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préparée au sein du laboratoire G-SCOP
et de l’école doctorale MSTII
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Abstract

Given an airline schedule and demand forecasts, the Fleet Assignment Prob-
lem consists in determining how to assign aircraft types to flight legs in the
best possible way. Decades of research on this problem have improved the
formulations to be more and more realistic. The goal of thesis is to enhance
the existing fleet assignment models using improved revenue evaluation tech-
niques, in order to identify more accurately fleet assignments that can lead
to better airline profitability.

We first propose a study involving the two models of the literature that
are the most widely used by the industry, FAM and IFAM. We show that
FAM can be seen as a Lagrangian Relaxation of IFAM, with particular La-
grangian multipliers. We implement this relaxation, and we apply known
results to extend it in a column generation based on a Dantzig-Wolfe de-
composition of IFAM.

We then present a new approach for modeling the Fleet Assignment
Problem, called Market Driven Fleet Assignment Model (MDFAM). In this
model, we consider the itinerary demands as decision variables, and we
propose to constrain these demands rather than considering them as a fixed
input of the problem. We call the resulting constraints Market Constraints.
We illustrate the flexibility of this approach through various examples, and
we provide a series of experiments in order to determine which types of
Market Constraints give the best results. We compare the different models,
and we show that the Market Constraints of MDFAM can be formulated in
such a way that the profit of the model is similar to IFAM’s, while allowing
better expressiveness.
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Chapter 1

Introduction and Concepts

1.1 Airline Planning Process

Airline Scheduling consists in deciding where to fly, when, and how to assign
aircraft and crew. This process is traditionally divided in 5 sequential steps:

Schedule Design decides the flights to be operated. This includes origin,
destination, flight times and frequencies.

Fleet Assignment decides, for each flight, what type of aircraft should
operate.

Aircraft Routing decides formally what actual aircraft should operate
each flight.

Crew Pairing assigns unnamed crew members to the flights.

Crew Rostering specifies who should actually be on board for each flight.

Fleet Assignment, as the second step, has a significant impact on the sub-
sequent steps and on the overall process. The reasons of this division of the
Airline Planning Process include, but are not limited to:

• Solving all of these problems simultaneously would require intractable
computations.

• Even if the computation time needed for simultaneously solving these
problems could be reduced, doing such a thing would still not be de-
sirable, because the slightest change in the problem data (for example,
staff members modifying the date of their holidays) would then induce
the need to re-solve the whole process again. Splitting it in several
layers allows to only re-solve the appropriate problems, and reduce
the computation time when the schedule needs to be modified.
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• Using a standard process usually improve costs. For example, in the
case of airlines, it enables them to use standardized tools, such as
optimization softwares. Moreover, it also enables them to share a
common base of knowledge with other airlines, and to better profit
from research results in the domain.

There is obviously some feedback between every steps, and airlines will often
go back and forth between the problems until they find a satisfying solution.

After the schedule has been established, the tickets sales start. Two con-
current stages are involved: The first one, Pricing, consists in establishing
the prices of all offered journeys at the various restriction levels, which are
referred to as Fare classes. The second one, Revenue Management, dy-
namically optimizes the availability for each journey-fare class combination
primarily based on actual bookings.

Of course, at any step, the airline can reconsider its decisions. For ex-
ample, if the number of passengers does not meet the expectations on a
given flight, the assigned aircraft can be swapped with a smaller one. Such
a substitution is of course delicate to operate, and would require a number
of properties to be satisfied. For example, it has to be checked that the crew
assigned to the flight will be able to operate the new aircraft. The old air-
craft will also need to be reassigned elsewhere, and should be large enough
to provide seats for all the bookings already performed by the passengers.
The aircraft routing has to be repaired. This kind of changes in the schedule
can thus be risky, for possibly unplanned consequences they might induce.
However, nowadays,flexibility is something airlines are after, because it is
key for reacting to competition, and thus tools must be conceived in a way
that allows this flexibility.

1.2 Fleet Assignment

1.2.1 Concepts

The Fleet Assignment Problem consists in assigning aircraft types to flight
legs in the best possible way. A flight leg is a journey consisting of one take
off and one landing. It is defined by its board point, off point, departure
time and arrival time. Legs constitute the smallest elementary schedule
operation, and the set of all the flight legs defines the Flight Schedule. An
aircraft type is defined by the name of the family it represents, such as A320
or B747.

Most of the time, the schedule is assumed to cycle daily or weekly, and
the fleet assignment is built in a way it can be repeated. However, it is
also possible to consider non-cyclic schedules. In such situations, initial and
terminal positions may be imposed for aircraft types: in each airport, at
the beginning and at the end of the schedule, the number of aircraft of
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each type is then specified as an input of the problem. A fleet assignment
is characterized by its complete list of assignments (leg l, aircraft type t),
meaning that the type t should be assigned to the leg l.

Formally, the objective is to find the best feasible fleet assignment, max-
imizing the profit:

profit = revenue− operating cost

The revenue depends on the demands of the passengers, on the fares
applied by the airline, on the capacity of the assigned aircraft and on the
revenue management policy applied by the airline. The operating cost de-
pends on the taxes applied by the airports and on the fuel costs. The
operating cost can safely be approximated to a linear function that exclu-
sively depends on the fleet assignment. However, the same statement does
not hold for the revenue. Because of the dynamic nature of the sales process,
it is very difficult, if not impossible, to model it accurately at the planning
stage: as passengers book their flights, the airline is modifying the availabil-
ity of seats in order to preserve room for high-fare passengers. Sophisticated,
time-dependent systems that are involved in order to react to the bookings
and modify this availability. Any revenue forecast at the stage of the Fleet
Assignment is thus a rough evaluation and does not accurately predict the
revenue of the company.

To be feasible, a fleet assignment must respect some constraints: each
leg must be served, the aircraft flow must be conserved, and the assignment
must respect aircraft types availability. Aircraft flow conservation means
that to be used on a flight leg, an aircraft must be previously available at
the board point of the leg. Aircraft type availability means that at any
time of the schedule, the number of aircraft of a given type used by the
assignment must not exceed the amount of aircraft of this type owned by
the airline.

Passengers, when they are considered by the Fleet Assignment model,
are assumed to follow itineraries. Itineraries are sequences of (leg, cabin)
that do not overlap in time, meaning that the passenger is going to fly each
leg in the associated cabin. A cabin is a part of the plane used to host the
seats of the fare class the passenger has booked for. Each cabin has a given
seating capacity which depends on the aircraft type flying the leg. Some
companies do not split their aircraft in cabins: it can then be assumed that
the whole aircraft consists in one single cabin.

The action of the passengers to reach their next flight between each leg
is called connection. Whenever the airline does not satisfy the demand of
the passengers to fly on their preferred itinerary, it is often said that these
passengers are spilled by the airline. This results in a loss of revenue also
qualified as spilled revenue.

Some models also have a concept of recapture: passengers who are not
able to buy their itinerary of primary choice might still want to travel on
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the airline network: this phenomenon, when it happens, is called recapture.
We respectively talk about recaptured passengers and recaptured revenue
when referring to the passengers traveling on an itinerary which is not their
primary choice, and to the revenue generated by these travels.

1.2.2 Instances Size

Instances for major North American airlines are reported to be typically
built out of 24-hour schedules and usually have about 2000 legs, 10 fleets
serving 75000 itineraries Barnhart et al. (2009). Depending on the size of the
airline, these values can vary a lot. Implementations built for this work were
tested on network from 3 different companies (one of the sets is public and
can be found online 1). Two of these companies yield small daily networks of
typically 200 to 300 legs, and some of the public instances include networks
of over 2000 legs.

1.3 Outline of this Thesis

Through the years, research on fleet assignment has brought more and more
accuracy in Fleet Assignment models. With the growing interest for Rev-
enue Management, the trend is to focus on better modeling the passengers
behavior. Nevertheless, results show that the main problems in current Fleet
Assignment models are related to the accuracy of demand forecasts. Because
the Fleet Assignment occurs early in the Airline Planning Process - before
the sales have started - these forecasts, even when very well performed, come
necessarily with a high volatility. Besides, the amount of parameters needed
by the state of the art models demands a tremendous effort to the airlines,
with most parameters values being unknown or hard to estimate.

1.3.1 Goal

The general goal of this thesis is to improve the existing models and tech-
niques for doing Fleet Assignment. To do so, several directions of develop-
ment are possible. One of them could be to address the high variability of
some input parameters: because Fleet Assignment is typically solved one
year prior to the operations, the uncertainty of the demand forecast used
to evaluate the revenue can be important. Finding techniques to address
this uncertainty would thus help to produce more reliable fleet assignments.
In this context, on could try to take advantage of various sources of data
available to airlines when it comes to demand forecast.

1see https://github.com/chmduquesne/fleetassignment instances
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1.3.2 Contributions

This thesis features two contributions:
In a first part, we propose a study of the two fleet assignment models

that are the most widely used in the airline industry: FAM and IFAM.
We show that FAM can be seen as a Lagrangian Relaxation of IFAM. We
implement this Lagrangian Relaxation, and then use known results to turn
it into a column generation based on a Dantzig-Wolfe formulation of IFAM.
We include graphical representations of how our implementation runs over
small instances, and suggestions for improvements.

The second contribution of this thesis is a new Fleet Assignment model
called Market Driven Fleet Assignment Model (MDFAM). In MDFAM, the
itinerary demands, which would be a static input in IFAM, are made de-
cision variables. These decision variables are subject to linear constraints,
named Market Constraints. The Market Constraints are a form of knowl-
edge the airline may have over the demand, that is more general than static
inputs: since one is also able to consider groups of demands, but also to
enforce correlations between demands components. We illustrate the flexi-
bility of this approach through various examples, and we provide a series of
experiments in order to determine which Market Constraints are the most
efficient. We compare the different models, showing that MDFAM can reach
a performance which is similar to IFAM’s, while allowing better expressive-
ness.
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Chapter 2

Literature Review

We previously presented the Airline Planning Process: for a more detailed
overview about how the whole airline schedule is established, the reader is
referred to Gopalan and Talluri (1998) and Barnhart et al. (2003). The
following chapter focuses on the evolution of the formulations and of the
optimization techniques for the Fleet Assignment Problem.

2.1 General Considerations

2.1.1 From FAM to ODFAM

The first Linear Programming model for Fleet Assignment is called FAM
(Fleet Assignment Model) and can be found in Abara (1989). The decision
to assign or not an aircraft type to a leg is modeled by a binary variable,
the assignment costs are leg-based and depend on the aircraft type. Amer-
ican Airlines successfully uses this model in several of their departments to
support Schedule Planning. At the time this thesis is being written, FAM
remains a standard for the airline industry.

The complexity of FAM is studied by Gu et al. (1994). It is shown
that FAM is NP-Complete when there are more than 3 aircraft types. The
complexity for 2 aircraft types remains unknown.

Part of the assignment costs of FAM is computed from demand fore-
casts, and thus suffers from the volatility of these forecasts. To circumvent
this flaw, Berge and Hopperstad (1993) present a method called Demand
Driven Dispatch, also known as D3. Its purpose is to dynamically adapt a
fleet assignment as the demand forecasts become more and more accurate,
adapting the FAM leg costs. Using actual airline data, the authors show
that their method can improve the operating profits by 1-5%. This method
is known to have had a significant impact on airline practice and is still the
subject of active research: a comprehensive review process can be found in
Shebalov (2009).
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A first attempt to solve large scale Fleet Assignment instances is exposed
by Hane et al. (1995). Various optimization techniques are applied, some
of which are generic and now part of modern Linear Programming solvers.
They reach CPU times that greatly outperform LP-Solvers with the default
options, yielding solutions with an optimality gap of 0.02%.

As progress is being made in Fleet Assignment optimization techniques,
more and more attention is dedicated to modelling the behavior of the pas-
sengers more accurately. Belobaba and Farkas (1996) give a first insight,
performing an extensive study of the influence of yield management on fleet
assignment decisions. They show how traditional ways of dealing with fleet
assignment and revenue management can lead to overestimates of both ex-
pected revenues and spill costs. More realistic assumptions such as stochastic
demands are considered, and an iterative algorithm based on Monte Carlo
simulation is proposed. However, they do not manage to propose a tractable
solution method for FAM.

In order to provide more opportunities for passenger connections, Rexing
et al. (2000) design a model where the departure times are not fixed inputs
of the problem, but are provided as time windows. An approach to solve the
model is given, and it is shown that the schedules produced have significantly
lower costs. This model is also used to tighten the schedules, possibly saving
aircraft.

Ahuja et al. (2001, 2003) consider the problem of adding Through Con-
nections constraints in the fleet assignment model. These constraints force
the same aircraft to be assigned to two consecutive legs. The objective here
is to ensure that these legs will always be connected, for the passengers not
to miss their connection. Their model achieves the maximum combined ben-
efit of assigning fleet along with through connections. Neighborhood search
algorithms are used to solve the formulation.

A demonstration of the issues of FAM regarding spill modelling is given
by Kniker and Banhart (1998). A new spill model, the Passenger Mix Model
(PMM), is introduced to describe passenger behavior on a fleeted network:
spill variables are introduced for every itinerary, with the objective to mini-
mize the spill cost while maintaining a feasible passenger flow. The authors
show that the spill estimation embedded in FAM leg costs is flawed, leading
to bad decisions.

This work is followed by a clear breakthrough: Barnhart et al. (2002)
present the Itinerary-Based Fleet Assignment Model (IFAM). The authors
explain how, because FAM does not account for the passenger itineraries, it
can lead to suboptimal assignment decisions. As a solution, the alternative
they propose is to embed a Passenger Mix Model in a FAM formulation.
Assuming the Passenger Mix Model accurately describes the passengers’
behavior, IFAM yields the optimal decision. An extensive study of the
model is made, and optimization techniques are given. This work receives
community approval and is quoted in more than 100 articles.
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A similar approach, named ODFAM, is presented in Smith and Johnson
(2006). They incorporate airline revenue management effects into the fleet
assignment model, proposing a technique called station purity: in order to
reduce aircraft dispersion in the network, the number of aircraft that can fly
a given leg is limited. The model is solved using a combination of column
and cut generation.

2.1.2 Integrated Models

Though Fleet Assignment can be studied alone, it can also be seen as a way
to solve other problems. Several models integrate Fleet Assignment Models
into Larger schemes, in order to solve different classes of problems:

Clarke et al. (1996) show how to build fleet assignments in order to pro-
vide opportunities for maintenance and crew scheduling, through additional
constraints in FAM.

Barnhart et al. (1998a) provide an integrated model to simultaneously
solve the Fleet Assignment Problem and the Aircraft Routing problem. Var-
ious constraints are added to enforce the formulation, such as Maintenance
requirement or equal aircraft utilization.

The problem of integrating Schedule Design and Fleet Assignment is
discussed by Lohatepanont and Barnhart (2004), where algorithms that si-
multaneously choose the flight legs constituting the schedule and the fleet
assignment are presented. Legs that are candidates for deletion or addi-
tion are regrouped in a list of optional flights. Two models are developed.
ISD-FAM, applies demand correction terms for including or not a leg in the
network, and ASD-FAM, a lighter model, which bases its decisions on re-
capture rates. The solutions are compared using the proprietary tool Sabre
Airline Profitability Model, and it is shown that both models bring improve-
ment, ASD-FAM being the most efficient.

Rosenberger et al. (2004) tackle the problem of generating a robust sched-
ule with regards to disruptions. A common method for an airline to deal
with disruption is to cancel a cycle. A cycle is a sequence of flights to be
performed by the same aircraft that begins and ends at the same airport.
The shorter this cycle, the least the number of legs to be impacted if it is
cancelled. The authors expose a method that generates fleet assignments
featuring more short cycles. Simulation shows that their solution performs
better in operations than the traditional ones.

