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Introduction

The objective of this thesis is to develop a new strategy for the analysis and the global
optimal design of anisotropic structures. In particular, we propose a novel strategy able
to include the optimisation of stiffness and strength into the same design process of a
laminated structure. This is a relevant problem in structural design: both stiffness and
strength are fundamental requirements for a structure. The purpose is to show that the si-
multaneous optimisation of two different characteristics of the structure can be effectively
realised in order to obtain, hopefully, new interesting solutions for practical applications.
In particular we consider structures with a given geometry but having variable stiffness
and strength, because the anisotropy field is variable. We deal, by consequence, with a
rather recent structural optimisation problem, that could be, by a slight abuse of lan-
guage, qualified as the topological optimisation of anisotropy.

The thesis is mainly divided into three parts. In first part of the thesis, we briefly
recall some basic points concerning the description of anisotropy. In particular, in Chapter
1 we introduce the tensorial representation of anisotropy and the polar formalism, used
in this thesis for both the theoretical and numerical developments. Among its several
advantages, we make use of the polar method for three main reasons: the possibility of
describing the material symmetries in a very direct way, the advantage of letting appear
the material orientation as an explicit term and the easiness in changing the reference
frame. Finally, in this Chapter we recall also the mathematical bases of the Classical
Laminated Plate Theory (CLPT) and its polar representation to describe the stiffness
tensors of laminated structures.

Chapter 2 is dedicated to the description of the strength of orthotropic materials
through failure criteria. We present some failure criteria used very often in the design of
laminated structures: the polynomial failure criteria of Tsai-Hill, Hoffman, Tsai-Wu and
the strain-based polynomial criterion of Zhang-Evans. The peculiarity of these criteria
concerns their formulation, based upon a unique condition that algebraically can be in-
terpreted to as a quadratic form. Moreover, we introduce, in this Chapter the “unified
matrix formulation” of these criteria that will be the starting point for their invariant
formulation described in Chapter 4.

In Chapter 3 we give a short overview on optimisation of laminates for what concerns
the maximisation of stiffness and/or strength. Far from being exhaustive, its aim is to
place in a bibliographic context our research.

The second part focuses on strength description and optimisation for orthotropic ma-
terials. In particular, we develop an appropriate formulation of strength criteria for
orthotropic sheets and, subsequently, we search for an optimal material orientation to
maximise their strength. In Chapter 4 we use the polar formalism to give, for all the
above criteria, a unified formulation based upon the use of tensor invariants. Using these
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results, in Chapter 5, we perform an analytical study to find the orientation of the the
material that minimises the failure index. The objective function is the failure index of
one amongst the polynomial failure criteria considered in Chapter 2.

In the third part of the thesis, we pass to the analysis of the optimal design of lam-
inated structures. As said beforehand, the goal is to propose a strategy to include the
optimisation of stiffness and strength in the same design process of a laminated structure.

The optimisation procedure that we have adopted is a two-step approach that can
be interpreted as a model reduction for a passage from the meso-scale, the layers, to a
macro-scale, the laminate. It can be resumed as follows:

• First step (structural optimisation): the laminated structure is modelled as a single-
layer homogeneous structure; the anisotropy field is optimised, leading to the opti-
mal local mechanical properties of the structure, resumed in four fields of anisotropic
polar parameters for stiffness and strength and in a field of orthotropy directions;
hence, at the end of this step, the optimal mechanical response of the structure and
the distribution of its anisotropic properties, for both stiffness and strength, are
completely known;

• Second step (lay up design): a suitable stacking sequence, giving the optimal re-
sponse obtained at the end of the previous step, is looked for at each point of the
structure; the outcome of this step is hence constituted by n orientation fields, n
being the number of layers.

Such a two-step strategy is not new; in some way it can be reconducted to the first studies
of Miki in 1982.

To be more specific, in Chapter 6 we formulate the general optimisation problem for
stiffness and strength and precise the way that we use to describe the strength of the
homogenised, single layer, fictitious plate of the first step. In order to better introduce
such a procedure, we first recall the essential points of the analogous two-step approach,
concerning only stiffness, already used by Jibawy et al.. Then, with the aim of extending
the analytical approach introduced in Chapter 5 to the strength optimisation of laminated
plates, we define an homogenised failure criterion giving a measure of the strength for
the laminate. In this way we can define the functional, the laminate failure index, to be
minimised in order to maximise the strength.

Concerning the stiffness functional, almost all of the works on stiffness optimisation
take as objective function the compliance, which is a global functional, so its use introduce
to a variational problem having a classical structure: the minimisation of a positive global
functional. On the contrary, strength optimisation problems are not so easy to be deal
with. Strength is always a local property, so any formulation of a strength maximisation
problem gives rise to a variational problem with a local functional, hence to an intrinsically
more complicate mathematical problem. In our approach, aiming to take into account
at the same time for stiffness and strength, we need hence to formulate a mathematical
problem where a local and a global functional are optimised at the same time.

In our approach a relevant assumption is that the design variables describing stiff-
ness and strength, the anisotropic polar moduli, are independent. Nevertheless, the two
anisotropy fields of stiffness and strength are not completely unrelated. They share com-
mon parameter, the material orientation.

For the first step of the strategy, we propose an optimisation process based upon a
water-fall solution method: first we consider one of the two objectives as the leading

2



objective and we minimise it with respect not only to its polar moduli, but also to the
orthotropy orientation; then, the other functional is minimised only with respect to the
polar moduli while the orientation is given and fixed equal to that obtained minimising the
leading objective. Therefore, in Chapter 6 we state two different optimisation problems,
one taking the stiffness as the leading objective while in the second one it is the strength.

In Chapter 7 we present three different algorithms used to solve the first step of the
hierarchical strategy. The first one is a simple modification of the optimisation algorithm
introduced by Allaire and Kohn in 1993. Namely, we added a further phase to the
original version of the algorithm in which we introduce the strength optimisation phase.
We considered the stiffness as the main property to be maximised in terms of all the
stiffness material parameters. On the contrary, the strength functional, i.e. the laminate
failure index, is considered as the secondary property to be maximised.

The second algorithm can be considered, as the “converse” version of the previous
one: the failure index is the leading objective while the complementary energy is the
secondary one. Finally, we propose also a modified versions of this algorithm, more
effective and robust than the previous one. Also, for this last algorithm we have been able
to give a convergence proof, that is monotonic for complementary energy and alternate
for strength. In all of these algorithms two functional are minimised, one being a global
functional, the complementary energy, and the other a local one, the failure index. We
give also an analytical solution for the minimisation of the strength functional, with
respect to the material parameters. Finally, we present some numerical tests in order to
prove the effectiveness and the robustness of the proposed algorithms and to evaluate the
computational costs of this first step of the hierarchical strategy.

The last Chapter 8 concerns the second step, the lay-up design; the general numerical
technique for obtaining a laminate having the optimal properties issued from the first step
is described and discussed, a step for the layer wise check of strength is also introduced,
and a numerical example given. As we show, following a general approach formulated
by Vannucci and based upon the polar formalism, we show that it is really possible to
design, without restricting a priori assumptions, laminates with any kind of elastic prop-
erties. The redundancy of solutions for the lay-up design problem appears to be, in our
approach, a fundamental point that renders possible the existence of laminates satisfying
the optimal requirements. We formulated the problem as an optimisation problem of min-
imum distance between the material parameters of the laminate solution and those issued
from the structural optimisation step. In particular, this objective function is composed
by nine semi-definite positive partial objectives, each one linked to one material param-
eter of the homogenised structure. Due to the non-convexity of the objective function,
we solved this optimisation problem by the aid of the genetic code BIANCA, developed
by Montemurro, Vincenti and Vannucci and used here in an automated procedure for the
sequential solution of the lay-up problem for each one of the finite elements discretising
the structure.

Finally, with this research we develop a new approach to the design of laminates, where
stiffness and strength take part to a unique simultaneous optimisation procedure. The
method presented here does not make use of simplifications usually adopted by laminates
designers. So, at least in principle, true global minima can be obtained.

Conscious that we have not followed existing approaches in the domain, we hope
that our research can be a starting point for future works that, integrating also tech-
nical requirements expressly let apart in this thesis, will lead it from an almost purely
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mathematical achievement to a more appropriate technical solution.
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de Recherche Public Henri Tudor in Luxembourg and at Université de Versailles St.
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Introducing concepts and tools
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1

Anisotropy and laminates classical
theory

1.1 Introduction

Anisotropic materials, such as fiber reinforced composite materials, are extensively used
in many industrial fields thanks to their mechanical performances. However, the design
of structures constituted by such type of materials is very complex.

The main characteristic of an anisotropic material is the dependency of physical prop-
erties from the direction. A clue point in anisotropy, is to dispose of an appropriate
mathematical model related to the physical behaviour of these materials: the tensorial
representation. The combination of these two aspects, directionality of the material be-
haviour and tensorial representation, leads to the necessity of introducing an efficient
formulation linked to the nature of the problem: the invariant formulation of tensors.

The most known “invariant” formulation is that introduced by Tsai and Pagano in
1968 [72], in particular they introduced 7 parameters whereof only 5 are invariants. An-
other invariant formulation, based upon a complex variable transformation and hence
valid only for plane problems, is the polar method proposed by Verchery in 1979 [86].

In this Chapter we recall the mathematical representation of anisotropy, Secs. 1.2 and
1.3, and the classical laminated plate theory, Sec. 1.6, used in this thesis. Furthermore,
in Sec. 1.4 to 1.5 we introduce the polar method and in Sec. 1.6 we use it to describe
the behaviour of anisotropic structures in the framework of the Classical Laminated Plate
Theory (CLPT).

1.2 3D anisotropic elasticity

1.2.1 The Hooke’s law

Let us consider a three-dimensional medium constituted by a linear elastic anisotropic
material and subjected to a stress state described by the Cauchy’s stress tensor σ. De-
noting by E the elastic stiffness tensor, the generalised three-dimensional Hooke’s law [33]
is:

σ = Eε , (1.1)

where ε is the second order tensor of infinitesimal strains. E collects all the informations
on the elastic behaviour of the material.

9



10 1. Anisotropy and laminates classical theory

For an anisotropic material, the fourth order stiffness tensor E has the following ten-
sorial symmetries:

major symmetries : Eijkl = Eklij ,
minor symmetries : Eijkl = Ejikl = Ejilk = Eijlk ,

with i, j, k, l = 1, 2, 3 . (1.2)

The overall number of eqs. (1.2) is 60, hence, in the most general case of a completely
anisotropic (triclinic) material the elasticity tensor has 21 independent components.
The compliance tensor Z is defined as the inverse of E and it has the same tensorial
symmetries of E. The inverse Hooke’s law reads

ε = Zσ . (1.3)

Considering eq. (1.2), the Hooke’s law (1.1) can be expressed in a compact matrix form
using the Voigt’s notation [90]:

σi = Cijεi ; i, j = 1, .., 6 and Cij = Cji , (1.4)

with:

{σ} =



σ1
σ2
σ3
σ4
σ5
σ6


; {ε} =



ε1
ε2
ε3

ε4 = 2ε23
ε5 = 2ε13
ε6 = 2ε12


; (1.5)

and [C] ∈ R6×6 being the stiffness matrix. The inverse of [C] is the compliance matrix [S].
The relations of [C] and [S] with the tensors E and Z can be condensed in the following
abridged matrix formulae:

[C] =

 Eiijj | Eiikl
−− + −−
Eiikl | Eijkl

 , [S] =

 Ziijj | 2Ziikl
−− + −−

2Ziikl | 4Zijkl

 . (1.6)

1.2.2 Elastic symmetries

As seen beforehand, a completely anisotropic material is characterised by 21 independent
elastic components. However, anisotropic materials present often some material symme-
tries, providing an identical mechanical behaviour with respect to a set of directions: the
equivalent directions. Depending on the number and type of material symmetries, the
number of independent elastic moduli is reduced.

The possible symmetries of a material are:

1. Orthogonal symmetry with respect to a plane.
The stiffness matrix is characterised by the following relations:

C41 = C42 = C43 = C46 = C51 = C52 = C53 = C56 = 0 . (1.7)

The number of independent elastic moduli is reduced to 13. Such kind of material
is called monoclinic.
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2. Symmetry with respect to three orthogonal planes.
The relations

C61 = C62 = C63 = C45 = 0 , (1.8)

are verified along with eq. (1.7). The number of independent elastic moduli is
reduced to 9. Such a kind of material is called orthotropic.

3. Symmetry of order n with respect to an axis.
An axis, say the axis x3, is an axis of symmetry of order n if the equivalent directions
superimpose each other rotating by an angle 2π/n around x3. In elasticity, only
symmetries of order 2, 3, 4 and ∞ can exist:

• 2nd order, it can be easily proved that this symmetry is characterised by the
same relations (1.7) of a monoclinic material. The number of independent
elastic moduli is 13;

• 3rd order, the following relations among the components of [C] exist:

C16 = C26 = C34 = C35 = C45 = 0
C22 = C11 , C55 = C44 , C23 = C13 , C24 = −C14 ,

C15 = −C25 , C46 = C25 , C56 = C14 , C66 =
C11 − C12

2
.

(1.9)

The number of independent elastic moduli is reduced to 7;

• 4th order, we can get

C14 = C24 = C34 = C15 = C25 = C35 = C45 = C36 = C46 = C56 = 0
C22 = C11 , C23 = C13 , C26 = −C16 , C55 = −C44 .

(1.10)

Also in this case the number of independent elastic moduli is 7;

• 6th order, in this case it is

C14 = C24 = C34 = C15 = C25 = C35 = C45 = C16 = C26 = C36 = C46 = C56 = 0

C22 = C11 , C23 = C13 , C55 = C44 , C66 =
C11 − C12

2
.

(1.11)

The relations that characterise the independent elastic moduli of a material
with a symmetry of 6th order with respect to an axis are identical to those of a
material that presents a rotational axis of symmetry (∞ order). Such materials
are called transversely isotropic. The number of independent elastic moduli is
5 in both these cases;

4. Complete symmetry or isotropy.
In this case the components of tensors E and Z, and also of matrix [C] and [S] are
invariant and do not change when varying the reference system. The number of
independent elastic components is reduced to 2 (C11 and C12).

1.3 The assumption of plane stress state

The hypothesis of plane stress state is justified when dealing with mechanical problems
associated to thin plane structures. The relations that characterise a plane stress field
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are, in the plane (x1, x2): 
σ3
σ4
σ5

 =


0
0
0

 . (1.12)

As a consequence of eq. (1.12) the stress and strain vectors become:

{σ} =


σ1
σ2
σ6

 ; {ε} =


ε1
ε2
ε6

 . (1.13)

The out-of-plane components of strains become, for an orthotropic material with x1, x2
and x3 axes of orthotropy, 

ε3 = −C13ε1 + C23ε2
C33

,

ε4 = 0 ,
ε5 = 0 .

(1.14)

In the transition from the three-dimensional stress state to the bi-dimensional one, the
components of matrix [S] do not vary while those of the in-plane stiffness matrix are ob-
tained inverting the in-plane compliance matrix [S] and are not not equal the components
of the corresponding 3D case. For this reason the stiffness matrix is now called reduced
stiffness matrix and it is introduced by [Q] ; in particular we have

[Q] = [S]−1 ⇒ Qij = Cij −
Ci3Cj3
C33

, Q66 = C66 ; (1.15)

and i, j = 1, 2.

1.3.1 Tensorial representation

The in-plane Hooke’s law can be written

{σ} = [Q] {ε} . (1.16)

The relation between the Voigt and the tensorial notations is:

Q11 = Q1111 , Q12 = Q1122 , Q16 = Q1112 ,
Q22 = Q2222 , Q26 = Q2212 , Q66 = Q1212 ,

(1.17)

while for the compliance tensor one gets, see (1.6),

S11 = S1111 , S12 = S1122 , S16 = 2S1112 ,
S22 = S2222 , S26 = 2S2212 , S66 = 4S1212 .

(1.18)

1.3.2 Rotation of the reference frame

Let us consider two reference frames {0;x1, x2, x3} and {0;x, y, z = x3} rotated by an
angle ϑ around x3, Fig. 1.1. The tensor rotating (x1, x2) into (x, y) is:

U =

 cosϑ − sinϑ 0
sinϑ cosϑ 0

0 0 1

 . (1.19)
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𝜗 

Figure 1.1: Principal and rotated reference systems.

If the components of the second order tensor σ are known in (x1, x2), its components in
(x, y) are:

σ′ = UTσ U ; (1.20)

in the matrix formulation we get

{σ}′ = [T ] {σ} , (1.21)

where:

[T ] =

 cos2 ϑ sin2 ϑ 2 sinϑ cosϑ
sin2 ϑ cos2 ϑ −2 sinϑ cosϑ

− sinϑ cosϑ sinϑ cosϑ cos2 ϑ− sin2 ϑ

 . (1.22)

is the rotation matrix.
For the strain tensor ε, the transformation law of eq. (1.21) must be modified to take

into account for the Voigt’s notation:

{ε}′ = [R] [T ]−1 [R]−1 {ε} , (1.23)

where:

[R] =

1 0 0
0 1 0
0 0 2

 , (1.24)

is the Reuter matrix [33]. Because

[R] [T ]−1 [R]−1 =
(

[T ]T
)−1

, (1.25)

eq. (1.23) reads

{ε}′ =
(

[T ]T
)−1
{ε} . (1.26)

In matrix notation, the Hooke’s law can be written in the frame (x, y) as follows:

{σ} = [T ] {σ}′

{ε} = [T ]T {ε}′ =⇒ [T ] {σ}′ = [Q] [T ]T {ε}′ , (1.27)
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so:
{σ}′ = [T ]−1 [Q] [T ]T {ε}′ . (1.28)

The rotation law for the stiffness and compliance matrix is hence, respectively:

[Q]′ = [T ]−1 [Q] [T ]T ; (1.29)

[S]′ =
(

[T ]T
)−1

[S] [T ] . (1.30)

Eqs. (1.29) and (1.30) show that, when using the Cartesian representation for mechan-
ical problems in plane anisotropy, the rotation laws increase the difficulties and make the
solution more complicate to compute. This represents a major difficulty when dealing
with the design problems of laminates. The orientation angles of the layers, normally
the design variables, appears in the governing equations as arguments of fourth power of
circular functions. It is, hence, interesting to see if an alternatively and more effective
representation of tensors of anisotropy is available.

1.4 The polar method

A plane tensor representation, more effective for design problems, is the polar method
introduced by Verchery [86] in 1979. His original work was focused on the representation
of a fourth-order tensor of the elasticity type. There are several advantages in using the
polar method; first of all, it is based on the use of invariants having a physical meaning
(they have a direct link with the elastic symmetries) and secondly, the rotation of the
frame is done in an easier way than with the Cartesian representation, [77].

The polar method is based upon a complex variable transformation that renders par-
ticularly simple to find the tensors invariants. We will not enter in its algebraic details
that can be found in [77,84] and more extensively in [76]. In the following, we will recall
only the most important results, used in this thesis, of the polar method.

1.4.1 Representation of a second order tensor

Let us consider the second order tensor of Cauchy’s stresses σ in the plane (x1, x2). The
Cartesian components can be replaced by the polar ones (T,R, Φ):

T =
σ11 + σ22

2
,

Re2iΦ =
σ11 − σ22

2
+ iσ12 ,

(1.31)

while the inverse law is 
σ11 = T+ R cos 2Φ ,

σ22 = T− R cos 2Φ ,
σ12 = R sin 2Φ .

(1.32)

The polar parameters T and R are invariants, whereas the polar angle Φ gives the orienta-
tion, with respect to the reference system where the components σij, of the first principal
component of σ and is hence, frame dependent. T is linked to the spherical part of σ,
whereas Re2iΦ to the deviatoric one, as it is apparent from eq. (1.31). The relations (1.31)
and (1.32) expressed for the stress tensor σ are, of course, valid for any other second order
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symmetric tensor.
In particular, the polar parameters associated to the second order strain tensor ε will be
denoted by: t, r and φ.

1.4.2 Representation of a fourth order tensor of the elasticity
type

Let us consider the fourth order stiffness tensor Q in the plane (x1, x2). The Cartesian
components can be expressed by the polar ones (T0, T1, R0, R1, Φ0, Φ1):

8T0 = Q1111 −2Q1122 +4Q1212 +Q2222 ,
8T1 = Q1111 +2Q1122 +Q2222 ,

8R0e
4iΦ0 = Q1111 +4iQ1112 −2Q1122 −4Q1212 −4iQ1222 +Q2222 ,

8R1e
2iΦ1 = Q1111 +2iQ1112 +2iQ1222 −Q2222 ,

(1.33)

and inversely the Cartesian components can be given in terms of polar components:

Q1111 = T0+ 2T1+ R0 cos 4Φ0+ 4R1 cos 2Φ1 ,
Q1112 = R0 sin 4Φ0+ 2R1 sin 2Φ1 ,
Q1122 = −T0+ 2T1− R0 cos 4Φ0 ,
Q1212 = T0− R0 cos 4Φ0 ,
Q2212 = − R0 sin 4Φ0+ 2R1 sin 2Φ1 ,
Q2222 = T0+ 2T1+ R0 cos 4Φ0− 4R1 cos 2Φ1 .

(1.34)

The polar moduli T0, T1, R0, R1 and the difference of the polar angles Φ0 − Φ1, are in-
variants. Finally, fixing one of the polar angles, corresponds to fixing a reference frame.
Usually, and in the following of this thesis we will do the same. For instance, Φ1 = 0
corresponds, for an unidirectionally reinforced layer, to align the axis x1 along the fibres.

The above representation can be, of course, applied to any other in-plane fourth order
elasticity-like tensor, for instance the in-plane compliance tensor S, whose polar parameter
will be denoted by t0, t1, r0, r1, φ0, φ1.

1.4.3 Rotation of the reference system

The polar components of the second order tensor σ, when passing from the frame {0;x1, x2, x3}
to {0;x, y, z = x3} rotated of an angle ϑ, see Fig. 1.1, change as follows:

T,R, Φ in {0;x1, x2, x3} −→ T,R, Φ− ϑ in {0;x, y, z} . (1.35)

As a consequence, the Cartesian components of σ, in the frame {0;x, y, z}, are:
σxx = T+ R cos 2(Φ− ϑ) ,
σyy = T− R cos 2(Φ− ϑ) ,
σxy = R sin 2(Φ− ϑ) .

(1.36)

In the same way, the polar components of tensor Q change, passing from the frame
{0;x1, x2, x3} to {0;x, y, z}, as follows:

T0, T1, R0, R1, Φ0, Φ1 in {0;x1, x2, x3} −→ T0, T1, R0, R1, Φ0−ϑ, Φ1−ϑ in {0;x, y, z} .
(1.37)
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The Cartesian components of Q, in the frame {0;x, y, z} are:

Qxxxx = T0+ 2T1+ R0 cos 4(Φ0 − ϑ)+ 4R1 cos 2(Φ1 − ϑ) ,
Qxxxy = R0 sin 4(Φ0 − ϑ)+ 2R1 sin 2(Φ1 − ϑ) ,
Qxxyy = −T0+ 2T1− R0 cos 4(Φ0 − ϑ) ,
Qxyxy = T0− R0 cos 4(Φ0 − ϑ) ,
Qyyxy = − R0 sin 4(Φ0 − ϑ)+ 2R1 sin 2(Φ1 − ϑ) ,
Qyyyy = T0+ 2T1+ R0 cos 4(Φ0 − ϑ)− 4R1 cos 2(Φ1 − ϑ) .

(1.38)

The simplicity of the transformation laws of eqs. (1.38) with respect to eqs. (1.29) is
evident.

1.5 Physical interpretation of polar invariants

Eqs. (1.38) show another very important peculiarity of the polar method: the moduli
T0 and T1 represent the isotropic part of Q, while R0, R1 and Φ0 − Φ1 represent its
anisotropic part. So, the polar method allows for separating a tensor in its isotropic and
anisotropic parts, which reveals to be very useful, under a mathematical point of view,
when dealing with optimal design problems of laminates made by identical layers, see
Sec. 1.6. Hereafter, we introduce two others physical meanings of the polar parameters:
their energetic interpretation and their link with the elastic symmetries.

1.5.1 Energetic interpretation

The expression of the elastic energy density in terms of polar parameters is

W =
1

2
σε = Tt+Rr cos 2(Φ− φ) . (1.39)

The polar expression of the elastic energy density presents two separate quantities. The
first one is composed by the spherical part of stresses and strains (Tt), while the second
one by the deviatoric components of σ and ε (Rr cos 2(Φ− φ)).
If we introduce the Hooke’s law (1.16) in eq. (1.39), we get, using the relations (1.34), the
elastic energy density in terms of Q and ε, the so called strain energy:

Ws = 2T0r
2 + 4T1t

2 + 2R0r
2 cos 4(Φ0 − φ) + 8R1tr cos 2(Φ1 − φ) . (1.40)

If we introduce the inverse of the Hooke’s law (1.3) in eq. (1.39), we get, using the (1.34)
written for the compliance tensor, the elastic energy density in terms of S and σ, the so
called complementary energy:

Wc = 2t0R
2 + 4t1T

2 + 2r0R
2 cos 4(φ0 − Φ) + 8r1TR cos 2(φ1 − Φ) . (1.41)

The elastic energy density is an intrinsically positive quantity, for physical reasons:
the mechanical work done to deform a body cannot be negative. By this fact, the strain
energy gives the bounds on the moduli of an anisotropic material (see [55]); in terms of
polar parameters, these bounds are reduced to only two:

T0 −R0 > 0 ,
T1(T

2
0 −R2

0)− 2R2
1[T0 −R0 cos 4(Φ0 − Φ1)] > 0 .

(1.42)
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1.5.2 Elastic symmetries

The orthotropy symmetry in plane elasticity, for a material characterised by R0 6= 0 and
R1 6= 0, is expressed in terms of polar components by the following invariant condition:

Φ0 − Φ1 = K
π

4
, K = 0, 1 . (1.43)

This condition, that intrinsically characterise the “ordinary orthotropy”, shows that there
are two types of orthotropy, for a given set of polar parameters T0, T1, R0, R1 depending
on the value of K [77]: 0 and any other even value or 1 and any other odd value. K
is an invariant too for an orthotropic material. It has been showed in several examples,
see [75, 80, 88], that K plays a strange role in different optimisation problems. Actually,
it is like a sort of switch, that transforms an optimal solution in an anti-optimal one, i.e.
worst, when it switches from 0 to 1 and inversely. This fact, unknown before (Pedersen
in [55], using the Tsai and Pagano invariants [72], realised a change in the shear stiffness
that actually is linked to the value of K) is actually rather important because it affects
very strongly the optimal solution.

The components of the fourth order orthotropic tensor Q, expressed in a generic frame
{0;x, y, z}, become:

Qxxxx = T0+ 2T1+ (−1)KR0 cos 4Φ1+ 4R1 cos 2Φ1 ,
Qxxxy = (−1)KR0 sin 4Φ1+ 2R1 sin 2Φ1 ,
Qxxyy = −T0+ 2T1− (−1)KR0 cos 4Φ1 ,
Qxyxy = T0− (−1)KR0 cos 4Φ1 ,
Qyyxy = − (−1)KR0 sin 4Φ1+ 2R1 sin 2Φ1 ,
Qyyyy = T0+ 2T1+ (−1)KR0 cos 4Φ1− 4R1 cos 2Φ1 .

(1.44)

The polar angle Φ1 represents the direction of orthotropy and is frame dependent.
There are two other possible conditions, determining two special orthotropies:

1. R0 orthotropy
R0 = 0, R1 6= 0 . (1.45)

In this case only three polar invariants are sufficient to describe the material be-
haviour, see [76];

2. Square Orthotropy (the planar corresponding of the cubic symmetry)

R1 = 0, R0 6= 0 . (1.46)

Also in this case only three polar invariants are sufficient to describe the material
behaviour.

Finally, it is easy to see that isotropy corresponds to the condition:

R0 = R1 = 0 . (1.47)

It is apparent, hence, that isotropy is the contemporary presence of the two special or-
thotropies.

Summarising, each elastic symmetry corresponds to the cancellation or to a precise
value of the invariants: each invariant has a physical meaning directly linked to the
symmetries and to the properties of the material. In particular, the orientation Φ1 of
the material symmetry and the type of orthotropy K are explicit terms of the tensors
components, unlike the classical Cartesian representation.
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1.6 The classical laminated plate theory

Unlike the case of homogeneous plates, where the design concerns mainly the thickness, the
design of a laminate is much more complex: it depends upon several variables and multiple
aspects, concerning its mechanical behaviour, must be taken into account. A laminate
is a sort of complex structure, in the sense that its elastic behaviour can be different in
extension and in bending and, in addition, these two behaviours can be coupled. When
anisotropic layers are used, the design process must account for the elastic symmetries of
the final plate. These considerations, developed in the following, let we quickly see that
the optimal design of laminates is a difficult problem, with several aspects that need to
be simultaneously considered.

The Classical Laminated Plate Theory (CLPT) is a mechanical model that, despite
the well known diatribes on its mechanical consistence, has the property of precisely
defining the tensors that describe the elastic response of the plate along with their elastic
symmetries. That is why, it is a fundamental tool not only in analysis, but also in
optimisation of laminated structures.

Figure 1.2: Sketch of the laminate layers and interfaces.

Let us consider a laminated plate made by a number n of plies laying in the plane (x, y)
of a global frame, Fig. 1.2. Furthermore, each kth ply is characterised by the position zk of
its top surface, its fibres’ orientation δk with respect to the x axis (Fig. 1.3), its thickness
hk and its elastic properties defined by its in-plane reduced stiffness tensor Q (δk).
The main assumptions of the CLPT are:

• linear elastic behaviour of the material;

• small displacements and deformations;

• Kirkhoff’s kinematic model;

• plate’s thickness, h, very small with respect to the other dimensions of the plate;

• perfect bonding between the plies.

The Kirkhoff’s kinematic model leads to a strain field described by:

ε = ε0 + zχ , (1.48)

with

ε0 =


εxx
εyy
2εxy

 , χ =


χxx
χyy
2χxy

 . (1.49)
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Figure 1.3: Global and local reference systems in the kth ply of the laminated plate.

xx 

xx 

xx 

xx 

yy 

yy 

yy 

yy 

xy 

xy 

xy 

xy 

xy 

xy 

xy 

xy 

Figure 1.4: Internal forces of the plate.

ε0 and χ are the in-plane strain and curvature tensors of the middle plane of the plate,
respectively. Hence, in the CLPT the strain field is a plane strain field.

On the other side, the stress field σ linked to the strain field of eq. (1.48) is not plane.
The out-of-plane component of σ are

σyz = 0 ,
σxz = 0 ,
σzz 6= 0 .

(1.50)

A further assumption in the CLPT, is hence:

σzz = 0 . (1.51)

We can introduce the second order tensors N and M that represents respectively the
in-plane forces and bending moments of the plate, see also Fig. 1.4:

N =

∫ h/2

−h/2
σdz =


Nxx

Nyy

Nxy

 , M =

∫ h/2

−h/2
σzdz =


Mxx

Myy

Mxy

 . (1.52)

The CLPT provides the relations that link the internal forces of the plate with the
strain field introduced beforehand:

N = A ε0 + B χ ,
M = B ε0 + D χ .

(1.53)

Eq. (1.53) shows that, in a laminate, the in-plane forces and bending moments depend
on both the in-plane strains and the curvature of the middle plane of the plate. In other
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words, in a laminate there exist a coupling between in-plane forces and curvatures and
between bending moments and in-plane strains. Such effects are described by tensor B,
the membrane-bending coupling tensor. On the other hand, tensors A and D characterise,
respectively, the extension and bending stiffness of the homogenised laminated plate.

For a laminate composed by n plies, the expressions of A, B and D are:

A =
p∑

k=−p
Qk (δk) (zk − zk−1) ,

B =
1

2

p∑
k=−p

Qk (δk)
(
z2k − z2k−1

)
,

D =
1

3

p∑
k=−p

Qk (δk)
(
z3k − z3k−1

)
.

(1.54)

zk and zk−1 represent the z coordinate of the bottom and top surface of the kth ply; p is
linked to the number of plies as follows, Fig. 1.2:

n =

{
2p if even ,
2p+ 1 if odd .

(1.55)

Moreover, thanks to the symmetry of Qk (δk), also the tensors A, B and D are symmetric.

The composition laws (1.54) can be applied to any tensor representation, so to the
polar formalism too. This, through some basic algebraic passages, lead us to introduce
the polar parameters of A, B and D and their relation with the polar parameters of the
plies that compose the laminate itself:

• polar parameters of A:

TA0 =
p∑

k=−p
T0k (zk − zk−1) ,

TA1 =
p∑

k=−p
T1k (zk − zk−1) ,

RA
0 e

4iΦA
0 =

p∑
k=−p

R0ke
4i(Φ0k+δk) (zk − zk−1) ,

RA
1 e

2iΦA
1 =

p∑
k=−p

R1ke
4i(Φ1k+δk) (zk − zk−1) ;

(1.56)

• polar parameters of B:

TB0 =
1

2

p∑
k=−p

T0k
(
z2k − z2k−1

)
,

TB1 =
1

2

p∑
k=−p

T1k
(
z2k − z2k−1

)
,

RB
0 e

4iΦB
0 =

1

2

p∑
k=−p

R0ke
4i(Φ0k+δk)

(
z2k − z2k−1

)
,

RB
1 e

2iΦB
1 =

1

2

p∑
k=−p

R1ke
4i(Φ1k+δk)

(
z2k − z2k−1

)
;

(1.57)
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• polar parameters of D:

TD0 =
1

3

p∑
k=−p

T0k
(
z3k − z3k−1

)
,

TD1 =
1

3

p∑
k=−p

T1k
(
z3k − z3k−1

)
,

RD
0 e

4iΦD
0 =

1

3

p∑
k=−p

R0ke
4i(Φ0k

+δk)
(
z3k − z3k−1

)
,

RD
1 e

2iΦD
1 =

1

3

p∑
k=−p

R1ke
4i(Φ1k

+δk)
(
z3k − z3k−1

)
;

(1.58)

In the above equations, T0k , T1k , R0k , R1k , Φ0k and Φ1k are the polar parameters of the
kth ply. Of course, the physical interpretations of the polar parameters of each one of
the above tensors are completely analogue to those described in Sec. 1.5 for a generic
anisotropic plate.
The tensors A, D and B have the following dimensions:

[A] = [F/L] , [B] = [F] , [D] = [F L] . (1.59)

Hence, such tensors cannot be directly compared. To circumvent this problem, the stiff-
ness and coupling tensors of the CLPT are normalised, in order to have the same dimen-
sions, in the following way:

A∗ =
A

h
,B∗ =

2B

h2
,D∗ =

12D

h3
. (1.60)

So, all the tensors share the same units, [F/L2], and they express the elastic characteristics
of a fictitious material constituting an Equivalent Single Layer (ESL) of the same thickness
of the laminate.

We introduce, also, the so-called homogeneity tensor C, expressing the difference
between the membranal and bending behaviour of the plate:

C = A∗ −D∗ . (1.61)

Eqs. (1.56) to (1.58) are expressed in the most general case of a laminate composed
by plies of different materials and thickness. Let us now consider a relevant case: that
of a laminate composed by orthotropic layers that are all identical (i.e. same thickness
and material). Then, choosing, as usually done, the material strong axis of kth layer

as the first axis , x
(k)
1 , of the material frame of the layers, which correspond to putting

Φ
(k)
1 = 0 (Fig. 1.3), eqs. (1.56) to (1.58) written directly for the normalised tensors and

the components of C, can be written as follows:

• polar parameters of A∗:

T 0 = T0 ,
T 1 = T1 ,

R0e
4iΦ0 =

1

n
(−1)KR0

p∑
k=−p

e4iδk ,

R1e
2iΦ1 =

1

n
R1

p∑
k=−p

e2iδk ;

(1.62)
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• polar parameters of B∗:

T̂0 = 0 ,

T̂1 = 0 ,

R̂0e
4iΦ̂0 =

(
1

n

)2

(−1)KR0

p∑
k=−p

bke
4iδk ,

R̂1e
2iΦ̂1 =

(
1

n

)2

R1

p∑
k=−p

bke
2iδk ;

(1.63)

• polar parameters of D∗:

∼
T 0 = T0 ,
∼
T 1 = T1 ,
∼
R0e

4i
∼
Φ0 =

(
1

n

)3

(−1)KR0

p∑
k=−p

dke
4iδk ,

∼
R1e

2i
∼
Φ1 =

(
1

n

)3

R1

p∑
k=−p

dke
2iδk ;

(1.64)

• polar parameters of C:

T̆0 = 0 ,

T̆1 = 0 ,

R̆0e
4iΦ0 =

1

n3
(−1)KR0

p∑
k=−p

cke
4iδk ,

R̆1e
2iΦ1 =

1

n3
R1

p∑
k=−p

cke
2iδk .

(1.65)

In the previous equations, T0, T1, R0, R1, Φ0 and Φ1 are the polar parameters of the basic
ply, while bk, ck and dk are integer coefficients directly linked to the position k of each ply
and to the total number n of the plies. In particular, we have

n even : bk = 2k − |k|
k
, b0 = 0 ; dk = 12k2 − 12|k|+ 4, d0 = 0 ;

ck = 4p2 − 12k2 + 3|k| − 4, c0 = 0

n odd : bk = 2k ; dk = 12k2 + 1 ;
ck = 4p2 + 4p− 12k2

(1.66)
Thanks to eq. (1.66) is possible to verify that it is:

p∑
k=−p

bk = 0 ,

p∑
k=−p

ck = 0 ,

p∑
k=−p

dk = n3 . (1.67)

Eqs. (1.62) to (1.65) show something which is relevant in the optimisation problems of
laminates. In fact, the separation between the isotropic and anisotropic parts is not only
still existing, also for the laminate tensors, but more important, one can see that each one
of the polar parameters of a laminate tensor depends only upon the corresponding polar
parameter of the basic layer. In particular:
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• the isotropic part of the tensors B∗ and C are null: these two tensors are purely
anisotropic (they have a null mean);

• the isotropic part of the tensors A∗ and D∗ are equal and the same of the basic layer;
so, in a stack of identical layers only the anisotropic part can be tailored, but not the
isotropic one; in other words, the isotropic polar parameters of a laminate composed
of identical layers do not enter into the optimisation procedure, if the basic layer is
chosen a priori, only the anisotropic part of A∗ and D∗ can be optimised.

There is, also, another aspect that needs to be emphasised: the concept of quasi-
homogeneity. A laminate for which

B = 0 ,
C = 0 .

(1.68)

is said to be quasi-homogeneous, see [76].
For laminates composed by identical layers, B is null if, see (1.63):

p∑
k=−p

bke
4iδk = 0 ,

p∑
k=−p

bke
2iδk = 0 ,

(1.69)

whilst C is null if, see (1.65):
p∑

k=−p
cke

4iδk = 0 ,

p∑
k=−p

cke
2iδk = 0 .

(1.70)

From a mechanical point of view, conditions (1.68) mean that the membrane and bend-
ing behaviour of a laminate are completely uncoupled and the membrane and bending
stiffness tensors are identical. In other words, a quasi-homogeneous laminate behaves just
like a plate composed by a unique equivalent layer, i.e. just like an homogeneous, but not
necessary isotropic, plate.

1.6.1 Bounds on the laminate polar parameters

Tensors A∗ and D∗, as any other elasticity tensor, must be positive definite, hence, their
polar parameters must satisfy conditions (1.42). Taking into account eq. (1.62), these
conditions are for A∗

T0 −R0 > 0 ,

T1(T
2
0 −R

2

0)− 2R
2

1[T0 −R0 cos 4(Φ0 − Φ1)] > 0 .
(1.71)

Similar conditions holds for D∗ too. Nevertheless, it can be proved that these bounds
can never be attained by the polar parameters of A∗ and D∗. In fact, when a laminate is
composed by identical plies, eqs. (1.62) and (1.64) impose other bounds on the values of
the polar parameters of A∗ and D∗. Such bound are named geometric bounds and it can
be shown that they are always more restrictive than the elastic bounds (1.71), see [81].
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In order to determine the polar parameters that correspond to a manufacturable lami-
nate, the geometrical bounds cannot be violated. In the case of an orthotropic laminate
composed by identical orthotropic plies, the geometric bounds for A∗ are:

2

(
R1

R1

)2

− 1 ≤ (−1)KR0

(−1)KR0

,

|(−1)KR0| ≤ R0 ,

R1 ≥ 0 .

(1.72)

Similar bounds holds for D∗ too. In some sense, laminates constitute an elastic sub-class,
smaller than that of elastic materials.

1.7 Concluding remarks

We have inroduced in this Chapter the polar formalism and its application to the CLPT.
Some peculiarities of this method have also been introduced; they will reveal particularly
useful in the followings Chapters, in the optimisation process. The polar method can
be applied to different tensors, see [79, 84]. It will be used, in this thesis, to obtain an
invariant form for some well known strength criteria of anisotropic layers.
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Failure criteria in plane anisotropy

2.1 Introduction

Anisotropy influences strongly also the mechanical strength of a material, usually de-
scribed by a failure criterion. The aim of a failure criterion is the evaluation of the limit
load that the structure can tolerate before the failure arises. We can separate the failure
criteria into two distinct classes: the phenomenological failure criteria [23, 28, 71, 73] and
the physically-based failure criteria [58]. The phenomenological failure criteria are called
in this way because, through the computation of a scalar indicator, the failure index, the
occurrence of the failure is checked; in this case, an unique scalar condition has to be ver-
ified. Nevertheless, no indication is given about the mechanism of failure that has been
activated. On the contrary, physically-based failure criteria check separately multiple
failure mechanisms. In these criteria the different failure mechanisms are considered as
independent and non-interacting phenomena and, so, the uniqueness of the failure index
is lost.

Several failure criteria have been developed for composites materials, see [62]. The
deepest assessment of failure criteria for composite laminates has been done in the World
Wide Failure Exercise (WWFE) proposed by Hinton, Soden and Kaddour in 1998 [25–27].
It is important to note that all these failure criteria are “ply-level failure criteria”, thus,
when used to analyse the failure of laminated structures, such criteria are applied to each
ply composing the structure determining the so-called first-ply-failure.

In the following sections we will present a detailed description of some phenomenolog-
ical failure criteria. We will present the Tsai-Hill, Hoffman, Tsai-Wu and Zhang-Evans
criteria. All of them are conceived for orthotropic plies. The Voigt’s notation will be used
in the material frame {0;x1, x2, x3}, with the x1 and x2 axes lying in the plane of the
layer.

2.2 Stress-based polynomial failure criteria

2.2.1 Tsai-Hill failure criterion

The Hill [23] yield criterion for orthotropic metals in the 3D space is:

(G+H)σ2
1 + (F +H)σ2

2 + (F +G)σ2
3 − 2Hσ1σ2−

2Gσ1σ3 − 2Fσ2σ3 + 2Lσ2
4 + 2Mσ2

5 + 2Nσ2
6 ≤ 1 .

(2.1)

25
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The terms F,G,H,L,M and N are the strength parameters of Hill; they are linked to
the limit values of the stresses, corresponding to yielding for ductile materials and to
fracture for fragile materials. The fundamental assumption of the Hill criterion is that
the strength properties of the material are identical in tension and compression, as it is
usually the case of anisotropic metals. The following strength properties are introduced:

• X, strength along the direction x1;

• Y, strength along the direction x2;

• Z, strength along the direction x3;

• S12, S23, S31, shear strengths.

The relation between the Hill’s parameters F, G, H, L, M, N of eq. (2.1) and the strength
properties of the material are determined considering uniaxial loading cases.

For instance, if one considers the following stress state:{
σi = 0 i = 1, 2, 3, 4, 5 ,
σ6 6= 0 ;

(2.2)

the failure will arise when 2Nσ2
6 = 1 with σ6 = S12 and we get:

N =
1

2S2
12

. (2.3)

If we do the same thing with every stress component, finally we obtain:

2N =
1

S2
12

, 2M =
1

S2
31

, 2L =
1

S2
23

,

2H =
1

X2
+

1

Y 2
− 1

Z2
, 2G =

1

X2
− 1

Y 2
+

1

Z2
, 2F = − 1

X2
+

1

Y 2
+

1

Z2
.

