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Méthodes mathématiques d’analyse d’image pour les études de
population transversales et longitudinales.

Résumé En médecine, les analyses de population à grande échelle ont pour but
d’obtenir des informations statistiques pour mieux comprendre des maladies, iden-
tifier leurs facteurs de risque, développer des traitements préventifs et curatifs et
améliorer la qualité de vie des patients.

Dans cette thèse, nous présentons d’abord le contexte médical de la maladie
d’Alzheimer, rappelons certains concepts d’apprentissage statistique et difficultés
rencontrées lors de l’application en imagerie médicale. Dans la deuxième partie,
nous nous intéressons aux analyses transversales, c-a-d ayant un seul point temporel.
Nous présentons une méthode efficace basée sur les séparateurs à vaste marge (SVM)
permettant de classifier des lésions dans la matière blanche. Ensuite, nous étudions
les techniques d’apprentissage de variétés pour l’analyse de formes et d’images, et
présentons deux extensions des Laplacian eigenmaps améliorant la représentation de
patients en faible dimension grâce à la combinaison de données d’imagerie et clin-
iques. Dans la troisième partie, nous nous intéressons aux analyses longitudinales,
c-a-d entre plusieurs points temporels. Nous quantifions les déformations des hip-
pocampes de patients via le modèle des larges déformations par difféomorphismes
pour classifier les évolutions de la maladie. Nous introduisons de nouvelles stratégies
et des régularisations spatiales pour la classification et l’identification de marqueurs
biologiques.

Mots clés : Imagerie médicale, Analyse de population, Maladie d’Alzheimer, Traite-
ment d’image, Apprentissage de variétés, Modèle prédictif, Régularisation, Mar-
queur biologique





Mathematical methods of image analysis for cross-sectional and
longitudinal population studies.

Abstract In medicine, large scale population analysis aim to obtain statistical
information in order to understand better diseases, identify their risk factors, develop
preventive and curative treatments and improve the quality of life of the patients.

In this thesis, we first introduce the medical context of Alzheimer’s disease, re-
call some concepts of statistical learning and the challenges that typically occur
when applied in medical imaging. The second part focus on cross-sectional studies,
i.e. at a single time point. We present an efficient method to classify white matter
lesions based on support vector machines. Then we discuss the use of manifold
learning techniques for image and shape analysis. Finally, we present extensions of
Laplacian eigenmaps to improve the low-dimension representations of patients using
the combination of imaging and clinical data. The third part focus on longitudinal

studies, i.e. between several time points. We quantify the hippocampus deforma-
tions of patients via the large deformation diffeomorphic metric mapping framework
to build disease progression classifiers. We introduce novel strategies and spatial
regularizations for the classification and identification of biomarkers.

Keywords: Medical imaging, Population analysis, Alzheimer’s disease, Image pro-
cessing, Manifold learning, Predictive model, Regularization, Biomarker
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Introduction

En médecine, les analyses de population ont pour but d’obtenir des informations
d’ordre statistique permettant une meilleure interprétation de l’état de santé d’un
patient particulier. Les informations obtenues dans le cadre d’une étude de popu-
lation vont de la fréquence d’apparition d’une maladie, la recherche de symptômes,
la recherche de causes de certains états biologiques, l’identification de facteurs de
risques, etc. Grâce à ces informations statistiques, les équipes médicales peuvent
détecter au plus tôt voire prédire l’apparition de maladies chez un nouveau pa-
tient, développer des traitements curatifs ou préventifs plus efficaces, et améliorer
les conditions de vie des malades.

L’origine et le type de données observées lors des analyses de population peut
être extrêmement variable : concentrations chimiques après une prise de sang, scores
cognitifs suite à un questionnaire, échantillons cellulaires provenant d’une biopsie,
etc. Les techniques d’imageries médicales (imagerie par résonance magnétique, scan-
ner, rayons X, ultrasons, etc) ont connu un essor considérable lors des dernières an-
nées. En effet, celles-ci permettent de collecter des informations in-vivo de manière
non-invasive.

Pour analyser des populations par le biais d’images médicales, l’utilisation de
méthodes automatiques ou semi-automatiques est incontournable. En effet, lorsqu’un
seul patient est étudié, la quantité d’information à analyser et la difficulté du traite-
ment sont telles que des techniques de mathématiques appliquées sont déjà utilisées
sur divers problèmes, comme par exemple la segmentation d’organes. Le développe-
ment de méthodes numériques pour analyser des populations d’images médicales à
grande échelle est donc a fortiori inévitable, et de nombreuses méthodes statistiques
et d’apprentissage (machine learning) ont été introduites dans la communauté sci-
entifique.

⋆

⋆ ⋆



32 Introduction

Motivations cliniques dans la littérature

Les travaux présentés dans cette thèse ont été réalisés en partenariat entre dif-
férents instituts : le laboratoire CEREMADE de l’Université Paris Dauphine à
Paris en France, le CSIRO à Brisbane en Australie, et l’Institut des mathématiques
de Toulouse en France. Le contexte clinique de ces travaux est l’étude de la maladie
d’Alzheimer. Nous présentons dans cette section différentes motivations cliniques
dans la littérature, afin de mieux situer nos travaux présentés par la suite.

La maladie d’Alzheimer fut découverte au début du xxe siècle par Aloïs Alzheimer.
Les symptômes de la première patiente diagnostiquée incluaient des déficits de mé-
moire, de compréhension, une aphasie (perte du langage), et une perte du sens
de l’orientation. La maladie d’Alzheimer est aujourd’hui une maladie répandue à
grande échelle et affectant une large part de la population mondiale. De nombreuses
études scientifiques cherchent à analyser différents aspects de la maladie.

Création d’outils de diagnostic

Une première classe d’études vise à construire un modèle d’évolution de la maladie.
La création d’un tel modèle peut avoir différents objectifs

• identifier les étapes de l’évolution de la maladie,

• trouver des tendances dans les populations.

La connaissance des étapes typiques de l’évolution de la maladie permet de
situer un patient d’un point de vue clinique et de l’informer de son évolution la plus
probable. Néanmoins, il existe une variabilité dans les évolutions. Par exemple,
certains patients atteints de troubles cognitifs légers vont développer la maladie
alors que d’autres resteront stables. Il est donc important d’essayer d’identifier les
tendances dans les populations, et tenter de comprendre pourquoi certains patients
ont des évolutions différentes. Pour évaluer les états ou évolutions des patients,
plusieurs étapes sont nécessaires, notamment

• la définition de différents états cliniques,

• la création d’outils de diagnostic (ou d’aide au diagnostic).

Les outils de diagnostic ainsi créés ont pour but d’associer un état clinique à un
patient à partir de données observées. Dans le cas de la maladie d’Alzheimer, dif-
férents types de données peuvent être utilisés pour la construction de ces outils : des
mesures provenant de tests sanguins, des résultats de tests cognitifs, des indicateurs
de style de vie, des données d’imagerie, etc. Il est intéressant d’évaluer la quan-
tité d’information contenue dans chaque type de données, ainsi que de définir des
techniques permettant de les combiner. En combinant plusieurs types de données,
on peut en effet espérer une amélioration des performances des outils de diagnostic,
puisque ceux-ci disposent de plus d’information.
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Pour créer ces outils de diagnostic, des techniques de mathématiques appliquées
et notamment d’apprentissage statistique sont souvent utilisées. De plus, on dis-
tingue deux types d’études

1. transversales, et

2. longitudinales.

Les études transversales analysent des populations à un instant temporel, alors que
les études longitudinales analysent les évolutions entre différents instants.

Identification et quantification de biomarqueurs

Une deuxième classe d’études vise à identifier et quantifier des biomarqueurs. Les
biomarqueurs, ou marqueurs biologiques, sont des substances, mesures ou indica-
teurs d’un état biologique. Les biomarqueurs peuvent exister avant l’apparition de
symptômes cliniques. En 2010, Jack et al. ont introduit un modèle hypothétique de
la maladie d’Alzheimer, où différents biomarqueurs permettent d’évaluer l’évolution
de la maladie chez un patient [Jack 2010]. Parmi les biomarqueurs que l’on cherche
à caractériser à l’aide d’images de patients, on peut citer

• les biomarqueurs structuraux,

• les biomarqueurs fonctionnels.

La recherche de biomarqueurs structuraux est basée sur l’hypothèse que la maladie
affecte les structures anatomiques cérébrales. L’hippocampe est l’une des struc-
ture particulièrement étudiées. La recherche de biomarqueurs fonctionnels est basée
sur l’hypothèse que la maladie affecte le comportement fonctionnel et neuronal du
cerveau. De nombreuses études ont par la suite été publiées, dans le but de vérifier
la validité des hypothèses de ce modèle. Ce modèle a récemment été mis à jour
[Jack 2013].

Identification et quantification de facteurs de risque

Une troisième classe d’études vise à identifier et quantifier des facteurs de risque.
Un facteur de risque est une variable corrélée avec une maladie. Par définition, un
facteur de risque n’est pas nécessairement une cause de maladie. Néanmoins, la
compréhension des facteurs de risque peut aider le développement de traitements
préventifs.

Dans le cas de la maladie d’Alzheimer, plusieurs facteurs de risques potentiels
sont étudiés dans la littérature. On peut citer l’âge, le sexe, les facteurs génétiques
(en particulier le gène codant pour l’ApoE), les hyper-intensités de la substance
blanche, etc. Dans le but d’identifier si ces facteurs potentiels ont un réel impact
sur la progression de la maladie, il est intéressant de pouvoir les quantifier de manière
précise, rapide et automatique.



34 Introduction

Analyse exploratoire

Une quatrième classe d’études est dite exploratoire. L’analyse exploratoire est un
processus particulier d’utilisation et d’analyse des données. En analyse classique, le
processus est

Problème → Données → Modèle → Analyse → Conclusions.

En analyse exploratoire, le raisonnement diffère

Problème → Données → Analyse → Modèle → Conclusions.

L’analyse exploratoire fut notamment initiée par Tukey dans [Tukey 1962]. Elle a
pour objectifs de

• découvrir les structures sous-jacentes,

• identifier les variables importantes,

• détecter les données aberrantes et les anomalies,

• tester des suppositions issues des données,

• développer des modèles minimaux,

• etc.

En imagerie médicale, et en particulier pour dans le cadre de l’analyse de popu-
lations, ces techniques sont intéressantes pour identifier des tendances et faire des
hypothèses sur les régions d’intérêt potentiellement liées à l’évolution de maladies. Il
faut noter que les outils de visualisation sont importants pour l’analyse exploratoire.
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Aspects méthodologiques

Dans cette thèse, nous utilisons différentes méthodes et stratégies d’analyse de don-
nées.

Construction de modèles statistiques

En mathématiques appliquées, de nombreux modèles ont été proposés pour faire de
l’apprentissage automatique à partir de base de données. L’idée de base est très
simple : elle consiste à prédire certaines informations sur un nouveau patient à
partir d’observations passées d’autres patients. Un problème classique est celui de
la classification, où l’on peut par exemple chercher à prédire le diagnostic à partir
de l’observation d’une image du patient. Cependant, certains challenges se posent
lorsque l’on cherche à utiliser ces techniques sur des bases de données d’images
médicales (malédiction de la dimension, malédiction de la grande quantité de donnée
(big data), classes déséquilibrées, etc). Dans cette thèse, nous étudions différentes
stratégies pour faire face à ces challenges.

Définition des descripteurs et des distances

L’utilisation de modèles d’apprentissage nécessite

1. la définition de descripteurs,

2. la définition d’une distance adéquate.

Dans cette thèse, nous étudions des descripteurs encodant de l’information à dif-
férents niveaux : au niveau du voxel (i.e. du voisinage anatomique), du patient, et
de l’évolution du patient.

Dans le cas de descripteurs au niveau du patient, que ce soit en statique pour
dans les études transversales, ou en dynamique dans les études longitudinales, il est
possible de mesurer des écarts entre patients en utilisant une distance euclidienne,
ou en construisant des distances plus évoluées, basées sur les déformations. Nous
verrons qu’une “simple” distance euclidienne permet déjà d’obtenir certaines infor-
mations. Dans la littérature, de nombreux modèles d’anatomie numérique ont été
développés. Nous étudions en particulier des algorithmes de création d’atlas, perme-
ttant de représenter les patients dans le même espace, et la création de descripteurs
à partir du modèle des larges déformations par difféomorphismes (LDDMM).

Nombre de paramètres et réduction de dimension

La réduction de dimension est une technique très populaire permettant de diminuer
la dimension des observations d’un système. Dans le cadre du traitement d’images,
elle peut avoir pour but

• de faciliter la visualisation et permettre une analyse exploratoire,
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• de régulariser des algorithmes d’apprentissage.

Dans cette thèse, nous utilisons la réduction de dimension pour la visualisa-
tion et l’analyse exploratoire. Nous avons également réalisé certaines expériences
utilisant les Laplacian SVM [Belkin 2004], où la régularisation est utilisée pour régu-
lariser l’apprentissage. Les résultats obtenus avec cette méthode sont intéressants
sur des données synthétiques, cependant sur des données réelles nos premiers résul-
tats n’étant pas meilleurs que ceux obtenus avec des SVM, ils ne sont pas présentés
ici.

L’importance des régularisations

De nombreux problèmes d’imagerie médicale (recalage, segmentation, apprentissage,
etc) peuvent être formulés sous une forme variationnelle. La solution recherchée est
exprimée comme minimisant une fonctionnelle, et appartenant à un certain espace.
Cependant, pour contrôler la régularité de la solution, des régularisations sont in-
troduites.

De plus, la majorité de ces problèmes sont en fait mal posés (par opposition à
la notion de problème bien posé au sens d’Hadamard), et l’on cherche à obtenir une
solution au problème régularisé. Un exemple typique de problème mal posé consiste
à vouloir optimiser un nombre de paramètres supérieurs au nombre d’observations
d’un système. L’idée d’introduire des régularisations pour la résolution de prob-
lèmes mal posés est largement étudiée dans la littérature, on peut par exemple citer
les développements de Tikhonov [Tikhonov 1943, Tikhonov 1963, Tikhonov 1977].
Dans la littérature, de nombreuses régularisations ont été introduites pour résoudre
divers problèmes en traitement d’image et imagerie médicales.

Dans cette thèse, nous introduisons des régularisations spatiales pour la classifi-
cation et l’identification de biomarqueurs structuraux.
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Plan et contributions

Le manuscrit de cette thèse s’organise en trois parties.

1. Dans une première partie, nous présentons la problématique.

• Chapitre 1 : Ce chapitre présente le contexte médical de la thèse. Il
introduit le rôle de l’imagerie médicale dans le cadre de l’étude de popu-
lations. Il présente ensuite la maladie d’Alzheimer et les différentes bases
de données utilisées dans cette thèse.

• Chapitre 2 : Ce chapitre rappelle le contexte d’apprentissage statis-
tique. Il introduit également les différentes difficultés rencontrées lors de
l’utilisation de ces techniques en imagerie médicale.

• Chapitre 3 : Ce chapitre présente les contributions de cette thèse.

2. La seconde partie traite de l’analyse transversale de population. Dans ce cadre,
des images de plusieurs patients sont analysées, à raison d’un point temporel

par patient, c’est-à-dire une seule image par patient.

• Chapitre 4 : État de l’art. Ce chapitre présente différentes méthodes
d’apprentissages de variétés (manifold learning), ainsi que l’application
de ces méthodes en imagerie médicale pour le recalage, la segmentation,
l’analyse de population et l’apprentissage statistique.

• Chapitre 5 : Ce chapitre traite de la segmentation de lésions dans la
matière blanche. Nos contributions dans ce chapitre sont :

– l’introduction d’une nouvelle procédure de segmentation basée sur les
séparateurs à vaste marge (SVM), incluant notamment la définition
d’une nouvelle zone d’intérêt,

– la validation sur une base de données provenant d’AIBL,

– l’évaluation de l’apport relatif de chaque modalité,

– l’évaluation de la performance de classification pour différents types
de descripteurs,

– la comparaison avec d’autres algorithmes de classification supervisée.

• Chapitre 6 : Ce chapitre présente la réduction de dimension non-linéaire
pour l’imagerie médicale. Nos contributions dans ce chapitre sont :

– la présentation de méthodes de réduction de dimension non-linéaire,

– l’application en imagerie médicale mono-modale et multi-modale pour
la visualisation de tendances dans une population.

• Chapitre 7 : Ce chapitre traite de l’utilisation de données cliniques
pour améliorer la représentation de patients en faible dimension. Nos
contributions dans ce chapitre sont :

– l’introduction d’une nouvelle méthode de réduction de dimension
combinant des images et des données cliniques (extension de l’algorithme
des Laplacian Eigenmaps! (Laplacian Eigenmaps!)),
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– la validation de cette méthode sur une base de données provenant
d’ADNI, dans le cas de données cliniques continues et discrètes.

3. La troisième partie traite de l’analyse longitudinale de population. Dans ce
cadre, nous disposons non pas d’une mais de plusieurs images par patient,
prises à différents points temporels. Le but est désormais d’analyser les évo-
lutions des patients.

• Chapitre 8 : État de l’art. Pour étudier les évolutions de formes, dif-
férentes techniques de recalage ont été proposées, permettant d’estimer
des transformations réalistes biologiquement parlant. Ce chapitre présente
différents modèles de transformation, ainsi que différentes manières de
calculer un atlas et différentes notions de transport.

• Chapitre 9 : Dans ce chapitre, nous utilisons la théorie des larges défor-
mations par difféomorphismes (LDDMM), qui offre un cadre Riemannien
et la possibilité de représenter l’information de déformation par le biais
de vecteur tangents. Nous présentons l’utilisation des moments initiaux

pour construire des classifieurs de progression de maladie. Nos contribu-
tions dans ce chapitre sont :

– l’introduction d’une méthode pour la séparer les patients stables des
patients progressifs, à partir de moments initiaux représentant les
évolutions des hippocampes,

– l’introduction de deux extensions pour l’algorithme de Karcher per-
mettant (1) de calculer la forme moyenne d’une population mod-
ulo les transformations rigides et (2) d’éviter le lissage dû aux ré-
échantillonnages successifs,

– la validation de la méthode proposée sur une base de données de
patients provenant d’ADNI,

– une preuve de concept sur l’utilisation de sous-régions lors de la clas-
sification, permettant aux représentations locales d’avoir des meilleures
performances de classification que les représentations globales.

• Chapitre 10 : Dans ce chapitre, nous traitons des régularisations spa-
tiales pour la classification de progression de la maladie d’Alzheimer et la
détection de déformations hippocampales liées. Nos contributions dans
ce chapitre sont :

– l’introduction d’un modèle de classification logistique avec pénalisa-
tion spatiale,

– la comparaison de régularisations standards (Ridge, LASSO, Elas-
ticNet) et de régularisations spatiales (Sobolev, variation totale, et
fused LASSO) pour la classification et la détection de biomarqueurs,

– la validation sur une base de données provenant d’ADNI.
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Résumé

Dans ce chapitre, nous présentons le contexte médical de cette thèse.
Dans un premier temps, nous présentons le rôle de l’imagerie médicale
pour l’analyse de populations à grande échelle. Nous expliquons les
principaux avantages des technologies d’imagerie et d’analyse d’images
dans un contexte médical. Ensuite, la maladie d’Alzheimer est présen-
tée. Cette maladie est l’application principale utilisée dans cette thèse
pour valider les méthodes développées. Finalement, nous présentons les
différentes bases de données utilisées pour les expériences numériques.

Mots clés : Analyse de population, imagerie médicale, maladie d’Alzheimer

Abstract

In this chapter, we introduce the clinical context of this thesis. First, we
introduce the role of medical imaging in large-scale population analysis
studies. We explain some of the key advantages of imaging and im-
age analysis technologies in a medical background. Second, Alzheimer’s
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disease is presented. This disease is the main application we used to val-
idate the methods developed in this thesis. Finally, we list the different
databases that were used for the numerical experiments.

Keywords: Population analysis, medical imaging, Alzheimer’s disease



1.1. Role of medical imaging in population analysis studies 43

1.1 Role of medical imaging in population analysis stud-
ies

Over recent years, large scale medical population studies such as analysis of disease
progression and cohort stratification based on imaging technologies had tremendous
development. Many reasons pushed the development of imaging acquisition and
analysis technologies. In particular, imaging

1. allows in-vivo analysis,

2. is non-invasive,

3. allows data acquisition in sensitive or not easily accessible areas.

The first property makes the imaging procedure particularly appealing from a
medical analysis point of view. When using an in-vitro procedure, the biological
medium is modified before any analysis. In contrast, in-vivo imaging procedures
allow the analysis of biological media in-place, without any external perturbation.
Invasive procedures bias the analysis of static biological medium, let alone dynamic
organs. For example, fast-imaging technologies can bring insight on the understand-
ing of the cardiac cycle by providing motion data (videos). The second property is
particularly interesting from a patient point of view. In particular, when recruiting
healthy patients to be healthy controls in a large-scale population study, no need to
mention that non-invasive and painless procedure facilitates the recruitment process.
The third property is of particular interest in the field of neuro-imaging. Indeed,
the brain is an area both particularly sensitive and not easily accessible.

In the last decade, applied mathematics and computer science techniques have
been developed and improved in order to analyze large databases of digital medical
images. A widely studied example is Alzheimer’s disease, which is briefly described
in the next section.

1.2 Alzheimer’s disease

AD is an irreversible neuro-degenerative disease that results in a loss of mental
function due to the deterioration of brain tissue. It is briefly described in this
section, which is partially inspired by Section 2.1.1 of [Cuingnet 2011a].

1.2.1 Symptoms and discovery

On November 26th 1901, Auguste D. (Fig. 1.1a) was admitted to the Frankfurt hospi-
tal. Her symptoms included a decreased understanding, decreased memory, aphasia,
auditive hallucinations and a loss of the sense of directions. She received medical
cared by a German neuropathologist called Alois Alzheimer (Fig. 1.1b). When Au-
guste D. passed away in 1903, Dr Alzheimer performed a histological study that
revealed the presence of senile plaques and a particular form of neurodegeneration:
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(a) (b)

Figure 1.1: Left: Auguste D., first patient diagnosed with AD. Right: Dr Alois
Alzheimer.

neurofibrillary tangles (Fig. 1.2). It should be noted that up to now, these are the
only entirely reliable symptoms of AD [Amieva 2007].

During the 37th conference of German psychiatrists in Tübingen, Dr Alois Alzheimer
exposed his observations of a new type of dementia. His results were published in
1907 in an article called "Über eine eigenartige Erkankung der Hirnrinde", literally
"A characteristic serious disease of the cerebral cortex". The name Alzheimer’s

disease was mentioned for the first time by Emil Kraeplin in the 8th edition of the
"Handbook of Psychiatry" (1910).

1.2.2 Risk factors

A risk factor is a variable that is correlated with a disease. By definition, a risk
factor is not necessarily a cause of the disease. Nonetheless, understanding the risk
factors of AD can only be helpful in order to develop preventive treatments. Risk
factors for AD can be categorized into (1) direct risk factors, (2) alterations of the
cognitive reserve and (3) confounding factors.

Aging is the main risk factor of AD and other dementias (see Fig. 1.3). Then
comes the genetics. In particular, the gene coding for ApoE has proven to be a
risk factor [Raber 2004]. Three alleles encode this gene {ε2, ε3, ε4}, leading to six
possible combinations (each individual holds two alleles). The ε4 allele increases
the risk of AD. The sex of the patients is a controversial risk factor. Even though
the lifetime risks can be estimated higher for women than for men (Fig. 1.4, source:
www.alz.org), the reason of this difference is not quite understood yet.

The notion of cognitive reserve describes the mind’s resistance to the damage of

www.alz.org
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Figure 1.2: Original drawings of neurofibrillary tangles by Dr Alois Alzheimer.

the brain. In other words, it refers to the capacity of the brain to compensate alter-
ations related to aging or diseases. This capacity could be related to the quantity
and density of neurons [Katzman 1988], or to the brain capacity to be more active
and/or use cells less in areas affected by the disease [Stern 2012].

Remark. In Chapter 7, we will see that the knowledge of clinical information such
as ApoE genotype can improve the low-dimension representations of the patients.

Remark (White-matter hyper-intensities (WMH)). WMH are another possible risk
factor for AD and vascular dementia, with progression associated with vascular
factors and cognitive decline [Lao 2008]. Methods for segmenting efficiently WMH
are discussed in Chapter 5.

1.2.3 Facts and figures

AD is the most common cause of dementia among people over the age of 65, yet no
prevention methods or cures have been discovered. Figure 1.3 shows the proportion
of people in the U.S. with AD and other dementias, according to age and ethnicity.
Figure 1.4 shows the estimated lifetime risks for AD according to age and sex.
Figure 1.5 show the percentage changes for several causes of death between 2000
and 2010.

1.2.4 Alzheimer’s disease model

As mentioned in Section 1.2.3, no cure for AD has been found yet to this date. As
a consequence, a large number of studies aim at modeling AD to understand better
its causes with the final aim of developing preventive and curing treatments. In the
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Figure 1.3: Proportion of people aged 65 and older with AD and other dementias.
(Data from www.alz.org).
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following section, we present some disease states that were introduced and several
biomarkers that are widely studied in the scientific communities.

Definition 1.2.1 (Clinical disease stages in AD). In the literature, three main
clinical stages are commonly used to describe the progression of AD.

1. Normal controls (NC) patients show no signs of depression, mild cognitive
impairment or dementia.

2. Mild cognitive impairment (MCI) is a brain function syndrome involving the
onset and evolution of cognitive impairments beyond those expected based on
the age and education of the individual, but which are not significant enough
to interfere with their daily activities [Petersen 1999]. It is often found to be
a transitional stage between normal aging and dementia. Although MCI can
present with a variety of symptoms, when memory loss is the predominant
symptom it is termed amnestic MCI and is frequently seen as a prodromal
stage of AD [Grundman 2004].

3. Alzheimer’s disease (AD) patients loss of mental function due to the deteriora-
tion of brain tissue. In several studies (such as ADNI, see Section 1.3.1), they
have been evaluated and meet the NINCDS / ADRDA criteria for probable
AD.

To determine these states or the transitions between these states, one needs to
find accurate biomarkers.

Definition 1.2.2 (Biomarker). A biomarker, or biological marker, is a substance,
measurement or indicator of a biological state. Biomarkers may exist before clinical
symptoms arise.

In 2010, Jack et al. introduced a hypothetical dynamic model of AD [Jack 2010].
The curves in Fig. 1.6 indicate temporal changes caused by five biomarkers of AD
that were identified in this model.

1. Amyloid beta detected in CSF and PET amyloid imaging;

2. Neurodegeneration detected by rise of CSF tau species and synaptic dysfunc-
tion, measured via FDG-PET;

3. Brain atrophy and neuron loss measured with MR images (most notably in
hippocampus, caudate nucleus, and medial temporal lobe);

4. Memory loss measured by cognitive assessment;

5. General cognitive decline measured by cognitive assessment.

Changes 1-3 are indicated by biomarkers that can be observed prior to a demen-
tia diagnosis, whereas items 4-5 are the classic indicators of dementia diagnosis. For
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Figure 1.6: Biomarkers as indicators of dementia, as described in the hypothetical
dynamic model introduced in [Jack 2010]. Illustration source: http://adni.loni.

ucla.edu/study-design/background-rationale/

this reason, they are of particular interest for disease diagnosis or prediction. For ex-
ample, MR imaging (e.g. T1-w) can be used to try to obtain structural information:
loss of GM tissue in cortical and deep GM structures, WM degeneration, increased
CSF space and enlarged ventricles (Fig. 1.8). Using PET PiB, we obtain biochem-
ical information on increased amyloid load, neuronal loss and iron accumulation
(Fig. 1.7).

The hypothetical model of [Jack 2010] received a lot of interest in the scientific
communities and many studies tried to verify and evaluate it on large-scale datasets.
More recently, this model was updated to take into account the latest evidence
[Jack 2013].

1.3 Databases used

1.3.1 Alzheimer’s Disease Neuroimaging Initiative (ADNI)

The ADNI project1 began in 2004 and was designed to find more sensitive and
accurate methods to detect AD at earlier stages and mark its progress through
biomarkers. The study gathered thousands of brain scans, genetic profiles, and
biomarkers in blood and CSF in order to measure the progress of disease or the
effects of treatment. The ADNI project is driven by several partners ans sponsors.

ADNI uses brain-imaging techniques, such as PET, including fluorodeoxyglucose
(FDG)-PET (which measures glucose metabolism in the brain); F-18-PET using a

1http://www.adni-info.org/

http://adni.loni.ucla.edu/study-design/background-rationale/
http://adni.loni.ucla.edu/study-design/background-rationale/
http://www.adni-info.org/
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(a) NC (b) AD

Figure 1.7: Detection of amyloid beta Aβ using PET imaging

(a) Preclinical AD (b) Severe AD

Figure 1.8: Morphological brain changes related to AD
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radioactive compound (Florbetapir 18F which contains the radionuclide fluorine-
18 (F-18)) that measures brain amyloid accumulation; and structural MR. One
goal of the ADNI study is to track the progression of the disease using biomarkers
to assess the brain’s structure and function over the course of the disease states.

ADNI also aim to define biomarkers for use in clinical trials and to determine
the best way to measure the treatment effects of AD therapeutics.

After the success of the first step (ADNI 1), ADNI 2 began in 2011. The goal
of ADNI 2 is to identify who may be at risk for AD. ADNI now also aims to track
the disease progression and define tests to measure the effectiveness of potential
interventions.

Remark. The ADNI database is used in Chapters 7, 9 and 10.

1.3.2 Australian Imaging, Biomarker and Lifestyle Flagship Study
of Ageing (AIBL)

The AIBL2 study [Ellis 2009] aims to improve understanding of the causes and di-
agnosis of Alzheimer’s disease, and helps develop preventative strategies. Launched
on November 14th 2006, the AIBL study is a prospective longitudinal study of ag-
ing comprised of patients with AD, MCI and NC. The study will help researchers
develop and confirm a set of diagnostic markers biomarkers and psychometrics that
can be used to objectively monitor disease progression and to develop hypotheses
about diet and lifestyle factors that might delay the onset of this disease. Success-
ful completion of this work will enable the design and conduct of extensive cohort
studies that may lead to clinically proven preventative strategies for AD. The AIBL
has four research streams

1. Biomarkers Blood samples have been taken from each participant for testing
ranging from clinical pathology screening to novel biomarker examinations, to
differentiate between those with and without AD.

2. Clinical & Cognitive A comprehensive neuropsychological assessment has been
carried out and includes cognitive and mood tests, assessment of vital signs,
collection of medical history (personal and family) and medication informa-
tion, and questionnaires about lifestyle factors.

3. Lifestyle The lifestyle research stream is examining diet and exercise through
questionnaires, monitoring and DEXA scans in a subset of participants.

4. Neuroimaging Participants undergo scans using the structural neuroimaging
with MR Imaging and beta amyloid imaging with PiB PET methods.

Compared to ADNI, the AIBL database also provides FLAIR images, which are
particularly interesting for the segmentation of WMH (see Chapter 5).

Remark. The AIBL database is used in Chapters 5 and 6.

2http://www.aibl.csiro.au

http://www.aibl.csiro.au
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Résumé

Dans le Chapitre 1, nous avons introduit le contexte médical de cette
thèse. En particulier, nous avons mentionné le rôle des technologies
d’imagerie pour l’analyse de populations. Dans ce chapitre, nous décrivons
brièvement les concepts d’apprentissage automatique utilisés pour con-
struire des modèles prédictifs à partir d’un ensemble d’observations. En-
suite, nous expliquons certaines difficultés pouvant apparaître lorsque ces
techniques sont appliquées en imagerie. Finalement, nous mentionnons
plusieurs stratégies numériques couramment utilisées dans la littérature
et dans les chapitres suivants.

Mots clés : Statistiques, apprentissage automatique, modèle prédictif,
fonction de perte, minimisation du risque, malédiction de la dimension,
classes déséquilibrées, sélection de modèle, sélection de paramètre, vali-
dation croisée, régularisation
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Abstract

In Chapter 1, we introduced the medical background of this thesis.
In particular, we mentioned the role of imaging technologies for popu-
lation studies. In this chapter, we briefly describe the machine learn-

ing concepts used to build predictive models from a set of observations.
Then we explain several challenges that can occur when these techniques
are applied to imaging datasets. Finally, we mention several numerical
strategies that are commonly used in the literature and in the following
chapters.

Keywords: Statistics, Machine Learning, Predictive model, Loss func-
tion, Risk minimization, Curse of Dimensionality, Skewed Classes, Model
Selection, Parameter Selection, Cross-validation, Regularization
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2.1 Learning predictive models 1

2.1.1 Position of the problem

We are given n pairs {(xi, yi)}1≤i≤n ∈ X×Y , assumed to be independent realizations
of a couple of random variables (X,Y) following the law pXY. The inputs xi belong
to the input space X which is typically R

d. The outputs yi belong to the output

space Y which is typically a finite set or R.

Example 2.1.1. In medical imaging, the xi can be images (MR, PET, ultrasound,
X-ray, ...), cognitive scores, genotype information, etc. The yi can be diagnosis,
disease progression, presence or absence of lesions/tumors, etc.

The goal of statistical learning is to predict the output y associated to a new
input x, assuming the pair (x, y) is a new realization of (X,Y) following pXY and
independent of the previous observations {(xi, yi)}1≤i≤n. To do so, one aims to
build a prediction function.

