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Spectral approximation with
matrices issued from
discretized operators

Abstract

In this thesis, we consider the numerical solution of a large eigenvalue

problem in which the integral operator comes from a radiative transfer prob-

lem.

It is considered the use of hierarchical matrices, an efficient data-sparse

representation of matrices, especially useful for large dimensional problems.

It consists on low-rank subblocks leading to low memory requirements as well

as cheap computational costs.

We discuss the use of the hierarchical matrix technique in the numerical

solution of a large scale eigenvalue problem arising from a finite rank dis-

cretization of an integral operator. The operator is of convolution type, it is

defined through the first exponential-integral function and hence it is weakly

singular.

We access HLIB (Hierarchical matrices LIBrary) that provides, among

others, routines for the construction of hierarchical matrix structures and

arithmetic algorithms to perform approximative matrix operations. More-

over, it is incorporated the matrix-vector multiply routines from HLIB, as

well as LU factorization for preconditioning, into SLEPc (Scalable Library

for Eigenvalue Problem Computations) in order to exploit the available al-

gorithms to solve eigenvalue problems.
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It is also developed analytical expressions for the approximate degenerate

kernels and deducted error upper bounds for these approximations.

The numerical results obtained with other approaches to solve the prob-

lem are used to compare with the ones obtained with this technique, illus-

trating the efficiency of the techniques developed and implemented in this

work.

Keywords with AMS classification - 2010 Mathematics Subject Classifi-

cation, (MSC[2010]):

33 Special functions; 33F Computational aspects; 33F05 Numerical ap-

proximation and evaluation; 45 Integral Equations; 45C Eigenvalue problems;

45C05 Eigenvalue problems; 45E Singular integral equations; 65 Numerical

analysis; 65F Numerical linear algebra; 65F15 Eigenvalues, eigenvectors; 65Y

Computer aspects of numerical algorithms; 65Y20 Complexity and perfor-

mance of numerical algorithms.



Aproximação espectral com
matrizes e operadores

discretizados

Resumo

Nesta dissertação considera-se a solução numérica de um problema de

valores próprios de grandes dimensões, no qual o operador provém de um

problema de transferência radiativa.

Procede-se ao estudo do uso de matrizes hierárquicas, uma representação

eficiente de matrizes, bastante interessante para o uso em problemas de

grandes dimensões. Matrizes hierárquicas são representações eficientes de es-

truturas de dados esparsas de matrizes densamente povoadas, sendo a ideia

básica a de dividir uma determinada matriz numa hierarquia de blocos e

aproximar determinados blocos por uma matriz de caracteŕıstica pequena. A

sua utilização vem permitir, para além da diminuição da memória requerida,

a redução dos custos computacionais.

A aplicação do uso das matrizes hierárquicas é analisada no contexto da

solução numérica de um problema de valores próprios de grandes dimensões

que resulta da discretização de um operador integral. O operador é de con-

volução e é definido através da primeira função exponencial-integral sendo,

desta forma, fracamente singular.

Para o cálculo computacional, acede-se à HLIB (Hierarchical matrices

LIBrary) que fornece rotinas para a construção da estrutura das matrizes

hierárquicas, bem como algoritmos para operações aproximadas com estas
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matrizes. Acrescenta-se que se incorporam algumas rotinas da HLIB, como

multiplicação matriz-vector ou a decomposição LU, na SLEPc (Hierarchi-

cal matrices LIBrary) de forma a explorar os algoritmos existentes para a

resolução de problemas de valores próprios.

Desenvolvem-se ainda expressões anaĺıticas para a aproximação dos núcleos

degenerados utilizados na tese e deduzem-se também limites superiores de er-

ros para estas aproximações.

Os resultados numéricos obtidos com outras abordagens para solucionar

o problema em questão são utilizados para comparação com os obtidos com

a nova técnica, vindo ilustrar a eficiência desta última.

Palavras Chave com classificação MAS - 2010 Mathematics Subject Clas-

sification, (MSC[2010]):

33 Special functions; 33F Computational aspects; 33F05 Numerical ap-

proximation and evaluation; 45 Integral Equations; 45C Eigenvalue problems;

45C05 Eigenvalue problems; 45E Singular integral equations; 65 Numerical

analysis; 65F Numerical linear algebra; 65F15 Eigenvalues, eigenvectors; 65Y

Computer aspects of numerical algorithms; 65Y20 Complexity and perfor-

mance of numerical algorithms.



Approximation spectrale de
matrices issues d’opérateurs

discrétisés

Résumé

Cette thèse considère la solution numérique d’un problème aux valeurs

propres de grandes dimensions, dans lequel l’opérateur est dérivé d’un problème

de transfert radiatif.

Ainsi, cette thèse étudie l’utilisation de matrices hiérarchiques, une représentation

efficace de tableaux, très intéressante pour une utilisation avec des problèmes

de grandes dimensions. Les matrices sont des représentations hiérarchiques

de structures de données efficaces pour les matrices denses, l’idée de base

étant la division d’une matrice en une hiérarchie de blocs et l´approximation

de certains blocs par une matrice de petite caractéristique. Son utilisation

permet de diminuer la mémoire nécessaire tout en réduisant les coûts infor-

matiques.

L’application de l’utilisation de matrices hiérarchique est analysée dans

le contexte de la solution numérique d’un problème aux valeurs propres de

grandes dimensions résultant de la discrétisation d’un opérateur intégral.

L’opérateur est de convolution et est défini par la première fonction expo-

nentielle intégrale, donc faiblement singulière.

Pour le calcul informatique, nous avons accès à HLIB (Hierarchical ma-

trices LIBrary) qui fournit des routines pour la construction de la structure

hiérarchique des matrices et des algorithmes pour les opérations approxima-
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tive avec ces matrices. Nous incorporons certaines routines comme la mul-

tiplication matrice-vecteur ou la décomposition LU, en SLEPc (Hierarchical

matrices LIBrary) pour explorer les algorithmes existants afin de résoudre

les problèmes de valeur propre.

Nous développons aussi des expressions analytiques pour l’approximation

des noyaux dégénérés utilisés dans la thèse et déduire ainsi les limites supérieures

d’erreur pour ces approximations.

Les résultats numériques obtenus avec d’autres techniques pour résoudre

le problème en question sont utilisés pour la comparaison avec ceux obtenus

avec la nouvelle technique, illustrant l’efficacité de ce dernier.

Mots-clés avec classification AMS - 2010 Mathematics Subject Classifica-

tion, (MSC[2010]):

33 Special functions; 33F Computational aspects; 33F05 Numerical ap-

proximation and evaluation; 45 Integral Equations; 45C Eigenvalue problems;

45C05 Eigenvalue problems; 45E Singular integral equations; 65 Numerical

analysis; 65F Numerical linear algebra; 65F15 Eigenvalues, eigenvectors; 65Y

Computer aspects of numerical algorithms; 65Y20 Complexity and perfor-

mance of numerical algorithms.
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Introduction

Eigenvalue problems are considered to be a very important subject of lin-

ear algebra, as they appear in many pratical applications in science and

engineering. For example, in stability and control, eigenvalues give im-

portant information about damping, phase and magnitude of oscillations

[MDH98, MMH95].

In [ZLM05] we can perceive some applications where the computation of

eigenvalues is of crucial importance:

“The computation of eigenvalues and eigenvectors is an im-

portant and often time-consuming phase in computer simulations.

Without being exhaustive, eigenvalues and eigenvectors are used

in the study of nuclear reactor dynamics (stability of neutron

fluxes [...]), in finite element dynamic analysis of structural mod-

els (e.g., seismic simulations of civil infrastructure [...]), in the

design of the next generation of particle accelerators [...], in the

definition of a set of eigenfaces in biometric-based identification

systems [...], in the solution of Schrödinger’s equation in chem-

istry and physics [...], in the design of microelectromechanical sys-

tems (MEMS [...]), and in the study of conformational changes of

proteins [...]. Because of the need for higher levels of simulation

details and accuracy, the size and complexity of the computations

grow as fast as the advancement of the computer hardware. In

order to cope with the increasing need of solving eigenvalue prob-

lems, various useful numerical algorithms that are suitable for

19



solving large-scale eigenvalue problems are developed.”

In the last decades, very effective methods have been devised to compute

some or all the eigenvalues of a matrix, such as the QR method for the latter

case, a standard method for dense matrices of moderate size. With this

sophisticated technique, the complete set of eigenvalues and eigenvectors is

computed. Considering a real nonsingular square matrix A, an orthogonal

matrix Q and an upper triangular matrix R, the QR method consists, briefly,

in iterating the following steps: transform A into a hessenberg (tridiagonal

if symmetric) matrix H (using e.g. Householder reflections), decompose H

in QR, multiply Q and R together in reverse order (i.e., RQ) to form a new

matrix H and the diagonal of H will converge to the eigenvalues, for more

see [vdV02, GVL96].

In this context, we refer to LAPACK (Linear Algebra PACKage) [ABB99],

a library with subroutines to solve the most frequent problems that come

about in numerical linear algebra: linear equations, linear least squares prob-

lems, singular value decomposition and eigenvalue problems. LAPACK uses

for computation calls as much as possible from the Basic Linear Algebra Sub-

programs (BLAS), that is a library for vector and matrix operations, adapted

to the hierarchical memory of today’s computers. LAPACK, along with gen-

eral (dense) structures, has special implementations of the algorithms to deal

with special structures, e.g. band matrices.

For large, usually sparse matrices, very effective iterative methods have

been devised to approximate the eigenspace associated to any part of the

spectrum. Examples of such techniques are the restarted Krylov methods

and preconditioned eigensolvers such as Jacobi-Davidson [BDD+00]. Also,

these methods are progressively taking shape as high-quality implementa-

tions in software libraries such as SLEPc, the Scalable Library for Eigenvalue

Problem Computations [HRV05], thus enabling application programmers to

cope with challenging problems coming from a wide range of applications.

Libraries such as SLEPc try to make problems computationally tractable by

combining two main ingredients: (i) exploiting sparsity of the matrices, and

20



(ii) exploiting parallelism.

The sparsity of matrices is a desirable property that appears, for instance,

in the context of partial differential equations with standard discretization

techniques such as the finite element method. This situation is very common

in practice, and allows iterative methods to be competitive by benefiting

from the cheap, linear-cost matrix-vector products. However, there are cases

in which the problem is formulated as an integral equation, either from the

very nature of the problem or from some special treatment of PDEs such as

the boundary element method.

Discretisation schemes like Galerkin or collocation methods are very pop-

ular techniques used for solving integral equations numerically. The integral

equation is solved by these methods using a system of linear equations, but

sparsity of matrices is not guaranteed, so in principle full (dense) storage

must be used, making impossible the numerical treatment of large dimen-

sional problems (consequent blow-up in computational cost). Furthermore,

large memory requirements and large time consuming are expected even for

moderate size ones. Some methods have been developed in order to avoid

dealing with discretized dense matrices, for example, using compactly sup-

ported orthonormal wavelets to represent the integral operator [BCR91] or

hierarchical matrices, H-matrices for brief, introduced by Hackbush and his

collaborators [Hac99, HK00], being this last approach our choice in this the-

sis.

HLIB (Hierarchical matrices LIBrary) is a software that provides, among

others, routines for the construction of hierarchical matrix structures and

arithmetic algorithms to perform approximate matrix operations. The idea of

using H-matrices, is that they provide an inexpensive representation of large

densely populated matrices, by means of a decomposition into a hierarchy of

blocks, in which most of those, usually far from the diagonal, are computed

using a low-rank approximation in factorized form, resulting in a data-sparse

storage scheme. It is meant by data-sparse that few data is needed for the

21



matrix representation, that is, for an n × n-matrix, instead of n2 entries,

only O(nk log n) data may be required for a good approximation, where k

is the rank of the new representation (it also determines the accuracy of the

approximation) [Bör09].

The low-rank blocks’ approximation is based on geometrical consider-

ations, i.e., on an admissibility condition involving the notion of distance

between two subsets of an index set; testing this condition, it is decided if

the blocks of the adjacency matrix are to be approximated, which signifi-

cantly reduces not only storage requirements but also computational costs.

The admissibility condition results naturally from the derivation of the error

bound in order to produce convergent approximations.

Being SLEPc already an effcient tool in parallel computing for large and

sparse eigenvalue problems, being sparsity of matrices a desirable property

and H-matrices an excellent way to achieve that, this thesis accesses all the

power of HLIB and incorporates the matrix-vector multiply routines from

HLIB into SLEPc.

The main goal of this thesis is to solve an eigenvalue problem arising from

an integral formulation of a radiative transfer problem in stellar atmospheres.

The kernel of the integral operator under study is weakly singular and the

discretization procedure gives rise to large dimensional problems, either due

to large integration limits or to fine grids. In the latter, the eigenproblem

becomes very hard to solve since the eigenvalues of the discretized operator

tend to be clustered. This thesis also aims to show the use of data-sparse

structures provided by HLIB in the computation of eigenpairs through the

SLEPc library. This is the first time such an integration is done and tested.

The thesis is divided into three parts, each one with two chapters and it is

organized as follows. In Chapter 1 is presented the eigenvalue problem where

approximate solution is sought, as well as a brief discription of hierarchical

matrices along with the state-of-the-art numerical methods to solve large

and sparse eigenvalue problems. Chapter 2 considers all the basics about the

22



software libraries used. These chapters constitute the first part of the thesis,

designated by Framework and guidelines. The development of the numeri-

cal approximation is done in Part II; in Chapter 3, three possible strategies

for obtaining a low-rank approximation are discussed, using H-matrix repre-

sentation, while on Chapter 4 results of some numerical experiments along

with specific details of the implementation are shown. The last two chapters,

which embodies Part III, are devoted to conclusions and possible extensions

for future research.
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Part I

Framework and guidelines
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Chapter 1

Theoretical aspects

In this chapter we introduce the eigenvalue problem, its solution and the

concept of hierarchical matrices.

