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le 10 octobre 2011

devant le jury composé de :
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Introduction

Context of the work

Linear system identification and the detection of changes in systems from measured signals
is an area of multidisciplinary research in the fields of mathematical modeling, automatic
control, statistics and signal processing. During the last ten to twenty years, system iden-
tification methods found a special interest in structural engineering for the identification of
vibration modes and mode shapes of structures, as well as for detecting changes in their vibra-
tion characteristics, both under real operation conditions. This Operational Modal Analysis
(OMA) consists of three steps: data acquisition, data analysis and evaluation of the results.
Advances in data acquisition systems (low cost sensors, fiber optic sensors, wireless sensor
networks, etc.) lead to larger systems that can be monitored and push for the development
of data analysis methods. The evaluation step is done by the experienced structural engineer
and, for example, has an impact on the design of structures, includes finite element model
updating or the detection of aeroelastic flutter.

This thesis is situated in the data analysis step, where linear system identification and
fault detection methods are in use. However, in the Operational Modal Analysis context the
following unusual features must be taken into account:

(a) The number of sensors can be very large (up to hundreds, or thousands in the future
with new technologies); sensors can even be moved from one measurement campaign
to another;

(b) The number of modes of interest can be quite large (up to 100 or beyond), thus calling
for methods that can deal with large model orders at a reasonable computation time;

(c) The excitation applied to the structure is usually unmeasured, uncontrolled and natural,
thus turbulent and non-stationary.

In this thesis, methods for system identification and fault detection are developed, which take
the features (a)–(c) into account. The developed techniques concern the theoretical design
of these methods, but take their importance from the OMA context, where large structures
equipped with many sensors under in operational noisy conditions are the norm.



8 Introduction

System identification

The design and maintenance of mechanical, civil and aeronautical structures subject to noise
and vibrations are relevant structural engineering topics. They are components of comfort,
e.g. for cars and buildings, and contribute significantly to safety related aspects, e.g. for
aircrafts, aerospace vehicles and payloads, civil structures, wind turbines, etc. It must be
assured that dynamic loads, such as people, traffic, wind, waves or earthquakes, do not
compromise the serviceability of these structures. For example, resonance or aeroelastic
flutter phenomena need to be avoided. In order to study the dynamic properties of a structure,
its vibration modes (natural frequencies and damping ratios) and mode shapes are analyzed.

Requirements from these application areas are numerous and demanding. In the design
stage, detailed physical computer models are built, which involve the dynamics of vibrations
and sometimes other physical aspects as fluid-structure interaction, aerodynamics or ther-
modynamics. However, not the entire structure can be accurately modeled, such as the links
to the ground for civil engineering structures. Usually, laboratory and in-operation vibration
tests are performed on a prototype structure in order to obtain modes and mode shapes
from recorded vibration data in these tests. The results are used for updating the design
model for a better fit to data from the real structure, and for certification purposes. Under
operation conditions, they allow investigating the dynamic properties of the real structure
and to monitor for changes in these properties, which might lead to corrective actions.

Therefore, the identification of vibration modes and mode shapes from measured data is a
basic service in structural engineering in order to study and monitor the dynamic properties
of a structure. These vibration characteristics are found in the eigenstructure of a linear
system, which needs to be identified from the data.

Methods for system identification often originate from control theory, where they have
shown to work for small system orders and controlled excitation. They are proved on the
board, tested on simulated data and validated on artificially excited structures in the lab.
The use of these methods on structures in the field for OMA, where the features (a)–(c) from
above apply, is the last step in this development and the main motivation for this thesis.
In this context, techniques are developed that remove some of the bottlenecks for system
identification for OMA.

Fault detection and isolation

Fault detection and isolation are fields in control engineering concerning the detection of
abnormal conditions in systems and isolating the subsystem, where the fault occurs. Applied
to vibration data of dynamic structures, this corresponds to damage detection and localization
and is done by detecting changes in the vibration characteristics or in structural parameters
of a structure. Structural Health Monitoring (SHM) with such methods allows to monitor for
example civil infrastructure and helps to identify damages at an early stage.

Major incidents due to failures in civil infrastructure, transportation, industrial plants
or other areas of human activity are a great risk. Sustainable development urges to better
protect the built asset, while for example transportation infrastructures are steadily aging
and traffic volume is increasing. Assessment and damage detection dictate the choice of
maintenance policies for these infrastructures. Since maintenance is very costly, reliable and
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sensitive early damage detection capabilities would pay off world-wide. Innumerable bridges
have already exceeded their estimated service life and many of them approach this limit.
In the United States the Federal Highway Administration counts 100 000 highly degraded
bridges, which are so deteriorated that they should be closely monitored and inspected or
repaired. Even without considering the possibility of natural catastrophes like earthquakes,
which in some areas of the world constitute a major concern, the structural performance
of bridges decreases progressively throughout their service life due to many deterioration
processes (fatigue, carbonation, etc.).

SHM has become an important emerging field, in which non-intrusive damage detection
techniques are used to monitor structures. As such, SHM technologies have a large commercial
and economic potential. They can help to identify damages at an early stage, where relatively
minor corrective actions can be taken at the structure before the deterioration or damage
grows to a state where major actions are required. Another example for SHM applications
is post-earthquake damage assessment. There, they could ensure prompt reoccupation of
safe civil infrastructure and transport networks, which would mitigate the huge economic
losses associated with major seismic events. Also, and equally important, monitoring the
infrastructure that is approaching or exceeding their initial design life would assure their
reliability and support economically sensible condition-based maintenance. In general, it is
desirable to detect damage in an automated way without the need of visual inspections, which
would require manpower and is difficult to realize in hazardous or remote environments. SHM
systems also allow engineers to learn from previous designs to improve the performance of
future structures.

Methods for fault detection and isolation have primarily originated in the field of control.
They have promising properties and can detect already small changes in the eigenstructure
of linear systems. However, for damage detection and localization in the Structural Health
Monitoring context, vibration data is recorded in operation conditions and thus the features
(a)–(c) from above apply. They motivate the adaption of existing fault detection techniques
in this thesis to more realistic excitation assumptions. Moreover, numerical robustness and
the fast computation of the damage indicators need to be assured for large structures under
operation conditions.

Proposed methods

Subspace-based system identification methods have been shown efficient for the identification
of linear multi-variable time-invariant systems from measured data under realistic excitation
assumptions. There are methods that deal with input/output data as well as output-only
data, where the unmeasured excitation is assumed as a stochastic process. For Operational
Modal Analysis of vibrating structures, the eigenstructure (eigenvalues and eigenvectors) of
the underlying linear system needs to be identified, from where natural frequencies, damping
ratios and mode shapes can be computed. The consistency of many subspace methods for
eigenstructure identification under non-stationary noise conditions has been shown, making
them the preferred methods for OMA.

The following methods are developed in this thesis. They are based on subspace-based
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system identification and fault detection, each motivated by a practical issue of OMA.

(1) Modular subspace-based system identification from multi-setup measure-
ments: One problem in OMA is the eigenstructure identification of large structures
as bridges or buildings. Often, only a limited number of sensors is available. In or-
der to obtain detailed mode shape information despite the lack of sensor availability,
it is common practice to perform multiple measurements, where some of the available
sensors are fixed, while others are moved between different measurement setups. In
each measurement setup, ambient vibration data is recorded. By fusing in some way
the corresponding data, this allows to perform system identification as if there was a
very large number of sensors, even in the range of a few hundreds or thousands. A
possibly different (unmeasured) excitation between the different measurements has to
be taken into account. Based on [MBBG02a, MBBG02b], a global merging approach
is proposed, where in a first step the data from different setups is normalized and
merged, before in a second step the global system identification is done. This approach
is fully automated and suitable for all subspace methods. It is modular in the sense
that the data of all setups is handled sequentially, and it can handle a huge number of
setups and sensors without running into memory problems. Concerning its theoretical
properties, non-stationary consistency and robustness to misspecified model order are
proven, which validates the use of the merging approach for system identification on
real structures. It is applied successfully to several civil structures.

(2) Fast multi-order subspace-based system identification: A general problem in
eigenstructure identification in the OMA context is the discrimination of true physical
modes of the system from spurious modes that appear in the identified models, e.g. due
to colored noise, non-linearities, non-stationary excitation or the over-specification of
the system order. On the other hand, the system order needs to be over-specified in
order to retrieve all modes due to noise contaminated data. Based on the observation
that physical modes remain quite constant when estimated at different over-specified
model orders, while spurious modes vary, they can be distinguished using system iden-
tification results from different model orders. In so-called stabilization diagrams, where
the obtained natural frequencies are plotted against the model order, the final model is
chosen. However, this multi-order system identification is computationally quite expen-
sive, especially for large structures with many sensors and high model orders. A fast
computation scheme is proposed in this thesis, which can be applied to all subspace
identification methods. It reduces the computation cost of the system identification
step from O(n4max) to O(n3max), where nmax is the maximal assumed model order. For
example, reductions of the computation time by factor 200 could be achieved.

(3) Robust subspace-based fault detection under changing excitation: With a
statistical subspace-based fault detection test [BAB00], data from a possibly faulty
state is compared to a model from the reference state using a χ2-test statistics on
a residual function and comparing it to a threshold. Thus, it can be decided if the
eigenstructure of a system corresponding to newly acquired data still corresponds to the
reference state or if it has deviated from the reference state, without actually identifying
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the eigenstructure in the possibly faulty state. This corresponds to damage detection
when using structural vibration data. In an OMA context, the ambient excitation
is unmeasured and can change, e.g. due to different traffic, wind, earthquakes etc.
However, a change in the excitation also influences the χ2-test statistics and may lead
to false alarms or no alarm in case of damage. A new fault detection test based on a
residual that is robust to changes in the excitation is proposed.

(4) Robust subspace-based damage localization using mass-normalized mode
shapes: A damage localization approach is based on the detection of changes in struc-
tural parameters [BMG04, BBM+08] using a χ2-test statistics. For this approach,
sensitivities with respect to these structural parameters are required, which are usually
obtained from a finite element model (FEM). In this thesis, a FE model-free approach
is proposed, where the required sensitivities are obtained from OMA data using mea-
surements where a known mass perturbation is introduced on the investigated struc-
ture. Furthermore, the mutual influence of structural parameters in the χ2-tests is
investigated and a rejection scheme is proposed. This yields more contrasted dam-
age localization results between safe and damaged elements and therefore reduces false
alarms.

These methods are derived in depth and important theoretical properties are proven. They
are validated on structural vibration data from real structures, when data was available.
Otherwise, simulated data was used for a proof of concept.

Outline of the thesis

This thesis is organized in four parts containing nine chapters. Part I contains preliminaries.
Then, in Parts II and III methods for subspace-based system identification and fault detection,
respectively, are developed. Finally, Part IV is devoted to applications.

Part I comprises Chapters 1–3. In Chapter 1, some contributions from the literature
related to system identification and fault detection in general are presented. In Chapter 2,
the background of subspace-based system identification and fault detection is explained in
detail from the literature, as well as their application to structural vibration analysis. Chap-
ter 3 contains the introduction and development of some numerical tools, which are needed
throughout this work. Furthermore, some theoretical properties and practical issues concern-
ing the subspace-based fault detection test are derived.

Part II is devoted to developments in subspace-based system identification. It comprises
Chapters 4 and 5, where the methods under (1) and (2) from above are derived. Part III
contains developments in subspace-based fault detection in Chapters 6 and 7, corresponding
to the methods under (3) and (4) from above. These four chapters are as far as possible
self-contained and constitute the main part of this thesis.

Part IV is the application part and comprises Chapters 8 and 9. In Chapter 8, the multi-
setup subspace-based system identification from Chapter 4 is successfully applied to the modal
analysis of several large scale civil structures. The vibration data of these structures was
obtained through numerous collaborations, where comparative studies with other multi-setup
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identification algorithms are made and discussed. Chapter 9 is devoted to damage detection
and localization applications. The subspace-based damage detection and localization with
their improvements from Chapters 3 and 7 are applied to real monitoring data of an artificially
damaged bridge and to a large-scale simulated bridge deck.

The thesis concludes with an assessment of the developed methods and perspectives for
future research.
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Notation

Symbols

AT Transposed matrix of A

A∗ Transposed conjugated complex matrix of A

A−1 Inverse of A

A−T Transposed inverse of A

A† Pseudoinverse of A
def
= Definition

i Imaginary unit, i2 = −1

<(a), =(a) Real and imaginary part of variable a

A, a Complex conjugate

kerA Kernel, right null space of A

vecA Column-wise vectorization of matrix A

A⊗B Kronecker product of matrices or vectors A and B

X̂ Estimate of variable X

E(X) Expected value of variable X

Eθ(X(Y)) Expected value of variable X, where data Y corresponds to parameter θ

N (M,V ) Normal distribution with mean M and (co-)variance V

N, R, C Set of natural, real, complex numbers

Im Identity matrix of size m×m
0m,n Matrix of size m× n containing zeros

O(·), o(·) Landau notation

Variables

n System order

r Number of sensors

r(ref), r0 Number of reference sensors

A State transition matrix

C Observation matrix

Xk System state at index k

Yk System output at index k

H Subspace matrix

J Jacobian matrix

O Observability matrix
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O↑, O↓ Matrices, where the last resp. first block row (usually containing r rows) of
O are deleted

Σ Covariance matrix

Y Data matrix or vector

N Number of samples

Ns Number of setups

Abbreviations

DOF Degree of freedom

FEM Finite element model

OMA Operational modal analysis

OMAX Operational modal analysis with exogenous inputs

SHM Structural health monitoring

SSI Stochastic subspace identification

SVD Singular value decomposition

UPC Unweighted principal component algorithm (for data-driven SSI)

Further conventions

Theorems, propositions or lemmas, which are cited (literally or equivalently) from litera-
ture, contain their source directly after their numbering in brackets.
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Chapter 1

State of the art

1.1 Introduction

System identification and the detection of changes in the parameters of systems (“fault de-
tection”) are research areas that emerged in the 1960s. In this thesis, methods in the field of
subspace-based system identification and fault detection are developed and applied to struc-
tural vibration analysis.

In this chapter, some contributions from the literature related to system identification
and fault detection in general are presented.