(2.4)

Hence eq. (2.1) can be written as follows:

FHill =
(σ1
X

)2
+
(σ2
Y

)2
+
(σ3
Z

)2
−
(

1

X2
+

1

Y 2
− 1

Z2

)
σ1σ2 −

(
1

X2
+

1

Z2
− 1

Y 2

)
σ1σ3−

+

(
1

Y 2
+

1

Z2
− 1

X2

)
σ2σ3 +

(
σ4
S23

)2

+

(
σ5
S13

)2

+

(
σ6
S12

)2

≤ 1 .

(2.5)
Tsai elaborated the criterion of Hill adapting it to the case of orthotropic composite

sheets. In the case of plane stress state, condition (1.12) must be added to the formulation
of the criterion.

For a sheet of a composite material which is always manufactured from a transversally
isotropic material, we have:

Z = Y, (2.6)

and we can denote S12 = S. Eq. (2.5) becomes, then:

FHill =
(σ1
X

)2
+
(σ2
Y

)2
− σ1σ2

X2
+
(σ6
S

)2
≤ 1 , (2.7)
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Figure 2.1: Limit surface of stresses obtained through the Tsai-Hill’s criterion.

that represents the Tsai-Hill criterion for orthotropic sheets subject to plane stress state.
In Fig. 2.1 is shown the corresponding graphical interpretation in the space (σ1, σ2, σ6) of
the Tsai-Hill’s failure criterion (2.7) for a generic E-Glass Epoxy orthotropic ply, whose
strength properties are X = 1080 MPa, Y = 39 MPa and S = 89 MPa. This surface is an
ellipsoid centered in the origin of the axes because of the assumption of identical strength
behaviour in tension and compression.

It is possible, also, to write the criterion in matrix notation:

FHill = {σ}T [F ] {σ} ≤ 1 , (2.8)

with:

{σ} =


σ1
σ2
σ6

 , [F ] =


1

X2
− 1

2X2
0

− 1

2X2

1

Y 2
0

0 0
1

S2

 . (2.9)

2.2.2 Hoffman failure criterion

The formulation of the Hoffman criterion for orthotropic materials is [28]:

C1(σ2 − σ3)2 + C2(σ3 − σ1)2 + C3(σ1 − σ2)2+
C4σ1 + C5σ2 + C6σ3 + C7σ

2
4 + C8σ5 + C9σ

2
6 ≤ 1 .

(2.10)

The failure criterion of Hoffman is a generalisation of the Hill’s criterion, in which the
difference of the strength properties in tension and compression is taken into account.
The relation between the parameters C1, C2,...,C9 and the strength properties of the



28 2. Failure criteria in plane anisotropy

material can be obtained using a method similar to that used for the Tsai-Hill’s criterion
(i.e. uniaxial loading cases):

2C1 = − 1

XtXc
+

1

YtYc
+

1

ZtZc
, 2C2 =

1

XtXc
− 1

YtYc
+

1

ZtZc
, 2C3 =

1

XtXc
+

1

YtYc
− 1

ZtZc

C4 =
1

Xt
− 1

Xc
, C5 =

1

Yt
− 1

Yc
, C6 =

1

Zt
− 1

Zc
, C7 =

1

S2
23

, C8 =
1

S2
31

, C9 =
1

S2
12

.

(2.11)

where the subscripts t and c stand for tension and compression.
In the case of plane stress state, condition (1.12) must be added to the formulation of

the criterion and in addition, we have also, for a sheet manufactured from transversally
isotropic material:

Zt = Yt, Zc = Yc, (2.12)

and we can denote S12 = S.
It is possible to write the criterion in matrix notation:

FHoff = {σ}T [F ] {σ}+ {σ}T {f} ≤ 1 . (2.13)

with:

[F ] =


1

XtXc

− 1

2XtXc

0

− 1

2XtXc

1

YtYc
0

0 0
1

S2

 , {f} =


Xc −Xt

XtXc
Yc − Yt
YtYc

0

 . (2.14)

In Fig. 2.2 is shown the graphic interpretation in space (σ1, σ2, σ6) of the Hoffman’s
failure criterion (2.13) for the generic E-Glass Epoxy orthotropic ply whose strength
properties are given in Tab. 2.1. This surface is still an ellipsoid but no more centered in
the origin of the axis because of the assumption of different strength properties in tension
and compression.

Xt Xc Yt Yc S

1080 620 39 128 89

Table 2.1: Strength properties of a generic E-Glass Epoxy lamina, [MPa].

2.2.3 Tsai-Wu failure criterion

The Tsai-Wu criterion [73], is:

Fijσiσj + fiσi ≤ 1 ; (2.15)

where i, j = 1, ..., 6. The failure criterion of Tsai-Wu is conceived, differently from those
of Tsai-Hill and Hoffman, for a completely anisotropic material. The difference of the
strength for tension and compression is taken into account. In the original formulation of
the criterion no one of the components of Fij and fi are neglected, but, the determination
of these components has never been done. Nevertheless, if a material presents elastic
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Figure 2.2: Limit surface of stresses obtained through the Hoffman’s criterion.

symmetries, some terms of Fij or fi will be equal to zero.
In the case of an orthotropic layer and of plane stress state, the criterion becomes:

F11σ
2
1 + F22σ

2
2 + F66σ

2
6 + 2F12σ1σ2 + f1σ1 + f2σ2 ≤ 1 , (2.16)

where i, j = 1, 2, 6. The relations between the terms Fii and fi and the strength properties
of the material Xt, Xc, Yt, Yc and S, are obtained through a procedure similar to the one
adopted for the two previous criteria:

F11 =
1

XtXc

, F22 =
1

YtYc
, F66 =

1

S2
,

f1 =
Xc −Xt

XtXc

, f2 =
Yc − Yt
YtYc

.

(2.17)

However, in the Tsai-Wu’s criterion the term F12 is determined through a bi-axial test;
if, for example, it is σ1 = σ2 = σ and σ6 = 0, then we get:

F12 =
1

2σ2

[
1−

(
1

Xt

+
1

Xc

+
1

Yt
+

1

Yc

)
σ +

(
1

XtXc

+
1

YtYc

)
σ2

]
; (2.18)

where the dependence on the value of the applied loading cannot be removed. Often, for
composite materials F12 is written as:

F12 =
F ∗12√

XtXcYtYc
, (2.19)

where the term F ∗12 can take a value belonging to the range [−1, 1], see [39]. The extreme
values of this range are calculated through the condition:

FiiFjj − Fij ≥ 0 , (2.20)
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imposed on the components Fij in [73] in order to ensure the failure envelope to be a
closed surface. The criterion in matrix notation reads like:

FTW = {σ}T [F ] {σ}+ {σ}T {f} ≤ 1 , (2.21)

where, for orthotropic layers it is:

[F ] =



1

XtXc

F ∗12√
XtXcYtYc

0

F ∗12√
XtXcYtYc

1

YtYc
0

0 0
1

S2

 ; {f} =



Xc −Xt

XtXc

Yc − Yt
YtYc

0


. (2.22)

Eq. (2.20) represents also a necessary, but not sufficient, condition for the positive defi-
niteness of the matrix [F ].

2.3 Stress-based polynomial failure criteria expressed

in terms of strains

The phenomenological criteria of Tsai-Hill, Hoffman and Tsai-Wu have been derived pri-
marily in terms of stresses. There exists also an equivalent form of these criteria expressed
in the strain space. It is worth noting, however, that such equivalent forms do not repre-
sent strain-based criteria for orthotropic materials. A fundamental assumption to write
such criteria in the strain space is that of linear elastic behaviour of the material. Thanks
to this assumption, the Hooke’s law is used to express the stress-based criteria in terms
of strains. The failure criteria of Tsai-Hill, Hoffman and Tsai-Wu, expressed in terms of
strains, are introduced below.

2.3.1 Tsai-Hill failure criterion

The stress-based polynomial failure criterion of Tsai-Hill, under the assumption of plane
stress state, is expressed in matrix notation by eq. (2.8). Injecting the Hooke’s law (1.16)
in (2.8), this last gives:

FHill = {ε}T ([Q]T [F ] [Q]) {ε} ≤ 1 . (2.23)

The double matrix product [Q]T [F ] [Q] will be called in the rest of the thesis [G] and
denotes the matrix of strength properties of the stress-based failure criteria expressed in
terms of strains as [F ] denotes the matrix of strength properties of the stress-based failure
criteria expressed in terms of stresses. Hence we can write eq. (2.23) as:

FHill = {ε}T [G] {ε} ≤ 1 . (2.24)
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The components of the matrix [G] are:

G11 =
Q2

11

X2
− Q11Q12

X2
+
Q2

12

Y 2
,

G12 =
Q11Q12

X2
− Q11Q22

2X2
− Q2

12

2X2
+
Q12Q22

Y 2
,

G16 = 0 ,

G22 =
Q2

12

X2
− Q12Q22

X2
+
Q2

22

Y 2
,

G26 = 0 ,

G66 =
Q2

66

S2
;

(2.25)

the components Qij in terms of the elastic properties, in the material frame, are:

[Q] =



E1

1− ν212
E2

E1

ν12E2

1− ν212
E2

E1

0

ν12E2

1− ν212
E2

E1

E2

1− ν212
E2

E1

0

0 0 GS
12


. (2.26)

where Ei are the in-plane Young’s moduli, GS
12 is the shear modulus and ν12 is the in-plane

Poisson’s ratio.

2.3.2 Hoffman failure criterion

Injecting in the stress-based polynomial failure criterion of Hoffman, written under the
assumption of plane stress state, eq. (2.13), the Hooke’s law (1.16), it gives:

FHoff = {ε}T ([Q]T [F ] [Q]) {ε}+ {ε}T [Q]T {f} ≤ 1 . (2.27)

The matrix product [Q]T [F ] [Q] is still called [G], while the vector [Q]T {f} will be called
{g}. So the previous equation can be written as:

FHoff = {ε}T [G] {ε}+ {ε}T {g} ≤ 1 . (2.28)

In this case, the components of [G] are:

G11 =
Q2

11

XtXc

− Q11Q12

XtXc

+
Q2

12

YtYc
,

G12 =
Q11Q12

XtXc

− Q11Q22

2XtXc

− Q2
12

2XtXc

+
Q12Q22

YtYc
,

G16 = 0 ,

G22 =
Q2

12

XtXc

− Q12Q22

XtXc

+
Q2

22

YtYc
,

G26 = 0 ,

G66 =
Q2

66

S2
;

(2.29)
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and the components of the vector {g} are:

{g} =



Q11
(Xc −Xt)

XtXc

+Q12
(Yc − Yt)
YtYc

Q12
(Xc −Xt)

XtXc

+Q22
(Yc − Yt)
YtYc

0


. (2.30)

The terms of Qij are defined in eq. (2.26).

2.3.3 Tsai-Wu failure criterion

Once again, substituting eq. (1.16) in eq. (2.21), the failure criterion of Tsai-Wu for a
plane stress state gives:

FTW = {ε}T ([Q]T [F ] [Q]) {ε}+ {ε}T [Q]T {f} ≤ 1 . (2.31)

The above equation can still be written as eq. (2.28), but the components of the matrix
[G] are now:

G11 =
Q2

11

XtXc

+ 2Q11Q12
F ∗12√

XtXcYtYc
+
Q2

12

YtYc
,

G12 =
Q11Q12

XtXc

+Q11Q22
F ∗12√

XtXcYtYc
−Q2

12

F ∗12√
XtXcYtYc

+
Q12Q22

YtYc
,

G16 = 0 ,

G22 =
Q2

12

XtXc

− 2Q12Q22
F ∗12√

XtXcYtYc
+
Q2

22

YtYc
,

G26 = 0 ,

G66 =
Q2

66

S2
.

(2.32)

The vector {g} is equal to that of the Hoffman failure criterion, eq. (2.30), and the terms
of Qij are still defined in eq. (2.26).

2.4 Strain-based polynomial failure criterion of Zhang-

Evans

Almost all of the failure criteria, existing in literature, are formulated in the stress space.
Nevertheless, in some cases the yield strain value can be more appropriate to describe
the failure of a continuum: for example in the case of an elastic perfectly plastic material
wherein the quantity that determines uniquely the failure is the yield strain.

A strain-based phenomenological failure criterion for orthotropic materials has been
developed by Zhang and Evans in 1988 [92]. It is based on the same quadratic approxi-
mation used by Tsai and Wu. The 2D strain-based failure criterion of Zhang and Evans
is:

FZE = {ε}T [P ] {ε}+ {ε}T {p} ≤ 1 . (2.33)

Let us introduce the following terms:
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• Xε, longitudinal yield strain along the fibres orientation;

• Yε, transverse yield strain perpendicular to the fibres orientation;

• Sε, pure shear yield strain .

The components Pii and pi are determined through uniaxial ultimate tensile, compressive
and shear strain tests:

P11 =
1

XεtXεc

, P22 =
1

YεtYεc
, P66 =

1

S2
ε

,

p1 =
Xεc −Xεt

XεtXεc

, p2 =
Yεc − Yεt
YεtYεc

, p6 = 0 .

(2.34)

where the subscripts t and c stand for tension and compression. On the contrary, the
determination of the interaction term P12 is achieved through a uniaxial stress test that
generates a biaxial strain state:

P12 =
1

2S11S12

[
1− (S11p1 + S21p2)Xt

X2
t

− (S2
11P11 + S2

22P22)

]
. (2.35)

where Sij are the components of the compliance tensor:

[S] =


1

E1

−ν12
E1

0

−ν12
E1

1

E2

0

0 0
1

GS
12

 . (2.36)

Considering eq. (2.36), eq. (2.35) becomes:

P12 = − E2
1

2ν12

{
1

X2
t

− 1

XtE1

[
Xεc −Xεt

XεtXεc

− ν12(Yεc − Yεt)
YεtYεc

]
− 1

E2
1

(
1

XεtXεc

+
ν212
YεtYεc

)}
.

(2.37)
Differently from the term F12 of the Tsai-Wu’s criterion, the term P12 of the Zhang-
Evans criterion is loading independent. The test to determine the coupling term in a
strain-based criterion is completely different and easier than the test necessary for a
stress-based criterion. This aspect is very important and interesting from a practical
point of view because the value of the admissible strains can be easily and precisely
determined. In addition, eq. (2.37) shows a very important result: no experimental
evaluations are needed to determine the value of the interacting term of the criterion, it
can be determined analytically because it depends only upon the uniaxial yield strains,
the uniaxial strengths, the Young’s modulus and the Poisson’s ratio of the material.

A deeper comparison between stress and strain-based failure criteria can be found
in [93].

2.5 Unified matrix formulation

As mentioned previously, it is possible to write all the stress-based criteria in matrix
notation. A peculiarity of the terms that compose the matrix [F ], for each criterion,
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concerns the position of the strength properties: they all appear at the denominator. So,
we can assert that [F ] in stress-based criteria describes, in some sense, the inverse of the
strength of the material: the weakness. Hence, we can consider the matrix [F ] as the
analogous, for what concerns strength, of the compliance matrix [S]; then, we will call [F ]
the weakness matrix. The matrix [F ], and for consistency, the vector {f} will be expressed
in a frame rotated by an angle π/2 around x3. In this way, we will have the matrix [F ]
described in the new reference system {0;x, y, z = x3} with the x-axis coincident with
the direction of maximum weakness. We can express the three criteria by the general
condition

F... = {σ}T [F ] {σ}+ {σ}T {f} ≤ 1 ; (2.38)

with:

[F ] =

Fxx Fxy 0
Fxy Fyy 0
0 0 Fss

 , {f} =


fx
fy
0

 . (2.39)

The values of matrix and vectorial components for each criterion are reported in Tabs. 2.2
and 2.3.

Tsai-Hill Hoffman Tsai-Wu

Fxx
1

Y 2

1

YtYc

1

YtYc

Fxy − 1

2X2
− 1

2XtXc

F ∗12√
XtXcYtYc

Fyy
1

X2

1

XtXc

1

XtXc

Fss
1

S2

1

S2

1

S2

Table 2.2: Components of [F ] for the three criteria.

Tsai-Hill Hoffman Tsai-Wu

fx 0
Yc − Yt
YtYc

Yc − Yt
YtYc

fy 0
Xc −Xt

XtXc

Xc −Xt

XtXc

fs 0 0 0

Table 2.3: Components of {f} for the three criteria.

On the other hand, concerning the stress-based failure criteria expressed in terms of
strains, we can consider the matrix [G] as the analogous, for what concerns strength, of
the stiffness matrix [Q]; then, we will call [G] the strength matrix. We will express [G],
and for consistency, the vector {g} in the material frame {0;x1, x2, x3} with the x1 axis
coincident with the direction of maximum strength. The general matrix formulation, for
the three criteria, is:

F... = {ε}T [G] {ε}+ {ε}T {g} ≤ 1 . (2.40)
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The components of [G] and {g} are reported in Tables 2.4 and 2.5; they all are dimension-
less quantities. This is correct, because such terms represents, in some sense, the yield
strain properties, so they are dimensionless like strains.
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Table 2.4: Components of [G] for the three criteria.

Tsai-Hill Hoffman Tsai-Wu
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XtXc
+Q12

(Yc − Yt)
YtYc

Q11
(Xc −Xt)

XtXc
+Q12

(Yc − Yt)
YtYc

g2 0 Q12
(Xc −Xt)

XtXc
+Q22

(Yc − Yt)
YtYc

Q12
(Xc −Xt)

XtXc
+Q22

(Yc − Yt)
YtYc

g6 0 0 0

Table 2.5: Components of {g} for the three criteria.

Zhang-Evans
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Table 2.6: Components of [P ] for the criterion of Zhang-Evans.
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Zhang-Evans

p1
Xεc −Xεt

XεtXεc

p2
Yεc − Yεt
YεtYεc

p6 0

Table 2.7: Components of {p} for the criterion of Zhang-Evans.

We can do similar considerations also for the strain-based failure criterion of Zhang-
Evans

FZE = {ε}T [P ] {ε}+ {ε}T {p} ≤ 1 . (2.41)

[P ], for analogy, will be called the strength matrix. We will express [P ], and for consistency,
the vector {p} in the material frame {0;x1, x2, x3} with the x1 axis coincident with the
direction of maximum strength. The values of the matrix and vectorial components of
the strain-based criterion are reported in Tables 2.6 and 2.7.

Finally, we have expressed all the phenomenological failure criteria in a general matrix
notation. All the criteria are characterised by the sum of a quadratic and a linear term.
To this purpose, we prefer, for the sake of conciseness, to write all the described criteria
in a unified matrix formulation:

F... = {υ}T [H] {υ}+ {υ}T {h} ≤ 1 , (2.42)

where {υ}, depending on the considered criterion, corresponds to {σ} or {ε}, [H] corre-
sponds to [F ], [G] or [P ] and {h} corresponds to {f}, {g} or {p}.

2.6 Concluding remarks

We have dedicated this Chapter to the description of the strength of orthotropic layers.
Unlike the stiffness description, the strength behaviour of an anisotropic material is not
represented by a unique law, like the Hooke’s law, but by several criteria. We have
considered some phenomenological criteria, in particular, we have described the criteria
used very often in the design of laminated structures: the polynomial failure criteria
of Tsai-Hill, Hoffman, Tsai-Wu and the strain-based criterion of Zhang-Evans. Their
application to the design of laminated structures corresponds to a ply-by-ply verification
of the strength. The peculiarity of these criteria concerns their formulation, based upon
a unique condition whose quadratic term is not linked to the elastic stiffness matrix, like
for strain energy, but to a matrix describing the strength properties of the material. The
unified matrix formulation of these criteria, given in this Chapter, will be the starting
point to an invariant formulation of such criteria presented in Chapter 4.
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A state of the art on the
optimisation of anisotropic
laminated structures

3.1 Introduction

The design of an anisotropic laminated structure depends, very often, upon a large number
of design variables: the material properties, the orientation angle and the thickness of each
ply, along with the number of constitutive layers. The mechanical properties of such a
structure can vary considerably with these design variables; therefore, unlike the case
of metallic structures, the design of the laminated ones must include the design of the
material (the so called “meso-scale”) as a crucial phase of the whole design procedure.

The works on optimisation of laminated structures go back to the 70s. Those works
studied the maximisation of classical mechanical properties such as stiffness, eigenfrequen-
cies, limit loads and so on. For a general overview on structural optimisation applied to
anisotropic structures the reader is addressed to [1, 3, 5, 21].

In this Chapter we give a short overview on optimisation of laminates for what con-
cerns the maximisation of stiffness and/or strength. This presentation is split into three
main parts. The first one concerns the optimal material orientation, the second one the
optimisation of the material parameters of the structure and the third one the lay-up
optimal design. We briefly describe only the studies that inspired the research work of
the present thesis, aware that there are also other important works on the same subject.

3.2 Optimal material orientation for orthotropic sheets

3.2.1 Maximising stiffness

The problem of maximising the global stiffness of an elastic structure can be formulated
through the minimisation of a global quantity defined on the structure: the compliance.
The compliance of a body, in elasticity, corresponds to the global work done by the
external forces for the field of the displacements that are solution of the elastic problem.
Being the compliance a global and not a local quantity, it is a global functional for the
stiffness optimisation problem. The firsts works on the minimisation of strain energy, for
anisotropic plies, attempted to reach only one goal, i.e. the determination of the optimal
material orientation, [9, 10, 54,56], for fixed stiffness moduli of the material.

37
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In [54], Pedersen showed a closed form analytical solution, in the bi-dimensional case,
to determine the extreme values of the elastic strain energy density functional. The opti-
misation variable was the orientation of the orhotropic material. The objective function
was expressed in terms of the principal strains, of the in-plane components of the stiffness
matrix and of the angular difference ψ between the material orientation and the direc-
tion of the first principal strain. The value of ψ was determined in order to maximise
or minimise the strain energy density. Results showed that the solution depends essen-
tially upon the sign of a special parameter γ that reflects the relative shear stiffness of
the material (classified as low or high). In particular, materials with low relative shear
stiffness present a global minimum of energy density when the orientation of the maxi-
mum material stiffness coincides with the orientation of the minimum absolute value of
principal strain components. This work was extended to the study of the extrema of the
complementary energy in [10].

In 1991 Sacchi Landriani and Rovati [64] studied the problem of determining the
optimal orientation of the stiffness properties for an orthotropic 2D continuum subject to
a plane state of stress. The goal was still the maximisation of the stiffness of the structure.
Also in this case, the problem was formulated through a variational approach and solved
analytically. This work has been extended to the 3D case in [60]. Finally, in [61] the
extreme values of the strain energy density functional are found in order to determine
locally the orientations of the material symmetry axes for maximising stiffness. The
strain field was fixed and the three-dimensional solid was an orthotropic material. The
angular difference between the principal directions of strains and the axes of the material
symmetry were described through the Euler’s angles. The main result, found in all of the
three previous works [60, 61, 64] is that a necessary condition for the stationarity of the
strain energy density is the coaxiality of strain and stress tensors. Such condition leads
to an important result for particular cases of material symmetries: the optimal solution
corresponds to the simultaneous coincidence of the principal directions of strains, stresses
and of the axes of symmetry.

In [41] Majak and Pohlak determined the optimal material orientation for three-
dimensional linear and non-linear anisotropic materials. They used the Hooke and the
Pedersen-Taylor [57] laws to describe the linear and non-linear constitutive relations, re-
spectively. Two problems were considered: the minimisation of strain energy density and
the minimisation of the Tsai-Hill and Tsai-Wu failure indexes. However, the strategy
is described only for the first problem. They used the Euler’s angles to determine the
orientation of the material with respect to the direction of principal strains. Finally, the
analytical solution was compared to the one obtained with the help of a hybrid genetic
algorithm.

The outcome of all these works is that the optimal material orientation, and particu-
larly the direction of the symmetry axes, is always linked to the principal strain or stress
directions.

Innovative recent works on this theme are presented in [88] by Vincenti and Desmorat
and in [80] by Vannucci. In these works the plane orthotropic elastic behaviour of the
plane structure is described through six polar parameters (five polar invariants and a
polar angle representing the orthotropy orientation). The problem of minimising the
strain energy is discussed for a given state of stress and considering the polar terms as
optimisation parameters. The formulation and the resolution method of this problem
are the same described in [10], wherein the optimal orientation depends upon the sign
of the parameter γ that reflects the relative shear stiffness of the material (low or high).
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In [88] and in [80] thanks to the polar notation, the authors show that, actually, the
optimal orientation to maximise the stiffness depends effectively upon a parameter, but
this parameter represents the shape of orthotropy of the material. In this case, the solution
of the optimal orthotropy orientation becomes very general and can be evaluated also in
cases wherein the shear behaviour of the plate is not involved and, so, the shear parameter
γ introduced by Pedersen does not take part into the problem resolution.

3.2.2 Maximising strength

In the literature, we can find a huge amount of works devoted to the problem of the
maximisation of stiffness for composite materials and structures. A more complicated
problem is the maximisation of strength: one possible reason is that the description of
strength for anisotropic materials is more complicated and doubtful than the description
of stiffness. The structural stiffness, from a variational point of view, can be described
through a global functional, the compliance. On the other side, the strength is described
through a local functional represented by phenomenological criteria. Several studies on
strength optimisation of anisotropic materials have been conducted using the well-known
phenomenological failure criteria of Tsai-Hill and Tsai-Wu.

One of the first works on the optimal material orientation maximising the strength
was realised by Sandhu in 1969 [65]. He developed a parametric study on the Tsai-Hill’s
criterion applied to unidirectional composites. The criterion was parametrised in order
to determine the maximum strength for a given set of stresses and admissible strengths.
Results showed that the optimal material orientation depends upon the shear strength
value. If the shear strength S is lower than the transverse strength Y , the orientation of the
material that maximises the term (σ1/X) corresponds to the principal stress orientation.
If the shear strength is greater than the transverse strength no conclusion can be drown.
For this last case, in 1970, Brandmaier [6] developed an analytical solution. The result
was a relation between (σ1/X) and the transverse and shear strengths. Such a solution
for the optimal orientation is not generalised and has no links with the stress state of the
material.

In some sense, Sandhu and Brandmaier anticipated the approach to find the opti-
mal material orientation used by Pedersen et al. for maximising stiffness. The idea of
parametrising and explicitly writing the orientation of the symmetry axis into the fail-
ure criterion is, today, usually exploited in approaches to the strength optimisation of
composite structures. Majak and Hannus [40] formulated the Tsai-Hill [23] and Tsai-
Wu [73] stress-based failure criteria in terms of strains for 3D and 2D orthotropic materi-
als. The problem of the optimal material orientation was studied. The failure index was
assumed as the objective function to be minimised and an analytical method, in the case
of 2D orthotropic materials, was proposed to evaluate its minimum. The criteria were
parametrised and the angular difference between the material orientation and the direc-
tion of the first principal strain component was explicitly introduced in the expression of
the criteria. An analysis of global and local extrema was conducted in order to determine
the relationship between the material orientation and the strain field. The results showed
that the optimal material orientation depends upon two parameters, p and q, that depend
upon the strength, the stiffness of the material and the strain state. As demonstrated by
Sandhu and Brandmaier, the optimal orientation can be either coaxial with the principal
direction of strains or it can depend upon the two parameters p and q. The work of Majak
and Hannus is clearly an evolution of the those of Sandhu and Brandmaier. They pre-
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sented an analytical expression of the optimal material orientation, in the bi-dimensional
space, for any orthotropic material. Anyway, the terms p and q do not have, apparently,
an explicit mechanical meaning; hence, when the optimal orientation depends upon p
and/or q nothing can be said about its physical meaning.

In Chapters 4 and 5 we will deal with the same problem of finding the optimal material
orientation to maximise strength in the 2D case. We give a new and more general approach
to this problem and we find a physical meaning linked to all the optimal orientations.

3.3 Optimisation of anisotropic laminated structures

In Sec. 3.2 we have discussed some approaches to the problem of the optimal material
orientation for an orthotropic ply. The solution, often analytical, of this problem allows
for determining a link between the material orientation and the stress or strain state. In
global optimisation of laminated structures, other mechanical properties of the structure
must be taken into account: the material properties, the orientation and the thickness of
every ply composing the structure as well as the number of plies. Of course, the increase
in the number of design variables makes the solution of the optimisation problem more
complex. We describe in this section some works that deal with this theme and make use
of the CLPT to determine the optimal stiffness or strength of laminates.

3.3.1 Maximising stiffness

A great number of works on the optimal stiffness design of laminates achieves such a
goal using the minimisation of the compliance [16, 43, 54, 67, 88]. When dealing with
this problem, the most common assumption is the elastic uncoupling between extension
and bending behaviour of the laminate, along with the use of a fixed number of plies.
Once the material of the plies is fixed, almost all of the works on the optimal design of
laminates make the assumption of identical plies with the material chosen a priori ; then,
the main optimisation variables are only the ply orientations and their thickness. Instead
of working directly with these design variables, Miki [42, 43] was the first that used the
so-called lamination parameters introduced by Tsai and Pagano in 1982 [72] to describe
the classical stiffness tensors (membrane, bending and coupling) of the CLPT. In this way
the optimal stiffness properties, in terms of lamination parameters, were easily obtained
and the realisation of the stacking sequence corresponding to the optimal values of the
laminate lamination parameters was postponed to a sub-sequent phase. The advantage of
this strategy resides in the fact of having a simpler, linear and convex objective function,
the compliance expressed in terms of lamination parameters, in the first phase of the
design process. However, the method introduced by Miki presents a lack in the second
phase of the strategy: it finds the solution in only one sub-set of stacking sequences, the
angle-ply sequences. This two-step approach, introduced by Miki, was also used by other
researchers, see [16, 17].

Hammer et al. in 1997 [22] used the lamination parameters as design variables for
maximising the stiffness of orthotropic laminated plates subjected to single or multiple
loads. In a first phase, the optimisation problem is initially simplified in order to reduce
the design variables (e.g. adopting the CLPT and using the lamination parameters),
then, in the second phase the lay-up is designed in order to match the values of the design
variables (i.e. lamination parameters, thickness of the laminate, and so on) found during
the first phase. Moreover, in the expression of the strain energy the lamination parameters
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are locally defined, so they can change point wise. The local variation of the lamination
parameters introduced the concept of variable stiffness laminate that represents the new
class of the most performant composite structures. This strategy will be the core of our
approach for the optimal design of laminated structures described in the third part of the
present thesis (Chapters 6, 7 and 8).

An evolution and extension of this last work was presented by Jibawy et al. in
2011 [31]. The problem of minimising the complementary energy of a laminated structure
for a given state of stress was addressed. They adopted a hierarchical strategy essentially
base on two steps: a first step (structural optimisation) where the laminated structure is
modelled as a single-layer homogeneous structure and the anisotropy distribution is op-
timised determining the optimal distribution of material parameters; then in the second
step (lay up design) a suitable stacking sequence, giving the optimal response obtained
at the end of the previous step, is looked for at each point of the structure. In this re-
search the stiffness tensors of the laminate are represented using the polar method. An
analytical solution is found for both the steps of the hierarchical strategy and the sim-
plifications introduced by the polar method lead the authors to address the problem for
pure membrane and pure bending loading cases.

3.3.2 Maximising strength

Maximising the strength of laminated structures is still more complex than maximising
stiffness. Among the difficulties already existing for a single ply, in the case of a lami-
nated structure, we do not dispose of a global quantity describing the strength for the
homogenised structure. At the laminate level, the stiffness is still described by a global
functional, the compliance, whilst the strength is described through a local functional, the
failure criteria that needs to be analysed for each ply along the thickness of the structure;
thus, the application of failure criteria, needs the knowledge of the laminate lay-up. How-
ever, during the first phase of the laminate design, the lay-up is not known. So, almost
all of the works on optimal strength design of composite structures make use of a local
approach: they determine n objective functions, one for each ply, describing the strength
of the plies, [20, 36, 37, 52, 70]. The main optimisation variable, usually, is represented by
the plies orientation.

For example, Park et al. [52] developed a strategy to maximise the strength of com-
posite structures where the fibre orientations of the plies are the optimisation variables,
while the geometry and the number of plies are fixed. The objective, in this work, was
to minimise the maximum value of the failure index with respect to the fibres orienta-
tion. The stress field is determined through a Finite Element (FE) analysis using the
penalty plate bending element of Reddy [59]. The stress field is, then, used to calculate
the Tsai-Hill failure index, taken as the fitness function evaluated at each node for every
ply.

A research on the optimum design of a composite box-beam structure subject to
strength constraints was conducted by Kathiravan and Ganguli [35]. The analytical
method of Ferrero et al [15] to solve the elastic problem of the composite box beam
was used in order to reduce the computational efforts of the FE analysis. The number of
layers of each wall were fixed, while the plies orientations were considered as the design
variables in order to maximise the minimum reserve factor (the inverse of the failure in-
dex) obtained using the Tsai-Wu-Hann failure criterion. Both interactive descent method
and a PSO (Particle Swarm Optimisation) method were used and a comparison between
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results obtained using the two techniques was also presented.
Topal and Uzman [70] developed a numerical procedure to determine the optimum

fibres orientations that maximise the load capacity of a structure. Simply supported and
uncoupled laminated plates under biaxial tension and bending moment were considered.
The optimisation problem was solved via a two-step method. At the first step a gradient
based method is used to minimise the maximum value of the Tsai-Wu failure index and the
optimisation variables are represented by the vector of plies orientations. In the second
step, the load-bearing capacity is maximised in order to determine the maximum load
before the first-ply-failure arises.

The way to proceed in all of these works is summarised below:

• one or more parallel stacking sequences are chosen (generally randomly);

• a FE analysis is used to determine the state of stress of each ply;

• all the plies for which the Tsai-Wu failure index is maximum withstand a variation
of the fibres orientation.

The two last phases are repeated until the maximum value of the failure index is lower
than a chosen value. Of course, such an approach does not provide any certitude to reach
a global optimal solution. It is rather a procedure that is stopped once the obtained value
of the failure index is considered as acceptable. Furthermore, the computation effort
needed to study all the possible combinations of stacking sequences and the stress field
associated (through FE analyses), is very high.

Some analytical approaches to the problem of strength maximisation in laminated
structures have also been proposed. For example, Groenwold and Haftka [20] developed
an analytical approach where Tsai-Wu and Tsai-Hill failure criteria were considered in
order to minimise the local value of the failure index. In particular, the failure index is
evaluated for each ply in terms of the “failure loading factor” and of the orientation of
fibres with respect to the laminate frame. An angle-ply symmetric laminate is considered;
hence, the variables, regardless the number of plies, are reduced to only one orientation.

Finally, an important step forward was made in 2008 by Ijsselmuiden et al [30]. They
tried to approach the optimal strength design of a laminate made of unidirectional plies
defining a conservative failure envelope valid for the whole laminate. They used the Tsai-
Wu failure criterion expressed in terms of strains to obtain a conservative failure envelope
extracting the internal area to all the failure envelopes for any possible orientation of plies.
In this way they obtained a strength criterion, the failure envelope, valid for the whole
laminate, with given strength properties. Such a failure index was the objective function
to be minimised and the in-plane laminate strains were rewritten in terms of the in-plane
stiffness tensor and the in-plane stress tensor of the homogenised plate. The optimisation
variables were the lamination parameters of the in-plane stiffness tensor. In 2011 Khani
et al [38] re-proposed the same work, but this time the same conservative envelope was
formulated using the invariants of strains and a variable stiffness plate was optimised
with respect to strength. The innovative aspect of this works concerns the approach to
the definition of a unique failure criterion, the conservative failure envelope, valid for the
whole laminate considered as an equivalent homogenised plate. On the other hand, we
can say that the major lack of this work is the fact that the strength properties of the
homogenised plate are given and do not take part into the optimisation process. In fact,
the objective function, the conservative failure index, is minimised only with respect to
the stiffness parameters of the material.
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We will address the problem of the evaluation of an homogenised, through the thick-
ness, failure criterion and its minimisation to maximise the strength of laminated struc-
tures in Chapters 6 and 7 of this thesis.

3.4 The lay-up design of laminates as an optimisation

problem

As explained in Sec. 3.3, very often the stiffness optimisation of laminates is conducted,
during a first phase, on an equivalent homogenised plate and the material parameters of
such plate are considered as the optimisation variables. This phase, called structural opti-
misation, does not give a complete definition of the multi-layered plate. In fact the design
process must include, also, the definition of a stacking sequence giving the distribution of
material parameters issued from the structural optimisation phase.

Moreover, concerning the lay-up design phase, an important aspect needs to be em-
phasised: the relationship between the material properties of the homogenised plate and
the stacking sequence is not bijective; this means that there are more solutions in terms
of stacking sequence that can satisfy the same distribution of material parameters issued
from the first step of the laminate design.

Due to the high non-convex relationships that subsist between the ply orientations and
the laminate homogenised material parameters (lamination parameters, polar parameters
and so on) several researchers use to simplify the design process, especially reducing the
range of admissible orientation angles, classically chosen within the discrete set 0◦, ±45◦,
90◦. Moreover, it is also very common to choose symmetric stacking sequences in order to
satisfy the elastic uncoupling, or to use balanced or cross-ply laminates obtain orthotropy,
[7, 69,91].

All these simplifying hypothesis sensibly reduce the search space in the process of the
optimal lay-up design of laminates. In fact, due to the non-bijectivity of the problem,
it is also possible to obtain a laminate that attains the optimal material parameters of
the equivalent homogenised plate with a free stacking sequence obtained without any
simplifying assumption, see [34,45,89].

In [69] the stacking sequence of the optimised structure is designed to match the set
of lamination parameters obtained with the structural optimisation phase. A Genetic
Algorithm (GA) is used to obtain such stacking sequence. The laminate is required
to be balanced and to have a number of contiguous plies less than or equal to 4 in
order to meet aeronautical rules. In fact ply angles are limited to 0◦, ±45◦ and 90◦,
thus, the problem is formulated like a constrained combinatorial optimisation problem.
The problem considered here belongs to the class of the minimum distance problems:
the objective function is built as a sum of differences between the actual values of the
lamination parameters and the expected ones. The constraints are considered adding
penalty terms to the objective functions, see [48–50].

The stacking sequence linked to lamination parameters giving the minimisation of the
strain energy, minimisation of certain displacements and maximisation of the first buckling
factor is determined by Autio in [4]. Also in this case a genetic-based search strategy is
employed. The objective function still consists of differences between the evaluated and
target lamination parameters. This time the values of the adimissible plies orientations
are: 0◦, 90◦, ±45◦, ±80◦, ±70◦, ±60◦, ±30◦, ±20◦, ±10◦. This aspect is very important
because it means the abandon of the standard sequences that limit so much the optimal
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solutions. Moreover, such limitations on the orientations, often brings to the use of a
higher number of plies in order to meet the expected material parameters.

A methodology is proposed in [74] to convert a known distribution of lamination
parameters for a variable stiffness composite laminate into a realistic design in terms of
fiber angles. The problem is formulated as a global/local problem. The local part consists
in finding a realistic stacking sequence respecting the lamination parameter values. The
global part concerns a manufacturing constraint on curvature of fibres from one point to
the other. A GA is used to explore the design space of plies orientations. It consists in a
set of angles belonging to the range [0◦; 90◦] discretised with a step of 15◦.

The development of modern manufacture technologies leads the research to state the
problem of the optimal lay-up design in a more general way. For instance, the design
space of the plies orientation is discretised into more and more small steps: in [45] and
[34] the search for an optimal stacking sequence through the genetic search method is
conducted. The problem is still formulated as a minimum distance problem. In both
these works, the material parameters are represented by the polar parameters of the
equivalent homogenised plate introduced in Sec. 1.6. In [45] the laminate is considered
composed by unidirectional plies, but the range of orientations [0◦; 90◦] is discretised
with a step of 1◦. By abandoning the assumption of using standard orientations, the
authors found some realistic non-conventional stacks which show a lower weight than the
standard ones. Moreover, in [34] the laminate is also considered as a variable stiffness
laminate respecting the point-wise variation of the relative polar parameters.

The evolution presented in these three last works concerns the higher number of so-
lutions found and, in [34, 74], it concerns also a variable fiber orientation in the same
ply to match the spatial variation of laminated parameters. Such approach results in a
more effective use of the directional properties, for both strength and stiffness, of fiber
reinforced laminates. However, as it is shown in these works, the determination of the
stacking sequence of a variable stiffness laminate that respects the optimal distribution of
material parameters issued from the first step of the laminate design process, represents
a very hard task.

We will introduce the problem of the optimal lay-up design in Chapter 8 of the present
thesis.

3.5 Concluding remarks

In this Chapter we have presented a brief overview on the optimisation of anisotropic
laminated structures. The chronological evolution of research in the field of stiffness and
strength optimisation has been discussed. Particularly, we have presented the modern
approach to variable stiffness and strength structures applied to laminated composites.
On the base of the cited works, the following Chapters of this thesis will give a new and
more general approach to:

• the problem of finding the optimal material orientation to maximise strength (Chap-
ters 4 and 5);

• the hierarchical optimisation strategy to maximise the stiffness of a laminate, in-
cluding the strength as a supplementary objective (Chapters 6, 7 and 8).
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4

Invariant formulation of
phenomenological failure criteria

4.1 Introduction

In this Chapter we present a new analytical approach to the formulation of strength
criteria for linear elastic plane structures composed of orthotropic materials. The starting
point is the choice to work with some polynomial failure criteria: we have considered the
Tsai-Hill, Hoffman, Tsai-Wu and Zhang-Evans criteria, previously presented in Chapter 2
in their classical formulations. The aim of this Chapter is their formulation using the polar
invariants.

The invariant formulation of polynomial failure criteria has been considered in other
researches. For example, Hilton and Ariaratnam [24] reformulated the Shanley and Ry-
der [66] failure criterion through the invariants of the generalised stress tensors. This
invariant failure criterion was used to solve deterministic and stochastic problems with
large deformations and applied also to anisotropic materials. Another example is the
strain invariant formulation of failure criteria for polymers in composite materials de-
scribed by Gosse in [19].

In this thesis the invariant formulation, obtained through the polar formalism, has
been chosen for investigating the physical link existing between the invariant terms and
the strength properties of the material. Moreover, the unified matrix formulation of the
phenomenological failure criteria described in Sec. 2.5 gives us the opportunity of having
a unified invariant formulation of such criteria.

Finally the polar formalism has been chosen to easily express the link between the
material orientation and the mechanical properties of the continuum. This will be, as
shown in Chapter 5, particularly important during the study on the optimal material
orientation for maximising strength.

4.2 Tensorial formulation of failure criteria

In Chapter 2 we have expressed the phenomenological failure criteria of Tsai-Hill, Hoff-
man, Tsai-Wu and Zhang-Evans in a unified matrix notation. All of them are charac-
terised by the sum of a quadratic term and a linear term. We recall the 2D unified matrix
formulation of failure indexes:

F... = {υ}T [H] {υ}+ {υ}T {h} ≤ 1 , (4.1)
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where {υ}, depending on the considered criterion, corresponds to either {σ} or {ε}, while
[H] and {h} are, respectively, the matrix and vector of limit stresses or strains.

In order to use the polar formalism, we will consider, in the rest of the thesis, the
tensorial representation of the matrix [H] and of the vector {h} within the framework of
the unified matrix formulation of failure criteria for an orthotropic material with respect
to the generic frame {0;x, y, z}. The link between the Voigt’s notation and the Cartesian
tensor components is

Hxx = Hxxxx, Hxs = c1Hxxxy, Hxy = Hxxyy,
Hss = c2Hxyxy, Hys = c1Hxyyy, Hyy = Hyyyy,

(4.2)

and
hx = hxx, hy = hyy, hs = c1hxy, (4.3)

with c1 = 2 and c2 = 4 for the weakness tensors (F,f), while c1 = c2 = 1 for the strength
tensors (G,g and P,p). The unified tensorial formulation of the considered failure criteria
reads:

F... = υTHυ + υTh . (4.4)

4.3 Polar formulation of failure criteria

As tacitly assumed in classical criteria, like Tsai-Hill, Hoffman and Tsai-Wu, we also
consider that the components of [H] and {h} correspond, through eqs. (4.2) and (4.3),
respectively to the components of a fourth order tensor H and of a second order tensor h.
The tensor H is assumed to present all the tensorial symmetries of a classical elasticity
tensor, while the second order tensor h is assumed to be symmetric: this characterisation
is also implicit in the formulation of the considered criteria.

