N

N

Using Event-Based and Rule-Based Paradigms to
Develop Context-Aware Reactive Applications
Truong Giang Le

» To cite this version:

Truong Giang Le. Using Event-Based and Rule-Based Paradigms to Develop Context-Aware Reactive
Applications. Automatic Control Engineering. Conservatoire national des arts et metiers - CNAM,
2013. English. NNT: 2013CNAMO0883 . tel-00953368

HAL Id: tel-00953368
https://theses.hal.science/tel-00953368
Submitted on 28 Feb 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00953368
https://hal.archives-ouvertes.fr

CONSERVATOIRE NATIONAL DES
ARTS ET METIERS le cham

Ecole Doctorale Informatique, Télécommunications et Electronique (Paris)

le cham

PHD THESIS
presented by: TRUONG GIANG LE

defense date: September 30, 2013

Submitted in partial fulfillment of the requirements for the degree of: Doctor of Philosophy
in Conservatoire National des Arts et Métiers

Magjor/Specialization: Computer Science

Using Event-Based and Rule-Based Paradigms

to Develop Context-Aware Reactive Applications

THESIS COMMITTEE

Thesis Director Renaud R10B0OO Full Professor, ENSIIE, France

Thesis Supervisor Matthieu MANCENY Associate Professor, ISEP, France

Thesis Supervisor Olivier HERMANT Assistant Professor, MINES ParisTech, France
Thesis Supervisor Renaud PAWLAK Technical Director - PhD, IDCapture, France
Reviewer Pascale LE GALL Full Professor, ECP, France

Reviewer Carlos E. CUESTA Associate Professor, URJC, Spain

Examiner Samia BOUZEFRANE Full Professor, CNAM Paris, France

Examiner Houman YOUNESSI Full Professor, RPI, USA

“The function of good software is to make the complex appear to be simple.”
Grady Booch

Acknowledgement

My thesis is the result of the work which was carried out mostly at the laboratories
CEDRIC (CNAM-ENSIIE) and LISITE-ISEP. It would not have been possible to com-
plete this doctoral thesis without the encouragement, help, and support from many people
around me. I would like to express my profound sense of reverence to all of them, not only
to some people mentioned here.

First of all, I would like to express my sincere thanks and respect to Professor Renaud
Rioboo for his expert and patient guidance during my doctoral research during past three
years. It is my great honor to be mentored by him. As my thesis’s director, I have learnt
extensively from him, including the strong enthusiasm for doing research, idea development,
proposing convincing arguments and problem-solving techniques.

My second and sincere appreciation goes to my supervisors, Professor Matthieu Man-
ceny, Professor Olivier Hermant, and Dr. Renaud Pawlak. I owe them a lot of gratitude for
their valuable comments and suggestions throughout my studies. Their constant guidance
inspired and motivated me, and also made my graduate career done on the right foot. I
want to convey a great thank to them.

I am especially indebted to my dissertation committee members, Professor Pascal Le
Galle, Professor Samia Bouzefrane, Professor Carlos E. Cuesta, and Professor Houman
Younessi, for the time they spent on proofreading of my manuscripts and evaluating my
thesis. Their constructive feedbacks help me to significantly improve my work.

I am fortunate to have been surrounded by a wonderful group of excellent colleagues
in my laboratories, CEDRIC and LISITE. This is my pleasure to have a chance to work
and discuss with them various interesting technical topics. Special thanks go to Professor
Amara Amara, Professor Raja Chiky, Professor Catherine Dubois, Sylvain Lefebre, etc. 1
would like to acknowledge the financial support of the European Union for my doctoral
funding inside the scope of the MCUBE project.

To my dearest friends, many thanks for your helpfulness constant support. My life in
Paris began since 2010. Afterward, [have enjoyed my stay with a lot of good friends.
Besides, I have many other friends in Vietnam, Korea, USA, England, etc. With their
shares, they made me feel happy and avoid feeling homesick.

Last, but by no means least, I take this opportunity to express the profound gratitude
from my deep heart to my family for their endless love and encouragement. It is the truth
that T always have my family to count on when times are tough. They are the most basic
source of inspiration and motivation so that I have enough belief and strength to keep
going and accomplish my work. This thesis is dedicated to them.

Abstract

Context-aware pervasive computing has attracted a significant research interest from
both academy and industry worldwide. It covers a broad range of applications that sup-
port many manufacturing and daily life activities. For instance, industrial robots detect
the changes of the working environment in the factory to adapt their operations to the
requirements. Automotive control systems may observe other vehicles, detect obstacles,
and monitor the essence level or the air quality in order to warn the drivers in case of emer-
gency. Another example is power-aware embedded systems that need to work based on
current power/energy availability since power consumption is an important issue. Those
kinds of systems can also be considered as smart applications. In practice, successful
implementation and deployment of context-aware systems depend on the mechanism to
recognize and react to variabilities happening in the environment. In other words, we need
a well-defined and efficient adaptation approach so that the systems’ behavior can be dy-
namically customized at runtime. Moreover, concurrency should be exploited to improve
the performance and responsiveness of the systems. All those requirements, along with the

need for safety, dependability, and reliability pose a big challenge for developers.

In this thesis, we propose a novel programming language called INI, which supports
both event-based and rule-based programming paradigms and is suitable for building con-
current and context-aware reactive applications. In our language, both events and rules
can be defined explicitly, in a stand-alone way or in combination. Events in INI run in par-
allel (synchronously or asynchronously) in order to handle multiple tasks concurrently and
may trigger the actions defined in rules. Besides, events can interact with the execution
environment to adjust their behavior if necessary and respond to unpredictable changes.

We apply INI in both academic and industrial case studies, namely an object tracking

ABSTRACT

program running on the humanoid robot Nao and a M2M gateway. This demonstrates
the soundness of our approach as well as INI’s capabilities for constructing context-aware
systems. Additionally, since context-aware programs are wide applicable and more com-
plex than regular ones, this poses a higher demand for quality assurance with those kinds
of applications. Therefore, we formalize several aspects of INI, including its type system
and operational semantics. Furthermore, we develop a tool called INICheck, which can
convert a significant subset of INI to Promela, the input modeling language of the model
checker SPIN. Hence, SPIN can be applied to verify properties or constraints that need to
be satisfied by INT programs. Our tool allows the programmers to have insurance on their

code and its behavior.

Keywords: event-based programming, rule-based programming, context-aware perva-
sive computing, smart computing, robot programming, concurrent programming, embed-

ded programming, verification and validation, static analysis, model checking.

ABSTRACT

10

Résumé

Les applications réactives et sensibles au contexte sont des applications intelligentes qui
observent I'environnement (ou contexte) dans lequel elles s’exécutent et qui adaptent, si
nécessaire, leur comportement en cas de changements dans ce contexte, ou afin de satis-
faire les besoins ou d’anticiper les intentions des utilisateurs. La recherche dans ce do-
maine suscite un intérét considérable tant de la part des académiques que des industriels.
Les domaines d’applications sont nombreux: robots industriels qui peuvent détecter les
changements dans l’environnement de travail de l'usine pour adapter leurs opérations ;
systémes de contréle automobiles pour observer d’autres véhicules, détecter les obstacles,
ou surveiller le niveau d’essence ou de la qualité de ’air afin d’avertir les conducteurs en cas
d’urgence ; systémes embarqués monitorant la puissance énergétique disponible et modi-
fiant la consommation en conséquence. Dans la pratique, le succés de la mise en ceuvre
et du déploiement de systémes sensibles au contexte dépend principalement du mécanisme
de reconnaissance et de réaction aux variations de l’environnement. En d’autres termes,
il est nécessaire d’avoir une approche adaptative bien définie et efficace de sorte que le
comportement des systémes peut étre modifié dynamiquement & l’exécution. En outre,
la concurrence devrait étre exploitée pour améliorer les performances et la réactivité des
systémes. Tous ces exigences, ainsi que les besoins en sécurité et fiabilité constituent un

grand défi pour les développeurs.

C’est pour permettre une écriture plus intuitive et directe d’applications réactives et
sensibles au contexte que nous avons développé dans cette thése un nouveau langage ap-
pelé INI. Pour observer les changements dans le contexte et y réagir, INI s’appuie sur
deux paradigmes : la programmation événementielle et la programmation & base de ré-

gles. Evénements et régles peuvent étre définis en INT de maniére indépendante ou en

11

RESUME

combinaison. En outre, les événements peuvent étre reconfigurés dynamiquement au cours
de D'exécution. Un autre avantage d’INI est qu’il supporte la concurrence afin de gérer
plusieurs taches en paralléle et ainsi améliorer les performances et la réactivité des pro-
grammes. Nous avons utilisé INI dans deux études de cas : une passerelle M2M multimédia
et un programme de suivi d’objet pour le robot humanoide Nao. Enfin, afin d’augmenter
la fiabilité des programmes écrits en INI, un systéme de typage fort a été développé, et la
sémantique opérationnelle d’INI a été entiérement définie. Nous avons en outre développé
un outil appelé INICheck qui permet de convertir automatiquement un sous-ensemble d’INI

vers Promela pour permettre un analyse par model checking a I’aide de U'interpréteur SPIN.

Mots-clefs: programmation événementielle, programmation & base de régles, applica-
tions sensibles au contexte, smart computing, programmation de robots, programmation
concurrente, programmation embarquée, vérification et validation, analyse statique, model

checking.

12

Contents

[List of Figures|

M2 MCUBE PIOICH . « o o o oo e,

[1.2.1 Introduction to M2M Technologies|

[1.2.2 Goal of the MCUBE Project|

[1.3 Motivation, Purpose and Proposed Approach|

1.4 Organization of This Dissertation|

2

Background|

P1

Context-Aware Pervasive Computing|

2.1.1 Overviewl

[2.1.2 Categories ot Context Information|

[2.1.3 Categories ot Context-Aware Adaptation|.

[2.1.4 Solutions for Context-Aware Adaptation|

13

11

17

20

21

21

24

24

28

29

30

31

CONTENTS

[2.1.5 Programming Language Support for Context-Aware Adaptation|. . .

2.3 Rule-Based Programming| 0.

231

Overview| .

B3

Programming with INT|o o0 000

B3I

Implementing a Sort Function|.

332

N-queens Problem|o

[3.3.3

An Online Ordering System|

B34

An Automatic Lighting Control System|

[3.3.9

An Intelligent Virtual Personal Assistant|{.

[3.4 Comparison between INI and Other Languages|

[4 Formalizing INI|

4.1

A1l

39

39

40

23

95

29

96

61

63

63

64

64

65

68

75

75

78

81

82

83

85

87

CONTENTS

4.1.2 Types and Type Declarations| 88
4.1.3 OStatementso L 89
4.1.4 Function Declarationsl 0oL 90
EI5 Ruledo 91
T O 91
4.1.7 Maps, Lists, and Sets|o oL 92
4.1.8 Regular Expressions| 94
4.1.9 Binding to Java Objects| L. 95
[4.1.10 Tmports|« . 96

4.2 Operational Semantics| Lo 96
[4.2.1 Introduction to Operational Semantics| 96
[4.2.2 Operational Semantics for INI|. 97

4.3 Event Synchronization|o 113
.4 Summary|l e e e e e 114
[>5 Static Analysis for INI Programs| 117
[o.1 Introduction to Static Analysis| 117
0.2 Type dSystem of INI|. o .0 oo o 118
221 OVerviewl e 118
[9.2.2 Type Inference in INI| 123
5.2.3 Type Checkingin INI} 127

5.3 Model Checking INT Programs| 127
[5.3.1 Introduction to Model Checkingl 127
0.3.2 Model Checking with SPIN| 130
3.3 INICheckl oo 141
3.4 Examples| 148

CONTENTS

6.1 A Multimedia M2M Gateway|

[6.1.1 Developing a Multimedia M2M Gateway Program with INI|

6.1.2 Testing Results and Evaluation|

6.1.3 Model Checking a Prototype of the M2M Gateway|

6.2 Tracking an Object with INI and Nao|

6.2.1 Overview of Robot Programming|

[6.2.3 Implementing an Object Tracking Program|

[6.2.4 Testing Results, Evaluation and Future Work|

[Conclusion and Future Work]

(Bibliography|

ACTronyms

Mndex

16

153

153

153

156

157

160

160

163

164

169

171

199

231

231

235

List of Tables

[2.1 Regular expression operators in EventScript.. 50
[2.2 Summary about the teatures of state-ot-the-art event-based programming |

languages.| L 54
8.1 Some buwilt-in events in INLI L. 68
4.1 Comparison between big-step and small-step operational semantics.|. 97
0.1 Logical operators used in LTL. 138
9.2 Temporal operators used in LTL. 138
[5.3 Comparison between INI and Promela.|. 142
9.4 Mapping statements between INI and Promela| 143

17

LIST OF TABLES

18

List of Figures

1.1 Global architecture for the MCUBE project.|. 24
[L.2 The three waves of connected device development [Erill]| 25
1.3 M2M applications domains.|o 26
[3.1 The ping-pong function state machine.| 66
[3.2 A solution to the 8-queens problems| 79

4.1 The global and function execution contexts and the event generator mecha- |

nismon INLL . o0 o 0o 101
[5.1 The methodology of model checking [Kat99|.| 129
5.2 Overview of SPIN [HoI97[] 131
[5.3 Ovwerall approach tor model checking INI programs| 141
6.1 "Therole of a gateway.| Lo 154
[6.2 General robot programming paradigm [WTI10[.| 162
[6.3 Nao’s features [AIdI3Dbl.| o 163
[6.4 Controlling Nao [AIdI3bl 0. 164
|6.5 Possible relative positions among the robot and the ball.| 165
6.6 The activity diagram for an object-tracking program.|. 166
[7.1 An intelligent automotive system.|. oL 174

19

LIST OF FIGURES

[7.2 Architecture générale du projet MCUBE| 179
7.3 Contexte d’exécution et mécanisme de génération d’événements dans INI| . 185
7.4 Vue d’ensemble du model checking d’un programme INI| 192
[7.5 Comportement de la passerelle multimédia.| 192
(2.6 Positions relatives du robot NAO et de la balle a swivrel 194
[7.7 Diagramme d’activité du programme de suivide balle.| 195
[7.8 Un systeme automobile intelligent.| 197

20

Chapter 1

Introduction

1.1 Research Context

We are living in the era of pervasive computing and the role of software in our full-
of-competition society has become more and more important. Software is often the key
component to help companies and organizations decrease operational costs and increase
profit [LB07], and has become one of the most widely used products in human history
[JBS11]. Without software, professional people cannot succeed if they want to adapt and

thrive in today’s ever-changing global marketplace.

In recent years, in order to satisfy higher demands from customers, software systems
have been required to become more robust, flexible, dependable, customizable, and self-
optimizing. With more complicated and sophisticated requirements, software size and

complexity have increased in a breathtaking manner. For example, the average embedded

device now has one million [lines of code (LOC)| and that number is doubling every two
years. A modern passenger jet, such as a Boeing 777, depends on 4 million [LOC| Older
planes such as a Boeing 747 had only 400,000 [CCO8|. Moreover, developing, main-

taining, and ensuring quality of software systems is more difficult and resource-consuming
because they are operating in an environment that is not well-defined or predictable. As
a result, software errors happen frequently and cause severe damages. For example, due
to a malfunction in the control software, the rocket Ariane 5’s first test flight on June
4, 1996 failed [Gar05]. Annually, quality problems cost software companies up to $312

billion [Busl2|. Moreover, according to [Boe(7], the cost to fix an application defect after

21

1.1. RESEARCH CONTEXT

deployment is more than 150 times the cost to fix it in the development phase. Indeed,
the longer a bug stays in the development process, the more time and effort it requires to
fix. Cumulative defect removal efficiency (combinations of all defect prevention, pretest
removal, testing, post-release removal) in the United States is only about 85%, so all soft-
ware applications are delivered with latent defects [JBS11]. Consequently, software systems

need a new and innovative approach for evolving and running [YW03].

To answer those needs, the area of formal methods, which groups together very het-
erogeneous rigorous approaches to systems and software development [Alm11], has been
introduced. This includes a wide range of mathematically-based subjects such as formal
languages, logic, knowledge representation, program semantics, type systems, formal speci-
fication, formal development, and formal verification and validation. These techniques may
be applied in a systematic way at different points through the development process: re-
quirements specification, model and design, implementation, testing and verifying [Gab06].
Using formal methods gives us some proofs on the quality of software programs. For exam-
ple, when the semantics of a programming language is defined, programmers understand
deeply about the behavior of their code and know exactly “what does the program do”. As
a result, in recent years, researchers try to propose and also extend operational semantics

for classical languages like Java, C+-+, Ada or JavaScript.

From the user’s point of view, quality is fitness for purpose or meeting user’s needs and
high quality means none or few problems of limited impact on customers [Tia05]. Chemu-
turi et al. |[Chel(] expresses the term “quality” in more details: defect-free functioning,
reliability, ease of use, acceptable levels of fault tolerance during use, and safety from injury
to people or property. Quality has four dimensions: specification, design and analysis, de-
velopment, and conformance [Chel0]. Some outstanding benefits of high software quality

are (adapted from [Chel0)]):
e It shortens development schedules.
e It lowers development costs.
e It lowers maintenance costs.

e It reduces warranty costs.

22

1.1. RESEARCH CONTEXT

e It increases customer satisfaction.

To develop high-quality software, programmers need robust and versatile programming
languages. The first high-level ones were developed in the 1950s and since then, research in
programming language has been a very attracting and active area of study in computer sci-
ence. Current trends on this field are trying to find new paradigms meeting the demands of
recent advances in computing and communications developments, such as multicore CPUs
and pervasive computing, and help programmers to deal efficiently with the uncertainty
of the environment. The compilers also need to be well-designed and optimized to obtain
better dependability and performance [GvRBT12|. Moreover, industry leaders complain
that modern software development yields programs that are too big, complex, and difficult
to understand, particularly as customers demand more system functionality and reliability
[Ort12]. As a result, new programming languages should fulfill the requirements in terms
of code simplicity, quality, and maintainability. “The drive to reduce complexity is at the
heart of software development” [McC04]| since software complexity causes the development

and maintenance costs increase significantly.

To solve the above mentioned difficulties, one popular approach is the use of

[Specific Languages (DSLs)| [DSLs| are languages dedicated to specific application domains

or problems [Ghol0l Par09]. In fact, whenever new problems are encountered, it is essential
to demand new programming languages, or at least some conceptual ideas [Jonl0]. By

using notations and constructs designed for a particular domain, we can gain much more

power and expressiveness when compared to|General Purpose Languages (GPLs)| [MHSO05].

In other words, are very good at taking certain narrow parts of programming and
making them easier to understand, and therefore quicker to write, quicker to modify, and

less likely to breed bugs [Fow10].

My research is involved in building and ensuring quality for context-aware reactive ap-
plications, which are widespread with many possible useful applications for both daily life
and manufacturing activities. As we will see later in Chapter [2], there is no well-defined
language constructed so far to support programmers to build those kinds of applications
straightforwardly and intuitively. Therefore, the object of my Ph.D. dissertation is devel-
oping a new dedicated to context-aware computing. The language should come with

23

1.2. MCUBE PROJECT

a strong type system and a well-defined operational semantics. Furthermore, it will be a
benefit if programmers may use other formal analysis techniques during the development

phase to verify and validate wanted properties of written programs.

1.2 MCUBE Project

My work is involved in the MCUBE (Multimedia 4 Machine 2 Machine) project [FED12],
which is funded by a FEDER grant from the French program “Compétitivité régionale et
emploi 2007-2013”, co-funded by European Structural Funds. Principally, this project aims

to provide a genericMachine-to-Machine (M2M)|system (framework and programming lan-

guage) for multimedia applications, e.g. involving sound and image collection and analysis

(see Figure [L.1]).

M2M gateway Internet

-! M2M
operator

M2M platform

Figure 1.1: Global architecture for the MCUBE project.

1.2.1 Introduction to M2M Technologies

1.2.1.1 Overview

[M2M] refers to technologies that allow data communication and interaction between
machine(s), device(s) or sensor(s) over a network without human intervention. The [M2M
connectivity market, a.k.a. the “Internet of Things”, is growing worldwide. With the

reduced cost for accessing wired/wireless networks, many solutions and applications

24

1.2. MCUBE PROJECT

have been developed in many sectors. Figure [I.2] shows the three waves of connected
devices, in which the current trend is making everything connected together. Analysts
predict that there will be 25 billion connected IP devices by 2015, with [M2M]traffic expected
to grow by 258% [Netlla]. Another survey/study estimates that will generate $35
billion in service revenues by 2016 [ResI11b.

Improved Improved value Improved process Improved human
reach — consumer lifestyle efficiency efficiency

Networked everything
Networked society

(@)

Figure 1.2: The three waves of connected device development .

Specifically, M2M devices use sensors to capture and collect useful data (e.g. image,
sound, temperature, air quality, energy consumption, etc.) by schedule, and then trans-
mit them through the network to other devices. Applying M2M solutions brings several

advantages:

e All operations can be done automatically without human supervision and effort.

e Decrease administrative and operational expenses, especially in rural areas thanks to

wireless network.

25

1.2. MCUBE PROJECT

Construc-

tion and
building

Security
and safety

Transpor-

tation

Consumer
and home

Health-

care and

life

science

e

Figure 1.3: M2M applications domains.

Possible M2M applications domains are illustrated in Figure [I.3]and detailed as follows
[Res1Tal, [FT12, KAK™10):

Construction and building: [Heating, Ventilation, and Air Conditioning (HVAC)| sys-

tems, security surveillance, lighting, fire, and safety systems, etc.

Consumer and home: digital set-top boxes, hand-held devices, computers, home

residential utility meters, etc.

Industry: assets monitoring and management, fabrication, packaging, etc.

Healthcare and life science: telemedecine, healthcare monitoring, freezers, etc.

Energy: smart energy monitoring and controlling.

Retail: logistics, vending machines, service equipment (e.g. gas pump, refrigeration,

etc.), screen displays, etc.

26

1.2. MCUBE PROJECT

e Transportation: telematics and mobile communications with vehicles (e.g. trucks,

cars, trains, aircraft, ships, etc.).

e Security/public safety: emergency services, tracking and surveillance (e.g.

circuit Television (CCTV)| cameras).

e IT and network: network monitoring, server monitoring, resource transferring, mul-

timedia communication, internet-based services, etc.

1.2.1.2 Research on M2M Technologies

Many infrastructures frameworks, models, paradigms and services have been
proposed so far to ease the development of systems. For example, Herstad et al.
[HNST09| defined a service platform architecture for connected objects. The architecture
exhibits a number of features to support scalability, rapid development, and technology and
device independence. Cristaldi et al. [CFGO05| presented an interface platform, which is
able to collect and process data from a wide variety of sensors and exchange information
supporting different communication networks and protocols. Matson et al. [MMI11] tried
to create a model and architecture to support networking, communication, interaction,
organization and collective intelligence features between machines, robots, software agents,

and humans.

Currently, in order to build applications, developers use classical programming
languages (e.g. Java, .Net, C/C++, Perl, etc.) or extensions of them. Besides, there have
been several works on constructing event-based programming languages [CK08|, HZJE11],
which also can be applied to handle events happening in [M2M]| systems (see Section ,
page . However, these languages are not fully comfortable for applications since
they lack a well-defined mechanism to support scheduled operations, which are essential in
communication. Another limitation is that events are not constructed and handled

in an intuitive manner, i.e. they are mixed with other syntaxes and notations.

Although has attracted a large amount of attention over the years, developing
M2M] applications is still challenging. Besides, “existing solutions are fragmented and
usually are dedicated to a specific single application” [Netllb|. Currently, industry

27

1.2. MCUBE PROJECT

continues to looks for better and more comprehensive [M2M]| solutions.

To understand more about technologies, especially with challenges, state-of-
the-art achievements and future trends, interested readers may refer to [HBE1LL, [Roelll

BEHI2].

1.2.2 Goal of the MCUBE Project

The goal of our project is to use standard video and sound capture devices for super-
vision applications in domains such as agriculture and photovoltaic energy. For example,
image analysis can be used to follow crop growth in a field, or to check the state of solar
panels for maintenance. Sound analysis may be used to count insects in a field, to detect
intrusions in plants, etc. The project MCUBE will provide a service for finding, deploy-
ing and verifying such algorithms on [M2M] applications such as [M2M]| gateways, which
allow the simultaneous capture and transfer of multimedia and various sensor data. In
order to operate more efficiently, the gateway should capture, handle and process data in

a well-defined and robust way.

In the MCUBE project, my thesis consists of studying the use of advanced and formal
modeling and implementation techniques in order to ensure the quality of applica-
tions. These applications often need to take into account heterogeneous asynchronous data
flows coming from sensor networks to which they are connected. In order to ensure the
quality and the consistent deployment and administration of such applications, it is nec-
essary to ensure a certain degree of formal or semi-formal validation with regard to their
environment. The goal of this thesis will be to invent methods and tools to achieve this
validation (including for example , appropriated environment models, formal valida-
tion techniques, etc.). The approach can be language-based or model-driven, or both. An
important challenge of this thesis is to invent a technique that can be used by industrial
firms at a relatively low cost. For example, platforms that are free to use and develop, static
analysis techniques and partial interpretation are interesting candidates. Nevertheless, our
objective does not only target at M2M applications, but also context-aware applications

in general.

28

1.3. MOTIVATION, PURPOSE AND PROPOSED APPROACH

1.3 Motivation, Purpose and Proposed Approach

Although several programming languages have been proposed to support the building
of context-aware reactive applications, their supports and capabilities are still limited. For
instance, the context-change recognition is not defined in an intuitive way and changes
cannot be handled in parallel efficiently. Moreover, written programs cannot dynamically

modify their behavior at runtime to adapt to new requirements and constraints.

Our goal is to develop a new programming language, which may aid programmers to
write conveniently and robustly those kinds of systems that need to take advantage of
context-awareness and multithreading such as [M2M] systems, monitoring and controlling
systems, robotic systems, autonomous systems, interactive systems, smart embedded sys-
tems/devices, manufacturing systems, etc. The developed language should have clear and
well-defined syntax and semantics. Furthermore, it also should be equipped with a strong
type system through a rigorous type checking mechanism. Ideally, this language also must
be automatically converted to a modeling language so that users may apply model checking
techniques, which become more and more popular in both academic and industry, to verify

and validate desired properties.

We develop a new programming language called INI that combines both event-based
and rule-based styles. These styles have been proven to be appropriate to write many
kinds of applications, especially context-aware adaptive and reactive systems. Nevertheless,
there are several limitations with existing languages such as the lack of well-defined context
capturing and handling mechanisms or support for concurrency and dynamic adaptation

when programs are running.

In our language, programmers may define events and rules independently or in combi-
nation. Events in INT run in parallel either asynchronously or synchronously. Each event
has input parameters to tune the execution and output parameters that can be understood
as return results. In order to facilitate the developments, we provide several built-in events.
Moreover, we specify an open template so that programmers can write their own events
in other languages such as Java and C/C++, and then integrate them to INI programs.

Last but not least, events may be stopped or reconfigured (i.e. changing their behavior) at

29

1.4. ORGANIZATION OF THIS DISSERTATION

runtime.

INT also comes with a flexible but strong type system so that any type conflict will be
prohibited before running. We apply INI in two case studies: a gateway tested on
a real embedded device and an object tracking program running on the humanoid robot
Nao, which demonstrate INI’s capabilities. Furthermore, in order to help programmers
to verify and validate their programs more straightforwardly, we build a tool to convert a
significant subset of our language to Promela, the modeling language of the model checker
SPIN. Then SPIN can be used to check important constraints and properties that need to

be satisfied. This makes INI programs more reliable.

1.4 Organization of This Dissertation

The content of this thesis is organized as follows. In Chapter [2, we introduce the
state-of-the-art in the field of research on context-aware pervasive computing, along with
event-based and rule-based programming styles. Next, in Chapter [3] an overview of INI
with major features and several examples is presented. Later, we give a formalization
approach to define an operational semantics of INI in Chapter [d] The type system of INI
and our supported tool INICheck for model checking INI programs are discussed in Chapter
Bl Then two case studies of applying INT are shown in Chapter [0} Chapter [7] concludes my

thesis.

30

Chapter 2

Background

The purpose of this chapter is to provide a background knowledge on context-aware
pervasive computing (Section [2.1)), event-based programming (Section [2.2), and rule-based
programming (Section [2.3)). For those topics, we discuss recent trends, ideas and supports,

along with their advantages and disadvantages.

2.1 Context-Aware Pervasive Computing

2.1.1 Overview

Context and Context-Awareness The notion of context has been observed in numer-
ous areas that cover all operations and activities of humans and systems. The Cambridge
Advanced Learner Dictionary defines context as “the situation within which something
exists or happens, and that can help explain it” [Cam08|. According to the Concise Ox-
ford English Dictionary, context is “the circumstances that form the setting for an event,
statement, or idea, and in terms of which it can be fully understood” [SS06]. Over the
past years, many researches in computer science also provided a vast and diverse number
of definitions. For example, context is regarded as “any information that can be used to
characterize the situation of an entity”, in which an entity is “a person, place, or object
that is considered relevant to the interaction between a user and an application, including
the user and applications themselves” [DASOI]. In other words, context can include infor-
mation about inside states of the system or many different kinds of sensed data related to

the interaction between humans, applications and the surrounding environment: location,

31

2.1. CONTEXT-AWARE PERVASIVE COMPUTING

identity of user, activity, time, motion, light level, sound level, observed phenomena, etc
[Challl DASOI]. These information are not known in advance when our program is writ-
ten. As a result, context-awareness is really useful and necessary in practice. According to

[Tuu00], there exist two categories of context-awareness:

e Self-contained context-awareness: no need of outside supports to achieve context-
awareness (i.e. there is a complete internal mechanism for recognizing and handling

contexts).

e Infrastructure-based context-awareness: outside supports (e.g. from other autonomous

systems) are needed to achieve context-awareness.

Actually, context-awareness is a central feature of ubiquitous systems [Kru09, [Sat09], and

is considered as one type of intelligent computing [KDO06, [Curll].

Context-Aware Pervasive Computing Context-aware computing was first discussed
by Schilit et al. [SAW94]. Essentially, it is a study of building intelligent applications
that can monitor the running context by registering event handlers. Dey [Dey00), Dey01]

categorized two types of context-aware computing:

e Using context: just exploiting context information.

e Adapting to context: this is a higher level since our systems not only use the context
but also adapt to it. In case of changes in the context (i.e. some events occur), systems
may (automatically) adapt their behavior if needed and react accordingly in order to

satisfy the user’s current needs or anticipate the user’s intentions [HP85), IDSFv(9].

The ultimate goal of context-aware computing is reducing the burden of excessive user
involvement and providing proactive intelligent assistance [Lok06]. Context-aware appli-
cations look at what activities are occurring with entities and use this information to
determine why a situation is happening [Kru09]. Such aware systems have become one
of the most exciting concepts in ubiquitous (pervasive) computing, with a wide range

of application areas such as autonomous systems, monitoring and controlling programs,

32

2.1. CONTEXT-AWARE PERVASIVE COMPUTING

robots, mobile applications, location-based services, health care systems, manufacturing
systems, interactive programs, etc [Lok06, Dar09, MdRMO09]. For instance, in medical cen-
ters, patient data such as blood pressure, heart rate, body temperature, and respiratory
rate should be accumulated and monitored periodically so that when abnormal symptoms
occur, the doctors are notified. In a smart home, the hot water level, quality of air, humid-
ity level or temperature can be monitored and controlled to provide good living conditions
to the owner. Another example is smart robots, which must recognize changes in the en-
vironment or user’s activities in order to adopt a suitable behavior. In those cases, taking
advantage of context-awareness helps us improve the “cleverness” and responsiveness of
our programs. Context-awareness is a primitive concept that advocates for a programming

language supporting those features natively.

Since then, context-aware systems have received a worldwide attention from both
academy and industry [SGP12|. There have been numerous attempts to support and
upgrade context-aware computing in order to satisfy requests from customers. However,
developing context-aware reactive applications is still difficult and challenging [ST09]. The
main reason is that we need a well-defined mechanism to handle efficiently widely varied

sources of context information [CBCT04].

Besides, context-aware systems should be able to handle multiple work in parallel due
to the inherent asynchronous and overlapping nature of the environment context. With
context-aware systems, several events can occur simultaneously, and thus this requires
parallelism for the system to react in a sound and efficient way. In computer science,
concurrent programming allows one program to execute multiple tasks simultaneously,
by dividing it into multiple threads and taking advantage of parallelism. This kind of
processing has been shown to be a powerful approach to speed up the execution, solve larger
problems, and improve the performance and responsiveness of software systems. With the
spread of multicore and multiprocessor technologies, concurrent programming is going to
be mainstream as more programmers are confronted with threading [San11), Bre09), [HS0S].
However, creating multithreaded applications is hard since they may contain bugs that are
notoriously difficult to find and fix [CT05, ISBST11|. As a result, equipping context-ware

systems with multithreading is a non-trivial task.

33

2.1.

CONTEXT-AWARE PERVASIVE COMPUTING

To understand more about context-aware pervasive computing, interested readers may

refer to [Kru09, Lok06), Dar09].

2.1.2 Categories of Context Information

In general, a context includes all information and data that may be collected when our

program is running. Several authors tried to classify those information so that managing

and handling context will be easier.

For instance, Chen et al. [CK00] distinguished four context categories:

Computing context: system state, network connectivity, bandwidth, power level, etc.
User context: user’s profiles, user’s location, user’s mobility, user’s behavior, etc.
Physical context: lighting, temperature, humidity, etc.

Time context: day, week, year, season, etc.

Similarly, Raz et al. [RJSF06] divided context information into four categories:

User context: user information and profiles.
Location context: the information related to the location of the user.

Application context: this context is related to the applications that the end user is

using.

Network context: this is the relevant information about the networks that are avail-

able in the user’s location.

In brief, we can see that there are two main kinds of context:

Internal context: all information related to the data and state inside the system
itself such as the power level, the system status (e.g. stable or unstable), resource

consuming, variables’ values, memory state, etc.

External context: all information related to the surrounding environment for the

system like the user context, the physical context, the time context, etc.

34

2.1. CONTEXT-AWARE PERVASIVE COMPUTING

Ideally, the context-aware mechanism should be able to recognize and capture as much
context information as possible so that the system may deal efficiently and flexibly with
various situations. Our approach will consider all those kinds of context information as

shown later.

2.1.3 Categories of Context-Aware Adaptation

Context-aware adaptation is naturally an event-driven behavior, which means that
when a change in the context is detected, actions or reconfigurations of the system are
triggered [Challl]. Adaptation can also be mapped to evolution |[ST09]. Buckley et al.
IBMZT05| provided a taxonomy of evolution based on the object of change (where), system

properties (what), temporal properties (when), and change support (how).

In order to explain what systems may adapt to, Miraoui et al. [MTFA1L] mentioned

four main categories of adaptation:

Content adaptation: for instance, a smart TV may show favorite programs/channels

for different users.

e Behavior adaptation: for instance, a system may change its behavior to save energy

when low-energy situation is encountered.

e Interface adaptation: for instance, a website may change its theme in different coun-

tries.

e Software component adaptation: for instance, one software component changes its

settings to work well with another one.

2.1.4 Solutions for Context-Aware Adaptation

Several kinds of adaptation solutions have been defined so far. In the following parts,

we will detail some recent approaches.

35

2.1. CONTEXT-AWARE PERVASIVE COMPUTING

2.1.4.1 Architecture-Based Adaptation

Choi et al. [ChoO8| presented a software architecture, named WCAM F_:I, which lessens
the complexity of developing context-aware systems by decoupling concerns. The Watcher
perceives the outside environment, and the Controller manages the collaboration between
the Watcher and the Model. The Model collects contextual information, interprets the
information, and then generates the system contexts. The role of the Action is managing
services that are related to contexts. Lopes et al. [LF05]| proposed a formal approach for
designing context-aware systems. This approach is based on the establishment of a set of
primitives through which context notion can be modeled as a first-class entity. Further-
more, context-awareness is addressed explicitly as an additional dimension of architectural
elements. Hussein et al. [HHCY12| introduced a layered architecture that supports devel-
oping context-aware and self-adaptive systems. Their approach aims not only to adapt to
the system but also to model, process, and manage the context information. This layered
architecture, the system and its context components, the system and its context represen-
tation and the change management, divide the system in an appropriate manner so that all
the context-aware system’s requirements can be dealt with different layers. Vales-Alonso
et al. [VAELMnG™08| presented UCare EI, a context-aware and flexible architecture that
provides disabled users with abundant environment adaptation services. The authors have
considered bidirectional adaptability, which means adapting the system interface to users’

capabilities and also the system’s features to users’ needs.

A more comprehensive literature review for architecture-based adaptation can be found

in [CALGT09).

2.1.4.2 Model-Driven Adaptation

Chen et al. [CTPT10] described a model-based engineering approach to support the
development of self-configuring embedded systems. In their work, some popular operations
such as upgrades, attachment of devices, relocation of applications and adjustment of

performance parameters can be carried out during runtime for various kinds of purposes

'WCAM stands for “Watcher, Controller, Action, and Model”.
2UCare stands for “Urban Care”.

36

2.1. CONTEXT-AWARE PERVASIVE COMPUTING

such as information/function integration, maintenance, performance, resource efficiency,
and robustness. Hussein et al. [HHCII] introduced a methodology to model and realize
context-aware adaptive software systems. The proposed approach explicitly separates the
context model and the system model. However, their relationships, changes, and change
impacts across the system and its contexts can be conveniently captured and managed.
Magableh et al. [MBO09| presented a model to dynamically compose adaptable context-
dependent applications using context conditions. This component-based approach allows
the modification of the application architecture by subdividing components into subsystems

of static and dynamic elements.

Interested readers may find a more comprehensive literature review for model-driven

adaptation in [NDRO9.

2.1.4.3 Automated Learning-Based Adaptation

Cioara et al. |CAST10| addressed the context adaptation problem by constructing
a self-healing model. In this model, they applied a policy-driven reinforcement learning
mechanism to take runtime decisions. The self-healing property is enforced by monitoring
the system’s execution environment for evaluating the degree of adequacy to the context
policies in the current situation. Then the healing actions can be selected for execution.
Tsang et al. [TCO7| devised a personalized, dynamic, and runtime approach to adaptation.
Their approach provides several techniques for selecting the relevant information based
on the users’ behavior history. Thereafter, this information may be used for mining usage
patterns, and also for generating, prioritizing, and selecting adaptation behavior. Mohomed
et al. [MCCDLO06| showed how to exploit user interaction to learn how to adapt contents
based on the contexts. They introduced FCS E], an automatic technique that leverages user
interactions to specify the context that has the most impact on adaptation requirements.
Besides, context-awareness was added in order to make adaptation predictions for a user

thanks to the history of the group of users that share the context identified by FCS.

A more comprehensive literature review for automated learning-based adaptation can

be found in [Chil0].

3FCS stands for “Feedback-driven Context Selection”.

37

2.1. CONTEXT-AWARE PERVASIVE COMPUTING

2.1.4.4 Policy-Based Adaptation

Cioara et al. [CASDQ9| proposed a generic policy-based self-management model which
can be used to automatically detect and repair problems happening during the context
adaptation process. In their work, they defined a generic context policy representation
model and its associated reasoning language conversion model for runtime evaluation in
order to efficiently capture and evaluate the dynamic rules that govern the adaptation pro-
cesses. Ouyang et al. [OxSDT09| introduced a policy-based framework for self-adaptive

schemes in pervasive computing. To support the design of policy (the general idea is based

on the [Separation of Concerns (SoC)| principle), the authors constructed their own expres-

sive and extensible policy ontology and policy language. Zhu et al. [ZKSL09| introduced
the design, implementation and evaluation of an efficient policy system called Finger. Fin-
ger allows policy interpretation and enforcement on distributed sensors to support sensor
level adaptation and fine-grained access control. Moreover, dynamic management of poli-
cies, minimization of resources usage, high responsiveness and node autonomy are also
featured. The authors tried to integrate their system as a component of TinyOS, a sensor

operating system [All12].

2.1.4.5 Static Adaptation vs. Dynamic Adaptation

Generally, static adaptation relates to the redesign, reconfiguration of application ar-
chitectures and components, and redeployment when functional and non-functional re-
quirements from customers change, while dynamic adaptation happens at runtime due to
changing resources (e.g. memory, energy, network bandwidth, external devices, etc.) and
context conditions [GBET09|. For instance, moving a system from a traditional desktop
environment to a cloud or refactoring legacy code is viewed as static adaptation. One
example for dynamic adaptation is that a laptop or a mobile automatically reduces the
brightness when the power level is low to save energy. Since there are many changes
which may happen when our program is running and that they cannot be well-predicted
at the design time, dynamic adaptation has attracted more attention from researchers
[RC02, BCCT07, RS08, [FC09]. To understand more about static/dynamic adaptation,
readers may refer to [CMP04], [CMP06], ST09, LK11].

