
HAL Id: tel-00951532
https://theses.hal.science/tel-00951532

Submitted on 24 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cube: a decentralised architecture-based framework for
software self-management

Bassem Debbabi

To cite this version:
Bassem Debbabi. Cube: a decentralised architecture-based framework for software self-management.
Software Engineering [cs.SE]. Université de Grenoble, 2014. English. �NNT : �. �tel-00951532�

https://theses.hal.science/tel-00951532
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée par

Bassem DEBBABI

Thèse dirigée par Philippe LALANDA et
codirigée par Ada DIACONESCU

préparée au sein du Laboratoire d'Informatique de Grenoble
dans 'École Doctorale Mathématique, Science et Technologies
de l'Information, Informatique (MSTII)

Cube: a decentralised
architecture-based framework
for software self-management

Thèse soutenue publiquement le 28 janvier 2014,
devant le jury composé de :

M. Ioannis PARISSIS
Professeur à Grenoble INP – Esisar Valence, Président

M. Giuseppe VALETTO
Professeur, Fondazione Bruno Kessler, Trento Italy, Rapporteur

M. François TAIANI
Professeur à l'Université de Rennes 1, Rapporteur

Mme. Salima HASSAS
Professeure à l'Université Claude Bernard Lyon 1, Examinatrice

Mme. Catherine HAMON
Ingénieur de recherche à Orange Labs Meylan, Invitée

M. Philippe LALANDA
Professeur à l'Université de Grenoble, Directeur de thèse

Mme. Ada DIACONESCU
Maitre de Conférences à Télécom ParisTech, Co-directrice de thèse

Acknowledgments

First and foremost, I would like to sincerely thank my advisors, Prof. Philippe Lalanda

and Dr. Ada Diaconescu, for guiding me at every step throughout my Ph.D, for everything I

have learned about research because of them, and for their patient guidance, candid advice,

kind encouragement, and for their sense of humour.

I would like to thank Prof. Giuseppe Valetto and Prof. François Taiani for spending

time to carefully review my thesis. Their comments and suggestions helped me to strengthen

and elevate the quality of my thesis. I would also like to thank my other thesis committee

members, Prof. Ioannis Parissis and Prof. Salima Hassas for examining my thesis.

And, a man cannot long and happily live without his friends. Many thanks to Abdessalem

Chekhchoukh, Fahim Maache, Hilal Goutas, Moussa Brahimi, Halim Mouellef, Abdelgani

Sam, and Mehdi Rafik Benmaissa. I would also like to thank all the past and present ADELE

research team members for the good atmosphere they created on the second floor of the C

building. I thank especially all those with whom I worked among others Issac, Elmehdi,

Gabriel, Clément, Stéphanie, and Jonathan; and those with whom I had long discussions at

the cafète.

I would like to express my sincere gratitude to my wife Fouzia for here continued support

and patience, and my sincere appreciation to my father, mother, sisters and brother, and all

my family in Algeria for supporting and understanding me.

Last, but not least, I would like to dedicate this thesis to my daughter (not yet born at the

time of my thesis defence). I hope for her and for all my future children all possible success

in their lives.

Abstract

In recent years, the world has witnessed the rapid emergence of several novel technologies and com-

puting environments, including cloud computing, ubiquitous computing and sensor networks. These en-

vironments have been rapidly capitalised upon for building new types of applications, and bringing added-

value to users. At the same time, the resulting applications have been raising a number of new significant

challenges, mainly related to system design, deployment and life-cycle management during runtime. Such

challenges stem from the very nature of these novel environments, characterized by large scales, high dis-

tribution, resource heterogeneity and increased dynamism.

The main objective of this thesis is to provide a generic, reusable and extensible self-management solu-

tion for these types of applications, in order to help alleviate this stringent problem. We are particularly

interested in providing support for the runtime management of system architecture and life-cycle, focus-

ing on applications that are component-based and that run in highly dynamic, distributed and large-scale

environments. In order to achieve this goal, we propose a synergistic solution – the Cube framework –

that combines techniques from several adjacent research domains, including self-organization, constraint

satisfaction, self-adaptation and self-reflection based on architectural models.

In this solution, a set of decentralised Autonomic Managers self-organize dynamically, in order to

build and administer a target application, by following a shared description of administrative goals. This

formal description, called Archetype, contains a graph-oriented specification of the application elements

to manage and of various constraints associated with these elements. A prototype of the Cube frame-

work has been implemented for the particular application domain of data-mediation. Experiments have

been carried-out in the context of two national research projects: Self-XL and Medical. Obtained results

indicate the viability of the proposed solution for creating, repairing and adapting component-based ap-

plications running in distributed volatile and evolving environments.

Keywords: Autonomic Computing, Software Architecture, Framework, Software Engineering, Self-

Management, Self-Adaptation, Self-Organisation.

ii

Résumé

Durant ces dernières années, nous avons assisté à une forte émergence de nouvelles technologies et

environnements informatiques tels que le cloud computing, l’informatique ubiquitaire ou les réseaux de

capteurs. Ces environnements ont permis d’élaborer de nouveaux types d’applications avec une forte

valeur ajoutée pour les usagés. Néanmoins, ils ont aussi soulevés de nombreux défis liés notamment à la

conception, au déploiement et à la gestion de cycle de vie des applications. Ceci est dû à la nature même

de ces environnements distribués, caractérisés par une grande flexibilité, un dynamisme accru et une

forte hétérogénéité des ressources.

L’objectif principal de cette thèse est de fournir une solution générique, réutilisable et extensible pour

l’auto-gestion de ces applications. Nous nous sommes concentrés sur la fourniture d’un support logiciel

permettant de gérer à l’exécution les architectures et leur cycle de vie, notamment pour les applications à

base de composants s’exécutant dans des environnements dynamiques, distributes et à grande échelle. De

façon à atteindre cet objectif, nous proposons une solution synergique – le framework Cube – combin-

ant des techniques issues de domaines de recherche adjacents tels que l’auto-organisation, la satisfaction

de contraintes, l’auto-adaptation et la reflexion fondée sur les modèles architecturaux.

Dans notre solution, un ensemble de gestionnaires autonomiques décentralisés s’auto-organise de

façon à construire et gérer une application cible en s’appuyant sur une description partagée des buts de

l’application. Cette description formelle, appelé Archetype, prend la forme d’un graphe orienté exprim-

ant les différents éléments de l’architecture et un ensemble de contraintes. Un prototype du framework

Cube a été implanté dans le domaine particulier de la médiation. Des expériences ont été conduites dans

le cadre de deux projets de recherché nationaux: Self-XL et Medical. Les résultats obtenus démontrent la

validité de notre approche pour créer, réparer et adapter des applications à base de composants s’exécutant

dans des environnements distribués, dynamiques et hétérogènes.

Mots-clés : Informatique autonomique, Architecture logicielle, Framework, Génie Logiciel, Auto-

gestion, Auto-adaptation, Auto-organisation.

iii

iv

Contents

1 Introduction 1

1.1 Importance and challenges of software management . 1

1.2 Cube approach . 3

1.3 Contributions of this thesis . 4

1.4 Scope and Applicability . 5

1.5 Organisation of this thesis . 5

2 Autonomic Computing 7

2.1 Autonomic Computing Initiative . 7

2.1.1 IBM’s perspective and vision . 7

2.1.2 Holistic approach . 9

2.1.3 Research communities . 10

2.2 Characteristics of autonomic computing systems . 11

2.3 Objectives of autonomic computing systems . 12

2.4 Reference architecture of autonomic computing . 13

2.4.1 Autonomic Element . 13

2.4.2 The MAPE-K loop . 15

2.4.3 Monitoring . 16

2.4.4 Analysis . 17

2.4.5 Planning and Execution . 19

2.5 Engineering autonomic systems . 19

2.5.1 Quality attributes . 20

2.5.2 Autonomic Frameworks . 21

2.5.3 Comparison . 28

2.6 Summary . 31

3 Approaches to Autonomic Computing 33

3.1 Control Theory . 33

3.1.1 Types of Control Loops . 34

3.1.2 Related work to Autonomic Computing . 35

3.1.3 Summary . 37

3.2 Agent-based systems . 37

3.2.1 Structural organisation of multi-agent systems . 38

3.2.2 Communication principles . 39

3.2.3 Adaptive multi-agent systems . 40

3.2.4 Research work related to Autonomic Computing 41

v

3.2.5 Summary . 42

3.3 Nature-inspired approaches . 43

3.3.1 Self-organisation and emergence . 43

3.3.2 Functional structure and pattern formation . 45

3.3.3 Work related to Autonomic Computing . 45

3.4 Architecture-based approaches . 46

3.4.1 Software Architecture . 47

3.4.2 Adaptation concerns . 48

3.4.3 Enabling Techniques . 48

3.4.4 Summary of architecture-based approaches . 52

3.5 Discussion and chapter summary . 53

4 Proposition 55

4.1 Problems addressed . 55

4.2 Contributions overview . 57

4.2.1 Positioning of the thesis within the team research 57

4.2.2 Thesis contribution . 58

4.3 Objectives and Applicability . 59

4.3.1 Design decisions . 59

4.3.2 Applicability assumptions and scope . 60

4.4 Cube Framework overview . 62

4.4.1 Theoretical Support . 62

4.4.2 Solution Overview . 63

4.4.3 Coordination Strategy . 64

4.4.4 Cube Autonomic Manager . 68

4.4.5 System Management Life-Cycle . 69

4.5 Summary . 71

5 Cube Framework 73

5.1 Goal and Knowledge Specifications . 74

5.1.1 Overview . 74

5.1.2 Key model-based management concepts . 75

5.2 System Modelling Language – SML . 76

5.2.1 ECORE . 77

5.2.2 Cube Meta-Model . 78

5.2.3 Domain-Specific Managed Elements . 80

5.2.4 Cube Runtime Model . 82

5.3 Goal Description Language - GDL . 83

5.3.1 GDL Elements . 85

5.3.2 GDL Properties . 85

5.3.3 Archetype . 87

5.4 Cube Autonomic Manager . 89

5.4.1 Internal Architecture Overview . 89

5.4.2 Runtime Model Controller . 90

5.4.3 Archetype Resolver . 92

5.4.4 Life Controller . 96

5.4.5 Monitors/Executors (Technology-Specific Extensions) 98

vi

5.4.6 Communicator . 99

5.5 Summary . 101

6 Implementation 103

6.1 Overview . 104

6.1.1 Supporting Technologies . 104

6.1.1.1 OSGi . 104

6.1.1.2 Apache Felix iPOJO . 107

6.1.2 Execution Platform . 109

6.2 XML Syntax for the Archetype model . 110

6.2.1 The Archetype Document . 110

6.2.2 Archetype Elements and Description Properties 111

6.2.3 Archetype Goals . 113

6.2.4 Complete Example . 114

6.2.5 Archetype Parser . 115

6.3 Cube Execution Platform . 117

6.3.1 Overall Architecture . 117

6.3.2 Cube Runtime and its Administration Service . 117

6.3.3 Autonomic Manager . 119

6.3.4 Runtime Model Controller . 121

6.3.5 Data Structure and Implementation for the Archetype Resolver 124

6.4 Extensions . 128

6.4.1 Overview . 128

6.4.2 Extension Points . 129

6.4.3 Deploying and using extensions . 134

6.4.4 Extensions provided by the Cube Framework . 135

6.5 Related Tools . 140

6.5.1 Overview . 140

6.5.2 Hot Deployer . 140

6.5.3 Console Commands . 141

6.5.4 Dynamic Web Monitoring Console . 142

6.6 Summary . 145

7 Evaluation 147

7.1 Overview . 148

7.1.1 Introduction to Mediation . 148

7.1.2 Cilia Mediation Framework . 149

7.2 Case Study 1: monitoring the consumption of home resources 152

7.2.1 Context . 152

7.2.2 Managed System . 152

7.2.3 Problems addressed . 154

7.2.4 Solution proposed . 155

7.2.4.1 Model Abstractions . 155

7.2.4.2 Extensions . 155

7.2.4.3 Archetype . 158

7.2.5 Scenarios and Results . 159

7.3 Case Study 2: health-care monitoring system . 167

vii

7.3.1 Context . 167

7.3.2 Managed System . 168

7.3.3 Problems and Requirements to address . 169

7.3.4 Solution proposed . 170

7.3.4.1 Model Abstractions . 171

7.3.4.2 Extensions . 171

7.3.4.3 Archetype . 174

7.3.5 Scenarios and results . 178

7.4 Evaluation . 181

7.5 Summary . 185

8 Conclusion 187

8.1 Summary . 187

8.2 Summary of thesis contributions . 189

8.3 Limitations and perspectives . 190

8.3.1 Archetype Specification . 190

8.3.2 Runtime Autonomic Management . 191

8.3.3 Towards a reusable methodology and integrated development environment for en-

gineering autonomic computing systems . 195

A XML Terminology and Vocabulary 199

B Implementation Details 201

B.1 Administration Service . 201

B.2 Component modelled element . 202

B.3 Connected Specific Resolver . 204

B.4 Console Commands . 206

C Archetype XML files 207

D Source code statistics 211

Bibliography 213

viii

List of Figures

1.1 Increasing Complexity of Software over Time (adapted from [WH06]) 2

2.1 Autonomic element [LDJ13] . 14

2.2 MAPE-K loop of Autonomic Computing Element . 15

2.3 Technologies applied to the four stages of the autonomic manager (adapted from [DSNH10]) 15

2.4 Ganglia Monitoring System Report of Wikipedia Servers 17

2.5 Ceylon framework . 21

2.6 Rainbow framework . 23

2.7 Unity framework . 24

2.8 AutoMate Autonomic Element [PLL+06] . 25

2.9 AutoMate Composition Manager . 26

2.10 Auto-Home Hierarchical Architecture . 26

2.11 Encapsulating legacy systems with Jade . 27

2.12 Jade autonomic framework . 28

3.1 Feedback control system . 35

3.2 Feedback and feed-forward control system . 35

3.3 Architecture of Entropy . 36

3.4 Computer System Agent in its environment . 38

3.5 Example of agent organisations: a) hierarchical; b) team-based; c) federation. 39

3.6 Example of KQML message exchange . 40

3.7 A taxonomy of coordination strategies [Wei99] . 40

3.8 Decentralized control in self-organizing systems (adapted from [Dre07]) 44

3.9 Autonomic architecture inspired by the behaviour of ant colonies 46

3.10 Smart-home feature model at runtime. 50

4.1 Cube solution overview . 64

4.2 Life-cycle of Cube-based autonomic management process 70

5.1 Overview of Cube’s model-based management . 76

5.2 Cube framework’s Modelling Layers and Languages . 77

5.3 ECORE Meta-model . 78

5.4 Cube Meta-model . 79

5.5 Cube Meta-model fragment and its ECORE model instance equivalent 80

5.6 Cube framework’s Core Domain-Specific Managed Elements 80

5.7 Core Domain-Specific Model fragment and its corresponding Cube Meta-model instance . 81

5.8 Cube Runtime Model Example . 83

ix

5.9 GDL Example . 84

5.10 Examples of Description Properties in the GDL model 86

5.11 Example of a Goal Property in the GDL model . 87

5.12 Cube framework’s Autonomic Manager . 89

5.13 State Diagram of a Modelled Element Instance . 91

5.14 Cube AM’s Archetype Resolver . 93

5.15 Example of a Constraint Satisfaction Problem (CSP) . 94

5.16 Cube framework’s Life Controller . 97

5.17 Example of Cube framework’s Life Controller . 97

5.18 Cube Monitors/Executors . 99

5.19 Cube Message Representation . 99

6.1 OSGi Platform . 104

6.2 OSGi Layers . 105

6.3 The Module Layer of the OSGi platform . 105

6.4 State diagram of an OSGi bundle’s life cycle . 106

6.5 The Service Layer of the OSGi platform . 107

6.6 iPOJO Component-model . 108

6.7 Cube’s Execution Platform . 109

6.8 Example of an Archetype document in a graph format . 114

6.9 Archetype XML Parser . 115

6.10 UML class diagram of the Cube Runtime Platform . 117

6.11 Cube Runtime Bundle . 117

6.12 The Autonomic Manager’s Initial Configuration . 120

6.13 Starting Autonomic Manager Sequence Diagram . 120

6.14 Archetype Resolver Design . 124

6.15 Example of Local Archetype Resolver Resolution Graph. 126

6.16 Example of distributed Archetype Resolver Resolution Graph 127

6.17 Extension mechanism . 128

6.18 Abstract Managed Element class . 131

6.19 Adding new Monitors / Executors . 132

6.20 Adding a new Specific Resolver . 133

6.21 Adding new Communicator . 134

6.22 Cilia Monitors/Executors for the Cube framework . 138

6.23 Graphical Monitoring of the Runtime Model of one Autonomic Manager 139

6.24 HotDeployer tool . 140

6.25 Cube Console . 141

6.26 Cube Console screen-shot . 142

6.27 Dynamic Web Monitoring Console Architecture . 143

6.28 Dynamic Web Monitoring Console Example. 144

7.1 Mediation system . 148

7.2 Cilia Mediator component and its constituents . 150

7.3 Example of Cilia mediation chain . 151

7.4 Overview of a house resource monitoring application . 153

7.5 Distributed Cilia mediation chain . 154

7.6 Archetype part for Node self-management in Case Study 1 158

x

7.7 Self-creating and connecting Mediation components on home Gateways in case study 1 . . 159

7.8 Self-creating and connecting City and National Mediation components in case study 1 . . 160

7.9 Simplified instantiation solution for the archetype of case study 1 162

7.10 Number of control messages exchanged among Autonomic Managers 163

7.11 Average number of control messages for Scope formation and Archetype part resolution . 165

7.12 Average number of control messages for Scope formation and Archetype part resolution . 166

7.13 Data-mediation software for health-care service applications 168

7.14 Architecture of the mediation chain of "Health-care monitoring" use case 169

7.15 Overall mediation architecture with load-balancing between mediation servers 170

7.16 Cube Extensions for case study 2 . 174

7.17 Archetype part for use case 2: dynamic scope management 175

7.18 Archetype part for use case 2: self-creating components on the Aggregation Server 175

7.19 Archetype part for use case 2: self-creating components on each Mediation Server 176

7.20 Archetype part for use case 2: self-integrating new PHR providers 177

7.21 Archetype part for use case 2: self-removing mediation chains from inactive servers 177

7.22 Case study 2: load-balancing based on the average CPU load 179

7.23 Case study 2: self-healing of the mediation cluster . 180

8.1 Actor roles . 196

B.1 Administration Service Java Interface . 201

xi

xii

List of Tables

2.1 Autonomic computing research communities . 11

2.2 Comparison of control placement and organization . 29

2.3 Comparison of specific/generic solutions and of self-* properties 30

2.4 Comparison of Quality Attributes . 30

5.1 Graphical notation of GDL concepts . 85

6.1 Autonomic Manager Configuration Entries . 121

6.2 Extension Points of Cube Autonomic Manager . 129

6.3 Manaed Elements contributed by the core Extension . 135

6.4 ManagedElement-related Specific Resolvers . 136

6.5 Component-related Specific Resolvers . 136

6.6 Node related specific resolvers . 137

6.7 Scope related specific resolvers . 137

7.1 Case study 1: model abstractions and their semantics . 155

7.2 Case study 1: used extensions and their possible configuration properties 156

7.3 Autonomic Managers for Case Study 1 . 160

7.4 Model abstractions for the second case study . 172

7.5 Case study 2: extensions used and their configuration properties 172

7.6 Testing configuration for case study 2 . 178

B.1 Cube Console Commands . 206

xiii

xiv

Chapter 1

Introduction

Contents

1.1 Importance and challenges of software management 1

1.2 Cube approach . 3

1.3 Contributions of this thesis . 4

1.4 Scope and Applicability . 5

1.5 Organisation of this thesis . 5

In this first chapter, we present the context of our work, the challenges, the adopted approach, the

contributions of our thesis, as well as their scope of applicability. We also detail the structure of this

document and the content of each chapter.

1.1 Importance and challenges of software management

Software systems have become a central part of a rapidly growing range of products and services from all

sectors. Today, such systems are essential in many areas of our lives. We use them at home, for business,

in hospitals, for banking, and so on. Unfortunately, engineering and managing such software systems is

becoming increasingly complex and costly.

From an engineering point of view, the first concern with developing software systems used to be

about finding the best algorithmic solution to perform specific operations. Over time, software was dis-

tributed across several physical machines to improve non-functional qualities like performance, scalability

or availability. This led to another level of complexity; the focus shifted from the complexity of develop-

ing algorithms to the complexity of building distributed concurrent systems and of structuring large-scale

systems like cloud [RCL09] and grid computing [BFH03]. Nowadays, software systems interact with

other systems, with devices and with people – i.e. hence turning into socio-technical systems - distributed

across large deployment areas, possibly all around the world.

Hence, software systems are increasingly distributed, heterogeneous, decentralized and interdepend-

ent, and they operate more and more in dynamic and often unpredictable environments [FGG+06]. This

situation requires system architects and developers to make software systems more adaptive and context-

aware (see Figure 1.1), with the drawback of increasing development and management complexity. From

a system management and control point of view, which is the focus of our thesis, software systems are

hence becoming increasingly complex and so more difficult and costly to develop and maintain. By

1

Algorithmic

S
y
s
te

m
 c

o
m

p
le

x
it

y

Time

Algorithmic

Structural

Algorithmic

Structural

Distributed

Algorithmic

Structural

Distributed

Adaptive

top-down

development

unportable

iterative

development

limited portability

service-oriented

development

platform-agnostic

engineering

emergence

eternal software

Figure 1.1: Increasing Complexity of Software over Time (adapted from [WH06])

management and control we mean administration operations that cover the entire computing eco-system,

including computer hardware, network and software applications.

System administration is becoming more complex for several reasons. First, applications are often

heterogeneous, consisting of several integrated sub-systems, like databases and application servers. An

experimented operator is needed for each sub-system to maintain its correct and optimal execution. Ex-

perts of each technology must then communicate and share knowledge to meet global administration

objectives. Second, many applications are distributed and so built on top of sophisticated middleware that

has to be configured and re-configured at runtime. For instance, the use of EJBs [BMH06] may greatly

simplify the developers’ work but at the price of higher administration costs. Indeed, complicated de-

clarative deployment descriptors have to be created at deployment-time and updated at runtime. Having

to deal with heterogeneous middleware, by introducing middleware for middleware technologies, such as

Web services, further complicates the situation. Third, the increasing scales of such systems, both in terms

of number of components and area of deployment, amplifies the aforementioned challenges many times

over. Last, but not least, systems pertaining to emerging domains like pervasive and ubiquitous comput-

ing [HMNS03] run in dynamic, heterogeneous and often unpredictable environments. In such cases, the

system’s execution context at deployment time is likely to change dramatically all along the application’s

lifetime. Corrective administration operations are required at runtime as a consequence.

Based on these considerations, we highlight the key system management challenges to be addressed

in the following.

Resource heterogeneity. Administration has to deal with heterogeneous data, data-processing elements

and communication support, from a variety of providers, based on diverse languages, and executed

on different hardware and software platforms. Many parts are considered legacy systems, while

others are more open and flexible. In-depth knowledge of the heterogeneous technologies involved

is essential for administrating such systems efficiently.

Dynamicity. Many computing systems operate in highly-dynamic environments, hence experiencing fre-

quent changes in both their internal constituents and their execution conditions. In pervasive com-

puting for instance, devices can join or leave the system at any time. Some devices may be unknown

to the system before their opportunistic integration at runtime. In all cases, the global software

2

system should continue its execution and cope with such dynamic phenomena without significant

interruption.

Increasing number of integrated subsystems. Modern software systems allow the integration of sev-

eral devices like smart-phones or home-boxes that include a variety of sensors and actuators. There

has been a progressive shift from a centralized system view towards a strongly decentralized com-

puting landscape. Namely, in more recent approaches, computation is distributed across a variety

of relatively small devices, each one being responsible for specific tasks. The increasing number

and distribution of such devices, combined with the heterogeneity and dynamicity issues identified

above, make the administration of such applications progressively more difficult, at best. Con-

sequently, management systems must be able to handle the increasing system complexity, in terms

of scale, heterogeneity, distribution and dynamicity.

Increasing business requirements that change frequently during runtime. For most long-running ap-

plications, user requirements evolve over the system’s lifetime. For example, non-functional proper-

ties specified initially may become inadequate and require adjustments to meet new business needs.

Changes in user requirements may affect the entire software system and can be extremely complex

to handle correctly and efficiently.

Autonomic Computing [Hor01] proposes to address such challenges by automating some of the system

management tasks. Nonetheless, the automatic administration of complex computing systems requires

that the autonomic management applications are also complex and capable to adapt dynamically. In

this sense, autonomic management applications absorb the complexity involved in system administration,

thus hiding it from human managers. Human administrators can interact with the autonomic system via

high-level policies and via concepts pertaining to their business domain. At the same time, to achieve

such policies and goals automatically, the additional complexity must now be handled by the software

engineers that develop and maintain the autonomic system. This task is highly challenging and costly in

itself, placing important requirements on the design of such complex autonomic systems. It also indicates

that existing frameworks fall short of addressing some of the important requirements currently challenging

autonomic system developers and administrators.

1.2 Cube approach

Cube [DL09, DL11, DDL12] is a generic approach for designing autonomic management systems that

can address the aforementioned challenges – i.e. heterogeneity, dynamic adaptability, scalability and

evolution of business objectives. It proposes a solution that mixes two well-known approaches: totally

decentralised, bottom-up approaches and completely deterministic, top-down approaches. “Bottom-up”

approaches promote highly-decentralized control logic, based on fully distributed and decoupled control-

lers. Its main advantages include general survivability and scalability in terms of data-processing power.

Nonetheless, the difficulty of predicting the overall behaviour of a decentralised system, along with pos-

sible emergent phenomena, makes the design and maintenance of such systems rather complicated and

costly. Moreover, the additional communication required for coordinating the various system parts may

have a negative impact on system scalability. Conversely, “top-down” approaches are based on centralised,

highly-deterministic control logic. Here, the decision-making process relies on a global system represent-

ation and can plan coherent actions on managed software components, hence ensuring more easily the

correctness and effectiveness of adaptation and self-management operations.

The Cube approach aims to combine the two aforementioned approaches in order to capitalise on their

3

advantages while avoiding their respective shortcomings. Namely, Cube relies on decentralized decision-

making modules coordinated via well-specified protocols. This allows the system to take local decisions

more rapidly based on local system views. It avoids having to maintain global system representations

and to consider them entirely when taking each management decision. Hence, resource consumption is

distributed across the decentralised processes, which is essential when managing large-scale systems re-

quiring frequent adaptations. At the same time, the global self-organising behaviour of a Cube autonomic

system is controlled via a formal goal specification, which is replicated across all decentralised processes.

This ensures that the overall computing system managed via a decentralised approach will always meet

the constraints in the goal specification. This level of determinism is a typical advantage of a centralised

approach.

More precisely, the Cube approach promotes two core techniques:

• Top-down: use of an abstract architectural model (or archetype) to formally specify administrative

goals; this aims to control the autonomic management process and ensure the viability of resulting

system configurations;

• Bottom-up: decentralisation of the autonomic management process, in order to avoid a single point

of control and the associated limitations to robustness and scalability; decentralised managers co-

ordinate to obtain coherent systems that conform to the architectural model.

While this approach seems promising, it also raises difficult problems that must be addressed when im-

plementing concrete autonomic systems. The most important questions include:

• How to design and formalise the architectural model? The model must be restrictive enough to en-

sure core properties of the managed system while also allowing sufficient variability for adaptation;

• How to split administrative tasks among decentralised autonomic managers? Dynamic changes

in the managed system impose that task assignation to autonomic managers be adaptable during

runtime;

• How to coordinate the activities of autonomic managers so as to ensure the coherence and con-

formance of the resulting system to the modelled objectives? Autonomic managers may have to

coordinate both locally and remotely, to ensure local or more global system properties, respectively.

- How to ensure the extensibility of autonomic managers to support future business objectives and

various types of managed resources?

1.3 Contributions of this thesis

The contribution of this thesis is positioned within the general Cube project. It consists of a concrete

framework for facilitating the development of autonomic applications following the Cube approach. Not-

ably, the proposed Cube framework provides concrete, viable solutions to the difficult problems raised

by the general Cube approach (as listed above). Moreover, the thesis provides a concrete framework

extension customised for a specific application domain – distributed data-mediation.

More generally, this thesis developed a solution for overcoming the limitations identified in the state-

of-art for engineering autonomic computing systems. Our main contributions consist of:

• Providing an autonomic framework – called Cube framework - that features several important

quality attributes and is characterised by:

A high-level, extensible, graph-oriented language for specifying administration objectives in

a formal manner;

A decentralised, modular and extensible runtime platform that ensures the specified objectives.

4

• Identifying and applying several techniques in a synergistic manner in order to ensure important

quality attributes in autonomic management. These techniques include: architecture-oriented mod-

elling, constraint resolution, self-organisation and control theory;

• A working open-source tool set that integrates: a lightweight, dynamically adaptable runtime plat-

form based on standards; a modular framework design and implementation enabling the seamless

development and integration of customised domain-specific extensions; and, a set of common ex-

tensions and tools helping the debugging and monitoring of Cube systems.

• A concrete framework application to distributed data-mediation systems for self-managing the

instantiation and configuration of mediation components, their local and remote interconnections,

the self-healing and self-extension of distributed mediation chains, and the self-optimisation of

resource consumptions.

1.4 Scope and Applicability

Although in this thesis we aimed to cover a broad range of modern software systems, the scope of our work

is limited currently to autonomic systems based on component-oriented designs, which are quite widely

used in modern computing systems. In addition, we limit our initial scope to systems where all managed

components are stateless. This means that updating a component will not require the migration of its ex-

isting state to the new component instance. Finally, we assumed that the autonomic system has access to

a well-connected communication network. In general, we only concentrate on the overall architecture of

the application, and leave low-level details for future research. The experiments that support our contribu-

tions were conducted in the context of two national research projects, which made use of data-mediation

systems [Wie92, WG97]. In both cases, the data-mediation applications administered via the Cube frame-

works were implemented based on the Cilia mediation framework [Deb09, GPD+10, GMD+11]. The

first research project – SelfXL 1 - focused on the self-management of complex large-scale systems in gen-

eral; the second project – Medical 2 - is a regional research and development project aiming to provide a

solution for medical assistance at home.

1.5 Organisation of this thesis

The remainder of this thesis is organised as follow:

• Chapter 2 introduces the Autonomic Computing initiative, its objectives, its reference architecture

for autonomic systems, and a representative list of existing frameworks.

• Chapter 3 details some of the significant domains from which we have adopted concepts and tech-

niques for developing our framework. This includes control theory, agent-based systems, nature-

inspired approaches and architecture-based management solutions.

• Chapter 4 introduces our proposal, its objectives and applicability, and provides an overall descrip-

tion of the developed framework.

• Chapter 5 details the proposed framework, including the System Modelling Language SML, Goal

Description Language GDL (also called Archetype Language) and the internal architecture of a

Cube Autonomic Manager.

1http://selfxl.forge.inria.fr
2http://medical.imag.fr

5

• Chapter 6 provides more implementation details for our framework. In particular, it details the

XML syntax for the Goal Description Language used to describe administrative goals, the Runtime

Execution Platform, the extension mechanisms and supported extension points, and some of the

related tools for helping Cube developers and administrators.

• Chapter 7 details the evaluation process and the results obtained by experimenting with the Cube

framework in the context of two national projects. It indicates the viability of our proposal as

highlighted by these experiments.

• Chapter 8 concludes our thesis by providing a global synthesis of our contributions and discussing

the current limitations and perspectives.

6

Chapter 2

Autonomic Computing

Contents

2.1 Autonomic Computing Initiative . 7

2.1.1 IBM’s perspective and vision . 7

2.1.2 Holistic approach . 9

2.1.3 Research communities . 10

2.2 Characteristics of autonomic computing systems 11

2.3 Objectives of autonomic computing systems . 12

2.4 Reference architecture of autonomic computing 13

2.4.1 Autonomic Element . 13

2.4.2 The MAPE-K loop . 15

2.4.3 Monitoring . 16

2.4.4 Analysis . 17

2.4.5 Planning and Execution . 19

2.5 Engineering autonomic systems . 19

2.5.1 Quality attributes . 20

2.5.2 Autonomic Frameworks . 21

2.5.3 Comparison . 28

2.6 Summary . 31

In the introductory chapter, we have seen that modern software systems are becoming increasingly

complex to design, code, deploy and manage. In this chapter, we focus on an initiative called Autonomic

Computing, which seeks to render computing systems as self-managed. After highlighting the vision and

the perspectives of this initiative, we focus on the autonomic computing systems and their characteristics.

Then, we study and compare the existing autonomic computing frameworks taking a software engineering

point of view.

2.1 Autonomic Computing Initiative

2.1.1 IBM’s perspective and vision

In 2001, Paul Horn - IBM’s Senior Vice President of Research - introduced the Autonomic Computing

Initiative in response to the ever growing complexity of integrating, managing, and operating computing

7

systems. The ultimate goal of this initiative was to be able to develop self-managing systems, hiding their

complexity from administrators.

In both a keynote presentation, addressed to the National Academy of Engineers at Harvard Univer-

sity in October 2001, and an accompanying publication [Hor01], Paul Horn alerted the industrial and the

academic communities about a looming crisis arising from the ever-increasing complexity of managing

computing systems. He qualified this issue as “our next Grand Challenge”. While there has been in-

credible progress in hardware (Moore’s Law is still verified today), software systems are more and more

difficult to develop and manage. They are often coded by thousands of developers, used by millions of

clients over the Internet, and maintained by a significant number of qualified IT professionals.

While user needs for computing services are increasing, the demand for qualified people to keep the

computing systems running is also growing. Unfortunately, over the long-term, simply increasing the

number of qualified people is not a viable solution to this ever-growing complexity. This can be compared

to what happened in the US telephony industry in the 1920s [Hor01]. At that time, in spite of the limited

number of human operators working on manual switchboards the use of phones had exploded. This raised

serious concerns that there would not be enough trained operators to work the switchboards [Mai02].

Without the development of automatic branch exchanges, analysts estimated that half the US population

would have to work as a telephone operator if growth continued at the same rate.

Drawing from the analogy between the management requirements of the telephony and computing

domains, Paul Horn pointed out that new approaches should be found in order to face the increasing

IT complexity and to limit its impact on our daily operations. He suggested drawing inspiration from

the human body and the way in which it manages its massively complex systems. More precisely, the

Autonomic Nervous System (ANS) controls many of the body’s internal organs. It ensures - without

requiring our consciousness - those complex biological systems such as vision, digestion, respiration, or

blood circulation work in harmony to maintain a steady internal state called homeostasis. In response to

variations such as external temperature, posture, stress or food intake, the ANS adjusts our internal body

functions most often without reaching our consciousness. It triggers largely automatic or reflex responses

through the autonomic efferent nerves, thereby eliciting appropriate reactions of the heart, vascular system

and other complex biological systems.

Without the ANS, we would be constantly occupied with adapting our body’s vital functions so as to

maintain homeostasis in varying environmental conditions. Accordingly, IBM suggested that computing

systems should also have autonomic behaviours as observed in the Autonomic Nervous System (ANS).

Complex computing systems should manage themselves with limited or no human intervention. They

should adjust their internal functions in order to address varying circumstances and conditions, hence

freeing administrators from the inherent complexity and cost of management tasks. When required, human

intervention should be made available via high-level interfaces, based on high-level policies and business-

domain concepts rather than on low-level technical configurations.

Two years after Paul Horn’s initiative, Jeffrey Kephart and David Chess from IBM’s Thomas J. Wat-

son Research Center promoted a vision and roadmap for the newly created community around the Auto-

nomic Computing initiative. They published “The Vision of Autonomic Computing” [KC03] where they

described some of the self-management capabilities that Autonomic Computing Systems should exhibit in

order to achieve high-level objectives specified by administrators. This includes self-configuration, self-

optimization, self-healing, and self-protection. They suggested an accompanying conceptual architecture

consisting of a collection of cooperating autonomic elements, and laid out a number of key engineering

and science research challenges that should be addressed by multiple efforts of experts from different

fields. This vision influenced a significant number of research papers1, many of which addressed the way

1More than 3500 direct citations according to Google Scholar

8

of realizing the autonomic computing vision [DSNH10] by exploring techniques from related disciplines,

like artificial intelligence, neural networks, complex adaptive systems, catastrophe theory, cybernetics,

self-evolving systems, heterogeneous workload management and control theory.

2.1.2 Holistic approach

The Autonomic Computing approach promotes a global, systematic approach that allows the integration

and coordination of multiple computing systems and their self-management as a whole [Hor01, KC03].

As we will see in greater details in this thesis, Autonomic Computing covers a wide range of tools and

techniques, including execution platforms, programming models and specialized algorithms, to allow the

self-management of complex computing systems. An important challenge, of course, is to integrate these

techniques in order to provide replicable solutions.

This holistic approach appears in contrast to many existing computing systems that are specialized in

a particular management function, such as optimizing a few attributes or functionalities (e.g., a database

query optimizer). In the autonomic case, the challenge is more important since it seeks to render complete

systems as self-managed. For instance, an autonomic upgrade facility for accounting systems [KC03]

must deploy several autonomic elements to control the different phases of the upgrade process. Also, a

Grid Computing system [BFH03] spans several heterogeneous distributed computers. Here, autonomic

elements have to be deployed on each node to control the state and the context of that node, analyse

its requirements (fault tolerance, performance, QoS, security, etc.), and adapt it to satisfy administrative

objectives [PH06].

From another point of view, Autonomic Computing is seen as an attempt to merge a selection of ex-

isting fields with the aim of building self-managing systems. Autonomic Computing does not specify

what types of technologies should be used to achieve its goals, but any existing technology that exhibits

behaviours or partial behaviours of pervasiveness and self-management can be classified as Autonomic

Computing [LML05]. Huebscher and McCann define Autonomic Computing as “a concept that brings

together many fields of computing with the purpose of creating computing systems that self-manage”

[HM08]. In the same direction, Muller and colleagues define it as “not a new field but rather an amalgam-

ation of selected theories and practices from several existing areas” [MMWW06]. Sterritt and colleagues

argue that Autonomic Computing “is emerging as a significant new strategic and holistic approach to

the design of complex distributed computer systems” [SPTU05]. Accordingly, “what is new is Autonomic

Computing’s holistic aim of bringing all the relevant areas together to create a change in the industry’s

direction: self-ware instead of the hardware and software feature upgrade cycle of the past that created

the complexity and total cost of ownership quagmire” [Ste05].

Autonomic Computing draws inspiration from two major high-level domains: the study of complex

natural systems and the development of highly-complicated computing systems. Relevant computing

systems have been developed in highly diverse domains ranging from traditional automation systems to

systems based on Artificial Intelligence techniques. They provide algorithms, architectures, models and

techniques that can be directly reused in Autonomic Computing. In turn, natural systems are not software,

their study can include domains as diverse as Economics, Biology, Chemistry or Physics, but they can also

provide contributions to Autonomic Computing in terms of theories and models.

Specifically, autonomic system designers can adopt results from the following domains:

• Automatic control. This domain includes Control Theory and Control Engineering applications,

which have been applied to mechanical, electrical, chemical or financial systems.

• Robotics. Robots often operate in highly dynamic environments where adaptation abilities are

essential and opportunities for human intervention are limited or undesirable.

9

• Multi-Agent Systems. The key strength of these systems lies in their capacity to address complic-

ated computing problems by dividing and distributing them amongst a set of specialized reasoning

agents.

• Software Engineering. Many paradigms and technologies have been introduced for ensuring applic-

ation robustness and flexibility in execution contexts susceptible to frequent (dynamic) change.

These domains provide an essential base for developing autonomic computing systems. They are presen-

ted in more details in the next chapter, in the light if our objectives and approach. From a domain-specific

perspective, several IT fields have been striving to address challenges that are similar to those confronting

autonomic systems [LDJ13]. These include pervasive and ubiquitous systems, smart grids, self-adaptive

and context-aware applications and middleware, dependable computing systems, and so on.

The interrelations among concepts like self-adaptive, self-organizing and autonomic systems can often

cause a certain degree of confusion. There are similarities and differences between these concepts. Self-

adaptation enables a software system to modify its structure and behaviour dynamically in response to

changes in the execution environment [MSKC04]. Works in self-adaptation often focus on the application

and middleware layers, while autonomic computing also covers lower layers like the operating systems

and the network. Self-organization enables systems consisting of a large number of subsystems to per-

form a collective task [Dre07]. Today, self-organization is mostly applied to low-level communication

protocols and services, whereas the autonomic computing initiative covers large-scale systems, as well as

centric systems. The concepts of these domains are however strongly related and in many cases can be

interchangeably used [ST09].

In any case, a prominent feature of autonomic computing is that it takes a holistic approach to the

design and development of computing systems that can adapt themselves to changing conditions. In our

thesis, we use the term autonomic computing to cover all the other related domains. We only refer to each

specific domain when talking in detail about the underlying techniques used to exhibit specific autonomic

computing capabilities.

2.1.3 Research communities

Since its inception in 2001, Autonomic Computing has become an important field of research of its own,

with a number of dedicated journals, conferences, and workshops. The term autonomic is often cited in

other domains like Artificial Intelligence or Software Engineering. Many conferences in various comput-

ing domains include a special track on autonomic computing.

Table 2.1 presents some of the major publications and events created based on IBM’s initiative. This

list includes the IEEE International Conference on Autonomic Computing (ICAC), which is now in its

ninth year, and is considered as the leading conference on autonomic computing techniques, foundations,

and applications. The list also includes interdisciplinary communities, like SASO and SEAMS. The In-

ternational Conference on Self-Adaptive and Self-Organizing Systems (SASO) aims to provide a forum

for researchers with different backgrounds (e.g., complex systems, control theory, artificial intelligence,

sociology and biology) to find new ways of designing and managing networks, systems and services. The

International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

concentrates more on software engineering-oriented approaches and trends, so as to better deal with the

self-management.

10

Table 2.1: Autonomic computing research communities

Title Acronym Affiliation Type

ACM Transactions on Autonomous and Adaptive

Systems

TAAS ACM Journal

The Journal of Autonomic and Trusted Computing JoATC American

Scientific

Publishers

Journal

International Conference on Autonomic Computing ICAC IEEE Conference

International Conference on Self-Adaptive and Self-

Organizing Systems - 2007 until now 2012. (Merger of

Self-Star, SelfMan and ESOA)

SASO IEEE Conference

International Symposium on Software Engineering for

Adaptive and Self-Managing Systems

SEAMS ACM Workshop

International Workshop on Self-* Properties in Complex

Information Systems – 2004

Self-Star IEEE Workshop

International Workshop on Self-Managed Networks,

Systems & Services - 2005, 2006

SelfMan IEEE Workshop

The Autonomic Computing Workshop AMS Workshop

ACM Workshop on Self-Managed Systems WOSS ACM Workshop

2.2 Characteristics of autonomic computing systems

When Paul Horn initially introduced the Autonomic Computing Initiative, he suggested eight general

elements or characteristics that software systems should possess to be considered as autonomic [Hor01].

These characteristics are the following:

1. To be autonomic, a computing system needs to “know itself”— and comprise components that also

possess a system identity. That is, in order to manage themselves, autonomic systems should have

an elaborate knowledge of their current internal status and the interconnections with other systems

and resources.

2. An autonomic computing system must configure and reconfigure itself under varying and unpre-

dictable conditions. As the autonomic system can have hundreds of possible configurations, it must

choose the best one for a context and do so within a reasonable amount of time.

3. An autonomic computing system never settles for the status quo — it always looks for ways to

optimize its workings. It must monitor its metrics to self-optimize its computing and attain changing

user objectives using adaptive algorithms, as well as advanced feedback control systems.

4. An autonomic computing system must perform something akin to healing — it must be able to

recover from routine and extraordinary events that might cause some of its parts to malfunction.

When errors occur, the autonomic system must be able to discover problems, and then find solutions

to keep it functioning smoothly. Initially, such self-healing responses will follow rules given by

human experts, but over the time will be supplemented by self-learning processes inherent to an

autonomic system.

5. A virtual world is no less dangerous than the physical one, so an autonomic computing system must

be an expert in self-protection. It must be able to detect and treat threads from viruses and intrusions

by hackers to maintain overall system security and integrity.

11

6. An autonomic computing system knows its environment and the context surrounding its activ

7. An autonomic computing system cannot exist in a hermetic environment. Open standards for sys-

tem identification, communication and negotiation are needed because autonomic systems run in

heterogeneous and rapidly evolving computing environments.

8. Perhaps most critical for the user, an autonomic computing system will anticipate the optimized

resources needed while keeping its complexity hidden. This is the ultimate goal for autonomic

computing. It must carry out its different functions while keeping its complexity hidden from users.

2.3 Objectives of autonomic computing systems

These eight key characteristics of autonomic computing systems were further synthesized by Kephart

and Chess [KC03] in terms of user objectives into four main properties. Each self-property describes a

user objective or a “quality requirement of autonomic system” [LML05] that has to be considered when

developing an autonomic system:

• Self-Configuration. An autonomic computing system configures itself according to high-level

goals representing business-level objectives. That is, it adapts itself automatically to dynamic-

ally changing environments by adding/removing computer machines, installing/deleting software

modules, setting up new configurations, and so on. For example, when a new software module

is incorporated within a business application, it automatically integrates itself with the rest of the

system, including needed configurations and connections to databases, web applications, and other

instances of the same module. Accordingly, the system self-configures seamlessly and without

interruption of service.

• Self-Optimization. An autonomic computing system optimizes its use of resources and performs

optimally. It will continually monitor and tune itself automatically to improve its operation. These

kinds of capabilities should be extended across various heterogeneous system constituents. Con-

sequently, tuning a subsystem can have unanticipated effects on the entire system.

• Self-Healing. An autonomic computing system detects, analyses, diagnoses and fixes problems

resulting from failures in hardware (e.g., hard disk problem) or software (e.g., bugs in a software

component). It must be able to detect, fix or isolate the failed element, and try to find solutions for

the problem without any apparent system disruption. It is important that the self-healing process

does not introduce new bugs or the loss of vital system settings and functions.

• Self-Protection. An autonomic computing system protects itself from malicious attacks, user mis-

use and inadvertent software changes that can produce cascading failures. It automatically tunes

itself to protect the system as a whole against the arising security problems. It can also anticipate

security breaches by exhibiting proactive analysis.

These four initial self-* properties were provided for the specific context of enterprise system man-

agement. This list has grown substantially [BJM+05b] to include, among others, self-organizing, self-

growing, self-diagnosis, self-adapting, self-destructing, self-reflecting, self-stabilizing, and so on.

These additional self-* properties that are now encountered in the literature can be defined as follows:

• Self-organizing: a system’s ability of being automatically formed via the decentralised assembly of

multiple independent elements, which become the system’s constituent elements.

• Self-growing: a system’s ability of expanding its internal structure depending on the context and its

evolutions.

• Self-diagnosis: a system’s ability to analyse itself in order to identify existing problems or to anti-

12

cipate potential issues.

• Self-adapting: a system’s ability to modify itself (self-adjust) in reaction to changes in its execution

context or external environment, in order to continue to meet its business objectives despite such

changes.

• Self-destructing: a system’s embedded capability to destroy itself, either because it determines that

it is no longer capable of reaching its goals (e.g. a corrupted system shuts itself down in order

to prevent affecting user safety or infecting neighbouring systems); or because it has reached a

predefined expiration date.

• Self-reflecting: a system’s ability to determine whether or not its self-* functionalities conform to

expected operation. This may involve self-simulation operations. Within an autonomic system,

self-reflection may be considered or implemented as a higher autonomic management layer (meta-

management) that supervises and adapts the activities of the basic autonomic management layer,

which supervises and adapts the managed system resources.

• Self-stabilizing: a system’s ability to attain a stable, legitimate state, starting from an arbitrary

state and after a finite number of execution steps. This property has been traditionally linked to

fault-tolerance in distributed systems [BKPH09], but is receiving increasing attention from the self-

management system community (e.g. ensuring that self-repair or self-optimisation operations con-

verge towards a system state that complies with high-level policies).

Different definitions for autonomic computing were given based on a selection of these self-* properties

and in different application domains. Accordingly, “the vision of autonomic computing is to create self-

management abilities through self-* properties” [SH05].

2.4 Reference architecture of autonomic computing

2.4.1 Autonomic Element

To fulfil the autonomic computing vision, IBM researchers have established an architectural framework

for autonomic systems [KC03] and an accompanying blueprint [IBM03]. This blueprint organizes an

autonomic computing system into building blocks that can be composed together to bring self-* properties.

These building blocks are referred to as autonomic elements.

As explained in [LDJ13], an autonomic system consists of a number of autonomic elements, in inter-

action or not. An autonomic element is an executable software unit that exhibits autonomic properties, i.e.

the self-* properties introduced previously. To do so, it implements a control loop in order to constantly

meet high-level goals set by authorized entities.

Specifically, an autonomic element regularly senses the possible sources of change through sensors,

reasons about the current situation and performs adaptations through actuators when and where it is ne-

cessary. Any action that an autonomic element executes is done in order to better satisfy its goals given the

current situation. At this level of abstraction we are only concerned with the behaviour of an autonomic

element as observable from the outside, while ignoring its internal implementation. Indeed, an autonomic

element can be rational (or ‘smart’) or entirely reflex-based; as well as hard-coded or equipped with self-

learning capabilities. What an autonomic element does at a given time depends on its goals, on what it

perceives and possibly on its knowledge.

An autonomic element can be seen as an independent software module. It is however driven by in-

formation provided by administrators, human or not, including goals to be pursued, policies and strategies

to be employed. An autonomic element has to report to administrators. It has to provide them with under-

13

Autonomic software

Autonomic

element

Usage

Context

Computing

Context

Goals / feedback

Figure 2.1: Autonomic element [LDJ13]

standable feedback so that they can be aware of its internal situation and degree of success in attaining its

goals. Administrators can thus adjust goals or revise strategies when appropriate.

An autonomic element generally relies on a control loop, which monitors the current state of the ele-

ment and changes it if needed. Specifically, the architecture proposed by IBM makes a clear distinction

between the managed resources and a control module called “autonomic manager” (Figure 2.1). Man-

aged resources are the software or hardware entities that are automatically administered in an autonomic

element. They can represent, for instance, a Web server, a database, a virtual machine or a server’s CPU

resource. The autonomic manager is a software module that implements an advanced control loop as in-

troduced here - the MAPE-K loop. The autonomic manager is responsible of the runtime administration

of its managed resource and more generally of the autonomic element it belongs to.

Managed resources provide specific interfaces, called control points or touch points, for monitoring

and adaptation. Two types of touch points have been defined: sensors and effectors. Sensors provide

information about the managed resources. They are materialized by some code that measures a physical

or abstract quantity concerning the managed resource and converts it into a signal for the autonomic

manager. This could be some information regarding the elements’ state or some idea of their current

performance. For a web-server for example, such measure could include the response time to client

requests, network and disk usage levels, or CPU and memory utilisation. Other examples of such data

include system performance characteristics, user context or even server temperature.

Depending on the targeted autonomic properties, different types of data and different forms of present-

ations can be needed to conduct self-management actions. Determining the appropriate data to be collected

and implementing the corresponding sensors is considered today as a difficult activity. It demands to find

an appropriate balance between the amount of collected data and the cost of obtaining the data (monitoring

has always a cost). Therefore, given the complexity and cost of instrumenting a system, the aim is not to

collect just any information that can be obtained about a system but rather to get appropriate data that can

be used to carry out autonomic management.

Effectors provide interfaces to control/modify the managed resources and, as a consequence, to change

their behaviour. For instance, this could represent some modification of a configuration file, the instan-

tiation of new objects, the deletion of a component, the replacement of some outdated elements, and so

on. Effectors are also materialized by some code that effects changes and that are provided by the man-

aged elements. The purpose of effectors is to allow the autonomic manager to trigger modifications to the

managed elements in a coherent and controlled fashion. If we go back to the web server example, sensors

will obtain data about the server load and the number of live connections, while effectors will change the

configuration properties of the server.

14

2.4.2 The MAPE-K loop

The purpose of an autonomic manager is to adapt a set of managed resources at runtime, in response to

internal or external changes, in order to achieve predefined goals. An autonomic manager is structured

around a collect/decide/act control loop, which may also rely on some shared knowledge.

According to IBM’s vision, this reference control loop is composed of a set of tasks executed in a

repetitive manner. This loop is known under the MAPE-K acronym, for Monitor, Analyze, Plan, and

Execute. K stands for Knowledge, in reference to the knowledge that is needed to conduct the aforemen-

tioned tasks. This loop is illustrated in Figure 2.2. This approach relies on the well-known pattern of

observation/diagnostic/solution/treatment.

Analyse Plan

Monitor ExecuteKnowledge

Sensors Effectors

Element

A
u
to

n
o
m

ic

m
a
n
a
g
e
r

M
a
n
a
g
e
d

e
le

m
e
n
t

A
u
to

n
o
m

ic
 e

le
m

e
n
t

Figure 2.2: MAPE-K loop of Autonomic Computing Element

The MAPE-K logical architecture has profoundly impacted the autonomic computing field, providing

a structuring framework to start with when building an autonomic system. It is a modular architecture mak-

ing sense for practitioners and combining properties like separation-of-concerns and scalability [LDJ13].

The different management activities, defined in rather abstract terms, take care of focused, well-defined

and complementary aspects. Standardising the communication interfaces of these activities, as advocated

by IBM, would allow the easier integration of various techniques developed by different providers. The

architecture also features a certain degree of scalability since management activities can be executed on

different machines, assuming that this is correlated with network latency and does not affect reactivity.

For each stage of the MAPE-K loop, researchers have investigated the use of different techniques and

tools. Figure 2.3 outlines some of the related works. In the following, we will detail these four stages in

depth.

Monitoring

Application requirements

Execution

Analysis Planning

Environmental sensors

Network instrumentation

User context

Interference

Uncertain reasoning

Economic models

Rules and policies

Game theory

Risk analysis

Hypothesis generation

Managed elements

Record strategies

Inform users or administrators

Figure 2.3: Technologies applied to the four stages of the autonomic manager (adapted from [DSNH10])

15

Once again, Figure 2.3 highlights the fact that autonomic computing has to identify and adapt tech-

niques and technologies from multiple domains. Indeed, this “Monitor, Analyse, Plan, Execute” loop

clearly draws inspiration from domains like Control Theory, Artificial Intelligence and Robotics. These

domains have in fact common points and are often used in conjunction, for instance when it comes to the

design and implementation of automates and autonomous robots.

It is important to note that the MAPE-K loop represents a logical architecture and is not intended

to be literally implemented as such in all autonomic systems [LDJ13]. Rather, its purpose is to indicate

the main functions that an autonomic manager must support for administering a system and the main

interdependencies between these functions – i.e. analysis depending on monitoring, planning on analysis,

execution on planning, and all on shared knowledge. It also shows the manner in which the autonomic

manager interacts with managed resources - via sensor and effector touchpoints. Various concrete designs

and implementations are possible to instantiate this reference architecture.

Indeed, the MAPE-K proposal is not always directly applicable. For instance, having the control

flow going through the well-defined interfaces of the four management activities has a performance cost

that cannot be always afforded. Thus, in some cases, grouping together some management activities,

like analysis and planning for instance, can be required to meet a given deadline. Conversely, having

each activity implemented via a single software module is not always feasible. For example, having one

autonomic manager in charge of several heterogeneous resources may require multiple monitoring and/or

execution modules.

2.4.3 Monitoring

The monitoring part of an Autonomic Manager collects, aggregates, and filters data obtained from the

managed element and, possibly, from other relevant entities. Monitoring tasks directly use the Sensor

touch points made available by the managed elements and/or by the execution environment. The purpose

of monitoring is to collect ‘useful’ data providing a synthesised view of the execution process and/or

context. Such data, once filtered and appropriately formatted, is then analysed by the autonomic manager,

which may then undertake correcting actions in response to changes or deviations from the objectives set

by administrators.

The monitoring phase involves several monitoring techniques that depend on the kind of information

that is needed by the autonomic element to perform its work appropriately. For instance, in the case

of resource allocation in a Grid environment for self-optimizing or self-healing purposes, it is necessary

to monitor CPU and memory utilization of each active node in the grid. The autonomic manager then

analyses this data to detect failures or suboptimal performances and to consequently take appropriate

decisions. Sensors are often application specific. Hence, autonomic frameworks generally provide a

special-purpose API to implement specific sensors for particular targeted systems.

A well-known issue is that monitoring can be a rather costly process. In fact, there is a trade-off to be

made between the data that are needed to understand the state of the system and to perform appropriate

actions, and the actual cost of obtaining the data. Much work in the autonomic computing research

community has focused precisely on how to decide which subset of the many performance metrics that

can be collected from a dynamic environment should be actually obtained from the performance tools

available [LDJ13].

Also, data to be collected depend on the goals and on the state of the management process. Goals set by

administrators clearly affect the way in which monitoring should be performed. The focus of monitoring

can also change as a function of the human administrators’ interests. Similarly, intermediary results about

the situation of the managed artefacts regarding the goals can influence data to be monitored and the way

to collect them.

16

Further, a more dynamic approach to the monitoring of systems to facilitate autonomicity can be

taken. For example, Agarwala et al. [ACMS06] propose QMON, an autonomic monitor that adapts

the monitoring frequency and therefore monitoring data volume to minimize the overhead of continuous

monitoring while maximizing the utility of the performance data. It could be described as an autonomic

monitor for autonomic systems [LDJ13].

There are two kinds of monitoring in autonomic computing systems [HW05]: passive and active

monitoring.

Passive monitoring consists in sensing a software or hardware component with a specialized monitor-

ing entity. Most often, targeted systems feature embedded monitoring components. In Linux for instance,

the ‘top’ command returns information about CPU utilization by each process. Another example in the

context of virtual machines, clusters, and Grids is the Ganglia Monitoring System [MCC04]. This system

relies on a multicast-based listen/announce protocol to monitor the state of targeted systems. To illustrate

this, Figure 2.4 presents a live report of Ganglia while monitoring the Wikipedia infrastructure. These

information can be exploited by autonomic managers to self-manage the corresponding system.

The purpose of active monitoring is to capture low-level information from the target system compon-

ents through the use of techniques like code injection or aspect-oriented programming. This is a particu-

larly interesting option to let autonomic managers inject probes to the targeted system when needed and

for the specific information they need. An interesting example of such type of monitoring can be found

in [MGGL11]. In this work, a set of probes are injected at different levels of a data-mediation chain to

obtain relevant monitoring data as needed.

Figure 2.4: Ganglia Monitoring System Report of Wikipedia Servers

2.4.4 Analysis

The purpose of the analysis process is to evaluate the current state of the targeted system and of the

execution environment. To do so, it uses the monitored data, models the situation and analyses it to

17

determine if changes need to be made to the managed system. A wide variety of algorithms and techniques

can be employed for detecting misbehaviours or insufficient quality of service, correlating information,

anticipating bad situations, identifying problems and defining a better state to be reached. Hence, the

analysis phase can define the desirable state(s) that the managed system should be shifted towards. The

planning phase - the next one in the loop - is then responsible for preparing a set of actions to be carried

out in order to achieve such states.

As said, the techniques available to perform analysis are numerous. They include the construction of

models for evaluating a situation, classification approaches to determine when constraints are not met, or

learning systems to better apprehend situations in advance. Prediction systems typically monitor trends

and foresee if a constraint or goal is to be broken in the near or remote future. This can be implemen-

ted with simple regression analysis or with more complex techniques like Hidden Markov Models that

represent temporal states of the system and can be used to model the outcomes of a plan.

Often at this phase, an analyser also takes as an input the objectives and/or policies specified by

administrators, along with the monitored data and the acquired knowledge. Three types of policies have

been largely used by the autonomic computing community to express such administrative goals: event-

condition-action (ECA) policies, goal policies and utility functions [KW04]. ECA policies take the general

form: “when event occurs and condition holds then execute action”. Here, the analyser detects the event

from the monitored data, evaluates the condition specified by the user and then plans an action or a set of

actions to be executed (which is theoretically part of the planning phase). As an example, such ECA policy

may state that “when 95% of Web servers’ response time exceeds 2s and there are available resources, then

increase the number of active Web servers”.

While ECA policies can be relatively straightforward to implement, they feature several limitations

that can make them unsuitable in certain management contexts. Notably, if the execution context or man-

aged resources undergo dramatic changes that were not predicted when the ECA rules were specified,

then this type of management logic cannot adapt itself to the new conditions. Indeed, since the admin-

istrative goals are not explicit in the policy definitions the autonomic manager has no way of knowing

how to modify its reactions in order to achieve them in the new context. Goal-oriented policies address

this limitation by explicitly defining goals and allowing the autonomic manager to infer its decision logic

automatically in order to achieve these goals case-by-case. The increased difficulty of implementing the

inference process is the main downside of the goal-oriented approach.

Another important difficulty in analysing monitoring events comes from the conflicts that can oc-

cur between polices or objectives specified for an autonomic element. When several ECA policies are

triggered by the same event, their actions can be conflicting and the resulting state of the managed ele-

ment incoherent. Administrators must take great care (or use special-purpose tools) for preventing such

conflicting policies from being defined. When a goal-oriented perspective is adopted, administrators may

want an autonomic element to pursue several goals at once; these goals may be conflicting (e.g. a Web

server’s performance and security objectives). While goal-oriented policies are binary – the goal is either

met or not met – utility functions can express various degrees of success with respect to specified goal(s).

More precisely, utility functions are defined so as to be able to quantify the level of desirability of (mon-

itored) data and its implications. Hence, the desirability of a given state can be qualified with respect to

several targeted goals. The utility measure is expressed as a function, which takes as input a number of

state parameters and provides as output the state’s desirability rating. Utility functions can be employed

both during the analysis phase – to evaluate the current system state – and the planning phase – to evaluate

the predicted outcomes of various actions and select the optimal action to execute. The major difficulty

with utility functions is that they can be hard to define, as all relevant aspects must be quantified.

18

2.4.5 Planning and Execution

Planning and execution are complementary activities. Planning focuses on high-level actions to be under-

taken while execution is much more concrete in the sense that it deals with the implementation of the plans

and the direct interaction with the artefacts under execution. Separating planning and execution has been

much investigated in Artificial Intelligence in order to deal with complex environments that are difficult

to observe and to predict.

The purpose of the planning activity is to come up with a set of actions to be carried out on the managed

artefacts in order to achieve the administrators’ goals. The planner should not consider the implementation

details of the actions but rather remain at a certain level of abstraction in order not to be influenced by low

level evolutions of the managed elements. The planner relies on a set of actions that can be performed

on the managed system. These actions are strongly related to aspects of the managed system, and are

executed by specific effectors.

There are two different ways to address planning in autonomic computing systems: domain-specific

or generic. In the first approach, the expertise of system administrators is incorporated in the planner as a

set of policies and rules. This is the case of ECA rules where actions are written by administrators based

on their experience in the domain. In the second approach, the idea is to formally express the problem, or

the state to be reached. The planner relies on generic algorithms to determine the sequence of actions to

be taken depending on the pre-conditions and effects of each action on the state of the targeted system. In

several related works, the action plan is not directly executed on the target system, but in an intermediate

architectural model that reflects the managed system. This architectural model is used to formalize the

current state of the system; that is, its structure, its behaviour, and even its requirements and objectives.

The purpose of the execution phase is to schedule and control the execution of the action plans pro-

duced by the planner. Clearly, execution is a much more concrete activity than planning in the sense that

it directly interacts with the managed artefacts. A plan, for instance, could specify a set of parameters to

be changed, with no ordering constraints. The execution activity, then, has to determine how and when

the parameters have to be changed (e.g. to ensure the integrity and the coherence of the resulting system

state). It is a matter of timeliness and synchronization where a number of functional and non functional

dependencies have to be considered. Usually, a parameter can be changed only if some conditions hold.

When several parameters have to be modified, ordering constraints have to be respected.

Concrete actions are performed through effectors, which are system-specific and have access to the

managed system elements. Such action can consist in simply reconfiguring some properties, in changing

the very structure of a component-based application, or in modifying the behaviour of some components.

2.5 Engineering autonomic systems

As previously stated, the aforementioned reference architecture for autonomic computing systems - the

MAPE-K loop - is mainly inspired from control theory (see section 3.1 of chapter 3). The MAPE-K

architectural blueprint provides a valuable conceptual architecture to implement autonomic managers. It

remains however at a high level of abstraction and, obviously, concrete implementations may differ. Some

functions can be modified or even omitted, others can be added. Indeed, different implementation variants

of the MAPE-K loop have been proposed in the literature.

In this section, we explore significant propositions regarding the MAPE-K implementation. Our

presentation will focus on the way in which autonomic managers are structured and architected to fulfil

the desired goals and to reach the expected quality attributes. Indeed, making complex computing systems

self-managed involves more internal complexity. It is likely that autonomic elements will have complex

19

lifecycles, continuously carrying out multiple threads of activity, and constantly sensing and responding

to their execution environment. It is clear that engineering such systems is an essential issue.

In the next sub-section, we outline some important quality attributes that autonomic systems should

have. These attributes will be used as comparison criteria for the autonomic frameworks studied later on.

2.5.1 Quality attributes

Along with the aforementioned autonomic properties, also called self-star (self-*) properties [BJM+05b],

an autonomic computing systems should also provide, like any other modern software system, certain

quality properties [LML05] such as adaptability, dynamicity, scalability, robustness, or interoperability.

Hereafter, we define some quality attributes that we believe to be essential for autonomic systems and

that are in the scope of the thesis:

• Adaptability. In order to cope with changing user requirements and with market and runtime con-

ditions, autonomic computing systems should remain flexible after their deployment. Note that

adaptability is equivalent to the term flexibility in the IEEE Standard Glossary for Software Engin-

eering Terminology [EE90], which defines it as “the ease with which a system or component can

be modified for use in applications or environments other than those for which it was specifically

designed”. The core concept is the general ability to change a system’s observable behaviour, struc-

ture or realization. Adaptation may affect a system’s functionalities, algorithms or parameters, as

well as its overall structure.

• Dynamicity. Dynamicity is the ability to add, remove or exchange some code under the form

of components, modules or services during runtime. In contrast to adaptability, this quality only

constitutes a technical facility of change during system execution [Esc08]. Dynamicity deals with

concerns like starting and stopping a functionality, preserving states during a functionality’s up-

date process, and so on. There are close but not dependable relationships between dynamicity and

adaptability. Some researchers refer to dynamicity via the terms Dynamic Adaptation [FC09] or

Adaptiveness [AAB+07].

• Scalability. Scalability refers to the ability to cope smoothly with an increase in the workload

[DRW06]. The specific type of workload will depend on each system concerned. In practice,

scalability can be declined in different ways. For instance, it can refer to the ability of a server

system to always respond satisfactorily despite an increasing number of requests. It can also refer

to the ability of a network to support the addition of nodes. In an autonomic computing context, it

can refer to the ability of an autonomic management solution to deal with an increasing number of

managed elements or with a high frequency of changes.

• Robustness. Autonomic systems cannot guarantee to operate so as to avoid all system malfunctions

[Cap10]. Consequently, the robustness quality of autonomic systems is an important feature. It is

defined as “the degree to which a system or component can function correctly in the presence of

invalid inputs or stressful environmental conditions” [EE90]. This is related to other properties

such as fault-tolerance and self-healing. Autonomic systems must be robust as the self-healing

function requires them to detect and correct problems such as errors or communication losses.

• Interoperability. Interoperability is defined as “the ability of two or more systems or components to

exchange information and to use the information that has been exchanged” [EE90]. In the context

of autonomic computing systems, this refers to autonomic management components that coexist and

interact - either directly or indirectly - within the same autonomic application or system [APS11]. A

multi-manager presence with potentially different objectives may lead to conflicts, where the actions

of one manager can have an undesirable impact on the management functions of the other managers.

20

Autonomic frameworks should provide mechanisms to deal with such problems and hence increase

the level of interoperability between the different autonomic managers - e.g., [FDMD13].

• Reuse. Software reuse is the process of creating software systems from existing software rather

than building them from scratch [Sam97]. As the different components of an autonomic comput-

ing system are often highly difficult and costly to build, there is a significant demand for reusing

autonomic components across different autonomic systems.

2.5.2 Autonomic Frameworks

There is a lot of work around Autonomic Computing Systems, tackling different problems, challenges,

techniques and applications [HM08]. In this section, we focus on the software engineering point of view,

by studying and outlining some of the frameworks that have been proposed to help build autonomic

computing systems. To conclude this section, we present a comparative study highlighting the quality

attributes of each studied framework.

