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Étude à Fort Champ Magnétique du Système à Fermions

Lourds URu2Si2

Résumé

Les composés à fermions lourds, qui sont à base de terres rares comme le cérium

et l’ytterbium ou d’actinides comme l’uranium, sont connus pour leurs propriétés

extraordinaires à basse température. Leur physique est gouvernée par l’hybridation

des électrons f avec des électrons de conduction, ce qui mène à la formation de

quasi-particules avec de très grandes masses effectives. URu2Si2 occupe une place

particulière dans la famille des fermions lourds. Une transition de phase du se-

cond ordre à la température T0 = 17.5 K a été observée par de nombreuses tech-

niques expérimentales. Malgré des propositions théoriques multiples, aucun consen-

sus n’existe concernant le paramètre d’ordre de la phase - dite à ordre caché - qui se

développe sous T0. Lorsqu’on le soumet à des champs magnétiques intenses, URu2Si2

a par ailleurs un comportement unique : une cascade de trois transitions du premier

ordre entre 35 et 39 T mène le système de son état paramagnétique à un état polarisé

paramagnétique à fort champ. Ce travail a consisté en l’investigation systématique

des propriétés magnétiques et électroniques d’échantillons monocristallins de très

haute qualité d’URu2Si2 dans des champs magnétiques intenses allant jusqu’à 80 T,

et des températures descendant jusqu’à 100 mK. Des expériences d’aimantation et

de magnétorésistivité ont été faites en champ magnétique pulsé non destructif au

Laboratoire National des Champs Magnétiques Intenses de Toulouse (LNCMI-T).

Le diagramme de phase champ magnétique-température de URu2Si2 a été étudié la

première fois sur les gammes étendues de champs magnétiques H ∥ c allant jusqu’à

60 T et de températures allant jusqu’à 80 K. Il indique que la domaine critique

[35 T-39 T] est initié par la destabilisation d’un crossover, dont la température ca-

ractéristique atteint 40-50 K à champ nul. Il est démontré que ce crossover, qui

résulte probablement des corrélations inter-site, est aussi un précurseur de la phase
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à ordre caché. Une étude de la magnétorésistivité pour différentes orientations du

champ magnétique dans les plans (a,a) and (a,c) a permis d’établir la dépendance

en angle du diagramme de phase. Des mesures de l’aimantation du composé dopé

en rhodium U(Ru0.96Rh0.04)2Si2 révèlent un diagramme de phase simplifié, où la

phase à ordre caché a disparu et le domaine critique a été remplace par une phase

intermédiaire entre 26 et 37 T. La magnetoresistivité à très basse température se

révèle être fortement dépendente de la qualité des échantillons et est la signature

des propriétés orbitales d’URu2Si2. Une dépendance exceptionnellement intense de la

magnétorésistivité en fonction de la température confirme que la surface de Fermi est

reconstruite à T0. Des anomalies dans la magnetoresistivité à fort champ magnétique

H ∥ c suggèrent que la surface de Fermi est modifiée à l’intérieur de la phase à ordre

caché. Des oscillations quantiques - effet Shubnikov-de Haas - sont observées dans la

magnétorésistivité à très basse température pour une multitude d’orientations des

échantillons dans le champ magnétique. Elles confirment qu’un champ magnétique

H ∥ c induit des reconstructions de la surface de Fermi dans la phase à ordre caché.

Dans un champ magnétique H ∥ a, des oscillations quantiques sont observées pour la

première fois jusqu’à 80 T. Leur analyse a révélé une nouvelle branche de fréquence

λ avec une faible masse effective. La dépendance en angle des fréquences Shubnikov-

de Haas a été étudiée dans un champ magnétique allant jusqu’à 60 T, pour des

champs appliqués dans les plans (a,a) et (a,c). Ce travail expérimental indique que

le couplage entre le magnétisme des électrons f et les propriétés de la surface de

Fermi joue un rôle important pour la physique du système à ordre caché URu2Si2.
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High-Magnetic-Field Study of the Heavy Fermion Sys-

tem URu2Si2

Abstract

Heavy-fermion compounds, usually intermetallic compounds of rare-earth elements

like Cerium and Ytterbium, or actinides like Uranium, are known for their extraor-

dinary low-temperature physics. Their physics is governed by the hybridization

of f - and conduction electrons, which gives rise to the formation of heavy quasi-

particles with strongly-enhanced effective masses. URu2Si2 occupies a particular

place in the heavy-fermion family. A second-order phase transition at the tem-

perature T0 = 17.5 K is reported by many experimental probes but, despite nu-

merous propositions, no order parameter has been consensually associated to the

phase below T0, which is called the ”hidden-order” phase. URu2Si2 shows a unique

behavior when exposed to strong magnetic fields: a cascade of three first-order tran-

sitions between 35 and 39 T drives the system from the paramagnetic hidden-order

phase to a high-field polarized paramagnetic state. This work presents a system-

atic investigation of the magnetic and electronic properties of high-purity URu2Si2

single crystals in intense magnetic fields up to 80 T and at temperatures down

to 100 mK. The magnetization and magnetoresistivity experiments presented here

have been done in non-destructive pulsed magnetic fields at the Laboratoire Na-

tional des Champs Magnétiques Intenses of Toulouse (LNCMI-T). The magnetic

field-temperature phase diagram of URu2Si2 was studied for the first time in both

extended magnetic field H ∥ c (up to 60 T) and temperature (up to 80 K) scales.

It indicates that the critical area [35 T-39 T] is initiated by the vanishing of a

crossover temperature, which reaches 40-50 K at zero-field. It is demonstrated that

this crossover, which probably results from inter-site correlations, is a precursor of

the hidden-order phase. An angle-dependent study of the magnetoresistivity, in

a wide range of orientations of the magnetic field in the crystal planes (a,a) and

(a,c), permitted to establish the angle-dependence of the phase diagram. Magneti-
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zation measurements of the Rhodium-doped compound U(Ru0.96Rh0.04)2Si2 revealed

a simplified phase diagram, where the hidden-order phase has vanished and where

the critical region has been replaced by one intermediate antiferromagnetic phase

between 26 and 37 T. The magnetoresistivity is found to be strongly sample-quality

dependent and reflects the peculiar electronic properties of URu2Si2. The temper-

ature and field-dependencies of the exceptionally strong magnetoresistivity confirm

that the Fermi surface is reconstructed below T0. Crossover-like anomalies in the

magnetoresistivity suggest that the Fermi surface is modified in a high-magnetic

field H ∥ c far below 35 T, i.e, in the hidden-order phase. Quantum oscillations

have been observed in the magnetoresistivity for various orientations of the samples

in the magnetic field. The Shubnikov-de Haas data confirm that a magnetic field

applied along c induces Fermi surface reconstructions inside the hidden-order phase,

as indicated by the anomalies observed in the non-oscillating magnetoresistivity. For

a magnetic field applied along a, quantum oscillations are observed for the first time

up to 80 T and their analysis shows a new frequency branch λ with a light effective

mass. The angle-dependence of the observed Shubnikov-de Haas frequencies has

been established at 1.5 K in high magnetic fields up to 60 T rotating in the (a,a)

and (a,c)-planes. This experimental work emphasizes that the f -electron magnetic

properties are intimately connected to the properties of the Fermi surface in the

hidden-order material URu2Si2.
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1 Introduction

Heavy fermions are intermetallic compounds, known for their extraordinary low-

temperature physics [Hewson 1993, Stewart 2001, Flouquet 2005]. Typically, heavy-

fermion compounds contain rare earth elements like Cerium and Ytterbium, or ac-

tinides like Uranium, which have partially filled 4f - or 5f -electron shells. Heavy-

fermion physics is governed by the Kondo effect [Kondo 1964], which is the scattering

of the conduction electrons due to their interaction with the magnetic moments of the

f -electrons. A hybridization of the f - and the conduction electrons, due to the close-

ness of the f -energy level to the Fermi energy, gives rise to the formation of heavy

quasiparticles with strong enhanced effective masses, up to 1000 times the free elec-

tron mass. The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction is a magnetic

exchange interaction between the f -electron moments mediated by the conduction

electrons, which favors long-range magnetic ordering [Ruderman and Kittel 1954].

The phase diagram of heavy fermions is defined by the competition between Kondo

and RKKY interactions, which both depend on the exchange interaction J between

f - and conduction electrons and the density of states D(ϵF ) at the Fermi level ϵF .

Due to this competition, f -electron magnetic properties are very sensitive to pres-

sure and chemical doping, which permit to tune a quantum phase transition between

a paramagnetic regime and a (generally antiferro-) magnetic state [Doniach 1977].

URu2Si2 occupies a particular place in the heavy-fermion family

[Mydosh and Oppeneer 2011]. A second-order phase transition at the tem-

perature T0 = 17.5 K is reported by many experimental probes but, despite

numerous propositions, no order parameter has been consensually associated to

the phase below T0, which is called the ”hidden-order” phase. The challenge is to

experimentally identify the order parameter and/or to establish an order parameter

theory, which would be consistent with the multitude of existing experimental

results. An auspicious approach might be to identify the energy scales driving the

system to the ordered phase.

Field-induced magnetic transitions are typical of heavy-fermion systems [Aoki 2013].

Either a paramagnetic or antiferromagnetic ground state can be suppressed by an

applied magnetic field at a critical field value (at zero temperature) and the system

is driven to a polarized paramagnetic regime at very high fields. Most of heavy-

fermions systems show a strong magnetic anisotropy, which results in field-induced
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1 Introduction

first-order transitions. These transitions, called metamagnetic transitions, are char-

acterized by a sudden step-like increase of the magnetization [Stryjewski 1977].

URu2Si2 shows an unique behavior when exposed to strong magnetic fields: a cas-

cade of three first-order transitions between 35 and 39 T drives the system from

the paramagnetic hidden order phase to a high-field polarized paramagnetic state

[Sugiyama 1999, Kim 2003b].

During my Ph.D thesis I have performed a systematic investigation of the magnetic

and electronic properties of high-purity URu2Si2 single crystals in intense magnetic

fields up to 80 T and at temperatures down to 100 mK. These high magnetic fields

were essential for the establishment of the temperature-magnetic field phase diagram

and for the observation of high-field orbital effects, i.e., a strong magnetoresistivity

and quantum oscillations. The magnetization and magnetoresistivity experiments

presented in this work have been done in non-destructive pulsed magnetic fields at

the Laboratoire National des Champs Magnétiques Intenses of Toulouse (LNCMI-

T).

This work is organized as follows:

• Chapter 2 introduces the physical effects, interactions and theoretical models,

which were relevant for this work.

• The experimental setups and procedures permitting to measure the magneti-

zation and resistivity in extreme conditions (low temperature, high magnetic

field) are presented in Chapter 3.

• Chapter 4 gives an introduction to the heavy-fermion system URu2Si2, based

on a multitude of published experimental data and theoretical models.

• The high-field properties of URu2Si2 in a magnetic field applied along the c-

axis are presented in Chapter 5. Its magnetic field-temperature (H,T ) phase

diagram, forH ∥ c, was studied for the first time in both extended temperature

(up to 80 K) and magnetic field (up to 60 T) scales. It indicates that the critical

area [35 - 39 T] is initiated by the vanishing of a crossover temperature, which

reaches 40-50 K at zero-field. It is demonstrated that this crossover, which

probably results from inter-site correlations, is a precursor of the hidden-order

phase.

• Chapter 6 presents the magnetic field-temperature phase diagram of the

Rhodium-doped compound U(Ru0.96Rh0.04)2Si2 for H ∥ c. No hidden-order is

observed for this system and its phase diagram is characterized by a low-field

paramagnetic ground state, which is suppressed by a magnetic field of 26 T
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applied along the c-axis. The magnetic field induces an intermediate antifer-

romagnetic state between 26 and 37 T and drives the system to a polarized

paramagnetic state above 37 T.

• In Chapter 7, a comparison of the magnetoresistivity of URu2Si2 samples of

different purities gives a new insight on the electronic transport properties

inside the hidden-order phase. We observe an exceptionally strong orbital

contribution to the magnetoresistivity, which indicates that the Fermi surface

is modified at T0, but also inside the hidden-order phase in a magnetic field

applied along c.

• An angle-dependent study of the magnetoresistivity is presented in Chapter 8.

A wide range of transverse and longitudinal configurations, for magnetic fields

applied along the main crystal planes (a,a) and (a,c) permitted to establish

the angle-dependence of the phase diagram. In particular for the hidden-order

phase, f -electrons behavior is intimately connected to the properties of the

Fermi surface.

• A study of the high-field Fermi surface of URu2Si2 by the Shubnikov-de Haas

effect, observed for all orientations of the samples in the magnetic field, is pre-

sented in Chapter 9. Shubnikov-de Haas data confirm that a magnetic field

applied along c induces Fermi surface reconstructions inside the hidden-order

phase, as indicated by the anomalies observed in the non-oscillating magne-

toresistivity. For a magnetic field applied along a, we observed quantum oscil-

lations, whose analysis showed a new Fermi surface sheet with a light effective

mass, for the first time up to 80 T. We established the angle-dependence of

the observed Shubnikov-de Haas frequencies at 1.5 K in high magnetic fields

up to 60 T rotating in the (a,a) and (a,c)-planes.
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2 Theory

In this chapter I present the physical phenomena, principles, and models of low-

temperature and solid state physics, which are relevant for this work, based on a

selection of textbooks [Ashcroft and Mermin 1976, Shoenberg 1984, Pippard 1989,

Hewson 1993, Grosso and Parravicini 2000, Enss and Hunklinger 2005]. Section 2.1

presents basic principles of magnetism. Notions of the Fermi liquid theory are found

in Section 2.2. Section 2.3 gives a short introduction to heavy-fermion physics. The

notion of orbital magnetoresistivity is developed in section 2.4. Section 2.5 presents

the theory of quantum oscillations.

2.1 Magnetism

Usually, magnetism of materials is due to the non-zero total magnetic moment of

electrons from uncomplete d - or f -orbitals, while the electrons from the s- and p-

orbitals participate to the chemical bondings of insulators or are delocalized in the

electron sea of metals (see [Grosso and Parravicini 2000] for a detailed review on

magnetism theory).

Localized magnetism, which occurs mainly in insulating materials (EuO, Gd,..),

usually can be described by the Heisenberg formalism. The Hamiltonian, within a

localized picture, takes into account the interaction between two spin moments Sm

and Sn localized at the lattice sites m and n, respectively:

H = −
∑

m ̸=n
Jm,nSmSn, (2.1)

where Jm,n is the exchange interaction. The 4f -orbitals of rare earth elements

(Ce, Yb,...) show a local atomic-like character and the magnetism in rare earth

compounds can often be described by a localized picture.

The 3d -electrons of transition metals (Fe,Ni,..) are delocalized in the conduction

band and can be described by a itinerant magnetism theory, as the Stoner-

Hubbard model. In this model the conduction electrons, which participate in the

magnetic state, are described by the Hamiltonian:

H =
∑

k,σ
E(k)c†

kσckσ + U
∑

rm,σ
c†mσcmσ, (2.2)
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2 Theory

where k is the wavevector, E(k) is the k-dependent conduction band energy, c†
kσ

and ckσ are creation and annihilation operators for conduction electrons of spin σ

and wavevector k, U is the Coulomb repulsion between two electrons of opposite

spin at the same site, and c†mσ and cmσ are creation and annihilation operators for

electrons of spin σ in the localized state of the lattice site m.

In heavy-fermion compounds, the electrons of the incomplete f -orbitals (4f - or 5f -

states) exhibit a behavior which is between that of itinerant 3d -electrons and purely

localized 4f -electrons.

2.1.1 Magnetization of materials

The magnetization M is the reaction per unit of volume of matter to an external

magnetic field H:

M = χH, (2.3)

where χ is the magnetic susceptibility. A more general definition of the susceptibility

can be given by:

χ =
∂M

∂H
. (2.4)

At finite temperature T and at a given magnetic field H, the relation between the

magnetization M(T,H) and the free energy F (T,H) is given by:

M(T,H) = − 1

V

∂F (T,H)

∂H
, (2.5)

where V is the volume of the material. The magnetic susceptibility becomes:

χ(T,H) = − 1

V

∂2F (T,H)

∂H2
. (2.6)

The magnetic induction B (also called magnetic flux density) is the sum of the

magnetization and the external magnetic field:

B = µ0(H +M) = µ0(H + χH) = µH, (2.7)

where µ0 is the magnetic constant of the vacuum and µ is the magnetic permeability

of the material. The magnetic permeability of air is ≃ µ0. In the following, to

simplify the notations, the magnetic induction B will be called ”magnetic field”,

since there will be no risk of confusion with the actual magnetic field H.
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2.1 Magnetism

2.1.2 Paramagnetism

The magnetic moment of an isolated ion (or atom) mion is given by

mion = µB(L+ S) = gµBJ, (2.8)

where L is the total orbital angular momentum, S the total spin angular momentum,

J = L+ S the total angular momentum of the ion, g the Landé factor, and µB the

Bohr magneton. The magnetization, the total magnetic moment per unit of volume,

of a lattice of magnetic moments is given by:

M =

N∑

i

mi
ion/V, (2.9)

where N is the number of lattice sites, mi
ion is the magnetic moment of the ion at

the lattice site i, and V is the volume of the lattice.

A paramagnet is a magnetic material, whose magnetic moments are disordered.

Paramagnets have a positive magnetic susceptibility χ > 0. The paramagnetic

susceptibility χ of a lattice of N non-interacting magnetic ions (localized picture) is

given by the Curie law:

χ = g2J(J + 1)
N

V

µB

3kBT
≡ C

T
, (2.10)

where kB the Boltzman constant, T the temperature, and C the Curie constant.

A temperature dependence χ = C/T is found in many materials. However, many

intermetallic compounds of rare-earth elements exhibits a Curie-Weiss law:

χ =
C

T − θp
, (2.11)

where θp is the paramagnetic Curie-Weiss temperature. Usually, θp is related to

intersite magnetic correlations, and a magnetically ordered state is often observed

at low temperatures (cf. Subsect. 2.1.3).

The spin paramagnetism of a free-electron gas (itinerant picture), can be described

by the Pauli susceptibility:

χPauli =
3nµ2

B

2kBTF
, (2.12)

where TF is the Fermi temperature and n is the density of electrons.
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2.1.3 Ferro- and antiferromagnetism

Various magnetic compounds have ordered ground states, which means that the

magnetic moments of the d - or f -electrons order spontaneously, when the temper-

ature falls below a characteristic temperature. In a localized picture, the order-

ing is induced by intersite correlations between the localized magnetic moments,

which become predominant compared to thermal fluctuations (supporting disorder)

as the temperature falls below the characteristic temperature. In the case of a fer-

romagnetic material, all magnetic moments are ordered in one direction [↑↑↑↑] at
temperatures below the Curie temperature TC . The order in an antiferromagnetic

material consists of two antiparallel ferromagnetic sub-lattices [↑↓↑↓↑↓] and occurs

at temperatures below the Néel temperature TN . More complex types of magnetic

order are possible (for example ordering within commensurate, incommensurate, or

multiple wavevectors, ferri- and antiferrimagnetic order,..).

Magnetic order is also possible in metals which can be described by an itinerant

picture. For example, the Stoner model [Stoner 1938] describes itinerant ferromag-

netism by an enhanced Pauli paramagnetism:

χStoner =
χPauli

1− αχPauli
, (2.13)

where α is the Stoner factor determined within a molecular-mean-field approxima-

tion. Ferromagnetism appears, when the Stoner condition:

1− αχPauli < 0 (2.14)

⇔ 2αµ2
BD(ϵF ) > 1, (2.15)

where D(ϵF ) is the density of states at the Fermi level ϵF , is fulfilled. A review

on models of itinerant ferro- and antiferromagnets developed within the mean-field

theory can be found in [Moriya 1985].

2.2 Fermi liquid theory

Heavy-fermion low-temperature behavior can be generally described by the Lan-

dau theory of Fermi liquids [Landau 1957, Leggett 1975]. This theory (see

[Enss and Hunklinger 2005] for a detailed review) allows to describe a system of

strongly interacting particles onto a system of non-interacting particles with re-

normalized parameters. The theory introduces quasi-particles with a re-normalized

effective mass m∗, which is defined in terms of Landau parameters by:
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2.2 Fermi liquid theory

m∗ = m0(1 +
F s
1

3
), (2.16)

where F s
1 is the symmetric Landau parameter and m0 is the free electron mass. The

density of states D(ϵ) of electrons at the Fermi level ϵF is also re-normalized:

D(ϵF ) =
m∗kF
π2~2

=
m0kF
π2~2

(1 +
F s
1

3
), (2.17)

where kF is the wavevector at the Fermi level and ~ is the Planck constant reduced

by 2π. The Pauli susceptibility χPauli is given by:

χPauli =
µ0µBm

∗kF
π2~2

1

1 + F a
0

, (2.18)

where F a
0 the asymmetric Landau parameter. The Sommerfeld coefficient γ, which is

equal to the specific heat Cp over the temperature T in the limit of zero-temperature,

is given by:

γ = lim
T→0

Cp

T
=

m∗kFk
2
B

3~2
. (2.19)

The thermodynamic functions are enhanced due to the effective mass, which is itself

enhanced due to the electronic interactions. In a non-interacting electron gas, the

Wilson ratio RW , relating the magnetic susceptibility to the electronic component

of the specific heat is RW = 1. The Wilson ratio of an interacting system becomes:

RW =
χ

γ

π2k2B
3µ0µB

=
1

1 + F a
0

. (2.20)

In a Fermi liquid, the electronic resistivity ρ as function of the temperature T is

given by

ρ(T ) = ρ0 +AT 2, (2.21)

where ρ0 = ρ(T → 0) is the residual resistivity and the term AT 2 is due to the

electronic interactions.
√
A is proportional to the density of states at the Fermi

level and to the effective mass:

√
A ∝ D(ϵF ) ∝ m∗ (2.22)

Kadowaki and Woods [Kadowaki and Woods 1986] emphasized the importance of

the universal relationship between A and γ2. The Kadowaki-Woods ratio:

RKW =
A

γ2
(2.23)
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Figure 2.1: log-log-plot of the quadratic coefficient A in the resistivity versus the Som-
merfeld coefficient for typical heavy-fermion systems. Figure taken from
[Kadowaki and Woods 1986].

is constant within the families of transition metals and heavy-fermion compounds,

as shown in Figure 2.1. The Kadowaki-Woods ratio of heavy-fermions is generally

close to 1.0 · 10−5 µΩ.cm(mol.K/mJ)2, which is about 25 times larger than that of

transition metals [Kadowaki and Woods 1986].

2.3 Heavy-fermion theory

2.3.1 Kondo effect

In a metal alloy with dilute magnetic impurities (e.g., Fe-impurities in an Au-lattice),

the electrons of the conduction band scatter off on the magnetic moments of the

impurities, which are ions with non-zero magnetic moments from the d - or f -shells.

This scattering mechanism, called the Kondo effect, induces an enhancement of the

electric resistivity, when the temperature is reduced, as shown in Figure 2.2. To take

this mechanism into account, Kondo [Kondo 1964] added the perturbation term HK

to the Hamiltonian:

HK = −2JKS · s, (2.24)
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2.3 Heavy-fermion theory

Figure 2.2: Electric resistivity versus the temperature of AuFe with different Fe concen-
trations. Lines are fits to the data using the Kondo model. Figure taken from
[Kondo 1964].

where JK is the Kondo exchange coupling, and where S and s are the spin moments

of a localized and a conduction electron, respectively. The hybridization of the

conduction electrons with the f -electrons due to the Kondo effect induces a peak in

the density of states D(ϵF ) at the Fermi enegry ϵF , with the characteristic energy:

kBTK ∝ exp

(
− 1

D(ϵF )JK

)
. (2.25)

The contribution to the resistivity due to the Kondo effect developed by

[Kondo 1964] is:

ρKondo =
3πm∗J2S(S + 1)

2e2~ϵF

[
1− 4JKD(ϵF ) log

(
kBT

d

)]
, (2.26)

where J and S are the total and spin momentum of the impurity, respectively, and d

is a cut-off parameter. The total resistivity at low temperatures can be approximated

by [Kondo 1964]:

ρ = ae−phT
5 + cKondoR0 − cKondoR1 log

(
kBT

d

)
, (2.27)

where ae−ph, cKondo, R0, and R1 are material constants. The term ae−phT
5 is due

to electron-phonon scattering. Due to the Kondo effect, the resistivity exhibits a
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Figure 2.3: Temperature dependence of the magnetic resistivity in CexLa1−xCu6. Figure
taken from [Sumiyama 1986].

minimum at:

Tmin =

(
R1

5ae−ph

)1/5

c
1/5
Kondo. (2.28)

2.3.2 Kondo lattice and RKKY-interaction

The temperature-dependence of the resistivity described by Kondo [Kondo 1964] is

valuable for metals with dilute magnetic impurities. A system with dense magnetic

moments also behaves like diluted magnetic moments as long as the temperature is

above the Kondo temperature TK . For high impurity concentrations, the localized

magnetic moments interact indirectly through the electron cloud of the conduc-

tion band, which is the RKKY-interaction (from Rudermann, Kittel, Kasuya, and

Yosida), first described by Ruderman and Kittel [Ruderman and Kittel 1954] and

then by Kasuya [Kasuya 1956] and Yosida [Yosida 1957]. This long-range interac-

tion favors magnetic order. At low temperature, the electronic interactions lead to

a coherent scattering of the conduction electrons and a strong reduction of the resis-

tivity is observed as shown in Figure 2.3. A heavy-fermion material can be described

as a Kondo lattice, where the magnetic moments are not randomly-distributed im-

purities, but situated on regular positions of the metallic lattice. Here, the RKKY-

interaction tends to induce ordered ground states of the localized moments. The

high effective masses of heavy-fermion systems are related to the scattering off of

the conduction electrons on the dense magnetic moments of the Kondo lattice.

The characteristic energy of the RKKY-interaction is:

kBTRKKY = J2
KD(ϵF )

cos(kF r)

kF r
, (2.29)

where r is the distance between two coupled f -sites. The strength of the Kondo effect

and RKKY-interaction depends on the exchange energy JK between the wave func-
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Figure 2.4: Doniach’s phase diagram.

tion of the conduction electrons and that of the localized f -electrons. The ground

state of the system is a direct consequence of the competition between the Kondo

scattering and the RKKY-interaction, as illustrated by the Doniach’s phase diagram

[Doniach 1977] shown in Figure 2.4, and where TK and TRKKY are plotted as func-

tion of JKD(ϵF ). Experimentally, a quantum critical point can be reached using

a tuning parameter, e.g. hydrostatic pressure or chemical pressure (doping), which

drives a modification of JKD(ϵF ) and thus the quantum mechanic properties of the

system. The transition between the magnetically-ordered state and the paramag-

netic state occurs at the point, where TRKKY = TK in the phase diagram, which is

a quantum critical point, i.e., a transition between two quantum states occurring at

zero temperature. Generally, heavy-fermion systems are located close to quantum

critical points.

2.3.3 Quantum criticality

A quantum critical point is a singular feature in the phase diagram of matter at zero

temperature [Sachdev 1999]. It occurs at the point of the phase diagram, where the

transition temperature of an ordered phase is driven to zero by a tuning parameter,

as pressure, chemical doping or an external magnetic field. Whereas thermal phase

transitions occur at finite temperatures, where thermal fluctuations become critical,

quantum phase transitions are driven by zero-temperature quantum fluctuations.

