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Abstract

Inspired by the limitations of traditional PID controllers and the different performance in
ideal and realistic cases, the existing quadrotors, their applications and control methods have
been intensively studied in this dissertation. Many challenges are shown: embedded quadro-
tor systems have limit computational resources and energy; the aerodynamic dynamics is
rather complex and poorly known; environment has many disturbances and uncertainties;
many control methods have been proposed in ideal scenarios in literature without compari-

son. Therefore, this dissertation focuses on these main points in the control of quadrotors.

A kinematic model and a dynamic model are proposed, including all the important
aerodynamic forces and moments. A simplified dynamic model is also given based on some
applications. Then, the dynamics of quadrotor is analyzed. Using the normal form theory,
the model of quadrotor is simplified to a simplest form named the normal form, which exhibits
all possible dynamic properties of the original system. The bifurcations of its normal form
are then studied, and the system can be further simplified at its bifurcation point using the

center manifold theory.

Based on the research of the applications in the first chapter, five typical realistic scenarios
are proposed: an ideal case, the cases with wind disturbance, parameter uncertainties, sensor
noises and actuator faults. These realistic cases can show comprehensively the performance
of control methods respect to the ideal cases. An event triggered scheme is also proposed
with the time triggered scheme in order to further save computational resources. Then,
a newly proposed method the model free control is presented. It is a simple but efficient
technique for the nonlinear, unknown or partially known dynamics. A backstepping control

and a sliding mode control are also proposed for the sake of comparison.

All the control methods are implemented in the time and event triggered schemes in five
different scenarios. In order to keep closer to realistic situations, the control gains of each
methods are not changed in different scenarios. Based on the study in the first chapter, ten

criteria are chosen for measuring the performance of control methods, such as the maximum



absolute tracking error, the error variance, the actuation steps, the energy consumption, etc.

iv



Résumée

Cette thése traite de la commande de quadrotors, utilisant des techniques comme la com-
mande sans modéle et la commande déclenchée par événements. Divers problémes sont
abordés: les systémes embarqués ont des limites des ressources de calcul et d’énergie; la
dynamique est assez complexe et souvent mal connue; ’environnement induit beaucoup de
perturbations et d’incertitudes; de nombreuses méthodes de contréle ont été proposées pour
des scénarios idéaux dans la littérature sans comparaison entre elles. Cette thése porte sur
ces principaux points en commande de quadrotors.

Des modéles cinématiques et dynamiques sont tout d’abord proposés, y compris toutes les
forces et tous les couples aérodynamiques jugés significatifs. Un modéle dynamique simplifié
est également proposé en vue de certaines applications. Une dynamique de quadrotor est
analysée en utilisant la théorie des formes normales. Le modéle est ainsi transformé en
une forme plus simple présentant tous les comportements dynamiques possibles du systéme
d’origine. Les bifurcations de cette forme normale sont étudiées, et le systéme est simplifié
a son point de bifurcation en utilisant la théorie de la variété du centre.

Cing scénarios réalistes sont proposés: un cas idéal, les cas avec perturbation de vent,
avec incertitudes paramétrique, avec bruits de capteurs et avec panne d’actionneur. Ces
cas réalistes mettent en exergue les performances des méthodes de controle par rapport aux
cas idéaux. Un schéma déclenché par événements est également proposé. La technique
dite de commande sans modéle est ensuite présentée ; Il s’agit d’une technique aussi simple
qu’efficace pour commande de dynamiques non-linéaires, inconnues ou partiellement connues.
La commande par backstepping et la commande par mode glissant sont également proposées
a des fins de comparaison.

Toutes les méthodes de controle sont mises en oeuvre en échantillonnage a pas constant et
en schéma déclenché par événements selon cinqg scénarios différents. Dix critéres sont choisis
pour évaluer les performances des méthodes de controle, incluant I'erreur maximale absolue

de suivi, la variance de ’erreur, le nombre d’actionnement et la consommation d’énergie.
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Chapter 1

Introduction

1.1 Background

Nowadays, unmanned aerial vehicles (UAVs) are intensively studied in military and civil-
ian applications [87]. An unmanned aerial vehicle is an aircraft without a human pilot,
which is autonomous or piloted remotely. Depending on the applications, UAVs have various
shapes, sizes and configurations. Their sizes range from full-scale aircraft to Micro-Electro-
Mechanical System (MEMS). The number of the motors varies from two to four or even
more. The configurations are from simple microprocessors to systems with embedded vision,
GPS navigation, wireless communication, etc. Due to the limitations of unmanned ground
vehicles (UGVs), UAVs draw a great attention in research and industry. UGVs highly depend
on surface conditions. If the ground is grass or water, the reliability of UGVs is reduced.
UAVs fly in the air and have no contact with ground. This gives UAVs a larger mobility
especially to the places where UGVs are not accessible. As conventional aircrafts and pilots
are usually expensive and the flight area is often limited, UAVs are a better alternative to
manned aerial vehicles.

UAVs have many applications, such as border patrol, surveillance, search and rescue,
mapping, communication network, aerial photography, etc. Without human pilots, UAVs
are especially suited for dangerous or monotonous missions. In military applications, UAVs
are used as reconnaissance and surveillance aircrafts. The development of the high density
power storage, especially electrical batteries, makes the civilian application of UAVs realistic.
The size of UAVs is reduced, which means less production materials, cost and energy con-
sumption. It makes UAVs accessible for civilian applications. Small aerial Vehicles (SAVs)

and micro aerial vehicles (MAVs) are the principal focus in UAV studies, particularly in
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civilian applications.

In the last decades, quadrotors became popular in UAV researches due to their simplicity
in design and maneuver. A quadrotor, also called a quadrotor helicopter or quadcopter, is
a vertical take-off and landing (VTOL) aircraft lifted and propelled by four rotors. It has a
cross structure with one rotor at each arm (namely front, back, left and right). The front
and back rotors rotate in the other direction with respect to the left and right rotors. A
quadrotor is lifted by the sum of the thrusts of each rotor, and propelled by the differences of
the thrusts. The major advantage of quadrotors is its simplicity in design and its feasibility
in maneuver. Unlike flapping wing aircrafts, quadrotors have rather simple structures. The
production cost is cheap, which makes them available in civilian applications and scientific
researches. Unlike fixed wing vehicles need minimum velocity to fly, quadrotors are capable
to hover, which enlarges its applications. Quadrotors have relative simple dynamics, and is
controlled only by the rotational speeds of the four rotors. This makes quadrotors a good
workbench for further researches, such as vision, mapping, wireless communication, sensor

networks, etc.

1.2 Two Inspiring Examples

In this section, two examples are exposed. In the first example, the limitation of the tra-
ditional PID control is presented. As widely known, classical PID controllers have simple
control laws and do not necessarily need specific knowledge of the system. This is one of the
reasons of its popularity in process control [1,78]. Although traditional PID controllers are
widely used in industrial control, they show poor performance for several classes of nonlinear
systems, such as the quadrotor system. Therefore, the studies on superior control methods
for the quadrotor system are needed.

In the second example, the different performances of a control system in an ideal case
and in a realistic case are pointed out. Usually, when a new control method is proposed,
some simulations are made in an ideal case to prove the good performance of this method.
The control gains are usually high to get a better performance. In ideal cases, the simulation
results are good with small tracking errors. However, the close loop systems with high gains
loose its stability quite quickly in realistic cases with disturbances. Therefore, it appears
that the comparisons of different control methods in ideal cases are not enough. We can
not say one control method has a better performance than another simply according to the

performances in ideal cases.
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1.2.1 Limitation of the Traditional PID Control

Traditional PID controllers are widely used in industrial controls. However, when the sys-
tem is highly nonlinear, time varying with multiple states, PID controllers show poor per-
formances. Here, we implement a traditional PID control on the quadrotor model which in
proposed in Chapter 2 (see Equation (3.2)). The control laws are described in Subsection

4.3.4. The selected control gains are shown in Table 1.1.

Table 1.1: The PID control gains

k21 k3 04 k005 |k 02 k3 025 k¥ 0.001
kY02 kY 025 kY 0.001| kS 12 k) 05 k05

(2

Ko12 k) 05 k! 05 | kY 1.2 k) 05 k' 05

tracking errars, m

10 20 30 o 10 20 30

Figure 1.1: A PID control of a quadrotor. The trajectory along the x axis (a), along the y
axis (b). x,, y. the references. (¢) The tracking errors along the x and y axis.

The simulation results along the axis x and y are shown in Figure 1.1 (a) and (b).
The values x, and y, are the references. We observe that the traditional PID control has
poor performance on this nonlinear model. It has a slow response time with respect to the
desired performance, which gives noticeable tracking errors as shown in Figure 1.1 (c¢). The
maximum absolute tracking error is 1.5m, which is 75% of the fly distance 2m. We can see
this traditional PID controller does not suffice in terms of response time for this class of
nonlinear system. Therefore, the studies on the control methods for the quadrotor system

are necessary.

1.2.2 Difference Between Ideal and Realistic Cases

In the literature, control methods are usually simulated or tested in ideal cases without any

disturbance. In order to get a better result, high control gains are usually chosen. In realistic

3
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cases, there are many disturbances and uncertainties. A control system with high control
gains, which is more vulnerable to changes, may lose its stability in realistic cases. Therefore,
the performance in ideal cases can not fully show its features of a control method. It should
be tested in different realistic cases to show its advantages and disadvantages.

Here, a backstepping control proposed in Chapter 4 is firstly simulated in an ideal case
without disturbances and uncertainties. The chosen control gains are in Table 1.2, which
are selected to obtain the smallest maximum absolute tracking error in the ideal case. The
tracking errors along the z, y and z axis are shown in Figure 1.2 (a). In the ideal case, the
system shows its stability during the simulation. Used these control gains, the backstepping
control has the smallest maximum absolute tracking error 0.009m, which is only 0.45% of

the fly distance 2m.

Table 1.2: The backstepping control gains in the ideal case
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Figure 1.2: A backstepping control with the control gains in Table 1.2. (a) in the ideal case.
(b) with wind disturbance.

When wind disturbances occur, such as the one proposed in Chapter 4, the system loses its

stability quickly using the same gains in Table 1.2, as shown in Figure 1.2 (b). The results

4



1.3. Motivations Chapter 1. Introduction

in the ideal case are not enough to show comprehensively the performance of the control
method. Therefore, control methods should be tested in realistic cases with disturbances

and uncertainties to show their features.

1.3 Motivations

In the last decades, quadrotors have been intensively studied. However, there are still many

challenges in the control of a quadrotor.

(1) Modeling: simple for computation and close to the real dynamics of quadro-
tors.

The nonlinear aerodynamics of quadrotors is rather complex. The aerodynamic forces,
the thrust and drag force, are usually modeled as a function of the square of the rotor speed,
and the coefficients in these functions are changing while the movements of the quadro-
tor. The drag forces can be classified as induced drag, translational drag, profile drag and
parasitic drag, which are changing with the change of the airflow velocity. The changes of
the airflow cause many aerodynamic effects, such as the balding flapping, ground effect and
vertical descent effect [16]. These make the mathematical modeling imprecise under certain
situations. The aerodynamics is difficult to be modeled in mathematical expressions.

Several dynamic models have been proposed in the literature. Altug et al. have proposed
a simple dynamic model in 2002 [4]. In this simple model, only the important aerodynamic
thrust force and yawing moment are considered. All other aerodynamic effects are neglected.
This model is simple for computation, however it has a bigger difference to the real dynamics
than other models. Then, a more realistic model is proposed by Bouabdallah in 2007 [20].
The aerodynamic forces and moments are modeled as functions of the square of the rotor
speeds. The parameters are evaluated in static tests, and considered to be constants during
the flights. Actually, the parameters are variables and changing during the applications. In
this model, some secondary aerodynamic effects are neglected, such as the blade flapping,
induced drag, ground effect, etc. Purwin et al. have proposed an iterative learning technique
for compensating the errors of current dynamic models in 2009 [86]. However, this may take
too many computational resources, as quadrotor systems are usually embedded systems.

Therefore, finding a dynamic model which is simple for computation and at the same

time close to the real dynamics is always a challenge in the quadrotor researches.
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(2) Control method: low algorithm complexity and strong stability.

As in the first inspiring example, the traditional PID has poor performance in the control
of a quadrotor. Therefore, a control method with more system information is needed for the
quadrotor control.

The complexity of the control algorithm should be rather low. The embedded processors
in a quadrotor usually have limited processing speed and computational resources. In the
applications, quadrotors need to execute many other tasks: photo shooting, target detection,
object delivery, etc. There are other systems which need many computational time and
resources. Therefore, the motion control system should be rather simple and use only a
small portion of the computational resources.

The control method should also be capable to compensate the model errors. As mentioned
above, the aerodynamic effects are hard to be expressed precisely in the control model. The
modeling errors always exist. Moreover, due to the computational limits of the embedded
processors, the control model sometime is further simplified in order to get a simpler control
law. This will further increase the modeling errors. In addition, the parameters of the
quadrotor system are measured by static tests or some softwares. There may be parameter
uncertainties too. Therefore, the control method should be rather stable to compensate these
model and parameter errors.

In realistic scenarios, there are many disturbances. Low cost and small sized Inertial
Measurement Units (IMUs) are less accurate and have noises and drifts. The environment
produces unexpected disturbances, such as wind disturbance. The control method should
be able to compensate these disturbances, and keep the stability of the system with less
tracking errors and vibrations possible.

Therefore, finding a control method which has a low algorithm complexity and which is
capable to keep a good performance during disturbances is always a challenge in the quadro-

tor researches.

(3) Comparison of different control methods: in realistic scenarios with dis-
turbances and uncertainties.

Many control methods have been proposed for the quadrotor system in the literature.
The controls using Lyapunov theory have been proposed by Castillo et al., Bouabdallah et
al.. The Backstepping controls have been used by Altug et al., Bouabdallah et al., Castillo
et al., Madani et al.. The Sliding mode controls have been proposed by Hoffmann et al.,

Waslander et al., Bouabdallah et al.. A dynamic feedback technique to linearize the system
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has been proposed by Mistler et al.. A mixed robust feedback linearization with linear GH,
controller has been applied by Mokhtari et al.. An adaptive control has been proposed by
Guenard et al.. Further detail about these control methods can be found in Section 1.7 of
Chapter 1.

However, these methods were usually implemented in ideal scenarios. As shown in the
second inspiring example, the good performance in ideal scenarios can not ensure the same
good performance in realistic scenarios. In the literature, control methods are usually tested
in ideal scenarios. These results can not comprehensively show the features of a control
method. The performance of these control methods in realistic scenarios are rarely proposed.
Quadrotors have many applications (see Section 1.5 of Chapter 1 for further details). In
these applications, there are a lot of disturbances and uncertainties. Without knowing the
performance of a control method in realistic scenarios, it is hard to foretell its performance
in these applications.

The comparisons among several control methods were rarely proposed in the literature.
Many control methods have been proposed in different ideal scenarios. It is difficult to
compare their performance and further know their advantages and disadvantages. In appli-
cations, different tasks have different system demands: the search & rescue task demands a
fast system response time; the aerial photography task demands less system vibration, etc.
Without knowing the advantage of each control method, it is hard to choose an appropriate
method for a specific application.

Therefore, the comparisons of different control methods in realistic scenarios are needed

to choose an appropriate method for a certain application.

1.4 Existing Quadrotors

The ‘Gyroplane No.1’, one of the earliest manned quadrotors, is built by Louis and Jacques
Breguet with the help of Professor Charles Richet in 1907 in France (see Figure 1.3). It
was not a free helicopter, neither controllable nor steerable. But it was the first time a
rotary-wing device had lifted itself and a pilot into the air [14].

In 1920s in France, Etienne Oehmichen has designed several quadrotors [79]. The ‘Oehmichen
No.2’ is probably the first reliable manned helicopter (see Figure 1.4).

The american George de Bothezat has built ‘Convertawings Model A’ (see Figure 1.5),
and the first flight took place in 1956. It was also the first four-rotor helicopter which

demonstrated successful forward flight [29].
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Figure 1.4: Oehmichen No.2.
(The source: www.helid.com.)

Figure 1.5: Convertawings Model A.
(The source: www.aviastar.org.)

Figure 1.6: Curtiss-Wright VZ-7 (left) and X-19 (right). (The source: aviastar.org.)

The ‘Curtiss-Wright VZ-7" was designed by the company Curtiss-Wright for the US Army
in 1958 (see Figure 1.6). It was controlled by changing the thrust of the four propellers [30].
In 1963, Curtiss-Wright Corporation developed the ‘X-19’ for the United States Air Force
(see Figure 1.6). However it was destroyed in a crash in 1965, and the program of X-19 was
subsequently cancelled |31].

In the last decades, various micro unmanned aerial vehicles were designed for scientific

researches and civilian applications. There are many successfully commercialized quadrotors,
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Figure 1.7: Draganflyer X4-P. Figure 1.8: 4 cell 2700mAh Lithium Polymer
(The source: www.draganfly.com.) battery. (The source: draganfly.com.)

such as Draganflyer, AscTec, AR.Drone, DJI Wookong, Gaui Quad flyer, etc.

Draganflyer Innovations Inc has designed several ‘Draganflyer’ quadrotors since 1998
(see Figure 1.7). There are several types of quadrotor: Draganflyer X4, X6 and X8. They
are built using rugged carbon fiber, glass filled injected nylon parts and brushless electric
DC motors. The dimension of the quadrotors is about 70cm width, 70cm length and 25cm
height. The weight with battery varies from 680g to 1700g, and the payload capability is from
250g to 800g. The onboard battery is usually the Lithium Polymer (LiPo) battery with a
maximum voltage 14.8V (see Figure 1.8). The capacity of the batteries varies from 2700mAh
to 5400mAh, which enables a quadrotor fly approximately 20 to 30 minutes on a charge. The
Draganflyer X4 is equipped seven sensors: three gyroscopes, three accelerometers and one
barometric pressure sensor. The Draganflyer X8 is equipped eleven sensors: three gyroscopes,
three accelerometers, three magnetometers, one barometric pressure sensor and one GPS
receiver. All of these sensors are constantly feeding data to the onboard flight computer. An
onboard camera and its corresponding software ‘DraganView’ are also provided. Using the
data from the sensors, an onboard software ‘SteadyFlight” can automatically adjust the flight
control and maintain the stability. The control method used in ‘SteadyFlight’ is not available
to public. The Draganflyer quadrotors can also be controlled by a handhold flight controller.
The Draganflyer quadrotors are used in many applications, such as public safety services,
industrial maintenance and inspection, photography and videography, etc. Moreover, they
are used in scientific researches in many universities, such as MIT, University of Maryland,
Vanderbilt University [39)].

Ascending Technologies also proposes several quadrotors and multicopters since 1998 [2].
The AscTec Flacon is designed for professional image and video recordings. The AscTec
Firefly, Pelican and Hummingbird are designed for different scientific researches (see Figure

1.9). The Pelican is designed with a maximized power and plenty of space for further devel-

9
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(@ (d)

Figure 1.9: AscTec (a) Falcon. (b) Pelican. (c) Firefly. (d) Hummingbird. (The source:
www.asctec.de.)

opment. The Hummingbird is designed for aggressive and fast flight maneuvers. Its robust
frame tolerates hard landings and the simple structure makes it easy to repair. The weights
of Pelican and Hummingbird with battery are 510g to 630g respectively, and the maximum
payloads are 200g and 650g. The Hummingbird has four HACKER, X-BL 52s brushless DC
motors and a 3 cells 11.1V 2100mAh Lithium Polymer (LiPo) battery which enables the
quadrotor fly about 20 minutes. The Hummingbird has two microcontrollers ARM 9 and is
equipped nine sensors: three gyroscopes, three accelerometers, one 3D magnetometer, one
barometric pressure sensor and one GPS receiver. The quadrotors can be controlled by a
handhold flight controller. The AscTec quadrotors are widely used in scientific researches,
such as the University of Pennsylvania. They provide an user program which runs at 1kHz
to let users to build their own motion control algorithm.

The AR. Drone is produced by Parrot SA since 2010 (see Figure 1.10). It equips two
onboard HD cameras, and sends real-time images to the controller via Wi-Fi. It is a well
developed quadrotor toy which is remotely controlled through a user-friendly graphical in-
terface application on iphone, iTouch or ipad [3]. AR. Drone, full name Augmented Reality
Drone, is designed for video games and home entertainment. The price is less than 300

euros. It equips a 3 cells 11.1V 1000mAh Lithium Polymer (LiPo) battery which enables a

10
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Figure 1.10: AR. Drone. Figure 1.11: Phantom.

(The source: www.ardrone2.parrot.com.) (The source: www.dji-innovations.com.)

Figure 1.12: Gaui 330X (left) and 500X (right). (The source: www.gaui.com.tw.)

quadrotor fly about 10 to 15 minutes. The system has two cameras, three gyroscopes, three
accelerometers, one sonar and two microcontrollers. In 2011, Bristeau et al. have exposed
the inside navigation and control system in their paper [15]. The system is controlled by

several PID controllers.

DJI Innovations also produces quadrotors, multicopters and autopilot systems for com-
mercial and recreational use. The quadrotor Phantom has a dimension 35cm width, 35cm
length and 19c¢m height (see Figure 1.11). It equips a 3 cells 2200mAh Lithium Polymer
(LiPo) battery which enables a quadrotor fly approximately 10 to 15 minutes. The maxi-
mum tilt angle of the Phantom is 45 degrees. The maximum ascent or descent speed is 6m/s,
and the maximum flight velocity is 10m/s. The Phantom has an integrated flight dynamics
control system, Naza-M+GPS autopilot system, to ensure the stability of the system. The

control method is not available to public. It can also be controlled by a remote controller.

TSH Gaui Corporation is dedicated to produce helicopters and multicopters since 1996.
It has released the quadrotors 330X and 500X in 2010 (see Figure 1.12). The quadrotors
have a dimension 33 cm width and length, and the maximum payload is from 700g to 2200g.

11
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Figure 1.13: ANU x4 [83]. Figure 1.14: EPFL 0S4 [20].

It has a 2 cells 2000mAh Lithium Polymer (LiPo) battery, and the flight duration is about
12 minutes. It has a three axis stabilizing system GU-344 to ensure the stability during the
flight. The control method is not available to public.

Many open-source projects (OSPs) are also developed on quadrotors, such as Arducopter
[12], Aeroquad [13], Openpilot [80], Paparazzi 81|, Pixhawk [82], Mikrokopter [75], KK-
multicopter [65], Multiwii [76], etc. OSPs use community-hosting sites to generate code or
schematics freely. Arducopter provides a graphical-user-interface (GUI) based software to
tune control gains and display flight information. Openpilot has a real-time operating sys-
tem modified from FreeRTOS and a GUI software which is similar to Arducopter. Paparazzi
provides nine different autopilot hardware systems which are developed by ENAC university
and a GUI based GCS with flight path scripting. Pixhawk project has computer vision e-
quipment developed by ETHZ computer vision group. Mikrokopter is provided by HiSystem
GmbH in 2006. It has a GUI based software for gain tuning and health monitoring.

Many universities have also developed their own quadrotors. The Australian National
University has built ‘X-4’ since 2004 (see Figure 1.13). The X-4 is much heavier than other
quadrotors. It weighs 4.34kg with battery and the maximum payload is 1kg. It comprises a
chassis made from aluminium and carbon-fibre and JETI Phasor 30/3 brushless motors. It
has a 4 cells 14.8V 2000mAh Lithium Polymer (LiPo) battery which enables the quadrotor
fly about 11 minutes. Further details about X-4 can be found in Pounds’s thesis [83]. The

control methods used on ‘X-4’ can be found in Section 1.7.

EPFL (Ecole Polytechnique Fédérale de Lausanne) has designed ‘OS4’ since 2004 (see
Figure 1.14) . Tts weight is 650g. The OS4 has an onboard mini PC for obstacles avoidance,

communication and a DSP for attitude and altitude control. Tt has three gyroscopes, three

12
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accelerometers, five range sensors and one camera. Further details about OS4 can be found
in Bouabdallah’s thesis [20]. The control methods used on ‘OS4’ can be found in Section
1.7.

Other quadrotors built by universities can be found in Section 1.7 Existing Quadrotor
Control Methods.

1.5 Quadrotor Applications

Due to the simplicity in design and maneuver, quadrotors have many applications. As
conventional aircrafts and pilots are usually expensive and the flight area is often limited, a
quadrotor can be a good alternative. A quadrotor is easy to be transported, and can be set
up, controlled simply by one person. The price of a quadrotor is much cheaper than renting
a conventional aircraft. A normal commercialized quadrotor costs less than 8000 euros.

In public safety, quadrotors are used for border patrol, surveillance, search & rescue, etc.
The commercialized quadrotors Draganfly [39] have been used in many police agencies, such
as Prince Albert police service, Royal Canadian mounted police.

In these applications, quadrotors need a rather long flight duration to finish the tasks.
The flight duration time depends on two factors: the capacity of the onboard battery and the
energy consumption of the quadrotor system. The commercialized quadrotors usually use
Lithium Polymer (LiPo) batteries, which have a significantly lighter and higher capacity than
an equivalently shaped conventional rechargeable battery. The 4 cell 12V 2700mAh battery is
the most common configuration used in many quadrotor systems, such as Draganfly X4 [39]
and AscTec Hummingbird [2]. It permits a quadrotor fly about 15 to 20 minutes. The
Draganfly X8 has an enhanced power, a 5400mAh lithium polymer battery, to ensure a
longer flight duration. However, a bigger battery capacity means a heavier load and a more
expensive price. In order to extend the flight duration, we can also reduce the consumption
of the quadrotor system. Using a less powerful CPU (center processing unit) can save
unwanted energy consumption. However, less powerful CPU means less processing capacity.
Other systems, such as vision system, need many processing resources. Therefore, basic
motion control systems should have rather simple algorithm, and at the same time should
have rather high precise performance. In this situation, a control method with a simple
algorithm and high performance is needed.

Moreover, especially in the search & rescue tasks, there are many unexpected obstacles.

Quadrotors should have fast response to avoid collisions. Therefore, control methods should
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have fast system adjustment to sudden changes.

Quadrotors are also used for aerial photography and video. The AscTec Falcon is designed
especially for this application [2]. A quadrotor can be used for commercial purposes, such as
the shooting for a wildlife documentary, the aerial view for an advertisement of a real estate,
the aerial video for a sport event. It can be also used for personal purpose to record some
pictures and videos for souvenir. For the commercial aerial photography and video, the high
quality of the photos and videos should be ensured. The pictures should not be blur, and
the videos should be taken while moving smoothly. Obtaining high quality aerial pictures
and videos can be a big challenge. It depends on the configuration of the onboard camera,
and most important the stability of a quadrotor when hovering or moving. Quadrotors need
to hover or move with smallest vibrations to ensure the quality of the image. Therefore,
the motion control system should be capable to tolerate signal noises from sensors, such as
accelerometers and gyroscopes, and arrives a rather stable performance.

Moreover, as the shooting are taken in different circumstances and under different weather
conditions, the stability of the quadrotor system is very important. There may be some
weather disturbances, such as wind, temperature and humidity. The motion control system
should be capable to tolerate these disturbances with smallest tracking errors and vibrations
possible.

As discussed above, here we list some criteria that a control system should have :

e Complexity of the control algorithm: the number of the addition and multiplication

operations in the control law.

e Maximum absolute tracking error.

e Variance of the tracking error.

e Robustness to model uncertainties: the change in the tracking error.

e Robustness to disturbances: the change in the tracking error.

e Adjusting time to disturbances: the time needed to return to the stable state.

e Energy consumption: the energy spent on motion control.

14



1.6. Ezxisting Quadrotor Models Chapter 1. Introduction

1.6 Existing Quadrotor Models

Several quadrotor dynamic models have been proposed in the literature. However, there is

no standard model.

Altug et al. have proposed a simple dynamic model in 2002 [4,5]. This simple dynamic
model used Euler angles with ZYX rotational sequence and considered only the thrust force
and yawing moment. All the other aerodynamic forces and moments are neglected, such
as drag forces. The thrust is the propulsion which makes quadrotors fly and move forward.

The yawing moment is the moment which makes the quadrotor rotate about its hub.

Fay has deduced mathematically the aerodynamic forces and moments of a small quadro-
tor named mesicpter in 2001 [42]. Based on the blade element theory, he has obtained explicit
expressions of important aerodynamic forces and moments. There are two major aerody-
namic forces: the thrust and the hub force. The thrust is the propulsion. The hub force is
the drag force caused by airflow. There are also two crucial aerodynamic moments: the rotor
torque (yawing moment) and the moment caused by the blade flapping effect. The rotor
torque makes quadrotor turn about its hub, and the moment caused by the blade flapping

effect makes quadrotor turn about its main plane which is perpendicular to the hub.

Hoffmann et al. have analyzed the aerodynamic effects on a quadrotor in 2007 [55]. The
first effect is that the total thrust varies not only with the power input, but also with the free
stream velocity and the angle of attack with respect to the free stream. The second effect
is the blade flapping, that is, the advancing and retreating blades cause different inflow
velocities. This induces the roll and pitch moments on the rotor hub as well as a deflection
of the thrust vector. This moment is the rolling moment mentioned by Fay in the previous
paragraph. The third effect is the interference caused by the vehicle body in the slip stream

of the rotor, which results an unsteady thrust behavior.