Ceylon

Ceylon [DML08, MDL10, Mau10] is a project developed at Grenoble University. It proposes to build

autonomic managers by integrating specialized administrative tasks, where each task implements a spe-

cific management aspect, such as monitoring a certain feature of the targeted system, detecting specific

problems, planning a specific solution or modifying a managed resource in a certain way. Task integration

is performed dynamically in order to produce management chains that are adapted to changing conditions

and requirements. Tasks can be known at deployment time and/or discovered and brought into the system

at runtime. Depending on the execution context and the state of the managed application, a high level

Tasks Manager activates or deactivates specific tasks and forms a chain of tasks for dealing with the ob-

served problem, in accordance with higher-level management strategies specified by the administrator (see

Figure 2.5). This approach enables the opportunistic composition of simple tasks into more complicated

management processes that can deal with complex and unpredictable situations. The management tasks

are implemented as services, which communicate asynchronously through the exchange of topic-based

events.

Tasks Manager

Managed Ressource

Tasks

Context

Goals

Tasks

Repository

Figure 2.5: Ceylon framework

21

Despite the advantages of using a dynamic architecture to choose and switch between different man-

agement tasks and the possibility to manage multiple aspects at the same time, we believe that this frame-

work lacks several interesting features. Most importantly, relying on a centralised Task Manager will

limit, sooner or later, the scalability of a Ceylon-based management solution. Indeed, large-scale ap-

plications featuring a significant number of distributed, heterogeneous and highly-dynamic managed ele-

ments raise complex administrative problems, which are difficult to handle via a central entity. In such

cases, specialized tasks can be implemented to retrieve data from distributed resources, execute actions

on heterogeneous elements, or be dynamically extended to deal with new components or situations. Yet,

Ceylon’s centralization with respect to the task integration process may lead to overloading situations and

constitutes a single point of failure.

This work is part of a bigger trend to use service-oriented computing to design loosely-coupled auto-

nomic managers with dynamically interchangeable elements. Such efforts aim to standardize their in-

terfaces to facilitate the reuse of multiple implementations. Miller [Mil05] showed the advantages of

standardizing the interfaces of autonomic management elements; this is motivated by the arrival of new

standards for the distributed management of resources, like the Web Services Distributed Management

(WSDM) [Sed04].

Rainbow

Rainbow [GCH+04] is a project developed at the Carnegie Mellon University by David Garlan and his

colleagues. They investigated the use of architectural models at runtime to help the dynamic adaptation

of software systems (see section 3.4 of chapter 3). It is rather an overall approach for engineering self-

adaptive systems, comprising a framework, an adaptation language and an adaptation engineering process.

The framework includes a closed-loop control that monitors the system and reasons about appropriate

adaptations using the architecture model.

Figure 2.6 depicts a system under Rainbow’s control. In particular, it highlights the two layers of the

Rainbow architecture (system and architecture layer) and the underlying framework elements. At the sys-

tem layer, a set of Probes monitor the running system, and update properties of the system’s architectural

model. The architectural model is managed by a Model Manager, which belongs to the architecture layer.

An Architecture Evaluator checks constantly that the system is operating correctly (within acceptable

bounds), as defined by architectural constraints specified by administrators. If something goes wrong, an

Adaptation Manager analyses the architectural model, which reflects the current monitored system, and

selects the best strategy to be undertaken. A Strategy Executor performs the selected strategy via system-

level Effectors. The possible adaptation actions depend on the underlying managed infrastructure; if the

targeted system is component-based software with the capability of reconfiguring the components and

changing the connectors at runtime, then specific Effectors can be implemented to execute such actions.

A specific Strategy Executor is also implemented to choose such adaptation strategy while reasoning about

the action to be undertaken upon constraints violation on the architecture model.

Most of the Rainbow framework’s components can be reused across different systems and use cases.

For instance, engineers can develop probes and effectors for a specific system and then reuse them for

other compatible systems. Most importantly, the Architecture Evaluators and Strategy Executors can be

reused across several projects, since their reasoning is based solely on the runtime architectural model and

not on the underlying managed infrastructure.

Several Rainbow sub-projects were also developed, including DiscoTect [YGS+04] - which aims to

provide architectural views by observing a running system - and RAIDE [CGS09] - which enables adapta-

tion engineers to customize the Rainbow framework, simulate adaptation behaviour and deploy Rainbow

runtime components.

22

Effectors

Target SystemSystem

Layer

Probes
Resource

Discovery

Translation

Infrastructure

System

API

Model Manager

Gauges

Adaptation

Manager

Architecture Layer

Strategy

Executor
Architecture

Evaluator

Figure 2.6: Rainbow framework

As before, an important limitation of the Rainbow framework can occur from its centralized approach

to system management. This can raise scalability issues and introduces a single point of failure. If the

centralized element fails, the entire system may be stopped. Some lines of work have been explored in

[wCcHG+04] to coordinate the operation of multiple specialized managers on a single system. However,

this approach simply allows to decompose the administration function into several entities rather than to

manage the system in a decentralized manner. Moreover, the architectural model that is used as a reference

for the adaptation process is highly precise (or ‘concrete’) in the Rainbow approach. This means that the

adaptation process must ensure that the runtime architecture of the managed system is identical to this

reference architectural model. While this is highly useful for attaining self-repair functions, it also limits

the space of acceptable system variations or adaptations.

We notice finally that the Rainbow approach is among other research efforts that use dynamic, architecture-

based adaptation for the self-adaptation purpose [BCDW04].

Unity

Unity [CSWW04, TCW+04] is a project developed at the IBM Thomas J. Watson research centre. The

project’s objective is to enable the autonomic management of distributed software systems. Unity has

focused primarily on the autonomic management of applications running on clusters and Grids. A specific

objective of Unity is to provide an architecture for enabling the autonomic allocation of resources, such

as servers, to different applications, taking into account the policies specified by administrators.

A basic assumption made in this work is that all resources, both physical and software, are represented

in the form of autonomic elements. Each element is responsible for its internal state, as well as for its

dependencies with other autonomic elements (agents) to achieve their goals. Technically, the autonomic

elements are developed in the Java programming language using a set of autonomic tools [JLHNY04]

provided by IBM. Communication between the different elements is achieved by means of Web service

calls.

Figure 2.7 shows the different elements that are part of the Unity framework. The different autonomic

elements of Unity do not know each other in advance, but they can be discovered during execution (using

a shared directory). Unity proposes the use of a repository of policies through which the user is able to

control the system. The user can add or remove policies, and applications connect to this repository to

23

Arbiter

Application 1

Ressources

Application 2

SLA 2SLA 1

Demand Demand

Figure 2.7: Unity framework

discover the policies that govern their operations. Policies are specified in the form of objective functions

(or utility functions). To determine how many servers should be allocated to each application, the Arbiter

executes an algorithm to maximize all objective functions for all applications, and hence determines the

optimal allocation of servers for applications. Hence, the Arbiter aims to optimise the utility of the cluster

or grid system overall.

Unity solves the problem of the autonomic resource allocation in the presence of multiple applications

with different needs in a cluster or a grid. This project has a number of advantages. First, the systematic use

of autonomic elements to represent hardware and software resources allows standardization of managed

elements. Second, the project proposes the use of policies expressed via objective functions. This type

of policy has the advantage of allowing the selection of an optimal system configuration, compared to

other goal-oriented policies that cannot choose between several solutions satisfying the requirements, or

make a compromise if no solution can meet all the requirements. On the other hand, the project provides

a repository of policies that is the only user interface. This technique simplifies system management and

allows the user to dynamically change the policies associated with the self-managed system.

Unity also features a few limitations. The first one comes from the extreme specialization of the

Unity project where the principal objective is to provide a system for self-optimising resource allocation

of several applications. This framework cannot be used for implementing other self-* capabilities such

as self-repair or self-protection. Also, the framework imposes that each managed application is able to

provide a rather detailed utility or objective function, which can be difficult to specify. Finally, as with the

previous frameworks, Unity’s control architecture is centralised, since all actions are taken by the Arbiter

for resource allocations.

AutoMate

AutoMate [PLL+06] is a project developed at Rutgers University. It aims to investigate key technologies

to enable the development of autonomic applications that manage complexity, dynamism, and uncertainty

associated with runtime grid environments. It includes sub-projects like Accord [LPM06] - the autonomic

programming model; Rudder [LP04] - a rule-based multi-agent infrastructure; and Meteor [JQSP08] - a

content-based interaction middleware infrastructure.

Conventional paradigms based on passive components and static compositions are becoming insuffi-

cient to deal with the scale, complexity, heterogeneity and dynamism of modern computing systems. The

research teams developing AutoMate have considered alternative approaches. They used a component-

based programming framework, called Accord [LPH04, LPM06]. The main advantage of using such

component-based infrastructure is the clear separation between functional and non-functional aspects, in

24

particular, the separation of composition rules and autonomic management from functional code of the

application. An AutoMate component includes some application-specific logic and an attached agent

that adapts its function and interaction (see Figure 2.8). The agent has a set of policies which are ex-

pressed as Event-Condition-Action rules (ECA). These rules can be dynamically injected or withdrawn

from the component. They allow the management of the autonomic component, but also its interaction

with other components. The inputs/outputs of an autonomic element’s agent are illustrated in Figure 2.8.

An AutoMate agent corresponds to an autonomic manager as defined in the autonomic computing refer-

ence architecture proposed by IBM. Monitoring information consist of data representing the state of the

component, its execution environment context, and a set of composition or management rules. As output,

the agent can act on local or remote effectors, and it can use the underlying peer-to-peer infrastructure to

adapt its composition with other components.

Autonomic

Element

Computational

Element

Operational Port

Functional Port

Control Port

Element

Manager

Element Manager

Internal

state

Rules Context

Actuator

Invocation

Sensor

Invocation

Function

Interface

Invocation

Figure 2.8: AutoMate Autonomic Element [PLL+06]

AutoMate proposes to manage applications by attaching a handler to each component of the autonomic

system. In addition, to simplify the expression of the rules, AutoMate proposes a workflow to specify the

different application rules. A Composition Manager is then responsible for interpreting the rules specified

in the application level and injecting the results into the various components (as illustrated in Figure 2.9).

This system allows expressing autonomic management rules in one place, while managing the application

in distributed manner.

Compared to the IBM’s reference architecture, AutoMate makes a set of choices, such as a component

model for the implementation of applications on which the autonomic reasoning must take place, and its

associated runtime reconfigurations. AutoMate adds the notion of global policy rules expressed in the

application level, which is then split and interpreted by each autonomic element. However, AutoMate

limits the policy specification to only ECA rules. Indeed, this type of policy is limited when it comes to

the expression of complex behaviours. In addition, the management architecture proposed by AutoMate

is fully decentralised, which can cause some problems for managing conflicts among decisions taken by

different managers.

Auto-Home

Auto-Home [Bou08, BDLM11] is a project initiated at the University of Grenoble. It provides solutions

to assist designers to develop autonomic applications based on hierarchical service-oriented architectures.

It focuses on pervasive home systems as its application domain.

At the top level, the main manager has a global view of the objectives to be achieved. It delegates

some of its responsibilities to lower-level managers with some fixed sub-objectives. In this way, the goals

become more specific and correspond to detailed objectives making sense at the lowest levels. Hence, the

leaves of the tree have no awareness of the global objectives. On the other hand, when a lower manager

cannot find a solution to a given problem, it can forward the problem to its superior, which can deal with

more abstract information and with a more global view.

25

Application

workflow

C
o
m

p
o
s
it

io
n

 M
a
n

a
g

e
r

Interaction

rules

Interaction rules

Interaction rules

Interaction

rules

Interaction

rules

Figure 2.9: AutoMate Composition Manager

Service

Manager

Service-Oriented Application

Service

Manager
S. M.S. M.

Service

Manager

Application ManagerApplication Manager

Gateway Manager

Figure 2.10: Auto-Home Hierarchical Architecture

Figure 2.10 illustrates the three hierarchical levels of Auto-Home self-management framework in one

(centralized) execution platform:

• The Gateway Manager has the overall view of the managed home system. Its role is to manage the

platform resources and their allocation to different applications. It must ensure the proper function-

ing of the platform and its applications. It can make the decision to stop and remove an application

in order to allow other applications to work properly. For instance, an alarm is more important than

the displaying of weather information. This manager has a global view of all the activities of the

platform.

• An Application Manager administers one application in the home system. It aims to maintain the

proper functioning of the application by ensuring the proper execution of its underlying services.

For instance, it can do so by choosing the most appropriate service providers. The Application

Manager carries out application policies specified by the administrator. It should, for instance, be

able to limit the resources occupied by its managed application if the Gateway Manager requests

this behaviour. The Application Manager has a global view of the application, allowing it to take

consistent decisions at this level.

• A Service Manager administers a single application service. Hence, it has a limited perception of

its environment and must follow policies set by its Application Manager.

The goal of the Auto-Home approach is not to have an emerging behaviour from the bottom management

levels. It is rather to apply control decisions and ensure user policies specified from the top level. Each

26

manager tries to optimize the resources under its control. Objectives of different managers can be op-

posed, for example when two applications want to control the same resource. Auto-Home’s hierarchy of

management and control allows solving this type of conflicts.

One of the main drawbacks of this approach is that messages exchanged between managers are not

clearly specified. This kind of information is frequently defined differently for each situation in an ad-hoc

manner. Moreover, the internal architecture of managers is not specified and appears to be monolithic,

which can be a major handicap for maintainability and reusability.

Jade

Jade [SBDP08, DPBB+08] is a project developed by the Sardes Team of INRIA institute in France.

Its main objective is to enable the autonomic management of legacy applications. Jade proposes to en-

capsulate them into standardised components with unified administration interfaces, and then to apply

reconfiguration plans onto it.

This project was originally designed for the self-management of JEE2 application servers. Since then,

it has been extended to other types of distributed applications, in particular message-oriented middleware.

The objective is to provide a tool which, from the description of the application’s architecture will enable

self-healing, self-configuration, and self-optimization of the application. In this system, there is a set of

managers that handle each aspect of the application. In addition, Jade automatically maintains a know-

ledge base with the current architecture of the managed system. Administration policies are implemented

specifically to access and use the built-in architectural view during runtime. Developers should also im-

plement specific touchpoints and the autonomic manager’s adaptation code to detect anomalies and apply

changes. The possible adaptation operations are predefined. They can be accessed via the administration

programming interface exposed by the standardised components encapsulating the legacy system. Figure

2.11 illustrates the encapsulation principal of a Jade system.

Jade autonomic framework was implemented based on the Fractal component model [BCL+06].

Fractal is a general component model that is intended to implement, deploy, and manage (i.e. monitor,

control, and dynamically configure) complex software systems, including in particular operating systems

and middleware. Jade uses Fractal components as an abstraction layer for the legacy software or hardware

elements to be managed. It benefits from the introspection and re-configuration capabilities of Fractal

components to allow programmers to code control features for managed components represented in the

abstraction layer.

Legacy system

Apache Tomcat

MySQLLB

Apache

LB

Tomcat

MySQL

Apache Tomcat

TomcatApache

Management system

Administration

Interface

Figure 2.11: Encapsulating legacy systems with Jade

2Java Enterprise Edition

27

Component-based administration as proposed by Jade allows:

• Managing heterogeneous elements through a uniform programming interface instead of using spe-

cific interfaces for each element (usually configuration files and scripts).

• Managing complex environments from different points of view. Indeed, using Fractal components

and composites allows encapsulating complex systems at various granularities or abstraction levels

(e.g. network infrastructures, operating systems or middleware).

After defining the management layer as consisting of components and composites (also known as Man-

aged Elements), exposing well-defined administration interfaces, Jade allows adding administration and

control programs (i.e., autonomic managers) that analyse and act on the abstraction layer to ensure self-

management of the encapsulated legacy system (see Figure 2.12). Jade provides a set of common services

and two main autonomic managers:

Management system

Jade

Self-healing autonomic manager

Self-optimizing autonomic manager

Sensor Actuator

Resize decision

Nodes Discovery Deployment

Nodes

Allocation

System

Representation

Common Services

Figure 2.12: Jade autonomic framework

• Self-healing manager [BBH+05]: a set of probes are deployed to monitor the execution nodes of

a JEE application. The self-healing manager monitors these nodes periodically and when detecting

a failure it allocates and activates a replacement machine; redeploys the necessary management

elements; and ensures consistent repair of the broken part.

• Self-optimizing manager [BPHT06]: this manager handles the overload of a replicated JEE archi-

tecture. It uses a detection mechanism to determine when response time becomes unacceptably

large. When this is the case, the self-optimising manager uses available machines to create a new

instance of the system.

The main limitations of Jade correspond to the high level expertise needed to build autonomic managers.

Indeed, management policies are hard-coded. Second, the centralized management architecture proposed

features the main limitations as the previous frameworks discussed – i.e. scalability and robustness lim-

itations. Finally, Jade does not provide a mechanism to manage the coordination between the different

managers – self-healing and self-optimisation.

2.5.3 Comparison

In our comparative study, we are interested in the three complementary points of view:

1. Control logic placement and its possible organization;

28

2. Application spectrum (i.e., generic or specific), supported self-star properties, and goal specification

approach;

3. Supported Quality Attributes.

Table 2.2 depicts the results of our comparison regarding the first point of view. In this case, we consider

two aspects of the control logic: (1) how the control code is placed, and (2) how the control components

(i.e., autonomic managers) are organized (i.e. architected) to fulfil the management objectives. Control

logic is considered “internal” if it is injected directly into the managed system, that is, if it is part of it. The

term “external control” is used when a separate system monitors the managed system and acts upon it.

Each of the two possibilities has advantages and drawbacks. For internal code placement, developers have

a deeper control of the managed elements. Techniques like reflection or container-based control are used

in this case. Among the studied frameworks, AutoMate has a dedicated programming model (Accord) that

explicitly defines autonomic components with functional and control code. Hence, the control logic is part

of the component and is handled by an agent that interacts with other agents to fulfil global objectives.All

the other frameworks exemplified follow an external code placement approach. This is mainly inspired

from control theory (detailed in the next chapter, section 3.1). The main advantage of such an approach

is the separation between target systems and control systems, so that the same control components can be

used to control several targeted systems (often legacy).

Table 2.2: Comparison of control placement and organization
Control Placement Control Organization

Internal External Centralized Hierarchical Decentralized

Ceylon x x

Rainbow x x

Unity x x

AutoMate x x

Auto-Home x x

Jade x x

Next, table 2.2, also indicates how the managers are organized. This is independent from the distri-

bution of code among several physical machines. However, it can provide a first insight into the possible

distribution of control over a distributed network. This, in turn, can provide further insight with respect

to certain quality attributes such as scalability and robustness. In all cases, the centralized or monolithic

control cannot be separated into disparate execution nodes, despite the fact that the target system can be

distributed across separate machines. That is, the control decisions are made in a single place. This has the

advantage of having better control capabilities as all needed information is available in one place at any

one time, so that the autonomic manager can take a well-informed decision. Having a single control point

also avoids situations where conflicting decisions are taken concurrently at different network locations.

However, centralised organizations feature important limitations in terms of scalability and robustness.

Hierarchical control can be adopted to attain management objectives in large-scale distributed systems.

The principal idea is to use the divide-and-conquer strategy for splitting the objectives into different levels.

Here, low-level controllers manage parts of the large-scale system, while high-level controllers provide

means of coordination for the lower-level controllers. The role of the highest-level controller is to adjust

the sub-objectives of lower-level controllers in order to attain system-wide objectives.

In contrast to centralised or hierarchical control, approaches that are completely decentralized lack a

unique control point altogether. This means that there is no central entity that controls or supervises all

29

the others, including controllers or managed elements. Typically, each decentralised controller only uses

information available from its local environment, from neighbouring controllers, or from other related

controllers, in order to take adequate decisions and actions. The system-wide objectives are achieved as a

result of such local actions.

Table 2.3: Comparison of specific/generic solutions and of self-* properties
Specific Generic Self-* properties Goals specification

Ceylon x self-* Code and configurations

Rainbow x self-* Code / Architectural

model-based

Unity Grids self-allocation of

resources

Utility function

AutoMate Grids self-healing ECA

Auto-Home Home

Automation

self-healing &

self-configuration

Code

Jade Legacy self-healing &

self-optimising

Code

Table 2.3 categorises the studied frameworks in terms of their applicability, supported self-* properties

and the way in which their goals are specified by administrators. Rainbow and Ceylon are considered

generic frameworks as they can be used to manage any kind of targeted systems. These frameworks

provide mechanisms and APIs to implement specific wrappers of the managed systems. In Rainbow,

this is done by implementing specific probes and effectors for each targeted systems, along with other

extensions in the architecture layer. In Ceylon, this is done by implementing specific management tasks.

The other frameworks are specific for particular domains. Unity is mainly used for autonomic resources

allocation. AutoMate is specialized for Grid environments. Jade has mainly been used for legacy systems,

yet it can be considered as generic since various targeted systems can be wrapped and managed as Fractal

components. Finally, Auto-Home aims to control home automation applications.

Finally, table 2.4 summarizes how each of the reviewed autonomic frameworks supports the quality

attributes described here before (see 2.5.1). We have used the following notation:

• “o” means the framework does not explicitly exhibit the desired quality attribute; however it does

not avoid its fulfilment in principle.

• “+” means the framework somehow supports the quality attribute

• “++” expresses that the corresponding quality is highly supported by the framework.

Table 2.4: Comparison of Quality Attributes
Adaptability Dynamicity Scalability Robustness Intero-

perability

Reuse

Ceylon ++ ++ o + ++

Rainbow ++ o o o +

Unity + + + +

AutoMate + + + ++ +

Auto-Home ++ ++ + + + +

Jade + + +

30

2.6 Summary

Autonomic computing is an ambitious initiative addressing the runtime management of complex soft-

ware systems. Its main purpose is to drastically reduce the effort required for system administration

and consequently diminish maintenance and evolution costs. The idea is to achieve this by introducing

well-coordinated autonomic managers capable of replacing the human experts for intervening rapidly and

effectively to repair faults, optimize resource utilization, configure new resources, or secure the system

against attacks. The inherent complexity of modern software systems will be consequently reflected in the

autonomic management systems that control them. IBM has proposed a reference architecture to organize

such self-management systems. This conceptual architecture has been implemented in different ways by

several research teams, targeting different quality attributes and different domains. In this chapter, we

have reviewed some of the proposed frameworks and we have established a way to compare them.

In the following chapter, we will see in more depth the approaches related to autonomic computing and

their associated quality attributes. Several techniques used in our thesis proposal (introduced in chapter

4) are inspired from these related domains, and merged together to form our approach for self-managing

complex modern software systems.

31

32

Chapter 3

Approaches to Autonomic Computing

Contents

3.1 Control Theory . 33

3.1.1 Types of Control Loops . 34

3.1.2 Related work to Autonomic Computing . 35

3.1.3 Summary . 37

3.2 Agent-based systems . 37

3.2.1 Structural organisation of multi-agent systems 38

3.2.2 Communication principles . 39

3.2.3 Adaptive multi-agent systems . 40

3.2.4 Research work related to Autonomic Computing 41

3.2.5 Summary . 42

3.3 Nature-inspired approaches . 43

3.3.1 Self-organisation and emergence . 43

3.3.2 Functional structure and pattern formation 45

3.3.3 Work related to Autonomic Computing . 45

3.4 Architecture-based approaches . 46

3.4.1 Software Architecture . 47

3.4.2 Adaptation concerns . 48

3.4.3 Enabling Techniques . 48

3.4.4 Summary of architecture-based approaches 52

3.5 Discussion and chapter summary . 53

To realize the Autonomic Computing vision and meet its challenges, researchers have investigated

the use of techniques, methods and theories from other disciplines and fields to cover different aspects of

Autonomic Computing Systems. In this section, we detail some of the significant domains from which we

have adopted concepts and techniques to develop our approach to self-managing software systems.

3.1 Control Theory

Control Theory/Engineering is concerned with the management of dynamic systems [MT89] that con-

stantly interact with their environment and change their behaviour over time. The output of such system

33

does not only depend on its inputs, but also on the system state, which changes constantly in response

to environmental evolutions. In the software domain, dynamic systems are often called adaptable soft-

ware systems [MSKC04]. Because of the constantly changing state and behaviour of dynamic systems,

engineers have to find solutions to ensure the system’s important properties and objectives, such as robust-

ness, regulation, optimization, performance and stability. To achieve these objectives, the control-based

paradigm considers two types of system inputs: control inputs, provided by a Controller, and disturb-

ances, which affect system behaviour in an unpredictable manner [KBE99]. The two systems, that is,

the controller and the target system, are often coupled by sensors and actuators, and possibly by some

transformation operations. The whole forms a control-loop.

Controllers are developed for some intended purpose or control objectives. The common objectives

include:

• Regulation: ensure that the measured outputs of the target system stay within a given range of

values - a viability zone. For example, the utilization of a cluster of web servers is regulated so

that one web server never exceeds 70% of its capability. In case a server exceeds this limit, the

controller, which measures the server’s CPU utilization, activates other available servers in order to

absorb some tasks from the overloaded server.

• Disturbance rejection: ensure that disturbances acting on the system do not significantly affect

the measured output; the output should remain within the viability zone. Considering the previous

example, when a long running task (like a backup or a virus scan) is executing on the web server,

the overall utilization of the system if maintained at 70%.

• Optimization: obtain the best possible values of the measured outputs and apply control values to

the target system so as to get the system to function in an optimal manner. In the cluster example, the

controller aims to switch-on the minimum number of web servers while ensuring that each server’s

load is under the 70% threshold.

In addition to such business-specific objectives, most control systems must also feature several generic

properties, such as:

• Stability: ensure that system’s state variables and outputs do not diverge or permanently oscillate

when receiving bounded control inputs. Ideally, under constant inputs, the system reaches a stable

equilibrium within a bounded period. In the exemplified cluster above, the controller should avoid

having a server switched on and off repeatedly within short intervals, as could be the case if reacting

too finely to a CPU load that is close to the threshold.

• Controllability: ensure that the system can be forced into desirable states by applying appropriate

control inputs.

• Observability: ensure that the system’s state can be observed through measurements of its outputs.

If a system state is not observable then the controller will most likely not be able to control the

system so as to force it into that state.

3.1.1 Types of Control Loops

Control-loops can be of different types: open loops, closed feedback loops or closed feed-forward loops.

In open loops (e.g., automatic toasters and alarm clocks) the controller sets the control inputs for the tar-

get system without knowing the system’s direct outputs. The controller can however receive information

indirectly from the environment or from other systems. In contrast, in feedback control-loops (e.g., ther-

mostats or automotive cruise-control systems) the controller adjusts the control inputs for the target system

so as to get the system’s measured output to be equal, or as close as possible, to the desired values (i.e.,

34

reference input). Hence, a feedback process determines how the control will be undertaken at any time

depending on the current state of the system, as indicated by its outputs, and on the reference input. The

feedback control system acts in a reactive manner because it waits until a disturbance affects the outputs

of the target system before taking the necessary decisions and actions. The process executes as follows

(see Figure 3.1):

1. A deviation of objective, or control error, is determined from the sensed system outputs and their

comparison to the reference input;

2. The controller “calculates” control actions;

3. The deviation is eliminated by applying the control actions to the target system’s control inputs.

Controller Actuator
Target

System

Control

input

Measured

Output
Control

Error

Reference

Input

Transduced Output

Disturbance

Input

Sensor

+
-

Figure 3.1: Feedback control system

In contrast to feedback control loops, feed-forward control measures disturbances and adjusts the

system inputs before the disturbances can affect the system outputs. It acts in a proactive manner, as

follows (Figure 3.2):

1. A disturbance is determined;

2. A potential future deviation of objective is “calculated”, or predicted;

3. A control action is applied to compensate for the predicted deviations.

Controller Actuator
Target

System

Control

input

Measured

Output
Control

Error

Reference

Input

Transduced Output

Disturbance

Input

Sensor

+
-

Sensor

Figure 3.2: Feedback and feed-forward control system

Feed-forward control loops can significantly improve performance compared to feedback control

alone, by pre-emptively reducing the future effects of current disturbances (Figure 3.2). However, ac-

curate measurements of disturbances in software systems are hard to acquire [PCHW12].

3.1.2 Related work to Autonomic Computing

Regardless of the obvious analogy between software systems and control systems, the basic paradigm of

control has not found its place as a first-class concept in software engineering [KBE99]. In fact, unlike

physical and mechanical systems, which are generally dynamic, software systems are often composed of

35

static modules with off-line configurations. Changes during execution are often not possible, and the re-

start of the software system is the only way to apply adaptations and new configurations. However, since

2005, advances in adaptive middleware solutions [LRS97, ST09] (e.g., web servers, application servers

and business process engines), virtual machines [AFG+04, KKH+09], large-scale Clouds [LBCP09] and

Green Computing environments have led to an increasing use of control engineering to self-manage these

types of software systems [PCHW12]. The most notable management objectives are performance attrib-

utes such as response time, throughput, processor and power utilization. The reason for this could be that

the performance attributes like response time are what the user perceives from the system. They often

correspond to one of the attributes specified in the service-level agreement (SLA) as part of a service con-

tract. Also, processor utilization is becoming an important attribute because of the increasing demand and

cost of power in data centres.

In [HLM+09], a control loop is used to dynamically consolidate the resource consumption in a cluster

of computing nodes. Their tool, called Entropy, allows administrators to implement scheduling policies

through cluster-wide context switches: permutations between Virtual Machines (VMs) present in the

cluster (see Figure 3.3). Entropy monitors the cluster using external tools (such as Ganglia monitoring

system1) and retrieves its current configuration. Then, it computes a new viable configuration and an op-

timized reconfiguration plan. This plan describes the sequences of transitions to perform (i.e., migrating,

stopping/resuming and running VMs) in order to pass from the current situation to the new optimized

one. It is interesting to note that Entropy uses a constraint-oriented programming approach to find op-

timized configurations. It takes as input a set of VMs and their CPU and memory requirements (current

configuration), and computes a placement of VMs on nodes in order to maximize the cluster resource

utilization.

Many self-adaptive software systems and autonomic frameworks have been implemented based on

control engineering techniques – e.g., [CSWW04, DHP+05, TDBH09]. Self-managing capabilities are

achieved in a system by taking an appropriate action when detecting particular situations based on in-

formation sensed from the environment or from the system’s internal state. The functioning of any auto-

nomic capability relies on a control loop that collects information about a system and its execution context

and acts accordingly to achieve a desirable property or result. Tharindu and colleagues has published a

systematic survey of such works [PCHW12].

Node 1

VM Monitor

VM1 VM2

Node 2

VM Monitor

VM3 VM4

Node 3

VM Monitor

VM5 VM6

Cluster

Monitoring Execution

Decision

Module

Context switch

Module

Entropy

Statistics Actions

Reconfiguration plan to

an optimized configuration
Current configuration

Front-end node

Figure 3.3: Architecture of Entropy

In addition, new component models such as Fractal [BCS09] or iPOJO [EHL07, EH07] provide this

1http://ganglia.sourceforge.net

36

notion of controllability at the low level of software components. Systems built using these frameworks

can be observed and acted upon and hence they support the addition of control loops (embedded or ex-

ternal). More precisely, a Fractal component is made of two parts: a container (also called membrane),

which embodies the control-related behaviour, and a content, which represents the functional code. An

iPOJO component is also formed of two parts: a POJO object that implements the functional code, and a

set of handlers that control different aspects of the component. In both component models, the controller

membrane is connected to the target component using reflection. In iPOJO for instance, a particular hand-

ler controls the component’s service references and changes the component state accordingly. Namely,

if one of the component’s required services becomes unavailable the handler sets the component’s state

to invalid; the component’s provided services become unavailable as a consequence. When the handler

detects the return of the required service, it connects the component to it and changes the component’s

state to valid; the component’s provided services also become available. More advanced researches have

been undertaken in this context to provide higher-level controllable systems based on the dynamic con-

trollability features of such component-based model frameworks – e.g., [DBE08] and [PCT03].

Finally, an active research community from the control theory domain has joined the autonomic com-

puting community. Therefore, since 2011, the International Workshop on Feedback control Implementa-

tion and Design in Computing Systems and Networks (FeBID) is being associated with the International

Conference on Autonomic Computing (ICAC). Two years earlier, in his keynote at ICAC 2009, Joe Heller-

stein [Hel09] outlined the different applications of feedback control to Autonomic Computing systems,

such as memory allocation and throttling background utilities in commercial database management sys-

tems and thread pool administration.

3.1.3 Summary

Karl Astrom, a well-known contributor to control theory, stated that the “magic of feedback” is that it

can create a system that performs well from components that perform poorly [Ast07]. This is achieved

by adding the controller element that dynamically adjusts the behaviour of systems based on its measured

outputs. Indeed, control theory is well suited to dynamic systems for ensuring some performance attributes

such as response time or throughput. Foremost, it produces good results when the behaviour of the target

system is well-modelled. However, it suffers from some disadvantages. In particular, it can create dynamic

instabilities in a system.

Applying feedback control to individual autonomic elements is an interesting approach that has brought

good results. However, there is still a need to better understand and control the behaviour of multiple in-

teracting feedback loops. This is especially the case when the feedback loops to be integrated cannot be

completely known in advance. In particular, when the managed system runs in an open environment with

uncontrollable external services, feedback control loops are difficult to construct.

3.2 Agent-based systems

There is no universally accepted definition of the term agent. However, a software agent is usually defined

as “a computer system situated in some environment that is capable of flexible autonomous action in

order to meet its design objectives” [Woo97]. This means that an agent decides for itself what it needs

to do in order to meet its specified objectives. It responds in a timely fashion to changes that occur in its

environment. It can also exhibit a proactive behaviour by taking the initiative before problems occurred.

Finally, most agents can interact with other agents and with humans in order to complete their problem-

solving task. In such cases, agents are said to be social.

37

Agent

Environment

sensor

input

action

output

Figure 3.4: Computer System Agent in its environment

Figure 3.4 depicts a basic representation of an agent interacting with its environment [Wei99]. It

takes sensory information from the environment and produces actions that affect the environment. The

environment provides the conditions under which an agent can exist [OVDPFB03]. In other words, it

defines the properties of the world in which an agent can and does function.

Beyond the capabilities of any single agent, multi-agent systems (MAS) employ multiple agents to-

gether to solve complex (distributed) problems. Jennings et al. [JSW98] summarize the characteristics of

MAS as follows:

• Each agent is individually motivated and attempts to maximize its own utility;

• Each agent has incomplete information, or capabilities for solving the problem, thus each agent has

a limited viewpoint;

• There is no global system control;

• Data is decentralized; and

• Computation is asynchronous.

3.2.1 Structural organisation of multi-agent systems

IBM’s reference architecture for autonomic computing is very similar to the one depicted in Figure 3.4.

However, in the research field of multi-agent systems, an agent interacts with its environment, which can

include other agents. Hence, one of the objectives of multi-agent research is to find the best organiza-

tion among software agents that can exhibit desirable performance characteristics [JSW98]. A number of

organizational strategies have emerged from this line of research [HL04], like hierarchical organization

(Figure 3.5-a), team-based organization (Figure 3.5-b), or federation (Figure 3.5-c). No one organization

is suitable for all cases, but trade-offs can be found between the different organizations for specific situ-

ations. Most often, designers study the characteristics of each type of organization to determine under

which situations it can be beneficial [CZ04, CZ06].

In the hierarchical organization, the agents are conceptually organized in a tree-like structure (Figure

3.5-a). Each parent agent can control its immediate descendant agents; it also detains a more global view

than its descendants. To maintain such different degrees of visibility, low-level agents sense the environ-

ment and produce local data, which is forwarded upwards to higher-level agents and then aggregated with

other sources to produce more global information. On the contrary, higher-level agents send control flows

downwards when they have sufficient information to make a decision. This organization defines hierarch-

ical authority levels between the different agents, where each agent is assigned a specific role. It follows

the divide-and-conquer approach of decomposition that allows using a larger number of agents efficiently

[YKO03]. This type of organization is strict and only allows agents to communicate with parent and direct

descendant agents.

Abstracting the low level data can introduce uncertainty since important details may actually be lost.

38

Moreover, using a hierarchy can also lead to an overly fragile organization, prone to single-point of fail-

ures with potentially global consequences. However, a hierarchical organization reduces dramatically

the computational load placed on any one agent, because the area that each agent is responsible for can

be relatively small. Moreover, control actions become more tractable and increased parallelism can be

exploited.

In the team-based organization, a number of cooperative agents agree to work together towards a

common goal. Hence, each team tries to maximize its global utility (goal), rather than the goal of the

individual members. The agents within a team interact in an arbitrary fashion, but which is consistent

with the team’s goal (Figure 3.5-b). Each agent can be assigned particular roles for addressing subtasks

required to fulfil the team’s goal. One of the benefits of such organization is that the group of agents can

address larger problems than any individual is capable of. However, there is an increase communication

among the team members to remain in coordination.

(a) (b) (c)

Figure 3.5: Example of agent organisations: a) hierarchical; b) team-based; c) federation.

In the federation organization, groups of agents, with a single delegated leader, have some autonomy

to take decisions. Agents do not communicate directly with each other. Instead, they only communicate

with the group leader, which is also called broker or facilitator [GF92, GK94]. The leader’s role in this

case is derived from and generalizes the concept of mediator [Wie92]). Group leaders cooperate with each

other for taking high-level decisions (Figure 3.5-c). In fact, the agents from one federation give-up their

autonomy to their group leader and the leader takes the responsibility for fulfilling their needs. This type

of organization is comparable to a governmental system bearing the same name.

We note here that designers can mix different types of organizations for a specific problem. In

[YKO03], Yadgar and colleagues provided such a mixed organization for distributed sensor environments.

Groups of geographically related sensors are first formed into federations with a single leader acting as

the intermediary. This federal organisation is then considered as the lowest level of an agent hierarchy.

The leader of each federation collects raw data from the members of its group, and sends it to its parent

agent in the hierarchy; this agent is known as a zone leader. It interprets the sensor data to the best of its

ability and then forwards the interpreted data to its parent agent, which can in turn form a more abstract

view.

3.2.2 Communication principles

Besides the organizational structures, several principles are also required in multi-agent systems to facil-

itate communication between the agents [OVDPFB03]:

Communication Language

To understand each other and cooperate, agents need to communicate using a common language. In par-

ticular, such language should define the type of messages that can be employed (e.g., assertions, queries,

39

replies, requests and denials) and the corresponding ontology. Examples of such languages include: FIPA

ACL (Agent Communication Language Specifications) [FIP02], KIF (Knowledge Interchange Format),

and KQML (Knowledge Query and Manipulation Language) [FFMM94]. Figure 3.6 shows a basic ex-

ample of KQML messages in which an agent A sends a simple query to an agent B and receives a response

via a tell.

(a)

Agent A sends the following

performative to agent B

(evaluate

 :language KIF

 :ontology motors

 :reply-with q1

 :content (val (torque motor1) (sim-time 5))

)

(b)

Agent B replies

(reply

 :language KIF

 :ontology motors

 :in-reply-to q1

 :content (scalar 12 kgf)

)

Figure 3.6: Example of KQML message exchange

Interaction Protocols

A communication pattern between the agents may also be defined. This represents the sequence of mes-

sages between the agents and the constraints on the message content. Examples of such interaction pro-

tocols include contract net protocol [Smi80], Dutch auction protocol (also known as public bid auction)

[FIP01] and Publish/Subscribe protocol.

Coordination Strategies

To achieve their goals, agents need to coordinate [Dur99], cooperate [Jen95], compete and/or negotiate

[JFL+01] in a shared environment, within the group in which they participate (Figure 3.7 provides a

taxonomy of some of the different ways in which agents can coordinate their behaviours and activities).

Coordination

CompetitionCooperation

NegociationPlanning

Centralized PlanningDistributed Planning

Figure 3.7: A taxonomy of coordination strategies [Wei99]

3.2.3 Adaptive multi-agent systems

Once a multi-agent system is initially deployed, there is typically a need for changes and adaptations to

the system during its execution. This is also the case for most other types of software systems. In the

context of our thesis, the main interest is in (1) the engineering of software agents so that they exhibit an

adaptive behaviour and (2) the structural adaptation of the multi-agent organisation.

40

Agent-Oriented Software Engineering (AOSE) focuses on the definition of methodologies to guide

the process of engineering complex software systems based on the multi-agent systems paradigm. Jen-

nings [JSW98, JW00] promotes an agent-based approach to software engineering based on decomposing

problems in terms of autonomous and decentralized agents that can operate with flexible and high-level

interactions. Like in classical software engineering methodologies, very few of AOSE methodologies

address the maintenance and runtime adaptability phase of software systems (or what is usually called

design for change). One of the few AOSE methodologies that deal with this problem, in the context of

multi-agent systems, is the Gaia methodology [ZJW03]. This methodology is focused on the use of or-

ganizational abstractions to guide the analysis and design of MASs. In [CZ06], the authors showed how

Gaia could be used to model and tackle changes that can appear at runtime.

Runtime adaptation is a particularly demanded feature in pervasive computing systems. Such systems

are characterized by heterogeneous hardware platforms, as well as by highly-dynamic execution envir-

onments, where devices can join or leave at any moment.. Hence, researchers trying to use agent-based

systems to build pervasive systems were faced with the requirement of having adaptive agents in order

to cope with recurrent changes. In [GZKL08], authors proposed an approach called VERSAG (VERsat-

ile Self-Adaptive Agents) in which agents are modelled as software components that have the ability to

exchange their capabilities with peers, support multiple forms of adaptation (especially runtime composi-

tional adaptation), and enable reuse as they are based on a component-based infrastructure. This architec-

ture is used to handle pervasive computing in [GKLZ09]. The authors demonstrate the utility of adaptable

mobile agents in such environments. Using a component-based infrastructure is also demonstrated to be

viable for mobile adaptive agents in [AH05].

Several other research works investigated how the self-organization techniques can be applied to multi-

agent systems to exhibit structural and compositional runtime adaptation [CZ04, SP08, PWB09]. Indeed,

the authors of [CZ04] analysed the problem of modelling and developing multi-agent systems from the

organizational theory point of view. In particular, they focused on the critical issue of adapting MASs

organizations whenever changes in the overall system structure are required. They highlighted the role

of principles like design-for-change, increments, modularity, and separation of concerns in facilitating

the building of adaptable and adaptive MAS. In [SP08], the authors proposed an adaptive agent model

based on self-organization mechanisms, and targeting small agent societies. Similarly, but for large-

scale hierarchical topologies, the authors of [PWB09] proposed an adaptive agent-based self-organization

approach for the robustness of self-adapting hierarchical topologies. In fact, as we have mentioned before,

in hierarchical topologies, any local failure has a global impact on the global organization. To minimize

the effect of such failures, Pournaras and colleagues proposed an approach called AETOS (Adaptive

Epidemic Tree Overlay Service), which continuously tries to adapt the hierarchical topology to changes

in the underlying environment in a pro-active and reactive manner.

3.2.4 Research work related to Autonomic Computing

A first workshop dedicated to agents for Autonomic Computing was held in 2008 in conjunction with the

5th International Conference on Autonomic Computing (ICAC’08). The aim of this workshop was to ex-

plore the potential of the agent paradigm and related architectures, models and technologies to contribute

to the autonomic computing field. During the earlier years of the autonomic computing initiative research-

ers have also investigated the feasibility of a joint research between the two domains. Jeffrey O. Kephart

highlighted this aspect in his Vision of Autonomic Computing article [KC03]: “autonomic elements will

have complex life cycles, continually carrying on multiple threads of activity, and continually sensing and

responding to the environment in which they are situated. Autonomy, proactivity, and goal-directed inter-

activity with their environment are distinguishing characteristics of software agents. Viewing autonomic

41

elements as agents and autonomic systems as multi-agent systems make it clear that agent-oriented archi-

tectural concepts will be critically important”. Besides this conviction, IBM has developed a toolkit for

building Multi-Agent Autonomic Computing Systems, which was called ABLE [BSP+02] (Agent Build-

ing and Learning Environment). ABLE toolkit is implemented in Java, and provides a JavaBeans library;

a set of development and testing tools; and an agent platform. Via this toolkit, autonomic management

is provided in the form of a multi-agent architecture. The different autonomic tasks are encapsulated and

implemented via one or several interacting agents.

In [TCW+04], Gerald Tesauro and colleagues from IBM proposed another multi-agent system ap-

proach to autonomic computing. The developed tool, called Unity, is based on multiple interacting agents

that ensure desired autonomic system behaviours, like self-assembly, self-healing, and self-optimization.

Each agent manages one application in a shared cluster. It calculates the resource-usage utility for its

application in a given environment. A high-level agent, called Resource Arbiter, computes a globally

optimal allocation of cluster servers across all applications (See Figure 2.7).

In [CI09], the authors showed how to build a self-adaptive system based on a massive multi-agent plat-

form for complex systems. Agents are generated automatically for managing dynamically the behaviour

of the elements in the controlled environment. The proposed architecture is composed of two distinct

layers: operational and morphological layers. At the operational layer, a set of Aspectual agents collects

information from the controlled environment and forwards it, after interpretation, to the morphological

layer. At this level (also called control layer), a set of Morphology agents create a view of the activity of

the aspectual agents. Another set of Analysis agents interpret this morphologic space and try to exhibit

specific characteristics by building plans using optimization functions.

Brazier and colleagues have established a research agenda for the possible integration of multi-agent

systems, service-oriented computing and Autonomic Computing [BKPH09]. The shared objective of these

three research domains is to cope with the complexity of today’s computing systems. In particular, the

authors outline the possible benefits of agent technology and service-oriented computing for autonomic

computing: “System-level autonomic behaviour arises from interactions among the autonomic elements,

just as MAS behaviour arises from interactions among individual software agents. These interactions are

dynamic and flexible in pattern (hierarchical, peer-to-peer, and so on); relationships among agents are

established via negotiation and maintained via agreements created during the negotiation process. Agree-

ments between agents and service providers are, in fact, SLAs2. Autonomic elements such as registries

and sentinels play a role analogous to that of service registries and middle agents: to negotiate service

provisioning as specified in the SLA”.

Furthermore, some recent works like in [Tal12] studied the potential synergies between multi-agent

systems and Cloud-based systems. They investigated the applicability of agents for obtaining dynamic,

flexible and autonomous behaviour in cloud computing systems, where agents can search, filter, query and

update the massive volumes of data stored.

3.2.5 Summary

We pointed out that several agent-programming environments and toolkits have been developed to support

specific agent architectures. Several interaction protocols were proposed, like 3APL [HDBVDHCM99],

Cougaar [HW05], CORMAS [BBPLP98], JACK [HRHL01], JADE [BPR01], AgentSpeak [BPL04],

Jason [BHW07], Madkit [GF00], and ZEUS [CNNL98]. Moreover, software engineering methodologies

for analyzing and designing agent-based systems were developed, like Gaia [WJK00], Tropos [BPG+04],

and AUML [OVDPB01]. Important work has been done to standardize some features of agent systems,

2Service Level Agreement

42

such as the one done with FIPA and KQML for inter-agent communication. While these environments,

toolkits and methodologies were massively studied and applied to different traditional computing sys-

tems, a lot of work remains for adapting them to other emerging complex systems like those found in

Grid, Cloud or Pervasive systems. The potential benefits of using an agent-based approach to self-manage

these complex software systems are appealing; in particular, this approach exhibits a high-performance

working load and high scalability as thousands of software agents can be employed to control large-scale

software systems.

3.3 Nature-inspired approaches

Living natural systems constitute a particularly interesting source of inspiration for computer science

researchers [HS07]. Indeed, biological systems exhibit complex structures and behaviours and often cre-

ate them in a robust and efficient manner. In contrast, computer systems are becoming more and more

complex and their development and management are becoming increasingly difficult and costly. Hence,

researchers have started to look for analogies between computing and living systems and identify biology-

inspired metaphors, models and mechanisms that can be applied to better understand, control and develop

a new generation of computer systems [Mar00, FBGA02, Lod04, Nag04].

Similarly, natural systems were the initial inspiration for the field of Autonomic Computing. Indeed, in

his manifesto, Paul Horn pointed out that autonomic computing should be similar to the human autonomic

nervous system, which allows our brain to concentrate on higher-level conscious tasks by dealing with

low-level internal functions autonomously [Hor01]. The main objective is hence to let the autonomic

system anticipate and address administrative needs thus freeing human operators from managing complex

systems by hand. This would allow human operators to concentrate on the business-level objectives that

they want to accomplish instead [Mai02].

The initial biological models that inspired the autonomic computing metaphor feature interesting self-

managing characteristics and properties. Examples of such properties include: Scalability, Robustness,

Self-Stabilization, Liveness and Safety; in addition to Regulation of a targeted parameter or function of

course.

In the following sections, we detail some of the techniques and primitives inspired from biology

that are under active investigation and application in autonomic computing domain. The purpose of

such efforts is to achieve the aforementioned qualities and properties along with the self-* capabilities

in autonomic computing systems. Next, we introduce the self-organization and emergence phenomena

and principles, which are also being studied actively to help increase the robustness and scalability of

computer systems. The idea here is to distribute and decentralize the system’s control across multiple

fragments, hence eliminating centralised top-down control and its associated limitations (e.g. scalabil-

ity issues, single-point-of failure and difficulty in developing all possible adaptations in advance). Sub-

sequently, we will present some techniques for allowing the regulation of self-organizing behaviour. This

leads to more deterministic behaviour or at least to behaviour that is able to obtain what is needed by sys-

tem administrators. We conclude by outlining significant research works related to autonomic computing

systems.

3.3.1 Self-organisation and emergence

Whereas the goal oriented inspiration to shift the control from users to the software itself influenced

the autonomic computing initiative. Earlier works on nature-inspired metaphors focused on studying the

collective behaviour emerging from the interaction of multiple individual elements. Emergence is a phe-

43

nomenon that describes the complex behaviour that arises spontaneously in many natural systems that

comprise large numbers of interacting entities. Each entity exhibits rather simple behaviour and has no

global system knowledge. The interaction of entities in a particular context results in global properties or

behaviours that were not predictable from the individual behaviours (i.e. the whole is different from the

sum of its parts). Self-organisation is a closely-related phenomenon where decentralised entities seem to

organise themselves, without external control or direction. Here, organisation is considered in terms of

increased structure or ordered behaviour. From a rigorous perspective, emergence and self-organisation

focus on different aspects of the micro-macro interaction phenomena in decentralised autonomous sys-

tems [WH05]. Nonetheless, since these phenomena are often interrelated and appear together in complex

adaptive systems, we use them interchangeably for the scope of this thesis.

Examples of self-organising and emerging behaviours include bird flocking and ant colonies. Here,

the micro-level interactions of members create organisations or structures that are functional, stable and

adaptable at the macro-level. The flock for instance is able to change direction and stay together when

passing around obstacles without internal collision [SKPF03, OS06]. Similarly, in ant colonies, ants self-

organize in order to gather food for the colony by passing simple local messages between them, either

directly or via the environment (i.e. using a chemical substance called pheromone). Several algorithms

have been inspired from ant colonies most often for implementing optimization search techniques or for

the self-organization of computer networks [Sun11].

One of the contributions of this domain to autonomic computing is the introduction of emergence in

the design of software applications (or what is called emergent engineering [UD11]). Indeed, Anthony

demonstrated how emergence could add robustness and scalability to distributed autonomic applications

[Ant04]. He focused on the design of distributed algorithms based on the science of emergence, allowing

several elements to compete effectively for the resources they need.

Management and control in self-organizing systems are completely distributed - i.e. each participating

subsystem has its own control process, as shown in Figure 3.8.

S3

C

S1

C

S2

C

Si : controlled systems

C : local control process

control flow

S1

C

Figure 3.8: Decentralized control in self-organizing systems (adapted from [Dre07])

However, due to the complex, dynamic, and non-deterministic nature of autonomic self-organizing or

emergent systems, a formal or analytic proof, or even an accurate prediction of the exact system behaviour

is unfeasible. Research works like in [DWSHR05] provided an alternative approach based on advanced

numerical methods, in particular the so-called “equation-free” macroscopic analysis, which allows ana-

lysing and assessing trends in system-wide behaviour. In the next section, we present some additional

techniques allowing the regulation of the resulting structure and behaviour of self-organizing systems.

44

3.3.2 Functional structure and pattern formation

When Francis Crick and James Watson discovered the structure of DNA and its encoding schema in

1953 scientists could finally understand and explain a multitude of complex biological phenomena. The

biologically encoded information (genetic instructions) in the DNA enables living organisms to develop

into specific shapes providing particular functions. . This insight allowed scientists to develop several

medical techniques and drugs for eliminating certain diseases and cure certain congenital defects in unborn

children.

Certain analogies can be made between the DNA metaphor and computer programs, as both encode

information that is used to control the behaviour and structure of a resulting executing object – i.e. mo-

lecules for living cells and biological organisms; and running programs for computers. Nonetheless, while

the transformation of DNA (genotype) into organisms (phenotypes) is a complex, context-sensitive and

decentralised process, the instantiation of traditional computing programs into executing applications is a

rather straightforward process. This ensures a high-level of determinism for the resulting computing pro-

cess but lacks some of the robustness, scalability and adaptability features of many biological processes.

Hence, several research works set-out to push this metaphor farther and aimed to provide bio-inspired

solutions for better dealing with the complexity of software system structure and dynamic adaptation

requirements.

Amorphous Computing is one such related initiative. It aims to develop organizational principles and

computer programming languages for building systems that feature coherent behaviours based on the co-

operation of myriads of unreliable information-processing units [AAC+00]. The challenging problem

that the Amorphous Computing community tries to solve comes from the fact that computers have always

been constructed to behave as precise arrangements of reliable parts. Consequently, almost all the classic

techniques for organizing computations depend upon this precision and reliability. However, new tech-

nologies in micro-fabricated particles or cells engineering (cellular computing) produce vast quantities of

computing elements, which are relatively cheap but rather unreliable. Amorphous computing aims to cap-

italise on these properties. It strives to find a way to program such elements effectively in order to obtain a

coherent behaviour despite the fact that they are unreliable and interconnected in unknown, irregular, and

time-varying ways [AAC+00]. Indeed, in Amorphous Computing, the computing elements are placed ir-

regularly and interact locally and asynchronously. They are possibly faulty, sensitive to their environment,

and all programmed identically (since they are all fabricated by the same process). In general, they do not

have any a priori knowledge of their positions or orientations.

Morphogenetic engineering is another interesting initiative that aims to explore the design and imple-

mentation of autonomous systems that are capable of acquiring complex structures and functions without

central planning or external control [DSM11]. One notable work in this direction is [Dou11], in which

René Doursat proposes a model that uses genetic-like information (coded as a set of context-sensitive

rules) to regulate the differentiation and self-assembly of elements for generating patterns or more com-

plex structures. Similarly, in [Bea11], Jacob Beal uses a functional blueprint to specify a system in terms

of desired performance. The blueprint is then used to automatically grow composite systems with the

desired properties, which are dynamically integrated and regulated.

3.3.3 Work related to Autonomic Computing

In [SH09], Roy Sterritt and Mike Hinchey applied biologically inspired concepts to provide an important

requirement for autonomous and autonomic systems: safety. The authors drew inspiration from the ap-

optosis and quiescence metaphors observable in living systems to propose safety techniques in autonomic

computing systems. The main idea is to introduce different types of signals between autonomic elements

45

in order to constantly verify their aliveness and well-being, and to trigger self-destruction mechanisms in

expired or non-responsive components. A typical example of safety assurance in a biological context is

that of a human hand touching a sharp object. This results immediately in a reflex reaction (hand being

withdrawn) for getting the area in danger to a safe state (self-protection, self-configuration, and, if damage

has occurred, self-healing). The self-destruction of cells that are either damaged or expired (apoptosis) is

considered as a means of providing an intrinsic safety mechanism against non-desirable emergent beha-

viours (e.g. general infections or tumours). Similarly, autonomic computing systems should be equipped

with appropriate self-destruction mechanisms to prevent them from developing unwanted behaviours or

operating outside their designated timeframes. As we have indicated before, emergence can add robust-

ness and scalability to autonomic computing systems [Ant04]. For instance, several autonomic elements

can compete effectively for available resources that they require.

In an ongoing research work described in [Cap10], Caprarescu indicated how global management

functions can be carried out via a self-organizing feedback-loop, inspired by the behaviour of ant colonies

(see Figure 3.9). The system is composed of two layers: the first layer represents the components of the

system and their interconnections; the second layer represents the self-organizing feedback–loop, which

can self-repair the system’s architectural failures in a decentralized manner. In the second layer, a set of

agents travel and communicate with each other using digital pheromones; these are stored in the functional

components of the system (in the first layer).

System

Layer

Management

Layer

Component

Connector

Agent

Digital

Pheromones

Figure 3.9: Autonomic architecture inspired by the behaviour of ant colonies

Finally, it is interesting to note that in 2006 a workshop dedicated to Engineering Emergence for Auto-

nomic Systems was organized in conjunction with the International Conference of Autonomic Computing

(ICAC’06) to study and discuss applications of emergence in autonomic computing, and the associated

issues. The subjects of interest included interaction mechanisms; composition; contextual awareness;

stability and behavioural scope in real-world contexts.

3.4 Architecture-based approaches

In the last decade, Software Architecture has developed into an important field of computing science and

engineering, considered as an important tool for dealing with the increasing software system complexity

[PW92, GS93, SG96, Gar00]. Hence, developing computer systems goes beyond writing algorithms and

data structures, additionally encompassing high-level abstractions and organizational principles. Such

architectural abstractions help the understanding and the design of the overall system, and serve as a

communication conduit for different stakeholders involved in the development of such systems.

A considerable body of research work has been developed in this field with the aim of developing

a technological and methodological base for treating software architecture as an engineering discipline

46

[Gar95, Gar00]. There has been a remarkable achievement in this field; companies now have software

architects guiding the development of their software systems. A lot of software frameworks, architectural

standards, methods, techniques, design patterns and production tools have been developed and used in real

use cases. All these achievements have contributed to simplifying the understanding and development of

complex systems by following recognized architectural styles like “pipeline”, “client-server” or “three

layer” architectures.

Besides, architectural models have been used as centrepieces for dynamic software adaptation. In or-

der to effectively modify a system, an accurate model of its architecture must be available during runtime

[Ore98]. A subset of the system’s architecture is deployed as an integral part of the system. The deployed

architectural model describes the interconnections between components and connectors, their mappings

to implementation modules, as well as constraints on the different possible configurations. The mapping

enables changes specified in terms of the architectural model to effect corresponding changes in the im-

plementation. The runtime architecture infrastructure maintains the correspondence between the model

and the implementation.

A number of frameworks and mechanisms have been proposed to enable self-adaptation. We highlight

a few of them below. While they vary in details, the approaches share a number of common characteristics:

they generally use a closed-loop control and an architectural model for reasoning about the target system;

and they assume certain structures in the target system and adapt for a fixed set of quality attributes.

3.4.1 Software Architecture

Many definitions of software architecture have been provided in the literature. However, there is no single

widely-accepted definition of the term. Many authors consider architecture as an abstraction of the system

providing enough information to guide development, deployment and maintenance, but also as a basis for

analysis, evaluation, and decision-making. Most of the commonly used definitions are consistent in their

use of the terms ‘component’, ‘connector’ and ‘runtime interactions’. In the following, we give the most

relevant definitions.

According to Clements and Northrop [CN96], Software Architecture is:

“the structure of the components of a program/system, their interrelationships and principles

and guidelines governing their design and evolution over time.”

That is, software architecture is a specification of how software components are structured to form the

software system; this includes the type of components used as well as the constraint on how to connect

them. A similar definition was also provided by Shaw and Garlan in [SG96]:

“Software architecture [is a level of design that] involves the description of elements from

which systems are built, interactions among those elements, patterns that guide composition,

and constraints on these patterns.”

This definition is strongly related to the definition given by the IEEE Standards Association [Com00],

which define the word architecture as:

“The fundamental organization of a system embodied in its components, their relationships

to each other, and to the environment, and the principles guiding its design and evolution.”

Len Bass and colleagues adds more details to the previous definitions [BCK03]:

“The software architecture of a system is the structure or structures of the system, which

comprise software elements, the externally visible properties of those elements, and the rela-

tionships among them.”

They consider the architecture to be all the different possible structures (or points of views) of the system.

This implies that there can be different kinds of components (e.g. objects, modules, processes, libraries

47

or database) as well as interactions between the components (e.g. type of synchronization, data trans-

fer or control). Each component is described through its “externally visible properties” which represent

assumptions that other components can make about the component. This includes for instance a com-

ponent’s provided services, performance characteristics, fault handling, shared resource usage, and so on.

Therefore, architecture typically focuses on views of a system’s structure: how the system is split into ele-

ments, what are the externally visible properties of those elements, and what are the relationships among

the elements.

3.4.2 Adaptation concerns

A software system can be modelled in several ways and from different views. Accordingly, there are

many aspects of runtime adaptation and change; Oreizy and colleagues highlighted five important ones

[OMT08]:

• Changes to the model behaviour;

• Changes to the model state;

• Changes to the execution context of the machine;

• Asynchrony of change;

• Implementation probes.

To achieve runtime adaptation of software systems, architecture-based approaches suppose that the man-

aged systems support several adaptation operations [Ore98] like adding components, removing compon-

ents, upgrading or replacing components, changing the architectural topology by adding or removing

connections between components, altering the mapping of components to processing elements, query-

ing for properties of architectural elements (e.g., to obtain versioning information), querying the current

architectural topology and reconfiguring the different properties.

From an autonomic computing point of view, these adaptation operations can be qualified and used

to support two main qualities: self-healing and self-configuration. Principal works using architectural

models have investigated these two qualities. In [DvdHT02], Dashofy and colleagues investigated the use

of architectural models to create self-healing systems. They provide an infrastructure that helps expressing

and executing repair plans and reconfiguration actions when anomalies are discovered.

3.4.3 Enabling Techniques

Dynamic Architectures

In the early days of this field, software architectures were most of the time specified informally, often in

terms of boxes and arrows, without precise associated semantics. This led to a number of incoherencies

and ambiguities. Informal diagrams cannot be formally analysed to ensure consistency and verify the

correctness and completeness of the proposed solutions. Architecture Description Languages (ADLs)

were proposed with the purpose of providing an answer to this problem. An ADL allows the definition

of a common architectural vocabulary between the different actors involved in the software development,

from requirements specification to execution. Consequently, different tools can be developed to help

parsing, displaying, compiling, analysing, or simulating architectural descriptions of software.

This constitutes one of the most active research areas concerning software architecture. Different

ADLs have been proposed in the literature [MT00]. Each proposed ADL, in addition to representing

architectural design, provides some specificity to handle the particular requirements of the domain where it

is used. Interesting work was conducted by David Garlan and colleagues to develop a common framework

48

for the interchange and integration of different ADLs and their tools, called ACME [GMW97]. ACME

was developed with the aim of providing support for the integration of different architectural tools, and

hence including support for sharing architectural descriptions between them. Formally speaking, it is a

common interchange format for architecture design tools.

Dynamic Architecture Descriptions provide languages to specify how architecture can change and

evolve at runtime. Examples of such Dynamic ADLs include Darwin [MK96], Rapide [LKA+95], and

Dynamic Wright [ADG98]. Darwin is an ADL that captures the dynamic structures of distributed software

systems as the elaboration of components and their bindings in a configuration. Hence, Darwin permits

the description of dynamic software architectures in which the organization of components and connectors

may change during execution. This work is based on Pi-calculus to present the operational semantics. This

is the same for other works such as in [Oqu04].

Architectural Styles

In order to provide common solutions for specific types of problems and to address various recurrent

issues, several architectural styles have been identified and classified [TMO09]. An “architectural style”

specifies how the architectural elements are used for creating one or more architectures in a consistent

fashion. It can be thought of as a set of constraints on architecture – constraints on the component types

and their interaction patterns. These constraints define families of architectures that satisfy them [BCK03].

In another words, a style represents a template for specifying the architecture of a specific system. Each

architectural style focuses on certain quality attributes and provides its associated analysis methods and

design tools. Hence, the selection of an architectural style for a particular system should be guided by the

desired quality properties of that system.

Some self-adaptation propositions have considered the architectural style as an essential enabler of

dynamic systems adaptation. In [CGS+02], Cheng, Garlan, and colleagues have used architectural styles

to assist the dynamic repair of the running systems. The style for a given application should include

along with the used architectural elements, the list of supported operators that can change the elements at

runtime. Examples of operators for a web-based application running on a group of web servers include

the adding of a server, moving servers between groups of servers, and/or removing a server. Secondly,

the style also provides some information about the repair strategies written in terms of these operators

associated with the style’s rules. When detecting a constraint violation, the appropriate repair strategy

will be applied to correct the error by using properties of the style.

There are several well-known architectural styles featuring specific design and runtime constraints.

Examples include Pipe-and-filter, Data-flow, Client-Server and Publish-Subscribe. For each architectural

style, some self-adaptation frameworks have been proposed in the literature. Weaves framework [GR91]

is one of the earliest works that we know of. It supports dynamic rearrangement of components for

applications that follow the data-flow architectural style. For the publish-subscribe architectural style

Peyman Oreizy has investigated the evolution of software systems following this style via runtime changes

to the architectural model, as modelled via the C2 framework [Ore00].

Model-based

In addition to architecture-based approaches dealing with the architectural view of a system other model-

based approaches support and use design-time models to cover other aspects of the managed system.

The use of design models at runtime offers new opportunities for autonomic actions without increasing

development costs. This is accomplished by means of a planned reutilization of the efforts invested at

design time [CGFP09].

49

Zhang and Cheng from Michigan University developed the “Rapid” tool that helps achieving self-

adaptation by using formal models (i.e. Petri Nets) to model the behaviour of target software systems

[ZC06]. Petri Nets are used at runtime to reason about the possible adaptation actions to take. In

[MFB+08], authors investigated the use of aspect-oriented computing combined with model-driven en-

gineering to support runtime adaptation.

Recent approaches propose to bring models into the runtime. These models are known as Mod-

els@Runtime [BBF09]. In this approach, runtime adaptation mechanisms that leverage software models

extend the applicability of model-driven engineering techniques to the runtime environment.

Several research works have investigated this approach like in [Mao09, CGFP09, MBJ+09, GHT09,

GIO09]. In [Mao09] for instance, Shahar Maoz proposed to use model-based traces as runtime models.

From design-time sequence diagrams and state-charts, he extracted high-level events and used them at

runtime to abstract low-level system execution of concrete programs. He also offered a partial family of

metrics to analyse the generated models.

Variability

To exploit and reuse software artefacts (components, models, frameworks, documentation, and so on)

across different versions of the same product or between different but similar products, researchers and

practitioners have established variability models to ease and maximize reuse [CHW98]. Variability models

help achieve this objective by designing the different variability points where developers can exchange

artefacts without influencing the global architecture and objectives of the software system. In [CGFP09],

researchers have investigated the use of variability models at runtime to have a rich semantic base for

achieving autonomic behaviour during execution. In response to changes in its execution context, the

autonomic system can use the variability model to exploit and choose an equivalent variant for replacing a

broken or non-optimized component. It can hence plan and execute the necessary modification actions to

the system architecture. That is, the variation model plays the role of a formal specification of management

policies for guiding the autonomic system’s adaptation at runtime. Figure 3.10 shows an example of

the use of variability in smart-home applications. Variability is added to the feature model [KLD02],

which specifies system functionality by means of incremental features. Features are hierarchically linked

in a tree-like structure through variability relationships such as optional, mandatory, single-choice, and

multiple-choice.

Smart home

Security MultimediaOccupancy

simulation

Automated

illumination

Alarm Lighting

by occupancy

Silent

alarm

Siren Blinking

lights

Perimeter

detection

In-home

security

In-home

detection

Sensing Outside

detection

Infrared

160-degree detector

Volumetric

360-degree detector

Visual

alarm

Current configuration

Variation point

Mandatory

Single-

Choice

Multiple-

Choice

Optional

Figure 3.10: Smart-home feature model at runtime. Features are hierarchically linked in a tree-like struc-

ture through variability relationships.

50

In Figure 3.10, white boxes represent current features activated in the system, while gray boxes rep-

resent potential variants that may be activated in the future.

Variability management at runtime was also used in other domains like software product lines to allow

dynamic reconfiguration at execution [HHPS08]. A Software Product Line (SPL) is defined as “a set of

software-intensive systems that share a common, managed set of features satisfying the specific needs of

a particular market segment or mission and that are developed from a common set of core assets in a

prescribed way” [Ins13]. This well-defined role of each asset in an SPL leads to more flexibility when it

comes to changing them systematically for building a new product (that has a similar architecture) or even

for the same product at runtime. Typically, some variation points related to the environment’s dynamic

properties are bound at runtime. This architecture allows an easy reconfiguration since components can

dynamically appear or disappear from configurations, and communication channels can be established

dynamically between these components. In [BTRC05], authors have extended the SPL approach with

extra-functional features and provided a constraint programming resolver to reason on it. This enables

their approach to cope with the increasing complexities of variability.