Definition 2.1.1 (Prediction function or decision function). A prediction function

is a mesurable function f : X → Y. We note F(X ,Y) the set of all prediction
functions from X to Y.

The main challenge in building an accurate prediction function arises from the
fact that the law pXY is generally unknown. The concept of supervised learning is to
use the set of observations {(xi, yi)}1≤i≤n (called training set) to build the prediction
function. A learning algorithm is therefore a function that given a training set
outputs a prediction function. Usually, a learning algorithm builds the prediction
function via the evaluation of a loss function on a training set.

Definition 2.1.2 (Loss function). A loss function is a function ℓ : Y × Y → R+

which is used to assess the quality of a predicted output compared to the real output.

Definition 2.1.3 (Ground truth). The real output used to evaluate the performance
of a learning algorithm is called the ground truth.

Definition 2.1.4 (Classification). When cardY <∞, the elements of Y are called
classes and the learning problem is referred as a classification problem.

Example 2.1.2 (Loss function for classification). When solving a classification
problem, one loss function that can be used is

ℓ0/1(y, y′)
def.
=

{
1 if y 6= y′,

0 otherwise.
(2.1)

1This section is inspired by the class "Introduction to statistical learning" by Jean-Yves Audibert
from the MSc "Math, Vision, Learning" of ENS Cachan, France.
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Example 2.1.3 (Disease classification problem in medical imaging). In medical
imaging, given a set of couples image-diagnosis {(xi, yi)}1≤i≤n =






 , AD


 ,


 , AD


 , . . . ,


 , NC


 ,


 , NC








,

building a disease classifier consists in building a function predicting the diagnosis

of a new image, such as .

Definition 2.1.5 (Regression). When cardY =∞ (typically Y = R
n), the predic-

tion problem is called a regression problem.

Example 2.1.4 (Lp regression). When Y = R and the loss function

ℓp(y, y′)
def.
= |y − y′|p , (2.2)

where p ≥ 1, the problem is called Lp regression. In the case p = 2, it is also called
least-square regression.

Definition 2.1.6 (Risk or generalization error). The risk of a prediction function
f : X → Y is defined by

R(f)
def.
= E [ℓ (Y, f(X))] (2.3)

=

∫

X×Y
ℓ(f(x), y)dpXY(x, y) . (2.4)

where ℓ : Y × Y → R+ is a loss function.

Definition 2.1.7 (Target function). A target function is a prediction function min-
imizing the risk.

Remark. A target function does not necessarily exist. The Theorem 2.1.1 gives suffi-
cient conditions for this target function to exist, its proof is given in Appendix A.1.1.

Theorem 2.1.1. Let us assume that for all x ∈ X the infimum infy∈Y EpXY(dY |x)ℓ(Y, y)
is reached. Then a function f∗ : X → Y such that, for all x ∈ X f∗(x) is a mini-

mizer of y 7→ EpXY(dY |x)ℓ(Y, y), is a target function.

∀x ∈ X , f∗(x) ∈ argmin
y∈Y

EpXY(dY |x)ℓ(Y, y) ⇒ f∗ ∈ argmin
F(X ,Y)

R . (2.5)
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The previous theorem gave some sufficient conditions for a target function to
exist in the general case. The next theorem gives a target function in the case of the
least-square regression, as well as the excess of risk for another prediction function.
Its proof is given in Appendix A.1.2.

Theorem 2.1.2 (Target function in least-square regression). In least square regres-

sion, the function

η∗ : x ∈ X 7→ E[Y|X = x] =

∫

Y
y dpXY(y|x) (2.6)

is a target function. Besides

∀η : X → R, R(η) = R(η∗) + E(η − η∗)2 , (2.7)

where E(η − η∗)2 =
∫
X (η(x)− η∗(x))2dpX(x).

Now let us see a similar theorem that gives the target functions in classification
with the ℓ0/1 loss. First we define the sign function which is convenient for binary
classification, and then give the theorem, which proof is given in Appendix A.1.3.

Definition 2.1.8 (Sign function). The function sign: R→ {−1,+1} is defined by

sign(y)
def.
=

{
+1 if y ≥ 0,

−1 otherwise.
(2.8)

Theorem 2.1.3 (Target function in classification). In classification with the ℓ0/1

loss, the target functions are the functions f∗ such that

∀x ∈ X , f∗ ∈ argmax
y∈Y

pXY(Y = y|X = x) . (2.9)

Moreover in binary classification (Y = {−1,+1}), the function

f∗ : x 7→ sign(η∗(x)) (2.10)

is a target function, where η∗ is a target function for the least-square regression.

So far, we have seen that to build a predictive model, it is convenient to define
a loss function to evaluate how accurate is a prediction for a given x. To evaluate
the accuracy of a prediction function f , we have defined the risk as the average loss
of f given the law pXY.

2.1.2 Empirical risk minimization

Let us recall the definition of the risk of a prediction function f : X → Y

R(f)
def.
= E[ℓ(Y, f(X))] =

∫

X×Y
ℓ(f(x), y)dpXY(x, y) . (2.11)
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As mentioned below, we are looking for a target function, i.e. a prediction func-
tion minimizing the risk. However, the probability pXY is unknown, and therefore
both the risk and target function are unknown. Nonetheless the risk R(f) can be
estimated empirically. We introduce the notion of empirical risk as a empirical
estimation of the risk on a training set.

Definition 2.1.9 (Empirical risk). The empirical risk of a prediction function
f : X → Y is given by

r(f)
def.
=

1

n

n∑

i=1

ℓ(f(xi), yi) , (2.12)

where {(xi, yi) ; 1 ≤ i ≤ n} is a training set.

Remark. The empirical risk can also be called fitting loss and noted Lfit(f).

Definition 2.1.10 (Empirical risk minimization ERM). An empirical risk mini-

mization (ERM) algorithm is an algorithm that aims to find a function fERM such
that

fERM ∈ argmin
f∈F̂

r(f) , (2.13)

where F̂ ⊂ F(X ,Y) is a subset of prediction functions from X to Y.

The idea to learn prediction function from ERM algorithm were studied in the
work of Vapnik and Chervonenkis [Vapnik 1995]. Following this idea, it is natural
to wonder if minimizing the empirical risk minimizes the real risk. In fact, choosing
F̂ = F(X ,Y) often leads to overfitting, as the resulting algorithm can have an
empirical risk much lower than the real risk. In practice, one needs to choose F̂
large enough to have a good prediction but not too large to avoid overfitting. The
"size" of F̂ is sometimes called capacity or complexity. This was further studied
and quantified by Vapnik and Chervonenkis who introduced the notion of Vapnik-
Chervonenkis dimension. Alternatively, one can add a regularization term to r(f)

to smooth the prediction function, as in the SVM algorithm.

Example 2.1.5 (A regularized ERM algorithm: the support vector machines (SVM)).
The SVM are a machine learning algorithm where the loss function is the hinge
loss, and the prediction functions are searched in a reproducing kernel Hilbert
space (RKHS). This algorithm is described in details in Chapter 5.

Remark (Bias-variance trade-off). Now let us get back to the analysis of the real
risk of an ERM prediction function. Let f̂ be a minimizer of the risk on F̂ , i.e.

f̂ ∈ argmin
f∈F̂

R(f). (2.14)

Since R(fERM ) ≥ R(f̂) ≥ R(f∗) (proof in Appendix A.1.5), the excess of risk of the
empirical risk minimizer fERM (compared to the target prediction function) can be
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decomposed into two positive terms

R(fERM )−R(f∗) = R(fERM )−R(f̂)︸ ︷︷ ︸
Estimation error (bias)

+ R(f̂)−R(f∗)︸ ︷︷ ︸
Approximation error (variance)

.

(2.15)
The larger F̂ , the lower the approximation error, but generally the higher is the
estimation error. As mentioned before, there is therefore a trade-off to find when
choosing F̂ , often called bias-variance trade-off. The term "variance" relates to
the link between the estimation error and the variability of the training set, which
has been assumed to be a realization of independent identically distributed random
variables. A high-variance model is prone to overfitting whereas a high-bias model
is prone to underfitting. The bias can be bounded as described in Proposition 2.1.4,
proof is in Appendix A.1.4.

Proposition 2.1.4 (Bound on the estimation error). The estimation error (bias)

can be bounded by

R(fERM )−R(f̂) ≤ 2× sup
f∈F̂
|R(f)− r(f)| . (2.16)

2.1.3 Local averaging

In Section 2.1.1, we have seen that the accuracy of a prediction function can be eval-
uated via the risk, measuring the average loss on a function assuming a probability
distribution pXY. Section 2.1.2 presented ERM algorithms, based on an empirical
estimation of the risk on a training set. An alternative strategy is to assume that
a good prediction function is locally smooth, and therefore its value at one point
is similar to the values in a neighborhood. To illustrate the idea of local averag-
ing method, let us consider the least-square regression problem on X = R

d with
Y = [−B,B] with B > 0. The loss function is ℓ(y, y′)

def.
= (y − y′)2. We have seen

(Theorem 2.1.2) that η∗ : x 7→ E(Y|X = x) is a target function. As the probability
law pXY is unknown, one has to estimate E(Y|X = x). One strategy is to average
the yi corresponding to the xi close to x. We consider learning algorithms of the
form

η̂ : x 7→
n∑

i=1

wi(x)yi, (2.17)

where (wi(x))1≤i≤n ∈ R
n are weighting coefficients.

Example 2.1.6 (k nearest neighbours (kNN) algorithm). For k ∈ N, the kNN-
algorithm considers the weights

wkNN
i (x)

def.
=

{
1
k if xi belongs to the kNN of x,

0 otherwise.
(2.18)

Remark. The kNN-algorithm will be used in Chapter 5 and 7.
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(a) d=1 (b) d=3 (c) d=10

Figure 2.1: SVM classification in R
2 with a polynomial kernel, depending on the

degree. When d gets too high, the algorithm overfits the training data. (Figure gen-
erated from http://www.csie.ntu.edu.tw/~cjlin/libsvm/ with c = 100 and γ =
10).

2.2 Challenges

2.2.1 Model selection

Machine learning problems can usually be solved with countless models of various
complexity. On one hand, though a simple model might be easy to train, it might
not model the full range of possibilities. On the other hand, a more complex can
lead to overfitting.

Overfitting typically occurs if the model is too complex with regard to the prob-
lem to solve (for example if it has too many parameters), if the training data is very
noisy, etc. It leads to a classifier or regression function that has poor predictive
performance, despite an error that can be low on the training set. In Fig. 2.1, a 2D
classification problem is solved using SVM with a polynomial kernel. We notice that
when the degree of the polynomial gets too high, the decision boundary suffers from
strong distortions: it overfits the training data. In Fig. 2.2, a curve fitting problem
is solved using least-square polynomial fitting. Similarly, when the degree gets too
high, the curve is not properly approximated. To avoid or at least try to limit over-
fitting, several strategies are available, such as regularization, early-stopping, model
priors, etc.

Remark (Robust learning). When a learning algorithm does not tend to fit noise or
be sensitive to outliers, it is said to be robust.

2.2.2 Curse of dimensionality

When learning statistical models in spaces of high dimension, several issues can
occur. These issues are said to be caused by the curse of dimensionality.

Designing a model for statistical learning in high dimensional can be hard, as
our geometric intuitions are naturally biased. For example in Fig. 2.3, we consider

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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(a) d=0 (b) d=1

(c) d=3 (d) d=9

Figure 2.2: Curve fitting: in green: the true curve, in blue: the (noisy) observations,
in red: the estimation using a polynome of degree d. Source: [Bishop 2007].
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Figure 2.3: Fraction of the volume of a sphere lying in the radius range 1− ε to 1,
depending on the space dimension d. (Figure inspired by [Bishop 2007]).

a sphere in R
d and plot the fraction of the volume contained between radius 1 and

radius 1 − ε. We notice that the higher the dimension, the more the volume of a
sphere is concentrated in a thin shell near the surface.

When the number of observations is much lower than the dimensionality of the
space, a sampling issue occurs. Moreover, convergence proofs when the number of
samples is going to infinity are no longer relevant. When the number of parameter
of a model gets high, its optimization becomes complex (see Fig. 2.4).

Nonetheless, learning can still be performed in space of high dimension. The
primary reason is that the intrinsic space of data is generally much lower of the
dimension of the space, (this is one of key motivations for manifold learning: see
Chapters 4, 6, and 7).

2.2.3 Classification with unbalanced training sets

In real-life applications, it sometimes happens that the training set contains much
more observations belonging to one class than to the other one. In that case, the
classes are said to be skewed and the dataset unbalanced. For example, in the context
of AD, databases such as ADNI contain more stable MCI patients than progressive
MCI ones. When a training dataset is unbalanced, a learning algorithm generally
tend to be biased towards the majority class. To avoid this, several strategies are
available, such as

1. forcing the training set to be balanced (even if that means not using all the
data available),

2. modifying the cost function in the optimization (e.g. by introducing weights).

Remark. These strategies will be discussed in Chapter 10.



2.2. Challenges 61

x10 1 2 3

(a) d = 1

x1

x2

0 1 2 3

1

2

3

(b) d = 2

x1

x2

x3

(c) d = 3

Figure 2.4: Illustration of the curse of dimensionality: the number of regions of
a regular grid grows exponentially with the dimension d. (Figure inspired by
[Bishop 2007]).
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Training Validation Testing

Full dataset

Figure 2.5: In order to properly estimate the performance of a model, a dataset is
usually split into two or three parts: (1) a training set, (2) a validation set (optional),
and (3) a testing set.

It is also important to notice that some methods are more robust and tend to be
less biased than others. For example, the solution of an SVM classifier only depends
on a subset of training vectors (the so-called support vectors). In that case, it is
possible to create a dataset and add a large number of training examples of the same
class without changing the solution of the algorithm.

2.3 Numerical strategies

2.3.1 Splitting the dataset

In machine learning, to properly estimate the quality of a model, it is important to
split the dataset into several parts. As illustrated on Fig. 2.5, two or three parts are
generally used

1. a training set,

2. an optional validation set, and

3. a testing set.

In the simplest case, the model is built on the training set, and the performance
is then evaluated on the testing set. This splitting avoids an overestimation of the
performance that usually happens when the same observations are used to build the
model and to evaluate its performance.

Now when the model contains some parameters that need to be set, the perfor-
mance of the model on the testing dataset should not be used to select the optimal
parameters. Once again, doing so would overestimate the performance of the model.
Instead, another subpart must be used to select the optimal parameters: the vali-

dation set.

2.3.2 Cross validation

Cross validation is a standard procedure that can be used for parameter selection.
As mentioned in Section 2.3.1, the dataset needs to be split into three parts when one
aims to find the optimal parameters automatically and evaluate the performance of a
model. However, when the dataset does not contain a lot of observations, splitting
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it into three subparts could lead to an wrong estimation of the performance of
the model (e.g. underestimation if the training set is not large enough, unstable
estimation if the validation or testing sets are not large enough, etc). Instead, the
key concept of cross-validation is to split the dataset into training and testing sets
and then split the training set into sub-training and sub-validation sets. Using
these sets, the performance is evaluated for different parameters over several runs
and averaged. The parameters providing the best performance are then selected.
Using these parameters, the classifier is built on the whole training set. By doing
so, the parameters of the model are selected automatically without making use of

the testing set. The cross validation process is explained in details in Fig. 2.6.

Remark. The same splitting scheme can be applied on the full dataset, so that
the performance is evaluated over the whole dataset (performance is averaged over
several runs). This is particularly important when the number of observations on
the whole dataset is low (for example as in Chapters 9 and 10).

Remark. Selecting the number of runs nc is a trade-off between the accuracy of the
parameter selection and the computational cost. A high nc value provides more
observations for the training steps, more runs, therefore a higher accuracy of the
performance with the selected parameters. However, the computational cost is ap-
proximately linear in nc.

2.3.3 Regularizations

A common practice when learning model with a high number of parameters is to
introduce regularizations. Different regularizations can enforce different properties
in the models. For example, a widely studied class of regularizations are the ones
enforcing sparsity.

Now let us see an example where regularizations can be introduced in order to
be able to solve the model. The linear inverse problem consists in finding a solution
w ∈ R

p solution of
y = Xw , (2.19)

where y ∈ R
n represent (noisy) observations and X ∈ R

n×p is a linear operator.
When p = n and X of full rank, the solution can be directly computed. In that case,
the problem is said to be well-posed, which means (as defined by Hadamard) that
its solution exists, is unique, and depends continuously on its input data. Let us
take one example where there is a unique solution, but the system is ill-conditioned.

Example 2.3.1 (Ill-conditioned problem, taken from [Ciarlet 1988]). Let us con-
sider the linear system




32

23

33

31


 =




10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10


w, of solution




1

1

1

1


 , (2.20)
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Run 1

Run 2

Run 3

Run 4

Run 5

Full training set

Figure 2.6: The nc-fold cross-validation is composed of the following steps: (1) after
random re-ordering, the training set is split into nc parts, (2) a (sub)-training set,
composed of nc − 1 parts (in blue in the Figure), is used for building the model,
(3) a (sub)-validation set, composed of the remaining part (in red in the Figure),
is used for validating the model, (4) the steps (2)-(3) are repeated nc times and
performance is averaged over the different runs. The figure illustrates this concept
for nc = 5.
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and the system with a small perturbation of in y




32.1

22.9

33.1

30.9


 =




10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10


w, of solution




−9.2

−12.5

4.5

−1.1


 . (2.21)

Both the original and modified system are linear, and have a unique solution (X is
of determinant 1). However, we notice that a “small” perturbation in y generates a
“large” perturbation in the solution.

We saw in the previous example that even with existence and uniqueness of the
solution, the system can be unstable. When p > n, there is no uniqueness of the
solution, and the problem is ill-posed. A solution of such an ill-posed problem can
be computed by minimizing

1

2
‖y −Xw‖22 + λJ(w) , (2.22)

where λ ≥ 0 is a regularization coefficient and J a regularization function. The idea
of using regularizations to solve ill-posed problems was studied (among others) by
Tikhonov [Tikhonov 1943, Tikhonov 1963, Tikhonov 1977]. A classical regulariza-
tion is the ridge [Hoerl 1970] penalizing the squared ℓ2 norm of w. The LASSO
[Tibshirani 1994] uses ℓ1 regularization to force a lot of coefficients to be (close to)
zero. The elastic net [Zou 2005] uses a combination of both terms. More recently,
non-local regularizations [Peyré 2011] were used to solve several linear inverse prob-
lems in image processing such as inpainting, super-resolution, compressed sensing,
etc.
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Résumé

Dans ce chapitre, nous présentons dans un premier temps différentes
motivations cliniques de notre domaine. Ceci nous permet de mieux
situer les travaux effectués dans cette thèse. Ensuite, nous mentionnons
certains aspects méthodologiques, liés aux challenges présentés dans le
chapitre 2. Finalement, nous présentons les questions auxquelles nous
avons souhaité répondre ainsi que nos contributions dans les parties II
et III. Les communications écrites et orales associées à nos travaux sont
également listées.

Abstract

In this chapter, we present first several clinical motivations in our do-
main. This enables us to understand better where stands the work we
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present in this thesis. Then we mention some methodological aspects
related to the challenges presented in Chapter 2. Finally, we present the
problems we wanted to address as well as our contributions in Parts II
and III. The oral and written communications associated with the work
of this thesis are also listed.
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3.1 Clinical motivations

The work presented in this thesis was realized in partnership between the CERE-
MADE laboratory from Paris Dauphine University in France, the Australian e-
Health research centre / CSIRO in Brisbane in Australia, and the Mathematics
Institute of Toulouse in France. The clinical context of this work is the study of
Alzheimer’s disease (AD). In this section, we present first several clinical motiva-
tions in our domain, in order to have a better understanding of the context of our
work, which is presented later.

As described in Chapter 1, AD was discovered in the early twentieth century
by Aloïs Alzheimer. Her first diagnosed patient had symptoms including memory
and understanding deficits, aphasia (loss of the language), and the loss of the sens
of directions. AD is nowadays widely spread, and affects a large proportion of the
world population. Many scientific studies aim to analyze several aspects of the
disease.

3.1.1 Creation of diagnostic tools

A first class of studies aim to build a disease progression model. The creation of
such a model can have several goals

• identify the steps of the disease progression,

• find trends in populations.

The knowledge of the typical steps in the progression of the disease can help a
clinician understand the clinical state of a patient. He might as well be able to inform
the patient of his/her most probable evolution. However, there is a variability in the
possible evolutions. For example, some mild cognitive impairment (MCI) patients
convert to AD while others are stable. It is therefore important to analyze the trends
in populations, and try to understand why some patients have different evolutions.
To evaluate the possible states or evolutions of patients, several steps are required,
such as

• the definition of several clinical states,

• the creation of diagnostic tools.

As we saw in Chapter 1, normal control (NC), MCI and AD are usual clinical states
that are studied in the AD context. Now diagnostic tools aim at associating a
clinical state to a patient based on other observed information. In the case of AD,
several types of data can be used for the creation of such tools: measures from
blood samples, results of cognitive tests, lifestyle indicators, imaging data, etc. It is
interesting to evaluate the quantity of information contained in each type of data, as
well as defining methods to be able to combine them. Indeed by combining various
types of data, one can hope to increase the performance of the diagnostic tools, as
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the latter would have more information available. As we saw in Chapter 2, machine
learning methods can be used to build such diagnostic tools.

Population studies can be categorized into

1. cross-sectional, and

2. longitudinal studies.

Cross-sectional studies analyze populations at a single time point, whereas longitu-
dinal studies analyze evolutions between several time points.

Remark. In this thesis, we study the combination of various types of data (which can
be used for diagnosis classification, see Chapter 7), the creation of tools to classify
disease progression (see Chapters 9 and 10).

3.1.2 Identification and quantification of biomarkers

A second class of studies aim to identify and quantify biomarkers. Biomarkers,
or biological markers, are substances, measures or indicators of a clinical state.
Biomarkers may exist before clinical symptoms arise. We saw in Chapter 1 that
Jack et al. introduced in 2010 a hypothetical of AD, where several biomarkers can
be used to evaluate the disease progression of a patient [Jack 2010]. Among the
biomarkers that one can try to characterize with images, we can cite

• structural biomarkers,

• functional biomarkers.

The search for structural biomarkers is based on the assumption that the disease af-
fects the anatomical brain structures. For example, the hippocampus is one the most
studied structures. The search for functional biomarkers is based on the assumption
that the disease affects the functional and neuronal activities of the brain. Many
scientific studies were published in order to try to verify the validity of [Jack 2010]
model. This model has been recently updated [Jack 2013].

Remark. In this thesis, we study methods to identify structural biomarkers of MCI-
to-AD conversion from binary hippocampus images (see Chapters 9 and 10).

3.1.3 Identification and quantification of risk factors

A third class of studies aim to identify and quantify risk factors. As explained in
Chapter 1, a risk factor is a variable correlated with a disease. By definition, it is
not necessarily a cause of the disease. Nonetheless, understanding the risk factors
can help to develop preventive treatments.

In the case of AD, several potential risk factors are studied in the literature. One
can cite age, sex, genetic factors (e.g. alleles of the gene coding the apolipoprotein
E (ApoE)), white matter hyper-intensities (WMH), etc. In order to identify if these
potential risk factors have a real impact on the disease progression, it is important
to be able to quantify them in an accurate, fast, fully-automatic and reproducible
way.



3.2. Methodological aspects 71

Remark. In this thesis, we study the WMH segmentation, a risk factor for AD (see
Chapter 5).

3.1.4 Exploratory data analysis

A fourth class of studies is called exploratory. Exploratory data analysis (EDA)
differs in the way of using and analyzing data. In classical analysis, the process is

Problem → Data → Model → Analysis → Conclusions.

In EDA, the process is different

Problem → Data → Analysis → Model → Conclusions.

EDA was in particular initiated by [Tukey 1962]. Its aim objectives are

• discover underlying structures,

• identify important variables,

• detect aberrant and abnormal data (i.e. outliers),

• test data-driven hypotheses,

• develop minimal models,

• etc.

In medical imaging, and in particular in order to analyze populations, these
techniques can be useful to identify trends and make hypotheses about regions of
interest potentially related to progression of diseases. One should note that visual-
ization techniques are important tools for EDA.

Remark. In this thesis, we study manifold learning techniques for visualization and
the identification of potential zones of interest (see Chapters 6 and 7).

3.2 Methodological aspects

In this thesis, we use several methods and strategies to analyze populations.

3.2.1 Construction of statistical models

As we mentioned in Chapter 2, a large number models were proposed in the field
of statistical and machine learning. The key idea is simple: it consists in predicting
some information about a patient given the knowledge of previously observed pa-
tients. A classical example is the classification one, where for example one can aim
to predict the diagnosis given the observation of the image of the patient. However,
several challenges occur when one tries to apply these techniques on datasets of
medical images (curse of dimensionality, curse of big data, skewed classes, etc). In
this thesis, we study several strategies to face these challenges.
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3.2.2 Definitions of descriptors and distances

The use of statistical and learning models requires

1. the definition of features (i.e. descriptors),

2. the definition of an appropriate distance.

In this thesis, we study descriptors encoding information at several levels: at
the voxel level (i.e. at the anatomical neighborhood), at the patient level (i.e. at a
single time point), and the evolution of the patient level.

In the case where descriptors are at the patient level, no matter if it is a cross-
sectional or longitudinal study, it is possible to measure distances between patients
by using an Euclidean distance, or by building more complex distances, based on
deformations. We show that using a “simple” Euclidean distance already enable us
to obtain insight on the populations. In the literature, many models were introduced
in the field of computational anatomy. We study in particular algorithms for atlas
creation, which enable us to represent patients in the same space, and the creation
of descriptors from the large deformation diffeomorphic metric mapping (LDDMM)
framework.

3.2.3 Number of parameters and dimensionality reduction

Dimensionality reduction is a popular technique to reduce the dimensionality of a
system. In the case of image processing, it can be used to

• facilitate the visualization in order to do exploratory data analysis,

• regularize learning algorithms.

In this thesis, we use non-linear dimensionality reduction for visualization and
EDA (see Chapters 6 and 7). We also realized experiments using Laplacian support
vector machines (SVM) [Belkin 2004]. The results were interesting on synthetic
data, though as our tests on real data did not outperform the ones obtained using
SVM, they are not presented here.

3.2.4 The importance of regularizations

Many medical imaging problems (registration, segmentation, learning, etc) can be
formulated with a variational form. The solution is expressed as a minimizer (in a
certain space) of a functional. To control the smoothness of the solution, regular-
izations are introduced.

Moreover, as we saw in Section 2.3.3, problems can be ill-posed, by opposition
of the notion of well-posed problem of Hadamard. This is typically the case when
one wants to optimize a number of parameters that is higher than the number of
observations. We saw that finding the solution w ∈ R

p of the linear inverse problem

y = Xw , (3.1)
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where y ∈ R
n and X ∈ R

n×p, can be ill-posed.
In Chapter 10, we use a similar linear prediction model

y
def.
= F (Xw + b) , (3.2)

where y ∈ {±1}n is the behavioral variable, X ∈ R
n×p is the design matrix contain-

ing n observations of dimension p, F is the prediction function and (w, b) ∈ R
p×R

are the parameters to estimate. We use this model to build disease progression clas-
sifiers from initial momenta encoding the evolutions of patients. To solve the model
efficiently, we evaluate standard regularizations and also introduce several spatial
regularizations.

3.3 Contributions of this thesis

3.3.1 Objectives

In Chapter 1, we introduced the clinical context of AD and explained why medical
imaging can be beneficial for large-scale population studies. However, as mentioned
in Chapter 2, the use of statistical learning algorithms in medical imaging raise
several challenges.

In this thesis, we aim at building models to analyze both cross-sectional and
longitudinal populations. In particular, we want to answer questions raised in several
areas:

• White matter hyper-intensities (WMH) segmentation:

– How to define a pipeline for WMH segmentation?

– Is it worth acquiring several modalities?

– Which local features should be used?

– How to define an appropriate region of interest (ROI)?

• Manifold learning:

– Can it be used to find shape/appearance trends in populations?

– How to improve the low-dimension representation of a patient using clin-
ical information?

• Longitudinal population analysis:

– Can initial momenta from the LDDMM framework be used to model
patient evolutions?

– Do these local descriptors outperforms global descriptors such as volume
variation?

– What template algorithm can/should be used?

– How to transport the tangent information?
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– What are good classification strategies (in terms of model, regularization,
optimization, etc.)?

In the next paragraph, we present the different contributions.

3.3.2 Contributions

In Part II, we focus on cross-sectional population analysis. In this setting, a popu-
lation of patients is under study, considering one temporal point by patient (which
means one image by patient).

In Chapter 4, we review several machine learning algorithms and various applica-
tions in medical imaging such as image registration, image segmentation, population
analysis and machine learning.

In Chapter 5, we address the WMH segmentation problem by building classifiers
from local features. Our contributions in this chapter are:

• the introduction of a new segmentation pipeline based on SVM, including in
particular the definition of a new ROI,

• the validation on a large database from the Australian imaging biomarker and
lifestyle (AIBL) study,

• the evaluation of the relative contribution of each modality,

• the evaluation of the classification performance for different feature types,

• the comparison with other supervised classification algorithms.

In Chapter 6, we consider the use of non linear dimensionality reduction (NLDR)
algorithms for population analysis. Our contributions is this chapter are:

• the review of several NLDR methods,

• the application in medical imaging for single- and multi-modality images to
visualize trends in populations.

In Chapter 7, we address the question of using clinical data to improve low-
dimensional patient representation. Our contributions in this chapter are:

• the introduction of a new dimensionality reduction (DR) method combining
image and clinical data (extension of the Laplacian eigenmaps (LEM) algo-
rithm),

• the validation of this method on a large dataset from the Alzheimer’s dis-
ease neuroimaging initiative (ADNI) study, with both continuous and discrete
clinical data.
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In Part III, we focus on longitudinal population analysis. In this setting, we have
not one but several images by patient, screened at different time points. The goal
is now to analyze the evolutions of the patients.

In Chapter 8, we introduce the field of computational anatomy. In this domain,
several registration techniques have been introduced, able to estimate biologically
realistic deformations. We review several transformations models, as well as several
template building algorithms, and introduce the question of transport.

In Chapter 9, we use the theory of large deformation diffeomorphic metric map-

pings (LDDMMs), which offers a Riemannian framework and the possibility to en-
code the deformation information via tangent vectors. We present the use of initial

momenta to build disease progression classifiers. Our contributions in this chapter
are:

• the introduction of a new method to separate stable from progressive patients
from the use of initial momenta encoding the hippocampal shape evolutions,

• the introduction of two extensions of the Karcher algorithm able to (1) com-
pute the average shape of a population up to rigid transformations and (2) avoid
the smoothing due to successive resamplings,

• the validation of the proposed method on a set of patients from ADNI,

• a proof-of-concept on the use of subregions for the classification, enabling
local representations to outperform the classification performance of global
representations.

In Chapter 10, we address the question of spatial regularization for the classifi-
cation of AD progression and the detection of hippocampus deformation related to
the disease. Our contributions in this chapter are: ce chapitre sont :

• the introduction of a logistic classification model with spatial regularization,

• the comparison of standard regularizations (Ridge, LASSO and ElasticNet)
and spatial regularizations (Sobolev, Total Variation and fused-LASSO) for
the classification and the detection of biomarkers,

• the validation on a dataset from the ADNI study.
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Résumé

Dans le cadre de l’analyse à grande échelle de collections d’images, alors
que chaque image peut être considérée comme un point dans un espace de
grande dimension, un ensemble d’images peut être représenté par une
variété (ou une collection de variétés) de dimension intrinsèque beau-
coup plus faible. Dans ce chapitre, nous présentons différentes méthodes
d’apprentissage de variétés utilisées dans la littérature. Ensuite, nous
présentons comment ces algorithmes peuvent être utilisés dans diverses
applications telles que le recalage, la segmentation, l’analyse de popula-
tion et l’apprentissage statistique.

Mots clés : Apprentissage de variétés, recalage, segmentation, analyse
transversale de population, régularisation

Abstract

In large scale image database analysis, whereas each image can be seen
a point in a high-dimensional space, a set of images can be assumed to
be well-represented by a manifold (or a collection of manifolds) of much
lower intrinsic dimension. In this chapter, we will first review some



82 Chapter 4. State of the art

popular manifold learning algorithms. Second, we will see how such
algorithms can be used in several applications such as image registration,
image segmentation, population analysis and machine learning.

Keywords: Manifold learning, registration, segmentation, cross-sectional
population analysis, manifold regularization
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4.1 Manifold learning

4.1.1 Definition and algorithms

Definition 4.1.1 (Dimensionality reduction (DR) problem). Given a set of n vec-

tors
{
xi ∈ R

d; 1 ≤ i ≤ n
}

and a target dimension δ < d, the dimensionality re-

duction consists in finding n corresponding vectors
{
x̃i ∈ R

δ; 1 ≤ i ≤ n
}

which

are optimal in some sense.

Remark. In the literature, another formulation is sometimes used, where the dimensionality
reduction (DR) algorithm does not take a target dimension as input, but instead
finds an "optimal" one (in a sense to be defined). This will be discussed further on
in Section 4.1.2.