This assumptions correspond to admit that besides the elastic behaviour, also strength
is represented by a fourth order tensor of the elasticity type and by a second rank sym-
metric tensor. Moreover, the material symmetries of elasticity and strength are supposed
to be the same. Hence, if a material is orthotropic for its elastic behaviour, it is considered
to be orthotropic also for its strength, and the orthotropy axes are the same for stiffness
and strength, as well as for compliance and weakness.

Taking into account these points, we also assume the existence of such tensors, though
their mechanical relevancy should, perhaps, be further investigated. Since we are using the
tensorial formulation, it is possible to express these criteria through the polar formalism
in order to explicitly write the invariant terms and find their physical meaning.

Let us consider, now, an orthotropic material for which x and y are symmetry axes.
The Cartesian components of the fourth order orthotropic tensor H can be expressed using
its polar parameters, Γ0, Γ1, (−1)LΛ0, Λ1, Ω1 (see eqs. (1.34) for the case of the elasticity
stiffness tensor):

Hxxxx = Γ0 +2Γ1 + (−1)LΛ0 cos 4Ω1 +4Λ1 cos 2Ω1,
Hxxxy = (−1)LΛ0 sin 4Ω1 +2Λ1 sin 2Ω1,
Hxxyy = −Γ0 +2Γ1 − (−1)LΛ0 cos 4Ω1 ,
Hxyxy = Γ0 − (−1)LΛ0 cos 4Ω1 ,
Hxyyy = − (−1)LΛ0 sin 4Ω1 +2Λ1 sin 2Ω1,
Hyyyy = Γ0 +2Γ1 + (−1)LΛ0 cos 4Ω1 −4Λ1 cos 2Ω1.

(4.5)
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The polar components of H in terms of Cartesian components are obtained inverting
eq. (4.5):

8Γ0 = Hxxxx −2Hxxyy +4Hxyxy +Hyyyy,
8Γ1 = Hxxxx +2Hxxyy +Hyyyy,

8(−1)LΛ0e
4iΩ1 = Hxxxx +4iFxxxy −2Hxxyy −4Hxyxy −4iHyyxy +Hyyyy,

8Λ1e
2iΩ1 = Hxxxx +2iFxxxy +2iHyyxy −Hyyyy.

(4.6)
The polar parameters Γ0, Γ1, Λ0, Λ1 are invariants. In particular Γ0, Γ1 represent the
isotropic part of the tensor H, while Λ0 and Λ1 represent the amplitude of the anisotropic
part, so Λ0 and Λ1 are modules and can’t be negative, see [86]. L is the orthotropy shape
parameter and there are two types of orthotropy according to the possible values of L,
see [76] and Sec. 1.5.2: 0 (and any other even value) or 1 (and any other odd value). The
polar angle Ω1 represents the direction of the main orthotropy axis and fixing its value
corresponds to fix the frame, as still explained in Sec. 1.4.

Let us consider also the second order tensor h, represented in the plane (x, y) by the
vector {h}. The Cartesian components (hxx, hyy, hxy) can be expressed using the polar
ones, Γ,Λ,Ω: 

hxx = Γ+ Λ cos 2Ω,

hyy = Γ− Λ cos 2Ω,
hxy = Λ sin 2Ω.

(4.7)

Inversely, 
Γ =

hxx + hyy
2

,

Λe2iΩ =
hxx − hyy

2
+ ihxy.

(4.8)

The polar parameters Γ and Λ are invariants, while the polar angleΩ gives the orientation,
with respect to the reference system, of the first principal component of h and is hence,
frame dependent. In addition, similarly to what happens for the fourth order tensor, Γ
represents the spherical part of h while Λe2iΩ the deviatoric one.

In addition, the following consideration must be taken into account: the orientations
Ω1 and Ω of the tensors H and h are supposed to be equal because they describe the
same property, the strength, of the same orthotropic bi-dimensional sheet.

In the following paragraphs we will introduce also the polar parameters U (spherical
component), V (deviatoric component) and Υ (polar angle) of the second order tensor υ
representing the stresses/strains.

We have assumed that the material symmetries of elasticity and strength are the
same, thus, as a consequence the strength symmetries, in terms of polar invariants, are
characterised by the same conditions expressed in Sec. 1.5.2 for the stiffness tensor (for a
deeper insight in the matter, the reader is addressed to [77]):

ordinary orthotropy: Ω0 −Ω1 = L
π

4
with L = 0, 1,

R0 orthotropy: Λ0 = 0,
square orthotropy: Λ1 = 0,

isotropy: Λ0 = Λ1 = 0 for H,
Λ = 0 for h;

(4.9)
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The orientation Ω1 of the material symmetry and the type of orthotropy L are explicit
terms of the tensors components. In an optimisation process this property reveals to be
of the highest importance, see Chapter 5.

4.3.1 Invariant formulation of phenomenological failure criteria

We can now express the failure criteria with the polar formalism and we begin with the
case of ordinary orthotropy. All the failure criteria get the same expression which, for a
material with ordinary orthotropy is:

F... = 4V 2
[
Γ0 + (−1)LΛ0 cos 4(Ω1 − Υ )

]
+ 8U2Γ1 + 16UV Λ1 cos 2(Ω1 − Υ )+

+2UΓ + 2V Λ cos 2(Ω − Υ ) ≤ 1,
(4.10)

that is the polar translation of eq. (4.4). As expected, the linear term does not add any
coupling effect between the isotropic and anisotropic parts of tensors υ and h: indeed,
the spherical and deviatoric parts of tensor υ work only on the isotropic and anisotropic
parts of h, respectively.

Let us now consider some special cases of the stress/strain tensor and of isotropic
materials.

Case 1: V = 0.

V represents the deviatoric part of the stress/strain tensor. So, if V is equal to zero then
the stress/strain field is spherical: υxx = υyy = U and υxy = 0. By a simple substitution,
eq. (4.10) becomes

F... = 8U2Γ1 + 2UΓ ≤ 1 . (4.11)

Thus, only the spherical part of the criterion is present in this case and couples the
spherical part of tensor υ with one of the isotropic moduli of H and with the isotropic
part of h.

Case 2: U = 0.

When U is null, the stress/strain field is completely deviatoric with υxx = −υyy = V cos 2Υ
and υxy = V sin 2Υ . The criteria become, hence:

F... = 4V 2
[
Γ0 + (−1)LΛ0 cos 4(Ω1 − Υ )

]
+ 2V Λ cos 2(Ω − Υ ) ≤ 1 . (4.12)

Case 3: uniaxial stress/strain state along the x axis, υxx 6= 0, υyy = υxy = 0.

In terms of polar parameters, tensor υ becomes

U + V cos 2Υ = υxx =⇒ U = υxx/2 ,
U − V cos 2Υ = 0 =⇒ U = (−1)kV, k = 0, 1 ,

V sin 2Υ = 0 =⇒ Υ = kπ/2, k = 0, 1 .
(4.13)

Hence, we get for the failure criteria (4.10)

F... = 4U2
[
Γ0 + 2Γ1 + (−1)L Λ0 cos 4Ω1 + 4Λ1 cos 2Ω1

]
+ 2U [Γ + Λ cos 2Ω] ≤ 1 .

(4.14)
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Case 4: uniaxial stress/strain state along the y axis, υyy 6= 0, υxx = υxy = 0.

Tensor υ becomes

U + V cos 2Υ = 0 =⇒ U = −(−1)kV, k = 0, 1 ,
U − V cos 2Υ = υyy =⇒ U = υyy/2 ,

V sin 2Υ = 0 =⇒ Υ = kπ/2, k = 0, 1 ,
(4.15)

and the failure criteria (4.10) read:

F... = 4U2
[
Γ0 + 2Γ1 + (−1)LΛ0 cos 4Ω1 − 4Λ1 cos 2Ω1

]
+ 2U [Γ − Λ cos 2Ω] ≤ 1 .

(4.16)

Case 5: a pure shear stress/strain state, υxy 6= 0, υxx = υyy = 0.

Tensor υ is

U + V cos 2Υ = 0 =⇒ U = 0, Υ =
π

4
+ k

π

2
, k = 0, 1 ,

U − V cos 2Υ = 0 =⇒ U = 0, Υ =
π

4
+ k

π

2
,

V sin 2Υ = υxy =⇒ (−1)kV = υxy, k = 0, 1 ,

(4.17)

and the failure criteria now look like:

F... = 4V 2
[
Γ0 − (−1)L Λ0 cos 4Ω1

]
≤ 1 . (4.18)

Case 6: Isotropic material

The complete symmetry is expressed by the condition Λ0 = Λ1 = 0 and Λ = 0. In this
way, only the isotropic parts of all the tensors appear within the criteria (the anisotropic
ones being identically null):

F... = 4V 2Γ0 + 8U2Γ1 + 2UΓ ≤ 1. (4.19)

4.4 Physical interpretations

4.4.1 Remarks on the stress-based criteria

In the case of stress-based criteria, the tensors H and h represent the tensors F and f ,
respectively. It is possible to inject into eqs. (4.6) and (4.8) the relations giving, for each
one of the three stress-based criteria, the Cartesian components of F and f as function
of the strength properties (Xt, Xc, etc.), see Tabs. 2.2 and 2.3. In this Section we assume
that (see Sec. 2.5) the x axis of the reference system is aligned with the direction of
maximum weakness (in the case of an unidirectional ply, the fibres are perpendicular to
the x axis).

The polar components of the weakness tensor F, for an orthotropic material, in terms
of strength properties are:
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8Γ0 =
1

XtXc

+
1

YtYc
+

1

S2
− 2Fxxyy,

8Γ1 =
1

XtXc

+
1

YtYc
+ 2Fxxyy,

8(−1)LΛ0 =
1

XtXc

+
1

YtYc
− 1

S2
− 2Fxxyy,

8Λ1 =
1

YtYc
− 1

XtXc

,

(4.20)

with the term Fxxyy for each stress-based criterion reported in Tab. 2.2 as Fxy. Moreover,
concerning the Tsai-Hill criterion the normal and transverse strength properties in are
considered equivalent in tension and compression. A peculiar expression concerns the
isotropic polar invariant Γ1, in the Tsai-Hill criterion:

8Γ1 =
1

Y 2
; (4.21)

the above equation, that can be easily found using Tab. 2.2 along with eqs. (4.6), shows
that Γ1 is a direct measure of the transverse strength property Y .

Concerning the anisotropic terms of F, we assume that Λ0 and Λ1 are positive or null
as said in Sec. 1.4. Thus, if we impose that the third and fourth equations of (4.20)
expressing Λ0 and Λ1 must be positive or null, we have the following conditions:

1

XtXc

+
1

YtYc
− 2Fxxyy ≥

1

S2
if L = 0,

1

XtXc

+
1

YtYc
− 2Fxxyy ≤

1

S2
if L = 1,

with YtYc ≤ XtXc . (4.22)

Therefore, the type of orthotropy (value of the parameter L) take part into the conditions
to ensure the positivity of Λ0.

The polar components of f , for an orthotropic material, in terms of the strength
properties, can be obtained in the same way and are:

2Γ =
Yc − Yt
YtYc

+
Xc −Xt

XtXc

,

2Λ =
Yc − Yt
YtYc

− Xc −Xt

XtXc

.
(4.23)

This formulation is equivalent for the Tsai-Wu and Hoffman criteria, while for the Tsai-
Hill criterion, tensor f is not present.

The value of the polar strength invariants for two orthotropic layers, see Tab. 4.1, are
reported in Tabs. 4.2 to 4.4. Concerning the polar parameters of the Tsai-Hill fourth order
tensor, four cases are presented for an E-glass epoxy lamina. This is due to the presence
of two different values of normal strength properties in tension and compression that are
used in relation with the sign of stress components σxx and σyy. This approach gives four
different sets of invariants, one for the tension, one for the compression case, and the two
others being a mix of tension and compression cases. In the case of the Hoffman failure
criterion, the polar invariants are unique, see Tab. 4.3.



4.4. PHYSICAL INTERPRETATIONS 53

Material Xt Xc Yt Yc S

E-Glass Epoxy 1080 620 39 128 89
Carbon/Epoxy 1447 1447 51.7 206 93

Table 4.1: Mechanical strength properties of two orthotropic materials, [MPa].

×10−5 ×10−6 ×10−6 ×10−6

X Y Γ0[MPa−2] Γ1[MPa−2] Λ0[MPa−2] Λ1[MPa−2] L Ω1

Xt Yt 9.807 82.29 66.51 82.08 0 0
Xc Yc 2.373 7.955 7.826 7.304 1 0
Xt Yc 2.352 7.737 8.044 7.522 1 0
Xc Yt 9.829 82.51 66.73 81.86 0 0

Table 4.2: Weakness polar components for the generic E-Glass Epoxy in the Tsai-Hill
failure criterion.

×10−5 ×10−5 ×10−6 ×10−5 ×10−3 ×10−3

Material Γ0[MPa−2] Γ1[MPa−2] Λ0[MPa−2] Λ1[MPa−2] L Ω1 Γ [MPa−1] Λ[MPa−1] Ω

E-Glass 4.12 2.50 9.63 2.49 0 0 8.57 9.26 0
Epoxy

Carbon 2.63 1.17 2.60 1.17 1 0 7.24 7.24 0
Epoxy

Table 4.3: Weakness polar components for orthotropic materials in the Hoffman failure
criterion.

×10−5 ×10−5 ×10−6 ×10−5 ×10−3 ×10−3

Material Γ0[MPa−2] Γ1[MPa−2] Λ0[MPa−2] Λ1[MPa−2] L Ω1 Γ [MPa−1] Λ[MPa−1] Ω

E-Glass [4.53:3.67] [2.09:2.96] [13.8:5.12] 2.49 0 0 8.57 9.26 0
Epoxy

Carbon/ [2.79:2.46] [1.01:1.35] [0.98:4.33] 1.17 1 0 7.24 7.24 0
Epoxy

Table 4.4: Weakness polar components for orthotropic materials in the Tsai-Wu failure
criterion.

Concerning the Tsai-Wu criterion, some polar parameters are linear functions of the
term F ∗12 ∈ [−1; 1] of eq. (2.19):

8Γ0 =
1

XtXc

+
1

YtYc
+

1

S2
− 2

F ∗12√
XtXcYtYc

,

8Γ1 =
1

XtXc

+
1

YtYc
+ 2

F ∗12√
XtXcYtYc

,

8(−1)LΛ0 =
1

XtXc

+
1

YtYc
− 1

S2
− 2

F ∗12√
XtXcYtYc

.

(4.24)

The range of their numerical values, considering that F ∗12 ∈ [−1; 1], is presented in Tab. 4.4.
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A general expression of the term F ∗12 cannot be given because its value actually depends
upon the stress state. Nevertheless, thanks to the polar formalism, we can see that the
term F ∗12 does not depend on the stress field in two cases.

The first one is obtained imposing Λ0 = 0 in the third equation of (4.24):

F ∗12 =

√
XtXcYtYc

2

(
1

XtXc

+
1

YtYc
− 1

S2

)
. (4.25)

Eq. (4.25) represents a material with R0-orthotropy, [76], for which the characterisation
of the orthotropic weakness tensor F is given by three, instead of four, polar invariants:
Γ0, Γ1 and Λ1. Thus, for Λ0 = 0 the term F ∗12 of Tsai-Wu tensor F has a fixed value that
depends only upon the properties of normal and shear strength of the material.

The second case is isotropy (Λ0 = Λ1 = 0). If we impose Λ1 = 0 in the fourth equation
of (4.20) we obtain:

XtXc = YtYc . (4.26)

Combining eq. (4.26) with eq. (4.25), we get:

F ∗12 = 1− XtXc

2S2
. (4.27)

Of course, in this case the further reduction of independent components, a fortiori leads
to an explicit formulation of F ∗12.

The other polar terms of the Tsai-Wu tensors, not dependent on F ∗12, are equivalents
to those of the Hoffman criterion.

Tsai-Hill criterion

The Tsai-Hill criterion in the case of ordinary orthotropy is:

FHill = 4V 2
[
Γ0 + (−1)LΛ0 cos 4(Ω1 − Υ )

]
+ 8U2Γ1 + 16UV Λ1 cos 2(Ω1 − Υ ) ≤ 1.

(4.28)
Eq. (4.28) is formally identical to the corresponding one for the complementary energy
Wc given in [88].

Let us now discuss some special cases, previously considered, of the stress tensor.

Case 1: V = 0.

Eq. (4.11) shows that only the spherical part of the criterion is present in this case coupling
the spherical part of tensor σ with an isotropic component of F. If we rewrite eq. (4.11)
in Cartesian notation using eqs. (4.6) and (1.31) we get, in the case of a pure spherical
stress field,

σxx = σyy ≥ Y. (4.29)

In this case the only property of resistance responsible for the failure is Y . This is a
consequence of the tacit assumption, in the Tsai-Hill criterion, that the strength along
the fibres direction, X, is greater than that in the transverse direction, Y.
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Case 2: U = 0.

When U is null, the stress field is completely deviatoric with σxx = −σyy = V cos 2Υ and
σxy = V sin 2Υ . If we choose a frame putting Ω1 = 0, the criterion in terms of Cartesian
components reads like

σ2
xx

(
2

X2
+

1

Y 2

)
+
σ2
xy

S2
≤ 1. (4.30)

This relation corresponds to eq. (4.12) written in Cartesian notation using eqs. (4.6) and
(1.31).

Case 3: Isotropic material.

The complete material symmetry is expressed by the condition Λ0 = Λ1 = 0. In this way
the anisotropic part of the Tsai-Hill criterion is removed, eq. (4.11). Thus, it remains only
the isotropic part of the criterion:

FHill = 8U2Γ1 + 4V 2Γ0 ≤ 1. (4.31)

And in terms of strength properties:

X2 = Y 2 = 3S2. (4.32)

The criterion in Cartesian components reads like:

FHill =
1

X2

(
σ2
xx + σ2

yy − σxxσyy + 3σ2
xy

)
≤ 1; (4.33)

that corresponds to the Von Mises criterion in a plane stress state.

Hoffman and Tsai-Wu criteria

The general polar formulation of the two failure criteria is given in eq. (4.10). It is
identical to that of the Tsai-Hill with two added terms that take into account for the
linear contribution to the failure. In Tab. 4.5 some special cases, extensively discussed
beforehand for the Tsai-Hill criterion, are reported for the cases of the Hoffman and
Tsai-Wu criteria. The adopted approach is the same use for the Tsai-Hill criterion. The
isotropic material case needs more attention an will be explained, apart, below.

Case 3: Isotropic material.

Hoffman’s criterion: in terms of strength properties, the condition Λ0 = Λ1 = 0 and
Λ = 0 corresponds to:

XtXc = YtYc = 3S2,
Xc −Xt = Yc − Yt.

(4.34)

Thus, the Hoffman criterion in Cartesian components can be written as follows:

FHoff =
1

XtXc

(
σ2
xx + σ2

yy − σxxσyy + 3σ2
xy

)
+ (σxx + σyy)

(
Xc −Xt

XtXc

)
≤ 1. (4.35)
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Case 1: V = 0

Cartesian form. FHoff =
σ2

YtYc
+ σ

(
Xc −Xt

XtXc
+
Yc − Yt
YtYc

)
,

FTW = σ2

(
1

YtYc
+

2F ∗
12√

XtXcYtYc
+

1

XtXc

)
+ σ

(
Xc −Xt

XtXc
+
Yc − Yt
YtYc

)
.

Case 2: U = 0

Cartesian form. FHoff = σ2
xx

(
2

XtXc
+

1

YtYc

)
+
σ2
xy

S2
+ σxx

(
Yc − Yt
YtYc

− Xc −Xt

XtXc

)
,

FTW = σ2
xx

(
1

XtXc
− 2F ∗

12√
XtXcYtYc

+
1

YtYc

)
+
σ2
xy

S2
+ σxx

(
Yc − Yt
YtYc

− Xc −Xt

XtXc

)
.

Table 4.5: Peculiar expressions of Hoffman and Tsai-Wu failure criteria in terms of
stresses.

Eq. (4.35) can be rewritten in terms of principal stress components σI and σII . The
relationship among the polar parameters U and V and the principal stresses is:

U =
σI + σII

2
,

V =
σI − σII

2
.

(4.36)

Considering eq. (4.36), eq. (4.19) and eqs. (4.20), we obtain:

FHoff =
1

XtXc

(
σ2
I + σ2

II − σIσII
)

+

(
Xc −Xt

XtXc

)
(σI + σII) ≤ 1 (4.37)

that corresponds to the Polynomial Invariants Failure Criterion of Christensen for isotropic
materials, with different strength in tension and compression, developed from 1997 [11]
to 2007 [12]. The failure criterion is valid for both ductile and brittle materials, it has
a quadratic form similar to the Von Mises criterion but more general and applicable to
a wider range of materials. Eq. (4.37) expresses a rather important result: thanks to
the polar formalism we have shown, with few logical steps, that as well as the Tsai-Hill
criterion is an extension of the Huber-Henky-Von Mises criterion, the Hoffman criterion
can be considered as an extension of the Christensen criterion.

Tsai-Wu’s criterion: in terms of strength properties, conditions Λ0 = Λ1 = 0 and Λ = 0
become now

XtXc = YtYc = 2S2(1− F ∗12),
Xc −Xt = Yc − Yt.

(4.38)

Thus, the Tsai-Wu criterion in Cartesian components is, in this case,

FTW =
1

XtXc

(
σ2
xx + σ2

yy + 2F ∗12σxxσyy + σ2
xy(1− F ∗12)

)
+ (σxx + σyy)

(
Xc −Xt

XtXc

)
≤ 1;

(4.39)
but, using condition (4.27), valid for isotropic materials, eq. (4.39) becomes

FTW =
1

XtXc

(
σ2
xx + σ2

yy

)
+

1

S2

(
σ2
xy − σxxσyy

)
+

(
Xc −Xt

XtXc

)
(σxx + σyy) ≤ 1, (4.40)

that represents the first formulation, to our knowledge, of failure criterion for isotropic
materials derived from the most general criterion of Tsai-Wu for anisotropic materials.
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4.4.2 Remarks on the stress-based criteria expressed in terms
of strains

In the case of stress-based criteria expressed in terms of strains the tensors H and h
represents the tensors G and g, respectively, Sec. 2.3.
It is possible, also in this case, to inject into eqs. (4.6) and (4.8) the relations giving,
for each one of the three strength criteria expressed in terms of strains, the Cartesian
components of G and g, as functions of the strength and stiffness properties, see Tabs. 2.4
and 2.5. It is evident that, being such criteria the expression of the previous ones in terms
of strains, the results and remarks are the same.

Thus, we will report only some numerical examples (Tab. 4.7) in order to compare
the orthotropy orientations of the fourth order tensors involved in such formulation (F,
Q and the combination of these two tensors: G). In particular, we will consider only the
polar parameters of the Tsai-Hill criterion.

The mechanical properties of three materials are reported in Tab. 4.6. The reference
system {0;x, y, z} has, here, the x axis aligned with the direction of maximum stiffness
and strength, hence, for an unidirectional ply the x axis is placed along the fibres direction
(so, such a tensor is defined in a frame rotated of π/2 with respect to that used for F).

We recall, see Sec. 2.5, that the Cartesian components of G are dimensionless. Of
course, this is true for the polar components of G as well. The main result observed in
Tab. 4.7 is that while the orthotropy directions of tensors F and Q are always shifted of
π/2, the orthotropy orientation of tensor G can be aligned either with F or Q, depending
on the considered material.

Carbon/Epoxy IM6/Epoxy Generic
T300/5208 Carbon/Epoxy E-Glass/Epoxy

E1[MPa] 181000 203000 39000
E2[MPa] 10300 11200 8600
GS

12[MPa] 7170 8400 3800
ν12 0.28 0.32 0.28
X[MPa] 1500 1540 620
Y [MPa] 246 56 39
S[MPa] 68 98 89

Table 4.6: Mechanical properties of a selected set of orthotropic materials

4.4.3 Remarks on the strain-based criterion

In the case of strain-based criteria the tensors H and h represents the tensors P and p,
respectively, see Sec. 2.4. If we substitute in eqs. (4.6) the relations giving the Cartesian
components of P and p, functions of the yield strain properties (Xεt , XεC , etc.) reported
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Weakness tensor F

Γ0 [MPa]−2 Γ1 [MPa]−2 Λ0 [MPa]−2 Λ1 [MPa]−2 Ω1 L

×10−5 ×10−5 ×10−5 ×10−5

Carbon/Epoxy 11.03 2.06 10.59 2.01 90 Even
T300/5208

IM6/Epoxy 5.29 3.98 2.69 3.98 90 Even
Carbon/Epoxy

Generic 9.86 8.21 6.70 8.18 90 Even
E-Glass/Epoxy

Stiffness tensor Q

T0 [MPa] T1 [MPa] R0 [MPa] R1 [MPa] Φ1 K

×103 ×103 ×103 ×103

Carbon/Epoxy 26.88 24.74 19.71 21.43 0 Even
T300/5208

IM6/Epoxy 30.22 27.82 21.82 24.11 0 Even
Carbon/Epoxy

Generic 7.34 6.66 3.54 3.86 0 Even
E-Glass/Epoxy

Strength tensor G

Γ0 Γ1 Λ0 Λ1 Ω1 L

×103 ×103 ×103 ×103

Carbon/Epoxy 7.52 2.12 3.59 1.60 0 Even
T300/5208

IM6/Epoxy 8.21 10.92 0.86 2.37 90 Even
Carbon/Epoxy

Generic 4.70 10.73 2.87 5.31 90 Even
E-Glass/Epoxy

Table 4.7: Polar Components for the tensors F, Q and G calculated in the material frame
with x axis oriented along the direction of maximum strength, Tsai-Hill’s criterion.

in Tabs. 2.6 and 2.7, we obtain:

8Γ0 =
1

XεtXεc

+
1

YεtYεc
+

4

S2
ε

− 2Pxxyy,

8Γ1 =
1

XεtXεc

+
1

YεtYεc
+ 2Pxxyy,

8(−1)LΛ0 =
1

XεtXεc

+
1

YεtYεc
− 4

S2
ε

− 2Pxxyy,

8Λ1 =
1

XεtXεc

− 1

YεtYεc
.

(4.41)

in the material frame with x axis aligned with the direction of maximum strength and
stiffness. The term Pxxyy is given in eq. (2.37) as P12.
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The anisotropic terms of P, Λ0 and Λ1 are positive. This corresponds to the following
conditions, the counterparts of eqs. (4.22):

1

XεtXεc

+
1

YtYεc
− 2Pxxyy ≥

4

S2
ε

if L = 0,

1

XεtXεc

+
1

YεtYεc
− 2Pxxyy ≤

4

S2
ε

if L = 1,

with YεtYεc ≥ XεtXεc . (4.42)

Therefore, the two types of orthotropy (L = 0 or 1) are directly linked to the first two
inequalities.

Thanks to the polar formalism, similarly to the case of the Tsai-Wu criterion, we can
see that the term Pxxyy can be simplified with respect to eq. (2.35) in two cases:

Λ0 = 0 : Pxxyy =
1

2

(
1

XεtXεc

+
1

YεtYεc
− 4

S2
ε

)
,

Isotropy, i.e. Λ0 = Λ1 = 0 : Pxxyy =
1

XεtXεc

− 2

S2
ε

.

(4.43)

The first one, Λ0 = 0, represents a material with the so-called R0-orthotropy (Λ0 = 0) for
which the characterisation of the orthotropic strength tensor P is given by four, and not
five, polar invariants: Γ0, Γ1 and Λ1. As shown in eq. (4.43), the term P12 of the Zhang-
Evans tensor P depends only upon the properties of normal and shear yield strains, and
not on other material properties like in (2.35). The second case of eq. (4.43) concerns the
isotropic case. Of course, in this case the further reduction of independent components,
a fortiori leads to a simplest formulation of P12.

Similarly, the polar components of p, for an orthotropic material, in terms of limit
strain properties can be obtained from eqs. (4.8), and are

2Γ =
Xεc −Xεt

XεtXεc

+
Yεc − Yεt
YεtYεc

,

2Λ =
Xεc −Xεt

XεtXεc

− Yεc − Yεt
YεtYεc

.
(4.44)

Below, some special cases already considered in Sec. 4.3 are discussed. The way the
Cartesian formulation is obtained is completely equivalent to that used for the stress-based
criteria in Sec. 4.4.1.

Case 1: V = 0.

Eq. (4.11) shows that only the spherical part of the criterion is present in this case coupling
the spherical part of tensor ε with an isotropic component of P. A spherical strain field
(V = 0) leads to failure when:

FZE = ε2
(

1

XεtXεc

+ 2P12 +
1

YεtYεc

)
+ ε

(
Xεc −Xεt

XεtXεc

+
Yεc − Yεt
YεtYεc

)
≥ 1. (4.45)

This expression is very similar to that of the Tsai-Wu criterion in Tab. 4.5 for the case
of spherical stress state. This time the quantities involved are the strains and the yield
strain properties of the material.
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Case 2: U = 0.

When U is null, the strain field is completely deviatoric with εxx = −εyy = V cos 2Υ and
εxy = V sin 2Υ . If we choose a frame in which Ω1 = 0, the criterion in terms of Cartesian
components is:

FZE = ε2xx

(
1

XεtXεc

− 2P12 +
1

YεtYεc

)
+ 4ε2xy

(
1

S2
ε

+ P12

)
+

+εxx

(
Xεc −Xεt

XεtXεc

− Yεc − Yεt
YεtYεc

)
≤ 1.

(4.46)

Case 3: Isotropic material.

Again in terms of strength properties, conditions Λ0 = Λ1 = 0 and Λ = 0 become now

XεtXεc = YεtYεc = S2
ε/(S

2
εP12 + 2),

Xεc −Xεt = Yεc − Yεt .
(4.47)

In this way, eq. (4.19) becomes

FZE =

(
1

XεtXεc

+
1

S2
ε

)(
ε2xx + ε2yy

)
+

8ε2xy
S2
ε

− 2εxxεyy

(
1

XεtXεc

+
2

S2
ε

)
+

+

(
Xεc −Xεt

XεtXεc

)
(εxx + εyy) ≤ 1,

(4.48)

that represents the first formulation, to our knowledge, of failure criterion for isotropic
materials, with different strength in tension and compression, derived from the most
general criterion of Zhang-Evans for anisotropic materials.

4.5 Concluding remarks

In this Chapter, four different polynomial failure criteria have been formulated within
the framework of the polar formalism. The physical meaning of each one of the polar
strength parameters has been examined. In particular, the polar angle Ω1 represents the
main strength orthotropy orientation and the value of the polar invariant L denotes two
different types of ordinary strength orthotropy.

In Sec. 4.4.1, a new result has been obtained; the component Fxxyy of the Tsai-Wu
fourth order tensor can get an exact value for two kinds of material: R0-orthotropic
materials and isotropic materials. In these two cases, the term Fxxyy depends on the
normal and shear strength properties but not on the applied stresses, so it becomes a
peculiar property of the material. Similarly, the component Pxxyy of the Zhang-Evans
fourth order tensor can take a simpler expression forR0-orthotropic materials and isotropic
materials. In these two cases the term Pxxyy depends only upon the limit strain properties
of the material and not also on the elastic moduli.

Moreover, in the case of a spherical stress/strain field with υxx = υyy, the failure
indexes are every time equal to

F... = 8U2Γ1 + 2UΓ. (4.49)

This means that the failure is independent from the type of material symmetry and
regards only the isotropic part of the weakness/strength tensors. A practical example of
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this phenomenon can be that of the inflated membranes. In all the other cases the failure
is influenced by anisotropy and hence by orientation.

The polar expression of the four criteria has been determined also for isotropic ma-
terials with different strength in tension and compression. In particular, the Hoffman
criterion gives, for an isotropic material, the condition of the recently formulated Chris-
tensen criterion, so it can be considered as an extension of this last one, whereas the
Tsai-Wu and Zhang-Evans criteria give two new formulations for the prediction of failure
in isotropic materials that, to the best of our knowledge, are not present in the literature.
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5

Optimal material orientation
through minimisation of failure
indexes

5.1 Introduction

In Chapter 4 we have expressed the unified formulation of the failure criteria of Tsai-Hill,
Hoffman, Tsai-Wu and Zhang-Evans through invariants. In this Chapter we will use such
invariant formulation as a functional in order to maximise the strength of an orthotropic
ply, taking as design variable the orthotropy direction, Ω1. The objective function is the
failure index of one among the polynomial failure criteria considered in Chapter 2. We
will separate the failure indexes into two main groups:

• the quadratic failure indexes: we put in this group all the failure criteria charac-
terised only by quadratic terms, namely the Tsai-Hill criterion expressed in terms
of stresses or strains;

• the quadratic plus linear failure indexes: in this class, we group all the failure criteria
characterised by quadratic and linear terms, like the Tsai-Wu criterion expressed in
terms of stresses or strains.

The aim is to find the orientation of the orthotropy axes of the material minimising
the objective function, written using the polar formalism, which presents the following
advantages:

1. the use of material intrinsic, i.e. frame independent, quantities;

2. the possibility of stating, by these quantities, the material symmetries;

3. the fact that the material orientation, denoted by Ω1, appears explicitly among the
variables;

5.2 Minimising the quadratic failure indexes

In Sec. 4.4.1 we have yet expressed the failure index (in terms of stresses or strains) for
an orthotropic material with a given principal orthotropic direction Ω1. Now, the angle

63
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Ω1 becomes the design variable. The failure index for an orthotropic material when using
a quadratic failure criterion is

FQuad = 4V 2
[
Γ0 + (−1)LΛ0 cos 4 (Ω1 − Υ )

]
+ 8U2Γ1 + 16UV Λ1 cos 2 (Ω1 − Υ ) , (5.1)

where the relation between the polar parameters U, V and the principal stress/strain
components υI , υII is given in eq. (4.36). The polar angle Υ represents the direction of
the higher principal stress/strain component. Eq. (5.1) is the objective function to be
minimised. Therefore the minimisation problem can be defined as follow:

min
Ω1

FQuad (Γ0, Γ1, Λ0, Λ1, L,Ω1, U, V, Υ ) . (5.2)

Problem (5.2) is completely analogous to the minimisation problem of the strain energy
density with “fixed strain state”, see [88], with only one design variable: the angle Ω1.
The next step concerns the analytical search of the stationary points of FQuad, i.e. of the
directions of the maximum weakness/strength. Putting the first derivative to zero gives:

∂FQuad
∂Ω1

= −32V sin 2 (Ω1 − Υ )
[
(−1)LΛ0V cos 2 (Ω1 − Υ ) + Λ1U

]
= 0. (5.3)

Eq. (5.3) is satisfied by anyone of the following conditions:

V = 0 : spherical stress/strain field,
Λ0 = Λ1 = 0 : isotropic material,

sin 2 (Ω1 − Υ ) = 0 ⇒ Ω1 − Υ =
{

0,
π

2

}
,

cos 2 (Ω1 − Υ ) = − Λ1U

(−1)LΛ0V
, with

| U |
V
≤ Λ0

Λ1

.

(5.4)

The first two cases are trivial and exclude any possible optimisation of the strength by
varying the orthotropy direction, but the last two give three different stationary points
to be compared:

Ω1 = Υ, denoted as solution xa,

Ω1 = Υ + π/2, denoted as solution xb,

Ω1 = Υ ± 1

2
arccos

[
−(−1)L

Λ1U

Λ0V

]
, denoted as solution xc .

(5.5)

The third solution, xc, exist only for
| U |
V
≤ Λ0

Λ1

. The orthotropy direction Ω1 minimising

FQuad is directly linked to the direction Υ of the higher principal stress/strain υI .
We can, now, evaluate the sign of the second order derivative to check the local

conditions of minimum or maximum of FQuad at the stationary points given in eq. (5.5):

∂2FQuad
∂Ω2

1

= −64V
[
(−1)LΛ0V cos 4(Ω1 − Υ ) + Λ1U cos 2(Ω1 − Υ )

]
. (5.6)

In addition, the following condition on the stress/strain tensor υ will be taken into ac-
count:

if υI ≥ υII , then

{
U ≤ 0 ⇔ |υI | ≤ |υII |,
U ≥ 0 ⇔ |υI | ≥ |υII |,

(5.7)
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with U = (υI + υII)/2.
The type of ordinary orthotropy affects the solution of this problem. We consider

separately the two cases of L = 0 and L = 1.

1) L = 0
Eq. (5.6) in the stationary local points of eq. (5.5) becomes

∂2FQuad
∂Ω2

1 xa

= −64V [Λ0V + Λ1U ] > 0 if
U

V
< −Λ0

Λ1

,

∂2FQuad
∂Ω2

1 xb

= −64V [Λ0V − Λ1U ] > 0 if
U

V
>
Λ0

Λ1

,

∂2FQuad
∂Ω2

1 xc

= −64V

[
Λ2

1U
2 − Λ2

0V
2

Λ0V

]
> 0 if −Λ0

Λ1

<
U

V
<
Λ0

Λ1

.

(5.8)

Each term of eq. (5.8) is a positive quantity excepting for U . Moreover, the sign of
the second derivative depends on the ratio of the stress components U/V with respect
to Λ0/Λ1. All the conditions of eqs. (5.8) that concern U/V belong to different and
independent ranges of values of U/V . Moreover, the third solution of (5.8) respect the
bounds on the last condition of eq. (5.4), so, the stationary points of (5.5) are solutions
for the maximum of strength.

2) L = 1
Eq. (5.6) in the stationary local points of eq. (5.5) becomes

∂2FQuad
∂Ω2

1 xa

= −64V [−Λ0V + Λ1U ] > 0 if
U

V
<
Λ0

Λ1

,

∂2FQuad
∂Ω2

1 xb

= 64V [Λ0V + Λ1U ] > 0 if
U

V
> −Λ0

Λ1

,

∂2FQuad
∂Ω2

1 xc

= −64V

[
−Λ2

1U
2 + Λ2

0V
2

Λ0V

]
> 0 if

U

V
>
Λ0

Λ1

,
U

V
< −Λ0

Λ1

.

(5.9)

In this case, the last equation is never satisfied because the value of U/V violates the
boundaries on solution xc imposed in the last equation of (5.4). Hence, only the first two
stationary points can be a minimum. We can compare, in this case, the value of FQuad in
this two points:

FQuad xa − FQuad xb = 32UV Λ1. (5.10)

The minimum of FQuad depends strictly from the sign of U . For U > 0 the solution is
given by xb, while for U < 0 the solution is given by xa.

In Fig. 5.1, we show a summary of the solutions found above; in this figure, µ is the
direction angle of the principal stress having the least absolute value, i.e.

µ = dir (min {|υI |, |υII |}) , (5.11)

and

ξ =
1

2
arccos

[
−(−1)L

Λ1U

Λ0V

]
. (5.12)

As Υ is the direction of the principal stress/strain υI , taking into account eq. (5.7), it is
µ = Υ for U < 0, while µ = Υ + π/2 for U > 0. The use of the angle µ is useful in
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strength problems, because it represents the direction of the least stress/strain for the

material. This figure shows that for
|U |
V

>
Λ0

Λ1

the optimal solution Ωopt
1 is equal for the

two types of orthotropy (L = 0 and L = 1), while for
|U |
V

<
Λ0

Λ1

the solution Ωopt
1 for L = 0

becomes anti-optimal for L = 1. Therefore, the type of orthotropy plays a decisive role
in the optimisation of strength. This kind of influence of the type of orthotropy upon an
optimal solution has been already found in other problems concerning the elastic response
of anisotropic structures, see [80].

xc Ω1=𝜇±𝜉 Ω1=𝜇±𝜉-p/2 

xb Ω1=𝜇 

xa Ω1=𝜇 

Case  L = 0 

U/V -0/1 0 0/1 

xc 

xb Ω1=𝜇 Ω1=𝜇 

xa Ω1=𝜇 Ω1=𝜇 

Case  L = 1 

- 0/1 0 0/1 U/V 

Figure 5.1: Optimal orthotropy orientation minimising the failure index of quadratic
criteria.

A last remark: the above results clearly show, by an invariant relation, the link between
the anisotropy strength properties of the material and the stress/strain field for obtaining
the optimal orientation of the material. A similar result, will be obtained in the next
section, where the Quadratic plus Linear (QL) criteria are considered.

5.3 Minimising the quadratic plus linear failure in-

dexes

Proceeding in a similar way, the quadratic plus linear failure index FQL for an orthotropic
material is

FQL = 4V 2
[
Γ0 + (−1)LΛ0 cos 4 (Ω1 − Υ )

]
+ 8U2Γ1 + 16UV Λ1 cos 2 (Ω1 − Υ ) +

+2UΓ + 2V Λ cos 2 (Ω1 − Υ ) .
(5.13)

The minimisation problem is equivalent to (5.2). In addition, as mentioned in Sec. 4.3, the
orthotropic orientations Ω1 and Ω of the tensors H and h are assumed to be the same.
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The minimum of the objective function FQL with respect to the principal orthotropic
direction Ω1 can be calculated using the same procedure used in the previous Section.
First, we impose the first derivative to be null:

∂FQL
∂Ω1

= −4V sin 2 (Ω1 − Υ )
[
8(−1)LΛ0V cos 2 (Ω1 − Υ ) + 8Λ1U + Λ

]
= 0; (5.14)

this equation is satisfied when

V = 0 : spherical stress/strain field,
Λ0 = Λ1 = Λ = 0 : isotropic material,

sin 2 (Ω1 − Υ ) = 0 ⇒ Ω1 − Υ =
{

0,
π

2

}
,

cos 2 (Ω1 − Υ ) = −(8Λ1U + Λ)

8(−1)LΛ0V
, with − (8Λ0V + Λ)

8Λ1

≤ U ≤ 8Λ0V − Λ
8Λ1

.

(5.15)

We can notice that, due to the introduction of linear terms in the expression of these
criteria, isotropy, for strength, is characterised by three parameters, not by two, like in
elasticity and in the quadratic criteria (and, also, there are three invariant conditions of
isotropic strength for these criteria). This time, differently from the simple quadratic
case, the range of existence of U for the third stationary point depends on the anisotropic
polar parameters of H and h and also on the deviatoric component of the stress/strain
tensor υ that cannot be separated from the weakness/strength polar parameters.

A comparison must be done between the values of FQL for

Ω1 = Υ, denoted as solution xa,
Ω1 = Υ + π/2, denoted as solution xb,

Ω1 = Υ ± 1

2
arccos

[
−(−1)L

(8Λ1U + Λ)

8Λ0V

]
, denoted as solution xc.

(5.16)

We can analyse the second order derivatives to verify the conditions of minimum or
maximum of FQL with respect to the stationary points given by eq. (5.16):

∂2FQL
∂Ω2

1

= −8V
[
8(−1)LΛ0V cos 4(Ω1 − Υ ) + (8Λ1U + Λ) cos 2(Ω1 − Υ )

]
. (5.17)

Again, two cases have to be considered separately.

1) L = 0
If we impose L = 0, eq. (5.17), evaluated in the stationary points of eq. (5.16), becomes

∂2FQL
∂Ω2

1 xa

= −8V [8Λ0V + 8Λ1U + Λ] > 0 if U < −(8Λ0V + Λ)

8Λ1

,

∂2FQL
∂Ω2

1 xb

= −8V [8Λ0V − 8Λ1U − Λ] > 0 if U >
8Λ0V − Λ

8Λ1

,

∂2FQL
∂Ω2

1 xc

= 8V

[
8Λ0V −

(8Λ1U − Λ)2

8Λ0V

]
> 0 if −(8Λ0V + Λ)

8Λ1

< U <
8Λ0V − Λ

8Λ1

.

