
HAL Id: tel-00952082
https://theses.hal.science/tel-00952082v1

Submitted on 26 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Un modèle de transition logico-matérielle pour la
simplification de la programmation parallèle

Chong Li

To cite this version:
Chong Li. Un modèle de transition logico-matérielle pour la simplification de la programmation paral-
lèle. Interface homme-machine [cs.HC]. Université Paris-Est, 2013. Français. �NNT : 2013PEST1089�.
�tel-00952082�

https://theses.hal.science/tel-00952082v1
https://hal.archives-ouvertes.fr

U N I V E R S I T É

PA R I S - E S T
ÉCOLE DOCTORALE

Mathématiques et STIC

THÈSE DE DOCTORAT

Informatique

U N M O D È L E D E T R A N S I T I O N L O G I C O - M AT É R I E L L E P O U R

L A S I M P L I F I C AT I O N D E L A P R O G R A M M AT I O N PA R A L L È L E

A S O F T WA R E - H A R D WA R E B R I D G I N G M O D E L

F O R S I M P L I F Y I N G PA R A L L E L P R O G R A M M I N G

Présentée par:

LI Chong

Soutenue le 03 juillet 2013

Rapporteurs: KUCHEN Herbert Professeur Universität Münster

CHAILLOUX Emmanuel Professeur Univ. P-et-M-Curie

Examinateurs: MILLER Quentin Lecturer (MdC) Somerville C. Oxford

LOULERGUE Frédéric Professeur Univ. d’Orléans

GAVA Frédéric Maître de Conf. - HdR Univ. Paris-Est

GREBET Jean-Guillaume Resp. de Recherche S.A.S EXQIM

Dir. de thèse: HAINS Gaétan Professeur Univ. Paris-Est

R E M E R C I E M E N T S

J’aimerais, en premier lieu, remercier vivement M. Herbert KUCHEN, Pro-
fesseur à Universität de Münster, d’Allemagne, et Emmanuel CHAILLOUX,
Professeur à Université Pierre-et-Marie-Curie (Paris VI), pour l’honneur qu’ils
m’ont fait en acceptant d’être les rapporteurs de ma thèse.

Mes remerciements s’adressent également à M. Quentin MILLER, Lecturer
à Somerville College de University of Oxford, d’Angleterre, M. Frédéric LOU-
LERGUE, Professeur à Université d’Orléans, M. Frédéric GAVA, Maître de
Conférences - HDR à Université Paris Paris-Est Créteil (Paris XII), et M. Jean-
Guillaume GREBET, Directeur Général Délégué et Responsable de Recherche
de EXQIM S.A.S., du Luxembourg, pour l’honneur qu’ils m’ont fait en accep-
tant de bien vouloir participer à ce jury de soutenance.

J’aimerais exprimer toute ma profonde gratitude à M. Gaétan Joseph Daniel
Robert HAINS, Professeur à Université Paris-Est, qui a assuré l’encadrement
de cette thèse avec beaucoup de patience et d’enthousiasme. Je tiens tout
particulièrement à lui exprimer ma plus profonde gratitude pour son soutien
de tous les jours qui m’a permis de mener à terme ces travaux. Son expérience
et ses conseils ont été décisifs pour le déroulement de ce travail. Je le remercie
pour son extrême gentillesse et sa disponibilité de tous les instants.

J’adresse également des vifs remerciements à M. Jacques LUCAS, Président-
Directeur Général de EXQIM S.A.S., et au Dr. Jean-Guillaume GREBET, pour
m’avoir choisi pour réaliser cette thèse industrielle et co-financé sous la forme
d’une Convention Industrielle de Formation par la Recherche (CIFRE) avec le
Ministère de l’Enseignement Supérieur et de la Recherche. Un grand merci
pour m’avoir donné l’accès du supercalculateur SGI Altix de EXQIM S.A.S.
dont j’ai mené les expérimentations.

Je tiens également à remercier M. Murray COLE, Reader à University of
Edinburgh à l’Écosse, M. Youry KHMELEVSKY, Adjunct Professor à Univer-
sity of British Columbia au Canada, M. Mostafa BAMHA, Maître de Con-
férences à Université d’Orléans, M. Muath ALRAMMAL, Assistant Professor

iii

à Al Khawarizmi International College à l’Abou Dabi, et de nombreux col-
lègues de mon laboratoire LACL, de mon école doctorale MSTIC, de mon
université PRES Paris-Est, et du labotatoire LIFO de l’université d’Orléans
pour les nombreux conseils scientifiques qu’ils m’ont prodigués tout au long
de cette thèse.

J’adresse mes sincères remerciements à M. Bernard LAPEYRE, Directeur
du Département des Études doctorales d’Université Paris-Est, Mme Claude
TU, Ajointe au directeur du Département des Études doctorales, Mme Sylvie
CACH, Responsable administrative de l’école docotrale MSTIC, Mme Flore
TSILA, Secrétaire du labotatoire LACL, et al. pour leur soutiens administrat-
ifs. Un grand merci à l’école doctorale MSTIC, pour m’avoir financé mes for-
mations doctorales organisées par ENPC SIM et par CEA-INRIA-EDF, et pour
m’avoir autorisé de rédiger cette thèse en anglais, ce qui m’a facilité la tâche
et surtout épargné du travail.

Je souhaite aussi remercier M. Aurélien GONNAY, Ingénieur architecte logi-
ciel, M. Mohamad AL HAJJ HASSAN, Docteur en algorithmes parallèlese et
spécialiste de base de données distributée, M. Moez HAMMAMI, Ingénieur
statisticien économiste, M. Gwénolé LE MENN, Normalien gestionnaire de
risques financiers, M. Olivier PHILIPPE, Normalien gérant de portefeuilles,
et tous les collègues de EXQIM S.A.S. pour leur soutien et les nombreux con-
seils divers depuis la fondation de EXQIM S.A.S..

J’adresse un grand merci à toute ma famille qui a toujours été présente
lorsque j’en ai eu besoin, en particulier, à ma mère et mon père. Je suis là
grâce à vos sacrifices, votre soutien et vos encouragements pendant toutes ces
années.

Enfin et surtout, il y a de nombreuses personnes à qui je souhaite adresser
un grand merci. Cependant, il est impossible de tous citer ici. Je vous tous
remercie vivement, les amis!

Paris, le 8 juin 2013.

iv

Cette thèse a été effectuée auprès de :

Laboratoire d’Algorithmique, Complexité et Logique
Département d’Informatique

Faculté des Sciences et Technologies
Université Paris-Est Créteil

61, avenue du Général de Gaulle
94010 Créteil, France

www.lacl.fr

et au sein de :

Exclusive Quantitative Investment Management
24, rue de Caumartin
75009 Paris, France
www.exqim.com

www.lacl.fr
www.exqim.com

R É S U M É L O N G E N F R A N Ç A I S

La programmation parallèle et les algorithmes data-parallèles sont depuis
plusieurs décennies les principales techniques qui sous-tendent l’informatique
haute performance. Comme toutes les propriétés non-fonctionnelles du logi-
ciel, la conversion des ressources informatiques dans des performances évolu-
tives et prévisibles implique un équilibre délicat entre abstraction et automa-
tisation avec une précision sémantique. Au cours de la dernière décennie, de
plus en plus de professions ont besoin d’une puissance de calcul très élevée.
Cependant, comme dans les secteurs financiers de trading algorithmique, les
équipes sont structurées en binôme, composées d’un analyste quantitatif, spé-
cialisé dans les algorithmes financiers, et un développeur informatique chargé
de l’implémentation et des problématiques de haute performance. De plus,
la résolution d’un algorithme complexe requiert parfois l’expertise d’un spé-
cialiste en logico-matériel haute performance, notamment pour paralléliser
l’algorithme sur un super-calculateur donné. Par ailleurs, la migration des
programmes existants vers une nouvelle configuration matérielle ou le déve-
loppement de nouveaux algorithmes à finalité spécifique dans un environ-
nement parallèle n’est jamais un travail facile, ni pour les développeurs de
logiciel, ni pour les spécialistes du domaine.

Dans cette thèse, nous décrivons le travail qui vise à simplifier le déve-
loppement de programmes parallèles, en améliorant également la portabilité
du code de programmes parallèles et la précision de la prédiction de perfor-
mance d’algorithmes parallèles pour des environnements hétérogènes. Avec
ces objectifs à l’esprit, nous avons proposé un modèle de transition nommé
SGL pour la modélisation des architectures parallèles hétérogènes et des al-
gorithmes parallèles, et une mise en œ uvre de squelettes parallèles basés sur
le modèle SGL pour le calcul haute performance. SGL simplifie la program-
mation parallèle à la fois pour les machines parallèles classiques et pour les
nouvelles machines hiérarchiques. Il généralise les primitives de la program-
mation BSML. SGL pourra plus tard en utilisant des techniques de Model-
Driven pour la génération de code automatique à partir d’une fiche technique
sans codage complexe, par exemple pour le traitement de Big-Data sur un sys-

vii

tème hétérogène massivement parallèle. Le modèle de coût de SGL améliore
la clarté de l’analyse de performance des algorithmes, permet d’évaluer la
performance d’une machine et la qualité d’un algorithme.

Le chapitre 1 est l’introduction de la thèse. Dans le chapitre 2, nous suiv-
ons l’histoire de supercalculateurs pour examiner les différentes architectures
de supercalculateurs afin d’avoir une vision globale des architectures de ma-
chines parallèles sur lesquels un programme parallèle peut être exécuté. L’évo-
lution du matériel informatique parallèle montre que la vue à plat d’une ma-
chine parallèle comme un ensemble de communication de machines séquen-
tielles reste un modèle utile et pratique, mais est de plus en plus incomplète.
En outre, on observe que les multiprocesseurs hétérogènes présentent des
opportunités uniques pour améliorer le débit du système et réduire la con-
sommation du processeur. L’engouement par le green-computing met encore
plus de pression sur l’utilisation optimale des architectures qui ne sont pas
seulement hautement évolutives mais hiérarchiques et non-homogènes. Tous
ces changements rendent la programmation parallèle plus difficile qu’avant.
Un modèle de transition logico-matérielle1 réaliste est souhaitable pour la
manipulation de ces machines hiérarchiques hétérogènes.

Nous avons ensuite traversé dans le chapitre 3 l’état de l’art des modèles de
programmation parallèle. Nous avons constaté que la programmation concur-
rente multi-threadée est bien pour démarrer, mais elle ne peut être appliquée
qu’à une architecture à mémoire partagée; l’approche du passage de messages
gère l’architecture à mémoire distribuée, mais la gestion de la communication
n’est jamais une tâche facile; les modèles d’acteurs fournissent des schémas de
communication, mais leur application est trop difficile à optimiser sans don-
ner une transition algorithme-machine; le modèle de transition BSP [Val90]
relie le logiciel et le matériel, fournit une vue séquentielle de programme para-
llèle grâce aux super-étapes, simplifie la conception et l’analyse d’algorithmes
grâce à sa barrière, mais les ordinateurs parallèles se développent aujourd’hui
de plus en plus dans une architecture hiérarchique contrairement à la struc-
ture plate proposée par BSP; MapReduce simplifie le traitement de données à
grand échelle sur une grappe d’ordinateurs distribués en masquant la commu-
nication, mais sa capacité à gérer des algorithmes complexes tout en gardant
de bonnes performances peut être remise en question. Toutes ces observa-

1 Nous traduisons ici le mot anglais "bridging model" en français "modèle de transition logico-
matérielle".

viii

tions nous conduisent à proposer un modèle de transition logico-matérielle
hiérarchique pour simplifier la programmation parallèle.

Nous avons donc introduit dans le chapitre 4 notre modèle de programma-
tion et d’exécution parallèle sous la forme d’un langage impératif et simple
(Scatter-Gather Language ou SGL) [LH12a, LH11b]. Des études existantes ont
permis d’identifier l’originalité et l’utilité de certains aspects de SGL. SGL est
muni d’une sémantique opérationnelle claire et d’un modèle de coût précis.
Le modèle de coût de SGL améliore la clarté de l’analyse de la performance
des algorithmes; il permit d’analyser à la fois la performance d’une machine et
la qualité d’un algorithme. Nous estimons que l’ordinateur SGL peut couvrir
la plupart des ordinateurs parallèles modernes. Le coût de la synchronisation
de l’algorithme de SGL pour un ordinateur massivement parallèle peut être
considérablement réduit par sa structure hiérarchique. Le coût de la commu-
nication de SGL entre les différents niveaux est plus réaliste que la structure
plane.

SGL a été utilisé dans le chapitre 5 avec son modèle de programmation
pour programmer des opérations parallèles de base et des squelettes paral-
lèles plus complexes, tels que la réduction parallèle, le préfixe parallèle, le tri
parallèle par échantillonnage et un algorithme de papillon: homomorphisme
distribuable [LGH12]. Dans tous les cas, l’évolutivité et la précision du modèle
de coûts ont été mesurées. Il a été constaté qu’un sous-ensemble des modèles
de communication parallèle n’est pas naturellement couvert par des opéra-
tions centralisées de SGL. Ceci est visible dans une implémentation récursive
du tri parallèle par échantillonnage.

Une analyse plus approfondie nous a conduit à proposer dans le chapitre 6

deux éléments d’une solution générale à ce dilemme. Le premier est le théo-
rème GPS: une équivalence sémantique entre les sous-programmes gather ;
P ; scatter (où P est un programme séquentiel local dans le maître) et les
opérations horizontales comme put de BSML (BSP-CAML). Ce résultat sert de
base des optimisations de future compilateur par lequel une gamme de pro-
grammes SGL propres mais inefficaces peuvent être compilés en programmes
de plus bas niveau mais plus efficaces à l’aide de la communication horizon-
tale. La deuxième solution proposée est une forme simplifiée de put que nous
avons conçu et expérimenté dans BSML. Avec celle-ci, l’algorithme BSP de tri
parallèle d’échantillonnage de Tiskin-McColl [Tis99] a été programmé sans
devoir coder une matrice de communication générale: seulement la relation

ix

de communication 1-à-n pour le côté d’émetteur et n-à-1 pour le côté de ré-
cepteur.

La définition et la validation de SGL détaillées dans cette thèse ne sont
qu’une première étape vers l’application sûre et efficace pour la programma-
tion parallèle de haut niveau. La conclusion ainsi que nos perspectives de
travail sont présentées dans le chapitre 7. De nombreuses perspectives sont
envisageables par les travaux futurs. La compilation de code SGL sera étudiée
en définissant un langage complet qui comprendra la syntaxe et la sémantique
de SGL données ici. Une autre direction qui sera explorée est l’utilisation de
SGL comme langage intermédiaire pour des langages plus abstraits, par exam-
ple EXQIL [HGL+], le langage dédié au trading algorithmique développé chez
EXQIM S.A.S.. Une approche encore plus haut niveau dont nous avons lancé
l’étude est la génération automatique de code par laquelle les programmes
parallèles sont générés directement à partir de descriptions UML spécifiques
au domaine [KHL12].

x

C O N T E N T S

1 introduction 1

2 supercomputer architectures 7

2.1 Early Parallel Systems . 8

2.1.1 Superscalar Processing . 9

2.1.2 Vector Processing . 10

2.2 Massive Processing . 12

2.2.1 Clustering . 12

2.2.2 Distributed Computing 18

2.3 Hybrid Computing . 20

2.3.1 Multiprocessing . 20

2.3.2 Hybrid Clusters . 23

3 parallel programming models 29

3.1 Low-Level Parallel Models . 30

3.1.1 Shared-Memory Communication 30

3.1.2 Message-Oriented Models 35

3.1.3 SWAR Programming Models 38

3.2 High-Level Parallel Models . 41

3.2.1 Concurrent Computation Models 41

3.2.2 Bridging Models . 47

3.2.3 Other Parallel Models . 57

4 a new simple bridging model 65

4.1 Motivation . 66

4.2 The SGL Model . 70

4.2.1 The Abstract Machine . 71

4.2.2 Execution Model . 72

4.2.3 Cost Model . 74

4.3 Case study: Modelling Parallel Computers 77

4.3.1 Modelling Multi-core Computers 77

4.3.2 Modelling Hierarchical Clusters 80

4.3.3 Modelling Heterogeneous Computers 82

5 sgl programming 85

5.1 Programming Model of SGL . 86

5.1.1 Language Syntax . 86

xi

xii contents

5.1.2 Environments . 88

5.1.3 Operational Semantics . 88

5.2 Parallel Skeletons Implementation 94

5.2.1 Implementing Basic Data-Parallel Skeletons 95

5.2.2 Implementing Distributable Homomorphism 104

5.2.3 Speedup and Efficiency 110

6 gather-scatter for simplified communications 113

6.1 The GPS Theorem . 113

6.1.1 Gather-Scatter Communication 114

6.1.2 The GPS Theorem . 115

6.2 Simplifying BSML’s Put . 116

6.2.1 Dilemma in BSML: Proj vs. Put 116

6.2.2 The GPS Function . 119

6.2.3 Experimentation in BSML 120

7 conclusion 127

7.1 Conclusion . 127

7.2 Future work . 129

a appendix 131

a.1 Communication Throughput . 131

bibliography 133

1
I N T R O D U C T I O N

Parallel programming and data-parallel algorithms have been the main
techniques supporting high-performance computing for many decades. Like
all non-functional properties of software, the conversion of computing re-
sources into scalable and predictable performance involves a delicate bal-
ance of abstraction and automation with semantic precision. During the last
decade, more and more professions require a very high computing power.
However, as in the algorithmic trading financial companies, people tend to
work in pairs composed of a quantitative analyst, specialized in financial al-
gorithms, and a software engineer in charge of coping with implementation
and high-performance related work. Furthermore, solving a complex algo-
rithm sometimes requires a high-performance software-hardware specialist
for parallelizing the algorithm on a specified supercomputer. Moreover, mi-
grating existing programs to a new hardware configuration or developing
new specific-purpose algorithms on a parallel environment is never an easy
work, neither for software developers nor for domain specialists.

From a programming point of view, paper [Adv09] gives a perspective on
the collective work spanning for approximately 30 years. It shows how dif-
ficult it is to formalize the seemingly simple and fundamental property of
"what value a read should return in a multi-threaded program". Safe lan-
guages must be given semantics that computer science graduates and de-
velopers can understand with a reasonable effort. The author of this survey
believes that we need to rethink higher-level disciplines that make it much
easier to write parallel programs and that can be enforced by the languages
and systems.

As the above remark highlights, multi-threaded semantics is far too complex
for realistic software development. Yet parallel execution is synonymous with
multiple processes or multi-threading, without which there can be no par-
allel speed-up. So how should programmers avoid the complexity of multi-

1

2 introduction

threaded programming and yet expect scalable performance? Part of the an-
swer comes from the observation that the vast majority of parallel algorithms
are deterministic. Along this line of reasoning, researchers like M. Cole [Col89]
and H. Kuchen [SK93, BK96] have developed the paradigm of algorithmic skele-

tons for deterministic and deadlock-free parallel programming. Skeletons are
akin to design patterns for parallel execution. A large body of programming
research literature supports the view that most if not all parallel application
software should be based on families of algorithmic skeletons.

A deterministic and high-level parallel programming interface is indeed a
major improvement over explicit message passing. But the diminished expres-
sive power of skeletons is not only an advantage. Unlike sequential equiva-
lents, skeletons are not libraries in the classical sense because their host lan-
guage (e. g., C) is necessarily less expressive than the language in which they
are written (e. g., C+MPI). This is due to the lack of a base language that is
not just Turing-complete but complete for parallel algorithms, a notion that
has not even been well defined yet. As a result there is no fixed notion of a
set of skeleton primitives but instead the message-passing primitives used to
implement them.

Meanwhile, a major conceptual step was taken by L. Valiant [Val90] who
introduced his Bulk-Synchronous Parallel (BSP) model. Inspired by the com-
plexity theory of PRAM model of parallel computers, Valiant proposed that
parallel algorithms can be designed and measured by taking into account not
only the classical balance between time and parallel space (hence the number
of processors) but also communication and synchronization. The BSP perfor-
mance model is both realistic and tractable so that researchers like McColl
et al. [MW98] were able to define BSP versions of all important PRAM algo-
rithms, implement them and verify their portable and scalable performances
as predicted by the model. BSP is thus a bridging model relating parallel algo-
rithms to hardware architectures.

From the mid-1990’s, it became clear that BSP is the model of choice for im-
plementing algorithmic skeletons: its view of the parallel system included ex-
plicit processes and added a small set of network performance parameters to
allow predictable performance. G. Hains et al. designed BS-lambda [LHF00]
as a minimal model of computation with BSP operations. BS-lambda became
the basis for Bulk-Synchronous ML (BSML) [Lou00] a variant of CAML under
development by Loulergue et al. since 2000. BSML has a simplified program-

introduction 3

ming interface of only four operations: mkpar to construct parallel vectors
indexed by processors, proj to map them back to lists/arrays, apply to gen-
erate asynchronous parallel computation and put to generate communication
and global synchronization from a two-dimensional processor-processor pair-
ing. As a result, parallel performance mathematically follows from program
semantics and the BSP parameters of the host architecture.

While BSML was evolving and practical experience with BSP algorithms
was accumulating, one of its basic assumptions about parallel hardware was
changing. The flat view of a parallel machine as a set of communicating se-
quential machines remains true but is more and more incomplete. Recent
supercomputers like Blue Gene/L [ABB+03], Blue Gene/P [sD08], and Blue
Gene/Q [HOF+12] feature multi-processors on one card, multi-core proces-
sors on one chip, multiple-rack clusters etc. The Cell/B.E. [KDH+05, JB07],
Cell-based RoadRunner [BDH+08] and GPU’s feature a CPU with Master-
Worker architecture. Moreover, [KTJR05] observes that heterogeneous chip
multiprocessors present unique opportunities for improving system through-
put and reducing processor consumption. The trend towards green-computing1

puts even more pressure on the optimal use of architectures that are not only
highly scalable but hierarchical and non-homogeneous.

In this thesis, we describe work that attempts to improve the simplicity
of parallel program development, the portability of parallel program code,
and the precision of parallel algorithm performance prediction for heteroge-
neous environments. With these goals in mind we proposed a bridging model
named SGL (formerly Scatter-Gather Language) for modeling heterogeneous
parallel architectures and parallel algorithms, and an implementation of par-
allel skeletons based on SGL model for high-performance computing. SGL
simplifies the parallel programming either on the classical parallel machines
or on the novel hierarchical machines. It generalizes the BSML programming
primitives. SGL can be used later with model-driven techniques for automatic
code generation from specification sheet without any complex coding, for ex-
ample processing Big Data on heterogeneous massively parallel systems. The
SGL cost model improves the clarity of algorithms performance analysis. At
the same time, it allows benchmarking machine performance and algorithm
scalability.

1 "Green computing is the study and practice of designing, manufacturing, using, and dispos-
ing of computers, servers, and associated subsystems efficiently and effectively with minimal
or no impact on the environment." – San Murugesan [Mur08]

4 introduction

The rest of this dissertation is organized as follow:

In chapter 2, we follow the history of supercomputing to review the differ-
ent architectures of supercomputer in order to have some general notions of
parallel machine architectures on which a parallel program may be executed.
We start by the first supercomputer CDC 6600, then the Cray family which
was optimized for vector processing. After that, we present several contem-
porary representative supercomputing clusters such as one of world’s fastest
supercomputers IBM Blue Gene/L, standard x86-based Linux-OS disk-less
SGI Altix ICE, inexpensive everyone-can-build Beowulf cluster and Volunteer
Grids, etc. At the end of this chapter, we review several multi-core architec-
tures and the up-to-date hybrid clusters such as Cell-accelerated first Peta-
FLOPS in the world IBM RoadRunner, and GPGPU-based 2010 world fastest
Tianhe-1A supercomputer.

In chapter 3, we review the state of the art of parallel programming mod-
els in order to understand the portability of code, the scalability of algo-
rithms, practicality of machine modelling, simplicity of programming, and
feasibility of optimisation analysis between different models. This chapter is
organised in two sections: the first one presents low-level parallel models
for shared-memory multi-threaded programming, shared-nothing message-
passing programming, and SWAR programming; the second one presents
high-level portable models such as process calculi, bridging models, and
MapReduce etc. We emphasize, in this chapter, the BSP model which en-
forces a strict separation of communication and computation, removes non-
determinism and guarantees the absence of deadlocks, gives an accurate model
of performance prediction, provides much simplicity and efficiency for paral-
lel programming.

In chapter 4, we introduce our Scatter-Gather parallel-programming and
parallel execution model in the form of a simple imperative Scatter-Gather
Language (SGL). Its design is based on past experience with Bulk Synchronous
Parallel (BSP) programming and BSP language design. SGL’s novel features
are motivated by the last decade move towards multi-level and heterogeneous
parallel architectures involving multi-core processors, graphics accelerators
and hierarchical routing networks in the largest multiprocessing systems. The
design of SGL is coherent with L. Valiant’s multi-BSP while offering a pro-
gramming interface that is even simpler than the primitives of BSML. We also
attempted to analyse, in this chapter, how to link the SGL abstract machine to

introduction 5

several typical parallel computers – from small multi-core microcomputer to
large supercomputer clusters and grids.

We propose in chapter 5 the programming model of SGL and several skele-
tons implementation to attempt to motivate and support the view that BSP’s
advantages for parallel software can be enhanced by the recursive hierarchi-
cal and heterogeneous machine structure of SGL, while simplifying the pro-
gramming interface even further by replacing point-to-point messages with
logically centralised communications. Our initial experiments with language
definition, programming and performance measurement show that SGL com-
bines clean semantics, simplified programming of BSP-like algorithms and
dependable performance measurement. However, SGL does not express "hor-
izontal" communication patterns, so it overly favours simplicity at the expense
of expressive power.

Chapter 6 is our first attempt to demonstrate that this defect only affects
a minority of algorithms and can be compensated by automated compila-
tion/interpretation. We thus introduce, in this chapter, the GPS theorem which
can be implemented later in a compiler to optimize the SGL’s "horizontal" all-
to-all communication. We then propose a simplified version of BSML’s put

based on GPS and implement the parallel sample-sort algorithm with it. The
comparison of BSML’s put and SGL’s GPS shows that GPS has a better code
readability and lower execution time.

Finally, we conclude our work in chapter 7 and present several perspectives
as future work.

2
S U P E R C O M P U T E R A R C H I T E C T U R E S

2.1 Early Parallel Systems . 8

2.1.1 Superscalar Processing . 9

2.1.1.1 CDC 6600 . 9

2.1.2 Vector Processing . 10

2.1.2.1 CDC STAR-100 10

2.1.2.2 Cray-1 . 11

2.1.2.3 Successors of Cray-1 11

2.2 Massive Processing . 12

2.2.1 Clustering . 12

2.2.1.1 Hitachi SR2201 13

2.2.1.2 Blue Gene/L . 13

2.2.1.3 Altix ICE . 15

2.2.1.4 Beowulf . 17

2.2.2 Distributed Computing 18

2.2.2.1 Grid Computing 18

2.2.2.2 Volunteer Computing 19

2.3 Hybrid Computing . 20

2.3.1 Multiprocessing . 20

2.3.1.1 Multi-core Processors 21

2.3.1.2 Coprocessors / Accelerators 22

2.3.2 Hybrid Clusters . 23

2.3.2.1 RoadRunner . 24

2.3.2.2 Tianhe-1A . 26

A computer hardware is useless without computer program; a computer
program cannot be executed without computer hardware. Programs are devel-
oped on a well-defined computer architecture for performing a specified task.
Most of contemporary sequential computers were designed based on the Von
Neumann architecture. However, we have no such standard for parallel com-
puters. There are a wide variety of parallel computer architectures. Designing

7

8 supercomputer architectures

a parallel algorithm is already much harder than designing a sequential one.
How to develop a portable parallel program is still a big challenge today.

Before talking about the parallel codes, in this chapter, we follow the history
of supercomputing to review the different architectures of supercomputer in
order to have some general notions of parallel machine architectures on which
a parallel program may be executed. We start by the first supercomputer CDC
6600, then the Cray family optimized for vector processing in Section 2.1. Af-
ter that, several contemporary representative supercomputing clusters such as
one of world’s fastest supercomputers IBM Blue Gene/L, standard X86-based
Linux-OS disk-less SGI Altix ICE, inexpensive everyone-can-build Beowulf
cluster and Volunteer Grids, etc. are presented in Section 2.2. Finally, we re-
view in Section 2.3 several multi-core architectures and the up-to-date hybrid
clusters such as Cell-accelerated first Peta-FLOPS in the world IBM RoadRun-
ner, and GPGPU-based 2010 world fastest Tianhe-1A supercomputer.

We can see in this chapter that with the passage of time, the parallel com-
puter architectures evolve from vector processor to multi processor; from
shared-memory to distributed-memory; from flat parallel to nested parallel;
from symmetric unit to hybrid unit; from homogeneous to heterogeneous
more and more. All these evolutions lead us to propose a hierarchical bridg-
ing model (Chapter 4) for simplifying parallel programming.

2.1 early parallel systems

The history of high performance computing goes back at least to the 1960s,
when the first supercomputer was created for high-energy nuclear physics
research. We review in this section CDC 6600 and Cray computers, the well-
known first supercomputers in the world, to see how computers became paral-
lel where they were only sequential. The main techniques used by supercom-
puter designers at that time are superscalar processing and vector processing
with special hardware to execute multiple instructions or process multiple
data during a clock cycle. All programs at that time were developed in a
low-level language, none was portable.

2.1 early parallel systems 9

2.1.1 Superscalar Processing

A scalar processor manipulates at a time one or two data with one instruction.
The technique allowing multiple instructions to be worked on at the same
time is known today as superscalar. Supercomputer designers invented in
the beginning such technique to obtain parallelism. Superscalar CPU design
emphasizes improving the instruction dispatcher accuracy, and allowing it to
keep the multiple functional units in use at all times.

2.1.1.1 CDC 6600

The first supercomputer CDC 6600 [Tho63, Tho70] was built by Control Data

Corporation (CDC) and delivered in 1964 to the Lawrence Radiation Laboratory.
In contrast to a typical machine in the era that used a single CPU to drive the
entire system, and CPUs generally ran slower than the main memory they
were attached to at the time. The 6600 CPUs, took another approach, handled
only arithmetic and logic, in order to reduce the size of CPU to obtain a higher
clock speed. The instructions for memory access, input/output (I/O), and
other "housekeeping" tasks were implemented separately to allow the central
processor (CP), peripheral processors (PPs) and I/O to operate in parallel.

The major elements of the Control Data 6600 is shown in Figure 1. The 6600

CP had 8 general purpose 60-bit registers, 8 18-bit address registers, and 8 18-
bit scratchpad registers; but it had no instructions for input and output. The
CP included 10 parallel functional units, allowing multiple instructions to be
worked on at the same time. The "housekeeping" tasks were accomplished
through 10 PPs. One of the PPs was in overall control of the machine, includ-
ing control of the program running on the main CPU, while the others were
dedicated to various I/O tasks. Each PP included its own memory of 4096

12-bit words. This memory served for both for I/O buffering and program
storage. The 6600 thus gained speed by "farming out" work to PPs freeing the
CP to process actual data.