The influence of a quantum critical point expands over a wide region of the phase

diagram and effects of quantum criticality can be observed at finite temperatures

above the quantum critical point. Quantum critical fluctuations can significantly

transform the properties of a metal leading to unconventional behaviors such as

that of non-fermi-liquids (cf. [Millis 1993, Lonzarich 1997]).
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2.4 Magnetoresistivity of metals

The study of magnetic field effects on transport properties is a rich tool for the in-

vestigation of conducting materials [Pippard 1989]. For example, measurements of

the Hall effect allow to determine the carrier concentrations and charge signs. The

measurement of the resistivity in presence of an external magnetic field, i.e., the

magnetoresistivity, shows a wide range of phenomena and can give insight to the

Fermi surface topology. A detailed review on theory and experiment of magnetore-

sistivity is provided by Pippard [Pippard 1989]. The simplified development of the

magnetoresistivity formalism shown here is based on [Grosso and Parravicini 2000].

2.4.1 Resistivity at zero magnetic field

The electric resistivity of metals at zero magnetic field can often be approximated

by an isotrope one-band picture composed of the terms ρ0, due to scattering off on

lattice impurities and defaults, ρe−ph, due to electron-phonon scattering, and ρe−e,

due to electron-electron interactions [Enss and Hunklinger 2005]:

ρ = ρ0 + ρe−ph + ρe−e. (2.30)

• ρ0, the residual resistivity, is constant over all temperatures and depends on

the sample quality only. ρ0 is given by:

ρ0 =
m∗

neτ
, (2.31)

where n is the charge carrier density and τ the relaxation time, which cor-

responds to the mean value of the time between two consecutive electron-

impurity collisions. The mean-free-path l between two consecutive collisions

is given by:

l = vF τ =
~kF
neρ0

, (2.32)

where vF is the charge carrier velocity at the Fermi surface.

• The phonon-term of the resistivity ρe−ph can be approximated by:

ρe−ph(T ) ∝ T 5, for T < TD,

and ρe−ph(T ) ∝ T , for T >> TD,

where TD is the Debye temperature.
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2.4 Magnetoresistivity of metals

• In a Fermi liquid, the electron-electron diffusion becomes dominant at low

temperatures and can be approximated by:

ρe−e = AT 2, (2.33)

where
√
A ∝ m∗ (cf. Sect. 2.2).

Considering only the electron-impurity diffusion, the electric conductivity at zero

magnetic field is given by:

σ0 =
1

ρ0
=

ne2τ

m∗
, (2.34)

and the mobility µ of the electrons can be defined by:

µ =
eτ

m∗
. (2.35)

2.4.2 One-electron-band in a magnetic field

In this section, we consider an isotropic one-electron-band metal, and we assume that

the scattering time, i.e, τ , is independent from the magnetic field. The zero-field

conductivity and resistivity are controlled by the relaxation time τ :

σx,x(B = 0) = 1/ρx,x(B = 0) = τ
ne2

m∗
. (2.36)

In a magnetic field B = Bzz, the particles with a charge q are deflected from their

linear trajectories by the Lorentz force FL = qv × B. In a spherical one-electron

band, the electrons follow orbital trajectories perpendicular to the magnetic field,

with the cyclotron frequency:

ωc =
eB

m∗
. (2.37)

From equations 2.35 and 2.37 we extract the mobility:

µ =
ωcτ

B
. (2.38)

From equations 2.36 and 2.37 we extract:

ωcτ =
Bσx,x(B = 0)

ne
, (2.39)

which is also the mean angle between two consecutive electron-impurity collisions.

No significant magnetoresistance is expected unless ωcτ > 1. For a simple spherical
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electron band in a magnetic field, considering only an electron-impurity scattering

mechanism, the conductivity σ̂ and the resistivity ρ̂ tensors are given by:

σ̂ =
ne2τ

m∗

1

1 + (ωcτ)2




1 ωcτ 0

−ωcτ 1 0

0 0 1 + (ωcτ)
2


 , (2.40)

and ρ̂ = σ̂
−1 =

m∗

ne2τ




1 −ωcτ 0

ωcτ 1 0

0 0 1


 . (2.41)

The transverse resistivity, which is the first or the second diagonal component of the

tensor in Equation 2.41 (i.e. ρx,x or ρy,y), is given by:

ρx,x(B) = ρy,y(B) = 1/σx,x(B = 0) =
m∗

ne2τ
. (2.42)

Thus, in a spherical one-band metal with a constant relaxation time, the transverse

resistivity ρx,x turns out to be field-independent and the electric current density is

equal to that at zero field. In fact, the Lorentz force induces a Hall voltage in the

conductor perpendicularly to the current density and the magnetic field, and the

forces due to the Hall and Lorentz effects on the electron compensate each other

perfectly. The Hall resistivity is defined as one of the off-diagonal components (i.e.

ρy,x or ρx,y) of the tensor in Equation 2.41:

ρy,x = −ρx,y =
−ωcτ

σ(B = 0)
=

−B

ne
. (2.43)

The tangent of the Hall angle, which is the angle between the electric field E and

electric current density J, is given by:

tan θH =
ρx,y
ρx,x

= ωcτ, (2.44)

and the Hall constant is defined as:

RH =
ρy,x
B

= − 1

ne
. (2.45)

In the case of an isotropic one-band metal, the Hall constant is independent of both

the effective mass and the relaxation time, and it depends only on the carrier density

n. A negative Hall constant indicates electron-type charge carriers (case considered

here) and a positive Hall constant indicates hole-type charge carriers. In the case of

a hole-band, the off-diagonal elements of the conductivity (Eq. 2.40) and resistivity

(Eq. 2.41) tensors have opposite signs than that in the case of an electron-band.
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2.4 Magnetoresistivity of metals

2.4.3 Electron-hole-band in a magnetic field

In real metals, multiple bands with anisotropic Fermi surfaces have to be taken into

account. The simplest case of multiple-band structure is the isotropic two-band

model, within the approximation of a band structure made of two spherical bands,

one of electron-type and one of hole-type, with the effective masses m∗
e and m∗

h, the

constant relaxation times τe and τh, and the carrier densities ne and nh, respectively.

The conductivity tensor of such a system is the sum of the electron and the hole

conductivity tensors σ̂e and σ̂h (cf. Sect. 2.4.2), respectively:

σ̂ = σ̂e + σ̂h, (2.46)

and the electron and hole mobilities are given by:

µe =
eτe
m∗

e

, (2.47)

µh =
eτh
m∗

h

, (2.48)

(2.49)

respectively. The field-induced variation of the transverse resistivity is given by:

∆ρx,x(B) = ρx,x(B)− ρx,x(B = 0), (2.50)

which can be reformulated as:

∆ρx,x(B)

ρx,x(B = 0)
=

(µe + µh)
2µeµhnenhB

2

(neµe + nhµh)2 + µ2
eµ

2
h(ne − nh)2B2

, (2.51)

and the Hall constant is given by:

RH(B) =
1

e

nhµ
2
h − neµ

2
e − µ2

eµ
2
h(ne − nh)B

2

(neµe + nhµh)2 + µ2
eµ

2
h(ne − nh)2B2

. (2.52)

This case yields a field-dependent transverse resistivity ∆ρx,x(B) (often called trans-

verse magnetoresistivity or orbital magnetoresistivity). The strength of the variation

of ∆ρx,x with the magnetic field depends on the carrier mobility, thereby on the re-

laxation time τ , and on the effective mass m∗. In this simplified picture, three

particular limits can be distinguished:

• In the low-field limit, i.e., ωcτ << 1, the magnetoresistivity (Eq. 2.51) can be

approximated by:
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∆ρx,x(B) ∝ B2, (2.53)

and the Hall constant (Eq. 2.52) by:

RH(B) =
1

e

nhµ
2
h − neµ

2
e

(neµe + nhµh)2
. (2.54)

• In the high-field limit, i.e., for ωcτ >> 1, the magnetoresistivity saturates and

Equation 2.51 becomes:

∆ρx,x(B)

ρx,x(B = 0)
=

(µe + µh)
2nenh

µeµh(ne − nh)2
, (2.55)

and the Hall constant (Eq. 2.52) becomes:

RH(B) =
−1

e(ne − nh)
, (2.56)

which depends on the difference of the densities of electrons and holes only.

Thus, the Hall constant in the high-field limit indicates the majority carrier

type.

• In the particular case of a compensated metal, i.e., for ne = nh = n, no

saturation of the magnetoresistivity occurs at high field and Equations 2.51

and 2.52 become:

∆ρx,x(B)

ρx,x(B = 0)
= µeµhB

2 = (ωe
cτe)(ω

h
c τh), (2.57)

and

RH(B) =
1

ne

µh − µe

µh + µe
, (2.58)

respectively. For the case of a compensated metal, the sign of the Hall constant

reflects which type of carriers has the highest mobility.

In compensated metals with closed Fermi surfaces, the magnetoresistivity increases

quadratically by the magnetic field for any field orientation. In uncompensated

metals with closed Fermi surfaces, the magnetoresistivity saturates at high fields for

any orientation of the magnetic field. In metals with open Fermi surfaces, i.e., where

a cyclotron orbit is open for a given field direction, the high-field magnetoresistivity

depends on the current direction. It increases quadratically with the magnetic field
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2.4 Magnetoresistivity of metals

Figure 2.5: Projection of the (kx,ky)-plane of an open orbit perpendicular to the magnetic
field and resulting transverse magnetoresistivity for different directions of the
current in the plane.

when the current density is parallel to the open direction of the orbit but saturates

at high fields when the current density is perpendicular to it (see Fig. 2.5).

2.4.4 Kohler’s rule

The magnetoresistivity of many metals can be described by the Kohler’s rule

∆ρ/ρ(B = 0, T ) = FK [B/ρ(B = 0, T )], where the function FK depends on the

Fermi surface and on the orientations of the magnetic field and measuring cur-

rent [Kohler 1938]. The Kohler’s rule implies that all ∆ρ/ρ(B = 0, T ) versus

B/ρ(B = 0, T ) plots of the magnetoresistivity data from samples of different quali-

ties (same compound), or from the same sample at different temperatures, fall on the

same curve. The Kohler’s rule applies within the approximation of a unique relax-

ation time τ for all bands, which controls the sample- and temperature-dependencies

of ρ.

• In the case of a multi-band metal, the conductivity is the sum of the conductivities

of all bands. Assuming a unique relaxation time τ , the conductivity of a multi-band

metal in B = 0 (cf. Eq. 2.34 in the case of a single-electron-band) is given by:

σx,x(B = 0) =
∑

i

σi
x,x(B = 0) = τ

∑

i

niq
2
i

m∗
i

, (2.59)

where σi
x,x(B = 0) and qi are the zero-field conductivity and the charge, respectively,

of band i, and the zero-field resistivity is given by:

ρx,x(B = 0) = 1/σx,x(B = 0) =
1

τ

(
∑

i

niq
2
i

m∗
i

)−1

. (2.60)

• In a magnetic field B = Bzez, the conductivity tensor (cf. Eq. 2.40 in the case of
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a single-electron-band) becomes:

σ̂(B) =
∑

i

σ̂i(B) =
∑

i

σi
x,x(B = 0)F̂(ωi

cτ), (2.61)

where σ̂i is the conductivity tensor of band i and F̂ is a tensor function. With

σi
x,x(B = 0) = τniq

2
i /m

∗
i (cf. Eq. 2.34) and ωi

c = qiB/m∗
i (cf. Eq. 2.37) follows:

σ̂(B) = τ
∑

i

q2i ni

m∗
i

F̂(
q2i
m∗

i

τB) = τ
∑

i

F̂i(τB), (2.62)

where the tensor function F̂i is defined by F̂i(τB) =
q2
i
ni

m∗

i
F̂(

q2
i

m∗

i
τB). By introducing

the tensor function F̂′(x) =
∑
i
F̂i(x) follows:

σ̂(B) = τ F̂′(τB), (2.63)

and the resistivity tensor is given by:

ρ̂(B) = σ̂
−1(B) =

1

τ
F̂′−1(τB). (2.64)

From Equation (2.60) we finally extract the Kohler’s rule:

ρ̂(B) = ρx,x(B = 0)F̂K

[
B

ρx,x(B = 0)

]
, (2.65)

where F̂K( B
ρx,x(B=0)) =

1
τρx,x(B=0) F̂

′−1 (τB).

• In the case of a compensated and isotrope two-band model with a unique relaxation

time we can generalize Equation (2.57) to the case of a temperature-dependent

resistivity:

∆ρx,x(B, T )

ρx,x(B = 0, T )
= µe(T )µh(T )B

2 =
τ(T )2e2

m∗
em

∗
h

B2 = c

[
B

ρx,x(B = 0, T )

]2
, (2.66)

where c = [e2m∗
em

∗
h(ne/m

∗
e + nh/m

∗
h)

2]−1 is independent from the sample quality

and the temperature. We will see in Chapter 7, that, for H ∥ c, the low-field mag-

netoresistivity of URu2Si2 exhibits a B2-behavior and the approximated formula:

∆ρx,x(B, T )

ρx,x(B = 0, T )
= µ(T )2B2, (2.67)

will be used to extract the temperature- and sample-dependence of an ”average”

mobility µ = eτ/m∗ over all bands.
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2.5 Quantum oscillations

Quantum oscillations of macroscopic quantities of materials are due to the

quantization of the cyclotron movement of electrons in magnetic fields. First

observed in the magnetization of bismuth by de Haas and van Alphen

[de Haas and van Alphen 1930] and in its magnetoresistivity by Shubnikov and de

Haas [Shubnikov and de Haas 1930], quantum oscillations have been predicted the-

oretically almost at the same time by Landau [Landau 1930]. Lifshitz and Kosevich

[Lifshitz and Kosevich 1955] developed an exact theory of the de Haas-van Alphen

effect. Quantum oscillations are powerful tool to probe the electronic properties of

metals, as the Fermi surfaces, and their effective masses and Dingle temperatures.

2.5.1 Quantization of the electron motion in magnetic fields

The movement of an electron in a strong magnetic field is quantized in the manner

that the surface, which is enclosed by the electron’s orbit in the reciprocal space, can

only have discrete values distant 2πeB/~ and the electron’s energy can only have

discrete values distant ~ωc. Quantization effects in magnetic fields are observed

within the condition [Shoenberg 1984]:

~ωc >> kBT. (2.68)

Otherwise thermal fluctuations cover quantization effects. The cyclotron frequency

ωc is given by (Eq. 2.37):

ωc =
eB

m∗
c

, (2.69)

where m∗
c is the cyclotron effective mass of the quasi-particles (cf. Eq. 2.37). The

cyclotron effective mass is given by:

m∗
c =

~
2

2π

(
∂Sk

∂ϵ

)

k

, (2.70)

where Sk is the area enclosed by the orbital trajectory in the k -space. In a semi-

classical approach, the Bohr-Sommerfeld condition for the quantization of a periodic

motion is:

∮
p · r = 2π~(n+ γ), (2.71)

where p is the impulsion, n = 0, 1,−1, 2,−2, ..., and γ is a phase constant (γ = 1/2

for electrons). The magnetic flux trough a surface Sr enclosed by a conductor loop

in the real space is Φ = SrB, where B is the magnetic field at the center of the loop
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generated by a current I through the conductor. The magnetic flux Φ through the

surface Sr enclosed by the particle’s trajectory in the real space is given by:

∮
p · r = eΦ (2.72)

⇔ Φ =
2π~

e
(n+ γ). (2.73)

Thus, the magnetic flux Φ through Sr is quantized in terms of universal quanta

of flux 2π~/e. With Φ = SrB follows from Equation(2.73) the Onsager condition

[Onsager 1952] of the quantization of the surface Sn
k enclosed by the particle’s tra-

jectory in k -space:

Sn
k =

2πeB

~
(n+ γ) (2.74)

The Hamiltonian of an electron in a magnetic field, without considering the Zeeman

energy, is given by:

H =
1

2m∗
c

(p+ eA)2, (2.75)

where A is the vector potential of the magnetic field: B = r⃗otA. Solving the

Schrödinger’s equation leads to the Landau quantization in Landau levels of energies:

ϵn = (n+
1

2
)~ωc +

(~kz)
2

2m∗
c

. (2.76)

The permitted states lie on coaxial tubes in the k -space, called Landau tubes, whose

cross-sections Sn
k perpendicular to B satisfy the Onsager condition (2.74). At zero

temperature, only the states with an energy below the Fermi energy ϵF are occupied

[see Fig. 2.6]. The number of occupied states on a Landau level decreases with

increasing magnetic field and vanishes infinitely fast when the cross-section of this

Landau tube approaches the extremal cross-section of the Fermi surface.

The Landau levels cross subsequently the Fermi surface with the periodicity given

by:

Tqo = ∆(1/B) =
2πe

~Sext
, (2.77)

where Sext is the extremal cross-section of the Fermi surface perpendicular to the

magnetic field. The density of states D(ϵ) of free electrons in a magnetic field is

given by:
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2.5 Quantum oscillations

Figure 2.6: Scheme of Landau tubes in a magnetic field. The broken line indicates a
spherical Fermi surface. At zero-temperature the occupied states lie within
the Fermi surface. Figure taken from [Shoenberg 1984].

D(ϵ) =
V ωc~

4π2
(
2m∗

c

~
)3/2

∞∑

n=0

[
ϵ− ~ωc(n+

1

2
)

]1/2
, (2.78)

and the density of states at the Fermi level D(ϵF ) diverges when a Landau level

crosses the Fermi surface, which results in a periodic variation of the free energy of

the electronic system. This induces oscillatory modulations in the field-dependence

of the macroscopic properties depending on D(ϵF ), such as the magnetization, the

resistivity, the heat capacity, and the ultrasonic velocity. From Equation (2.77), we

obtain the relation between the extremal cross-section Sext of the Fermi surface and

the oscillation frequency F = 1/Tqo:

Sext =
2πe

~Tqo
= 2πeF/~. (2.79)

Quantum oscillations composed of several frequencies can result from multi-band

structures. Also the warping of a Fermi surface sheet, with two or more extremal

cross-sections perpendicular to the magnetic field, can lead to several frequencies.

For example, Figure 2.7(a) shows the high-field quantum oscillations in the magne-

tization of the organic compound θ-(ET)4ZnBr4(C6H4Cl2) and Figure 2.7(b) shows

the resulting Fourier spectra, where the frequency peaks correspond to the Fermi

surface extremal cross-sections and to their harmonics and linear combinations

[Béard 2012]. In a semiclassical picture, the pth harmonic can be seen as the re-

sult of an electron making p turns in its Fermi surface orbit.
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Figure 2.7: (a) De Haas-van Alphen effect in the magnetization of θ-(ET)4ZnBr4(C6H4Cl2)
measured with the magnetic torque technique. (b) Resulting Fourier spectrum
indicating the two fundamental frequency peaks from the Fermi surface sheets
α and β and peaks from their harmonics and linear combinations. Data pub-
lished in [Béard 2012].

2.5.2 The Lifshitz-Kosevich description of the de Haas-van Alphen

effect

The oscillatory variation of the Gibbs thermodynamic potential by a magnetic field

induces quantum oscillations in the magnetization of the material, which is called

the de Haas-van Alphen effect. An exact description of the de Haas-van Alphen

effect has been developed by Lifshitz and Kosevich ([Lifshitz and Kosevich 1955], see

[Shoenberg 1984] for a detailed review of the theory). In this model, the oscillating

part of the magnetization M̃ as function of the magnetic field B and the temperature

T is given by the magnetic field derivation of the oscillatory part Ω̃ of the Gibbs

thermodynamic potential:

M̃(B, T ) =
dΩ̃(B, T )

dB
=
∑

i

∑

p

1

p3/2
Ai,p(B, T ) sin

(
2πpFi

B
+ ϕi

)
, (2.80)

whereAi,p(B, T ) ∝ B1/2

∣∣∣∣
∂2Si

ext

∂k2

∣∣∣∣
−1/2

Ri
T (p,B, T )Ri

D(p,B)Ri
S(p). (2.81)

∑
i

is the sum over all extremal Fermi-surface cross-sections Si
ext perpendicular to

B, Fi is the corresponding quantum oscillation frequency (see Eq. 2.79), and ϕi a

phase constant.
∑
p

is the sum over all harmonics p and Ri
T (p), R

i
D(p), and Ri

S(p)

are damping factors due to finite temperature, electron-impurity scattering, and

Zeeman splitting, respectively.∣∣∣∂
2Si

ext

∂k2

∣∣∣ indicates the curvature of the Fermi surface in the B-direction at its extremal

cross-section Si
ext.

• The damping factor RT , which is due to the smearing out of the Fermi-Dirac

distribution at finite temperatures, is given by:
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2.5 Quantum oscillations

Ri
T (p,B, T ) =

2π2pkBT (~ω
i
c)

−1

sinh(2π2pkBT (~ωi
c)

−1)
=

αpm∗i
c T/B

sinh(αpm∗i
c T/B)

, (2.82)

where α = 2π2kB/e~. TheRT -damping allows to extract the effective cyclotron mass

m∗i
c of the Fermi surface branch i. To extract m∗i

c from the quantum oscillations in

the field range [B1, B2], one plots the amplitude Ap,i, obtained by a spectral analysis

of the oscillations in the range [B1, B2], versus the temperature T and applies a fit

with the function:

Ai,p(Beff , T ) = A0(Beff )
T/Beff

sinh(αpm∗i
c T/Beff )

, (2.83)

where Beff = 2/(1/B1 + 1/B2) is the effective magnetic field and A0(Beff ) is a

fitting parameter.

• The RD-damping factor is related to the broadening of the Landau levels due to

the finite life time of the electron excitations. The life time is equivalent to the

relaxation time τ , which is finite due to electron-impurity scattering in a real metal.

In a perfect crystal the Landau levels would be infinitely sharp. The finite life time

in real metals broadens the Landau levels according to Heisenberg’s uncertainty

principle, resulting in the damping factor:

Ri
D(p,B) = exp

(
− πp

ωcτ i

)
= exp

(
−αpm∗i

c T
i
D

B

)
, (2.84)

where TD = ~/2πkBτ is the Dingle temperature. Knowing m∗
c one can extract the

relaxation time τ and the Dingle temperature TD by plotting Ai,p versus B at a

given temperature T , and fitting it with the function:

Ai,p(B) = A′
0 exp

(
−αpm∗i

c T
i
D

B

)
TB−1/2

sinh(αpm∗i
c T/B)

, (2.85)

where A′
0 is a fitting parameter. Experimentally, one plotts Ai,p obtained by the

analysis of the oscillations over small field windows versus Beff .

• The third damping factor RS is due to the Zeeman spin splitting of a Landau level

in two sub-bands with the energy difference ∆ϵ = ge~B/2m0, where g is the Landé

factor:

Ri
S(p) = cos

(
πpgm∗i

c

2m0

)
. (2.86)

Usually, the effective mass and the Dingle temperature are extracted from the quan-

tum oscillation data via the RT and RD terms. The RS term is less frequently

considered. Zeeman spin splitting of branches with different effective masses have

been reported in some heavy-fermion systems (cf. [Aoki 2013]).
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2.5.3 The Shubnikov-de Haas effect

It is more difficult to obtain an exact formula for the quantum oscillations in the

magnetoresistivity, i.e., the Shubnikov-de Haas effect, than for that in the magne-

tization, i.e., the de Haas-van Alphen effect. Indeed, contrary to magnetization,

magnetoresistivity is not a thermodynamic quantity and is difficult to model, due

to the complex modifications of the scattering processes in an applied magnetic

field. An approximative description of the Shubnikov-de Haas effect in terms of the

Lifshitz-Kosevich theory can be obtained following Pippard’s idea, i.e, that the scat-

tering probability, which is the resistivity, is proportional to the number of states into

which the electrons can be scattered, and thus to the density of states at the Fermi

level D(ϵF ) [Pippard 1989]. The latter depends on the magnetic field-derivative of

the magnetization:

D̃(ϵF ) ∝
(
m∗

cB

Sext

)2 ∂M̃

∂B
, (2.87)

so that the oscillatory behavior of the Shubnikov-de Haas effect can be simply related

to that of the de Haas-van Alphen effect. From Pippard’s idea follows, for the

oscillating part of the conductivity σ̃:

σ̃

σ
≃ D̃

D
, (2.88)

where σ is the total conductivity, D the total density of states, and D̃ the oscil-

lating part of the density of states. For an isotropic case and when the amplitude

of the Shubnikov-de Haas effect is small compared to the total resistivity, the rela-

tion between the oscillating conductivity σ̃ and the oscillating resistivity ρ̃ can be

approximated by:

σ̃

σ
≃ − ρ̃

ρ0
, (2.89)

where ρ0 = ρ(B) − ρ̃(B) is the field-dependent non-oscillating background of the

resistivity. Thus, within a good approximation, the amplitude Ai,p(B, T ) of the

Shubnikov-de Haas oscillations is given by:

Ai,p(B, T ) ∝ B1/2Ri
T (p,B, T )Ri

D(p,B)Ri
S(p), (2.90)

and m∗
c and TD can be extracted from the oscillations in the resistivity in a similar

manner as that described above for the oscillations in the magnetization. In the case

of an anisotropic band structure, one has to consider the conductivity and resistivity

tensors σ̂(B) and ρ̂(B) = σ̂
−1(B), respectively, but usually the approximation of

Equation 2.89 is sufficient for a consistent analysis.
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This chapter presents the experimental setups and procedures of the magnetization

and resistivity measurements in high magnetic fields (up to 80 T) and at low tem-

peratures (down to 100 mK). An introduction to the pulsed magnetic fields and a

presentation of the LNCMI pulsed-field facility and magnets are given in Section

3.1. Section 3.2 is an introduction to the cryogenics used at the LNCMI-T. The

measurements of magnetization and electric resistivity are presented in Sections 3.3

and 3.4, respectively. The characteristics of the samples studied here are presented

in Section 3.5. Sections 3.6 - 3.9 give further details on the experimental techniques

and problems encountered here.

3.1 Generation of pulsed magnetic fields

3.1.1 Introduction

The magnetic field B at position r generated by a current I in a conductor wire is

given by the Biot-Savart law:

B =
µ0I

4π

∫
dl× r

|r|2
, (3.1)

where µ0 is the vacuum permeability and dl the vector of an infinitesimal section

of the wire. The magnetic field generated inside a long, thin conducting coil, where

the length l is much greater than the diameter, can be considered as homogeneous

and is given by:

B = µ0NI/l, (3.2)

where N is the number of turns of the coil. The magnetic flux Φ through the coil is

given by:

Φ = SB = µ0NIS/l, (3.3)

where S is the cross-section of the coil and the inductance L of the coil is defined

as:
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L = NΦ/I = µ0N
2S/l. (3.4)

The Lorentz force FL on electrically charged particles moving in a magnetic field is

induced perpendicular to the field and to the velocity of the charges. The resulting

force on a conductor carring a current I in a magnetic field B is given by:

dFL = Idl×B, (3.5)

where dl is an infinitesimal section of the conductor. The Lorentz force induces a

magnetic pressure in an electromagnet and limits the maximum field that can be

generated in a magnet without damaging it.

The electromagnetic induction is the voltage induced in a conductor by a varying

external magnetic field. In a uniform magnetic field, the induction generated on a

conductor loop enclosing the surface S perpendicular to the field is given by:

Uind = −dΦ

dt
= −S

dB

dt
. (3.6)

To measure a magnetic field varying in time, we can use a pickup coil, generally

made of a few turns of copper wire exposed to the field, and whose voltage is directly

proportional to dΦ/dt (cf. Sect. 3.6).

Heating by the Joule effect in a resistive conductor is proportional to I2. To generate

the highest non-destructive magnetic fields, a strong current is sent through the

magnet and is stopped before the magnet gets overheated. Pulsed magnetic fields

allow in a viable, reproducible, and non-destructive manner to reach peak values

of up to 80 T at the LNCMI-T (world-record: 100 T, NHMFL, USA). The pulses

have a duration of several tens to hundreds of milliseconds and are generated by

electric currents of several thousand amperes. Usually, the time variation of the

magnetic field during such pulses is much slower than the characteristic timescales

of the studied physical phenomena.