38

2.2. EVENT-BASED PROGRAMMING

2.1.5 Programming Language Support for Context-Aware Adaptation

General purpose languages like Java, C/C++, .Net or Python can be used for program-
ming context-aware reactive applications [Bar05, DWO8|, [DL05, Rak03| Nat12l [PBHS03),
CCPO0§|. Since the need of developing context-aware applications is increasing, several
authors try to extend classical languages so that they support building context-aware pro-
grams more easily such as ContextJ for Java [AHHMI11], AwareC# for C# [RS06], Con-
textR for Ruby [Sch08], ContextPy for Python [HPSA10], etc. Although those languages or
extensions can be applied for this purpose, they are still not convenient for developers since
new notations or concepts are mixed with old ones. In other words, the methodology is
not so intuitive and straightforward. Consequently, writing and maintaining context-aware

applications still take a lot of time and efforts.

Besides, using event-based and rule-based programming languages is also suitable for
developing context-aware adaptive and reactive systems [AHM™ 10, [KTT0, [Kru(9]. There-
fore, in the next sections, we will present state-of-the-art in the field of event-based and
rule-based programming paradigms with several notable candidates. To learn more about

programming language support for context-aware adaptation, interested readers may refer

to [AHHT09, SGP12].

2.2 Event-Based Programming

2.2.1 Overview

Event-based programming is a programming style where the flow of execution is deter-
mined by events. Events are handled by handlers or callbacks. An event callback is a func-

tion that is invoked when an event (i.e. something significant) happens [DZK™02, [Teil2].

Events are typically used to monitor changes happening in the environment or for time
scheduling. In other words, any form of monitoring can be considered to be compatible with

event-based style [MEP06]. Generally, three types of events are distinguished [MFP06]:

e Timing events to express the passing of time.
e Arbitrary detectable state changes in a system, e.g. the value of a variable changes

39

2.2. EVENT-BASED PROGRAMMING

during execution.

e Physical events such as the appearance of a person detected by cameras.

For example, programmers may define an event to monitor the power level of their system
or to observe users’ behavior in order to react. Other examples are using events for:
stock monitoring and analysis, location monitoring, weather forecasting services, health
care monitoring, security surveillance, server monitoring, network intrusion detection, etc.
Programmers can also specify an event to schedule a desired action at a specific time. For

instance, a program needs to send a report to the users on every Tuesday.

In recent years, event-driven programming has become pervasive as an efficient method
for interacting and collaborating with the environment in ubiquitous computing. Us-
ing event-driven style requires less effort [BD04] and may lead to more robust software
IDZK™02]. This style is strong and convenient to write many kinds of applications: M2M
applications, sensor applications, mobile applications, simulation systems, embedded sys-
tems, robotics, context-aware reactive applications, self-adaptive systems, autonomous sys-
tems, etc. As a result, software engineering research has been motivated to pay more
attention to this programming paradigm. To understand more about event-based style,
especially its advantages and applications, interested readers may refer to [MEP06, [Fai06,
Obe05), [ENT0, SHX11), [HB10L [Fer06]. In the following sections, we introduce several event-
based programming languages/extensions that were developed recently. Due to the lack of
space, we choose four of them as a representative set: EventJava and TaskJava are exten-
sions of Java to support event-driven style while EventScript and UrbiScript are stand-alone

event-driven languages.

2.2.2 Event-Based Programming Languages

2.2.2.1 EventJava

Overview Eugster et al. [EJ09, JEQ9] introduced EventJava mainly as an extension of
Java for event correlation. They saw that in some cases, a single and simple event can be
correlated with other events, resulting in complex events. Some examples are listed below

(adapted from [E.J09)):

40

2.2. EVENT-BASED PROGRAMMING

Average of temperature readings from some sensors inside a boiler.

Average of temperature readings from a sensor within a five minute interval.

The price of a stock decreases for six successive stock quotes immediately after a

negative analyst report.

Release of a new TV followed by seven positive reviews in two months.

Event correlation is essential in distributed event-based systems in which software compo-
nents communicate by transmitting and receiving event notifications. By using EventJava,
programmers can customize the way that events are ordered, propagated and correlated

with other events.

In EventJava, an application event type is implicitly defined by declaring an event
method, which can be regarded as a special kind of asynchronous method. There are two

types of event attributes:

e Explicit attributes: These attributes represent application-specific data (e.g. value
of a sensor, value of a stock quote, etc.), which can be considered as arguments in

regular methods.

e Implicit attributes: These attributes refer to contextual information (e.g. physical

or logical time, geographical or logical coordinates).

An example to show features of EventJava is shown in Listing [2.2.1] (adapted from [EJ09]).
Assume that a travel agency wants to notify its customers of severe weather conditions in
cities that are part of their flight itineraries. The severeWeather event is defined inside
the Alerts class. This event has three attributes: city, description and source. The
keyword when is used to express a predicate that needs to be satisfied before the reaction
defined in the method body can be called. In other words, only those events (event method
invocations) which match the predicate are consumed by the reaction. In this example,
the travel agency only trusts alerts originating from the website weather.com. When this
constraint is fulfilled, all instances of the Alerts class react to the simple severeWeather
event. In this case, flight passengers’ email addresses will be retrieved from a database and

then, an email is sent to them.

41

2.2. EVENT-BASED PROGRAMMING

Listing 2.2.1 An EventJava example in which a travel agency notifies its customers about

a severe weather condition.

1class Alerts A

2 ItineraryDatabase db;

3 event severeWeather (String city, String description,
4 String source)

5 when (source == "weather.com") {

6 Iterator<Itinerary> it = db.

7 getItinerariesByCity (city).iterator ();

8 while (it .hasNext ()} {

9 Messenger.sendEmail (it.getAssociatedEmail ());
10 }

11 }

12 }

A severeWeather event can be notified to the instances of the class Alerts by applying
one of the two following notification mechanisms, which correspond to the dynamic/static

distinction:

e Unicast. When an event method is invoked on an object, the event is notified to
that object. For example, a severeWeather event can be notified to an instance a of

Alerts as follows:

a.severeWeather("Paris", "Mainly cloudy with a few

showers", "weather.com");

e Broadcast. The same severeWeather event can be notified to all instances of

Alerts as shown below:

Alerts.severeWeather ("Paris", "Mainly cloudy with a few

showers", "weather.com");

Complex Events and Correlation Patterns Besides simple events, EventJava allows
programmers to define complex events by using correlation patterns, which are comma-

separated lists of event method headers, e.g. e1(), e2(), ..., en(). For example, let us consider

42

2.2. EVENT-BASED PROGRAMMING

a trading algorithm comparing earningsReport and analystDowngrade events (adapted
from [EJ09]). In case that a stock has a negative earning report(i.e. the actual earnings
per share, epsAct, is less than the estimated epsEst) and then an analyst downgrades to

“Hold”, the algorithm recommends to sell the stock (see Listing [2.2.2]).

Listing 2.2.2 Stock monitoring with EventJava.

1class StockMonitor {

2 Portfolio p;

3 event earningsReport(String firm, float epsEst,
4 float epsAct, String period),

5 analystDowngrade (String firml, String analyst,
6 String from, String to)

7 when (earningsReport < analystDowngrade && firm == firml &&
8 epsAct < epsEst && to == "Hold") {

9 p.RecommendSell (firm) ;

10 }

11}

In the example above, four predicates need to be fulfilled. The first constraint earnings-
Report < analystDowngrade is used to indicate that an event earningsReport should
happen before an analystDowngrade event. It is a shorthand notation for earningsReport.
time < analystDowngrade.time. In EventJava, each event has a special time attribute,
which is a default implicit event attribute representing time stamps for events. Implicit
event attributes are fields defined globally by the Context class, of which an instance is
passed along with every event (a simple EventJava context is shown in Listing . The
other three constraints express the conditions related to a trading situation as we explained

earlier.

Listing 2.2.3 A simple EventJava context.

1public class Context implements

2 Comparable<Context>, Serializable A

3 public long time;

4 //More fields

5 public Context() { time = System.currentTimeMillis(); }
6 public Context(long time) { this.time = time; }

7 public int compare(Context other) {

8 if (timestamp == other.timestamp) return O0;

9

10 }

11

43

2.2. EVENT-BASED PROGRAMMING

12 }

Two other examples illustrating EventJava (adapted from [JEQ9]) are shown below: a

bank account monitor, with correlation patterns monitoring for suspicious overseas trans-

actions (Listing [2.2.4]) and a farewatcher (Listing [2.2.5)).

Listing 2.2.4 Bank account monitoring with EventJava.

1class AccountMonitor implements ... {

2 private long debitCardNumber ;

3 private long account;

4 private String name;

5 private long SSN;

6 event debitCardInactive(int numdays),

7 overseasCardTransaction(float amount)

8 when (debitCardInactive < overseasCardTransaction &&

9 amount > 100 && numdays > 60) {

10 alertCustomer (cardnumber) ;

11 }

12 event overseasMoneyReceipt (long id, long accountNum,

13 float amount, String country),

14 overseasMoneyTransfer (long idl, long accountNuml,

15 float amountl, String countryl)

16 when (amount == amountl && amount > 10000 &&

17 (overseasMoneyTransfer.time - overseasMoneyReceipt.time)
18 <= 60x60 *1000) {

19 reportToIRS (amount, country, name, SSN, "Incoming");
20 //Transfers > 10,000 are reported to the IRS

21 reportToIRS (amountl, countryl, name, SSN, "Outgoing");
22 reportMoneyRouting (account , name, SSN);

23 }

24

25 }

Listing 2.2.5 A farewatcher written in EventJava.

1class FareWatcher implements ... {
private String Address;

™)

3 event airFareDrop(String airline, String src, String dest,
4 float fare),

5 hotelRateDrop (String hotel, String city, String address,

6 float rate)

7 when (dest == city && dest == "Miami" && src == "Chicago"

8 && fare <= 250 && rate <= 100) {

9 sendEmail (Address, new Deal (dest, float fare,

10 float rate));

11 }

44

12
13
14
15
16
17
18
19
20
21

2.2. EVENT-BASED PROGRAMMING

event weekendWeatherForecast (String city, String summary,
String detailed),
lastMinuteAllInclusiveDeal (String cityl, float price)
when (city == cityl && city == "Miami" && price <= 700 &&
summary == "warm") {
sendEmail (Address,
new LastMinuteDeal (city, detailed, price));

//0ther patterns as requested by customer

3

2.2.2.2 TaskJava

Overview Fischer et al. [FMMOT, [JFMO6] proposed Tasks as a new programming model
for organizing event-driven programs. Tasks is a variant of cooperative multithreading and
allows each logical control flow to be modularized in a traditional manner. TaskJava, an
extension of Java, is developed to instantiate Tasks. A task, like a thread, encapsulates
an independent work-unit in a method called run. As a result, the logical control flow
of each work-unit is preserved. Moreover, at the same time, tasks can be automatically
implemented by the compiler in an event-driven style by using non-blocking
libraries. Programmers needs to use a special wait primitive provided by the
language instead of registering a callback with each call. A wait causes the current

task to block until one of a specified set of events occurs. The compilation strategy used

with TaskJava is a restricted form of [Continuation Passing Style (CPS)| There are some

advantages of TaskJava compared to existing cooperative multitasking systems:

e TaskJava is scheduler-independent. TaskJava programs can be “linked” to any sched-

uler that provides the semantics of the wait primitive.

e TaskJava properly handles the interactions of wait with Java language features in-

cluding raised exceptions and method overriding.

Programming with TaskJava This part presents a simple Web server in TaskJava

(adapted from [JFMO0G6]). The server processes simple one-line [Hypertext Transfer Protocoll
(HT'TP)| requests for files, and then the contents are sent to the client. We assume that

45

2.2. EVENT-BASED PROGRAMMING

each connection between the client and the server, which can be considered as a channel,

supports the following kinds of event:

e READ RDY EVT: This event signals that there is incoming data available to be

read from the channel.

e WRITE RDY EVT: This event signals that the associated channel is ready for

writing.

e ACPT RDY EVT: This event signals that an accept request is available on the

associated channel.

e ERR_EVT: This event signals that an error has occurred on the channel.

The event objects are instances of an Event class that is defined as follows (see Listing

2.2.0):

Listing 2.2.6 The Event class in TaskJava.

1public class Event {

//Enumeration of event identifiers

//provided by the scheduler

public static final int READ_RDY_EVT = 1;
public static final int WRITE_RDY_EVT = 2;
public static final int ACPT_RDY_EVT = 3;
public static final int ERR_EVT = 4;

//type () returns which kind of event occurred
public int type(O) { ... }

//getError () returns the event’s error, or null <f no
//error occurred

public IOException getError () { ... }

© oo ~ o o - W [N

= e
(SN -}

13}

Listing shows a task-based nonblocking library and Listing shows an
implementation of the Web server in TaskJava (adapted from [JEMO6]).

Listing 2.2.7 A task-based nonblocking 1/0 library.

1public class TaskIO {

2 public static class Reader {
3 500
4 public async String readlLine() throws IOException {

46

2.2. EVENT-BASED PROGRAMMING

5 String line;

6 //Keep reading until we finish a line

7 do |

8 Event event = wait(ch, Event.READ_RDY_EVT,
9 Event .ERR_EVT) ;

10 if (event.type() == Event.READ_RDY_EVT) {
11 ch.read (cbuf);

12 line = scanChars ();

13 }

14 else {

15 assert event.type() == Event.ERR_EVT;
16 throw event.getError ();

17 }

18 } while (line==null);

19 return line;

20 }

21 public static async void write(CharChannel ch,

22 CharBuffer data) throws IOException {

23 while (data.hasRemaining()) A

24 Event event = wait(ch, Event.WRITE_RDY_EVT,
25 Event .ERR_EVT) ;

26 if (event.type() == Event.READ_RDY_EVT)
27 ch.write(data);

28 else {

29 assert event.type() == Event.ERR_EVT;
30 throw event.getError ();

31 }

32 }

33 }

34 public static CharChannel accept(CharChannel ch)
35 throws IOException { ... }

36

37 }

Listing 2.2.8 A Web server written in TaskJava.

1public class TaskWebServer {

2 public static start(CharChannel acceptCh) {

3 spawn AcceptTask (acceptCh);

4 }

5 public static class AcceptTask implements Task {
6 CharChannel acceptCh;

7 AcceptTask (CharChannel acceptCh) {

8 this.acceptCh = acceptCh;

9 }

10 public void run() {

11 try {

12 while (true) {

13 CharChannel ch = TaskIO.accept(acceptCh);
14 spawn RequestTask (ch);

47

2.2. EVENT-BASED PROGRAMMING
15 }
16 } catch (IOException e) {
17 print error message to log
18 acceptCh.close();
19 }
20 }
21 }
22 public class RequestTask implements Task {
23 private CharChannel ch;
24 public RequestTask (CharChannel ch) { this.ch = ch; }
25 public void run() {
26 TaskI0.Reader rdr = new TaskIO.Reader (ch);
27 try {
28 while (true) { //Main request loop
29 String filename
30 = parseRequest (rdr.readlLine ());
31 charBuffer sendData = readFile(filename) ;
32 TaskIO.write(ch, sendData);
33 }
34 } catch (IOException e) {
35
36 }
37 }
38 }
39 }

2.2.2.3 EventScript

Overview EventScript [Coh07, [CKO08, [Coh08] is an event-processing language based on
using regular expressions with actions. The underlying structure of an EventScript program
is a regular expression for the sequence of events expected to be received. When a sequence
of events (input events) matches a particular pattern, the program emits corresponding
output events. To illustrate the basic structure of EventScript, let us consider a simple
example that averages readings from three sensors S1, S2, and S3 as shown in Listing
(adapted from [CKO08|). Whenever a new reading is received from any one of these

sensors, the event-processing agent emits an event containing the average value of three

readings.

Listing 2.2.9 A simple EventScript program.

1in double S1Input, double S2Input, double S3Input
2out double Average { v1=0.0; v2=0.0; v3=0.0;} (

3

((S1Input(vl)) | (S2Input(v2)) | (S3Input(v3)))

48

4
5

2.2. EVENT-BASED PROGRAMMING

{ !'>Average ((v1+v2+v3)/3.0);}
)*

In EventScript, there are two types of events. The first one is input events and the
other one is output events. In the example above, S1Input, S2Input and S3Input are input
events while Average is an output event. Each of these events carries a value with data
type double. All actions are defined within curly braces. Each action can be an assignment
or an emission. For example, the assignment actions at line 2 initializes the variables v1,
v2, and v3. These variables are used to keep values read/received from three sensors (not
shown here). The emit action (denoted by the symbol !>) at line 4 is applied each time
a new data is acquired. Two regular expressions are applied in this simple example. The
larger one is of the form (...)* (line 5), which indicates repeated instances of the regular
subexpression inside the parentheses. Using regular expressions in EventScript will be

detailed below.

Event Markers and Event Classification In EventScript, the event marker contains
the event name and its associated variables. For example, the event marker S1Input(v1)
is a placeholder for an occurrence of an event named S1Input. Besides, there is a wildcard

event marker (.) that matches any event.

Additionally to the input events declared by event declarations, EventScript comes with
two built-in events markers related to time. The event marker elapse[x TimeUnit] (t)
is matched when x time unit(s) have passed since the previous event. Time unit can be
in days, hours, minutes, seconds, milliseconds, or microseconds. The time at which the
match occurs is stored in the variable t. The event marker arrive [time] is matched at a

specific time and date.

Regular Expression Operators Regular expressions can be combined to make a larger
one by using regular operators such as *, | and sequences, as well as parentheses. Table
(adapted from [CKO08]) gives the list of all regular expression operators which can be used

in EventScript.

49

2.2. EVENT-BASED PROGRAMMING

Regular expression | Event sequence matched

event marker a single named input event, or the arrival of a
particular time

R* zero or more consecutive subsequences, each
matching R

R+ one or more consecutive subsequences, each
matching R

R? either the empty sequence or any sequence
matching R

Ry|...|R,, any sequence matching at least one of
Ry,.... Ry

Ri,....R, n consecutive subsequences matching
Ry, ..., R, in that order

Ry & Ry any sequence matching both R; and Rs

Ri — Ry any sequence matching R; but not matching Ro

R{i} ¢ consecutive subsequences, each matching R

R{i,j} from ¢ to j consecutive subsequences, each
matching R

R{i, } ¢ or more consecutive subsequences, each
matching R

Table 2.1: Regular expression operators in EventScript.

2.2.2.4 Urbiscript

Overview UrbiScript [Bai05, BDHN10,/Gos13] is a scripting language primarily designed
for robotics. It is a dynamic, prototype-based, object-oriented scripting language. More-
over, it supports and emphasizes parallel and event-based programming, which are popular

paradigms in robotics, by providing core primitives and language constructs [Gosl11].

Programming with UrbiScript UrbiScript enables programmers to define events that
can be caught with the at and whenever constructs. Programmers can create events by

instantiating the Event prototype. Listing [2.2.10] displays a sample UrbiScript session

illustrating events (adpated from [Gos13]):

Listing 2.2.10 A simple event scenario in Urbiscript.

1var myEvent = Event.new;

2 [00000000] Event_0xb5579008

sat (myEvent?)
4echo ("ping");

50

2.2. EVENT-BASED PROGRAMMING

smyEvent!;

6 [00000000] *** ping

7//Events work well with parallelism
gmyEvent! & myEvent!;

9 [00000000] *x** ping

10 [00000000] *** ping

In this example, we first define an event called myEvent at line 1. Then we define the
corresponding action when we receive it (lines 3-4). For testing, we try to emit myEvent
at line 5 (the exclamation mark ! denotes an event emission). The result can be seen at

line 6, which is a simple print of the string ping. If we emit myEvent two times (line 8),

the action also will happen twice (lines 9-10).

Another example is shown in Listing [2.2.11] (adpated from [Gos13]).

Listing 2.2.11 at and whenever constructs in Urbiscript.

1var myEvent = Event.new;
2 [00000000] Event_0xb558a588
swhenever (myEvent?)

aq

5 echo("ping (whenever)") |
6 sleep (200ms)

7}

sat (myEvent?)

9 {

10 echo("ping, (at)") |

11 sleep (200ms)

12}

13//Emit myEvent for 0.3 second.
i4myEvent! ~ 300ms;

15 [00000000] #*** ping (whenever)
16 [00000100] #*** ping (whenever)
17 [00000000] *%% ping (at)

Both at and whenever have the same behavior on punctual events. However, if a
program emit an event for a given duration, whenever will keep triggering for this duration
in contrast to at. In other words, at seems like if and whenever seems like a while loop.
In UrbiScript, events behave very much like “channels”: listeners use at or whenever, and
producers use !. The messages can include a payload, i.e. something sent in the “message”.
The event then behaves very much like the identifier of the message type. To send/catch the
payload, programmers just pass arguments to ! and ? as shown in Listing (adpated

51

2.2. EVENT-BASED PROGRAMMING

from [Gosl13]).

Listing 2.2.12 Emitting and receiving events in Urbiscript.

1var event = Event.new;

2 [00000000] Event_0x0

sat (event?(var payload))
1echo("received: " + payload)

sonleave

6echo ("had received:," + payload);
7event ! (1) ;

s [00000008] #*** received: 1

9 [00000009] #*** had received: 1

wevent! (["string", 124]);

11 [00000010] #***x received: ["string", 124]
12 [00000011] *** had received: ["string", 124]

Like functions, events have an arity, i.e. they depend on the number of arguments.
For instance, at (event?(arg)) will only match emissions whose payload contain exactly
one argument, e.g. event!(arg). In case that the event handlers do not specify their
arity (i.e. without parentheses), they will match event emissions of any arity as shown

in Listing 2.2.13] Since they have no arguments, the payload is ignored.

Listing 2.2.13 The match of event emissions in Urbiscript (continuation of Listing
adpated from [Gosl3)).

1at (event?)
2echo("received, an event")

3onleave

1echo("had_ received_an,event");

5 event ! ;

6 [00000014] #***x received an event

7 [00000015] #***x had received an event
sevent! (1) ;

9 [00000016] *** received: 1

10 [00000017] =***%x had received: 1

11 [00000018] *** received an event

12 [00000019] *** had received an event
13event! (1, 2);

14 [00000020] *** received an event

15 [00000021] *** had received an event

52

2.2. EVENT-BASED PROGRAMMING

2.2.3 Overall Evaluation

Table shows the summary of all event-based languages listed in this section. The

overall evaluation for each of them is shown below:

e EventJava. EventJava is an extension of Java, whose ultimate aim is to support
event correlation. However, the event concept in EventJava is mixed with other
notations and constructs. Event handlers/callbacks are called explicitly, through
a call to the method. In essence, event in EventJava is an asynchronous method.
Besides, the events have to be generated “by hand” similar to the observer design

pattern [GHIV93, [ST04].

e TaskJava. TaskJava is an extension of Java to support event-based style. In Task-
Java, events are blocking due to the wait primitive. However, the notion of event
is mixed with other notions. In other words, events are not defined and handled in
an intuitive and straightforward way. Besides, there are no event’s parameters and

callbacks. Lastly, the capabilities of TaskJava are limited to operations.

e EventScript. EventScript allows programmers to define and combine events by us-
ing regular expressions. Therefore, one of its limitations is the lack of support for
conditions expressed by logical expressions, as well as events that are not directly
linked to variables’ modifications. Moreover, EventScript does not support concur-

rent programming, which means that events cannot run in parallel.

e Urbiscript. UrbiScript is a programming language for robotics with features syn-
tactic support for concurrency and event-based programming. In essence, events in
Urbiscript are treated like functions which have arguments and that asynchronously
serve to exchange data. Some limitations of UrbiScript are the lacks of support for
synchronization among events and of dynamically changing events’ behavior at run-
time. Moreover, there is no static typing in UrbiScript. Therefore, typing errors may
occur while executing. This is particularly a problem when developing reactive and

self-adaptive software with high software quality constraints.

53

2.2. EVENT-BASED PROGRAMMING

EventJava TaskJava EventScript | UrbiScript
Events are No No Yes Yes
declared
explicitly?
Support for No No Yes Yes
timing events
Support for Need to use Need to use No Yes
concurrency Java multi- Java multi-
threading threading
Support for No No No No
synchro-
nization

among events
Events can No No No No
be recon-
figured at
runtime?
Static typing | Yes Yes Yes No
Support for No No No Yes
developing

user-defined

events in
other
languages
Possible Many Many Many Mostly
applications robotics

Table 2.2: Summary about the features of state-of-the-art event-based programming lan-
guages.

Although these languages or extensions can be used to write event-driven applications, their
capabilities are limited as summarized in Table[2.2] A recurrent missing feature is that these
languages do not support event synchronization among events, which is essential when there
are many events running in parallel (if at all supported by the language). Furthermore,
they also do not allow a dynamic modification of events’ behavior when running to adapt to
changes in the environment, i.e. each event always follows a predefined behavior although

this cannot be the best strategy in every situation.

54

2.3. RULE-BASED PROGRAMMING

2.3 Rule-Based Programming

2.3.1 Overview

Rule based programming is inspired from the observation of conditioned reflexes of
animals and humans, which are trained associations Condition = Action |[Croll]. A rule
combines two parts: a premise (or a constraint) and a corresponding action [BS84l [Abd01].
The action is only executed when the constraint is satisfied. In other words, a rule is a
kind of instruction or command that can be applied in certain situations and is a lot like
the traditional if-then statement of classical programming languages [Hil03|. However,

two main differences exist:

e There is a more involved “pattern-matching” than the normal evaluation of true/false,
which makes rules resemble pattern-matching constructs in functional programming

languages.

e Rules do not belong to the usual program control flow, which means that they can

be applied at any point of the program.

In practice, rule-based style is often used for reactive intelligence, expert systems and
autonomous systems [BS84, [Has04, [GGGT09]. Rules are also good for programming
context-aware systems since they can map contexts to actions [Kru09, [RPS05, [Lok06),

LBMI0, WMSCT1l, INYS™05].

In the next sections, we introduce several representative rule-based programming lan-
guages: CLIPS, Jess, Prolog, OPS-2000, and Tom. There are also other rule-based lan-
guages that interested readers may have a look at such as ELAN [KK04] and Drools
[Bro09, [Amal2]. Since the underlying mechanism of rule-based paradigm is not too com-
plicated, it seems that current rule-based languages do not differ from each other too much.
The major variation, besides the syntaxes, is the rule evaluation order. For example, the

rules may be evaluated sequentially or in an arbitrary order.

55

2.3. RULE-BASED PROGRAMMING

2.3.2 Rule-Based Programming Languages

2.3.2.1 CLIPS

CLIPS [CLI13] EI is a productive development and delivery expert system tool which
provides a complete environment for the construction of rule-based and/or object-based
expert systems. In CLIPS, rules are used to represent heuristics, or “rules of thumb”, which
specify a set of actions to be performed for a given situation. A rule is composed of an

antecedent (the [left-hand side (LHS)|) and a consequence (the [right-hand side (RHS))).

The antecedent of a rule is a set of related conditions, which need to be satisfied before
the rule can be applied. The conditions of a rule are satisfied based on the evaluation for
existence or absence of specified facts in the fact-list or specified instances of user-defined
clagses in the instance-list. For example, a pattern is one type of condition that can be
specified. Generally, patterns consist of a set of restrictions that are used to determine

which facts or objects satisfy the conditions indicated by the patterns.

The consequence of a rule is a set of actions which will be invoked when the rule is
applicable. When more than one rule is applicable, the inference engine in CLIPS uses
a conflict resolution strategy to select which rule should have its action executed. Next,
the action inside the selected rule is executed and this may affect the list of applicable
rules. Then the inference engine selects another rule and executes its actions. This process

continues until there is no more applicable rule in a system.

Listing 2.3.1 Writing rules in CLIPS.

1 (defrule unsatisfactory-engine-state-conclusions ""
2 (working -state engine unsatisfactory)

3 =>

4 (assert (charge-state battery charged))

5 (assert (rotation-state engine rotates)))

Programmers may define facts and rules as shown with a simple CLIPS example in Listing
[2.3.1] (taken from [Pol10]). This rule is a part of an auto repair expert system. In case

that the main car engine’s state is not as desired, we need to check whether the battery is

4CLIPS is an acronym for “C Language Integrated Production System”.

56

2.3. RULE-BASED PROGRAMMING

charged and the rotary engine rotates or not. To understand more about CLIPS, please

refer to its online documentation [Gia07| or to [GRIS].
2.3.2.2 Jess

Jess, a descendant of CLIPS, is a general-purpose rule engine and scripting language
written in Java |[FHI12| [Hil03|. Jess allows the definition of rules by using the following

functions and constructs:

e defrule: defines a new rule.

ppdefrule: pretty-prints a rule.

run: begins firing activated rules from the agenda (for scheduling purpose).

undefrule: deletes a rule.

e watch rules: prints a diagnostic when a rule is fired.

e watch activations: prints a diagnostic when a rule is activated.

Programmers may define Jess rules by using the defrule construct. For instance, they

may define a very simple rule (adapted from [Hil03]):

1Jess> (defrule null-rule

2 "A,rule,that does nothing"
3 =>

4)

5 TRUE

In this example, the symbol null-rule is the name of the rule. In Jess, if a rule named
my-rule already exists, and programmers define another rule also named my-rule, the
first version is overwritten (programmers may call the undefrule function to delete a rule
explicitly). Then the name is followed by an optional description string that expresses the
purpose of the rule. The symbol => separates the rule’s (i.e. the if part) from its
(i.e. the then part). In our example, the rule null-rule has no conditions on its
and no actions on its [RHS| In other words, it will always be executed and will not do
anything.

Let us consider a more complex rule (adapted from [Hil03]):

57

2.3. RULE-BASED PROGRAMMING

1Jess> (defrule change-baby-if-wet

2 "If ,babyyisywet, change,its diaper."
3 7wet <- (baby-is-wet)

4 =>

5 (change -baby)

6 (retract ?wet))

7 TRUE

Similarly, this rule has two parts. The includes a simple pattern (baby-is-wet).
The contains two function calls, to change-baby (its details are ignored here) and
retract (as shown later in Listing at lines 25-26).

In Jess, programmers may add or remove facts in a “knowledge base”. A simple but

complete Jess session is shown in Listing (adapted from [Hil03]).

Listing 2.3.2 A simple but complete Jess session.

1Jess> (clear)

2 TRUE

3Jess> (watch all)

4 TRUE

5 Jess> (reset)

6==> £f-0 (MAIN::initial-fact)

7 TRUE

sJess> (deffunction change-baby ()

9 (printout t "Babypisgnow,dry" crlf))
10 TRUE

11Jess> (defrule change-baby-if-wet
12" If ,,baby,iswet, change its diaper."
137wet <- (baby-is-wet)

14 =>

15 (change -baby)

16 (retract 7wet))

17 MAIN: : change-baby-if-wet: +1+1+1+t
18 TRUE

19Jess> (assert (baby-is-wet))

20==> f-1 (MAIN::baby-is-wet)

21==> Activation: MAIN::change-baby-if-wet : f-1
22 <Fact -1>

23 Jess> (rumn)

24 FIRE 1 MAIN::change-baby-if-wet f-1
25 Baby is now dry

26 <== f-1 (MAIN::baby-is-wet)

27 1

58

2.3. RULE-BASED PROGRAMMING

2.3.2.3 Prolog

Prolog [L1o84] E] has its roots in first-order logic. Prolog is a declarative programming
language: the program is expressed in terms of relations, represented as assertions (facts)
and rules under the form of then clauses. When running a query over these relations, a

computation can be initiated.

To illustrate Prolog, let us consider a rule system which identifies various species of birds
(adapted from [AmzI0]). Normally, if we apply the if-then format, a rule for identifying

a particular albatross is:

if
family is albatross and color is white
then

bird is laysan_albatross

In Prolog, programmers may define the same rule as follows (adapted from [Amz10]):

bird(laysan_albatross) :- family(albatross), color (white).

The real syntax of Prolog is then-if, and the normal and are inverted.

To understand more about Prolog, please refer to [CMO03, [Sto89) [Spi0§].
2.3.2.4 OPS-2000

OPS-2000 [NAS12] is a hybrid, interactive, rule-based and object-based, software devel-
opment environment developed by NASA | a part of the United States government that is in
charge of U.S. science and technology related to airplanes or space. There are two primary
types of rules in OPS-2000: forward chaining and backward chaining. Forward chaining
rules can be further divided into two more groups: those having threshold expressions, and

those that do not. A forward chaining rule has the generic syntax given below:

defrule <name> {

<LHS> => <RHS>

®Prolog is an acronym for “PROgramming LOGic”.

59

2.3. RULE-BASED PROGRAMMING

A rule’s consists of pattern logic. If the condition in is satisfied (matched),
an activation of the rule is placed into the agenda. Then the conflict resolution algorithm
will be applied to determine which agenda entry is to be fired. Similar to other rule-based
languages, when a rule is fired, its action (i.e. is executed. For example, the rule
below (adapted from [NAS12]) expresses that if the monkey is at position 15, then issue a

command to move it to position 16.

defrule RuleOne {
(The monkey is at position 15) =>

assert("Move monkey to position 16");

A backward chaining rule has the generic syntax given below:

defrule <name> : bc {

<LHS> <= <RHS>

The is a single goal pattern, and the is a subgoal list and/or pattern logic. The
pattern logic is pattern-matched exactly as if it was a forward chaining rule’s [LHS]

2.3.2.5 Tom

Tom [INRI13a] is a pattern matching compiler developed at INRIA, the French na-
tional research institution focusing on information and computer science and technology.
This language extension based on Java is particularly well-suited for programming various
transformations on trees/terms and Xl\/ﬂﬂbased documents. Its design follows INRIA’s

research on the semantics and the efficient compilation of rule based languages.

To illustrate the definition and use of rules in Tom, let us consider a sorted list module
(as shown in Listing , which maintains invariants with rule-based hooks (adapted
from [INR13b]):

Listing 2.3.3 A sorted list with Tom.

6XML is an acronym for “Extensible Markup Language”.

60

1
2

3

© 00 N O Ut A

10
11
12
13
14
15
16
17

19
20
21
22
23
24

25

2.4. CONCLUSION

import rules.sortedlist.types.*;
public class Rules {
%hgom
module sortedlist
imports int
abstract syntax
Integers = sorted(intx*)
/* We define a normalizing rewrite system for the
module (only one rule here) */

module sortedlist:rules() {

/* Every time a term with ’sorted’ as an head
symbol 1s constructed, the following conditional
rewrite rule <s applied, hence ensuring an
invariant on the lists #*/

sorted(x,y,t*) -> sorted(y,x,t*) if y <= x

}

public static void main(String[] args) {
//Testing the module with several ezamples
Integers 11 = ‘sorted(7,5,3,1,9);
Integers 12 = ‘sorted(8,4,6,2,0);
Integers 13 ‘sorted (11%*,10,12%);
System.out.println(ll + "\n" + 12 + "\n" + 13);

3

The rule at line 15 indicates that when y is not greater than x, we will swap them.
When running with Tom, the example result, which displays three sorted lists, is shown

below:

user@host$ tom Sort.t && javac Sort.java && java Sort
sorted(1,3,5,7,9)

sorted(0,2,4,6,8)

sorted(0,1,2,3,4,5,6,7,8,9,10)

2.4 Conclusion

In this chapter, we presented the state-of-the-art in the fields of context-aware perva-
sive computing, event-based and rule-based programming styles. Many frameworks, tools,
services, and paradigms have been put forward to support context-awareness. Since event-
based and rule-based programming styles are suitable for capturing and handling changes

in the environment, several authors consider using them as a good solution to develop

61

2.4. CONCLUSION

context-aware reactive applications.

Current programming language support for context-awareness still has some limitations.
We take into account their disadvantages and overcome these limitations by developing
INI. The ultimate goal is helping programmers to write context-aware applications more
intuitively and straightforwardly. In the next chapter, we will introduce INI in more details,
including its syntax, features, and how it supports multithreading, context-awareness, and

dynamic behavior adaptation.

62

Chapter 3

Introducing INI

In this chapter, we present major features of INI, mostly on how events and rules can
be applied. For events, besides basic uses, we also introduce some advanced uses such
as event synchronization, event reconfiguration, and the combination of an event with a
guard. Finally, several examples of INI will be shown to illustrate the main concepts and

ideas of our language.

3.1 Motivation

After considering the drawbacks and disadvantages of current programming language
support to context-aware adaptive and reactive computing (see Section m (page and
Table (page p4)), we believe that the new one should meet the succeeding foremost

requirements:

e The language should allow a well-defined mechanism to recognize and handle both
occurred internal and external changes when programs are running. In other words,
the system should be equipped with a robust and flexible manner to capture all events
that may happen. Programmers may adjust some parameters to tune this process
and then receive returned results. Besides, the language syntax should be intuitive,

easy to use and major concepts can be defined clearly.

e Reactions may run in parallel to exploit multithreading and improve the performance

and responsiveness of the programs. Indeed, parallelism is must-have for the modern

63

3.2. FEATURES

and future computing [FMI11].

e Reactive behavior may be dynamically customized at runtime to adapt to require-

ments/environments/conditions.

e The language should come with a strong type checking engine to prevent any data

type conflict.

e A support must exist for programmers to apply straightforwardly state-of-the-art
verification and validation techniques to check properties and constraints that need

to be satisfied by their programs.

Other essential demands involve code elegance, simplicity, conciseness, readability and
support for the integration of built-in external modules written in other classical languages
like Java or C/C++. To sum up, our ultimate goal is to make context-aware programs

easier to write, develop and check.

3.2 Features

3.2.1 Overview

INI EI is a programming language developed by ourselves at ISEP [ISE13] [LP12] since
2010 (initially designed by Renaud Pawlak and later enhanced by Truong-Giang Le), with

an interpreter that runs on [Java Virtual Machine (JVM)| Although INT is linked to Java,

its syntax and semantics are not Java’s ones. We select the [JVM] on the grounds that it
is powerful and flexible to provide a natural home for programming languages other than

Java [EV12] |[Ghol0].

Each INI program contains functions, which combine event expressions, logical expres-
sions (used to specify the trigger conditions) and the action (lists of statements) bound
to them. Note that the scope of all variables is the whole function. The syntax does
not require typing but all type conflicts are prohibited at compile time (type inference is

used). INI supports basic features as in other languages like arithmetic/logical expressions,

! Originally, INT stands for “INT is Not ISEP”, as an allusion to the famous self-referencing definition
“GNU is Not Unix”. Besides, the name INI of our language also represents the drawing of an event (the
N) passing between two interfaces (the Is).

64

3.2. FEATURES

map/list /set expressions, the case statement (similar to the if statement). Besides, with
our language, programmers may use some advanced features such as set selection expres-
sions, user-defined types and type pattern matching. All statements end with a new line

instead of a semicolon. Furthermore, INI allows programmers to use Java objects through

binding. This takes advantage of rich existing functions and [Application Programming In-|

[terfaces (APIs)|in Java in case that they do not want to develop new ones. Therefore, INT

inherits from all existing Java libraries and can be easily extended in Java. For instance,
many Java for operations (e.g. working with data streams, files, and directories)
may be reused, just by declaring a header, to save time and effort. In Chapter [3| and
Chapter 4] we will discuss those INI’s features in details.

The major characteristic of INT is that it combines both event-based and rule-based
programming styles. Either events or rules can be defined independently or in combination.
Events in INI run in parallel either synchronously and asynchronously, depending on the
constraints. Programmers may develop their own events in other languages such as Java or
C/C++. Additionally, event’s behavior may be dynamically customized during execution
time. In the following sections, we will explain on how programmers may define and use

rules and events.

3.2.2 Rules in INI

A rule in INT consists of a logical expression and a corresponding action. When the
logical expression part of a rule is evaluated to true, the action is invoked. To illustrate

rules in INI, let us show a simple example that implements some sort of an infinite ping-

pong game between two players (Listing (3.2.1)).

Listing 3.2.1 A ping-pong program written in INI.

1function ping_pong() A
2 @init () {

3 v=1

4 }

5 v == 2 {

6 println("pong")
7 v =1

8 }

9 v == 1 {

65

3.2. FEATURES

10 println ("ping")
11 v = 2

12 }

13 }

Figure 3.1: The ping-pong function state machine.

When entering that program, INI first evaluates the @init event at line 2 that initializes
the variable v to 1 (see more in Section [3.2.3.1] page . Then, INT sequentially tries out
all the rules of the function in their declaration order. Ilere, the guard at line 5 evaluates
to false, but the one at line 9 evaluates to true, thus triggering the evaluation of the
action that prints out "ping" (line 10) and sets v to 2 (line 11). After that, the function
will not terminate before all the guards evaluate to false. So, since line 5 now evaluates to
true, INT evaluates the rule that prints out "pong" (line 6) and resets v to 1 (line 7). This
action obviously triggers again the other rule, thus starting the endless ping-pong game
over again. Note that the rule declaration order is not important here. Any other rule
order would give the same result. That’s because the guards are disjoint. The ping-pong

example corresponds to the state machine shown in Figure |3.1]

Another example of rules is using INI for calculating the factorial. In mathematics, the
factorial of a non-negative integer n, denoted by n!, is the product of all positive integers
less than or equal to n. Listing shows two versions of the factorial function written

in INI, one in rule-based style and the remaining is in recursive style.