In the literature, a large number of DR algorithms have been proposed, and ap-
plied in a wide range of applications. Several reviews can be found in [Cayton 2005,
Lee 2007, van der Maaten 2007]. These algorithms can be categorized into

• Information-based methods

– maximum of variance: principal component analysis (PCA), kernel prin-
cipal component analysis (kPCA),

– entropy measure [Lawrence 2011],

• Geometry-based methods

– global: multi dimension scaling (MDS), isometric mapping (ISOMAP),

– local: local linear embeddings (LLE), diffusion maps (DM), local tangent
space alignment (LTSA), Hessian eigenmaps (HEM), Laplacian eigen-
maps (LEM).

Let us now briefly describe the key ideas of these algorithms.

Principal component analysis (PCA) [Jolliffe 1986] PCA is a popular and
widely used linear DR technique. It computes low-dimensional coordinates encoding
as much variance as possible. For example, the direction of maximum variance can
be found by solving

max
w

n∑

i=1

〈xi,w〉. (4.1)

In practice the PCA is solved by performing a singular value decomposition (SVD)
of the covariance matrix.

Kernel principal component analysis (kPCA) [Schölkopf 1996] . kPCA is
an extension of PCA using the kernel trick to compute non-linear low-dimensional
coordinates.
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Multidimensional scaling (MDS) [Cox 1994] MDS is a linear technique aim-
ing at conserving the pairwise distance. It minimizes the functional

L(X̃) =

n∑

i,j=1

(d(xi,xj)− ‖x̃i − x̃j‖)
2 , (4.2)

where d(xi,xj) is a distance between xi and xj .

Isometric mapping (ISOMAP) [Tenenbaum 2000] ISOMAP is a technique
that builds upon the MDS approach, using approximation of geodesic distances for
the d(xi,xj). It builds a weighted neighborhood graph (usually a k nearest neigh-
bours (kNN) graph), then computes the weights between all pairs of points using
shortest paths on graphs, and finally constructs the low-dimensional embedding via
an eigenvalue problem.

Remark. ISOMAP is considered being a global method because it constructs an
embedding derived from the geodesic distance between all pairs of points. The
neighborhood graph is only built to approximate the geodesic distance by a path on
the graph.

Local linear embeddings (LLE) [Roweis 2000] LLE builds a kNN graph,
then computes the optimal weights minimizing the sum of the errors of linear recon-
structions in the high dimensional space, and finally solve an eigenvalue problem to
map to embedded coordinates.

Remark. LLE is considered a local method because the cost function that is used
to construct the embedding only considers the placement of each point with respect
to its neighbors. Similarly, LEM and the derivatives of LLE are local methods.

Laplacian Eigenmaps (LEM) [Belkin 2003] LEM first builds a weighted ad-
jacency graph and then solves an eigenvalue optimization problem based on the
Laplacian operator.

Remark. The details of this algorithm are provided in Chapter 6.

Hessian eigenmaps (HEM, also called Hessian-based LLE) [Donoho 2003]

HEM identifies the kNN, obtains tangent coordinates by SVD, and then computes
the embedding coordinates using the Hessian operator and eigen-analysis.

Diffusion maps (DM) [Coifman 2006] In this paper, the authors introduce
a framework based upon diffusion processes. They use spectral analysis of Markov
matrices to compute the low dimension coordinates of the dataset. A Markov matrix
represent a graph where the edge weights are transition probabilities. In that setting,
the distance between two connected nodes is represented by the probability of a
random walk to go from one node to the second one.
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Algorithm Number of parameters

MDS
1 (δ)

PCA
kPCA 1 (δ) + kernel params

ISOMAP

2 (δ, k)
LLE
LEM
HEM
LTSA
DM 3 (δ, σ, α)

Table 4.1: Number of parameters of DR algorithms.

Remark. The notion of a cluster from a random walk point of view is a region in
which the probability of escaping this region is low.

Local tangent space alignment (LTSA) [Zhang 2003] LTSA uses the tan-
gent space in the neighbourhood of a data point (typically the kNN) to represent
the local geometry. The optimization of the alignment of those tangent spaces is
used to construct the low-dimension coordinates.

4.1.2 Parameter selection

Parameters Many DR algorithms share common parameters such as the target
dimension δ, the number of nearest neighbors k, the width σ of the Gaussian kernel,
the normalization control α (α = 0: Graph Laplacian, α = 1/2: Fokker-Plank op-
erator, α = 1: Laplace-Beltrami operator). Table 4.1 summarizes the parameters of
the various algorithms. Let us now mention limitations and possible considerations
with regard to the number of nearest neighbors and the target dimension.

Number of nearest neighbors As illustrated in Fig. 4.1, an inappropriate num-
ber of nearest neighbors may cause the DR algorithm to fail.

Remark (Manifold ranking). In [Wei 2008], instead of using a ranking based on the
euclidean distance, a geometric ranking called manifold ranking [Zhou 2004] is used.
This method should fix the problems arising from an unreasonably high k value.

Remark (Adaptative Neighborhood). Chosing a global value for k is not necessar-
ily accurate. We might want to have a local way to define the neighborhood. In
[Zhan 2009], the neighborhoods are defined based on local linearities (via the de-
crease of the eigenvalues).

Target dimension To select the target dimension δ (i.e. the reduced dimension
of the representation of the data), two point of views can be considered:
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1. try to estimate the "intrinsic dimension" from the dataset,

2. consider as an input dimension of the DR algorithm, and optimize δ as an
hyper-parameter (for example using classification performance).

Several methods have been proposed to find the intrinsic dimension from a finite
dataset. They can be classified in 4 categories:

1. projection methods (Local-PCA [Fukunaga 1971]),

2. topological methods (Topology Representing Network [Martinetz 1994]),

3. trial-and-error methods (e.g. based on reconstruction error),

4. geometric methods (fractal-based [Camastra 2002, Fan 2009], Packing Num-
bers [Kégl 2003], Maximum-likelihood [Levina 2005]).

Reviews of these methods can be found in [Camastra 2003] and in the 3rd chapter
of [Lee 2007].

Remark (Strategy in medical imaging). In this setting, the second point of view is
often preferred. Indeed, in such area, building low-representation of the data is a
tool used towards a more general medical objective such as disease detection. In
that sense, the optimal target dimension in terms of performance of the final goal
should be selected.

4.1.3 Toy examples

In Fig. 4.1, ISOMAP embeddings are computed for the Swiss roll dataset. This
dataset is composed of a set of points in R

3 that lie on a 2D manifold. Successful
and unsuccessful examples are given for different sets of parameters.

In Fig. 4.2, ISOMAP and HEM embeddings are computed for the Swiss hole
dataset. This dataset is similar to the Swiss roll dataset, except that a subset of
points are removed so that a hole is created on the manifold. This example shows
that ISOMAP creates distortions in the case of non-convex data (the convexity
is actually one assumption of ISOMAP [Donoho 2003]), whereas HEM is able to
unwrap the manifold properly.

In Fig. 4.3, LTSA is able to uncover the intrinsic parameters of the dataset (face
rotation and illumination).

4.2 Applications in medical imaging

4.2.1 Image registration

This section does not intend to review the state of the art in image registration, but
instead only illustrates how manifold learning can be used for image registration.
Image registration is a process that is used to align two images to facilitate their
comparison. The usual way to perform registration is to look for a function φ to
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(a) Original data in R
3 (b) δ = 2, k = 8 (c) δ = 2, k = 200

Figure 4.1: ISOMAP embeddings in R
2 of the Swiss roll toy example. In 4.1b, the

Swiss roll is properly unwrapped. However when the k parameter gets too high, the
neighborhood graph "jumps" between layers, and the the Swiss roll is not properly
unwrapped (4.1c).

(a) Original data in R
3

(b) ISOMAP em-
beddings in R

2

(c) HEM embeddings in R
2

Figure 4.2: Embeddings in R
2 of the Swiss hole toy example (i.e. Swiss roll with

an extra hole). Since the manifold is not intrinsically convex, ISOMAP creates
distortions (4.2b). HEM is able to deal with such manifolds (4.2c).
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Figure 4.3: LTSA embeddings in R
2 of a set of images. The algorithm is able to

uncover the intrinsic parameters of the dataset (face rotation and illumination).

deform a source image Is : Ω ⊂ R
n → R towards a target image It : Ω → R. The

quality of the registration is often measured by the fitting term

Lfit(φ)
def.
= ‖It − Is ◦ φ

−1‖2. (4.3)

The optimal transformation is the one minimizing the matching term in Equa-
tion (4.3). Registration is often categorized as rigid or non-rigid. A rigid registra-
tion (RR) does not deform locally an image whereas non-rigid registration (NRR)
can do it. When computing a NRR, a regularization term is usually added to en-
sure that the optimal transformation φ is smooth enough. A non-rigid registration
is therefore usually computed via the variational problem

argmin
φ
‖It − Is ◦ φ

−1‖2 + λJ(φ), (4.4)

where J is a regularization function and λ a weighting coefficient between matching
and smoothness.

Now let us see how manifold learning can be used for image registration. In
[Hamm 2010], the authors introduced the geodesic registration on anatomical mani-
fold (GRAM) framework based on an idea from ISOMAP [Tenenbaum 2000], where
the geodesic path of the analytical manifold is replaced by the shortest path on a
kNN graph that approximates the metric structure of the empirical manifold. The
motivation is that the classic registration between two very different shapes might
be difficult, and therefore an alternative strategy is to register two "far away" im-
ages via the composition of simpler registrations (see Fig. 4.4). The authors claim
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Figure 4.4: Motivation for the GRAM framework: registering two images "far away"
from each other might be difficult (blue path). An alternative approach is to replace
a difficult registration by the composition of simpler registrations (red path). Source:
[Hamm 2010].

the following properties

1. learning of anatomical manifolds,

2. computational efficiency,

3. visualization and automatic template selection.

Remark (Models for large deformations and computational efficiency). In the field
of computational anatomy, several registration frameworks have been introduced in
order to deal with large deformations (see Chapter 8, in particular Section 8.2).
Because each intermediate registration in the GRAM framework is assumed to be
"simple", it can be performed by a simpler and less computationally intensive algo-
rithm.

Remark (Large deformations and registration accuracy). As mentioned in [Aljabar 2012],
a limitation of the GRAM framework is that the composition of a large number of
transformations might lead to a compounding of smaller registration errors into
larger ones.

4.2.2 Image segmentation

The segmentation of I : Ω ⊂ R
n → R consists in assigning a label to each voxel

ω ∈ Ω. Formally speaking, it consists in building a function S : Ω → S where S
is a (finite) discrete set of labels. For example, these labels can represents various
organs, the presence/absence of lesions, etc. In this section, we will see how manifold
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learning can be used to improve the accuracy of atlas-based segmentation. The
concept of atlas segmentation propagation (or atlas-based segmentation) consists in
segmenting an image given the segmentations of a single or several reference images
called atlas(es). The single atlas segmentation propagation technique uses only a
single image as atlas. To compute the segmentation of the new image, first the atlas
is registered to the new image. Then the computed deformation is used to deform
the segmentation of the atlas, which gives the segmentation of the new image. The
segmentation of the atlas is said to be propagated.

Remark (Segmentation accuracy). The choice of the registration algorithm is the
key choice here, and an accurate registration is required to obtain an accurate seg-
mentation.

The multi atlas segmentation propagation technique [Heckemann 2006] is an ex-
tension of the single atlas segmentation propagation technique. In this setting,
several segmented atlases are used, instead of just one in the previous technique.
All of them are registered to the new image to segment, and the computed trans-
formations are applied to the known segmentations. The deformed segmentations
are finally combined (usually using a voting scheme) to get the segmentation of the
new image.

Remark (Combination scheme). Besides the choice of the registration algorithm, the
way to combine the different segmentations in the voting scheme has to be defined.
The easiest choice is to give the same weight to all the votes. More elaborate
techniques tries to give more importance to the "closest" atlases (e.g. in terms of
normalized mutual information (NMI), quantity of displacement in the registration,
etc). When some weights are set to zero if the distance is too high, the atlases
associated to non-zero weights are said to be selected. In [Aljabar 2009], the authors
studied the choice of an atlas selection strategy and its effect on accuracy.

Another class of approaches is probabilistic atlas-based segmentation, where at-
lases contain tissue probabilities [Van Leemput 2009].

Remark (Review). In [Cabezas 2011], a large number of atlas-based segmentation
methods are reviewed for the case of magnetic resonance (MR) brain images.

Improving segmentation accuracy using manifold learning. In [Wolz 2009],
the authors introduced the learning embeddings for atlas propagation (LEAP) algo-
rithm to improve the performance of atlas-based segmentation. The key idea is that
the segmentation accuracy could be higher if the propagation is done progressively
on a dataset: from segmented atlas towards close images, and iteratively until all
images are segmented. This would avoid the direct segmentation of an image too
"far" from the atlases. Their algorithm (see Fig. 4.6) is composed of the following
steps

1. compute the embeddings,

2. select a subset of images to segment (based on the Euclidean distance on the
manifold coordinates),
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Figure 4.5: Multi-atlas segmentation-propagation. (Iatlas,i, Latlas,i)1≤i≤n are the
labeled atlases. (φi)1≤i≤n are the transformations registering the images of the atlas
towards the images of the subject. The segmentation Lsubject is obtained via the
combination of the deformed segmentations (φi · Latlas,i)1≤i≤n. Source: [Bai 2012]

3. for each of these, select a subset of atlases which are going to vote for the
segmentation,

4. propagate the segmentation (do the registrations and voting),

5. iterate step 2-4 until all images are segmented.

Remark (Segmentation accuracy in LEAP). In the LEAP setting, accuracy might
be limited similarly as in the GRAM framework: a large number of iterations might
compound small segmentation errors into larger ones.

4.2.3 Population analysis

In this section, we describe how manifold learning can be used to find trends and
modes of variation in a population.

Generative models In [Gerber 2009, Gerber 2010], the authors introduced a gen-
erative model to describe a population. The main assumption is that all the images
in the population derive from a small number of brains. In their setting, new brain
images can be projected onto the manifold. Figure 4.7 illustrates the result of their
method on the OASIS1 dataset. Via a manifold kernel regression [Davis 2007] on
the manifold coordinates, the authors are also able to reconstruct images from low-
dimension coordinates (see Fig. 4.8).

1www.oasisbrains.org

www.oasisbrains.org
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(a) Compute embeddings with atlases and
images to segment

(b) Select images for propagation

(c) For each image to label, select and regis-
ter atlases

(d) Propagate the segmentation

(e) Iterate until all images are segmented

Figure 4.6: LEAP algorithm for the segmentation of images by iterative
segmentation-propagation of atlases. Source: adapted from [Aljabar 2012].
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Figure 4.7: 2D parametrization of OASIS brain MRI dataset. The insets show
the mean (green), median (blue) and mode2(red) of the learned manifold and the
corresponding reconstructed images. Source [Gerber 2010].

In [Sabuncu 2009], the authors introduced the iCluster algorithm that clusters a
set of images while co-registering them using a parameterized, nonlinear transforma-
tion model. This algorithm is based on a generative model of an image population
as a mixture of deformable templates. The computed template images represent
different modes in a population.

Atlas stratification In [Blezek 2007], the authors use the mean shift algorithm
[Fukunaga 1975] to identify modes in a populations. Their method builds multiple
atlases, each from a subset of the population. The various clusters are visualized
using MDS (see Fig. 4.9).

4.2.4 Machine learning

Manifold regularization In the context of semi-supervised learning, a geometric
method is presented in [Belkin 2004] to improve the results of classification algo-
rithms by using the geometry of unlabeled data. As illustrated in Fig. 4.10, it can
be reasonable to adjust the class prior belief according to the geometry of unlabeled
data. An extra term based on the Laplacian operator is added to the cost function
of the learning algorithm, to force the labeling function to be smooth according

2In statistics, the mode of a random variable X is the most probable value the variable can
take. For a discrete variable, it is the x maximizing P(X = x). For a continuous variable, it is the
x maximizing the density of probability f(x).
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Figure 4.8: Reconstructions from the manifold coordinates to the space of images.
Source [Gerber 2010].

(a) Iteration 1 (b) Iteration 2

(c) Iteration 4 (d) Iteration 9

Figure 4.9: Atlas stratification identifying five modes in a population (2D visualiza-
tion using MDS). Source: [Blezek 2007].
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(a) With one observation from
each class

(b) With extra unlabeled points

Figure 4.10: In green is represented the prior belief of the class to which the blue
diamond belongs. The red circle represent an example from the other class. On the
left, the decision boundary is expected to be linear. On the right, the geometry of
unlabeled data makes a disk prior reasonable. Source: [Belkin 2004].

to the geometry of the data. This technique has been applied to regularized least
squares (RLS) and support vector machines (SVM).

Example 4.2.1 (Disease manifolds). In [Batmanghelich 2008], manifold regular-
ization is used to compute disease manifolds. The authors assume that tissue dete-
rioration related to the disease can be viewed as a continuous change from healthy
to disease, and hence can be modeled by a non-linear manifold. Using the semi-
supervised data (see Fig. 4.11) from several modalities, they apply Laplacian SVM
at the voxel level to build tissue abnormality maps. It is important to notice that
their Laplacian operator contains a parameter to weight the spatial regularization
between pairs of unlabeled voxels (see Fig. 4.12).

4.3 Conclusion

In this section, we have reviewed some DR algorithms (PCA, kPCA, ISOMAP,
LLE, LEM, HEM, LTSA, and DM). We have seen that these algorithms have been
used in medical imaging in a wide range of applications such as image registration,
image segmentation, population analysis and machine learning.

In Chapter 6, these algorithms are used to find trends of shape and appearance
in population of MR and positron emission tomography (PET) images. In Chap-
ter 7, we describe how image and clinical informations can be combined in manifold
learning to build low-dimensional representations of patients.
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(a) FLAIR image (b) Lesion region (c) Healthy tissue

Figure 4.11: Example of semi-supervised data used in [Batmanghelich 2008]. The
red voxels correspond to lesion, the green ones correspond to healthy tissue, and the
remaining ones are unlabeled.
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(a) Low spatial regularization

(b) High spatial regularization

Figure 4.12: Abnormality maps computed in [Batmanghelich 2008] with different
spatial regularizations.
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Résumé

Les séparateurs à vaste marge (SVM) sont une technique d’apprentissage
statistique qui a été utilisée dans la littérature pour la segmentation
et la classification d’images médicales, en particulier pour la segmen-
tation d’hyperintensités de la matière blanche (HMB). Les approches
actuelles utilisant les SVM pour la segmentation d’HMB extraient des
descripteurs du cerveau, les classifient, et utilisent des techniques de
post-traitement complexes pour supprimer les faux positifs. La méth-
ode présentée dans ce chapitre combine l’utilisation d’information spa-
tiale, un pré-traitement avancé (en utilisant la propagation de segmen-
tation de tissus d’un atlas) et une classification SVM permettant de seg-
menter les HMB de manière efficace et avec des performances élevées.
A partir d’une base de données de 125 patients, des descripteurs combi-
nant jusqu’à quatre modalités (T1-w, T2-w, PD et FLAIR), différentes
tailles de voisinage, et l’utilisation de descripteurs multi-échelles ont été
évalués. Nos résultats montrent que même si la combinaison des qua-
tre modalités donne la meilleure performance (scores Dice moyens de
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0.54± 0.12, 0.72± 0.06 et 0.82± 0.06 pour des charges de lésion respec-
tivement faibles, modérées, et élevées, avec des descripteurs d’intensité
de taille 3×3×3), cette performance n’est pas statistiquement meilleure
(p = 0.50) que celle obtenue si l’on utilise seulement les modalités T1-w
et FLAIR (scores Dice moyens de 0.52± 0.13, 0.71± 0.08 et 0.81± 0.07

pour les mêmes charges de lésion et type de descripteur). De plus, la
différence de performance est négligeable (p = 0.93) entre l’utilisation
de descripteurs de taille 5×5×5 et ceux de taille 3×3×3. Finalement,
nous montrons qu’une sélection appropriée de descripteurs et des tech-
niques de pré-traitement non seulement réduit les besoins de stockage
et de puissance de calcul, mais permet aussi d’obtenir une classification
plus efficace, dont les performances dépassent celles obtenues si l’on en-
traîne sur tous les descripteurs et que la classification est suivie d’un
post-traitement.

Mots clés : Imagerie cérébrale, Segmentation de lésion, Classification,
Séparateurs à vaste marge

Abstract

Support vector machines (SVM) are a machine learning technique that
have been used for segmentation and classification of medical images, in-
cluding segmentation of white matter hyper-intensities (WMH). Current
approaches using SVM for WMH segmentation extract features from the
brain and classify these followed by complex post-processing steps to re-
move false positives. The method presented in this chapter combines
the use of domain knowledge, advanced pre-processing (based on tissue
segmentation and atlas propagation) and SVM classification to obtain
efficient and accurate WMH segmentation. Features from a dataset of
125 patients, generated from up to four MR modalities (T1-w, T2-w, PD
and FLAIR), differing neighbourhood sizes and the use of multi-scale fea-
tures were compared. We found that although using all four modalities
gave the best overall classification (average Dice scores of 0.54 ± 0.12,
0.72 ± 0.06 and 0.82 ± 0.06 respectively for small, moderate and severe
lesion loads, using 3 × 3 × 3 neighborhood intensity features); this was
not significantly different (p = 0.50) from using just T1-w and FLAIR
sequences (Dice scores of 0.52± 0.13, 0.71± 0.08 and 0.81± 0.07 for the
same lesion loads and feature type). Furthermore, there was a negligible
difference (p = 0.93) between using 5× 5× 5 and 3× 3× 3 features. Fi-
nally, we show that careful consideration of features and pre-processing
techniques not only saves storage space and computation time but also
leads to more efficient classification which outperforms the one based on
all features with post-processing.
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5.1 Introduction

White matter hyper-intensities (WMH) are regions in the brain white matter (WM)
that appear with bright signal on T2-weighted (T2-w) and fluid attenuated inversion
recovery (FLAIR) magnetic resonance (MR) modalities. They are a possible risk fac-
tor for Alzheimer’s disease (AD) and vascular dementia, with progression associated
with vascular factors and cognitive decline [Lao 2008]. To quantify these changes
in large scale population studies, it is desirable to have fully automatic and accu-
rate segmentation methods to avoid time-consuming, costly and non-reproducible
manual segmentations. However, WMH segmentation using a single modality is
challenging because their signal intensity range overlaps with that of normal tis-
sue: in T1-weighted (T1-w) images, WMH have intensities similar to grey mat-
ter (GM), and in T2-w and proton density (PD) images, WMH look similar to
cerebro-spinal fluid (CSF). FLAIR images have been shown to be most sensitive to
WMH [Anbeek 2004], but can also present hyper-intensity artifacts that can lead
to false positives. To improve the WMH segmentation performance, additional dis-
criminative information is extracted from multiple MR modalities. An alternative
strategy can be found in [Samaille 2012], where the proposed method is not based
on intensities but instead relies on contrast.

Now the most successful lesion segmentation methods in the literature have been
developed for the detection of multiple sclerosis lesions, with a recent grand challenge
comparing the performance of various techniques [Styner 2008]. It is also worth men-
tioning algorithms for brain metastasis segmentation [Ambrosini 2010, Farjam 2012]
and a review of algorithms for brain tumor segmentation [Bauer 2013]. Lesion
segmentation algorithms can be categorized into unsupervised clustering or (semi-
)supervised voxel-wise classification [Llad’o 2012]. Unsupervised methods suffer
from the issue of model selection. Supervised methods such as neural networks
[Dyrby 2008], k nearest neighbours (kNN) [Anbeek 2004], Naive Bayes classifier
[Scully 2010] and Parzen windows [Sajja 2006, Datta 2006] have been proposed.
Neural networks can be efficient but designing an appropriate network architec-
ture and setting the parameters are difficult steps to obtain high performance. A
recent review [Klöppel 2011] compares several approaches (including SVM), how-
ever this study uses a very limited dataset of only 20 patients and only FLAIR and
T1-w images.

We present an SVM based segmentation scheme whose preliminary results were
presented as a conference paper in [Fiot 2011], and inspired by the work in [Lao 2008,
Zacharaki 2008]. Lao et al. applied four steps: pre-processing (co-registration, skull-
stripping, intensity normalisation and inhomogeneity correction), SVM training with
Adaboost, segmentation and elimination of false positives. Our implementation
utilises a similar but more advanced pre-processing pipeline and a simpler training
procedure. As one of the primary causes of errors in other approaches is false positive
cortical regions, we use information from multiple modalities to define a mask of
potential WMH. This mask is built from patient specific tissue segmentation and
atlas based population tissue priors. It leads to three main advantages compared
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to existing techniques. First, such careful feature selection enables to have a more
accurate model without the use of boosting. Second it limits the areas where the
classification is performed on the training set, which means a faster overall brain
classification. Third, it reduces the false positive regions that are usually found
with naive classifiers, so the advanced post processing required by other techniques
[Lao 2008] are not necessary. We also evaluated the relative value of each MR
acquisition protocol for WM lesion segmentation. This scheme is quantitatively
validated on a significantly larger dataset including healthy aging, mild cognitive
impairment and AD subjects. These results were compared with other supervised
classification algorithms such as kNN, Naive Bayes, Parzen windows and decision
tree.

5.2 Methods

5.2.1 Global pipeline

The proposed algorithm uses the standard supervised classification design for seg-
mentation: given images and corresponding segmentations, the goal is to build a
classifier to segment new images (Fig. 5.1). To obtain good performance, adequate
preprocessing, mask and feature type have to be defined. This application-specific
part is followed by a machine learning process. The steps of the proposed algorithm
are summarized in Fig. 5.2.

In this chapter, we use features containing only local information. In particular,
such features do not contain any spatial information. Indeed as the training sets
available in this application are generally limited in size, we do not want the algo-
rithm to be able to predict lesion voxels only in areas where it has "observed" some
in the training set. However, using purely local feature (i.e. not containing any
spatial information whatsoever) could lead to many false positives. To avoid this
side effect, we define a mask to limit the area of interest. This mask is used twice:
first in the training step training features are taken inside this mask, and second in
the segmentation step, voxels outside the mask are directly labeled as non-lesion by
our algorithm.

Section 5.2.2 defines the mask. Section 5.2.3 defines the local features, detail
the support vector machine classifier, and list other classifiers and indicators used
to benchmark our pipeline.

5.2.2 Mask creation

To improve the performance of our lesion segmentation procedure, the definition
of a proper region of interest (ROI) is critical. In this section, we define a mask
to improve the lesion segmentation accuracy. The whole mask creation process is
summarized in Fig. 5.9, and here we present the formal definitions.

First, let us recall that a global threshold on FLAIR images provides a high
sensitivity, but poor specificity, which means it can only be used to define areas of
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Figure 5.1: Supervised classification algorithms for segmentation aim to build a
classifier from images and corresponding segmentations. To obtain good perfor-
mance, adequate pre-processing, mask and feature definitions have to be used. This
application-specific part is followed by a machine learning process, where a classifier
is built from training examples and then used to segment new (testing) images.
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Figure 5.2: The proposed WMH segmentation pipeline is composed of 3 mains steps:
pre-processing, mask creation and machine learning.
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interest. To further refine the areas of interest, we define the region ΩW ⊂ Ω as
the intersection of the dilated Colin WM mask [Collins 1998] (which was registered
rigidly [Ourselin 2001] then non-rigidly [Rueckert 1999] to the subject) and the WM
mask (from the tissue segmentation in patient space, see [Acosta 2009]).

Definition 5.2.1 (white matter domain). We introduce the notion of WM domain
as

ΩW
def.
= WM∩ColinWM, (5.1)

where WM and ColinWM are obtained as described in the above references.

So far we have selected a potential area for white matter. This is a first step
as we are interested in white matter hyper-intensities. Now let us refine even more
to select hyperintensities. Within this white matter domain ΩW , we associate a
score to each voxel to measure how far above or under is the intensity of this voxel
compared to the mean intensity in ΩW .

Definition 5.2.2 (Map of interest). We define I : Ω→ R ∪ {−∞} by

∀ω ∈ Ω, I(ω)
def.
=

{
FLAIR(ω)−µW

σW
if ω ∈ ΩW ,

−∞ otherwise,
(5.2)

where µW
def.
= mean {FLAIR(ω); ω ∈ ΩW } and σW

def.
= std {FLAIR(ω); ω ∈ ΩW }

are the mean and standard deviation of the FLAIR intensities on ΩW

Remark. The FLAIR image and ΩW are assumed such that σW 6= 0.

Up to now, we have obtained a map of potential WMH. To obtain the final
mask, we threshold this map of coefficients.

Definition 5.2.3 (Final mask). Given a threshold parameter τ ∈ R, we define the
mask Mτ : Ω→ R by

∀ω ∈ Ω, Mτ (ω)
def.
=

{
1 if I(ω) > τ,

0 otherwise,
(5.3)

where I : Ω→ R is the map of interest defined in (5.2).

This mask is a binary image which depends on a threshold τ . To understand
better the impact of this parameter, it is interesting to see the limit cases. By
definition, the mask can contain ones only in some parts of the white matter domain
ΩW . The higher the τ , the more selective is the mask, and the less ones it contains.
At the contrary, the lower the τ , the less selective is the mask and the more voxels
in the white matter domain ΩW are selected. The following property evaluates if
the limits of the mask when τ goes to 0 or ∞. Its proof is given in Appendix A.2.1.



106 Chapter 5. Lesion segmentation using SVM

Proposition 5.2.1 (Limits of the mask). Assuming the FLAIR image to be bounded

on ΩW (this is always the case in practice because the number of voxels is finite),

we have

lim
τ→−∞

Mτ = 1|ΩW
, (5.4)

lim
τ→∞

Mτ = 0, (5.5)

where 1|S denotes the charateristic function of a set S.

5.2.3 Classification

5.2.3.1 Feature definitions

As mentioned in section 5.2.1, we evaluated supervised lesion segmentation in the
case of features containing only local information. Below are the definitions of
neighborhood intensity and pyramidal features evaluated in this study.

Definition 5.2.4 (Neighborhood intensity feature). Given an image I : Ω ⊂ R
3 →

R, a voxel ω ∈ Ω and an odd integer p ∈ N, we define the neighbourhood intensity
feature of size p× p× p by

x(ω)
def.
= I|B(ω, p−1

2
), (5.6)

where B(ω, p−1
2 ) =

{
ω′ ∈ Ω; ‖ω − ω′‖∞ ≤

p− 1

2

}
is the ball centered on ω and

of radius p−1
2 for the uniform norm.

Definition 5.2.5 (Pyramidal feature). Given an image I : Ω ⊂ R
3 → R and a set

of scales 0 = σ1 < · · · < σp, the pyramidal features with p levels are evaluated via
the operator

x
def.
= (kσi

⋆ I)1≤i≤p : Ω→ R
p, (5.7)

where kσ⋆ represents the convolution by the Gaussian kernel of scale σ, i.e. ∀ω ∈
Ω, (kσ ⋆ I)(ω) = 1

(
√
2πσ)3

∫
Ω exp(−‖ω−u‖2

2σ2 )I(u)du. By convention, k0 ⋆ I = I (i.e.

k0 is the Dirac operator).

5.2.3.2 Support vector machine theory

Lesion segmentation can be formulated as a binary classification problem. The
SVM technique [Schölkopf 2001] solves it in a supervised way: given a training set,
it builds a function f : X → R such that sign(f) is an optimal labeling function.
To build f , we consider a Reproducing Kernel Hilbert Space HK of functions X →
R, of associated Mercer Kernel K : X × X → R. As mentioned in Chapter 2,
the performance of a predictive model is often evaluated via a loss function (see
Definition 2.1.2). Let us see the various terms in the SVM loss function.
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T1

FLAIR

WM

EM with
priors

GM CSF Colin WM

Let ΩW
def.
= WM∩ColinWM,

µW
def.
= mean {FLAIR(ω); ω ∈ ΩW },

σW
def.
= std {FLAIR(ω); ω ∈ ΩW }.

Map

∀ω ∈ Ω, I(ω)
def.
=

{
FLAIR(ω)−µW

σW

if ω ∈ ΩW ,

−∞ otherwise.

Final Mask Mτ

∀ω ∈ Ω, Mτ (ω)
def.
=

{
1 if I(ω) > τ,

0 otherwise.

τ ∈ R

Figure 5.3: The mask creation uses both FLAIR and T1-w modalities to combine
intensity-based and tissue-based properties. First, an expectation-maximisation
(EM) technique on the T1-w is used to generate WM/GM/CSF segmentation. On
the intersection ΩW of the patient WM and the registered Colin WM, a normalized
scalar map is computed from the FLAIR intensities. A final threshold τ ∈ R on this
map provides the mask Mτ .
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−1 0 1
0

1

Misclassified →← Correctly classified|

ℓhinge
ℓ0/1

Figure 5.4: Hinge loss u
def.
= y × f(x) 7→ ℓhinge(f(x), y) and misclassification loss

u 7→ ℓ0/1(f(x), y).

Definition 5.2.6 (SVM data fitting loss). Given a training set of n labeled features
(xi, yi)1≤i≤n ∈ X × {−1, 1}, the SVM data fitting loss is defined by

Lfit(f)
def.
=

1

n

n∑

i=1

ℓhinge(f(xi), yi), (5.8)

where the hinge loss is defined as follows.

