Pierre Thibaut 
  
Thomas Moreau 
  
Bertrand Chapron 
  
Charly, Hasan, Herwig, Marie Marie-Laure Benoit 
  
Sylvie Eichen 
  
Sylvie Armengaud 
  
Adnan Abdelaziz 
  
Bouchra 
  
Emilie Chao 
  
Farouk Fabian 
  
Florian 
  
Jean-Adrien Hichem 
  
Nesrine Jorge Mohammed 
  
  
  
  
  
  
  

Je tiens d'abord à remercier chaleureusement ma directrice de thèse Corinne Mailhes et mon codirecteur Jean-Yves Tourneret qui m'ont encadré durant ces trois années de thèse. Je les remercie pour leur disponibilité en toutes circonstances, leur suivi continu, leur bonne humeur ainsi que leurs conseils avisés qui ont permis de bien guider ce travail et d'améliorer sa qualité. Je les remercie aussi pour la conance qu'ils m'ont accordé tout au long de cette thèse en me laissant une grande liberté pour mener à bien ce travail de recherche.

Durant ces trois années, j'ai eu la chance de collaborer avec des industriels de haut niveau qui m'ont apporté leurs conseils et expériences à travers de nombreuses réunions. Je pense notamment à

Percentages of observed altimetric waveforms in classes 1, 7, 13 and others versus distance to the coast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4

Example of observed waveforms obtained with Jason-1 altimeter over Amazonia area (extracted from [START_REF] Smith | Tracking and retracking[END_REF]). . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5

Eect of the asymmetry coecient on the peak. . . . . . . . . . . . . . . . . . . . . . .

2.6

Parameter RMSEs for Brown waveforms with NM (left) and NR (right) algorithms when using Brown (blue), BGP (red) and BAGP (green) models. . . . . . . . . . . . . Vertical variability of ocean phenomena versus the spatial scale [START_REF] Sandwell | Radar altimetry[END_REF]. . . .

1.2

Typical values of the mean and standard deviation of all the time variable corrections applied to SSH [START_REF] Vignudelli | Coastal Altimetry[END_REF]. . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3

Example of altimetric missions, technologies and performance [START_REF] Rosmorduc | Radar altimetry tutorial[END_REF].

2.1

Description of the model parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2

RMSEs versus peak location T (NR algorithm). . . . . . . . . . . . . . . . . . . . . . .

2.3

Averaged reconstruction errors for the estimation algorithms (synthetic waveforms). . .

2.4

Averaged execution times for the estimation algorithms in seconds (synthetic waveforms). La précision des paramètres altimétriques estimés constitue un point très important en altimétrie en raison de l'utilisation de ces paramètres dans de nombreuses applications telles que la géophysique, la bathymétrie, etc. Cette précision est réduite en raison de la corruption des mesures altimétriques par un bruit de chatoiement et à cause de l'énergie rééchie par la terre dans les zones côtières. L'altimétrie SAR/Doppler, proposée par [START_REF] Raney | The delay/Doppler radar altimeter[END_REF] • Chapitre 2: Ce chapitre s'intéresse à l'étude des formes d'onde côtières. Ces échos sont parfois corrompus par des pics provoqués par des zones de fort coecient de rétrodiusion à l'intérieur de la surface illuminée ou par la modication de l'état de la mer près du rivage.

Nous proposons alors un nouveau modèle altimétrique comme la somme du modèle de Brown 

Contributions principales

Les principales contributions de cette thèse sont

• Contribution 1 Un nouveau modèle altimétrique est proposé pour les signaux côtiers [START_REF] Halimi | Modélisation des signaux altimétriques en présence de pics[END_REF][Halimi et al., ,b, 2013d]]. L'estimation des paramètres est réalisée en utilisant un estimateur du maximum de vraisemblance. L'expression des bornes de Cramér-Rao des paramètres du modèle est donnée. Ces innovations sont évaluées par de nombreuses simulations eectuées sur des données synthétiques et réelles.

• Contribution 2 Un modèle semi-analytique à trois paramètres est proposé pour l'altimétrie SAR/Doppler [START_REF] Halimi | Les bornes inférieures de Cramér-Rao sont ensuite établies an d'évaluer les performances de la procédure d'estimation par moindres carrés[END_REF][Halimi et al., , 2013b,e],e]. La stratégie d'estimation s'appuie sur un critère des moindres carrés. Les bornes inférieures de Cramér-Rao sont ensuite établies an d'évaluer les performances de la procédure d'estimation par moindres carrés [Halimi et al., 2013a]. Le modèle proposé est validé sur des données synthétiques ainsi que sur des données réelles fournies par le satellite Cryosat-2.

Introduction

This For more than twenty years, conventional altimeters like Topex, Poseidon-2 or Poseidon-3, have been delivering waveforms that are used to estimate many parameters such as the range between the satellite and the observed scene, the wave height and the wind speed. These waveforms mainly result from the observation of oceanic surfaces for which several waveform models and estimation algorithms have been developed in order to improve the quality of the estimated altimetric parameters.

However, the altimetric waveforms can be corrupted by land returns, by rain or by the summation of backscattered signals coming from separate reective ocean surfaces which make the conventional algorithms ineective. Therefore, a great eort is now devoted to process coastal echoes in order to move the altimetric measurements closer to the coast. The rst part of this thesis deals with this issue by proposing a new altimetric model suitable for coastal areas. This model takes into account the possible presence of peaks aecting the coastal altimetric echoes. Two estimation algorithms are then proposed in order to take advantage of the proposed model. These algorithms provide an improvement in the quality of the estimated parameters.

A major point in altimetry is the measurement accuracy because of the use of the estimated parameters in many applications such as geophysics, bathymetry, etc. This accuracy is reduced because of the corruption of the altimetric measurements by speckle noise and by land return as in coastal areas. A solution for improving the measurement quality and the coastal issue is provided by the delay/Doppler altimetry (DDA) proposed in [START_REF] Raney | The delay/Doppler radar altimeter[END_REF]. Indeed, this new technology ts into the logic of measurement improvement and has two main objectives. The rst one is to reduce the measurement noise by increasing the number of observations (looks) which provide better geophysical parameter estimates. The second one is to increase the along-track resolution which allows the measurements to remain valid until a distance of about 300 meters from the coast (while it was about 10 km for conventional altimetry (CA)). However, DDA requires the elaboration of new altimetric models since the echoes present a dierent shape than the conventional one. The second part of the thesis deals with this point and proposes two altimetric models for DDA. The parameters of these models can be estimated by elaborating appropriate estimation algorithms based on maximum likelihood or least squares approaches. The obtained results are very promising and show the interest of using DDA as a new tool for the observations of the ocean.

Structure of the manuscript

This thesis is organized as follows

• Chapter 1: This chapter rst describes the principles and objectives of spatial altimetry. Second, it presents the altimetric waveform and provides a state of the art of the dierent waveform models and estimation strategies available in the literature. The limitations of conventional altimetry are then described. These limitations are mainly due to the contamination of the echoes by land return in coastal areas because of the large footprint of the observed surface and the accuracy of the estimated parameters that is reduced because of the waveform corruption by speckle noise. Some technical solutions to these problems are then presented.

• 

Main contributions

The main contributions of this thesis are

• Contribution 1 A new altimetric model is proposed for coastal waveforms [START_REF] Halimi | Modélisation des signaux altimétriques en présence de pics[END_REF][Halimi et al., ,b, 2013d]]. The parameter estimation is achieved using a maximum likelihood estimator.

The Cramér-Rao lower bounds of the model parameters are also derived. These innovations are evaluated via many simulations conducted on synthetic and real data.

• Contribution 2 A three parameter semi-analytical model is proposed for delay/Doppler altimetry [START_REF] Halimi | Les bornes inférieures de Cramér-Rao sont ensuite établies an d'évaluer les performances de la procédure d'estimation par moindres carrés[END_REF][Halimi et al., , 2013b,e],e]. The related estimation strategy is based on a least squares criterion. The Cramér-Rao lower bounds of the model parameters are then derived in order to evaluate the performance of the proposed least squares estimation procedure [Halimi et al., 2013a]. The proposed model is validated using synthetic and real Cryosat-2 data.

• Contribution 3 The previous DDA model is generalized to a ve parameter model that accounts for antenna mispointing [Halimi et al., 2013c]. The new model is analyzed and its approximations are justied. Several estimation strategies based on the least squares estimation procedure are proposed to estimate its parameters. Processing simulated and real Cryosat-2

data allow this new model to be validated. L'obtention des paramètres altimétriques (voir gure 1.4) est basée sur l'analyse de l'écho altimétrique. Ce signal est généralement modélisé par une double convolution entre trois termes qui sont la réponse impulsionnelle d'une mer plate (FSIR), la densité de probabilité (PDF) de la hauteur des points de dispersion et la réponse impulsionnelle du radar (PTR). Le premier modèle analytique de cette double convolution a été proposé par [Brown, 1977] en considérant une approximation exponentielle de la FSIR et gaussienne pour la PDF de la hauteur des points de dispersion et la PTR.

Plusieurs études ont tenté par la suite d'améliorer ce modèle en s'intéressant à chacun des termes de la double convolution. [START_REF] Amarouche | Improving the Jason-1 ground retracking to better account for attitude eects[END_REF][START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF] ont proposé des améliorations de l'approximation exponentielle de la FSIR. [Hayne, 1980, Huang and[START_REF] Huang | An experimental study of the surface elevation probability distribution and statistics of wind-generated waves[END_REF] ont introduit un coecient d'asymétrie dans la PDF gaussienne an de tenir compte de l'asymétrie des vagues.

[ [START_REF] Callahan | Retracking of Jason-1 data[END_REF][START_REF] Rodriguez | Assessment of the TOPEX altimeter performance using waveform retracking[END_REF][START_REF] Zanifé | Assesment of the JASON-1 look-up tables using multiple gaussian functions as an approximation of the PTR[END_REF] ont considéré une approximation par une somme de gaussiennes de la PTR. Ces améliorations ont permis de mieux modéliser le signal altimétrique an d'améliorer la qualité des paramètres altimétriques estimés. Cette estimation peut s'eectuer suivant plusieurs procédures. On note alors la procédure du maximum de vraisemblance [START_REF] Challenor | Maximum likelihood estimation for radar altimetry[END_REF][START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF], le critère des moindres carrés [Deng and Featherstone, 2006[START_REF] Dumont | Estimation optimale des paramètres altimétriques des signaux radar Poséidon[END_REF][START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF] et celui des moindres carrés pondérés [START_REF] Maus | Improved ocean-geoid resolution from retracked ERS-1 satellite altimeter waveforms[END_REF]].

L'ensemble des modèles décrits précédemment concerne le cas des échos océaniques. Ceci dit, l'une des limitations de l'altimétrie conventionnelle est la large tache au sol qui augmente la probabilité de corruption par des surfaces autre qu'océanique. On note alors des formes d'échos diérentes près des côtes ce qui rend les modèles ainsi que les algorithmes d'estimation classiques inecaces. Une autre limitation de l'altimétrie conventionnelle est le haut niveau de bruit de chatoiement aectant les mesures. Ce bruit aura un eet direct sur la qualité des paramètres altimétriques estimés et il devient alors nécessaire de réduire son eet.

Il existe deux classes de solutions pour améliorer les limitations de l'altimétrie conventionnelle. La première classe améliore le traitement des échos disponibles en se basant sur les outils de traitement du signal tels que le ltrage [Ollivier, 2006, Sandwell and[START_REF] Sandwell | Retracking ERS-1 altimeter waveforms for optimal gravity eld recovery[END_REF], la modélisation [START_REF] Amarouche | Improving the Jason-1 ground retracking to better account for attitude eects[END_REF], Brown, 1977[START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF] et les méthodes d'estimation [START_REF] Dumont | Estimation optimale des paramètres altimétriques des signaux radar Poséidon[END_REF][START_REF] Maus | Improved ocean-geoid resolution from retracked ERS-1 satellite altimeter waveforms[END_REF][START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF]. La deuxième classe considère les améliorations de la technologie de mesure altimétrique. On évoque dans ce cas le nouvel instrument AltiKa qui permet de réduire les dimensions de la tâche au sol ainsi que le niveau de bruit aectant les mesures. On note aussi la nouvelle technologie SAR/Doppler qui vise la réduction du bruit de mesure et l'augmentation de la résolution spatiale dans la direction de marche du satellite en comparaison avec l'altimétrie conventionnelle.

On s'intéressera dans cette thèse à l'amélioration de la mesure côtière en proposant un nouveau modèle pour les échos côtiers. On proposera par ailleurs des outils de modélisation et d'estimation paramétriques des échos SAR/Doppler an de tirer prot des performances de cette nouvelle technologie.

Spatial altimetry

Earth is a home to millions of species of life, including humans. Many physical phenomena, that have a direct impact on our lives, occur in this planet making it in constant evolution. These phenomena include, for example, the global warming that has an eect on the rise of the sea surface height and melting ice, earthquakes that can cause tsunami and heat transport that leads to El Niño. Almost all of these phenomena have an impact on the ocean since it covers 71% of our planet. Therefore, in order to study them, one has to observe their eects on the oceanic surface which is achieved by radar altimetry. Indeed, the primary objective of radar altimetry is the measure of the ocean surface topography. This measure provides a lot of information about many phenomena such as the ones described in Table 1.1 which shows many physical phenomena according to their spatial scale (i.e., the scale on which they may show some change) and their vertical variability (i.e., the change on the observed sea level). It can be seen for example that the geoid may present an elevation of the order of 30 m over thousands of kilometers. This table also shows that many phenomena, such as climate changes and small scale gravity features as ridge axes, have a very low vertical amplitude and hence require a very accurate measure of the sea surface height. Therefore, the altimetric instruments are in constant evolution in order to improve the measure quality and to explain new physical phenomena.

The next section introduces the principles of altimetry and the dierent quantities of interest. After that, a brief description of the past and future altimetric missions is provided. 

Principle

A satellite altimeter is a nadir viewing radar that emits regular pulses and records the travel time, the magnitude and the shape of each return signal after reection on the Earth's surface. This instrument measures the range between the satellite and the sea surface h a . The range measurement

h a = t 0 c 2 ,
where c is the speed of light, is based on a perfect knowledge of the round-trip travel time (t 0 ) of the emitted electromagnetic pulse from the satellite to the observed surface. The emitted pulse should be very narrow in order to achieve a good range resolution. However, this requires a high emission power, which can be prohibitive on board a satellite, in order to have a good signal to noise ratio for the received signal. The emission is then achieved using the pulse compression technique (also known as full deramp technique) that has substantially reduced peak power requirements. This is achieved using a frequency modulated chirp at the emission and a matched lter at the receiver 1 .

This provides a good range resolution h r (which is related to the reception bandwidth of the altimeter B as follows h r = c/(2B)) which improves the accuracy of the desired h a . Note that h a is generally used to derive the variable part of the dynamic sea surface topography which is known as sea surface height anomaly (SSHA). In order to derive the expression of SSHA, complementary height denitions are given in what follows. The altimeter height is generally known according to the reference ellipsoid which is a mathematical determinable model of the Earth. This distance denoted by H s in Fig. 1.1

serves to maintain the satellite on its orbit (the accuracy is about 1 cm in the most recent satellites [START_REF] Vignudelli | Coastal Altimetry[END_REF]). This is achieved using some terrestrial or on-board DORIS instrument (based on the Doppler eect) or by using the triangulation method as in the GPS (global positioning system). At this point, one can evaluate the sea surface height (SSH) by subtracting the measured h a from H s . However, some corrections must be applied to the measured h a in order to improve its accuracy. These corrections are divided into two main parts [START_REF] Chelton | Chapter 1 satellite altimetry[END_REF][START_REF] Vignudelli | Coastal Altimetry[END_REF]. The rst ones are mainly due to the pulse travel through the atmospheric layers and are known as atmospheric corrections (denoted by h atm ). These corrections are due to the presence of dry gasses, water vapor and free electrons in the atmosphere. Those phenomena reduce the propagation speed of the emitted pulse resulting in a longer measured range and then a lower SSH. The second corrections Figure 1.1: The principle of radar altimetry [START_REF] Benveniste | Radar altimetry: Past, Present and Future[END_REF].

are related to the observed sea surface which is not perfectly Gaussian. Indeed, the wave troughs are more prevalent and reect more signal than the wave crest resulting in a bias in the detected sea level.

This bias is commonly known as sea state bias (SSB) and the corresponding correction is denoted by h SSB . Thus, the corrected range h c is given by h c = h a -h atm -h SSB and the corrected SSH is deduced as follows

SSH = H s -h c = H s -h a + h atm + h SSB . (1.1)
The primary focus of satellite altimetry is the study of the dynamic part of the SSH. Therefore, one has to determine the main contributors of the SSH in order to deduce its dynamic part. Several physical factors contribute to the SSH. The rst is the distribution of gravity over the Earth which is represented by the geoid (height h g from the reference ellipsoid). The geoid is the equipotential surface of the eective gravitational eld of the Earth which incorporates Earth rotation forces and the gravitation of the solid Earth, the ocean itself, and the atmosphere [START_REF] Robinson | The methods of satellite oceanography[END_REF]. It represents the largest part of the SSH and can be seen as a new reference instead of the elliptical reference. The SSH expressed in this new reference will have a meter scale. The second factor is represented by tidal eects h t that are mainly obtained by the ocean tides but also include solid Earth tides, loading tides and pole tides. The third factor results from the dynamic atmosphere that exerts a downward force on the sea surface (denoted by h atm2 ). Indeed, an increase on the atmospheric pressure distribution over the ocean lowers the sea level. For example, an increased pressure of 1 mbar lowers sea level by 1 cm. The last factor is the dynamic sea surface topography h d which represents the displacement of the sea surface associated with the motion of the sea. The SSH is nally given by

SSH = h t + h atm2 + h d + h g . (1.2)
Eqs. (1.1) and (1.2) lead to the following expression for the dynamic sea surface topography

h d = H s -h a + h atm + h SSB -h t -h atm2 -h g .
( 1.3) This equation shows the eect of range corrections that should be applied to the range (in order to reduce the range and increase the SSH) and geophysical corrections that are applied to SSH. Note nally that h d presents a mean value known as the mean dynamic topography h d and that it uctuates around this value by what is known as the sea surface height anomaly (SSHA). The latter is given by SSHA = H s -h a + h atm + h SSB -h t -h atm2 -h MSS .

( .4) where h MSS = h g +h d is the mean sea surface height that can be considered as a new reference instead of the geoid. The obtained variable SSHA is used to study the sea surface height variations and is of great importance since it provides a lot of information about many physical phenomena such as the wind speed. Table 1.2 shows typical values of the mean and standard deviation of all the time variable corrections applied to SSH and the range (atmospheric corrections and SSB). It can be seen that dry troposphere introduces the greatest error while the tides have the largest standard-deviations.

Missions

Spatial altimetry rst appeared in the 70th aiming at the observation of the Earth. Since then, altimetry has known an incredible improvement that has allowed to better understand many aspects of the ocean such as ocean surface topography, marine currents, heat transport, etc. The earliest altimeters were embarked in multi-disciplinary satellites such as: GEOS-3 (1975), SEASAT (1978), GEOSAT (1985), ERS-1 (1991). However, the rst satellite dedicated to the observation of the ocean surface topography is the Franco-American TOPEX/POSEIDON satellite that was launched in 1992.

This satellite embarked two altimeters, an American altimeter Topex (TOPographic EXperiment) and a French altimeter POSEIDON and has provided 13 years of useful data while a three year mission was initially planned. Moreover, its high performance has allowed, for the rst time, the global measure of some temporal variability of the ocean such as the seasonal cycle. This satellite was followed by Jason-1 (2001) and Jason-2 (2008) in order to take advantage of the measure continuity.

Indeed, the availability of many year data has allowed to study the seasonal and annual behavior of the ocean hence the importance of the measure continuity. Similarly, the European mission ERS-1 was followed by the ERS-2 (1995) where both of them were devoted to the study of the atmosphere and the ocean. These missions were followed by ENVISAT (Environmental Satellite) launched in Table 1.3 shows examples of altimetric missions and some of their characteristics. These missions highlight the objective of improving the range accuracy. Indeed, the range precision is an important issue since many physical applications depend on it as shown in Table 1.1. Except the AltiKa altimeter that operates at Ka-band (35 GHz), all the other altimeters operate at Ku-band (between 12 and 18

GHz). This choice is motivated by the fact that high frequencies are signicantly attenuated by the atmosphere. Moreover, and in order to determine the ionospheric delay aecting the emitted pulse, some altimeters such as Topex, Jason-1 and Jason-2 operate at two frequencies. The correction is then possible since the free electrons in the ionosphere aect the traveling signals proportionally to their frequencies (this ionospheric correction is included in h atm as described previously). 

Conventional altimetry

This section is interested in the description of the conventional pulse limited altimetry. The altimetric waveform is rst described by presenting its shape and its dependence according to the physical parameters of interest. Second, the conventional altimetric models are described. The third part deals with parameter estimation and describes briey the dierent strategies available in the literature. The last part shows the limitations of this technology which justies the need for new technologies and processing improvement.

Waveform description

As explained previously, the altimeter measures the range h a between the satellite and the observed surface. This is achieved by the study of the reected altimetric echo. The shape of this signal depends on the observed surface which is generally the oceanic one. This surface is spatially homogeneous and allows the extraction of many geophysical parameters such as the sea wave height and the wind speed. The formation of the oceanic waveform is described in Fig. 1.3 for a calm and rough sea surface. First, the signal shows a low constant level before the emitted pulse reaches the surface.

This received signal (also called echo) results from radiations which are natural (cosmic radiations, atmospheric radiations, etc.), and/or coming from the satellite instruments and known as the thermal noise. The second step shows an increasing signal as the pulse reaches the observed surface. The latter is represented by circles of increasing radius whose surface is proportional to the received altimetric power [START_REF] Chelton | Pulse compression and sea level tracking in satellite altimetry[END_REF]. The obtained signal continues to rise, as the pulse goes deeper in the observed surface, showing a slope that is directly related to the surface roughness, i.e., the wave height (see ve altimetric parameters as described in Fig. 1.4. The parameter N t is the thermal noise that has been described previously, P u is the amplitude of the altimetric echo that is related to the speed of wind, SWH is the signicant wave height, τ is the epoch related to the range between the satellite and the observed surface, ξ is the mispointing of the radar antenna and λ s is the skewness related to the curvature of the leading edge. Note that the satellite altitude is provided by the epoch parameter. This parameter represents a time shift and then it can be expressed in seconds. In this case, it is denoted by τ s . The epoch τ is also commonly expressed in terms of gates which are discrete units related to the time resolution T s as follows τ s = τ T s . Note nally, that τ can also be considered as a distance where a gate is related to the spatial resolution h r , with h r = cT s /2 = 46 cm. This latter unit (i.e., meter) is the one of interest since it allows to directly evaluate the eect on the satellite altitude.

Waveform models

The mean power s(t) of a conventional altimetric echo depends on the observed surface and the conguration of the measuring instrument. The echo model has known many evolutions. First, it has been shown in [START_REF] Moore | Radar terrain return at near-vertical incidence[END_REF]] that the backscattered power can be obtained by convoluting the emitted pulse with a function dependent on the surface backscattered coecient. In [START_REF] Barrick | Remote sensing of the sea state by radar[END_REF], it has been shown that the power can be written as a double integral that was nally expressed as a double convolution in [START_REF] Barrick | Analysis and interpretation of altimeter sea echo[END_REF]. This double convolution is achieved between three terms (whose shapes are shown in Fig. 1.5): the at surface impulse response (FSIR), the probability density function (PDF) of the heights of the specular scatterers and the point target response of the radar (PTR) as follows [Brown, 1977] s(t) = FSIR(t) * PDF(t) * PTR T (t) (1.5) where t is the two-way incremental ranging times, i.e., t = t -2h c , with t the travel time of the echo from the instant of transmission, h the altitude of the satellite2 and c the speed of light. The following subsections describe the three terms of (1.5). 

Flat surface impulse response

The FSIR is an important term in the double convolution (1.5) since it introduces the eect of the antenna gain and the backscattering properties of the observed surface. Therefore, it has known many approximation formulas that are described in the following. This term only depends on time and is obtained by integrating over the illuminated area of the surface as follows [Brown, 1977] 

FSIR(t ) = λ 2 (4π) 3 L p R + ×[0,2π[ δ(t -2r c )G 2 (ρ, φ)σ 0 r 4 ρdρdφ (1.6)
where ρ, φ are the radius and the angle of the polar coordinates, L p is the two-way propagation loss, λ is the wavelength, G is the power gain of the radar antenna, δ(t) is the Dirac delta function, σ 0 is the backscatter coecient of the surface that is considered as a constant in the rest of this thesis 3

and r = ρ 2 + h 2 is the range between the satellite and the observed surface (see Fig. analytical expression of the FSIR has been derived in [Brown, 1977] as an innite sum of modied Bessel functions as follows

FSIR(t) = P u exp -χt - 4 γ sin 2 ξ U (t) ∞ k=0 (-1) k Γ(k + 1/2) √ πΓ(k + 1) γβ √ t 8 cos 2 ξ k I k β √ t (1.7)
where U (t) is the Heaviside function, I k (t) is the modied bessel function of the kth order, Γ(k) is the gamma function, γ is a parameter related to the antenna aperture, P u = λ 2 G 2 0 cσ 0 4(4π) 2 Lph3 is an amplitude term containing parameters from the radar and the observed surface, G 0 is the antenna power gain at boresight, ξ is the antenna mispointing parameter and

χ = 4c γh cos (2ξ) β = 4 γ c h 1/2
sin (2ξ).

(1.8)

Equation ( 1.7) can be considerably simplied by approximating the innite sum by its rst term, which is often a reasonable approximation. The resulting rst order approximated FSIR can be written [START_REF] Amarouche | Improving the Jason-1 ground retracking to better account for attitude eects[END_REF], Brown, 1977[START_REF] Hayne | Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering[END_REF] FSIR(t)

P u exp -χt - 4 γ sin 2 ξ I 0 β √ t U (t).
(1.9)

The necessity to derive an analytical expression for the mean power s(t) has led to consider some other approximations for this formula. The Bessel function of order zero has been approximated by dierent expressions such as the ones proposed in [START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF] and [START_REF] Amarouche | Improving the Jason-1 ground retracking to better account for attitude eects[END_REF] based on a Taylor expansion of I 0 (t) [Abramowitz and Stegun, 1965]. In [START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF], a rst order approximation has been considered and has shown good accuracy for small mispointing angle (ξ less than 0.3 • ). This approximation leads to the following FSIR FSIR(t)

P u exp -χ - β 2 4 t - 4 γ sin 2 ξ U (t).
(1.10)

In order to process data with a higher mispointing angle, one has to consider the second order approximation proposed in [START_REF] Amarouche | Improving the Jason-1 ground retracking to better account for attitude eects[END_REF] which provides good performance until ξ = 0.8 • . This approximation is more general and has shown interesting results in practical applications [START_REF] Desjonqueres | Poseidon-3 radar altimeter: New modes and in-ight performances[END_REF], Thibaut et al., 2004, 2010]

I 0 β √ t 2 exp β 2 (t) 8 - 1. 
( 1.11) This leads to the following FSIR proposed in [START_REF] Amarouche | Improving the Jason-1 ground retracking to better account for attitude eects[END_REF] FSIR(t)

2P u exp -χ - β 2 8 t - 4 γ sin 2 ξ U (t) -P u exp -χt - 4 γ sin 2 ξ U (t).
(1.12)

Note also that another FSIR formula has been proposed in [START_REF] Brown | A useful approximation for the Flat Surface Impulse Response[END_REF] to deal with high mispointing angles. Note nally that the FSIR includes 3 altimetric parameters that are the amplitude P u , the mispointing ξ and the epoch τ . The latter is generally introduced by applying a time delay τ s in the FSIR formula which (by using the properties of the convolution) results in a delay of the mean power s(t) by τ s as shown in Fig. 1.4 (the middle of the leading edge is located at time gate τ instead of 0).