Separation of concerns

Separation of preoccupations enables the separation between the application’s business logic and the code

that ensures non-functional properties, including the adaptation logic code. It has become an important

principle in software engineering [CE00] in general, and especially in dynamic software adaptation. It

captures the degree to which issues concerning a system’s functional behaviour are distinguished from

those regarding runtime change. The greater the separation, the easier it becomes to alter one without

adversely affecting the other. The fact of using an external control-loop to self-adapt software systems is

the best example of such principle.

Reflection

Reflection enables two main functions when used for dynamic adaptation of software systems [DSC+00].

First, it allows system analysis by queries on the system’s structure and internal states, which then serves

to create an adequate architectural model. Second, it allows system adaptation by injecting reconfigura-

tion actions in the right places of the architectural model, which can then be reified into the actual system.

These functions require a rigorous two-way connection between the system and its representation (also

called causal relation). Tools and middleware dealing with reflection and self-adaptation should ensure

rapid and correct synchronization between the architectural model and the actual software system it rep-

resents. This means that changes in the internal system structures should be reflected in the architectural

model, and vice versa. Starting with the adoption of architectural reflection in programming languages,

reflection has lately also been introduced into operating systems, virtual machines (VMs) like the JVM,

and component-based frameworks like iPOJO or Fractal.

Reflection can be structural, as provided in iPOJO, which includes architectural models for the internal

representation of a component or a composition. These are representations of the underlying system

structure and facilitate adaptation by providing knowledge on the components and their interconnections.

Reflection can also be behavioural, which enables by dynamic inspection of data-flow monitoring and

manipulation, and access to resources and their management.

51

3.4.4 Summary of architecture-based approaches

Several dynamic architecture-based adaptation approaches have been developed to date, focusing on

formal models and mechanisms of adaptation. However, only a few of them tackle explicitly the problem

of control distribution and decentralization, and its consequent engineering challenges. Notably, engin-

eering support should be available to help make a target system self-adaptive. Such reusable support can

be provided in the form of integrated tools, which can help developers to more easily define adaptation

policies that are more abstract and domain-specific in nature and that must take into consideration business

goals and quality attributes.

The studied frameworks are strongly tied to the underlying architectural style of the target software

systems. Architectural styles provide information about the possible adaptation operations on the system.

Stateless data-flow systems are often explored as they exhibit natural and simple adaptation behaviours.

The main autonomic qualities investigated by researchers using architectural models at runtime are

self-healing and self-configuration. The autonomic frameworks associated with such approaches generally

monitor the target system in order to build an intermediate architectural model. An architectural model

evaluator detects incoherencies and problems with respect to a reference model, and develops a repair

plan. The plan is first executed on the architectural model and consequently applied to the target system.

Due to the growing size and complexity of software systems, scalability is an important issue. The

management of reconfiguration in dynamic software architectures can be either centralized in a special-

ized component or distributed across decentralised components. In general, a decentralized or distributed

approach is more likely to scale. Currently, the management used in most of the architecture-based ap-

proaches is centralized, not distributed. This is primarily because early types of dynamic architectural

change such as ad-hoc and programmed often had centralized management. Newer definitions of change,

as found in self-organizing architectures, use decentralised management in order to account for scalability

in large-scale distributed systems [BCDW04].

52

3.5 Discussion and chapter summary

In this chapter, we reviewed some techniques and methods from existing approaches related to autonomic

computing systems. Several techniques that we have incorporated in our proposition, as described in the

next chapters, come directly from these domains. First, the control-based approach defines the principal

idea of separation between the managed system and the control system. IBM’s reference architecture can

be seen as an advanced control loop. Advantages of such approach are multiple. Notably, it allows man-

aging and controlling systems that do not already have this notion of self-managing properties embedded

into their code. This includes legacy systems and modern systems. Also, it can facilitate the reuse of the

autonomic control logic across several managed systems.

Agent-based approaches are actively investigated in several research communities. We are interested

in how software agents can be organized to fulfil objectives. We have seen that each structural organization

is suited to specific situations with particular requirements. Furthermore, we saw the communication

principles between agents, including the communication language, interaction protocols, coordination

strategies and social policies. Several research works investigated adaptive multi-agent systems.

Natural-inspired approaches were also presented in this chapter, and essential techniques and prim-

itives were outlined. Most importantly, we showed the phenomena of emergence and self-organization,

where individual elements featuring relatively simple behaviours and interacting with each other can ex-

hibit interesting global behaviour. Another important technique presented is the decentralised formation

of patterns and complex structures based on a DNA-related metaphor. This technique is based on the

encoding of essential information that can then be used to reproduce, differentiate and construct complex

adaptive systems.

Finally, we presented some advanced techniques coming from software engineering. We have focused

on software architecture and model-based self-adaptation of software systems. We outlined the main

techniques that help achieve system adaptation at runtime.

As a conclusion, we believe that these domains can be merged to build innovative autonomic systems

with important quality attributes:

• Architecture can play an important role in “reuse”, “analysis”, “evolution”, and “management”.

• Multi-agents can play an important role in the structural organization of multiple autonomic man-

agers (either cooperative or in conflict).

• Nature-inspired techniques can play an important role in policy specifications and self-organization

of autonomic managers.

• Control-based approaches can play an important role in the application of self-management cap-

abilities to legacy systems and in general to systems that do not exhibit self-management support.

Control Theory expertise can also help address well-known feedback-loop problems including os-

cillations or divergence.

53

54

Chapter 4

Proposition

Contents

4.1 Problems addressed . 55

4.2 Contributions overview . 57

4.2.1 Positioning of the thesis within the team research 57

4.2.2 Thesis contribution . 58

4.3 Objectives and Applicability . 59

4.3.1 Design decisions . 59

4.3.2 Applicability assumptions and scope . 60

4.4 Cube Framework overview . 62

4.4.1 Theoretical Support . 62

4.4.2 Solution Overview . 63

4.4.3 Coordination Strategy . 64

4.4.4 Cube Autonomic Manager . 68

4.4.5 System Management Life-Cycle . 69

4.5 Summary . 71

In this second part of our manuscript, we present our approach for autonomic computing systems.

We have developed a framework called CUBE that uses, in a synergistic manner, different techniques

from the state-of-the-art (detailed in chapter 3) and provides novel architecture with important quality

features that meet the requirements for administrating complex software systems. In this chapter, we

detail the problems addressed and the objectives. We then present an overview of our approach that aims

to overcome the shortcomings observed in the afore-studied autonomic computing frameworks (in chapter

2). The next chapter details the proposed architecture and provides more explanation about its functioning

and internal modules (chapter 5). Later on, we detail how our approach is implemented and we provide

more technical details about how to use and extend it for specific situations (chapters 6 and 7).

4.1 Problems addressed

Autonomic Computing aims to provide self-management capabilities to software systems, including self-

configuring, self-healing, self-optimising and self-protecting functions. As we have seen in chapter 2,

55

IBM has proposed a logical, reference architecture inspired from control theory to develop autonomic

computing systems. This reference architecture has fostered a number of valuable research works.

There are a substantial number of achievements in the autonomic computing domain in terms of self-

managing functions implemented into computing systems. This is especially the case in enterprise and

cloud computing but also in communications and pervasive computing. To achieve this, researchers have

devised innovative autonomic solutions to address specific problems occurring in individual systems. Non-

etheless, the larger and more difficult task of combining such focused solutions into complete autonomic

systems must still be addressed [DSNH10].

Moreover, to capitalise on existing experience and results, the common principles and mechanisms

implemented individually in specific autonomic solutions should be extracted, generalised and provided

in the form of reusable frameworks for autonomic management systems. Such frameworks should provide

a reusable base for addressing the aforementioned challenges of modern computing systems, including

resource heterogeneity, dynamicity, increasing number of cooperating systems, and frequent changes in

administrative requirements and execution conditions (see introduction chapter 1).

We have conducted a study of a representative list of the existing autonomic computing frameworks

in subsection 2.5.2 of chapter 2. The resulting comparison, presented in subsection 2.5.3, showed that

the studied autonomic frameworks lacked some important qualities for tackling the challenges of modern

software systems. In the following list, we summarize the most important shortcomings:

Lack of scalability. Most of the studied autonomic frameworks use a centralized architecture to control

software systems. The centralized (and often monolithic) control cannot be decoupled onto different

execution nodes, even if the target system can be distributed on separate machines. That is, the

control decisions are made in a single place. This has the advantage of having better decisional

capabilities as all needed information is available in one place. It is also simpler to implement

(than a distributed solution) since there is no need for synchronisation and coordination functions.

However, this organization features serious scalability limitations and introduces a single point of

failure. In addition, at present, it is still relatively rare for autonomic solutions and technologies

to be deployed in production because of their hidden costs [Hel09]. For example, model-based

approaches for self-configuration and self-optimization are powerful in laboratory demonstrations,

but they typically incur high costs for model construction and maintenance. Autonomic computing

frameworks that use architectural models maintain a runtime model instance of the entire managed

system, including all the needed details; they reason on this model to take decisions. Hence, such

frameworks use a translation infrastructure to maintain a coherent architectural model of the target

system. When considering complex and large-scale software systems, building and maintaining

such centralized architectural model is not feasible.

Lack of dynamic adaptation support. As the managed software systems are more and more dynamic

and flexible, autonomic frameworks are also required to change with the managed systems and

hence support dynamism and runtime adaptability. As it was defined in section 2.5.1, dynamic

adaptation is the ability of software systems to add, remove or exchange components, modules,

and/or services during execution. Moreover, when a system is considered open, the components

or services introduced at runtime are unknown a-priori at system design time. Most of the stud-

ied frameworks support static or offline adaptability of some sort, but only a few of them support

runtime adaptability.

Lack of support for heterogeneity and extensibility. Most of the studied autonomic frameworks are

specific to particular domains. They are often delivered with specific sensors, actuators and control

strategies. Using these frameworks for software systems in other domains, or based on new techno-

logies is generally not supported. Only Rainbow and Ceylon are more generic and allow reasoning

56

on heterogeneous resources.

Lack of Software Engineering support. Very few methodologies have been proposed for engineering

autonomic systems that systematically address requirements, design, implementation and assess-

ment. To achieve most of the targeted quality attributes (subsection 2.5.1) developers of autonomic

computing systems should, among others, adopt classic Software Engineering techniques, such as

modularity, encapsulation and loose-coupling.

In addition to these important shortcomings we also include the following remarks:

Several autonomic computing frameworks use ECA1 and Utility function-based techniques to specify

and ensure user objectives. These techniques reach their limitations when used in large-scale environ-

ments. Managing hundreds or millions of heterogeneous events and take adequate actions is very complex

task. This is the same also for Utility functions because the complexity of choosing best adequate solution

after evaluating all possible adaptation strategies.

The majority of autonomic computing frameworks use an external control approach. This was also

the initial choice of IBM for its reference architecture. Few research works have envisaged the use of

mixed and container-based control [PLL+06]. In this case, the developer of the business code should

also take into the account the non-functional and administration aspects. Such mixed and container-based

approaches can have good results at runtime when used for specific technology; however it cannot be

generalized to cover all sub-systems for two main raisons; firstly, developers cannot predict all the possible

management actions of future components, and secondly, because the existence of legacy software systems

that are an integrated and an important part of business software systems. External control is like to be

more suitable for Autonomic Computing System.

Finally, in most autonomic systems, the monitored information is limited to runtime aspects such as

CPU or memory utilization, and undertaken actions are often just parameter tunings. In modern software

systems we should enlarge the spectrum of monitored and/or controlled elements to cover application

components and their possible connections, as well as the execution environment.

4.2 Contributions overview

4.2.1 Positioning of the thesis within the team research

This thesis is part of a broader research project – called Cube [DL09, DL11, DDL12] – which proposes

a generic approach to designing autonomic management systems that can address the aforementioned

challenges – i.e. heterogeneity, dynamic adaptability, scalability and evolution of business objectives. The

Cube approach promotes two core techniques:

• The use of an abstract architectural model to formally specify administrative goals; this helps control

the autonomic management process and ensure the viability of resulting system configurations;

• The decentralisation of the autonomic management process in order to avoid a single point of control

and the associated limitations to robustness and scalability; decentralised managers coordinate to

obtain coherent systems that conform to the architectural model.

This approach promises to provide an autonomic solution that can address two key requirements that are

apparently contradicting:

• Decentralisation and open adaptation to support scalable and robust system changes in response to

unexpected execution contexts;

1Event-Condition-Action

57

• Control and determinism over resulting system properties and behaviours to ensure key business

objectives.

The Cube approach offers a compromise between these antagonistic forces, where system designers may

chose the most suitable trade-off between the two extremes case-by-case. Namely, more determinism can

be achieved by limiting the variability allowed by the model specification (which becomes more concrete)

and by implementing more deterministic coordination mechanisms among autonomic managers (which

may be more time and resource consuming). Conversely, more runtime flexibility implies more abstract

architectural models and less restrictive coordination mechanisms.

While this approach seems promising, it also raises difficult problems that must be addressed when

implementing concrete autonomic systems. The most important questions include:

• How to design and formalise the architectural model? The model must be restrictive enough to en-

sure core properties of the managed system while also allowing sufficient variability for adaptation;

• How to split administrative tasks among decentralised autonomic managers? Dynamic changes

in the managed system impose that task assignation to autonomic managers be adaptable during

runtime;

• How to coordinate the activities of autonomic managers so as to ensure the coherence and con-

formance of the resulting system to the modelled objectives? Autonomic managers may have to

coordinate both locally and remotely, to ensure local or more global system properties, respectively.

• How to ensure the extensibility of autonomic managers to support future business objectives and

various types of managed resources?

4.2.2 Thesis contribution

This thesis contribution is positioned within the general Cube project. It consists of a concrete framework

for facilitating the development of autonomic applications following the Cube approach. The challenge in

providing this framework consists in providing viable solutions to the many difficult problems raised by

the Cube approach (listed above).

In this thesis we have studied the aforementioned questions, identified viable solutions and selec-

ted a certain combination of design decisions for developing the proposed framework (chapter 5). The

framework is particularly targeted for developing applications in the data mediation domain. The selec-

ted design decisions reflect this fact by relying on important assumptions specific to the data mediation

domain.

For experimentation and validation purposes, we implemented a prototype of the proposed framework

(chapter 6) for supporting a particular data mediation technology – Cilia Mediation [GMD+11] – and

for addressing several administration scenarios in specific data mediation applications. The applications

targeted involve remote medical surveillance and monitoring of home resource consumptions (chapter 7).

The administrative scenarios supported include the initial deployment of the data mediation application

and the self-adaptation and self-repair of the existing application instance at runtime. Experimental results

indicate the viability of the autonomic system developed via the proposed framework, with respect to the

general objectives defined by the Cube approach.

In summary, the positioning of the thesis with respect to existing research in the team can be indicated

by splitting the Cube project into three main abstraction layers:

1. The Cube approach – this is a conceptual layer, defining the general idea for autonomic system

design: controlling the self-organisation process of decentralised autonomic managers via abstract

architectural models that formalise business objectives.

58

2. The Cube Framework for data mediation – this is a design layer, providing a reusable and extens-

ible specification language, architecture and core functionalities for facilitating the development of

autonomic systems that follow the Cube approach and target the data mediation domain.

3. The Cube Framework Prototype – this is an implementation layer, providing a prototype imple-

mentation of the Cube Framework, with specific extensions for goal specifications and management

of concrete resources in targeted mediation applications; these were based on Cilia Mediation tech-

nology.

With respect to this conceptual layered organisation, the contribution of this thesis represents the second

and third layers – a domain-specific Cube Framework and an application-specific prototype for Cilia

mediation resources.

The remaining of this chapter introduces the thesis objectives and scope (section 4.3) and an over-

view of the proposed Cube Framework (section 4.4). For simplicity, the generic conceptual aspects and

the framework-specific design decisions are presented simultaneously since they are both critical to the

understanding of the proposed contribution. Also for simplicity, within the scope of this thesis we some-

times refer to the Cube Framework as simply Cube. Even if an initial Cube prototype has been developed

previously, the only Cube Framework developed and maintained at present is the one we propose in this

thesis.

4.3 Objectives and Applicability

4.3.1 Design decisions

The objective of our work is to develop a novel autonomic computing framework, based on solid soft-

ware engineering techniques, in order to help developers and administrators to achieve self-management

capabilities in simple and cost-effective ways. To remedy the shortcomings identified previously (section

4.1), we first adopt the following design decisions:

1. Architecture-based. We believe that software architecture provides an appropriate level of abstrac-

tion to describe and reason about software systems. Indeed, many software quality attributes can be

achieved through architectural choices. In addition, architecture can play an important role when

aiming to maintain critical system functions and properties while undergoing repeated adaptations

and long-term evolution. Finally, architectural solutions can be applied to a wide range of domains

hence increasing the reusability of our approach. When system architecture is represented at an

abstract technology-independent level this approach also provides support for the heterogeneity and

extensibility of managed elements.

2. External autonomic manager. Our approach relies on the reference architecture proposed by IBM

where managed artefacts are decoupled from the elements that manage them (called autonomic

managers). We believe that such organization provides better support for the evolution of managed

and managing elements.

3. Decentralized organization of autonomic managers. We have seen in this document that central-

ized organizations, although simpler to design and implement, are limited in terms of scalability and

robustness. For this reason, we believe that our framework should be composed of a set of decent-

ralized and decoupled autonomous managers that collaborate to achieve global high-level goals. At

the same time, to limit the delays and communication overheads specific to decentralised coordina-

tion solutions, we also introduce several semi-centralised mechanisms for handling the coordination

among remote autonomic managers. We consider this mixed design provides a good compromise

59

within the targeted data mediation domain.

4. Collaborative autonomic managers. Collaboration should be used to achieve the specified ob-

jectives. Managers should cooperate rather than compete in order to achieve their goals, to the best

extent possible. This approach is more likely to avoid undesirable emergent effects and unpredict-

able behaviours, as sometimes observed in self-organized autonomous agents [Ant04]. Certainly,

this approach only applies when objectives are specified by a single, coherent authority (i.e. no con-

flicts of interest); otherwise, competition among decentralised managers is inherent in the business

model they serve.

5. Homogeneous knowledge. In order to manage different sub-systems in a coherent manner, auto-

nomic managers should rely on the same kind of knowledge, even if some managers may have more

information than others.

6. Limited size of knowledge. For performance reasons at large system scales, we believe that (archi-

tectural) information regarding the system under execution should be carefully managed. For each

autonomic manager, only the necessary information should be collected and maintained.

7. Modularity and extensibility. Our framework should provide support for developers to build spe-

cific modules and integrate them easily into the management system to handle specific adminis-

trative and technological aspects. This improves support for heterogeneity as technology-specific

modules can be introduced as extensions to the autonomic manager. Modules should also be re-

usable for autonomic managers that administer similar aspects in different systems.

8. Runtime Adaptability. Given the ever-growing dynamicity of managed elements and execution

conditions, autonomic managers should be able to dynamically use and instantiate the adequate

management modules for a given situation and technology.

4.3.2 Applicability assumptions and scope

While addressing some of the shortcomings discussed before, these design decisions are quite structuring

and, obviously, have a strong impact on the applicability of our approach. Although we are trying to cover

a broad range of modern software systems, the scope of our work is limited to autonomic software systems

that have the following characteristics:

Component-based software systems. Since we focus on architecture, our work more naturally applies

to component-based systems. This is hardly a limitation since component-based approaches are

widely used in modern computing. In the data mediation domain, the component-based architec-

tures generally take the form of a directed graph, with vertices representing mediation components

and edges the one-way communication links between them. Moreover, in the targeted experimental

applications we only dealt with directed acyclic graphs (DAGs). The proposed framework should

in principle also apply to cyclic graphs and bi-directional communication but such cases have not

been studied or tested within the scope of this thesis.

Stateless components. When stopping, replacing or resuming the execution of a component, it is often

necessary to ensure the transfer of state from the old component instance to the new one. This is a

highly complicated issue, which is out of the scope of this thesis. In our validation, we assume that

components are stateless or that a quiescence mechanism is available.

Well-connected, high-QoS communication network. The proposed framework was design based on the

assumption that the managed data-mediation applications would be deployed and executed on dis-

tributed platforms connected via a communication network that is well-meshed and that features

relatively high bandwidth and low latency characteristics (e.g. the Internet). This excludes for

60

example mobile ad-hoc networks where connectivity is sparse and expensive. This assumption

was particularly important when designing the coordination mechanisms among decentralised auto-

nomic managers.

Coherent authority. The presented approach only focuses on addressing autonomic management object-

ives specified by a single coherent authority. This implies that cooperating autonomic managers can

reach a solution that is satisfactory with respect to the administrator’s objective(s). Cases where

autonomic managers belong to different administrative domains and therefore compete for attaining

inherently-conflicting objectives are outside the scope of this proposal.

No need for global system optimisation. At the self-management level we have fixed some assumptions

for our work. Most importantly, we assumed that for the targeted data-mediation applications sur-

vivability and adaptability over the long term are more important than global system optimisation.

Hence, obtaining a global optimum solution is not among our main objectives. This means that we

will not try to find all possible global solutions and then select the optimal one. Rather, we want

to create an acceptable solution progressively, taking any possible optimization decisions at each

step. Hence, the proposed cooperation process among autonomic managers guarantees neither a

unique solution nor an optimal one. Instead it aims to find one solution that belongs to the viability

space defined by the administrator’s objectives and that is influenced by opportunities in the current

execution context. The reasoning behind this choice is to favour scalability, quick adaptability and

robustness, rather than global optimality.

With respect to the application domain and technology, we have evaluated our approach in the context of

data-mediation systems implemented based on the Cilia mediation framework [GMD+11]. Cilia supports

dynamically-adaptable components that can be added, removed, or changed in terms of connections at

runtime without stopping the system. In Cilia, dependencies among components are data-based. This

means that no interface verification is needed when assembling components; there is only a specification

of the semantic and format of input data and output data. Also, Cilia implements a quiescence mechanism

which ensures that the state of the system remains correct before, during and after a runtime modification.

The Cube approach raises many important and interconnected challenges pertaining to several research

domains. Within the scope of this thesis we could only concentrate on addressing subset of aforementioned

challenges. Yet, when taking design decision we tried to make sure that, at least in principle, these do not

seriously hamper future framework extensions that may aim to address the remaining concerns. Some of

the most significant aspects that remain outside the scope of this thesis are discussed below.

We have limited the self-star properties to be supported to three important ones: self-instantiation,

self-configuration and self-repair. Within the general Cube approach, these properties are also referred

to collectively as self-growing. Indeed, the same system self-growing mechanisms intervene to set the

system in place initially, as well as to adapt and repair it during runtime. At this stage of our research,

we have also partially applied the proposed solution for the self-optimisation of resource consumption of

cluster machines, however we do not provide solutions for self-protection. It remains out of the scope

of our thesis. For the time being, such additional properties can be indirectly achieved in our framework

by limiting the system’s viability space explicitly to configurations that are known to be optimal and/or

secure.

61

4.4 Cube Framework overview

In this section, we provide an overview of our proposed framework, which implements the Cube approach.

We start by outlining the theoretical support of our work and then we introduce the different elements

of our proposal. In the next chapters, we describe Cube framework in more details, focusing on its

implementation and its applications.

4.4.1 Theoretical Support

Our work draws inspiration from research results of domains related to autonomic computing, as detailed

in the state of the art (chapter 3).

Regarding control theory, we studied how control techniques can be used to regulate dynamic sys-

tems that constantly interact with their environment. Controllers are most often developed to provide the

following objectives: regulation, disturbance rejection and optimization. In our work, we focused on the

first objective, since we aim to regulate the managed software application over time and against dynamic

changes in its execution environment. The control objective (or reference input) in our case is specified

via an abstract, reference system model; all managed applications must conform to this model. The main

means of regulation is via the instantiation, configuration, interconnection or removal of software com-

ponents. At the low level (as we will describe later), our framework consists of several control loops.

Additional control loops can be included as needed to handle additional self-management concerns. The

proposed framework structure is detailed in subsections 4.4.2 and 4.4.4.

Regarding multi-agent systems, we employed the agent paradigm to implement autonomic managers

and achieve a decentralised control solution. We have adopted a federation-like organization, where auto-

nomic managers are organized into groups with a dynamically-elected leader. Decentralised autonomic

managers collaborate with their immediate ‘neighbours’ (defined later) to fulfil high-level objectives.

Group leaders are in charge of ensuring more global coordination processes. Several other coordination

strategies have been proposed in the multi-agent systems literature [HL04]. We believe that the particular

form of federation-like organization adopted for our framework is the most adequate in our situation. It

provides a good compromise between total decentralisation and more ‘classic’ hierarchies or centralised

solutions. More precisely, autonomic managers act in a totally decentralised fashion for as long as their

local interactions can lead to globally-acceptable solutions. In addition, when required system properties

must hold over larger system areas, group-wide control is enforced via leaders. In cases where targeted

areas or groups become really large, further decentralised solutions can be introduced to replace the group

leader’s functions. Yet, this case was not addressed in the presented work.

We were extensively influenced by nature-inspired techniques and concepts. Most significantly, de-

velopmental biology provided an essential paradigm based on the genotype – phenotype transformation.

The genotype encodes key information that guides the organism’s growing process and ensures that the

most important objective is met: either the resulting organism features the core characteristics of its spe-

cies, or the process terminates without producing any viable organism. At the same time, the genotype

does allow for the growth process to be context-aware; and for the resulting organisms (phenotypes) to be

adapted to their particular environment. Moreover, such adaptations can continue to occur all along the

organism’s life, in response to environmental changes; the same mechanisms intervene to provide self-

repair functions (e.g. especially in the case of plant species). In our case, the abstract reference model

specified to define business objectives (detailed in section 5.3 of chapter 5) plays the role of a genotype.

It is replicated across all autonomic managers which contain identical core implementations. At runtime,

each autonomic manager uses the reference model and contextual information in order to differentiate.

This means that it will delimit a portion of the reference model which it will then ‘express’ and maintain,

62

resulting into a managed application part (phenotype part). Neighbouring autonomic managers are con-

sidered those that administer system parts which are adjacent in the reference model. They collaborate in

order to join their application parts and form the global application (the entire phenotype). Here, global

coordination mechanisms present in organic systems (e.g. area-wide inhibition based on diffusion and

reaction processes) are replaced in our case by simpler, more efficient procedures based on group leaders.

Finally, to realize our approach, we have heavily relied on advanced techniques from modern soft-

ware engineering disciplines like Software Architecture, Model-Driven Engineering and Service-Oriented

Computing. First, we relied on the assumption that software architecture can be employed, to a certain

extent, as a means of ensuring core system properties, including basic functionality and quality features.

This consideration was used to define the abstract reference model, which specifies autonomic manage-

ment goals. Namely, the reference goal specification takes the form of an abstract architectural model,

defining the main architectural constraints (e.g. component types, cardinalities and interconnections) and

quality-related attributes (e.g. minimum performance). Secondly, we adopted a Model-Driven Engineer-

ing approach and more recent Models@Runtime techniques to automatically manage software applications

using the reference model, during runtime, in a context-aware manner. This is achieved via the collaborat-

ive work of autonomic managers. Last, but not least, we adopted the service-oriented paradigm as a means

of enabling extensive runtime adaptability. Most importantly, service descriptions allow for the definition

of abstract service types which can be matched with concrete service implementations during runtime.

This matching process can be repeated at runtime, depending on the execution context (e.g. incoming

client loads and available service providers). This aspect was adopted into the reference model. It allows

administrators to define an abstract architecture (i.e. interconnected service/component types) that will

be dynamically instantiated via concrete applications (i.e. interconnected services / component instances

from various providers). In addition, service loose-coupling, late binding and hot-swapping properties

(available in most service-oriented technologies) are key enablers of the proposed solution.

4.4.2 Solution Overview

Our proposal consists in an autonomic management framework for highly-dynamic, distributed and het-

erogeneous software systems. The framework is designed as a collaboration of decentralized Autonomic

Managers (AM) (Figure 4.1), which are capable of self-organising in order to pursue a common goal.

Autonomic managers are architecture-driven, in the sense that they pursue goals expressed as abstract ar-

chitectural models; and maintain knowledge of the managed resources in the form of runtime architectural

models.

More precisely, autonomic managers are driven by an architectural specification called Archetype.

An Archetype represents the system’s design objectives, which must be conceived so as to guarantee

desirable system properties (e.g. functionality and quality attributes). An Archetype imposes a number of

architectural constraints that must be met at any one time, while also leaving some room for architectural

variation and hence runtime adaptation. It is an abstract specification where architectural constraints are

expressed in terms of element types (rather than concrete implementations or instances) and relationships;

and annotated with additional properties.

Using Archetypes to express management goals allows us to deal with two design objectives that are

seemingly opposing. First, we’d like the autonomic system to be able to adapt to unpredictable situations,

like dealing with erratic client loads, updates of the internal component implementations or various con-

figurations of the underlying distributed platform. At the same time, we’d like to make sure that core

system properties will always be achieved, despite the continuous changes and adaptations. Most notably,

such properties include key system functionalities and minimum quality of service (QoS). The proposed

63

Archetype
AM

Managed

Distributed

Software

Application

Decentralized

Autonomic

Managers (AMs)

Coordination link

Management link

Managed

Elements

Catalog

Target System

AM

AM AM

AM

Management ScopeManagement Scope

Node 1

Node 2

Node 3

Node 4

Node 4

Figure 4.1: Cube solution overview

Archetype provides the right means of addressing both these concerns. On one hand, it specifies a rigid

architectural template which must be implemented in all managed applications. System administrators

must define this part so as to ensure the essential system characteristics. On the other hand, the Archetype

also specifies a number of variability points which provide opportunity for system adaptation (bounded

or boundless). System administrators must define this Archetype part so as to allow sufficient means of

system adaptation to deal with encountered runtime situations.

In short, the Archetype defines the managed system’s viability zone. All managed application in-

stances must be within the viability zone. It is the role of the autonomic manager(s) to maintain the

managed system within its viability boundaries.

When it comes to designing the autonomic management part for the framework we are faced with two

additional design objectives, which are also seemingly opposing. On the one hand, scalability and robust-

ness requirements demand a high degree of decentralisation in the autonomic management logic. On the

other hand, ensuring a globally coherent behaviour and being able to reach system goals reliably seem

to favour more strict control and a higher degree of centralisation. We address this challenge by introdu-

cing decentralised autonomic managers for dealing with the first aspect (scalability and robustness); and,

special-purpose self-organisation and coordination mechanisms for ensuring the second one (coherence

and global properties).

4.4.3 Coordination Strategy

Let us now briefly introduce the main self-organisation and coordination mechanisms. They rely on three

main techniques:

• Having all autonomic managers pursue the same global goal, defined in the shared Archetype.

Managers can split the goal into parts and manage one part each.

• Having autonomic managers coordinate their actions locally with their neighbours. Neighbours of a

manager are those managers that administer goal parts that are adjacent to the manager’s own part.

• Introducing semi-centralised coordination for autonomic managers that execute in well-defined

areas, called Scopes, to ensure properties that must hold within those areas.

64

We shortly detail these three techniques next. More details are provided in the next chapter 5 “Cube

Framework”. The inner workings of each autonomic manager are briefly presented in the next subsection

(4.4.4).

Shared Archetype

All autonomic managers share the same Archetype; an Archetype replica is distributed to each manager.

This means that all autonomic managers in a Cube system collaborate to attain a shared goal. We defined

a special-purpose Archetype definition language for formally specifying each Archetype (subsection 5.3

in chapter 5). As previously indicated, we do not address here cases where autonomic managers serve

different authorities and must hence compete for achieving inherently conflicting goals. Treating such

cases is complementary to our proposal.

To achieve the common goal, autonomic managers must split the Archetype into complementary parts

where each manager will then administer one such part. Several alternatives can be conceived for the

Archetype splitting process. For instance, one autonomic manager can be assigned to each component type

in the Archetype. In this case, an autonomic manager administers all instances of the assigned component

type, deciding when to instance them, how to configure them and so on. Here, the manager’s neighbours

are the managers administering component types that are connected to the manager’s own component type,

in the Archetype. Other possibilities include assigning an autonomic manager to each component instance

[DL11] or to predefined Archetype parts. Finally, to deal with runtime unpredictability, we propose in this

thesis that the Archetype splitting process be carried-out dynamically [DDL12]. It will hence depend on

the distributed platform available and on the context-sensitive requirements of the managed application.

As runtime changes occur, the Archetype can be re-split to a certain extent to accommodate the new

situations.

In the selected design, each autonomic manager is assigned to one Node of the distributed platform,

where a Node can represent either a physical or a virtual machine. Nodes are generally typed, depending

on their physical resources, runtime load, security functions, and so on.

All autonomic managers have an identical implementation. This makes them easily replaceable and

replicable, which is an important advantage for system robustness and adaptability. In the current frame-

work implementation, autonomic managers are pre-instantiated on available system Nodes. At the same

time, future extensions can easily be conceived to automatically discover new Nodes and integrate them

into the managed platform by replicating and deploying a new autonomic manager on top of them.

When instantiated and started, an autonomic manager first evaluates its context, then reads the Arche-

type to determine the constraints that apply to this context. If no constraints apply it waits for a change.

Otherwise, it starts administering the application running on the local Node so as to make it fulfil the

constraints. For instance, a manager executing on a Node of type ‘Mediation server’ identifies an Arche-

type statement that imposes the presence of at least one ‘messaging server’ component on a node of this

type. The manager becomes responsible for pursuing this constraint, which is consequently included in

its goal part. If an instance of a message server cannot be detected locally, then the autonomic manager

will instantiate one; this partial goal is hence met. In turn, this changes the manager’s local context and

triggers another evaluation of Archetype constraints that apply in the new situation. For instance, message

servers must be connected to at least one component of type ‘message destination. The manager must

thus acquire a component instance of that type and connect it to its message server. If the component

instance is created locally then the manager also adds the associated constraint to its goal part. When the

autonomic manager can no longer solve applicable constraints locally, its goal part it fully defined. At

that point, the autonomic manager would have differentiated its function so as to pursue that goal part.

Also, the manager must now collaborate with neighbouring managers in order to continue the process and

65

resolve the remaining Archetype.

Local Collaboration

Autonomic managers must collaborate with their neighbouring peers, in order to join their partial man-

agement solutions into a global application that fulfils the overall goal (or Archetype). This functionality

is mainly used for the self-instantiation of the distributed application. Namely, each autonomic man-

ager creates and interconnects locally as many component instances as it can, considering the Archetype

constraints and its own execution context. To extend the local application instantiation farther and to

connect local instances to components executing on remote Nodes it must collaborate with neighbouring

autonomic managers.

Neighbouring peers are determined dynamically, depending on the current context and on the applic-

able Archetype constraints. In the previous example, let’s consider that the manager in charge of the

messaging server cannot instantiate the ‘message destination’ component locally. This can be because

another constraint imposes that this type of component can only run on a Node of type ‘Web server’.

Hence the manager executing on the ‘Mediation server’ Node will first look for a manager executing on

a ‘Web server’ Node. It then asks this manager to take over the Archetype constraint which it could not

resolve locally. If the ‘Web server’ manager accepts then it becomes the neighbour of the ‘Mediation

server’ manager. The two managers are now collaborating to achieve complementary parts of the overall

Archetype.

This process is repeated recursively, extending incrementally across autonomic managers until the

entire Archetype is split and the overall application managed. When the current application meets all ap-

plicable Archetype constraints the management process pauses. If a change occurs later on the autonomic

manager(s) detecting it are reactivated. For instance, an increase in the incoming client load can determine

the autonomic manager on the ‘Mediation server’ to reconfigure the messaging server in order to comply

with a performance-related constraint. As a more complicated example, consider that a component of

type ‘message source’ is manually instantiated on a Node of type ‘Gateway’. The autonomic manager

executing on the ‘Gateway’ Node detects this change. It consequently determines that an Archetype state-

ment imposes that all ‘message source’ instances must be connected to a ‘message server’ instance. Since

message servers can only be found on Nodes of type ‘Mediation server’, the manager finds the autonomic

manager that executes on such node and collaborates with it. The source message instance is consequently

connected to the message server. To further complicate the example, we can now add a quality constraint

that imposes a maximum number of incoming connexions into the message server. When messaging

server reaches the maximum number of message source connections the autonomic manager administrat-

ing it will refuse any further connections. Hence, managers of newly created message sources will need to

find other managers of message servers to collaborate with. The new message sources will consequently

be configured to use another messaging server, installed on a different ‘Mediation server’ Node.

When two autonomic managers have been cooperating to validate an architectural constraint (e.g.,

connecting two remote components), they maintain a logical connection between them. At any time, if

one of the distributed managed elements in either execution platform changes or disappears, its autonomic

manager notifies the other autonomic manager about the change. The notified autonomic manager can

then re-evaluate the architectural constraints involving the managed element that changed, and if they are

no longer valid it tries to find a new solution.

Another interesting case involves the failure of a Node that is included in the management process.

In this case, the autonomic managers executing on neighbouring Nodes detect the problem, look for an

autonomic manager executing on an equivalent Node and try to collaborate with it. If successful, they

would have managed to redistribute the Archetype and self-repair the managed system.

66

Scope-level Collaboration

As exemplified above, local collaboration allows decentralised managers to split and resolve various types

of Archetype constraints. Nonetheless, other constraint types may require more global collaborations that

stretch beyond direct manager neighbourhoods. A frequent case occurs when an Archetype clause sets a

bounded cardinality for a component type. Let us change the previous example slightly and consider that

one and only one instance of the ‘message server’ component can be available in each network domain, on

a Node of type ‘Mediation server’, at any one time. Yet, several Nodes of type ‘Mediation server’ exist in

each domain, for reliability reasons. In this case, the autonomic managers running on ‘Mediation server’

Nodes must collaborate in order to decide which one of them should instantiate the message server; and

include the associated constraint in its goal part. However, these managers do not a-priori know each

other; they are not neighbours since they do not collaborate for resolving complementary Archetype parts.

Various decentralised solutions could be introduced to address this coordination issue, based for ex-

ample on peer-to-peer gossiping, message-diffusion and inhibition, and so on [BJM05a]. Nonetheless, in

this thesis we decided to adopt a centralised solution for these precise coordination points. This is because

we assumed that the number of managers involved in ensuring each such property will be much smaller

than the total number of managers; and that the communication and processing load on the centralised

coordinator will be quite reduced. This is particularly the case in the application domain we focused on

during this research – data-mediation applications running on distributed platforms connected over the

Internet. Here, communication is rather efficient and processing resources relatively abundant. Specific

self-repair solutions must be added for ensuring the reliability of centralised coordinators (outside the

thesis scope). On the contrary, a decentralised approach would have been more appropriate in application

domains where communication and processing resources are more erratic and scarce, such as in ad-hoc

(mobile) sensor networks.

Let us see how the proposed coordination approach functions to ensure properties over specified sys-

tem areas.

First, to delimit targeted areas clearly we introduce a new concept called Scope. A Scope represents

a well-defined section of the managed system. It can be defined as a physical area via geographical

coordinates; as a network domain via an IP suffix; as a group of Nodes of predefined types; as a group of

Nodes detaining certain resources; and so on, depending on the application domain.

In the Archetype, most constraints are defined with implicit Scopes that can be determined dynamic-

ally and via local coordination. For instance, the previous example stated that any message server must be

connected to at least one message destination, which must run on a ‘Web server’ Node. Here, any ‘Web

server’ Node can meet the constraint and the actual Node selected can be discovered at runtime.

For other constraints, the Scope over which they apply must be stated explicitly. Another example we

showed above stated that one and only one ‘message server’ component can be available in each network

domain, on a Node of type ‘Mediation server’. Here, the constraint is defined explicitly over a Scope type

that represents network domains; a Scope instance is one network domain.

Second, once Scopes are formally defined in the Archetype, they can be dynamically managed and

employed for larger-scale coordination. At runtime, autonomic managers are automatically organised into

Scopes, depending on the characteristics of the Nodes on which they execute. For instance, all autonomic

managers that execute on ‘Mediator server’ Nodes will belong to a Scope type that has been defined to

regroup all Nodes of type ‘Mediator server’. Similarly, all autonomic managers that execute on Nodes

belonging to a particular network domain will be regrouped into an instance of the Scope type ‘network

domain’. We can see here that several Scope instances can exist for the same Scope type. Also, in

principle, an autonomic manager can belong to several Scopes at once.

67

Each Scope instance will have a dynamically elected leader. A scope leader has different roles. First,

it maintains the list of all the Scope members, or autonomic managers. On the arrival of a new member,

the scope leader saves its URI. Second, and most importantly, the scope leader helps manage scope-wide

constraints. It represents a central coordination point, or arbiter, for decentralised managers that must

reach a scope-wide property while acting in parallel and with no prior knowledge of each other. Let us see

how a scope leader can help resolve the component cardinality constraint exemplified above, where one

and only one component instance was allowed within any network domain. Here, all autonomic managers

in a network domain are regrouped into one Scope instance, with one elected leader. When any of these

autonomic managers tries to resolve the constraint, it first asks the Scope leader for permission. If it is the

first manager to ask, the permission is granted and the manager is allowed to instantiate the component.

The constraint is now resolved. If other managers, unaware of this fact, subsequently try to resolve the

same constraint within this Scope, their request to the Scope leader will be denied; no extra component

instance will thus be created.

4.4.4 Cube Autonomic Manager

Once the boundaries of their respective Archetype parts are well-defined, autonomic managers follow a

rather ‘classic’ model-oriented approach to achieve them; that is, to set-in place and to maintain applic-

ation parts that conform to their Archetype parts. This implies actions such as component deployment,

instantiation, configuration, interconnection, and so on. Each autonomic manager builds a Runtime Model

of the managed elements they administer. This runtime model represents one part of the entire runtime

model of the managed application. Namely, a local runtime model reflects the state of the application part

which is administered by the local autonomic manager. To reach its goals (Archetype part), the autonomic

manager compares its local runtime model part to its Archetype part. In case of a deviation the autonomic

manager sets-out to find a new application configuration that meets the constraints defined in the arche-

type part. It then triggers the necessary adaptations into the managed application part. This process may

involve new collaborations, both local and scope-wide.

The internal architecture of a Cube autonomic manager follows the reference MAPE-K design. The

internal constituents are organised into a control loop structure, which uses the runtime model and the

Archetype as knowledge. The most important constituents are as follows:

A Knowledge module, which includes the entire Archetype and a Runtime Model (RM) part built

and maintained during execution. The local RM only contains information necessary for the local auto-

nomic manager to determine whether or not the local application part meets the high-level objectives (as

specified by the administrator in the Archetype). This is an essential aspect for ensuring the scalability

and performance of the autonomic management system. The local RM also includes modelled connec-

tions to the adjacent RMs; that is, to the local RMs of neighbouring autonomic managers. This enables

special-purpose autonomic functions to monitor the well-being of neighbouring managed elements; or to

be notified of any changes in their state.

A Constraint Resolver, which resolves (or finds a solution to) the manager’s Archetype part. Namely,

the resolver makes sure that the local RM part satisfies the constraints specified in the manager’s Ar-

chetype part. Hence, the resolver module provides the control decision logic that ensures the correct

functioning of the managed application part. To allow for the Archetype definition language to be ex-

tended, the constraint resolver is designed as a generic core extensible via constraint-specific plug-ins.

For each new constraint type defined in the Archetype, a goal-specific resolver must be implemented and

plugged-into the core resolver.

68

A number of Technology-Specific Extensions (TSE) including monitors and executors for specific

technologies. Technology-Specific Extensions (TSEs) implement the causal relation [SHC+11] between

the managed application part and the local RM. This means that runtime modifications in the managed

elements are reflected into the RM (via sensors and monitors) and modifications in the RM are reflected

into managed system (via actuators and effectors). Special-purpose monitors are also provided for sensing

the environmental context; and the well-being of neighbouring managed elements via their representation

in adjacent RMs. A set of TSEs must be implemented and plugged-into the framework for each of the

implementation technologies of managed elements (e.g., TSE1 handle application components and TSE2

the messaging server). However, all TSEs update the same RM, which is an integrated abstraction of

all managed elements. This allows the framework to be generic with respect to the managed application

technologies and hence to be reusable across numerous platforms.

A Communication module to support the collaboration between autonomic managers (both local and

scope-wide). Cube framework offers a generic interface to implement and use several communication

technologies for its collaboration protocols like point-to-point communication via Sockets or publish-

subscribe communication using a MOM (Message Oriented Middleware). In our developed prototype, we

have implemented a point-to-point communication module (chapter 5, section 5.4.6).

In short, the control process proceeds as follows. Monitors collect data from technology-specific

sensors and update the local RM accordingly. The Archetype Resolver is notified of any such RM updates.

It checks the conformity of the new RM to the Archetype, takes the necessary decisions, and indicates any

corrective changes by modifying the local RM. Actuators apply such changes into the managed elements

concerned. More information about the internal architecture of Cube Autonomic Manager is given in

section 5.4 of chapter 5 “Cube Framework”.

4.4.5 System Management Life-Cycle

Figure 4.2 depicts the four main activities involved in our approach to system self-management. The first

two activities are performed manually and off-line; they involve application-specific knowledge extraction

and specification, as well as code writing and compilation. The remaining two activities are automated

and performed during runtime; they rely on the control process introduced above and require little or no

human intervention.

The actual steps are presented here after. The purpose of the first step is to model the system elements

that have to be self-managed (e.g., software components, connectors, execution platforms and servers).

These elements are modelled using an architectural meta-modelling language, which is provided with

the Cube framework (section 5.2 of chapter 5). The core Cube’s framework defines four domain-specific

modelled elements: Component, Node and Scope. Components represent managed application modules

providing various processing functions. Components are deployed on distributed platforms (or Nodes).

Nodes are organized into various Scopes (or groups).

We notice here that administrators can model other specific system elements based on the Cube’s

Meta-model (section 5.2.2 of chapter 5) or by extending ones provided in the framework core. For in-

stance, when targeting a specific application domain, the core Component concept may be insufficient for

specifying all the important aspects to manage in an application component. In this case, the administrator

can extend the core Component artefact and introduce a new one that provides the extra information.

Also during the first step, along with the modelled managed elements and their relationships, admin-

istrators should implement the necessary Technology-Specific Extensions (TSEs) (if not already done).

69

AM

AM

Distributed Software Application

Modeling

Managed

Elements

Managed

Elements

Catalog

1

Specifying

Administrative

Objectives
2

Archetype

Running

Management

System
3

AM

Decentralized

Autonomic

Managers

Self-Configuration

Self-Instantiation

Self-Healing

4

D
es

ig
n-

tim
e

Ru
n-

tim
e

Figure 4.2: Life-cycle of Cube-based autonomic management process

These should correspond to the specific technologies implementing monitoring and execution functions

specific to the elements of interest in the execution environment.

During the second step, administrators specify self-management objectives as a set of architectural

constraints and quality attributes on the modelled managed elements. To do so, they rely on the models

defined in the first step. Hence, management objectives are formally specified in the form of a declarative

architectural specification (Archetype). Within the scope of this thesis we assume that the Archetype is

sufficiently abstract to require no further update during the system’s lifetime. Updating the initial Arche-

type remains a perspective of our work, which will be discussed in the last thesis chapter (8).

The third step consists in distributing the Archetype to all autonomic managers and bootstrapping the

management layer. Hence, each autonomic manager receives a copy of the Archetype. Upon initialisation,

autonomic managers cooperate to form the management Scopes (as defined in the Archetype).

Finally, during the fourth step, each autonomic manager monitors its managed application part, re-

solves local problems, and coordinates with other autonomic managers (either locally or at the Scope

level) to resolve non-local administration problems. At this step, the Cube system operates autonomously

and does its best for finding solutions to all administrative objectives. An autonomic manager can be

both reactive – only executing in response to changes in the managed system; and proactive - imposing

architectural configurations onto the managed application part, in order to fit the objectives defined in the

Archetype.

70

4.5 Summary

In this chapter, we briefly presented our contribution to the self-management of highly-dynamic, hetero-

geneous and large-scale software systems, running in unpredictable environments. We outlined the main

challenges faced when administrating such systems and we proposed a novel management solution for

addressing these challenges. The most stringent difficulties associated with system management include

system heterogeneity; high dynamicity in the system’s internal make-up and execution environment; in-

creasing numbers of integrated subsystems; and the ever-growing number of business requirements that

evolve over time. We highlighted some of the main limitations of some of the most important autonomic

management frameworks developed in the domain. The most important weak points in existing works

include lack of scalability and the associated performance degradation; lack of support for adapting the

autonomic management logic; lack of extensibility for supporting the heterogeneity of managed elements

in various domains; and lack of software engineering techniques enabling modularity and reuse. We indic-

ated how our proposal addresses the identified management challenges, while bringing key improvements

and new features with respect to state-of-the-art management solutions.

Namely, using architectural models allows for the right level of abstraction in knowledge represent-

ation and reasoning. It provides common grounds for the integration of heterogeneous technologies and

their associated evolutions and extensions. Moreover, this type of knowledge representation and pro-

cessing mechanisms can be reused across various managed platforms. Separating the autonomic man-

agement logic from the underlying managed system also improves reusability and independent evolution

of the two parts. Decentralising the autonomic management logic ensures better system scalability and

robustness. The fact that each autonomic manager only maintains a partial architectural model during

runtime also contributes to administration performance, especially in large-scale and highly-dynamic sys-

tems. The proposed combination of local and scope-level collaborations among autonomic managers

ensures overall application coherence while minimising global communications which could severely im-

pact performance. Finally, the modular and plug-in based design of autonomic managers and architectural

model languages improve their reusability and extensibility for various application domains.

We presented an overview of our approach and introduced the internal architecture of our autonomic

manager. Our solution is based mainly on the use of architectural models, interpreted during runtime by

a set of decentralised autonomic managers. In Cube, architectures are used to provide abstractions of the

managed elements of a system, their relationships and constraints. In particular, they are used to define

goals via a formal specification called Archetype. Each Cube autonomic manager receives a full copy

of the Archetype and proceeds to accomplish a well-defined part of it; Archetype parts are determined

dynamically and may change over time. To achieve its local goals, each manager constructs a local

Runtime Model of the local administered system and verifies it against the Archetype. The manager’s

Archetype Resolver performs such verifications, determining whether the monitored state of the local

application satisfies all the Archetype goals. If this is not the case, adapted solutions are found and

implemented, locally or remotely.

More information about the Cube approach; the autonomic manager’s internal functioning; the global

life-cycle; and Cube’s application and validation in concrete use cases are detailed in the next chapters.

71

72

Chapter 5

Cube Framework

Contents

5.1 Goal and Knowledge Specifications . 74

5.1.1 Overview . 74

5.1.2 Key model-based management concepts . 75

5.2 System Modelling Language – SML . 76

5.2.1 ECORE . 77

5.2.2 Cube Meta-Model . 78

5.2.3 Domain-Specific Managed Elements . 80

5.2.4 Cube Runtime Model . 82

5.3 Goal Description Language - GDL . 83

5.3.1 GDL Elements . 85

5.3.2 GDL Properties . 85

5.3.3 Archetype . 87

5.4 Cube Autonomic Manager . 89

5.4.1 Internal Architecture Overview . 89

5.4.2 Runtime Model Controller . 90

5.4.3 Archetype Resolver . 92

5.4.4 Life Controller . 96

5.4.5 Monitors/Executors (Technology-Specific Extensions) 98

5.4.6 Communicator . 99

5.5 Summary . 101

In the previous chapter, we presented an overview of our solution for the self-management of distrib-

uted and heterogeneous software systems. We introduced the global approach of the Cube project and the

associated framework proposed in this thesis. In this chapter, we provide more details on the Cube frame-

work and highlight its main contributions. In short, Cube framework provides reusable and extensible

support for specifying goals and runtime knowledge via formal modelling languages; and a core archi-

tecture and implementation for the Autonomic Manager, which uses these models to adapt the managed

system. The collaboration among decentralised Autonomic Managers is achieved via a special-purpose

communication module included in the architecture.

73

First, we give an overview of the proposed Cube specifications for goal and knowledge representa-

tions (section 5.1). Then, we detail Cube’s system modelling language - SML (section 5.2), and Cube’s

goal description language - GDL (section 5.3). Next, we present the internal architecture of a Cube Auto-

nomic Manager (section 5.4) and provide details on each of its internal modules. We show how most of

these modules can be reused and extended so as to facilitate the adoption and customisation of the Cube

framework across various targeted applications.

The implemented prototype of the Cube framework is presented on next chapter 6, while the validation

of our framework in national and regional research projects if detailed on chapter 7.

5.1 Goal and Knowledge Specifications

5.1.1 Overview

Cube requires modelling for two specific purposes. First, Cube formalises the goals of a managed system

via an archetype, which takes the form of an abstract architectural model. Second, Cube represents the

state of a managed system via a runtime model, which takes the form of a concrete architectural model. At

runtime, the role of Cube’s autonomic management functions is to ensure that the system’s runtime model

conforms to the archetype. In this section we focus on the modelling languages that Cube framework

provides to enable this approach. For clarity here, we make abstraction of the Autonomic Managers’

decentralisation and the fact that the system’s runtime model is actually split among them. The presented

languages and principles will apply unchanged to the decentralised case.

The two types of models – archetype and runtime model – require different definition languages. The

Cube framework defines two such formal languages as follows:

• System modelling language (SML) - for modelling domain-specific elements;

• Goal description language (GDL) - for describing user objectives in the archetype.

In the following subsections we detail these two language types and explain the strong relation between

the specifications they produce. In short, domain experts define specific managed elements based on

the system modelling language (SML). The resulting element specifications are then used to represent

the system’s state during runtime, in Cube’s runtime model. This model represents essential system

knowledge that the Autonomic Manager uses for system administration. System administrators use the

goal description language (GDL) to specify management objectives, in Cube’s archetype. Objectives are

specified as formal constraints over the system’s architecture or quality properties. Notably, at this point,

administrators can make use of the managed element specifications, defined previously via the SML, as

parameters for the management constraints, defined via the GDL.

While designing Cube’s specification languages for goal definition and system modelling, we have

taken into account the following considerations:

• It should be possible to model any part of the managed system, as well as any relationships between

these parts;

• Instances of modelled system elements are representations of the real managed system elements. To

minimize the size of the model and simplify its interpretation, modelled element instances should

only reflect properties that we want to manage, rather than all the details of the actual managed

element.

• Modelled element instances should be coherent - they must all share the same meta-model, irre-

spectively of what they represent;

74

• Goals should be specified directly on the modelled system elements with simple coherent and inter-

preted language.

• At runtime, we should have the possibility to navigate between the modelled element instances,

inspect them to learn about the system state and modify them to adapt the system. That is, the

managed system should be reflective.

In the following, we first introduce some key model-related concepts, which we then use to detail the goal

and system modelling specifications proposed in the Cube framework.

5.1.2 Key model-based management concepts

Simply put, modelling represents the activity of constructing models. The concept of model is not new,

several definitions were proposed in the literature. Kleppe et al. defined it as “a description of (part of)

a system written in a well-defined language” [KWB03]. By well-defined language the authors mean “a

language with well-defined form (syntax), and meaning (semantic), which is suitable for automated inter-

pretation by a computer” [KWB03]. From this definition, we understand that a model is a representation

and an abstraction of a real system, and that a model should be written using a well-defined language

which helps automating some processing tasks on the modelled elements. In addition, any operations on

the model are considered to be effective on the system itself. Accordingly, Bezinvin and Gerbe refer to a

model as “a simplification of a system built with an intended mind. The model should be able to answer

questions in place of the actual system” [BG01].

In short, a model is a description, an abstraction, a representation or a simplification of a system written

in a well-defined language. To facilitate their interpretation and manipulation by computers, models must

be clearly and formally defined. The concept of meta-model is introduced to define the language used to

express the model [OMG13]. Hence, the model must conform to its meta-model, which guarantees that

the model is correct syntactically and suitable for automated interpretation and processing.

Several modelling languages and frameworks have been defined, including for instance UML1, MOF2,

XMI3, and ECORE4. Most of these are general purpose and some can be specialized for specific domains.

In our thesis, we adopted one of these existing modelling languages - ECORE – as a standard base for

our system modelling language. We then extended it with additional modelling layers, in order to provide

more domain-specific modelling elements and hence facilitate the use of the Cube framework.

Loading and using models during a system’s execution is part of a relatively recent research niche

called Models @ Runtime [BBF09], where models are not only used at design time, but are also made

available during runtime, to provide more knowledge about the system. Following this idea, several

Autonomic Computing frameworks have proposed using models as a base for self-adaptation mechanisms

[Mao09, CGFP09, MBJ+09, GHT09, GIO09]. Here, different modelling languages are best suited for

various types of tasks [ZC06]. Software Architecture is seen as a special kind of model, one that is most

suitable for representing software as abstract functional blocks and their interconnections (see section 3.4

from the state-of-the-art chapter 3). Cube adheres to this approach, placing architectural models at the

core of its management solution.

More precisely, to manage component-based software systems, Cube relies on two types of archi-

tectural models. First, an abstract architectural model – the archetype – defines the management goals.

Second, a concrete architectural model – the runtime model – describes the system state during execution.

1Unified Modelling Language
2 Meta Object Facility
3XML Metadata Interchange (XMI) is an Object Management Group (OMG) standard for exchanging metadata information

via XML
4ECORE is a meta-model for describing models with the Eclipse Modeling Framework (EMF)

75

Archetype (Goals)

Runtime Model
Cube

Autonomic

Manager

Validate and Adjust

Monitor and Execute

Managed

system

Figure 5.1: Overview of Cube’s model-based management

Cube’s Autonomic Manager constantly compares the runtime model with the archetype, verifies that the

system’s state conforms to the management objectives and takes action to adapt the system when this

is not the case (figure 5.1). Hence, the archetype represents an Autonomic Manager’s objectives. The

runtime model represents its system knowledge, which is necessary for pursuing those objectives. The

same applies in the decentralised case, where each Autonomic Manager performs the above procedure to

a single part of the managed system and to the corresponding part of the archetype.

5.2 System Modelling Language – SML

To allow developers to make their systems self-managed using the Cube framework, the first thing to

do is to model the system elements so that they can be handled by Cube Autonomic Managers (detailed

in section 5.4). The Cube framework provides the System Modelling Language (SML) for this purpose.

When designing the SML we wanted to achieve two things. First, we wanted to rely on an existing

modelling language, such as UML or ECORE, in order to capitalise on the expertise inherent in its design.

Second, we wanted to be able to model specific system elements, such as those required by the Cube

approach and by various application domains. To achieve both of these goals we introduced a layered

design for Cube’s system modelling support (figure 5.2). Here, a model in one layer must conform to

the modelling abstractions defined in the layer above. We can say that the model is defined based on the

language provided in the layer above.

In brief, ECORE modelling language was adopted to represent the top-most generic layer (M3). This

generic language can be used to model elements that are specific to the Cube approach, in the layer bellow

(M2). Further bellow, the System Modelling Language (SML) extends the Cube-modelling layer with

domain-specific elements (M1). The SML layer is situated above the runtime modelling layer (M0),

meaning that SML is used to describe elements in the runtime model. The runtime model represents the

bottom-most layer. In the rest of this subsection we provide more details on the constituents of the System

Modelling Layers proposed in the Cube framework. We further detail each modelling layer and discuss

the inter-layer relations in dedicated sub-subsections.

76

<<instance of>>

<<inherits from>>

ECORE

Cube Meta-model

Domain-Specific

Managed Elements

<<conform to>>

M3

M2

M1

M0

Cube Runtime Model

Figure 5.2: Cube framework’s Modelling Layers and Languages

The Cube framework defines the concept of “Managed Element” to represent any managed resource in

the targeted system. This generic concept can be extended to represent more specific system constituents

that we want to manage, ranging from fine-grained software components to large-scale software systems

like databases or application servers. The Managed Element concept is defined in the M2 layer - “Cube

Meta-model”. This layer is defined using the ECORE language (or meta-model). ECORE (M3 layer) is a

part of the Eclipse Modelling Framework (EMF) [emf13]. Other meta-modelling frameworks could also

be used to fit this requirement.

The Cube Meta-model layer (M2) is the most important layer in the modelling stack. It can then be

extended in the M1 layer below with “Domain-Specific Managed Elements” so as to define more precise

abstractions of the actual managed elements, such as Components, Nodes and so on. At runtime, Auto-

nomic Managers create and maintain instances of such domain-specific model elements in the runtime

model, in order to represent the real managed elements. This corresponds to the M0 layer - “Cube Runtime

Model”. This layer may include several modelled instances of domain-specific managed elements – e.g.

several instances of the same modelled component, or several instances of different modelled components.

Yet, all modelled instances have the same internal data structure that conforms to the M2 layer – Cube

Meta-model – even where they are instances of model elements defined in M1 layer – Domain-Specific

Managed Elements. Indeed, model elements in the M2 layer inherit from the Manage Element concept of

the M2 layer (as detailed further in section 5.2.3).

All the modelling layers are handled by the Cube framework and are implemented in the prototype.

The only layer extensible by users is M1 - “Domain-Specific Managed Elements” - for modelling specific

elements in each managed system.

5.2.1 ECORE

To define the Cube Meta-model (M2), we need a meta-modelling language (M3) that can enable us to write

the model specification, and that can also help us to generate code directly from the designed model. Des-

pite the existence of several modelling frameworks like MOF [HIM+98], we have decided to use ECORE

as a basis for defining Cube’s Meta-model. This is motivated by the availability of associated tools that

simplify the use and manipulation of meta-model concepts and provide a code-generation facility. ECORE

is part of the Eclipse Modelling Framework (EMF) project [emf13]. EMF is a modelling framework and

code-generation facility for building tools and applications based on a structured data model. The data

77

model is specified in XMI (a standard for exchanging metadata information via XML) and conforms to the

ECORE meta-model. EMF provides tools to produce a set of Java classes for the model, a set of adapter

classes that enable viewing, command-based editing of the model, and a basic editor. It also provides a

run-time support for the ECORE models including change notification, persistence support with default

XMI serialization, and a very efficient reflective API for manipulating EMF objects generically.

The ECORE meta-model includes the following concepts (Figure 5.3):

• EClass: represents a class, with zero or more attributes and zero or more references;

• EAttribute: represents an attribute, which has a name and a type;

• EReference: represents one end of an association between two classes. It has a flag to indicate if it

represents containment and a reference class to which it points;

• EDataType: represents the type of an attribute - e.g. int, float or java.util.Date.

EClass

name : String

EAttribute

name : String

EReference

name : String

containment : boolean

lowerBound : int

upperBound : int

EDataType

name : StringeAttributeType

1

eAttribute

0..*

0..*

eSuperTypes

eReferences

0..*

1

eReferencesType

0..1eOpposite

Figure 5.3: ECORE Meta-model

In the next sub-sub-section, we describe how the ECORE meta-model (M3) was used to define the

Cube Meta-model (M2).

5.2.2 Cube Meta-Model

The Cube Meta-model layer (M2) uses ECORE to define modelled elements that are specific to the Cube

approach. We propose the abstract model (or meta-model) depicted in figure 5.4 to represent any managed

element handled by the Cube framework.Cube Meta-model defines the following concepts.

• ManagedElement: represents any managed element of the system. Its attributes are listed below.

Some of these attributes – i.e. name and namespace – should be specified when customising the

ManagedElement class (in M2) to represent a domain-specific managed element (in M1). Other

attributes

uuid, am, and state - are initialized by the Cube framework at runtime.

name: the name of the managed element, like Component, Node, and so on;

namespace: represents a container for a set of managed elements;

uuid: the Universal Unique IDentifier of the managed element;

am: the URI of the Autonomic Manager where this managed element is hosted;

78

state: represents the runtime state of this managed element’s instance. Each Managed Element

can have a set of Properties and a set of References to another Managed Elements.

• Property: represents any functional or non-functional property that we want to take into account as

part of the self-management operations of the managed element. This may include for instance state

values like cpu or ram consumption, or configuration values like the maximum inputs of a server. A

property has a name and a value.

• Reference: represents any possible association between two managed elements. Any new domain-

specific managed element that we model in the layer below (M1) should add all its relations with

other managed elements as references. No direct Java references are allowed. Notice that a reference

must have a name. Also, a reference can be unary – meaning that the current managed element can

have at most one referenced element using this reference; or multiple - meaning that the managed

element can have several references with the same name (e.g. the set of output components of one

component).

Property

name : EString

value : EString

ManagedElement

name : EString

namespace : EString

uuid : EString

am : EString

state : EInteger

properties

0..*

0..*
referencedElements

Reference

name : EString

unary : EBoolean

references

0..*

Figure 5.4: Cube Meta-model

As we have mentioned before, we used ECORE to specify our Cube Meta-model. The following figure

5.5 details an example of the relationship between a part of the Cube Meta-model and its corresponding

ECORE model instance. Here, the ManagedElement class in Cube Meta-model corresponds to an object

of the EClass class in the ECORE model instance, having its “name” attribute set to “ManagedElement”.

ManagedElement attributes correspond to objects of the EAttribute class of ECORE. In the example shown

in the figure we show only two attributes – “name” and “namespace” – that have the type EString. The

Property concept of the Cube Meta-model corresponds to another EClass object of the ECORE meta-

model, with its “name” attribute set to “Property”. The association “properties” between ManagedElement

and Property concepts in M2 layer corresponds to an object of the EReference class of ECORE.

Using EMF allowed us to generate Java code directly from the Cube’s meta-model, since this was

specified based on the ECORE meta-model. The generated code has very interesting features, including

a change notification mechanism and serialization. In our prototype implementation, we have slightly

changed the generated code to fit our Framework needs. In particular, we have omitted the direct Java

references between modelled element instances (e.g. references between modelled objects). Instead, we

have used the Universal Unique Identifier (UUID) to represent the references between different modelled

instances. This allows moving the modelled instances between different Java Virtual Machines without

changing the entire model.

79

Property

name : EString

value : EString

ManagedElement

name : EString

namespace : EString

:EClass

name = "ManagedElement"

:EAttribute

name = "name"

:EAttribute

name = "namespace"

:EDataType

name = "EString"

:EReference

name = "properties"
containment = true
lowerBound = 0

upperBound = *

:EClass

name = "Property"

:EAttribute

name = "name"

:EAttribute

name = "value"

ECORE model

instance

Cube Metamodelproperties

0..*

Figure 5.5: Cube Meta-model fragment and its ECORE model instance equivalent

5.2.3 Domain-Specific Managed Elements

The System Modelling Layer (M1) allows users to define their specific model elements for their particular

managed system. Specific managed elements should be specified based on the Cube Meta-model, using

its three main concepts: ManagedElement, Property and Reference.

In the developed prototype, we focus on distributed data-mediation systems (as described in the val-

idation Chapter 7). In this specific domain, applications – also called mediation chains – consist of a

set of components that are distributed across different execution platforms, or nodes. Such mediation

components are interconnected so that data can be transported from its sources – at the bottom of the

mediation chain – all the way to its destinations – e.g. servers, at the top of the chain. In-between data

sources and destinations, each mediation component – also called Mediator – is responsible for a specific

data-processing task. Hence, the general role of the mediation chain is to process and transport the data

between its sources and destinations.

Self-management tasks in this domain can include the self-instantiation of mediation components and

their placement on the available execution nodes, as well as more advanced functions such as balancing

the load between distributed nodes.

Since Cube framework targets the mediation domain, we proposed a “core” domain-specific model to

abstract and represent mediation systems. The following description and the remainder of this thesis will

use this core model to describe and explain the different framework parts.

core::Node

nodeId

nodeType

core::Component

componentId

componentType

node

0..1

components

0..*

core::Scope

scopeId
scope

0..1

nodes

0..*

0..*

0..*

outputs

inputs

Figure 5.6: Cube framework’s Core Domain-Specific Managed Elements

80

Figure 5.6 shows the core domain-specific managed elements we propose. We detail each element in

the following list:

• Component: represents an abstraction of a software component. It has two properties: componentId

– the identifier of the component instance; and componentType – the component type. These

two properties are set at runtime when instantiating the Component model element. The Compon-

ent has three references: inputs and outputs, which represent input and output references to other

components; and node reference, which holds the UUID of the node where the component is hosted.

• Node: represents a node – a deployment platform or physical device – where component instances

can execute. A Node has two properties: nodeId, which holds the identifier of the Node instance;

and nodeType, which holds the Node type, like “PC”, “Smartphone” and so on. The Node element

has two references: components, which holds the list of references to its hosted components; and

scope, which holds a reference to the Scope of which the Node is a member.