1.2 System identification

In the field of system identification, mathematical models of dynamical systems are built
from measured input/output data. It emerged in the 1960s in the control community. Some
of the important contributions include Ho and Kalman’s work on the state-space realization
problem [HK66], Åström and Bohlin’s work on maximum likelihood methods [AB65], Akaike’s
work on stochastic realization theory [Aka74c, Aka75], Ljung’s prediction-error framework
[Lju78, LC79] and many more. A reference book of system identification is [Lju99]. In
[Gev06] a historical overview of the development of system identification is given.

For linear time-invariant system identification, the main model in use is the state-space
model {

Xk+1 = AXk +BUk + Vk

Yk = CXk +DUk +Wk

with the states Xk ∈ Rn, the observed inputs Uk ∈ Rm, the outputs Yk ∈ Rr and the un-
observed input and output noise Vk and Wk. A problem in system identification is finding
the system matrices A and C from the outputs Yk as well as the inputs Uk, in case there
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are observed inputs. If there are no observed inputs, purely stochastic identification meth-
ods are used. The state-space model can be represented by an equivalent ARMAX model
(autoregressive moving average with exogenous inputs)

Yk =

p∑

i=1

AiYk−i +

q∑

i=0

BiEk−i +

s∑

i=0

CiUk−i,

where Ek is the common noise source of the process and the measurement noise in the
innovations form of the state space recurrence. A problem here is e.g. to identify the AR
parameters Ai, which can be done with the Instrumental Variables (IV) method [SS81]. A
link between the state-space and the ARMAX models was made for example in [Aka74b].

The subspace-based system identification algorithms for stochastic inputs emerged in the
1970s. Kung presented the Balanced Realization Algorithm in [Kun78]. In 1985, Benveniste
and Fuchs [BF85] proved that the Balanced Realization method for linear system eigenstruc-
ture identification is consistent under (unmeasured) non-stationary excitation. Van Over-
schee and De Moor introduced their own formalism and popularized subspace methods in
their data-driven form in [VODM96]. The Balanced Realization method using a block Hankel
matrix of output correlations was also popularized as covariance-driven stochastic subspace
identification by Peeters and De Roeck in [PDR99]. Since then, the family of subspace
algorithms is growing in size and popularity [Lar83, VODM94, Ver94, Vib95], mostly for
its capacity to deal with problems of large scale under realistic excitation assumptions. In
[MAL96, VODMDS97, Pin02, CGPV06, Akç10], subspace algorithms for frequency response
data are derived. In [BM07], many subspace algorithms from literature are put in a common
framework and their consistency for eigenstructure identification under non-stationary noise
conditions is proven.

The application of system identification to vibrating structures yielded a new research
domain in structural engineering, known as modal analysis [Ewi84, POB+91, MS97, HLS98].
There, the identified model is the modal model consisting of eigenfrequencies, damping ratios
and mode shapes. Often, the state-space model is used in connection with a system identi-
fication method to identify the modal model. The emerging need for reliable identification
methods for the modal analysis of vibrating structures, where noise and large system orders
of structures under realistic excitation have to be considered, gave another impulse in the
development of system identification methods. Experimental Modal Analysis (EMA), where
only deterministic inputs are considered, moved to Operational Modal Analysis (OMA) and
Operational Modal Analysis with eXogenous inputs (OMAX), where stochastic inputs and
combined stochastic-deterministic inputs are considered, respectively. See e.g. [RDR08].

Another implementation of the Balanced Realization Algorithm is the Eigensystem Re-
alization Algorithm (ERA), which was introduced by Juang and Pappa [JP85]. Originally
designed for modal analysis using impulse response functions, it was adapted to output-only
measurements in [JICL95] and became known as Natural Excitation Technique (NExT-ERA).
The latter is closely related to covariance-driven subspace identification.

A method for the direct identification of modal parameters by a decomposition of the free
response data is the Ibrahim Time Domain (ITD) method [IM76]. In the original formulation,
it was assumed that twice the number of sensors equals the system order, where all the
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modes are excited. The Random Decrement (RD) technique was introduced in [Col68] as a
method to transfer the random response of a single degree of freedom (SDOF) system to the
free decays of the SDOF system, from which the modal parameters are identified. It is a
simple and fast estimation technique. In [Ibr77], the RD technique was extended to multiple
measurements/multiple modes in combination with the ITD algorithm. However, results may
be biased. A recent analysis can be found in [MMBF07].

The simplest approach to estimate modal parameters is the Peak Picking method, where
the eigenvalues are identified as the peaks of a spectrum plot [BG63, BP93]. However,
close modes cannot be distinguished and the accuracy is limited to the frequency resolution.
The Complex Mode Indicator Function (CMIF) method for modal analysis using frequency
response functions was introduced in [STAB88]. It is based on a singular value decomposition
of the frequency response functions (FRF) at each spectral line. Then, a peak in the CMIF
indicates the location on the frequency axis that is nearest to the eigenvalue within the
accuracy of the frequency resolution. An additional second stage procedure is needed for
scaled mode shapes and an accurate eigenvalue estimation. An output-only advancement
is the Frequency Domain Decomposition (FDD) method [BVA01, BZA01], where the power
spectral density (PSD) functions are used instead of FRFs. Close modes can be identified,
but user interaction is required for identifying modes from the peaks in the singular values
corresponding to the spectral lines.

A non-iterative maximum likelihood approach for frequency-domain identification is the
Least-Squares Complex Frequency-domain (LSCF) method [GVV98, VdAGVV01]. The
method fits a common-denominator transfer function model to measured FRFs in a least
squares sense and is the frequency-domain counterpart to the Least Squares Complex Expo-
nential (LSCE) algorithm [BAZM79]. It was extended to polyreference LSCF, also known as
PolyMAX, by fitting a right matrix fraction model on the FRFs in [GVV+03, PVdAGL04].
This results in more accurate modal models than LSCF in the multiple inputs case. These
are fast and accurate methods and produce very clear stabilization diagrams, where, however,
the damping ratios of the modes might be underestimated [CGV+05]. These methods can
also be applied to output-only data [GVC+03]. An output-only modal analysis approach
using transmissibilities under different loading conditions was developed in [DDSG10], where
the unknown ambient excitation can be arbitrary as long as the modes of interest are excited.

For prediction error and maximum likelihood methods, the identified parameters are
often the iterative solution of an optimization problem. A broad overview of Prediction Error
Methods (PEM) is given in [Lju99]. These methods estimate a parameter vector of the system
by minimizing the prediction error, where a predictor can be described as a filter that predicts
the output of a dynamic system given old measured outputs and inputs. Under convenient
conditions, estimates from PEM are consistent and statistically efficient, i.e. they have the
smallest possible variance given by the Cramér-Rao bound. There is also a wide range of
recursive PEM methods for the identification of time-varying systems. Maximum likelihood
approaches in frequency domain are e.g. addressed in [PSV97, SPVG97, PS01, CGVP03].
The solution of underlying least squares problems is e.g. addressed in [GP96, MWVH+05].

Identification methods, where errors or measurement noises on both measured inputs and
outputs are taken into account, are called Errors In Variables (EIV) methods. A recent
survey is given by Söderström in [Söd07]. These methods play an important role when the
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purpose is the determination of the physical laws that describe a process, rather than the
prediction of its future behavior.

In order to track the system parameters in time-varying systems, methods as the In-
strumental Variable Projection Approximation Subspace Tracking (IV-PAST) [Gus98] can be
used. These are recursive methods for subspace tracking with application to non-stationary
environments. Another recursive method based on the ARMA model of signals and wavelet-
transform-based algorithms for tracking modal parameters are presented in [Uhl05]. Bayesian
state and parameter estimation of uncertain dynamical systems was done in [CBP06] using
particle filters. This computationally expensive method is applicable to highly nonlinear
models with non-Gaussian uncertainties. For instance, it can be used in structural health
monitoring to detect changes of dynamical properties of structural systems during earth-
quakes and, more generally, it can be used for system identification to better understand the
nonlinear behavior of structures subject to seismic loading [CBP06].

1.3 Fault detection and isolation

The problem of fault detection and isolation (FDI) consists in detecting changes in the param-
eters of a dynamical system (detection) and distinguishing the changed parameters from the
unchanged parameters (isolation). There are many FDI techniques originating from control.
An overview can be found, for example, in the survey papers [Wil76, Fra90] or in the books
[PFC89, BN93]. In general, these FDI problems are split in two steps: generation of residuals,
which are ideally close to zero under no-fault conditions, minimally sensitive to noises and
disturbances, and maximally sensitive to faults; and residual evaluation, namely design of
decision rules based on these residuals [Bas98]. Many of these FDI techniques are based on
the state estimation and the evaluation of the innovation of a filter, or on the identification
of model parameters or related physical parameters and their comparison.

With the asymptotic local approach to change detection and model validation introduced
by Benveniste et al. [BBM87], a fault detection procedure is associated with any parameter
identification algorithm. Like this, a statistical test for detecting changes in the system
parameters can be derived, without the need to actually estimate the parameters in the
possibly faulty system. This strategy is applied to subspace-based system identification by
Basseville et al. in [BAB00] and forms the basis for the fault detection tests in the subsequent
chapters.

In many applications, the FDI problem is to detect and diagnose changes in the eigenstruc-
ture of a linear dynamical system. An important example is structural vibration monitoring,
which is also called Structural Health Monitoring (SHM), where damages of civil, mechanical
or aeronautical structures lead to a change in the eigenstructure of the underlying mechanical
system and thus in the modal parameters. Vibration-based damage identification methods
developed extensively in the last 30 years. Rytter [Ryt93] defined a classification of these
methods into four levels:

1. Damage detection,

2. Damage localization,



1.3 Fault detection and isolation 21

3. Damage quantification,

4. Prediction of the remaining service life of the investigated structure.

In [FDN01], an introduction to vibration-based damage identification is given. An overview
of damage identification methods can be found in [DFP98, CF04]. In [WFMP07], Worden et
al. postulate axioms as basic principles of structural health monitoring. Amongst them are
the necessity of a comparison between two system states for the assessment of damage, or
the necessity of feature extraction through signal processing and statistical classification to
convert sensor data into damage information.

Often, damage detection is done by estimating the modal parameters of a structure in a
possibly damaged state and comparing them to a reference. Especially the natural frequencies
are used, as they can be reliably identified. For example, Kullaa [Kul03] uses control charts
to evaluate changes in the frequencies of Z24 Bridge that are linked to damage. Magalhães
et al. [MaCC08] use the modal parameters for the monitoring of a long span arch bridge.
In [MaCC10], they use control charts for an evaluation of the changes. Also, in the latter
contribution the influence of environmental effects on the modal parameters of a structure
is considered. Such effects as temperature variation or different loading are also shown in,
e.g., [RBS+00, PMDR01]. Worden et al. [WMF00, WSF02] use outlier analysis for damage
detection. In [YKDBG05a, YKDBG05b], Yan et al. propose a damage detection method
based on a novelty measure and the principal component analysis (PCA), where the effects of
environmental changes are taken into account. In beam-like structures, damage was localized,
and in connection with an analytical model also quantified, using sensitivities of PCA results
in [VHG10].

Other methods compare data from the possibly damaged state to a model obtained in
the reference state, without actually estimating the model parameters in the damaged states.
The statistical fault detection based on the asymptotic local approach [BAB00] belongs to
this category, as well as in the version of Yan and Golinval [YG06]. The temperature effect on
these methods was considered in [FMG03, BBB+08, BBMN09]. Note that the temperature
effect will not be considered in this thesis. Damage localization based on the change detection
of structural parameters is considered in [BMG04, BBM+08].

Some damage detection and localization methods use a direct comparison of the mode
shapes. Correlation coefficients between mode shapes, such as the Modal Assurance Criterion
(MAC) or the Coordinate Modal Assurance Criterion (COMAC) are used as a damage dam-
age indicator, when many measured coordinates of a structure are available. For example,
West [Wes86] used the MAC for damage localization. Ren and De Roeck [RDR02a, RDR02b]
used orthogonality condition sensitivities of the mode shapes in connection with a finite el-
ement model (FEM). They concluded that there are significant difficulties regarding noise,
modeling and the numerical stability of mode shape methods for practical applications. The
same holds for methods using the curvature of mode shapes, which were studied by Pandey et
al. [PBS91]. Promising results were obtained in [AWDR99], although techniques for improv-
ing the quality of measured mode shapes are necessary and higher order mode shapes need
to be examined carefully. Methods using changes in the modal strain energy, which is com-
puted from the mode shapes, also belong in this category, see for example Kim and Stubbs
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[KS95, KS02]. With these algorithms, results for damage localization and quantification were
obtained on beam-like structures.

Another class of methods exploits changes in the flexibility matrix, which is the inverse
of the stiffness matrix. Pandey and Biswas [PB94] have shown that changes in the flexibility
matrix can indicate the presence and location of damage, where the flexibility matrix is
estimated from modal parameters of only a few lower frequency modes. Yan and Golinval
[YG05] consider both changes in the flexibility and the stiffness for damage localization,
where mass-normalized mode shapes are needed. Bernal [Ber02, Ber06] makes use of Damage
Locating Vectors (DLV) from the null space of the change in flexibility. Applying these vectors
as loads leads to stress fields that are zero or small over the damaged region. In [Ber10] this
approach is generalized to DLVs from the null space of the change in the transfer matrix, which
are estimated from output-only identification results and constraints between the realization
matrices. A closely related method was proposed by Reynders et al. [RDR10] in connection
with a FEM.

Many methods use FEM updating in order to localize and quantify damage. In the
reference state of the structure, the parameters of a FEM are adjusted to match modal
parameters with measured data. As this is an inverse problem, several numerical issues arise.
Moreover, user input is necessary in the updating process (choice of parameters, . . . ) and
engineering judgments are key to the success of the updating procedure [CF04]. A very
accurate model in the reference state is necessary to avoid false alarms when comparing to
data from a possibly damaged state. In [FJK98], Fritzen et al. use sensitivity based algorithms
to locate damage. Jaishi and Ren [JR06] use a modal flexibility residual in connection with
FEM updating for damage localization. Reynders et al. [RTDR10] use OMAX data for FEM
updating and compare the computed stiffness between the reference and damaged state.

Also, wavelet transforms can be used to analyze changes in signals. For example, Liew
and Wang [LW98] used changes in wavelet coefficients for damage detection on a cracked
beam. Several features can be extracted from wavelet coefficients that can be used for dam-
age detection and an overview is given in [KM04]. Zabel [Zab05] successfully used energy
components of wavelet decompositions of impulse response functions and of transmissibility
functions for damage localization on Z24 Bridge.