Probability density function of the heights of the specular scatterers

The rest of the altimetric parameters is introduced by the PDF of the heights of the specular scatterers.

This function is generally approximated by a Gaussian density whose standard deviation is related to the average SWH [START_REF] Amarouche | Improving the Jason-1 ground retracking to better account for attitude eects[END_REF], Brown, 1977]

PDF(t) = 1 √ 2πσ s exp - t 2 2σ 2 s (1.13) with σ s = SWH 2c .
A generalization of the PDF has been proposed in [Hayne, 1980, Huang and Long, 1980] by introducing the third order statistic of this distribution (i.e., the skewness λ s ). This generalized formula takes into account the asymmetric shape of the waves which aects the curvature of the leading edge as shown in Fig. 1.4. This leading edge distortion introduces some biases in the estimated sea surface height and its eects have been deeply studied in [START_REF] Zapevalov | Eect of skewness and kurtosis of sea-surface elevations on the accuracy of altimetry surface level measurements[END_REF]. Note nally that the PDF may introduce one (SWH) or two altimetric parameters (SWH and λ s ) depending on the considered approximation.

Radar system point target response

The radar point target response is generally expressed as a squared cardinal sine that results from the deconvolution of a frequency modulated chirp. It is given by [START_REF] Amarouche | Improving the Jason-1 ground retracking to better account for attitude eects[END_REF] PTR

T (t) = sin π t Ts π t Ts 2 (1.14)
where T s = 1/B is the sampling period and B is the reception bandwidth of the altimeter. This expression was approximated in [START_REF] Amarouche | A new estimator of the sea state bias using a three frequency radar altimeter[END_REF][START_REF] Amarouche | Improving the Jason-1 ground retracking to better account for attitude eects[END_REF]] by a Gaussian in order to get an analytical expression of the double convolution (1.5) [START_REF] Macarthur | SEASAT -a radar altimeter design description[END_REF] (note also that σ p = 0.425T s was used in [START_REF] Barrick | Remote sensing of the sea state by radar[END_REF], Brown, 1977]). This approximation mainly aects the estimation of the signicant wave height parameter while it has almost no eect on the epoch τ because of the symmetric shape of the real PTR T . This issue can be solved by considering a sum of Gaussians approximation for the PTR T as shown in many studies [Callahan and Rodriguez, 2004, Rodriguez and Martin, 1994, Zanifé et al., 2006].

PTR T (t) 1 √ 2πσ p exp -t 2 2σ 2 p (1.15) with σ p = 0.513T s [

Analytical models

Many analytical models have been proposed in the literature for the mean power s(t) depending on the desired accuracy. Indeed, the accuracy of the altimetric model depends on the considered formulas for the three convolved terms and the desired number of altimetric parameters. However, this accuracy comes at the price of a high computational complexity, hence, one has to choose the appropriate model according to the considered application. In this thesis, we have been mainly interested in studying altimetric models that depend on 4 altimetric parameters SWH, τ s , P u and ξ. This vector of parameters is often sucient to describe the main behavior of altimetric echoes and has been considered in many previous studies [START_REF] Ollivier | Nouvelle approche pour l'extraction de paramètres géophysiques à partir des mesures en altimétrie radar[END_REF][START_REF] Sandwell | Retracking ERS-1 altimeter waveforms for optimal gravity eld recovery[END_REF][START_REF] Severini | Estimation et classication des signaux altimétriques[END_REF].

Considering this parameter vector, the more famous model is obtained by introducing in (1.5) the analytical expression (1.10) for the FSIR and the Gaussian approximations (1.13) and ( 1.15) for the PDF and PTR T , respectively. The resulting analytical model is known as the Brown model and is

given by

s(t) = P u 2 exp (-v) [1 + erf(u)] + N t (1.16) with u = t -τ s -ασ 2 c √ 2σ c , v = α t -τ s - α 2 σ 2 c , α = χ + 4 γ sin 2 ξ -β 2 /4 σ 2 c = σ 2 s + σ 2 p .
(1.17)

where erf (t) = 2 √ π t 0 e -z 2 dz stands for the Gaussian error function. Another more accurate model (that was introduced to deal with high antenna mispointing angles as it was the case with Jason-1)

was proposed in [START_REF] Amarouche | Improving the Jason-1 ground retracking to better account for attitude eects[END_REF] and considers the expressions (1.12), (1.13) and (1.15) for the FSIR, PDF and PTR T , respectively. The resulting model is given by

s(t) = P u exp (-v 1 ) [1 + erf(u 1 )] - P u 2 exp (-v 2 ) [1 + erf(u 2 )] + N t (1.18) with u 1 = t -τ s -α 1 σ 2 c √ 2σ c , v 1 = α 1 t -τ s - α 1 2 σ 2 c , α 1 = χ + 4 γ sin 2 ξ -β 2 /8 u 2 = t -τ s -α 2 σ 2 c √ 2σ c , v 2 = α 2 t -τ s - α 2 2 σ 2 c , α 2 = χ + 4 γ sin 2 ξ. (1.19)
The previous models could be simplied by considering an antenna without mispointing (ξ = 0 • ).

The resulting model depends on 3 parameters (SWH, τ s , P u ) and is given by

s(t) = P u 2 exp -α t -τ s - α 2 σ 2 c 1 + erf t -τ s -ασ 2 c √ 2σ c + N t (1.20) with α = 4c γh and σ 2 c = SWH 2 4c 2 + σ 2 p .

Speckle noise

Altimeter data are corrupted by multiplicative speckle noise which results in an observed altimetric echo given by

y k = s k n k , k = 1, . . . , K (1.21) 
where y k = y (kT s ) is the kth data sample of the observed echo, s k = s (kT s ) is the kth data sample of the theoretical echo and n k denotes the kth sample of the multiplicative speckle noise. The inuence of this noise is generally reduced by averaging a sequence of L c consecutive echoes. This operation reduces the noise variance (by √ L c when assuming pulse-to-pulse statistical independence) and the resulting noise is generally assumed to be gamma distributed [START_REF] Mailhes | Cramér-rao bounds for radar altimeter waveforms[END_REF][START_REF] Ollivier | Nouvelle approche pour l'extraction de paramètres géophysiques à partir des mesures en altimétrie radar[END_REF].

The noise eects on the statistic of the observed echo is more investigated in the next chapters.

Parameter estimation

This section introduces the parameter estimation strategies (also called retracking methods) used to estimate the geophysical parameters from the observed echoes. These strategies can be characterized according to the considered waveform model, the criterion to minimize and the used optimization algorithms.

There are two classes of waveform models that have been investigated in the literature: the empirical and the physics-based algorithms. The rst class uses empirical shapes to estimate the desired parameters such as the geometrical oset center of gravity (OCOG) algorithm [START_REF] Wingham | New techniques in satellite altimeter tracking systems[END_REF], the threshold method [START_REF] Davis | Growth of the greenland ice sheet: a performance assessment of altimeter retracking algorithms[END_REF][START_REF] Davis | A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters[END_REF] and the improved threshold methods [START_REF] Bao | Improved retracking algorithm for oceanic altimeter waveforms[END_REF], Hwang et al., Lee et al., 2008]. These methods are not described in this thesis and we invite the interested reader to consult [START_REF] Gommenginger | Retracking altimeter waveforms near the coasts[END_REF] for more details about them.

We will be interested in this thesis on the second class of physics-based algorithms which use the previously described waveform models to estimate the parameters of interest.

One actual popular estimation strategy is based on a maximum likelihood estimation procedure [START_REF] Challenor | Maximum likelihood estimation for radar altimetry[END_REF][START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF]. This method maximizes the observation statistics and assumes the knowledge of the noise distribution corrupting the observed echoes. It can be shown that the negative log-likelihood (which is the cost-function to minimize) when considering a gamma distributed noise is given by [START_REF] Challenor | Maximum likelihood estimation for radar altimetry[END_REF]]

C = Cste + L c K k=1 y k s k -(L c -1) K k=1 ln (y k ) + L c K k=1 ln (s k ) (1.22)
where Cste is a constant, s k = s(kT s ) is the kth data sample of the theoretical echo, K is the number of samples, L c is the number of looks and y k = y(kT s ) is the kth data sample of the observed noisy echo. This criteria can be simplied using a Fisher scoring [START_REF] Green | Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives[END_REF] technic to obtain a least squares criteria that is widely used in altimetry [Deng and Featherstone, 2006[START_REF] Dumont | Estimation optimale des paramètres altimétriques des signaux radar Poséidon[END_REF][START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF]]

C = 1 P 2 u K k=1 (y k -s k ) 2 .
(1.23)

An intermediate criteria is the weighted least squares (WLS) given by

C = K k=1 y k -s k w k 2 (1.24)
where w k is the weight that is generally equal to s k (note that the criteria (1.24) reduces to (1.23) for w k = P u ). The choice of this weight is important and has a direct eect on the estimated range as shown in [START_REF] Maus | Improved ocean-geoid resolution from retracked ERS-1 satellite altimeter waveforms[END_REF]].

The minimization of these criteria can not be computed in closed-form because of the complexity of the altimetric models. Consequently, numerical optimization techniques have to be used to implement them. Many techniques can be applied such as those based on gradient descent algorithms.

These algorithms included the Levenberg-Marquardt method [START_REF] Bertsekas | Nonlinear programming[END_REF], the Newton-Raphson method (used in the well known MLE3 or MLE4 algorithms [START_REF] Dumont | Estimation optimale des paramètres altimétriques des signaux radar Poséidon[END_REF], Thibaut et al., 2004])

and the geometrical Nelder-Mead method [START_REF] Nelder | A simplex method for function minimization[END_REF]. These methods will be more detailed in the rest of the thesis. Note that the estimation can be achieved using other algorithms such as neural networks [START_REF] Boer | Estimation des paramètres altimétriques par réseau de neurones[END_REF] or a deconvolution method that extract the PDF in order to estimate sea state parameters [START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF][START_REF] Rodriguez | Extracting ocean surface information from altimeter returns: the deconvolution method[END_REF]]. Finally, one has to note that most algorithms are interested in estimating each echo independently from the others.

However, some algorithms use the information of the adjacent waveforms to improve the estimation quality. One can cite the weighted least squares algorithm proposed in [START_REF] Maus | Improved ocean-geoid resolution from retracked ERS-1 satellite altimeter waveforms[END_REF]] for a group of waveforms and the Kalman lter based algorithms [START_REF] Jordi | Application of ensemble kalman lter for satellite altimetry data assimilation in the mediterranean sea[END_REF]].

Limitations

The conventional pulse limited altimetry has an annulus footprint as shown in Fig. 1.3. This footprint presents an increasing radius as a function of time where a large radius mainly aects the trailing edge of the waveform. The main advantage of the resulting large area is that it comprises sucient random independent scattering elements which is a necessary assumption for the derivation of altimetric models [Brown, 1977]. However, this comes at the price of a reduced resolution since the estimated geophysical parameters result from an averaging over the entire area. Moreover, because of this large footprint, the altimetric waveform can be corrupted by land returns or by the summation of backscattered signals coming from separate reective ocean surfaces. Thus, the resulting waveform may dier from the usual oceanic echo shape shown in Fig. 1.4. In the case of coastal altimetry, the altimetric footprint spreads partly over ocean and land as shown in Fig. 1.7. In this case, the resulting echo presents peaks whose locations depend on the distance between the satellite nadir point and the coast and on the scattering coecient of each surface, i.e., the oceanic and land surfaces. Those corrupted echoes were rst discarded since they provide false estimated parameters when considering the algorithm designed to oceanic echo. Thus, a non negligible amount of altimetric data were lost close to the coast which was wasteful. However, a great eort is now devoted to process coastal waveforms in order to move the altimetric measurements closer to the coast [START_REF] Desportes | On the wet tropospheric correction for altimetry in coastal regions[END_REF], 2010[START_REF] Gommenginger | Retracking altimeter waveforms near the coasts[END_REF]. Indeed, this altimetric limitation appears to be a new area of study that motivates a lot of satellite missions (AltiKa, Cryosat-2) and research projects such as PISTACH [START_REF] Mercier | The PISTACH project for coastal altimetry: status, products and early results[END_REF]]4 and COASTALT [START_REF] Vignudelli | Coastal Altimetry[END_REF] 5 . Another limitation is related to the accuracy of the estimated parameters. Indeed, the study of many physical phenomena requires a very good range accuracy as for the climate change phenomena that shows a vertical amplitude of 1 cm (see Table 1.1). Note, however, that the actual conventional altimetric instruments have a range accuracy of about 2 cm for 1 second of data (see Table 1.3). This is in part due to the corruption of altimetric echoes by a speckle noise whose eect is generally reduced by averaging many observed waveforms. However, averaging a lot of echoes increases the spatial scale which means that an increase of range accuracy is achieved at a price of an increasing spatial scale.

Similarly, the study of low spatial scale phenomena is not well achieved since the averaging is not sucient. This accuracy problem was considered by proposing new technologies that are described in the next section.

New altimeters

This section introduces two new technologies that are devoted to enhance the capabilities of the conventional altimeters in order to improve their accuracy and reduce the footprint area. These two technologies are related to Ka-band and delay/Doppler altimeters and are described in the following sections.

AltiKa

As described previously, AltiKa is an altimeter working in the Ka-band instead of the usual Ku-band.

Working at high frequency brings many advantages such as a smaller antenna beamwidth (since it is inversely proportional to the frequency) and eliminates the need to use a second frequency to correct the ionospheric eect. However, it has some drawbacks since it is more sensitive to the atmospheric moisture. This altimeter can then be seen as a conventional altimeter in a modern sense since it includes many innovations that can be described as follows [START_REF] Raney | The future of coastal altimetry[END_REF]]:

• The range resolution is improved by increasing the receiver bandwidth B to 480 MHz while it was 320 MHz for Ku-band altimeters. The range resolution becomes 31 cm while it was 46

cm which provides a more accurate SSH. Moreover, increasing the bandwidth induces a smaller footprint which is of great importance for coastal altimetry applications.

• The 3 dB beamwidth is narrower which reduces the footprint area and increases the antenna gain improving the power budget of the altimeter. Note however that the altimeter becomes more sensitive to antenna mispointing.

-New altimeters

• A higher pulse repetition frequency (PRF 4 kHz) is possible because of the increased Walsh bound 6 . This improves noise reduction since it provides more echoes to be averaged for one second.

These innovations show that AltiKa has a smaller footprint which is suitable for coastal applications.

Moreover, the accuracy of the estimated parameters is increased because of the higher PRF (more averaged echoes) and the improved range resolution. Note, however, that the altimeter is more sensitive to the atmospheric hydrometeors (water droplets) that may cause less than 4% of data loss.

It is also more sensitive to antenna mispointing that should be more carefully monitored. Finally, one has to note that AltiKa is based on the same principle as conventional altimetry which means that the previous models and algorithms could be directly applied on its echoes while of course taking care of changing the values of the instrumental parameters.

Delay/Doppler altimetry

The delay/Doppler altimeter (DDA) is pulse limited across-track and beam limited along-track as rst introduced by Raney in [START_REF] Raney | The delay/Doppler radar altimeter[END_REF] 7 (see Fig. 1.8). DDA ts into the logic of measurement improvement and has two main objectives as follows

• The rst objective is to reduce the measurement noise by increasing the number of observations (looks) which provides better geophysical parameter estimates. Indeed, DDA requires coherent correlation between pulses [START_REF] Raney | The delay/Doppler radar altimeter[END_REF] which is obtained by transmitting pulses with a high PRF (PRF = 18182 Hz for SIRAL altimeter [START_REF] Wingham | Cryosat: A mission to determine the uctuations in Earth's land and marine ice elds[END_REF]).

• The second objective is to increase the along-track resolution which allows the measurements to remain valid until a distance of about 300 meters from the coast (while it was about 10 km for conventional altimetry). This is achieved by an appropriate processing that uses the Doppler information contained in the data. The resulting footprint is described in Fig. 1.8 which presents the waveform formation of the central beam. All of these advantages have led to consider DDA in many current and future satellite missions.

The rst satellite exploiting DDA is the Cryosat-2 satellite which has on board a SIRAL instrument that includes a DDA mode. Other future missions including DDA are Sentinel-3, Jason-CS (Jason Continuité de Service), and SWOT (Surface Water Ocean Topography), which shows the importance of this new technology. Note that the shape of DDA echo diers from that of conventional altimetry and hence requires a new appropriate model in order to process this kind of data.

Conclusions

This chapter presented the principles of satellite altimetry and provided a state of the art of the dierent waveform models and estimation strategies available in the literature. Some limitations of conventional altimetry were also described. These limitations are mainly due to the contamination of the echoes by land return in coastal areas because of the large footprint of the observed surface and the accuracy of the estimated parameters that is reduced because of the waveform corruption by speckle noise. The technical solutions that are the Ka-band and the delay/Doppler altimeters were presented and showed to be good solutions to increase the measurement accuracy.

This accuracy improvement can also be achieved by enhancing the quality of the data processing which is the goal of this thesis. Brown [START_REF] Dumont | Estimation optimale des paramètres altimétriques des signaux radar Poséidon[END_REF][START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF]. L'obtention d'une formule analytique de la solution de l'estimateur du maximum de vraisemblance du modèle BAGP est dicile. En conséquence, deux algorithmes numériques sont étudiés pour le calcul de cet estimateur. Le premier est basé sur une stratégie de Newton-Raphson similaire à celle étudiée dans [START_REF] Dumont | Estimation optimale des paramètres altimétriques des signaux radar Poséidon[END_REF] et [START_REF] Amarouche | Improving the Jason-1 ground retracking to better account for attitude eects[END_REF]. Le second est basé sur une approche géométrique connue sous le nom de l'algorithme de Nelder-Mead [START_REF] Nelder | A simplex method for function minimization[END_REF] 

Introduction

Over an ocean surface, the altimetric echo has a well-dened shape, with a steeply rising leading edge followed by a gradual decline in power over the rest of the waveform which is accurately modeled by the Brown model [START_REF] Alberti | Cependant, la forme d'onde altimétrique peut être corrompue par l'énergie rééchie par la terre[END_REF], Brown, 1977, Naenna and Johnson, 2010]. However, the altimetric waveform can be corrupted by land returns, by rain [Tournadre et al., 2009a,b] or by the summation of backscattered signals coming from separate reective ocean surfaces which make the conventional algorithms (described in the previous chapter) ineective. This ineciency is illustrated in Fig. great eort is now devoted to process coastal waveforms in order to move the altimetric measurements closer to the coast [START_REF] Desportes | On the wet tropospheric correction for altimetry in coastal regions[END_REF][START_REF] Desportes | One-dimensional variational retrieval of the wet tropospheric correction for altimetry in coastal regions[END_REF]. The analysis of coastal waveforms has been recently considered intensively in the two projects PISTACH [START_REF] Mercier | The PISTACH project for coastal altimetry: status, products and early results[END_REF] and COASTALT [START_REF] Vignudelli | Coastal Altimetry[END_REF]. In the frame of the PISTACH project aiming at improving coastal altimeter products, waveforms are classied according to geometrical shapes displayed in Fig. 2.2 [START_REF] Thibaut | Waveforms processing in PISTACH project[END_REF]. The goal of this classication is to isolate echoes having similar geometrical characteristics in order to estimate the corresponding altimeter parameters thanks to dedicated so-called retracking algorithms. As shown in Fig. Thus the BAGP model should also be able to model accurately altimetric waveforms from class 13

(see Fig. 2.1 (b) for an example). To summarize, the proposed BAGP model is appropriate to usual oceanic waveforms as well as coastal waveforms corrupted by either a symmetric or an asymmetric peak.

In order to estimate the unknown BAGP model parameters, we propose to use the ML method that has shown interesting results for the classical Brown model [START_REF] Dumont | Estimation optimale des paramètres altimétriques des signaux radar Poséidon[END_REF][START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF]. estimator. The rst algorithm is based on a Newton-Raphson strategy, similar to the one investigated in [START_REF] Dumont | Estimation optimale des paramètres altimétriques des signaux radar Poséidon[END_REF] and [START_REF] Amarouche | Improving the Jason-1 ground retracking to better account for attitude eects[END_REF]. A second algorithm based on a geometrical technique known as the Nelder-Mead method [START_REF] Nelder | A simplex method for function minimization[END_REF]] is also studied. The Cramér-Rao bounds (CRBs) associated with the BAGP model parameters are nally determined. These bounds are interesting since they provide the minimum variances for unbiased estimators. Another interesting property of these bounds is that the variance of any MLE estimator can be approximated for large sample size by its corresponding CRB under weak conditions. These conditions are for instance specied in [Kendall and Stuart, 1961, chap. 18] (we mainly have to check that the range of the likelihood does not depend on the unknown parameters and that the likelihood is a twice-dierentiable function of its unknown parameters throughout its range).

The chapter is structured as follows. Section 2.3 presents the BAGP model considered in this study. Relationships between the BAGP, the Brown model and the Brown with Gaussian peak model introduced in [START_REF] Tourneret | Parameter estimation for peaky altimetric waveforms[END_REF] are also studied. The likelihood associated with the BAGP model is derived in section 2.4. Section 2.5 introduces the dierent algorithms used to maximize the likelihood of the BAGP model. Section 2.6 derives the CRBs of the BAGP model parameters.

Simulation results obtained with synthetic data are analyzed in Section 2.7, whereas an analysis of real Jason-2 waveforms is presented in Section 2.8. Conclusions and future works are nally reported in Section 2.9.

Waveform model

A simplication of the Brown's model assumes that the altimetric waveform, associated with oceanic surfaces, is characterized by three parameters. This simplied model was given in (1.20) which showed the continuous expression of the altimetric signal. The discrete altimetric signal is obtained by sampling the continuous-time signal s(t) dened in (1.20) leading to

s k = P u 2 1 + erf kT s -τ s -ασ 2 c √ 2σ c exp -α kT s -τ s - ασ 2 c 2 + N t , (2.1) 
where T s is the sampling period, s k = s(kT s ) is the kth data sample of the received altimetric signal and τ s is the epoch expressed in seconds. The additive noise parameter N t is generally estimated as the mean value of the rst data samples and subtracted from the observed samples s k , resulting in (extracted from [START_REF] Smith | Tracking and retracking[END_REF]).

N t = 0 in model (2.
to as BAGP for Brown Asymmetric Gaussian Peak) dened as the superposition of a Brown echo s k and an asymmetric Gaussian peak p k such that the observed signal is

sk = s k + p k (2.2) with p k = A exp -1 2σ 2 (kT s -T ) 2 1 + erf η (kT s -T ) √ 2 (2.3)
where A, T, σ, η are the amplitude, location, width and asymmetry coecient of the peak. It is interesting to note that the Gaussian peak dened in (2.3) reduces to a symmetric Gaussian peak when η = 0 (thus, the parameter η will be referred to as asymmetry coecient in this thesis). The resulting model parameterized by A, T, σ is referred to as BGP model (for Brown Gaussian Peak model). Note also that the BAGP and BGP models reduce to the Brown model for A = 0. Fig. 2.5

shows the eect of the asymmetry coecient η on the normalized peak p k dened in (2.3). A positive value of η squeezes the left side of the peak while a negative value squeezes its right side. Note that for real JASON-2 waveforms, the estimated values of η are mainly positive and located near 0. The next section introduces an ML estimation method to estimate the unknown parameter vector associated with the BAGP model dened by (2.2) and (2.3). These unknown parameters are displayed in Table 2.1.

Maximum likelihood estimator

Altimetric data are corrupted by multiplicative speckle noise. In order to reduce the inuence of this noise aecting each individual echo, a sequence of L c consecutive echoes are averaged on-board the satellite. Assuming pulse-to-pulse statistical independence (which is a valid assumption for Jason [START_REF] Quartly | Analyzing altimeter artifacts: statistical properties of ocean waveforms[END_REF]), the resulting speckle noise sequence is independent and identically distributed according to a gamma distribution whose shape and inverse scale parameters equal the number of 

y k = sk n k , k = 1, . . . , K (2.4) 
where K is the number of samples. Using (2.4) and the properties of the noise sequence n = (n 1 , ..., n K ) T , the likelihood function of the observed samples f (y|θ) can be expressed as follows

f (y|θ) = L Lc c Γ(L c ) K exp -L c K k=1 y k sk K k=1 y k Lc-1 K k=1 sk -Lc K k=1 I R + (y k ) (2.5)
where y = (y 1 , . . . , y K ) T , θ B = (P u , τ s , SWH) T and θ p = (A, T, σ, η) T contain the unknown Brown and peak parameters, 

θ = θ T B , θ T p T and I R + (y k ) is the indicator function (I R + (y k ) = 1 if y k ∈ R + and I R + (y k ) = 0 else).
C (θ) = -ln [f (y|θ)] = Cste + L c K k=1 y k sk -(L c -1) K k=1 ln (y k ) + L c K k=1 ln (s k ) (2.6)
where Cste is an additive constant. The MLE of θ cannot be computed in closed-form as in the case of a classical Brown model (where there is no peak in the altimetric signal model). Consequently, numerical optimization techniques have to be used to implement the MLE. Two approaches are investigated in this chapter based on the Newton-Raphson (NR) [START_REF] Bertsekas | Nonlinear programming[END_REF] and Nelder-Mead (NM) methods [START_REF] Nelder | A simplex method for function minimization[END_REF]. These methods are presented in the next section.

Estimation algorithms

This section introduces two estimation algorithms. The rst one is the Newton-Raphson algorithm that is widely used in altimetry [START_REF] Dumont | Estimation optimale des paramètres altimétriques des signaux radar Poséidon[END_REF][START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF]. This algorithm approximates the maximum likelihood estimator by a gradient descent approach. The second algorithm is a geometrical method called the Nelder-Mead algorithm. This algorithm provides the exact maximum likelihood estimator and is considered as a reference in terms of estimation performance.

Newton-Raphson method

The estimation of the BAGP parameters can be achieved by generalizing the NR algorithm commonly used to estimate the Brown model parameters. This section rst summaries the main steps of the NR algorithm when applied to the Brown model. A generalization to the BAGP model is then presented.