Definition 5.2.7 (Hinge loss). The hinge loss ℓhinge : R× R→ R is defined as

∀(y1, y2) ∈ R× R, ℓhinge(y1, y2)
def.
= max{0, 1− y1y2}. (5.9)

Remark. Figure 5.4 compares the hinge and misclassification losses (seen as functions
of y × f(x)).

Then to avoid overfitting (see Chapter 2, in particular Section 2.1.2), a regular-
ization term is defined.

Definition 5.2.8 (SVM regularization loss).

Lreg(f)
def.
= ‖f‖2K , (5.10)

where ‖ ‖K is the norm associated to K.

Combining both terms, we get the final optimization problem.
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Definition 5.2.9 (SVM optimization problem).

f∗ def.
= argmin

f∈HK

Lfit(f) + γLreg(f), (5.11)

= argmin
f∈HK

1

n

n∑

i=1

ℓhinge(f(xi), yi) + λ‖f‖2K , (5.12)

where λ ≥ 0 is a parameter weighting the first term which controls the labeling
performance and the second term which controls the smoothness of the solution.

Remark. In the literature, the regularization/weighting parameter λ is often called
γ. Nonetheless, we use the notation λ in this thesis to have similar notations in all
chapters.

This optimization problem can be of infinite dimension (and therefore hard to
optimize). The Riesz representation theorem shows that this optimization problem
can be written as a finite optimization problem. Its proof is given in Appendix A.2.2

Theorem 5.2.2 (Riesz representation theorem). The solution of (5.11) exists in

HK and

∃(α1, . . . , αn) ∈ R
n, ∀x ∈ X , f∗(x) =

n∑

i=1

αiK(x,xi) . (5.13)

The optimization problem is convex because of the convexity of the hinge loss
function. However as the objective function is not differentiable, the problem is
reformulated with additional slack variables ξ1, . . . , ξn ∈ R.

Definition 5.2.10 (SVM formulation with slack variables).

f∗ = argmin
f∈HK

ξ1,...,ξn∈R

1

n

n∑

i=1

ξi + λ‖f‖2K , (5.14)

subject to ∀i ∈ [[1, n]], ξi ≥ ℓhinge(f(xi), yi).

Corollary 5.2.3 (Finite dimension SVM formulation with slack variables). By

plugging the expansion of f from (5.13) in (5.14), the optimization problem be-

comes a finite dimension optimization problem. Let the matrix K be defined as

∀(i, j) ∈ [[1, n]]2, Ki,j
def.
= K(xi,xj). The optimization problem is now

min
α1,...,αn∈R
ξ1,...,ξn∈R

1

n

n∑

i=1

ξi + λαTKα , (5.15)

subject to ∀i ∈ [[1, n]],

{
ξi − 1 + yi

∑n
j=1 αjK(xi,xj) ≥ 0,

ξi ≥ 0.

Definition 5.2.11 (SVM Lagrangian). Let µ,ν ∈ R
n be the Lagrangian multipli-



110 Chapter 5. Lesion segmentation using SVM

ers. The Lagrangian of this problem is

L(α, ξ,ν,µ) =
1

n

n∑

i=1

ξi + λαTKα

−
n∑

i=1

µi

(
ξi − 1 + yi

n∑

j=1

αjK(xi,xj)

)
−

n∑

i=1

νiξi . (5.16)

First, let us study the optimality conditions with regard to α and ξ. The proofs
of the following propositions are given in Appendix A.2.3 and A.2.4.

Proposition 5.2.4 (Optimality condition with regard to α). Solving ∇αL = 0

leads to

∀i ∈ [[1, n]], α∗
i (µ,ν) =

yiµi

2λ
. (5.17)

Proposition 5.2.5 (Optimality condition with regard to ξ). Solving ∇ξL = 0 leads

to

∀i ∈ [[1, n]], µi + νi =
1

n
. (5.18)

Definition 5.2.12 (Lagrange dual function). The Lagrange dual function is

q(µ,ν)
def.
= inf

α,ξ∈Rn
L(α, ξ,ν,µ) (5.19)

Now the next proposition gives the formulation of the SVM Lagrange dual func-
tion. Its proof is given in Appendix A.2.5.

Proposition 5.2.6 (SVM Lagrange dual function). The SVM Lagrange dual func-

tion reads

q(µ,ν) =

{∑n
i=1 µi −

1
4λ

∑n
i,j=1 yiyjµiµjK(xi,xj) if µi + νi =

1
n ,

−∞ otherwise.
(5.20)

Now, let us define the SVM dual problem, and give its formulation (proof is
given in Appendix A.2.6).

Definition 5.2.13 (SVM dual problem). The dual problem consists in maximizing

q(µ,ν) subject to

{
µ ≥ 0

ν ≥ 0
.

Proposition 5.2.7. The SVM dual problem is equivalent to

max
0≤µ≤ 1

n

n∑

i=1

µi −
1

4λ

n∑

i,j=1

yiyjµiµjK(xi,xj). (5.21)

As the prediction function can easily be computed using the αi (see Theo-
rem 5.2.2), it is in practice convenient to solve an optimization problem on α.
Using the Propositions 5.2.4, 5.2.7 and the fact that 1

yi
= yi (since yi ∈ {−1, 1}),

we get the following corollary.
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Corollary 5.2.8. The problem that α must solve is

max
α∈Rn

2
n∑

i=1

αiyi −
n∑

i,j=1

αiαjK(xi,xj) (5.22)

= max
α∈Rn

2αTy −αTKα. (5.23)

Definition 5.2.14 (Support vectors). The training vectors associated with non-null
values in α are called the support vectors. We note SV the set of support vectors

SV
def.
= {xi; αi 6= 0} . (5.24)

A geometrical interpretation of the SVM optimization is related to the notion
of margin (see [Schölkopf 2001]).

Definition 5.2.15 (Margin). The margin is defined as the distance between the
decision boundary and the support vectors.

Remark (Maximization of the margin [Rosset 2003]). Margin maximization prop-
erties can be interesting for both the theoretical point of view (e.g. in terms of
generalization error analysis) and the geometric interpretation. The SVM optimiza-
tion maximizes the margin.

5.2.3.3 Other algorithms used for benchmark

Definition 5.2.16 (kNN classifier). The kNN classifier classifies a feature x ∈ X

to the class with the highest cardinality among the k nearest neighbours of x in the
training set.

∀(x, y) ∈ X × Y, fkNN (x)
def.
= argmax

y
card {xi ∈ kNN(x); yi = y} , (5.25)

where kNN(x) is the set of k nearest neighbours of x.

Definition 5.2.17 (Naive Bayes classifier). The Naive Bayes method computes the
posterior probability of a feature x belonging to each class y, and classifies according
the largest posterior probability (see Eq. (5.26)). To compute the parameters of the
probability density of feature x given class y, the features are assumed conditionally
independent given the class.

∀(x, y) ∈ X × Y, fBayes(x)
def.
= argmax

y
P (y|x) (5.26)

= argmax
y

P (x|y)P (y)

P (x)
(5.27)

= argmax
y

P (x|y)P (y). (5.28)
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Definition 5.2.18 (Parzen window classifier). In the case of the Parzen window,
the prior probability is estimated as

∀(x, y) ∈ X × Y, P (x|y)
def.
=

1

card {i; yi = y}

∑

i,yi=y

K(x,xi), (5.29)

where K is for example the Gaussian kernel. The Parzen window classifier is then
found using the Bayes rule

fParzen(x)
def.
= argmax

y
P (y|x) (5.30)

= argmax
y

∑
i,yi=y K(x,xi)∑

iK(x,xi)
. (5.31)

5.2.3.4 Performance indicators

Model performances were compared using the indicators defined below. Statistical
significance was also analysed via the p-values of paired t-tests [Ott 2008].

Definition 5.2.19 (Dice score [Dice 1945]). The Dice score (DSC) is defined as

DSC
def.
= 2

Vol(S ∩GT )

Vol(S) + Vol(GT )
, (5.32)

where S the computed segmentation, GT the ground truth and Vol an operator
counting the number of voxels in a volume.

Remark. The Dice score ranges from 0 (no overlap between the predicted segmen-
tation and the ground truth) to 1 (perfect match).

Definition 5.2.20 ((Number of) true/false positives/negatives (TP, FP, TN, FN)
voxels ).

TP
def.
= card {ω ∈ Ω; S(ω) = GT (ω) = 1} , (5.33)

TN
def.
= card {ω ∈ Ω; S(ω) = GT (ω) = 0} , (5.34)

FP
def.
= card {ω ∈ Ω; S(ω) = 1 6= GT (ω) = 0} , (5.35)

FN
def.
= card {ω ∈ Ω; S(ω) = 0 6= GT (ω) = 1} , (5.36)

where S is computed segmentation and GT is the true segmentation.

Definition 5.2.21 (Specificity). The specificity is defined as

Spec
def.
=

TN

TN+FP
, (5.37)

where TN and FP are the number of true negatives and false positives.

Remark. The specificity ranges from 0 to 1. An algorithm providing a high specificity
is said to be specific. It does not generate many false positives, and therefore if a
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(a) FLAIR (b) T1-w (c) T2-w (d) PD
(e) Manual

segmentation

Figure 5.5: Axial slices from one subject illustrating the different MR modalities
and manual segmentation. Lesions can be seen in the FLAIR and T2-w as a bright
signal.

feature is labeled as positive, there is a “high” chance that the real label is indeed
positive.

Definition 5.2.22 (Sensitivity). The sensitivity is defined as

Sens
def.
=

TP

TP+FN
, (5.38)

where TP and FN are the number of true positives and false negatives.

Remark. The sensitivity ranges from 0 to 1. An algorithm providing a high sensi-
tivity is said to be sensitive. It does not generate many false negative, and therefore
is able to “detect well” the positive features.

Remark (Recall). The sensitivity is also called recall.

Remark. Higher is better for DSC, TP, TN, sensitivity and specificity. Lower is
better for FP and FN.

5.3 Material and Results

5.3.1 Data

The dataset used in this paper comes from the Australian imaging biomarker and
lifestyle (AIBL) study [Ellis 2009], where T1-w (resolution 160× 240× 256, spacing
1.2× 1× 1 mm in the sagittal, coronal and axial directions, TR = 2300 ms, TE =

2.98 ms, flip angle = 9◦), FLAIR (176 × 240 × 256, 0.90 × 0.98 × 0.98 mm, TR =

6000 ms, TE = 421 ms, flip angle = 120◦, TI = 2100 ms), T2-w (228 × 256 × 48,
0.94 × 0.94 × 3, TR = 3000 ms, TE = 101 ms, flip angle = 150◦) and PD (228 ×
256 × 48, 0.94 × 0.94 × 3, TR = 3000 ms, TE = 11 ms, flip angle = 150◦) images
were acquired for 125 subjects. WM lesions were manually segmented by one of
the authors (PR), reviewed by a neuro-radiologist and used as ground truth in the
classification (Fig. 5.5).
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5.3.2 Experiments

Preprocessing: Images were rigidly co-registered [Ourselin 2001], bias-field cor-
rected [Salvado 2006], smoothed using anisotropic diffusion and histogram equalised
to a reference subject. T1-w images were segmented into WM, GM, CSF using an
EM approach with priors [Acosta 2009]. For each modality, features were extracted
within the mask defined below, and scaled to [0, 1]. Multi-modality features were
created by concatenation of single modality features. Neighbourhood intensities
features (3 × 3 × 3 and 5 × 5 × 5 sizes) and pyramidal features (with 4 levels,
(σ1, . . . , σ4) = (0, 0.5, 1, 1.5)) were examined.

Mask creation: The influence of the threshold τ was studied in term of classi-
fication performance bounds (see Section 5.3.3.1). Then the mask Mτ with τ = 2

was computed and used for all experiments.

Machine learning: A subset of 10 000 features, with half belonging to the le-
sion class, the other half belonging to the non-lesion class, randomly selected and
equally distributed among the training samples was used to generate the classi-
fiers. A Matlab implementation solving SVM in its primal formulation was used
[Melacci 2011, Melacci 2009]. The chosen kernel was the (Gaussian) radial basis
function. The width of the kernel and the regularization weight were selected via a
10-fold cross validation. Then each image in the test set was segmented within the
patient mask created. Pixels outside this region were set to the non-lesion class. As
post-processing, all the connected components segmented as lesion with less than
10 voxels were removed.

Performance evaluation: The dataset was randomly split equally into train-
ing and test sets. A classifier was built using the training set, and then used to
segment the test set. Then training set and test set were swapped, another clas-
sifier was built, and the rest of the segmentations were computed. Results were
then merged. We performed experiments to test the influence of the combination of
modalities, the influence of the feature type and the influence of using the mask in
pre-processing instead of in the post-processing. The performance of the SVM clas-
sifier was compared to the performance of other supervized classification algorithms.
As the overall lesion load impacts the segmentation performance, as previously re-
ported in [Anbeek 2004], results are displayed for low (<3mL), moderate (3-10mL)
and severe (>10mL) lesion loads.

5.3.3 Results

5.3.3.1 Performance bounds from mask parameter setting

The influence of the τ parameter in the mask creation on the segmentation per-
formance was evaluated in terms of performance bounds (Fig. 5.6). Those bounds
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are independent of the modality combination and feature type used later in the
classification.

First, we studied the positive effects of increasing τ . As the mask was originally
created to limit the number of FP, we evaluate the positive effects via the use
of the "lesion-everywhere" classifier (worst-case scenario in terms of FP, FN and
specificity). We notice that increasing τ decreases the upper bound of FP, increases
the lower bounds of TN and specificity.

To evaluate the negative effects of increasing τ in terms of performance bounds,
we use the optimal classifier within the mask (best case scenario in terms of TP,
FN, sensitivity and Dice). We notice that increasing τ decreases the upper bounds
of TP, sensitivity and Dice score, and increases the lower bound of FN.

These graphs give insight on the impact of the τ parameter. If τ is too high,
the final segmentation performance will be low, no matter how good is the classifier
segmenting inside Mτ . If τ is too low, the algorithm has a high risk of FP, which is
a known drawback in WM lesion segmentation. Setting τ therefore involves a trade-
off between the use of tissue-information to reduce the risk of FP and a high upper
bound performance. The value τ = 2, which was selected for all experiments, is in
the range of acceptable values decreasing the FP upper bound without decreasing
too much the Dice upper bound.

5.3.3.2 Performance with regard to modality combinations

The segmentation performance was evaluated for various combinations of modali-
ties (using 3 × 3 × 3 neighourhood features). Figure 5.7 shows the values of the
previously defined performance indicators for four single-modality and four multi-
modality features. When using one modality, FLAIR gives the best performance.
However, combining several modalities reduces FP and FN and increases TP. Table
5.1 indicates that on low and moderate lesion loads the T1-w + FLAIR combination
performs statistically better than FLAIR (T2-w + FLAIR does not). On the overall
dataset, the T1-w + T2-w + FLAIR combination performs statistically better than
FLAIR. The model with the four modalities performs the best (Fig. 5.7), but not
significantly better than T1-w + FLAIR (p = 0.50).

5.3.3.3 Performance with regard to feature type

Using the four modalities, the segmentation performance was evaluated for various
feature types (Fig. 5.8). With neighbourhood intensity features, a 5 × 5 × 5 size
slightly increased the DSC compared to 3×3×3, but the difference was not statisti-
cally significant (p = 0.93). Pyramidal features with 4 levels did not perform as well
as neighbourhood intensity features, but the DSC difference was not statistically
significant (p = 0.21 when compared with 3× 3× 3 features, p = 0.18 with 5× 5× 5

features).
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Figure 5.6: Performance bounds due to the threshold τ in the mask creation. The
first line illustrates the positive effects of increasing τ : it decreases the upper bound
of FP (a), increases the lower bounds of TN (b) and specificity (c). The second and
third lines illustrate its negative effects: it decreases the upper bounds of TP (d),
sensitivity (f) and Dice score (g), and increases the lower bound of FN (e). The
value τ = 2 was the value selected for all experiments.
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Figure 5.7: Segmentation performance with different modality combinations (using
the 3× 3× 3 neighbourhood intensity feature type).
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Table 5.1: p-values of paired t-tests using 3× 3× 3 features. Statistically significant differences (p < α = 0.05) in bold green.

Modalities
p-values of t-tests for lesion load

in mL (number of subjects)

Model 1 Model 2 < 3 (35) 3-10 (47) >10 (43) Any (125)
FLAIR FLAIR, T2-w 0.47 0.19 0.62 0.38
FLAIR FLAIR, T1-w 0.047 0.032 0.57 0.070
FLAIR FLAIR, T1-w, T2-w 0.048 0.014 0.26 0.047
FLAIR FLAIR, T1-w, T2-w, PD 0.011 0.002 0.23 0.014

FLAIR, T1-w FLAIR, T1-w, T2-w, PD 0.59 0.41 0.51 0.50
FLAIR, T1-w, T2-w FLAIR, T1-w, T2-w, PD 0.56 0.54 0.93 0.64
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Figure 5.8: Segmentation performance with different feature types (using the 4
modalities).
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Figure 5.9: Using our mask Mτ in the pre-processing gives better results than using
it only as a post-processing step.

5.3.3.4 Performance with regard to the mask use

Using the FLAIR modality and 3×3×3 neighbourhood feature type, the impact of
the mask on the segmentation performance has been evaluated. The use of the mask
in the pre-processing instead of post-processing significantly decreased FP and led
to a much better DSC (Fig. 5.9). The computation time in the prediction step being
linear in the number of features to label, computing predictions for a significantly
lower number of features (only within the mask) reduced the computation time (41
times computation speed-up on our dataset with τ = 2).

5.3.3.5 Performance comparison with other supervised classification al-

gorithms

Using the FLAIR + T1-w combination and 3× 3× 3 feature type, the performance
of the SVM classifier was compared with several other supervised classifiers: kNN
(with k=100 as in [Anbeek 2004]), Naives Bayes, Parzen window and decision tree.

On this dataset, using combined 3 × 3 × 3 features from FLAIR and T1-w
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Figure 5.10: Segmentation performance with different algorithms (using the 3×3×3
neighbourhood intensity feature type, FLAIR and T1-w modalities).
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modalities, SVM obtained the best DSC results, followed by Parzen windows, kNN,
decision tree and Naive Bayes (Fig. 5.10). In terms of FP, kNN, Parzen window and
SVM provide the best results. These tree classifiers also provide the best specifities.
However, kNN and Parzen window classifier have a quite-low sensitivity, whereas
SVM is the most sensitive (followed by classification tree).

5.3.3.6 Performance comparison with the literature

Even though it is difficult to compare results with the literature that are obtained
with different datasets or evaluated with different indicators, let us try to comment
the performance results.

First, we notice that [Klöppel 2011] and [Samaille 2012] also reported higher
performance of SVM compared to kNN. In our study, we only compared supervised
methods. In [Samaille 2012], the authors also evaluated unsupervised methods, and
reported they had lower performance on their datasets.

Second, the Dice scores we obtain are similar to the ones in [Anbeek 2004] (Dice
scores ranged from 0.5 to 0.85 using up to five modalities: compared to us, they
also have inversion recovery images); similar to the ones in [Samaille 2012] (average
Dice score if 0.72); and better than the ones in [Klöppel 2011] (Dice scores of 0.5
and below using FLAIR and T1-w and different methods).

Finally, it is worth mentioning that [Samaille 2012] evaluated the robustness
of their method in a multicenter setup, i.e. using data from different datasets.
Perspectives of our work include the evaluation of our method in such setting.

5.4 Conclusion

We have presented a machine learning scheme applied to the WMH segmentation
problem. Our approach is inspired by the previous work on SVM but has a number of
differences. It combines the use of tissue segmentation, atlas propagation techniques
and SVM classification to get efficient and accurate segmentation results. Using our
pipeline and our dataset, SVM has a higher classification performance than other
supervised algorithms such as kNN, Naive Bayes, Parzen window and decision tree.

In this work we also quantified the relative performance variations with regard to
different modalities or feature types. Regarding the modalities, our results confirm
that using all of the four modalities adds discriminative information and improves
the segmentation results, as reported in [Lao 2008]. However, our quantitative re-
sults show that using only FLAIR and T1-w modalities can give similar performance
at a lower cost. One reason could be the lower axial resolution of our T2-w and
PD images. Regarding the feature types, there is a trade off between complexity,
storage place and computation time versus the performance.

As other important contribution of this work, the mask we define and use in
the pre-processing has several positive impacts. First, it improves the classifier
performance as the training features are selected in regions of interest, which leads
to better classifiers. We have given insight on the trade-off related to the threshold
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parameter selection in the mask creation. Increasing the threshold decreases the
upper bound of FP (and therefore the potential risk of final FP). However, a low
FP upper bound comes at a price as increasing the threshold increases the FN
lower bound and decreases the Dice upper bound, which means a threshold too high
would cause poor final performance no matter how good is the classifier. Second,
computation time and storage space required are significantly lower (41 times lower
on our dataset with the chosen threshold) as features and predictions are computed
in a restricted area. Finally, using our mask in the pre-processing makes most of the
complex post-processing steps required in current state-of-art methods redundant.
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Résumé

L’identification à grande échelle des variations anatomiques et des pro-
priétés des tissus dans des populations constitue un challenge en im-
agerie médicale. Diverses méthodes d’analyse statistique, de réduction
de dimension et de partitionnement ont été introduites pour apporter
des éléments de réponse à ce problème. Ces techniques permettent de
mieux comprendre les effets démographiques ou les facteurs génétiques
des évolutions de maladie. Elles peuvent également être utilisées pour
améliorer la précision ou supprimer les biais de divers algorithmes de
recalage ou de segmentation. Dans ce chapitre, nous évaluons la ca-
pacité de techniques de réduction de dimension à établir des marqueurs
simples du vieillissement et de la maladie d’Alzheimer à partir d’images
multi-modales (IRM et PET) de 128 patients, sains, atteints de troubles
cognitifs légers, ou malades. En appliquant les Laplacian Eigenmaps sur
des images T1-w d’IRM, nous montrons que la variation principale dans
cette population est la taille des ventricules. À partir d’images PiB PET,
nous construisons des variétés montrant une transition suivant la réten-
tion du radio-traceur PiB. La combinaison des deux modalités donne
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des variétés dont différents endroits correspondent à différentes tailles
de ventricule et différentes charges de bêta-amyloïde.

Mots clés : Analyse de population, réduction de population non linéaire,
apprentissage de variétés, imagerie cérébrale

Abstract

Characterizing the variations in anatomy and tissue properties in large
populations is a challenging problem in medical imaging. Various statis-
tical analysis, dimension reduction and clustering techniques have been
developed to reach this goal. These techniques can provide insight into
the effects of demographic and genetic factors on disease progression.
They can also be used to improve the accuracy and remove biases in
various image segmentation and registration algorithms. In this chap-
ter we explore the potential of some non linear dimensionality reduc-
tion (NLDR) techniques to establish simple imaging indicators of aging
and Alzheimer’s disease (AD) on a large population of multimodality
brain images (magnetic resonance (MR) and Pittsburgh compound B
marker (PiB) positron emission tomography (PET)) composed of 218
patients including healthy control, mild cognitive impairment and AD.
Using T1-weighted (T1-w) MR images, we found using Laplacian eigen-
maps (LEM) that the main variation across this population was the size
of the ventricles. For the grey matter signal in PiB PET images, we
built manifolds that showed transition from low to high PiB retention.
The combination of the two modalities generated a manifold with differ-
ent areas that corresponded to different ventricle sizes and beta-amyloid
loads.

Keywords: Population Analysis, Non Linear Dimensionality Reduc-
tion, Manifold Learning, Brain Imaging
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6.1 Introduction

Analyzing trends and modes in a population, as well as computing meaningful re-
gressions, are challenges in the field of medical imaging. A considerable amount of
work has been done to simplify the use of medical images for clinicians, and sum-
marizing the information in just few imaging biomarkers, that would for example
quantify and easily allow the interpretation of disease evolution. This is of great
interest not only for clinical diagnosis, but also for clinical studies and to stratify
cohorts during clinical trials.

Large medical databases challenge manual analysis of a population. Unbiased
atlases can be used to describe a population [Lorenzen 2005]. [Blezek 2007] intro-
duced the atlas stratification technique, discovering modes of variation in a popula-
tion using a mean shift algorithm. [Sabuncu 2009] introduced iCluster, a clustering
algorithm computing multiple templates that represent different modes in the pop-
ulation. [Davis 2007] demonstrated the use of manifold kernel regression to regress
the images with regard to a known parameter, such as age. [Wolz 2009] introduced
the Learning Embeddings for Atlas Propagation technique, and showed that the use
of manifold learning can improve the segmentation results compared to the simple
use of image similarity in multi-atlas segmentation techniques. [Gerber 2010] de-
veloped a generative model to describe the population of brain images, under the
assumption that the whole population derive from a small number of brains. These
techniques usually rely on computations of diffeomorphisms or transformations to
compute distances between images. Alternatively it is also possible to use dimen-
sionality reduction techniques directly on the image pixels intensities [Wolz 2009],
as we propose in this paper. Most dimensionality reduction techniques rely either
on information theory or geometry. Information-based assumptions can be related
to the maximum of variance (principal component analysis (PCA), kernel principal
component analysis (kPCA)), entropy measure, etc. Geometric assumptions are
either global (multi dimension scaling (MDS), isometric mapping (ISOMAP)), or
local (local linear embeddings (LLE), LEM, Hessian eigenmaps (HEM), diffusion
maps (DM), local tangent space alignment (LTSA)). References to these algorithms
can be found in [van der Maaten 2007].

In this publication, we examine the use of NLDR techniques to analyse multi-
modality brain images. Alzheimer’s disease (AD) is associated with the deposition in
the brain of amyloid plaques, which can be imaged with PET using the PiB, and with
brain atrophy, which can be imaged with MR T1-w images. We are investigating
the use of manifold learning techniques for studying PET-PiB and T1-w.

6.2 Methods

6.2.1 Global pipeline

The proposed algorithm, summarized in Fig. 6.1, consists of the following steps:
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Figure 6.1: Overview of the algorithmic pipeline

Pre-processing: PiB and MR images were affinely co-registered. All PiB Im-
ages were Standardised Uptake Value Ratio normalised to the mean uptake in the
cerebellum crus region [Raniga 2008]. T1-w images were bias-field corrected in the
mask creation process. T1-w images were then spatially normalised using an elderly
brain atlas using affine and then non-rigid transformations. These transformations
were then propagated to the PiB images. Noise was reduced in T1-w images using
anisotropic diffusion, and in PiB images using a 2mm Gaussian convolution.

Mask creation: using a subset of 98 MR images, an average elderly brain atlas
and its associated probabilistic tissue priors (white matter (WM), grey matter (GM)
and cerebro-spinal fluid (CSF)) is created from the segmentations obtained using
[Acosta 2009] and a voting method. The segmentation of the atlas is used to create
the mask used in the NLDR step (whole brain (union of WM, GM and CSF) or GM
only).

Dimensionality reduction (dimensionality reduction (DR)): this last step
is described in details in the next section.
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6.2.2 Dimensionality reduction

Definition 6.2.1 (DR problem). Given n vectors {x1, . . . ,xn} ∈ R
d and a target

dimension δ < d, the dimensionality reduction consists in finding n corresponding
vectors {x̃1, . . . , x̃n} ∈ R

δ optimal in some sense.

Remark. When designing or using a DR algorithm, ones needs to answer several
questions:

• How to define the notion of "optimality" of the low dimension coordinates?

• What are the assumptions on the data coming from this definition?

• Is it optional / desirable / important / critical to be able to be able to compute
the low-dimension representation of a new vector x ∈ R

d without recomputing
everything?

• Is it optional / desirable / important / critical to be able to reconstruct the
high dimension representation from the low dimension one?

Remark. In the case of medical imaging, the xi are typically scalar, vectorial or
tensor images. Their dimension d is generally the number of voxels in the image
(possibly masked), or a multiple of it (so d∼104 to 107). The number of images /
patients n ranges from 102 to 104. Finally the target dimension δ depends on the
final application, but usually ranges from 100 to 102.

In the literature, several NLDR strategies have been proposed. LEM first builds a
weighted adjacency graph and then solves an eigenvalue optimisation problem based
on the Laplacian operator. The weighted adjacency graph is usually a graph of k
nearest neighbours (kNN). In this graph, each image defines one vertex, and every
image is connected with an edge to its kNN. Edges are bidirectional, and weighted
based on distances between images, usually using the heat kernel. ISOMAP builds a
weighted neighbourhood graph (usually kNN), then computes the weights between
all pairs of points using shortest paths on graphs, and finally constructs the low-
dimensional embedding via an eigenvalue problem. LLE builds a kNN graph, then
computes the optimal weights minimising the sum of the errors of linear reconstruc-
tions in the high dimensional space, and finally solve an eigenvalue problem to map
to embedded coordinates. HEM identifies the kNN, obtains tangent coordinates by
singular value decomposition, and then computes the embedding coordinates us-
ing the Hessian operator and eigen-analysis. LTSA uses the tangent space in the
neighbourhood of a data point (typically the kNN) to represent the local geometry,
and then align those tangent spaces to construct the global coordinate system for
the nonlinear manifold by minimizing the alignment error for the global coordinate
learning.

Laplacian eigenmaps LEM [Belkin 2003] is a distance-based dimensionality re-
duction algorithm. It aims at minimizing a weighted sum of the distances in the
final space.
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Definition 6.2.2 (LEM loss function). The LEM loss function is defined as

L(x̃1, . . . , x̃n)
def.
=

n∑

i,j=1

wij ||x̃i − x̃j ||
2, (6.1)

where {wij ∈ R; (i, j) ∈ [[1, n]]} is a set of weights such that wij is "high" if xi and
xj are "close".

Remark. Appropriate constraints must be added to prevent the solution to be the
trivial one.

Now let us see how the weights are defined. First, a graph is built with edges
connecting nearby points to each other. There are 2 variants: ε-graph and kNN
graph.

Definition 6.2.3 (Distance matrix). Given n objects x1, . . . ,xn, the distance matrix

is defined by
∆

def.
= (d(xi,xj))1≤i,j≤n, (6.2)

where d(xi,xj) is a distance between xi and xj .

Definition 6.2.4 (ε-graph). Given n objects x1, . . . ,xn and their distance matrix
∆, the ε-graph is defined as a set of nodes (ni)1≤i≤n, and edges connecting the nodes
corresponding close enough objects

∀(i, j) ∈ [[1, n]]2, ηi∼nj if d(xi,xj)
2 ≤ ε. (6.3)

Definition 6.2.5 (Graph connected). A graph of nodes (ni)1≤i≤n is connected if

∀i ∈ [[1, n]], ∃j ∈ [[1, n]] \ {i}, ni∼nj . (6.4)

Remark. Given n objects x1, . . . ,xn, the ε-graph is not connected if ε is too small.
(For example, one can take ε = 1

2 min
{
d(xi,xj); (i, j) ∈ [[1, n]]2

}
).

Definition 6.2.6 (Set of kNN). Given n objects x1, . . . ,xn and their distance ma-
trix ∆, we define the set of k nearest neighbours (k ∈ N) by

kNN(xi)
def.
= {xσi

; j ∈ [[1, k]]} , (6.5)

where {σj ; j ∈ [[1, n− 1]]} = [[1, n]] \ {i} and d(xi,xσ1) ≤ · · · ≤ d(xi,xσn−1).

Definition 6.2.7 (kNN graph). Given n objects x1, . . . ,xn and their distance ma-
trix ∆, the kNN-graph is defined as a set of nodes (ηi)1≤i≤n, and edges connecting
each object to its k nearest neighbours

∀(i, j) ∈ [[1, n]]2, ηi∼ηj if

{
xi ∈ kNN(xj) or,

xj ∈ kNN(xi).
(6.6)
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Definition 6.2.8 (Heat kernel). The weights of the graph with the heat kernel are
defined as

wij
def.
=




e

−d(xi,xj)
2

σ if ηi∼ηj ,

0 otherwise,
(6.7)

where σ ∈ R is a scaling coefficient.

Definition 6.2.9 (Simple-minded kernel). The weights of the graph with the simple-

minded kernel are defined as

wij
def.
=

{
1 if ηi∼nj ,

0 otherwise.
(6.8)

Remark. The simple-minded kernel is equivalent to a heat kernel with σ =∞.

Definition 6.2.10 (Degree matrix D of W). Given a matrix W ∈ R
n×n containing

the weights of a graph, we define the degree matrix as a diagonal matrix

{
∀i ∈ [[1, n]], dii =

∑
j wij ,

∀(i, j) ∈ [[1, n]]2 such that i 6= j, dij = 0.
(6.9)

Definition 6.2.11 (Graph Laplacian). The graph Laplacian is a matrix in R
n×n

defined by
L

def.
= D−W, (6.10)

where D and W are respectively the degree and weight matrices corresponding to
a graph.

Proposition 6.2.1. Using the previous definitions, the LEM loss function can be

re-written as

L(X̃) = 2Tr
(
X̃TLX̃

)
, (6.11)

where X̃ = (x̃1, . . . , x̃n)
T ∈ R

n×δ.

Remark. The proof is given in Appendix A.3.1.

Remark. To avoid the trivial solution, the minimization problem is solved under the
constraint X̃T X̃ = I.

Finally one can establish the LEM solution using [Lütkepohl 1996].

Proposition 6.2.2 (LEM solution). The low dimensional representation can there-

fore be found by solving the eigenvalue problem

Find (v, λ) ∈ R
n × R such that Lv = λv. (6.12)
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Then the δ eigenvectors (vi)1≤i≤δ corresponding to the smallest nonzero eigenvalues

form the low-dimensional data representation X̃, i.e.