Bouabdallah has studied the kinematic and dynamic models in 2007 [20]. He considered
the aerodynamic forces and moments which were deduced by Fay [42]. He had also taken
the gyroscopic effect into account. When a rotating rotor rotates about a perpendicular axis
to its hub, it also causes a rotation about a third axis which is perpendicular to the former
two. This effect is called the gyroscopic effect. Moreover, he noticed that the center of mass
may be not on the same plane as the rotors, which causes extra moments about the roll and

pitch axis. The propeller frictions are also considered in the dynamic model.

Purwin et al.have proposed an iterative learning technique for compensating the errors of

the current dynamic model in 2009 [86]|. The reference trajectory was computed as the solu-
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tion of an optimal control problem. Based on a lifted domain description of that same model,
an iterative learning controller was synthesized by solving a linear least-squares problem. The
non-causality of the approach makes it possible to anticipate recurring disturbances.
Bangura et al. have pointed out that existent dynamic quadrotor models usually had
constant thrust and moment coefficients which were derived from static thrust tests in 2012
[16]. These models are no longer valid when quadrotors have dynamic manoeuvres with
significant displacements. Therefore, they have proposed an implicit thrust model that
incorporates the induced momentum effects associated with the change of the airflow through

the rotor. The proposed model used power as input to the system.

1.7 Existing Quadrotor Control Methods

In the last decades, many control methods have been proposed for quadrotors.

At the GRASP laboratory in the University of Pennsylvania, Altug et al. have proposed a
controller using visual feedback as the primary sensor in 2002 [4,5]. Two control methods are
studied. In the first method, the states z and z are controlled using a feedback linearizing
controller, and the state y and angle yaw are controlled using a PD controller. In the
second method, a backstepping control is used for the states z and y, and a PD controller
is used for the altitude z and angle yaw. These methods are proved to be able to stabilize
a quadrotor. The problem is the switching between controllers in the control system. In
2007, Gurdan has presented a control system for a quadrotor AscTec Hummingbird [48].
The control system is divided into two subsystems: angular and position subsystems. Each
subsystem is controlled by PD controllers. In 2010, the GRASP laboratory has developed
a testbed for multi-quadrotors using AscTec Hummingbird [66]. In 2012, Mellinger et al.
have developed iterative learning controllers refined through successive experimental trials
automatically to compensate the errors in the dynamic model and the noises in the actuators
and sensors [67,68].

The Stanford University has designed the Stanford Testbed of Autonomous Rotorcraft for
Multi-Agent Control (STARMAC) which is based on the early design X4 flyer of Draganflyer
in 2004 [52-54]. In the testbed, Hoffmann et al. have proposed a sliding mode controller
for the altitude loop control and an inner loop standard linear quadratic regulator (LQR)
controller for the simplified second order rotational dynamic model [52]. In 2005, Waslander
et al. have developed two control methods: an integral sliding mode control and a reinforced

learning control to accommodate the combination of noises and disturbances on a quadrotor.
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These methods have an improved performance over classical control techniques [98]. In
2007, Hoffmann et al. have extended their study on the aerodynamic modeling of a moving
quadrotor, and proposed a PD and a PID controller for each subsystem [55].

The Australian National University has built ‘X-4’ since 2004 (see Figure 1.13). More
details about X-4 can be found in Pounds’s thesis and papers [83,84]. Pounds has derived
decoupled dynamics in longitudinal (pitch/roll) and azimuthal modes, and implemented the
linear SISO control on the decoupled dynamics [85]. In 2012, Bangura et Mahony have
pointed out the usual dynamic quadrotor model is based on the constant thrust and torque
which are no longer valid when a quadrotor undertakes dynamic manoeuvres with significant
displacement velocities. They have thus proposed an implicit thrust model with the induced
momentum effects [16]. Then based on the model proposed, a Nonlinear Model Predictive
Control (NMPC) is implemented on a quadrotor.

EPFL (Ecole Polytechnique Fédérale de Lausanne) has designed ‘OS4’ since 2004 (see
Figure 1.14) [17-19]. The parameters of the OS4 and the comparisons with other models can
be found in Bouabdallah’s dissertation [20]. Bouabdallah has presented a dynamic model of
quadrotor and proposed many control methods on OS4, such as a control using Lyapunov
theory, a PID control, an optimal control, a Linear Quadratic (LQ) control, a backstepping
control, a sliding mode control [20]. These methods are dedicated to the stabilization of
the three Euler angles. However, there was no trajectory tracking test and further tests in
realistic scenarios. In 2004, Bouabdallah et al. have shown the PID control has a better
performance than LQ control under model imperfections [21]. In 2005, Bouabdallah et al.
have shown the backstepping control has a better result than the sliding mode control due

to the switching nature of the latter controller [22].

At the University of Technology of Compiégne (UTC France), Castillo et al. have ob-
tained a dynamic model via a Lagrange approach, and proposed a controller based on the
Lyapunov analysis using a nested saturation algorithm on a Draganflyer in 2004 [32,33]. In
2006, Castillo et al. have proposed a controller using the backstepping technique and satura-
tion functions [34]. The comparison with a classical PD controller was also proposed. Some
aggressive perturbation forces were manually added to the system during the experiments.
The control algorithm had shown to be robust to these disturbances. However, there was
no comparison with other control methods. A book on modeling and control of mini-flying
machines is also written by Castillo et al. [35].

At the Robotics Laboratory of Versailles (France), Mistler et al. have shown that the

nonlinear dynamics in the quadrotor model can not be linearized or decoupled into a non-
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linear SISO system by using a static state feedback. They have used a dynamic feedback
technique to linearize the system, which makes the closed loop system linear and controllable
in 2001 [69]. The stability and the robustness of the proposed control under wind disturbance
and parametric uncertainties were studied. However, there was no comparison with other
control methods. Mokhtari et al. have applied a dynamic feedback controller of Euler angles
in 2004 [70], a mixed robust feedback linearization with linear GH,, controller in 2005 [71]
and with a sliding mode observer in 2006 [72]. In 2006, Madani et al. have proposed a full
state backstepping technique on quadrotor by separating the system into three interconnect-
ed subsystems [74]. In 2006, Benallegue et al. have presented a feedback linearization-based
controller with a high-order sliding mode observer. The sliding mode observer worked as an
observer and estimator of external disturbances such as wind and noises [23,24].

At CEA France, Guenard et al. have proposed an adaptive control method on a quadrotor
X4-Flyer in 2006 [49]. An attitude control based on the model of the rotor-craft was designed
for stationary and quasi stationary flights. An adaptive controller was developed based on
ultrasonic measurements in order to limit the ground effects for the altitude stabilization.
Guenard et al. have proposed a practical visual servo control for an unmanned aerial vehicle
in 2008 [50]. Bertrand et al. have proposed a hierarchical controller for miniature VTOL
UAVs using singular perturbation theory in 2011 [28].

At the University of Alabama (USA), Besnard et al. have developed a sliding mode con-
trol driven by a sliding mode disturbance observer in 2007 [25]. The proposed method was
robust to external disturbance (including wind, collision, actuator failure) and model uncer-
tainties without using high control gains or extensive computational power [26]. However,
there was no comparison with other control methods.

At the Cranfield University (UK), Cowling et al. have proposed a LQR controller for path
following in 2007 [36]. They also presented a trajectory planning method using a differential
flatness property as a constrained optimization problem in the output space (as opposed
to the control space). The control method has been simulated with noise and with wind
disturbance modeled as a drift in the translational position [37]. However, there was no
comparison with other control methods.

At the Lakehead University (Canada), Tayebi et al. have proposed a PD? controller,
where the proportional action is in terms of the vector quaternion and the two derivative
actions are in terms of the airframe angular velocity and the vector quaternion velocity since
2004 [92-94]. The method have only tested in ideal cases.

At the University of Sevilla (Spain), Raffo et al. have proposed an integral predictive and
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nonlinear H., controller in 2010 [88,89]. It was a hierarchical scheme consisting of a model
predictive controller (MPC) to track the reference trajectory together with a nonlinear H,
controller to stabilize the rotational movements. The method was simulated in the scenarios
with parametric uncertainties in comparison with the backstepping control proposed by
Bouabdallah [20].

At the University of Patras (Greece), Alexis et al. have presented a switching model
predictive attitude controller based on a piecewise affine (PWA) model in 2011 [6]. The

control method is tested in the case with wind disturbance.

1.8 Contributions

This dissertation is motivated by the challenges in the modeling and control of a quadrotor
mentioned in Section 1.3. Therefore, the contributions of this thesis can be summarized as

follows:

e A new dynamic model is proposed and a dynamic analysis based on the normal form

theory is given.

e A new control method, the event triggered model free control, is proposed for the

quadrotor system.
e Comparisons of several control methods in five realistic scenarios are given.

(1) Modeling.

In this thesis, the relationship of the kinematic variables between the body and world
frames are firstly shown. Then, the aerodynamic forces and moments are presented. The
world and body frames and the Euler angles rotational sequence are selected based on the
most generally used references. The modeling is based on the Bouabsallah’s modeling. The
Bouabsallah’s model is one of the most complete modeling in the literature. However, there
are some errors in his model. The hub force is calculated using the linear velocities along the
Z, and y,, in the world frame. These are not exact. The hub force should be calculated using
the linear velocities along the x;, and v, in the body frame on the quadrotor plane, as the
aerodynamic force is caused by the airflow speed related to the quadrotor which is changed
due to the quadrotor plane. Moreover, some directions of the forces and moment are not
correct, such as the direction of the rolling moment, etc. The frames used in Bouabsallah’s

thesis are not the same as in his program, which is a little bit confusing. Therefore in this
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thesis, the chosen world and body frames, the relationship of the linear and angular velocities,
the aerodynamic forces and moments are clearly presented. The errors in the Bouabsallah’s

thesis are corrected. Some unnecessary aerodynamic forces and moments are neglected.

Then based on the normal form theory, the dynamics of the quadrotor is analyzed. The
dynamics of the quadrotor has never been studied intensively in the literature. The model
of a quadrotor is simplified into a simplest form which exhibits all possible properties of the
original system. In the original model, the control inputs are coupled with the states, which
makes the analysis of the system difficult. In the normal form, the system states are no
longer coupled with the system inputs, and we can see the pitch angle # has more influence
on the x axis and the roll angle ¢ has more influence on the y axis. The bifurcations of the
simplified system are studied. Using the center manifold theory, the system can be further
simplified at its bifurcation point. The twelve dimensional system is simplified into a two

dimensional system which exhibits all possible properties of the original system.

(2) Control methods.

In the first inspiring example, the traditional PID controller has poor performance in
the control of a quadrotor. As discussed in Section 1.3, quadrotor systems bring out many
challenges: the complexity of the control algorithm should be simple; the control method
should be stable for model and parameter errors; the control method should be able to
compensate disturbances and keep the stability of the system with less tracking errors and

vibrations possible; etc.

Based on these needs, a newly proposed control method the model free control is imple-
mented on the quadrotor system. It is a simple but efficient technique for nonlinear, unknown
or partially known dynamics. Instead of computing the dynamics of a system, the dynamics
is evaluated as a variable F' in real time by the system inputs and outputs. Therefore, the
model free control can compensate well the modeling errors and real-time disturbances. The
algorithm of this control method is rather simple as it does not fully compute the dynamic
model. At the same time, the stability of this method is high as it compensates well the
disturbances. To further save the computational resources, the event triggered scheme is
proposed on this control method. The model free control adapts well the event triggered
scheme. While saving the computational resources, the performance of the event triggered
model free control is not heavily changed in comparison with the time triggered model free

control.
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In order to show its advantages and disadvantages, several other control methods are also
proposed, such as a backstepping control and a sliding mode control. Five different realistic

scenarios are proposed to get a comprehensive evaluation.

(3) Comparison of the control methods in different realistic scenarios.

As shown in the second inspiring example, the good performance of a control method
in an ideal case can not ensure the same good performance in a realistic case. Therefore
in this thesis, the applications of quadrotors have been carefully studied, and five typical
realistic scenarios have been proposed: a basic ideal case, a case with wind disturbance, a
case with parameter uncertainties, a case with sensor noises and a case with actuator faults.
In order to close to the realistic cases, the control gains of each control method are the same
in five different scenarios. The control gains are usually chosen beforehand and will not be
changed during the applications when the disturbances occur. From the results in these
realistic scenarios, we can get a comprehensive evaluation of the control methods, which is
more objective than using just the result in ideal cases.

In the literature, the comparison of the control methods are rarely presented. Lack of
a standard scenario, we can hardly say which method has a better performance. For this
purpose, several control methods are also implemented in these five scenarios. From the
results in different cases, the advantages and disadvantages of each method can be easily
observed. Therefore, an appropriate control method can be selected based on the needs of a

certain applications.

1.9 Outline

This dissertation is organized as follows: In Chapter 2, the kinematic and dynamic models of
quadrotor are presented. The aerodynamic forces and moments are studied. The full model
is proposed at the end of the chapter, and a simplified model is also presented based on
some applications. In Chapter 3, the normal form theory is implemented on the quadrotor
model, and a simplified model is obtained which exhibits all possible properties of the original
system. Then the bifurcations based on the simplified model are studied. Using the center
manifold theory, the model is further simplified at its bifurcation point. In Chapter 4,
the applications of quadrotors are studied, and five typical realistic scenarios are proposed.
Then, the time triggered and event triggered schemes are proposed. At the end, the model

free control and other control methods are presented. In Chapter 5, the time triggered and

21



Chapter 1. Introduction 1.9. Outline

event triggered control methods implemented in five scenarios are proposed in Chapter 4. In

Chapter 6, the conclusion is given and future work is discussed.
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Chapter 2

System Modeling

2.1 Introduction

Many dynamic models have been proposed in the literature. In Section 1.6, these models
were discussed in detail. However, there is no standard model. In this chapter, a kinematic
model and a dynamic model of quadrotor will be constructed. According to the literature,
the most common Euler angle sequence ZYX is selected. In the dynamic modeling, the
aerodynamic forces and moments deduced by Fay are used [42]. The dynamic model is based
on constant thrust and moment coefficients. Other important moments like the gyroscopic
effect moments are also considered. A simplified model is also proposed based on some
scenarios. At the end, considering the limits of the motor and the safety of the flight, some

constraints are given for the quadrotor system.

2.2 Preliminary Knowledge

Before analyze the dynamics of a quadrotor, several assumptions are made:
e The quadrotor is a rigid body.
e The propellers of the motors are also rigid.

e The quadrotor is symmetrical along the x and y axis in the body frame. The center of
the body frame coincides with the center of gravity. Therefore, I, = Iy, I,y = I, =

I, =0.

e The motor inertia is negligible.



Chapter 2. System Modeling 2.2.  Preliminary Knowledge

As the quadrotor is a rigid body, we can use the Newton-FEuler formalism for the dynamic

modeling.

In the analysis, the Cartesian coordinate system is selected as in Figure 2.1. The frame
W = {ZTw, Yuw, 2w} is the world frame. The axis z, is vertical to the ground, and the axis z,,
and y,, locate in the ground plane. The angles ¢, and 1 are Tait-Bryan angles (also called
Cardan or Euler angles), which rotate about the z,, y,, and z,, axis respectively. The frame
B = {xp, Yp, 2o} is the body frame. To simplify the mathematical expressions of physical
forces and moments, the center of the body frame coincides with the center of gravity (CoG).
The axis x;, and y;, are along the two arms of a quadrotor, and the axis z;, is vertical to the
arm plane. The body angular velocities are presented as p, ¢ and r, which are physically
measured by three gyroscopes sensors. The four rotors are numbered 1, 2, 3 and 4. The first
one is along the positive direction of the x; axis, and the second one is along the positive
direction of the ¥, axis. The third one is along the negative direction of the x; axis, and the
forth one is along the negative direction of the y;, axis. The rotor 1 and 3 rotate clockwise
(see from the top of the quadrotor). The rotor 2 and 4 rotate counterclockwise. In the
notation, the subscripts 1 to 4 of the forces and moments mean the number of the rotor.
For example, the propulsion forces, the thrusts, of each motor are defined 77, T5, T3 and T}

which are along the directions shown in Figure 2.1.

x'“' y-"f

Figure 2.1: The Cartesian coordinate system of a quadrotor.

For the simplicity of reading, the notations used in the kinematic and dynamic models
are listed in Table 2.1.
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Table 2.1: The notations used in the kinematic and dynamic models

Position, velocity and acceleration in the world frame Py, Vy, ay
Position, velocity and acceleration in the body frame Py, V. ay
Tait-Bryan angles (Euler angles) in the world frame o, 0,1
Angular velocities in the body frame D, q,T
Thrust T; Hub force H;
Rolling moment M, on Pitching moment Myiten
Rotor torque (yawing moment) Q; Blade flapping moment R;
Rotor gyroscopic effect moments M, M,, Gravity G

2.3 Kinematic Model

In the kinematic analysis, the relations of the positions, velocities and accelerations between
the world frame and the body frame are studied. Based on the frames defined in the previous
section, the translation between the world frame and the body frame can be expressed

explicitly.

2.3.1 Position, Linear Velocity and Acceleration

The Euler angles ¢, 6, i) are three angles introduced by Leonhard Euler to describe the
orientation of a rigid body. They represent a sequence of three elemental rotations about the
axes of a coordinate system. Any orientation can be achieved by composing three elemental
rotations. There are many rotational sequences, such as XYX, XYZ, YZY. For example, a
sequence XYX means a body firstly rotates about the x axis, then rotates about the y axis,
and at last rotates about the x axis again. Euler angles usually represent rotational sequences
about two axis, such as ZX7, XYX, YZY. This means there are two rotations about the same
axis. The Tait-Bryan angles represent rotational sequences along three different axis, such
as XYZ, YZX, ZYX. Generally we call Tait-Bryan angles also Euler angles. Here we use
a common rotational sequence ZYX for the Euler angles. It means a body firstly rotates
about the z axis, then rotates about the y axis, and at last rotates about the x axis. This

rotational sequence ZYX is used in many quadrotor modelings.

Therefore, the rotation matrix %2 from the world frame to the body frame is:
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Ry = R, 0)R(y,0) % (2,1))

1 0 0 cos 0 sinf| [cosyp —siny O
= |0 cos¢ —sing 0 1 0 singy  cosy 0
|0 sing  cos¢ —sinf 0 cosf 0 0 1 (2.1)
[ cosf cosy) cosf siny —sinf
= |singsinf cosy — cosgsiny  sing sinf siny + cos¢g cosy  sing cosd
| cos¢ sinf cosy + sing siny  cos¢ sinf siny — sing cosyy  cosg cosl

As the center of gravity coincides with the origin of the body frame, the origin P, =(0,0,0).
The distance bewteen the origin of the body frame and the origin of the world frame is
defined as r = P, — P,,. Therefore, an arbitrary point in the body frame P, = (xy, yp, 2p)

can be expressed in the world frame as:
P,=P,+%r (2.2)

The relation between the linear velocity in the world frame and the linear velocity in the

body frame can be obtained:

Vi = BV = 22"V,

cosf cosy  sing sinf cosy — cosgsinyg  cos sinfl cosy + sing siny

= |cosfsiny singsind siny + cosd cosyy  cose sinf siny) — sing cosy | Vi

(2.3)
—sin# sing cost cos¢ cost
or expressed in each coordinate as:
V¥ = (cosf cosy)) VP + (sing sinf cosy) — cosg Sinw)Vyb + (cosg sinf) cosyy + sing siny)) V2

V" = (cosfsiny)V,? + (sing sinf sinty + cos¢ cosyh)V,) + (cosg sinf sini) — sing cosy)) V)
V" = (—sing)V,? + (sing cosf)V;? + (cose cost) V!

z

(2.4)

Then, the relation between the linear acceleration in the world frame and in the body frame

can be obtained:

Aoy = %;UVU) (25)
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2.3.2 Angular Velocity and Acceleration

A rotational sequence ZYX is chosen for the Euler angles. It means the world frame firstly
rotates about its z axis, then rotates about its y axis and at last rotates about its x axis to
get the body frame. Therefore, the angular velocity (/5 is the same with the angular velocity
p about the x axis in the body frame, as the x axis is not rotated during the last step of the
rotation. The angular velocity 0 along the y axis is influenced only by the last step rotation
about the z axis. Therefore, this velocity only needs to multiply the rotational matrix about
the x axis. As the z axis is firstly rotated, its angular velocity w needs to multiply two

rotational matrice about the y axis firstly then about the z axis.

Therefore, the relation between the angular velocities p, ¢, r in the body frame and the

angular velocities $,0, 1 in the world frame is presented:

p ¢
q| =Rang |0
r 0
E 0 0
= |0 +Z"(x.0) |0| +Z"(x,0)%" (y,0) | 0 (2.6)
0 0 Y
1 0 —sinf b
=10 cosf singcosd| |6
0 —sing cos¢ cost w

sing tanf cos¢tand| |p
cos¢ —sing q (2.7)

singsecl cospsech | |r

<. . .
I
o O =

The relation between the angular accelerations in the body frame and in the world frame

can be obtained by differentiating Equation (2.6).

0 0

p
q - ‘@ang 9 + %ang 0 (28)
G U u
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2.4 Dynamic Model

In the dynamic analysis, we first write the Newton Euler equations for a quadrotor. Then, the
aerodynamic forces and moments applied on the quadrotor are studied. At last, a simplified

dynamic model is further deduced.

2.4.1 Newton Euler Formalism

In classical mechanics, the Newton Euler equations show the translational and rotational
dynamics of a rigid body. The Newton Euler formalism is the grouping of Euler’s two
motion laws for a rigid body into a single equation with six components. These laws relate
the motion of the center of gravity of a rigid body with the sum of external forces and
moments applied on the rigid body. Without loss of generality, we define the origin of the
body frame coincides with the center of gravity. Supposing there is a six degrees of freedom
(d.o.f.) rigid body which has a mass m and an inertia matrix I about the center of gravity,
I € R3*3. The linear velocity of the center of gravity is Vi, and the body angular velocity
is wp in the body frame, Vi, w, € R3*!Y. The external force and the moment are Fy, and
M, in the body frame, Fy, M, € R3*!.

Therefore, the relation between the velocities and the external forces and moments in the

[TTLI 03><3] [Vb] n [wb X (me)] _ [Fb
O3x3 I | [ws wp X (Lwp) M,

The subscript 3x3 shows the dimension of the matrice is 3 by 3. The symbol 03«3 means

body frame is:

(2.9)

a 3x 3 dimensional zero matrix.
In a quadrotor system, the body frame is chosen as in Figure 2.1. Applying the Newton
Euler formalism to the quadrotor system, the relation between the forces and the linear

accelerations is:

Z.L"b Tyb — qu Ff
Go| = | P2 —Tdp| T E) (2.10)
Zp qTy, — P F?

where 23, 1, and 2, are the linear velocities along the x, y and z axis in the body frame, and

p, ¢ and r are the angular velocities around the z, y and z axis in the body frame.
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As the quadrotor is symmetric along the x, y and z axis, the cross components in the

inertia matrix are equal to zero, I, = I,, = I, = 0. Therefore, the inertia matrix can be

written:
I, 0 0
I=10 1, O (2.11)
0 0 I,

Thus, the relation between the moments and the angular accelerations in the body frame

1s:

]xacp (Iyy - Izz)qr Mac
Lyq| = ([zz - [x:r/‘)pr + [ M, (2-12)
1.7 (Lpw — Lyy)pg M,

Now, we need to find the external forces Fy, and the moment M, applied on the quadrotor.

2.4.2 Forces

The aerodynamic forces and moments applied on a quadrotor have been studied by Fay [42].
Using the blade element theory, he has deduced explicitly the expressions for aerodynamic
forces and moments. These expressions are used in the modeling. The summery of the
external forces mentioned in this subsection and their directions are listed in Table 2.2. All
the parameters used in this subsection are listed in Table 2.3. All the forces are expressed

in the body frame.

Table 2.2: The external forces applied on a quadrotor.

Force Direction

Thrusts

T; along the z, axis
Hub forces | H; | in the xy, vy, plane, along the direction of the linear velocity
G

Gravity along the z,, axis

1. Thrust & hub forces

The propulsion of a quadrotor is induced by the rotations of the four propellers. The

inflow velocity (also called induced velocity) is the velocity of the air when it crosses the
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Table 2.3: The variables in the forces and moments.

Vi the sideways velocity of the rotor Vi the inflow velocity

A the inflow ratio 1 the advance ratio

|44 the quadrotor weight p the air density

J, the moments of inertia of the rotors A the propeller disk area

Q the rotational velocity of the rotor R, ua the propeller radius

a the lift slope 0o, 0,  the linear lift parameters
o the solidity ratio N the number of blades

c the blade chord Cy the drag coefficient

m the mass of the quadrotor g the gravity coefficient

[ the distance from the CoG to the rotor \%4 the volume of the quadrotor

propeller blade. It is assumed to be uniform and without discontinuity. The inflow velocity

_ Vi FANNALAY (2.13)
Vi= —7+\/(7 + 2/)_14

where W is the quadrotor weight, p is the air density, A is the propeller disk area, V is the

can be modeled as:

sideways velocity of the rotor, which is the quadrotor linear velocity in the xz, v, plane of

the body frame:

Vi = /i + 32 (2.14)

The inflow ratio A is a dimensionless quantity used in the helicopter literature to relate

the inflow velocity to the rotor tip velocity. The inflow ratio is defined as:

- Vi—5
B QRrad

A (2.15)

where () is the rotational velocity of the rotor, R,.q is the propeller radius.

Another dimensionless quantity is the advance ratio. It relates the horizontal velocity

with the tip velocity of a rotor. The advance ratio p is:

B QRrad

1 (2.16)
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When the air crosses the propellers, it induces two aerodynamic forces: the lift force and
the drag force. The lift force is perpendicular to the local velocity, while the drag force is
parallel to it. We can project these two forces onto the thrust force and the hub force.

The thrust force T is along the z, axis in the body frame. The rest of the force which
is in the plane xy, y, of the body frame can be separated in two directions: the hub force
H which is in the direction of the sideways velocity Vg, the projection of the forwarding
velocity V' in the x;, v, plane; the other one is the side force Y which is in the perpendicular
direction of the sideways velocity in the same plane. These forces are shown in Figure 2.2.

The ellipse is the rotor plate.

Figure 2.2: The thrust and hub forces on a rotor.

Using the blade element theory, Fay has deduced the expressions of the aerodynamic
forces [42]. He has proved the side force Y is always zero. This means the drag force is only
along the direction of the linear velocity of the quadrotor, which is named hub force. The

thrust T and the hub force H on a rotor are modeled as:

T = CTPA(QRrad)2

(2.17)
H = CHpA(QRmd)2
The coefficients of the thrust and hub force are:
1 1 0, 1
Cr =o0a [(— + —,MQ) 0o — (1+ p?) o —)\}
6 4 8 4
(2.18)

1 = 1 O
Cyg =o0a [Equ + Zx\,u (6’0 — %)}

where a is the lift slope, 6y and 6,, are the linear lift parameters, Cy is the drag coefficient,

o is the solidity ratio which defines the ratio of the blade area to the disk area. The solidity
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ratio is defined as:

_ Ne

== (2.19)

(o}

where N is the number of blades, ¢ is the blade chord. Further details about the parameters
can be found in [27,42].

The expressions above are the thrust and hub force on a rotor. As a quadrotor has four
rotors, the thrusts and hub forces are defined as T}, H;, i = 1,...,4, which are related to each

rotor respectively. The total thrust and hub force on a quadrotor are:
4
- ZHZ:U = _Hl;r - H2x - H?):v - H4;v
i=1

4
—> Hy = —Hy, — Hy, — Hs, — Hy, (2.20)
=1

4

> Ti=Ti+ T+ T3+ Ty

i=1

As the hub force H; is along the negative direction of the sideways velocity, it can be
separated into two forces H;, and H;,. H;, is along the z; axis and H;, is along the y, axis

in the body frame. The thrust 7; is always along the z, axis in the body frame.

2. Gravity

The gravity is along the z,, axis of the world frame:
G = —mg (2.21)

where m is the mass of a quadrotor, g is the gravity coefficient.

3. Total external forces

The thrust and hub forces are described in the body frame. The forces in the world frame

can be translated into the body frame using the following translation:
F, =% F, (2.22)
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Therefore, the total external force vector on a quadrotor expressed in the body frame is:

|
o

Il
—_
o

F, = +2° | 0 (2.23)

|
o
=
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I
—
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e
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o
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—
L

2.4.3 Moments

Using the blade element theory, Fay has also deduced explicitly the expressions for the
aerodynamic moments [42]. These moments are used in the modeling. The summery of
the external moments mentioned in this subsection and their directions are listed in Table
2.4. All the variables used in this subsection are listed in Table 2.3. All the moments are

expressed in the body frame.

Table 2.4: The external moments applied on a quadrotor.

Moment Notation Direction
Rolling moment Mo about the x; axis in the body frame.
Pitching moment Myiten about the vy, axis in the body frame.
Yawing moments Qi about the z, axis in the body frame.

Blade flapping moments iz, Riy | about the xp, v, axis in the body frame.

R
Gyroscopic effect moments | M,,, My, | about the z3, y;, axis in the body frame.

1. Rolling moment & Pitching moment

As each rotor generates a thrust, the difference between each pair of rotors causes the
moments around the x;, and y, axis in the body frame. The difference of the thrusts between
the rotor 2 and 4 causes the rolling moment about the x;, axis, and the difference of the
thrusts between the rotor 1 and 3 causes the pitching moment about the y, axis. The
direction of the moments is decided according to the right hand rule. Therefore, the rolling

moment M,,; and the pitching moment M., are defined as:

Mo = Z(T2 - T4)
Myien, = (=T + T3)

(2.24)
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where [ is the distance from the center of gravity (CoG) to the rotor, T;, i = 1,...,4 are the

thrusts of the four rotor. The numbers of the rotors are defined in Figure 2.1.