Artificial neural networks are in general used for pattern recognition. Applications to
vibration based damage detection can be found in [MH99, WZ01, GZ08]. They usually
require a big database in the reference state to be trained and are computationally expensive.
However, they can be applied in very general settings, where it is difficult to specify an explicit
algorithm. Other methods that involve some optimization procedure are based on genetic
algorithms and are applied to damage detection and localization in [OKC02, GS08].

Level 4 damage identification, the prediction of the remaining service life of a structure,
is hardly possible without user input from an experienced engineer. It rather belongs to the
fields of fatigue-life analysis or structural design assessment. Life-cycle models of bridges
were for example built by Wenzel et al. [WVE10].
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1.4 Conclusion

In this chapter, different strategies for system identification and damage detection were pre-
sented from literature. In the subsequent chapters, the subspace-based system identification
as well as the statistical subspace damage detection based on the local approach and their
application to structural vibration analysis are investigated. In Chapter 2, the background
of these algorithms from existing literature is explained in detail, before enhancing and de-
veloping new methods in this field in Chapters 3–7 with applications in Chapters 8 and 9.
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Chapter 2

Background of subspace-based
system identification and fault

detection

2.1 Introduction

In this chapter, the theoretical background of subspace-based system identification, fault
detection and its application to structural vibration analysis is introduced from literature, on
which the subsequent chapters are based.

This chapter is organized as follows. In Section 2.2, the general subspace identification
algorithm is presented and examples of popular identification algorithms are given. In Sec-
tion 2.3, the statistical fault detection is introduced in a very general setting and its subspace-
based version is explained. For an application of both algorithms to problems in structural
vibration analysis, the modeling and parameters of interest are detailed in Section 2.4.

2.2 Subspace-based system identification

2.2.1 Context

Stochastic subspace-based system identification methods are efficient tools for the identi-
fication of linear time-invariant systems (LTI), fitting a linear model to input/output or
output-only measurements taken from a system. The excitation of the system is assumed
to be noise with certain properties. In 1985, Benveniste and Fuchs [BF85] proved that the
Instrumental Variable method and what was called the Balanced Realization method for
linear system eigenstructure identification are consistent under (unmeasured) non-stationary
excitation. This result was obtained before [VODM96] introduced their own formalism and
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popularized subspace methods in their data-driven form. Since then, the family of subspace
algorithms is growing in size and popularity [Lar83, VODM94, Ver94, Vib95, MAL96], mostly
for its capacity to deal with problems of large scale under realistic excitation assumptions.
In [BM07], many subspace algorithms from literature are put in a common framework and
their non-stationary consistency for eigenstructure identification is proven.

Concerning the theoretical properties of subspace methods, there are a number of con-
vergence studies in a stationary context in the literature, see [DPS95, BDS99, BL02, Pin02,
CP04a, CP04b, Bau05] to mention just a few of them. These papers provide deep and tech-
nically difficult results including convergence rates. They typically address the problem of
identifying the system matrices or the transfer matrix, i.e. both the pole and zero parts of
the system.

There is a broad range of applications of subspace algorithms in the identification of pro-
cesses in automatic control, see e.g. [BNSR98, JSL01, SPG03, PL08]. During the last decade,
subspace methods found a special interest in mechanical, civil and aeronautical engineering
for the identification of vibration modes (eigenvalues) and mode shapes (corresponding eigen-
vectors) of structures. Therefore, identifying an LTI from measurements is a fundamental
part of vibration monitoring, see e.g. [HVdA99, MBG03, MBB+06, BMCC10].

2.2.2 The general Stochastic Subspace Identification (SSI) algorithm

Consider linear multivariable time invariant systems described by a discrete time state space
model {

Xk+1 = AXk +BUk + Vk

Yk = CXk +DUk +Wk

(2.1)

with the state X ∈ Rn, the observed input U ∈ Rm, the output Y ∈ Rr and the unobserved
input and output disturbances V and W . The matrices A ∈ Rn×n and C ∈ Rr×n are the
state transition and observation matrices, respectively. The parameter n denotes the system
order and r the number of observed outputs, which is usually the number of sensors.

Throughout this work, we are interested in identifying only the system matrices A and C.
In many cases, e.g. in Operational Modal Analysis, no observed inputs are available (B = 0,
D = 0) and identification is done using the output-only data (Yk). When some inputs (Uk)
are observed, combined deterministic-stochastic subspace identification algorithms can be
used. There exist many Stochastic Subspace Identification algorithms in the literature, see
e.g. [VODM96, PDR99, BM07] and the related references for an overview. They all fit in
the following general framework for the identification of the system matrices A and C of
system (2.1) and its eigenstructure.

Denote a matrix Hp+1,q as subspace matrix, whose estimate Ĥp+1,q is built from the
output or input/output data of the system (2.1) according to a chosen subspace algorithm.
The subspace matrix enjoys the factorization property

Hp+1,q = WOp+1Zq (2.2)
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into the matrix of observability

Op+1
def
=




C

CA
...

CAp



∈ R(p+1)r×n,

and a matrix Zq, with an invertible weighting matrix W depending on the selected subspace
algorithm. However, W is the identity matrix for many subspace algorithms.

Note that a subset of the r sensors can be used for reducing the size of the matrices in the
identification process, see e.g. [PDR99, RDR08]. These sensors are called projection channels
or reference sensors. Let r0 be the number of reference sensors (r0 ≤ r). The parameters p
and q are chosen such that pr ≥ qr0 ≥ n. The subspace matrix has (p + 1)r rows and in
many cases qr0 columns.

The observation matrix C is then found in the first block-row of the observability ma-
trix Op+1. The state transition matrix A is obtained from the shift invariance property
of Op+1, namely as the least squares solution of

O↑p+1A = O↓p+1, where O↑p+1
def
=




C

CA
...

CAp−1



, O↓p+1

def
=




CA

CA2

...

CAp




(2.3)

and O↑p+1,O↓p+1 ∈ Rpr×n.
Let the pairs (λ, φλ) be the eigenvalues and eigenvectors of matrix A and define the mode

shape ϕλ with
det(A− λI) = 0, Aφλ = λφλ, ϕλ = Cφλ. (2.4)

Assume that the system has no multiple eigenvalues and, thus, that the λ’s and ϕλ’s are
pairwise complex conjugate. In particular, 0 is not an eigenvalue of state transition ma-
trix A. The collection of pairs (λ, ϕλ) form a canonical parameterization (invariant w.r.t.
changes in the state basis) of the pole part of system (2.1), which is referred to as the system
eigenstructure.

The actual implementation of this generic subspace identification algorithm uses a consis-
tent estimate Ĥp+1,q obtained from the output or input/output data according to the selected
subspace identification algorithm. The SVD

Ĥp+1,q =
[
Û1 Û0

] [∆̂1 0

0 ∆̂0

][
V̂ T
1

V̂ T
0

]
(2.5)

and its truncation at the model order n yields an estimate

Ôp+1 = Ŵ−1Û1∆̂
1/2
1 (2.6)

for the observability matrix, from which (Ĉ, Â) and (λ̂, ϕ̂λ) are recovered as sketched above.

Also, the estimate Ẑq = ∆̂
1/2
1 V̂ T

1 can be obtained. Note that the singular values in ∆̂1 are

non-zero and Ôp+1 is of full column rank.
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2.2.3 Examples of SSI algorithms

2.2.3.1 Two popular SSI algorithms

Two well-known output-only subspace identification algorithms are covariance-driven sub-
space identification [BF85] and the data-driven Unweighted Principal Component algorithm
[VODM96]. Here, they are defined using a subset of the recorded sensors at some point in the
computation, so-called reference sensors or projection channels [PDR99], in order to reduce
the computation effort.

Let N + p + q be the number of available samples and let Y
(ref)
k ∈ Rr0 (r0 ≤ r) be the

vector containing the reference sensor data, which is a subset of Yk for all samples. Then,
define the data matrices

Y+ def
=

1√
N




Yq+1 Yq+2
... YN+q

Yq+2 Yq+3
... YN+q+1

...
...

...
...

Yq+p+1 Yq+p+2
... YN+p+q



, Y− def

=
1√
N




Y
(ref)
q Y

(ref)
q+1

... Y
(ref)
N+q−1

Y
(ref)
q−1 Y

(ref)
q

... Y
(ref)
N+q−2

...
...

...
...

Y
(ref)
1 Y

(ref)
2

... Y
(ref)
N



. (2.7)

For covariance-driven subspace identification, let Ri
def
= E(YkY

(ref)T
k−i ) and the block Hankel

matrix

Hcov
p+1,q

def
=




R0 R1 . . . Rq−1

R1 R2 . . . Rq
...

...
. . .

...

Rp Rp+1 . . . Rp+q−1




def
= Hank(Ri) (2.8)

be the theoretical output-correlation and subspace matrices for some parameters p and q.

Then, introducing the cross-correlation between the state and the outputs G
def
= E(XkY

(ref)T
k ),

the correlations Ri yield Ri = CAiG. In factorization property (2.2) W is the identity matrix
and

Zq = Cq(A,G)
def
=
[
G AG . . . Aq−1G

]
(2.9)

is the well-known controllability matrix. From the output data (Yk), the empirical correlations
can be estimated from

R̂i =
1

N − i
N∑

k=i+1

YkY
(ref)T
k−i , (2.10)

which are used to fill the estimate of the subspace matrix Ĥcov
p+1,q

def
= Hank(R̂i) as in (2.8).

Another variant of this algorithm uses the subspace matrix

Ĥcovdat
p+1,q

def
= Y+Y−T (2.11)

instead of Ĥcov
p+1,q [BM07].
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For the Unweighted Principal Component (UPC) algorithm, the estimate of the subspace
matrix is defined as

ĤUPC
p+1,q

def
= Y+Y−T (Y−Y−T )†Y−, (2.12)

where † denotes the pseudoinverse. Then, factorization property (2.2) holds asymptotically
for N → ∞ where W is the identity matrix and Z the Kalman filter state matrix. A
numerically efficient and stable way to obtain an estimate of the observability matrix avoids
the explicit computation of ĤUPC

p+1,q. Instead, the partitioning of the LQ decomposition of

[
Y−
Y+

]
=

[
R11 0

R21 R22

][
Q1

Q2

]
(2.13)

is used, from which the relation ĤUPC
p+1,q = R21Q1 follows. As Q1 is an orthogonal matrix,

the estimate of the observability matrix Ôp+1 can be obtained directly from R21 in the
implementation of the algorithm. In this sense, the subspace matrix can also be defined by

ĤUPC,R
p+1,q

def
= R21,

where R21 is obtained from (2.13).

2.2.3.2 More SSI algorithms in a general framework

In this section, several SSI algorithms are presented using the general framework from [BM07].
This notation is only used in this section in this work and reference sensors are not taken
into account for simplicity. The subspace matrix Ĥp+1,q takes the general form

Ĥp+1,q
def
=




R1

R2
...

Rp+1



, (2.14)

where Ri depends on the subspace algorithm. Furthermore, define for two matrices L and
M of compatible dimension

〈L,M〉 def
= LMT ,

E(L |M)
def
= 〈L,M〉〈M,M〉†M,

E
(
L |M⊥

)
def
= L− E(L |M) .

For the observed outputs (Yk) and inputs (Uk) define

Yi def
=

1√
N

[
Yi Yi+1 . . . Yi+N−1

]
, Ui def

=
1√
N

[
Ui Ui+1 . . . Ui+N−1

]
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and

Y+
i,p+1

def
=




Yi+1

Yi+2
...

Yi+p+1



, Y−i,q

def
=




Yi
Yi−1

...

Yi−q+1



, U+

i,p+1
def
=




Ui+1

Ui+2
...

Ui+p+1



, U−i,q

def
=




Ui
Ui−1

...

Ui−q+1



.

All subspace algorithms summarized in [BM07] can be segmented into two families, the
algorithms based on covariances

Ri def
= 〈Yi, Z0〉

and the data-driven algorithms computing some conditional expectation

Ri def
= E(Yi | Z0)

with some Z0 and the Ri plugged in (2.14). Both algorithms share the same formalism. They
can be expressed in function of a single process Z0, also called instrument, the choice of this
instrument being the determining factor in the design of the algorithm.

Output-only algorithms

� Output-only covariance-driven subspace algorithm [BF85, POB+91], see also Equation
(2.8)

Ri =
[
r̂i r̂i+1 · · · r̂i+q−1

]
where r̂j = 〈Yj ,Y0〉

� Basic output-only subspace algorithm [BM07], see also Equation (2.11)

Ĥp+1,q = 〈Y+
0,p+1,Y−0,q〉

� Output-only data-driven subspace algorithms [VODM96], see also Equation (2.12)

Ĥp+1,q = E
(
Y+
0,p+1 | Y−0,q

)

In this form, it is called Unweighted Principal Component (UPC) in [VODM96]. Vari-
ants of this algorithm use the subspace matrix W1Ĥp+1,qW2 with different weightings
W1 and W2:

– Principal Component (PC): W1 = I, W2 = Y−T0,q 〈Y−0,q,Y−0,q〉−1/2Y−0,q
– Canonical Variate Algorithm (CVA): W1 = 〈Y+

0,p+1,Y+
0,p+1〉−1/2, W2 = I
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Input-Output algorithms (combined stochastic-deterministic)

� Covariance-driven subspace algorithms using projected past input and output as instru-
ments [VWO97]. They encompass the methods also known as IV, CVA, PO-MOESP
and N4SID in their covariance form [VWO97]. For example, the instrumental variables
(IV) method is defined by

Ĥp+1,q = 〈Y+
0,p+1,L−0,q〉,

where L−0,q is obtained by stacking for i = −q + 1, . . . , 0

Li
def
= E

(
Wi

∣∣∣∣
(
U+
0,p+1

)⊥)
, where Wi

def
=

[
Ui

Yi

]

� Covariance-driven subspace algorithm with projection on the orthogonal of the input
[GM03].

Ri =
[
r̂i r̂i+1 · · · r̂i+q−1

]
where r̂j = 〈Yj ,Z0〉 and Z0

def
= E


Y0

∣∣∣∣∣∣

[
U+
0,p+1

U−0,q

]⊥


(2.15)

� Data-driven subspace algorithms with projection on the orthogonal of the input
[VODM96]. This algorithm is known as the projection algorithm in [VODM96, Ch.
2.3.2] and is computed from

Ĥp+1,q = E
(
Y+
0,p+1 | Z−0,q

)
,

where Z−0,q is defined analogous to Y−0,q with corresponding Zi is as in (2.15).