∀i ∈ [[1, n]], x̃i =
(
v
(i)
1 , . . . , v

(i)
δ

)
. (6.13)

6.3 Material and Results

6.3.1 Data

The dataset is composed of 218 patients from the Australian imaging biomarker
and lifestyle (AIBL) study [Ellis 2009]. T1-w (image matrix 60× 240× 256, image
spacing of 1.2× 1× 1 mm in the sagittal, coronal and axial directions, TR=2300ms,
TR=2.98ms, TI=900ms, flip angle=9◦) and PiB (reconstructed image matrix 28×

128 × 90, 2 × 2 × 2 mm spacing) scans were acquired. Extra clinical information
available in the database (such as age, clinical score, diagnosis) was also used in the
visualization (but not in the creation of the low-dimension representations of the
patients). Finally a preprocessed set of 3D hippocampi represented by point clouds
was used.

6.3.2 Experiments

Initially LLE, LEM, HEM, and LTSA were investigated for multi modality brain
imaging population analysis. Although we initially investigated several algorithms,
we only report the LEM results as it was the only method we found to give stable
manifold structures and that did not lead to numerical issues. In particular, HEM
was found to have a prohibitive processing time. On our data, LLE had numerical
stability problems that resulted from nearly-singular matrices (some eigenvalues
being close to zero). LTSA did not reveal any meaningful manifold structures on
our data. Moreover, several target dimensions were initially investigated, however
we only report the results of 2D dimensional manifolds within, as they provided
more stable and meaningful structures.

The NLDR was performed on the middle 2D slice using the mani Matlab im-
plementation available at [Wittman 2005]. The LEM version using a kNN graph
was used. The default k parameter from [Wittman 2005] (k = 8) was used. The
robustness of the manifold with regard to k was also analysed. To compute the edge
weights, we used the simple-minded version.

Low dimension representation of population of T1-w, PiB and combined T1-w/PiB
were then studied. As the AIBL also provide clinical information (diagnosis, age,
cognitive information), we have also computed some low-dimension representation
from the images and displayed the clinical information on top of it. Finally, we have
computed LEM embeddings of a preprocessed set of 3D hippocampi available in the
AIBL database.
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Figure 6.2: LEM embeddings using MR images registered with affine transforma-
tions and a global brain mask (218 images, input dimension: 23346, target di-
mension: 2). Several examples of corresponding images are also plotted showing
increased ventricle size from bottom to top.

6.3.3 Results

The enlargement of the ventricles is one of the most obvious changes seen in MR
images of the brain as one ages. Figure 6.2 shows the LEM embeddings (i.e. the low
dimension representation of the data) in dimension 2 with the MR images using a
global tissue mask corresponding to the whole brain. A structure with two branches
appears. The top branch corresponds to images with large ventricles, whereas the
lower branch corresponds to smaller ventricles. Figure 6.3 shows that if only the
central part of the brain image is used as input data (by eroding the mask), the
structure of the manifold is conserved, with the same separation of ventricle sizes.

Amyloid load as observed using PET PiB is known to be related to AD. Figure
6.4 shows LEM embeddings in dimension 2 with PiB images. When using a global
brain mask (input dimension: 23346) and images registered with affine transfor-
mations (Fig. 6.4a), the point cloud obtained has a similar structure as the one
with MR images (Fig. 6.2) with two branches. The images in the bottom branch
have increased PiB retention compared to the ones in the top branch. With a GM
mask (input dimension: 12212) and images registered with affine transformations
(Fig. 6.4b), the structure with two branches disappears. However, from top to bot-
tom, the PiB retention increases. If the images are registered non-rigidly and a GM
mask is used (Fig. 6.4c), there is a structure with 2 branches, the top branch with
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Figure 6.3: LEM embeddings using MR images (registered using affine transforma-
tions) and global brain masks more and more eroded (218 images, target dimension:
2). The structure with two branches is conserved.

a low PiB retention, the other one with high PiB retention.

Figure 6.5a shows the LEM embeddings in dimension 2 of the data when com-
bining the MR and PiB modalities, registered using affine transformations. Top
left images have large ventricles, and bottom right images have a higher PiB reten-
tion. When images are registered non-rigidly, the structure with 2 branches appears
again, and the PiB retention increases from top to bottom (Fig. 6.5b).

Figure 6.6 illustrates the robustness with regard to the number of nearest neigh-
bours k used in the neighbourhood graph. If k is too low or too high, the structure
with two branches is destroyed. A value of k too high leads to jumps between
different parts on the manifold.

In Fig. 6.7, we displayed several indicators on top of the manifolds. This ex-
ploratory view can be used to identify potential correlations between different types
of clinical data. It would be also interesting to see how changing the metric would
impact such manifolds. Finally it motivates the NLDR methods presented in Chap-
ter 7, which are able to combine different types of data.

In Fig. 6.8, 2D LEM embeddings from 3D hippocampi are represented. Each hip-
pocampus is represented by a group of points on its surface. As all the hippocampi
have the same number of points and point repartition on the surface, it is possible to
define a distance between hippocampi by summing the distances between all their
corresponding points. However, it is hard to identify a clear pattern from these
LEM embeddings. To try to obtain a more meaningful structure, one can modify
the distance. In Part III, we investigate other models based on deformations, which
might be better for hippocampus shape analysis.
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Figure 6.4: LEM embeddings in dimension 2 using PiB images.



136 Chapter 6. Image and shape analysis via manifold learning

� �

(a) With a global brain mask (input dimension: 46692)

(b) With a GM mask (input dimension: 24424)

Figure 6.5: LEM embeddings in 2D using the combination MR + PiB (registered
using affine transformations).
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(a) k=2 (b) k=4

(c) k=8 (d) k=16

(e) k=32 (f) k=64

Figure 6.6: Test of robustness of LEM embeddings in dimension 2 with regard to
K (number of Nearest Neighbours in the graph creation), using MR images and a
global brain mask. If K is too low or too high, the structure with two branches gets
destroyed.
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(a) Diagnosis (b) Age (c) Cognitive score

(d) Diagnosis (e) Age (f) Cognitive score

Figure 6.7: Clinical information displayed on top of 2D LEM embeddings. In the
first line, the embeddings were computed from MR images aligned to a template,
and with a mask on the hippocampal area. In the second line, the embeddings are
computed using PET-PiB images aligned non-rigidly to a template, and with a GM
mask.
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Figure 6.8: Two-dimensional LEM embeddings of 3D hippocampi. The shape of
each hippocampus is represented as a set of points in R

3. All the hippocampi have
the same number of points, and the color represent the distance to the mean position
in the population.
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6.4 Conclusion

In this paper, we investigated the use of LEM to model PET-PiB and MR-T1-w to
characterize the shape and appearance of images in a large clinical Alzheimer study.
This can be particularly useful in atlas selection techniques, but can be applied in
other areas. As far as shape analysis is concerned, NLDR techniques revealed that
the ventricle size was the main variation in this population of brain images. The
structure of the resulting 2D manifold with two branches was conserved when the
cortical details were masked, leaving only the ventricles. This was expected as we
used a L2 distance and many voxels were strongly affected with ventricle enlarge-
ment associated with the disease and ageing. To avoid biases from the ventricles
(Fig. 6.4a), we examined only the GM voxels when studying PiB intensity (Fig. 6.4b
and Fig. 6.4c).

Many studies advice to use an image metric based on deformations to analyze
population of images [Gerber 2010]. Nonetheless, we have shown that a simple
Euclidean distance in LEM allowed identifying a low dimensional manifold structure
corresponding to some anatomical and/or intensity variations. It is expected that
using L2 distance would be less computationally expensive than deformation based
approaches, such as diffeomorphic or elastic registrations. This could offer faster
processing especially for large databases.
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Résumé

Les techniques d’apprentissage de variétés sont très populaires dans la
littérature pour représenter en faible dimension les images par résonance
magnétique (IRM) de cerveaux de patients. Entrainés sur ces coordon-
nées, des classifieurs de diagnostique visent à séparer les patients sains,
les patients ayant des troubles cognitifs légers et les patients atteints
de la maladie d’Alzheimer. La performance de ces classifieurs peut être
améliorée en incorporant des données cliniques, disponibles dans la plu-
part des études à grande échelle. Cependant, les algorithmes standards
de réduction de dimension non-linéaire ne peuvent pas être appliqués
directement à la combinaison d’images et de données cliniques. Dans ce
chapitre, nous présentons une nouvelle extension des Laplacian Eigen-

maps permettant l’apprentissage de variétés en combinant des images
et des données cliniques. Dans le cas de données cliniques continues,
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cette méthode, basée sur la distance, est plus appropriée que la méthode
existante basée sur une extension du graphe, qui convient dans le cas
discret. Ces méthodes sont évaluées en termes de performance de classi-
fication sur une base de données provenant de l’étude ADNI et constituée
d’images IRM et de données cliniques (génotypes ApoE, concentrations
de Aβ42, et scores cognitifs MMSE) de 288 patients.

Mots clés : Apprentissage de variétés, analyse de population, traite-
ment d’image, données cliniques, maladie d’Alzheimer

Abstract

Manifold learning techniques have been widely used to produce low-
dimensional representations of patient brain MR images. Diagnosis clas-
sifiers trained on these coordinates attempt to separate healthy, mild cog-
nitive impairment and Alzheimer’s disease patients. The performance of
such classifiers can be improved by incorporating clinical data available
in most large-scale clinical studies. However, the standard non-linear
dimensionality reduction algorithms cannot be applied directly to imag-
ing and clinical data. In this chapter, we introduce a novel extension
of Laplacian Eigenmaps that allows the computation of manifolds while
combining imaging and clinical data. This method is a distance-based
extension that suits better continuous clinical variables than the ex-
isting graph-based extension, which is suitable for clinical variables in
finite discrete spaces. These methods were evaluated in terms of classi-
fication accuracy using 288 MR images and clinical data (ApoE geno-
types, Aβ42 concentrations and mini-mental state exam (MMSE) cogni-
tive scores) of patients enrolled in the Alzheimer’s disease neuroimaging
initiative (ADNI) study.

Keywords: Manifold learning, population analysis, image processing,
clinical data, Alzheimer’s disease
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7.1 Introduction

Large scale population studies aim to improve the understanding of the causes of
diseases, define biomarkers for early diagnosis, and develop preventive treatments.
In the context of the AD, imaging biomarkers, blood biomarkers, cognitive tests,
lifestyle and diet biomarkers are all potential sources of information to diagnose the
disease as early as possible.

Manifold learning techniques have been used to analyze trends in populations
and describe the space of brain images by a low-dimensional non-linear manifold
[Gerber 2010, Wolz 2011]. These studies attempt to describe the space of brain
images via a low-dimensional manifold while capturing relevant information with
regard to disease diagnosis. Diagnosis classifiers trained on the low-dimension coor-
dinates evaluate the ability to capture this information and separate healthy, mild
cognitive impairment (MCI) and AD patients [Wolz 2011].

In large-scale clinical studies, an efficient representation for imaging data that
captures the population variability is useful for comparison, data exploration and
prediction. To build more informative manifolds, the use of non-imaging information
can illuminate otherwise hidden relations. However, as the imaging and clinical data
are in different spaces, the non-linear dimensionality reduction cannot be applied
directly and must be adapted. We introduce a distance-based extension and compare
it theoretically to an existing graph-based extension [Wolz 2011]. We also evaluate
their numerical classification performances on a large dataset from the ADNI study
[Mueller 2005].

7.2 Methods

7.2.1 Population analysis and diagnosis classification from mani-
fold learning

It has been shown that the space of brain images in R
d can be described by a

non-linear manifold of intrinsic dimension δ ≪ d [Gerber 2010]. LEM [Belkin 2003]
can be used to compute the low-dimensional representation of the data (Fig. 7.1).
Given a matrix ∆img ∈ R

n×n of pairwise distances between n images and a number
of kNN k ∈ N, an adjacency-graph is computed. Each node ni represents an image,
and weighted edges connecting each image to its kNN are created. From the weight
matrix W = (wij)1≤i,j≤n, a diagonal matrix D is computed with dii

def.
=

∑
j wij . The

graph Laplacian is given by L
def.
= D−W. Its eigenvectors {vj ∈ R

n}1≤j≤δ associated
to the δ smallest non-zero eigenvalues provide the low-dimension coordinates {x̃i =

(vi
1, . . . ,v

i
δ) ∈ R

δ}1≤i≤n. Noting X̃
def.
= (x̃1, . . . , x̃n)

T , these coordinates are the
solutions of the optimization problem

Definition 7.2.1 (Standard LEM optimization problem).

argmin
X̃TDX̃=I

∑

ij

wij ||x̃i − x̃j ||
2 . (7.1)
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Distance matrix → k-NN graph → Laplacian → Low dimension coordinates
∆ ∈ R

n×n W ∈ R
n×n L ∈ R

n×n X̃ ∈ R
n×δ

Figure 7.1: Standard LEM pipeline to compute low-dimension coordinates X̃. The
distance-based extension modifies ∆, whereas the graph-based extension modifies
W.

To evaluate how well the representation captures the disease progression we
compute the classification performance of the low dimensional parameterization.

7.2.2 Extended Laplacian eigenmaps based on distance matrix com-
bination

To combine imaging and clinical data in the manifold learning process, one can
define a distance on the clinical data, combine linearly the image-based and clinical-
based distance matrices, and apply the standard LEM algorithm. This extension
adds two constraints to the original algorithm:

1. the need for a distance on the clinical data and,

2. the need to define a weight for the clinical data.

Definition 7.2.2 (Combined image and clinical distance).

∆
def.
= ∆img + γ∆clinical, (7.2)

where γ ≥ 0 is weighting the importance of the clinical data.

Remark. Combining the two distance matrices and applying LEM creates a graph
with the same nodes but different edges and weights ŵij (Fig. 7.2a and 7.2b). Let
us note Ŵ = (ŵij)1≤i,j≤n and D̂ the weight and degree matrices associated with ∆.

Proposition 7.2.1 (Distance-based LEM extension optimization problem). Using

the previous notations, the optimization problem becomes

argmin
X̃T D̂X̃=I

n∑

i,j=1

ŵij ||x̃i − x̃j ||
2 . (7.3)

7.2.3 Extended Laplacian eigenmaps based on adjacency graph ex-
tension

An alternative method to combine imaging and clinical data is to extend the ad-
jacency graph by adding extra nodes and edges. One such technique has been
presented in [Wolz 2011]. This extension also adds two constraints to the original
algorithm:
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Weight matrix Wimg ∈ R
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(a) Standard LEM

η5

η4

η6

η2

η1

η3

ŵ12 Patient nodes (ηi)1≤i≤n

Weight matrix Ŵ ∈ R
n×n

(b) Distance-based LEM extension
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Patient nodes (ηi)1≤i≤n

Weight matrix Wimg ∈ R
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Clinical nodes (η̌i)1≤i≤ň

Cost matrix C ∈ R
ň×n

(c) Graph-based LEM extension

Figure 7.2: Comparison of the graphs in the standard LEM algorithm and in the
two extensions. When combining distances matrices, one gets a graph as in 7.2b
with the same nodes as the standard LEM 7.2a but different edges and different
weights. In the graph-based LEM extension, the graph 7.2c is built from the graph
of the standard LEM 7.2a, then extra new nodes and weights are added.
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1. a set of rules to extend the graph (extra nodes and extra weights),

2. the need to define a weight for the clinical data.

Let us assume we have a set of images (xi)1≤i≤n and a matrix of pairwise dis-
tances ∆img ∈ R

n×n. Let us note (ηi)1≤i≤n the nodes of the adjacency graph and
Wimg ∈ R

n×n the weights built in the standard LEM algorithm. Now let us assume
we have a set of clinical variables (zi)1≤i≤n ∈ Zn. Let us see first how the graph is
extended when the clinical data lies in a discrete space and then when it lies in a
continuous space.

Extended graph in the discrete case: If cardZ = ň < ∞, let us denote
Z = {z1, . . . , zň}. Now let us define the extra nodes, edges and weights.

Definition 7.2.3 (Extra nodes in the discrete case). In this case, a set of extra
nodes is added: (η̌k)1≤k≤ň.

Definition 7.2.4 (Extra edges in the discrete case). Extra edges are added to
connect each patient to the node of their clinical state

∀(i, k) ∈ [[1, n]]× [[1, ň]], ηi∼η̌k if zi = zk. (7.4)

The matrix C ∈ R
n×ň contains the extra weights

∀(i, k) ∈ [[1, n]]× [[1, ň]], cik
def.
=

{
1 if zi = zk,

0 otherwise.
(7.5)

Remark (Example: apolipoprotein E (ApoE) genotype). In this case,

Z = {z1 = (ε2, ε2), z2 = (ε2, ε3), z3 = (ε2, ε4),

z4 = (ε3, ε3), z5 = (ε3, ε4), z6 = (ε4, ε4)} .
(7.6)

One extra node is created for each ApoE genotype, and then all patients are con-
nected to the node of their genotype.

Extended graph in the continuous case Now let us consider the case cardZ =

∞ (typically Z = R
ď). In this case, Wolz et al. proposed to partition this continuous

space and set the weights as the fuzzy probabilities of belonging to each partition.

Definition 7.2.5 (Partition of the clinical space). Let us assume the space Z is
partitioned into ň ∈ N parts.

Z = ∪ňi=1Zi, (7.7)

such that ∀(i, j) ∈ [[1, ň]]2 with i 6= j, Zi ∩ Zj = ∅.

Definition 7.2.6 (Extra nodes in the continuous case). In this case, a set of extra
nodes is added: (η̌k)1≤k≤ň, where ň is the number of parts in the partition.
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Figure 7.3: Numerical simulation: given a random set {zi ∈ R; i ∈ [[1, n]]} with
n = 100, the coefficients {cik; (i, k) ∈ [[1, n]]× [[1, ň]]} (ň = 3) are computed ac-
cording to the equation (7.9).

Definition 7.2.7 (Extra edges in the continuous case). Extra edges are added to
connect each patient to the nodes of all parts of Z

∀(i, k) ∈ [[1, n]]× [[1, ň]], ηi∼η̌k . (7.8)

The matrix C ∈ R
n×ň contains the extra weights designed as fuzzy probabilities

of being in the parts of Z

∀(i, k) ∈ [[1, n]]× [[1, ň]], cik
def.
=

1
d(zi,zk)∑ň

k=1
1

d(zi,zk)

, (7.9)

where d is a distance on Z, and zk ∈ Zk is a chosen "center" of the partition Zk.

Remark (Case Z = R). Wolz et al. proposed to use ň = 3 partition defined using the
minimum, the 33% and 67% percentiles, and the maximum computed empirically
on the dataset.

Remark (Numerical simulation). Figure 7.3 illustrates the computation of the coeffi-
cients {cik; (i, k) ∈ [[1, n]]× [[1, ň]]} from a random set {zi ∈ R; i ∈ [[1, n]]}, with
n = 100 and ň = 3.

Remark (Examples). Aβ42 concentration or MMSE clinical score are examples of
continuous clinical variables.
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Now let us see the final weight matrix and cost function corresponding to the
extended graph.

Definition 7.2.8 (Weight matrix of the extended graph). The weight matrix of the
extended graph reads

W̌
def.
=

(
I

γ
2C

T

γ
2C Wimg

)
, (7.10)

where I ∈ R
ň×ň is the identity matrix, Wimg ∈ R

n×n is the weight matrix of the
standard LEM on images, C ∈ R

n×ň contains the weights of the extra-edges, and
γ ≥ 0 is weighting the clinical data versus the imaging data.

Remark. Figure 7.2c represents the extended graph.

Proposition 7.2.2 (Solution of the extended LEM with graph extension). When ex-

tending the graph by ň nodes, we are now looking for X̌ = (x̌1, . . . , x̌ň, x̃1, . . . , x̃n) ∈

R
(ň+n)×δ as a solution of the optimization problem

argmin
X̌T ĎX̌=I

∑

ij

wij ||x̃i − x̃j ||
2 + γ

∑

ik

cik ||x̃i − x̌k||
2 . (7.11)

7.3 Material and Results

7.3.1 Data

A dataset of 288 MR images from 101 patients enrolled in the ADNI study1 [Mueller 2005]
has been used to compare the diagnosis classification performances of the standard
LEM algorithm and its two extensions.

As clinical data, ADNI provides the ApoE genotype. Three ApoE alleles exist
(ε2, ε3, ε4), and since each individual carries two alleles, six ApoE genotypes are
possible. The ε4 allele has been shown to increase the risk of developing AD, whereas
ε2 decreases this risk [Macdonald 2000]. Moreover an Aβ42 protein analysis of CSF
is provided. A decrease in the concentration of this protein has been shown to be
associated with a development of AD [Mueller 2005]. Table 7.2 summarizes the
clinical information for the various diagnostics in the dataset.

7.3.2 Experiments

The 288 images were intensity normalized by histogram equalization to the ICBM152
atlas [Mazziotta 2001] used as template. All the images were then rigidly registered
to the atlas using [Ourselin 2001]. The image distance matrix was computed us-
ing the Euclidean distance on the hippocampus area. The ApoE genotype was
used considering all possible pairs of alleles and considering ApoE carriers as in
[Wolz 2011], respectively leading to 6 and 3 extra nodes in the graph-based ex-
tension (see Tab. 7.1). For the graph-based extension with the continuous clinical

1http://www.loni.ucla.edu/ADNI

http://www.loni.ucla.edu/ADNI
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Table 7.1: Table of correspondences between ApoE genotypes and ApoE carriers
from [Wolz 2011].

ApoE genotype ApoE carriers
(ε3, ε3) Standard carrier
(ε2, ε2) ε2-carrier
(ε2, ε3)

(ε3, ε4) ε4-carrier
(ε4, ε4)

(ε2, ε4) Undefined

variables (Aβ42 and MMSE), 3 extra nodes were added as in [Wolz 2011]. Adja-
cency graphs were 100-nearest neighbor graphs with edges weights computed using
the Gaussian kernel with a kernel width equal to the standard deviation of the dis-
tance matrix coefficients. LEM was applied with target dimension δ ∈ [[2, 100]].
The classifiers used were 50-nearest neighbor classifiers. Training set and test
sets were built using a leave-5%-out scheme. The optimal target dimension in
LEM and optimal λ (resp. γ) were automatically selected from a 20-cross vali-
dation on the training set on {1, . . . , 100}×{0.1, 1, 2, 5, 10, 25} (resp. {1, . . . , 100}×
{0.001, 0.01, 0.1, 0.5, 1, 2, 5, 10, 25}).

7.3.3 Results

Table 10.1 presents the classification performance of the standard LEM algorithm
using the imaging data, and the two extensions using the combined imaging and
clinical data. Using clinical data combined with imaging data improves classifica-
tion results for both methods compared to the standard LEM on only imaging data.
For the discrete clinical variable ApoE genotype, the two extensions have similar
performance on this dataset. For the continuous clinical variables Aβ24 CSF con-
centration and MMSE cognitive score, the distance-based extension performs better
than the graph-based extension.

7.4 Discussion

We have presented two extensions of LEM able to perform non-linear dimensionality
reduction with data from different spaces, such as imaging and clinical data. Both
methods come with two additional constraints. In particular, they both need to set
an extra parameter to balance how much weight is given to the clinical information
versus the weight of the imaging information.

From a theoretical point of view, the graph-based extension seems more natural
when the clinical variable is in a finite discrete space, whereas the distance based
extension seems more natural when the clinical data lives in a continuous space.
First, when the clinical variable’s space is a finite discrete space, it is easy to add
one node per possible value and edges with weights equal to one for class mem-
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Table 7.2: Number of patients, ApoE genotypes, mean and standard deviation of Aβ42 concentration in CSF and MMSE cognitive
scores are shown for the normal controls (NC), mild cognitive impairment (MCI) and Alzheimer’s disease (AD) patients.

Diagnosis N
ApoE genotype

Aβ42
MMSE

(ε2, ε2) (ε2, ε3) (ε2, ε4) (ε3, ε3) (ε3, ε4) (ε4, ε4) cognitive score
NC 94 0 12 0 65 17 0 210.15± 58.15 29.28± 1.02

MCI 114 0 2 0 58 46 8 160.48± 43.50 26.62± 1.92

AD 80 0 0 3 26 37 14 137.53± 24.54 21.53± 4.74
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Table 7.3: Diagnosis classification accuracy (%) from low-dimension coordinates from the standard LEM algorithm or its extensions.

Data DR algorithm NC - MCI NC - AD MCI - AD

Imaging LEM 65.6 63.3 61.9
Imaging &

ApoE carriers
Distance-based LEM extension 66.7 71.8 66.1
Graph-based LEM extension 65.8 73.0 64.8

Imaging &
ApoE pairs

Distance-based LEM extension 62.3 62.5 66.0
Graph-based LEM extension 63.8 65.8 65.3

Imaging &
Aβ42

Distance-based LEM extension 70.7 75.5 67.1
Graph-based LEM extension 65.2 70.7 65.5

Imaging &
MMSE

Distance-based LEM extension 83.2 93.1 67.1
Graph-based LEM extension 65.8 75.3 68.8
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berships. However, using the distance-based extension when the clinical variable
is in a discrete space requires to define a distance on that space. Depending on
the problem, this can raise difficult questions. In the case of the ApoE genotype,
we can for example wonder if creating a distance being equal to one between all
pairs of different genotypes is really optimal. Having d((ε2, ε2), (ε4, ε4)) higher than
d((ε2, ε2), (ε2, ε3)) would not be absurd given the known biological impact of the
ApoE alleles [Macdonald 2000]. This example illustrates that the distance-based
extension is not necessarily well suited for discrete clinical variables. On the other
hand, when the clinical variable lives in a continuous space such as R

n, many dis-
tances are commonly associated (e.g. distances from lp norms ‖x‖p

def.
= (

∑
i xi

p)1/p).
However, if one wants to use the graph extension technique, it is obviously impossi-
ble to add an infinite number of nodes. So the continous space has to be discretized
into a finite number of subparts. At this point, using memberships to these sub-
parts would mean that each z value would be considered as being one of the zk.
To avoid this huge loss of information, Wolz et al. introduced fuzzy memberships.
Nonetheless, there is no natural way to select the number of elements of the parti-
tion. In their paper, Wolz et al. have a clinical variable in z ∈ R, they add ň = 3

extra nodes, and the weights were defined by the minimum of z, its 33% and 67%

percentiles and its maximum value, but this choice is rather arbitrary.

From a numerical point of view, when the graph-based LEM extension is used
with a continuous clinical variable, the divisions in the cik can be sources of numerical
instability.

7.5 Conclusion

In this chapter, we have introduced a novel extension of LEM able to perform
non linear dimensionality reduction while combining imaging data and clinical data
which are in different spaces. This distance-based extension leads to a graph with
the same nodes as from the standard LEM but with different edges and weights,
whereas the previously existing graph-based extension leads to a graph where all the
nodes and edges from the standard LEM are kept and extra ones are created. This
new distance-based extension is better suited for a continuous clinical data than the
graph-based which is well-suited when the clinical variable lives in a finite discrete
space.

We have shown that both extensions improve the numerical classification perfor-
mance compared to the original LEM on a large dataset from ADNI. Performances
of both extensions are similar with the discrete ApoE genotype clinical value, and
our new distance-based extension have higher classification accuracy with the con-
tinuous clinical variables Aβ42 CSF concentrations and MMSE clinical scores. This
performance increase indicates a better representation of the data with regard to
disease progression.

In terms of generalization of the two extensions to other dimensionality reduction
algorithms, the existing graph-based extension can potentially be adapted only if
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the dimensionality reduction process is based on a graph. Our new distance-based
extension is more general and can be directly used in any dimensionality reduction
algorithm that requires a distance of pairwise distances between all objects as input.

Perspectives of this work also include the investigation of other clinical infor-
mation, such as phosphorylated tau (ptau). And to go even further, the presented
methods could be used to combine images and several clinical indicators at the same
time. This is particularly interesting as it would be a way to also explore possible
interactions between different variables. A recent study [Manczak 2013] identified
that the interactions of Aβ42 and ptau may be implied to synaptic dysfunction and
neuronal damage, and our method could be way to further investigate these results.





Part III

Longitudinal population analysis





Chapter 8

State of the art

Contents

8.1 Computational anatomy . . . . . . . . . . . . . . . . . . . . . 159

8.2 Deformation models . . . . . . . . . . . . . . . . . . . . . . . . 160

8.2.1 Free-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.2.2 Large deformation diffeomorphic metric mapping (LDDMM) 162

8.2.3 Log-demons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.2.4 Other models . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.2.5 Choice of a deformation model . . . . . . . . . . . . . . . . . 165

8.3 Population template . . . . . . . . . . . . . . . . . . . . . . . . 165

8.3.1 Deterministic approaches . . . . . . . . . . . . . . . . . . . . 165

8.3.2 Probabilistic approaches . . . . . . . . . . . . . . . . . . . . . 167

8.3.3 Mixed approaches . . . . . . . . . . . . . . . . . . . . . . . . 168

8.3.4 Choice of a population template model . . . . . . . . . . . . . 170

8.4 Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.4.1 Examples of transport methods . . . . . . . . . . . . . . . . . 170

8.4.2 Choice of a transport method . . . . . . . . . . . . . . . . . . 171

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Résumé

Au début du 20ème siècle, D’arcy Thompson a introduit la notion
d’étude de la variabilité biologique d’un point de vue mathématique
[Thompson 1917]. Dans ses travaux, il a comparé différentes espèces
de poissons via des transformations géométriques. Avec le développe-
ment des technologies d’imagerie médicale, le domaine de l’anatomie

numérique a généré un vif intérêt dans les communautés scientifiques,
tant du point de vue théorique que appliqué.

Pour analyser les variations anatomiques, le recalage est un élément
clé. Dans la littérature, ce problème est souvent formalisé comme un
problème variationnel comprenant un terme de similarité et un terme
de régularisation, et dont une solution est une transformation optimale
du problème. Dans ce cadre variationnel, de nombreux algorithmes ont
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été proposés dans la littérature, avec diverses classes de transformation,
divers termes de similarité, divers termes de régularisation, et diverses
stratégies d’optimisation. Dans ce chapitre, nous présentons différents
modèles de déformations difféomorphiques. Ensuite, nous présentons
différents algorithmes permettant de calculer un atlas de population.
Finalement, nous introduisons la notion de transport suivant une défor-
mation et différents méthodes de transport. A la fin de chaque section,
nous mentionnons les modèles utilisés dans les chapitres suivants.

Mots clés : Anatomie numérique, forme, déformation, analyse longitu-
dinale de population, recalage, atlas, transport

Abstract

Back to the early 20th century, Sir D’arcy Thompson introduced the idea
of studying the biological variability from a mathematical point of view
[Thompson 1917]. In his work, he compared different fish species via
geometrical transformations. With the development of medical imaging
technologies, the field of computational anatomy aroused a lot of interest
in the scientific communities, both from theoretical and applied points
of view.

To analyze anatomical variations, the registration problem plays a
key role. In the literature, this problem is usually formalized as a vari-
ational problem, where an optimal transformation is computed, balanc-
ing a matching term and a regularization term. Within this variational
framework, a large number of algorithms have been proposed, with dif-
ferent classes of transformations, different matching terms, different reg-
ularization terms, and different optimization strategies. In this chapter,
we present several diffeomorphic image deformation models, Then, we
present several algorithms to compute a population atlas. Finally, we
introduce the notion of transport according to a deformation and sev-
eral transport methods. At the end of each section, we mention which
models are used in the following chapters.

Keywords: Computational anatomy, shape, deformation, longitudinal
population analysis, registration, template, transport
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(a) (b) (c)

(d) (e) (f)

Figure 8.1: Transformations relating different fish to each other. Each fish on the
second line is obtained by deforming the corresponding fish above.

8.1 Computational anatomy

The term anatomy refers to the "science of the shape and structure of organisms
and their parts"1. Computational anatomy consists in studying the anatomy via the
numerical analysis of images. Its aims range from the construction of representative
atlases of populations (i.e. anatomical models) to the estimation of the variability
of organs across species, the identification of biomarkers of disease progression, the
modeling of longitudinal evolution, the detection of correlation with other genetic
or phenotype information, etc.

The idea of analyzing the biological variability of shapes from a mathematical
point of view goes back to the early 20th century, where Sir D’arcy Thomson related
different fish species via geometrical transformations [Thompson 1917] (see Fig. 8.1).
This key idea is the starting point of many deformation models, where ones builds
a metric on shapes via a metric on the space of deformations.

Computational anatomy is a discipline at the interface of mathematics, geom-
etry and statistics [Grenander 1998, Miller 2004]. Several types approaches voxel-
based morphometry (VBM), deformation-based morphometry (DBM), tensor-based
morphometry (TBM) have been introduced and widely studied in the literature
[Frackowiak 2004, Chapter 36]. In VBM [Ashburner 2000, Mechelli 2005], voxel-

1http://www.thefreedictionary.com/anatomy

http://www.thefreedictionary.com/anatomy
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wise statistics such as tissue probabilities are built. In DBM, the position of anatom-
ical structures are studied via statistitics on the deformation fields. In TBM, local
structural changes (e.g. local surface or volume change) are studied from the gradi-
ents of deformation fields.