• Scope: represents a virtual grouping of Nodes (section 4.4.3 of the previous chapter 4). For instance,

it can represent an administrative network domain, a geographical location, or a set of platforms

sharing certain characteristics. The Scope element has one property: scopeId, which holds the

scope identifier. It also has two references: nodes, that holds the list of the scope members; and

master (not showed in the Figure), which holds a reference to the top scope leader (or the master

node, used in the case studies of the evaluation chapter 7). When created, an instance of the Scope

model element represents the scope leader of that scope.

core::Node

nodeId

nodeType

core::Component

componentId

componentType

Cube Metamodel

Core

Domain-Specific

Model Elements

node

0..1

components

0..*

:ManagedElement

name = "Component"
namespace = "core"

uuid = ""

value = ""

:Property

name = "componentId"

value = ""

:Property

name = "componentType"

value = ""

:Reference

name = "node"

unary = true

:ManagedElement

name = "Node"
namespace = "core"

uuid = ""

value = ""

:Property

name = "nodeId"

value = ""

:Property

name = "nodeType"

value = ""

:Reference

name = "components"

unary = false

referencedElements

referencedElements

Figure 5.7: Core Domain-Specific Model fragment and its corresponding Cube Meta-model instance

These core managed elements specific to the mediation domain are defined using the Cube Meta-

model. Figure 5.7 details an example of the relationship between a part of the core domain model and its

corresponding Cube Meta-model instances. As before, this example shows the advantage that the domain-

specific modelling layer (M1) brings with respect to the higher Cube meta-model level (M2), in terms of

increased simplicity of model specifications.

81

5.2.4 Cube Runtime Model

Cube Runtime Model is located at the bottom layer of our modelling stack (M0). At this level, we find

instances representing the real elements of the managed system. We refer to these instances as Runtime

Managed Instances, or modelled element instances. As we will show later (section 5.4.3), Cube framework

provides support for a set of technology-specific plug-ins, or extensions, that monitor the managed system

and create corresponding modelled element instances in the runtime model. These are instances of the

domain-specific elements modelled before (in M1).

Modelled element instances are identified by unique identifiers – UUID. UUID (Universal Unique

IDentifier) is an identifier standard coded in 128 bits and generated using a pseudo-random algorithm that

takes into account the computer characteristics (e.g. hard drive serial number and MAC address). It guar-

antees uniqueness across space and time. UUID were originally used in the Apollo Network Computing

System and later in the Open Software Foundation’s (OSF) Distributed Computing Environment (DCE)

[Sch93], and then in Microsoft Windows platforms (known as GUID – Global Unique Identifier) to refer

to software components. In the Cube context, UUIDs enable distributed Cube AMs to uniquely identify

Runtime Managed Instances without relying on central coordination.

At runtime, each Cube Autonomic Manager administers a part of the managed system. Since we

adopted a model-based management approach (subsection 5.1.2) each Autonomic Manager maintains a

runtime model of the system part that it manages. Hence, this actually represents a runtime model part

of the entire runtime model of the entire managed system. In its runtime model part, an Autonomic

Manager maintains a set of Runtime Model Instances that represent the managed system elements which

it administers. All the modelled instances are represented based on a coherent format, which conforms

to the Cube Meta-model. This makes the runtime model easy to inspect via automatic tools, either for

displaying state information to human administrators or for allowing an Autonomic Manager to analyse

it. A runtime model can be viewed as a graph where the vertices are the Runtime Model Instances and

the edges are the references represented by UUID identifiers. Hence, an automatic function can easily

navigate through the runtime model, inspecting each Runtime Model Instance, analysing its properties

and following its references to find related Runtime Model Instances.

Figure 5.8 shows an example of two associated Runtime Model Instances – Component instances

in this example – located on different nodes and hence managed by two different Cube AMs. Most

importantly in this figure is to notice how the association between the two component instances is rep-

resented. The first component instance that has the component type “Encoder” and component identi-

fier “Encoder-1” is hosted and managed by a Cube Autonomic Manager that has the following URI:

“cube://192.168.0.1:38”. This component instance has the generated UUID “11OE-8400-1234-

9876” (shortened for clarity). It also has a reference named “outputs”, which represents its output com-

ponents. This reference indicates that the component instance has one reference to another component

instance, which is identified by its UUID: “34E1-763E-1298-9988”. This UUID identifies another

component instance, which is located under the administration of another Cube Autonomic Manager, with

the URI “cube://192.168.0.2:38”. This second component instance has the component type “De-

coder” and the component identifier “Decoder-1”. Its UUID corresponds to the one referenced by the

initial component instance.

Finally, we notice that Runtime Managed Instances have no functional code; they are just model-

ling abstractions for representing the managed elements handled by the Cube framework. Each Runtime

Managed Instance contains a list of its managed properties and its references to other Runtime Managed

Instances representing other managed elements.

More information about the Cube Runtime Model will be provided later (section 5.4.2).

82

:ManagedElement

name = "Component"
namespace = "core"

uuid = "110E-8400-1234-9876"

am = "cube://192.168.0.1:38"

state = VALID

:Property

name = "componentId"

value = "Encoder-1"

:Property

name = "componentType"

value = "Encoder"

:Reference

name = "outputs"

unary = false

:ManagedElement

name = "Component"
namespace = "core"

uuid = "34E1-763E-1298-9988"

am = "cube://192.168.0.2:38"

state = VALID

:Property

name = "componentId"

value = "Decoder-1"

:Property

name = "componentType"

value = "Decoder"

"34E1-763E-1298-9988"

"110E-8400-1234-9876"

:Reference

name = "inputs"

unary = false

Figure 5.8: Cube Runtime Model Example

5.3 Goal Description Language - GDL

To automate management tasks for software systems, we need a formal language for specifying adminis-

tration goals with precise, but simple syntax. In this thesis, we propose the Goal Description Language

(GDL) for specifying objectives within the Cube framework. It is the formal language for defining the

Cube archetype.

GDL enables system administrators to specify management objectives as constraints on managed

system elements. Here, the managed elements modelled previously via the SML (subsection 5.2) can

be used as parameters to GDL constraints. The resulting specification – a Cube archetype – is provided

as input to all Cube Autonomic Managers that participate to the system’s administration. This input

specification represents the administration goals that the Autonomic Managers must attain.

In the following, we will introduce the concepts and syntax of GDL. For better clarity, the GDL

syntax is abstracted and represented here via graphical directed graphs. The actual XML syntax of GDL

is described in the next Chapter – “Implementation”.

At its core, GDL is a formal model for describing the administrative goals that must be attained on a

set of managed elements. Hence, GDL can describe the managed elements targeted for self-management

and specify the goals to be achieved on these elements. Goals can be expressed in terms of properties

to be attained on one managed element, or in terms of references to be ensured between two managed

elements. Examples include two components of a particular type that must always be connected; or a

server’s maximum number of clients accepted. Certainly, the manner in which such goals are achieved

can depend on the distributed execution environment.

The GDL syntax can be abstracted in the form of a simple graph-based model. It enables the simple

representation of goals and statements about managed elements as a directed graph. Here, vertices repres-

ent the managed elements, and edges represent their targeted properties or the relations between them (e.g.

references to other elements). The main objective of the GDL model is to allow administrators to specify

self-management objectives in terms of the constraints that the system should meet during its execution.

This objective translates into specifying sufficiently-detailed descriptions of managed elements and the

properties or references to be satisfied by the Cube framework at any one time.

Figure 5.9 shows a graphical representation of a GDL model example. In this example, we want to

guaranty that any component of type “Decoder” is connected to another component of type “MailSender-

83

Component”, which must be on a node of type “MailServer”. Hence, the goal of this specification is to

ensure that these two components are always connected. The purpose of all the other details provided is

to specify with precision which components are subject to this self-management objective. We will detail

the GDL model and the exact syntax of its graph-like representation in the next sub-sub-sections (5.3.1

and 5.3.2).

Component

hasComponentType

Decoder

connected [FC]

Component

hasComponentType

MailSenderComponent

hasNodeType

MailServer

onNode

Node

Figure 5.9: GDL Example

In general, GDL is based on the idea of making statements about managed elements in the form of

subject-goal-object expressions. Here, the subject represents a precise description of a managed element,

in terms of its properties, property values and references. The object is a description of another managed

element, which is related to the subject element (via the goal). The goal expresses the characteristic(s) that

the subject element must feature at any one time. In the GDL constraint exemplified above (Figure 5.9), the

“Decoder” Component represents the subject, the “MailSenderComponent” the object and “connected”

the goal – it indicates that any subject component must be connected to an object component.

If the object is a literal value, the goal is about controlling a property of the subject managed element

(e.g. a value range for a component’s attribute). If the object represents another managed element, the goal

defines a binary property that must be ensured between the two elements (e.g. two components that must

be connected). Notice that the expression subject-goal-object has also been used in other models like in the

Resource Description Framework (RDF) [LS99], but based on another pattern – subject-predicate-object –

and for another role – intended to describe Web Resources. The main difference is that RDF was intended

to specify static web resources, in order to facilitate the automatic processing of their descriptions; while

GDL is intended to specify user goals with rich descriptions about system architecture and constituent

managed elements.

GDL is intended to be processed automatically by the Cube framework, rather than only to being

displayed to human administrators. Furthermore, the model is based on an abstract architectural model

rather than on the direct expression and description of managed system elements. Namely, vertices in the

GDL graph are mere descriptions of the managed elements that should be part of the self-management

goal (e.g. a Component of type “Decoder”). They are not concrete specifications referring to a unique

managed element (e.g. not the full identifier of a particular Java class, or Component implementation from

a particular provider).

The GDL language relies on three main concepts:

• Element (Managed or Primitive);

• Property (Goal or Description);

• Archetype.

Table 5.1 gives the graphical notation of these concepts (except Archetype which is a document in which

the user write his specification).

84

Table 5.1: Graphical notation of GDL concepts

N° GDL Concept Graphical notation’s example

1
Managed Element

Managed Element

2 Primitive Element
Primitive Value

3 Description Property (unary)

Managed Element

Property name

Primitive Value

4 Description Property (binary)

Managed Element
Property name

Managed Element

5 Goal Property

Managed Element

Property name

Primitive Value

Goal name [Resolution Strategy]
Managed Element

Property name

Primitive Value

In the following, we will detail each of these concepts of the GDL model.

5.3.1 GDL Elements

An Element is represented by a vertex in the GDL graph. It can represent two things:

1. Managed Element (ME): represents a description of a managed element, subject to self-management

goal(s). It may represent any targeted managed element that has already been modelled based on

the system modelling language (e.g. Component, Node and Scope).

2. Primitive Element (PE): represents a constant literal specified via a string value.

In the graph representation of GDL (Table 5.1), Managed Elements (ME) are represented as ellipses

(Table 5.1-1), labelled with the ME’s type; Primitive Elements (PE) are depicted as rectangles (Table

5.1-2), labelled with the PE’s literal value.

5.3.2 GDL Properties

A Property in a GDL model can represent two things:

1. Goal (G): property of the system declared as an objective to achieve.

2. Description (D): provides more information about the subject or the object of a Goal.

85

In both cases, a property is triplet of the form: subject-property-object. This is a generalisation of the GDL

statement format presented above – subject-goal-object – considering that the Property can actually be a

goal (G) or a description (D). Furthermore, we can now discuss in more detail the nature of the subject and

object elements based on the previous GDL Element definitions – Managed Element (ME) and Primitive

Element (PE).

The subject is the element concerned by the property. Hence, it must be a Managed Element (ME) and

cannot be a Primitive Element (PE). The object can be either an ME or a PE depending on the Property’s

cardinality, which can be unary or binary; n-ary properties are not supported at this point. More precisely,

the object of a unary property is a Primitive Element; and the object of a binary property is a Managed

Element. From another perspective, the object can be viewed as a parameter of the subject’s property.

In GDL’s graph-based representation, properties are depicted as edges (or arcs) and labelled with the

property’s name. Edges are directed from the subject to the object, in other words, from the element con-

cerned by the property to the element providing more information about the property. Finally, Description

properties are depicted via solid black edges (Table 5.1-3/4) whereas Goal properties via dotted red edges

(Table 5.1-5).

Component

hasComponentType

Encoder

Component

hasComponentType

Decoder

Node

hasOS

Ubuntu

(a) (b)

onNode

Figure 5.10: Examples of Description Properties in the GDL model

Figure 5.10 illustrates two examples of GDL properties used as Descriptions (solid dark edges). Fig-

ure 5.10-a depicts a unary property. The Managed Element of type “Component” – the subject – has a

unary property “hasComponentType”, where the object is a Primitive Element assigned the string value

“Encoder”. This simple Description property is interpreted as follows: “any Component that has the type

Encoder”. Figure 5.10-b depicts a binary property. Here, a Component is described as having the type

“Decoder” and also as being deployed on a Node that has an “Ubuntu” Operating System (OS). This

second GDL specification can be interpreted as follows: “any Component that has the type Decoder, and

that is on a Node that has an Ubuntu operating system”. At this point, no goal has yet been specified.

These are just Descriptions that can be used later on for defining the actual goals (Goal Properties).

When GDL properties are used as Goals (dotted, red arcs), they represent the objective to be achieved.

In Figure 5.11, the property connected is specified to be a goal to achieve. That is, the Component that

has the type “Encoder” must be connected to another Component of type “Decoder”, which is on a node

that has an “Ubuntu” OS.

Compared to Description Properties, Goal Properties provide additional information about the Auto-

nomic Manager’s Resolution Strategy. This information is useful for optimizing the resolution process. In

Cube, when trying to achieve user goals, an Autonomic Manager uses an Archetype Resolver – an internal

module which is detailed later (sub-sub-section 5.4.3). The important aspect here is that the Archetype

Resolver builds an internal resolution graph, based on the archetype, and tries to find runtime model con-

figurations that satisfy the goal properties and descriptions in the graph. Considering the example depicted

in Figure 5.11, the Archetype Resolver tries to achieve the goal connected for the subject, which is a Com-

ponent of type “Encoder”. To achieve this goal, the Archetype Resolver first tries to find the goal’s object,

which is a Component of type “Decoder” and is located on a node that has an “Ubuntu” OS. The search

86

Component

hasComponentType

Encoder

Component

hasComponentType

Decoder

Node

hasOS

Ubuntu

onNodeconnected [FC]

Figure 5.11: Example of a Goal Property in the GDL model

is carried-out based on the information available in the Runtime Model. If no instance of a component

that conforms to this description if found, the Archetype Resolver creates a modelled component instance

with this description and places it in the Runtime Model. This find (F) or create (C) behaviour is explicitly

specified in the connected goal via the literals (FC).

The Archetype Resolver developed as part of Cube framework’s prototype supports the following

Resolution Strategies:

• FIND [F]: find the modelled element instance that conforms to the description provided by the

object element of the binary property.

• FIND_OR_CREATE [FC]: start by looking for a modelled element instance that has the given

description; then, if not found, create this instance in the runtime model.

• CREATE [C]: directly create an instance with the description provided in the object element

without trying to look for an existing instance.

5.3.3 Archetype

The Archetype is the document where the GDL description is specified for each managed system. Form-

ally speaking, an Archetype is defined as follows:

Archetype = {E,P,G} (5.1)

where











E = {e | e is aGDLElement }

P = {p | p is aGDLProperty ∧ SubjectElement(p) ∈ E ∧ ObjectElement(p) ∈ E }

G = {g | g ∈ P ∧ g is a GDLGoal Property ∧ ResolutionStrategy(g) ∈ {F, FC,C}}

• SubjectElement(p) is a function that returns the Subject Element of a GDL Property p.

• ObjectElement(p) is a function that returns the Object Element of a GDL Property p.

• ResolutionStrategy defines the resolution strategy that the Cube’s Archetype Resolver will fol-

low in order to achieve the specified goal.

In addition, we provide the following formal definitions of the different parts of the Archetype:

E = ME ∪ PE (5.2)

87

where

{

ME = {m | m ∈ E ∧ Type(m) ∈ {DomainSpecificModelledElements (M1)}}

PE = {p | p ∈ E ∧ Type(p) = String}

• ME is the set of GDL Managed Elements that have types defined in Cube’s Domain-Specific

Modelling Layer (M1 in Figure 5.2): Component, Node, Scope, and so on.

• PE is the set of GDL Primitive Elements which have the String type and have a given value.

P = G ∪ D (5.3)

where

{

G already defined in (1.1)

D = {d | p ∈ E ∧ d is aGDLDescriptionProperty}

This formula indicates that GDL Properties can be either GDL Description Properties or GDL Goal

Properties.

∀ p ∈ P : SubjectElement(p) ∈ ME ∧ SubjectElement(p) /∈ PE (5.4)

This means that the Subject Element of each Property (Goal or Description) is a Managed Element

and not a Primitive Element.

∀ p ∈ P : if ObjectElement(p) ∈ ME then p is aBinary Constraint (5.5)

This means that if the Object Element of a Property is a Managed Element, then p is said to be a Binary

Constraint. It relates two Managed Elements together by a description or by a goal to achieve.

∀ p ∈ P : if ObjectElement(p) ∈ PE then p is aUnary Constraint (5.6)

This means that if the Object Element of a Property is a Primitive Element (i.e. a literal value), then p is

said to be a Unary Constraint.

Note: In the remainder of this thesis, when speaking about GDL graphs we refer to the Archetype which

represents the same thing. However, there should be no confusion between the Archetype, which

means the GDL graph, and the overall Goal and Knowledge Specification, which encompasses both

Cube’s System Modelling Layers and Languages SML (subsection 5.2) and the Goal Description

Language GDL (subsection 5.3).

88

5.4 Cube Autonomic Manager

At runtime, a system’s administration solution based on Cube framework consists of a set of collaborating

Autonomic Managers that share the same goals. The goals are provided in the form of an Archetype doc-

ument (presented above) and used by Cube’s Autonomic Managers (AMs) to carry-out self-management

operations. In this section, we detail the internal architecture of one Cube Autonomic Manager (AM).

We present its core internal modules, as well as its various extension points and the relationships between

them. We also show how a Cube Autonomic Manager uses the Archetype to resolve system management

problems.

5.4.1 Internal Architecture Overview

In general, the design of the Cube Autonomic Manager (AM) follows the rather ‘classic’ autonomic

computing MAPE-K5 loop proposed by IBM [KC03]. In addition, it also proposes a few important com-

plements. Figure 5.12 shows the internal architecture of an Autonomic Manager as defined in the Cube

framework.

C
U

B
E
 A

U
T
O

N
O

M
IC

 M
A

N
A

G
E
R Archetype Resolver

Runtime Model Controller

Local Runtime Model

C
o
m

m
u

n
ic

a
to

r

Messages

Exchange

Managed

Sub-system

S
p

e
c
ifi

c
 R

e
s
o
lv

e
r
s

Monitors/Actuators

Archetype

Model

L
if

e

C
o
n

t
r
o
lle

r

Monitor Execute

Figure 5.12: Cube framework’s Autonomic Manager

Monitoring and execution modules in a Cube AM have the same role as in the MAPE-K loop. Sim-

ilarly, planning and analysis tasks in the MAPE-K loop are equivalent to Cube’s Archetype Resolver

module. The Archetype Resolver provides the decision-making function of a Cube AM. It reasons on

the system Knowledge – represented in the Local Runtime Model - and pursues the goals defined in the

Archetype model. The Local Runtime Model represents the AM’s partial view of the managed system,

described via modelled element instances (or simply modelled instances) and their interrelations. All

modelled instances of all Cube AMs constitute the Global Runtime Model, which reflects the overall state

5MAPE-K: Monitoring, Analysis, Planning, Execution – Knowledge.

89

of the entire managed system. Access to the Local Runtime Model, for reading and writing purposes, is

mediated by a Runtime Model Controller via a special-purpose access interface. The Archetype model

represents the user goals to achieve. As previously discussed (subsection 5.3), the AM compares the

system’s state, as indicated in the Local Runtime Model, with the Archetype’s constraints and aims to

maintain the system in states that conform to the archetype. This procedure is only performed on the part

of the managed system that the AM administers locally.

When a goal cannot be achieved locally, a Cube AM must collaborate with other Cube AMs. For

this purpose, it relies on an internal Communication module to exchange asynchronous messages with

the AMs that it collaborates with – called “neighbours”. Once related, a Cube AM also verifies the well-

being of its neighbour AMs by using a special-purpose internal module – a Life Controller (or a Failure

Detector). The purpose of this module is to verify the persistence of goal solutions that were set in place

in collaboration with neighbours – e.g. remote element instances that help solve a connect constraint may

disappear when a neighbour AM breaks-down.

To find solutions to system-specific management goals The Archetype Resolver makes use of Goal Re-

solvers. This enables the Cube AM to support the inclusion of new management concepts, new managed

elements and new constraint resolution functions, without changing its core internal architecture.

To ensure the extensibility necessary for supporting future business objectives and various types of

managed resources, the internal architecture of the Cube AM features two kinds of modules: core modules

and extension modules.

Core modules are implemented and provided by the Cube framework. They include the Runtime

Model and its special-purpose Controller, and the Archetype Resolver.

Extension modules can be added to the Cube AM for enriching its functions with system-specific cap-

abilities. This includes the following modules: the Communicator, Monitors/Executors, Life Controller

and Goal Resolvers. Extension modules allow specializing Cube’s AM for specific management cases

and execution environments. All the extension modules can be dynamically changed, added and removed

as necessary.

In the following sections, we detail each of the internal modules of the Autonomic Manager in the

Cube Framework.

5.4.2 Runtime Model Controller

The Runtime Model Controller (RMC) manages access to the modelled element instances available in

the Local Runtime Model. The Local Runtime Model corresponds to the local knowledge that the Cube

AM uses to take local decisions. It represents an abstraction and a direct representation of the managed

system’s state. More precisely, since it is a local model, it only represents the state of the managed system

part that the local AM administers.

The Runtime Model Controller plays two roles. First, it is a container for the Local Runtime Model.

This signifies that the Runtime Model Controller encapsulates and manages all access to the instances of

modelled system elements available in the Local Runtime Model (e.g. modelled component instances and

interconnections). The Controller also provides a notification mechanism to inform other modules about

changes in the Local Runtime Model.

Second, the Runtime Model Controller provides a transparent API for distributed operations that can

be used to retrieve information about remote modelled instances - that is, modelled instances that are

located in remote Runtime Models and managed by other Cube AMs. In the following two sub-sections,

we detail these two roles.

90

Local Runtime Model

A Local Runtime Model consists of a set of modelled instances, which belong to the Runtime Model

Layer (M0) of Cube framework’s System Modelling Layers (subsection 5.2.4).

Formally speaking, the Runtime Model is defined as follow:

RuntimeModel = {V, I, U} (5.7)

where











V = { i | i isModelledElement Instance ∧ state(i) = V ALID }

I = { i | i isModelledElement Instance ∧ state(i) = INV ALID }

U = { i | i isModelledElement Instance ∧ state(i) = UNMANAGED }

• RuntimeModel Instance is an object of the class ManagedElement defined in the Cube Meta-

model (M2) (see 5.2.2).

• state(i) is a function that returns the state of the Modelled Element Instance i. The possible states

are VALID, INVALID and UNMANAGED, as discussed below.

UNMANAGED

INVALID

resolve

VALID

change

manage

Figure 5.13: State Diagram of a Modelled Element Instance

The Runtime Model Controller changes the state of a modelled element instance (or modelled in-

stance) according to its validity. Figure 5.13 shows the different possible states. When a modelled in-

stance is created initially, it is tagged as UNMANAGED. This means that the Cube AM does not handle this

modelled instance and does not try to validate it against the Archetype model. Unmanaged instances are

useful for off-line manipulation. By off-line, we mean that no listeners are subscribed to notifications on

the modelled instance’s internal changes. Unmanaged instances are particularly used by the Archetype

Resolver for checking their viability off-line, without causing any real impact on the managed system.

Namely, the Resolver can create unmanaged instances and analyse their properties without activating the

AM’s resolution process.

When an AM takes a modelled instance into account - i.e., manages it - the Runtime Model Controller

changes the instance’s state to INVALID. The modelled instance remains in this state while it is not yet

resolved and validated against the Archetype model; when validated its state is changed to VALID. At this

point, listeners that have subscribed to the Runtime Model are notified. When properties of the modelled

instance or of its references change, and if these properties are subject to goals in the Archetype, then

the modelled instance becomes INVALID. The Archetype Resolver tries to validate it again (as described

after in 5.4.3).

91

Global Runtime Model

Cube does not create or maintain any central Global Runtime Model of the entire managed system. As we

have seen, the Runtime Model is partitioned amongst Cube’s decentralised AMs. However, if necessary,

we can retrieve a snapshot of the Global Runtime Model and navigate through it by following the local

and external references (UUIDs) of modelled instances.

For this purpose, the Runtime Model Controller provides a distributed API that allows retrieving

information about VALID remote modelled instances, which are hosted and managed by other Cube AMs.

This facility is very helpful for developers especially when implementing Specific Resolvers (see 5.4.3).

The API provided by the Runtime Model Controller includes the following methods:

• getPropertyValue: gets a property value of a modelled instance identified by its UUID. Prop-

erty’s name should be provided as parameter along with the UUID of the instance.

• addProperty: adds a property to the modelled instance identified by an UUID given as a para-

meter. Property’s name and initial value should be provided as parameter.

• updateProperty: updates the value of a property of a modelled instance identified by an UUID

given as a parameter. Property’s name should be provided as parameter to identify which property

should be modified.

• getReferencedElements: gets the list of the referenced modelled element instances (the list

of their UUIDs).

• addReferencedElement: adds a new reference to the identified modelled instance identified

by it UUID given as parameter.

• removeReferencedElement: removes the reference of a given element from the list of refer-

enced element of another element.

• hasReferencedElement: checks is a given element is among the referenced elements of an-

other modelled element instance.

These methods are all synchronous, meaning in this context that callers are blocked between the moment

when they make the method call and the moment when they receive the response, or when a time-out

exception is raised.

5.4.3 Archetype Resolver

The Archetype Resolver (or simply Resolver) (Figure 5.14) is the core component of the Cube Autonomic

Manager (AM). Its role is to validate the Local Runtime Model against Archetype constraints and to

modify modelled instances as necessary to bring and maintain the system within its viable solution space.

Hence, the main task of the Archetype Resolver consists in a search algorithm that finds valid solutions

starting from the monitored system state as represented in the local model.

There is no central Resolver in the Cube framework. Rather, each AM contains its local Resolver that

verifies and updates the Local Runtime Model corresponding to the AM’s managed system part. An AM’s

Resolver also collaborates with Resolvers of neighbour AMs in order to find more global solutions (see

further in this section).

An Archetype Resolver provides a general-purpose, graph-based search algorithm for finding solu-

tions. Nevertheless, in order to do so it must rely on user-provided Specific Resolvers associated to

domain-specific modelled elements. In the remainder of this section, we detail the main algorithm pro-

posed to resolve Archetype goals. We show how it is associated to Specific Resolvers and to domain-

specific modelled elements. In particular, we insist on the “Scope” and “Node” concepts which are likely

92

to be mandatory for the algorithm’s distributed version.

Archetype Resolver

Runtime Model Controller

Local Runtime Model

C
o
m

m
u

n
ic

a
to

r

S
p

e
c
ifi

c
 R

e
s
o
lv

e
r
s

Archetype

Model

Figure 5.14: Cube AM’s Archetype Resolver

The Archetype Resolver explores the system’s solution space, which contains all valid system states

that conform to the Archetype. This is done by incrementally modifying the current model (which reflects

the system state) and checking it against archetype constraints. The Resolver stops as soon as a valid

solution is found and set in place. Taking a simple example, let us assume that the Archetype imposes that

a component A is always connected to a component B. When an instance of component A is created, the

Resolver must find an instance of component B and connect it to A, without breaking other constraints

related to A or B (or to any other types). The Resolver can find the B instance either in the Local Runtime

Model, or in a remote Runtime Model. The manner in which the Resolver searches for solutions depends

on the details that the user associates to goal definitions in the Archetype.

There are two concerns that the Archetype Resolver should take into consideration for ensuring user

objectives as specified in the Archetype: representation and reasoning. Representation concerns the man-

ner in which the goals are formulated, or modelled, and whether they are generic or application-specific.

Reasoning refers to the manner in which solutions are identified, via search or inference-based procedures,

so as to satisfy user goals. In our thesis, we have adopted the concept of Constraint Satisfaction Problem

(CSP) as a solution for representing and reasoning about user goals. In the following, we start by introdu-

cing the CSP concepts. Then we show how the Archetype concepts are mapped to CSP concepts in order

to obtain a representation of the problem model. Finally, we detail our proposed reasoning algorithm,

based on an extensible architecture that allows the integration of user-specific resolvers, specific to each

domain.

Definitions

“Constraint programming is a powerful paradigm for solving combinatorial search problems that draws

on a wide range of techniques from artificial intelligence, computer science, databases, programming lan-

guages, and operations research” [RvBW06]. It promotes an approach where only the properties of the

desirable solutions are specified, in the form of constraints or relations between variables. The constraint-

oriented program must then find solution(s) that conform to the specified constraints. In contrast, imper-

ative programming specifies directly the exact set of instructions to be executed on a set of variables in

order to find a solution.

Variables in constraint programming can have Boolean, integer, linear, or finite values. Finite do-

mains are one of the successful areas where constraint programming is applied [RvBW06]. They include

93

scheduling, planning, vehicle routing, configuration, networks and bioinformatics domains. Such real-life

problems deal with multiple finite alternatives and so can be represented as Constraint Satisfaction Prob-

lems (CSP) and resolved by applying various Constraint Programming tools. Constraint satisfaction, in its

basic form, involves finding a value to each variable in a problem’s variable set, where constraints specify

that some subsets of values can(not) be used together.

Formally speaking, a CSP is defined by a triplet - < X,D,C > - where X is the set of vari-

ables, X1, X2, ..., Xn; C is a set of constraints, C1, C2, ..., Cm; and D is the set of non-empty domains,

D1, D2, ..., Dn, where Di defines the set of possible values of variable Xi. Each constraint Ci involves a

subset of the variables and specifies the allowable combinations of values for that subset. A state of the

problem is defined by an assignment of values to some (or to all) of the variables, {Xi = vi, Xj = vj , ...}.

An assignment (or state) that does not violate any constraints is called a consistent or legal assignment. A

complete assignment is one in which every variable is mentioned, and a solution to a CSP is a complete

assignment that satisfies all the constraints.

X = {x1, x2, x3}
D(Xi) = [0, 2], ∀xi ∈ X

C =











c1 : x1 < x2

c2 : x1 + x2 ≥ 2

c3 : x1 < x3

Figure 5.15: Example of a Constraint Satisfaction Problem (CSP)

Figure 5.15 presents an example of Constraint Satisfaction Problem (CSP). We aim to find values for

x1, x2, and x3 knowing that these variables can take only integer values between 0 and 2 and are respecting

the three mentioned constraints.

The Resolution Graph - mapping of archetype model to CSP model

A constraint on a single variable is called unary constraint; and on two variables binary constraint. When

all CSP constraints are unary or binary, the CSP can be directly represented as a constraints graph, with

variables as vertices and constraints as edges. This is equivalent to the Archetype model (GDL graph)

with Managed Elements representing vertices and properties representing edges. Hence, there is a direct

mapping between the CSP graph and the Archetype graph.

Therefore, within the Cube framework, the Archetype Resolver constructs an internal constraints

graph called Resolution Graph (RG) based on the Archetype model. This is the equivalent of a CSP graph.

Cube’s resolution algorithm (detailed further) uses this Resolution Graph (RG) to find viable solutions.

In a centralized control context, the CSP would be represented as one large constraint graph to be

solved by a single resolver. This would mean that a centralised Archetype Resolver builds a Resolution

Graph for the entire Archetype and then solves it. Let us now see how Cube’s decentralised resolution

process handles this problem instead. At runtime, Cube AMs maintain locally different parts of the Global

Runtime Model. That is, each AM maintains a Local Runtime Model which it must validate against the

corresponding part of the Archetype. This means that the AM only needs to construct a partial Resolution

Graph that represents that part of the Archetype.

Here, using a graph structure to represent the Archetype’s model as a CSP provides a key advantage.

Namely, the Archetype’s graph-based representation can be split into smaller sub-graphs, each one rep-

94

resenting a partial CSP, which an AM must resolve. Such sub-graphs can then be solved independently by

the decentralised AMs and then merged into a global solution. Certainly, the applicability of this approach

is limited to cases where the composition of partial solutions results in a global solution that conforms to

the overall Archetype. This was the case in the data-mediation systems that we have studied as application

examples and that represent useful and realistic applications in the targeted business domains.

Notice that we have designed the Archetype model to be a goal-oriented, architecture-based language.

The resulting specification (detailed in section 5.3) is intended to be user-friendly, including little inform-

ation related to the actual resolution process. We aim by this to make the Archetype model as independent

as possible from the actual reasoning technique used to resolve it. One exception is the Resolution Strategy

which is used to guide the Resolver’s search process for component instances (e.g. find or create strategy);

it represents a goal property and added as a tag to the goal definition.

In the Archetype, the user specifies a set of managed elements and their properties. Properties are

defined either as attributes (predicates) or as relations between elements. This can be viewed as a set of

constraints in the constraint programming paradigm [APS11].

Moreover, in Cube, the possible values for the set of variables (Xi) that belong to the corresponding

domains (Di) will change during runtime. For each variable of a certain type (e.g. component or node),

the domain values that can be selected from consist of the modelled instances that are possible for that type

(e.g. component instances that can be created or found; nodes that are available). The domain, which rep-

resents the solution space of a variable, can be further limited to more precise values using GDL Property

Descriptions (subsection 5.3.2). Furthermore, the values can be located in the Local Runtime Model or in

a remote Runtime Model. The search function is implemented and associated to GDL Descriptions. For

instance, the on-node constraint receives the list of its associated components. If the on-node constraint

is specified for a component, the possible values for that component’s variable are limited to component

instances that execute on the node indicated.

In the Resolution Graph, since a vertex represents a managed element (or variable), finding a legal

value for that vertex is the equivalent of resolving a unary constraint. Similarly, since connections (edges)

represent constraints between variables (vertices) selecting values for two connected vertices is the equi-

valent of resolving a binary constraint.

The Resolution Algorithm

The Archetype Resolver checks the Local Runtime Model for INVALID modelled instances and launches

the resolution process to find a solution that can re-validate them. This is said to be a passive approach,

where the Resolver executes this procedure repeatedly at a predefined interval. The Archetype Resolver

also implements a reactive approach. In this case, when changes occur in the Local Runtime Model,

the Archetype Resolver is notified automatically. It then checks if the new or updated modelled instance

(which it was notified about) matches any Managed Element’s Descriptions in the Archetype. If it does,

then it starts to construct progressively and to solve a Resolution Graph that has the modelled instance as

a root vertex and the associated constraints as directed paths departing from that root vertex. The Resolver

continues to construct and solve the Resolution Graph locally (as described below) until it reaches the

limits of its local capabilities. At this point, the Resolver may contact remote Resolver and hand over the

resolution process. Collaborating Resolvers become neighbours and maintain contact during the entire

resolution process (to check for alternative solutions) and after (to check for neighbour liveliness).

The resolution algorithm used by the Archetype Resolver is a distributed backtracking search al-

gorithm based on a greedy find-and-test approach. To illustrate the algorithm’s functioning in principle,

let us consider the Resolution Graph representing the Archetype, and for each vertex (variable) let us con-

sider all possible values (defined by the variable domain). Based on this view, the resolution algorithm

95

navigates through the space of possible solutions as follows. Starting from a given vertex (let us call it

root vertex) it follows all possible paths in the directed graph starting from that vertex. In this process,

it tries to find legal values for all vertexes in its paths. This is the equivalent of resolving the associated

constraints. When this is achieved a solution is found. If this cannot be achieved then a solution could not

be found.

More precisely, at each vertex, the algorithm selects one of the possible values, from the corresponding

variable domain and considering the available system resources. This choice of value may constrain the

set the values available in the connected vertices. If the algorithm can continue to follow the graph path

and find values at each vertex until reaching the end of each path in the Resolution Graph, then a solution

has been found. The Resolver enforces this solution onto the Runtime Model, which triggers its actual

implementation into the managed system.

On the other hand, if the algorithm gets blocked (i.e., no values available at a vertex) then it goes

back to the previous vertex and selects a different value from the list of possible values. If such value is

available then the algorithm starts to go forward again through the Resolution Graph using the new value.

If no alternative value is available at a vertex, the algorithm continues to go back on its path and try to

select different values for vertexes increasingly close to the root vertex. If it reaches the root vertex and no

further values are available then a solution cannot be found. In this case, the modelled instance that has

fired the resolution process remains INVALID. The Archetype Resolver will try to resolve the INVALID

instances again, either in the next round (passive approach) or when changes occur (active approach).

The resolution algorithm searches the solution space in a systematic manner that guarantees that all

possibilities will be tried. It simply enumerates and tests all candidate solutions containing values for all

variables in the Resolution Graph. When the Resolution Graph contains many vertices with large variable

domains, the combinatory problem can become quite challenging and resource consuming. Nonetheless,

the resolution algorithm stops as soon as a legal solution is found, rather than exploring all possible solu-

tions and then selecting the best one. While this may lead to under-performing solutions, it also represents

an advantage if a viable solution, even non-optimal, can be identified relatively fast (in comparison to the

time necessary for a full exploration of the solutions space). Still, even in this context, we do not claim

to provide an optimal resolution algorithm. This is simply a proof-of-concept that fits our architecture

and specific needs. Several Artificial Intelligence (AI) techniques are available from the literature to im-

prove the presented search algorithm – e.g., propagation, data-driven computation, “forward checking”

and “look-ahead”. Applying such optimizations is out of the scope of this thesis.

We notice finally that The proposed resolution algorithm is written in a generic way that applies to all

administrative goals (core and future extensions) supported by the Cube framework.

5.4.4 Life Controller

The Life Controller (LC) verifies the liveliness of all the remote modelled instances which are referenced

by modelled instances in the Local Runtime Model. It provides the verification and notification mech-

anism that is essential to Cube framework’s self-healing facility. Namely, it verifies periodically that the

different parts of the managed system are always correctly associated despite the dynamic nature of the

managed system (e.g. devices that appear and disappear dynamically like in ubiquitous computing).

The Life Controller has a direct relation with the Local Runtime Model (see Figure 5.16). It is sub-

scribed as listener and notified about changes in the runtime model. In particular, whenever a remote

modelled instance is referenced from the Local Runtime Model, the Life Controller records the URI of

the AM that administers the remote instance and starts checking on it (Algorithm 5.1).

This procedure is only activated for references that are subject to self-management goals specified

in the Archetype document. An example is the connected goal which ensures that two components are

96

Runtime Model Controller

Local Runtime Model

C
o
m

m
u

n
ic

a
t
o
r

L
if

e

C
o
n

t
r
o
lle

r

Figure 5.16: Cube framework’s Life Controller

always be connected. If the two connected components are managed by two separate AMs (Figure 5.17),

the Life Controller of the local AM, which administers the subject component, monitors the aliveness of

the remote AM, which administers the object component.

Algorithm 5.1 Checking the aliveness of remote AMs (neighbours)

for each AM in MonitoredAMsList do

send_aliveness_message(AM)

if (aliveness[AM] < TENTATIVES) then

aliveness[AM] = aliveness[AM] + 1

else

remove_references_of(AM)

end for

This ensures that if the remote AM goes down (e.g., the execution machine crashes), the local AM

learns about it and its Archetype Resolver gets a chance to find another solution. More precisely, when

receiving no response from a monitored AM, the Life Controller decreases the value of aliveness relative

to that AM. When no response is received after a predefined number of attempts, this is interpreted as the

remote AM being inactive (or broken).

At the same time, the Life Controller of the remote AM will be configured to notify the local AM

whenever the object (remote) component is removed or changed. Notice that if no remote reference is

found in the Local Runtime Model, the Life Controller does not maintain any monitoring channel (case of

the Cube AM 1 in Figure 5.17).

Cube AM 2 Cube AM 3Cube AM 1

LC LCLC

Managed Element

runtime Instance

LC Inactive Life Controller

Local Reference

Remote Reference

LC Active Life Controller
monitor

notify

Figure 5.17: Example of Cube framework’s Life Controller

To summarise the Life Controller’s work, we highlight the following two tasks:

1. Notifying remote AMs about any changes of local modelled instances that are referenced by in-

stances located on these remote AMs.

97

2. Monitoring remote AMs that host modelled instances which are referenced by local modelled in-

stances.

For illustration purposes, the following algorithm (5.2) details the first task corresponding to the notific-

ation of external AMs managing external references when a local instance is changed. In this algorithm,

we show the case of removing an instance. The Life Controller retrieves all its external references, and

from its recorded URIs of the external AMs, it sends a notification message for each one that has a cor-

responding reference to one of its local instances.

Algorithm 5.2 Notify remote AMs about the removal of a referenced instance

function notify(i)

for all (external reference of i) do

am_uri = getAM(i)

notify_removed_instance(am_uri, i)

end for

end function

The notify_removed_instance function uses the Communicator module (see section 5.4.6)

of the Cube AM (see Figure 5.16) to send messages to remote AMs. When the remote AM receives the

notification message, it removes all occurrences of the remote modelled instance in its Local Runtime

Model. Consequently, any modelled instances depending on the removed instance will be marked as

INVALID as it was changed (see 5.4.2), and the Archetype Resolver will have to try to validate them

again.

5.4.5 Monitors/Executors (Technology-Specific Extensions)

Most of the studied autonomic frameworks are often delivered with specific monitors, executors and con-

trol strategies. However, the modular and extensible architecture of Cube framework’s AM allows the

integration of user-specific modules in order to specialize the AM for handing technology-specific as-

pects.

In short, the control process proceeds as follows. Monitors collect data from technology-specific

sensors and update the Local Runtime Model accordingly. The Archetype Resolver is notified of any

such updates in the Local Runtime Model. It checks the conformity of the new Local Runtime Model to

the archetype, takes the necessary decisions, and indicates any corrective changes by modifying the Local

Runtime Model. Executors apply such changes into the corresponding managed elements, via technology-

specific actuators.

Figure 5.18 shows an example involving technology-specific Monitors and Executors. Monitors create

modelled element instances corresponding to the managed system components and their configurations.

Executors apply changes made to the Runtime Model into the actual managed system. The exemplified

Database system (on the left of the Figure) is monitored by a Cube Monitor implemented specifically for

the corresponding Database technology. This Monitor creates an abstract modelled instance representing

the Database and featuring its configuration information. The Database is connected to another part of

the system, which is managed by another Cube AM (on the right of the Figure). Let us assume that

this second system part relies on two different technologies, hence requiring two corresponding types of

Monitors/Executors to handle modelled instances in the Local Runtime Model. Note that both of these

technology-specific Monitors/Executors access the same Local Runtime Model and belong to the same

Cube AM instance. The Runtime Model Controller mediates all access to the Local Runtime Model and

ensures its coherence in the presence of multiple parallel updates.

98

Runtime Model Controller

Application Server

Monitor/Executor

Web Server

Monitor/Executor

Database

Monitor/Executor

Runtime Model Controller

Local Runtime Model

CUBE AM 1 CUBE AM 2

Local Runtime Model

Figure 5.18: Cube Monitors/Executors

Technically speaking, the Monitor uses the Runtime Model Controller API to add and change mod-

elled instances in the Local Runtime Model. The Archetype Resolver will validate the modelled instances

that were created or updated by the Monitor. When such changes are validated, the Executor is notified

and immediately applies these changes into the managed system. The Executor can set-in place filters for

selecting the modelled instances from which it receives update notifications.

Monitors and Executors are initially loaded based on the way in which they are specified in the Cube

AM’s configuration. They can also be added or removed dynamically using a special-purpose adminis-

tration API. Using this API (see next chapter) allows automating some tasks, such as starting or stopping

dynamically a particular extension depending on the monitored context.

5.4.6 Communicator

Data exchanged between Cube AMs is mapped into a serializable Java Class called CMessage.

CMessage

properties : Map<String, String>

from : String

to : String

replayTo : String

subject : String

body : String

attachement : ManagedElement

timestamp : Date

expiration : Date

correlation : long

CMessage

Headers

Properties

Subject

Body

Attachement

Figure 5.19: Cube Message Representation

CMessage consists of five main parts, as follows (see Figure 5.19):

• Headers: all messages support the same set of header fields. Header fields contain values used to

identify and route messages. Some of them should be filled-in by the framework, including from,

99

timestamp, correlation id, and expiration time; while others are left to the message sender to fill-in,

like the “to” header. The following list provides a short description of these headers:

From: contains the URI of the Cube AM message source;

To: contains the URI of the Cube AM message destination;

Replay-to: contains the URI of the Cube AM to which the response should be returned;

Timestamp: contains the date when the message was created;

Expiration-time: contains the date when the message will expire (no longer be valid);

Correlation-Id: holds a specific identifier object for linking one message with another. It

typically links a reply message with its request message.

• Properties: holds application-specific properties, like key and value entries, that are transferred

between Cube AMs. This is typically used by the Cube Resolver to send messages containing some

properties to be found.

• Subject: holds the message subject. Typically, messages between Cube AMs are exchanged re-

specting some internal protocols. In the subject attribute, it is recommended to put the name of the

task to be done.

• Body: it typically holds the task results to be forwarded to the requester.

• Attachment: It can hold a Managed Element object. This is used by the Cube Resolver to share

Managed Element descriptions providing more detail than what can be stored within the “proper-

ties” attribute.

Message Delivery

Considering communication patterns such as “Point-to-Point” or “Publish/Subscribe”, we can provide

several protocol implementations for best addressing various deployment situations. All such customised

implementations must implement the Communicator interface, which defines the two following methods:

• send(CMessage)

• addListener(MessageListener)

The send method is for asynchronous communication. Implementations or user plug-ins can also provide

synchronized communication based on this asynchronous method (as detailed in the next chapter 6). The

addListener method allows adding listeners for messages that are received.

Within the Cube framework prototype we have provided a default implementation of this communic-

ation interface. It uses Network Sockets to transfer the messages. For this default implementation and for

any other implementation the Communicator should analyse the message header information, especially

the “to” attribute, in order to know to which AM the actual message should be delivered. At that point,

the message is serialized in a format defined by the transport protocol selected.

When a message is received, the message listeners are notified and a copy of the message is delivered

to them. At this level, the Cube Autonomic Manager filters to whom the message should be delivered.

When a listener subscribes for messages it should also provide the “replyTo” attribute since this is used

by the Communicator to filter the received message. The listener can use the correlation header to ensure

that the received message is what it was waiting for.

Details about the default implementation are provided in the next chapter 6 - “Implementation”.

100

5.5 Summary

The goal and knowledge specifications were proposed in the Cube framework for allowing users to form-

ally define administrative goals and model their managed systems. The proposed system modelling lan-

guage (SML) defines four modelling layers with concepts ranging from generic to domain-specific and

runtime elements. Each layer provides a formal language for the layer below and instantiates and extends

concepts from the layer above. The most important layer defines Cube’s Meta-model concepts, which

enables users to model system managed elements and integrate them into the Cube framework. This layer

is extended by a Domain-Specific Layer within witch domain experts can define a modelled elements spe-

cific to their domain. As part of the Cube framework prototype, we have defined such a domain-specific

modelled elements for the targeted data-mediation domain.

The provided specifications also include a goal description language (GDL), which can be represented

via a graph-based syntax. GDL’s Archetype model enables users to specify precise goals for the managed

system. More precisely, GDL statements (or constraints) take as parameters managed system elements that

users have already modelled based on the domain-specific SML. In general, GDL constraints represent

either properties to control and regulate on managed elements; or references to achieve and maintain

between managed elements.

We have presented the internal architecture of a Cube Autonomic Manager and provided details on

each of its internal modules. Most of these modules can be reused and extended so as to facilitate the

adoption and customisation of the Cube framework across various targeted applications.

More information about the implementation details of the Cube framework is given in the next chapter.

101

102

Chapter 6

Implementation

Contents

6.1 Overview . 104

6.1.1 Supporting Technologies . 104

6.1.2 Execution Platform . 109

6.2 XML Syntax for the Archetype model . 110

6.2.1 The Archetype Document . 110

6.2.2 Archetype Elements and Description Properties 111

6.2.3 Archetype Goals . 113

6.2.4 Complete Example . 114

6.2.5 Archetype Parser . 115

6.3 Cube Execution Platform . 117

6.3.1 Overall Architecture . 117

6.3.2 Cube Runtime and its Administration Service 117

6.3.3 Autonomic Manager . 119

6.3.4 Runtime Model Controller . 121

6.3.5 Data Structure and Implementation for the Archetype Resolver 124

6.4 Extensions . 128

6.4.1 Overview . 128

6.4.2 Extension Points . 129

6.4.3 Deploying and using extensions . 134

6.4.4 Extensions provided by the Cube Framework 135

6.5 Related Tools . 140

6.5.1 Overview . 140

6.5.2 Hot Deployer . 140

6.5.3 Console Commands . 141

6.5.4 Dynamic Web Monitoring Console . 142

6.6 Summary . 145

103

In the previous chapter, we have detailed our proposed Cube framework. We have illustrated all its

constituents and its underlying concepts and architecture.

In this chapter, we will detail the design and implementation of the proposed Cube framework, includ-

ing its runtime infrastructure, extensions and utilities. We start this chapter by outlining the supporting

technologies involved in the development of our framework. These technologies are also required for

running Cube Autonomic Managers and for implementing extensions. In particular, our framework is

based on two main technologies: OSGi [All07] and iPOJO [EHL07, EH07]. We provide an overview

of the execution platform and the different dependencies between its main constituents. Each of these

constituents is then detailed in separate sections of this chapter. In section 6.2, we provide information

about the XML syntax we have proposed for our Archetype Model. This is followed by a description

of the runtime platform in section 6.3, where we provide information about how we have implemented

the different runtime entities. In section 6.4, we provide explanations about how to extend the core Cube

framework in order to be able to handle new situations. Finally, we conclude this chapter by outlining the

set of implemented tools that facilitate Cube’s developer tasks (section 6.5).

6.1 Overview

6.1.1 Supporting Technologies

The Cube project provides offline support for developers to implement the various extensions and model

elements, as necessary for setting in place a Cube-based solution (chapter xx). It also provides a runtime

support that helps running Cube Autonomic Managers and provides support for dynamic adaptability of

their internal modules. Our implementation of the Cube framework is based on light-weight Service-

Oriented Architecture (SOA) - the OSGi Platform - and a Service-Oriented Component model - iPOJO.

We detail these two complementary technologies and the reasons for their adoption in the following sec-

tions.

6.1.1.1 OSGi

OSGi [All07] – The Dynamic Module System for Java – is a specification for a service-based platform,

which facilitates the componentization of software modules and applications and ensures remote man-

agement and interoperability of applications and services over a broad variety of devices. The OSGi

specification has been proposed by the OSGi Alliance consortium1.

Operating System

OSGi

Platform

Java Virtual Machine

Bundles

Figure 6.1: OSGi Platform

1http://www.osgi.org

104

The OSGi specification describes a Java execution platform that supports the dynamic deployment

of modular and extensible applications. To be deployed onto an OSGi platform, an application must be

packaged into a specific artefact called “bundle” (Figure 6.1). Bundles are JAR2 files that contain the

compiled classes and meta-information that defines the “OSGi bundle”.OSGi can run in several types

of Java Virtual Machines (JVMs) ranging from very restricted virtual machines, like CLDC (Connected

Limited Device Configuration) or CDC (Connected Device Configuration), to more desktop-based virtual

machines, like the J2SE (Java Standard Edition). The OSGi platform is composed of several layers, from

which the most important are the life cycle layer, the module layer, and the service layer (Figure 6.2). In

next sub-sections, we detail these main layers.

Native Operating System

Java Virtual Machine

Execution Environment

Modules

Life Cycle

Services
S
e
c
u
rity

Applications

(Bundles)

Figure 6.2: OSGi Layers

Module Layer

The Module layer is responsible for managing OSGi bundles that are deployed into the OSGi platform.

It allows describing the sharing policies between different bundles, and hence it allows the construction

of modular and dynamically updatable applications. Modules in OSGi are running bundles which contain

meta-information about the sharing policies – the classes that the bundle exports, as well as the classes

that it imports. This meta-information is exploited by the Module layer to automatically verify bundle

compatibility and to interconnect bundles so as to resolve their required imports.

An existing Java application can be packaged (or "bundled") as an OSGi bundle by providing specific

descriptors following the JAR specification. In general, an OSGi bundle must enrich the manifest with

OSGi-specific meta-data that describe the module to be published into the OSGi platform, as shown in

Figure 6.3-(a).

Module Layer

MANIFESTprogram.jar OSGi

Bundle

+ = ImportExport

(a) (b)

Bundle-Classpath: ..

Export-Package: ..

Import-Package: ..

Figure 6.3: The Module Layer of the OSGi platform

2JAR (Java ARchive) is an archive file format used in Java platform to aggregate many classes, metadata, and resources.

105

The main OSGi-specific meta-data contained in the MANIFEST.MF artefact can be summarized as

follows:

• Exported-Packages: the Java Packages that are provided by the bundle. Other OSGi bundles can

reuse classes and services exported by this bundle (see 6.3-(b)).

• Imported-Packages: the Java Packages needed by this bundle. These Java Packages must be expor-

ted by another OSGi bundle available on the OSGi platform.

• Activator: the name of a special-purpose OSGi class – called Activator - which is responsible for

managing the bundle (starts and stops it, as well as resolves and requiring services – see Lifecycle

Layer next).

• Bundle-ClassPath: the list of the necessary Java Jars (inside the bundle) containing classes and

resources needed to run the bundle.

Life Cycle Layer

Once an OSGi bundle is deployed onto the OSGi Platform, it will be managed by the OSGi Lifecycle layer,

which will change the bundle state according to a set of specifications. This layer adds the possibility to

install, uninstall, start, stop, and update bundles dynamically.

INSTALLED

RESOLVED

STARTING

STOPPING

ACTIVE

UNINSTALLED

install

u
n
in
s
ta
ll

re
s
o
lv
e

re
fr
e
s
h

u
p
d
a
te

start

stop

u
n
in
s
ta
ll

Figure 6.4: State diagram of an OSGi bundle’s life cycle

Figure 6.4 shows the UML State Diagram for an OSGi bundle’s life-cycle. When a bundle is deployed

onto the OSGi platform, it is initially considered in the INSTALLED state; it becomes ACTIVE only

when all its dependencies are resolved (i.e. when all its imported packages are available from other OSGi

bundles installed on the platform).

Many OSGi implementations offer a shell via which the framework can be interacted with, using

commands entered via a network connection or a local console. Currently, there is no OSGi standard on

how this shell console should work, or how the console should be extended. However, different tools were

proposed, like Gogo, Felix Web Console3, and so on.

Service Layer

The interoperability of OSGi follows the simple Producer-Consumer paradigm of a service model as

shown in Figure 6.5-(a). The Producer of an OSGi service registers with the OSGi platform’s Service

Registry, while the Consumer of the OSGi service uses OSGi’s Service Look-up function to find and

3http://felix.apache.org/site/apache-felix-gogo.html

106

reuse the service. In this way, during an OSGi bundle’s life-cycle, the provider can first publish their

service implementation to the OSGi platform where other OSGi services (belonging to the same or to

other OSGi bundles) can reuse it as show in the Figure 6.5-(b).

Service Layer

(1) Service

 Registration

(a) (b)

Service Layer

Use Service

Publish Lookup

Provider

Bundle

Consumer

Bundle

Producer Consumer

Service

Registry

(2) Service

 Lookup

(3) Binding &

 Invocation

Figure 6.5: The Service Layer of the OSGi platform

The OSGi specification defines a dynamic Service-Oriented Architecture (SOA). This architecture has

a centralized Service Registry, where services are described using Java interfaces and a set of properties

whose semantics are left free to the users’ choice. Service Producers register their service implementa-

tions in the Service Registry, and service Consumers look-up for particular services in the Service Registry.

There is no direct link between service Producers and Consumers. Certainly, several Producers and Con-

sumers can exist for the same Service. When a service Consumer finds a service Provider, a binding is

performed between the two services.

These three OSGi layers - Module, Lifecycle and Service - allow the construction of dynamic and

modular OSGi applications. However, when developing such applications it is essential to consider care-

fully the decoupling between bundles and to take into account the dynamism in the targeted Java code.

Since this is a complex and repetitive task, special-purpose tools have been proposed to automate it, such

as the Service Binder [CH03] and iPOJO [EHL07, EH07].

6.1.1.2 Apache Felix iPOJO

The OSGi technology provides a useful platform for creating dynamically-extensible and modular applic-

ations. However, dealing with dynamism and modularity can become cumbersome when the number of

bundles and their dependencies increases. This is because OSGi developers must write a lot of extra code

to handle such aspects and to manage all the related problems, such as thread synchronization.

Apache Felix iPOJO (acronym of Injected Plain Old Java Object) is a Service-Oriented Component

(SOC) programming model built upon the OSGi platform. It was developed within the ADELE team4 of

LIG laboratory5 – Grenoble. It combines the service oriented computing approach with component-based

models to provide a programming and execution framework that allows developers to make dynamically

adaptable components. It addresses most of the difficulties indicated above, by automating most of the

repetitive tasks required by the OSGi platform.

From developer’s point of view, iPOJO allows to hide the complexity of managing an application’s

dynamism. It simplifies the complexity of developing applications that will run on OSGi platforms. For

this purpose, it automatically and transparently injects references between service providers and service

consumers. It then manages such service dependencies transparently, during runtime.

Figure 6.6 shows the typical architecture of one iPOJO Component. It is composed of a POJO part

(functional code) and a container (non-functional code). The POJO is a simple Java class that imple-

4http://adele.imag.fr
5http://www.liglab.fr

107

POJO

Service

Dependency

Handler

Service

Providing

Handler

Other Handlers

Container Functional Code

Figure 6.6: iPOJO Component-model

ments some application-specific function. It can implement a service interface, in which case the iPOJO

component will provide an implementation of that service. It can also require a reference to a service

implementing another service interface, in which case the iPOJO container will find a provider of that ser-

vice and inject its address into the corresponding attribute of the POJO Java class. The iPOJO Component

container is extensible; user-specific extensions (called Handlers) can be used to manage non-functional

aspects related to the component (e.g., security, transactions and messaging). Service providing and ser-

vice requesting are implemented as container handlers.

iPOJO proposes the following features:

• Tightly-coupled development model and execution platform: all the development models are avail-

able at runtime.

• Dynamic service-based architecture: the interaction between iPOJO components are issued from

the underlying OSGi platform. In addition, iPOJO provides a certain services isolation. Developers

can export services for their application’s scope only.

• Simple development model: allows hiding the complexity of the underlying SOA using simple PO-

JOs. Most importantly, it hides the dynamism complexity of the OSGi platform. iPOJO provides

an execution layer with code injection and introspection features allowing for the transparent man-

agement of modularity and dynamism-related issues, as indicated via the developer’s preferences.

• Structural composition language: iPOJO allows constructing applications from a structural com-

position of services. Composition is modelled based on service specifications, independently from

concrete service implementations. This decoupling is an interesting feature of iPOJO as it allows

selecting an available service implementation at runtime. Hence, applications built using iPOJO are

dynamic.

• Introspection and dynamic reconfiguration: These mechanisms allow to reconfigure the iPOJO com-

ponents and to retrieve their state during runtime.

• Extension mechanisms: iPOJO allows adding user-specific handlers of components to manage non-

functional properties like persistence, security and quality of service.

Through these mechanisms, iPOJO simplifies the development of dynamic service-based applications.

In addition, allowing developers to provide customised code for managing non-functional properties is

another important facility. For this reasons we have chosen iPOJO as a basis for implementing our Cube

framework prototype.

OSGi and iPOJO technologies are used to implement the runtime execution platform of the Cube

framework. Furthermore, iPOJO should also be used by developers to implement Cube extensions. The

use of these technologies is described through sections 6.3 “Cube Execution Platform” and 6.4 “Exten-

sions”.

108

6.1.2 Execution Platform

Cube framework is designed and implemented as an OSGi service, which is to be used by external tools

to deploy and start Autonomic Managers. Autonomic Managers will then self-manage software systems

according to the Archetype specification provided by the user.

The Runtime Execution Platform of Cube’s self-management layer is composed of several OSGi

platforms. These platforms are identical, each one executing on a different machine in the managed

system. Figure 6.7 shows the most important Cube bundles and their relationships. It also depicts the

component instances (created from these modules) that represent the Cube system running onto one OSGi

platform.

Operating System

OSGi

Platform

Java Virtual Machine

iP
O

JO

C
u

b
e
 R

u
n

t
im

e

C
u
b
e
 E

x
te

n
s
io

n
s

ImportExport

Bundles

C
u
b
e
 T

o
o
ls

iPOJO

Component

Instances

Figure 6.7: Cube’s Execution Platform

More precisely, each OSGi platform has the following main bundles:

iPOJO Runtime

At runtime, Cube framework uses iPOJO to manage the different service-oriented mechanisms provided

by OSGi. This includes mainly the management of required service references and service provisioning. It

also allows the modularization of the internal architecture of Cube’s Autonomic Manager and the seamless

introduction of plug-in extensions. In our implemented prototype, we use the following iPOJO bundles:

• org.apache.felix.ipojo-1.8.6.jar: the core iPOJO runtime bundle.

• org.apache.felix.ipojo.arch.gogo-1.0.1.jar : OSGi commands for debugging

and showing the exported factories and created instances.

Cube Runtime

A Cube Runtime is a software service that executes on a OSGi platform on each machine in the Cube

system. Technically speaking, it exports an Administration Service that can be used to manipulate several

Autonomic Managers running on the same OSGi platform. Cube Runtime is implemented as an iPOJO

Component instance that exports an “Administration Service” which allows related tools to manipulate

the Cube system, and requires an “Extension Factory Service” to allow the integration of new extensions

to the running Autonomic Managers. Cube Runtime is detailed in section 6.3.

109

Cube Extensions

Extensions allow Cube’s Autonomic Managers to administer domain-specific managed resources. Namely,

they enable Autonomic Managers to interact with the managed resources by implementing adequate mon-

itors and executors. Also, they enhance Cube’s Runtime Model and Archetype Resolver with specific

goals and their specific resolvers. Cube Extensions are detailed in section 6.4.

Cube Tools

Several tools can be implemented and deployed to provide specific tasks related to the functioning of the

Cube Runtime. One such tools is the “Hot Deployer” which scans a particular folder, and, if it finds a

configuration file for a Cube Autonomic Manager, it parses it and creates an Autonomic Manager based

on the provided information. The implemented Tools related to the Cube framework are detailed in section

6.5.

When OSGi starts, instances of the aforementioned bundles are created and interconnected automat-

ically with the help of iPOJO. We provide further details of each bundle and its functioning in sections 6.3

“Cube Execution Platform”, 6.4 “Extensions”, and 6.5 “Related Tools”. Before that, we present the XML

syntax for the Archetype Model in next section. This syntax allows system administrators to write formal

Archetype specifications.

6.2 XML Syntax for the Archetype model

In the previous chapter “Cube framework”, we have detailed the Archetype model used for describing

user goals formally (see section 5.3 of chapter 5). To effectively use this model, in our prototype we

have proposed an XML Syntax for the Archetype Model. Users write XML files (or generate them from

a dedicated tool) and the resulting Archetype XML file is parsed by the Cube framework to construct

its corresponding Archetype Java model (see section 6.2.5). This Java model is then used by the Cube

Autonomic Manager as input to achieve the specified goals.

6.2.1 The Archetype Document

An Archetype is specified in an XML file, using a Cube-specific XML syntax. More precisely, an Ar-

chetype is defined as an XML element <archetype> which is a nested element of the root element

<cube> . <cube> root element has only one attribute called cube-version which defines which ver-

sion of the Cube implementation is intended to be used. At this level, we should also provide the list of

XML namespaces that correspond to the Cube extensions to be included. As indicated previously, such

extensions provide user-specific modelled system elements and their corresponding properties and goals.

For illustrative purposes, the following listing 6.1 shows an example of an empty Archetype document.

Listing 6.1: Empty Archetype Document

1 <cube x m l n s : c o r e =" f r . l i g l a b . a d e l e . cube . c o r e " cube−v e r s i o n =" 2 . 0 ">

2 < a r c h e t y p e

3 i d =" n e t . d e b b a b i . cube . demo "

4 v e r s i o n =" 1 . 0 "

5 d o c u m e n t a t i o n =" Empty Arche type ">

6

7 < / a r c h e t y p e >

8 < / cube >

110

The <archetype> element has the following attributes:

• id (compulsory): the identifier of the Archetype document. It is recommended to utilise a namespace-

based identification (e.g., “net.debbabi.cube.demo”).

• version (compulsory): the version of the Archetype document.

• documentation (optional): the description of the Archetype document. This will provide a global

description of the goals intended by this archetype specification.

In the example in listing 6.1, we declared the “fr.liglab.adele.cube.core” namesapce which

will be used subsequently to define user-specific managed elements (next sub-section). We also fixed

Cube’s implementation version to “2.0”. Hence, this Archetype XML specification is compatible with

version 2.0 of the Cube prototype. The declared Archetype document has “net.debbabi.demo” as

identifier.

To support the archetype’s evolution at runtime, it is important to have different Archetype identifiers

for different Archetypes loaded by a Cube system. This means, that in principle, different Cube Autonomic

Managers may load and pursue goals defined in different Archetype versions. In this manner, one given

Archetype can have several versions that correspond to successive updates of the Archetype. Nonetheless,

the current Cube framework does not yet support the dynamic update of the Archetype document. In the

current version, in order to consider a new Archetype version, all the Autonomic Managers in a Cube

system must be restarted. This limitation is detailed in the conclusion and perspectives chapter.

Finally, an Archetype XML element can also have an optional description which provides a short

explanation of the role of this Archetype Document.

6.2.2 Archetype Elements and Description Properties

In the Goal Description Language (GDL) model - also referred to as Archetype model, see section 5.3

of chapter 5 - an Archetype consists of a set of GDL Elements, which have two declinations: Primitive

Element (PE) and Managed Element (ME). PEs are primitive values - they are represented as attribute

values in the Archetype XML Document. MEs are descriptions of managed elements - they are repres-

ented as XML elements in the Archetype. Each ME is defined via several Description Properties, which

are defined as nested XML elements of the ME XML element. We detail the way of defining these types

of elements next. The next subsection will show how Archetype Goals are defined with respect to such

Managed Elements.

Each ME XML Element should be specified using a qualified name - i.e. using the extension’s

namespace and the Managed Element name. We recall here that Managed Elements correspond to the

managed system resources that Cube has to manage, including Components and Nodes. An ME’s corres-

ponding XML element has the following attributes:

• id (compulsory): the ME’s identifier.

• documentation (optional): the ME’s documentation information.

The id attribute is obligatory, since it uniquely identifies the Managed Element within the Archetype XML

Document. It can then be used and referenced from other XML elements, such as Goal or Description

Properties (as discussed below). The description attribute is optional, since it provides an informal de-

scription of the Managed Element for the user.

Listing 6.2 shows an example of an Archetype with only one Managed Element of type Component.

The Component concept is provided by the core extension of the Cube framework. This core extension is

identified by the namespace fr.liglab.adele.cube.core. This is why this namespace was added

to the list of namespaces of the Archetype XML file with a shortcut “core”. To make use of the Component

concept, we use the “Component” name appended to the extension namespace, so as to form a complete

111

qualified name that uniquely identifies the Managed Element type (in the example: <core:component

/>).

Listing 6.2: Example of an Archetype Element

1 <cube x m l n s : c o r e =" f r . l i g l a b . a d e l e . cube . c o r e " cube−v e r s i o n =" 2 . 0 ">

2 < a r c h e t y p e i d =" n e t . d e b b a b i . cube . demo " v e r s i o n =" 1 . 0 ">

3 < e l e m e n t s >

4 < !−− l i s t o f e l e m e n t s −−>

5 < core :Component i d =" c1 " / >

6 < !−− D e s c r i p t i o n P r o p e r t i e s go h e r e −−>

7 < / core :Component >

8 < / e l e m e n t s >

9 < / a r c h e t y p e >

10 < / cube >

The declared Managed Element of type Component has “c1” as identifier. Based on the specification

presented so far, c1 now refers to any Managed Element of type Component. At this point, we have not

provided any further precisions or details about the desired element, or component. This is the role of the

Description Properties (DPs).

Description Properties are represented as nested XML elements of Archetype elements. A Description

Property uses a fully qualified name and, when used as a child XML element of a Managed Element, it

adds more details to the ME’s description. This allows to better specify the exact kind of element that is

being referred to, like a component or node featuring specific properties. Recall that a Description Property

is a triplet of the form subject-property-object (section 5.3.2 - “GDL Properties”). In the Archetype,

the subject element is the parent XML element of the Description Property’s XML element. Hence,

in the example above, the Component element (line 5) is the subject for all the Description Properties

nested within it (line 6). The property is the qualified name of the Description Property’s XML element

(exemplified below). Finally, the object is represented as an attribute of the Description Property’s XML

element (exemplified below).