� Data-driven algorithms using projected inputs as instruments [Ver93, Ver94, CP04b].
This algorithm was proposed by [Ver93, Ver94] under the name of PI-MOESP and was
revisited in [CP04a, CP04b]. It results from the computation of

Ĥp+1,q = E
(
Y+
0,p+1 | L−0,q

)

where L−0,q is defined by

Li
def
= E

(
Ui
∣∣∣∣
(
U+
0,p+1

)⊥)
, for i = −q + 1, . . . , 0.

Remark 2.1 (Subspace algorithms using frequency domain data) Many subspace
methods derived for time domain data have a frequency domain counterpart. Then, as pointed
out in [BM07], frequency domain methods behave like their time-domain counterparts. Let
L ∈ Ra,N and M ∈ Rb,N be matrices of compatible dimension and L ∈ Ra,N and M ∈ Rb,N
their Discrete Fourier Transform (DFT) with

L = LF, M = MF,
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where

F
def
=

1√
N




e−2iπ
0
N . . . e−2iπ

0N
N

e−2iπ
1
N . . . e−2iπ

1N
N

...
...

...

e−2iπ
N−1
N . . . e−2iπ

(N−1)N
N




is the unitary Fourier matrix. Extending the definitions of 〈·, ·〉 and E(· | ·) to complex ma-
trices leads to

〈L,M〉 = 〈L,M〉, E(L |M) = E(L |M)F.

Thus, the column space defined by these matrices is the same, either in frequency or in
time domain, leading to the same system identification results. Frequency-domain subspace
methods are detailed for example in [MAL96, VODMDS97, Pin02, CGPV06, Akç10].

2.3 Statistical subspace-based fault detection

2.3.1 Context

The considered fault detection techniques are built on an asymptotically Gaussian residual
function that compares a reference model with data. They date back to Benveniste et al. 1987
[BBM87] and are based on Le Cam’s local approach [LC56]. A residual function associated
to subspace methods was proposed in [BAB00], on which this work is based. A summary of
the local approach to change detection is found in [BBGM06].

With these methods, a χ2-test is performed on a residual function and compared to
a threshold. Like this, it can be decided if the system is still in the reference state or if
the system parameters have changed. The system parameterization is only needed in the
reference state, while the residual function is computed directly from the data without the
need of knowing the system parameters in the tested state. An entirely non-parametric
version of the χ2-test was proposed in [BBB+08].

The subspace-based fault detection test finds especially application in vibration monitor-
ing for the detection of structural damages (see also Section 2.4). It is extended to dam-
age localization in [BMG04, BBM+08] by detecting changes of structural parameters. As
structures are influenced by environmental conditions, especially temperature changes, the
respective damage detection tests are also sensitive to these changes. Tests that are robust to
these changes are proposed in [BBB+08, BBMN09, BBM+10]. There are many applications
of the subspace-based fault detection tests, see e.g. [MHVdA99, MGB03, MBG03, BBM+08,
FK09, ZWM10].

2.3.2 The residual function and its statistical evaluation

Consider the model parameter θ of a system and its reference value θ0, which is for instance
identified from data from the reference system. In this section, the model parameter is
considered as a very general parameter, but it can already be viewed as a vector containing
a canonical parameterization (eigenvalues, mode shapes) of a state-space system.
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Consider a new data sample YTk,p+1,q = (Y T
k+p+1, . . . , Y

T
k+1, Y

T
k , . . . , Y

T
k−q+1), k = 1, . . . , N ,

of size N . The detection problem is to decide whether the new data – corresponding to
some parameter θ – are still well described by parameter θ0 or not. A primary residual func-
tion K(θ′,Y) is introduced and some functions are derived that originate from this primary
residual. They share the common notation:

� For functions of two variables, the first variable corresponds to the model and the second
to the data.

� Model parameter θ0 corresponds to a reference state, θ to an unknown state. Often,
data corresponding to θ is confronted to the model defined by θ0.

� When computing derivatives or expected values with respect to data, the first and
second variable of these functions are denoted by θ′ and θ′′ to be unambiguous. At the
end, θ0 or θ are plugged in.

2.3.2.1 Primary residual

The fundamental idea of the detection algorithm is to associate the model parameter θ0 with
a vector-valued differentiable primary residual function K(θ′,Y), where the data Y are an
implicit function of parameter θ′′, and dimK ≥ dim θ. This primary residual is constructed
to satisfy the property [Bas98]

Eθ (K(θ0,Y)) = 0 iff θ = θ0, (2.16)

where Eθ is the expectation when the data Y correspond to the model parameter θ′′ = θ. Its
mean deviation with respect to the first variable is defined as

J (1)(θ0, θ)
def
= − ∂

∂θ′
Eθ′′K

(
θ′,Y

)∣∣∣∣
θ′=θ0,θ′′=θ

. (2.17)

With respect to the second variable, the mean deviation is defined as

J (2)(θ0, θ)
def
=

∂

∂θ′′
Eθ′′K

(
θ′,Y

)∣∣∣∣
θ′=θ0,θ′′=θ

. (2.18)

Both matrices J (1)(θ0, θ) and J (2)(θ0, θ) can be viewed as Jacobian matrices. Because of
(2.16), both expressions are equivalent for θ = θ0 and the notation is simplified to

J (θ0)
def
= J (1)(θ0, θ0) = J (2)(θ0, θ0). (2.19)

The primary residual is linked to an estimation function [DB97, BBM87], as the model
parameter θ can theoretically be estimated from

θ̂ = argθ′′

{
N∑

k=1

K(θ0,Yk,p+1,q) = 0

}
.
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2.3.2.2 Local approach to change detection

For a statistical evaluation of the residual its probability distribution is required, which is
generally unknown for the function K. A solution to this problem is provided by Le Cam
[LC56] with the concept of local asymptotic normality to compare statistical distributions by
(an infinite number of) observations under close hypotheses. With this concept, the statistical
local approach to change detection was developed [BBM87, BMP90, ZBB94, Bas98], which
is summarized now.

Assume the close hypotheses




H0 : θ = θ0

H1 : θ = θ0 + δθ/
√
N

(2.20)

where vector δθ is unknown but fixed. Note that for large N , hypotheses H1 corresponds to
small deviations in θ. From the primary residual function K, define the residual function

ζN (θ0, θ)
def
=

1√
N

N∑

k=1

K(θ0,Yk,p+1,q),

where the data Y corresponds to parameter θ. Define the residual covariance

ΣN (θ0, θ)
def
= Eθ

(
(ζN (θ0, θ)−EθζN (θ0, θ)) (ζN (θ0, θ)−EθζN (θ0, θ))

T
)
, (2.21)

and its limit
Σ(θ0)

def
= lim

N→∞
ΣN (θ0, θ). (2.22)

Note that it also holds

Σ(θ0) = lim
N→∞

ΣN (θ0, θ0) = lim
N→∞

Eθ0(ζN (θ0, θ0) ζN (θ0, θ0)
T ) (2.23)

as θ → θ0 for N →∞ under the assumption of close hypotheses.
Analogously to (2.17) and (2.18), define the Jacobians of the residual function as

J (1)
N (θ0, θ)

def
= − 1√

N

∂

∂θ′
Eθ′′ζN (θ′, θ′′)

∣∣∣∣
θ′=θ0,θ′′=θ

, (2.24)

J (2)
N (θ0, θ)

def
=

1√
N

∂

∂θ′′
Eθ′′ζN (θ′, θ′′)

∣∣∣∣
θ′=θ0,θ′′=θ

. (2.25)

With (2.17)–(2.19) follows

J (1)(θ0, θ) = lim
N→∞

J (1)
N (θ0, θ), J (2)(θ0, θ) = lim

N→∞
J (2)
N (θ0, θ) (2.26)

as well as

J (θ0) = lim
N→∞

J (1)
N (θ0, θ) = lim

N→∞
J (1)
N (θ0, θ0) (2.27)

= lim
N→∞

J (2)
N (θ0, θ) = lim

N→∞
J (2)
N (θ0, θ0) (2.28)
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under the assumption of close hypotheses.

Under hypothesis H1, a small change in parameter θ, the expected value of the residual
function with respect to data corresponding to (the unknown) parameter θ can be approx-
imated by its Taylor expansion of first order, where (θ − θ0) is replaced by δθ/

√
N . This

Taylor expansion can be made with respect to the first or with respect to the second variable
of ζN (θ0, θ). In the first case, it holds

EθζN (θ0, θ) ≈ EθζN (θ, θ) +
∂

∂θ′
EθζN (θ′, θ)

∣∣∣∣
θ′=θ

(θ0 − θ)

= − 1√
N

∂

∂θ′
EθζN (θ′, θ)

∣∣∣∣
θ′=θ

δθ

= J (1)
N (θ, θ)δθ, (2.29)

as EθζN (θ, θ) = 0 and using (2.24). In the second case, it holds

EθζN (θ0, θ) ≈ Eθ0ζN (θ0, θ0) +
∂

∂θ′′
Eθ′′ζN (θ0, θ

′′)

∣∣∣∣
θ′′=θ0

(θ − θ0)

=
1√
N

∂

∂θ′′
Eθ′′ζN (θ0, θ

′′)

∣∣∣∣
θ′′=θ0

δθ

= J (2)
N (θ0, θ0)δθ, (2.30)

as Eθ0ζN (θ0, θ0) = 0 and using (2.25). Thus, in both cases the mean of the residual function
asymptotically writes as J (θ0) δθ under the assumption of close hypotheses.

The residual function ζN (θ0, θ) is asymptotically Gaussian for a large class of primary
residuals K and and the following Central Limit Theorem holds.

Theorem 2.2 Provided that Σ(θ0) is positive definite, the residual ζN (θ0, θ) is asymptotically
Gaussian distributed under both hypotheses H0 and H1 defined in (2.20) and it holds

ζN (θ0, θ)
N−→




N (0,Σ(θ0)) under H0

N (J (θ0) δθ,Σ(θ0)) under H1

Hence, a change in the model parameter θ corresponds to a change of the mean of the
asymptotically Gaussian distributed residual ζN (θ0, θ).

For simplicity of notation, we will use ζN (θ0) instead of ζN (θ0, θ) in the following, while
still assuming that the data Y in the residual function corresponds to parameter θ.

2.3.2.3 Generalized likelihood ratio test

The generalized likelihood ratio test is a statistical test for making a decision between two
hypotheses, where one hypothesis (the null hypothesis) is a special case of the other one. Con-
sider the probability density functions pθ0 , pθ of a Gaussian random variable Z of dimension
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d with mean J δθ and covariance Σ under the hypotheses





H0 : δθ = 0

H1 : δθ 6= 0

The probability density function pθ writes as

pθ(Z) = (2π)−
d
2 (det(Σ))−

1
2 exp

{
−1

2
(Z − J δθ)TΣ−1(Z − J δθ)

}

and the generalized log-likelihood ratio writes as

Υ(Z) = −2 log
pθ0(Z)

supθ∈H1
pθ(Z)

= ZTΣ−1Z + sup
θ∈H1

(
−(Z − J δθ)TΣ−1(Z − J δθ)

)

= sup
θ∈H1

(
2δθTJ TΣ−1Z − δθTJ TΣ−1J δθ

)
.

The supremum is reached at δθ? = (J TΣ−1J )−1J TΣ−1Z and it follows

Υ(Z) = ZTΣ−1J (J TΣ−1J )−1J TΣ−1Z.

Consider now the asymptotically Gaussian random variable ζN (θ0) and let Ĵ and Σ̂ be
consistent estimates of its sensitivity (2.24) and covariance (2.22) computed from the reference
model θ0. Then, the variable

χ2
N (θ0)

def
= Υ (ζN (θ0)) = ζN (θ0)

T Σ̂−1Ĵ (Ĵ T Σ̂−1Ĵ )−1Ĵ T Σ̂−1ζN (θ0)

is asymptotically χ2 distributed [LC86] with rank(Ĵ ) = dim(θ0) degrees of freedom, if Ĵ is
full column rank, and the non-centrality parameter δθT Ĵ T Σ̂−1Ĵ δθ under H1.

The decision between the hypotheses H0 and H1 is hence determined by the comparison
of χ2

N (θ0) to a threshold γ:





H0 : θ = θ0 if χ2
N (θ0) < γ

H1 : θ = θ0 + δθ/
√
N if χ2

N (θ0) ≥ γ

2.3.3 Covariance-driven subspace-based residual and associated fault de-
tection test

A residual function associated to covariance-driven subspace identification and the respective
fault detection test were derived by Basseville et al. [BAB00], which is summarized in this
section. The theoretical foundations of this algorithm are explained in the previous section.
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2.3.3.1 Definition of residual and χ2-test

The model parameter θ ∈ C(r+1)n consists in the canonical parameterization of state-space
model (2.1) by the system eigenstructure

θ
def
=

[
Λ

vec Φ

]
, where Λ

def
=



λ1
...

λn


 , Φ

def
=
[
ϕ1 . . . ϕn

]
(2.31)

with the eigenvalues λ1, . . . , λn and respective mode shapes ϕ1, . . . , ϕn of system (2.1), cf.
(2.4).

The characterization of the model parameter θ by the estimation function (primary resid-
ual) K(θ,Y) is based on the factorization Hp+1,q = Op+1Zq of the covariance-driven subspace
matrix (2.8), where Hp+1,q ∈ R(p+1)r×qr0 . Write the observability matrix in the modal basis

Op+1(θ) =




Φ

Φ∆
...

Φ∆p



∈ C(p+1)r×n, (2.32)

with the diagonal matrix ∆
def
= diag(Λ). Note that A = Ψ−1∆Ψ, where the columns of Ψ are

the eigenvectors of A, and Φ = CΨ.
The following property characterizes whether a model parameter θ0 agrees with a subspace

matrix Hp+1,q:

Op+1(θ0) and Hp+1,q have the same left null space S.

From a model parameter θ0, the parametric observability matrix Op+1(θ) can be computed.
The left null space S ∈ R(p+1)r×s can be obtained from an SVD of Op+1(θ) and it holds

STS = Is (2.33)

STOp+1(θ0) = 0, (2.34)

where s = (p + 1)r − n and n is the system order. Because the left null space S implicitly
depends on θ0, it is denoted by S(θ0), although it is not unique as S(θ0)W with an orthonor-
mal matrix W is also a left null space. However, the particular choice of matrix W is not
important, as will be seen in Section 2.3.3.5.