Newton-Raphson method for Brown model

The NR method is an iterative algorithm that updates the parameters to be estimated according to the following recursion

θ B (n + 1) = θ B (n) -ψ(n)H -1 B (n)∇C B (n) (2.7) where θ B = (P u , τ s , SWH) T = (θ B,1 , θ B,2 , θ B,3 ) T , ψ(n) is a stepsize belonging to the interval [0, 1]
(ensuring the convergence of the algorithm), ∇ is the gradient operator and H B is a symmetric and invertible matrix dened as the Hessian of the cost function C B which is obtained by setting sk = s k in (2.6). The gradient of the cost function C B (of size (3 × 1)) with respect to the Brown vector parameters θ B is given by

∇C B = - ∂ ln [f B (y|θ B )] ∂θ B,i T i=1,••• ,3 = L c K k=1 s k -y k s 2 k ∂s k ∂θ B,i T i=1,••• ,3 (2.8)
where f B is the likelihood obtained by setting sk = s k and θ = θ B in (2.5). More precisely, (2.8) can be expressed as

∇C B = L c B B d B (2.9) where d B = (d k ) k=1,••• ,K is a (K × 1) vector with d k = s k -y k s k and B B is a matrix whose components are B i,k = 1 s k ∂s k ∂θ B,i , for i = 1, • • • , 3 and k = 1, • • • , K.
In order to reduce the computational complexity due to the calculation of the Hessian at each iteration, an approximation of this matrix is generally used. This approximation replaces the matrix H B by its expectation

F B = E [H B ] = -E       ∂ 2 ln f B ∂θ 2 B,1 ∂ 2 ln f B ∂θ B,1 θ B,2 ∂ 2 ln f B ∂θ B,1 θ B,3 ∂ 2 ln f B ∂θ B,2 θ B,1 ∂ 2 ln f B ∂θ 2 B,2 ∂ 2 ln f B ∂θ B,2 θ B,3 ∂ 2 ln f B ∂θ B,3 θ B,1 ∂ 2 ln f B ∂θ B,3 θ B,2 ∂ 2 ln f B ∂θ 2 B,3       (2.10)
where E stands for the mathematical expectation. Note that the matrix F B is the Fisher information matrix (FIM) that is commonly used to compute the Cramér-Rao bounds [START_REF] Mailhes | Cramér-rao bounds for radar altimeter waveforms[END_REF]. The iterative formula obtained after replacing

H B by F B in (2.7) is θ B (n + 1) = θ B (n) -ψ(n)F -1 B (n)∇C B (n).
( 2.11) This parameter recursion has shown interesting properties for adaptive ltering and is sometimes referred to as Fisher scoring [START_REF] Green | Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives[END_REF]. Determining the matrix F B requires to compute the expectations of the second order derivatives of f B . It is straightforward to show that

E - ∂ 2 ln f B ∂θ B,i ∂θ B,j = L c K k=1 1 s 2 k ∂s k ∂θ B,i ∂s k ∂θ B,j (2.12)
where the derivatives of s k are provided in the Appendix A. As a consequence, the matrix F B can be written as

F B = L c B B B T
B and the recursive formula (2.11) reduces to

θ B (n + 1) = θ B (n) -ψ(n) B B B T B -1 B B d B .
(2.13) Note nally that the vectors B B , d B , involved in (2.13), are generally approximated by

d k = s k -y k Pu for k = 1, • • • , K and B i,k = 1 Pu ∂s k ∂θ B,i , for i = 1, • • • , 3 and k = 1, • • • , K.
The resulting algorithm reduces to a least squares procedure that is known as MLE3 algorithm [START_REF] Dumont | Estimation optimale des paramètres altimétriques des signaux radar Poséidon[END_REF], Thibaut et al., 2004].

Newton-Raphson method for the BAGP In order to generalize the previous NR recursion to the BAGP model, we introduce a (3 × K) matrix

B whose elements are B i,k = ∂s k sk ∂θ B,i with i = 1, • • • , 3 and k = 1, • • • , K, a (4 × K) matrix P whose elements are P i,k = ∂p k sk ∂θ p,i with i = 1, • • • , 4 and k = 1, • • • , K and a (K × 1) vector d with components dk = sk -y k sk . The unknown parameter vector for the BAGP is θ = θ T B , θ T p T = (θ 1 , θ 2 , • • • , θ 7 ) T . We
propose to estimate θ using the following recursive formula

θ(n + 1) = θ(n) -ψ(n)F -1 (n)∇C(n) (2.14)
where F (n) and ∇C(n) are the FIM and gradient of C evaluated at θ = θ(n). Straightforward computations lead to (2.16)

F = -E          ∂ 2 ln f ∂θ 2 1 ∂ 2 ln f ∂θ 1 θ 2 • • • ∂ 2 ln f ∂θ 1 θ 7 ∂ 2 ln f ∂θ 2 θ 1 ∂ 2 ln f ∂θ 2 2 • • • ∂ 2 ln f ∂θ 2 θ 7 • • • • • • • • • • • • ∂ 2 ln f ∂θ 7 θ 1 ∂ 2 ln f ∂θ 7 θ 2 • • • ∂ 2 ln f ∂θ 2 7          = L c   B B
As a consequence, the NR recursion (2.14) can be written

θ(n + 1) = θ(n) -ψ(n)   B B T B P T P B T P P T   -1   B P   d.
(2.17)

Similarly to the Brown case, the matrices B, P and d, involved in (2.17), can be simplied by replacing s k in their denominator by P u resulting in a least squares procedure. Note nally that the Levenberg-Marquardt (LM) algorithm [START_REF] Bertsekas | Nonlinear programming[END_REF] (which is a gradient descent algorithm) can also be considered since it provides similar estimation performance as the NR algorithm as shown in Appendix B. This LM algorithm will be described in the next chapter.

Nelder-Mead method

The Nelder-Mead method is a simplex method for nonlinear unconstrained optimization used for minimizing an objective function in a many-dimensional subspace [Lagarias et al., 1998, Nelder and[START_REF] Nelder | A simplex method for function minimization[END_REF]. This direct search method does not use any information step is repeated until the diameter of the simplex is less than a specied tolerance (see [START_REF] Bertsekas | Nonlinear programming[END_REF][START_REF] Lagarias | Convergence properties of the neldermead simplex method in low dimensions[END_REF][START_REF] Nelder | A simplex method for function minimization[END_REF] for more details).

Cramér-Rao bounds

The Cramér-Rao bounds (CRBs) provide the minimum variances for unbiased parameters. As a consequence, they can be considered as references in terms of estimation errors. Comparing the mean square errors (MSEs) of estimators to the corresponding CRBs helps us to understand the potential gain in performance we might obtain with other estimation algorithms. The CRBs for the parameters of the Brown model were derived in [START_REF] Mailhes | Cramér-rao bounds for radar altimeter waveforms[END_REF]. This section generalizes the results of [START_REF] Mailhes | Cramér-rao bounds for radar altimeter waveforms[END_REF] to the BAGP model. The CRBs are obtained by inverting the FIM of θ. Since the thermal noise parameter N t has been estimated using the rst samples of the altimetric signal, it has also to be included in the FIM resulting in the (8 × 8) matrix

F CRB = -E         ∂ 2 ln f ∂θ 2 1 ∂ 2 ln f ∂θ 1 θ 2 • • • ∂ 2 ln f ∂θ 1 Nt • • • • • • • • • • • • ∂ 2 ln f ∂θ 7 θ 1 ∂ 2 ln f ∂θ 7 θ 2 • • • ∂ 2 ln f ∂θ 7 Nt ∂ 2 ln f ∂Ntθ 1 ∂ 2 ln f ∂Ntθ 2 • • • ∂ 2 ln f ∂N 2 t         (2.18)
whose elements are given by

E - ∂ 2 ln f ∂θ i ∂θ j = L c K k=1 1 s2 k ∂s k ∂θ i ∂s k ∂θ j E - ∂ 2 ln f ∂N t ∂θ i = L c K k=1 1 s2 k ∂s k ∂θ i . (2.19)
and the derivatives of s k and p k with respect to N t , the Brown and peak parameters are detailed in the Appendix A. After replacing these derivatives in (2.18), the inverse of the F CRB can be computed.

The BAGP model parameter CRBs are dened as the diagonal elements of the resulting inverse FIM.

Note that the Brown CRBs are obtained by considering the parameter vector θ = (θ 1 , θ 2 , θ 3 ) T and a (4 × 4) FIM. Similarly, the BGP CRBs are obtained by considering θ = (θ 1 , . . . , θ 6 ) T and a (7 × 7)

FIM.

2.7 Simulation results for synthetic waveforms

Estimation performance

This section introduces the criteria used to evaluate the quality of the estimators resulting from the dierent models (Brown model, BGP, BAGP). The quality of the estimation for synthetic waveforms can be measured by comparing the estimated and true parameters by using the root mean square error (RMSE)

RMSE (θ i ) = 1 N MC N MC =1 θ i -θi ( ) 2 , i = 1, • • • , 7 (2.20)
where θ i is the true parameter, θi ( ) is the estimated parameter for the th waveform and N MC is the number of synthetic waveforms. In the case of a real waveform, since the true value of θ is not available, the reconstruction error (RE) can be used to evaluate the quality of an estimation method

RE = 1 K K k=1 (y k -ŷk ) 2 = ||y -ŷ|| √ K (2.21)
where ŷk denotes the estimated waveform obtained by replacing the unknown parameters by their estimates in sk dened in (2.2). The average reconstruction error (ARE) given by

ARE = 1 N MC K N MC i=1 ||y i -ŷi || 2 (2.22)
can also be used when considering N MC synthetic waveforms,

y i = (y i1 , • • • , y iK ) T for i = 1, • • • , N MC .

Parameter estimation

The rst set of simulations shows that the proposed BAGP model can handle Brown waveforms. For this, we have generated synthetic signals according to (2.1) with a sampling time T s = 3.125 ns and parameters P u = 130, τ s = 31 T s ≈ 96.9 ns and varying SWH. All results have been averaged using 300 Monte Carlo runs (with dierent noise realizations) for each value of SWH varying in the interval of interest [1,8] meters. Figs. 2.6.a, 2.6.c and 2.6.e show that similar RMSEs are obtained for the dierent models (Brown, BGP or BAGP) when using the NM algorithm for parameter estimation 3 . However, when using the NR algorithm, Figs. 2.6.b, 2.6.d and 2.6.f show that there are slightly dierent RMSEs from one model to another (note that the scales are dierent in Figs. 2.6.a,2.6.c,2.6.e and Figs. 2.6.b,2.6.d,2.6.f ). This result can be explained since the NM algorithm provides the exact MLE, while the NR algorithm only approximates the MLE via a descent method. Note that the smallest RMSEs depicted in Fig. 2.6.b, 2.6.d and 2.6.f correspond to the Brown model where less parameters are estimated. However, the estimates obtained using the other two models (BGP and BAGP) are satisfactory even if these models are not needed for Brown waveforms. Note nally that the NM method always provides better results than the NR method at the price of a higher computational time. 3 The epoch RMSEs are expressed in meters in order to directly evaluate the eect on the estimated satellite height. The third set of simulations has been conducted using synthetic waveforms with a peak located at the end of the leading edge (T is located at the maximum of the Brown model) as displayed in 

Real Jason-2 waveforms

This section evaluates the performance of the proposed model for real Jason-1 and Jason-2 waveforms.

The classier developed within the PISTACH project [START_REF] Thibaut | Waveforms processing in PISTACH project[END_REF] was used to isolate waveforms from classes 1 (Brown), 13 (peak on the trailing edge) and 7 (peak at the end of the leading edge). We have rst considered Jason-2 waveforms. The reconstruction errors (REs) obtained with these waveforms are displayed in Figs. 2.13, 2.14 and 2.15 for the dierent models. These results

conrm that the BAGP model provides better REs than the other models. Table 2.6 shows the averaged execution times of the dierent estimation algorithms for real Jason-2 waveforms. This table shows that the NM method requires more computational time than the NR method. Table 2.6 also shows that the computational time is directly related to the number of parameters to be estimated (as expected). Fig. 2.16 shows typical estimated waveforms for signals of classes 7 and 13 which allow the estimation quality to be appreciated. The BGP and BAGP provide very similar results for the signal of class 13 since the associated peak is symmetric. However, the signal from class 7 is better approximated by the BAGP (see in particular the zoom on the leading edge) which allows the asymmetric peak to be estimated more accurately. In a second step, we have considered additional Jason-1 data obtained around Ibiza island. This dataset was extracted from the pass 187 of cycle 188 and is represented in Fig. 2.17 (top-left). This gure shows a sequence of echoes as an image where each column represents an altimetric echo. We can clearly see an elliptical behavior (from latitude gate 75 to 110) which is due to the moving of the peak in the trailing edge (class 13). Note also the presence of waveforms from class 7 waveforms (from latitude gate 40 to 65 and latitude gate 110 to 125) which present a high power at the end of the leading edge. The altimetric parameters of these waveforms have been estimated by using the Brown, BGP and BAGP models. Fig. 2.17 shows the reconstructed images for each model by using the corresponding estimated parameters. This gure shows that we get a better t by using the BGP and BAGP models than the Brown model. In particular the elliptical part of the gure is better recovered with the proposed BGP and BAGP models than with the Brown model. Fig. 2.18 illustrates this result by showing waveforms from classes 1, 7 and 13 and their estimations by using the three models (Note that we recommend to use BGP for waveforms of class 13 and BAGP for waveforms of class 7). Note in particular that the leading edge is not estimated correctly with the Brown model in Fig. 2.18 (e) whereas it is better estimated with the BGP and BAGP models. More estimation results, when considering Jason-2 data, available in Appendix D conrm these results. 

Conclusions

This chapter studied a new model for altimetric waveforms referred to as Brown with asymmetric Gaussian peak model. The parameters of this model were estimated by using the maximum likelihood method. The determination of the maximum likelihood estimator was investigated by two methods based on Newton-Raphson recursion and a Nelder-Mead algorithm. Estimations obtained with the Nelder-Mead method were better in terms of mean square error than those obtained with the Newton-Raphson algorithm. However, the price to pay with the Nelder-Mead algorithm is a higher computational cost. Results obtained in this study showed that the proposed model can be used to retrack eciently standard oceanic Brown echoes as well as coastal echoes corrupted by symmetric or asymmetric Gaussian peaks. The chapter also derived Cramér-Rao bounds for the parameters of the Brown with asymmetric Gaussian peak model. These bounds were used as references to which mean square errors were compared. The mean square errors of the model parameter estimates obtained using the maximum likelihood principle were shown to be very close to the corresponding Cramér-Rao bounds illustrating the eciency of the maximum likelihood estimator. The bounds were also used to evaluate the loss of performance for estimating the Brown parameters in presence of a Gaussian peak.

This loss of performance is mainly due to more parameters to be estimated when the model contains a symmetric or asymmetric Gaussian peak. Extending the results obtained in this chapter to the four parameter Brown model (including the mispointing as a fourth parameter) is an interesting issue.

The proposed Brown with asymmetric Gaussian peak model could also be of interest for retracking echoes aected by σ-blooms or rain cells. We think that these points are very interesting and should be considered in future work.

Contributions

A new altimetric model is proposed for coastal waveforms [START_REF] Halimi | Modélisation des signaux altimétriques en présence de pics[END_REF][Halimi et al., ,b, 2013d]]. The parameter estimation is achieved using a maximum likelihood estimator. The Cramér-Rao lower bounds of the model parameters are also derived. These innovations are evaluated via many simulations conducted on synthetic and real data. L'altimétrie SAR/Doppler nécessite une forte corrélation entre les impulsions émises [START_REF] Raney | The delay/Doppler radar altimeter[END_REF] qui est obtenue en utilisant une fréquence de répétition élevée des impulsions (FRI). Par exemple, l'altimètre SIRAL1 transmet des paquets avec une fréquence d'environ 85 Hz [START_REF] Wingham | Cryosat: A mission to determine the uctuations in Earth's land and marine ice elds[END_REF].

Chaque paquet contient N = 64 impulsions cohérentes (transmises avec une FRI de 18182 Hz) qui sont traitées an d'obtenir la carte distance/Doppler comme le montre la gure 3.1.

A la diérence de l'altimétrie conventionnelle, l'altimétrie SAR/Doppler fait intervenir une transformée de Fourier (TF) rapide dans la direction azimutale c'est à dire dans la direction de marche du satellite (voir la gure 3.1.). Cette opération permet d'extraire l'information Doppler résultante du mouvement du satellite et exprime de ce fait le signal obtenu en fonction de la fréquence Doppler. Par ailleurs, il a été montré dans [START_REF] Raney | The delay/Doppler radar altimeter[END_REF] Le chapitre est structuré comme suit. La section 3.3 présente le passage du modèle conventionnel à celui proposé pour l'altimétrie SAR/Doppler. La procédure d'estimation par moindres carrés est ensuite décrite dans la section 3.4. La section 3.5 introduit les bornes de Cramér-Rao associées au modèle conventionel ainsi que le modèle proposé pour l'altimétrie SAR/Doppler. La validation du modèle ainsi que l'algorithme d'estimation sur des données synthétiques est décrite dans la section 3.6.

La section 3.7 analyse les résultats obtenus lors du traitement d'échos réels obtenus avec Cryosat-2.

Les conclusions et perspectives de ce chapitre sont enn présentés dans les sections 3.8 et 3.9.

Introduction

For more than twenty years, conventional altimeters like Topex, Poseidon-2 or Poseidon-3, have been delivering waveforms which are used to estimate many parameters such as the range between the satellite and the observed scene. These conventional altimeters show some limitations that were addressed in Chapter 1. One of the proposed solution is to consider delay/Doppler altimetry (DDA) which aims at reducing the measurement noise and increasing the along-track resolution in comparison with conventional altimetry (CA).

DDA requires coherent correlation between pulses [START_REF] Raney | The delay/Doppler radar altimeter[END_REF] which is obtained by transmitting pulses with a high pulse repetition frequency (PRF). For instance, the SIRAL altimeter 3 transmits bursts with a frequency of about 85 Hz [START_REF] Wingham | Cryosat: A mission to determine the uctuations in Earth's land and marine ice elds[END_REF]. Each burst contains N = 64 coherent pulses (transmitted at a PRF of 18182 Hz) which are processed in order to obtain the delay/Doppler map (DDM) as shown in Fig. 3.1.

The main dierence between CA and DDA is the application of an along-track fast Fourier transform (FFT) in the latter (see Fig. 3.1). This operation expresses the reected energy as a function of Doppler frequency. In the other hand, it has been shown in [START_REF] Raney | The delay/Doppler radar altimeter[END_REF] that each Doppler frequency is related to an along-track location on the observed surface known as Doppler beam. Therefore, transmitting N = 64 coherent pulses results in N = 64 Doppler frequencies (after applying along-track FFT) and the same number of spectral Doppler beams in the DDM, as illustrated in Fig. 3.1. The exploitation of the DDA oceanic information is based on the analysis of the reected oceanic waveform called multi-look echo and obtained by applying Doppler processing (slant range correction and multi-looking) to the DDM. This multi-look waveform has a shape that is dierent from a CA echo, which requires to develop a new altimetric signal model. Many studies have been conducted by dierent teams for achieving this goal. For instance, numerical models for delay/Doppler (DD) waveforms have been proposed in [Phalippou andEnjolras, 2007, Shuang-Bao et al., 2011] whereas other models were developed in the SAMOSA project [START_REF] Gommenginger | Improved altimetric performance of Cryosat-2 SAR mode over the open ocean and the coastal zone[END_REF][START_REF] Martin-Puig | Theoretical model of SAR altimeter over water surfaces[END_REF].

The rst contribution of this chapter is the derivation of a new model for DDA. An analytical model for the FSIR is studied based on a geometrical approach. The proposed FSIR model includes Earth curvature, considers a circular antenna pattern without any mispointing and a Gaussian approximation for the antenna gain as in [Brown, 1977]. The resulting analytical expression of the FSIR is numerically convolved with the PDF of the sea wave height and the PTR of the radar. This yields the mean power of a DDA waveform which depends on three parameters: the epoch τ , the signicant wave height SWH and the amplitude P u . The proposed model is denoted as DDA3 to emphasize the fact that it considers 3 parameters4 .

The second contribution of this chapter is to propose and validate an algorithm for estimating the parameters of the proposed DD semi-analytical model. We then propose to estimate the geophysical altimetric parameters by a least squares (LS) approach based on the Levenberg-Marquardt algorithm.

The performance of the parameter estimation is analyzed in dierent scenarios including dierent noise congurations. Moreover, the evaluation of the estimated parameters, on simulated and real Cryosat-2 data, provides a quantitative measure of the benets of DDA3 when compared to CA3.

The chapter is organized as follows. Section 3.3 presents the transition from the conventional altimetric model to the proposed delay/Doppler semi-analytical model. The proposed LS estimation procedure is then introduced in Section 3.4. The CRBs associated with the conventional and delay/Doppler model are then derived in Section 3.5. Section 3.6 validates the proposed model and algorithm with simulated data. The analysis of results associated with real Cryosat-2 waveforms is presented in section 3.7. Conclusions and future work are nally reported in Section 3.8.

Semi-Analytical model for delay/Doppler altimetry

This section rst recalls briey the CA3 model and then introduces the proposed semi-analytical model for DD waveforms. The multi-look processing and the corruption of the waveforms by speckle noise are also described.

Conventional altimetry

It has been shown in Chapter 1 that the mean power s(t) of a CA waveform is expressed as the convolution of three terms: the FSIR, the PDF of the heights of the specular scatterers and the PTR (see (1.5)). The following subsections describe these three terms.

Flat surface impulse response

The FSIR is of great importance since it includes information about the antenna gain and the backscattering properties of the observed surface. It is obtained by integrating over the illuminated area of the surface as shown in (1.6). In this chapter, we will be considering antenna without mispointing with respect to the z and x axes (ξ = 0 • and φ = 0 • in Fig. 1.6). In this case, the integral with respect to ρ in (1.6) can be expressed in closed form when considering a constant value of σ 0 and the same gain antenna as in [Brown, 1977], i.e., a Gaussian approximation and a circular antenna pattern. The FSIR is then given by where γ = 1 2 ln 2 sin 2 θ 3dB is an antenna beam width parameter, θ 3dB is the half-power antenna beam width. Equation (3.1) shows that FSIR(t) is obtained by integrating an appropriate function on a circle whose radius ρ(t) depends on time, i.e., for each time instant t we have a given radius (see Fig. 3.2). This radius increases with time since ρ(t ) = t c 2 2 -h 2 which reduces to ρ(t) √ hct when considering the approximation ct h << 1 (valid for spaceborne altimetry [Brown, 1977]). Note also, that in CA, we integrate all along the circle of radius ρ (since φ ∈ [0, 2π]) without having a distinction between across-track and along-track directions (axes x and y in Fig. 3.2 respectively).

FSIR(t) = P u 2π 1 + ct 2h -3 U (t)
The conventional FSIR is nally given by [START_REF] Amarouche | Improving the Jason-1 ground retracking to better account for attitude eects[END_REF], Brown, 1977]

FSIR(t) = P u exp - 4ct γh U (t) (3.2)
where 1 + ct 2h -3

has been approximated by 1 as in [Brown, 1977] (since ct h << 1).

Probability density function of the heights of the specular scatterers

The PDF of the specular points is generally approximated by a Gaussian density whose standard deviation is related to the average SWH [START_REF] Amarouche | Improving the Jason-1 ground retracking to better account for attitude eects[END_REF], Brown, 1977]. Its expression has been presented in chapter 1 and is recalled hereafter

PDF(t) = 1 √ 2πσ s exp - t 2 2σ 2 s (3.3) with σ s = SWH 2c .
Radar system point target response

The radar point target response is generally expressed as a squared cardinal sine as follows [START_REF] Amarouche | Improving the Jason-1 ground retracking to better account for attitude eects[END_REF] PTR T (t) = sin π t Ts π t Ts 2 .

(3.4)

Delay/Doppler altimetry

As in CA, the mean power P (t, f ) of a DD echo can be expressed as the convolution of three terms:

the FSIR, the PDF and the time/frequency PTR [Martin-Puig andRuni, 2009, Phalippou and[START_REF] Phalippou | Optimal re-tracking of SAR altimeter echoes over open ocean: from theory to results for SIRAL2[END_REF]. However, contrary to the signal s(t) of (1.5), the obtained signal P (t, f ) depends on time and Doppler frequency as follows

P (t, f ) = FSIR(t, f ) * PDF(t) * PTR(t, f ) (3.5)
where f denotes the Doppler frequency. The PDF is the same as in (3.3) and the two other terms are introduced below.

Flat surface impulse response

The DDA is pulse-limited across-track and beam-limited along-track as rst observed by Raney in [START_REF] Raney | The delay/Doppler radar altimeter[END_REF]. It was proposed in order to increase the along-track resolution by considering the Doppler eect resulting from the satellite velocity. Indeed, the nth Doppler frequency f n is expressed by

f n = 2 λ r. v s | r| = 2v s λ cos (θ n ) (3.6)
where v s is the satellite velocity and θ n is shown in Fig. 3.3. This gure also shows that 

(t) = λf n 2v s ρ 2 (t) + h 2 . (3.8)
This equation clearly shows how the coordinate of the along-track beam depends on time. An approximation of (3.8) is obtained by considering ρ(t) << h which is a valid assumption for near-vertical small angle geometry as explained in [START_REF] Raney | The delay/Doppler radar altimeter[END_REF] (see Appendix E for more details about this approximation). The simplied width of the Doppler beam is then given by [START_REF] Raney | The delay/Doppler radar altimeter[END_REF]] where atan(.) is the inverse tangent function and Re(x) denotes the real part of the complex number

y n = hλ 2v s f n (3.9) with f n = (n -32N f -0.5) F N f , for n ∈ 1, • • • , 64N f
x. As a consequence, the DDA3 FSIR can be written5 1.11, where R = 6378137 m is the Earth radius, to account for the Earth curvature (see [START_REF] Chelton | Pulse compression and sea level tracking in satellite altimetry[END_REF][START_REF] Macarthur | Design of the Seasat-A radar altimeter[END_REF] and Appendix F for more details about Earth curvature).

FSIR(t, n) = P u 2π U (t) Dt,n exp - 4ct γh dφ (3.11) where D t,n = [φ t,n , φ t,n+1 ] ∪ [π -φ t,n+1 , π -φ t,n ].
α r = 1 + h R =
Remark: Wingham et al show in [START_REF] Wingham | The mean echo and echo cross product from a beamforming interferometric altimeter and their application to elevation measurement[END_REF]] that the Doppler model presents a dependence on height that goes as h -5/2 for long delays (t → ∞) and as h -3 for small delays (similar to pulse limited altimetry). Considering the rst limit (t → ∞) in (3.12) gives

FSIR(t, n) ∼ λ 3 G 2 0 σ 0 128π 3 v s L p h 5/2 c t exp -4ct γh (f n+1 -f n ) (3.13)
when t → ∞, which shows the h -5/2 dependence of the leading coecient. Furthermore, after considering the second limit (t → 0 + ), we obtain φ n+1 = π 2 and φ n = -π 2 because the propagation circle falls entirely within the Doppler beam (as stated in [START_REF] Wingham | The mean echo and echo cross product from a beamforming interferometric altimeter and their application to elevation measurement[END_REF]). Then we have

FSIR(t, n) ∼ λ 2 G 2 0 cσ 0 64π 2 L p h 3 (3.14)
when t → 0 + , which shows the h -3 dependence of the leading coecient and its independence on time. These results are in agreement with [START_REF] Raney | The delay/Doppler radar altimeter[END_REF][START_REF] Wingham | The mean echo and echo cross product from a beamforming interferometric altimeter and their application to elevation measurement[END_REF].