2.1.3 Recent Advances

All recent advances in fleet assignment focus on better modelling the pas-
senger behavior.

Dumas and Soumis (2008) provide a numerical model for estimating the
passenger flow on an airline network, given forecast concerning the distribu-
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tion of the demand for each itinerary, the time distribution of the booking
requests and the proportion of spill attracted from one itinerary to an other.
The model also covers airline inventory management and how that affects
passenger flow. It is compared to a simulation and results differ from the
expected passenger flow by about 0.1% for load factors below 80%. The
results of this work are then used by Dumas et al. (2009) to produce a fleet
assignment model where the revenue function is altered according to the
planned passenger flow. The process iterates by alternating between fleet
assignment and passenger flow, improving the objective function at each
step. The model is tested on a large-scale network from Air Canada and
converges in a few iterations.

Jiang and Barnhart (2009) present an integrated model similar to D3:
using the improvements on demand forecasts that happen when the day of
operations approaches, various part of the schedule are re-optimized in order
to leverage this information. This method is called dynamic scheduling and
it integrates flight re-timing and re-fleeting. Based on data from a major
US airline, the authors demonstrate that their method can bring significant
profitability improvements. This work is reused by Jiang and Barnhart
(2013) where de-banked hub-and-spoke operations are focused. The authors
propose a robust schedule design model, where the number of potentially
connecting itineraries weighted by their respective revenues is maximized
and a decomposition-based solution approach involving a variable reduction
technique and a variant of column generation is developed.

Jacobs et al. (2008) propose a new methodology for incorporating pas-
senger flow in the fleet assignment. The problem is decomposed to isolate
a non-linear revenue management problem. Linear approximations are used
to incorporate the passenger revenue in the total network revenue function,
and the methodology is applied to an example of 10 cities, 48 flight legs,
534 itineraries. They show that their O&D FAM can outperform traditional
methods by 2.8% in profit for their test case.

Barnhart et al. (2009), present an improvement to IFAM called sub-
networks fleet assignment model. The idea here is similar to Dumas et al.
(2009): spill is a local phenomenon and does not spread throughout the
network, thus local approximations can be used. The solution method is
designed to balance revenue approximation and model tractability. Compu-
tational results suggest that the approach yields profit improvements over
comparable models and that it is computationally tractable for problems of
practical size.

In the following section, 3 of the contributions cited above are reviewed
into more details, giving us the opportunity to introduce our own notation.
This section first digs into FAM, from Abara (1989), then describes method-
ologies deployed by Hane et al. (1995) and Barnhart et al. (1998b) to solve
it. Then the possibilities for computing better leg costs are reviewed with
the study of Kniker and Banhart (1998), showing how the kind of evaluation
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used by FAM can lead to bad spill cost modeling. Eventually the Itinerary-
Based Fleet Assignment of Barnhart et al. (2002) is explored along with the
solution approach.

2.2 FAM

The first LP model for Fleet Assignment can be found in Abara (1989). The
model is simply named FAM, which stands for Fleet Assignment Model.

2.2.1 Preliminary Notions

Timeline Networks

The schedule is modeled as a directed graph where all the vertices represent
airports at given times. Three types of arcs may exist in this network:

The Flight arcs are the arcs linking nodes from different airports at dif-
ferent times. They represent the flight legs on the network.

The Ground arcs are the arcs linking nodes from the same airport in
increasing time order. They represent time spent in the same airport
for the aircraft.

The Overnight arcs are the arcs linking the last node from a given airport
to the first one, based on the assumption of a daily cyclic schedule:
these arcs are here to ensure the repeatability of the schedule.

Barnhart et al. (2002) refer to this kind of network as Timeline networks.
Others use the term Time-Space networks.

Differences with the Literature

The reader who is familiar with Fleet Assignment literature might notice
subtle differences between what is presented here and previous assumptions.
We list them here:

• The literature often studies the daily fleet assignment problem. Be-
cause the networks studied allow it, this thesis extends the concept to
longer durations. Instead of representing one day of the schedule, the
timeline network may thus represent a week, or a month. In this con-
text, the term “overnight” arcs can then be misleading, so we propose
to talk about repeatability arcs.

• Most articles assume a cyclic schedule. The work presented here
does not have such requirements, and the repeatability arcs might be
skipped. In our actual implementation, they are replaced with initial
and terminal conditions over the number of aircraft at airports. For
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Figure 2.1: A timeline network

example, in networks where, at the same airport, the offset between
inbound and outbound legs is not null, these constraints are for the
number of aircraft of any given type not to exceed this offset at the
end of the period. Though this implementation aspect is worth men-
tioning, we don’t include it in the actual description of the models for
the sake of simplicity.

• In the original FAM, the timeline network uses distinct flight arcs -
one for each aircraft type - to represent the same flight leg. In such
representations, flight arcs exist with different arrival times for each
family of aircraft (e.g. they depend of the aircraft type and are labeled
k, o, t, where k is an aircraft type, t a time and o an airport). We use
another possibility, which is to model flight legs with single arcs, and
we allow any type of aircraft on the arc. The arrival time we choose
is the one of the slowest family. We assume that connections we want
to guarantee will be explicitly enforced by setting an earlier arrival
time and forbidding on the arc aircraft types that are too slow. In
other terms, we assume that the list of passenger itineraries implicitly
forbids some legs to be assigned slow aircraft types.

2.2.2 Sets, Data

FAM uses the following notations:
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• L: the set of flight legs in the flight schedule (indexed by l).

• T : the set of aircraft types (indexed by t).

• |t|: the number of aircraft of type t.

• N : the set of nodes in the timeline network (indexed by n).

• G: the set of ground arcs in the timeline network (indexed by g).

• CT : an arbitrary time in the schedule range, used as a count time.

For any node n of the timeline network:

• I(n): the set of inbound legs to n.

• O(n): the set of outbound legs from n.

• gi(n) the inbound ground arc to n.

• go(n) the outbound ground arc from n.

As a mathematical notation abuse, for any ground arc g, we note CT ∈ g
if the count time CT occurs during g time lapse. This allows us to define
the set of ground arcs that cross the count time, as {g ∈ G|CT ∈ g} = {g ∈
G|g ∋ CT}.

Additionally, for each leg of the schedule, a coefficient ct,l is computed,
representing the cost of assigning an aircraft of type t to the leg l.

2.2.3 Model

Decision Variables

• xt,l =

{

1 if aircraft type t is assigned to leg l

0 otherwise.

• yt,g: the number of aircraft of type t waiting on the ground arc g.

MIP Formulation

Here is FAM formulation from Abara (1989):
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min
∑

l∈L

∑

t∈T

ct,lxt,l (2.1)

s.t.
∑

t∈T

xt,l = 1 ∀l ∈ L (2.2)

∑

l∈I(n)

xt,l + yt,gi(n) =
∑

l∈O(n)

xt,l + yt,go(n) ∀t ∈ T, ∀n ∈ N (2.3)

∑

g∋CT

yt,g +
∑

l∋CT

xt,l ≤ |t| ∀t ∈ T (2.4)

xt,l ∈ {0, 1}, yt,g ≥ 0

This translates to:

• (2.1) The objective is to minimize the assignment cost.

• (2.2) Exactly one aircraft type must be assigned to each leg.

• (2.3) The flow of aircraft is conserved at each node of the network.

• (2.4) At the count time, the number of aircraft of every type is con-
served.

2.2.4 Solving the MIP

Hane et al. (1995) comes with a set of methods that can solve FAM faster.

Node aggregation: Because the only important information is how flight
legs interconnect, the following rules can be applied in a preprocessing step:

• At the same airport, two successive arrivals are aggregated into the
same node.

• At the same airport, two successive departures are aggregated into the
same node.

• At the same airport, one (list of) arrival(s) immediately followed by
one (list of) departure(s) are aggregated into the same node.

This process effectively reduces the number of ground arcs and makes
the problem faster to solve.
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Forcing variables: In order to reach feasibility faster after having solved
the LP relaxation, before starting the branch and bound, some rules can be
applied (with no guarantee on optimality):

• Decision variables that are greater than a certain threshold, say 0.99,
may be fixed to 1

• For a given leg, if the fractional solution is shared by a subset of the
aircraft types, the choice may be restricted to aircraft types within the
capacity range of this subset.

Branching rules: Hane et al. (1995) propose a branching rule related
to the cover constraints (2.2), also called SOS constraints. It consists in
branching on half of the variables in the constraints rather than a single
one: instead of constraining one single variable to be 0 or 1, the variables
of the constraint are partitioned into 2 sets; in one branch, the sum of the
variables of the first subset is constrained to be 0 and the sum of the variables
in the other subset is constrained to be 1. In the other branch, the opposite
choice is made. The branching priority is determined by choosing constraint
with the largest expected impact on the objective. Such branching rules are
now standard in commercial solvers.

2.3 An Attempt to improve FAM Leg Costs

Kniker and Banhart (1998) review the computation of FAM leg cost. They
present a model specialized in computing the spill cost of a Fleet Assignment,
and attempt to use this model to improve these costs.

2.3.1 FAM Leg Costs Computation

In FAM, ct,l, the costs of assigning the aircraft type t to the leg l, are
traditionally decomposed as:

ct,l = copt,l
︸︷︷︸

operating costs

+ cspt,l
︸︷︷︸

lost revenue

• Operating costs include fuel, landing and take-off fees, and estimates
of crew costs.

• Lost revenue occurs because passengers cannot be accommodated by
the airline on some flights, the assigned aircraft type being too small
to satisfy the demand. This loss of passenger is called spill.

While the operating costs only depend on t and l, the spill costs are
obtained through an estimation: Let Ql be the amount of passengers who
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want to travel through the flight leg l regardless of the fleet assignment, and
Farespl be the average fare associated with spilled passengers on the leg l:

cspt,l = Farespl
︸ ︷︷ ︸

spill fare

. max(0, Ql − Capt)
︸ ︷︷ ︸

number of spilled passengers over a leg

(2.5)

• Ql is referred to as the unconstrained demand on the leg l. In practice,
this unconstrained demand is hard, if not impossible to know, because
one only sees the actual bookings, constrained by the network capacity.

• The spill fare is typically lower than the average fare on the leg l,
because the airline is assumed to perform revenue management and
thus to capture passengers who pay more, or alternatively, to spill low
fare customers.

The spill fare on the leg l represents the net revenue loss due to one
passenger being spilled from l. It is computed as

Farespl = κ ∗ average farel (2.6)

where κ ∈ [0, 1] is a globally adjusted parameter.
Kniker and Banhart (1998) try to determine a good value for κ. To do so,

a specialized method for estimating the spill cost of a given fleeted network
is proposed. The corresponding problem is referred to as the Attainable

Contribution Problem, and is described as follows:

Given a fleeted schedule and the unconstrained itinerary demands, find the
carrying plus spill cost minimizing flow of passengers over the network,

such that (1) the total number of passengers on each flight does not exceed
the capacity of the flight, and (2) the total number of passengers on each
itinerary does not exceed the unconstrained demand on that itinerary.

This problem is solved through a model called Passenger Mix Model (PMM).

2.3.2 Data

The PMM formulation has been improved since Kniker and Banhart (1998).
We present here a enhanced version of Barnhart et al. (2002), that includes
recapture, but also differentiates the cabins.

• L: the set of flight legs in the flight schedule (indexed by l).

• C: the set of cabins (indexed by c), e.g. C = {economy, business,
first}

We expand the concept of itineraries to include cabins: an itinerary is
not just a sequence of legs, it is a sequence of leg-cabins. It is assumed that,
for every itinerary, an unconstrained demand and a fare are known:
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• di: the unconstrained demand at the level of the itinerary i. This is
different from the unconstrained demand on the leg l. The relationship
linking Ql to di is Ql =

∑

c∈C

∑

i∋(l,c) di, where i ∋ (l, c) means that
the leg-cabin (l, c) is part of the itinerary i.

• Farei is the fare of the itinerary i.

Recapture rates are defined:

• ri�j : the recapture rate from the itinerary i to the itinerary j, i.e. the
proportion of customers who would accept the itinerary j if they are
refused the itinerary i.

Capacities have to be known:

• Capl,c: the capacity of the cabin c for the leg l

2.3.3 Model

Decision Variables

• si�j : the number of passengers spilled from i to j by the model.

MIP Formulation

min
∑

i∈I

∑

j∈I

(Farei − ri�jFarej)si�j (2.7)

s.t.
∑

i∋(l,c)

di −
∑

i∋(l,c)

∑

j∈I

si�j

+
∑

i∈I

∑

j∋(l,c)

ri�jsi�j ≤ Capl,c ∀l ∈ L, ∀c ∈ C (2.8)

∑

j∈I

si�j ≤ di ∀i ∈ I (2.9)

si�j ≥ 0

This translates to:

• (2.7) Minimize the spill minus the recapture.

• (2.8) Passenger travel is consistent with cabin capacities.

• (2.9) No more passengers are spilled than the unconstrained demand.
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Adapting the Spill Fare

With now an accurate way to compute the spill cost of a fleeted network,
Kniker and Banhart (1998) attempt to produce a spill fare yielding the best
possible fleet assignment.

Finding the best possible spill fare: In order to determine the best
value for κ in the equation (2.6), the revenue of FAM is challenged against
the Passenger Mix Model. The following procedure is used: the network is
fleeted with a fleet assignment solver. This outputs an accurate computation
of the operating costs. Then, using a passenger mix model, the passengers
are assigned to the flight legs, computing the attainable contribution.

This process is applied on a range of values for κ, allowing to look for
an optimal value with the obtained results. The following diagram gives an
overview of the method used.

fleet assignment instance (κ)

fleet assignment solver

fleeting decision

Attainable contribution solver

Spill costs

Operating costs

Fleeting Contribution

Procedure repeated on a range of different values for κ.

Figure 2.2: Procedure Kniker and Banhart (1998)

Results

The estimated spill (from the fleet assignment model) is plotted against the
actual spill (from the passenger mix solver). The aim is to determine the
value of κ that results in the greatest contribution of the network.

This experiment yields several outcomes:

• It is observed that the value of κ yielding the most revenue is about
0.7, suggesting that using a spill fare of 0.7.Farel to determine the
FAM assignment costs would lead to the best fleet assignments.
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• Plotting the estimated spill used a priori for building the fleet assign-
ment against the actual spill computed a posteriori from this fleet
assignment, it is found that a similar value κ = 0.7 better estimates
the spill.

• The difference between actual and estimated spill is then plotted against
the revenue of the fleet assignment. The curve is expected to show that
the better the spill estimation is, the better the fleet assignment. How-
ever, it is observed that sometimes, perfect estimation of the spill does
not necessarily yield best fleet assignment. This is interpreted as a
lack of local accuracy: this method only allows to match the FAM
spill cost with the spill cost as determined by PMM on the whole net-
work; however, when restricting the network to the leg level, or when
considering a subnetwork, these costs will most likely differ.

Conclusion

The result suggests that while FAM can provide a good approximation of
the best possible Fleet Assignment, its poor modeling of the spill mechanism
prevents it from computing the best possible fleet assignment.

2.4 IFAM

As FAM fails to model accurately the mechanism of spill and recapture,
Barnhart et al. (2002) suggest a new model called itinerary based fleet as-
signment. They propose to merge the Passenger Mix Model and the Basic
Fleet Assignment Model in a straightforward process: The two objectives
are merged and all the constraints of the two models are put together, with
cabin capacity constraints that now depend on the fleet assignment. This
article is a major breakthrough in the field of fleet assignment, and obtains
community approval. More than 100 articles quote it. It has become the
standard model to test against.