Hence, the characteristic property of the subspace matrix containing data in the reference
state θ = θ0 writes as

S(θ0)
THp+1,q = 0.

To link this result with condition (2.16) for a primary residual K, the covariance-driven
subspace matrix is written as

Hp+1,q = E
(
Ỹ+
k,p+1Ỹ−Tk,q

)
, (∀k), (2.35)
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where

Ỹ+
k,p+1

def
=



Yk
...

Yk+p


 ∈ R(p+1)r, Ỹ−k,q

def
=




Y
(ref)
k
...

Y
(ref)
k−q+1


 ∈ Rqr0 .

With Z(Yk) = Ỹ+
k,p+1Ỹ−Tk,q the primary residual K(θ0,Yk) ∈ Rsqr0 is defined as [BAB00]

K(θ0,Yk) def
= vec

(
S(θ0)

TZ(Yk)
)
. (2.36)

Then, the estimate of the covariance-driven subspace matrix writes as

Ĥp+1,q =
1

N

N∑

k=1

Z(Yk) (2.37)

and the subspace-based residual function ζN (θ0) ∈ Rsqr0 is defined as

ζN (θ0)
def
=

1√
N

N∑

k=1

K(θ0,Yk) =
√
N vec

(
S(θ0)

T Ĥp+1,q

)
. (2.38)

Note that for consistency of notation to [BAB97, BAB00, BMG04], the subspace-based resid-
ual function is denoted as ζN (θ0) instead of ζN (θ0, θ) and the dependence on parameter θ,
to which the data in Ĥp+1,q correspond, is implicit. The main properties of ζN (θ0) are
summarized in the following theorem, based on Sections 2.3.2.2 and 2.3.2.3.

Theorem 2.3 ([BAB00]) Assume the close hypotheses




H0 : θ = θ0

H1 : θ = θ0 + δθ/
√
N

where vector δθ ∈ C(r+1)n is unknown but fixed. Then, the residual function ζN (θ0) in (2.38)
is asymptotically Gaussian distributed under both hypotheses H0 and H1 and it holds

ζN (θ0)
N−→




N (0,Σ(θ0)) under H0

N (J (θ0) δθ,Σ(θ0)) under H1

where J (θ0) ∈ Csqr0×(r+1)n and Σ(θ0) ∈ Rsqr0×sqr0 are the sensitivity and covariance of the
residual function. Hypothesis H0 can be tested against H1 by comparing the variable

χ2
N (θ0) = ζN (θ0)

T Σ̂−1Ĵ (Ĵ T Σ̂−1Ĵ )−1Ĵ T Σ̂−1ζN (θ0) (2.39)

with a threshold, where Ĵ and Σ̂ are consistent estimates of J (θ0) and Σ(θ0). The variable
χ2
N (θ0) is asymptotically χ2 distributed with rank(Ĵ ) = dim(θ0) = (r+1)n degrees of freedom,

if Ĵ is full column rank, and the non-centrality parameter δθT Ĵ T Σ̂−1Ĵ δθ under H1.

To evaluate the χ2-test statistics (2.39), estimates Ĵ and Σ̂ of the residual’s asymptotic
sensitivity and covariance J (θ0) and Σ(θ0) are needed. Note that neither the residual’s

sensitivity J (1)
N (θ0, θ) or J (2)

N (θ0, θ), nor its covariance ΣN (θ0, θ) are considered here, as they
converge to J (θ0) and Σ(θ0), respectively (cf. Equations (2.21)–(2.30)). Thus, they can be
computed in the reference state θ0 and are detailed in the following sections.
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2.3.3.2 Complex-valued Jacobian computation

The system parameter θ was defined in (2.31) and contains the eigenstructure of a system,
which consists of m pairs of conjugated complex eigenvalues and mode shapes in many ap-
plications, with the system order being n = 2m. In this section, the general complex-valued
computation of J (θ0) is introduced, while in Section 2.3.3.3 an equivalent real-valued com-
putation for pairs of complex modes is stated.

First, the derivative of the parametric observability matrix (2.32) is introduced from
[BAB00, BMG04], as the Jacobian J (θ0) will depend on it. Define

Λ
(p)
i

def
=
[
1 λi λ2i . . . λpi

]T
, Λ

′ (p)
i

def
=
[
0 1 2λi . . . pλp−1i

]T

for 1 ≤ i ≤ n. Then the derivative of the observability matrix writes

O′p+1(θ0)
def
=

∂ vecOp+1(θ)

∂θ

∣∣∣∣
θ=θ0

=




Λ
′ (p)
1 ⊗ ϕ1 0 Λ

(p)
1 ⊗ Ir 0

. . .
. . .

0 Λ
′ (p)
n ⊗ ϕn 0 Λ

(p)
n ⊗ Ir


,

(2.40)
where O′p+1(θ0) ∈ C(p+1)rn×(r+1)n.

According to Equations (2.24) and (2.25), the computation of the residual’s Jacobian
J (θ0) can be derived in two different ways [BAB00].

First computation In (2.24), the residual function is derived with respect to the first
variable. Assume the subspace matrix Hp+1,q ∈ R(p+1)r×qr0 in (2.35), whose data corresponds
to reference state θ0. With (2.27) follows

J (θ0) = − ∂

∂θ
vec
(
S(θ)THp+1,q

)∣∣∣∣
θ=θ0

= −
(
HTp+1,q ⊗ Is

)
S ′(θ0), (2.41)

where S(θ)
def
= vec(S(θ)T ) ∈ Rs(p+1)r and S ′(θ) def

= ∂/∂θ S(θ) ∈ Cs(p+1)r×(r+1)n. The deriva-
tive of S is obtained from (2.34) by deriving with respect to θ. It follows

∂

∂θ
vec
(
S(θ)TOp+1(θ)

)
=
(
Op+1(θ)

T ⊗ Is
)
S ′(θ) +

(
In ⊗ S(θ)T

)
O′p+1(θ) = 0

and thus S ′(θ0) in (2.41) is a solution of
(
Op+1(θ0)

T ⊗ Is
)
S ′(θ0) = −

(
In ⊗ S(θ0)

T
)
O′p+1(θ0). (2.42)

As Op+1(θ0)
T
(
Op+1(θ0)

T
)†

= In, one solution is

S ′(θ0) = −
((
Op+1(θ0)

T
)† ⊗ Is

) (
In ⊗ S(θ0)

T
)
O′p+1(θ0). (2.43)

Plugging into (2.41) leads finally to

J (θ0) =
(
Op+1(θ0)

†Hp+1,q ⊗ S(θ0)
)T
O′p+1(θ0). (2.44)
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Second computation In (2.25) the residual function is derived with respect to the second
variable. With (2.28) follows

J (θ0) =
∂

∂θ
vec
(
S(θ0)

THp+1,q

)∣∣∣∣
θ=θ0

,

where Hp+1,q is an implicit function of θ. From (2.2) follows Hp+1,q = Op+1(θ)Zq and thus

J (θ0) =
(
ZTq ⊗ S(θ0)

T
)
O′p+1(θ0).

Then, Zq = Op+1(θ0)
†Hp+1,q and

J (θ0) =
(
Op+1(θ0)

†Hp+1,q ⊗ S(θ0)
)T
O′p+1(θ0). (2.45)

Note that in both computations, J (θ0) does not depend on the particular scaling of
the mode shapes in θ0: Scaling the mode shapes ϕ1, . . . , ϕn with some constants α1, . . . , αn
leads to the parametric observability matrix Op+1(θ0)D, where D = diag(α1, . . . , αn). Its
derivative in (2.40) then writes as (D ⊗ I(p+1)r)O′p+1(θ0) and hence

J (θ0) =
(

(Op+1(θ0)D)†Hp+1,q ⊗ S(θ0)
)T

(D ⊗ I(p+1)r)O′p+1(θ0)

=
(
D−1 (Op+1(θ0))

†Hp+1,q ⊗ I(p+1)rS(θ0)
)T

(D ⊗ I(p+1)r)O′p+1(θ0)

=
(
Op+1(θ0)

†Hp+1,q ⊗ S(θ0)
)T
O′p+1(θ0).

In both computations, a consistent estimate Ĵ of J (θ0) is obtained by replacing Hp+1,q

in (2.44) or (2.45) with an estimate Ĥp+1,q (cf. (2.37)) that is obtained from a data sample
from the reference state corresponding to θ0.

2.3.3.3 Real-valued Jacobian computation

If the system parameter θ consists of m pairs of conjugated complex eigenvalues and mode
shapes, with the system order being n = 2m, the computation of the Jacobian J (θ0) can be
done in real values [BAB97, BMG04]. This is for example the case for structural vibration
analysis, see also Section 2.4.

Recall the definition of θ from (2.31):

θ =

[
Λ

vec Φ

]
, where Λ

def
=



λ1
...

λn


 , Φ

def
=
[
ϕ1 . . . ϕn

]

Let Λc ∈ Cm and Φc ∈ Cr×m contain one element of each pair of the conjugated complex
eigenvalues and mode shapes, respectively, such that

Λ =

[
Λc

Λc

]
, Φ =

[
Φc Φc

]
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and thus

θ =




Λc

Λc

vec Φc

vec Φc



.

Define analogously

θc
def
=

[
Λc

vec Φc

]
∈ C(r+1)m.

Then, the parametric observability matrix (2.32) writes as

Op+1(θ) =




Φc Φc

Φc∆c Φc∆c
...

...

Φc∆
p
c Φc∆

p
c




=
[
Op+1(θc) Op+1(θc)

]
,

where ∆c = diag(Λc). Now define the real-valued system parameter θ̃ by

θ̃
def
=

[
<(θc)

=(θc)

]
=




<(Λc)

vec<(Φc)

=(Λc)

vec=(Φc)



∈ R(r+1)2m (2.46)

and its corresponding real-valued parametric observability matrix by

Op+1(θ̃)
def
=




<(Φc) =(Φc)

<(Φc∆c) =(Φc∆c)
...

...

<(Φc∆
p
c) =(Φc∆

p
c)




=
[
< (Op+1(θc)) = (Op+1(θc))

]
∈ R(p+1)r×2m. (2.47)

Then, the relation

Op+1(θ̃) = Op+1(θ)T

holds with the invertible matrix

T =
1

2

[
Im −iIm

Im iIm

]
,

where (
√

2T )(
√

2T )∗ = I. Thus, the left null space S(θ0) of Op+1(θ0) with the properties
(2.33)–(2.34) is equivalent to a left null space S(θ̃0) of Op+1(θ̃0). Hence, the left null space
S(θ0) can be replaced by S(θ̃0) in the residual computation and the system parameter θ̃0 can
be used instead of θ0.
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Note that in the modal basis defined by Op+1(θ̃), the state transition and observation
matrices write as

Ã = T−1∆T =

[
<(∆c) =(∆c)

−=(∆c) <(∆c)

]
, C̃ = ΦT =

[
<(Φc) =(Φc)

]
.

For the Jacobian computation using the real-valued system parameter θ̃, the derivative

O′p+1(θ̃0)
def
=

∂ vecOp+1(θ̃)

∂θ̃

∣∣∣∣∣
θ̃=θ̃0

of the real-valued observability matrix is needed, where O′p+1(θ̃0) ∈ R(p+1)r2m×(r+1)2m. With
(2.46)–(2.47) it holds

O′p+1(θ̃) =




∂ vec< (Op+1(θc))

∂<(θc)

∂ vec< (Op+1(θc))

∂=(θc)

∂ vec= (Op+1(θc))

∂<(θc)

∂ vec= (Op+1(θc))

∂=(θc)


 . (2.48)

In (2.40), the complex-valued derivative O′p+1(θ0) ∈ C(p+1)r2m×(r+1)2m was defined. The

complex-valued derivative O′p+1(θc) ∈ C(p+1)rm×(r+1)m with respect to parameter θc can be
defined analogously. With the Wirtinger derivatives [Fis05] of a complex-valued function it
follows

O′p+1(θc) =
∂ vec< (Op+1(θc))

∂θc
+ i

∂ vec= (Op+1(θc))

∂θc

=
1

2

(
∂ vec< (Op+1(θc))

∂<(θc)
− i

∂ vec< (Op+1(θc))

∂=(θc)
+ i

∂ vec= (Op+1(θc))

∂<(θc)

+
∂ vec= (Op+1(θc))

∂=(θc)

)
.

Then, the elements of matrix O′p+1(θ̃) in (2.48) are obtained from O′p+1(θc) by using the

Cauchy-Riemann equations1

∂ vec< (Op+1(θc))

∂<(θc)
=
∂ vec= (Op+1(θc))

∂=(θc)
,

∂ vec< (Op+1(θc))

∂=(θc)
= −∂ vec= (Op+1(θc))

∂<(θc)

and it follows

O′p+1(θ̃) =


<(O′p+1(θc)) −=(O′p+1(θc))

=(O′p+1(θc)) <(O′p+1(θc))


 . (2.49)

Thus, the real-valued computation of the Jacobian J (θ̃0) analogous to (2.44) and (2.45)
writes

J (θ̃0) =
(
Op+1(θ̃0)

†Hp+1,q ⊗ S(θ̃0)
)T
O′p+1(θ̃0), (2.50)

1Op+1(θc) is a polynomial function and thus holomorphic. Hence the Cauchy-Riemann equations are
satisfied.



2.3 Statistical subspace-based fault detection 43

where the real-valued observability matrix Op+1(θ̃0) is computed in (2.47), the left null space
S(θ̃0) is computed on Op+1(θ̃0) and O′p+1(θ̃0) is obtained from (2.49) at θ̃ = θ̃0.

A consistent estimate Ĵ of J (θ̃0) is obtained by replacingHp+1,q in (2.50) with an estimate

Ĥp+1,q that is obtained from a data sample from the reference state corresponding to θ̃0. Note
that θ0 and θ̃0 denote equivalent canonical parameterizations of the system in the reference
state, where the former is complex-valued and the latter real-valued.

2.3.3.4 Covariance computation

The covariance of the residual function in the reference state is defined in (2.22) and obtained
using data in the reference state in (2.23):

Σ(θ0) = lim
N→∞

Eθ0(ζN (θ0) ζN (θ0)
T ) ∈ Rsqr0×sqr0

A consistent estimate Σ̂ of the covariance is obtained from the empirical covariance of a sample

of residuals ζ
(k)
Nb

(θ0), k = 1, . . . , nb, that are computed on different, statistically independent
parts of the data, where nb is the number of data samples that are each of length Nb. Let N
be fixed, and let the nb independent data samples be chosen such that N = nbNb. Denote
the estimates (2.37) of the covariance-driven subspace matrix on each data sample of length

Nb with Ĥ(k)
p+1,q and the estimate on the data sample of length N with Ĥp+1,q. Then,

lim
N→∞

Ĥp+1,q = lim
N→∞

1

nb

nb∑

k=1

Ĥ(k)
p+1,q.

and thus, the covariance of ζN can be expressed as the covariance of the ζ
(k)
Nb

:

Σ̂ = cov(ζN (θ0)) = cov
(
ζ
(k)
Nb

(θ0)
)
.