1.1 The problem and its discretization

We consider an eigenvalue problem, arising from an integral formulation of

a radiative transfer problem in stellar atmospheres [RC04]. The spectral de-

composition of an integral operator T has a numerical interest in the integral

equation

x = f + Tx, (1.1)

where x is the source function of the problem and f describes the distribution

of internal and external sources [Rut04]. T is a compact Fredholm integral

operator from some Banach space X into itself, defined by

(Tx) (τ) :=

∫ τ?

0

g(τ, σ)x(σ)dσ, τ ∈ [0, τ ?] , (1.2)

where τ ? < ∞ is the optical thickness of the atmosphere and g a weakly

singular kernel. In particular, the kernel we will deal with is of the form

27
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g(τ, σ) = k(|τ − σ|) and is weakly singular in the following sense [AdL+02]:

lim
τ→σ

k(|τ − σ|) = +∞;

k ∈ C0 (]0, τ ?]) ∩ L1([0, τ ?]);

sup
τ∈[0,τ?]

∫ τ?

0

k(|τ − σ|)dσ < +∞;

k(|τ − σ|) > 0 for all τ, σ ∈]0, τ ?];

k is a decreasing function on ]0, τ ?].

We remark that for simplification, in what follows we will use the notation

g(τ, σ) for the operator’s kernel, and the one we will work with is defined as

g(τ, σ) :=
$

2
E1 (|τ − σ|) , (1.3)

where $ ∈ ]0, 1[ is the albedo, assumed as a constant. The kernel depends

on E1, the first of a family of functions Eν , the exponential-integral functions

[AS60], defined by

Eν (τ) :=

∫ ∞
1

exp(−τµ)

µν
dµ, τ > 0, ν ≥ 0, (1.4)

and X := L1([0, τ ?]).

The application of the eigenvalues in physics is under study, since the

absence of internal and external sources leads to the nullity of the radiation

field (f = 0 results in x = 0 if τ ? <∞, [I.W60]). The numerical application

of the eigenvalues is present in the approximated sum of the Neumann series

that produces the solution x of (1.1). The largest eigenvalue in magnitude,

λ1, informs us about the speed of convergence of that series and the next

greatest eigenvalue, λ2, about how quickly, starting in a certain term, can

be held the replacement of part of the series terms by those of a geometric

series of ratio $λ1; these ideas can be found in [dH80].

We consider the problem of finding (λ, x) ∈ C×X, such that

Tx = λx 6= 0. (1.5)
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Solving integral equations is of extreme importance, as they are recur-

sively used to model some physical problems. In order to obtain approximate

solutions to these kind of problems, the integral operator T is replaced by

a finite rank operator Tn. So, in our case, the eigenvalue problem for the

integral operator is replaced by a matrix eigenvalue problem, which can be

solved computationally.

Popular schemes have been around for some time and are used to solve

integral equations, for instance, Nyström method or projection methods as

Galerkin, Sloan or Kantorovich methods.

Before focusing in our problem, just a brief glimpse to these methods.

In the Nyström method, the integral of the operator is replaced by a

numerical quadrature formula; this method is, in principle, applied for solving

equations of the second kind, see [Kre99]. Projection methods extend the

previous method in the sense that the problem may be set in a wide class

of Banach spaces such as Lp spaces (1 ≤ p ≤ +∞), while Nyström method

context is at least that of continuous functions. As examples we have:

• Galerkin Method: Tn = πnTπn

• Kantorovich Method: Tn = πnT

• Sloan Method: Tn = Tπn

where πn : X → X is a projection operator with finite dimensional range

Xn ⊂ X and, for each x ∈ X, as n→∞

πnx→ x.

A more detailed explanation of the methods, their convergence and error

analysis, may be found e.g. in [Atk97, Kre99].

In this work, we apply a projection method, on a finite dimensional sub-

space Xn := Span {en,j : j = 1, ..., n} built as follows: let (τn,j)
n
j=0 on [0, τ ?]
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be a family of grids, and en,j(τ) := 1 if τn,j−1 < τ ≤ τn,j, and en,j(τ) := 0

otherwise, and for x ∈ X define the linear forms

〈x, e∗n,j〉 :=
1

τn,j − τn,j−1

τn,j∫
τn,j−1

x(σ)dσ.

The bounded n−rank projection πn onto the subspace Xn is defined by

πnx :=
n∑
j=1

〈x, e∗n,j〉en,j,

and, using the Kantorovich method, the finite rank approximation Tn of T

is defined by

Tnx = πnTx =
n∑
j=1

〈Tx, e∗n,j〉en,j.

The spectral problem for the finite rank operator Tn can be solved through

an auxiliary n× n matrix eigenvalue problem

Anxn = λnxn 6= 0, (1.6)

where An(i, j) := 〈Ten,j, e∗n,i〉, see [AdLV06], and (λn, xn) is an approximation

of (λ, x) for some x properly normalized.

The entries of this matrix are computed explicitly using (1.7), leading to

a dense storage, and for large n the matrix’s generation has a high compu-

tational cost.

An(i, j) =
$

2(τn,i − τn,i−1)

∫ τn,i

τn,i−1

∫ τn,j

τn,j−1

E1 (|τ − σ|) dσdτ

=


$

2(τn,i−τn,i−1)
(−E3(|τn,i − τn,j|) + E3(|τn,i−1 − τn,j|)+

+E3(|τn,i − τn,j−1|)− E3(|τn,i−1 − τn,j−1|)),
i 6= j

$[1 + 1
τn,i−τn,i−1

(E3 (τn,i − τn,i−1)− 1
2
)], i = j

(1.7)

For each (i, j), four evaluations of the function E3 are required. There is

a clear decay in magnitude away from the diagonal, depending on τ ? and on

n: for constant values of the former, smaller values of the latter imply faster
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decay from the diagonal. The idea of zeroing out all entries with magnitude

less than a certain tolerance to avoid working with dense matrix storage, and

a theoretical treatment validating this approach for a required precision, was

done respectively in [dTV05] and [Tit04]. Nevertheless, this strategy requires

the computation of every matrix entry in order to evaluate its magnitude,

since an a priori determination of the maximum bandwidth is not possible.

Besides the high generation cost, the main drawback of dense (or banded)

storage is that operations such as matrix-vector product are expensive. Data-

sparse representation, such as the general scheme of H-matrices, may be

useful to tackle this kind of problems.

1.2 Eigensolvers

In this work we are concerned with the computation of a few eigenvalues and

eigenvectors of matrix An, that is, to obtain a partial solution of (1.6), by

means of iterative eigensolvers. In the following subsections, we describe the

methods very briefly, focusing on the required matrix operations that must

be available in the implementation of H-matrices.

1.2.1 Iterative eigensolvers

There exist a lot of iterative methods for the partial solution of eigenvalue

problems, that is, for computing a subset of the eigenvalues. A detailed

discussion can be found in [BDD+00]. Here we restrict our discussion to

two families of methods, namely Krylov methods (e.g. Lanczos, Arnoldi or

Krylov-Shur methods) and Davidson methods (e.g. Generalized Davidson or

Jacobi-Davidson methods).

Given the eigenproblem

Ax = λx 6= 0, (1.8)

which has n eigenvalues λ counting multiplicities, the goal is to find a subset

of the eigenvalues in a given region of the spectrum (for the moment, we
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consider the simplest case where we seek the largest magnitude eigenvalues).

Iterative eigensolvers are based on iteratively improving a subspace V in such

a way that it eventually contains a good approximation of the eigenspace

associated to the wanted eigenvalues.

Let V ∈ Rn×m be a basis of V such that V TV = I. Then the Rayleigh-Ritz

projection method computes H = V TAV and uses its eigendecomposition

HY = YΘ to obtain approximate eigenpairs (θi, xi = V yi) of A. A more

sophisticated alternative is the harmonic Rayleigh-Ritz method [BDD+00],

that may provide better approximations in the case of interior eigenvalues.

Krylov methods use so-called Krylov subspaces associated with matrix A

and a given initial vector v1,

Km(A, v1) = span{v1, Av1, A2v1, . . . , A
m−1v1} , (1.9)

where without loss of generality we assume that v1 has unit length and is the

first column of V .

The method of Arnoldi is an elegant algorithm that computes an or-

thonormal basis of the Krylov subspace and at the same time computes

the projected matrix H, all this in an efficient and numerically stable way.

In brief, the Arnoldi algorithm computes the m columns of V sequentially

Vm = [v1 v2 ... vm], where column vj+1 is the result of orthogonalizing Avj

with respect to previous columns, and normalizing. The orthogonalization

is carried out by means of a Gram-Schmidt procedure or other with better

numerical properties, that removes all the components in the directions of

v1, . . . , vj. The computed quantities satisfy a relation of the form

AVm = VmHm + βvm+1e
T
m, (1.10)

where Hm is an upper Hessenberg matrix, i.e., hij = 0 for i > j + 1. The

last term of the Arnoldi relation is the residual and gives an indication of

how close is Km(A, v1) to an invariant subspace. In particular, β is used to

assess the accuracy of the computed Ritz pairs. See [BDD+00] for additional

details.
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The Lanczos method is related to the Arnoldi method in the sense that

Lanczos can be seen as a particular case of Arnoldi when the matrix is sym-

metric. In this case, the projected matrix is tridiagonal. For more detail see

e.g. [BDD+00, vdV02, Par98].

With Arnoldi, Ritz pairs will converge very fast provided that the initial

vector v1 is rich in the direction of the wanted eigenvectors. However, this is

usually not the case and consequently many iterations will be required, but

this cannot be allowed in a practical implementation in order to keep the

storage requirements and the computational cost per iteration bounded. A

workaround is to do a restart of the algorithm, that is, stop after m iterations

and rerun the algorithm with a new v1 computed from the recently obtained

spectral approximations. An added benefit of this strategy is that it can

be useful for driving convergence of the eigensolver towards a part of the

spectrum different from the one targeted naturally by the method.

A very effective and elegant restart mechanism is the Krylov-Schur method

[Ste01]. It is defined by generalizing the Arnoldi decomposition of order m,

(1.10), to a Krylov decomposition of order m,

AVm = VmBm + vm+1b
T
m+1, (1.11)

in which matrix Bm is not restricted to be upper Hessenberg and bm+1 is

an arbitrary vector. Krylov decompositions are invariant under orthogonal

similarity transformations, so that

AVmQ = VmQ(QTBmQ) + vm+1b
T
m+1Q, (1.12)

where QTQ = I, is also a Krylov decomposition. In particular, one can

choose Q in such a way that Sm = QTBmQ is in (real) Schur form, that is,

upper (quasi-)triangular with the eigenvalues in the 1× 1 or 2× 2 diagonal

blocks. This particular class of relation, called Krylov-Schur decomposition,

can be written in block form as

A
[
Ṽ1 Ṽ2

]
=
[
Ṽ1 Ṽ2

] [ S11 S12

0 S22

]
+ vm+1

[
b̃T1 b̃T2

]
, (1.13)



34 CHAPTER 1. THEORETICAL ASPECTS

and has the nice feature that it can be truncated, resulting in a smaller

Krylov-Schur decomposition,

AṼ1 = Ṽ1S11 + vm+1b̃
T
1 , (1.14)

that can be extended again to order m. The crux of the Krylov-Schur eigen-

solver is to carry out this truncation-extension process repeatedly, always

keeping the wanted eigenvalues in the leading principal submatrix S11. There-

fore, the strategy that is used for sorting the eigenvalues of Sm will have an

impact on which part of the spectrum will be approximated by the Krylov-

Schur eigensolver.

So far, the only operation required with matrix A is the matrix-vector

product, which can be carried out very efficiently in the H-matrix represen-

tation.

1.2.2 Computation of eigenvalues around a given tar-

get

The Krylov-Schur method could in principle be used to compute any part of

the spectrum, by keeping the wanted eigenvalues in the truncated factoriza-

tion. Discarding the rest of the factorization has the effect of filtering out the

information associated to the unwanted eigenvectors. However, when com-

puting eigenvalues in the interior of the spectrum, this filter is not powerful

enough, and components associated to extreme eigenvalues keep on appear-

ing, thus hindering convergence to the wanted ones.

The simplest solution to compute eigenvalues closest to a given target,

σ, is to use a spectral transformation, in such a way that eigenvalues are

mapped to a different position while eigenvectors remain unchanged. One

such transformation is the shift-and-invert technique, that solves the problem

(A− σI)−1x = θx, (1.15)

where the transformed eigenvalues satisfy the simple relation θ = (λ− σ)−1.

In this transformation, the eigenvalues θ of the operator that are largest in
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magnitude correspond, in the original problem, to the eigenvalues λ that are

close, in absolute values, to σ, see Figure 1.1. As eigenvalues λ closest to the

target become dominant in the transformed spectrum, so Krylov methods

will have a fast convergence. This can be implemented by simply replacing

the action of A by the action of (A−σI)−1 in the Krylov subspace expansion,

that is, by solving linear systems with coefficient matrix A − σI whenever

a matrix-vector product is required. These linear systems must be solved

very accurately, since Krylov methods can be very sensitive to numerical

errors introduced in the computation of the Krylov subspace, so in most

applications a direct linear solver will be required, rather than an iterative

method. It is generally claimed that the main drawback of the shift-and-

invert technique is the high cost associated to direct linear solvers, since the

memory requirements and computational effort can be very high for large,

sparse matrices. In the case of the H-matrix representation, this downside

disappears because computing the factorization has much smaller cost, both

in terms of storage and operations, as well as the corresponding triangular

solves.

An alternative to the spectral transformation is the use of a precondi-

tioned eigensolver such as Jacobi-Davidson. These methods expand the sub-

space in a different way, attempting to make the whole computation more

robust with respect to numerical error in the application of the operator. This

allows to use iterative linear solvers such as GMRES (Generalized Minimal

Residual) in the so-called correction equation.