Radar system point target response

The radar system PTR is composed of temporal and Doppler frequency dimensions. In this study, we assume that PTR(t, f ) is the multiplication between a temporal function PTR T (t) (corresponding to the radar point target response) and a frequency function PTR F (f ) (resulting from the Doppler processing). This assumption can be justied by recent results available in the literature [START_REF] Martin-Puig | SAR altimeter retracker performance bound over water surfaces[END_REF][START_REF] Martin-Puig | SAR altimetry over water surfaces[END_REF][START_REF] Phalippou | Optimal re-tracking of SAR altimeter echoes over open ocean: from theory to results for SIRAL2[END_REF] or by a comparison with the measured Cryosat-2 PTR. Indeed, the actual PTR of the Cryosat-2 altimeter can be estimated by using the instrument calibration data which are obtained by emitting burst of impulses and receiving them inside the system (by skipping the antenna). The temporal component PTR T (t) can then be obtained as follows. A range FFT is computed for the received N = 64 (complex I and Q) signals.

The modulus of the resulting signals is then computed. This procedure provides the PTR T (t) for each emitted pulse. The 2D PTR associated with delay/Doppler altimetry can also be obtained just by introducing the FFT along-track bloc before the range FFT. The temporal PTR was provided in (3.4) whereas PTR F (f ) can be approximated accurately by the following squared sine cardinal

function PTR F (f ) = sin π f F π f F 2 . (3.15)
The resulting PTR is then given by PTR(t, f ) = PTR T (t)PTR F (f ). (t,f ) evaluated at the central beam) and PTR F (PTR(t,f ) evaluated at the central time) with the pro- posed square cardinal sines PTR T and PTR F . These gures conrm the good agreement between the measured and theoretical PTRs. It is interesting to note that another PTR could be used without modifying signicantly the proposed approach (e.g., PTR(t, f ) might be obtained from real measurements). Indeed, the PTR will be convolved numerically with the analytical FSIR derived in this chapter and the PDF dened in (3.3). 

Reected power

The reected DDA3 power P (t, f ) (resp. s(t) for CA3) is obtained by a numerical computation of the double convolution (3.5) (resp. (1.5)) between the analytical expressions (3.12), ( 3.3) and (3.16) (resp.

(3.2), (3.3) and (3.4)). This convolution is conducted after oversampling the analytical functions in 

Multi-looking

Section 3.3.2 derived an analytical model for the FSIR(t, f ) which is convolved by PDF(t) and PTR(t, f ) to compute the reected power P (t, f ). We also showed previously that each time instant t is related to a circle of radius ρ(t) while each Doppler frequency is related to a rectangular along-track beam. we rst have to compensate the time dierences between the dierent beams in order to have signals rising at the same time instant k. This procedure is called delay compensation [START_REF] Raney | The delay/Doppler radar altimeter[END_REF] or range migration. The delay of each beam δr n is obtained by the dierence between the modulus of the position vector r n = h 2 + y 2 n (range between the satellite and the Doppler beam n) and the minimum satellite-surface distance h [START_REF] Raney | The delay/Doppler radar altimeter[END_REF] δr n = r n -h = h 2 + y 2 n -h.

(3.17) .18) Note also that the Earth curvature can be considered by introducing a factor α r yielding [START_REF] Raney | The delay/Doppler radar altimeter[END_REF]]

δr n = h 1 + y n h 2 -h y 2 n 2h = hλ 2 8v 2 s f 2 n . ( 3 
δr n = h 2 + α r y 2 n -h α r hλ 2 8v 2 s f 2 n . (3.19)
After delay compensation, the signals associated with the Doppler beams are summed to obtain the multi-look waveform as shown in Fig. 3.7 (see also [START_REF] Phalippou | Optimal re-tracking of SAR altimeter echoes over open ocean: from theory to results for SIRAL2[END_REF]). 

s(t) = N n=1 P (t -δt n , f n ) = N n=1 m (t, f n ) (3.20)
where δt n = 2 δrn c is the delay compensation expressed in seconds and m(t,

f n ) = P (t -δt n , f n )
denotes the signal of the n th Doppler beam after delay compensation. Note that the procedure is quite dierent for real waveforms where we have to collect the reected energies of dierent bursts.

For example, the selected scene's beam may reect energy coming from nadir beam (beam #33) for the burst i 1 , from the beam #34 for the burst i 2 , etc. Note that this stacking procedure aims at reducing the noise eect and that it assumes that the geophysical parameters of the selected beam do not change from one burst to another.

The signal s(t) is nally sampled at instants

t k = (k -N t τ ) Ts Nt , for k = 1, • • • , K N t ,
where τ is the epoch and K = 104 is the number of samples (without oversampling). An example of resulting

DDA3 vector s = (s 1 , • • • , s K ) T = [s (t 1 ) , • • • , s (t K )]
T is shown in Fig. 3.8 and compared with the CA3 echo. The DD echo has a peaky shape around the epoch τ because of delay compensation. This peaky shape was rst quantied in [START_REF] Moore | Radar terrain return at near-vertical incidence[END_REF] as characteristic of a beam-limited altimeter. 

Speckle noise

In order to generate realistic data similar to Cryosat-2 echoes, the DDM has to be corrupted by speckle noise. Following the works of [START_REF] Wingham | The mean echo and echo cross product from a beamforming interferometric altimeter and their application to elevation measurement[END_REF], a multiplicative speckle noise is applied to the DDM leading to 6

y(t) = N n=1 P (t -δt n , f n ) q(t -δt n , n) = N n=1 m (t, f n ) q(t -δt n , n) (3.21)
where q(t -δt n , n) is a random variable distributed according to a gamma distribution G(L, 1/L) (see [Papoulis and Pillai, 2002, p. 87] for the denition of the gamma distribution) and L is the number of bursts observing each Doppler beam (L = 4 in our simulations).

3.4 Parameter estimation

Estimation algorithm

This chapter proposes to estimate the parameters of the multi-look waveform by using an LS procedure (as for CA [Maus et al., 1998, Sandwell and[START_REF] Sandwell | Retracking ERS-1 altimeter waveforms for optimal gravity eld recovery[END_REF]). The altimetric waveform y = (y 1 , . . . , y K ) T is a noisy version of s = (s 1 , . . . , s K ) T which depends on the parameter vector θ = (θ 1 , θ 2 , θ 3 ) T = (SWH, P u , τ ) T (the estimation is done under the assumption that ξ = 0 • in both conventional and delay/Doppler models). The LS method consists of estimating the unknown parameter vector θ as

follows argmin θ G(θ) = argmin θ 1 2 K k=1 g 2 k (θ) (3.22)
where g k (θ) = y k -s k (θ) is a vector of residues. Since g k (θ) is a complicated nonlinear function of SWH and τ , the optimization problem (3.22) does not admit a closed-form expression. In this study, we propose to solve (3.22) using a numerical optimization method based on the Levenberg-Marquardt algorithm [START_REF] Bertsekas | Nonlinear programming[END_REF]. This choice allows us to use the numerical derivatives of the proposed model while keeping the same estimation performance as the NR algorithm which is widely used in CA (see Appendix B). Moreover, the LM algorithm was also used in the SAMOSA project to estimate the parameter of their DDA model [Gommenginger et al., 2011a[START_REF] Gommenginger | better, closer: Advanced capabilities of SAR altimetry in the open ocean and the coastal zone[END_REF]. This point motivates our choice of the LM algorithm in order to compare our model to that of SAMOSA. The parameter update of the iterative Levenberg-Marquardt algorithm is dened by θ (i+1) = θ (i) + e (i) , where θ (i) is the estimate of θ at the ith iteration. The choice of e (i) is based on a Taylor expansion (at the rst order) of g in the neighborhood of θ (i) g(θ (i) + e (i) ) l(e (i) ) = g(θ (i) ) + J (θ (i) )e (i)

(3.23)
where

J (θ) = [J 1 (θ), J 2 (θ), J 3 (θ)] = ∂g(θ) ∂θ 1 , ∂g(θ) ∂θ 2 , ∂g(θ) ∂θ 3
is a K × 3 matrix representing the gradient of g. After replacing (3.23) in (3.22) (and removing notation (i) for brevity), the following result is obtained

G(θ + e) L(e) = 1 2 l(e) T l(e) = G(θ) + e T J (θ) T g + 1 2
e T J (θ) T J (θ)e.

(3.24)

The descent direction e is then obtained by minimizing L(e). By setting to 0 the derivative L (e) = J (θ) T g + J (θ) T J (θ)e, we obtain J (θ) T J (θ)e = -J (θ) T g. (3.25) This relation is the basis of the Gauss-Newton recursion [Bertsekas, 1995, Nocedal and[START_REF] Nocedal | Numerical Optimization[END_REF].

Levenberg and Marquardt proposed to add a regularization parameter µ in (3.25) leading to J (θ) T J (θ) + µI 3 e = -J (θ) T g (3.26) where I 3 is the 3 × 3 identity matrix. Note that the parameter µ controls the convergence speed of the algorithm. Note also that the derivatives appearing in J (θ) can be computed numerically by nite dierence as follows

J i (θ) = - ∂s(θ) ∂θ i - s (θ i + ∆θ i ) -s (θ i ) ∆θ i (3.27)
with ∆θ = (∆SWH, ∆τ, ∆P u ) T . In our simulations, we have chosen ∆θ = (0.05 m, 0.02 gates, 0.05) T .

Estimation performance

This section introduces the criteria used to evaluate the quality of the estimators resulting from the proposed model. The quality of the estimation for simulated waveforms can be measured by comparing the estimated and true parameters by using the RMSE introduced in (2.20). The bias and standard-deviation (STD) of the estimator given by

Bias (θ i ) = 1 N MC N MC =1 θi ( ) -θ i = θ i -θ i (3.28) and STD (θ i ) = 1 N MC N MC =1 θi ( ) -θ i 2 (3.29)
can also be used to better analyze the obtained results. The normalized reconstruction error (NRE) given by

NRE = K k=1 (y k -ŷk ) 2 K k=1 y 2 k = ||y -ŷ|| ||y|| (3.30)
where ŷk denotes the estimated waveform obtained by replacing the unknown parameters by their estimates in s k dened in (3.20), has been computed in order to evaluate the performance in the case of a real waveform. This criterion has been introduced instead of the usual RE criterion because the shape of the DDA echo is dierent from that of the CA echo. This shape dierence has motivated the normalization of the RE criterion in order to have comparable values when considering CA and DDA echoes. The average normalized reconstruction error (ANRE) given by

ANRE = 1 N MC N MC l=1 ||y l -ŷl || 2 ||y l || 2 (3.31)
can also be used when considering N MC waveforms,

y l = (y l1 , • • • , y lK ) T for l = 1, • • • , N MC . Note
nally that in the case of real data, the estimated DD parameters will be compared to the estimated CA parameters that are considered as a reference.

Cramér-Rao bounds

This section introduces the CRBs associated with the conventional double convolution model (1.5) (denoted as CA3) and the proposed semi-analytical model for DDA (denoted by DDA3).

CRBs for CA3

The observed altimetric signal s is corrupted by a multiplicative speckle noise distributed according to an exponential distribution. In order to reduce the inuence of this noise aecting each individual echo, a sequence of L c consecutive waveforms is averaged on-board the satellite. Assuming pulseto-pulse statistical independence and invoking the central limit theorem, the averaged signal can be

written y k = s k [1 + n k ] , for k = 1, • • • , K
, where n k is approximately distributed according to a zero mean Gaussian distribution with variance 1/L c i.e., n k ∼ N (0, 1/L c ). An equivalent formulation is

y k = s k + n k , k = 1, • • • , K (3.32)
where n k ∼ N (0, s 2 k /L c ). Using (3.32) and assuming independence between the signal samples, the likelihood function of the vector of observations y can be computed. It is the probability density function of a multivariate Gaussian distribution (denoted as f (y|θ)) with mean s and covariance

matrix Σ (θ, L c ). The covariance matrix Σ (θ, L c ) is diagonal with diagonal elements Σ k (θ, L c ) = s 2 k /L c , for k = 1, • • • , K.
The FIM of the parameter vector θ can then be computed by dierentiating twice the log-likelihood function leading to [START_REF] Bangs | Array processing with generalized beamformers[END_REF][START_REF] Delmas | Stochastic cramér-rao bound for noncircular signals with application to doa estimation[END_REF][START_REF] Slepian | Estimation of signal parameters in the presence of noise[END_REF]]

F c (i, j) = ∂s T ∂θ i Σ -1 (θ, L c ) ∂s ∂θ j + 1 2 tr Σ -1 (θ, L c ) ∂Σ(θ, L c ) ∂θ i Σ -1 (θ, L c ) ∂Σ(θ, L c ) ∂θ j (3.33)
where

∂Σ(θ, L c ) ∂θ i =            ∂Σ 1 ∂θ i 0 • • • 0 0 ∂Σ 2 ∂θ i • • • 0 . . . . . . . . . . . . 0 0 • • • ∂Σ K ∂θ i            . (3.34) Straightforward computations yield F c = D T c Σ -1 (θ, L c + 2)D c (3.35) where D c is a (K × 3) matrix whose components are D c (k, i) = ∂s k ∂θ i , for k = 1, • • • , K and i = 1, • • • , 3.
The analytical expressions of these matrix components are available in Appendix G.1. The CRBs are then obtained by considering the diagonal elements of the inverse FIM denoted by F -1 c . Note that the proposed CRBs dier from those derived in [START_REF] Mailhes | Cramér-rao bounds for radar altimeter waveforms[END_REF] since the present paper considers the double convolution model (1.5) whereas the Brown model [Brown, 1977] was used in [START_REF] Mailhes | Cramér-rao bounds for radar altimeter waveforms[END_REF].

CRBs for DDA3

Each Doppler beam has a size of about 300 meters which means that it is observed by the satellite during 43 ms (after taking into account the satellite velocity). Moreover, the satellite transmits 85 bursts of N = 64 pulses per second. As a consequence, each Doppler beam is observed by approximately 4 independent bursts, i.e., it is observed by N p = 256 pulses. The observed discrete multi-looked echo can be expressed as

y k = N n=1 m (k, n) q(k, n) (3.36)
where q(k, n) is an independent and gamma distributed speckle noise (whose shape and inverse scale parameters equal L = 4) resulting from the average of 4 bursts. Invoking the generalized central limit theorem for sums of independent non-identically distributed random variables (e.g., the Lyapunov condition [START_REF] Billingsley | Probability and Measure[END_REF]), it makes sense to approximate the distribution of y k by a Gaussian distribution whose mean is

N n=1 m (k, n) and whose covariance matrix Λ (θ) is diagonal with diagonal elements Λ k (θ) = 1 4 N n=1 m 2 (k, n), for k = 1, • • • , K.
The FIM of the parameter vector θ can then be computed leading to

F d = D T d Λ -1 (θ) D d + H d (3.37) where D d is a (K × 3) matrix whose components are D d (k, i) = ∂s k ∂θ i , for k = 1, • • • , K and i = 1, • • • , 3
and H d is given by

H d (i, j) = 2 K k=1 h i (m, k)h j (m, k) N n=1 m 2 (k, n) 2 (3.38) with h i (m, k) = N n=1 m(k, n) ∂m(k, n) ∂θ i (3.39)
for (i, j) ∈ {1, 2, 3} 2 . The analytical expressions of the partial derivatives of m(k, n) with respect to P u , τ and SWH are available in Appendix G.2. Note that the covariance matrix Λ (θ) of the observed signal y (which depends on the dierent signals m(k, n)) can be rewritten as a function of the multilook echo s. For that purpose, an eective number of looks can be dened for the kth observation [START_REF] Wingham | The mean echo and echo cross product from a beamforming interferometric altimeter and their application to elevation measurement[END_REF]]

N e (k) = E 2 [y k ] E [y k -E (y k )] 2 = µ k N p (3.40)
where the components of the vector µ = (µ

1 , • • • , µ K ) T are µ k = N n=1 m (k, n) 2 N N n=1 m 2 (k, n) = s 2 k N N n=1 m 2 (k, n) . (3.41)
Note that µ k is smaller than 1 accounting for the fact that N e (k) is smaller than N p (see [START_REF] Wingham | The mean echo and echo cross product from a beamforming interferometric altimeter and their application to elevation measurement[END_REF]). Using the previous notations, the kth diagonal element of the covariance matrix Λ (θ)

can be written Λ k (θ) = s 2 k Npµ k , for k = 1, • • • , K.
This expression is similar to the one obtained for CA3 (the number of looks L c has been replaced by N p µ k in the kth element of Λ). Assuming a small variation of µ with respect to the altimetric parameters, (i.e., ∂µ ∂θ i ≈ 0, for i ∈ {1, 2, 3}) leads to

F d ≈ D T d ∆ -1 (θ) D d (3.42)
where ∆ is a diagonal matrix with elements ∆ k (θ) =

s 2 k Npµ k +2 , for k = 1, • • • , K.
Note that the FIM (3.42) has the same form as the one obtained for CA3 (3.35). The DDA CRBs are nally obtained by considering the diagonal elements of F -1 d .

Results for simulated data

This section rst describes how simulated echoes have been generated. The behavior of the proposed DD model as a function of the Doppler frequency is then analyzed. The eect of range migration on the performance of the LS estimator is also investigated. The next study is interested in evaluating the number of Doppler beams (that are used to form the multi-look echo) and its eects on the estimation quality. The last part compares the CRBs of CA3 and DDA3 in order to illustrate the expected improvement of the DD mode. This improvement is also validated by the comparison of the estimation performance using CA3 and DDA3 (as shown in [Jensen and Raney, 1998, Phalippou and[START_REF] Phalippou | Re-tracking of SAR altimeter ocean power-waveforms and related accuracies of the retrieved sea surface height, signicant wave height and wind speed[END_REF] for a simulated scene and in [START_REF] Martin-Puig | SAR altimeter retracker performance bound over water surfaces[END_REF] for another Doppler model).

Simulation scenario

This section describes how Cryosat-2 echoes have been generated and introduces the denominations of the related simulated echoes. The Cryosat-2 altimeter called SIRAL presents three modes that are: the low resolution mode (LRM), the synthetic aperture radar mode (SARM) and the synthetic aperture radar interferometric mode (SARInM) [START_REF] Wingham | Cryosat: A mission to determine the uctuations in Earth's land and marine ice elds[END_REF]. The data of the LRM are used to generate CA echoes (also denoted by CA-LRM echoes) while those of SARM provide DD echoes. However, as the two modes operate separately, the collected data do not result from the same scene and cannot be used to compare the same scenario. Hence, the data of SARM are also used to generate conventional echoes called in the present study CA-SARM for conventional altimetric echoes from SAR mode 7 . However, the resulting echoes are aected by a level of noise that is higher than for CA-LRM echoes. Indeed, the observed CA echoes are corrupted by a speckle noise resulting from the incoherent summations of L c = 90 consecutive echoes for Poseidon-3 altimeter [START_REF] Desjonqueres | Poseidon-3 radar altimeter: New modes and in-ight performances[END_REF]. The CA-SARM results from averaging approximately 32 uncorrelated echoes (the other correlated echoes will not reduce signicantly the noise level) inducing a noise increasing factor of √ 3 between the CA and CA-SARM echoes [START_REF] Giles | Precise estimates of ocean surface parameters from cryosat[END_REF]. Fig. 3.9 summarizes the dierent steps performed to obtain the considered simulated echoes and their denominations in the rest of the thesis, i.e., multi-look (or DD), delay/Doppler without migration, CA (or CA-LRM) and CA-SARM echoes. Note again that the considered number of parameters will also be specied at the end of each acronym 8 . Figure 3.9: Construction of the observed echoes and related terminology.

Model analysis

This section analyses the behavior of the reected power as a function of the Doppler frequency.

An example of simulation scenario corresponding to the altimetric parameters P u = 1, SWH = 0 m and τ = 31 gates is summarized in Table 3.1. Fig. 3.10 shows the corresponding altimetric echoes (normalized by the maximum of the nadir echo) for dierent Doppler frequencies (0, 2, 4 and 6 kHz).

As expected, the higher power occurs at nadir, i.e., f = 0 Hz. This gure also shows that the echo broadens as the frequency increases which can be explained as follows. The Doppler frequency is proportional to the along-track distance (see (3.9)). As a consequence, the high frequencies correspond to far Doppler beams (from nadir) that intersect the large propagation circles. However, propagation circles have an increasing radius and a narrowing width for increasing time [START_REF] Walsh | Pulse-to-pulse correlation in satellite radar altimeters[END_REF]. This means that the Doppler beams far from nadir intersect a lot of propagation circles (each circle correspond to a time instant) and thus the reected echoes spread over a lot of range gates. et al., 2004]). Note that the leading edge of the multi-look echo, obtained by summing the migrated echoes, is directly aected by the high Doppler frequency echoes because of their large shape and slower leading edge. Considering echoes associated with dierent time gates (gates 31, 51, 71, 91 and 111), Fig. 3.11 (top) shows a decrease of the power according to Doppler frequency which is due to the weighting of the power by the Gaussian antenna gain [START_REF] Phalippou | Re-tracking of SAR altimeter ocean power-waveforms and related accuracies of the retrieved sea surface height, signicant wave height and wind speed[END_REF]. This gure also shows a symmetrical shape of the echoes with respect to the zero Doppler frequency which is due to the absence of mispointing angle ξ = 0 • (note that the situation can be very dierent in presence of mispointing as shown in [START_REF] Walsh | Pulse-to-pulse correlation in satellite radar altimeters[END_REF]). These results are conrmed in Fig. 3.11 (bottom) which

shows the Doppler spectra resulting from the summation of the powers associated with the dierent Doppler frequencies. 

Importance of range migration

This section is interested in analyzing the eect of range migration on the quality of the estimated parameters. The RMSEs of the estimated parameters obtained with and without range migration (with the same noise level, i.e., L = 4) are shown in Fig. 3.12 versus the sea wave height (SWH) (additional results versus τ and P u are available in Appendix H). These RMSEs have been obtained

using N MC = 1000 simulated waveforms (see (2.20)). The parameters SWH and τ are better estimated by considering migrated DD echoes since the errors on SWH and τ are reduced by 30 cm and 6

cm respectively. However, the estimation of P u is slightly better without migration because the echo is broader and its amplitude is less sensitive to noise. 

Choice of beams

The multi-look echo is obtained by summing the Doppler beams after delay compensation. This section is interested in studying the inuence of the considered number of the Doppler beams on the estimation performance. [Raney, 2012a,b] studied the importance of the number of looks by considering the number of looks within each Doppler beam (denoted by N bin ), the number of beams crossed by the over-passing radar in a period of dt (denoted by N dt ) and the number of useful beams N useful that contribute to the averaged waveform. The rst number is considered as constant (L = 4 in our case) since the burst are uncorrelated as stated in [START_REF] Raney | Cryosat SAR-mode looks revisited[END_REF]. The number N dt is also a constant that depends on the satellite velocity and the width of the Doppler beam.

We will be interested in this section on the evaluation of the necessary number of beams when estimating echoes that were generated using the 64 Doppler beams. This will provide an estimation of N useful . To do that, we introduce a new variable N b ∈ {0, • • • , 31} and estimate the parameters of the model (generated using the 64 beams) using the N useful = 2N b + 1 Doppler beams belonging to do not contain useful information for parameter estimation, which is in agreement with Fig. 3.7 (left) showing very weak signal contributions resulting from these beams. Note, however, that considering few beams can cause the presence of bias for the estimated parameters as shown in Fig. 3.14. This gure shows that the bias is more important for N b < 12 especially for the SWH and τ parameters and that it stabilizes for N b ≥ 12. From here we can deduce that using N useful = 41 beams for the parameter estimation will provide similar performance than using all the 64 beams. Considering the equation of N useful in [START_REF] Raney | Maximizing the intrinsic precision of radar altimetric measurements[END_REF]]

{33 -N b , • • • , 33 + N b }.
N useful = 2hn r h r y 2 dop (3.43)
where h r is the single-pulse range resolution of the altimeter, y dop is the width of the Doppler beam and n r is a value that establishes the tolerable amount of rise time degradation relative to resolution, one can evaluate the value of n r for N useful = 41. We nd for this case that n r 6 which is more exible than the value n r = 3 proposed in [START_REF] Raney | Maximizing the intrinsic precision of radar altimetric measurements[END_REF]. Note nally that using fewer beams signicantly reduces the computational time which is an important factor for real time processing. 

Comparison between CA3 and DDA3

This section is interested in the comparison between CA3 and DDA3 by rst comparing the associated CRBs and then the RMSEs. Fig. 3.15 shows the RCRBs of the three altimetric parameters for both CA3 (green curves) and DDA3 (black curves) when varying SWH in the interval [1,8] meters. This gure shows a clear improvement for RCRB(τ ) and RCRB(P u ) when considering DDA3. For instance, for SWH = 2 m, we note an improvement by a factor of 1.7 for RCRB(τ ) and by a factor of 1.28 for RCRB(P u ). It can also be observed that for small sea wave heights (i.e., SWH < 5 m), RCRB(SWH) is slightly higher for DDA3 than for CA3. However, the possible improvement in the estimation of the epoch and amplitude is clearly of major importance. Fig. 3.15 also shows the RMSEs associated with CA3 and DDA3 when considering the LS algorithm. These RMSEs have been computed using N MC = 1000 simulated waveforms (see (2.20)). The DDA3 RMSEs for τ and SWH (blue curves) are lower than those obtained with CA3 (red curves) which shows the interest of using the Doppler procedure. However, one can notice that CA3 provides better results for RMSE(SWH) for very small values of SWH which is in agreement with the CRBs behavior (this result was also observed in [START_REF] Phalippou | Optimal re-tracking of SAR altimeter echoes over open ocean: from theory to results for SIRAL2[END_REF]). Note nally that the obtained RMSEs are very close to the STDs since the proposed estimator provides very small biases (the interested reader is invited to consult Appendix H for more simulation results).

The quality of the proposed DDA3 estimation procedure can also be evaluated by comparing the derived DDA3 CRBs (black curves) to the DDA3 RMSEs. This CRBs show that there is some space to improve the LS algorithm performance when considering the three estimated parameters SWH, τ and P u . Note that a study of other estimation strategies (such as MLE and weighted LS) has been conducted and is provided in Appendix I. This study shows that it is possible to reach the CRBs performance at a price of higher computational time.

The last comparison concerns the theoretical parameter correlations that can be evaluated using the following formula

Cor(θ i , θ j ) = F -1 (i, j) F -1 (i, i) F -1 (j, j) , for (i, j) ∈ {1, 2, 3} 2 
(3.44)
where F -1 denotes the inverse of the FIM (the inverse of F c for CA3 and F d for DDA3). Fig. 3.16 shows that the correlation between (SWH, τ ) is less important for DDA3 which is a great advantage for DDA3. Indeed, the parameter correlation is not desired as stated in [START_REF] Sandwell | Retracking ERS-1 altimeter waveforms for optimal gravity eld recovery[END_REF] which has proposed an algorithm to reduce it in the case of CA. A similar correlation reduction is observed between (τ, P u ) while the reduction is only observed for small SWH when considering (SWH, P u ). These results conrm the superiority of DDA in terms of the quality of the estimated parameters. 