3.1.2 The LNCMI-T pulsed-field facility

Due to the high electric energy needed to be delivered during a very short duration

in the pulsed magnets, the best technical solution is to store it using a capacitor

bank. The capacitor banks of the main pulsed-field generator of the LNCMI-T [see

Fig. 3.2(d)] have a total capacity of 48 mF and can charge a maximal voltage

of 24 kV. The generator can store up to 14 MJ of electric energy and is powered

by the local electricity supplier EDF. The generator is located in the basement of

the LNCMI-T and controlled by an programmable logic controller (PLC), which

is placed in the center of the experiment hall. For the 80-T dual-coil magnet (see
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3.1 Generation of pulsed magnetic fields

Figure 3.1: Scheme of a box with magnet, cryostats, instrumentation, generator, and ex-
perimentalist.

Sect. 3.1.3), which is made of an outer 30 T magnet and an inner 50 T magnet,

a transportable 1-MJ-generator was used to provide current to the inner coil in

addition of the 14-MJ-generator, which provided current to the external coil. The

main generator circuit is shown in Figure 3.2(c). Computer-controlled thyristors

are used to trigger the magnet pulses. The duration of the magnet pulse can be

approximated as the period of the L-C-oscillation T = 2π
√
LC, where L is the

inductance of the magnet and C the capacity the capacitor bank. The duration of

the rise of a pulse can be approximated by T/4 = 0.5π
√
LC and the field decreases

exponentially with the time constant τ = L/R, where R is the serial resistance of

the crow-bar diodes and the magnet coil. At the LNCMI-T, experiments with non-

destructive pulsed magnetic fields are performed in armored boxes. The setup inside

a box consists of a magnet, high-voltage (24 kV) and high-current (65 kA) cables,

cryogenics, an un-interruptible power supply (UPS), a measurement probe with the

sample(s), and a rack containing the electric apparatus needed for the measurement.

Figure 3.1 shows a scheme of such a box. The instruments inside the box and the

generator in the basement are controlled via optical fibers from the experiment hall,

to avoid electric contact between the inside and the outside of the box. During a

measurement in a pulsed field, the box and the generator are galvanically isolated

and the box is closed and interlocked, because of the high energies (∼ 1 − 10 MJ)

and voltages (∼ 10 kV) used for the field generation.
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Figure 3.2: (a) 80 T magnet coil. (b) Nitrogen cryostat containing the magnet coil. (c)
Electric circuit of the generator. (d) View on the capacitor bank.

3.1.3 The LNCMI-T pulsed-field magnets

The magnetization and the electric transport experiments of this work have been

performed in magnetic fields up to 60 T and 80 T, respectively, generated by

non-destructive pulsed field magnets of the Laboratoire National des Champs

Magnétiques Intenses of Toulouse. Table 3.1 summarizes the characteristics of the

magnets used here and Figure 3.3(a) shows their time profiles. The magnets are

resistive conductor coils, which are immersed in a liquid Nitrogen bath in an outer

cryostat [see Fig. 3.2(b)]. The magnetic pressure in the magnet during a pulse is

compensated by the mechanical resistance of the coil and its reinforcement. A shot

at the maximum field increases the coil temperature from 77 K (boiling point of liq-

uid nitrogen) to ∼ 300 K due to the Joule effect. Temperatures higher than 300 K

would strongly reduce the mechanical resistance of the materials and increase the

risk of damages. With the temperature, the electrical resistance of the coil is also

increased. The nitrogen bath cools down the magnet after a pulse, to reach again

the temperature and resistance required for a new pulse. To increase the frequency

of pulsed field shots, the cooling of the magnet is generally accelerated by pumping

on the nitrogen bath (duration of cooling ∼ 1 h).

For the magnetization experiments, we used a (60-T, 12-mm)-coil of a copper-

stainless steel alloy with a dense packing confined in a steel mantle. Here, the
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3.2 Cryogenics

Energy
(MJ)

Max field
(T)

inner bore
diameter
(mm)

diameter in-
side cryostat
(mm)

coil type total pulse dura-
tion [rise dura-
tion] (ms)

1.25 60 12 7 single 150 [25]

5 60 28 19/17
(4He/dilution)

single 300 [55]

6 70 12 7 single 200 [32]

12 (coilex) /
1 (coilin)

80 12 7 dual coil 400 [90] (coilex) /
40 [16] coilin

Table 3.1: Characteristics of the magnets used here.

0.0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

5 MJ
28 mm

1.25 MJ
12 mm

6 MJ
12 mm

 

 

m
ag

ne
tic

 fi
el

d 
(T

)

time (s)

(a)(12+1) MJ
12 mm

0 50 100 150 200

-20

0

20

40

60

-1

0

1

2

(b)

m
ag

ne
tic

 fi
el

d 
(T

)

time (ms)

1.25 MJ
12 mm

150 ms pulse duration U
pickup  (V

)

60 T coil

Figure 3.3: (a) Magnetic field versus time from the non-destructive pulsed field magnets
of the LNCMI-T used here. (b) Magnetic field H and pickup voltage Upickup

versus time during a pulse from a 60 T, 12-mm inner bore magnet.

conductor itself provides a large part of the mechanical resistance. This construc-

tion results in a very low noise level in the magnetization measurements. The 60-,

70-, and 80-T magnets used for the resistivity experiments are coils of copper alloys,

as Cu+Ag or Cu+Al2O3 (Glydcop), and are reinforced by layers of Zylon fiber,

which are wound around every layer of copper wire. The 80-T magnet [see Fig.

3.2(a)] used for this work is a dual coil, made of an external coil generating a long

background pulse up to 33 T and an inner coil producing a short pulse to reach a

maximum of 81 T. This system allows a duration of 10.2 ms above 70 T, which is

unique in the world and permits to investigate high-frequency quantum oscillations

up to 80 T [Béard 2012].

3.2 Cryogenics

4He fridges and a 3He-4He-dilution fridge, specially developed for the pulsed-field

magnets of the LNCMI-T, have been used in this work to reach temperatures down

to 1.4 K and 100 mK, in magnetic fields up to 80 T and 60 T, respectively. In this
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Figure 3.4: Technical drawings of (a) a helium cryostat, and (b) the ensemble of a nitrogen
cryostat, a helium cryostat and a pulsed-field magnet [Nardone private com.].
The needle valve opens a capillary, which connects the upper and the lower
reservoirs.

section, I present these two kinds of cryostats.

3.2.1 4He-cryostat

4He fridges are provided for all types of non-destructive pulsed-field magnets of

the LNCMI-T and cover temperatures from 1.4 to 300 K. Figure 3.4(a) shows a

technical drawing of the nitrogen cryostat, magnet coil, and 4He cryostat. The

magnet and the helium cryostat are plunged in the nitrogen bath and the tail of the

helium cryostat containing the sample chamber fits into the bore of the magnet. The

temperature of the sample chamber is generally measured by a Cernox thermometer

placed on the probe close to the samples, and is controlled by a Lakeshore 340. For

measurements at temperatures above 4.2 K, the samples are in a 4He atmosphere, the

upper reservoir is filled with liquid helium (T = 4.2 K), and the needle valve is closed.

The temperature T of the samples is then controlled by combining the cooling power

provided by the upper reservoir and the heating power of a manganin resistance
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Figure 3.5: Phase diagram of the 3He-4He mixture, x is the 3He concentration in %.

winded around the sample chamber of the cryostat. To reach T = 4.2 K, the lower

reservoir is filled with liquid helium by opening the needle valve. Temperatures

below 4.2 K and down to 1.4 K can be reached by pumping on the helium bath in

the lower reservoir.

3.2.2 3He-4He-dilution cryostat

The LNCMI-T is equipped with a home-made 3He-4He-dilution fridge, which has a

non-metallic mixing chamber and can be used in a 60-T 28-mm bore pulsed magnet.

The samples are immersed in the 3He-4He mixture and can be cooled down to

100 mK. The dilution technique is based on the cooling power generated by the heat

absorption of the dilution of pure 3He into a 3He/4He mixture.

Starting from an initial diluted concentration x ∼ 25% of 3He and temperature

T > 1 K in the phase diagram of the 3He-4He mixture [see Fig 3.5], lowering the

temperature leads to an abrupt phase separation at T ∼ 650 mK, when reaching

the boundary line of the forbidden region, inducing the formation of a concentrated

phase (xc ∼ 85%) and a diluted phase (xc ∼ 25%). Further decreasing of the

temperature reduces the 3He concentration in the diluted phase and increases the
3He concentration in the concentrated phase. Below T ∼ 100 mK, the concentrated

phase is almost a pure 3He-phase and the diluted phase has an almost constant
3He-concentration (x ∼ 0.06) [Pobell 1992].

Figure 3.6(a) shows a technical drawing of the dilution fridge of the LNCMI-T and

Figure 3.6(b) shows a scheme of its helium cycle [Nardone private com.]. A pump

connected to the still separates the 3He from the diluted phase, due to the higher
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Figure 3.6: (a) Technical drawing of the LNCMI-T dilution cryostat and (b) scheme of the
3He-cycle [Nardone private com.].

saturation vapor pressure of 3He compared to that of 4He. A compressor injects the
3He gas back to the cryostat at a pressure of a few hundred millibars. The gas passes

through three counterflow-heat-exchangers and two impedances before condensing

in the mixing chamber, the region at the lowest temperature. The samples are in

the mixing chamber, where the concentrated and the dilute phase are in equilibrium

and separated by a phase boundary. In the mixing chamber, 3He atoms move from

the concentrated phase to the diluted phase. Since the enthalpy of the 3He in the

concentrated phase is smaller than that in the diluted phase, heat is absorbed at the

phase boundary in the mixing chamber, allowing the chamber to reach temperatures

below 100 mK [Pobell 1992]. A strong difference between the dilution cryostat

developed for the pulsed magnetic fields at the LNCMI-T and most standard dilution

cryostats is the absence of the 1-K-bath, which is normally used to liquefy the helium

gas. Here, the instreaming helium gas is precooled and liquefied by a counterflow-

heat-exchanger, which makes use of the enthalpy of the cold 3He-gas pumped out of

the still, and by subsequent Joule-Thomson expansion [Uhlig 1987].
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Figure 3.7: (a) Scheme and (b) electric circuit of the compensated-coils probe of the
LNCMI-T.

3.3 Magnetization

The magnetization of URu2Si2 and U(Ru0.96Rh0.04)2Si2 single-crystalline samples

have been measured in pulsed fields using the compensated-coils technique. Ad-

ditional magnetic torque experiments have been performed on a URu2Si2 single

crystal using a piezo-resistive micro-cantilever (set-up of David Vignolles). The

compensated-coils probe used for this work has been built by Geraldine Ballon. A

detailed report about this probe can be found in [Höfner 2010]. The compensated-

coils technique consists of the measurement of a voltage UM , which is proportional

to the time derivative of the magnetization dM/dt of the sample. Figure 3.7(a)

shows a scheme of the magnetization probe, which consists of two concentric pickup

coils 1 and 2 having their axes parallel to the external magnetic field H. The sample

is placed at the center of the coils. The voltages U1 and U2 induced in the internal

and external coils 1 and 2, respectively, are given by:

U1 = −πµ0N1R
2
1

d(H)

dt
+

dΦ1

dt
, (3.7)

and U2 = πµ0N2R
2
2

d(H)

dt
+

dΦ2

dt
, (3.8)

where, for i = 1, 2, Ni is the number of windings, Ri the radius of the coil i, and

Φi is the magnetic flux through the coil i generated by the magnetization of the

sample. Within the condition:
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N1R
2
1 = N2R

2
2, (3.9)

the total voltage induced in the probe is:

Utot = U1 + U2 = −dΦ1

dt
+

dΦ2

dt
= −dΦtot

dt
, (3.10)

where Φtot = Φ1−Φ2 is the total flux generated by the magnetization of the sample

seen by the coils 1 and 2. Figure 3.7(b) shows a scheme of the electric circuit of the

magnetization probe. Due to a variation of the coils’ resistance and dimensions (via

thermal expansion) the compensation is not stable with the temperature. To regu-

late the compensation at a given temperature, the effective inductance of the circuit

can be changed by a third coil connected in parallel to a potentiometer. A perfect

compensation is not possible, thus the magnetic field always generates a parasitic

voltage in the compensated coils. To eliminate this, two measurements are done for

every magnetization curve: one with the sample at the ”measurement” position and

one with the sample at the ”zero” position, i.e., outside of the compensated coils. At

the ”zero” position, only the background voltage U z
tot of the external magnetic field

is measured. The voltage UM due to the magnetization of the sample only is the

difference between the voltages Um
tot and U z

tot from the ”measurement” and ”zero”

positions, respectively: UM = Um
tot − U z

tot. The relation between the magnetization

M and the voltage UM is given by:

UM =
1

cM

dM

dt
V (3.11)

⇔ M =

∫
cMUM/V dt, (3.12)

where V is the volume of the sample and cM is a calibration factor, which depends

on the geometry and position of the sample. Figure 3.8(a) shows a plot of U z
tot

and Um
tot versus time for measurements on URu2Si2 in a magnetic field H ∥ c at

T = 1.5 K and Figure 3.8(b) shows the resulting magnetization versus the magnetic

field. In principle, knowing exactly the geometries of the compensated coils and the

sample, one can calculate the calibration factor cM (cf. [Höfner 2010]). However,

the exact geometries can hardly be known (e.g. irregular shape of the sample) and a

much easier way to determine cM is to rescale the measured signals on existing low-

field absolute magnetization data (see Sect. 3.5). For a measurement, the sample

is slid into a PTFE-tube and fixed with vacuum grease. The tube is stuck on a

long glass-fibre rod, which allows to bring the sample by top-loading directly from

the room atmosphere in the center of the compensated coils in the probe chamber
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magnetic field H ∥ c and magnetic field µ0H (black) versus time. (b) Resulting
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of the 4He-cryostat. The rod also serves to shift the sample between the ”zero”

and ”measurement” positions. Holes in the PTFE-tube allow an exchange of gas

for a better thermalization of the sample. Since the voltage UM induced in the

magnetization probe is proportional to dM/dt = d(χH)/dt, UM is enhanced when

the time variation dH/dt of the external magnetic field is higher. For this reason,

the noise level of the magnetization data is lower during the rise than during the

fall of the pulsed field, the fall being slower than the rise. I will present mainly the

data from the rise of the pulsed field in the following.

3.4 Electric transport

Resistivity measurements have been carried out in pulsed magnetic fields within the

four-point technique. Due to the short duration of the magnet pulses, the field-

dependent resistivity was measured using the lock-in technique at high excitation

frequencies of about 20 - 70 kHz. At these high frequencies, very good electric con-

tacts are essential to avoid signals from parasitic capacities. The excitation currents

were provided by a standard lock-in amplifier (SR830 DSP, Stanford Research Sys-

tems). The voltage signals of excitation current and sample resistance are measured

using fast acquisition cards (PXI 24-bit Digitalizer, National Instruments) at a rate

of 500 kHz and the data were processed with two digital lock-in amplifiers developed

in-house (by E. Haanappel and X. Fabrèges). The excitation currents were limited

to 10 mA and 0.5 mA for the experiments in the 4He fridge and in the dilution fridge,

respectively. The resistivity signal measured during the fall of the pulsed field has

a lower noise level than from its rise, which is due to longer duration of the fall. In

this work, I will present mainly the resistivity data from the fall of the pulsed fields.
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Figure 3.9: Field-dependence of the parameter µ0H
2/ |dH/dt| (full lines, red: rise of the

field, blue: fall of the field) for field pulses generated by magnets of the LNCMI-
T. The horizontal dotted lines indicates the values of nFτupc = 0.12 T.s
and nFτdown

c = 0.36 T.s with τupc = 10 µs and τdown
c = 30 µs, respec-

tively, with n = 8 and F = 1500 T. The vertical arrows indicate the fields
µ0H

up
c and µ0H

down
c above which the condition µ0H

2/ |dH/dt| > nFτupc or
µ0H

2/ |dH/dt| > nFτdown
c , respectively, is fulfilled.

The magnetoresistivity of three URu2Si2 samples have been studied here: samples

#1 and #2 with U, I ∥ a and sample #3 with U, I ∥ c, where U and I are the

voltage and current, respectively. The transverse configurations (H ∥ c; I,U ⊥ H)

and (H ∥ a; I,U ⊥ H) for samples #1 and #2 and the longitudinal configuration

(H ∥ c; U, I ∥ H) for sample #3 have been investigated using an electric transport

probe with a static sample support. Configurations with the magnetic field applied

along directions in the main crystal planes (a,c) and (a,a) have been investigated

using a rotation transport probe. Additional resistivity measurements have been

carried out at the Institut Nanosciences et Cryogénie of the CEA-Grenoble on sample

#2 at subkelvin temperatures in transverse configurations in steady magnetic fields

µ0H up to 13 T rotating in the (a,c)-plane, in collaboration with Georg Knebel,

Alexandre Pourret, and Dai Aoki, using a conventional 3He-4He-dilution fridge in a

superconductive magnet.
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To achieve a suitable signal-over-noise ratio, the time constant τc of the low-band-

pass filter of the digital lock-in has to be high-enough. On the other hand, τc

has to be small compared to the timescales of the measured quantities. In the

present work, a time constant τc = 150 µs has been used as a good compromise

to observe anomalies resulting from field-induced transitions and crossovers in the

magnetoresistivity. However, a smaller time constant is necessary for the analysis of

quantum oscillations [Béard 2012, Audouard private com.]: knowing that quantum

oscillations are periodic in 1/(µ0H) with a given frequency F , the time δt of one

period can be approximated by δt = µ0H
2/(F |dH/dt|). Empirically, the condition

τc < δt/n with n = 8, which is equivalent to µ0H
2/ |dH/dt| > nFτc, assures that

the amplitudes of the oscillations are not damped. For the analysis of quantum

oscillations, I have used time constants τupc = 10 µs and τdown
c = 30 µs for the rise

and fall of the pulsed field, respectively. Figure 3.9 shows the field-dependence of

the parameter µ0H
2/ |dH/dt| (full lines) for the magnetic field pulses generated by

different magnets of the LNCMI-T (cf. Table 3.1 and Fig. 3.3). The horizontal

dotted lines indicates the values of nFτupc = 0.12 T.s and nFτdown
c = 0.36 T.s

with τupc = 10 µs and τdown
c = 30 µs, respectively, with n = 8 and F = 1500 T

(the highest observed frequency, see Chapter 9). The vertical arrows indicate the

fields µ0H
up
c and µ0H

down
c above which the condition µ0H

2/ |dH/dt| > nFτupc or

µ0H
2/ |dH/dt| > nFτdown

c , respectively, is fulfilled. Above µ0H
up
c and µ0H

down
c , the

signal from the quantum oscillation frequencies up to 1500 T is not smeared out by

the lock-in analysis.

3.5 Samples and their characterization

The URu2Si2 and U(Ru0.96Rh0.04)2Si2 single crystals studied here have been

grown by the Czochralski method in a tetra-arc furnace by Dai Aoki at the

Institut Nanosciences et Cryogénie of the CEA-Grenoble. The magnetization

of a block-shaped URu2Si2 sample (mass m = 40.5 mg) and a block-shaped

U(Ru0.96Rh0.04)2Si2 sample (mass m = 53.7 mg) was measured within the compen-

sated coils technique (cf. Sect. 3.3) and the magnetization of a very small URu2Si2

sample (50×100×20 µm3) was measured within the magnetic torque technique. The

resistivity of three URu2Si2 samples with irregular shapes (∼ 0.5× 0.1× 0.03 mm3)

has been measured with different transport probes (cf. Sect. 3.4).

3.5.1 Magnetic susceptibility

To obtain the calibration factor cM from our magnetization experiments in pulsed

fields (cf. Sect. 3.3), we rescaled the slope of ourM versusH data obtained in pulsed
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tures. The slope of M(H) is proportional to the susceptibility. (b) Zero-field
susceptibility χ in units emu/mol from [Sugiyama 1999] and that resulting
from the slope of the magnetization from the 3-T pulses rescaled by cM .

fields up to 3 T at different temperatures [see Fig. 3.10(a)] on the susceptibility

χ = M/H measured in steady fields. For URu2Si2, a comparison of χ measured

at µ0H = 2 T in [Sugiyama 1999] with the slope of the magnetization is given in

Figure 3.10(b). For the U(Ru0.96Rh0.04)2Si2 sample, we rescaled our data using a

measurement of χ done at the CEA-Grenoble by Dai Aoki at µ0H = 1 T.

3.5.2 Resistivity

The resistivity ρ of the samples studied here was measured as function of the tem-

perature T at zero field using a standard lock-in amplifier (SR830 DSP, Stanford

Research Systems) with excitation frequencies of ∼ 150 Hz and excitation currents

of 1 mA. In fact, the transport probe measures a voltage U proportional to the

resistivity ρ:

U = Ifgρ, (3.13)

where I is the excitation current and fg the geometric factor of the sample. The

samples studied here had irregular shapes, thus the geometric factor could not be

determined visually. To obtain fg, we rescaled the resistance R = U/I = fgρ of

our samples on the resistivity of samples, for which the geometric factor is known,

measured by Dai Aoki [see Fig. 3.11(a)]. Since the high-temperature resistivity is

less sensitive to the sample qualities, we rescaled the data using the maximum of

resistivity at around 70 K.

In simple metals, e.g. in the absence of magnetic impurities, the electric transport

is perturbed only by the scattering off on lattice impurities and defects and

by the electron-phonon scattering. At ambient temperature T ∼ 300 K, the
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ρ(T = 2 K)
(µΩ.cm)

ρ0, from
T 1.5-fit
(µΩ.cm)

RRR =
ρ300 K/ρ2 K

RRR∗ =
ρ300 K/ρn0

sample #1 U, I ∥ a 2.81 1.77 90 160

sample #2 U, I ∥ a 1.29 0.348 225 800

sample #3 U, I ∥ c 2.18 - 85 -

Table 3.2: Zero-field resistivity characteristics of samples #1, #2 and #3.

scattering mechanism is dominated by electron-phonon scattering and almost

independent from the sample quality. The residual resistivity ρ0 = ρ(T → 0)

is due to the scattering off on lattice impurities and defects only. Thus, the

residual resistivity ratio RRR = ρ(300 K)/ρ0 is a quantitative indicator of

the sample quality. However, URu2Si2 samples are superconducting (ρ = 0)

below TSC ∼ 1.5 K and it is common to define the RRR as ρ(300K)/ρ(2K)

(cf. [Matsuda 2011]). Samples #1 and #2 have residual resistivity ratios of

RRR = ρx,x(300 K)/ρx,x(2 K) = 90 and 225, respectively, while sample #3 has a

residual resistivity ratio of RRR = ρz,z(300 K)/ρz,z(2 K) = 85.

To obtain finite values of the resistivity for T < TSC , that we need for the analysis

of the transverse magnetoresistivity (cf. Chapter 7), we extrapolated the resistivity

in the normal non-superconducting state to temperatures below TSC . I will note

ρnx,x the resistivity of the normal non-superconducting state (virtual normal state at

temperatures below TSC) and ρn0 = ρnx,x(T → 0). A detailed study by Matsuda et

al. [Matsuda 2011] pointed out the difficulty to find a consistent model for the low-

temperature resistivity of URu2Si2 because of its deviation from the T 2-dependence
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of a Fermi liquid. For example, the extrapolation of ρx,x(T ) of our sample #2 with

a T 2-fit gives a non-physical negative value of ρ0. As proposed by Matsuda et al.

[Matsuda 2011], we used the function ρ(T ) = ρn0 + aT 1.5, where a is a constant

parameter, to fit the resistivity of our samples between T = 2 K and 6 K [see

Fig. 3.11(b)]. From this fit, we extrapolated ρnx,x(T → 0) in the normal non-

superconducting state, and we estimated the huge residual resistivity ratios RRR∗ =

ρx,x(300 K)/ρnx,x(T → 0) of 160 and 800 for samples #1 and #2, respectively. This

underlines the exceptional quality of our samples, in particular sample #2. Table

3.2 summarizes the characteristics of our transport samples.

3.6 Gauging of the pickup

The magnetic field H generated by a pulse can be measured by a pickup coil, made

of a few tenths of turns of 50 µm copper wire. A pickup coil measures a voltage:

Upickup = −dΦ

dt
= −Spickup

d(µ0H)

dt
, (3.14)

where Spickup is the cross-section of the coil perpendicular to the magnetic field.

In the case of the magnetization probe, the pickup is exactly at the field center,

whereas the pickup of a transport probe has a distance d to the field center/sample.

Due to the profile of the magnetic field in z-direction, the pickup of the transport

probes is exposed to lower fields than the sample. To calculate the field at the sample

position from Upickup, an effective cross-section Seff
pickup is needed. The different types

of magnets used here have different field profiles [see Fig. 3.12]. Thus, Seff
pickup has

to be determined for each magnet type and each distance d between the pickup and

the sample. Seff
pickup of a 6-mm-diameter transport probe was first estimated in a

12-mm-bore 60-T magnet with d = 11.8 mm using a calibrated Hall probe. For the

experiments using the same probe in 70-T and 80-T magnets, we rescaled Seff
pickup

using the formula:

(
Seff
pickup

)
70/80−Tmagnet

=

(
Upickup

Umax

)

70/80−Tmagnet

·
(
Seff
pickup

Umax

Upickup

)

60−Tmagnet

,

(3.15)

where Umax and Upickup are the pickup voltage at the sample and pickup positions,

respectively, and were measured using a lockin amplifier (sending a voltage of 5 V

at a frequency of 111.62 Hz to the magnet). A priori, the pickup technique is not

adapted to measure the field of a dual coil, since it consists of an external coil

and an inner coil, with different axial field profiles. Since the axial field profiles of
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Figure 3.12: Field profiles in z-direction of the pulsed field magnets and corresponding
positions of the pickup and the sample: (a) 60-T 12-mm-bore magnet, (b)
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external and inner coil of the 80-T magnet used here are very similar, as shown in

Figure 3.12(d), we were able to define a unique effective cross-section Seff
pickup for the

ensemble.

3.7 Analysis of the Shubnikov-de Haas data

Shubnikov-de Haas oscillations have been observed in the magnetoresistivity ρx,x of

samples #1 and #2 and will be presented in Chapter 9. Here I present the procedure

to analyze these quantum oscillation data. A non-oscillating background ρBG, as

shown in Figure 3.13(a), was subtracted from the raw resistivity ρx,x to obtain a

purely oscillating signal ρoscx,x, as shown in Figure 3.13(b). Since the oscillations are

periodic in the inverse magnetic field, ρoscx,x versus 1/(µ0H) was considered [see Fig.

3.13(c)]. I performed Discrete Fourier Transformations (DFT), which provide the
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spectral amplitude A of the oscillations as function of the frequency F ([F ] = 1 T):

A(F ) =

∣∣∣∣
1

T
√
2π

∫ x2

x1

[exp(−i2πFx)y(x)w(x)] dx

∣∣∣∣ , (3.16)

where x = 1/(µ0H) is the inverse magnetic field, x1 = 1/(µ0H1) and x2 = 1/(µ0H2)

are the lower and the upper limits, respectively, of the field range over which the

data were analyzed, T = |x1 − x2|, y(x) is the oscillating signal, and w(x) is a

window function. When applying the DFT without a window function, which is

equivalent to the rectangular window [w(x) = 1, for x1 < x < x2, and w(x) = 0,

elsewhere], the discontinuities of y(x) at x1 and x2 induce strong parasitic peaks,

called side lobes. To reduce these side-lobe effects, the oscillating signal can be

multiplied by a smoothing-window function as the Blackman, Hamming, and Hann

window [Damelin and Miller 2012]. A disadvantage of smoothing functions is the

broadening of the frequency peaks. A good compromise between the peak width

and the reduction of the side-lobe effects is to use the cosine window (also called

Hann or Hanning window):

w(x) = 0.5[1− cos(2π(x− x1)/T )]. (3.17)

Figure 3.13 shows the Shubnikov-de Haas data measured on sample #2 in a steady

field up to 13 T with an angle of 15◦ between H and c and at T = 32 mK

(cf. Sect.9.1). Figure 3.13(d) shows the corresponding DFT extracted with the

rectangular- (red) and the cosine-window (blue) functions from the oscillating sig-

nal ρoscx,x versus 1/(µ0H) between µ0H = 6 T and 13 T. Using the DFT to analyze

the quantum oscillations, one has to respect the following constraints. The width of

the frequency peaks depends on the number of oscillation periods contained between

x1 and x2: the more periods are contained in [x1, x2], the sharper are the peaks in

the spectra. Empirically, a good analysis is obtained with at least seven periods.