(5.18)
If we consider that each term in eq. (5.18) is a polar invariant, they all are positive
quantities except for U , so, an evaluation of the sign of U is necessary to determine the
sign of the second derivative. There is also a second condition that concerns the value of
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U with respect to (8Λ0V ±Λ)/8Λ1. Finally, with an analysis on the sign and on the value
of U we can determine the global minimum of the FQL and the optimal orientation Ω1

to maximise the strength behaviour of the continuum. All the conditions of eqs. (5.18)
belong to different and independent ranges of values of U . Moreover, the third solution
of (5.18) respects the bounds on the last condition of eq. (5.15), so, the stationary points
of (5.16) are solutions for the maximum of strength.

2) L = 1
Eq. (5.17) in the stationary local points of eq. (5.16) becomes

∂2FQL
∂Ω2

1 xa

= −8V [−8Λ0V + 8Λ1U + Λ] > 0 if U <
8Λ0V − Λ

8Λ1

,

∂2FQL
∂Ω2

1 xb

= 8V [8Λ0V + 8Λ1U + Λ] > 0 if U > −8Λ0V + Λ

8Λ1

,

∂2FQL
∂Ω2

1 xc

= 8V

[
(8Λ1U + Λ)2

8Λ0V
− 8Λ0V

]
> 0 if U < −(8Λ0V + Λ)

8Λ1

, U >
8Λ0V − Λ

8Λ1

.

(5.19)
Eqs. (5.19) give us the ranges of values for which the second derivative is positive in
the stationary points. The third condition violates the bound on the last condition of
eqs. (5.15), while the first two can be satisfied independently. The difference between the
values of FQL in the first two stationary points is

FQL xa − FQL xb = 32UV Λ1 + 4V Λ. (5.20)

Hence, the solution depends on the value of U with respect to the ratio −Λ/8Λ1.
Fig. 5.2 summarises the results obtained beforehand, for the cases of the quadratic

plus linear failure indexes; the direction angle ψ is

ψ=
1

2
arccos

[
−(−1)L

8Λ1U+Λ

8Λ0V

]
(5.21)

For the sake of clarity, we have used two separate figures, when L = 0, depending

upon the value of V with respect to Λ/8Λ0. In this case, the range − Λ

8Λ1

< U < 0 of

L = 0 gives a value of Ωopt
1 that is anti-optimal for the same range when L = 1, hence

the difference between the two types of orthotropy (L = 0 and L = 1) must be taken into
account because the solution is strictly dependent from this parameter.

5.4 Comparison between optimal material orienta-

tions

Figs. 5.1 and 5.2 resume the solutions maximising the strength of orthotropic materials
with respect to the direction of maximum weakness/strength Ω1. We have shown the
possibility of having two different groups of solutions, depending upon the type of ordinary
orthotropy L.

The polar formulation of the quadratic failure criteria, very close to that of the strain
energy density, leads the strength optimisation to the same type of solutions obtained for
the stiffness optimisation [88]. Namely, for L = 0 one optimal orientation of Ω1 depends



5.4. COMPARISON BETWEEN OPTIMAL MATERIAL ORIENTATIONS 69

xc Ω1=𝜇±𝜓 Ω1=𝜇±𝜓 

xb Ω1=𝜇+p/2 Ω1=𝜇 

xa Ω1=𝜇 
 
 

U -(80V+)/81 -/81 (80V-)/81 0 

Case L=0,  

V≤ /8 0 

xc Ω1=𝜇±𝜓 Ω1=𝜇±𝜓 Ω1=𝜇±𝜓-p/2 

xb Ω1=𝜇 

xa Ω1=𝜇 
 
 

U -(80V+)/81 - /81 (80V-)/81 0 

Case  L=0, 

 V≥ /8  0 

xc 

xb Ω1=𝜇+p/2 Ω1=𝜇 

xa Ω1=𝜇 
 
 

U - /81 0 

Case  

 L=1, V: any 

Figure 5.2: Optimal orthotropy orientation minimising the failure index of quadratic plus
linear criteria.

only upon Υ , while the other one depends also upon the stress/strain tensor (U ,V ) and
on the anisotropic part of the weakness/strength tensor H, (Λ0,Λ1). In this sense, the
solution is qualitatively similar to that of maximal compliance/stiffness but the actual
values of the orthotropy direction minimising compliance and strength may be different,
in general. On the other hand, for L = 1 the solutions give an orientation of Ω1 aligned
with the principal stress/strain component that has the minimum absolute value. Hence,
in this case the optimal orientation of an orthotropic material to maximise the strength
is always aligned with the one maximising the stiffness.

Some considerations are also important for the minimisation of the quadratic plus
linear failure indexes. The solution to this problem may be different from that obtained
using the quadratic criteria: this is due to the presence of the linear terms. For L = 1,

a different range of values of U with respect to the ratio
Λ

8Λ1

is obtained to separate the

optimal solutions. The first and last ones give an optimal orientation aligned with the
principal stress/strain component having the minimum absolute value that corresponds
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to the optimal orientation obtained using the quadratic criteria, while the second range of
U gives a Ωopt

1 aligned with the principal stress/strain component having the maximum
absolute value. In a similar way, new types of solutions appear for L = 0: they are
function of the principal stress/strain component having the maximum absolute value.
Hence the correspondence of the directions maximising strength and stiffness, observed
in the case of the quadratic criteria, is present, in the case of the quadratic plus linear
criteria, only in the first and last cases of L = 0 and L = 1 and in some intermediary
cases of L = 0.

In conclusion, we can assert that the optimal orthotropy orientation to maximises
the strength, depending on the type of orthotropy L and on the values U and V of
the stress/strain tensor υ with respect to the anisotropic part of the weakness/strength
tensors H and h, can be equal or different to the one that maximise the stiffness and
can also be the same or different for the considered criteria. A last remark: as it is
apparent from Figs. 5.1 and 5.2, in some cases the uniqueness of the optimal solution
is lost; this occurrence depends always upon a particular combination of the values of
the polar invariants of the stress/strain state and of the tensors describing the strength
criterion.

5.5 Concluding remarks

Strength optimisation for an orthotropic ply has been considered in this Chapter. The
polar formulation of the failure indexes has been taken as objective function, while the
ordinary orthotropy direction has been considered as the optimisation variable. We have
shown the possibility of having two different groups of solutions, depending upon the
type of orthotropy. For the two groups, we derived analytically the different solution with
respect to the polar components of the failure criteria. Results show that the type of
orthotropy plays a decisive role in the optimisation of strength and that, depending on
the values of the stresses/strains and of the polar parameters of the failure criteria, the
optimal orientation of the material that maximises strength can be equal to or different
from the one that maximises stiffness and can also be the same or not for the different
criteria. This means that it is possible to obtain in some cases an orthotropic plate
that is simultaneously optimised with respect to two important engineering requirements,
stiffness and strength.

The way we deal with the problem of finding the optimal material orientation to
maximise strength is very similar to the analytical approach presented in [40] by Majak
and Hannus. They presented an analytical expression of the optimal material orientation,
in the bi-dimensional space, for any orthotropic material considering the Tsai-Hill and
Tsai-Wu criteria. The solution depended upon some terms that do not have, at least
apparently, an explicit mechanical meaning. On the other hand, in our work, thanks
also to the polar formalism, we give a new and more general approach to this problem.
The results found in this Chapter, are essentially two. First of all we present a very
general analytical solution whose formulation is valid for more different criteria that can
be expressed, indifferently, in terms of stresses or strains. Secondly, the parameters L, Λ0

and Λ1 on which the solution depends have a clear physical meaning and, so, they directly
give a mechanical appraisal of the optimal orientation.
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6

Introducing an optimisation strategy
for the simultaneous maximisation of
stiffness and strength

6.1 Introduction

As previously discussed in Chapter 3, unlike the design procedures for metallic structures,
the optimal design of a laminated structure needs a further phase to take into account
for the material design. The design of anisotropic laminated structures depends upon a
large number of design variables: the material properties, the orientation angle and the
thickness of each ply, along with the number of constitutive layers. Thus, accounting for
all these design variables make the design process of composite materials and structures a
very complex task. For this reason, several authors use a sort of model reduction, splitting
the optimum problem into two subsequent and coupled problems. Concerning the stiffness
and strength optimisation of a structure, almost all the works, in the literature, focus on
the maximisation of only one of these two properties. When the second one is considered,
it is usually included into the optimisation process as a constraint.

In this Chapter we introduce a problem for the simultaneous maximisation of both
stiffness and strength of a laminated structure. The aim is to include the strength optimi-
sation into an existing strategy developed to maximise uniquely the stiffness of composite
structures: the two-step hierarchical optimisation strategy for laminated plates using the
polar formulation [31].

6.2 The optimisation problem of stiffness and strength

and the hierarchical resolution strategy

6.2.1 Statement of the optimisation problem

The goal of the present study is to propose a novel strategy to include the optimisa-
tion of stiffness and strength in the same design process of a laminated structure. This
is a relevant problem in structural design: both stiffness and strength are fundamental
requirements for a structure. Nevertheless, rarely they are taken into account simulta-
neously as leading objectives in an optimum design. More often, stiffness is considered
as the leading objective and strength is taken into account as a constraint to the design.

73
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In other cases, a vectorial optimum problem, i.e. with the two objectives, is formulated.
Unlike these cases, the problem that we consider is the following one:

To determine the best distribution of the anisotropy for a laminated
structure that has to be simultaneously the stiffest and the strongest one.

Some details must, of course, be given to render the above problem well posed; hence,
let us list the assumptions and basic points of our research, so as to precise the exact
context of our study:

1. we consider a laminated structure, whose geometry, boundary conditions and applied
loads are knowns and fixed ;

2. the stacking sequence is composed by identical plies, i.e. by plies all composed of
the same material and having the same thickness;

3. the material composing the basic plies is chosen a priori once and for all ; hence, it
does not take part into the optimisation process;

4. each ply is constituted by an orthotropic material, whose behaviour is sensibly lin-
early elastic up to its ultimate load ;

5. the total thickness h of the laminate is fixed and is the same everywhere; as a
consequence, by assumption 2, the number of layers is fixed and known a priori as
well: it cannot be modified during the optimisation process;

6. the structure is subject to only in-plane loads ;

7. the laminate has to be orthotropic everywhere;

8. the laminate has to be extension-bending uncoupled everywhere;

9. the design variables describing stiffness are independent from those describing strength;

10. the only common parameter of stiffness and strength is the direction: we assume
that the laminate is orthotropic not only for the stiffness, but also for the strength,
and that the direction of the orthotropy axes is exactly the same (or turned of π/2)
for both the cases ;

11. the strength properties of the laminate can be condensed in the components of an
elasticity-like fourth order plane tensor ;

12. the relevant mechanical parameters for the optimisation of the laminated structure
stiffness and strength are the polar invariants of the tensors describing the different
mechanical properties;

13. we take the CLPT as kinematic model for the laminate;

14. the limit state is modelled by the Tsai-Hill failure criterion.

Some commentaries about the above assumptions are needed; they are given in the
following section.
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6.2.2 Discussion of the assumptions

First of all, we do not act upon the geometry, nor upon the boundary conditions to enhance
the mechanical performances of the structure, but upon the distribution of anisotropy.
In some sense, with a slight abuse of language taken from classical topology structural
optimisation, where the optimal geometry is looked for in the case of a known material
composing the system, we could class such a type of problem as an anisotropy topology
optimisation problem.

So, we act on the distribution of anisotropy to enhance the mechanical performances
of the structure. Nevertheless, such anisotropy is not completely free: it is actually the
anisotropic behaviour of a laminate composed by a fixed number of plies of a chosen
material. As such, it cannot take all the possible values for its elastic and strength
moduli. In fact, a laminate is a sort of restricted class of elastic materials, [81], and this
point gives, as a consequence, some constraints to the optimum problem, see Sec. 1.6.1
and Chapter 7.

However, what is completely free is the orientation of the anisotropy. One has hence
a certain interest in using a mathematical representation of anisotropy that allows, on
one side, to let appear directly the orientation of the mechanical anisotropic behaviour,
and on the other side to let disappear from the problem, and in particular from the set of
unknowns, the elastic and strength moduli that cannot be modified by the optimisation
process. In fact, the use of identical layers has an immediate consequence: the elastic or
strength behaviour of the laminate cannot be completely designed by the optimisation
process, but only a part of it, namely its anisotropic part, while its isotropic part remains
unaffected and equal to that of the basic ply, [83], recall also what said in Sec. 1.6. The po-
lar method, allowing all of these points, seems to be the best mathematical representation
of anisotropy for such a kind of problems; that is why we have used it.

Concerning assumptions 2 and 3, they are rather usually done in such a kind of prob-
lems, while assumption 4 corresponds to the most part of composite materials normally
employed in structural applications, such as pre-pregs layers in carbon-epoxy or glass-
epoxy.

Assumption 5 is introduced for two reasons: first of all, we do not focus here on the
optimisation of the structural weight, but of the anisotropy field; then, this assumption is
necessary to render the structural optimisation problem well posed, both for strength and
for stiffness. In fact, without this assumption, that actually constitutes the well known
iso-perimetric constraint of a classical, e.g., stiffness maximisation problem, the problem
itself would be meaningless; the stiffest and strongest structure would be simply the one
having an infinite thickness.

Assumption 6 is only slightly limiting our study, but in this phase it is still necessary.
Taking into account for both the extension and bending behaviour in the optimisation of
a laminated structure is still an open problem: the size of the problem increases, in the
sense that the design space has a greater dimension, but its topology is still unknown,
because the relations between the design variables concerning extension and bending are
still not known, in general. So, we have preferred to concentrate our study on a general
procedure for the simultaneous maximisation of stiffness and strength and to apply it to
the more important case, for applications, of in-plane loads, that is what mainly happens
to slender, stiffened structures, as those normally constituted by laminates. We precise
also that the translation of the present work to unstretched bended laminated structures
is almost straightforward.

Assumptions 7 and 8 are classical assumptions in laminate design; anyway, we precise
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since now that, unlike what normally done in the largest part of works in the matter, we
do not make use of short-cuts usually employed by designers to obtain orthotropy and/or
uncoupling (typically, for the case of in-plane orthotropy the use of balanced symmetric
stacks). In fact, we state the problem as completely free: orthotropy and uncoupling take
part to the optimisation problem, i.e. they compose the objective function, namely for
the second step problem, see Chapter 8. In this way, the search for the optimal stack is
completely free and general, it happens in the largest dimensional space allowed by the
problem, i.e. in the space of orientations, whose dimension is n− 1, n being the number
of plies, not restricted by some a priori assumptions (for instance, the use of symmetric
stacks divides by two the dimension of the search space). This is rather important in our
approach: because of the subsequent assumption 9, it is worth to search for the optimal
stack, matching the requirements on stiffness and strength, over the largest possible search
domain. Actually, restricting this last, by the use of a priori assumptions, can simply lead
to no solutions.

Assumption 9 is rather important; mathematically, this allows to completely split
stiffness from strength, except for the direction of orthotropy, see assumption 10, and
hence to precisely define the dimensionality of the optimum problem.

About assumption 10, it is based upon a physical reasonable rationale: for a simple
ply, the geometrical disposition of the matter or of the phases, i.e. of the reinforcing fibers,
naturally induces orthotropy for both the stiffness and strength properties, and with the
same axes. So inspired, we enforce such a circumstance also for the whole laminate.

Assumption 11 is also a rationale suggested by what has been discussed in Chapters 2
and 4: because the phenomenological criteria considered in this thesis and valid for or-
thotropic plies are actually based upon such an assumption, we enforce it also for the same
criteria when used for the strength of the laminate considered as a whole, a homogenised
plate (see Sec. 6.4).

Concerning assumption 12, it is in fact a choice: the description of all the anisotropic
tensors is done by their polar invariants, plus the anisotropy direction (which is also a
polar parameter, but not of course an invariant). The reason for that has been already
discussed above and the multiple advantages of this choice will be more evident in the
following of this thesis, Chapters 7 and 8.

For what concerns assumption 13, it is motivated by two facts: we are mainly interested
in the anisotropy and in the overall behaviour of slender structures, well caught by the
CLPT, and, thanks to assumptions 6 and 8, only the in-plane behaviour is considered
herein. Of course, we left apart here some phenomena, like delamination under in-plane
loads, that can occur and cause the loss of the structure: they should be considered in
a subsequent study. The choice of another kinematic model for the laminate is however
still possible, it does not alter fundamentally the procedure described in this thesis (for
instance, the definition of the anisotropy tensors A∗, B∗ and D∗ does not change).

Finally, about the last assumption 14, we have chosen to develop the procedure only
for the Tsai-Hill criterion for the sake of brevity, the goal being to assess the effectiveness
of a new computational strategy for the strength optimisation of laminated structures, not
to validate a given strength criterion. Anyway, the procedure sketched in the following
of this manuscript can be modified, with a slight effort, to be adapted to another of the
failure criteria considered in the previous chapters.
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6.2.3 Interpreting the optimisation problem

As a consequence of the above assumptions, it is clear now that our goal is to determine
the optimal value that the orthotropy directions plus the anisotropy polar parameters of
stiffness and strength for the laminate should get, at each point in the structure domain,
in order to optimise simultaneously its stiffness and strength. To be more precise about
the objective, we try to give an answer to the following question: is it possible to consider
stiffness and strength at the same time, not as competitive objects, but, in a sense that will
be clearer in the next chapter, as collaborative objectives? In practice, in our approach
one of the two objectives will be still considered as the leading objective, but the other
one will also enter the design process, and not as a constraint nor as a competitor to the
leading objective. Actually, two cases will be considered: one, with the stiffness and the
other one with the strength as fundamental objective, see Chapter 7, where the core of
the problem is described in detail.

Of course, such an approach gives necessarily rise to a new interpretation of the prob-
lem at hand; actually, different levels of analysis are to be introduced, and it is worth to
give since now a quick appraisal of such aspects, that will be developed in the following
of this thesis.

First of all, some mathematical considerations; the optimisation of stiffness is without
any doubt the most studied problem in structural optimisation. The reason for that is
not only a mechanical one (stiffness is of course a fundamental property for a structure),
but also, and perhaps more important, a mathematical one. In fact, almost all of the
works on stiffness optimisation take as objective function, i.e. as measure of the stiffness,
the compliance, which is the overall mechanical work made by the applied forces through
the actual displacements of the structure and as such, always positive. Compliance is
linked, as well known, to the elastic energy stored by the structure itself. The reason for
taking compliance as a relevant measure for the stiffness of a structure can be subjected to
discussion (some counterexamples can be given), but actually it is almost exclusively due
to the fact that compliance is a good mathematical quantity: it is a global functional, by its
same nature, so its use introduce to a variational problem having a classical, well-known,
structure: the minimisation of a positive global functional.

Unlike the case of stiffness, strength optimisation problems are not so easy to be
formulated. First of all, and of an uttermost importance, strength is always a local
property, so any formulation of a strength maximisation problem gives rise to a variational
problem with a local functional, hence to an intrinsically more complicate mathematical
problem. In our approach, aiming to take into account at the same time for stiffness and
strength, we need hence to formulate a mathematical problem where a local and a global
functional are optimised at the same time. Such a situation has a direct consequence,
of course, on the algorithm to be cast for the solution search: Chapter 7 is essentially
devoted to this topic.

Then, some mechanical considerations: what does it mean, from a mechanical point
of view, to optimise the strength along with stiffness or vice-versa? Well, let us consider
the case of a structure designed to maximise its stiffness. Then, a local optimisation of its
strength means to look for the structure that, still conserving its best stiffness, maximises,
point wise, its strength. Hence, it means to look for, among all the possible structures
realising the same optimal stiffness, the strongest one. This is an engineering relevant
problem: how to better strengthen a structure designed with respect to stiffness? Dually,
when a stiffness optimisation is performed on an anisotropy field giving the strongest
structure, one obtains the stiffest solution for a fixed optimum strength. For the engineer,
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this means to improve at its best the stiffness of a structure designed to withstand some
applied loads.

It is worth noting that the above interpretation, and more properly such a kind of
dual problems, is possible and meaningful just for the case at hand. In fact, just because
the design variables concerning stiffness are assumed to be, for the laminate, completely
independent from those resuming strength, assumption 9, it is possible, for an optimal
distribution of stiffness, to look also for a local optimal strength. And the possibility of
looking for a solution to such a problem is rendered possible (though its existence cannot
be demonstrated a priori) by the great redundancy of stacks corresponding to a set of
optimal design variables. This consideration is valid also for the dual case of an optimal
distribution of strength for which a local maximisation of the stiffness is performed.

6.2.4 The optimisation procedure

We arrive now to a key point of our approach, that will introduce us also to the subsequent
general organisation of the strategy for the search of a solution to the problem formulated
in this section: the redundancy of the stacks. Eqs. (1.54) show that, for a given basic
layer, to a set of orientation angles δk, k = 1, ..., n, corresponds a unique set of tensors A∗,
B∗ and D∗. In other words, as obvious, the elastic behaviour is uniquely determined by a
stacking sequence of identical plies. The converse, however, is not true: the correspondence
between the elastic behaviour of a laminate and the stacks is not bijective. Different stacks
of the same plies can give rise to the same final elastic behaviour or, more precisely, it is
possible to obtain the same mechanical response with laminates that, though constituted
by the same number of plies of the same material, are different.

This circumstance is well known; less known is the great redundancy of the stacks:
the number of laminates giving rise to the same elastic behaviour is extremely large and
very rapidly increasing with the layers number. In fact, the usual rules employed by
designers to obtain laminates of a certain type (balanced, symmetric, angle-ply, cross-ply
laminates) shrink so much and so quickly the existence domain of solutions for a laminate
that the enormous wealth of solutions of the general case is completely hidden and greatly
reduced, to such a point that it looses its real importance: the fact that it gives to the
designer a great number of possibilities, provided that he is able to include in the design
process those properties that are commonly asked for a laminate (uncoupling, orthotropy
and so on).

As we will show in Chapter 8, following a general approach formulated by Van-
nucci [78], and based upon the polar formalism, it is really possible to design, without
restricting a priori assumptions, laminates with any kind of elastic properties; so, we can
exploit profitably the redundancy of the stacks to look for a laminate having some opti-
mal properties. This redundancy appears hence to be, in our approach, a fundamental
point that, far from being a strange and unusual fact, renders possible the existence of
laminates satisfying the optimal requirements.

We remark again, however, that it is not possible, in the general case, to ensure a priori
the existence of a laminate having some prescribed properties. Montemurro et al., [45]
have given a partial response to such a kind of problem: they looked for the minimal
number of layers giving a laminate with certain fixed properties. The result, that was
found numerically as the solution to a minimum problem, cannot be generalised, and of
course is strongly problem-dependent.

The non bijectivity between the elastic properties and the stacks leads us to another
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crucial point and inspires our strategy for the search of the solutions. In fact, the relevant
mechanical fact of non bijectivity is that the stacking sequence is not needed to describe
the elastic response of the laminate. Some other parameters, whose number does not
depend upon the plies number, are sufficient for that: the components of tensors A∗, B∗

and D∗.
Practically, we look at the laminate as a homogeneous anisotropic plate, i.e. as it was

constituted by a single layer, whose anisotropy has to be designed point wise, and we give
its mechanical properties by the aid of some relevant parameters: the polar parameters
of A∗ (thanks to assumptions 6 and 8, tensors B∗ and D∗ are discarded in this work).
For what concerns strength, a similar procedure can be adopted too, but only once a
homogenisation procedure for the strength properties has been introduced; this is the
topic of Sec. 6.3.

In a subsequent phase, once the optimal polar parameters are known, we pass to
determine a laminate among all the possible stacking sequences giving rise to the optimal
set of polar parameters. Hence, we outline here what will be the optimisation procedure
that we have adopted, in its general lines: a two-step approach, resumed as follows:

• First step (structural optimisation): the laminated structure is modelled as a single-
layer homogeneous structure; the anisotropy field is optimised, leading to the opti-
mal local mechanical properties of the structure, resumed in four fields of anisotropic
polar parameters for stiffness and strength and in a field of orthotropy directions;
hence, at the end of this step, the optimal mechanical response of the structure and
the distribution of its anisotropic properties, for both stiffness and strength, are
completely known;

• Second step (lay up design): a suitable stacking sequence, giving the optimal re-
sponse obtained at the end of the previous step, is looked for at each point of the
structure; the outcome of this step is hence constituted by n orientation fields.

Such a two-step strategy, that is not new but rather ancient, the oldest example seems
in fact to go back to the method of Miki in 1982 [42] is a sort of model reduction from a
meso-scale, the layers, to a macro-scale, the laminate.

During the first step, the structural optimisation is not performed in the geometri-
cal space of the ply orientations, but in a mechanical space, constituted by the polar
anisotropy invariants of stiffness and strength, plus the orthotropy direction shared by
stiffness and strength. While the dimension of the geometrical space is n − 1, the di-
mension of the mechanical space is fixed and always equal to 5: the two anisotropy polar
parameters of stiffness and strength plus the orthotropy direction. In usual applications,
n� 5, so the reduction of the model obtained in the mechanical space, at the macro-scale
level, can be considerable and really simplify the computational effort, that could be, in
a direct approach, too big.

A last remark: the use of a two-step approach has a mathematical consequence, already
introduced in Sec. 6.2.2: the first step, in fact, cannot be considered a completely free
material approach. In fact, the homogenised single layer, object of the optimisation during
the first step, is only a mechanical condensation of a laminate composed by n layers, and
as such it is not, by no means, a completely free structure to be designed. It is subjected
to the restrictions on the mechanical properties dues to the assemblage of n identical
plies, see [81] and Sec. 1.6.1, that renders a laminate a sort of meta-material belonging
to a restricted elastic class. Some bounds, called geometrical bounds, eq. (1.72), are to be



80 6. The problem of the simultaneous maximisation of stiffness and strength

imposed to the first step problem, in order to finally obtain mechanical parameters that
can be, subsequently, really get by the superposition of n plies (see Chapter 7).

At this point, we can outline the content of the following part of this manuscript: in
this Chapter 6, we formulate the general optimisation problem for stiffness and strength
and give the way that we use to describe the strength of the homogenised, single layer,
fictitious plate of the first step. In order to better introduce such a procedure, we first
recall the essential points of the analogous two-step approach, concerning only stiffness,
already used by Jibawy et al., [31].

Chapter 7 is devoted to the first step, the structural optimisation: the algorithm, for
both the cases of stiffness or strength leading objective, is presented and its convergence
proved. For the case of strength as leading objective, two variants of the algorithm are
given and discussed. Some numerical examples end the chapter.

Finally, Chapter 8 concerns the second step, the lay-up design; the general numerical
technique for obtaining a laminate having the optimal properties issued from the first step
is described and discussed, a step for the layer wise check of strength is also introduced,
and a numerical example given.

6.3 Description of the hierarchical stiffness optimisa-

tion strategy

6.3.1 First step: structural stiffness optimisation

The first step focuses on the definition of the optimal distribution of the laminate stiff-
ness polar parameters [31, 32, 34]. The solution of the structural optimisation problem is
searched for an orthotropic uncoupled homogenised plate subject to a given pure mem-
brane or bending loading condition.

The objective of maximising the global stiffness of the plate is realised through the min-
imisation of the complementary energy Wc that corresponds to the half of the compliance.
For the sake of brevity we will consider only the pure membrane case. The distributed
design variables are the orthotropy orientation and the anisotropic polar moduli of tensor
A∗:

Φ1, βm with m = 1, 2 ; (6.1)

they depend upon the coordinates (x, y) and in particular we put

β1 = (−1)KR0,
β2 = R1 ,

(6.2)

while the isotropic polar moduli of A∗ are identical to the ones of the basic ply, see
eq. (1.62). As the basic ply has been chosen a priori the isotropic elastic moduli do not
take part to the optimisation problem. The optimisation problem can be mathematically
formalised as follows:

min
{Φ1, βm}

min
Nij

[
Wc =

∫
Sp
A−1ijkl(Φ1, βm)NijNkldSp

]
with i, j, k, l = x, y;

with


2

(
R1

R1

)2

− 1 ≤ (−1)KR0

(−1)KR0

,

|(−1)KR0| ≤ R0,

R1 ≥ 0.

(6.3)
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In (6.3) Nij is a statically admissible state of in-plane forces, Sp represents the plate
surface, the terms (−1)KR0 and R1 are the anisotropic polar parameters of the reduced
stiffness tensor Q of the basic ply, see Sec. 1.4, and the constraints are the geometric
bounds introduced in Sec. 1.6.1. The geometry is fixed. Problem (6.3) has been solved
using the optimisation algorithm introduced by Allaire and Kohn [2]. It is characterised
by the following phases:

• initialisation : the stiffness distribution on the structure is initialised. Therefore,
a first Finite Element (FE) analysis is conducted in order to determine the initial
stress field;

• local minimisation : search for a new anisotropic stiffness distribution (Φ
(n+1)

1 ,

β
(n+1)
m ) that solves the problem of eq. (6.3) for a fixed stress state: the optimal

polar parameters are determined locally, for each finite element discretising the
plate;

• global minimisation : definition of the in-place forces field (N
(n+1)
ij ) linked to the

new stiffness distribution (Φ
(n+1)

1 , β
(n+1)
m ) by a FE analysis.

These last two phases are repeated until convergence. A classical demonstration proves
the monotonic convergence of this procedure. We sketch it hereafter, in the framework of
the polar formalism.

Convergence proof

We consider the anisotropic stiffness distribution (Φ
(n)

1 , β
(n)
m ) and its corresponding in-

plane forces field N(n), at the iteration n. The local minimisation consists in finding the
minimum of the energy density:

min
{Φ1, βm}

[
A−1ijkl(Φ1, βm)N

(n)
ij N

(n)
kl

]
, (6.4)

defined at each point (in the discretised model: at each element) of the structure assuming
a fixed field N(n). Using the polar formalism, it is possible to find analytically the solution
to problem (6.4) with the constraints in eq. (6.3). Such a solution is presented in Tab. 6.1
and described at the end of this proof.

Thanks to this analytical solution, we obtain the new stiffness distribution (Φ
(n+1)

1 , β
(n+1)
m )

that satisfies the following inequality:

A−1ijkl(Φ
(n+1)

1 , β(n+1)
m )N

(n)
ij N

(n)
kl ≤ A−1ijkl(Φ

(n)

1 , β(n)
m )N

(n)
ij N

(n)
kl , (6.5)

and, thus∫
Sp

A−1ijkl(Φ
(n+1)

1 , β(n+1)
m )N

(n)
ij N

(n)
kl dSp ≤

∫
Sp

A−1ijkl(Φ
(n)

1 , β(n)
m )N

(n)
ij N

(n)
kl dSp . (6.6)

The global minimisation phase consists in determining the new field N(n+1) solution to

the elastic problem determined by the stiffness distribution (Φ
(n+1)

1 , β
(n+1)
m ). Using the

complementary energy theorem we get∫
Sp

A−1ijkl(Φ
(n+1)

1 , β(n+1)
m )N

(n+1)
ij N

(n+1)
kl dSp ≤

∫
Sp

A−1ijkl(Φ
(n+1)

1 , β(n+1)
m )N

(n)
ij N

(n)
kl dSp . (6.7)
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Combining eq. (6.6) with eq. (6.7) we obtain:∫
Sp

A−1ijkl(Φ
(n+1)

1 , β(n+1)
m )N

(n+1)
ij N

(n+1)
kl dSp ≤

∫
Sp

A−1ijkl(Φ
(n)

1 , β(n)
m )N

(n)
ij N

(n)
kl dSp , (6.8)

i.e.
W (n+1)
c ≤ W (n)

c . (6.9)

Hence, Wc is a positive quantity that reduces at each iteration; this proves the monotonic
convergence of the algorithm.

We ponder now on the analytical solutions to the local minimisation phase in the
previous procedure, eq. (6.4) along with the constraints (6.3). The analytical resolution
to such a problem was extensively studied in [31, 34]. Nevertheless in those works, the
geometric constraint on the polar parameters was not taken into account, but they consid-
ered only the thermodynamic constraints on the polar moduli. Tab. 6.1 summarises the
optimal value, using the geometric constraints, of the stiffness polar parameters of tensor
A∗, for a basic ply with K = 0. These results show that the solution depends upon the
polar parameters of the in-plane stress tensor N. In particular, T and R are the spherical
and deviatoric parts of the tensor, respectively, while Φ represents the direction of the
first principal component of N. We want to highlight a particular aspect, extensively
discussed in [34], concerning the solution of type 1 in Tab. 6.1: the stiffness distribution
linked to such a solution generates a pure spherical strain field, while the stress field has
both spherical and deviatoric components, see [34].

(−1)K
opt

R
opt
0 R

opt
1 Φ

opt
1

Solution type: 1

0 ≤ R

|T |
≤ R1

T1

[
R0

(
2

(
RT1
|T |R1

)2

− 1

)
;R0

]
T1

R

|T |
direction(max(|NI |, |NII |))

Solution type: 2
R1

T1
≤ R

|T |
≤ T0 +R0

2R1
R0 R1 direction(max(|NI |, |NII |))

Solution type: 3
R

|T |
≥ T0 +R0

2R1
R0

T0 +R0

2(R/|T |)
direction(max(|NI |, |NII |))

Table 6.1: Optimal values of stiffness polar parameters to maximise the plate stiffness
fora basic ply with K = 0.

6.3.2 Second step: lay-up design

The design process turns now on the definition of the stacking sequence satisfying the
optimal distribution of polar parameters issued from the firs step. The problem of the
lay-up design can be stated as follows:

find, for a given set
{
K
opt
, R

opt
0 , R

opt
1 , Φ

opt
1

}
,

a vector of plies orientations (δ1, δ2, ..., δn) such that:
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R0 = R
opt

0 ,

R1 = R
opt

1 ,

Φ0 − Φ1 = K
optπ

4
,

Φ1 = Φ
opt

1 ,
B = O ,

(6.10)

In eq. (6.10), the first three conditions concern the anisotropy moduli of the optimal
laminate, the fourth one the orientation of anisotropy and the last one the bending-
extension uncoupling.

The problem of defining a laminate stacking sequence having a given elastic behaviour
is rather cumbersome and difficult due to the fact that the laminate properties depend
upon a combination of powers of circular functions of the layers orientations. As a con-
sequence, researchers usually limit the search of solutions to a restricted class of stacking
sequences, as for example symmetric stacking sequences to ensure bending-extension un-
coupling or balanced sequences to have in-plane orthotropy.

As discussed in Sec. 6.2.4, eqs. (1.62) and (1.64) show that the correspondence be-
tween the elastic behaviour of a laminate and the stacks is not bijective. This means that
it is possible to obtain the same mechanical parameters with several stacking sequences,
although they are characterised by the same number of identical plies. Moreover, the
number of laminates having the same elastic behaviour is extremely large and rapidly
increases with the layers number. Therefore, the classical solutions often employed by de-
signers (balanced, symmetric, angle-ply, cross-ply stacks) reduce the width of the solution
space.

The problem of designing laminates with given elastic properties as a global optimi-
sation problem, without restricting a priori assumptions on the stacking sequence, was
formulated in a completely general way with the works of Vannucci et al. [78,82,85]. The
redundancy of the solutions is, in this approach, a fundamental point that renders possible
the existence of laminates satisfying several optimal requirements. Thanks to the polar
method, the problem is stated through the formulation of an unique objective function
which takes into account for several sub-objectives, one for each desired elastic property,
such as uncoupling, orthotropy and so on. In particular, the problem is formulated as
a minimum distance problem in the space of the polar parameters, the design variables
being the plies orientations. The general problem is, hence, reduced to a classical form
and its solutions are the minima of a highly non-convex function in the design space of
the layers orientations:

min
δk

I(fi(δk)) = Σ
j
f 2
j (δk) with k = 1, 2, .., n , (6.11)

where the fj(δk) are the partial terms, i.e. the sub-objectives, composing the distance
function between the laminate elastic properties and their target values. For such a
general approach, however, a numerical efficient procedure is needed. For more details on
the definition of this objective function for different combinations of elastic symmetries
the reader is addressed to [45,78,85].

In some cases, namely when some assumptions are made, analytical solutions can be
obtained; for instance, Vannucci and Verchery have proved the existence of a particular
class of uncoupled (B=O) or quasi-homogeneous (B=C=O) laminates, the quasi-trivial
solutions, so called because the equations leading to them do not need a direct solution, but
can be found by an enumerating method working on combinations of integer coefficients,
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see [82, 83]. Also, in [31] a closed form solution is found to obtain stacking sequences
satisfying the requirements in Tab. 6.1. In particular, they find, analytically, two kind of
stacking sequences satisfying the solution of type 1:

- a quasi-homogeneous angle-ply, which corresponds to the lowest value of the interval of

(−1)K
opt

R
opt

0 , with

δk = ±α and αopt =
1

2
arccos

T1R

R1|T |
, (6.12)

- a symmetric cross-ply, which corresponds to the highest value of the interval of (−1)K
opt

R
opt

0 ,
with

η0 opt =
1

2

(
1 +

R
opt

1

R1

)
, (6.13)

where η0 opt = n0/n90 is the ratio between the number of plies at 0◦ and the number of
plies at 90◦.

The stacking sequence satisfying the solution of type 2 corresponds to an unidirectional
laminate. Finally, the stacking sequence satisfying the solution of type 3 can be reached
by a asymmetric cross-ply with:

η0 opt =
1

2

(
1 +
|T |(T0 +R0)

2RR1

)
. (6.14)

6.4 Taking into account for strength

In this Section, we propose a method to generalise the procedure for stiffness optimisation
presented in Sec. 6.3 with the aim of introducing strength in the optimisation process.
Strength is usually described through failure criteria. It is important to note that almost
all of the failure criteria for composite materials are “ply-level failure criteria”, i.e. the
criterion is applied to each ply composing the laminated structure.

In Chapter 5 and in [8] we have stated the problem of optimising the strength of elastic
plane structures composed of orthotropic materials. We have formulated the phenomeno-
logical failure criteria, described in Chapter 2, through invariants using the polar method
and we have maximised the strength of a generic orthotropic sheet in terms of its material
orientation.

With the aim of extending the analytical approach introduced in Chapter 5 to the
strength optimisation of laminated plates, we define a homogenised failure criterion giving
a measure of the strength for the laminate.

In the literature some works deal with this problem: the evaluation of a laminate-
level failure criterion, [13, 14, 51]. In 1983, De Buhan [13] presented a study on the
strength homogenisation of a generic composite material. He considered a heterogeneous
continuum composed by two constituents. The strength homogenisation was evaluated
at both the mesoscopic and macroscopic level. At the macroscopic scale, the strength
is given by a sum of the strengths of each constituent, weighted by the corresponding
material volume fraction. In 1991, De Buhan and Taliercio [14] addressed the same
problem reformulating the theory developed in the previous work: the constituents are
identified as the matrix, the fibres and the interfaces. The strength domain is assumed
to vary point-wise and it is approximated by an homogenised strength field given by the
sum of the isotropic part of strength, that does not depends upon the volume fraction,
and of the anisotropic part of strength, this one depending on the phase volume fractions.
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6.4.1 Evaluation of the laminate strength using an homogenised
criterion

In the first part of this Section, we formulate a homogenised failure criterion that gives
a measure of the strength of the laminate. Then, in order to give a mechanical relevant
meaning to the homogenised failure criterion, we define in an explicit way its link with the
first-ply-failure approach. In the second part of this section, such a criterion is used in the
problem of the simultaneous maximisation of both stiffness and strength of a laminated
structure. In particular, in order to include the strength optimisation into the first step
of the hierarchical optimisation strategy presented beforehand, the homogenised criterion
will represent the strength functional to be minimised, when the laminate is considered
as an equivalent homogenised plate. Finally, in the third part of this section we define the
problem of the lay-up design when the homogenised failure criterion is used in the first
part of the hierarchical strategy.

6.4.1.1 The homogenised laminate strength

Let us consider a laminated plate with n plies. Let be {0;x, y, z} the laminate global
frame. The generic kth ply is characterised by the position of its bottom and top surfaces,
zk−1 and zk as shown in Fig. 1.2, its fibre orientations δk, its elastic properties Qk (δk) and
its strength properties Gk (δk). In the following description we will consider the Tsai-Hill’s
failure criterion as an example to show how we can obtain a homogenised failure criterion.
The procedure is completely general and can be applied to any other polynomial failure
criterion, as for instance, the Hoffman or the Tsai-Wu criterion, the only difference resides
in the addition of the linear terms that, anyway, does not change the overall procedure.

The stress-based polynomial failure criterion of Tsai-Hill expressed in terms of strains
for a generic orthotropic ply, eq. (2.23), is:

F Ply
Hill = εTGε ≤ 1 , (6.15)

where G is the strength tensor introduced in Sec. 2.3.1. In the framework of the CLPT
the strain field is:

ε = ε0 + χ z . (6.16)

where the in-plane strain ε0 and the curvature χ tensors do not depend upon the z
coordinate.

Introducing eq. (6.16) into eq. (6.15) we obtain:

F Ply
Hill = ε0

TGε0 + χTGχ z2 + 2 ε0
TGχ z ≤ 1 . (6.17)

We recall the polar parameters of G introduced in Sec. 4.4.2:

• Γ0 and Γ1 represent the isotropic polar moduli (the corresponding of T0 and T1 for
stiffness);

• Λ0 and Λ1 represent the anisotropic polar moduli (the corresponding of R0 and R1

for stiffness);

• Ω1 represents the polar angle and, so, the orthotropy orientation (the corresponding
of Φ1 for stiffness);

• L represents the orthotropy shape parameter (the corresponding of K for stiffness).
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Being t, r and φ the polar parameters of the strain tensor ε, we can write the F Ply
Hill as

follows, see Sec. 4.3:

FHill = 4r2Γ0 + 8t2Γ1 + 4(−1)LΛ0r
2 cos 4 (Ω1 − φ) + 16trΛ1 cos 2 (Ω1 − φ) . (6.18)

To evaluate the failure index of the laminate, we integrate eq. (6.17) through the thickness
of the plate:

FLam
Hill =

1

h

∫
h

F Ply
Hill(z)dz ≤ 1, (6.19)

and divide by h in order to have still a dimensionless failure index. In this way we
evaluate, in some sense, an averaged strength (through the thickness) starting from the
strengths of all the plies composing the laminate. This approach is completely similar to
the determination of the laminate stiffness in the CLPT. Since the in-plane strain tensor
ε0 and the curvature tensor χ do not depend upon the z coordinate, eq. (6.19) becomes:

FLam
Hill =

1

h

[
ε0

(∫
h

Gdz

)
ε0 + χ

(∫
h

Gz2dz

)
χ+ 2ε0

(∫
h

Gzdz

)
χ

]
≤ 1 . (6.20)

Developing layer-wise the previous integrals into a sum of contributions, we obtain:

GA =
n∑
k=1

Gk (δk) (zk − zk−1) ,

GB =
1

2

p∑
k=−p

Gk (δk)
(
z2k − z2k−1

)
,

GD =
1

3

p∑
k=−p

Gk (δk)
(
z3k − z3k−1

)
.

(6.21)

In this way we have determined the strength tensors of the equivalent homogenised plate.
As GA, GB and GD derives from the sum of symmetric elasticity-like tensors Gk (δk),
also GA, GB and GD are symmetric tensors possessing all the tensorial symmetries of a
classical elasticity tensor.
Injecting eq. (6.21) into eq. (6.20), it gives:

FLam
Hill =

1

h

(
ε0G

Aε0 + χGDχ+ 2ε0G
Bχ
)
≤ 1. (6.22)

Eq. (6.22) represents the “Tsai-Hill laminate-level failure criterion” for a laminated plate
modelled as an Equivalent Single Layer (ESL) having the same thickness h of the laminate.
This will be the starting point to the strength optimisation for a laminated plate, the
optimisation variables being the polar components of the tensors GA,GB and GD.

It is evident that it exists an analogy between eqs. (6.21) and (1.54). Therefore we
can assume that tensors GA, GB and GD are the strength counterpart of the laminate
stiffness tensors A, B and D. We can normalise such tensors as already done in eq. (1.60)
and introduce the polar parameters of GA∗, GB∗ and GD∗ as long as their relations with
the polar parameters of the plies composing the laminate itself. In particular, for an
orthotropic laminated plate composed by identical orthotropic plies, we have:

• Polar parameters of GA∗:

Γ 0 = Γ0 ,
Γ 1 = Γ1 ,

(−1)LΛ0e
4iΩ1 =

1

n
(−1)LΛ0e

4iΩ1

n∑
k=1

e4iδk ,

Λ1e
2iΩ1 =

1

n
Λ1e

2iΩ1

n∑
k=1

e2iδk .