Overall, a Description Property element is defined using a qualified name (i.e. the DP’s actual prop-

erty), and can have the following attributes:

• o: the object of the Description Property;

• documentation: a description of the role of this property for the parent element (i.e. the DP’s

subject).

If the Description Property represents a unary property, then the object is a simple primitive value - the

value of the ‘o’ attribute. However, when defining a binary property, the object is another Managed

Element. In this case, the value of the ‘o’ attribute should start with a “@” character followed by the

identifier of the Managed Element representing the object.

Listing 6.3 represents an extract of an Archetype document highlighting the use of Description Prop-

erties for providing more detail about targeted Managed Elements.

Listing 6.3: Example of an Archetype Element

1 < e l e m e n t s >

2 < core :Node i d =" pc ">

3 < c o r e : h a s O S o=" ubun tu " / >

4 < / co re :Node >

5 < core :Component i d =" c1 " / >

6 < core :onNode o="@pc" / >

7 < / core :Component >

8 < / e l e m e n t s >

112

In this example, two Managed Elements were defined: ‘pc’ which represents a Node (line 2), and ‘c1’

which represent a Component. The pc node description has a nested Description Property core:hasOS,

which is a unary property that limits targeted nodes to those having “ubuntu” as an operating system.

The “ubuntu” information is a literal string representing the object value of the core:hasOS Descrip-

tion Property. The c1 component description has a nested Description Property core:onNode, which

is a binary property that limits the targeted components to those located on a node having “ubuntu” as

an operating system. Here, we have directly set the identifier of the pc node description as an object of

the Description Property core:onNode.

6.2.3 Archetype Goals

In Cube, management goals are defined via Archetype Goals, which are represented formally via a ded-

icated type of Description Properties – we refer to these as Goal Properties (GPs), to avoid confusion.

While the informational Description Properties (presented in the previous subsection) are defined as nes-

ted XML elements of Managed Elements, Goal Properties are defined via a dedicated XML element called

<goals>. The <goals> element is defined as a child element of the <archetype> tag. Within each

<goals> tag, the user’s goals are regrouped logically as a set of related goals.

Each Goal Property XML element should be defined using a qualified name, which identifies the

actual goal type it represents (exemplified below). The goal type can be selected from an extensible set of

predefined goals that Cube can support. A Goal Property element can have the following attributes:

• s: the identifier of the Managed Element that represents the goal’s subject.

• o: the identifier of the object Managed Element if the goal is of a binary type, or a literal value if

the goal is of a unary type.

• r: the resolution strategy to be employed. It takes one of the following values: “f”, “fc”, or “c”

(representing ‘find’, ‘find or create’, and ‘create’ strategies, respectively, for acquiring managed

element instances) as described in section 5.3.2.

• documentation: a short description of the goal.

The ‘r’ attribute differentiates Description Properties (DPs) from Goal Properties (GPs): DPs are inform-

ational and help identify the Managed Elements to which Goals should apply (subject or object); GPs are

management objectives to be attained and hence include a corresponding resolution strategy.

Listing 6.4 shows some examples of Archetype Goals.

Listing 6.4: Example of an Archetype Goals

1 < a r c h e t y p e i d =" n e t . d e b b a b i . cube . demo " v e r s i o n =" 1 . 0 ">

2 < g o a l s >

3 < g o a l d o c u m e n t a t i o n =" components p l a c e m e n t ">

4 < core :onNode s="@a" o="@pc" r =" f " / >

5 < core :onNode s="@b" o=" @ t a b l e t " r =" f " / >

6 < core :onNode s="@c" o=" @ t a b l e t " r =" f " / >

7 < / g o a l >

8 < g o a l d o c u m e n t a t i o n =" s e l f −c o n n e c t i n g components ">

9 < c o r e : c o n n e c t e d s="@a" o="@b" r =" f c " / >

10 < c o r e : c o n n e c t e d s="@b" o="@c" r =" f c " / >

11 < / g o a l >

12 < / g o a l s >

13 < !−−e l e m e n t d e f i n i t i o n s a r e n o t shown h e r e −−>

14 < / a r c h e t y p e >

113

In this example, we omitted the description of the Managed Elements (identified as “a”, “b” and “c”

in the listing) and only highlighted goal definitions instead. We regrouped our goals into two sets: the

first one is about component placement on nodes, while the second one is about component interconnec-

tions. To achieve this, we used two kinds of predefined goals: core:onNode, and core:connected,

respectively. The goal of this Archetype is to ensure that any component that matches the component

description identified as ‘a’ in the archetype is placed on a system platform that matches the node descrip-

tion identified as ‘pc’. Similarly, the component descriptions ‘b’ and ‘c’ should be placed on platforms

that match the ‘tablet’ node description. Furthermore, we want that any instance that corresponds to

the ‘a’ component description is always connected to another instance that corresponds to the ‘b’ com-

ponent description. If no instance is found (following the ‘find’ resolution strategy), Cube creates a new

component instance matching the ‘b’ component description (following the ‘create’ strategy). In either

case (find or create) Cube connects the acquired instance ‘b’ to the first instance ‘a’. The same objective

is also specified between the component descriptions of ‘b’ and ‘c’.

Notice that we have also used core:onNode as a Description Property in the previous sub-section.

In that case, the purpose was to define the type of components that executed on a certain type of node (e.g.

‘pc’). In the example given in this subsection, core:onNode is employed for defining an objective that

Cube will have to pursue. Namely, the purpose of this goal is to ensure that all instances of component

‘a’ are placed on nodes of type ‘pc’. We notice here that the Goal Property definition (core:onNode)

utilises the Description Property definition (via a reference to ‘pc’).

6.2.4 Complete Example

Figure 6.8 shows an example of an Archetype model represented in a graphical language (as used in

section 5.3 of chapter 5).

Component

hasComponentType

Encoder

Component

hasComponentType

Decoder

Node

hasOS

Ubuntu

onNodeconnected [FC]

Figure 6.8: Example of an Archetype document in a graph format

This Archetype defines a goal that ensures that any component of type “Encoder” is always connec-

ted to another component of type “Decoder” which is located on a node that has an “ubuntu” operating

system.

Listing 6.5 shows the equivalent XML document of this Archetype example.

Listing 6.5: Complete Archetype Example in XML format

1 <cube x m l n s : c o r e =" f r . l i g l a b . a d e l e . cube . c o r e " cube−v e r s i o n =" 2 . 0 ">

2 < a r c h e t y p e i d =" n e t . d e b b a b i . cube . demo " v e r s i o n =" 1 . 0 ">

3 < g o a l s >

4 < g o a l >

5 < c o r e : c o n n e c t e d s=" c1 " o=" c2 " r =" f c " / >

6 < / g o a l >

7 < / g o a l s >

8 < e l e m e n t s >

9 < core :Component i d =" c1 ">

10 < core :hasComponentType o=" Encoder " / >

11 < / core :Component >

114

12 < core :Component i d =" c2 ">

13 < core :hasComponentType o=" Decoder " / >

14 < core :onNode o="@pc" / >

15 < / core :Component >

16 < core :Node i d =" pc ">

17 < c o r e : h a s O S o=" Ubuntu " / >

18 < / co re :Node >

19 < / e l e m e n t s >

20 < / a r c h e t y p e >

21 < / cube >

The implemented Cube framework prototype only supports Archetypes defined using the XML syntax

(and not the graph-based representation). The prototype’s XML Archetype parser is detailed in the next

sub-section 6.2.5. A graphical editor of the Archetype is not yet implemented, and remains to be achieved

in future developments.

6.2.5 Archetype Parser

When the Archetype XML file is loaded by a Cube Autonomic Manager (see next section 6.3), it is parsed

to produce its equivalent Java objects (Figure 6.9). In our prototype, we have used the SAX Parser6, which

reads the XML document and returns XML elements progressively. Our Archetype Parser reads the XML

elements returned by the SAX Parser and analyses them to identify their nature.

Archetype

XML File

Archetype

XML Parser

Archetype

Java Objects

SAX Parser

<<uses>>

Figure 6.9: Archetype XML Parser

Whenever the parsed XML element does not fit the structure of the Archetype specification an excep-

tion of type ArchetypeParsingException is fired. Otherwise, the Archetype Parser constructs an

Archetype Java Object that corresponds to the parsed XML element. This procedure allows the Archetype

Parser to progressively create a Java Object-based representation of the Archetype XML document.

The Archetype Parser is generic as it constructs the same generic Java Objects independently of the

nature of the parsed elements (e.g. Component, Node, for Managed Elements, and connected or

onNode for Properties). The drawback of this solution is the non existence of an offline validation solu-

tion that assures the validity of the provided Archetype elements. It is at runtime - when the Autonomic

Manager start working - that problems and exceptions can be fired.

Listing 6.6 shows a part of the Archetype.java class. It holds references to the different Ar-

chetype model elements - including the representation of Managed Elements (DescriptionElement

6SAX (Simple API for XML) is an event-based sequential access parser API

115

class – listing 6.7) and their Description Properties (DescriptionProperty class) - as well as ref-

erences to the set of Archetype Goals (Goal class). The Archetype has a graph-based data structure.

Vertices are Archetype Managed Elements and arcs are Description or Goal Properties.

Listing 6.6: Archetype Java class

1 p u b l i c c l a s s Arche type {

2

3 p r i v a t e S t r i n g i d = " " ;

4 p r i v a t e S t r i n g d e s c r i p t i o n = " " ;

5 p r i v a t e S t r i n g v e r s i o n = " 1 . 0 " ;

6 p r i v a t e S t r i n g c u b e V e r s i o n = " 2 . 0 " ;

7

8 p r i v a t e Map< S t r i n g , D e s c r i t p i o n E l e m e n t > e l e m e n t s = new HashMap< S t r i n g ,

D e s c r i t p i o n E l e m e n t > () ;

9 p r i v a t e Map< S t r i n g , Goal > g o a l s = new HashMap< S t r i n g , Goal > () ;

10

11 p u b l i c L i s t < D e s c r i t p i o n E l e m e n t > g e t D e s c r i p t i o n E l e m e n t s () {

12 L i s t < D e s c r i t p i o n E l e m e n t > r e s u l t = new A r r a y L i s t < D e s c r i t p i o n E l e m e n t > () ;

13 f o r (S t r i n g e : t h i s . e l e m e n t s . k e yS e t ()) {

14 r e s u l t . add (t h i s . e l e m e n t s . g e t (e)) ;

15 }

16 r e t u r n r e s u l t ;

17 }

18

19 / / t h e r e m a i n i n g code i s o m i t t e d f o r s i m p l i c i t y

20 }

The Archetype parser is called by the Cube Runtime Administration Service (see section 6.3.2) when

creating and starting a Cube Autonomic Manager. Indeed, each Autonomic Manager should have an

Archetype that specifies its self-management mission. As described in Figure 6.9, the Archetype Java Ob-

jects are lightweight objects storing the equivalent information provided by the XML file, and conforming

to the Archetype model presented in the previous chapter (section 5.3). The beneficial purpose of using

Java Objects is to optimize the retrieval of information from the Archetype, as this operation is frequently

performed by the Autonomic Manager for ensuring user goals.

Listing 6.7: Java class of the Archetype Description Element

1 p u b l i c c l a s s D e s c r i p t i o n E l e m e n t {

2

3 p r i v a t e Arche type a r c h e t y p e ;

4

5 p r i v a t e S t r i n g namespace ;

6 p r i v a t e S t r i n g name ;

7 p r i v a t e S t r i n g i d ;

8

9 p r i v a t e S t r i n g d e s c r i p t i o n = " " ;

10

11 p r i v a t e L i s t < D e s c r i p t i o n P r o p e r t y > d e s c r i p t i o n s = new A r r a y L i s t < D e s c r i p t i o n P r o p e r t y

> () ;

12

13 / / t h e r e s t e o f t h e code i s ommit ted f o r s i m p l i c i t y

14 }

The following section provides more details about the runtime part of the Cube project.

116

6.3 Cube Execution Platform

6.3.1 Overall Architecture

The Cube Runtime Bundle is the most important bundle of the Cube framework. It provides runtime

facilities to create and manipulate Cube Autonomic Managers (AMs) that can self-manage software sys-

tems. Figure 6.10 shows a simplified UML class diagram of Cube’s Runtime platform. We differentiate

between core classes - provided by the Cube framework (in grey colour, and detailed just after) - and

extension classes - provided by extensions (in white colour, detailed in section 6.4).

AutonomicManager

ArchetypeResolver

LifeController

RuntimeModel

RuntimeModelController

Monitor ExecutorSpecificResolver

CommunicatorCubeRuntime

0..*

1

1

ManagedElement

0..* 0..*0..*

1

1

0..*

Archetype

1

1

Figure 6.10: UML class diagram of the Cube Runtime Platform

6.3.2 Cube Runtime and its Administration Service

When an OSGi platform starts, the first object created (from the classes depicted in the class diagram in

Figure 6.10) is the CubeRuntime class. This class is declared as an iPOJO Component and is instanti-

ated automatically at start-up. Its principal role consists in providing an implementation of the Adminis-

tration Service (detailed in this section), which provides the basic operations for the Cube system in the

local OSGi platform.

CubeRuntime

Administration

Service

AutonomicManager

creates

0..*

Extension Factory

Service

Figure 6.11: Cube Runtime Bundle

Indeed, the CubeRuntime component instance exports one OSGi service called Administration Ser-

vice and requires one OSGi service called Extension Factory Service (detailed further in section 6.4).

117

The Administration Service manages (i.e. creates, removes and updates) a set of local Cube Autonomic

Managers (Figure 6.11). It also allows other tools to access and retrieve information about the instantiated

Autonomic Managers. The required Extension Factory Service allows the Cube Runtime component in-

stance to create the wanted extensions for each Autonomic Manager using the Factory pattern [GHJV95]

where a single extension factory is used to instantiate different extension instances for different Auto-

nomic Managers. It also manages the dynamic deployment of new extension factories by handling their

arrival and departure.

The following Listing 6.8 depicts a code snapshot from the CubeRuntime Java class. We use iPOJO

annotations7 to declare CubeRuntime as an iPOJO Component and to specify which attributes are required

and whether this class provides a service or not.

Listing 6.8: Java class of the Cube Runtime implementing the Administration Service

1 @Component

2 @Provides

3 @ I n s t a n t i a t e

4 p u b l i c c l a s s CubeRuntime implemen t s A d m i n i s t r a t i o n S e r v i c e {

5

6 @Requires

7 p r i v a t e L i s t < E x t e n s i o n F a c t o r y > e x t e n s i o n s ;

8

9 p r i v a t e Map< S t r i n g , AutonomicManager > au tonomicManagers ;

10

11 p r i v a t e Bund leC on te x t b u n d l e C o n t e x t ;

12

13 @Valida te

14 p u b l i c vo id s t a r t i n g () {

15 S t r i n g msg = " \ n " ;

16 msg += " \ n _______ " ;

17 msg += " \ n / | | " ;

18 msg += " \ n | | CUBE | . . . V e r s i o n : " ;

19 msg += " \ n | | ______ | " + g e t V e r s i o n () ;

20 msg += " \ n | / ______ / " ;

21 msg += " \ n " ;

22 System . o u t . p r i n t l n (msg) ;

23 }

24

25 @ I n v a l i d a t e

26 p u b l i c vo id s t o p p i n g () {

27 System . o u t . p r i n t l n (" ") ;

28 System . o u t . p r i n t l n (" [INFO] . . . S t o p p i n g CUBE") ;

29

30 / / S t o p p i n g and d e s t r o y i n g a l l t h e c r e a t e d Autonomic Managers .

31 f o r (S t r i n g am : t h i s . au tonomicManagers . k e yS e t ()) {

32 s topAutonomicManager (am) ;

33 des t royAutonomicManager (aam) ;

34 }

35

36 System . o u t . p r i n t l n (" [INFO] . . . Bye ! ") ;

37 System . o u t . p r i n t l n (" ") ;

38 }

39

40 / / t h e r e s t o f t h e code i s o m i t t e d f o r s i m p l i c i t y

41 }

7http://felix.apache.org/site/how-to-use-ipojo-annotations.html

118

The CubeRuntime Java class implements the AdministrationService interface and is spe-

cifies that it provides this service (represented by this Java interface). The iPOJO annotation @Provides

(line 2) prompts iPOJO to detect automatically the implemented interface and to declare the current Java

class as a provider of the corresponding service. The annotation @Component (line 1) declares this class

as an iPOJO Component, and the annotation @Instantiate (line 3) demands iPOJO to instantiate this

component when the bundle containing this component is deployed on an OSGi platform and is deemed

valid. When the component is started, the starting method (lines 14-23) is called automatically by iPOJO.

In this example, this method does nothing special except showing some informative messages on the

output console. Similarly, when the bundle containing this component (Cube Runtime Bundle) becomes

invalid or stopped, the stopping method of the CubeRuntime class is called automatically by iPOJO. Line

7 declares a list of ExtensionFactory objects that are not initialized and that contain no item. This

list will automatically receive the set of Extension Factories that are available in the local OSGi platform.

This task is transparently ensured by iPOJO because of the @Requires annotation specified for this

attribute (line 6). Finally, in line 9, we have a map of AutonomicManager objects. The key of this

map is the URI of each added AM, while the value is a reference to the actual AM object.

6.3.3 Autonomic Manager

The Autonomic Manager’s (AM) internal architecture was detailed in section 5.4 of the previous chapter

5. In this section we provide more details about its implementation. In particular, we show how the

core modules - Runtime Model Controller, Archetype Resolver, and Life Controller - were implemented.

Extension modules - Monitors/Executors, Specific Resolvers, and Communicator - will be discussed in a

dedicated section 6.4.

Initialization

AMs are created using the Administration Service as seen in the previous section. Each AM is configured

upon creation based on a user-provided configuration file containing mandatory and optional configuration

information. The configuration is encoded using the Configuration Java class depicted in Figure 6.12. This

class has several core configuration attributes and a set of extension configurations. The different config-

uration entries are used at creation time. Some entries are used by the Autonomic Manager object itself,

others by its associated core constituents (e.g. Archetype Resolver, Life Controller and Communicator),

and others by its different declared extensions.

To facilitate the AM instantiation task, we have implemented a tool called HotDeployer (section 6.5.2),

which takes an XML file representing the Autonomic Manager Configuration and creates dynamically a

new AM with the provided settings and extensions.

The following table 6.1 explains the different configuration entries.

The Configuration object has a set of Extension-related configurations (ExtensionConfig). It

defines the initial list of extensions for the Autonomic Manager. Each extension is identified by its id

(namespace) and its version. In addition, each extension has a set of configurations which are provided as

a set of key/value entries.

When created, the different constituents of an AM are created and initialized using the provided con-

figuration. If the auto-start configuration is set to true (by default), the AM starts directly upon creation.

Otherwise, the user must call the runAutonomicManager method of the Administration Service in

order to start the AM. When started, the run method of the AM is automatically called by the framework.

This method also starts the different extensions associated to the AM. Stopping the AM is achieved via

119

AutonomicManager
Configuration

keepalive-retry : long

host : String

port : long

archetypeUrl : String

communicator : String

rmcheck-interval : long

keepalive-interval : long

extensions

0..*
uses

ExtensionConfig
id : String

version : long

properties :

 Map<String, String>

persist : Boolean

debug : Boolean

perf : Boolean

url : String

Figure 6.12: The Autonomic Manager’s Initial Configuration

the stopAutonomicManager of the Administration Service, which will fire the stop method of the

AM, and which will stop the different AM extensions.

One of the first tasks that an AM performs is to subscribe as listener to the Communicator object

after it has obtained a reference to it. This allows the AM to send and receive messages from other

AMs. Since the Communicator is an extension and not a core module, this object is provided via an AM

extension, namely, the Core Extension (as detailed in section 6.4).

As previously indicated, an AM starts by building the list of its extensions as indicated in its configur-

ation. In particular it loads the Core Extension first, even if it is not explicitly declared in the configuration

object. This is because the Core Extension is mandatory for the working of some core functionalities.

Figure 6.13 depicts a UML sequence diagram showing the initialization steps of one Autonomic Manager.

CubeRuntime AutonomicManager CoreExtensionFactory

new

getExtensions

init

returns List of

ExtensionFactories newExtension

<<ExtensionFactory>>

CoreExtension

<<Extension>>

new

registerCommunicator

Communicator

new

addListener

Figure 6.13: Starting Autonomic Manager Sequence Diagram

The Autonomic Manager also creates the different objects of its internal architecture (i.e., Runtime

Model Controller, Archetype Resolver and Life Controller). Finally, it parses the Archetype specification

to construct the corresponding Java object-based in-memory representation (as detailed before in section

6.2.5).

120

Table 6.1: Autonomic Manager Configuration Entries

Configuration name Short Description

host and port The network host and port used for this Autonomic Manager. They should be

available and not used by another Autonomic Manager or by any other

external process.

archetypeUrl The location of the Archetype to be used by the Autonomic Manager. The

Archetype can be located locally in the file system, or remotely on another

host.

communicator The name of the communicator implementation to use.

auto-start Informs the Cube Runtime whether or not the Autonomic Manager should be

started as soon as created.

rmcheck-interval Sets the interval value of the checking cycle of the Runtime Model. During

each cycle, Cube’s Archetype Resolver checks for INVALID instances in the

Runtime Model and tries to resolve them.

keepalive-interval Related to the functioning of the Life Controller module of the Autonomic

Manager. It sets the interval for checking the liveliness of neighbour

Autonomic Managers.

keepalive-retry Sets the number of retries that the Life Controller should perform before

considering a remote Autonomic Manager as failed.

debug Activates or deactivates debug messages in the console. When set to true, all

the details about the working of the Autonomic Manager are shown in the

console.

perf If set to true, Cube generates an evaluation summary file providing data on

the performance of the Autonomic Manager.

persist If set to true, the Runtime Model instances are persisted to the hard disk drive.

When the Autonomic Manager stops and is restarted again, it loads the

previous persisted Runtime Model instances. However, this feature is not

implemented in the current prototype.

6.3.4 Runtime Model Controller

The Runtime Model Controller (RMC) is a container of the local Managed Element instances (which

make-up the AM’s local Runtime Model – section 5.4.2). It also provides a distributed, transparent API

that allows retrieving information about remote instances located on neighbouring Autonomic Managers.

As shown in Figure 6.10, the RMC is used by several internal objects of the Autonomic Manager. It

exposes several methods allowing the manipulation of the local Runtime Model. Listing 6.9 shows an

example of one such method - getProperty(...), which can be used to retrieve the property value

of a Managed Element instance, identified by its universal unique identifier UUID. If the concerned ME

instance is managed by the current AM, the method returns directly the value of the wanted property (lines

4 to 6); or null if the property does not exist. In the case the instance is managed by a remote AM, the

method sends a message to the remote AM in order to retrieve the property value (lines 8 to 25).

Listing 6.9: Getting property value of a Managed Element using the Runtime Model Controller class

1 p u b l i c c l a s s R u n t i m e M o d e l C o n t r o l l e r I m p l implemen t s R u n t i m e M o d e l C o n t r o l l e r {

2 / / . . .

3 p u b l i c S t r i n g g e t P r o p e r t y (S t r i n g managed_element_uuid , S t r i n g name) {

121

4 ManagedElement i n s t a n c e = g e t L o c a l E l e m e n t (managed_e lement_uu id) ;

5 i f (i n s t a n c e != n u l l) {

6 r e t u r n i n s t a n c e . g e t P r o p e r t y (name) ;

7 } e l s e {

8 S t r i n g am = autonomicManager . ge tEx te rna lAMUri (managed_e lement_uu id) ;

9 i f (am != n u l l) {

10 CMessage msg = new CMessage () ;

11 msg . s e t T o (am) ;

12 msg . s e t O b j e c t (" run t imemode l ") ;

13 msg . se tBody (" g e t P r o p e r t y ") ;

14 msg . addHeader (" uu id " , managed_e lement_uu id) ;

15 msg . addHeader (" name " , name) ;

16 t r y {

17 CMessage r e s u l t m s g = sendAndWait (msg) ;

18 i f (r e s u l t m s g != n u l l) {

19 i f (r e s u l t m s g . getBody () != n u l l) {

20 r e t u r n r e s u l t m s g . getBody () . t o S t r i n g () ;

21 }

22 }

23 } c a t c h (TimeOutExcep t ion e) {

24 e . p r i n t S t a c k T r a c e () ;

25 }

26 } e l s e {

27 System . o u t . p r i n t l n ("No such managed i n s t a n c e : " + managed_e lement_uu id) ;

28 }

29 }

30 r e t u r n n u l l ;

31 }

32 / / . . .

33 }

Technically speaking, the exemplified method takes two parameters. The first one is the universal

identifier (UUID) of the targeted Managed Element instance, while the second one is the name of the de-

sired property. In line 4, we start by retrieving the instance object using the getLocalElement(...)

method part of the same class. This method looks inside the local Runtime Model for an instance with

the given UUID. If found (line 5), it directly calls the getProperty(...) method of the found ME

instance and returns its value (or null if no property with the given name is found). When no instance

of the given UUID is found, the method tries to check if any existing UUID is saved by the Autonomic

Manager as a remote instance. If so, by calling the getExternalAMURi(...) method it can retrieve

the URI of the remote AM in which the targeted ME instance is located (line 8). We use the remote

AM’s URI to communicate with the referenced AM and hence to retrieve the desired property value of

the instance managed by this AM. Therefore, the URI is used as destination information of the message

to be sent using the setTo(...) method of the CMessage object (line 11). When the remote AM

receives this type of messages, it checks the “Object” of that message to determine which internal module

the message is destined for. In our case, we want the message to be transmitted to the Runtime Model

Controller - this is why we indicate “runtimemodel” as the targeted object (line 12)., When receiving the

message, the remote RMC checks the body of the message to determine which information is requested.

In the case of this method, it is the property value that we want to get (line 13). To effectively respond

to this request, the remote RMC should also receive more information about the property, in particular

its UUID and name. This information is passed as message headers (lines 14-15). Finally, the original

RMC calls the sendAndWait(...) method to send the message to the remote AM. This method is

blocking, meaning that the RMC will wait until the remote RMC responds to its request. Otherwise,

122

a TimeOutException is fired. In this method, we automatically set the “ReplyTo” header so that

the remote AM and its RMC respond to the requesting RMC. Listing 6.10 shows the way in which the

RuntimeModelController class handles received messages.

Listing 6.10: Handling remote requests within the Runtime Model Controller

1 p u b l i c c l a s s R u n t i m e M o d e l C o n t r o l l e r I m p l implemen t s R u n t i m e M o d e l C o n t r o l l e r {

2 / / . . .

3 p r o t e c t e d vo id hand leMessage (CMessage msg) th r o ws E x c e p t i o n {

4 i f (msg != n u l l) {

5 i f (msg . getBody () != n u l l) {

6 i f (msg . getBody () . t o S t r i n g () . e q u a l s I g n o r e C a s e (" g e t P r o p e r t y ")) {

7 O b j e c t uu id = msg . g e t H e a d e r (" uu id ") ;

8 O b j e c t name = msg . g e t H e a d e r (" name ") ;

9 S t r i n g p = n u l l ;

10 i f (uu id != n u l l && name != n u l l) {

11 p = g e t P r o p e r t y (uu id . t o S t r i n g () , name . t o S t r i n g ()) ;

12 }

13 CMessage resmsg = new CMessage () ;

14 resmsg . s e t T o (msg . getFrom ()) ;

15 resmsg . s e t C o r r e l a t i o n (msg . g e t C o r r e l a t i o n ()) ;

16 resmsg . s e t O b j e c t (msg . g e t O b j e c t ()) ;

17 resmsg . se tBody (p) ;

18 t r y {

19 getCubeAgent () . ge tCommunica tor () . sendMessage (resmsg) ;

20 } c a t c h (Communica t ionExcep t ion e) {

21 e . p r i n t S t a c k T r a c e () ;

22 } c a t c h (IOExcep t ion e) {

23 e . p r i n t S t a c k T r a c e () ;

24 }

25 } / / e l s e

26 / / i f (msg . getBody () . t o S t r i n g () . e q u a l s I g n o r e C a s e (" a d d P r o p e r t y "))

27 / / { . . . }

28 }

29 }

30 }

31 / / . . .

32 }

The handleMessage(...) method handles messages received from remote AMs. All messages

arriving to this function have “runtimemodel” as object. At this step, we filter the messages depending on

their body, which contains the requested function. The listing above shows only the case when “getProp-

erty” is sent from the getProperty(...) function of the remote RMC as shown in listing 6.10. In

lines 7 and 8 we retrieve the transmitted UUID and property name and use them to get the value of the

property identified by the name from the local ME instance identified by its UUID (line 11). The found

value (or null if not found) is returned to the calling remote AM. We set the correlation header of the

respond message to be the same as the request message (line 15) so that the original caller waiting for

a response message can identify it among other received messages. We use the sendMessage(...)

method of the Autonomic Manager’s Communicator to send the response message, without waiting for a

response. More information on the Cube’s messaging system can be found in section 6.4.2 when talking

about the Communicator extension point.

123

6.3.5 Data Structure and Implementation for the Archetype Resolver

The Archetype Resolver (AR) is the module responsible for automatically resolving problems when they

appear in the Runtime Model (and hence in the managed system). It is tightly linked with the Runtime

Model Controller and has a reference to the parsed Archetype model containing the user-specified goals.

Technically speaking, the Archetype Resolver has two working modes: active and passive. In the

active mode, the Archetype Resolver is implemented as a Java Thread which periodically inspects the

Runtime Model for invalid Managed Element (ME) instances. If an invalid ME instance is found, the AR

launches the resolution process to (re)validate the instance. In the passive mode, the AR is subscribed

as a listener of Runtime Model changes. Hence, any changes in the local Runtime Model elements are

notified to the AR, which then launches the resolution process if any of the changes involve ME instances

becoming invalid. In our prototype implementation, we use a mix of the two modes – active and passive.

Data Structure and Architecture

Figure 6.14 depicts the overall design of the Archetype Resolver. It highlights its dependencies with the

rest of the AM’s modules, and shows its internal data structure. The ArchetypeResolver class has

references to the RuntimeModelController and Archetype objects via the AutonomicManager

object, and it stores a set of SpecificResolver objects provided by extensions (see section 6.4).

At runtime, the ArchetypeResolver object creates and removes ResolutionGraph objects as

needed.

SpecificResolver
<<interface>>

find(...) : List<String>

check(...) : Boolean

perform(...) : Boolean

cancel(...) : Boolean

0..*

0..*

ResolutionGraph

resolve() : Boolean

object

Variable

id : String

root

11

Constraint

propertyName : String

0..* constraints

subject

getResolver(...) :

 SpecificResolver

ArchetypeResolver

Archetype

AutonomicManager

uuid : String

RuntimeModelController

PrimitiveVariable

value : String

MultiValueVariable

description :

 ManagedElement

values : List<String>

GoalConstraint

optional : Boolean

ResolutionStrategy

<<interface>>

Find(1)

FindOrCreate(2)

Create(3)

resolutionStrategy

Figure 6.14: Archetype Resolver Design

Indeed, a ResolutionGraph object is created for each invalid Managed Element instance that must

be resolved. The ResolutionGraph object is comprised of a set of Variable and Constraint

124

objects – variables represent graph nodes and constraints graph edges. Variables may have only one value

corresponding to a Primitive Element from the Archetype, or multi-values corresponding to the differ-

ent checked Runtime Model instances that conform the description wanted by this variable (correspond

to Managed Element form the Archetype). The graph’s Variable and Constraint objects are not directly

stored in the ResolutionGraph object itself. Instead, the ResolutionGraph object only contains a

reference to the graph node (Variable) representing the invalid Managed Element, which must be resolved;

this is referred to as the root variable and represents the graph’s root node. Each Variable object can

be associated to a set of Constraint objects (graph arcs). Each constraint has a reference to another

Variable object. Following this path, the resolution graph is constructed and can be easily explored.

As we have discussed in the previous chapter, we have adopted a Constraints Satisfaction Problem (CSP)

oriented approach to enable Cube to achieve user goals. The problem is specified as a constraints graph

(also referred to as Resolution Graph). This graph contains a root node (Variable object) – representing

the Managed Element that must be validated – and all the other nodes (Variable objects) representing

Managed Elements that are connected via Constraints (binary or unary) to the root node, directly (via

Goal Constraints corresponding to Archetype Goal Properties) or indirectly (via Constraint objects cor-

responding to Archetype Description Properties). The corresponding data structure is comprised of the

three aforementioned Java classes: ResolutionGraph, Variable, and Constraint.

Each ResolutionGraph object has a universal unique identifier (UUID). This is important because

the overall ResolutionGraph can be comprised of multiple sub-paths distributed over several Auto-

nomic Managers. In other words, when constructing a local Resolution Graph to find a viable solution,

the resolution process can span beyond the local solution space, having to look for remote instances in

other Autonomic Managers. Hence the graph is split between two or more Autonomic Managers, which

must work together to find an overall solution. Here, UUIDs are used to identify clearly the original

ResolutionGraph and its sub-graphs.

As mentioned before, a Variable object represents one graph node. It can provide a description of a

Managed Element – either the Managed Element to validate - the graph root - or other Managed Elements

related to the root ME via binary constraints. In this case, an instance of MultiValueVariable

is used. The different possible values correspond to UUID identifiers of the checked Runtime Model

instances. A Variable can also represent a Primitive Element, in which case it simply provides a literal

value. In this case, an instance of PrimitiveVariable is used.

A Variable has a set of related Constraints. The corresponding Constraint objects are the equivalent

of Archetype Properties (Description Properties and Goals). Indeed, when constructing the Resolution

Graph, the Archetype Resolver analyses the current invalid instance and the user-provided Archetype

model to retrieve the user-declared goals for this instance.

In the following, we detail the manner in which the resolver algorithm works, relying on the presented

data structure. While we differentiate between local resolution and distributed resolution, these two cases

are implemented in the same Java class and applied the same way for either local or remote resolution. It

depends on runtime context and the user-provided Archetype.

Local resolution

Let’s consider the Archetype example depicted in Figure 6.8, which imposes that any component instance

of type “Encoder” should always be connected to a component instance of type “Decoder” that is located

on a node that has “Ubuntu” operating system.

We suppose that a component instance of type “Encoder” is created by an external entity, discovered

by a Cube monitor and added to the local Runtime Model. As soon as it is being notified by this change,

the Archetype Resolver (AR) builds a Resolution Graph to validate this newly created component instance.

125

It first creates a MultiValueVariable object representing the new component and makes it the root

node of the Resolution Graph (e.g., ‘v1’ node in Figure 6.15). From the Archetype, the AR finds that the

description of this component instance fits the subject description of the “connected” goal. For this reason,

it adds to the graph a GoalConstraint that has “connected” as propertyName, and associates it

to the root variable containing the UUID of the ME instance to validate (the UUID of an instance is

represented by #instance shortcut in the following Figures). Figure 6.15 represents different steps

in the resolution of this new instance. In (t1), the AR builds a complete Resolution Graph from the

Archetype. Indeed, from this graph, it results that the AR should guarantee that the component instance

#Comp2 (v1 node) should be connected to another component instance (not yet identified, corresponding

to the v2 node), which must conform to the associated description.

The resolution algorithm tries to acquire an adequate instance for the v2 variable so that it satisfies the

two constraints - has Component Type “Decoder”; and, located on Node which has “Ubuntu” operating

system. The acquisition procedure will depend on the resolution strategy specified via the “connected”

constraint – ‘find’ and/or ‘create’.

v1

v2 v3

v5v4

connected

"Decoder"

"Ubuntu"

onNode

"#Comp2"

hasComponentType

hasOS

v1

v2 v3

v5v4

connected

"Decoder"

"Ubuntu"

onNode

"#Comp2"

hasComponentType

hasOS

"#Node1"

v1

v2 v3

v5v4

connected

"Decoder"

"Ubuntu"

onNode

"#Comp2"

hasComponentType

hasOS

"#Node1"

"#Comp1"

v1

v2 v3

v5v4

connected

"Decoder"

"Ubuntu"

onNode

"#Comp2"

hasComponentType

hasOS

"#Node1"

"#Comp1"

(t1) (t2)

(t3) (t4)

Figure 6.15: Example of Local Archetype Resolver Resolution Graph. Red circle represents invalid com-

ponent instance. Green circle represents valid instance. Grey circle represents primitive variable. Red

arrow represents a goal. And black arrow represents Description Property.

For each goal constraint (in the example there is only one - “connected”), the resolver tries to find an

acceptable value for the related variable using a backtracking algorithm. When a candidate value does not

126

satisfy a variable’s constraints, it is tagged as non-viable and stored in the variable’s history.

The Archetype Resolver calls different methods of Specific Resolvers in order to find candidate vari-

able values, to check the found values, and to perform the resolved goal (see Specific Resolver Extension

Points in section 6.4.2).

More precisely, finding values for a variable is done by calling the find method of the description

constraint for that variable. This is only possible if the object (second) variable of the constraint has

already a value. In Figure 6.15, to find a candidate value for v2, the resolver should first find a value for

the v4 variable. In (t2), v4 has a candidate value - a node instance #Node1 with “Ubuntu” operating

system. Now, to find a value for v2, the resolver calls the find method of the “onNode” Constraint, where

the object variable already has a value (#Node1). The find method is implemented by a Specific Resolver

provided by the core extension (see Figure 6.14). This Specific Resolver looks for Component instances

that are located on #Node1 and that have a matching description (has Component Type “Decoder”).

In (t3), the resolver has found matching component instance #Comp1. Hence, it now checks whether

applying the “connected” goal constraint (by calling the “perform” method) will not break any constraints

of v2. If this is the case, the performed constraint is validated and #Comp2 and #Comp1 are subsequently

connected (t4).

v1

v2 v3

v5v4

connected

"Decoder"

"Ubuntu"

onNode

"#Comp2"

hasComponentType

hasOS

"#Node2"

(t5)

"#Node1"

"#Comp1"

v6 v7

v9v8

"Decoder"

"Ubuntu"

onNode

hasComponentType

hasOS

"#Node2"

"#Comp3"

v1

v2 v3

v5v4

connected

"Decoder"

"Ubuntu"

onNode

"#Comp2"

hasComponentType

hasOS

"#Node2"

(t6)

"#Node1"

"#Comp1"

v6 v7

v9v8

"Decoder"

"Ubuntu"

onNode

hasComponentType

hasOS

"#Node2"

"#Comp3""#Comp3"

Node1 Node2

Node1 Node2

Figure 6.16: Example of distributed Archetype Resolver Resolution Graph

127

Distributed Resolution

Now, let’s imagine that the found component instance #Comp1 does not satisfy v2’s constraints. In this

case, it is marked as a non-viable solution and stored in v2’s history stack. The backtracking algorithm

tries to find another component instance located on #Node1. However, no such component is found

(Figure 6.16–(t5)). In this case, the #Node1 value of v4 is also marked as non-viable, and a new candidate

value for v4 is needed. The resolver finds a new value corresponding to a remote node - #Node2. For

simplicity, in this example we do not show the constraint “inScope” related to v4, which enables the

resolver to find node instances that belong to a particular scope. At this level, as the #Node2 is managed

by a remote AM, the Resolution Graph must grow and spread onto this AM’s platform in order to find a

valid value for the v2 variable. Note that on the remote AM that manages #Node2 a new graph is formed

with a variable v6 at its root. Here, v6 is the equivalent of v2 in the initial AM located on #Node1. When

a value is found in Node2 for the v6 variable the resolution algorithm of the local AM first checks this

value. If all v6’s constraints are satisfied the “connected” constraint is performed between the two remote

instances (t6) – note that v2 becomes valid (green in the figure) and has the same UUID as v6 (#Comp3).

6.4 Extensions

6.4.1 Overview

The Cube framework is designed considering high extensibility and reusability requirements. The in-

ternal architecture of Cube’s Autonomic Manager (presented in section 5.4.1) promotes such features by

decoupling its constituent modules explicitly and providing each one of them with very specific and well-

defined roles. This allows for user-provided implementations of these modules to be integrated into the

Autonomic Manager in order to extend its capabilities and to allow taking into account user-specific goals.

Such customized modules represent extension points of the internal architecture of the Autonomic

Manager. When a developer intends to implement new extensions, (s)he must develop one or more of these

extension points and register them with the related Autonomic Manager (via the AM’s configuration).

Extension points are discussed in the next sub-section 6.4.2.

My Extension Bundle

MyExtensionFactory

MyExtension

Cube Runtime Bundle

instantiates

CubeRuntime

Administration

Service

AutonomicManager

creates

0..*

Extension Factory

Service

Extension
uses

Goal Resolver

Managed ElementCommunicator

Extension points

Monitor / Executor

implements

0..*

Figure 6.17: Extension mechanism

128

Figure 6.17 shows the integration of user-provided extensions with the Cube Runtime. User provided

extensions are packaged into OSGi bundles. This type of bundle should contain at least two classes: the

first one implements the ExtensionFactory Service interface, provided by the Cube Runtime Bundle;

and, the second one implements the Extension class (or extends the AbstractExtension class), also

provided by the Cube Runtime Bundle.

The CubeRuntime component defines a service reference (requirement) to all components that

implement the ExtensionFactory service. Hence, at any time, all the references to the available

ExtensionFactory implementations are saved in a list within the CubeRuntime component. The

CubeRuntime component also implements (provides) the ExtensionFactory service. Hence,

when the user creates a new Autonomic Manager (via the Administration Service) the CubeRuntime

component reads the AM’s provided configuration, and for each declared extension, it calls its corres-

ponding ExtensionFactory component to create a new instance of that extension and add it to the

new Autonomic Manager. Indeed, the Extension bundle implements a factory-based pattern to instantiate

extension objects used for each Autonomic Manager.

6.4.2 Extension Points

As depicted in Figure 6.17, extension points are of four types. The following table 6.2 provides a short

description of each one of the possible Autonomic Manager extension points.

Table 6.2: Extension Points of Cube Autonomic Manager

Extension Point name Short Description

Managed Element This extension point allows the introduction of new types of Managed

Elements to the Cube system, representing modelled elements for new types

of managed resources. Following the Cube meta-model presented in chapter

5, such new modelled elements are part of the M2 layer of Cube modelling

layers (see previous chapter, section 5.2).

Monitor/Executor This extension point allows the introduction of new monitors and executors

specific to a technology of the managed system. Before defining such

monitor/executor extensions we have to have already defined Managed

Element models corresponding to the system’s managed resources – by either

defining new Managed Element extensions or by reusing available models

that are suitable for representing the managed resources. Monitors/Executor

will ensure the mapping between the managed element in the real system and

the modelled element in Cube’s Runtime Model.

Specific Resolver This extension point allows the introduction of specific resolvers capable of

handling new types of goals.

Communicator This extension point allows the introduction of new implementations for the

Communicator module.

For each of this extension points, we provide Java interfaces or abstract classes that users should

implement or extend. We also provide a simplified API that allows users to register their extension points

to with the targeted Autonomic Manager. We detail each type of extension point over the following sub-

sections.

129

Managed Element Extension Points

Users should extend the ManagedElement class to introduce new modelled elements into the system.

This means implementing a new class that extends ManagedElement while respecting some restriction

and guidelines:

• No Java attributes. When the user wants to add functional or non-functional properties and attrib-

utes to the new modelled element, they should do so by defining setter (set) and getter (get) qual-

ifiers. When implementing a set method, the user should call the addProperty(...) method of

the super class ManagedElement, which adds the attribute to the list of the ManagedElement’s

properties. For all the get methods, the user can retrieve the value of a given property by calling

the getProperty(...) method of the super class. This guarantees that all the new modelled

elements will share the same data structure (provided by the ManagedElement super class).

• No Java references. If there is a need to reference other modelled elements, users should avoid using

direct Java references (pointers). In the Cube meta-model, references between modelled elements

are defined using UUID identifiers. Hence, similarly to the properties, we should call the special-

purpose methods of the ManagerElement super class in order to add references or to get already

added references..

Listing 6.11 shows the ManagedElement class provided by the Cube framework.

Listing 6.11: Managed Element Java class

1 p u b l i c i n t e r f a c e ManagedElement {

2

3 p u b l i c s t a t i c f i n a l i n t UNMANAGED = −1;

4 p u b l i c s t a t i c f i n a l i n t INVALID = 0 ;

5 p u b l i c s t a t i c f i n a l i n t VALID= 1 ;

6

7 p u b l i c S t r i n g getName () ;

8 p u b l i c S t r i n g getNamespace () ;

9

10 p u b l i c S t r i n g getUUID () ;

11 p u b l i c S t r i n g getAutonomicManager () ;

12 p u b l i c S t r i n g g e t U r i () ;

13 p u b l i c i n t g e t S t a t e () ;

14

15 p u b l i c L i s t < P r o p e r t y > g e t P r o p e r t i e s () ;

16 p u b l i c b o o l e a n h a s P r o p e r t y (S t r i n g name) ;

17 p u b l i c S t r i n g g e t P r o p e r t y (S t r i n g name) ;

18 p u b l i c b o o l e a n a d d P r o p e r t y (S t r i n g name , S t r i n g v a l u e) t h r ow s P r o p e r t y E x i s t E x c e p t i o n

, I n v a l i d N a m e E x c e p t i o n ;

19 p u b l i c S t r i n g u p d a t e P r o p e r t y (S t r i n g name , S t r i n g newValue) th r ow s

P r o p e r t y N o t E x i s t E x c e p t i o n ;

20 p u b l i c b o o l e a n r e m o v e E m p t y P r o p e r t i e s () ;

21

22 p u b l i c L i s t < Refe rence > g e t R e f e r e n c e s () ;

23 p u b l i c R e f e r e n c e g e t R e f e r e n c e (S t r i n g name) ;

24 p u b l i c b o o l e a n h a s R e f e r e n c e (S t r i n g name) ;

25 p u b l i c R e f e r e n c e a d d R e f e r e n c e (S t r i n g name , b o o l e a n onlyOne) th r ow s

I n v a l i d N a m e E x c e p t i o n ;

26 p u b l i c b o o l e a n removeEmptyReferences () ;

27 p u b l i c b o o l e a n removeRefe rencedElemen t (S t r i n g r e f) ;

28 }

130

Lines 3 to 5 define static attributes representing the different states that a Managed Element instance

can take. We can retrieve a Managed Element instance’s state by calling the getState(...) method

(line 13).

All the methods of this interface (except for getName(...) and getNamespace(...)) are

implemented within the AbstractManagedElement class (Figure 6.18), which is part of the Cube

framework. This abstract class can be used by developers to avoid having to re-implement all the interface

methods, and to guarantee the aforementioned restrictions when introducing new modelled elements. For

each new modelled element class, the getName(...) method (line 7) should return the name of the new

modelled element. Similarly, the getNamespace(...) method (line 8) should return the namespace

associated with the extension to which the modelled element belongs.

ManagedElement

<<interface>>

AbstractManagedElement

getNamespace() : String

getName() : String

implements

MyManagedElement

extends

Figure 6.18: Abstract Managed Element class

The methods defined between lines 10 and 13 return basic runtime information about the Managed

Element instance, like its universal identifier (line 10), the URL of its Autonomic Manager (line 11), the

URL of the current instance (line 12), and the instance’s state (line 13). The URL of a Managed Element

instance follows the following pattern: <Autonomic Manager URL> + </Name of the Managed Element

type> + </UUID of the Managed Element instance> (e.g., cube://localhost:38/component/6ece1fd8-301f-

4b4a-9f7b-65e56174fb75).

The methods defined between lines 15 and 20 are dedicated to property handling. They allow adding,

retrieving, updating, and removing Managed Element properties. Finally, the methods defined between

lines 22 and 27 are dedicated to reference handling. All these methods are implemented in the Abstract-

ManagedElement class, provided by the Cube framework.

Monitor/Executor Extension Points

Figure 6.19 shows how user-specific Monitors and Executors are integrated into Cube’s Autonomic Man-

ager architecture.

The central piece of this architecture is the RuntimeModel which contains the different Managed

Element instances. The RuntimeModel is handled by a RuntimeModelController object, which

ensures the model’s integrity, manages the different states of modelled element instances, and provides a

change notification mechanism. New Monitors and Executors are attached to the Runtime Model Con-

troller.

The Monitor interface, and its direct implementation class AbstractMonitor, represent the

monitoring extension point where developers can integrate new technology-specific monitors. The role of

131

RuntimeModel

RuntimeModelController

newInstance(name, namespace)

AbstractExecutorAbstractMonitor

0..* Executor

notify(n : Notification)

<<interface>>

Monitor

<<interface>>

MyExecutorMyMonitor

0..*

...

updateInstance(uuid : String)

Figure 6.19: Adding new Monitors / Executors

a Monitor component instance is to update the local Runtime Model dynamically, according to changes

that occur in the software system part that the corresponding AM is managing.

Similarly, the Executor interface and its implementation class AbstractExecutor allow to observe the

Runtime Model and to apply the necessary changes into the real managed software system. Executors are

subscribed as Runtime Model listeners to the Runtime Model Controller object, which manages model-

related notifications. Hence, whenever there are changes in the Runtime Model, the Runtime Model

Controller notifies executors about this update.

Different levels of notifications are supported. Executors can be customized to receive only the notific-

ation types they are interested in. These can range from all notifications (about any change in the Runtime

Model), to specific notifications about the value changes of one particular property of a particular Managed

Element instance.

To create new modelled element instances in the Runtime Model, Monitors call the newInstance(...)

method of the Runtime Model Controller object. This method takes two parameters: the name and the

namespace of the Managed Element to create. Initially, the created instance is unmanaged by the Auto-

nomic Manager, which means that changes occurring in this new instance will not fire notifications and

not trigger the resolution process. This setting is important for allowing the Monitor to prepare the newly

created instance before validating it. In particular, the Monitor can update the instance’s properties and

references so as to fit the monitored system’s state.

Specific Resolver Extension Points

Specific Resolvers are introduced to allow the Generic Archetype Resolver find viable solutions that meet

specific archetype constraints. When the Archetype Resolver launches the resolution process it must

perform various resolution tasks, like looking for a value for a visited variable or performing the related

property. For each such task, the Archetype Resolver algorithm looks for the adequate Specific Resolver

and calls its adequate method for performing the task.

To develop a new Specific Resolver, users should implement the SpecificResolver interface (or,

ideally, extend the AbstractSpecificResolver class).

132

MySpecificResolver

SpecificResolver
<<interface>>

find(...) : String

check(...) : Boolean

perform(...) : Boolean

cancel(...) : Boolean

0..*

ArchetypeResolver

Figure 6.20: Adding a new Specific Resolver

Specific Resolvers make intensive use of the Runtime Model Controller API (local and distributed) in

order to retrieve information about Managed Element instances in the Runtime Model. The ME instance

UUIDs are then used as values for the Resolution Graph Variables.

The SpecificResolver interface (listing 6.12) show the detail of each method that users should imple-

ment to integrate their specific resolvers to the Cube system. In the following we give a short description

of each method.

Listing 6.12: Registering a Specific Resolver

1 p u b l i c i n t e r f a c e S p e c i f i c R e s o l v e r e x t e n d s E x t e n s i o n P o i n t {

2

3 L i s t < S t r i n g > f i n d (ManagedElement e lement , ManagedElement d e s c r i p t i o n) ;

4

5 b o o l e a n check (ManagedElement e lement , S t r i n g v a l u e) ;

6

7 b o o l e a n pe r fo rm (ManagedElement e lement , S t r i n g v a l u e) ;

8

9 b o o l e a n c a n c e l (ManagedElement e lement , S t r i n g v a l u e) ;

10 }

• find(...). This method takes two parameters “element” and “description” of type ManagedElement.

The first parameter corresponds to the Runtime Model instance in which we look for possible solu-

tion values; while the latter parameter corresponds to the description of the element which we are

looking for. The Archetype Resolver ensures that the “element” instance is a local instance; other-

wise it delegates the finding procedure to the Autonomic Manager hosting the instance (as described

in 6.3.5). Developers implementing new specific resolvers should query the Runtime Model Con-

troller to get information about the “element” instance and return solution values if found (returns a

list of their UUID identifiers).

• check(...). This method is called by the Archetype Resolver to check the Runtime Model instance

given as parameter (“element”) which has a property or a reference given in the “value” parameter.

• perform(...). This methods performs the constraint in the Runtime Model instance given as para-

meter (“element”). It adds the property or the reference given in the “value” parameter to the target

instance.

• cancel(...). This methods do the opposite of the perform method. We remove the property or

the reference given in the “value” parameter from the list of properties or references of the target

Runtime Model instance given in the “element” parameter.

133

Appendix B.3 gives an implementation detail of the “connected” Specific Resolver.

Communicator Extension Points

The Communicator is the Autonomic Manager module that is responsible for exchanging messages between

different Autonomic Managers within the Cube system. As discussed in the previous chapter, section

5.4.6, all Cube Autonomic Managers use the same communication protocol. The internal modules of the

Autonomic Manager do not have to worry about the manner in which this protocol is implemented. We

provide the same communication interface that encapsulates any implementation differences. This is why

we can have different communication patterns for the Cube System. Using one implementation pattern or

another will depend on the degree of distribution, physical network and constraints of the managed system.

For instance, peer-to-peer patterns will fit mostly in large scale, mobile and/or ad-hoc network scenarios;

while point-to-point TCP/IP messages or publish/subscribe patterns may be best suited to well-connected

and more reliable networks, like local area networks (LANs) or the Internet.

Technically speaking, in our Cube prototype we have proposed direct socket-based communication

over the TCP/IP protocol. This could be easily replaced with other approaches, by providing different

Communicator implementations. Any such user-specific implementation should implement the Com-

municator interface provided by the Cube framework (Figure 6.21). This interface defines two simple

methods:

• send(CMessage msg): send the message provided as parameter to a destination set in the

message itself (see section 5.4.6 in the previous chapter);

• addListerner(MessagesListener listener): add a listener for received messages.

MyCommunicator

Communicator

<<interface>>

send(msg : Message)

addListerner(...)

AutonomicManager

0..*

AutonomicManager

1

AutonomicManagerMessagesListener

Figure 6.21: Adding new Communicator

When sending a message, the user should fill-in the different message headers so that it will be cor-

rectly delivered to its destination.

6.4.3 Deploying and using extensions

All the implemented extension points that adhere to a common technology or target a particular use should

be bundled into one OSGi bundle; they will then be identified by the same namespace. The Java interfaces

and classes related to the extension itself, and not to the extension points, are as follows (note that the

names given here are simply examples):

• MyExtensionFactory extends Cube framework’s ExtensionFactory interface. It does

not add any new method, only static final attributes containing the extension’s name and namespace.

134

• MyExtensionFactoryImpl implements MyExtentionFactory interface. It is used as a

Factory to instantiate MyExtension instances, which are used by Autonomic Managers. This class

should be declared as an iPOJO Component (using the @Component annotation), which provides

the implemented service (using the @Provides annotation) and which is instantiated automatic-

ally when the bundle starts (using the @Instantiate annotation).

• MyExtensionImpl extends AbstractExtension and contains Java code for initializing the

extension and registering the different extension points.

In addition, an extension’s bundle also contains implementations of the different extension points

that were explained before. It is recommended to regroup classes that belong to the same extension

point within the same package (e.g. model for classes implementing the Managed Element Extension

Point, monitorsExecutors for classes implementing the Monitors/Executors Extension Point, resolvers for

classes implementing the Specific Resolvers Extension Point, and communicator for classes implementing

the Communicator Extension Point).

Finally, Extensions can be added or removed dynamically from any Autonomic Manager using the

Administration Service, or via user-friendly tools like the HotDeployer (section 6.5.2).

6.4.4 Extensions provided by the Cube Framework

Core Extension

The Core Extension is the most important extension provided with the Cube framework, since it imple-

ments and provides the core extension points that this thesis contributed to the data mediation domain; it

can also be applied more generally to software systems constituted of distributed stateless components.

The Specific Resolvers implemented and the proposed concepts like Scope and Master provide a basis

for the distributed searching mechanism of the Archetype Resolver. These modelled elements and their

associated Specific Resolvers can be re-used for other domains where the managed system is distributed

over several execution nodes.

Table 6.3 provides a summary of the Managed Elements included in the Core Extension, together with

their properties and references (as shown in Figure 5.6 of the previous chapter).

Table 6.3: Manaed Elements contributed by the core Extension

Managed Element Property (Type) Reference (Type)

Component

componentId (String) node (Node)

componentType (String) inputComponents (Component)

outputComponents (Component)

Node
nodeId (String) scope (Scope)

nodeType (String) components (Component)

Scope
scopeId (String) master (Master)

nodes (Node)

Master scopeLeaders (Scope)

Each of these modelled elements was detailed in section 5.2.3 of the previous chapter.

We have also implemented a set of Specific Resolvers to ensure goals defined for the aforementioned

Managed Elements. Table 6.4 provides a summary of these Specific Resolvers, which can be applied to

any Managed Element.

135

Table 6.4: ManagedElement-related Specific Resolvers

Resolver Subject Type Object Type Short Description

inAutonomicManager ManagedElement String The object is the URL of the

Autonomic Manager in which

the subject Managed Element is

or should be located.

hasProperty ManagedElement String Checks if the subject Managed

Element instance has the

property given as object.

Table 6.5 provides a summary of Specific Resolvers applied to the Component modelled element.

Table 6.5: Component-related Specific Resolvers

Resolver Subject Type Object Type Short Description

hasComponentType Component String Checks if the Component given

as subject has the type given as

object.

hasMaxInputComponents Component Integer Checks if the Component given

as subject has at most the

number of input components

given as object.

connected Component Component Checks if the two components

given as subject and object are

connected. When used as a

goal, the two components will

be connected.

hasSourceComponent Component Component Checks if the Component given

as subject has as input

component the Component

given as object. When used as a

goal, the two components will

be connected.

onNode Component Node Checks if the Component given

as subject is on node given as

object. When used as goal, the

component will be placed on the

given node.

Table 6.6 provides a summary of Specific Resolvers applied to the Node modelled element.

136

Table 6.6: Node related specific resolvers

Resolver Subject Type Object Type Short Description

hasNodeType Node String Checks if the Node given as subject has the

type given as object.

hasComponent Node Component Checks if the Node given as subject has a

Component of the object type in its

components list.

inScope Node Scope Checks if the Node given as subject is a part

of the Scope given as object. When used as a

goal, the Node will be included into the

Scope.

Table 6.7 provides a summary of Specific Resolvers applied to the Scope modelled element.

Table 6.7: Scope related specific resolvers

Resolver Subject Type Object Type Short Description

hasScopeId Scope String Checks if the Scope given as subject has the

identifier given as object.

hasNode Scope Node Checks if the Scope given as subject has the

Node given as object in its nodes list.

controlledBy Scope Master Checks if the Scope given as subject has the

master given as object.

In this Core Extension, we have also provided the default implementation of the Communicator inter-

face. This implementation is based on network Sockets and uses implements a Client/Server communic-

ation pattern to exchange messages. Each Autonomic Manager is considered to be a server that accepts

client connections from other Autonomic Managers; it is also considered to be a client when it connects

to other Autonomic Managers for requesting some information.

No specific Monitors/Executors were implemented in the Core Extension for these core modelled

elements. This is left to be provided by technology-specific extensions, as we have done for the Cilia

mediation framework (next sub-section).

The Core Extension is identified by the “fr.liglab.adele.cube.core” namespace.

Cilia Extension

Cilia is a data mediation framework [GMD+11] that we have employed for validating our Cube framework

prototype (see next chapter). We have implemented a Cube extension for Cilia (or simply Cilia extension)

so as to allow Cilia mediators (mediation components) to be self-managed using the Cube framework. In

this initial prototype version, we have only concentrated on ensuring basic management operations like

self-creating, self-instantiating, and self-healing of mediators. The core modelled elements - Component,

Node, and Scope - are perfectly suited for representing distributed Cilia mediation chains. For now,

we have only implemented Monitoring/Executing components specific to the Cilia runtime. Moreover,

we suppose that the Cilia chain runs in the same OSGi platform as the Cube Runtime. Otherwise, the

implemented Monitor/Executor for Cilia should be enhanced with the capability to connect to remote

Cilia execution nodes.

137

Cilia framework exports an administration service within the OSGi platform. The developed Monit-

or/Executor extension point for Cilia uses this service to interact with the local part of the Cilia mediation

chain. This administration service allows the dynamic adaptation of local mediation components. The

main role of the Cilia-specific Monitor/Executor extension point is as follows:

• The Monitor is connected to the administration service of the Cilia framework, and subscribed

as listener for being notified of any changes that occur in the Cilia platform. Whenever notified,

the Monitor summaries the change in the Runtime Model of the Cube Autonomic Manager. The

Archetype Resolver of that Autonomic Manager will be consequently notified and will try to resolve

any problems caused by the change with respect to the Archetype goals.

• The Executor is also connected to the administration service of Cilia framework, but subscribed as

a listener to the Runtime Model of Cube’s Autonomic Manager. Hence, when Managed Element

instances are validated in the Runtime Model the Executor applies the corresponding changes into

the Cilia application. Therefore, the Executor is bale to create, remove or update Cilia mediation

components, as needed.

Cilia mediation components can be of different types. Namely, in Cilia, we distinguish between Mediator

components and Adapter components. Hence, in the Archetype, users should add properties to the core

Component element in order to distinguish explicitly between these two types of mediation components.

The Monitor/Executor extension point for Cilia reads this information in order to decide whether to create

a Mediator or an Adapter instance.

OSGi

Cilia Monitor/ExecutorCilia Monitor/Executor

OSGiJMS Server

C
u
b
e

A
u
to

n
o
m

ic
 M

a
n
a
g
e
rs

M
a
n
a
g
e
d

C
il
ia

 S
y
s
te

m

Cube INVALID instance

Cube VALID instance

Cilia Stopped Mediator

Cilia Running Mediator

Cilia Running Adapter

A B C D

A B C D

Figure 6.22: Cilia Monitors/Executors for the Cube framework

Figure 6.22 depicts a typical example of using the Cilia extension integrated with the Cube framework

in order to self-manage Cilia mediation chains. This figure represents a snapshot of the application at

a given time. The top level shows the Cube Autonomic Managers, only showing the Runtime Model

content and the Cilia Monitor/Executor extension points. The bottom level shows the Cilia mediation

chain deployed across two OSGi platforms. Here, Cilia uses a JMS server to exchange data between

remote mediation components. Installing such mediation chain requires the instantiation of the Cilia

components (mediators and adapters) and their appropriate configuration so that data messages can pass

through the JMS server.

The first basic role of the Cilia extension is to start or stop Cilia mediation components depending

on Cube’s decisions. Whenever the Cube AM marks a Component instance as INVALID in the Runtime

model, the Cilia extension stops the corresponding Mediator component in the real Cilia chain. Similarly,

when this instance becomes VALID, the Cilia extension restarts the corresponding Mediator. When two

Component instances at Cube level are connected (by the Archetype Resolver, in the Runtime Model),

138

the Cilia extension connects the two corresponding Mediation components at the Cilia level using Cilia

Connectors. When the two components are located on the same Node, the Cilia extension sets in place a

direct connector between the two (e.g., in Figure 6.22, between A and B, or C and D). However, when the

two connected Components are located on different Nodes (e.g., between B and C), the Cilia extension

generates JMS adapters on each side of the distributed mediation chain, and configures them so as to

allow them to connect to the JMS server. The JMS server is required to transport data messages between

distributed mediation nodes.

In future prototype versions, we plan to introduce Cilia-related concepts such as “Mediator”, “Ad-

apter” and “Connector” as modelled elements of the Cube framework. This will allow self-managing

mediation chains based on more specific, low-level information from the mediation components.

The Cilia extension is identified by the “fr.liglab.adele.cube.cilia” namespace.

Graphical Monitoring Extension

This extension allows the graphical monitoring of the internal state of one local Runtime Model. It shows

its constituents, which are modelled element instances, as a graph of connected vertices. The graph arcs

represent references between these instances (see Figure 6.23).

Figure 6.23: Graphical Monitoring of the Runtime Model of one Autonomic Manager

The only contribution of this extension is a Graphical Swing-based Java application provided as a Cube

Executor. It reads the Autonomic Manager’s Runtime Model dynamically and shows it using an Open

Source drawing library - prefuse8. Any changes in the Runtime Model are reflected directly onto the visu-

alization area of this graphical view. In future prototype versions we plan to allow the editing of Runtime

Model instances directly via this graphical view tool. This will facilitate debugging and testing tasks. The

Graphical Monitoring extension is identified by the “fr.liglab.adele.cube.rm.monitoring”

namespace.

8http://prefuse.org

139

6.5 Related Tools

6.5.1 Overview

Cube related tools are OSGi applications that use the Administration Service provided by the Cube

Runtime Bundle to handle and facilitate several tasks for users. In our prototype, we have implemen-

ted three different tools for different purposes:

• Hot Deployer: allows creating Cube’s Autonomic Managers from a configuration file when it is

placed in a per-defined directory;

• Console Commands: allows the debugging and management of local Autonomic Managers via

simple console commands;

• Dynamic Web Monitoring: allows observing the global distributed Runtime Model in one place

(web application).

In the following sub-sections, we provide some insights about each of these tools.

6.5.2 Hot Deployer

The HotDeployer is a directory-based deployment tool. It uses a directory in the file system (called ‘load’

in our implementation) to install and start an Autonomic Manager when its corresponding configuration

file is placed there. It also dynamically deploys the extension bundles and other related bundles that are

placed in that directory. The following Figure 6.24 depicts the architecture of the HotDeployer tool and

its integration with the Cube Runtime component via the Administration Service.

Cube Runtime Bundle

HotDeployer

CubeRuntime

Administration

Service

AutonomicManager

creates

0..*

ConfigParseruses

watch

"load" directory

Figure 6.24: HotDeployer tool

To create an Autonomic Manager, HotDeployer needs a special XML configuration file, called Auto-

nomic Manager Configuration File (amc files). When detected and parsed by the HotDeployer tool using

the ConfigParser, This last one constructs its equivalent Java objects and calls the createAutonomicManager

method of the Administration Service to create a new Autonomic Manager. When the configuration file is

removed from the watched file system directory, its corresponding Autonomic Managers are automatically

destroyed from the local OSGi platform.

Listing 6.13 gives an example of such configuration files.

Listing 6.13: Example of Autonomic Manager Configuration File

1 <cube cube−v e r s i o n =" 2 . 0 ">

2 <autonomic−manager>

140

3 < h o s t v a l u e =" l o c a l h o s t " / >

4 < p o r t v a l u e =" 38002 " / >

5 < a r c h e t y p e U r l v a l u e =" f i l e : . . / t u t o r i a l . a r c h " / >

6 <communica tor v a l u e =" f r . l i g l a b . a d e l e . cube . c o r e : s o c k e t " / >

7 <auto−s t a r t v a l u e =" t r u e " / >

8 <rmcheck− i n t e r v a l v a l u e =" 2000 " / >

9 < k e e p a l i v e− i n t e r v a l v a l u e =" 2000 " / >

10 < k e e p a l i v e−r e t r y v a l u e =" 1 " / >

11 <debug v a l u e =" t r u e " / >

12 < p e r f v a l u e =" f a l s e " / >

13 < p e r s i s t v a l u e =" f a l s e " / >

14

15 < e x t e n s i o n s >

16 < e x t e n s i o n i d =" f r . l i g l a b . a d e l e . cube . c o r e " / >

17 < e x t e n s i o n i d =" f r . l i g l a b . a d e l e . cube . o s g i ">

18 < p r o p e r t y name=" t y p e " v a l u e ="TABLET" / >

19 < / e x t e n s i o n >

20 < e x t e n s i o n i d =" f r . l i g l a b . a d e l e . cube . rm . m o n i t o r i n g " / >

21 < / e x t e n s i o n s >

22 < / autonomic−manager>

23 < / cube >

Lines 3 to 13 provide configuration information for the Autonomic Manager itself. Lines 15 to 21

provide the list of extensions to be used by this Autonomic Manager. For each extension we should

provide its identifier. We can provide a set of properties for each extension. Accepted properties are

defined for each extension. Hence, the user should consult the extension’s documentation for obtaining

the list of accepted properties.

6.5.3 Console Commands

To allow developers to debug developed extensions or an already working system at runtime, we have

implemented a command-based system. This tool is based on the Gogo shell tool provided by the Apache

Felix project9. Users can type commands locally or remotely (via telnet for instance). Figure 6.25 shows

the integration of this tool with the Cube Runtime via the Administration Service.

Cube Runtime Bundle

Cube Console

CubeRuntime

Administration

Service

AutonomicManager

creates

0..*

Figure 6.25: Cube Console

Appendix B.4 summaries the implemented commands and their syntax, and gives a short description

about each one.