The maximal detectable frequency is limited by the sampling rate ∆x, that is the

distance in x, here in 1/(µ0H), between two consecutive data points y(x). Empir-

ically, good results are obtained for F < 7/∆x. The minimal detectable frequency

is limited by the analyzed field range T : F >= [1/(µ0H2)− 1/(µ0H1)].

3.8 Sample thermalization in pulsed magnetic fields

A challenge of the measurements in pulsed magnetic fields is the thermalization of

the samples. A pulsed field tends to heat metallic parts of the setup or metallic

samples, as in the case of URu2Si2, due to eddy currents. Due to the non-metallic-

nature of the sample support, the temperature gradient between the sample and the
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Figure 3.13: (a) Magnetoresistivity ρx,x(H) of URu2Si2 sample #2 at T = 32 mK. The
resistivity is modulated by Shubnikov-de Haas oscillations. The red line repre-
sents a non-oscillating polynomial background. (b) Oscillating signal ρoscx,x(H)
extracted from the raw resistivity by subtracting a non-oscillating polynomial
background. (c) ρoscx,x versus 1/(µ0H). (d) Resulting Fourier spectra using the
rectangular (red) and the cosine (blue) window functions.

thermometer can be important in a pulsed-field setup.

The compensated-coils probe of our magnetization-setup is a massive structure

made of zircon and copper wire. It occupies most of the space available in the

cryostat, i.e, there is very little space between the wall of the cryostat and the

probe and between the PTFE-tube holding the sample and the inner diameter of

the probe. Hence, the helium gas responsible for the thermal exchange can not flow

easily. This resulted presumably in an important temperature gradient between

the sample and the thermometer during the magnetization measurements of our

URu2Si2 sample (see Sect. 5.4) and our U(Ru0.96Rh0.04)2Si2 sample (see Chapt. 6).

However, this was only observed for the high-pulsed-field magnetization, but not for

the low-field susceptibility measurements on the same samples [cf. Sect. samples

Fig. 3.10] or for the high-field magnetization measurements on other samples.
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Figure 3.14: Resistivity data from URu2Si2 samples #1 (left) and #2 (right) measured at
T = 100 mK with H ∥ c in a 60 T magnet using the dilution fridge. (a,b) ρx,x
versus µ0H. (c,d) Zoom on the superconducting critical field Hc2 in ρx,x(H).
Hc2 is defined at the middle of the resistivity step (see black lines) for the
rise (red) and fall (blue) of the pulsed field. (e,f) Phase diagram of Hc2 from
specific heat data (grey dots, [Aoki, private com.]), rising- (red triangles),
and falling-field (blue triangles) resistivity. (g,h) Shubnikov-de Haas spectra
in the field window 24.4 T < µ0H < 30.6 T from rising- (red triangles), and
falling-field (blue triangles).
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3.8 Sample thermalization in pulsed magnetic fields

In the case of the magnetoresistivity measurements on URu2Si2, we estimated the

temperature gradient as follows. First, we checked if the resistivity curves from the

rise and fall of the field pulse coincided, which was generally the case using 4He-

cryostats at temperatures above 1.4 K. As shown in Figure 3.14(a,b), the rising and

falling resistivities, measured at T = 100 mK in a pulsed field H ∥ c using the

dilution fridge, coincide perfectly for sample #2 but not fully for sample #1 (clear

deviation below 25 T). However, this method is not necessarily a good temperature

indicator, since the resistivity may be temperature-independent. At temperatures

below 1 K, the superconducting transition field Hc,2 can be used to estimate the

temperature at the beginning and the end of the pulse [see Figs. 3.14(c-f)]. In

the low-field regime µ0H < 3 T, we observed that the rising and the falling-field

resistivities do not coincide. This is a signature of strong eddy currents, which heat

the samples at the beginning of the pulse where dH/dt is maximal, and result in an

important hysteresis of the superconducting transition field Hc2 [see Figs. 3.14(c,d)].

Moreover, we can estimate the temperature at the beginning and the end of the pulse

by the value of Hc,2. The Hc,2-phase diagrams [here for H ∥ c, see Figs. 3.14(e,f)]

show that samples #1 and #2 were well thermalized at the end of the pulse but

were heated at the beginning of the pulse. For example, for Tthermometer = 100 mK,

the temperature at the beginning of the pulse was ∼ 1 K and ∼ 800 mK for sample

#1 and #2, respectively. At the end of the pulse, Hc2 was close to that measured

by specific heat in steady fields, i.e, the sample temperatures were close to that

indicated by the thermometer. Quantum oscillations are a good indicator for the

temperature of the sample during the pulse, i.e., at high fields. Figures 3.14(g) and

(h) show the Shubnikov-de Haas spectra of samples #1 and #2, measured in the

rise and fall of a magnetic field applied along c and at Tthermometer = 100 mK. For

sample #1, the peak intensities of the frequencies α and β (see Chapter 9) measured

during the rise are much smaller than that measured during the fall. The peak of

frequency β, which has a high effective mass and therefore a strong temperature-

dependence, has almost vanished from the spectra measured during the rise. For

sample #2, the peak intensities of the rise and the fall are very similar, indicating

that the temperature was fast recovered (before the rising field reached 20 T) and

almost stable during the pulse. The heating by eddy currents, depending on the

cross-section perpendicular to the pulsed field, was more important for sample #1

than for sample #2, which is probably due to their geometry: for H ∥ c, sample #1

had a large section exposed to the field, whereas the section of sample #2 exposed

to the field was very small. In Chapter 9 we will present the Shubnikov-de Haas

data from sample #2, for which the heating by eddy currents in the high-fields can
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Figure 3.15: Comparison of resistivity data from measurements on URu2Si2 sample #2 in
different cryostat-coil setups. (a) Transverse magnetoresistivity ρx,x versus
the magnetic fieldH applied along the a-axis at T = 1.4 K. (b) Corresponding
oscillating signals ρoscx,x(H). (c) Resulting Fourier transforms.

be neglected. In Chapter 7, we consider the non-oscillating magnetoresistivity and

data from both samples will be presented at low temperatures, assuming that i) for

sample #2 there is no heating of the sample by eddy currents, and ii) for sample

#1 in the fall of the field, the absolute value of ρx,x is not affected by eddy currents

(small temperature-dependence of ρx,x).

3.9 Reproducibility of the magnetoresistivity measurements

Slight differences have been observed in the resistivity data of sample #2 measured

for H ∥ a at T = 1.4 K using different setups of transport probe, cryostat, and

magnet, as shown in Figure 3.15. The resistivity exhibits differences in the absolute

variation by a magnetic field with a maximal deviation of ∼ 15%. The extracted

quantum oscillations [Fig. 3.15(b)] differ in phase and amplitude and the resulting

Shubnikov-de Haas spectra [Fig. 3.15(c)] show differences in the splitting of the

frequency branch λ (F ∼ 1350 T), which consists mainly of 2 or 3 satellites (see
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3.9 Reproducibility of the magnetoresistivity measurements

Chapter 9). Reasons for this lack of reproducibility might be related to slight mis-

orientations of the sample in the magnetic field, due to its irregular shape, but also

to modified electrical contacts (after repair). This illustrates the high sensibility of

the Fermi surface of URu2Si2 to slight variations of the field direction. In Chapter

8 we will see that the magnetoresistivity is very sensible to the a mis-orientation

in a the magnetic field H ∥ a, but less sensible in H ∥ c, for which we observed a

satisfying reproducibility.
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4 Introduction to URu2Si2

In this chapter, I introduce the physical properties of URu2Si2, which occupies a

particular place in the family of heavy-fermion systems and continues to be an un-

solved issue after more than 20 years of investigations [Mydosh and Oppeneer 2011].

URu2Si2 exhibits a paramagnetic ordered state, the so-called ”hidden-order” phase,

below T0 = 17.5 K [Palstra 1985, Maple 1986, Schablitz 1986, Ramirez 1992,

Bourdarot 2003a], for which the order parameter has still not been identified. Also,

the origin of unconventional superconductivity in URu2Si2 below TSC ∼ 1.5 K, which

coexists with the hidden-order, remains unknown [Maple 1986, Schablitz 1986].

URu2Si2 is an intermetallic compound, which has a ThCr2Si2-type body centered

tetragonal crystal structure with the space group 139, I4/mmm. The lattice pa-

rameters are a = 4.124 Å and c = 9.82 Å [see Fig. 4.1(a)]. The magnetic

properties of URu2Si2, due to the magnetic moments of the Uranium sites, show

a strong Ising-character, the c-axis being the magnetic easy axis. This results

in strongly anisotropic bulk properties [Palstra 1985, Ramirez 1992, Dawson 1989,

Ohkuni 1997]. The upper critical field Hc2 related to the destruction of supercon-

ductivity is also strongly anisotropic [Kwok 1990, Ohkuni 1997].

Section 4.1 presents the temperature-dependent bulk properties of URu2Si2.

Section 4.2 presents the microscopic properties as seen by neutron scattering studies.

Section 4.3 presents the properties of the Fermi surface of URu2Si2 at low magnetic

field. Section 4.4 presents the high-field properties of URu2Si2.

4.1 From a Kondo liquid to the hidden-order

Figure 4.2 shows the temperature-dependence of the magnetic susceptibility χ(T ) of

URu2Si2 in H ∥ a and H ∥ c, whose strong anisotropy indicates Ising magnetic

properties [Palstra 1985, Ramirez 1992, Dawson 1989]. The susceptibility along

the magnetic easy axis c has a Curie-Weiss-like behavior at high temperatures

with an effective magnetic moment of 3.51 µB/U-ion and a Curie-Weiss temper-

ature θCW = −65 K [de Visser 1987, Palstra 1985, Dawson 1989]. The suscep-

tibility deviates from the Curie-Weiss behavior at ∼ 150 K due to the onset of

the Kondo-screening. The maximum at 50 K indicates the onset of coherence ef-

fects of the Kondo lattice. The resistivity [Fig. 4.3(a)] shows a strong anisotropy
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4 Introduction to URu2Si2

Figure 4.1: (a) Crystal structure of URu2Si2. (b) Antiferromagnetic structure of the Ura-
nium ions below T0 = 17.5 K. Figure taken from [Broholm 1991].

Figure 4.2: Dc-susceptibility (circles) of monocrystalline URu2Si2 for H along a and c

(µ0H = 2 T), and inverse susceptibility (crosses) for H ∥ c. The solid line
represents a Curie Weiss fit and yields θCW = −65 K. Figure taken from
[Palstra 1985].

too [Palstra 1986, Ohkuni 1997], being two times larger for a current along the a-

axis than for the c-axis. The high-temperature behavior of the resistivity [see Fig.

4.3(a)] shows the characteristics of a single-impurity Kondo effect [Schoenes 1987].

The resistivity exhibits a large maximum at 70 K due to the onset of coherent

scattering and decreases fast at lower temperatures [Schoenes 1987, Dawson 1989].

When the temperature is reduced below ∼ 100 K, the bulk properties indicate

that a heavy-fermion liquid is created as the f -Uranium moments hybridize with

the conduction band [Maple 1986, Schoenes 1987, Dawson 1989]. Early investiga-

tions of URu2Si2 by specific heat [Palstra 1985, Maple 1986, Schablitz 1986] [see Fig.

4.4], susceptibility [Palstra 1985, Dawson 1989] [see Fig. 4.2] and electric transport

[Palstra 1986, Schoenes 1987, Dawson 1989] [see Fig. 4.3(b)] show large anomalies

at T0 = 17.5 and TSC ≃ 1 K indicating the transitions to the hidden-order and

superconducting phases, respectively. The specific heat [see Fig. 4.4] exhibits a

Sommerfeld coefficient γ = 180 mJ/mol.K2 and a Debye temperature θD = 312 K

[Palstra 1985]. The resistivity in the hidden-order phase [see Fig. 4.3(b)] can be
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4.1 From a Kondo liquid to the hidden-order

Figure 4.3: (a) Temperature dependence of the electrical resistivity of an URu2Si2 single
crystal with I parallel to the a and c axes. (b) Low temperature resistivity of
URu2Si2 showing the second-order transition at T0 (noted here TN ) and the
superconducting transition at TSC . Figures taken from [Palstra 1986].

Figure 4.4: Specific heat C/T of polycrystalline URu2Si2. Figure taken from
[Palstra 1985].

described in terms of a Fermi liquid, with an energy gap ∆ [Palstra 1986]:

ρ = ρ0 +AT 2 + bT (1 + 2T/∆) exp(−∆/T ). (4.1)

The energy gap fitted by ∆ ∼ 80 K [Palstra 1986, Matsuda 2011] can be related

to gapped spin excitations as shown by inelastic neutron scattering [Wiebe 2007,

Janik 2009]. Below TSC , which varies from 0.8 to 1.5 K, depending on the sample

quality, the resistivity drops to zero due to superconductivity, which coexists with

the hidden-order [Broholm 1987].

Many theoretical models have been proposed for the hidden-order phase and

will not be discussed in detail here. A multitude of possible orders have

been proposed theoretically: incommensurate orbital antiferromagnetic order

[Chandra 2002], spin density wave [Mineev 2005], octupolar order [Kiss 2005], helic-

ity order [Varma 2006], charge density wave [Balatsky 2009], antiferromagnetic hex-

adecapolar order [Haule and Kotliar 2009, Kusunose and Harima 2011], fluctuating
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4 Introduction to URu2Si2

dipolar order [Elgazzar 2009], antiferromagnetic quadrupolar order [Harima 2010],

hybridization wave [Dubi 2011], modulated spin liquid [Pépin 2011], rank-5 multi-

pole (dotriacontapole) order [Ikeda 2012], and hastatic order [Chandra 2013].

4.2 Magnetic fluctuations and magnetic ordering

4.2.1 Hidden-order phase

Despite a very clean transition in all thermodynamic properties [Palstra 1985,

Maple 1986, Schablitz 1986] at T0 = 17.5 K, no order parameter has yet been

found for the so-called hidden-order phase developing below T0. Initially, an-

tiferromagnetic order with a small magnetic moment m ≃ 0.03 µB/U-ion at

the wavevector Q0 = (1, 0, 0) has been reported by neutron diffraction below

T0 [Broholm 1987, Mason 1990, Amitsuka 1999, Amitsuka 2007]. However, this

small moment has later been shown, by neutron diffraction on samples of differ-

ent qualities [Fak 1996] or under uniaxial pressure [Yokoyama 2005], and by 29Si-

NMR measurements [Matsuda 2001], to be extrinsic to the hidden-order phase,

being related to spatial inhomogeneities (cf. also [Takagi 2007]). At temper-

atures above T0, inelastic neutron scattering measurements revealed enhanced

magnetic fluctuations with a large linewidth at the wavevector Q1 = (0.6, 0, 0)

[Broholm 1987, Broholm 1991]. A careful mapping of the low-temperature exci-

tations in the reciprocal space was established by several inelastic neutron scatter-

ing studies [Broholm 1987, Broholm 1991, Fak 1996, Mason 1995, Bourdarot 2003a,

Bourdarot 2010, Wiebe 2007, Janik 2009, Bourdarot 2010]. Below T0, well defined

strong peaks in the inelastic spectrum indicate magnetic fluctuations at the wavevec-

tors Q0 = (1, 0, 0) and Q1 = (0.6, 0, 0) [see Fig. 4.5(a)]. Figure 4.5(b) shows the

dispersion of the magnetic excitations [Broholm 1991]. The magnetic excitations

at Q0 = (1, 0, 0) are found to be a signature exclusively of the hidden-order phase

[Bourdarot 2003b, Villaume 2008, Bourdarot 2010].

4.2.2 Pressure-induced antiferromagnetic phase

Figure 4.6 shows the pressure-temperature phase diagram of URu2Si2 obtained by

resistivity and ac-calorimetry measurements [Hassinger 2008]. The application of

hydrostatic pressure drives the superconducting transition temperature to zero at

Px = 0.5 GPa and drives the system to an antiferromagnetic ground state above

Px. The transition lines T0 of the hidden-order phase and Tx of the antiferro-

magnetic state meet at the point (P ∗ = 1.3 GPa, Tx = 20 K) in the phase dia-

gram. The antiferromagnetic order is stabilized within the wavevector Q0 = (1, 0, 0)

[Amitsuka 1999, Motoyama 2003, Amitsuka 2007, Villaume 2008]. The correspond-
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4.3 Fermi surface

Figure 4.5: (a)Energy spectra at Q0 = (1, 0, 0) and Q1 = (0.6, 0, 0) [noted here (1.6,0,0)] in
the hidden-order phase (noted here SMAF) at ambient pressure, at T < 5 K.
Figure taken from [Bourdarot 2003b]. (b) Dispersion of the excitations in
URu2Si2 along the (1, 0, ξ), (1 + ξ, ξ, 0, ) and (1 + ξ, 0, 0, ) directions. Figure
taken from [Broholm 1991].

ing ordered moment of 0.4 µB/U is accounted to the 5f -U sites of the body-

centered tetragonal structure and the moments are ordered ferromagnetically along

the basal plane and antiferromagnetically along the c-direction, as shown in Figure

4.1(b). The antiferromagnetic transition changes the crystal structure from body

centered tetragonal to simple tetragonal and the unit cell doubles within the order-

ing vector Q0 = (1, 0, 0). At zero temperature, the magnetic fluctuations at the

antiferromagnetic wave vector Q0, which are intrinsic to the hidden-order phase

[Bourdarot 2003b, Villaume 2008, Bourdarot 2010], have vanished above Px in the

antiferromagentic phase, but re-appear at intermediate pressure Px < P < P ∗ and

temperature Tx < T < T0, indicating the restoration of the hidden-order phase

[Bourdarot 2003b, Villaume 2008].

4.3 Fermi surface

4.3.1 Transport properties

In its hidden-order state, URu2Si2 is a compensated semi-metal, as indicated by a

non-saturating quadratic magnetoresistance [Kasahara 2007, Levallois 2009] and a

large Hall constant with a linear field-dependence (up to 10 T, [Kasahara 2007]) ob-

served at temperatures below T0. Optical conductivity measurements [Bonn 1988]

indicate the opening of an energy gap as entering in the hidden-order phase at

T0. The gap opening at T0 was related to a strong hybridization of the 5f -

electrons of the U-sites with the conduction band, from scanning tunneling mi-

croscopy experiments [Schmidt 2010]. At T0, the charge carrier number is strongly

reduced by ∼ 90%, as indicated by measurements of Hall effect [Schoenes 1987,

Dawson 1989, Lerdawson 1989, Kasahara 2007], thermoelectric power [Bel 2004],
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4 Introduction to URu2Si2

Figure 4.6: Pressure-temperature phase diagram of URu2Si2 obtained by resistivity (cir-
cles) and ac-calorimetry (triangles) measurements. Bulk superconductivity
detected by ac calorimetry (open triangles) is suppressed when the antiferro-
magnetic state (noted here LMAF) appears. Open circles present the temper-
ature of the onset of the superconducting transition in the electrical resistivity.
Figure taken from [Hassinger 2008].

and heat capacity [Bel 2004]. The thermal conductivity is strongly enhanced at T0

[Behnia 2005, Sharma 2006] indicating an enhanced relaxation time of the phonons

and conducting electrons in the hidden-order phase. A giant Nernst signal has also

been found in the hidden-order phase, indicating an enhanced electronic mobility

[Bel 2004].

4.3.2 ARPES

Angle-resolved photoemission spectroscopy (ARPES) measurements revealed sud-

den changes of the Fermi surface as the system enters the hidden-order phase at

T0 [Santander 2009, Yoshida 2010]. Santander et al. [Santander 2009] observed the

crossing of the Fermi level by a narrow band of low-energy quasiparticles band and

the formation of a heavy-electron band, as the temperature is reduced below T0.

Another ARPES study [Yoshida 2010] revealed that a narrow hole-like band sud-

denly appears below ϵF as the temperature falls below T0, which is interpreted as

an evidence of the doubling of the unit cell along the c-axis in the hidden-order

phase. By soft x-ray ARPES, Kawasaki et al. [Kawasaki 2011a] observed 5f -U de-

rived quasiparticles forming a large hole Fermi surface centered at the Z point and

a large electron Fermi surface centered at the Γ point in the paramagnetic phase

at temperatures just above T0. They also identified nesting vectors fitting to that

of the magnetic fluctuations observed by inelastic neutron scattering measurements

[Broholm 1987, Bourdarot 2003a]. Kawasaki et al. [Kawasaki 2011b] performed soft
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4.3 Fermi surface

Figure 4.7: Angular dependence of the Shubnikov-de Haas frequencies in URu2Si2. The
data are from high-field (red circles) and low-field (blue diamonds, black
squares) measurements [Aoki 2012, Hassinger 2010]. The numbers indicate
the cyclotron effective masses in terms of m0 for H ∥ [001], [100], and [110].
Figure taken from [Aoki 2012].

x-ray ARPES on U(Ru0.97Rh0.03)2Si2 and observed that the Fermi surface in the an-

tiferromagnetic ground state of the doped compound is nearly identical to that of the

hidden-order phase in the pure compound. ARPES measurements strongly support

an itinerant nature of the 5f -electrons due to their hybridization with the conduction

bands at low temperatures [Santander 2009, Yoshida 2010, Kawasaki 2011a].

4.3.3 Quantum oscillations

The low-field Fermi surface of URu2Si2 was studied by quantum oscillation ex-

periments, which have revealed four Fermi surface sheets α, β, γ, and η in

the hidden-order phase [Bergemann 1997, Keller 1998, Ohkuni 1997, Ohkuni 1999,

Hassinger 2010, Aoki 2012]. The associated frequencies for a magnetic field applied

along the c-axis are Fη ≃ 93 T, Fγ ≃ 200 T, Fβ ≃ 425 T, and Fα ≃ 1065 T. The

Fermi surface branches exhibit a wide range of heavy cyclotron effective masses

(m∗
η ≃ 21 m0, m∗

γ ≃ 10 m0, m∗
β ≃ 24 m0, and m∗

α ≃ 12 m0, for H ∥ c).

The largest sheet α covers an area corresponding to less than 5% of the Bril-

louin zone [Keller 1998, Aoki 2010]. The Fermi surface is therefore very small,
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4 Introduction to URu2Si2

Figure 4.8: (a) Shubnikov-de Haas spectra in URu2Si2 for H ∥ c at T = 35 mK for
p = 0.05 GPa and at T = 25 mK for p = 1.5 GPa. (b) Pressure-dependence
of the Shubnikov-de Haas frequencies. (c) Pressure-dependence of the effective
masses. Figures taken from [Hassinger 2010].

in agreement with the low carrier density observed below T0 by Hall effect mea-

surements [Kasahara 2007]. The estimated Sommerfeld-coefficient calculated from

these Fermi surfaces is γFS ∼ 40 mJ/mol·K2 [Aoki 2012], which represents 70% of

the Sommerfeld-coefficient γCp ∼ 55 mJ/mol·K2 extracted from the specific heat

[Aoki 2010]. This indicates that part of the Fermi surface, presumably with a large

effective cyclotron mass, is missing from the quantum oscillation experiments.

Figure 4.7 shows a detailed angular-dependence of the Shubnikov-de Haas fre-

quencies in URu2Si2 [Aoki 2012]. The weak angle-dependence of the frequencies

indicate that there are no open Fermi surface sheets [Keller 1998, Ohkuni 1999,

Hassinger 2010, Aoki 2012]. The splitting of β into two branches may be due to

the fact that the corresponding Fermi surface consists of different pockets with

the same extremal cross-section for H ∥ c and different cross-sections for H ∥ a

[Hassinger 2010, Aoki 2012]. The hypothesis of four noncentral pockets, which are

flattened along the main axes of the Brillouin zone, is compatible with the propo-

sition of the breaking of the four-fold symmetry from magnetic torque measure-

ments [Okazaki 2011]. Shubnikov-de Haas data from measurements under pressure

[Nakashima 2003, Hassinger 2010] show almost no modification of the frequencies

and effective masses at the critical pressure Px and in the pressure-induced antifer-

romagnetic phase, as shown in Figure 4.8. The Shubnikov-de Haas data indicate that

the Fermi surface is essentially the same in the hidden-order and antiferromagnetic

phases and that both phases exhibit the same unit cell doubling [Hassinger 2010].
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4.3 Fermi surface

Figure 4.9: (a) Computed Fermi-surface sheets of URu2Si2 in the antiferromagnetic phase.
The green lines indicate the extremal Fermi-surface orbits for a field along
the z-axis. High-symmetry points are indicated in the bottom panel. (b)
Calculated angular-dependence of the extremal Fermi surface cross-sections of
URu2Si2. Figures taken from [Oppeneer 2010].

4.3.4 Band structure calculations

Oppeneer et al. [Elgazzar 2009, Oppeneer 2010] calculated the Fermi surface of the

paramagnetic and the antiferromagnetic states by the local density approximation

method [see Fig. 4.9(a)]. A possible nesting vector of the paramagnetic Fermi

surface fits with the antiferromagnetic wave vector Q0 = (1, 0, 0) of the magnetic

fluctuations observed in the hidden-order phase [Broholm 1987, Bourdarot 2003a]

and the ordering of the antiferromagnetic phase [Villaume 2008]. The incom-

mensurate vector Q1 = (0.6, 0, 0), where magnetic fluctuations are enhanced

[Villaume 2008] in both the hidden-order and the antiferromagnetic phases, may

also be related to a nesting vector of the antiferromagnetic phase. Figure 4.9(b)

shows the calculated angular-dependence of the extremal Fermi surface cross-sections

[Oppeneer 2010], which is in good agreement with that from quantum oscillations

[Ohkuni 1999, Shishido 2009, Hassinger 2010, Aoki 2012].

Ikeda et al. [Ikeda 2012] performed density-functional theory calculations based on

an itinerant 5f -electron model. They found that the paramagnetic Fermi surface has

the possible nesting vectors Q0 = (1, 0, 0) and Q1 = (0.6, 0, 0), which are related to

the magnetic excitation gap observed at the same wavevectors in the hidden-order

phase [Broholm 1987, Bourdarot 2003a]. Figure 4.10 shows the calculated Fermi

surfaces of the hidden-order phase based on a dotriacontapole order and that of

the antiferromagnetic phase. Both Fermi surfaces are similar, in agreement with

Shubnikov-de Haas experiments under pressure [Nakashima 2003, Hassinger 2010].
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4 Introduction to URu2Si2

Figure 4.10: Cross-section of the Fermi surface in the (a,a)-plane including the Γ, X, and
M points, from density-functional theory calculations for (a) a dotriacon-
tapole order (HO) and (b) an antiferromagnetic order. Figures taken from
[Ikeda 2012].

The band calculations of Oppeneer et al. [Oppeneer 2010] and Ikeda et al.

[Ikeda 2012] both indicate a four-fold electron-Fermi surface β situated between

the Γ and X points. The Fermi surface of the hidden-order phase differs between

their calculations for the Γ and M points. The calculations of Oppeneer et al.

[Oppeneer 2010] predict a small (γ) and a large (α) electron-Fermi surface at M

and a large light hole-Fermi surface at Γ. Ikeda et al. [Ikeda 2012] predict a small

electron-Fermi surface (γ) and a light hole-Fermi surface at Γ and a heavy electron-

Fermi surface (κ) at M .

