplémentaires de 1 nm et SI2nm respec-

tivement insérées entre le W et le GeS2 de 30 nm. La couche de HfO2 a été déposée par

atomic layer deposition (ALD). Nous avons effectué des mesures électriques à la fois sur

les dispositifs 1T-1R isolés et les 8×8 matrice de mémoire. Les caractéristiques typiques

I-V en statique sont présentées dans la Fig. B.14. Les moyennes SI0.35V/−0.2V (GeS2),

0.4V/−0.3V(HfO2(1 nm)+GeS2), 0.5V/−0.4V (HfO2(2 nm)+GeS2) sont montrées. Il

est intéressant de souligner qu’aucune étape de formation est nécessaire pour le cas

HfO2(2 nm)+GeS2. De ce fait Ron est d’environ 5 kΩ pour les trois empilements et Roff

augmente de manière significative avec l’ épaisseur de la barrière HfO2. Un rapport

de résistance de deux, cinq voir six ordres de grandeur a été obtenu dans le GeS2,

HfO2(1 nm)+GeS2 et HfO2(2 nm)+GeS2 .

En conclusion, les effets d’ingénierie de l’interface dans des mémoires W-GeS2 ou

Ta-GeS2 CBRAM ont été analysés. Parmi les autres technologies CBRAMs mesurée,

notre (2 nm HfO2−30 nm GeS2) a un taux de résistance (Roff/Ron) de plus que 106,

une courant de reset current de 100 µA sans étape de forming. De ce qui précède

l’ empilement HfO2(2 nm)+GeS2 a été choisi comme le candidat le plus prometteur

pour l’application comme commutateur de routage. Nous allons discuter plus en détail

l’architecture et les avantages prévus par rapport aux solutions existantes.
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Figure B.13: (Gauche)Image TEM d’une HfO2(2 nm)+GeS2 CBRAM. (Droit) Schéma

des set et reset et diagramme de bande (semi-conducteur GeS2 de type p et Φ(W)>Φ(Ag).

B.4 Nouvelles architectures hybrides: Logique et Mémoire

ReRAM

B.4.1 NVSRAM basée sur des elements OxRRAM

Le schéma électrique d’une 8T2R NV-SRAM est présenté sur la Fig. B.15. Cette

structure est assemblée avec une cellule 6T-SRAM (M1-M6) et avec deux transistors

PMOS de contrôle (CM1 et CM2) connectés entre les nœuds de donnée (D, DN) des

cellules SRAM et OxRRAM (R1, R2). Lors de l’opération d’écriture, l’état logique de la

structure SRAM est stocké dans les cellules OxRRAM. On suppose que les nœuds D et

DN sont respectivement dans les états 1 et 0. Afin de retrouver l’information enregistrée

dans les cellules OxRRAM, les transistors de contrôle sont enclenchés en abaissant

la tension CTRL1 jusqu’à 0V et en mettant CTRL2 à la masse. En conséquence, la

différence de potentiel positive entre les électrodes supérieures et inférieures de R1 fixe

la résistance à une valeur très faible (LRS) permettant ainsi de stocker l’information

dans la structure OxRRAM. Comme dans le même temps aucune chute de tension ne

se produit à travers R2, la valeur de sa résistance reste inchangée dans le cas d’un

état résistif élevé, ce qui dans ce cas, permet de stocker l’état 0. Afin d’alimenter

suffisamment le nœud TE en tension, un transistor PMOS est préféré à un transistor

NMOS.

Dans un second temps, l’état logique de la cellule SRAM doit être restauré durant la

remise en marche du circuit. Cette séquence se décompose selon l’enchâınement suivant:
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Figure B.14: Caractéristique I-V en régime pour GeS2 (gauche haut), HfO2(1 nm)+GeS2

(droit haut) et HfO2(2 nm)+GeS2 (gauche bas) CBRAM. Comparaison pour les trois types

(droit bas).

CTRL1 est mis à la masse enclenchant ainsi les transistors de contrôle, puis la tension

VSS est mise à 0V avec un retard de 5ns par rapport à CTRL1, et CTRL2 est maintenu

à la tension VDD comme durant l’arrêt de l’alimentation du circuit. Lorsque VSS est

mis à 0V, la différence de résistance entre les deux états résistifs entrâıne non seulement

deux courants de décharge différents, mais aussi une différence de tension entre les

nœuds D et DN amplifiée par la cellule SRAM. De plus, la faible valeur résistive de R1

permet de maintenir le nœud D à la valeur 1 tandis que le nœud DN est mis à 0 en

raison de la forte valeur résistive de R2. De cette manière, l’information contenue dans

la cellule NVSRAM est restituée.