2.4.1 Model

Sets, Decision Variables

The same notations are used as in FAM and PMM. Additionally:

• For each leg of the schedule and each aircraft type, the coefficient ct,l
stands for the operating cost of assigning an aircraft of type t to the
leg l.

• For each aircraft type and each cabin, Capt,c: the capacity of the cabin
c for the aircraft type t is defined.
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IFAM mixes decision variables from FAM and PMM:

• xt,l =

{

1 if aircraft type t is assigned to leg l

0 otherwise.

• yt,g: the number of aircraft of type t waiting on the ground arc g.

• si�j : the number of passengers spilled from i to j by the model.

MIP Formulation

The result of this new formulation is what follows:

min
∑

l∈L

∑

t∈T

ct,lxt,l +
∑

i∈I

∑

j∈I

(Farei − ri�jFarej)si�j (2.10)

s.t.
∑

t∈T

xt,l = 1 ∀l ∈ L

(2.11)
∑

l∈I(n)

xt,l + yt,gi(n) =
∑

l∈O(n)

xt,l + yt,go(n) ∀n ∈ N, ∀t ∈ T

(2.12)
∑

g∋CT

yt,g +
∑

l∋CT

xt,l ≤ |t| ∀t ∈ T

(2.13)
∑

i∋(l,c)

di −
∑

i∋(l,c)

∑

j∈I

si�j

+
∑

i∈I

∑

j∋(l,c)

ri�jsi�j ≤
∑

t∈T

xt,lCapt,c ∀l ∈ L, ∀c ∈ C

(2.14)
∑

j∈I

si�j ≤ di ∀i ∈ I

(2.15)

xt,l ∈ {0, 1}, yt,g ≥ 0, si�j ≥ 0

2.4.2 Solving the MIP

Barnhart et al. (2002) conduct an extensive study of IFAM, and develop a
general method for solving the problem.

A Column generation is applied to the spill variables to solve the LP
relaxation of the problem, and a branch and bound phase is applied to get
the integral solution.

The challenge is significant: the number of spill variables is theoretically
the square of the number of possible itineraries over the network. However,
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this number can be reduced because not all itineraries are relevant. Fur-
thermore, it is not necessary to generate a recapture variable for a couple
of itineraries if there is absolutely no chance that recapture could occur be-
tween them. The run time of IFAM is reported to be about 10 times the
runtime of FAM.

2.5 Conclusion

In terms of Operations Research, the Fleet Assignment problem is more
than 60 years old. FAM, one of the first historical models, offered a robust
basis for efficiently building assignments. Ever since, more and more efforts
have been put into adapting the Fleet Assignment in order to improve the
passengers-related part of the profit. Among the diversity of works per-
formed to improve this efficiency, some studies have been largely echoed by
the industry. D3, proposing more a framework than a model, iteratively
improves a given assignment with the improved forecasts. Other solutions
include to invent various ways of computing better FAM leg costs.

The work of Kniker and Banhart (1998) has provided excellent insights
for understanding how to provide good leg costs for FAM, and was the
introduction of the Passenger Mix Model, later embedded in FAM to become
IFAM. However, we believe the approach of using the results of a PMM to
improve a FAM formulation was not fully exploited in Kniker and Banhart
(1998) We believe that airlines that are still using FAM would value a work
that allows them to reuse their engine to produce IFAM-quality solutions.
This is the theme of our next chapter.
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Chapter 3

An Attempt to Build Better

Fleet Assignments With

Only a FAM Solver

The following chapter consists in a study of IFAM oriented towards a reuse
of FAM. We start from the review of FAM leg costs performed in Kniker
and Banhart (1998), where methods for computing leg-based spill costs are
discussed, and we extend their ideas. With the help of a Passenger Mix
Model solver, a Lagrangian Relaxation of IFAM is developed in order to
produce improved solutions with only a FAM solver. We also detail the
Dantzig-Wolfe decomposition associated with this Lagrangian Relaxation.
Implementations are performed, and numerical results are given.

3.1 Motivations

The following section lists reasons why we believe that building algorithms
that only rely on FAM is a good idea.

Software Leverage FAM is a long standing standard model widely used
by the airlines. Because it is simple, fast and reliable implementations al-
ready exist. These implementations carry the experience of years of practice.
Basing new code on them would both allow to reuse this experience and re-
duce development effort.

Customizations and Specific Requirements Airlines that already use
FAM solvers are customizing them. They may enforce various requirements,
such as legal constraints specific to the countries where their flights are
operated, corporate business rules, local labor union negotiated constraints,
or technical constraints of some airports. The final result is more than a
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generic solver: it is a full software solution that is adapted to their own needs.
Moving out of this solution involves reimplementing all these requirements in
the new solver. By reusing FAM as a black box, the cost of reimplementing
these requirements can be avoided, and the risk of suffering from bugs is
minimized.

FAM as a measure The universality of FAM makes it a de facto stan-
dard. Building around it allows to measure the time efficiency in terms of
number of calls to the FAM engine. With such an approach, we obtain a
measure which is independent of the hardware and the solver, which every-
one can understand, provided they know the running time of FAM.

The idea of iteratively solving traditional FAM with improving inputs is
not new. Such an approach might remind the reader the D3 method from
Berge and Hopperstad (1993), where a Fleet Assignment model is solved
with increasingly accurate leg costs. More recently, Dumas and Soumis
(2008); Dumas et al. (2009) described a model where a custom passenger
flow model would interact with an implementation of FAM to converge in a
few iterations.

The main source of inspiration of this chapter comes from Kniker and
Banhart (1998), where the authors show that, using adjustments of a global
coefficient κ for estimating the spill costs, the revenue of the FAM fleet
assignments can be improved. The method is not accurate enough to fully
optimize the fleet assignments produced. However we believe that more
accuracy can be brought, using not one, but several coefficients to describe
the spill over the network.

3.2 A Lagrangian Relaxation Approach

3.2.1 Computing leg-based Spill Costs

In Kniker and Banhart (1998), a coefficient κ is used to control globally the
spill fare. The spill fare of the leg l is an estimation of the loss to the airline
when a passenger is spilled on l.

Farespl = κ ∗ average fare on(l)

This spill fare is used to compute the spill cost for the aircraft type t on the
leg l:

cspt,l = Farespl max(0, Ql − Capt)

Where Ql is the unconstrained demand on the leg l, Capt is the capacity of
the aircraft type t, and thus max(0, Ql − Capt) is the minimum number of
spilled passengers if a type t aircraft is chosen for l. Note that because Ql is
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not constrained by the network, Ql −Capt is an overestimation of the spill,
because part of the passengers of this unconstrained demand might already
be spilled on other legs.

Our instances present cabin capacity constraints. We adapt the formula
to our needs and decompose this cost by cabin. This decomposition is of
limited interest, except that it allows to better see one of the results of this
chapter. Let Ql,c be the unconstrained demand on the leg-cabin (l, c):

cspt,l =
∑

c∈C

Csp
t,l,c

=
∑

c∈C

Farespl,cmax(0, Ql,c − Capt,c)

=
∑

c∈C

κ.(average fare on(l, c))max(0, Ql,c − Capt,c)

Kniker and Banhart (1998) show that a good choice of κ may improve
the revenue, but cannot lead to optimality. Starting from this remark, we
wonder whether more accuracy could be reached by directly estimating a
spill fare for each leg-cabin: intuitively, instead of using only one single
value of κ for the whole network, we would thus use a different κ(l,c) for each
leg-cabin (l, c). We tried to design an iterative procedure of modification of
these spill fares, basing our choice on the spill obtained on the network.

Such adjustments remind us what happens with Lagrangian Relaxations:
in such schemes, a constraint is relaxed and is inserted in the objective
function, such that the model has to pay for violating this constraint. With
this approach, leg-cabin based spill fares could be interpreted as the price
the model has to pay for violating passenger flow constraints.

Starting from the former remark, a Lagrangian Relaxation of IFAM has
been implemented. In the following part, we describe, starting from the
general case, how this relaxation was implemented.

3.2.2 Generic Description of a Lagrangian Relaxation

In this section, we give a general description of Lagrangian Relaxation and
of the methods used to solve this kind of problem, with focus on the subgra-
dient method. We then apply the results to IFAM. We mostly apply results
already known in the literature. For more information on Lagrangian Re-
laxations, the reader is referred to Lemaréchal (2001).
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Definitions

Provided a problem P defined by

min cx+ fs

s.t. x ∈ X

Ax+Bs ≤ a

Ds ≤ d

s ≥ 0

Ax+Bs ≤ a being a set of “difficult” constraints, the Lagrangian Relaxation
of P is the problem LR(u) (u ≥ 0) defined by:

θ(u) = min cx+ fs+ u(Ax+Bs− a)

s.t. x ∈ X

Ds ≤ d

s ≥ 0

Although the results presented here are true for any problem of this form,
their relevance might appear more clearly to the reader if we say now that
P will later refer to IFAM, with x representing the fleet assignment, and s
representing the spilled passengers.

Because no constraint links x and s in this formulation, θ(u) can be
rewritten:

θ(u) = θx(u) + θs(u)− ua

where θx(u) and θs(u) are the optimal values of the following problems:

• LRx(u):

θx(u) = min (c+ uA)x

s.t. x ∈ X

• LRs(u):

θs(u) = min (f + uB)s

s.t. Ds ≤ d

s ≥ 0

For a given u, we denote x∗(u) (resp. s∗(u)) as the optimal solution of
LRx(u) (resp. LRs(u)).
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Remarks

• Any feasible solution of P is a feasible solution of LR(u).

• An optimal solution of LR(u) provides a lower bound for P .

• Thus, if one finds an optimal solution (x∗(u), s∗(u)) for LR(u) such
that:

– The objective of LR(u) is the same as in P :

u(Ax∗(u) +Bs∗(u)− a) = 0

– The solution is feasible for P :

Ax∗(u) +Bs∗(u) ≤ a

then this solution is optimal for P .

We search for the best lower bound that can be obtained by this Lagrangian
Relaxation, which leads to solve the Lagrangian Dual, defined by:

θ∗ = max θ(u)

s.t. u ≥ 0

Algorithm

To solve the Lagrangian Dual, the general approach is usually to compute a
sequence (uq)q∈N that converges towards u∗, the value of u that is optimal for
the Lagrangian Dual. In this process, we note GUB (Global Upper Bound)
and GLB (Global Lower Bound) the best bounds known for the optimal
value of P .
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1: Initialize GUB
2: Initialize u0
3: q ← 0
4: repeat

5: solve LRx(uq) and LRs(uq), obtain θx(uq), θs(uq), x
∗(uq), s

∗(uq)
6: if (x∗(uq), s

∗(uq)) is feasible for P and
uq(Ax

∗(uq) +Bs∗(uq)− a) = 0 then

7: (x∗(uq), s
∗(uq)) is optimal for P , STOP

8: end if

9: θ(uq)← θx(uq) + θs(uq)− ua
10: if θ(uq) > GLB then

11: update GLB
12: use x∗(uq) to improve GUB
13: end if

14: compute uq+1

15: q ← q + 1
16: until a stopping criterion is met

Algorithm 1: Lagrangian Dual

• GUB can be initialized by finding a solution of P , or using a heuristic.
Additionally, if it is not too expensive, it can be updated on a regular
basis (for example when GLB is improved) by turning a Lagrangian
solution into a solution for P .

• Each iteration yields a Lagrangian solution (x∗(uq), s∗(uq)). However
this solution may not be feasible for P . If we are interested in turning
it into a feasible solution of P , we can extend x∗(uq) by solving for s
in the following problem:

min fs

s.t. Bs ≤ a−Ax∗(u∗)

Ds ≤ d

s ≥ 0

In the general case, this problem may not have a solution, but we will
see that in our case, it always does.

• u0 may be initialized to 0

• Classical stopping criteria might include, but are not limited to the
following conditions:
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– The maximal expected step between uq and uq+1 is small.

– A time limit has been reached.

– The bounds have not been improved for a given number of iter-
ations.

Subgradient

Several methods can be used to compute uq+1. A simple, memoryless
method is to use the subradient. In that method, uq+1 is computed from uq
using the following formula:

uq+1 = max{0, uq + ρGq}

Gq is a subgradient and represents the violation of the relaxed constraint:

Gq = Ax∗(uq) +Bs∗(uq)− a

ρ represents the quality of the solution. Usually,

ρ = π
GUB − θ(uq)

‖Gq‖2

π being a coefficient initialized to 2 and divided by 2 every 20 or 30 iterations
without improvement of GLB. Of course, tuning is required for determining
good values and criteria for updating it.

3.2.3 Lagrangian Relaxation, applied to IFAM

We now apply a Lagrangian relaxation to the IFAM formulation. Recall the
IFAM formulation:1

1A reader who is familiar with the literature might notice that the quantity
∑

i∋(l,c) di
could have been merged into one single quantity Q(l,c), the unconstrained demand on the
leg-cabin (l, c). Because we believe it makes latter parts of this thesis easier to understand,
we prefer to leave this quantity unchanged.
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min
∑

l∈L

∑

t∈T

ct,lxt,l +
∑

i∈I

∑

j∈I

(Farei − ri�jFarej)si�j (3.1)

s.t.
∑

t∈T

xt,l = 1 ∀l ∈ L

(3.2)
∑

l∈I(n)

xt,l + yt,gi(n) =
∑

l∈O(n)

xt,l + yt,go(n) ∀n ∈ N

(3.3)
∑

g∋CT

yt,g +
∑

l∋CT

xt,l ≤ |t| ∀t ∈ T

(3.4)
∑

i∋(l,c)

di −
∑

i∋(l,c)

∑

j∈I

si�j +
∑

i∈I

∑

j∋(l,c)

ri�jsi�j ≤
∑

t∈T

xt,lCapt,c ∀l ∈ L, ∀c ∈ C

(3.5)
∑

j∈I

si�j ≤ di ∀i ∈ I

(3.6)

xt,l ∈ {0, 1}, yt,g ≥ 0, si�j ≥ 0 (3.7)

The Leg Cover Constraints 3.2 are injected into the Cabin Capacity
Constraints 3.5 to obtain:
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min
∑

l∈L

∑

t∈T

ct,lxt,l +
∑

i∈I

∑

j∈I

(Farei − ri�jFarej)si�j (3.8)

s.t.
∑

t∈T

xt,l = 1 ∀l ∈ L

(3.9)
∑

l∈I(n)

xt,l + yt,gi(n) =
∑

l∈O(n)

xt,l + yt,go(n) ∀n ∈ N

(3.10)
∑

g∋CT

yt,g +
∑

l∋CT

xt,l ≤ |t| ∀t ∈ T

(3.11)
∑

t∈T

(
∑

i∋(l,c)

di − Capt,c)xt,l −
∑

i∋(l,c)

∑

j∈I

si�j +
∑

i∈I

∑

j∋(l,c)

ri�jsi�j ≤ 0 ∀l ∈ L, ∀c ∈ C

(3.12)
∑

j∈I

si�j ≤ di ∀i ∈ I

(3.13)

xt,l ∈ {0, 1}, yt,g ≥ 0, si�j ≥ 0 (3.14)

We reformulate IFAM as in the precedent section:

min cx+ fs

s.t. x ∈ X

Ax+Bs ≤ a

Ds ≤ d

s ≥ 0

• x are the fleet assignment variables, s are the spill variables.

• X designates the Constraints 3.9, 3.10, 3.11, and xt,l ∈ {0, 1}. In other
words, it includes all the constraints of FAM, and represents the set
of feasible fleet assignments. Note that X could include additional
company specific constraints without changing the formulation.

• Ax+Bs ≤ a represents the set of Constraints 3.12.