On the left, we can see the rule-based version that defines:

1. An @init event (see more in Section [3.2.3.1|, page that defines and initializes a

variable to store the result (f) and another variable to store the current integer to

66

3.2. FEATURES

multiply (1).

2. A rule that multiplies the result by the current integer i and increments the latter,
guarded by the condition that i is lower than or equal to the number n we want to
calculate the factorial of. Due to the INI execution semantics, this rule will continue
to apply until 1<=n becomes false, which eventually happens since i is incremented
at each rule execution (i++ expression). Once i is larger than n, there is no rule to

be executed anymore in the function.

3. A termination @end event (see more in Section [3.2.3.1] page that returns the

calculated result f.

Listing 3.2.2 Calculating N Factorial with INI.

function fac(n) { function fac(mn) {

@init () { n==1 {
f=1 return 1
i=1 }

} n > 1 {

i <= n { return n*xfac(n-1)
f=f*i++ }

} }

@end () {

return f

}

The recursive version on the right-hand side is quite simpler since the factorial cal-
culation is easy to define recursively. Thus, we can define a rule that recursively uses
fac(n-1) to calculate fac(n) for n>1, and a terminal rule for n==1, that simply returns 1
(the factorial value for fac(1)) for terminating the recursion. Note that each rule causes

the function to end immediately because of the return statement.

Besides logical expressions, programmers may also use regular expressions or pattern

matching expressions to specify the guard that need to be satisfied before the action is

executed (see Section of Chapter] page [94).

67

3.2. FEATURES

3.2.3 Events in INI

3.2.3.1 Built-in Events

In INI, we support all kinds of events (e.g. timing events, state changes, physical
events) described in Section , page Event callback handlers are declared in the body
of functions and are raised, by default asynchronously, every time the event occurs (the
execution of the handler represents the event instance). By convention, an event in INI
starts with @ and the corresponding event kind. It takes input and output parameters.
Input parameters are configuration parameters to tune the event execution. Output pa-
rameters are variable names that are filled in with values when the event callback is called.
They can be considered as the measured characteristic of the event occurrence. Those
variables, as well as any INI variable, enjoy a lexical scope in the function’s body. Both
types of parameters are optional. Moreover, an event kind can also be optionally bound
to an id, so that other parts of the program can refer to it (e.g. for event synchroniza-
tion or event reconfiguration). For example, an event e:@sampleEvent[iParameterl =
v1] (oParameterl,oParameter2) has e as id, one input parameter named iParameteril
and its corresponding value v1, along with two output parameters called oParameterl and
oParameter2, which are variables that can be used anywhere in the whole function body,

as specified a few lines above.

Built-in event kind Meaning

Q@init () used to initialize variables, when a function starts.

Qend () triggered when no event handler runs, and when the
function is about to return.

Qevery[time:Integer] () occurs periodically, as specified by its input
parameter (in milliseconds).

Qupdate [variable:T] invoked when the given variable’s value changes

(oldValue:T, newValue:T) | during execution.

@cron[pattern:String] () | used to trigger an action, based on the CRON pattern
indicated by its input parameter.

Table 3.1: Some built-in events in INT.

To allow programmers to write code more easily and conveniently, INT comes with some
common built-in event kinds (as listed and described in Table [3.1). The @init event is

invoked at the beginning during the evaluation of a function. The Q@end event is executed

68

3.2. FEATURES

before a function terminates. The Qupdate event is used to monitor the internal changes

of a system, i.e. when variables are modified. Besides, there are two timing events:

e Qevery event: repeats an action after a specific time.

e @cron event: CRON [is a task scheduler that allows the concise scheduling of a
repetitive task within a single (and simple) CRON pattern [NSHW10]. A UNIX
crontab-like pattern is a string split in five space separated parts, composed of minutes
sub-pattern, hours sub-pattern, days of month sub-pattern, months sub-pattern, and

days of week sub-pattern.

To illustrate built-in events in INI, the code in Listing creates an @every instance
called e, which increments v every second. The Qupdate instance u triggers the action

(event handler) that prints out the variable v’s value when it changes, i.e. every second.

Listing 3.2.3 Using built-in events in INL

function main () {

einit () {
v =0

}

e: Qevery[time=1000]1() {
v =v + 1

}

u: Qupdate[variable=v](oldv, newv) {

println("v has,changed, from," + oldv + '

'uto," + newv)

}

When running, the output result will look like that:

v has changed from O to 1

v has changed from 1 to 2

Note that the input parameter names are mandatory, while output parameter names

are optional (i.e. programmers may choose the names they want). For example:

2ORON stands for “Command Run ON”.

69

1
2
3
4
5
6
7
8
9

10

3.2. FEATURES

Qevery[time=1000] (): good.

@every[x=1000] (): bad.

Qevery[time="one thousand"](): bad.

Qupdate [variable=x] (y,z): good.

3.2.3.2 User-Defined Events

Overview Programmers may also implement user-defined events (in Java or in C/C++),
and then integrate them to their INI programs. By developing custom events, one can
process data which are captured by sensors. To illustrate user-defined events in INI, let us
consider a program which uses sensors to capture and collect weather and climate data like
humidity, temperature, wind speed, rainfall, etc. In our program, we can define separate
events to handle these tasks as shown in Listing For instance, we can define an
event GhumidityMonitoring to observe the humidity level periodically. This event has
one input parameter named humPeriod that sets the periodicity of the checks (time unit
is in hours). Besides, it has one output parameter named humidity to indicate the current
humidity. Inside this event, depending on the value of the current humidity, we can define
several corresponding actions such as warning when the humidity is too high by using
the case construct (described later in Section [£.1.3.3] Chapter [page [89). Other events
can be defined in a similar way. All events in our program run in parallel so that it can
handle multiple tasks at one time. The next part will detail how programmers may write

user-defined events in INT.

Listing 3.2.4 An INI program monitoring weather and climate data.

function main() {
h:@humidityMonitoring [humPeriod = 1] (humidity) A{
case {
humidity > ... {...}
default {...}
}
}
t:Q@temperatureMonitoring [tempPeriod = 2] (temperature) {
}

70

3.2. FEATURES

Implementing User-Defined Events To exemplify on how programmers may write
user-defined events, we discuss a sample INI program, which uses a video camera to detect

the movement of a ball, gets its positions in space periodically, and saves the collected

position data in a [Comma-separated Values (CSV)|file. (a similar event will be used later

in Section page [160). To do so, we first need to define a new event kind to detect

the ball and send its position to the program when detected. Our event will have one
input parameter called period. This parameter is applied to set how long the event should
sleep between two image detections (time unit in milliseconds). Besides, we will have three
output parameters (r,x,y), which are the radius and coordinates of the detected ball
in the captured image. To develop this built-in event in Java, we need to subclass the

ini.event.Event class to define the behavior of our new event kind as shown in Listing

[3.2.9]

Listing 3.2.5 Writing user-defined events.

1public class BallDetection extends ini.event.Event {

© 00 N O o A W W

I R N = R T
W N R O © ® N O oA W N = O

Thread ballDetectionThread;
@0verride public void eval(final IniEval eval) {
(ballDetectionThread = new Thread() {
@O0verride public void run() {
do {
try {

//Sleep as long as the configuration
//indicates
sleep(getInContext ().get ("period").
getNumber (). longValue ());
//Use OpenCV to detect the ball

//Write data to output parameters

variables.put (outParameters.get (0), r);
variables.put (outParameters.get (1), x);
variables.put (outParameters.get(2), y);

//Exzecute the event action
execute (eval ,variables) ;
} catch (Exception e) {...}
} while (!checkTerminated());

71

24
25
26
27

1
2
3

14

3.2. FEATURES

}).start ();
}

@0verride public void terminate() {...}
}

In the BallDetection class, the method eval will be upcalled by the INI evaluator
when the program uses our event. First, it creates a thread that sleeps accordingly to the
event configuration as indicated by the input parameter period (lines 11-12), and then
detects the ball using OpenCV, a library for programming computer vision [Garl3| (line
13). Next, the results are written in output parameters to be passed to the INI program
(lines 16-18). The event-triggered action passed as a parameter at line 3, also called event
thread, is executed at line 20 using the execute method provided by the [APIg|in INI, which
by default runs asynchronously. Finally, the method terminate is overridden to stop the
event (line 26): INT upcalls this method when the program exits or forces the event to

terminate.

Listing 3.2.6 A sample INI program with a user-defined event.

@ballDetection[period: Integer] (Float, Integer, Integer)
=> "ini.ext.events.BallDetection"
function main() {

@init () {
f = file("ballData.csv")
case {
'file_exists(f) { create_file(f) }
}
}
//Use our event get notified for ball detection
b:@ballDetection[period = 1000] (r,x,y){
furiteln(f,to_string (time ())+","+r+" "+x+" "+y)
+
}

In Listing [3.2.6] we write the actual INI program, which binds our Java class to the
@ballDetection event kind at lines 1-2 (in other examples of INI in this paper that use
user-defined events, we make this kind of declaration implicitly). In the @init event, we
define a variable f, which indicates the CSV file we want to store data after collecting the
ball positions over time. If the file does not exist, we create it (line 7). Since in INI, all
variables enjoy a lexical scope within the function where they are defined, in particular, £

can be accessed at line 12 inside the event @ballDetection, as well as at lines 5 and 7.

72

3.2. FEATURES

In our program, the @ballDetection event is triggered periodically, i.e. each second. If a
ball is detected, we write the data to the file (line 12), including the time when the ball

was detected and its position.

Programmers may also develop their own events in C/C++ and then port them to Java
by using the library JNA E] [Wall3| or JavaCPP [Audl13]. In essence, writing user-defined

events in INI includes the following steps:

e Step 1: Subclass the ini.event.Event class.
e Step 2: Declare a thread initialized for running the event each time it is triggered.

e Step 3: Override the method run that is applied to handle the event’s task. In this
part, programmers may use JNA or JavaCPP to invoke C/C++ code.

e Step 4: Bind the values calculated in Step 3 to output parameters.

e Step 5: Override the method terminate to handle the desired action when the event

is terminated.

3.2.3.3 Event Synchronization and Reconfiguration

By default, except for the @init and @end events (see Table page , all INI events
are executed asynchronously. However, in some scenarios, a given event e0 may want to
synchronize on other events el, ..., eN. It means that the synchronizing event e0 must
wait for all threads running a handler corresponding to the target events to be terminated
before running. For instance, when e0 affects the actions defined inside the other events,
we need to apply the synchronization mechanism. Note that one of the target events can
also be synchronized with e0. Cross-synchronization of events means that their executions

are mutually exclusive.

Furthermore, programmers may apply INI to handle changes happening in the environ-
ment though the event-reconfiguration mechanism. Essentially, event reconfiguration con-
sists of modifying the values of the event’s input parameters. Programmers can invoke the

built-in function reconfigure_event(eventId, [inputParaml = valuel, inputParam?2

3JNA stands for “Java Native Access”.

73

1.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

3.2. FEATURES

= value2,...]) in order to reconfigure their events. Moreover, we also allow programmers
to stop and restart events with the built-in functions stop_event ([eventIdl, eventId2,
...]) and restart_event([eventIdl,eventId2, ...]). Typically, it is required to stop

an event before reconfiguring it.

Let us now consider our ball-detection example of Section runs in an embedded
environment where the power is supplied by a battery. One way to take into account this
new constraint is to adapt the data-collection period to the power level. First, we add
a new user-defined event kind called @powerAlarm, which notifies the program each time
the power level passes a given threshold both ways, when charging or discharging. This
event has one output parameter named currentLevel, which tells us the current power
level (either lower, equal or greater than the threshold). When the program in Listing
is running, if it detects that the power-level is lower than 50%, it stops the event
b:@ballDetection (line 12), then changes the value of its input parameter (i.e., period)
to 100000 (line 13), and finally restarts it (line 14). Conversely, if the power goes over
the threshold, the value for the parameter period is set again to 1000 (lines 18-23). The
event @powerAlarm is synchronized on the event b:@ballDetection as specified by $(b)
at line 8 in order to avoid unfinished detection jobs to terminate cleanly before applying

reconfiguration.

Listing 3.2.7 Dynamic adaptation through event reconfiguration.

threshold = 50
setLow = false
b:@ballDetection[period = 1000](r,x,y){

}
//Adapt the ball detection period at the 50/ threshold
$(b) p:@powerAlarm(currentLevel) {
case {
//Adugment the period to save energy
currentLevel < threshold && !setLow{
stop_event (b)
reconfigure_event (b, [period = 100000])
restart_event (b)
setLow = true
}
//Recover default settings
currentLevel > threshold && setLow {

74

3.3. PROGRAMMING WITH INI

stop_event (b)

reconfigure_event (b, [period = 1000])
restart_event (b)

setLow = false

To understand more about using events in INI, interested readers may refer to INI

Language Reference Documentation [LP12].
3.2.3.4 Using Events with Guards

In INI, events and guards may be used in combination. A guard (guard condition) is a
logical expression, that is used to express the requirements that need to be satisfied before

an event can be executed.

For example, considering again the weather monitoring system (see Listing [3.2.4] page
, if we want the event @temperatureMonitoring to be executed only when the humidity

is higher than some threshold:

QtemperatureMonitoring [tempPeriod = 2] (temperature)
humidity >... {
//Do an action

3.3 Programming with INI

In this part, we show several examples to illustrate the capabilities of INI and also to
help programmers get familiar with our language, especially with the definitions and uses

of rules and events.
3.3.1 Implementing a Sort Function

With INI, implementing a sort function can be done by taking advantage of set ex-
pressions. A set expression allows to select an arbitrary object within a set. This selects
an object which satisfies some criteria given in the second part of the expression. Set
expressions are used in the guard part of a rule so that the guard is evaluated to true

only if an object that matches the given criterion can be found in the set. In the following

75

3.3. PROGRAMMING WITH INI

paragraphs, two kinds of sorting algorithms, namely bubble sort and quicksort, will be

mentioned for illustration.

Bubble sort In Listing , to implement the sort1 function (based on the bubble sort
or sinking sort algorithm [CLRS09, Lev12]), we simply select all the indexes 1 in the s list
so that s[i] is greater than s[i+1] (line 2). When this rule matches (satisfied), it simply
swaps s[i] and s[i+1], so that the list will eventually be sorted when the rule cannot be
applied anymore. In that case, the @end event is triggered and the function returns the

sorted list.

Listing 3.3.1 Implementing bubble sort in INIL.

1 function sorti(s) {

2 i of [0..size(s)-2] | s[i] > s[i+1] {
3 swap(s[i],s[i+1])

4 }

5 @end () {

6 return s

7 }

8}

Programmers can also use explicit indexes to iterate on the list to be sorted, leading to
more classical code. The following function implements a basic bubble sort with INI (as
shown in Listing . The iteration is done with two rules: one which swaps the current
elements (lines 7-11), and one which does not (lines 12-14). A swap boolean flag is used to
know if there was a swap during the iteration or not. If swap is true once the end of the
list is reach, we set back the index i to O so that the iteration rules are applied all over

again (lines 15-18).

Listing 3.3.2 A classical approach for implementing bubble sort in INI.

1 function sort2(s) {

2 @init () {

3 i=20

4 swap = false

5 size = size(s)-1

6 }

7 i < size && s[i] > s[i+1] {
8 swap(s[i]l,s[i+1])

9 swap = true

76

10
11

12

3.3. PROGRAMMING WITH INI

i++

}

i < size && s[i] <= s[i+1] {
i++

}

i==size && swap {
swap = false
i=0

}

@end () {
return s

}

When compared with the corresponding program written in Tom (see Listing [2.3.3]
page , our implementation seems to be easier to understand when all rules can be
declared and used explicitly. In Tom, the mechanism on how a conditional rewrite rule is

applied (i.e. sorted(x,y,t*) -> sorted(y,x,t*) if y <= x) is done implicitly.

Quicksort The two implementations for bubble sort above have a similar complexity of
O(n?). In order to get a better complexity, we can for instance implement the quicksort
(or partition-exchange sort) algorithm [CLRS09) Lev12|. The divide-and-conquer strategy

is applied in quicksort, which involves the following steps:

1. Step 1: Choose a pivot value that can be any element but normally is the middle one

(especially for longer partitions).

2. Step 2: Rearrange the array such that all elements smaller than the pivot value go
to the left part, and all elements greater than the pivot value go to the right part.
If the value of an element is equal to the pivot value, this element can stay in either

the left or the right part.

3. Step 3: Apply recursively these above steps for both the left and the right parts until

no more part can be applied.

Our INI program implementing this algorithm with the use of rule-based style is shown in

Listing [3.3.3]

Listing 3.3.3 Implementing the quicksort algorithm in INL

7

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

3.3. PROGRAMMING WITH INI

function quicksort(s,lo,hi){
hi>lo && !donef{
p = partition(s,lo,hi,lo)
//Applying on both the left and right parts
quicksort (s, lo, p-1)
quicksort (s, p+1l, hi)
done = true
}
@end () {
return s
}
}

function partition(s,lo,hi,pivotIndex){

@init () {
pivotValue = s[pivotIndex]
swap (s[pivotIndex],s[hil])
index=1lo
i=lo

}

i<hi && s[i]<=pivotValue {
swap(s[i],s[index])

index++
i++

}

i<hi && s[il>pivotValue A
i++

}

@end () {
swap (s[hi], s[index])
return index

}

}

This algorithm is more complex to understand but it performs very well for middle-
sized lists (the average case performance is O(n logn)). The interesting characteristic to
point out here is that the quicksort function is recursive. Hence, INT allows altogether
rule-based, event-based and more classical programming styles. Programmers may use one
or the other depending on the type of problem they need to solve and implementation

requirements.

3.3.2 N-queens Problem

In chess, a queen can move flexibly: horizontally, vertically, or diagonally. The standard

8-queens problem is to place eight queens on a chess board (with eight rows and eight

78

1
2
3
4
5

© 0 N O

10
11
12
13
14
15
16
17

3.3. PROGRAMMING WITH INI

columns) in such a way that no queen can capture any of the others (one possible solution

is shown in Figure .

Lt

)
W

Figure 3.2: A solution to the 8-queens problems.

A more general problem is to consider an N by N “chess board” and how to place N
queens on such a board so that no two queens attack each other (i.e. they are not in
the same row or in the same column or in the same diagonal) [Cha03, MohO08, Mun09].
The N-queens problem is a classic puzzle in computer science and also regarded as a great
programming exercise. In Listing [3.3.4] we show how programmers may solve this problem
by applying rules in INT.

Listing 3.3.4 An INI program solving the N-queens problem.

VAR
¥ Thts program finds all the solutions to the N-queens puzzle
*/

function main () {

@init () {
pos = []
find_solutions (pos,8)

}

Q@end () {
println ("\nEnd.")

}

}

function check_solution (pos) {
@init () {
print (".")
}
i,j of [0..size(pos)-1]1 | j>i &&
(pos[il==pos[j]l Il (i + pos[il == j + pos[jl)

79

3.3. PROGRAMMING WITH INI

20 [1 (i - pos[i]l == j - pos[jl)) {
21 return false

22 }

23 @end () {

24 return true

25 }

26 }

27

2s function find_solutions (pos,size) A
29 @init () {

30 line = size(pos)

31 pos[line] = 0O

32 }

33 ok = check_solution(pos) {

34 find_solutions (copy(pos), size)
35 }

36 ok && size(pos) == size {

37 println("\nFound, solution:")
38 print_pos (pos,size)

39 }

40 pos[line] == size-1 {

41 return

42 }

43 pos[line] < size-1 {

44 pos[line]++

45 }

46 }

47

4s function print_pos(pos,size) {

49 @init () {

50 i=20

51 }

52 i < size {

53 print_line (pos,i,size)

54 i++

55 }

56 t

57

ss function print_line(pos,line,size) {
59 @init () {

60 i=20

61 }

62 i<size && line<size(pos) && i==pos[line] {
63 print ("Qu")

64 i++

65 }

66 i<size && (line >= size(pos) || i!=pos[linel]) A
67 print ("-,")

68 i++

69 }

70 @end () {

80

3.3. PROGRAMMING WITH INI

71 println("")
72 }
73 }

In our program, the vector pos is used to indicate the columns of all queens that are
already placed on the chess board. For example, [1,3,6] means that we have three queens
at three positions: [0,1] (first row, second column), [1,3] (second row, fourth column),
and [2,6] (third row, seventh column). The function find_solutions is applied to find the
solutions. Inside this function, we invoke the function check_solution to verify whether
the new placed queen violates the requirements regarding all existing queens on the board
or not. The situation that one queen can capture another queen is expressed at lines 18-20.
If no violation is found (i.e. the function check_solution returns true), we try to place
the next queen (a rule at lines 33-35). When all N queens are placed appropriately on the
board, this means that one solution is found (a rule at lines 36-39). The two rules at lines
40-42 and lines 43-45 are used to test all possible positions of each queen to find all possible
solutions. Finally, the two functions print_pos and print_line display the solution on

the screen, in which each position of a queen is represented by a letter Q.

3.3.3 An Online Ordering System

Let us consider an online ordering system shown in Listing[3.3.5] Let’s assume that our
system only allows at most 100 orders per day. In our program, we use two rules. The first
rule at lines 7-13 is applied to accept new order requests and count the number of orders
which have been accepted. The second rule at lines 14-18 is applied to stop providing
the service when the number of orders has reached the limit. During execution, while the
variable allowOrderOnline is true, the action inside the first rule will be executed. Then
with the second rule, when the variable allowOrderOnline is still true and the number of
orders is over 100, the variable allowOrder(Online is assigned to false. The reason why
we combine two logical expressions, namely allowOrderOnline and num0fOrder > 100, is

that we do not want to invoke this assignment many times.

Listing 3.3.5 An online ordering system written in INI.

1 function main () {

81

3.3. PROGRAMMING WITH INI

2 einit () {

3 orderId = 0

4 allowOrderOnline = true

5 numOfOrder = 0

6 }

7 allowOrderOnline A

8 //The function accept_mnew_order_request () accepts,
9 //keeps information related to a customer’s request,
10 //and returns the id of the order.

11 orderId = accept_new_order_request ()

12 numOfOrder ++

13 }

14 allowOrderOnline && num0fOrder > 100 A

15 //Reach the threshold, do not allow online

16 //ordering anymore

17 allowOrderOnline = false

18 }

19 Qupdate[variable=orderId] (oldOrderId, newOrderId) {
20 //Get information related to the new order and
21 //handle it

22 }

23 Qevery [time=24%3600*%1000] () {

24 numOfOrder = O

25 allowOrderOnline = true

26 }

27 }

28 + . W

Along with rules, several events are used in our program. The event @init is used to
initialize necessary variables. During execution, when there is a new order, the value of
the variable orderID is changed, and therefore, the event Qupdate at lines 19-22 will be
invoked. The action of this event (instance) handles the customer’s request, and it runs in
a separate, newly created, thread. In other words, we allow many orders simultaneously.
Moreover, the event @every at lines 23-26 is applied to reset two program’s variables
(num0fOrder and allowOrderOnline) after each 24 hours in order to provide again the

online ordering service.
3.3.4 An Automatic Lighting Control System

Let us consider an automatic lighting control system in a corridor (displayed in Listing
3.3.6, adapted from [LHM™12|). In our program, there is one user-defined event called
@motionDetection, which is applied to detect movement also by using the library OpenCV.

This event has two input parameters named mode and period, which are set to point out

82

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

25

3.3. PROGRAMMING WITH INI

whether we apply a simple algorithm or an advanced one for detecting motion and the
period for checking (time unit is in seconds). Whenever a motion is detected, our program
will turn on the lights if they were turned off before (lines 9-12). The event @every at
lines 15-17 is applied to compute how much time passed without any motion. If there is no
movement within fifteen minutes and the current lights state is on, the rule at lines 18-21
will be invoked to turn off the lights to save energy. The event @update (lines 22-24) can
be used to invoke some desired actions when the light status is changed (i.e. the lights are

turned on or turned off).

Listing 3.3.6 An automatic lighting control system written in INI.

function main () {

@init () {
lightOn = false
timeWithNoMotion = 0
}
@motionDetection [mode = "simple", period = 30]() {
timeWithNoMotion = 0
case {
!1ightOn {
//Turn on the lights
lightOn = true
}
}
}
Q@every[time = 600001 () {
timeWithNoMotion++
}
timeWithNoMotion > 15 && lightOn {
//Turn off the lights
lightOn = false
}
Qupdate[variable=1ight0n] () {
//Do a desired action
}
}

3.3.5 An Intelligent Virtual Personal Assistant

Listing shows an intelligent virtual personal assistant written in INT, which can
recognize voice commands from users and then do appropriate actions (adapted from

ILHM™12]). One of the most interesting features of our program is that it can detect

83

3.3. PROGRAMMING WITH INI

who is using it (based on face detection), in order to adjust the voice recognition process
with regard to his or her maternal language, tones and accents. This data is previously
collected and stored in a database during a speech training procedure. As a result, the

accuracy of voice recognition will be improved.

Listing 3.3.7 An intelligent virtual personal assistant written in INI.

1 function main() {

2 @init () {

3 defaultId = 1

4 currentId = 1

5 }

6 $(v) f:0@faceRecognition(isKnown, recognizedId) {

7 case {

8 //4 familiar person %s detected, then change
9 //current settings to mew settings

10 isKnown && recognizedId !'= currentlId {

11 currentId = recognizedId

12 stop_event (v)

13 reconfigure_event (v, [userId=currentId])
14 restart_event (v)

15 }

16 //4 stranger ts detected, then use default settings
17 !isKnown {

18

19 }

20 }

21 }

22 v:@voiceRecognition[userId=defaultId] (voiceCommandString) {
23 case {

24 //Ezecute an action based on the voice command
25 voiceCommandString ~ regexp(...) {

26 //Do action 1

27 }

28 .« ..

29 default {

30 //Do a default action

31 }

32 }

33 }

34 }

The @init is used to initialize some variables as usual. Besides, there are two user-
defined events in our program. The event @faceRecognition (identified by £f) is applied
to detect a human face (also by using the library OpenCV). This event has one output

parameter called recognizedId, which is used to indicate the corresponding id (if exists)

84

3.4. COMPARISON BETWEEN INI AND OTHER LANGUAGES

of the user. If a new face is detected, we stop the event @voiceRecognition (identified by
v), reconfigure it depending on whether the user has been recognized or not, and restart
the event v in order to improve the performance and precision of voice recognition pro-
cess. The event @voiceRecognition is used to recognize user’s voice. It has one input
parameter specifying the id of the user, which is applied in order to tune the recognition
pattern. Moreover, there is one output parameter called voiceCommandString, which is
the returned /recognized spoken sentence. At line 25, we match the user’s command against
a regular expression (see more in Section page to guess its meaning (by using the
match operator ~), and then do a suitable action. The event £ should be synchronized on
the event v, which means that if there is a current running thread for v, £ has to wait before
it can be executed. The synchronization is necessary since we want to avoid unfinished

voice recognition jobs to be stopped.

3.4 Comparison between INI and Other Languages

When compared with other language-based approaches used to develop context-aware
applications (see Chapter [2]), working with INI has several major characteristics as listed

below:

e All context information categories may be captured and handled through different
types of events. Events in INI can be used to monitor time perception, time passing,
internal changes of the systems, data collected from sensors, etc. Besides, rules in
INT are evaluated sequentially and may be used for reaction purpose when some

conditions are satisfied.

e Both events and rules can be defined intuitively for reactive purpose. The notions of
events and rules do not mix with other ones. Besides, events come with input and

output parameters to tune the execution and bring returned results.

e INT allows programmers to write user-defined events in other languages such as Java
or C/C++. Each user-defined event can be viewed as an external independent mod-

ule/component that may be applied in many INI programs.

85

3.4. COMPARISON BETWEEN INI AND OTHER LANGUAGES

e INI supports concurrency. Events in INI run in parallel either synchronously or
asynchronously. This improves the performance of INI programs when they need to
deal with multitasking. For example, INI may collect and handle multiple values

read from different kinds of sensors at one time.

e INI supports dynamic adaptation at runtime. The behavior of an event can be
reconfigured to handle better varied situations happening in the environment. This

approach can be considered as one aspect of “smart computing”.

86

Chapter 4

Formalizing INI

In this chapter, we introduce the syntax for basic INI’s elements such as functions,
events, and rules (Section . Furthermore, we define an operational semantics for INI
(Section . Our approach tries to explain how an INI program works regarding event
and rule managing and triggering mechanisms and their effects on the program state. Since
event synchronization is one of the main concepts in INI, we clarify this by detailing the

synchronization algorithm (Section 4.3]).

4.1 Syntax

4.1.1 Expressions
INT has some basic expressions as in other languages:

e Arithmetic expression: an expression that results in a numeric value with two kinds
of numerical values, which are integers (whole numbers), and real or floating point
numbers (numbers containing a decimal point). Arithmetic expressions can be formed
by connecting literals (the number itself, written with digits) and variables with one

of the arithmetic operators {+, —, *, /, %}

e Logical expression: are formed of variable accesses, function invocations, and literals
(e.g. strings, numbers, etc.), composed together with classical logical operators (&&

(and), || (or), ! (not)) and/or comparison operators (==, =, >, >= <, <=).
e List expression: an ordered collection (also known as a sequence) like [1,2,3,4,5] or

87

4.1. SYNTAX

((red”,ﬁﬁgreen”,ﬁﬁblue??] .

Other more complex expressions like regular expressions, type pattern matching expres-

sions, guard expressions, event expressions, will be presented in the next parts.

4.1.2 Types and Type Declarations

INT supports basic types: Numeric (Double, Float, Long, Int, Byte), Char, String,

Boolean.

Besides, INT also has an internal Void type for functions returning no values. We then

have some rules for literals, which can directly be inferred as resolved types:

String literals such as ‘‘abc’’ will be typed as String.

Character literals such as ‘a’ will be typed as Char.

Float literals such as 3.14 will be typed as Float.

Integers such as 1 will be typed as Int.

e true and false literals will be typed as Boolean.

Programmers can also define variables of type map, list, and set (will be explained in
details in Section [4.1.7} page. Some simple examples to illustrate these types are shown
below:

11 = [1,2,3,4,5] //1 is a list

2//Declare a map that maps names to ages
sm["Giang"] = 29

4am["Truong"] = 26

5//s 1s a set that contains all the integers
6//between 0 and 10 (bounds included)

7s = [0..10]

Besides, programmers may declare user-defined types and use pattern matching oper-

ators to select correct types for instance variables. Those features will be clarified later in

Section (page [118).

88

4.1. SYNTAX

4.1.3 Statements

Statements in INI can be variable assignments, function invocations, case statements,

and return statements.

4.1.3.1 Assignment

Programmers may declare variables without declaring explicitly their types. For exam-

ple:

i =1 //1 is an integer

j = 2.0 //j %s a float

str = "HelloyWorld" //str is a string

4.1.3.2 Function Invocation

Functions takes parameters which have a unique name within the function scope. Pa-
rameters are passed by reference and not by value. If programmers wants to pass by value,

it can be done using the copy built-in function. For instance, the function:

function f(a,b,c) { ... }

can be invoked with £(1,2,"abc"), if £ expects two integers and one string. Parameters

can have default values. For example, the b and ¢ parameters may have default values:

function f(a,b=0,c="") { ... }

In that case, the parameter values are optional when invoked. For instance, £(2,1)

invokes £ with an empty string for c.

4.1.3.3 Case Statement

In INI, a case statement allows programmers to handle different possibilities related
to execution conditions. During evaluation, the action corresponding to the first satisfied
condition is executed. If there is no such condition, the default action (if exists) will run.

Its syntax is shown as follows:

89

4.1. SYNTAX

1case {

2 <logical_expr_1> {
3 <statements >

4 }

5 <logical_expr_2> {
6 <statements >

7 ¥

8 ...

9 default {

10 <statements >
11 }

4.1.3.4 Return Statement

A function can return a value by using a return [<expr>] statement within a rule’s
body. If <expr> is not defined or if no return statements appear in the function, then the

function returns a Void value. For instance:

1 function f(a,b=0,c="") {
<guard> {

return b

oo ~ =] ot - W [V

The return statement at line 5 indicates that the function returns a value of type Int
(since b is an integer, as seen in the parameter’s default value at line 1). Note that return
statements are optional when the function returns no value, but must always be the last

statement of a rule.

4.1.4 Function Declarations

Each INI program contains functions, whose bodies combine event expressions, logical
expressions (used to specify the condition that trigger the rule) and the actions (lists of
statements) bound to them. The scope of any variable is the whole function. A function

in INI has the following syntax:

function <name>(<parameters>) {
<logical_expression> { <statements> }
| <event_expression> { <statements> }

90

4.1. SYNTAX

| <event_expression> <logical_expression> { <statements> }

4.1.5 Rules

A rule in INT consists of a logical expression and a corresponding action:

<logical_expression> { <statements> }

Besides logical expression, INT also defines a match operator (~) that allows for regular
expression matching on strings and for pattern matching, similarly to the match construct
in OCaml [Smi06] (see Section page [94). The logical expression must be evaluated

to true to allow the evaluation of the rule’s action.

4.1.6 Events

4.1.6.1 Declaring Events

The syntax of events is shown below:

id:@eventKind [inputParaml=valuel, inputParam2=value2, ...]
(outputParaml, outputParam2, ...)
{ <statements> }

in which,

e id is the identifier for the event (optional).

e cventKind indicate which type of event is applied. For instance, the event can be

Q@every, Qupdate, or @ballDetection.

e inputParaml, inputParam?2... are input parameters’ names and valuel, value2...

are expressions applied to set values.

e outputParaml, outputParam?2... are output parameters’ names.

So we can see that since each event kind may be declared several times, an event may
be named with an identifier in order to distinguish. Regarding each declared event, there
also may be several instances for it that run in parallel at one time. For example, in the

following code, some instances for both el and e2 can run together:

91

4.1. SYNTAX

1el:@every[time=2000]1() {...}
2e2:Q@every[time=5000]1() {...}
The syntax corresponding to an event e0 that is synchronized on other events el, .. .,
eN, is:

$(el,e2,...,eN) e0:@eventKind... { <statements> }

4.1.6.2 Operating on Events

Programmers can invoke the built-in function reconfigure_event(eventId, [input
Paraml=valuel,inputParam2=value2,...]) in order to adjust their events’ behavior.
Moreover, we also allow programmers to stop and restart events with the built-in functions
stop_event ([eventIdl, eventId2, ...]) and restart_event([eventIdl,eventId2,

...1). Typically, those steps are needed when reconfiguring an event.

4.1.6.3 Using Events with Guards

An event expression can be used with a guard (expressed as logical expressions):

<event_expression> <logical_expression> { <statements> }

4.1.7 Maps, Lists, and Sets

4.1.7.1 Map Definition and Access

Maps are natively supported by INI. A map is automatically defined when accessed
through the map access expression that uses square brackets: map[key]. Keys and values
within maps are of any type, but shall all be of the same type for a given map. For instance

the following statement list is valid:

im["keyl"] = 1
om["key2"] = 2
sprintln(m["key2"])

On the other hand, the succeeding statement list is not valid because the first line

initializes m to be a map of integer values accessed through string keys and:

e The key is an integer at line 4, so there will be a typing error.

92

4.1. SYNTAX

e The value is a string at line 5, so there will be a typing error.

am[1] = 2
sm["key2"] = "test"

Note that the size of a map (i.e. the number of elements in it) can be retrieved with
the size built-in function. Emptying a map or removing an entry is done with the clear

function (see more in [LP12]).
4.1.7.2 List Definition and Access

In INI, a list is simply a map where keys are consecutive integers, starting from 0. For

example, if 1=[1,8,6,7,5] then 1[3] is 7.
4.1.7.3 Integer Sets

To allow eagy iteration on lists, INI provides a constructor for sets of integers. A set of
integers is defined with two bounds: [min..max]. For instance, the set that contains all

the integers between 0 and 10 (bounds included) is written as [0..10].
4.1.7.4 Set Selection Expressions

Set can be used in set selection expressions that allows programmers to select elements
in a set and bind their values to local variables. A selection condition must be used to
select the elements upon a given criteria. For instance, to select two integers i and j that
are contained within 0 and 10, so that i < j, one can write the following set selection

expression:

i, j of [0..10] | i < j

The bounded values can be expressed as arithmetical expressions, like:

1 =1[1,2,3,4,5]
i of [0+1..size(1l)-2] | s[i] > s[i+1]

After each iteration for checking the index and the corresponding condition, INI will
evaluate successive rules in the program and come back for the next iteration later.
Set selection expressions must be used in guards. The difference between a set selection

guard and a regular guard is that the former one will be checked until all the possible values

93

4.1. SYNTAX

have been picked from the set. In other words, the guard will stop matching only once

none of the set elements fits the selection condition.

In INI, set selection expressions can also be used to select instances of user-defined

types as shown in Section [5.2.1.3] page [120]

4.1.8 Regular Expressions

In order to match strings in a concise way, INI provides a match operator ~, which can
match a string against a regular expression [Eri06] and bind matching groups (if any) to

INI variables (based on Java regular expressions). For instance:

"a b c" ~ regexp("(.) (b) (.)",v1,v2,v3) will match and be evaluated to true.
Since there are three groups (between parentheses), the three match sub-results will be
bound to the given variables v1, v2, and v3 with the leftmost-outermost strategy. Thus,
once the matching is done, we will have vi="a", v2="b" and v3="c". For more information
on regular expressions as used in INI, please read the Javadoc for the java.regexp.Pattern

class [Oral3c] and refer to [Wat05) [Fri06, [GL09].

To illustrate regular expressions in INI, let us consider a simple example:

1function greetings (sentence) {

2 sentence ~ regexp("Hello,(.*)" ,name)

3 || sentence ~ regexp("Hi,(.*)",name) A
4 println("Hello,to,"+name)

5 return

6 }

7 sentence ~ regexp("Bye,(.*)",name)

8 || sentence ~ regexp("Seeyyouy(.*)",name) {
9 println("Bye,to,"+name)

10 return

11 }

This function matches the given sentence to determine who it is said hello or bye to.
Typically, the invocation greetings("See you Giang") will print out "Bye to Giang".
Note the use of the return statements at lines 5 and 10 to ensure that rules are applied

once at best.

94

4.1. SYNTAX

4.1.9 Binding to Java Objects

INT only provides a minimal set of built-in functions. For all other functions, one can
bind new functions to Java Thus, to use Java objects from INI, programmers just
need to define bindings from INI functions to Java constructors, methods or fields. The

binding syntax is the following:
<name>(<types>) -> <type> => "stringl", "string2"

This binding declares a new function named <name> that takes parameters typed with
the given comma-separated type list (<types>) and returns a typed result. The corre-
sponding Java element that will be used when invoking the function is defined thanks to
the two strings following the => binding operator, where stringl is the target Java class

fully-qualified name, and string?2 is one of the following:

e The target field name (belonging to the class).

e The target method name (belonging to the class) followed by (..) to indicate that
it is a method (and not a field).

e new(..) used to indicate that the target is a constructor of the class.

It is not needed to specify if the Java method or field is static, since INT will determine
it automatically depending on the parameter types of the function. Non-static members

will require to pass an instance of the type of the target class as the first parameter.

For instance, the following code defines two bound functions to call the classical System.
out.println(..) method in Java. The out() function binds to the static System.out
field, and the java_println() function binds to the Writer.println(String) non-static

method.

out () ->Writer => "java.lang.System", "out"

java_println(Writer ,String)->Void =>
"java.io.Writer", "println(..)"

Programmers can then invoke both functions as shown below, which are well-typed

thanks to the binding declarations.

java_println (out(),"hello;Java")

95

4.2. OPERATIONAL SEMANTICS

4.1.10 Imports

Since all the functions should not be defined within a single file, INI programs can start

with a list of import clauses. For example:

import "ini/lib_examples/lib_io.ini"

Imports allow the definition and use of function libraries. In particular, it is recom-
mended to define bindings (see the previous part, Section [4.1.9)) within external files and

to import them when required.

4.2 Operational Semantics

4.2.1 Introduction to Operational Semantics

It is essential to define a formal semantics for a programming language since this pro-

vides [Bak06] the users with:

e An unambiguous description of the effect of a program (i.e. giving the meaning to a

program in a mathematical rigorous way).
e A yardstick for implementation.

e A basis for program analysis and synthesis.