The calculations of Ikeda et al. [Ikeda 2012] are consistent with: i) ARPES mea-

surements by Santander et al. [Santander 2009] observing a light hole-like and a

heavy-electron-like band, ii) thermal transport measurements [Kasahara 2007] indi-

cating a heavy-electron-Fermi surface with an effective mass of more than 30 m0,

and iii) a cyclotron resonance study by Tonegawa et al. [Tonegawa 2012] reporting

a heavy electron-pocket (κ).

4.4 URu2Si2 in high-magnetic fields

Very early, URu2Si2 has been studied in high-magnetic field experiments

[de Boer 1986, de Visser 1987, Sugiyama 1990]. Strong anomalies in the magne-

tization and resistivity have been observed in a magnetic field applied along the

magnetic easy axis c [see Fig. 4.11]. Notably, sharp steps in the magnetization

and magnetoresistivity have been observed at µ0H1 ∼ 35 T, µ0H2 ∼ 37 T, and

µ0H3 ∼ 39 T, where the transition at H1 corresponds to the destruction of the

hidden-order phase [Kim 2003a]. Sugiyama et al. [Sugiyama 1990] interpreted the
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4.4 URu2Si2 in high-magnetic fields

Figure 4.11: (a) Longitudinal magnetoresistivity of URu2Si2 measured in a magnetic field
H ∥ I ∥ c at T = 1.5 and 4.2 K. Figure taken from [de Visser 1987]. (b)
Magnetization of URu2Si2 measured in a magnetic field H ∥ c at T = 1.3 K,
20 K, and 77 K. Figure taken from [Sugiyama 1999].

three transitions at H1, H2, and H3 as metamagnetic transitions due to successive

partial polarizations of the 5f -electron moments and proposed that the intermediate

phases between 35 and 39 T are canted antiferromagnetic states.

On the other hand, the hidden-order phase is very stable in a magnetic fields applied

along the basal plane: the magnetic response to H ∥ a is much weaker following the

anisotropy of the magnetic susceptibility [Palstra 1985] and the magnetization ver-

sus the field is linear up to 50 T [de Boer 1986, Sugiyama 1990].

The magnetic field-temperature-phase diagram of URu2Si2 for H ∥ c has

been investigated using a wide range of experimental methods: magnetiza-

tion [Sugiyama 1999, Harrison 2003], specific heat [Jaime 2002, Kim 2003a], ultra-

sound velocity [Suslov 2003, Yanagisawa 2013], resistivity [Jaime 2002, Kim 2003b],

dilatometry [Correa 2012], and thermoelectricity [Malone 2011, Pourret 2013]. Fig-

ure 4.12 shows a precise H -T -phase diagram established from resistivity measure-

ments [Kim 2003b].

Five different low-temperature phases are identified in the T -H -phase diagram:

• The paramagnetic hidden-order phase (I) below T0, which is destabilized at

∼ 35 T.

• Phase II is a intermediate magnetic phase between the first-order transitions

at H1 and H2.

• Phase III is a intermediate magnetic phase between the first-order transitions

at H2 and H3.

• Above H3 the system is in a polarized paramagnetic state (IV). The polarized
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4 Introduction to URu2Si2

Figure 4.12: (a) High field-phase diagram of URu2Si2 obtained from ρ versus H, ρ versus
T [Kim 2003b], and M versus H data [Harrison 2003]. Figure taken from
[Kim 2003b].

magnetic moment reaches 1.5 µB/U at 45 T [Sugiyama 1999] and continues

to increase at higher field, indicating remaining unquenched magnetic fluctu-

ations.

• The small dome (V) is an intermediate phase, which appears between the

phases II and III, when the temperature is reduced below T ∼ 2 K.

Observations by Nernst, Hall [Levallois 2009] and Shubnikov-de Haas effect

[Altarawneh 2011] indicate that successive Fermi surface reconstructions occur at

the transition fields H1, H2 and H3. Fermi surface modifications occur in fields

applied along c smaller than µ0H1 = 35 T, i.e., inside the hidden-order phase.

Shishido et al. [Shishido 2009] observed a step-like anomaly in the Hall resistivity at

µ0H
∗ = 22.5 T, which they identified as a signature of a field-induced Fermi surface

reconstruction, in agreement with the observation of a new frequency Fϵ ∼ 1300 T

in their Shubnikov-de Haas data. Malone et al. [Malone 2011] observed anoma-

lies in the thermoelectric power, a minimum at µ0Hm ≃ 11 T and a maximum at

µ0H
∗ ≃ 23 T. They interpreted these anomalies as the signature of topological mod-

ifications of the band structure, i.e., Lifshitz transitions [Lifshitz 1960]. Kink-like

anomalies in the resistivity were also observed at µ0H ∼ 8 T [Hassinger 2010], and

at µ0H
∗ = 24 T [Altarawneh 2011, Aoki 2012]. A change of the Fermi surface was

also observed at the maximum of resistivity at ∼ 30 T [Altarawneh 2011]. Recently,

Pourret et al. [Pourret 2013] performed a detailed study of the thermoelectric power

and Nernst effect on high-quality URu2Si2 single crystals in high-magnetic fields ap-

plied along the c-axis. They have confirmed a very rich H -T -phase diagram deep

74



4.4 URu2Si2 in high-magnetic fields

Figure 4.13: H -T -phase diagram of URu2Si2. Full symbols: anomalies in the thermo-
electric power [Pourret 2013]. Open symbols: anomalies in the Nernst signal
[Pourret 2013]. Pluses, crosses: anomalies in the Hall signal [Shishido 2009].
Half-filled circles: maximum in the resistivity (data from this work, see Sect.
5.2, [Scheerer 2012]). The field position of the changes in the Shubnikov-de
Haas frequencies at Hm, Hp, H

∗, and Hr [Aoki 2012] are indicated by vertical
arrows. Figure taken from [Pourret 2013].

inside the hidden-order phase, with at least four field-induced anomalies below H1

[see Fig. 4.13].
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5 High-Magnetic-Field properties of

URu2Si2 in H ∥ c

In this chapter, I present magnetization and transverse magnetoresistivity experi-

ments performed on URu2Si2 in magnetic fields H applied along the easy axis c.

Anomalies characteristic of magnetic phase transitions and magnetic crossovers are

studied in detail. The associated transition and crossover lines are drawn in the mag-

netic field-temperature phase diagram. A comparison is made between the phase

diagram obtained here and these published in the literature.

5.1 Magnetization

Figure 5.1(a) presents the magnetization M of URu2Si2, which has been measured

with the compensated coils technique (cf. Sect. 3.3) versus the magnetic field H

applied parallel to the c-axis at different temperatures from 1.5 to 60 K. At zero

field and below T0 = 17.5 K, the system is in the hidden-order phase. At T = 1.5 K

and at low field, the magnetization increases almost linearly with H. Above ∼ 30 T,

the slope of M(H) becomes non-linear and increases [see blue arrow in Fig. 5.1(a)].

At higher fields, three sharp steps occur in the magnetization at µ0H1, µ0H2, and

µ0H3 between 35 and 39 T. The magnetization reaches 1.5 µB per Uranium-ion at

µ0H ∼ 45 T and continues to increase significantly at higher field, showing that the

polarization is not complete due to remaining unquenched magnetic fluctuations.

The steps in the magnetization become less important at higher temperature and

have vanished above 10 K. Figures 5.1(b) and 5.1(c) show the slope ∂M/∂H of the

magnetization versus H at temperatures from 1.5 to 10 K and from 10 to 30 K,

respectively. The transition fields H1, H2, and H3 are defined at the local maxima

of the slope. At T = 15 K, the sharp peaks of the transitions H1, H2, and H3 have

vanished and have been replaced by one broad peak at HHT
∂M/∂H,max. This crossover-

like peak is broadened at higher temperatures and we loose its trace above 30 K.

Figures 5.1(d) and (e) show ∂M/∂H, for the rise and the fall, respectively, of the

pulsed field for µ0H = 34 T - 40 T and at temperatures between 1.5 and 4.2 K. For

the fall and at T = 1.4 K, I extract µ0H1 = 34.9 T and µ0H3 = 38.7 T. The sharpness

of the peaks at H1 and H3 and their hysteresis indicate that they are signatures of
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Figure 5.1: (a) Magnetization M versus the magnetic field H applied along c of URu2Si2 at
temperatures between 1.5 K and 60 K. The inset shows M(H) at 1.5 K for the
rise and fall of the pulsed magnetic field. (b) ∂M/∂H versusH at temperatures
between 1.5 K and 10 K. (c) ∂M/∂H versus H at temperatures between 10 K
and 60 K. ∂M/∂H versus H between 34 and 40 T and at temperatures between
1.5 and 4.2 K, for (d) the rise and (e) the fall of the field, respectively.
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our magnetization data and the square root

√
A of the quadratic coefficient

of resistivity extracted by Levallois et al. [Levallois 2009]. The blue arrow
indicates the onset of enhanced fluctuations.

first-order magnetic transitions. We observe less pronounced intermediate peaks at

H2 and H2a with an unusual hysteresis: in an increasing magnetic field, at T =

1.5 K, a transition-like peak occurs at µ0H2a = 36.8 T. For T = 2.2 K and 3.3 K,

this peak is reduced and shifted to lower fields before vanishing above 3.3 K. For

T ≥ 2.2 K, a different transition induces a peak at µ0H2 = 35.6 T. In a decreasing

magnetic field, we do not observeH2a, but only one peak at µ0H2 at all temperatures

below 10 K. At T = 1.5 K, this peak occurs at µ0H2 = 35.45 T and is slightly shifted

to higher fields with increasing temperature.

Figure 5.2 (a) presents M/H versus T at different magnetic fields. These plots

indicate that a change of behavior occurs in the critical regime of the magnetic

transitions (35− 39 T). The low-field regime, from 0 to 35 T, is characterized by a

crossover associated with a broad maximum of the susceptibility χ(T ) at the tem-

perature Tχ,max. Tχ,max equals ≃ 50 K at µ0H = 5 T, decreases with increasing

magnetic field and has vanished above 35 T. In the high-field regime, above 39 T,

M/H decreases monotonically with T . Here, the system is polarized paramagneti-

cally, having a strong field-induced magnetization. The characteristic temperature

TPPM of the polarized regime is defined at the inflection point of M/H(T ), indi-

cating the onset of an enhanced magnetization. Between 35 and 39 T, the cascade

of low-temperature transitions at H1, H2, and H3 leads to complex features in the

M/H versus T plots.

Figure 5.2(b) presents the field-dependence of the Sommerfeld coefficient γ =

Cp/T (T → 0) of URu2Si2, where Cp is the specific heat, estimated using the Maxwell
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relation:

(
∂γ

∂µ0H

)

T

=

(
∂2M

∂T 2

)

H

(5.1)

and assuming that M(T,H) = M(0, H) − βT 2 is obeyed (cf. also [Paulsen 1990]).

The variation of γ extracted here from M(T ) is only qualitative and expressed in

arbitrary units. For the estimation of γ, the temperature of our magnetization

experiments have been corrected thanks to additional torque experiments [see Fig.

5.9(a)]. γ is almost field-independent at low fields, but a strong enhancement of

γ, and thus of the effective mass m∗, is found in a broad magnetic field window

between 30 and 45 T. A comparison with the field-dependence of
√
A from Levallois

et al. [Levallois 2009], where A is the quadratic coefficient of the resistivity ρx,x(T )

at a given field, is added. As γ,
√
A probes the effective mass m∗ assuming the

validity of a Fermi liquid picture in a frame where magnetic fluctuations dominate

(see Sect. 2.2). γ and
√
A are related by a Kadowaki-Woods ratio A/γ2, which is

almost constant in the heavy-fermion family [Kadowaki and Woods 1986] (see Sect.

2.2). γ starts to increase at µ0H ∼ 30 T [see blue arrow in see Fig. 5.2(b)], due to

an enhancement of the magnetic fluctuations leading to a non-linear slope in M(H)

[see blue arrow in Fig. 5.1(a)]. This increase of γ occurs simultaneously with the

maximum in ρx,x(H) at HLT
ρ,max, which will be associated in Chapters 7 and 9 to a

Fermi surface reconstruction.

Figure 5.3(a) presents the H-T phase diagram of URu2Si2 constructed from the

magnetization experiments in magnetic fields applied along c. At low temperature

(T ≤ 10 K), a cascade of magnetic transitions between 35 and 39 T leads from the

hidden-order phase to a polarized regime. The first transition at H1 corresponds to

the field-induced destruction of the paramagnetic hidden-order state, labeled phase

I. Above the third transition at H3, the system is in the polarized paramagnetic

state, labeled IV. The first-order phase transitions between µ0H = 35 and 39 T have

vanished at T = 15 K and the high-temperature regime (T > 10 K) is characterized

by the crossover lines Tχ,max, H
HT
∂M/∂H,max, and TPPM . The energy scale Tχ,max in

the low field-regime, which corresponds to a maximum in the zero-field susceptibility

χ(T,H = 0) at 55 K, indicates a crossover line between a high-temperature weak-

correlations regime and a low-temperature strong-correlations regime. The high-

field scales HHT
∂M/∂H,max and TPPM , defined at the extremal slopes of M(H) and

M(T ), respectively, correspond both to the onset of an enhanced magnetization.

These scales are both the signatures of the same large crossover frontier between a

low-polarization regime with strong magnetic fluctuations and a high-polarization

regime with weak fluctuations. Figure 5.3(b) shows a zoom to the critical region of
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Figure 5.3: (a) H-T phase diagram constructed from our magnetization experiments for
H ∥ c. Open symbols stand for the rise and full symbols for the fall of the
pulsed magnetic field. (b) Zoom in the critical region of the transitions H1,
H2, and H3. (c) Comparison of the H-T phase diagram from the magne-
tization experiments (from the rise of the field only) of this work and from
[Sugiyama 1999].

the phase diagram. For the rise (open symbols) and the fall (full symbols) of the

pulsed field, two intermediate states, state II, between H1 and H2, and state III,

between H2 and H3, are observed at temperatures below 15 K. For the rise of the

field, an additional state IIa is observed between H2 and H2a at temperatures below

4.2 K.

Figure 5.3(c) shows the map of the critical region of the H-T phase diagram of

URu2Si2 resulting from the rising-field magnetization measured here and measured

by Sugiyama et al. [Sugiyama 1999]. The two sets of data are in good agreement,

except for slight shifts of the transition lines over the field axis and a slight difference

between the temperatures at which H1, H2, and H3 have vanished. I note that the

high-temperature crossover lines Tχ,max and TPPM are new features of the present
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Figure 5.4: (a) Magnetoresistivity ρx,x of URu2Si2 sample #1 versus the magnetic field H
applied along c at temperatures between 1.4 K and 6 K. (b) ρx,x(H) for the
field range 33 - 40 T at temperatures between 1.4 K and 4.2 K. Rise and fall of
the pulsed magnetic field for T = 1.4 K, fall only for the other temperatures.
(c) ρx,x versus H applied along c of sample #1 at temperatures between 6 K
and 65 K. (d) ρx,x versus T of sample #1 at magnetic fields µ0H = 0, 20, 30, 40
and 50 T applied along c.

work. Sugiyama et al. [Sugiyama 1999] observed similar behaviors of the transi-

tions at H2 and H2a: for rising fields, H2a is shifted to lower fields with increasing

temperature and vanishes at ∼ 4 K and H2 is not observed below 2 K. In both sets

of data, the phase IIa between H2 and H2a is observed in rising but not in falling

pulsed field. Sugiyama et al. [Sugiyama 1999] also observed a broad maximum in

∂M/∂H at HHT
∂M/∂H,max, which is almost temperature-independent, up to 60 K.

5.2 Magnetoresistivity

Figure 5.4(a) presents the transverse magnetoresistivity ρx,x of URu2Si2 versus the

magnetic field H applied parallel to the c-axis at temperatures between 1.4 and

6 K (experiment performed on sample #1, RRR = 95, cf. Sects. 3.4 and 3.5).
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5.2 Magnetoresistivity

At T = 1.4 K, the resistivity increases strongly with the magnetic field, up to

a pronounced maximum at µ0H
LT
ρ,max ≃ 29 T, and decreases fast from 29 to 35 T.

HLT
ρ,max decreases slightly with increasing temperature, down to µ0H

LT
ρ,max ≃ 26.5 T at

T = 6 K. Inside the hidden-order phase, below µ0H = 35 T, the magnetoresistivity

exhibits a strong temperature-dependence. The maximum of ρx,x at µ0H
LT
ρ,max is

about four times higher at T = 1.4 K than at 6 K. Three sharp steps in the resistivity

between 35 and 39 T are signatures of the first-order transitions at H1, H2, and H3,

which are also observed in the magnetization [see Fig. 5.1(a)]. The resistivity

reaches ≃ 25 µΩ.cm for H1 < H < H2 and ≃ 90 µΩ.cm for H2 < H < H3. Above

µ0H3 = 39 T, the resistivity has almost vanished.

Figure 5.4(b) shows a zoom on ρx,x versus µ0H ∥ c from 30 to 40 T at temperatures

between 1.4 K and 4.2 K, providing details on the critical region. H1 is defined at

the first abrupt decline of ρx,x. µ0H1 = 35.1 T at T = 1.4 K is shifted to 35.6 T at

T = 3 K, and vanishes at T = 4.2 K. At T = 3 K, the resistivity shortly increases

between ≃ 34.7 T and 35.3 T, which is associated with a maximum of slope of

ρx,x(H) at µ0H
′
0 = 34.9 T. At 4.2 K, µ0H

′
0 is shifted to 34.5 T. The transition

field H2 is defined at the abrupt rise of ρx,x. At T = 1.4, µ0H2 equals 36.3 T

and 37.4 T for the fall and rise of the pulsed field, respectively. H2 shifts to lower

fields with increasing temperature up to 3 K and shifts to higher fields above 3 K

(µ0H2 = 36.5 T at 4.2 K). The transition field H3 is defined at the second abrupt

decline of ρx,x. µ0H3 equals 39 T at T = 1.4 K and is slightly shifted to lower fields

with increasing temperature (µ0H3 = 38.7 T at 4.2 K).

Figure 5.4(c) presents the transverse magnetoresistivity of sample #1 versus H

applied along c at temperatures between 6 and 65 K. The low-temperature transi-

tions at H1, H2, and H3 vanish at T = 6 K and the low-temperature maximum at

µ0H
LT
ρ,max vanishes at 10 K. Below T0 = 17.5 K, the magnetoresistivity shows the sig-

nature of a transition at the magnetic field H0, which corresponds to the boundary

of the hidden-order phase (H0 → 0, when T → 17.5 K). H0 is defined at the second

extremum in ∂ρx,x/∂H of a Z-shaped anomaly in ρxx(H). H ′
0 is defined at the first

extremum in ∂ρx,x/∂H of the Z-shaped anomaly. As well as H0, H
′
0 is related to

the field-induced destabilization of the hidden-order phase. The destruction of the

hidden-order state at H0 gives rise to a clear anomaly in ρx,x(H), but no correspond-

ing anomaly is observed in M(H) [see Fig. 5.1(a)]. The magnetoresistivity exhibits

a maximum at Hρ,max, which is the signature of a ”high-temperature” crossover.

µ0Hρ,max equals ≃ 36 T at T = 6 K, decreases with increasing temperature and has

vanished at T = 40 K. The maximum at Hρ,max broadens strongly with increasing

temperature. For H > Hρ,max, the resistivity is continuously decreasing with H up

to maximum field, due to the quenching of the scattering of conduction electrons
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Figure 5.5: (a) H-T phase diagram constructed from our magnetoresistivity experiments
for H ∥ c. Open symbols stand for the rise and full symbols for the fall of the
pulsed magnetic field. (b) Zoom in the critical region of the transitions H1,
H2, and H3. (c) Comparison of the H-T phase diagram from the ρx,x(H) data
of this work and from the ρ(H) and ρ(T ) data from [Kim 2003b].

on the f -electron moments, and a further ”high-temperature” scale HHT
∂ρ/∂H,max can

be defined at the extremum of ∂ρx,x/∂H. HHT
∂ρ/∂H,max equals 37.6 T at T = 6 K

and is shifted to higher fields with increasing temperature. Figure 5.4 (d) shows

ρx,x versus T of sample #1 at different magnetic fields. The plots show that, for

H ∥ c, ρx,x is strongly magnetic field-dependent over a large temperature range (at

least up to 65 K). Furthermore the graph emphasizes that the maximum of ρx,x at

HLT
ρ,max ≃ 30 T suddenly develops below 6 K.

Figure 5.5(a) presents the H-T phase diagram of URu2Si2 constructed from the

magnetoresistivity experiments in magnetic fields applied along c. The high tem-

peratures are governed by the crossover lines Hρ,max and HHT
∂ρ/∂H,max. The high-

temperature crossover line Hρ,max decreases with T , which is equivalent in the H-T

phase diagram to the decrease with H of a temperature scale Tρ,max, which reaches
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Figure 5.6: H-T phase diagram of URu2Si2 for H ∥ c.

40 K at zero-field and vanishes in the critical field area (35 to 39 T). The crossover

line µ0H
LT
ρ,max occurs inside the hidden-order phase. The boundary line H0 of the

hidden-order phase is connected to the transition T0 = 17.5 K at zero-field. Figure

5.5(b) shows a zoom to the critical region of the phase diagram. The transition lines

H1 and H2 meet at (µ0H ∼ 36 T, T ∼ 3 K) in the phase diagram, delimiting the

intermediate phase V. The transition lines H2 and H3 delimit the intermediate phase

III. The transition fields H0 (or H ′
0) and H1 correspond to the destruction of the

hidden-order phase by a magnetic field applied along c, but are distinct transitions

resulting in different anomalies in ρx,x, leading to different higher-field states. H0

(or H ′
0) delimits the low-temperature hidden-order phase from the high-temperature

regime, whereas H1 leads from phase I to the metamagnetic state V.

Figure 5.5(c) compares the H-T phase diagrams constructed by the resistivity data

[ρx,x(H)] of this work and by the resistivity data [ρx,x(H),ρx,x(T )] of Kim et al.

[Kim 2003b]. Good agreement is found for the transition line H0, the crossover

line Hρ,max and for the phases V and III. Kim et al. [Kim 2003b] have defined an

additional transition line thanks to their ρx,x(T )-data, which delimits phase II. Kim

et al. [Kim 2003b] have also defined a crossover line T ∗, below which a T 2-behavior

of ρx,x(T ) is observed. Thus, T ∗ marks the onset of a high-field low-temperature

Fermi liquid region, corresponding to phase IV.

5.3 H-T phase diagram of URu2Si2

Figure 5.6 presents the magnetic field-temperature phase diagram of URu2Si2 based

on our resistivity and magnetization experiments. A singularity of URu2Si2 is that,
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instead of a unique second-order phase transition at a given critical field, the low-

temperature phase diagram is made of a cascade, between 35 and 39 T, of three

first-order transitions at H1, H2, and H3, with an additional sharp crossover at

HLT
ρ,max ≃ 30 T within the hidden-order phase. As observed in the magnetization

M(H), successive partial polarizations of the 5f -electron moments occur at H1,

H2, and H3. The phases II and III of the critical region of the phase diagram are

presumably high-field-induced canted antiferromagnetic structures as proposed by

Sugiyama et al. [Sugiyama 1990] for URu2Si2, and as observed in Rh-doped URu2Si2

by Kuwahara et al. [Kuwahara 2013] (see Chapter 6). The significant anomalies in

the resistivity ρx,x(H) at H1, H2, and H3, and the fact that the metamagnetic tran-

sitions separate phases with very different resistivity behaviors, indicate that these

transitions strongly change the electronic transport properties. In fact, observations

by Nernst and Hall [Levallois 2009], and Shubnikov-de Haas effect [Altarawneh 2011]

indicate Fermi surface reconstructions at H1, H2 and H3.

In the high-temperature regime, two energy scales Tχ,max and Tρ,max show similar

behaviors, both being suppressed by increasing magnetic field and vanishing in the

critical area of the magnetic transitions between 35 and 39 T. Furthermore the

ratios Tχ,max/T0 and Tρ,max/T0 are both constant up to 35 T as shown in Figure

5.8. At zero field, Tχ,max corresponds to the maximum in χ(T,H → 0) at 55 K.

A maximum in the zero-field resistivity is observed at T = 70 K, but not at 40 K.

This can be explained by the fact that an electron-phonon scattering contribution

ρe−ph
x,x adds to the purely electronic term ρe−e

x,x of the resistivity ρx,x. A difficulty is

to estimate ρe−ph
x,x (T ). Assuming that, at µ0H = 50 T, the magnetic polarization is

accompanied by a quenching of almost all magnetic fluctuations and by a vanishing

of the ρe−e
x,x part in the resistivity, ρe−ph

x,x can be approximated by ρx,x(T, µ0H =

50T) [see Fig.5.8(a)]. Following this, we estimate the purely electronic term by
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ρe−e
x,x (T,H = 0)= ρx,x(T,H = 0)−ρx,x(T, µ0H = 50 T) [see Fig.5.8(b)]. The shift

between the maximum observed in ρe−e
x,x (T,H = 0) at 40 K and that observed in

ρx,x(T,H = 0) at 70 K is due to the additional electron-phonon contribution to the

resistivity. The temperature scale of 40 K found in this estimation of ρe−e
x,x (T,H = 0)

coincides with Tρ,max extracted from the magnetoresistivity data, indicating that

they correspond to the same phenomenon. Figure 5.8(b) compares the estimated

electronic term in the resistivity ρe−e
x,x (T,H = 0) with the magnetic susceptibility

χ(T ) from [Sugiyama 1999]. A striking similarity between the general shape of

ρe−e
x,x (T,H = 0) and that of the magnetic susceptibility χ(T ) is found with the

maxima of ρe−e
x,x (T,H = 0) at Tρ,max ≃ 40 K and that of χ(T ) at Tχ,max ≃ 55 K.

Thus, both temperature-scales Tχ,max and Tρ,max are presumably related to the

same physical phenomenon, i.e. a crossover frontier between a high-temperature

independent-U-ions regime and a low-temperature interacting-U-ions regime. The

offset between Tχ,max and Tρ,max in Figure 5.6 is due to the non-equivalence of their

definitions and to the fact that the temperature or magnetic field of a crossover can

not be defined precisely.

The field-induced suppression of the transition temperature T0 of the hidden-order

phase follows that of the high-temperature scale Tχ,max (or Tρ,max). This and the

constance of the ratios Tχ,max/T0 and Tρ,max/T0 [see Fig. 5.7] indicate that the

vanishing of the higher-temperature crossover scale (either Tχ,max or Tρ,max) con-

trols that of T0. In other words, the mechanism responsible for the crossover at

Tχ,max or Tρ,max is a precursor of the hidden-order state since its destabilization

leads to that of the hidden-order, and the high-temperature regime is a necessary

condition for the development of the hidden-order state. The field-induced van-

ishing of the high-temperature crossover, which might be the mark of inter-site

electronic correlations, governs thus both the critical area leading to a polarized
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regime above 39 T and the destabilization of the hidden-order state at low tem-

perature. The magnetic-field dependencies of Tχ,max and TPPM recall strongly the

case of the heavy-fermion paramagnet CeRu2Si2 [Paulsen 1990, Ishida 1998]. The

phase diagram of CeRu2Si2 is characterized by a pseudo-metamagnetic transition

to a polarized state at µ0Hm = 7.8 T. As emphasized in [Aoki 2013], a correspon-

dence 1 K ↔ 1 T relates the maximum of susceptibility Tχ,max to the critical mag-

netic field H∗ of several heavy-fermion paramagnets (including URu2Si2, for which

µ0H
∗ = 35 − 39 T, and CeRu2Si2, for which µ0H

∗ = µ0Hm = 7.8 T), suggesting

that both Tχ,max and H∗ are controlled by a single magnetic energy scale.

The crossover scales HHT
∂M/∂H,max and TPPM from the magnetization data and

HHT
∂ρ/∂H,max from the resistivity data are all signatures of the same crossover frontier

between a low-polarization and a high-polarization regime.