• Ds ≤ d represents the set of Constraints 3.13
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The Cabin Capacity Constraints 3.12, which correspond to Ax+Bs ≤ a,
are relaxed. Following what was previously shown, we can immediately
rewrite the problem as two independent problems:

• LRx(u), a FAM problem with adjusted costs:

min
∑

l∈L

∑

t∈T

(ct,l +
∑

c∈C

ul,c(
∑

i∋(l,c)

di − Capt,c))xt,l

s.t.
∑

t∈T

xt,l = 1 ∀l ∈ L

∑

l∈I(n)

xt,l + yt,gi(n) =
∑

l∈O(n)

xt,l + yt,go(n) ∀n ∈ N

∑

g∋CT

yt,g +
∑

l∋CT

xt,l ≤ |t| ∀t ∈ T

xt,l ∈ {0, 1}, yt,g ≥ 0

• LRs(u), a pure itinerary problem:

min
∑

i∈I

∑

j∈I

((Farei −
∑

(l,c)∈i

ul,c)− ri�j(Farej −
∑

(l,c)∈j

ul,c))si�j

s.t.
∑

j∈I

si�j ≤ di ∀i ∈ I

(3.15)

si�j ≥ 0 ∀i ∈ I, ∀j ∈ J

LRs(u) can be decomposed in |I| independent problems. Indeed, for a fixed
itinerary i, the variables (si�j)j∈I only appear in the Constraint 3.15. We
shall thus define LRs,i(u), i ∈ I as:

min
∑

j∈I

((Farei −
∑

(l,c)∈i

ul,c)− ri�j(Farej −
∑

(l,c)∈j

ul,c))si�j

s.t.
∑

j∈I

si�j ≤ di

si�j ≥ 0 ∀j ∈ I

The obvious optimal solution for each independent problem is to select
j0 such that fi�j0 = (Farei −

∑

(l,c)∈i ul,c) − ri�j0(Farej0 −
∑

(l,c)∈j ul,c) is
minimal:

• If fi�j0 < 0, spill everything on j0: si�j0 = di and si�j = 0 ∀j 6= j0

• Otherwise do not spill: si�j = 0 ∀j
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Extending a Lagrangian Solution to a full Solution

As we said earlier, each iteration of the Lagrangian Relaxation algorithm
yields a Lagrangian solution (x ∗ (uq), s ∗ (uq)), that may not be feasible for
P . We explained that in order to turn this solution into a feasible solution
of P , we could extend x∗(uq) by solving for s the following problem:

min fs

s.t. Bs ≤ a−Ax∗(u∗)

Ds ≤ d

s ≥ 0

This problem is always feasible, because given a feasible fleet assignment,
one can always find a feasible spill solution. For example, we can spill every
passenger out of the network.

Interpretation

In the objective function of LR(u), the quantity
∑

c∈C

ul,c(
∑

i∋(l,c)

di − Capt,c)

has to be compared with the spill cost cspt,l presented in 3.2.1

∑

c∈C

Farespl,cmax(0, Ql,c − Capt,c)

We can see that ul,c plays exactly the role of the spill fare on the leg-cabin
(l, c). This statement is obvious when

∑

i∋(l,c) di − Capt,c ≥ 0. If, on the
contrary,

∑

i∋(l,c) di − Capt,c < 0, it means that there is always enough
capacity for every passenger to fit in the aircraft, and that therefore, spill
does not happen. As a consequence, in that case, because there is no spill,
the spill fare can be anything. With the convention that the spill fare is
chosen to be null in such situations, our statement always holds. Note that
a subgradient approach will necessarily choose null values for non violated
components, and will thus respect this statement.

Thus, FAM can be obtained as a solution of LR(u), with u such that:

ul,c =

{

Farespl,c if Ql,c ≥ Capt,c

0 otherwise.

This interpretation gives us insights about what could be a good value for
ul,c. We can adapt the work of Kniker and Banhart (1998)

uheuristicl,c ≃ 0.7 average fare on (l, c) (3.16)
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where the value 0.7, as already mentioned, has been experimentally obtained
by the authors based on a series of simulations.

Algorithm applied

The algorithm previously described is used, with the following adjustments:

• To initiate GUB, a FAM instance is solved, using spill costs from
Kniker and Banhart (1998). This yields a Fleet Assignment, which is
extended to a full solution, following the previously described process
of Lagrangian solution extension.

• A classic subgradient method is used for obtaining uq+1 from uq. We
update the parameter π in a way that is dependant on the size of the
instance. More accurately, π is divided by 2 every k iterations with-
out improvement of GLB, where k is the number of Cabin Capacity
Constraints (3.5) divided by 3: k = |L||C|

3 .

3.2.4 Results

We run the obtained algorithm on two instances. The first instance is a
small, theoretical instance of 30 legs, 46 itineraries. The second instance
is based on data from a small airline, and has 225 legs, 1895 itineraries.
We measure the iterations needed to converge. The running time is 18.39
seconds for the small instance, and we let the computation run for 2992.05
seconds for the large one. In the following diagrams:

• The curves labeled FAM and IFAM are the costs of FAM and IFAM
fleet assignments. The cost of FAM has been determined by running
a Passenger Mix Model on a FAM-based solution.

• The curve GUB refers to the Global Upper Bound. It is the cost of
the best fleet assignment generated by this heuristic. It is initialized
with the cost of FAM, and it decreases whenever a better solution is
found.

• The curve labeled theta is the value of the Lagrangian Relaxation for
the current iteration.

• The curve GLB is the Global Lower Bound, and is the highest value
taken by theta for the current iteration.

On Figure 3.1, we observe that this algorithm requires at least 10 it-
erations to find a solution that is better than FAM. The best solution is
found at the 94th iteration. On Figure 3.2, our heuristic does not improve
the FAM solution. We notice that the overall convergence is slow and re-
quires a lot of iterations. Thus, the subgradient method used to iterate
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Figure 3.1: Convergence of the Lagrangian Relaxation (30 legs)

Figure 3.2: Convergence of the Lagrangian Relaxation (225 legs)

is not suited. Theoretically, if running for an infinite amount of time, the
subgradient method, provided it has the right parameters, finds the optimal
Lagrangian multipliers. However, in practice, the status depends on the
stopping criteria applied. It is also well known that the subgradient method
converges slowly because it is a memory-less process. We thus turn towards
Dantzig-Wolfe Decomposition to improve the speed of this algorithm. The
next section explains the relationship between Lagrangian Relaxation and
Dantzig-Wolfe Decomposition, and then applies it to Fleet Assignment.
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3.3 A Column Generation Approach

The following section first presents the Dantzig-Wolfe Decomposition Re-
laxation in a general context and enlightens the link with the previously
exposed Lagrangian relaxation. Then, an application to IFAM is made, and
results are shown.

3.3.1 Dantzig-Wolfe Decomposition Relaxation

In this section we adapt known results to show how, starting from our al-
ready implemented Lagrangian Relaxation, one can implement a Dantzig-
Wolfe Decomposition Relaxation. For a highlight about how Lagrangian Re-
laxation and Dantzig-Wolfe Decomposition are generally linked, the reader
is invited to refer to Briant et al. (2008).

Definitions

In the previous part, we already explained that, starting from P (P will
again refer to IFAM later)

min cx+ fs

s.t. x ∈ X

Ax+Bs ≤ a

Ds ≤ d

s ≥ 0

and relaxing the Constraints Ax + Bs ≤ a, would lead to solve the inde-
pendent problems LRx(u) and LRs(u). We now assume that X is a finite
set, and that S = {s|Ds ≤ d, s ≥ 0} is a bounded polyhedron (X and S
will later be refer to the set of feasible fleet assignment and the set of spill
solutions). Let X be indexed as follows:

{xk, k ∈ K}

And the set of vertices of the polyhedron S will be denoted:

{sm,m ∈M}

The previous problems can be rewritten as:

• LRx(u)(u≥0):

θx(u) = min
k∈K

(c+ uA)xk
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• LRs(u)(u≥0):

θs(u) = min
m∈M

(f + uB)sm

The Lagrangian Dual Problem is expressed as:

θ∗ = max
u≥0

θ(u)

= max
u≥0

θx(u) + θs(u)− ua

= max
u≥0

[min
k∈K

(c+ uA)xk + min
m∈M

(f + uB)sm − ua]

Since X and S are finite:

θ∗ = max α+ β − ua

s.t. α ≤ (c+ uA)xk ∀k ∈ K

β ≤ (f + uB)sm ∀m ∈M

α ∈ R, β ∈ R, u ≥ 0

θ∗ = max α+ β − ua (3.17)

s.t. α− uAxk ≤ cxk ∀k ∈ K

β − uBsm ≤ fsm ∀m ∈M

α ∈ R, β ∈ R, u ≥ 0

Taking the dual of this linear program:

θ∗ = min
∑

k∈K

(cxk)λk +
∑

m∈M

(fsm)µm

s.t.
∑

k∈K

λk = 1 (variable α)

∑

m∈M

µm = 1 (variable β)

∑

k∈K

(Axk)λk +
∑

m∈M

(Bsm)µm ≤ a (variable u)

λk ≥ 0, µm ≥ 0

Because {
∑

m smµm|
∑

m µm = 1, µm ≥ 0} = conv(S) = {s|Ds ≤ d, s ≥
0}, we are left with the following problem, which is the Dantzig-Wolfe De-

36



composition Relaxation associated with the Lagrangian Relaxation previ-
ously exposed, noted DW:

θ∗ = min
∑

k

(cxk)λk + fs

s.t.
∑

k

λk = 1 (dual value w)

Ds ≤ d (dual value v)
∑

k

(Axk)λk +Bs ≤ a (dual value u)

λk ≥ 0, s ≥ 0

Algorithm

Building an algorithm to solve DW leads us to consider a problem DW′

that contains only a subset X ′ of X = {xk, k ∈ K}. In such a process,
one may repeatedly solve DW′ and add elements to X ′ until it is proven
that no additional element can improve the solution. This corresponds to
adding columns to the matrix of DW′, which is why it is often referred to
as a column generation algorithm.

A step in this algorithm is then to determine a new x ∈ X to insert into
X ′. To do so, one may apply a steepest edge strategy, i.e. determine the
column of most negative reduced cost to introduce X ′. Let (u∗, v∗, w∗) be
the optimal dual solution of DW′, and let C = (ck)k∈K be the vector of the
reduced costs. We try to find the column of most negative reduced cost in
C. This means finding:

min
k∈K

ck = min
k∈K

cxk − w∗ −Axku∗

= θx(−u∗)− w∗

Note also that solving DW′ naturally yields the Lagrangian cost. Indeed,
let (λ∗, s∗) the optimal primal solution of DW′, and (u∗, v∗, w∗) be the
optimal dual solution. These solutions being respectively primal and dual
feasible, we have:

s∗ ∈ {s|Ds ≤ d, s ≥ 0} and v∗ ∈ {v|u∗B + vD ≤ f, v ≤ 0}

And, from the Complementary Slackness theorem, we have:

v∗(Ds∗ − d) = 0 and (f − u∗B − v∗D)s∗ = 0

Thus, s∗ and v∗ are optimal solutions of the dual linear programs:

(f − u∗B)s∗ = min (f − u∗B)s = max vd = v∗d

s.t. Ds ≤ d s.t. vD ≤ f − u∗B

s ≥ 0 v ≤ 0
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and thus θs(−u∗) = (f − u∗B)s∗ = v∗d, which means that the Lagrangian
bound can be obtained at each step by computing

θ(−u∗) = θx(−u∗) + (f − u∗B)s∗ + u∗a

The following algorithm naturally ensues:

1: Initialize GLB
2: Initialize GUB
3: Initialize X ′

4: repeat

5: solve DW (X ′), obtain the optimal dual solution (u∗, w∗).
6: solve LRx(−u∗), obtain x∗(−u∗), θx(−u∗), θ(−u∗).
7: if θ(−u∗) > GLB then

8: update GLB
9: complete x∗(−u∗) to a full solution to see if it improves GUB

10: end if

11: if θx(−u∗)− w∗ < 0 then

12: X ′ ← X ′ ∪ {x∗(−u∗)}
13: else

14: No column of negative reduced cost can be inserted in X ′, STOP
15: end if

16: until A stopping criterion is met
Algorithm 2: Dantzig-Wolfe

3.3.2 Application to IFAM

With the already stated reformulation of IFAM, we apply the results of the
previous section. We verify that X and S are finite:

• X, being the set of feasible fleet assignments, necessarily represents a
finite number of possibilities.

• S, being a bounded polyhedron (the spill is limited by the demand,
which is finite for every itinerary), has a finite number of vertices.

The algorithm described is applied, with the first column inserted in X
determined using a traditional FAM with assignment costs as in Kniker and
Banhart (1998).

3.3.3 Results

We run the obtained algorithm on the same two instances. The running
times are 0.70 seconds for the small instance, and 1775.55 seconds for the
large one. In the following diagrams:
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• The curves labeled FAM and IFAM denote again the costs of FAM
and IFAM fleet assignments.

• The curves GUB and GLB denote the Global Upper and Lower Bounds.

• The curves labelled theta and master denote the values of the la-
grangian dual and the master problem.

Figure 3.3: Dantzig-Wolfe Decomposition Relaxation Convergence (30 legs)

Figure 3.4: Dantzig-Wolfe Decomposition Relaxation Convergence (225 legs)
(FAM and GUB are the same line: the solution is not improved)

In terms of computation time, we observe that the results are better.
We can see in Figure 3.3 that the best solution is found at the 8th iteration,
and the optimality of the solution of the Dantzig-Wolfe linear relaxation is
proven at the 12th iteration. However, the Dantzig-Wolfe heuristic does not
improve the FAM solution for the large instance after 325 iterations.
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To prove the optimality, one has to ensure that no columns of negative
reduced cost can be generated anymore. Even if the optimal solution has
been found, an important number of additional iterations (and of columns
that do not improve the problem) might thus be required until this solution
is guaranteed to solve the best the Dantzig-Wolfe decomposition relaxation.
In practice, one may want to find criteria to stop the algorithm without such
a guarantee, but this requires fine tuning.

3.3.4 Analysis of the Results and Possible improvements

Generating a better Fleet Assignment from the Columns

Our results show that, at least in the second case, our heuristic is unable
to improve the Global Upper Bound. This means that, in the process of
generating fleet assignments to insert in the relaxation of DW′, we do not find
a better fleet assignment than FAM. Since we are considering a relaxation of
the problem and not the problem itself, it is indeed possible that no better
fleet assignment is needed to reach optimality. As a consequence, we might
want to improve this process by attempting to find a better solution from
the generated set of fleet assignments.

Solving the relaxation of the Dantzig-Wolfe decomposition of this prob-
lem is equivalent to finding a set of fleet assignment that collectively solve
the relaxed problem better than an individual fleet assignment. The itera-
tions indicate which column may be interesting to insert in order to improve
the overall solution. Given {xk|k ∈ K}, the set of fleet assignment gener-
ated by our process, the convex combination

∑

k∈K λkx
k is thus the best

fleet assignment for solving the linear relaxation of DW ′. However, this
combination is not itself a feasible fleet assignment.

If we find out that none of these fleet assignments is particularly good
individually, an interesting heuristic would be to implement an algorithm
which, given this combination of fleet assignments, would find the closest
feasible fleet assignment. We would thus be solving a instance of FAM with
modified leg costs: The more different from the solution the aircraft type,
the more expensive the leg cost.

Ct,l =

{∑

k∈K(1− λkxkt,l) if
∑

k∈K λkx
k
t,l 6= 0

M otherwise.