Operational semantics is one of the three common approaches to semantics, along with
denotational semantics and axiomatic semantics [Win93|. The purpose is to map one
program context (initial state) to another one (final state) that we take to be the result
of the program. Each program context is described by using some representative symbols
to illustrate program elements. Operational semantics can be classified into two main

categories:

e Big-step operational semantics or natural semantics [Kah87| (a.k.a. relational se-
mantics or evaluation semantics): it specifies the entire transition from the initial
state to the final value. For example, the notion (expression, state) || v states that

the expression within the state is eventually evaluated to v.

96

4.2. OPERATIONAL SEMANTICS

e Small-step operational semantics or structural operational semantics (popularized
by Plotkin [Plo81] [PIo04], a.k.a. transitional semantics or reduction semantics): it
specifies the transition of a program one step at a time. There is a set of rule that can
be applied to the initial state so that we can reach the final state, which is defined
to be a state in which no transition applies. In other words, we evaluate a program
step-by-step. For instance, the notion (expressiony, state;) = (expressions, states)
states that the exrpression; within the state; will be evaluated to the expressions

within the states.

Some pros and cons of those two presentations are listed in Table [£.I] To understand more

about operational semantics, interested readers may refer to [Hen90l, INN92, Win93|, [SKK95].

Pros Cons
Big-step Easier to write since we may More abstract and
skip intermediate simple steps. intuitive, but cannot
express complex behavior.
Small-step More expressive. In some cases, it is too
Can model complex behavior complicated to express
such as looping, concurrency, etc. the transitions.

Table 4.1: Comparison between big-step and small-step operational semantics.

4.2.2 Operational Semantics for INI

We combine both big-step ({}) and small-step (=) operational semantics when defining
semantics for INI. Besides, we also have a look at other approaches, which have some

common properties [Bro96, NH96al, Wei97al [GMP04, MG08, BBF12].
4.2.2.1 Structures for INI’s Constructs
We use the following syntactic categories and their corresponding meta-variables:

e 1 will range over numerals

e b will range over boolean values, b € B = {true, false}

97

4.2. OPERATIONAL SEMANTICS

e 1 will range over variables

e cxpr will range over basic general expressions

e qge will range over arithmetic expressions

e [e will range over logical expressions

e r will range over pattern matching expressions for regular expressions
e { will range over type pattern matching expressions

e [will range over list expressions

e ¢s will range over the case statements

e c¢b will range over the bodies of the case statements

e 5 will range over statements

e ¢ is an empty statement

e setSel will range over set selection guards

o setExpr will range over set expressions

e ¢ will range over guard expressions

e eip will range over expressions for event’s input parameters
e cvent will range over event expressions

e f will range over functions

e body will range over functions’ bodies
The structures of all constructs in INI are defined as follows:

o cxpr = ae|le|l

e ae := n|x|ae; nop aey | f(expr®)

where nop ranges over numeral-valued binary operations, nop € Nop = {+, —, x, /, %}.

98

4.2. OPERATIONAL SEMANTICS

e le := true| false | ae; cop aesy | le; bop leg | ubop le | f(expr*)
where
- cop ranges over boolean-valued numeric comparison operations, cop € Cop = {==
J=>=<=,>, <}
- bop ranges over boolean-valued binary boolean operations, bop € Bop = {&&, ||}

- ubop ranges over boolean-valued unary boolean operations, ubop € Ubop = {!}.
o [= ae*|le* | f(expr®)
o cb:= le{s}|cby NL cby
e cs = case {cb (default {s})}

e s:= x =ecxpr|aeunop | f(expr*) | return expr | cs| sy NL s

where unop ranges over numeral-valued unary operations, unop € Unop = {++, ——}.

o 1 :=expr ~ regexp(PAT, x1, ..., xy)

where PAT is a regular expression pattern.

o t:=expr ~TYPE]]
where TY PFE is a defined type.

o cip = x =expr | x; = f(z3) | eip1, eip2
o cventger = ($(event_id")) (event_id :) event _kind([eip])(z*)

o setExpr = aey..aes] | ALGEBRAIC TYPE
(see Section [5.2.1.2] page to understand more about algebraic data types).

o setSel ::= z of setExpr | le

where the notation “|” used here belongs to the syntax, not for the case separator.
o g = le| setSel | event | le event | r |t
e body ::= g{s} | body; body:
o fief == func_id (z*) {body}
We use the following conventions:

99

4.2. OPERATIONAL SEMANTICS

NL denotes a new line.

Elements inside () are optional.

e cxpr® is a shorthand for a possibly empty sequence expri,expra,...,expr,. Other

uses of the notation * have the same meaning.

e cxprt is a shorthand for a sequence expry, exprs, ..., expr, having at least one ele-

ment. Other uses of the notation ™ have the same meaning.

4.2.2.2 Notations and Symbols

As mentioned earlier, each INI function contains rules and events and the latter run
in parallel. As a result, function calls are evaluated concurrently, which we reflect in the
semantics, by a two-layered structure: at the top level the semantics consists of ?, the
global execution context. ? is composed of w function execution contexts (described
below) running in parallel Fi || F2 || ... || Fw. Each one of them evaluates one function

call.

We adjoin to those w function evaluation contexts (a.k.a. ?) a unique event instance
generator E as illustrated in Figure [d.I] Actually, E can be considered as a black box. The
functionality of [E is just taking the input parameters when registering and reconfiguring the
(event) callbacks c (linked to a particular function execution context Fj), then checking
whether an event is executable or not based on its properties (see Section . Eventually,
if the event instance can be executed, E calculates and binds values to output parameters,
and it sends the callback’s body to the corresponding thread pool of Fj for it to be executed
in the right context. For example, in Figure [4.1], two event instances have been raised, one
for the @every event, that was the first event declared by (the function call evaluated in)

Fy, and the other one is for the @ballDetection event, that was declared by Fj.

For example, in Figure two event instances have been raised, one for the @every

event and the remain is for the @ballDetection event.

As illustrated in Figure [£.1], a function execution context Fj is composed of:

e [R,i,j] expresses the evaluation of rules, in which i is the index for the rule whose

100

4.2. OPERATIONAL SEMANTICS

([R: i,j) o Of, [{Py, T1}, o) {Pas Tn}])

\ N)

~
Y

!

|
E Foll Il Froell F

@every[...]0

@ballDetection]...](...)

Figure 4.1: The global and function execution contexts and the event generator mechanism
in INT.

condition is currently evaluated and j is a temporary counter used to specify the
number of successive rules (regarding to the rule currently evaluated), which have

been evaluated as not applicable (i.e. their concerned conditions are not satisfied).
e A statement replaces [R, 1, j] when the body of a concrete rule is evaluated.

e 0! is the variable and parameter context inside the function, which is a Map:
VariableName — Value. It includes local variables defined in the function and its

own parameters.

° a} is the function context, which is a Map: FunctionName — ¥, where ¥ is the
set of all 3-tuples abstracting a function: a variable context o,, the list R of rules
defined inside the function and the list C of (event) callbacks (see Section , page
187)). Note that 09 is global and does not depend on the index [of Fj.

e A pair {P,i,T,i} for each event ej, inside the function, in which P,f/, is a thread pool
that contains all current execution threads for the instances of ej (raised by E and
whose execution is not yet finished) and 7, li is a boolean variable used to indicate
whether ey, is terminated or not (e.g. after a call to stop_event), in which case only
the current threads are allowed to finish running (see Section , page . Inside
the thread pool, instructions are evaluated as the same way as in normal site (note

that the event’s body includes only statements). We use the notation @ip to indicate

101

4.2. OPERATIONAL SEMANTICS

the set of thread pools [{ P, TI}, {PL, T4}, ..., {P,ZLI,Tle }] for the n; events defined in

the function.

As a shorthand, we let ¥ = [0y, 0, Op] and we also call it the execution context, by abuse
of language. When there will be a need to disambiguate ¥ of (O, 3) (where O represents
the place for the instruction/rule), we will call the latter as the proper evaluation context.
oy is a set that contains the function contexts for all functions. The evaluation of an
expression expr is denoted as (expr,). To keep the notations simple, we assume that in
the sequel ? contains only one execution context and keep E implicitly when it plays no
role (i.e. most of the time). In the following sections, |} is applied to state that a context is
evaluated to a value (big-step semantics), and = is used to express a transition (small-step

semantics).
4.2.2.3 Semantics of Statements
The semantics of all statements in INI is defined as follows:

e Agsignment

(ae, 5) b {n, o) o, O)
(x=ae,) = (¢, o =0, + [z < n], o}, Op)

(le, 2) b (b, o, o}, O)

(x=le, X) = (¢, o =0, + [z V], 0}, op)

e The case statement
(le, ¥y | (true, X
(case {le {s} cb}, ¥) = (s, ¥)
(le,) | (false, XY cb # e
(case le {s} ¢b,) = (cb, X')
{le,) U (false,)
(case le {s1} default {s2}, ¥) = (s2, X/)

e Numeral-valued unary operations

(x+4, X) = (¢, 0, =0y + [v + (0u(x) +1)], 07, Op)

(x——,) = (¢ 0, =0y + [z + (0u(x) = 1)], 07, Op)

102

4.2. OPERATIONAL SEMANTICS

e Sequence
(s1,) = (e, X)) (s2, ') = (¢,)
(s1 NL s9, ¥) = (e, ¥")

e The return statement

We define the semantics for the return statement invoked inside the function f.

(expr,X) | (v, ol, 0’}, ')
(returny expr, X) | (o, oy =0, + [f +], o, Op)

where “o” indicates the “terminated” state of a function and f is also the name of

the returned variable.
4.2.2.4 Semantics of Matching against Regular Expressions

Regular expression matching mechanism in INT is based on the one found in Java (see

Section page [94)). There are two cases:

e The matching is successful:
(expr,X) | (v, ol a}, O%b) v REG PAT =j4pq V1, ..., Um
(expr ~ regexp(PAT, 21, ..., 2n), 0y, 0§, Op) | (true, oy, 0}, O%)

" /
where oy = o3, + [21 <=L, .o; 2n <= L] + [21 <= V1, s Zimin(n,m) € Ymin(n,m))-

We can see that if there are too many values (m > n), the additional values are ig-
nored. For example, with the expression "12 345 6789" ~ regexp (" (\\d+) (\\d+)
(\\d+)"),v1,v2), vl is 12 and v2 is 345. Conversely, if there are too many vari-
ables (n > m), the additional variables are set to null (the previous values will
be erased if there were some). For instance, with the expression "Hello INI" ~

regexp("Hello:?(INI|ISEP)",v1,v2), vl is INI and v2 is null.

e The matching is unsuccessful:

(expr,¥) | (v,X) v REG PAT = j4y, matching failure
(expr ~ regexp(PAT, z1, ..., z), X) | (false, ')

4.2.2.5 Semantics of Type Pattern Matching

INT allows programmers to use the match operator with algebraic data types (see more

in Section [5.2.1.2] page|[119)). Basically, it is similar to the regular expression matching (see

Section 4.2.2.4] page [L03)), but does not bind any variable. There are two cases:

103

4.2. OPERATIONAL SEMANTICS

e The matching is successful:

(expr,X) | (v,X') v has been constructed with TY PE]]
(exzpr ~ TYPE[],) | (true, ¥')

The premise means that we check in the interpreter’s records, that the expression

expr has been constructed with the type constructor TYPE.

e The matching is unsuccessful:

(expr,X) | (v,%') v has not been constructed with TY PE[]
(expr ~ TYPE], ¥) | (false, ')

4.2.2.6 Semantics of Set Selection Expressions

The use of set selection expressions is explained in Section 4.1.7.4] (see page . The

operational semantics for the evaluation of a set expression is shown below:

(aer, B) § (o1, &) (aes, &) I (vg, @)
([aer..aes], B) | vy, .., v2}, @)

where {v1, .., v2} denotes the set composed of all the integer values v such that v; < v < vs.

Note that if v1 > v9 then the set is empty.

For evaluating a set selection expression, there are two cases:

e At least one index satisfies the bound condition:

(le, o), + [z < v1], o5, Op) | (false,)

(le o 4 [+ v, oy, @g)> I (false,)

(setBapr,) 4 (v,3) (le, o) + [z < via], op, OF) | (true, BED)

(w of setExpr | le, £) I (true, o™ + [& + via], of, @gﬂ))

where

— setExpr denotes the set expression.

— le (logical expression) expresses the condition bound to the set selection expres-

sion.

— v ={v1,...,v,}: all the returned results for the set Exzpr operation.

104

4.2. OPERATIONAL SEMANTICS

e No index satisfies the bound condition:

(le, o)) + [z < v1], of, O%) | (false, Z(1))
(le, 01()1) + [z < v2], oy, @g)) I (false, 2(2)>

(setExpr,X) | (v, X)) (le, oY 4 [z vy, oy, G)ngl)> I (false, B(™)
(x of setExpr | le,X) | (false, o 4 [T 4 Tinit), OF, @g)>

where ;18 0, (x), the initial value of z.

In INI, we allow the possibility to have multiple variables for set selection expressions, such

as:
x,y of [0..10] | x < ¥

The semantics for this kind of expression can be defined similarly based on the extension
from the case in which there is only one variable. Note that the result returned from the

setExpr is now the Cartesian product v = {vy, ..., v} in the m-variables case.
4.2.2.7 Semantics of Rules

Fach rule combines a condition expressed as a logical expression le and an action in its
body (list of statements). When le is evaluated to true, the action is invoked. We check
all rules sequentially from the first one to the last one and loop until no more rules can be
applied. The semantics of rules is defined as follows, assuming that r is the total number

of rules:

e [f the function does not have an @init event, the evaluation for rules begins directly

with the first rule:

>,) = ([R, 0, 0], ¥)

where “b” indicates the “starting” evaluation of a function.

e A rule’s action is not executed when its condition is evaluated to false, then the

next rule is checked:

(le;, X) U (false, ')
(|R, i, j],) = ([R, (i+1) mod r, j+1], ¥/)

105

4.2. OPERATIONAL SEMANTICS

where “mod” is the modulo operation.

e A rule’s action is executed when its condition is evaluated to true, then the next
rule is checked:

(lej,) | (true, ') (body;, ¥') = (e, X")
([R, i, j], ¥) = ([R, (i+1) modr, 0], X)

4.2.2.8 Semantics of Events

Each event instance e;ps runs in the corresponding thread pool P and involves the

following parts:

e The explicit (external) event id eid that is shown in an INI program (if used) and
to which programmers may refer later (e.g. using functions operating on events like
stop_event, reconfigure_event, restart_event). Besides, each event instance
comes with an implicit (internal) id mainly for thread pool management (and the
programmers do not know about and cannot refer to) to handle the situation where
the external id lacks (i.e. an anonymous event). We also call it eid, since if the ex-
ternal event id is defined, it can also serve as an internal id. Therefore, for simplicity,

we use eid for both the internal and the external event ids.
e The event kind (e.g. Q@every, @ballDetection, etc.).
e The guard le if exists.

e The list L of all event ids on which e;,s is synchronized.

e Parameters: the set of event’s input parameters’ names [P = ipy,ip2,--- ,ip, and
their corresponding values ivi,iv9, - ,ivp; the set of event’s output parameters’
names OP = op1,0pa, -+ ,0pg and their corresponding values ovy, ova, - - -, 0vy.

e The (still unexecuted) event action F'A, which combines sequential statements. This

is the event handler that is in charge of properly reacting to the event occurrences.

e The boolean value T¢,, _, ciq that is used to indicate whether the event is terminated

or not. By default, Tg 4 is false. Calling stop_event or restart_event on

inst-€l

einst-€1d sets Tinst.eiq tO true or false respectively.

106

4.2. OPERATIONAL SEMANTICS

All the components except T, 4 form the callback Ce,, ., cia. We use RE to indi-

inst-€1
cate the list of runnable event instances inside the INT program. For instance, the event
@ballDetection is runnable if there is a ball detected by a video camera. RFE is a part of E.
Inside the thread pool, several event instances may be evaluated at one time. Instructions

of the action FA are evaluated in the same way as usual.

As mentioned earlier, E is the event instance generator, which has the characteristics

as described below:

e [takes charge of registering events.

e [takes charge of generating an event instance when the (physical) given event occurs.

It places the instance in RE (see the next point).

e [E contains also a list of runnable event instances RE that correspond to events that
physically occurred, but whose action is not yet under evaluation. In particular, event
occurrences (or event callbacks) in RE are removed only after the event action FA

has been pushed on the corresponding thread pool, or if the bound logical expression

le is evaluated to false (see Section [4.2.2.10} page [L08]).

e [dialogues with INT operational semantics environment through: a) function calls,
which register the events defined by the function b) event triggering c¢) event stopping
and reconfiguring. (a) and (c) are actions of the environment on E, while (b) is done

in the reverse way.
There are three cases when invoking e;ns¢:

e The event of e;,s.¢id is terminated. In this case, it cannot be executed and it is

removed from RE.
einst € RE T, , eid = true
E {(cur, ¥) = E (cur,)

in which, cur is either a current expression or rule being evaluated.

e At least one of the thread pools corresponding to the events on which e;,g is syn-

chronized is not empty. In this case, e;nst cannot be executed. In other words, E

107

4.2. OPERATIONAL SEMANTICS

needs to wait until all of the pools are empty (see the algorithm in Section , page

113).
einst € RE 3k € ejpst. L Py 7& 0
E (cur, ¥) = E (cur, ¥)

e Otherwise, e;,s is executed.

inst € RE Ty, ., cia = false Vk € ejnst.L P = 0
(cur, X) = (cur, ¥')

in which we have ¥/ = [o],, a}, [P, T1, ..., Pe,,.,.cia U Thread(einst.EA), T, ;,...]]

and Thread(einst-EA) is a new thread created for executing the event action.

4.2.2.9 Semantics of @init and Qend

e The evaluation of a function begins with invoking the @init event (if exists), where

below @init stands for its inside action:

(@init, X) = (¢, X)
r, ¥) = ([R,0,0],)

e When no more rules are applicable (which means that all the guards of the rules have
been evaluated to false at least one time, in this case j > r) and no more event is
running, we come to evaluate the @end event (if exists), where below @end stands for
its inside action and “e” indicates the “terminated” state of a function:

j>r Vk, T, =true, P, =(Qend exists
([R, i, j], ¥) = (@end, X)

(Gend, X) |} (¢, ')
(Gend, X) || (o, XV)

e When no more rule is applicable, no more event is running, and the @end event does

not exist, we finish evaluating the function:

j>r Vk, Ty =true, P, =(@end does not exist
(R, i, j],) = (e, %)

4.2.2.10 Semantics of Events when Used with Guards

For a shorthand, we use le instead of e;,.le.

108

4.2. OPERATIONAL SEMANTICS

e An event is evaluated in the same way as in Section [7| (page [187)) when the logical
expression e is evaluated to true. Note that le is evaluated in the same context as

with other independent rules.

einst € RE (le, ¥) || (true, ¥')
(cur, ¥) = (cur, ¥')

in which we have X' = [0, o', [{P[, T1}, ... {Pe,,,pp.cia U Thread(eimsi EA), T34}, ..]
and Thread(e;,st-FA) is a new thread created for executing the corresponding event

action.

e An event cannot be executed when the logical expression le is evaluated to false.

€inst € RE <l€, E> J <false, 2/>
(cur, ¥) = (cur, ¥')

4.2.2.11 Semantics of Functions Operating on Events

This section involves a strong interaction between the execution contexts of ? and
the event instance generator [E. For this reason, we make it explicit while still simplifying
? into a single execution context. The detailed explanation for the behavior of the two

functions register and unregister is postponed to the next section (see Section [4.2.2.12]

page [110).

Stopping Events Stopping an event with id eid means that the program does not allow
any new instance of this event (the boolean variable T.;q is set to true). However, all
existing threads in P.;q (those created before invoking the function stop_event) can still

continue to run until they terminate.

(stop_event(leid]), X) = unregister(E,l,Ceiq) (€, 0l,05,0%)
in which in @’P: T.iq < true, and [is the location of the function evaluation context (in

which the function stop_event is called) in Z.

Reconfiguring Events Reconfiguring an event with id eid means changing the values
of its input parameters. Normally, before reconfiguring an event, it should be stopped first.

After reconfiguration, it can be restarted.

109

4.2. OPERATIONAL SEMANTICS

(expry, X) |} (ivy,)

(expry, Z(p_1)> U (v, »(P))
(reconfigure _event(eid, [ip1 = expri,...,ipp = expry]),) =

register(unregister(E, 1, Ciq),1,Ceia) (€, L)

in which C'¢;q differs from Ceiq on: ipy <= dv1,iph < iva, ..., ip), < ivp.

Restarting Events Restarting an event with id eid simply means that we allow it to be

invokable again (i.e. the boolean variable T¢;4 is set back to false).

(restart_event([eid]), X) = register(E,l,Ceiq) (€, 0v,0¢,0)

in which in ©: TV, , + false.
4.2.2.12 Semantics of Evaluating Functions

The evaluation of a function call f(pay,pasg, ..., pay,) involves the following steps:

1. Evaluate the arguments.

2. Create a new execution context for the callee X 4. and the associated proper exe-

cution context (O, X qee), Where O is the place for the current instruction/rule (see

Section [4.2.2.2] page [L00)).

3. Assign values to the callee’s parameters (arguments) and initialize local variables

Y, Yp inside z:callee~
4. Evaluate the n input parameters ip1, ipo, ..., ip, of the events inside the callee’s body.
5. Put the caller’s context in “pause”. However, the events of the caller still can run.

6. Register the events of the callee (events’ callbacks are generated and notified to E,

and bound to the newly created execution context).

7. Evaluate events and rules in the callee (which corresponds to the proper evaluation

of the body).

110

4.2. OPERATIONAL SEMANTICS

8. Wait until the callee stops.

9. Assign the returned value from the callee to the corresponding variable in the caller

(except when the callee returns void).
10. Destroy the callee’s execution context and remove the events of the callee from E.

11. Continue to evaluate the caller.

We use the symbol > to indicate the starting point of the function as mentioned earlier. >

is the @init event if it exists, or the first rule [R, 0, 0] if exists, or € in case that there
is none of them (see Sections 4.2.2.9| (page [108) and [7] (page [186)).

For the sake of readability, we introduce a metarule named ParamEval, which is used
to evaluate parameters (both function’s parameters and events’ input parameters). In case

for evaluating function’s parameters, the inputs for that rule consist of:

The event instance generator E.

The execution context > as mentioned in Section 4.2.2.2

The global execution context ?

e m expressions for m function’s parameters: pai, pao, - - , Papm.-

The output for our rule is m values for m inputs, placed in the execution context

associated to X along with the new E, 3, and ? after m steps as shown below:
ParamFEval(E, %, ?,pal,pag, o pam) I B0 Fm) || ({v1, 02, v}, 2M)

This rule can be unfolded as:

®) 7 || (pas,) & (B)) Z || (v, 3)

(E(m—l)) ?(m—l) || <pam, Z(m—1)> U (E(m)) ?(m) H <Uma 2(m)>
where Y is equivalent to X1,

Similarly, the ParamEval can be applied to evaluate n input parameters for all events:

111

4.2. OPERATIONAL SEMANTICS

ParamFEval(E, %, ?,ipl, ip2, - ,ipp) I E™) ?(”) || ({ivy,ivg, - ,iv,}, BM)

The concrete semantics of function invocation in INI is defined as shown in the following

rule:
ParamFEval(E, X, ?, {pay,--- ,pan}) § BV 7("”) I| {v1,--- ,om}, B0M)
ParamBEval(EM™) [p, + [y1 <L, ,yp <L, 21 ¢ v1,- -, Tm < vl 04, [{0, falsel}, ...,
{0, false}]], F0, {ipy, -+ ipa}) b B0 FOmm || (fivy, v}, S0

register(Em+™) [8,{iv1,--~ yivn) ?("H‘") || (wait, L) |

<D7 pgn)v Of, [{05 false}a Ty {®7 false}Dl lL
(BOwtnt)y Fontntd) || (ygit, SomtntDy || (o, o0V o ({0, true}, - , {0, true}])y

() 7 || (f(par, .. pam), B) I unregister(Em++D | ¢y Fmntl) | (p{m4D) () simin1)y

in which o is the set of all function contexts (see more in page or(f) = [pv, R, 8],
[is the location of the function evaluation context in ?, and e is used to indicate
the end state of a function. X yee is the following execution context for the callee:
v, 0f, {0, false},...,.{0, false}]], where p, (the variable and parameter context for the
callee) has been drawn from o(f), and there are as many empty thread pools (i.e. they

are not yet active, since the events still need to be registered) as callbacks ? in o¢(f).

The first three lines in the premise part indicates the evaluation for the callee’s param-
eters (line 1) and its local variables (lines 2-3). The next three lines shows the process
of registering events , binding values to parameters and local variables, and evaluating all
events and rules inside the callee. The conclusion part just says that after we evaluate the
callee, we implicitly unregister its events and get its returned value. Indeed, the (meta-)
function register yields a new event instance generator, where the callbacks ? have been
bound to the execution context F; while the (meta-) function unregister performs the

reverse operation.

To illustrate the general idea, let us consider a simple case, in which a function has one
event (with id eid; and has one input parameter ip;), one parameter pa; (m = 1), and one

local variable y; (n = 1). Also for simplicity, we assume that ? is empty:

112

4.3. EVENT SYNCHRONIZATION

(B) 7 || (par, B) $ED FO || (), 50)
(ED) FO || {ipy, [po + [y L, @1 vil,op, [{0, false}]}) $ E@ FO || (v, 0,)
register(E?), 1, Coiq,, {iv1}) F©) || (wait, T@) ||
(>0 op, ({0, false}]) §
(E®) FO || (wait, D) || (o, 02, o7, [{0, true}),
(E) F || (flpar),) U unregister(E®,1,C) FO | (53 (f), £@)

4.3 Event Synchronization

In this part, we introduce the detailed algorithm that was applied for synchronization
in INI, that is a part of E and implemented in Java within the INI evaluator (adapted from
[LHMP11]).

Algorithm 1 Our algorithm to execute ey synchronized with (e1, ea, ...en)

1: while —allLocked do

2: allLocked := true

3: lock:(lo)

4: fori:=1to N step 1 do
5: if - tryLock(l;) then
6: allLocked := false

T for j:=1to7—1step 1do
8: unlock(l;)

9: end for
10: unlock(lp)
11: sleep(randomTime())
12: break
13: end if
14: end for
15: end while
16: for 1 : =1 to N step 1 do

17: wait-until count; =0
18: end for

19: countq := countg + 1

20: for i :=1 to N step 1 do
21: unlock(l;)

22: end for

23: unlock(lp)

24: eval(ep)

25: countg := county — 1

To implement synchronization in INI, we use one lock and one count variable associated

113

4.4. SUMMARY

with each event. The lock is an instance of java.util.concurrent.locks.ReentrantLock
and is used to avoid concurrent execution when required. We use the functions lock
(blocking), tryLock (non-blocking and returning true of false depending on whether the
locking was successful or not), and unlock. For more details, please refer to the Java
documentation for the methods of the same names in the ReentrantLock class [Oral3al.
The count variable holds the number of threads currently executing for the associated
event. We use the following notation: for an event e;, we call [; its associated lock and

count; its associated thread counting variable.

Let (e1, e, ..., en) be the list of target event ids with which ey synchronizes. To execute
the event bound to ey in INI, we apply Algorithm 1, which also applies to any event
execution in the INI system. We can see that the execution of events includes four steps.
First, eg locks its own lock and tries to lock all target events (lines 1-15). When all events
are locked, the event ey needs to wait until all other event instances are terminated (lines
16-18). The while-do mechanism in our algorithm is currently implemented with Java
monitors and thread notification. Next, the number of threads executing for event eg
is incremented and locks for all events are released (lines 19-23). Finally, the event can
be actually evaluated and when it is terminated, the number of running threads for it is

decremented (lines 24-25).

4.4 Summary

In this chapter, we described how programmers may write INI programs. Events and
rules may be defined independently or in combination. Other features like lists, regular
expressions, set selection expressions, binding to Java objects, etc. are also fully men-
tioned. Additionally, to help programmers understand more about their code, we showed
operational semantics for our language that brings out unambiguously the meaning of how

INT works, particularly the manner of which events and rules are managed and triggered.

In our work, we omit the semantics rule for evaluating (n of ALGEBRAIC TY PE,Y).
Formalizing such a rule would force us to extend ¥, by adding some “stores” in order to

record all the instances of any algebraic data type every time we meet an assignment (see

114

4.4. SUMMARY

more in Section [.2.1.2] page [119). INT has its own mechanism to map instances to their

corresponding types. Reflecting this feature in the semantics would complicate it even
more for a very limited benefit. This is the only construction that is not in the scope of

the current operational semantics.

115

4.4. SUMMARY

116

Chapter 5

Static Analysis for INI Programs

In this chapter, we present our work on ensuring quality of INT programs. First, we give
an overview of static analysis technique that is one of the hot topics in software engineering
(Section . Next, we discuss the type system of INI, including type inference and type
checking engines to avoid type conflicts (Section . Subsequently, we show how INI can
be converted to Promela, the input modeling language of the model checker SPIN (Section

5.3). Then SPIN can help us to verify constraints or properties that need to be satisfied.

5.1 Introduction to Static Analysis

Static analysis, one kind of quality assurance activities, is “the detection of real or po-
tential problems by analyzing the source code without its execution (proscriptive analysis)
and/or providing explanations about program behavior (descriptive analysis)” [LS09|. In-
deed, this is a powerful method for the detection of possible anomalies. We use the term
“anomaly” instead of defect since it may or may not cause the program to fail. However,
those anomalies may help programmers understand more about their programs and give

hints when errors occur [Hua09].

Some techniques employed in static analysis are type checking, logical statement check-
ing, interface and include problem checking, source code crawler, program transformation
and refactoring, source level software metrics, bad smell detection, model checking, etc
ILVS09]. To understand more about static analysis, please refer to [SWHI12, [LS09), [Hua09,

Boul3|. In the next sections, we introduce how we apply static analysis for making INI

117

5.2. TYPE SYSTEM OF INI

programs more dependable, through a type system and a tool to convert INI to Promela,

the input modeling language of the model checker SPIN.

5.2 Type System of INI

5.2.1 Overview

Informally, a type system consists of (1) a mechanism to define types and associate
them with certain language constructs, and (2) a set of rules for type equivalence, type
compatibility, and type inference [Sco09]. Based on the characteristics of its type system,

a language can be classified as:

Strongly typed (e.g. Ada, Java, Haskell, Python, etc.): variables must be strictly

used in a consistent way with their types.

e Weakly typed (e.g. Perl, C/C++, etc.): several manners are allowed to bypass the
type system.

e Statically typed (e.g. Java, Haskell, Miranda, etc.): type checking happens at compile

time.

e Dynamically typed (e.g. Python, Ruby, etc.): type checking happens at run time.

A language may have a mix, e.g. Java has a mostly static type system in conjunction with

some runtime checks.

A strong type system helps the compiler to detect and avoid ill-formed programs which
lead to runtime errors. To understand more about types in programming languages, please

refer to [Har00, [Pie04, [DL10, [Pie02].

Since context-ware applications are widely used in many important domains, it is nec-
essary that all those programs are well-typed. For this reason, we develop INI with a strong
and static type system. In the following parts, we detail the type system in INI, involving

supported data types, type inference and type checking engines.

118

5.2. TYPE SYSTEM OF INI

5.2.1.1 Built-in Types

INT comes with five built-in numeric types for numbers (Double, Float, Long, Int and
Byte), a Char type, and a Boolean type. Besides, INT provides a built-in polymorphic
map type: Map(K,V), where K is the key type and V is the value type. Lists are instances
of maps when K = Int (in reality, it is more of an indexed set). String type is a list of

Char. Syntactically, lists can be noted with the * notation: T* = Map(Int,T).

INT types are ordered with a subtyping relation >. Numerics are ordered so that it
is impossible to assign more generic numbers to less generic numbers: Double > Float >
Long > Int >~ Byte. Other conversions among numbers must be done by using built-in

functions such as to_byte, to_int, to_long, to_float, and to_double [LP12].

5.2.1.2 Algebraic Data Types

Product Types To define a new type, programmers use the type keyword followed by a

name starting by an uppercase letter. For example, we can define and use a Person type

as:
type Person = [name:String, age:Int]
p = Person[name="Giang", age=29]

println("Information:," + p.name + ",is_, " + p.age)

Field access is done with a usual “dot” and field initialization is not mandatory. One

can construct a person with undefined age or name.

Sum Types (a.k.a. Union Types or Compound Types) Sum types are an extension
of simple structured types that allow the definition of types that have different constructors.

In INI, they are defined and used in a very similar way and can be related to

[Syntax Tree (AST)|in the sense that they allow the definition of typed trees structures.

For instance, we can define a recursive type for arithmetical expressions that include

typical operations on floating point numbers.

type Expr = Number [value:Float]

| Plus[left:Expr,right:Expr]
| Mult[left:Expr,right:Expr]
| Div[left:Expr,right:Expr]

| Minus[left:Expr,right:Expr]

119

5.2. TYPE SYSTEM OF INI

| UMinus[operand:Expr]

Once constructed, programmers can define any expression using the constructors. For

example, to define the expression -(3.0%2.0+1.0):

1expr = UMinus [operand=Plus[

2 left=Mult [

3 left=Number [value=3.0],

4 right=Number [value=2.0]],
5 right=Number [value=1.0]]]

5.2.1.3 Type Set Selection Expressions

In Section (page , we have seen the set selection expression that allows
to select values within a set. Each object constructed with a user type constructor is
automatically part of an instance set, which is named after the constructor name. Thus, it
is possible to select instances using the set selection construct. For example, the following

rule raises an error if a number has an undefined value:

n of Number | !'n.value {
error ("Invalid, number value")

}

Note that sets are local to the functions that construct the instances.

5.2.1.4 Pattern Matching

As shown earlier, INI enables programmers to construct algebraic types, which nor-
mally are used to define complex structures. In order to dig into these structures, INI
supports a match operator, which is similar to the match construct in advanced functional
programming languages such as Caml F_:I [CM98| and Haskell [Tho96]. To demonstrate the
use of such types, we show an INT program (Listing that allows the construction
of algebraic expressions, and their evaluation with the calc function. This function uses
the match operator within the rules guards to switch to the right action depending on the

actual type constructor.

Listing 5.2.1 Using algebraic types with pattern matching in INIL

!Caml is an acronym for “Categorical Abstract Machine Language”.

120

5.2. TYPE SYSTEM OF INI

1type Expr = Number[value:Float]

2 | Plus[left:Expr,right:Expr]

3 | Mult[left:Expr,right:Expr]

4 | Div[left:Expr,right:Expr]

5 | Minus[left:Expr,right:Expr]

6 | UMinus [operand:Expr]

7

sfunction main() {

9 @init () {

10 expr = UMinus [operand=Plus[

11 left=Mult [

12 left=Number [value=3.0],

13 right=Number [value=2.0]],

14 right=Number [value=1.0]

15 1]

16 }

17 //This rule can be added to check whether the operators
18 //were correctly constructed

19 op of Plus | (!op.left) || (lop.right) {
20 error ("invalid,plus operator")

21 }

22 @end () |

23 println("The,valueof "+expr_string (expr)+
24 ",isy,"+expr_value (expr))

25 }

26 }
27 //Calculates the exzpression.
2s function expr_value (expr) A

29 expr ~ Number [] {

30 return expr.value

31 }

32 expr ~ Plus[] {

33 return expr_value (expr.left)+expr_value(expr.right)
34 }

35 expr ~ Mult[] {

36 return expr_value (expr.left)*expr_value(expr.right)
37 }

38 expr ~ Minus[] {

39 return expr_value (expr.left)-expr_value(expr.right)
40 }

4 expr ~ Div[] {

42 return expr_value (expr.left)/expr_value(expr.right)
43 }

44 expr ~ UMinus[] {

45 return -expr_value (expr.operand)

46 }

a7 }

Note that in the guard, it is not mandatory to declare the whole structure of the type for

matching. For example, expr ~ Plus[] and expr ~ Plus[left,right] are equivalent and

121

1

2

3

4

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

5.2. TYPE SYSTEM OF INI

give the same results.

5.2.1.5 Function Types

A function type is noted as (T1,T2,...,Tn)->T and is associated to any function
definition, where Ti is the expected type of the i*" parameter, and T is the function’s

return type.
5.2.1.6 Polymorphism

INT supports polymorphic functions, which are those functions that have arguments of

“variable” types. For example, let us consider an INI program counting occurrences in a

list as shown in Listing

Listing 5.2.2 Counting occurrences in a list.

/ *

¥ Thts example shows how to count element occurrences

¥ 2n a list.

*/

function main () {
@init () {

//In INI, strings are lists of characters
s = "Thisyisytheystring weywill,count"
println("Counting,’"+s+"7")
¢ = countOccurrencesAndStoreToMap (s)
println ("Number ofe(s):y"+c[’e’])
println ("Number ofa(s):y"+cl[’a’])
println ("Number of,s(s):y"+cl[’s’])
println ("Number of,i(s):y"+c[?i’])
println ("Number of spaces: "+c[’,’])
1 =111, 2, 1, 7]
println("Counting,,’"+1+"?")
c2 = countlOccurrencesAndStoreToMap (1)
println ("Number of 1:,"+c2[1])
println ("Number of,7:,"+c2[7])
println ("Number of 3:,"+c2[3])

3

/ *
¥ The results for each element 2s stored in a map
* (each element being a key).
*/
function countOccurrencesAndStoreToMap (s) A
@init () {

122

31

33
34
35

37
38
39

5.2. TYPE SYSTEM OF INI

i=0

¥

i < size(s) {
cls[i++]]++

}

@end () {
return c

}

3

The countOccurrencesAndStoreToMap function is polymorphic. In our case, the in-
ferred functional type is (Map(T,Int))->Void, where T is a type parameter so that both
its invocations in the function main are correct. Actually, the INI type inference algo-
rithm finds the most general type so that functions are only typed with the least possible

constraints and remain polymorphic when possible.

5.2.2 Type Inference in INI

Here is a rule which states that undefined values have any type, i.e. their type is an

unconstrained type variable.

NULL) ———
() Fnull: T

Generally, type inference is the process of determining the types of names and expres-
sions based on the known types of some symbols that appear in them [Mit03), [CT11]. Type
inference may be viewed as a separate operation performed during type checking, or it may

be considered to be a part of type checking itself [LL11].

INT provides type inference, so that programmers may leave types implicit. For instance,
the 1=0 statement will assign to i the Int type. If programmers tries to use ¢ with another
type within the definition scope of i, (for instance with the i=0.1 statement that assigns
to i a Float type) the INI type checker will raise a type mismatch error. Following the
same type inference principles, accessing a variable with the square brackets map access
construct will define the type of the variable to be a map. For instance, the 1[i] expression
automatically tells INT that 1 is of type Map(Int,T) (i.e. a list of T), where T can be any

type.

123

5.2. TYPE SYSTEM OF INI

Most types in INI are calculated with the type inference engine. The core of this
type inference is based on a Herbrand unification algorithm, as depicted by Robinson
[Rob65, RVO1, Har09, Mob09]. The typing algorithm is enhanced with polymorphic func-
tion support, abstract data types (or algebraic types) support, and with internal sub-typing

for numeric types. Type constraints are gathered with the rules depicted in the next parts.

5.2.2.1 The Match Operator

Within a guard a match operator can be used to match strings with regular expres-
sions and bind the results to some variables. For instance, "a b c¢" ~ regexp("(.) (b)
(.)",v1,v2,v3) will match and be evaluated to true. Since there are three groups (be-
tween parenthesis), the three match sub-results will be bound to the given variables. Thus,
once the match is done, we will have vi="a", v2="b", and v3="c". With regard to typing,

all the bound variables are strings (see Sections [4.1.§] (page and [4.2.2.4] (page [103)) to

understand more about this operator).

5.2.2.2 Map Access

A map access node such as x[y] allows to say that the resulting type of the expression

is V, if x is of type Map(K,V) and y is of type K.

Fax: Map(K,V) Fy: K
Faly]: V

(MAPACCESS)

5.2.2.3 Field Access

For a field access such as x.f, the type of the accessed expression x must have a field
of the right name and type. Note that, when using match expressions, by construction, it

is often the case that the type of the accessed expression is already resolved.

FT.f:V

(FIELDACCESS) — GO

124

5.2. TYPE SYSTEM OF INI

5.2.2.4 Function Invocation

For an invocation, the rule implies some constraints between the function type and
the type of the result and of the parameter expressions. To support polymorphism, the
function’s body is evaluated within its own environment, so that each invocation has its

own set of constraints.

T T T =T {F e Tidicpa

INVOCATION
() —F Fler, ez, men) : TiToy Ty — T [new(env)]
5.2.2.5 List Definition
List definitions are done with the following syntax: [el, e2,...,en], where all the

expressions must be of the same type T. Then the type of the resulting list is 7" (equivalent
to Map(Int,T)).