2. Yawing moment

The aerodynamic forces also cause moments about the shaft and hub. The moment about
the shaft () makes the quadrotor turn about the z, axis of the body frame. It determines the
power required for the rotor to keep the rotor spinning. The yawing moment () is modeled

as:
Q - CQPA(QRrad)erad (225)

The coefficient of the yawing moment is:

1 - 1 1 1
CQ =o0a g(l + ,uz)Cd + A (6(90 — getw — Z)\)] (2.26)

All the parameters in the coefficient Cg can be found in Subsection 2.4.2. Further details
about the parameters can be found in [27,42].

There are four rotors in a quadrotor. Therefore each rotor has a yawing moment H,,
t = 1,...,4. The four rotors are separated into two pairs with different rotational directions.
The rotor 1 and 3 rotate clockwise (see from the top of the quadrotor). The rotor 2 and
4 rotate counterclockwise. These two pairs of rotors induce moments in different direction.

Thus, the total yawing moment is:

4
Z Qi=0Q1— Q2+ Q3 — Q4 (2.27)
i=1

where the subscripts 1,...,4 are the numbers of the rotors defined in Figure 2.1.

3. Blade flapping moment

During the translational flight, the advancing blade experiences a higher velocity relative
to the air than the retreating blade. This effect is called the blade flapping. This results
more lift on the advancing blade than the retreating blade. The difference of the lifts applies
a moment to the rotor disk and leads to a gyroscope response that tilts the rotor disk back

with a flapping angle 5. The blade flapping moment R is perpendicular to the rotor shaft
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and the linear velocity of the quadrotor, which is modeled as:

R = ORPA(QRrad)erad (228)
with the coeflicient as:
1 1 1
= — —0yp — =0, — =)\ 2.2
Cr UCLM(GO 8tw 3 ) ( 9)

The parameters of C'r are mentioned in Subsection 2.4.2. Further details about the param-
eters can be found in [27,42].
The blade flapping moment of each rotor R;, i = 1,...,4 can be separated into two moments

R;; and R;,. The total blade flapping moments of a quadrotor are:

4
Z R’L:B = le - R2:v + R3m - R4x

i=1

] (2.30)
Z Riy = Rly - ng + ng - R4y

i=1

These two moments result the turning about the z;, and 1, axis in the body frame.

4. Rotor gyroscopic effect

Fotar rotation

M
Cluadrotar
totation

Gyroscopic effect

Figure 2.3: Rotor gyroscopic effect.

When the rotor rotates around its own axis and a second axis, it also brings into rotation
around a third axis which is perpendicular to the former two axis. This effect is called the
gyroscopic effect. Therefore, when a quadrotor rotates along the x; axis in the body frame,
each rotor also has a moment Mg, along the y;, axis induced by the rotor gyroscopic effect.

When a quadrotor rotates along the y, axis in the body frame, each rotor also has a moment
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M

g
Figure 2.3).

» along the x; axis. The direction of the moment is according to the right hand rule (see

The gyroscopic effect moments are modeled as:

4
Z Mgiz = Jrq(€1 — Qo + Q5 — Q)
' (2.31)

Z giy = — P21 — Qo + Q3 — Q)

where J, is the moments of inertia of the rotors, §2;, ¢« = 1,...,4, are the rotational speeds of

four rotors.

5. Total moments

Therefore, the total external moment vector on a quadrotor expressed in the body frame
is:

Z Rm: + Mroll + Z Mgix

1—1 =

Mb = E Rzy + Mp’LtCh + Z giy (232)

>

2.5 Quadrotor Model

In the previous sections, we have deduced the Newton-Euler equations for a quadrotor sys-
tem. Then the important external forces and moments are analyzed. In this section, the
full model of a quadrotor system will be firstly proposed. Based on some applications, this

model can be further simplified.

2.5.1 Complete Model

In the previous sections, the aerodynamic forces and moments on a quadrotor have been
deduced. From Equations (2.3), (2.7), (2.10) and (2.12), a full model for a quadrotor is
shown in Equation (2.33). The definitions of the symbols can be found in Table 2.1.
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Ty | [cosfcosy singsind cosy—cosgpsing  cose sinf cosy+singsiny | [ | rip—qip

U |=| cosfsiny  sing sinf siny+cosg cosyy  cose sinf siny —sing cosy (| | pzp—ray [+ EFb

Zw —sinf sing cosf cos¢ cost qTy—pYp
(2.33a)
- . -
Fyo=|->Hy,| +% | 0 (2.33b)
’L4:1 _G
T;
L =1 J
10) 1 singtanf cos¢ptanf| |p
6] = |0 cos¢ —sing q
U 0 singsecl cospsech| |r
(2.33¢)
-4 A -
Rix + Mro + M 1T
L.p (I, — IL)gr M? i1 " i:% !
Lg| = |, — L)pr| + My, M, = Mé’ = | > Riy + Mpiren + > Mgy, (2.33d)
i=1 i=1
L7 (I — 1,)pq M d
! > Qi
L i=1 J
where
T = CT,OA(QRTad)2, H = CH,OA(QRrad)2
Q = CQPA<QRrad)2RTad> R = CRPA(QRrad)ZRTad
Mroll - l(T2 - T4)7 Mpitch - l(_Tl + TB) (234)

4 4
Z Myiy = Jrq(© — Qo + Q3 — Qy), Z Myiy = —Jrp(21 — Qo + Q3 — Q)
i=1 i=1

In Equation (2.33), the first two equations are the position dynamics, and the other
three equations are the angle dynamics. The angle dynamics is only related on the angular
information. While in the potion dynamics, the positions are affected by the changes of the

angles.
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This model can be a good workbench for testing control methods, and especially for
comparing different methods. In this model, a rotational sequence ZY X for Tait-Bryan angles
is chosen, which is generally used in the literature. Most of the control methods proposed
in the literature can be easily implemented on this model without many modifications.
Also, important aerodynamic forces and moments are considered in the modeling, while
in the literature usually the thrust and the yawing moment are included in the models. The
important aerodynamic forces, the thrusts and hub forces, are modeled based on the blade
element theory. The sideways velocity related to the quadrotor body frame is used in the
modeling of the forces, since the aerodynamic forces are induced by the local airflow around
the rotors. The modeling is more precise than the model proposed by Bouabdallah [20]. In his
thesis, he has used the sideways velocity in the world frame. As quadrotors tilt, the sideways
velocity in the body frame is not always equal to the one in the world frame. Moreover, the
reference coordinate system is clearly proposed in this thesis. The directions of the rotors’
rotation, the aerodynamic forces and moments are clearly given. In Bouabdallah’s thesis,
the coordinate system is different from the one used in his program, and this caused some
direction errors in his modeling. In the workbench proposed in this thesis, all the previously
mentioned errors have been corrected. The aerodynamic forces are modeled more precisely,

and some forces and moments are neglected base on the aerodynamic effect.

2.5.2 Simplified Simulation Model

As discussed in Chapter 1.5, quadrotors have many applications, such as surveillance, border
patrol, aerial photograph and video, etc. In these applications, quadrotors usually need to
follow a trajectory or hover around a point. The movement of quadrotors is rather slow
and without violent displacement. The Phantom quadrotor (see Figure 1.11 in Section 1.4)
has a maximum tilt angle 45 degrees and a maximum flight velocity 10m/s. However in
applications, the tilt angle is usually inferior to 14 degrees (0.25rad), the angular velocity is

inferior to 0.2rad/s, and the flight velocity is inferior to 2m/s.

¢, 6 < 0.25rad, ¢, 0,1 < 0.2rad/s
/ (2.35)
p,q, r<02rad/s, v, <2m/s

The relation between the angular velocities é, 9, ¢ in the world frame and the angular

velocities p, ¢, r in the body frame is:
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1 0 —sinf b

p
g| = [0 cos® singcosd| |0 (2.36)
r 0 —sing cosgcosd| |

where the transformation matrix is limited:

1 0 —sinf 1 0 —0.247
0 cosf singcosd| = |0 0.9689 0.239 (2.37)

0 —sing cos¢cost 0 —0.247 0.939

In applications, in order to save energy and simplify control laws, one of the arms of
the quadrotor is set along the direction of the forward velocity to reduce the rotational
movement. Thus, every time quadrotors tilt only around one axis x; or g, in the body
frame. Therefore, we can consider the angular velocities ¢, 6 and ¢ in the world frame are

equal to the angular velocities p, ¢ and r in the body frame respectively:
o=p,  O=q,  V=r (2.38)

In the control system, a quadrotor is controlled by the rotational speeds of four rotors €2;.
As the aerodynamic forces and moments are proportional to the squared rotational speeds

of a rotor, the thrust and yawing moment are chosen as the control inputs in the control

system:
4
UIZZE, U2:l<T2—T4),
i=1
. (2.39)
ug = 1(~T, + T3), ug = (=)™ Q..
i=1
Then, the rotational speeds €2; can be computed using u; through:
4
w=by 07, uy = bl(Q2 — 02, (2.40)
i=1
4
ug = bl(—Q2 + Q32), ug = (=1)"d) Q7 (2.41)
i=1

where b and d are the coefficients of the thrust and the yawing moment, [ is the distance

between the center of gravity and the center of the rotor.
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Thus, a simplified system can be obtained from Equation (2.33):

4
Lot = 00 (Iyy — L) + 09 + us + (= 1) Ry, (2.42a)
i=1
.. . . . 4
L0 = ¢U(Le — Lug) — 0 +us + (=1 Ry, (2.42h)
i=1
]zz¢ = 0¢(Ixx - ]yy) + Uy, (2.42C)
4 4
mZ, = sinf Z H,; — (sing cosf) Z H,; + (cosg cost)u; — mg + pgVie (2.42d)
i=1 i=1

4

4
mi,, = —(cost cost)) Z H,; — (singsinf cosy) — cosg siny) Z H,

i=1 i=1

+ (cos¢ sinf cosy + sing sini))uy (2.42¢)

4 4
mij, = —(cosd siny) Z H,; — (sing sinf siny) + cos¢ cost)) Z H,
i=1 =1

+ (cos¢ sinf siny) — sing cosy)uy (2.42f)
T = CrpA(QRya)?, H = CupA(QRq4)* (2.42g)
Q = CopA(QRd)? Rrad, R = CrpA(QR,00)* Rrad (2.42h)

2.6 Constraints

Quadrotors have various constraints in applications. The mechanical structure has its limits.
Quadrotors usually use brushless electric DC rotors which have limits in their rotational
speeds. The Hummingbird quadrotor made by Ascending Technologies (see Figure 1.9 in
Section 1.4) is equipped with four brushless DC motor, type HACKER x-BL 52s. The rated
motor speed without load is 8330RPM (Revolutions Per Minute), that is 872rad/s. The
rotational speed decreases to two third with load. Here, we define a maximum rotational

speed during flights as:
10rad/s < © < 300rad/s (2.43)

For the sake of safety, we should also impose some constraints on the speed. The Phantom
quadrotor (see Figure 1.11 in Section 1.4) has a maximum tilt angle 45 degrees (0.78 rad),

a maximum ascent or descent speed of 6m/s and a maximum flight velocity of 10m/s. We
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set a maximum ascent or descending acceleration of 5g (g=9.8m/s?) and a maximum tilt

acceleration of 48 rad/s®. Therefore, the limits of the control inputs are:

m-g<uy <6m-g=312N, |ug|, |us| < 481,, = 0.3N-m
(2.44)
lus] < 481, = 0.5N-m

where m is the total mass which is set as 0.53 kg in the simulation, and I, I, I.. are the

parameters of the moment of inertia, I, =1I,,=6.22x10*kg-m?, I,, = 1.12x 10 kg - m?.

2.7 Control Oriented Models

In Section 1.4, many existing quadrotors are presented. These quadrotors are built using
microcontrollers, such as ARM 9. Embedded systems have computational and energy limits.

Some parts are neglected to simplify the control laws.

A control oriented model for the backstepping control and sliding mode control is:

Iccmézé = Uz + 9¢(Iyy - Izz) + Jrégra
[yyé =u3z+ gbw(]zz - ]zm) - J,-QZ.SQ',-,
Izﬂb = U4 + 9¢(Ixm - Iyy>7

(2.45)
mi = (sin sin ¢ + cos 1 sin 6 cos ¢)uy,
my = (— cos 1 sin ¢ + sin ¢ sin 6 cos ¢)uy,
mz = —mg + (cos @ cos ¢)u;.
A control oriented model for the model free control is:
];tng =uz + F(;Sv
I,0 = uz + Fy,
Izz& =uy + F, )
P (2.46)

mi = (sin v sin ¢ + cos ¥ sin 0 cos ¢)uy + F,
mij = (— cos ) sin ¢ + sin ¢ sin 6 cos ¢)uy + F,
mz = (cosf cos p)u; + F,.

A partial knowledge model is used in the model free control. The coefficients of the input

up are kept in the control oriented model to keep the control precision. Other parts in the
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system are included into the unknown part F. Based on the type of a system, the control
oriented model for the model free control can be fully model-free or with partial knowledge.
If we set the coefficients of the input u; as constants, then a fully model free control is used.

The PID control does not need particularly the knowledge of system, and it does not

need a control oriented model.
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Chapter 3

Dynamic Analysis

3.1 Introduction

In this chapter, we will use the normal form theory for the dynamic analysis. The normal form
theory is a useful approach in studying the dynamic system properties [58]. By employing
successive coordinate transformations, a system is changed into its simplest form, which
exhibits all possible properties of the original system. This makes the analysis of the dynamic
system easier.

In linear systems, different kinds of the normal forms were deduced and the Brunovsky
form is used for the design of the control laws. Linear systems have four normal forms: con-
trollable, observable, controller and observer form. The normal forms for nonlinear systems
have been addressed firstly by Poincaré and then have been studied during the last century.
His technique has been used in the area of nonlinear vector fields, Hamilton dynamic systems,
nonlinear mappings and bifurcation phenomenon, etc. In the last decades, the transforma-
tion of a nonlinear system into a Brunovsky using successive changes of coordinates and
state feedback was studied by many authors. The normal forms for linear and nonlinear
systems have been proposed by Krener in 1987 [59]. However, most of the nonlinear systems
do not admit a Brunovsky form or the transformation of a system into the Brunovsky form
is numerically quite difficult which needs to solve the first order linear partial differential
equations. The approximate versions of the nonlinear controller and observer normal forms
were proposed by Krener et al. in 1987 [60]. A set of extended quadratic controller normal
forms of the linearly controllable systems with single input was given by Kang and Krener in
1992 [62]. They have also proved there exists a dynamic state feedback so that the extended

system has a linear approximation which is accurate at least second degree. In 2006, Kang
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et al. have proposed a method to deduce the normal forms of any degree for the systems
with a single input by using successive changes of coordinates and feedback [63]. For multi-
input systems, Tall et al. have deduced the normal forms for the systems with two inputs in
2002 |95].

Based on the normal forms, the bifurcations of a system have been studied by several
authors. A local bifurcation of a parameterized system occurs at an equilibrium where there
is a change in the stability. For the differential equations depending on a single parameter, the
typical bifurcations are fully understood: the fold (or saddle node), the transcritical and the
Hopf bifurcation [58]. Krener et al. have presented the quadratic and cubic normal forms of a
scalar input nonlinear control system around an equilibrium point. Some important control
bifurcations, the analogues of the classical fold, transcritical and Hopf bifurcations were
studied [61]. Center manifold is usually applied with the normal forms theory. It reduces
the system to a center manifold associated with parts of the system whose eigenvalues have
zero real parts at a bifurcation point [38].

To the best of our knowledge, the normal forms and center manifold theories have never
been used in the analysis of a quadrotor. In this chapter, the normal form of the quadrotor
system is firstly calculated. By using such a methodology, the highly coupled parts in the
quadrotor system are eliminated. Under certain control laws, the normal form is reduced
into a two dimensional system at the bifurcation point by using the center manifold theory.

A former research can be found in [101].

3.2 Quadrotor Model

The kinematic and dynamic models are presented in Chapter 2. All the definitions of the
variables can be found in Chapter 2. A rotational sequence ZYX is chosen for the Tait-Bryan

angles. Thus, the rotational matrix from the body frame to the world frame %, is presented:

cosf cosy  sing sinf cosy — cosgsinyg  cose sinfl cosy + sing sinw
Ky = |cosfsiny  singsind siny + cosg cosyy  cosg sinf siny — sing cosy (3.1)

—sinf sing cosf cos¢ cost

In the dynamic analysis, only the thrust 7" and the yawing moment are considered and

all other aerodynamical forces and moments are neglected. As the thrusts are along the z,
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axis in the body frame, the system can be expressed as:

i 0 0 (cos¢ sind cosy + sing siny) T'
m |yl =%, |0 +| 0| = |(cospsinb siny) — sing cosyp) T (3.2)
Z T —qg cospcosdT — g

In Equation (3.1), the third row is the simplest than other rows and columns. Therefore,
we can choose the rotational sequence XYZ for the Tait-Bryan angles to simplify the system.
The rotational sequence is inverse, and the matrix %" will be the inverse matrix. The third
row is now changed to the third column, and will be multiplied with the thrust. Note that
the rotational sequence will not change the dynamics of the system. Thus, the system is

further simplified, and the model of a quadrotor is shown in Equation (3.3).

T = —w;sind, gb = Wo,
§j = wcosfsing, 0 = w;, (3.3)
Z = wicosfcosp — g, b = wy.

The variables w;(i = 1..4) are the linear and angular accelerations induced by four rotors,
which are the inputs of the system. The rotation angles ¢, 6 and ¢ are along the world axis
x, y and z respectively, namely roll, pitch and yaw. g = 9.8m/s? is the gravity coefficient.

We introduce the variables as ©1 =z, x9 = &, 3 =y, T4 = ¥, T5 = 2, Tg = 2, T7 = O,

rg = @, xg =0, x19 = 0, x11 = Y, x15 = . Therefore, the system is rewritten as:

T = T, T7 = Ts,

Ty = —wisin(xg), Ty = wo,

T3 = @y, Tg = 10, (3.4)
4 = wicos(xy)sin(xy), T19 = wa,

5 = g, T11 = T12,

t¢ = wycos(zg)cos(xr) — g, T19 = wy.

3.3 Normal Form

In this section, some nonlinear changes of coordinates and inputs for the quadrotor system

will be deduced. The normal form of the original system of any degree will be found. A
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normal form is a simplest form of the original system, which exhibits all possible properties

of the original system.

The equilibria of the system (3.4) are:
Le = (Cla 0,¢2,0,¢3,0, kﬂ'a 0, kﬂ-a 0, ¢4, 0)7 w = (97 0,0, 0)7
where ¢;(i = 1,...,4) € R are constants, k = 0,41, 42, ... is integer and ¢ is the gravity.
Note that the angles are limited in the real control system, the tilt angle of a quadrotor is
limited from -90 degrees to 90 degrees, ¢,0 € (—m/2,7/2). The yaw angle is limited to 360

degrees, 1) € [0, 7). Therefore, the variable k here is equal to 0. Without losing generality,

the constants ¢;(¢ = 1,...,4) can be set as 0. Therefore, only one equilibrium is considered:
zo = (z, w) = (0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0)
We move xg to the origin by changing the coordinates of the inputs:

w; =u; + g, Wy = U2
o (3.5)

w3 = us, Wy = Uy

Then, using the Taylor series of the functions sin(x) and cos(z) at « = 0, the system can be

further written in polynomial form as follows:

ill = T2,
3 3
. gTg  UirTy 5
Ty = —gTg— 1Ty + — + —— + O,
6 6
T3 = @y,
3 2 3 2
Ty = gT7+urr — —/— — - — +0
6 2 6 2 ’
-@5 = e,
2 2 2 2 4 2,2 4
Tg — W ————/— — —— — - +_+O,
2 2 2 2 24 4 24
Ty = s, Tg = ug, Ty = T10,
Ty = us, Ty = T2, T2 = Uy. (3.6)

Here, O® are the polynomials with 5th and higher degree.
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Using the following state and input transformation:

Y1 = X1, Yo = Ta, Ys = T3, Ya = X4
Ys = Ts, Yo = T¢, Y7 = g2, Ys = gTsg
(3.7)
Y9 = g, Y10 = 910, Y11 = T11, Y12 = T12
U1 = U1, Vg = gua, U3 = gus, Vg = Uy
The system (3.6) is then changed into the Brunovsky form:
no= Yo,
y . y V1Y9 + yg + Ulyg + 05
9 = —Yg— —— + 5+ —+ ;
g 69 Gg?
y'3 = Yy,
G = g Yiys YR uiys uiyrys Lo
s = Yt — = = 5 = ;
g 29> 69  6g° 293
Ys = Vs,
2 2 2 2 4 2.2 4
. Y7 Yo nY; V1Y Y7 Y7Yy Yy 5
= M1T - - — - O )
U = LT T o0 T a2 T 22 T 24g8 | Agr | 24g8 |
yr = s, Us = Vg, Yo = Y10,
Yo = Us, Y11 = Y12, Y12 = V4. (3-8)
The system (3.8) can also be written as follows:
y = fly)+glyv
= Ay+ %) + D) + Bv+ gV (y)v + ¢ (y)v + O* (3.9)

where A, B are the coefficients of the linear parts, f®(y), ¢/ (y)v are the second degree
homogeneous polynomials of the system, f©®)(y), ¢ (y)v are the third degree homogeneous
polynomials, O* are the polynomials with 4th and higher degree.

Now we are going to obtain a third degree normal form of the quadrotor system. Firstly,

we take a third-degree homogeneous transformation for example [60]:
y=2+02() +7(2) (3.10)

which z are the new states of the system. ¢ (2) is a second degree homogeneous polynomial
and ¢(3)(z) is a third degree homogeneous polynomial of the states z, whose coefficients will
be defined later.
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We get the derivative of Equation (3.10). Therefore, the derivative of the new states z

is:

do®  do®
¢ n o)
dz dz

(3.11)

where

dp®  dp® i dep®  de®) de® ) do®) ) dp® dop®
I =1- — 2
(I + dz - dz ) dz dz + dz + dz * dz dz

In Equation (3.9), we rewrite the f(y) and g(y) using the new states z.

fly) = Al)+ %) + Oy + o
= Az + A9P(2) + fP(2) + AP (2) + FO(2)... (3.12)
g(y) = B+gW(y) +92y)+0*=B+g"(z)+ gV (6®(2) + g (2)...

Therefore, with the help of Equations (3.9), (3.11), we have the new system:

¢ =Az+ Bo+ A¢? (2) + [P (2) + gV (2)v - dg) Az — d¢ = __Bu+ Ap¥(z)
1) + g0+ gV @D — L (4 (2) + f<2><z> T gD()
(3) (2)
—djz (Az + Bv) + (djz )2(Az + Bv) + O* (3.13)

To simplify of the system, the states z and the inputs v should be separated, which means

the polynomial ¢g\V)(2)v, g®(2)v should be canceled in the third degree normal form. Thus

we have:

do? ) do®) do?

§0() + g0 (D () - gV (e) - B+ (2

Therefore, the transformation in Equation (3.10) can be obtained:

6P (2) = (0, — 25 0,2 0.0,0,0,0,0,0,0),
g g

2
B)(5) — _ 62T 2629
¢™(z) = (0,0,0,0,0, 22 2 =79.0,0,0,0,0,0).
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Using the same method, we can calculate the normal form of any degree:

2629 N 22625’ n 262329

. 5
T 3 2g3 + 0,
3 2 2
2 9 32 202 243 3 ,
2 3
: 2627 262724 226 25 5
23 = 24 + — 3 — 3 + O ’
g g 39
Zezs 4 26787
24 =2y — — T + 9 + 05
S ’ (3.14)
9 g g .
2
: Z6R7 Z6%g 5
B=% 50 T on 100
. Z? Zg Z6R728 2629210 52;1 Z? 2’3 523 ;
T Ty T gy 2 2 57 a3 oas 1O
o1 =2, 28 = Vg, Z9 = 210,
Z10 = U3, Z11 = 2192, 219 = V4.

Here, O° are the polynomials with 5th and higher degree.

A Maple package ‘QualitativeODE’ has been made for calculating a normal form of the
quadrotor. The programs can be found in Appendix B.

3.4 Linear Analysis

From the normal form, we can easily get the linearized quadrotor system. In this section,
we will analyze the controllability and the stability of the linearized system. A linear static

feedback control is also proposed to show its influence on the system’s stability.

3.4.1 Controllability
The linearized quadrotor system is presented in following form:
z=Az+ Bv (3.15)

where
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Then, the rank of the controllability matrix C is:
Rank(C) = %ank([B AB AB ... A1B|)=12 (3.16)

Therefore, the linearized system is fully controllable at its equilibrium, the origin of the
normal form. If the linearized nonlinear system is controllable at its equilibrium, then the

nonlinear system is accessible at its equilibrium.

3.4.2 Stability

To check the stability of the linearized system, we calculate the eigenvalues of the matrix A
in Equation (3.15). They turn out to be all 0. The linearized system is marginally stable.
Therefore, we can use linear static feedback to control the stability of the system.

If the system is time invariant, the indirect method of Lyapunov says that if the eigen-
values of Jacobian matrix of the system at the origin are in the open left half complex plane,
then the origin is asymptotically stable. Therefore, we can define the state feedback as fol-
lows to move all the eigenvalues of the system to the open left half plane. z.,y,, 2., ¥, are

the references.

vy = —256(25 — 2,) — 32z,
ve = —1700(z3 — y,) — 100024 — 25627 — 322
Vg = —256<211 — w’r‘) — 32212, (317)

V3 = 1700(21 — CL’T> + 100022 — 25629 — 32210
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Figure 3.2: The simulation without wind disturbance: (a) the linear static feedback control.
(b) a standard PID control.

In order to verify the stability of the control system, some simulations are made in the
condition without and with wind disturbance. The simulation task is to let a quadrotor
follow a square path with a length of 2m while hovering at an altitude of 10m, which is given
in Figure 3.1. The desired response time is 1s, which means the quadrotor should fly 2m
within 1 second. The totally sample time is 20s. For comparison, the simulations using a
standard PID control are also given.

The simulation results without wind disturbance are given in Figure 3.2. We can see
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3.5. Nonlinear Analysis
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Figure 3.3: The simulation with wind disturbance: (a) the linear static feedback control. (b)
a standard PID control.

that the linear static feedback control has better performance than a standard PID control.
During the trajectory, there may be wind disturbance with velocity 1m/s as in Figure 3.1,
which occurs in all x, y and z axis. The simulation results are given in Figure 3.3. The
desired response time is 1s. The linear static feedback can keep the stability during the wind

disturbance, and has better performance than the standard PID control.

3.5 Nonlinear Analysis

In this section, the bifurcations of the quadrotor system is analyzed, and the system can be

further simplified using the center manifold theory.

3.5.1 Bifurcations

It is easy to see that in the linear part of the equation (3.14), z; is related only to z9, 29, 210, V3;

z3 is related to z4, 27, 28, U2; 25 is related to zg,v1; 211 is related to zia,v4. Therefore, the
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Figure 3.4: The eigenvalues when K5 changes from -150 to 150: (a) the real parts. (b) the

imaginary parts.

control laws can be defined as:

vy = Kiizs + Koz,
vy = Kojzz + Koozy + Kozzr + Koyzg,
v = Kz + Kypzio,

vy = K121 + K329 + K3329 + K3a210.

(3.18)

In this way, we can move the related eigenvalues in each group separately without chang-

ing the eigenvalues in other groups. Here, we define v;(i = 1,...,4) as:

v = —25625 + K12Z6,
Vg = —10023 — 3082’4 — 2562’7 — 3228,
Vg = —1024211 + K42212,

vy = 10021 + 30829 — 25629 — 32210.
The system has three equilibria:

P¢ =(0,0,0,0,0,0,0,0,0,0,0,0)
P¢ = (0,0,43.45,0,—0.057,0, —16.97,0,0, 0,0, 0)
P¢ = (0,0,—43.45,0,—0.057,0,16.97,0,0,0,0,0)

23

(3.19)

(3.20)



Chapter 8. Dynamic Analysis 3.5. Nonlinear Analysis

However, only the origin P can be stable when K5, K45 change.

At the equilibrium Py, for simplicity K5 = K49, when K5 changes, the real and imag-
inary parts of the eigenvalues are in Figure 3.4. When K5 < 0, the system has four
eigenvalues with positive real parts, and the system becomes unstable. When Kj5 > 0, the
system has all eigenvalues with negative real parts, and the system is asymptotically stable.
When Ki5 = 0, the system has two pairs of pure imaginary eigenvalues +16: and +32i, and
all other eigenvalues have negative real parts, which is a four dimensional center manifold.
The stability cannot be determined by the linear part of the system. It depends on the

nonlinearity of the system.

3.5.2 Center Manifold

The aim of this part is to get the reduced system which can determine the stability and
possible local bifurcations of the system at one bifurcation point. A system can be written

as:
&= A(b)x + F(z), reR"

where b is a free parameter, b € R.

At its origin x = [0, ..., 0], J(b) is the Jordan form of the matrix A(b) and @ is a matrix
which enables Q(b)J(b)Q'(b) = A(b). Therefore, we have:

i o= QOb)JB)Q (b + F(x)
Qb = JO)Q ' (b)x+ QN (D)F(x)

we define y = Q'(b)z, then
y=J0by+Q  (OF Qb)) =J(b)y+ F(y) (321)

we can separate the Jordan matrix J as matrices B and C' whose eigenvalues have zero real
parts and negative real parts respectively. Therefore, we can rewrite the system (3.21) at
the origin with z = [0, ..., 0].