8.2 Deformation models

In the analysis of shapes, non-rigid registration plays a key role. Indeed, as men-
tioned before, the comparison of two shapes can be performed by the analysis of the
deformation bringing one shape to another one. In the case of population analysis,
the construction of a template and the estimation of the variability of a population
can be studied via deformation models. In this section, we review several well-
established registration methods and list their pros and cons. In the following, let
us focus on the case of images. We denote by I : Ω ⊂ R

3 → R the moving image,
J : Ω ⊂ R

3 → R the target image, and φ : Ω → Ω a transformation deforming the
source image towards the moving image.

Remark (The small deformation framework and its limitations). In the case of small
deformations, the deformation is written in the form

φ
def.
= Id+u, (8.1)

where u : Ω→ Ω is a displacement field. In that setting, the inverse transformation
is sometimes approximated using the subtraction of the displacement field, and
the composition approximated by the voxel-wise sum of displacement fields. In
[Ashburner 2007], some numerical examples are given to illustrate the limitation of
this approach. In medical imaging, given the large variety of anatomies, it is often
preferable to take advantage of more involved models. In this section, we present
several deformation models that have been widely used in the literature in the case
of images.

8.2.1 Free-forms

The free-form deformations were introduced in [Rueckert 1999]. The basic idea of
free-form deformations (FFDs) is to deform an object by manipulating an underlying
mesh of control points. Computed deformations are based on B-splines and under
certain conditions are smooth enough to be diffeomorphisms. Statistics can be
performed on the parameters encoding such deformations.

Definition 8.2.1 (Free-form deformation (FFD)). A FFD is a deformation u : Ω→

Ω of the form
∀ω ∈ Ω, u(ω)

def.
= uglobal(ω) + ulocal(ω) , (8.2)

where uglobal : ω ∈ Ω 7→ R ω + t with R ∈ R
3×3 a rotation matrix and t ∈ R

3 a
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translation vector and

∀ω ∈ Ω, ulocal(ω)
def.
=

∑

0≤p1,p2,p3≤3

Bp1(ω̂1)Bp2(ω̂3)Bp3(ω̂3)φω̃1+p1,ω̃2+p2,ω̃3+p3 (8.3)

where (φijk) are the control points of a n1 × n2 × n3 mesh with uniform spacing,
∀i ∈ [[1, 3]], ω̂i =

ωi

ni
−⌊ω1

n1
⌋ and ω̃i = ⌊

ωi

ni
⌋−1, Bp represents the p-th basis function

of the B-spline i.e.

B0(ω̂)
def.
= (1− ω̂)3/6 , (8.4)

B1(ω̂)
def.
= (3ω̂3 − 6ω̂2 + 4)/6 , (8.5)

B2(ω̂)
def.
= (−3ω̂3 + 3ω̂2 + 3ω̂ + 1)/6 , (8.6)

B3(ω̂)
def.
= ω̂3/6 . (8.7)

Definition 8.2.2 (Free-form registration). The free-form registration aims at min-
imizing the following cost function

L(u) = Lfit(u(I), J) + λLreg(u) , (8.8)

where the fitting term is for example the normalized mutual information (NMI) be-
tween the deformed source image and the target image Lfit(u(I), J) =

H(u(I))+H(J)
H(u(I),J)

(i.e. the sum of their marginal entropies divided by their joint entropy) [Rueckert 1999],

and the regularization term Lreg(u) = 1
VolΩ

∫
Ω

∑
1≤i,j≤3

(
∂2u

∂ωi∂ωj

)2
.

In [Rueckert 2006], the authors introduced conditions for the FFD to be diffeo-
morphic: the maximum displacement along all axes cannot exceed a constant times
the grid spacing. The value of the constant was found in [Choi 2000].

Proposition 8.2.1 (Injectivity condition). A FFD based on cubic B-splines is lo-

cally injective over all the domain if

max
ω∈Ω
‖u(ω)‖∞ ≤

1

K
×∆x, (8.9)

where ∆x is the grid spacing (assumed to be uniform) and K ≈ 2.48. So in practice

the maximum displacement along each axis is forced to be lower than 0.4 ×∆x for

the FFD to be diffeomorphic.

Remark (Pros and cons of FFD).

+ simple vector statistics,

- dependency on the underlying mesh,

- inconsistency with group properties.
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8.2.2 Large deformation diffeomorphic metric mapping (LDDMM)

The LDDMM framework [Dupuis 1998] is a framework that was widely studied and
used in the literature, as it is able two register two objects that are “far-away” from
each other. This framework has been applied to various shape representations. One
of the first settings was landmark matching [Joshi 2000]. Later on, it was used for
images (see below), currents [Durrleman 2010], etc.

Remark (Currents). The idea of the currents is to define a metric between curves and
surfaces which does not assume point correspondence between structures [Vaillant 2005,
Glaunès 2005, Durrleman 2008, Durrleman 2009]. They can be seen as a general-
izations of distributions to vectors: whereas distributions are known though their
action on smooth test functions, currents integrate smooth vector fields (they mea-
sure flux along lines or though surfaces). An interesting extension is the notion of
functional currents [Charon 2013].

Now let us get back to LDDMM in the case of images.

Definition 8.2.3 (LDDMM registration). The LDDMM framework [Beg 2005] is a
Riemannian framework that introduces the following functional

L(v)
def.
=

1

2
‖I ◦ φ−1

0,1 − J‖2L2 + λ

∫ 1

0
‖vt‖

2
K dt , (8.10)

where v : (t, ω) ∈ [0, 1] × Ω ⊂ R
3 → Ω is a time dependent velocity field that

belongs to a reproducing kernel Hilbert space HK ([Schölkopf 2001]) of smooth
enough vector fields defined on Ω, and of associated kernel K and norm ‖ ‖K . For
(t, ω) ∈ [0, 1]× Ω, we note vt(ω) = v(t, ω).

The deformation φ : [0, 1]2 × Ω ⊂ R
3 → Ω is given by the flow of vt, i.e.

∀(t, ω) ∈ [0, 1]× Ω,

{
∂φ0,t

∂t (ω) = vt ◦ φ0,t(ω)

φt,t(ω) = ω ,
(8.11)

where φt1,t2 is the deformation from t = t1 to t = t2.

Remark. More details about the LDDMM framework are given in Chapter 9.

Remark (Pros and cons).

+ solid mathematical foundations,

- computationally intensive for images.

Remark (Sparse extension). In [Durrleman 2013], the authors introduced a new
parametrization that can be forced to be sparse in terms of control points.

Remark (Kernel bundle extension [Sommer 2013]). One of the key feature that made
LDDMM very popular in its ability to handle large deformations. The ability to
detect small scale deformations is also desirable in many applications, for example
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in longitudinal studies where ones wants to find correlations between shape evo-
lution and disease progression. Several framework were proposed in the literature
to extend LDDMM to multi-scale. For example, the technique of [Risser 2011b] is
used in Chapters 9 and 10. This method adds kernels of different scales, though
such parameters need to be selected beforehand and are applied for all locations in
the image. The approach developed in [Sommer 2011, Sommer 2013] differs, and
is designed to allow a sparse deformation description across space and scales. It
also removes the need for classical selection of scales. The authors implemented
and illustrated their method for landmark matching, and state that extending it to
images using a control point formulation poses no conceptual problem.

8.2.3 Log-demons

The log-euclidean framework has been introduced in [Arsigny 2006] and used in dif-
ferent registration settings [Ashburner 2007, Bossa 2007, Bossa 2008, Vercauteren 2008,
Modat 2011].

Definition 8.2.4 (Flow). A flow on Ω ⊂ R
3 is a mapping φ : [0, 1] × Ω → Ω such

that

∀(t1, t2, ω) ∈ [0, 1]2 × Ω,

{
φ(0, ω) = ω,

φ(t2, φ(t1, ω)) = φ(t1 + t2, ω) .
(8.12)

For (t, ω) ∈ [0, 1]2 × Ω, we note φt(ω) = φ(t, ω).

Definition 8.2.5 (Stationary velocity field). A stationary velocity field (SVF) is a
velocity (i.e. vector) field v : Ω ⊂ R

3 → Ω that does not depend on the time. In the
literature, a SVF is sometimes called steady velocity field.

Remark. The use of SVF is the key difference with the LDDMM setting, where the
velocity-fields are time-dependent.

Definition 8.2.6 (Log-demon deformation). In the log-demon framework, the de-
formation belongs to the subset of diffeomorphisms generated by the flow of SVFs.

∀(t, ω) ∈ [0, 1]2 × Ω,
∂φ(ω, t)

∂t
= v(φ(t, ω)) , (8.13)

with the conditions (8.12).

Definition 8.2.7 (Exponential of a SVF). The flow at time one of the ODE (8.13)
is called the exponential of the SVF v, and we note exp(v) = φ1.

Definition 8.2.8 (Logarithm of a diffeomorphism). The logarithm of a diffeomor-

phism φ is the unique vector field v such that exp(v) = φ. We note log(φ) = v.
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Definition 8.2.9 (Log-demon registration).

L(v, v̂)
def.
=

1

σ2
i

‖J − I ◦ exp(v̂)‖2L2
+

1

σ2
x

‖ log (exp(−v) ◦ exp(v̂)) ‖2L2
+

1

σ2
T

Lreg(v) ,

(8.14)
where v is the SVF of the transformation, v̂ an auxiliary correspondence field,
σi, σx, σT are weighting coefficients.

Remark (Solving the Log-demon registration). The equation (8.14) can be mini-
mized alternatively with regard to v and v̂.

Remark (Fast implementations). The scaling and squaring property exp(v) = exp(v/2)◦

exp(v/2) allows efficient numerical computation [Arsigny 2006]. More recently, a
new algorithm has been proposed, based on a series in terms of the group exponen-
tial and the Baker-Campbell-Hausdorff formula [Bossa 2008].

Remark (Pros and cons).

+ efficient numerical methods,

- some mathematical properties are not guaranteed, for instance whether the
one-parameter subgroups are still geodesics or if the space is complete ([Lorenzi 2012b]).

8.2.4 Other models

Metamorphosis The framework of metamorphosis [Trouvé 2005, Holm 2008] is
similar to the LDDMM framework in the sense that deformations are also built from
smooth enough time-dependent velocity fields. However, the key difference is that
to deform a source image towards a target image, the metamorphosis does not only
deform the space, but also change intensity values.

Definition 8.2.10 (Metamorphosis registration). The metamorphosis framework
introduces the following functional

L(v)
def.
=

∫ 1

0

1

2
‖It + 〈grad It, vt〉‖

2
L2 + λ‖vt‖

2
K dt , (8.15)

with the same notations as in the LDDMM framework (see Section 8.2.2).

Remark. The choice between the LDDMM and the metamorphosis frameworks relies
on the desired properties of the registration algorithm. On one hand, in an appli-
cation where topological changes can occur, the metamorphosis might be better. It
is indeed able to deal with topological changes where the LDDMM could lead to
unrealistic deformations. On the other hand, when studying a set of shapes with
common topology, the LDDMM is probably more suited. For example, on a set
on binary hippocampus immages, the topology is the same for all images, and ones
wants to capture transform a source image by a deformation but not by changing
voxel intensities.
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8.2.5 Choice of a deformation model

In the beginning of Section 8.2, we have listed several deformation models that
have been successfully applied in medical imaging. When choosing a deformation
model and a registration algorithm (i.e. a particular implementation solving the
deformation model), one needs to answer several questions:

• What is the purpose of the deformation model? Is it "only" for registration?
Is it to build shape statistics?

• What shape representation will it work on? Lines? Surfaces? 2D/3D scalar
images? Vector fields? Tensor images?

• What properties are vital/desirable for the computed deformations?

• What are the computational speed constraints? What is the dimension of
the data that will be processed? How many runs of the algorithm will be
necessary?

Model used in the following chapters In Chapters 9 and 10, the LDDMM
model will be used. Our goal will be to build disease classifiers based on descrip-
tors of longitudinal evolutions. In particular, we aim to study the potential of
initial momenta of the LDDMM framework for classification of disease progression
and identification of biomarkers. Even though SVF-based approaches appear as
good alternatives to the LDDMM framework for many applications, they have not
been designed to estimate geodesic transformations. Finally, the collaboration with
François-Xavier Vialard and Laurent Rissert helped both in terms of understanding
of the LDDMM deformation model and in terms of implementation2 and parameter
optimization.

8.3 Population template

As explained in [Thompson 2000], a population template is a powerful research
tool with a wide range of applications. In the following section, we review several
algorithms that have been introduced in the context of brain imaging. In the whole
section, let us note (Ii)1≤i≤n the population images.

Remark (Groupwise registration). In the literature, when an algorithm outputs both
a population template and the registered images of the population towards this
template, it is sometimes referred as a groupwise registration algorithm.

8.3.1 Deterministic approaches

Notion of intrinsic mean [Pennec 1996, Fletcher 2004, Pennec 2006] In
these articles, the authors introduced the notion of intrinsic mean, which is the basis

2http://sourceforge.net/projects/utilzreg/

http://sourceforge.net/projects/utilzreg/
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of several deterministic approaches. Assuming the images of the population lie on
some manifold, a Fréchet mean F [Fréchet 1948] is defined as a minimizer

F ∈ argmin
F̂

1

n

n∑

i=1

d(F̂ , I i)2 , (8.16)

where d is a geodesic distance on the manifold of the images. Such a minimizer is
not necessarily unique.

Remark. This definition is analogue to the notion of barycenter in vectorial spaces.

In practice, a solution is found via an optimization procedure. Therefore, a global
minimum is not necessarily reached. When one aims to compute local minima, the
solutions are called Karcher means or Riemannian centers of mass [Karcher 1977,
Pennec 1996, Pennec 1999, Pennec 2006]. These local minima can be identified by a
null gradient and a positive definite Hessian, and computed via iterative procedures.

[Beg 2006] In this paper, the authors introduced an algorithm to compute an
average anatomical atlas using LDDMM and geodesic shooting. The key idea is to
used informations about the deformations registering the current template estimate
towards all the images of the population. As mentioned by the authors, averaging
the deformations is not valid since the space of transformations is not a vector space.
It would be reasonable in first approximation in the case of small deformations. As
the LDDMM setting is designed to handle large deformations, the authors instead
propose to average inital vector fields, and then use the conservation of the mo-
mentum to update the template estimate. Algorithm 1 provides the details of the
procedure. Figure 8.2 illustrates the result of this procedure on heart images from
a (healthy) population.

Algorithm 1: Template estimation from [Beg 2006].

Input (Ii)1≤i≤n set of images.
Output Template T .
Initialize Set T0 as one of the input images and compute rigid registrations
(Ri)1≤i≤n from all (Ii)1≤i≤n towards T0.
repeat

compute LDDMM registration from Tk to each Ii ◦
(
Ri

)−1
,

average corresponding initial velocity field vmean
0 = 1

n

∑n
i=1 v

i
0 ,

update template estimate from Tk and vmean
0 .

until convergence;

[Risser 2011a] In this paper, the author introduced an algorithm that shares sim-
ilarities with the one of [Beg 2006]: they are both based on LDDMM, and compute
the template via an iterative procedure. In both algorithms, the computed template
remains on the orbit of the initialization. However, they differ in two ways:
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(a) Heart images

(b) Template

Figure 8.2: Heart images of a (healthy) population and estimated template. Source:
[Beg 2006].

1. the LDDMM registration algorithm differs (see [Beg 2005] and [Vialard 2012]),

2. the computation of the update is based on averaging the initial velocity fields
for [Beg 2006] and the initial momenta for [Risser 2011a].

Algorithm 2 provides the details of the procedure.

Algorithm 2: Template estimation from [Risser 2011a].

Input (Ii)1≤i≤n set of images.
Output Template T .
Initialize Set T0 and compute rigid registrations (Ri)1≤i≤n from all
(Ii)1≤i≤n towards T0.
repeat

compute LDDMM registration from Tk to each Ii ◦
(
Ri

)−1
,

average corresponding initial momenta Pmean
0 = 1

n

∑n
i=1 P

i
0 ,

update template estimate from Tk and Pmean
0 .

until convergence;

Remark (Extensions). Several extensions of this algorithm are introduced in Chap-
ter 9.

[Avants 2004] In this paper, the authors use the diffeomorphic framework to
flow an initial template estimate along the geodesic path towards the centroid of
the population. Algorithm 3 provides the details of the procedure.

8.3.2 Probabilistic approaches

Several methods have been introduced to build a population template from a prob-
abilistic point of view. For example, several algorithms have been proposed in the
Bayesian framework.
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Algorithm 3: Template estimation from [Avants 2004].

Input (Ii)1≤i≤n set of images, step size ε.
Output Template T .
Initialize Set T0 as one of the input images, φmean = Id.
repeat

1. for each time t, initialize vmean = Id,

2. for time t, for each i ∈ [[1, n]], use the constant arc length estimation method
to minimize the following functional

L(vit) =
1

2
‖Ii ◦ (φmean)−1 − Tt ◦ φ

−1‖+ λ‖vit‖
2
L, (8.17)

with ‖vit‖L = ε ,

3. set vmean
t = 1

n

∑n
i=1 v

i
t ,

4. set φmean
t+ε = φmean

t ◦ (Id+ vmean
t ) ,

until φmean converges and all images are registered ;

[Allassonnière 2008] In this paper, the authors use the statistical framework
introduced in [Allassonnière 2007] to address the problem of population average
and estimation of the underlying geometrical variability as a MAP computation
problem.

[Ma 2008] In this paper, the authors assume the populations images (Ii)1≤i≤n

are generated by shooting the template though Gaussian distributed random initial
momenta. The template is modeled as a deformation from a given hypertemplate.

8.3.3 Mixed approaches

[Joshi 2004] In this paper, the authors propose a method for building an at-
las using intensity voxel averaging and diffeomorphic registrations in the LDDMM
setting. Formally the template is estimated via the optimization of the functional

L(T, φ1, . . . , φn)
def.
=

n∑

i=1

‖T − Ii ◦ (φi)−1‖2L2
+

∫ 1

0
‖vit‖

2
Ldt , (8.18)

where (φi)1≤i≤n are deformations, L is a partial differential operator and ‖vit‖
2
L =

‖Lvit‖
2
L2

. In practice, L is the Navier-Stokes operator L
def.
= α∆+ β div+γ Id. This

optimization problem is solved iteratively and alternatively with regard to T and
(φi)1≤i≤n, as detailed in Algorithm 4.

Remark. As mentioned in [Risser 2011a], such method does not preserve the shape
topology, since it mixes two averaging strategies: intrinsic and extrinsinc means
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Algorithm 4: Template estimation from [Joshi 2004].

Input (Ii)1≤i≤n set of images, ε step size.
Output Template T .
Initialize φi

0 = Id, vi0 = 0.
repeat

update the transformations φi
k+1 = φi

k ◦ (Id+ εvik) ,
compute Iik+1 = Ii ◦ (φi

k+1)
−1 ,

update the template estimate Tk+1 =
1
n

∑n
i=1 I

i
k+1 ,

compute force functions F i
k+1 = −

(
Iik+1 − Tk+1

)
grad Iik+1 ,

compute the velocity fields vik+1 = L−1F i
k+1 ,

until convergence;

[Fletcher 2004]. Besides, as mentioned in [Jia 2010], such method could provide
a blurry group mean image from a population of sharp images (i.e. with clear
anatomical structures).

[Seghers 2004] In this paper, each image is deformed by the average deformation
field of all deformation fields from this image towards all the other ones. The atlas
is built by averaging all the deformed images.

Remark. This method can be computationally expensive as the number of registra-
tion is proportional to the square of the number of images.

[Bhatia 2004] In this paper, the authors formalize the group-wise registration
problem as an optimization problem under constraints. Each image is deformed
using a FFD (see Section 8.2.1). The functional to maximize is based on the NMI,
with the constraint that the sum of all the deformations must be equal to zero. The
optimization is solved via a steepest gradient descent method with projection. The
atlas is obtained by averaging all the deformed images.

[Jia 2010] In this paper, the authors introduce an interesting approach. One of
their key motivations is that it might be difficult to register each towards all the
other ones when anatomical variations are large. Therefore, they propose that in
each iteration, each image is modified via the average of the deformation fields
computed from the registrations towards some of its neighbors (and not towards
all the other images). In the end, the template is obtained by averaging all the
registered images.

Remark. The authors state they "can average all registered images to obtain the
atlas since the mean image of a well-aligned dataset is sharp and keeps all major
anatomical structures". Their simulation on a synthetic dataset works well in that
regard. Nonetheless, this final averaging classifies this algorithm as a "mixed" ap-
proach, as there is no guarantee that on some dataset the alignment would not fail
for an outlier and thus lead to a blurry template.
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8.3.4 Choice of a population template model

In the beginning of Section 8.3, we have listed several template models that have
been successfully applied in medical imaging. When choosing a template algorithm,
one needs to answer several questions:

• Is the template representing a single anatomical structure or a collection of
structures?

• Are there topological variations within the population?

• What type of shape representation is used?

• What are the complexity and computational speed constraints?

Model used in the following chapters In the Chapters 9 and 10, an extended
version of [Risser 2011a] will be introduced. In these chapters, the atlas represents
a single anatomical structure (the hippocampus), and the population consists of a
collection of binary images. In that setting, a template with sharp boundaries is
also desirable.

8.4 Transport

8.4.1 Examples of transport methods

Given a deformation φ : Ω → Ω built according to a chosen model, the question of
transport consists in modifying (we say transporting) an application f defined on
Ω. The transport itself depends on the nature of the quantity transported, or in
other words, on the image space of f . In this section, we give the definitions of a
few transport methods, then examine 2D examples, and finally list other methods
from the literature.

Definition 8.4.1 (Image transport). The standard transport of an image I : Ω ⊂

R
3 → R by the action of a diffeomorphism φ : Ω→ Ω is defined by

∀ω ∈ Ω, Ĩ(ω)
def.
= I ◦ φ−1(ω) . (8.19)

Definition 8.4.2 (Transport as a density). The standard transport for a density
n : Ω ⊂ R

3 → R is defined by

∀ω ∈ Ω, ñ(ω)
def.
= det(Jacφ−1(ω))n ◦ φ−1(ω) , (8.20)

where det is the notation for the determinant.

Definition 8.4.3 (Vector field transport). The transport via the standard conju-
gation of a velocity field v : Ω ⊂ R

3 → R
3 is defined by

∀ω ∈ Ω, ṽ(ω)
def.
= Jacφ(ω) v ◦ φ

−1(ω) , (8.21)
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where Jacφ(ω) ∈ R
3×3 is the Jacobian matrix defined by Jacφ(ω)

def.
=

(
∂φi

∂ωj

)
1≤i,j≤3

.

Example 8.4.1 (Transport examples in 2D). Let us consider a simple example,
where a deformation composed of a scaling, rotation and translation, i.e. of the
form

φ :

(
x

y

)
∈ Ω ⊂ R

2 7→ α

(
cos θ − sin θ

sin θ cos θ

)(
x

y

)
+

(
tx
ty

)
(8.22)

where (α, θ, tx, ty) ∈ R
∗
+×[0, 2π]×R

2. For convenience, we note Rθ
def.
=

(
cos θ − sin θ

sin θ cos θ

)
,

t
def.
=

(
tx
ty

)
. Such a transformation is illustrated in Fig. 8.3a.

Let us consider we have a scalar field I : Ω → R that we want to transport.
In Fig. 8.3b, the image transport is used. One should note that the image on the
right is a deformed version on the one on the left. Now let us study the transport
as a density. The inverse transformation is φ−1 = 1

αR−θ(Id−t). Finally, as the
determinant of a 2D rotation is equal to one, the transported image is 1

αI ◦ φ
−1.

In particular, we notice that when the image is scaled by a factor α, the values are
multiplied by 1

α , and we notice that the integral of I over the domain Ω is conserved
(see Fig. 8.3c).

Now let us consider we have a scalar field v : Ω→ R
2 that we want to transport

according to a transformation φ (see Fig. 8.4a). If the vector field is transported
component by component as an image, the orientation of the vector field is not
aligned anymore with the shape (see Fig. 8.4b). When using the conjugate action
Jacφ ◦ v ◦ φ

−1 = αRθ ◦ v ◦ φ
−1, the orientation gets respected (see Fig. 8.4c).

Parallel transport This method has been introduced to transport tangent vec-
tors and applied in the Alzheimer’s disease (AD) context [Younes 2007, Younes 2008,
Younes 2009, Qiu 2008, Lorenzi 2011].

Remark. The parallel transport of a vector depends on the trajectory (see Fig. 8.5).

8.4.2 Choice of a transport method

In the beginning of Section 8.4, we presented the notion of transport and mentioned
several methods. When choosing a transport method, one needs to answer several
questions:

• What is the quantity to be transported? (scalar field, vector field, ...)

• Which properties are desirable for the transport in a specific application?

Methods used in the following chapters In Chapter 9, different models will be
tested and compared in terms of classification. In Chapter 10, only one method will
be used for the sake of simplicity. However, we consider the question of transport
as still open.
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Ω

φ

Ω

(a) Left: original shape. Right: Shape deformed by φ.

Ω

φ

Ω

(b) Using image transport, the values are kept between the original image and the
deformed image.

Ω

φ

Ω

(c) Using tranport as a density, the integral over the domain Ω is conserved.

Figure 8.3: Illustration of the image transport and transport as a density for scalar
fields in 2D.
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Ω

φ

Ω

(a) Left: original shape. Right: Shape deformed by φ.

Ω

φ

Ω

(b) Vector field transported via the image transport of each component.

Ω

φ

Ω

(c) Vector transport respecting the orientation with regard to the shape.

Figure 8.4: Illustration of the two vector field transports in 2D.
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Figure 8.5: The parallel transport of a vector v closely depends on the chosen tra-
jectory, and generally transporting along different curves leads to different parallel
vectors. Image source: [Lorenzi 2012a].

8.5 Conclusion

In this section, we have introduced the field of computational anatomy. We have
reviewed several choices that can be key steps to analyze a population of medical
images: a deformation model, a template model, and a transport method.

In Chapter 9, we investigate the use of the LDDMM framework and initial
momenta to build descriptors of hippocampus shape evolutions. In Chapter 10, we
introduce several spatial regularizations in a logistic classification framework.
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Résumé

Dans le contexte de la maladie d’Alzheimer, les méthodes de l’état de
l’art permettent de séparer les patients sains des patients malades ou
les patients sains des patients progressifs (patients ayant des troubles
cognitifs légers puis développant la maladie) avec des taux de classi-
fication corrects. Cependant, leurs taux de classification restent très
faibles lorsqu’il s’agit de séparer les patients ayant des troubles cogni-
tifs légers et stables (c’est-à-dire ne développant pas la maladie) des
patients progressifs. Au lieu d’utiliser des descripteurs provenant d’un
seul point temporel, nous résolvons ce problème en utilisant des descrip-
teurs représentant les évolutions des hippocampes des patients entre
deux points temporels. Pour encoder ces transformations, nous util-
isons le cadre des larges déformations par diffémorphismes, qui per-
met de calculer des évolutions géodésiques. Pour effectuer des statis-
tiques sur ces descripteurs dans un système de coordonnées commun,
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nous présentons une nouvelle extension de l’algorithme de la moyenne
de Karcher, que nous définissons à une transformation rigide près, et
un critère d’initialisation permettant un meilleur recalage des patients
vers l’atlas. Finalement, puisque les descripteurs locaux ne permettent
pas directement d’obtenir une meilleure performance que les descrip-
teurs globaux (comme la variation de volume), nous proposons une nou-
velle stratégie combinant l’utilisation de tirs géodésiques, d’une nou-
velle version de l’algorithme de Karcher, du transport par densité et
de l’intégration sur une sous-région de l’hippocampe. Cette nouvelle
stratégie permet d’obtenir des performances de classification plus élevées
que celles obtenues avec des descripteurs locaux.

Mots clés : Imagerie cérébrale, analyse de population, maladie d’Alzheimer,
tir géodésique, moyenne de Karcher

Abstract

In the context of Alzheimer’s disease (AD), state-of-the-art methods
separating normal control (NC) from AD patients or NC from progres-
sive MCI (mild cognitive impairment patients converting to AD) achieve
decent classification rates. However, they all perform poorly at separat-
ing stable MCI (MCI patients not converting to AD) and progressive
MCI. Instead of using features extracted from a single temporal point,
we address this problem using descriptors of the hippocampus evolu-
tions between two time points. To encode the transformation, we use
the framework of large deformations by diffeomorphisms that provides
geodesic evolutions. To perform statistics on those local features in a
common coordinate system, we introduce an extension of the Karcher
mean algorithm that defines the template modulo rigid registrations, and
an initialization criterion that provides a final template leading to better
matching with the patients. Finally, as local descriptors transported to
this template do not directly perform as well as global descriptors (e.g.
volume difference), we propose a novel strategy combining the use of
initial momentum from geodesic shooting, extended Karcher algorithm,
density transport and integration on a hippocampus subregion, which is
able to outperform global descriptors.

Keywords: Brain imaging, population analysis, Alzheimer’s disease,
geodesic shooting, time-series image data, Karcher mean
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9.1 Introduction

Large scale population studies aim to improve the understanding of the causes of dis-
eases, define biomarkers for early diagnosis, and develop preventive treatments. For
Alzheimer’s disease, several classification strategies have been proposed to separate
patients according to their diagnosis. These methods can be split into three cat-
egories: voxel-based [Klöppel 2008, Vemuri 2008, Lao 2004, Magnin 2009, Fan 2007,
Fan 2008a, Fan 2008b], cortical-thickness-based [Klöppel 2008, Querbes 2009, Desikan 2009]
and hippocampus-based [Chupin 2007, Chupin 2009, Gerardin 2009] methods. While
decent classification rates can be achieved to separate AD from NC or NC from
p-MCI (progressive mild cognitive impairment patients, i.e. converting to AD),
all methods perform poorly at separating s-MCI (stable mild cognitive impair-
ment patients, i.e. non converting to AD) and progressive mild cognitive im-
pairment (p-MCI). A recent review comparing these methods can be found in
[Cuingnet 2011b].

In this paper, we investigate the use of longitudinal evolution quantifiers either
local or global to separate between stable MCI and progressive MCI. To extract
information between two successive time-points, we use a one-to-one deformation
mapping the first image onto the second one. Different registration algorithms are
available to compute plausible deformations in this context. However, only one,
the large deformation diffeomorphic metric mapping (LDDMM) [Beg 2005], pro-
vides a Riemannian setting that enables to represent the deformations using tan-
gent vectors: initial velocity fields or equivalently initial momenta. This can be
used in practice to retrieve local information and to perform statistics on it as pre-
sented in [Vaillant 2004, Wang 2007]. In this direction, it is worth mentioning paper
[Singh 2010] which shows the correlation between principal modes of deformations
and diagnosis. In order to compare this information among the population, we need
to define a common coordinate system. This implies (1) the definition of a template
and (2) a methodology for the transport of the tangent vector information.

In the literature, point (1) is addressed via different methods [Ma 2009, Fletcher 2004].
Combining geodesic shooting algorithm presented in [Vialard 2012], we chose to de-
velop a Karcher method to average a set of shapes. A first approach has been
presented in [Risser 2011a]. A natural requirement on the Karcher average is that
it could be invariant with respect to rigid transformations of each subject of the
population. However, this is not the case in [Risser 2011a]. One of the contribution
of the present paper is to propose a methodology to define such invariant Karcher
averages. We also use a finer strategy to update the deformations at each itera-
tion of the algorithm. Point (2) benefited in each different settings from various
contributions that go beyond the standard transport actions. The key-point in our
application is that inter-subject variability is much higher than the longitudinal
variation so that one expects the statistical results to be strongly influenced by the
choice of the transport. To address this issue, parallel transport has been proposed
in the LDDMM setting in [Younes 2007] and it has been applied to longitudinal
data discrimination, very similar to our problem, in [Qiu 2008]. Note that parallel
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transport preserves the norm of the velocity field and since this norm is not invariant
with respect to rescaling, the population variability is still contained in the parallel
transport of the tangent information. For other frameworks, such as Log-demons,
Schild’s ladder approach has been introduced in [Lorenzi 2011] to extend parallel
transport to their Lie-group setting. In any case, we consider the question of trans-
porting tangent information as still open and this motivates us to compare different
transport strategies in the classification step.

Section 9.2 introduces the global pipeline used to perform statistics from local
descriptors of hippocampus deformations. Section 9.3 presents the data used and
the numerical results. Section 9.4 concludes the paper.

9.2 Methods

9.2.1 Global pipeline

Let us assume we have a population of patients and the binary segmentations of
their hippocampus at two different time points, called screening and follow-up.

Remark. The fact that we are using binary images (and not gray-scale) is important
for the methodological choices. Such binary images will be used in all this chapter
and in Chapter 10.

Let us also assume that all patients have the same diagnosis at the first time
point, and only a part of them have converted to another diagnosis at the second
time point. Our goal is to compare patient evolutions, and classify them with regard
to disease progression, i.e. stable diagnosis versus progressive diagnosis.

We use the pipeline summarized in Fig. 9.1. First, the evolution descriptors
is computed locally for each patient (independently). To be able to compare these
descriptors, one needs to transport them in a common space. To do so, a population
template is computed, towards which all the local descriptors are transported. Fi-
nally, classification is performed to separate progressive from stable patients. Several
local descriptors were tested: initial momentum and initial velocity field of geodesic
shooting. The use of subregion and integration were also introduced. As for global
shape deformation descriptors, volume variation and relative volume variation were
tested.