{Fei:Tlicp.m

(LISTDER) o 3 7

5.2.2.6 Return Statement

A return statement implies that the enclosing function’s return type is Void. Note
that, in addition, the function’s return type is Void if no return statements appear in the
function’s body.

Ff: —Void

(RETURN) - (return) € f

A return statement with an expression implies that the enclosing function’s return

type is of the expression’s type.

Ffi =T Fe:T
F (return e) € f

(RETURNEXPR)

5.2.2.7 Type Instantiation

One can construct an instance of an algebraic type using one of its constructor. For
instance, a algebraic type defined as: type A = C[£f1:T1, £2:T2,...,fn:Tn] has one con-

structor C with n typed fields. A constructor C of an algebraic type A is typed with

125

5.2. TYPE SYSTEM OF INI

a type of the same name (C), along with the subtyping relation C' < A (see more in
Section [.2.2.8). When an instance of A is constructed using C through the expression
Clfl=el,f2=e2,...,fn=en], then the type of each expression ei must be of the type of
the field £i, as declared in the algebraic type definition (i.e. Ti).

{FC.fi: Titicpn. {FeiTiticpn
FCLfi=e1, fo=ea,..., fn=e,] : C

(CONSTRUCTOR)

where T is the type that corresponds to the C constructor, which is a part of an algebraic

data type.
5.2.2.8 Subtyping Rules

INT support subtyping, which means that if A is a subtype of B, any term of type A can

be safely used in the context where a term of type B is expected.

Fz: A A<B
Fx:B

5.2.2.9 Integer Set Declaration

An integer set declaration allows the programmers to declare an integer domain with
min and max bounds. The syntax is [el..e2] where el is the min bound expression and
e2 is the max one. Both min and max bound expressions must be of type Int, and the
resulting type is a Set (Int).

Fep:Int Fes: Int

(INTSET) —- [e1. .eo] : Set(Int)

5.2.2.10 Set Selection

Within a set expression, one can select elements in a set, and bind them to variables.
In that construct, each variable is of the type of the set elements.

{" ZT; . T}ie[l..n] Fs: Set(T)

Fxy,x9,...,2, of s

(SELECTIONT)

A selection operation can also be done within a constructor type C, i.e. it will select

instances that have been constructed through this constructor.

126

5.3. MODEL CHECKING INI PROGRAMS

{}_ Z;: C}ie[l..n]
bz, @, ...,y of (C: Set(C))

(SELECTION2)

5.2.3 Type Checking in INI

Type checking is the activity of ensuring that the operands and the operators are of
compatible types. A compatible type is one that either is legal for the operator or is
allowed under language rules to be implicitly converted by compiler-generated code (or
the interpreter) to a legal type [Sebl2]. Type checking is one kind of semantics analysis
[MedO08].

INT performs type checking at compile time (statically typed). In details, to avoid type

conflicts (clashes), INI works with the following steps:

1. The parser constructs the [AST]

2. An walker constructs the typing rules that should be fulfilled for each [AST|node

and adds them to a constraint list.

3. A unification algorithm is run on the type constraints. If conflicts are detected, they

are added to the error list.

4. If errors are found, they are reported to the programmers and INI does not proceed

to the execution phase. Otherwise, the program will be evaluated normally.

5.3 Model Checking INI Programs

5.3.1 Introduction to Model Checking

IEEE defines [Verification and Validation (V&V)|as “the process of determining whether

the requirements for a system or component are complete and correct, the products of each
development phase fulfill the requirements or conditions imposed by the previous phase,

and the final system or component complies with specified requirements” [IEE91].

In software engineering, software [V&V]is defined to be “an engineering practice which
provides confidence that the system software was built adequately and will meet the needs

of the system” [Fis06]. techniques can be applied at different phases during the

127

5.3. MODEL CHECKING INI PROGRAMS

software development life-cycle that correspond to design quantification, installation quan-
tification, operational quantification and performance quantification. Software[V&V] along
with planning and configuration management are the key components to guarantee the suc-
cess of a software project [Boa95al, [Fai09|. To learn more about software , please see
[Boa95bl, [ILS09, Engl0].

Among methods and activities, model checking emerges as an efficient technique

for automatic verification of software and reactive systems [BBFET10].

“Model checking is an automated technique that, given a finite-state model of a
system and a formal property, systematically checks whether this property holds
for (a given state in) that model [BKOS]".

The key idea is that when a faithful model of a system is given, tools can verify automat-
ically whether the system fulfills the requirements or not. The verification process is an
exhaustive search of the state space of the design for a counterexample. If a counterexam-
ple is found, the system does not meet the requirements and we get hints on where the
requirement fails (see more in [CGP99, Kat99, Mer(01]). State-of-the-art model checkers
can handle state spaces of about 108 to 10° states with explicit state-space enumeration.
Using clever algorithms and tailored data structures, larger state spaces (10?0 up to even

10476 states) can be handled for several specific problems [BKO0S].

Basically, applying model checking techniques involves the following phases as shown

in Figure p.1

1. Modeling phase:
e Construct a model for the system (manually or automatically) by using the
modeling language dedicated to each model checker.
e Formalize the property (desired behavior) needed to be checked by using the

property expression formulas or a dedicated language.

2. Running phase: run the model checker on the inputs (i.e. the model and the formal-

ized property) to check whether the model fulfills the property or not.

128

5.3. MODEL CHECKING INI PROGRAMS

SySte " @

Modeling Formalizing

Y
5 Model of the Property
system specification
\ [
Modify [Model checker J Check next

Counterexample No violation

Finish

Refine

Figure 5.1: The methodology of model checking [Kat99].

3. Analysis phase:

e If the property is satisfied, users may continue to check other properties.

e If the property is violated, users may dig into the result given by the model

checker and:

— Use the simulation feature to repeat all steps leading to the counterexample.
— FEvaluate whether the counterexample is realistic or not.

— Refine the model or property if needed, or modify the system.

e If there is a problem related to out-of-memory, users need to make the model

less complex to reduce the number of states and then check again.
Applying model checking has several advantages:

e Various possible applications: hardware/software verification, communication proto-

cols, embedded systems, etc.

e Support of partial verification: may verify only important properties and temporarily

ignore the insignificant ones.

129

5.3. MODEL CHECKING INI PROGRAMS

No need for proofs and the users directly see counterexamples.

Saves time and efforts when compared with exhaustive testing or simulation.

Can be applied at early phases during the software development life-cycle.

Has sound and strong mathematical foundations.

Attracts more and more interest and supports from community (in both academy

and industry).

However, the primary limitation of model checking is that if there are too many processes
and data paths in the program, it leads to state explosion. Several current research topics

are devoted to solve this problem.

In the next parts, we briefly introduce the model checker named SPIN and its modeling
language called Promela. The reason we select SPIN is that this tool is appropriate for
verifying concurrent and reactive systems [Hol03|, BK08|. Then we present our developed
tool called INICheck, which can convert a significant subset of INI to Promela. Several

examples also will be shown to illustrate the possible applications of using this tool.

5.3.2 Model Checking with SPIN
5.3.2.1 Overview
SPINEI [SPI13] is “one of the leading model checking tools used by professional software

engineers” [BA10]. Figure (adapted from [Hol97]) shows the structure of simulation

and verification in SPIN. The inputs of SPIN are the model written in Promela and spec-

ifications expressed as assertions, labels, never claims, and [Linear Temporal Logic (LTL)|

formulas. The SPIN tool generates a customized explicit-state model checker and runs the
program for verification. SPIN is an on-the-fly model checker, which means that when-
ever it meets a counterexample to the specifications, it stops and shows the errors. Users
can moreover reconstruct all steps leading to the error. SPIN takes advantage of many

state-of-the-art techniques to speed up the model checking process and save memory such

2SPIN stands for “Simple Promela Interpreter”.

130

5.3. MODEL CHECKING INI PROGRAMS

as partial order reduction, state compression, bitstate hashing, and weak fairness enforce-

ment [BAOS|, [Hol03].

[PROMELA code] [LTL parser and J

translator

PROMELA Parser
/ V \
' ™
1. Syntax error 2. Interactive 3. Verifier
reports simulation generator
'y . S
A 4
(Optimized model h
checker
(ANSI C code)
Counter- f—v—\
examples Executable
on-the-fly
verifier

Figure 5.2: Overview of SPIN [Hol97].

Several researchers already tried to convert classical programming languages to Promela
for model checking with SPIN. Some achievements have already been obtained even though
not comprehensive. For example, Havelund et al. [Hav99| presented Java PathFinder
(JPF), a tool for translating Java to Promela. They translated a non-trivial subset of
Java (e.g. class, method, statement, variable) to Promela. JPF allows a programmer to
annotate his or her Java programs with assertions and verify them using the model checker
SPIN. One of their limitations is that they need to perform the abstractions by hand first,
and then translate the simplified Java program to Promela using JPF. Jiang et al. [Ke09)
translated a subset of C to Promela. One of the largest limitations of their work is that
they did not fully support pointers, which is the core concept of C. Since Promela supports
embedded C code, some authors handled “untranslatable” C code by embedding it directly.
Faria et al. [FMSPI11] provided mechanisms to extract a model from an Ada program to
be used with SPIN. The extracted model covers a subset of Ada features and closely relates

to the corresponding Ada program.

131

5.3. MODEL CHECKING INI PROGRAMS

5.3.2.2 Promela

Promelaﬁ is an imperative language inspired from C, with constructs to handle concur-
rent processes in a system. The description of a concurrent system includes one or several
process definitions and at least one of them must be active. Communication between pro-
cesses may be carried out via synchronous/asynchronous channels. Promela statements

are either executable or blocked, depending on the related condition.

Generally, a Promela model consists of:

Type declarations (optional).

Channel declarations (optional).

Variable declarations (optional).

Process declarations.

The init process (optional).

Proctypes A Promela program consists of processes, each process is declared by one
proctype and at least one proctype should be active (by declaring with the keyword

active or by invoking the run command). Processes have the following characteristics:

e They execute concurrently (interleaving) with all other processes.
e They communicate with each other process via channels (as shown later).

e They can access shared variables.

Each process contains: a process identifier, a parameter list, and a sequence of variable
declarations and statements. The init keyword is used to declare the behavior of a process

that is active in the initial system state. The init process has no parameters.

We can see that processes have several commonalities with functions and events in INI,
such as having parameters and their concurrent invocation and execution. We take into

account this remark when converting INI to Promela.

3Promela stands for “Process or Protocol Meta Language”.

132

5.3. MODEL CHECKING INI PROGRAMS

Data Types Promela provides some familiar basic data types [BAOg|: bit, bool, byte,
short, int, unsigned. It also supports arrays, records (as structs in C). However, in

Promela:

e There is no separate character type.

e There is no string variable.

e There is no floating-point data type.

All variables are initialized by default to zero. In Promela, the keyword mtype can be
used for defining symbolic values. Besides, like in INI, programmers may define their own
types. For example, programmers may define a new type called MESSAGE as follows:

typedef MESSAGE A{
mtype message;
byte source;
byte destination;
bool urgent

Anonymous variables are denoted by an underscore (_). In Promela, type conflicts are

detected at runtime.

Operators and Expressions Promela comes with a basic support for simple operators

and expressions working on numeric and boolean values, such as:

Addition, subtraction, multiplication, division, modulo: +, —, %, /, %.

Increment, decrement: —++, ——.

e Comparison operators: >, <, >=, <=, ==, | =,

Logical operators: &&, ||

Bitwise operators: &,", |.

133

5.3. MODEL CHECKING INI PROGRAMS

Statements Statements are separated by a semicolon (;) or, equivalently, an arrow (->).
Note that semicolons are separators, not statement terminators. A statement in Promela
has two states: executable (i.e. the statement can be executed immediately) or blocked

(i.e. the statement cannot be executed). For example:

e 9 > 1: always executable

e < 9: only executable if x is smaller than 9.

lz: only executable if x is false or 0.

e (x+5) —> ... only executable if x is not equal to —5.

Selection Statements Promela supports the if-statement as in other classical lan-

guages. The syntax is shown below:

if
: (guard_expression_1) -> statement_list_1;
: (guard_expression_2) -> statement_list_2;
:: (guard_expression_3) -> statement_list_3;
fi

However, in Promela, there is no meaning to the order of the alternatives, which differs
fundamentally from other languages. If more than one guard statement is executable, one
of them will be selected non-deterministically. To illustrate the if-statement, let us show
a simple piece of Promela code (as shown in Listing which finds the max of two

numbers x and y.

Listing 5.3.1 Finding the larger one among two numbers in Promela.

1if

2 1l X>=y ->m = X
3 i x<=Fy ->m =y
afi

Repetitive Statements The do-statement in Promela bears similarities to the if-
statement, in that it includes the evaluations of the guards, followed by a list of statements

to express the desired action. However, one different feature is that after the completion of

134

5.3. MODEL CHECKING INI PROGRAMS

a sequence of statements, the execution comes back to the beginning of the do-statement,
i.e. we start a new cycle. When many guards are evaluated to true, the choice of executing

a branch is nondeterministic. The syntax for the do-statement is shown below:

do
::(guard_expression_1) -> statement_list_1;
::(guard_expression_2) -> statement_list_2;
::(guard_expression_3) -> statement_list_3;
od

We can see that the do-statement has something in common with rules in INI, namely
that when at least one guard condition is true, the associated action is evaluated and the

loop goes on. The loop stops only when all the guards are evaluated to false.

To illustrate the do-statement, let us take a simple traffic light control system as shown

in Listing (taken from [BAOQS]):

Listing 5.3.2 A simple traffic light control system.

imtype= { red, yellow, green };

2mtype= { green_and_yellow, yellow_and_red };
smtype light = green;

4

sactive proctype P() {

6 do

7 g g alit

8 :: light == red -> light = yellow_and_red

9 :: light == yellow_and_red -> light = green
10 :: light == greemn -> light = green_and_yellow
11 :: light == green_and_yellow -> light = red
12 fi;

13 printf ("The,lightisynow,%e\n", light)

14 od

15 }

Concurrency Promela allows several processes running in parallel in terms of interleav-
ing. One solution to avoid undesirable interleaving problems is by using atomic sequences

as explained later.

Channels In Promela, besides shared variables, communication among active processes

can also be done via message channels, which are appropriate for modeling notification

135

5.3. MODEL CHECKING INI PROGRAMS

mechanisms or protocols. Channels are declared using the keyword chan as follows:

chan <name> =[<capacity>] of {<tl1>,<t2>,...,<tN>}

in which, capacity is the number of elements that can be buffered in the channel and
<t1>,<t2>,...,<tN> are the types of the elements that will be transmitted over the chan-

nel.

For sending and receiving messages through channels, programmers may use the fol-

lowing statements:

//Sending message
channel_name ! send_args
//Recetving message
channel_name ? recv_args

If capacity is 0, the channel has zero buffering size, which means that it can pass but
not store the messages. Additionally, in this case, the synchronous handshake (rendez-

vous) communication will be set up. For instance, if we have two processes A and B, along

with one declared channel:
chan ctest = [0] of {bytel}

Let us consider a scenario that process A wants to send 5 to ctest by invoking the statement

as shown below:

i1proctype A {
2 50 o
3 ctest ! b5
4

5}

Process A will be blocked until another process tries to receive 5. For instance, if there is

a receive statement in process B:

1proctype B {
2 T
3 ctest 7 msg
4

5}

then process A will be unlocked and the variable msg in process B will be 5.

A classical example illustrating communication through channels in Promela is a client-

server model, in which the server replies to requests from the clients, as displayed in Listing

(taken from [BAOS]):

136

1
2
3
4

© 0 N D w;

10
11
12
13
14
15
16
17
18

20

5.3. MODEL CHECKING INI PROGRAMS

Listing 5.3.3 A client-server model in Promela.

chan request = [0] of {byte};

chan reply = [0] of {bool};

active proctype Server () {
byte client;

end:
do
request 7?7 client ->
printf ("Client,%d\n", client);
reply ! true
od
3
active proctype Client0() {
request ! O0;
reply 7 _
3
active proctype Clientl () {
request ! 1;
reply ? _
}

In other circumstances, when the buffering capacity of a channel is set as larger than
zero, messages are stored in first-in first-out order. For example, the following channel can

store up to 16 messages:

chan a = [16] of { short }

Besides, the communication among processes in that case is asynchronous, which means

that the sender process does not need to wait the receiver process.

Atomic Sequences of Statements If a sequence of statements is enclosed in curly
brackets and prefixed with the keyword atomic, this indicates that the sequence is to be
executed as one indivisible unit, non-interleaved with other processes. In the interleaving
of process executions, no other process can execute statements from the moment that the

first statement of an atomic sequence is executed until the last one is completed.

For instance, the following piece of code is used to swap the values of a and b by

applying the atomic feature:

Listing 5.3.4 Swapping two variables in Promela.

137

5.3. MODEL CHECKING INI PROGRAMS

1atomic {

2 tmp = b;
3 b = aj;
4 a = tmp
5%

Basic uses of Promela have been introduced in the above parts. The operational se-

mantics of this modeling langauge may be found in [Hol03| [GMP04, NH96DL, [Wei97b]. To

understand more about Promela, please refer to [BAOS, [Hol03].

5.3.2.3 LTL Formulas

In SPIN, specifications for constraints are written in which allows qualitative
describing and reasoning about changes of the truth values over time. |[LTL|is based on
the propositional calculus and consists of propositional variables, logical operators and
temporal operators. In essence, a temporal logic allows for the specification of a relative

order of events and is an appropriate choice for expressing behavior of the execution of

reactive systems [BK0S].

The logical operators are displayed in Table[5.1] and the temporal operators are shown

in Table 5.2}

Operator | Notation
not !

and &&, N

or |,V
implies - >
equivalent | <—>

Table 5.1: Logical operators used in LTL.

Operator | Notation | Meaning
always [] The formula | |¢ holds, if

¢ holds for every state.
eventually | <> The formula <>¢ holds, if

¢ eventually occurs at some state.
until U The formula ¢ U 4 holds, if

¢ holds until ¢ occurs.

Table 5.2: Temporal operators used in LTL.

138

5.3. MODEL CHECKING INI PROGRAMS

Several examples of expressions/formulas in m

e The formula [|(x >= 10) states that x should always be no less than 10.

e The formula [|(=(passport V ticket) —> —board_ flight) indicates the case that
if the passenger does not hold either the passport or the ticket, he or she cannot take

the flight.

e The formula [|(received — > <> processed) states that if the request is already

received, finally it will be processed.

e The formula [|(—eriticaly VvV —criticaly) indicates the property for the mutual ex-
clusion problem, i.e. at least one of the two processes is not in the critical section at

one time.

5.3.2.4 Example

To illustrate the use of SPIN and [LTT] for verification and validation purpose, let us
consider mutual exclusion, which refers to the problem of ensuring that no two processes
can enter the critical section at the same time. Two programs trying to solve the mutual
exclusion problem (taken from [Hol03]) are given below. The variable cnt is used to
count the number of processes in the critical section. We can verify with the formula
[](ent <= 1), which means that no more than one process can enter the critical section at

one time.

The program shown in Listing gives a wrong solution. When verified with SPIN;
the output shown below indicates the violation for a wanted assertion, which means that
there may be two processes in the critical section at the same time (i.e. the variable cnt

may be larger than 1):

pan:1: assertion violated !(!((cnt<=1))) (at depth 138)

pan: wrote wrongMutual.trail

Listing 5.3.5 Foulty mutual exclusion algorithm.

139

5.3. MODEL CHECKING INI PROGRAMS

1byte cnt;
2byte x, y, z;
sactive [2] proctype user (){

4 byte me = _pid + 1; /* me is 1 or 2 */
5 again:

6 X = me;

7 if

8 (y == 0 ||l y == me) -> skip
9 else -> goto again

10 fi;

11

12 z = me;

13 if

14 :: (x == me) -> skip

15 :: else -> goto again

16 fi;

17

18 y = me;

19 if

20 :: (z == me) -> skip

21 :: else -> goto again

22 fi;

23

24 /* enter critical section */
25 cnt++;

26 /* exzit critical section */
27 cnt --

28 goto again

20 }

The correct solution is shown below (see Listing [5.3.6). When verified with SPIN, no

error occurs.

Listing 5.3.6 Peterson’s mutual exclusion algorithm.

1bool turn, flagl[2];
2byte cnt;
sactive [2] proctype P1() {

4 pid i, j;

5 i = _pid;

6 j =1 - _pid;

7

8 again:

9 flag[i] = true;

10 turn = ij;

11 (flagl[j]l] == false || turmn !'= i) -> /# wait until true */
12

13 /*¥ enter critical section */
14 cnt++;

15 /* exit critical section */

140

5.3. MODEL CHECKING INI PROGRAMS

16 cnt --;

17

18 flag[i] = false;
19 goto again

20 }

To understand more about interested readers may refer to [KMOS|, Roz11].

5.3.3 INICheck

To support programmers to detect possible errors when writing INI programs, we de-
velop a tool called INICheck (available to download at [LP12]) to automatically convert a

significant subset of INI to Promela in order to model-check it.

INI program
P1
[INI parser]

INICheck INI evaluator
(Promela generator)

Promela
program p;

Linear

Ter_nporal Checking
Logic (LTL) [~————— result
formulas

Figure 5.3: Overall approach for model checking INI programs.

There are several key reasons for selecting SPIN in our approach:

e INT and Promela have similarities. In both languages, programmers may express
rules with guards (i.e. conditional expressions) that need to be fulfilled before the

upcoming action can be executed.

e Both INT and Promela support concurrency. In INT (Promela), events (processes)

can run in parallel.

141

5.3. MODEL CHECKING INI PROGRAMS

e SPIN is a good tool to verify concurrent systems [BAOS].

e SPIN has been applied widely in both academy and industry [GHIXO08, [HB07,
KCKKO0S]|. In estimation, between 5,000 and 10,000 people are routinely using SPIN
[RHO4].

Since Promela is a modeling language, clearly not all features of INI can be converted.
Moreover, as not all INT elements are meaningful for modeling purpose, we focus only
on essential ones. As shown in Figure INICheck generates a Promela program from
the of an INI program. Specifically, an walker checks each node, maps
and translates it to the corresponding element structure in Promela. Our tool can fully
handles the following INI elements: function declarations, function invocations, rules, built-
in events, event synchronization mechanism, the case statement, arithmetic expressions,
logical expressions and variable assignments. We sum up the commonalities between INI

and Promela in Table[5.3] and then the conversion rules are discussed in the next parts.

INI Promela
Data types Support basic data types and | Support numeric data types and
user-defined ones. user-defined ones.
Statements Has conditional statement and Has conditional and repetitive
repetitive structures (with rules statements.
or events).
Variables All variables are global inside Has global and local variables.
the function.
Concurrency Events may run in parallel. Processes may run in parallel.

Table 5.3: Comparison between INI and Promela.

Converting Functions FEach function is converted to a proctype having the same name.
The proctype named main, which corresponds to the function main in INI programs, is
invoked inside the init proctype of Promela. Listing shows the conversion on a

sample INT program (on the left) into a Promela program (on the right).

Listing 5.3.7 Conwverting functions into proctypes.

142

5.3. MODEL CHECKING INI PROGRAMS

1.,
2proctype main() {

1 function main () { 3 ..
2 c.. 4 run foo (5);
3 foo(5); 5
4 . 6}
5} 7proctype foo(int n) {
6 function foo(n) { 8
7 . o}
s} winit {
11 run main () ;
12 }

Converting Variables We can convert integer and boolean data types from INI to
Promela. Initialized values for variables also are kept. Listing displays the conversion

on a sample program.

Listing 5.3.8 Conuverting variables.

1int 1 = 1
1 function main () { .
.. 2bool j = true
2 @init () {)
. sproctype main() A
3 i=1
. 4
4 = true
5 } ’ 5}
6init {
6 .
7 run main () ;
7}
8}

Converting Statements Promela only supports a few kinds of statements: assignment
statement, do-statement, if-statement, printf-statement, goto-statement. Therefore, not
all statements in INT have a counterpart in Promela like the case of the return statement.
In Table [5.4] we show a map among statements in the two languages INI and Promela for

conversion purpose.

Statement in INI Statement in Promela
Assignment statement Assignment statement
Case statement If statement

Print or Println statement | Printf statement

Table 5.4: Mapping statements between INT and Promela.

143

5.3. MODEL CHECKING INI PROGRAMS

Converting Rules Each rule is converted to a branch of a do-statement in Promela
since both of them can be used to express a repeated action. The logical expression part
of an INT rule becomes a guard statement in Promela. As stated earlier, the INT evaluator
checks the rules sequentially. However, in the do-statement in Promela, if more than one
branch is executable, one of them will be selected non-deterministically. We can recognize
that SPIN handles not only execution paths for rules in INI but also other arbitrary ones.
Therefore, in case of using rules in INI and a counterexample is found with SPIN, we may
need to check whether the execution path leading to the error follows INI specification or
not (double-check process). In other words, a counterexample found with SPIN may not
be reachable in INI, but the converse holds: every execution path of INI is covered in the

translated Promela code.

Listing shows the conversion on a sample INI program, in which we have two rules
(lines 5-7 and lines 8-10). These rules are converted to two branches of a do-statement in

a Promela program (lines 4-5).

Listing 5.3.9 Conwverting rules.

1 function main() { : :
L 1int 1 = 1
2 @init () { :
X 2proctype main() A{
3 i =1
3 do
4 4 i == 1 ->
5 i == 1A 5 i == 2 ->
i 6 od;
7}
== 9
8 * t sinit {
9 .
9 run main () ;
10 } }
03 10

Converting Events Currently, all built-in events can be fully automatically converted.
The @init event in INT is mostly used to initialize necessary variables, and therefore it can
be embedded into the initialization part of a Promela program. Other events are converted
to corresponding proctypes in Promela. For example, each timing event like Qevery or
@cron is converted to one proctype with a do-statement inside (to express the repetition
of an action). The @update event is converted to one proctype along with a channel for

the notification of changes on the observed variable. If there is an @end event in our INI

144

5.3. MODEL CHECKING INI PROGRAMS

program, each other event when converted will have one associated variable, which is set to
true after the event action terminates. When all these variables become true, including
one for the proctype main (i.e. all the corresponding events and rules are terminated), the

proctype corresponding to the event @end can run.

Regarding user-defined events, INICheck only preserves the structure of the action
coming with each of them. In some cases, this is enough for modeling and verification

purpose.

Listing [5.3.10] illustrates the conversion on a sample INI program with the use of an
Qevery event. The @every event at lines 3-5 is converted to the proctype named every at

lines 4-8.

In another example, the @Qupdate event in Listing [5.3.11] is converted into the corre-
sponding proctype and channel in Listing [5.3.12l Note that all temporary variables are

automatically created.

Listing 5.3.10 Converting the @every event.

1proctype main() {
2 I
3}
aproctype every() {
1 function main() { 5 do
2 oo 6 1. true ->
3 Qevery[time=1]() { 7 od;
4 . e s}
5 } 9init {
6 10 atomic {
7} 11 run main();
12 run every ();
13
14 }
15 }

Listing 5.3.11 Using @update event in an INI program.

1function main () {
einit () {
v =0
}
Qupdate[variable=v] (oldv ,newv) A

N O o A Ww

}

145

5.3. MODEL CHECKING INI PROGRAMS

8 Qevery[time = 10001 () A{
9 W rar

10 }

11 }

Listing 5.3.12 Using channel to notify when a variable is updated in Promela.

1int v = O

2int templ_v 0

3int temp2_v = O

4chan chan_v= [0] of {int}

sproctype update_v() A

6 do

7 :: chan_v ? temp2_v->

8 if

9 ::(temp2_v != templ_v)->
10 templ_v = v;

11 5 oo
12 :: else -> skip
13 fi;

14

15 od ;

16 }

17proctype every (){

18 do

19 :: true ->

20 v+t

21 chan_v ! v;
22 od;

23 }

24init {

25 atomic {

26 run every ();

27 run update_v ();

20 }

If there is an @end event in our INI program, for instance, if an INI program has two

events el and e2, along with the @end event, the corresponding Promela program is shown

in Listing [5.3.13}

Listing 5.3.13 Handling the @end event when converting to Promela.

1bool endE1l = false
2bool endE2 = false
aproctype el () {

4 do

146

5.3. MODEL CHECKING INI PROGRAMS

5

6 od;

7 endEl = true;
8}

oproctype e2(){

10 do

11

12 od ;

13 endE2 = true;
14 }

15 proctype end () {
16 do

17 :: (endE1 && endE2) ->
18 :: else -> skip;
19 od;

20 }

21init {

22 atomic {

23 run el ();
24 run e2();
25 }

26 run end () ;

27 }

Converting the Synchronization Mechanism Assume that a given event e0 syn-
chronizes on other events el, ..., eN. When we convert this relationship to Promela,
to deal with mutual exclusion problem among possible multiple event threads, we create
a temporary boolean variable for each event, that is set to true as soon as the event is
running. We use them to handle synchronization through an atomic statement waiting for
all the variables to be false at the same time, as shown in Listing This blocking
approach is also described in [BAOS].

Listing 5.3.14 Converting the synchronization mechanism in INI to Promela.

1 P
2bool eOSync = false
3bool elSync false
4...
5 bool eNSync = false
sproctype e0() {

7 do

8 ::atomic { elSync == false && e2Sync == false
9 && eNSync == false

10 -> e0Sync = true;

11 }

147

5.3. MODEL CHECKING INI PROGRAMS

12 ::e0Sync == true

13 -> ... e0OSync = false;
14 od ;

15 }

e proctype el () { ... }

17 ...

isproctype eN() { ... }

19init {

20 atomic {

21 run e0(); run el (); ... run eN();
22 }

23 }

5.3.4 Examples

In this section, we show some examples of using INICheck to analyze and verify prop-

erties and constraints.

5.3.4.1 Detecting Infinite Loops

Detecting infinite loops in software programs has been a hot topic in research on pro-
gram comprehension and analysis [BJSS09, (CMKRI1) [LS09]. With the tool INICheck and
using acceptance labels to find acceptance cycles in SPIN, we can detect infinite loops in
INI programs. For example, let us consider an INI program on the left of Listing [5.3.15]
Clearly, the two rules of our program will run infinitely since after v is set to 1, it will be

set to 2 and vice versa. The conversion of this program in Promela is shown on the right

of Listing [5.3.15]

Listing 5.3.15 An INI program containing infinite loops and the corresponding Promela

program.

148

5.3. MODEL CHECKING INI PROGRAMS

1int v = 1

2proctype main (){
1 function main () { 3 do
2 @init () { 4 (v == 1) ->
3 v =1 5 accept_1:
4 } 6 v = 2;
5 v == 1 { 7 (v == 2) ->
6 v = 2 8 accept_2:
7 } 9 v = 1
8 v == 2 { 10 :: else -> break;
9 v = 1 11 od;
10 } 12}
11} 13init {

14 run main () ;

15 }

As described in Section [5.3.2] specifications in SPIN can be expressed as assertions,
labels, never claim, or formulas. In this case, we use labels with the prefix accept.
Each branch of the do-statement is therefore labeled with a corresponding label accept_n
(line 5 and line 8). In SPIN, an acceptance-state is a state in which some process instances
are at a statement labeled with the prefix accept. When checking for acceptance cycles,
the verifier will complain if there is an execution visiting infinitely often an acceptance-
state [Ger97|. As a result, checking acceptance cycles allows us to detect infinite loops.
Running with SPIN (version 6.1.0) finds an infinite loop as shown below, and this confirms

our judgement.

pan:1: acceptance cycle (at depth 1)

State-vector 28 byte, depth reached 12, errors: 1 ...
5.3.4.2 Detecting Unreachable Code

There may exist unreachable code (dead code). Detecting it is essential to help us
analyze and simplify programs [BSS12, [CCK11]. In an INI program on the left of Listing
[5.3.16] the action defined in the rule v==6 (lines 8-10) is never executed since v is never
set to 6 (the maximum and also final value of v is 5, see the rule at lines 5-7). As a result,

line 9 is unreachable.

Listing 5.3.16 An INI program containing unreachable code and the corresponding Promela

program.

149

5.4. CONCLUSION

1function main() { 1int v = 1

2 @init () A{ 2proctype main () {

3 v = 1 3 do

4} 4 ::v < b -> v+t+;
5 v < b { 5 11V == 6-> v = v+2;
6 v++ 6 ::else -> break;
7} 7 od;

g v == 6 { s}

9 v = v+2 oinit {

10} 10 run main();

11} 11}

After converting our program to Promela (on the right of Listing[5.3.16[), SPIN detects

unreachable code as shown below.

unreached in proctype main
UnreachableCode.pml:5, state 4, "v = (v+2)"

(1 of 10 states)

Another example of using INICheck for verifying desired constraints and properties for

events (expressed in [LTL) will be introduced in Section [6.1.3] page [157]

5.4 Conclusion

In this chapter, we introduced INI’s type system, with main focuses on how program-
mers may define and use both built-in and algebraic data types, and how the type check-
ing engine in INI works. INI has a strong type system, which is appropriate for building
context-aware reactive and self-adaptive software. Furthermore, based on the commonali-
ties between INI and Promela, a tool called INICheck was developed for conversion purpose.
Some examples also were shown to illustrate the ideas of model checking INT programs by

combining INICheck and SPIN.

Using INICheck may help programmers to statically analyze properties of their pro-
grams and verify wanted behavior. Since some program structures in Promela are nonde-

terministic, the converted Promela program will cover not only execution paths in INI code

150

5.4. CONCLUSION

but also other arbitrary ones. Therefore, all properties and errors in an INI program will be
reflected in the corresponding Promela program, and our approach is complete. However,
a problem found with Promela may not be reproducible with INI. In other words, when
a counterexample is found, programmers need to check all steps leading to the violation
through the simulation mode of SPIN, and then examine whether this behavior can be
obtained in INT or not. In case of converting rules, we could refine our approach by intro-
ducing variables to simulate a rule counter, similarly to the operational semantics [R,1, j]
(see Section of Chapter , page for more details). For instance, each rule R;

can be translated to two branches of a do-statement in Promela:

&& cond -> action; r++
&& 'cond -> r++

i
i
in which r is the an extra index used to indicate which rule is currently evaluated, i is the
index of a rule, and cond and action are its corresponding condition and action. However,

by leaving room for nondeterministic choice, we are ensured to be consistent with other

possible INI implementations, where the rule evaluation order can be different.

Our implementation for converting INI programs to corresponding Promela programs

still has several limitations as listed below:

e At present, parameters of events (except for the event Qupdate) are ignored during
conversion. This conversion will be needed when the parameters are meaningful for

modeling an INI program.

e The translation of user-defined events still needs human intervention or proofreading
to ensure the correctness, since each one has its own semantics specified by program-

mers. A full automation, for this very reason, is out of reach.

e Our tool still does not enable multiple occurrences of the same event. This can be
done by assigning an integer counter for each converted proctype and then applying
a similar execution strategy as with rules. Additionally, in this case, the conversion
for the synchronization mechanism also needs to be updated, in which we may reuse

the integer counters for expressing prerequisites instead of using boolean variables as

before (see page |147)).

151

5.4. CONCLUSION

e Currently, timing is ignored when converting from INI to Promela. Nevertheless,
in case that timing is essential for modeling an INI program, we need to support
the conversion of it, although SPIN does not easily support the modeling of such a

notion.

Clearly, as in other related work (converting Java, C, or Ada to Promela [Hav99, Ke09,
F'MSP11]), a comprehensive automatic conversion still requires more work to obtain. The
main reason is that Promela is a modeling language and it has fewer features than a regular
language. For example, it does not support operations, network programming, data
types for real numbers, etc. Moreover, many INI functions, especially complex ones, do

not have counterparts in Promela.

152

Chapter 6

Case Studies

In this chapter, we present two case studies of using INI for programming context-
aware and event-based embedded systems. The first one is a gateway program that
is developed and tested on a real industrial device inside the scope of the MCUBE project.

The other one is an object tracking program running on the humanoid robot Nao.

6.1 A Multimedia M2M Gateway

6.1.1 Developing a Multimedia M2M Gateway Program with INI

Many applications are required to send data to a[M2M]server through a network
and a [M2M] gateway is a typical example of this architecture [SHI1I]. Normally, a [M2M]
gateway allows different types of networks to communicate with each other in order to
provide data [Sos09]. Users may utilize this device for data collection or for surveillance
purpose [Denl2|. For instance, in photovoltaic energy, [M2M| applications are used to
capture images to track the cleanness of solar panels so that leaves or other garbage can
be detected. Another example is on the streets, where vehicular and pedestrian traffic can
be watched so that drivers can avoid congested roads and the local government can find
the way to ameliorate the transport system. In a factory, sensors are used to track
and monitor assets, equipment, materials, cargo and supplies. Since this kind of tasks does
not create much added-value and may be in dangerous or remote environments, taking

advantages of technologies is a good solution.

We develop a multimedia gateway program implemented inside the scope of the

153

1
2
3
4
5
6
7
8
9

10
11
12
13
14

6.1. A MULTIMEDIA M2M GATEWAY

MCUBE project [FEDI12]. Our INI program (adapted from [LIIM¥13]) contains two basic
steps as shown in Figure [6.1}

e Collecting regularly multimedia data (e.g. images, sound, etc.), which are captured

by sensors or peripherals.

e Transmitting data by schedule to the server through the network for repository pur-

pose and further energy-consuming treatments.

D> =
P >0
> o
> 8

-

Figure 6.1: The role of a gateway.

= D

All these operations above can be scheduled easily with the help of the two built-in
events @every and @cron (see Table page . The event Qevery[time:Integer] ()
does an action periodically. The event @cron[pattern:String] () occurs on times indi-

cated by the UNIX CRON pattern expression (see Section [3.2.3.1], page .

Listing 6.1.1 A M2M gateway program written in INI.

function main() {
//Initialization
einit () {
capturedDataFolder = file("data")
//Create a new data folder 4if 4t does not ezist
case {
!file_exists (capturedDataFolder) {
mkdirs (capturedDataFolder)

}
%
zipFile = file("data.zip")
keepParentFolder = true

154

37

6.1. A MULTIMEDIA M2M GATEWAY

//Capture image from the camera using the library gphoto2
el:Q@every[time = 60000] () {
exec ("gphoto2,,--capture-image -and-download --filename"
+ "data/img" + time() + ".jpg")
}

//Capture sound from the microphone using the library alsa
e2:Qevery[time = 30000] () {

exec ("arecord, -d,30,-f,cd, " + "data/sound" + time ()

+ ".wav'")

}

//Schedule an upload of data to the FTP server
@cron[pattern = "0,09-18 % ,*,1-5"1() A
stop_event ([el,e2])
zip(capturedDataFolder ,zipFile)
upload_ftp("server_address", "user_name",
"password", zipFile, to_string(time()) + "data.zip")
delete_file(zipFile)
delete_folder (capturedDataFolder , keepParentFolder)
restart_event ([el,e2])

}

Our complete program is shown in Listing The main function is composed of
four events. The event @init (lines 3-13) is invoked to initialize necessary variables that
will be used later. The variable capturedDataFolder indicates the folder where we put
the collected data. If this folder does not exist, we create it (lines 7-9). The variable
zipFile denotes a zipped data file. We compress the data before uploading to save network
bandwidth, which is a major cost, particularly when using 3G /4G connection, compared

to compression cost.

The next two events are @every event kind. They are used to collect image and sound
data (e.g. in a field or in a factory). The event el (lines 16-19) is invoked every minute
to get a picture captured by a camera (by using the library gphoto2 [gPh13]). The event
e2 (lines 22-25) is invoked every 30 seconds to record sound through a microphone (by
using the library alsa [Als12]). All files (i.e. pictures and sounds) are saved into the data
folder. These collecting processes (i.e. two events) run in parallel to take advantage of

multithreading for better performance.

The last event is a @cron event (lines 28-36), which is employed to upload the data to

a |[File Transter Protocol (FTP)|server every hour during working hours (i.e. 9:00 AM -

155

6.1. A MULTIMEDIA M2M GATEWAY

6:00 PM) on every weekday (i.e. from Monday to Friday). Inside this event, first, we stop
the two events el and e2 (line 29). Next, we compress the data folder before uploading
(line 30). Then we upload the compressed data to a server (lines 31-32). Since the
gateway is only a data-exchanging device with a limited storage capacity, after uploading,
we delete the data to save storage (lines 33-34). Finally, we restart the two events el and

e2 so that we can collect data again (line 35).

6.1.2 Testing Results and Evaluation

We tested our program on a real industrial gateway. The device is provided by Web-
dyn [Web13], a company dedicated to the design, development, and marketing of this kind
of product and also one of our partners in the MCUBE project. We used Oracle Java SE
Embedded for establishing the runtime environment of INT on the gateway. This platform
is optimized for mid-range to high-end embedded systems and offers a high-performance
virtual machine, full high-performance graphics support, deployment infrastructure, and a

rich set of features and libraries [HTW12] [Oral3b].