Software developers should master machine-specific assembly language
[Gri74] and handle the whole instruction set of this complex supercomputer.
The algorithms should be re-designed according to the hardware architecture,
none was re-usable. Furthermore, debugging was even more difficult.

10 supercomputer architectures

Figure 1: Major elements of Control Data 6600 [Tho70]

2.1.2 Vector Processing

Vector processing allows processing instruction set containing instructions
that operate on one-dimensional arrays of data called vectors. This technique
removes the overhead of superscalar. Vector processors can greatly improve
performance on certain workloads, notably numerical simulation and similar
tasks. The most successful vector supercomputers were the Cray computers
whose designers had learned from CDC STAR-100 failure experience.

2.1.2.1 CDC STAR-100

The Control Data Corporation STAR-100 [Pur74] was one of the first super-
computers using vector processing technique to improve computing perfor-
mance. The name STAR is constructed of the words STrings and ARrays. In
contrast to a scalar processor, whose instructions operate on single data items,
the STAR-100 CPU implemented an instruction set containing instructions
that operate on one-dimensional arrays of data called vectors to set up addi-
tional hardware that fed in data from the main memory as quickly as possi-
ble [Kog81]. However, very few programs can be effectively vectorized into
a series of single instructions. Any time that the program had to run scalar
instructions, the overall performance of the machine dropped dramatically.

2.1 early parallel systems 11

2.1.2.2 Cray-1

Former CDC 6600’s designer and Cray-1’s architect, Seymour Cray, learned
from the failure experience of STAR-100, founded Cray Reseaarch, Inc. and
delivered the 80 MHz Cray-1 supercomputer [Inc77] in 1976 for Los Alamos

National Laboratory. Cray-1 is one of the best known and most successful super-
computers in history. It used the chaining technique in which scalar and vec-
tor registers generate interim results which can be used immediately, without
additional memory references which reduce computational speed [HJS99].

The Cray-1 had 12 pipelined functional units. An add unit and a multiply
unit performed the 24-bit address arithmetic. The scalar portion of the sys-
tem consisted of an add unit, a logical unit, a population count, a leading
zero count unit and a shift unit. The vector portion consisted of add, logical
and shift units. The floating point functional units were shared between the
scalar and vector portions, and these consisted of add, multiply and recipro-
cal approximation units. The CRAY-1 machine was the first Cray design to
use Integrated Circuits (ICs). The high-performance ICs generated consider-
able heat. The Cray-1 computer needed a liquid Freon refrigeration system as
cooling system.

Cray released in 1978 the first standard software package for the Cray-1.
Software engineers of Cray-1 could hence have Cray Operating System (COS),
Cray Assembly Language (CAL) and Cray FORTRAN (CFT) – the first au-
tomatically vectorizing FORTRAN compiler. The development became easier
than before but a good comprehension of the physical architecture was still
needed, and the algorithms should be designed for this specific machine.

2.1.2.3 Successors of Cray-1

After Cray-1, the Cray X-MP supercomputer was delivered by Cray Research,
Inc. in 1982. It was a 105 MHz shared-memory parallel vector processor with
better chaining support and multiple memory pipelines. All three floating
point pipelines on the XMP could operate simultaneously [THS03].

The Cray-2 supercomputer delivered by Cray Research, Inc. in 1985 was the
fastest machine in the world with 1.9 GFLOPS peak performance when it was
released. It attempted to be designed with more functional units to give the

12 supercomputer architectures

system higher parallelism, tighter packaging to decrease signal delays, and
faster components to allow a higher clock speed. Cray-2 had four vector pro-
cessors built with tight-packed Emitter-Coupled Logic (ECL). For resolving
the heat problem that had not been met before, it was totally immersed in a
tank of Fluorinert, which bubbled as it operated [Mur97].

Cray Research, Inc. developed subsequently the Cray Y-MP, Cray-3, Cray
C90, Cray T90, Cray T3D and Cray T3E models and others. Along with the re-
lease of Cray-3 supercomputer, C compilers, Network File System (NFS) and
TCP/IP stack etc. were now supported [Cra91]. Programmers could use high-
level programming languages and standard communication protocols that
facilitate much the development. However, the algorithm design depended
still on the physical machine.

2.2 massive processing

The early parallel systems had fewer than 10 processors. The computer clus-
tering approach allows connection of a number of readily available computing
nodes in order to accumulate processors’ computational power. Supercomput-
ers with thousands of processors began to appear in the 1990s. We review in
this section several representative centralized computer clusters such as one
of earliest distributed memory parallel supercomputers Hitachi SR2201, one
of the world’s fastest parallel supercomputers Blue Gene/L, standard X86-
based Linux-OS disk-less SGI Altix ICE, and inexpensive everyone-can-build
Beowulf cluster; then distributed systems such as Grids and volunteer com-
puting systems etc.

2.2.1 Clustering

To reduce the communication cost, today’s supercomputer components are al-
most all built as close as possible to one another. A massive parallel distributed-
memory centralized cluster provides considerable scalability, performance,
and resiliency. We review here four most representative supercomputer clus-
ters: Hitachi SR2201, IBM Blue Gene/L, SGI Altix ICE, and NASA Beowulf.

2.2 massive processing 13

2.2.1.1 Hitachi SR2201

HITACHI SR2201[FYA+97], introduced by Hitachi in 1996, was one of earli-
est distributed memory parallel supercomputers. The cache miss penalty in
SR2201 was solved by 150 MHz HARP-1E processor’ Pseudo Vector Process-
ing (PVP): data was loaded by pre-fetching to a special register bank, bypass-
ing the cache. The SR2201 could have up to 2048 processing elements (PEs),
connected via a high-speed three dimensional crossbar network (Figure 2),
which was able to transfer data at 300 MB/s over each link. All these gave
HITACHI SR2201 a peak performance of 600 GFLOPS.

Figure 2: HITACHI SR2201 three-dimensional crossbar switch network [Hit97]

Many high-level programming languages and parallel computing interfaces,
such as FORTRAN77, FORTRAN90, C, C++, Parallel FORTRAN, Parallel Vir-
tual Machine (PVM) and MPI (c. f., Section 3.1.2.1) etc. were supported by
SR2201 [Hit97]. ExpressTM parallel development support tool facilitated pro-
gramming and performance tuning. Nevertheless, the network topology of
SR2201 played an important role for the performance.

2.2.1.2 Blue Gene/L

Blue Gene is an IBM project aimed at designing supercomputers that can
reach operating speeds in the PFLOPS range, with low power consumption.
Blue Gene/L [AAA+01, ABB+03] was the first generation of supercomputers

14 supercomputer architectures

issued from the project. The Blue Gene/L system installed at LLNL1 that
achieved 596 TFLOPS peak performance was organised as follows (Figure 3):

Figure 3: Hierarchy of Blue Gene processing units [LLN11]

Each Blue Gene/L Compute or I/O node was a single Application-Specific
Integrated Circuit (ASIC) with associated Dynamic Random-Access Memory
(DRAM) chips. The ASIC integrated two 700 MHz PowerPC 440 embedded
processors, each with a double-pipeline-double-precision Floating Point Unit
(FPU), a cache sub-system with built-in DRAM controller and the logic to
support multiple communication sub-systems.

Blue Gene/L Compute nodes were packaged two per compute card, with
16 compute cards plus up to 2 I/O nodes per node board. There were 32 node
boards per rack. By the integration of all essential sub-systems on a single
chip, and the use of low-power logic, a Blue Gene/L standard 19-inch rack
could package up to 1024 compute nodes plus additional I/O nodes, within
reasonable limits of electrical power supply and air cooling.

Each Blue Gene/L node was attached to three parallel communication net-
works [LLN11] (Figure 4): a three-dimensional (3D) toroidal network for peer-
to-peer communication between compute nodes, a collective network for col-
lective communication (e. g., broadcasts or reduce), and a global interrupt
network for fast barriers. The I/O nodes provided communication to storage
and external hosts via an Ethernet network. The I/O nodes handled filesys-
tem operations on behalf of the compute nodes. Finally, a separate and private

1 Lawrence Livermore National Laboratory.

2.2 massive processing 15

Ethernet network provided access to any node for configuration, booting and
diagnostics.

Figure 4: BlueGene/L three-dimensional torus network [LLN11]

Blue Gene/L compute nodes used lightweight operating systems for mini-
mum system overhead. However, only a subset of POSIX2 calls was supported,
and only one process could run at a time on nodes in coprocessor mode. De-
velopers could use MPI to manage the inter-node communication. Apart from
the high-level programming languages such as C, C++ and Fortran, program-
mers could also use some scripting languages such as Ruby or Python on the
compute nodes.

IBM has developed subsequently new Blue Gene generations named Blue
Gene/P [sD08, NHBY09] and Blue Gene/Q [HOF+12].

2.2.1.3 Altix ICE

The Altix ICE supercomputer delivered by Silicon Graphics (SGI) also used
a Hierarchical Management Framework (HMF) for scalability and resiliency.
But unlike IBM Blue Gene/L, SGI Altix ICE is an Intel Xeon-based system fea-
turing diskless compute blades using standard SUSE Linux Enterprise Server
(SLES) or Red Hat Enterprise Linux (RHEL) distributions. One of the largest
SGI Altix ICE 8200EX systems NASA’s Pleiades with 111 104 cores for 1315.3
TFLOPS as peak performance at the Ames Research Center was the 7th faster
supercomputer in the world in 2011 according to Top5003.

2 Portable Operating System Interface, a family of standards specified by the IEEE.
3 Top500 project ranks and details the 500 most powerful computer systems in the world. http:
//www.top500.org/

http://www.top500.org/
http://www.top500.org/

16 supercomputer architectures

A typical Altix ICE system (Figure 5) is built with one or more Altix ICE
racks. Each rack can control up to 4 Individual Rack Units (IRUs) with a Leader
node that hold a single system image for all compute blades of the rack. An
Altix ICE 8200EX IRU contains 16 compute blades interconnected by four 4x
DDR InfiniBand (IB) switch blades. A compute blade is configured with 2

multi-core Intel Xeon processors.

Figure 5: SGI Altix ICE 8200 IRU and Rack Components Example [Lib10]

Standard microprocessor architecture (X86-64), standard communication in-
terfaces (IP-over-InfiniBand protocol, Message Passing Toolkit), standard op-
eration system (SLES or RHEL), all these features of Altix ICE reduce the pro-
gramming difficulty though the network topology affects always algorithms
performance.

The Altix ICE 8200EX supercomputer used by Exclusive Quantitative Invest-

ment Management (EXQIM) S.A.S. has 2 IRUs in a 42U-high rack, 1 Service

2.2 massive processing 17

node managing a InfiniteStorage system shared by the 2 IRUs, and 1 Admin
node administrating the entire system (Figure 6).

Figure 6: Overview of Altix ICE 8200EX Supercomputer at EXQIM

Each of EXQIM’s Altix ICE compute blade is configured with two Intel
Xeon E5440 Quad-core 2.83 GHz processors and 32 GByte DDR2 memory run-
ning SLES Linux distribution. All compute blades interconnect in a fat-tree
topology. More details about the processors can be found in Section 2.3.1.1.

2.2.1.4 Beowulf

Beowulf [Ste01, Sit99] is a multi-computer architecture which can be used for
parallel computations. The first Beowulf cluster was built in 1994 by Thomas
Sterling and Donald Becker at NASA.

18 supercomputer architectures

A Beowulf cluster is a kind of high-performance massively parallel com-
puter built primarily out of commodity hardware components, running a
free-software operating system such as Linux or FreeBSD, interconnected by
a private high-speed network. It consists of a cluster of PCs or workstations
dedicated to running high-performance computing tasks. The nodes in the
cluster don’t sit on people’s desks; they are dedicated to running cluster jobs.
It is usually connected to the outside world through only a single node.

The performance prediction on Beowulf for algorithm design and software
development is very important because the hardware is neither optimized nor
easily configurable.

2.2.2 Distributed Computing

Scientists sometimes integrate geographically distributed computer resources
to obtain more computational power. We review briefly here Grid computing
and Volunteer Computing to understand how computer resources may be
federated into one system to create a "virtual supercomputer".

2.2.2.1 Grid Computing

A computational grid [FK99, FKT01] is a hardware and software infrastruc-
ture coordinated resource sharing and problem solving in dynamic, multi-
institutional virtual organizations that provides dependable, consistent, per-
vasive, and inexpensive access to high-end computational capabilities.

Grids are a form of distributed computing whereby a "super virtual com-
puter" is composed of many networked loosely coupled computers acting to-
gether to perform large tasks. A grid is more loosely coupled, heterogeneous,
and geographically dispersed compared to a cluster supercomputer.

2.2 massive processing 19

There are many projects for building grid infrastructures such as: the Aus-
trian Grid4, D-Grid5, BEgrid6, EGEE7, Grid’50008 and EGI9 etc. The French
one is Grid’5000[BCC+06]. It currently connects resources distributed on 9

sites in France. Each local site platform is formed of at least one cluster. The
total number of processors of all the sites is 2218 (7896 cores) in 1171 nodes
[Gri12]. The sites are connected by the RENATER Education and Research
Network. All clusters are connected to Renater with at least 1Gb/s link. The
processors of each cluster are connected via Myrinet or Infiniband.

Since grid hardware is shared, reserving right resources for a specific al-
gorithm is essential. A bridging model (c. f., Section 3.2.2) which provides
machine-algorithm cost model can greatly help us in resolving this issue.

2.2.2.2 Volunteer Computing

Volunteer Computing (sometimes called quasi-opportunistic supercomputing) is
a computational paradigm for supercomputing on a large number of geo-
graphically disperse computers [KCD+08]. The computational power is do-
nated by different computer owners to achieve high performance computing.
Thus, the system is fully heterogeneous, and the hosts can arrive or leave
randomly. Like Beowulf we had seen in Section 2.2.1.4, the nodes of a volun-
teer computing system are mainly commodity computers, often much more
heterogeneous than Beowulf. Some were built with multi-core CPUs and/or
GPGPU [KDH11]. The architectures of multi-core CPUs and GPGPU will be
reviewed in Section 2.3.1.

The first volunteer computing project was GIMPS10. After that there are
many volunteer computing projects such as: SETI@home11, Folding@home12,

4 The Austrian Grid. http://www.austriangrid.at/
5 D-Grid: The German Grid Initiative. http://www.d-grid.de/
6 BEgrid: The Belgian Grid for Research. http://www.begrid.be/
7 EGEE: Enabling Grids for E-sciencE. http://www.eu-egee.org/
8 Grid’5000. https://www.grid5000.fr/
9 EGI: The European Grid Initiative. http://web.eu-egi.eu/

10 The Great Internet Mersenne Prime Search. http://www.mersenne.org/
11 Search for ExtraTerrestrial Intelligence at Home. http://setiathome.berkeley.edu/
12 Folding@home disease research project. http://folding.stanford.edu/

http://www.austriangrid.at/
http://www.d-grid.de/
http://www.begrid.be/
http://www.eu-egee.org/
https://www.grid5000.fr/
http://web.eu-egi.eu/
http://www.mersenne.org/
http://setiathome.berkeley.edu/
http://folding.stanford.edu/

20 supercomputer architectures

MilkyWay@Home13, Einstein@Home14, and BOINC15. Between June 2007 and
June 2011, Folding@home exceeded the performance of Top500’s fastest super-
computer [Gro12, Ter07].

How to maintain the correctness of parallel programs and keep a good
performance in this dynamic environment is still a big challenge.

2.3 hybrid computing

Increasing the number of processors is not the only solution to obtain higher
computational power. Adding processors requires more space or smaller com-
ponents. Bigger space implies longer distance, the performance will be de-
creased by the overhead inter-processor communication cost, and smaller
components produce a lot of heat.

For acquiring high performance with limited energy consummation and
heat generated by the semiconductors, different special computational units
are employed, such as: digital signal processor (DSP), graphics processing
unit (GPU), application-specific integrated circuit (ASIC), field-programmable
gate array (FPGA), or coprocessor etc. Hybrid computing refers to the com-
bination of these special computational units with standard units in order to
perform high-performance computing.

In this section, we firstly present multi-core processors and coprocessors.
After that we review two notable hybrid supercomputers: RoadRunner and
Tianhe-1A.

2.3.1 Multiprocessing

Multiprocessing is the use of two or more CPUs within a single computer
system. CPUs can be implemented in a single processor or in a coprocessor.

13 MilkyWay@home astrophysics project. http://milkyway.cs.rpi.edu/
14 Einstein@Home project. http://einstein.phys.uwm.edu/
15 Berkeley Open Infrastructure for Network Computing. http://boinc.berkeley.edu/

http://milkyway.cs.rpi.edu/
http://einstein.phys.uwm.edu/
http://boinc.berkeley.edu/

2.3 hybrid computing 21

2.3.1.1 Multi-core Processors

The number of central processing units (CPU) can be increased not only by
replicating the processor, but also can be implemented inside a processor. A
multi-core processor is an integrated circuit (IC) with two or more indepen-
dent actual CPU (cores). Cores may or may not share caches according to
the architecture, and the inter-core communication may be implemented ei-
ther through message passing or shared memory. The single core processors
reached the physical limits of possible complexity and speed, silicon indus-
tries such as Intel and AMD propose thus dual-core, quad-core, hexa-core,
octo-core, deca-core, even 48-core X86-architecture processors.

For example, the processors in EXQIM’s Altix ICE supercomputer’s com-
pute blades (c. f., Section 2.2.1.3) are quad-core Harpertown-based Xeon. As
we can see in Figure 7, they use unified L2 caches. Two cores share one L2

cache with 6 MByte. The core pairs of one compute blade that share an L2

cache are 0+2, 1+3, 4+6, and 5+7. The eight cores from two processors of one
compute blade share 32 GByte DDR2 memory, and they communicate with
each other via a 1333 MHz Front-Side Bus (FSB).

Figure 7: Intel Xeon Harpertown CPUs in a single ICE 8200EX [Nor11]

The newest Intel processors (e. g., Nehalem-based Xeon) use a point-to-
point technology QuickPath Interconnect (QPI) instead of FSB to increase the
inter-core communication performance.

Multi-core processors can also be heterogeneous. STI (Sony, Toshiba, and
IBM) alliance’s Cell processor [KDH+05] (Figure 8), for example, is a multi-
core chip composed of one Power Processor Element (PPE), and multiple Syner-

gistic Processing Elements (SPE). The PPE and SPEs are linked together by an
internal high speed bus dubbed Element Interconnect Bus (EIB) [CRDI07, JB07].

22 supercomputer architectures

Figure 8: STI Cell B/E processor abstract overview [SPI]

Some low-level programming models are presented in Section 3.1.1 for
shared-memory multi-core architectures.

2.3.1.2 Coprocessors / Accelerators

A coprocessor is a computer processor used to supplement the functions of
the primary processor. As in a STI Cell B/E architecture (c. f., Section 2.3.1.1),
the SPEs can be considered as the coprocessors and the PPE as the main
processor.

A coprocessor may also be an accelerator such as: graphics processing unit
(GPU), crypto accelerator, digital signal processor, etc. The most commonly
used coprocessors for high-performance computing nowadays are general-
purpose GPU (GPGPU). Instead of optimising cores’ speed and data access
latency, GPGPUs use hundreds or even thousands of cores to increase com-
putational throughput. Figure 9 shows a 512-core Fermi architecture.

Figure 9: Nvidia Fermi Architecture [Co.09]

2.3 hybrid computing 23

Fermi [Gla09] is the current generation CUDA (formerly Compute Unified
Device Architecture) architecture introduced by Nvidia Corporation. Each core
has its own L1 cache, all 512 cores share a unified L2 cache. Fermi has up to 1

TByte GPU memory [Co.09]. As shown in Figure 10, copying data from main
memory to GPU memory is demanded before processing parallel computa-
tion; and copying result from GPU memory to main memory is also necessary
after the computation [NBGS08].

Figure 10: CUDA processing flow [Wik08a]

AMD-ATi and other silicon manufacturers propose a wide variety of GPGPU
implementations for high-performance computing. A specific language such
as OpenCL or OpenACC is needed for programming on GPGPU.

Intel announced, in 2012, its many-core coprocessor Xeon Phi. Even though
its architecture is X86-based, software developers still need specific language
and compiler such as OpenMP, Intel Threading Building Blocks (TBB), or Intel
Cilk Plus (c. f., Section 3.2.3.2) to create threads in a program [Int12].

2.3.2 Hybrid Clusters

Hybrid computing Clusters combine the special computational units (e. g.,
GPGPU, coprocessor, etc.) with standard units (e. g., CPU) in order to perform

24 supercomputer architectures

high-performance computing. We review here 2 notable hybrid supercomput-
ers: RoadRunner and Tianhe-1A.

2.3.2.1 RoadRunner

RoadRunner [BDH+08] built by IBM at the Los Alamos National Laboratory was
the world’s first Top500 LINPACK16 sustained 1.0 PFLOPS system. It was also
the first hybrid supercomputer in the world.

Like IBM Blue Gene (c. f., Section 2.2.1.2) and SGI Altix ICE (c. f., Sec-
tion 2.2.1.3), RoadRunner cluster architecture is also tiered (Figure 11):

Figure 11: Overview of Roadrunner tiered composition [Wik08b]

• The cluster is made up of 18 connected units (CUs), which are connected
via 8 additional (second-stage) Infiniband ISR2012 switches. Each CU

16 A numerical linear algebra software library. http://www.netlib.org/linpack/

http://www.netlib.org/linpack/

2.3 hybrid computing 25

is connected through 12 uplinks for each second-stage switch, which
makes a total of 96 uplink connections.

• A CU is 60 BladeCenter H full of TriBlades, that is 180 TriBlades. All
TriBlades are connected to a 288-port Voltaire ISR2012 Infiniband switch.
Each CU also has access to the Panasas file system through 12 System
x3755 servers.

• A TriBlade (Figure 12) consists of one LS21 Opteron blade, an expansion
blade, and two QS22 Cell blades. The LS21 has two 1.8 GHz dual-core
Opterons with 16 GByte memory. Each QS22 has two PowerXCell 8i
CPUs, running at 3.2 GHz and 8 GB memory. The expansion blade con-
nects the two QS22 via four PCIe x8 links to the LS21, two links for each
QS22. It also provides outside connectivity via an Infiniband 4x DDR
adapter. Three TriBlades fit into one BladeCenter H chassis.

Figure 12: RoadRunner TriBlade [Wik08b]

• The Opteron 2210 processor on LS21 created by AMD is a dual-core pro-
cessor using for feeding the Cells with useful data and passing data be-
tween computing nodes. The IBM PowerXCell 8i featuring 1 PPE and 8

SPEs plays a coprocessor role here in charge of the heaviest computation.
More information about the processors can be found in Section (2.3.1).

Either algorithm design or program development on RoadRunner requires
a good understanding of different processor architectures and network topol-
ogy for this extremely heterogeneous hierarchical system.

26 supercomputer architectures

2.3.2.2 Tianhe-1A

The Tianhe-1A () supercomputer developed by the Chinese National Uni-

versity of Defense Technology (NUDT) located at the National Supercomputing

Center in Tianjin was the fastest computer in the world from October 2010 to
June 2011 and is one of the few Petascale supercomputers in the world [Top].

Tianhe-1A [YLL+11] (Figure 13) is a hybrid supercomputer equipped with
14 336 Xeon X5670 processors and 7 168 Nvidia Tesla M2050 GPGPUs: The
system is composed of 112 computer racks, 12 storage racks, 6 communica-
tions racks, and 8 I/O racks. Each computer rack is composed of 4 frames,
with each frame containing 8 blades, plus a 16-port switching board. Each
blade is composed of 2 computer nodes, with each computer node containing
2 Intel Xeon X5670 6-core processors and 1 Nvidia M2050 GPU processor.

Figure 13: Tianhe-1 architecture [YLL+11]

Parallel computer hardware continues its evolution. The flat view of a par-
allel machine as a set of communicating sequential machines remains a useful
and practical model but is more and more incomplete. Moreover, we can ob-
serve that heterogeneous chip multiprocessors present unique opportunities
for improving system throughput and reducing processor consumption. The
trend towards green-computing puts even more pressure on the optimal use
of architectures that are not only highly scalable but hierarchical and non-
homogeneous. All these changes make parallel programming harder than be-

2.3 hybrid computing 27

fore. Thus, a novel programming and execution model is desirable for han-
dling these heterogeneous hierarchical machines.

In the following chapters, we will introduce our SGL model which is based
on scatter-gather primitives, together with a parallel execution primitive pardo.
It is an attempt to continue the trend for simplification in the set of primitives
of BSP-like programming and yet provides a better match with modern ar-
chitectures that are both heterogeneous and hierarchically structured. For ex-
ample, the Tianhe-1A’s architure is neither flat nor completely homogeneous
but can be cleanly represented as a tree of processing units with 6 or even 7

levels: system – racks – frames – blades – nodes – processors – cores. We will
use our hierarchical SGL model in Section 4.3 of Chapter 4 to model several
previous presented machines.

3
PA R A L L E L P R O G R A M M I N G M O D E L S

3.1 Low-Level Parallel Models . 30

3.1.1 Shared-Memory Communication 30

3.1.1.1 Multi-threaded programming 31

3.1.1.2 Directive Programming 32

3.1.2 Message-Oriented Models 35

3.1.2.1 Message Passing Interface 35

3.1.2.2 Message Queuing Protocols 36

3.1.3 SWAR Programming Models 38

3.2 High-Level Parallel Models . 41

3.2.1 Concurrent Computation Models 41

3.2.1.1 Process Calculi 41

3.2.1.2 Actor Model . 44

3.2.2 Bridging Models . 47

3.2.2.1 Parallel Random Access Machine 47

3.2.2.2 Bulk-Synchronous Parallel 48

3.2.2.3 Extensions of the BSP Model 54

3.2.3 Other Parallel Models . 57

3.2.3.1 The LogP Model 57

3.2.3.2 Divide and Conquer – Cilk 58

3.2.3.3 Algorithmic skeletons & MapReduce 60

We review in this chapter the state of the art of parallel programming mod-
els in order to understand the portability of code, the scalability of algorithms,
practicality of machine modelling, simplicity of programming, and feasibility
of optimisation analysis between different models.

The chapter is organised in two sections: the first one presents low-level par-
allel models for shared-memory multi-threaded programming, shared-nothing
message-passing programming, and SWAR programming; the second one
presents high-level portable models such as process calculi, bridging models,
and MapReduce etc.

29

30 parallel programming models

We emphasize, in this chapter, the BSP model (Section 3.2.2.2) which en-
forces a strict separation of communication and computation, removes non-
determinism and guarantees the absence of deadlocks, gives an accurate model
of performance prediction, provides much simplicity and efficiency for paral-
lel programming.

3.1 low-level parallel models

In this section, we review different parallel programming techniques for ei-
ther shared-memory architecture or distributed-memory architecture. Shared-
memory architecture can simplify program design; it is easy to use thanks to
its implicit communications. Distributed-memory architecture is more realis-
tic for large supercomputer design. But the explicit communication is not easy
to handle. However, these techniques depend greatly on machine architecture,
that is why we call them low-level parallel models here.

3.1.1 Shared-Memory Communication

Shared memory is a memory that may be simultaneously accessed by multi-
ple processes with an intent to provide communication among them or avoid
redundant copies. A shared memory system (Figure 14) is relatively easy to
program since all processors share a single view of data and the communica-
tion between processors can be as fast as memory accesses to a same location.

Figure 14: Shared-Memory Architecture

The issue with shared memory systems is that CPU-to-memory connec-
tion could be a bottleneck. Thus, the number of processors is limited. Shared-

3.1 low-level parallel models 31

memory hardware architecture may use different techniques such as: Uniform
Memory Access (UMA), Non-Uniform Memory Access (NUMA), Cache-Only
Memory Architecture (COMA) etc. A shared-memory hardware architecture
is not mandatory in the logical point of view, direct access of memory can be
simulated by the middleware if needed.

3.1.1.1 Multi-threaded programming

Process’ resources may be shared by threads efficiently. Multi-threading para-
digm provides developers with a useful abstraction of concurrent execution.
Developers do not need to worry about the communication which is implicit.
But this kind of program can be executed only on a single OS system.

To avoid race conditions [Ung95] in a shared-memory environment, differ-
ent locking techniques to coordinate between threads were proposed, such as
mutexes, semaphores, monitors, etc.

The semaphore concept was invented in 1965 by Edsger W. Dijkstra [Dij65,
HDH02]. A semaphore is a variable or abstract data type that provides an ab-
straction for controlling access by multiple processes to a common resource in
a parallel programming environment. A Counting semaphore S is equipped
with two operations: V and P. They work as follow:

1. In the beginning, S is initialized with a non-negative integer (the number
of available resources).

2. When P is called, S is decremented (the resource is distributed to the
process). If S is negative, the process is blocked (no available resource).

3. When V is called, S will be incremented (the resource is gave back by
the process).

Edsger W. Dijkstra [Dij65] identified and solved the mutual exclusion prob-
lem in the same year: a mutex is essentially the same thing as a binary
semaphore. C. A. R. Hoare [Hoa74] invented the monitor concept in 1974:
a monitor is an object or module intended to be used safely by more than one
thread.

POSIX1 provides a standardized application programming interface (API)
for using shared memory on UNIX-like platform. The POSIX Shared Memory

1 Portable Operating System Interface, a family of standards specified by the IEEE.

32 parallel programming models

API contains the following functions for managing memory allocation and
interprocess communication: shm_open, shmat, shmctl, shmdt and shmget etc.
POSIX defines also an API named Pthreads for creating and manipulating
threads. Some measures performed in Section 4.3 are based on it.

Recently, Thompson et al. found that cache misses at the CPU-level and
locks requiring kernel arbitration are both extremely costly [TFM+11]. They
thus introduced a lock-free concept named Disruptor using a ring buffer to
avoid these issues in order to obtain very low-latency and high-throughput
programs. Based on this concept, a high performance inter-thread messaging
library was developed by LMAX2 on Java platform. However, LMAX disrup-
tor is still limited on shared memory architecture.

3.1.1.2 Directive Programming

Preprocess directives handled by the compiler may be used to describe some
programming language constructs. Directive programming offers the possibil-
ity of automatic parallelization. A program with parallel directives can also
be compiled correctly in sequential.

In C, for example, the #pragma directive is used to instruct the compiler to
use pragmatic or implementation-dependent features. Two notable users of
such directive for parallel programming are OpenMP and OpenACC.

OpenMP 3 [CJvdPK07] is an API that supports multi-platform shared mem-
ory multiprocessing programming in C, C++, and Fortran. It is a multi-threading
implementation. The threads run concurrently, with the runtime environment
allocating threads to different processors.

The core elements of OpenMP are:

• Thread creation: parallel directive.

• Work sharing: do/parallel do and section directives.

• Data-environment management: shared and private clauses.

• Thread synchronization: critical, atomic and barrier directives.

• Runtime routines and environment variables: omp_set_num_threads(),
omp_get_thread_num(), OMP_NUM_THREADS and OMP_SCHEDULE.