9.2.2 Geodesic shooting

To register a source image I : Ω ⊂ R
3 → R towards a target image J : Ω ⊂ R

3 → R,
the LDDMM framework introduces the following minimization problem

argmin
v∈L2([0,1],HK)

1

2
‖I ◦ φ−1

0,1 − J‖2L2 + λ

∫ 1

0
‖vt‖

2
K dt , (9.1)

where v : (t, ω) ∈ [0, 1]×Ω ⊂ R
3 → Ω is a time dependent velocity field that belongs

to a reproducing kernel Hilbert space (RKHS) HK of smooth enough vector fields
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Screening and
follow-up
images

{(Si, F i)}1≤i≤n

Local
deformation
descriptors
{P i

0} or {vi0}

Population
template T

Transported
deformation
descriptors

{P̃ i
0} or {ṽi0}

Classification
(computation
of a function
f : X → Y)

Figure 9.1: Four steps are needed to classify patient evolutions using local descriptors
of shape deformations: (1) the local descriptors are computed for each patient inde-
pendently, (2) a population template is computed, (3) all local shape deformation
descriptors are transported towards this template, (4) classification is performed.

defined on Ω, and of associated kernel K and norm ‖ ‖K . For (t, ω) ∈ [0, 1]×Ω, we
note vt(ω) = v(t, ω). The deformation φ : [0, 1]2 × Ω ⊂ R

3 → Ω is given by the flow
of vt

∀(t, ω) ∈ [0, 1]× Ω,

{
∂φ0,t

∂t (ω) = vt ◦ φ0,t(ω)

φt,t(ω) = ω ,
(9.2)

where φt1,t2 is the deformation from t = t1 to t = t2. Such approach induces a right-
invariant metric on the group of diffeomorphisms as well as a Riemannian metric
on the orbit of I, i.e. the set of all deformed images by the registration algorithm
[Miller 2006]. The first term in formula (9.1) is a similarity term controlling the
matching quality whereas the second one is a smoothing term controlling the defor-
mation regularity. Now noting It

def.
= I ◦ φ−1

0,t and Jt
def.
= J ◦ φt,1, the Euler-Lagrange

equation asssociated with (9.1) reads

∀(t, ω) ∈ [0, 1]× Ω, vt(ω) = K ⋆
(
grad It(ω) Jacφt,1(ω)(It(ω)− Jt(ω)))

)
(9.3)

where K the translation-invariant kernel of the reproducing kernel Hilbert space,
⋆ the convolution operator, grad the image gradient in space and Jacφ the Jacobian
of φ.

Definition 9.2.1 (Momentum). Let us define the momentum P : [0, 1]×Ω→ R by

∀(t, ω) ∈ [0, 1]× Ω, P (t, ω)
def.
= Jacφt,1(ω)(It(ω)− Jt(ω)) , (9.4)

and note Pt(ω) = P (t, ω).

The Euler-Lagrange equation (9.3) can be rewritten as a set of geodesic shooting
equations

∀(t, ω) ∈ [0, 1]× Ω,





∂It
∂t (ω) + 〈grad I(ω), vt(ω)〉 = 0 ,
∂Pt

∂t (ω) + div (Pt(ω)vt(ω)) = 0 ,

vt(ω) +K ⋆ grad It(ω) Pt(ω) = 0 ,

(9.5)
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where div is the divergence operator.

Remark (Geodesic shooting). Given a initial image I0 and an initial momentum P0,
one can integrate the system (9.5). Such a resolution is called geodesic shooting. We
say that we shoot from I0 using P0.

The minimization problem (9.1) can be reformulated using a shooting formula-
tion on the initial momentum P0

argmin
P0

1

2
‖I ◦ φ−1

0,1 − J‖2L2 + λ〈grad I0P0,K ⋆ grad I0P0〉L2 (9.6)

subject to the shooting system (9.5).

Theorem 9.2.1 ([Vialard 2012]). The gradient of the functional in (9.6) is given

by:

∀ω ∈ Ω, ∇P0L(ω) = −P̂t(ω) + λ〈grad It(ω),K ⋆ (P0(ω) grad I0(ω))〉 (9.7)

where P̂0 is given by the solution of the following PDE solved backward in time

∀(t, ω) ∈ [0, 1]× Ω,





∂Ît
∂t (ω) + div(vt(ω)Ît(ω) + div(Pt(ω)v̂t(ω)) = 0 ,
∂P̂t

∂t (ω) + 〈vt(ω), grad P̂t(ω)〉 − 〈grad It(ω), v̂t(ω)〉 = 0 ,

v̂t(ω) +K ⋆
(
Ît(ω) grad It(ω)− Pt(ω) grad P̂t(ω)

)
,

(9.8)
subject to the initial conditions Î1 = J − I1 and P̂0 = 0 and that Pt, It are the

solution of the shooting system (9.5) for the initial conditions I0, P0.

In order to solve the new optimization problem (9.6), we use the methodology
described in [Vialard 2012]. Note that the choice of the kernel matters for retrieving
plausible deformations and we refer to [Risser 2011b] for an extensive discussion on
the parameter choices.

For each patient, a two-step process was performed to encode the deformations
of the hippocampus shape evolution between the screening image S (scanned at the
first time point t = t0) to the follow-up image F (scanned at the second time point
t = t0 + 12 months), as described in Fig. 9.2. First F was rigidly registered back
to S. We note R : Ω ⊂ R

3 → Ω the rigid transformation obtained. Second, the
geodesic shooting was performed with the screening image as source image (I = S)
point towards the registered second time point as target image (J = F ◦R−1). Inital
momenta and initial velocity fields from different patients are local descriptors that
were used to compare hippocampus evolutions.

9.2.3 Population template

Need for a template: As mentioned in section 9.2.1, local descriptors of hip-
pocampus evolutions need to be transported in a common space prior to any statis-
tical analysis. One way to obtain spatial correspondences between local descriptors
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Step 1. Rigid registration of F towards S

Input:

• source image: follow-up image F of the patient, scanned at t = t0+12 months,

• target image: screening image S of the patient, scanned t = t0.

Output:

• rigid transformation R.

	

Step 2. Geodesic shooting from S towards F ◦R−1

Input:

• source image: I = S, screening image,

• target image: J = F ◦ R−1, follow-up image rigidly registered back to the
screening image.

Output:

• initial momentum P0.

Figure 9.2: For each patient, the initial momentum encoding the hippocampus
evolution is computed in a two-step process. First, the follow-up image F (i.e.
second time point, t = t0+12 months) is rigidly registered to the scanning image S
(i.e. first time point, t = t0). Second, the geodesic shooting is computed from the
screening image S to the previously rigidly registered follow-up image F ◦R−1.
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of different patients consist in building a population template and then aligning
these descriptors on the template.

Notions of Fréchet and Karcher means: In the Riemannian framework used
for the geodesic shooting, a Fréchet mean [Fréchet 1948] can be used to define an
average shape from a population [Pennec 1999, Fletcher 2004, Pennec 2006]. Given
n images {Si : Ω ⊂ R

3 → R}1≤i≤n and d a Riemannian metric on the space of
images, the Fréchet mean T : Ω ⊂ R

3 → R is defined as a minimizer of the sum of
the geodesic distances to all images

LSK(T )
def.
=

n∑

i=1

d(T, Si)2. (9.9)

As the solution is found via an optimization procedure, there is not necessarily
existence (the global minimum is not necessarily reached), and the uniqueness is
not guaranteed either [Pennec 1999]. Besides, in practice (9.9) is often solved via
an optimization procedure looking for local minima (not global). In that case, one
refers to the found solutions as Karcher means [Karcher 1977].

Remark. Before going any further, let us recall that in our study we want to build
a population template from binary images. Moreover, all the patient images have
the same topology.

Given our images, the solution of this optimization problem can be computed
using a gradient descent procedure [Risser 2011a].

Modifications of the algorithm: We introduce two modifications from the al-
gorithm in [Risser 2011a]: (1) the population template is computed up to rigid
transformations and (2) the template is regenerated from a reference image at every
iteration. The first modification involves the definition of the model, whereas the
second modification involves the numerical resolution of the model.

The first modification is introduced because current implementations of LDDMM
algorithms are not invariant by the action of the group of orthogonal linear trans-
formations, so the resulting template reflects the orientation variability of the pop-
ulation. This means a minimizer of (9.9) could depend on the orientations of the
input images Si. In other words, if Si is replaced by Si ◦ R−1 where i ∈ [[1, n]]

and R : Ω → Ω is a rigid transformation, the solution of the optimization could be
different. In practice, a preprocessing step where all images are rigidly registered
towards the initialization T0 is usually performed. The idea of this step is to align
roughly the images to avoid convergence issues of finer non-rigid registrations during
the template computation, or at least to save computation time. Not only it is an
arbitrary way to set the orientations of the population images Si, but it also has the
side effect of biasing all the result towards T0. To circumvent this issue, we propose
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the following optimization problem:

LIK(T )
def.
=

n∑

i=1

d
(
T,Ri

)2
, (9.10)

where Ri is the orbit of Si under the group action of the rigid transformations, i.e.
Ri = {Si ◦R−1, R : Ω→ Ω rigid transformation}, and the d defined as d

(
T,Ri

) def.
=

inf{d(T, Si ◦ R−1), R : Ω → Ω rigid transformation}. As the previous infima are
minima, one can rewrites the functional

LIK(T,R1
T , . . . , R

n
T ) =

n∑

i=1

d
(
T, Si ◦

(
Ri

T

)−1
)2

, (9.11)

where {Ri
T : Ω → Ω}1≤i≤n are the optimal rigid transformations registering the Si

towards the image T . Now let us study the resolution of the optimization problem
(9.11). The proposed approach is an iterative procedure inspired by the work of
[Risser 2011a]. The difference with their approach is that here we alternatively up-
date T with Ri

T fixed and Ri
T with T fixed. For this reason, we drop the dependency

on T and simply note Ri for the rigid transformations. Now, since the functional
from (9.1) does not give a geodesic distance between two images - but between a
source image and the deformed image, we approximate (9.11) by:

LIK(T,R1, . . . , Rn) ≈
n∑

i=1

d
(
T, Jk

1

)2
, (9.12)

where Jk
1 is the result of the shooting equations for the initial conditions I = T and

P k
0 where P k

0 is a minimizer of (9.6) with J = Si ◦
(
Ri

)−1
. In this case, each term

of the sum is equal to 〈grad IP0,K ⋆ (grad IP0)〉L2 , and the gradient with regard to
T is:

∀ω ∈ Ω, ∇TL
IK(T,R1, . . . , Rn)(ω) ≈ −

1

n

n∑

i=1

K ⋆ gradTP i
0(ω) , (9.13)

where P i
0 is the initial momentum matching T on Sk ◦ (Ri)−1 via the shooting sys-

tem (9.5). Here comes the second modification of the standard Karcher algorithm,
which is as stated before purely motivated by numerical considerations. The stan-
dard formulation [Risser 2011a] smoothes the template estimate at each iteration
(as Tk+1 is computed by shooting from TK). In our algorithm, at every iteration
the new Karcher estimate Tk+1 is computed from a reference image (typically the
initialization T0):

∀ω ∈ Ω, Tk+1(ω) = T0 (uk+1 (ω)) , (9.14)

where uk+1 : Ω→ Ω is a deformation field. It is initialized as u0 = Id, and updated
at every iteration by composition uk+1 = umean ◦uk where umean is the deformation
field associated with the geodesic shooting from Tk using Pmean

0 . Such update
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procedures allows the template estimate to keep sharp boundaries. Altogether, each
Karcher iteration is composed of four steps, as described in Fig. 9.3.

9.2.4 Tangent information and associated transport

The local descriptors computed for each patient as explained in section 9.2.2 need
to be transported in a common coordinate space: the space of the Karcher average
defined in section 9.2.3. We chose transport rules that only depend on the final de-
formation (it does not include parallel transport which depends on the chosen path).
A two-step process was then used to transport local descriptors of hippocampus evo-
lutions to the template space (Fig. 9.4). First, the screening hippocampus was reg-
istered towards the template rigidly [Ourselin 2001] then non-rigidly [Modat 2010].
The resulting deformation is denoted by φ. Second, this transformation was used to
transport the local descriptors of hippocampus deformations towards the template.
The transport itself depends on the nature of the quantity transported. For in-
stance, we call image transport the standard transformation of an image I : Ω→ R

by the action of a diffeomorphism φ : Ω ⊂ R
3 → Ω

∀ω ∈ Ω, Ĩ(ω)
def.
= I ◦ φ−1(ω) . (9.15)

From the mathematical point of view, the momentum is an adjoint variable to the
image. As a consequence, it is transported by the adjoint action of the group which
reduces to the standard transport for a density n : Ω ⊂ R

3 → R, defined by

∀ω ∈ Ω, ñ(ω)
def.
= det(Jacφ−1(ω))n ◦ φ−1(ω) , (9.16)

where det is the notation for the determinant. Note that this action preserves the
global integration of the density by a simple change of variable. Last, we present the
transport via the standard conjugation of a velocity field v : Ω ⊂ R

3 → R
3 defined

by
∀ω ∈ Ω, ṽ(ω)

def.
= dφ(ω) ◦ v ◦ φ−1(ω) , (9.17)

where for ω = (ω1, ω2, ω3) ∈ R
3, if we note φ(ω) = (φ1(ω), φ2(ω), φ3(ω))), dφ(ω) is

a 3 × 3 matrix (i.e. an operator from R
3 to R

3) defined by (dφ(ω))ij = ∂φi

∂ωj
, i.e.

dφ(ω) = (gradφ1(ω), gradφ2(ω), gradφ3(ω))
T ∈ R

3×3 .
All those transport methods were tested in the classification step. We did not

include parallel transport in this study since no public implementation is available
and its implementation is rather involved, especially in the case of images.

9.2.5 Classification

The final step in the proposed pipeline is the classification step, as described in the
section 9.2.1. The local descriptors of shape evolution have been computed for each
patient independently (Section 9.2.2) and transported in a common space: the space
of the template (sections 9.2.3 and 9.2.4). Let us first give a brief reminder on the
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Step 1. Compute the rigid registrations of Si towards Tk

S1 . . . Sn

Tk

R1 Rn

T0

Step 2. Geodesic registrations from Tk towards Si ◦ (Ri)−1

S1◦(R1)−1 . . . Sn◦(Rn)−1

Tk

P 1
0 Pn

0

T0

Step 3. Geodesic shooting from Tk using Pmean
0

S1 . . . Sn

TkT0 Ttmp

Pmean
0

umean

Step 4. Compute new Karcher estimate Tk+1 from T0 and uk+1

S1 . . . Sn

Tk+1T0 uk+1

Figure 9.3: Each Karcher iteration is composed of four steps: (1) the images Si are
rigidly aligned towards the current Karcher mean estimate Tk, (2) geodesic shootings
from the current Karcher estimate Tk towards all the registered images Si ◦ (Ri)−1

are computed (3) geodesic shooting from Tk using Pmean
0 = 1

n

∑
i P

i
0 generates a

deformation field umean, and (4) the composed deformation field uk+1 = umean ◦ uk
is used to compute the updated estimate from the reference image.
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Screening image Si Population template T
Step 1. Registration

Deformation φi

Local deformation
descriptor P i

0 or vi0

Transported
deformation descriptor

P̃ i
0 or ṽi0

Step 2. Transport

Patient space Template space

Figure 9.4: Local descriptors of hippocampus evolutions are transported to the
template in a two-step process. First the deformation field from the patient space
to the population template. Second, this deformation field is used to transport the
local descriptors.

support vector machines (SVM) technique and then describe the various features
evaluated.

Support Vector Machines: SVMs [Schölkopf 2001] are a supervised classifica-
tion method. Given n labelled features (xi, yi) ∈ X × {−1, 1}, it aims at building
a function f∗ : X → R such that y = sign(f∗) is an optimal labeling function. The
function f is a solution of the optimization problem

f∗ def.
= argmin

f∈HK

1

n

n∑

i=1

ℓhinge(f(xi), yi) + γ‖f‖2K (9.18)

where K : X × X → R is a Mercer kernel, HK its associated Reproducing Kernel
Hilbert Space of functions X → R and its corresponding norm ‖ ‖K , and ℓhinge is the
hinge loss defined as ℓhinge(f(x), y) = max{0, 1−y×f(x)}. The loss function ℓhinge
controls the labeling performance, and the second term controls the smoothness of
the solution.

Remark (Choice of the SVM kernel). In this study, we are using the Gaussian kernel

defined as K(xi,xj) = exp
(
−‖xi−xj‖2

2σ2

)

Local vs global features: In the case on AD, several global descriptors of shape
evolution such as (relative) volume difference seem to be related to the disease
progression [Braak 1998, Gosche 2002]. In order to both (1) compare the relevance
of the local descriptors with regard to disease progression and (2) assess the extra
spatial information, several features were computed from the local descriptors. The
definitions of the various derived features are summarized in Table 9.1.



9.3. Material and Results 187

Table 9.1: Definitions of the various features derived from the local descriptors of

hippocampus shape evolutions. From P̃ i
0 : Ω→ R, four derived features are defined:

local, local restricted to a subregion Ωr ⊂ Ω, local integrated on the whole domain,
and local integrated on a subregion.

Feature type Definition Dimension

Local xi = P̃ i
0 d ∼ 105 to 106

Local restricted to
a subregion xi = P̃ i

0|Ωr
d ∼ 104 to 105

Local integrated on
the whole domain

xi =

∫

Ω
P̃ i
0(ω)dω 1

Local integrated
on a subregion

xi =

∫

Ωr

P̃ i
0(ω)dω 1

9.3 Material and Results

9.3.1 Data

A dataset of 206 hippocampus binary segmentations from 103 patients enrolled in
Alzheimer’s disease neuroimaging initiative (ADNI)1 [Mueller 2005] has been used to
estimate the efficiency of local and global descriptors of hippocampus evolution with
regard to disease progression. For each patient, ‘screening’ and ‘month 12’ follow-
up were the two time points selected. All patients were mild cognitive impairment
(MCI) at the screening point, 19 became AD by month 12, and the remaining 84
stayed MCI.

9.3.2 Experiments

First, all screening images were resampled to a common isotropic voxel size 1.0 ×

1.0×1.0 mm, similar to their original size. Rigid transformations aligning the month
12 hippocampus towards the screening ones were computed using [Ourselin 2001].
The geodesic shootings [Vialard 2012] were performed2 using a sum of three kernels
(sizes 1, 3 and 6 mm, with respective weights 2, 1 and 1), and 200 gradient descent
iterations.

To compute the template, a subset of 20 images was used. This subset and
the initialization was based on a shape volume criterion. Four Karcher iterations
were performed, with respectively 200, 150, 150 and 100 gradient descent iterations
in the geodesic shootings. To compute the transformations φi from the screening
hippocampi towards the template (Fig. 9.4), rigid [Ourselin 2001] then non-rigid
[Modat 2010] registration algorithms were applied with their default parameters.

To classify from local descriptors, a mask computed by dilating the template was
used. To compute classification on subregions, each hippocampus (left and right)

1http://www.loni.ucla.edu/ADNI
2http://sourceforge.net/projects/utilzreg/

http://www.loni.ucla.edu/ADNI
http://sourceforge.net/projects/utilzreg/
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from the template was dilated. The bounding box was cut equally in thirds along
the longest axis, and intersections were used as masks (Fig. 9.7).

Using a leave-10%-out scheme, training and test sets were created. With train-
ing features equally distributed among classes, SVM classifiers were computed (the
Matlab functions from the Bioinformatics Toolbox were used). All the patients were
then classified. The Gaussian kernel was used and 20 kernel widths were tested.
This procedure was repeated 50 times and classification accuracy averaged. From
the numbers of true/false positives/negatives (TP, FP, TN, FN), four indicators
were used to measure classification accuracy: specificity Spec

def.
= TN

TN+FP , sensi-

tivity Sens
def.
= TP

TP+FN , negative predictive value NPV
def.
= TN

TN+FN , and positive

predictive value PPV
def.
= TP

TP+FP .

9.3.3 Results

To validate the proposed pipeline, several quality checks were performed. To check
the quality of the geodesic shooting computed for each patient i (second step in 9.2),
the evolution of the Dice score DSC between Si

t which is the deformed screening
image at time t and the target image F i ◦ (Ri)−1 was computed, and the average
final DSC is 0.94± 0.01 (Fig. 9.5).

Using the modified Karcher mean algorithm and the criterion mentioned above,
the average Dice score between the 103 registered patients and the template was
0.87± 0.02, whereas it was only 0.44± 0.11 when matching to a template computed
using a criterion based on the distance to the L2 mean.

To check the quality of the registration φi computed to transport the local de-
scriptor of the patient i (first step in 9.4), the Dice score was computed between the
rigidly registered screening image and the template (i.e. DSC(S◦(Ri)−1, T )) and be-
tween the final registered screening image and the template (i.e. DSC(S◦(φi)−1, T )),
see Fig. 9.6.

Now regarding descriptors of hippocampus evolutions, the local descriptors did
not perform as well as global descriptors, when used directly as input features
(Fig. 9.8). However, when integrated on the whole domain, the performances were
similar. When integrated on some subregion, they can outperform the global de-
scriptors. Detailed results are displayed in Fig. 9.8, and Table 10.1 displays the four
unbiased indicators when the sum of specificity and sensitivity is maximized.
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Figure 9.5: To check the quality of the geodesic shooting computed for each patient
i (second step in 9.2), the evolution of the Dice score DSC between Si

t which is the
deformed screening image at time t and the target image F i ◦ (Ri)−1 was computed.
The average final DSC is 0.94± 0.01 .

(a) (b)
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Figure 9.6: To check the quality of the registration φi computed to transport the lo-
cal descriptor of the patient i (first step in 9.4), the Dice score was computed between
the rigidly registered screening image and the template (i.e. DSC(S ◦ (Ri)−1, T ),
see (a)) and between the final registered screening image and the template (i.e.
DSC(S ◦ (φi)−1, T ), see (b)).
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Figure 9.7: Subregions {Ωi}1≤i≤6 ⊂ Ω of the hippocampus used as proof-of-concept
in the classification step. Each hippocampus was dilated and then cut in thirds
along the longest axis.
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Figure 9.8: Classification performance (depending on the SVM Gaussian kernel width σ) for global descriptors (9.8a, 9.8b), local
(9.8c, 9.8f, 9.8i), local integrated on the whole image (9.8d, 9.8g, 9.8j) and local integrated on a subregion (9.8e, 9.8h, 9.8k). Higher
for Spec+ Sens (in cyan blue) is better.
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9.4 Conclusion

We have studied the use of global, semi-local and local descriptors of hippocampus
evolutions to predict AD conversion for MCI patients, using a dataset of binary
segmentations provided by ADNI. This study focuses on shape evolutions between
two time points, whereas (to the best of our knowledge), studies in this applica-
tion field usually extract features from a single time point and perform diagnosis
classification.

The proposed extension of the Karcher mean algorithm with a subpopulation
and initialization criterion based on shape volume improved the matching quality
to the template (average Dice of 0.87±0.02 instead of 0.44±0.11) without the need
of modifying the default registration parameters.

In our experiments, the local descriptors did not perform as well as global de-
scriptors such as volume difference when they were directly used as input features
of the SVM classifiers. However, when integrated over the whole domain, classifica-
tion performances were similar. When integrated on a subregion, they could even
outperform the global descriptors. The method we propose combines (1) the use
of initial momentum of geodesic shooting, (2) an extended version of the Karcher
mean algorithm, (3) the use of density transport and (4) the integration on a sub-
region. On our dataset, this method was the only one able to outperform the global
descriptors. It should be noted that in our study the definition of the subregion was
sub-optimal and used as a proof-of-concept. The most promising perspectives are
(1) developing a strategy to define subregions maximizing the classification results
and (2) adding more time-points to the study using the geodesic regression method
introduced in [Niethammer 2011] or cubic spline interpolation in [Trouvé 2012].
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Table 9.2: Performance indicators for various descriptors of the hippocampus evolutions. These indicators are computed using a
SVM classifier, with a Gaussian kernel. Kernel width is such that the sum of specificity and sensitivity is maximized. The proposed
method is the only one with Spec+ Sens outperforming the same sum for the volume difference global descriptor.

Global /
Deformation descriptor

Spec+
Spec Sens NPV PPV

Local Sens

Global
Volume difference 1.19 0.78 0.41 0.85 0.30

Relative volume difference 1.08 0.85 0.23 0.83 0.25
Local integrated

on the whole
domain

Initial momentum, image transport 1.10 0.37 0.73 0.86 0.21
Initial momentum, density transport 1.15 0.96 0.19 0.84 0.53

Initial velocity field 1.07 0.46 0.61 0.84 0.20
Initial momentum, image transport 1.18 0.63 0.55 0.86 0.25
Initial momentum, density transport 1.28 0.63 0.65 0.89 0.28

Local integrated
on a subregion

Initial velocity field 0.92 0.79 0.13 0.80 0.11

Local
Initial momentum, image transport 1.01 0.96 0.05 0.82 0.27
Initial momentum, density transport 1.01 0.95 0.06 0.82 0.21

Initial velocity field 0.92 0.77 0.15 0.80 0.13

Local restricted
to a subregion

Initial momentum, image transport 1.10 0.68 0.42 0.84 0.23
Initial momentum, density transport 1.17 0.68 0.49 0.85 0.26

Initial velocity field 0.98 0.38 0.60 0.81 0.18
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Résumé

Dans le contexte de la maladie d’Alzheimer, (1) la prédiction de l’apparition
de la maladie chez les patients atteints de troubles cognitifs légers et (2)
la caractérisation des changements locaux de l’hippocampe liés à la pro-
gression de la maladie sont des problèmes difficiles. Dans ce chapitre,
nous étudions l’emploi d’un modèle de classification logistique pour la
résolution simultanée de ces deux problèmes. Étant donné les obser-
vations de l’hippocampe d’un patient à deux points temporels, nous
quantifions les déformations à l ’aide du modèle des larges déformations
par difféomorphismes. Puisque les transformations sont a-priori struc-
turées en espace, nous introduisons plusieurs régularisations spatiales.
Nous comparons des régularisations générant des cartes de coefficients
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lisses (Sobolev), constantes par morceaux (variation totale), ou parci-
monieuses (fused LASSO) aux régularisations classiques (LASSO, ridge
et ElasticNet). Les performances de classification sont évaluées sur une
base de données composée de 103 patients provenant d’ADNI.

Mots clés : Maladie d’Alzheimer, imagerie cérébrale, évolution de la
maladie, classification logistique, régularisation spatiale, carte de coeffi-
cients

Abstract

In the context of Alzheimer’s disease, both (1) the identification of
mild-cognitive impairment patients likely to convert and (2) the char-
acterization of local hippocampal changes specific to disease progression
are challenging issues. In this chapter, we investigate the use of a logis-
tic classification model to address both problems simultaneously. Given
the observations of the hippocampus of a patient at two time points,
we quantify its deformation using the framework of large deformations
by diffeomorphisms. Since the deformations are expected to be spatially
structured, we introduce several spatial regularizations. We compare reg-
ularizations enforcing coefficient maps that are smooth (Sobolev), piece-
wise constant (total variation) or sparse (fused LASSO) to standards
regularizations (LASSO, ridge and ElasticNet). Their performances are
evaluated on a dataset of 103 patients from ADNI.

Keywords: Alzheimer’s disease, brain imaging, disease progression, lo-
gistic classification, spatial regularization, coefficient map
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10.1 Introduction

Large scale population studies aim to improve the understanding of the causes of
diseases, define biomarkers for early diagnosis, and develop preventive treatments.
An important challenge for medical imaging is to analyze the variability in magnetic
resonance (MR) acquisitions of normal control (NC), mild cognitive impairment
(MCI), and Alzheimer’s disease (AD) patients.

As seen in Chapter 9, the large deformation diffeomorphic metric mapping (LDDMM)

framework [Beg 2005] has proven useful to describe shape variations within a pop-
ulation. In the case of longitudinal analysis, it is not anymore the shapes that are
compared but their evolutions in time. In [Qiu 2008] the authors estimate the typ-
ical deformation of several clinical groups from the deformations between baseline
and follow-up hippocampus surfaces.

Quality of shape descriptors regards to the disease is often evaluated though
statistical significance tests or classification performance. In order to deal with the
latter we use the same pipeline as in Chapter 9, and evaluate descriptors on a logistic
classification task. In spite of its simplicity, it has the advantage of providing a map
of coefficients weighting the relevance of each voxel. Such map could help to local-
ize the AD-related hippocampus deformations. However, the dimensionality of the
problem being much higher than the number of observations (p ∼ 106 ≫ n ∼ 102),
the problem requires proper regularization. Now standard regularization methods
such as ridge [Hoerl 1970], LASSO [Tibshirani 1994] and elastic net [Zou 2005] do
not take into account any spatial structure of the coefficients. In contrast, total varia-
tion was used to regularize a logistic regression on functional MR data [Michel 2011].
Total variation promotes coefficient maps with spatially homogeneous clusters. Sim-
ilar ideas can be found in [Cuingnet 2012] where the authors defined the notion of
spatial proximity to regularize a linear support vector machines (SVM) classifier. In
[Durrleman 2013], the authors introduce sparse parametrization of the diffeomor-
phisms in the LDDMM framework. Our goal is different: we want spatial properties
(smoothness, sparsity, etc.) to be found across the population (i.e. on the common
template) and we want this coherence to be driven by the disease progression. In
this chapter, we investigate the use of total variation, Sobolev and fused LASSO
regularizations. Compared to total variation, Sobolev enforces smoothness of the
coefficient map, whereas fused LASSO adds a sparsity constraint.

The deformation model used to assess longitudinal evolutions in the population
was presented in Chapter 9. The model of logistic classification with spatial regular-
ization is described in Section 10.2.1. Data used and numerical results are presented
in Section 10.3.3. We illustrate that initial momenta capture information related to
AD progression, and that spatial regularizations significantly increase classification
performance.
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10.2 Methods

10.2.1 Logistic Classification with Spatial Regularization

Let us define a predictive model that reads

y
def.
= F (Xw + b) , (10.1)

where y ∈ {±1}n is the behavioral variable (i.e. the patient disease progression),
X ∈ R

n×p is the design matrix containing n observations of dimension p (i.e. the
initial momenta representing the deformations of the patient hippocampus), F is
the prediction function and (w, b) ∈ R

p × R are the parameters to estimate. The
binary logistic classification model defines the probability of observing yi given the
data xi as

p (yi | xi,w, b)
def.
=

1

1 + exp
(
−yi

(
xT
i w + b

)) . (10.2)

Given parameters (ŵ, b̂) and a new data point x the prediction is the maximum
likelihood, i.e. class(x) = argmaxy∈{±1} p

(
y | x, ŵ, b̂

)
= sign

(
xT ŵ + b̂

)
. Accord-

ingly the parameters are estimated as minimizers of the opposite log likelihood of
the observations, considered as independent

L(w, b)
def.
=

1

n

n∑

i=1

log
(
1 + exp

(
−yi(x

T
i w + b)

))
. (10.3)

Since the number of observations is much smaller than the dimension of the problem
(n ≪ p) minimizing directly the loss (10.3) leads to overfitting, and proper regu-
larization is required. This is commonly performed by introducing a regularization
function J and the final problem becomes

Find (ŵ, b̂) in argmin
w,b

L(w, b) + λJ(w) , (10.4)

where λ is a coefficient tuning the balance between loss and regularization.

The standard elastic net regularization [Zou 2005] uses a combined ℓ1 and squared
ℓ2 penalization λEN(w)

def.
= λ1||w||1+λ2||w||

2
2 =

∑p
j=1 λ1|wj |+λ2w

2
j , with the limit

cases λ2 = 0 referred to as LASSO [Tibshirani 1994] and λ1 = 0 referred to as ridge

[Hoerl 1970]. However as mentioned in [Michel 2011], one drawback of such methods
is that they do not take into account any geometrical structure of w. Since coef-
ficients are expected to be locally correlated in space, we investigate the following
regularizations

Sobolev semi-norm SB(w)
def.
=
∑

ω∈Ω‖ gradw(ω)‖22 , (10.5)

Total Variation semi-norm TV(w)
def.
=
∑

ω∈Ω‖ gradw(ω)‖2 , (10.6)

Fused LASSO FL(w)
def.
= TV(w) + ‖w‖1 . (10.7)
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The above sums go over all voxels ω in the domain Ω ⊂ R
3, and grad is a linear

operator implementing the image gradient by finite differences. By indexing each
voxel ω by integer coordinates on a 3D lattice, we define grad by

gradw(ωijk)
def.
=




∆w
(
ωijk, ω(i+1)jk

)

∆w
(
ωijk, ωi(j+1)k

)

∆w
(
ωijk, ωij(k+1)

)


 , (10.8)

where ∆w(ω1, ω2)
def.
=

{
w(ω2)−w(ω1) if (ω1, ω2) ∈ Ω2

0 otherwise
. This definition allows to

restrain Ω to any region of interest and boundaries of the domain are not penalized.
Rationals and differences for those regularizations are discussed in Section 10.3.3.