Where M would be a large constant, preventing to choose an aircraft type
if no column generated ever picks it. Because we believed that our time
would be better spent working on an alternative model, this idea was not
implemented.
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Stabilization

Another possible improvement could be to add stabilization. Indeed, it
is a well-known fact (see, for example, Briant et al. (2008)) that, without
stabilization, Dantzig-Wolfe decompositions have a bad performance. Many
elaborate stabilization methods exist. We describe here a simplified version
of one of the simplest, the so called box-step stabilization. The principle
is to prevent the problem to introduce useless columns, by adding limits
on the dual values of DW. We thus insert the following constraints in the
Lagrangian Dual Problem 3.17:

u ≤ U

Where U is what we consider to be a good estimation for u.
When dualized, this translates into additional columns in DW:

θ∗ = min
∑

k

(cxk)λk + fs+ Uδ

s.t.
∑

k

λk = 1

Ds ≤ d
∑

k

(Axk)λk +Bs− δ ≤ a

λk ≥ 0, s ≥ 0, δ ≥ 0

When the algorithm stops generating columns of negative reduced costs, we
have to check that none of these artificial δ variables are used. Otherwise,
we authorize a wider range of dual costs, which means increasing U over the
non-null δ components.

We can make an educated guess about a good starting value for U : since
it is a bound on the Lagrangian multipliers, which have the same meaning
as the spill fares of FAM, it is very likely that uheuristic from Formula 3.16
will be a good starting point. The increases over U could correspond to
doubling the limits over the non-null delta components. Again, this idea
was not implemented, in order to focus on alternative models.
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3.4 Conclusion

In this chapter, we exposed an attempt to produce better fleet assignment
with only a FAM Solver, using an approach that iteratively enhances the
costs of a FAM problem. We have seen that this approach was successful on
a toy instance, but it fails to address larger instances. Moreover, because this
work is based on relaxing IFAM, we can only hope the solutions produced
to be as good as IFAM’s. This second point was clearly a problem to be
addressed by this thesis, and we thus chose not to push further this study
in order to focus on designing an alternative model.

One important lesson this study taught us was that it is difficult to
obtain reliable data in order to build fleet assignment instances. Obtaining
unconstrained demands and recapture rates requires skills and experience.
This raised the issue of testing the reliability of IFAM with uncertain data.
Moreover, this made us we believe that it would be interesting to spend
time working on a model, that would make it easier to deal with unreliable
sources of inputs.

The next chapter focuses on creating an alternative model to IFAM,
targeting better usability.
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Chapter 4

An alternative Fleet

Assignment Model

The goal of the previous chapter was to improve the quality of the solutions
of a FAM solver, assuming informations on the itinerary demands. The
methods we exposed thus assumed that the airline was able to provide IFAM
data to work with. Yet, another challenge for implementing IFAM is to
gather the data necessary to build the instances. The data-mining we had
to perform to test our own implementations has convinced us that the task
of obtaining itinerary based demands and recapture rates is intricate.

IFAM relies on a large amount of different inputs, which may be obtained
with more or less reliability. We believe that such exhaustiveness not only
makes the model difficult to implement, but may not be necessary. Our
goal, in this part, is to propose an alternative fleet assignment model able to
deal with less information. In order to do so, we analyze the consequences of
using moderately inaccurate to very inaccurate forecasts with IFAM. These
experiments lead us to formulate a series of desired features for a Fleet
Assignment model with simplified input. At the end, we propose a new
model that allows airlines to provide demand forecasts in a more flexible
way. Our model is a generalization of a no-recapture version of IFAM,
where demands are modeled as variables of a Linear Programming Model.
These demands can be constrained according to the forecasts. We illustrate
the usage of this model with examples.

4.1 IFAM in an uncertain Context

Barnhart et al. (2002) have shown how FAM poorly models the passenger
behavior, creating fleet assignments that do not properly adapt to the pas-
senger demands. As a consequence, IFAM was created to solve this issue.
However, 10 years later, at the time this thesis is being written, a lot of
airlines still use FAM to assign their fleet. There are plenty of reasons for
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such an innovation not to spread to the whole airline industry immediately.
Nevertheless, we believe that one of these reasons is a lack of confidence
in the model, and more accurately a lack of confidence in one’s ability to
produce proper demand forecasts for this model.

In this section, we enumerate the different forecasts needed to implement
IFAM. We list sources of inaccuracies that effectively make these forecasts
hard to obtain with confidence. We then study the influence of using inac-
curate inputs for the generated fleet assignments. Our goals are to explain
why some airlines report to be uncomfortable with implementing IFAM, and
to determine a series of criteria for the elaboration of an alternative model.

4.1.1 Implementing IFAM in real Life

Forecasts required by IFAM

The key idea introduced by Barnhart et al. (2002) with IFAM is that on
an airline network, passengers book itineraries, not flight legs. Therefore,
changing the capacity of a leg impacts all the itineraries using this leg. This,
in turn, impacts the traffic on the other legs used by these itineraries. By
propagation, this might induce changes on the whole network traffic. As
a consequence, the revenue of the fleet assignment could be modified by a
considerable amount. However, FAM, with its leg-based representation of
the revenue, does not accurately take this effect into account: modifying the
aircraft assigned to a leg does not modify the cost of other legs. This is why
it may thus yield suboptimal solutions.

The solution proposed by Barnhart et al. (2002) is to embed a Passenger
Mix model within the fleet assignment constraints. In other terms, a simu-
lation of how passengers travel on the flight network is made part of in the
Fleet Assignment Model. Passenger data is introduced as an input of the
problem:

• For every itinerary i, a demand di and a fare Farei are known. The
demand has to be unconstrained, which means that it represents the
number of customers desiring to travel on the itinerary i, regardless of
the number of seats available for i. The fare is the price paid to travel
on i.

• For every pair of itineraries (i, j), a recapture rate ri�j has to be
known. The recapture rate represents the ratio of passengers who
would accept to purchase j if i is unavailable.

This allows, with the variables si�j standing for the number or passengers
spilled from i to j, and I being the set of all itineraries, to accurately express
the revenue of the fleet assignment as:
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∑

i∈I

Fareidi −
∑

i∈I

∑

j∈I

(Farei − ri�jFarej)si�j

How accurate can these Forecasts be?

There is no doubt that a company with the knowledge of a 100% accurate
forecast of the aforementioned parameters would indeed be able to produce
perfect fleet assignments. However, obviously such an input can only be
obtained through an estimation, and is thus subject to inaccuracy. Since
any company willing to implement IFAM would try to estimate these values,
we naturally wonder how accurate would the forecasts be.

The true accuracy of a forecast can only be determined afterwards with
a measure of the actual value. However, in a first approximation, the only
data at the disposal of an airline is the number of booking on each itinerary.
This, of course, gives a lower bound of the demand, since the bookings are
constrained by the capacities of the network. If we try to express bi, the
number of bookings over the itinerary i, we obtain:

bi = di −
∑

j∈I

si�j +
∑

j∈I

rj�isj�i

Observing bi is not enough to simultaneously guess the values of di, si�j

and ri�j , since several solutions might fit: for example, one could always
assume that bi = di and si�j = 0 for all (i, j) (the demand exactly fits the
number of bookings and there is no spill nor recapture) and get a consistent
result. Of course, such an assumption would be wrong, and has been proven
by revenue management studies to produce a spiral down effect: under-
estimating the demands conduces to assign lower capacities aircraft, which in
turns, conduces the demands to actually decrease. However, its consistency
indicates that measuring the accuracy of demand and recapture forecasts
cannot be done by only observing the bookings, since wrong forecasts can
produce good results by this measure.

We believe that there is no way to know exactly how many passengers
are spilled from an itinerary to another. In the hypothesis that a company
actually tried to accurately estimate these figures, this would require know-
ing which customers are part of the legitimate demand on an itinerary, and
which customers were recaptured. So, for every passenger, one would need
to know if, when they bought their ticket, they would actually have pre-
ferred buying an alternative itinerary. Not only this would be impractical,
but it would probably not make sense:

• The situation of choosing an alternative itinerary as a replacement for
a preferred option never actually happens for the passenger, because
the airline never tells them that this preferred option exists. Instead,
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when itineraries are bought, revenue management has decided which
itineraries are available for sale, and might hide the preferable alter-
natives. Customers pick their preferred deal among this reduced set
of choices, without being given the opportunity to tell which demand
they are actually part of.

• On a given itinerary, it would be difficult to distinguish between pas-
sengers being recaptured from an alternative itinerary, and passengers
coming from the original demand. Obviously, everyone wants a cheap
deal. Does this make everyone count as spilled from the cheap fare-
classes?

The fact that the actual recapture rates and unconstrained demands are
potentially impossible to measure does not prevent good estimations to be
computed. In fact, every company has elaborate processes to estimate the
number of passengers traveling to identify their market share, plan their
strategy, and perform revenue management. It has to be made clear that
this paragraph is not meant to challenge these methods, and we may assume
that the state of the art tools that are involved, are yielding the best possible
forecasts for demand and recapture. But our actual claim is that even if a
method is yielding the best possible forecast, there is no way to compare this
forecast with actual values, because no one can ever observe them. Therefore
the real accuracy of these tools remains unknown.

What is the Impact of Inaccuracy?

Because of the reasons we mentioned, we believe that it is difficult to know
how good or bad the forecasts about unconstrained demand and recapture
rates actually are. The question that naturally arises is: does it really
matter? If good accuracy brings little value, airlines can safely ignore any
claim about forecast inaccuracy, and use approximate metrics. It can also
be a sign that the models can be simplified. What follows is a short study
about unconstrained demands, recapture rates, and the influence of an error
on the revenue of a fleet assignment.

Previous Work

Barnhart et al. (2002) provide a validation of IFAM based on sensitivity
analysis. They show, through empirical testing, that IFAM only requires
a rough estimation of recapture rates. A set of recapture rates is used for
performing the fleet assignment, and another set of recapture rates is used
for estimating the actual benefit of the fleet assignment. The recapture rates
used to perform the fleet assignment are linearly scaled by the same factor,
from 0.5 to 1.5 times the actual rates. The result is that small variations of
this factor do not affect significantly the fleet assignments.
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Demand uncertainty is also addressed. A base case scenario of demands
is defined. This base case is used to build an IFAM instance, and a FAM
instance (the demands in FAM being determined by selecting the appro-
priate itineraries). Then, an important number of perturbed scenarios of
demands are generated from the base case, using it as the average. These
scenarios are applied to the fleet assignments obtained with the two models,
in order to determine their respective average revenues. To apply a scenario
to a fleet assignment, the authors use two different methods. One of them
is to directly use PMM, and the other is to use a restricted version of PMM,
which models an imperfect control of Passenger Choices. In both cases, it is
shown that the average revenue yielded by IFAM is, in most cases, superior
to the revenue obtained from applying FAM.

In the next sections, we try to complement their work with other small
experiments.

4.1.2 Effect of Recapture Rate Inaccuracy on IFAM Profit

Since there is no way to give an exact measure of the recapture, it is not
possible to measure the real accuracy of any recapture rate forecast. This
does not mean that a forecast of these recapture rates cannot be good. In
fact, it could be possible that forecast tools are very good and produce
100% accurate data, but we believe that even in the presence of a perfect
recapture forecaster, while we might be able to confirm that the reality
behaves consistently with the forecasts, we would not be able to prove that
this forecast is the right one.

Worrying about a forecast is one thing, but what really matters in the
end, since we are likely to produce error prone forecasts, is knowing the
impact of a bad forecast. If inaccuracy in recapture rate forecasts leads to
bad fleet assignments, we would rather know how inaccurate the forecasts
need to be to really impact the fleet assignment.

In order to measure this impact on the revenue, we designed an ex-
periment. The goal of this experiment is to determine the impact of bad
recapture rate forecasts on profit. A fleet assignment instance for the IFAM
model is chosen, and is assumed to perfectly represent what is going to hap-
pen in the future. We note this instance I. We know that solving I will lead
to the perfect fleet assignment. Our objective is to measure what happens
if the forecasts of recapture rates deviate from the perfect forecasts by some
known amount. So instead of solving I, we solve I ′, which is a perturbed
version of I. In I ′, recapture rates have been modified by random amounts,
but no more than a given value p%. Solving I ′ leads to a fleet assignment,
noted X ′. The assignment X ′ is most likely not optimal for I. We want
to know by what amount. To do so, we measure the efficiency of this fleet
assignment, by running a passenger mix model on X ′, using the recapture
rates and the demands of I. We repeat this procedure 20 times for a given
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p, and we plot the average revenue for a given perturbation. Our procedure
is summarized by the given algorithm:

1: I is an IFAM instance
2: for p ∈ 0..100 do

3: for k ∈ 1..20 do

4: I ′ ← perturb(I, p): perturb I by p%
5: X ′ ← assign(I ′): solve I ′, get X ′ the fleet assignment
6: Use X ′ and the passenger data of I to compute the revenue X ′

would actually generate.
7: end for

8: record the average revenue for a given perturbation
9: end for

Algorithm 3: Solution quality for a given perturbation

Recapture rates are perturbed using the following method: each recap-
ture rate is perturbed by a random amount. This amount follows a uniform
distribution centered in zero, of length 2∗p if p is the perturbation targeted.
Obviously, the result is truncated to remain in the interval [0, 1]. However,
recapture rates are perturbed only if they were originally non null, because it
would not make sense to recapture between totally unrelated itineraries. We
made sure that every possible recapture rate that could make sense would
be considered.

This procedure is applied on a set of different test cases, so that we can
see if the impact of bad recapture rate forecasts vary with the instance.
These test cases are rated from very pessimistic to very optimistic. They
are derived from a small theoretical instance of 30 legs, 46 itineraries, and
from a real life instance of 225 legs and 1895 itineraries. For both instances,
the reference recapture rates have been generated artificially, following a
simple criteria including match in origin and destination, difference of price,
flight duration and departure time offset. The demands are such that, in the
optimal fleet assignments, the average load factor is 80% over the network.
The operating costs are such that the profit of the assignment is near zero
(We refer to this situation as “balanced”, since the operating cost of the
fleet assignment is compensated by the revenue made out of the bookings).

Eight other situations of demand and operating costs are also tested.
These situations correspond to combinations of:

• high (resp. low) demands, where each itinerary demand is 30% higher
(resp. lower)

• high (resp. low) operating costs where the operating costs are 10%
higher (resp. lower)

Our results are reported in the figures 4.1 and 4.2. For each perturbation,
we compare the profit obtained on average with the profit of the optimal
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Figure 4.1: Effect of perturbing recapture rates - 30 legs, 46 itineraries

Figure 4.2: Effect of perturbing recapture rates - 225 legs, 1895 itineraries

fleet assignment for the reference instance. The axis “average perturbation”
is the average amount of perturbation applied to the recapture rates. The
axis “average loss” represents the profit loss due to poor forecasting. This
profit loss is not expressed as a percentage of the optimal profit. Instead,
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it is expressed relatively to the operating cost of the instance. The reason
for normalizing to the operating cost and not to the optimal profit is that,
as previously mentioned, some of the instances have been specifically de-
signed to yield zero profit, so dividing by this value makes no sense. As a
consequence, we choose to normalize this profit loss to the operating cost of
the instance, because we expect this value to be a good point of comparison
for any airline. We plot this percentage against the average perturbation
applied.