2 LMAX Exchange. http://www.lmax.com/
3 The OpenMP API specification for parallel programming. http://openmp.org/

http://www.lmax.com/
http://openmp.org/

3.1 low-level parallel models 33

Compared to POSIX API, OpenMP API may greatly simplify parallel pro-
gramming using automatic parallelism techniques. The code in Listing 1 sim-
ply uses a parallel for directive to initialize the value of a large array in parallel
using each thread to do part of the work. This code can be compiled correctly
in parallel and in sequential (if the compiler does not support the parallel
directives). The number of parallel threads is defined before the compilation
either implicitly (same as the number of processors) or explicitly.

1 // Automatically parallel large array initialization

3 #include <omp.h>

5 int main(int argc, char *argv[]) {

const int N = 100000;

7 int i, a[N];

9 #pragma omp parallel for

for (i = 0; i < N; ++i)

11 a[i] = 2 * i;

13 return 0;

}
✆

Listing 1: OpenMP code in C for automatically parallelizing array initialization

Parallelization using OpenMP can be programmed not only automatically
but also explicitly, the latter makes data locality clearer for developers. How-
ever, this causes a loss of code portability and increase programming complex-
ity. Listing 2 shows how programming the same job in Listing 1 is complicated
using explicit parallelization approach and how clear the data locality is.

The experimentation that we performed in Section 5.2 used OpenMP for
the shared-memory node-level part.

34 parallel programming models

// Explicitly parallel large array initialization

2

#include <omp.h>

4

int main(int argc, char *argv[]) {

6 int rank,size;

const int N = 100000;

8 int i, a[N], block;

10 size = omp_get_num_threads();

block = N / size;

12

// Each thread has its own variables rank and i

14 #pragma omp parallel private(rank, i)

{

16 rank = omp_get_thread_num();

18 // For the threads where rank = 0 .. size-2

if (rank != (size - 1)) {

20 for (i = rank * block; i < (rank + 1) * block; ++i)

a[i] = 2 * i;

22 }

// For the last thread, rank = size-1

24 else {

for (i = rank * block; i < N; ++i)

26 a[i] = 2 * i;

}

28 #pragma omp barrier

}

30 return 0;

}
✆

Listing 2: OpenMP code in C for explicitly parallelizing array initialization

OpenACC4 is a programming standard for parallel computing proposed in
2012 by Cray, CAPS, Nvidia and PGI. Like in OpenMP, C, C++, and Fortran
source code can be annotated to identify the areas that should be accelerated
using progma compiler directives and additional functions. But different from
OpenMP, OpenACC’s objective is to simplify parallel programming of hetero-
geneous CPU/GPU systems. Thus, its code can be compiled not only on the
CPU, but also on the GPU.

4 OpenACC Home. http://www.openacc.org/

http://www.openacc.org/

3.1 low-level parallel models 35

3.1.2 Message-Oriented Models

Shared-memory models simplify the parallel programming with their implicit
communication. However, the communication cost always exists in a parallel
program and can never be neglected. A communication-explicit model allows
developers to better understand parallel program performance, opens the pos-
sibility to optimize communication cost.

The message-oriented approach focuses on the communication. It is often
used on distributed-memory architectures (Figure 15). It can also be applied
on shared-memory architectures to gain program portability.

Figure 15: Distributed-Memory Architecture

Message-oriented middleware allows application modules to be distributed
over heterogeneous platforms and reduces the complexity of developing ap-
plications that span multiple operating systems and network protocols.

3.1.2.1 Message Passing Interface

Message passing is the paradigm of communication. The messages are sent
from a sender to one or more recipients. Depending on implementation, com-
munication may be synchronous or asynchronous, messages may be passed
one-to-one (unicast), one-to-many (broadcast), many-to-one (gather), or many-
to-many (All-to-All). Many high-level data parallel models (c. f., Section 3.2)
are based on message passing.

Message Passing Interface (MPI) is a language-independent communica-
tions protocol used to program parallel computers. The goals of MPI are high

36 parallel programming models

performance, scalability, and portability. It remains today the dominant model
used in high-performance computing [DD95, SKP06].

An independent identifier is attributed to each process by MPI commu-
nicator. MPI supports both point-to-point and collective communication us-
ing functions such as: MPI_Send, MPI_Receive, MPI_Bcast, MPI_Reduce and
MPI_Alltoall etc.

There are many MPI implementations. MPICH is one of the most popular
implementations of MPI. It is used as the foundation for the vast majority of
MPI implementations, including IBM MPI (used for example by Blue Gene
which was viewed in Section 2.2.1.2), Intel MPI, Cray MPI, and many others.
SGI has its own implementation named Message Passing Toolkit (MPT) used
by SGI supercomputer such as Altix ICE (presented in Section 2.2.1.3).

The scalability and portability of MPI programs can be improved by apply-
ing SPMD (Single Program, Multiple Data) technique. Most of today’s parallel
programs are developed on MPI. The experimentation that we performed in
Section 5.2 uses MPI too.

3.1.2.2 Message Queuing Protocols

Message Queuing Protocols provide patterns to simplify the communication.
It can also be employed as a middleware for implementing actor models
(c. f., Section 3.2.1.2). Application layer protocols are the tendency of message-
oriented middleware.

AMQP 5 [O’H07] originated by JPMorgan Chase & Co., co-developed by
Cisco Systems, IONA Technologies, iMatix, Red Hat, and TWIST is an open
standard application layer protocol for passing business messages between
applications. It is defined to provide flexible routing, including common mes-
saging paradigms like point-to-point, fanout, publish/subscribe, and request-
response.

ZeroMQ 6 [Hin13] is a high-performance asynchronous messaging library
introduced by iMatix after leaving AMQP workgroup for providing a signif-

5 The Advanced Message Queuing Protocol. http://www.amqp.org/
6 ∅MQ. http://www.zeromq.org/

http://www.amqp.org/
http://www.zeromq.org/

3.1 low-level parallel models 37

icantly simpler and faster communication. It acts like a concurrency frame-
work. ZeroMQ has four basic patterns:

• Request-reply (Figure 16): The REQ-REP socket pair is in lockstep. The
client issues zmq_send() and then zmq_recv() in a loop. This is a remote
procedure call and task distribution pattern.

Figure 16: ZeroMQ Request-Reply Pattern [Hin13]

• Publish-subscribe (Figure 17): The PUB-SUB socket pair is asynchronous.
The client calls zmq_recv() in a loop. Similarly, the service calls zmq_send()

as often as needed. This is a data distribution pattern.

Figure 17: ZeroMQ Publish-Subscribe Pattern [Hin13]

• Parallel pipeline (Figure 18): This is a "ventilator" that produces tasks
that can be done in parallel. The workers connect upstream to the ven-
tilator and downstream to the sink. The sink that collects results back
from the worker processes. This is a parallel task distribution and collec-
tion pattern.

38 parallel programming models

Figure 18: ZeroMQ Parallel Pipeline Pattern [Hin13]

• Exclusive pair: which connects two sockets exclusively. This is a pat-
tern for connecting two threads in a process, not to be confused with
"normal" pairs of sockets.

Message queuing models provide different communication patterns to re-
duce the complexity of parallel programming, but the communication latency
is difficult to manage because of the implicit routing. Twitter’s Storm platform
(c. f., Section 3.2.1.2) and some streaming modules of EXQIM’s algorithmic
trading system are based on ZMQ protocol.

3.1.3 SWAR Programming Models

SWAR is an acronym for SIMD Within A Register. SIMD, in turn, stands for
Single Instruction, Multiple Data. On x86 processors, the well-known SWAR
architectures contain AMD’s 3DNow!, Intel’s MMX, SSE (Streaming SIMD
Extensions) and its successors, and AVX (Advanced Vector Extensions), etc.

3.1 low-level parallel models 39

SWAR processing has been applied in a wide range of computation-intensive
fields such as image processing [PPdQN+01], cryptographic pairings [GGP09],
raster processing [PG04], computational fluid dynamics [HML+03] and com-
munications [Spr01] etc.

SWAR programs are architecture-depended. It is not easy to develop SWAR
programs but they provide considerable acceleration thanks to the hardware
implementation.

Several SWAR programming models were mentioned in Randall J. Fisher’s
thesis [Fis03]:

• Scalar models. The code written in a scalar language is analyzed by
a so-called "vectorizing" compiler to find parallel-able operations and
functions. These are then translated into vector- or array-based parallel
code for the target architecture. The programming model is thus a scalar
one.

• Array models. Multi-dimensional array models are the most commonly
used non-scalar models in parallel processing. The array object can be
operated on as a single aggregate object rather than as a set of scalar
elements via looping or parallelizing constructs.

• Vector models. Unlike array models, vector models are single-dimensional
and non-scalar. True vector models are more consistent with the opera-
tion of SWAR architecture than scalar or array models.

• Sequential model. The NESL language [BHC+93] describes parallel data
as recursive sequences. It allows complex, irregular, and nested data
structures to be described and operated on.

The code in Listing 3 shows a C++ function that adds two 4-element vectors
using inline assembly calling SSE instructions.

SWAR is always a good low-cost option for accelerating certain expensive
operations. A new instruction named FMA (fused multiple-add) will be sup-
ported by both Intel and AMD’s X86 microprocessors in 2013.

40 parallel programming models

1 // A 16byte = 128bit vector struct

struct Vector4

3 {

float x, y, z, w;

5 };

7 // Add two constant vectors and return the resulting vector

Vector4 SSE_Add (const Vector4 &Op_A, const Vector4 &Op_B)

9 {

Vector4 Ret_Vector;

11

__asm

13 {

MOV EAX Op_A // Load pointers into CPU regs

15 MOV EBX, Op_B

17 MOVUPS XMM0, [EAX] // Move unaligned vectors to SSE regs

MOVUPS XMM1, [EBX]

19

ADDPS XMM0, XMM1 // Add vector elements

21 MOVUPS [Ret_Vector], XMM0 // Save the return vector

}

23

return Ret_Vector;

25 }
✆

Listing 3: SSE: Adding Vectors

In order to reduce the complexity of SWAR code development, the LLVM
compiler7 supports since 2012 auto-vectorization [LLV12]. Vector operations
in LLVM can be automatically translated by the compiler to benefit the SWAR
architecture.

Low-level parallel programming models allow developers to make even
finer performance tuning. However, all presented low-level models are archi-
tecture-depended, high-level models are desirable for developing more com-
plex and portable algorithms.

7 Formerly Low-Level Virtual Machine. http://llvm.org/

http://llvm.org/

3.2 high-level parallel models 41

3.2 high-level parallel models

We present, in this section, some notable portable high-level parallel program-
ming models for which algorithms could be developed/analysed more pre-
cisely while keeping their portability. First of all, we review three concurrent
computation models: CSP, CCS, and Actor Model which provide algebraic
laws or simulate the physical world that allow process descriptions to be
manipulated and analysed. After that, we review PRAM, BSP and some ex-
tensions of BSP as bridging models that provide a conceptual bridge between
the physical implementation of the machine and the abstraction available to
a programmer of that machine. The sequential view of a parallel program
featured by bridging models can greatly help developers to analyse and/or
create parallel algorithms. Finally, we finish the section by reviewing LogP,
Cilk, and MapReduce.

3.2.1 Concurrent Computation Models

In parallel programming, each process is concurrent to others. Several mod-
els inspired by algebra (e. g., process calculus) or physical world interactions
(e. g., the actor model) were used for modelling these concurrent processes.

3.2.1.1 Process Calculi

A process calculus is intended for modelling concurrent system. It provides a
tool for the high-level description of interactions, communications, and syn-
chronizations between a collection of independent agents or processes. Pro-
cess descriptions can be manipulated and analysed using process calculus
algebraic laws. Formal reasoning about equivalences between processes can
be carried out with process calculus. The most notable process calculi are
Communicating Sequential Processes (CSP) and Calculus of Communicating
Systems (CCS) with its evolution as the π-calculus [MPW92, Mil93].

CSP was first described by C. A. R. Hoare [Hoa78] in 1978 as concurrent
programming language, and has evolved substantially to refine the theory of
process algebraic form [AJS04]. CSP has been practically applied in industry

42 parallel programming models

as a tool for specifying and verifying the concurrent aspects of a variety of
different systems [Bar95, HC02].

CSP allows the description of systems in terms of component processes that
operate independently and interact with each other solely through message-
passing communication. The syntax of CSP defines the "legal" ways in which
processes and events may be combined. Let e be an event, and X be a set of
events, then the basic syntax of CSP can is shown in Table 1.

Proc ::= STOP

| SKIP

| e→ Proc (prefixing)

| Proc � Proc (external choice)

| Proc⊓ Proc (non-deterministic choice)

| Proc ||| Proc (interleaving)

| Proc |[{X}]| Proc (interface parallel)

| Proc \ X (hiding)

| Proc; Proc (sequential composition)

| if b then Proc else Proc (boolean conditional)

| Proc ⊲ Proc (timeout)

| Proc△ Proc (interrupt)

Table 1: Syntax of CSP

The following example shows how to apply the CSP syntax to represent a
chocolate vending machine interacting with a person wishing to buy some
chocolate. The vending machine may receive a payment (event "coin") and
offer a chocolate (event "choc"). A machine which demands payment before
delivering a chocolate can be written as:

VendingMachine = coin→ choc→ STOP

A person may pay coins as well as by debit/credit card can be modelled as:

Person = (coin→ STOP)�(card→ STOP)

3.2 high-level parallel models 43

These 2 processes can be in parallel to interact with each other:

VendingMachine |[{coin, card}]| Person ≡ coin→ choc→ STOP

When synchronization is only required on "coin", we have:

VendingMachine |[{coin}]| Person ≡ (coin→ choc→ STOP)�(card→ STOP)

The "coin" and "card" events can be hidden:

((coin→ choc→ STOP)�(card→ STOP))\{coin, card}

We thus get a non-deterministic process:

(choc→ STOP)⊓ STOP

A single-program-multiple-data (SPMD) parallel program E can be described
in CSP as:

[|E|]SPMD = [|E@0 || . . . || E@(p− 1)|]CSP

where [| |]SPMD is the defined meaning of program E, [| |]CSP is the CSP transi-
tion semantics, and E@i = E[pid← i].

However, the pid (Processor ID, i. e., processor number) variable is bound
outside the source program in most cases [Gav05] which is not a standard
use of lexical scoping for identifiers [Wik]. This is what led to the design of
the mkpar primitive in BSML(BSP-CAML c. f., Section 3.2.2.2): it takes as input
a function from pid processor indexes to "local" values and creates a parallel
value. This has three advantages over previous uses of pid (like MPI [GLS99]):

1. the binding of variable PID is explicit in parallel programs;

2. the variable’s name is arbitrary, not necessarily pid; and

3. the binding scope is local to the definition of mkpar argument.

44 parallel programming models

CCS was introduced by Robin Milner [Mil82] around 1980 as a process
calculus. Its actions model indivisible communications between exactly two
participants. CCS is useful for evaluating the qualitative correctness of prop-
erties of a system such as deadlock or livelock [KB07].

The formal language of CCS includes primitives for describing parallel
composition, choice between actions and scope restriction. The set of CCS
processes is defined by the BNF grammar in Table 2.

P ::= ∅ (empty process)

| a.P1 (action)

| A (process identifier)

| P1 + P2 (choice)

| P1|P2 (parallel composition)

| P1[b/a] (renaming)

| P1\a (restriction)

Table 2: Syntax of CCS

The development of CSP was influenced by CCS and vice versa. There is a
fair number of cross-references, acknowledgements, and reciprocal citations.

CSP and CCS can help higher level parallel model implementation analysis
and validation. For example, Simpson et al. [SHD99] have applied CSP for
analysing BSPlib’s transport layer protocol for BSP programming and have
shown that this protocol is fault-tolerant and free from the potential for dead-
lock and livelock. Merlin and Hains [MH05, MH07] integrated CCS seman-
tics with BSP model, proposed a BSP process algebra and generalized its cost
model for concurrent and data-parallel meta-computing.

3.2.1.2 Actor Model

The actor model, inspired by physical world interactions, is a mathematical
model of concurrent computation that treats "actors" as the universal primi-
tives. The actor model was introduced in 1973 by Carl Hewitt [HBS73].

3.2 high-level parallel models 45

The actor model adopts the philosophy that everything is an actor. An ac-
tor is a computational entity that, in response to a message it receives, can
concurrently:

• send a finite number of messages to other actors;

• create a finite number of new actors;

• designate the behaviour to be used for the next message it receives.

Decoupling the sender from communications sent is a fundamental ad-
vance of the actor model enabling asynchronous communication and control
structures as patterns of high-level messages passing [Hew77].

Many expressive actor programming platforms have been proposed in re-
cent years. The most notable are: Apache’s S48, Twitter’s Storm9 and Typesafe’s
Akka10 etc.

Figure 19: A Storm topology (spouts are represented by water-taps, and bolts are

represented by lightnings) [Sto12]

Storm [Sto12] performs real-time computations based on "topologies" (Fig-
ure 19). A topology is a graph of computation. Each Storm node in a topol-
ogy contains processing logic, and links between nodes indicate how data
should be passed around between nodes. Nodes are used to transform a
stream, which is an unbounded sequence of tuples, into a new stream in a
distributed and reliable way. A node can be either Spout or Bolt. A spout
is a source of streams in a topology. A bolt consumes any number of input
streams, does some processing, and possibly emits new streams. Bolts can
do anything from run functions, filter tuples, do streaming aggregations, do

8 http://incubator.apache.org/s4/

9 http://storm-project.net/

10 http://akka.io/

http://incubator.apache.org/s4/
http://storm-project.net/
http://akka.io/

46 parallel programming models

streaming joins, talk to databases, and more. Links between nodes in a topol-
ogy indicate how tuples should be passed around.

Spouts and bolts execute in parallel as many tasks across the cluster (Fig-
ure 20). Stream grouping defines how to send tuples between sets of tasks.
There are seven built-in stream groupings in Storm:

• Shuffle grouping: Tuples are randomly distributed across the bolt’s
tasks in a way such that each bolt is guaranteed to get an equal number
of tuples.

• Fields grouping: The stream is partitioned by the fields specified in the
grouping.

• All grouping: The stream is replicated across all the bolt’s tasks.

• Global grouping: The entire stream goes to a single one of the bolt’s
tasks.

• None grouping: This grouping specifies that you do not care how the
stream is grouped.

• Direct grouping: This is a special kind of grouping. A stream grouped
this way means that the producer of the tuple decides which task of the
consumer will receive this tuple.

• Local or shuffle grouping: If the target bolt has one or more tasks in
the same worker process, tuples will be shuffled to just those in-process
tasks. Otherwise, this acts like a normal shuffle grouping.

Figure 20: A task-level view of Storm topology [Mar12]

Strom is related to dataflow models which have a long history. It is fine-
tuned to handle unbounded data streams such as stock market data. But for
lack of space we will not describe them further here.

3.2 high-level parallel models 47

3.2.2 Bridging Models

The models reviewed in Section 3.2.1 greatly simplify parallel programming.
However, the performance of supercomputer cannot only be measured in
FLOPS [FMM+13], thus a bridging model for accurate performance predic-
tion is demanded for designing large-scale systems or algorithms [BDH+09].
The term bridging model11 was introduced in 1990 by Leslie Valiant [Val90].
A bridging model is an abstract model of a computer which provides a con-
ceptual bridge between the physical implementation of the machine and the
abstraction available to a programmer of that machine. It provides a common
level of understanding between hardware and software engineers. Thus, one
can develop portable and predictable algorithms on it.

Bridging models provide also a sequential view of a parallel program with
supersteps, this feature could greatly help developers to analyse and/or cre-
ate parallel algorithms. The sequential view SEQ of PAR 12 was analysed by L.
Bougé et al. [Bou96] in their study of data-parallel semantics.

3.2.2.1 Parallel Random Access Machine

Forturne et al. [FW78] have introduced the Parallel Random Access Machine
(PRAM) model for parallel computing. The PRAM model consists of p pro-
cessors (Figure 21). Each one has its own private local memory, and they all
share a global memory. In PRAM model, processors execute the computation
instructions synchronously. At each step of a PRAM algorithm, some proces-
sors are active and execute : read, write or compute instructions. The other
processors are inactive. In a read step, each active processor reads one global
memory location into its local memory. In a compute step, each active proces-
sor executes a single operation and writes the result into its local memory. In
a write step, each active processor writes one local memory location into the
global memory.

It was necessary to define some memory access restrictions to resolve read
and write conflicts to the same shared memory location. Depending on the
restrictions on memory access, we have 4 different PRAM models:

11 which we translate in this thesis in French "modèle de transition logico-matérielle"
12 equivalent to PAR of SEQ execution

48 parallel programming models

Proc0 Proc1 Proc2 Procp−1

Shared Memory

b b b

Figure 21: A PRAM computer

• Exclusive Read, Exclusive Write (EREW) PRAM: At each time step,
one and only one processor can read or write the same shared memory
location.

• Concurrent Read, Exclusive Write (CREW) PRAM: At each time step,
simultaneous reads of the same memory location are allowed, but only
one processor can write to a shared memory location.

• Concurrent Read, Concurrent Write (CRCW) PRAM: At each time step,
both simultaneous reads and writes of the same memory location are
allowed. In CRCW PRAM model, we also need to specify what happens
when several processors write to the same memory locations.

• Queue Read, Queue Write (QRQW) PRAM [GMR94] : At each time
step, each memory location can be read or written by any number of
processors. Concurrent read or write to a location are serviced one-at-a-
time. The access time to read or write a location is proportional to the
number of concurrent readers or writers to the same location.

The PRAM model is used by parallel-algorithm designers to model paral-
lel algorithmic performance like other bridging models. Synchronisation and
communication are neglected in this model. Algorithm cost is thus estimated
only using two parameters: O(time) and O(time × processor_number). The
time complexity of a PRAM algorithm depends on the number of instructions
needed to be executed; and the space complexity depends on the number of
memory cells needed to be allocated.

3.2.2.2 Bulk-Synchronous Parallel

The Bulk-Synchronous Parallel (BSP) model is a programming model intro-
duced by Leslie Valiant [Val90]. It offers a high degree of abstraction like

3.2 high-level parallel models 49

PRAM models (c. f., Section 3.2.2.1) and yet allows portable and predictable
performance on a wide variety of multi-processor architectures [SHM97]. The
major difference between BSP and PRAM is that the local computations of
BSP are asynchronous, and the cost of inter-processor communications in BSP
is not neglected.

A BSP computer (Figure 22) contains:

• a homogeneous set of uniform processor-memory pairs;

• a communication network allowing inter-processor delivery of messages;

• and a global synchronization unit which executes collective requests for
a synchronization barrier.

Proc0 Proc1 Proc2 Procp−1

Network

b b b

Mem Mem Mem Mem

r :

g :

L :

Figure 22: A BSP computer

A wide range of actual architectures can be seen as BSP computers. For
example, shared-memory machines could be used in a way such as each pro-
cessor only accesses a sub-part of the shared memory and communications
could be performed using a dedicated part of the shared memory. Moreover,
the synchronization unit is very rarely a hardware but rather a software event
[HS98]. Supercomputers and clusters of PCs can be modelled as BSP comput-
ers.

A BSP program is executed as a sequence of supersteps (Figure 23), each
one divided into (at most) three successive and logically disjoint phases:

1. In the first phase, each processor uses its local data (only) to perform
sequential computations and to request data transfers to/from other
nodes.

2. In the second phase, the network delivers the requested data transfers.

3. And in the third phase, a global synchronization barrier occurs, making
the transferred data available for the next superstep.

50 parallel programming models

P1 P2 PpP3

Synchronization barrier

Synchronization barrier

B
S

P
 su

p
erstep

Figure 23: A BSP superstep

The performance of the BSP machine is characterised by 4 parameters:

• the local processing speed r;

• the number of processor-memory pairs p;

• the time L required for a global synchronization (barrier);

• and the time g for collectively delivering a 1-relation communication
phase where every processor receives/sends at most one word.

The network can deliver an h-relation (every processor receives/sends at
most h words) in time g× h. To accurately estimate the execution time of a
BSP program these 4 parameters could be easily benchmarked [Bis04].

The execution time (cost) of a superstep s is the sum of the maximum local
processing time, the data delivery and the global synchronisation times. It is
expressed by the following formula:

Cost(s) = max
06i6p

{ws
i }+ max

06i6p
{hs

i × g}+ L

where ws
i is the local processing time on processor i during superstep s, and

hs
i = max{hs

i+ , hs
i−} where hs

i+ (resp. hs
i−) is the number of words transmitted

(resp. received) by processor i during superstep s.

The total cost of a BSP program composed of S supersteps is
∑

SCost(s). It
is, therefore, the sum of three terms:

W +H× g+ S× L

where W =
∑

S maxi{ws
i } and H =

∑

S maxi{hs
i }.

3.2 high-level parallel models 51

In general, W, H and S are functions of p and of the size of data n, or of
more complex parameters such as data skew. To minimize execution time, the
BSP algorithm design must jointly minimize the number S of supersteps and
the total volume H (resp. W). In addition, for each superstep s, the volume hs

i

(resp. ws
i) must be balanced on all processors.

The BSP model has been implemented in different languages, as libraries
or platforms. The most notable are:

• The BSP programming library – BSPlib13 [HMS+98] maintained at Uni-

versity of Oxford Parallel Applications Centre. BSPlib can be used with
C, C++, or Fortran. It supports SPMD parallelism based on efficient
one-sided communications. The core library (excluding collective com-
munications) consists of just 20 primitives such as: bsp_nprocs, bsp_pid,
bsp_sync, bsp_put, bsp_get, bsp_set, bsp_send, etc.

• The Paderborn University BSP library (PUB)14 [BJOR99, BJvOR03] is a
C-Library to support development of parallel algorithm based on the
BSP model. Like BSPlib, the PUB-Library offers buffered asynchronous
message-passing between the nodes organized in supersteps.

• MulticoreBSP15 [YBRM13] developed at Katholieke Universiteit Leuven is
designed for shared-memory multi-core architecture. Its interface is di-
rectly derived from the BSPlib. Compared to BSPlib, MulticoreBSP for
C adds two new high-performance primitives and updates the interface
of existing primitives. The library depends on only two established stan-
dards: POSIX threads (PThreads) and the POSIX realtime extension for
maximum portability.

• BSML16 [LGB05] developed at Université d’Orléans and Université Paris

XII (now called Université Paris-Est Créteil or UPEC) is a library for
OCaml17 implementing partially the Bulk Synchronous Parallel ML lan-
guage [Gav05]. There is in BSML an abstract polymorphic type α par

which represents the type of p-wide parallel vectors of values of type
α, one per process. It is very different from usual SPMD programming

13 Oxford BSPlib. http://www.bsp-worldwide.org/implmnts/oxtool/
14 PUB-Library. http://www2.cs.uni-paderborn.de/~pub/
15 MulticoreBSP. http://www.multicorebsp.com/
16 Bulk Synchronous Parallel ML. http://traclifo.univ-orleans.fr/BSML/
17 Objective Caml. http://caml.inria.fr/

http://www.bsp-worldwide.org/implmnts/oxtool/
http://www2.cs.uni-paderborn.de/~pub/
http://www.multicorebsp.com/
http://traclifo.univ-orleans.fr/BSML/
http://caml.inria.fr/

52 parallel programming models

where messages and processes are explicit, and programs may be non-
deterministic or may contain deadlocks. In fact a large subset of BSML
parallel programs are purely functional. The newest version (0.5) of core
BSML library is based on the following primitives:

mkpar : (int→ α)→ α par

proj : α par→ (int→ α)

apply : (α→ β) par→ α par→ β par

put : (int→ α) par→ (int→ α) par

The semantics of BSML primitives is described by the use of parallel
values. Parallel value <x0, x1,. . ., xp−1> represents a set of local values of
a given type, such that xi is stored on processor i and p is the number
of processors.

In BSML, mkpar is the parallel constructor:
mkpar f computes the value <f 0, f 1,. . ., f (p-1)>.

proj is the parallel destructor:
proj <x0, x1,. . ., xp−1> computes a function f such that (f i) = xi.

apply is the asynchronous parallel transformer:
apply <f0, f1,. . ., fp−1> <x0, x1,. . ., xp−1> computes
<f0x0, f1x1,. . ., fp−1xp−1>.

Finally, put is the synchronous (communicating) parallel transformer:
put <g0, g1,. . ., gp−1> computes a parallel vector of functions that con-
tain the transported messages that were specified by the gi. The input
local functions are used to specify the outgoing messages thus: gi j is
the value that processor i wishes to send to processor j. The result of
applying put is a parallel vector of functions dual to the gi: they specify
which value was received from a given distant processor.

The execution of mkpar is purely local and so is the execution of the
apply primitive. The execution of proj uses an all-to-all communica-
tion and the execution of put is a general BSP communication (any
processor-processor relation can be implemented with it). Experience
with BSML for more than a decade has shown that proj is much easier
to use than put , that proj can be used to program a large subset of all
parallel functions, but that algorithms such as sample-sort cannot be im-

3.2 high-level parallel models 53

plemented without put . Chapter 6 will propose elements of a solution
to this dilemma based on the correspondence mkpar = scatter , and proj
= gather for a flat BSP machine.

• Google Pregel [MAB+10] inspired by the BSP model is a platform for
large-scale graph processing. It provides a fault-tolerant framework for
the execution of graph algorithms in parallel over many machines. Pro-
grams are expressed in Pregel as a sequence of iterations (superstep).
In each iteration, a vertex can, independently of other vertices, receive
messages sent to it in the previous iteration, send messages to other
vertices, modify its own and its outgoing edges states, and mutate the
graph’s topology. "Thinking like a vertex" is the essence of programming
in Pregel.

• Apache Hama18 is a pure BSP computing open-source framework on
top of Hadoop Distributed File System (HDFS) for massive scientific
computations such as matrix, graph and network algorithms. Hama ar-
chitecture is similar to Hadoop19 architecture, except in the portion of
communication and synchronization mechanisms. It consists of three
major components:

– BSPMaster, used for maintaining groom server status, supersteps
and other counters in a cluster, and job progress information; sche-
duling jobs and assigning tasks to groom servers; distributing ex-
ecution classes and configuration across groom servers; providing
users with the cluster control interface (web and console based).

– GroomServer, is a process that launches BSP tasks assigned by BSP-
Master.

– ZooKeeper20, used to manage the efficient barrier synchronization
of the BSPPeers.

Many BSP algorithms have been developed and are widely applied [Tis99,
Bis95]. The BSP model has been used with success in a wide variety of prob-
lems such as scientific computing [Ger93, BM94, DM02, HB99], parallel data-
structure [LGG97, LG02], genetic algorithms and programming [DK96b, DK96a],
neural network [RS98], etc.

18 Apache Hama. http://hama.apache.org/
19 Apache Hadoop. http://hadoop.apache.org/
20 Apache ZooKeeper. http://zookeeper.apache.org/

http://hama.apache.org/
http://hadoop.apache.org/
http://zookeeper.apache.org/

54 parallel programming models

The BSP model enforces a strict separation of communication and com-
putation: during a superstep, no communication between the processors is
allowed, only at the synchronisation barrier they are able to exchange infor-
mation. This execution policy has two main advantages: first, it guarantees the
absence of deadlocks and allows its implementation remove non-determinism;
second, it allows for an accurate model of performance prediction based on
the throughput and latency of the interconnection network, and on the speed
of processors. This performance prediction model can even be used online to
dynamically make decisions, for instance choose whether to communicate in
order to re-balance data or to continue an unbalanced computation.