Results for CRYOSAT-2 waveforms

This section is devoted to the validation of the proposed semi-analytical model for oceanic Cryosat-2 waveforms. The considered waveforms were obtained in August 2011 (the estimation was applied to the whole month of data) and were provided by the Cryosat processing prototype developed by CNES which is doing the level 1 processing and in particular the Doppler, range migration and multi-looking processings [START_REF] Boy | Cryosat Processing Prototype, LRM and SAR processing on CNES side and a comparison to DUACS SLA[END_REF]. The estimated parameters of DD echoes are rst compared to the results obtained with a 3 parameter estimator designed for CA-SARM3 echoes9 . This will provide a good evaluation of the proposed delay/Doppler model. Figs. 3.17 shows examples of estimated Cryosat-2 echoes using the proposed model for dierent values of SWH. The top gures show a good t between these two echoes especially in the leading and trailing edges of the waveform. This result is conrmed when considering the bottom gures which show the error (dierence) between both echoes. Note that the maximum dierence between the real echo and its estimation is of the order of 10 % which is a small value due to the presence of noise. Table 3.2 shows the ANREs obtained for dierent classes of SWH values when estimating Cryosat-2 echoes. This table shows small values of ANRE which conrms the good tting of the proposed model. that the equivalent CA3 STDs can be obtained by dividing the CA-SARM3 STDs by a factor of √ 3 as explained previously. This provides a good evaluation of DDA3 when compared to CA3 (used in the previous altimeters such as in Poseidon-3). The STD improvement can be evaluated by computing the ratio between the CA3 STDs and the DDA3 STDs (referred to as improvement factor in Table 3.4). At SWH = 2 m, we obtain an SWH STD of 55 cm for CA3 and of 43 cm for DDA3 which shows an improvement factor of 1.28. Considering SSHA, we notice a CA3 STD of 8.16 cm and a DDA3 STD of 6.47 cm resulting in an improvement factor of about 1.26. Table 3.4 compares these improvement factors with results available in the literature. The obtained results are clearly in good agreement with those of [START_REF] Giles | Precise estimates of ocean surface parameters from cryosat[END_REF], Gommenginger et al., 2011a] (the small dierences are due to the fact that it is not possible to reproduce exactly the same simulation scenario).

Note nally that the STD results presented in Table 3.3 are similar to those obtained in the simulation (see Fig. 3.15) where we have obtained better results for DDA3 altimetry except for small values of SWH where CA3 performs slightly better. The improvement factors are also in agreement with those of simulated waveforms since we have obtained 1.24 for τ and 1.19 for SWH at SWH = 2 m. These similarities between simulated and real data results validate the proposed model. 

Conclusions

This chapter dened a new semi-analytical model for delay/Doppler altimetry. A geometrical approach was used for computing an analytical expression of the at surface impulse response. The analytical expression was obtained assuming a circular antenna pattern, no mispointing, no vertical speed eect and a uniform scattering. This analytical expression was convolved with the probability density function of the heights of the specular scatterers and the point target response of the radar leading to the mean power of a delay/Doppler altimetric waveform. A least squares approach based on the Levenberg-Marquardt algorithm was then proposed to estimate the parameters of delay/Doppler altimetric echoes. The Cramér-Rao bounds were also derived to provide a reference in terms of estimation performance. These bounds were used to evaluate the performance of the proposed estimation strategy and to compare it with other estimation procedures such as the maximum likelihood estimator and the weighted least squares procedure (derived in Appendix I). Simulation results performed on simulated data showed the importance of range migration and that of the central Doppler beams that contain most of the information. It also showed the good potential of delay/Doppler altimetry when compared to conventional altimetry in terms of error reduction. The analysis of real Cryosat-2 waveforms conrmed the good performance of the proposed delay/Doppler model. Extending the results obtained in this chapter to a model including the mispointing angles is an interesting issue since the Cryosat-2 echoes are known to present a mispointing of about 0.1 degree in across-track and along-track directions [START_REF] Smith | Retracking range, SWH, sigmanaught, and attitude in Cryosat conventional ocean data[END_REF]. This generalization is considered in the next chapter.

Contributions

A three parameter semi-analytical model was proposed for delay/Doppler altimetry [START_REF] Halimi | Les bornes inférieures de Cramér-Rao sont ensuite établies an d'évaluer les performances de la procédure d'estimation par moindres carrés[END_REF][Halimi et al., , 2013b,e],e]. The related estimation strategy is based on a least squares criterion. The Cramér-Rao lower bounds of the model parameters were then derived in order to evaluate the performance of the proposed least squares estimation procedure [Halimi et al., 2013a]. The proposed model was validated using synthetic and real Cryosat-2 data.

résultant. Ce terme a été approximé numériquement dans [Phalippou andEnjolras, 2007, Shuang-Bao et al., 2011] (plus exactement, c'est la double convolution qui a été approximée numériquement) alors qu'un modèle analytique a été proposé dans le chapitre 3. Cependant, le modèle développé dans le chapitre 3 ne tient pas compte du dépointage de l'antenne ce qui peut conduire à une réduction des performances d'estimation.

La première contribution de ce chapitre est le développement d'un modèle analytique généralisé pour la FSIR qui tient compte du dépointage de l'antenne. L'expression analytique proposée considère également la courbure de la Terre, un diagramme d'antenne circulaire et une approximation gaussienne pour le gain de l'antenne comme dans [Brown, 1977, Halimi et al., 2013e] 

Introduction

As explained in the previous chapter, the mean power of a delay/Doppler echo is expressed by a convolution of three terms that are the PDF of the heights of the specular scatterers, the time/frequency PTR of the radar and the FSIR [Martin-Puig andRuni, 2009, Phalippou and[START_REF] Phalippou | Optimal re-tracking of SAR altimeter echoes over open ocean: from theory to results for SIRAL2[END_REF].

The FSIR is the most important term since it includes the shape information about the resulting altimetric echo. This term has been approximated numerically in [Phalippou andEnjolras, 2007, Shuang-Bao et al., 2011] (more exactly, the double convolution echo was expressed numerically) whereas an analytical model was proposed in Chapter 3. However, the model developed in Chapter 3

did not take into account any antenna mispointing which may lead to reduced estimation performance.

The rst contribution of this chapter is the derivation of a generalized analytical model for the FSIR that accounts for antenna mispointing. The proposed analytical expression for the FSIR also considers Earth curvature, a circular antenna pattern and a Gaussian approximation for the antenna gain as in [Brown, 1977, Halimi et al., 2013e]. This analytical expression is established using two approximations that are analyzed and justied by deriving an upper bound for the error between the actual FSIR and its approximation. The two dimensional delay/Doppler map (DDM) is then obtained by a numerical computation of the convolution between the proposed analytical FSIR expression, the PDF of the sea wave height and the time/frequency PTR. The resulting DDM depends on ve altimetric parameters that are the epoch τ , the signicant wave height SWH, the amplitude P u , the along-track mispointing angle ξ al and the across-track mispointing angle ξ ac . Appropriate processing, including range migration and multi-looking, is applied to the resulting DDM yielding the multi-look echo. The behavior of this echo is analyzed as a function of the direction of antenna mispointing.

The mispointing has a dierent behavior on beam-limited and pulse-limited altimetry [Chelton, 1989, Raney andPhalippou, 2011] and the DDA is pulse-limited across-track and beam-limited alongtrack [START_REF] Raney | The delay/Doppler radar altimeter[END_REF]. Thus, our study has been conducted by separating along-track and across-track mispointing angles.

The second contribution of this chapter is the derivation of estimators for the parameters associated with the multi-look echo. This estimation can be achieved using the maximum likelihood principle [START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF] or least squares techniques [Maus et al., 1998, Sandwell and[START_REF] Sandwell | Retracking ERS-1 altimeter waveforms for optimal gravity eld recovery[END_REF].

As in Chapter 3, this chapter considers a least squares technique based on a Levenberg-Marquardt algorithm for parameter estimation. However, the study of the eect of antenna mispointing will show high correlation between the along-track mispointing and the echo's amplitude. Thus, it will be interesting to propose a four parameter estimation strategy rather than the mere estimation of the ve parameters of interest. In order to evaluate these strategies, we compare their estimation performance to that obtained using the three parameter model derived in the previous chapter and 

Conventional altimetry (CA4)

This section recalls the conventional altimetric model when considering antenna mispointing. This model is expressed as the convolution between the FSIR, the PDF and the PTR as follows 

The delay/Doppler convolution model

The mean power of a delay/Doppler echo can be expressed as the convolution of three terms: the FSIR, the PDF of the heights of the specular scatterers and the time/frequency PTR of the radar as follows [Martin-Puig andRuni, 2009, Phalippou and[START_REF] Phalippou | Optimal re-tracking of SAR altimeter echoes over open ocean: from theory to results for SIRAL2[END_REF]]

P (t, f ) = FSIR(t, f ) * PDF(t) * PTR(t, f ) (4.3) with PDF(t) = 1 √ 2πσ s exp - t 2 2σ 2 s (4.4a) PTR(t, f ) = PTR T (t)PTR F (f ) (4.4b) PTR T (t) = sin π t Ts π t Ts 2 , PTR F (f ) = sin π f F π f F 2 . (4.4c)
An analytical expression for the rst term (FSIR) is derived in the following subsection.

The proposed analytical model for FSIR

In conventional altimetry, the FSIR depends only on time and is obtained by integrating the power of the backscattered altimetric echo over the illuminated area of the surface as follows [Brown, 1977] 

FSIR(t ) = λ 2 (4π) 3 L p R + ×[0,2π[ δ(t -2r c )G 2 (ρ, φ)σ 0 r 4 ρdρdφ
D t,n = [φ t,n , φ t,n+1 ] ∪ φ t,n , φ t,n+1 leading to FSIR(t , n) = λ 2 (4π) 3 L p R + ×Dt,n δ(t -2r c )G 2 (ρ, φ)σ 0 r 4 ρdρdφ. (4.6)
The integral with respect to ρ in (4.6) can be computed analytically by considering a Gaussian approximation for the antenna gain and ct h << 1 (as in [Brown, 1977]). The following result is 118Chapter where ξ and φ denote mispointing angles with respect to the z axis and the x axis respectively (see Fig. 1.6) and

f φ -φ, (t), ξ = - 4 γ 1 - cos 2 (ξ) 1 + 2 (t) + b(t, ξ) + a(t, ξ) cos φ -φ -b(t, ξ) sin 2 φ -φ (4.8) with 2 (t) = ρ h 2 ct h P u = λ 2 G 2 0 cσ 0 4(4π) 2 L p h 3 a(t, ξ) = 4 (t) γ sin(2ξ) 1 + 2 (t) b(t, ξ) = 4 2 (t) γ sin 2 (ξ) 1 + 2 (t) φ t,n = Re atan y n ρ 2 (t) -y 2 n = π -φ t,n+1 φ t,n+1 = Re   atan   y n+1 ρ 2 (t) -y 2 n+1     = π -φ t,n y n = hλ 2v s f n .
(4.9)

In the above notations,

f n = (n -32N f -0.5) F N f , with n ∈ {1, • • • , 64N f }, is the nth Doppler frequency 1
, N f is the frequency oversampling factor, G 0 is the antenna power gain at boresight, γ = 1 2 ln 2 sin 2 θ 3dB is an antenna beam width parameter, θ 3dB is the half-power antenna beam width, y n is the coordinate of the nth along-track beam, v s is the satellite velocity and Re(x) denotes the real part of the complex number x. In the previous chapter, an analytical expression of FSIR(t, n) 1 We considered the case of N = 64 Doppler beams that results from the emission of N = 64 pulses per burst.

was derived by considering the case of an antenna without mispointing angle, i.e., ξ = 0 • . In the present chapter, the case of a non-zero mispointing angle ξ is taken into consideration.

A change of variables u = φ -φ in (4.7) leads to

FSIR(t, n) = P u 2π 1 + ct 2h -3 U (t) exp - 4 γ 1 - cos 2 (ξ) 1 + 2 (t) + b(t, ξ) Q φ -φ t,n+1 , φ -φ t,n + Q φ -φ t,n+1 , φ -φ t,n (4.10) 
with where I k is the kth order modied Bessel function of the rst kind.

Q (u 1 , u 2 ) = exp - b 2 u 2 u 1 exp a cos (u) + b 2 cos (2 u) du

First approximation

The innite sum of Bessel functions appearing in (4.12) can be reduced to 2 (this approximation will be further justied in the rest of the chapter). By using (4.13), we obtain the approximation FSIR(t, n)

FSIR 1 (t, n) where FSIR 1 (t, n) = P u π 1 + ct 2h -3 U (t) exp - 4 γ 1 - cos 2 (ξ) 1 + 2 (t) + b 2 I 0 b 2 × I 0 (a) (φ t,n+1 -φ t,n ) + +∞ k=1 1 k I k (a) h k,n ( φ) (4.15) and h k,n ( φ) = sin k φ -φ t,n -sin k φ -φ t,n+1 +sin k φ -φ t,n -sin k φ -φ t,n+1 . (4.16)
Using the relations φ t,n = π -φ t,n+1 and φ t,n+1 = π -φ t,n , straightforward computations allow h k,n ( φ) to be expressed as

h k,n ( φ) =      2 cos k φ [sin (kφ t,n+1 ) -sin (kφ t,n )] , for even k -2 sin k φ [cos (kφ t,n+1
) -cos (kφ t,n )] , for odd k .

(4.17)

Second approximation

The innite sum in (4.15) can be truncated by keeping a nite number m of elements according to the desired precision. The FSIR including the mispointing angles ξ and φ can be nally approximated as can be approximated by 1 as in [Brown, 1977]. Note that the proposed model (4.18) reduces to the model of Chapter 3 for ξ = 0 • (absence of mispointing angle) since a(t, ξ = 0) = b(t, ξ = 0) = 0. Finally, the Earth curvature can be introduced by dividing the time t in (4.18) by the curvature factor α r = 1 + h R = 1.11 [START_REF] Chelton | Pulse compression and sea level tracking in satellite altimetry[END_REF], Halimi et al., 2013e, MacArthur, 1976]. 4.3.4 The multi-look echo

FSIR(t, n) FSIR 2 (t, n) where FSIR 2 (t, n) = P u π 1 + ct 2h -3 U (t) exp - 4 γ 1 - cos 2 (ξ) 1 + 2 (t) + b 2 I 0 b 2 × I 0 (a) (φ t,n+1 -φ t,n ) + m k=1 1 k I k (a) h k,n ( φ) 
The reected power P (t, f ) associated with a DDM is nally obtained by a numerical computation of the double convolution (4.3) where FSIR(t, f ) is approximated by the analytical expression (4.18) and PDF(t), PTR(t, f ) are given in (4.4) where g k (θ) = y k -s k (θ) is the vector of residues, y = (y 1 , . . . , y K ) T is a noisy version of s = (s 1 , . . . , s K ) T which depends on the parameter vector of interest θ. The cost function C in (4.21) is minimized using the same numerical optimization method as in the previous chapter, i.e., by using the Levenberg-Marquardt algorithm [START_REF] Bertsekas | Nonlinear programming[END_REF]. This algorithm uses a gradient descent approach to update the vector of parameters θ as follows

θ (i+1) = θ (i) -J T θ (i) J θ (i) + µI mp -1 J T θ (i) g θ (i) (4.22)
where θ (i) is the estimate of θ at the ith iteration, J θ

(i) = ∂g(θ (i) ) ∂θ 1 , • • • , ∂g(θ (i) )
∂θm p is a K × m p matrix representing the gradient of g, m p is the number of parameters to estimate, I mp is the m p × m p identity matrix and µ is a regularization parameter. Note nally that the derivatives of g are numerically evaluated as follows (as in Chapter 3) 

∂g (θ) ∂θ j = - ∂s(θ) ∂θ j - s (θ j + ∆θ j ) -s (θ j ) ∆θ j , for j ∈ {1, • • • , m p } .

Estimation performance

The evaluation of the estimation quality is achieved using the same criteria as in Chapter 3, i.e., using the RMSE, the Bias, the STD and the NRE that have been dened in Section 3.4.2.

Simulation results

This section presents simulation results obtained with proposed model. First, the approximations used to obtain the analytical FSIR are justied. Second, the behavior of the proposed model according 

E max P1 (t) = N n=1 E max FSIR 1 (t -δt n , n) * PDF(t) * PTR(t, n) (4.26) and E max FSIR 1 (t, n) = P u π 1 + ct 2h -3 U (t) exp - 4 γ 1 - cos 2 (ξ) 1 + 2 (t) + b 2 + a × exp b 2 -I 0 b 2 |φ t,n+1 -φ t,n | (4.27)
where E max FSIR i (resp. E Pi (t)) denotes the maximum error on the FSIR (resp. multi-look echo) by applying the ith approximation. Fig. 4.4 shows that the measured error is below this theoretical maximum error NQE max 1

(blue curves). Moreover, it shows that the rst approximation is very reasonable (as an example, the estimation of a noisy waveform will provide a minimum normalized error of about 5 × 10 -2 ) which shows that the rst approximation is valid and does not introduce a sensitive error. Finally, Fig. 4.4 shows that NQE 1 has a similar behavior versus the across-track and along-track mispointing angles. A similar study is conducted for the second approximation by evaluating the criteria NQE 2 = NQE(s, s 1 ). Note that the study of this error will allow us to x the number m of terms in (4.18). Fig. 4.5 shows the measured error (continuous line) and the maximum one (crossed line) that is derived in Appendix J. These errors are represented as a function of m for dierent mispointing angles (the across-track and along-track mispointing provide similar results). Note that the error decreases with m while it is an increasing function of the mispointing angle ξ. Note also that the error due to the second approximation (limiting the innite sum of (4.15) to a nite number of terms) is larger than the one obtained after the rst approximation.

Appendix J shows that the error due to the second approximation can be upper bounded as follows 126Chapter 4 -Generalized semi-analytical model for delay/Doppler altimetry NQE(s, s 1 ) The nal error due to our two approximations can be upper bounded as follows small m while it is quite constant for high m. Indeed, for high m, the error introduced by the second approximation becomes negligible and the overall error only depends on the rst approximation error.

≤ NQE max 2 = K k=1 E max P2 (k) 2 K k=1 s 2 1 (4.28) with E max P2 (t) = N n=1 E max FSIR 2 (t -δt n , n) * PDF(t) * PTR(t, n) (4.29) and E max FSIR 2 (t, n) = P u π 1 + ct 2h -3 U (t) exp - 4 γ 1 - cos 2 (ξ) 1 + 2 (t) + b 2 I 0 b 2 × exp (a) -I 0 (a) -2 m k=1 I k (a) |φ t,n+1 -φ t,n | .
E max FSIR (t, n) = E max FSIR 1 (t, n) + E max FSIR 2 (t, n).
Note that some simulation results have shown that the minimum NQE obtained between a noisy echo and an echo without noise is about 5 × 10 -2 (i.e., the NQE due to the noise presence) which means that we have to consider a value of m that provides a lower error. In the pessimistic case ξ = 1 • , m = 6 is sucient to obtain the desired error level. This value of m will be used in all our simulations. shape of the delay/Doppler waveform is aected by the value of the across-track mispointing angle ξ ac whereas ξ al has an impact on the waveform amplitude mainly. Note that the change of amplitude due to ξ al can be compensated by changing the value of P u . 

Performance on simulated waveforms Generation of simulated waveforms

In order to generate realistic waveforms, the multi-look echo has to be corrupted by speckle noise as in Chapter 3 resulting in the noisy multi-look echo y(t) given by y

(t) = N n=1 P (t -δt n , f n ) q(t -δt n , n) (4.34)
where q(t, n) is a multiplicative i.i.d. speckle noise sequence distributed according to a gamma distribution Γ(L, 1/L) (L = 4 in our simulations) where L is the number of looks. The reader is invited to consult the previous chapter for more details about the speckle noise generation.

Estimation scenarios

The proposed multi-look echo depends on ve altimetric parameters θ 5 = (SWH, P u , τ, ξ ac , ξ al ) T . The rst estimation estimates these ve parameters and is denoted by DDA5. However, it has been shown in the previous section that the along-track mispointing ξ al mainly aects the echo amplitude and 132Chapter 4 -Generalized semi-analytical model for delay/Doppler altimetry has a small eect on its shape. Hence, one can expect high correlation between ξ al and P u which may reduce the estimation performance 4 . Therefore, we propose a second strategy denoted by DDA4, estimating a four parameter vector θ 4 = (SWH, P u , τ, ξ) T with the constraint φ = 0 • (i.e., ξ = ξ ac ).

Note that this strategy might be limited to scenarios with small values of ξ al (see Appendix. K).

In order to evaluate the performance of DDA5 and DDA4, we compare their estimation performance to those obtained using the model of Chapter 3 which considers the three rst parameters θ 3 = (SWH, P u , τ ) T only (denoted by DDA3). It is a special case of the proposed model (4.18) assuming ξ = φ = 0 • . We also consider a 3 parameter based model obtained by replacing known values of ξ ac and ξ al (or equivalently φ and ξ) in (4.19). These known values of (ξ ac , ξ al ) are for instance available in the case of Cryosat-2 data (see [START_REF] Smith | Retracking range, SWH, sigmanaught, and attitude in Cryosat conventional ocean data[END_REF] for more details).

The resulting estimation strategy is a generalization of DDA3 and is denoted by G-DDA3. In the following, the performance of the four estimation strategies DDA3, G-DDA3, DDA4 and DDA5 is evaluated and compared to CA4 when considering simulated and real data.

Estimation on simulated waveforms

This section evaluates the performance of the proposed algorithms on simulated multi-look waveforms generated using the altimetric parameters (P u , τ, ξ ac , ξ al ) T = (1, 31 gates,0 • , 0 • ) T when varying SWH and (SWH, P u , τ, ξ al ) T = (2 m, 1, 31 gates,0 • ) T when varying ξ ac . Note that all results have been averaged using N MC = 500 Monte Carlo realizations.

Fig. 4.12 shows the parameter RMSEs when varying SWH in the interval [1,8] m. This gure shows similar performance between DDA3, DDA4 and DDA5 for the parameters SWH and τ (G-DDA3 is the same as DDA3 since ξ ac = ξ al = 0 • ). Note however that the performance of DDA5 decreases for parameter P u because of the correlation that is introduced by estimating ξ al . This decrease of performance is not observed for DDA4 which provides similar RMSEs as DDA3. Note also that DDA4 performs better than DDA5 for the parameter ξ ac probably because DDA4 estimates less parameters.

Partial conclusion 1: These results show the interest of DDA4 since it provides similar performance than DDA3 when considering the 3 rst parameters while it outperforms DDA5 when considering ξ ac .

The performance of the proposed algorithms was also evaluated when varying ξ ac in the interval [0, 0.7] degrees as shown in Fig. 4.13. As previously, G-DDA3 (in which we consider the actual values of mispointing angles), DDA4 and DDA5 behave similarly for SWH and τ . The RMSEs of these two parameters are quite constant for dierent values of ξ ac . This shows that the presence of across-track mispointing does not aect their estimation. The amplitude P u is better estimated with G-DDA3 and DDA4 than with DDA5 as previously. Note that RMSE(ξ ac ) decreases with respect to ξ ac since the shape of the echo strongly depends on this parameter (see Fig. 4.11) which facilitates its estimation.

Note nally that DDA3 is sensitive to mispointing and that it shows acceptable performance for ξ ac < 0.2 Partial conclusion 2: These results conrm the good performance of DDA4 algorithm and its superiority since it shows similar results than G-DDA3 while it provides additional information about across-track mispointing. 5 The results of Appendix K show that the DDA3 parameter STDs remain acceptable until a value of ξac = 0.4 • which can be exploited by elaborating bias correction tables (as for MLE4 [START_REF] Thibaut | Jason-1 altimeter ground processing look-up correction tables[END_REF]) in order to use the DDA3 for more mispointed data. 

Comparison between CA4 and DDA4

This section is interested in the comparison between DDA4 that has shown interesting estimation performance and CA4. The comparison is based on the evaluation of the RMSEs when varying SWH and ξ (with φ = 0 • which means that ξ = ξ ac ) while keeping the same parameter conguration as in the previous section. Fig. 4.14 shows the RMSEs of CA4 and DDA4 when varying SWH in the interval [1,8] m. This gure shows an RMSE improvement when considering DDA4 for the parameters SWH, τ , ξ ac . It also shows that the estimation of P u with DDA4 improves for high values of SWH.

Note nally that the obtained results are in agreement with those obtained for CA3 and DDA3 for the three rst parameters SWH, τ and P u (see Fig. 3.15). 

CRYOSAT-2 waveforms

This section evaluates the performance of the proposed model and algorithms for oceanic Cryosat-2 waveforms. The considered data lasts approximately 400 seconds and were obtained in May 2012.

These data were provided by the Cryosat processing prototype developed by CNES which is doing the level 1 processing [START_REF] Boy | Cryosat Processing Prototype, LRM and SAR processing on CNES side and a comparison to DUACS SLA[END_REF].

Waveform tting

Fig. 4.16 shows an estimated Cryosat-2 echo by the DDA4. As for DDA3 (see chapter 3), this gure shows an excellent t between the two echoes and a very low dierence between them. The good t can be quantied by the NRE criteria introduced in Section 3.4.2. Fig. 4.17 shows the obtained NREs when considering the 4 estimation strategies for 100 seconds of data. The obtained NREs are globally good since they are lower than 10 %. In particular, one can notice the excellent performance of DDA4 and DDA5 that t perfectly the Cryosat-2 echoes. The G-DDA3 shows better t than DDA3 but still 4.6 -CRYOSAT-2 waveforms 137 does not reach the performance of DDA4 and DDA5 in terms of tting. Table 4.1 shows the obtained ANREs when considering the dierent DDA strategies and CA-SARM4. This table shows that DDA strategies present lower NREs than CA-SARM4. Moreover, we can observe that the DDA5 ANRE is the lowest but that DDA4 still perform very well in terms of tting the echoes. This performance was expected since the estimation of more parameters leads generally to a better t. However, the similarity between the DDA4 and DDA5 may suggest that there is no need to estimate 5 parameters.

This result is conrmed when evaluating the estimated parameters. Note that a negligible dierence (less than 0.02 • ) appears between the estimates of the three strategies. Table 4.2 summarizes the obtained means and standard-deviations when considering the 4 DDA estimation strategies and CA-SARM4. The means of the estimated parameter τ are similar for CA-SARM4 and the proposed DDA algorithms. However, the means of the estimated SWH dier slightly with a maximum value for DDA3 and a minimum one for DDA5. These values are in agreement with the ones obtained with CA-SARM4 since we observe a small dierence that is reduced when estimating more mispointing angles. Concerning the STDs, it can be seen that the best results are obtained for the at surface impulse response were studied and quantied. The obtained model was analyzed and the eect of the mispointing was studied as function of across-track and along-track directions.