Afin d’étudier la stabilité du processus de restauration de l’information, le système est

soumis à un cas particulier dans lequel la tension de seuil varie selon ±nσVT pour chaque

transistor de la structure SRAM. Dans cette situation, chaque transistor fonctionne dans

un cas défavorable à la restauration de l’information de la cellule SRAM. L’augmentation
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Figure B.15: Représentation schématique des 8T2R SRAM cellules non volatiles (NVS-

RAM). Les lignes pointillées indiquent le chemin du courant pendant l’opération de RESET

(à gauche) et la mémorisation (à droite).

de n entrâıne un cas plus défavorable et permet d’extraire la valeur seuil de ±nσVT

pour laquelle la restauration de l’information échoue. Dans le schéma présenté en

Fig. 4.3, la restauration de l’information n’affecte pas la valeur de la résistance de la

cellule OxRRAM. De ce fait, l’utilisation de simples résistances substituant R1 et R2

est équivalente à l’utilisation d’éléments OxRRAM. D’autre part, cette substitution

permet d’ajuster les valeurs de R1 et R2. La Fig. B.16 montre les valeurs maximales de

n pour lesquels la restauration de l’information échoue. Dans cette simulation, la valeur

référence de la résistance Roff. La diminution de Ron renforce l’opération de restauration

de l’information suivant deux manières. D’une part, le fait d’abaisser la valeur de

permet d’avoir un courant plus fort et une restauration de l’information plus importante.

D’autre part, une plus grande différence de résistance entre Roff et Ron augmente la

différence de courant de chaque coté de la cellule. Ces deux phénomènes améliorent la

stabilité de la restauration de l’information. D’après notre modèle, utilisé également

pour un transistor PMOS d’une largeur de 200nm et un temps de programmation de

200ns, Ron durant le stockage ne dépasse pas 21 kΩ, correspondant à un rapport de 4.

L’analyse du pire cas montre que pour un même rapport de résistance l’opération de

restauration de l’information échoue pour n=2 correspondant à une trop faible valeur.

D’autre part, la fiabilité du système OxRRAM-SRAM durant la restauration de

l’information est analysée via la méthode Monte Carlo. La Fig. B.16 illustre les résultats

des analyses Monte Carlo faites sur 10 000 échantillons pour une structure PMOS de
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Figure B.16: (Gauche) Variation du ±σVT a VT fail point en fonction du rapport de

la résistance à l’analyse de worst case. (Droite) Distributions of store time requi pour

obtenir different Rdrop (10k samples Monte Carlo simulation pour un largeur du pmos egal

à 100 nm.

100nm de largeur. Ce résultat met en avant l’étendue du temps de restauration pour

obtenir une difference entre le valeurs de résistances comprise entre 30 kΩ et 50 kΩ.

Par conséquent, la seule méthode permettant d’avoir un fort rapport de résistance et

ainsi d’avoir un phénomène de restauration d’information plus stable consiste soit à

augmenter la largeur du transistor PMOS, soit d’utiliser une autre structure de mémoire

résistive avec une plus forte valeur de Roff.

B.4.2 1T-2CBRAM en tant qu’ élément non volatile dans les FPGA

Dans cette section, nous proposons une nouvelle intégration de dispositifs CBRAM

utilisés dans une architecture à diviseur de tension, afin non seulement de commander

un transistor mais aussi de stocker des données dans un tableau de référence (Look-up

Table ou LUT). Cette architecture nécessite une très grande attention dans l’ingénierie

de l’interface afin de maximiser Roff et donc de réduire la consommation d’énergie. En

effet, lors de la mise en marche de l’alimentation du circuit associé, le courant de fuite

à travers la ReRAM dépend de la résistance de l’état hautement résistif. Maximiser

cet état est donc essentiel afin de réduire la consommation d’énergie statique lors de

l’exécution de la cellule FPGA. Dans les sections précédentes, nous avons discuté des

conditions du set/reset ainsi que de leurs effets sur les niveaux de résistance. Il en a été

conclu que HfO2(2 nm)+GeS2 est une solution prometteuse pour obtenir une très haute

Roff. Dans ce chapitre, nous présentons des simulations Eldo en régime transitoire pour
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l’ HRS. b) 1T- 2R NVE programmée pour avoir un zero logique sur Vnet pendant une

opération de lecture, après le set de la CBRAM 2 à partir de HRS vers LRS.

atteindre les niveaux de résistance complémentaires dans les deux CBRAM. Pour ce

faire, nous avons utilisé notre modèle compact. Initialement, les deux CBRAM sont en

état de résistance élevée (High Resistive State ou HRS). Lorsque Vanode et Vgate sont

élevés, les cellules CBRAM passe à l’état de basse résistance (Low Resistive State ou

LRS). Dans ce cas, le NVE 1T- 2R est configuré pour un zéro logique appliqué à Vnet

au moment de l’exécution du FPGA.