As one might expect, the recapture rates are more likely to play a role
when there is a high demand and low operating costs. What we can see is
that even with highly perturbed recapture rates, the profit of the assignment
varies by at most 2.5% of the operating cost. In other terms, it does not seem
to matter if the recapture rate forecasts are very bad, the assignment will
still have a similar performance. This suggests that the recapture concept
may not introduce provable improvements in fleet assignments. However, the
bigger base instance of 225 legs is the one with the worse results regarding
this aspect, and has a ratio itinerary/leg of 1895/225 = 8.5, which is more
important than the ratio itinerary/leg of the toy instance, which is 46/31 =
1.5. This suggests that having more itineraries worsens the effect of using
poor recapture rates forecasts. Other instances in the literature are reported
to have 2000 legs and 75000 itineraries, showing that standard ratios may
reach 35 itineraries for one leg. The results of this experiment thus need to
be taken carefully, and it would probably be a good idea for airlines using
IFAM to reproduce the experiment with their own data.

4.1.3 Measuring small Demand Values versus grouping them

To implement IFAM, one needs to provide demand forecasts for every pos-
sible itinerary over the airline network. This leads to a high granularity of
demand, making it hard to predict, as described by Culioli (2006), refer-
ring to both Air France and KLM. As such, the IFAM approach is subject
to large deviations between expected and actual demands, possibly mak-
ing the resulting fleet assignment decisions inadequate. In a hub-and-spoke
network, and on a given leg, airlines report that they are confident about
forecasting demand to a set of geographically close destinations, as opposed
to one particular destination. Revenue Management literature has verified
this claim. What follows is another experiment and a demonstration de-
signed to confirm it with another proof.

In order to determine whether leg demands are actually subject to less
variability than itinerary demands, we design a small experiment. The goal
of this experiment is to associate a measure of the variability of the itinerary
demand to a measure of the variability of the leg demand. To measure the
variability of a variable, we use the coefficient of variation, which is defined
as the ratio of the standard deviation σ to the mean µ: CV = σ

µ
. This ratio,
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also known as the relative standard deviation, is well suited for comparing
the variabilities of variables of same nature, but of different means: we thus
adopt it as our measure of variability. We define a process that takes as an
input a given coefficient of variation for the itinerary demands, and outputs
the average coefficient of variation of the leg demands on the network.

An instance I is chosen. The itinerary demands of I are randomly per-
turbed, to produce the instance I ′. The perturbation applied to obtain I ′

is such that each itinerary i is perturbed by a random amount ǫi, where ǫi
follows a normal law centered in 0 and of standard deviation σi; σi is deter-
mined such that the coefficient of variation CVi =

σi

di
is constant over the

network: for all i, σi = CV.di. Of course, should the result be negative, the
perturbed demand is truncated to 0. The demands in I ′ are then aggregated
at the leg level. For a given input of CV , this process is repeated 20 times,
such that for every leg, a sample of 20 aggregated demands is obtained. For
each leg l, we then compute the mean dl and the standard deviation σl of
the sample, that we combine in the coefficient of variation CVl =

σl

dl
. All

the coefficients of variation of all the leg demands are then combined into
their average, to form the average leg demand variation.

Figure 4.3: Accuracy of the demand: leg-based versus itinerary-based

Figure 4.3 reports the measured coefficient of variation of the leg demand
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for a given coefficient of variation on the itinerary demand, for a 30 legs/46
itineraries instance. We can see that the leg-based demand is slightly less
variable than the itinerary-based demand, with a coefficient of variation of
70% for the leg-based demand when the itinerary-based demand reaches
100%. What is also interesting about this curve is that it seems to be linear.

In fact, this network compensation effect is simply the effect of the law
of large numbers. What follows shows that, under the assumptions we made
in this experiment, the coefficient of the curve can be precomputed:

Proof. Assume a network of legs L, run over with a set of itineraries I.
Consider any leg l ∈ L. Every itinerary i going through l has a demand
that we note Di. To match the conditions of our experiment, we make the
following assumptions:

• Di follows a normal law of mean di and standard deviation σi.

• The demands are independent

• Like in the previous experiment, the coefficient of variation of the

demands is constant: for all i ∈ I,
σi
di

= CV, or more conveniently,

σi = CV.di

We now note Dl the cumulated demand over the leg l:

Dl =
∑

i∋l

Di

• Dl, as a sum of independent variable of normal law, follows a normal

law of mean
∑

i∋L

di and of standard deviation

√
∑

i∋l

σ2
i = CV

√
∑

i∋l

d2i .

• The coefficient of variation of Dl is thus CVl = CV

√
∑

i∋l d
2
i

∑

i∈L di

• We can thus compute exactly the average coefficient of variation over
the network: CV = 1

|L|

∑

l∈LCVl. This is the value we have been
plotting.

From this result we can also deduce that the more itineraries on a leg,
the least variable the aggregated demand. Indeed, assuming the Di have
the same mean, i.e. d1 = d2 = · · · = d, we can rewrite:

CVl ≤
CV√
n
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where n is the number of itineraries using l.
In other terms, compared to the variability of the demand of a single

itinerary, the variability of a leg-based demand is divided by the square root
of the number of itineraries on this leg. Such an equation suggests it is easier
to measure demands when they are aggregated, confirming the claim made
by Culioli (2006). Interestingly, the way to aggregate the demands has no
impact on the result. With these hypothesis, any set of itineraries could be
considered, and their demands, considered together, would be less variable.

4.1.4 Conclusion about these Experiments

In the first part of this chapter, we explained why some airlines were un-
comfortable with implementing IFAM. Most proposals of new models use
their own method to measure the revenue, thus positioning themselves in
a way that makes them look better. Our approach was different: in every
experiment, we assumed that IFAM was the best possible model to describe
the reality, and our goal was to see whether using another method would
prove the model wrong by its own measure. The strategy we used was the
same every time: assume an input deviated from the reality, and measure
the effect. We believe that our analysis is thus as unbiased as it can be.

Depending on the beliefs of the reader, we may or may have not suc-
ceeded to convince that it is desirable to fix the behavior of IFAM. Our
experiments would obviously be best performed by the airlines themselves.
We tried to give the elements to make an educated guess. Hopefully, this
work will convince engineers and forecasters to test extensively their own
data, and will lead to a questioning of industry practices. Collaboration and
publication of data is desirable if we want to see convincing academic work
in this area.

With the work we performed here, we believe that some elements require
to be improved in IFAM:

Recapture Beyond all the effort we made to show that recapture may not
be the best possible way to model the behavior of passengers, this work has
been done in close collaboration of the Revenue Management department of
Amadeus, who opposed the concept. We believe it is worth looking for an
alternative.

Demand Granularity There is a growing interest in considering demand
as a nested concept. Grouping different demands together will lead to better
accuracy in measures, and a greater confidence in the assignment yielded by
the models.

The next part of this chapter presents a model that tries to make use
of all the lessons learnt with this work on IFAM, and to bring a better
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representation of the passenger revenue.

4.2 Market Driven Fleet Assignment

In this section, we present a new Fleet Assignment model. This model
has been conceived with a series of requirement in mind, guided with our
experience in testing IFAM in various situations. It is a generalization of the
no-recapture version of IFAM, and its conception is influenced by Revenue
Management.

We start with a summary of our requirements, then we present the model.
We give elements of comparison between this model, FAM and IFAM. We
conclude with examples to illustrate the expressiveness that can be reached
using it.

4.2.1 Desirable Features of a modern Fleet Assignment Model

When we started designing a new model for Fleet Assignment, we had a
set of requirements in mind. These requirements came naturally, from the
desire to improve the model. We list them here.

Model Recapture differently

Recapture rates are an unclear concept. They are hard to measure, and they
are confusing. During the course of this thesis, a joint effort has been made
with the Revenue Management team of Amadeus to gather data for building
IFAM instances. After presenting them with the concept of recapture, their
feedback was clearly negative, and we were strongly advised to drop it. Since
Revenue Management is the discipline that now drives optimization of the
passengers flow, listening to opinion of experts of this domain made sense
to us. Modeling recapture differently has thus become one of our primary
objectives.

Be able to deal with only Part of the Demand Information

When gathering data to build IFAM instances, it became clear that the kind
of information IFAM requires can push the data mining very far. This task
is obviously not made easy by the fact this data is part of critical systems
that absolutely need to work for the airlines to do their job. As scientists, we
can cope with these problems with a lot of post analysis. But at the airline
level, moving to an IFAM-based system requires a complete refactoring of
major components of the IT system. Refactoring has a cost, and not every
airline will risk it unless they are convinced that it is absolutely necessary.
An important goal we set to ourselves was thus to be able to deal with any
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source of data the airline would be able to provide, and to make a model
that is adaptable.

Minimize disruption

The same reasons for which we wanted to build a model that could adapt
to any kind of demand input also made us want to build a model that could
be used as soon as possible. Airline processes are numerous, nested, inter-
dependent. Therefore, for a solution to be quickly adopted, it has to fit in
the general scheme with the least possible amount of modifications. This
does not mean that the model will necessarily use exactly the same inputs,
but it means that it has to be at least backward compatible with what is
currently used.

With all these requirements in mind, we designed the model that is about
to be presented.

4.2.2 Redefining the Market Concept to match mainstream

Economics

Traditionally, in the processes linked to schedule planning, markets are de-
fined as pair of cities. While it is true that this definition corresponds to
sets of customers who are potentially interested in buying tickets, we find
this definition restrictive. The Cambridge dictionary defines a market as
the people who might want to buy something. Should we redefine the con-
cept of market in complete accordance with this definition, we believe that
the definition of the scheduling term market should not be reduced to city
pairs.

We propose to widen the definition of market. The unit of good sold by
airlines is the itinerary. The general termmarket, with no further precision,
would thus concern the set of every possible itinerary that can be bought.
To only refer to a subset of these itineraries, we can use a criterion: For
example, to refer to market as in the common scheduling literature, we
could talk about “The market of the itineraries of the city pair A-B”. This
would allow to define other markets, such as “The market of business-class”,
or “The market of Australia”. Such a definition would match mainstream
economics and make the scheduling discipline more accessible to others.
More generally, we may simply define a market as a set of itineraries.

Starting from here, and for the rest of this thesis, we use the term mar-
ket as follows: A market m is any set of itineraries taken together. It is
characterized by the unordered list of itineraries it comprises.
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4.2.3 The nested Nature of Demand

It has to be noted that Revenue Management models customer behavior dif-
ferently. One of the major differences is that potential customers for a given
product are also subject to buy other flavours of the same product, and will
pick their preferred match depending on the availability and their willing-
ness to pay. In contrast, to model the fact that passengers are candidates
for buying several itineraries, IFAM uses recapture. There is a probability
of recapture between itineraries, and some percentage of the passengers will
accept an alternative itinerary if their primary choice is unavailable.

We believe that there is a way to model passengers as candidates for
several itineraries at the same time, by grouping demands together. Not only
it would match more accurately the kind of things Revenue Management is
doing, but it would also allow to use the property that itineraries grouped
together are less variable.

4.2.4 Market Driven Fleet Assignment

The idea of Market Driven Fleet Assignment naturally arose from all the
ideas exposed previously:

• Itinerary demands seem too uncertain to be usable;

• There is an interest in grouping demands together;

• Recapture would be best expressed as nested in different groups of
itineraries.

As a consequence, why not make demand a variable of the model? We would
be allowed to use it in equations, to constrain it, and to express freely any
knowledge known about it. To give an example, here is what can be done
regarding a leg: Rather than specifying all the demands of the itinerary
running across the leg separately, we could consider the leg as a market, and
constrain the demands on this leg to match a given value. If the demand
forecast for the leg l is Dl, it would translate to the constraint.

∑

i∋l

di = Dl

This formulation has the advantage of not forcing us to specify the values of
each di, and to let the model decide it for us. However, we can see potential
problems of feasibility. In this interest, we allow to specify the constraints
using a lower and an upper bound. The previous constraint thus translates
to:

Dmin
l ≤

∑

i∋l

di ≤ Dmax
l
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Actually, there is no reason to force any geographical concept into the tech-
nique we just introduced. There might be an interest in measuring the
demand of any market. We can define more general constraints: given a
market m, which is a set of itineraries, we define the following constraint:

Dmin
m ≤

∑

i∈m

di ≤ Dmax
m (4.1)

Not only this notation is intuitively linked to the notions of market in
mainstream economics, but it has a great power of expressiveness. Any
group of itineraries can be considered, leaving room for any possible knowl-
edge the airline may know about the demand on their network.

Once again, one could stop here, and use only this kind of constraints
to define MDFAM. In fact, early versions of this model included only these
constraints. But this would restrict the concept of constraining the demand
as part of the fleet assignment. If we start to admit demand as a variable,
there is actually no reason to restrict the type of constraints to apply on
it. For example, analysis could lead to discover that the demands of two
itineraries are always linearly correlated, leading to constraints of the form:

β − E ≤ D1 + αD2 ≤ β + E

So, in fact, any constraint can be applied to the demand, and the most
general form for demand constraints is:

∑

i∈I

αiDi ≤ β

We call the constraints on the demand the market constraints, and we index
these constraints in a set M .

Relationship Between MDFAM and Recapture

It was brought to our attention that in constraints such as

∑

i∈m

di = Dm

look like they would probably well be expressed with traditional IFAM, as-
suming a recapture of 100% between itineraries of the market m. Indeed,
recapture rates mark the ability of the airline to redirect demand to other
itineraries. A recapture rate of 100% means that any attempt to spill pas-
sengers towards the alternative itinerary will succeed, which surely happens
when demands move freely between the itineraries of the market.

However, this consideration does not stand if one starts to consider that
markets can intersect. For example, MDFAM allows constraints of the form

di + dj = Di,j
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. If we assume such a constraint for every pair of itinerary in the network, it
only constrains more the MDFAM formulation. On the contrary, assuming
that every recapture rates of the network are equal to 1 enables us to fully
spill the demand from any itinerary towards any other itinerary, making the
demand less constrained.

As a conclusion, while MDFAM allows us to consider intersecting mar-
kets, IFAM would not allow to do exactly the same using recapture rates.

4.2.5 Formal Presentation of the model

Data The notations of IFAM are still in use. Additionally, we note M the
set of market constraints (indexed by m).

Variables The same fleet assignment variables as in FAM and IFAM are
used:

• xt,l =

{

1 if aircraft type t is assigned to leg l

0 otherwise.

• yt,g: the number of aircraft of type t waiting on the ground arc g.

Rather than using spill variables and recapture rates, booking variables
are used.

• bi: the number of passengers booking the itinerary i.

The unconstrained demand is not a data anymore, but a variable to be
decided from market constraints.

• di: the unconstrained demand on the itinerary i.
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Model

max
∑

i∈I

Fareibi −
∑

l∈L

∑

t∈T

ct,lxt,l (4.2)

s.t.
∑

t∈T

xt,l = 1 ∀l ∈ L (4.3)

∑

l∈I(n)

xt,l + yt,gi(n) =
∑

l∈O(n)

xt,l + yt,go(n) ∀n ∈ N (4.4)

∑

g∋CT

yt,g +
∑

l∋CT

xt,l ≤ |t| ∀t ∈ T (4.5)

∑

i∋(l,c)

bi ≤
∑

t∈T

xt,lCapt,c ∀l ∈ L, ∀c ∈ C (4.6)

∑

i∈I

αm
i di ≤ βm ∀m ∈M (4.7)

bi ≤ di ∀i ∈ I (4.8)

xt,l ∈ {0, 1}, yt,g ≥ 0, di ≥ 0, bi ≥ 0

This translates to:

• (4.2) The objective is to maximize the profit.

• (4.3) Exactly one aircraft type must be assigned to each leg.

• (4.4) The flow of aircraft is conserved at each node of the network.

• (4.5) At the count time, the number of aircraft of every type is con-
served.

• (4.6) The cabin capacity are respected.

• (4.7) The demands must respect the market constraints.

• (4.8) The bookings are consistent with the demand.