(6.23)
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• Polar parameters of GB∗:

Γ̂0 = 0 ,

Γ̂1 = 0 ,

(−1)L̂Λ̂0e
4iΩ̂1 =

1

n2
(−1)LΛ0e

4iΩ1

n∑
k=1

bke
4iδk ,

Λ̂1e
2iΩ̂1 =

1

n2
Λ1e

2iΩ1

n∑
k=1

bke
2iδk .

(6.24)

• Polar parameters of GD∗:

∼
Γ 0 = Γ0 ,
∼
Γ 1 = Γ1 ,

(−1)
∼
L
∼
Λ0e

4i
∼
Ω1 =

1

n3
(−1)LΛ0e

4iΩ1

n∑
k=1

dke
4iδk ,

∼
Λ1e

2i
∼
Ω1 =

1

n3
Λ1e

2iΩ1

n∑
k=1

dke
2iδk .

(6.25)

Γ0, Γ1, Λ0, Λ1, L and Ω1 are the polar parameters of tensor G of the basic ply, while
coefficients bk and dk are exactly the same introduced for tensors B∗ and D∗, respectively,
eqs. (1.63) and (1.64). Eqs. (6.23) and (6.25) impose the same kind of geometric bounds
on the polar parameters of GA∗ and GD∗, already introduced for A∗ and D∗, eq. (1.72):

2

(
Λ1

Λ1

)2

− 1 ≤ (−1)LΛ0

(−1)LΛ0

,

|(−1)LΛ0| ≤ Λ0 ,

Λ1 ≥ 0 .

(6.26)

In order to determine the polar parameters that correspond to a manufacturable laminate,
the geometrical bounds cannot be violated.

There is, also, another aspect deserving attention: for a laminate made of identical
plies the following relation subsists:

B = 0 ⇔ GB = 0 , (6.27)

because B and GB are nulls if and only if:

p∑
k=−p

bke
4iδk = 0 ,

p∑
k=−p

bke
2iδk = 0 ,

(6.28)

at the same time. From a mechanical point of view, eq. (6.27) means that the elastic
uncoupling of a laminate implies the strength uncoupling and vice-versa.

Eq. (6.17) represents the most general case in which membrane and flexural load-
ings are acting simultaneously on the plate. For an uncoupled plate subject to a pure
membrane loading (χ = 0 ⇒ ε = ε0), eq. (6.22) reads:

FLam
Hill = εTGA∗ε , (6.29)
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or, in terms of polar parameters,

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4(−1)LΛ0r

2 cos 4
(
Ω1 − φ

)
+ 16trΛ1 cos 2

(
Ω1 − φ

)
. (6.30)

In eq. (6.30), the first two terms are the isotropic part of the criterion; when the material
of the constitutive layer is chosen, these terms are fixed. The last two terms involve the
anisotropic moduli of the material and the orthotropy orientation of the homogenised
plate, thus, these parameters are the terms that can be designed in order to maximise the
strength of the structure.

6.4.1.2 Comparison between the strength of the ply and of the homogenised
laminate

We have defined an homogenised failure criterion in order to include strength in the
optimal design process of a laminated structure: our goal is to maximise the strength of
the structure. However, we have already recalled that unlike stiffness when measured by
compliance, strength is measured by a local quantity, the failure index.

The through the thickness strength homogenisation method that we have proposed in
the previous Section can be considered, in some sense, a little bit arbitrary: we homogenise
a quantity, strength, that is typically local. In order to validate this homogenised model,
we discuss the comparison between the strength of the ply and that of the homogenised
laminate in order to take into account, during the design process, also for the first-ply-
failure.

The adopted Kirkhoff’s kinematic model implies an unique strain field ε that varies
linearly and continuously through the thickness. When an uncoupled plate is subject to
a pure membrane loading (χ = 0), the strain field of the whole laminate is identical to
that of each constitutive layer.

Let us consider a homogenised plate whose stiffness and strength characteristics are
known; hence, its FLam

Hill is known at any point, for a given strain state. Being the strain
field of the homogenised plate identical to that of each constitutive layer thanks to as-
sumptions 6 and 8 of Sec. 6.2.1, we can compare the value of the FLam

Hill with that of the
single ply defining the ratio η. We have:

η =
FPlyHill

FLamHill

=
4r2Γ0 + 8t2Γ1 + 4(−1)LΛ0r

2 cos 4 (Ω1 − φ) + 16trΛ1 cos 2 (Ω1 − φ)

FLamHill

. (6.31)

In eq. (6.31), FLam
Hill , the strain field (t, r, φ) and the polar parameters of tensor G of

the basic ply (Γ0, Γ1,(−1)LΛ0,Λ1) are given quantities. We let only free the orthotropy
direction Ω1 of the ply, evaluated with respect to the global frame of the laminate.

Depending on the ply orientation, we can consider three separate cases:

1. η < 1 =⇒ F Ply
Hill < FLam

Hill : this case represents a safe situation because the failure
index of the laminate is greater than that of the single ply. This means that, in this
case, the homogenised failure criterion is conservative;

2. η = 1 =⇒ F Ply
Hill = FLam

Hill : this case represents the limit condition, because the failure
index of the laminate is equal to that of the single ply. The failure of both laminate
and ply occurs at the same time, hence, the homogenised failure criterion is still
conservative;
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3. η > 1 =⇒ F Ply
Hill > FLam

Hill : this case represents an unsafe situation because the failure
index of the laminate is lower than that of the single ply. The failure of a ply can
occur for a laminate failure index lower than 1. In this case, the homogenised failure
criterion is not conservative and we have to find a way to determine a priori the
conditions that lead to such a situation.

Therefore, concerning this last case, we need to evaluate the orthotropy orientation
Ω1 of the ply which maximises F Ply

Hill and, by consequence η. Such value will represent
the worst situation that can be achieved. The failure index of the single ply is given in
eq. (6.18) and the maximisation problem can be formulated as follows:

max
Ω1

F Ply
Hill (Γ0, Γ1, Λ0, Λ1, L,Ω1, t, r, φ) . (6.32)

This problem admits an analytical resolution that is similar to the minimisation problem
solved in Chapter 5. Firstly, we write the derivative:

∂F Ply
Hill

∂Ω1

= −32r sin 2 (Ω1 − φ)
[
(−1)LΛ0r cos 2 (Ω1 − φ) + Λ1t

]
= 0. (6.33)

The solution of eq. (6.33) gives us the stationary points of F Ply
Hill:

r = 0 : spherical strain field,
Λ0 = Λ1 = 0 : isotropic material,

sin 2 (Ω1 − φ) = 0 ⇒ Ω1 − φ =
{

0,
π

2

}
,

cos 2 (Ω1 − φ) = − Λ1t

(−1)LΛ0r
, with

| t |
r
≤ Λ0

Λ1

.

(6.34)

The last two conditions have three different solutions to be compared:

Ω1 = φ, denoted as solution xa,

Ω1 = φ+ π/2, denoted as solution xb,

Ω1 = φ± 1

2
arccos

[
−(−1)L

Λ1t

Λ0r

]
, denoted as solution xc .

(6.35)

Eq. (6.35) shows that the orthotropy direction Ω1 maximising F Ply
Hill is directly linked to

the direction φ of the higher principal strain εI .
The second derivative reads:

∂2F Ply
Hill

∂Ω2
1

= −64r
[
(−1)LΛ0r cos 4(Ω1 − φ) + Λ1t cos 2(Ω1 − φ)

]
. (6.36)

The following property of the polar parameter t of the stress tensor ε has to be taken into
account:

if εI ≥ εII , then

{
t ≤ 0 ⇔ |εI | ≤ |εII |,
t ≥ 0 ⇔ |εI | ≥ |εII |,

(6.37)

with t = (εI + εII)/2.
We can separate the resolution into two main cases that depend upon the value of L.
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1) L = 0

∂2F Ply
Hill

∂Ω2
1 xa

= −64r [Λ0r + Λ1t] < 0 if
t

r
> −Λ0

Λ1

,

∂2F Ply
Hill

∂Ω2
1 xb

= −64r [Λ0r − Λ1t] < 0 if
t

r
<
Λ0

Λ1

,

∂2F Ply
Hill

∂Ω2
1 xc

= −64r

[
Λ2

1t
2 − Λ2

0r
2

Λ0r

]
< 0 if

t

r
< −Λ0

Λ1

;
t

r
>
Λ0

Λ1

.

(6.38)

The last equation is never satisfied because the values of t/r are outside the interval of
existence of the solution xc imposed by the last equation of (6.34). Hence, the solution
concerns only the first two stationary points, and

F Ply
Hill xa

− F Ply
Hill xb

= 32trΛ1. (6.39)

The minimum of F Ply
Hill depends, hence, on the sign of t. For t > 0 the solution is given

by xa, while for t < 0 the solution is given by xb.
2) L = 1

∂2F Ply
Hill

∂Ω2
1 xa

= −64r [−Λ0r + Λ1t] < 0 if
t

r
>
Λ0

Λ1

,

∂2F Ply
Hill

∂Ω2
1 xb

= 64r [Λ0r + Λ1t] < 0 if
t

r
< −Λ0

Λ1

,

∂2F Ply
Hill

∂Ω2
1 xc

= −64r

[
−Λ2

1t
2 + Λ2

0r
2

Λ0r

]
< 0 if −Λ0

Λ1

<
t

r
<
Λ0

Λ1

.

(6.40)

All the conditions of eqs. (6.40) that concern t/r belongs to different and independent
range of values of t/r. Moreover, the third solution of (6.40) respect the bounds on the last
condition of eq. (6.34), so, the stationary points of (6.35) are solutions for the maximum
of F Ply

Hill.
In Fig. 6.1 we give a summary of the solutions, where

κ = dir (max {|εI |, |εII |}) , (6.41)

and

ρ =
1

2
arccos

[
−(−1)L

Λ1t

Λ0r

]
. (6.42)

These orientations give us the maximum value of F Ply
Hill, and thus the maximum value

of η, that can be achieved for a given strain state.
In conclusion, thanks to the polar method and to the Kirkhoff’s kinematic model, we

are able to

1. evaluate a priori the maximum value of F Ply
Hill at the end of the first step of the

hierarchical strategy, when the lay-up is not known;

2. validate the proposed strength homogenisation criterion because it allows us to check
the first-ply-failure when we are still designing the homogenised plate, see Sec. 7.6;

Moreover, the value of max(η) will be taken into account also in the phase of the lay-up
design, as it will be detailed in Chapter 8, in order to be able to find admissible lay-up
with respect to the first-ply-failure in cases for which F Ply

Hill > 1 and FLam
Hill < 1.
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Figure 6.1: Orthotropy orientation maximising the failure index of the Tsai-Hill criterion.

6.4.2 First step: structural optimisation

After defining the homogenised failure criterion for the laminate, we have to consider,
now, how to use such a criterion in the first step of the hierarchical strategy for the
maximisation of strength. As a consequence of the assumptions made for the problem
(see Sec. 6.3) and of what has been previously shown in this Chapter, the stiffness and
the strength of the homogenised plate can be described, respectively, by the following
quadratic functions:

Complementary Energy: Wc =

∫
Sp

NTA−1(Φ1, (−1)KR0, R1)NdSp , (6.43)

Failure index: FLam
Hill =

[
εTGA∗(Ω1, (−1)LΛ0, Λ1)ε

]
. (6.44)

Eqs. (6.43) and (6.44) deserve some important remarks:

• the design variables of the structural optimisation step are the 8 polar param-
eters necessary to characterise the in-plane stiffness and strength behaviour, i.e.
(Φ1, K,R0, R1) and (Ω1, L, Λ0, Λ1) for A∗ and GA∗, respectively;

• we recall, as already said in Sec. 6.2.3, that there are two functional to be minimised:
the complementary energy, a global functional, and the laminate failure index, that
is, on the contrary, a local functional. From a variational point of view the difficulty
of this problem is increased because we have to minimise simultaneously, not one, but
two objectives linked to two different variational problems, the former concerning a
global functional and the later a local one.

The previous aspects are to be taken into account when developing an algorithm able to
deal with the optimisation problem at hand.
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We come, now, to a key point of our approach; the mathematical consequence of
assumption 10, Sec. 6.2.1, along with the polar formalism gives the following condition:

Φ1 =

{
Ω1 ,
Ω1 ± π/2 .

(6.45)

In addition we put, for having a more compact notation,

R0K = (−1)KR0 ,

Λ0L = (−1)LΛ0 ,
(6.46)

that are still tensor invariants because obtained as a combination of invariants.

In this way the number of independent design variables for the problem of the first
step is reduced to 5: R0K , R1, Λ0L, Λ1 and the orthotropy orientation. We recall that
assumption 9 implies, for the structural optimisation step which involves an homogenised
plate, that the stiffness anisotropic polar parameters, R0K and R1, are independent from
the corresponding parameters for strength, Λ0L and Λ1.

All the assumptions and considerations lead us to state the following generalised op-
timisation problem:

Sub-problem 1: min
{ϑ, ai}

FI(ϑ, ai) ,

Sub-problem 2: min
{bi}

FII(ϑ, bi) ;
(6.47)

where FI and FII are, indifferently, one the stiffness and the other the strength functional,
and ai and bi are the respective anisotropic polar moduli, i = 1, 2. Eqs. (6.47) represent
an optimisation problem having two functional to be minimised. The alignment of the
symmetry axis for stiffness and strength leads to a unique quantity in both the functional,
the orthotropy orientation ϑ.

The solution method for these two minimisations is a “waterfall method”: at the first
stage, we minimise the first functional with respect to its polar moduli and the orthotropy
orientation, then, during a second stage, we minimise the second functional with respect
to its polar moduli and we impose the orthotropy orientation to be the one found in the
solution of the first minimisation. It is hence clear that, thanks to the independence of
the anisotropic polar moduli of stiffness and strength, the two sub-problems of the first
step of our approach are completely unrelated unless for the orthotropy orientation that
constitutes the mathematical and mechanical link between the optimisation of stiffness
and strength.

Finally, due to the interchangeability of the stiffness and strength functional in the
two sub-problems of (6.47), we can state the two following dual but different optimisation
problems:

• Optimisation problem I.

Sub-problem 1: min
{Φ1, R0K , R1}

Wc(Φ1, R0K , R1) ,

Sub-problem 2: min
{Λ0L, Λ1}

FLam
Hill (Φ1, Λ0L, Λ1) ;

(6.48)
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• Optimisation problem II.

Sub-problem 1: min
{Ω1, Λ0L, Λ1}

FLam
Hill (Ω1, Λ0L, Λ1) ,

Sub-problem 2: min
{R0K , R1}

Wc(Ω1, R0K , R1) ;
(6.49)

The structural problem that we consider is, now, well stated in its two variants; in the
first one, eq. (6.48), the leading objective is stiffness, while in the second one, eq. (6.49),
it is strength. What is to be remarked for both of them, is that these are by no means
multi-objective problems, but really something different.

6.4.3 Second step: lay-up design

Just like in the case of the stiffness optimisation, Sec. 6.3.2, the second step is needed to
obtain a stacking sequence realising, at the same time, the optimal parameters of strength
and stiffness found at the end of the previous step. We state the lay-up problem in a way
similar to that introduced in Sec. 6.3.2. The optimisation problem of the lay-up design
phase is:

find, for a given set{
K
opt
, R

opt
0 , R

opt
1 , L

opt
, Λ

opt
0 , Λ

opt
1 , Φ

opt
1

}
a vector of plies orientations (δ1, δ2, ..., δn) such that:

R0 = R
opt

0 ,

R1 = R
opt

1 ,

Λ0 = Λ
opt

0 ,

Λ1 = Λ
opt

1 ,

Φ0 − Φ1 = K
opt
π/4 ,

Ω0 −Ω1 = L
opt
π/4 ,

Φ1 −Ω1 = 0;π/2 ,

Φ1 = Φ
opt

1 ,
B = O .

(6.50)

A supplementary check on a possible first-ply-failure of the layers composing the opti-
mal laminate can be taken into account within this second phase of the design procedure.
To this purpose, the evaluation of max(η), eq. (6.31), will be very helpful, as will be
discussed in Chapter 8 where the development of the numerical strategy to solve the
optimisation problem of the lay-up design will be described.

It is evident that problem (6.50) is more complex than problem (6.10) concerning
uniquely the stiffness optimal design. In this case, the requirements to be satisfied by the
lay-up solution are increased because we added also the strength parameters issued from
the first step of the strategy. Despite the complexity of (6.50), the non-bijectivity of the
problem and, so, the existence of more stacking sequences solution allows us for having an
important redundancy on the choice of the final solution. We know from previous studies
on the lay-up design, [45,82], that the number of staking sequences, solution of the lay-up
design problem, increase significantly along with the number of plies [82].
Again, the non-bijectivity can help us when the check on the first-ply-failure forces us to
remove some stacking sequences from the solution space of the problem (6.50).
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6.5 Concluding remarks

In this Chapter we have formulated the problem of simultaneous stiffness and strength
optimisation for a laminated structure. This approach, declined into two different versions,
has been inspired by an existing hierarchical strategy for the only stiffness maximisation.

We focused firstly on the formulation of a strength functional valid for the equivalent
homogenised plate, in order to include the strength in the first step of the hierarchical
strategy. Particularly we integrated through the thickness the expression of Tsai-Hill’s
failure criterion, in terms of strains, averaging the strength of the plies and obtaining an
homogenised failure criterion formulated through invariants using the polar formalism.

Then, according to the general assumptions introduced for the problem at hand, we
have proved that the first step can be alternatively stated as two dual problems, charac-
terised by a different leading objective. Each one of these problems is almost independent
from the other in terms of anisotropic polar moduli, but they are linked in terms of or-
thotropy orientation. This last aspect allows us to not fall in the frame of a multi-objective
problem: stiffness and strength are separately and sequentially maximised, preserving only
the orthotropy direction.

If we compare this work with the most recent works on the same theme, for in-
stance [30, 38], we can assert that its most important innovation concerns the definition
of a new laminate level failure criterion that leads us to introduce the laminate strength
parameters into the optimisation variables. In [30, 38] the laminate-level failure criterion
was represented by a conservative envelope characterised by fixed strength properties in
order to avoid the first-ply-failure of the laminate plies. The strength properties in the
laminate failure criterion introduced in this Chapter, on the other hand, can vary in order
to minimise the laminate failure index.

Thanks to the polar notation and to the use of the failure criteria expressed in terms
of strains for both the laminate and the ply, we proved that we are able to compare, in
the first phase of the laminate design when the staking sequence is still unknown, the
failure index of the laminate and that of the ply in order to check the first-ply-failure.

In Chapters 7 and 8 the development and resolution of the two steps of the hierarchical
strategy will be discussed.



7

First step: structural optimisation of
laminates including strength

7.1 Introduction

This Chapter describes the theoretical and numerical development of the first step of
the hierarchical optimisation strategy sketched in the previous Chapter. The outcome
of this first step will be the optimal distribution of anisotropy, through the definition
of the optimal value of the material parameters maximising stiffness and strength for
a given structure. In Sec. 7.2 and 7.3, we describe two optimisation algorithms for the
resolution of the optimisation problems stated in Sec. 6.4.2, while Sec. 7.4 is devoted to the
resolution procedures used for the local minimisation phases of the algorithms. Moreover,
in Sec. 7.4.1, a new analytical solution to the problem of optimising the strength of plane
structures made of linear elastic orthotropic materials, is proposed.

Finally, several numerical test cases are presented, proving the effectiveness and the
robustness of the proposed approaches.

7.2 The stiffness optimisation algorithm with a pos-

teriori local maximisation of strength

We have already introduced the first step, i.e. what we call the structural optimisation
phase, in the previous Chapter (Sec. 6.4.2). In this section, we consider the first opti-
misation problem announced therein, the one where stiffness is considered as the leading
objective. In other words, we focus here on problem (6.48).

This first structural optimisation algorithm consists in the sequential use of of the op-
timisation algorithm introduced by Allaire and Kohn [2], already described in Sec. 6.3.1,
and of a second phase wherein we introduce the strength optimisation. This approach
consists, then, in a posteriori maximisation of strength to an already stiffness optimised
structure.

The optimisation parameters are:

Φ1, βm, αm with m = 1, 2 . (7.1)

They are local quantities, i.e. they are functions depending upon the coordinates (x, y) in
the plate global frame. Φ1 is the stiffness orthotropy orientation, βm is defined in eq. (6.2),

95
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αm is defined as
α1 = Λ0L,
α2 = Λ1 .

(7.2)

The optimisation problem, eqs. (6.48), is formulated as follows:

Sub-problem 1: min
{Φ1, βm}

min
Nij

Wc(Φ1, βm, Nij) ,

Sub-problem 2: min
αm

FLam
Hill (Φ1, αm) ;

(7.3)

subject to the geometric bounds of eqs. (6.3) and (6.26).
The geometry, the loading conditions and the material properties of the basic ply are
given quantities.

The algorithm to solve such a problem, sketched by a flow-chart diagram in Fig. 7.1,
can be divided into the following phases:

1. initialisation : the stiffness and strength distributions on the structure are initialised,
for instance they can be randomly sorted. Then, a first FE analysis is conducted in
order to determine the initial stress and strain fields;

2. local minimisation of the local complementary energy W l
c : local definition of a new

anisotropic stiffness distribution (Φ
(n+1)

1 , β
(n+1)
m ) minimising the local complemen-

tary energy for a fixed field (N(n));

3. global minimisation of Wc: definition of the new internal actions (N(n+1)) and strain

(ε(n+1)) fields linked to the new stiffness distribution (Φ
(n+1)

1 , β
(n+1)
m ) through a FE

analysis;

4. local minimisation of FLam
Hill after the convergence: local definition of the anisotropic

strength distribution (αm) that minimises the failure index FLam
Hill linked to the op-

timal strain field εopt:
min
αm

[
GA∗
ijkl(Φ

opt

1 , αm)εoptij ε
opt
kl

]
. (7.4)

The second and third phases, repeated in loop until convergence, correspond exactly to
the algorithm presented in Sec. 6.3.1 (which was proved to be convergent).

We see here what announced in Sec. 6.4.2: the assumption concerning the alignment
of the orthotropy directions for stiffness A∗ and strength GA∗ tensors combined with the
assumption that the design variables βm are independent from αm, gives the only link
between the stiffness and the strength optimisation phases. In this algorithm, we impose
the global complementary energy as the leading objective to be minimised with respect to
all of the optimisation parameters (Φ1 and βm). On the contrary, the strength functional,
the failure index, is considered here as the secondary objective to be minimised, once the
optimum for stiffness has been reached. In the optimisation phase concerning FLam

Hill , the
parameters involved in the optimisation process are only the polar moduli (αm), while
the strength orthotropy orientation Ω1 is given by the optimal value found for Φ1 (see
eq. (6.45) and assumption 10 of Sec. 6.2.1).

This assumption, allowing for a minimisation of FLam
Hill only with respect to αm, leads

to an important consequence: the local minimisation of FLam
Hill can be placed outside
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FE analysis  
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Figure 7.1: The iterative process to optimise the stiffness of laminated structures with a poste-
riori local maximisation of strength.

the iterative loop, after the convergence of the stiffness solution. This happens because
the parameters αm characterising the strength distribution do not take part to the FE
analysis, nor to the evaluation of the complementary energy. Hence, the evaluation of αm
does not alter the iterative loops that lead to convergence for stiffness.

In Sec. 6.4.1 we have shown the advantages of using the failure criterion expressed in
terms of strains. However, we can also express the problem (7.4) in terms of stresses and
nothing will change in the mathematical formulation of the problem itself. The FLam

Hill

written in terms of stresses is:

FLam
Hill = (Nopt)T ((Aopt)−1)TGA∗(Aopt)−1(N)opt , (7.5)

with
εopt = (Aopt)−1Nopt . (7.6)

Thus, FLam
Hill of eq. (7.5) is equivalent to FLam

Hill of eq. (7.4). Therefore, when using the
present algorithm, the expression of the FLam

Hill in terms of stresses or strains is equivalent.

7.3 The structural optimisation algorithm with a pri-

ori local maximisation of strength

This algorithm can be considered, in some sense, as the dual version of the previous one:
here, strength is the primary property to be maximised while stiffness is the secondary
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one. The optimisation parameters are:

Ω1, βm, αm , (7.7)

Ω1 is the strength orthotropy orientation, βm is defined in eq. (6.2) and αm is defined in
eq. (7.2). The problem, (6.49), is composed as follows:

Sub-problem 1: min
{Ω1,αm}

FLam
Hill (Ω1, αm) ,

Sub-problem 2: min
βm

min
Nij

Wc(Ω1, βm, N) ;
(7.8)

subject to the geometric bounds of eqs. (6.3) and (6.26).

7.3.1 Optimisation algorithm: a first version

7.3.1.1 Description of the algorithm

The algorithm to solve such a problem, sketched in Fig. 7.2, can be divided into the
following phases:

1. initialisation: the stiffness and strength distribution over the structure are initialised
in some way, for instance they can be randomly sorted. Then, a first FE analysis is
done to determine the starting stress and strain fields;

2. local minimisation of FLam
Hill : local determination of the new anisotropic strength

distribution (Ω
(n+1)

1 , α
(n+1)
m ) minimising the failure index FLam

Hill with a fixed strain
field (ε(n));

3. local minimisation of W l
c : local definition of a new anisotropic stiffness distribu-

tion (β
(n+1)
m ) that minimises the complementary energy with an imposed orthotropy

orientation (Ω
(n+1)

1 ) and a fixed field (N(n)) of internal actions;

4. global minimisation of Wc: definition of the new internal actions (N(n+1)) and strain

(ε(n+1)) fields linked to the new stiffness distribution (β
(n+1)
m , Ω

(n+1)

1 ) through a FE
analysis.

The last three phases are repeated until convergence.
Just like in the previous case, the assumption concerning the alignment of the or-

thotropy directions for stiffness A∗ and strength GA∗ tensors combined with the assump-
tion that the design variables βm are independent from αm, gives the only link between
the strength and the stiffness optimisation phases. The strength functional, the laminate
failure index, is minimised with respect to all of the optimisation parameters involved
in it (Ω1 and αm). On the contrary, the stiffness functional, the complementary energy,
is minimised only with respect to the polar moduli βm, while the stiffness orthotropy
orientation Φ1 is given by the optimal value taken by Ω1, eq. (6.45).

As the stiffness orthotropy orientation is given by the local minimisation of FLam
Hill ,

in this algorithm we cannot put outside the iterative loop, as an independent numerical
phase, the strength optimisation phase, because the orthotropy orientation Ω1 takes part
to the evaluation of the complementary energy Wc, see eqs. (7.8). Therefore, the minimi-
sation of FLam

Hill must be included into the iterative process and it is placed before the local
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minimisation of W l
c in order to determine the new optimal value of Ω1, with strength as

leading objective.
Differently from the previous optimisation algorithm, FLam

Hill cannot be expressed in
both stress or strain terms. The laminate failure index in terms of internal forces at the
iteration n is

FLam
Hill = (NEF (n−1))T ((A(n))−1)TGA∗(A(n))−1(N)EF (n−1) . (7.9)

In eq. (7.9) the stresses are known as an output of the FE analysis at the iteration (n−1)

while the elasticity tensor is characterised by the anisotropy parameters β
(n)
m that will be

determined only after the local maximisation of stiffness. Thus, at the iteration n during
the local minimisation of FLam

Hill , the stiffness tensor A(n) in eq. (7.9) is not known. On
the other hand, the FLam

Hill written in terms of strains

FLam
Hill = (εEF (n−1))TGA∗(ε)EF (n−1) , (7.10)

is characterised by known quantities, in fact the strains are known as an output of the
FE analysis at the previous iteration n − 1. The only unknowns are the optimisation
parameters αm and Ω1. Therefore, only the formulation in terms of strains can be used
to solve the problem of local maximisation of strength in the framework of the present
algorithm.
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Figure 7.2: The iterative process of the first version of the algorithm with a priori maximisation
of strength.
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7.3.1.2 Discussion about convergence

Let us consider the anisotropic stiffness and strength parameters (β
(n)
m ,α

(n)
m ,Ω

(n)

1 ) and the
internal actions N(n) and strain ε(n) fields at the iteration n.

The local minimisation of FLam
Hill consists in finding the strength distribution α

(n+1)
m

and Ω
(n+1)

1 such that

GA∗
ijkl(Ω

(n+1)

1 , α(n+1)
m )ε

(n)
ij ε

(n)
kl = min

{Ω1, αm}

[
GA∗
ijkl(Ω1, αm)ε

(n)
ij ε

(n)
kl

]
, (7.11)

defined at each point of the structure with a fixed strain field ε(n).
The local minimisation of the complementary energy consists in finding the new stiffness
distribution β

(n+1)
m such that:

A−1ijkl(β
(n+1)
m , Ω

(n+1)

1 )N
(n)
ij N

(n)
kl = min

βm

[
A−1ijkl(βm, Ω

(n+1)

1 )N
(n)
ij N

(n)
kl

]
, (7.12)

at each point of the structure for a fixed field N(n). This local minimisation, enforces the
global inequality∫

Sp

A−1ijkl(β
(n+1)
m , Ω

(n+1)

1 )N
(n)
ij N

(n)
kl dSp ≤

∫
Sp

A−1ijkl(β
(n)
m , Ω

(n+1)

1 )N
(n)
ij N

(n)
kl dSp . (7.13)

The global minimisation consists in determining the new fields N(n+1) and ε(n+1), solution

to the elastic problem determined by the stiffness distribution (β
(n+1)
m , Ω

(n+1)

1 ). By the
complementary energy theorem, we have∫

Sp

A−1ijkl(β
(n+1)
m , Ω

(n+1)

1 )N
(n+1)
ij N

(n+1)
kl dSp ≤

∫
Sp

A−1ijkl(β
(n+1)
m , Ω

(n+1)

1 )N
(n)
ij N

(n)
kl dSp (7.14)

Combining eq. (7.13) with eq. (7.14) we obtain:∫
Sp

A−1ijkl(β
(n+1)
m , Ω

(n+1)

1 )N
(n+1)
ij N

(n+1)
kl dSp ≤

∫
Sp

A−1ijkl(β
(n)
m , Ω

(n+1)

1 )N
(n)
ij N

(n)
kl dSp , (7.15)

so
Wc(β

(n+1)
m , Ω

(n+1)

1 ,N(n+1)) ≤ Wc(β
(n)
m , Ω

(n+1)

1 ,N(n)) . (7.16)

Eq. (7.16) shows that, concerning this second algorithm, only the reduction of the comple-
mentary energy from the local to the global minimisation phase is ensured. The reduction
of Wc from the iteration n to the consecutive (n+ 1) is no more ensured. We have:

Wc(β
(n+1)
m , Ω

(n+1)

1 ,N(n+1)) Q Wc(β
(n)
m , Ω

(n)

1 ,N(n)) . (7.17)

This is due to the evaluation of the new field N(n+1) that is linked to a stiffness distribution
composed by two quantities, the modules βm, that come from the local minimisation of
the local complementary energy and by a third quantity, the orthotropy orientation Ω1,
that comes from the solution of another optimisation problem, the local minimisation of
the laminate failure index. This means that, inside the convergent optimisation algorithm
introduced by Allaire and Kohn [2], we introduce a quantity, the orthotropy orientation
Ω1, that takes part to the stiffness optimisation algorithm and that is calculated not
to minimise the stiffness functional Wc but to minimise another quantity, the laminate
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failure index. Such an alteration, introduced within the stiffness optimisation algorithm
causes the loss of the convergence proof.

The monotonic decrease of the failure index, through the iterations, is also not ensured,
i.e.:

FLam
Hill (α(n+1)

m , Ω
(n+1)

1 , ε(n+1)) Q FLam
Hill (α(n)

m , Ω
(n)

1 , ε(n)) . (7.18)

This happens because the strength parameters, Ω1 and αm, are determined through the
local minimisation of the laminate failure index but the strain field is the one obtained
through the solution of an other optimisation problem: the global minimisation of the
complementary energy.

The consequence is an oscillation of the values ofWc and FLam
Hill along the iterations. For

this reason, we have modified this algorithm in order to recover the monotonic decrease of
the complementary energy through the iterations, and thus, the convergence of the global
procedure.

7.3.2 Optimisation algorithm: a second version

Concerning the first version of the optimisation algorithm with a priori maximisation
of strength, we have highlighted an important aspect: the cause of the oscillation of
the values of FLam

Hill and Wc is to be searched into the way the orthotropy orientation
is determined. In order to avoid such an oscillation and ensure the convergence of the
algorithm, we have developed a modified version of the previous algorithm.

7.3.2.1 Description of the algorithm

The main phases of this version of the algorithm, sketched in Fig. 7.3, are:

1. initialisation: the stiffness and strength distributions over the structure are ini-
tialised and a first FE analysis is conducted;

2. constrained local minimisation of FLam
Hill : local definition of the anisotropic strength

distribution (α
(n+1)
m , Ω

(n+1)

1 ) that minimise FLam
Hill with fixed strain field (ε(n)):

min
{Ω1, αm}

[
GA∗
ijkl(Ω1, αm)ε

(n)
ij ε

(n)
kl

]
, (7.19)

with Ω1 constrained by the condition

min
βm

[
A−1ijkl(βm, Ω1)N

(n)
ij N

(n)
kl

]
≤ A−1ijkl(β

(n)
m , Ω

(n)

1 )N
(n)
ij N

(n)
kl ; (7.20)

3. local minimisation of W l
c : local definition of a new anisotropic stiffness distribu-

tion (β
(n+1)
m ) that minimises the complementary energy with an imposed orthotropy

orientation (Ω
(n+1)

1 ) and a fixed field (N(n)) of internal actions;

4. global minimisation of Wc: definition of the new internal actions N(n+1) and strain

ε(n+1) fields linked to the new stiffness distribution (β
(n+1)
m , Ω

(n+1)

1 ) through a FE
analysis;
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FE analysis 
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NO 
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(with fixed strain field) 

Figure 7.3: The iterative process of the second version of the algorithm with a priori maximi-
sation of strength.

The three last phases are repeated until convergence of Wc.

Concerning this modified version of the algorithm a priori, we have simply inserted
a constraint on the evaluation of the orthotropy orientation Ω1: the optimal value of
Ω1, determined through the local minimisation of FLam

Hill , has to belong to a domain of
orientations such that the reduction of the complementary energy, through the iterations,
is ensured. Of course, in this algorithm, only the monotonic decrease of the complementary
energy is ensured, while the value of FLam

Hill can oscillate along the iterations.

7.3.2.2 Convergence proof

Let us consider the anisotropic stiffness and strength distribution (β
(n)
m ,α

(n)
m ,Ω

(n)

1 ) and the
internal actions N(n) and strain ε(n) fields at the iteration n.

The local minimisation of FLam
Hill consists in finding the strength distribution α

(n+1)
m

and Ω
(n+1)

1 such that

GA∗
ijkl(Ω

(n+1)

1 , α(n+1)
m )ε

(n)
ij ε

(n)
kl = min

{Ω1, αm}

[
GA∗
ijkl(Ω1, αm)ε

(n)
ij ε

(n)
kl

]
, (7.21)
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at each point of the structure, with Ω1 constrained by the condition

min
βm

[
A−1ijkl(βm, Ω1)N

(n)
ij N

(n)
kl

]
≤ A−1ijkl(β

(n)
m , Ω

(n)

1 )N
(n)
ij N

(n)
kl , (7.22)

This constraint, at least, is satisfied for Ω1 = Ω
(n)

1 , that leads to the same value of
W l
c calculated at the previous iteration. The range of orientations Ω1 satisfying such a

constraint will be formally written in the form

Ω1 ∈
[
Ω1a , Ω1b

]
(7.23)

though the domain of Ω1 satisfying (7.22) could possibly be composed by several distinct
intervals. The local minimisation of the complementary energy is performed in order to
find the new stiffness distribution:

A−1ijkl(β
(n+1)
m , Ω

(n+1)

1 )N
(n)
ij N

(n)
kl = min

βm

[
A−1ijkl(βm, Ω

(n+1)

1 )N
(n)
ij N

(n)
kl

]
, (7.24)

considering that Ω
(n+1)

1 determined through the local minimisation of FLam
Hill satisfies the

condition (7.22), we have:∫
Sp

A−1ijkl(β
(n+1)
m , Ω

(n+1)

1 )N
(n)
ij N

(n)
kl dSp ≤

∫
Sp

A−1ijkl(β
(n)
m , Ω

(n)

1 )N
(n)
ij N

(n)
kl dSp . (7.25)

The global minimisation consists in determining the new stress (N(n+1)) and strain (ε(n+1))

fields, solution to the elastic problem linked to the stiffness distribution (β
(n+1)
m , Ω

(n+1)

1 ).
Thanks to the complementary energy theorem, the following inequality∫

Sp

A−1ijkl(β
(n+1)
m , Ω

(n+1)

1 )N
(n+1)
ij N

(n+1)
kl dSp ≤

∫
Sp

A−1ijkl(β
(n+1)
m , Ω

(n+1)

1 )N
(n)
ij N

(n)
kl dSp , (7.26)

is verified. In addition, combining eq. (7.25) with eq. (7.26) we obtain:∫
Sp

A−1ijkl(β
(n+1)
m , Ω

(n+1)

1 )N
(n+1)
ij N

(n+1)
kl dSp ≤

∫
Sp

A−1ijkl(β
(n)
m , Ω

(n)

1 )N
(n)
ij N

(n)
kl dSp , (7.27)

so
W (n+1)
c ≤ W (n)

c , (7.28)

which proves the monotonic convergence of the algorithm for what concerns Wc. Since
Wc reduces at each iteration and converges, FLam

Hill will converge to a value due to the
convergence of the strain field.

Some remarks on this second version of the algorithm a priori are mandatory. First
of all, in order to prove the convergence of the algorithm we inserted a constraint on the
evaluation of the optimal orthotropy orientation; such a value has to ensure the reduction
of the local complementary energy from an iteration to the consecutive. The orthotropy
orientations satisfying such a constraint include the optimal orientation of the previous
iteration and, generally, are more than only one. Then, we choose, among them, the
orientation that gives the minimum value of FLam

Hill .
Therefore, in this new version of the algorithm we are still favouring the strength but

with a limit on the solution space linked to the optimal orientation. At each iteration, the
optimum value of FLam

Hill is still a minimum, but its search is limited to a given domain of
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orientations. Such a value, hence, could not be the global minimum that we can obtain
for a given strain field, like what happens in the first version of the algorithm where no
limits are imposed on the search space of the optimal values of Ω1 to minimise FLam

Hill . As
a consequence, even if FLam

Hill converges to a value, its convergence could not be monotonic.
Concluding, we can assert that this second version of the algorithm is slightly different

from the previous one, it ensures the monotonic convergence of Wc and the oscillating
convergence of FLam

Hill .

7.4 Solution of local minimisations

In this Section we determine the solution, analytical or numerical, of the local minimisa-
tion phases belonging to the optimisation algorithms described in Secs. 7.2 and 7.3.

7.4.1 Analytical solution for minimum laminate failure index

7.4.1.1 First local minimisation problem: fixed orthtotropy orientation

The optimisation problem is:

min
{Λ0L,Λ1}

FLam
Hill

(
Λ0L, Λ1, Ω

opt

1

)
, (7.29)

with: 
2

(
Λ1

Λ1

)2

− 1 ≤ Λ0L

(−1)LΛ0

,

|Λ0L| ≤ Λ0 ,
Λ1 ≥ 0 .

(7.30)

and

Ω1 =

{
Φ
opt

1 or

Φ
opt

1 + π/2 .
(7.31)

This local minimisation problem takes part to:

• the a posteriori local minimisation phase of FLam
Hill in the “algorithm a posteriori”,

eq. (7.4);

• the constrained local minimisation of FLam
Hill in the second version of the “algorithm

a priori”, as we will show in Sec. 7.5.2;

The constraints (7.30) are the geometric bounds already introduced and written here in
a slight different way from eqs. (6.26) to take into account for variable Λ0L, eq. (6.46).

The extended expression of the objective function is, eq. (6.30):

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0Lr

2 cos 4
(
Ω1 − φ

)
+ 16trΛ1 cos 2

(
Ω1 − φ

)
. (7.32)

The two partial derivatives of FLam
Hill with respect to Λ0L and Λ1 are:

∂FLam
Hill

∂Λ0L

= 4r2 cos 4(Ω1 − φ) ,

∂FLam
Hill

∂Λ1

= 16tr cos 2(Ω1 − φ) .

(7.33)
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Figure 7.4: Diagram of the two functions cos 4
(
Ω1 − φ

)
and cos 2

(
Ω1 − φ

)
.

Both the derivatives are constant for a fixed strain field. FLam
Hill is a linear function of Λ0L

and Λ1. Therefore, the minimum value of FLam
Hill necessarily lies on the boundary of the

domain defined in the plane (Λ0L, Λ1) by eqs. (7.30). Moreover, the sign of the partial
derivatives (7.33) depends upon the signs of cos 4

(
Ω1 − φ

)
and cos 2

(
Ω1 − φ

)
, Fig. 7.4),

and upon the sign of t, the spherical part of strains. In addition, the area of admissible
values of Λ0L and Λ1 changes together with the value of the orthotropy shape parameter
L of the basic ply, see eq. (7.30). This suggest that it is worth to separate the solutions
into two main groups, depending on the value L of the basic ply.

Before introducing such solutions, we have to consider another important case: the
spherical strain field, characterised by r = 0. If we impose r = 0 in eq. (7.32), the two
optimisation parameters are not longer present in the equation of FLam

Hill . This means
that, for a spherical strain field, any value of Λ0L and Λ1 within the admissible design
region can be optimal for the failure index functional. From a mechanical point of view
this means that when the strain field is purely spherical, we can place the fibres, of the
corresponding laminate, in any direction and we will have still an optimal solution in
terms of homogenised strength.

All the following cases will be characterised by r 6= 0.

Let us, then, consider the first case of a basic ply with L = 0. As the solution depends
upon the sign of t, cos 4

(
Ω1 − φ

)
and cos 2

(
Ω1 − φ

)
, we start our analysis by considering

the case

t > 0 and
(
Ω1 − φ

)
∈
]
−π

8
,
π

8

[
,

for which all the above three quantities are positive.
In this case we have at the same time:

∂FLam
Hill

∂Λ0L

> 0,
∂FLam

Hill

∂Λ1

> 0 . (7.34)

The two design variables Λ0L and Λ1 being independent, the point corresponding to the
minimum of FLam

Hill is point A in Fig. 7.5, where Λ0L and Λ1 get their lowest admissible
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A 

Figure 7.5: Admissible domain of Λ0L and Λ1 for a basic ply with L = 0.

value:
Λ
opt

0L = −Λ0,

Λ
opt

1 = 0 .
(7.35)

The objective function takes, thus, the following value:

FLam
Hill = 4r2Γ0 + 8t2Γ1 − 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (7.36)

The remaining cases, characterised by other combinations of the signs of t, cos 4
(
Ω1 − φ

)
and cos 2

(
Ω1 − φ

)
, can be treated in the same way. The complete discussion of all the

cases is rather lengthy, and for a better appraisal of the general procedure, presented it
in Appendix A.1.

A complete summary of the solutions of the local minimisation of FLam
Hill for L = 0

is presented in Tab. 7.1. The angular range of
(
Ω1 − φ

)
is considered only between 0

and π/2 because of the symmetry of the solutions that are symmetric with respect to
the axis

(
Ω1 − φ

)
= 0. Moreover, in Table 7.1 we numerate the solutions in order to

map the “solution type” linked to the local minimisation of FLam
Hill over the surface of the

structures considered in the numerical examples of Sec. 7.6. The numeration associates in
a unique value of “solution type” all optimal solutions having the same optimal values of
Λ0L and Λ1. In particular, the solution type 0 has been associated to a specific solution,
that obtained whit a purely spherical strain field.