Pour les architectures logique reconfigurable, une grande endurance du procédé de

restauration de l’information pendant les tests de cyclages d’environ 103 est nécessaire.

Ainsi, un test d’endurance a été effectué sur des dispositifs 1T-1R à des conditions

de programmation qui permettent de maximiser le rapport de résistance entre les

différents états. Les paires de résistances obtenues expérimentalement ont été utilisées

pour calculer la tension entre les deux CBRAM connectés en série afin d’estimer les

écarts par rapport à un zéro logique. Le pire cas déterminé correspond à la tension

calculée avec le ratio de résistance plus faible dans le test de cyclage. Il est intéressant

de noter qu’en fonctionnement continu à lire la tension sur Vnet peut conduire à une

commutation indésirables de LRS à HRS pouvant entrâınement la perte du contenu

logique dans le NVE 1T- 2R . La commutation non désirée peut se produire parce

que la tension continue non nulle est toujours présent sur l’électrode inférieure de la

CBRAM -2. Pour approfondir ce point, nous avons effectué une analyse en régime

continu (DC) sur un réseau de mémoires CBRAM. Les cellules ont été programmées dans

l’état LRS. Le temps de commutation (tswitch) a été défini comme le temps nécessaire
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Figure B.18: Simulation transitoire sur la programmation complémentaire de la structure

1T-2R NVE dans GeS2 CBRAM. Le temps nécessaire pour changer l’état résistif de la

CBRAM-2 (Fig. 4.10) à partir du HRS vers LRS est 50 µs avec Vanode=1.5V. Dans l’état

LRS, Ron est 3 kΩ. L’opération de reset nécessite un temps de 50 µs avec Vbitline=1.5V.

pour augmenter la résistance d’un facteur 10. Dans la figure Fig. B.20, nous avons

extrapolé une stabilité sur dix ans de l’information pour des tensions allant de 40mV à

6mV pour HfO2(2 nm)+GeS2 et GeS2 respectivement. Ainsi, avec la couche de HfO2

optimisée, non seulement les mémoires peuvent être programmés plus de 1000 cycles

avec un rapport de résistance très élevé, mais acquièrent une très grande stabilité du

point du vue du stockage de l’information durant le processus de lecture.

Fig. B.20 présente une comparaison des valeurs Roff et Ron obtenues lors des tests

de cyclage pulsés pour notre HfO2(2 nm)+GeS2 et d’autre technologies ReRAM. La

solution proposée offre le meilleur Roff/Ron ratio présenté.

B.5 Neurones stochastiques

Dans cette section, nous présentons une méthodologie originale pour concevoir des

circuits neuronaux hybrides (CMOS + mémoire résistive non volatile) avec un comporte-

ment stochastique par rapport à l’opération de spiking. Pour ce faire, nous utilisons la

variabilité intrinsèque des CBRAM, en particulier la variabilité sur le temps du set et
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Figure B.19: (a) Test pulsée sur GeS2 (gauche) et HfO2(2 nm)+GeS2 (droit) CBRAMs.

(b) Tension entre le point diviseur de tension (Vnet in Fig. B.17) calculé en utilisant chaque

paire de résistance de le test du cyclage (a).

sur l’état de haute résistivité pour les structures faites en Ag-GeS2. Nous proposons

ici un circuit et une technique d’auto-programmation pour l’utilisation de dispositifs

CBRAM dans des neurones de type Integrate and Fire.

Pour introduire un comportement stochastique dans un neurone Integrate and Fire,

nous connectons un dispostif CBRAM au condensateur Cmem, tel que Cmem puisse se

décharger à travers le dispositif CBRAM en faisant basculer son état à l’état de basse

résistivité. Ainsi, l’anode de la CBRAM et le point Vmem doivent être connectés. La

durée pendant laquelle le courant circule à travers la cellule CBRAM dans l’état ON (i.e

de basse résistivité) peut être contrôlé avec un transistor. Dans une telle configuration,

la distribution sur le tset de la CBRAM se traduirait par une distribution sur le temps

de décharge (tDSC) du condensateur, ce qui conduirait à une distribution de tension sur

Cmem, et en conséquence à une reponse stochastique.