The BSP model greatly facilitates debugging. The computations going on
during a superstep are completely independent and thus can be debugged
independently. Moreover, it is easy to measure during the execution of a BSP
program, the time spent to communicate and to synchronise by just adding
chronometers before and after the primitive of synchronisation.

3.2.2.3 Extensions of the BSP Model

BSP has been extended by many authors to address concerns about BSP’s un-
suitability for modelling specific architectures or computational paradigms.

The E-BSP [BFMR96] extends the basic BSP model to deal with unbalanced
communication patterns. i. e., patterns in which the amount of data sent or
received by each node is different. The cost function supplied by E-BSP is
a non-linear function that strongly depends on the network topology. The
model essentially differentiates between communication patterns that are in-
sensitive to the bisection bandwidth and those that are not.

The Decomposable-BSP model (D-BSP) [TK96] extends the BSP model by
introducing the possibility of sub-machine synchronizations. A D-BSP com-
puter is basically a BSP computer where the synchronization device allows
subgroup of processors to synchronize independently. The D-BSP remembers
the HPRAM [HR92] and CLUMPS [CT94] models in which the costs are ex-
pressed in terms of BSP supersteps. In this framework network locality can be
exploited assuming that sub-machines parameters are a decreasing function
of the diameter of the subset of processors involved in communication and
synchronization.

3.2 high-level parallel models 55

The EM-BSP model [DDH97] includes secondary local memories. In this
model, each processor has, in addition to its main memory, an external mem-
ory formed of a set of disks. The model is restricted to the case where all
processors have the same number of disks because it is mostly the case in
practice. Each disk drive consists of a sequence of tracks. The tracks can be
accessed by direct random access using their unique track number. Each pro-
cessor can use all of its disk drives concurrently.

The H-BSP model [CL01] adds a hierarchical concept to the BSP model. An
H-BSP program consists of a number of BSP groups which are dynamically
created at run time and executed in a hierarchical fashion. H-BSP provides
a group-based programming paradigm and supports Divide & Conquer algo-
rithms efficiently.

The Bulk-Synchronous Parallel Random Access Machine (BSPRAM) [Tis98]
reconciles shared-memory style programming with BSP’s efficient exploita-
tion of data locality (Figure 24). In this model, BSP communication network
is replaced by a global shared main memory. Different from BSP, a BSPRAM
superstep consists of an input phase, a local computation phase, and an output

phase (Figure 25).

Proc0 Proc1 Proc2 Procp−1

Main Memory

b b b

Mem Mem Mem Mem

Figure 24: A BSPRAM computer

Figure 25: A BSPRAM computation [Tis98]

56 parallel programming models

The original goal of Multi-BSP model [Val11] is capturing the most basic
resource parameters of multi-core architectures. It is a multi-level model that
has explicit parameters for processor numbers, memory/cache sizes, com-
munication costs, and synchronization costs. The lowest level corresponds to
shared memory or the PRAM, acknowledging the relevance of that model for
whatever limitations on memory and processor numbers it may be efficient
to emulate it.

The Multi-BSP model extends BSP in two ways. First, it is a hierarchical
model, with an arbitrary number of levels. It recognizes the physical realities
of multiple memory and cache levels both within single chips as well as in
multi-chip architectures. The aim is to model all levels of an architecture to-
gether, even possibly for whole datacenters. Second, at each level, Multi-BSP
incorporates memory size as a further parameter. After all, it is the physical
limitation on the amount of memory that can be accessed in a fixed interval
of time from the physical location of a processor that creates the need for
multiple levels.

Figure 26: Schematic diagram of a Multi-BSP level i component [Val11]

An instance of a Multi-BSP is a tree structure of nested components where
the lowest level or leaf components are processors and each other level con-

3.2 high-level parallel models 57

tains some storage capacity. The model does not distinguish memory from
cache as such, but does assume certain properties of it.

The performance of a Multi-BSP computer can be described with parameter
d, the depth or number of levels, and 4d further parameters (p1,g1,L1,m1)

(p2,g2,L2,m2)(p3,g3,L3,m3) . . . (pd,gd,Ld,md). At the ith level there are a
number of components specified by the parameters (pi,gi,Li,mi)) each com-
ponent containing a number of i− 1st level components as illustrated in Fig-
ure 26.

3.2.3 Other Parallel Models

A large number of parallel computation models has been developed. We re-
view here the three most representative ones: LogP, which is equivalent to BSP
from an asymptotic point of view, but has a more sophisticated communica-
tion design; Cilk, which takes care of the load balancing, synchronization and
communication by its runtime system, may handle the divide-and-conquer
algorithms that the flat nature of BSP is not easily reconciled with; and Al-
gorithmic skeletons, which have a higher level than the previous ones, for
deterministic and deadlock-free parallel programming.

3.2.3.1 The LogP Model

LogP [CKP+93] is a distributed memory multiprocessor model where proces-
sors communicate by point-to-point messages. The model parameters are:

• L: an upper bound on the latency incurred in communicating a message
containing a word (or small number of words) from its source module
to its target module.

• o: the processor time overhead required to transmit or receive a message,
during which the processor cannot perform other operations.

• g: the gap, defined as the minimum time interval between consecutive
message transmissions or consecutive message receptions at a processor.
1
g corresponds to the available per-processor communication bandwidth.

• P: the number of processor/memory couples.

58 parallel programming models

The term L, o and g parameters are measured as multiples of the processor
cycle. In the LogP model, processors work asynchronously and at most ⌈Lg⌉
messages can be in transit, on the network, at any time. In the LogP model,
sending a small message (a datum) from one processor to another requires
a time of L + 2 × o. Sending a long message formed of k bytes, by point-
to-point messages, requires sending ⌈ kw⌉ in 2× o+ (⌈ kw⌉− 1)×max{g,o}+ L

cycles, where w is the underlying message size of the machine.

The LogP model deals only with short messages. So, an extension of this
model, named LogGP was described in [AISS95] to model small and long
messages communication. LogGP extends LogP model where a G parameter
is added. This parameter captures the bandwidth obtained for long messages
and 1

G represents the available per processor communication bandwidth for
long messages. Thus, sending a k byte message, in the LogGP model, requires
2× o + (k − 1)× G + L. Other LogP extensions, such as [LZE97], were also
presented in the literature for the same goal.

BSP can be efficiently simulated by LogP and vice-versa. However, Bilardi et
al. [BHP+96] claim that BSP is somewhat preferable to LogP due to its greater
simplicity and portability. However, it was shown in [BHP+96, ELZ98], that
from an asymptotic point of view, the two models are equivalent.

3.2.3.2 Divide and Conquer – Cilk

Divide and conquer is an algorithm design paradigm based on multi-branched
recursion. A divide and conquer algorithm works by recursively breaking
down a problem into two or more sub-problems of the same (or related) type,
until they become simple enough to be solved directly. The solutions to the
sub-problems are then combined to give a solution to the original problem.
Divide and conquer algorithms are naturally adapted for execution in multi-
processor machines, especially shared-memory systems where the communi-
cation of data between processors does not need to be planned in advance,
because distinct sub-problems can be executed on different processors.

Cilk21 [BJK+95] is a C-based runtime system for algorithmic multithreaded
programming developed at MIT. The philosophy behind Cilk is that a pro-
grammer should concentrate on structuring her or his program to expose

21 The Cilk Project. http://supertech.csail.mit.edu/cilk/

http://supertech.csail.mit.edu/cilk/

3.2 high-level parallel models 59

parallelism and exploit locality, leaving Cilk’s runtime system with the re-
sponsibility of scheduling the computation to run efficiently on a given plat-
form. The Cilk runtime system takes care of details such as load balancing,
synchronization, and communication protocols. Cilk is algorithmic in that the
runtime system guarantees efficient and predictable performance. With these
features, the Cilk system is very suitable for developing divide and conquer
algorithms.

The Cilk scheduler uses a policy called "work-stealing" to divide procedure
execution efficiently among multiple processors. Each processor has a stack
for storing frames whose execution has been suspended; the stacks are more
like deques, in that suspended states can be removed from either end. A pro-
cessor can only remove states from its own stack from the same end that it
puts them on; any processor which is not currently working (having finished
its own work, or not yet having been assigned any) will pick another pro-
cessor at random, through the scheduler, and try to "steal" work from the
opposite end of their stack — suspended states, which the stealing processor
can then begin to execute. The states which get stolen are the states that the
processor stolen from would get around to executing last.

1 cilk int fib (int n)

{

3 if (n < 2) return n;

else

5 {

int x, y;

7

x = spawn fib (n-1);

9 y = spawn fib (n-2);

11 sync;

13 return (x+y);

}

15 }
✆

Listing 4: A recursive implementation of the Fibonacci function in Cilk

Divide-and-conquer algorithms can be easily parallelized in Cilk. Listing 4

shows a recursive implementation of the Fibonacci function in Cilk. The spawn

60 parallel programming models

keyword indicates that the called fib function can safely operate in parallel
with other executing code. And the sync keyword indicates that execution
of the current procedure cannot proceed until all previously spawned proce-
dures have completed and returned their results to the parent frame.

3.2.3.3 Algorithmic skeletons & MapReduce

Algorithmic skeletons22 are a high-level parallel programming model for par-
allel and distributed computing. M. Cole [Col89] and H. Kuchen have devel-
oped the paradigm of algorithmic skeletons for deterministic and deadlock-
free parallel programming. Algorithmic skeletons take advantage of common
programming patterns to hide the complexity of parallel and distributed ap-
plications. Skeletons are akin to design patterns for parallel execution.

Table 3 defines the functional semantics of a set of data-parallel skeletons
[Col04a, Alt07]. It can also be seen as a naive sequential implementation using
lists. The skeletons work as follow:

repl xn = [x, . . . , x]

map f [x1, . . . , xn] = [(f x1), . . . , (f xn)]

mapidx g [x1, . . . , xn] = [(g 1 x1), . . . , (gnxn)]

zip ⊕ [x1, . . . , xn] [y1, . . . ,yn] = [x1 ⊕ y1, . . . , xn ⊕ yn]

reduce ⊕ [x1, . . . , xn] = x1 ⊕ · · · ⊕ xn

scan ⊕ [x1, . . . , xn] = [x1, (x1 ⊕ x2), · · · , ((x1 ⊕ x2) · · · ⊕ xn)]

Table 3: Simple data-parallel skeletons

• Skeleton repl creates a new list containing n times element x. Here we
speak of lists for the specification but parallel implementations would
use more efficient data-structures as arrays (e. g., in BSML) or a stream
(e. g., in a client/server or grid environment) since the size of the lists
remain constant.

• The map, mapidx and zip skeletons are equivalent to the classical Single-

Program-Multiple-Data (SPMD) style of parallel programming, where a

22 Skeletal Parallelism homepage. http://homepages.inf.ed.ac.uk/mic/Skeletons/

http://homepages.inf.ed.ac.uk/mic/Skeletons/

3.2 high-level parallel models 61

single program f is applied on different data in parallel. Parallel execu-
tion is obtained by assigning a share of the input list to each available
processor.

• reduce is an elementary data-parallel skeleton: the function reduce ⊕ e l

computes the "sum" of all elements in a list l, using the associative bi-
nary operator ⊕ and its identity e. Reduction has traditionally been very
popular in parallel programming and is provided as the collective oper-
ation MPI_Reduce in the MPI standard. Note that the binary operator ⊕
may itself be time-consuming. To parallelize the reduce skeleton, the in-
put list is divided into sub-lists that are assigned to each processor. The
processors compute the ⊕-reductions of their elements locally in paral-
lel, and the local results are then combined either on a single processor
or using a tree-like pattern of computation and communication, making
use of associativity in the binary operator.

• The scan skeleton is similar to reduce (and is provided as the collec-
tive operation MPI_Scan), but rather than the single "sum" produced by
reduce, scan computes the partial (prefix) sums for all list elements. Par-
allel implementation is done as for reduce.

Google’s MapReduce [DG08] is a simplified version of algorithmic skele-
tons (only two of them: map and reduce) for processing large data sets. MapRe-
duce is typically used to do distributed computing on clusters of computers.
MapReduce provides regular programmers the ability to produce parallel dis-
tributed programs much more easily, by requiring them to write only simple
Map and Reduce functions which focus on the logic of the specific problem
at hand, while the MapReduce System automatically takes care of marshalling
the distributed servers, running the various tasks in parallel, managing all
communications and data transfers between the various parts of the system,
providing for redundancy and failures, and overall management of the whole
process.

Dean and Ghemawat stated that they have inspired their MapReduce model
by Lisp and other functional languages. Users must implement two functions
Map and Reduce having the following signatures :

map : (k1, v1) −→ list(k2, v2),
reduce : (k2, list(v2)) −→ list(v3).

62 parallel programming models

In Map, the master node takes the input, divides it into smaller sub-problems,
and distributes them to worker nodes. A worker node may do this again in
turn, leading to a multi-level tree structure. The worker node processes the
smaller problem and passes the answer back to its master node. The map

function must be written with two input variables, a key k1 and an associated
value v1. Its output is a list of intermediate key/value pairs (k2, v2). This list is
partitioned by the Map-Reduce library depending on the values of k2, where
all pairs having the same value of k2 belong to the same group.

In Reduce, the master node then collects the answers of all the sub-problems
and combines them in some way to form the output — the answer to the prob-
lem it was originally trying to solve. The reduce function must be written with
two input parameters: an intermediate key k2 and a list of intermediate values
list(v2) associated with k2. It applies the user-defined merge logic on list(v2)

and outputs a list of values list(v3).

A MapReduce computation can be refined as 5 phases:

1. Prepare the Map input: the MapReduce system designates Map proces-
sors, assigns the K1 input key value each processor would work on, and
provides that processor with all the input data associated with that key
value.

2. Run the user-provided Map code: Map is run exactly once for each K1

key value, generating output organized by key values K2.

3. "Shuffle" the Map output to the Reduce processors: the MapReduce
system designates Reduce processors, assigns the K2 key value each
processor would work on, and provides that processor with all the Map-
generated data associated with that key value.

4. Run the user-provided Reduce code: Reduce is run exactly once for
each K2 key value produced by the Map step.

5. Produce the final output: the MapReduce system collects all the Reduce
output, and sorts it by K2 to produce the final outcome.

MapReduce has been written in many programming languages. Apache
Hadoop23 is a popular open-source implementation.

Many parallel programming models have been proposed today — for exam-
ple, the multi-threaded concurrent programming is easy to use, but it can be

23 Apache Hadoop. http://hadoop.apache.org/

http://hadoop.apache.org/

3.2 high-level parallel models 63

applied only on shared-memory architectures; the message-passage approach
handles the distributed-memory architectures, but the management of com-
munication is not an easy job; actor models provide patterns for the commu-
nication, but its application is too hard to optimise without any algorithm-
machine bridging; the BSP bridging model links software and hardware, of-
fers a sequential view of a parallel program with supersteps, simplifies al-
gorithm design and analyse with the barrier, but more and more nowadays
parallel computers are not developed in BSP-proposed flat structure but in a
hierarchical architecture; MapReduce simplifies large data set processing on
distributed cluster with implicit communication, but how it handles a com-
plex algorithm with a good performance, is still a question. A new simple and
realistic parallel programming model should be proposed. The next chapters
introduce our programming and execution models for SGL, and motivate its
suitability as a successor for existing BSP programming libraries/languages.

4
A N E W S I M P L E B R I D G I N G M O D E L

4.1 Motivation . 66

4.2 The SGL Model . 70

4.2.1 The Abstract Machine . 71

4.2.2 Execution Model . 72

4.2.3 Cost Model . 74

4.3 Case study: Modelling Parallel Computers 77

4.3.1 Modelling Multi-core Computers 77

4.3.2 Modelling Hierarchical Clusters 80

4.3.3 Modelling Heterogeneous Computers 82

We introduce, in this chapter, our Scatter-Gather parallel-programming and
parallel execution model in the form of a simple imperative Scatter-Gather
Language (SGL) [LH12a, LH11b]. Its design is based on past experience with
Bulk Synchronous Parallel (BSP) programming and BSP language design [Val90,
HMS+98, BJOR99, YBRM13, LGB05] (c. f., Section 3.2.2.2). SGL’s novel features
are motivated by the last decade move towards multi-level and heterogeneous
parallel architectures (c. f., Section 2.2.1 and Section 2.3.2) involving multi-
core processors, graphics accelerators and hierarchical routing networks in
the largest multiprocessing systems. The design of SGL is coherent with L.
Valiant’s multi-BSP [Val11] (c. f., Section 3.2.2.3) while offering a program-
ming interface that is even simpler than the primitives of bulk-synchronous
parallel ML (BSML) [LGB05]. SGL appears to cover a large subset of all BSP
algorithms [Tis99] while avoiding complex message-passing programming.

65

66 a new simple bridging model

Like all BSP-inspired systems [HMS+98, BJOR99, YBRM13, LGB05, MAB+10],
it supports predictable, portable, and scalable performance. Moreover, SGL’s
explicit data distribution allows automatic or programmable load-balancing.

4.1 motivation

Parallel programming and data-parallel algorithms have been the main tech-
niques supporting high-performance computing for many decades. Like all
non-functional properties of software, the conversion of computing resources
into scalable and predictable performance involves a delicate balance of ab-
straction and automation with semantic precision.

From a programming point of view, paper [Adv09] gives a perspective on
the collective work spanning for approximately 30 years. It shows how dif-
ficult it is to formalize the seemingly simple and fundamental property of
"what value a read should return in a multi-threaded program". Safe lan-
guages must be given semantics that computer science graduates and devel-
opers can understand with a reasonable effort. The author of this survey be-
lieves that we need to rethink higher-level disciplines that make it much eas-
ier to write parallel programs and that can be enforced by our languages and
systems. As we move toward more disciplined programming models, there is
also a new opportunity for a hardware/software co-designed approach that
rethinks the hardware/software interface and the hardware implementations
of all concurrency mechanisms.

As the above remark highlights, multi-threaded semantics is far too com-
plex for realistic software development. Yet parallel execution is synonymous
with multiple processes or multi-threading, without which there can be no
parallel speedup. So how should programmers avoid the complexity of multi-
threaded programming and yet expect scalable performance? Part of the an-
swer comes from the observation that the vast majority of parallel algorithms
are deterministic. Along this line of reasoning, researchers such as M. Cole
[Col89] and H. Kuchen [SK93, BK96] have developed the paradigm of algorith-

mic skeletons for deterministic and deadlock-free parallel programming. Skele-
tons are akin to design patterns for parallel execution. A large body of pro-
gramming research literature supports the view that most if not all parallel
application software should be based on families of algorithmic skeletons.

4.1 motivation 67

A deterministic and high-level parallel programming interface is indeed a
major improvement over explicit message passing(c. f., Section 3.1.2). But the
diminished expressive power of skeletons is not only an advantage. Unlike se-
quential equivalents, skeletons are not libraries in the classical sense because
their host language (e. g., C) is necessarily less expressive than the language
in which they are written (e. g., C+MPI). This is due to the lack of a base lan-
guage that is not just Turing-complete but complete for parallel algorithms, a
notion that has not even been well defined yet. As a result there is no fixed
notion of a set of skeleton primitives but instead the message-passing primi-
tives used to implement them. That feature of skeleton languages is similar to
that of a language with automatic memory management: if the only concern
is time complexity then a simpler automatic-memory language is sufficient to
implement it; but if space complexity is to be explicit, then it is necessary to
use an explicit-memory allocation language to implement the original one.

These remarks gave rise to our notion of explicit processes: without an ex-
plicit notion of the number of physical parallel processes, parallel speedup is
not part of programming semantics. A language that is expected to express
parallel algorithms must express not only a function from computation events
to physical units (this function may not be injective), but also the inverse. In
[HF93] G. Hains and C. Foisy introduced this notion of explicit processes
through a deterministic parallel dialect of ML called DPML: the program’s se-
mantics is parametrized on the number of physical processes and their local
indexes (processor ID’s as they are often called). We conclude that DPML can
serve as implementation language for skeletons, yet it remains a deterministic
language.

Meanwhile, a major conceptual step was taken by L. Valiant [Val90] who
introduced his Bulk-Synchronous Parallel (BSP) model (c. f., Section 3.2.2.2).
Inspired by the complexity theory of PRAM model (c. f., Section 3.2.2.1) of
parallel computers, Valiant proposed that parallel algorithms can be designed
and measured by taking into account not only the classical balance between
time and parallel space (hence the number of processors) but also commu-
nication and synchronization. A BSP computation is a sequence of so-called
supersteps. Each superstep combines asynchronous local computation with
point-to-point communications that are coordinated by a global synchroniza-
tion to ensure coherence and deadlock-freedom. The resulting performance
model is both realistic and tractable so that researchers such as McColl et al.
[MW98] were able to define BSP versions of all important PRAM algorithms,

68 a new simple bridging model

implement them and verify their portable and scalable performances as pre-
dicted by the model. BSP is thus a bridging model relating parallel algorithms
to hardware architectures.

From the mid-1990’s, it became clear that BSP is the model of choice for
implementing algorithmic skeletons: its view of the parallel system included
explicit processes and added a small set of network performance parameters
to allow predictable performance. Our earlier language design DPML was still
too flexible to be restrained to the class of BSP executions. G. Hains et al. then
designed BS-lambda [LHF00] as a minimal model of computation with BSP
operations. BS-lambda became the basis for Bulk-Synchronous ML (BSML)
[Lou00] a variant of CAML under development by F. Loulergue et al. since
2000. BSML improves on DPML by offering a purely functional semantics,
and much simplified programming interface of only four operations: mkpar
to construct parallel vectors indexed by processors, proj to map them back to
lists/arrays, apply to generate asynchronous parallel computation and put to
generate communication and global synchronization from a two-dimensional
processor-processor pairing. As a result, parallel performance mathematically
follows from program semantics and the BSP parameters of the host architec-
ture.

While BSML was evolving and practical experience with BSP algorithms
was accumulating, one of its basic assumptions about parallel hardware was
changing. The flat view of a parallel machine as a set of communicating se-
quential machines remains true but is more and more incomplete. Recent
supercomputers (c. f., Section 2.2.1) like Blue Gene/L [ABB+03], Blue Gene/P
[sD08], and Blue Gene/Q [HOF+12] feature multi-processors on one card,
multi-core processors on one chip, multiple-rack clusters etc. The Cell/B.E.
[KDH+05, JB07], Cell-based RoadRunner [BDH+08] and GPU’s feature a CPU
with Master-Worker architecture (c. f., Section 2.3). Moreover, [KTJR05] ob-
serves that heterogeneous chip multiprocessors present unique opportunities
for improving system throughput and reducing processor consumption. The
trend towards green-computing puts even more pressure on the optimal use
of architectures that are not only highly scalable but hierarchical and non-
homogeneous.

Towards the middle of the 2000’s decade it was obvious that models such
as BSP should be adapted or generalized to the new variety of architectures.
Yet, programming simplicity and performance portability should be retained

4.1 motivation 69

as much as possible. With these goals in mind, Valiant introduced Multi-
BSP [Val11] (c. f., Section 3.2.2.3) a multi-level variant of the BSP model and
showed how to design scalable and predictable algorithms for it. The main
new feature of Multi-BSP is its hierarchical nature with nested levels that cor-
respond to physical architectures’ natural layers. In that sense it preserves the
notion of explicit processes and, as we will show in this section with our SGL
design, allows to solve three pending problems with BSP programming:

1. The flat nature of BSP is not easily reconciled with divide-and-conquer
parallelism [Hai98], yet many parallel algorithms (e. g., Strassen matrix
multiplication, quad-tree methods etc.) are highly artificial to program
any other way than recursively.

2. BSP was designed natively to scale with the number of processors, and
it was assumed the clock speeds of CPU would continue to improve.
However, there are barriers to further significant improvements in oper-
ating frequency due to voltage leakage across internal chip components
and heat dissipation limits [SMD+10]. The parallelism is thus used to
scale up nowadays computing power using multi-threaded cores, multi-
core CPUs, Cell processor, GP-GPU, etc. We do not know how to design
algorithms for nested level systems with BSP model. The hierarchical
architectures share communication resources inside every level but not
between different levels. The BSP cost model is not suitable for these
kinds of architectures.

3. After teaching BSML programming at Universitié Paris-Est Créteil, we
observed that many postgraduate1 students can master the constructor
mkpar, destructor proj, and asynchronous parallel apply while having
much trouble with the general communication primitive put.

Based on all the above developments and the last three observations, we
will now define the SGL model which realizes a programming model for
Multi-BSP, generalizes it to heterogeneous systems and yet simplifies the
BSML primitives to a set of three. SGL assumes a tree-structured machine
and uses only the following parallel primitives:

scatter to send data from master to workers,

pardo to request asynchronous computations from the workers, and

1 French Master 1, fourth year higher education after Baccalauréat.

70 a new simple bridging model

gather to collect data back to the master.

We show how to embed this model in an imperative language, how to define
its operational semantics, its performance model, how to use it to code useful
algorithms (reduce, parallel scan and parallel sort) and provide some initial
measurements to validate its performance model.

4.2 the sgl model

The PRAM model [FW78] of parallel computation begins with a set of p se-
quential Von-Neumann machines (processors). It then connects them with a
shared memory and an implicit global controller (as in a SIMD architecture).
The BSP model [Val90] relaxes the global control and direct memory access
hypotheses. It also begins with a set of p sequential machines but assumes
asynchronous execution except for global synchronisation barriers and point-
to-point communications that complete between two successive barriers. It
is common to assume that the PRAM/BSP processors are identical, but it is
relatively easy to adapt algorithms to a set of heterogeneous processors with
varied processing speeds. In both cases the set of processors has no structure
other than its numbering from 0 to p − 1. This absence of structure on the
set of processors can be traced back to the failure of a trend of popular re-
search in the 1980s: algorithms for specific interconnect topologies such as
hypercube algorithms, systolic algorithms, rectangular grid algorithms, etc.
We trace this failure to the excessive variety of algorithms and architectures
without a model to bridge the portability gap between algorithms and parallel
machines.

The SGL model we propose does introduce a degree of topology on the
set of processors. But this topology is purely hierarchical and is not intended
to become an explicit factor of algorithm diversity. Just as PRAM/BSP algo-
rithms use the p parameter to adapt to systems of all sizes, our SGL algo-
rithms use the machine parameters to adapt to all possible systems.

4.2 the sgl model 71

4.2.1 The Abstract Machine

The abstract machine or an SGL Computer (SGLC) is defined as the combina-
tion of three attributes (Figure 27):

1. A set of workers, which are sequential processors composed of a compu-
tation element ("computing core") and local memory unit. The workers

provide the primary computing power.

2. A set of masters, which are also sequential processors composed of
a coordination element ("coordinating core") and central memory unit
whose data is accessible by its own children via the coordinating core,
i. e., the coordinating core can scatter (resp. gather) message to (resp.
from) its children. The masters limit the communication cost.

3. A tree structure that the root is a master and the master’s children may be
either masters themselves or leaf-workers. The number of children is un-
bounded so that the BSP/PRAM concept of a flat p-vector of processors
is easily simulated in SGL. The tree structure offers a vertical scalability
to SGLC that the BSP concept can scale only horizontally the number of
processors.

Figure 27: A 2-level SGL computer

Different forms of a SGLC are possible:

• A sequential machine can be modelled as only one worker without mas-
ter.

72 a new simple bridging model

• A flat parallel machine, or a BSP computer, can be modelled as a 1-level
SGL computer (master + workers).

• A hierarchical machine of any shape can be modelled as a multi-level
SGL computer (Figure 28).

Figure 28: A multi-level SGL computer

The logical structure of an SGL computer satisfies the following constraints:

• A system shall have one and only one root-master (a rooted tree).

• A master coordinates its children through communication.

• A worker shall be controlled by one and only one master (masters can be
replicated by underlying libraries for fault-tolerance).

• Communication is always between a master and its children.

Alexandre Tiskin has shown in his BSPRAM paper [Tis98] that communica-
tion through a higher-level memory (master node in our case) can be simulated
by a horizontal inter-node direct communication as in the BSP model.

4.2.2 Execution Model

An SGL program execution is a sequence of supersteps (Figure 29). The initial
computing data and final result can be either distributed in workers or cen-
tralised in the root-master. Each superstep is composed of four phases:

1. A scatter communication phase initiated by the master. The master scat-
ters data to its children if the data is not yet distributed, then it engages
its children to start the second phase.

4.2 the sgl model 73

2. An asynchronous computation phase performed by the children. The
children execute the task initialized by their master in the first phase.
A child can be either a master or a worker. The workers accomplish its
master’s task; and the child-master can start a sequence of supersteps with
its own children nested in this child computation phase so-called sub-

supersteps.

3. A gather communication phase centred on the master. The master syn-
chronizes its children’s task of the second phase, then gathers the com-
putation results from its children if necessary.

4. A local computation phase on the master. The master post-processes the
gathered data of the third phase and terminates the superstep.

Figure 29: A 2-level SGL computation

With these four phases, we can usually write an SGL program recursively:

The choice of using (or not) children in the recursive program depends on
performance parameters that combine (known) parameters of: communica-
tion costs, synchronization costs, computation costs, and load balancing.

74 a new simple bridging model

if node is a master and its children are to be used then
split input data into blocks;
scatter data blocks;
compute on individual data blocks in children (parallel);
gather children’s results;
compute children results in master (if necessary);

else
compute on local data on node;

end if

4.2.3 Cost Model

Like all such models, SGL’s main goal of expressing parallel algorithms re-
quires a precise notion of the execution time for a program. We give here the
mathematical form of this cost model with the understanding that a full defi-
nition should be based on the operational semantics and will be defined in a
further document. The cost equations below are nevertheless sufficient for in-
formal algorithm design/understanding and comparison with other parallel
models.

The cost of an SGL algorithm (i. e., of its execution on given input data) is
the sum of the costs of its supersteps. That follows from the understanding
that supersteps execute sequentially. The cost of an individual superstep if
split into two independent terms: computation cost and communication cost.

Costtotal =
∑

Costsupstep

Costsupstep = Comptotal +Commtotal

Computation cost is the sum of local computation times in the children (par-
allel, hence combined with max) and of the local computation in the master.
Addition of both terms realizes the hypothesis that the master’s local work
may not overlap with the children’s work. Communication cost is split into
the time for performing the scatter and the gather operation.

4.2 the sgl model 75

Costsuperstep = Commscat + max
i=children

{Compi}+Commgath +Compmaster

Commscatter = Wordsscat ×Bandwidthscat + Synchronization

Commgather = Wordsgath ×Bandwidthgath + Synchronization

Compmaster/child = Operations× 1

Speednode

Finally, communication costs are estimated by a linear term similar to BSP’s
g× h+ L, based on machine parameters for (the inverse of) bandwidth and
synchronization between the master and its children. As always, local compu-
tation cost is the number of instructions executed divided by processing speed.
The machine-dependent parameters can be made as abstract or concrete as
desired. In other words theoretical SGL algorithms can be investigated with
respect to their asymptotic complexity classes, while portable concrete SGL al-
gorithms can be analysed for more precise cost formulae using bytecode-like
instruction counts and normalized communication parameters, and finally
SGL programs can be compiled and measured for actual performance on a
given architecture.