Replacing the latter with the sample covariance, where the mean Eθ0ζ
(k)
Nb

(θ0) = 0 is known,
yields the estimate

Σ̂ =
1

nb

nb∑

k=1

ζ
(k)
Nb

(θ0)ζ
(k)
Nb

(θ0)
T .

2.3.3.5 Invariance property of χ2-test

The χ2-test (2.39) possesses some important invariance properties.

Lemma 2.4 ([BAB97, Bas99, BAB00]) The χ2-test (2.39) is unchanged when the pri-
mary residual function K in (2.36) is premultiplied by an invertible matrix T .

Proof: For the primary residual TK, the subspace-based residual function writes
TζN (θ0) and consistent estimates of its sensitivity and covariance are T Ĵ and T Σ̂T T , when



44 Chapter 2

Ĵ and Σ̂ are consistent estimates of the sensitivity and covariance of ζN (θ0). Then,

χ2
N (θ0) = (TζN (θ0))

T (T Σ̂T T )−1(T Ĵ )
(

(T Ĵ )T (T Σ̂T T )−1(T Ĵ )
)−1

(T Ĵ )T (T Σ̂T T )−1TζN (θ0)

= ζN (θ0)
T Σ̂−1Ĵ (Ĵ T Σ̂−1Ĵ )−1Ĵ T Σ̂−1ζN (θ0).

In the definition of the left null space S(θ0) in Section 2.3.3.1, the matrix S(θ0) can be
replaced by S(θ0)W , where W is an orthogonal matrix. This leads to a residual function

ζN,W (θ0) =
√
N vec

(
(S(θ0)W )T Ĥp+1,q

)
= (I ⊗W T )ζN (θ0).

Thus, from Lemma 2.4 follows that the choice of W has no effect on the resulting χ2-test
statistics. Further aspects of the invariance property are considered in Section 3.4.2.

2.3.4 Non-parametric versions of the covariance-driven subspace-based
fault detection test

This section addresses two implementations of the fault detection test that have proven
efficient in practice and were shown in [BBB+08]. They use an entirely non-parametric
version of the test, where no system parameter θ0 needs to be known in the reference state.
With this strategy, a test is proposed where an empirical null space Ŝ is used, which is the null
space of different reference states. This can be used for a test that is robust to environmental
changes. Applications of the non-parametric test are found e.g. in [FM02, YG06, SBMT08,
FK09, SMR+09].

2.3.4.1 Non-parametric test

In some cases, it is of interest to replace the parametric approach with a non-parametric
one, based on an empirical null space Ŝ computed on a reference data set and not on the
parametric observability matrix (2.32) or (2.47). Such a null space may result from a SVD
of the empirical subspace matrix built on the reference data set (here indexed with 0) and it
holds

ŜT Ŝ = Is,

ŜT Ĥ (0)
p+1,q = 0 (2.51)

instead of (2.33)–(2.34). The subspace matrix Ĥ (0)
p+1,q corresponds to reference parameter

θ0 in the previous sections, which is not needed to be known in this case. While θ0 would
be estimated from data in practice and thus contains only limited information about the

system in the reference state, the computation of Ŝ directly on Ĥ (0)
p+1,q uses the entire system

response.
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Based on a new data set of length N from the (possibly faulty) system, the empirical
subspace matrix Ĥp+1,q (corresponding to state θ) is computed and the residual then writes

ζ̂N
def
=
√
N vec

(
ŜT Ĥp+1,q

)
.

As there is no system parameterization, no sensitivity matrix needs to be taken care of. The
χ2-test statistics (2.39) boils down to

χ̂2
N

def
= ζ̂TN Σ̂−1ζ̂N , (2.52)

where Σ̂ is an estimate of the covariance of ζ̂N , which can be computed analogous to Section
2.3.3.4.

Note that the empirical χ2-test statistics (2.52) corresponds to testing hypotheses H0

against H1 in Theorem 2.3, where J (θ0) = I. Thus, the residual function plays the role of
the underlying system parameter itself.

2.3.4.2 Merging different reference states

Assume that J reference data sets are available with corresponding subspace matrices

Ĥ (0,1)
p+1,q, . . . , Ĥ

(0,J)
p+1,q that relate to (slightly) different system parameters θ0,1, . . . , θ0,J . This

happens e.g. in structural vibration analysis, where the modal parameters of the healthy
structure vary under different environmental conditions. A left null space Ŝ is desired with
the property

ŜT Ĥ (0,k)
p+1,q = 0, k = 1, . . . , J.

An empirical solution to this problem was proposed in [BBB+08] by the computation of Ŝ

on the average of the subspace matrices Ĥ (k)
p+1,q, such that

ŜT
J∑

k=1

Ĥ (0,k)
p+1,q = 0.

Then, the residual covariance Σ̂ is computed using the subspace matrices Ĥ (0,k)
p+1,q, k = 1, . . . , J .

The corresponding χ2-test statistics (2.52) then reacts on changes in the system from the
states corresponding to θ0,1, . . . , θ0,J , but not from a change in the system between the
reference states corresponding to some θ0,i to θ0,j . This approach was validated e.g. in
[BBM+06, RMLDR08, AMR09, SMR+09].

2.4 Structural vibration analysis

An important application of subspace-based system identification and fault detection lies in
the field of vibration analysis of mechanical, civil and aeronautical structures. In this section,
the underlying mechanical model is introduced and its relation to the state space model (2.1)
is shown [POB+91, Jua94, PDR99]. Also, practical issues for the modal analysis of structures
are considered.
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2.4.1 Modeling and eigenstructure identification

The behavior of a mechanical structure is described by a continuous-time, time-invariant,
linear dynamical system, modeled by the vector differential system

{
M Ẍ (t) + C1Ẋ (t) +KX (t) = υ(t)

Y (t) = LX (t)
(2.53)

where t denotes continuous time; M , C1, and K are mass, damping, and stiffness matrices,
respectively; the (high dimensional) state vector X (t) is the displacement vector of the degrees
of freedom of the structure; the external unmeasured force υ is modeled as stationary white
noise with covariance matrix Qυ(t); measurements are collected in the (low dimensional)
vector Y and matrix L indicates which degrees of freedom are actually measured, i.e. the
sensor locations.

The matrices (M,C1,K) cannot be recovered from measured outputs. However, the
parameters to be identified are the eigenvalues (or modes) µ and mode shapes ψµ of system
(2.53), which comprise the modal parameters and are solutions of

(µ2M + µC1 +K)Ψµ = 0, ψµ = LΨµ. (2.54)

Sampling model (2.53) at rate 1/τ yields the discrete time state space model (2.1), where the
state and the output are

Xk =

[
X (kτ)

Ẋ (kτ)

]
, Yk = Y (kτ),

the state transition and observation matrices are

A = eLτ , where L =

[
0 I

−M−1K −M−1C1

]
, C =

[
L 0

]
.

The state noise (Vk) is stationary, zero-mean, white, with covariance

Q
def
= E

(
Vk V

T
k

)
=

∫ (k+1)τ

kτ
eLs Q̃(s) eL

T sds, where Q̃(s) =

[
0 0

0 M−1Qυ(s)M−1

]
.

The eigenstructure (λ, ϕλ) of system (2.1) is defined by the eigenvalues and eigenvectors of
A and by C:

(A− λI)φλ = 0, ϕλ = Cφλ. (2.55)

The desired modal parameters in (2.54) are equivalently found in the eigenstructure (λ, ϕλ)
of (2.1) and it holds

eµτ = λ, ψµ = ϕλ.

The modal frequencies f and damping coefficients ρ are recovered directly from the eigenval-
ues λ by

f =
a

2πτ
, ρ =

100|b|√
a2 + b2

, (2.56)
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where a = | arctan<(λ)/=(λ)| and b = ln |λ|.
Thus, vibration analysis is stated as the problem of identifying the eigenstructure of a

linear dynamic system. Parameters of interest are modes (modal frequencies f , damping
ratios ρ) and mode shapes ϕλ.

2.4.2 Further modeling issues

2.4.2.1 Sensor types

The measurement equation in (2.53) assumes that the sensors are displacement sensors such
as strain gauges. If strain gauges, velocity sensors or accelerometers are available, the mea-
surement equation in (2.53) can be written as

Y (t) =



L1X (t)

L2Ẋ (t)

L3Ẍ (t)


 ,

and the corresponding discrete time system (2.1) holds with

C =




L1 0

0 L2

−L3M
−1K −L3M

−1C1


 .

Consequently, the state-space model (2.1) is valid for those three types of sensors and the
nature of the sensors influences the observation matrix C only. When accelerometers are
used, the sensor noise and process noise are correlated, although we ignore this effect.

2.4.2.2 Input excitation

In Section 2.4.1, the unknown excitation force υ(t) is assumed to be stationary Gaussian
white noise for simplicity. However, it is more realistic to assume a non-stationary excitation.
This is no shortcoming for the subspace algorithms, as non-stationary consistency of many
subspace algorithms for eigenstructure identification was shown in [BM07].

Also, the whiteness assumption made on the input force υ(t) seems unrealistic. The
unknown excitation forces are typically a superposition of harmonics due to rotating parts
as well as colored ambient excitation noise. When processing the measured responses with
subspace-based algorithms, harmonics due to rotating parts are found in the form of poles
with zero damping. Since the frequency of rotation is usually known, those harmonics can
be discarded from the results of the analysis. On the other hand, colored input excitation
can always be represented as the output of an unknown excitation filter driven by white
noise [GD91, BBGM07]. In this case, (2.53) represents the combined system including the
excitation filter. Therefore, (2.54) collects the modes and mode shapes of the combined
system. Since the poles corresponding to the excitation filter are generally highly damped,
these poles can easily be separated from structural modes, which typically have a much lower
damping coefficient.
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2.4.2.3 Measurement noise

Measurement noise was neither considered in model (2.1) nor in model (2.53). This is some-
what unrealistic and the measurement equation in model (2.1) should rather be

Yk = CXk + εk,

where εk is a Gaussian, zero mean, moving-average sequence. However, this kind of noise
can be encompassed up to an index shift when filling the subspace matrix for the subspace
algorithm [VODM96, BAB00]. With this assumption on εk, the measurement noise does
not affect the eigenstructure of the system in (2.1). This property does not hold if εk is an
autoregressive sequence.

2.4.3 The stabilization diagram

In Operational Modal Analysis (OMA), the eigenstructure of mechanical, civil and aeronau-
tical structures is identified from output-only data under ambient excitation. With forced
excitation e.g. by shakers (exogenous inputs, OMAX), some of the inputs are available. In
both cases, the selection of the model order in (2.5), and thus the parameters p and q of the
subspace matrix Ĥp+1,q on one hand, and the handling of excitation and measurement noises
on the other hand, are two major practical issues.

In order to retrieve a desired number of modes, an even larger model order must be
assumed while performing identification. A number of spurious modes appear in the iden-
tified model due to this over-specification, as well as due to colored noise or non-linearities.
Techniques from statistics to estimate the best model order, such as AIC, BIC or MDL
[Aka74a, Ris78, CMK01], or model order estimation techniques specifically for subspace
methods as in [Bau01] may lead to a model with the best prediction capacity. How-
ever, one is rather interested in a model containing only the physical modes of the inves-
tigated structured, while rejecting the spurious modes. Based on the observation that phys-
ical modes remain quite constant when estimated at different over-specified model orders,
while spurious modes vary, they can be distinguished using so-called stabilization diagrams
[PDR99, PDR01, VdAP04, CGV+05, Bak11]. There, frequencies estimated from multi-order
system identification are plotted against the model order. From the modes common to many
models and using further stabilization criteria, such as a threshold on damping values, low
variation between modes and mode shapes of successive orders etc., the final estimated model
is obtained.



Chapter 3

Some numerical considerations for
subspace-based algorithms

3.1 Introduction

This chapter has the purpose to introduce and derive some numerical tools, which are needed
throughout this work. Furthermore, theoretical properties and practical issues concerning
the fault detection test of Section 2.3.3 are derived.

In Section 3.2, definitions of the QR, LQ and singular value decompositions are stated,
as well as properties of the vectorization operator and the Kronecker product.

In Section 3.3, an iterative least squares solution for strongly over-determined systems of
equations using the QR decomposition is derived. This algorithm will be useful in Chapters 4
and 5 for an iterative solution of the least squares problem for the state transition matrix.
Furthermore, an efficient computation of sensitivities of the singular vectors of a random
matrix is derived in the same section, which will be useful in Chapter 6 for the covariance
computation of a fault detection residual based on the left singular vectors.

In Section 3.4, additional properties of the statistical subspace-based fault detection test
of Section 2.3.3 are derived and clarified. They are mainly of theoretical value and concern
the computation of the asymptotic Jacobian of the residual as well as an invariance property
of the associated χ2-test. The latter concerns the selected null space and weightings for the
subspace matrix. For these issues, inconsistent statements have been made in literature and
this section helps to clarify them.

In Section 3.5, some practical issues of the fault detection test are addressed, which
are important for the implementation of the algorithm and its application to real data. In
many cases, the estimate of the residual’s asymptotic covariance matrix is rank deficient
due to a lack of data. For this case, a numerically robust and efficient computation of the
associated χ2-test is proposed. Furthermore, the computation of the covariance estimate
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itself is explained in detail for covariance-driven SSI and extended to data-driven SSI with
the UPC algorithm. These computations are applied for damage detection using ambient
vibration data of a bridge in Chapter 9.

Note that Sections 3.3–3.5 can be skipped for a first reading.

3.2 Definitions

3.2.1 QR decomposition and Singular Value Decomposition

In this section, the notation for QR, LQ and singular value decompositions is defined, based
on [GVL96].