B.6 Conclusion

Cette thèse aborde les différents aspects des technologies CBRAM dans le but de

développer des architectures hybrides. Des structures CBRAM ont été testées électriquement

afin de comprendre les conditions de programmation ainsi que de déterminer les

paramètres de commutation, le ratio de la mémoire et le courant de reset. Un modèle se

basant sur les sauts activés en température a été développé afin de décrire la migration

ionique et les phénomènes de croissance/dissolution des filaments qui en résultent durant
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Figure B.20: (Haut) Temps du switch (tswitch) entre l’état LRS et l’état HRS lors d’un

stress négatif en tension pour les structures en GeS2 and HfO2(2 nm)−GeS2. Chaque point

correspond à la moyenne calculée sur 64 cellules. Projections sur 10 ans pour la perturbation

en lecture 6mV et 40mV sont extraites. (Bas) Résumé pour les états LRS (Ron) et HRS

(Roff) pour certaines ReRAMs obtenu avec des tests de cyclage.

les opérations set/ reset. Les paramètres de ce modèle sont extraits de mesures DC

quasi-statiques et de mesures pulsées. Ils sont utilisés pour implémenter le modèle

compact utilisés pour les simulations électriques des principales opérations ayant lieu au

sein du circuit. Dans le chapitre 1, nous avons présenté l’état de l’art de la recherche dans

le domaine des mémoires. Pour cela, nous avons présenté des mémoires non volatiles

compatibles avec une intégration à très petite échelle (le nœud sub-20nm), et utilisant de

faibles puissances. Nous nous sommes focalisés sur des SRAM qui intègrent des cellules

6T-SRAM et des dispositifs mémoires non volatiles utilisant des connexions bit-to-bit

en 3D ou respectant un arrangement vertical dans le but d’atteindre un transfert rapide

de données parallèles ainsi qu’une vitesse rapide. En empilant des mémoires émergentes

125
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Figure B.21: (Gauche) (a) Distribution de ROff (cyclage) dans Ag-GeS2-W 1R CBRAM.(b)

Résultat expérimental (ligne) et simulation (point) de la distribution de tset obtenue avec

un cyclage utilisant une amplitude de pulse Va=3V. (b dans l’encart) Exemple d’une trace

d’oscilloscope pour connaitre la tension sur la CBRAM (Vc). (Droit) (a) Schéma électrique

pour montrer le concept de neurone de type Integrate and Fire ou bien le concept d’un

neurone stochastique Integrate-Fire (S-IF) (b).

avec des dispositifs CMOS, on peut utiliser de nouvelles procédures de commutation

permettant de réduire la surface du FPGA, de s’affranchir des mémoires Flash externes,

et ainsi réduire la surface du circuit et obtenir l’état ON de manière instantanée. Par

conséquent, on peut réduire la consommation en puissance du FPGA basée sur des

SRAM. Ceci est relié à la reconfiguration de la SRAM, ainsi qu’à la consommation de

puissance dynamique due à la réduction de surface. Malgré que les solutions de routage

pour mémoires hybrides éliminent la veille en terme de consommation, le courant de

fuite à travers la ReRAM durant le temps de marche dépend de la résistance de l’état

hautement résistif. Nous avons conclu ce chapitre sur une réflexion autour de l’état

hautement résistif: celui-ci doit être maximisé afin de réduire la consommation statique

durant le temps de fonctionnement du FPGA. Le chapitre 2 introduit les équations du

modèle empirique utilisées pour expliquer et prédire les principaux paramètres de com-

mutation des dispositifs CBRAM mesurés à l’aide des caractérisations électriques dans

les configurations quasi-statique et pulsée. Nous avons effectué une analyse statistique

de la corrélation entre les conditions de programmation et le pourcentage de dispositifs

CBRAM intégrés dans un réseau de mémoire 8×8 NOR commutant de manière réversible
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Figure B.22: (Gauche) Circuit utilisé pour démontrer le concept pour un neurone

stochastique lorsque le CBRAM est dans l’état LRS. (Droite) Evolution de Vmem simulant

le circuit représenté à gauche. (a) les impulsions entrantes sont utilisées pour augmenter la

tension sur Vmem. (b) Au départ, Vmem s’accumule en raison des courants entrants (phase

de charge). L’ opération de set conduit à différentes décharges de Cmem. Pendant la phase

de recharge un nombre différent d’impulsions permettra de réhausser Vmem jusqu’à Vth. (c)

différents intervalles inter-spike affichés en fonction du tset.