Jacobi-Davidson method for linear problems was proposed by Sleijpen

and van der Vorst [SVdV96] combining the Davidson method to expand the

subspace, in which eigenvector approximations are constructed, with the Ja-

cobi’s idea, of looking for the orthogonal complement of a given eigenvector

approximation. The method has been further developed and adapted to gen-

eralized eigenproblems [SBFVdV96]. This combined use is fundamental to

enhance Davidson’s idea. Whereas in Davidson’s method accurate precondi-

tioners lead to slow convergence (or even to stagnation), the Jacobi-Davidson
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Figure 1.1: Shift-and-invert transformation

method profits from such good preconditioners. Excellent references for the

Jacobi-Davidson method are [SVdV00, BDD+00].

This method was motivated by the fact that standard iterative eigen-

solvers often require an expensive factorization of the matrix when interior

eigenvalues are desired (e.g., shift-and-invert Arnoldi with a direct linear

solver). Jacobi-Davidson tries to reduce the cost by solving approximately

linear systems, generally using iterative methods, without affecting the ro-

bustness.

This method usually is aiming at a particular eigenvalue, but if one is

interested in more than one (near a specified target), a scheme presented in

[FSVdV98] can be used.

Nevertheless, this does not seem to be the best approach in the context

of H-matrix representation, in view of the efficiency of matrix factorization.

From a practical perspective, to implement this kind of methods it is required

to be able to build a preconditioner for matrix A.
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1.3 H-matrices

Special mathematical and numerical treatments are required to find a suitable

representation of the operator and to improve performance. As previously

pointed out, H-matrices are an excellent way to tackle these requirements

and overcome the difficulties.

Let I = {1, ..., n} denote the set of the indices of the basis functions en,i,

and t and s two subsets of I where α =
⋃
i∈t supp en,i and β =

⋃
j∈s supp en,j

are the corresponding domains.

The notions of a cluster tree and of a block cluster tree are important

components in the construction of H-matrices. While the first describes a hi-

erarchical partitioning over the index I giving us the candidates for checking

an admissibility condition for low-rank approximation, the second contains

the H-matrix’s structure.

A cluster tree corresponding to the index set I, TI , satisfies the following

properties, [BGH03b]:

• Each node of TI is a subset of I.

• The root of TI is the index set I.

• A leaf consists of a minor number of indices. A leaf is not more subdi-

vided and this happens when the cardinality of a node is less than or

equal to a certain threshold defined a priori.

• A node that is not a leaf is subdivided into two sons and is equal to

their disjoint union.

The representation of H-matrices uses a tree structure, named block clus-

ter tree and represented by TI×I . It describes a hierarchical block partition-

ing of a matrix. Its root represents the entire matrix and the inner nodes are

the matrix sub-blocks that are being partitioned possibly more on the suc-

ceeding level, i.e., these blocks can be further subdivisible or not. In the last
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{0, 1, 2, 3}

yy %%
{0, 1}

|| %%

{2, 3}

yy ""
{0} {1} {2} {3}

Figure 1.2: Example of a TI .

case, the blocks, named leaves, are represented by either low-rank matrices

or full matrices.

In order to ilustrate better these two structures, Figure 1.2 gives an ex-

ample of a cluster tree TI with I = {0, 1, 2, 3} and, based upon TI of this

figure, a block cluster tree is constructed in Figure 1.3.

Starting with I ×I, the root of the so-called cluster tree TI×I , a splitting

process begins through which each block is subdivided into four successors,

until either an admissibility condition is satisfied or the block is already

sufficiently small to be still subdivided. This last situation occurs when

the refinement has arrived to the leaves, which possesses a certain minimal

amount of elements defined a priori, as was previoulsy described.

By means of the following admissibility condition, which comes from error

bounding reasons as will become apparent later in this thesis, we test if the

domain α× β is admissible

diam(α) < ηdist(α, β), (1.16)

for η > 0 fixed, that is, if the corresponding block of indices t×s is admissible.

Let M |t×s be the corresponding submatrix. It will be approximated by a low-

rank matrix M̃ |t×s = ABT , where M̃ |t×s ∈ Rt×s, A ∈ Rt×k, B ∈ Rs×k and

rank(M̃ |t×s) ≤ k. The blocks that do not fulfill the condition (1.16) are said

to be inadmissible, stored in the standard way and computed by (1.7). The

definition of an H-matrix comes out naturally from what was just described;

it can be seen e.g. in [Bor05, GKLB09]:
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   {0,1,2,3}µ{0,1,2,3} 

       {0,1}µ{0,1}                                      {0,1}µ{2,3}                              {2,3}µ{0,1}                         {2,3}µ{2,3} 

 

{0}µ{0}   {0}µ{1}   {1}µ{0}   {1}µ{1} 

 {0}µ{2}   {0}µ{3}   {1}µ{2}   {1}µ{3} 

{2}µ{0}   {2}µ{1}   {3}µ{0}   {3}µ{1} 

{2}µ{2}   {2}µ{3}   {3}µ{2}   {3}µ{3} 

Figure 1.3: Example of a TI×I based upon TI of Figure 1.2.

Definition 1. Let k, nmin ∈ N0. The H-matrices’ set, induced by a block

cluster tree TI×I with blockwise rank k and minimum block size nmin is defined

by

H =
{
M ∈ RI×I |for all t× s belonging to the leaves’ set : rank (M |t×s) ≤ k

or min{#t,#s} ≤ nmin}

A matrix M ∈ H is said to be given in H-matrix representation if the blocks

M |t×s with rank (M |t×s) ≤ k are stored in a low-rank representation, whereas

the remaining blocks are stored as full matrices.

Following the previous figures of the cluster tree and block cluster tree

with I = {0, 1, 2, 3}, Figure 1.4 appears to illustrate the respective H-matrix

structure, where the red blocks correspond to the inadmissible leaves, while

the green ones correspond to the admissible blocks.
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Figure 1.4: Example of an H-matrix structure based upon TI×I of Figure

1.3.

If the rank k is smaller than t and s, corresponding to the matrix M size,

considerable savings in the storage and work complexity of a low-rank matrix

compared to a full matrix are obtained [GH03].

For the low-rank approximation, the kernel of the integral operator is

replaced by a degenerate approximation g̃(τ, σ), such that the integration

with respect to the diferent variables is segregated,

g̃(τ, σ) :=
k−1∑
ρ=0

qρ(τ)pρ(σ). (1.17)

Furthermore, the approximantion g̃ has, naturally, to converge fast to the

kernel function g. In this work, the process of building the cluster tree is
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undertaken by HLIB [BGH03b, BGH03a] and will be detailed in Subsection

2.1 of this thesis.

The matrix entriesMij = 1
hn,i

∫ τ?
0

∫ τ?
0
en,i(τ)g (τ, σ) en,j(σ)dσdτ for (i, j) ∈

t× s are then approximately given by(
M̃ |t×s

)
ij

=
1

hn,i

∫ τ?

0

∫ τ?

0

en,i(τ)g̃ (τ, σ) en,j(σ)dσdτ

=
1

hn,i

∫ τ?

0

∫ τ?

0

en,i(τ)
k−1∑
ρ=0

qρ(τ)pρ(σ)en,j(σ)dσdτ

=
k−1∑
ρ=0

1

hn,i

∫ τ?

0

en,i(τ)qρ(τ)dτ

∫ τ?

0

en,j(σ)pρ(σ)dσ, (1.18)

where hn,i = τn,i − τn,i−1.
We remark the importance of using (1.17) regarding the separation of

the variables τ and σ, since it allows in (1.18) the possibility to write the

double integral as a product of two single integrals, which are the entries of

the matrices A and B of the factorized submatrix with rank at most k. So,

the entries of those two matrices are defined by

Aiρ :=
1

hn,i

∫ τn,i

τn,i−1

qρ(τ)dτ, A = (Aiρ) ∈ Rt×{0,...,k−1}

and (1.19)

Bjρ :=

∫ τn,j

τn,j−1

pρ(σ)dσ, B = (Bjρ) ∈ Rs×{0,...,k−1}.
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Chapter 2

Numerical libraries

This thesis makes use of a considerable set of software libraries which in-

cludes the most recent contributions of software developments based on novel

mathematical approaches to numerical computation of eigenvalue problems.

These libraries are tuned to explore the modern architecture of today’s com-

puters. So, in this chapter we give a short presentation of each one of the

main libraries used.

2.1 HLIB library

HLIB [BGH03b, BGH03a] is a library for hierarchical matrices written in

C programming language using BLAS and LAPACK libraries to perform

lower-level algebraic operations (e.g. dense matrix-matrix multiplication). It

includes functions for H matrix arithmetics, the treatment of partial differ-

ential equations and a number of integral operators and in addition support

routines for the creation of cluster trees, visualization and numerical quadra-

ture.

In the implementation of an H-matrix, called supermatrix, rkmatrices

are a straightforward representation of low-rank submatrices while fullmatrices

represent the submatrices corresponding to inadmissible leaves (usually dense

matrices although not having to bear any specific structure). This implemen-

43
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tation may be found e.g. in [BGH03a], and it is done in such a way that its

structure is similar to the block cluster tree’s structure.

This library provides routines for building the structure of an hierarchical

matrix, that is, of cluster trees, block cluster trees, low-rank matrices and

block matrices; discretization functions that fill these structures by approxi-

mations of operators, arithmetic algorithms that produce approximative ma-

trix operations (e.g. addition, multiplication, vector-matrix multiplication,

factorizations, inversion); conversion routines that turn sparse and dense

matrices into H-matrices; service functions matrix structures, for instance to

plot or to handle files. Moreover, based upon basic linear algebra subrou-

tines, it also provides algorithms to compute LU-decompostion and Cholesky

decomposition.

So, HLIB provide algorithms that perform matrix operations in the hi-

erarchical matrix format efficiently and the actual proof for the efficiency,

namely the complexity estimates, can be found, besides [BGH03a], in [GH03]

where the authors analyse the complexity (storage, addition, multiplication

and inversion) of the H-matrix arithmetics.

In this work, the process of building the cluster tree is undertaken by

HLIB, which, as already mentioned, enables matrix operations of almost

linear complexity, being therefore particularly adequate for large dimen-

sional problems. Alternatively, AHMED (Another software library on Hi-

erarchical Matrices for Elliptic Differential equations) could be used. A com-

plete reference for H-matrices as well as for this library is [Beb08]. With

the H-matrix representation, it is possible to realize common computations

with linear-polylogarithmic complexity rather than quadratic or cubic cost.

For instance, the multiplication of an n × n H-matrix by a vector requires

about 4n log2 n floating-point operations, the (approximate) LU decomposi-

tion about 6n log2 2n operations, and 2n log2 n operations for the back solves.

See [Hac99, HK00] for additional details on H-matrix arithmetic.
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2.2 PETSc and SLEPc libraries

Working with sparse representation is not standard, as it happens in dense

representation of an operator matrix. This comes from the fact that sparse

storage is more complicated, as there may be more variations, so less stan-

dardized, and in this way more complex to work.

SLEPc, the Scalable Library for Eigenvalue Problem Computations [HRV05,

HRTV10], is a software package for the solution of large-scale eigenvalue prob-

lems on parallel computers. It can be used to solve standard and generalized

eigenvalue problems, as well as other types of related problems such as the

quadratic eigenvalue problem or the singular value decomposition. SLEPc

can work with either real or complex arithmetic, in single or double preci-

sion, and it is not restricted to symmetric (hermitian) problems. It can be

used from code written in C, C++, and FORTRAN. Most of the methods

in this library are projection methods, including different variants of Krylov

and Davidson iterations.

SLEPc is able to cope with different problem types such as hermitian,

non-hermitian (the default case), Generalized hermitian, Generalized non-

hermitian, and Generalized non-hermitian with positive (semi-)definite B (a

generalized eigenproblem is commonly written as Ax = λBx). The library

is very flexible and it is possible to specify how many eigenvalues/eigenvec-

tors to compute. In relation to the eigenvalues of interest, it is possible, in

real symmetric problems, to compute the largest or smallest eigenvalues in

magnitude, the leftmost or rightmost ones and even those closest to a given

target value. For the complex case, more options are available.

SLEPc provides a collection of eigensolvers: Power Iteration with de-

flation, Subspace Iteration with Rayleigh-Ritz projection, Arnoldi method,

Lanczos method, Krylov-Schur and Davidson-type solvers. Most of the

eigensolvers are based on the subspace projection paradigm, in particular,

it includes a robust and efficient parallel implementation of Krylov-Schur

method described in Section 1.2, which is the default solver in SLEPc. Sev-
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eral Davidson-type solvers are included as well, in particular Generalized

Davidson and Jacobi-Davidson, with various possibilities for the computa-

tion of the correction vector. In these solvers, the user can easily select which

preconditioner to use.

Apart from eigensolvers, some spectral transformations such as the shift-

and-invert technique of (1.15) are available, where the user can compute inte-

rior eigenvalues with the help of linear solvers included in PETSc (Portable,

Extensible Toolkit for Scientific Computation).

An error bound for the computed solution in hermitian problems is avail-

able in literature, ∣∣∣λ− λ̃∣∣∣ ≤ ‖r‖2 (2.1)

where r = Ax̃−λ̃x̃ is the residual vector, being
(
λ̃, x̃
)

the computed eigenpair

and λ the exact eigenvalue. For the non-hermitian case, such simple relation

as (2.1) is not available.

SLEPc is built on top of PETSc [BBE+10], a parallel framework for the

numerical solution of partial differential equations, whose approach is to en-

capsulate mathematical algorithms using object-oriented programming tech-

niques in order to be able to manage the complexity of efficient numerical

message-passing codes. It uses primarily the basic data structures such as

those for representing vectors and matrices.