10.2.2 Solving the Model

Let us first study differentiability and convexity of the objective function in problem
(10.4). For convenience, we define w̃

def.
= (wT , b)T and for all i, x̃i

def.
= (xT

i , 1)
T , with

associated data matrix X̃
def.
= (x̃ij) 1≤i≤n

1≤j≤p+1
∈ R

n×(p+1). Then (10.3) becomes

L(w̃) =
1

n

n∑

i=1

log
(
1 + exp(−yix̃

T
i w̃)

)
. (10.9)

It is twice differentiable and its first and second order partial derivatives read for all
j, k in [1..p+ 1]

∂L

∂w̃j
(w̃) =

1

n

n∑

i=1

−yix̃ij exp(−yix̃
T
i w̃)

1 + exp(−yix̃T
i w̃)

= −
1

n

n∑

i=1

yix̃ij

1 + exp(yix̃T
i w̃)

,

∂2L

∂w̃j∂w̃k
(w̃) =

1

n

n∑

i=1

y2i x̃ijx̃ik exp(yix̃
T
i w̃)

(
1 + exp(yix̃T

i w̃)
)2 .

Denoting ei
def.
= exp(yix̃

T
i w̃) we deduce the expression of the gradient and Hessian

∇L(w̃) = −
1

n

n∑

i=1

yi
1 + ei

x̃i ; ∇2L(w̃) =
1

n

n∑

i=1

ei

(1 + ei)
2 x̃ix̃

T
i .

For all i, x̃ix̃
T
i is a nonnegative matrix and ei

(1+ei)2
> 0, so that ∇2L(w̃) is nonneg-

ative. This establishes the convexity of the loss function.

When the regularization J is also convex and twice differentiable the reference
optimization algorithms include quasi-Newton methods; in particular for large-scale
problems the limited memory Broyden-Fletcher-Goldfarb-Shanno (LM-BFGS) is
very popular. For instance the Sobolev regularization defined in (10.5) is quadratic.
It is easy to derive ∇ SB(w) = −2 div(grad(w)), where div is the usual notation for
the opposite of the adjoint of the linear operator grad.
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However for non-differentiable regularizations such as total variation and fused
LASSO optimization raises theoretical difficulties. Proximal methods such as monotonous
fast iterative shrinkage thresholding algorithm (M-FISTA) [Beck 2009] and generalized
forward-backward (GFB) [Raguet 2011] have been considered. Unfortunately their
low convergence rates are prohibitive for extensive investigation of the classification
scheme (parameter λ, domain Ω, training design matrix X). Therefore we used
the hybrid algorithm for non-smooth optimization (HANSO) [Lewis 2012] which is
a LM-BFGS algorithm with weak Wolfe conditions line search. It is reported to
be efficient for minimizing functions that are almost everywhere differentiable; in
particular termination results are proven for Lipschitz-continuous or semi-algebraic
functions [Lewis 2012]. This comprises both the total variation semi-norm and the
ℓ1-norm, with almost everywhere

∇TV(w) =− div
((
‖ gradw(ω)‖−1

2 gradw(ω)
)
ω∈Ω

)
,

∇‖w‖1 =(sign (w(ω)))ω∈Ω .

10.2.3 Weighted Loss Function

In supervised learning, classifiers trained with observations not equally distributed
between classes can be biased in favor of the majority class. Several strategies can
be used to alleviate this. One strategy is to restrict the training set to be equally
distributed among classes. To use the full training set, an alternative strategy is to
introduce weights (qi)i∈[[1,n]] in the loss function as follows

Lq(w̃)
def.
=

1

n

n∑

i=1

qi log
(
1 + exp

(
−yix̃

T w̃
))

(10.10)

where qi
def.
= n/ (nc × card{j ∈ [1..n] | yj = yi}), nc being the number of classes (2 in

our case). When the observations are equally distributed among classes qi = 1 for
all i and one retrieves (10.9), whereas qi < 1 (respectively qi > 1) when the class of
observation i is overrepresented (respectively underrepresented) in the training set.

10.3 Material and Results

10.3.1 Data

A dataset of 206 hippocampus binary segmentations from 103 patients enrolled in
ADNI1 [Mueller 2005] has been used. For each patient, ‘screening’ and ‘month 12’
were the two time points selected. All patients were MCI at the screening point, 19
converted to AD by month 12, and the remaining 84 stayed MCI.

1http://www.loni.ucla.edu/ADNI

http://www.loni.ucla.edu/ADNI
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(a) Template T (b) Region of interest Ω

Figure 10.1: The region of interest Ω (visualized with transparency) is computed by
difference of the dilated template minus the eroded template.

10.3.2 Experiments

Computation of initial momenta Preprocessing, computation of the initial mo-
menta2, of the template of the population, and transport by density were performed
following the methodology from [Fiot 2012] (or Chapter 9).

Computation of the region of interest Ω The region of interest Ω was re-
stricted around the surface of the template (see Fig. 10.1), where lie the high values
of the initial momenta. Moreover, this allows greater differences of coefficient values
from one side to the other when using Sobolev regularization.

Logistic classification optimization Since stable and progressive classes in the
dataset are unbalanced, the weighted version of the loss function defined in Sec-
tion 10.2.3 was used. Solution of the optimization problems was computed via
HANSO3 with a maximum of 20 iterations.

Performance evaluation First, the effect of spatial regularizations was com-
pared. The spatial regularizations introduced in Section 10.2.1 aim at enforcing
local correlations between the coefficients in w. Using the whole dataset, the effect
of the various regularizations were compared. Second, the model was evaluated in
terms of classification of AD progression. All patients were classified using a leave-
10%-out scheme. This procedure was repeated for N = 50 random draws and clas-
sification results were averaged. From the numbers of true/false positives/negatives
(TP, FP, TN, FN), four indicators were used to measure classification accuracy:
specificity Spec

def.
= TN

TN+FP , sensitivity Sens
def.
= TP

TP+FN , negative predictive value

NPV
def.
= TN

TN+FN , and positive predictive value PPV
def.
= TP

TP+FP .

2http://sourceforge.net/projects/utilzreg/
3http://www.cs.nyu.edu/overton/software/hanso

http://sourceforge.net/projects/utilzreg/
http://www.cs.nyu.edu/overton/software/hanso
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10.3.3 Results

10.3.3.1 Effect of spatial regularizations

When using standard regularizations, increasing the regularization does not lead
to any spatial coherence (Fig. 10.2a, 10.2b and 10.2c). In contrast, the higher the
spatial regularization, the more structured are the coefficients. Note that delimited
areas are coherent across different spatial regularizations. Sobolev regularization
leads to smooth coefficient maps (Fig. 10.2d) whereas total variation tends to a
piecewise constant maps (Fig. 10.2e). Finally, fused LASSO adds sparsity by zeroing
out the lowest coefficients (Fig. 10.2f).

Remark (Effective degrees of freedom (DOF)). When solving equation (10.4), it
is interesting to evaluate the effective DOF of the system [Efron 1986]. In the
literature, the degrees of freedom were studied in the case of univariate multiple
regression analysis [Kruggel 2002], LASSO [Zou 2007, Dossal 2011], group-LASSO
[Vaiter 2013], etc. Evaluation of the DOF is a potential research directions to eval-
uate the statistical significance of the methods presented in this chapter.

10.3.3.2 Classification of Alzheimer’s disease progression.

Table 10.1 displays the classification performance indicators for the logistic classifi-
cation model with various regularizations. Without any regularization, the resulting
classifier always predicts the same class. All regularizations improve significantly the
classification performance, the top 3 being the three spatial regularizations. On this
dataset, total variation is the one providing the best results, similar to the perfor-
mance from [Fiot 2012] (and Chapter 9). Nonetheless, note that even though fused
LASSO (resp. ElasticNet) is the sum of two different regularizations we scaled them
with the same coefficient λ. Optimizing over two different regularization coefficients
should lead to better results than total variation (resp. ridge) which is only a limit
case.

10.4 Conclusion

We investigated the use of logistic classification with spatial regularization in the
context of Alzheimer’s disease. Results indicate that initial momenta of hippocam-
pus deformations are able to capture information relevant to the progression of the
disease. Another contribution of this paper is the joint use of a simple linear classi-
fier with complex spatial regularizations. Achieving results as good as in [Fiot 2012]
which uses non-linear SVM classifier, our method also provides coefficient maps with
direct anatomical interpretation. Moreover, we compared Sobolev, total variation
and fused LASSO regularizations. While they all successfully enforce different pri-
ors (respectively smooth, piecewise constant and sparse), their resulting coefficient
maps are coherent one to the other.

Those promising results pave the way to the design of better regularizations
such as group sparsity. Other perspectives include the adaptation of the whole
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(a) Ridge

(b) LASSO

(c) ElasticNet

(d) Sobolev

(e) Total variation

(f) Fused LASSO

Figure 10.2: Effects of various regularizations on the coefficients of w. Each small
image represent the coefficients of one slice of w, solution of the optimization prob-
lem with spatial regularization. On each row, the regularization is increasing from
left to right. Fig. 10.2a and 10.2b show standard regularizations whereas Fig. 10.2d,
10.2e and 10.2f show spatial regularizations. Spatial regularizations provide more
structured coefficients.
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framework to surface representation of shapes, since initial momenta lie on surfaces
in this application.
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Table 10.1: Prediction accuracy of MCI patients’ progression. Results are averaged over 50 random draws of training and testing
sets. The sum of specificity and sensitivity is given as mean ± standard deviation.

Regularization
λ

λ̂
Spec+

Spec Sens NPV PPV
range Sens

None 0 0 1.00± 0.00 0.00 1.00 NaN 0.18

Standard
Ridge [10−9, 100] 0.001 1.10± 0.06 0.92 0.17 0.83 0.35

LASSO [10−9, 100] 0.01 1.06± 0.03 0.23 0.83 0.85 0.20
ElasticNet [10−9, 100] 0.01 1.06± 0.03 0.23 0.83 0.86 0.20

Spatial
Sobolev [10−9, 104] 2.4 ∗ 103 1.15± 0.05 0.55 0.60 0.86 0.23

Total Variation [10−9, 100] 0.01 1.26± 0.03 0.47 0.79 0.91 0.25
Fused LASSO [10−9, 100] 0.006 1.18± 0.04 0.40 0.78 0.89 0.23





Conclusion

Thanks to the development and generalization of imaging technologies over the
last decades, larger databases of observations of patients are progressively avail-
able. With an increased resolution of the images, increased number of patients,
and increased number of observations per patient, population analysis can be more
accurate and statistically meaningful. The potential benefits of such studies in-
clude better understanding of diseases, identification of risk factors, development of
preventive and curative treatments. In the end, patients are progressively getting
higher quality medical care with improved follow-up and improved quality of life.

⋆

⋆ ⋆

In this thesis, we studied mathematical methods of image analysis for both
cross-sectional and longitudinal studies. In this conclusion, we first analyze the
contributions with a transverse point of view, and then present potential perspectives
of this thesis.

Revisited contributions

Definition of features for population analysis

In machine learning, defining the representation of the data is a vital step to obtain
high numerical performance. This holds true in many applications, and in particular
for population analysis via medical imaging.

First, we performed studies where each feature represents an anatomical neigh-

borhood, i.e. it contains information at the voxel level (it can be related to the
anatomy in magnetic resonance (MR) images, activity in functional MR images,



208 Conclusion

etc). In particular, we evaluated several local features for the segmentation of white
matter hyper-intensities (WMH). These local features were built using up to four
modalities, and the relative contribution of each modality was evaluated. Our study
showed a numerical trade-off between the quantity of information and performance
vs numerical efficiency.

Second, we performed studies where each feature represents the snapshot of

a patient, i.e. that contains information of the patient at a specific time point.
We evaluated single and multi-modality representations of patients for manifold
learning. We saw that results can depend on the pre-processing (e.g. registration)
or the brain area considered.

Third, we performed studies where each feature represents the evolution of a

patient, i.e. that contains information of the patient between several time points.
We evaluated the use of local descriptors from the large deformation diffeomorphic
metric mapping (LDDMM) framework. We studied how local descriptors such as
initial momenta can be used in disease progression classification, and what could be
done so that they outperform global descriptors such as (relative) volume variation.

Building a distance between features

Once we have defined the features, the next question is: how to measure the dis-
tance between them? When the features represent anatomical neighborhoods, the
Euclidean distance is commonly used. However, the answer is not as straightforward
when it comes to features representing patients. One way to address the problem
is to register the features towards a common template and compute Euclidean dis-
tance once the features are transported to this common space. Using this strategy,
the results depends on (1) the computation of the template, (2) the quality and
properties of the registration algorithm and (3) the choice of the transport.

With regard to the first point, we introduced extensions of the Karcher algorithm
to define a template up-to rigid transformations, that keeps sharp boundaries by
avoiding consecutive smoothings. For an efficient computation, we only selected
a subpart of the population and used an interesting selection criterion to ensure
proper final matching between the images and the final template.

With regard to the second point, we showed that having the choice of the regis-
tration algorithm can be helpful in some situations. For example, a non-rigid regis-
tration can help to remove shape effects when ones wants to focus his/her study on
intensity. Please note that we neither quantified the sensibility of our pipelines to
this step nor evaluated template-free methods, though these ideas can be interesting
perspectives.

With regard to the third point, we evaluated several transport strategies in
Chapter 9. Please note that the results are still preliminary and we consider the
question of transport as still open.
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Optimization strategies and regularizations

In this thesis, we built predictive models in several challenging settings.
First, we built classification models in studies with many observations containing

few information. This was the case in Chapter 5, where the design and use of an
appropriate region of interest (ROI) was vital to obtain accurate lesion segmentation.

Second, we built classification models in studies with few observations in high

dimension. That was the case in Chapters 7, 9, 10. In that setting, an appropriate
choice of the distance between features and the introduction of regularizations can
improve the results. For example, the introduction of spatial regularizations in
Chapter 10 led to more meaningful maps of coefficients.

Finally, we built classification models with skewed classes in all studies (Chap-
ters 5, 7, 9, 10), i.e. the datasets did not contain as many observations for all classes.
This is a common issue in medical imaging, due to the nature of the observations. In
this thesis, we used two strategies: either we forced the training sets to be balanced,
or used weighted loss functions.

Discovering and quantifying trends in populations

Being able to predict the evolution of a patient is one of the major goals of medical
research. It helps the medical staff to provide the most appropriate treatments to
patients. Understanding disease progression or uncovering modes of variation or
trends in a population are likely to help to achieve this goal.

First, we used non-linear dimensionality reduction (DR) algorithms to build
low-dimensional manifolds. Such manifolds enable the visualization of trends in
populations. Several pipelines can be used in order to find intensity or shape trends.

Second, we also introduced an extension of Laplacian Eigenmaps able to process
combined imaging and clinical data. Such extensions were shown to be able to
improve the diagnosis classification performance. We also proposed a pipeline based
on the LDDMM framework for the classification performance for disease progression.

Third, we first did a proof of concept on the use of hippocampus subregions to
improve classification results. Then we evaluated a logistic classification models,
and showed that spatial regularizations can be introduced to discover hippocampus
areas related to disease progression. This is an important step for the identification

of biomarkers.

⋆

⋆ ⋆
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Perspectives

Here is a non-exhaustive lists of perspectives of the work presented in this thesis.

Discovering and quantifying trends in populations

In this thesis, we built manifolds for cross-sectional studies with simple Euclidean
distances. Despite the simplicity of this distance, these manifolds provide interesting
insight of the trends of the studied populations. It would be interesting to build
some using deformation-based distances, for both cross-sectional and longitudinal
studies.

Definition of features and distances for population analysis

We have seen in this thesis that defining appropriate features is an important step
for population analysis.

A promising perspective is the use of surface models, for example for the longi-
tudinal analysis of hippocampi. Indeed, the high values in the initial momenta lie
close to the surface boundary, hence surface models seem appropriate.

Another perspective is to work on the definition of features encoding the evo-
lutions of patients with more than two time points, for example based on geodesic
regression [Niethammer 2011] or cubic spline interpolation [Trouvé 2012].

As mentioned earlier, methods based on local comparisons can depend on the
quality of the template and/or registration algorithm. Instead of building features
that need to be transported and compared in a common space, structural approaches
could be interesting alternatives [Mangin 2004]. Such strategies have been used in
the literature in the field of computer vision.

Optimization strategies and regularizations

We have seen that optimization strategies and regularizations are important given
the challenging settings in population analysis. Several perspectives and further
studies would require new regularizations.

In Chapter 10, we introduced spatial regularizations in 3D. As mentioned earlier,
one perspective of our work is to work on surface models to encode hippocampus
shape evolutions. It would be particularly interesting to study in the effect of spatial

regularizations on surfaces for predictive models.
We also introduced the idea of working with spatio-temporal data with more

than two time points. In that case, the introduction of spatio-temporal regularization

could be relevant.
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Appendix A

Proofs

A.1 Proofs of Chapter 2

In this section, the proofs of Chapter 2 are presented. Notations are the same as in
Chapter 2.

A.1.1 Proof of Theorem 2.1.1

Proof. Let us assume that for all x ∈ X the infimum infy∈Y EpXY(dY |x)ℓ(Y, y) is
reached. Because the infimum is reached, we can define the function f∗ : X → Y
such that ∀x ∈ X , f∗(x) ∈ argminy∈Y EpXY(dY |x)ℓ(Y, y). The theorem states that f∗

is a target function, i.e. a prediction function minimizing the risk. Let us consider
a prediction function f ∈ F(X ,Y) and show that the risk of f is higher or equal
than the one of f∗. The definition of the risk of f is

R(f) = E [ℓ(f(X),Y)] . (A.1)

Using conditional probabilities

R(f) = EpXY(dX)

[
EpXY(dY|X) [ℓ(f(X),Y)]

]
. (A.2)

By definition of the infimum we get

R(f) ≥ EpXY(dX)

[
inf
y∈Y

EpXY(dY|X) [ℓ(y,Y)]

]
. (A.3)

By definition of f∗ we get

R(f) ≥ EpXY(dX)

[
EpXY(dY|X) [ℓ(f

∗(X),Y)]
]
. (A.4)

Removing the conditional probabilities we get

R(f) ≥ E [ℓ(f∗(X),Y)] . (A.5)

So by definition of the risk of f∗

R(f) ≥ R(f∗) (A.6)
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A.1.2 Proof of Theorem 2.1.2

Proof. To establish this result, we are going to use the following lemma.

Lemma A.1.1 (Variance decomposition). Let W be a random variable and a ∈ R,

then

E

[
(W − a)2

]
= E

[
(W − EW)2

]
+ (EW − a)2. (A.7)

Proof of Lemma A.1.1. Let Va
def.
= E

[
(W − a)2

]
for any a ∈ R. Expanding the

square gives
Va = E

[
W2 − 2aW + a2

]
. (A.8)

By linearity of the expected values we have

Va = E
[
W2

]
− 2aEW + a2, (A.9)

= E
[
W2

]
− 2aEW + a2 + (EW)2 − (EW)2. (A.10)

Hence by reordering

Va = E
[
W2

]
− (EW)2 + (EW − a)2 (A.11)

In particular VEW = E
[
W2

]
− (EW)2. Therefore

Va = VEW + (EW − a)2 (A.12)

Now let us get back to the proof of Theorem 2.1.2. We apply the Lemma A.1.1
with E = EpXY(dY|X=x), W = Y and a = y.

EpXY(dY|X=x)ℓ(Y, y) = EpXY(dY|X=x)(Y − y)2

= EpXY(dY|X=x)(Y − EpXY(dY|X=x)Y)2 + (EpXY(dY|X=x)Y − y)2

The first term does not depend on y, so the infimum of EpXY(dY|X=x)ℓ(Y, y) for
y ∈ Y is obtained for y = E(Y|X = x). Therefore,

η∗(x)
def.
= E(Y|X = x) (A.13)

is a target function. Now we want to quantify the excess of risk of η : X → R. The
risk of η is

R(η) = E(Y − η(X))2. (A.14)

Using conditional probabilities we get

R(η) = EpXY(dX)

[
EpXY(dY|X=x)(Y − η(x))2

]
. (A.15)
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Now we apply the Lemma A.1.1 with E = EpXY(dY|X=x), W = Y and a = η(x)

R(η) = EpXY(dX)

[
EpXY(dY|X=x)(Y − E(Y|X))2 + (E (Y|X)− η (x))2

]
. (A.16)

By definition of η∗

R(η) = EpXY(dX)

[
EpXY(dY|X=x)(Y − η∗(x))2 + (η∗(x)− η(x))2

]
. (A.17)

Finally by linearity of the expected values and definition of the risk, we get

R(η) = R(η∗) + EpXY(dX)

[
(η∗ (X)− η (X))2

]
, (A.18)

= R(η∗) + E(η − η∗)2. (A.19)

A.1.3 Proof of Theorem 2.1.3

Proof. The Theorem 2.1.3 claims the form of the target functions in a classification
problem with the ℓ0/1 loss. First, since cardY < ∞, for all x ∈ X the infimum
infy∈Y EpXY(dY |X=x)ℓ(Y, y) is reached. Therefore by Theorem 2.1.1 we can define
f∗ such that

∀x ∈ X , f∗(x) ∈ argmin
y∈Y

EpXY(dY|X=x)ℓ(Y, y). (A.20)

With ℓ = ℓ0/1, we get

∀x ∈ X , f∗(x) ∈ argmin
y∈Y

EpXY(dY|X=x)(1Y 6=y). (A.21)

By definition of the expected value of the characteristic function, we get

∀x ∈ X , f∗(x) ∈ argmin
y∈Y

pXY(Y 6= y|X = x), (A.22)

or equivalently

∀x ∈ X , f∗(x) ∈ argmax
y∈Y

pXY(Y = y|X = x). (A.23)

Now when Y = {−1,+1}, η∗(x) can be decomposed using the definition of the
expected value

η∗(x) = E(Y|X = x),

= pXY(Y = 1|X = x)× 1 + pXY(Y = −1|X = x)× (−1),

= pXY(Y = 1|X = x)× 1 + (1− pXY(Y = 1|X = x))× (−1),

= 2× pXY(Y = 1|X = x)− 1.
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Therefore

sign(η∗(x)) = 1⇔ η∗(x) ≥ 0⇔ pXY(Y = 1|X = x) ≥
1

2
,

⇔ pXY(Y = 1|X = x) ≥ pXY(Y = −1|X = x),

⇔ 1 ∈ argmax
y∈{0,1}

pXY(Y = y|X = x).

A.1.4 Proof of Proposition 2.1.4

Proof. We want to bound R(fERM ) − R(f̂). Let us introduce some terms in the
expression and then bound the terms by pairs.

R(fERM )−R(f̂) = R(fERM )− r(fERM ) + r(fERM )− r(f̂)︸ ︷︷ ︸
≤0

+r(f̂)−R(f̂),

≤ sup
f∈F̂
|R(f)− r(f)|+ 0 + sup

f∈F̂
|r(f)−R(f)|,

≤ 2× sup
f∈F̂
|R(f)− r(f)| .

A.1.5 Proof of the inequalities for the bias-variance trade-off

Proof. First, fERM is defined as a minimizer of r on F̂ whereas f̂ is defined as a
minimizer of R on F̂ . Therefore, we have R(fERM ) ≥ R(f̂).

A.2 Proofs of Chapter 5 1

In this section, the proofs of Chapter 5 are presented. Notations are the same as in
Chapter 5.

A.2.1 Proof of the Proposition 5.2.1

Proof. Because the fluid attenuated inversion recovery (FLAIR) image is bounded
on ΩW , the minimum (resp. maximum) m = min {I(ω); ω ∈ ΩW } (resp. M =

max {I(ω); ω ∈ ΩW }) is well defined.

1. ∀τ < m and ω ∈ ΩW , I(ω) ≥ m > τ and so Mτ (ω) = 1. For ω ∈ Ω \

ΩW , I(ω) = −∞, so I(ω) > τ is false and Mτ (ω) = 0.

1The proofs in this section are inspired by the class "Kernel methods" by Jean-Philippe Vert
from the MSc "Math, Vision, Learning" of ENS Cachan, France.
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2. ∀τ > M and ω ∈ Ω, I(ω) > τ > M is false by definition of M and then
Mτ (ω) = 0.

A.2.2 Proof of Theorem 5.2.2

Proof. Let us note Hs
K the linear span in HK of the vectors Kxi

Hs
K

def.
=

{
f ∈ HK : f(x) =

n∑

i=1

αiK(x,xi); (α1, . . . , αn) ∈ R
n

}
. (A.24)

Hs
K is a finite-dimensional subspace, therefore any function f ∈ HK can be uniquely

decomposed as
f = f s + f⊥, (A.25)

with f s ∈ Hs
K and f⊥ ∈ (Hs

K)⊥.

Since HK is a RKHS, ∀i ∈ [[1, n]], f⊥(xi) = 〈f
⊥,K(xi, ·)〉HK

. Therefore

∀i ∈ [[1, n]], f(xi) = f s(xi). (A.26)

Then Pythagora’s theorem gives

‖f‖2K = ‖f s‖2K + ‖f⊥‖2K . (A.27)

From (A.26) and (A.27) the value functional in (5.11) is therefore higher or equal for
f than for f s, with equality when f⊥ = 0. The value of the minimum is therefore
in Hs

K .

A.2.3 Proof of Proposition 5.2.4

Proof. L has a quadratic term and a linear term in α, so it gives us

∇αL(α, ξ,ν,µ) = 2γKα−KYµ, (A.28)

= K(2γα−Yµ), (A.29)

where Y is the diagonal matrix with entries Yii = yi. So solving ∇αL = 0 leads to

α =
Yµ

2γ
+ ε (A.30)

with ε such that Kε = 0. However, ε does not change f , so we can chose ε = 0,
hence the result.
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A.2.4 Proof of Proposition 5.2.5

Proof. To compute ∇ξL (gradient of L with regard to ξ), we compute the partial
derivatives ∂L

∂ξi
(α, ξ,ν,µ). Since L is linear in ξi, we get

∀i ∈ [[1, n]],
∂L

∂ξi
(α, ξ,ν,µ) =

1

n
− µi − νi. (A.31)

When the gradient of L with regard to ξ is null, all the partial derivatives of L with
regard to ξi are null, which leads to

∀i ∈ [[1, n]], 0 =
1

n
− µi − νi. (A.32)

A.2.5 Proof of Proposition 5.2.6

Proof. In Appendix A.2.4, we have seen that L is linear in ξi with the coefficient
1
n − µi − νi. Therefore if ∃i such that 1

n−µi−νi 6= 0, then infξi L(α, ξ,ν,µ) = −∞

and q(µ,ν) = −∞.
Now if ∀i ∈ [[1, n]], 0 = 1

n − µi − νi, we get

L(α, ξ,ν,µ) = γαTKα−
n∑

i=1

µi

(
− 1 + yi

n∑

j=1

αjK(xi,xj)

)
, (A.33)

= γ

n∑

i,j=1

αiαjK(xi,xj) +

n∑

i=1

µi −
n∑

i,j=1

µiyiαjK(xi,xj) , (A.34)

=

n∑

i=1

µi +

n∑

i,j=1

(γαiαj − µiyiαj)K(xi,xj) . (A.35)

Now using the optimality condition of Proposition 5.2.4, we get

q(µ,ν) =
n∑

i=1

µi +
n∑

i,j=1

(
γ
yiµi

2γ

yjµj

2γ
− µiyi

yjµj

2γ

)
K(xi,xj) , (A.36)

=
n∑

i=1

µi −
1

4γ

n∑

i,j=1

yiyjµiµjK(xi,xj) . (A.37)

A.2.6 Proof of Proposition 5.2.7

Proof. The dual problem consists in maximizing q(µ,ν) subject to

{
µ ≥ 0

ν ≥ 0
.

However, if ∃i such that µi >
1
n : as νi ≥ 0, µi + νi 6=

1
n and q(µ,ν) = −∞.
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If ∀i, 0 ≤ µi ≤
1
n , the dual function takes finite values when νi =

1
n − µi.

In that case, the dual problem can be written as an optimization problem on the µi.
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A.3 Proofs of Chapter 6

A.3.1 Proof of Proposition 6.2.1

.

Proof.

n∑

i,j=1

wij ||x̃i − x̃j ||
2 =

∑

i,j

wij

(
||x̃i||

2 − 2 < x̃i, x̃j > +||x̃j ||
2
)

= 2
∑

i

(∑

j

wij

)

︸ ︷︷ ︸
dii

||x̃i||
2 − 2

∑

i,j

wij < x̃i, x̃j >

= 2Tr
(
X̃TDX̃

)
− 2Tr

(
X̃TWX̃

)

= 2Tr
(
X̃TLX̃

)
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Specificity, 97
Statistics, 42
Support vector, 94
Support vector machines, 85
Surface model, 190

T
Tangent

∼ information, 165
Target function, 43
Target image, see Image
Template, 141, 147, 159, 169

∼-free method, 188
Choice of a population ∼ model, 151
Population ∼, 147, 162

Thesis
∼ contributions, 61, 187
∼ objectives, 60
∼ oral communications, 62
∼ publications, 62

Transport, 141, 152, 159, 165, 188
∼ as a density, 152, 167
∼ examples in 2D, 152
Choice of ∼ method, 153
Image ∼, 152, 167
Parallel ∼, 153, 160
Vector field ∼, 152
Velocity field ∼, 167

True
∼ negative, 97
∼ positive, 97

U
Unbalanced

∼ dataset, 51

V
Validation

Cross-∼, 42
Velocity

Stationary ∼ field, 145
Velocity field, 161
Ventricle, 115
Voting scheme, 75

W
White matter, 85, 86


	Acknowledgments
	Résumé (Abstract in French)
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Notations
	List of Acronyms
	Introduction (in French)
	Motivations cliniques dans la littérature
	Création d'outils de diagnostic
	Identification et quantification de biomarqueurs
	Identification et quantification de facteurs de risque
	Analyse exploratoire

	Aspects méthodologiques
	Construction de modèles statistiques
	Définition des descripteurs et des distances
	Nombre de paramètres et réduction de dimension
	L'importance des régularisations

	Plan et contributions


	I Position of the problem
	Clinical context
	Role of medical imaging in population analysis studies
	Alzheimer's disease
	Symptoms and discovery
	Risk factors
	Facts and figures
	Alzheimer's disease model

	Databases used
	Alzheimer's Disease Neuroimaging Initiative (ADNI)
	Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL)


	Challenges in large-scale population studies
	Learning predictive models
	Position of the problem
	Empirical risk minimization
	Local averaging

	Challenges
	Model selection
	Curse of dimensionality
	Classification with unbalanced training sets

	Numerical strategies
	Splitting the dataset
	Cross validation
	Regularizations


	Contributions of this thesis
	Clinical motivations
	Creation of diagnostic tools
	Identification and quantification of biomarkers
	Identification and quantification of risk factors
	Exploratory data analysis

	Methodological aspects
	Construction of statistical models
	Definitions of descriptors and distances
	Number of parameters and dimensionality reduction
	The importance of regularizations

	Contributions of this thesis
	Objectives
	Contributions
	List of publications
	List of oral communications



	II Cross-sectional population analysis
	State of the art
	Manifold learning
	Definition and algorithms
	Parameter selection
	Toy examples

	Applications in medical imaging
	Image registration
	Image segmentation
	Population analysis
	Machine learning

	Conclusion

	Lesion segmentation using Support Vector Machines
	Introduction
	Methods
	Global pipeline
	Mask creation
	Classification

	Material and Results
	Data
	Experiments
	Results

	Conclusion

	Image and shape analysis via manifold learning
	Introduction
	Methods
	Global pipeline
	Dimensionality reduction

	Material and Results
	Data
	Experiments
	Results

	Conclusion

	Manifold learning combining imaging and clinical data
	Introduction
	Methods
	Population analysis and diagnosis classification from manifold learning
	Extended Laplacian eigenmaps based on distance matrix combination
	Extended Laplacian eigenmaps based on adjacency graph extension

	Material and Results
	Data
	Experiments
	Results

	Discussion
	Conclusion


	III Longitudinal population analysis
	State of the art
	Computational anatomy
	Deformation models
	Free-forms
	Large deformation diffeomorphic metric mapping (LDDMM)
	Log-demons
	Other models
	Choice of a deformation model

	Population template
	Deterministic approaches
	Probabilistic approaches
	Mixed approaches
	Choice of a population template model

	Transport
	Examples of transport methods
	Choice of a transport method

	Conclusion

	Longitudinal hippocampus shape analysis via geodesic shootings
	Introduction
	Methods
	Global pipeline
	Geodesic shooting
	Population template
	Tangent information and associated transport
	Classification

	Material and Results
	Data
	Experiments
	Results

	Conclusion

	Spatial regularizations for the classification of AD progression and detection of related hippocampus deformations
	Introduction
	Methods
	Logistic Classification with Spatial Regularization
	Solving the Model
	Weighted Loss Function

	Material and Results
	Data
	Experiments
	Results

	Conclusion


	Conclusion
	Appendices
	Proofs
	Proofs of Chapter 2
	Proof of Theorem 2.1.1
	Proof of Theorem 2.1.2
	Proof of Theorem 2.1.3
	Proof of Proposition 2.1.4
	Proof of the inequalities for the bias-variance trade-off

	Proofs of Chapter 5
	Proof of the Proposition 5.2.1
	Proof of Theorem 5.2.2
	Proof of Proposition 5.2.4
	Proof of Proposition 5.2.5
	Proof of Proposition 5.2.6
	Proof of Proposition 5.2.7

	Proofs of Chapter 6
	Proof of Proposition 6.2.1


	Bibliography
	Index