9http://felix.apache.org

141

Commands can be used with or without the “cube” namespace. Specifying the namespace explicitly

is only needed when two commands from two different bundles have the same name.

For instance, Figure 6.26 shows a screen-shot of the result of the “rm” command.

Figure 6.26: Cube Console screen-shot

In this example, there are three created instances of type Component. Each instance has an UUID

(6ece1fd8-301f-4b4a-9f7b-65e56174fb75 for the first one) which is also used to construct the URI of the

instance regarding its current placement (which Autonomic Manager manages it). Each instance has a set

of properties and a set of references. The “rm” command allows showing all this detail for all the local

instances. For instance, we see that the third instance of type Component has an output reference to the

first Component instance.

6.5.4 Dynamic Web Monitoring Console

Even if the aim of the Cube framework is to provide self-management behaviour for software systems,

users need to monitor and to have a preview on what is happening in the system at any one time. The Web

Monitoring tool contributes to achieving this objective by allowing users to visualize at runtime the global

state of distributed applications.

To construct the global system state, the visualisation interface interacts with all the Cube Autonomic

Managers in the system. The starting point is the Top Scope Leader (master) from which other AMs can

be retrieved following their own Scope Leaders. Any changes occurring in an AM’s local Runtime Model

are reflected dynamically in the global state diagram. This global model is represented as a visual graph,

composed of modelled element instances and their relationships. The actual Cube prototype implementa-

tion only supports core, domain-specific, modelled elements - Components, Nodes, and Scopes. From the

monitoring web interface, the user can retrieve information about any element of the system.

The Web Monitoring Console tool (Figure 6.27) is composed of three main parts:

• Front-end (web application)

• Aggregation Server

• Local Agent

142

Cube Runtime

Push

Controller

View

Transformer Server

Queue

Aggregator

Event Model

System Model

Web Monitoring

Local Agent

OSGi

Cube Runtime

Web Monitoring

Local Agent

OSGi

Push

Pull

Aggregation

Server
Front end

Figure 6.27: Dynamic Web Monitoring Console Architecture

The Local Agent is deployed directly onto the Cube Runtime OSGi platform. It allows monitoring the

state of the local Runtime Model of Cube’s Autonomic Managers. The monitoring state and dynamic

changes are reported to the Aggregation Server using a push communication style. That is, information is

pushed to the server from all the Cube Autonomic Managers available in the global system.

The Aggregation Server is responsible for collecting the data from all the Cube Runtimes. This data

is pushed from the Local Web Monitoring Agent located on each OSGi platform. The Aggregation Server

has a modular architecture composed of the following modules. The first module, “Aggregator”, receives

the data from the different agents. In the presented prototype, this is achieved using a simple Socket-

based communication channel, where the Aggregator is a Socket server and the Local Web Monitoring

Agents are Socket Clients. Hence, the Aggregator’s role is to provide an interface with the monitored

Cube Autonomic Managers; it does not perform any processing operations on the collected data.

The received data is forwarded to the next module, “Queue”. The Queue accumulates and manages all

the received data. This data is modelled as Events representing the different changes in the Cube system.

The Queue keeps the order in which the change events have arrived and discards any duplicated events. At

regular predefined intervals, the Queue sends the collected Events to the “Server” module, which updates

the global System Model.

The System Model is an abstract, centralised representation of all the Cube’s Runtime Model in-

stances, at a given time. When started, the Server first interrogates all the Local Web Monitoring Agents

to construct a first graph of the global system structure. Then, it regularly updates this system model

when receiving a set of Events from the Queue representing the changes in the managed system. The last

module of the Dynamic Web Monitoring System is the front-end web application. Its aim is to show the

global application’s state in a graph format.

We have developed an MVC-based10 architecture for the web application. Here, the view is a JavaS-

cript viewing component provided by JQuery’s library - arbor.js11 . This view component receives the

model to display from the System Model of the Server module. This is ensured by an intermediate com-

ponent, the Controller, which interrogates and pulls the Server module to get the System Model. At the

10Model-View-Controller Architecture
11http://arborjs.org/

143

Server level, another intermediate component ensures transforming the System Model (which is built us-

ing Java objects) to the adequate representation for the front-end interface - JSON objects in our case. For

optimisation considerations, we only get recent changes from the System Model and only fragments of

the Graphical View are refreshed when the System Model changes.

Figure 6.28: Dynamic Web Monitoring Console Example. a) initial model, b) two new components have

arrived, c) new connections between the components, d) one node has departed

Figure 6.28 shows an example of the front-end interface when successive updates occur in the mon-

itored Cube system. Components with the same colour are components hosted on the same node. In the

figure 6.28, graph a) represents the initial state of the system. There are two nodes hosting five intercon-

nected components (three components, in red, on one node and two components, in black, on the other

node). In Graph b), a new component is created and placed on the black node – this change is reflected

in the view interface. A new component located in a third node (blue) is also monitored. In Graph c), the

last component located on the blue node is now connected to two components located in the black and

the red node. In the last example in Graph d), the red node goes down; all its components are removed

immediately from the graphical interface.

144

6.6 Summary

In this chapter we have presented the Cube framework and runtime prototype implementation, which is

one of our main contributions to the Cube Project and to the self-management domain in general. The

Cube framework and its main underlying principles were explained in the previous chapter. In this chapter

we have detailed the implementation choices and explained the main Java classes of the implemented

prototype.

We started this chapter by providing a small overview of the supporting technologies for the develop-

ment and running of Cube Autonomic Managers. Here, we indicated that the Cube prototype is implemen-

ted using the Apache Felix iPOJO dynamic component model and runs on an OSGi execution platform.

Combining these two technologies provided us with an innovative execution environment characterised

by its high dynamicity and adaptation capabilities.

The Archetype specification for writing administration goals for the Cube framework was detailed in

the previous chapter as an abstract model rather than as a concrete formal syntax (i.e. only based on graph-

ical notation). In this chapter, we have proposed a formal XML syntax for the Archetype specification.

XML is an universal and extensible language. We have explained how to write Archetype administration

goals using XML. This XML file is then parsed and used by Cube Autonomic Managers.

The Execution Platform of the Cube system is composed of a set of OSGi platforms. Cube is packaged

as an OSGi bundle which has a mandatory dependency with the iPOJO runtime bundle. The Cube bundle

is in turn used by other bundles to implement related components. In particular, there are two kinds of

related bundles: those providing extensions to Cube Autonomic Managers; and those providing Cube

development and administration-related tools.

We have detailed the extension mechanism of Cube Autonomic Managers. There are four types of

extension points via which users can introduce their contributions into a Cube AM. In particular, this

allows specializing a Cube AM so as to be able handle the specific technologies of the targeted managed

system.

Finally, we have outlined some of the developed tools. These range from local tools for a single AM,

like the Graphical Monitoring tool of the local Runtime Model instances, to large-scale environments like

the Dynamic Web Monitoring tool for visualising all the distributed Runtime Model parts from all the

decentralized Cube Autonomic Managers.

145

146

Chapter 7

Evaluation

Contents

7.1 Overview . 148

7.1.1 Introduction to Mediation . 148

7.1.2 Cilia Mediation Framework . 149

7.2 Case Study 1: monitoring the consumption of home resources 152

7.2.1 Context . 152

7.2.2 Managed System . 152

7.2.3 Problems addressed . 154

7.2.4 Solution proposed . 155

7.2.5 Scenarios and Results . 159

7.3 Case Study 2: health-care monitoring system . 167

7.3.1 Context . 167

7.3.2 Managed System . 168

7.3.3 Problems and Requirements to address . 169

7.3.4 Solution proposed . 170

7.3.5 Scenarios and results . 178

7.4 Evaluation . 181

7.5 Summary . 185

In chapter 4 we introduced the context, the problem, the objectives and the contribution of our thesis.

In chapter 5 we presented the proposed Cube framework and in chapter 6 we detailed its implementation.

In this chapter we evaluate our framework and its prototype implementation. The main objective of the

evaluation process is to show Cube framework’s viability for managing distributed mediation systems

(i.e. via the Cube Archetype specification and Cube Runtime). To achieve this goal, two case studies have

been developed utilising Cube autonomic features. These cases studies are: “monitoring the consumption

of home resources” and “health-care monitoring system”. These applications are parts of two different

national research projects involving our research team . The first application represents the evaluation

from a quantitative perspective. An experiment is set up to measure the required times for self-creation and

self-configuration of a distributed application using the Cube framework. This is compared to performing

the same tasks with and without autonomic capabilities. The second application represents the evaluation

from qualitative perspective. We show how Cube is used to ensure some quality attributes like availability,

147

scalability and robustness by providing load-balancing and fault-tolerance features. We conclude this

chapter via a discussion of Cube framework’s qualitative attributes.

7.1 Overview

Cube framework was evaluated via two experimental case studies. The first case study (section 7.2)

addresses the self-creation and configuration of a distributed component-based application (i.e. a data-

mediation system). We show how Cube can be used to automate the creation and interconnection of

component instances in distributed software systems. We also evaluate the performance and potential for

scalability of our Cube solution when ensuring such objectives, in comparison with manual or centralized

solutions. In the second case study (section 7.3), we focus the evaluation process onto additional, comple-

mentary autonomic features of the Cube framework. In particular, we show how the Cube framework can

ensure the self-healing of distributed applications when the underlying execution nodes are subject to run-

time crashes. We also show how Cube can self-optimise resource consumption across execution servers

by load-balancing the processing tasks among a cluster’s nodes. Hence, this second use case focuses more

on the qualitative analysis of our framework.

The two evaluation case studies target the management of data mediation applications. Therefore,

in the following sub-sections, we start by a short introduction to mediation systems (section 7.1.1) and

introduce the used mediation framework: Cilia (section 7.1.2).

7.1.1 Introduction to Mediation

Mediation has been used historically to integrate data stored in IT resources such as databases, knowledge

bases, file systems, digital libraries or electronic mail systems [Wie92, WG97]. In general, data mediation

is implemented as a software layer between data sources (or resources) and data sinks (or applications) (see

figure 7.1). This enables the interoperability and integration of disparate information-oriented elements in

a timely fashion.

Resources

Layer

A1 A2 A3

R1 R2 R3 R4 R5

M6

M5

M3 M4

M2M1 Mediation

Layer

Applications

Layer

Figure 7.1: Mediation system

The mediation layer is composed of a set of mediators. G.Wiederhold defines a mediator as “a software

module that exploits encoded knowledge about certain sets or subsets of data to create information for

a higher layer of applications” [WG97]. Therefore, the principal objective of the mediation layer is to

provide the interested applications with a high-level representation of the data obtained from the data

sources. In general, such ‘higher-level’ representation will be based on concepts that are closer to the

148

targeted application’s domain than to the ‘lower-level’ concepts of the data sources domain. To fulfil

these objectives, mediators provide operations such as:

• Selection and filtering of incoming data depending on its characteristics.

• Conversion between incompatible data types.

• Aggregation of data obtained from multiple sources.

• Semantic alignment of inconsistent data.

Encapsulating such operations in dedicated data-mediation software is clearly a good practice. For in-

stance, mediation software provides a single point of interface to the various applications and resources

to be integrated. This reduces the number of connections needed and facilitates change management. In

addition, mediation software provides an isolation layer from software details such as specific interfaces

and data formats. Also, if configured correctly, it permits the quick and cost-effective development of new

information services (e.g. by reintegrating data sources so as to produce new higher-level information).

Moreover, by decoupling data sources from sinks, the mediation layer improves re-usability and evolution

of both applications and data resources. It also permits the transparent addition of new QoS (Quality of

Service) properties such as security, reliability, and so on. Finally, it can help improve the scalability of

the entire system.

Nowadays, the scope of mediation-based approaches spans many applicability contexts, brought about

by the emergence of new environments, new technologies and new applications. From the wide diversity

of such contexts, two basic forms of mediation can be identified most often.

Data Integration: Mediators gather data from devices; apply operations on the collected data, including

aggregation, filtering and correlation; and bring data to business applications or supervision tools, in

a coherent manner. Since new data sources can appear and disappear at any moment, the mediation

system must be sufficiently flexible and dynamic to undergo runtime adaptations without stopping

the entire system. This mediation type is also known as Data Mediation.

Application Interoperability: Mediators deal with interoperation issues between heterogeneous soft-

ware applications. In this context, the mediation software stands between client applications and

provider applications (generally, Web Services). Its purpose is to enable service consumers to ac-

cess provided services in a seamless and correct manner. Also known as Service Mediation, this

form of mediation aims to provide a uniform or standardised interface to heterogeneous services.

It was initially advanced by the ESB (Enterprise Service Bus) community as an essential part of

ESB middleware [HTL05, HTL07]. In general cases, Service Mediation allows a Service Requester

to connect to an appropriate Service Provider without worrying about specific interfaces and data

heterogeneity.

7.1.2 Cilia Mediation Framework

Cilia [Deb09, GPD+10, GMD+11] is a lightweight and modular data-mediation framework based on

OSGi technology and iPOJO service component-based model. The Adele Team has been the main devel-

oper of this framework, which is currently being used in collaborative initiatives like the Medical project

(see use case 2, section 7.3). Cilia proposes both a specialized component model for data-mediation sys-

tems, and a dynamic execution environment. The adoption of a component model aims to enable the

construction of mediation applications by means of composition of reusable components, hence ensuring

better application modularity and flexibility. Indeed, in addition to modularity, dynamicity is an important

property of the Cilia framework, endowing mediation applications with sufficient flexibility for changing

their architecture at run-time.

149

Technically speaking, a Cilia mediation application (also called mediation chain) is a set of mediation

components - called Mediators - that are interconnected by links – called Bindings. Hence, such mediation

applications take the form of a directed acyclic graph (DAG), where nodes are Mediators (receiving,

processing and forwarding data) and edges are Bindings between Mediators (transmitting data).

A Cilia Mediator has the following internal sub-components (Figure 7.2):

Cilia Mediator

S
c
h
e
d
u
le

r

D
is

p
a
tc

h
e
r

P
ro

c
e
s
s
o
r

out portsin ports

Figure 7.2: Cilia Mediator component and its constituents

Scheduler: responsible for collecting input data from one or several sources until a pre-defined condi-

tion is met. When this happens, the scheduler forwards all data collected so far to the mediator’s

processor (discussed next). Each scheduler implementation provides its own logic for the associ-

ated triggering condition. This may be temporal, quantitative, qualitative and so on. Some typical

examples of scheduler implementations include: “Periodic Scheduler”, which sends collected data

periodically to the processor; and, “Immediate Scheduler”, which triggers the processing as soon as

the data arrives. Cilia distribution provides several predefined schedulers. Cilia users can develop

additional schedulers or configure the existing ones.

Processor: responsible for processing the data received from the scheduler and forwarding it to the dis-

patcher (discussed next). Some illustrative examples of processors include: “String Splitter”, which

splits data based on a regular expression; or, “XSLT Transformer”, which receives data in the form

of XML documents and applies an XSLT transformation to them. Developers can implement their

specific processors via Java classes that do not have to implement any framework-related interfaces.

To include such custom processor classes into Cilia, developers must additionally provide a declar-

ative XML specification file, with information about the processor’s class name, the processing

method’s name and the type of data that it can receive.

Dispatcher: responsible for dispatching the processed data received from the processors to one or several

destinations. The most common examples of dispatcher implementations include: “Multi-cast Dis-

patcher”, which sends a copy of the processed data to all destinations (e.g. connected mediators);

“Content-Based Dispatcher”, which sends the processed data to a particular destination for which

some condition related to the data content is met. Cilia distribution provides several predefined

dispatchers. Cilia users can develop additional dispatchers or configure the existing ones.

In addition to the mediators described above, Cilia provides a special kind of mediators called Adapters.

They are placed at the boundaries (input/output) of Cilia mediation chains, in order to interface them with

heterogeneous (non-Cilia) data sources and sinks, respectively. Hence, adapters are responsible for the

communication with external data sources (resources) or sinks (target applications). There are three types

of adapters: in adapters, out adapters, and request-response adapters.

Mediators (and Adapters) are connected via Bindings. A binding describes a connection between an

output and an input port. Connected mediators form a mediation chain. Figure 7.3 illustrates a sample

mediation chain composed of two adapters, four mediators and six bindings.

Cilia provides a reflective API [GMD+11] which allows creating, updating and removing mediators

150

Mediator C

Mediator B

Mediator DMediator AAdapter IN Adapter OUT

Binding AB

Binding AC

Binding BD

Binding CD

B
in

d
in

g
 D

O
U

T

B
in

d
in

g
 I
N

A
Figure 7.3: Example of Cilia mediation chain

and bindings from a mediation chain dynamically without stopping the application. This API is exported

as a local OSGi service and can be used by third party tools to manipulate mediation chains. We use this

API to implement Cube framework’s extension for Cilia, as explained farther in this chapter.

Cilia chains are composed exclusively of local mediators (i.e. located on the same OSGi platform).

To create a distributed mediation chain, one must introduce specific Adapters for connecting several local

mediation chains together. Hence, Adapters provide the remote communication function for distributed

mediation chains. They can be implemented to support various communication protocol(s) or middle-

ware(s). This approach helps separate the chain’s data processing functions from its data transport func-

tions. Nonetheless, creating and connecting local mediation chains to form complete distributed mediation

applications requires a certain amount of expertise, in both Cilia and the communication technologies em-

ployed. This task becomes rapidly cumbersome when the mediators are distributed over hundreds or

thousands of execution nodes dispersed in separated administrative domains and/or geographical areas.

For local mediation chains, Cilia provides a relatively simple mechanism for creating such chains

without using the reflective API. Instead, users can write specific XML files to describe the local mediation

chain in terms of the set of Mediators, Adapters and Bindings between them. This special-purpose XML

file is called DSCILIA. Listing 7.1 depicts an example of a local mediation chain defined based on

DSCILIA syntax.

Listing 7.1: Example of DSCILIA XML file

1 < c i l i a >

2 < c h a i n i d =" Tes t−Chain ">

3 < !−− A d a p t e r s i n s t a n c e s d e f i n i t i o n −−>

4 < a d a p t e r s >

5 < a d a p t e r−i n s t a n c e t y p e =" P e r i o d i c P r e s e n c e D e t e c t o r A d a p t e r " i d =" p r e s e n c e D e c t e c t o r ">

6 < p r o p e r t y name=" d e l a y " v a l u e =" 500 " / >

7 < p r o p e r t y name=" p e r i o d " v a l u e =" 1000 " / >

8 < / a d a p t e r−i n s t a n c e >

9 < a d a p t e r−i n s t a n c e t y p e =" c o n s o l e−a d a p t e r " i d =" e x i t A d a p t e r " / >

10 < / a d a p t e r s >

11 < !−− M e d i a t o r s i n s t a n c e s d e f i n i t i o n −−>

12 < m e d i a t o r s >

13 < med ia to r−i n s t a n c e t y p e =" H e l l o M e d i a t o r " i d =" h e l l o ">

14 < p o r t s > <in−p o r t name=" i n " / > <out−p o r t name=" o u t " / > < / p o r t s >

15 < / med ia to r−i n s t a n c e >

16 < / m e d i a t o r s >

17 < !−− B i n d i n g s d e f i n i t i o n −−>

18 < b i n d i n g s >

19 < b i n d i n g from=" p r e s e n c e D e c t e c t o r " t o =" h e l l o : i n " / >

20 < b i n d i n g from=" h e l l o : o u t " t o =" e x i t A d a p t e r " / >

21 < / b i n d i n g s >

151

22 < / c h a i n >

23 < / c i l i a >

This XML file was specified for creating a mediation chain on a single gateway. The mediation chain

is composed of one mediator (HelloMediator – lines 15-20) and two adapters (PeriodicPresenceDetec-

torAdapter input adapter – lines 5-9, and Console output adapter – line 10). Data collected using the

PeriodicPresenceDetectorAdapter is sent to the HelloMediator (first binding - line 25). In this simple ex-

ample, the mediator simply forwards data received to the output adapter (second binding – line 26), which

displays the data in the terminal.

7.2 Case Study 1: monitoring the consumption of home resources

7.2.1 Context

In this use case, we consider the autonomic management of a distributed data-mediation system for mon-

itoring the consumption of home resources, including electricity, gas, and water. Generally, the purpose

of data-mediation applications is to collect data from several sources, then transport and process the data

so that it can be consumed by several sinks. The use case considers multiple data sources representing re-

source monitoring probes and one sink representing a global cost calculator for consumed resources. The

data-mediation application consists of a number of interconnected Mediators. Each Mediator processes

data from several sources, or from other Mediators, in order to calculate consumption costs at various

granularity levels, including home, city and country (see next sub-section 7.2.2).

In this use case, we use Cube to automatically create and maintain a data-mediation application that

meets predefined architectural goals (constraints), specified formally in the administrator’s Archetype.

The primary goals are about the structure of the global mediation chain, in particular about mediator types

and the way they are connected at different levels of the distributed mediation application.

This use case was part of the the Self-XL project1 funded by the French institute “Agence Nationale

de Recherche ANR” (from 2009 to 2012). This project sought to acquire new processes in the field

of autonomic computing, by identifying and investigating the components (e.g. languages and runtime)

that would facilitate the implementation of complex and large-scale autonomic systems. The scope of

this project encompasses any computing system featuring high software complexity, in terms of its scale,

distribution, dynamism, heterogeneity, and so on. Targeted systems range from cluster computing to

pervasive embedded systems, including recent and legacy software.

The first prototype of the Cube framework was developed during this research project. An elaborated

use case was specified to evaluate the framework and the corresponding prototype. The initial use case was

later re-evaluated for new versions of the framework and published at SASO’12 international conference

[DDL12]. In this section, we present the same use case as specified in the Self-XL project. However,

we provide a new evaluation based on results obtained from experiments with the most recent prototype

version.

7.2.2 Managed System

As an application example, we consider a mediation system for monitoring the consumption of home

resources. The sample system monitors the consumption of household resources, including electricity,

gas, and water. Collected data is processed for calculating different costs. At the house level house, it

calculates electricity, gas and water costs. These are then aggregated into higher-level region costs, city

1http://selfxl.forge.inria.fr

152

costs and then national costs. The corresponding Component types include specific probes – collecting

electricity, water, and gas measurements; and various cost calculators – computing consumption costs at

the house, region, city and national levels.

GP WP

HC

EP

RC

GP WP

HC

EP
GP WP

HC

EP
GP WP

HC

EP

RC

CC

RC

CC

NA
H

o
m

e
 l
e
v
e
l

C
it

y
 l
e
v
e
l

N
a
ti

o
n
a
l

le
v
e
l

HC: House

 Calculator

GP: Gas Probe

WP: Water Probe

EP: Electricity

Probe

RC: Region

 Calculator

CC: City

 Calculator

NA: National

 Aggregator

Figure 7.4: Overview of a house resource monitoring application

Figure 7.3 shows the overall architecture of our distributed mediation system. We differentiate three

levels in which different kinds of components exist. These levels were identified based on the types of

administrative authorities involved and the corresponding underlying hardware platforms.

At the bottom level, representing the houses, three kinds of components are introduced to collect gas,

electricity, and water measurements. We call them Gas Probe (GP), Electricity Probe (EP), and Water

Probe (WP). These components execute on a special kind of machines called gateways (or home boxes),

available in each house. Each of these probe components sends the collected data to a House Calculator

(HC) component, which aggregates the data, calculates the overall house consumption cost and forwards

it to a regional cost calculator (discussed below).

At this intermediate level, representing entire cities, two kinds of components exist. The first one,

called Region Calculator (RC), collects data from the set of houses located within one region of the city.

Hence, for each region we have one instance of this component. All RG instances in a city send the

collected data to a unique instance at the city level, called City Calculator (CC). In turn, each CC instance

analyses the collected data, summaries it, and sends it to a national data-centre (discussed next). At the

city level, we have interconnected server machines. These machines can be located in a single cluster, or

distributed across various locations (e.g. geographically close to monitored houses).

Finally, at the topmost national level, a single mediation component instance of type National Aggre-

gator (NA) receives and processes data from the different City Calculators. In such scenario, a powerful

server cluster should, in principle, be set in place at this level to support the load of the national data-centre

(for both data aggregation and dissemination to numerous clients).

For reasons of performance and of distribution of infrastructure-related costs among the various au-

thorities concerned (i.e. house, city and national authorities), in this use case, administrators wanted to

limit the number of inputs of some components. In particular, the RC component instance is limited to

receiving a maximum of fixed number of input connections from HC components. Lastly, an additional

constraint was required to impose having a single CC component instance within all the servers that belong

to one city.

153

7.2.3 Problems addressed

The primary objective of this first case study is to evaluate Cube framework’s capability to self-create (i.e.

instantiate and connect components) distributed mediation chains that conform to an archetype specifica-

tion.. To confirm this capability, Cilia mediators should be instantiated automatically and their intercon-

nections configured correctly, via the Cube framework. At the local level (within one OSGi platform),

bindings between Cilia mediators are ‘direct’ - using either OSGi’s local Event Admin service, or direct

method calls. However, when crossing the boundaries of the local OSGi platform, administrators use Cilia

JMS Adapters to transmit data messages via a common JMS2 Server (as depicted in Figure 7.5). Note

that the use of JMS Adapters represents a specific technological choice in the presented use case. Other

middleware technologies may also be adopted for interconnecting distributed Cilia chains.

The default activity necessary for instantiating Cilia mediation chains is to write a DSCilia XML file

for each local mediation chain to be executed on each OSGi platform. When a DSCilia file is deployed

in a special-purpose directory, the “static” mediation chain specified in the DSCilia file is instantiated

automatically (by Cilia). To connect several local mediation chains and form a global distributed me-

diation chain, administrators should create adequate JMS Adapters in each OSGi platform. These JMS

Adapters should be configured to use an available JMS Server and to channel the data towards the targeted

mediation chain(s).

OSGi 1

JMS Server (OW2 JORAM)

OSGi 1 OSGi 2OSGi 2 OSGi 3OSGi 3

DSCilia 1 DSCilia 2 DSCilia 3

Cilia

Runtimes

Figure 7.5: Distributed Cilia mediation chain

This operation is relatively simple because of Cilia’s dynamic adaptability features. However, config-

uring all the local mediation chains located across (very) large areas can quickly become costly and prone

to human error. In particular:

• Administrator should maintain hundreds or thousands of local DSCilia files.

• Changing one Mediator or Adapter in one DSCilia (local mediation chain) can have serious reper-

cussions on other mediation chains.

• Migrating some mediators to other execution nodes can require complicated reconfiguration tasks.

This is mainly because DSCilia files are intended primarily for specifying and creating static local

mediation chains.

• In large-scale distributed mediation systems, it becomes highly difficult for administrators to have a

global view of all the mediation chains and of their interconnections.

2Java Messaging Service

154

7.2.4 Solution proposed

In this section we detail how we used the Cube framework to tackle the aforementioned problems.

As we have outlined in section 4.4.5 of chapter 4, our approach to self-management using Cube in-

volves several steps and activities. The first two activities are performed manually and off-line. They

involve application-specific knowledge extraction and specification. In the context of our proposed frame-

work, these correspond to: selecting or defining new model abstractions; and, selecting or developing

new extensions, which provide either specific monitor/executor components and/or specific resolvers re-

lated to the managed system. Next, users should define administration objectives based on the Archetype

specification language. The resulting Archetype file is then used by Cube Autonomic Managers to self-

manage the system and ensure that user goals are met. We detail each of these steps for this use case in

the following sub-sections.

7.2.4.1 Model Abstractions

For this first use case, we will only use model abstractions provided by Cube framework’s Core Extension;

these suffice to address our requirements. Therefore, as outlined in the previous subsection (7.2.3), the

problems addressed concern mainly the instantiation and connection of distributed components. Hence,

details about the internal components, behaviour, data, or performance are beyond the scope of our eval-

uation in this case study. Table 7.1 summaries the core model abstractions used and their semantics with

respect to our distributed mediation chain application.

Table 7.1: Case study 1: model abstractions and their semantics

Model Element Semantic

Component Used as an abstraction for a Cilia Mediator or Adapter. We need the following

property in particular:

• kind: used for differentiating between the two concepts - Mediator and

Adapter. Its value indicates the nature of the Cilia component - “M” for

Mediator and “A” for Adapter.

Node Used as an abstraction for an OSGi platform. Each OSGi platform contains a

local mediation chain with a set of Mediators (and Adapters). Each Cube

Autonomic Manager controls a single Node instance.

Scope Used to regroup a set of OSGi platforms, in order to simplify the description and

resolution of goals that span over those platforms. For instance, we use the Scope

model abstraction to regroup all the OSGi platforms that belong to the same city.

Master The corresponding model instance will contain the list of all scope leaders. This

is necessary for implementing the federation-like organization of Autonomic

Managers, which was the design option selected for the presented Cube

framework.

7.2.4.2 Extensions

To use the model abstractions detailed above, we must add the Core Extension to all Cube Autonomic

Managers participating in our use case. The Core Extension provides these model abstractions, as well as a

set of corresponding Specific Resolvers for dealing with the goals and properties that can be defined in the

155

Archetype based on these abstractions. We can reuse these provided artefacts in this use case. However,

we need to implement an additional extension for this use case - a new monitor/executor extension for

handling Cilia mediation chains. Table 7.2 summaries the list of extensions used (reused or implemented)

and their configuration properties.

Table 7.2: Case study 1: used extensions and their possible configuration properties

Extension Name Extension Namespace Configuration Properties

Core Extension fr.liglab.adele.cube.core master

Cilia Extension fr.liglab.adele.cube.cilia
jms.server

jms.port

Script Extension fr.liglab.adele.cube.script

Core Extension

The Core Extension is provided by the Cube framework. In this use case, we reused some of the Core

Extension’s model abstractions and a set of Description and Goal Properties. Examples of the Properties

we reused include: hasComponentType, hasNodeType, hasScopeId, onNode, inScope and connected.

The Core Extension has a configuration property called “master”, which, if set to “true”, triggers the

instantiation of a Master element. Consequently, the Autonomic Manager that contains the Core Extension

configured this way (i.e. master = true) is considered to be the master node. The Master AM instance holds

the list of all scope leaders (their URLs). In the Archetype, we should explicitly mention the address of

this master node, since it represents the entry point for all Autonomic Managers participating in Cube’s

self-management activity.

Cilia Extension

We have implemented this extension specifically for this use case, in order to enable Cube to administer

(monitor and act upon) Cilia mediation chains. The extension consists of a Cilia Monitor (for observing

Cilia mediation chains) and a Cilia Executor (for acting upon Cilia mediation chains). These were further

detailed in the previous chapter 6 (subsection 6.4.4).

In this first use case, we aim to have the Cube framework exercise full control over the distributed

Cilia mediation chain. This implies that all the Cilia mediators and bindings are created by Cube. In this

context, Cube’s Cilia Monitor plays a less important role than Cube’s Cilia Executor. This is because the

Executor is responsible for translating the modelled element instances (in Cube’s Component Runtime

Model) to their equivalent Cilia Mediators (in the actual mediation chain). Moreover, the Cilia Executor

is responsible for creating the various bindings between mediators, and, if a remote reference is present in

the Runtime Model, for creating the adequate Cilia JMS Adapters that connect the remote Mediators via

JMS (as described in the previous chapter 6, section 6.4.4).

Finally, the Cilia Extension provides some Specific Resolvers for handling Cilia-related concepts. In

particular, we provide the hasScheduler and hasDispatcher Properties to allow administrators to specify

which kind of schedulers and dispatchers should be used for particular Cilia Mediators.

Script Extension

The Script Extension helps automate some of the particular set-up procedures for this use case. These

consist in initializing several Autonomic Managers with pre-created instances. Most importantly, the

156

Extension Script allows the manual creation of Node instances corresponding to each managed OSGi

platform, via relatively simple script commands. For each Autonomic Manager, the administrator should

configure the Script Extension so as to create the appropriate Node instance. Listing 7.2 shows an example

of using this Script Extension.

Listing 7.2: Simple script file for creating Cube Runtime Model instances

1 < e x t e n s i o n i d =" f r . l i g l a b . a d e l e . cube . s c r i p t ">

2 < p r o p e r t y name=" 1 " v a l u e =" newi Node t y p e =Gateway " / >

3 < p r o p e r t y name=" 2 " v a l u e =" newi Component t y p e =HC" / >

4 < / e x t e n s i o n >

As shown in the example, script commands are provided as extension properties where the name of

the property indicates the execution sequence of the commands, and the value of the property defines the

actual command to execute. For instance, the “newi” command in the example allows the creation of

modelled element instances in the Runtime Model. Here, the nature of the created instance is defined via

the first parameter and the instance’s initial properties via the second parameter. Hence, in line 2, we start

by creating the Node instance of type “Gateway”, and in line 3, we create a Component instance of type

“HC”.

Finally, Listing 7.3 shows a complete example of a configuration file for one Autonomic Manager

using all the three presented extensions.

Listing 7.3: Configuration file for one Cube’s Autonomic Manager

1 <cube cube−v e r s i o n =" 2 . 0 ">

2 <autonomic−manager>

3 < h o s t v a l u e =" 1 9 2 . 1 6 8 . 0 . 1 0 " / >

4 < p o r t v a l u e =" 38002 " / >

5 < a r c h e t y p e U r l v a l u e =" f i l e : . . / uc1 . a r c h " / >

6

7 < e x t e n s i o n s >

8 < e x t e n s i o n i d =" f r . l i g l a b . a d e l e . cube . c o r e ">

9 < p r o p e r t y name=" m a s t e r " v a l u e =" t r u e " / >

10 < / e x t e n s i o n >

11 < e x t e n s i o n i d =" f r . l i g l a b . a d e l e . cube . c i l i a ">

12 < p r o p e r t y name=" jms . s e r v e r " v a l u e =" 1 9 2 . 1 6 8 . 0 . 1 0 0 " / >

13 < p r o p e r t y name=" jms . p o r t " v a l u e =" 16010 " / >

14 < e x t e n s i o n >

15 < e x t e n s i o n i d =" f r . l i g l a b . a d e l e . cube . s c r i p t ">

16 < p r o p e r t y name=" 1 " v a l u e =" newi Node t y p e =Gateway " / >

17 < / e x t e n s i o n >

18 < / e x t e n s i o n s >

19

20 < / autonomic−manager>

21 < / cube >

The Autonomic Manager is specified to have “192.168.0.10” as host and “38002” as port. Its

Archetype is located at the destination indicated in line 5. Three extensions are declared: the first one

is the “Core Extension” configured to be a master; the second one is the “Cilia Extension”, where the

information on the JMS server is provided in lines 12 and 13; and finally, the “Script Extension” with one

command allowing the creation of one Node instance of type “Gateway”.

157

7.2.4.3 Archetype

For clarity and simplification, we have divided the Archetype specification into three parts: (1) nodes self-

initialization, (2) self-creating and connecting home mediators to the city servers; and (3) self-creating and

connecting city mediators to the national mediator. The entire Archetype XML file is listed in Appendix

C.

The first part (depicted in Figure 7.6), shows the goals related to the self-initialization of the mediation

system’s Nodes (see section 5.3 of chapter 5 for a description of this notation). The actions required by

these goals include initialising the different Nodes and grouping them dynamically into predefined Scopes.

They also include the instantiation of the first mediator component on each Node (or local platform). This,

in turn, will fire the self-instantiation of the remaining mediation chain.

N Server

hasNodeType

InScope [FC]

N Datacentre

locatedIn

cube://192.168.0.1:19000

S

${City}

hasScopeId

controlledBy

M

S

Central

hasScopeId

controlledBy

M : Master

S : Scope

N : Node

N

InScope [F]

Gateway
hasNodeType

HasComponent [FC]

CHC
hasComponentType

hasNodeType

HasComponent [FC]

C RC
hasComponentType

HasComponent [FC]

C NA
hasComponentType

C : Component

InScope [FC]

Figure 7.6: Archetype part for Node self-management in Case Study 1

The exemplified Archetype defines three kinds of Nodes: Gateway, Server and Datacentre. The dif-

ferent Gateways and Servers should be regrouped within the same Scope - called City. This objective

is specified using the “inScope” Goal Property (between the Nodes and the Scope). The “inScope” goal

is tagged with the [F] resolution strategy for the Gateway nodes, but with [FC] resolution strategy for

Servers. This means that the Autonomic Manager controlling the city server should find a scope leader or

create a new scope leader instance (if not found); while the Autonomic Manager of the Gateway should

only try to find a scope leader. In this setting, the Gateway manager cannot become a scope leader itself,

for technical considerations such as limited resources on home boxes.

The City scope description features a “hasScopeId” Description Property, which is set to “${City}”.

This means that the actual scopeId value will depend, case-by-case - in this example, on the actual city

name (e.g. ‘Grenoble’, ‘Lyon’ or ‘Paris’). Hence, each Autonomic Manager controlling a Gateway or a

Server node should look for a scope that has the same id as the Autonomic Manager’s own city property.

For instance, if we consider a Gateway located in the city of Grenoble, the Gateway’s Autonomic Manager

should be started with a property “city=Grenoble”. Consequently, when the Autonomic Manager will try

to resolve the Archetype, and will look for a suitable scope for its Gateway node, it will try to find a scope

that has ‘Grenoble’ as identifier.

158

At the national level, Datacentre nodes should be regrouped within a Central scope. The Central scope

and all the City scopes are controlled by a single Master instance located at “cube://192.168.0.1:19000”.

Also in the first Archetype part, we specify that the Autonomic Manager on each Node should in-

stantiate the first mediator of the local mediation chain of that Node. For instance, on each Gateway we

should create an “HC” Mediator, for calculating the cost of consumed resources within a home. We use

the “HasComponent” Goal Property to ensure this objective.

The second part of the Archetype (depicted in Figure 7.7) shows the goals related to the self-creation

and configuration of the mediation chain part that is located on home Gateway nodes. The main goals in

this Archetype part define the way in which Components must be interconnected (using the “connected”

Goal Property).

NonNode
connected [F]

CWP
hasComponentType

CEP
hasComponentType

CGP
hasComponentType

C

connected [F]

connected [F]

HC

hasComponentType

C

RC

hasComponentType

connected [F]

5

hasMaxInputComponents

Server

hasNodeType

locatedIn

cube://192.168.0.1:19000

S

${City}
controlledByM

inScope

Figure 7.7: Archetype part for self-creating and connecting Mediation components on home Gateways in

case study 1

Four Component Types are to be managed at the home level - Gas Probe (“GP”), Water Probe (“WP”),

Electricity Probe (“EP”), and House Cost Calculator (“HC”). Instances of the first three Component

Types, or Probes, should be connected to the “HC” Component instance. At the same time, the “HC”

instance should be connected to a remote instance - “RC” (Region Calculator) - located on a Node of type

Server in the City cope of that region. We have also specified that the found “RC” instance should not have

more than five (“5”) input components; this was indicated via the “hasMaxInputComponents” Description

Property on the “RC” Component. If this is not the case, Cube should find another “RC” instance on the

same remote Node or on any other Node that matches the provided description (i.e. Node Type “Server”

and in Scope “${City}”).

The third part of the Archetype (depicted in Figure 7.8) shows the goals related to the self-creation and

configuration of mediation chain parts that are located on City Servers and National Datacentres. Here, all

“RC” component instances should be connected to the “CC” (City Calculator) component instance that is

located on one of the Servers in that City. In turn, any “CC” instance should be connected to the “NA”

(National Aggregator) component instance located on a Datacentre.

7.2.5 Scenarios and Results

We executed several experiments on a distributed software platform (50 Cube runtimes) deployed on

a single physical machine. The main purpose of these experiments was twofold. First, we aimed to

159

NonNode
connected [FC]

CRC
hasComponentType

C

CC

hasComponentType

Server

hasNodeType

locatedIn
cube://192.168.0.1:19000

S ${City}

controlledBy

M

inScope

CCC
hasComponentType

NonNode
connected [F]

C

NA

hasComponentType

Datacentre

hasNodeType

S Central

inScope

controlledBy
hasScopeId

hasScopeId

Figure 7.8: Archetype part for self-creating and connecting City and National Mediation components in

case study 1

illustrate Cube framework’s capability of creating and configuring distributed mediation chains that meet

an archetype’s goals. Second, we aimed to obtain several generic indicators on the Cube framework’s

performance, in order to predict the way in which the resolution process will scale with the number of

managed platforms.

The experimental machine consisted of a laptop PC (Core 2 Duo 3.06 GHz and 4 Gb of RAM). This

machine hosts the OSGi platform containing the Cube Runtime bundle and the different Cube Extension

bundles. OSGi runs on an OpenJDK 1.6 JVM executing on a Linux Ubuntu OS. All Cube Autonomic

Managers in the experiments are created on this machine. Each Autonomic Manager is executed as a

separate thread and connects to other Autonomic Managers via a network stack (via TCP/IP). Hence,

the Autonomic Managers could also be deployed on different physical machines and feature the same

behaviour, only with higher delays.

We have evaluated the implemented Cube prototype via the configuration depicted in Table 7.3.

Table 7.3: Autonomic Managers for Case Study 1

AM n° Host Port Role

1 localhost 19000 Master node

2 localhost 19001 National Datacentre

3-5 localhost 19100-19102 Grenoble Servers

6-10 localhost 19200-19204 Paris Servers

11-25 localhost 19300-19314 Grenoble Gateways

26-50 localhost 19500-19424 Paris Gateways

In total, we have a maximum of fifty Cube Autonomic Managers. We ran a series of experiments,

where for each experiment we incremented the number of participating Autonomic Managers - from

160

eleven to fifty. The purpose was to test Cube’s behaviour when the number of Autonomic Managers (and

hence of managed sub-systems) increases.

Hence, in each individual experiment, we configure the distributed platform to include a certain num-

ber of managed platforms (with one AM per platform); and we observe the number of control messages

exchanged between the Autonomic Managers, as well as the resolution time taken by each Autonomic

Manager for ensuring the Archetype objectives.

The Autonomic Managers numbered from 1 to 10 are present in all the experiments, since they manage

Nodes that belong to the system’s infrastructure (Servers and Datacentre); we assume here that there is no

variation at this level. On the contrary, we assume that the system may include various numbers of houses

and we simulate this by incrementing the number of connected houses in each experiment, as described

before.

As previously indicated, we are mainly interested in verifying Cube framework’s capability of finding

a correct instantiation solution to the Archetype; and in calculating some indicative performance metrics,

such as the number of exchanged control messages and the resolution time of the individual Autonomic

Managers. Hence, for the purpose of these experiments, we have not included the Cilia Extension in

the Autonomic Managers; this would have simply shown Cube framework’s capability of translating the

Autonomic Managers’ instantiation solution, expressed via their respective Runtime Models, into actual

Cilia mediation chains.

We also wanted to make Cube framework’s performance evaluation as independent as possible from

the performance of the underlying distributed platform (e.g. processing and network communication

delays). Since the autonomic management process is decentralised, the processing overhead on each

Autonomic Manager will be limited and not increase significantly with the number of managed platforms

– indeed, the Autonomic Managers will share the overall management load among them.

Most importantly, however, as with any decentralised management solution, the main scalability con-

cerns are related to the communication overheads induced by the coordination procedures of independent

Autonomic Managers. Therefore, we focused on determining the number of messages exchanged be-

tween Autonomic Managers during the resolution process, rather than on the exact time delays required

by this process. This allows us to evaluate, in a qualitative fashion, the scalability of the proposed decen-

tralised solution; whereas the exact performance characteristics will depend on the performance of each

distributed deployment platform.

A total of 40 distinct experiments were carried-out, with one additional Gateway included in each

experiment, with respect to the previous experiment. A maximum of 40 Gateways were used during these

experiments, with 15 home Gateways located in the city of Grenoble (with AM indexes from 11 to 25)

and 25 home Gateways in the city of Paris (with AM indexes from 26 to 50). The Gateways in Grenoble

were added progressively over the first 15 experiments; then the Gateways in Paris were added over the

remaining 25 experiments. In each experiment, the Cube Autonomic Managers had to start the resolution

process from scratch, in order to instantiate a distributed mediation chain that met the archetype goals.

Figure 7.9 illustrates the manner in which the archetype defined for this case study (section 7.2.4.3)

is being resolved, in three different experimental settings. The purpose of these examples is to show how

the Cube framework manages to find instantiation solutions that conform to the archetype, while being

adapted to each deployment platform. This is achieved via a decentralised archetype resolution process

based on cooperating Autonomic Managers (one for each platform).

In the figure, the illustrated instances of distributed mediation chains correspond to the solutions found

by archetype resolvers and stored in their corresponding Runtime Models (one on each platform). For sim-

plicity, we only show the created Mediator instances and their interconnections; we ignore the additional

modelled element instances that are also created in the Runtime Model during the resolution process (e.g.

161

we ignore modelled instances of Nodes and Scopes.

CC RC

Grenoble Server 1

RC

Grenoble Server 2

NA

Datacentre

CC RC

HC

Grenoble Server 1 Grenoble Gateway 1

WPGP EP

RC

Grenoble Server 2

NA

Datacentre

CC RC

HC

Grenoble Server 1 Grenoble Gateway 1

WPGP EP

RC

Grenoble Server 2

HC

Grenoble Gateway 2

WPGP EP

NA

Datacentre

HC

Grenoble Gateway 3

WPGP EP

HC

Grenoble Gateway 4

WPGP EP

(t1) (t2) (t3)

Figure 7.9: Simplified instantiation solution for the archetype of case study 1; (t1) only showing two

Grenoble servers and the Datacentre; (t2) adding a Grenoble gateway; (t3) adding three Grenoble gate-

ways.

The first depicted setting (Figure 7.9-(t1)) only includes two Server Nodes that belong to the Grenoble

Scope and one Datacentre Node that belongs to the Central Scope. No Gateway Nodes are considered

at this stage. In this setting, the decentralised resolution process proceeds as follows. Each Autonomic

Manager (AM) of a Server Node creates an “RC” Mediator instance. They then coordinate their actions

to create a single “CC” instance on one of the servers – Grenoble Server 1 in this case. Coordination is

carried-out by contacting the Scope Leader of the Grenoble Scope, which they both belong to. Once the

“CC” instance created, both Server AMs connect their respective “RC” instances to it.

The second depicted setting (Figure 7.9-(t2)) includes an additional Gateway Node that also belongs

to the Grenoble Scope. On the Server and Datacentre Nodes the resolution process is executed as before

(setting t1). On the additional Gateway Node the Autonomic Manager first creates an “HC” Mediator

instance and then connects it to an “RC” instance, which it finds on one of the Servers in the Grenoble

Scope. Whenever resource probes are added to the gateway – e.g. “GP”, “WP” and “EP” instances in the

figure – the Autonomic Manager connects them to the local “HC” instance.

Finally, the third depicted setting (Figure 7.9-(t3)) includes three more Gateway Nodes in the Grenoble

Scope; resulting in a total of four Grenoble Gateways. On the Server and Datacentre Nodes the resolution

process is executed as before (setting t1). On each of the Gateway Nodes the resolution process proceeds

as described before (setting t2). Note here that the Autonomic Managers running on different Gateway

Nodes may connect their local “HC” instances to remote “RC” instances located on different Server Nodes

– e.g. the “HC” instances on Gateways 1 and 2 are connected to the “RC” instance on Server 1; and the

“HC” instances on Gateways 3 and 4 are connected to the “RC” instance on Server 2. In the illustrated

example, this can be due to a “hasMaxInputComponents” Goal Property defined on the “RC” component

and configured with a maximum value of “2” (this case was exemplified in Figure 7.6, even if with a dif-

ferent value - “5”). In the absence of this constraint, different “HC” instances may still end-up connected

162

to “RC” instances on different Severs, since the search procedure of the various Gateway Autonomic Man-

agers may return “RC” instances on different Sever Nodes (even if this is not the case in the prototype’s

current search implementation).

(a)

(b)

(c)

Figure 7.10: Number of control messages exchanged among Autonomic Managers (AMs) during the ini-

tial process of archetype resolution and mediation chain instantiation: (a) total number of control messages

exchanged by all AMs; (b) average number of control messages per AM; (c) number of control messages

exchanged by AMs located in different scopes.

163

Figure 7.10 depicts the results we obtained in relation to the number of control messages exchanged

during the experiments. Between successive experiments the number of Gateways was increased progres-

sively – i.e. from one to forty Home Gateways, with AM identifiers from 11 to 50, respectively. The

first diagram (Figure 7.10-(a)) shows the total number of control messages exchanged by all Autonomic

Managers during the initial resolution process; that is, between the moment when the Cube platform was

started and the moment the distributed mediation chain was complete. We differentiate between two main

types of control messages. First, we consider messages related solely to the functioning of the Archetype

Resolver – i.e. direct communication between remote Archetype Resolvers. For instance, this can occur

when interconnecting distributed component instances managed by the two resolvers. Second, we con-

sider control messages related to the Runtime Model Controller - i.e. communication between remote

Runtime Model Controllers. This type of communication is typically triggered by an Archetype Resolver

in search for a solution that surpasses the boundaries of its local Runtime Model.

The obtained results (Figure 7.10-(a)) indicate that the total number of exchanged messages increases

linearly with the total number of connected house Gateways. The additional messages that occur from one

experiment to the next are generated by the Autonomic Manager of the new added house, as part of its

interaction with (some of) the other Autonomic Managers in the system (e.g. scope leaders and managers

of remote nodes). More precisely, adding a new house generates about 50 additional messages. These

include exchanges with the Scope Master and the city Scope Leader, as well as querying the Runtime

Model of other Autonomic Managers. The linear increase of communication overheads with the num-

ber of decentralised Autonomic Managers indicates the scalability of the Cube framework solution and

prototype.

We’d like to emphasise here that these messages are only those needed to self-initialize the distributed

mediation chain. Messages required for future adaptations are not taken into consideration at this point.

Adaptation procedures will be the subject of the second case study (section 7.3). This being said, the

viability and performance characteristics of adaptation operations will be very similar, or identical, to

those of the initial instantiation process, since the same resolution procedures are being employed.

The second diagram (Figure 7.10-(b)) shows the average number of messages per Autonomic Man-

ager, during each experiment. This number remains unchanged despite the increasing number of the

connected houses. This result confirms the good scalability of the Cube framework with respect to the

number of independent Autonomic Managers involved in the system. This is an encouraging result, since

scalability was one of the main motivations behind choosing a decentralised management solution within

the Cube project. In the third diagram (Figure 7.10-(c)), we analyse in more detail the control messages

exchanged by Autonomic Managers located in each scope of the Cube system – Grenoble, Paris and Cen-

tral scopes. As we have mentioned before, in this case study we start by connecting Grenoble Gateways,

then Paris Gateways, progressively, across successive experiments.

We notice that the number of messages exchanged within the Central scope remains stable throughout

the experiments. This is due to the fact that the Autonomic Manager administrating this scope is not

directly affected by the addition of new Gateways; this means that it performs no additional resolution

procedures when new house platforms join the system.

Conversely, within the Grenoble city scope, the number of messages issued by Autonomic Managers

in this scope increases when the number of the connected houses increases. This is due to the fact that

an additional Autonomic Manager is added for administrating each new house and its resolution process

relies on remote communication with other Autonomic Managers (discussed above). In later experiments,

when we stop adding Grenoble houses and start adding Paris houses, the number of messages in the

Grenoble scope remains stable.

Within the Paris city scope, the number of messages was stable during the first experiments, when

164

we only had Grenoble houses connected to the system. The only few messages exchanged during these

experiments were generated by the Paris Servers (5 servers). Namely, the Autonomic Manager on each

Paris Server had to create a local mediation chain and connect it to a remote chain, so as to meet the

related archetype goals (subsection 7.2.4.3). Hence, one “RC” component is instantiated in each Paris

Server and connected to the one “CC” component instance that is instantiated on one of these Servers; in

turn, the “CC” instance is connected to the “NA” component instance located in the Datacentre. In the

later experiments where we start adding Paris Gateways the number of messages exchanged within the

Paris Scope increases linearly.

For the very last experiment, which includes all the 40 Home Gateways - 15 in Grenoble and 25 in

Paris - we have analysed the number of control messages exchanged by each Autonomic Manager (listed

in table 7.3, above). Figure 7.11 shows the obtained results.

Figure 7.11: Average number of control messages for Scope formation and Archetype part resolution

The average number of exchanged control messages were approximately the same across Autonomic

Managers running on home gateways, since they all performed similar tasks (AM indexes 11 to 25 for

Grenoble gateways, and 26 to 50 for Paris gateways). A similar situation can be observed for Autonomic

Managers managing server nodes (AM indexes 3 to 5 for Grenoble, and 6 to 10 for Paris). However, among

the Autonomic Managers running on servers of the same city, one particular Autonomic Manager features

a significantly higher number of control messages. These two Autonomics Managers (AM with index 3

for Grenoble and AM with index 6 for Paris) correspond to scope leaders in the respective city scopes.

Therefore, in addition to resolving their corresponding archetype parts, they also respond to requests

from other Autonomic Managers. Most of these requests are part of the searching process performed by

Autonomic Managers for finding Nodes that fit a certain archetype description. A similar situation applies

to the Master Autonomic Manager (index 1), which responds to requests for scope leaders.

165

Figure 7.12: Average number of control messages for Scope formation and Archetype part resolution

Figure 7.12 shows the measured execution times that Autonomic Managers took for determining and

resolving their archetype parts (or local constraint graphs). These execution times do not include the

technology-specific delays for the actual creation and interconnection of Mediator instances once the

corresponding Runtime Models are validated.

The first Autonomic Manager containing the Master instance features zero resolution time. This is

because in the Archetype specification of this case study, there is no Goal Property associated with the

Master Description Element. Also, the measured resolution time only includes actions related to the at-

tempts of the Autonomic Manager under investigation to resolve its own archetype part; it hence excludes

any time spent in collaborations with other Autonomic Managers for fulfilling their goals. The resolu-

tion times for the remaining Autonomic Managers is generally between 40 and 200 ms. For instance, the

resolution time of the Autonomic Manager controlling the Datacentre (index 2) is about 65 ms.

This figure shows how the necessary resolution time (and so the self-management tasks) for resolving

the entire archetype is partitioned among the different Autonomic Managers. Hence, Cube framework

handles the scalability concerns raised when adding new managed platforms by adding corresponding

Autonomic Managers for sharing the extra administrative load. These results show the importance of

using a decentralised organisation for the self-management of large-scale mediation systems.

166

7.3 Case Study 2: health-care monitoring system

In this section, we describe our evaluation of the Cube framework in the context of the Medical project3.

We begin by a short introduction of the Medical project and its objectives. We then concentrate on our

contribution to this project and the use case where Cube was employed.

7.3.1 Context

Health-care at home represents an increasingly important and required service in most developed coun-

tries. Indeed, the average population of these countries has been aging progressively over the last decades

and is estimated to continue this trend over the following decades. At the same time, the number of se-

niors residing at home, and/or, in a situation of dependence, increases due to both economic factors and

personal choices.

In this societal context, it is important for governments and service providers to rely on modern in-

formation technologies for developing appropriate living environments, offering innovative healthcare

services to senior individuals. Technological advancements in embedded devices, communications and

digital home services can be capitalised upon to provide increasing support for this kind of health-care

services.

However, introducing such services raises multiple technical challenges related to the implementation,

maintenance, and evolution of such services. Basically, all services will rely on data collected from

specific devices situated in the homes and transmitted over a network to healthcare-related applications

(Figure 7.13). Developing, deploying and maintaining data-mediation software and infrastructure for

integrating monitoring devices with service applications is a difficult task, at best.

Some of the main technical challenges are due to the heterogeneity of devices and data, the high

dynamicity of devices, and the behaviour of home residents. In addition, users may want to reuse their

devices when subscribing to various services, offered by different providers, which further increases het-

erogeneity and exacerbates the problem. Users may also change their preferences and subscribe to various

providers over time, requiring the mediation logic to adapt accordingly. Finally, as healthcare services be-

come increasingly popular, the underlying infrastructure and mediation logic will have to correspondingly

scale and adapt.

These considerations indicate the need for a special-purpose mediation middleware to be introduced

in-between home devices and healthcare applications. Such mediation system should be managed by

a third party provider, in order to ensure a clear separation, both technical and administrative, between

home residents and healthcare service providers. This third party provider would bring in the specific

data-mediation expertise, hence allowing the other two parties to concentrate on their specific concerns.

For these reasons, the Medical Project - funded by the OSEO4 and the Conseil Général de l’Isère and

led by Orange Labs5 (France) - aims to develop a solution that meets these requirements. Technically

speaking, Medical focuses on the design, development and administration of an integration middleware

for digital healthcare services. Since the proposed solution is rather generic, it will be applicable to a wide

range of digital home services, pertaining to various domains, beyond the healthcare realm (e.g. home

entertainment and security).

In addition to the actual development of such mediation middleware, its subsequent deployment and

runtime management raise more significant challenges. On the user side, technological homecare services

cannot be managed by residents who are not technical experts. For instance, this would involve operations

3http://medical.imag.fr
4http://www.oseo.fr
5http://www.orange.com/

167

Patient's Home

Sensor

devices

Data Collection and Mediation Services

Health-care

Service Applications

Patient's Home

Sensor

devices

Patient's Home

Sensor

devices

Figure 7.13: Data-mediation software for health-care service applications

such as the deployment, instantiation and configuration of specific device adapters that would inject mon-

itored data through mediation chains customised for a targeted service. Similarly, service providers may

find it difficult and costly to manually connect their services to mediation chains, potentially requiring

specific adaptations. Finally, on the mediation provider side, the main challenges consist in adapting the

mediation infrastructure to changing environments and evolving clients, and in repairing it when crashes

occur. Therefore, Medical project aims to also endow the proposed integration middleware with auto-

nomic management capabilities. Cube framework was adopted for addressing these issues as discussed

later in this section.

Two use cases are targeted within the Medical Project:

• Behaviour Monitoring: aims to construct a model that represents the behaviour of patients in their

homes, that would help detect anomalies, or deviations from the ‘normal’ behaviour, indicating

potential health problems. This use case requires equipping the house with sensor devices, such as

presence detectors.

• Health-care Monitoring: aims to facilitate access to data issued from medical sensors, like blood

pressure or sugar level monitors, by doctors or family of the patient under medical surveillance.

These data are collected at home and forwarded to intermediate servers for processing, persistence

and comprehensive reporting.

The solution proposed by the Medical project is based on innovative technologies such as OSGi, iPOJO

(both described in the previous chapter 6), OW2 Joram , and Cilia mediation framework (described in

section 7.1.2). We have used Cube to provide the self-management capabilities in the context of the

second use case “Healthcare Monitoring”. In the next section we detail the targeted managed system, and

farther on we outline the addressed problems and how Cube was used to ensure autonomic capabilities.

7.3.2 Managed System

The overall system for the Healthcare Monitoring scenario functions as follows. Physiological data are

collected by sensors installed in the patient’s house. These data are sent to one or several intermediate

168

server(s) where data is processed and persisted so that authorised professionals like medical staff or family

can access and view it.

At the home level, no processing of the sensed data is performed. Rather, collected data is forwarded

directly to an intermediate data-mediation provider, where it is processed (e.g. aggregated, filtered, or

translated) and then sent to one or several Personal Health Record (PHR) provider(s), like Google Health,

Microsoft Health Vault, and so on. Health professionals and the patient’s family can access the processed

data by subscribing and connecting to such PHR(s).

Figure 7.14 shows the mediation chain that was designed within the Medical project for the Healthcare

Monitoring scenario, for processing and transporting data between home devices and PHR providers. The

mediation chain is rather simple, based on a pipe-line architectural style, involving several mediators and

bindings.

AHD-Box HL7-router HL7-validator
Continual

Validator

Translation

HL7

PHR

Integration

Figure 7.14: Architecture of the mediation chain of "Health-care monitoring" use case

This mediation chain executes on top of a distributed platform, or infrastructure, which is provided by

the intermediate data-mediation provider and located between the patient’s home and the PHR provider(s).

The precise definition and functioning of each mediator in the exemplified chain is beyond the scope of our

validation process. Since our focus is on the initial deployment and runtime management of the mediation

chain, we are merely interested in the architecture of the mediation system and in some of its quality

attributes, like availability, reliability, and so on.

The exact system settings at the home level are also beyond our self-management interests within this

use case. In general, at this level, a house gateway is connected to several types of sensors, such as balance,

sphygmomanometer, frequency meter, and so on. This gateway is connected to the Internet to allow

sending the collected data to the intermediate mediation provider. From our perspective, the necessary

sensor drivers and services are already installed in the gateway (e.g. when the gateway is activated and

connected to the Internet). One important technical aspect to notice at this level is the presence of a local

Web Service (WS) allowing the intermediate mediation provider to get the collected data via Web Service

calls.

7.3.3 Problems and Requirements to address

From an architectural perspective, the mediation system presented in the previous section consists of a rel-

atively simple mediation chain. However, in addition to application-specific functionality, administrators

want to ensure the system’s quality of service (QoS), preferably via administration tasks that involve little

or no human interventions. We depict these objectives as follows:

1. Initial deployment, instantiation and configuration: automatically instantiating the mediators com-

posing the mediation chain, on the servers provided by the distributed infrastructure. The necessary

mediator types and their interconnections were specified in the previous subsection (Figure 7.14).

The input data for the mediation chain is obtained from the gateways of the various participating

houses. Each new integrated house should be connected to this mediation system. The output data

from the mediation chain is sent to the list of PHR provider partners.

2. Managing workload variations: automatically performing load-balancing of incoming workloads

169

across several mediation servers. This implies the automatic duplication of the mediation chain

across several servers so as to support overloads and to ensure that the processing time of incoming

messages does not exceed a predefined threshold. Similarly, when the incoming load is decreasing,

some of the servers could be stopped (and their mediation chain replicas removed) automatically.

This approach can help optimise resource utilization.

3. Integrating new PHR providers: automatically modifying the mediation chain (and all its replicas

on load-balancing servers) so that the processed data can be sent to new PHR providers, without

stopping and reconfiguring the entire mediation system.

7.3.4 Solution proposed

In this subsection we detail the solution we propose for addressing the administrative problems discussed

in the previous subsection. Figure 7.15 details the overall architecture of the proposed mediation system

located within the “Intermediate Mediation Infrastructure”. The infrastructure is divided into two main

clusters. The first cluster plays the role of aggregating data from the various houses. The second cluster

performs the mediation operations on the received data. As illustrated in the figure, the mediation chain

is distributed across servers in both clusters, either for splitting the mediation logic or for load-balancing

purposes. We use Cube to self-manage this mediation system and hence to tackle the aforementioned

problems and requirements.

Mediation Cluster

Inactive mediation server

Active mediation server

PHR2

PHR1

Load-balancer

Active mediation server

Intermediate Mediation Infrastructure

Aggregation Cluster

Aggregation

server

Home Gateway

Home Gateway

Cilia Adapter

Cilia Mediator

Figure 7.15: Overall mediation architecture with load-balancing between mediation servers

As previously indicated, data is collected from the participating houses using Web Service calls. We

use a special-purpose Cilia Adapter for achieving this. This Adapter is inserted at the beginning of the

mediation chain and configured to probe the various house gateways, in order to obtain the local sensed

data. Therefore, this Adapter is deployed and executed on a server in the Aggregation Cluster (named

Aggregation Server).

The collected data is then forwarded to a server in the Mediation Cluster (named Mediation Server),

which contains the aforementioned mediation chain (Figure 7.14). Two further Adapters are necessary

– one on the Aggregator Server (out) and one on the Mediation Server (in) - to ensure the distributed

communication between these two servers. As discussed before, servers in the Mediation Cluster can

be replicated (together with the mediation chains) to provide load-balancing capabilities and avoid sys-

170

tem overloads. A load-balancer mediator is introduced onto the Aggregation Server for distributing the

collected data among Mediation Server replicas.

Data obtained at the end of the mediation chain is sent to the connected PHR providers. An additional

Adapter is appended to each mediation chain (replica) for converting the processed data into a PHR-

specific format. Finally, as before, this Adapter is also used to send data to each remote PHR, via specific

protocols and communication technologies.

Let us now take a quick look at the way in which the load-balancing is designed in the current proto-

type; more details are introduced later in this section. The mediation chain performs the same tasks for

each data message received. However, the processing time of each message is different (e.g. messages

have different sizes). Administrators typically set in place service level agreements for guarantying that

message processing induce limited latencies. To provide such guarantees, whenever a server is loaded at

more than a fixed level (for instance 70%), Cube should activate another server, duplicate the mediation

chain and connect it to the load-balancer (located on the aggregation server) to receive data to process.

This procedure will reduce the number of messages to be processed by the overloaded server and ensures

that latency remains within the acceptable interval. Conversely, when the number of input messages de-

creases and/or the total cluster load can be undertaken by fewer servers, Cube automatically deactivates

the extra mediation servers so as to minimise the consumption of server resources.

In the following, we explain the different steps involved when using the Cube framework for manag-

ing the exemplified mediation system. We start by outlining the necessary model abstractions. Recall that

model abstractions are used to represent the managed system elements at runtime (see section 5.2 of chap-

ter 5). Then, we outline the list of extensions used, some of which were implemented specifically for this

use case. Finally, we detail the proposed Archetype specification to describe the different administration

goals.

7.3.4.1 Model Abstractions

As in the first case study (section 7.2), we use the model abstractions provided by the Core Extension of the

Cube framework. Namely, we use the Component, Node, Scope and Master abstract managed elements to

write the Archetype specification. Table 7.4 summarises the mapping of these abstractions onto concrete

system elements managed in this use case. It shows how Cube framework’s core abstractions are extended

to represent domain-specific abstractions for modelling this specific use case. For instance, the Component

concept is mapped onto Cilia Mediators and Adapters using the Cilia Extension. Additional extensions

were implemented for PHR integration and Load Balancing (as discussed below).

7.3.4.2 Extensions

Table 7.5 summaries the list of the extensions used for this case study. Among them, two new extensions

were implemented specifically to handle the particular requirements of this second case study. These new

extensions handle the load-balancing mechanisms and the integration of new PHR providers.

Core Extension

The Core Extension provides all the model abstractions used in this use case – Component, Node, Scope

and Master - as well as the majority of their related Archetype Properties (Description and Goal Proper-

ties), and their associated resolvers.

171

Table 7.4: Model abstractions for the second case study

Model Element Semantic

Component Used as an abstraction for Cilia Mediators and Adapters (like in the first case

study).

Node Used as an abstraction for OSGi platforms. Each OSGi platform contains a local

mediation chain with a set of Mediators (and Adapters). It has the following two

properties:

• cpu: contains the medium value of the monitored CPU load, over a fixed

interval. It is set by the Load Balancing (LB) Extension (discussed below).

• active: if set to “true”, the corresponding Node is considered to be active.

This means that the managed server modelled by this Node abstraction is

currently being employed in the mediation infrastructure (to host and

execute mediation chains).

Scope Used as a grouping abstraction for a set of OSGi platforms to simplify goal

descriptions and to help coordinate the distributed resolution process. We use

this model abstraction to regroup the OSGi platforms of the same cluster. We

need to set the following property of the Scope element:

• scopeId: the unique identifier of the Scope element.

Since we only have two scopes in our case study - one for regrouping the nodes

of the mediation cluster and the other for the nodes of the aggregation cluster -

we do not use scope types in this use case; the identifier of each scope will

suffice.

Master Used as a global leader abstraction for coordinating the system’s Scopes. In this

case study, we instantiate the Master element in a dedicated Cube Autonomic

Manager. It only holds the two references to the leaders of the two Scopes.

Table 7.5: Case study 2: extensions used and their configuration properties

Extension Name Extension Namespace Configuration Properties

Core Extension fr.liglab.adele.cube.core master

Cilia Extension fr.liglab.adele.cube.cilia
jms.server

jms.port

PHR Extension fr.liglab.adele.cube.phr
interval

phr-providers-file

LB Extension fr.liglab.adele.cube.loadbalancing
interval

max-limit

172

Cilia Extension

The principal role of the Cilia Extension is to synchronise the Runtime Model state in the Cube Autonomic

Manager with the actual Cilia chain in the managed system (as explained in section 6.4.4 of chapter 6).

Let us illustrate this here for the case where Cube decides to remove a (part of a) mediation chain. When

Cube’s archetype resolver removes one or several Component instances from the Runtime Model (rep-

resenting Cilia mediators), the Cilia Extension consequently removes the corresponding Cilia mediators

from the concrete mediation chain. To ensure consistency and avoid data losses, each Cilia mediator

is only removed once all its buffered data waiting for processing have been treated and all its on-going

processing operations have been completed.

PHR Extension

We proposed and implemented the PHR extension to allow integrating new PHR providers into the Medi-

ation system. This extension reads a file located in the local file system, or on a remote server (specified

in the phr-providers-file configuration property). This file contains the list of all PHR providers

recognised by the system. The PHR Extension reads this file at predefined times (specified in the interval

configuration property) in order to determine if any new provider has joined or left the system (added or

removed from the PHR list, respectively). For each entry, the PHR Extension creates a new Component

instance of type “PHR-integration” having a property “adapter-component” containing the name of the

Cilia Adapter responsible for sending the data to that specific PHR provider. The Archetype resolver

integrates this instance at the end of the mediation chain (as specified in the Archetype).