Jo = Byo+ f(Wo,y-),  ¥-=Cyo+g(yo,y-)-
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Since the center manifold is tangent to E° (the y_ = 0 space), we define

y_ = h(yo,b), h(0,0) = Dh(0,0) =0, b=0. (3.22)

We can calculate the function h(yo,b) by using

y— = Dh(yo, )50 = Dh(yo,0)[Byo + f(yo, h(40,0))] = Cyo + g(v0, h(y0, b))

Therefore, we can get the local evolution equations of 3y which can determine the stability

of the original system.

In quadrotor center manifold analysis, the control laws are defined as:

v7 = —2b56z5 — bzg — zg,
Vg = —10023 — 30824 - 25627 — 3228,
Vg = —10211 — 24212,

vy = 100z; + 30829 — 25629 — 3221p.

The bifurcation of the system is like in previous subsection. When b < 0, the system has
two eigenvalues with positive real parts. When b > 0, the system has all eigenvalues with
negative real parts. When b = 0, the system has two pure imaginary eigenvalues +£16¢, and all
other eigenvalues have negative real parts. The stability depends on the nonlinear parts of the
system. We can use the center manifold theory to simplify the system, and further simplify
]T

the study of the bifurcation of the system. In this control system, yo = [y1, y2]? = [25, 26]"

_ T _ T
and y_ = [3/37y47y573/67y77y87y97y107y117?/12] = [21722,2’3724727728,29,2’10,2’11,212] .

We seek a quadratic center manifold (a are parameters to be defined later):

Yi = aiZOO?/% + Gi020?/§ + aio02b® + ai110Y1Y2 + Gi101Y10 + ao11y2b, 1 = 3..12

Using the method mentioned before, we get:

h(yo,b) = [-0.62b*, —0.62b*, —0.76b%, —0.76b%, 0, 0,0, 0, —0.42b%, —23.580% (3.23)
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Therefore, the reduced system on the center manifold can be written:

{1
Yo

In the reduced

= 16y, — 0.41b* — 0.0116° — (b + 0.057b%)y; + 0.00024%3
= —16y; + 0.67b'y, (3.24)

system, when b is positive (negative), the origin is a stable (unstable)

focus. When b = 0, the origin is a center. The phase portrait of Equation (3.24) when
b= —0.5,b=0and b = 0.5 are depicted in Figure 3.5.
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Figure 3.5: The phase portrait of the reduced system: (a) b=-0.5. (b) b=0. (c) b=0.5.
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Chapter 4

System Control

4.1 Scenarios

Due to the simplicity in design and maneuver, quadrotors have many applications, such as
border patrol, surveillance, search & rescue, aerial photography and video etc. As discussed
intensively during the applications of quadrotors in Chapter 1, we list here the points that

a control system should have in applications:

e Complexity of the control algorithm: the number of the addition and multiplication

operations in the control law.
e Maximum absolute tracking error.
e Variance of the tracking error.
e Robustness to model uncertainties: the change in the tracking error.
e Robustness to disturbances: the change in the tracking error.
e Adjusting time to disturbances: the time needed to return to the stable state.
e [nergy consumption: the energy spent on motion control.

In this thesis, without losing generality, an aerial photography scenario is selected. Firstly,
a basic scenario without disturbance is presented. However, in real applications as discussed
above, circumstances can be rather turbulent, which results a totally different effect on
quadrotor systems comparing to the scenario without disturbance. Usually in scientific

researches, control methods are only tested in the basic scenario without disturbance. The
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good performance in these conditions can not prove the same good performance in the
scenario with disturbance. A simple example is given in Chapter 1. A Backstepping control
has small maximum absolute tracking errors in an ideal case. However, it loses its stability
very quickly when there is wind disturbance. Therefore, in this thesis, in order to get closer to
the realistic applications as mentioned above, several other scenarios with wind disturbance,

model parameter uncertainties, sensor noises and actuator faults are also presented.

4.1.1 Basic Scenario

In this scenario, a small quadrotor with a 4 cell 2700mAh Lithium Polymer battery and an
onboard camera is used. The task is the aerial photo shooting in an open space yard. The
quadrotor needs to fly to four points, and at each point the quadrotor needs to take several
photos. These four points are the four vertices of a square path with the length of 2m. The
quadrotor hovers at the altitude of 10m. The 3D trajectory is given in Figure 4.1.

x(line),y(dashed line)
i

0.5 peeponmemendes R R ISR .

ts

(b)

Figure 4.1: (a) 3D reference trajectory for the quadrotor. (b) Reference trajectory along the
x axis (red, line) and y axis (blue, dashed line).

When arrived at each corner, the quadrotor hovers for about 15s to take pictures, then flies
to the next corner. The reference trajectory is expressed in Equation (4.1). The parameter
hg = 2m is the length of the trajectory, and T = 6s is the time needed to reach the desired
corner. The total simulation time is 150s. In the basic scenario, we consider the quadrotor is
in an ideal situation without environmental disturbance, model errors and sensor disturbance,

etc.
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.

0 Whenogtgtl,t4<t<1508,
(t—t1)°

h when t; <t < 1o,
o(t) = Yt —t) + (T —t+1)° ' ’

2 when ¢y < t < t3,

(t —t3)°
hg—h when t3 <t < ty.
U N =t + (T — £+ )P s ! (4.1)

hd = 2m, Tf = 6s.
x=o(t), with t; =10s,ty = 16s,t3 = 90s,t, = 96s.
Yy = O'(t), with t, = 4OS,t2 = 46S,t3 = 1208,t4 = 126s.

z = 10m.

4.1.2 Wind Disturbance

This scenario is dedicated to test the stability of control systems while encountering environ-
ment disturbance, namely wind. Quadrotors are easy to be affected by external disturbances
while its flight. As the shooting is taken place at an open space yard, the most general dis-
turbance is the wind.

Several wind models are proposed in literature [41,51]. The most general model is the
wind force model where wind imposes extra forces on the system [51]. The force induced by

wind can be expressed as:
F, = kyAuv2 (4.2)

where v, is the wind velocity, A, is the area of the surface facing the wind, k,, is a coefficient,
ky = 0.0022 N-s? /m?.
A another model is the wind torque model [51]. Wind disturbance can also induce extra

torques on the system which is expressed as:
Ty = coAwDayv? (4.3)

where v, is the wind velocity, A,, is the area of the surface facing the wind, D is the diameter
of the area facing the wind, «, is the static air density, ¢, is a torque coefficient.

As the surface and dimension of quadrotors are relatively small. The torque induced by
wind can be neglected. In this scenario, only the force induced by wind is considered. Here,

we suppose the wind caused a same acceleration intensity on all x, y and z axis. These
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accelerations are perturbations in the equations related to the forces in the quadrotor model

Equations (2.42e), (2.42f) and (2.42d). The model is expressed as follows in Equation (4.4).

§(t) = §(t) + a(t) (4.4)

This acceleration with respect to time is depicted in Figure 4.2, and expressed explicitly

in Equation (4.5). The wind disturbance a(t) has a maximum acceleration about 1.7m/s?.

(

0 when 0s <t < 30s,
0.8 sin (== 30)) + 0.4 sin(~ (t730))

+0.08 sin(T522) 4 0.056 sin( 2730 swhen 30s < ¢ < 57s,

a(t) =140 when 57s< t < 70s, (4.5)

1.35 sin (= 70)) + 0.15sin(= (t270))

+0.225 sin("E"2) 4 0.105 sin (270 when 70s < ¢ < 124,

0 when 124s <t < 150s.

a, mis?

i i i i i i i i i i i i i i
-0.5
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
i, s

Figure 4.2: Wind disturbance w.r.t time.

4.1.3 Model Parameter Uncertainties

This scenario is dedicated to test the tolerance of control systems to modeling errors. Due to

the complexity of the aerodynamic effects, the external forces and moments are difficult to be
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expressed explicitly in the model. Therefore, there is a difference between the real dynamics
and the model used in the control system. Furthermore, considering the complexity of the
control algorithm and the limit of the computational resources of the onboard system, some
unimportant forces and moments are neglected in the control system, such as frictions. This
further increases the difference between the real dynamics and the model.

In Chapter 2, we have deduced a mathematical model of quadrotor (see Equation (3.2)).
There are serval parameters to be determined according to real quadrotors. The mass m
can be directly evaluated by a balance. The value we get is usually precise. The inertia
matrix elements I,,, I, and I, are often computed based on mechanical structures which
are designed on some mechanical design softwares, such as CATIA, Pro/ENGINEER. As
the density of the material is not precise and later on motors and other elements are added
into the system, the value of the inertia matrix can be influenced and cause some model
uncertainties.

In Equation (3.2), the inputs u; of the quadrotor model are defined as the sum of the
thrusts and the yawing moments. Then, the rotational speeds €2; of each rotor are calculated

using the coefficient parameters b and d.
4 4
ur =0 9w =bl(03-QF), us=bl(-7+0Q3), wy=(-1)"d> 0} (4.6)
i=1 i=1

The parameters b and d are variables and change during the flights. However, in the control
system, they are treated as constants which are computed based on some static tests. These
parameters also cause some model uncertainties.

Therefore, control systems should be capable to tolerate model uncertainties or parameter
uncertainties in real conditions. The stability of the system should always be ensured.

In this scenario, some random parameter uncertainties are given. Supposing the inertia
matrix elements I, I,, and I,, are underrated 50%. The coefficients b and d are also

underrated, and the value used in the control system are only 80% of the real values.

Lo =051,  I,=05I L.=05L.,

Yyy»

(4.7)

b=0.8b, d=0.84d.

4.1.4 Sensor Noises

This scenario is dedicated to test the tolerance of control systems to noises of the system

states. As the cost and space are limited for quadrotors, MEMS (Micro-Electro-Mechanical
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Systems) sensors are usually used. The precision of these sensor are low and the output
signals are always noisy. Moreover, weather condition changes in each application, such as
temperature, humidity, wind. This can also cause sensor noises. In many applications, such
as aerial photo and video, a limit of vibrations is important for the quality of images.

The position states x, y, z and angular states ¢, 0, 1 of the quadrotor system are measured
by sensors. The position states x, y, z can be estimated by accelerometers. Accelerometers
give only the transient linear acceleration. In order to get the linear velocity and position
information, we need to integrate the acceleration once and twice. This may cause big
errors and drifts, especially when the accelerometer has already initial data noises. The
position states can be also measured through vision systems by using triangular position
determination or other position determination methods. However, when the quadrotor is
hovering or especially moving, the vibration of quadrotors can cause unwanted noises. The
position states can be measured through GPS, sonar, pressure sensor or other distance
measure sensors, where sensor noises are always a problem. The angular states ¢, 6, 1 are
usually estimated by gyroscopes. Gyroscopes give the rotational velocities information. In
order to get the rotational position, we need the integrate the acceleration once. Depending
on the precision of a gyroscope, sensor noises can be small or big enough to influence control
systems.

In this scenario, we add the sensor noises on all 12 states of the system, namely the
position states x, y, z, &, 3, 2 and angular states ¢, 6, ¥, g'b, 9, w The expression of the noise
added in the system is as in Equation 4.8. The function Rand() is a MATLAB function
which generates a random number between 0 to 1. Thus, Rand()+0.5 generates a random

value € [0.5,1.5]. Therefore, all the states have £50% noises.

@ =z - (Rand() +0.5) (4.8)

4.1.5 Actuator Faults

This scenario is dedicated to test the stability of control systems under sudden strong signal
disturbances. As motors and sensors are worn out, some severe situations may occur during
flights, such as actuator fault, sensor failure, etc. In a very short time interval, a sudden and
rather strong abnormal signal occurs. Control systems should not be greatly influenced and
loose its stability during the failure.

Suppose the quadrotor used for this shooting is rather old, and has already been used

for several years. During the flights, the rotors of the quadrotor have actuator faults. In a

62



4.2. Control Schemes Chapter 4. System Control

short time period, the rotational speed of one rotor is no longer as what is required by the
control system. After this period, the rotors rotate without any problem as wanted. If this
fault is not detected during the flight, the performance of quadrotor will be influenced.

In this scenario, we add the actuator faults on two rotors during the flight task, rotor
3 and 4 (see in Figure 2.1 on Page 26). These faults are not detected by the program,
and influence directly the control system performance. Two rotors are on two arms of the
quadrotor which enables to see the difference between the roll and pitch dynamics.

Tested in simulation, an actuator fault time 0.2s can cause an unrecoverable error for
the system to retain its stability. Therefore in this scenario, a transient time of actuator
faults 0.1s is selected. Two faults are planned. The first fault happens at 42s during the
reference tracking along the y axis. The other fault happens when the quadrotor is hovering.
Therefore, we can check out the stability of the system during tracking and hovering. The

program is written as following:

if (t>42 && t<42.1 ) Omd(3)=220; end
if (6>90 && t<90.1 ) Omd(4)=220; end

where Omd() is the angular velocity of the rotor. Omd(3)=220 means the angular velocity
of the rotor 3 is set to be 220rad/s.

4.1.6 Sensor Faults

As sensors are worn out, they can cause some sensor faults in applications. The sensor data
are considered always correct in control systems. Therefore, sensor faults are difficult to be
detected by program. Other sensors are needed to detect whether one sensor has faults or

not. Thus, sensor faults are not simulated in this thesis.

4.2 Control Schemes

Nowadays, the control laws of control systems are mainly implemented in digital platforms
since computer and microprocessors offer many advantages with respect to analog platforms.
As a digital computer is a discrete system, A/D converters are used to change sensor data
into digital inputs for the control system, and D/A converters are used to change digital
control signals into continuous control outputs. The D/A converter is usually a zero-order

hold (ZOH), which holds each sample value for one sampling interval. There are two main
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schemes to schedule the control signals on digital platforms: the time triggered scheme and

the event triggered scheme.

4.2.1 Time Triggered Scheme

The time triggered scheme is widely used in many control methods. The control task is
executed periodically every sampling period 7;, which is previously defined in the program
before the real-time control. Every 7;, the control system computes the new control signals
and sends them to the actuators. It is the most common and simplest implementation. The
main difficulty of this approach is the selection of a sampling period 7; which guarantees
a desired level of the control performance. A small sampling period can keep the tracking
errors under an acceptable limit during two sampling times. However, a small sampling
period means the control system needs more computational time and resources, which needs
to take from the upper system. Usually in order to keep the stability of the system, a sampling
period 7; is chosen based on the worst case scenario. For linear systems, the selection of the
sampling period ensuring the stability of the system is studied base on the construction of
an equivalent discrete model. For nonlinear systems, Nesic et al. have proposed a common
approach to find approximate discrete-time models, and then studied how the sampling
period influence the stability of the system [77]. However in real-time control applications,
the sampling periods are selected usually by the experience of the engineers and some rough

previous simulations.

4.2.2 Event Triggered Scheme

Contrarily to the time triggered control scheme in which the control signals are sent to
the actuators every fixed sampling time, in the event based scheme, the control signals are
sent only upon the triggering of an event. The event driven control was firstly proposed
by Arzén [7]. The comparisons of time driven and event driven control scheme for first
order stochastic and nonlinear systems are proposed in [8] and [40] respectively. The event
triggered control scheme has many advantages: in networked control systems, in order to
save the bandwidth and energy, the information is only transmitted when some significant
events have occurred |99]; in some embedded applications, reducing the number of the control
law computations can save energy (such as in wireless communication, ...) and give more
computation time to other sub-systems (localization system, vision system, etc) [9].

A basic Arzén’s event based controller consists of two parts: a time triggered event
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detector C; and an event triggered PID controller C. [7]. The latter computes the control
signal to be delivered to the actuators. The former C; runs at a fixed sampling period h.,
and upon fulfillment of a certain event triggering law L., sends events to C.. Upon reception
of the event, C. computes the control signal and sends it to the actuators.

Usual event triggering laws L. include:
(1) Error threshold law:

\e(tk)] > Clim, (49)

where e = y, — y is the tracking error, t; is the current discrete sensing time by C,., and ey,
is a fixed limit.
(2) Error difference threshold:

’6<tk) — €(tk_1)‘ > €lim- (410)
(3) ISS based law:

el(te) = o ly(to)l (4.11)

assuming the system can be rendered ISS (Input to State Stable) through static feedback [91].
Here, o is chosen less than one to ensure an associated Lyapounov function to decrease, a
and b are chosen according to the Lipschitz constants of K., (consisting of all functions ~:
R™ — R" which are continuous, strictly increasing, satisfying v(0) = 0 and §li_>nolo (&) = 0.
See [91]).

In the following motion control schemes, we will take the following event triggering

schemes:

le(tk) — e(tu—1)] > €um (4.12)

4.3 Control Methods

Many control methods have been implemented on quadrotors. In Section 1.7 of Chapter
1, these control methods have been discussed in detail. A linear SISO control is used by
Pounds in the decoupled dynamics in longitudinal (pitch/roll) and azimuthal modes [83].

The controls using Lyapunov theory have been proposed by Castillo et al. using a nested
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saturation algorithm on Draganflyer in 2004 [32], and also proposed by Bouabdallah et al.
using the decoupled dynamics in 2004 [20]. The Backstepping controls have been used by
Altug et al. using visual feedback as the primary sensor in 2002 [4], Bouabdallah et al.
using the decoupled dynamics in 2005 [20], Castillo et al. adding saturation functions in
2006 [34], and Madani et al. by separating the system into three interconnected subsystems
in 2006 [74]. The Sliding mode controls have been proposed by Hoffmann et al. for the
altitude loop control in 2004 [52|, Waslander et al. in 2005 [98], and Bouabdallah et al. using
the decoupled dynamics in 2005 [20]. A dynamic feedback technique to linearize the system
has been proposed by Mistler et al. in 2001 [69]. A mixed robust feedback linearization with
linear GH,, controller has been applied by Mokhtari et al. in 2005 [71]. An adaptive control
has been proposed by Guenard et al. on the quadrotor X4-Flyer in 2006 [49].

In this section, we propose a newly developed control method named the model free
control. This method is firstly implemented on the quadrotor model proposed in Chapter 2.
At the same time, several other control methods are also proposed, such as a backstepping
control, a sliding mode control, etc. The aim of this part is to compare different control
methods in various scenarios mentioned in the previous sections. The advantages and dis-
advantages of each control method will be shown clearly. Therefore, we can choose the most

appropriate control method for controlling the quadrotors according to the scenarios.

4.3.1 Model Free Control

The recently introduced model free control provides an elegant and efficient solution to the
previous challenges [43—46|. It is a simple but efficient technique for nonlinear, unknown
or partially known dynamics. This method is also called intelligent PID (or i-PID). While
retaining the PID reduced computational cost, it is able to cope with general types of non-
linearities. The comparison between intelligent PID and traditional PID controllers is given
in d’Andréa-Novel et al. [10]. The paper emphasizes the easy tuning of i-PID gains and
gives a clear-cut explanation of the performance of usual PIDs. A comparison between a
high-order sliding mode controllers and intelligent PID controllers is proposed by Riachy et
al. in 2011 [90].

Model free control has been implemented in some academic SISO systems [43], join-
t motion control in humanoid locomotion [96], DC motors in flexible joints [97], non-
minimum phase systems [11], d¢/dc converters [73], hydroelectric power plants [56], small

programmable devices [57], a quadrotor [100,102], etc.

66



4.8. Control Methods Chapter 4. System Control

A finite dimensional SISO system can be described implicitly as
E(y,g,...,yY u1,...,u®) =0, (4.13)

where E : R“™! x R**! — R is a smooth function. Assume that for integer v, 0 < v < t,

OE/0y") # 0. The implicit function theorem [64] allows to express y™ locally:

y(”) =E(t,y,9,... ,y(”_l), y(”H), o ,y(‘), u, U, . .. ,u(“)), (4.14)

In a very short time interval, the system (4.14) can be modeled as:
y") = au + F, (4.15)

The coefficient of the input a € R can be constant or time-varying, while it is considered
as a constant in each time interval. Its value can be obtained by the knowledge of models
or system identification methods. If « is chosen as a constant, the control method is a pure
model free control without any knowledge of the system. If « is time-varying, the method
is partial model free control with some system information. The time-varying parameter F

represents the rest of the dynamics, and it is considered as a constant in each time interval.

The value F can be estimated by the real-time value of y®) and u in the previous time

interval:
F =3 — ai, (4.16)

where §*) is the v'™® derivative of the measure y in the previous time interval, and @ is the

control input u in the previous time interval.

A model free controller is defined as:

1 A~
w= = (y§”> iy A(e)) , (4.17)
a
where y, is a reference trajectory, and e = y, — y is the tracking error. A(e) is a function
which makes the closed loop error dynamics e) = A(e) asymptotically stable. Here we
choose the function A(e) as: A(e) = Ky_1e™V + K, 52 4 .. + Ké + Koe, where K;,

1 =0,...,v — 1 are tuning gains.
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Combining Equations (4.16) and (4.17), a model free controller is obtained:
i L (0 g (v-1) (v-2) :
u:u—f—a (y) — g + K,_qe + K, q€ + ...+ Kié + Koe) . (4.18)

(1) Accuracy between the modeled system (4.15) and the original system (4.14):

At the beginning of one time interval to, y = g, u = 4. The system (4.14) is expressed as:
g = E(g,1), (4.19)
The modeled system (4.15) at t = ¢, is precise:
i = ai 4 F. (4.20)
At the end of this time interval tq + At, the system becomes
y =19+ Ay, u =1+ Au, (4.21)
Therefore, the output y can be expanded into a Taylor series about (7, @):

y(”) =FE(y+ Ay, u + Au)

E E
—E(5. ) + S0 Ay + S5, ) (1.22)
1 (O0*FE 0’E 0’E
— | ==(7,0)Ay? g, 1) Auly + —— (7, 0) Au?
s (G080 + o .0 susy + L Giae )+,
And the modeled system’s output is:
(v) " [ Ry - o, OF
Yappr = (@ + Au) + F = E(§,0) + alu = E(g,2) + 5-(5, 0) A, (4.23)
Therefore, the accuracy error in each time interval is:
Cappr = y(y) - yc(tl;g)r (4.24)
oF 1 O*FE O’E O*FE
= — (7, W) Ay + = [ =————Ay? 7, 0) Auly + —— (77, 1) Au?
ay(y,u) Yt 3 (agy(g’a) y +6uay(y,U) uly + 5 (9,4) u)+ ,

The accuracy error is the high order parts of the Taylor series of the original system.
As the short time interval is defined relatively small with respect to system dynamics, we

consider this error is negligible.
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(2) Stability of the model free control:

Combining Equations (4.15) and (4.17), the error dynamics of the system is:

Y =y 4 P P+ K, eV + K, 5™ + |+ Kié 4+ Koe, (4.25)

e+ Ky 16" V4 K, 0 4+ Kié4+ Kee+ep=0 (4.26)

where ep = F — F € R is time-varying. In each short time interval h,

dy¥) du
= |y® — ¥ —a(u—a)| < h| + |=h|. 4.27
er = |y = 9 — atu— )] < | Lh|+ |2 (4.2
. dg”) dii | dyW
In physical systems, i and m are usually bounded and not equal to infinite, g <
Ji
€y) d—? < €4, where the measure §*) is supposed noise free or previously filtered. If a

rather small time interval h with respect to system dynamics is selected, e will be bounded
in a small limit |ep| < €,¢ > 0. Thus, by choosing appropriate gains K;, the tracking error
e in Equation (4.26) will converge to this small limit e. Therefore, the system is practically
stable. To further prove the stability of the control method, more information about a spe-

cific system is needed.

(3) General setting of the model free control on the model of quadrotor:

The control oriented model is proposed in Section 2.7. Firstly, we control the altitude z.

We rewrite the vertical dynamics of the quadrotor model in Equation (2.42d) as:
mz = (cosf cos p)u; + F,. (4.28)

where cosf cos ¢ is the system information used in partial model free control. The value
F, does not only represent —mg, but also includes neglected vertical dynamics. In discrete

time, the unknown part F, can be expressed as following, where Z(k) is an estimate of 3(k):

A

E. = mZ(ty) — (cos 0 cos d)uy (tp_1). (4.29)

Thus, the chosen control law is:

m NZ z _Z z _Z
wa(te) = w(fe) + g (e%(tk) F kRt + ke (tk)), (4.30)
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with

Ealte) = Z:(t) — E(t),  e(ti) = & (tr) — 2(t),
e*(tr) = 2 (tx) — 2(tr),

) = Tt -E(t) + 7 1 () - 20, (4.31)

where Z,., Z., z. are the reference acceleration, velocity and position of z. The variable h is

the sampling period, h =t — t5_1.

Then we control the position x and y. As the input wu; is already used in the control of
the altitude z, we now use us and us to control the positions = and y. Therefore, we need to
differentiate twice the equations related to x and y in Equations (2.42e) and (2.42f) in order

to get the control inputs uy and uz. Then, we obtain:

@ = u]l (sin cos ¢ — cos ) sin 0 sin ¢)ug + il (cosp cos b cos p)uz + F,
e My (4.32)
y@W = — ujl (cos 1) cos ¢ + sin 1 sin 6 sin ¢)ug + il (sine) cos @ cos ¢)us + F,
Tx m vy

where the partial model free control is used and F}, F, are the remaining parts of the hori-

zontal and lateral system. To simplify the notations, we define

A= (sin ) cos ¢ — cos 1 sin @ sin ¢),
B = u]l (cos 1 cos B cos @),
T (4.33)
C=- (cos 1) cos ¢ + sin ¢ sin O sin ¢),
ml,
JoR— (sin ) cos 6 cos @)
vy

We implement the model free control scheme in a similar manner as previous:

ws(ty))  ((uetiy) (A B (68, 4+ kZeZ, + kSed, + ket + ke (434
ug(ty) us(ty_1) C D &+ klel 4+ kied +kVel + kiev | '

where é7,, é%, are the errors between the references a:,(fl), y7(~4) and the estimates of (¥, y®.
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For the yaw angle control, we consider the equation related 1 as:
L. =us+ Fy. (4.35)
Then the control law is:

ug(te) = wa(te-1) + Lz <ég}d(tk) + kel (t) + kg€¢(tk)>; (4.36)

where ég’d is the error between the reference 1. and the estimate of ¢).

4.3.2 Backstepping Control

For the purpose of comparison, a backstepping control is also applied on the quadrotor
system. We choose the method proposed by Bouabdallah [20]. In the control system, we
neglect some parts in the model Equations (3.2) to simplify the control laws, such as the

hub forces. The control model is as follows:

[xm¢ = Hw(jyy — [Zz> + JTQ.QT -+ Uo,
[yyé = ng/}(]zz — L) — J@QT + us,
IZZ@L = 9925(]11 - ]yy) + Uy,

mi = (sin ) sin ¢ + cos 1 sin 0 cos ¢)uy,

(4.37)

mi = (— cos 1 sin ¢ + sin 1 sin 6 cos ¢)uy,

mzZ = —mg + (cos 6 cos p)uy.

Note that the angular subsystem is in cascade with the position subsystem. Therefore,
the system can be separated into two subsystems: the angular and position subsystems. We

firstly control the angular subsystem, and then use the angles to control the position sub-

system. We rewrite the system into the state space form using the state vector (z1,...,z12)
with
ZL'1:¢, xQZQ'b’ .ZU3:9, I’4:97
Ty = 2/}7 T = ¢7 Tr7 =z, Tg = 27 (438)
Tg = T, Ty = T, 11 =Y, T12 =Y.
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Therefore, the system can be written as:

jjl = X9, Z"Q = Q14T + a2$4Q + b1U2,
Ty = Ty, Ty = azToe + agw2f) + byus,
T5 = T, Tg = asTaTy + byuy,
] ) COS T COS T3 (4.39)
Tr = Ty, rg=—g+—— U
m
. . Uy
L9 = T10; Ti0 = — U,
m
. . Uy
T11 = 12, Ti2 = —Uy,
m
where u, = sintsin ¢ + cos v sin 6 cos ¢, u,, = — cos sin ¢ + sin 1 sin 0 cos ¢,
[yy [zz Jr [zz - [:m: Jr
ay = ) Gy = ) a3 = ) a4y = ——,
(4.40)
I b 1 b 1 b 1
ay = —————, 1= =, 0 = —, 3 = —.
Izz Iz:r Iyy IZZ
Here we define a new state z; which equals the tracking error of the state z;:
21 = T1d — X1, (441)
where x14 is the reference x position.
Using the Lyapunov theorem, we build the Lyapunov function of z; as following:
1
V(Zl) = 571>
2 (4.42)
V(21) = 21(214 — 72)

The Lyapunov function of z; should be positive definite and its derivative should be

negative semi-definite. Here we define a virtual control reference for x,:
Ty = T1q + 0121, a; >0 (4.43)
which ensures the derivative of the Lyapunov function of z; negative semi-definite:
V(z1) = z1(d1g — 22) = —a127 < 0. (4.44)
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Here we introduce another new state zs:

29 = Xy — iild — X121. (445)

We build the Lyapunov function for z, as following:

1
Vi(era) = 26+ 20 (1.40)
Then, its derivative is:
V(Zh 29) = 20(A124%6 + Aoaw + bius) — 20(F14 — (20 + 121)) — 2120 — a2y (4.47)

Therefore, the control input us is defined as following to ensure V(zl, z9) < O:

1

up = 3 (zl — A1X4T6 — AoTaw — Q1(22 + 121) — ngzg>, as > 0. (4.48)
1

In the angular subsystem, the other control laws are defined using the same method:

1
us = b_ <Z3 — A3X2Tg — AT oW — @3(24 + 0432’3) — OK4Z4>7
2
1
Uy = — | 25 — A5T224 — a5(26 + X525) — 6% |
bs (4.49)
23 = T3q — X3, 2y = Ty — Tzqg — 323,
25 = X5q — Ts, 26 = Te — T5q — A525.
All the a;, © = 1,...,12. are the control gains.
In the position subsystem, the control laws are defined as:
m
= —————— |27+ 09— ar(2s + ar27) — agzs ),
COS T1 COS X3
m
Uy = — (29 — ag(210 + 929) — Q10210 ) 5
U
=( (212 + an1zn1)
Uy = — | 211 — O11(R12 T (11211) — (12212
Y ’ (4.50)
27 = Tyq — X7, 28 = Ty — Tyq — Q727,
29 = Xgq — Ty, 210 = T10 — T9q — (92,
211 = Z11d — T11, 212 = T12 — T114 — V11211~

From u, and u,, we can compute the needed angles ¢, 6 and v for the position control,
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then use them as the angular references in the angular subsystem control. More details of

the control can be found in [22].