entre un état hautement résistif (HRS) et un état faiblement résistif (LRS). Nous avons

développé une réflexion autour des causes possibles de cette variabilité des cellules que

nous avons exploitée par la suite dans des applications neuromorphiques utilisant les

CBRAM comme synapses stochastiques. Dans le chapitre 3, quatre différents stacks de

CBRAM ont été étudiés en vue d’une utilisation dans les architectures hybrides: i) W-

GeS2-Ag, ii) Ta-TaOx-GeS2-Ag, iii) W-SiOx-GeS2-Ag, iv) W-HfO2-GeS2-Ag L’objectif

principal de cette partie est d’améliorer l’architecture 1T-2R NVE. Parmi les technologies

de CBRAM caractérisées, notre empilement bicouche électrolyte (2 nm HfO2−30 nm

GeS2) a permis d’obtenir un ratio de résistance (Roff/Ron) plus élevé que 106, ainsi

qu’un courant de reset inférieur à 100 µA sans l’étape de forming. Nous avons expliqué

également l’amélioration du ratio de résistances de la mémoire à l’aide de la modélisation

physique. Enfin, nous avons exploité la variabilité des paramètres de commutation des

CBRAM pour dessiner un neurone stochastique pouvant être utile dans un réseau de

neurone. Les circuits proposés présentent différents avantages par rapport aux autres

méthodes utilisées pour implémenter la stochasticité telles que le PRNG ou les faibles

conditions de programmation utilisés pour les synapses.
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du protocole expérimental pour effectuer un test pulsé. (Droite) Temps
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avec ∆ = 0.15 V reproduisent l’augmentation brusque de tset lorsque

VA ≃ 0.2. L’inset est un signal d’oscilloscope typique de Vc et VA lors

d’une opération de set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B.8 (Gauche) Vset (a) et Vreset (b) expérimentaux (symboles) et simulées

(lignes) en fonction de la température. (Droite) Courbe expérimentale

(symboles) et simulée (ligne) de Rset (a) et Ireset (b) en fonction de la

température. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
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en utilisant chaque paire de résistance de le test du cyclage (a). . . . . . 124

142



LIST OF FIGURES

B.20 (Haut) Temps du switch (tswitch) entre l’état LRS et l’état HRS lors d’un

stress négatif en tension pour les structures en GeS2 and HfO2(2 nm)−GeS2.
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memories ñ nanoionic mechanisms, prospects, and challenges,” Advanced Materials,

vol. 21, no. 25-26, pp. 2632–2663, 2009. 33, 41, 58

[71] C. Schindler, G. Staikov, and R. Waser, “Electrode kinetics of cu–sio[sub 2]-based

resistive switching cells: Overcoming the voltage-time dilemma of electrochemical

metallization memories,” Applied Physics Letters, vol. 94, no. 7, p. 072109, 2009.

33

[72] S. Yu and H.-S. Wong, “Compact modeling of conducting-bridge random-access

memory (cbram),” Electron Devices, IEEE Transactions on, vol. 58, no. 5, pp. 1352–

1360, 2011. 33, 34, 66, 111

155



BIBLIOGRAPHY

[73] U. Russo, D. Kamalanathan, D. Ielmini, A. Lacaita, and M. Kozicki, “Study

of multilevel programming in programmable metallization cell (pmc) memory,”

Electron Devices, IEEE Transactions on, vol. 56, no. 5, pp. 1040–1047, 2009. 33,

34, 36, 39

[74] J. R. Jameson, N. Gilbert, F. Koushan, J. Saenz, J. Wang, S. Hollmer, and M. N.

Kozicki, “One-dimensional model of the programming kinetics of conductive-bridge

memory cells,” Applied Physics Letters, vol. 99, no. 6, p. 063506, 2011. 33, 39, 59

[75] M. Mitkova and M. Kozicki, “Silver incorporation in gese glasses used in pro-

grammable metallization cell devices,” Journal of Non-Crystalline Solids, vol. 299-

302, Part 2, no. 0, pp. 1023 – 1027, 2002. 19th International Conference on

Amorphous and Microcrystalline Semiconductors. 33, 131

[76] A. Bid, A. Bora, and A. K. Raychaudhuri, “Temperature dependence of the

resistance of metallic nanowires (diameter ≥ 15 nm): Applicability of bloch-

gruneisen theorem,” Phys. Rev. B, vol. 74, p. 035426, Jul 2006. 35

[77] S. Z. Rahaman, S. Maikap, W. S. Chen, H. Y. Lee, F. T. Chen, T. C. Tien, and