LB Extension

The load-balancing Extension (named LB Extension) allows activating or deactivating Nodes depending

on the total load of the active mediation servers at any given time. This extension can change the “active”

property value of the Node instance. We use this “active” property in the Archetype to specify what to do

in the case this property changes. When the Node instance is active (“active” property is set to “true”),

the mediation chain specific to the use case is instantiated and configured to receive data from the Load-

Balancing Cilia mediator (located on the Aggregation Server). When the Node becomes inactive (“active”

property is set to “false”), the mediation chain is stopped and removed from the corresponding Mediation

Server.

The LB Extension plays the following two roles:

1. It monitors the CPU consumption of the executing servers and updates the “cpu” property of its

corresponding Node instance in the Cube’s Runtime Model part (Figure 7.16). In the actual LB

Extension implemented, we simply provide simulated CPU values at random.

2. It calculates the global load of all the active nodes in the mediation cluster, and decides to activate

or deactivate some nodes so as to remain within an acceptable load interval. This function is called

at every interval (specified as a configuration property of the LB Extension).

With respect our evaluation purposes the main role of the simulated CPU values and load evaluation al-

gorithm is to trigger Cube’s capabilities for automatic replication or removal of mediation chains, hence

highlighting Cube’s load-balancing and system scalability features. More realistic monitoring, load esti-

mation and server provisioning functions can be introduced in real use case scenarios.

Figure 7.16 shows a complete example of the extensions used for this use case. In this figure we do

not show the Core Extension which is present in all the Autonomic Managers. A separate Autonomic

173

Manager is used to play the role of the Master node containing the list of scope leaders. The content of

the Autonomic Managers’ Runtime Model corresponds to what is specified as objectives in the Archetype

(detailed next). In the Aggregation Servers, we only use the Cilia Extension (and the Core Extension) to

control the local mediation chain. However, at the Mediation cluster level, we add the PHR and LB Exten-

sions to each Autonomic Manager to ensure the load-balancing functionality and the dynamic integration

of new PHR providers.

Cube

Autonomic

Managers

(Runtime Model)

NNN

S

M

Cilia

Modify

Cilia

Mediators

Active Node Inactive Node

Scope

Leader

Managed

System

Master

Mediation Cluster

Cube

Extensions

CC C CC

LB CiliaPHR LB CiliaPHR

M : Master

S : Scope

N : Node

C : Component

Monitor

processed

messages

Aggregation Cluster

S

Scope

Leader

N

Active Node

C CC

LB CiliaPHR

Figure 7.16: Cube Extensions for case study 2

7.3.4.3 Archetype

In this section, we detail the proposed Archetype specification for this case study. For simplicity, we

divide the Archetype into several parts; each one is explained separately and is intended for a particular

purpose. The entire Archetype XML file is listed in Appendix C.

The first goal to achieve is to regroup the available servers into clusters so that we can then apply

common goals to each cluster and facilitate the Archetype Resolver’s work. For this aim, we use the

Scope element provided by the Core Extension. A Scope instance contains a list of Nodes, and is located

only in the Autonomic Manager playing the scope leader role. This leader is selected dynamically, so that

if the current leader fails a new one can be selected instead. Figure 7.17 shows the Archetype part that

is concerned with the specification of this first goal (dynamic scope membership). The Archetype part is

represented based on a graph-like format (section 5.3 of chapter 5), for clarity.

This part of the Archetype aims to assign each Server to the adequate scope, as soon as the server is

integrated into the managed system. Namely, Aggregation Servers are assigned to the “AggregationClus-

ter” scope, while Mediation Servers to the “MediationCluster” scope. In this case, we use the “inScope”

Goal Property with a “Find or Create” resolution strategy. Hence, whenever a new Mediation Server is

added to the system, Cube will first try to find a scope leader for the MediationCluster scope. If such scope

174

N

MediationServer

hasNodeType

InScope [FC]

N

AggregationServer

hasNodeType

InScope [FC]

locatedIn

cube://192.168.0.1:38000

S

MediationCluster

hasScopeId

controlledBy

M

S

AggregationCluster

hasScopeId

controlledBy

M : Master

S : Scope

N : Node

Figure 7.17: Archetype part for use case 2: dynamic scope management

leader is found, the new server is registered with the leader. This means that the scope instance will add

the UUID of the new Node instance to the list of nodes members of this scope. Otherwise, Cube creates a

new scope instance which will be the scope’s leader. This instance is placed in the Autonomic Manager

of the newly integrated Server. The two scopes are controlled by a Master instance located (statically) in

Cube’s Autonomic Manager identified by a predefined URI (cube://192.168.0.1:38000).

Figure 7.18 shows how Component types are specified to form the first part of the mediation chain,

which is to be located on the Aggregation Server. In this scenario, we want Cube to create this mediation

chain automatically, as soon as the Aggregation Server is activated. Therefore, we use the “hasCompo-

nent” Goal Property, and the associated “Create” strategy. This binary Goal Property takes as parameters

the description of the Aggregation Server and the description of the first Component (“WSProbe”) of the

mediation chain. It indicates that a “WSProbe” Component must be created on each Aggregation Server.

Figure 7.18 illustrates this Goal Property via an arc connecting the Node (N) - that “hasNodeType” “Ag-

gregationServer” – to the Component (C) – that “hasComponentType” “WSProbe”. This Component’s

description also includes the location of the Web Service Sources file, which contains the addresses of the

Web Service Endpoints representing the connected houses (“hasWSSources” Description Property).

hasComponentType

WSProbe

connected [FC]

CN

hasComponentType

LoadBalancer

C

hasComponent [C]

onSameNode

file:///ws-endpoints.xml
hasWSSources

AggregationServer

hasNodeType

Loadbalancing
hasDispatcher

C : Component

N : Node

Figure 7.18: Archetype part for use case 2: self-creating components on the Aggregation Server

When the “WSProbe” Component is created, we should connect it to another Component that can

dispatch data messages to the mediation infrastructure. We use the “connected” Goal Property for this

aim. The object element of this goal is a description of the required Component, which is of type “Load-

Balancer”. Note that we also added the “hasDispatcher” Description Property to it, with the associated

value “LoadBalancing”, to make sure it provides the necessary load-balancing functions. The effect of

this description is the addition and setting of a particular Cilia property in the newly created Component

175

instance; this property is called “dispatcher” and will be assigned a “loadbalancing” value. This model

property is then used by the Cilia Extension when instantiating the corresponding Mediator, in order to

set a Load-balancing Cilia Dispatcher for this Mediator.

Once the LoadBalancer Mediator is added, the aggregated data is sent to a different destination (Me-

diation Server) each time. In reality, an additional Component of a specific Adapter type must also be

used to ensure remote communication; this will be created automatically by Cilia extension when detect-

ing remote references. Finally, we also added the “onSameNode” Description Property between the two

Component types, in order to force the “LoadBalancer” Component instance to be created on the same

server as the “WSProbe” Component instance.

At the Mediation Server level, we set up the remaining mediation chain as described before (Figure

7.8bis). Some additional considerations must be taken into account at this point. First, the foremost

mediator in this chain should connect to the Aggregation Server, in order to receive the aggregated data

collected from houses. Second, once this first mediator is created, the remaining mediators in the chain

should be created automatically, so as to correspond to the targeted architecture. Last, we should be able

to add new PHR providers without stopping the mediation infrastructure. Figure 7.19 shows the corre-

sponding Archetype part for ensuring the two first objectives, while Figure 7.20 shows the corresponding

Archetype part for ensuring the third objective.

HL7-Validator

Validator

Translator

hasComponentType

C

hasComponentType

C

hasComponentType

C

connected [FC]

connected [FC]

hasComponentType

LoadBalancer

CAggregationServer N
hasNodeType onNode

hasSourceComponent [F]

N
hasNodeType

hasComponent [C]

MediationServer

onSameNode

onSameNode

onNode

active:true

hasProperty

Multicast
hasDispatcher

hasComponentType

AHD-Box

C

hasComponentType

HL7-Router

C

connected [FC]

connected [FC]

C : Component

N : Node

locatedIn

cube://192.168.0.1:38000

SAggregationCluster
hasScopeId controlledBy

M

S : Scope

M : Master

onSameNode

onSameNode

inScope

Figure 7.19: Archetype part for use case 2: self-creating components on each Mediation Server

176

Whenever a Node instance representing an active Mediation Server is added to the Runtime Model,

Cube automatically creates a new “AHD-Box” Component instance (as seen before for the Aggregation

Server, based on the “hasComponent” Goal Property). This new Component instance should now be added

to the list of destinations of the “LoadBalancer” Component instance, which is located on the Aggrega-

tion Server (discussed above). We use the “hasSourceComponent” Goal Property (with an associated Find

[F] strategy) to specify this objective. To reach this objective, Cube looks for a “LoadBalancer” Compo-

nent instance that matches the Description Properties provided in the Archetype for the “LoadBalancer”

element. These properties indicate that the “LoadBalancer” Component is located on a Node that has “Ag-

gregationServer” as type, and which is located within a Scope identified by “AggregationCluster”. The

Master address from which Scope instances can be retrieved using their unique identifiers is also specified

in the Archetype (using the “controlledBy” Description Property for the Scope).

The same “AHD-Box” Component instance should also be connected to the next mediator - called

“HL7-Router”. This mediator Component is constrained to be located on the same Node as the “AHD-

Box” mediator Component. The same location constraint is defined for all the other mediation Com-

ponents in the chain. Finally, the last mediator Component, “Translator”, is created with a “multicast”

dispatcher to allow sending a copy of the processed data to all the available PHR integration components

(as discussed next).

PHR-Integration

hasComponentType

C

hasSourceComponent [F]

Translator

hasComponentType

C

onSameNode

Figure 7.20: Archetype part for use case 2: self-integrating new PHR providers

To install a new PHR provider, the PHR Extension is configured to pull periodically a specific file

containing the list of providers (phr-providers-file configuration property). On each Mediation Server, the

PHR Extension creates a “PHR Integration” Component instance in the local Runtime Model, with prop-

erties related to the manner in which the data is addressed to the PHR provider (e.g. the PHR provider’s

Web Service endpoint). When created, the “PHR Integration” Component instance is automatically con-

nected to the last mediator of the mediation chain - “Translator”. We de describe this objective using the

Archetype part depicted in Figure 7.20.

N
hasNoComponents []

all

MediationServer

hasNodeType

active:false

hasProperty

Figure 7.21: Archetype part for use case 2: self-removing mediation chains from inactive servers

Finally, to handle the case in which a Mediation Server is deactivated by the LB Extension (load-

balancing), we add the following archetype specification (Figure 7.21). If a Mediation Server’s Node

177

instance becomes inactive (“active” property is set to “false”), then Cube removes all the Component

instances from the local Runtime Model. This will imply removing the corresponding Cilia mediators

from the local OSGi platform. This behaviour is obtained by using the “hasNoComponents” Goal Property

on all Nodes of type “MediatorServer” having an active property set to “false”.

7.3.5 Scenarios and results

To evaluate the viability of the proposed solution we executed several OSGi platforms in parallel, on one

machine, to simulate the different Aggregation and Mediation servers. We have used the following server

configurations (Table 7.6):

Table 7.6: Testing configuration for case study 2

AM n° Symbolic Name Role

1 master Autonomic Manager used to host the Master instance. It has the

following url: cube://localhost:38000

2 aggsrv Used to manage the single Aggregation Server.

3 medsrv1 Used to manage the first Mediation Server.

4 medsrv2 Used to manage the second Mediation Server.

5 medsrv3 Used to manage the third Mediation Server.

6 medsrv4 Used to manage the fourth Mediation Server.

The main purpose of this evaluation was to determine Cube’s capability to: scale the mediation appli-

cation up and down depending on fluctuating workloads (load-balancing function); extend the mediation

chain to support new PHRs (self-adaptation function); and, repair the mediation chain in case of server

failures (self-repair function).

To initiate a testing session, we always start by launching the “master” Autonomic Manager. Then, all

the other AMs can be started in any order.

When the “aggsrv” server starts, it is the only server of the Aggregation Cluster. Hence, the Au-

tonomic Manager controlling it is designated to be a scope leader - it hosts the Scope instance having

“AggregationCluster” as identifier.

When the Mediation Servers start, the first one (“medsrv1”) is instantiated with the “active” property

set to “true”, while the three other ones (“medsrv2”, “medsrv3” and “medsrv4”) with the “active” property

set to “false”. This implies that only the “medsrv1” Mediation Server is active at start-up.

Load-Balancing

Figure 7.22 (a, b, c) shows different states of the four servers in the Mediation Cluster at different times.

For each state, the grey rectangles represent an inactive mediation server, while the white rectangles rep-

resent an active mediation server. In the first state (a), a single mediation server is activated (“medsrv1”).

Its CPU load (17%) does not exceed the predefined threshold (70%). In the second state (b), the server’s

CPU load has exceeded this limit, triggering Cube to activate another mediation server (“medsrv2”). Since

the activation of this new mediation server did not suffice for bringing the average server load beneath the

fixed threshold, Cube has activated a third mediation server (“medsrv3”). In this new state, the medium

CPU load on each of the three active servers does not exceed the identified threshold (70%). In the last

case (c), all the mediation servers were activated to support the load overhead.

178

(a)

17%

00%

00%

00%

(b)

70%

65%

20%

00%

(c)

72%

60%

45%

55%

active mediation server

inaactive mediation server

Runtime Model Component instance

Figure 7.22: Case study 2: load-balancing based on the average CPU load

If the total load still exceeded the fixed limit, and if there were no extra mediation servers to activate,

Cube would show a corresponding administrative message in the console, indicating the problem and

pointing system administrators to remedy the situation. In an actual production system, Cube may be

programmed to send an email to the administrators directly, to inform them about the current situation.

Self-Adaptation

In the case presented in Figure 7.22-(c) a new PHR provider was integrated with the mediation system.

This required Cube to adapt the mediation chain by adding a specific integration mediator for the new

PHR. This change had to be performed for all the chain replicas executing on all the active mediation

servers. As described before (in the ‘Archetype’ part of subsection 7.3.4), a PHR Extension is associated

to each Autonomic Manager of a Mediation Server. This PHR Extension detects the addition of a new

PHR provider and creates a corresponding Component instance for enabling its integration (see the “PHR-

Integration” Component Type defined in the Archetype part in Figure 7.20).

When this component instance is added Cube analyses the Archetype and finds that any instance of this

component type must be connected to a source component (of Type “Translator”) for its data provisioning

– see the “hasSourceComponent” Goal Property in Figure 7.20. Hence, Cube must modify the local

mediation chain so that the processed data is also forwarded to the new “PHR-Integration” component

and so to the new PHR provider. This runtime adaptation is applied locally, with no communication

between Autonomic Managers, since the newly created component and the rest of the mediation chain

reside on the same Node.

Self-repair

Let us now illustrate the self-healing capability of the mediation cluster when managed by the Cube frame-

work (Figure 7.23). Continuing the previous scenario, we now simulate that one Mediation Server goes

down. Here, we differentiate between two configurations: (1) the Cube Autonomic Manager controlling

179

the broken Server is located on a different machine than the one the Server was executing on; and (2) the

Cube Autonomic Manager and the Server it controls execute on the same machine.

In the first configuration (AM and Server on different machines), the Cube Autonomic Manager de-

tects automatically that the server is broken. It then notifies the neighbouring AMs (those sharing refer-

ences with the considered AM) about the incident. Notified AMs will remove from their Runtime Models

all remote references to modelled instances located in the Runtime Model of the concerned AM.

In the second configuration (AM and Server on the same machine), the Cube Autonomic Manager

goes down together with the broken server, without getting a chance to inform the other AMs about the

incident. In this case, it is up to the neighbouring AMs (having references to instances located on the

broken AM) to detect the departure of the remote server. As described in subsection 5.4.4 of chapter 5,

this is precisely the role of the Autonomic Manager’s “LifeController”, which probes all neighbouring

AMs periodically, to check their aliveness.

In both configurations above, if the AM of the broken Server is also a Scope Leader (Figure 7.23-(a))

then the other AM members of this Scope will also detect the departure of their current Scope Leader;

also via their “LifeController”. In this case, in the Runtime Models of these AMs, all the Node instances

belonging to that Scope will have a missing reference to their required Scope (Leader) instance. Hence,

the Archetype Resolver of each AM will try to find a new Scope instance (Scope Leader), by interrogating

the Scope Master. Only one of the AMs in the Scope will create the scope instance, and become a Scope

Leader; this will be the first AM to interrogate the Scope Master. The other AMs in the Scope will make

a reference to the new scope instance.

At this point, a new Scope Leader is elected and the cluster’s load-balancer is reconfigured to no longer

send data to the broken machine (Figure 7.23-(b)). Now, if the load on the remaining mediation servers

is determined to exceed the predefined threshold, the Load Balancing Extension will activate additional

Mediation Servers (if available, as before) to absorb the additional load (Figure 7.23-(c)).

The cluster is now self-repaired, being able to provide the same mediation service as before the Server

crash.

active server
inactive server
scope leader

(c)(b)(a)

Figure 7.23: Case study 2: self-healing of the mediation cluster

180

7.4 Evaluation

In this section, we evaluate the proposed Cube framework based on the experimental results obtained

from the two use cases. Our evaluation analysis focuses on qualitative metrics related to the functioning

of the Cube system - represented by the set of Autonomic Managers as well as the managed system.

That is, we evaluate the quality attributes of the developed framework, as well as the impact of using Cube

framework on the management of targeted systems. Different qualitative attributes were outlined and used

as comparison metrics between existing Autonomic Computing frameworks in chapter 2 (section 2.5.1).

In the following, we evaluate our proposed framework against these metrics, based on the results obtained

and illustrated in the developed case cases.

Dynamic Adaptability

Dynamic Adaptability refers to the capability of a system to change during runtime. Such changes can

consist in adding, removing, or updating components and services, in order to adapt to modifications in

the user’s requirements or in the runtime conditions.

The Cube Autonomic Manager (AM) was designed to be adaptable during runtime. The different

extension points of the Cube AM follow a service-oriented architecture and are implemented on top of

the OSGi platform - the dynamic execution platform for Java. Extensions can be added and removed

dynamically to and from the AM without stopping it. The Cube framework provides a dedicated API for

handling the dynamic installation, removal or reconfiguration of AM extensions.

The same level of flexibility is also provided to handle the different AMs themselves. This means

that Cube AMs can be created, stopped, started, and removed dynamically without impacting the global

functioning of the system. If a removed AM has a certain self-management responsibility, Cube finds

another AM with equivalent capabilities automatically, in order to solve the problems caused by the de-

parture of the initial AM. Nonetheless, while this is an important self-management capability, we have not

yet explored it in the studied use cases. Cube Autonomic Managers and their Extensions are declared and

created at start-up. Some AMs were created dynamically for testing and simulation purposes only. We

discuss future works using this facility in the conclusion chapter .

In the presented use cases, we have focused on highlighting the dynamic adaptability of the managed

system, which is at the core of any self-management capability. In Cube, this capability relies mostly

on the dynamic adaptability of the Runtime Model. The content (Runtime Model element instances) is

dynamically updated by technology-specific monitors, so as to represent the current state of the managed

sub-system. It is also modified dynamically by the Archetype Resolver to validate the monitored state, or,

in case the state cannot be validated, to propose new solutions. Technology-specific executors reflect the

Runtime Model changes into the managed system. This renders the managed system itself dynamically

adaptable.

Scalability

Cube features a decentralized architecture consisting of a set of Autonomic Managers, which share and

strive to reach collectively the same goal specification. This decentralized self-organised approach is a

key driver of the scalability of the proposed autonomic solution.

However, actually proving that a system is really scalable can be quite challenging. The first obstacle is

the lack of a common conceptual understanding of scalability [DRW06]. Scalability can refer to different

aspects depending on each concerned system. It can refer for instance to the ability of a network to

181

support the addition of nodes; or the ability of a server system to always respond satisfactorily despite an

increasing number of requests.

In the context of our thesis, we regard scalability from a management point of view. Indeed, a new

class of software systems are coming about, which consist of large numbers of software and hardware

entities, distributed geographically and across numerous platforms, and heterogeneous. In addition, the

size and deployment scope of such systems seem to follow a general trend of continuous growth and

extension.. Managing and administrating such systems become a difficult and costly task.

Hence, autonomic systems should be scalable in the sense of supporting such system growth tenden-

cies in size and complexity. To address the scalability challenge, the main features we consider in the

Cube framework are loose coupling and decentralisation of Autonomic Managers. Loose coupling is an

important aspect for the autonomic system’s flexibility, allowing it to be changed without major difficul-

ties. Decentralisation is essential for dealing with large numbers of managed system resources and for

reacting to changes that occur at high frequencies.

We consider the loose coupling in several parts of the Cube framework: Runtime Model, Communi-

cation service, and Administration service.

At the Runtime Model level, loose coupling was considered when designing the Modelling framework

(chapter 5, section 5.2.4). In fact, the modelled element instances of the Runtime Model are related

between them using their unique identifiers (UUID). There are no direct Java references between these

objects. To illustrate the advantage of this approach, let us consider that one Runtime Model element

instance has a reference (UUID) to another local element instance. If the referenced element instance

moves to another Cube Autonomic Manager there is no need to update the value of the reference field

in the refereeing element instance. Hence, irrespectively of whether referenced instances are local or

remote, all references are based solely on UUID identifiers; no Java references and no Java interfaces are

used between instances.

The second loose coupling aspect is related to the Communication service. Indeed, Cube uses a

message-driven, non-blocking (asynchronous) communication model between the different Autonomic

Managers (see section 5.4.6 of chapter 5). We have specified a common message format and a unique

communication interface allowing the adoption of different communication implementations and proto-

cols respecting this message format. This enables Cube administrators to choose the adequate commu-

nication module case-by-case, depending on the targeted managed system, its deployment architecture

and network constraints. In this manner, the AMs’ communication-related aspects are separated from the

self-management aspects.

In all cases, there are no open connection sessions between Autonomic Managers. However, each

Autonomic Manager should monitor neighbouring AMs (managing adjacent parts of the overall solution).

This is done by exchanging messages via specifically defined protocol.

Cube’s decentralised architecture based on loosely-coupled Autonomic Managers allows scaling the

Cube system horizontally, by seamlessly duplicating the number of Autonomic Managers, so as to control

increasing numbers of managed distributed sub-systems; this capability was demonstrated in the first use

case (subsection xx). It also improves the overall reliability and robustness of the Cube system, since any

one AM can be replaced dynamically by another AM.

There is no central controller for coordinating the set of Autonomic Managers. Instead, each AM

controls a part of the managed system and collaborates with its AM neighbours (those participating in

self-managing adjacent system parts).This also implies that there is no central knowledge, hence removing

the need for a large central data store. Instead, each Autonomic Manager maintains its local knowledge,

which it interconnects with the local knowledge of neighbouring AMs that it collaborates with. Indeed,

constructing and maintaining a central model of the entire managed system would be a highly complex

182

and costly task, due to the large scale of the deployment platform, and to the recurrent changes of the

managed sub-systems and their execution environments.

A possible downside of decentralised approaches has been known to lie in the communication over-

heads induced by its coordination procedures. To circumvent this potential inconvenience in the Cube

framework, we have adopted a hierarchical solution for managing situations where remote coordination is

needed (among AMs that are not neighbours). Namely, we have introduced federation-like management at

the scope level (via scope leaders and master) to help achieve Goal Properties involving non-neighbouring

AMs. Their use was illustrated in the presented use cases (subsections 7.2 and 7.3). This hybrid approach

capitalises on decentralised control for scalability and robustness (discussed next) purposes, while also

taking advantage of the efficiency of hierarchical control to avoid coordination overheads among large

numbers of distributed AMs.

Alternatively, a completely decentralised solution can also be adopted to implement the overall Cube

approach. The particular design solution for each Cube framework will highly depend on the characteris-

tics and requirements of each managed system and application domain.

Robustness

The robustness quality metric is also related to the autonomic property: it relies, among others, on the

system’s self-healing capability, which re-establishes the managed systems in case of failures.

Cube framework supports the self-healing of the targeted managed systems, by continuously moni-

toring the system’s state, comparing it to the archetype and performing necessary changes to maintain

its validity. In addition, Cube framework provides self-healing support for its Autonomic Managers, by

incorporating a dedicated mechanism to detect the aliveness of collaborating Autonomic Managers (see

the functioning of the Life Controller module, section 5.4.4 of chapter 5). Namely, if one Autonomic

Manager fails, its neighbouring AMs discover its absence and try to find alternative solutions with other

AMs. This renders Cube system resilient to failures and hence improves its robustness and efficiency.

The decentralisation of the autonomic management process avoids the single point of failure problems.

This aspect was demonstrated in our second use case (subsection 7.3). We have tested the case in which a

failure occurs in an Autonomic Manager that plays the role of scope leader. When this AM breaks down,

its neighbouring Autonomic Managers become aware of that (via their Life Controller module). They

subsequently try to find a new scope leader, by creating a new scope instance in one of the Autonomic

Managers belonging to the same scope.

Interoperability

Interoperability is defined as “the ability of two or more systems or components to exchange information

and to use the information that has been exchanged” [EE90]. In the context of Cube, interoperability

is considered as the ability of specifying generic goals involving different heterogeneous sub-systems.

This is achieved via Cube’s Modelling framework and Archetype Specification. Each technology-specific

monitor will represent the monitored sub-system state in the Cube’s Runtime Model. This enables all

modelled element instances to be represented in a coherent manner and to have the same class-base. De-

velopers can implement Goal Properties and corresponding resolvers independently from these different

technologies, by only reading and modifying the ‘standardised’ Runtime Model element instances. Cube’s

Runtime Model is considered to be a common means of representing and sharing knowledge about various

heterogeneous sub-systems. Knowledge represented in this way can then be used by goal resolvers to find

coherent solutions, in a technology-independent way. These are then translated back into heterogeneous

solutions via technology-specific executors. We have demonstrated this capability in the second use case

183

when we have specified goals that involved two different sub-systems: the mediation chain (application

level) and the mediation servers (hardware level).

Furthermore, the local knowledge that is contained in the Runtime Model of one Autonomic Manager

can be exploited by other Autonomic Managers looking for solutions to their local problems. We have

demonstrated this distributed interoperability capability in the use cases when we imposed that one com-

ponent in one server had to be connected to another component located in another server. This type of

constraint demands that the AM hosting the initial component requests other AMs to search their local

Runtime Models for the targeted component; if this is found the two AMs connect their partial solutions

and become neighbours.

In conclusion, Cube’s generic Runtime Model format and Communication protocol enable AMs that

manage heterogeneous system parts to interoperate for achieving a global solution for the managed system.

Reusability

Reusability refers to the suitability of components and subsystems across various applications and/or use

cases. Reusability helps prevent the duplication of components and hence can reduce the implementation

time of new applications. Cube was designed with reusability as a first-class requirement. This means

that applying Cube for managing specific use cases should take relatively little development time, as the

different autonomic components that are often highly difficult and costly to build and integrate can be sim-

ply reused from previous scenarios. These include support for knowledge representation and management

(the Runtime Model), AM coordination (via Communication protocol and coordination mechanisms), AM

self-repair (via the Life Controller), and integration logic (such as the generic Resolver and support for

specific Extension plug-ins). Hence, reusing autonomic components across different autonomic systems

is highly demanded.

We have seen in chapter 6 the extension mechanisms provided by the Cube framework. These rep-

resent different extension points where developers can provide new implementations for specific cases.

Such new implementations can then be reused across subsequent projects. We have proven this capability

via the two developed use cases detailed in this chapter.

In the first use case, a single new extension (Cilia Extension) was implemented to allow the Cube

framework to self-manage mediation chains implemented using Cilia technology. Specific Cilia concepts

were directly mapped within the existing abstraction models (i.e. within the Core Extension). Thus, there

was no need to provide any new model abstractions.

Concerning the code developed for the second use case, the only new code that we had to add was

for the two new Extensions - PHR (Personal Health Record) and LB (Load Balancing). Together, the

two extensions do not exceed 100 lines of Java code. In addition to this, we had to write the application-

specific Archetype Specification (less than 50 lines of XML code) and the set of configuration files (less

than 50 lines of XML and text code). This is considered to be a very small quantity of extra-code.

Generally, the time necessary to adapt Cube for usage in these specific use cases was quite small

indeed. This was made possible by the straightforward reuse of already available Cube extensions and

tools. Particularly, we used the Core Extension’s abstract models and their related Archetype properties

for our special cases as it totally fitted our requirements for managing the application’s architecture. In the

case of the first case study, we can add to the necessary extra-code the development of the Cilia Extension.

Then we could use the same Cilia Extension for the second use case as it was concerned with the same

underlying mediation technology: Cilia.

184

Generality

The last quality metric that we evaluate is the generality of our approach.. Indeed, while the data-mediation

systems exemplified in the two use cases were both based on Cilia technology, we believe strongly that

the proposed Cube framework can apply relatively easily to data-mediation systems based on different

technologies. As we described in chapter 6 (section 6.4 “extensions”) and as we demonstrated in the two

use cases, Cube is designed to manage high system heterogeneity. Indeed, managed software systems

can be composed of different, heterogeneous sub-systems. Managing such systems requires experts from

different domains. We have proposed Cube and its Archetype specification to allow these various experts

to integrate their efforts by writing a common archetype specification for managing the entire system;

and introducing technology-specific extensions for translating between the generic solutions proposed by

Cube and the actual system resources of various types.

Furthermore, the modelling framework introduced in Cube allows representing and then self-managing

different levels of the software system, from low level hardware devices to high level software applica-

tions. This allows mastering administration objectives across all levels.

Most of the concepts, mechanisms and designs proposed for the Cube framework are pertinent, most

likely, in application domains beyond data mediation. Nonetheless, since the use cases studied during this

thesis focused solely on the data-mediation realm we limited our claims to this application area. Investi-

gations on the applicability of Cube framework in other application domains is left for future research.

7.5 Summary

In this chapter, we have evaluated our proposed Cube framework in two different case studies as part of

national research projects with industrial partners. In the first use case - monitoring the consumption of

home resources - we conducted a quantitative evaluation by measuring the self-management operations

undertaken by the Cube framework to ensure the self-creation of a distributed data mediation application.

We showed that such complex management operation can necessitate only a limited time to be carried-

out, when compared to manual or ad-hoc creation and configuration of Cilia mediation chains using tools

provided by Cilia. In the second use case - health-care monitoring system - we conducted a qualitative

evaluation of our framework. We addressed self-management operations involving different aspects. We

concluded this chapter via a discussion and evaluation of the quality attributes of our framework.

185

186

Chapter 8

Conclusion

Contents

8.1 Summary . 187

8.2 Summary of thesis contributions . 189

8.3 Limitations and perspectives . 190

8.3.1 Archetype Specification . 190

8.3.2 Runtime Autonomic Management . 191

8.3.3 Towards a reusable methodology and integrated development environment for

engineering autonomic computing systems 195

In this final chapter, we summarise the problems addressed in this thesis, we enumerate our contribu-

tions and discuss the remaining issues and limitations of our solution. We then conclude and outline some

perspectives and future work that would improve the capabilities of the proposed Cube framework.

8.1 Summary

Nowadays, software systems are becoming increasingly heterogeneous and distributed, involving several

interconnected execution platforms, like data-centres, personal computers, smart-phones, home-boxes and

sensors. Hence, system computation is dispersed across a variety of devices, featuring heterogeneous

technologies and data, and is based on an increasing number of integrated subsystems, each taking over

specific tasks. While many system parts consist of legacy applications, other parts are more open and

adaptive - they can operate in highly-dynamic conditions experiencing frequent changes in their internal

constituents and execution environment. Managing this type of software systems is becoming increas-

ingly difficult and costly. It involves complex management tasks, which are currently performed by either

human administrators - bringing in the risk of configuration errors and low reactivity - or ad-hoc manage-

ment applications - which are in turn difficult to develop and maintain. Both solutions increase system

maintenance costs significantly.

Autonomic computing has been proposed as an approach to tackle the increasing complexity of man-

aging modern-day software systems. It aims to provide self-management capabilities to software systems,

including self-configuration, self-healing, self-optimisation and self-protection. The autonomic comput-

ing initiative was detailed in chapter 2 of this thesis. In particular, we have seen that the logical reference

architecture proposed by the autonomic computing community has profoundly impacted this research do-

main and the related research efforts. This reference architecture relies on four main data-processing

187

stages – monitoring, analysis, planning and execution – interconnected into a control feedback loop

between system sensors and actuators. All processing functions share a common knowledge reposit-

ory. Different techniques and tools have been investigated and proposed in the state-of-the-art to help the

development of the four management functions and of knowledge base. Yet, the reference architecture of

autonomic computing remains at a high level of abstraction and hence requires more concrete designs and

implementations to be developed case-by-case.

Making complex computing systems self-managed involves more internal complexity. It is likely that

autonomic elements will have complex lifecycles, continuously carrying out multiple threads of activity,

and constantly sensing and responding to their execution environment. It is clear that engineering such

autonomic computing systems is an essential issue. Hence, to obtain effective autonomic systems, along

with the corresponding self-* properties, the autonomic management logic should also feature, like any

other modern software, certain quality properties such as adaptability, dynamicity, scalability, robustness,

interoperability, generality and reusability.

In chapter 2 we have studied a significant list of autonomic frameworks proposed in the state-of-the-

art, from a software engineering point of view, and we have established a way to compare them. The

most important limitations in existing works include: lack of scalability, and the associated performance

degradation; lack of support for adapting the autonomic management logic; lack of extensibility for sup-

porting the heterogeneity of managed elements in various domains; and, lack of software engineering

techniques enabling modularity and reuse.

To remedy this situation, we have studied in more depth several research approaches related to auto-

nomic computing (chapter 3) including control theory, agent-based systems, nature-inspired applications,

and architecture-based adaptation approaches. Several techniques used in our thesis proposal are inspired

from these related domains. Overall, the generic approach – the Cube project - that this thesis relies on

adopts and merges together several concepts from relevant domains, in order to form a generic solution for

self-managing modern software systems. These include the use of abstract architectural models to specify

system constraints and the decentralised context-aware reification of such models into concrete comput-

ing systems, which can hence adapt to their environments while meeting predefined goals. This thesis

takes this approach forward and proposes a reusable framework – the Cube framework - for developing

autonomic systems based on these ideas. The thesis also provides a series of framework extensions for the

data-mediation application domain.

In chapter 4, we have briefly presented our contribution to the self-management of dynamic, hetero-

geneous and large-scale software systems: the Cube framework. The proposed solution uses architectural

models to allow the right level of abstraction in knowledge representation and reasoning, and provides

common grounds for the integration of heterogeneous technologies and their associated evolutions and

extensions. It also relies on decentralised organisation of autonomic management logic to ensure better

system scalability and robustness. Namely, each Autonomic Manager only maintains a partial architec-

tural model during runtime. Managing different system parts individually and only maintaining partial

views of the running system within each Autonomic Manager contributes to the overall scalability and

survivability of the framework, and consequently of the entire autonomic system. To facilitate cooper-

ation among decentralised processes, Autonomic Managers contributing to a global system property are

dynamically set to be within a specific Scope, which corresponds to that property. This avoids degrad-

ing administration performance by minimising global communications while ensuring overall application

coherence. This feature is especially relevant in large-scale and highly-dynamic systems.

The proposed Cube framework was detailed in-depth in chapter 5. Cube framework provides reusable

and extensible support for specifying administration goals and runtime knowledge via formal modelling

languages; and a set of Autonomic Managers which use these models to adapt the managed system. As

188

part of the Cube framework, the System Modelling Language (SML) defines four modelling layers with

concepts ranging from generic to domain-specific and runtime elements. The most important layer defines

Cube’s meta-model concepts, which enables users to model managed system elements and integrate them

into the Cube framework. Part of the Cube framework prototype, we have defined a set of domain-specific

modelled elements for the data-mediation domain, which was targeted in this thesis. We have also pro-

posed and developed a Goals Description Language (GDL), which allows users to specify administration

objectives on the modelled elements via a graph-based syntax. The resulting description, called Arche-

type, is used by a set of identical Autonomic Managers to ensure the specified objectives using a distributed

constraints-resolution algorithm.

With respect to Cube’s Autonomic Manager design, most of its internal modules are made extensible

so as to facilitate the adoption and customisation of the Cube framework across various targeted domains

and applications. The design and implementation of the proposed Cube framework was detailed in chapter

6. The provided description covers the runtime infrastructure, extensions and utilities. We have also

detailed the implementation choices - based mainly on standards like OSGi and XML - and explained the

main Java classes of the implemented prototype.

Cube framework and its prototype implementation were evaluated in chapter 7. The Cube proto-

type was employed to provide autonomic features in the context of two national research projects: ANR

Self-XL and MINALOGIC Medical. Within the first project, we conducted a quantitative and qualitative

evaluation by monitoring Cube framework’s operations when self-creating a distributed data-mediation

application. We showed the framework’s capability of instantiating and configuring the targeted applic-

ation automatically, on an increasing number of distributed platforms. First, rather unsurprisingly, the

measures confirmed that carrying-out such complex management operations via the framework will ne-

cessitate only a limited time when compared to manual or ad-hoc procedures. Second, more importantly,

results indicated the way in which the Cube framework would scale with the increasing number of man-

aged platforms and application components. Within the second project, we have conducted a more ex-

tended evaluation of our framework, both functional and qualitative, via a use case involving different

self-management operations. These experiments highlighted Cube framework’s capability of perform-

ing self-optimisation, self-healing and self-extension operations at runtime. Overall, the obtained results

indicated Cube framework’s viability for managing distributed data mediation systems while supporting

important software engineering quality attributes.

8.2 Summary of thesis contributions

This thesis developed a solution for overcoming the limitations identified in the state-of-art of engineering

autonomic computing systems. The main objective was to improve and to facilitate the development,

execution and maintenance of autonomic systems so as to ensure self-management capabilities. Our main

contributions consist of:

1. Providing an autonomic framework – called Cube framework - that supports a range of quality

attributes and is characterised by:

(a) A high-level, generic and graph-oriented language for specifying administration objectives

(i.e., Archetype specification language);

(b) A decentralised, modular and extensible runtime platform that ensures the specified objectives

(i.e., Cube Autonomic Managers).

2. Identifying and applying several techniques in a synergistic manner in order to ensure important

quality attributes in autonomic management. These techniques include: architecture-oriented mod-

189

elling, constraint resolution, self-organisation and control theory. Merged together, they enable

a wide range of dynamic system adaptations while ensuring the achievement of predefined goals.

More precisely, the framework’s core resolver implements the constraints satisfaction paradigm to

solve problems related to differences detected between the system’s monitored state and the sys-

tem’s targeted state space, where state is represented in terms of system architecture. The resolver

relies on system knowledge and domain-specific values, which are represented via Runtime Model

instances that provide an abstracted description of the managed system. The framework is decentral-

ised, with the Runtime Model being split and distributed across several Autonomic Managers. Each

Autonomic Manager contains a resolver instance and controls a local part of the managed system.

The Autonomic Managers self-organise into user-defined Scopes, controlled by local Scope Lead-

ers, in order to minimise coordination messages and hence improve performance and scalability.

Overall, the Cube self-management system represents an external, decentralised and architecture-

based control loop.

3. A working open-source tool set that integrates: (1) a dedicated XML grammar and parser for user

goals, respecting the proposed Archetype specification; (2) a lightweight, dynamically adaptable

runtime platform based on OSGi standards; (3) a modular framework design and implementation

enabling the seamless development and integration of customised domain-specific extensions, based

on the Apache Felix iPOJO component model; and (4) a set of common extensions and tools helping

debugging and monitoring Cube systems.

4. A concrete framework application to distributed data mediation systems to self-manage the

instantiation and configuration of mediation components, their local and remote connections, the

self-healing of distributed mediation chains and the self-optimisation of resource consumptions.

8.3 Limitations and perspectives

In the following sub-sections, we discuss the potential limitations of our framework, as well as the pos-

sible solutions for addressing them in future work. While some limitations are inherent to the Cube

approach, others stem from the Cube framework that we propose. Since our contribution focuses on the

Cube framework, in this section we only discuss limitations related to the framework and to its prototype

implementation. These limitations can be grouped into two categories: those related to the Archetype

specification; and those related to the Autonomic Manager’s design and implementation. We describe

each limitation and discuss possible solutions and enhancements to be developed in future research work.

8.3.1 Archetype Specification

The proposed Goal Description Language (GDL) - also called Archetype Specification Language - relies

on a simple, yet powerful graph-based syntax. It allows administrators to specify their goals in a relat-

ively natural manner, based on domain-specific descriptions of managed elements, their relationships and

desired properties (see section 5.3 of chapter 5). Nevertheless, the proposed language (GDL) has some

limitations that we discuss in this section.

Cardinality of Description Properties and of Goal Properties. The GDL only supports unary or binary

Description Properties and Goal Properties. When an administrator wants to specify goals that imply three

or more managed elements at the same time, this is not naturally supported by the Archetype’s syntax and

its runtime resolver. To address such cases, users should decouple the description of the managed system

190

part into binary relations and then associate these relations together. At the same time, the current Arche-

type Specification Language suffices for cases where goals and descriptions between managed elements

are either unary (concerning managed element properties) or binary (concerning relations between two

managed elements).

Goal expressivity. Based on the current GDL syntax, all the goals specified in the Archetype are man-

datory. If one of the goals specified for a managed element is not resolved, then the managed element

itself remains invalid. In the latest version of the prototype, we have added an “optional” attribute to

the Archetype’s Goal Description syntax. If this attribute is set to ’true’ and no solution is found for the

corresponding goal, then the subject managed element is still set to be valid (of course, if all the other

mandatory goals are resolved). As future work, we have planned to add the following features to the

Archetype Goal Descriptions and the corresponding Resolver, in order to enhance expressivity and extend

the solutions perimeter when expressing and resolving goals, respectively:

1. Priorities. The first enhancement is to allow users to set priorities for goals defined on the same

subject element. This can help resolve conflict problems among several goals. If two goals have

contradictory effects on the subject element, then the Archetype Resolver will only consider and

perform the action of the goal described with the highest priority.

2. Logical operators. Complementary to the priorities feature above, logical operators can be specified

on various sets of goals, including for instance binary operators like “and”, “or”, and “xor”. This

extension can widen the space of possible solutions by allowing various combinations of goals to

be achieved for validating a subject element. This will increase the expressivity and flexibility of

Archetype Goals by supporting alternative solution branches, which the Archetype Resolver can

take when resolving managed elements. For instance, specifying an “or” operator on a set of goals

for a certain element will imply that the element will be valid as soon as any of the goals in the set

is achieved.

Archetype correctness. It is difficult to prove formally that the user-provided specification corresponds

to the user’s intention in terms of administrative goals. This is an important issue, and currently, the user

can only simulate and test their Archetype specification in order to ensure that the resulting solution is

correct. As future work, we envisage to first provide specific tools for helping the user to detect anomalies

in their Archetype syntax; and then to detect further semantic anomalies. Syntactic analysis can detect

problems related to the XML grammar used for the Archetype specification (described in 6.2). Currently,

this verification is performed at runtime when the Autonomic Manager loads Archetype XML file. On

the short-term, we aim to provide a reference XSD file for the Archetype XML syntax so that the user’s

Archetype XML files can be verified directly using XML checkers. Further on, we aim to provide more

advanced tools that can detect more subtle anomalies in the user’s Archetype files. This includes for in-

stance checking that the descriptions used for defining a goal’s subject or object are of the required type.

On the long-term, we aim to provide more advanced tools that can inform the user about the possible solu-

tions that can be obtained from an Archetype specification. This can be done in a simulation environment,

and can provide some valuable initial insights on the behaviour and results of Cube Autonomic Managers

when given various Archetypes.

8.3.2 Runtime Autonomic Management

In this section, we discuss Cube framework’s limitations with respect to runtime autonomic management

and we elaborate some perspectives and future work.

191

Runtime Modelling. Cube framework’s architectural modelling oriented approach and its corresponding

runtime provides several useful features (discussed in chapters 4 and 5) and some limitations, which we

discuss in the following points:

1. Management delays. As described in chapter 4, our framework relies on the reference architecture

for autonomic management proposed by IBM (i.e. the MAPE-K control loop), where the managed

system is decoupled from the autonomic managers. This design choice separates the autonomic

infrastructure from the targeted managed system. It can provide better support for the separate

evolution of the two parts and make the self-management infrastructure reusable across multiple

use cases. However, this design choice raises several issues and features some important limit-

ations. Most importantly, loose-coupling introduces synchronisation-related uncertainties between

the managed system and its runtime model representation, which is maintained by Autonomic Man-

agers to represent the managed system’s state. In particular, there is an important uncertainty in

knowing when a problem has been detected and when a change has been effected successfully. In-

deed, the system state can change and cause new problems while Autonomic Managers still work

on resolving previous problems.

In an alternative, more tightly-coupled self-management approach, where the adaptation logic is

embedded with the managed system implementation (e.g. as component containers or via excep-

tion handling), problem detection and corresponding adaptation changes can be effected in a more

timely manner. However, coupling control logic with managed resources becomes difficult when

the targeted system consists of multiple, heterogeneous and distributed sub-systems. In the Cube

framework, monitors build a local Runtime Model of each managed system part. At the same that

an Archetype Resolver detects an anomaly in its Runtime Model and tries to find a solution, mon-

itors can update the Runtime Model and possibly change the very instances that are already part of

resolution process.

To address this issue in the implemented prototype, the archetype resolution is a blocking process.

Modelled instances referenced in the Resolution Graph are marked as “blocked” so that no updates

can be performed on it. This prevents the Resolver process from leaving the system in an incoherent

state. However, the inputs that the Resolver uses may be deprecated as the real monitored elements

have already changed. This may lead to the Resolver’s solution failing to be implemented in the

actual system, hence prompting the Resolver to start over the resolution process.

To minimise the impact of this limitation, we propose a future resolution algorithm with partial

solutions. This means that the Archetype Resolver finds partial solutions which are applied to the

monitored system immediately, before continuing the resolution process. When applying such par-

tial changes, monitors will also observe the managed system and update the Runtime Model to

reflect its most recent state. Hence, the Resolver can continue the resolution process based on up-

dated state values. As another solution, we can use distributed lock services like Chubby [Bur06].

However, it relies mainly on a centralised master node managing all the locking logic which impact

the scalability and the performance of the Cube system.

2. No distributed roll-back and transactions support. For each managed element, once a solution that

meets all its constraints is found, the solution is set in place and not rolled-back to accommodate the

resolution of another element. This “greedy” approach ensures the convergence of the Archetype

resolution process, with or without a solution, as the application grows monotonically towards a

complete solution and stops when the solution can be no longer refined. Yet, in some cases, the

choices a Resolver makes for addressing an initial constraint may prevent another Resolver from

finding a solution for a subsequent constraint, later on. In such cases, if several choices where

192

available for the initial constraint, the initial solution may be rolled-back and an alternative solution

implemented instead, hence providing an opportunity for the subsequent constraint to be resolved.

While this future extension would render the resolution process more flexible it will also raise more

important convergence issues that will have to be addressed.

Finally, once a complete solution is found in the overall Runtime Model, it must be implemented in

the managed system. This may imply several executor operations by distributed Autonomic Man-

agers. Distributed transactions should be set in place to ensure the coherence of such execution

operations. Applying distributed transactions is possible in cases where the number of the impacted

Autonomic Managers is limited. Distributed transactions represent a challenging topic where re-

search issues and technical problems are still open.

3. Decentralised adaptation delays. In the Cube framework, adaptation delays may cause synchron-

isation issues at two different levels: first, between an Autonomic Manager and its managed system

part (as already discussed in the management delay problem above); and second, among several

Autonomic Managers that collaborate to find distributed solutions. Each Autonomic Manager is

responsible for a portion of the global Runtime Model representing the overall managed system.

That is, the Runtime Model providing the knowledge for self-management decisions is split among

different Autonomic Managers, and decisions are made locally or via collaborations with neighbour

Autonomic Managers. Important synchronisation issues may occur as Autonomic Managers use in-

formation from remote Runtime Models that may be modified by other Autonomic Managers in the

meantime. In the current implementation, to avoid having several Autonomic Managers modify the

same Runtime Model elements at the same time, hence risking incoherent system states, all access

to Runtime Model elements is protected by local locks; a single AM may hold the lock and modify

the model element at any one time. While this solution may suffice for the current prototype and

experimented scenarios, the problem of synchronisation among decentralised processes represents a

great challenge, subject to dedicated research projects. Existing solutions can be identified, adopted

and integrated into the Cube framework in the future.

Static versus Dynamic Goals. When the Archetype is deployed onto the production infrastructure, the

current framework prototype does not support any dynamic updating of the goals specified in Archetype;

the Archetype is static. This is why users should specify goals as abstract as possible to support a large

range of possible variations respecting the same Archetype. Introducing, modifying or removing Ar-

chetype goals and descriptions dynamically currently requires restarting the entire Cube system (i.e., all

participating Cube Autonomic Managers). Having the possibility to change an Archetype dynamically re-

mains a perspective of this thesis work. Different solutions can be explored to this aim. The first one is to

start applying changes to Archetypes in the Autonomic Managers with no or very few external references

to other Autonomic Managers; then progressively extend the list of updated AM. The second solution

consists in building a new local Runtime Model that respects the new Archetype version, in parallel with

the existing Runtime Model respecting the old Archetype. When all the instances in the new Runtime

Model are resolved, we switch all the monitors/executors to handle these new instances; and discard to

old Runtime Model.

Exploring alternative coordination strategies. In Cube framework and its prototype implementation,

the coordination strategy relies on a collaboration among the Autonomic Managers involved in the resol-

ution process; there is no competition among Autonomic Managers. As described in sub-section 4.4.3,

the self-organisation of the Cube framework relies on three main techniques: (1) shared Archetype, (2)

local, direct coordination between neighbouring Autonomic Managers to ensure the same goal; and (3)

193

semi-centralised coordination of Autonomic Managers that execute in well-defined Scopes for ensuring

properties that must hold within those Scopes. We have shown the benefits of this coordination strategy

to self-manage data-mediation systems. The applicability and efficiency of this strategy has to be studied

and evaluated for other types of managed systems.

Alternative coordination strategies, based on hybrid or completely decentralised approaches, could be

considered. This will affect the communication and interaction protocol in the Cube system (as described

below), as well as the current implementation of the Archetype Resolver. Nevertheless, the modular and

extensible architecture of Cube framework’s Autonomic Manager will allow integrating new Archetype

Resolvers and Communicators without affecting the other modules and extensions used in the current

Autonomic Manager. Users may even be allowed to choose among several coordination strategies (e.g. via

dedicated configurations in the Archetype) so as to best address the challenges of their specific managed

systems.

In the context of data centres, we envision to study the effective integration of Apache ZooKeeper1

coordination system [HKJR10] with Cube framework to self-manage multi-host and multi-process dis-

tributed C or Java based systems. Zookeeper is a high available and reliable coordination system. It can

be used for leader election, group membership, and configuration maintenance through a shared hier-

archical name space that is modelled after a file system. A possible integration strategy with Cube is to

implement the Runtime Model and Communicator modules using Zookeeper, this can also impact the

Archetype Resolver’s current implementation. As in the current implemented Cube prototype, the data is

kept in memory, in addition in Zookeeper the data is backed up to a log for reliability. By using memory

Zookeeper is very fast and can handle the high loads across huge numbers of Autonomic Managers. Fur-

thermore, Zookeeper nodes are organised in hierarchical organisation which allow adding nodes at any

point of a tree, get a list of entries in a tree, get the value associated with an entry, and get notification of

when an entry changes or goes away. All this features are essential to build new reliable version of the

Cube prototype.

Exploring alternative communication and interaction protocols. The design of Cube Autonomic Man-

agers considers a decentralised organisation of the Cube system in its different internal modules. For

instance, the Runtime Model only contains modelled element instances of system elements that are man-

aged locally. References to remote element instances are represented in the local Runtime Model based

on the remote instance’s universal identifier. Several internal modules where introduced to ensure the con-

nectivity and the coordination between Autonomic Managers. This includes the Communicator and Life

Controller modules. Communicator provides a communication language centred on the use of CMessage

objects. The communication initiation entities (source AMs) specify the type of message (e.g., runtime

model queries or archetype resolution procedures) and the supplementary information needed to accom-

plish the requested action by the communication target (receiver AM). Furthermore, the Communicator

implementation defines the interaction protocol used between the different Autonomic Managers. The

current Communicator implements an asynchronous request/reply protocol between AMs, based on direct

interconnections (TCP/IP sockets). Other interaction protocols could be implemented and introduced into

the Cube system. This include for instance the Publish/Subscribe protocol, the Dutch auction protocol

[FIP01] (also known as ‘public bid auction’), or the contract net protocol [Smi80]. The chosen interaction

protocol will depend on the nature of the managed system and its administrative goals, and the imple-

mentation of the Archetype Resolver (as described in the previous point).

Resolution process. The current Archetype Resolver is based on a Constraint-based programming ap-

1http://zookeeper.apache.org/

194

proach to find solutions to detected problems. The corresponding graph-based algorithm we proposed

was detailed in sub-section 5.4.3. It maps Archetype concepts into Constraint Satisfaction Problem (CSP)

concepts. The domain value of each variable in a CSP represents corresponding runtime model instances,

in either the local Autonomic Manager or in remote managers. In the following, we discuss some of the

characteristics and possible enhancements of the current implementation.

1. The resolution process was designed and implemented to fit the specific requirements of the Cube

framework. However, other constraint resolution engines can be adopted to resolve Cube Runtime

Model instances with respect to user-provided Archetype specifications. To this aim, the adopted

resolver should support user-specific objects (which are Runtime Model instances in our case) as

domain values for CSP variables. We notice that the majority of constraint resolvers only support

numerical values. In addition, distributed CSP resolvers would be best fitted to our Cube framework

so as to follow the decentralised Cube approach.

2. Applications based on the presented resolution process conform to a fixed Archetype (template)

and support flexible Archetype instantiations (context-sensitive solutions determined by the Ar-

chetype Resolvers of Cube Autonomic Managers). This resolution strategy offers a compromise

between controlling essential application properties, and enabling application survival and adapt-

ation in changing runtime contexts. Autonomic Managers simultaneously and progressively find

and create flexible application solutions. Autonomic Managers do not have to determine when a

complete solution is found before instantiating it. Also they will not attempt to find globally op-

timal solutions or to ensure 100% availability for managed systems. The main target is long-term

survivability, adaptability and viability.

3. With respect to the decidability of the developed constraint resolution process, the core Archetype

Resolver and Specific Resolvers provided as extensions are decidable if the number of available

solutions for each constraint is finite (e.g. a limited number of implementations can be found for

a component type). The resolution process sequentially addresses each constraint that applies to

a managed element, using a backtracking process to progressively build and verify the solutions’

tree. Each set of constraints is decidable if its solution tree is finite. For each managed element

being resolved, once a solution that meets all its constraints is found, the solution is set in place

and not rolled-back to accommodate another element’s resolution. This “greedy” approach (as dis-

cussed before) ensures the convergence of the archetype resolution process, as the application grows

monotonically towards a complete solution. Regarding the stability of the resulting application, this

aspect will have to be studied depending on the context-sensitive adaptation of the Specific Resolv-

ers included - this is a “classic” problem in autonomic and control systems. Further research can

be carried out for exploring such resolver characteristics (convergence, stability and decidability) in

various types of management scenarios.

8.3.3 Towards a reusable methodology and integrated development environment for en-

gineering autonomic computing systems

In this thesis, we have proposed an autonomic computing framework to help engineering self-management

systems. While we have concentrated on providing a framework design that would ensure several quality

attributes, the proposed framework and the achievements we have accomplished opens good perspective

and motivated us to look forward to define new software engineering autonomic computing methodology

based on Cube framework.

The Cube framework already provides the following features:

195

1. Well defined autonomic system Life-Cycle. This aspect is divided into offline and online activit-

ies. Offline activities consist of providing model abstractions, implementing application-specific

extensions (i.e. monitors, executors or resolvers) and writing goal specifications (Archetype file).

Online activities consist in instantiating the different Autonomic Managers that use the shared Ar-

chetype, resolve problems related to the system’s architecture, and possibly inform administrators

about situations where no solution is found.

2. Modelling framework. We have proposed a modelling layer allowing the introduction of user-

specific model abstractions and their seamless integration into the Cube system. In addition, the

Goal Description Language, which uses the modelling framework to define goals for modelled

managed elements, is also extensible and can be personalised to provide domain-specific languages

(DSL) for final users that are experts in some specific technologies. The proposed XML syntax

makes the goal specification as simple as possible using declarative constructs.

3. Well-defined actor roles (see Figure 8.1). There are three kinds of actor roles in the Cube system.

First, technology experts are specialised in managing a specific technology of the global managed

systems. They participate, together with Cube developers and Cube administrators, to writing the

Archetype file. The Archetype corresponds to global administration goals whatever the underlying

managed sub-systems. Second, Cube developers are responsible for implementing the various Cube

extensions necessary for each specific application of business domain. Third, Cube administrators

are responsible for deploying the Archetype and supervising the executing Cube system.

4. A Framework Runtime featuring a modular and extensible architecture and supporting important

quality attributes, like scalability or dynamic adaptability.

Developer

Technology

Experts

Administrator

Figure 8.1: Actor roles

These features should be accompanied by other important aspects as listed in the following points:

1. Integrated Development and Design Environment: we should provide graphical tools helping the

development tasks related to the Cube framework. There are two important features that should be

provided in this respect:

(a) Automatic code generator. Automatically produce the corresponding Java code for domain-

specific managed elements.

(b) Graphical Archetype Editor. Facilitate the Archetype writing. Research works in model-based

editors has reached some maturity. Our Modelling framework is based on well-used modelling

tools like EMF and its ECORE meta-model (chapter 5). We could equally benefit from other

Eclipse modelling tools, such as GMF, to build our dedicated Graphical Editor. The Editor will

196

generate or edit the equivalent XML file automatically based on the graphical representation.

2. Simulation and testing environment. Providing a suitable simulation environment will help Cube

actors to write correct Archetype specifications. However, evaluating autonomic system is diffi-

cult and remains an open challenging issue. A dedicated workshop is organised during the SASO

conference to discuss and find solutions to this challenge.

3. Exploration of other domains. We should further experiment with the Cube system for self-managing

other type of systems, like pervasive or cloud infrastructures. This will help reveal further limita-

tions of the proposed framework and/or indicate its suitability for covering a large range of modern

software systems. Our extensible framework can provide abstract modelling concepts for such sys-

tems, and provide the necessary mappings to the managed system resources and corresponding

technologies.

Ultimate future objective. Our ultimate objective is to render the management of modern complex

computing systems as simple as designing circles, rectangles and arrows. The Cube system will perform

all the underlying self-management work in a reliable and effective way.

197

198

Appendix A

XML Terminology and Vocabulary

The following table gives a short summary about the XML terminology and vocabulary used in this thesis.

Term Short Definition

Tag A markup label that begins with < and ends with > and which indicates the

start or the end of an element – but not the element content itself.

Element
A logical XML component which either begins with a start-tag (e.g.,

<component>) and ends with a matching end-tag (e.g., </component>)

or consists only of an empty-element tag (e.g., <component/>).

Root Element A well-formed XML document should have a single “root” element that

contains all the other elements.

Child Element An XML element that is contained within another element.

Parent Element An XML element that contains other elements.

Attribute A part of an element that provides additional information about that element

(e.g., <component type=”Decoder”/>).

XML namespace
A collection of names, identified by an URI reference, which is used in XML

documents as element types (i.e. tags) and attribute names. (e.g., <cube

xmlns:core=”fr.liglab.adele.cube.core”/>)

Qualified Names Provide a mechanism for concisely identifying an XML element or an

attribute by a pair {URI, local-name} (e.g., <core:component/>).

Nesting Placing one element inside another. When two tags are opened, they must be

closed in the reverse order.

199

200

Appendix B

Implementation Details

This appendix lists some implementation details of the Cube framework.

B.1 Administration Service

The following figure shows the UML class diagram of the Administration Service interface. This interface

is implemented by the CubeRuntime Java class presented in chapter 6.

AdministrationService

getExtensionFactory(ns: String) : ExtensionFactory

createAutonomicManager(config: Configuration) : String

destroyAutonomicManager(uri: String)

runAutonomicManager(uri: String)

getBundleContext() : BundleContext

getVersion() : String

stopAutonomicManager(uri: String)

getAutonomicManagers() : List<String>

getAutonomicManager(uri: String) : AutonomicManager

<<interface>>

Figure B.1: Administration Service Java Interface

In the following, we provide some more detailed description of each of its methods.

• String createAutonomicManager(Configuration config) This method allows to

instantiate a new Autonomic Manager with the provided configuration. The initial configuration is

provided via a Configuration object which contains the initial setting information for the Autonomic

Manager to be created, as well as the set of the initial extensions and their configurations. This

class throws an AutonomicManagerException exception when the configuration is invalid.

This is the case for instance when the provided host and port combination is already in use by

another Autonomic Manager or another process. In the case when the instantiation process executes

correctly, this method returns the URI of the newly created Autonomic Manager.

• void destroyAutonomicManager(String uri) This method allows the destruction and

removal of a running Autonomic Manager identified by its URI. This method calls the stopAuto-

nomicManager method to ensure the correct stopping of the Autonomic Manager before its destruc-

tion.

201

• void runAutonomicManager(String uri) This method allows running stopped Auto-

nomic Managers.

• void stopAutonomicManager(String uri) This method allows stopping an Autonomic

Manager momentarily. When stopped, none of the Autonomic Manager’s internal modules or ex-

tension remains running; they are all stopped as well. Hence, the Autonomic Manager will not

receive any messages from other Autonomic Managers. Stopping an Autonomic Manager will also

free all its Runtime Model instances; all the related Autonomic Managers are notified about that.

• List<String> getAutonomicManagers() It returns the list of Autonomic Managers run-

ning on the local OSGi platform. The returned list contains the Autonomic Managers’ URIs.

• AutonomicManager getAutonomicManager(String uri) It returns the Autonomic-

Manager object having the given URI. If no Autonomic Manager is found, this method returns

null.

• ExtensionFactory getExtensionFactory(String namespace) It returns the Ex-

tensionFactory object having the given namespace. More precisely, when an Autonomic Manager is

created, it gets access to the list of its initial extensions via the Configuration object provided as para-

meter by the user. For each extension’s namespace, it finds the adequate ExtensionFactory

provided as a service and creates a new extension instance. The extension instance will then be used

within the Autonomic Manager.

• BundleContext getBundleContext() It returns the BundleContext object of the OSGi

platform. This object provides access to bundle relation information.

• String getVersion() It returns the version of the current Cube implementation.

B.2 Component modelled element

The following listing shows the implementation detail of the “component” modelled element.

Listing B.1: Java class of "Componentt" modelled element

1 p u b l i c c l a s s Component e x t e n d s ManagedElement {

2

3 p u b l i c s t a t i c f i n a l S t r i n g NAME = " Component " ;

4 p u b l i c s t a t i c f i n a l S t r i n g CORE_COMPONENT_ID = " i d " ;

5 p u b l i c s t a t i c f i n a l S t r i n g CORE_COMPONENT_TYPE = " t y p e " ;

6 p u b l i c s t a t i c f i n a l S t r i n g CORE_COMPONENT_NODE = " node " ;

7 p u b l i c s t a t i c f i n a l S t r i n g CORE_COMPONENT_INPUTS = " i n p u t s " ;

8 p u b l i c s t a t i c f i n a l S t r i n g CORE_COMPONENT_OUTPUTS = " o u t p u t s " ;

9

10 p u b l i c Component (S t r i n g amUri) {

11 s u p e r (amUri) ;

12 }

13

14 p u b l i c Component (S t r i n g amUri , P r o p e r t i e s p r o p e r t i e s) t h r ow s

P r o p e r t y E x i s t E x c e p t i o n , I n v a l i d N a m e E x c e p t i o n {

15 s u p e r (amUri , p r o p e r t i e s) ;

16 se tNamespace (C o r e E x t e n s i o n F a c t o r y .NAMESPACE) ;

17 setName (NAME) ;

18 }

19

20 p u b l i c vo id se tComponen t Id (S t r i n g c o m p o n e n t _ i d e n t i f i e r) {

202

21 t r y {

22 i f (t h i s . g e t A t t r i b u t e (CORE_COMPONENT_ID) == n u l l)

23 t h i s . a d d A t t r i b u t e (CORE_COMPONENT_ID, c o m p o n e n t _ i d e n t i f i e r) ;

24 e l s e

25 t h i s . u p d a t e A t t r i b u t e (CORE_COMPONENT_ID, c o m p o n e n t _ i d e n t i f i e r) ;

26 } c a t c h (P r o p e r t y N o t E x i s t E x c e p t i o n e) {

27 e . p r i n t S t a c k T r a c e () ;

28 } c a t c h (I n v a l i d N a m e E x c e p t i o n e) {

29 e . p r i n t S t a c k T r a c e () ;

30 } c a t c h (P r o p e r t y E x i s t E x c e p t i o n e) {

31 e . p r i n t S t a c k T r a c e () ;

32 }

33 }

34

35 p u b l i c S t r i n g ge tComponent Id () {

36 r e t u r n t h i s . g e t A t t r i b u t e (CORE_COMPONENT_ID) ;

37 }

38

39 p u b l i c vo id setComponentType (S t r i n g component_ type) {

40 t r y {

41 i f (t h i s . g e t A t t r i b u t e (CORE_COMPONENT_TYPE) == n u l l)

42 t h i s . a d d A t t r i b u t e (CORE_COMPONENT_TYPE, componen t_ type) ;

43 e l s e

44 t h i s . u p d a t e A t t r i b u t e (CORE_COMPONENT_TYPE, componen t_ type) ;

45 } c a t c h (P r o p e r t y N o t E x i s t E x c e p t i o n e) {

46 e . p r i n t S t a c k T r a c e () ;

47 } c a t c h (I n v a l i d N a m e E x c e p t i o n e) {

48 e . p r i n t S t a c k T r a c e () ;

49 } c a t c h (P r o p e r t y E x i s t E x c e p t i o n e) {

50 e . p r i n t S t a c k T r a c e () ;

51 }

52 }

53

54 p u b l i c S t r i n g getComponentType () {

55 r e t u r n t h i s . g e t A t t r i b u t e (CORE_COMPONENT_TYPE) ;

56 }

57

58 p u b l i c vo id se tNode (S t r i n g n o d e _ u r l) {

59 R e f e r e n c e r = n u l l ;

60 t r y {

61 r = t h i s . a d d R e f e r e n c e (CORE_COMPONENT_NODE, t r u e) ;

62 } c a t c h (I n v a l i d N a m e E x c e p t i o n e) {

63 e . p r i n t S t a c k T r a c e () ;

64 }

65 r . a d d R e f e r e n c e d E l e m e n t (n o d e _ u r l) ;

66 }

67

68 p u b l i c S t r i n g getNode () {

69 R e f e r e n c e r = g e t R e f e r e n c e (CORE_COMPONENT_NODE) ;

70 i f (r != n u l l && r . g e t R e f e r e n c e d E l e m e n t s () . s i z e () > 0) {

71 r e t u r n r . g e t R e f e r e n c e d E l e m e n t s () . g e t (0) ;

72 }

73 r e t u r n n u l l ;

74 }

75

76 p u b l i c b o o l e a n addInputComponent (S t r i n g compURI) {

77 R e f e r e n c e r = n u l l ;

203

78 t r y {

79 r = a d d R e f e r e n c e (CORE_COMPONENT_INPUTS, f a l s e) ;

80 } c a t c h (I n v a l i d N a m e E x c e p t i o n e) {

81 e . p r i n t S t a c k T r a c e () ;

82 }

83 r e t u r n r . a d d R e f e r e n c e d E l e m e n t (compURI) ;

84 }

85

86 p u b l i c L i s t < S t r i n g > g e t I n p u t C o m p o n e n t s () {

87 R e f e r e n c e r = t h i s . g e t R e f e r e n c e (CORE_COMPONENT_INPUTS) ;

88 i f (r != n u l l) {

89 r e t u r n r . g e t R e f e r e n c e d E l e m e n t s () ;

90 }

91 r e t u r n new A r r a y L i s t < S t r i n g > () ;

92 }

93

94 p u b l i c b o o l e a n addOutputComponent (S t r i n g compURI) {

95 R e f e r e n c e r = n u l l ;

96 t r y {

97 r = a d d R e f e r e n c e (CORE_COMPONENT_OUTPUTS, f a l s e) ;

98 } c a t c h (I n v a l i d N a m e E x c e p t i o n e) {

99 e . p r i n t S t a c k T r a c e () ;

100 }

101 r e t u r n r . a d d R e f e r e n c e d E l e m e n t (compURI) ;

102 }

103

104 p u b l i c L i s t < S t r i n g > ge tOutpu tComponen t s () {

105 R e f e r e n c e r = t h i s . g e t R e f e r e n c e (CORE_COMPONENT_OUTPUTS) ;

106 i f (r != n u l l) {

107 r e t u r n r . g e t R e f e r e n c e d E l e m e n t s () ;

108 }

109 r e t u r n new A r r a y L i s t < S t r i n g > () ;

110 }

111 }

B.3 Connected Specific Resolver

The following listing shows the implementation detail of the “connected” specific resolver.