We remind the reader that, like the machine architecture, all the above cost
formulae are intended to be recursive. The local computation cost on a child
node can itself be an SGL algorithm cost if the machine structure is such.

In contrast to multi-BSP [Val11], concrete cost estimations and measure-
ments use the following machine and algorithm parameters. Each level of a
hierarchy can have different parameter values.

Concrete cost estimates and measurements use the following parameters:

• Machine parameters:

– p : the number of children processors that a master has. We use P for
the total number of leaf-workers of a machine.

– c : computation speed of processors, c0 denotes the time interval
for performing a unit of work on the master and ci(i=1..p) denotes
the time interval for performing a unit of work on children processor.
Parameter c without an index refers to a local quantity.

76 a new simple bridging model

– g : the gap, g↓ defined as the minimum time interval for transmit-
ting one word from master to its children, and g↑ for children to its
master. We use a single g in case of symmetric communication cost.

– l : the latency to perform a gather communication synchronization.
i. e., the time to execute a 1-bit gather. Since a scatter communication
should be initialized by the master, synchronisation is not necessary
for scatter phase. We use L for the total cost of all-level synchronisa-
tions of one global superstep.

• Algorithm parameters:

– w : work or number of local operations performed by processors,
w0 denotes the master’s work and wi(i=1..p) denote the work of a
child i. A parameter w without an index refers to a local quantity.

– k : number of words to transmit, k↓ denotes number of words that
master scatter to its children, and k↑ denotes number of words that
master gather from its children.

In general, the cost formulae are:

CostMaster =

computation
︷ ︸︸ ︷

max
i=1..p

{Costchildi}+w0 × c0+

communication
︷ ︸︸ ︷

k↓ × g↓ + k↑ × g↑ + l

CostWorker = wi × ci

which clearly covers the possibility of a heterogeneous architecture.

Typically, but not necessarily, we have symmetric communication costs:

Costsupstep = w× c+
[

max
i=1..p

{Costchdi}+ (k↓ + k↑)× g+ l
]

︸ ︷︷ ︸

=0, when it is a worker (leaf).

The SGL cost model is experimented with the SGL programming model
and its semantics in Chapter 5.

4.3 case study : modelling parallel computers 77

4.3 case study : modelling parallel computers

As advocated by L. Valiant [Val11], any bridging model should be faithful to
physical realities in terms of numerical parameters. Unlike BSP’s flat architec-
ture, SGL is hierarchical. It means, for modelling a physical machine, many
combinations are possible. We thus attempt to analyse in this section how to
link the SGL abstract machine to several typical parallel computers – from
small multi-core microcomputer to big supercomputer cluster and grid.

4.3.1 Modelling Multi-core Computers

A multi-core computer is nowadays the most commonly used computer in
all the fields. Even a laptop or a smart phone has a multi-core CPU today. A
multi-core computer is typically a shared-memory architecture machine.

First of all, we try to model the simplest one, a mono-processor multi-core
parallel computer. As we presented in Section 2.3.1.1, the Xeon Harpertown
CPU used by Altix ICE 8200EX has four cores, each core has its own L1 cache,
but each two cores share one L2 cache, and all four cores share the main
memory. A parallel computer (Figure 30) using one Harpertown-based Xeon
quad-core CPU can be modelled either as an one-level SGL computer with
which we ignore the shared L2 cache, or a two-level SGL computer which
groups the shared-cache pair cores in level 1.

Figure 30: A multi-core computer with one Harpertown-based Xeon CPU

One of the advantages of one-level SGL computer is that it is equivalent to
the BSPRAM model (c. f., Section 3.2.2.3), and the BSP model can be simulated

78 a new simple bridging model

by BSPRAM efficiently [Tis98]. Many BSP algorithms such as ones presented
in [Tis99] can be implemented directly on one-level SGL computer. However,
the unified L2 Cache creates a memory affinity problem. The performance
decreases significantly because of the cache sharing.

A two-level SGL computer takes consideration of memory sharing2. Mean-
while, it distinguishes g1 for fetching data from L2 cache, and g2 for fetching
data from main memory. This separation may improve the communication
cost prediction precision for algorithm design when the data exchange hap-
pens between the shared cache cores. Furthermore, the synchronisation cost
l can be reduced from O(2p1+p2) to O(2p1 + 2p2) 3. Thus, it is possible to de-
sign a more optimised algorithm on the two-level SGL computer than on the
one-level one.

We then model the real Altix ICE 8200EX compute node, a multi-processor
multi-core parallel computer. A 8200EX compute node contains 2 Harpertown-
based Xeon quad-core CPUs that share the main memory (Figure 31).

Figure 31: A 8200EX compute node with two Harpertown-based Xeon CPUs

In this case, shall we create a three-level SGL computer for the additional
layer (CPU), or should keep the abstract machine in two-level? If the physical
machine is modelled in two-level, which physical layer shall be merged? Let’s
compare these propositions:

1. two-level SGL computer merged L1 cache and L1 cache layers: It means
the physical machine is modelled according its hardware coupling – the
machine contains 2 CPUs, each CPU contains 4 cores. The synchronisa-
tion cost l is O(2p1 + 2p2), where P1 = 4 and P2 = 2. However, the 4 cores

2 We do not distinguish memory and cache here.
3 Harpertown architecture has not hardware support for the synchronisation.

4.3 case study : modelling parallel computers 79

of one CPU do not share the same L2 cache, the communication cost g1
is thus the cost of fetching data from main memory. Since g1 is already
the total cost from lowest level to highest level, g2 shall be 0.

2. two-level SGL computer merged L2 cache and main memory layers:
The physical machine is modelled according the physical memory shar-
ing structure. The synchronisation cost l is O(2p1 + 2p2), where P1 = 2

and P2 = 4. The communication costs g1 and g2 can be modelled the
same way as we did for the one-Harpertown machine. We obtain thus
the same architecture as the one-Harpertown machine but why more
processors.

3. three-level SGL computer: This proposition takes account all layers. The
synchronisation cost l becomes O(2p1 + 2p2 + 2p3), where P1 = 2, P2 = 2

and P3 = 2; the communication costs g1 and g2 can be modelled as same
as we did for the one-Harpertown machine, and g3 shall be 0 because it
does not increase the communication cost here. Thus, the processors are
modelled in a binary-tree structure.

Proposition 1 is not practical, because it does not make known the real
structure of the physical connection. Proposition 2 corresponds to the real
physical connection of the machine. And Proposition 3 adds the CPU level
which does not change the cost analysis; but thanks to the 8200EX architecture,
it provides a binary-tree structure which can simplify algorithm design.

Programming with cache requires some special techniques. We measured
here the Altix ICE 8200EX compute node only as one-level SGL computer.
OpenMP’s barrier is used for measuring the synchronisation cost l, and the C
language’s function memcpy 4 for the communication cost g 5. Table 4 shows
that the synchronisation cost l increases significantly when the number of
cores increases. This confirms our claim that the cost of barrier for a large
system may be reduced by a hierarchical architecture.

Many modern CPUs such as Nehalem-EP architecture which has unified
L3 Cache shared by all four cores have this issue.

4 Here instead of transferring directly the pointers to data, we use memcpy() for replacing data
in different memory regions to avoid concurrent access between CPU cores.

5 g↓ and g↑ are symmetric here.

80 a new simple bridging model

of cores l (µs) g (ns/32b)

2 12.08 0.59

4 25.64 0.59

6 37.80 0.59

8 52.00 0.59

Table 4: 8200EX compute node core-level machine parameters

4.3.2 Modelling Hierarchical Clusters

A typical supercomputer is composed of many multi-core compute compo-
nents connected by a network in a distributed-memory architecture. Such a
system could contain many hierarchical levels: Compute Card – Node Card –
Rack – System, like IBM Blue Gene/L (c. f., Section 2.2.1.2); or Compute Node
– IRU – Rack – System, like SGI Altix ICE (c. f., Section 2.2.1.3). The network
is sometimes heterogeneous among different levels.

The EXQIM’s Altix ICE system is configured on a fat-tree topology (Fig-
ure 32): all 16 Compute Nodes in the same IRU interconnect via the 4X DDR
InfiniBand switches; all 2 IRUs in the same Rack interconnect via a "fatter"
network6; and we have only one Rack in this system. Thus, we need only one
more SGL level for modelling this network after 8200EX Compute Nodes. The
distributed-memory nature can be simulated to the shared-memory architec-
ture [Tis98].

Figure 32: A binary fat-tree topology

6 Here all 32 Compute Nodes interconnect between them

4.3 case study : modelling parallel computers 81

When we used the collective functions MPI_Barrier, MPI_Scatterv and
MPI_Gatherv of SGI’s Message Passing Toolkit (MPT) to measure l, g↓ and
g↑ for this level (Table 5) 7, we found that increasing the number of nodes
aggravates not only the synchronisation cost but also the communication cost
(Figure 33) in SGI MPT implementation. This approves again that the commu-
nication costs for a large system may be reduced by a hierarchical architecture;
and the distinction of g↓ and g↑ may be useful in some cases.

of procs nodes × cores l (µs) g↓ (ns/32b) g↑ (ns/32b)

2 = 2 × 1 1.48 1.38 2.15

4 = 4 × 1 2.85 1.69 2.00

8 = 8 × 1 4.37 1.89 2.05

16 = 16 × 1 5.96 2.04 2.09

32 = 16 × 2 7.62 2.14 2.09

64 = 16 × 4 7.93 2.63 2.11

96 = 16 × 6 8.81 2.88 2.13

128 = 16 × 8 9.89 3.01 2.77

Table 5: Altix ICE node-level machine parameters

Figure 33: Measurement of g↓ and g↑ on Altix ICE IRU

A geographically distributed computational grid is often a set of supercom-
puters. Grid5000 (c. f., Section 2.2.2.1), for example, used originally 1Gbit/s
the Ethernet Over MPLS (EoMPLS) solution for the inter-site connection; and

7 The last 4 lines in the table are only referential information.

82 a new simple bridging model

most of the sites use InfiniBand or Myrinet technologies for inter-node con-
nection (from 8 Gbit/s to faster than 100 Gbit/s). These characteristics require
again a SGL level for modelling. More generally, a grid can be roughly mod-
elled as a three-level SGL machine: the shared-memory multi-core compute
nodes as level 1; the distributed-memory LAN-interconnected computer clus-
ters as level 2; the distributed-memory WAN-interconnected grid system as
level 3.

4.3.3 Modelling Heterogeneous Computers

As we presented in Section 2.3.2, more and more parallel computers have not
only a hierarchical architecture, but also at the same time a heterogeneous
architecture. GPGPU is the most used component for heterogeneous comput-
ers.

Nvidia’s Fermi (c. f., Section 2.3.1.2) is the world’s first complete GPU com-
puting architecture [Gla09]. It contains 16 Streaming Multiprocessors (SMs)
sharing the GPU memory; each SM is composed of 32 CUDA cores sharing
uniform cache; each CUDA core can process multiple threads in parallel. A
parallel computer equipped with 2 Fermi GPUs (Figure 34) can be modelled
as a three-level SGL machine8:

• level 1: 32 CUDA cores communicated through the uniform cache;

• level 2: 16 SM processors communicated through the GPU memory;

• level 3: 2 GPUs communicated through the main memory.

IBM RoadRunner (c. f., Section 2.3.2.1) is one of the most sophistic hetero-
geneous supercomputers: the cluster is made up of 18 Connected Units (CU);
each CU is composed of 15 Racks; each Rack contains 4 BladeCenters; each
BladeCenter has 3 TriBlades; each TriBlade consists of 1 LS21 blade and 2

QS22 blades; each LS21 blade manages 2 dual-core Opteron CPUs; and each
QS22 blade controls 2 8-SPE Cell processors. The CUs, Racks, BladeCenters,
TriBlades are interconnected through InfiniBand (IB) switches; the LS21 and
QS22 blades of the same TriBlade are interconnected via PCIe or HyperTrans-
port links; each multi-core Opteron CPU or Cell processor has its own mem-
ory shared between the cores.

8 The CPU is used as controller of GPUs here.

4.3 case study : modelling parallel computers 83

Figure 34: A parallel computer equipped with 2 Fermi GPUs

We propose here a 4-level SGL machine for modelling the RoadRunner:

• Level 1: is the 8-SPE Cell processor in shared-memory architecture. 8

SPEs of each Cell processor are interconnected via EIB. All Cell proces-
sors can communicate other components through its PCIe link.

• Level 2: is the 4-Cell TriBlade in distributed-memory architecture inter-
connected via PCIe links. One core of Opteron CPU of the same TriBlade
is assigned to each CELL processor as the main controller, that to say 2

dual-core Opteron CPUs are assigned to 2 dual-CELL QS22 for each
Triblade. Each TriBlade is equipped with an expansion blade to send/re-
ceive to/from others via IB.

• Level 3: is the 180-TriBlade CU in distributed-memory architecture inter-
connected via 288-port Voltaire IB switches. Each CU is equipped with
a Panasas file system9.

• Level 4: is the 18-CU cluster in distributed-memory architecture inter-
connected through the second-stage IB switches.

We believe that the SGL computer can cover most of the modern paral-
lel computers. The synchronisation cost of SGL algorithms for a massively
parallel computer can be greatly reduced by its hierarchical structure. The
communication cost of SGL between different levels is more realistic than the

9 We do not distinguish memory and file system here.

84 a new simple bridging model

flat structure. The SGL cost model is experimented in next chapter with SGL
programming model and its operational semantics.

5
S G L P R O G R A M M I N G

5.1 Programming Model of SGL . 86

5.1.1 Language Syntax . 86

5.1.2 Environments . 88

5.1.3 Operational Semantics . 88

5.2 Parallel Skeletons Implementation 94

5.2.1 Implementing Basic Data-Parallel Skeletons 95

5.2.1.1 Parallel Reduce 95

5.2.1.2 Parallel Scan . 97

5.2.1.3 Parallel Sort . 100

5.2.2 Implementing Distributable Homomorphism 104

5.2.2.1 Program Examples using DH 104

5.2.2.2 Implementation of DH programs 107

5.2.3 Speedup and Efficiency 110

We propose in this chapter the programming model of SGL and several
skeleton implementations [LH12a, LGH12] to attempt to motivate and sup-
port the view that BSP’s advantages for parallel software can be enhanced
by the recursive hierarchical and heterogeneous machine structure of SGL,
while simplifying the programming interface even further by replacing point-
to-point messages with logically centralised communications. Our initial ex-
periments with language definition, programming and performance measure-
ment show that SGL combines clean semantics, simplified programming of
BSP-like algorithms and dependable performance measurement.

This chapter is organized as follow: in Section 5.1, we present the language
syntax, environment, and operational semantics; in Section 5.2, we experi-
ment the SGL language with reduce, scan, sort and DH skeletons.

85

86 sgl programming

5.1 programming model of sgl

Bougé advocated in his paper [Bou96], that an abstract computing model
needs an execution model, but also a programming model. Neither BSP [Val90]
nor Mutli-BSP [Val11] propose a language implementation, but only the exe-
cution models.

We thus enrich Winskel’s basic imperative language IMP [Win93] to yield
our deterministic parallel programming language – SGL.

5.1.1 Language Syntax

Values are integers, booleans and arrays (vectors) built from them. Vectors
of vectors are necessary for building blocks of work to be scattered among
workers.

• n ranges over numbers Nat

• < n1,n2, . . . nℓ > ranges over arrays of number Vec
Here ℓ denotes length of array and ℓ ∈ Nat

• < v1, v2, . . . vℓ > ranges over arrays of array VecVec

The scatter operation takes a vector of vectors in the master and distributes
it to workers/children. The gather operation inverts this process.

Imperative variables are abstractions of memory positions and are called
locations. They are many-sorted like the language’s values.

• X ranges over scalar locations NatLoc, i. e., names of memory elements
to store numbers. Here Xi=pid denotes master/children locations; X with-
out index denotes master location.

• −→V ranges over vectorial locations VecLoc, i. e., names of memory ele-
ments to store arrays. Here

−→
V i=pid denotes master/children locations;

−→
V

without index denotes master location.

5.1 programming model of sgl 87

• W̃ ranges over vectorial vectorial locations VVecLoc, i. e., names of mem-
ory elements to store arrays of arrays.

The basic operations are defined as follows:

• ⊙ denotes binary operations such as +, −, ×, /.

• [] denotes element access of a vector.

• := denotes data to be transferred between a master and its child (i. e., an
array of arrays).

Expressions are relatively standard with the convenience of scalar-to-vector
(sequential) operations.

• a ranges over scalar arithmetic expressions.
Aexp ::= n | X | a⊙ a |

−→
V [a]

• b ranges over scalar boolean expressions.
Bexp ::= true | false | a = a | a 6 a | ¬b | b∧ b | b∨ b

• v ranges over vectorial expressions
Vexp ::= < a1,a2, . . . aℓ > |

−→
V | v⊙ a | v⊙ v | W̃[a]

• w ranges over vectorial vectorial expressions.
VVexp ::= < v1, v2, ..vℓ > | W̃

The language’s commands include classical sequential constructs with SGL’s
three primitives: scatter, pardo and gather. Their exact meanings of parallel
statements are defined in the semantic rules below in Section 5.1.3.

• c ranges over primitive commands.
Com ::=

skip | X := a |
−→
V := v | W̃ := w | c ; c

| if b then c else c | for X from a to a do c

| scatter w to
−→
V | scatter v to X

| gather
−→
V to W̃ | gather X to

−→
V

| pardo c | if master then c else c

88 sgl programming

• Auxiliary commands.
Aux ::= numChd | len

−→
V | len W̃

5.1.2 Environments

States (or environments) are maps from imperative variables (locations) to
values of the corresponding sort. Like values they are many-sorted and we
use the following notations and definitions for them.

The functions in States Σ are defined as follow:

• σ : NatLoc→ Nat, thus σ(X) ∈ Nat

• σ : VecLoc→ Vec, thus σ(
−→
V) ∈ Vec

• σ : VVecLoc→ VecVec, thus σ(W̃) ∈ VecVec

Here Pos ∈ Nat is what we call the (relative) position:
Pos = 0 denotes master position (same as above), and Pos = i ∈ {1..p} denotes
position in ith child. It is the recursive analog of BSP’s (or MPI’s) pids.

• σ : NatLoc→ Pos→ Nat, thus σ(Xpos) = σpos(X) ∈ Nat

• σ : VecLoc→ Pos→ Vec, thus σ(
−→
V pos) = σpos(

−→
V) ∈ Vec

5.1.3 Operational Semantics

The semantics of vector expressions is standard and deserves no special ex-
planations.

• Construction:

∀i=1..ℓ〈ai, σ〉 → ni

〈< a1,a2, . . . aℓ >, σ〉 →< n1,n2, . . . nℓ >

A vector is constructed by enumerating all its elements: the elements’

5.1 programming model of sgl 89

expressions are evaluated one by one in a local environment, then the
evaluated values are assembled into a vector.

• Variable access:

〈−→V , σ〉 → σ(
−→
V), a value of the form < n1,n2, . . . nℓ >

The value of a variable is accessible from the local environment accord-
ing to its location.

• Vector variable access:

〈W̃, σ〉 → σ(W̃), a value of the form < v1, v2, . . . vℓ > 〈a, σ〉 → n

〈W̃[a], σ〉 → vn

To have the value of a element from a vector variable, we need to get the
location of the vector from the local environment, and the indexation
of the element evaluated from an expression in the same environment;
then the value of the element is accessible according to the location and
the indexation.

• Vector-scalar operation:

〈v, σ〉 →< n′1,n′2, . . . n′ℓ >

〈a, σ〉 → n
∀i=1...ℓ〈n′i ⊙n, σ〉 → ni

〈v⊙ a, σ〉 →< n1,n2, . . . nℓ >

A binary vector-scalar operation takes two operands: a vector and a
scalar. The result has the same length as the vector operand, and the
value of each result vector element is evaluated from operating the value
of vector operand’s element in the same indexation as the result vector
element and the scalar operand’s value.

• Vector-vector operation:

〈v1, σ〉 →< n′1,n′2, . . . n′ℓ >

〈v2, σ〉 →< n′′1 ,n′′2 , . . . n′′ℓ >
∀i=1...ℓ〈n′i ⊙n′′i , σ〉 → ni

〈v1 ⊙ v2, σ〉 →< n1,n2 . . . nℓ >

(Note: length of v1 and length of v2 shall be equal.)

90 sgl programming

A binary vector-vector operation takes two vector operands. These vec-
tor operands shall have the same length and the result has the same
length too. The value of each result vector element is evaluated from op-
erating the values of vector operands’ elements in the same indexation
as the result vector element.

Similarly for the rules of the other expressions.

Before defining the primitive commands, we define here some auxiliary
commands. The first one is relative to the SGL machine structure.

• 〈numChd, σ〉 → n

Return number of children that the processor has.

• 〈len
−→
V , σ〉 → n

Return the length of
−→
V .

• 〈len W̃, σ〉 → n

Return the length of W̃.

The primitive commands are defined as follow:

• Skip

〈skip, σ〉 → σ

A null statement which does nothing.

• Assignments

〈a, σ〉 → n

〈X := a, σ〉 → σ[n/X]

The expression a is evaluated in the environment σ, then the value is
stored in the location X.

5.1 programming model of sgl 91

〈v, σ〉 →< n1,n2, . . . nℓ >

〈−→V := v, σ〉 → σ[< n1,n2, . . . nℓ > /
−→
V]

The expression v is evaluated in the environment σ, then the value is
stored in the location V .

〈w, σ〉 →< v1, v2, . . . vℓ >

〈W̃ := w, σ〉 → σ[< v1, v2, . . . vℓ > /W̃]

Same as before, the expression w is evaluated in the environment σ, then
the value is stored in the location W.

• Sequencing

〈c1, σ〉 → σ′′ 〈c2, σ′′〉 → σ′

〈c1; c2, σ〉 → σ′

The command c1 is evaluated in the initial environment σ that gives us
a new environment σ′. After that, the command c2 is then evaluated in
this new environment σ′.

• Conditionals

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′

〈b, σ〉 → false 〈c2, σ〉 → σ′′

〈if b then c1 else c2, σ〉 → σ′′

The condition b is evaluated in the initial environment σ. If its value
is true, then the command c1 will be evaluated in the environment σ

that give us a new environment σ′; otherwise, the command c2 will be
evaluated in the initial environment σ that give us a new environment
σ′′.

92 sgl programming

• For-Loops

〈X := a1, σ〉 → σ′′
〈 if X 6 a2

then c; X := X+ 1; for X from X to a2 do c

else skip , σ′′

〉
→ σ′

〈for X from a1 to a2 do c, σ〉 → σ′

The scalar expressions a1 and a2 are evaluated in the initial environment
σ then the value of a1 is stored in the scalar location X that gives us a
new environment σ′′. After that, the value in the location X and the value
of a2 are compared: if the value in X is bigger than the value of a2, a
null statement skip will be executed; otherwise, the command c will be
evaluated in the environment σ′′, then the value in the location X will be
increased by 1, and a new for-loop statement (for X from X to a2 do c)
will be at the end evaluated.

• Scatters

〈v, σ〉 →< n1,n2, . . . np > ∀i=1..numChd〈Xi := ni, σ〉 → σ′i
〈scatter v to X, σ〉 → σ′

The vector expression v is evaluated in the master’s local environment
which is a part of the initial global environment σ to get the scalar value
of each element of v; and the length of v shall be the same as the num-
ber of children processors that the master has. After that, the scalar value
of each element of v is sent to a child’s environment that the position
of the child is the same as the indexation of the sending element of v.
We thus have a new global environment σ′ composed of all new local
environments of the master and its children. The communication cost of
this statement is (p words × g↓).

〈w, σ〉 →< v1, v2, . . . vp > ∀i=1..numChd〈
−→
V i := vi, σ〉 → σ′i

〈scatter w to
−→
V , σ〉 → σ′

Same as the statement (scatter v to X) but for scattering vectorial vecto-
rial expression. The communication cost of this statement is (

∑
number

of words of v × g↓).

5.1 programming model of sgl 93

• Gathers

〈−→V :=< X1,X2, . . . XnumChd >, σ〉 → σ′

〈gather X to
−→
V , σ〉 → σ′

The values in location X on the children are sent to the master, then they
are stored as a vector in the location

−→
V on the master. A synchronisation

is presented here to ensure the reception of all values. The communica-
tion cost of this statement is (p words × g↑ + l).

〈W̃ :=<
−→
V 1,
−→
V 2, . . .

−→
V numChd >, σ〉 → σ′

〈gather
−→
V to W̃, σ〉 → σ′

Same as the statement (gather X to
−→
V) but for gathering vectorial vecto-

rial expression. The communication cost of this statement is (
∑

number
of words of v × g↑ + l).

• Parallel

∀i=1..numChd〈c, σi〉 → σ′i
〈pardo c, σ〉 → σ′

Each child of the master evaluates independently the command c in its
own local environment σi where the position i = 1 . . . p and p is the
number of children. This statement costs maxi=1..p{Cost(c)i}.

〈numChd = 0, σ〉 → true 〈c2,σ〉 → σ′

〈if master then c1 else c2, σ〉 → σ′

〈numChd = 0, σ〉 → false 〈c1,σ〉 → σ′

〈if master then c1 else c2, σ〉 → σ′

If the local environment is on a master, i. e., the number of children is
zero in the local environment, the command c1 will be evaluated; other-
wise, the command c2 will be evaluated.

The operational semantics of SGL can be used to design and validate its im-
plementations. In Section 5.2 we tested standard skeletons programs in SGL

94 sgl programming

but not a full language. The semantics can also verify future compiler optimi-
sations like the G;P; S (gather; process; scatter or GPS-) theorem presented in
Section 6.1.1.

5.2 parallel skeletons implementation

There exist two kinds of algorithmic skeletons [KC02]: tasks and data-parallel
ones. The former can capture parallelism that originates from executing sev-
eral tasks, i.e. different function calls, in parallel. They mainly describe vari-
ous patterns for organizing parallelism, including pipelining, farming, client-
server, etc. The latter parallelize computation on a data structure by parti-
tioning it among processors and performing computation simultaneously on
different parts of it.

A well-know disadvantage of skeleton languages is that the only admitted
parallelism is usually that of skeletons, while many parallel applications are
not easily expressible as instances of known skeletons. Skeleton languages
must be constructed as to allow the integration of skeletal and ad-hoc paral-
lelism in a well defined way [Col04b]. In this light, having skeletons in SGL
would combine the expressive power of collective communication patterns
with the clarity of the skeleton approach.

The SGL operational semantics have been defined in Section 5.1.3. In this
section, we consider the implementation of well-known data-parallel skele-
tons (c. f., Section 3.2.3.3) because they are simpler to use than task-parallel
ones for coarse-grained models1 and also because they encode many scientific
computation problems and scale naturally. Even if SGL’s implementation is
certainly less efficient compared to a dedicated skeleton language (using MPI
send/receive [FSCL06]), the programmer can compose skeletons when it is
natural for him and use a SGL programming style when new patterns are
needed.

The experimentation in this section was conducted on EXQIM’s Altix ICE
supercomputer (c. f., 2.2.1.3). This physical machine can be represented by a
2-level SGL computer (Figure 35). The SGL cost model machine parameters
can be found in Section 4.3.1 and Section 4.3.2.

1 An efficient BSP implementation for those has nevertheless been shown in [GG11]

5.2 parallel skeletons implementation 95

Figure 35: Altix ICE cluster modelled as a 2-level SGL computer

We tested, in this section, SGL variants of some of the most important ba-
sic parallel algorithms: parallel reduction (with the product operation, Sec-
tion 5.2.1.1), parallel prefix reductions also called scan (with the sum oper-
ation, Section 5.2.1.2), a sorting algorithm (parallel sorting by regular sam-
pling, Section 5.2.1.3) and a butterfly algorithm (distributable homomorphism,
Section 5.2.2). For each one we wrote an SGL algorithm, implemented it by
hand using the MPI/OpenMP operations mentioned in Section 4.3.1 and Sec-
tion 4.3.2, and then compared the model’s predicted vs observed run time for
increasing data sizes. Finally, we computed speedup and parallel efficiency
values (Section 5.2.3).

5.2.1 Implementing Basic Data-Parallel Skeletons

First of all, we tried to implement the 3 basic data-parallel skeletons: parallel
reduce, parallel scan and parallel sort. We did not test parallel broadcast here
because it can be applied naturally by scatter.

5.2.1.1 Parallel Reduce

Reduce is an elementary data-parallel skeleton. It computes the "sum" of all
elements in a "list", with an associative binary operator. Reduction has tradi-
tionally been very popular in parallel programming. To parallelize the reduce
skeleton, the input data is divided into subsets that are assigned to each pro-

96 sgl programming

cessor. The processors compute the reduce operations of their data locally in
parallel, and the local results are then combined either on a single processor
or using a tree-like pattern of computation and communication, making use
of associativity in the binary operator.

In Algorithm 1, each worker computes the product of its local scalar num-
bers [Line 8]. After that, the master fetches the computed product from its
children [Line 5] and calculates the final product [Line 6]. Comments on the
right of the algorithm are cost estimations for the corresponding lines.

Algorithm 1 SGL implementation of parallel reduce
Reduce(IN −→src, OUT res)
begin

1: if master then
2: pardo
3: Reduce(−→src, res); ⇐= Reducechildi

4: end pardo
5: gather res to

−→
lst; ⇐= p× g↑ + l

6: Product(
−→
lst, res) ; ⇐= O(p)

7: else
8: Product(−→src, res); ⇐= O(n)

9: end if

end

Line 3 is a recursive call to the algorithm and line 8, the no-children case,
is a local sequential loop. Product operates on −→src whose elements are the res

outputs on each child.

The cost of the supersteps is (subscripts 〈 〉 refer to the pseudo-code line):

CostMaster = max
i=1..p

(ReduceChildi 〈3〉) +O(p) 〈6〉 × c

+p 〈5〉 × g↑ + l

CostWorker = O(nworker) 〈8〉 × c

The measurements (Figure 36) show a nearly perfect match of measured
performance with predicted performance (obtained from the cost formula
with machine parameters measured independently of this algorithm).

5.2 parallel skeletons implementation 97

Figure 36: Predicted and actual execution times of SGL reduce

5.2.1.2 Parallel Scan

The scan skeleton is similar to reduce, but rather than the single "sum" pro-
duced by reduce, scan computes the partial (prefix) "sums" for all "list" ele-
ments. Parallel implementation is done as for reduce.

We perform the parallel scan algorithm in two steps (Algorithm 2):

1. Each worker performs a sequential scan [Line 10 of Step 1]. Then, the
master fetches the last computed element from each child [Line 6 of Step
1]. After that, it performs a sequential scan of the fetched data [Line 8 of
Step 1].

2. Master scatters the results among its children [Line 2 of Step 2]. Then,
each child computes the sum of the received value and its computed
data [Line 4 of Step 2]. Finally, the children obtain the final result.