It was shown that the across-track mispointing angle aects the echo's shape while the along-track mispointing angle mainly aects the amplitude of the multi-look echo. This behavior can yield problems when estimating ve parameters from the multi-look echo. A solution that consists of estimating four parameters was proposed and validated. The performance of this new estimation strategy are better than the three parameter estimation strategy proposed in Chapter 3 in terms of quality of the estimated parameters and echo tting. A related estimation strategy was also proposed by introducing the estimated mispointing parameters in the proposed model and estimating only three parameters. This solution seems to be a useful tool to reach better estimation results without increasing the computational times. It can be applied easily to altimeters such as Cryosat-2. A comparison between conventional and delay/Doppler altimetry clearly showed some advantages for the delay/Doppler processing.

Finally, we think that generalizing the maximum likelihood estimator established in Appendix I to 4 and 5 parameters is an interesting issue. Moreover, and in order to improve the 5 parameter estimation, one can estimate the parameters from the whole delay/Doppler map instead of using the multi-look echoes. Including the vertical speed eect and the antenna ellipticity are also important issues that should be considered in future studies.

Contributions

The Chapter 3 model is generalized to a ve parameter model that accounts for antenna mispointing [Halimi et al., 2013c]. The new model is analyzed and its approximations are justied. Several estimation strategies based on the least squares estimation procedure are proposed to estimate its parameters. Processing simulated and real Cryosat-2 data allow this new model to be validated.

Conclusions (in French)

Ce chapitre a introduit un nouveau modèle semi-analytique généralisé pour l'altimétrie SAR/Doppler. The last point considers parameter estimation for both conventional and delay/Doppler altimetry.

Indeed, the present thesis dealt with the parameter estimation by considering echoes independently.

However, it is well known that adjacent echoes may share similar altimetric parameters because of their physical nature. Therefore, it is of great interest to derive estimation algorithms that consider this correlation in order to reduce the measurement noise and/or the estimation computational times. improving estimation performance for these two parameters. The situation is dierent for the epoch parameter since the RMSEs of the WLS and MLEs are 1 cm higher than the RCRBs. Thus, there is some space for developing better estimators for this parameter. This dierence between the RMSEs of the MLE and the RCRB may be explained by the fact that asymptotic region has not been reached

for K = 104 samples.

Finally, it is interesting to mention that the computation cost of the WLS estimator is signicantly smaller than that of the MLE. Indeed, estimating the parameters of a DDA3 waveform by the WLS method takes 7.4 seconds (with a MATLAB implementation and a 2.93 GHz i7 CPU) whereas it needs 31 seconds for the MLE. This time reduction is mainly due to the formulation of the WLS that allows the use of the LM algorithm instead of the NM algorithm. Note also that the LS algorithm is the faster algorithm (2.6 seconds for estimating the parameters of a given waveform) but it shows reduced performance because it does not take into account the nature of the noise and in particular the structure of the noise covariance matrix.

FSIR 1 is directly used to derive the theoretical maximum error of the resulting multi-look echo (denoted by E max P1 (t)). E max P1 represents the maximum error that we can obtain when comparing the semi-analytical multi- look echo to the exact echo obtained by a numerical computation of (4.10). The maximum normalized quadratic error associated with the rst approximation is nally given by NQE max 1

= K k=1 E max P1 (k) 2 K k=1 s 2 e k .
(J.7)

A similar study allows the error introduced by the second approximation to be maximized. Lets 
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  et d'un pic gaussien asymétrique. Ce pic est paramétré par une position, une amplitude, une largeur et d'un coecient d'asymétrie. Un estimateur du maximum de vraisemblance est étudié pour estimer les paramètres du modèle de Brown avec pic. Les bornes de Cramér-Rao des paramètres sont ensuite calculées an de fournir une référence en termes d'erreur d'estimation. Les performances du modèle proposé ainsi que de la stratégie d'estimation correspondante sont alors évaluées par de nombreuses simulations eectuées sur des données synthétiques et réelles. Les résultats obtenus dans ce travail montrent l'ecacité du modèle proposé notamment lors du traitement des échos conventionnels ainsi que des échos côtiers corrompus par des pics gaussiens symétriques ou asymétriques. • Chapitre 3: Nous proposons dans ce chapitre un nouveau modèle semi-analytique à trois paramètres pour l'altimétrie SAR/Doppler. La première partie de ce chapitre décrit le modèle proposé qui s'exprime comme une double convolution entre trois termes analytiques: la réponse impulsionnelle d'une mer plate, la densité de probabilité de la hauteur des points de dispersion et la réponse impulsionnelle du radar. Une formule analytique est calculée pour la réponse impulsionnelle d'une mer plate lorsque l'on considère un diagramme d'antenne circulaire sans dépointage, une vitesse verticale nulle pour le satellite et un coecient de rétrodiusion constant dans la surface observée. Le traitement nécessaire pour obtenir l'écho multi-vues est aussi présenté. La deuxième partie de l'étude s'intéresse à l'estimation des paramètres altimétriques à partir de l'écho multi-vues en utilisant une procédure des moindres carrés. Les bornes de Cramér-Rao des paramètres sont ensuite établies an d'évaluer les performances de l'estimateur par moindres carrés et d'autres stratégies d'estimation tel que l'estimateur du maximum de vraisemblance. Le modèle et l'algorithme proposés sont ensuite validés par des simulations eectuées sur des formes d'onde altimétriques synthétiques. L'analyse d'échos réels obtenus par Cryosat-2 montre une nette amélioration de la qualité des paramètres estimés par rapport à l'altimétrie conventionnelle. • Chapitre 4: Ce chapitre généralise le modèle proposé dans le précédent chapitre an de tenir compte des angles du dépointage de l'antenne. Une formule analytique généralisée de la réponse impulsionnelle d'une mer plate est obtenue en considérant deux approximations. Une analyse de ces approximations est réalisée en bornant les erreurs introduites par ces dernières. Dans une deuxième étape, et de manière identique au chapitre 3, plusieurs algorithmes d'estimation basés sur un principe de moindres carrés sont proposés. Par ailleurs, le modèle et les algorithmes proposés sont validés sur des signaux à la fois synthétiques et réels en comparant leurs performances à celles obtenues avec le modèle présenté dans le chapitre 3 et les résultats de l'altimétrie conventionnelle. Les résultats obtenus sont très prometteurs et montrent la pertinence de ce modèle généralisé.

  thesis has been conducted in the Signal and Communications team of the Institut de Recherche en Informatique de Toulouse. It has been funded by the french ministry of national education and has been conducted in close collaboration with the Collecte Localisation Satellite (CLS) company and the Centre national d'études spatiales (CNES). This thesis follows the Phd work of J. Sévérini, that was conducted in the same team, and was devoted to the modeling and parameter estimation of altimetric signals.

Chapter 2 :

 2 This chapter is interested in the study of coastal altimetric waveforms. Echoes resulting from the backscattering on coastal areas are sometimes corrupted by peaks caused by high reective areas inside the illuminated land surfaces or by the modication of the sea state close to the shoreline. We dene a new altimetric model as the sum of the well known Brown model and an asymmetric Gaussian peak. The asymmetric Gaussian peak is parameterized by a location, an amplitude, a width and an asymmetry coecient. A maximum likelihood estimator is studied to estimate the Brown plus peak model parameters. The Cramér-Rao lower bounds of the model parameters are then derived providing minimum variances of any unbiased estimator, i.e., a reference in terms of estimation error. The performance of the proposed model and the resulting estimation strategy are evaluated via many simulations conducted on synthetic and real data. Results obtained in this work show that the proposed model can be used to retrack eciently conventional Brown echoes as well as coastal echoes corrupted by symmetric or asymmetric Gaussian peaks. • Chapter 3: In this chapter, we propose a semi-analytical model depending on three altimetric parameters for delay/Doppler altimetry. The rst part of this chapter describes the proposed model that is expressed as a convolution of three analytical terms: the at surface impulse response, the probability density function of the heights of the specular scatterers and the time/frequency point target response of the radar. An analytical formula is derived for the at surface impulse response when considering circular antenna pattern, no mispointing, no vertical speed eect and a uniform scattering. The necessary processing to obtain the multilook echo is then presented. The second part of the study consists of estimating the multi-look altimetric parameters by a least squares procedure. The Cramér-Rao lower bounds of the model parameters are then derived and compared to the proposed least squares estimation procedure and other estimation strategies such as the maximum likelihood estimator. The proposed model and algorithm are then evaluated via simulations conducted on synthetic altimetric waveforms. The analysis of Cryosat-2 waveforms clearly shows an improvement in parameter estimation when compared to conventional altimetry. • Chapter 4: The semi-analytical model introduced in Chapter 3 is generalized to account for mispointing angles of the antenna. A generalized analytical formula of the at surface impulse response is obtained by considering two approximations. An analysis of these approximations is conducted by deriving analytical bounds for the resulting errors induced by the approximations. In a second step, and similarly to Chapter 3, several least squares estimation algorithms are proposed. Moreover, the proposed model and algorithms are validated on both synthetic and real waveforms by comparing their performance with those obtained with the model presented in Chapter 3 and the results of conventional altimetry. The obtained results are very promising and show the accuracy of this generalized model.
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  and devoted to environmental studies and in particular to climate change.More recently, the CNES (Centre National d'Études Spatiales) and the ISRO (Indian Space Research Organization) agencies have launched a new mission Saral (satellite with ARgos and ALtika) that aims at the observation of ice, rain, coastal zones, land masses, etc. These goals are achieved by the altimeter ALtiKa that has the particularity to work on a Ka-band frequency (the eect of this new conguration will be discussed later). Moreover, the new technology known as delay/Doppler altimetry is also considered in many missions as the recent Cryosat-2 (2010) satellite that embarks the SIRAL (Synthetic aperture radar interferometric mode) altimeter and the future missions Sentinel-3 and Swot (Surface Water and Ocean Topography). More details about this new technology are provided in the rest of this thesis. Some of these satellites are illustrated in Fig.1.2. 
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 12 Figure 1.2: Altimetric missions (from http://www.aviso.oceanobs.com/en/missions.html).

steps 2 and 3 Figure 1 . 3 :

 313 Figure 1.3: Formation of an altimetric waveform for (a) a calm sea surface (b) a rough sea surface.
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 14 Figure 1.4: Geophysical parameters of a theoretical waveform.
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 15 Figure 1.5: Shapes of FSIR, PDF and PTR T .
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 16 Figure 1.6: Geometry used for computing the at surface impulse response.

Figure 1 . 7 :

 17 Figure 1.7: Schematic representation of the construction of a coastal altimetric echo [Gommenginger et al., 2011b].

Figure 1 . 8 :

 18 Figure 1.8: Formation of the central beam DDA waveform.

  2.1 which shows two representative coastal Jason-2 waveforms (black curves) and their estimates resulting from the maximum likelihood (ML) estimator applied to the Brown model (blue curves). Due to the presence of a peak at the end of the leading edge (Fig. 2.1 (a)) or in the middle of the trailing edge (Fig. 2.1 (b)), the Brown model is clearly unable to capture the variations of the altimetric echo. A

  Figure 2.1: Examples of real JASON-2 waveforms and their Brown model estimations.

Figure 2 . 2 :

 22 Figure 2.2: Dierent shapes of altimetric signals resulting from CNES/PISTACH project.

Figure 2 . 3 :

 23 Figure 2.3: Percentages of observed altimetric waveforms in classes 1, 7, 13 and others versus distance to the coast.

  Figure 2.4: Example of observed waveforms obtained with Jason-1 altimeter over Amazonia area

Figure 2 . 5 :

 25 Figure 2.5: Eect of the asymmetry coecient on the peak.

  (explicit or implicit) about the derivatives of the cost function. By considering m p as the length of the parameter vector to estimate (m p = 3 for the Brown model, m p = 6 for the BGP and m p = 7 for the BAGP), the NM algorithm 1 works in an m p -dimensional subspace that is characterized by m p + 1 distinct vectors that are its vertices and their associated function values. At each step of the search, a new point in or near the current simplex 2 is generated. The cost function is evaluated at the new generated point and compared with its values at the vertices of the simplex. When the cost function is smaller at the generated point, one of the vertices is replaced by this generated point, giving a new simplex. This

Figure 2 . 6 :

 26 Figure 2.6: Parameter RMSEs for Brown waveforms with NM (left) and NR (right) algorithms when using Brown (blue), BGP (red) and BAGP (green) models.

Figure 2 . 7 :Figure 2 . 8 :

 2728 Figure 2.7: Parameter RMSEs for waveforms of the class 13 with the NM algorithm when using Brown (blue) and BGP (red) models. The CRBs of the BGP model parameters are also shown (black) for comparison.
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 2292 Fig. 2.9 (a) where SWH = 2m. The Brown and peak parameters are P u = 130, τ s = 31 T s and A = 200, σ = 3 T s , η = 1/T s . Fig.2.9 shows the RMSEs obtained with the NM algorithm for the Brown, BGP and BAGP models. The BGP model cannot always handle the asymmetric nature of the peak resulting in poor estimation performance for SWH < 3 m when applying the NM algorithm and for all SWH when applying the NR algorithm (see Fig.2.10). For small values of SWH, the Brown model is able to capture the leading edge (see Fig.2.1 (a)) leading to relatively small RMSEs for parameters τ and SWH. However, the amplitude of the echo cannot be estimated accurately as displayed in Fig.2.9 (c). For larger values of SWH, the performance of the Brown model decreases signicantly. The BAGP model is able to model accurately the altimetric waveforms in all scenarios except for very small values of SWH. The application of the NR method conrms the superiority of the BAGP model for this class of waveforms as depicted in Fig.2.10 (note that the scales are dierent in Figs. 2.9 and 2.10). Table2.3 reports the averaged reconstruction errors (AREs) obtained for synthetic signals from classes 1, 7 and 13 with the dierent algorithms investigated in Section 2.5.Note that the waveforms from classes 7 and 13 have been generated by varying SWH and keeping the other parameters unchanged with respect to the previous experiment. It can be noticed that the proposed BAGP is very robust to dierent shapes of altimetric waveforms and provides very satisfactory AREs for all models. Table2.4 shows the corresponding execution times of MATLAB implementations with a 2.93 GHz i7 CPU for one altimetric waveform. These results indicate that the computational time of the BAGP estimation algorithm is reasonable even if it exceeds the one obtained with the other algorithms. From these results, we conclude that the BGP has good properties for signals corrupted by a symmetric peak located in the trailing edge of the Brown's echo (class 13 of Fig.2.2). However, it is not appropriate for waveforms of class 7. The introduction of an asymmetric peak characterized by the asymmetry coecient η allows the BAGP to better approximate signals from class 7. Note nally that the eects of the peak is more pronounced for waveforms of class 7 since it directly aects the leading edge of the altimetric echo.

(Figure 2 .Figure 2 .

 22 Figure 2.11: RCRBs for the Brown, BGP and BAGP models with parameter vectors θ Brown = (P u , τ, SWH) T = (130, 31, 5) T , θ BGP = (P u , τ, SWH, A, T, σ) T = (130, 31, 5, 200, 75 T s , 3 T s ) T and θ BAGP = (P u , τ, SWH, A, T, σ, η) T = (130, 31, 5, 200, 75 T s , 3 T s , 0) T . The left and right columns are associated with parameters τ and SWH respectively. The top, middle and bottom gures have been obtained by varying SWH, P u and τ respectively.

Figure 2 .

 2 Figure 2.13: REs for 150 waveforms from class 1 with NM (top) and NR (bottom) methods.

Figure 2 .

 2 Figure 2.14: REs for 150 waveforms from class 7 with NM (top) and NR (bottom) methods.

Figure 2 .

 2 Figure 2.15: REs for 100 waveforms from class 13 with NM (top) and NR (bottom) methods.

  (a) Real waveform from Class 7 and its estimates.(b) Real waveform from Class 13 and its estimates.

Figure 2 .

 2 Figure 2.16: Examples of real JASON-2 waveforms and their estimations.

Figure 2 .Figure 2 .

 22 Figure 2.17: Jason-1 waveforms estimated by using Brown (top-right), BGP (bottom-left) and BAGP (bottom-right) models.
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 1 Introduction (in French) Depuis plus de vingt ans, les altimètres classiques comme Topex, Poseidon-2 ou Poséidon-3, ont fourni des formes d'onde qui sont utilisées pour estimer de nombreux paramètres physiques tels que la distance entre le satellite et la scène observée, la hauteur des vagues et la vitesse du vent. Ces altimètres classiques montrent certaines limitations qui ont été abordées dans le chapitre 1. L'altimétrie SAR/Doppler se présente comme une solution à ces limitations puisqu'elle vise la réduction du bruit de mesure et l'augmentation de la résolution dans la direction de marche du satellite en comparaison avec l'altimétrie conventionnelle.

Figure 3 . 1 :

 31 Figure 3.1: Conguration of a delay/Doppler altimeter and construction of a delay/Doppler map.

Figure 3 . 2 :

 32 Figure 3.2: Circles of propagation and Doppler beams. In CA, the FSIR is obtained by integrating over the propagation circles. In DDA, the FSIR is obtained by integrating the energy in the intersection between the propagation circles and the Doppler beams.

Figure 3 . 3 :

 33 Figure 3.3: Doppler beams geometry.

Fig. 3 .ρ 2 (

 32 Fig. 3.2 also shows that the computation of the FSIR for DDA is obtained by integrating φ into rectangular beams dened by xed coordinates y n and y n+1 (we will consider the time independent Doppler coordinate given in (3.9) in the rest of the study). Straightforward computations show that the angles associated with y n and y n+1 are dened by

  Fig. 3.4 (a) shows the measured Cryosat-2 PTR which is in good agreement with the proposed theoretical PTR shown in Fig.3.4 (b). Figs.3.5 (a) and (b) compare the measured PTR T(PTR(t,f ) 

Figure 3 . 4 :

 34 Figure 3.4: 2D Radar system point target response. (a) Actual Cryosat-2 PTR(t, f ), (b) theoretical PTR(t, f ).

Figure 3 . 5 :

 35 Figure 3.5: Temporal and frequency radar system point target response. (a) Actual Cryosat-2 PTR T and the theoretical one, (b) actual Cryosat-2 PTR F and the theoretical one.

  signal is nally undersampled to obtain the required 64 × 128 DDM. The proposed model (3.5) is semi-analytical in the sense that an analytical formulation is proposed for the FSIR but that the double convolution in (3.5) is computed numerically. Note that the proposed semi-analytical model might be modied by introducing a measured PTR(t, f ) and/or a PDF dierent from(3.3).
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 336 Figure 3.6: Construction of the delay/Doppler map.

Figure 3 .

 3 Figure 3.7: Delay/Doppler map after delay compensation (left), migrated signals for all Doppler beams (middle) and the corresponding multi-look waveform (right).

Figure 3 .

 3 Figure 3.8: Delay/Doppler and conventional echoes for the same altimetric parameters (P u = 1, τ = 31 gates, SWH = 2 m).

Fig. 3 .

 3 10 (bottom) shows examples of DD echoes obtained after range migration (this gure is similar to Fig.

Figure 3 .

 3 Figure 3.10: Echoes for dierent Doppler frequencies (0, 2, 4 and 6 kHz). (top) without range migration, (bottom) with range migration. The temporal scale has been oversampled by a factor of N t = 16.

Figure 3 .

 3 Figure 3.11: (top) reected power versus Doppler frequency for dierent gate numbers, (bottom) Doppler spectra after summing the powers associated with each Doppler frequency (sum of the rows of Fig. 3.7 (left)). The frequency scale has been oversampled by a factor of N f = 15.

Figure 3 .

 3 Figure 3.12: Parameter RMSEs for migrated and non-migrated delay/Doppler echoes (1000 Monte-Carlo realizations) versus SWH with P u = 1 and τ = 31 gates.

Fig. 3 .

 3 13 shows the parameter RMSEs versus N b . The RMSEs are decreasing functions of N b for N b ≤ 20 and stabilize for N b > 20. This means that the beams ∈ [1, 12] ∪ [54, 64]

Figure 3 .

 3 Figure 3.13: Parameter RMSE versus number of considered Doppler beams (1000 Monte-Carlo runs).

Figure 3 .

 3 Figure 3.14: Parameter Biases versus number of considered Doppler beams (1000 Monte-Carlo runs).

Figure 3 .

 3 Figure 3.15: RCRBs and RMSEs for delay/Doppler altimetry (DDA3) and conventional altimetry (CA3) versus SWH with P u = 1 and τ = 31 gates (1000 Monte-Carlo realizations).

Figure 3 .

 3 Figure 3.16: Theoretical parameter correlations for delay/Doppler altimetry (DDA3) and conventional altimetry (CA3) versus SWH with P u = 1 and τ = 31 gates.

  (a) SWH = 0.57 m and NRE = 0.07. (b) SWH = 1.56 m and NRE = 0.065. (c) SWH = 3.6 m and NRE = 0.12. (d) SWH = 3.92 m and NRE = 0.101.

  (e) SWH = 5.26 m and NRE = 0.112. (f ) SWH = 5.84 m and NRE = 0.102.

Figure 3 .

 3 Figure 3.17: Examples of estimated Cryosat-2 echoes and corresponding normalized reconstruction errors (NRE) for dierent values of SWH.

Figure 3 .

 3 Figure 3.19: Correlations between estimated SWH and SSHA parameters for CA-SARM3 (left) and DDA3 (right).

  to CA. Validation of the proposed model and the corresponding algorithms is achieved on simulated and real Cryosat-2 data. The obtained results are very promising and conrm the accuracy of the proposed model. The chapter is organized as follows. Section 4.3 presents the generalized semi-analytical model for delay/Doppler altimetry. The least squares estimation algorithms and the criteria for performance evaluation are then introduced in Section 4.4. Section 4.5 rst justies the approximations used to obtain the analytical FSIR. Second, it analyzes the behavior of the proposed model according to antenna mispointing. Third, it validates the proposed model and estimation algorithms with simulated data. The analysis of results obtained with Cryosat-2 data is presented in Section 4.6. Conclusions and future work are nally reported in Section 4.7. 4.3 Generalized semi-analytical model for delay/Doppler altimetry This section recalls briey the CA4 model and introduces the proposed semi-analytical model for delay/Doppler waveforms. The interest of this model compared to that of the previous chapter is that it includes parameters related to antenna mispointing.
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 45 As already detailed in Section 1.3.2. The delay/Doppler altimeter was proposed in order to increase the along-track resolution by considering the Doppler eect resulting from the satellite velocity. The corresponding FSIR is then obtained by integrating over each Doppler beam. The nth Doppler beam at time instant t depicted in Fig.4.1 is characterized by an angle φ varying in the interval

Figure 4 . 1 :

 41 Figure 4.1: Integrating angles for a given circle of propagation and a specic Doppler beam.

( 4 .

 4 11)where the parameters (t, ξ) in a and b are omitted for brevity. Using the results of[Abramowitz and Stegun, 1965, p. 376] (see equation (9.6.34)), the following expressions are obtained exp [a cos(u)] = I 0 (a

  loss of accuracy because of the very small values of the positive variable b. Indeed, the zero order Bessel function is sucient to approximate this sum since the maximum value of b(t, ξ) (considering a pessimistic case ξ = 1 degree) is less than 8 × 10 -4 . The error associated with this value of b is upper bounded as follows

4 -

 4 Generalized semi-analytical model for delay/Doppler altimetry which is a negligible error since it represents 0.04% of exp b

4cv 2 s f 2 n

 2 is the delay compensation expressed in seconds. Note that the proposed model is parameterized by the parameter vector θ = (SWH, P u , τ, ξ ac , ξ al ) T where ξ ac and ξ al denote the across-track and along-track mispointing angles dened as (see alsoFig. 4.2) ξ al = ξ sin φ and ξ ac = ξ cos φ .

  reected power P (t, f ) is displayed in Fig.4.3 (left) for 64 Doppler beams, 128 gates, the altimetric parameters P u = 1, SWH = 1 m, τ = 44 gates and ξ al = ξ ac = 0.1 • . This gure shows a parabolic shape of the waveform resulting from the increasing slant range when going away from the central nadir beam. Fig.4.3 (middle) shows an example of a DDM obtained after range migration whereas Fig.4.3 (right) shows the resulting multi-look echo obtained after summing the contributions of the migrated Doppler beams. Note nally that the discrete multi-look echo is gathered in the vector s = (s 1 , • • • , s K ) T , where K = 128 is the number of samples (or so-called gates).

Figure 4 . 2 :

 42 Figure 4.2: Relation between the parameters ξ and φ and the along-track and across-track mispointing angles ξ al and ξ ac .

Figure 4 . 3 :

 43 Figure 4.3: Construction of a multi-look waveform. (left) a delay/Doppler map (DDM), (middle) DDM after range migration, and (right) multi-look (M-L) echo.
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 42 Generalized semi-analytical model for delay/Doppler altimetry to antenna mispointing is analyzed. The last part of this section is interested in the estimation of simulated waveforms when considering dierent scenarios. 4.5.1 Justication of the FSIR approximations This section validates the semi-analytical model (4.18) by comparison with an exact model resulting from a numerical computation of the integral (4.11) appearing in (4.10). This validation is conducted by analyzing the errors introduced by the two successive approximations. The normalized quadratic error (NQE) dened by NQE(s, s e ) = K k=1 (s k -s e k ) compare the exact multi-look echo s e obtained by convolving numerically the FSIR (4.10) with (4.4a) and (4.4b) and the approximated multi-look echo s obtained using the proposed approximated FSIR(4.18). Before evaluating this overall error, let us consider the error of each approximation separately. The measure of NQE 1 = NQE(s 1 , s e ), where s 1 is the semi-analytical model obtained after considering the rst approximation only, provides a good evaluation of the rst approximation error.

Fig. 4 .

 4 Fig. 4.4 shows that the measured error is increasing with the along-track and across-track mispointing angles ξ al and ξ ac (red curves). Appendix J derives the following upper bound for NQE(s 1 , s e )

Figure 4 . 4 :

 44 Figure 4.4: Error of approximation 1 versus (top) the along-track mispointing angle ξ al , (bottom) the across-track mispointing angle ξ ac .

Fig. 4 .

 4 Fig. 4.5 shows that the measured error due to the second approximation is lower than its upper bound.

Figure 4 . 5 :

 45 Figure 4.5: Error of approximation 2 versus the mispointing angle ξ and the number of terms in the sum m. Measured NQE 2 (continuous line), maximum NQE 2 (crossed line) for ξ = 0.01 • (in blue), ξ = 0.5 • (in green) and ξ = 1 • (in red)

Fig. 4 .

 4 Fig. 4.6 shows that NQE (resp. NQE max ) has the same behavior as NQE 2 (resp. NQE max 2 ) for

Figure 4 . 6 :

 46 Figure 4.6: Overall error versus the mispointing angle ξ and the number of terms in the sum m. Measured NQE (continuous line), maximum NQE (crossed line) for ξ = 0.01 • (in blue), ξ = 0.5 • (in green) and ξ = 1 • (in red)
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 47 Figure 4.7: Antenna gain with dierent mispointing angles.
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 48 Figure 4.8: Antenna gain, DDM, and Doppler echoes representation for an along-track mispointing (ξ ac = 0 • and ξ al = 0.5 • ).

Figure 4 .

 4 Figure 4.9: Eect of the along-track mispointing on (top) the multi-look echoes and (bottom) the normalized multi-look echoes (obtained with P u = 1, τ = 44 gates, SWH = 3 meters and ξ ac = 0 • ).

Figure 4 .