During all the experiments, our program worked well. All the data were captured and
transmitted properly. One remarkable thing is that it is easy to extend our program to
work with multiple sensors concurrently. For example, it may work with several cameras

oriented in different directions.

Now let us compare our INI program with a Java program that would perform the
same tasks. In order to make all operations running in parallel in Java, we need to cre-
ate some explicit threads for different tasks: capturing pictures, recording sounds, up-
loading data and time scheduling for all operations. Scheduling is a nontrivial task to
implement in Java. In addition, we also need some thread pools in order to manage and
synchronize those threads when needed. Although Java has a powerful support for con-
currency, writing correct concurrent applications in this language is still challenging and
error-prone, especially for novice programmers [GP06]. To decrease the difficulty and hide
the unnecessary complexity, INT separates the thread issue (a part of the interpreter), and
the event-handling issue (implemented in INI). This separation of concerns helps in mak-

ing the INI approach clearer and less fallible than a pure-Java program. Furthermore, if

156

6.1. A MULTIMEDIA M2M GATEWAY

the code were written in C/C++, this still requires more time and effort. For instance,
Webdyn has built five in C/C++ for their own system just for scheduling pur-
pose: pf_add_daily_schedule, pf_add_weekly_schedule, pf_add_monthly_schedule,
pf_add_yearly_schedule, and pf_add_oneshot_schedule. In this case, in order to switch
among different schedules, programmers have to recompile the whole application, while a
program in INT needs only to call the reconfigure_event primitive. Therefore, using INI
brings us many benefits for developing M2M systems when compared with other classical

programming languages.
6.1.3 Model Checking a Prototype of the M2M Gateway

In this part, we show how to apply our tool INICheck (see more in Section , page
and the model checker SPIN to verify some desired properties on a prototype (a
simplified version) of the M2M gateway. This prototype is developed before implementing
our complete program shown in Listing (page so that we can test and check

initially some properties.

Listing 6.1.2 A prototype of the[M2M| gateway written in INI, which detects moving balls,

collects, compresses and then uploads data.

1function main () {
@init () {
dataFile = file("ballData.csv")
zipFile = file("ballData.zip")
isZipped = false
isUploading = false
}
$(e) b:@ballDetection[period=1000](r,x,y) {
isZipped = false
case {
!file_exists(dataFile) A
create_file(dataFile)

© oo ~ (=] ot W (M

=
= O

=
)

}

—
w

}

fwriteln(dataFile,to_string(time()) + ", " + r + " "
+ X + "’|_|" + y)

zip(dataFile, zipFile)

isZipped = true

R T =
= S © ® N O G A

}
$(b) e:@every[time = 50001 () {
case {
isZipped {

¥
X

157

23
24
25
26
27
28
29
30
31

32

1
2
3
4
5

6.1. A MULTIMEDIA M2M GATEWAY

isUploading = true

upload_ftp("host", "username", "password",
zipFile, to_string(time()) + "bdUpload.zip")
delete_file(dataFile)

delete_file(zipFile)

isUploading = false

3

Our INT program (Listing uses a video camera to detect the movement of a ball,
get its up-to-date position in space periodically, saves it into a[CSV]file, and finally upload
the compressed data file to a server. In this program, we define three events. The
event @init initializes four variables. dataFile and zipFile specify the data file and
zipped file. isZipped is used to indicate whether the data file is already compressed or
not and isUploading is used to indicate whether data is being uploaded or not (those
two variable are merely used to express the property we want to check as shown later).
We compress the data file in order to save network bandwidth. The user-defined event
@ballDetection (identified by b) is used to detect the ball and send its position to the
program when detected. This event has one input parameter called period, which is
applied to set how long the event should sleep between two image detections (time unit
is in milliseconds). Besides, we have three output parameters (r,x,y), which are the
radius and coordinates of the detected ball in the captured image (see more about this
user-defined event in Section [3.2.3.2). The last event is @every (identified by e), which is
applied to upload the compressed data file periodically. It is essential that when we collect
data (@ballDetection), the uploading process (@every) does not run and vice versa. In
other words, these two events must be mutually exclusive. As a result, b and e need to be

mutually synchronized, as it is done at lines 8 and 20.

Listing 6.1.3 The Promela model for a prototype of the gateway shown in Listing

6. 1.2

bool isZipped = false

bool isUploading = false
bool bSync = false

bool eSync = false
proctype ballDetection () {

158

© 0 N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

28

6.1. A MULTIMEDIA M2M GATEWAY

do
::atomic { eSync==false -> bSync = true; }
::bSync == true ->
isZipped = false;
isZipped = true;
bSync = false;
od;
3
proctype every () {
do
::atomic { bSync==false -> eSync = true; }
::eSync == true ->
if
::isZipped ->
isUploading = true;
isUploading = false;
fi;
eSync = false;
od;
3
init {
atomic { run ballDetection(); run every(); }
}

We want to ensure that before uploading, if there is new data, the data file must have
been previously zipped. Listing shows the automatic translation of this gateway
program in Promela. During translation, two variables bSync and eSync are automatically
created to synchronize the two proctypes ballDetection and every as explained earlier
in page [147]

After conversion, we check the formula [](!'isUploading || isZipped). Its
meaning is that at any time, if the variable isUploading is true, the variable isZipped
also must be true. When verifying the Promela code with this formula in SPIN, we find

no error as shown below:

State-vector 24 byte, depth reached 24, errors: O

Now if we remove synchronization for the two events @ballDetection and Qevery in
our INI program, we get the Promela program as shown in Listing [6.1.4] Checking with

SPIN now raises an error as below, which means that keeping synchronization to avoid

159

6.2. TRACKING AN OBJECT WITH INI AND NAO

unwanted arbitrary interleaving between events is essential to ensure the correctness of our

INT program.

pan:1: end state in claim reached (at depth 22)

State-vector 24 byte, depth reached 24, errors: 1

Listing 6.1.4 The Promela program modeling a prototype of the M2M gateway shown in

Listing [6.1.3, in case not using the synchronization mechanism.

1bool isZipped = false
2bool isUploading = false
sproctype ballDetection() {

4 do

5 i:true ->

6 isZipped = false;

7 isZipped = true;

8 od;

o}

woproctype every () {

11 do

12 iitrue ->

13 if

14 ::isZipped ->

15 isUploading = true;
16 isUploading = false;
17 fi;

18 od;

19 }

20init {

21 atomic { run ballDetection(); run every(); }
22 }

6.2 Tracking an Object with INI and Nao

6.2.1 Overview of Robot Programming

The word “robot” was coined by the Czech novelist Karel Capek in a 1920 play titled
Rassum’s Universal Robots. In Czech, “robot” means worker or servant. According to the

definition of the Robot Institute of America dating back to 1979, a robot is:

160

6.2. TRACKING AN OBJECT WITH INI AND NAO

“A reprogrammable, multifunctional manipulator designed to move material,
parts, tools or specialized devices through variable programmed motions for the

performance of a variety of tasks”.

At present, people require more from robots, since they are considered as a subset of
“smart structures” — engineered constructs equipped with sensors to “think” and to adapt
to the environment [Wad07]. Generally, robots can be put into three main categories:
manipulators, mobile robots and humanoid robots [RN09, in which the number of lifelike
humanoid robot has grown significantly in recent years [BCHMO09]. In our case study, we

also work with a humanoid robot.

Robots now play an important role in many domains. In manufacturing, robots are

used to replace humans in remote, hard, unhealthy or dangerous work. They will change

the industry by replacing the |Computer(ized) Numerical(ly) Control(led) (CNC)|machines.

In hospitals, they are employed to take care of the patients, and even do complex work like
performing surgery. In education, robots may be good assistants for the children. They
may also be good friends for old people at home for talking and sharing housework. The
global service robotics market in 2011 was worth $18.39 billion. According to one recent
report, this market is valued at $20.73 billion in 2012 and expected to reach $46.18 billion
by 2017 at an estimated [Compound Annual Growth Rate (CAGR)|of 17.4% from 2012 to

2017 [MM12]. As a result, research on robots gets increasing interest from governments,

companies, and researchers worldwide [BCHMO09), Bek0§].

Building robot programs is a complex task since a robot needs to quickly react to
variabilities in the execution environment. In other words, a robot should be indeed au-
tonomous. Besides, it should be able to do several things at one time. Consequently, using
a programming language or development framework dedicated to robots is essential. The
ultimate goal is to help programmers develop robot programs more efficiently and straight-
forwardly. A general robot programming paradigm is shown in Figure [6.2] Typically, a
program sends commands to a robot to observe things in the work space, and captures data
through sensors. Based on the values received from the sensors, a program may control

the robot to react to changes.

161

6.2. TRACKING AN OBJECT WITH INI AND NAO

abstract models hysical world
Robots i
actions
commands ‘
internal Work space
robot
Computers afilee objacts
programs, data e.g. work pieces,
~ tools, etc.
\ commands
sensor \ /
feedback observations

Sensors

Figure 6.2: General robot programming paradigm [WT10].

Classical languages like Java, C/C++, .Net are usually used for programming robots
[Auy06, KGCC11l [Pre05|. However, developing robotic applications using these languages
requires more time and effort since they are not fully dedicated to this purpose. For exam-
ple, to support interaction between robots and an environment when something happens,
programmers have to construct a mechanism for event detection and handling. In order to
do this, programmers need to write a lot of code or use some extensions like [JEQ9, Rob13],

although they are not easy to adapt.

Additionally, several robotic development platforms and have been designed to
assist programmers. Urbiscript is a scripting language primarily designed for robotics that
is already introduced in Section The KUKA robot programming language is devel-
oped by KUKA, one of the world’s leading manufacturers of industrial robots [Corl3].
KUKA is simple, Pascal-like and lacks many features. Since using KUKA has some limita-
tions, a Matlab abstraction layer has been introduced to extend its capabilities [CSMP11].
RoboLogix [Incl3| is a scripting language that utilizes common commands, or instruction
sets among major robot manufacturers. RoboLogix programs consist of data objects and
a program flow. The data objects reside in registers and the program flow represents the
list of instructions, or the instruction set, which is used to program the robot. However,
RoboLogix still does not supply a well-defined mechanism for the robots to interact and

react to the environment.

162

6.2. TRACKING AN OBJECT WITH INI AND NAO

6.2.2 Introduction to Nao

Nao is a humanoid robot that is built by the French company Aldebaran-Robotics
[GHB™08, [AId13b]. In general, humanoids are “robots that are clearly seen as machines
but have human characteristics such as a head (with no facial features), a torso, arms,
and possibly legs” [BCHMO09]. Nao is equipped with many sensor devices to obtain close
environment information (see Figure[6.3). It has for instance become a standard platform
for RoboCup, an international initiative that fosters research in robotics and artificial

intelligence [Fed13].

Voice synsthesis

Emoticons

Embedded CPU with Wi-Fi

LiPo battery

25 degrees of freedom

Figure 6.3: Nao’s features [Ald13D].

Nao comes with two software as shown in Figure [6.4]

e Embedded software: running on the motherboard located in the head of the robot,
allowing an autonomous behavior. The operating system of the robot is OpenNao.
NAOqi is the middleware running on Nao that helps prepare modules to be run either
on Nao or on a remote PC. Code can be developed on different operating systems like
Windows, Mac or Linux, and be written in many languages including C++, Java,
Python and .Net. The company Aldebaran Robotics developed many modules built
on top of this framework that offer rich for interacting with Nao, including
functionalities related to audio, vision, motion, communication or even several low-
level accesses. They also provide a well-organized documentation, particularly on

how to control the robot effectively [Ald13al.

163

6.2. TRACKING AN OBJECT WITH INI AND NAO

e Desktop software (named Choreographe): running on normal computers, allowing

the creation of a new behavior, and the remote control of the robot.

OpenNAC

Windows IMac 05X | Linux

b, m‘\\'.\ i | Yourcode
e

ﬂNewhux *New module
y L] | T "

Figure 6.4: Controlling Nao [AId13b].

6.2.3 Implementing an Object Tracking Program

In this part, we show how INI can be applied for programming robot through the
example of building a ball tracking program (adapted from [LEHT13|). Cognition and

navigation are important must-have features for mobile robots in general and humanoid

robots in particular [Pat07].

6.2.3.1 Overall Ideas

In our program, we want to control the robot to:

e Detect a ball in the space.

e Walk to reach the ball (if detected).

Figure[6.5| displays the possible relative positions between the robot and the ball. There
are three distinguished zones that are specified based on the calculated distance between
them. And then according to which zone the ball belongs to, we can control the robot and

adopt the desired behavior:

164

6.2. TRACKING AN OBJECT WITH INI AND NAO

backwardThresh(ﬂ

g

Zone 1

Figure 6.5: Possible relative positions among the robot and the ball.

e Zone 1: When the distance from the robot to the detected ball is larger than the
forwardThreshold (unit is in meters and its range is 0.0 - 1.0 meters), the ball is

considered as far from the robot and it needs to move in order to reach the ball.

e Zone 2: When the distance from the robot to the detected ball is between the two
thresholds, backwardThreshold (unit and range are the same as forwardThreshold)
and forwardThreshold, the robot does not move since its current place can be con-
sidered as a good position to observe the ball. However, the robot’s head still can

turn to continue to follow the ball.

e Zone 3: When the distance from the robot to the detected ball is shorter than
backwardThreshold, the ball is considered as too close and as moving towards the
robot. As a result, the robot will go backward in order to avoid the collision and

keep its eyes on the ball.

165

6.2. TRACKING AN OBJECT WITH INI AND NAO

The activity diagram of the strategy is shown in Figure [6.6]

Initialize tracking \

No ball is
detected

event /

—| Go backward ,|<

Get ball's
position
Aballis /L
detected
Get robot’s
position

Compute parameters
(orientation and distance)
backwardThreshold <

distance <
forwardThreshold

>@

Target
reached

distance <
backwardThreshold

distance >
forwardThreshold

Compute
Nao’s velocity

Go forward to

the target

Figure 6.6: The activity diagram for an object-tracking program.

6.2.3.2 Implementation

Our program is shown in Listing [6.2.1} In our program, we employ three events. The
event @init (lines 3-17) is applied to initialize the variables used later in our program.
The purpose of the two variables forwardThreshold and backwardThreshold has been
explained above. The variable interval (unit is in milliseconds) sets the delay after which,
if no ball is detected, the robot temporarily stops tracking. The variable stepFrequency
(normalized between 0.0 and 1.0, see more in [Ald13al) is applied to set how often the
robot will move and the variable defaultStepFrequency is applied to set the default value
for step frequency. The two variables ip and port are used to indicate the parameters
for Nao’s network address. The boolean variable useSensors is used to indicate whether

the program uses the direct returned values from sensors or the values after adjustments

166

© ~N O ot - W (M -

e e s e =
N O ot s W N = O

18

6.2. TRACKING AN OBJECT WITH INI AND NAO

by the robot itself (please refer to Nao’s documentation [Ald13a] to understand more).
The variable targetTheta is the robot orientation relative to the ball’s orientation. The
variable robotPosition points out the robot’s position when it detects the ball so that then
we can calculate appropriate needed direction and speed for its movement. The robot’s
position is specified by three parameters: x, y and 6. x is the distance along the X axis
in meters (forwards and backwards). y is the distance along the Y axis in meters (lateral
motion). 6 is the robot orientation relative to the current orientation (i.e. the rotation
around the Z axis) in radians [-3.1415 to 3.1415|. stepX is the fraction (between 0.0 and
1.0) of MaxStepX (the maximum translation along the X axis for one step, see [Ald13al).
The sign of stepX also indicates the moving direction (forward or backward) of Nao. The
boolean variable needAdjustDirection is used to indicate whether we need to adjust the
direction when the robot moves towards the ball. The intention of using the temporary

variable i will be explained later.

Listing 6.2.1 An object tracking program written in INL.

function main () {

//Initialization

@init () {
forwardThreshold = 0.5
backwardThreshold = 0.3
interval = 1000
stepFrequency = 0.0
defaultStepFrequency = 1.0

ip = "nao.local"
port = 9559
useSensors = false

targetTheta = 0.0
robotPosition = [0.0,0.0,0.0]
stepX = 0.0
needAdjustDirection = false
i=20

}

//Detect a ball in space
$(e) b:ballDetection[robotIP = ip, robotPort = port,
checkingTime = interval](ballPosition){
//Compute necessary parameters, and return in an array
parameters = process_position(ip, port, ballPosition,
forwardThreshold, backwardThreshold, useSensors)

targetTheta = parameters [0]
robotPosition = parameters [1]

167

6.2. TRACKING AN OBJECT WITH INI AND NAO

stepX = parameters [2]

i=20

needAdjustDirection = true

stepFrequency = defaultStepFrequency
}

//Control the robot periodically
$(b,e) e:Gevery[time = 200]() A
//Control the robot to go ome step if the ball
//is detected
needAdjustDirection = reach_to_target (ip, port,
stepFrequency, robotPosition, stepX, targetTheta,
needAdjustDirection, useSensors)

i++
case {
//Reset parameters after three consecutive
//walking steps
i>3 {
stepX = 0.0
targetTheta = 0.0
stepFrequency = 0.0
}
%

The event @ballDetection (lines 20-31) is a user-defined event (similarly as in Section
, which uses image processing techniques to detect a ball with the help of video
cameras located in the forehead of Nao. This event has three input parameters: robotIP,
robotPort and checkingTime have the same meanings that the corresponding variables
ip, port and interval described before. Inside this event, when a ball is detected, we
call the INI function process_position to process positions of the ball and the robot, and
also specify the appropriate direction and velocity for the robot’s movement. The position
of the ball is attached to NAQ’s torso reference, and the calculation is done assuming an

average ball size (diameter: 0.06 m) (see more details in [Ald13al).

The event @every (lines 34-50) is applied to control the robot to move towards the
target every 200 milliseconds. The INI function reach_to_target is used to determine a
suitable velocity for the robot and to control the robot moving towards the ball. The robot
only moves when all needed parameters related to orientation, velocity and frequency are
specified. Fach call of that function makes one walking step. During execution, the robot

may adjust the direction and velocity to make them more well-suited since the ball may

168

6.2. TRACKING AN OBJECT WITH INI AND NAO

change its position. As a result, after each step when the robot comes to the new location,
we calculate the direction error. If the error for 6 exceeds the allowed threshold (e.g. 10
degrees), the variable needAdjustDirection becomes true and some adjustments will be
applied so that the robot walks in the correct way. We use the variable i to reset some
parameters. When i > 3, this means that the robot already walked for three successful
steps without checking again the position of the ball. In this case, by resetting some
parameters to zeros, the robot will stop temporarily. Then it waits to detect the ball again
to check whether during its displacement, the ball has moved to another place or not. If

yes, Nao gets the updated position of the ball, then continues to walk and reach it.

In our program, we synchronize the two events @ballDetection and Qevery in order to
avoid data access conflicts and unwanted behavior. For example, the robot is controlled to
walk to the ball only when all needed parameters are calculated. Besides, we want to ensure
that during the calculation of parameters, the robot is not moving so that the measured
numbers are correct and stable. Consequently, we add the notation for synchronization,
ie. $(...) before each event (line 20 and line 34). Additionally, the event @every is also

synchronized with itself so that each robot step does not overlap with others.

6.2.4 Testing Results, Evaluation and Future Work

When running in experiment, our program completed well the desired requirements.
The robot detected an orange ball in the space and then followed it. When the ball was
moved to another position, Nao also changed the direction and speed to reach the ball if

needed. A demonstration video can be watched on YouTube [Lel2].

We cannot apply our tool INICheck and SPIN to model-check the object-tracking pro-
gram for interesting properties because some of the implementation is hidden in INI func-
tions (written in Java) for controlling and interacting with Nao. If we can “extract” the
underlying prototype for Java code and represent it in INI, we can solve the problem, al-
though it is a non-trivial task. Besides, this limitation is also inherent in model checking

in general since applying the technique requires us to “abstract” (simplify) a program first.

For future work, we will extend our example by adding more features to our program

such as detecting and avoiding obstacles on the way to the target and control robot’s hands

169

6.2. TRACKING AN OBJECT WITH INI AND NAO

to catch the object. We also have a plan to develop more practical applications running on
Nao. For example, we can build a program which may recognize human voice commands,

and then control the robot to act according to the desired behavior.

170

Chapter 7

Conclusion and Future Work

Research on programming languages is considered as a central and fundamental topic
in computer science that concerns all aspects related to programming. As software continu-
ously evolves, programming languages also should evolve with an appropriate pace. Louden
et al. [LL11] stated that with new advances in computer technologies, “there will be room
for new languages and new ideas, and the study of programming languages will remain as
fascinating and exciting as it is today”. In the era of ubiquitous (pervasive) computing, to
build high-quality applications and systems to comfort human life, developers still seek for
better programming languages in terms of some major criteria like user-friendliness, robust-
ness, effectiveness, customization and easy-to-validate. Arising trends like multithreading,

intelligent computing, and smart environments also need to be taken into account.

In our thesis, we presented a new programming language called INI, which combines
both event-based and rule-based styles. The introduction of event designing, formal tech-
niques applied on context-aware and multithreaded programming, along with case studies
are important contributions of this thesis. Our language can be used to write many kinds
of applications, particularly those who need to take advantage of context-awareness and
concurrency such as M2M systems, robots, embedded systems, interactive applications,
monitoring and controlling systems, manufacturing systems, etc. Context information can
be captured and handled through various kinds of events (built-in and user-defined ones).
Events in INT may be executed in parallel either synchronously or asynchronously, depend-

ing on users’ requirements and specifications. Furthermore, with the event reconfiguration

171

mechanism, programmers can write self-adaptive software more easily to adapt to vari-
abilities in the execution environment. Along with events, rules may also be applied to
react to changes when some conditions are satisfied. The major advantage of using INI
is that it provides explicitly programmers with many advanced features while it keeps the
unnecessary complexities behind. For that reason, INI programs require less effort and
time to write and also are less error-prone. Additionally, INI comes with many formal
features that makes INI programs more reliable. INI enjoys a strong type system so that
all type conflicts are prohibited and unsound programs are excluded. The semantics of
INT is also clearly defined (see Chapter) to allow programmers know deeply about the
behavior of their programs. Besides, we also support programmers to take advantage of
model checking techniques to verify their INI programs in order to detect possible spec-
ification errors at an early stage during the development life-cycle. Our tool INICheck
can convert a non-trivial subset of INI to Promela, and then SPIN is applied to check
the desired properties or required constraints. Programmers can additionally check which
execution trace leads to the bugs (through the interactive mode) and get hints on how to
fix the problems. Therefore, the system quality is enhanced and risks that may happen
later are avoided. Briefly, besides general classical languages, programmers now have INI
and INICheck as novel and well-defined tools to build and validate context-aware reactive

applications, which may help them to reduce development and maintenance costs.

We applied our language in the scope of the MCUBE project, in which we developed
a M2M gateway. The task of the M2M gateway is to capture and send data through a
network with a schedule specified by the user. In our implementation, various kinds of
data like image or sound from different sensors are collected concurrently and transmitted
through the network at a given preferable time. The M2M gateway can be used in a
factory to collect working condition (e.g. light, toxic elements, security, etc.), on a field to
gather data about crop, or in a weather station to aggregate climate data (e.g. humidity,
air quality, temperature, wind velocity, light, etc.). Furthermore, we built an INT object-
tracking program running on the humanoid robot Nao. In this example, we control a
robot to detect a small ball in the space and follow it. When the ball moves to another

position, the robot automatically adjusts its direction and velocity in order to fulfill its task

172

properly. Object tracking and understanding can be applied for many purposes: security
and surveillance in important places, gesture recognition, analysis of traffic-flow, detection
of accidents, wild animals monitoring, etc. Those case studies justify the usefulness and
efficiency of INI for programming context-aware and event-based embedded systems that

become more and more popular in many activities.

When everything is taken into account, we see that INI satisfies the essential require-
ments for modern context-aware programming languages: an intuitive syntax, a well-
defined semantics, a strong type system, a support for concurrency, an ability for dynamic
behavior adaptation, and a support for automatic verification. These features allow pro-

grammers to build strong and flexible context-aware adaptive and reactive systems.

For the future work, we will improve the features of INI. Specifically, we will add more
primitives (e.g. built-in events/functions, data structures). For instance, we will add a
built-in Date type with + and — operators. Date literals will need to be specified, as
well as date formatting. For type consistency, dates may be seen as durations from an
initial date. In order to improve the reliability of INI programs, we can develop a fault-
tolerance mechanism (a literature review on this technique is found in [Sah06]) to handle
possible failures during adaptation execution. If a failure happens when our systems try to
adapt to the context, it is essential to recover from that failure so that the system state is
still stable. Furthermore, INI can be extended to support distributed systems [CDKB11].
Distributed event-based systems [MEP06, [HB10] focus on establishing a manner for event-
based components to work together through traditional notification (request/reply) mode.

Additionally, to support programmers to manage, organize, write and maintain INI code

easily, we will develop an [Integrated Development Environment (IDE)| for INT (based on

the open-source IDE named Eclipse [Thel3|) with basic features like project and file man-
agement, syntax highlighters, syntax check, templates for developing user-defined events,
debugging, and advanced features such as performance modeling and prediction (based on

analytic approaches) and benchmarks.

Moreover, we have a plan to improve our tool INICheck so that it can translate a larger

subset of INI to Promela, especially on how to model efficiently timing events. Formal

173

techniques will be used to prove that the semantics of an INI program and the translated
Promela code are equivalent. Other state-of-the-art static analysis techniques such as
code metrics [Prel0)|, partial evaluation [Zen08], data/control-flow analysis [KSK09, [SS13],
symbolic analysis [FS03| or abstract interpretation [Mas03] may also be applied to optimize
and enhance the performance and quality of INT programs. Possible scenarios are using
those techniques to detect programming mistakes such as the use of undefined variables,
out of bounds variables, unused variables and/or code. Checking these anomalies helps us

to eliminate potential subtle bugs.

\

e
/
N

Fuel monitoring Security surveillance

R Navigation

Q/\

Figure 7.1: An intelligent automotive system.

Last but not least, we will apply INT to more cases, especially in daily life and in-
dustry. Candidate domains are using INI for controlling smart devices in a smart home,
programming manufacturing robots or transportation systems. For instance, programmers
may develop an intelligent automotive system as illustrated in Figure [7.I] In intelligent
cars, the drivers do not need to bother too much about how to use and control properly
and effectively their vehicles since everything (e.g. essence level, speed, weather, location,
surrounding environment, etc.) can be automatically monitored and processed. Similarly,
people can enjoy comfortable lives in smart homes, where all equipment (e.g. televisions,

air conditioners, microwaves, refrigerators, etc.) know the way to please their owners,

174

especially for the children and the elderly. For example, a refrigerator stack may open au-
tomatically when someone approaches or a smart TV may recognize the changes of users’
feelings to broadcast appropriate channels/movies. In a factory, we can develop a lighting
control system that may adjust the artificial light sources depending on time and natural

lighting condition to save power.

175

176

Résumé

Introduction

Les applications réactives et sensibles au contexte sont des applications intelligentes
qui observent ’environnement (ou contexte) dans lequel elles s’exécutent. Elles adaptent,
si nécessaire, leur comportement en cas de changements dans ce contexte, afin de satisfaire
les besoins ou anticiper les intentions des utilisateurs. Les systémes sensibles au contexte
sont devenus ['un des concepts les plus passionnants de 'informatique ubiquitaire car ils
couvrent un large spectre de domaines d’application: systémes intelligents adaptatifs, sys-
témes de surveillance et de contréle, robots, applications mobiles, systémes de fabrication,

programmes interactifs, etc [Dar09].

Les premiers travaux sur I'informatique sensible au contexte sont dus & Schilit et al.
[SAWO94]. Depuis lors, ces travaux ont ét¢ étendus dans de nombreuses directions. Cepen-
dant, 'écriture d’applications réactives sensibles au contexte reste toujours difficile et exige
beaucoup de soin. Une des contraintes essentielles est qu’elles doivent étre a la fois robustes
et suffisamment souples pour étre reconfigurées et s’adapter & des changements de contexte
tels que: emplacement, connectivité, ressources, sécurité et préférences des utilisateurs. En
d’autres termes, elles demandent un mécanisme bien défini pour gérer des sources trés var-

iées d’informations venant du contexte.

Les langages généralistes comme Java, C/C++, .Net ou Python peuvent étre util-
isés pour programmer de telles applications, mais 'augmentation de la demande a induit
plusieurs travaux d’extension de ces langages pour faciliter leur développement. Citons no-
tamment ContextJ pour Java [AHHMI11] ou AwareC# pour C# |[RS06]. Néanmoins, ces

extensions restent peu pratiques pour les développeurs puisque les nouveaux concepts et

177

notations de I'extension sont mélangés avec ceux du langage de base. En d’autres termes,
I’adaptation n’est pas aussi intuitive et simple qu’elle le pourrait. En conséquence, écrire et
maintenir des applications sensibles au contexte demande encore beaucoup trop de temps

et d’efforts.

C’est pour permettre une écriture plus intuitive et directe que nous avons développé
dans cette thése un nouveau langage appelé INI. Pour observer les changements dans le
contexte et y réagir, INI s’appuie sur deux paradigmes: la programmation événementielle
et la programmation & base de régles. Evénements et régles peuvent étre définis en INT de
maniére indépendante ou en combinaison. En outre, les événements peuvent étre reconfig-
urés dynamiquement au cours de 'exécution. Un autre avantage d’INT est qu’il supporte la
concurrence afin de gérer plusieurs taches en paralléle et ainsi améliorer les performances
et la réactivité des programmes. Nous avons utilisé INI dans deux études de cas : une
passerelle M2M multimédia et un programme de suivi d’objet pour le robot humanoide
Nao. Enfin, afin d’augmenter la fiabilité des programmes écrits en INI, un systéme de ty-
page fort a été développé, et la sémantique opérationnelle d’INI a été entierement définie.
Nous avous en outre développé un outil appelé INICheck qui permet de convertir automa-
tiquement un sous-ensemble d’INI vers Promela pour permettre un analyse par model

checking a l’aide de linterpréteur SPIN.

Ce travail s’intégre dans le cadre d’un projet FEDER : MCUBE (Multimedia 4 Machine

R

2013". Ce projet vise a fournir un sytéme (framework et langage de programmation)
Machine-2-Machine (M2M) générique pour des applications multimédia, impliquant par

exemple le recueil et 'analyse de sons et images (voir la figure ci-dessous).

Paradigmes de programmation

Programmation a base de régles

La programmation & base de régles existe depuis de nombreuses années et ses concepts
fondamentaux sont présents dans un grand nombre de domaines de 'informatique. Une

régle est constituée de deux parties: une prémisse (ou contrainte ou garde) et 'action

178

M2M gateway Internet

-! M2M
operator

T

M2M platform

Architecture générale du projet MCUBE.

correspondante. Une régle peut étre vue comme une instruction ou commande qui ne
s’applique que dans certaines situations, elle ressemble en ce sens a la construction if-then
|[HiI03]. Cependant l’évaluation d’une régle, plus exactement de sa prémisse, ne se limite
généralement pas a true/false ; elle se rapproche en de nombreux points du filtrage par

motif (pattern matching) employé dans les langages fonctionnels.

La programmation a base de régles est souvent utilisée pour le développement d’applications
intelligentes réactives, de systémes experts ou de systémes autonomes. Les régles sont
également bien adaptées pour la programmation de systémes sensibles au contexte, car
elles permettent d’exprimer naturellement la dépendance d’une action au contexte. De
nombreux langages a base de régles ont été développés, citons notamment CLIPS [CLI13]
ou Jess [FH12|. Ceux-ci sont relativement proches les uns des autres, les variations, outre la
syntaxe, se situent principalement au niveau de 'ordre d’évaluation des régles: il peut étre
séquentiel ou arbitraire, ce qui change le comportement du programme lorsque plusieurs

régles sont applicables en méme temps.

Programmation événementielle

La programmation événementielle est un paradigme de programmation ou le flux d’exécution
est déterminé par des événements, qui sont gérés par des gestionnaires d’événements ou

callbacks. Un callback correspond aux instructions qui sont appelées lorsque ’événement

179

(c’est-a-dire quelque chose d’important) arrive [DZK™02|. Les événements sont générale-
ment utilisés pour se déclencher périodiquement ou pour surveiller les changements qui se
produisent dans 'environnement. Ainsi, toute forme de surveillance peut étre considérée
comme compatible avec la programmation événementielle [MFPOG], et les exemples sont
nombreux : surveiller le niveau d’énergie d'un systéme, la santé d’un patient, observer le

comportement des utilisateurs, suivre la position d’un objet, etc.

Au cours des derniéres années, la programmation événementielle s’est imposée comme
méthode efficace pour 'interaction et la collaboration dans le cadre de I'informatique ubig-
uitaire. Ce paradigme de programmation demande généralement moins d’effort que la
programmation classique et peut conduire & un logiciel plus robuste [DZKT02]. Tl est
particuliérement adapté & de nombreux types d’applications: applications M2M, systémes
embarqués, robotique, applications réactives sensibles au contexte, etc. En conséquence,
plusieurs langages de programmation (ou extensions de langages) événementielle ont été
développés réecemment: EventJava [EJ09| est une extension de Java, tandis que EventScript
[CKO8] et UrbiScript [Gos11] sont des langages autonomes. Mais ces langages restent lim-
ités. Tout d’abord, les événements ne sont pas définis de maniére intuitive et directe mais
mélangés & d’autres concepts et éléments du langage. De plus, ces langages ne permet-
tent généralement pas la synchronisation d’événements, un point essentiel lorsque plusieurs
événements sont déclenchés simultanément. Enfin, ils ne permettent pas non plus de mod-
ifier dynamiquement le comportement des événements afin de s’adapter aux changements
de l'environnement d’exécution. Autrement dit, un événement a toujours un comporte-
ment figé a la compilation, qui n’est pas forcément le plus adapté & toutes les situations

données.

INI : Présentation générale

INT F_‘-] est un langage de programmation développé a 'ISEP depuis 2010 [LP12] et dont
Pinterpréteur s’exécute dans une machine virtuelle Java (JVM). Cette JVM nous permet
d’avoir un environnement de développement puissant et flexible, et adapté & des langages

autres que Java [Ghol0]. Bien qu’INT soit lié a la JVM, sa syntaxe et sa sémantique ne

'Le nom INT représente un événement (le N) passant entre deux interfaces (les I).

180

sont pas identiques a celles de Java.

Un programme INI est tout d’abord composé de fonctions. Ces derniéres combinent
événements et expressions logiques (utilisées pour spécifier des conditions d’activation)
lies & une action (une liste d’instructions). Ainsi, la caractéristique principale d’INT est
I'utilisation conjointe d’événements et de régles qui peuvent étre définis soit indépendam-
ment soit en combinaison. Les événements s’exécutent en parallele de fagon synchrone ou
asynchrone, en fonction des contraintes, et il est possible de redéfinir leur comportement
de maniére dynamique pendant 'exécution. Il est également possible de développer des

évenements dans d’autres langages comme Java ou C/C++.

INT permet aussi des constructions plus usuelles, telles que les expressions arithmé-
tiques/logiques, les dictionnaires, les listes et ensembles d’expressions ou l'instruction con-
ditionnelle case (similaire & Uinstruction if). Enfin, INT est un langage typé, dont les

types sont inférés & la compilation.

Le code suivant est un exemple de fonction INI qui calcule la factorielle d’un nombre

donné en argument. La fin d’une instruction est indiquée par un saut de ligne.

// Calcul de la factorielle de n avec INI
function fac(mn) {
@init () {
f=1
i=1
¥
i <= n {
f=fxi++
}
@end () {
return f

}

Les événements dans INI

Evénements natifs INI permet de spécifier tous les types d’événements (déroulement
du temps, changement d’état, phénomeénes physiques). A chaque événement du corps de
la fonction correspond un callback de gestion (ou actions), déclaré au méme endroit. Ce
callback est invoqué a chaque fois que I'événement se produit (I'exécution du callback

représente U'instance de I’événement), par défaut de maniére asynchrone. Syntaxiquement,

181

un événement en INI commence par @, immédiatement suivi de sa sorte, puis des paramétres
d’entrée et de sortie correspondants. Enfin, vient le callback de I’événement (I’action), entre

accolades { ... }.

Les paramétres d’entrée sont des parameétres de configuration servant & ajuster le com-
portement, tandis que les paramétres de sortie sont le nom des variables auxquelles le
callback affectera des valeurs. Ils peuvent étre considérés comme les mesures associées a
I'occurrence de I’événement. Ces variables, de méme que toute variable INI, ont une portée
lexicale qui s’étend & tout le corps de la fonction. Les deux types de paramétre sont op-
tionnels. De plus, un événement peut aussi étre lié & un identifiant, de facon & pouvoir y
faire référence (e.g. a des fins de synchronisation ou de reconfiguration). Par exemple,
I’événement e:@sampleEvent [iParameterl = v1] (oParameterl,oParameter2) est iden-
tifié par e, paramétré par iParameterl qui a pour valeur vl, et posséde deux paramétres
de sortie, qui seront affectés aux variables oParameterl and oParameter2, utilisables &

n’importe quel endroit de la fonction, comme spécifié ci-dessus.

Pour permettre aux programmeurs d’écrire du code plus facilement, INT est native-
ment doté de plusieurs sortes d’événements communs: @init() (sert au tout début de
la fonction, pour initialiser des variables) @end () (appelé lorsque plus aucun gestionnaire
d’événement n’est en train d’étre exécuté et que la fonction est sur le point de se terminer),
@every[time:Integer] () (se déclenche périodiquement, comme spécifié par son entrée,
en millisecondes), Qupdate [variable:T] (oldValue:T, newValue:T) (invoqué lorsque la
valeur de la variable passée en parameétre d’entrée change) et @cron[pattern:String] ()
(planifie Pappel du callback, grace a son paramétre d’entrée correspondant a un motif

CRON).

Evénements définis par I'utilisateur Les programmeurs peuvent aussi développer (en
Java ou en C/C++) leurs propres sortes d’événement. Cette procédure, expliquée dans le
corps de la thése, ne sera pas abordée ici faute de place. Nous nous contenterons de dis-
cuter I'intégration des événements correspondants dans les programmes INI. C’est de cette
maniére qu’on traite par exemple les informations fournies par des capteurs. Pour illustrer

notre propos, imaginons un programme qui doit récolter des informations provenant de cap-

182

-

1

2

oS © 0 N O ot s W

teurs/appareils sondant un patient et mesurant des parameétres vitaux tels que température

corporelle, pression sanguine, fréquence cardiaque, etc.

Dans notre programme INI, nous pouvons définir des événements séparés prenant en
charge chacune de ces taches. Par exemple, nous pouvons définir I’événement @bloodPres-
sureMonitoring qui observera la pression sanguine avec une période définie par son parametre
d’entrée bpPeriod (en heures). De plus, son parameétre de sortie, pressure, indique la
valeur courante de la mesure de pression. Dans le callback de I’événement de I’exemple ci-
dessous, grace a la construction case nous avons défini des comportements qui dépendent
de la valeur de la pression, tels qu’alerter les infirmiéres/meédecins si elle est trop impor-
tante. Les autres événements sont définis de maniére similaire, et tous ceux-ci s’exécutent

en paralléle de maniére a pouvoir effectuer plusieurs tiches en méme temps.

// Un programme INI de telesurveillance de sante
function main () {

b:@bloodPressureMonitoring [bpPeriod = 2] (pressure) {
case {
pressure > ... {...}
default {...}
}
}
t:Q@temperatureMonitoring [tempPeriod = 1] (temperature) {...}
}

Synchronisation et reconfiguration des événements Par défaut, et & Pexception
des événements @init et @end, les événements INI sont exécutés de maniére asynchrone
(c’est-a-dire toutes les instances peuvent s’exécuter en concurrence). Cependant, certains
scénarios d’exécution peuvent demander & un événement e0 d’étre synchronisé sur d’autres
événements el, ..., eN. Cela veut dire qu'avant de pouvoir s’exécuter, 'instance de
I’événement synchronisant e0 doit attendre que tous les threads correspondant & des in-
stances des événements cibles soient terminés. Le mécanisme de synchronisation devient

nécessaire lorsque, par exemple, 'action de €0 interfére avec ’action d’autres événements.

Notons aussi que les événements cibles peuvent aussi étre synchronisés avec e0. Une
synchronisation croisée est synonyme d’exclusion mutuelle: deux instances de deux événe-

ments mutuellement synchronisés ne peuvent pas étre exécutés en méme temps.

Les changements de I’environnement peuvent de plus étre gérés a travers le mécanisme

183

0o N O o s W N

de reconfiguration d’événements. Essentiellement, la reconfiguration d’événements consiste
a modifier la valeur des parameétres d’entrée d’un événement donné. Pour cela, il faut ap-
peler la primitive reconfigure_event (eventId, [inputParaml = valuel, inputParam2

= value2,...]). Les programmeurs sont aussi autorisés i arréter et redémarrer les événe-

ments avec les primitives stop_event ([eventIdl, eventId2, ...]) et restart_event(
[eventIdl,eventId2, ...]). Typiquement, un arrét est recommandé avant une recon-
figuration.