98 sgl programming

Algorithm 2 SGL implementation of parallel scan

Step1(IN −→src, OUT
−−→
mid)

begin

1: if master then
2: pardo
3: Step1(−→src,

−−→
mid); ⇐= Step1childi

4: x :=
−−→
mid[len

−−→
mid]; ⇐= O(1)childi

5: end pardo
6: gather x to

−−→
mid; ⇐= p× g↑ + l

7: ShiftRight(
−−→
mid); ⇐= O(p)

8: LocalScan (
−−→
mid,

−−→
mid); ⇐= O(p)

9: else
10: LocalScan (−→src,

−−→
mid); ⇐= O(n)

11: end if

end

Step2(IN
−−→
mid, OUT −→res)

begin

1: if master then
2: scatter

−−→
mid to x; ⇐= p× g↓

3: pardo
4: −→res := −−→mid+ x; ⇐= O(nchildi

)

5: Step2(−→res, −→res); ⇐= Step2childi

6: end pardo
7: else
8: skip;
9: end if

end

5.2 parallel skeletons implementation 99

The pseudo-code for parallel scan is given in Algorithm 2 and the cost of
the supersteps is:

CostMaster = max
i=1..p

(Step1Childi +O(1)× ci)

+ max
i=1..p

(Step2Childi +O(nChildi)× ci)

+2×O(p)× c

+p× g↑ + p× g↓ + l

CostWorker = O(nworker)× c

Again the pseudo-code and measurements (Figure 37) support our claims
that SGL is simple to use and that its performance model is reliable. Sev-
eral observations can be made from this graph: the performance prediction is
correct to within a few percent, the discrepancy between prediction and obser-
vation increases with communication cost or with the number of processing
units. Moreover, configurations with more cores per processor exhibit a larger
variability due to the local shared memory.

Figure 37: Predicted and actual execution times of SGL scan

We now experiment with a BSP sorting algorithm in SGL.

100 sgl programming

5.2.1.3 Parallel Sort

Our parallel sorting algorithm is based on Parallel Sorting by Regular Sam-
pling(PSRS) [SS92] a partition-based algorithm. A. Tiskin proposed an imple-
mentation of this algorithm in BSP [Tis99]. We could also use the algorithm
of [HJB98] to improve the performance.

We implement this algorithm in 5 steps (Algorithms 3 and 4):

1. Each worker performs a local sort [Line 8 of Step 1] and selects p (number
of workers) samples [Line 9 of Step 1] which are gathered onto root-

master [Line 5 of Step 1].

2. Root-master performs a local sort of the p2 gathered samples [Line 1 of
Step 2]. Then, it picks p-1 almost-equally spaced pivots from the sorted
samples [Line 2 of Step 2].

3. Root-master broadcasts these pivots to all workers [Line 5 of Step 3]. After
that, each worker produces p partitions of its local data using the p-1
pivots [Line 10 of Step 3]. Partition i holds values that should now be
moved to worker i.

4. Master gathers the partitions which are not already in place [Line 6 of
Step 4].

5. Master scatters the gathered partitions to its children according to parti-
tions’ index [Line 2 of Step 5]. Then, each worker performs a local merge
of the received partitions [Line 11 of Step 5].

[Suj96] showed that the computational cost of this algorithm is 2n
p (logn−

logp+ p3

n logp), and the communication cost is g 1
p(p

2(p− 1) +n) + 4l in BSP.
Thus, the total cost of this algorithm implemented in SGL is:

2
n

p
(logn− logp+

p3

n
logp)× c

+
1

p
(p2(p− 1) +n)×G+ 2× L

5.2 parallel skeletons implementation 101

Algorithm 3 SGL implementation of Parallel Sorting by Regular Sampling (1)
Step0

1: initialize pid := 1 in each worker

2: use parallel scan to computer the pid for each worker

3: set lowerPid, upperPid and maxPid in masters

Step1(IN −→arr, OUT −−→sam)
begin

1: if master then
2: pardo
3: Step1(−→arr,−−→sam);
4: end pardo
5: gather −−→sam to t̃mp;
6: −−→sam := Concatenate(t̃mp);
7: else
8: QuickSort(−→arr);
9: SelectSamples(−→arr, −−→sam);

10: end if

end

Step2(IN −−→sam, OUT
−→
pvt)

begin

1: QuickSort(−−→sam)

2: PickPrivots(−−→sam,
−→
pvt);

end

Step3(IN −→arr, IN
−→
pvt, OUT b̃lk)

begin

1: if master then
2: for i from 1 to numChd do
3: t̃mp[i] :=

−→
pvt;

4: end for
5: scatter t̃mp to

−→
pvt;

6: pardo
7: Step3(−→arr, −→pvt, b̃lk);
8: end pardo
9: else

10: BuildPartitions(−→arr, −→pvt, b̃lk);
11: end if

end

102 sgl programming

Algorithm 4 SGL implementation of Parallel Sorting by Regular Sampling (2)

Step4(IN b̃lk, OUT s̃tay, OUT m̃ove)
begin

1: if master then
2: pardo
3: Step4(b̃lk, s̃tay, m̃ove);
4: end pardo
5: for i from 1 to maxPid do
6: gather m̃ove[i] to t̃mp;
7: if i < lowerPid or i > upperPid then
8: m̃ove[i]) := Concatenate(t̃mp);
9: else

10: s̃tay[i] := Concatenate(t̃mp);
11: end if
12: end for
13: else
14: for i from 1 to maxPid do
15: if i = pid then
16: s̃tay[pid] := b̃lk[pid];
17: else
18: m̃ove[i] := b̃lk[i];
19: end if
20: end for
21: end if

end

Step5(IN s̃tay, IN m̃ove, OUT −→arr)
begin

1: if master then
2: scatter Bundle(m̃ove) to −→arr;
3: pardo
4: t̃mp := Unbundle(−→arr);
5: for i from lowerPid to upperPid do
6: m̃ove[i] := Concatenate(t̃mp[i], s̃tay[i]);
7: end for
8: Step5(s̃tay, m̃ove, −→arr);
9: end pardo

10: else
11: −→arr := MergeSort(m̃ove[pid]);
12: end if

end

5.2 parallel skeletons implementation 103

where G is the sum of all g from each level and L is the sum of all l from each
level.

Our performance prediction is based on SeqSort(n) = O(n logn) for the
sequential sorting algorithm and O(n/p) for the data to be transferred from
one node to another node after local sort. Our implementation includes a
node-to-node horizontal communication optimization which we have begun
to investigate formally (see Chapter 6) and will be added to a SGL compiler.

The measurements shown in Figure 38 lead to the same observations and
explanations as above for parallel scan. Higher local computation costs lead
to a larger prediction error, in particular our theoretical estimate is lower than
observation.

Figure 38: Predicted and actual execution times of SGL sort

The pseudo-code shows that our primitive algorithms are easily imple-
mented in SGL. Future work will investigate SGL programming for more
general algorithms.

The three tests illustrate SGL’s relative programming simplicity on a rele-
vant set of algorithms, convincing proof of the cost model’s quality and initial
evidence that SGL programming has no intrinsic cost overhead.

104 sgl programming

5.2.2 Implementing Distributable Homomorphism

Reduce and scan are basic skeletons, we study here a more complex data-
parallel skeleton: the Distributable Homomorphism (DH) [Gor96], which may
be used to express a special class of divide-and-conquer algorithms. dh ⊕ ⊗ l

transforms a list l = [x1, · · · , xn] of size n = 2m into a result list r = [y1, · · · ,yn]

of the same size, whose elements are recursively computed as follows:

yi =







ui ⊕ vi if i 6 n
2

ui−n

2
⊗ vi−n

2
otherwise

where u = dh ⊕ ⊗ [x1, . . . , xn

2
], i.e. dh applied to the left half of the input list

l and v = dh ⊕ ⊗ [xn

2
+1, . . . , xn], i.e. dh applied to the right half of l. The dh

skeleton provides the well-known butterfly pattern of computation which can
be used to implement many computations.

5.2.2.1 Program Examples using DH

In this section, we give some examples of classical parallel numerical compu-
tations that can be performed using the skeletons presented above.

As first application example, we consider the solution of the Tridiagonal

System Solver (TDS) of equations [Alt07]: A.x = b where A is a n× n sparse
matrix representing coefficients, x a vector of unknowns and b a right-hand-
side vector. The only values of matrix A different from 0 are on the main
diagonal, as well as directly above and below it – we call them the upper- and
lower diagonal, respectively.

We represent the TDS as a list of rows, each inner row consisting of four
values (a1,a2,a3,a4): the value a1 that is part of the lower diagonal of matrix
A, the value a2 at the main diagonal, the value a3 at the upper diagonal, and
the value a4 that is part of the right-hand-side vector b. The first and last row
of A only contain two values, but in order to obtain a consistent representation
we set a1 = 0 for the first and a3 = 0 for the last row. This corresponds to
adding a column of zeros at the left and right of matrix A.

We now use the dh skeleton to parallelize the problem as a divide-and-
conquer parallel algorithm. Since in the conquer phase, two subsystems can

5.2 parallel skeletons implementation 105

be combined using the first and last row of the systems, our implementation
works on triples (a, f, l) of rows, containing for each initial input row the
actual row value a, and the first f and the last l row of the subsystem the
row is part of. Using this list representation, the algorithm can be expressed
as follows:

(TDSm) = mapπ1 (dh ⊕ ⊗ (map triplem))

where



a1

f1

l1


⊕




a2

f2

l2

t2




=




a1 ⋄ (l1 ⋆ f2)
f1 ⋄ (l1 ⋆ f2)
(l1 ◦ f2) • l2







a1

f1

l1


⊗




a2

f2

l2

t2




=




(l1 ◦ f2) • a2

(f1 ⋄ (l1 ⋆ f2)
(l1 ◦ f2) • l2




and where

a ⋆ b = (a1,a3 − (
a2

b1
)× b2,b3 × (−

a2

b1
),a4 − (

a2

b1
)× b4)

a ⋄ b = (a1 − (
a3

b2
)× b1,a2, (−

a3

b2
)× b3,a4 − (

a3

b2
)× b4)

a ◦ b = (a1,a2 − (b1 ×
a3

b2
), (−b3 × a3/b2),a4 − (

a3

b2
)× b4)

a • b = (a1,−(
a2

b1
)× b2,a3 − (b3 ×

a2

b1
),a4 −

b4 × a2

b1
)

and where
a = (a1,a2,a3,a4)

b = (b1,b2,b3,b4)

which are row operations in a Gaussian elimination.

The dh method works as follows. In the divide phase, the matrix is subdi-
vided into single rows. The conquer phase starts by combining neighbouring
rows, applying first ⋆ (resp. ◦) and then ⋄ (resp. •), which results in systems
of two equations each, with non-zero elements in the first column, the main
diagonal and the last column. The sub-matrices are then combined into matri-
ces of four rows with the same structure, i.e., where all non-zero elements are
either on the diagonal, or in the first or last column. This process continues
until, finally, the entire system of equations has this form. Note that the first

106 sgl programming

and last column of the matrix remain zero throughout the process, thus the
the solution for the initial system of equations.

Combining two subsystems is achieved using a special row, obtained from
the last row l of the first system and the first row f of the second one, using
operator ⋆ (resp. ◦). This row is applied using operator ⋄ (resp. •) to each row
of the first system. Similarly, the rows of the second subsystem are adjusted
using another special row obtained from the first and last rows.

The Fast Fourier Transform (FFT) of a list x = [x0, . . . , xn−1] of length n = 2m

yields a list whose ith element is defined as:

(FFT x)i =

n−1∑

k=0

xkω
ki
n

where ωn denotes the nth complex root of unity e2π
√
−1/n.

The FFT can be expressed in a divide-and-conquer form:

(FFT x)i =







(FFT u)i ⊕i,n (FFT v)i if i <
n

2

(FFT u)j ⊗j,n (FFT v)j otherwise

where u = [x0, x2, . . . , xn−2], v = [x1, x3, . . . , xn−1], j = i− n
2 , and a⊕i,n b =

a+ωi
nb and a⊗j,n b = a−ω

j
nb. This formulation is close to the dh skeleton

except ⊕i,n and ⊗j,n being parametrized with i and n.

These operators repeatedly compute the roots of unity. Instead of comput-
ing them for every call, they can be computed once a priori and stored in a list

Ω = [ω1
n, . . . ,ω

n

2
n] accessible by both operators. For this, we first use a scan.

FFT can thus be expressed as follow:

(FFT l) = letΩ = scan + 1 (repl (ωn)
n

2
)

in mapπ1 (dh⊕⊗ (mapidx triple l))

where



x1

i1

n1


⊕




x2

i2

n2

t2




=




x1 ⊕i1
n1

x2

i1

2n1




and ⊗ is defined similarly.

5.2 parallel skeletons implementation 107

The first element of each triple contains the input value, the second one
its position and the last one the current list length. In each dh step, these
operators are applied element-wise to two lists of length n1 = n2, resulting
in a list of length 2n1. x1 ⊕i1

n1
x2 (resp. for ⊗) is defined as x1 + x2 × (th (n×

i1
n2

)Ω) where thn [x1, . . . , xn, . . .] = xn.

5.2.2.2 Implementation of DH programs

We have implemented the dh skeleton using SGL which maps its model of
execution since they are both recursive ones. We have then applied it to TDS
and FFT.

All data is distributed over p workers and the algorithm performs recur-
sively as follows (Algorithm 5): first of all, each worker performs a sequential
dh with its own local data [Lines 22-31]; then, the master gathers the com-
puted data [Line 6], permutes them according to the position [Lines 7-11],
and scatters the permuted data to the workers [Line 12]; after that, each worker

performs either ⊕ operation or ⊗ operation according to its position [Lines
13-19]. After log(p) times above achievements, we obtain the final result.

In the pseudo code, line 3 is a recursive call to the algorithms, lines 14 - 18

are executed in parallel, and lines 22 - 31, the no-children case, represent a
local sequential loop. The cost of the superstep is below:

CostMaster = max
i=1..p

(DHChildi)+

log(p)× (2n × (g↑ + g↓) + l

+2n ×max{c⊕, c⊗})

CostWorker = 2n ×n× c⊕ + c⊗
2

Figures 39 and 40 show the measurement of the execution time of TDS and
FFT implemented with our DH algorithm.

108 sgl programming

Algorithm 5 SGL implementation of distributable homomorphism (DH)
DH(IN ⊕, IN ⊗, INOUT data)

1: if master then
2: pardo
3: DH(⊕, ⊗, data);
4: end pardo
5: for n from 1 to log2(numChd) do
6: gather data to tmp;
7: for i from 1 to (len(numChd)) do
8: if ((i-1) % exp2(n))/2 = 0 then
9: Swap(tmp[i], tmp[i+exp2(n)])

10: end if
11: end for
12: scatter tmp to list;
13: pardo
14: if ((PID-1) % exp2(n))/2 = 0 then
15: data := data ⊕ list;
16: else
17: date := data ⊗ list;
18: end if
19: end pardo
20: end for
21: else
22: for n from 1 to log2(len(data)) do
23: for i from 1 to (len(data)) do
24: if ((i-1) % exp2(n))/2 = 0 then
25: tmp := data[i] ⊕ data[i+exp2(n)];
26: else
27: tmp := data[i-exp2(n)] ⊗ data[i];
28: end if
29: end for
30: data := tmp;
31: end for
32: end if

5.2 parallel skeletons implementation 109

Figure 39: Execution times of TDS using SGL DH

Figure 40: Execution times of FFT using SGL DH

dh imposes many "horizontal" communications that would be programmed
in SGL as sequences of the form G;P; S as in Section 6.1.1. An SGL com-
piler or even interpreter will be able to optimize them2 into a flat horizontal
communication-synchronization phase, and this is how we have implemented
it in our experiments. Also, it is easy to see, using our semantics, that the
SGL’s implementation of dh is a correct one thanks to the simple program-
ming model.

2 The G;P;S pattern recognition could be guaranteed by a specific language construct or docu-
mented constraints on the user code.

110 sgl programming

5.2.3 Speedup and Efficiency

We firstly tested speedup and efficiency using the scan algorithm of Sec-
tion 5.2.1.2. The formulas we used are:

Speedup =
ExecutionTime1
ExecutionTimep

Efficiency =
Speedupp

p

where p is the number of used nodes (resp. cores).

First of all, we fixed the size of input data at 2 560 000 floating numbers,
the number of cores at 4 for each node and varied the number of nodes from
1 to 16. We obtained the node-level speedup and efficiency in Table 6.

Num of proc 4 8 16 32 64

Node scale-out 1 2 4 8 16

Speedup 1 1.999 3.974 7.560 13.815

Efficiency 1 0.999 0.994 0.945 0.863

Table 6: Node-level speedup and efficiency of SGL scan

After that, we fixed the size of input data at 9 600 000 floating numbers,
fixed the number of nodes at 16 and varied the number of core of each node
from 1 to 4. We obtained the core-level speedup and efficiency in Table 7.

Num of proc 16 32 48 64

Core scale-out 1 2 3 4

Speedup 1 1.965 2.884 3.852

Efficiency 1 0.983 0.961 0.963

Table 7: Core-level speedup and efficiency of SGL scan

Our measurements show that core-level scale-out is more efficient than
node-level scale-out. The theoretical explanation is that the cost of node-level
communication is more expensive than core-level communication. Figures 41

and 42 illustrate the two tables from the point of view of acceleration.

5.2 parallel skeletons implementation 111

Figure 41: Node-level speedup of SGL scan (used 4 cores per node)

Figure 42: Core-level speedup of SGL scan (used 16 nodes)

We have used the same technique to measure the efficiency of TDS (HD
skeleton, Section 5.2.2). Figure 43 shows the speedup according to the mea-
sures from our TDS algorithm. The measurement shows that when the num-
ber of core increases, the overhead increases too. It confirms our claims that
the communication cost is very expensive and we need to find solutions for
reducing it.

Figure 43: Speedup of SGL HD (TDS)

112 sgl programming

This chapter is not about finding the best algorithms. The algorithms used
in previous sections may be not the optimized ones; they were used for exper-
imenting our SGL cost model and programming model. This dissertation has
attempted to motivate and support the idea that BSP’s advantages for paral-
lel software can be enhanced by the recursive hierarchical and heterogeneous
machine structure of SGL, while simplifying the programming interface even
further by replacing point-to-point messages with logically centralised com-
munications.

6
G AT H E R - S C AT T E R F O R S I M P L I F I E D C O M M U N I C AT I O N S

6.1 The GPS Theorem . 113

6.1.1 Gather-Scatter Communication 114

6.1.2 The GPS Theorem . 115

6.2 Simplifying BSML’s Put . 116

6.2.1 Dilemma in BSML: Proj vs. Put 116

6.2.2 The GPS Function . 119

6.2.3 Experimentation in BSML 120

With the limitation presented in the previous chapter that SGL does not ex-
press "horizontal" communication patterns in mind, we attempt in this chap-
ter to demonstrate that this defect only affects a minority of algorithms and
can be compensated by automated compilation/interpretation. We then in-
troduce the GPS theorem (Section 6.1) which can be implemented later in a
compiler to optimize the SGL’s "horizontal" all-to-all communication. We also
propose a simplified version of BSML’s put based on GPS and implement the
parallel sample-sort algorithm with it (Section 6.2). The comparison of BSML’s
put and SGL’s GPS shows that GPS has a better code readability and lower
execution time.

6.1 the gps theorem

In this section we firstly review the gather-scatter communication. After that,
we propose the GPS theorem, the basis for future language-based solutions

113

114 gather-scatter for simplified communications

providing a compromise between simple centralized communications and
more general horizontal communications that are more difficult to program
and error-prone.

6.1.1 Gather-Scatter Communication

While experimenting with SGL programming it was found that many basic
algorithms can be efficiently and cleanly programmed with the model, while
satisfying a simple performance model. But the case of the sample-sort algo-
rithm poses a fundamental problem for SGL. The tree topology architecture
suggests a limited bandwidth around the master. Either this is experimentally
true, in which case sample-sort cannot be generally efficient (for which SGL’s
simplicity could not be blamed) or the topology abstracts the actual commu-
nication bandwidth assuming that all links in the architecture have the same
"width". This may hold if:

(a) indeed the network is a fat-tree; or

(b) the architecture’s level below the master allows for horizontal commu-
nications that SGL does not express.

Case (a) is already covered by our SGL cost model but it was not observed
in our experiments: the master’s bandwidth can be overwhelmed when an
algorithm such as sorting moves a large subset of all data across the master.
Case (b) is not only likely, but is the norm for flat architectures.

The pending issue with SGL is thus: can we program general communica-
tion patterns such as those involved in parallel sample-sort. The if master

conditional selects an instruction branch depending on the local node’s num-
ber of children: zero or more. Also, SGL’s communications do not provide
direct "horizontal" communications because of their hierarchical logical struc-
ture. But if the hardware supports them (see Appendix A.1), inter-worker
communications can be extracted from SGL semantics either statically or dy-
namically.

6.1 the gps theorem 115

6.1.2 The GPS Theorem

In this section we propose solutions to SGL’s algorithmic incompleteness:
a compromise between simple centralised communications and more gen-
eral horizontal communications that are more difficult to program and error-
prone. We start from the notion that we may program communications that
are logically centralised but physically "horizontal". To support this claim we
first present a theoretical result showing how successive supersteps can be
partially compressed into a single horizontal communication-synchronization
phase.

A first type of solution to SGL’s lack of horizontal communications can
come in the form of compiler optimisations. Sub-programs that concentrate
data (gather), then locally process it on the master, then redistribute it (scatter)
can be compiled to horizontal communications without the need for concen-
tration. This possibility was not implemented so far for lack of a complete
SGL language with syntax, compiler and code generation, a rather long sub-
project to develop. But we can prove that this kind of optimisation is possible
in the form of a theorem based on our operational semantics.

Let G ≡ gather
−→
V to W̃ and S ≡ scatter W̃ to

−→
V (c. f., Section 5.1.3 for their

semantics) in a system with one master and p workers. Assume also that val-
ues for

−→
V are all vectors of length p. As a result values for W̃ are equivalent

to p× p matrices of scalars. SGL code for reorganizing such a parallel matrix
of values is a sequence G;P; S where P is a sequential program in the master
that realizes a permutation of the matrix.

GPS-theorem
Let G;P; S be as above, P a sequential program whose non-local variables
are W̃,

−→
V , and π a permutation of {1, . . . ,p} such that (π): ∀i, j. σ ′′(W̃)i,j =

σ ′(W̃(π(i,j))) whenever 〈P, σ ′〉 → σ ′′. Then σ ′′′(
−→
V)(i,j) = σ(

−→
V)π(i,j) whenever

〈(G;P; S), σ〉 → σ ′′′.

Proof. The sub-programs must be evaluated through steps: (g) 〈G, σ〉 →
σ ′; (p) 〈P, σ ′〉 → σ ′′ and (s) 〈S, σ ′′〉 → σ ′′′. Recall that environments σ are
maps from identifiers and machine positions (master, child 1, child 2, child of
child i ...) to values. The former is written as indices. The semantics translates

116 gather-scatter for simplified communications

step (g) into (g’): σ ′ = σ[W̃/σ(
−→
V)i | i = 1, . . . ,p] and step (s) into (s’): σ ′′′ =

σ ′′[
−→
V /σ ′′(W̃)i |i = 1, . . . ,p]. We thus have:

σ ′′′(
−→
V)(i,j) = (σ ′′′(

−→
V)i)j = (σ ′′(W̃)i)j (s ′)

= σ ′′(W̃)(i,j)

= σ ′(W̃)π(i,j) (π)

= σ(
−→
V)π(i,j) (g ′). �

If the proposition’s hypotheses are satisfied then permutation π can be ap-
plied locally to the subset of matrix data available on one worker node, and
then given as local argument to a collective communication operation, thus
combining two vertical communications into a single horizontal one. The lo-
cal interpretation of sub-program P into π is beyond the scope of this chapter
and would require a more complex language than what is covered by our
current semantics for SGL.

6.2 simplifying bsml’s put

We attempted, in this section, to propose a GPS function implemented in
BSML for simplifying BSML’s put primitive. We then experimented this new
function in BSML with a parallel simple-sort algorithm and compared it with
a standard BSML implementation.

6.2.1 Dilemma in BSML: Proj vs. Put

In BSML (c. f., Section 3.2.2.2), proj is the parallel destructor: proj <x0, x1,. . .,
xp−1> computes a function f such that (f i) = xi. And put is the synchronous
(communicating) parallel transformer: put <g0, g1,. . ., gp−1> computes a par-
allel vector of functions that contain the transported messages that were spec-
ified by the gi. The input local functions are used to specify the outgoing
messages thus: gi j is the value that processor i wishes to send to processor j.
The result of applying put is a parallel vector of functions dual to the gi: they
specify which value was received from a given distant processor.

6.2 simplifying bsml’s put 117

The execution of proj uses an all-to-all communication and the execution
of put is a general BSP communication (any processor-processor relation can
be implemented with it). Experience with BSML for more than a decade has
shown that proj is much easier to use than put, that proj can be used to
program a large subset of all parallel functions, but that algorithms such as
sample-sort cannot be implemented without put.

Let us take here the student assignments of M11 course Algorithmes Paral-

lèles et Distribués at Université Paris-Est Créteil (UPEC, ex-Paris 12) as exam-
ples. In April 2012, we asked the students to recode all functions of Caml’s
List library2 using ’a parlist = ’a list par instead of ’a list for parallel
programming; and in April 2013 the next-term students to recode all func-
tions of Caml’s Array library3 using ’a parray = ’a array par instead of ’a
array. Table 8 and Table 9 show the signatures of all required functions.

Recoded function Signature

par_length: ’a parlist -> int

par_hd: ’a parlist -> ’a

par_tl: ’a parlist -> ’a parlist

par_nth: ’a parlist -> int -> ’a

par_rev: ’a parlist -> ’a parlist

par_flatten: ’a list parlist -> ’a list

par_map: (’a -> ’b) -> ’a parlist -> ’a parlist

par_fold_left: (’a -> ’a -> ’a) -> ’a -> ’a parlist -> ’a

par_for_all: (’a -> bool) -> ’a parlist -> bool

par_exists: (’a -> bool) -> ’a parlist -> bool

par_mem: ’a -> ’a parlist -> bool

par_find: (’a -> bool) -> ’a parlist -> ’a

par_filter: (’a -> bool) -> ’a parlist -> ’a parlist

par_partition: (’a -> bool) -> ’a parlist -> ’a parlist * ’a parlist

Table 8: Signatures of recoded functions of Caml’s List library in parallel

1 French first-year Master, the fourth year of European higher education.
2 OCaml reference manual - List library. http://caml.inria.fr/pub/docs/manual-ocaml/

libref/List.html

3 OCaml reference manual - Array library. http://caml.inria.fr/pub/docs/manual-ocaml/
libref/Array.html

http://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Array.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Array.html

118 gather-scatter for simplified communications

In Table 8 for Caml’s List library, the functions par_tl, par_flatten, par_map
and par_filter do not require any inter-processor communication. The func-
tions par_hd and par_nth require only a one-to-one communication, they can
be implemented easily and efficiently with proj . The functions par_length,
par_fold_left, par_for_all, par_exists, par_mem and par_find require an
all-to-one communication with p data, an implementation using proj can be
efficient enough too. However, the functions par_rev and par_partition re-
quire an all-to-all communication, an efficient implementation can only be
done by using put . There are only 2 functions out of 14 that need put for
implementing an efficient all-to-all communication.

Recoded function Signature

parray_length: ’a parray -> int

parray_get: ’a parray -> int -> ’a

parray_set: ’a parray -> int -> ’a -> unit

parray_init: int -> (int -> ’a) -> ’a parray

parray_map: (’a -> ’b) -> ’a parray -> ’b parray

parray_fold_left: (’a -> ’a -> ’a) -> ’a -> ’a parray -> ’a

parray_append: ’a parray -> ’a parray -> ’a parray

parray_sub: ’a parray -> int -> int -> ’a parray

Table 9: Signatures of recoded functions of Caml’s Array library in parallel

In Table 9, the functions parray_init and parray_map do not require any
inter-processor communication; the functions parray_get and parray_set re-
quire only a one-to-one communication; the functions parray_length and
parray_fold_left require an all-to-one communication with p data; and the
functions parray_append and parray_sub require an all-to-all communication.
In the case of Caml’s Array library, there are thus only 2 functions out of 8

that need put for implementing an efficient all-to-all communication.

These exercises confirm again our claims that proj can be used to program
a large subset of all parallel functions, but put is indispensable for imple-
menting efficiently the all-to-all communication. We thus propose in the next
section the GPS function for parallel programming to simplify BSML’s general
communication put function.

6.2 simplifying bsml’s put 119

6.2.2 The GPS Function

A second type of solution to SGL’s lack of horizontal communication is devel-
oped in this section within the framework of BSML i. e., flat BSP programming
within OCAML programs. It is based on the following simulation of SGL by
BSML for flat BSP machines.

There is a natural correspondence between a two-level SGL machine and a
BSML program:

• the master corresponds to all non-par types in the BSML program i. e.,
all values that are replicated on each processor;

• the workers correspond to all local elements of par types in the BSML
program;

• scatter corresponds to mkpar (seq-to-par primitive);

• gather corresponds to proj (par-to-seq primitive) and

• pardo corresponds to apply .

An algorithm such as parallel sample-sort cannot be programmed with
pure SGL primitives i. e., with only mkpar, apply, proj and without the gen-
eral communication primitive put. Our proposed solution is a simplified form
of put that leads to the same parallel performance but resembles a G;P;S pro-
gram as in the GPS theorem presented in Section 6.1.2.

The general BSML communication primitive is put and it has the following
type:

put: (int -> ’a) par -> (int -> ’a) par

with the input parallel vector containing a destination-value map at each pro-
cessor, and the output parallel vector containing a sender-value map at each
processor.

The simplified version that we propose is called sgl_gps and has the follow-
ing type:

(int -> ’a -> ’b list) -> (int -> ’b list -> ’c) -> ’a par -> ’c par

The first argument relates to data input for the communication phase. It
specifies how each processor (rank an integer) splits a value into a list4 of p

4 We use list here for prototyping. Array should be allowed too in a real implementation.

120 gather-scatter for simplified communications

values, one for every destination. The second argument relates to data recep-
tion after communication. It specifies how each processor (rank an integer)
aggregates a list of p received values into a local value. The third argument is
the input parallel vector and the function produces its output parallel vector
by applying a single communication-synchronisation superstep, like BSML’s
put.

The new function is considered to be simpler to be used than put because:
(a) it separates meta-data (first two arguments) from the actual data to be
communicated (third argument); and (b) the meta-data is sequential.