PETSc is object-oriented in the sense that all the code is built around a

set of data structures and algorithmic objects. The application programmer

works directly with these objects rather than concentrating on the underlying

data structures. The three basic abstract data objects are index sets, vectors

and matrices. Built on top of this foundation are various classes of solver

objects, including linear, non-linear and time-stepping solvers.

SLEPc inherits all the good properties of PETSc, including portability to

a wide range of parallel platforms, scalability to a large number of processors,

and run-time flexibility giving full control over the solution process (one can

for instance specify the solver at run time, or change relevant parameters
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such as the tolerance or the size of the subspace basis). Also, since PETSc

provides a uniform interface with all of its linear solvers and a large family

of preconditioners, it is possible to compare diverse combinations of method

and preconditioner, just by their specification at execution time.

The solvers in PETSc (and SLEPc) have a data-structure neutral im-

plementation. This means that the computation can be done with different

matrix storage formats, and also even with a matrix that is not stored explic-

itly. By default, a matrix in PETSc is stored in a parallel compressed-row

sparse format (called aij), where each processor stores a subset of rows.

Other formats include the symmetric variant (sbaij), where only the upper

triangular part is stored, as well as the dense storage (both sequential and

parallel).

For implementing a matrix-free solver with so-called shell matrices, the

application programmer has to create one of such matrices and define its

operations, by binding a user-defined subroutine for each operation. Only

the operations required by the actual computation need to be set, so in

the simplest case it is sufficient to implement the matrix-vector product.

For more advanced functionality, e.g., preconditioning, other operations are

required as well. We use this feature to interface our code to HLIB.

2.3 BLAS and LAPACK libraries

Among the main numerical linear algebra packages, is certainly the LAPACK

and BLAS libraries.

LAPACK (Linear Algebra PACKage) [ABB99] is a library with sub-

routines for solving the most usual problems appearing in numerical lin-

ear algebra, having been conceived to be efficient on various modern high-

performance computers. It provides the following routines:

• Linear equations,

• Linear least squares problems,
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• Eigenvalue problems,

• Singular value decomposition.

LAPACK can also manage many associated computations such as matrix

factorizations or estimating condition numbers.

This library contains: driver routines for solving standard types of prob-

lems, each solving a complete problem, e.g., solving a system of linear equa-

tions; computational routines each performing a different computational task,

e.g. LU factorization; and auxiliary routines to perform a certain subtask or

common low-level computation, e.g. computing a matrix-norm. Note that

each driver routine calls a sequence of computational routines.

LAPACK routines are design so that the computation is performed by

calls, as much as possible, to the Basic Linear Algebra Subprograms (BLAS).

BLAS is a library that provides standard building blocks for performing

basic vector and matrix operations. The Level 1 BLAS perform scalar, vector

and vector-vector operations, the Level 2 BLAS perform matrix-vector op-

erations, and the Level 3 BLAS perform matrix-matrix operations. A large

set of research works, as well as industrial ones, rely on top of this library.

The first published paper on the library was [LHKK79] and, maybe, one of

the most important references is [DHP02].

Highly efficient machine-specific implementations of the BLAS are avail-

able for many modern high-performance computers. The BLAS, being ef-

ficient, portable, and widely available, enable LAPACK routines to achieve

high performance with portable code, allowing this to be high quality linear

algebra software.

2.4 OpenMP library

The OpenMP standard was formulated in 1997 as an Application Program In-

terface (API) for writing portable, multithreaded applications, shared mem-

ory parallelism (note that a shared memory process consists of multiple
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threads) [CJVDP07]. It is a specification for a set of compiler directives,

runtime library routines, and environment variables that can be used to spec-

ify shared memory parallelism in Fortran, C and C++ programs, on a wide

variety of architectures.

OpenMP provides a portable (most major platforms have been imple-

mented including Unix/Linux platforms and Windows NT), scalable model

for developers of shared memory parallel applications, in which the most of

its major features includes its various constructs and directives for specifying

parallel regions, work sharing, synchronization and data environment.

This library is the result of efforts for some standardization, providing a

standard among a variety of shared memory architectures/platforms, seting

up a simple and limited set of directives for programming shared memory

machines, be ease to use, have capability to incrementally parallelize a serial

program as well as capability to implement both coarse-grain and fine-grain

parallelism, and portability.

The OpenMP is based on the existence of multiple threads in the shared

memory programming paradigm, being an explicit (i.e. not automatic) pro-

gramming model allowing the programmer full control over parallelization.

An OpenMP application begins with a single thread (master thread). As

the program executes, the application may be faced with parallel regions in

which the master thread gives rise to thread teams, including the master

thread. At the end of a parallel region, the thread teams are “left” and

the master thread continues execution. Inside a parallel region there can

be nested parallel regions where each thread of the original parallel region

becomes the master of its own thread team. Nested parallelism can continue

to additionally nest other parallel regions.

Moreover, OpenMP provides the distinction between data that is shared

from data that is private, an important issue in parallel programming (per-

formance). In this context, shared variables are shared by all the threads

from the thread team (e.g. a change of the shared variable in one thread

may become visible to another thread in the parallel region), while in private
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variables this doesn’t occur, having private copies made for each thread in

the thread team, and in this way, changes made in one thread are not visible

in the private variables in the other threads.

Finally, OpenMP provides multiple types of synchronization to help in

many different situations (synchronization when multiple threads are running

at the same time and synchroniztion between them is needed).



Part II

Development of numerical

approximations
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Chapter 3

Low-rank approximations

Previously, in (1.7), it was given a dense representation for the matrix An.

In this chapter, we discuss several strategies for representing An by means of

data-sparse representation, which can be implemented in various flavours.

Degenerate approximations, generally given by (1.17), can be built in

different ways, depending on the properties of the kernel. For instance, they

can be based on polynomial interpolation or Taylor series expansion. Another

approach consists in computing a low-rank approximation from an explicitly

built matrix block by means of a singular value decomposition. We next

describe these three approaches in turn.

3.1 Taylor approximation

Using truncated Taylor series, the degenerate kernel expression (1.17) is

specifically defined by qρ(τ) = (τ − τ0)
ρ and pρ(σ) = 1

ρ!
∂ρτ g(τ0, σ), where

τ0 is taken as the midpoint of α.

The entries of the matrices A and B in (1.19) are analytically determined

explicitly as follows.

Proposition 2. The elements of the matrix A are given by

Aiρ =
1

hn,i

∫ τn,i

τn,i−1

qρ(τ)dτ =
1

hn,i

(
(τn,i − τ0)ρ+1

ρ+ 1
− (τn,i−1 − τ0)ρ+1

ρ+ 1

)
. (3.1)

53
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Proof. Immediate.

In order to get the expression for g̃ and for the entries Bjρ, a preceding

step must be made, to derive the analytical expression for ∂ρτ g(τ0, σ).

Lemma 3. The partial derivatives with respect to the variable τ of the kernel

g defined in (1.3), are given by

∂ρτ g(τ0, σ) =

 −
$
2

∑ρ
k=1 (−1)ρ−1 (ρ−1)!

(ρ−k)!
e−τ0+σ

(τ0−σ)k
, σ < τ0

−$
2

∑ρ
k=1 (−1)k−1 (ρ−1)!

(ρ−k)!
eτ0−σ

(τ0−σ)k
, σ > τ0

.

Proof. Considering the following results present in [AS60],

E1 (z) =

∫ ∞
1

e−zt

t
dt and

d

dz
E1 (z) = −E0 (z) = −e

−z

z
,

the first derivative of the kernel with respect to τ is given by

∂τg(τ, σ) =
$

2
∂τE1 (|τ − σ|)

=
$

2
∂τ (E1 ◦ f (τ, σ)) where f (τ, σ) = |τ − σ|

=
$

2

(
−e
−f(τ,σ)

f (τ, σ)

)
× ∂τf (τ, σ)

=
$

2

(
− e
−|τ−σ|

|τ − σ|

)
× ∂τf (τ, σ)

=

{
−$

2
e−(τ−σ)

τ−σ , σ < τ

−$
2
e−(−τ+σ)

τ−σ , σ > τ

= −$
2

e−|τ−σ|

τ − σ
, for τ 6= σ.

1. For σ > τ , after some initial calculations, we obtain

∂2τg(τ, σ) = −$
2
∂1τ

(
eτ−σ

τ − σ

)
= −$

2

(
eτ−σ (τ − σ)− eτ−σ

(τ − σ)2

)
= −$

2

(
eτ−σ

τ − σ
− eτ−σ

(τ − σ)2

)
,
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∂3τg(τ, σ) = −$
2
∂1τ

(
eτ−σ

τ − σ
− eτ−σ

(τ − σ)2

)
= −$

2

(
eτ−σ

τ − σ
− eτ−σ

(τ − σ)2
− ∂1τ

(
eτ−σ

(τ − σ)2

))
= −$

2

(
eτ−σ

τ − σ
− 2eτ−σ

(τ − σ)2
+

2eτ−σ

(τ − σ)3

)
,

and, generalizing, we reach the expression for any value of ρ

∂ρτ g(τ, σ) = −$
2

ρ∑
k=1

(−1)k−1 × (ρ− 1)!

(ρ− k)!
× eτ−σ

(τ − σ)k
.

2. For σ < τ , analogously to the previous case, the following general

recursive rule is obtained

∂ρτ g(τ, σ) = −$
2

ρ∑
k=1

(−1)ρ−1
(ρ− 1)!

(ρ− k)!

e−τ+σ

(τ − σ)k
.

Using the previous proposition, the expression for the truncated Taylor

series kernel is explicitly given by

g̃(τ, σ) =
k−1∑
ρ=0

qρ(τ)pρ(σ)

=

 −
$
2

∑k−1
ρ=0(τ − τ0)ρ

1
ρ

∑ρ
i=1 (−1)ρ−1 1

(ρ−i)!
e−τ0+σ

(τ0−σ)i
, σ < τ0

−$
2

∑k−1
ρ=0(τ − τ0)ρ

1
ρ

∑ρ
i=1 (−1)i−1 1

(ρ−i)!
eτ0−σ

(τ0−σ)i
, σ > τ0

. (3.2)

With the result of Lemma 3, we can readily obtain the expression for the

entries of matrix B, by evaluating the derivatives at τ = τ0.

Proposition 4. The entries of matrix B can be computed as

Bjρ =



−$
2

∑ρ
k=1

(−1)ρ−1

ρ(ρ−k)! [Γ (1− k, τ0 − τn,j)
−Γ (1− k, τ0 − τn,j−1)] , τn,j−1 < τ0, τn,j < τ0

$
2

∑ρ
k=1

1
ρ(ρ−k)! [Γ (1− k,−τ0 + τn,j−1)

−Γ (1− k,−τ0 + τn,j)] , τn,j−1 > τ0, τn,j > τ0

An(i, j)1, τj−1 < τ0 < τj

1these entries are given by (1.7)
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Proof. First recall the incomplete Gamma function

Γ (a, x) =

∫ ∞
x

e−t

t1−a
dt.

1. For τn,j−1 > τ0, τn,j > τ0 :

Bjρ =

∫ τn,j

τn,j−1

1

ρ!
∂ρτ g(τ0, σ)dσ

=

∫ τn,j

τn,j−1

1

ρ!

(
−$

2

ρ∑
k=1

(−1)k−1
(ρ− 1)!

(ρ− k)!

eτ0−σ

(τ0 − σ)k

)
dσ

= −$
2

ρ∑
k=1

(−1)k−1

ρ (ρ− k)!

∫ τn,j

τn,j−1

eτ0−σ

(−1)k (−τ0 + σ)k
dσ

and using integration by substitution (u = −τ0 + σ),

Bjρ = −$
2

ρ∑
k=1

(−1)k−1

ρ (ρ− k)!
× 1

(−1)k

∫ −τ0+τn,j
−τ0+τn,j−1

e−u

uk
du

=
$

2

ρ∑
k=1

1

ρ (ρ− k)!
×

(∫ ∞
−τ0+τn,j−1

e−u

uk
du−

∫ ∞
−τ0+τn,j

e−u

uk
du

)

=
$

2

ρ∑
k=1

1

ρ (ρ− k)!
× [Γ (1− k,−τ0 + τn,j−1)− Γ (1− k,−τ0 + τn,j)] .

2. For τn,j−1 < τ0, τn,j < τ0 :

Bjρ =

∫ τn,j

τn,j−1

1

ρ!
∂ρτ g(τ0, σ)dσ

=

∫ τn,j

τn,j−1

1

ρ!

(
−$

2

ρ∑
k=1

(−1)ρ−1
(ρ− 1)!

(ρ− k)!

e−τ0+σ

(τ0 − σ)k

)
dσ

= −$
2

ρ∑
k=1

(−1)ρ−1

ρ (ρ− k)!

∫ τn,j

τn,j−1

e−(τ0−σ)

(τ0 − σ)k
dσ

doing the substitution u = τ0 − σ,

Bjρ = −$
2

ρ∑
k=1

(−1)ρ−1

ρ (ρ− k)!

(
−
∫ τ0−τn,j

τ0−τn,j−1

e−u

uk
du

)
, and as τ0 − τn,j−1 > τ0 − τn,j,

= −$
2

ρ∑
k=1

(−1)ρ−1

ρ (ρ− k)!

(∫ τ0−τn,j−1

τ0−τn,j

e−u

uk
du

)

= −$
2

ρ∑
k=1

(−1)ρ−1

ρ (ρ− k)!
[Γ (1− k, τ0 − τn,j)− Γ (1− k, τ0 − τn,j−1)] .
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3. It is compulsory to comment about the entries satisfying τn,j−1 < τ0 and

τn,j > τ0. Although in this situation the previous integral is divergent,

those entries do not satisfy the admissibility condition, which implies

that they must be computed using (1.7).

Proposition 4 can be written using exponential integral functions instead

of the incomplete Gamma function, as it is next explained.