4.3.3 Sliding Mode Control

For the sake of comparison, a sliding mode control is also proposed on the same scenario.
We choose the method proposed by Bouabdallah [20]. The model in Equation (4.37) is also
used for the sliding mode control. The definition of all the parameters can be found in the
previous Subsection 4.3.2 Backstepping control. The quadrotor system is also divided into
two subsystems: the angular and position subsystems. This sliding mode control is based
on the backstepping control proposed in the previous subsection. In the control of the angle
roll ¢, the new state z; is defined as in the backstepping control. In Equation (4.43), the

sliding surface is chosen:

Sp = 29 = Ty — T14 — Q1 21, 21 = T1q — X1
S¢ = .jfg — jld — alzl (451)

= A1T4T¢ + AT 4W + blu2 — éd + aq (22 + 04121).

The time derivative of the attractive surface should satisfy SS < 0. Therefore, we define

S¢ as
Sy = —kyssign(S,) — ko S,. (4.52)

where ky,ky > 0 are the control gains. ssign() is an extended sign function which is

shown in Equation (4.53) and Figure 4.3:

—1 when © < —1,
_ 2(x +1)°
ssign(x) = S 1 when —1 <z <1, (4.53)
1 when z > 1.

Therefore, the other sliding surfaces in the angular subsystem are chosen as:

Sp =24 = Xy — T3q — 323, Z3 = X3q — T3,
(4.54)
Sy = 26 = Tg — Tsq — 525, 25 = Tsq — Ts.
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=
m
T

)

ssign{(x)

=
m

Figure 4.3: The plot of the function ssign(x).

where Z;4(i = 1,3,4,5,7,9,11.) are the references. The control laws are:

Uz = b_< — ksssign(Sy) — k4Sp — azrars — agxow + 0, — a%z;:,),
2

1 ) (4.55)
Uy = b_< — ksssign(Sy) — keSy — asToxs + Vg — a§z5).
3
In the position subsystem, the sliding surfaces are chosen as:
Sy = 28 = Xy — T7qg — Q727, 27 = Xqq — T,
Sy = 210 = T19 — T9q — g2y, Z9 = Tgq — Ty, (4.56)
S. = z12 = 11 — T11a — Q11211, 211 = T11d — T11,
Therefore, the control laws are defined:
m . .. 2
u = ———((— kyssign(S.) — kS, + g+ % — azr),
COS T COS T3
m . .
Uy = u_< — kgssign(S,) — k105, + &4 — agzg;), (4.57)
1

m

u, = u_< — kyissign(S.) — k125, + fa — 04%1211)'
1

4.3.4 PID Control

In the PID control, the quadrotor system is also divided into two subsystems: the angular

and position subsystem. A traditional PID control laws are implemented:
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u = Kje. +Kjé, + K7 I(e.),
u, = K e, + Kjé, + Ki I(es),
uy = Kl ey, + Kjé, + K!'I(e,),
up = K ey + K2 e+ K I(ey),
us = Kl eg+ K ég + K I(eq),
ug = KY ey + K ey + K I(ey),

€, =2— 2
er =T — Xy

€y =Y —Yr

(4.58)
6¢:¢_¢7‘
69:9—0r
€¢:¢—¢r

No model information is taken into account in this control laws.
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Chapter 5

Simulation Results

5.1 Time triggered Control

In this section, the control methods proposed in Section 4.3 will be implemented in differ-
ent scenarios: a basic scenario and the scenarios with wind disturbance, model parameter
uncertainties, sensor noises and actuator faults. The descriptions of these scenarios can be
found in Section 4.1. The reference trajectory is a square path with a length of 2m. The 3D
trajectory is given in Figure 4.1. The expression of the reference trajectory is in Equation
(4.1). The total simulation time is 150s.

A sampling period of 10ms is selected in simulation. The commercialized quadrotor
AscTec Hummingbird is designed for scientific researches (see Figure 1.9 in Chapter 1). The
system proposes a user function which runs at 1kHz [48]. In this function, the user can
process the sensor data, compute the reference trajectory and execute further application
programs. The basic control stabilization program should not occupy too much processing
time in order to allow other programs have more processing resources. Based on the real
system, a processing frequency of 100Hz for the control task appears to be reasonable. The
sampling period of a basic control should not be too long for the sake of the stability. The
linear acceleration of a quadrotor is usually inferior to g (¢ =9.8m/s). In one sampling period
of 10ms, the maximum changes of the linear velocity and position are 0.098m/s and 0.49mm
respectively. Therefore, a sampling period of 10ms is selected which is rather small with
respect to system dynamics and at the same time achievable in the real control.

In this chapter, all the control methods are sampled in the time triggered scheme, and the
sampling period is set to be 10ms. There are 15000 actuation steps. Every 10ms, the system

reads the data from sensors, computes new control signals and sends them to actuators.
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5.1.1 Model Free Control

In this subsection, we implement the model free control in several different scenarios. The
control law are described in Section 4.3 on Page 73. The total simulation time is 150s and

the sampling period is 10ms. There are 15000 actuation steps.

1. Basic scenario

This method is firstly simulated in the basic scenario without disturbance. The chosen con-
trol gains are in Table 5.1. The simulation results in the basic scenario without disturbance
are in Figure 5.1. The first figure is the tracking errors along the z, y and z axis. The second
figure is the angles ¢, 6 and . The third figure is the angular velocities of the four rotors.
The numbers of the rotor are defined in Figure 2.1 on Page 26.

Table 5.1: The model free control gains

k25 kP18 KT 15 kP 12| kP 2 ki 5
Ko5 k18 K 15 K 12| K 5 kY 10

In the basic scenario, the system using the model free control kept the stability during
the flight and followed the reference trajectory. The maximum absolute tracking error is

0.042m, which is 2.1% of the total length 2m.

2. Wind disturbance
In this subsection, the model free control is simulated in the scenario with wind disturbance.
The wind is depicted in Section 4.1 on Page 65. In the applications, the control gains are
pre-selected and usually not changed according to weather conditions and disturbances. In
order to simulate the realistic case, the control gains are not changed, which are the same
as in the basic scenario in Table 5.1. The simulation results are in Figure 5.2.

The control system shows its stability to wind disturbance. The system kept stable dur-
ing the disturbance. The maximum absolute tracking error is 0.042m, which is the same

with the basic scenario. The model free control compensated well the wind disturbance.

3. Parameter uncertainties
Then the model free control is simulated in the scenario with model parameter uncertain-
ties. The parameter uncertainties are defined in Section 4.1 on Page 66. The parameters

are estimated smaller than the real values. Therefore, the system is under-actuated. The
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Figure 5.1: The model free control in the basic scenario with the gains in Table 5.1.

control gains are in Table 5.1. The simulation results are in Figure 5.3.

The system stays stable with parameter uncertainties. The maximum absolute tracking

error is 0.075m, while 0.042m in the basic scenario.

4. Sensor noises
The model free control is also simulated in the scenario with sensor noises. The sensor nois-
es are defined in Section 4.1 on Page 68. The gains are not changed as in Table 5.1. The

simulation results are in Figure 5.4.

The maximum absolute tracking error is 0.08m, while 0.042m in the basic scenario.

5. Actuator faults
The model free control is also simulated in the scenario with actuator faults. The actuator
faults are defined in Section 4.1 on Page 69. The gains are not changed as in Table 5.1. The
simulation results are in Figure 5.5.

There were two actuator faults: one was during the hovering and the other is during

the tracking. The system kept stable during these actuator faults. The model free control
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Figure 5.5: The model free control with actuator faults and the gains in Table 5.1.
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responds quickly to the system fault, and the system adjusts to its stable states in 1s. The
maximum absolute tracking error is 0.07m, which is happened at the actuator fault during
tracking. The actuator fault during hovering caused 0.04m maximum absolute tracking error.

The actuator fault caused the quadrotor tilt about 0.1 rad during hovering.

5.1.2 Backstepping Control

In the subsection, we implement the backstepping control method proposed by Bouabdal-
lah [20]. The control laws are described in Subsection 4.3.2 on Page 78. The simulation time

is 150s, and the sampling period is 10ms. There are total 15000 actuation steps.

1. Basic scenario

This methods is firstly simulated in the basic scenario without disturbance. The control
gains are chosen as in Table 5.2. The simulation results in the basic scenario without dis-
turbance are in Figure 5.6. The first figure is the tracking errors along the x, y and 2 axis.
The second figure is the angles ¢, 8 and 1. The third figure is the angular velocities of the

four rotors. The numbers of the rotor are defined in Figure 2.1 in Chapter 2.

Table 5.2: The backstepping control gains

(075] 4 (6D) 10 Q3 4 Qg 10 (0731 1 (875 5

(6%4 ) Qs 30 Qg 2 10 3 11 2 12 3

In the basic scenario, the system using the backstepping control kept stable and followed
the reference trajectory. The maximum tracking error is 0.09m, which is 4.5% of the total

length 2m. It is bigger than 0.042m of the model free control.

2. Wind disturbance
In this subsection, the backstepping control is simulated in the scenario with wind dis-
turbance. The wind is depicted in Section 4.1. The control gains are in Table 5.2. The
simulation results are in Figure 5.7.

During the wind disturbance, the control system has big tracking errors. The maximum
absolute tracking error is 0.23m, which is 11.5% of the total length 2m. In the basic scenario,
the maximum error is only 0.09m. In the model free control, the maximum tracking error is

0.042m.
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Figure 5.6: The Backstepping control in the basic scenario with the gains in Table 5.2.

3. Parameter uncertainties

Then, the backstepping control is simulated in the scenario with model parameter uncer-
tainties. The parameter uncertainties are defined in Section 4.1. The gains are not changed
as in Table 5.2. The simulation results are in Figure 5.8. The maximum absolute tracking

error is 0.11m.

4. Sensor noises
The backstepping control is also simulated in the scenario with sensor noises. The sensor
noises are defined in Section 4.1. The gains are in Table 5.2. The simulation results are in

Figure 5.9.

5. Actuator faults
The backstepping control is also simulated in the scenario with actuator faults. The actuator
faults are defined in Section 4.1. The gains are in Table 5.2. The simulation results are in
Figure 5.10.

Two actuator faults happened separately during the tracking and hovering. In both cases,

the backstepping control kept its stability. The actuator faut during the moving caused 0.15m
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Figure 5.7: The backstepping control with wind disturbance and the gains in Table 5.2.
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maximum tracking error, comparing to 0.09m in the basic scenario. The actuator fault during
hovering caused 0.06m maximum tracking error. While in the model free control, the fault
caused 0.04m maximum tracking error during hovering. The backstepping control caused
big vibrations after the actuator faults. The actuator faults caused the quadrotor tilt about
0.28rad during hovering using the backstepping control, while in the model free control the
tilt angle is only 0.1 rad. After the faults, the system found its stable position in about 1.5s,

while 0.5s in the model free control.

5.1.3 Sliding Mode Control

In this subsection, we implement the sliding mode control method proposed by Bouabdal-
lah [20]. The control laws are described in Section 4.3.3 on Page 81. The simulation time is

150s, and the sampling period is 10ms. There are total 15000 actuation steps.

1. Basic scenario
The sliding mode control is firstly implemented in the basic scenario without disturbance.
The control gains are chosen as in Table 5.3. The simulation results in the basic scenario

without disturbance are in Figure 5.11.

Table 5.3: The sliding mode control gains

k?l 2 kQ 10 a 6 k?g 2 ]{?4 10 Qa3 6
k’5 1 k’6 2 (071 2 k7 5) kg 15 (074
]{?9 1 ]{?10 4 (67¢) 3 ]{?11 1 ]{312 4 11 3

In the basic scenario, the sliding mode control showed a good performance. The system
stays stable during the task, and the maximum absolute tracking error is 0.07m which is
almost the same with 0.09m of the backstepping control, bigger than 0.042m of the model

free control.

2. Wind disturbance
In this subsection, the sliding mode control is simulated in the scenario with wind distur-
bance. The wind is depicted in Section 4.1. The control gains are always as in Table 5.3.
The simulation results are in Figure 5.12.

During the wind disturbance, the control system has big tracking errors. The maximum

absolute tracking error is 0.19m, which is 9.5% of the total length 2m, while in the back-
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Figure 5.11: The sliding mode control in the basic scenario with the gains in Table 5.3.

stepping control the error is 0.23m. In the model free control, the maximum tracking error

is only 0.042m.

3. Parameter uncertainties
In the scenario with model parameter uncertainties which are defined in Section 4.1, the

simulation results are in Figure 5.13. The gains are in Table 5.3. The maximum absolute

tracking error is 0.055m, while 0.08 in the basic scenario.

4. Sensor noises
The sliding mode control is also simulated in the scenario with sensor noises. The sensor

noises are defined in Section 4.1. The simulation results are in Figure 5.14. The selected

gains are in Table 5.3.

5. Actuator faults

In the scenario with actuator faults which are defined in Section 4.1. The simulation results

are in Figure 5.15. The selected gains are in Table 5.3.
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Figure 5.15: The sliding mode control with actuator faults and the gains in Table 5.3.
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The fault during the hovering caused 0.21m tracking error. During hovering, the system
was back to normal stable state in about 2s, while the responding time is 1s in the model
free control and 1.5s in the backstepping control. The actuator fault caused the quadrotor
tilt about 0.29rad during hovering, while 0.1rad in the model free control and 0.28rad in the
backstepping control.

5.1.4 Discussion

In order to show the differences of these control methods explicitly, ten important criteria

are listed as follows for the comparison:

(1) The sum of the variances of the tracking errors in the x, y and z axis in basic sce-

3
nario without disturbance: Y [, e?.
i=1

3
(2) The sum of the variances of the tracking errors with wind disturbance: Y [ 7.
i=1

3
(3) The sum of the variances of the tracking errors with parameter uncertainties: [, 7.
i=1

(4) The sum of the variances of the tracking errors with sensor noises:i €3
i=1

(5) The sum of the variances of the tracking errors with actuator faults:i . er.

(6) Adjusting time: t. -

(7) Maximum tilt angle: ¢ or 6.

(8) The number of the actuation steps.

(9) The computational complexity: the number of the addition and multiplication operations

in the control law.

(10) The energy consumption: the energy spent on motion control, the sum of the four

motors’ squared angular speeds: i f,w?.

In the time triggered schemel,: 1the maximum absolute tracking error, the sum of the
variances of the tracking errors and the energy consumption of three methods in five scenarios
are shown in Figure 5.16. From the figure, we can see the time triggered model free control
has generally a better performance in these criteria.

The comparison of three control methods in the basic scenario is shown in Table 5.4.
From the simulation results, the control methods have almost the same performance in the

basic scenario. All the control show a good stability during the flight, and the tracking errors

are less than 0.1m, which is 5% of the length of 2m. The model free control has smallest
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maximum absolute tracking error, however the sum of the variances of the errors is not the

smallest.

The comparison of three control methods in the scenario with wind disturbance is shown
in Table 5.5. The model free shows its advantage during the wind disturbance. The maximum
absolute tracking error is the same as in the basic scenario. The sum of the variances of
the tracking errors increased by 6%. The mode free control compensates well the wind
disturbance. This is due to the real time updated system dynamics which is computed at
each sampling period. The value F'is computed using the real time system measurement g
and the last time control input u. The unexpected wind disturbance is considered in Fin

the real time control. Therefore, the wind disturbance has little influence for the model free
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Table 5.4: The comparisons of the time triggered control methods in the basic scenario.

basic scenario model free backstepping sliding mode
maximum absolute error 0.042 0.09 0.07
error variance 0.0049 0.0028 0.0003
maximum tilt angle 0.21 0.22 0.205
energy consumption 2.4518e+7  2.4519e+7 2.4518e+7
actuation steps 15000 15000 15000
computational complexity | O(5n?+3n)  O(6n?+4n)  O(6n*+4n)

Table 5.5: The comparisons of the time triggered control methods with wind disturbance. n
is n-digit number.

wind model free backstepping sliding mode
maximum absolute error 0.042 0.23 0.19
error variance 0.0052 2.4723 0.8476
maximum tilt angle 0.4 0.41 0.41
energy consumption 2.3598e+7  2.3600e+7 2.3598e-+7
computational complexity | O(5n*+3n)  O(6n?*+4n)  O(6n*+4n)

control. As the same time, the backstepping control and sliding mode control have large
tracking errors during the wind disturbance. The maximum tracking errors increased by
155.5% and 171.4% in the backstepping control and sliding mode control respectively. The

sums of the variances of the tracking errors increased 838196% and 28433%.

The comparison in the scenario with parameter uncertainties is shown in Table 5.6.
All the control methods show good performance in this scenario. When the parameters
are underestimated and the system is under-actuated, all the control methods keep their
stability and the tracking errors are rather small. In the model free control, the maximum
tracking error and the sum of the variances increased by 78% and 333% related to the basic
scenario. In the backstepping control, the maximum tracking error and the sum of the
variances increased by 22% and 1571%. In the sliding mode control, the maximum tracking

error and the sum of the variances increased by -21.4% and 4500%.

The comparison in the scenario with sensor noises is shown in Table 5.7. The backstepping
control has the smallest error variance. The sensor noises caused oscillations in the other
two methods, especially in the sliding mode control. It is due to the switching feature of the

sliding mode control.
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Table 5.6: The comparisons of the time triggered control methods with parameter uncer-
tainties. n is n-digit number.

parameter uncertainties | model free backstepping sliding mode

maximum absolute error 0.075 0.11 0.055
error variance 0.0212 0.0468 0.0138
maximum tilt angle 0.35 0.38 0.22

energy consumption 2.4523e+7  2.4528e+7 2.4517e+7
computational complexity | O(5n*+3n)  O(6n?+4n)  O(6n*+4n)

Table 5.7: The comparisons of the time triggered control methods with sensor noises. n is
n-digit number.

sensor noises model free backstepping sliding mode
maximum absolute error 0.08 0.09 0.08
error variance 0.2309 0.0029 0.0088
energy consumption 2.4517e+7  2.4520e+7 2.4518e+7
maximum tilt angle 0.22 0.23 0.21
computational complexity | O(5n*+3n)  O(6n*+4n)  O(6n*+4n)

Table 5.8: The comparisons of the time triggered control methods with actuator faults. n is
n-digit number.

actuator faults model free backstepping sliding mode
maximum error caused by fault 0.04 0.06 0.21
maximum tilt angle caused by fault 0.1 0.28 0.29
adjusting time after the fault 1 1.5 2.0
error variance 0.0327 0.0167 0.0585
energy consumption 2.4518e+7  2.4524e+7 2.4522e+7
computational complexity O(5n?+3n)  O(6n*+4n)  O(6n?+4n)

The comparison in the scenario with actuator faults is shown in Table 5.8. The model
free control has the smallest adjusting time after the faults. It responds quickly to the change
of the dynamics due to the real time computation of the value F. The sliding mode control
has the largest adjusting time, and the actuator faults caused a biggest oscillation in the
actuators and therefore the tilt angles. The maximum tilt angle of the backstepping control

and the sliding mode control are 0.28rad and 0.29rad, while 0.1 rad in the model free control.
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5.2 Event triggered Control

Quadrotors have many applications, such as border patrol, surveillance, search & rescue,
aerial photography, etc. In these applications, a long flight duration time is needed to
finish the tasks. The flight duration time depends on two factors: the capacity of the
onboard battery and the energy consumption of the quadrotor system. The commercialized
quadrotors usually use Lithium Polymer (LiPo) batteries. However, a bigger battery capacity
means a heavier load and a more expensive price. In order to extend the flight duration, we
can also reduce energy consumption. As in these applications mentioned above, quadrotors
have usually a smooth trajectory and without aggressive movement. When quadrotors follow
a trajectory, the tracking errors are often in a limited bound. Therefore, an event triggered
control scheme is proposed for these applications. Limit tolerances are set for control systems,
and a control system is actuated only when the limits are passed. In this way, unnecessary

computations are avoided and the energy consumption is reduced.

In this chapter, all the control methods proposed in Section 4.3 will be implemented in
the event triggered scheme. As in the time triggered scheme, the control methods are also
implemented in the different scenarios: the basic scenario, the scenarios with wind distur-
bance, model parameter uncertainties, sensor noises and actuator faults. The descriptions of
these scenarios can be found in Section 4.1. The reference trajectory is a square path with
a length of 2m. The 3D trajectory is given in Figure 4.1. The expression of the reference

trajectory is in Equation (4.1). The total simulation time is 150s.

The thresholds of the event triggered laws are selected based on the tasks of quadrotors.
A threshold which keeps the preciseness of tracking and reduces the actuation steps should
be used. The selected scenario is reference tracking. The quadrotor needs to track a square
trajectory while hovering at a certain altitude. We set that the tracking along the x and
y axis should be precise and that along the z axis can have a bigger tracking error. The
thresholds set for x, y and z are 0.001m, 0.001m and 0.02m respectively. As mentioned in the
previous paragraph, the maximum changes of the linear velocity and position are 0.098m/s
and 0.49mm respectively in one sampling period 10ms. A threshold of 0.001m is reasonable,

which keeps the preciseness of tracking and at the same time reduces the actuation steps.

Here, the event triggering laws are chosen to be the error difference threshold as in

Equation (4.10). We set the error difference threshold of z 0.02m, yaw angle 0.1rad, z and
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y 0.001m.
e, <0.02m, e, e, <0.00lm, e, < 0.1rad. (5.1)

Every sampling period 10ms, the control system verifies the tracking error differences. If
one of the error differences is bigger than the limit mentioned above, the system will compute
new control signals and send them to the actuator. If all of the error differences are smaller
than the limits, the control system will not compute the control signals, and simply keep
the old control signals to the next sampling. Therefore, the system can save computation-
al resources when quadrotors have small tracking errors, especially when quadrotor move

smoothly or hovering.

5.2.1 Model Free Control

In this section, we implement the model free control in several different scenarios. The con-
trol laws and the scenarios are described in Chapter 4. The event triggering law is defined

at the beginning of this chapter.

1. Basic scenario

The event triggered model free control is firstly simulated in the basic scenario without dis-
turbance. The control gains are chosen as in Table 5.9. The simulation results in the basic
scenario without disturbance are in Figure 5.17. The first figure is the tracking errors along
the x, y and z axis. The second figure is the angles ¢, # and . The third figure is the
angular velocities of the four rotors. The numbers of the rotor are defined in Figure 2.1 in

Chapter 2.

Table 5.9: The event triggered model free control gains

k23 kI 9 kT 8 KX 25|k 2 k5
K3 k8 kY 8 kY 3 kY 5 kY 10

In the basic scenario, the system using the model free control kept the stability during
the flight and followed the reference trajectory. The maximum absolute tracking error is
0.06m, while 0.042m in the time triggered model free control. The actuation steps is 9008,
which is 60% of 15000 in the time triggered scheme.
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2. Wind disturbance
The model free control is also simulated in the scenario with wind disturbance. The wind
is depicted in Section 4.1. In order to simulate the realistic case, the control gains are not
changed, which are the same as in the basic scenario in Table 5.9. The simulation results
are in Figure 5.18.

The control system shows its stability in the wind disturbance. The system kept stable
during the disturbance. The maximum absolute tracking error is 0.06m, which is the same

with the basic scenario. The actuation steps is 12110, while 9008 in the basic scenario.

3. Parameter uncertainties
Then the model free control is simulated in the scenario with model parameter uncertain-
ties. The parameter uncertainties are defined in Section 4.1. The parameters are estimated
smaller than the real values. Therefore, the system is under-actuated. The gains are not
changed as in Table 5.9. The simulation results are in Figure 5.19.

The system stays stable with parameter uncertainties. The maximum absolute tracking
error is 0.19m, which increased 217% respecting to 0.06m in the basic scenario. In the event
triggered scheme, the parameter uncertainties caused some oscillations in the system. The

actuation steps is 10803, while 9008 in the basic scenario.

4. Sensor noises
The model free control is also simulated in the scenario with sensor noises. The sensor noises
are defined in Section 4.1. The gains are not changed as in Table 5.9. The simulation results
are in Figure 5.20.

The actuation steps is 15000. Actually the event triggered scheme is changed into the
time triggered scheme, as the actuation laws are triggered at each steps. The maximum

absolute tracking error is 0.08m, while 0.06m in the basic scenario.

5. Actuator faults
The model free control is also simulated in the scenario with actuator faults. The actuator
faults are defined in Section 4.1. The gains are in Table 5.9. The simulation results are in
Figure 5.21.

The system kept stable during the actuator faults. The system adjusts to its stable states
in 0.5s. The adjusting time is the same as in the time triggered scheme. The maximum

absolute tracking error is 0.13m, which is happened at the actuator fault during tracking.
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Figure 5.17: The model free control in the basic scenario with the gains in Table 5.1.
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Figure 5.18: The model free control with wind disturbance and the gains in Table 5.1.
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Figure 5.19: The model free control with parameter uncertainties and the gains in Table 5.1.
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Figure 5.20: The model free control with sensor noises and the gains in Table 5.1.
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Figure 5.21: The model free control with actuator faults and the gains in Table 5.1.

The actuator fault during hovering caused 0.12m maximum absolute tracking error. The
actuator fault caused the quadrotor tilt about 0.1 rad during hovering. The actuation steps
is 9298, while 9008 in the basic scenario.

5.2.2 Backstepping Control

In this subsection, we implement the backstepping control method proposed by Bouabdal-
lah [20]. The control laws are described in Section 4.3.2. The simulation time is 150s. The
event triggering law is defined at the beginning of this chapter.

1. Basic scenario

The backstepping control is firstly simulated in the basic scenario without disturbance. The
control gains are chosen as in Table 5.10. The simulation results in the basic scenario without
disturbance are in Figure 5.22. The first figure is the tracking errors along the x, y and 2
axis. The second figure is the angles ¢, 6 and ). The third figure is the angular velocities of

the four rotors. The numbers of the rotor are defined in Figure 2.1 in Chapter 2.

In the basic scenario, the backstepping control followed the reference trajectory while
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Table 5.10: The backstepping control gains

aq 2 (6%)) 5 (0% 2 QY 5 (074 1 Qg 1

(0%4 2 Qg 10 [(676) 2 a0 3 11 2 12 3

keeping stable. The maximum tracking error is 0.1m, which is 4.5% of the total length 2m.
In the time triggered scheme, the maximum tracking error is 0.09m. The actuation steps is

9987, while 9008 of the model free control in the basic scenario.

2. Wind disturbance

In this subsection, the backstepping control is simulated in the scenario with wind distur-
bance. The wind is depicted in Section 4.1. The control gains are the same as in Table 5.10.
The simulation results are in Figure 5.23.

During the wind disturbance, the control system had big tracking errors. The maximum
absolute tracking error is 0.22m, which is 11% of the total length 2m. In the basic scenario,
the maximum error is only 0.09m. In the model free control, the maximum tracking error is
0.06m. After the wind disturbance, the system followed the reference trajectory, and kept
the tracking error in a small limit as in the scenario without wind disturbance. The actuation

steps is 12116, while 9987 in the basic scenario.

3. Parameter uncertainties
Then, the backstepping control is simulated in the scenario with model parameter uncertain-
ties. The parameter uncertainties are defined in Section 4.1. The gains are in Table 5.10.
The simulation results are in Figure 5.24.

The maximum absolute tracking error is 0.22m, while 0.11m in the time triggered scheme.
The maximum tilt angle is 0.49rad. The actuation steps is 14976, while 9987 in the basic

scenario.

4. Sensor noises
The backstepping control is also simulated in the scenario with sensor noises. The sensor
noises are defined in Section 4.1. The control gains are in Table 5.10. The simulation results

are in Figure 5.25. The actuation steps is 15000.

5. Actuator faults

The backstepping control is also simulated in the scenario with actuator faults. The actuator
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Figure 5.22: The backstepping control in the basic scenario with the gains in Table 5.2.
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Figure 5.25: The backstepping control with sensor noises and the gains in Table 5.2.
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Figure 5.26: The backstepping control with actuator faults and the gains in Table 5.2.

faults are defined in Section 4.1. The control gains are in Table 5.10. The simulation results

are in Figure 5.26.

Two actuator faults happened during the moving and hovering. In both cases, the back-
stepping control kept its stability. The actuator faut during the moving caused 0.2m max-
imum tracking error, comparing to 0.1m during hovering. The actuator fault caused the
quadrotor tilt about 0.21rad during hovering using the backstepping control, while in the
model free control the tilt angle is only 0.1rad. After the faults, the system found its stable
position in about 2.5s. The responding time is bigger than the model free control which is

about 0.5s. The actuation steps is 10020, while 9987 in the basic scenario.