M. J. Tsai, “Impact of tao nanolayer at the gese-w interface on resistive switching

memory performance and investigation of cu nanofilament,” Journal of Applied

Physics, vol. 111, no. 6, p. 063710, 2012. 35, 60

[78] S. Choi, S. Ambrogio, S. Balatti, F. Nardi, and D. Ielmini, “Resistance drift

model for conductive-bridge (cb) ram by filament surface relaxation,” in Memory

Workshop (IMW), 2012 4th IEEE International, pp. 1–4, 2012. 35

[79] C. Pi, Y. Ren, and W. K. Chim, “Investigation of bipolar resistive switching and

the time-dependent set process in silver sulfide/silver thin films and nanowire

array structures,” Nanotechnology, vol. 21, no. 8, p. 085709, 2010. 35, 111, 132,

140

[80] I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, “Electrochemical metalliza-

tion memories: fundamentals, applications, prospects,” Nanotechnology, vol. 22,

no. 25, p. 254003, 2011. 37, 39, 41

156



BIBLIOGRAPHY

[81] C. Schindler, M. Meier, R. Waser, and M. Kozicki, “Resistive switching in ag-

ge-se with extremely low write currents,” in Non-Volatile Memory Technology

Symposium, 2007. NVMTS ’07, pp. 82–85, 2007. 37, 60

[82] M. Reyboz, S. Onkaraiah, G. Palma, and E. Vianello, “Physical compact model

of a cbram cell,” in MOS AK Workshop IEEE, 2012. 40, 53, 84

[83] D. Ielmini, “Modeling the universal set/reset characteristics of bipolar rram by field-

and temperature-driven filament growth,” Electron Devices, IEEE Transactions

on, vol. 58, no. 12, pp. 4309–4317, 2011. 41

[84] C. Gopalan, Y. Ma, T. Gallo, J. Wang, E. Runnion, J. Saenz, F. Koushan,

P. Blanchard, and S. Hollmer, “Demonstration of conductive bridging random

access memory (cbram) in logic cmos process,” Solid-State Electronics, vol. 58,

no. 1, pp. 54 – 61, 2011. Special Issue devoted to the 2nd International Memory

Workshop (IMW 2010). 41

[85] K. Okamoto, M. Tada, T. Sakamoto, M. Miyamura, N. Banno, N. Iguchi, and

H. Hada, “Conducting mechanism of atom switch with polymer solid-electrolyte,”

in Electron Devices Meeting (IEDM), 2011 IEEE International, pp. 12.2.1–12.2.4,

2011. 41, 43

[86] N. Banno, T. Sakamoto, N. Iguchi, H. Sunamura, K. Terabe, T. Hasegawa,

and M. Aono, “Diffusivity of cu ions in solid electrolyte and its effect on the

performance of nanometer-scale switch,” Electron Devices, IEEE Transactions on,

vol. 55, no. 11, pp. 3283–3287, 2008. 42

[87] D. Ielmini, F. Nardi, and C. Cagli, “Physical models of size-dependent nanofilament

formation and rupture in nio resistive switching memories,” Nanotechnology,

vol. 22, no. 25, p. 254022, 2011. 43

[88] C. Cagli, J. Buckley, V. Jousseaume, T. Cabout, A. Salaun, H. Grampeix, J.-F.

Nodin, H. Feldis, A. Persico, J. Cluzel, P. Lorenzi, L. Massari, R. Rao, F. Ir-

rera, F. Aussenac, C. Carabasse, M. Coue, P. Calka, E. Martinez, L. Perniola,

P. Blaise, Z. Fang, Y. H. Yu, G. Ghibaudo, D. Deleruyelle, M. Bocquet, C. Muller,

A. Padovani, O. Pirrotta, L. Vandelli, L. Larcher, G. Reimbold, and B. De Salvo,

“Experimental and theoretical study of electrode effects in hfo2 based rram,” in

157



BIBLIOGRAPHY

Electron Devices Meeting (IEDM), 2011 IEEE International, pp. 28.7.1–28.7.4,

2011. 43

[89] J. Yi, S.-W. Kim, Y. Nishi, Y.-T. Hwang, S.-W. Chung, S.-J. Hong, and S.-W.