Proposition 5.

Bjρ =



−$
2

∑ρ
k=1

(−1)ρ−1

ρ(ρ−k)!

[
(τ0 − τn,j)1−k Ek (τ0 − τn,j)−

− (τ0 − τn,j−1)1−k Ek (τ0 − τn,j−1)
]
, τn,j−1 < τ0, τn,j < τ0

$
2

∑ρ
k=1

1
ρ(ρ−k)!

[
(−τ0 + τn,j−1)

1−k Ek (−τ0 + τn,j−1)−

− (−τ0 + τn,j)
1−k Ek (−τ0 + τn,j)

]
, τn,j−1 > τ0, τn,j > τ0

Proof. Immediate, using the next equality present in [AS60]:

En (x) := xn−1Γ (1− n, x) .

3.2 Error bounds for Taylor approximation

In order to develop error bounding proofs, we introduce some technical con-

stants:

Definition 6. Let

1. κ be any constant such that

∀τ ∈ α, |τ − τ0| ≤ diam(α) ≤ κ < 1. (3.3)

We recall that the Taylor expansion is done around τ0.
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2. γ0 be given by

γ0 :=
diam(α)

dist(α, β)
< 1. (3.4)

We recall that

∀τ ∈ α, ∀σ ∈ β, dist(α, β) ≤ |τ − σ|. (3.5)

Result (3.4) can be rewritten as diam(α) < dist(α, β) which is, actually,

the admissibility condition given in (1.16) (with η = 1). The parameter η

controlls the speed of convergence, i.e., the quality of the approximation, and

a usual choice is η = 1, see e.g. [BGH03b, Hac99, HKK04].

In terms of notation, consider εk = g(τ, σ)− g̃(τ, σ) to be the error when

using g̃ as an approximation of g.

In the next proposition we propose an upper bound for the error when g̃

is taken as the truncated Taylor expansion of the kernel.

Proposition 7. The error of using the truncated Taylor series g̃, defined by

(3.2) as an approximation of the kernel g, given in (1.3), can be estimated by

|εk| ≤


C0

κk
1−κ , |τ0 − σ| > 1

C1

(
κk+1

(1−κk)2 + kκk
1−κk

)
, |τ0 − σ| = 1

C1
γk0 (k+γ0−kγ0)

(1−γ0)2 , |τ0 − σ| < 1

where k ∈ N, κ is defined in (3.3), C0 := $
2
e−|τ0−σ| (|τ0 − σ| − 1)−1 and

C1 := $
2
e−|τ0−σ|.

Proof. Bearing in mind (3.2), we can write,

|εk| ≤

∣∣∣∣∣
∞∑
ρ=k

(τ − τ0)ρ
(
−$

2

) ρ∑
i=1

1

(ρ− i)!
e−|τ0−σ|

(τ0 − σ)i

∣∣∣∣∣
≤

∞∑
ρ=k

$

2
|τ − τ0|ρ

ρ∑
i=1

∣∣∣∣ e−|τ0−σ|(τ0 − σ)i

∣∣∣∣
=
∞∑
ρ=k

$

2
|τ − τ0|ρ

1

e|τ0−σ|

ρ∑
i=1

1

|τ0 − σ|i

Now three different cases must be studied:
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1. If |τ0 − σ| > 1

|εk| =
∞∑
ρ=k

$

2
|τ − τ0|ρ

1

e|τ0−σ|

(
1− 1

|τ0−σ|ρ+1

1− 1
|τ0−σ|

− 1

)

≤
∞∑
ρ=k

$

2
|τ − τ0|ρ

1

e|τ0−σ|

(
1

1− 1
|τ0−σ|

− 1

)

=
∞∑
ρ=k

$

2
|τ − τ0|ρ e−|τ0−σ| (|τ0 − σ| − 1)−1

and considering C0 := $
2
e−|τ0−σ| (|τ0 − σ| − 1)−1 it results

|εk| = C0

∞∑
ρ=k

|τ − τ0|ρ

= C0

(
∞∑
ρ=0

|τ − τ0|ρ −
k−1∑
ρ=0

|τ − τ0|ρ
)

= C0

(
1

1− |τ − τ0|
− 1− |τ − τ0|k

1− |τ − τ0|

)
= C0

|τ − τ0|k

1− |τ − τ0|

≤ C0

(
κk

1− κ

)
2. If |τ0 − σ| = 1

|εk| ≤
∞∑
ρ=k

$

2
|τ − τ0|ρ

1

e|τ0−σ|
ρ

=
$

2e|τ0−σ|

∞∑
ρ=k

ρ|τ − τ0|ρ

≤ $

2e|τ0−σ|

∞∑
ρ=k

ρκρ

Bearing in mind the two following geometric series and respective sums,

• S(κ) =
∑∞

ρ=0 κρ = 1
1−κ
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• S ′(κ) =
∑∞

ρ=1 ρκρ−1 = 1
(1−κ)2 and remarking that

∑∞
ρ=1 ρκρ−1 =∑∞

ρ=0 ρκρ−1

we take ρ = k + j,

|εk| ≤
$

2e|τ0−σ|

∞∑
j=0

(k + j)κk+j

=
$

2e|τ0−σ|

(
∞∑
j=0

jκk+j +
∞∑
j=0

kκk+j

)

=
$

2e|τ0−σ|

(
κk+1

∞∑
j=0

jκj−1 + kκk

∞∑
j=0

κj

)

=
$

2e|τ0−σ|

(
κk+1

(1− κ)2
+

kκk

1− κ

)
= C1

(
κk+1

(1− κ)2
+

kκk

1− κ

)
where C1 := $

2
e−|τ0−σ|.

3. If |τ0 − σ| < 1

|εk| ≤
$

2e|τ0−σ|

∞∑
ρ=k

|τ − τ0|ρ
(

ρ∑
i=0

1

|τ0 − σ|i
− 1

)

= C1

∞∑
ρ=k

|τ − τ0|ρ
ρ∑
i=1

1

|τ0 − σ|i

≤ C1

∞∑
ρ=k

|τ − τ0|ρ
ρ

|τ0 − σ|ρ

= C1

∞∑
ρ=k

ρ

(
|τ − τ0|
|τ0 − σ|

)ρ
using (3.5) and (3.3),

|εk| ≤ C1

∞∑
ρ=k

ρ

(
diam(α)

dist(α, β)

)ρ
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and remembering (3.4),

|εk| = C1

∞∑
ρ=k

ργρ0

= C1

(
∞∑
ρ=0

ργρ0 −
k−1∑
ρ=0

ργρ0

)

= C1

(
γ0

∞∑
ρ=0

ργρ−10 − γ0
k−1∑
ρ=0

ργρ−10

)

= C1

(
γ0

∞∑
ρ=0

d

dγ0
γρ0 − γ0

k−1∑
ρ=0

d

dγ0
γρ0

)

= C1

(
γ0

d

dγ0

∞∑
ρ=0

γρ0 − γ0
d

dγ0

k−1∑
ρ=0

γρ0

)

= C1

(
γ0

d

dγ0

(
1

1− γ0

)
− γ0

d

dγ0

(
1− γk0
1− γ0

))
= C1

(
γ0

(
1

(1− γ0)2

)
− γ0

(
−kγk−10 + kγk0 + 1− γk0

(1− γ0)2

))
= C1

(
γ0

(1− γ0)2
− γ0 − kγk0 + (k − 1)γk+1

0

(1− γ0)2

)
= C1

γk0 (k + γ0 − kγ0)
(1− γ0)2

.

We remark that the three error bounds have exponential convergence.

3.3 Interpolation approximation

Since Taylor expansion involves the computation of the derivative of the

kernel function and a recursive rule for it, only seldom can be developed.

Polynomial interpolation appears as a good alternative; it requires only the

evaluations of the kernel function.

Using polynomial interpolation, the degenerate kernel expression (1.17)

is now given by qρ(τ) = Lρ (τ) and pρ(σ) = g (xρ, σ).

Consider (xρ)
k−1
ρ=0 a family of interpolation points in the subdomain α

(for β the procedure is similar) and (Lρ)k−1ρ=0 the corresponding Lagrange
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polynomials:

Lρ (x) =
k−1∏

θ=0,θ 6=ρ

x− xθ
xρ − xθ

,

for all x in an interval [a1, a2]. For this interval, the set of interpolant points

(xρ)
k
ρ=0 can be chosen as the Chebyshev points of order k − 1:

xρ :=
a2 + a1

2
+
a2 − a1

2
cos

(
2ρ+ 1

2k
π

)
.

To minimize the error in the approximation, for the reason to be soon

explained, the degenerate kernel is chosen as

g̃ (τ, σ) =

{ ∑k−1
ρ=0 g (xρ, σ)Lρ (τ) , if diam(α) ≤ diam(β),∑k−1
ρ=0 g (τ, xρ)Lρ (σ) , otherwise,

(3.6)

and the admissibility condition (1.16) is adapted to

min{diam(α), diam(β)} < ηdist(α, β). (3.7)

This implies that the computation of the entries of matrices A and B

from (1.19) is now done as follows: if diam(α) ≤ diam(β),

Aiρ =
1

hn,i

∫ τn,i

τn,i−1

Lρ (τ) dτ and Bjρ =

∫ τn,j

τn,j−1

g (xρ, σ) dσ,

while if diam(β) ≤ diam(α),

Aiρ =
1

hn,i

∫ τn,i

τn,i−1

g (τ, xρ) dτ and Bjρ =

∫ τn,j

τn,j−1

Lρ (σ) dσ.

All integrals can be obtained using numerical quadrature formulae, nev-

ertheless, it is possible to have a probable more accurate result by computing

analytically the integrals involving the kernel. For that, first recall the result

in [AS60],

dEn(z)

dz
= −En−1(z) for n ∈ {1, 2, 3, ...}

leading immediately to ∫
En−1(z)dz = −En(z). (3.8)
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Proposition 8. When diam(β) ≤ diam(α), the entries Aiρ are explicitly

given by

Aiρ =


− $

2hn,i
[E2 (τn,i − xρ)− E2 (τn,i−1 − xρ)] , τn,i−1 ≥ xρ, τn,i ≥ xρ

$
2hn,i

[E2 (−τn,i + xρ)− E2 (−τn,i−1 + xρ)] , τn,i−1 < xρ, τn,i < xρ
$

2hn,i
[−E2 (−τn,i−1 + xρ)− E2 (τn,i − xρ) + 2] , τn,i−1 < xρ, τn,i ≥ xρ

Proof. Recalling that

g (τ, xρ) =
$

2
E1 (|τ − xρ|)

=


$
2
E1 (τ − xρ) , τ ≥ xρ

$
2
E1 (−τ + xρ) , τ < xρ

using (3.8) and integration by substitution, we get

1. if τn,i−1 ≥ xρ and τn,i ≥ xρ,

Aiρ =
$

2hn,i

∫ τn,i

τn,i−1

E1 (τ − xρ) dτ

= − $

2hn,i
[E2 (τn,i − xρ)− E2 (τn,i−1 − xρ)]

2. if τn,i−1 < xρ and τn,i < xρ,

Aiρ =
$

2hn,i

∫ τn,i

τn,i−1

E1 (−τ + xρ) dτ

=
$

2hn,i
[E2 (−τn,i + xρ)− E2 (−τn,i−1 + xρ)]

3. if τn,i−1 < xρ and τn,i ≥ xρ,

Aiρ =
$

2hn,i

(∫ xρ

τn,i−1

E1 (−τ + xρ) dτ +

∫ τn,i

xρ

E1 (τ − xρ) dτ

)
=

$

2hn,i
[−E2 (−τn,i−1 + xρ)− E2 (τn,i − xρ) + 2]
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The entries of the matrix B are given in Proposition 9.

Proposition 9. When diam(α) ≤ diam(β), the entries of the matrix B are

explicitly given by

Bjρ =


$
2

[E2 (xρ − τn,j)− E2 (xρ − τn,j−1)] , τn,j−1 ≤ xρ, τn,j ≤ xρ

−$
2

[E2 (−xρ + τn,j)− E2 (−xρ + τn,j−1)] , τn,j−1 > xρ, τn,j > xρ
$
2

[−E2 (xρ − τn,j−1)− E2 (−xρ + τn,j) + 2] , τn,j−1 ≤ xρ, τn,j > xρ

Proof. Using a similar procedure to the one done in Proposition 8, we obtain

1. if τn,j−1 ≤ xρ and τn,j ≤ xρ,

Bjρ =
$

2

∫ τn,j

τn,j−1

E1 (xρ − σ) dσ taking u = xρ − σ,

=
$

2

∫ xρ−τn,j

xρ−τn,j−1

E1 (u) (−du) and as xρ − τn,j ≤ xρ − τn,j−1,

=
$

2

∫ xρ−τn,j−1

xρ−τn,j
E1 (u) du

=
$

2
[−E2 (xρ − τn,j−1) + E2 (xρ − τn,j)]

=
$

2
[E2 (xρ − τn,j)− E2 (xρ − τn,j−1)]

2. if τn,j−1 > xρ and τn,j > xρ,

Bjρ =
$

2

∫ τn,j

τn,j−1

E1 (−xρ + σ) dσ

= −$
2

[E2 (−xρ + τn,j)− E2 (−xρ + τn,j−1)]

3. if τn,j−1 ≤ xρ and τn,j > xρ,

Bjρ =
$

2

(∫ xρ

τn,j−1

E1 (xρ − σ) dσ +

∫ τn,j

xρ

E1 (−xρ + σ) dσ

)

=
$

2

(
lim
x→xρ

∫ x

τn,j−1

E1 (xρ − σ) dσ + lim
y→xρ

∫ τn,j

y

E1 (−xρ + σ) dσ

)
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taking u = xρ − σ and v = −xρ + σ,

Bjρ =
$

2

(
lim
x→xρ

∫ xρ−x

xρ−τn,j−1

E1 (u) (−du) + lim
y→xρ

∫ τn,j−xρ

y−xρ
E1 (v) dv

)
and as xρ − x ≤ xρ − τn,j−1,

Bjρ =
$

2

(
lim
x→xρ

∫ xρ−τn,j−1

xρ−x
E1 (u) du+ lim

y→xρ

∫ τn,j−xρ

y−xρ
E1 (v) dv

)

=
$

2

(
lim
x→xρ

[−E2 (u)]xρ−τn,j−1

xρ−x + lim
y→xρ

[−E2 (v)]τn,j−xρy−xρ

)
=
$

2
[−E2 (xρ − τn,j−1) + E2 (0)− E2 (−xρ + τn,j) + E2 (0)]

=
$

2
[−E2 (xρ − τn,j−1)− E2 (−xρ + τn,j) + 2]

3.4 Error bounds for interpolation approxi-

mation

Inspired by [BG04], we give upper bounds for the error when polynomial

interpolation is chosen to obtain the degenerate approximation of the kernel

function.