5.2.3 Sliding Mode Control

In this subsection, we implement the sliding mode control method proposed by Bouabdallah
[20]. The control laws are described in Section 4.3.3 in Chapter 4. The simulation time is

150s. The event triggering laws are defined at the beginning of this section.
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1. Basic scenario
The sliding mode control is firstly implemented in the basic scenario without disturbance.
The control gains are chosen as in Table 5.11. The simulation results in the basic scenario

without disturbance are in Figure 5.27.

Table 5.11: The sliding mode control gains

1{31 1 k?g 5 (0%] 3 kg 1 ]{74 5 3 3
k5 1 kﬁ 2 (071 2 k7 2 kg 8 [07%4 4
]{59 0.5 ]{310 2 (67¢) 1.5 kll 0.5 k’lg 2 11 1.5

In the basic scenario, the sliding mode control showed a good performance. The system
stays stable during the task, and the maximum absolute tracking error is 0.1m, while 0.08m
in the time triggered sliding mode control and 0.06m and 0.1m of the event triggered model
free and backstepping controls in the basic scenario respectively. The actuation steps is 8493,
while 9008 and 9987 in the event triggered model free and backstepping controls in the basic

scenario.

2. Wind disturbance

In this subsection, the sliding mode control is simulated in the scenario with wind distur-
bance. The wind is depicted in Section 4.1. The control gains are always as in Table 5.11.
The simulation results are in Figure 5.28.

During the wind disturbance, the control system has big tracking errors. The maximum
absolute tracking error is 1.25m, which is 62.5% of the total length 2m, while 0.23m in the
time triggered backstepping control. In the event triggered model free control, the maximum
tracking error is only 0.06m. As the backstepping control, the sliding mode control is also
vulnerable to the wind disturbance. After the wind disturbance, the system followed the
reference trajectory, and kept the tracking error in a small limit as in the scenario without
wind disturbance. However, the event triggered backstepping control should not be used in
the applications with wind disturbance, because the tracking error is too high. The actuation

steps is 12445, while 8493 in the basic scenario.

3. Parameter uncertainties
In the scenario with model parameter uncertainties which are defined in Section 4.1, the
simulation results are in Figure 5.29. The gains are in Table 5.11.

The maximum absolute tracking error is 0.41m, while 0.11m in the time triggered scheme.
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Figure 5.27: The sliding mode control in the basic scenario with the gains in Table 5.3.

All three methods show good performance in the condition with parameter uncertainties.

The actuation steps is 14983, while 8493 in the basic scenario.

4. Sensor noises

The sliding mode control is also simulated in the scenario with sensor noises. The sensor
noises are defined in Section 4.1. The simulation results are in Figure 5.30. The selected
gains are in Table 5.11.

In this scenario, the sensor noises caused many vibrations in the actuators, which are
much more than the backstepping control and model free control. The sliding mode control
is much more sensible to the sensor noises than the backstepping control. The reason is due
to the switching feature of the sliding mode control which is less stable than the backstepping
control. The actuation steps is 15000.

5. Actuator faults
In the scenario with actuator faults which are defined in Section 4.1. The simulation results

are in Figure 5.31. The selected gains are in Table 5.11.

The actuator faults did not cause bigger maximum tracking error during the flight. The
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Figure 5.28: The sliding mode control with wind disturbance and the gains in Table 5.3.
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fault during the hovering caused 0.035m tracking error. During hovering, the actuator fault
has been responded quickly, and in about 1s the system was back to normal stable state.
However, the actuator fault during the moving caused a longer adjustment. While the
responding time is 0.5s in the event triggered model free control and 1.5s in the event
triggered backstepping control. The actuator fault caused the quadrotor tilt about 0.1rad
during hovering, while 0.1rad in the event triggered model free control and 0.21rad in the
event triggered backstepping control. The actuation steps is 8297, while 8493 in the basic

scenario.

5.2.4 Discussion

As in the time triggered control scheme, in order to show the differences of these control

methods explicitly, ten important criteria are listed as follows for the comparison:

(1) The sum of the variances of the tracking errors in the x, y and z axis in basic sce-
3

nario without disturbance: ) [ e?.
i=1

3
(2) The sum of the variances of the tracking errors with the wind disturbance: ) [, eZ.
i=1
3
(3) The sum of the variances of the tracking errors with parameter uncertainties: [, e?.
i=1
3
(4) The sum of the variances of the tracking errors with sensor noises:y [, e?.
i=1

(5) The sum of the variances of the tracking errors with actuator faultszzg: /€.

(6) Adjusting time: t. -

(7) Maximum tilt angle: ¢ or 6.

(8) The number of the actuation steps.

(9) The computational complexity: the number of the addition and multiplication operations
in the control law.

(10) The energy consumption: the energy spent on motion control, the sum of the four mo-

4
tors’ squared angular speeds: - [ w?.
i=1

In the event triggered scheme, the maximum absolute tracking error, the sum of the
variances of the tracking errors, the energy consumption and the actuation steps of three
methods in five scenarios are presented in Figure 5.32. From the figure, we can see the event

triggered model free control has a better performance in general.
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The comparison in the basic scenario is shown in Table 5.12. All the three methods
are capable to keep their stability during the flight. There are not a big difference in the
performance of three event triggered control methods. The event triggered backstepping

control has the biggest actuation steps and maximum absolute error.

The comparison in the scenario with wind disturbance is shown in Table 5.13. The
event triggered model free control can still well compensate the wind disturbance and has
the smallest error variance, while the other two controls, especially sliding mode control,

have big tracking errors. The maximum tracking error of the event triggered sliding mode
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Table 5.12: The comparisons of the event triggered control methods in the basic scenario. n

is n-digit number.

basic scenario model free backstepping sliding mode
maximum absolute error 0.06 0.1 0.07
maximum tilt angle 0.21 0.21 0.21
error variance 0.02 0.02 0.0116
energy consumption 2.4517e+7  2.4522e+7 2.4365e+7
actuation steps 9008 9987 7603
computational complexity | O(5n*+3n)  O(6n*+4n)  O(6n*+4n)

Table 5.13: The comparisons of the event triggered control methods with wind disturbance.

n is n-digit number.

wind model free backstepping sliding mode
maximum absolute error 0.06 0.22 1.25
maximum tilt angle 0.4 0.4 0.405
error variance 0.0635 2.6679 58.5091
energy consumption 2.3598e+7  2.3604e+7 2.3559e-+7
actuation steps 12110 12116 11400
computational complexity | O(5n*+3n)  O(6n?+4n)  O(6n*+4n)

control is 1.25m, which is 62.5% the desired path length 2m. The error variance of the event
triggered sliding mode control is 58.5.91m, while 0.0635m and 2.6679m in other two methods
respectively.

The comparison in the scenario with parameter uncertainties is shown in Table 5.14.
The event triggered model free control has smallest tracking errors and actuation steps. The
event triggered model free control saves the computational resources and at the same time
has a better performance. The event triggered backstepping control has the biggest error
variance in the system.

The comparison in the scenario with sensor noises is shown in Table 5.15. In this scenario,
the control methods are triggered all the time, and the results are almost the same with
the methods in the time triggered scheme. It shows the advantage of the event triggered
scheme. If there are many disturbances, the control system will perform as in the time
triggered scheme. If there are not many disturbances, the control system will select the

control computation time according to the triggering laws.

The comparison in the scenario with actuator faults is shown in Table 5.16. Three event
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Table 5.14: The comparisons of the event triggered control methods with parameter uncer-

tainties. n is n-digit number.

parameter uncertainties | model free backstepping sliding mode
maximum absolute error 0.19 0.22 0.29
maximum tilt angle 0.34 0.49 0.3
error variance 0.1281 1.8675 0.4638
energy consumption 2.4295e+7  2.4543e+7 2.4521e+7
actuation steps 10803 14976 14983
computational complexity | O(5n*+3n)  O(6n*+4n)  O(6n*+4n)

Table 5.15: The comparisons of the event triggered control methods with sensor noises. n is

n-digit number.

sensor noises model free backstepping sliding mode
maximum absolute error 0.08 0.09 0.08
maximum tilt angle 0.22 0.23 0.21
error variance 0.2309 0.0029 0.0088
energy consumption 2.4517e+7  2.4520e+7 2.4518e+7
actuation steps 15000 15000 15000
computational complexity | O(5n?+3n)  O(6n?+4n)  O(6n*+4n)

Table 5.16: The comparisons of the event triggered control methods with actuator faults. n
is n-digit number.

actuator faults model free backstepping sliding mode
maximum error caused by fault 0.13 0.2 1.8
maximum tilt angle caused by fault 0.1 0.21 0.5
adjusting time after the fault 0.5 2.5 2.5
error variance 0.0918 0.0661 8.768
energy consumption 2.4520e+7  2.4527e+7 2.4441e+7
actuation steps 9298 10020 7857
computational complexity O(5n?+3n)  O(6n*+4n)  O(6n?+4n)

triggered control methods keep the stability after the actuator faults. The event triggered
backstepping control and sliding mode control have oscillations in the acutator after the
faults, and the system need about 2.5s to back to the stable state. The event triggered
sliding mode control has the biggest maximum tracking error and error variance. The event

triggered model free control has the smallest adjusting time and small tracking errors.
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5.3 Discussion

In order to show the differences of these control methods explicitly, we choose six criteria for
the comparison:

(1) The sum of the variances of tracking errors in x, y and z axis without wind disturbance:

> et
i=1
(2) The sum of the variances of tracking errors with the wind disturbance: 23: el
i=1
(3) The sum of the variances of tracking errors with rotation model error:i €.
(4) The number of the actuation steps in the basic scenario. .
(5) The computational complexity: the number of the addition and multiplication operations

in the control law.

(6) The energy consumption in the basic scenario: the energy spent on motion control, the

sum of the four motors’ squared angular speeds: 24: Jiw?.
The radar charts of the comparisons are shown iri:]ﬁligures 5.33 and 5.34.

The maximum absolute tracking errors of all the control methods in all the scenarios are
presented in Table 5.17 and Figure 5.35. The time triggered model free has the smallest max-
imum absolute tracking error, and the event triggered model free has the smallest maximum
absolute tracking error than other event triggered methods. The time and event triggered
model free control have good performances especially in the scenario with wind disturbance.
The tracking errors are much smaller than other methods. The wind disturbance has great
influence on the time and event triggered backstepping and sliding mode control, while the
time and event triggered model free control has almost the same performance as in the basic
scenario. The sliding mode control does not match the event triggered scheme, and the
tracking errors are much more bigger than other control methods.

The sum of the error variance of all the control methods in all the scenarios are presented
in Table 5.18 and Figure 5.36. The time and event triggered model free control have the
smallest error variance in general. The event triggered model free control has the error
variance almost the same with the time triggered backstepping and sliding mode controls in
five scenarios, or even better in the case with wind disturbance.

The actuation steps of all the control methods in all the scenarios are presented in Table
5.19 and Figure 5.37. The event triggered model free has reduced about 30% actuation steps
in general while the tracking errors are not greatly increased. The actuation steps are much

more reduced than other control methods in the scenario with parameter uncertainties, while
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Figure 5.33: The comparison of the control methods in the time triggered scheme.
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Figure 5.34: The comparison of the control methods in the event triggered scheme.

the error variance is almost the same with the time triggered model free control, backstepping
control and sliding mode control.

The energy consumption of all the control methods in all the scenarios are presented in
Table 5.20 and Figure 5.38. The energy consumptions are not changed too much in different
methods. The event triggered sliding mode control has slightly less energy consumption,

however the tracking errors are the biggest in the applications.
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Table 5.17: The maximum absolute tracking errors of all the control methods in all scenarios.
MF': model free control. BS: backstepping control. SM: sliding mode control.

time triggered event triggered
MF  BS SM | MF BS SM
basic scenario 0,042 0,09 0,07 | 0,06 0,1 0,07
wind 0,042 0,23 0,19 | 0,06 0,22 1,25
parameter uncertainties | 0,075 0,11 0,055 | 0,19 0,22 0,29
sensor noise 0,08 0,09 0,08 | 0,08 0,09 0,08
actuator faults 0,04 0,06 0,21 |0,13 0,2 1.8
1.25 1.8
0,45
00?’,: = -+ time triggered model free
6,3 time triggered backstepping
0,25 =—t=time triggered sliding mode
e T — == ;
0,2 ~ = -N - tt d model f
e v el e
01 _ﬁf - Sae PO __""‘:———.Q“ ,_._{....‘_':_:____' event triggered sliding mode
005 === =B e e TR —
O T
basic scenario wind parameter uncertainties  sensor noise actuator faults

Figure 5.35: The maximum absolute tracking error of all the control methods in all scenarios.

Table 5.18: The sum of the error variances of all the control methods in all scenarios. MFE:
model free control. BS: backstepping control. SM: sliding mode control.

time triggered event triggered
MF BS SM MF BS SM
basic scenario 0,0049 0,0028 0,0003 0,2 0,2 0,0116
wind 0,0052 2,4723 0.8476 | 0,0635 2,6679 58.5091
parameter uncertainties | 0,0212 0,0468 0,0138 | 0,1281 11,8675 0.4638
sensor noise 0,2309 0,0029 0,0088 | 0,2309 0,0029 0,0088
actuator faults 0,0327 0,0167 0,0585 | 0,0918 0,0661  8.768
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Figure 5.36: The sum of the error variances of all the control methods in all scenarios.

Table 5.19: The actuation steps of all the control methods in all scenarios. MF: model free
control. BS: backstepping control. SM: sliding mode control.

time triggered event triggered
MF BS SM | MF BS SM
basic scenario 15000 9008 9987 7603
wind 15000 12110 12116 11400
parameter uncertainties 15000 10803 14976 14983
sensor noise 15000 15000 15000 15000
actuator faults 15000 9298 10020 7857
15000 T+ o . - =
14000 prad T
P N ——time tri d model free,
13000 o R backsteping, liding mode
12000 )< L . A -+ M- event triggered model free
11000 : E N \. event triggered backstepping
10000 - 7 ’\ - - = event triggered sliding mode
9000 | W~ —
8000 | - %
?DCO T T T T
basic scenario wind parameter Sensor noise actuator faults

uncertainties

Figure 5.37: The actuation steps of all the control methods in all scenarios.
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Table 5.20: The energy consumption of all the control methods in all scenarios. MF: model
free control. BS: backstepping control. SM: sliding mode control.

%107 time triggered event triggered
MF BS SM MF BS SM
basic scenario 2,4518 2,4519 24518 | 2,4517 2,4522 2,4365
wind 2,3598 2,3600 2,3599 | 2,3598 2,3604 2,3559
parameter uncertainties | 2,4523 2,4528 2,4517 | 2,4295 2,4543 2,4521
Sensor noise 24517 24520 2.4518 | 2,4517 2,4520 24518
actuator faults 24518 2,4524 2.4522 | 2,4520 2,4527 2,4441
2,47
N | - — -
2,45 ".‘_ 7 e - .‘m___——"'""""'* == time triggered model free
2,43 \&% Val - =B time triggered backstepping
2,41 N, - = A= time triggered sliding mode
\\ .'// == event triggered model free
2,39 * :

’ N _ /4 B event triggered backstepping
2,37 \‘Vf —0—eavent triggered sliding mode
2,35

basic scenario wind parameter sensor noise actuator faults

uncertainties

Figure 5.38: The energy consumptionx10~" of all the control methods in all scenarios.
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Chapter 6

Conclusions

6.1 Conclusion

In the last decades, quadrotors become popular in scientific researches. Due to its simplicity
in design and maneuver, quadrotors have many applications. However, there are many
challenges in the control of quadrotors. This dissertation is therefore dedicated to these
main challenges.

At the beginning, two inspiring examples are made to show the limits of a traditional
PID control and the difference of the performance in ideal scenarios and realistic scenarios.
Then, the challenges in quadrotor researches are thoroughly studied. Three main problems
are listed. Firstly, a dynamic model which is simple for computation and close to quadro-
tor dynamics is needed. Secondly, a control method which demands small computational
resources and at the same time is rather stable for disturbances and model uncertainties is
required. At last, the results in realistic scenarios are needed to show the advantages and
disadvantages of the control methods. The comparisons of several methods in the same sce-
narios are also demanded to verigy which method is better in certain conditions. Therefore,
these challenges are studied in this dissertation.

The existing quadrotors are intensively studied and presented. The configurations of
quadrotors have limitations: Lithium Polymer batteries have limited capacities; embedded
systems have limited computational resources, etc. Then, the applications of quadrotors are
thoroughly studied, and necessary qualities of a control method are discussed. The existing
quadrotor control methods are presented according to their research groups. Several control
methods have been proposed, however we can not tell which one is better in which condition.

The comparisons of control methods are rarely given in the literature. These studies of the
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literature support the chosen main challenges.

In the modeling, the kinematic relations and dynamic models are proposed. The world
frame, body frame and the FEuler angles rotational sequence are selected based on the most
generally used references. The relations of the positions, velocities and accelerations are
clearly presented. Then, a dynamic model using the Newton Euler formalism is proposed.
The aerodynamic forces and moments based on the Fay’s work are studied and presented.
The modeling is based on the Bouabdallah’s modeling. The Bouabdallah’s model is a rather
realistic model in the literature. However, there are some errors in his modeling. For example,
the hub force is calculated using the linear velocities along the x,, and y,, in the world frame.
These are not exact. The hub force should be calculated using the linear velocities along the
xp and 7, in the body frame, as aerodynamic forces are caused by the air flow speed related
to a quadrotor which changes when the quadrotor rotates. Moreover, some directions of the
forces and moment are not correct, such as the direction of the rolling moment, etc. The
frames defined in Bouabdallah’s thesis are not the same as in his program, which is a little
bit confusing. Therefore in this thesis, the chosen world and body frames, the relationship
of linear and angular velocities, the aerodynamic forces and moments are clearly presented.
The errors in Bouabdallah’s thesis are corrected. Some unnecessary aerodynamic forces and

moments are neglected.

Then, the dynamics of a quadrotor is analyzed. The dynamics has never been studied in-
tensively in the literature. Firstly based on the normal form theory, the model of a quadrotor
is simplified to a simplest form named the normal form which exhibits all possible properties
of the original system. In the original model, the control inputs are coupled with the states,
which makes the analysis of the system difficult. The relations between the system states
can not be clearly seen. In the normal form, the system states are no longer coupled with
the system inputs, and we can see the pitch angle 6 has more influence on the x axis and the
roll angle ¢ has more influence on the y axis. Then, the bifurcations of its normal form are
studied. The system without input has twelve zero eigenvalues, and this means the stability
of the system depends on the inputs. Given some general state feedbacks with some pa-
rameters, the changes of the eigenvalues which are caused by the changes of the parameters
are proposed. Using the center manifold theory, the system can be further simplified at its
bifurcation point. The twelve dimensional system is then simplified into a two dimensional

system which exhibits all possible properties of the original system.

In Chapter 4, without losing generality, an aerial photography scenario in an open space

is selected. Based on the necessary qualities in applications, five realistic scenarios are
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presented: an ideal case, the scenario with wind disturbance, with parameter uncertainties,
with sensor noises and with actuator faults. These realistic cases can show the stability
and sensibility of a control method in difference aspects, and a control method can have
varying performance in each aspect. These results make good references for choosing a
control method for certain application. In order to further save the computational resources,
the event triggered scheme is presented and used on all the control methods.

Then, a newly proposed method the model free control is presented. It is a simple
but efficient technique for nonlinear, unknown or partially known dynamics. Instead of
computing the dynamics of a system, the dynamics is evaluated as a variable F' in real time
by the system inputs and outputs. Therefore, the model free control can compensate well the
modeling errors and real-time disturbances. The algorithm of this control method is rather
simple as it does not fully compute the dynamic model. At the same time, the stability of
this method is high as it compensates well the disturbances. In order to show its advantages
and disadvantages, several other control methods are also proposed, such as a backstepping
control and a sliding mode control. The time and event triggered schemes are implemented
in all the control methods.

In Chapter 5, the simulation results of the time and event triggered all control methods in
five scenarios are given. In order to close to the realistic cases, the control gains of each control
method are the same in five different scenarios. Usually control gains are chosen beforehand
and will not be changed during the applications when disturbances occur. The results are
analyzed and compared thoroughly in different aspects. Ten important criteria discussed in
Chapter 1 are listed, such as the maximum absolute tracking error, the error variance, the
actuation steps, the energy consumption, etc. In each scenario, the values of these criteria
are calculated and presented in tables and figures. The advantages and disadvantages of
each control method can be seen clearly. These results make a good reference for choosing

an appropriate control method for an application.

6.2 Future Work

Some of the challenges are discussed in this dissertation. However, there are still some work

to finish in the future.

(1) A simulation workbench.

Based on the programs of Bouabdallah, some simulation programs are written in this
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thesis. It can be a good simulation workbench for future quadrotor studies. However in the
modeling, many aerodynamic effects are not fully presented or neglected, such as the ground
effect. The aerodynamic effects are definitely needed more intensive studies. Getting de-
tailed aerodynamic mathematic expressions may be not useful for control system design, as
the embedded system has limit computational resources. However, it is very useful to build
a comprehensive simulation workbench. A standard simulation workbench and scenarios are

useful for the comparison of control methods proposed by different authors.

(2) Further research on the stability of the model free control.

The model free control is proven practically stable in this thesis. To further prove the
stability of the method, more information about a specific system is needed. As the part
F'is updated at each sampling time, the choice of the sampling period is important for the
stability. In this dissertation, a sampling period of 10ms is selected based on the quadrotor
dynamics and real control device. To select a sampling period for a general system, more

researches are needed on the stability of the model free control.

(3) Implementation on a real quadrotor.

Many realistic cases are proposed in this thesis, and many control methods are simulated
in MATLAB. From the simulation results, the advantages and disadvantages of each con-
trol method can be seen clearly. However due to the limit of the condition, these control
methods are not implemented on a real quadrotor. Therefore, one of the future work is the

implementation of the control methods on a real quadrotor.
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Appendix A

MAPLE Code

b 220212 3 normal form fitad gt deg s 21220

## tylor expession

restart:

deg:=7: ## degree = deg-1
sin(x) :=series(sin(x),x,deg):

cos(x):=series(cos(x),x,deg):

## substitue in the orignal system. eq 3 in the paper MNTS.
arrayx:=seq(x| |k=x[k] ,k=1..12):

xldot:=expand(subs(arrayx,x2)):

x2dot :=mtaylor (subs(arrayx, expand(-(ul+g)*subs(x=x9,sin(x)))), [seq(x[k],k=1..12),ul],deg):
x3dot :=expand (subs(arrayx,x4)):

x4dot :=mtaylor(subs(arrayx,expand((ul+g)*subs(x=x9,cos(x))*subs(x=x7,sin(x)))), [seq(x[k],
k=1..12),ul],deg):

xbdot :=expand (subs(arrayx,x6)):

x6dot :=mtaylor (subs(arrayx,expand((ul+g)*subs(x=x9,cos(x))*subs (x=x7,cos(x)))-g), [seq(x[k],
k=1..12),ul],deg):

x7dot:=expand(subs(arrayx,x8)):

x8dot :=expand (subs(arrayx,u2)):

x9dot :=expand (subs (arrayx,x10)):

x10dot :=expand (subs(arrayx,u3)):

x1ldot:=expand(subs(arrayx,x12)):

VVVVVVVVVVVYVVVVV VVVVVYVVYV

x12dot:=expand(subs(arrayx,u4)):

## change the equilibrium to the origin.

x[11:=y[1]1; x[2]):=y[2]; x[3]:=y[3]; x[4]:=y[4]; x[5]:=y[5];
x[6]:=y[6]; x[11]:=y[11]1; x[12]:=y[12];

x[7):=y[7)/g; x[8]:=y[8]/g; x[9]:=y[9]/g; x[10]:=y[10]/g;
x7dot:=x7dot*g;x8dot :=x8dot*g;x9dot :=x9dot*g;x10dot :=x10dot*g;
ul:=v[1]; u2:=v[2]/g; u3:=v[3]1/g; ud:=v[4];

## substitue into the system. eq 4 in the paper MNTS.
dy:=Matrix(12,1):

1:=dot:

for i from 1 to 12 do

dyl[i,1]:=mtaylor(x|lil|1l, [seq(y[k],k=1..12),v[1],v[2],v[3],v[4]],deg):
end:

VV V VYV VYV VVVYVVYV

evalm(dy);
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## change * to . for matrix.
product_to_Matrix_product:=proc(invh)
local t,k,p,part;

part:=0:

for t from 1 to nops(invh) do

if op(invh)[t]=1/iden then
part:=part+1/iden:

else

p:=1;

for k from 1 to nops(op(invh)[t]) do
p:=p.op(op(invh) [t]) [k];

end do;

part:=part+p;

end if;

end do;

part

VVVVVVVVVVVVVYVVVYV

end proc:

## expression of (I + dQ2 +..)"(-1). eq 6 in the paper MNTS.
with(LinearAlgebra):

iden:=evalm(IdentityMatrix(12)):

invhsymbol:=mtaylor (1/(iden+dQ2+dQ3+dQ4+dQ5+dQ6) , [dQ2,dQ3,dQ4,dQ5,dQ6] ,deg):
invh:=product_to_Matrix_product(invhsymbol):

dQ3:=evalm(Matrix(12,12)):

dQ4:=evalm(Matrix(12,12)):

dQ5:=evalm(Matrix(12,12)):

dQ6:=evalm(Matrix(12,12)) :dQ7:=evalm(Matrix(12,12)):

VV V VYV V\VVYV

> 2th degree

## y dot by states z.

hzl:=seq(y[il=z[i],i=1..12):

dybyzl:=evalm(subs(hzl,dy));

## calulate (I + dQ2 +..)~(-1).

dQ2:=evalm(Matrix(12, (i,j)->ali,jl)):

invhl:=evalm(invh):

## eq 6 in the paper MNTS.

dzl:=evalm(invh1&*dybyz1) :

## find the terms f(z,a)*ul. ul has degree 1. therefore, the 1st degree terms in f(z,a) should be 0 to

V V. VV V VV VYV

ensure the 2nd degree system has no coupled terms. the 1st degree in f(z,a) are either z or a.

> for m from 1 to 12 do
> eqlm]:=
> mtaylor(mtaylor(coeff(dzi[m,1],ul), [seq(seq(ali,jl,i=1..12),j=1..12)],1), [seq(z[i],i=1..12)],2)
> -mtaylor(mtaylor(coeff(dzl[m,1],ul), [seq(seq(ali,j],i=1..12),j=1..12)],1),[seq(z[i],i=1..12)],1)
> +mtaylor(mtaylor(coeff(dzl[m,1],ul),[seq(z[i]l,i=1..12)]1,1),[seq(seq(ali,jl,i=1..12),j=1..12)]1,2)
> -mtaylor(mtaylor(coeff(dzl[m,1],ul), [seq(=z[i]l,i=1..12)],1),[seq(seq(ali,jl,i=1..12),j=1..12)]1,1)=0;
> end;
0=0
> Ideal:=[seq(eq[i],i=1..12)]:

> Sl:=solve(Ideal,select(has,indets(Ideal),a)):

> R 3rd degree

>  #evalm(dy):

> Q2:=[seq(0,i=1..12)]:
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>  ## calculate Q2 from dQ2 (S1)

> with(linalg):

> for k from 1 to nops(S1) do

> if 1hs(S1[k])<> rhs(S1[k]) then

> Q2[Lop(1hs(S1[k1))[1]1]:=rhs(S1[k])*z[op(lhs(S1[k])) [2]]; end if;
> end do:

> Q2:

> dQ2:=jacobian(Q2, [z[1],z[2],z[3],2z[4],z[5],=z[6]1,=z[7]1,z[8],z[9],2z[10]1,=z[11],=z[12]]):
> ## y dot by states z.

>  #hz2:=seq(y[il=z[i]+Q2[i],i=1..12):

> #dybyz2:=evalm(subs(hz2,dy));

>  ## calulate (I + dQ2 +..)~(-1).

> dQ3:=evalm(Matrix(12,(i,j)->ali,jl1)):

>  #dQ4:=evalm(Matrix(12,12)):dQ5:=evalm(Matrix(12,12)):

> invh2:=evalm(invh):

> ## eq 6 in the paper MNTS.

> dz2:=(evalm(invh2&*dybyz2)):

> ## find the terms f(z,a)*ul. ul has degree 1. therefore, the 2nd degree terms in f(z,a) should be 0 to
ensure the 3rd degree system has no coupled terms. the 2nd degree in f(z,a) are either g(z)
(quadratique terms of z) or a.

for m from 1 to 12 do

eq[m] :=mtaylor(mtaylor(coeff(dz2[m,1],ul), [seq(seq(ali,jl,i=1..12),j=1..12)]1,1), [seq(=z[i],i=1..
12)1,3) -mtaylor(mtaylor(coeff(dz2[m,1],ul), [seq(seq(ali,jl,i=1..12),j=1..12)]1,1), [seq(z[i],i=1
..12)],2)+mtaylor(mtaylor(coeff(dz2[m,1],ul), [seq(z[i],i=1..12)],1), [seq(seq(ali,jl,i=1..12),]j
=1..12)]1,2) -mtaylor(mtaylor(coeff(dz2[m,1],ul), [seq(z[i],i=1..12)],1), [seq(seq(ali,jl,i=1..12),
j=1..12)1,1)=0;

end do;

Ideal:=[seq(eq[i]l,i=1..12)]:

S2:=solve(Ideal,select(has,indets(Ideal),a));

V V.V V VYV VVVYV
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Abstract: A novel type of reduced complexity controller is proposed. It is the combination of
model free control and event triggered control. The robustness of model free control, especially
for badly known dynamics, is added to the event based scheme. The performances of the
proposed method are illustrated in two motion controls, vehicular longitudinal control and
quadrotor control. Comparisons with existing control schemes are also proposed.