The market constraints (4.6) can be freely specified. Any type of demand
constraint that can be linearly expressed will fit into this model. Their
number is undetermined, but the idea is to fit enough constraints here for
the demand to be tightly constrained, otherwise, the model will optimize
and overestimate the revenue of the fleet assignment. Possible examples of
market constraints are discussed in the next sections.

4.2.6 Analysis of MDFAM

MDFAM is a generalization of the no-recapture version of IFAM:

To see it, we define define in MDFAM the variables

si = di − bi.

59



standing for the number of passengers spilled on itinerary i.
We proceed to the following change of variables:

bi = di − si

After proper substitution, and turning the model in a minimization of the
opposite of the objective, we obtain:

min
∑

l∈L

∑

t∈T

ct,lxt,l +
∑

i∈I

Farei(si − di) (4.9)

s.t.
∑

t∈T

xt,l = 1 ∀l ∈ L (4.10)

∑

l∈I(n)

xt,l + yt,gi(n) =
∑

l∈O(n)

xt,l + yt,go(n) ∀n ∈ N (4.11)

∑

g∋CT

yt,g +
∑

l∋CT

xt,l ≤ |t| ∀t ∈ T (4.12)

∑

i∋(l,c)

(di − si) ≤
∑

t∈T

xt,lCapt,c ∀l ∈ L, ∀c ∈ C (4.13)

∑

i∈I

αm
i di ≤ βm ∀m ∈M (4.14)

si ≤ di ∀i ∈ I (4.15)

xt,l ∈ {0, 1}, yt,g ≥ 0, di ≥ 0, si ≥ 0

Put under this form, it is easy to verify that MDFAM is a generalization
of the no-recapture version of IFAM. Let (βi)i∈I be positive real numbers
standing for itinerary demands. If we use the following market constraints:

di ≤ βi

and
−di ≤ −βi

for each i ∈ I, then it ensues that di = βi for each i ∈ I. The constant
∑

i∈I Fareidi can be taken out of the objective function, and the model
becomes exactly an instance of IFAM, where the recapture rates are all null
and thus, where there is only one spill variable per itinerary, denoting the
spill towards the null itinerary (out of the network). Since (βi)i∈I can be
chosen arbitrarily, we can formulate any instance of IFAM with MDFAM,
which proves the point.

Number of variables:

• FAM:

– Assignment variables xt,l : |T | × |L|
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– Ground variables ytg : |T | × |G|
– Total: |T | × |L|+ |T | × |G|

• IFAM:

– Assignment variables xt,l : |T | × |L|
– Ground variables ytg : |T | × |G|
– Spill variables si�j : |I|2

– Total: |T | × |L|+ |T | × |G|+ |I|2

• MDFAM:

– Assignment variables xt,l : |T | × |L|
– Ground variables ytg : |T | × |G|
– Booking variables bi : |I|
– Demand variables di : |I|
– Total: |T | × |L|+ |T | × |G|+ 2 ∗ |I|

The difference in terms of number of variables between IFAM and MDFAM
is thus |I|2 − 2 ∗ |I|, which means that MDFAM has actually less variables
than IFAM. This can be explained by the fact MDFAM actually models
recapture as a group phenomenon and thus uses less variables to model it.

Number of constraints:

• FAM:

– Leg cover: |L|
– Aircraft flow: |N | × |T |
– Number of aircraft: |T |
– Total: |L|+ |N | × |T |+ |T |

• IFAM:

– FAM constraints: |L|+ |N | × |T |+ |T |
– Cabin capacities: |L| × |C|
– Spill limits: |I|
– Total: FAM+ |L| × |C|+ |I|

• MDFAM:

– FAM constraints: |L|+ |N | × |T |+ |T |
– Cabin capacities: |L| × |C|
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4.2.8 Conclusion

In this chapter, we exposed the scientific approach that led us to create a
new Fleet Assignment model. This model achieves several features:

• it is a generalization of the no-recapture version of IFAM, and as such,
it cannot produce worse results than the former.

• it is adaptable to any possible input of demand, provided this input
can be expressed as linear constraints.

• it can be directly used by both a company using FAM and a company
using IFAM.

The possibilities are vast. So what are correct Market Constraints? It
seems obvious that, because demands have become decision variables, the
model will optimize them. As a consequence, to avoid inaccuracies, it seems
important to find the right types of Market Constraints to put into MDFAM
to obtain the best results.

This is the topic of the next chapter.
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Chapter 5

Comparison With

Traditional Models and

Tuning for Profit

In the previous chapter, we presented MDFAM, a flexible model to build
fleet assignments with demand information of multiple forms. This chapter
is dedicated to determining what are the best possible Market Constraint
for generating the most profit with this model. We compare MDFAM with
the two other major models of the literature, FAM and IFAM, in a series of
experiments based on real life data.

We start this chapter with an introductory example to illustrate the ben-
efit of MDFAM. In a second part, we show how, using correlations discovered
through data analysis, MDFAM can outperform other models on real-life in-
stances. We explain how the data was obtained and post-processed. Finally,
we use 2-fold cross validation in order to compare MDFAM with alterna-
tive Fleet Assignment Models. A variety of test cases are used to benchmark
MDFAM, with various degrees of success. We conclude about the efficiencies
of the different models.

5.1 Introductory Example

As opposed to IFAM, which is a model that takes average demand as a given
input, MDFAM uses any information about demand that can be expressed
with linear constraints. Demands are treated as variables, and as such, are
optimized. As a consequence, MDFAM can be seen as a version of IFAM
that computes the best case demand scenario to work with.

It may seem unlikely that the best case scenario actually happens in
reality. However the following example shows that in some cases, with good
inputs, MDFAM is preferable to IFAM.
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5.1.1 Description of the Situation

We consider the following network of two flight legs. These flights are both
starting from the same city, but are serving unrelated destinations. Be-
cause the destinations are completely different, no passenger would consider
swapping flights, and thus recapture is assumed to be null.

Flight Origin Destination

1 A B
2 A C

We also assume that there are only two possible itineraries in the flight
network: flying on 1 or on 2. Both itineraries cost the same price to the
passengers.

Itinerary Flight Fare

1 1 100
2 2 100

The company can assign three different types of aircraft to the flights.

Aircraft Number of seats Cost

80 80 4000
90 90 4500
100 100 4900

We assume that the demands follow a pre-determined pattern, and that
only two equally likely demand scenarios may occur:

Scenario Itinerary Demand

1 1 100
2 80

2 1 80
2 100

A possible interpretation of this theoretical example could be that:

• On both flights, 80 customers travel on a regular basis, and are used
to book long in advance;

• There are 20 other persons who share a common reason to travel, and
know which leg they are interested in at the last minute. For example,
they could be invited to a meeting that randomly takes place in B or
C.
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We are now going to consider two different cases: in the first case, the
airline will be performing the fleet assignment using IFAM, and in the sec-
ond case, the airline will be performing the fleet assignment using MDFAM.
Once an assignment is decided, it will be applied all over the season: as-
suming the Passenger Mix Model applies, we will compute the profit of this
assignment on each of the demand scenarios, which will enable us to decide
which assignment is, on average, the most profitable.

5.1.2 Average Performance of the IFAM Solution

We assume that the airline is getting started with IFAM. They perform data
analysis, and find out what the average demands are. They then assume
the average demand scenario to assign their fleet, and use the resulting
assignment over the season.

Itinerary Demand

1 90
2 90

Assuming this average scenario, because any of the other solutions would
lead to either have 10 empty seats or spill 10 passengers and, in both cases,
being less profitable, the optimal solution is:

Flight Assigned aircraft

1 90
2 90

The assignment computed on the average scenario is now used over the
season. We can compute the average performance of IFAM easily: the cost
of the network remains the same, so we just have to compute the revenue
made by the airline with the two different demand scenarios. These scenarios
are symmetric: on one flight, the demand is 100, and on the other flight,
the demand is 80. The number of passengers who travel on the first flight
is 90 (and 10 persons are spilled), and the number of passengers who travel
on the second flight is 80 (and there are 10 empty seats). Thus, the profit
is:

(80 + 90) ∗ 100− 2 ∗ 4500 = 8000

5.1.3 Average Performance of the MDFAM Solution

We now assume that a good data analysis is performed. This analysis finds
out that the demand always satisfies the following constraints:
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80 ≤ d1 ≤ 100

80 ≤ d2 ≤ 100

d1 + d2 = 180

Being optimistic, MDFAM will assume the best case demand scenario.
As the optimal solution of a linear programming problem, the demand satu-
rates one of the constraints. This results in assuming the following situation
(which turns out to be true half of the time):

Itinerary Demand

1 100
2 80

Because any other assignment would either spill passengers, or have
empty seats and be more expensive, the optimal MFAM solution is:

Flight Assigned aircraft

1 100
2 80

We now compute the performance of the obtained assignment over the
season. Again, the cost of the network remains the same. In one case,
all the 180 passengers can use the network, and in the other case, only
160 persons use the network. On average, the same number of passengers
use the network. However, the assignment is cheaper, since we now pay
4000+4900 = 8900. On average, the revenue of the fleet assignment is thus:

(160 + 180)/2 ∗ 100− (4000 + 4900) = 8100

5.1.4 Conclusion

We can see that, on this particular case, the profit yielded by an MDFAM
fleet assignment can be higher on average than the profit of an IFAM fleet
assignment, even though the IFAM fleet assignment was computed based
on a perfectly accurate forecast of the average demand. The choice made
by MDFAM is better because the profit made over the better scenarios
compensates the loss over the bad scenarios.

Though our example we may sound silly, we believe that the real world
has comparable situations, where demand correlations could be detected.
For example, we expect passengers who take a flight to come back, and thus
the demand of an itinerary to be correlated with the demand in the opposite
direction. Through data analysis and with the knowledge of experts, many
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such demand relationships could be established, and MDFAM is meant to
exploit them.

5.2 MDFAM Applied to Realistic Situations

In this section, we compare the models in realistic situations. We designed a
simulation framework, where an airline decides how to assign its fleet using
FAM, IFAM, or MDFAM. The obtained fleet assignment is then applied
over a season, providing the average profit of the model. Instead of using a
random demand generator, which would oblige us to make possibly biased
assumptions upon demand, we base our simulation on real-life data.

5.2.1 Simulation Overview

Evaluating a model essentially consists in simulating two steps:

1. Forecasting the best fleet assignment: The airline use historical
data to build an instance for the model of their choice, and solve it;

2. Applying the obtained fleet assignment: They run the fleet as-
signment over a season. Each day yields particular demands. They
collect the overall profit.

For both of these steps, we assume knowing realistic demand scenarios.
These scenarios must refer to the same network, and each of them must
provide a vector of demand per itinerary. In other words, the scenarios
provide realizations of the demand. In the first step, when forecasting, these
scenarios are interpreted as past events of demand an are used to build (to
forecast) a fleet assignment instance. In the second step, when applying the
fleet assignment, they are interpreted as events to occur in the season, and
are used to evaluate the profit of the fleet assignment.

Figure 5.1 describes the protocol overview: assuming that we collected
the demands over the network during a season, we obtain a sample of de-
mand scenarios. A subsample of these scenarios (green) is selected in order
to predict the best fleet assignment. Then, once this fleet assignment is com-
puted, another subsample (blue) is selected to test it. We make no further
assumptions on the subsamples for the moment: they could contain the full
sample, or they could intersect (but not be empty).
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demand scenarios is:

1: for i ∈ itineraries do
2: di ← mean({di(s)|s ∈ S})
3: end for

Algorithm 4: Creating an IFAM instance from demand scenarios

This yields an IFAM instance that is assumed to be representative of the
scenarios.

FAM Instances

The process to create FAM instances is based on the formula described in
3.2.1. Recall that FAM uses leg-based costs, which are computed as follows:

ct,l = copt,l
︸︷︷︸

operating costs

+ cspt,l
︸︷︷︸

lost revenue

Let Ql,c be the demand on the leg cabin (l, c). The formula of 3.2.1 says
that the spill cost of assigning the aircraft type t to the leg l is:

Csp
t,l =

∑

c∈C

Farespl,cmax(0, Ql,c − Capt,c)

The following spill fare is used:

Farespl,c ≃ 0.7 average fare on (l, c)

We denote Ql,c(s) the demand on the leg cabin l, c in the scenario s. We
compute the spill costs based on the average Ql,c over the season. The
algorithm for generating a FAM instance from various demand scenarios is:

1: for l ∈ legs do
2: for t ∈ aircraft types do
3: Csp

t,l ←
∑

c∈C Farespl,cmax(0, (mean({Ql,c(s)|s ∈ S})− Capt,c)
4: end for

5: end for
Algorithm 5: Creating a FAM instance from demand scenarios

We combine the obtained spill costs with the operating costs to obtain
a FAM instance that describes the set of scenarios.

MDFAM Instances

The process we use to generate MDFAM instances is slightly more sophis-
ticated. MDFAM requires constraints on the demand as an input. We thus
need a way to build these constraints from demand scenarios.
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Possible directions for MDFAM demand Constraints

In this part, we describe the types of directions we have tested for building
the Market constraints of MDFAM.

Itinerary-based demand constraints The simplest direction to use in
MDFAM is itinerary-based. It consists in directly mapping itinerary de-
mands to constraints. Given an itinerary i0, the direction is expressed as
(αi)i∈itineraries, such that

αi =

{

1 if i = i0

0 otherwise.

Leg-based demand constraints Another direction that naturally comes
to mind for measuring demands is an aggregation of the itinerary demands
by legs. Given a leg l of the network, we measure the variable

∑

i∋l di. The
direction can thus be expressed as (αi)i∈itineraries, such that:

αi =

{

1 if itinerary i uses leg l

0 otherwise.

Origin and destination-based demand constraints Another direc-
tion, also geographically-based, is the origin and destination based direc-
tion. It consists in aggregating the demands of the itineraries that shares
the same origin and destination. Given the origin airport O and the desti-
nation airport D, this direction is expressed as:

αi =

{

1 if itinerary i has the origin O and the destination D

0 otherwise.

Price-based demand constraints The optimistic nature of the model
makes it likely to maximize the demands of itineraries with high prices. As
a consequence, to limit this phenomenon, we constrain the demands of the
itineraries with high fares to be limited. We construct these directions such
that, given two fares fmin and fmax, the itineraries that have a fare between
fmin and fmax are grouped together:

αi =

{

1 if itinerary i has a fare in the interval [fmin, fmax]

0 otherwise.

To determine the bounds of the intervals, we use the following process:
we compute the average fare on the network, and order the itineraries by
fare. We then group itineraries together such that the average number of
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ponent analysis. Assuming several realisations of the demand vector (d1, d2),
the principal component analysis returns in order (component 1, component 2),
such that the component 1 is the direction where the observed variation is
the largest, and component 2 is the second direction by this criteria, while
being perpendicular to component 1. These directions are then used to build
Market constraints.

5.2.3 Evaluation Method: Applying a Fleet Assignment to

a Set of Demand Scenarios

In this section, we explain how we evaluate the efficiency of a fleet assign-
ment. We still assume being provided with demand scenarios, but we inter-
pret them differently, assuming they are future events of the season.

This process is rather straightforward: for each scenario, we use the
passenger mix model (PMM) to compute the attainable contribution of the
assigned network. We subtract the operating cost of the fleet assignment,
in order to obtain the profit. We compare the cumulated profits of the fleet
assignments obtained with each different model.

We now explain how the demand scenarios were obtained.

5.2.4 Obtaining the Demand Scenarios

This section explains how we obtained the demand scenarios used in our
simulation framework. Our data source consists in the daily bookings and
cancellations on the flights of a major airline. Several processing steps are
then applied. We list them here.

Aggregation of daily Bookings

The raw data consists in single transactions, which may be either bookings
or cancellations. These transactions, at the time they are made, refer to
flights that have not yet been operated (up to one year prior to the event).