The next Lemma introduces an upper bound for the derivative of the

kernel of the integral operator we are dealing with.

Lemma 10. The derivative of the kernel function (1.3) with respect to the

first argument of the kernel is bounded by

∣∣∣∣∂ρg∂τ ρ
(τ, σ)

∣∣∣∣ ≤ $

2
(ρ− 1)!

1

edist(α,β)

ρ∑
k=1

1

[dist(α, β)]k
. (3.9)
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Proof. From Lemma 3 and using (3.5)

∣∣∣∣∂ρg∂τ ρ
(τ, σ)

∣∣∣∣ ≤
∣∣∣∣∣−$2

ρ∑
k=1

(ρ− 1)!

(ρ− k)!

e−|τ−σ|

(τ − σ)k

∣∣∣∣∣
≤ $

2
(ρ− 1)!

1

e|τ−σ|

ρ∑
k=1

1

|τ − σ|k

≤ $

2
(ρ− 1)!

1

edist(α,β)

ρ∑
k=1

1

[dist(α, β)]k

In the next Lemma, an expression for the error bound when the interpo-

lation points are the zeros of the Chebyshev polynomial is given:

Lemma 11. In [SM03], for f ∈ Ck+1[a, b] and using Chebyshev interpola-

tion, a bound for the approximation error is given by

‖εk‖∞ ≤
(b− a)k+1

22k+1(k + 1)!

∥∥f (k+1)
∥∥
∞ . (3.10)

Applying interpolation distinctly to the different arguments of the kernel,

the error bound for the approximation of the kernel g by its interpolant g̃,

when interpolation is done with respect to the first argument of the kernel

(given by the following proposition (12)), is majorized.

Proposition 12.∣∣ε(k−1)α∣∣ ≤
 $

edist(α,β)k4k

(
1−diam(α)k

1−diam(α)

)
, diam(α) < 1 or 1 < diam(α) < 4

$
edist(α,β)4k

, diam(α) = 1
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Proof. Using (3.10), (3.9) and (1.16)

∣∣ε(k−1)α∣∣ ≤ diam(α)k

22k−1k!

∣∣∣∣∂kg∂τ k
(τ, σ)

∣∣∣∣
≤ diam(α)k

22k−1k!

$(k − 1)!

2edist(α,β)

k∑
i=1

1

[dist(α, β)]i

=
$diam(α)k

4kk

1

edist(α,β)

k∑
i=1

1

[dist(α, β)]i

=
$

edist(α,β)k4k

k∑
i=1

diam(α)k

[dist(α, β)]i

≤ $

edist(α,β)k4k

k−1∑
i=0

diam(α)i

=

 $
edist(α,β)k4k

(
1−diam(α)k

1−diam(α)

)
, diam(α) 6= 1

$
edist(α,β)4k

, diam(α) = 1

But to ensure convergence when k tends to infinity, in the case diam(α) 6=
1, regarding the presence of the factors 4k and diam(α)k, respectively in

the denominator and numerator, we must impose the additional condition

diam(α) < 4.

Similarly, when interpolation is done with respect to the second argument

of the kernel, we get the following upper bound to the approximation error.

Proposition 13.∣∣ε(k−1)β ∣∣ ≤
 $

edist(α,β)k4k

(
1−diam(β)k

1−diam(β)

)
, diam(β) < 1 or 1 < diam(β) < 4

$
edist(α,β)4k

, diam(β) = 1

Proof. Analogous to Proposition 12.

It is clear now that, in order to minimize the approximating error, inter-

polation should be applied distinctively to both arguments of the kernel g,

taking into account the diameter of α and β, that is why for polynomial in-

terpolation the kernel is written as (3.6). Still related with the two previous

propositions, we can state
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Proposition 14. For D = min{diam(α), diam(β)}, we get

|εk−1| ≤

 $
edist(α,β)k4k

(
1−Dk
1−D

)
, D < 1 or 1 < D < 4

$
edist(α,β)4k

, D = 1

Proof. Take the minimum of diam(α) and diam(β) to minimize the error

bound.

This justifies the changing of the left hand side of the admissibility con-

dition (1.16) into (3.7) in the present approach, that is, for polynomial inter-

polation; the replacement with D, defined in Proposition 14, takes place for

minimization of the error bound.

3.5 SVD approximation

This approach consists in computing a low-rank approximation from an ex-

plicitly built matrix block by means of a singular value decomposition (SVD).

A SVD on each admissible block, with already generated entries, can be

used to preserve the most valuable information and discard the rest. The

resulting rank-k approximation can be expressed as

ABT =
k∑
ρ=1

uρσρv
T
ρ , (3.11)

where σρ are the singular values (in descending order of magnitude), and

uρ and vρ are the corresponding left and right singular vectors, respectively.

Note that in the SVD, the eigenvectors of (ABT )T (ABT ) are the right sin-

gular vectors of ABT , the eigenvectors of (ABT )(ABT )T are the left singular

vectors of ABT and the eigenvalues of (ABT )T (ABT ) (or (ABT )(ABT )T ) are

the squares of the singular values of ABT .

The rank, k, can be chosen to be a fixed value, or alternatively to be set

dynamically on each block, based on a prescribed tolerance ε. In the latter

case, the condition σk > ε ≥ σk+1 holds.
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However, in computational terms, the cost to obtain the H-matrix is high

since the entries of every admissible block must be explicitly generated first,

in the present case through (1.7), prior to the singular value decomposition.

Nevertheless, all the computations done afterwards can be performed cheaply.

This approach may only be of pratical use if data can be stored, after

being generated, for subsequent (and repetitive) use.
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Chapter 4

Numerical results

In this chapter we begin by a concise summary of the machine that has been

used and present some numerical experiments that aim at illustrating the

benefits of the H-matrix representation with respect to conventional storage,

both in terms of performance and memory requirements.

4.1 Hardware

The tests in Sections 4.2 and 4.3 have been executed on a Linux workstation

with an Intel Core i7 950 processor at 3,06 GHz with 8 MB of L3 cache

memory and 8 GB of main memory. This processor has 4 cores with hyper-

threading technology (a total of 8 virtual processors).

The less computer intensive tests, in Section 4.4 , have been performed

on a Linux Ubuntu 11.04 desktop edition with an Intel Core i5 M450 at 2.40

GHz with 4GB of main memmory (4 cores).

4.2 Serial approach

For all the tests, in Sections 4.2 and 4.3, we chose to use a fixed value of

the τ ? parameter, in particular τ ? = 4000. We also set a constant value for

71
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the rank and minimum size of admissible blocks (degree=6 and bound=80,

respectively), as well as η = 1 in (1.16).

For building the H-matrix we have used HLIB’s supermatrix data struc-

ture, and recursively computed the cluster tree and populated it with admis-

sible or inadmissible blocks, as described in Section 1.3.

In our code, we have implemented three operations of the shell matrix:

matrix-vector multiplication, shift of origin A := A + σI, and extraction of

the diagonal. These are simply calls to the corresponding HLIB functions,

appropriately wrapped according to PETSc convention. In addition, we have

also implemented a shell spectral transformation in SLEPc that similarly

implements a specialized version of the shift-and-invert technique of (1.15)

by means of HLIB’s LU decomposition.

A final note about the implementation is that both the exponential-

integral and incomplete Gamma functions are available via GSL, the GNU

Scientific Library.

In Table 4.1 we show the CPU time required for the matrix generation

phase with dimension n varying from 4000 to 256000. With a uniform grid

the resulting matrix is symmetric and the code takes this fact into consider-

ation: the generation time for the symmetric case is almost half of the time

required for the unsymmetric counterpart. The H-matrix approach, either

with Taylor or Lagrange for computing the admissible blocks, represents a

significant gain in generation time compared with the version with conven-

tional sparse storage (note that in the sparse version we compute all matrix

elements and then decide whether they are too small to be stored). The time

reported for the SVD version includes the computation of matrix elements as

in the sparse version as well as the time required for low-rank approximation

through SVD decomposition (with LAPACK). Although this variant is the

most expensive one, if the problem is to be solved several times one may

consider this approach since it allows both for a fixed rank-k and for a rank

satisfying a prescribed tolerance, as mentioned in Section 3.5. For large val-

ues of n the CPU time required to compute the entries is prohibitive for the
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Table 4.1: CPU time (in seconds) for the generation phase for τ ? = 4000 and

varying n, with a uniform (left) and non-uniform (right) grid. The results

correspond to bound=80 and degree=6.

Uniform Non-uniform

n Taylor Lagrange SVD Sparse Taylor Lagrange SVD Sparse

4000 2.1 2.0 20.1 15.3 3.9 3.5 38.6 30.9

8000 6.1 5.7 99.6 61.8 10.4 9.4 182.7 123.3

16000 16.7 15.6 536.0 245.4 29.5 26.9 927.2 496.4

32000 49.6 47.0 3505.0 982.1 85.4 78.9 5630.7 1972.0

64000 140.6 133.5 – – 245.4 227.2 – –

128000 394.4 374.4 – – 690.3 637.9 – –

256000 1019.8 958.3 – – 1783.4 1616.1 – –

sparse implementation. The slight differences reported for Taylor and La-

grange result from the fact that in the latter case we implemented numerical

quadrature while for Taylor we used the formulae presented in Section 3.1;

the computation of the incomplete Gamma function at the required points

is skewing the results a bit. For increasing problem size there is a constant

growth factor less than three for these two approaches while the problem size

is quadrupling. The growth factor respects the estimated n log(n) asymptotic

cost, in contrast with the sparse version that follows n2. Some values were

not reported due to their high value.

Table 4.2 complements the previous comments, showing the number of

stored elements for all approaches. Note that the actual memory require-

ments for sparse storage are quite larger, since the space needed for indices

is considerable, while for the H-matrix representation the overhead in neg-

ligible. The last column shows the compression factor for H-matrix format

as a percentage of the full (dense) storage, revealing noteworthy gains for

increasing values of n.

Table 4.3 reports on the CPU time for the solution phase using Taylor,

Lagrange and SVD data-sparse representation as well as the sparse approach.
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Table 4.2: Number of stored elements in the case of dense, sparse and H-

matrix representation, for the non-uniform grid case in Table 4.1.

n Dense Sparse H-matrix Compression

4000 1.6 · 107 2.9 · 105 1.9 · 106 12.0%

8000 6.4 · 107 1.2 · 106 4.2 · 106 6.5%

16000 2.6 · 108 4.5 · 106 9.1 · 106 3.5%

32000 1.0 · 109 1.8 · 107 1.9 · 107 1.9%

64000 4.1 · 109 – 4.1 · 107 1.0%

128000 1.6 · 1010 – 8.6 · 107 0.5%

256000 6.6 · 1010 – 1.9 · 108 0.28%

Since the spectrum is tightly clustered (see Table 4.4 for the five largest eigen-

values with relative tolerance on the residual of 10−7), the shift-and-invert

technique is required to enable convergence of the Krylov-Schur method. In

the following, an LU factorization on the H-matrix representation is used in

the linear solver required in the application of the shift-and-invert operator.

The factorization is the most costly operation but is performed only once,

while triangular solves are required at each iteration of the eigensolver. In

Table 4.3 we show the factorization time as well as the total solution time.

For these tests, we used a Krylov basis of dimension 16, and with this size

the method does not need to restart (except for the matrix of n = 256000

where two restarts are required).

As expected, the computation of eigenpairs with the implementations of

the data-sparse representation is very fast compared to the sparse storage,

which shows a fast degradation in performance for increasing dimension. The

SVD approach is competitive with Lagrange and Taylor approximations, and

results for SVD on large values of n are not reported only due to the high

generation time. As mentioned above, the present problem is hard to solve

since for incresing values of n, and for fixed τ ?, the eigenvalues tend to

become more and more clustered. For problems with better separation of

the spectrum, the shift-and-invert step can be avoided and consequently its
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Table 4.3: CPU time (in seconds) for the solution phase for τ ? = 4000

and varying n, with a non-uniform grid (non-symmetric case). The results

correspond to bound=80 and degree=6.

Solution Factorization

n Taylor Lagrange SVD Sparse Taylor Lagrange

4000 0.3 0.3 0.3 0.2 0.3 0.3

8000 0.5 0.5 0.5 1.1 0.4 0.4

16000 1.0 1.1 1.2 8.2 0.8 0.9

32000 2.6 2.7 2.9 66.3 2.1 2.3

64000 6.5 6.8 – – 5.6 5.9

128000 16.4 17.3 – – 14.5 15.4

256000 47.5 49.3 – – 39.3 41.3

Table 4.4: Computed eigenvalues for the case of a uniform grid with n =

16000 and τ ? = 4000.
Eigenvalue Taylor Lagrange SVD

λ1 0.749999843422 0.749999843459 0.749999843598

λ2 0.749999374216 0.749999374253 0.749999374391

λ3 0.749998592208 0.749998592245 0.749998592383

λ4 0.749997497401 0.749997497438 0.749997497576

λ5 0.749996089801 0.749996089838 0.749996089976

computational cost.