Keywords: Intelligent PID, event driven control, model free control, reduced complexity

controllers

1. INTRODUCTION

The trend to complex embedded control systems brings
out a lot of new challenges. On one hand, the embedded
character demands reduced complexity controllers. On the
other hand, the complexity of the controlled systems en-
forces robustness of the proposed control schemes. Many
constraints have to be taken into account, especially in
distributed systems (see Murray et al. [2003]). Low com-
putational cost control schemes which are able to deal with
nonlinear systems with robustness are needed.

Model free control has been proven to be a simple but very
efficient nonlinear feedback technique for the unknown or
partially known dynamics (see Fliess et al. [2009], Choi
et al. [2009]). We shall here use so-called intelligent PID
(or 4-PID). While retaining the PID reduced computa-
tional cost, it is able to cope with general types of nonlin-
earities. A precise relationship between i-PID and PIDs
is given in d’Andréa-Novel et al. [2010]. It particularly
emphasizes the ease of tuning of -PID gains and gives
a clearcut explanation of the performance of usual PIDs.

Contrarily to the time triggered control scheme which the
control signals are sent to the actuator board every fixed
sampling time, in the event based scheme, the control
signals are sent only upon the triggering of an event (see
Arzén [1999]). A typical event is that the tracking error
goes beyond a specified limit. This type of scheme allows
to go beyond the traditional Shannon sampling limit while
still achieving asymptotic stability. We here propose an
event based scheme for intelligent PID. The two techniques
quoted above enable the efficiency and reduced complexity
of the controller.

In the first section, the general setting of model free control
and intelligent PID (i-PID) controllers are recalled. Then,
event driven i-PID controllers are introduced. The simula-
tions on the simplified models of longitudinal dynamics of
a car and aerodynamics of quadrotor are then given.

2. MODEL FREE CONTROL
2.1 General setting

Model free control is a quite recent and very efficient tech-
nique for unknown and partially known systems (see Fliess
et al. [2009]). The input-output behavior of the system is
approximatively governed within its operating range by
a partially known or totally unknown finite-dimensional
ordinary linear or non-linear differential equation. For the
sake of simplicity, the input and output are assumed to be
mono-variable. The system is described implicitly as

E(y7ya"'7y(a)7u7u7"'7u(b)):0 (1)
where E : Rt xRM! — R is a sufficient smooth function
of its arguments. Assume that for integer v, 0 < v < ¢,
OF/9y) # 0. The implicit function theorem (see Krantz
et al. [2002]) allows to express y*) locally

y(u) = e(t’ y7 y? R 7y(y_1)7 y(y+1)7 R 7y(L)’ u? /I:L7 R )U(H))
with the function ¢ : R x R* x R*T! — R.
Replace (1) by the following phenomenological model
which is only valid in a very short time interval.
y") = F +ou (2)
where
e a € R is a non-physical constant parameter, which is

chosen by the engineer in such a way that F' and au
are of the same magnitude.



e The derivation order v is also an engineer’s choice.
e [ is determined thanks to the knowledge of u, o, and
of the estimate of y(*).

An estimate of F' is obtained as follows:
F=3" —aq (3)

where §(*) is an estimate of the v*" derivative of the
measure y which is assumed available, and « is an ap-
proximate value of w, in order to avoid algebraic loops
in the controllers. Among the existing possibilities, @ can
be chosen as a past value of the control variable u. The
resulting controller is then

é (ygm P A(e<—5,<>)>

u =
where

e y,. is a reference trajectory which is selected as in
flatness-based control (see Fliess et al. [1995]).

e ¢ =y, —y is the tracking error.

L4 e(‘f’O = (fgeaf§7167'"aeaé76(<))7 gaC € [O,Z/]’ fk
is the k iterated integral, and A is an appropriate
function RET¢+! — R such that the closed loop error
dynamics

e — A(e<’5’<>)
is asymptotically stable.

Remarks 2.1. a) The derivation order v is not necessar-
ily equal to the derivation order a of y in Equation
(1).

b) The derivation order v, is often taken equal to 1 or 2,
yielding so called intelligent PIDs or i-PID (see next
subsection).

c) A system may be partially unknown. It is straightfor-
ward to adapt the previous method.

d) The estimate in (3) can be obtained for example
through a simple first order filtering as

a S
2L(y) = T+ 15 Z(y)
typically, 1/T ranges from 8 to 20, and .Z denotes
the transformation to the operational domain.

It can also be given by efficient algebraic techniques
(see Mboup et al. [2009]) yielding for example the
following estimate for the first derivative

. =3 7

y - T3 o
with 7" an integration window size which order of
magnitude is 20 times the sampling time in a time
triggered setting.

(T —27)y(7)dr

2.2 Intelligent PIDs

The desired behavior is obtained by implementing, for
instance v = 2, the intelligent PID controller (i-PID) is

J
u:—a+%+er+K1/e+KDé (4)

where Kp, K7, Kp are the usual tuning gains.

Let us consider the following special cases:

e If v = 2, we may also employ an intelligent PD
controller (i-PD)

P .
u:f—+y—+KPe+KDe (5)
a o«

o If v = 1, we restrict ourselves to an intelligent PI
controller (i-PI)

u:——+y—+er+K1/e (6)
a o

or even to an intelligent P controller (i-P)

u=—-—+2 4 Kpe (7)
a o«

Remarks 2.2.  a) If v = 2 (resp. 1), plugging Equations
(4) or (5) (resp. (6) or (7)) in Equation (2) yields
the control of a pure double (resp. simple) integra-
tor. This is why tuning the gains of our intelligent
controllers is quite straightforward.

b) It should be emphasized, if v = 2 (resp. 1), that
Equation (5) (resp. (7)) is mathematically sufficient
for ensuring stability around the reference trajectory.
The integral term K7 [ e in Equation (4) (resp. (6))
is however adding some well known robustness prop-
erties.

3. EVENT DRIVEN MODEL FREE CONTROL

The basic Arzén’s event based controller consists of two
parts: a time triggered event detector 7.4 and an event
triggered PID controller ... See Arzén [1999]. The latter
computes the control signal to be delivered to the actuator
board. The former 7.4 runs at a fixed sampling period
heq, and upon fulfillment of a certain event triggering law
Let, sends events to 7... Upon reception of the event, 7.

computes the control signal and sends it to the actuator
board.

Examples of event triggering laws L.; are:

e Error threshold law:
le(tk)| > erim (8)
where e = y,.—y is the tracking error, ¢y is the current

discrete sensing time by 7.4, and e, is a fixed limit.
e Error difference threshold

le(tr) — e(tk—1)] > eim (9)
e ISS based law:

elte) = o7 ly(th) (10)

assuming the system can be rendered ISS (Input to
State Stable) through static feedback (see Sontag
[2007]). o is chosen less than one to ensure an as-
sociated Lyapounov function decrease. a and b are
chosen according to the Lipschitz constants of the
Koo (consisting of all functions vy RT — R™ which
are continuous, strictly increasing, satisfying v(0) = 0
and limg¢_, o, = 00. See, e.g., Sontag [2007]).

The present control goal is path tracking. We shall use geo-
metric information on the reference trajectory y,.. Namely,
we shall take the following event triggering scheme:

max (o (y,))-has
o (4 (tr))

(11)

where o is a saturation function, and hj,; is the maxi-

mum sampling time ensuring stability in a time triggered

scheme. We have chosen the following smooth saturating
function

le(tr) — e(tk_1)| > elm N tp —tk—1 >



7€) = g (00 +010) +

& — &)
o(6) = % In (cosh(C(€ — &)))

b(E) = % In (cosh(—C(€ — £m))

with [ and H the low and high saturated values, & and
&p the beginning and ending abscissa of the linear part,
and ( is a stiffness value. The In(cosh(¢)) functions enable
to have a linear part (when £ < 0, cosh(§) =~ exp(—¢)/2,
and In(cosh(§)) = —&/2; when € > 0, cosh(§) ~ exp(€)/2,
and In(cosh(§)) & £/2) with smooth transitions between
the constant and linear parts.

4. APPLICATION TO VEHICLE LONGITUDINAL
CONTROL

4.1 Model

We shall take a simplified model of longitudinal car dy-
namics as example. See Kiencke et al. [2005]. No attempt
will be made to take longitudinal slip into account. Thus,
the motor torque is supposed to be directly transmitted to
the longitudinal dynamics.

The simplified model is as the following:

C

MV, = —- Cae(Va + V)| Ve + Viy| — Mgsin(6)—

MgC,sign(Vy) cos(6)  (13)
where M the vehicle’s mass, V, the vehicle’s longitudinal
speed. C the traction torque which is taken as control
input. r the wheel’s mean radius. C,. the aerodynamics
coefficient. V,, the wind speed disturbance. g the gravity
constant. 6 the road slope. C,,. the Rolling resistance
coefficient.

The chosen values for the parameters are: M = 1200kg,
V, = 0 to 36m/s, r = 0.025m, Cye = 0.015Ns?/m?, V,, =
0 to 14m/s, 6 = 0 to 0.52rad, C,,, = 0.15. In the second
member of equation (13): The first term is the traction
force. The second term is the aerodynamics force. The
third term is the slope effect force, and the fourth term
is the rolling resistance force.

4.2 Model free setting

The model given in (13) can be expressed as

. 1
with
1
F = 27(=Coe (Vi + Vo) |[Vie + Voo | = Mg sin(6) -
MG, sign(V,) cos(6)) (15)

which is of the form (2) with & = 1/Mr. Thus, we have

t
C=Mr (VM —F - kpe — kz/ e(T)dT)
0

N > 1 ~
F=V,--C (16)
e=Vy — Vg

with V.. the reference speed, V., an estimate of the deriva-
tive of V., and C a past value of C' (an approximation of

).
For instance, we can take the above form in discrete time
C(tk) = C(tk_l) + M’I“(é(tk) + kpe(tk) + k‘iI(tk))

é(tk) = er(tk> — Vz(tk)
e(tk) = Vwr<tk> — Vm(tk)
I(ty) = I(tk—1) + he(ty) (17)
Vac(tk) = TfT—{—th(tk_l) + Tfl—l—h(vm(tk) - Vx(tk—l))
h=ty—tr_1

For comparison, a usual PID takes the following form
C(tk) = er(tk) + KZI(tk)
e(tk) = er(tk) - Vm(tk)
I(tk) = I(tkfl) + he(tk)
h =1t —tr_1

(18)

4.8 Simulations: continuous ideal flatness based control

Supposing we have the full knowledge of the dynamics, the
ideal flatness based control is of the form:

t
C=DMr (VM —F —kpe— kl/ e(T)dT)
0

F=—Cu(Vy+ Vw)|VI + Vw’ — Mgsin(0)—
MgCpsign(Vy) cos(6)  (19)
e=V, =V
The error in the case of flatness based control is depicted
in figure 1.

4.4 Simulations: time triggered PI control and i-PID
control

We first compare the cases of a time triggered PID and a
time triggered ¢-PID.

Consider a fixed sampling time of A = 10ms (knowing
that h = 35ms is the limit of stability). This yields
1976 actuation steps. We take a PI controller with gains
k, = 17000 and k; = 100. The reference trajectory and
the tracking error are depicted in figure 1.

4.5 Simulations: event triggered PI control and i-PID
control

We now consider the event triggered controls. The event
triggering scheme for PI control is the classical error
difference of equation (9). The limit ey, in (9) is taken
as
Clim = max(yr) — min(yr)
o 200

It yields 291 actuation steps and the tracking error is given
in figure 1. The 4-PI controller is with gains K, = 60 and
K; =6.

4.6 Discussion

Note that the maximum absolute tracking error is 6.4.10~2
m/s in the PI case, and 3.2.107% m/s in the i-PI case which
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Fig. 1. (1) Reference trajectory. (2) Tracking errors of
ideal flatness based control. (3) Tracking errors of
time triggered PI control. (4) Tracking errors of time
triggered i-PID control. (5) Tracking errors of event
triggered PI control. (6) Tracking errors of event
triggered -PID control.

is 20 times less (2000%) than in the PI case. If we exclude
the first second, the maximum absolute tracking error in
the i-PI case is of 5.2.10™%, which is 123 times less than in
the PI case.

Consider now an i-PI control. The event triggered scheme
is the one given in equation (11), with [ = 1, L = 20,
& = —2, &g = 2, and ( = 6. The corresponding tracking
error is given in figure 1, and was performed in 569
actuation steps. The gain in performance, when using an
i-PI instead of a PI, is 68.18 and the loss in actuation steps
is 1.95.

Model free control has better performance than PI control.
Using the event triggered schemes, i-PID can further
reduce the number of actuation loops, which is very useful
for real time control systems.

5. APPLICATION TO QUADROTOR CONTROL
5.1 Model

The chosen model of quadrotor is depicted in equations
(20). See Bouabdallah [2007]. The rotation angles ¢, 6 and
1) are along the world axis x, y and z respectively, namely,
roll, pitch and yaw. €2,. (i = 1..4) are the angular velocities
of each rotor, which are the real inputs of the quadrotor.
The forces T;, H; (i = 1..4) are the thrust and hub forces

of each motor. The moments R;,Q; (i = 1..4) are the
drag and rolling moments of each rotor. The quantities
wiwz (Lii— 1), JrwQy (w = ¢,0,9;i = z,y, 2) are the body
gyroscopic effects and propeller gyroscopic effects. The
notations ¢ and s represent cos and sin respectively. The
values of all the parameters can be found in Bouabdallah
[2007].

Liwtp = 00 (Iyy — L2) + J 09 +1(—Ts + Ty)—
4 4
h(z HUZ) + (_1)“_1 Zmez
=1 =1
— JrdQ + 1Ty — Ts)—

4 4
h(z sz) + (_1)i+1 Z Rmyz
i=1 =1

Iyyé = ¢w(Izz - sz)

4
Izzq;/} = GQS(IMC - Iyy) + (71)1 ZQ2+
=1

Z(HmQ - Hx4) + l(_Hyl + HyS)

4
mz = —mg + (chcg) Z T;
i=1
4 4 1
mi = (sys¢ + cpsbhe T, — H,; — =C,A.pi|t
(swse + et ¢>>; ; 5 CaAepiil
4 4 1
mij = (—cpsé + swsted) Y Tp— Y Hyi — 5CyAcpily]
i=1 i=1

(20)

The most important forces and moments are the thrust T
and the rolling moments ). Therefore, we can take

4
Uy = E T;
i=1

Us = l(Tl - Tg)

U9 = l(*TQ + T4)

4
ug = (=1)">Q

i=1
as control inputs to compute the needed torques for each

rotor, and then use them to control the altitude z, position
x,y and direction .

5.2 Altitude z control

The equation given in (20) related to z can be expressed

as
mz = (clch)uy + F, (21)

where F, can be considered as disturbances (e.g. the wind)
or some parts of dynamics neglected in (20). In discrete
time, the unknown part F, can be expressed as following.
The estimate of (k) is denoted as Z(k).

F, = mi(ty) — (cOcd)ua(tr—)

Therefore, the chosen control input is

i (th) = w1 (051) + oo (Ba(tn) + Kieh(tn) + 5™ (1))
(23)

(22)

with



Eqtr) = 20 (te) — 2(tr), ei(ty) = 20 (tx) — 2(ty)

e*(tr) = zr(te) — 2(tk)

Z(ty) = L Z(tr_1) + L(z(t ) — z(tr—1))
k Tf +h k=1 Tf +h k k=1

Zr, Zr, 2 are the reference acceleration, velocity and posi-
tion of z. The variable sampling step is h =t — tp_1.

5.8 Position x,y control

We want to use us and wus to control directly the position
x,1y. Therefore, we need to differentiate twice the equations
related to 2 and y in (20) in order to appear the control
inputs us and wugz. Since the equations in x and y are
coupled, we get

@ = Y (sthed — crshsd)us + —a— (ctpchcd)us + Fi
TT m vy
y @ = (oo + sipsOsd)uz + —— (scfed)us + F,
mi, Mlyy

(24)
where Fy, F, are considered as the badly known parts.
For simplicity, we define A = - (scdp — csbse),
B = m%:y (cipcbed), C = — T (cped + sysfsp) and
D= #Ly(swc%(b). Using the model free control scheme

as before, we get

3
() - () () 5

3
5 Yy
Eat+ D _klely
i=0
(25)
where é5,,¢é%, are the errors between the references

@, 4)

zy yr”) and the estimates of z(4), y(4).

5.4 Yaw control

For yaw control, we consider the equation of ¢ as
Izztﬁ = uy + Iy
Then the control feedback is
wa(tr) = wa(ti—1) + L2 (€5, (tx) + ki el (te) + ki e (tr))
(27)
)

where é,, is the error between the reference % and the

(26)

estimate of .

5.5 Simulation: time triggered control

The task is to follow a rounded square path with length of
2m while hovering at the altitude of 10m, which is given in
(28). The desired length is hq, and T is the time needed
to reach the desired length. Here we choose hgy equals 2m,
and T equals 6s. The reference trajectory is in figure 2.

In the time triggered ¢-PID control, the sampling time is
10ms, and it yields 2785 actuation steps. The results are
given in figure 3. The red lines are the desired trajectories.
The maximum errors in « and y are both less than 0.05m,
that is, less than 2,5% of the desired length.

Fig. 2. Reference trajectory for the quadrotor.

0 0<t <ty ty<t<30
t5

hi——————= t1 <t<t

Y (Ty — 1) ! ?
a(t) =

2 lo <t<ts

t5

hg —hg———F t3<t<t

A s B 4
hg=2,T; =6
Z‘:O'(t) with t1=3,t2=9,t3=15,t4=21.

Yy = O'(t) with t1 = 9,t2 = 15,t3 = 21,t4 = 27.
z =10

(28)
5.6 Simulation: event triggered control

In the event triggered i-PID control, the event triggering
law is the absolute error limit. We set the error limit of z
to be 0.1m. The error limit of yaw angle is 0.1rad. For x
and y, we take the error limits both as 0.1m. The event
triggered -PID control yields 2389 actuation steps. The
results are given in figure 4.

5.7 Discussion

The system mentioned in (20) is not complete. The aero-
dynamics of the system is complicated, and many more
forces and moments will affect the system. Therefore, a
control scheme which can adapt to the changes of the
system is needed. The time triggered model free control
performed nicely. It controls the system without the need
of computing all the forces and moments in the system. In
event triggered i-PID control, we set the the error limit to
be 5% of the reference. It has 396 steps less comparing to
the time triggered model free scheme while still achieving
stability.

6. CONCLUSION

Event triggered model free controllers which yields strong
robustness while needing few computing resources is pro-
posed in this paper. It is very efficient to control the non-
linear multi-input-output system which traditional PID is
not able to. The i-PID control is also efficient to solve
the partially known systems. From the simulation of a
quadrotor model, we see that the i-PID control scheme
avoids the heavy computations of the control laws, forces,
moments and 4th derivatives of the variables. Moreover,
the event triggered scheme enables to eliminate the small
vibrations in the system while diminishing the number of
actuation steps.
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ANALYSIS AND CONTROL OF QUADROTOR VIA A NORMAL
FORM APPROACH

JING WANG*! ISLAM BOUSSAADA*! ARBEN CELA}{ HUGUES MOUNIER* AND
SILVIU-IULIAN NICULESCU*

Abstract. This paper focuses on the analysis and control of some mathematical models repre-
senting the dynamics of a quadrotor. By using a normal form approach, the highly coupled parts
in the quadrotor system are eliminated, while all possible properties of the original system are not
changed. The bifurcations of the system are then analyzed. A two dimensional system is deduced
at the origin which can determine the stability and possible local bifurcations of the system. Based
on the normal form and indirect method of Lyapunov, we propose a state feedback control method
with computational simplicity as well as practical implementation facility. Comparing to a standard
PID control, the proposed method has faster response time and less tracking errors especially with
wind disturbance.

Key words. Normal forms, Quadrotor control, Center manifold.

AMS subject classifications. 93C10, 93C35, 93D15

1. Introduction. The quadrotor (see in Figure 1.1) is a mini unmanned aerial
vehicle (UVA) with four rotors, which has been widely studied in the last decades
[1, 2, 3, 4]. Tt is a system with four inputs, six outputs and highly coupled states.
Due to its simplicity both in mechanical structure and maneuver, it is widely used
in surveillance, search and rescue, mobile sensor networks [1]. Many methods have
been proposed for controlling quadrotors. For example, Bouabdallah et al.[2] have
proposed a backstepping control used separately in two subsystems. Besnard et al.[3]
have proposed a sliding mode control driven by a disturbance observer. Wang et al.[4]
have presented an event driven model free control which can avoid heavy computation.
However, to the best of the authors’ knowledge, the bifurcation of the dynamical
system have never been studied.

F1G. 1.1. The quadrotor(right) from Ascending technologies(Available at ESIEE).

The method of normal forms is an useful approach in studying the dynamical
system properties [5]. Its purpose is employing successive coordinate transformations

*Laboratoire des Signaux et Systémes (L2S), CNRS, Supélec, Université Paris Sud
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to construct the simplest form of the system. The normal form exhibits all possible
properties of the original system. The normal forms of any degree with a single
input were obtained by using change of coordinates and feedback [6]. For multi-input
systems, the normal forms are deduced from the system with two inputs [7]. Based
on the normal forms, the bifurcations and its control were studied by several authors
[6, 8]. Center manifold is usually applied with the normal forms. It reduces the system
to a center manifold associated with parts of the system with the eigenvalues with
zero real parts at a bifurcation point [9].

To the best of our knowledge, the normal form and center manifold theories have
never been used in the analysis and control of quadrotor. In this paper, the normal
form of the quadrotor system is firstly calculated. By using such a methodology, the
highly coupled parts in quadrotor system are eliminated. Under certain control laws,
the normal form is reduced into a two dimensional system at the bifurcation point
by using center manifold theory. Also, a simple control method based on the normal
form using state feedback is proposed. The control laws are proposed to ensure the
asymptotical stability of the system by moving all the eigenvalues of the system to the
open left half plane. Comparing to a standard PID control, the proposed method has
faster response time and less tracking errors especially when there is wind disturbance,
as illustrated at the end of the paper. The interest of considering such control laws
lies in the simplicity of the controller as well as in its practical implementation facility.

The paper is organized as follows: In Section 2, the model of quadrotor is given.
In Section 3, the normal form of quadrotor is deduced. In Section 4, the bifurcation
of the system under certain control laws is analyzed. In Section 5, simulations with
and without wind disturbance using the proposed method and PID control are given.

2. The quadrotor model. The chosen model of quadrotor is depicted in equa-
tions (2.1). The rotation angles ¢, § and ¥ are along the world axis z, y and z
respectively, namely roll, pitch and yaw. w;(i = 1..4) are the accelerations caused by
four rotors, which are the inputs of the system. (g = 9.8m/s? the gravity).

T = —wisind, i = wycosfsing, Z = wicosbcosp — g,
(2.1) ¢ = wo, 0 = ws, P = wy.

We introduce the variables as 1 =z, 0 = 2, 23 =y, x4 = 9, Ts = 2, Tg = 2, T7 = ¢,
rg = ¢, xg =0, x10 = 0, 11 = Y, x12 = Y. Therefore, we can rewrite the system as:

1 =x9, o= —wisin(xg), I3 = Iy, Z4 = wicos(xg)sin(zr),
(2.2) @5 =xg, &= wicos(xg)cos(xr)—g, &7 = xs, g = wa,
Ty = T10, T10 = W3, T11 = T12, T12 = Wy.

3. Normal form of the system. It is easy to see that the equilibria of the
system (2.2) are x. = (¢1,0,¢2,0,¢3,0,km,0,km,0,¢4,0), w = (g,0,0,0), where k =
0,£1,42,..., ¢;(1 = 1..4) € R are constants and g is the gravity. Note in the real
control system, ¢,0 € (—7n/2,7/2) and ¢ € [0,7). Therefore, without losing gen-
erality, only the equilibrium zy = (z,w) = (0,0,0,0,0,0,0,0,0,0,0,0,¢,0,0,0) is
considered. We move zg to the origin by changing the coordinates of the inputs
w; = uy + g, ws = Uz, w3 = ug,wy = uyg. Then, using the Taylor series of function
sin(z) and cos(x) at x = 0. The system (2.2) can be written in polynomial form as
follows. Here, O° are the polynomials with 5th and higher degree:

gy | wwy

T, = X2, .i'gz—ga'}g—’ulxg-f—?“r?-‘ros,
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2 3 2
. X XTol u1r UL LT
T3 = T4, ﬂ34f99€7+u19f7*&*g97* ek 197+05,

6 2 6 2

2
e — — 7&7@71141‘@77'&11'9 95”7 griri  grg o’
T5 = Tg, L = Uy D) 5 5 D) 21 1 24+ ,

L7 = X8, &g = U2, L9 =Ti0, <10 =u3, L11 = T12, L12 = U4.

Using the state and input transformation y1 = 1, Y2 = %2, Y3 = X3, Ya = T4, Y5 = Ts,
Ye = L6y Y7 = g7, Y8 = gy, Yo = gLy, Y10 = 910, Y11 = T11, Y12 = L12, V1 = U1,
vy = gug, V3 = gus, V4 = uy, we change the system (3.1) into Brunovsky form:

V1Y9 yg Ulyg + 05

J = s ] = — PR ——— + = +
Y1 =1Y2, Y2 Y9 9 Gg 6%
3 3 2
: - vy Yrys k4 v1Y7  V1Y7Y) 5
BN s =ys Ga=yrt =T -0 T T T Gs T o
2 2 2 2 4 2 92 4

v v

s = e, g —v —SL_ Yo _ MW W Yr o Ui U9 o5

29 29 2g2 292 24¢% 4¢3  24¢°
Yr=Ys, Ys=Uv2, Yo =Ylo, Y0 =03, Y11 ="Y12, Y12 = V4.
The system (3.1) can be written as:

(3:2)7 = f(y) + 9w = Ay + P () + f&(y) + Bv+ gV (y)v + ¢ (y)v + O*

where A, B are the coefficients of the linear parts, f® (y), ¢! (y)v are the second
degree homogeneous polynomials of the system, ) (y), g®®) (y)v are the third degree
homogeneous polynomials.

We take a third-degree homogeneous transformation for example [10]:

(3.3) y =240 (2) + ¢ (2)

which z are the new states of the system. gb(2)(2) is a second degree homogeneous
polynomial and ¢(3)(z) is a third degree homogeneous polynomial of the states z,
whose coefficients will be defined later.

We get the derivative of equation (3.3). Therefore, the derivative of the new states
z are:

(3.4) i=(I+

where,

do®  dp® | / Ao  de® dp® do® dp® dp®)
dz+dz T dz dz +(dz (dz dz dz
n (3.2), we rewrite the f(y) and g(y) using the new states z.

£(5) = Al) + 7O(0) + O () + 0* = Az + A6O(2) + [ () + A0 () + £ 2)..

9@) =B +gV () + 9P (y) + 0° = B+ W (2) + ¢V (6@ (2)) + ¢*(2)...

Therefore, with the help of the equations (3.2), (3.4), by now we have the new system:

(2
_doT L d¢

(I+

i=Az+ Bv+ A6 (2) + £ (2) + ¢V ()

dﬁ(j) (Ap®(2) + f<2><z) +9(2))

——Bv+ A¢®)(2)

(@) + g2 (@) + 9D (6P ()0 ~

de® dop®
— Az+ B
—(Az + Bv) + (=~

)2(Az + Bv) + O*
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For the simplicity of the system, the states z and the inputs v should be separated. In
the third degree normal form, the polynomial ¢(")(2)v, ¢® (2)v should be canceled.

d¢

(1) ® B=0

do®) do®) do®
90 (2) + g0 (0P(2) - O —g(e) - DBy (1

Therefore, the transformation in equation (3.3) should be:

7B =

¢(2)(Z) = (07 _@707 %3070707070707070)7

2623 2623

®)(z) = i . 0,0,0).

¢ (Z) (0’ 0’0’ 07 07 292 292 703 0’0’ ) ) )
Using the same method, we can calculate the normal form of any degree. A Maple
package ‘QualitativeODE’ [11] has been made for calculating the normal form of
quadrotor. Using this programme, we get the third degree normal form of the system

(3.1) as:

3 2
. 2629 . 26210 29 2779 4
hTET T SRR v Tl

3
. ZeRT7 . 2628 27 4
(3.5) 23:Z4+7g ) 24:2’7*79 +392+O,
2 2 2 2
2,: — e 2’62’7 _ 2629 Z — o — Zl _ ng ZRTZ8 2629210 —|—O4
5 — <6 2 2 2 PR 6 — VUl 2 2 D) 2 )
g g g g g g
Zr =128, Zg=U2, Z9=Z210, Z10=73, 211 =212, 212 = V4.

4. Bifurcation and simplification of the control system.

4.1. Bifurcation of the roots. It is easy to see that in the linear part of the
equation (3.5), z; is related only to 29, 29, 210, v3; 23 is related to z4, 27, 28, v2; 25 is
related to zg,vq; 211 is related to z19,v4. Therefore, the control laws can be defined
as:

v = K125 + K226, vy = Ka123 + Kagzy + Kazzr + Kagzs,
vy = Ky1211 + Kyz212, v3 = K3121 + K3pzo + K3zz9 + K3sz10.