5.4 Comparison of the phase diagrams extracted using

different techniques

A stumbling difference between the resistivity experiments and the magnetization

experiments performed here on URu2Si2 samples is that the transitions at H1, H2,

and H3 have vanished above T = 4.2 K in ρx,x(H) but are observed up to 10 K in our

M(H), as shown in Figure 5.9(a). Contrary to the magnetization data of this work

and that from Sugiyama et al. [Sugiyama 1999], Harrison et al. [Harrison 2003]

obtained magnetization data, where the transitions H1, H2, and H3 have already

vanished at T = 7 K. Additional magnetic torque experiments have been performed

in Toulouse on a URu2Si2 sample in the same experimental setup as the resistivity

experiments, where a good thermalization is assured. The phase diagram extracted

from the torque experiments, also shown in Figure 5.9(a), is in good agreement

with that from the resistivity data of this work and from the magnetization data

of Harrison et al [Harrison 2003]. Thus, the temperature difference between our

resistivity and magnetization data might result from thermal gradients in our pulsed-

field magnetization setup (as well as in the pulsed-field setup used by Sugiyama et

al [Sugiyama 1999]).

Figure 5.9(b) compares the H-T phase diagrams obtained by ultrasonic velocity

[Suslov 2003] and resistivity [Kim 2003b, Jo 2007] experiments. The three sets of

data are in good agreement, all showing the phases I to V. Minor differences are small

shifts over the H-axis of the transition lines and small differences in temperature.

Strong variations are found for the transition line H2, which delimits phase V: Kim

et al. [Kim 2003b] observed µ0H2 at ∼ 36 T, whereas Jo et al. [Jo 2007] and Suslov

et al. [Suslov 2003] observed it at ∼ 38 K. Comparing our data to that from the
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literature, we note an ambiguity concerning the phase V: our resistivity data and

that from Jo et al. [Jo 2007] suggest that, at T = 0, H1 leads to phase V and H2

leads to phase III, whereas the data from other experiments [Jaime 2002, Kim 2003b,

Suslov 2003] suggest that, at T = 0 K, H1 leads to phase II. Magnetization data

reveal an unusual kind of hysteresis for the transition at H2a and the phase IIa (see.

Figs. 5.1(d) and (e) and [Sugiyama 1999]), which are observed in the rise but not

in the fall of the pulsed field. Phase V observed by the resistivity and phase IIa

observed by the magnetization seem to correspond roughly. The different behaviors

of phase V or IIa are presumably due to different samples and/or due to different

measurement techniques.
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6 H-T -phase diagram of

U(Ru0.96Rh0.04)2Si2

Besides pressure and magnetic field, chemical doping is a rich tool to probe the

ground states of heavy-fermion systems. As well as pressure, Rhodium doping

leads to the destabilization of the hidden-order in URu2Si2. Yokoyama et al.

[Yokoyama 2004] performed an elastic and inelastic neutron scattering study on

Rhodium doped compounds U(Ru1−xRhx)2Si2 with Rh-concentrations from x = 0

to 0.05. Figure 6.1(a) presents the resulting temperature-Rh-doping phase di-

agram. For 0.02 < x < 0.04, the hidden-order is suppressed and an antifer-

romagnetic ground state is established below the Néel temperature TM . Be-

low TM , the strongly enhanced Bragg reflection at the commensurable wave vec-

tor Q0 = (1, 0, 0) indicates an antiferromagnetic order with the ordered moment

m0 = 0.24 µB/U (for x = 0.02) [see Fig. 6.1(b)]. For intermediate concentra-

tions 0.02 ≤ x < 0.03, the hidden-order phase is restored in temperatures higher

than TM . Magnetic excitations at Q0 = (1, 0, 0), which are intrinsic to the hidden-

order phase [Bourdarot 2003b, Villaume 2008, Bourdarot 2010], vanish at temper-

atures below TM and above T0. The pressure [Hassinger 2008, Villaume 2008] and

doping [Yokoyama 2004] phase diagrams show similarities, both containing a re-

gion of an intermediate tuning parameter (pressure P or Rh-doping x), where the

ground state is antiferromagnetic (for P > Px or x > 0.02) and the hidden-order

is restored for TN < T < T0 [TN = Tx in URu2Si2 or TM in U(Ru1−xRhx)2Si2]

[Yokoyama 2004, Villaume 2008]. In both cases the magnetic excitations at Q0 =

(1, 0, 0) are enhanced for TM < T < T0 and are a signature the restoration of

the hidden order. Figures 6.1(c-d) show the H -T -phase diagrams, for H ∥ c, of

U(Ru1−xRhx)2Si2 compounds with x = 0.02, 0.025, 0.03, and 0.04 obtained from

magnetization and resistivity experiments by Kim et al. [Kim 2004]. With increasing

concentration, the hidden-order phase and the intermediate phase III are destabi-

lized, whereas the intermediate phase II is stabilized. Rh-doping strongly simplifies

the high-field phase diagram of URu2Si2: for x = 0.04, the critical region between 35

and 39 T of the pure compound is reduced to a single field-induced phase between

26 to 37 T.

Here, I present magnetization measurements on a U(Ru0.96Rh0.04)2Si2 monocrys-
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6 H-T -phase diagram of U(Ru0.96Rh0.04)2Si2

Figure 6.1: (a) Rhodium concentration-temperature phase diagram of U(Ru1−xRhx)2Si2.
(b) Staggered momentm0 (noted here µ0) of the antiferromagnetic order versus
the Rh-concentration x. Figures taken from [Yokoyama 2004]. (c-d) H -T -
phase diagrams of U(Ru1−xRhx)2Si2 compounds for x = 0.02, 0.025, 0.03, and
0.04. Figures taken from [Kim 2004].

talline sample and the resulting H -T -phase diagram. This preliminary experiment

was done before a neutron scattering study [Kuwahara 2013] of U(Ru0.96Rh0.04)2Si2

under pulsed magnetic fields (to which I did not participate). Figure 6.2(a) shows

the magnetization M of U(Ru0.96Rh0.04)2Si2 versus the magnetic field H applied

along c at temperatures between 1.5 and 60 K. At low fields, the magnetization

increases linearly with the magnetic field. At T = 1.5 K, two sharp steps occur in

the magnetization at µ0H1 = 26.0 T and µ0H2 = 37.3 T, indicating field-induced

magnetic transitions. The sharpness of the steps in the magnetization at H1 and H2

and their hysteresis [see Fig. 6.4(a)] indicate first-order transitions. At high fields,

the magnetization continues to increase, indicating that the polarization is not com-

plete due to remaining unquenched magnetic fluctuations. Above H2, the system is

in the polarized paramagnetic phase. Figure 6.2(b) shows the slope ∂M/∂H of the

magnetization versus H ∥ c at T = 1.5, 10, 15, and 30 K. Above T = 12.5 K the
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Figure 6.2: (a) Magnetization M of U(Ru0.96Rh0.04)2Si2 versus the magnetic field H ap-
plied along c, at temperatures between 1.5 and 60 K. (b) ∂M/∂H versus H ∥ c

at temperatures between 1.5 and 30 K. (c) M/H versus T at different magnetic
fields H ∥ c. (d) Resulting H-T phase diagram of U(Ru0.96Rh0.04)2Si2.

magnetic transitions at H1 and H2 are replaced by a broad maximum in ∂M/∂H at

HHT
∂M/∂H,max. With increasing temperature, H1 is shifted to higher field and H2 to

lower field, and the transitions lines of H1 and H2 meet at the point [µ0H ∼ 34 T,

T ∼ 13 K] in the phase diagram and delimit the intermediate phase II [Kim 2004].

Figure 6.2(c) shows M/H versus T of U(Ru0.96Rh0.04)2Si2 at different magnetic

fields H ∥ c. The temperature scale Tχ,max is defined at a broad maximum in the

low-field regime, which corresponds to the maximum at 50 K in the zero-field sus-

ceptibility. The crossover temperature Tχ,max decreases with increasing magnetic

field and is suppressed at ∼ 33 T, leading to the critical region of the transitions

at H1 and H2. The temperature scale TPPM of the high-field polarized paramag-

netic regime is defined at the inflection point of M/H(T ) and indicates the onset

of an enhanced magnetization. The crossover lines HHT
∂M/∂H,max and TPPM , both

indicating the onset of an enhanced magnetization, form a large crossover frontier

related the high-field polarized regime. Figure 6.2(d) presents the resulting H-T
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6 H-T -phase diagram of U(Ru0.96Rh0.04)2Si2

Figure 6.3: (a) Magnetic field-dependence of the intensity at the (2/3, 0, 0), (4/3, 0, 0), and
(1, 1, 0)-Bragg peaks at T = 1.7 K. The vertical red dashed lines correspond to
the critical field µ0H1 = 26 T. (b) Up-up-down magnetic structure of the field-
induced phase II of U(Ru0.96Rh0.04)2Si2. Figures taken from [Kuwahara 2013].

phase diagram of U(Ru0.96Rh0.04)2Si2 for H ∥ c. For our magnetization data, the

transitions at H1 and H2 vanish above T = 12.5 K, whereas they vanish above 9 K

in the phase diagram reported by Kim et al. [Kim 2004] [see Fig. 6.1(f)]. This

temperature difference is presumably due to a temperature gradient between the

sample and the thermometer in our experimental set-up, as observed for the mag-

netization data of URu2Si2 (see Sect. 5.4). From neutron diffraction measurements

on U(Ru0.96Rh0.04)2Si2 under pulsed magnetic fields µ0H ∥ c up to 30 T, Kuwahara

et al. [Kuwahara 2013] have found an enhancement of the (2/3, 0, 0) and (4/3, 0, 0)

magnetic Bragg peaks above µ0H1 = 26 T at T = 1.7 K [see Fig. 6.3(a)]. This

indicates a magnetic ordering with the wave vector q = (2/3, 0, 0), i.e, a commen-

surate up-up-down magnetic structure with the magnetic moments parallel to the

c-axis [see Fig. 6.3(b)]. One third of the associated ordered magnetic moment

mord = 0.6 µB/U corresponds approximately to the jump in the magnetization at

H1, as expected from a up-up-down structure. Figure 6.4(a) compares M(H) of

T ∆M(H1) ∆Mtot ∆M(H1)/∆Mtot

U(Ru0.96Rh0.04)2Si2 1.5 K 0.29 0.95 0.31
URu2Si2 4.2 K 0.26 0.7 0.37
URu2Si2 1.5 K 0.35 0.76 0.46

Table 6.1: Steps in the magnetization ∆M(H1) at H1 and ∆Mtot between H1 and H2, and
ratio ∆M(H1)/∆Mtot for U(Ru0.96Rh0.04)2Si2 at T = 1.5 K and URu2Si2 at
T = 1.5 K and 4.2 K.
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Figure 6.4: (a) M(H) of U(Ru0.96Rh0.04)2Si2 and URu2Si2 for rising and falling fields
H ∥ c at T = 1.5 K. (b) M(H) of U(Ru0.96Rh0.04)2Si2 at T = 1.5 K and
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U(Ru0.96Rh0.04)2Si2 and URu2Si2 for H ∥ c at T = 1.5 K. The magnetization of

U(Ru0.96Rh0.04)2Si2 reaches 1.75 µB/U-ion at µ0H ∼ 53 T, which is 10 % higher

than that of URu2Si2. Figures 6.4(c-e) show a plot of M−χ0H, where χ0 =
H→0

M/H

[cf. Sect. 3.5, Fig. 3.10], versus H of (c) U(Ru0.96Rh0.04)2Si2 at T = 1.5 K, and

URu2Si2 at (d) T = 4.2 K and (e) 1.5 K. From these plots we extract the steps

in the magnetization ∆M(H1) at H1 and ∆Mtot between H1 and H2 (see Table

6.1). In a picture where H1 is associated with the stabilization of an up-up-down

structure, one expects to have ∆M(H1)/∆Mtot ≃ 1/3. This is indeed the case of

U(Ru0.96Rh0.04)2Si2 at 1.5 K, but also of URu2Si2 at 4.2 K, but not at 1.5 K. In

the H-T -phase diagram of URu2Si2, H1 leads to phase II at 4.2 K but not at 1.5 K,

where phase IIa is established (see Sect. 5.1). From the values of the step of M at

H1, we conclude thus that phase II of URu2Si2 is compatible with an up-up-down

structure, as in U(Ru0.96Rh0.04)2Si2, but not its phase IIa. I note here that the idea
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of an up-up-down structure for phase II was initially proposed by Sugiyama et al.

[Sugiyama 1990, Sugiyama 1999].
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7 Orbital Magnetoresistivity

In this Chapter, I present and discuss the strongly sample-dependent and

exceptionally-high magnetoresistivity observed in the hidden-order phase of

URu2Si2. For H ∥ c, anomalies in the magnetoresistivity are found to be related to

field-induced Fermi surface modifications inside the hidden-order phase.

7.1 Transverse and longitudinal magnetoresistivity in H ∥ c

Figure 7.1(a) shows the transverse magnetoresistivity ρx,x versus the magnetic field

H measured for H ∥ c and U, I ∥ a at T = 1.4 K on the URu2Si2 samples #1 and #2

studied for this work, and a third sample studied by Levallois et al. [Levallois 2009].

The third sample has been measured in a similar experimental setup than the sam-

ples of this work. The samples have different qualities as indicated by their RRR

(see Sect. 3.5). The resistivity is almost sample-independent in the intermediate

phases between H1 and H3. For all three samples, the resistivity equals ≃ 25 µΩ.cm

for H1 < H < H2 and ≃ 90 µΩ.cm for H2 < H < H3. The strong maximum in the

magnetoresistivity at µ0H
LT
ρ,max ≃ 29 T is found to be strongly sample-dependent.

At 29 T, the resistivity of the highest-quality sample #2 (RRR = 225) reaches

≃ 510 µΩ.cm, that of sample #1 (RRR = 90) reaches ≃ 280 µΩ.cm, and that of

the third sample (RRR = 40) reaches ≃ 120 µΩ.cm. The anomaly at HLT
ρ,max is two

times bigger for sample #2 than for sample #1, where it is three times bigger than

for the sample studied by Levallois et al [Levallois 2009]. This indicates a correlation

between the intensity of the anomaly in ρx,x(H) at 29 T and the sample quality. The

higher is the sample quality, the stronger is the anomaly. The inset of Figure 7.1(a)

shows ρx,x(H) at T = 6 and 40 K. At higher temperatures, the magnetoresistivity

becomes almost sample-independent. Figure 7.1(b) compares the transverse and lon-

gitudinal magnetoresistivities ρx,x and ρz,z, respectively, measured at T = 1.5 K and

in a field H ∥ c on the URu2Si2 samples #1 and #3, which are of similar qualities

[ρz,z(300 K)/ρz,z(2 K) = 85 for sample #3]. The higher noise level in the resistivity

of sample #3 is due to the smaller resistance. ρz,z(H) of sample #3 presents similar

anomalies as ρx,x(H) at Hρ,max, H0, H1, H2, and H3. The inset of Figure 7.1(b)

shows that at high temperature, the difference between the absolute values of ρx,x

and ρz,z versus H reflects the different behaviors of ρx,x and ρz,z versus T at zero-
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Figure 7.1: (a) Transverse magnetoresistivity ρx,x versus the magnetic field H applied
along c measured at T = 1.5 K on URu2Si2 samples #1 and #2 and on a third
sample by [Levallois 2009]. The Inset shows ρx,x(H) of samples #1 and #2 at
T = 6 K and 40 K. (b) Comparison of the transverse magnetoresistivity ρx,x
and the longitudinal magnetoresistivity ρz,z versus H of samples #1 and #3,
respectively, for H ∥ c at T = 1.5 K. The Inset shows ρx,x(H) and ρz,z(H) at
T = 4.2 K, 22 K, and 40 K. (c) ρx,x versus T of samples #1 and #2 and ρz,z
versus T of sample #3, at µ0H = 0 and 30 T, for H ∥ c.

field, presented in Figure 7.1(c). At low temperature, the strong anomaly at ∼ 30 T

occurs in the transverse magnetoresistivity ρx,x, but not in the longitudinal configu-

ration as shown in Figure 7.1(b). This is confirmed by the temperature-dependence

of the resistivity, shown in Figure 7.1(c), where a sudden increase of the transverse

resistivity ρx,x of samples #1 and #2 occurs below T = 6 K at µ0H = 30 T, while

the longitudinal resistivity ρz,z of sample #3 at µ0H = 30 T vanishes below 6 K. I

note here, that the point (µ0H = 30 T,T = 6 K) in the phase diagram falls approx-

imately on the transition line H0/T0 of the hidden-order phase. Thus, the sudden

decrease below 6 K of the longitudinal resistivity ρz,z measured at 30 T is related

to T0. Equivalently, the effect which is responsible for the strong increase of the

transverse resistivity ρx,x develops below T0.
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7.2 Transverse magnetoresistivity in H ∥ a

To summarize, the maximum of magnetoresistivity observed in a magnetic field of ∼
30 T applied along the c-axis i) develops at low temperature, below T = 6K ∼ T0, ii)

is present in the transverse configuration, but not in the longitudinal configuration,

and iii) is enhanced when the sample quality, and thereby the electronic mean free

path, are higher. This indicates that the magnetoresistivity inside the hidden-order

phase is controlled by an orbital effect (cf. also [Kasahara 2007, Levallois 2009]).

This effect is due to the field-induced cyclotron motion of the conduction electrons

along their Fermi surface trajectories within the condition ωcτ > 1, where ωc is the

cyclotron frequency and τ is the lifetime of the conduction electrons. A modification

of the Fermi surface accompanied by a reduction of the carrier mobility µ = ωcτ/µ0H

is a natural way to explain the decrease of the magnetoresistivity above µ0H ∼ 30 T.

7.2 Transverse magnetoresistivity in H ∥ a

Figure 7.2(a) presents the transverse magnetoresistivity ρx,x of URu2Si2 samples

#1 and #2 versus the magnetic field H applied parallel to the magnetic hard axis

a at T = 1.4 K. The transverse magnetoresistivity increases monotonically with

the magnetic field. ρx,x at a given field is almost a factor two higher in sample #2

(RRR=225) than in sample #1 (RRR=90) due to a higher mean free path in sample

#2. No anomalies due to field-induced transitions are observed up to maximal fields

of 68 T and 81 T for samples #1 and #2, respectively, indicating that the system

remains in the hidden-order phase. This is consistent with an ultrasonic velocity

study performed by Yanagisawa et al. [Yanagisawa 2013], where, at T = 1.5 K,

a monotonic elastic constant is observed up to 69 T for H ∥ a. On the other

hand, a magnetic field applied along the c-axis destabilizes the hidden-order phase

at µ0H1 = 35 T (see Chapt. 5). This reflects that the strong Ising-character of the

magnetic properties is connected with the hidden-order parameter.

The resistivity of the high-quality sample #2 reaches 1455 µΩcm at µ0H = 81.3 T,

which is more than three orders of magnitude higher than the zero-field resistivity

at 1.4 K. The fact that ρx,x increases without saturating up to 80 T is an indi-

cation for a nearly perfect compensation of the electrons and holes in URu2Si2 (cf.

also [Pippard 1989, Kasahara 2007, Levallois 2009]). Shubnikov-de Haas oscillations

are observed for both samples and will be discussed in Chapter 9. Figures 7.2(b)

and 7.2(c) show that the strong magnetic field-dependence of ρx,x under H ∥ a is

reduced when T is increased, which is the signature of the impurity-dependent or-

bital magnetoresistivity. A striking feature is the sudden suppression of the magnetic

field-dependence of ρx,x above the hidden-order transition temperature T0 = 17.5 K.

This result is compatible with a Fermi surface reconstruction occurring at T0, with
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Figure 7.2: (a) Transverse magnetoresistivity ρx,x of URu2Si2 samples #1 and #2 versus
the magnetic field H applied along the a-axis at T = 1.5 K. (b) ρx,x(H) of
sample #2 for H ∥ a at temperatures between 1.5 and 65 K. (c) ρx,x(T ) of
sample #2 at constant fields H ∥ a.

a fundamental change of the electric transport properties. In fact, Hall effect mea-

surements by Schoenes et al. [Schoenes 1987] and Dawson et al. [Dawson 1989]

showed an abrupt increase of the Hall coefficient below T0 = 17.5 K, which indicates

a Fermi surface reconstruction resulting in a strong reduction (∼ 90%) of the car-

rier density inside the hidden-order phase. This is confirmed by thermoelectricity

experiments [Bel 2004] and thermal transport measurements indicating a reduction

of the electron phonon-scattering and a drastic increase of the electronic mean free

path below T0 [Bel 2004, Behnia 2005, Sharma 2006].

The sudden change of the field-dependence of ρx,x below T0, due to the fundamental

change of the electronic properties, is easily observed for H ∥ a since there is no field-

induced variation of the magnetic properties, which would result in an additional

field-dependence of ρx,x. The situation is different for H ∥ c [see Fig. 5.4(d)],

where a significant variation with H of ρx,x is observed at all temperatures (up to

65 K) due to a field-induced modification of the magnetic properties. This magnetic
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Figure 7.3: (a) Transverse magnetoresistivity ρx,x of URu2Si2 samples #1 and #2 versus
the magnetic field H applied along c at T = 100 mK and 1.4 K. Zoom on
ρx,x(H) of samples #1 and #2 for µ0H ∥ c between 34 T and 40 T at (b)
T = 1.4 K and (c) T = 100 mK. The grey arrows indicate the directions of the
rise and fall of the pulsed field.

contribution adds to the orbital contribution to ρx,x, and the temperature below

which the orbital contribution develops cannot be determined precisely. At high-

temperatures (T > Tχ,max), the magnetic field quenches the scattering of conduction

electrons on f -electrons moments, which is indicated by a negative slope of the

magnetoresistivity versus field. This effect is strong for H along the magnetic easy

axis c [see Fig. 5.4(c)] and very small for H along the magnetic hard axis a.

7.3 Sample-dependent features in the magnetoresistivity

Figure 7.3(a) presents, at T = 100 mK and 1.4 K, the transverse magnetoresistivity

ρx,x of URu2Si2 samples #1 and #2 versus the magnetic field H applied along the

c-axis. Superconductivity results in ρx,x = 0 in magnetic fields below the supercon-

ducting critical field µ0Hc,2 ≃ 2.5 T at T = 100 mK. Above Hc,2, the resistivity

increases with increasing magnetic field, up to a maximum at µ0H
LT
ρ,max ∼ 30 T, and

decreases from 30 T to 35 T. The characteristic field-induced anomalies at H1, H2,

and H3 are observed for both temperatures. At T = 100 mK the resistivity of sam-

ples #1 and #2 reach ≃ 320 µΩ.cm and ≃ 660 µΩ.cm, respectively, at the maximum

at HLT
ρ,max. The high-field resistivity inside the hidden-order phase increases with

increasing sample quality and with decreasing temperature. Above µ0H3 = 39.0 T,

the magnetic field drives the system into a polarized paramagnetic state, where the

resistivity vanishes due to a strong enhancement of the carrier density, as shown

by the Hall and Nernst effects measured in magnetic fields H ∥ c up to 60 T by
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Levallois et al. [Levallois 2009]. At T = 100 mK, the magnetoresistivity of both

samples exhibits Shubnikov-de Haas oscillations, which will be discussed in Chapter

9.

The magnetoresistivity of sample #1 shows an abrupt change of slope at µ0H
∗ ∼

25 T for both temperatures T = 100 mK and 1.4 K, as indicated by the red arrow

in Figure 7.3(a). This anomaly observed well below HLT
ρ,max corresponds presumably

to a crossover related to an electronic instability. A shown in Figures 7.4(a) and

(b) for T = 100 mK and 1.4 mK, respectively, H∗ in sample #1 (indicated by red

arrows) is defined at the kink in ρx,x, or equivalently at the step-like increase of

∂ρx,x/∂(µ0H), which follows an inflection point at ∼ 20 T in ρx,x (indicated by a

grey arrow). The anomaly occurs at µ0H
∗ = (24.3 ± 0.8) T and (24.7 ± 0.5) T

at T = 100 mK and T = 1.4 K, respectively. Figures 7.4(c) and (d) show that

this anomaly at H∗ is not observed in the resistivity of sample #2 for H ∥ c. We

speculate that the H∗-anomaly in the resistivity of sample #2 is masked by an ad-

ditional orbital contribution due to the higher sample quality. In fact, the study of
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the high-field magnetoresistivity with a rotating magnetic field, presented in Chap-

ter 8, shows that H∗ is observed for both samples when H rotates in the transverse

(a,c)-plane. Thanks the rotation data, µ0H
∗ can be extrapolated for H ∥ c to

µ0H
∗ ≃ 20 T in sample #2. Another ”kink” occurs for sample #2 at around 27 T

at T = 100 mK and is presumably not related to the same phenomenon as that

observed at µ0H
∗ ≃ 25 T in sample #1. This kink could be due to a low-frequency

quantum oscillation. Similar kink-like anomalies following an inflection point in

the resistivity for H ∥ c were also observed for other samples at µ0H
∗ ∼ 22.5 T

[Shishido 2009] and at 24 T [Altarawneh 2011, Aoki 2012], but not for the sam-

ple measured by Levallois et al. [Levallois 2009]. Anomalies in the Hall resistivity

[Shishido 2009, Malone 2011] and thermoelectric power [Malone 2011, Pourret 2013]

have been observed in the same field range, too, and local maxima in the thermo-

electric power at µ0H ∼ 24 T and 30 T were understood as signatures of topo-

logical Fermi surface changes [Malone 2011, Pourret 2013]. The anomalies at H∗

and HLT
ρ,max are both observed here in the orbital contribution to the magnetore-

sistivity, and thus are related to the Fermi surface. In fact, recent Shubnikov-de

Haas experiments led to the conclusion that the anomalies at H∗ and HLT
ρ,max are

related to field-induced Fermi surface modifications inside the hidden-order phase

[Jo 2007, Shishido 2009, Altarawneh 2011, Aoki 2012], as discussed in Chapter 9.

Figures 7.3(b) and 7.3(c) show ρx,x(H) of samples #1 and #2 at T = 1.4 K and

100 mK, respectively, for µ0H between 34 and 40 T. At T = 1.4 K, the resistivity

is almost sample-independent for H > H1 and well-defined sharp steps in ρx,x(H)
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7 Orbital Magnetoresistivity

are observed at H1, H2 and H3. On the other hand, the resistivity becomes sample-

dependent in these regimes at T = 100 mK. ρx,x(H) of sample #1 has the same

behavior at both temperatures T = 100 mK and 1.4 K. The behavior of ρx,x(H)

from sample #2 becomes different at T = 100 mK: the transition at H2 induces a

broader anomaly, in particular for increasing magnetic field. Knowing that sample

#2 has the highest quality, this observation is intriguing. The change of behavior

is probably due to an interplay between the cyclotron motion of the electrons and

their scattering off on the localized magnetic moments.

Figure 7.5 shows the comparison of the transverse magnetoresistivity ρx,x(H)

measured for H ∥ c on URu2Si2 samples of different qualities [Shishido 2009,

Levallois 2009, Altarawneh 2011]. The graph emphasizes the strong sample de-

pendence of the anomaly at ∼ 30 T, which results from an orbital contri-

bution to the magnetoresistivity inside the hidden-order phase. The quality

of the sample, for which RRR∗ = ρx,x(300 K)/ρnx,x(T → 0) = 670, studied

by Shishido et al. [Shishido 2009] is comparable with that of a sample, for

which RRR = ρx,x(300 K)/ρx,x(T = 2 K) = 270, studied by Matsuda et al.

[Matsuda 2011, Matsuda private com.]. The RRR of the sample of Altarawneh et

al. [Altarawneh 2011] is higher than that of sample #2, but the resistivity maxi-

mum at 30 T is lower, which is in contradiction with the RRR-dependence of the

magnetoresistivity observed for the other samples (see Sect. 7.4). However, this

may be due to experimental conditions.