As mentioned at the end of Section 1.2, Davidson methods do not seem

appropriate in the context of hierarchical matrices, since the shift-and-invert

technique is very cheap in this case. However, we wanted to do some ex-

periments. With Jacobi (diagonal) preconditioning, we were able to solve

the problem (although after many iterations) by tuning the parameters of

SLEPc’s Davidson solver. For instance, for n = 8000 with uniform grid, the

response time is 15.5 seconds, as opposed to 0.5 seconds with shift-and-invert

Krylov-Schur. A much powerful preconditioner is to use the LU factoriza-
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Table 4.5: Execution time (in seconds) for the matrix generation in parallel

(for different number of threads, p) corresponding to the two longest times

in Table 4.1 (non-uniform grid, Taylor with n = 256000 and SVD with

n = 32000).

Taylor 256000 SVD 32000

p Time Speedup Time Speedup

1 1783.4 – 5630.7 –

2 891.9 1.99 3097.2 1.82

4 446.0 3.99 1983.4 2.83

6 381.0 4.68 1875.1 3.00

8 332.9 5.35 1834.0 3.07

tion, but then the behaviour is almost identical to shift-and-invert. Again,

we remark that in other applications with a different spectrum, Davidson

solvers could be more useful than in this case.

4.3 Parallel approach (threads)

We have also developed a straightforward parallel version of the H-matrix

generation, based on the OpenMP API for shared-memory parallel program-

ming. In particular, we follow a tasking approach with the OpenMP task

directive [ACD+09], where each recursive call constitutes a new task.

Regarding parallelization of the generation phase, the multi-threaded ver-

sion was analyzed up to 8 threads.

Table 4.5 shows the measured execution times along with the achieved

speedups, for the two longest times in Table 4.1 (non-uniform grid, Taylor

with n = 256000 and SVD with n = 32000). In the case of the Taylor approx-

imation, speedup is virtually ideal up to 4 threads and decays significantly

later. This can be attributed in part to the fact that only 4 physical cores

are available. In the case of SVD generation, speedup is much worse, thus

revealing a problem with load imbalance, due to the fact that the high cost of
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the decompostion (cubic in the matrix block size) makes parallel tasks differ

wildly in duration.

4.4 Sensitivity analysis

We consider now a smaller problem, τ ? = 1000 and n = 2000, to assess

the sensitivity of the proposed resolution method regarding to some of the

parameters.

Figure 4.1: Norm of the difference between matrix An and its H-matrix

representation, for several values of the degree k and minimum bound.

The two main parameters under review are k, the degree on the Taylor

or Lagrange approximations, and the minimum size for the blocks, named

bound. The former is already well understood, larger values of k should

improve the quality of the approximation but at a higher cost. The latter is

a numerical way to stop the splitting process before reaching sets containing

only one element; it defines which sets are small enough.

In Figure 4.1 we show the distance from the H-matrix approximation to

the original one, An. For most part of the combinations of both parameters,
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Eigenvalue Sparse Taylor Lagrange

λ1 0.749997399534 0.749997056849 0.749997402836

λ2 0.749989598317 0.749989290172 0.749989601309

λ3 0.749976596889 0.749976284686 0.749976599928

λ4 0.749958396151 0.749958079593 0.749958399195

λ5 0.749934997365 0.749934670108 0.749935000520

Table 4.6: List of the 5 largest eigenvalues produced by the sparse version

and Taylor and Lagrange approximations, using degree 6, bound 20

the distance between the matrices is sufficiently small, providing good per-

spectives for the success of the numerical approximations. It is important

to note that the eigenvalues are computed with a tolerance of 10−7. Smaller

values for bound reduce the minimum sizes of the blocks thus increasing the

number of blocks, particularly the low-rank approximation ones, and the H-

matrix becomes sparser. With the decrease of bound the admissibility condi-

tion becomes eager. Similarly, lower values of degree may produce worst but

cheaper approximations. These two parameters must be considered together,

since it may not make sense, for instance, to consider a degree greater than a

bound. Very low values of either parameters may lead to wrong answers (val-

ues reported in red and orange color show a significative difference between

An and its H-matrix approximation). Moreover, this analysis is, naturally,

problem dependent, although there are geometrical considerations of general

nature.

For the problem under study, Lagrange approximations seem to be slightly

better than Taylor ones, allowing best approximations either for fixed val-

ues of bound or degree. This can be justified by the fact that the former

is a global approximation while the latter is of local nature. Furthermore,

Lagrange is more flexible since it does not require the computation of deriva-

tives. As stated previously, SVD decomposition allows for the best approxi-

mation but it is very expensive to compute.

Table 4.6 shows the computed eigenvalues for the Sparse, Taylor and
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Lagrange approximations, for degree 6 and bound 20. The relative error

(distance from the approximation solution to the one provided by the Sparse

version (reference)) is of O(10−7) for Taylor and of O(10−9) for Lagrange.

One should bear in mind that the required precision for the solution was

10−7, so both solutions should be considered correct under the precision of

data. For the same bound but reducing the degree to 3, both approximations

deliver a relative error of O(10−7). For larger values of bound, the number of

correct digits of the approximate solutions with respect to the reference case

increases, so results are insensitive to this parameter. To explore further this

aspect, one should produce more refined eigenvalue approximate solutions.

On the other hand, smaller values of bound, 10 or less, begin to produce

solutions under the required precision, so the relative error, as mesured in

this section, becomes larger.

For SVD, the only case where solutions don’t match at least at O(10−7) is

for degree 9 and bound 5 (indeed, as explained, this combination of parame-

ters is no sense). Except for the previous case, singular value decomposition

captures extremely well the relevant information for the eingenvalue compu-

tation.

To better clarify the impact of the bound parameter on the H-matrix, we

plot in Figures 4.2 to 4.5 the structure for a small size problem, τ ? = n = 100,

and for a fixed degree equal to 6. It is clear, Figure 4.5, that a larger bound,

is not adequate for such a small size problem. At the other extreme, a

small bound, Figure 4.2, produces very small inadmissible (and admissible)

blocks, giving rise to important information, green shapes, in blocks very far

from the diagonal; for such a small bound, maybe a higher degree would be

recommended. Figure 4.4 illustrates how this type of approximation can be

used as a clever and cheap way to treat the problem at a cost of a block-band

matrix eigenvalue computation. Probably the best choice would be Figure

4.3, combining a moderate size for the inadmissible blocks and setting the

admissible blocks neither in an atomized form nor too much aggregated.
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Figure 4.2: H-matrix structure for Lagrange approximation with degree 6

and bound 5 (τ ? = 100, n = 100).
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Figure 4.3: H-matrix structure for Lagrange approximation with degree 6

and bound 10 (τ ? = 100, n = 100).



82 CHAPTER 4. NUMERICAL RESULTS

Figure 4.4: H-matrix structure for Lagrange approximation with degree 6

and bound 20 (τ ? = 100, n = 100).
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Figure 4.5: H-matrix structure for Lagrange approximation with degree 6

and bound 40 (τ ? = 100, n = 100).
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Part III

Conclusions and future research
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Chapter 5

Conclusions

The H-matrix technique has its origin in the panel clustering [HN89, Hac90]

where the kernel of the operator is approximated by a degenerate one. How-

ever, the panel clustering matrices cannot cheaply be multiplied or inverted,

and we arrive to one great advantage of using H-matrices: the arithmetic,

that is, matrix-vector multiplication, matrix-matrix multiplication, inversion,

matrix functions, can be performed in almost linear complexity. So, new ap-

plications as the solution of matrix equations or just the construction of very

efficient preconditioners for linear systems can be handled with efficacy using

this technique, [Bör09].

In this work we solve a large eigenvalue problem issued from a radiative

transfer equation in stellar atmospheres. The computation is time inten-

sive both in memory requirements, since large dimensional cases are to be

treated, and in the solution phase, due to the clustering of the eigenvalues.

Sophisticated numerical algorithm implementations for the solution phase

are thus required. The H-matrix data representation provided by HLIB was

integrated in the SLEPc and PETSc frameworks to tackle those two difficul-

ties.

We report on the numerical low-rank approximations developed, on the

details of the integration of the libraries under use, as well as presented
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a brief explanation of the problem and its interesting characteristics. The

combined use of numerical solution methods optimized for high-end computer

environments and of the clever data storage representations, although not

with ease, provide an efficient and fast answer capable of solving even larger

dimensional problems, maybe requiring the use of distributed processing.

The numerical tests illustrate the success of the proposed solutions.

Moreover, error bounds for the proposed low-rank approximations were

developed, ensuring that under the stated conditions, these approximations

are mathematically supported.

This thesis also presents a useful summary on numerical state-of-art meth-

ods for the solution of algebraic eigenvalue problems and on some of today’s

most important software libraries for high-end scientific computing.

Intentionally, some important computational skills to fullfil the aims of

this work were hidden to keep the reading as much clear and fluent as possible.

Indeed, dealing with such huge number of software libraries, knowing in depth

the merits and limitations of the numerical algorithms involved, requires

a high level of specialization. Furthermore, being familiar with computer

languages is crucial.



Chapter 6

Future research

In this chapter, we make some comments on future research directions that

may amplify the application of the H-matrix technique to other cases, which

would provide the next steps along the path to a more wide application of it.

Moreover, in Section 6.2 it is described some state-of-art about some topics

in nonlinear eigenproblems.

6.1 Some limitations on H-matrix technique

We have started out dealing with an integral operator defined from L1([0, 1])

into itself, and with kernel

f(τ, σ) = ln (1− cos 2π (τ − σ)) , (6.1)

aiming to compute some few eigenvalues and eigenvectors of the discretized

matrix of the operator, with an analogous aproach as it was done with the

operator T in (1.2) with kernel (1.3). The kernel (6.1) was purposely chosen

as it is a wealky singular kernel for which the exact eigenvalues are known:

• simple eigenvalue: λ0 = − ln 2,

• double eigenvalues: λk = − 1
k
, k ≥ 1.
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It would be an interesting work to compute a few eigenvalues using the

technique used in the thesis, followed by the comparsion between them and

the corresponding exact ones.

Nevertheless, the study done with this kernel showed us the apparent

restriction of the use of the H-matrix technique, similiar to what was done

with the kernel (1.3) in this thesis. We have encountered some difficulties: we

did not manage to find a solution to the computation of the double integral

of the kernel (6.1), necessary to achieve the formula for the inadmissible

leaves of the H-matrix structure; we were unable to find a recursive rule for

the derivative of the kernel, essential to the construction of the Taylor series

expansion of the kernel, one of the options for the low-rank construction; we

did not manage to write the kernel with both variables separated, prerequisite

to construct a degenerate approximation of the kernel, see (1.17), for the low-

rank approximation.

Despite the previous facts, polynomial interpolation is an optimal option

for the low-rank approximation in this case, using a similar procedure to

what was done in Section 3.3, except for the cases of low-rank approximation

close to singularities, besides that the question remains how to compute the

inadmissible leaves. These two points appear to be a good point of research

in an immediate future work, and we leave here a hint of the study we are

having in hands.

One possibility is to approximate the new operator T by T̃n obtained

from T by means of a particular quadrature approximation. First we rewrite

the kernel as a function of one variable, f(τ, σ) = f̃(r), with r = |τ − σ|.
The essence of this procedure is using a truncated kernel function f̃n instead

of the kernel itself. The truncation is done close enough to the singularity,

that is, given a point cn of the same order of the weights of the quadrature

formula (e.g. for trapezoidal quadrature rule it is of order 1
n
), for the points

of the domain located between cn and the singularity, the kernel is evaluated

as f̃n (cn); in the other points of the domain, f̃n is defined to be f̃ . These

ideas may be found in [LL93].
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6.2 First glance on nonlinear eigenvalue prob-

lems

At the begining of the research project, we had thought to make some con-

tributions in nonlinear eigenvalue problems, but in fact the research followed

other directions. Nevertheless, some investigation about this subject was

done, speaking in terms of state-of-the-art, and in this section we present a

summary of it as we consider nonlinear eigenproblems one topic for research

in the future.

Regarding the importance of spectral theory in the case of linear oper-

ators, for instance, spectra of differential operators applied to the theory of

elliptic boundary value problems or the application in classical quantum me-

chanics, it is quite natural that several efforts have been made to study and

define spectra in the nonlinear case.

In order to recall the definition of spectrum in the linear case, let X and

Y be two Banach spaces over K = R or K = C and an operator L ∈ BL(X),

where BL(X) is the algebra of all bounded linear operators from X into

itself. The resolvent set of L is defined by

re (L) = {λ ∈ K : λI − L is a bijection} (6.2)

and the spectrum of the operator by

sp (L) = K\re(L) = {λ ∈ K : λI − L is not a bijection} , (6.3)

where I is the identity operator.

The study of nonlinear eigenvalues is older than the nonlinear spectral

theory, remarking that initially, the word spectrum was used in the sense

of the set of eigenvalues, the point spectrum. Considering F : X −→ X

a continuous nonlinear operator, we note that the definition of the point

spectrum of F coincides with the one of the linear case

spp (F ) = {λ ∈ K : F (x) = λx for some x 6= 0} . (6.4)
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It was just in the late 60’s that Kachurovskij and Neuberger indepen-

dently studied spectral values that were not necessarily eigenvalues. Then,

serveral different spectral “theories” started to appear, aiming to preserve

the properties considered useful regarding the linear case, as well as trying

to extend them to a possible wider range of nonlinear problems.

In [ADPV04], the authors describe that it was assumed that a spectrum of

a continuous nonlinear operator should satisfy some essential requirements,

as reducing to the familiar spectrum in case of linear operators; keeping some

of the usual properties of the linear spectrum (e.g. compactness, nonempti-

ness), containing the eigenvalues of the operator considered, as well as having

applications (e.g. existence, uniqueness).