6.2.3 Experimentation in BSML

The following (Listing 5) is a BSML implementation for the new communica-
tion function:

1 (* ====================== *)

(* === BSML libraries === *)

3 (* ====================== *)

open Bsml

5 open Base

open Tools

7

(* =========================== *)

9 (* === Auxiliary functions === *)

(* =========================== *)

11 let rec (from_to: int -> int -> int list) = fun debut fin ->

if debut > fin then [] else debut::(from_to (debut+1) fin);;

13

let (procs_list: int list) = from_to 0 (bsp_p-1) ;;

15

(* ========================== *)

17 (* === SGL g-p-s function === *)

(* ========================== *)

19 let (sgl_gps: (int -> ’a -> ’b list) -> (int -> ’b list -> ’c) -> ’a par -> ’c

par) = fun split assemble indata ->

let splitted = apply (mkpar split) indata in

21 let exchange = put (parfun List.nth splitted) in

let permuted = parfun (fun l -> List.map l procs_list) exchange in

23 apply (mkpar assemble) permuted

;;
✆

Listing 5: Simplified BSML horizontal communication

6.2 simplifying bsml’s put 121

Here parfun is an abbreviation for fun f x -> apply (replicate f) x pro-
vided by BSML’s module Bsmlbase, where replicate is an abbreviation for
fun f -> mkpar (fun i -> f) from the same module. This function is simi-
lar to List.map for parallel vectors:

parfun f < x0, . . . , x(p−1) > = < f x0, . . . , f x(p−1) >

And bsp_p is a machine parameter accessor of BSML giving the number p of
processors in the parallel machine.

We have implemented Tiskin-McColl parallel sample-sort [Tis99] with this
new communication primitive (Listing 6). There are two communications
in the main function. The first one is when glosampl is computed with
gather_list which is a modified proj (all-to-all) communication [Line 65].
This one is used to constitute meta-data. The second communication (for
transport) is when return value uses sgl_gps [Line 69].

1 (* === BSML libraries === *)

open Bsml

3 open Stdlib

open Base

5 open Comm

open Tools

7

open Sgl_gps

9

(* === Auxiliary functions === *)

11 let (filter_nth: (int -> bool) -> ’a list -> ’a list) = fun f l ->

let rec aux i = function

13 | x::r -> if f i then x::(aux (i+1) r) else aux (i+1) r

| [] -> []

15 in aux 0 l

;;

17

let (extract_n: int -> int -> ’a list -> ’a list) = fun n len l ->

19 filter_nth (fun i -> (n * i - 1) mod len >= len - n) l

;;

21

let rec (split_lt: ’a list -> ’a list -> ’a -> ’a list * ’a list) =

23 fun acc l p -> match l with

| x::r -> if x < p then (split_lt (x::acc) r p) else ((List.rev acc), l)

25 | [] -> ((List.rev acc), [])

;;

27

122 gather-scatter for simplified communications

let rec (slice_p: ’a list -> ’a list -> ’a list list) = fun l pivots ->

29 match pivots with

| p::r -> let l1,l2 = split_lt [] l p in

31 l1::(slice_p l2 r)

| [] -> [l] ;;

33

let rec (merge: ’a list -> ’a list -> ’a list -> ’a list) = fun acc l1 l2 ->

35 match l1,l2 with

| x1::r1,x2::r2 -> if x1 < x2 then merge (x1::acc) r1 l2

37 else merge (x2::acc) l1 r2

| [],l | l,[] -> List.rev_append acc l ;;

39

let rec (splitn: int -> ’a list -> ’a list * ’a list) = fun n (x::r) ->

41 if n=0 then [],x::r

else let l1,l2 = splitn(n-1) r in (x::l1,l2) ;;

43

let rec (p_merge: int -> ’a list list -> ’a list) = fun p -> function

45 | [] -> []

| l::[] -> l

47 | ll -> let ll1,ll2 = splitn (p/2) ll in

merge [] (p_merge (p/2) ll1) (p_merge (p-p/2) ll2) ;;

49

let (proj_list: ’a par -> ’a list) = fun v -> List.map (proj v) procs_list ;;

51

let rec (concat: ’a list -> ’a list list -> ’a list) = fun acc ll ->

53 match ll with

| l::lr -> concat (List.rev_append l acc) lr

55 | [] -> List.rev acc ;;

57 let rec (gather_list: ’a list par -> ’a list) =

fun parlist -> concat [] (proj_list parlist) ;;

59

(* === Parallel Sorting by Regular Sampling === *)

61 let (regular_sample_sort: int par -> ’a list par -> ’a list par) =

fun lvlengths lv ->

63 let locsort = parfun (List.sort compare) lv in

let regsampl = apply (parfun (fun l len -> extract_n bsp_p len l) locsort)

lvlengths in

65 let glosampl = List.sort compare (gather_list regsampl) in

let pivots = extract_n bsp_p (bsp_p * (bsp_p - 1)) glosampl in

67 let split = fun pid send_raw -> slice_p send_raw pivots in

let assemble = fun pid recv_raw -> p_merge bsp_p recv_raw in

69 sgl_gps split assemble locsort

;;
✆

Listing 6: Implementing Tiskin-McColl parallel sample-sort with GPS function

6.2 simplifying bsml’s put 123

Our GPS implementation was experimented on an 8-core 2.67 GHz Xeon-
based workstation with BSML 0.5 and MPICH 3.0.1 running on OpenSuse 11.4
(Celadon). We fixed the total size of input data at 200 000 integer numbers,
and varied the number of processors from 1 to 8. The execution time was
measured by OCaml’s function Unix.gettimeofdate.

The formula of speedup we used is same as in Section 5.2.3 :

Speedup =
ExeTimeSeq

ExeTimePar

where ExeTimeSeq = 182.62ms is based on OCaml’s sequential function List.sort

processing 200 000 random integer numbers generated by the function Random.int.

Since the bound of sequential sorting algorithm is O(n logn), the formula
for the efficiency we used is slightly different from the standard one which is
simply speedup× 1

p . Here is

Efficiency = Speedup× n logn

200000 log 200000

where n is the size of input data per processor. This formula is coherent with
Shi’s method presented in the paper [SS92] introducing Parallel Sorting by
Regular Sampling (PSRS).

We obtained therefore the results in Table 10.

Num of proc 1 2 4 8

time (ms) 215.7 106.7 45.7 20.4

Speedup 0.676 1.367 3.192 7.154

Efficiency 0.847 0.807 0.886 0.929

Table 10: Speedup and efficiency of parallel sample-sort in GPS implementation

The efficiency of p = 1 is smaller than 1, because we used here the parallel
program for the 1-processor test, it thus computed the meta-data. Further-
more, BSML does not optimize the communication that a processor send data
to itself. This created a communication cost that decreased the efficiency of
p = 1.

We have also tested on the same machine the same parallel sample-sort
algorithm implemented in standard BSML (with put , shown in Listing 7),

124 gather-scatter for simplified communications

which can be found in L. Gesbert’s PhD thesis [Ges09].

1 (* === Parallel Sorting by Regular Sampling === *)

let (psrs : int par -> ’a list par -> ’a list par) = fun lvlengths lv ->

3 let locsort = parfun (List.sort compare) lv in

let regsampl = apply (parfun (fun l len -> extract_n bsp_p len l) locsort)

lvlengths in

5 let glosampl = List.sort compare (gather_list regsampl) in

let pivots = extract_n bsp_p (bsp_p * (bsp_p - 1)) glosampl in

7 let comm = parfun (fun l -> slice_p l pivots) locsort in

let recv = put (parfun List.nth comm) in

9 parfun(fun ll -> p_merge bsp_p (List.map ll procs_list)) recv

;;
✆

Listing 7: Gesbert’s implementation of parallel sample-sort [Ges09]

The main difference between these two implementations can be found in
lines 67-69 of Listing 6 and lines 7-9 of Listing 7. The sgl_gps function pro-
vides a sequential view for coding. Developers need only to focus on how to
split the local data and how to assemble the received data on a local node.
The all-to-all communication and synchronisation are performed implicitly
by sgl_gps. The cost of communication may be optimised during the compi-
lation (if the compiler supports natively the sgl_gps function). Contrariwise,
the put function focusses on the communication. A destination-value map for
each processor before put and a sender-value map for each processor after put
must be designed by the developer. Moreover, developers must work on a
parallel environment.

We use the same method as before for measuring the execution time, speedup
and efficiency of this put implementation. The results are shown in Table 11.

Num of proc 1 2 4 8

time (ms) 218.0 105.4 44.6 20.7

Speedup 0.669 1.383 3.273 7.029

Efficiency 0.838 0.817 0.908 0.913

Table 11: Speedup and efficiency of parallel sample-sort using BSML put

6.2 simplifying bsml’s put 125

Figure 44 shows the speedup of the GPS implementation and the put imple-
mentation of parallel sample-sort. Figure 45 compares the real cost (execution
time) of these two implementations.

1 2 4 8

0

1

2

3

4

5

6

7

8

gps

put

Number of Processors

S
p

e
e

d
u

p

Figure 44: Speedup of GPS and put parallel sample-sort implementations

200000 100000 50000 25000

0

5

10

15

20

25

gps

put

Input data size per proc

E
xe

c
u

ti
o

n
 t
im

e
 (

m
s

)

Figure 45: Execution time of GPS and put parallel sample-sort implementations

Our measurement shows that the GPS implementation is as fast as the
put implementation. Furthermore, the GPS implementation keeps the same
speedup as the standard BSML one, because the sorting algorithms are the
same for both implementations. These results confirm our claim that GPS
can simplify programming while keeping a good performance.

126 gather-scatter for simplified communications

We conclude this programming experiment by observing that put is used
in only a minority of parallel functions, that it can be replaced by a new func-
tion that is logically simpler and that this new function is close to SGL seman-
tics. With sgl_gps we can program horizontal communications to optimise
performance in an extended version of SGL. Future work will experiment
multi-level and heterogeneous versions of this extension to SGL.

7
C O N C L U S I O N

7.1 Conclusion . 127

7.2 Future work . 129

7.1 conclusion

We have described in this dissertation attempts to improve the simplicity of
parallel program development, while ensuring portability and the accuracy of
parallel algorithm performance prediction for heterogeneous and hierarchical
environments.

The term bridging model introduced by L. Valiant in 1990 is a model of a
computer which provides a conceptual bridge between the physical imple-
mentation of the machine and the abstraction available to a programmer of
that machine. It provides a common level of understanding between hard-
ware and software engineers. Thus, one can develop portable and predictable
algorithms on it.

With this in mind, we reviewed in chapter 2 a wide variety of different par-
allel computer architectures – from commodity hardware to specified hetero-
geneous hardware, from multi-core computers to peta-FLOPS supercomput-
ers, from centralized parallel computers to geographically distributed grids
– in order to have some general notions about the modern parallel comput-
ers’ design, for preparing a realistic general abstract machine to model these
different architectures. Parallel computer hardware evolution shows that the
flat view of a parallel machine as a set of communicating sequential machines
remains a useful and practical model but is more and more incomplete. More-
over, we can observe that heterogeneous chip multiprocessors present unique
opportunities for improving system throughput and reducing processor con-

127

128 conclusion

sumption. The trend towards green-computing puts even more pressure on
the optimal use of architectures that are not only highly scalable but hierar-
chical and non-homogeneous. All these changes make parallel programming
harder than before. A realistic bridging model is desirable for handling these
heterogeneous hierarchical machines.

We then traversed in chapter 3 the state of the art of parallel program-
ming models. We found that the multi-threaded concurrent programming is
good for getting started, but it can be applied only on shared-memory ar-
chitectures. The message-passing approach handles the distributed-memory
architectures, but the management of communication is never an easy job.
Actor models provide patterns for the communication, but their application
is too hard to optimise without any algorithm-machine bridging. The BSP
bridging model links software and hardware, offers a sequential view of a
parallel program with supersteps, simplifies algorithm design and analysis
with the barrier, but more and more nowadays parallel computers are not
developed in BSP-proposed flat structure but in a hierarchical architecture.
MapReduce simplifies large data set processing on distributed cluster with
implicit communication, but how it handles a complex algorithm with a good
performance, is still a question. All these observations lead us to propose a
hierarchical bridging model for simplifying parallel programming.

We thus introduced in chapter 4 our Scatter-Gather parallel-programming
and parallel execution model in the form of a simple imperative Scatter-
Gather Language (SGL). Existing research has been surveyed to identify SGL’s
original and useful aspects. SGL has been given a precise operational seman-
tics and cost model. The SGL cost model improves the clarity of algorithms
performance analysis; it allows benchmarking machine performance and al-
gorithm quality. We believe that the SGL computer can cover most of the
modern parallel computers. The synchronisation cost of SGL algorithms for a
massively parallel computer can be greatly reduced by its hierarchical struc-
ture. The communication cost of SGL between different levels is more realistic
than the flat structure.

SGL was used in chapter 5 with its programming model to program ba-
sic parallel operations and more complex parallel skeletons such as paral-
lel reduce, parallel scan (prefix), parallel sort and a butterfly algorithm dis-
tributable homomorphism. In both cases, the scalability and accuracy of the
cost-model were measured. We have found that a subset of parallel communi-

7.2 future work 129

cation patterns is not naturally covered by SGL’s centralised operations. This
is visible in a recursive implementation of parallel sample-sort.

Adding a general communications primitive to SGL may be a radical solu-
tion. But this would have hurt the practical and theoretical simplicity of SGL.
Experience and research with BSML (BSP-CAML) shows that the semantics
and practical use of such a primitive (put) is more complex and error-prone
than pure SGL. This is obvious because the semantics of put is based on a com-
munication matrix, while scatter and gather are described by 1-dimensional
vectors of messages.

Further analysis has led us to propose in chapter 6 two elements of a general
solution to this dilemma. The first one is the GPS theorem: a semantic equiv-
alence between gather; P; scatter sub-programs (where P is a local sequential
program in the master) and horizontal put-like operations. This result is the ba-
sis of future compiler optimisations whereby a family of clean but inefficient
SGL programs can be compiled to lower-level but more efficient programs
using horizontal communications. The second proposed solution is a simpli-
fied form of put that we have designed and experimented in BSML. With it,
the Tiskin-McColl BSP sample-sort algorithm [Tis99] is programmed without
having to encode a general communication matrix: only its sender-side 1-to-n
and receiver-side n-to-1 communication relations.

7.2 future work

The definition and validation of SGL detailed in this dissertation are only
a first step towards its safe and efficient application to high-level parallel
programming. Relevant and related existing work is abundant and likewise,
future work in this direction has many aspects.

SGL code compilation will be investigated by defining a complete language
that includes the SGL syntax and semantics given here. This can be done from
scratch or by extending an existing language’s parser, static analysis, code
generation etc. The target language might range from BSML to C+MPI but
optimisations based on the GPS theorem should be investigated for their gen-
erality and efficiency. Native code generation via LLVM (formerly Low Level
Virtual Machine) will also be considered as a portable and high-performance

130 conclusion

alternative to BSML. Code generation for accelerators (like GPGPUs) has not
been experimented yet and should be investigated since SGL does not re-
quire workers or sub-workers to be identical. Furthermore, GPGPUs’ multi-
processor – multi-core – multi-thread and shared-memory nature coincides
with SGL’s hierarchical tree structure.

Another direction that will be explored is the use of SGL as intermediate
language for more abstract ones. For example EXQIL is a domain-specific
language (DSL) developed at EXQIM S.A.S. for simplified expression of al-
gorithmic trading strategies [HGL+]. EXQIL uses algorithmic skeletons but
has no explicit parallel constructions. The current EXQIL version is 0.63 and
its future versions will use SGL code generation for scalable and predictable
acceleration on parallel hardware.

An even higher-level approach that has been started is automatic code
generation whereby parallel programs are generated directly from domain-
specific UML descriptions. This "no-programming" model-driven paradigm
has been presented in [KHL12]. It currently generates multi-thread or multi-
process code that is embarrassingly parallel i.e. without communications. Fu-
ture work will generalise it to target SGL code so that more operations can be
parallelised.

A
A P P E N D I X

In a bridging model, the only information we have of the hardware is the
parameters of the cost model. However, since the GPS theorem (Section 6.1)
has not yet been included in SGL’s language semantics (Section 5.1), the pa-
rameters of SGL’s cost model (Section 4.2.3) may not tell us whether a trans-
formation based on this theorem would constitute an optimisation.

Before starting a new research topic on it, we propose here some ideas
about how to measure whether inter-processor "horizontal" communication is
supported by hardware, in order to detect the feasibility of this optimisation
on a given machine.

a.1 communication throughput

Network speed and network capacity are two different dimensions of com-
munication performance. In the SGL bridging model, the network speed can
be measured by SGL’s cost model machine parameter g presented in Sec-
tion 4.2.3. This parameter describes how fast the connection is for transmitting
one word from master (resp. child) to its child (resp. master).

However, if inter-worker communication is allowed in SGL, the network
capacity used to measure the amount of words that can be transferred at the
same moment between workers of a master, should also be taken into account
in order to recognize the network saturation. We thus propose a new machine
parameter for the cost model of SGL:

- t: the throughput, maximum words that can be transferred simultane-
ously in a master-children sub-tree.

131

132 appendix

For example, t = 1 denotes that the hardware does not support the inter-
processor communication (cf. SGL); t < p denotes that the inter-processor
communication is allowed with limited bandwidth (eg. most of current CPU-
GPU architectures); and t = p denotes that the network supports all-to-all
communication with a satisfactory bandwidth (cf. BSP).

The communication cost also depends on the partition of data to transfer.
The data partition can be reflected using the algorithm parameter k of SGL’s
cost model. For sending n words initially stored on one processor, or receiving
n words by one processor, according to SGL’s cost formulae where comm =

g× k, the communication cost is:

g×n

which is the upper bound of communication cost in one SGL level.

In the case where if these n words are evenly partitioned over p SGLC com-
ponents (children) in the same level (ie. n/p words per processor) before and
after the data exchange (eg. in a perfect balancing algorithm), the communi-
cation cost is:

g×n

min(p, t)

where g represents the communication speed and t the communication capac-
ity. This is the lower bound of communication cost in one SGL level.

The additional parameter t that reflects the cost of a horizontal exchange, al-
lows to detect whether a transformation based on the GPS theorem presented
in this thesis would constitute an optimisation.

B I B L I O G R A P H Y

[AAA+01] F. Allen, G. Almasi, W. Andreoni, D. Beece, B. J. Berne,
A. Bright, J. Brunheroto, C. Cascaval, J. Castanos, P. Coteus,
P. Crumley, A. Curioni, M. Denneau, W. Donath, M. Elefthe-
riou, B. Fitch, B. Fleischer, C. J. Georgiou, R. Germain, M. Gi-
ampapa, D. Gresh, M. Gupta, R. Haring, H. Ho, P. Hochschild,
S. Hummel, T. Jonas, D. Lieber, G. Martyna, K. Maturu, J. Mor-
eira, D. Newns, M. Newton, R. Philhower, T. Picunko, J. Pit-
era, M. Pitman, R. Rand, A. Royyuru, V. Salapura, A. Sanomiya,
R. Shah, Y. Sham, S. Singh, M. Snir, F. Suits, R. Swetz, W. C.
Swope, N. Vishnumurthy, T. J. C. Ward, H. Warren, and R. Zhou.
Blue Gene: a vision for protein science using a petaflop super-
computer. IBM Syst. J., 40(2):310–327, February 2001. (Cited on
page 13.)

[ABB+03] George Almasi, Ralph Bellofatto, Jose Brunheroto, Calin Cas-
caval, Jose G. Castanos, José G, Luis Ceze, Paul Crumley,
C. Christopher Erway, Joseph Gagliano, Derek Lieber, Xavier
Martorell, José E. Moreira, and Alda Sanomiya. An Overview
of the Blue Gene/L System Software Organization. In In Pro-

ceedings of Euro-Par 2003 Conference, Lecture Notes in Computer

Science, pages 543–555. Springer-Verlag, 2003. (Cited on pages 3,
13, and 68.)

[Adv09] Sarita V. Adve. Memory models: a case for rethinking parallel
languages and hardware. In Proceedings of the twenty-first annual

symposium on Parallelism in algorithms and architectures, SPAA ’09,
pages 45–45, New York, NY, USA, 2009. ACM. (Cited on pages 1

and 66.)

[AISS95] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and
Chris Scheiman. LogGP: Incorporating Long Messages into the
LogP Model — One step closer towards a realistic model for par-
allel computation. Technical report, Department of Computer

133

134 bibliography

Science, University of California, Santa Barbara, CA, USA, 1995.
(Cited on page 58.)

[AJS04] Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders, editors. Com-

municating Sequential Processes. The First 25 Years. Springer, 2004.
(Cited on page 41.)

[Alt07] M. Alt. Using Algorithmic Skeletons for Efficient Grid Computing

with Predictable Performance. PhD thesis, Universität Münster,
2007. (Cited on pages 60 and 104.)

[Bar95] Geoff Barrett. Model Checking in Practice: The T9000 Virtual
Channel Processor. IEEE Trans. Softw. Eng., 21(2):69–78, Febru-
ary 1995. (Cited on page 42.)

[BCC+06] Raphaël Bolze, Franck Cappello, Eddy Caron, Michel Daydé,
Frédéric Desprez, Emmanuel Jeannot, Yvon Jégou, Stephane
Lanteri, Julien Leduc, Noredine Melab, Guillaume Mornet,
Raymond Namyst, Pascale Primet, Benjamin Quetier, Olivier
Richard, El-Ghazali Talbi, and Iréa Touche. Grid’5000: A Large
Scale And Highly Reconfigurable Experimental Grid Testbed.
Int. J. High Perform. Comput. Appl., 20(4):481–494, November
2006. (Cited on page 19.)

[BDH+08] Kevin J. Barker, Kei Davis, Adolfy Hoisie, Darren J. Kerbyson,
Mike Lang, Scott Pakin, and Jose C. Sancho. Entering the
petaflop era: the architecture and performance of roadrunner. In
Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
SC ’08, pages 1:1–1:11, Piscataway, NJ, USA, 2008. IEEE Press.
(Cited on pages 3, 24, and 68.)

[BDH+09] Kevin J. Barker, Kei Davis, Adolfy Hoisie, Darren J. Kerbyson,
Michael Lang, Scott Pakin, and Jose Carlos Sancho. Using Per-
formance Modeling to Design Large-Scale Systems. Computer,
42:42–49, 2009. (Cited on page 47.)

[BFMR96] Luc Bougé, Pierre Fraigniaud, Anne Mignotte, and Yves Robert,
editors. The E-BSP model: Incorporating general locality and un-

balanced communication into the BSP model, volume 1124 of Lec-

ture Notes in Computer Science. Springer Berlin Heidelberg, 1996.
(Cited on page 54.)

bibliography 135

[BHC+93] Guy E. Blelloch, Jonathan C. Hardwick, Siddhartha Chatterjee,
Jay Sipelstein, and Marco Zagha. Implementation of a portable
nested data-parallel language. In Proceedings of the fourth ACM

SIGPLAN symposium on Principles and practice of parallel program-

ming, PPOPP ’93, pages 102–111, New York, NY, USA, 1993.
ACM. (Cited on page 39.)

[BHP+96] Gianfranco Bilardi, Kieran T. Herley, Andrea Pietracaprina,
Geppino Pucci, and Paul Spirakis. BSP vs LogP. In Proceed-

ings of the eighth annual ACM symposium on Parallel algorithms

and architectures, SPAA ’96, pages 25–32, New York, NY, USA,
1996. ACM. (Cited on page 58.)

[Bis95] Rob H. Bisseling. Sparse Matrix Computations on Bulk Syn-
chronous Parallel Computers. In G. Alefeld, O. Mahrenholtz,
and R. Mennicken, editors, Proceedings ICIAM ’95, pages 127–
130. Akademie Verlag, 1995. (Cited on page 53.)

[Bis04] Rob H. Bisseling. Parallel Scientific Computation: A Structured Ap-

proach using BSP and MPI. Oxford University Press, 2004. (Cited
on page 50.)

[BJK+95] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an
efficient multithreaded runtime system. In Proceedings of the fifth

ACM SIGPLAN symposium on Principles and practice of parallel

programming, PPOPP ’95, pages 207–216, New York, NY, USA,
1995. ACM. (Cited on page 58.)

[BJOR99] Olaf Bonorden, Ben Juurlink, Ingo Von Otte, and Ingo Rieping.
The Paderborn University BSP (PUB) Library - Design, Imple-
mentation and Performance. In In Proc. of 13th International

Parallel Processing Symposium & 10th Symposium on Parallel and

Distributed Processing (IPPS/SPDP, pages 99–104. Society Press,
1999. (Cited on pages 51, 65, and 66.)

[BJvOR03] Olaf Bonorden, Ben Juurlink, Ingo von Otte, and Ingo Rieping.
The Paderborn University BSP (PUB) library. Parallel Comput.,
29:187–207, February 2003. (Cited on page 51.)

136 bibliography

[BK96] George Horatiu Botorog and Herbert Kuchen. Efficient Parallel
Programming with Algorithmic Skeletons. In Euro-Par, Vol. I,
pages 718–731, 1996. (Cited on pages 2 and 66.)

[BM94] Rob H. Bisseling and William F. McColl. Scientific Computing
on Bulk Synchronous Parallel Architectures. In IFIP Congress

(1), pages 509–514, 1994. (Cited on page 53.)

[Bou96] Luc Bougé. The data parallel programming model: A semantic
perspective. In Guy-René Perrin and Alain Darte, editors, The

Data Parallel Programming Model, volume 1132 of Lecture Notes in

Computer Science, pages 4–26. Springer Berlin Heidelberg, 1996.
(Cited on pages 47 and 86.)

[CJvdPK07] Barbara Chapman, Gabriele Jost, Ruud van der Par, and David J.
Kuck. Using OpenMP: Portable Shared Memory Parallel Program-

ming. The MIT Press, 2007. (Cited on page 32.)

[CKP+93] David Culler, Richard Karp, David Patterson, Abhijit Sahay,
Klaus Erik Schauser, Eunice Santos, Ramesh Subramonian, and
Thorsten von Eicken. LogP: towards a realistic model of paral-
lel computation. In Proceedings of the fourth ACM SIGPLAN sym-

posium on Principles and practice of parallel programming, PPOPP
’93, pages 1–12, New York, NY, USA, 1993. ACM. (Cited on
page 57.)

[CL01] Hojung Cha and Dongho Lee. H-BSP: A Hierarchical BSP Com-
putation Model. J. Supercomput., 18(2):179–200, February 2001.
(Cited on page 55.)

[Co.09] Nvidia Co. Nvidia Fermi Compute Architecture Whitepaper ,
2009. (Cited on pages 22 and 23.)

[Col89] M. Cole. Algorithmic Skeletons, Structural Management of Parallel

Computation. MIT Press, 1989. (Cited on pages 2, 60, and 66.)

[Col04a] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic
Manifesto for Skeletal Parallel Programming. Parallel Comput-

ing, 30(3):389–406, 2004. (Cited on page 60.)

[Col04b] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic
Manifesto for Skeletal Parallel Programming. Parallel Comput-

ing, 30(3):389–406, 2004. (Cited on page 94.)

bibliography 137

[Cra91] Cray Computer Corporation. CRAY-3 Software Introduction Man-

ual. Cray Computer Corp., Technical Publications Department,
1991. (Cited on page 12.)

[CRDI07] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell broadband
engine architecture and its first implementation: a performance
view. IBM J. Res. Dev., 51(5):559–572, September 2007. (Cited on
page 21.)

[CT94] D.K.G. Campbell and S.J. Turner. CLUMPS: a model of efficient,
general purpose parallel computation. In TENCON ’94. IEEE

Region 10’s Ninth Annual International Conference. Theme: Frontiers

of Computer Technology. Proceedings of 1994, pages 723–727 vol.2,
1994. (Cited on page 54.)

[DD95] J. J. Dongarra and T. Dunigan. Message-Passing Performance of
Various Computers. Technical report, University of Tennessee,
Knoxville, TN, USA, 1995. (Cited on page 36.)

[DDH97] Frank Dehne, Wolfgang Dittrich, and David Hutchinson. Effi-
cient external memory algorithms by simulating coarse-grained
parallel algorithms. In Proceedings of the ninth annual ACM sym-

posium on Parallel algorithms and architectures, SPAA ’97, pages
106–115, New York, NY, USA, 1997. ACM. (Cited on page 55.)

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM, 51(1):107–113,
January 2008. (Cited on page 61.)

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent program-
ming control. Commun. ACM, 8(9):569–, September 1965. (Cited
on page 31.)

[DK96a] Dimitris C. Dracopoulos and Simon Kent. Speeding up genetic
programming: a parallel BSP implementation. In Proceedings of

the First Annual Conference on Genetic Programming, GECCO ’96,
pages 421–421, Cambridge, MA, USA, 1996. MIT Press. (Cited
on page 53.)

[DK96b] Dimitris C. Dracopoulos Dracopoulos and Simon Kent. Bulk
Synchronous Parallelisation of Genetic Programming. In Pro-

ceedings of the third International Workshop, PARA ’96, pages 216–
226. Springer Verlag, 1996. (Cited on page 53.)

138 bibliography

[DM02] Narsingh Deo and Paulius Micikevicius. Coarse-Grained Paral-
lelization of Distance-Bound Smoothing for the Molecular Con-
formation Problem. In SajalK. Das and Swapan Bhattacharya,
editors, Distributed Computing, volume 2571 of Lecture Notes in

Computer Science, pages 55–66. Springer Berlin Heidelberg, 2002.
(Cited on page 53.)

[ELZ98] Jörn Eisenbiegler, Welf Löwe, and Wolf Zimmermann. BSP,
LogP, and Oblivious Programs. In Proceedings of the 4th Inter-

national Euro-Par Conference on Parallel Processing, Euro-Par ’98,
pages 865–874, London, UK, UK, 1998. Springer-Verlag. (Cited
on page 58.)

[Fis03] Randall James Fisher. General-purpose SIMD within a register: Par-

allel processing on consumer microprocessors. PhD thesis, Purdue
University, 2003. (Cited on page 39.)

[FK99] Ian Foster and Carl Kesselman, editors. The grid: blueprint for a

new computing infrastructure. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1999. (Cited on page 18.)

[FKT01] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations. Int. J. High

Perform. Comput. Appl., 15(3):200–222, August 2001. (Cited on
page 18.)

[FMM+13] Michael J. Flynn, Oskar Mencer, Veljko Milutinovic, Goran
Rakocevic, Per Stenstrom, Roman Trobec, and Mateo Valero.
Moving from petaflops to petadata. Commun. ACM, 56(5):39–
42, May 2013. (Cited on page 47.)

[FSCL06] J. Falcou, J. Serot, T. Chateau, and J. T. Lapreste. QUAFF : Ef-
ficient C++ Design for Parallel Skeletons. Parallel Computing,
32(7-8):604–615, 2006. (Cited on page 94.)

[FW78] Steven Fortune and James Wyllie. Parallelism in random access
machines. In Proceedings of the tenth annual ACM symposium on

Theory of computing, STOC ’78, pages 114–118, New York, NY,
USA, 1978. ACM. (Cited on pages 47 and 70.)

[FYA+97] H. Fujii, Y. Yasuda, H. Akashi, Y. Inagami, M. Koga, O. Ishihara,
M. Kashiyama, H. Wada, and T. Sumimoto. Architecture and

bibliography 139

performance of the Hitachi SR2201 massively parallel processor
system. In Parallel Processing Symposium, 1997. Proceedings., 11th

International, pages 233–241, 1997. (Cited on page 13.)

[Gav05] Frédéric Gava. Approches fonctionnelles de la programmation para-

llèle et des méta-ordinateurs. Sémantiques, implantations et certifica-

tion. PhD thesis, Université Paris XII-Val de Marne, LACL, 2005.
(Cited on pages 43 and 51.)