7.4 Analysis of the magnetoresistivity

We have shown that the transverse magnetoresistivity inside the hidden-order phase

of URu2Si2 strongly depends on the sample quality. In fact, the orbital effect is en-

hanced when the mobility, proportional to the relaxation time (see Sect. 2.4), of the

charge carriers is higher. The relaxation time τ increases with the purity of the sam-

ples and decreases with the temperature. An almost perfect compensation of elec-

trons and holes in URu2Si2 is shown by the monotonously-increasing transverse mag-

netoresistivity in fields µ0H ∥ a up to 80 T (see Fig. 7.2). Assuming that the elec-

tronic properties can be described by a unique relaxation time and an average mobil-

ity for all conduction bands, the magnetoresistivity ∆ρx,x = ρx,x(H)− ρnx,x(H = 0)

of a compensated metal with spherical Fermi surfaces is given by (see Sect. 2.4):

∆ρx,x
ρnx,x(H = 0)

= (ωcτ)
2 = µ2(µ0H)2, (7.1)

where ρnx,x is the zero-field resistivity estimated for the normal non-superconducting

state (virtual normal state at temperatures below TSC , see Sect. 3.5).
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∆ρx,x/ρ

n
x,x(H = 0) of samples (c) #1 and (d) #2 versus (µ0H)2 in µ0H ∥ c

up to 20 T, at temperatures from 100 mK to 6 K.

Kasahara et al. [Kasahara 2007] have found, for a high-quality sample [RRR∗ =

ρx,x(300 K)/ρx,x(T → 0) = 670], a nearly perfect ∝ H2-dependence of ∆ρx,x in

magnetic fields µ0H ∥ c up to 10 T and Levallois et al. [Levallois 2009] have found

for a sample of lower quality [RRR = ρx,x(300K)/ρx,x(2K) = 40], a field-dependence

of ∆ρx,x close to ∝ H2 in fields H ∥ c up to µ0H = 20 T. The resistivity of our

high-quality URu2Si2 sample #2 increases by more than two orders of magnitude

in magnetic fields applied along a and c, as shown in Figures 7.2(a) and 7.3(a),

respectively. This exceptionally-strong transverse magnetoresistivity is due to a

very low carrier density [Levallois 2009] combined with the high sample-qualities

[Kasahara 2007, Matsuda 2011].

Figure 7.6 shows plots of the magnetoresistivity of samples #1 and #2 versus H2

for µ0H ∥ c up to 20 T at different temperatures from 100 mK to 6 K. The plots

show a H2-dependence of ρx,x in low fields between ∼ 3 and 13 T in agreement with
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the results of Kasahara et al. [Kasahara 2007] and Levallois et al. [Levallois 2009].

On the other hand, the behavior of the magnetoresistivity clearly deviates from

the H2-dependence at higher fields. As the maximum in the resistivity at ∼ 30 T

[see Fig. 7.3(a)], the slope of the low-field H2-dependence is enhanced with the

sample quality. I extracted a mobility µ averaged over all bands by fitting ρxx

versus H2, in the regime between 3 and 13 T, using Equation (7.1). I note here,

that for temperatures below TSC = 1.5 K, the zero-field resistivity ρnx,x(H = 0) of

the normal non-superconducting state was obtained by the extrapolation via a fit

ρx,x(T ) = ρ0 + AT 1.5 to the resistivity between 1.5 and 8 K (see Sect. 3.5 and

[Matsuda 2011]). I found similar RRR-dependencies of the resistivity maximum at

HLT
ρ,max [see Fig. 7.7(a)] and of the mobility [see Fig. 7.7(b)], both being strongly

enhanced with a higher sample quality. Figure 7.7(c) shows the mobility µ versus
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the temperature T extracted for samples #1 (RRR = 90) and #2 (RRR = 225)

in H ∥ c. The mobility is enhanced as the temperature decreases and a saturation

occurs due to a finite relaxation time in the limit of zero temperature (non-perfect

crystals). Figure 7.7(d) shows that the mobilities µ of samples #1 and #2 increase

approximately linearly with 1/ρnx,x(H = 0), which is compatible with the picture of

an isotrope metal with a unique relaxation time τ , where τ ∝ 1/ρnx,x(H = 0) (see

Sect. 2.4).

The Kohler’s rule [Kohler 1938] implies that all plots of ∆ρx,x(H)/ρnx,x(H = 0)

versus [µ0H/ρnx,x(H = 0)]2 fall on a unique curve, which is independent of the

sample quality and the temperature (see Sect. 2.4.4). Levallois et al. [Levallois 2009]

have shown that the Kohler plots from the resistivity of their sample (RRR = 40)

at temperatures between 1.5 and 17 K in fields µ0H ∥ c up to 20 T fall on a

same [µ0H/ρnx,x(H = 0)]2-line. Figures 7.8(a) and (b) show the Kohler plots of the

resistivities of our samples #1 and #2, respectively, in fields µ0H ∥ c up to 20 T,

at temperatures from 100 mK to 6 K. For sample #1, the plots coincide almost

up to 20 T and a H2-dependence is clearly observed. For sample #2, the plots

coincide in a smaller field window (up to ∼ 10 T) and deviate faster in higher fields

from the H2-dependence than for sample #1. Figures 7.8(c) and (d) show the same

plots for µ0H up to 40 T in a double-logarithmic scale. These plots emphasize that

the magnetoresistivity behavior changes drastically at low fields in the proximity

of Hc2 and at the field-induced crossovers H∗ and HLT
ρ,max. The deviation from the

H2-dependence at low fields is due to the combination of the proximity of Hc2 and a

parasitic off-set in the raw resistivity data. Figures 7.8(e) and (f) compare the Kohler

plots of the resistivities of samples #1 and #2 and that from the sample studied

by Levallois et al. [Levallois 2009] in a double-logarithmic scale, at T = 100 mK

and T = 1.4 K, respectively. The plots of the different samples are close but do not

coincide in the low-field regime.

To summarize, the low-field magnetoresistivity exhibits a H2-behavior, as predicted

for a metal with a compensated spherical Fermi surface (cf. also [Pippard 1989,

Kasahara 2007, Levallois 2009]). The extracted mobility depends on the sample

quality and the temperature. On the other hand, the high-field magnetoresistiv-

ity ∆ρ(H)/ρ(H = 0) deviates strongly from the H2-behavior, namely, when field-

induced crossover-like anomalies in the magnetoresistivity occur at µ0H
∗ ∼ 20−25 T

and µ0H
LT
ρ,max ∼ 30 T. In fact, URu2Si2 has a complex multi-band structure (see

Sect. 9.1) and field-induced Fermi surface modifications have been observed in mag-

netic fields far below the destruction of the hidden-order phase at µ0H1 = 35 T (see

Sect. 9.2). For H ∥ a, I could not analyze the magnetoresistivity, as done for H ∥ c,

because of a lack of reproducibility between the different sets of data (cf. Sect 3.9).
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Figure 7.8: ∆ρx,x(H)/ρnx,x(H = 0) of samples (a) #1 and (b) #2 versus [µ0H/ρnx,x(H =
0)]2 for µ0H ∥ c up to 20 T, at temperatures from 100 mK to 6 K.
∆ρx,x(H)/ρnx,x(H = 0) of samples (c) #1 and (d) #2 versus [µ0H/ρnx,x(H =
0)]2 in µ0H ∥ c up to 40 T, at temperatures from 100 mK to 6 K, in a double-
logarithmic scale. (e) ∆ρx,x(H)/ρnx,x(H = 0) of samples #1 and #2 versus
[µ0H/ρnx,x(H = 0)]2 in H ∥ c, at T = 100 mK, in a double-logarithmic scale.
(f) ∆ρx,x(H)/ρnx,x(H = 0) of samples #1, #2, and of that studied by Levallois
et al. [Levallois 2009] [µ0H/ρnx,x(H = 0)]2 in H ∥ c, at T = 1.4 mK, in a
double-logarithmic scale. The scattered lines represent H2-dependencies.
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7.4 Analysis of the magnetoresistivity

For H ∥ a, the slope of the low-field magnetoresistivity is stronger and indicates a

mobility higher than for H ∥ c [see also Chapt. 8, Fig. 8.4(b)]. Since the mobility

is inversely proportional to the cyclotron effective mass (see Sect. 2.4), a higher

mobility for H ∥ a than for H ∥ c is compatible with the anisotropy of the cyclotron

effective masses extracted by Shubnikov-de Haas experiments [Aoki 2012].
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8 Angle-Dependent Study of the

High-Field Magnetoresistivity

URu2Si2 exhibits strongly anisotropic bulk properties due to the Ising-character

of its magnetic properties. The magnetic easy axis is the c-axis of the

body-centered tetragonal lattice. This results in strongly anisotropic re-

sistivity [Palstra 1986, Ohkuni 1997] and magnetic susceptibility [Palstra 1985,

Dawson 1989, Ramirez 1992]. The upper critical field Hc2 related to the destruc-

tion of superconductivity is also strongly anisotropic [Kwok 1990, Brison 1994,

Ohkuni 1997]. Magnetization [Sugiyama 1990] and magnetoresistivity [Jo 2007]

measurements have shown that the low-temperature critical fields H1, H2, and H3

follow a simple 1/cos θ-law, at least up to θ = 30◦, where θ is the angle between the

magnetic field and the c-axis. Furthermore, Aoki et al. [Aoki 2012] observed that

the crossover field H∗ in the magnetoresistivity also follows a 1/cos θ-law, at least

up to θ = 30◦. In this chapter, I present magnetoresistivity experiments performed

on the URu2Si2 monocrystalline samples #1 and #2 in a rotation probe, which per-

mitted to measure the magnetoresistivity versus a magnetic field up to 60 T applied

along different orientations of the crystal. The basic crystal planes (a,c) and (a,c)

of the tetragonal structure have been investigated. These experiments extended the

angle-dependence of the transition fields H1, H2, and H3 and the crossover fields

H∗ and HLT
ρ,max up to θ = 60◦.

8.1 Angle dependence of Hc2

Figure 8.1(a) presents the transverse magnetoresistivity ρx,x of our sample #2 of

URu2Si2 versus the magnetic field H applied parallel to the (a,c)-plane, for different

angles θ between the magnetic field and the c-axis at T = 32 mK. The resistivity

equals zero below the superconducting critical field Hc2 and increases monotonically

above Hc2. The critical field µ0Hc2 equals 3.1 T for θ = 5◦ and increases with θ,

reaching 7.1 T for θ = 67◦. In the normal conducting state, ρx,x(H) exhibits an

oscillatory modulation due to the Shubnikov-de Haas effect, which will be analyzed

in Chapter 9. The θ-dependence of Hc2 obtained by our resistivity experiments on

sample #2 is plotted in Figure 8.1(b). Hc2 exhibits a pronounced anisotropy in the
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Figure 8.1: (a) Magnetoresistivity ρx,x of URu2Si2 sample #2 versus the magnetic field H
for different angles θ between H and c at T = 32 mK. (b) Angle-dependence of
Hc2 for H in the plane (a,c) from our resistivity data of sample #2 and from
resistivity data from [Ohkuni 1999]. ∗The solid lines represent fits to the data
with the function (8.1).

(a,c)-plane. The angle dependence of Hc,2 obtained by Ohkuni et al. [Ohkuni 1999]

on another sample, also plotted in Fig. 8.1(b), is in good agreement with that from

our data. The data of Ohkuni et al. [Ohkuni 1999] show that, at T = 30 mK,

µ0Hc2 reaches ≃ 13 T for H ∥ a (θ = 90◦). The angle dependence of Hc,2 was

first established by Brison et al. [Brison 1994] from specific heat measurements.

They proposed a theoretical model for the anisotropy of Hc2, based on the Pauli

paramagnetic limit:

Hc2(θ) =
Hc2(H ∥ c)√

cos2(θ) + ϵ2 sin2(θ)
, (8.1)

where ϵ = Hc2(H ∥ c)/Hc2(H ∥ a), and found that this model fits well to their

data at T = 10 mK. The angle-dependencies of Hc,2 established by Ohkuni et al.

[Ohkuni 1999] and in this work are well described by this model, too [see Fig. 8.1(b)].

8.2 H-T phase diagram for (H, c) = 20◦

Figure 8.2(a) presents the resistivity ρxx of sample #1 as a function of the magnetic

field H applied parallel to c for different temperatures T between 1.4 and 40 K. A

detailed description of the field-induced anomalies in the magnetoresistivity in a field

H ∥ c is given in Chapter 5. Figure 8.2(c) presents the resistivity ρxx of sample #1 as

a function of the magnetic field H, for an angle θ = 20◦ betweenH and c, at different

temperatures T between 1.4 and 40 K. The general form of the magnetoresistivity

is similar to that obtained for H ∥ c, with the same field-induced transitions and

crossovers. The difference is that for θ = 20◦, the resistivity curves, and thereby the
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8.2 H-T phase diagram for (H, c) = 20◦
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Figure 8.2: (a) Resistivity ρxx of URu2Si2 sample #1 versus the magnetic field H applied
parallel to c, at temperatures from 1.4 K to 40 K. (b) H-T -phase diagram
of URu2Si2 resulting from ρxx(H) for H ∥ c. (c) Resistivity ρxx of URu2Si2
sample #1 versus the magnetic field H for (H, c) = 20◦, at temperatures
from 1.4 K to 40 K. (d) H-T -phase diagram of URu2Si2 from ρxx(H) for
(H, c) = 20◦.

transition and crossover fields, are shifted to higher field values. For example the

transition field H1, which is related to the destruction of the hidden-order phase,

is shifted from µ0H1 = 35.1 T to 37.6 T. Figures 8.2(b) and 8.2(d) present the

resulting H-T -phase diagrams for θ = 0 and θ = 20◦, respectively, obtained from

the magnetoresistivity data shown in Figures 8.2(a) and 8.2(c), respectively. As

shown in Figure 8.3, the phase diagram obtained for (H,c) = 20◦ is re-scalable on

that obtained for H ∥ c. The scaling factor of 0.94 corresponds approximately to

cos θ, with θ = 20◦. This indicates that the physics of the whole H-T -phase diagram

is governed by the projection of the magnetic field along the magnetic easy axis c. In

Section 8.3, we extend the study of the angle-dependence of the high-field resistivity

to a large set of angles up to 90◦.
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8.3 Crossover and transition fields for H in the plane (a,c)

Figure 8.4(a) presents the magnetoresistivity ρx,x of URu2Si2 sample #2 versus the

magnetic field H at T = 1.5 K for different angles θ1 between the magnetic field and

the c-axis. The magnetic field is turning from the transverse (H ∥ c; H ⊥ I,U; θ1

= 0◦) to the longitudinal (H ∥ a; H ∥ I,U; θ1 = 90◦) configurations. Contrary to

sample #1 (presented in Sect. 8.2, RRR = 90), sample #2 (RRR = 225) does not

show an anomaly at H∗ for H ∥ c, as seen in Section 7.3. When θ1 increases, the

general form of the magnetoresistivity remains unchanged, but the anomalies from

the metamagnetic transitions at H1, H2, and H3 and from the crossover at HLT
ρ,max

are shifted to higher field values. For θ1 > 50◦, the anomalies are shifted out of the

field range (60 T) and the resistivity increases monotonically. The value of ρx,x at

the maximum at HLT
ρ,max is also slightly increasing with θ1, which may be due to a

small misalignment of the sample. The θ1-dependencies of the transition fields H1,

H2, and H3 and the crossover field HLT
ρ,max are presented in Figure 8.6(a).

Figure 8.4(b) presents the magnetoresistivity ρx,x of sample #2 versus the magnetic

fieldH at T = 1.6 K for different angles θ2 between the magnetic field and the c-axis.

θ2 is the angle between c and H, which lies in the (a,c)-plane and is perpendicular to

the electric current. Hence the magnetic field is turning from the transverse (H ∥ c;

H ⊥ I,U) to the transverse (H ∥ a; H ⊥ I,U) configurations. At small angles,

we observe that the same field-induced anomalies as that observed for sample #1

in Chapter 5. With increasing angle θ2, the transition fields H1, H2, and H3 and

the crossover field HLT
ρ,max shift to higher field values and are shifted out of the field

range (upper limit: 60 T) for θ2 ≥ 65◦. The angle-dependence of H1, H2, H3, and

114



8.3 Crossover and transition fields for H in the plane (a,c)

0 10 20 30 40 50 60
0

500

1000

(b)

x,
x  

(
.c

m
)

0
H  (T)

2 = 0°

50°

 35°

65°

90°

H

H LT
max

H3H2H1

40

sample #2

URu2Si2

T = 1.5 K

c

a
a

I,U

2

0 10 20 30 40 50 60
0

200

400

600

 

0
H  (T)

x,
x  

(
.c

m
)

(a)

sample #2

 

70 °

60 °50 °40 °30 °

URu2Si2

T = 1.5 K

H1 H2 H3

H LT
max

1 = 0°

c

a

a
I,U

H

1

Figure 8.4: (a) Magnetoresistivity ρx,x of sample #2 versus the magnetic field H at
T = 1.5 K for different angles θ1 between H and c. The field is turning in the
(a,c)-plane from the transverse (θ1 = 0◦) to the longitudinal (θ1 = 90◦) config-
urations. (b) Magnetoresistivity ρx,x of sample #2 versus H at T = 1.6 K for
different angles θ2 between the magnetic field and the c-axis. The magnetic
field is turning in the transverse (a,c)-plane.

HLT
ρ,max is presented in Figure 8.6(b). In this second configuration, the magnetic field

remains transverse for all angles θ2 and the general form of the magnetoresistivity

evolves differently than in the first configuration. For θ2 = 90◦, i.e., when H ∥ a,

the transverse magnetoresistivity increases continuously up to the maximal field and

no field-induced anomalies are observed. The oscillatory modulation of ρx,x(H) for

θ2 = 90◦ is due to the Shubnikov-de Haas effect and will be analyzed in Chapter

9. Remarkably, the heights of the plateaus of phase V between H1 and H2 and

phase III between H2 and H3 are independent of the orientation of the magnetic

field relatively to the c-axis or to the current, as seen in Figures 8.4(a) and 8.4(b).

Above H1, the magnetoresistivity is also sample-independent, as shown in Chapter

7, and has thus no observable orbital contribution. We conclude that the resistivity

in phases III and V is dominated by the scattering of the charge carriers on the

magnetic moments of the localized 5f -electrons. Within this picture, the scattering

off of the f -electrons is sample-independent, since it corresponds to a scattering of

the conduction electrons by the static or fluctuating magnetic moments from each

5f U-ion site, the distance - between two ions - involved in this process being smaller

than the distance between two impurities.

A pronounced inflection point in ρx,x(H) of sample #2 develops at a field well below

HLT
ρ,max for θ2 ≥ 35◦. This is the same anomaly as that observed in the resistivity

of sample #1 for H ∥ c at H∗, which is defined at the kink just after an inflection

point [see Chapter 7], and corresponds to a Fermi surface-related crossover. Figures

8.5(a) and (b) present for both samples the evolution, with an increasing angle θ2,
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Figure 8.5: (a) Definition of the anomaly at H∗ in the magnetoresistivity of samples #1
and #2 for different orientations of the magnetic field in the transverse (a,c)-
plane. (b) Equivalent definition of H∗ in the field-derivative of the resistivity.

of the kink-like anomaly in the resistivity and in the associated step-like anomaly

in the field-derivative of the resistivity, respectively. Even if this anomaly at H∗

is not observed for sample #2 for H ∥ c, the figures 8.5(a) and (b) clearly shows

that both samples exhibits a similar anomaly at H∗ for θ2 ≥ 35◦. Figure 8.6 shows

the angle-dependence of the transition fields H1, H2, and H3, and the crossover

fields HLT
ρ,max and H∗ in angles up to 60◦. All of these transition and crossover

fields can be fitted with 1/ cos θ-functions (θ = θ1,θ2). The angle-dependence of

the low-temperature critical fields H1, H2, and H3 established by the resistivity

measurements of this work is consistent with results from previous magnetization

experiments for θ up to 15◦ [Sugiyama 1990] and resistivity experiments for θ up

to 30◦ [Jo 2007]. The angle dependence of the crossover field HLT
ρ,max defined at

the maximum of the resistivity is a new feature of the present work. The 1/cos θ-

dependence indicates that the physics of these transitions and crossovers only depend

on the projection of the magnetic field on the c-axis, at least up to θ = 60◦ (θ = θ1,

θ2). The 1/cos θ-dependence of H∗ observed here is consistent with results from

previous resistivity experiments for θ up to 40◦ [Shishido 2009, Aoki 2012]. The

resistivity of our sample #2 does not show an anomaly at H∗ for θ = 0 but an

extrapolation of the 1/cos θ-law leads to µ0H
∗ → 20 T, when θ2 → 0, which is much

lower than µ0H
∗ ≃ 25 T in sample #1 or the values of 22.5 and 24 T reported in the

literature [Shishido 2009, Altarawneh 2011, Aoki 2012]. Sample #2 has the highest

quality and the anomaly at H∗ in its magnetoresistivity may be hidden, for H ∥ c,

by an additional orbital contribution, whose intensity decreases at high angles θ2,

while the intensity of the anomaly at H∗ increases at high θ2.
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8.4 Magnetoresistivity in magnetic fields H in the plane (a,a)
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The transition fieldsH1, H2 andH3 are related to the f -electron magnetic properties,

and their angle-dependence is a consequence of the strong Ising-character of the

magnetic properties of URu2Si2. I have shown in Chapter 7 that the anomalies at

H∗ and HLT
ρ,max occur in the orbital contribution to the magnetoresistivity, thus are

related to Fermi surface modifications. H∗ and HLT
ρ,max show 1/cos θ-dependencies,

similarly to the magnetic transitions H1, H2, and H3. This indicates that only

the projection of the magnetic field along the c-axis affects the Fermi surface, and

confirms a strong correlation between the magnetic properties of the 5f -electrons and

that of the Fermi surface in URu2Si2. This underlines the dual localized-itinerant

nature of the 5f electrons.

8.4 Magnetoresistivity in magnetic fields H in the plane

(a,a)

Figure 8.7 shows the magnetoresistivity ρx,x of sample #2 versus the magnetic field

H at T = 1.4 K for different directions of H in the (a,a)-plane. The field has been

turned from the transverse (ϕ = 0◦) to the longitudinal (ϕ = 90◦) configurations, ϕ

being the angle betweenH and a. For all values of ϕ, the magnetoresistivity increases

continuously with the field and no anomalies due to field-induced transitions are

observed, the system remaining in the hidden-order phase at least up to 60 T. ρx,x(H)

is modulated by Shubnikov-de Haas oscillations, which will be analyzed in Chapter

9. The field-dependence of the magnetoresistivity decreases with increasing angle

ϕ and ρx,x has almost vanished at ϕ = 90◦. The fact that the magnetoresistivity
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Figure 8.7: Magnetoresistivity ρx,x of URu2Si2 sample #2 versus H at T = 1.5 K for
different angles ϕ between H and a. The field is turning in the (a,a)-plane
from the transverse (ϕ = 0◦) to the longitudinal (ϕ = 90◦) configurations.

vanishes, when the magnetic field is turning from the transverse to the longitudinal

configurations, is a signature of the orbital effect, which dominates the transverse

magnetoresistivity of URu2Si2 in its hidden-order phase. Figures 8.4(b) and 8.7

emphasize the strong dependence of the magnetoresistivity on the orientation of the

sample in a magnetic field for small angles between H and a. This is one of the

reasons for the limited reproducibility of our magnetoresistivity measurements in

H ∥ a (cf Sect. 3.9).
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9 Fermi Surface in High Magnetic Fields

In this Chapter, I present a study of the Fermi surface of URu2Si2 in high magnetic

fields via the Shubnikov-de Haas effect observed on our highest-quality URu2Si2

sample #2. Section 9.1 presents a preliminary study of the low-field Fermi surface

in steady magnetic fields up to 13 T. Section 9.2 shows that magnetic-field-induced

Fermi surface modifications occur in intense magnetic fields below 35 T applied along

the c-axis, i.e., inside the hidden-order phase. In Section 9.3, quantum oscillations

are observed for the first time in magnetic fields µ0H ∥ a up to 81 T. A new

Fermi surface branch λ, with a small effective mass m∗ = (1 ± 0.5) m0 and the

frequency Fλ ∼ 1350 T, is extracted. An angle-dependence of the observed high-

field Shubnikov-de Haas frequencies is established in Section 9.4.

9.1 Low-field Fermi surface

The low-magnetic-field Fermi surface of URu2Si2 is well-known from quantum

oscillation experiments in steady magnetic fields performed by Ohkuni et al.

[Ohkuni 1999] and Hassinger et al. [Hassinger 2010]. The low-field Shubnikov-

de Haas experiments presented here were performed on our sample #2 in steady

magnetic fields up to 13 T at the Institut Nanosciences et Cryogénie of the CEA-

Grenoble, in collaboration with Georg Knebel, Alexandre Pourret, and Dai Aoki.

Figure 9.1 presents the Shubnikov-de Haas data resulting from resistivity measure-

ments at T = 32 mK in a magnetic field applied along different directions in the

transverse (a,c)-plane. In this graph, θ indicates the angle between H and c. Figure

9.1(a) shows the oscillating signals ρoscx,x = ρx,x−ρBG versus H obtained by subtract-

ing non-oscillating polynomial backgrounds ρBG from the raw resistivity (shown in

Sect. 8.1, Fig. 8.1). Figure 9.1(b) shows the Shubnikov-de Haas spectra obtained

via Fourier transforms of the oscillating signals ρoscx,x/ρBG versus the inverse magnetic

field (µ0H)−1, and Figure 9.1(c) focuses on the example of the Shubnikov-de Haas

spectrum for θ = 5◦. This spectrum exhibits peaks at the frequencies Fη ≃ 95 T,

Fγ ≃ 185 T, Fβ ≃ 435 T, Fβ′ ≃ 500 T, and Fα ≃ 1063 T. Furthermore, peaks due to

the harmonics of γ, β, and α, and a peak due to the combination of α and β are ob-

served. The angle dependencies of the Fermi surface branches α, β and γ are shown

in Figure 9.1(d). Fα is almost angle-independent in the (a,c)-plane (Fα ∼ 1060 T).
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Figure 9.1: Shubnikov-de Haas data of URu2Si2 sample #2 at T = 32 mK and in a mag-
netic field up to 13 T, applied along different directions in the (a,c)-plane with
an angle θ between H and c. Data extracted from that shown in Sect. 8.1,
Fig. 8.1. (a) Oscillating signals ρoscx,x = ρx,x − ρBG versus H, where ρBG is a
non-oscillating polynomial background. (b) Resulting Fourier spectra. (c) Ex-
emple of the fourier spectrum for θ = 5◦. (d) Angle-dependence of the low-field
Shubnikov-de Haas frequencies γ, β, and α.

Fβ decreases with increasing θ from ∼ 430 T at θ = 0◦ to ∼ 330 T at θ = 45◦. Fγ

exhibits the strongest angle-dependence and decreases from ∼ 190 T at θ = 0◦ to

∼ 85 T at θ = 45◦.

Figure 9.2 presents the Shubnikov-de Haas data of sample #2 from measurements

at temperatures between 32 and 250 mK for an angle θ = 15◦ between H and c.

Figure 9.2(a) shows the resistivity ρx,x(H) and Figure 9.2(b) shows the extracted

oscillating signal ρoscx,x(H). The amplitude of the oscillations decreases with increasing

temperature due to the RT -damping (Sect. 2.5, Eq. 2.82). Figure 9.2(c) presents the

resulting Shubnikov-de Haas spectra. For θ = 15◦, I have extracted the fundamental

frequencies Fα ≃ 1060 T, Fβ ≃ 395 T, Fβ′ ≃ 445 T, Fγ ≃ 140 T, and Fη ≃ 100 T.