Les régles dans INI

Une régle dans INT se définit par la donnée d’une expression logique (la garde) et de
I’action correspondante. Quand 'expression logique de la régle est évaluée a true, I’action

est déclenchée.

Considérons de nouveau notre systéme de surveillance santé.

function main () {

@bloodPressureMonitor [bpPeriod = 2] (pressure) {...}
@temperatureMonitor [tempPeriod = 1] (temperature) {...}
temperature > TO && pressure < PO {

// Adction d’urgence

}

La régle des lignes 5-7 est déclenchée lorsque la température du patient et sa pression

sanguine atteignent les seuils donnés.

Sémantique

Notations et symboles

Comme mentionné plus haut, chaque fonction en INI contient des régles et des événe-
ments, ces derniers s’exécutant en paralléle dans I’environnement méme de la fonction. Cela
a aussi pour conséquence que les appels de fonctions seront évalués en paralléle (puisqu’elles
peuvent étre appelées par des événements). Nous reflétons cette structure complexe dans
la sémantique, en la dotant de deux niveaux: au niveau supérieur nous trouvons ?, le con-

texte d’exécution global. ? est composé de plusieurs contextes d’exécution de fonctions

184

(décrits ci-dessous) qui sont évalués en paralléle, et notés Fy || F2 || ... || Fw. Chacun de

ces contextes évalue un appel de fonction.

Nous adjoignons & ces w contextes d’évaluation de fonction un générateur d’instances
d’événements E. Celui-ci peut étre considéré comme une boite noire se caractérisant
par son interaction avec ?: E est en charge de récolter les parameétres d’entrée lors de
I’enregistrement ou de la reconfiguration d’un événement, de le lier & un contexte de fonc-
tion particulier (celui dans lequel est défini ’événement). 11 est aussi chargé de déclencher
Pévénement lorsque les conditions requises (dépendant a la fois des parameétres d’entrée et
de sortie de I’événement) sont satisfaites. Enfin, lorsque I'événement a été déclenché et est
exécutable (par exemple pas de conflit de synchronisation, ou d’événement non terming,
voir ci-dessous), E calcule la valeur des paramétres de sortie, les lie aux variables, et envoie
le callback gestionnaire de I’événement dans le pool de threads adéquat du contexte de
fonction F; auquel 'événement a été lié lors de son enregistrement.

Ces éléments sont représentés dans la figure ci-dessous.

([R, i,j) o Of, [{Py, T1}, s {Pns Tn}])

\ J

@every[...]0

@ballDetection]...](...)

Contexte d’exécution et mécanisme de génération d’événements dans INT.

Les contextes d’évaluation de fonction Fj sont composés de:

e [R,i,j], qui sert a évaluer les régles. i est 'indice de la régle dont la condition de
garde doit étre examinée, tandis que j compte le nombre de régles évaluées comme

non applicables (condition de garde fausse) depuis le dernier succes.

e Une instruction remplace [R, 7, j] lorsque le corps d'une régle est en cours d’évaluation.

185

e o/ est I'environnement des variables et des paramétres de la fonction. C’est une
table d’associations Variable Name — Value. 1l comprend les variables locales a la

fonction ainsi que ses parameétres.

° 0} est 'environnement de fonctions, c’est une table d’association: FunctionName —
¥, ou ¥ représente ’ensemble des triplets d’abstraction de fonction: un environ-
nement pour les variables o, la liste R des régles du corps de la fonction, et la liste
? des événements (voir ci-dessous). Notons que Uiz est en réalité global, car il ne

dépend pas de F; (absence de création dynamique de clotures, par exemple).

e un couple {P,i, T,i} pour chacun des événements du corps de la fonction. P,i est le
pool qui contient tous les threads correspondants aux instances de e déclenchées par
E dont ’exécution n’est pas terminée. T]i est un booléen indiquant e est terminé.
C’est un état qui est atteint aprés appel a stop_event, et dans ce cas, aucun nouveau
thread ne peut étre ajouté a P,i ; les anciens seront autorisés & terminer. Dans
chaque thread, les instructions sont évaluées de la méme maniére que celles du corps
des régles (le corps des événements et des régles ne contenant que des instructions).

Nous notons @lp I’ensemble des pools de threads d’une fonction.

Nous définissions ¥ = [0y, 0, ©p] et ’appelons aussi, par abus de langage, le contexte
d’exécution de fonction, ou plus simplement le contexte. Ainsi, oy est I'ensemble des

contextes abstraits d’exécution de fonction du programme.

L’évaluation d’une expression expr sera donc notée (expr,X). Par souci de simplicité,
Nnous SUPPOSErons que ? contient un seul contexte de fonction, et nous laisserons E implicite

lorsqu’il n’interagit pas avec ?, ce qui est le cas la plupart du temps.

Enfin, notre sémantique est & la fois une sémantique & grand pas, auquel cas | est
utilisé et indique que nous évaluons un contexte vers une valeur, et une sémantique a petit

pas, auquel cas = est utilisé et indique une transition entre états.
Sémantique des régles

Chaque régle comporte une condition de garde le qui est une expression logique associée

a une action (le corps, une liste d’instructions). Lorsque le est évalué a true, l'action est

186

évaluée. Les regles sont testées séquentiellement et en boucle, en commencant par la
premiére, jusqu’a ce que plus aucune régle ne soit applicable. En appelant r le nombre

total de régles, la sémantique est donc la suivante:

e [’évaluation commence par la premiére régle:

(> Z) = ([R, 0, 0], X)
ou “>” indique le début de I’évaluation du corps de la fonction.

e Aucune action n’est effectuée lorsque la condition de la régle s’évalue en false ; on

passe directement a la régle suivante:

(le;,) | (false, X)
(R, i, j], &) = ([R, (i+1)modr, j+1], ¥)

ol “mod” représente I'opération “modulo” qui donne le reste de la division euclidienne.

e [’action est exécutée lorsque la condition de la régle s’évalue en A true ; on passe

ensuite a la régle suivante:

(lej,) | (true, ') (body;, ¥') = (e, X")
(R, i, j], ¥) = ([R, (i+1) modr, 0], ¥"])

ol € représente l'intruction vide.

Sémantique des événements

Chaque instance d’événement e;, a pour finalité de s’exécuter dans le pool de threads
P correspondant. Les instructions de ’action E A correspondante (voir ci-dessous) y seront
évaluées de la méme maniere que 'action des régles. Notons aussi que plusieurs instances
du méme événement peuvent étre évaluées en méme temps. Une instance d’événement est

composée des parties suivantes:

e L’identifiant explicite (externe) de 'événement, eid, qui apparait dans le programme
INT (s’il est deéfini), et auquel les programmeurs peuvent faire référence (pour agir
sur l’événement & travers les trois fonctions stop_event, reconfigure_event ou

restart_event). De plus, chaque événement posséde aussi un identifiant implicite

187

(interne), servant principalement a gérer les pools de threads. L’utilisateur ne peut
y accéder, et il est défini seulement en ’absence d’identifiant externe (événement
anonyme). Ainsi, un événement a toujours un identifiant soit externe, soit interne,
mais jamais les deux en méme temps. Nous assimilerons donc ces deux identifiants

a eid.
e La sorte de I'événement (e.g. @every, @ballDetection, etc.).
e La condition de garde le, si elle existe.
e La liste L de tous les identifiants des événements sur lesquels e;,s¢ €st synchronisé.

e Les parameétres: I’ensemble des noms des paramétres d’entrée I P = ipy,ips,--- ,ipp
et les valeurs correspondantes iv1,ive, - - - , 10p; 'ensemble des noms des parametres

de sortie OP = op1,0pa, - - - ,0pq et les valeurs correspondantes ovy, ova, - -+ , 0vq.

e L’action EA (quin’est pas encore en cours d’exécution), qui est une séquence d’instructions.
C’est le callback gestionnaire de I’événement, et c’est lui qui se chargera de réagir &

l'occurrence de ’événement.

e La valeur booléenne T, , cid, qui indique si I’événement est terminé ou non. Par
défaut T, , cid vaut false. Un appel a stop_event ou & restart_event sur e;,.eid

change la valeur de T}, 4t.¢iq €n true ou false, respectivement.

Toutes ces composantes, & '’exception de T, _, ¢iq forment le callback Ce,, , cid-

Nous notons RE l'ensemble des instances d’événements exécutables d’un programme
INI. Par exemple, si une balle est détectée par la caméra, 'événement @ballDetection

génére une instance exécutable. RE fait partie intégrante de E.

Comme il a été dit plus haut, E est le générateur d’instances d’événements, et posséde

les caractéristiques suivantes:

e E prend en charge l'enregistrement des événements et la génération des instances
correspondants lors de 'occurrence de ’événement “physique”. Il place cette instance

dans RE (cf. point suivant).

188

e [E contient donc ’ensemble des instances exécutables RE qui correspond aux événe-
ments qui ont physiquement eu lieu, mais dont ’action n’est pas encore en cours
d’évaluation. En particulier, les instances d’événements de RE seront supprimées de
RE seulement aprés que ’action EA aura été envoyée au pool de threads correspon-
dant, ou bien si la condition de garde le s’évalue & false, ou encore si I’événement

est terminé.

Le générateur d’événements E interagit avec le reste du programme INI & travers trois
mécanismes: a) les appels de fonction, qui enregistrent aupres de E les événements déclarés
dans le corps de celle-ci. De maniére duale, lorsqu’une fonction est terminée, les événe-
ments correspondant sont désenregistrés ; b) le déclenchement d’événements et ¢) 'arrét,
la reconfiguration et le redémarrage d’événements. (a) et (c) sont des actions du contexte

? sur E, tandis que (b) s’effectue dans le sens inverse.

Il y a trois cas possibles lors du traitement de e;,q:

e I’événement e;,q.€id est terminé. Dans ce cas, l'instance ne doit pas étre exécutée

et elle est retirée de RE.

inst € RE T, , eid = true
E (cur, ¥) = E' (cur, ¥)

oll cur représente soit ’expression soit la régle en cours d’évaluation.

e au moins l'un des pools de threads des événements sur lesquels e;,s est synchronisé
n’est pas vide. Dans ce cas, e;,s ne doit pas étre exécuté immeédiatement mais doit

étre conservée. Autrement dit, [E doit attendre que tous les pools soient vides.

einst € RE 3k € ejpst.- L Py 7& 0
E (cur, ¥) = E (cur, ¥)

e autrement, e;,s est exécutée.

inst € RE Ty, ., eia = false Yk € ejpst.L Pp= 0
(cur, X) = (cur, X')

avec X/ = [o], o}, [P, T1,....; P, ;.cia U Thread(einsi.EA), T..,,...]] et ou Thread

(einst-E'A) est un nouveau thread créé pour exécuter ’action de ’événement.

189

Analyse statique

Systéme de types

Types natifs et types définis par I'utilisateur INI posséde 5 types natifs pour les
nombres (Double, Float, Long, Int, et Byte), un type Char et un type Boolean. De plus,
INT est doté d'un type dictionnaire polymorphique: Map(K, V), ou K est le type des clés,
et V le type des valeurs. Les listes sont des instances de ce type dictionnaire, avec K = Int
(en réalité, il s’agit donc d’un ensemble indexé) et sont aussi notées T™ (sucre syntaxique).

Le type String est simplement Char*.

L’ensemble des types numériques de INI est ordonné par la relation >. En partic-
ulier, cet ordre doit interdir d’assigner des nombres plus génériques & des nombres moins

génériques: Double > Float > Long = Int >~ Byte.

Au dela de ces type natifs, les programmeurs peuvent définir leurs propres types en
utilisant le mot clé fype, suivi du nom du type commencgant par une majuscule. Ainsi, il est

possible de définir un type Person en écrivant: type Person = [name:String, age:Int].

Inférence de types INI utilise I'inférence de type ce qui permet de définir les types de
maniére implicite. Ainsi, I'instruction i—0 associe & i le type Int. Sila variable i est utilisée
avec un autre type, par exemple avec i=0.1 qui associe le type Float & i, une erreur de
typage est déclenchée. De fagon similaire, I'utilisation des crochets [| définira automatique
une variable de type Map: 'expression Ifi] indique & INT que ! est de type Map(Int,T) (i.e.

une liste dont les éléments sont de type T, ou T représente n’importe quel type).

La plupart des types d’INI sont calculés par le moteur d’inférence qui s’appuie sur
lalgorithme d'unification de Herbrand, tel que décrit par Robinson dans [Rob65]. Ce
moteur prend en compte les fonctions polymorphiques, les types de données abstraits (ou
types algébriques) et le sous-typage interne lié & > pour les types numériques. Pour en

savoir plus sur le typage dans INI, se reporter & la documentation de référence [LP12].

190

Vérification de programmes INI par model checking

Afin d’aider & détecter des erreurs dans un programme INI, nous avons développé
I'outil INICheck, qui convertit automatiquement un sous-ensemble d’INI en Promela, le
langage utilisé par le model checker SPIN. Promela est un langage de modélisation et pas
d’exécution, toutes les fonctionnalités d’INI ne peuvent donc pas étre converties. INICheck
génere le code Promela a partir de PAST (Abstract Syntax Tree) d’un programme INI. Plus
spécifiquement, ’AST est parcouru et chaque construction est traduite vers la structure

Promela correspondante. Notre outil posséde les caractéristiques suivantes:

e l'ensemble des régles et des événements natifs peut étre traduit,

e la structure des actions associées aux événements définis par l'utilisateur est con-

servée,

e le mécanisme de synchronisation des événements est converti.

INICheck peut étre utilisé pour plusieurs buts : détection de boucle infinie, de code
inatteignable, ou encore vérification de propriétés ou de contraintes exprimées en LTL
(logique temporelle linéaire). La figure ci-dessous présente une vue d’ensemble de notre

approche.

Etudes de cas

Une passerelle M2M multimédia

Nous avons utilisé INT dans le cadre des systémes M2M (Machine to Machine), et plus

précisément pour une passerelle multimédia dont le comportement est représenté ci-dessous.

Le programme que nous avons développé fonctionne en deux étapes:

1. Collecte de maniére réguliére des données multimédia (images, sons, etc.) obtenues
par des capteurs ou des périphériques. Ces opérations sont gérées par les événements

el et e2 du programme ci-dessous.

191

INI program

[INI parser]

INICheck INI evaluator
(Promela generator)

Linear
Temporal
Logic (LTL) [=———~
formulas

Checking
result

Vue d’ensemble du model checking d’un programme INI.

@!—}!D QE

Comportement de la passerelle multimédia.

2. Transmission de ces données au serveur via le réseau a des fins de stockage et autres
traitements coliteux en ressources. Cette transmission est gérée par I’événement

Q@cron.

1// Une passerelle M2M en INI
2function main () {

3 @init () {

4 dataFolder = file("data")

5 case {

6 !file_exists(dataFolder) { mkdirs(dataFolder) }
7 }

8 zipFile = file("data.zip")

192

9 keepParentFolder = true

10 }

11 // Deuxr evenements capturant des images et du son

12 el:Qevery[time = 60000] () A

13 exec ("gphoto2,,--capture-image-and-download, --filename "
14 + "data/img" + time() + ".jpg")

15 }

16 e2:Qevery[time = 30000] () {

17 exec ("arecord, -d,30,-f,cd, " + "data/sound" + time ()
18 + ".wav'")

19 }

20 // Plantification du telechargement FTP des donnees

21 @cron[pattern = "0,09-18,*,*,1-5"]1(0) {

22 stop_event ([el,e2])

23 zip (dataFolder ,zipFile)

24 upload_ftp("server_address", "user_name",

25 "password", zipFile, to_string(time()) + "data.zip")
26 delete_file(zipFile)

27 delete_folder (dataFolder , keepParentFolder)

28 restart_event ([el,e2])

29 }

30 }

Suivre un objet avec NAO

La figure ci-dessous présente les positions relatives du robot NAO et de la balle qu’il
doit suivre. Dans la zone 1, NAO est loin de la balle et doit s’en rapprocher ; dans la zone
3, NAO est trop proche de la balle et doit reculer ; enfin, dans la zone 2, NAO est a bonne

distance et peut interagir avec la balle.
La figure ci-dessous présente le comportement général de notre programme.

Nous avons également utilisé INI pour contréler un robot humanoide de type NAO. Ce
programme permet au robot de détecter une balle (événement b), puis de se diriger vers
elle (événement e). Pendant I'exécution du programme, la balle peut étre déplacée, et le

robot modifie alors la direction et la vitesse de son déplacement.

1 function main () {

// Initialisation

@init () {
forwardThreshold = 0.5
backwardThreshold = 0.3
interval = 1000
stepFrequency = 0.0
defaultStepFrequency = 1.0
ip = "nao.local"

© 0 N D ot A W N

193

}

backwardThreshoid

Zone 1l

Positions relatives du robot NAO et de la balle & suivre.

port = 9559

useSensors = false
targetTheta = 0.0
robotPosition = [0.0,0.0,0.0]
stepX = 0.0
needAdjustDirection = false
i=20

// Detection dans l’espace d’une balle
$(e) b:ballDetection[robotIP = ip, robotPort = port,

checkingTime = interval](ballPosition){

// Calcul des parametres, retournes dans un tableau

parameters = process_position(ip, port, ballPosition,
forwardThreshold, backwardThreshold, useSensors)
targetTheta = parameters [0]

robotPosition = parameters [1]

194

No ball is

detected

Initialize tracking '\ Get ball's
event N position
J Aballis k

detected
Get robot’s
position

Compute parameters
(orientation and distance)

distance < backwardThreshold <
backwardThreshold distance <
) forwardThreshold
—‘ Go backward ,|< N >©
. Target
distance > ke

}

forwardThreshold

Compute
Nao’s velocity

(Go forward to

the target

Diagramme d’activité du programme de suivi de balle.

stepX = parameters [2]

i =20

needAdjustDirection = true
stepFrequency = defaultStepFrequency

// Controle periodique du robot
$(b,e) e:Qeveryl[time = 200]() {

// avancer de un pas st une balle est detectee
needAdjustDirection = reach_to_target (ip, port,
stepFrequency, robotPosition, stepX, targetTheta,
needAdjustDirection, useSensors)
i++
case {
// Remise a zero des parametres apres
// trois pas consecutifs
i>3 {
stepX = 0.0
targetTheta = 0.0
stepFrequency = 0.0

47
48
49
50

}

Conclusion et travaux futurs

Cette these a permis de développer un nouveau langage de programmation appelé INI
pour les applications réactives et sensibles au contexte. INI s’inspire des paradigmes de
programmation événementielle et & base de régles mais étend les approches déja proposées,
notamment avec un mécanisme de reconfiguration répondant au besoin d’adaptation dy-
namique a 'environnement. Les événements s’exécutent d’autre part en paralléle (de fagon
asynchrone ou synchrone) afin d’accélérer I'exécution et d’améliorer les performances du
programme. Un ensemble d’événements prédéfini est proposé, mais il est également possi-
ble d’écrire ses propres événements en Java ou C/C++. L’apport de la programmation a
base de régles est essentiel car elle permet de définir simplement les conditions & satisfaire

pour déclencher les actions associées.

Une des contributions les plus importantes de la thése a été d’appliquer des méthodes
formelles a INI, langage utilisant massivement les threads. Un tel travail donne clairement
un avantage qualitatif & INI dans le domaine de la programmation sensible au contexte,
dans celui de la programmation par événements et, dans une moindre mesure, dans celui de
la programmation par threads. Ainsi, nous avons entiérement défini la sémantique opéra-
tionnelle du langage. Son originalité est d’étre construite & deux niveaux, et d’avoir combiné
une sémantique & petits et & grands pas. Cette formalisation trés précise de 1’évaluation
d’un programme peut en particulier étre utilisée comme une référence par les program-
meurs, mais aussi a des fins de spécification ou de vérification. Nous avons également
développé INICheck, un outil permettant de traduire automatiquement un programme INT
en Promela afin de vérifier ce programme avec le model checker SPIN. Cet outil permet

ainsi d’améliorer la confiance du programmeur sur le code et son comportement.

Enfin, INT a été utilisé dans deux cas d’application réels: une passerelle multimédia

M2M et un programme de suivi d’objet fonctionnant sur le robot humanoide Nao.

196

Dans le futur, nous envisageons d’étendre INI pour supporter les systémes distribués,
une des difficultés étant alors de définir comment les événements pourraient agir entre eux
via, par exemple, le mode traditionnel de notifications (request/reply). Par ailleurs, nous
pensons développer un mécanisme de récupération du contexte de sorte que lorsqu’une
reconfiguration échoue, le systéme revienne & 1’état stable précédent. INICheck doit étre
amélioré afin de convertir un sous-ensemble plus grand de INT vers Promela, la question se
pose en particulier sur la fagon de modéliser efficacement les événements et leur synchroni-
sation. Il est également nécessaire de prouver notre conversion, autrement dit de montrer
que le programme INT et sa traduction en Promela ont des sémantiques équivalentes. Il est
aussi possible d’améliorer, ou d’augmenter, les analyses statiques et dynamiques qui sont
réalisées afin d’accroitre la fiabilité des programmes INI. Finalement, nous réfléchissons a
des applications plus concrétes pour évaluer au mieux les capacités d'INT (par exemple,

pour la fabrication de programme ou les systémes automobiles).

.';'l"" f b _— E

|

R N /Navigation
Q:'~
"! .-- " ...I
?\? FRA
Fuel monitoring Security surveillance

Un systeme automobile intelligent.

Mots-clefs: Programmation événementielle, Programmation & base de régles, Applica-
tions sensibles au contexte, Smart Computing, Programmation de robots, Programma-

tion concurrente, Programmation embarquée, Vérification et validation, Analyse statique,

197

Model checking.

198

Bibliography

[Abd01]

[AHHT 09

[AHHM11]

[AHM*10]

[Ald13a]

[Ald13b]

[AT112]

Slim Abdennadher. Rule-based constraint programming: Theory and

practice, 2001. 55|

Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and
Michael Perscheid. A comparison of context-oriented programming lan-

guages. In International Workshop on Context-Oriented Programming,

COP 09, pages 6:1-6:6, New York, NY, USA, 2009. ACM.

Malte Appeltauer, Robert Hirschfeld, Michael Haupt, and Hidehiko Ma-

suhara. ContextJ: Context-oriented programming with Java. Computer

Software, 28(1):272-292, 2011.

Malte Appeltauer, Robert Hirschfeld, Hidehiko Masuhara, Michael
Haupt, and Kazunori Kawauchi. Event-specific software composition in
context-oriented programming. In Proceedings of the 9th international

conference on Software composition, SC’10, pages 50-65, Berlin, Heidel-

berg, 2010. Springer-Verlag.

Aldebaran Robotics. Nao software documentation.

http://www.aldebaran-robotics.com/documentation/, 2013. [L63|

[166}, [167 [L68

Aldebaran Robotics. Nao’s homepage.
http://www.aldebaran-robotics.com, 2013. [163]

TinyOS Alliance. TinyOS homepage. http://www.tinyos.net/, 2012.

199

http://www.aldebaran-robotics.com/documentation/
http://www.aldebaran-robotics.com
http://www.tinyos.net/

BIBLIOGRAPHY

[Alm11]

[Als12]

[Amal2]

[Amz10]

[Aud13]

[Auy06]

[BAOS]

[BA10]

[Bai05]

[Bak06|

[Bar05]

J.B. Almeida. Rigorous software development: An introduction to pro-
gram verification. Undergraduate Topics in Computer Science. Springer

London, Limited, 2011.
Alsa group. Alsa. http://www.alsa-project.org/, 2012.

Lucas Amador. Drools developer’s cookbook. Packt Publishing, January

2012.

Amzi! Inc. Expert systems in Prolog.
http://www.amzi.com/ExpertSystemsInProlog/xsiptop.php, 2010.
5%

Samuel Audet. JavaCPP. http://code.google.com/p/javacpp/, 2013.
[73l

Tak Auyeung. Robot programming in C.
http://www.drtak.org/teaches/ARC/cisp299_bot/book/book.pdf,
2006. 162

Mordechai Ben-Ari. Principles of the SPIN Model Checker. Springer-
Verlag London, 2008. [[31} [[33} [T35} [[36} (138} [[23} [[7

Mordechai (Moti) Ben-Ari. A primer on model checking. ACM Inroads,
1:40-47, March 2010.

Jean-Christophe Baillie. URBI: Towards a universal robotic low-level
programming language. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS’05), pages 820825,
2005.

Steffen Van Bakel. Applied operational semantics, 2006.

Jakob E. Bardram. The Java context awareness framework (JCAF) -
A service infrastructure and programming framework for context-aware

applications. In Proceedings of the Third international conference on

200

http://www.alsa-project.org/
http://www.amzi.com/ExpertSystemsInProlog/xsiptop.php
http://code.google.com/p/javacpp/
http://www.drtak.org/teaches/ARC/cisp299_bot/book/book.pdf

BIBLIOGRAPHY

[BBF10]

[BBF+12]

[BCC+07]

[BCHMO9]

[BD04]

[BDHN10]

[BEH12]

[Bek0g]

Pervasive Computing, PERVASIVE’05, pages 98-115, Berlin, Heidelberg,
2005. Springer-Verlag.

B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
and P. Schnoebelen. Systems and software verification: Model-checking

techniques and tools. Springer Publishing Company, Incorporated, 1st

edition, 2010.

Bernard Berthomieu, Jean-Paul Bodeveix, Mamoun Filali, Hubert Gar-
avel, Frederic Lang, Didier Le Botlan, Francois Vernadat, and Silvano

Dal Zilio. The syntax and semantics of Fiacre — Version 3.0, 2012.

Antonio Brogi, Javier Camara, Carlos Canal, Javier Cubo, and Ernesto
Pimentel. Dynamic contextual adaptation. Electron. Notes Theor. Com-

put. Sci., 175(2):81-95, June 2007.

Y. Bar-Cohen, D. Hanson, and A. Marom. The coming robot revolution:

Ezpectations and fears about emerging intelligent, humanlike machines.

Springer-Verlag New York, 2009. [I61]

Kim B. Bruce and Andrea Danyluk. Event-driven programming facil-
itates learning standard programming concepts. In Companion to the
19th annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, OOPSLA 04, pages 96100, New
York, NY, USA, 2004. ACM.

Jean-Christophe Baillie, Akim Demaille, Quentin Hocquet, and Matthieu
Nottale. Events! (reactivity in Urbiscript). CoRR, abs/1010.5694, 2010.
B0l

D. Boswarthick, O. Elloumi, and O. Hersent. M2M communications: A
systems approach. Wiley, 2012.

G.A. Bekey. Robotics: State of the art and future challenges. World
Scientific, 2008.

201

BIBLIOGRAPHY

[BJSS09)]

[BKOS]

[BMZ*05]

[Boa95a]

[Boa95b|

[Boe07]

|Boul3]

[Bre09)

[Bro96]

[Bro09]

[BS84|

[BSS12]

Jacob Burnim, Nicholas Jalbert, Christos Stergiou, and Koushik Sen.
Looper: Lightweight detection of infinite loops at runtime. In ASE, pages
161-169, 2009. [I4§]

Christel Baier and Joost-Pieter Katoen. Principles of model checking.
The MIT Press, 2008. [130],

Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Giinter
Kniesel. Towards a taxonomy of software change: Research articles. J.

Softw. Maint. Evol., 17(5):309-332, September 2005.

ESA Board. Guide to software quality assurance, 1995.

ESA Board. Guide to software verification and validation, 1995.
Barry Boehm. EQUITY keynote address, March 2007.

J.L. Boulanger. Static analysis of software: The abstract interpretation.

Wiley, 2013.

Clay Breshears. The art of concurrency: A thread monkey’s guide to

writing parallel applications. O’Reilly Media, Inc., 2009.

Stephen D. Brookes. Full abstraction for a shared-variable parallel lan-

guage. Inf. Comput., 127(2):145-163, 1996.
Paul Browne. JBoss Drools business rules. Packt Publishing, 2009.

Bruce G. Buchanan and Edward H. Shortliffe. Rule based expert systems:
The MYCIN ezxperiments of the Stanford heuristic programming project.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984.

Cristiano Bertolini, Martin Schéaf, and Pascal Schweitzer. Infeasible
code detection. In Verified Software: Theories, Tools and Fzxperiments

(VSTTE), pages 310-325, 2012.

202

BIBLIOGRAPHY

[Bus12]

|Cam08]

[CAS+10]

[CASDOY]

|CBCT04]

[CCo8]

[CCK11]

Business Weekly. Software bugs cost more than double Eurozone
bailout.

http://www.businessweekly.co.uk/hi-tech/
14898-software-bugs-cost-more-than-double-eurozone-bailout,

December 2012.

Cambridge University Press. Cambridge advanced learners dictionary.

Cambridge University Press, 3rd edition, 2008.

Tudor Cioara, Ionut Anghel, Ioan Salomie, Mihaela Dinsoreanu, Geor-
giana Copil, and Daniel Moldovan. A reinforcement learning based self-
healing algorithm for managing context adaptation. In Proceedings of the
12th International Conference on Information Integration and Web-based
Applications and Services, iWAS ’10, pages 859-862, New York, NY,
USA, 2010. ACM.

Tudor Cioara, Ionut Anghel, loan Salomie, and Mihaela Dinsoreanu. A
policy-based context aware self-management model. In Proceedings of the
2009 11th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, SYNASC 09, pages 333-340, Washington, DC,
USA, 2009. IEEE Computer Society.

Norman H. Cohen, James Black, Paul Castro, Maria Ebling, Barry Leiba,
Archan Misra, and Wolfgang Segmuller. Building context-aware applica-
tions with context weaver. Technical Report RC23388, IBM Research,
2004. B3

Ben Chelf and Andy Chou. Controlling software complexity.
http://www.coverity.com/library/pdf/
ControllingSoftwareComplexity.pdf, January 2008.

Hong-Zu Chou, Kai-Hui Chang, and Sy-Yen Kuo. Facilitating unreach-
able code diagnosis and debugging. In Proceedings of the 16th Asia and

203

http://www.businessweekly.co.uk/hi-tech/14898-software-bugs-cost-more-than-double-eurozone-bailout
http://www.businessweekly.co.uk/hi-tech/14898-software-bugs-cost-more-than-double-eurozone-bailout
http://www.coverity.com/library/pdf/ControllingSoftwareComplexity.pdf
http://www.coverity.com/library/pdf/ControllingSoftwareComplexity.pdf

BIBLIOGRAPHY

[CCPO8]

[CDKBI11]

[CALG+09]

[CFGO03]

[CGPYY]

[Cha03]

|Chall]

[Chel0]

South Pacific Design Automation Conference, ASPDAC 11, pages 485—
490, Piscataway, NJ, USA, 2011. IEEE Press.

Javier Cubo, Carlos Canal, and Ernesto Pimentel. Towards a model-
based approach for context-aware composition and adaptation: A case
study using WF/.NET. 1In Proceedings of the 2008 5th International
Workshop on Model-based Methodologies for Pervasive and Embedded
Software, MOMPES ’08, pages 3—13, Washington, DC, USA, 2008. IEEE
Computer Society.

George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair.
Distributed systems: Concepts and design. Addison-Wesley Publishing
Company, USA, 5th edition, 2011.

Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi,
and Jeff Magee, editors. Software Engineering for Self-Adaptive Systems,
volume 5525 of Lecture Notes in Computer Science. Springer, 2009.

L. Cristaldi, M. Faifer, F. Grande, and R. Ottoboni. An improved M2M
platform for multi-sensors agent application. In Sensors for Industry

Conference, 2005, pages 79 —83, feb. 2005.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model checking. Mit Press,
1999.

S.K. Chang. Data Structures and Algorithms. Software Engineering and
Knowledge Engineering, 13. World Scientific, 2003.

Dan Chalmers. Sensing and systems in pervasive computing - Engineer-
ing context-aware systems. Undergraduate Topics in Computer Science.

Springer, London, UK, 2011. 32

M. Chemuturi. Mastering software quality assurance: Best practices, tools
and technique for software developers. J Ross Publishing Series. J. Ross

Pub., 2010.

204

BIBLIOGRAPHY

[Chil0]

[Cho08]

[CKO00]

[CKO8]

[CLIL3]

[CLRS09]

[CMOg]

[CMO3]

[CMKR11]

Raymond Chiong, editor. Intelligent systems for automated learning and

adaptation: Emerging trends and applications. IGI Global, 2010.

Jongmyung Choi. Software architecture for extensible context-aware sys-
tems. In Proceedings of the 2008 International Conference on Conver-
gence and Hybrid Information Technology, ICHIT 08, pages 811-816,
Washington, DC, USA, 2008. IEEE Computer Society.

Guanling Chen and David Kotz. A survey of context-aware mobile com-
puting research. Technical report, Dartmouth Computer Science Depart-

ment, Hanover, NH, USA, 2000.

Norman H. Cohen and Karl Trygve Kalleberg. EventScript: An event-
processing language based on regular expressions with actions. In Pro-
ceedings of the 2008 ACM SIGPLAN-SIGBED conference on Languages,
compilers, and tools for embedded systems, LCTES ’08, pages 111-120,

New York, NY, USA, 2008. ACM. 27 48] [&9]

CLIPS Expert System Group. CLIPS.
http://clipsrules.sourceforge.net/, 2013. 56|

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 3rd edition, 2009.

Guy Cousineau and Michel Mauny. The functional approach to program-

ming. Cambridge University Press, 1998.

W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag,
2003.

Michael Carbin, Sasa Misailovic, Michael Kling, and Martin C. Rinard.
Detecting and escaping infinite loops with Jolt. In Proceedings of the 25th

European conference on Object-oriented programming, ECOOP’11, pages

609-633, Berlin, Heidelberg, 2011. Springer-Verlag.

205

http://clipsrules.sourceforge.net/

BIBLIOGRAPHY

[CMP04]

[CMPO6]

[Coh07]

[Coh08]

[Corl3|

|Croll]

[CSMP11]

[CTO05]

[CT11]

[CTP+10]

Carlos Canal, Juan Manuel Murillo, and Pascal Poizat. Coordination
and adaptation techniques for software entities. In FCOOP Workshops,
pages 133-147, 2004. [3§]

Carlos Canal, Juan Manuel, and Murillo Pascal Poizat. Software adap-
tation. In L’objet, 12(1):9-31, 2006. Special Issue on Coordination and
Adaptation Techniques for Software Entities, pages 9-31, 2006.

Norman H. Cohen. EventScript: Using regular expressions to program
event-processing agents. Technical Report RC 24387, IBM Research,
October 2007. 48]

Norman H. Cohen. Compound event processing using regular expressions:
Examples from EventScript. Technical Report RC 24517, IBM Research,
March 2008.

KUKA Robotics Corporation. Kuka.
http://www.kuka-robotics.com, 2013.

James L. Crowley. Intelligent systems: Reasoning and recognition.
http://www-prima.imag.fr/Prima/Homepages/jlc/Courses/2010/
ENSI2.SIRR/ENSI2.SIRR.S1.pdf, February 2011.

Francesco Chinello, Stefano Scheggi, Fabio Morbidi, and Domenico Prat-
tichizzo. Kuka control toolbox. IEEE Robot. Automat. Mag., 18(4):69-79,
2011. 162

Richard H. Carver and Kuo-Chung Tai. Modern multithread-
ing: Implementing, testing, and debugging multithreaded Java and
C++/Pthreads/Win32 programs. Wiley-Interscience, 2005.

K. Cooper and L. Torczon. Engineering a Compiler. Elsevier Science,

2011. 231

DelJiu Chen, Martin Térngren, Magnus Persson, Lei Feng, and

Tahir Naseer Qureshi. Towards model-based engineering of self-

206

http://www.kuka-robotics.com
http://www-prima.imag.fr/Prima/Homepages/jlc/Courses/2010/ENSI2.SIRR/ENSI2.SIRR.S1.pdf
http://www-prima.imag.fr/Prima/Homepages/jlc/Courses/2010/ENSI2.SIRR/ENSI2.SIRR.S1.pdf

BIBLIOGRAPHY

[Curll]

|Dar09|

[DASO1]

[Den12]

[Dey00]

[Dey01]

[DLO5]

[DL10]

configuring embedded systems. In Proceedings of the 2007 Interna-
tional Dagstuhl conference on Model-based engineering of embedded real-

time systems, MBEERTS’07, pages 345-353, Berlin, Heidelberg, 2010.
Springer-Verlag.

K. Curran. Ubiquitous developments in ambient computing and intelli-

gence: Human-centered applications. Igi Global, 2011.

Waltenegus Dargie. Context-Aware Computing and Self-Managing Sys-
tems. Chapman & Hall/CRC, 1 edition, 2009.

Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A conceptual
framework and a toolkit for supporting the rapid prototyping of context-

aware applications. Hum.-Comput. Interact., 16(2):97-166, December

2001. BT} B2

Kerstin Denecke. Fvent-driven surveillance: Possibilities and challenges.

Springer, Berlin, 2012.

Anind K. Dey. Providing Architectural Support for Building Context-
Aware Applications. PhD thesis, Georgia Institute of Technology, At-
lanta, November 2000.

Anind K. Dey. Understanding and using context. Personal Ubiquitous
Comput., 5(1):4-7, January 2001.

Pierre-Charles David and Thomas Ledoux. WildCAT: A generic frame-
work for context-aware applications. In Proceedings of the 3rd inter-

national workshop on Middleware for pervasive and ad-hoc computing,

MPAC 05, pages 1-7, New York, NY, USA, 2005. ACM.

G. Dowek and J.J. Lévy. Introduction to the Theory of Programming
Languages. Undergraduate Topics in Computer Science. Springer, 2010.
118

207

BIBLIOGRAPHY

[DSFv09]

[DWOS]

[DZK+02

[EJ09]

[EN10]

[Eng10]

[Erill]

[EV12]

[Fai06]

Laura M. Daniele, Eduardo Silva, Luis Ferreira, and Marten Sinderen
van. A SOA-based platform-specific framework for context-aware mobile
applications. In Enterprise Interoperability, volume 38 of Lecture Notes in

Business Information Processing, pages 25-37, Berlin Heidelberg, 2009.
Springer Verlag.

Weichang Du and Lei Wang. Context-aware application programming
for mobile devices. In Proceedings of the 2008 C3S2FE conference, C3S2E
08, pages 215-227, New York, NY, USA, 2008. ACM.

Frank Dabek, Nickolai Zeldovich, Frans Kaashoek, David Maziéres, and
Robert Morris. Event-driven programming for robust software. In Pro-

ceedings of the 10th workshop on ACM SIGOPS European workshop, EW
10, pages 186-189, 2002. [39] [40] [I80]

Patrick Eugster and K. R. Jayaram. EventJava: An extension of Java
for event correlation. In Proceedings of the 25rd FEuropean Conference on

ECOOP 2009 — Object-Oriented Programming, Genoa, pages 570-594,
Berlin, Heidelberg, 2009. Springer-Verlag. 0]

Opher Etzion and Peter Niblett. Fuvent Processing in Action. Manning
Publications Co., 2010.

A. Engel. Verification, Validation, and Testing of Engineered Systems.
Wiley Series in Systems Engineering and Management. Wiley, 2010.

Ericsson. More than 50 billion connected devices.

http://www.ericsson.com/res/docs/whitepapers/wp-50-billions.
pdf}, 2011. [I9, 25

Benjamin J. Evans and Martijn Verburg. The well-grounded Java de-
veloper: Vital techniques of Java 7 and polyglot programming. Manning

Publications Co., Greenwich, CT, USA, 2012.

Ted Faison. Event-based programming: Taking events to the limit. Apress,

Berkely, CA, USA, 2006.

208

http://www.ericsson.com/res/docs/whitepapers/wp-50-billions.pdf
http://www.ericsson.com/res/docs/whitepapers/wp-50-billions.pdf

BIBLIOGRAPHY

[Fai09]

[FC09]

[FED12]

[Fed13]

|Fer06]

[FH12]

[Fis06]

[FM11]

[FMMO7]

[FMSP11]

R.E. Fairley. Managing and Leading Software Projects. Wiley, 2009.

Jorge Fox and Siobhan Clarke. Exploring approaches to dynamic adap-
tation. In Proceedings of the 3rd International DiscCoTec Workshop on
Middleware-Application Interaction, MAI ’09, pages 19-24, New York,
NY, USA, 2009. ACM.

FEDER. The MCUBE project.

http://www.systematic-paris-region.org/en/projets/mcube, 2012.

24 [54

The Robocup Federation. Robocup’s homepage.
http://www.robocup.org/, 2013.

Stephen Ferg. Event-driven programming: Introduction, tutorial, his-
tory.
http://eventdrivenpgm.sourceforge.net, 2006.