Definition 3.1 The QR decomposition of a matrix Z ∈ Ra×b is denoted by

Z = Q1R1,

where Q1 ∈ Ra×a is an orthogonal matrix with QT1Q1 = Q1Q
T
1 = I and R1 ∈ Ra×b is an

upper triangular matrix. For a ≥ b the thin QR decomposition is denoted by

Z = Q2R2,

where Q2 ∈ Ra×b is a matrix with orthonormal columns (QT2Q2 = I) and R2 ∈ Rb×b is an
upper triangular matrix.

Analogously, the LQ decomposition of a matrix Z ∈ Ra×b is denoted by

Z = R3Q3,

where R3 ∈ Ra×b is a lower triangular matrix and Q3 ∈ Rb×b is an orthogonal matrix with
QT3Q3 = Q3Q

T
3 = I. For a ≤ b the thin LQ decomposition is denoted by

Z = R4Q4,

where R4 ∈ Ra×a is a lower triangular matrix and Q4 ∈ Ra×b is a matrix with orthonormal
rows (Q4Q

T
4 = I).

Note that if Z is full column rank, R2 from the thin QR decomposition is invertible. If
Z is full row rank, R4 from the thin LQ decomposition is invertible. Still, in both cases, the
thin decompositions are not unique. However, they can be defined in a unique way, e.g. by
positive values on the diagonal of R2 and R4, respectively.

In this work, mainly the thin QR and thin LQ decompositions are used.

Definition 3.2 The singular value decomposition (SVD) of a matrix Z ∈ Ra×b is denoted
by

Z = U∆V T
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where U ∈ Ra×a and V ∈ Rb×b are orthogonal matrices containing the left and right singular
vectors, and

∆ =





[
∆̃ 0

]
, if a < b,[

∆̃

0

]
, if a > b,

∆̃, if a = b,

where ∆̃ = diag(σ1, . . . , σmin{a,b}) is the diagonal matrix containing the singular values of Z
with σ1 ≥ . . . ≥ σmin{a,b}.

For a > b the thin SVD of Z is defined by

Z = U1∆̃V
T ,

where U1 ∈ Ra×b is the first block of the partitioned matrix U =
[
U1 U2

]
.

Note that again, the thin SVD of a matrix Z is not a unique decomposition, even if Z
is full column rank. However, it can be defined uniquely, e.g. by positive values of the first
component of each left singular vector as in the following definition.

Definition 3.3 Let Z = Ũ∆Ṽ T be an arbitrary SVD of matrix Z, where

Ũ =
[
ũ1 . . . ũn

]
, Ṽ =

[
ṽ1 . . . ṽn

]

and n = rank(Z). For j = 1, . . . , n define

uj = sign(ũ1,j)ũ1,j , vj = sign(ũ1,j)ṽ1,j ,

where ũ1,j is the first entry of vector ũj, and

U =
[
u1 . . . un

]
, V =

[
v1 . . . vn

]
.

Then, U∆V T is called unique SVD of Z.

In this work, the full SVD is used for the computation of left null spaces. In all other
cases, the thin SVD is used.

3.2.2 Vectorization operator and Kronecker product

In this work, the vectorization operator

vecG =




g1

g2
...

gn




for G =
[
g1 g2 . . . gn

]
∈ Rm×n
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is used extensively. Here, some properties related to Kronecker products are recalled and
formulas for vecGT are derived. They are stated in [Fac05, Bro11] and proved in the following.

For arbitrary matrices A ∈ Rp×m, B ∈ Rn×q the Kronecker product A ⊗ B ∈ Rnp×mq is
defined as

A⊗B =




a11B a12B . . . a1mB

a21B a22B . . . a2mB
...

...
. . .

...

ap1B ap2B . . . apmB



, where A =




a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...

ap1 ap2 . . . apm



.

An important property of the vectorization operation is

vec(AGB) = (BT ⊗A)vecG. (3.1)

Definition 3.4 For i ∈ {1, . . . , n} define the unit vector

e
(n)
i

def
=
[
0 . . . 0 1 0 . . . 0

]T
∈ Rn,

where the entry 1 is at the i-th position. Then, the permutation matrix Pm,n ∈ Rmn×mn is
defined as

Pm,n def
=




e
(n)
1 ⊗ e(m)T

1 e
(n)
2 ⊗ e(m)T

1 . . . e
(n)
n ⊗ e(m)T

1

e
(n)
1 ⊗ e(m)T

2 e
(n)
2 ⊗ e(m)T

2 . . . e
(n)
n ⊗ e(m)T

2
...

...
. . .

...

e
(n)
1 ⊗ e(m)T

m e
(n)
2 ⊗ e(m)T

m . . . e
(n)
n ⊗ e(m)T

m




=




In ⊗ e(m)T
1

In ⊗ e(m)T
2

...

In ⊗ e(m)T
m



.

Lemma 3.5 ([Fac05, Bro11]) Let A ∈ Rp×m, B ∈ Rn×q and G ∈ Rm×n. Then, the
permutation matrix Pm,n has the following properties:

(a) PTm,nPm,n = Pm,nPTm,n = Imn

(b) PTm,n = Pn,m

(c) Pm,nvecG = vecGT

(d) Pn,p(A⊗B)Pm,q = B ⊗A

Proof: Items (a) and (b) follow directly from the definition of Pm,n. To prove item (c),
write the vectorization operation as

vecG =




Ge
(n)
1

Ge
(n)
2
...

Ge
(n)
n



, vecGT =




GT e
(m)
1

GT e
(m)
2

...

GT e
(m)
m



. (3.2)
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Then, using Definition (3.4) the k-th block of the product Pm,nvecG writes

[
Pm,nvecG

]
k

def
=
[
e
(n)
1 ⊗ e(m)T

k e
(n)
2 ⊗ e(m)T

k . . . e
(n)
n ⊗ e(m)T

k

]
vecG

=
n∑

i=1

(
e
(n)
i ⊗ e

(m)T
k

)
Ge

(n)
i .

From Ge
(n)
i = vec(Ge

(n)
i ) and with property (3.1) follows

[
Pm,nvecG

]
k

=
n∑

i=1

vec
(
e
(m)T
k

(
Ge

(n)
i

)
e
(n)T
i

)

= vec

(
e
(m)T
k G

n∑

i=1

e
(n)
i e

(n)T
i

)

= vec
(
e
(m)T
k G

)
.

As
(
e
(m)T
k G

)
is a row vector, its transposed is vec

(
e
(m)T
k G

)
and thus

[
Pm,nvecG

]
k

= GT e
(m)
k .

Comparing this result with the k-th block of vecGT in (3.2) proves (c).

The proof of (d) is stated from [Fac05]: Let C ∈ Rm×q be an arbitrary matrix. Then,
with property (3.1) and (c) it follows

Pn,p(A⊗B)Pm,qvecC = Pn,p(A⊗B)vecCT

= Pn,pvec
(
BCTAT

)

= vec
(
ACBT

)

= (B ⊗A)vecC.

The fact that C is arbitrary finishes the proof.

Remark 3.6 The matrix Pm,n coincides with the matrix

P =

m∑

k1=1

n∑

k2=1

Em,nk1,k2
⊗ En,mk2,k1

defined in [PGS07, RPDR08], where Em,nk1,k2
∈ {0, 1}m×n are matrices whose entries are zeros,

except the entry at position (k1, k2) which is one.
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3.3 Some numerical tools

3.3.1 Iterative QR decompositions

In some cases, thin QR decompositions of a large matrix G ∈ Rm,n with m� n are necessary,
where only matrix R is needed. With the following lemma, the QR decomposition of G is
done iteratively on blocks of G, while in each step only the R part needs to be saved in order
to obtain the corresponding R part of G.

Lemma 3.7 Let G0, . . . , GJ , where Gj ∈ Rmj×n for j = 0, . . . , J , be the J + 1 block rows of
a matrix

G =



G0
...

GJ


 ∈ Rm×n,

where m0 ≥ n and G0 is full column rank. Let the thin QR decompositions

G0 = Q0R0, (3.3)[
Rj−1

Gj

]
= QjRj , j = 1, . . . , J (3.4)

be given iteratively, where Rj, j = 0, . . . , J , are invertible matrices. Let

Q
def
=

[
Q0 0

0 Il0

][
Q1 0

0 Il1

]
· · ·
[
QJ−1 0

0 IlJ−1

]
QJ , (3.5)

R
def
= RJ , (3.6)

where Ilj are identity matrices of appropriate size. Then, a thin QR decomposition of G is
given by

G = QR.

Proof: The relation G = QR follows from post-multiplying (3.5) with R = RJ , then
substituting (3.4) in backward order for j = J, . . . , 1 and substituting (3.3) in the last step.
R0 is an invertible matrix, because G0 is full column rank, and it follows iteratively from (3.4)
that all the Rj , j = 1, . . . , J , are invertible. As the factors in (3.5) have orthogonal columns,
Q also has orthogonal columns. Furthermore, R = RJ is upper triangular as it yields the
QR decomposition (3.4) for j = J . Thus, G = QR is effectively a QR decomposition of G.

With the iterative QR decomposition of G, the least-squares solution of a large system
of equations GA = H can be obtained iteratively, where G,H ∈ Rm×n and A ∈ Rn×n with
m� n.
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Lemma 3.8 Let G0, . . . , GJ and H0, . . . ,HJ , where Gj , Hj ∈ Rmj×n for j = 0, . . . , J , be the
J + 1 block rows of the matrices

G =



G0
...

GJ


 , H =



H0
...

HJ


 ,

where G,H ∈ Rm×n, m0 ≥ n and G0 is full column rank. Let the thin QR decompositions
and products

G0 = Q0R0, S0
def
= QT0H0, (3.7)

[
Rj−1

Gj

]
= QjRj , Sj

def
= QTj

[
Sj−1

Hj

]
, j = 1, . . . , J (3.8)

be given iteratively. Then, the least squares solution of

GA = H (3.9)

is given by
A = R−1J SJ .

Proof: From Lemma 3.7 follows that

G = QRJ , where Q =

[
Q0 0

0 Il0

][
Q1 0

0 Il1

]
· · ·
[
QJ−1 0

0 IlJ−1

]
QJ ,

is a QR decomposition of G and RJ is invertible. Thus, the solution of the least squares
problem (3.9) is

A = R−1J QTH

= R−1J QTJ

[
QTJ−1 0

0 IlJ−1

]
· · ·
[
QT1 0

0 Il1

][
QT0 0

0 Il0

]



H0

H1
...

HJ




= R−1J QTJ

[
QTJ−1 0

0 IlJ−1

]
· · ·
[
QT1 0

0 Il1

]



QT0H0

H1
...

HJ




Plugging in (3.7) and doing the multiplications in this product from the right to the left,
where at each step (3.8) is plugged in, leads to the assertion.
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Note that Lemma 3.7 can be applied to the LQ decomposition of data matrices for data-
driven subspace-based system identification in Section 2.2.3. For example, in (2.13) the LQ
decomposition is done of a matrix with possibly a very large number of columns. In the case
of lots of available data, this LQ decomposition may not be feasible anymore. As the factor
Q is not needed, Lemma 3.7 can be applied to the transposed data matrix, without keeping
the matrices Qj on the way.

Lemma 3.8 will be useful in Chapters 4 and 5 for an iterative solution of the least squares
problem for the state transition matrix.

3.3.2 Efficient computation of singular vector sensitivities

Let u1, . . . , un and v1, . . . , vn be the first n left and right singular vectors of an estimated ma-

trix Z ∈ Ra,b with a ≥ b ≥ n, and U1 =
[
u1 . . . un

]
and V1 =

[
v1 . . . vn

]
. Analogously,

let σ1, . . . , σn be the first n singular values of Z, such that the thin SVD of Z is given by

Z =
[
U1 U0

] [S1 0

0 S0

][
V T
1

V T
0

]
, (3.10)

where S1 = diag(σ1, . . . , σn). The aim of this section is to compute sensitivity matrices JU1

and JV1 that link small perturbations in Z to the singular vectors in U1 and V1.
Assume Z as a smooth and bounded matrix function of an artificial scalar variable,

where Z(0) is the “true value” of Z and Z(t) is a perturbed (estimated) value of Z, where
t is small. Let M be a placeholder for any matrix from the SVD in (3.10), in particular
M ∈ {U1, V1}, which of course depends on Z. Then, the matrix M can be analogously
expressed as M = M(t) when computed from an estimated Z, while M(0) is their true but
unknown value. Using the Taylor expansion

M(t) = M(0) + tṀ(0) +O(t2),

a first-order perturbation is denoted by ∆M
def
= tṀ(0) ≈ M(t) −M(0) for small t [PGS07,

RPDR08].
In this section, an efficient computation of the sensitivities JU1 and JV1 of the left and

right singular vectors is derived in Proposition 3.11. These sensitivities are defined by the
relations

∆(vecU1) = JU1∆(vecZ), ∆(vecV1) = JV1∆(vecZ)

and are finally used to express the covariances of the singular vectors using the covariance
of Z: It holds for M ∈ {U1, V1}

cov(vecM) = cov(vecM(t)) = cov(vecM(t)− vecM(0))

≈ cov∆(vecM) = cov∆(JMvecZ)

≈ cov(JMvecZ)

and thus

cov(vecU1) = JU1 cov(vecZ)J TU1
, cov(vecV1) = JV1 cov(vecZ)J TV1 .
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This result will be used in Section 6.5.
The efficient sensitivity computations are based on results obtained in [PGS07, RPDR08].

Pintelon et al. [PGS07] derived the sensitivities of the singular vectors of a matrix Z as stated
in the following proposition.

Proposition 3.9 ([PGS07]) Define

Ej
def
=




Ia − Z
σj

−Z
T

σj
Ib


 , Fj

def
=

1

σj

[
vTj ⊗ (Ia − ujuTj )

(uTj ⊗ (Ib − vjvTj ))Pa,b

]
, (3.11)

where Pa,b is defined in Definition 3.4. Then, the sensitivity of the stacked j-th left and right
singular vector of Z is a solution of

Ej

[
∆uj

∆vj

]
= Fj ∆(vecZ). (3.12)

As Ej is a rank deficient matrix with rank a + b − 1, one possible solution of (3.12) is

E†jFj and the following result was derived in [RPDR08].

Proposition 3.10 ([RPDR08]) Following Proposition 3.9, the sensitivities JU1 and JV1
write as

JU1 = S1



E†1F1

...

E†nFn


 , JV1 = S2



E†1F1

...

E†nFn


 ,

where S1 and S2 are selection matrices with S1 = In ⊗
[
Ia 0a,b

]
, S2 = In ⊗

[
0b,a Ib

]
.