[Ger93] Alexandros V. Gerbessiotis. Topics in Parallel and Distributed

Computation. PhD thesis, Harvard University, 1993. (Cited on
page 53.)

[Ges09] Louis Gesbert. Développement systématique et sûreté d’exécution en

programmation parallèle structurée. PhD thesis, Université Paris-
Est, 2009. (Cited on page 124.)

[GG11] I. Garnier and F. Gava. CPS Implementation of a BSP Compo-
sition Primitive with Application to the Implementation of Al-
gorithmic Skeletons. Parallel, Emergent and Distributed Systems,
2011. To appear. (Cited on page 94.)

[GGP09] Philipp Grabher, Johann Großschädl, and Dan Page. Selected
areas in cryptography. chapter On Software Parallel Implemen-
tation of Cryptographic Pairings, pages 35–50. Springer-Verlag,
Berlin, Heidelberg, 2009. (Cited on page 39.)

[Gla09] Peter N. Glaskowsky. NVIDIA’s Fermi: The First Complete GPU

Computing Architecture. Nvidia, September 2009. (Cited on
pages 23 and 82.)

[GLS99] William Gropp, Ewing L Lusk, and Anthony Skjellum. Using

MPI : Portable Parallel Programming with the Message Passing In-

terface, volume 1. MIT press, 1999. (Cited on page 43.)

[GMR94] Phillip B. Gibbons, Yossi Matias, and Vijaya Ramachandran.
The QRQW PRAM: accounting for contention in parallel algo-
rithms. In Proceedings of the fifth annual ACM-SIAM symposium

on Discrete algorithms, SODA ’94, pages 638–648, Philadelphia,
PA, USA, 1994. Society for Industrial and Applied Mathematics.
(Cited on page 48.)

140 bibliography

[Gor96] Sergei Gorlatch. Systematic Extraction and Implementation of
Divide-and-Conquer Parallelism. In Proceedings of the 8th Inter-

national Symposium on Programming Languages: Implementations,

Logics, and Programs, PLILP ’96, pages 274–288, London, UK,
UK, 1996. Springer-Verlag. (Cited on page 104.)

[Gri74] Ralph Grishman. Assembly Language Programming for the Control

Data 6000 Series and the Cyber 70 Series. Algorithmics Press, 1974.
(Cited on page 9.)

[Gri12] Grid5000. Grid’5000: Hardware, 2012. (Cited on page 19.)

[Gro12] Michael Gross. Folding research recruits unconventional help.
Current Biology, 22(2):R35 – R38, 2012. (Cited on page 20.)

[Hai98] G. Hains. Subset Synchronization in BSP Computing. In H. R.
Arabnia, editor, PDPTA’98 International Conference on Parallel

and Distributed Processing Techniques and Applications, volume I,
pages 242–246, Las Vegas, July 1998. CSREA Press. (Cited on
page 69.)

[HB99] Guy Horvitz and Rob H. Bisseling. Designing a
BSP Version of ScaLAPACK. In SIAM Conference on

Parallel Processing for Scientific Computing 1999, 1999.
http://www.odysci.com/article/1010112988021697. (Cited
on page 53.)

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal
modular ACTOR formalism for artificial intelligence. In Proceed-

ings of the 3rd international joint conference on Artificial intelligence,
IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973. Morgan
Kaufmann Publishers Inc. (Cited on page 44.)

[HC02] Anthony Hall and Roderick Chapman. Correctness by Con-
struction: Developing a Commercial Secure System. IEEE Softw.,
19(1):18–25, January 2002. (Cited on page 42.)

[HDH02] Per Brinch Hansen, Edsger W. Dijkstra, and C. A. R. Hoare. The

Origins of Concurrent Programming: From Semaphores to Remote

Procedure Calls. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2002. (Cited on page 31.)

bibliography 141

[Hew77] Carl Hewitt. Viewing control structures as patterns of passing
messages. Artificial Intelligence, 8(3):323 – 364, 1977. (Cited on
page 45.)

[HF93] G. Hains and C. Foisy. The Data-Parallel Categorical Abstract
Machine. In A. Bode, M. Reeve, and G. Wolf, editors, PARLE’93,

Parallel Architectures and Languages Europe, number 694 in Lec-
ture Notes in Computer Science, pages 56–67, Munich, June
1993. Springer. (Cited on page 67.)

[HGL+] Gaétan Hains, Jean-Guillaume Grebet, Chong Li, Mohamad Al
Hajj Hassan, Aurélien Gonnay, and Frédéric Loulergue. EXQIL

Reference Manual. EXQIM SAS, 24, rue de Caumartin, 75009

Paris. (Cited on pages x and 130.)

[Hin13] Pieter Hintjens, editor. Code Connected Volume 1: Learning Ze-

roMQ. CreateSpace Independent Publishing Platform, 2013.
(Cited on pages 36, 37, and 38.)

[Hit97] Hitachi. HITACHI SR2201 Massively Parallel Processor, 1997.
(Cited on page 13.)

[HJB98] David R. Helman, Joseph JáJá, and David A. Bader. A new
deterministic parallel sorting algorithm with an experimental
evaluation. J. Exp. Algorithmics, 3, September 1998. (Cited on
page 100.)

[HJS99] Mark D. Hill, Norman P. Jouppi, and Gurindar S. Sohi. Readings

in computer architecture. Morgan Kaufmann, 1999. (Cited on
page 11.)

[HML+03] Th. Hauser, T. I. Mattox, R. P. LeBeau, H. G. Dietz, and P. G.
Huang. Code Optimizations for Complex Microprocessors Ap-
plied to CFD Software. SIAM J. Sci. Comput., 25(4):1461–1477,
April 2003. (Cited on page 39.)

[HMS+98] Jonathan M.D. Hill, Bill McColl, Dan C. Stefanescu, Mark W.
Goudreau, Kevin Lang, Satish B. Rao, Torsten Suel, Thanasis
Tsantilas, and Rob H. Bisseling. BSPlib: The BSP programming
library. Parallel Computing, 24(14):1947 – 1980, 1998. (Cited on
pages 51, 65, and 66.)

142 bibliography

[Hoa74] C. A. R. Hoare. Monitors: an operating system structuring con-
cept. Commun. ACM, 17(10):549–557, October 1974. (Cited on
page 31.)

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun.

ACM, 21(8):666–677, August 1978. (Cited on page 41.)

[HOF+12] Ruud Haring, Martin Ohmacht, Thomas Fox, Michael
Gschwind, David Satterfield, Krishnan Sugavanam, Paul Co-
teus, Philip Heidelberger, Matthias Blumrich, Robert Wis-
niewski, alan gara, George Chiu, Peter Boyle, Norman Chist,
and Changhoan Kim. The IBM Blue Gene/Q Compute Chip.
IEEE Micro, 32(2):48–60, March 2012. (Cited on pages 3, 15,
and 68.)

[HR92] Todd Heywood and Sanjay Ranka. A practical hierarchical
model of parallel computation i. the model. Journal of Paral-

lel and Distributed Computing , 16(3):212 – 232, 1992. (Cited on
page 54.)

[HS98] Jonathan M. D. Hill and David B. Skillicorn. Practical Barrier
Synchronisation. In In 6th EuroMicro Workshop on Parallel and

Distributed Processing (PDP’98, pages 438–444. IEEE Computer
Society Press, 1998. (Cited on page 49.)

[Inc77] Cray Research Inc. The Cray-1 Computer System, 1977. (Cited
on page 11.)

[Int12] Intel Corp. An Overview of Programming for Intel Xeon proces-
sors and Intel Xeon Phi coprocessors, 2012. (Cited on page 23.)

[JB07] C. R. Johns and D. A. Brokenshire. Introduction to the cell
broadband engine architecture. IBM J. Res. Dev., 51:503–519,
September 2007. (Cited on pages 3, 21, and 68.)

[KB07] William J. Knottenbelt and Jeremy T. Bradley. Tackling large
state spaces in performance modelling. In Proceedings of the 7th

international conference on Formal methods for performance evalua-

tion, SFM’07, pages 318–370, Berlin, Heidelberg, 2007. Springer-
Verlag. (Cited on page 44.)

bibliography 143

[KC02] H. Kuchen and M. Cole. The Integration of Task and Data Par-
allel Skeletons. Parallel Processing Letters, 12(2):141–155, 2002.
(Cited on page 94.)

[KCD+08] Valentin Kravtsov, David Carmeli, Werner Dubitzky, Ariel Orda,
Assaf Schuster, Mark Silberstein, and Benny Yoshpa. Quasi-
opportunistic Supercomputing in Grid Environments. In Pro-

ceedings of the 8th international conference on Algorithms and Archi-

tectures for Parallel Processing, ICA3PP ’08, pages 233–244, Berlin,
Heidelberg, 2008. Springer-Verlag. (Cited on page 19.)

[KDH+05] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy. Introduction to the cell multiprocessor. IBM J.

Res. Dev., 49:589–604, July 2005. (Cited on pages 3, 21, and 68.)

[KDH11] Kamran Karimi, Neil Dickson, and Firas Hamze. High-
performance Physics Simulations Using Multi-core CPUs and
GPGPUs in a Volunteer Computing Context. Int. J. High Perform.

Comput. Appl., 25(1):61–69, February 2011. (Cited on page 19.)

[KHL12] Youry Khmelevsky, Gaétan Hains, and Chong Li. Automatic
code generation within student’s software engineering projects.
In Proceedings of the Seventeenth Western Canadian Conference on

Computing Education, WCCCE ’12, pages 29–33, New York, NY,
USA, 2012. ACM. (Cited on pages x and 130.)

[Kog81] Peter M. Kogge. The Architecture of Pipelined Computers. Taylor
& Francis, 1981. (Cited on page 10.)

[KTJR05] Rakesh Kumar, Dean M. Tullsen, Norman P. Jouppi, and
Parthasarathy Ranganathan. Heterogeneous Chip Multiproces-
sors. Computer, 38:32–38, 2005. (Cited on pages 3 and 68.)

[LG02] Isabelle Guérin Lassous and Jens Gustedt. Portable list ranking:
an experimental study. J. Exp. Algorithmics, 7:7–, December 2002.
(Cited on page 53.)

[LGB05] Frédéric Loulergue, Frédéric Gava, and David Billiet. Bulk
Synchronous Parallel ML: Modular Implementation and Perfor-
mance Prediction. In Vaidy S. Sunderam, Geert Dick Albada,
Peter M. A. Sloot, and Jack J. Dongarra, editors, Computational

144 bibliography

Science - ICCS 2005, volume 3515 of Lecture Notes in Computer Sci-

ence, pages 1046–1054. Springer Berlin Heidelberg, 2005. (Cited
on pages 51, 65, and 66.)

[LGG97] Christian Lengauer, Martin Griebl, and Sergei Gorlatch, editors.
Parallel priority Queue and list contraction: The BSP approach, vol-
ume 1300 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 1997. (Cited on page 53.)

[LGH12] Chong Li, Frederic Gava, and Gaetan Hains. Implementation of
data-parallel skeletons: A case study using a coarse-grained hi-
erarchical model. In Proceedings of the 2012 11th International

Symposium on Parallel and Distributed Computing, ISPDC ’12,
pages 26–33, Washington, DC, USA, 2012. IEEE Computer Soci-
ety. (Cited on pages ix and 85.)

[LH10] Chong Li and Gaétan Hains. A simple bridging model for
high-performance computing. Technical Report TR-LACL-2010-
12, Laboratoire d’Algorithmique, Complexité et Logique, Uni-
versité Paris-Est, http://lacl.fr/Rapports/TR/TR-LACL-2010-
12.pdf, 2010.

[LH11a] Chong Li and Gaétan Hains. SGL - programmation parallèle
hétérogène et hiérarchique. In Actes des troisièmes journées na-

tionales du Groupement De Recherche CNRS du Génie de la Program-

mation et du Logiciel, pages 93–96. 2011.

[LH11b] Chong Li and Gaétan Hains. A simple bridging model for high-
performance computing. In High Performance Computing and

Simulation, 2011 International Conference on, HPCS 2011, pages
249–256, Washington, DC, USA, 2011. IEEE Computer Society.
(Cited on pages ix and 65.)

[LH12a] Chong Li and Gaétan Hains. SGL: towards a bridging model
for heterogeneous hierarchical platforms. Int. J. High Perform.

Comput. Netw., 7(2):139–151, April 2012. (Cited on pages ix, 65,
and 85.)

[LH12b] Chong Li and Gaétan Hains. SGL: vers la programmation para-
llèle hétérogène et hiérarchique. In Actes des journées nationales

de GDR-GPL, CIEL et EJCP 2012, pages 127–130. 2012.

bibliography 145

[LHF00] F. Loulergue, G. Hains, and C. Foisy. A Calculus of Functional
BSP Programs. Science of Computer Programming, 37(1-3):253–
277, 2000. (Cited on pages 2 and 68.)

[LHK+12] Chong Li, Gaétan Hains, Youry Khmelevsky, Brandon Potter,
Jesse Gaston, Andrew Jankovic, Sam Boateng, and William Lee.
Generating a real-time algorithmic trading system prototype
from customized UML models (a case study). Technical Report
TR-LACL-2012-09, Laboratoire d’Algorithmique, Complexité et
Logique, Université Paris-Est, http://lacl.fr/Rapports/TR/TR-
LACL-2012-09.pdf, 2012.

[Lib10] SGI Techpubs Library. SGI Altix ICE 8200 Series Hardware Sys-
tem User’s Guide , 2010. (Cited on page 16.)

[LLN11] LLNL. Lawrence Livermore National Laboratory: BlueGene/L
, 2011. (Cited on pages 14 and 15.)

[LLV12] LLVM. LLVM Documentation, 2012. (Cited on page 40.)

[Lou00] F. Loulergue. Conception de langages fonctionnels pour la pro-

grammation massivement parallèle. thèse de doctorat, Université
d’Orléans, LIFO, 4 rue Léonard de Vinci, BP 6759, F-45067 Or-
léans Cedex 2, France, January 2000. (Cited on pages 2 and 68.)

[LZE97] Welf Löwe, Wolf Zimmermann, and Jörn Eisenbiegler. On Lin-
ear Schedules of Task Graphs for Generalized LogP-Machines.
In Proceedings of the Third International Euro-Par Conference on Par-

allel Processing, Euro-Par ’97, pages 895–904, London, UK, UK,
1997. Springer-Verlag. (Cited on page 58.)

[MAB+10] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski.
Pregel: a system for large-scale graph processing. In Proceedings

of the 2010 ACM SIGMOD International Conference on Manage-

ment of data, SIGMOD ’10, pages 135–146, New York, NY, USA,
2010. ACM. (Cited on pages 53 and 66.)

[Mar12] Nathan Marz. Storm - Tutorial, 2012. (Cited on page 46.)

[MH05] Armelle Merlin and Gaétan Hains. A Generic Cost Model for
Concurrent and Data-parallel Meta-computing. Electron. Notes

Theor. Comput. Sci., 128(6):3–19, May 2005. (Cited on page 44.)

146 bibliography

[MH07] Armelle Merlin and Gaétan Hains. A bulk-synchronous paral-
lel process algebra. Comput. Lang. Syst. Struct., 33(3-4):111–133,
October 2007. (Cited on page 44.)

[Mil82] R. Milner. A Calculus of Communicating Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1982. (Cited on page 44.)

[Mil93] R. Milner. Action Structures and the Pi Calculus. Technical
Report ECS-LFCS-93-264, Laboratory for Foundations of Com-
puter Science, University of Edinburgh, Edinburgh, Scotland,
1993. (Cited on page 41.)

[MPW92] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Pro-
cesses, I and II. Information and Computation, 100(1):1–40 and
41–77, September 1992. (Cited on page 41.)

[Mur97] Charles Murray. The Supermen. Wiley & Sons, 1997. (Cited on
page 12.)

[Mur08] San Murugesan. Harnessing Green IT: Principles and Practices.
IT Professional, 10(1):24–33, January 2008. (Cited on page 3.)

[MW98] William F. McColl and David Walker. Theory and Algorithms
for Parallel Computation. In David J. Pritchard and Jeff Reeve,
editors, Euro-Par, volume 1470 of Lecture Notes in Computer Sci-

ence, pages 863–864. Springer, 1998. (Cited on pages 2 and 67.)

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron.
Scalable Parallel Programming with CUDA. Queue, 6:40–53,
March 2008. (Cited on page 23.)

[NHBY09] Rajesh Nishtala, Paul H. Hargrove, Dan O. Bonachea, and
Katherine A. Yelick. Scaling communication-intensive appli-
cations on BlueGene/P using one-sided communication and
overlap. In Proceedings of the 2009 IEEE International Symposium

on Parallel&Distributed Processing, pages 1–12, Washington, DC,
USA, 2009. IEEE Computer Society. (Cited on page 15.)

[Nor11] Norddeutsche Verbund für Hoch- und Höchstleistungsrechnen
(HLRN). The SGI System - Hardware Overview , 2011. (Cited
on page 21.)

bibliography 147

[O’H07] John O’Hara. Toward a Commodity Enterprise Middleware.
Queue, 5(4):48–55, May 2007. (Cited on page 36.)

[PG04] Onil Nazra Persada and Thierry Goubier. Accelerating Raster
Processing with Fine and Coarse Grain Parallelism in GRASS.
In Proceedings of the FOSS/GRASS Users Conference, Bangkok,
Thailand, 2004. (Cited on page 39.)

[PPdQN+01] Flavio L. C. Pádua, Guilherme A. S. Pereira, Jose P.
de Queiroz Neto, Mario F. M. Campos, and Antonio O. Fernan-
des. Improving Processing Time of Large Images By Instruction
Level Parallelism, 2001. (Cited on page 39.)

[Pur74] Charles J. Purcell. The control data STAR-100: performance mea-
surements. In Proceedings of the May 6-10, 1974, national computer

conference and exposition, AFIPS ’74, pages 385–387, New York,
NY, USA, 1974. ACM. (Cited on page 10.)

[RS98] R. O. Rogers and D. B. Skillicorn. Using the BSP cost model to
optimise parallel neural network training. Future Gener. Comput.

Syst., 14(5-6):409–424, December 1998. (Cited on page 53.)

[sD08] IBM journal of Research staff and Development. Overview of
the IBM Blue Gene/P project. IBM J. Res. Dev., 52:199–220, Jan-
uary 2008. (Cited on pages 3, 15, and 68.)

[SHD99] Andrew C. Simpson, Jonathan M.D. Hill, and Stephen R. Don-
aldson. BSP in CSP: Easy as ABC. In Parallel and Distributed Pro-

cessing, volume 1586 of Lecture Notes in Computer Science, pages
1299–1313. Springer Berlin Heidelberg, 1999. (Cited on page 44.)

[SHM97] David B. Skillicorn, Jonathan M. D. Hill, and William F. Mc-
Coll. Questions and Answers about BSP. Scientific Programming,
6(3):249–274, 1997. (Cited on page 49.)

[Sit99] Kragen Javier Sitaker. Beowulf mailing list FAQ, 1999. (Cited
on page 17.)

[SK93] Holger Stoltze and Herbert Kuchen. Parallel Functional Pro-
gramming Using Algorithmic Skeletons. In PARCO, pages 647–
654, 1993. (Cited on pages 2 and 66.)

148 bibliography

[SKP06] Sayantan Sur, Matthew J. Koop, and Dhabaleswar K. Panda.
High-performance and scalable MPI over InfiniBand with re-
duced memory usage: an in-depth performance analysis. In
Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
SC ’06, New York, NY, USA, 2006. ACM. (Cited on page 36.)

[SMD+10] A.C. Sodan, J. Machina, A. Deshmeh, K. Macnaughton, and
B. Esbaugh. Parallelism via Multithreaded and Multicore CPUs.
Computer, 43(3):24 –32, March 2010. (Cited on page 69.)

[SPI] SPIRAL. Software Generation for the Cell Broadband Engine
(Cell BE). (Cited on page 22.)

[Spr01] L.A. Spracklen. SWAR Systems and Communications Applications.
University of Aberdeen, 2001. (Cited on page 39.)

[SS92] Hanmao Shi and Jonathan Schaeffer. Parallel sorting by regular
sampling. J. Parallel Distrib. Comput., 14(4):361–372, April 1992.
(Cited on pages 100 and 123.)

[Ste01] Thomas Sterling. Beowulf Cluster Computing With Linux. MIT
Press, 2001. (Cited on page 17.)

[Sto12] Storm project. Storm - distributed and fault-tolerant realtime
computation, 2012. (Cited on page 45.)

[Suj96] Ronald Sujithan. BSP Parallel Sorting by Regular Sampling -
Algorithm and Implementation. Technical report, Computing
Laboratory, University of Oxford, 1996. (Cited on page 100.)

[Ter07] Daniel Terdiman. Sony’s Folding@home project gets Guinness
record , 2007. (Cited on page 20.)

[TFM+11] Martin Thompson, Dave Farley, Barker Michael, Patricia Gee,
and Andrew Stewart. Disruptor: high performance alternative
to bounded queues for exchanging data between concurrent
threads, 2011. (Cited on page 32.)

[Tho63] James E. Thornton. Considerations in Computer Design - Leading

up to the Control Data 6600. Control Data Corporation, 1963.
(Cited on page 9.)

[Tho70] James E. Thornton. Design of a Computer - The Control Data 6600.
Scott Foresman & Co, 1970. (Cited on pages 9 and 10.)

bibliography 149

[THS03] M. Osman Tokhi, M. Alamgir Hossain, and M. Hasan Sha-
heed. Parallel Computing for Real-time Signal Processing and Con-

trol. Springer, 2003. (Cited on page 11.)

[Tis98] Alexandre Tiskin. The bulk-synchronous parallel random ac-
cess machine. Theor. Comput. Sci., 196(1-2):109–130, April 1998.
(Cited on pages 55, 72, 78, and 80.)

[Tis99] Alexandre Tiskin. The Design and Analysis of Bulk-Synchronous

Parallel Algorithms. PhD thesis, University of Oxford, 1999.
(Cited on pages ix, 53, 65, 78, 100, 121, and 129.)

[TK96] Pilar de la Torre and Clyde P. Kruskal. Submachine Locality
in the Bulk Synchronous Setting (Extended Abstract). In Pro-

ceedings of the Second International Euro-Par Conference on Parallel

Processing-Volume II, Euro-Par ’96, pages 352–358, London, UK,
UK, 1996. Springer-Verlag. (Cited on page 54.)

[Top] The Top500 List. (Cited on page 26.)

[Ung95] Stephen H. Unger. Hazards, Critical Races, and Metastabil-
ity. IEEE Trans. Comput., 44(6):754–768, June 1995. (Cited on
page 31.)

[Val90] Leslie G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33:103–111, August 1990. (Cited on pages viii,
2, 47, 48, 65, 67, 70, and 86.)

[Val11] Leslie G. Valiant. A bridging model for multi-core comput-
ing. J. Comput. Syst. Sci., 77(1):154–166, January 2011. (Cited
on pages 56, 65, 69, 75, 77, and 86.)

[Wik] Wikipedia. Scope (computer science) - Lexical scoping and dy-
namic scoping. (Cited on page 43.)

[Wik08a] Wikipedia. Compute Unified Device Architecture , 2008. (Cited
on page 23.)

[Wik08b] Wikipedia. IBM Roadrunner , 2008. (Cited on pages 24 and 25.)

[Win93] Glynn Winskel. The formal semantics of programming languages:

an introduction. MIT Press, Cambridge, MA, USA, 1993. (Cited
on page 86.)

150 bibliography

[YBRM13] A. N. Yzelman, R. H. Bisseling, D. Roose, and K. Meerber-
gen. MulticoreBSP for C: a high-performance library for shared-
memory parallel programming. International Journal of Parallel

Programming, 2013. accepted for publication. (Cited on pages 51,
65, and 66.)

[YLL+11] Xue-Jun Yang, Xiang-Ke Liao, Kai Lu, Qing-Feng Hu, Jun-Qiang
Song, and Jin-Shu Su. The TianHe-1A Supercomputer: Its Hard-
ware and Software. Journal of Computer Science and Technology,
26(3):344–351, 2011. (Cited on page 26.)

Un Modèle de Transition Logico-Matérielle pour
la Simplification de la Programmation Parallèle

Résumé :
La programmation parallèle et les algorithmes data-parallèles sont depuis plusieurs décennies les principales techniques
de soutien l’informatique haute performance. Comme toutes les propriétés non-fonctionnelles du logiciel, la conversion
des ressources informatiques dans des performances évolutives et prévisibles implique un équilibre délicat entre abstrac-
tion et automatisation avec une précision sémantique. Au cours de la dernière décennie, de plus en plus de professions
ont besoin d’une puissance de calcul très élevée, mais la migration des programmes existants vers une nouvelle config-
uration matérielle ou le développement de nouveaux algorithmes à finalité spécifique dans un environnement parallèle
n’est jamais un travail facile, ni pour les développeurs de logiciel, ni pour les spécialistes du domaine.

Dans cette thèse, nous décrivons le travail qui vise à simplifier le développement de programmes parallèles, en amélio-
rant également la portabilité du code de programmes parallèles et la précision de la prédiction de performance
d’algorithmes parallèles pour des environnements hétérogènes. Avec ces objectifs à l’esprit, nous avons proposé un
modèle de transition nommé SGL pour la modélisation des architectures parallèles hétérogènes et des algorithmes par-
allèles, et une mise en œuvre de squelettes parallèles basés sur le modèle SGL pour le calcul haute performance. SGL
simplifie la programmation parallèle à la fois pour les machines parallèles classiques et pour les nouvelles machines
hiérarchiques. Il généralise les primitives de la programmation BSML. SGL pourra plus tard en utilisant des techniques
de Model-Driven pour la génération de code automatique à partir d’une fiche technique sans codage complexe, par
exemple pour le traitement de Big-Data sur un système hétérogène massivement parallèle. Le modèle de coût de SGL
améliore la clarté de l’analyse de performance des algorithmes, permet d’évaluer la performance d’une machine et la
qualité d’un algorithme.

Mots clés: Modèle de Transition, Programmation Parallèle, Prédiction de Performance, Sémantique de Langage, Com-
munication Simplifiée, Architecture Hiérarchique, Machine Hétérogène, Bulk Synchronous Parallel, SGL.

A Software-Hardware Bridging Model
for Simplifying Parallel Programming

Abstract :
Parallel programming and data-parallel algorithms have been the main techniques supporting high-performance com-
puting for many decades. Like all non-functional properties of software, the conversion of computing resources into
scalable and predictable performance involves a delicate balance of abstraction and automation with semantic precision.
During the last decade, more and more professions require a very high computing power. However, migrating programs
to a new hardware configuration or developing new specific-purpose algorithms on a parallel environment is never an
easy work, neither for software developers nor for domain specialists.

In this thesis, we describe work that attempts to improve the simplicity of parallel program development, the portability
of parallel program code, and the precision of parallel algorithm performance prediction for heterogeneous environ-
ments. With these goals in mind we proposed a bridging model named SGL for modelling heterogeneous parallel archi-
tectures and parallel algorithms, and an implementation of parallel skeletons based on SGL model for high-performance
computing. SGL simplifies the parallel programming either on the classical parallel machines or on the novel hierarchical
machines. It generalizes the BSML programming primitives. SGL can be used later with model-driven techniques for
automatic code generation from specification sheet without any complex coding, for example processing Big Data on
heterogeneous massively parallel systems. The SGL cost model improves the clarity of algorithms performance analysis;
it allows benchmarking machine performance and algorithm quality.

Keywords: Bridging Model, Parallel Programming, Performance Prediction, Language Semantics, Simplified Commu-
nication, Hierarchical Architecture, Heterogeneous Machine, Bulk Synchronous Parallel, SGL.

Chong Li, PhD Thesis in Computer Science, Université Paris-Est, c© 2013

	Front Cover
	Acknowledgements
	Preface
	French Long Abstract
	Table of Contents
	1 Introduction
	2 Supercomputer Architectures
	2.1 Early Parallel Systems
	2.1.1 Superscalar Processing
	2.1.1.1 CDC 6600

	2.1.2 Vector Processing
	2.1.2.1 CDC STAR-100
	2.1.2.2 Cray-1
	2.1.2.3 Successors of Cray-1

	2.2 Massive Processing
	2.2.1 Clustering
	2.2.1.1 Hitachi SR2201
	2.2.1.2 Blue Gene/L
	2.2.1.3 Altix ICE
	2.2.1.4 Beowulf

	2.2.2 Distributed Computing
	2.2.2.1 Grid Computing
	2.2.2.2 Volunteer Computing

	2.3 Hybrid Computing
	2.3.1 Multiprocessing
	2.3.1.1 Multi-core Processors
	2.3.1.2 Coprocessors / Accelerators

	2.3.2 Hybrid Clusters
	2.3.2.1 RoadRunner
	2.3.2.2 Tianhe-1A

	3 Parallel Programming Models
	3.1 Low-Level Parallel Models
	3.1.1 Shared-Memory Communication
	3.1.1.1 Multi-threaded programming
	3.1.1.2 Directive Programming

	3.1.2 Message-Oriented Models
	3.1.2.1 Message Passing Interface
	3.1.2.2 Message Queuing Protocols

	3.1.3 SWAR Programming Models

	3.2 High-Level Parallel Models
	3.2.1 Concurrent Computation Models
	3.2.1.1 Process Calculi
	3.2.1.2 Actor Model

	3.2.2 Bridging Models
	3.2.2.1 Parallel Random Access Machine
	3.2.2.2 Bulk-Synchronous Parallel
	3.2.2.3 Extensions of the BSP Model

	3.2.3 Other Parallel Models
	3.2.3.1 The LogP Model
	3.2.3.2 Divide and Conquer – Cilk
	3.2.3.3 Algorithmic skeletons & MapReduce

	4 A New Simple Bridging Model
	4.1 Motivation
	4.2 The SGL Model
	4.2.1 The Abstract Machine
	4.2.2 Execution Model
	4.2.3 Cost Model

	4.3 Case study: Modelling Parallel Computers
	4.3.1 Modelling Multi-core Computers
	4.3.2 Modelling Hierarchical Clusters
	4.3.3 Modelling Heterogeneous Computers

	5 SGL Programming
	5.1 Programming Model of SGL
	5.1.1 Language Syntax
	5.1.2 Environments
	5.1.3 Operational Semantics

	5.2 Parallel Skeletons Implementation
	5.2.1 Implementing Basic Data-Parallel Skeletons
	5.2.1.1 Parallel Reduce
	5.2.1.2 Parallel Scan
	5.2.1.3 Parallel Sort

	5.2.2 Implementing Distributable Homomorphism
	5.2.2.1 Program Examples using DH
	5.2.2.2 Implementation of DH programs

	5.2.3 Speedup and Efficiency

	6 Gather-Scatter for simplified communications
	6.1 The GPS Theorem
	6.1.1 Gather-Scatter Communication
	6.1.2 The GPS Theorem

	6.2 Simplifying BSML's Put
	6.2.1 Dilemma in BSML: Proj vs. Put
	6.2.2 The GPS Function
	6.2.3 Experimentation in BSML

	7 Conclusion
	7.1 Conclusion
	7.2 Future work

	A Appendix
	A.1 Communication Throughput

	Bibliography
	Back Cover - Abstract