Let us now turn the attention on the case L = 1 of the basic ply. Also in this case, in
order to find the best value of the two design variables Λ0L and Λ1, we have to distinguish
different cases, depending upon the sign of t, cos 4

(
Ω1 − φ

)
and cos 2

(
Ω1 − φ

)
. The way

to get the optimal values of Λ0L and Λ1 is completely similar to that sketched above for
L = 0. For the sake of brevity, the results concerning the case L = 1, are not reported
here but are simply summarised in Tab. 7.2. The numeration of solution associate in a
unique value of “solution type” all optimal solutions having the same optimal values of
Λ0L and Λ1. Again, the solution type 0 is associated to the solution obtained whit a purely
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Figure 7.6: Optimal orthotropy orientation to minimise FLamHill .

spherical strain filed. The reader can find the complete discussion of all the possible cases
corresponding to L = 1 in Appendix A.1.

7.4.1.2 Second local minimisation problem: including the orthotropy orien-
tation as an optimisation variable

The optimisation problem can be formalised as:

min
{Λ0L,Λ1,Ω1}

FLam
Hill

(
Λ0L, Λ1, Ω1

)
, (7.37)

along with the constraints (7.30). The objective function is:

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0Lr

2 cos 4
(
Ω1 − φ

)
+ 16trΛ1 cos 2

(
Ω1 − φ

)
. (7.38)

This local minimisation problem takes part to the local minimisation phase of FLam
Hill in

the first and second version of the “algorithm a priori”.
In this case FLam

Hill has to be minimised with respect to three variables: the orthotropy
orientation Ω1 and the polar moduli Λ0L and Λ1. The analytical solution of this problem
will be realised within two consecutive phases: firstly the minimisation with respect to
the orientation Ω1 of the orthotropy axis and then, the minimisation with respect to the
polar moduli Λ0L and Λ1.

We can evaluate the optimal orientation Ω
opt

1 by the same procedure already used
in Sec. 5.2 where the problem of minimising the failure index of a simple ply has been
solved varying only the orthotropy orientation Ω1. Thus, we present directly the results
in Fig. 7.6 where

µ = dir (min {|εI |, |εII |}) ,

ξ =
1

2
arccos

(
− Λ1t

Λ0Lr

)
.

(7.39)

Fig. 7.6 shows that the orthotropy shape parameter L of the plate plays a decisive role in
the evaluation of the optimal orthotropy orientation. We have, thus, two type of solutions
concerning the optimal orthotropy orientation:

• a solution that does not include the term ξ, that we will call solution non-ξ;

• a solution including the term ξ, that we will call solution ξ.

If we put the expression ofΩ
opt

1 in eq. (7.38), depending on the type of solution (non-ξ or ξ),

FLam
Hill (Ω

opt

1 ) can assume two different expressions. Therefore, in the second minimisation
phase, we have to minimise two different functions with respect to Λ0L and Λ1:

solution non-ξ : FLam
Hill (Λ0L, Λ1, Ω

opt

1 ) = 4r2Γ0 + 8t2Γ1 + 4Λ0Lr
2 − 16|t|rΛ1; (7.40)
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solution ξ : FLam
Hill (Λ0L, Λ1, Ω

opt

1 ) = 4r2Γ0 + 8t2Γ1 − 4Λ0r
2 − 8t2

Λ
2

1

Λ0

. (7.41)

The optimal value of FLam
Hill obtained minimising eq. (7.40) will be, then, compared with

that obtained minimising eq. (7.41). The solution that give the minimum value of FLam
Hill

(and the corresponding values of the design variables Ω1, Λ0L and Λ1) will be the global
optimal solution of problem (7.37).

In order to find an analytical solution, we can proceed by following the same logical
steps described in Sec. 7.4.1.1. For the sake of brevity, the solutions of this case are directly
summarised in Tab. 7.3, while the extended proof of solutions is reported in Appendix
A.2. Also in this case, the solutions are numbered in order to have a map of “solution
type” concerning the local minimisation of FLam

Hill in the section of numerical examples
(Sec. 7.6). The first row of Tab. 7.3 gives the optimal value of Ω1, while the rows below
report the optimal values of the polar moduli Λ0L and Λ1 depending on the value of L of
the basic ply and, furthermore, on the strain field through the quantity |t|/r with respect
to ratio Λ0/Λ1 between the polar moduli of the basic ply.

In particular, the first row of Tab. 7.3 shows that the optimal orthotropy orientation

to maximise the strength is always Ω
opt

1 = dir (min {|εI |, |εII |}), eq. (7.39), for every value
of L and |t|/r; so, the global minimum of FLam

Hill is always obtained from the problem of
solution non-ξ, eq. (7.40).

This result leads to an important consequence: we know from Tab. 6.1 that the optimal
orthotropy orientation that maximises the stiffness (for a given stress field) is always
aligned with the directions of principal stresses, on the other hand, Tab. 7.3 shows that the
optimal orthotropy orientation to maximise the strength (for a given strain field) is always
aligned with the direction of the principal strains. Therefore, if in an anisotropic structure
the stress and strain fields are such that the principal stresses and strains are aligned,
the optimal orthotropy orientation maximising the strength will be aligned with that
maximising the stiffness. Therefore, if the optimal solution carried out by the described
algorithms, Secs. 7.2 and 7.3, leads to such a condition, we will have obtained a global
optimal solution in terms of both the stiffness and the strength.

7.4.2 Numerical solution for minimum complementary energy
with a fixed orthotropy orientation

The numerical approach described below is used in the first and second version of the
algorithm a priori to solve the local minimisation phases of the local complementary
energy, Sec. 7.3. The optimisation problem can be formalised as:

min
{R0K ,R1}

Wc

(
R0K , R1

)
(7.42)

with the constraints:

2

(
R1

R1

)2

− 1 ≤ R0K

(−1)KR0

,

|R0K | ≤ R0,

R1 ≥ 0;

(7.43)
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Ω
opt

1 = dir (min {|εI |, |εII |}) ∀ L, t, r

Λ
opt

0L Λ
opt

1 F
Lam(opt)
Hill

L = 0,1; r = 0,∀t; Solution Type = 0

any any 8t2Γ1

L = 0

|t|
r
≤Λ0

Λ1
, Solution Type = 11(

2t2Λ2
1

r2Λ2
0

− 1

)
Λ0

|t|Λ2
1

rΛ0
4r2Γ0 + 8t2Γ1 − 4r2Λ0 − 8t2

Λ2
1

Λ0

|t|
r
≥Λ0

Λ1
, Solution Type = 12

Λ0 Λ1 4r2Γ0 + 8t2Γ1 + 4Λ0r
2 − 16|t|rΛ1

t = 0, Solution Type = 13

−Λ0 0 4r2Γ0 − 4Λ0r
2

L = 1

t 6= 0, Solution Type = 14

−Λ0 Λ1 4r2Γ0 + 8t2Γ1 − 4Λ0r
2 − 16|t|rΛ1

t = 0, Solution Type = 15

−Λ0 [0, Λ1] 4r2Γ0 − 4Λ0r
2

Table 7.3: Global solution of the local minimisation of FLam
Hill including Ω1 as optimisation

parameter.

where:

Wc =
1

∆

[
2(T0T1 −R

2

1)R
2 + (T 2

0 −R
2

0K)T 2 + 2(R
2

1 − T1R0K)R2 cos 4(Φ1 − Φ)+

−4R1(T0 − (−1)KR0K)TR cos 2(Φ1 − Φ)
]
,

(7.44)
with:

∆ = 4T1(T
2
0 −R

2

0K)− 8R
2

1(T0 −R0K) ; (7.45)

and

Φ1 =

{
Ω
opt

1 or

Ω
opt

1 + π/2 .
(7.46)

T , R and Φ are the polar parameters of N. Ω
opt

1 is determined through the local minimi-
sation of FLam

Hill . Thus, unlike the analytical solution of (Φ1−Φ) to problem (6.3) depicted
in Tab. 6.1, in this case we know only the numerical value of such a angular difference,
hence, we don’t have an analytical expression of (Φ1 − Φ) to put into eq. (7.44) in order
to simplify the problem (7.42) like in [34].

The derivatives with respect to R0K and R1 are rational functions of second order
polynomials in terms of R0K and R1. We can consider two separated cases: the first
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one, where the principal stress and strains orientations are coincident, Φ = φ. In this
circumstance, the analytical solution is the same presented in Tab. 6.1. In the second
case the two orientations Φ and φ are different. In this circumstance, for what said above,
the minimum of the local complementary energy is searched using a fixed point algorithm
which consists in consecutive and alternated minimisations of the objective function with
respect to the two design variables, in this case R0K and R1. The procedure can be
described as follows:

• the numerical iterations start by fixing an initial value of one of the two optimisation

variables, for example we fix R0K = R
0

0K that belongs to the admissible domain
described by the constraints (7.43);

• the simplified optimisation problem

min
R1

Wc

(
R

0

0K , R1

)
, (7.47)

is solved analytically and we find the value R1 = R
0

1 that corresponds to the mini-
mum of the objective function and that satisfies the geometric bounds;

• the optimisation problem

min
R0K

Wc

(
R0K , R

0

1

)
, (7.48)

is solved analytically and we find R0K = R
1

0K that minimises the objective func-
tion and satisfies the geometric bounds. Then, the last two step are iterated until
convergence to a minimum.

Multiples starting points are considered in order to avoid a local minimum and converge
to a global minimum. We found, numerically, that the local minimum obtained is the
same using any starting point; hence, the convexity of the objective function is observed
but not proved.

7.5 Summary of the computational procedure

We presented three different algorithms, the algorithm a posteriori to solve the optimisa-
tion problem (6.48) and two versions of the algorithm a priori to solve the optimisation
problem (6.49).

The computational procedure of the structural optimisation step can be divided into
three main phases as shown in Fig. 7.7. The entire computational procedure is pro-
grammed in the MATLAB environment except for the FE analyses that are conducted
using the ANSYS software. The exchange of data between the MATLAB code and the FE
code is obtained through writing and/or reading of text files containing the informations
to be exchanged. The FE analysis is launched using a “dos” command line written in the
MATLAB code.

Concerning the FE model, it is created using quadratic ANSYS SHELL281 elements
based on the Kirchoff kinematic model with 8 nodes and 3 degrees of freedom per node. For
this element the membrane option is activated, in this way there is no bending stiffness or
rotational degrees of freedom, so, the elastic uncoupling is ensured. The mesh refinement,
i.e. the dimension of the FEs, is chosen after preliminary mesh sensitivity analyses on the
convergence of the maximum displacement for a given loading condition.
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POST-PROCESSING 
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Figure 7.7: Main phases of the computational procedure.

7.5.1 Pre-processing phase

In the pre-processing phase we firstly define the geometry and loading conditions of the
structure to be optimised. As we consider only the extension behaviour of the structure,
we will consider only in-plane loading conditions. The point-wise optimisation of the
properties of the structure, is realised discretising the structure into j finite elements.
In this way the stiffness and strength properties of the structure are defined specifying
the polar parameters of A∗ and GA∗, respectively, for every element of the structure.
In particular, we define an initial stiffness distribution that is uniform over the plate
in order to correspond to a classical laminated structure having a relevant value of the
complementary energy Wc. Concerning the strength modules, we have chosen a starting
value of the strength polar moduli equal to that of the basic ply Λ0L = Λ0 and Λ1 = Λ1.
The pre-processing phase is terminated with a FE analysis that defines the starting stress
and strain fields.

7.5.2 Optimisation phase

In the optimisation phase the user can chose the algorithm to be used to determine the
optimal values of the design variables.

Let us start considering the algorithm a posteriori. A more precise flow-chart diagram
of the optimisation phases is presented in Fig. 7.8. The internal actions field N(n) at the
iteration n is the input for the local minimisation of W l

c , performed on every element of
the structure, at the iteration n+1. Thanks to the analytical solution of Tab. 6.1 the new
optimal stiffness distribution obtained by the MATLAB code is given, through a text file,
to ANSYS in order to perform a new FE analysis. At the end of the FE analysis, ANSYS
writes a text file giving the values, for every element, of the internal actions and strains
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FE analysis 

Convergence 

NO 
YES 

Block 2: Strength 
Maximisation 

Block 1:  
Stiffness 
Maximisation 

Global minimisation of Wc 
through FE analysis 

𝜀𝑜𝑝𝑡, 𝑅 0𝐾
𝑜𝑝𝑡

, 𝑅 1
𝑜𝑝𝑡

, 𝛷 1
𝑜𝑝𝑡

 

𝛬 0𝐿
𝑜𝑝𝑡

, 𝛬 1
𝑜𝑝𝑡

 

𝑅 0𝐾
(𝑛+1)

, 𝑅 1
(𝑛+1)

, 𝛷 1
(𝑛+1)

 

𝐍(𝑛+1), 𝜺(𝑛+1) 

𝐍(𝑛), 𝜺(𝑛) 

Local minimisation of  

𝐹𝐻𝑖𝑙𝑙
𝐿𝑎𝑚 with fixed strain field and 

orientation 𝛺 1 
(Analytical solution  
of Tabs. 7.1 and 7.2) 

Local minimisation of 𝑊𝑐
𝑙 with fixed 

stress field 
(Analytical solution of Tab. 6.1)  

Figure 7.8: Detailed description of the algorithm a posteriori.

at the iteration n + 1, that become the inputs for the new iteration. The convergence is
achieved when a stop criterion is satisfied:

|W (n)
c −W (n+1)

c |
W

(n)
c

< 0.001 , (7.49)

such a condition has to be satisfied at least six consecutive times. Once the convergence
is achieved, the optimal strain field is used as input to the local minimisation of FLam

Hill

on every element. Thanks to the analytical solutions of Tabs. 7.1 and 7.2 the optimal
strength distribution is obtained and the optimisation phase is terminated.

On the other hand, if we want to use the first version of the algorithm a priori, a
detailed flow-chart diagram of the optimisation phases is presented in Fig. 7.9. The strain
field ε(n) at the iteration n is the input for the local minimisation of FLam

Hill , performed on
every element of the structure, at the iteration n + 1. Thanks to the analytical solution
of Tab. 7.3 the new optimal strength distribution is obtained. Then, the internal actions
field N(n) at the iteration n and the orthotropy orientation Ω1 at the iteration n + 1
are used as input for the local minimisation of W l

c , at the iteration n + 1. Thanks to
the numerical solution described in Sec. 7.4.2, the new optimal stiffness distribution is
obtained and used by ANSYS in order to perform a new FE analysis. Then, the internal
actions and strains at the iteration n + 1 become the inputs for the next iteration. The
iterations prosecute in this way until convergence. In Sec. 7.3 we have discussed the lack
of the mathematical proof for the convergence of the first version of the algorithm a priori.
From a numerical point of view we have observed that the amplitude of the oscillations
linked to the variation of both laminate failure index FLam

Hill and complementary energy
Wc reduces along the iterations. However, the relative variation of both these quantities
(Wc and FLam

Hill ) does not fall below ∼ 0.5%.
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Figure 7.9: Detailed description of the first version of the algorithm a priori.

Finally, we can chose as optimisation algorithm, the second version of the algorithm a
priori. A detailed flow-chart diagram of the computational phases is presented in Fig. 7.10.
The strain ε(n) field at the iteration n is the input for the local minimisation of FLam

Hill ,
performed on every element of the structure, at the iteration n+ 1:

min
Ω1,Λ0L,Λ1

FLam
Hill (Ω1, Λ0L, Λ1) (7.50)

with no restrictions on the solution space of Ω1. Thanks to the analytical solution of
Tab. 7.3 the new optimal strength distribution is obtained. Then, the internal actions

field N(n) at the iteration n and the orthotropy orientation Ω
(n+1)

1 are used as input for
the local minimisation of W l

c , at the iteration n + 1. Thanks to the numerical solution
described in Sec. 7.4.2 we have the new optimal stiffness distribution. Until this point
this algorithm is identical to the first version of the algorithm a priori.

In order to solve the constrained local minimisation problem of the FLam
Hill defined in

Sec. 7.3.2, from a computational point of view, we have inserted a “check phase” on the
reduction of W l

c :

• if W
l(n+1)
c ≤ W

l(n)
c after the local minimisation, the MATLAB code gives the new

values of the stiffness parameters to ANSYS;

• if W
l(n+1)
c > W

l(n)
c after the local minimisation, the problem

min
R0K ,R1

Wc(Ω1, R0K , R1) (7.51)

is solved, for every given value of Ω1 ∈ [−π/2, π/2] discretised with a step of 1◦.
Thanks to the numerical solution described in Sec. 7.4.2 we have 181 values of
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Figure 7.10: Detailed description of the second version of the algorithm a priori.

W
l(n+1)
c along with their optimal stiffness parameters. A selection operator, now,

chooses all W
l(n+1)
c ≤ W

l(n)
c ; after the selection phase, we have the range

Ω1 ∈ [Ω1a , Ω1b ] , (7.52)

corresponding to the selected values of W
l(n+1)
c . At this point the local minimisation

of FLam
Hill

min
Λ0L,Λ1

FLam
Hill (Ω1, Λ0L, Λ1) , (7.53)

is performed for every given value of Ω1 ∈ [Ω1a , Ω1b ]. Thanks to the analytical

solutions of Tabs. 7.1 and 7.2 we obtain a set of values of F
Lam(n+1)
Hill along with

their optimal strength parameters. The optimal solution, for the finite element
under consideration, will be the one giving the minimum value of FLam

Hill in the set of
values determined for each Ω1 ∈ [Ω1a , Ω1b ]. Such a solution give us the stiffness and
strength parameters, along with the orthotropy orientation, at the iteration n+ 1.

Once the procedure has been performed for all elements composing the structure, the
MATLAB code gives to ANSYS the new stiffness distribution in order to perform a new
FE analysis to determine the internal actions and strains fields at the iteration n + 1,
that become the inputs for the new iteration. The iterations prosecute in this way until
convergence. The stop criterion to achieve the optimal condition is the same adopted for
the algorithm a posteriori.
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In order to better understand the second part of this algorithm, in Fig. 7.11 we show
an example of the variation of minima of W l

c and FLam
Hill , at the iteration (n+1) for a fixed

stress and strain state, varying only the orthotropy orientation. The red line corresponds
to the value of the W

l(n)
c at the previous iteration and represents the constraint on the

admissible values of W
l(n+1)
c and, so, on Ω1. In particular we calculate, for each value of

Ω1 ∈ [−π/2, π/2] the solution of the minimisation problem (7.51), for a given N(n) field

to obtain the curve of minima of W
l(n+1)
c .

Now, the two dashed vertical lines defines the range of values Ω1 ∈
[
Ω1a , Ω1b

]
whose

corresponding minimum values of W
l(n+1)
c are such that W

l(n+1)
c ≤ W

l(n)
c , i.e. satisfy the

constraint on the reduction of W l
c . Then, for each value of Ω1 ∈

[
Ω1a , Ω1b

]
we solve the

minimisation problem (7.53) for a given ε(n) field to obtain the curve of minima of FLam
Hill .

Thus, in this range of Ω1 we look for the optimal value of orientation Ω
(n+1)

1 that, among
all of the minima of FLam

Hill calculated for Ω1 ∈
[
Ω1a , Ω1b

]
gives the lowest value of FLam

Hill .
Such a value is placed on the black vertical line that just defines the optimal orthotropy

orientation Ω
(n+1)

1 . The values R0K , R1 and Λ0L, Λ1 corresponding to this point solution
will be the optimal values of the iteration (n+ 1) and will be stored by the algorithm in
order to pass to the global optimisation phase.
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Figure 7.11: Curves of the minima of W l
c and FLamHill corresponding to given values of the

orthotropy orientation Ω1.

7.5.3 Post-processing phase

At the end of the optimisation phase we have a homogenised structure whose optimal
stiffness and strength distributions are known. Therefore, we can perform a final FE
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analysis in order to determine the stress and strain states corresponding to the optimal
condition.

We have still discussed in Sec. 6.4.1.2 about the Kirkhoff’s kinematic model conse-
quence, for an uncoupled plate subjected to a pure membrane loading, that the strain
field of the whole laminate is identical to that of each constitutive layer. After the opti-
misation phase, we have a homogenised plate whose strain state (t, r, φ) is known, thus,
we know also the strain state of each constitutive layer. Moreover, the polar parameters
(Γ0, Γ1, L, Λ0, Λ1) of the basic ply are given, so, we can evaluate the max(F Ply

Hill) for each
element of the structure:

max(FPlyHill) = 4r2Γ0 + 8t2Γ1 + 4(−1)LΛ0r
2 cos 4 (Ω1 − φ) + 16trΛ1 cos 2 (Ω1 − φ) , (7.54)

with Ω1 set equal to the solution of Fig. 6.1 maximising the F Ply
Hill. Then, such a value of

max(F Ply
Hill) will be taken into account during the second step of the strategy in order to

check the first-ply-failure and to define the admissible range of solutions of ply orientations
to determine the stacking sequence of the laminate, see Chapter 8.

7.6 Numerical examples

In this Section, we present three numerical examples with different laminated plates that
will be designed and optimised using the proposed optimisation algorithms of Secs. 7.2 and
7.3. The three plates are uncoupled and orthotropic and subject to pure membrane loading
conditions. The mechanical properties and the numerical values of the polar parameters
of the basic ply, for both stiffness and strength properties, are reported in Tab. 7.4.
Concerning the strength properties, as we use the Tsai-Hill failure index we assume an
identical strength behaviour in tension and compression, except for Sec. 7.6.3.3 where we
take into account a different value of strength properties in tension and compression. The
total thickness of the plates is fixed to h = 3.75 mm, that corresponds to a laminated
plate composed by 30 identical plies of thickness hk = 0.125 mm.

Mechanical properties

Stiffness Strength

E1 [MPa] 181000 X [MPa] 1500
E2 [MPa] 10300 Y [MPa] 40
GS12 [MPa] 7170 S [MPa] 68
ν12 [MPa] 0.28

Polar parameters

Parameters of Q Parameters of G

T0 [MPa] 26880 Γ0 11746
T1 [MPa] 24744 Γ1 15461
R0 [MPa] 19710 Λ0 628
R1 [MPa] 21433 Λ1 5898
K 0 L 0

Table 7.4: Mechanical properties and polar parameters of the basic ply, Carbon-Epoxy
T300-5208.
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Figure 7.12: Geometry and boundary conditions, square plate.

Alg. posteriori Alg. priori v1 Alg. priori v2

Starting Optimal cond., Optimal cond., Optimal cond.,
condition (% reduction) (% reduction) (% reduction)

Wc [N mm] 10232.928 6921.054, (32.4) 7691.895, (24.8) 6931.053, (32.2)

Max FLamHill 8.358 0.476, (94.3) 0.447, (94.6) 0.449, (94.6)

Max FPlyHill - 0.476 1.43 0.459

Max displacement [mm] 0.317 0.138, (56.5) 0.155, (51.1) 0.139, (56.1)

Table 7.5: Main results, square plate.

7.6.1 First example: a holed square plate

We consider a square plate with a centered hole, subject to biaxial in-plane loading con-
ditions. The geometry and the loading conditions of the plate are shown in Fig. 7.12.
We consider only a quarter of the plate for symmetry reasons. The loading values are
Fx = 500 N/mm and Fy = 250 N/mm.

The total number of elements nelem is fixed to 1800: 60 partitions around the hole per
30 partitions along the side placed along the x axis. The starting values of the stiffness

polar parameters are those of a cross-ply laminate oriented along x and y axis: R
(0)

0 = R0

and R
(0)

1 = 0 over the whole plate.
In Tab. 7.5 we show the main results of the structural optimisation given by the three

algorithms and their comparison with the starting condition. We present the values, at the
starting and optimal conditions, of: the complementary energy, the maximum laminate
and ply failure indexes and the maximum displacement. For all these quantities, a sensible
reduction is obtained.

The lowest value of Wc is achieved with the algorithm a posteriori, that, according to
the theory, favours the minimisation of the complementary energy. The optimal value of
Wc when using the two algorithms a priori is still significantly reduced with respect to the
starting condition, but it is greater than the optimal value obtained using the algorithm
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a posteriori. On the other hand, both the versions of the algorithm a priori show lower
values of max(FLam

Hill ), with a greater reduction with respect to that obtained with the
algorithm a posteriori. This result can be explained by the mechanical nature of these
algorithms a priori : the optimisation process favours the minimisation of FLam

Hill . However,
the second version of the algorithm a priori has a mathematical convergence proof that
finds confirmation in this numerical example, see Figs. 7.13 and 7.14, and gives a better
solution than that obtained using the first version of the algorithm, see Figs. 7.15 and
7.16.

The comparison between the distribution, over the plate, of the local complementary
energy Wc at the starting and the optimal conditions, using the three algorithms, is
presented in Figs. 7.17. The red zone (maximal values of Wc) near the hole at the
starting condition, see Fig. 7.17(a), completely disappears at the optimal conditions, see
Fig. 7.17(b,c,d), and the blue zone (minimal values of Wc) is extremely extended. The
lowest values of the local complementary energy are registered using the algorithm a
posteriori, however, the second version of the algorithm a priori gives a very similar
distribution of Wc, as shown in Figs. 7.17(b) and (d).

The comparison between the distribution of FLam
Hill , at the starting and at the optimal

conditions for the three algorithms, is depicted in Figs. 7.18. Failure occurs when FLam
Hill ≥

1 and in Fig. 7.18(a) such a limit condition is verified in the plate regions coloured in
red. Such a critical condition occurs in a large region of the plate at the initial condition,
while it completely disappears for the optimal solution, Figs. 7.18(b,c,d), being the failure
index of the laminate less or equal to about 0.5. The best distribution of FLam

Hill , over the
plate, is achieved using the algorithm a priori version 1. However, this algorithm gives
a max(F Ply

Hill) for the worst ply composing the laminate, see Sec. 6.4.1.2, greater than 1
(Tab. 7.5). Thus, the best compromise between the optimal distribution of FLam

Hill and
that of the max(F Ply

Hill) is given by the optimal results of the algorithm a priori version 2,
see Tab. 7.5.

Concerning the results of this first example we can say that we found:

• an optimal configuration, in terms of stiffness, having good strength properties using
the algorithm a posteriori ;

• an optimal configuration, in terms of strength, having good stiffness properties using
the algorithms a priori ;

In the following, concerning all the numerical test cases, we will discuss only the results
obtained using the algorithm a posteriori and the algorithm a priori version 2, being this
last more robust and effective than version 1. We pass now to assess in detail, the results
obtained with the a posteriori and a priori version 2 algorithms.

7.6.1.1 Structural optimisation using the algorithm with a posteriori local
maximisation of strength

The reduction of the complementary energy Wc along the iterations is shown in Fig. 7.19.
In particular the most important reduction is obtained at the first iteration, we pass from
10232 N mm to 6977 N mm. This sensible reduction is due to the local minimisation of
Wc: we have a starting condition that correspond to a cross-ply laminate with a constant
value of orthotropy orientation and polar moduli of stiffness over all the plate. With the
first iteration, after the local minimisation of Wc, we have still obtained a variable stiffness
plate and the adaptation of the stiffness field to the stress field of each element of the
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Figure 7.13: Complementary energy of the plate along the iterations (a) and its zoomed version
(b), algorithm a priori version 2, square plate.
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Figure 7.14: Maximum failure index of the plate along the iterations, algorithm a priori version
2, square plate.
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Figure 7.15: Complementary energy of the plate along the iterations (a) and its zoomed version
(b), algorithm a priori version 1, square plate.
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Figure 7.16: Maximum failure index of the plate along the iterations, algorithm a priori version
1, square plate.

a) b)

c) d)

Figure 7.17: Complementary energy distribution for the starting (a) and optimal configuration
using algorithm a posteriori (b), algorithm a priori vers. 1 (c) and algorithm a priori vers. 2
(d), square plate.

structure leads to a sensible increment of the local, and then global, stiffness of the plate.
Such a result proves the interesting performances that a variable stiffness plate can have
with respect to standard solutions. As proved by the theory, see Sec. 6.3.1, Wc reduces
at each iteration, see Fig. 7.19(b) that shows a zoom of the first one.

The solution type of the local minimisation of W l
c , see Tab. 6.1, is shown in Fig. 7.20(a).

Almost the total surface of the plate is characterised by the solution type 1 while around
the hole we have a thin area characterised by the solution type 2. We have already
discussed about the peculiarity of the solution type 1 of the local minimisation of W l

c

in Sec. 6.3.1: such a stiffness distribution generates a pure spherical strain field (the
deviatoric component of ε is null, r = 0), see Fig. 7.20(b). From Tab. 6.1 we can see that
the solution type 1 gives a set of optimal values of R0K and in Fig. 7.21(a) we have chosen

R
opt

0K = R0 in the area characterised by the solution type 1. The distribution of R
opt

1 is
shown in Fig. 7.21(b).

In Figs. 7.22 we compare the distribution of FLam
Hill and max(F Ply

Hill) at the optimal
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a) b)

c) d)

Figure 7.18: FLamHill distribution for the starting (a) and optimal configuration using algorithm
a posteriori (b), algorithm a priori vers. 1 (c) and algorithm a priori vers. 2 (d), square plate.

condition. The maximum value of FLam
Hill occurs in the area characterised by r = 0. Also

the highest value of max(F Ply
Hill), see Sec. 6.4.1, occurs at the same point, Fig. 7.22(b). A

quick glance at eq. (6.18) is sufficient to assert that when r = 0 the contribution of Ω1

vanishes, and we get:
FLam
Hill = F Ply

Hill = 8t2Γ1 , (7.55)

that explains the same values of max(FLam
Hill ) and max(F Ply

Hill) in Tab.7.5.
The solution type of the local minimisation of FLam

Hill , Tab. 7.1, is depicted in Fig. 7.23(b).
The main part of the plate surface is characterised by the solution type 0 that corresponds

to a pure spherical strain field (r = 0): thus Λ
opt

0L and Λ
opt

1 can get any admissible value
within the admissible design domain. Around the hole, the solution type is equal to 4 and
3, corresponding to a fixed optimal value of the strength moduli, see Tab. 7.1. Concerning

the area characterised by the solution type 0 we have chosen Λ
opt

0L = Λ0 and Λ
opt

1 = Λ1, see

Figs. 7.24. Finally, the optimal orthotropy orientation Φ
opt

1 is reported in Fig. 7.23(a).

7.6.1.2 Structural optimisation using the algorithm with a priori maximisa-
tion of strength: version 2

In this algorithm the local minimisation of W l
c is calculated through the numerical ap-

proach described in Sec. 7.4.2 for which we do not have an analytical solution. The

distributions of R
opt

0K and of R
opt

1 are reported in Figs. 7.25. Differently from the solution

given by the algorithm a posteriori, in this case R
opt

0K does not belong to a set of solutions
and varies over the plate surface.

The values of FLam
Hill and those of max(F Ply

Hill), at the optimal condition, are compared
in Figs. 7.26. The maximum value of FLam

Hill occurs over a region near the hole, while
the maximum value of F Ply

Hill of the generic ply composing the laminate occurs on a very
limited area around the hole and it is greater than max(FLam

Hill ) but still lower than 1, see
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Fig. 7.26(b). This is due to the fact that in this case r 6= 0 and the orientation Ω1 such
that F Ply

Hill is maximised leads to max(F Ply
Hill)>max(FLam

Hill ), see Sec. 6.4.1.
The solution type of the local minimisation of FLam

Hill is reported in Fig. 7.27(b). The
plate surface is characterised by the solution types 3 and 4 of Tab. 7.1. The solution type

3 corresponds to Λ
opt

0L = Λ0 and Λ
opt

1 = Λ1 and the solution type 4 gives also Λ
opt

0L = Λ0 and

Λ
opt

1 = Λ1 because
|t|
r
>

Λ0 cos 4
(
Ω1 − φ

)
Λ1| cos 2

(
Ω1 − φ

)
|
. Therefore, the optimal values of both the

strength polar moduli over the whole plate surface correspond to the respective strength

polar moduli of the basic ply. The optimal orthotropy orientation Ω
opt

1 is illustrated in

Fig. 7.27(a). Except for small areas, wherein Ω
opt

1 is aligned with Φ
opt

1 given by the solution

of the algorithm a posteriori, the distribution of Ω
opt

1 given by the algorithm a priori
version 2, is different from the optimal orthotropy orientation given by the algorithm a
posteriori. This is due to the different optimal stiffness distribution obtained with the
two algorithms, that leads to a different state of stress and strain. In fact, the optimal
solution given by the algorithm a posteriori generates a spherical strain field (r = 0),
while the stiffness distribution obtained with the algorithm a priori version 2 generates
a strain field with r 6= 0.
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Figure 7.19: Complementary energy of the plate along the iterations (a) and its zoomed version
(b), algorithm a posteriori, square plate.
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a) b)

Figure 7.20: Solution type of local minimisation of Wc (a) and deviatoric strain component r
(b) for the optimal configuration, algorithm a posteriori, square plate.

a) b)

Figure 7.21: R0K (a) and R1 (b) for the optimal configuration, algorithm a posteriori, square
plate.

a) b)

Figure 7.22: FLamHill distribution (a) and max(FPlyHill) of the generic ply (b) for the optimal
configuration, algorithm a posteriori, square plate.
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a) b)

Figure 7.23: Optimal orthotropy orientation Φ
opt
1 (a) and solution type of local minimisation

of FLamHill (b), algorithm a posteriori, square plate.

a) b)

Figure 7.24: Λ0L (a) and Λ1 (b) for the optimal configuration, algorithm a posteriori, square
plate.

a) b)

Figure 7.25: R0K (a) and R1 (b) for the optimal configuration, algorithm a priori version 2,
square plate.
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a) b)

Figure 7.26: FLamHill distribution (a) and max(FPlyHill) of the generic ply (b) for the optimal
configuration, algorithm a priori version 2, square plate.

a) b)

Figure 7.27: Optimal orthotropy orientation Ω
opt
1 (a) and solution type of local minimisation

of FLamHill (b), algorithm a priori version 2, square plate.
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Figure 7.28: Geometry and boundary conditions, circular sector.
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7.6.2 Second example: a circular sector

We consider a circular sector, subject to in-plane shear loading conditions. The geometry
of the plate and the boundary conditions are shown in Fig. 7.28. The loading value
is Fy = 150 N/mm. The total number of elements nelem has been fixed to 1274 (14
circumferential partitions per 91 radial partitions). The starting values of the stiffness
polar parameters correspond to a unidirectional lamina oriented along the x axis having

the properties of the basic ply: R
(0)

0 = R0, R
(0)

1 = R1 and Φ
(0)

1 = 0 everywhere in the
plate. In order to avoid a singular point for stresses and strains, we have truncated the
tip of the sector, see Fig. 7.28, and the load Fy is uniformly distributed on the vertical
side of the wedge.

In Tab. 7.6 we show the main results of the structural optimisation step. For all
the quantities, a sensible reduction is observed. Also in this case, the smallest value of
Wc is achieved when using the algorithm a posteriori. The optimal value of Wc using
the algorithm a priori version 2 is still significantly reduced with respect to the starting
condition and gives the same percentage of reduction obtained using the algorithm a
posteriori. On the other hand, the algorithm a priori version 2 presents the lowest value
of max(FLam

Hill ), though its reduction with respect to the algorithm a posteriori is only
about 0.1%.

The comparison between the distribution, over the plate, of the local complementary
energy Wc at the starting and optimal configurations, using the two algorithms, is shown
in Figs. 7.29. The red zone indicating the maximal values of Wc at the starting con-
dition, Fig. 7.29(a), completely disappears at the optimal configurations, Fig. 7.29(b,c).
Moreover, the optimal distribution of Wc given by the two algorithms is almost the same.

The comparison between the distribution of the FLam
Hill at the beginning and the end of

iterations is illustrated in Figs. 7.30. The extended red area, indicating that FLam
Hill ≥ 1, at

the beginning, Fig. 7.30(a), completely disappears at the end, Figs. 7.30(b,c), and becomes
a blue area corresponding to FLam

Hill ≤ 0.2. The greatest values of FLam
Hill corresponding to

FLam
Hill ∼ 0.5 are confined in a very localised area corresponding to the loading application

region, Figs. 7.30(b) and (c). The lowest distribution of the FLam
Hill is achieved using the

algorithm a priori version 2. Also the maximum value of F Ply
Hill, when using this algorithm,

is lower than that obtained using the algorithm a posteriori.
We observe, again, that the algorithm a priori version 2 gives a smaller failure index

at the price of a bigger complementary energy than those obtained with the algorithm a
posteriori.

Let us now consider in detail the results concerning the two optimisation procedures
used for this example.

7.6.2.1 Structural optimisation using the algorithm with a posteriori local
maximisation of strength

The reduction of the complementary energy Wc along the iterations is shown in Fig. 7.31.
The most important reduction is obtained at the first iteration, we pass from 1690 N mm
to 755 N mm. Wc reduces at each iteration, see Fig. 7.31(b), up to the convergence. The
solution type of the local minimisation of Wc is shown in Fig. 7.32(a). Almost the total
surface of the plate is characterised by the solution type 2 corresponding to the unidi-
rectional lamina (see Tab. 6.1), while around the geometrical symmetry axis we have a
thin area characterised by the solution type 3. The optimal distribution of R0K and R1

is given in Figs. 7.33.
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Alg. posteriori Alg. priori v2

Starting Optimal cond., Optimal cond.,
condition (% reduction) (% reduction)

Wc [N mm] 1690.356 749.473, (55.6) 750.072, (55.6)

Max FLamHill 15.392 0.530, (96.5) 0.515, (96.6)

Max FPlyHill - 0.591 0.570

Max displacement [mm] 0.715 0.318, (55.5) 0.319, (55.4)

Table 7.6: Main results, circular sector.

a) b)

c)

Figure 7.29: Complementary energy distribution for the starting (a) and optimal configuration
using algorithm a posteriori (b) and algorithm a priori vers. 2 (c), circular sector.

a) b)

c)

Figure 7.30: FLamHill distribution for the starting (a) and optimal configuration using algorithm
a posteriori (b) and algorithm a priori vers. 2 (c), circular sector.
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FLam
Hill and max(F Ply

Hill) are compared, at the optimal configuration, in Figs. 7.34. The
maximum value of FLam

Hill occurs over the region where the load is applied. Also the
max(F Ply

Hill) occurs in the same region, Fig. 7.34(b), and is greater than FLam
Hill because

r 6= 0 in this case. The solution type of the local minimisation of FLam
Hill is illustrated in

Fig. 7.32(b). The largest part of the plate surface is characterised by the solution type 4,

that depends upon the ratio
|t|
r

between the spherical and deviatoric component of strains.

Along the geometric symmetry axis, the solution type is equal to 1 and corresponds to
a fixed value of the strength moduli, see Tab. 7.1. The optimal distributions of Λ0L and

Λ1 are given in Figs. 7.35. Finally, the optimal orthotropy orientation Φ
opt

1 is depicted in

Fig. 7.36. The distribution of Φ
opt

1 is symmetric with respect to the geometric symmetry
axis, i.e. the x axis, and, with the exception of the area characterised by the solution type 3

(of the local minimisation of W l
c), Φ

opt

1 is oriented along the radial direction. This solution
is very similar to the analytical solution founded by Royer [63] and Pedersen [53] for the
optimal fiber layout of a composite anisotropic wedge. In particular the area characterised

by the solution type 3 for the local minimisation of W l
c the optimal orientation Φ

opt

1 is
identical to that found in [63]. While in the area characterised by the solution type 2,

Φ
opt

1 is oriented along the radial direction, hence, the stress field is purely radial like the
Michell’s classical solution [68].

7.6.2.2 Structural optimisation using the algorithm with a priori maximisa-
tion of strength: version 2

We observe the numerical monotonic convergence for the complementary energy Wc,
Fig. 7.37, and the oscillating convergence for the laminate failure index FLam

Hill , Fig. 7.38.
The considerations made beforehand concerning the example of Sec. 7.6.1.2 can be re-

peated verbatim also in this case. The distributions of R
opt

0K and of R
opt

1 are reported in

Figs. 7.39. R
opt

0K is almost always equal to R0. Also R
opt

1 = R1 on the largest part of the
surface, except for the thin area along the geometric symmetry axis.

The distribution of FLam
Hill and that of max(F Ply

Hill) are compared, at the optimal config-

uration, in Figs. 7.40. We can note that the maximum value of FLam
Hill and of max(F Ply

Hill)
occurs near the loading application region. The solution type of the local minimisa-
tion of FLam

Hill is shown in Fig. 7.41. Almost the entire plate surface is characterised by

the solution type 4 of Tab. 7.1, corresponding to Λ
opt

0L = Λ0 and Λ
opt

1 = Λ1 because

|t|
r
>

Λ0 cos 4
(
Ω1 − φ

)
Λ1| cos 2

(
Ω1 − φ

)
|
. On the rest of the plate surface, Λ

opt

0L and Λ
opt

1 vary, Figs. 7.42.

The optimal orthotropy orientation Ω
opt

1 is illustrated in Fig. 7.43. On the greatest part

of the surface, except for a localised region near the loading application region, Ω
opt

1 is ori-
ented along the circumferential direction. If we compare such an optimal orientation with

the distribution of Φ
opt

1 obtained with the algorithm a posteriori, Fig. 7.36, it is aligned
or turned of π/2. Moreover, the optimal solution given by the algorithms a posteriori
and a priori version 2 generate the same particular condition of coaxial stress and strain
field (see for instance Figs. 7.44 concerning the principal stress and strain orientations for
the optimal configuration obtained using the algorithm a priori version 2); so, the opti-
mal orientation that maximises stiffness is the same that maximises strength, as already
discussed in Sec. 7.4.1.2.
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Figure 7.31: Complementary energy of the plate along the iterations (a) and its zoomed version
(b), algorithm a posteriori, circular sector.

a) b)

Figure 7.32: Solution type of local minimisation of Wc (a) and solution type of local minimisa-
tion of FLamHill (b) at optimal configuration, algorithm a posteriori, circular sector.

a) b)

Figure 7.33: R0K (a) and R1 (b) for the optimal configuration, algorithm a posteriori, circular
sector.
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a) b)

Figure 7.34: FLamHill distribution (a) and max(FPlyHill) of the generic ply (b) for the optimal
configuration, algorithm a posteriori, circular sector.

a) b)

Figure 7.35: Λ0L (a) and Λ1 (b) for the optimal configuration, algorithm a posteriori, circular
sector.

Figure 7.36: Optimal orthotropy orientation Φ
opt
1 , algorithm a posteriori, circular sector.
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Figure 7.37: Complementary energy of the plate along the iterations (a) and its zoomed
version (b), algorithm a priori version 2, circular sector.
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Figure 7.38: Maximum failure index of the plate along the iterations, algorithm a priori
version 2.

a) b)

Figure 7.39: R0K (a) and R1 (b) for the optimal configuration, algorithm a priori version 2,
circular sector.
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a) b)

Figure 7.40: FLamHill distribution (a) and max(FPlyHill) of the generic ply (b) for the optimal
configuration, algorithm a priori version 2, circular sector.

Figure 7.41: Solution type of local minimisation of FLam
Hill , algorithm a priori version 2,

circular sector.

a) b)

Figure 7.42: Λ0L (a) and Λ1 (b) at optimal condition, algorithm a priori version 2, circular
sector.
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Figure 7.43: Optimal orthotropy orientation Ω
opt

1 , algorithm a priori version 2, circular
sector.

a)

b)

Figure 7.44: Direction of principal stress (a) and strain (b) components for the optimal config-
uration, algorithm a priori version 2, circular sector.
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Figure 7.45: Geometry and boundary conditions, rectangular plate.

7.6.3 Third example: a rectangular plate

We consider now a rectangular plate whose geometry and boundary conditions are shown
in Fig. 7.45. The loading value is Fy = 200 N/mm. The total number of elements nelem
is fixed to 1400 (70 partitions along the long side per 20 partitions along the short side).
The starting values of the stiffness polar parameters are those of an equilibrated cross-ply

laminate oriented at ±45◦ with respect to the x axis: R
(0)

0 = R0 and R
(0)

1 = 0 for the
entire plate.

In Tab. 7.7 we show the main results of the structural optimisation step. Like the
results of the first example, the reduction of Wc and of the maximum displacement given
by the algorithm a posteriori is greater than that given by the algorithm a priori version
2. On the contrary, the reduction of FLam

Hill given by the algorithm a priori version 2 is
greater of 0.2% than that obtained using the algorithm a posteriori.