In this way, we can move the related eigenvalues in each group separately without
changing the eigenvalues in other groups. Here, we define v;(i = 1..4) as:

v = —25625 + K1226, Vo = —10023 — 30824 — 25627 — 3228,
vy = —1024211 + K4o212, v3 = 10021 + 30829 — 25629 — 32219.

The system has three equilibria Pf = (0,0,0,0,0,0,0,0,0,0,0,0), P§ = (0,0, 43.45,
0,—0.057,0,—-16.97,0,0,0,0,0) and P§ = (0,0, —-43.45,0,—0.057,0, 16.97,0,0,0, 0, 0).
However, only the origin Pf can be stable when K3, K49 change.

At the equilibrium Py, for simplicity K2 = K42, when K5 changes, the real and
imaginary parts of the eigenvalues are in Figure 4.1. When K2 < 0, the system has
four eigenvalues with positive real parts, and the system becomes unstable. When
Ki2 > 0, the system has all eigenvalues with negative real parts, and the system is
asymptotically stable. When Kj5 = 0, the system has two pairs of pure imaginary
eigenvalues +£16: and +32¢, and all other eigenvalues have negative real parts, which
is a four dimensional center manifold. The stability cannot be determined by the
linear part of the system. It depends on the nonlinearity of the system.
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FiGc. 4.1. The eigenvalues when Ki2 changes from -150 to 150: (a) the real parts. (b) the
imaginary parts.

4.2. Center manifold. The aim of this part is to get the reduced system which
can determine the stability and possible local bifurcations of the system at one bifur-
cation point [12]. A system can be written as:

&= A(b)z + F(x), xr € R"

where b is a free parameter, b € R.
At its origin = = [0, ..., 0], J(b) is the Jordan form of the matrix A(b) and Q is a
matrix which enables Q(b)J(b)Q~1(b) = A(b). Therefore, we have:

& =Q0)JB)Q )z + Flx) = Qb= J0b)Q (b)z+Q(b)F(x)
we define y = Q~1(b)z, then
(4.1) §=JO)y+Q OF(Q®)) = J(b)y + F(y)

we can separate the Jordan matrix J as matrices B and C whose eigenvalues have
zero real parts and negative real parts respectively. Therefore, we can rewrite the
system (4.1) at the origin with x = [0, ..., 0].

Yo = Byo+ f(yo,y-),  9-=Cyo+ g(yo,y-)
Since the center manifold is tangent to E°(the y_ = 0 space), we define
(4.2) y_ = h(yo,b), h(0,0) = Dh(0,0)=0, b=0.
We can calculate the function h(yg,b) by using
Y- = Dh(yo,b)90 = Dh(yo,b)[Byo + f(yo, h(y0,b))] = Cyo + g(yo, h(yo, b))

Therefore, we can get the local evolution equations of yy which can determine the
stability of the original system.
In quadrotor center manifold analysis, the control laws are defined as:

v, = —256z5 — bzg — zg, vo = —100z3 — 30824 — 25627 — 3223,
Vg = —1011 — 242’12, V3 = 10021 + 30822 — 25629 — 32210.

The bifurcation of the system is like in previous subsection. When b < 0, the sys-
tem has two eigenvalues with positive real parts. When b > 0, the system has all
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eigenvalues with negative real parts. When b = 0, the system has two pure imag-
inary eigenvalues +167, and all other eigenvalues have negative real parts. The
stability depends on the nonlinear parts of the system. We can use the center
manifold theory to simplify the system, and further simplify the study of the bi-
furcation of the system. In this control system, yo = [y1,%2]7 = [z5,26]7 and
Yy- = [y3,y47y57y6,y77y8,y97y107y117y12]T = [21722723,24727728,29721072117212]T

We seek a quadratic center manifold (a are parameters to be defined later):

Yi = @i200Y1 + Gio20Ys + @ioo2b® + ait0y1ye + aito1y1b + aion1yeb, i = 3..12

Using the method mentioned before, we get h(yo, b) = [—0.62b%, —0.62b%, —0.76b2,
—0.76b%,0,0,0,0, —0.42b%, —23.58b%] in equation (4.2).
Therefore, the reduced system on the center manifold can be written:
U1 = 16y — 0.41b* — 0.0116% — (b + 0.0576")y; + 0.00024y3
(4.3) 1o = —16y; + 0.67b%y,

In the reduced system, when b is positive (negative), the origin is a stable (unstable)
focus. When b = 0, the origin is a center. The phase portrait of equation (4.3) when
b= —-0.5,b=0 and b = 0.5 are depicted in Figure 4.2.

o ol e

e Eod

/////
R it 8 L

(a) (b) ©

NN e L S

R T P
PP - NN
NN R R

.
o
P N A

F1G. 4.2. The phase portrait of the reduced system: (a) b=-0.5. (b) b=0. (c) b=0.5.

5. Quadrotor control. Here we propose a control method based on the normal
form and Lyapunov theory. In equation (3.5), the Jacobian matrix of the system can
be easily found. If the system is time invariant, the indirect method of Lyapunov says
that if the eigenvalues of Jacobian matrix of the system at the origin are in the open
left half complex plane, then the origin is asymptotically stable. Therefore, we can
define the state feedback as follows to move all the eigenvalues of the system to the
open left half plane. x,,y,, 2., ¥, are the references.

v = —256(z5 — 2,.) — 3226, vy = —1700(23 — y,-) — 100024 — 25627 — 3223
—256(2’11 — ¢7~) — 322’12, V3 = 1700(2’1 — QST) + 100022 — 25629 — 322’10

Vg

The simulation task is to let quadrotor follow a square path with the length of 2m
while hovering at the altitude of 10m, which is given in Figure 5.1. The totally sample
time is 20s. For comparison, the simulations using a standard PID control are also
given.

5.1. Simulation without wind disturbance. The simulation results are given
in Figure 5.2. The desired response time is 1s. We can see that the proposed method
has better performance than a standard PID control.
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Fi1G. 5.1. (a) Reference trajectory for the quadrotor. (b) Wind disturbance.
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Fi1G. 5.2. The simulation without wind disturbance: (a) the proposed method. (b) a standard PID.

5.2. Simulation with wind disturbance. During the trajectory, there may
have wind disturbance with velocity 1m/s as in Figure 5.1, which occurs in all x, y
and z axis. The simulation results are given in Figure 5.3. The desired response time
is 1s. The proposed method can keep the stability during the wind disturbance, and
has better performance than a standard PID control.

6. Conclusion. In this paper, the normal form of quadrotor is deduced. A
Maple package ‘QualitativeODE’ [11] has been written for calculating the normal form
of any degree of the system. From equation (3.5), we can see that the highly coupled
parts in quadrotor system are eliminated. This makes the analysis of the dynamical
system easier. Under certain control laws, the system can be further deduced using
center manifold theorem. A two dimensional system is deduced which can determine
the stability and possible local bifurcations of the control system at the origin. Based
on the normal form and indirect method of Lyapunov, we proposed a state feedback
control method with computational simplicity as well as practical implementation
facility. This method achieved good results. In the simulations, the system can
remain stable with small tracking errors even if there is wind disturbance. Also, this
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F1G. 5.3. The simulation with wind disturbance: (a) the proposed method. (b) a standard PID.

method has faster response time than a standard PID control.
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Event driven model free control of quadrotor

Jing Wang, Marcel-Stefan Geamanu, Arben Cela, Hugues Mounier and Silviu-Iulian Niculescu

Abstract— In this paper we propose a new control approach,
event driven model free control, which deals with the “trade-
off” between computational cost and system performance.
The model free control scheme demands low computational
resources and has high robustness, which is especially suit-
able for systems with complex dynamics and/or affected by
disturbances. Particularly for the embedded systems, the event
driven model free control demands even fewer computational
resources, since the actuation is allowed only when an event is
triggered. The proposed method is implemented on a quadrotor
model in different realistic scenarios with disturbances and
uncertainties. Under the time and event triggered schemes,
the model free control is compared with the backstepping and
sliding mode controls in these scenarios.

I. INTRODUCTION

Quadrotors are vertical take-off and landing (VTOL) air-
crafts with four rotors, which have embedded microproces-
sors, micro-electro-mechanical (MEMS) sensors and Lithium
Polymer (LiPo) batteries. Due to the simplicity in the design
and maneuver, quadrotors have many applications, such
as border patrol, surveillance, aerial photography, etc. The
quadrotor system is nonlinear, which has twelve states highly
coupled with the inputs (see eq. (14)). Its aerodynamics is
complex and difficult to include all the parts in the modeling,
which makes it a partially known system. In the applications,
quadrotors are often affected by disturbances, such as wind,
weather conditions, etc. Therefore, the quadrotor control
systems bring out many challenges: control algorithm com-
plexity reduction; energy consumption reduction; robustness
to perturbations; fast response to environmental and system
changes, etc.

Many control methods are proposed in literature: Castillo
et al. have proposed a Lyapunov controller using a nested
saturation algorithm [1]; S. Bouabdallah has implemented a
backstepping control and a sliding mode control [2]; Mistler
et al. have used a dynamic feedback control [3]; Mokhtari et
al. have applied a mixed feedback linearization with linear
GH,, controller. However, to the best of authors’ knowl-
edge, these methods are tested in the ideal cases without
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disturbances, and the comparison of the control methods have
never been proposed on quadrotor in realistic scenarios.

The recently introduced model free control is proposed
for the challenges in the control of quadrotor. A preliminary
work can be found in [4]. It is a simple but efficient technique
for the nonlinear, unknown or partially known dynamics
[5]. While retaining the PID reduced computational cost,
it is able to cope with general types of nonlinearities. The
comparison between the model free control and traditional
PID controllers is given in d’Andréa-Novel et al. [6]. Model
free control has been implemented in some academic SISO
systems [5], joint motion control in humanoid locomotion
[7], non-minimum phase systems [8], etc.

In order to further save the computational resources and
energy consumption, the event triggered scheme is proposed
on the model free control. Contrarily to the time triggered
control scheme, in the event based scheme the control
signals are sent only upon the triggering of an event. The
event driven control was firstly proposed by Arzén [9]. The
comparisons of the time driven and event driven control
scheme for first order stochastic and nonlinear systems are
proposed in [10] and [11] respectively.

The paper is organized as follows: In section II the event
driven model free is presented; In section III the scenarios
without and with wind disturbance are firstly presented. The
model of quadrotor is then given. The model free control,
backstepping control and sliding mode control laws are
presented; In section IV the simulation results of the control
laws in two scenarios are presented in both time and event
driven schemes. The comparisons results in other realistic
scenarios are also given.

II. EVENT DRIVEN MODEL FREE CONTROL

A finite dimensional SISO system can be described im-
plicitly as

E(y, 9,y u,a,. .., u®) =0, (1)

where E : R xR?! — R is a sufficient smooth function
of its arguments. Assume that for integer v, 0 < v < ¢,
OE/oy™) # 0. The implicit function theorem allows to
express y*) locally

y(y) = E<t7 y7 y‘? A (V+1)7 A

Ly, ,u(")),

@)
with the function £ : R x R* x R**! — R. No matter
the system is linear or not, we can rewrite the system (1) as
following phenomenological model which is only valid in a
very short time interval:

Yy

y") = F + au, 3)



where o € R is a non-physical constant parameter, which is
chosen by the engineer in such a way that F' and au are of
the same order of magnitude. The derivation order v is also
an engineer’s choice.

Here, F' stands for the neglected parts of the system. It can
be determined by the knowledge of u, @ and y. An estimate
of F' is obtained as follows:

F =" - ai, )

where () is an estimate of the ™™ derivative of the measure
y which is assumed available, and @ is an approximate value
of u. Among the existing possibilities, u can be chosen as a
past value of the control variable wu.

The resulting controller is then defined as:

(- P A), 5)

u =

where ¥, is a reference trajectory. The variable e = y,. —y is
the tracking error and A is an appropriate function such that
the closed loop error dynamics e(*) = A(e) is asymptotically
stable.

From above, we can see that the derivation order v is not
necessarily equal to the derivation order a of y in eq. (1).
The derivation order v is often taken equal to 1 or 2.

The estimate of y(*) in (4) can be obtained for example
through a cascade of first order filter as:

Z(y). (6)

Typically, 1/T ranges from 8 to 20, and .Z denotes the
transformation to the operational domain.

Here, we choose the function A(e) as PID controller. The
desired behavior is obtained by implementing the so-called
intelligent PID controller (for instance v = 2):

F ..T .
u:—g—&-yg—Fer-FKl/@‘f'KDeﬂ %)

where Kp, K;, Kp are the usual tuning gains.

The basic Arzén’s event based controller consists of two
parts: a time triggered event detector C; and an event trig-
gered PID controller C, [9]. The latter computes the control
signal to be delivered to the actuators. The former C; runs at
a fixed sampling period h., and upon fulfillment of a certain
event triggering law L., sends events to C.. Upon reception
of the event, C. computes the control signal and sends it to
the actuators.

Usual event triggering laws L. include:

(1) Error threshold law:

le(tr)| > erim., 8

where e = y, — y is the tracking error, t; is the current
discrete sensing time by C., and ¢;;,,, is a fixed limit.
(2) Error difference threshold:

le(tr) — e(tk—1)] > €tim. )
(3) ISS based law:

e(tr) = o5 ly(ti)l, (10)

assuming the system can be rendered ISS (Input to State
Stable) through static feedback [12]. Here, o is chosen
less than one to ensure an associated Lyapounov function
decreases, a and b are chosen according to the Lipschitz
constants of oo [12]).

In order to ensure the stability of the system, a maximum
sampling period hjs is defined in [10]. The time interval
between two events must then be smaller than hj,:

tr —te_1 < hyy. (11)

Other conditions ensuring the stability of the system have
also proposed, such as the forgetting factor used in event
driven PID control [11].

III. THE QUADROTOR MODEL: SCENARIO AND CONTROL
A. Scenario

The proposed scenario is a photo shooting at an outdoor
garden. An autonomous quadrotor with limited energy is
used. The quadrotor needs to follow a square path with length
of 2m while hovering at the altitude of 10m, which is given
in Figure 1. At each corner, the quadrotor will hover about
15s to take photos. The total simulation time is 150s. The
reference trajectory is expressed as:

0 0s< t < ty,
(t—t1)°

hd =gy r, —rae th<tstis

o(t) =42 ty <t < ts
(t—t3)°

ha — hq (t7t3)5+(T3}7t+t3)5 t3 <t<ty

0 ty <t < 150s
ha =2m, Tj = 6s.
x =o(t), with t; = 10s,te = 16s,t3 = 90s,t4 = 96s.
y=o(t), with t; =40s,ty = 46s,t3 = 120s, t4, = 126s.
z = 10m.

12)

As the shooting takes place at an outdoor garden, there may

ts

by

a, mis”

pis) 50 i) 100 125

Fig. 1. (a) and (b) Reference trajectory for the quadrotor. (c) The wind
disturbance w.r.t time.



be wind during the shooting. The wind is represented as the
extra acceleration and affects all x, y and z axis, which is
depicted in Figure 1.

0 0 <t <30,
0.8 sin( ™22 4 0.056 sin (21720
+0.4sin( =220 4 0.08 sin(Z522)
a(t)=40

1.35sin( ™72 ) 4+ 0.105 sin( 2270
+0.15sin(Z45™) 4 0.225sin(ZTY) 70 < ¢ < 124,
0 124 <

30 <t <97,
57 <t < 70,

13)

B. Model

The model of the quadrotor is a six d.o.f. system with
twelve states and four inputs which is depicted in eq. (14).
The notations ¢ and s represent cos and sin respectively. The
rotation angles ¢, 6 and 1 are along the x, y and z axis
respectively, namely roll, pitch and yaw. The parameters in
the system can be found in the footnote.'

12 :
H— Rmzz,

Iyyé :qu(lzzflzz) ¢Q +Z(T1 z+12 Rmyu
4
=1

4 4 4
mi=s0>  Hpi—s¢cd >  Hyi+chpcd Y  Ti—mg+pgVoo,

i=1 i=1 i=1

4 4
mi = — chwZHm- — (spsBc) — chpsyp) ZHW-,

:—CGSwZHm (spsO s + cocrp) ZHW
=1 =1

(14)

Here, T; and H; are the thrusts and hub forces of each
motor; (); and R; are the drag and rolling moments; w; are
the rotational speeds of the four motors.

T = CT/OAW radv
Q; = CopAwiR?

H; = CHPAW 7ad7

R; = CrpAw?R? ;, i=1,...4.

rad’

In eq. (14), ¢U(L.. — La), 00(Iyy — L), 06(Ioe —
I,,) are the body gyro effect moments; J,.0Q, J ¢,
Q, —wl—w2+w3 wy) are the propeller gyro effect mo-
ments; (—1)iF! Z Ronzis (—1)1F1 Z Ry are the rolling

i=1
moments due to the sideward flight; (—1)° Z Q; is the

unbalanced counter torque; pgVye; is Archlmedes force;

oo, Iyy = 6.228 x 1073kg - m2, I, = 1.121 x 10~ 2kg - m?,
6.01 x 10~%kg - m?, | = 0.232m, h = 0.058m, m = 0.53kg,
,C, =1.32, A. = 0.005m?, p = 1.293kg/m?, b = 3.13x10~°N

T
J p—
cz C
d:75><10 N -2, A—00707m Vot = 3.04x10~4.

t < 150.

The system is controlled by the rotational speeds of the
four motors w;. In the control system, we define

4
up =Y T, uy = (T — Ty),
i=1 \ (15)
ug =1(~=Ty+Ts), wy=(-1)"Y Q.
i=1

Then, the rotational speeds w; can be computed using wu;
through:

uy = bl(—w3 + w?),
i=1
\ (16)

1)"*ta Z w?.
i=1

Further details about the model can be found in [13].

ws = bW} —wd),  wa= (-

C. Model free control

Firstly, we control the altitude z. We rewrite the vertical
dynamics in (14) as:
mZ = (chco)uy + F. (17

where I, includes the neglected vertical dynamics in eq.
(14). In discrete time, the unknown part £, can be expressed
as following, where Z(k) is an estimate of Z(k):

(cOcp)uq (tr—1)-

Thus, the chosen control law is:

E, = mi(ty) — (18)

(B =wr 1)+ (@a(0n) + Kiei(tn) + ke ().
Eate) = Z(tk) — £(tr),  ed(tn) = 20(t) — 2(tx),
e*(tr) = zr(tx) — 2(tx),
E(ty) = TfT_{_ hz(tk_l) + Tf1-|- N (z(tk) — Z(tk=1) ),
A(tr) = TfTi - S(tp_1) + Tf1+h 2(tk) — 2(tk—1) ),

19)

where Z,, Z,., 2z, are the reference acceleration, velocity and
position of z. The variable A is the sampling period, h =
te —tr_1.

Then we control the position x and y. As the input u; is
already used in the control of the altitude z, we now use us
and ug to control the positions x and y. Therefore, we need
to differentiate twice the equations related to x and y in eq.
(14) in order to get the control inputs us and wu3. Then, we
obtain:

@ = (sthed — cipsOsp)us+ (cpclchp)uz+Fy,
md ., Mdlyy

y(4): — (cthedp+ssOsd)ua+ (swcheo)us +Fy,
TT yy

(20)

where F,F, are the remaining parts of the horizontal
and lateral system. For further simplicity, here we define



A_

S (seo — cpstsg), B = t(cpedeg), C =
(cwcgb + ssfs¢) and D = ).
We 1mplement the model free control scheme in a similar

manner as pI'CVlOLlS.

us(t) _ (walte-1)) , (A B e+ ke,

us(tr) us(te—1) ¢ D eyt kiely)”
21

JURN 4) (4
where €5, ¢4, are the errors between the references ab, y,(« )

and the estimates of 2, y®), i =0,...,3.
For the yaw control, we consider the equation of v as:

Lot =uy+ Fy. (22)

Then the needed control law is:
ug(te) =ua(tp—1) + L.z (eQd(tk) + kw g (te) + k Yt )),
(23)

where é;bd is the error between the reference 1@” and the

estimate of .

D. Backstepping control

For the purpose of comparison, a backstepping control
proposed by S. Bouabdallah et al. [2] is also used on the
quadrotor system. In order to simplify the control laws, some
parts in the model in eq. (14) are neglected, such as the
rolling moments and the hub forces. The system is written
into the state space form using the state vector (z1, .. 1‘12)
with z1 = ¢, xg—qb 23 =0, 34 = 0, x5 = 1P, 1:6—1p,
Ty = Z, l‘g—Z Tg = X, Z‘10—$ r11 =Y, a:12—y

The system is separated into the angular and position
subsystems. The angular subsystem is thus firstly controlled,
and then the position subsystem is controlled by using the
angles from the angular subsystem.

In the angle subsystem, the control laws are defined as:

1

U = b (Zl — A1X4Tg — A2T4W — 041(22 —+ 04121) — 04222),
1
1

Uz = b 23 — A3T2T6 — A4T2W — 043(24 + 04323) — Q424 |,
2
1

Ua=g-\ %5~ asT2ls — as(z6 + as25) — 626 )
3

(24)

with 21 = T14 — @1, 22 = T2 — 14 — 121, 23 = T3q — T3,
24 = Xy — T3g — 323, Z5 = Tsqd — T, 26 = Te — Tsd —
Q525 and a; = (Iyy - Izz)/-[xz, ag = JT/ICEI’ az = (Izz
:L’x)/-[yy’ Ay = Jr/Iyys a5 = (Iza: - Iyy)/-[zza by = 1/—[:1:30’
by = 1/I,y, by = 1/1,,. All the o;(i = 1,...,12.) are the
control gains.
In the position subsystem, the control laws are defined as:

uy = (27 +9— ar(zs + arzr) — 04828)7
CI1CT3
m
Uy = w (Zg — ag(z10 + 92g) — a10210), (25)
1
m
Uy = w (Zn — 1 (712 + 11211) — 01122’12),
1

with 27 = w7q — @7, 28 = X8 — X74 — Qy27, 29 = Tgg — Ty,

210 = T10—T9d— 929, 211 = T11d—T11, 12 = T12—L114—
o1211 and ug = sYs¢ + cpslcd, u, = —cso + systce.

E. Sliding mode control

For comparison, a sliding mode control proposed by S.
Bouabdallah et al. [2] is also proposed. The state variables
are defined in the backstepping control. The sliding surfaces
are chosen as:

S¢ = 20 = g — T1q4 — 121, 21 = T1q — T1,

So = 24 = x4 — T3q — 1323, 23 = T3q — T3,

Sy = 26 = T — T54 — X525, 25 = T5d — Ts,

(26)

Se = 28 = 8 — T7g — 27, 27 = T7q — X7,

Sy = z10 = T10 — T9d — 929, 29 = Tgd — T9,
S, = z12 = T11 — T114 — C11211, 211 = T11d — T11,
where @;4(i =1,3,4,5,7,9,11.) are the references. The
control laws are:

1 . .
Us :EG kisign(Sg)—koSe—a124x6 —asxaw+da— a%zl) ,

1 .

us b2< kgSigH(SQ)fl@;Sg7&3I2$67a4$2w+0d70{§23),
1 . .

Uy :g ( — k551gn(5¢) — kﬁSw — as5ToTy4 + L/}d — Q§Z5),

up = m ( — krsign(S,) — ksS. + g+ 24 — a%zv),
CX1Cx3

Uy :uﬁ ( — kgsign(S,) — k105: + &g — OZSZQ),
1

Uy :—u1 ( — kllslgn(Sz) - leSz + Yd — 0[%1211>~
(27)

The definition of all the parameters can be found in the
previous backstepping control section III-D.

IV. COMPARISON OF THE CONTROL LAWS

A. Basic scenario: time and event triggered schemes

In the time triggered scheme, the sampling period is 10ms,
and it yields 15000 actuation steps. The simulation results
of the three control methods are given in Figure 2. Three
methods have followed the reference trajectory nicely. The
maximum absolute tracking errors are 0.042m, 0.09m and
0.08m for the model free, backstepping and sliding mode
control respectively, which are 2.1%, 4.5% and 4% of the
desired length 2m.

In the event triggered scheme, the chosen event triggering
law is the error difference threshold as in eq. (9). Here, we set
the error difference threshold of z 0.02m, yaw angle 0.1rad,
z and y 0.00lm. Every 10ms, the control system verifies
the tracking error differences, and decides the corresponding
actions. The simulation results are shown in Figure 2. The
event triggered model free control, backstepping control and
sliding mode control yield 9008, 9987 and 8493 actuation
steps, which are 60%, 66.6% and 56.6% of 15000 actuation
steps in the time driven scheme. The maximum absolute
tracking errors are 0.06m, 0.1m and 0.1m in the three control
methods, which increased 0.43%, 0.11% and 0.25% with
respect to their results in the time triggered scheme.
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Fig. 2. The tracking errors along the X, y and z axis in the basic scenario.
The first row: the model free control. The second row: the backstepping
control. The third row: the sliding mode control. The first column: the time
triggered scheme. The second column: the event triggered scheme.

B. Scenario with wind disturbance: time and event triggered
schemes

All the control methods are simulated in the scenario with
wind disturbance. The simulation results are in Figure 3.
The chosen event triggering law is the same as in the basic
scenario.

In the time triggered scheme, the maximum absolute
tracking errors are 0.042m, 0.23m and 0.21m in three control
methods, which increased 0%, 155.6% and 162.5% with
respect to the time triggered controls in the basic scenario.
The wind does not have great influence in the model free
control, however it has highly affected the backstepping and
sliding mode controls.

In the event triggered scheme, the model free, backstep-
ping and sliding mode controls yield 12110, 12116 and
12445 actuation steps, which are 80.7%, 80.8% and 83.0%
of 15000 actuation steps. The maximum absolute tracking
errors are 0.11m, 0.22m and 1.25m respectively in three
control methods, which increased 83.3%, 120% and 1150%
with respect to the event triggered controls in the basic
scenario.

C. Discussion

In order to get a comprehensive evaluation, all the methods
are implemented in other realistic scenarios with parameter
uncertainties, with sensor noises and with actuator faults.
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Fig. 3. The tracking errors along the X, y and z axis in the scenario with

wind disturbance. The first row: the model free control. The second row:
the backstepping control. The third row: the sliding mode control. The first
column: the time triggered scheme. The second column: the event triggered
scheme.

Further details can be found in [13]. The maximum absolute
tracking errors, the sum of the error variances and the
actuation steps of all the control methods in all scenarios
can be found in Table I and Figure 4.

In different realistic scenarios, the model free control has
the smallest tracking errors than other control methods, and
the event triggered model free control has the smallest errors
than other event triggered methods. In the model free control,
the part F' is evaluated at each actuation step using the system
measurement ¢ and the last time input %. The model free
control avoids the time-consuming computation of the full
control model and has an algorithm complexity O(5n%+3n),
while the backstepping and sliding mode controls have to
compute the full model and have an algorithm complexity
O(6n%+4n). The disturbances and uncertainties are also con-
sidered into F' in the real time control, and that is why the
model free control compensate them well.

The event triggered scheme matches the model free con-
trol. While the maximum tracking errors are bounded in
desirable limits, the actuation steps are reduced more than
one third. The event triggered model free control works well
in the realistic scenarios with disturbances. The sliding mode
control does not match with the event triggered scheme. The
tracking errors are too high to be accepted in the scenarios
with disturbances.



TABLE I
THE MAXIMUM ABSOLUTE TRACKING ERRORS, THE SUM OF THE ERROR
VARIANCES AND THE ACTUATION STEPS OF ALL THE CONTROL
METHODS IN ALL SCENARIOS. MF: MODEL FREE CONTROL. BS:
BACKSTEPPING CONTROL. SM: SLIDING MODE CONTROL.

max absolute errors time triggered event triggered
MF  BS SM | MF BS SM
0,042 0,09 0,08 | 0,06 0,1 0,1
0,042 023 021 | 0,11 022 125
parameter uncertainties | 0,075 0,11 0,11 0,19 0,22 0,41
Sensor noise 0,08 0,09 0,08 | 0,08 0,09 0,08

actuator faults 0,04 0,06 0,07 | 0,13 0,2 0,35

basic scenario
wind

error variance

basic scenario 0,0049 0,0028 0,0058| 0,2 0,2 0,077
0,0052 2,4723 3,5238|0,0635 2,6679 65.4849
parameter uncertainties [0,0212 0,0468 0,2805|0,1281 1,8675 3,5517

0,2309 0,0029 0,0088(0,2309 0,0029 0,0088

wind

sensor noise

actuator faults 0,0327 0,0167 0,0188]0,0918 0,0661 0,554
actuation steps
basic scenario 15000 9008 9987 8493
wind 15000 12110 12116 12445
parameter uncertainties 15000 10803 14976 14983
sensor noise 15000 15000 15000 15000
actuator faults 15000 9298 10020 8297

V. CONCLUSION

In this paper, event driven model free controllers have
been proposed and applied on quadrotor system in different
realistic scenarios. The proposed method avoids the time-
consuming computation of the full control model by eval-
uating the part I’ at each actuation step using the system
measurement ¢ and the last time input @. The part F' can also
take the disturbances and uncertainties into account in the
real time control, therefore the model free control has a better
performance in the realistic scenarios with disturbances.

Under the event driven scheme, the model free control has
smaller tracking errors and lower actuation steps than back-
stepping and sliding mode control. In the realistic scenarios
with disturbances and uncertainties, the event driven model
free control has achieved almost the same results as in the
scenarios without disturbance, which proves its robustness to
perturbations. In the same scenarios, the backstepping and
sliding mode controls have higher tracking errors.

The proposed method gives promising results in terms
of control algorithm complexity reduction, computational
resources reduction and robustness to perturbations, which
is appropriate for implementation in embedded systems.
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