 4 Figure 4.10: Antenna gain, DDM, and Doppler echoes representation for an across-track mispointing (ξ ac = 0.5 • and ξ al = 0 • ).

Figure 4 .

 4 Figure 4.11: Eect of the across-track mispointing on (top) the multi-look echoes and (bottom) the normalized multi-look echoes (obtained with P u = 1, τ = 44 gates, SWH = 3 meters and ξ al = 0 • ).
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 4 Figure 4.12: Parameter RMSEs versus SWH when considering echoes without mispointing estimated with DDA3, DDA4 and DDA5. The simulation has been obtained using 500 Monte-Carlo realizations with the parameters P u = 1, τ = 31 gates and ξ al = ξ ac = 0 • .

Figure 4 .

 4 Figure 4.13: Parameter RMSEs versus ξ ac when considering DDA3, G-DDA3, DDA4 and DDA5. The simulation has been obtained using 500 Monte-Carlo realizations with the parameters P u = 1, SWH = 2 m, τ = 31 gates and ξ al = 0 • .

Fig. 4 .

 4 Fig.4.15 shows the RMSEs when varying ξ ac in the interval [0 • , 0.7 • ]. It can be seen that SWH is less sensitive to the variation of ξ ac when considering DDA4 since a constant RMSE level can be observed while it slightly increases when considering CA4. On the other hand, the RMSEs of P u and ξ ac are similar for CA4 and DDA4. Note that the epoch error is lower for DDA4 and that the constant level of RMSE is probably due to the uncorrelation between τ and ξ ac for both CA4 and DDA4. These results conrm the good performance of DDA4 and illustrate its superiority when compared to CA4.

Figure 4 .

 4 Figure 4.14: Parameter RMSEs versus SWH when considering CA4 and DDA4. The simulation has been obtained using 500 Monte-Carlo realizations with the parameters P u = 1, τ = 31 gates, ξ al = ξ ac = 0 • .

Figure 4 .

 4 Figure 4.16: Estimated Cryosat-2 echo using the proposed DDA4 model (NRE = 0.065). (top) real Cryosat-2 echo superimposed with its estimation, (bottom) dierence between the real Cryosat-2 echo and its estimation.
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 4 Figure 4.17: NRE estimates for 100 seconds of Cryosat-2 data when considering DDA3, G-DDA3, DDA4 and DDA5.
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  'expression analytique de la réponse impulsionnelle d'une mer plate a été obtenue en supposant un diagramme d'antenne circulaire avec dépointage, aucun eet de la vitesse verticale du satellite et un coecient de rétrodiusion constant dans la surface observée. Les approximations utilisées pour établir la formule analytique proposée ont été étudiées et leurs erreurs quantiées. Le modèle ainsi obtenu a été analysé et l'eet du dépointage a été étudié suivant les directions azimutale et transverse. Il a été montré que le dépointage transverse aecte la forme et l'amplitude de l'écho SAR/Doppler alors que le dépointage azimutal n'aecte que son amplitude. Ce comportement peut causer des problèmes lors de l'estimation de cinq paramètres à partir de l'écho multi-vues. Une solution qui consiste à estimer quatre paramètres a été proposée et validée. Cette stratégie ore de meilleures performances que celles du chapitre précédent puisqu'elle fournit une meilleure qualité des paramètres estimés ainsi qu'une parfaite adéquation entre l'écho observé et son estimé. Ce chapitre a aussi déni une autre procédure d'estimation qui introduit les valeurs des angles de dépointage estimés dans le modèle proposé et estime ensuite trois paramètres. Cette solution semble être un outil intéressant pour obtenir une meilleure qualité des paramètres estimés sans pour autant augmenter le temps de calcul.Cette stratégie peut facilement être appliquée à l'altimètre SIRAL de Cryosat-2 puisqu'il fournit une mesure du dépointage par l'utilisation du senseur stellaire. A noter enn qu'une comparaison entre l'altimétrie conventionnelle et SAR/Doppler a clairement montré la supériorité de cette dernière.Finalement, nous pensons que la généralisation de l'estimateur du maximum de vraisemblance, établi dans l'annexe I, pour tenir compte de 4 ou de 5 paramètres est une piste intéressante. Par ailleurs, et an d'améliorer l'estimation à 5 paramètres, on pourrait estimer les paramètres de la carte distance Doppler au lieu d'utiliser les échos multi-vues. Tenir compte de l'eet de la vitesse verticale et de l'ellipticité de l'antenne sont également des questions importantes qui doivent être prises en compte dans les études futures.The second solution was based on the study of delay/Doppler altimetry. This new technology was proposed to deal with the conventional altimetry limitations by reducing the noise level aecting the echoes and increasing the along-track resolution. However, the obtained echoes are dierent from those of conventional altimetry and then require a new model to estimate their parameters.The main objective of Chapter 3 was to propose a model for these echoes and the corresponding estimation algorithm. A geometrical approach was used for computing an analytical expression of the at surface impulse response. The analytical expression was obtained assuming a circular antenna pattern, no mispointing, no vertical speed eect and a uniform scattering. This analytical expression was convolved with the probability density function of the heights of the specular scatterers and the point target response of the radar leading to the mean power of a delay/Doppler altimetric waveform.The analysis of the proposed model had shown the importance of range migration and that of the central Doppler beams that contain most of the information. A least squares approach based on the Levenberg-Marquardt algorithm was then proposed to estimate the parameters of delay/Doppler altimetric echoes. The choice of this algorithm allows the use of numerical derivatives and to compare the proposed model to that of SAMOSA that used the same algorithm. The Cramér-Rao bounds were also derived to provide a reference in terms of estimation performance. These bounds were used to evaluate the performance of the proposed estimation strategy and to compare it with other estimation procedures such as the maximum likelihood estimator and the weighted least squares procedure. The obtained results showed the good potential of delay/Doppler altimetry when compared to conventional altimetry in terms of error and correlation reduction.The proposed model of Chapter 3 did not take into account any antenna mispointing which may lead to reduced estimation performance. This point was considered in Chapter 4 which dened a generalized semi-analytical model for delay/Doppler altimetry. The proposed model considers antenna mispointing, a circular antenna pattern, no vertical speed eect and a uniform scattering. The approximations used in order to elaborate the proposed analytical formula for the at surface impulse response were studied and quantied. The obtained model was analyzed as well as the eect of the mispointing studied according to across-track and along-track directions. It was shown that the across-track mispointing aects the echo's shape while the along-track mispointing mainly aects the amplitude of the multi-look echo. This behavior appears as a diculty when estimating ve parameters from the multi-look echo. A solution that consists of estimating four parameters was proposed and validated. The performance of this new estimation strategy is better than the three parameter estimation strategy proposed in Chapter 3 in terms of quality of the estimated parameters and echo tting. An intermediate estimation strategy was proposed by introducing the estimated mispointing parameters in the proposed model and estimating only three parameters. This solution appears to be useful to reach better estimation results without increasing the computational times and can be applied to altimeters such as Cryosat-2. The comparison of conventional altimetry with the proposed delay/Doppler estimation strategies showed the superiority of this new technology.Future workA lot of perspectives could be considered for future work. In the rst topic of the PhD, an interesting issue is the extension of the proposed model to the four parameter Brown model (including the mispointing as a fourth parameter). This model could also be generalized to account for multiple peaks instead of considering only one peak. The proposed Brown with asymmetric Gaussian peak model could also be of interest for retracking echoes aected by σ-blooms or rain cells. In the proposed approach, the Brown model was generalized by adding a Gaussian peak. Another approach to tackle the problem of coastal altimetry could be to elaborate an FSIR model that takes into account the nature of the observed surface, i.e., water and land in the coastal case. Considering the delay/Doppler altimetry, the rst point should be the comparison of the proposed model with the analytical model of SAMOSA. This point was not achieved in the present work because of the absence of literature about the SAMOSA model which is not yet published. A second point consists of the generalization of the proposed model to account for antenna ellipticity, the vertical speed eect and a non constant backscattering coecient. Moreover, one can think about elaborating a complete analytical model for the multi-look echo which may introduce more approximations. The latter should be carefully analyzed in order to control the behavior of the resulting model. Considering the parameter estimation aspect, one can think about estimating the whole DDM matrix instead of the multi-look echo in order to improve the quality of the estimated 5 parameters. It is also interesting to generalize the maximum likelihood estimator established in Appendix I to the 4 and 5 parameter cases.

Figure H. 2 :

 2 Figure D.4: Jason-2 waveforms estimated by using Brown (top-right), BGP (bottom-left) and BAGP (bottom-right) models. The waveforms were extracted from pass 187 of cycle 8 around Ibiza Island.

Fig. I. 1

 1 Fig. I.1 compares the RMSEs of the dierent estimators for the altimetric parameters (SWH (a), P u (b) and τ (c)). The RCRBs are also displayed providing a reference in terms of estimation performance. The MLE and WLS perform very similarly. The LS estimator shows the worst performance when compared to the ML and WLS estimators. For instance, we can observe a gain of about 20 cm for SWH when using WLS or MLE instead of LS. The RMSEs of the WLS and MLE associated with the parameters SWH and P u are very close to the corresponding CRBs showing there is no space for

Figure J. 1 :

 1 Figure J.1: Error of approximation 1 for the FSIR. (top) maximum theoretical error of the FSIR for ξ = 0.5 • , (middle) measured error when considering ξ al = 0.5 • and (bottom) measured error when considering ξ ac = 0.5 • (note the scale change).
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 2 Figure J.2: Error of approximation 2 on the FSIR. (top) maximum theoretical error of the FSIR for ξ = 0.5 • , (middle) measured error when considering ξ al = 0.5 • and (bottom) measured error when considering ξ ac = 0.5 • (note the scale change).

Figure K. 1 :

 1 Figure K.1: Parameter STDs versus the sea wave height SWH when considering echoes without mispointing estimated with DDA3, DDA4 and DDA5. The simulation has been obtained using 500 Monte-Carlo realizations with the parameters P u = 1, τ = 31 gates, ξ al = 0 • and ξ ac = 0 • .

Figure K. 2 :

 2 Figure K.2: Parameter biases versus the sea wave height SWH when considering echoes without mispointing estimated with DDA3, DDA4 and DDA5. The simulation has been obtained using 500 Monte-Carlo realizations with the parameters P u = 1, τ = 31 gates, ξ al = 0 • and ξ ac = 0 • .

Figure K. 3 :

 3 Figure K.3: Parameter STDs versus ξ ac when considering DDA3, G-DDA3, DDA4 and DDA5. The simulation has been obtained using 500 Monte-Carlo realizations with the parameters P u = 1, SWH = 2 m, τ = 31 gates and ξ al = 0 • .

Figure K. 4 :

 4 Figure K.4: Parameter biases versus ξ ac when considering DDA3, G-DDA3, DDA4 and DDA5. The simulation has been obtained using 500 Monte-Carlo realizations with the parameters P u = 1, SWH = 2 m, τ = 31 gates and ξ al = 0 • .

Figure K. 5 :

 5 Figure K.5: Parameter STDs versus ξ al when considering DDA3, G-DDA3, DDA4 and DDA5. The simulation has been obtained using 500 Monte-Carlo realizations with the parameters P u = 1, SWH = 2 m, τ = 31 gates and ξ ac = 0 • .

Figure K. 6 :

 6 Figure K.6: Parameter biases versus ξ al when considering DDA3, G-DDA3, DDA4 and DDA5. The simulation has been obtained using 500 Monte-Carlo realizations with the parameters P u = 1, SWH = 2 m, τ = 31 gates and ξ ac = 0 • .

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Ce chapitre décrit tout d'abord les principes et objectifs de l'altimétrie spatiale.Deuxièmement, il présente la forme d'onde altimétrique et fournit un état de l'art des diérents modèles de forme d'onde et les stratégies d'estimation disponibles dans la littérature. Les limitations de l'altimétrie conventionnelle sont ensuite décrites. Ces dernières sont principalement dues, premièrement, à la contamination des échos par des retours de la terre dans les zones côtières en raison de la grande taille de la tache au sol et, deuxièmement, à la précision des paramètres estimés qui est réduite en raison de la corruption des formes d'onde par le bruit de chatoiement. Certaines solutions techniques à ces problèmes sont nalement présentées.

	Structure du manuscrit
	La thèse est organisée comme suit

, se présente alors comme une solution pour améliorer la qualité de la mesure et réduire l'eet de la côte. En eet, cette nouvelle technologie s'inscrit dans la logique de l'amélioration de la mesure et a deux objectifs principaux. Le premier est de réduire le bruit de mesure en augmentant le nombre d'observations ce qui permet d'améliorer la qualité des paramètres géophysiques estimés. Le second est d'augmenter la résolution dans la direction de déplacement du satellite ce qui permet aux mesures de rester valides jusqu'à une distance d'environ 300 mètres de la côte (alors qu'elle est d'environ 10 km pour l'altimétrie conventionnelle). Cependant, l'altimétrie SAR/Doppler nécessite l'élaboration de nouveaux modèles altimétriques puisqu'elle fournit des échos de forme diérente de celle des échos conventionnels. Ainsi, la deuxième partie de la thèse s'intéresse à ce point en proposant deux modèles altimétriques pour l'altimétrie SAR/Doppler. Les paramètres de ces modèles seront estimés par l'élaboration d'algorithmes d'estimation appropriés fondés sur le maximum de vraisemblance ou des approches de moindres carrés. Les résultats obtenus sont très prometteurs et montrent l'intérêt d'utiliser l'altimétrie SAR/Doppler comme un nouvel outil d'observation de l'océan.

• Chapitre 1:

  El Niño. Presque tous ces phénomènes ont un impact sur l'océan, car il couvre 71% de notre planète. Donc, an de les étudier, on doit observer leurs eets sur la surface océanique ce qui est réalisé par l'altimétrie radar. En eet, l'objectif principal de l'altimétrie radar est la mesure de la topographie de la surface des océans.Un altimètre est un radar à visée nadir qui émet des impulsions régulières et enregistre le temps de trajet, l'amplitude et la forme de chaque signal de retour après réexion sur la surface de la Terre. Cet instrument mesure la distance entre le satellite et la surface de la mer ce qui nous permet, moyennant des corrections atmosphériques et instrumentales, d'obtenir la hauteur de la surface de mer (appelée sea surface height SSH) ainsi que sa uctuation autour d'un valeur moyenne appelée l'anomalie de la hauteur de la surface de mer (sea surface height anomaly SSHA). Ces mesures sont d'une grande importance et interviennent dans diverses applications telles que la bathymétrie et la géophysique.
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1.1 Introduction (in French)

La Terre abrite des millions d'espèces vivantes, y compris les être humains. De nombreux phénomènes physiques, qui ont un impact direct sur nos vies, se produisent sur cette planète qui est en constante évolution. Ces phénomènes sont, par exemple, le réchauement climatique qui a un eet sur l'augmentation de la hauteur de la surface de la mer et la fonte des glaces, les tremblements de terre qui peuvent causer des tsunamis et le déplacement de la chaleur qui mène à Cet importance a conduit à l'amélioration de la qualité des paramètres estimés en optimisant les instruments de mesure altimétriques. On note alors diérentes missions altimétriques qui n'ont pas cessé de s'améliorer telles que ERS-1, ERS-2, TOPEX/POSEIDON, Jason-1, Jason-2, ENVISAT, AltiKa et Cryosat-2.

Table 1 .

 1 

	1: Vertical variability of ocean phenomena versus the spatial scale [Sandwell, 2011].
	Feature	Vertical variability (m)	Spatial scale (km)
	Geoid	30	10000
	Dynamic topography	1	10000
	Climate changes	0.01	10000
	Tides	0.2 -2	100-10000
	El Niño	0.1	6000
	Front and eddies	0.3	100-1000
	Seamounts	1	50
	Ridge axes	0.02	

Table 1

 1 

	.2: Typical values of the mean and standard deviation of all the time variable corrections
	applied to SSH [Vignudelli et al., 2011].		
			Time variable	Time variable
	Corrections	Mean(cm)	deep ocean	Coastal
			(std dev) (cm)	(std dev) (cm)
	Dry troposphere	231	0 -2	0 -2
	Wet troposphere	16	5 -6	5 -8
	Ionosphere	8	2 -5	2 -5
	Sea state bias	5	1 -4	2 -5
	Tides	∼ 0 -2	0 -80	0 -500
	Dynamic atmosphere	∼ 0 -2	5 -15	5 -15

Table 1
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	.3: Example of altimetric missions, technologies and performance [Rosmorduc et al., 2009].
	Satellite	Launch	Altimeter	Frequency	Range error (open ocean)
	SEASAT	1978	ALT	Ku-band	5 cm
	ERS-1	1991	RA	Ku-band	3 cm
	Topex/Poseidon	1992	Topex	Ku and C-band	2 cm
			Poseidon-1	Ku-band	
	ERS-2	1995	RA	Ku-band	3 cm
	Jason-1	2001	Poseidon-2	Ku and C-band	2 cm
	Envisat	2002	RA-2	Ku and S-band	2-3 cm
	Jason-2	2008	Poseidon-3	Ku and C-band	/
	Cryosat	2010	SIRAL	Ku-band	/
	Saral	2013	AltiKa	Ka-band	/
	Sentinel-3	2014	SRAL	Ku and C-band	/

  courbes noires) et leurs estimations résultant de l'estimateur du maximum de vraisemblance appliqué en utilisant le modèle Brown (courbes bleues). En raison de la présence d'un pic à l'extrémité du front de montée (gure 2.1 (a)) ou au milieu du plateau nal (gure 2.1 (b)), le modèle Brown est manifestement incapable de saisir les variations de l'écho altimétrique. Un grand eort est récemment consacré au traitement des formes d'onde côtières an de déplacer les mesures altimétriques près de la côte[START_REF] Desportes | On the wet tropospheric correction for altimetry in coastal regions[END_REF][START_REF] Desportes | One-dimensional variational retrieval of the wet tropospheric correction for altimetry in coastal regions[END_REF]. L'analyse des échos côtiers a récemment été eectuée de manière approfondie dans les deux projets PISTACH[START_REF] Mercier | The PISTACH project for coastal altimetry: status, products and early results[END_REF] et COASTALT[START_REF] Vignudelli | Coastal Altimetry[END_REF]. Dans le cadre du projet PISTACH, visant à améliorer les produits de l'altimétrie cotière, Une propriété intéressante du modèle proposé BAGP est qu'il se réduit au modèle classique de Brown lorsque l'amplitude du pic est nulle. Ainsi, on peut s'attendre à des performances similaires à celles du modèle de Brown lors du traitement des échos océaniques ainsi qu'à une amélioration de la reconstruction des signaux corrompus par des pics.Par ailleurs, il est intéressant de noter que le modèle BAGP peut gérer les pics symétriques aectant la forme d'onde altimétrique lorsque le coecient d'asymétrie est mis à zéro. Ainsi, le modèle BAGP devrait également être capable de modéliser avec précision les échos altimétriques de la classe 13 (voir gure 2.1 (b) pour un exemple). Pour résumer, le modèle proposé BAGP convient pour le traitement des échos océaniques ainsi que les échos corrompus soit par un pic symétrique ou asymétrique. An d'estimer les paramètres inconnus du modèle BAGP, nous proposons d'utiliser la méthode du maximum de vraisemblance qui a montré d'intéressants résultats pour le modèle classique de

Indeed, dening a new model specic to coastal altimetry may improve the processing of these data. This solution is considered in Chapter 2. Moreover, and as stated previously, a new model should be dened in order to use the delay/Doppler data and to thoroughly take advantage of this new technology. Two models are proposed in Chapters 3 and 4. (les signaux sont classés selon leurs formes géométriques comme le montre la gure 2.2 [Thibaut and Poisson, 2008]. Le but de cette classication est d'isoler les échos ayant des caractéristiques géométriques similaires an d'estimer leurs paramètres altimétriques grâce à des algorithmes dédiés à chacune des classes. Comme le montre la gure 2.2, plusieurs classes de signaux étudiées dans le projet PISTACH sont corrompues par des pics. Ces signaux sont fréquemment observés dans les zones côtières. Plus précisément, en océan, environ 95 % des formes d'ondes sont en bon accord avec le modèle Brown. Cependant, ce pourcentage décroit rapidement à l'approche des côtes (ou sur des surfaces polaires). En eet, la gure 2.3 montre qu'environ 30 % des formes d'onde ne sont plus en accord avec le modèle de Brown à une distance de 8 km de la côte.

Ce chapitre introduit un nouveau modèle paramétrique, appelé modèle de Brown avec pic gaussien asymétrique (BAGP), pour les signaux altimétriques présentant un pic. Ces échos sont similaires à ceux des classes 7 et 13 de la gure 2.2 (les gures 2.1 (a) et (b) montrent des exemples d'échos appartenant à ces deux classes). L'idée d'utiliser un pic gaussien pour modéliser les pics des échos altimétriques est apparue dans

[START_REF] Gómez-Enri | Modeling ENVISAT RA-2 waveforms in the coastal zone: Case study of calm water contamination[END_REF][START_REF] Tourneret | Parameter estimation for peaky altimetric waveforms[END_REF]

. Cependant, le modèle étudié dans ce chapitre est plus général car il tient compte de l'asymétrie éventuelle du pic. Cette asymétrie est très importante pour les signaux de la classe 7 caractérisés par un pic asymétrique situé à l'extrémité du front de montée (voir gure 2.1 (a)).

Table 2 .

 2 1: Description of the model parameters.

	Name	Description
	P u	Amplitude of Brown's waveform
	τ	The epoch
	SWH	Signicant wave height
	A	Amplitude of the peak
	T	Location of the peak
	σ	Standard deviation of the Gaussian peak
	η	Asymmetry coecient of the peak

looks L c , i.e., the number of incoherent summations of consecutive echoes. When using the BAGP model dened in

(2.2)

, an observed altimetric waveform can be expressed as

Table 2 .

 2 The Brown model provides larger RMSEs since it does not take into account the peak corrupting the altimetric signal. Conversely, the BGP model shows good performance (note again that the BAGP provides very similar performance for this example). It is interesting to note that the RMSEs for the BGP model are close to the corresponding CRBs when applying the NM algorithm (see section 2.7.3). Fig.2.8 shows results obtained with the NR method (note that the scales are dierent in Figs. 2.7 and 2.8) conrming the superiority of the BGP model with respect to the Brown model for peaky altimetric signals. Simulations conducted for dierent values of T show that the estimation performance is not very sensitive to the peak location as illustrated in Table2.2 for the NR algorithm. Finally, we have observed that the gain resulting from the application of the BGP and BAGP models is signicant when the peak amplitude 2: RMSEs versus peak location T (NR algorithm).

	T Ts	65	75	85	95	105
	RMSE(τ ) (in meters)	0.121 0.114 0.109 0.109 0.106
	RMSE(P u )	2.06	2.02	1.94	1.94	1.71
	RMSE(SWH) (in meters)	0.71	0.68	0.67	0.68	0.66

exceeds 30% of the amplitude of the Brown model. Indeed, the traditional Brown model provides very poor performance for these peak amplitudes (more simulation results are available in Appendix C). However, it is important to note that the Brown model still provides satisfactory results for peaks with small amplitudes.

Table 2 . 3 :

 23 Averaged reconstruction errors for the estimation algorithms (synthetic waveforms).

			Classes of synthetic waveforms
			C1	C13	C7
		Brown	8.99	43.46	55.29
	NM	BGP	8.99	11.10	15.12
		BAGP	8.99	10.97	11.80
		Brown	8.91	42.89	54.73
	NR	BGP	8.75	10.82	20.37
		BAGP	8.53	10.82	15.56

Table 2 . 4

 24 This section studies the CRBs for the Brown, BGP and BAGP models. We consider waveforms characterized by the peak parameters A = 200, T = 75 T s , σ = 3 T s , a number of looks L c = 90 and dierent values for the parameters P u , τ s and SWH as reported inTable 2.5. Figs. 2.11.a and 2.11.b 

			Classes of synthetic waveforms
			C1	C13	C7
		Brown	0.27	0.40	0.28
	NM	BGP	0.21	0.88	0.90
		BAGP	0.24	0.98	2.73
		Brown	0.014	0.018	0.006
	NR				
		BGP	0.020	0.024	0.022
		BAGP	0.244	0.375	0.257

: Averaged execution times for the estimation algorithms in seconds (synthetic waveforms).

Table 2 .

 2 5: Simulation scenarios.

	P u	τ s	SWH (m)
	Experiment 1		
	130	31 T s	∈ [1, 8]
	(Figs. 2.11.a and 2.11.b)		
	Experiment 2		
	∈ [20, 170]	31 T s	5
	(Figs. 2.11.c and 2.11.d)		
	Experiment 3		
	130	∈ [28 T	

s , 34 T s ] 5

Table 2 . 6
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			Classes of real waveforms
			C1	C13	C7
		Brown	0.313	0.206	0.289
	NM	BGP	0.289	0.541	0.668
		BAGP	0.335	1.733	1.375
		Brown	0.013	0.015	0.009
	NR	BGP	0.018	0.022	0.024
		BAGP	0.252	0.277	0.149

: Averaged execution times for the estimation algorithms in seconds (real Jason-2 waveforms).

Table 3 .

 3 2: Averaged normalized reconstruction errors for Cryosat-2 echoes.

	SWH (m)	[0, 1] [1, 2] [2, 3] [3, 4] [4, 5] [5, 6] [6, 7]
	ANRE (×10 -2 )	8.55 8.86 9.56 10.01 10.33 10.42 10.51

Table 3 .
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	3: Comparison between the estimated parameters of CA-SARM3 and DDA3.
				SWH intervals (m)	
			[0, 1] m [1, 2] m [2, 3] m [3, 4] m
	Averaged dierence between	SWH (m)	0.21	0.24	0.19	0.17
	CA-SARM3 and DDA3	SSHA (cm)	1.34	-0.68	-2.15	-3.70
		DDA3	0.46	0.43	0.43	0.46
	STD(SWH) at 20Hz					
		CA-SARM3	0.73	0.92	0.97	0.97
	(m)					
		equivalent CA3	0.42	0.53	0.56	0.56
		DDA3	6.32	5.97	6.87	7.96
	STD(SSHA) at 20Hz					
		CA-SARM3	11.15	13.11	14.88	16.05
	(cm)					
		equivalent CA3	6.44	7.57	8.59	9.27

Table 3 .

 3 4: Improvement factors of DDA3 with respect to CA3.