On the contrary of what could be possibly expected, nonlinear spectral

theory have faced some “disappointing” facts. For example, in oposition to

the linear case: the spectrum of a nonlinear operator has almost no infor-

mation about the operator itself; in general the properties of boundedness,

closedness, or nonemptiness fail; the spectra can be disjoint from the set of

eigenvalues.

Next we give a glimpse over some spectra that have appeared over the

last forty years:

• Rhodius spectrum [Rho77],

Consider F : X −→ X a continuous operator such that F (0) = 0. The

set

spR(F ) = K\ {λ ∈ K : λI − F homeomorphism on X}

= K\
{
λ ∈ K : λI − F is a bijection and (λI − F )−1 continuous

}
is the Rhodius spectrum of F .

• Neuberger spectrum [Neu69],

Consider F : X −→ X a continuously differentiable operator such that

F (0) = 0. The set

spN(F ) = K\ {λ ∈ K : λI − F diffeomorphism on X}

= K\
{
λ ∈ K : λI − F is a bijection and (λI − F )−1 of class C1

}
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is the Neuberger spectrum of F .

• Kachurovskij spectrum [Kac69],

Consider F : X −→ X belonging to the class Lip(X) such that F (0) =

0. F ∈ Lip(X) means that F is Lipschitz continuous on X, that is,

[F ]Lip = sup
x6=y

‖F (x)− F (y)‖
‖x− y‖

<∞.

The set

spK(F ) = K\ {λ ∈ K : λI − F lipeomorphism on X}

= K\
{
λ ∈ K : λI − F is a bijection and (λI − F )−1 ∈ Lip(X)

}
is the Kachurovskij spectrum of F .

• Dörfner spectrum [Dör97],

Consider F : X −→ X linearly bounded on X, i.e.

[F ]B = sup
x6=0

‖F (x)‖
‖x‖

<∞.

The set

spD(F ) =K\
{
λ ∈ K : λI − F is a bijection and (λI − F )−1 is

linearly bounded on X}

is the Dörfner spectrum of F .

• Furi-Martelli-Vignoli spectrum [FMV78],

Before the definition of this spectrum, some other definitions have to

be presented. The (Karatowski) measure of compactness α(A) of a

bounded set A ⊂ X is defined as the infimum of real numbers δ > 0

such that A admites a finite covering by sets of diameter less than

δ. Considering F : X −→ Y continuous, the following numbers are

defined

[F ]α = sup {k > 0 : α (F (A)) ≥ kα (A) for every bounded A ⊂ X} ,
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[F ]Q = lim
‖x‖→∞

sup
‖F (x)‖
‖x‖

, (6.5)

and

[F ]q = lim
‖x‖→∞

inf
‖F (x)‖
‖x‖

. (6.6)

The operator F is said to be stably solvable if, given any compact

operator G in X with [G]Q = 0, the equation F (x) = G(x) has a

solution x ∈ X.

Finally, F is said to be FMV-regular if F is stably solvable, [F ]α > 0

and [F ]q > 0. Now we have all the notations needed to define the

Furi-Martelli-Vignoli spectrum (FMV spectrum):

spFMV (F ) = K\ {λ ∈ K : λI − F is FMV -regular} .

• Feng spectrum [Fen97],

Consider F : X −→ Y continuous on X. We give the following nota-

tions to achive the definition of the Feng spectrum:

[F ]A = inf {k > 0 : α (F (A)) ≤ kα (A) for every bounded A ⊂ X} ,
(6.7)

[F ]b = inf
x6=0

‖F (x)‖
‖x‖

.

ConsideringG : Br −→ Y a continuous operator, withBr = {x ∈ X : ‖x‖ ≤ r},
it is defined

νr(F ) = inf {k > 0, there exists G satisfying [G]A ≤ 0, G |∂Br≡ 0,

and F (x) 6= G(x),∀x ∈ Br}

and

ν(F ) = inf {νr(F ), r > 0} .

Finally, F is said to be F-regular if F is stably solvable, [F ]α > 0 and

[F ]b > 0 and ν(F ) > 0. Now we have all the notations needed to define

the Feng spectrum:

spF (F ) = K\ {λ ∈ K : λI − F is F -regular} .
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• Väth phantom [SV00],

Let U ⊂ X be open, bounded, connected and with 0 ∈ U . Consider

F : U −→ Y continuous.

F is epi on U if F (x) 6= 0 on ∂U and the equation F (x) = G(x) has

a solution in U for any compact operator G : U −→ Y that satisfies

G(x) ≡ 0 on ∂U .

F is strictly epi on U if

inf {‖F (x)‖ : x ∈ ∂U} > 0,

and there exists some k > 0 such that for any operator G : U −→ Y

that satisfies G(x) ≡ 0 on ∂U and [G]A ≤ k, the equation F (x) = G(x)

has a solution in U .

Finally, F : X −→ Y is said to be v-regular if it is strictly epi on some

U . Now we have all the notations needed to define the Väth phantom:

φ(F ) = {λ ∈ K : λI − F is not v-regular} .

• Calamai-Furi-Vignoli spectrum [CFV10],

Consider U ⊂ X open, the continuous operator F : U −→ Y and p ∈ U .

Let Up denote the open neighborhood {x ∈ X : p+ x ∈ U} of 0 ∈ X

and consider Fp : Up −→ Y continuous with Fp(x) = F (p+ x)− F (p).

Recalling (6.7) and (6.6), considering B(p, r) ⊂ X an open ball with

center at p and radius r > 0, B(p, r) ⊂ U , it is defined now

[F ]Ap = lim
r→0

[F |B(p,r)]A,

[F ]qp = lim
r→0

[F |B(p,r)]q,

and, for y ∈ Y , F is y-admissible at p if F (p) = y and F (x) 6= y for every

x in a constricted neighborhood of p. Moreover, F is said to be y-epi at

p if it is y-admissible at p and y-epi on any small enough neighborhood

of p (the definition of F y-epi can be seen, e.g. in [CFV09]).
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Finally, F is said to be regular at p if [F ]Ap > 0 and [F ]qp > 0 and Fp

is 0-epi at 0. Now we are able to define the spectrum of the map F at

the point p, that is, the Calamai-Furi-Vignoli spectrum:

spCFV (F, p) = {λ ∈ K : λI − F is not regular at p} .

Besides the previous references to the papers where the respective spec-

trum was introduced, in [ADPV04, APV00, App03] just to mention a few,

it is possible to find not only the definitions, but also the comparison be-

tween some of the spectra previously mentioned. Next, not aiming to be

exhaustives, we illustrate some differences between these spectra.

The Rhodius, Neuberg, Kachurovskij and Dörfner spectra contain the

eigenvalues of the operator, and 0 if the operator is compact in a Banach

space of infinite dimension (this is analogous to the linear case). It can be

seen that in these spectra, what was done in their definitions was simply

the replacement of BL(X) in (6.2) and (6.3) by other classes of continuous

nonlinear operators, in this four cases, respectively by the class of continu-

ous, continuously differentiable, Lipschitz continuous, and linearly bounded

operators.

Apparently, the asymptotic spectrum (‖x‖ → ∞) introduced by Furi,

Martelli and Vignoli, the global Feng spectrum (x ∈ X), and the local spec-

trum
(
x ∈ U

)
given by Väth are more present in literature, probably because,

even though being quite different in nature, are identical for homogeneous

operators and when applied to linear operators they give exactly the usual

spectrum of the linear theory. Note that usually the word “spectrum” in the

case of Väth is replaced by “phantom” because its construction is quite far

from what is usually called spectrum.

The fact that FMV spectrum do not contain the set of eigenvalues, has

induced Feng to define a new spectrum having the same topological properties

of the FMV spectrum, but containing the classical eigenvalues, as happens

in the linear case. The Väth phantom is closed and can be in some cases

bounded, hence compact.
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In Table 6.1, inspired in [CFV09], we give a summary of the comparison

of the different spectra described before, from the viewpoint of topological

properties (having in mind the properties of the linear spectra).

Table 6.1: A general view of the main properties of some nonlinear spectra

Spectrum nonempty closed bounded compact

Rhodius no* no no no

Kachurovskij no* yes yes yes

Neuberg yes no no no

Dörfner no* no no no

FMV no* yes no* no*

Feng no* yes no* no*

CFV no* yes no* no*

(*) yes, in some cases [CFV09].

Considering F, J : X −→ Y continuous operators, the point spectrum

(6.4) can be written in a more general way

spp (F, J) = {λ ∈ K : F (x) = λJ(x) for some x 6= 0} . (6.8)

Anyway, the first definition is a particular case of (6.8), that is, spp(F ) =

spp (F, I), with X = Y .

Recalling that, in the linear case, the approximate point spectrum of L is

defined by

spap(L) = {λ ∈ K : exists a sequence xn, ‖xn‖ → 0

such that ‖λxn − Lxn‖ → 0 as n→∞}

in some of the nonlinear spectra a corresponding notion of eigenvalues (point

spectrum or approximate point spectrum) was introduced; note that spp(L) ⊆
spap(L) and sp(L) = spap(L) ∪ spp(L

∗) = spp(L) ∪ spap(L
∗), being L∗ ∈

BL(X∗) the adjoint of L.
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As was mentioned before, the FMV-spectrum has asymptotic character-

istics, and so (6.8) should be replaced by the asymptotic point spectrum

spq(F, J) = {λ ∈ K : [λJ − F ]q = 0} ,

that is always in spFMV (F ).

In [SV00, ADPV04] it is possible to find point phantom of (F, J) defined

as

φp(F, J) = {λ ∈ K : λ connected eigenvalue of(F, J)}

where by connected eigenvalue of (F, J) is meant the nullset

N(λJ − F ) = {x ∈ X : F (x) = λJ(x)}

containing an unbounded connected set C with 0 ∈ C.

In [CFV10] it is defined the approximate point spectrum of F at p, a

subset of spCFV (F )

spCFV ap(F, p) =
{
λ ∈ K : [F ]Ap = 0 and [F ]qp = 0

}
that coincides with the usual approximate point spectrum in the linear case.

Combining some interesting summary schemes in [App03, APV00, ADPV04],

relating some possible inclusions between the spectra, we present also the Ta-

ble 6.2 as a possible summary, for F, J : X −→ Y nonlinear operators and

Table 6.2: Possible inclusions between some nonlinear spectra

φ(F, J) ⊆ spFMV (F, J) ⊆ spF (F, J)

⊆ ⊆ ⊆

φp(F, J) ⊆ spq(F, J) spp(F, J)

when reducing to the linear case, L ∈ BL(X) with J = I, we have the Table

6.3.

What seems it should be done, when we want to apply spectral theory to

a particular nonlinear problem, is to choose with care a spectrum having at

least some of the needed characteristics.
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Table 6.3: Possible inclusions of different spectra applied to the linear case

sp(L)

=

φ(L, I) = spFMV (L, I) = spF (L, I)

⊆ ⊆ ⊆

φp(L, I) ⊆ spq(L, I) ⊇ spp(L, I)

In [ADPV04] the authors state that it is not the intrinsic structure of

the spectrum itself that results in interesting applications, but considered

a tool for solving nonlinear equations. It is also referred that in nonlinear

analysis, two techniques have been effectively used for the study of nonlinear

eigenproblems: topological methods (fixed point theorems, degree theory) and

variational methods (critical points, nonlinear functionals).

The knowledge of the spectrum of a nonlinear operator seems to be useful

in solvability results for nonlinear equations, moreover we emphasise that

bifurcation theory, one of the most important fields of nonlinear functional

analysis, is closely related to nonlinear eigenvalue problems. Other more

applications, as e.g. to boundary value problems, may be found in literature.

Nonlinear eigenvalue problems arise in many applications, e.g. structural

dynamics, acoustics, fluid mechanics, control theory and quantum physics.

Usually the procedure is to discretize the problem (e.g. Galerkin schemes)

and to the resulting matrix problem an iterative projection method may be

applied .

It can also be held what is called linearization, for example, in polynomial

or rational eigenvalue problems in which first it is performed a linearization,

resulting in a larger linear eigenvalue problem with the same eigenvalues and

then apply a method for linear eigenvalue problems. However, in [MV05] the

authors state that this is not ideal, since it makes the problem larger and

moreover may considerably increase the conditioning of the problem. Even

though, this approach seems to be appropriate for this kind of problems.
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There is a vast literature on numerical methods for nonlinear eigenvalue

problems. Generally, they are split into dense and large sparse problems. For

the last ones, projection methods that work directly for general nonlinear

eigenproblems, are a good option. In this case the search spaces have to

be expanded by directions that have a high approximation potential for the

desired eigenvector.

We have seen in Section 1.2 that for sparse linear eigenproblems iterative

projection methods, like e.g. Arnoldi or Jacobi-Davidson, are a tool for the

computation of a few eigenpairs of the spectrum. As previously observed,

Jacobi-Davidson method for linear problems was proposed by Sleijpen and

van der Vorst; the method was later extended to quadratic eigenproblems

[BV04]. Voss considered also the use of this method for the nonlinear eigen-

problem (nonsymmetric case) [Vos07].

Generally two approaches to subspace expansion may be found in the

literature: Jacobi-Davidson [BV04, Vos04b] and nonlinear Arnoldi [Vos04a]

type expansion. Both methods approximate inverse iteration, which is known

to provide a direction of a high approximating potential to the eigenpair it

is aiming for.

A more detailed study of these issues may be found in [MV05, Vos04c].
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and Conselho de Reitores das Universidades Portuguesas (CRUP), be-

ing designed to initiate academic and scientific exchanges between the

two countries.

• Acções de Mobilidade de Investigadores FCT/MICINN for 2011 under

the Memorandum of Understanding between the Ministério da Ciência,
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