Park, “Research on switching property of an oxide/copper sulfide hybrid memory,”

in Non-Volatile Memory Technology Symposium, 2008. NVMTS 2008. 9th Annual,

pp. 1–4, 2008. 57, 60

[90] T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono, “Forming and switching

mechanisms of a cation-migration-based oxide resistive memory,” Nanotechnology,

vol. 21, no. 42, p. 425205, 2010. 58

[91] S. Z. Rahaman and S. Maikap, “Improved resistive switching memory charac-

teristics using novel bi-layered ge0.2se0.8/ta2o5 solid-electrolytes,” in Memory

Workshop (IMW), 2010 IEEE International, pp. 1–4, 2010. 60

[92] R. Soni, M. Meier, A. Rudiger, B. Hollander, C. Kugeler, and R. Waser, “In-

tegration of gexse1-x in crossbar arrays for non-volatile memory applications,”

Microelectronic Engineering, vol. 86, no. 4 - 6, pp. 1054 – 1056, 2009. The 34th

International Conference on Micro- and Nano-Engineering (MNE). 60, 62

[93] M. Tada, T. Sakamoto, Y. Tsuji, N. Banno, Y. Saito, Y. Yabe, S. Ishida, M. Terai,

S. Kotsuji, N. Iguchi, M. Aono, H. Hada, and N. Kasai, “Highly scalable nonvolatile

tiox/tasioy solid-electrolyte crossbar switch integrated in local interconnect for

low power reconfigurable logic,” in Electron Devices Meeting (IEDM), 2009 IEEE

International, pp. 1–4, 2009. 60

[94] L. Vandelli, A. Padovani, L. Larcher, R. Southwick, W. Knowlton, and G. Bersuker,

“A physical model of the temperature dependence of the current through sio2-hfo2

stacks,” Electron Devices, IEEE Transactions on, vol. 58, no. 9, pp. 2878–2887,

2011. 64, 65, 66, 136

[95] L. Larcher, “Statistical simulation of leakage currents in mos and flash memory

devices with a new multiphonon trap-assisted tunneling model,” Electron Devices,

IEEE Transactions on, vol. 50, no. 5, pp. 1246–1253, 2003. 64

158



BIBLIOGRAPHY

[96] N. Yang, W. Henson, J. R. Hauser, and J. J. Wortman, “Modeling study of

ultrathin gate oxides using direct tunneling current and capacitance-voltage

measurements in mos devices,” Electron Devices, IEEE Transactions on, vol. 46,

no. 7, pp. 1464–1471, 1999. 64

[97] A. Padovani, L. Larcher, G. Bersuker, and P. Pavan, “Charge transport and

degradation in hfo2 and hfox dielectrics,” Electron Device Letters, IEEE, vol. 34,

no. 5, pp. 680–682, 2013. 65, 66, 136

[98] J. Jameson, N. Gilbert, F. Koushan, J. Saenz, J. Wang, S. Hollmer, M. Kozicki, and

N. Derhacobian, “Quantized conductance in ag-ges-w conductive-bridge memory

cells,” Electron Device Letters, IEEE, vol. 33, no. 2, pp. 257–259, 2012. 81

[99] T. Sakamoto, N. Banno, N. Iguchi, H. Kawaura, H. Sunamura, S. Fujieda, K. Ter-

abe, T. Hasegawa, and M. Aono, “A ta2o5 solid-electrolyte switch with improved

reliability,” in VLSI Technology, 2007 IEEE Symposium on, pp. 38–39, 2007. 85

[100] M. Wang, W. Luo, Y. Wang, L. Yang, W. Zhu, P. Zhou, J. H. Yang, X. Gong,

Y. Lin, R. Huang, S. Song, Q. T. Zhou, H. Wu, J. Wu, and M. H. Chi, “A novel

cuxsiyo resistive memory in logic technology with excellent data retention and

resistance distribution for embedded applications,” in VLSI Technology (VLSIT),

2010 Symposium on, pp. 89–90, 2010. 86

[101] W. Guan, S. Long, R. Jia, and M. Liu, “Nonvolatile resistive switching memory

utilizing gold nanocrystals embedded in zirconium oxide,” Applied Physics Letters,

vol. 91, no. 6, p. 062111, 2007. 86

[102] W. Kim, S. I. Park, Z. Zhang, Y. Yang-Liauw, D. Sekar, H.-S. Wong, and S. Wong,

“Forming-free nitrogen-doped alox rram with sub-µa programming current,” in

VLSI Technology (VLSIT), 2011 Symposium on, pp. 22–23, 2011. 86

[103] S. Z. Rahaman, S. Maikap, C. H. Lin, P. J. Tzeng, H. Lee, T. Y. Wu, Y. S. Chen,