Listing B.2: Java class of the "connected" specific resolver

1 p u b l i c c l a s s Connec ted e x t e n d s A b s t r a c t R e s o l v e r {

2

3 p u b l i c Connec ted (E x t e n s i o n e x t e n s i o n) {

4 s u p e r (e x t e n s i o n) ;

5 }

6

7 p u b l i c S t r i n g getName () {

8 r e t u r n t h i s . g e t C l a s s () . getSimpleName () ;

9 }

10

11 p u b l i c b o o l e a n check (ManagedElement me , S t r i n g v a l u e) {

12 i f (me != n u l l && v a l u e != n u l l) {

13 R e f e r e n c e r = me . g e t R e f e r e n c e (Component .CORE_COMPONENT_OUTPUTS) ;

14 i f (r != n u l l) {

204

15 f o r (S t r i n g e : r . g e t R e f e r e n c e d E l e m e n t s ()) {

16 i f (e . e q u a l s I g n o r e C a s e (v a l u e)) r e t u r n t r u e ;

17 }

18 }

19 }

20 r e t u r n f a l s e ;

21 }

22

23 p u b l i c b o o l e a n pe r fo rm (ManagedElement me , S t r i n g v a l u e) {

24 i f (me != n u l l && v a l u e != n u l l) {

25 R e f e r e n c e r = me . g e t R e f e r e n c e (Component .CORE_COMPONENT_OUTPUTS) ;

26 i f (r == n u l l) {

27 t r y {

28 r = me . a d d R e f e r e n c e (Component . CORE_COMPONENT_OUTPUTS, f a l s e) ;

29 R u n t i m e M o d e l C o n t r o l l e r rmc = g e t E x t e n s i o n () . ge tAutonomicManager ()

. g e t R u n t i m e M o d e l C o n t r o l l e r () ;

30 rmc . a d d R e f e r e n c e d E l e m e n t (va lue , Component . CORE_COMPONENT_INPUTS,

me . getUUID ()) ;

31 r . a d d R e f e r e n c e d E l e m e n t (v a l u e) ;

32 } c a t c h (I n v a l i d N a m e E x c e p t i o n e) {

33 e . p r i n t S t a c k T r a c e () ;

34 }

35 } e l s e {

36 r . a d d R e f e r e n c e d E l e m e n t (v a l u e) ;

37 }

38 r e t u r n t r u e ;

39 }

40 r e t u r n f a l s e ;

41 }

42

43 p u b l i c L i s t < S t r i n g > f i n d (ManagedElement me , ManagedElement d e s c r i p t i o n) {

44 L i s t < S t r i n g > r e s u l t = new A r r a y L i s t < S t r i n g > () ;

45 i f (me != n u l l) {

46 R e f e r e n c e r = me . g e t R e f e r e n c e (Component . CORE_COMPONENT_INPUTS) ;

47 i f (r != n u l l) {

48 f o r (S t r i n g tmp : r . g e t R e f e r e n c e d E l e m e n t s ()) {

49 ManagedElement i n p u t = g e t E x t e n s i o n () . ge tAutonomicManager () .

g e t R u n t i m e M o d e l C o n t r o l l e r () . getCopyOfManagedElement (tmp) ;

50 i f (M o d e l U t i l s . compareTwoManagedElements (d e s c r i p t i o n , i n p u t) ==

0) {

51 r e s u l t . add (tmp) ;

52 }

53 }

54 }

55 }

56 r e t u r n r e s u l t ;

57 }

58 }

205

B.4 Console Commands

Table B.1: Cube Console Commands
Command name Format Short Description

cube:version $ version Shows the Cube Version

cube:ams $ ams Shows the Autonomic Managers executing

locally. They are identified by incrementing

integers which can then be used by other

commands to uniquely identify the Autonomic

Manager. We refer to this AM identifier number

by [AM]

cube:extensions $ extensions [AM] Shows the list of extensions associated to the

given Autonomic Manager

cube:addext $ addext [AM]

[EXT_ID]

Dynamically adds an extension (identified by

EXT_ID) to an Autonomic Manager (identified

by AM)

cube:rmext $ rmext [AM]

[EXT_ID]

Dynamically removes an extension from an

Autonomic Manager

cube:arch $ arch [AM] Shows the Archetype document of a given

Autonomic Manager in XML format

cube:rm $ rm [AM] Shows the Local Runtime Model instances

cube:newi $ newi [AM]

[DESC]

Creates a new modelled element instance whose

description is provided in the Archetype and

identified by [DESC]

cube:update $ update [AM]

[INST_URI]

[PNAME=PVALUE]

Updates the properties and/or the references of a

given Runtime Model instance

cube:rmi $ rmi [AM]

[INST_URI]

Removes a modelled element instance from the

Runtime Model of a given Autonomic Manager

206

Appendix C

Archetype XML files

This appendix lists the two Archetype XML files used in the evaluation chapter.

Listing C.1: Archetype file of the first case study

1 <? xml v e r s i o n =" 1 . 0 " ?>

2 <cube x m l n s : c o r e =" f r . l i g l a b . a d e l e . cube . c o r e " cube−v e r s i o n =" 2 . 0 ">

3 < a r c h e t y p e i d =" n e t . d e b b a b i . cube . uc1 " v e r s i o n =" 1 . 0 ">

4 < !−− ====== ADMINISTRATION GOALS ====== −−>

5 < g o a l s >

6 < g o a l >

7 < inScope s=" @ d a t a c e n t r e " o=" @ c e n t r a l " r =" f c " / >

8 < inScope s=" @server " o=" @city " r =" f c " / >

9 < inScope s=" @gateway " o=" @city " r =" f " / >

10 <holdComponent s=" @gateway " o="@hc" r =" f c " / >

11 <holdComponent s=" @server " o="@rc" r =" f c " / >

12 <holdComponent s=" @ d a t a c e n t r e " o="@na" r =" f c " / >

13 < / g o a l >

14 < g o a l >

15 < c o n n e c t e d s="@gp" o="@hc" r =" f " / >

16 < c o n n e c t e d s="@ep" o="@hc" r =" f " / >

17 < c o n n e c t e d s="@wp" o="@hc" r =" f " / >

18 < c o n n e c t e d s="@hc" o=" @ci ty_ rc " r =" f " / >

19 < / g o a l >

20 < g o a l >

21 < c o n n e c t e d s="@rc" o=" @ci ty_cc " r =" f c " / >

22 < c o n n e c t e d s="@cc" o=" @ c e n t r a l _ n a " r =" f " / >

23 < / g o a l >

24 < / g o a l s >

25

26 < e l e m e n t s >

27 < !−− ====== MASTER and SCOPE DESCRIPTIONS ====== −−>

28 < m a s t e r i d =" m a s t e r ">

29 < l o c a t e d I n o=" c u b e : / / l o c a l h o s t : 1 9 0 0 0 " / >

30 < / m a s t e r >

31 < scope i d =" c e n t r a l ">

32 < h a s S c o p e I d o=" c e n t r a l " / >

33 < c o n t r o l l e d B y o=" @master " / >

34 < / scope >

35 < scope i d =" c i t y ">

36 < h a s S c o p e I d o=" ${ c i t y } " / >

37 < c o n t r o l l e d B y o=" @master " / >

38 < / scope >

207

39 < !−− ============ NODE DESCRIPTIONS ============ −−>

40 <node i d =" d a t a c e n t r e ">

41 <hasNodeType o=" D a t a c e n t r e " / >

42 < / node>

43 <node i d =" s e r v e r ">

44 <hasNodeType o=" S e r v e r " / >

45 < / node>

46 <node i d =" gateway ">

47 <hasNodeType o=" Gateway " / >

48 < / node>

49

50 <node i d =" c i t y _ s e r v e r ">

51 <hasNodeType o=" S e r v e r " / >

52 < inScope o=" @city " / >

53 < / node>

54 <node i d =" c e n t r a l _ d a t a c e n t r e ">

55 <hasNodeType o=" D a t a c e n t r e " / >

56 < inScope o=" @ c e n t r a l " / >

57 < / node>

58 < !−− ============ COMPONENT DESCRIPTIONS ============ −−>

59 <component i d =" hc ">

60 <hasComponentType o="HC" / >

61 < / component>

62 <component i d =" r c ">

63 <hasComponentType o="RC" / >

64 < / component>

65 <component i d =" na ">

66 <hasComponentType o="NA" / >

67 < / component>

68 <component i d =" gp ">

69 <hasComponentType o="GP" / >

70 < / component>

71 <component i d =" ep ">

72 <hasComponentType o="EP" / >

73 < / component>

74 <component i d ="wp">

75 <hasComponentType o="WP" / >

76 < / component>

77

78 <component i d =" c i t y _ r c ">

79 <hasComponentType o="RC" / >

80 <onNode o=" @ c i t y _ s e r v e r " / >

81 <HasMaxInputComponents o=" 5 " / >

82 < / component>

83

84 <component i d =" cc ">

85 <hasComponentType o="CC" / >

86 < / component>

87 <component i d =" c i t y _ c c ">

88 <hasComponentType o="CC" / >

89 <onNode o=" @ c i t y _ s e r v e r " / >

90 < / component>

91

92 <component i d =" c e n t r a l _ n a ">

93 <hasComponentType o="NA" / >

94 <onNode o=" @ c e n t r a l _ d a t a c e n t r e " / >

95 < / component>

208

96 < / e l e m e n t s >

97 < / a r c h e t y p e >

98 < / cube >

Listing C.2: Archetype file of the second case study

1 <? xml v e r s i o n =" 1 . 0 " ?>

2 <cube x m l n s : c o r e =" f r . l i g l a b . a d e l e . cube . c o r e " cube−v e r s i o n =" 2 . 0 ">

3 < a r c h e t y p e i d =" n e t . d e b b a b i . cube . uc2 " v e r s i o n =" 1 . 0 ">

4 < !−− ====== ADMINISTRATION GOALS ====== −−>

5 < g o a l s >

6 < g o a l >

7 < inScope s=" @agg_server " o=" @ a g g _ c l u s t e r " r =" f c " / >

8 < inScope s=" @med_server " o=" @med_clus ter " r =" f c " / >

9 < / g o a l >

10 < g o a l >

11 <holdComponent s=" @agg_server " o=" @wsprobe " r =" c " / >

12 < c o n n e c t e d s=" @wsprobe " o=" @ l o a d b a l a n c e r " r =" f c " / >

13 < / g o a l >

14 < g o a l >

15 <holdComponent s=" @ac t ive_med_se rve r " o=" @ahd_box " r =" c " / >

16 <hasSourceComponent s="@ahd−box " o=" @agg_ loadba l ance r " r =" f " / >

17 < c o n n e c t e d s="@ahd−box " o=" @hl7−r o u t e r " r =" f c " / >

18 < c o n n e c t e d s=" @hl7−r o u t e r " o=" @hl7−v a l i d a t o r " r =" f c " / >

19 < c o n n e c t e d s=" @hl7−v a l i d a t o r " o=" @ v a l i d a t o r " r =" f c " / >

20 < c o n n e c t e d s=" @ v a l i d a t o r " o=" @ t r a n s l a t o r " r =" f c " / >

21 < / g o a l >

22 < g o a l >

23 <hasSourceComponent s="@phr− i n t e g r a t i o n " o=" @ t r a n s l a t o r 2 " r =" f " / >

24 < / g o a l >

25 < g o a l >

26 <hasNoComponents s=" @ i n a c t i v e _ m e d _ s e r v e r " o=" a l l " / >

27 < / g o a l >

28 < / g o a l s >

29

30 < e l e m e n t s >

31 < !−− ====== MASTER and SCOPE DESCRIPTIONS ====== −−>

32 < m a s t e r i d =" m a s t e r ">

33 < l o c a t e d I n o=" c u b e : / / l o c a l h o s t : 3 8 0 0 0 " / >

34 < / m a s t e r >

35 < scope i d =" a g g _ c l u s t e r ">

36 < h a s S c o p e I d o=" A g g r e g a t i o n C l u s t e r " / >

37 < c o n t r o l l e d B y o=" @master " / >

38 < / scope >

39 < scope i d =" m e d _ c l u s t e r ">

40 < h a s S c o p e I d o=" M e d i a t i o n C l u s t e r " / >

41 < c o n t r o l l e d B y o=" @master " / >

42 < / scope >

43 < !−− ============ NODE DESCRIPTIONS ============= −−>

44 <node i d =" a g g _ s e r v e r ">

45 <hasNodeType o=" A g g r e g a t i o n S e r v e r " / >

46 < / node>

47 <node i d =" med_se rve r ">

48 <hasNodeType o=" M e d i a t i o n S e r v e r " / >

49 < / node>

50 <node i d =" a c t i v e _ m e d _ s e r v e r ">

51 <hasNodeType o=" M e d i a t i o n S e r v e r " / >

52 < h a s P r o p e r t y o=" a c t i v e : t r u e " / >

209

53 < / node>

54 <node i d =" l b _ a g g _ s e r v e r ">

55 <hasNodeType o=" A g g r e g a t i o n S e r v e r " / >

56 < inScope o=" @ a g g _ c l u s t e r " / >

57 < / node>

58 <node i d =" i n a c t i v e _ m e d _ s e r v e r ">

59 <hasNodeType o=" M e d i a t i o n S e r v e r " / >

60 < h a s P r o p e r t y o=" a c t i v e : f a l s e " / >

61 < / node>

62 < !−− ============ COMPONENT DESCRIPTIONS ======== −−>

63 <component i d =" wsprobe ">

64 <hasComponentType o=" WSProbe " / >

65 <hasWSSources o=" f i l e : / / / ws−e n d p o i n t s . xml " / >

66 < / component>

67 <component i d =" l o a d b a l a n c e r ">

68 <hasComponentType o=" LoadBa lance r " / >

69 <onSameNode o=" @wsprobe " / >

70 < h a s D i s p a t c h e r o=" LoadBa lanc ing " / >

71 < / component>

72 <component i d =" ahd_box ">

73 <hasComponentType o="AHD−Box " / >

74 <onNode o=" @ac t ive_med_se rve r " / >

75 < / component>

76 <component i d =" a g g _ l o a d b a l a n c e r ">

77 <hasComponentType o=" LoadBa lance r " / >

78 <onNode o=" @lb_agg_se rve r " / >

79 < / component>

80 <component i d =" hl7−r o u t e r ">

81 <hasComponentType o="HL7−R o u t e r " / >

82 <onSameNode o=" @ahd_box " / >

83 < / component>

84 <component i d =" hl7−v a l i d a t o r ">

85 <hasComponentType o="HL7−V a l i d a t o r " / >

86 <onSameNode o=" @hl7−r o u t e r " / >

87 < / component>

88 <component i d =" v a l i d a t o r ">

89 <hasComponentType o=" V a l i d a t o r " / >

90 <onSameNode o=" @hl7−v a l i d a t o r " / >

91 < / component>

92 <component i d =" t r a n s l a t o r ">

93 <hasComponentType o=" T r a n s l a t o r " / >

94 <onSameNode o=" @ v a l i d a t o r " / >

95 < h a s D i s p a t c h e r o=" M u l t i c a s t " / >

96 < / component>

97 <component i d =" phr− i n t e g r a t i o n ">

98 <hasComponentType o="PHR−I n t e g r a t i o n " / >

99 < / component>

100 <component i d =" @ t r a n s l a t o r 2 ">

101 <hasComponentType o=" T r a n s l a t o r " / >

102 <onSameNode o="@phr− i n t e g r a t i o n " / >

103 < / component>

104 < / e l e m e n t s >

105 < / a r c h e t y p e >

106 < / cube >

210

Appendix D

Source code statistics

The source code was initially hosted using a service provided by the Grenoble University and managed

using subversion1. The entire project was migrated to github2 for more visibility and to facilitate external

collaborations.

The following screen-shot is taken from ohloh.net3 website which measures some metrics of open

source projects. The present data is about the initial version of Cube (until June 2012). The HTML, CSS

and JavaScript codes correspond to the web site documentation of the Cube project.

1https://forge.imag.fr/projects/cube/
2https://github.com/AdeleResearchGroup/cube
3https://www.ohloh.net/p/cube/

211

212

Bibliography

[AAB+07] F. Akkawi, K. Akkawi, A. Bader, M. Ayyash, D. Fletcher, and K. Alzoubi, Software

adaptation: A conscious design for oblivious programmers, Aerospace Conference,

2007 IEEE, march 2007, pp. 1 –12. 2.5.1

[AAC+00] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T.F. Knight Jr, R. Nagpal,

E. Rauch, G.J. Sussman, and R. Weiss, Amorphous computing, Communications of

the ACM 43 (2000), no. 5, 74–82. 3.3.2

[ACMS06] Ip Agarwala, Yuan Chen, Dejan Milojicic, and Karsten Schwan, Qmon: Qos- and

utility-aware monitoring in enterprise systems, In The 3rd IEEE International Confer-

ence on Autonomic Computing, IEEE Computer Society, 2006, pp. 124–133. 2.4.3

[ADG98] Robert Allen, Remi Douence, and David Garlan, Specifying and analyzing dynamic

software architectures, Proceedings of the 1998 Conference on Fundamental Ap-

proaches to Software Engineering (FASE’98) (Lisbon, Portugal), March 1998, An

expanded version of a the paper "Specifying Dynamism in Software Architectures,"

which appeared in the Proceedings of the Workshop on Foundations of Component-

Based Software Engineering, September 1997. 3.4.3

[AFG+04] Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind, and Peter F. Sweeney,

A survey of adaptive optimization in virtual machines, PROCEEDINGS OF THE

IEEE, 93(2), 2005. SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZA-

TION, AND ADAPTATION, 2004. 3.1.2

[AH05] Nejla Amara-Hachmi, A framework for building adaptive mobile agents, Proceedings

of the fourth international joint conference on Autonomous agents and multiagent

systems (New York, NY, USA), AAMAS ’05, ACM, 2005, pp. 1369–1369. 3.2.3

[All07] OSGi Alliance, Osgi service platform core specification, release 4.1, http://www.

osgi.org/Specifications, 2007. 6, 6.1.1.1

[Ant04] R.J. Anthony, Emergence: a paradigm for robust and scalable distributed applica-

tions, Autonomic Computing, 2004. Proceedings. International Conference on, may

2004, pp. 132 – 139. 3.3.1, 3.3.3, 4

[APS11] Richard Anthony, Mariusz Pelc, and Haffiz Shuaib, The interoperability challenge

for autonomic computing, EMERGING 2011, The Third International Conference on

Emerging Network Intelligence, 2011, pp. 13–19. 2.5.1, 5.4.3

[Ast07] Karl Johan Astrom, Challenges in control education, Proc. of the 7th IFAC Sym-

posium on Advances in Control Education, Plenary Lecture, June, 2007, pp. 21–23.

3.1.3

[BBF09] G. Blair, N. Bencomo, and R.B. France, Models@ run.time, Computer 42 (2009),

213

http://www.osgi.org/Specifications
http://www.osgi.org/Specifications

no. 10, 22 –27. 3.4.3, 5.1.2

[BBH+05] Sara Bouchenak, Fabienne Boyer, Daniel Hagimont, Sacha Krakowiak, Adrian Mos,

Noel De Palma, Vivien Quema, and Jean bernard Stefani, Architecture-based au-

tonomous repair management: An application to j2ee clusters, In 24th IEEE Sym-

posium on Reliable Distributed Systems (SRDS-2005, 2005, pp. 13–24. 2.5.2

[BBPLP98] Francois Bousquet, Innocent Bakam, Hubert Proton, and Christophe Le Page, Cor-

mas: common-pool resources and multi-agent systems, Tasks and Methods in Applied

Artificial Intelligence (1998), 826–837. 3.2.5

[BCDW04] J.S. Bradbury, J.R. Cordy, J. Dingel, and M. Wermelinger, A survey of self-

management in dynamic software architecture specifications, Proceedings of the 1st

ACM SIGSOFT workshop on Self-managed systems, ACM, 2004, p. 33. 2.5.2, 3.4.4

[BCK03] L. Bass, P. Clements, and R. Kazman, Software architecture in practice, Addison-

Wesley Professional, 2003. 3.4.1, 3.4.3

[BCL+06] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-

Bernard Stefani, The fractal component model and its support in java: Experiences

with auto-adaptive and reconfigurable systems, Softw. Pract. Exper. 36 (2006), no. 11-

12, 1257–1284. 2.5.2

[BCS09] Gordon Blair, Thierry Coupaye, and Jean-Bernard Stefani, Component-based archi-

tecture: the fractal initiative, Annals of Telecommunications 64 (2009), no. 1, 1–4.

3.1.2

[BDLM11] Johann Bourcier, Ada Diaconescu, Philippe Lalanda, and Julie A. McCann, Auto-

home: An autonomic management framework for pervasive home applications, ACM

Trans. Auton. Adapt. Syst. 6 (2011), no. 1, 8:1–8:10. 2.5.2

[Bea11] Jacob Beal, Functional blueprints: An approach to modularity in grown systems,

Swarm Intelligence 5 (2011), no. 3, 257–281. 3.3.2

[BFH03] Fran Berman, Geoffrey Fox, and Anthony JG Hey, Grid computing: making the global

infrastructure a reality, vol. 2, Wiley, 2003. 1.1, 2.1.2

[BG01] Jean Bezivin and Olivier Gerbe, Towards a precise definition of the omg/mda frame-

work, Proceedings of the 16th IEEE international conference on Automated soft-

ware engineering (Washington, DC, USA), ASE ’01, IEEE Computer Society, 2001,

pp. 273–. 5.1.2

[BHW07] Rafael H Bordini, Jomi Fred Hübner, and Michael Wooldridge, Programming multi-

agent systems in agentspeak using jason, vol. 8, Wiley-Interscience, 2007. 3.2.5

[BJM05a] Ozalp Babaoglu, Mark Jelasity, and Alberto Montresor, Gossip-based self-

managing services for large scale dynamic networks, Service Management and Self-

Organization in IP-based Networks (Dagstuhl, Germany) (Matthias Bossardt, Georg

Carle, D. Hutchison, Hermann de Meer, and Bernhard Plattner, eds.), Dagstuhl Semi-

nar Proceedings, no. 04411, Internationales Begegnungs- und Forschungszentrum für

Informatik (IBFI), Schloss Dagstuhl, Germany, 2005. 4.4.3

[BJM+05b] Ozalp Babaoglu, Márk Jelasity, Alberto Montresor, Christof Fetzer, Stefano Leonardi,

Aad van Moorsel, and Maarten van Steen, Self-star properties in complex information

systems: Conceptual and practical foundations (lecture notes in computer science),

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005. 2.3, 2.5.1

214

[BKPH09] Frances M. T. Brazier, Jeffrey O. Kephart, H. Van Dyke Parunak, and Michael N.

Huhns, Agents and service-oriented computing for autonomic computing: A research

agenda, IEEE Internet Computing 13 (2009), 82–87. 2.3, 3.2.4

[BMH06] Bill Burke and Richard Monson-Haefel, Enterprise javabeans 3.0, 5. ed., O’Reilly,

Beijing, 2006. 1.1

[Bou08] Johann Bourcier, Auto-home: une plate-forme pour la gestion autonomique

d’applications pervasives, Ph.D. thesis, University Joseph Fourrier, 2008. 2.5.2

[BPG+04] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopou-

los, Tropos: An agent-oriented software development methodology, Autonomous

Agents and Multi-Agent Systems 8 (2004), no. 3, 203–236. 3.2.5

[BPHT06] S. Bouchenak, N. De Palma, D. Hagimont, and C. Taton, Autonomic management

of clustered applications, Cluster Computing, IEEE International Conference on 0

(2006), 1–11. 2.5.2

[BPL04] Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf, Jadex: A short

overview, Main Conference Net. ObjectDays, vol. 2004, 2004, pp. 195–207. 3.2.5

[BPR01] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa, Jade: a fipa2000 compli-

ant agent development environment, Proceedings of the fifth international conference

on Autonomous agents, ACM, 2001, pp. 216–217. 3.2.5

[BSP+02] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills, and Y. Diao, Able: a toolkit

for building multiagent autonomic systems, IBM Syst. J. 41 (2002), no. 3, 350–371.

3.2.4

[BTRC05] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés, Automated reasoning

on feature models, Proceedings of the 17th international conference on Advanced

Information Systems Engineering (Berlin, Heidelberg), CAiSE’05, Springer-Verlag,

2005, pp. 491–503. 3.4.3

[Bur06] Mike Burrows, The chubby lock service for loosely-coupled distributed systems, Pro-

ceedings of the 7th symposium on Operating systems design and implementation

(Berkeley, CA, USA), OSDI ’06, USENIX Association, 2006, pp. 335–350. 1

[Cap10] Bogdan Alexandru Caprarescu, Robustness and scalability: a dual challenge for au-

tonomic architectures, Proceedings of the Fourth European Conference on Software

Architecture: Companion Volume (New York, NY, USA), ECSA ’10, ACM, 2010,

pp. 22–26. 2.5.1, 3.3.3

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker, Generative programming: methods,

tools, and applications, ACM Press/Addison-Wesley Publishing Co., New York, NY,

USA, 2000. 3.4.3

[CGFP09] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano, Autonomic computing

through reuse of variability models at runtime: The case of smart homes, Computer

42 (2009), no. 10, 37–43. 3.4.3, 3.4.3, 5.1.2

[CGS+02] Shang-Wen Cheng, David Garlan, Bradley R. Schmerl, Joao Pedro Sousa, Bridget

Spitnagel, and Peter Steenkiste, Using architectural style as a basis for system self-

repair, Proceedings of the IFIP 17th World Computer Congress - TC2 Stream / 3rd

IEEE/IFIP Conference on Software Architecture: System Design, Development and

Maintenance (Deventer, The Netherlands, The Netherlands), WICSA 3, Kluwer, B.V.,

215

2002, pp. 45–59. 3.4.3

[CGS09] Shang-Wen Cheng, D. Garlan, and B. Schmerl, Raide for engineering architecture-

based self-adaptive systems, Software Engineering - Companion Volume, 2009.

ICSE-Companion 2009. 31st International Conference on, may 2009, pp. 435 –436.

2.5.2

[CH03] Humberto Cervantes and Richard S. Hall, Automating service dependency manage-

ment in a service-oriented component model, Proceedings of the 6th Workshop of

the European Software Engineering Conference/Foundations of Software Engineer-

ingComponent Based Software Engineering, September 2003, pp. 379–382. 6.1.1.1

[CHW98] James Coplien, Daniel Hoffman, and David Weiss, Commonality and variability in

software engineering, IEEE Softw. 15 (1998), no. 6, 37–45. 3.4.3

[CI09] Alain Cardon and Mhamed Itmi, Multi agent modeling of self adaptive system for

large scale complex systems, Proceedings of the 2009 Summer Computer Simulation

Conference (Vista, CA), SCSC ’09, Society for Modeling & Simulation International,

2009, pp. 476–481. 3.2.4

[CN96] Paul C. Clements and Linda M. Northrop, Software architecture: An executive

overview, 1996. 3.4.1

[CNNL98] Jaron C Collis, Divine T Ndumu, Hyacinth S Nwana, and Lyndon C Lee, The zeus

agent building tool-kit, BT Technology Journal 16 (1998), no. 3, 60–68. 3.2.5

[Com00] Standards Committee, Ieee recommended practice for architectural description of

software-intensive systems, October 1471-2000 (2000), no. 42010, i–23. 3.4.1

[CSWW04] D.M. Chess, A. Segal, I. Whalley, and S.R. White, Unity: experiences with a proto-

type autonomic computing system, Autonomic Computing, 2004. Proceedings. Inter-

national Conference on, may 2004, pp. 140 – 147. 2.5.2, 3.1.2

[CZ04] Luca Cernuzzi and Franco Zambonelli, Adaptive organizational changes in agent-

oriented methodologies, 2004. 3.2.1, 3.2.3

[CZ06] Luca Cernuzzi and Franco Zambonelli, Dealing with adaptive multi-agent organi-

zations in the gaia methodology, Proceedings of the 6th international conference

on Agent-Oriented Software Engineering (Berlin, Heidelberg), AOSE’05, Springer-

Verlag, 2006, pp. 109–123. 3.2.1, 3.2.3

[DBE08] Ada Diaconescu, Johann Bourcier, and Clement Escoffier, Autonomic ipojo: Towards

self-managing middleware for ubiquitous systems, Proceedings of the 2008 IEEE

International Conference on Wireless & Mobile Computing, Networking & Com-

munication (Washington, DC, USA), WIMOB ’08, IEEE Computer Society, 2008,

pp. 472–477. 3.1.2

[DDL12] Bassem Debbabi, Ada Diaconescu, and Philippe Lalanda, Controlling self-organising

software applications with archetypes, Self-Adaptive and Self-Organizing Systems

(SASO), 2012 IEEE Sixth International Conference on, 2012, pp. 69–78. 1.2, 4.2.1,

4.4.3, 7.2.1

[Deb09] Bassem Debbabi, Framework orienté-service de médiation de données, Tech. report,

UFR IMAG Université de Grenoble, 2009. 1.4, 7.1.2

[DHP+05] Y. Diao, J.L. Hellerstein, Sujay Parekh, R. Griffith, G. Kaiser, and D. Phung, Self-

216

managing systems: a control theory foundation, Engineering of Computer-Based Sys-

tems, 2005. ECBS ’05. 12th IEEE International Conference and Workshops on the,

april 2005, pp. 441 – 448. 3.1.2

[DL09] A. Diaconescu and P. Lalanda, A decentralized, architecture-based framework for self-

growing applications, Proceedings of the 6th international conference on Autonomic

computing, ACM, 2009, pp. 55–56. 1.2, 4.2.1

[DL11] , Self-growing applications from abstract architectures an application to data-

mediation systems, Evolving and Adaptive Intelligent Systems (EAIS), 2011 IEEE

Workshop on, IEEE, 2011, pp. 170–177. 1.2, 4.2.1, 4.4.3

[DML08] Ada Diaconescu, Yoann Maurel, and Philippe Lalanda, Autonomic management via

dynamic combinations of reusable strategies, Proceedings of the 2nd International

Conference on Autonomic Computing and Communication Systems (ICST, Brussels,

Belgium, Belgium), Autonomics ’08, ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), 2008, pp. 16:1–16:10. 2.5.2

[Dou11] Rene Doursat, Morphogenetic engineering weds bio self-organization to human-

designed systems, PerAda Magazine: Towards Pervasive Adaptation (2011). 3.3.2

[DPBB+08] Noel De Palma, Sara Bouchenak, Fabienne Boyer, Daniel Hagimont, Sylvain Sicard,

and Christophe Taton, Jade: un environnement d’administration autonome, Technique

et Science Informatiques 27 (2008), no. 9-10, 1225–1252. 2.5.2

[Dre07] F. Dressler, Self-organization in sensor and actor networks, Wiley series in commu-

nications networking & distributed systems, John Wiley & Sons, 2007. (document),

2.1.2, 3.8

[DRW06] Leticia Duboc, David S. Rosenblum, and Tony Wicks, A framework for modelling

and analysis of software systems scalability, Proceedings of the 28th international

conference on Software engineering (New York, NY, USA), ICSE ’06, ACM, 2006,

pp. 949–952. 2.5.1, 7.4

[DSC+00] Jim Dowling, Tilman Schäfer, Vinny Cahill, Peter Haraszti, and Barry Redmond, Us-

ing reflection to support dynamic adaptation of system software: A case study driven

evaluation, Driven Evaluation?, OOPSLA Workshop on ObjectOriented Reflection

and Software Engineering, 2000, pp. 9–9. 3.4.3

[DSM11] R Doursat, H Sayama, and O Michel, Morphogenetic engineering: Toward pro-

grammable complex systems, 2011. 3.3.2

[DSNH10] Simon Dobson, Roy Sterritt, Paddy Nixon, and Mike Hinchey, Fulfilling the vision of

autonomic computing, Computer 43 (2010), no. 1, 35–41. (document), 2.1.1, 2.3, 4.1

[Dur99] Edmund H. Durfee, Practically coordinating, AI Magazine 20 (1999), no. 1, 99–116.

3.2.2

[DvdHT02] E.M. Dashofy, A. van der Hoek, and R.N. Taylor, Towards architecture-based self-

healing systems, Proceedings of the first workshop on Self-healing systems, ACM,

2002, pp. 21–26. 3.4.2

[DWSHR05] Tom De Wolf, Giovanni Samaey, Tom Holvoet, and Dirk Roose, Decentralised au-

tonomic computing: Analysing self-organising emergent behaviour using advanced

numerical methods, Autonomic Computing, 2005. ICAC 2005. Proceedings. Second

International Conference on, IEEE, 2005, pp. 52–63. 3.3.1

217

[EE90] Inc Electronics Engingeers, Ieee std. 610.12-1990 - ieee standard glossary of software

engineering terminology, Office 121990 (1990), 84. 2.5.1, 7.4

[EH07] Clement Escoffier and Richard S. Hall, Dynamically adaptable applications with

ipojo service components, Proceedings of the 6th international conference on Soft-

ware composition (Berlin, Heidelberg), SC’07, Springer-Verlag, 2007, pp. 113–128.

3.1.2, 6, 6.1.1.1

[EHL07] C. Escoffier, R.S. Hall, and P. Lalanda, ipojo: an extensible service-oriented compo-

nent framework, Services Computing, 2007. SCC 2007. IEEE International Confer-

ence on, july 2007, pp. 474 –481. 3.1.2, 6, 6.1.1.1

[emf13] Eclipse modeling framework, http://www.eclipse.org/modeling/emf/,

2013. 5.2, 5.2.1

[Esc08] Clement Escoffier, ipojo : Un modele à composant a service flexible pour les systemes

dynamiques, Ph.D. thesis, UNIVERSITE JOSEPH FOURIER, 2008. 2.5.1

[FBGA02] Stephanie Forrest, Justin Balthrop, Matthew Glickman, and David Ackley, Computa-

tion in the wild, 2002. 3.3

[FC09] Jorge Fox and Siobhán Clarke, Exploring approaches to dynamic adaptation, MAI

’09: Proceedings of the 3rd International DiscCoTec Workshop on Middleware-

Application Interaction (New York, NY, USA), ACM, 2009, pp. 19–24. 2.5.1

[FDMD13] Sylvain Frey, Ada Diaconescu, David Menga, and Isabelle Demeure, Towards a ref-

erence model for multi-goal, highly-distributed and dynamic autonomic systems, In-

ternational Conference on Autonomic Computing ICAC (San Jose, Ca, USA,), vol.

Self-aware Internet of Things (Self-IoT) track, Juin 2013 2013. 2.5.1

[FFMM94] T. Finin, R. Fritzson, D. McKay, and R. McEntire, Kqml as an agent communica-

tion language, Proceedings of the third international conference on Information and

knowledge management, ACM, 1994, pp. 456–463. 3.2.2

[FGG+06] Peter Feiler, Richard P Gabriel, John Goodenough, Rick Linger, Tom Longstaff, Rick

Kazman, Mark Klein, Linda Northrop, Douglas Schmidt, Kevin Sullivan, et al., Ultra-

large-scale systems: The software challenge of the future, Software Engineering In-

stitute (2006). 1.1

[FIP01] FIPA, Fipa dutch auction interaction protocol specification, http://www.fipa.

org/specs/fipa00032/, 02 2001. 3.2.2, 8.3.2

[FIP02] , Agent communication language specifications, 2002. 3.2.2

[Gar95] David Garlan, Software architecture (panel): next steps towards an engineering disci-

pline for software systems design, SIGSOFT Softw. Eng. Notes 20 (1995), no. 4, 5–.

3.4

[Gar00] , Software architecture: a roadmap, Proceedings of the Conference on The

Future of Software Engineering (New York, NY, USA), ICSE ’00, ACM, 2000,

pp. 91–101. 3.4

[GCH+04] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter

Steenkiste, Rainbow: Architecture-based self-adaptation with reusable infrastructure,

Computer 37 (2004), 46–54. 2.5.2

[GF92] M. Genesereth and R. Fikes, Knowledge interchange format, version 3.0 reference

218

http://www.eclipse.org/modeling/emf/
http://www.fipa.org/specs/fipa00032/
http://www.fipa.org/specs/fipa00032/

manual, Tech. report, 1992. 3.2.1

[GF00] Olivier Gutknecht and Jacques Ferber, Madkit: A generic multi-agent platform, Pro-

ceedings of the fourth international conference on Autonomous agents, ACM, 2000,

pp. 78–79. 3.2.5

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of

reusable object-oriented software, vol. 206, Addison-wesley Reading, MA, 1995.

6.3.2

[GHT09] John C. Georgas, André van der Hoek, and Richard N. Taylor, Using architectural

models to manage and visualize runtime adaptation, Computer 42 (2009), no. 10,

52–60. 3.4.3, 5.1.2

[GIO09] T. Gjerlufsen, M. Ingstrup, and J.W. Olsen, Mirrors of meaning: Supporting in-

spectable runtime models, Computer 42 (2009), no. 10, 61–68. 3.4.3, 5.1.2

[GK94] Michael R. Genesereth and Steven P. Ketchpel, Software agents, Communications of

the ACM 37 (1994), 48–53. 3.2.1

[GKLZ09] Kutila Gunasekera, Shonali Krishnaswamy, Seng Wai Loke, and Arkady Zaslavsky,

Runtime efficiency of adaptive mobile software agents in pervasive computing en-

vironments, Proceedings of the 2009 international conference on Pervasive services

(New York, NY, USA), ICPS ’09, ACM, 2009, pp. 123–132. 3.2.3

[GMD+11] Issac Garcia, Denis Morand, Bassem Debbabi, Philippe Lalanda, and Pierre Bourret,

A reflective framework for mediation applications, Adaptive and Reflective Middle-

ware on Proceedings of the International Workshop (New York, NY, USA), ARM ’11,

ACM, 2011, pp. 22–28. 1.4, 4.2.2, 4.3.2, 6.4.4, 7.1.2, 7.1.2

[GMW97] David Garlan, Robert Monroe, and David Wile, Acme: an architecture description

interchange language, Proceedings of the 1997 conference of the Centre for Advanced

Studies on Collaborative research, CASCON ’97, IBM Press, 1997, pp. 7–. 3.4.3

[GPD+10] I. Garcia, G. Pedraza, Bassem Debbabi, Philippe Lalanda, and C. Hamon, Towards a

service mediation framework for dynamic applications, Services Computing Confer-

ence (APSCC), 2010 IEEE Asia-Pacific, 2010, pp. 3–10. 1.4, 7.1.2

[GR91] M.M. Gorlick and R.R. Razouk, Using weaves for software construction and analysis,

Software Engineering, 1991. Proceedings., 13th International Conference on, IEEE,

1991, pp. 23–34. 3.4.3

[GS93] David Garlan and Mary Shaw, An introduction to software architecture, Advances in

Software Engineering and Knowledge Engineering 1 (1993). 3.4

[GZKL08] K. Gunasekera, A. Zaslavsky, S. Krishnaswamy, and S.W. Loke, Versag: Context-

aware adaptive mobile agents for the semantic web, Computer Software and Applica-

tions, 2008. COMPSAC ’08. 32nd Annual IEEE International, 28 2008-aug. 1 2008,

pp. 521 –522. 3.2.3

[HDBVDHCM99] Koen V. Hindriks, Frank S. De Boer, Wiebe Van Der Hoek, and John-Jules Ch. Meyer,

Agent programming in 3apl, Autonomous Agents and Multi-Agent Systems 2 (1999),

no. 4, 357–401. 3.2.5

[Hel09] Joseph L. Hellerstein, Engineering autonomic systems, ICAC, 2009, pp. 75–76. 3.1.2,

4.1

219

[HHPS08] S. Hallsteinsen, M. Hinchey, Sooyong Park, and K. Schmid, Dynamic software prod-

uct lines, Computer 41 (2008), no. 4, 93–95. 3.4.3

[HIM+98] Dan Hirsch, Paola Inverardi, Ugo Montanari, Dep De Computacion, and Diparta-

mento Di Matematica, Graph grammars and constraint solving for software architec-

ture styles, In Proc. of the Int. Software Architecture Workshop, ACM Press, 1998,

pp. 69–72. 5.2.1

[HKJR10] Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and Benjamin Reed, Zookeeper:

wait-free coordination for internet-scale systems, Proceedings of the 2010 USENIX

conference on USENIX annual technical conference, vol. 8, 2010, pp. 11–11. 8.3.2

[HL04] Bryan Horling and Victor Lesser, A survey of multi-agent organizational paradigms,

Knowl. Eng. Rev. 19 (2004), 281–316. 3.2.1, 4.4.1

[HLM+09] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia Lawall,

Entropy: a consolidation manager for clusters, Proceedings of the 2009 ACM SIG-

PLAN/SIGOPS international conference on Virtual execution environments (New

York, NY, USA), VEE ’09, ACM, 2009, pp. 41–50. 3.1.2

[HM08] Markus C. Huebscher and Julie A. McCann, A survey of autonomic computing—

degrees, models, and applications, ACM Comput. Surv. 40 (2008), no. 3, 1–28. 2.1.2,

2.5.2

[HMNS03] Uwe Hansmann, Lothar Merk, Martin S. Nicklous, and Thomas Stober, Pervasive

computing : The mobile world, 2nd ed., Springer, August 2003. 1.1

[Hor01] Horn, Autonomic computing: Ibm’s perspective on the state of infor-

mation technology, IBM Corporation (October 15, 2001). Available at

http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf

(2001). 1.1, 2.1.1, 2.1.2, 2.2, 3.3

[HRHL01] N. Howden, R. Ronnquist, A. Hodgson, and A. Lucas, Jack intelligent agents - sum-

mary of an agent infrastructure., Proceedings of the 5th ACM International Confer-

ence on Autonomous Agents, 2001. 3.2.5

[HS07] M.G. Hinchey and R. Sterritt, 99% (biological) inspiration... 3.3

[HTL05] C. Herault, G. Thomas, and P. Lalanda, Mediation and enterprise service bus a posi-

tion paper, Proceedings of the First International Workshop on Mediation in Semantic

Web Services (MEDIATE 2005), Citeseer, 2005. 7.1.1

[HTL07] , A distributed service-oriented mediation tool, IEEE International Conference

on Services Computing, 2007. SCC 2007, 2007, pp. 403–409. 7.1.1

[HW05] Aaron Helsinger and Todd Wright, Cougaar: A robust configurable multi agent plat-

form, Aerospace Conference, 2005 IEEE, IEEE, 2005, pp. 1–10. 2.4.3, 3.2.5

[IBM03] IBM, An architectural blueprint for autonomic computing, IBM White Paper (2003).

2.4.1

[Ins13] Software Engineering Institue, Software product lines, http://www.sei.cmu.

edu/productlines/, 2013, [Online; accessed 08-March-2013]. 3.4.3

[Jen95] N. R. Jennings, Controlling cooperative problem solving in industrial multi-agent sys-

tems using joint intentions, Artif. Intell. 75 (1995), no. 2, 195–240. 3.2.2

[JFL+01] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge,

220

http://www.sei.cmu.edu/productlines/
http://www.sei.cmu.edu/productlines/

Automated negotiation: Prospects, methods and challenges, 2001. 3.2.2

[JLHNY04] Bart Jacob, Richard Lanyon-Hogg, Devaprasad K Nadgir, and Amr F Yassin, A prac-

tical guide to the ibm autonomic computing toolkit, 2004. 2.5.2

[JQSP08] Nanyan Jiang, Andres Quiroz, Cristina Schmidt, and Manish Parashar, Meteor: a

middleware infrastructure for content-based decoupled interactions in pervasive grid

environments, Concurr. Comput. : Pract. Exper. 20 (2008), no. 12, 1455–1484. 2.5.2

[JSW98] Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge, A roadmap of agent

research and development, Autonomous Agents and Multi-Agent Systems 1 (1998),

no. 1, 7–38. 3.2, 3.2.1, 3.2.3

[JW00] Nicholas R. Jennings and Michael Wooldridge, Agent-oriented software engineering,

ARTIFICIAL INTELLIGENCE 117 (2000), 277–296. 3.2.3

[KBE99] Mieczyslaw M. Kokar, Kenneth Baclawski, and Yonet A. Eracar, Control theory-

based foundations of self-controlling software, IEEE Intelligent Systems 14 (1999),

no. 3, 37–45. 3.1, 3.1.2

[KC03] Jeffrey O. Kephart and David M. Chess, The vision of autonomic computing, Com-

puter 36 (2003), no. 1, 41–50. 2.1.1, 2.1.2, 2.3, 2.4.1, 3.2.4, 5.4.1

[KKH+09] Dara Kusic, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kandasamy, and Guofei

Jiang, Power and performance management of virtualized computing environments

via lookahead control, Cluster Computing 12 (2009), no. 1, 1–15. 3.1.2

[KLD02] Kyo C. Kang, Jaejoon Lee, and Patrick Donohoe, Feature-oriented product line engi-

neering, IEEE Software 19 (2002), no. 4, 58–65. 3.4.3

[KW04] J.O. Kephart and W.E. Walsh, An artificial intelligence perspective on autonomic com-

puting policies, Policies for Distributed Systems and Networks, 2004. POLICY 2004.

Proceedings. Fifth IEEE International Workshop on, june 2004, pp. 3 – 12. 2.4.4

[KWB03] Anneke G. Kleppe, Jos Warmer, and Wim Bast, Mda explained: The model driven

architecture: Practice and promise, Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2003. 5.1.2

[LBCP09] Harold C. Lim, Shivnath Babu, Jeffrey S. Chase, and Sujay S. Parekh, Automated

control in cloud computing: challenges and opportunities, Proceedings of the 1st

workshop on Automated control for datacenters and clouds (New York, NY, USA),

ACDC ’09, ACM, 2009, pp. 13–18. 3.1.2

[LDJ13] Philippe Lalanda, Ada Diaconescu, and A. Julie, Mccann, Autonomic computing -

principles, design and implementation, Undergraduate Topics in Computer Science,

Springer, May 2013 (Anglais). (document), 2.1.2, 2.4.1, 2.1, 2.4.2, 2.4.2, 2.4.3

[LKA+95] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug Bryan, and

Walter Mann, Specification and analysis of system architecture using rapide, IEEE

Transactions on Software Engineering 21 (1995), 336–355. 3.4.3

[LML05] P. Lin, A. MacArthur, and J. Leaney, Defining autonomic computing: a software en-

gineering perspective, Proc. Australian Software Engineering Conf, 2005, pp. 88–97.

2.1.2, 2.3, 2.5.1

[Lod04] K.N. Lodding, The hitchhiker’s guide to biomorphic software, Queue 2 (2004), no. 4,

66–75. 3.3

221

[LP04] Zhen Li and M. Parashar, Rudder: a rule-based multi-agent infrastructure for sup-

porting autonomic grid applications, Autonomic Computing, 2004. Proceedings. In-

ternational Conference on, may 2004, pp. 278 – 279. 2.5.2

[LPH04] Hua Liu, M. Parashar, and S. Hariri, A component-based programming model for au-

tonomic applications, Autonomic Computing, 2004. Proceedings. International Con-

ference on, may 2004, pp. 10 – 17. 2.5.2

[LPM06] Hua Liu, Manish Parashar, and Senior Member, Accord: A programming framework

for autonomic applications, IEEE Transactions on Systems, Man and Cybernetics,

Special Issue on Engineering Autonomic Systems, Editors: R. Sterritt and T. Bapty,

IEEE Press 36 (2006), 341–352. 2.5.2

[LRS97] Robert Laddaga, Paul Robertson, and Howard E Shrobe, Self-adaptive software, Pro-

poser Information Pamphlet BAA (1997), no. 98-12. 3.1.2

[LS99] Ora Lassila and Ralph R. Swick, Resource description framework (rdf) model and

syntax specification, Recommendation 22 February 1999 REC-rdf-syntax-19990222,

W3C, Cambridge, MA, 1999. 5.3

[Mai02] E. Mainsah, Autonomic computing: the next era of computing, Electronics Communi-

cation Engineering Journal 14 (2002), no. 1, 2 –3. 2.1.1, 3.3

[Mao09] Shahar Maoz, Using model-based traces as runtime models, Computer 42 (2009),

no. 10, 28–36. 3.4.3, 5.1.2

[Mar00] P. Marrow, Nature-inspired computing technology and applications, BT Technology

Journal 18 (2000), no. 4, 13–23. 3.3

[Mau10] Yoann Maurel, Ceylon: Un canevas pour la creation de gestionnaires autonomiques

extensibles et dynamiques, Ph.D. thesis, University of Grenoble, 2010. 2.5.2

[MBJ+09] Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey, and Arnor Solberg,

Models@ run.time to support dynamic adaptation, Computer 42 (2009), no. 10, 44–

51. 3.4.3, 5.1.2

[MCC04] Matthew L Massie, Brent N Chun, and David E Culler, The ganglia distributed

monitoring system: design, implementation, and experience, Parallel Computing 30

(2004), no. 7, 817–840. 2.4.3

[MDL10] Yoann Maurel, Ada Diaconescu, and Philippe Lalanda, Ceylon: A service-oriented

framework for building autonomic managers, Proceedings of the 2010 Seventh IEEE

International Conference and Workshops on Engineering of Autonomic and Au-

tonomous Systems (Washington, DC, USA), EASE ’10, IEEE Computer Society,

2010, pp. 3–11. 2.5.2

[MFB+08] Brice Morin, Franck Fleurey, Nelly Bencomo, Jean-Marc Jézéquel, Arnor Solberg,

Vegard Dehlen, and Gordon Blair, An aspect-oriented and model-driven approach for

managing dynamic variability, Proceedings of the 11th international conference on

Model Driven Engineering Languages and Systems (Berlin, Heidelberg), MoDELS

’08, Springer-Verlag, 2008, pp. 782–796. 3.4.3

[MGGL11] Denis Morand, Isaac Noé Garcia Garza, and Philippe Lalanda, Autonomic enterprise

service bus, Proceedings of the 2011 IEEE 16th Conference on Emerging Technolo-

gies & Factory Automation (ETFA) (Toulouse, France), IEEE Conference Publica-

tions, September 2011, pp. 1–8 (Anglais). 2.4.3

222

[Mil05] Brent Miller, The autonomic computing edge: The "standard" way of autonomic com-

puting, March 2005. 2.5.2

[MK96] Jeff Magee and Jeff Kramer, Dynamic structure in software architectures, SIGSOFT

Softw. Eng. Notes 21 (1996), no. 6, 3–14. 3.4.3

[MMWW06] Hausi Muller, Klein Mark, Wood William, and O’Brien William, Autonomic comput-

ing, Tech. Report CMU/SEI-2006-TN-006, Software Engineering Institute, Carnegie

Mellon University, 2006. 2.1.2

[MSKC04] P.K. McKinley, S.M. Sadjadi, E.P. Kasten, and B.H.C. Cheng, Composing adaptive

software, Computer 37 (2004), no. 7, 56–64. 2.1.2, 3.1

[MT89] Mihajlo D. Mesarovic and Yasuhiko Takahara, Abstract systems theory, Lecture notes

in control and information sciences, Springer-Verlag, Berlin, New York, 1989. 3.1

[MT00] Nenad Medvidovic and Richard N. Taylor, A classification and comparison frame-

work for software architecture description languages, IEEE Trans. Softw. Eng. 26

(2000), no. 1, 70–93. 3.4.3

[Nag04] Radhika Nagpal, A catalog of biologically-inspired primitives for engineering self-

organization., Engineering Self-Organising Systems, Nature-Inspired Approaches to

Software Engineering., Lecture Notes in Computer Science, vol. 2977, Springer,

2004, pp. 53–62. 3.3

[OMG13] OMG, Model driven architecture, http://www.omg.org/mda, 2013. 5.1.2

[OMT08] P. Oreizy, N. Medvidovic, and R.N. Taylor, Runtime software adaptation: framework,

approaches, and styles, Companion of the 30th international conference on Software

engineering, ACM, 2008, pp. 899–910. 3.4.2

[Oqu04] Flavio Oquendo, Pi-adl: an architecture description language based on the higher-

order typed pi-calculus for specifying dynamic and mobile software architectures,

SIGSOFT Softw. Eng. Notes 29 (2004), no. 3, 1–14. 3.4.3

[Ore98] Architecture-based runtime software evolution, 1998. 3.4, 3.4.2

[Ore00] Peyman Oreizy, Open architecture software: a flexible approach to decentralized soft-

ware evolution, Ph.D. thesis, 2000, AAI9963052. 3.4.3

[OS06] Reza. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory,

Automatic Control, IEEE Transactions on 51 (2006), no. 3, 401 – 420. 3.3.1

[OVDPB01] James Odell, H Van Dyke Parunak, and Bernhard Bauer, Representing agent interac-

tion protocols in uml, Agent-Oriented Software Engineering, Springer, 2001, pp. 201–

218. 3.2.5

[OVDPFB03] James J. Odell, H. Van Dyke Parunak, Mitch Fleischer, and Sven Brueckner, Mod-

eling agents and their environment, Proceedings of the 3rd international conference

on Agent-oriented software engineering III (Berlin, Heidelberg), AOSE’02, Springer-

Verlag, 2003, pp. 16–31. 3.2, 3.2.2

[PCHW12] T. Patikirikorala, A. Colman, Jun Han, and Liuping Wang, A systematic survey on the

design of self-adaptive software systems using control engineering approaches, Soft-

ware Engineering for Adaptive and Self-Managing Systems (SEAMS), 2012 ICSE

Workshop on, june 2012, pp. 33 –42. 3.1.1, 3.1.2

[PCT03] David Pierre Charles and Ledoux Thomas, Towards a framework for self-adaptive

223

http://www.omg.org/mda

component-based applications, In DAIS’03, volume 2893 of LNCS, Springer-Verlag,

2003, pp. 1–14. 3.1.2

[PH06] M Parashar and S Hariri, Autonomic grid computing concepts, requirements, infras-

tructures, 2006. 2.1.2

[PLL+06] Manish Parashar, Hua Liu, Zhen Li, Vincent Matossian, Cristina Schmidt, Guangsen

Zhang, and Salim Hariri, Automate: Enabling autonomic applications on the grid,

Cluster Computing 9 (2006), no. 2, 161–174. (document), 2.5.2, 2.8, 4.1

[PW92] Dewayne E. Perry and Alexander L. Wolf, Foundations for the study of software ar-

chitecture, SIGSOFT Softw. Eng. Notes 17 (1992), no. 4, 40–52. 3.4

[PWB09] Evangelos Pournaras, Martijn Warnier, and Frances M. T. Brazier, Adaptive agent-

based self-organization for robust hierarchical topologies, Proceedings of the 2009

International Conference on Adaptive and Intelligent Systems (Washington, DC,

USA), ICAIS ’09, IEEE Computer Society, 2009, pp. 69–76. 3.2.3

[RCL09] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb, A taxonomy and survey of cloud

computing systems, Proceedings of the 2009 Fifth International Joint Conference on

INC, IMS and IDC (Washington, DC, USA), NCM ’09, IEEE Computer Society,

2009, pp. 44–51. 1.1

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, Handbook of constraint program-

ming (foundations of artificial intelligence), Elsevier Science Inc., New York, NY,

USA, 2006. 5.4.3

[Sam97] Johannes Sametinger, Software engineering with reusable components, Springer-

Verlag New York, Inc., New York, NY, USA, 1997. 2.5.1

[SBDP08] Sylvain Sicard, Fabienne Boyer, and Noel De Palma, Using components for

architecture-based management: the self-repair case, Proceedings of the 30th inter-

national conference on Software engineering (New York, NY, USA), ICSE ’08, ACM,

2008, pp. 101–110. 2.5.2

[Sch93] Alexander Schill (ed.), Proceedings of the international dce workshop on dce - the

osf distributed computing environment, client/server model and beyond, London, UK,

UK, Springer-Verlag, 1993. 5.2.4

[Sed04] Igor Sedukhin, Web services distributed management: Management of web services

(wsdm-mows) 1.0, OASIS OASIS Web Services Distributed Management (WSDM)

TC (2004). 2.5.2

[SG96] Mary Shaw and David Garlan, Software architecture: Perspectives on an emerging

discipline, Prentice Hall, April 1996, http://www.docin.com/p-41442459.html. 3.4,

3.4.1

[SH05] Roy Sterritt and Mike Hinchey, Autonomic computing-panacea or poppycock?, Engi-

neering of Computer-Based Systems, 2005. ECBS’05. 12th IEEE International Con-

ference and Workshops on the, IEEE, 2005, pp. 535–539. 2.3

[SH09] , Safety and security in multiagent systems, Springer-Verlag, Berlin, Heidel-

berg, 2009, pp. 330–341. 3.3.3

[SHC+11] Hui Song, Gang Huang, Franck Chauvel, Yingfei Xiong, Zhenjiang Hu, Yanchun

Sun, and Hong Mei, Supporting runtime software architecture: A bidirectional-

224

transformation-based approach, J. Syst. Softw. 84 (2011), no. 5, 711–723. 4.4.4

[SKPF03] Lee Spector, Jon Klein, Chris Perry, and Mark Feinstein, Emergence of collective

behavior in evolving populations of flying agents, Proceedings of the 2003 interna-

tional conference on Genetic and evolutionary computation: PartI (Berlin, Heidel-

berg), GECCO’03, Springer-Verlag, 2003, pp. 61–73. 3.3.1

[Smi80] R.G. Smith, The contract net protocol: High-level communication and control in a

distributed problem solver, Computers, IEEE Transactions on 100 (1980), no. 12,

1104–1113. 3.2.2, 8.3.2

[SP08] Candelaria Sansores and Juan Pavón, An adaptive agent model for self-organizing

mas, Proceedings of the 7th international joint conference on Autonomous agents and

multiagent systems - Volume 3 (Richland, SC), AAMAS ’08, International Founda-

tion for Autonomous Agents and Multiagent Systems, 2008, pp. 1639–1642. 3.2.3

[SPTU05] Roy Sterritt, Manish Parashar, Huaglory Tianfield, and Rainer Unland, A concise in-

troduction to autonomic computing, Advanced Engineering Informatics 19 (2005),

no. 3, 181–187. 2.1.2

[ST09] M. Salehie and L. Tahvildari, Self-adaptive software: Landscape and research chal-

lenges, ACM Transactions on Autonomous and Adaptive Systems (TAAS) 4 (2009),

no. 2, 1–42. 2.1.2, 3.1.2

[Ste05] Roy Sterritt, Autonomic computing, Innovations in systems and software engineering

1 (2005), no. 1, 79–88. 2.1.2

[Sun11] E.C. Sun, Ant colonies: Behavior in insects and computer applications, Computer

Science, Technology and Applications, Nova Science Pub Incorporated, 2011. 3.3.1

[Tal12] Domenico Talia, Clouds meet agents: Toward intelligent cloud services, IEEE Internet

Computing 16 (2012), no. 2, 78–81. 3.2.4

[TCW+04] Gerald Tesauro, David M. Chess, William E. Walsh, Rajarshi Das, Alla Segal, Ian

Whalley, Jeffrey O. Kephart, and Steve R. White, A multi-agent systems approach

to autonomic computing, Proceedings of the Third International Joint Conference on

Autonomous Agents and Multiagent Systems - Volume 1 (Washington, DC, USA),

AAMAS ’04, IEEE Computer Society, 2004, pp. 464–471. 2.5.2, 3.2.4

[TDBH09] Christophe Taton, Noël De Palma, Sara Bouchenak, and Daniel Hagimont, Improv-

ing the performance of jms-based applications, International Journal of Autonomic

Computing (IJAC) 1 (2009), no. 1. 3.1.2

[TMO09] R.N. Taylor, N. Medvidovic, and P. Oreizy, Architectural styles for runtime software

adaptation, WICSA/ECSA 9 (2009). 3.4.3

[UD11] Mihaela Ulieru and Rene Doursat, Emergent engineering: a radical paradigm shift,

Int. J. Auton. Adapt. Commun. Syst. 4 (2011), no. 1, 39–60. 3.3.1

[wCcHG+04] Shang wen Cheng, An cheng Huang, David Garlan, Bradley Schmerl, and Pe-

ter Steenkiste, An architecture for coordinating multiple self-management systems,

IEEE/IFIP Conference on Software Architecture, Kluwer Academic Publishers, 2004,

pp. 12–15. 2.5.2

[Wei99] G. Weiss, Multiagent systems: a modern approach to distributed artificial intelli-

gence, MIT press, 1999. (document), 3.2, 3.7

225

[WG97] G. Wiederhold and M. Genesereth, The conceptual basis for mediation services, IEEE

Expert, Vol. 12 No. 5, Sep.-Oct. 1997, pages 38-47 (1997). 1.4, 7.1.1, 7.1.1

[WH05] Tom De Wolf and Tom Holvoet, Emergence versus self-organisation: Different con-

cepts but promising when combined, Springer-Verlag, 2005, pp. 1–15. 3.3.1

[WH06] M. Wirsing and M. Holzl, Software intensive systems, Draft Report on ERCIM Be-

yond the Horizon Thematic Group 6 (2006). (document), 1.1

[Wie92] G. Wiederhold, Mediators in the architecture of future information systems, Computer

25 (1992), no. 3, 38–49. 1.4, 3.2.1, 7.1.1

[WJK00] Michael Wooldridge, Nicholas R Jennings, and David Kinny, The gaia methodology

for agent-oriented analysis and design, Autonomous Agents and Multi-Agent Sys-

tems 3 (2000), no. 3, 285–312. 3.2.5

[Woo97] M. Wooldridge, Agent-based software engineering, Software Engineering. IEE

Proceedings- [see also Software, IEE Proceedings] 144 (1997), no. 1, 26 –37. 3.2

[YGS+04] Hong Yan, David Garlan, Bradley Schmerl, Jonathan Aldrich, and Rick Kazman, Dis-

cotect: A system for discovering architectures from running systems, Proceedings of

the 26th International Conference on Software Engineering (Washington, DC, USA),

ICSE ’04, IEEE Computer Society, 2004, pp. 470–479. 2.5.2

[YKO03] O. Yadgar, S. Kraus, and C.L. Ortiz, Scaling-up distributed sensor networks: coop-

erative large-scale mobile-agent organizations, Distributed Sensor Networks (2003),

185–217. 3.2.1, 3.2.1

[ZC06] Ji Zhang and Betty H. C. Cheng, Model-based development of dynamically adaptive

software, ICSE ’06: Proceedings of the 28th international conference on Software

engineering (New York, NY, USA), ACM, 2006, pp. 371–380. 3.4.3, 5.1.2

[ZJW03] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge, Developing mul-

tiagent systems: The gaia methodology, ACM Trans. Softw. Eng. Methodol. 12

(2003), no. 3, 317–370. 3.2.3

226

	1 Introduction
	1.1 Importance and challenges of software management
	1.2 Cube approach
	1.3 Contributions of this thesis
	1.4 Scope and Applicability
	1.5 Organisation of this thesis

	2 Autonomic Computing
	2.1 Autonomic Computing Initiative
	2.1.1 IBM's perspective and vision
	2.1.2 Holistic approach
	2.1.3 Research communities

	2.2 Characteristics of autonomic computing systems
	2.3 Objectives of autonomic computing systems
	2.4 Reference architecture of autonomic computing
	2.4.1 Autonomic Element
	2.4.2 The MAPE-K loop
	2.4.3 Monitoring
	2.4.4 Analysis
	2.4.5 Planning and Execution

	2.5 Engineering autonomic systems
	2.5.1 Quality attributes
	2.5.2 Autonomic Frameworks
	2.5.3 Comparison

	2.6 Summary

	3 Approaches to Autonomic Computing
	3.1 Control Theory
	3.1.1 Types of Control Loops
	3.1.2 Related work to Autonomic Computing
	3.1.3 Summary

	3.2 Agent-based systems
	3.2.1 Structural organisation of multi-agent systems
	3.2.2 Communication principles
	3.2.3 Adaptive multi-agent systems
	3.2.4 Research work related to Autonomic Computing
	3.2.5 Summary

	3.3 Nature-inspired approaches
	3.3.1 Self-organisation and emergence
	3.3.2 Functional structure and pattern formation
	3.3.3 Work related to Autonomic Computing

	3.4 Architecture-based approaches
	3.4.1 Software Architecture
	3.4.2 Adaptation concerns
	3.4.3 Enabling Techniques
	3.4.4 Summary of architecture-based approaches

	3.5 Discussion and chapter summary

	4 Proposition
	4.1 Problems addressed
	4.2 Contributions overview
	4.2.1 Positioning of the thesis within the team research
	4.2.2 Thesis contribution

	4.3 Objectives and Applicability
	4.3.1 Design decisions
	4.3.2 Applicability assumptions and scope

	4.4 Cube Framework overview
	4.4.1 Theoretical Support
	4.4.2 Solution Overview
	4.4.3 Coordination Strategy
	4.4.4 Cube Autonomic Manager
	4.4.5 System Management Life-Cycle

	4.5 Summary

	5 Cube Framework
	5.1 Goal and Knowledge Specifications
	5.1.1 Overview
	5.1.2 Key model-based management concepts

	5.2 System Modelling Language – SML
	5.2.1 ECORE
	5.2.2 Cube Meta-Model
	5.2.3 Domain-Specific Managed Elements
	5.2.4 Cube Runtime Model

	5.3 Goal Description Language - GDL
	5.3.1 GDL Elements
	5.3.2 GDL Properties
	5.3.3 Archetype

	5.4 Cube Autonomic Manager
	5.4.1 Internal Architecture Overview
	5.4.2 Runtime Model Controller
	5.4.3 Archetype Resolver
	5.4.4 Life Controller
	5.4.5 Monitors/Executors (Technology-Specific Extensions)
	5.4.6 Communicator

	5.5 Summary

	6 Implementation
	6.1 Overview
	6.1.1 Supporting Technologies
	6.1.1.1 OSGi
	6.1.1.2 Apache Felix iPOJO

	6.1.2 Execution Platform

	6.2 XML Syntax for the Archetype model
	6.2.1 The Archetype Document
	6.2.2 Archetype Elements and Description Properties
	6.2.3 Archetype Goals
	6.2.4 Complete Example
	6.2.5 Archetype Parser

	6.3 Cube Execution Platform
	6.3.1 Overall Architecture
	6.3.2 Cube Runtime and its Administration Service
	6.3.3 Autonomic Manager
	6.3.4 Runtime Model Controller
	6.3.5 Data Structure and Implementation for the Archetype Resolver

	6.4 Extensions
	6.4.1 Overview
	6.4.2 Extension Points
	6.4.3 Deploying and using extensions
	6.4.4 Extensions provided by the Cube Framework

	6.5 Related Tools
	6.5.1 Overview
	6.5.2 Hot Deployer
	6.5.3 Console Commands
	6.5.4 Dynamic Web Monitoring Console

	6.6 Summary

	7 Evaluation
	7.1 Overview
	7.1.1 Introduction to Mediation
	7.1.2 Cilia Mediation Framework

	7.2 Case Study 1: monitoring the consumption of home resources
	7.2.1 Context
	7.2.2 Managed System
	7.2.3 Problems addressed
	7.2.4 Solution proposed
	7.2.4.1 Model Abstractions
	7.2.4.2 Extensions
	7.2.4.3 Archetype

	7.2.5 Scenarios and Results

	7.3 Case Study 2: health-care monitoring system
	7.3.1 Context
	7.3.2 Managed System
	7.3.3 Problems and Requirements to address
	7.3.4 Solution proposed
	7.3.4.1 Model Abstractions
	7.3.4.2 Extensions
	7.3.4.3 Archetype

	7.3.5 Scenarios and results

	7.4 Evaluation
	7.5 Summary

	8 Conclusion
	8.1 Summary
	8.2 Summary of thesis contributions
	8.3 Limitations and perspectives
	8.3.1 Archetype Specification
	8.3.2 Runtime Autonomic Management
	8.3.3 Towards a reusable methodology and integrated development environment for engineering autonomic computing systems

	A XML Terminology and Vocabulary
	B Implementation Details
	B.1 Administration Service
	B.2 Component modelled element
	B.3 Connected Specific Resolver
	B.4 Console Commands

	C Archetype XML files
	D Source code statistics
	Bibliography