Ernest Friedman-Hill. Jess. http://www.jessrules.com/, 2012.

Marcus S. Fisher. Software verification and validation: An engineering

and scientific approach. Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 2006.

Samuel H. Fuller and Lynette I. Millett. The future of computing perfor-
mance: Game over or next level? The National Academies Press, 2011.

641

Jeffrey Fischer, Rupak Majumdar, and Todd Millstein. Tasks: Language
support for event-driven programming. In Proceedings of the 2007 ACM
SIGPLAN symposium on Partial evaluation and semantics-based program
manipulation, PEPM 07, pages 134-143, New York, NY, USA, 2007.
ACM.

José Miguel Faria, J. Martins, and Jorge Sousa Pinto. An approach to
model checking Ada programs. In INFORUM 2011, 2011.

209

http://www.systematic-paris-region.org/en/projets/mcube
http://www.robocup.org/
http://eventdrivenpgm.sourceforge.net
http://www.jessrules.com/

BIBLIOGRAPHY

[Fow10]

[Fri06]

[FS03]

[FT12]

[Gab06]

[Gar05]

[Garl3|

[GBE*09)

[Ger97]

|GGGTO9]

Martin Fowler. Domain Specific Languages. Addison-Wesley Professional,
1st edition, 2010.

J. Friedl. Mastering reqular expressions. Oreilly Series. O’Reilly Media,
Incorporated, 2006.

Thomas Fahringer and Bernhard Scholz. Advanced symbolic analysis for

compilers: New techniques and algorithms for symbolic program analysis

and optimization. Springer-Verlag, Berlin, Heidelberg, 2003.

Zhong Fan and Siok Tan. M2M communications for E-health: Standards,
enabling technologies, and research challenges. In Medical Information
and Communication Technology (ISMICT), 2012 6th International Sym-
posium on, pages 1 —4, march 2012.

H.A. Gabbar. Modern formal methods and applications. Springer, 2006.
22

Simson Garfinkel. History’s worst software bugs.
http://www.wired.com/software/coolapps/news/2005/11/69355,
August 2005.

Willow Garage. OpenCV, 2013.

K. Geihs, P. Barone, F. Eliassen, J. Floch, R. Fricke, E. Gjorven, S. Hall-
steinsen, G. Horn, M. U. Khan, A. Mamelli, G. A. Papadopoulos, N. Pas-
pallis, R. Reichle, and E. Stav. A comprehensive solution for application-

level adaptation. Softw. Pract. Ezper., 39(4):385-422, March 2009.

Rob Gerth. Concise Promela reference.

http://www.spinroot.com/spin/Man/Quick.html, 1997.

Adrian Giurca, Adrian Giurca, Dragan Gasevic, and Kuldar Taveter.
Handbook of research on emerging rule-based languages and technologies:
Open solutions and approaches. IGI Publishing, Hershey, PA, USA, 2009.

210

http://www.wired.com/software/coolapps/news/2005/11/69355
http://www.spinroot.com/spin/Man/Quick.html

BIBLIOGRAPHY

[GHB08]

[GHIVO5]

[GHIX08]

[Ghol0)]

[Gia07]

[GLOY|

[GMPO4]

|Gosl11]

[Gos13]

[GPO06]

[gPh13]

David Gouaillier, Vincent Hugel, Pierre Blazevic, Chris Kilner, Jéréme
Monceaux, Pascal Lafourcade, Brice Marnier, Julien Serre, and Bruno
Maisonnier. The Nao humanoid: A combination of performance and

affordability. CoRR, abs/0807.3223, 2008.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: Elements of reusable object-oriented software. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1995.

Alex Groce, Gerard Holzmann, Rajeev Joshi, and Ru-Gang Xu. Putting
flight software through the paces with testing, model checking, and
constraint-solving. In Proceedings of the Fifth International Workshop
on Constraints in Formal Verification, 2008.

Debasish Ghosh. DSLs in action. Manning Publications Co., Greenwich,
CT, USA, 1st edition, 2010.

Joseph C. Giarratano. CLIPS user’s guide, dec 2007.

J. Goyvaerts and S. Levithan. Regular expressions cookbook. O’Reilly
Media, 2009.

Maria-Del-Mar Gallardo, Pedro Merino, and Ernesto Pimentel. A gener-
alized semantics of Promela for abstract model checking. Formal Aspects

of Computing, 16(3):166-193, August 2004.
Gostai. The Urbi software development kit, jul 2011. ,

Gostai Technologies. Urbi. http://www.urbiforge.org/, 2013. , ,
52]

B. Goetz and T. Peierls. Java concurrency in practice. Addison-Wesley,

2006.

gPhoto group. gphoto2. http://gphoto.org/, 2013.

211

http://www.urbiforge.org/
http://gphoto.org/

BIBLIOGRAPHY

[GROS]

[GVRBT12]

[Har00]

[Har09]

[Has04]

[Hav99]

[HBO7]

[HB10]

[HBEL1]

[Hen90]

[HHC11]

J.C. Giarratano and G. Riley. Expert systems: Principles and program-
ming. Computer Science Series. PWS Publishing Company, 1998.

D. Grune, K. van Reeuwijk, H.E. Bal, C.J.H. Jacobs, and K. Langendoen.
Modern Compiler Design. Springer New York, 2012.

Robert Harper. Type systems for programming languages, 2000.

John Harrison. Handbook of Practical Logic and Automated Reasoning.

Cambridge University Press, New York, NY, USA, 1st edition, 2009.

Patrik Haslum. Patterns in reactive programs. In Proceedings of the

Fourth International Cognitive Robotics Workshop, 2004.

Klaus Havelund. Java PathFinder, a translator from Java to Promela. In
Proceedings of the 5th and 6th International SPIN Workshops on Theo-
retical and Practical Aspects of SPIN Model Checking, page 152, London,

UK, 1999. Springer-Verlag. [131]

Gerard J. Holzmann and Dragan Bosnacki. The design of a multicore
extension of the SPIN model checker. IEEE Trans. Softw. Eng., 33:659—
674, October 2007.

Annika Hinze and Alejandro P. Buchmann, editors. Principles and Ap-
plications of Distributed Event-Based Systems. 1GI Global, 2010. H0]
I3l

O. Hersent, D. Boswarthick, and O. Elloumi. The Internet of things: Key
applications and protocols. John Wiley & Sons, Incorporated, 2011.

Matthew Hennessy. The semantics of programming languages: An ele-

mentary introduction using structural operational semantics. John Wiley

and Sons, New York, N.Y., 1990.

Mahmoud Hussein, Jun Han, and Alan Colman. An approach to model-

based development of context-aware adaptive systems. In Proceedings of

212

BIBLIOGRAPHY

[HHCY12]

[Hil03]

[HINS+09)

[Hol97]

[Hol03]

[HPS5]

[HPSA10]

[HS08]

the 2011 IEEE 35th Annual Computer Software and Applications Con-
ference, COMPSAC ’11, pages 205214, Washington, DC, USA, 2011.
IEEE Computer Society.

Mahmoud Hussein, Jun Han, Alan Colman, and Jian Yu. An
architecture-based approach to developing context-aware adaptive sys-
tems. In Engineering of Computer Based Systems (ECBS), 2012 IEEE
19th International Conference and Workshops on, pages 154 —163, april
2012.

Ernest Friedman Hill. Jess in action: Java rule-based systems. Manning

Publications Co., Greenwich, CT, USA, 2003. 55| (7,

A. Herstad, E. Nersveen, H. Samset, A. Storsveen, S. Svaet, and K.E.
Husa. Connected objects: Building a service platform for M2M. In
Intelligence in Next Generation Networks, 2009. ICIN 2009. 15th Inter-
national Conference on, pages 1 —4, oct. 2009.

Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23:279-295, May 1997. [19] [130]

Gerard J. Holzmann. The SPIN model checker - Primer and reference
manual. Addison-Wesley Professional, 1st edition, 2003. [131], 138]
139

D. Harel and A. Pnueli. On the development of reactive systems, pages

477-498. Springer-Verlag New York, Inc., New York, NY, USA, 1985.

Robert Hirschfeld, Michael Perscheid, Christian Schubert, and Malte Ap-
peltauer. Dynamic contract layers. In 25th Symposium on Applied Com-
puting, New York, NY, USA, 2010. ACM DL.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

213

BIBLIOGRAPHY

[HTW12]

[Hua09]

[HZJE11]

[IEE9]]

[Inc13]

[INR13a]

[INR13b]

[ISE13]

[JBS11]

[JE09]

[TFMO6]

M. Teresa Higuera-Toledano and Andy J. Wellings, editors. Distributed,
embedded and real-time Java systems. Springer, 2012.

J. C. Huang. Software Error Detection through Testing and Analysis.
Wiley Publishing, 2009.

Adrian Holzer, Lukasz Ziarek, K.R. Jayaram, and Patrick Eugster.
Putting events in context: Aspects for event-based distributed program-
ming. In Proceedings of the tenth international conference on Aspect-
oriented software development, AOSD ’11, pages 241-252, New York,
NY, USA, 2011. ACM.

IEEE. IEEE standard computer dictionary - A compilation of IEEE
standard computer glossaries. TEEE Std 610, page 1, 1991.

Logic Design Inc. Robologix.
http://www.robologix.com/programming_robologix.php, 2013.

INRIA. Tom. http://tom.loria.fr/tomplanet/, 2013.

INRIA. Tom language documentation.
http://tom.loria.fr/wiki/index.phpb/Documentation_Tom-2. 10,
2013.

ISEP. http://www.isep.fr, 2013.

C. Jones, O. Bonsignour, and J. Subramanyam. The Economics of Soft-

ware Quality. Addison-Wesley, 2011. 21

K. R. Jayaram and Patrick Eugster. Context-oriented programming with
EventJava. In International Workshop on Context-Oriented Program-
ming, COP 09, pages 9:1-9:6, New York, NY, USA, 2009. ACM. 0] 4]
162

Rupak Majumdar Jeffrey Fischer and Todd Millstein. Preventing lost
messages in event-driven programming. Technical Report TRO060001,

UCLA CSD, January 2006. [45]

214

http://www.robologix.com/programming_robologix.php
http://tom.loria.fr/tomplanet/
http://tom.loria.fr/wiki/index.php5/Documentation_Tom-2.10
http://www.isep.fr

BIBLIOGRAPHY

[Jon10]

[Kah87|

[KAK*10]

[Kat99]

[KCKKO8]

[KDO6|

[Ke09)

[KGCC11]

Capers Jones. Software Engineering Best Practices. McGraw-Hill, Inc.,

New York, NY, USA, 1 edition, 2010.

G. Kahn. Natural semantics. In 4th Annual Symposium on Theoretical
Aspects of Computer Sciences on STACS 87, pages 22-39, London, UK,
UK, 1987. Springer-Verlag.

Bo Hyun Kim, Hyeong-Joon Ahn, Jin Oh Kim, Myungsik Yoo, KyuJung
Cho, and DongSoo Choi. Application of M2M technology to manufactur-
ing systems. In Information and Communication Technology Convergence
(ICTC), 2010 International Conference on, pages 519 —520, nov. 2010.
26]

J.P. Katoen. Concepts, Algorithms, and Tools for Model Checking. Ar-
beitsberichte des Instituts fiir Mathematische Maschinen und Datenver-

arbeitung. Inst. fiir Mathematische Maschinen und Datenverarbeitung,

1999. [T9] [[28} [[29]

Moonzoo Kim, Yunja Choi, Yunho Kim, and Hotae Kim. Formal ver-
ification of a flash memory device driver — An experience report. In
Proceedings of the 15th international workshop on Model Checking Soft-
ware, SPIN ’08, pages 144-159, Berlin, Heidelberg, 2008. Springer-Verlag.
142l

Mohan Kumar and Sajal K Das. Pervasive computing: Enabling tech-
nologies and challenges. In AlbertY. Zomaya, editor, Handbook of Nature-
Inspired and Innovative Computing, pages 613-631. Springer US, 2006.
52

Jiang Ke. Model checking C programs by translating C to Promela, 2009.

[L31} 152

S.C. Kang, K.Y. Gu, W.T. Chang, and H.L. Chi. Robot development
using Microsoft Robotics Developer Studio. Taylor & Francis, 2011.

215

BIBLIOGRAPHY

[KK04]

[KMOS|

[Kru09]

[KSK09)

[KT10]

[LBO7]

[LBM10]

[Lel2]

[Lev12]

Claude Kirchner and Iéléne Kirchner. Rule-based programming and
proving: The ELAN experience outcomes. In Proceedings of the 9th Asian
Computing Science conference on Advances in Computer Science: ded-
icated to Jean-Louis Lassez on the Occasion of His 5th Cycle Birthday,
ASTAN’04, pages 363-379, Berlin, Heidelberg, 2004. Springer-Verlag.

Fred Kroger and Stephan Merz. Temporal logic and state systems (Texts
in theoretical computer science). Springer Publishing Company, Incorpo-

rated, 1 edition, 2008.

John Krumm. Ubiguitous Computing Fundamentals. Chapman & Hal-

1/CRC, 1st edition, 2009. [32] 4]

Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data flow anal-
ysis: Theory and practice. CRC Press, Inc., Boca Raton, FL, USA, 1st
edition, 2009.

Devdatta Kulkarni and Anand Tripathi. A framework for programming
robust context-aware applications. IEEE Transactions on Software En-

gineering, 36:184-197, 2010. 39

Linda M. Laird and M. Carol Brennan. Software measurement and es-
timation: A practical approach. TEEE Computer Society, Washington,
DC, USA, 2007.

Ivan Lanese, Antonio Bucchiarone, and Fabrizio Montesi. A framework
for rule-based dynamic adaptation. In Proceedings of the 5th international
conference on Trustworthly global computing, TGC’10, pages 284-300,
Berlin, Heidelberg, 2010. Springer-Verlag.

Truong-Giang Le. A demonstration video for programming robots with

INIL. http://www.youtube.com/watch?v=alkZ9gZadAU, 2012.

A. Levitin. Introduction to the Design and Analysis of Algorithms. Pear-
son Education, 3rd edition, 2012. [76]

216

http://www.youtube.com/watch?v=alKZ9gZa4AU

BIBLIOGRAPHY

[LFO5]

[LFH*13]

[LHM*+12|

[LHM*+13]

[LHMP11]

[LK11]

Anténia Lopes and José Luiz Fiadeiro. Context-awareness in software
architectures. In Proceedings of the 2nd FEuropean conference on Soft-

ware Architecture, EWSA’05, pages 146-161, Berlin, Heidelberg, 2005.
Springer-Verlag.

Truong-Giang Le, Dmitriy Fedosov, Olivier Hermant, Matthieu Manceny,
Renaud Pawlak, and Renaud Rioboo. Programming Robots with Events.
In Proceedings of the 4th International Embedded Systems Symposium
(IESS 20183), Paderborn, Germany, 17 - 19 June, 2013, pages 14-25,
2013. 164l

Truong-Giang Le, Olivier Hermant, Matthieu Manceny, Renaud Pawlak,
and Renaud Rioboo. Unifying event-based and rule-based styles to de-
velop concurrent and context-aware reactive applications - Toward a con-
venient support for concurrent and reactive programming. In Proceedings
of the 7th International Conference on Software Paradigm Trends, Rome,

Italy, 24 - 27 July, 2012, pages 347-350, 2012.

Truong-Giang Le, Olivier Hermant, Matthieu Manceny, Renaud Pawlak,
and Renaud Rioboo. Using Event-based Style for Developing M2M Ap-
plications. In Proceedings of the 8th International Conference on Grid
and Pervasive Computing (GPC 2013), Seoul, Korea, 09 - 11 May, 2013,
pages 348-357, 2013. [154]

Truong-Giang Le, Olivier Hermant, Matthien Manceny, and Renaud
Pawlak. Dynamic adaptation through event reconfiguration. In Robert
Meersaman, Tharam Dillon, and Pilar Herrero, editors, On the Move
to meaningful Internet Systems: OTM 2011 Workshops, volume 7046 of
Lecture Notes in Computer Science. Springer, 10 2011.

Hyun Jung La and Soo Dong Kim. Static and dynamic adaptations for
service-based systems. Inf. Softw. Technol., 53(12):1275-1296, December
2011.

217

BIBLIOGRAPHY

[LL11]

[Llo84]

[Lok06]

[LP12]

[LS09]

[LVS09)]

[Mas03]

[MBOY|

[McC04]

[MCCDLO6]

K.C. Louden and K.A. Lambert. Programming languages: Principles and
practices. Advanced Topics Series. Course Technology Ptr, 2011. [123],

John W. Lloyd. Foundations of logic programming. Springer, 1st edition,
1984.

Seng Loke. Context-Aware Pervasive Systems. Auerbach Publications,

Boston, MA, USA, 2006. [34]

Truong-Giang Le and Renaud Pawlak. INI Project Online, 2012. ,
[93} [LT9}, (141}, [180}, [T90]

Janusz Laski and William Stanley. Software verification and analysis:

An integrated, hands-on approach. Springer Publishing Company, Incor-
porated, 1 edition, 2009. [117], [128]

R. Lopes, D. Vicente, and N. Silva. Static analysis tools, a practical
approach for safety-critical software verification. In ESA Special Publica-

tion, volume 669 of ESA Special Publication, May 2009.

Damien Massé. Property checking driven abstract interpretation-based
static analysis. In Proceedings of the jth International Conference on
Verification, Model Checking, and Abstract Interpretation, VMCAT 2003,
pages 56-69, London, UK, UK, 2003. Springer-Verlag.

Basel Magableh and Stephen Barrett. PCOMs: A component model
for building context-dependent applications. In Proceedings of the 2009
Computation World: Future Computing, Service Computation, Cognitive,
Adaptive, Content, Patterns, COMPUTATIONWORLD 09, pages 44—
48, Washington, DC, USA, 2009. IEEE Computer Society.

Steve McConnell. Code Complete. Microsoft Press, Redmond, WA, USA,
2nd edition, 2004.

Igbal Mohomed, Jim Chengming Cai, Sina Chavoshi, and Eyal De Lara.

Context-aware interactive content adaptation. In Proceedings of the 4th

218

BIBLIOGRAPHY

[MdRMO09]

[Med0g]

[Mer01]

[MFPO6]

[MGO0g]

[MHS05]

[Mit03]

[MM11]

international conference on Mobile systems, applications and services,

MobiSys ’06, pages 42-55, New York, NY, USA, 2006. ACM.

Panos Markopoulos, Boris E. R. de Ruyter, and Wendy E. Mackay, ed-
itors. Awareness systems - Advances in theory, methodology and design.

Human-Computer Interaction Series. Springer, 2009.

A. Meduna. Elements of Compiler Design. Computer science. Computer

engineering. Computing. Auerbach Publications, 2008.

Stephan Merz. Model checking: A tutorial overview. In Proceedings of the
4th Summer School on Modeling and Verification of Parallel Processes,
MOVEP 00, pages 3-38, London, UK, UK, 2001. Springer-Verlag,.

Gero Miihl, Ludger Fiege, and Peter Pietzuch. Distributed Fvent-Based
Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA; 2006. [39]

HO} [L73} [180)

Katherine F. Moore and Dan Grossman. High-level small-step opera-
tional semantics for transactions. SIGPLAN Not., 43(1):51-62, January
2008.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to
develop domain-specific languages. ACM Comput. Surv., 37(4):316-344,
December 2005. 23]

J.C. Mitchell. Concepts in Programming Languages. Cambridge Univer-
sity Press, 2003.

E.T. Matson and Byung-Cheol Min. M2M infrastructure to integrate
humans, agents and robots into collectives. In Instrumentation and Mea-
surement Technology Conference (I2MTC), 2011 IEEFE, pages 1 —6, may
2011.

219

BIBLIOGRAPHY

[MM12]

[Mob09)|

[Moh08]

[MTFA11]

[Mun09]

[NAS12|

[Nat12]

[NDROY]

[Net11a]

Markets and Markets. Service robotics market (Personal & professional)
- Global forecast & assessment by applications & geography 2012-2017,
2012. 6T

S. Saeidi Mobarakeh. Type inference algorithms.
http://www.win.tue.nl/~hzantema/semssm.pdf, 2009.

C. Mohan. Design And Analysis Of Algorithms. Prentice-Hall Of India
Pvt. Limited, 2008. [79]

Moeiz Miraoui, Chakib Tadj, Jaouhar Fattahi, and Chokri Ben Amar.
Dynamic context-aware and limited resources-aware service adaptation

for pervasive computing. Adv. Soft. Eng., 2011:7:7-7:7, January 2011.

V.V. Muniswamy. Design And Analysis Of Algorithms. [.LK. International
Publishing House Pvt. Ltd., 2009.

NASA. OPS-2000.

http://www.siliconvalleyone.com/founder/ops2000/index.htm,

2012. 59 [60]

Suman Nath. ACE: Exploiting correlation for energy-efficient and contin-
uous context sensing. In Proceedings of the 10th international conference
on Mobile systems, applications, and services, MobiSys 12, pages 29-42,
New York, NY, USA, 2012. ACM.

Oscar Nierstrasz, Marcus Denker, and Lukas Renggli. Model-centric,
context-aware software adaptation. In Betty H. Cheng, Rogério Lemos,
Holger Giese, Paola Inverardi, and Jeff Magee, editors, Software En-
gineering for Self-Adaptive Systems, chapter Model-Centric, Context-
Aware Software Adaptation, pages 128—-145. Springer-Verlag, Berlin, Hei-
delberg, 2009.

Network Computing. Cisco jumps into the M2M market.
http://www.networkcomputing.com/wireless/231600077, 2011.

220

http://www.win.tue.nl/~hzantema/semssm.pdf
http://www.siliconvalleyone.com/founder/ops2000/index.htm
http://www.networkcomputing.com/wireless/231600077

BIBLIOGRAPHY

[Net11b]

[NH964)]

[NHI6D)

[NN92]

[NSHW10]

[NYS+05]

[Obe05]

[Oral3al

Juniper Networks. Machine-to-machine (M2M) - The rise of the ma-
chines.

http://www.juniper.net/us/en/local/pdf/whitepapers/
2000416-en.pdf, 2011. [27]

V. Natarajan and Gerard J. Holzmann. Outline for an operational se-
mantics of PROMELA. In The SPIN Verification System. Proceedings of
the Second SPIN Workshop 1996., volume 32 of DIMACS. AMS, 1996.
97

V. Natarajan and Gerard J. Holzmann. Outline for an operational se-
mantics of Promela. In The SPIN Verification System. Proceedings of the
Second SPIN Workshop 1996., volume 32 of DIMACS. AMS, 1996.

Hanne Riis Nielson and Flemming Nielson. Semantics with applications:
A formal introduction. John Wiley & Sons, Inc., New York, NY, USA,
1992.

Evi Nemeth, Garth Snyder, Trent R. Hein, and Bent Whaley. UNIX and
Linux System Administration Handbook. Prentice Hall, 4th edition, 2010.
6

Kouji Nishigaki, Keiichi Yasumoto, Naoki Shibata, Minoru Ito, and Teruo
Higashino. Framework and rule-based language for facilitating context-
aware computing using information appliances. In Proceedings of the First
International Workshop on Services and Infrastructure for the Ubiquitous
and Mobile Internet (SIUMI) (ICDCSW’05) - Volume 03, ICDCSW 05,
pages 345-351, Washington, DC, USA, 2005. IEEE Computer Society.
5%

R. Obermaisser. FEwvent-triggered and time-triggered control paradigms.

Real-Time Systems. Springer, 2005. [40]

Oracle. Java SE 6 documentation, 2013.

221

http://www.juniper.net/us/en/local/pdf/whitepapers/2000416-en.pdf
http://www.juniper.net/us/en/local/pdf/whitepapers/2000416-en.pdf

BIBLIOGRAPHY

[Oral3b]

[Oral3c]

[Ort12]

[OxSD*09]

[Par(9]

[Pat07]

[PBHS03]

[Pie02]

[Pie04]

[Plo81]

[Plo04]

Oracle. Oracle Java SE embedded.
http://www.oracle.com/technetwork/java/embedded/overview/

getstarted/index.html|, 2013. [I56]

Oracle. Regular Expressions in Java.
http://docs.oracle.com/javase/6/docs/api/java/util/regex/
Pattern.html) 2013. [94]

S. Ortiz. Computing trends lead to new programming languages. Com-

puter, 45(7):17 20, july 2012.

Jian-Quan Ouyang, Dian xi Shi, Bo Ding, Jin Feng, and Huaimin Wang.
Policy based self-adaptive scheme in pervasive computing. Wireless Sen-

sor Network, 1(1):48-55, 20009.

Terence Parr. Language implementation patterns: Create your own
domain-specific and general programming languages. Pragmatic Book-

shelf, 1st edition, 2009.

Srikanta Patnaik. Robot cognition and navigation - An experiment with

mobile robots. Cognitive Technologies. Springer, 2007.

A. Pashtan, R. Blattler, A. Heusser, and P. Scheuermann. CATIS: A
context-aware tourist information system. In Proceedings of the 4th In-
ternational Workshop of Mobile Computing (IMC’03), Rostock, Germany,
2003.

Benjamin C. Pierce. Types and programming languages. MIT Press,

Cambridge, MA, USA, 2002.

Benjamin C. Pierce. Adwvanced Topics in Types and Programming Lan-

guages. The MIT Press, 2004.
G. D. Plotkin. A structural approach to operational semantics, 1981.

Gordon D. Plotkin. The origins of structural operational semantics. J.

Log. Algebr. Program., 60-61:3-15, 2004.

222

http://www.oracle.com/technetwork/java/embedded/overview/getstarted/index.html
http://www.oracle.com/technetwork/java/embedded/overview/getstarted/index.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

BIBLIOGRAPHY

[Pol10]

[Pre05]

[Prel0]

[Rak03]

[RC02]

[Reslla]

[Res11b]

[RHO04|

[RISF06]

[RN0Y]

Polytechnic University of Catalonia. CLIPS - Code snippets.
http://www.lsi.upc.edu/"bejar/ia/material/laboratorio/clips/

CLIPS-snippets-eng.pdf}, 2010. [56]

Scott Preston. The definitive guide to building Java robots. Apress,
Berkely, CA, USA, 2005.

R.S. Pressman. Software engineering: A practitioner’s approach.

McGraw-Hill higher education. McGraw-Hill Higher Education, 2010.

Andry Rakotonirainy. How to program pervasive systems. In DEXA
Workshops, pages 947-948, 2003.

Barry Redmond and Vinny Cahill. Supporting unanticipated dynamic
adaptation of application behaviour. In Proceedings of the 16th European
Conference on Object-Oriented Programming, ECOOP 02, pages 205—
230, London, UK, UK, 2002. Springer-Verlag.

Beecham Research. M2M sector map.
http://www.beechamresearch.com/, 2011.

Juniper Research. M2M to generate $35bn in service revenues by
2016. http://juniperresearch.com/viewpressrelease.php?pr=243,
2011.

Theo C. Ruys and Gerard J. Holzmann. Advanced SPIN tutorial. In
Model Checking Software, 11th International SPIN Workshop, Barcelona,
Spain, April 1-3, 2004, Proceedings, pages 304-305, 2004. [142]

Danny Raz, Arto Juhola, and Joan Serrat-Fernandez. Fast and efficient

context-aware services. Wiley series in communications networking &

distributed systems. Wiley, Hoboken, NJ, 2006.

Stuart Russell and Peter Norvig. Artificial intelligence: A modern ap-
proach. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition,
2009. [I61]

223

http://www.lsi.upc.edu/~bejar/ia/material/laboratorio/clips/CLIPS-snippets-eng.pdf
http://www.lsi.upc.edu/~bejar/ia/material/laboratorio/clips/CLIPS-snippets-eng.pdf
http://www.beechamresearch.com/
http://juniperresearch.com/viewpressrelease.php?pr=243

BIBLIOGRAPHY

[Rob65]

[Rob13]

[Roell]

[Roz11]

[RPS05]

[RS06]

[RS08]

[RVO1]

[Sah06]

[Sanll]

J. A. Robinson. A machine-oriented logic based on the resolution princi-

ple. J. ACM, 12(1):23-41, 1965. [124] [190]

Robomatter. RobotC. http://www.robotc.net/, 2013.

K. Roebuck. Machine-to-machine (M2M) communication services: High-
impact technology - What you need to know: Definitions, adoptions, im-

pact, benefits, maturity, vendors. Lightning Source Incorporated, 2011.
28

Kristin Y. Rozier. Linear temporal logic symbolic model checking. Com-

puter Science Review, 5(2):163 — 203, 2011.

Anca Rarau, Kalman Pusztai, and loan Salomie. Software framework for
building context-aware applications using multifacet items. In Proceed-
ings of the 2nd International Workshop on Software Aspects of Context
(IWSACS5), 2005.

Anca Rarau and loan Salomie. Adding context awareness to C#. In Pro-
ceedings of the First European conference on Smart Sensing and Conteut,
EuroSSC’06, pages 98-112, Berlin, Heidelberg, 2006. Springer-Verlag. [39]
e

Daniel Retkowitz and Mark Stegelmann. Dynamic adaptability for smart
environments. In Proceedings of the 8th IFIP WG 6.1 international con-
ference on Distributed applications and interoperable systems, DAIS08,

pages 154-167, Berlin, Heidelberg, 2008. Springer-Verlag.

J.J.A. Robinson and A. Voronkov. Handbook of Automated Reasoning.
Number vol. 1 in Handbook of Automated Reasoning. Elsevier, 2001.

Goutam Kumar Saha. Software based fault tolerance: A survey. Ubiquity,

2006(July):1, July 2006.

B. Sandén. Design of multithreaded software: The entity-life modeling
approach. John Wiley & Sons, 2011.

224

http://www.robotc.net/

BIBLIOGRAPHY

[Sat09]

[SAW94]

[SBST11]

[Scho8]

[Sco09)]

[Seb12]

[SGP12]

[SH11]

Ichiro Satoh. A context-aware service framework for large-scale ambient
computing environments. In Proceedings of the 2009 international con-
ference on Pervasive services, ICPS ’09, pages 199-208, New York, NY,
USA, 2009. ACM.

B. Schilit, N. Adams, and R. Want. Context-aware computing applica-
tions. In Proceedings of the 1994 First Workshop on Mobile Computing
Systems and Applications, WMCSA 94, pages 85-90, Washington, DC,
USA, 1994. IEEE Computer Society. [32]

Simone Souza, Maria Brito, Rodolfo Silva, Paulo Souza, and Ed Zaluska.
Research in concurrent software testing: A systematic review. In Work-
shop on Parallel and Distributed Systems: Testing, Analysis, and Debug-
ging (PADTAD 2011), pages 1-5. Conference Publishing Solutions, July
2011. invited paper.

Gregor Schmidt. ContextR & ContextWiki. Master’s thesis, Hasso-
Plattner-Institut, Potsdam, April 2008.

Michael L. Scott. Programming Language Pragmatics. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 3rd edition, 2009.

R.W. Sebesta. Concepts of Programming Languages. Always learning.
Pearson College Division, 2012.

Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. Context-oriented
programming: A software engineering perspective. J. Syst. Softw.,

85(8):1801-1817, August 2012.

S. Singh and Kuei-Li Huang. A robust M2M gateway for effective in-
tegration of capillary and 3GPP networks. In Advanced Networks and
Telecommunication Systems (ANTS), 2011 IEEE 5th International Con-
ference on, pages 1 =3, dec. 2011.

225

BIBLIOGRAPHY

[SHX11]

[SK95]

[Smi06]

[Sos09]

[Spi0s]

[SPI13]

SS06]

[SS13]

[ST04|

[ST09]

[Stos9]

Alexandra Poulovassilis Sven Helmer and Fatos Xhafa, editors. Reasoning
in Fvent-Based Distributed Systems. Springer Berlin / Heidelberg, 2011.
[0

Kenneth Slonneger and Barry Kurtz. Formal syntax and semantics of
programming languages: A laboratory based approach. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1995.

Joshua B. Smith. Practical OCaml (Practical). Apress, Berkely, CA,
USA, 2006.

Barrie Sosinsky. Networking bible. Wiley Publishing, 1st edition, 2009.
153l

Michael Spivey. An introduction to logic programming through Prolog.
Prentice-Hall, Inc., Upper Saddle River, N.J, USA, 2008.

Spin. http://www.spinroot.com/, 2013.

C. Soanes and A. Stevenson. Concise Oxford English dictionary. Oxford
University Press, 2006.

Stefan Staiger-Stohr. Practical integrated analysis of pointers, dataflow
and control flow. ACM Trans. Program. Lang. Syst., 35(1):5:1-5:48, April
2013. T4

Alan Shalloway and James Trott. Design patterns explained: A new
perspective on object-oriented design. Addison-Wesley Professional, 2nd

edition, 2004.

Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape

and research challenges. ACM Trans. Auton. Adapt. Syst., 4(2):14:1-
14:42, May 2009. 53] B3,

J. Stobo. Problem Solving With Prolog. Taylor & Francis, 1989.

226

http://www.spinroot.com/

BIBLIOGRAPHY

[SWH12|

[TCO7]

[Tei12]

[Thel3]

[Tho96]

[Tia05]

[Tuu00]

[VAELMnG 08|

[Wad07]

H. Seidl, R. Wilhelm, and S. Hack. Compiler design: Analysis and trans-
formation. SpringerLink : Biicher. Springer, 2012.

Shiu Lun Tsang and Siobhan Clarke. Mining user models for effective
adaptation of context-aware applications. In Proceedings of the The 2007
International Conference on Intelligent Pervasive Computing, 1IPC 07,
pages 178-187, Washington, DC, USA, 2007. IEEE Computer Society.
37

P. Teixeira. Professional Node.js: Building Javascript based scalable soft-

ware. Wiley, 2012.

The Eclipse Foundation. Eclipse IDE. http://www.eclipse.org/, 2013.
13l

Simon Thompson. Haskell - The craft of functional programming. Inter-

national computer science series. Addison-Wesley, 1996.

J. Tian. Software quality engineering: Testing, quality assurance, and

quantifiable improvement. John Wiley & Sons, 2005.

Esa Tuulari. Context aware hand-held devices. Technical report, Tech-

nical Research Centre of Finland, 2000.

Javier Vales-Alonso, Esteban Egea-Lopez, Juan Pedro Munoz Gea,
Joan Garcia-Haro, Felix Belzunce-Arcos, Marco Antonio Esparza-
Garcfa, Juan Manuel Pérez-Maiiogil, Rafael Martinez- Alvarez, Felipe Gil-
Castifieira, and Francisco J. Gonzalez-Castano. UCare: Context-aware
services for disabled users in urban environments. In Proceedings of the
2008 The Second International Conference on Mobile Ubiquitous Comput-
ing, Systems, Services and Technologies, UBICOMM ’08, pages 197-205,
Washington, DC, USA, 2008. IEEE Computer Society.

V.K. Wadhawan. Robots of the future. Resonance, 12:61-78, 2007.

227

[Wall3]

[Wat05]

[Web13]

[Wei97a|

[Weid7h]

[Win93]

[WMSCL11]

[WT10]

[YW03]

[Zen08]

[ZKSL09)

Timothy Wall. Java Native Access.
https://github.com/twall/jna#readme, 2013.

A. Watt. Beginning Regular Expressions. Wiley India Pvt. Limited, 2005.
[94]

Webdyn. Webdyn’s homepage. http://www.webdyn.com/en/), 2013.

Carsten Weise. An incremental formal semantics for PROMELA. In In

Proceedings of the Third SPIN Workshop, SPIN97, 1997.

Carsten Weise. An incremental formal semantics for Promela. In In

Proceedings of the Third SPIN Workshop, SPIN97, 1997.

Glynn Winskel. The formal semantics of programming languages: An

introduction. MIT Press, Cambridge, MA, USA, 1993. [96]

Hongyuan Wang, Rutvij Mehta, Sam Supakkul, and Lawrence Chung.
Rule-based context-aware adaptation using a goal-oriented ontology. In
Proceedings of the 2011 International workshop on Situation activity and
goal awareness, SAGAware "11, pages 67-76, New York, NY, USA, 2011.
ACM. B3l

F. M. Wahl and U. Thomas. Robot programming - From simple moves
to complex robot tasks.

http://www2.cs.siu.edu/ hexmoor/classes/CS404-S10/Wahl.pdf,

2010. [T} [[62]

Hongji Yang and Martin Ward. Successful Evolution of Software Systems.
Artech House, Inc., Norwood, MA, USA, 2003.

Jia Zeng. Partial evaluation for code gemeration from domain-specific

languages. PhD thesis, New York, NY, USA, 2008. AAI3305282.

Yanmin Zhu, Sye Loong Keoh, M. Sloman, and E. C. Lupu. A lightweight
policy system for body sensor networks. IEEE Trans. on Netw. and Serv.
Manayg., 6(3):137-148, September 2009.

https://github.com/twall/jna#readme
http://www.webdyn.com/en/
http://www2.cs.siu.edu/~hexmoor/classes/CS404-S10/Wahl.pdf

Appendixes

229

Acronyms

API Application Programming Interface. [65] [72] 05}, [157]

AST Abstract Syntax Tree. [127]

CAGR Compound Annual Growth Rate. [I6]]

CCTYV Closed-circuit Television.

CNC Computer(ized) Numerical(ly) Control(led).
CPS Continuation Passing Style.

CSV Comma-separated Values.
DSL Domain Specific Language. [23] [28]

FTP File Transfer Protocol. [156]

GPL General Purpose Language.

HTTP Hypertext Transfer Protocol.

HVAC Heating, Ventilation, and Air Conditioning.

I/O Input/Output. [65]

IDE Integrated Development Environment.

JVM Java Virtual Machine. [64]

231

Acronyms

LHS left-hand side. BEHGE0

LOC lines of code. BI]

LTL Linear Temporal Logic. [T30] [T38], [T39] [141] [149] [I50] [T59]

M2M Machine-to-Machine. 24] 25], 27H30] [153] [I57] [15§]

RHS right-hand side. [56H60]

SoC Separation of Concerns.

V&V Verification and Validation.

232

Acronyms

233

Acronyms

234

Index

algebraic data types, [L19

binding,
built-in events,
built-in types, [I19

CASE statement,

context-aware pervasive computing,

CRON,

domain-specific languages,

event reconfiguration,

event synchronization,
event-based programming,

events, [9]]
functions,

imports,
INICheck,

lists,
LTL,

M2M,

M2M gateway, [153
maps, [92]
matching, [124]
MCUBE,

model checking, [127]

Nao, [I63]

object tracking, [160]

operational semantics,

pattern matching, [I20]

polymorphism,
Promela, [132]

regular expressions,
rule-based programming,
rules,

sets, [93]

software quality assurance,

SPIN,
statements, [89]

static analysis, [L17]

syntax, [87]

type, [8]
type checking,

type inference, [123

type system, [I1§]

user-defined events,

verification and validation, [127]

235

	Abstract
	Résumé
	List of Tables
	List of Figures
	Introduction
	Research Context
	MCUBE Project
	Introduction to M2M Technologies
	Goal of the MCUBE Project

	Motivation, Purpose and Proposed Approach
	Organization of This Dissertation

	Background
	Context-Aware Pervasive Computing
	Overview
	Categories of Context Information
	Categories of Context-Aware Adaptation
	Solutions for Context-Aware Adaptation
	Programming Language Support for Context-Aware Adaptation

	Event-Based Programming
	Overview
	Event-Based Programming Languages
	Overall Evaluation

	Rule-Based Programming
	Overview
	Rule-Based Programming Languages

	Conclusion

	Introducing INI
	Motivation
	Features
	Overview
	Rules in INI
	Events in INI

	Programming with INI
	Implementing a Sort Function
	N-queens Problem
	An Online Ordering System
	An Automatic Lighting Control System
	An Intelligent Virtual Personal Assistant

	Comparison between INI and Other Languages

	Formalizing INI
	Syntax
	Expressions
	Types and Type Declarations
	Statements
	Function Declarations
	Rules
	Events
	Maps, Lists, and Sets
	Regular Expressions
	Binding to Java Objects
	Imports

	Operational Semantics
	Introduction to Operational Semantics
	Operational Semantics for INI

	Event Synchronization
	Summary

	Static Analysis for INI Programs
	Introduction to Static Analysis
	Type System of INI
	Overview
	Type Inference in INI
	Type Checking in INI

	Model Checking INI Programs
	Introduction to Model Checking
	Model Checking with SPIN
	INICheck
	Examples

	Conclusion

	Case Studies
	A Multimedia M2M Gateway
	Developing a Multimedia M2M Gateway Program with INI
	Testing Results and Evaluation
	Model Checking a Prototype of the M2M Gateway

	Tracking an Object with INI and Nao
	Overview of Robot Programming
	Introduction to Nao
	Implementing an Object Tracking Program
	Testing Results, Evaluation and Future Work

	Conclusion and Future Work
	Bibliography
	Appendixes
	Acronyms
	Index