The cyclotron effective masses m∗
α = (11.7 ± 2) m0, m

∗
β = (21.7 ± 6.5) m0, m

∗
β′ =
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Figure 9.2: (a) ρx,x(H) of URu2Si2 sample #2 for θ = 15◦ at temperatures from 32 to
250 mK. (b) Oscillating signal ρoscx,x = ρx,x − ρBG versus H, where ρBG is a
non-oscillating polynomial background. (c) Fourier spectra of the Shubnikov-
de Haas oscillations observed in magnetic fields up to 13 T, for θ = 15◦. (d)
Mass-plots of the frequencies γ, β, and α, for θ = 15◦. The solid lines represent
fits with the RT -damping function.

(32.4±10) m0, and m∗
γ = (5.3±0.5) m0 are obtained by fitting the peak amplitude of

the Fermi surface branches α, β, β′, and γ, respectively, versus the temperature with

the RT -damping function (Sect. 2.5, Eq. 2.83), as shown in Figure 9.2(d). I was not

able to extract the mass of γ because to its weak amplitude. The spectra, the angle-

dependencies, and the cyclotron effective masses of the Fermi surface sheets α, β, and

γ are in good agreement with the data reported by Hassinger et al. [Hassinger 2010]

and Ohkuni et al. [Ohkuni 1999] (see Fig. 9.3).

The steady-field experiments on our highest-quality URu2Si2 sample (RRR = 225)

show Shubnikov-de Haas data consistent with recent studies, when measured in

similar experimental conditions (steady fields, subkelvin temperatures). Keeping

this in mind, the Shubnikov-de Haas data obtained in pulsed-high-field experiments

will be presented in the following, where i) new features are observed in high fields
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9 Fermi Surface in High Magnetic Fields

Figure 9.3: Angle-dependence of (a) the Shubnikov-de Haas frequencies and (b) the corre-
sponding effective masses of URu2Si2. Figures taken from [Hassinger 2010].

(above ∼ 20 T) and ii) a higher noise level is due to the pulsed fields.

9.2 Fermi surface modifications in high magnetic fields

H ∥ c

We have seen in Chapter 7 that a magnetic field applied along the c-axis induces

anomalies in the orbital contribution to the magnetoresistivity of URu2Si2, namely

a the sample-dependent field µ0H
∗ ∼ 20 − 25 T and a maximum of ρx,x(H) at

µ0H
LT
ρ,max = 31.5 T, i.e., well below the destruction of the hidden-order phase at

µ0H1 = 35 T (cf. also [Shishido 2009, Altarawneh 2011, Aoki 2012]).

Figure 9.4(a) shows the magnetoresistivity ρx,x(H) of our sample #2 at T = 100 mK

in a magnetic field H applied parallel to the magnetic easy axis c. The magnetoresis-

tivity exhibits Shubnikov-de Haas oscillations in a field range from ∼ 15 T to 35 T.

Figure 9.4(b) shows the oscillating signal extracted by subtracting a non-oscillating

spline background from the raw resistivity. Figure 9.5(a) presents the resulting

Shubnikov-de Haas spectra obtained via Fourier transforms of the quantum oscilla-

tions for different field-windows between 13.6 and 34.7 T. Figure 9.5(b) presents the

extracted Shubnikov-de Haas frequencies as function of the magnetic field applied

along c. The spectra exhibit the frequencies of the α and β Fermi surface sheets,

which have been observed in the low magnetic fields (see Sect 9.1). The frequency Fα

(∼ 1000 T at low field) is observed up to 35 T, while the frequency Fβ (∼ 400 T at

low fields) is observed up to 32.5 T. Approaching 35 T, the frequency peaks become

much broader due to the limited number of periods in the 1/H-range. Fα decreases

from 1020 T at µ0H = 15 T to 830 T at µ0H = 30 T, while Fβ increases from 420 T

at µ0H = 15 T to 590 T at µ0H = 30 T. Abrupt changes in the spectra occur at
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Figure 9.4: (a) ρx,x(H) of URu2Si2 sample #2 at T = 100 mK, for µ0H ∥ c up to 40 T. (b)
Oscillating signal ρoscx,x(H) extracted with a spline background from ρx,x(H).

µ0H ∼ 30 T: in the field-window 31.5− 34.7 T, Fβ has vanished and a new distinct

frequency peak appears at Fδ = 1300 T.

For comparison, the results of recent Shubnikov-de Haas experiments performed in

steady magnetic fields [Jo 2007, Shishido 2009, Altarawneh 2011, Aoki 2012] are also

plotted in Figure 9.5(b). An excellent agreement is found with the data of Aoki et al.

[Aoki 2012], where a similar analysis as here, i.e., with a high number of small field

windows, was performed. A striking feature of the Shubnikov-de Haas data of Aoki

et al. [Aoki 2012] is that a new frequency labeled Fω with a large cyclotron mass

(m∗
ω ∼ 25 m0) appears at µ0H ∼ 20 T. Fω increases strongly with the magnetic field

from 240 T at µ0H = 21 T to 640 T at µ0H = 29 T. The data of the present work are

also in good agreement with studies where the quantum oscillations were analyzed

on fewer field windows [Jo 2007, Shishido 2009, Altarawneh 2011]. The frequen-

cies Fα, Fβ , and Fδ have been observed in all sets of data [Jo 2007, Shishido 2009,

Altarawneh 2011, Aoki 2012]. However, from the magnetoresistivity data reported

here, we can not observe all of the frequencies reported by the steady-field experi-

ments, due to the intrinsic noise of the pulsed field experiments. Particularly, the

field-dependencies of the low frequencies η, γ, and ω have not been established here.

Surprisingly we were able to follow the frequency β from 22 to 25 T, where Aoki

et al. [Aoki 2012] did not observe it. Further differences are as follows: i) at 20 T,

a high frequency of 1500 T was observed by Altarawneh et al. [Altarawneh 2011],

but neither in the present work nor in that of Aoki et al. [Aoki 2012], ii) as well,

no trace of the frequency at ∼ 1300 T observed by Shishido et al. [Shishido 2009]

above µ0H = 17 T is found here, iii) Altarawneh et al. [Altarawneh 2011] and Jo

et al. [Jo 2007] observed a frequency of 230 T at µ0H ∼ 27 T, which is not ob-

served here or by Aoki et al. [Aoki 2012], iv) at µ0H ∼ 33 T, Altarawneh et al.
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Figure 9.5: (a) Fourier spectra of the quantum oscillations of sample #2, for H ∥ c
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dashed lines are guides to the eyes. (b) Field-dependence of the Shubnikov-
de Haas frequencies for H ∥ c. The horizontal bars indicate the analyzed
field windows. Data from steady-field measurements [Jo 2007, Shishido 2009,
Altarawneh 2011, Aoki 2012] are added for comparison.

[Altarawneh 2011] and Jo et al. [Jo 2007] observed a high frequency of ∼ 1700 T,

which is not observed here or by Aoki et al. [Aoki 2012]. The differences between the

presented Shubnikov-de Haas data is due the limited number of oscillation periods

in the analysed field windows.

The low-field Shubnikov-de Haas experiments show that URu2Si2 is a multi-band

metal with at least four Fermi surface sheets α,β, γ, and η [Bergemann 1997,

Keller 1998, Ohkuni 1999, Hassinger 2010, Aoki 2012]. α, β, and γ are closed

Fermi surface pockets and no open Fermi surface is observed from quantum os-

cillation experiments [Ohkuni 1999, Aoki 2012]. Effective masses up to ∼ 30 m0

indicate that URu2Si2 is well a heavy-fermion compound, in agreement with mea-

surements of bulk properties [Palstra 1985, Maple 1986, Schoenes 1987]. The speci-

ficity of URu2Si2 is that the Fermi surface reconstruction at T0 (cf. Sect. 7.2)

leads to different Fermi surface bands whose characteristic band filling energies

∆ϵ = ~eF/m∗
c ∼ 1−10 meV are rather low, due to the combined effects of low-carrier

densities [Schoenes 1987, Dawson 1989, Kasahara 2007] and high effective masses.

Since ∆ϵ is of the same order than the Zeeman energy ϵZ = 1
2gµBµ0H (≃ 1.2 meV

at µ0H = 20 T, for g ≃ 2), applying a magnetic field of 20 T or more may permit to
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9.3 Fermi surface in high magnetic fields H ∥ a

decouple the minority and majority spin bands. Considering the complex band struc-

ture of URu2Si2, exotic phenomena such as the cascade of Fermi surface reconstruc-

tions observed here and in [Jo 2007, Shishido 2009, Altarawneh 2011, Aoki 2012]

could be thus related to the Zeeman effect.

To summarize, as observed here and in previous studies [Jo 2007, Shishido 2009,

Altarawneh 2011, Aoki 2012], the evolution of the Shubnikov-de Haas spectrum

clearly indicates that a magnetic field applied along c induces important modifica-

tions of the Fermi surface of URu2Si2, in magnetic fields far below µ0H1 = 35 T, i.e.,

inside the hidden-order phase. Abrupt modifications of the Fermi surface occur in

the proximity of the strong maximum in the resistivity at µ0H
LT
ρ,max = 30 T, whereas

progressive frequency changes are observed in a large field range from 15 to 30 T,

in which the kink-like anomaly in the magnetoresistivity at µ0H
∗ ∼ 20− 25 T was

observed. The Fermi surface reconstructions are presumably due to successive po-

larizations of the different Fermi surface pockets. Remarkably, the low-temperature

magnetization does not show signatures of anomalies in the thermodynamic proper-

ties in the field range 0 to 35 T (see Sect. 5.1). Furthermore, the anomalies detected

in the hidden-order phase are smeared out by increasing temperature, which indi-

cates that they are not conventional phase transitions. Thus, the observed anomalies

in the transport properties are due to purely electronic instabilities, possibly Lifshitz-

transitions [Lifshitz 1960] (cf. also [Malone 2011, Pourret 2013]). It is worthwhile

to remark that an enhancement of the critical magnetic fluctuations, as indicated

by the field-dependence of the Sommerfeld coefficient is also observed above 30 T

[see Sect. 5.1, Fig. 5.2(b)]. We underline the strong interplay between the magnetic

polarization and the field-induced evolution of the Fermi surface in URu2Si2.

9.3 Fermi surface in high magnetic fields H ∥ a

Figure 9.6(a) presents the transverse magnetoresistivity ρx,x of our URu2Si2 sam-

ple #2 measured in a magnetic field applied along the magnetic hard axis a, at

temperatures from 500 mK to 4.2 K. At T = 500 mK, the sample is in the su-

perconducting phase, which is destabilized at µ0Hc,2 ∼ 8 T, and the magnetore-

sistivity increases significantly with increasing magnetic field, from 57 µΩcm at

µ0H = 10 T to 1150 µΩcm at µ0H = 55 T. No field-induced transition is observed

up to µ0H = 57 T at T = 500 mK and up to µ0H = 81 T at T = 1.4 K, respectively,

indicating that the system remains in the hidden-order phase. Quantum oscillations

due to the Shubnikov-de Haas effect are visible over large field ranges, e.g., up to

81 T at T = 1.4 K. We distinguish slow and fast oscillations in the raw resistivity. At

T = 500 K, the non-oscillating part of the magnetoresistivity is almost linear above
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Figure 9.6: (a) Transverse magnetoresistivity ρx,x of URu2Si2 sample #2 versus the mag-
netic fieldH applied along the a-axis at temperatures from 500 mK to 4.2 K. (b)
Oscillating signal ρoscx,x versus H extracted by subtracting linear backgrounds
from ρx,x. (c) Fast oscillating signals extracted by subtracting spline back-
grounds from ρx,x. (d) Fast oscillating signals ρoscx,x versus the inverse magnetic
field (µ0H)−1. (e) Fourier spectra of the oscillations of sample #2 extracted
by subtracting linear backgrounds for H ∥ a, at temperatures from 500 mK
to 1.2 K. (f) Fourier spectra of the fast oscillations extracted by subtracting
spline backgrounds for H ∥ a at temperatures from 500 mK to 1.2 K.
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9.3 Fermi surface in high magnetic fields H ∥ a

Hc,2, which deviates significantly from the ρx,x ∝ H2 behavior discussed in Sec-

tion 7.4. Non-oscillating backgrounds have been subtracted from the raw resistivity

curves to obtain the oscillating signals ρoscx,x. Figure 9.6(b) shows the oscillating sig-

nals ρoscx,x(H) extracted by subtracting linear backgrounds from ρx,x(H) and Figure

9.6(c) shows the fast oscillating signals extracted by subtracting spline backgrounds.

Using a linear background assures that the complete frequency range is preserved

in the oscillating signal, especially the low frequencies, but risks that a high para-

sitic signal from a remaining monotonic background appears in the low frequency

regime of the spectra. A manually defined spline background easily eliminates the

non-oscillating part of ρx,x(H) but may cut off slow oscillations, too. Subtracting a

spline background permits to obtain a higher resolution in the high-frequency range

of the spectra than subtracting a linear background, since the spline background

reduces the discontinuities at the limits of the analyzed field range. Figure 9.6(d)

shows the fast oscillating signal ρoscx,x versus the inverse magnetic field (µ0H)−1 at

T = 500 mK and 1.4 K and illustrates that the oscillations are periodic in 1/H. The

fast oscillating signals clearly show beatings, indicating a splitted frequency branch.

Figure 9.6(e) shows the Fourier spectra of the Shubnikov-de Haas oscillations ex-

tracted with linear backgrounds. The spectra exhibit frequency peaks at F = 70 T,

140 T, 210 T and 1185 T. The low frequency Fγ = 70 T corresponds to the small

elliptic Fermi surface pocket γ and the high frequency Fα = 1185 T corresponds to

the large spherical Fermi surface sheet α (cf. Section 9.1, [Ohkuni 1999, Aoki 2012]).

The spectra also show harmonics of γ at 2Fγ = 140 T and 3Fγ = 210 T. Figure 9.6(f)

shows the Fourier spectra of the fast oscillations extracted with spline backgrounds.

At T = 500 mK, a main peak is observed at the frequency Fα = 1185 T, corre-

sponding to the α-branch, and a shoulder to this peak is observed at around 1350 T.

The peak at Fα = 1185 T decreases fast with increasing temperature, because of a

rather high effective mass m∗
α = 9.7 m0 [Aoki 2012]. At T = 1.2 K, the intensity

of Fα is strongly reduced, whereas the peak at ∼ 1350 T is almost unchanged. The

latter corresponds to a newly-observed Fermi surface branch, labeled λ, which has

to be distinguished from the close branch α.

Thanks to higher excitation currents in the resistivity measurements, the Shubnikov-

de Haas data obtained in the 4He-cryostat (T ≥ 1.4 K) have a better resolution than

those obtained in the dilution cryostat (T ≤ 1.2 K), which allows a more precise ob-

servation of the λ-branch . Figure 9.7(a) presents the transverse magnetoresistivity

ρx,x(H) of sample #2 measured in a magnetic field H ∥ a and at temperatures from

1.4 to 10 K. Figure 9.7(b) shows the fast oscillating signal ρoscx,x/ρBG extracted with

spline backgrounds and Figures 9.7(c) and (d) show the resulting Fourier spectra,

up to F = 2000 T and 6000 T, respectively. The spectra exhibit frequency peaks at
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Figure 9.7: (a) Transverse magnetoresistivity ρx,x of URu2Si2 sample #2 versus the mag-
netic field H applied along the a-axis at temperatures from 1.4 K to 10 K. (b)
Fast oscillating signals ρoscx,x/ρBG extracted by subtracting spline backgrounds
from ρx,x. (c,d) Resulting Fourier spectra. Inset: mass-plot for the λ1-branch.

Fλ1 = 1325 T and Fλ2 = 1415 T, which survive up to T = 7 K. We observe also the

second and third harmonics of λ at 2Fλ ∼ 2275 T and 3Fλ ∼ 4065 T, which indicates

the high resolution of the experiments in pulsed magnetic fields. The inset of Figure

9.7(c) shows the Fourier amplitude of the λ1-peak versus the temperature T . The

cyclotron effective mass of λ1 obtained by a fit with the RT -damping function (Sect.

2.5, Eq. 2.83) equals m∗
λ1 = (1.0± 0.5) m0. Due to the closeness of Fλ1 and Fλ2, we

were not able to determine the effective mass of λ2 precisely.

Figures 9.8(a) and (b) show, at T = 500 mK and 1.4 K, respectively, an Onsager

plot of the fast oscillations, i.e., a plot of the number of the oscillation extrema (#1

for the first maximum, #2 for the first minimum, #3 for the second maximum,...)

versus their corresponding position in (µ0H)−1. Assuming that the oscillations

are governed by a single frequency, the slope of the Onsager-plot is equal to this

frequency. Here, the slopes of the Onsager plots are linear up to the maximum
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field and correspond to the frequencies Fα = 1185 T and Fλ = 1315 T observed in

the Shubnikov-de Haas spectra at 500 mK and 1.4 mK, respectively. These plots

indicate that, for H ∥ a, the dominant frequencies Fα and Fλ are independent of

the magnetic field at least up to 57 T and 81 T, respectively. This is confirmed by

the Shubnikov-de Haas spectra resulting from Fourier transforms over small field

windows, shown in Figures 9.8(c) and (d) at 500 mK and 1.4 K, respectively. The

spectra are almost unchanged by the field up to µ0H = 36 T at T = 500 mK

and up to µ0H = 50 T at 1.4 K. Modifications of the spectra at higher fields are

artefacts related to the beatings in the raw oscillationg signal, due to of the small

field-windows used for the Fourier transformation. The fact that the frequencies of

the α and λ-sheets are field-independent is consistent with the continuous increase

of the non-oscillating-background resistivity and indicates that the Fermi surface is

not affected by a magnetic field applied along a.

To summarize, we observed for the first time the quantum oscillations of the Fermi

surface sheets α and γ in magnetic fields H ∥ a up to 60 T and of a new branch λ

in magnetic fields up to 81 T. λ is a splitted branch and is associated with a light

effective cyclotron mass m∗
λ = (1 ± 0.5) m0. The cyclotron mass of the λ-branch

is much smaller than that of the α-branch, (m∗
α = 9.7 m0 [Aoki 2012]). Indeed, λ

survives up to 7 K, whereas α already vanishes at T = 1.4 K. The Shubnikov-de

Haas frequencies of the splitted λ-branch (Fλ ∼ 1350 T), observed for the first time

in the present work, are close to the frequencies of the splitted α-branch. The light

cyclotron mass of the λ-branch excludes that the frequency λ is a harmonic or a

combination of other Fermi surface branches of heavier cyclotron masses.

9.4 Fermi surface in high magnetic fields H in the (a,a) and

(a,c)-planes

Figure 9.9 presents Shubnikov-de Haas data of our URu2Si2 sample #2 measured

with a rotation probe in magnetic fields up to 60 T applied along directions in

the (a,a) and (a,c)-planes, at T = 1.5 K (raw data presented in Sects. 8.3 and

8.4). Here, θ2 corresponds to the angle between H and c, the system being in

the transverse configuration for all θ2, and ϕ corresponds to the angle between H

and a, the system turning form the transversal to the longitudinal configurations.

The oscillating signals ρoscx,x(H) extracted with linear backgrounds exhibit slow and

fast quantum oscillations [see Fig. 9.9(a)]. The slow oscillations correspond to the

frequency Fγ = 70 T of the γ-branch. The fast oscillating signals extracted with

spline backgrounds show beatings, which indicate close frequencies [see Fig. 9.9(b)].

The amplitude of the oscillations decreases with increasing angle [ϕ or (90◦ − θ)]
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Figure 9.9: (a) Quantum oscillations ρoscx,x versus 1/(µ0H) extracted by subtracting linear
backgrounds from ρx,x of URu2Si2 sample #2 measured in magnetic fields
up to 60 T, with different angles between the magnetic field and the a-axis.
(b) Fast oscillating signal ρoscx,x versus 1/(µ0H) extracted by subtracting spline
backgrounds. (c) Fourier spectra of the fast oscillations for different angles
between the magnetic field and the a-axis. The dotted lines are guides to the
eyes. (d) Angle-dependence of the Shubnikov-de Haas frequencies of the λ and
γ branches of the Fermi surface, observed here at T = 1.5 K, and of the α
branch observed by Aoki et al. [Aoki 2012] at T = 20 mK.

between H and a. Figure 9.9(c) shows the Fourier spectra of the fast Shubnikov-

de Haas oscillations for various directions of H in the (a,a) and (a,c)-planes. The

spectra show the frequencies of the splitted light-mass branch λ. We observe two

frequency satellites of λ, when H is applied along directions in the (a,c)-plane and

three satellites when H is applied along a. The threefold splitting of λ remains when

the magnetic field is rotating in the (a,a)-plane. In Chapter 3 (Sect. 3.9), I have

shown the extreme sensibility of the Fermi surface to slight mis-orientations of the

sample in the magnetic field. The fact that λ has three satellites here forH ∥ a, while

only two satellites were reported in Section 9.3, also for H ∥ a, illustrates the limit

of reproducibility of our different sets of experiments. Figure 9.9(d) presents the
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angle-dependence of the Shubnikov-de Haas frequencies of the γ and the λ-branches

extracted here. A slight increase by ∼ 50 T of the λ-frequencies is observed as

the field-direction moves from [100] (ϕ = 0◦) to [110] (ϕ = 45◦), similarly to the

close α-frequencies (also shown in Fig. 9.9, [Aoki 2012]). The λ-branch has thus a

nearly circular cross-section in the basal plane. When the field rotates from [100]

(ϕ2 = 90◦) to [110] (ϕ2 = 0◦), the frequencies decrease more significantly from

Fλ ∼ 1400 T at θ2 = 90◦ to Fλ ∼ 1100 T at θ2 = 60◦. In agreement with Aoki

et al. [Aoki 2012], no variation of the γ frequency is observed in the (a,a)-plane.

The angle-dependence of Fγ presented here and in Section 9.1 indicate that γ is a

small disc-shaped Fermi surface with a circular cross-section in the basal plane and

a flattening in the direction of the c-axis. The angle-dependence of the λ-frequencies

indicates a similar geometry as that of the α-branch, i.e., a large almost spherical

Fermi surface.
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10 Conclusion

I have performed a systematic investigation per magnetoresistivity and magnetiza-

tion of high-quality URu2Si2 single crystals in pulsed magnetic fields up to 80 T and

temperatures down to 100 mK.

I have established the magnetic-field-temperature phase diagram of the system for

H ∥ c, in extended scales up to 60 T and 60 K. Instead of a unique phase tran-

sition at a given critical field, the low-temperature phase diagram of URu2Si2 is

made of a cascade of three first-order transitions between 35 and 39 T. A polarized

paramagnetic regime is induced above 39 T. A high-temperature crossover probed

by magnetoresistivity at Tρ,max ≃ 40 K and by magnetization at Tχ,max ≃ 55 K

(in the zero-field limit), probably related to the onset of intersite electronic correla-

tions, is found to be a precursor of the ”hidden-order” phase (which develops below

T0 = 17.5 K at H = 0). In H ∥ c, the vanishing of the crossover temperatures Tρ,max

and Tχ,max is responsible i) for the critical area developing at [35 T-39 T] and ii)

for the destabilization of the hidden-order state, a polarized regime being reached

above 39 T. The effective mass is enhanced in a wide regime between 30 and 45 T,

indicating enhanced and thus critical magnetic fluctuations.

Magnetoresistivity measurements on high-quality single crystals were performed in

magnetic fields applied along the hard axis a and the easy axis c, for both transverse

and longitudinal configurations. A sample-dependent magnetoresistivity confirmed

that a Fermi surface reconstruction occurs at the hidden-order temperature T0. A

remarkably strong transverse magnetoresistivity develops inside the hidden-order

phase, which is dominated by the orbital effect, as shown by the sample- and angle-

dependencies of the magnetoresistivity. The transverse magnetoresistivity of our

purest sample increases by three orders of magnitude in a magnetic field up to 80 T

applied along the a-axis, indicating a nearly perfect electron-hole compensation.

High sample qualities, low carrier densities (∼ 0.05 carrier/U-site [Levallois 2009]),

and high mobilities µ ∼ 20 · 103 cm2/Vs (cf. also [Kasahara 2007]) are responsible

for this exceptionally-large signal. An angle-dependent study of the magnetore-

sistivity showed that the magnetic transitions and the anomalies related to Fermi

surface changes exhibit similar angle-dependencies in 1/cos θ, where θ is the angle

between H and c, indicating a strong correlation between the Fermi surface and the

magnetic properties in URu2Si2. A magnetic field applied along the c-axis destabi-
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lizes the hidden-order phase at µ0H1 = 35 T, but no anomalies are induced when a

magnetic field up to 81 T is applied along the a-axis, reflecting that the strong Ising-

character of the magnetic properties is connected with the hidden-order parameter.

Above H1, the magnetoresistivity is neither sample- nor angle-dependent, and has

no observable orbital contribution, indicating that the resistivity is then dominated

by the scattering of the charge carriers on the magnetic moments of the localized

5f -electrons.

The specificity of URu2Si2 is that its Fermi surface reconstruction at T0 leads to

different Fermi surface bands whose characteristic band energies are rather low, due

to the combined effects of low-carrier densities and high effective masses. A mag-

netic field applied along the c-axis induces anomalies in the orbital contribution

to the magnetoresistivity, well below the destruction of the hidden-order phase at

µ0H1 = 35 T. These signatures of crossovers are related to Fermi surface modifica-

tions observed by Shubnikov-de Haas oscillations. A progressive change of the Fermi

surface occurs in a large field window of 15 - 30 T and a Fermi surface reconstruc-

tion occurs at µ0H ∼ 30 T. For H ∥ a, quantum oscillations corresponding to the

Fermi surface sheets γ and α and, for the first time, the branch λ with the frequency

Fλ ∼ 1400 T and the light effective mass m∗
λ = (1± 0.5) m0, are observed .

The work presented here is a step forward in the understanding of URu2Si2 and

emphasizes the interplay between the magnetic properties, the Fermi surface, and

the hidden-order, as well as the necessity to use a dual ”localized-itinerant” descrip-

tion of the f -electrons for a future understanding of the hidden-order in URu2Si2.

Experiments in high magnetic fields have been decisive to reach this conclusion.
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[Béard 2012] J. Béard, J. Billette, M. Suleiman, P. Frings, W. Knafo, G. W.

Scheerer, F. Duc, D. Vignolles, M. Nardone, A. Zitouni, P. Delescluse, J.-M.

Lagarrigue, F. Giquel, B. Griffe, N. Bruyant, J.-P. Nicolin, G. L. J. A. Rikken,

R. B. Lyubovskii, G. V. Shilov, E. I. Zhilyaeva, R. N. Lyubovskaya, and A.

Audouard, Eur. Phys. J. Appl. Phys. 59, 30201 (2012).

135



Bibliography

[Behnia 2005] K. Behnia, R. Bel, Y. Kasahara, Y. Nakajima, H. Jin, H. Aubin, K.

Izawa, Y. Matsuda, J. Flouquet, Y. Haga, Y. Ōnuki, and P. Lejay, Phys. Rev.
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T. Komatsubara, J. Phys. Soc. Jpn. 55, 1294-1304 (1986).

[Suslov 2003] A. Suslov, J. B. Ketterson, D. G. Hinks, D. F. Agterberg, and B. K.

Sarma, Phys. Rev. B 68, 020406 (2003).

[Takagi 2007] S. Takagi, S. Ishihara, S. Saitoh, H. I. Sasaki, H. Tanida, M.

Yokoyama, and H. Amitsuka, J. Phys. Soc. Jpn. 76, 033708 (2007).

[Tonegawa 2012] S. Tonegawa, K. Hashimoto, K. Ikada, Y.-H. Lin, H. Shishido, Y.

Haga, T. D. Matsuda, E. Yamamoto, Y. Ōnuki, H. Ikeda, Y. Matsuda, and T.
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