This information is aggregated, so that we know the total number of
bookings on the various itineraries of the network, for a given day. To do so,
it is necessary to go through the previous year of bookings and cancellations.
The transactions are filtered with the departure flight date of the targeted
day, and aggregated at the itinerary level. We end up, for every day of a
season, with a vector of number of bookings per itinerary. For each itinerary,
the cabin information is known, and we consider two itineraries using the
same flight legs but different cabins to be different. The fare information
may also be given, but is not always present.

In order to obtain several instances with consistent networks and de-
mands, we choose several typical parts of the week to repeat this operation,
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and we separate winter from summer. This separation is done according
to the IATA definition, using the dates of Daylight Saving Time (DST)
introduction in European Union countries as boundaries. We are left the
winter and summer versions of Sundays and Tuesdays. In order to make
larger instances, couple of days are also considered: Saturday-Sunday and
Tuesday-Wednesday.

We compare our results with public yearly traffic figures published by
the airline. Over the whole year, the claimed figures are 10% higher than
our measures, which suggests missing data in our source. We adjust by
artificially adding 10% to our results.

Deducing daily Schedules from the Bookings

For the sake of simplicity, the schedule information is not part of the input,
since it can be deduced from the bookings: any flight booked must neces-
sarily be part of the schedule. Furthermore, using a single source of data
avoids mismatches between bookings and schedule. This method prevents us
to detect flights with no bookings, but since they don’t happen in practice,
it remains reliable.

One major issue resides in the fact that even when only considering the
same day of the week, the flight network is not consistently the same across
the season. In practice, it is perfectly normal that we observe a modified
schedule, and it can be perceived as a sign of the flexibility of the airline. But
for our experiment, this is a problem, because to simulate that the same fleet
assignment is applied over a season, we need the itinerary demands to remain
on the same network. In order to circumvent this problem, we compute
an average network of the company. Our approach is based on frequency
analysis. We sort the legs by number of occurrences in each schedule and
keep the most frequent legs.

The size of the resulting schedule is determined by the average size of the
schedule over the season (in terms of number of legs). If the process results
in an infeasible schedule, caused by an insufficient number of aircraft, we
reduce this size. In practice, the reduction needed is never more than 5%.

The bookings are then adapted to this network on every scenario: itineraries
using legs outside of the network are split to keep only the part that belongs
to the average network.

Collecting, converting and adjusting the Fares

In our raw data, the fares are given in the currency of the buyer. A first
step is thus to convert the fares to a reference currency. This conversion is
operated using rates adapted to the date of the transaction: some currencies
vary a lot during the season and we find that it is preferable to take this
phenomenon into account.

77



Then, the average fare over the season is computed for every itinerary.
In the rare cases when all the fares are missing for a given itinerary, a fare
for an itinerary that shares the same origin and destination, irrespectively
of the connection station, is used.

Deducing the Demands out of the Bookings

The process to deduce the demands from the bookings is rather straightfor-
ward: we scale everything up (again) by 10%. Obviously, this introduces a
bias: we should only increase the demands of itineraries operating on satu-
rated legs. However, we believe that, even though we can probably achieve a
better accuracy, we are not seeking the perfect input. The idea of the exper-
iment is to taste what goes on, not to reach perfection. In order to keep the
number of transformations small, we do not try to push the extrapolation
further.

As for the recapture rates, we simply ignore them, and we consider that
there is no recapture in our scenarios (the main reasons for this choice being
that we don’t know any way for collecting them, and that we believe the
impact of adding them would not be significant).

Fleet and operating Costs

The fleet of the airline is public and was obtained from their website. The
operating costs are computed using publicly available hourly rates 1.

In order to make the profits of the instances as realistic as possible, we
apply a second transformation, which goal is to match the figures with the
actual profit reported by the airline.

Public figures indicate that the net income of the airline is about 3%
of their revenue. We also have, from our own data, an estimation of this
revenue. However, because the net income includes every costs, we have to
take crew costs out of the equation. We do this very simply: according to
companies specialized in crew optimization 2, on average, crew costs repre-
sent 30% of the total costs of an airline. As a consequence, the operating
costs are linearly scaled so that, in the optimal IFAM schedule of the av-
erage instance, the operating costs are roughly around 67% of the revenue
generated by the bookings.

Data Set

The major characteristics of the data set are summarized in the following
table. Each instance represents a season (26 weeks) of demands. Along
with the main characteristics of the instances (number of legs, number of

1source: https://www.conklindd.com/CDALibrary/ACCostSummary.aspx
2source: http://www.theoptimacorporation.com/airline
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itineraries), we give the average itinerary and leg demands over the season.
We also give the average standard deviation of these demands, such that
each demand is given as an ordered pair (average mean, average standard
deviation).

Day Season Legs Itineraries Demand per leg Per itinerary

sa-su summer 420 4047 (87.4, 60.7) (13.6, 6.5)
sa-su winter 400 3993 (54.5, 53.2) (10.9, 5.4)
su summer 224 2275 (89.6, 59.5) (13.3, 6.2)
su winter 222 2284 (55.6, 58.2) (11.4, 5.8)
tu summer 260 2630 (71.1, 46) (10.9, 4.7)
tu winter 246 2386 (45.9, 43.4) (9.8, 4.4)
tu-we summer 526 5427 (72.4, 47.4) (11.1, 4.7)
tu-we winter 521 4729 (45.3, 42.6) (9.9, 4.5)

We can see that the standard deviation is reaching up to 60 persons per
leg. This implies that some of the itinerary demands variations add up.

5.2.5 Application of MDFAM over the Set of Instances

We run our simulation on every instances, using the aforementioned process
to generate instances of FAM, IFAM, MDFAM. The MDFAM instance is
generated using the combined effect of all the constraint types previously
mentioned, the separate effects being the object of a study in the next sec-
tion.

As described in Figure 5.4, we use the full sample for forecasting and
testing each fleet assignment. We solve these instances, and we measure the
revenue of the fleet assignments obtained over the season. The results are
summarized in the following table. The value between parenthesis is the
relative deviation to the IFAM profit.
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with IFAM. However, we are well aware that the correlations obtained from
analyzing the data set are perfect (the same sample being used for predict-
ing and for testing). Statisticians would say that our analysis might be
“over-fitting” the data set. As a consequence, we decided to run another
experiment to compare the models in uncertain context.

5.3 Comparing the Models in an uncertain Con-

text

In the previous section, we showed that, with a good knowledge of the
demand patterns over a season, we were able to produce MDFAM fleet
assignments performing better than IFAM fleet assignments. However, such
a degree of accuracy may be impossible to reach by forecasts. In order to
know if the process proposed would fit in a more realistic context, we need
to introduce uncertainty in the experiment.

Comparing models is a difficult task: the major issue is the fairness
regarding the way to evaluate the performance of the models. Obviously,
the choice of the performance evaluation function impacts the relative per-
formance of the models. For example, if the revenue function of one of the
models compared is used, this model gets an obvious advantage, because it is
built to optimize based on this revenue function. Besides, most of the time,
different models involve different inputs. Therefore, to be fair, the evalua-
tion needs to assume the same amount of information for every model. We
explain here how we addressed these issues.

5.3.1 Purpose of the Experiment

To describe our experimental protocol, we shall start with describing what
we intended to test. Our goal is to compare models when demand forecasts
are not 100% correct. Like in the previous chapter, we assume that, given
perfect input, IFAM computes a perfect fleet assignment. More accurately,
we assume that the Passenger Mix Model, given the demands on a fleeted
network, provides the actual revenue of the fleet assignment. We thus want
to assume a demand forecast, and test the efficiency of the fleet assignment
when the demand is different from this forecast.

Criterion of Evaluation

The method we have chosen to measure the efficiency of a fleet assignment
uses real-life data: We measure the demands of an airline network over a
scheduling season. This yields different demand scenarios. Given a fleet
assignment, each of these demand scenarios can be then applied, using the
Passenger Mix Model (PMM) from IFAM. We obtain the revenue of the fleet
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assignment for the given scenario. Doing this for the whole season, we can
compute the average revenue of the fleet assignment over the season.

5.3.2 2-fold Cross-Validation

Cross-validation is a method normally used to verify a predictive model.
It consists in making a prediction based on part of a dataset, and testing
this prediction on a different part of the dataset. In the case of 2-fold cross
validation, half of the dataset is randomly selected for making the prediction,
and the other half is used to check this prediction. Then the roles of the
sets are swapped.

In our case, we do not make a prediction, but we create a fleet assignment
instance from half of the dataset, and we compute the revenue of the instance
based on the other half of the dataset. The process is summarized by the
following procedure:

1: S = {demand scenarios}
2: Randomly partition S in S1 and S2, two sets of equal size
3: Create I, fleet assignment instance from S1
4: Compute X the corresponding fleet assignment
5: Compute the average revenue of X on S2
6: Exchange the roles of S1 and S2

Algorithm 6: Performance evaluation of a Fleet Assignment model

Figure 5.5 explains how we adapt our simulation to the 2-fold cross
validation: The only thing we have to modify is now to randomly select
the forecast subsample as half of the initial sample, and then to test on the
second subsample. The roles of the subsamples are then exchanged.
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1. Though MDFAM comes close to the best profit (0.67% when all the
methods are combined), we were not able to find correlations that
would enable us to find better fleet assignments with this model. This
suggests that correlations found from parts of a data set do not gen-
eralize well enough to the whole dataset for MDFAM to beat IFAM.
This also suggests that good forecasters for MDFAM may be difficult
to build.

2. MDFAM can be faster to solve than IFAM. All the tests that are run
here are models entered raw in the solver memory, and no optimisation
method has been applied. In particular, it is interesting to notice that
the most interesting methods in terms of profit are equally interesting
in terms of CPU time.

3. MDFAM can also be very slow to solve. This is particularly true for
the price based method, where constraints are based on itineraries of
the same price. Our guess here, is that the culprit is the symmetry
introduced by such constraints, since all the demands of the same
constraint yield a similar revenue.

4. The least constrained the demands are, the worse MDFAM performs.
Not enough constraints will leave the model free to choose unrealistic
demands, and the decisions taken are thus very bad.

5. FAM performs significantly worse than IFAM. To our knowledge, this
is the first study to compare IFAM and FAM in the context of demand
volatility. One might have expected that aggregating the demands
would make the decisions better, but our results show that it is not
the case.

5.3.4 Conclusion

In this chapter, we proposed an extensive comparative study of our model
with the models of the literature. To our knowledge, this is the first study
to involve as much data over such a long period of time. This is also one of
the rare studies to feature a comparison with both of the two most widely
used models in the industry. It required the implementation of both of these
models, and an extensive amount of data mining.

We showed that the model we have built, under ideal conditions, per-
forms consistently better than the others. The demonstration features both
a simple example, and a test on real data. We also tested this model in
a more uncertain context, with less success, showing that there was little
chance that this technique would be usable if the accuracy obtained in the
correlations is not high enough. Finally, these tests incidentally exposed
results that may help to settle the FAM versus IFAM debate.
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Despite the fact that this study reveals results based on a large amount
of data, it is only based on the network on a single airline. To be able to draw
conclusive results in the general case, one would need to repeat the same
experience with others. This can only be done with the full cooperation of
airlines. We hope that this document will bring enough attention on the
subject in order for such a cooperation to occur in the future.

The next chapter concludes this thesis.
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Chapter 6

Conclusion and Perspectives

Through this thesis, we addressed a variety of problems in the domain of
Fleet Assignment.

In a first part, we experimented techniques to solve Fleet Assignment
problems with a FAM solver, basing our approach on well known results.
We showed that FAM could be seen as a Lagrangian Relaxation of IFAM,
with particular Lagrangian multipliers. We implemented this Lagrangian
Relaxation in the general case, and we then used it into a Column Gen-
eration approach based on a Dantzig-Wolfe decomposition of IFAM. This
approach could be used to solve a toy instance, but suffered performance
issues on instances of moderate size. We proposed possible enhancements
for improving this performance, but we left them unimplemented, in order
to focus on other modeling aspects.

In a second part, we discussed possible effects of forecasts inaccuracy over
IFAM profit, a topic already largely covered by the literature. We explained
why we believe desirable to consider groups of demands rather than single
itinerary demands. We then proposed a new definition for the term Market
in the context of Airline Scheduling, and formulated MDFAM, a new Fleet
Assignment model based on this proposal. We illustrated the flexibility of
this model through various examples.

The third part of this work was a study of the major models of the liter-
ature along with MDFAM, considering demand volatility. We showed that,
when the knowledge of the demand behavior was very good, MDFAM could
lead to better results than IFAM. We also showed that, when introducing
more uncertainty in the data, the advantage of MDFAM over IFAM was less
clear, suggesting that building forecast for the express purpose of applying
MDFAM would certainly require a great expertise. This study also showed
that IFAM consistently gave better results than FAM, even in a context of
high demand volatility.

This works opens the way towards two directions of development:
The first direction would be to address demand likeliness. The model
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of this thesis, MDFAM, is fundamentally optimistic about demands, and
automatically assumes the best possible demand scenario. We have seen
that this is a problem, because unless the constraints are very strict, this
demand scenario is unlikely to actually happen. In this perspective, we could
study what are the best demand constraints, such that the demand remains
realistic. Another possibility could be to penalize the model whenever it
chooses an unrealistic demand scenario. The objective function would thus
need to include a measure of the demand likeliness, and a cost associated to
this measure.

The second direction of development would be to better address fare
volatility. Demands are not the only inputs of the Fleet Assignment to suffer
volatility. Another parameter that is also highly variable is the fare. Fare
pricing systems are a vast, intricate issue of airline industry. One possibility
for addressing this volatility could be to turn the fares into constrained
variables, like it has been done for the demands. However, this would lead
to a quadratic formulation, a sort of problem that is difficult to solve at
this scale. Furthermore, we would also be exposed to difficulties of the same
class, with a model choosing unrealistic values.

87



Bibliography

Abara, J. (1989). Applying integer linear programming to the fleet assign-
ment problem. Interfaces, pages 20–28.

Ahuja, R., Goodstein, J., Mukherjee, A., Orlin, J., and Sharma, D. (2001). A
very large-scale neighborhood search algorithm for the combined through
and fleet assignment model. MIT Sloan Working Paper No. 4388-01.

Ahuja, R., Liu, J., Goodstein, J., Mukherjee, A., Orlin, J., and Sharma, D.
(2003). Solving multi-criteria through-fleet assignment models. Applied
Optimization, 79:233–256.

Barnhart, C., Belobaba, P., and Odoni, A. (2003). Applications of operations
research in the air transport industry. Transportation science, 37(4):368–
391.

Barnhart, C., Boland, N., Clarke, L., Johnson, E., Nemhauser, G., and
Shenoi, R. (1998a). Flight string models for aircraft fleeting and routing.
Transportation science, 32(3):208–220.

Barnhart, C., Farahat, A., and Lohatepanont, M. (2009). Airline fleet assign-
ment with enhanced revenue modeling. Operations research, 57(1):231–
244.

Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., and Vance, P.
(1998b). Branch-and-price: Column generation for solving huge integer
programs. Operations Research, pages 316–329.

Barnhart, C., Kniker, T., and Lohatepanont, M. (2002). Itinerary-based
airline fleet assignment. Transportation Science, 36(2):199–217.

Belobaba, P. P. and Farkas, A. (1996). The influence of network effects
and yield management on airline fleet assignment decisions. PhD thesis,
Massachusetts Institute of Technology.

Berge, M. and Hopperstad, C. (1993). Demand driven dispatch: A method
for dynamic aircraft capacity assignment, models and algorithms. Opera-
tions Research, pages 153–168.

88
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