			Studies
		This study	[Giles et al., 2012]	[Gommenginger et al., 2011a]
	SSHA	1.26	1.18	1.43
	SWH	1.28	1.31	1.26

  . Cette expression analytique est obtenue moyennant deux approximations qui sont analysées et justiées. En eet, l'erreur entre la FSIR exacte et la formule analytique proposée a été bornée par une formule analytique. La carte distance/Doppler est ensuite obtenue en calculant la numériquement la double convolution entre la FSIR proposée, la PDF de la hauteur des diuseurs spéculaires et la PTR. Cette carte dépend de cinq paramètres altimétriques qui sont l'époque τ , la hauteur des vagues SWH, l'amplitude P u , l'angle de dépointage azimutal ξ al et l'angle de dépointage transverse ξ ac . Un traitement approprié, qui comprend la migration des distances et le moyennage, est ensuite appliqué à la carte distance/Doppler an d'obtenir l'écho SAR/Doppler. Le comportement de cet écho est par la suite étudié en fonction de la direction du dépointage de l'antenne. En eet, l'eet du dépointage dière suivant le principe altimétrique utilisé qui peut être à impulsion limitée ou à faisceau limité [Chelton, 1989, Raney and intéressant de proposer une stratégie d'estimation à quatre paramètres plutôt que l'estimation des cinq paramètres d'intérêt. Ces stratégies d'estimation sont par la suite évaluées en comparant leurs résultats d'estimation avec ceux du modèle à trois paramètres (proposé dans le chapitre précédent) et ceux obtenus en utilisant l'altimétrie conventionnelle. L'analyse des résultats d'estimation sur échos synthétiques et réels montre une nette amélioration de la qualité des paramètres estimés et conrme de ce fait la pertinence du modèle proposé. Le chapitre est organisé comme suit. La section 4.3 présente le modèle semi-analytique généralisé pour l'altimétrie SAR/Doppler. L'algorithme d'estimation par moindres carrés ainsi que les critères d'évaluation des performances sont ensuite introduits dans la section 4.4. La première partie de la section 4.5 justie les approximations utilisées pour obtenir la FSIR analytique. La deuxième partie analyse le comportement du modèle proposé suivant le dépointage de l'antenne. La troisième et dernière partie valide le modèle proposé et les algorithmes d'estimation associés sur des données synthétiques. L'analyse des résultats obtenus sur données réelles de Cryosat-2 est présentée dans la section 4.6. Les conclusions et les perspectives sont nalement présentées dans les sections 4.7 et 4.8.

  χ and β have been dened in(1.8), γ is a parameter related to the antenna aperture and T s is the sampling period. The resulting model is denoted by CA4 since it depends on four altimetric parameters that are SWH (through σ s = SWH 2c ), τ , P u and ξ.

	with					
	FSIR(t) = P u exp -χt -	4 γ	sin 2 ξ I 0 β	√	t U (t)	(4.2a)
	PDF(t) =	√	1 2πσ s	exp -	t 2 s 2σ 2	(4.2b)
	PTR T (t) =	sin π t Ts Ts π t	2		(4.2c)
	s(t) = FSIR(t) * PDF(t) * PTR T (t)	(4.1)

where

  4 -Generalized semi-analytical model for delay/Doppler altimetry

	obtained					
			FSIR(t, n) =	P u 2π	1 +	ct 2h	-3	U (t)
	×	φ t,n+1	exp f φ -φ, (t), ξ dφ +	φ t,n+1	exp f φ -φ, (t), ξ dφ	(4.7)
		φt,n			φ t,n

  2 . This convolution has to be computed after applying appropriate time and frequency oversampling, a time shift by the epoch τ s and an undersampling as in Chapter 3. The multi-look echo is then formed by summing the migrated Doppler beams as follows (t, f ) = FSIR 2 (t, f ) * PDF(t) * PTR(t, f ) and δt n α r hλ 2

	N		
	s(t) =	P 2 (t -δt n , f n )	(4.19)
	n=1		
	where P 2		
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	1: Averaged normalized reconstruction error when considering DDA3, G-DDA3, DDA4, DDA5
	and CA-SARM4.					
		DDA3	G-DDA3	DDA4	DDA5	CA-SARM4
	ANRE (×10 -2 )	8.08	7.78	7.35	7.32	10.76

Table 4 .
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	2: Means and standard deviations for DDA3, G-DDA3, DDA4, DDA5 and CA-SARM4
	algorithms.						
			τ	SWH	P u	ξ ac	ξ al	ξ
			(m)	(m)		(deg)	(deg)	(deg)
		DDA3	16.274 2.289 90.213	-	-	-
		G-DDA3	16.270 2.247 92.803	0.083	0.0572	0.109
	Means						
		DDA4	16.262 2.234 96.993	0.146	-	0.146
		DDA5	16.266 2.144 102.192	0.151	0.099	0.181
		CA-SARM4	16.249 2.015 102.89	-	-	0.134
		DDA3	0.0843 0.355	1.933	-	-	-
	STDs						
		G-DDA3	0.0845 0.354	1.987	1.01 × 10 -4 7 × 10 -4 4 × 10 -4
	(20 Hz)	DDA4	0.0827 0.351	1.871	0.031	-	0.031
		DDA5	0.0828 0.416 13.446	0.0413	0.0922	0.0866
		CA-SARM4	0.127 0.676	8.346	-	-	0.0461

  It can be shown that the maximum multi-look error is obtained by considering E max FSIR 1 (t, n) instead of FSIR(t, n) in (4.3) and applying the Doppler processing on the resulting mean power as follows

	N	
	E max P1 (t) =	E max FSIR
	n=1	

1 (t -δt n , n) * PDF(t) * PTR(t, n) . (J.

[START_REF] Altmann | Supervised nonlinear spectral unmixing using a polynomial post nonlinear model for hyperspectral imagery[END_REF] 

  Dt,n = φ -φ t,n+1 , φ -φ t,n ∪ φ -φ t,n+1 , φ -φ t,n . Straightforward computations lead to the following maximum for E 2 (t, n)

	=	P u 2π	1 +	ct 2h	-3	U (t) exp -	4 γ	1 -	cos 2 (ξ) 1 + 2 (t)	+ b E 2 (t, n)	(J.8)
	with										
	E 2 (t, n) = 2 exp -	b 2	I 0	b 2		Dt,n	+∞ k=m+1	I k (a) cos(kφ) dφ	(J.9)
	E max										

• (note the scale change). dene the FSIR error by

E FSIR 2 (t, n) = |FSIR 1 (t, n) -FSIR 2 (t, n)|

where

1.2 -Spatial altimetry

The reader is invited to consult[Chelton, 1989, Ollivier, 

2006] for more details about this technique.

The measured height ha is related to h by the formula ha = h + δh where δh is measured from the altimetric echo by the mean of the epoch τ .

This term may change in the observed scene as shown in[START_REF] Tournadre | High-resolution imaging of the ocean surface backscatter by inversion of altimeter waveforms[END_REF]. 

The PISTACH project has been funded by CNES.

The COASTALT project has been funded by the European space agency (ESA).

The Walsh bound provides the maximum PRF that can be achieved when avoiding pulse correlations[START_REF] Walsh | Pulse-to-pulse correlation in satellite radar altimeters[END_REF]. Increasing the frequency enhances this bound as shown in[START_REF] Raney | The future of coastal altimetry[END_REF].

The reader is invited to consult[START_REF] Chelton | Pulse compression and sea level tracking in satellite altimetry[END_REF][START_REF] Sandwell | Radar altimetry[END_REF] for the denition of pulse limited and beam limited footprint. Before DDA, all the altimeters were based on pulse limited footprint since the covered area is smaller than that of beam limited footprint.

Note that this algorithm is available in Matlab by the function fminsearch.

A simplex of dimension mp is an mp-dimensional polytope dened as the convex hull of its mp + 1 vertices. For example, a simplex of dimension 2 is a triangle[START_REF] Rudin | Principles of Mathematical Analysis (Third Edition)[END_REF]. Similarly, a polygon is a polytope in two dimensions, a polyhedron in three dimensions, and so on • • •[START_REF] Coxeter | Regular Polytopes[END_REF] 

L'instrument SIRAL (synthetic aperture interferometric radar altimeter) est le premier altimètre utilisant la technologie SAR/Doppler. Il est mis en orbite à bord du satellite Cryosat-2.

L'acronyme DDA3 (resp. CA3) est utilisé lorsque l'on considère

paramètres altimétriques tandis que nous gardons la notation DDA (resp. CA) pour les notions générales qui restent valides lors de l'utilisation d'un autre vecteur de paramètre comme il sera le cas dans le chapitre suivant.

The synthetic aperture interferometric radar altimeter (SIRAL) is on board Cryosat-2 satellite and is the rst altimeter using the DDA principle.

The acronym DDA3 (resp. CA3) is used when considering 3 altimetric parameters while we keep the notation DDA (resp. CA) for the general notions that are also true when considering a dierent number of parameters as it will be the case in the next chapter.

A related approach assuming a rectangular shape for the compressed pulse and a rectangular antenna pattern was investigated in[START_REF] Picardi | Extensive non-coherent averaging in Doppler beam sharpened space-borne radar altimeters[END_REF]].

Note that (3.17) can be simplied (as proposed in[START_REF] Raney | The delay/Doppler radar altimeter[END_REF]) by considering y n << h as follows

In[START_REF] Wingham | The mean echo and echo cross product from a beamforming interferometric altimeter and their application to elevation measurement[END_REF], a single-look is assumed to follow an exponential distribution. Moreover, and as mentioned in[Raney, 2012a,b], each Doppler beam is observed by L bursts (denoted as N bin in[Raney, 2012a,b]). Thus, the signal of each beam results from the averaging of L observations. It results that the noise corrupting each beam follows a gamma distribution G(L, 1/L).

These echoes are known under dierent names: LRM-like[START_REF] Phalippou | Optimal re-tracking of SAR altimeter echoes over open ocean: from theory to results for SIRAL2[END_REF], pseudo-LRM[START_REF] Boy | Cryosat Processing Prototype, LRM and SAR processing on CNES side and a comparison to DUACS SLA[END_REF][START_REF] Gommenginger | better, closer: Advanced capabilities of SAR altimetry in the open ocean and the coastal zone[END_REF][START_REF] Smith | Pulse-to-pulse correlation in Cryosat SAR echoes from ocean surfaces: implications for optimal pseudo-LRM waveform averaging[END_REF] or reduced-SAR (RDSAR)[START_REF] Boy | Cryosat Processing Prototype, LRM and SAR processing on CNES side and a comparison to DUACS SLA[END_REF][START_REF] Gommenginger | better, closer: Advanced capabilities of SAR altimetry in the open ocean and the coastal zone[END_REF]. The denomination CA-SARM has been chosen for clarity.

This choice of notation is used to distinguish between the proposed 3 parameters model of this chapter and that of the next chapter which considers 3, 4 or 5 parameters.

The parameters of CA-SARM3 echoes were estimated by the least squares procedure described in Section 3.4.1, where s k (θ) is dened by(1.5).

Chapter 3 -Semi-analytical model for delay/Doppler altimetry

The 1 Hz STDs can be deduced from the 20 Hz STDs by dividing all results by the factor √ 20.

Phalippou, 2011]. L'étude du dépointage est alors eectuée en séparant les deux directions azimutale et transverse puisque l'altimétrie SAR/Doppler est à faisceau limité dans la direction azimutale et à impulsion limitée dans la direction transverse[START_REF] Raney | The delay/Doppler radar altimeter[END_REF].La deuxième contribution de ce chapitre porte sur l'estimation des paramétriques altimétriques de l'écho SAR/Doppler. Cette estimation peut être obtenue en utilisant le principe du maximum de vraisemblance[START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF] ou des moindres carrés[Maus et al., 1998, Sandwell and[START_REF] Sandwell | Retracking ERS-1 altimeter waveforms for optimal gravity eld recovery[END_REF].On utilisera dans cette étude, comme dans le chapitre 3, un algorithme de Levenberg-Marquardt pour optimiser le critère des moindres carrés. Ceci dit, l'analyse de l'eet du dépointage de l'antenne fait apparaître une forte corrélation entre le dépointage azimutal et l'amplitude. Ainsi, il s'est avéré

Note that the proposed model allows the use of other models for PDF and PTR. For instance, a PDF including the skewness could be used to better represent the distribution of the heights of the specular scatterers. Moreover, a measured PTR could also be used instead of(4.4).

These results are in agreement with the results of the SAMOSA project[Gommenginger et al., 2011a].

The estimation of the ve parameter vector could be achieved when considering the DDM matrix instead of the multi-look echo. Indeed, the eect of ξ al is dierent in this case from that of Pu as shown in Fig.4.8. This strategy may provide better estimation performance as shown in[START_REF] Phalippou | Reaching sub-centimeter range noise on Jason-CS with the Poseidon-4 continuous SAR interleaved mode[END_REF] but will not be pursued in this thesis.

Chapter 6 -Conclusions et perspectives proposé avec celui de SAMOSA. Ce point n'a pas été fait dans le présent ouvrage en raison de l'absence de documentation sur le modèle SAMOSA qui n'est pas encore publié. Un deuxième point consiste en la généralisation du modèle proposé pour tenir compte de l'ellipticité de l'antenne, l'eet de la vitesse verticale et un coecient de rétrodiusion non constant dans la surface observée. Par ailleurs, une piste intéressante consisterait en l'élaboration d'un modèle analytique complet pour l'écho multivues. Ce calcul fera forcément intervenir plus d'approximations, qu'il convient de bien analyser an de contrôler le comportement du modèle résultant. Concernant l'estimation paramétrique, on pourrait envisager l'estimation des paramètres à partir de la carte distance/Doppler à la place des échos multivues an d'améliorer la qualité des 5 paramètres d'intérêt. Il est aussi intéressant de généraliser l'estimateur du maximum de vraisemblance établi dans l'annexe I au cas de 4 et 5 paramètres. Le dernier point s'intéresse à la procédure d'estimation paramétrique pour à la fois l'altimétrie conventionnelle et SAR/Doppler. En eet, la présente thèse s'est intéressée à l'estimation paramétrique en considérant les échos de façon indépendante. Cependant, il est bien connu que les échos adjacents présentent des paramètres altimétriques similaires en raison de leur nature physique. Par conséquent, il est d'un grand intérêt d'établir des algorithmes d'estimation qui prennent en considération cette corrélation an de réduire le bruit de mesure et/ou le temps de calcul.
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Considering the estimated parameters, the good agreement between the estimated DDA3 and CA-SARM3 parameters is illustrated in Fig. 3.18 which shows the estimated SWH and sea surface height anomaly (SSHA) parameters for 2 minutes of data (the SSHA is obtained by applying all environmental corrections on the estimated epoch). This agreement is conrmed in Fig. 3.19 showing similar correlations between the estimated SWH and SSHA using the two estimation procedures. Table 3.3 shows the averaged dierences between the estimated parameters of CA-SARM3 and DDA3. These results are represented for SWH < 4 m since more than 90% of the processed data satisfy this constraint. The dierences between the CA-SARM3 and DDA3 estimation are very low. Table 3.3 also shows the averaged STDs 10 for parameters SWH and SSHA. These STDs have been obtained by considering groups of N MC = 20 successive parameters (see (3.29)), i.e., one value of STD is obtained every second (the resulting STDs are known as 20 Hz STDs 11 ). As expected, DDA3 provides lower STDs than CA-SARM3 which is in agreement with the results of Section 3.6.5. Note 10 The averaged STDs have been obtained by averaging the obtained STDs for each 1 meter interval of SWH.

Analysis of FSIR versus mispointing angles

The antenna mispointing is introduced by means of two variables ξ and φ which are directly related to the along-track and across-track mispointing angles as shown in (4.20), hence the necessity to analyze their eects on the resulting echo. The proposed model sums the reected energy to give a two dimension response FSIR(t, f ). The temporal dimension is introduced by the propagation circles where each time instant is related to a circle radius ρ(t) = √ hct, whereas the frequential dimension is introduced by the rectangular Doppler beams (see Fig. 4.1). While this mapping is constant for any mispointing, the reected energy depends on mispointing since the antenna gain depends on ξ and φ. The Gaussian antenna gain is given by [Brown, 1977] G(ξ, φ) G 0 exp -2 γ sin 2 ω(ξ, φ) , with cos ω(ξ, φ) = cos(ξ) + ρ(t) h sin(ξ) cos φ -φ 3 . This analysis shows that the with DDA4 while DDA5 shows high STDs for parameters SWH and P u . This table shows high value for the STDs of the estimated τ since we have only applied a tracker correction on the estimated τ values (the other corrections were not available for the considered data). Table 4.2 conrms that the DDA algorithms yield smaller estimation variances than CA-SARM4.

Summary of Cryosat-2 results

To summarize, the DDA strategies perform better than the CA-SARM4 method which highlights the superiority of this new technology. The similarities between the estimated parameters using CA-SARM4 and DDA strategies validate the proposed model. The best algorithm in terms of echo tting and quality of the estimated parameters is DDA4. The DDA5 algorithm suers from the correlation existing between the along-track mispointing angle and the amplitude which reduces its estimation performance. G-DDA3 appears to be a useful tool to reach better estimation results while keeping the simplicity of DDA3 which allows fast estimation with low computational times. 

Contributions

Le modèle précédent est généralisé pour tenir compte du dépointage de l'antenne [Halimi et al., 2013c].

Le nouveau modèle est analysé et ses approximations justiées. Plusieurs algorithmes d'estimation basés sur un critère de moindres carrés sont proposés. La validation du modèle proposé est réalisée en traitant des échos synthétiques et réels.

Chapter 5

Conclusions and future work

Conclusions

Satellite altimetry aims at the observation of the ocean and the measure of its surface topography.

However, conventional altimetry has some limitations that are mainly due to the contamination of the echoes by land return in coastal areas because of the large footprint of the observed surface and the reduction of the measurement accuracy due to the corruption of the waveforms by speckle noise.

The objective of this thesis was to deal with these limitations and to propose solutions in order to improve the measurement accuracy by a better use of the available data.

The rst solution considered in Chapter 2 dealt with the issue of coastal altimetry by proposing a Brown with asymmetric Gaussian peak model for these echoes. The proposed model is a generalization of the models dened in [START_REF] Gómez-Enri | Modeling ENVISAT RA-2 waveforms in the coastal zone: Case study of calm water contamination[END_REF][START_REF] Tourneret | Parameter estimation for peaky altimetric waveforms[END_REF] since it considers an additional asymmetry parameter. The parameters of this model were estimated by using the maximum likelihood principle and two estimation algorithms based on Newton-Raphson recursion and a

Nelder-Mead algorithm. The Nelder-Mead algorithm showed better estimation performance at a price of a higher computational times. Results obtained in this study also showed that the proposed model can be used to retrack eciently standard oceanic Brown echoes as well as coastal echoes corrupted by symmetric or asymmetric Gaussian peaks. The evaluation of the Cramér-Rao bounds showed the good performance of the Nelder-Mead algorithm. These bounds were also used to evaluate the loss of performance for estimating the Brown parameters in presence of a Gaussian peak. This loss of performance is mainly due to more parameters to be estimated when the model contains a symmetric or asymmetric Gaussian peak.

Appendix A

Derivatives of Brown echoes and

Gaussian peaks

As explained by (2.12), the computation of the FIM requires the elaboration of the rst order derivatives of the Brown signal s k and the asymmetric Gaussian peak p k .

Brown signal

The derivatives of the Brown signal are given by

155

Asymmetric Gaussian peak

The derivatives of the Gaussian peak are given by

Appendix B

Comparison between NR and LM algorithms

The Levenberg-Marquardt algorithm is similar to the Newton-Raphson algorithm in that it is a gradient descent algorithm. Both algorithms use a matrix inversion when updating the vector of parameters (see Section 3.4.1 for the description of the LM algorithm). The dierence between the two algorithms is that instead of inverting the matrix of interest, the LM algorithm adds a regularization parameter to this matrix which provides more robustness in the inversion and allows to better control the algorithm convergence. Note that the NR algorithm performs well when considering the analytical derivatives of the model as shown in Section 2.7.2. However, when considering numerical derivatives, it is better to consider the LM algorithm to avoid numerical issue. 

and is denoted by LM-ND for LM with numerical derivatives. The obtained results show the robustness of the LM to the derivative computations and illustrate the similar behavior of the LM and NR algorithms. BGP (in red) and BAGP (in green). It can be seen that RMSEs are equivalent when using any of the three models while the amplitude of the peak A remains lower than 30% of the peak of the Brown part (P u ). Above this threshold, lower RMSEs are obtained when considering BGP or BAGP.

Therefore, when the amplitude of the peak represents more than 30% of the Brown peak, it is of increasing interest to consider these models. Appendix E An approximation of the Doppler beam formula This section is concerned with the study of the approximation (3.9). As explained in section 3.3.2, the coordinate of the along-track beam (also called along-track band) is given by (3.8). This formula provides an hyperbolic shape for the coordinate y n (t). This appendix discusses the approximation made in order to obtain (3.9) and allowing y n (t) to be time independent (y n is constant in the acrosstrack direction). #64. The dierence between the two beams (about 1 m) is negligible compared to the along-track distance which is of the order of 10 km. Note nally that the approximation (3.9) was also proposed in [START_REF] Raney | The delay/Doppler radar altimeter[END_REF].

167 This equation shows that ρ r ≈ l r for small angle geometry. Indeed, by considering a pessimistic case corresponding to the large value of l r = 10 km, we obtain ρ r -l r = 4 mm which is a negligible dierence. Therefore, we will consider ρ r = l r in the rest of this section. The distance r between the 169 satellite and the observed surface is given by the following formula

where β is the angle between the illuminated point and the line linking the satellite to the center of Earth (see Fig. where α r = 1 + h R = 1.11 is the curvature factor. By replacing (F.3) in (1.6), straightforward

2 -h 2 . When using the two-way incremental ranging time t = t -2h c and the approximation ct h << 1 (valid for spaceborne altimetry [Brown, 1977]), we can see that ρ(t) √ hct used for a at Earth has to be replaced by ρ r (t) hct αr for a round Earth.

In other words, to move from a at Earth to a round Earth, it is sucient to divide t by α r . Note that the same change of variable was proposed in [START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF] for conventional altimetry. Note nally the negligible eect of Earth curvature on Doppler band. This result can be justied by considering the Doppler beam formula for round Earth which is obtained by generalizing the expression of r n (t)

given in (3.7) as follows

which leads to the following width of the along-track beam

(F.5)

Note that we always have α r ρ 2 r (t) << h 2 which means that the eect of Earth curvature (represented in (F.5) by α r and ρ r ) is negligible since we can simplify (F.5) to (3.9) as explained in Section 3.3.2.

Appendix G

Derivatives of CA3 and DDA3

G.1 Derivatives of conventional model

This section provides the derivatives of the conventional model with respect to the altimetric parameters P u , SWH and τ . Before that, note that the conventional signal s(t) could be written in a dierent manner which will facilitate the derivatives computation. Indeed, the epoch τ only introduce a shift in time in FSIR which will result in a time shift in s(t). The shifted FSIR can then be expressed as follows

The properties of the convolution product (commutativity and associativity) lead to the following expression for the signal s(t)

The derivatives of s(t) are then given by 

G.2 Derivatives of delay/Doppler model

As in conventional altimetry, the FSIR can be expressed as

for n = 1, • • • , N . It results the following expression for the signal P (t, n)

(G.7)

The derivatives of P (t, n) are then given by

where the PDF derivatives are the same as in (G.5). The matrix D d is then obtained as follows

∂s ∂SWH , ∂s ∂τ , ∂s ∂Pu where the derivatives of s(t) can be easily deduced from those of P (t, n) using (3.20). Note nally that the derivatives of the signal m(t, n) can be deduced from those of P (t, n) as follows Estimation algorithms for DDA3

I.1 Estimation methods

This section compares the proposed least squares procedure to other estimation strategies when considering the proposed DDA3 model. The LS method, that has received much attention in the literature [START_REF] Amarouche | Improving the Jason-1 ground retracking to better account for attitude eects[END_REF][START_REF] Dumont | Estimation optimale des paramètres altimétriques des signaux radar Poséidon[END_REF][START_REF] Rodriguez | Altimetry for non-Gaussian oceans: height biases and estimation of parameters[END_REF], is rst reminded. The second method is based on the maximum likelihood principle which provides asymptotically ecient estimators. A third estimator constructed from a WLS criterion is nally investigated.

I.1.1 Least squares estimator

The LS estimator is classically dened as

where y is the observed DDA echo, s(θ) is the semi-analytical DDA3 waveform parameterized by θ = (SWH, τ, P u ) T . Since s(θ) is a complicated nonlinear function of SWH and τ , the optimization problem (I.1) does not admit a closed-form expression. We have proposed to solve (I.1) using a numerical optimization method based on the Levenberg-Marquardt (LM) algorithm [START_REF] Bertsekas | Nonlinear programming[END_REF].

I.1.2 Maximum likelihood estimator

The MLE of θ denoted as θ ML is obtained by maximizing the likelihood function f (y|θ) with respect to θ or by minimizing the negative log-likelihood. Straightforward computations show that the MLE of θ reduces to minimize the following cost function

The MLE is asymptotically ecient and is thus expected to provide the smallest estimation variances.

Unfortunately, the LM algorithm, which solves LS problems, cannot be applied to optimize (I.2) because of its form. In this study, we have optimized (I.2) using the Nelder-Mead (NM) algorithm [START_REF] Bertsekas | Nonlinear programming[END_REF].

I.1.3 Weighted least squares estimator

The MLE θ ML has nice asymptotical properties (it is asymptotically unbiased, convergent and asymptotically ecient) under mild assumptions. However, its application to delay/Doppler altimetry requires the use of an optimization algorithm (such as the NM algorithm) whose computational cost can be prohibitive [START_REF] Halimi | Parameter estimation for peaky altimetric waveforms[END_REF]]. An alternative is the WLS estimator dened as

An interesting property of this estimator is that the optimization problem (I.3) can be solved by using the LM algorithm (contrary to the optimization problem associated with the MLE). Note that a WLS estimator using a constant weighting matrix was proposed in [START_REF] Phalippou | Re-tracking of SAR altimeter ocean power-waveforms and related accuracies of the retrieved sea surface height, signicant wave height and wind speed[END_REF].

The estimator (I.3) diers from this estimator since the weighting matrix Λ -1 (θ) depends on θ.

Motivations for using this weighting matrix can be found in [START_REF] Porat | Performance analysis of parameter estimation algorithms based on high-order moments[END_REF].

I.2 Results on synthetic data

This section evaluates the performance of the three estimation algorithms introduced in Section I.1 for DDA3. This comparison is conducted by comparing the root mean square errors (RMSEs) of the dierent estimators. The RCRBs (derived in Section 3.5.2) of the dierent parameters are also displayed to show whether there is some hope for improving estimation performance or not. Appendix J

Bounds for the approximation errors

This section studies the error of the rst approximation proposed in Section 4.3.3 by determining the maximum achievable error on the FSIR and the multi-look echo. The rst approximation introduces an error in the FSIR that is given by

and Dt,n = φ -φ t,n+1 , φ -φ t,n ∪ φ -φ t,n+1 , φ -φ t,n . Using the property |exp (a cos φ)| ≤ exp (a), ∀a > 0, ∀φ, the following result can be obtained

Using (4.12), we nally obtain the following expression

which allows to obtain the maximum of the FSIR error E max FSIR 1 (t, n) by replacing (J.4) in (J.1) as follows

Note that (J.5) provides a theoretical maximum error for the FSIR when considering the rst approximation. This maximum error depends on the mispointing parameter ξ (through cos ξ 2 and the variables a and b) while it is not sensitive to φ which means that the FSIR maximum error is the same whether the mispointing is along-track or across-track. The upper bounds for the FSIR error given by E max Hence, the theoretical maximum FSIR error associated with the second approximation is given by

As explained previously, approximation 2 reduces the number of terms in the innite sum (4.15) to m terms. The maximum error will then depend on this parameter as shown in (J.11). Note also that this maximum error does not depend on the parameter φ and thus it is not sensitive to the nature of mispointing. which is a common case for radar altimeter.