The comparison between the distribution, over the plate, of the local Wc and FLam
Hill for

the starting and final configurations are shown in Figs. 7.46 and Figs. 7.47, respectively.

Alg. posteriori Alg. priori v2

Starting Optimal cond., Optimal cond.,
condition (% reduction) (% reduction)

Wc [N mm] 3064.960 1185.922, (61.3) 1191.130, (61.1)

Max FLamHill 6.427 0.325, (94.9) 0.317, (95.1)

Max FPlyHill - 0.520 0.528

Max displacement [mm] 0.275 0.096, (65.1) 0.097, (64.7)

Table 7.7: Main results, rectangular plate.

7.6.3.1 Structural optimisation using the algorithm with a posteriori local
maximisation of strength

The reduction of the complementary energyWc along the iterations is reported in Fig. 7.48.
The solution type of the local minimisation of Wc is shown in Fig. 7.49(a). All of the three

solution types are present. Thus, in Fig. 7.50(a) we have chosen R
opt

0K = R0 in the corre-

sponding area with solution type 1. The distribution of R
opt

1 , Fig. 7.50(b), depends upon
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a) b)

c)

Figure 7.46: Complementary energy distribution for the starting (a) and optimal configuration
using algorithm a posteriori (b) and algorithm a priori vers. 2 (c), rectangular plate.

a) b)

c)

Figure 7.47: FLamHill distribution for the starting (a) and optimal configuration using algorithm
a posteriori (b) and algorithm a priori vers. 2 (c), rectangular plate.

the ratio R/|T | between the deviatoric and the spherical components of internal forces,

in the areas with solution type 1 and 3, while is R
opt

1 = R1 in the area characterised by
the solution type 2, see Tab. 6.1.

The values of FLam
Hill and max(F Ply

Hill) are compared in Figs. 7.51. The maximum value

of FLam
Hill and F Ply

Hill occurs at the top corners.
The solution type of the local minimisation of FLam

Hill is reported in Fig. 7.49(b). Almost all

the plate surface is characterised by the solution type 4 that depends upon the ratio
|t|
r

.

The area characterised by the solution type 0 corresponds to the area characterised by the
solution type 1 of the local minimisation of W l

c , where r = 0. The optimal distribution

of Λ
opt

0L and Λ
opt

1 is shown in Figs. 7.52 (a) and (b), respectively. Finally, the optimal

orthotropy orientation Φ
opt

1 is reported in Fig. 7.53. It is almost always oriented at ±π/4
that corresponds to the starting distribution of orthotropy orientation. This explain the
good values of W l

c over the plate also at the starting condition. On the contrary, the
values of FLam

Hill at the starting condition are greater than those obtained at the optimal
condition. So the important result, in this case, concerns the significant reduction of the
FLam
Hill over the whole plate surface.



138 7. First step: structural optimisation of laminates including strength

7.6.3.2 Structural optimisation using the algorithm with a priori maximisa-
tion of strength: version 2

Fig. 7.54 shows the numerical convergence of the complementary energy Wc along the
iterations. The variation of the laminate failure index FLam

Hill , Fig. 7.55, oscillates until the
14th iteration. The convergence of the algorithm is achieved in 16 iterations.

The distribution of R
opt

0K and of R
opt

1 , given by the numerical solution of the algorithm
of alternated directions is shown in Figs. 7.56. The optimal distribution of R1 is similar
to that obtained using the algorithm a posteriori, see Figs. 7.50(b).

The values of FLam
Hill and those of max(F Ply

Hill) are compared, for the optimal configura-

tion, in Figs. 7.57 (a) and (b), respectively. The maximum value of FLam
Hill and F Ply

Hill occurs
in the same area, like also to the solution given by the algorithm a posteriori, Figs. 7.51.

The solution type of the local minimisation of FLam
Hill is reported in Fig. 7.58. Also in

this case, almost all of the plate surface is characterised by the solution type 4 of Tab. 7.1.

The distribution of Λ
opt

0L and of Λ
opt

1 , Figs. 7.59 (a) and (b) respectively, is very similar to
that obtained using the algorithm a posteriori, Figs. 7.52.

The optimal orthotropy orientation Ω
opt

1 is illustrated in Fig. 7.60 and is almost always

aligned with Φ
opt

1 given by the algorithm a posteriori, Fig. 7.53. Moreover, the direction of
the principal stress and strain components, for the optimal configuration obtained using
this algorithm a priori version 2, are almost the same, see Figs. 7.61. As a consequence of
these two aspects and recalling what discussed at the end of Sec. 7.4.1.2, we can assert that,
except for some very localised areas, the optimal orthotropy orientation that maximises
stiffness is the same that maximises strength and this optimal condition is achieved by
both the algorithms. Thus, like the results of the previous example of the circular sector,
the solution given by both the algorithms can be considered as a global optimal solution
maximising simultaneously stiffness and strength, without one property clearly prevailing
on the other one.
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Figure 7.48: Complementary energy of the plate along the iterations (a) and its zoomed version
(b), algorithm a posteriori, rectangular plate.
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a) b)

Figure 7.49: Solution type of local minimisation of Wc (a) and solution type of local minimisa-
tion of FLamHill (b) for the optimal configuration, algorithm a posteriori, rectangular plate.

a)

Figure 7.50: R0K (a) and R1 (b) for the optimal configuration, algorithm a posteriori, rectan-
gular plate.

a) b)

Figure 7.51: FLamHill distribution (a) and max(FPlyHill) of the generic ply (b) for the optimal
configuration, algorithm a posteriori, rectangular plate.

a) b)

Figure 7.52: Λ0L (a) and Λ1 (b) for the optimal configuration, algorithm a posteriori, rectan-
gular plate.
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Figure 7.53: Optimal orthotropy orientation Φ
opt
1 , algorithm a posteriori, rectangular plate.
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Figure 7.54: Complementary energy of the plate along the iterations (a) and its zoomed
version (b), algorithm a priori version 2, rectangular plate.
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Figure 7.55: Maximum failure index of the plate along the iterations, algorithm a priori
version 2, rectangular plate.

a) b)

Figure 7.56: R0K (a) and R1 (b) for the optimal configuration, algorithm a priori version 2,
rectangular plate.
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a) b)

Figure 7.57: FLamHill distribution (a) and max(FPlyHill) of the generic ply (b) for the optimal
configuration, algorithm a priori version 2, rectangular plate.

Figure 7.58: Solution type of local minimisation of FLam
Hill , algorithm a priori version 2,

rectangular plate.

a) b)

Figure 7.59: Λ0L (a) and Λ1 (b) for the optimal configuration, algorithm a priori version 2,
rectangular plate.

Figure 7.60: Optimal orthotropy orientation Ω
opt

1 , algorithm a priori version 2, rectangu-
lar plate.
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a)

b)

Figure 7.61: Direction of principal stress (a) and strain (b) components for the optimal
configuration, algorithm a priori version 2, rectangular plate.

7.6.3.3 Structural optimisation taking into account for different strength in
tension and compression: algorithm a priori version 2

In this section we want to perform an analysis closer to reality. Such an example is very
similar to that of the Sec. 7.6.3.2, but, this time we take into account the difference of
strength in tension and compression.

In Tab. 7.8 we show the strength properties of the material. The stiffness properties
are still those of Tab. 7.4. In particular, as we use the Tsai-Hill criterion, we have four
different combinations of strength properties. More precisely, the two different values of
normal strength properties in tension and compression are used in relation with the sign
of internal actions components Nxx and Nyy. Such an approach gives four different sets
of invariants, one for the tension, one for the compression case, and the two others being
a mix of tension and compression cases.

In terms of algorithm programming, we have simply inserted a check on the sign of
the internal actions components Nxx and Nyy in order to select the corresponding values
of the strength polar parameters of Tab. 7.8. In Tab. 7.9 we show the main results of the
structural optimisation step. For all of the considered quantities, a sensible reduction is
obtained. However, the difference of strength in tension and compression has influenced
the results; in fact we have an optimal value of the Wc a bit higher with respect to
the previous case, where we have considered equal strength properties in tension and
compression, and a maximum FLam

Hill a bit lower, see Tab. 7.7.
The trend of the numerical convergence of the complementary energy Wc and of the

laminate failure index FLam
Hill along the iterations is very similar to that of the previous

case and, so, is not reported here for the sake of brevity.
In Figs. 7.62 the components Nxx and Nyy of the internal actions field are shown to

better understand the results presented below. In particular Figs. 7.62 shows that all the
combinations of signs of Nxx and Nyy are present and, thus, the different combinations of
strength properties of Tab. 7.8 have to be considered.

Let us now compare these results and those obtained in Sec. 7.6.3.2 in order to show
how the different strength behaviour in tension and compression can influence the results.
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Strength properties, [MPa]

X = Xt 1500 X = Xc 900 X = Xt 1500 X = Xc 900

Y = Yt 40 Y = Yc 246 Y = Yc 246 Y = Yt 40
S 68 S 68 S 68 S 68

Polar parameters of G

Γ0 11746 Γ0 10819 Γ0 7525 Γ0 15040
Γ1 15461 Γ1 5250 Γ1 2122 Γ1 18589
Λ0 628 Λ0 299 Λ0 3592 Λ0 3922
Λ1 5898 Λ1 4819 Λ1 1604 Λ1 2683
L 0 L 1 L 1 L 0

Table 7.8: Strength properties and polar parameters of the basic ply.

Alg. priori v2

Starting Optimal cond.,
condition (% reduction)

Wc [N mm] 3064.960 1225.063, (60.0)

Max FLamHill 4.288 0.287, (93.3)

Max FPlyHill - 0.520

Max displacement [mm] 0.275 0.1, (63.6)

Table 7.9: Main results, rectangular plate: different tension/compression strength.

The distribution of R
opt

0K and of R
opt

1 , given by the numerical solution of the algorithm
of alternated directions is shown in Figs. 7.63. Both optimal distributions of R0K and of
R1 are similar to that of Figs. 7.56, hence, the different strength behaviour in tension and
compression has not influenced sensibly the optimal stiffness distribution.

The values of FLam
Hill and those of max(F Ply

Hill) are compared, for the optimal configu-
ration, in Figs. 7.64 (a) and (b), respectively. The maximum value of FLam

Hill occurs in
different localised regions, while the highest value of max(F Ply

Hill) occurs only in the same
localised region observed also in the previous results, Fig. 7.57(b), at the top corners of
the plate. Of course, the values of FLam

Hill and max(F Ply
Hill) for the optimal configuration are

different to those presented in Figs. 7.57.
The solution type of the local minimisation of FLam

Hill is reported in Fig. 7.65. A great
part of the plate surface is characterised by the solution type 9 of Tab. 7.2 corresponding

to a solution for L = 1 of the basic ply. The distribution of Λ
opt

0L and of Λ
opt

1 , Figs. 7.66
(a) and (b) respectively, is completely different to that of Figs. 7.59 as Λ0 and Λ1 can
assume four different values due to the four different combinations of strength properties,
see Tab. 7.8.

The optimal orthotropy orientation Ω
opt

1 is illustrated in Fig. 7.67 and, also in this
case, the solution is different from that given by the previous case, Fig. 7.60.

To conclude we can assert that the different strength behaviour in tension and com-
pression has a bit influenced the results of the structural optimisation in terms of stiffness



144 7. First step: structural optimisation of laminates including strength

and, on the contrary, has sensibly influenced the results in terms of strength. In any case,
the optimal stiffness and strength distribution lead to an important reduction of both
the complementary energy and the laminate failure index with respect to the starting
condition.

a)

b)

Figure 7.62: Internal actions field components Nxx (a) and Nyy (b) for the optimal con-
figuration, algorithm a priori version 2, rectangular plate: different tension/compression
strength.

a) b)

Figure 7.63: R0K (a) and R1 (b) for the optimal configuration, algorithm a priori version 2,
rectangular plate: different tension/compression strength.

a) b)

Figure 7.64: FLamHill distribution (a) and max(FPlyHill) of the generic ply (b) for the optimal
configuration, algorithm a priori version 2, rectangular plate: different tension/compression
strength.
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Figure 7.65: Solution type of local minimisation of FLam
Hill , algorithm a priori version 2,

rectangular plate: different tension/compression strength.

a) b)

Figure 7.66: Λ0L (a) and Λ1 (b) for the optimal configuration, algorithm a priori version 2,
rectangular plate: different tension/compression strength.

Figure 7.67: Optimal orthotropy orientation Ω
opt

1 , algorithm a priori version 2, rectangu-
lar plate: different tension/compression strength.
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7.7 Concluding remarks

In this Chapter we presented three different algorithms used to solve the first step of the
hierarchical strategy proposed in Chapter 6. As already said, the goal of this first step
of the hierarchical strategy consists in determining the optimal distribution of material
parameters, represented by the polar parameters, of a structure with a given geometry
and boundary conditions.

The first proposed algorithm is a simple modification of the optimisation algorithm
introduced by Allaire and Kohn [2]. Particularly, we have added a further phase to
the original version of the algorithm in which we introduce the strength optimisation
phase. We considered the stiffness functional, i.e. the complementary energy, as the
main objective to be minimised in terms of all the stiffness material parameters. On
the contrary, the strength functional, i.e. the laminate failure index, is considered as
the secondary objective to be minimised and the strength orthotropy orientation is taken
equal to the optimal orthotropy orientation of stiffness.

The second algorithm can be considered, in some sense, as the “converse” version
of the previous one. The failure index is minimised in terms of all the strength polar
parameters while the complementary energy is minimised only in terms of the stiffness
polar moduli, being the stiffness orthotropy orientation equal to the optimal orthotropy
orientation of strength. Moreover, we proposed a modified version of this algorithm in
order to match the mathematical convergence proof and this last version demonstrates to
be more effective and robust than the previous one.

A point of originality of these new algorithms resides in the fact that we considered
two functional to be minimised: one describing the stiffness of the structure (the com-
plementary energy) and the other one describing the strength (the homogenised failure
criterion). The complementary energy and the laminate failure index have been taken into
account to develop two algorithms able to deal with the optimisation problem of maximising
simultaneously the strength and the stiffness of a structure and to have a control on which
property should be privileged. The decision of using two functional instead of only one, as
in [30] and [38] wherein stiffness and strength fields are included in an unique function, is
taken for having the control on which of the two mechanical property must be the leading
one. Indeed, the use of an unique objective function implies that, before obtaining and
evaluating an optimal solution, we are not able to know a priori which quantity, between
stiffness and strength, will have better qualities at the end of the optimisation process.

After developing the two algorithms, we deal with the problem of finding an analytical
solution to the minimisation of the strength functional, with respect to the material param-
eters, for linear elastic plane structures composed of orthotropic materials, see Sec. 7.4.1.
Concerning the analytical solution, an important result has been obtained: when the di-
rections of the principal stress and strain components are the same, the solution given by
both algorithms represents a real global optimum for both stiffness and strength properties.

Finally, we performed some numerical tests in order to prove the effectiveness and the
robustness of the proposed algorithms and to evaluate the computational costs of this
first step of the hierarchical strategy. Although we used a laminate level failure criterion
based on the same assumptions of the Tsai-Hill criterion, we have shown in Sec. 7.6.3.3
a numerical example, using the modified version of the algorithm a priori, wherein we
take into account the different strength behaviour in tension and compression. All the
results show a considerable incrementation in terms of stiffness and strength and also in
terms of computational costs. Concerning the reduction of both functional, we achieve an
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average of 50 % of reduction of the global complementary energy and an average of 70 %
of the laminate failure index. Regarding the computational costs, thanks to the adoption
of the hierarchical strategy, we are able to solve the structural optimisation within about
5 minutes, using the algorithm a posteriori, 15 minutes using the first version of the
algorithm a priori and 40 minutes using the second version of the algorithm a priori
on an Intel R© i5 Dual Core 2.5GHz processor. In all the cases, in less than one hour,
we are able to determine the optimal anisotropy distribution of a plate similar to those
considered in the numerical examples.

A last remark concerns the results of the second and third test cases: the optimal
solution achieved by the two algorithms, a posteriori and a priori second version, corre-
sponds to the particular case of coaxiality between the stress and strain fields, hence, in
terms of both stiffness and strength properties we obtain a global optimal solution.
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8

Second step: optimal lay-up
including strength

8.1 Introduction

In this Chapter we are concerned with the second step of the hierarchical strategy: the
lay-up design. As still explained in Chapter 6, the lay-up design in the framework of the
hierarchical strategy corresponds to determine a laminate stacking sequence satisfying the
optimal distribution of material parameters issued from the first step of the strategy.

We already talked about the non-bijectivity and non-convexity of this design problem
that is due to the relations that link the design variables, the plies orientations, to the
material parameters, see Sec. 6.3.2. In order to ensure the existence of at least one
stacking sequence satisfying such optimal distribution of material parameters we have
imposed some constraints, i.e. the geometric constraints, on the admissible values of the
material parameters during the resolution of the structural optimisation step.

In Sec. 6.4.3 we have already introduced the problem of the lay-up design linked to the
solutions of the structural optimisation found in Chapter 7. The fundamental difference
between problems (6.10) and (6.50) resides in the addition, in the last one, of some
material parameters: the polar invariants that describe strength. In the next Sections we
will face the problem (6.50) through a numerical method in order to find, at least, one
stacking sequence meeting the optimal requirements of both stiffness and strength.

8.2 The lay-up design respecting the optimal solution

of the first step

The optimal material parameters of the structure issued from the structural optimisation
step vary point-wise: the homogenised structure issued from the the first step of the
hierarchical strategy is a variable stiffness and strength structure. Therefore, problem
(6.50):

find, for a given set{
K
opt
, R

opt

0 , R
opt

1 , L
opt
, Λ

opt

0 , Λ
opt

1

}
a vector of plies orientations (δ1, δ2, ..., δn) such that :

149
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R0 = R
opt

0 ,

R1 = R
opt

1 ,

Λ0 = Λ
opt

0 ,

Λ1 = Λ
opt

1 ,

Φ0 − Φ1 = K
opt
π/4 ,

Ω0 −Ω1 = L
opt
π/4 ,

Φ1 −Ω1 = 0;π/2 ,

Φ1 = Φ
opt

1 ,
B = 0 ,

(8.1)

needs to be solved at any point of the structure. In the discretised FE approach introduced
in the previous Chapter, Sec. 7.5, this means that the above problem must be written
and solved for every element of the discretised model of the structure.

8.2.1 Mathematical statement of the problem

The optimisation parameters of (8.1) are the ply orientations δk. In the framework of this
thesis, we decided to formulate this problem through the minimisation of an unconstrained
objective function introduced by Vannucci in [78]. We recall its general expression, already
given in eq. (6.11):

min
δk

I(fi(δk)) = Σ
j
f 2
j (δk) with k = 1, 2, .., n , (8.2)

where the sub-objectives f 2
j (δk) are quadratic functions, each one representing a require-

ment to be satisfied. In our case we have:

f1(δk) =

(
|Φ0(δk)− Φ1(δk)|

π/4
−Kopt

)
, f2(δk) =

(
|Ω0(δk)−Ω1(δk)|

π/4
− Lopt

)
,

f3(δk) =

(
Ω1(δk)− Φ1(δk)

π/4

)
, f4(δk) =

(
R0(δk)−R

opt
0

R0

)
, f5(δk) =

(
R1(δk)−R

opt
1

R1

)
,

f6(δk) =

(
Λ0(δk)− Λ

opt
0

Λ0

)
, f7(δk) =

(
Λ1(δk)− Λ

opt
1

Λ1

)
,

f8(δk) =

(
||B(δk)||
||Q||

)
, f9(δk) =

(
Φ1(δk)− Φ

opt
1

π/4

)
,

(8.3)

Hence, the problem (8.1) can be formulated as the search for an absolute minimum of
the global objective function (8.2), composed by 9 positive semi-definite sub-objectives
functions (8.3), each one satisfying one of the imposed requirements. In addition, the
function I(fi(δk)) has a great advantage: being composed by the sum of semi-definite
positive functions, its minimum is known a priori, it is zero. This aspect can help us in
the identification of an absolute minimum.

8.2.2 Check on the first ply failure

Concerning the check on the first-ply-failure, the evaluation of max(η) = max(F Ply
Hill)/F

Lam
Hill

discussed in Sec. 6.4.1 and in the post-processing phase of Sec. 7.5, will be now, very
helpful. After the structural optimisation step we have FLam

Hill < 1 everywhere, but the
calculation of max(η) can lead to three different situations:
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1. max(η) < 1 =⇒ max(F Ply
Hill) < FLam

Hill , therefore, we will have no limits to impose on
the plies orientations when searching the stacking sequence;

2. max(η) = 1 =⇒ at most max(F Ply
Hill) = FLam

Hill and being FLam
Hill < 1 we can still

consider all the possible plies orientations to determine the stacking sequence;

3. max(η) > 1 =⇒ there are some orientations (Ω1)k such that F Ply
Hill > FLam

Hill . In this

case, we can evaluate the range of values of (Ω1)k such that F Ply
Hill > FLam

Hill . We can
have two different situations:

• F Ply
Hill[(Ω1)k] < 1⇒ even if the failure index of the ply is greater than that of the

laminate, the first-ply-failure will not happen. We can define such a situation
a “partially unsafe condition”. In this case we can decide to include or not
the values (Ω1)k among the admissible orientations. The range of values of Ω1

such that F Ply
Hill > FLam

Hill can be calculated as follows:

η =
4r2Γ0 + 8t2Γ1 + 4(−1)LΛ0r

2 cos 4 (Ω1 − φ) + 16trΛ1 cos 2 (Ω1 − φ)

FLam
Hill

≥ 1,

(8.4)
with

cos 4 (Ω1 − φ) = 2 cos2 2 (Ω1 − φ)− 1 , (8.5)

so,

8(−1)LΛ0r
2 cos2 2 (Ω1 − φ) + 16trΛ1 cos 2 (Ω1 − φ) +

+4r2Γ0 + 8t2Γ1 − 4(−1)LΛ0r
2 − FLam

Hill ≥ 0,
(8.6)

Eq. (8.6) represents a classical second degree inequality in terms of cos 2 (Ω1 − φ).
If we set the constant term:

4r2Γ0 + 8t2Γ1 − 4(−1)LΛ0r
2 − FLam

Hill = 8c , (8.7)

and
cos 2 (Ω1 − φ) = u , (8.8)

eq. (8.6) becomes:
(−1)LΛ0r

2u2 + 2trΛ1u+ c ≥ 0 . (8.9)

The solution of such an inequality will give us all values of Ω1 that have to be
removed from the solution space of problem (8.1).

The solution of (8.9) depends upon the sign of its discriminant

∆ = t2r2Λ2
1 − (−1)LΛ0r

2c , (8.10)

and upon the shape of orthotropy described by the parameter L.

Let us start with the case ∆ < 0. This is a trivial case where for L = 0 eq. (8.9)
is always verified; thus, problem (8.1) has no feasible solutions in terms of first
ply failure. Whereas for L = 1 the situation is completely inverted: eq. (8.9)
is never verified and the solution space of problem (8.1) can include all values
of Ω1.



152 8. Second step: optimal lay-up including strength

Also the case ∆ = 0 is trivial. The root of the second order equation associated
to the inequality (8.9) is:

u1 = −(−1)L
tΛ1

Λ0r
. (8.11)

that represents the limit condition for which η = 1. For L = 0 eq. (8.9) is
always satisfied; thus, problem (8.1) has no feasible solutions in terms of first
ply failure. Whereas, for L = 1 eq. (8.9) is satisfied by only one condition
u = u1; hence, the solution space of problem (8.1) can include all values of Ω1.

Finally, let us consider the case ∆ > 0. The roots of the second order equation
associated to the inequality (8.9) are:

u1 = −(−1)L
t

r

Λ1

Λ0

−

√(
t

r

Λ1

Λ0

)2

− (−1)Lc

Λ0r2
,

u2 = −(−1)L
t

r

Λ1

Λ0

+

√(
t

r

Λ1

Λ0

)2

− (−1)Lc

Λ0r2
,

(8.12)

The range of solution varies with the value of L. In particular we have two
sub-cases:

(a) L = 0, the solution is
u ≤ u1 and u ≥ u2 , (8.13)

with u1 < u2. We have to consider also some particular cases:
1. |u1| ≤ 1 and |u2| ≤ 1, the solution is:

−1 ≤ u ≤ u1 and u2 ≤ u ≤ 1 . (8.14)

2. |u1| ≥ 1 and |u2| ≤ 1, the solution is:

u2 ≤ u ≤ 1 . (8.15)

3. |u1| ≤ 1 and |u2| ≥ 1, the solution is:

−1 ≤ u ≤ u1 . (8.16)

4. u1 ≤ −1 and u2 ≤ −1, the solution is:

−1 ≤ u ≤ 1 . (8.17)

5. u1 ≥ 1 and u2 ≥ 1, the solution is:

−1 ≤ u ≤ 1 . (8.18)

6. u1 ≤ −1 and u2 ≥ 1, the solution does not exist.

(b) L = 1, the solution is
u1 ≤ u ≤ u2 , (8.19)

with u1 < u2. Also here we have to consider some particular cases:
1. |u1| ≤ 1 and |u2| ≤ 1, the solution is:

u1 ≤ u ≤ u2 . (8.20)
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2. |u1| ≥ 1 and |u2| ≤ 1, the solution is:

−1 ≤ u ≤ u2 . (8.21)

3. |u1| ≤ 1 and |u2| ≥ 1, the solution is:

u1 ≤ u ≤ 1 . (8.22)

4. u1 ≤ −1 and u2 ≤ −1, the solution does not exist.

5. u1 ≥ 1 and u2 ≥ 1, the solution does not exist.

6. u1 ≤ −1 and u2 ≥ 1, the solution is:

−1 ≤ u ≤ 1 . (8.23)

We remark that the value of the roots depend upon the ratios
t

r
and

Λ1

Λ0

,

i.e. upon the strain state and the anisotropy moduli. The sign of the roots
depends only upon the sign of the spherical component of strains t. Moreover,
also concerning this problem, we show that the shape of orthotropy, i.e. the
value of L, can change completely the results.

All of these solutions give the range of the orthotropy orientations Ω1 of the
ply such that the failure index of the ply F Ply

Hill is greater than the failure index
of the laminate;

• F Ply
Hill[(Ω1)k] ≥ 1: the firs-ply-failure happens; this situation represents an un-

safe condition, we must exclude all the orientations (Ω1)k such that F Ply
Hill ≥ 1

among the admissible orientations when searching the stacking sequence. In
this case, such values of (Ω1)k are still the solutions of the inequality (8.9)
calculated beforehand, but now it is c = 4r2Γ0 + 8t2Γ1 − 4(−1)LΛ0r

2 − 1.

Finally, we can assert that we are able to compare FLam
Hill and the maximum value of F Ply

Hill,
in order to check the first-ply-failure of plies and to determine the admissible range of
orientations to exclude the failure of any ply. This last result will be used in the definition
of the orientations search domain to determine the optimal stacking sequence.

A last remark: if we had expressed FLam
Hill and F Ply

Hill in terms of stresses, such a com-
parison should not be possible. In fact, the variation of the stresses through the thickness
of the laminate is not continuous, also in the case of pure membrane loading. In addition,
the variation of stresses through the thickness depends upon the plies orientation, that
are known only at the end of the lay-up design.

8.3 Resolution: using the genetic algorithm BIANCA

Eq. (8.2) represents a classical unconstrained minimum problem with 9 partial objective
functions. Nevertheless, in the domain of ply orientations, eqs. (1.62) and (1.64), I(fi(δk))
is a highly non-convex function; hence, for the search of a solution, the use of a performing
numerical strategy is of the greatest importance.

At this point we are faced to the following decision: which numerical strategy can be
more advantageous when dealing with the unconstrained minimisation of a non-convex
function?
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As well known, the universal best optimisation algorithm does not exist: the choice of
the best suited numerical strategy for the resolution of an optimum problem depends upon
the problem itself. In the field of laminates lay-up design, methods inspired by heuristics
have imposed, in this last decades, an almost complete supremacy. This is mainly due
to their insensitivity to non-convexity and to the possibility of easy handling discrete
design variables. So, we decided to use such a kind of strategy too; namely, thanks to the
previous works on the matter [45–47], we decided to solve the second step problem using
the Genetic Algorithm (GA) BIANCA (BIological ANalysis of Composite Assemblages),
originally developed by Vincenti et al. [87] since 2002.

GAs present an approach to the search of minima of a function completely different
from that of classical numerical methods like gradient-based algorithms, that need the
evaluation of gradients and whose strategy depends upon the chosen starting point and,
as a consequence, can fail reaching convergence to an absolute minimum when dealing with
non-convex problems. Fundamentally, GAs replies, numerically, the Darwinian natural
selection and the transmission of the genetic characters: they do not work on a single
point, but on a set of possible solutions, called a population of individuals. The best
individuals of a population are then selected in order to create a new generation of the
offspring, see [18,29]. The main advantages in using GAs are:

1. GAs work on a population of points, not on a single point, distributed over the
whole design space. This fact improves the chance to reach an absolute minimum,
though this cannot be mathematically ensured;

2. GAs are zero-order methods: they only require the evaluation of the objective func-
tion without other additional informations; namely, the knowledge of the derivatives
of the objective is not needed, so, discrete variables can be easily handled.

The main components of a standard GA are:

• generation operator: it creates, usually by a random low, a starting population of
Nind individuals. Each individual represents a potential solution to the problem, it
can be a scalar, a vector, and so on;

• evaluation operator: it evaluates the adaptation of each individual through an adap-
tation function, the fitness, that measures the quality of the individual as a solution
of the problem;

• selection operator: using the value of the fitness function of each individual, it
selects, by a given rule, Nind individuals having a good fitness function; hence, the
best individuals have a greater probability to be chosen for the following phase of
reproduction;

• reproduction operator: it generates the new population starting from the set of
parents chosen through the selection operator. The most common reproduction op-
erators are the cross-over and mutation operators. The first one couples, randomly,
two among the Nind selected individuals, so creating the parent couples that will
be crossed in order to generate the new couples of offspring. The second one, the
mutation operator, acts in a random way, with a certain probability, mutating the
genes of the new individuals and increasing, in this way, the biodiversity among the
individuals of the population.
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After the reproduction operator the new generation undergoes the selection operator and
the iterative process restarts and prosecute until convergence. The convergence is achieved
when a certain criterion is satisfied. Generally, the stop criterion corresponds to fixing
the number of generations.

The main features of the GA BIANCA are described in [44, 87]. It has the classical
operators of a standard GA along with new features concerning mainly the algebraic
structure of the information and an Automatic Dynamic Penalisation (ADP) method for
handling constraints of both the equality and inequality type, [44].

The generic individual of the GA BIANCA represents a solution, hence, in the frame-
work of the present thesis it represents a stacking sequence of one finite element of the
structure. Each individual, in a GA, is composed by a certain number of chromosomes.
In this case, the genotype of the generic individual has n chromosomes representing, each
one, one of the n plies composing the laminate. The chromosomes, in turn, are consti-
tuted by a certain number of genes, each one representing one optimisation variable of
the kth chromosome. In this case, each chromosome is characterised by only one gene
representing the unique design variable: the ply orientation δk. If the ply thickness was
also included among the optimisation variables, the number of genes would be increased
to 2 and so on for taking into account other variables.

It is not the subject of this thesis to discuss about the characteristics of GAs; the
reader is addressed to the scientific literature on this matter for a better description and
discussion on the matter. Nevertheless, we want to remark again that these algorithms
have proven to be very robust for handling problems of the type considered herein. Also,
the experience previously made in the use of the GA BIANCA, on problems even more
complicated than (8.2), has always been very satisfactory. So, this choice is really well
motivated by the experience.

8.4 A numerical example

The problem of finding the stacking sequence of the generic element of the laminate has
been solved using the GA BIANCA. On the other hand, thanks to the interface with
external codes programmed in [44], the procedure has been automated interfacing the
GA BIANCA with the MATLAB code. In particular the rule of the MATLAB code is
to select automatically one element of the structure, pass to BIANCA the informations
necessary to determine the stacking sequence, then get, from the code BIANCA, the
resulting lay-up and finally store the informations. This procedure is automated in order
to execute the procedure sequentially for all the elements of the structure.

We have chosen, as a demonstration of the effectiveness of the approach, to consider
only the first example, the holed plate of Sec. 7.6.1, and in particular the anisotropy field
obtained by the a posteriori optimisation algorithm, Sec. 7.2.

Concerning the settings of BIANCA to solve the second step problem we have imposed
for all the elements:

• the ply orientations δk belong to [−90◦, 90◦] with a discrete interval of 1◦. We can
consider all the possible orientations because the max(FLam

Hill ) and the max(F Ply
Hill) of

the generic ply are less than 1, see Tab. 7.5;

• the population size has been set to Nind = 500 and the maximum number of gener-
ations to Ngen = 500;
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• the crossover and mutation probability are pcross = 0.85 and pmut = 1/Nind, respec-
tively;

• selection is performed by the roulette-wheel strategy and the elitism operator is
active.

Tabs. 8.1 and 8.2 show two examples of stacking sequences found using the GA
BIANCA. We show the value of the partial objectives and the value of the global ob-
jective function I(fi(δk)). We remind that exact solutions correspond to the zeroes of
the partial objective functions. In Tab. 8.1 we have considered an element of the plate
characterised by fixed optimisation values of R1, Λ0L and Λ1 and a free optimisation value
of R0K . Such solution corresponds to the solution type 1 of the local minimisation of Wc,
see Tab. 6.1. Therefore, we don’t have imposed a given value of R0K and the number of
partial objective functions of eq. (8.3) pass from 9 to 8.

The example of Tab. 8.2 corresponds to an element of the plate presenting a fixed
optimal value for each optimisation parameter, hence, in this case we have 9 partial
objectives. In both these examples, the resulting laminate is uncoupled (the value of the
corresponding partial function varies from 0.37×10−6 to 0.41×10−3) and orthotropic (the
value of the corresponding partial function is always about 10−7). Similar considerations
can be done for the other elements composing the plate structure, whose results are not
shown here for the sake of brevity.

In Figs. 8.1 we show the optimal orientation of the first four plies composing the plate.
The plate is composed by 30 plies (each elementary ply having a thickness of 0.125 mm).
In Fig. 8.2 we map the value of the total objective function I(fi(δk)) for each element.

Thanks to the GA BIANCA, we determined the lay-up of every element composing the
plate and being the plate composed by 1800 elements, we determined for 1800 different
combinations of polar parameters, a lay-up satisfying all the different requirements in
eq. (8.2).

Given values Partial obj. funct.

Uncoupling B = 0 0.37E − 06
R0 [MPa] any -
R1 [MPa] 19909.481 0.51E − 02

Λ0 628.713 0.33E − 03
Λ1 2291.85 0.21E − 04

Φ0 − Φ1 0 0.12E − 06
Ω0 −Ω1 π/2 0.12E − 06
Φ1 −Ω1 π/2 0.12E − 06

Total obj. funct. f(δk) = 5× 10−3

Sequence 2/1/4/-3/-3/2/0/-1/1/2/0/1/1/1/-2/
-10/-2/-2/-2/-2/0/0/4/4/3/3/0/-1/0/-2

Table 8.1: Stacking sequence design, first example.
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Given values Partial obj. funct.

Uncoupling B = 0 0.41E − 03

R0 [MPa] 19710.431 0.67E − 04

R1 [MPa] 8746.335 0.34E − 03

Λ0 628.713 0.11E − 02

Λ1 1998.75 0.65E − 04

Φ0 − Φ1 0 0.15E − 06

Ω0 −Ω1 π/2 0.15E − 06

Φ1 −Ω1 π/2 0.15E − 06

Total obj. funct. f(δk) = 2× 10−3

Sequence 5/-90/5/3/-10/-6/89/5/3/-10/90/0/
-1/2/-90/1/-7/1/-90/89/2/89/-3/2/90/-90/1/2/-3/1

Table 8.2: Stacking sequence design, second example.

a) b)

c) d)

Figure 8.1: Optimal stacking sequence.

8.5 Concluding remarks

In this Chapter we dealt with the problem of determining the laminate stacking sequence
satisfying the optimal distribution of material parameters issued from the first step of the
hierarchical strategy. We formulated this problem as an optimisation problem of minimum
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Figure 8.2: Distribution of the total objective function.

distance between the material parameters of the laminate solution and those issued from
the structural optimisation step. In particular, this objective function is composed by
nine positive semi-definite sub-objectives, each one linked to one material parameter of the
homogenised structure, whose optimum value is calculated during the first step, Chapter 7.
Due to the non-convexity of the objective function, we solved this optimisation problem by
the genetic code BIANCA developed by Montemurro, Vincenti and Vannucci in [44] and
used here in an automated procedure for the sequential solution of the lay-up problem
for each one of the finite elements discretising the structure. We demonstrated, by a
numerical example, the existence of stacking sequences satisfying a given local optimal
distribution of anisotropy. In fact, being the optimal homogenised structure a variable
stiffness and strength structure, we defined an optimal stacking sequence for every element
belonging to the laminate. This was not evident in our procedure, and the fact that it
is possible to find a lay-up corresponding to the set of optimal design variables, for each
finite element in the discretised structural model is essentially due to three facts:

• the assumption of independent stiffness and strength parameters for the final lami-
nated structure;

• the correct definition of the so called geometrical bounds on the polar parameters,
for both stiffness and strength:

• the redundancy of the lay-up solutions, due to the non bijectivity between the
mechanical behaviour of a laminate and the stacking sequences.

Concerning this last aspect, the redundancy, as already explained in Chapter 6, greatly
increases with the number of plies. Just for giving an idea about that, when passing from
20 to 30 layers, the number of exact quasi-homogeneous solutions passes from 40 to 6146;
the increase is not monotonic and the 29-ply case is rather spectacular: 45441 solutions,
all of them unsymmetric, [82]. Nevertheless, though it is not possible to ensure a priori
the existence of a solution to the lay-up problem, the probability of finding at least one
solution to a give problem tends very quickly to 1 increasing the number of plies n.
What can be said, however, is that, as we design a laminate for matching 8 independent
invariants (R0, R1, Λ0, Λ1, K, L, R̂0, R̂1) at least 8 layers are necessary to find a solution.
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In practical structural applications, with standard pre-pregs layers, the number of layers
is generally greater than 8, say about 20 or much more. So, though it is not possible
to prove the existence of a solution to the lay-up problem of the type considered in this
thesis, the probability of finding at least one solution is very close to 1.
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General conclusions and future
perspectives

In this thesis we deal with the problem of determining the best distribution of the
anisotropy for a laminated structure that has to be simultaneously the stiffest and the
strongest one. The work has been divided into three main parts: in the first part we
presented all the concepts and tools that we have used to develop the research, the second
part is devoted to the analysis of strength and its maximisation for orthotropic sheets
and, finally, in the third part we face the problem of designing a laminated structure to
be optimal for both stiffness and strength.

Particularly, in the second part we have proposed a tensor invariant formulation,
through the polar method, of four different polynomial failure criteria for orthotropic
sheets. We have given also a mechanical interpretation of the polar parameters with
respect to the strength properties and material symmetries of the sheet. Then, we consid-
ered the problem of determining the optimal material orientation to maximise strength
by the minimisation of the failure index. Thanks to the polar formalism, we presented
a general analytical solution whose formulation is valid for different criteria that can be
expressed, indifferently, in terms of stresses or strains. With this study we have shown
that the type of orthotropy, characterised by the polar parameter L, plays a decisive role
in the optimisation of strength and that, depending on the values of the stresses or strains
and of the polar parameters of the failure criteria, the optimal orientation of the material
that maximises strength can be equal to different from that maximising stiffness. This
means that it is possible to obtain, in some cases, an orthotropic plate that is simulta-
neously optimised with respect to two important engineering requirements, stiffness and
strength.

The last part of the thesis is dedicated to the development of a new strategy to solve
a non conventional problem: the simultaneous optimisation of stiffness and strength for a
laminated structure. Our aim concerned the optimisation of the anisotropy distribution
of a variable stiffness laminated structure whose geometry and boundary conditions are
given. In this part of the thesis we proved that we are able to state and to solve such a
problem. Our approach is inspired from an already existing hierarchical strategy for the
only stiffness maximisation.

First of all we defined a new laminate level failure criterion valid for an equivalent
homogenised plate. Then, conscious of having two functional, the complementary energy
and the laminate failure index, to be minimised at the same time, we have proved that
the first step of the hierarchical strategy, where the laminate is modelled as an equivalent
homogenised single-layer, can be alternatively stated as two problems taking into account
for both stiffness and strength maximisation. These problems are characterised by two
functional that are sequentially minimised, preserving only the orthotropy direction. Each
problem has a different leading objective: stiffness or strength.
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In order to face the first step of the strategy we developed three different algorithms
to determine the optimal distribution of material parameters for a given structure. In the
first algorithm, called a posteriori, the stiffness is the leading objective and in the other
two, called a priori, the strength is the leading objective. We also found an analytical
solution to the problem of minimising the strength functional with respect to the material
parameters and an important result has been obtained: when the tensors of stress and
strain are coaxial, the optimal solution given by the algorithms represents a real global
optimum for both stiffness and strength properties. For instance, in the presented test cases
the optimal solutions achieved by the two algorithms, a posteriori and second version of
the algorithm a priori, correspond to the particular case of coaxiality between the stress
and strain fields, hence, in terms of both stiffness and strength properties we obtain a
global optimal solution. Moreover the test cases showed that we can achieve an average
reduction of about 50 % for the global complementary energy and an average reduction of
about 70 % for the local laminate failure index with respect to the starting configuration.
The structural optimisation procedure here proposed, is not time consuming: the longest
computational time for the most difficult case takes about 40 minutes on an Intel R© i5
Dual Core 2.5GHz processor.

Finally, using the genetic code BIANCA, we dealt with the problem of determining
the laminate stacking sequence satisfying the optimal distribution of material parameters
issued from the first step of the hierarchical strategy. In particular, the solution space of
ply orientations can vary in order to exclude the first-ply-failure. We demonstrated, by
a numerical example, the existence of stacking sequences satisfying a given local optimal
distribution of anisotropic stiffness and strength fields.

The true objective of this thesis was, we have seen, to propose a new approach to
the design of laminated structures having a variable anisotropy. So, we have chosen to
concentrate our efforts on giving an as much as possible mathematically rigorous proce-
dure, not based upon simplifying but polluting assumptions and in showing that such a
procedure, conciliating stiffness and strength as design objectives, is truly possible.

Nevertheless, we are perfectly conscious that in doing this, we have left apart some
points that should be developed in future works for, on one side, to fill the gap towards
practical applications and, on the other side, to improve the scientific quality of the results
found herein.