F. Chen, M.-J. Kao, and M.-J. Tsai, “Low current bipolar resistive switching

memory using cu metallic filament in ge0.2se0.8 solid-electrolyte,” in VLSI Tech-

nology Systems and Applications (VLSI-TSA), 2010 International Symposium on,

pp. 134–135, 2010. 86

159



BIBLIOGRAPHY

[104] E. Vianello, G. Molas, F. Longnos, P. Blaise, E. Souchier, C. Cagli, G. Palma,

J. Guy, M. Bernard, M. Reyboz, G. Rodriguez, A. Roule, C. Carabasse, V. Delaye,

V. Jousseaume, S. Maitrejean, G. Reimbold, B. De Salvo, F. Dahmani, P. Verrier,

D. Bretegnier, and J. Liebault, “Sb-doped ges2 as performance and reliability

booster in conductive bridge ram,” in Electron Devices Meeting (IEDM), 2012

IEEE International, pp. 31.5.1–31.5.4, 2012. 86, 95

[105] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii,

K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima,

K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi,

R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima, “Highly reliable taox

reram and direct evidence of redox reaction mechanism,” in Electron Devices

Meeting, 2008. IEDM 2008. IEEE International, pp. 1–4, 2008. 86

[106] W. Chien, Y. R. Chen, Y. Chen, A. Chuang, F. Lee, Y. Lin, E. Lai, Y.-H. Shih,

K. Hsieh, and C.-Y. Lu, “A forming-free wox resistive memory using a novel

self-aligned field enhancement feature with excellent reliability and scalability,” in

Electron Devices Meeting (IEDM), 2010 IEEE International, pp. 19.2.1–19.2.4,

2010. 86

[107] H. Lee, P. Chen, T. Y. Wu, Y. Chen, C. Wang, P. Tzeng, C. H. Lin, F. Chen,

C. Lien, and M.-J. Tsai, “Low power and high speed bipolar switching with a thin

reactive ti buffer layer in robust hfo2 based rram,” in Electron Devices Meeting,

2008. IEDM 2008. IEEE International, pp. 1–4, 2008. 86

[108] I. Baek, C. Park, H. Ju, D. J. Seong, H. S. Ahn, J. Kim, M. K. Yang, S. Song,

E. Kim, S. Park, C. Park, C. Song, G. Jeong, S. Choi, H. K. Kang, and C. Chung,

“Realization of vertical resistive memory (vrram) using cost effective 3d process,”

in Electron Devices Meeting (IEDM), 2011 IEEE International, pp. 31.8.1–31.8.4,

2011. 86

[109] P.-E. Gaillardon, H. Ben Jamaa, G. Beneventi, F. Clermidy, and L. Perniola,

“Emerging memory technologies for reconfigurable routing in fpga architecture,”

in Electronics, Circuits, and Systems (ICECS), 2010 17th IEEE International

Conference on, pp. 62–65, 2010. 87

160



BIBLIOGRAPHY

[110] M. Suri, O. Bichler, D. Querlioz, G. Palma, E. Vianello, D. Vuillaume, C. Gamrat,

and B. DeSalvo, “Cbram devices as binary synapses for low-power stochastic

neuromorphic systems: Auditory (cochlea) and visual (retina) cognitive processing

applications,” in Electron Devices Meeting (IEDM), 2012 IEEE International,

pp. 10.3.1–10.3.4, 2012. 88, 89

[111] J. Alspector, J. Gannett, S. Haber, M. Parker, and R. Chu, “A vlsi-efficient

technique for generating multiple uncorrelated noise sources and its application to

stochastic neural networks,” Circuits and Systems, IEEE Transactions on, vol. 38,

no. 1, pp. 109–123, 1991. 90

[112] K. Cameron, T. Clayton, B. Rae, A. Murray, R. Henderson, and E. Charbon,

“Poisson distributed noise generation for spiking neural applications,” in Circuits

and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on,

pp. 365–368, 2010. 90

[113] T.-J. Chiu, J. Gong, Y.-C. King, C.-C. Lu, and H. Chen, “An octagonal dual-gate

transistor with enhanced and adaptable low-frequency noise,” Electron Device

Letters, IEEE, vol. 32, no. 1, pp. 9–11, 2011. 90

[114] T. Oya, T. Asai, and Y. Amemiya, “Stochastic resonance in an ensemble of

single-electron neuromorphic devices and its application to competitive neural

networks,” Chaos, Solitons and Fractals, vol. 32, no. 2, pp. 855 – 861, 2007. 90

[115] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-

Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel,
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