Some points should be, to our opinion, investigated in the next future, let us briefly
list them:

• the only failure criterion used in this thesis for developing the optimisation strategy
of the laminates has been the Tsai-Hill one but other criteria, namely those presented
in Chapters 4 and 5, should also be considered; the global procedure is not affected
by a change of the criterion, nevertheless this needs a particular attention in the
theoretical developments given in Chapter 6, because the presence, in criteria like
those of Hoffmann or Tsai-Wu, of a linear term besides the quadratic one gives
supplementary terms in the expression of the failure index for both the ply and the
laminate;

• all the developments have been done for the only case of simple in-plane actions;
the case of a pure bending state should also be considered, and this should not
imply substantial modifications to the procedure; more complicate, is the case of
contemporary in-plane and bending actions, because in such a case it is not possible
to define analytically the bounds on the polar components for the laminate; actually,
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this is still an open problem in laminates design, also when the description of the
behaviour is not done by the polar formalism;

• all the numerical tests done with the first version of the algorithm a priori have
clearly shown, without exception, that such a procedure gives an alternate conver-
gence, for both the complementary energy and the failure index, towards a minimum;
nevertheless, a convergence proof for this algorithm is still lacking and it should be
studied in the future;

• considering the numerical results, we can formulate a conjecture, that should be
proved: the structural optimisation with the a posteriori algorithm leads to the
same overall optimal values of the complementary energy and of the highest failure
index than those obtained with the a priori algorithm, version 2, see Tabs. 7.5, 7.6
and 7.7; nevertheless, the solution, i.e. the optimal distribution of the anisotropy,
is not necessarily the same for the two cases; in other words, the optimal solution is
not unique and probably, as it often happens with anisotropic problems, there are
infinitely many solutions, continuously varying;

• this coincidence of results for the two algorithms disappears when the difference
of strength in tension and compression is taken into account, Tab. 7.7 and 7.8;
seemingly, this is due to the same structure of the Tsai-Hill failure index functional,
quite similar to that of the complementary energy; this is a key point to prove,
probably, the above conjecture, and at the same time the fact that when difference of
strength in tension and compression is introduced in the calculations, the coincidence
of the optimal final values for the a posteriori and a priori, version 2, algorithms, do
not coincide any more; all these facts should, of course, be mathematically proved;

• the results of the optimisation procedure give n fields of orientations for the lam-
inate, a field for each one of the n layers; nevertheless, we have not considered
in this study an important point, necessary to ensure the results, found with the
optimisation procedure, to be actually interesting from a practical point of view;
namely, the orientation of the fibers cannot vary, locally, more than some giving
technological limits; such a constraint should be taken into account, for obtaining
a really manufacturable laminate; no general solutions exist in the literature to our
knowledge, and actually this problem is particularly hard to be solved; in practice,
it should be seen, to our opinion, as another optimum problem, where the distances
between n fields of orientations, taking into account for technological constraints
on their variation, and n fields of target, optimal orientations, are to be minimised;
in addition, some constraints are to be satisfied for the whole laminate, namely on
bending-extension uncoupling, orthotropy and so on; this problem is rather com-
plicate but more important, and this point confers to it a strange mathematical
character, the n target fields are not fixed ; in fact, what is to be ensured are the
fields of stiffness and strength properties, while, as already said, their is not a unique
set of n orientation fields realising the optimal laminate; so, the n target fields can
vary and this renders the problem of finding n technologically interesting orienta-
tion fields rather complicate, though not impossible; to our opinion, this is another
genuine optimisation problem, that should be considered apart, why not in another
thesis;

• as already said, we have wanted to deal with the optimum problem in the most
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general way, without making use of some practical rules often used by laminates
designers; some of these rules are imposed in aircraft structural design, and they
can be very easily inserted in the procedure; actually, they concern only the second
step of the design procedure, the lay-up design, and the code BIANCA accepts all
the types of constraints on the staking sequence design (symmetric and/or balanced
stacks, quasi-isotropic sequences and so on), what has been already done in previous
works, for instance in the thesis of M. Montemurro.

The points listed above could, hopefully, improve the results found in this thesis; we
hope only that the way we have traced in this work can constitute, in the future, a valuable
tool for the optimal design of advanced laminated structures.
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Appendix A

Analytical solution for minimum
laminate failure index

A.1 First problem: fixed orthotropy orientation

The optimisation problem can be formalised as:

min
{Λ0L,Λ1}

FLam
Hill

(
Λ0L, Λ1, Φ

opt

1

)
, (A.1)

with: 
2

(
Λ1

Λ1

)2

− 1 ≤ Λ0L

(−1)LΛ0

,

|Λ0L| ≤ Λ0 ,
Λ1 ≥ 0 .

(A.2)

and

Ω1 =

{
Φ
opt

1 or

Φ
opt

1 + π/2 .
(A.3)

The extended expression of the objective function is

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0Lr

2 cos 4
(
Ω1 − φ

)
+ 16trΛ1 cos 2

(
Ω1 − φ

)
, (A.4)

First of all, we have to consider an important case: the spherical strain field, characterised
by r = 0. If we impose r = 0 in eq. (A.4), the two optimisation parameters are no longer
present in the equation of FLam

Hill . This means that, for a spherical strain field, any value
of Λ0L and Λ1 within the admissible design region can be optimal for the failure index
functional. From a mechanical point of view this means that when the strain field is
purely spherical, we can place the fibres, of the corresponding laminate, in any direction
and we will have still an optimal solution in terms of strength. Hence, now we consider
r 6= 0. The two partial derivatives of FLam

Hill with respect to Λ0L and Λ1 are:

∂FLam
Hill

∂Λ0L

= 4r2 cos 4(Ω1 − φ) ,

∂FLam
Hill

∂Λ1

= 16tr cos 2(Ω1 − φ) .

(A.5)
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Figure A.1: Admissible domain of Λ0L and Λ1 for L = 0.

Both derivatives are constants for a fixed strain field. FLam
Hill is a linear function of Λ0L and

Λ1. Therefore, the minimum value of FLam
Hill necessarily lies on the boundary of the domain

defined in the plane (Λ0L, Λ1) by eqs. (A.2), see Figs. A.1 and A.2. In addition, the area of
admissible values of Λ0L and Λ1 changes together with the value of the orthotropy shape
parameter L of the basic ply, see eq. (A.2). Moreover, the sign of the partial derivatives
(A.5) depends upon the signs of cos 4

(
Ω1 − φ

)
and cos 2

(
Ω1 − φ

)
, Fig. 7.4, and upon the

sign of t, the spherical part of strains.

Solution for a basic ply with L = 0
As the solution depends upon the sign of t, cos 4

(
Ω1 − φ

)
and cos 2

(
Ω1 − φ

)
, we start

our analysis by considering the case

1. Solution with t > 0;

◦
(
Ω1 − φ

)
∈
]
−π

8
,
π

8

[
In this case we have: {

cos 4
(
Ω1 − φ

)
> 0 ,

cos 2
(
Ω1 − φ

)
> 0 ;

(A.6)

so,
∂FLam

Hill

∂Λ0L

> 0,
∂FLam

Hill

∂Λ1

> 0 . (A.7)

The two design variables Λ0L and Λ1 being independent, the point correspond-
ing to the minimum of FLam

Hill is placed where Λ0L and Λ1 get their lowest
admissible value:

Λ
opt

0L = −Λ0,

Λ
opt

1 = 0 .
(A.8)

The objective function takes, thus, the following value:

FLam
Hill = 4r2Γ0 + 8t2Γ1 − 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (A.9)
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[
The procedure to calculate the optimal values of the optimisation variables is
identical to that of the previous case.{

cos 4
(
Ω1 − φ

)
< 0 ,

cos 2
(
Ω1 − φ

)
> 0 ;

⇒

{
Λ
opt

0L = Λ0 ,

Λ
opt

1 = 0 .
(A.10)

The objective function assumes the following shape:

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (A.11)

◦
(
Ω1 − φ

)
∈
]
−3π

8
,−π

4

[
∪
]
π

4
,
3π

8

[
{

cos 4
(
Ω1 − φ

)
< 0 ,

cos 2
(
Ω1 − φ

)
< 0 ;

⇒

{
Λ
opt

0L = Λ0 ,

Λ
opt

1 = Λ1 ;
(A.12)

and

FLam
Hill = 4r2Γ0+8t2Γ1+4Λ0r

2 cos 4
(
Ω1 − φ

)
+16trΛ1 cos 2

(
Ω1 − φ

)
. (A.13)
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(
Ω1 − φ

)
∈
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−π

2
,−3π

8

[
∪
]

3π

8
,
π

2

[
{

cos 4
(
Ω1 − φ

)
> 0 ,

cos 2
(
Ω1 − φ

)
< 0 .

(A.14)

and we have
∂FLam

Hill

∂Λ0L

> 0 . (A.15)

For a fixed Λ1 the optimum value of Λ0L is placed where it gets its lowest
admissible value, hence, on the parabola, see Fig. A.1. We can explicitly write
Λ0L in the equation of the parabola

Λ0L = Λ0

(
2
Λ

2

1

Λ2
1

− 1

)
, (A.16)

and replace it in eq. (A.4) of the objective function,

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4r2 cos 4

(
Ω1 − φ

)
Λ0

(
2
Λ

2

1

Λ2
1

− 1

)
+

+16trΛ1 cos 2
(
Ω1 − φ

)
.

(A.17)

We can derive FLam
Hill with respect to Λ1:

∂FLam
Hill

∂Λ1

= 16r2
Λ1

Λ2
1

Λ0 cos 4
(
Ω1 − φ

)
+ 16tr cos 2

(
Ω1 − φ

)
. (A.18)

The stationary value of Λ1 can be calculated imposing

∂FLam
Hill

∂Λ1

= 0 for Λ
stat

1 =
t| cos 2

(
Ω1 − φ

)
|Λ2

1

rΛ0 cos 4
(
Ω1 − φ

) . (A.19)
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In addition
∂2FLam

Hill

∂Λ
2

1

=
16r2

Λ2
1

Λ0 cos 4
(
Ω1 − φ

)
≥ 0, ∀ Λ1; (A.20)

so,

Λ
stat

1 = Λ
opt

1 . (A.21)

This value of Λ1 corresponds, on the parabola, to

Λ
opt

0L =

(
2t2 cos2 2

(
Ω1 − φ

)
Λ2

1

r2 cos2 4
(
Ω1 − φ

)
Λ2

0

− 1

)
Λ0. (A.22)

In order to respect the bounds on Λ1, eq. (A.2), this solution is valid for

t

r
≤

Λ0 cos 4
(
Ω1 − φ

)
Λ1| cos 2

(
Ω1 − φ

)
|
, (A.23)

and the objective function assumes the following shape:

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 24

t2 cos2 2
(
Ω1 − φ

)
Λ2

1

Λ0 cos 4
(
Ω1 − φ

) − 4r2Λ0 cos 4
(
Ω1 − φ

)
.

(A.24)

Otherwise, for
t

r
≥

Λ0 cos 4
(
Ω1 − φ

)
Λ1| cos 2

(
Ω1 − φ

)
|
, we have

Λ
opt

0L = Λ0,

Λ
opt

1 = Λ1 .
(A.25)

In this case, the objective function is:

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0r

2 cos 4
(
Ω1 − φ

)
+ 16trΛ1cos2

(
Ω1 − φ

)
. (A.26)

◦
(
Ω1 − φ

)
= ±π

8{
cos 4

(
Ω1 − φ

)
= 0 ,

cos 2
(
Ω1 − φ

)
> 0 ;

⇒

{
Λ
opt

0L ∈ [−Λ0, Λ0] ,

Λ
opt

1 = 0 ;
(A.27)

FLam
Hill = 4r2Γ0 + 8t2Γ1 . (A.28)

◦
(
Ω1 − φ

)
=

3π

8 {
cos 4

(
Ω1 − φ

)
= 0 ,

cos 2
(
Ω1 − φ

)
< 0 ;

⇒

{
Λ
opt

0L = Λ0 ,

Λ
opt

1 = Λ1 ;
(A.29)

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 16trΛ1 cos 2

(
Ω1 − φ

)
. (A.30)

◦
(
Ω1 − φ

)
= ±π

4{
cos 4

(
Ω1 − φ

)
< 0 ,

cos 2
(
Ω1 − φ

)
= 0 .

⇒

{
Λ
opt

0L = Λ0 ,

Λ
opt

1 ∈ [0, Λ1] ;
(A.31)

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (A.32)
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2. Solution with t = 0.
In this case Λ1 vanishes from the equation of the objective function, hence, we have
only to find the optimum value of Λ0L.

◦
(
Ω1 − φ

)
∈
]
−π

2
,−3π

8

[
∪
]
−π

8
,
π

8

[
∪
]

3π

8
,
π

2

[
cos 4

(
Ω1 − φ

)
> 0 ⇒

{
Λ
opt

0L = −Λ0 ,

Λ
opt

1 = 0 ;
(A.33)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 − 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (A.34)

◦
(
Ω1 − φ

)
∈
]
−3π

8
,−π

8

[
∪
]
π

8
,
3π

8

[
cos 4

(
Ω1 − φ

)
< 0 ⇒

{
Λ
opt

0L = Λ0 ,

Λ
opt

1 ∈ [0, Λ1] ;
(A.35)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (A.36)

◦
(
Ω1 − φ

)
= ±3π

8
,±π

8
,

cos 4
(
Ω1 − φ

)
= 0 ⇒

{
Λ
opt

0L any ,

Λ
opt

1 any ;
(A.37)

belonging to the admissible domain of Fig. A.1.

FLam
Hill = 4r2Γ0 + 8t2Γ1 , (A.38)

so, the anisotropic distribution of strength does not take part to the optimal
distribution of strength.

3. Solution with t < 0.

◦
(
Ω1 − φ

)
∈
]
−π

8
,
π

8

[
{

cos 4
(
Ω1 − φ

)
> 0 ,

cos 2
(
Ω1 − φ

)
> 0 .

⇒ (A.39)
Λ
opt

0L =

(
2t2 cos2 2

(
Ω1 − φ

)
Λ2

1

r2 cos2 4
(
Ω1 − φ

)
Λ2

0

− 1

)
Λ0 ,

Λ
opt

1 =
|t| cos 2

(
Ω1 − φ

)
Λ2

1

rΛ0 cos 4
(
Ω1 − φ

) .

for
|t|
r
<
Λ0 cos 4

(
Ω1 − φ

)
Λ1 cos 2

(
Ω1 − φ

)
(A.40)

and

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 24

t2 cos2 2
(
Ω1 − φ

)
Λ2

1

Λ0 cos 4
(
Ω1 − φ

) − 4r2Λ0 cos 4
(
Ω1 − φ

)
.

(A.41)
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Otherwise {
Λ
opt

0L = Λ0 ,

Λ
opt

1 = Λ1 .
for
|t|
r
≥
Λ0 cos 4

(
Ω1 − φ

)
Λ1 cos 2

(
Ω1 − φ

) (A.42)

and

FLam
Hill = 4r2Γ0+8t2Γ1+4Λ0r

2 cos 4
(
Ω1 − φ

)
+16trΛ1 cos 2

(
Ω1 − φ

)
. (A.43)

◦
(
Ω1 − φ

)
∈
]
−π

4
,−π

8

[
∪
]π

8
,
π

4

[
{

cos 4
(
Ω1 − φ

)
< 0 ,

cos 2
(
Ω1 − φ

)
> 0 ;

⇒

{
Λ
opt

0L = Λ0 ,

Λ
opt

1 = Λ1 ;
(A.44)

and

FLam
Hill = 4r2Γ0+8t2Γ1+4Λ0r

2 cos 4
(
Ω1 − φ

)
+16trΛ1 cos 2

(
Ω1 − φ

)
. (A.45)

◦
(
Ω1 − φ

)
∈
]
−3π

8
,−π

4

[
∪
]
π

4
,
3π

8

[
{

cos 4
(
Ω1 − φ

)
< 0 ,

cos 2
(
Ω1 − φ

)
< 0 ;

⇒

{
Λ
opt

0L = Λ0 ,

Λ
opt

1 = 0 ;
(A.46)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (A.47)

◦
(
Ω1 − φ

)
∈
]
−π

2
,−3π

8

[
∪
]

3π

8
,
π

2

[
,{

cos 4
(
Ω1 − φ

)
> 0 ,

cos 2
(
Ω1 − φ

)
< 0 ;

⇒

{
Λ
opt

0L = −Λ0 ,

Λ
opt

1 = 0 ;
(A.48)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 − 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (A.49)

◦
(
Ω1 − φ

)
= ±π

8 {
cos 4

(
Ω1 − φ

)
= 0 ,

cos 2
(
Ω1 − φ

)
> 0 ;

⇒

{
Λ
opt

0L = Λ0 ,

Λ
opt

1 = Λ1 ;
(A.50)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 + 16trΛ1 cos 2

(
Ω1 − φ

)
. (A.51)

◦
(
Ω1 − φ

)
= ±3π

8{
cos 4

(
Ω1 − φ

)
= 0 ,

cos 2
(
Ω1 − φ

)
< 0 ;

⇒

{
Λ
opt

0L ∈ [−Λ0, Λ0] ,

Λ
opt

1 = 0 ;
(A.52)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 . (A.53)
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Figure A.2: Admissible domain of Λ0L and Λ1 for L = 1.

◦
(
Ω1 − φ

)
= ±π

4{
cos 4

(
Ω1 − φ

)
< 0 ,

cos 2
(
Ω1 − φ

)
= 0 .

⇒

{
Λ
opt

0L = Λ0 ,

Λ
opt

1 ∈ [0, Λ1] ;
(A.54)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (A.55)

Solution for a basic ply with L = 1
Also here we consider different cases that depend upon the sign of t, cos 4

(
Ω1 − φ

)
and

cos 2
(
Ω1 − φ

)
, see Fig. 7.4. The way to get the optimal values of the optimisation pa-

rameters is identical to the previous case characterised by L = 0.

1. Solution with t > 0 .

◦
(
Ω1 − φ

)
∈
]
−π

8
,
π

8

[
{

cos 4
(
Ω1 − φ

)
> 0 ,

cos 2
(
Ω1 − φ

)
> 0 ;

⇒

{
Λ
opt

0L = −Λ0 ,

Λ
opt

1 = 0 ;
(A.56)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 − 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (A.57)

◦
(
Ω1 − φ

)
∈
]
−π

4
,−π

8

[
∪
]π

8
,
π

4

[
{

cos 4
(
Ω1 − φ

)
< 0 ,

cos 2
(
Ω1 − φ

)
> 0 ;

⇒

{
Λ
opt

0L = Λ0 ,

Λ
opt

1 = 0 ;
(A.58)

171



and
FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (A.59)

◦
(
Ω1 − φ

)
∈
]
−3π

8
,−π

4

[
∪
]
π

4
,
3π

8

[
{

cos 4
(
Ω1 − φ

)
< 0 ,

cos 2
(
Ω1 − φ

)
< 0 .

⇒ (A.60)
Λ
opt

0L =

(
1−

2t2 cos2 2
(
Ω1 − φ

)
Λ2

1

r2 cos2 4
(
Ω1 − φ

)
Λ2

0

)
Λ0 ,

Λ
opt

1 =
t cos 2

(
Ω1 − φ

)
Λ2

1

rΛ0 cos 4
(
Ω1 − φ

) ;

for
t

r
<
Λ0 cos 4

(
Ω1 − φ

)
Λ1 cos 2

(
Ω1 − φ

) ,
(A.61)

and

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 8

t2 cos2 2
(
Ω1 − φ

)
Λ2

1

Λ0 cos 4
(
Ω1 − φ

) + 4r2Λ0 cos 4
(
Ω1 − φ

)
.

(A.62)
Otherwise {

Λ
opt

0L = −Λ0 ,

Λ
opt

1 = Λ1 ;
for

t

r
≥
Λ0 cos 4

(
Ω1 − φ

)
Λ1 cos 2

(
Ω1 − φ

) , (A.63)

and

FLam
Hill = 4r2Γ0+8t2Γ1−4Λ0r

2 cos 4
(
Ω1 − φ

)
+16trΛ1 cos 2

(
Ω1 − φ

)
. (A.64)

◦
(
Ω1 − φ

)
∈
]
−π

2
,−3π

8

[
∪
]

3π

8
,
π

2

[
,{

cos 4
(
Ω1 − φ

)
> 0 ,

cos 2
(
Ω1 − φ

)
< 0 ;

⇒

{
Λ
opt

0L = −Λ0 ,

Λ
opt

1 = Λ1 ;
(A.65)

and

FLam
Hill = 4r2Γ0+8t2Γ1−4Λ0r

2 cos 4
(
Ω1 − φ

)
+16trΛ1 cos 2

(
Ω1 − φ

)
. (A.66)

◦
(
Ω1 − φ

)
= ±π

8{
cos 4

(
Ω1 − φ

)
= 0 ,

cos 2
(
Ω1 − φ

)
> 0 ;

⇒

{
Λ
opt

0L ∈ [−Λ0, Λ0] ,

Λ
opt

1 = 0 ;
(A.67)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 . (A.68)

◦
(
Ω1 − φ

)
= ±3π

8{
cos 4

(
Ω1 − φ

)
= 0 ,

cos 2
(
Ω1 − φ

)
< 0 ;

⇒

{
Λ
opt

0L = −Λ0 ,

Λ
opt

1 = Λ1 ;
(A.69)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 + 16trΛ1 cos 2

(
Ω1 − φ

)
. (A.70)
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◦
(
Ω1 − φ

)
= ±π

4 {
cos 4

(
Ω1 − φ

)
< 0 ,

cos 2
(
Ω1 − φ

)
= 0 .

⇒

{
Λ
opt

0L = Λ0 ,

Λ
opt

1 = 0 ;
(A.71)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (A.72)

2. Solution with t = 0 .

◦
(
Ω1 − φ

)
∈
]
−π

2
,−3π

8

[
∪
]
−π

8
,
π

8

[
∪
]

3π

8
,
π

2

[
cos 4

(
Ω1 − φ

)
> 0 ⇒

{
Λ
opt

0L = −Λ0 ,

Λ
opt

1 ∈ [0, Λ1] ;
(A.73)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 − 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (A.74)

◦
(
Ω1 − φ

)
∈
]
−3π

8
,−π

8

[
∪
]
π

8
,
3π

8

[
cos 4

(
Ω1 − φ

)
< 0 ⇒

{
Λ
opt

0L = Λ0 ,

Λ
opt

1 = 0 ;
(A.75)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (A.76)

◦
(
Ω1 − φ

)
= ±3π

8
,±π

8

cos 4
(
Ω1 − φ

)
= 0 ⇒

{
Λ
opt

0L any,

Λ
opt

1 any;
(A.77)

that belong to the admissible region of Fig. A.2.

FLam
Hill = 4r2Γ0 + 8t2Γ1 . (A.78)

Also in this case the anisotropic distribution of strength does not take part to
the optimal solution.

3. Solution with t < 0.

◦
(
Ω1 − φ

)
∈
]
−π

8
,
π

8

[
{

cos 4
(
Ω1 − φ

)
> 0 ,

cos 2
(
Ω1 − φ

)
> 0 ;

⇒

{
Λ
opt

0L = −Λ0 ,

Λ
opt

1 = Λ1 ;
(A.79)

and

FLam
Hill = 4r2Γ0+8t2Γ1−4Λ0r

2 cos 4
(
Ω1 − φ

)
+16trΛ1 cos 2

(
Ω1 − φ

)
. (A.80)
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◦
(
Ω1 − φ

)
∈
]
−π

4
,
π

8

[
∪
]π

8
,
π

4

[
{

cos 4
(
Ω1 − φ

)
< 0 ,

cos 2
(
Ω1 − φ

)
> 0 .

⇒ (A.81)
Λ
opt

0L =

(
2t2 cos2 2

(
Ω1 − φ

)
Λ2

1

r2Λ2
0 cos2 4

(
Ω1 − φ

) − 1

)
Λ0 ,

Λ
opt

1 =
t cos 2

(
Ω1 − φ

)
Λ2

1

rΛ0 cos 4
(
Ω1 − φ

) ;

for
t

r
<
Λ0 cos 4

(
Ω1 − φ

)
Λ1 cos 2

(
Ω1 − φ

) ;

(A.82)
and

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 8

t2 cos2 2
(
Ω1 − φ

)
Λ2

1

Λ0 cos 4
(
Ω1 − φ

) + 4r2Λ0 cos 4
(
Ω1 − φ

)
.

(A.83){
Λ
opt

0L = Λ0 ,

Λ
opt

1 = Λ1 ;
for

t

r
≥
Λ0 cos 4

(
Ω1 − φ

)
Λ1 cos 2

(
Ω1 − φ

) ; (A.84)

and

FLam
Hill = 4r2Γ0+8t2Γ1+4Λ0r

2 cos 4
(
Ω1 − φ

)
+16trΛ1 cos 2

(
Ω1 − φ

)
. (A.85)

◦
(
Ω1 − φ

)
∈
]
−3π

8
,−π

4

[
∪
]
π

4
,
3π

8

[
{

cos 4
(
Ω1 − φ

)
< 0 ,

cos 2
(
Ω1 − φ

)
< 0 ;

⇒

{
Λ
opt

0L = Λ0 ,

Λ
opt

1 = 0 ;
(A.86)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (A.87)

◦
(
Ω1 − φ

)
∈
]
−π

2
,−3π

8

[
∪
]

3π

8
,
π

2

[
,{

cos 4
(
Ω1 − φ

)
> 0 ,

cos 2
(
Ω1 − φ

)
< 0 ;

⇒

{
Λ
opt

0L = −Λ0 ,

Λ
opt

1 = 0 ;
(A.88)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 − 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (A.89)

◦
(
Ω1 − φ

)
= ±π

8
,{

cos 4
(
Ω1 − φ

)
= 0 ,

cos 2
(
Ω1 − φ

)
> 0 ;

⇒

{
Λ
opt

0L = −Λ0 ,

Λ
opt

1 = Λ1 ;
(A.90)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 + 16trΛ1 cos 2

(
Ω1 − φ

)
. (A.91)

◦
(
Ω1 − φ

)
= ±3π

8{
cos 4

(
Ω1 − φ

)
= 0 ,

cos 2
(
Ω1 − φ

)
< 0 ;

⇒

{
Λ
opt

0L ∈ [−Λ0, Λ0] ,

Λ
opt

1 = 0 ;
(A.92)
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and
FLam
Hill = 4r2Γ0 + 8t2Γ1 . (A.93)

◦
(
Ω1 − φ

)
= ±π

4 {
cos 4

(
Ω1 − φ

)
< 0 ,

cos 2
(
Ω1 − φ

)
= 0 .

⇒

{
Λ
opt

0L = Λ0 ,

Λ
opt

1 = 0 ;
(A.94)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0r

2 cos 4
(
Ω1 − φ

)
. (A.95)

A.2 Second problem: including the orthotropy ori-

entation as an optimisation variable

The optimisation problem can be formalised as:

min
{Λ0L,Λ1,Ω1}

FLam
Hill

(
Λ0L, Λ1, Ω1

)
, (A.96)

along with the constraints (A.2). The objective function is:

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0Lr

2 cos 4
(
Ω1 − φ

)
+ 16trΛ1 cos 2

(
Ω1 − φ

)
. (A.97)

Also in this case firstly we have to consider the important case of spherical strain field,
characterised by r = 0. If we impose r = 0 in eq. (A.97), the two optimisation parameters
are not longer present in the expression of FLam

Hill , so, the optimal value of Λ0L and Λ1 is
any value belonging to the admissible design region of the plane (Λ0L, Λ1). Hence, now
we consider r 6= 0.

In this case FLam
Hill has to be minimised with respect to three variables: the orthotropy

orientation Ω1 and the polar moduli Λ0L and Λ1. The analytical solution of this problem
will be realised within two successive phases: firstly the minimisation with respect to the
orientation Ω1 of the orthotropy axis and then, the minimisation with respect to the polar
moduli Λ0L and Λ1.

The optimal orientation Ω
opt

1 can be determined in analogue way as done in Sec. 5.2.
Thus, we show directly the results in Fig. A.3 where

µ = dir (min {|εI |, |εII |}) ,

ξ =
1

2
arccos

(
− Λ1t

Λ0Lr

)
.

(A.98)

Fig. A.3 shows that the shape of orthotropy of the plate (L) plays a decisive role in the
evaluation of the optimal orthotropy orientation. We have, thus, two type of solutions
concerning the optimal orthotropy orientation:

• a solution that does not include the term ξ, that we will call solution non-ξ;

• a solution including the term ξ, that we will call solution ξ.
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Figure A.3: Optimal material orientation to minimise FLamHill .

If we put the expression of Ω
opt

1 in eq. (A.97), depending on the type of solution of Ω
opt

1 ,

FLam
Hill (Ω

opt

1 ) that will be used in the second minimisation phase concerning the evaluation

of Λ
opt

0L and Λ
opt

1 can assume two different shapes. Therefore, in the second minimisation
phase, we have to minimise two different functions with respect to Λ0L and Λ1:

solution non-ξ : FLam
Hill (Λ0L, Λ1, Ω

opt

1 ) = 4r2Γ0 + 8t2Γ1 + 4Λ0Lr
2 − 16|t|rΛ1; (A.99)

solution ξ : FLam
Hill (Λ0L, Λ1, Ω

opt

1 ) = 4r2Γ0 + 8t2Γ1 − 4Λ0r
2 − 8t2

Λ
2

1

Λ0

. (A.100)

The optimal value of FLam
Hill obtained minimising eq. (A.99) will be, then, compared with

that obtained minimising eq. (A.100). The solution that give the minimum value of FLam
Hill

(and the corresponding values of the design variables Ω1, Λ0L and Λ1) will be the global
optimal solution of problem (A.96).

Moreover, the range of the solutions non-ξ is characterised by the following strain field:
t

r
≤ −Λ0

Λ1

,

t

r
≥ Λ0

Λ1

,

⇒ |t|
r
≥ Λ0

Λ1

; (A.101)

while, the solutions ξ is characterised by the following strain field:
t

r
≥ −Λ0

Λ1

,

t

r
≤ Λ0

Λ1

,

⇒ |t|
r
≤ Λ0

Λ1

; (A.102)

The separation between these two types of solutions (non-ξ and ξ) is represented by the
equality

Λ0L =
|t|
r
Λ1 (A.103)

that is a straight-line in the space (Λ0L, Λ1). The ratio |t|/r between the spherical and devi-
atoric components of the strain tensor represents the angular coefficient of the straight-line
and is a positive quantity.

In order to find an analytical solution, we can proceed by following the same logical
steps as already done in Sec. A.1.

Solution for a basic ply with L = 0
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• Solution non-ξ.
We have:

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0Lr

2 − 16|t|rΛ1 . (A.104)

The two partial derivatives of FLam
Hill with respect to Λ0L and Λ1 are:

∂FLam
Hill

∂Λ0L

= 4r2 ,

∂FLam
Hill

∂Λ1

= −16|t|r .
(A.105)

Both the derivatives are constant for a fixed strain field. In particular, the derivative
with respect to Λ0L is always positive, while the first derivative with respect to Λ1

is always negative or equal to zero if t = 0.

A particular case is represented by the pure deviatoric strain field characterised by
t = 0; the angular coefficient |t|/r becomes null and the separation between the two
solutions (non-ξ and ξ) is aligned with the axis Λ1 of Fig. A.4. In addition, Λ1 is

not longer present in the equation of FLam
Hill and being

∂FLam
Hill

∂Λ0L

> 0, the optimal value

of Λ0L is:
Λ
opt

0L = −Λ0 , (A.106)

so,

Λ
opt

1 = 0 , (A.107)

see Fig. A.4.

For t 6= 0
∂FLam

Hill

∂Λ0L

= 4r2 . (A.108)

For a fixed value of Λ1 the optimum value of Λ0L is placed on the parabola. The
expression of the parabola, explicitly writing Λ0L, is:

Λ0L = Λ0

(
2
Λ

2

1

Λ2
1

− 1

)
. (A.109)

Putting eq. (A.109) in eq. (A.104), we have

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4r2Λ0

(
2
Λ

2

1

Λ2
1

− 1

)
− 16|t|rΛ1 , (A.110)

and deriving with respect to Λ1, we have:

∂FLam
Hill

∂Λ1

= 16r2
Λ1

Λ2
1

Λ0 − 16|t|r = 0 , (A.111)

then, the stationary value of Λ1 is:

Λ
stat

1 =
|t|Λ2

1

rΛ0

. (A.112)
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The second derivative of FLam
Hill with respect to Λ1 is always positive:

∂2FLam
Hill

∂Λ
2

1

=
16r2Λ0

Λ2
1

> 0 , (A.113)

so,

Λ
stat

1 = Λ
opt

1 . (A.114)

The corresponding value of Λ0L on the parabola is

Λ
opt

0L =

(
2t2Λ2

1

r2Λ2
0

− 1

)
Λ0 . (A.115)

In order to respect the bounds on Λ1, eq. (A.2), this solution is valid for

|t|
r
≤ Λ0

Λ1

, (A.116)

that correspond also to the graphical condition of Fig. A.4(c).
The associated value of the objective function is

FLam
Hill = 4r2Γ0 + 8t2Γ1 − 4r2Λ0 − 8t2

Λ2
1

Λ0

(A.117)

For |t|/r ≥ Λ0/Λ1, eq. (A.112) gives a value of Λ
opt

1 greater than Λ1 violating the
bounds of eq. (A.2). In this case we have to impose:

Λ
opt

1 = Λ1 , (A.118)

and the unique corresponding admissible value of Λ0L is

Λ
opt

0L = Λ0 , (A.119)

see Fig. A.4(a). The objective function becomes

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4r2Λ0 − 16|t|rΛ1 . (A.120)

• Solution ξ.
This optimal solution of Ω1 leads to the following form of the objective function:

FLam
Hill = 4r2Γ0 + 8t2Γ1 − 4Λ0r

2 − 8t2
Λ

2

1

Λ0

. (A.121)

The first derivatives with respect to Λ0 and Λ1 are:

∂FLam
Hill

∂Λ0

= −4r2 + 8t2
Λ

2

1

Λ
2

0

,

∂FLam
Hill

∂Λ1

= −16t2
Λ1

Λ0

≤ 0 .

(A.122)
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Figure A.4: Admissible domain of Λ0 and Λ1 for L = 0 and for |t|/r > Λ0/Λ1 (a), |t|/r = Λ0/Λ1

(b), |t|/r < Λ0/Λ1 (c).

A particular case is represented by the pure deviatoric strain field (t = 0): the
straight-line separating the two solutions, non-ξ and ξ, is aligned with the axis of
Λ1, Fig. A.4, and the variable Λ1 is not more present in the equation of FLam

Hill . Being
the derivative with respect to Λ0L constant and negative, the optimal solution is:

Λ
opt

0L = Λ0 , Λ
opt

1 ∈ [0, Λ1] . (A.123)

For t 6= 0, the first derivative with respect to Λ1 is always negative, so, for a fixed
value of Λ0 the optimum value of Λ1 corresponds to its maximum value belonging
to the admissible region.

To this purpose we have to separate three different cases, see Fig. A.4:

1. |t|/r ≥ Λ0/Λ1.

Λ
opt

1 is placed on the straight-line, hence, we can explicitly write Λ1 in the
straight-line equation

Λ1 = Λ0
r

|t|
, (A.124)

and replace it in the eq. (A.121)

FLam
Hill = 4r2Γ0 + 8t2Γ1 − 12r2Λ0 . (A.125)

Deriving FLam
Hill with respect to Λ0 we have

∂FLam
Hill

∂Λ0

= −12r2 ≤ 0 . (A.126)
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The optimum value of Λ0 is:

Λ
opt

0 = Λ0 , (A.127)

and
Λ
opt

1 = Λ0
r

|t|
. (A.128)

2. |t|/r < Λ0/Λ1 and
|t|Λ1

4r2Λ0

[
|t|Λ1 +

√
t2Λ2

1 + 8r2Λ2
0

]
≤ Λ0 ≤ Λ0 (intersection

between the parabola and the straight-line).

Λ
opt

1 is placed on the parabola. We can explicitly write Λ1 in the parabola
equation

Λ
2

1 =
Λ2

1

2

(
Λ0

Λ0

+ 1

)
, (A.129)

replace it in the eq. (A.121) of the objective function

FLam
Hill = 4r2Γ0 + 8t2Γ1 − 4r2Λ0 −

4t2Λ2
1

Λ0

− 4t2Λ2
1

Λ0

, (A.130)

and derive FLam
Hill with respect to Λ0

∂FLam
Hill

∂Λ0

= −4r2 +
4t2Λ2

1

Λ
2

0

. (A.131)

The first derivative gives us a stationary value for Λ0

∂FLam
Hill

∂Λ0

= 0 for Λ
stat

0 =
|t|
r
Λ1 , (A.132)

and for Λ0 = Λ
stat

0 the second derivative of FLam
Hill is

∂2FLam
Hill

∂Λ
2

0

∣∣∣∣∣
Λ
stat
0

= − 8r3

|t|Λ1

< 0 . (A.133)

Λ
stat

0 does not correspond to a minimum for FLam
Hill , so, we need to compare

the value of the objective function on the two extremes of the portion of the
parabola:

a = (Λ1 = Λ1, Λ0 = Λ0) ;

b = (Λ1 =
Λ1

4rΛ0

[
|t|Λ1 +

√
t2Λ2

1 + 8r2Λ2
0

]
, · · ·

· · ·Λ0 =
|t|Λ1

4r2Λ0

[
|t|Λ1 +

√
t2Λ2

1 + 8r2Λ2
0

]
) ;

(A.134)

then, we have to compare

FLam
Hill |a = 4r2Γ0 + 8t2Γ1 − 4r2Λ0 − 8t2

Λ2
1

Λ2
0

;

FLam
Hill |b = 4r2Γ0 + 8t2Γ1 −

3|t|Λ1

Λ0

[
tΛ1 +

√
t2Λ2

1 + 8r2Λ2
0

]
.

(A.135)
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3. |t|/r < Λ0/Λ1 and 0 ≤ Λ0 ≤
|t|Λ1

4r2Λ0

[
|t|Λ1 +

√
t2Λ2

1 + 8r2Λ2
0

]
.

Λ
opt

1 is placed on the straight-line. Thus, the optimum value of Λ0 is placed at
the intersection with the parabola:

Λ
opt

0 =
|t|Λ1

4r2Λ0

[
|t|Λ1 +

√
t2Λ2

1 + 8r2Λ2
0

]
,

Λ
opt

1 =
Λ1

4rΛ0

[
|t|Λ1 +

√
t2Λ2

1 + 8r2Λ2
0

]
;

(A.136)

and

FLam
Hill = 4r2Γ0 + 8t2Γ1 −

3|t|Λ1

Λ0

[
tΛ1 +

√
t2Λ2

1 + 8r2Λ2
0

]
. (A.137)
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Figure A.5: Admissible domain of Λ0L and Λ1 for L = 1.

Solution for a basic ply with L = 1
The region of admissible values of Λ0L and Λ1 for L = 1 is showed in Fig. A.5.

• Solution non-ξ.
The associated value of the objective function is

FLam
Hill = 4r2Γ0 + 8t2Γ1 + 4Λ0Lr

2 − 16|t|rΛ1 . (A.138)

The way to find the optimal solution is analogue to that discussed beforehand. In
the case of pure deviatoric strain field, t = 0, the variable Λ1 is not present in the
equation of the objective function FLam

Hill , so, we have:

Λ
opt

0 = −Λ0 , Λ
opt

1 ∈ [0, Λ1] . (A.139)

For t 6= 0, we have

∀ Λ1 : Λ
opt

0L = −Λ0 . (A.140)
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If we fix Λ0L = −Λ0 in the equation of the objective function FLam
Hill and we calculate

the first derivative, we have

∂FLam
Hill

∂Λ1

= −16|t|r < 0 , (A.141)

hence,

Λ
opt

1 = Λ1 , (A.142)

see Fig. A.5.

• Solution ξ.
The objective function is

FLam
Hill = 4r2Γ0 + 8t2Γ1 − 4Λ0r

2 − 8t2
Λ

2

1

Λ0

. (A.143)

In the case of pure deviatoric strain field (t = 0) the variable Λ1 is not present in
the equation of FLam

Hill . The first derivative of FLam
Hill with respect to Λ0 is

∂FLam
Hill

∂Λ0L

= −4r2 < 0 , (A.144)

so, we have:

Λ
opt

0 = Λ0 , Λ
opt

1 = 0 . (A.145)

For t 6= 0 it is

∂FLam
Hill

∂Λ0

= −4r2 + 8t2
Λ

2

1

Λ
2

0

,

∂FLam
Hill

∂Λ1

= −16t2
Λ1

Λ0

≤ 0 .

(A.146)

For a fixed value of Λ0, the optimum value of Λ1 is its minimum value belonging

to the admissible region. Hence, Λ
opt

1 is placed on the straight-line up to a certain
value of Λ0 and then on the parabola.

The analysis of the first and second derivatives of (A.143) lead us to two solutions,
placed at the two extremes of the portion of the parabola, that has to be compared:

FLam
Hill |a = 4r2Γ0 + 8t2Γ1 − 4r2Λ0 ;

FLam
Hill |b = 4r2Γ0 + 8t2Γ1 +

3|t|Λ1

Λ0

[
tΛ1 +

√
t2Λ2

1 + 8r2Λ2
0

]
.

(A.147)

with
a = (Λ1 = 0, Λ0 = Λ0) ;

b = (Λ1 =
Λ1

4rΛ0

[
−|t|Λ1 +

√
t2Λ2

1 + 8r2Λ2
0

]
, · · ·

· · ·Λ0 =
|t|Λ1

4r2Λ0

[
−|t|Λ1 +

√
t2Λ2

1 + 8r2Λ2
0

]
) ;

(A.148)

We have:
FLam
Hill |a ≤ FLam

Hill |b . (A.149)
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so
Λ
opt

1 = 0 ,

Λ
opt

0 = Λ0 ;
(A.150)

and
FLam
Hill = 4r2Γ0 + 8t2Γ1 − 4r2Λ0 . (A.151)

**********

The global minimum of (A.97) can be determined comparing the solutions of the two
studied cases: solution non-ξ and solution ξ. In particular:

• for L = 0 and |t|/r ≤ Λ0/Λ1 the solution is always placed on the parabola for both
solutions non-ξ and ξ. Moreover, the solution ξ is placed at the intersection between
the parabola and the straight-line so it belongs to both regions of solution ξ and
non-ξ, see Fig. A.4. The others two solutions, non-ξ and ξ, lead to the same value
of the objective function. Thus, the global minimum is given by the solution non-ξ;

• for L = 0 and |t|/r ≥ Λ0/Λ1 the comparison between the two solutions can be done
analytically.

For
|t|
r

=
Λ0

Λ1

we have:

FOpt
Hill(sol. non− ξ) = 4r2Γ0 + 8t2Γ1 − 12r2Λ0 = FOpt

Hill(sol.ξ) . (A.152)

Whereas, for
|t|
r
>
Λ0

Λ1

we have:

FOpt
Hill(sol. non− ξ) < FOpt

Hill(sol.ξ) ; (A.153)

• for L = 0 and t = 0 the two solutions are coincident;

• for L = 1 and t 6= 0 we have:

FOpt
Hill(sol. non− ξ)− F

Opt
Hill(sol.ξ) = −16|t|rΛ1 , (A.154)

so,
FOpt
Hill(sol. non− ξ) < FOpt

Hill(sol.ξ) ; (A.155)

• for L = 1 and t = 0 the two solutions are coincident.

As a conclusion, it is proved that the global minimum, in both cases for L = 0 and
L = 1 is given by the solution non-xi. The results are summarised in Tab. A.1.
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Λ
opt

0L Λ
opt

1 F
Lam(opt)
Hill

L = 0,1; r = 0,∀t

any any 8t2Γ1

L = 0

|t|
r
≤Λ0

Λ1

sol. non-ξ

(
2t2Λ2

1

r2Λ2
0

− 1

)
Λ0

|t|Λ2
1

rΛ0
(*)4r2Γ0 + 8t2Γ1 − 4r2Λ0 − 8t2

Λ2
1

Λ0

sol. ξ Λ
int

0 Λ
int

1 4r2Γ0 + 8t2Γ1 − 4r2Λ
int

0 − 8t2
Λ
int 2

1

Λ0

Λ0 Λ1 4r2Γ0 + 8t2Γ1 − 4r2Λ0 − 8t2
Λ2
1

Λ0

|t|
r
≥Λ0

Λ1

sol. non-ξ Λ0 Λ1 (*) 4r2Γ0 + 8t2Γ1 + 4Λ0r
2 − 16|t|rΛ1

sol. ξ Λ0 Λ0
r

|t|
4r2Γ0 + 8t2Γ1 − 12Λ0r

2

t = 0

sol. non-ξ −Λ0 0 (*) 4r2Γ0 − 4Λ0r
2

sol. ξ Λ0 [0, Λ1] (*) 4r2Γ0 − 4Λ0r
2

L = 1

t 6= 0

sol. non-ξ −Λ0 Λ1 (*) 4r2Γ0 + 8t2Γ1 − 4Λ0r
2 − 16|t|rΛ1

sol. ξ Λ0 0 4r2Γ0 + 8t2Γ1 − 4Λ0r
2

t = 0

sol. non-ξ −Λ0 [0, Λ1] (*) 4r2Γ0 − 4Λ0r
2

sol. ξ Λ0 0 (*) 4r2Γ0 − 4Λ0r
2

(*) global minimum.

Λ
int

0 and Λ
int

1 correspond to the intersection point between the straight-line and the parabola.

Table A.1: Solutions of the local minimisation of FLamHill including Ω1 as optimisation parameter.
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