Using an orthogonality property of the singular vectors in the computation of the sensitiv-
ities JU1 and JV1 , the block structure of the matrices Ej can be exploited for their inversion.
This leads to a more efficient computation of the sensitivities in the following proposition.

Proposition 3.11 Define

Kj
def
=

(
Ib +

[
0b−1,b

2vTj

]
− ZTZ

σ2j

)−1
, (3.13)

Ẽj
def
=

[
Ia +

Z

σj
Kj

(
ZT

σj
−
[

0b−1,a

uTj

])
Z

σj
Kj

]
, (3.14)

G̃j
def
=

[
Kj

(
ZT

σj
−
[

0b−1,a

uTj

])
Kj

]
, (3.15)

F̃j
def
=

1

σj

[
vTj ⊗ (Ia − ujuTj )

(Ib − vjvTj )⊗ uTj

]
. (3.16)
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Then, the sensitivities JU1 and JV1 write

JU1 =



Ẽ1F̃1

...

ẼnF̃n


 , JV1 =



G̃1F̃1

...

G̃nF̃n


 . (3.17)

Proof: From (3.12) follows that ∆uj and ∆vj satisfy the condition

Ej

[
∆uj

∆vj

]
= Fj ∆(vecZ),

where Ej and Fj are defined in (3.11). As the singular vectors uj and vj , j = 1, . . . , n, are
orthonormal, they satisfy uTj uj = 1 and vTj vj = 1. It follows uTj ∆uj = 0 and vTj ∆vj = 0 and

thus the condition uTj ∆uj + vTj ∆vj = 0 can be added to the system of equations for ∆uj and
∆vj , which was also suggested in [PGS07]. If Z is full column rank, this leads to a system of
full column rank. Without loss of generality, this condition can be added to the last row of
the matrices in (3.12) and a solution writes as

[
∆uj

∆vj

]
=

(
Ej +

[
0c,a 0c,b

uTj vTj

])−1
Fj ∆(vecZ), (3.18)

where c = a + b − 1. The block matrix inversion formula is used for this matrix inversion.
Define [

O P

Q R

]
def
= Ej +

[
0c,a 0c,b

uTj vTj

]
,

where

O
def
= Ia, P

def
= − Z

σj
, Q

def
= −Z

T

σj
+

[
0b−1,a

uTj

]
, R

def
= Ib +

[
0b−1,b

vTj

]
.

With the block matrix inversion formula follows
[
O P

Q R

]−1
=

[
O−1 +O−1PS−1O QO−1 −O−1PS−1O

−S−1O QO−1 S−1O

]
,

where SO
def
= R−QO−1P and thus

SO = Ib +

[
0b−1,b

vTj

]
−
(
−Z

T

σj
+

[
0b−1,a

uTj

])(
− Z
σj

)
= Ib +

[
0b−1,b

vTj

]
+

[
0b−1,b

uTj Z/σj

]
− ZTZ

σ2j
.

From uTj Z/σj = vTj and with Kj defined in (3.13) follows Kj = S−1O . Then, from (3.14) and
(3.15) follows (

Ej +

[
0c,a 0c,b

uTj vTj

])−1
=

[
Ẽj

G̃j

]
. (3.19)
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It remains to show F̃j = Fj with Fj in (3.11) and F̃j in (3.16). This follows from Lemma
3.5(d): It holds

Pb,1(uTj ⊗ (Ib − vjvTj ))Pa,b = (Ib − vjvTj )⊗ uTj .

From Definition 3.4 follows Pb,1 = Ib and thus F̃j = Fj . Then, the assertion follows together
with (3.18) and (3.19).

Note that in Proposition 3.11 a matrix inversion only happens when computing Kj , which
is of size b × b. Compared to Proposition 3.10, where the pseudoinverse of matrices of size
(a + b) × (a + b) is computed, the new computation in Proposition 3.11 is a significant
improvement. It is of use when applied to the sensitivity computation of subspace matrices
of size a × b = (p + 1)r × qr0 in Section 6.5 for a residual based on the left singular vectors
in U1, where usually a > b. Moreover, this computation is a significant time and memory
improvement in the confidence interval computation of modal parameters from [RPDR08]
and is applied in Section 9.2.5.

3.4 Remarks on theoretical properties of fault detection test

3.4.1 Jacobian computation

In Section 2.3.3.2, the asymptotic Jacobian of the subspace-based residual was derived in
two ways, depending on the derived variable. In the first computation, the Jacobian J (θ0)
depends on S ′(θ0), which is a solution of (2.42). This equation results from the condition
S(θ0)

TOp+1(θ0) = 0. However, the system of equations (2.42) is under-determined and
additional conditions should be taken into account. From S(θ0)

TS(θ0) = Is results a further
condition.

Lemma 3.12 Define

JS(θ)
def
=
(
S(θ)T ⊗ Is

)
+



S(θ)T ⊗ e(s)T1

...

S(θ)T ⊗ e(s)Ts


 ,

where e
(s)
j ∈ Rs are the unit vectors. Then, a necessary condition for S(θ0)

TS(θ0) = Is is

JS(θ0)S ′(θ0) = 0. (3.20)

This condition is already fulfilled by the solution

S ′(θ0) = −
((
Op+1(θ0)

T
)† ⊗ Is

) (
In ⊗ S(θ0)

T
)
O′p+1(θ0)

in (2.43).
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Proof: From S(θ0)
TS(θ0) = Is follows the necessary condition

∂

∂θ
vec
(
S(θ)TS(θ)

)
=
(
S(θ)T ⊗ Is

) ∂ vecS(θ)T

∂θ
+
(
Is ⊗ S(θ)T

) ∂ vecS(θ)

∂θ
= 0. (3.21)

As S ′(θ0) is defined as

S ′(θ) =
∂ vecS(θ)T

∂θ
,

the derivative ∂ vec(S(θ))/∂θ has to be expressed in terms of S ′(θ). Using the conclusions of
Lemma 3.5, it follows

∂ vecS(θ)

∂θ
= PT(p+1)r,s

∂ vecS(θ)T

∂θ
, where Pa,b =




Ib ⊗ e(a)T1

Ib ⊗ e(a)T2
...

Ib ⊗ e(a)Ta




with the unit vectors e
(a)
j ∈ Ra defined in Definition 3.4. Then, condition (3.21) is equivalent

to
∂

∂θ
vec
(
S(θ)TS(θ)

)
=
((
S(θ)T ⊗ Is

)
+
(
Is ⊗ S(θ)T

)
PT(p+1)r,s

)
S ′(θ) = 0. (3.22)

From Lemma 3.5(a) and (d) follows

(
Is ⊗ S(θ)T

)
PT(p+1)r,s = Ps,s

(
S(θ)T ⊗ Is

)
P(p+1)r,sPT(p+1)r,s

= Ps,s
(
S(θ)T ⊗ Is

)

=



Is ⊗ e(s)T1

...

Is ⊗ e(s)Ts



(
S(θ)T ⊗ Is

)

=



S(θ)T ⊗ e(s)T1

...

S(θ)T ⊗ e(s)Ts


 .

Plugging this into (3.22), a necessary condition for S(θ0)
TS(θ0) = Is writes thus



(
S(θ0)

T ⊗ Is
)

+



S(θ0)

T ⊗ e(s)T1
...

S(θ0)
T ⊗ e(s)Ts





S

′(θ0) = 0.

Let Op+1(θ0) = U1∆1V
T
1 be a thin SVD of Op+1(θ0). Then, Op+1(θ0)

T = V1∆1U
T
1 and hence(

Op+1(θ0)
T
)†

= U1∆
−1
1 V T

1 . Thus, Op+1(θ0) and
(
Op+1(θ0)

T
)†

have the same left null space.
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As S(θ0)
TOp+1(θ0) = 0 it follows S(θ0)

T
(
Op+1(θ0)

T
)†

= 0 and thus



(
S(θ0)

T ⊗ Is
)

+



S(θ0)

T ⊗ e(s)T1
...

S(θ0)
T ⊗ e(s)Ts






((
Op+1(θ0)

T
)† ⊗ Is

)
= 0,

which concludes the proof.

Thus, conditions (2.42) and (3.20) lead to a square system of equations for S ′(θ0)
(
Op+1(θ0)

T ⊗ Is
)
S ′(θ0) = −

(
In ⊗ S(θ0)

T
)
O′p+1(θ0), (3.23)

JS(θ0)S ′(θ0) = 0, (3.24)

where the first equation results from differentiating S(θ0)
TO(θ0) = 0 with respect to θ0

and the second equation results from differentiating S(θ0)
TS(θ0) = Is. Note that condition

(Is⊗S(θ0)
T )S ′(θ0) = 0 stated in [BAB00] does not result from differentiating S(θ0)

TS(θ0) =
Is.

The system (3.23)–(3.24) is in general not of full rank, as the matrix JS(θ0) is in general
not full row rank. In Section 2.3.3.2 and Lemma 3.12 it was shown that one of the solutions
of this system is (2.43). Fortunately, the solution S ′(θ0) does not need to be unique in order
to get a unique Jacobian J (θ0) in (2.41) with

J (θ0) = −
(
HTp+1,q ⊗ Is

)
S ′(θ0),

as stated in the following lemma.

Lemma 3.13 ([BAB97, BAB00]) The Jacobian J (θ0) = −
(
HTp+1,q ⊗ Is

)
S ′(θ0) is well-

defined and does not depend on a particular solution S ′(θ0) satisfying (3.23).

Proof: Any element in the left null space of Op+1(θ0) is also in the left null space of
Hp+1,q and thus

ker
(
Op+1(θ0)

T ⊗ Is
)
⊂ ker

(
HTp+1,q ⊗ Is

)
. (3.25)

Assume two solutions S ′1(θ0) and S ′2(θ0) of (3.23). Then,

(
Op+1(θ0)

T ⊗ Is
)
S ′2(θ0)−

(
Op+1(θ0)

T ⊗ Is
)
S ′1(θ0) = 0.

Thus S ′2(θ0)−S ′1(θ0) ∈ ker
(
Op+1(θ0)

T ⊗ Is
)

and because of (3.25) it holds S ′2(θ0)−S ′1(θ0) ∈
ker
(
HTp+1,q ⊗ Is

)
. It follows

−
(
HTp+1,q ⊗ Is

)
S ′1(θ0) = −

(
HTp+1,q ⊗ Is

) (
S ′1(θ0) + (S ′2(θ0)− S ′1(θ0))

)

= −
(
HTp+1,q ⊗ Is

)
S ′2(θ0),

showing that J (θ0) is well-defined.
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3.4.2 Weighting matrices and invariance property

In Section 2.3, the subspace-based fault detection test was introduced for the covariance-
driven subspace matrix Hp+1,q with the factorization property Hp+1,q = Op+1Zq. In a more
general setting, the same algorithm can be written using invertible weighting matrices W1 and
W2 for a subspace matrix W1Hp+1,qW2 as in [BAB97, Bas99, BAB00]. Then, an invariance
property holds, namely that the corresponding χ2-test statistics is the same, either using the
weighting matrices or not. In this section, special care is taken about this invariance property
as there is a slight incoherence in the respective results of [BAB97, Bas99, BAB00].

Use the notation of Section 2.3 for a test corresponding to subspace matrix Hp+1,q, where

ζN (θ0) =
√
N vec

(
S(θ0)

T Ĥp+1,q

)
,

and S(θ0) is defined such that S(θ0)
TOp+1(θ0) = 0. For subspace matrix W1Hp+1,qW2, define

ζN ;W1,W2(θ0)
def
=
√
N vec

(
SW1(θ0)

TW1Ĥp+1,qW2

)
,

where SW1(θ0) is defined such that SW1(θ0)
TW1Op+1(θ0) = 0. Then, there exists a unique

invertible matrix TW1 such that [BAB97]

SW1(θ0)
TW1 = TW1S(θ0)

T ,

as both W T
1 SW1(θ0) and S(θ0) are left null spaces of Op+1(θ0). Then it follows

ζN ;W1,W2(θ0) = (W T
2 ⊗ TW1)ζN (θ0). (3.26)

Thus, with Lemma 2.4 follows that the χ2-test statistics is the same, either using residual
function ζN (θ0) or the residual function ζN ;W1,W2(θ0) on the weighted subspace matrix. This
also justifies why a left weighting matrix of the subspace matrix is omitted in the damage
detection algorithms.

Remark 3.14 To show the invariance property based on a relation like (3.26), in [Bas99,
BAB00] an invertible matrix T1 is used with the property

S(θ0)
TW1 = T1S(θ0)

T . (3.27)

Postmultiplying this equation with S(θ0) leads to

T1 = S(θ0)
TW1S(θ0)

as the only possible solution of (3.27). However, this is in general not a solution of (3.27).
A solution of (3.27) only exists, if S(θ0)S(θ0)

TW T
1 S(θ0) = W T

1 S(θ0), i.e. W T
1 S(θ0) is in the

range of S(θ0). This is the case, if W1 is a multiple of the identity matrix.
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3.5 Practical issues of fault detection test

3.5.1 Numerical robustness of χ2-test

In this section, special care is taken of numerical aspects of the computation of the χ2-test
statistics that are used for subspace-based fault detection, as matrix inversions of big and
sometimes rank deficient matrices are involved. They appear for example in (2.39), (2.52),
(6.13), (6.14), (6.16), (6.21), (6.24) and are always of the form

χ2 = ζTΣ−1J (J TΣ−1J )−1J TΣ−1ζ (3.28)

or, in the non-parametric version,

χ2 = ζTΣ−1ζ. (3.29)

Here we consider only the numerical properties of their computation and thus skip all sub-
scripts and superscripts of χ2, ζ, J and Σ. Let c be the dimension of the underlying system
parameter θ in ζ = ζ(θ) and d the dimension of ζ, such that J ∈ Rd×c and Σ ∈ Rd×d.

In all computations, the covariance matrix Σ is not necessarily considered positive definite,
as for an empirical estimate Σ̂ the number of samples might not be sufficient to ensure full
rank of Σ̂. In this case, we assume the use of pseudoinverses, as it might be the only possibility
to compute the χ2-test statistics in practice when using real data.

Assumption 3.15 If Σ is rank deficient, the χ2-test statistics (3.28) and (3.29) can be
approximated by

χ2 = ζTΣ†J (J TΣ†J )†J TΣ†ζ (3.30)

and, in the non-parametric version,

χ2 = ζTΣ†ζ. (3.31)

First, results from [ZB03] for a numerical stable computation of the χ2-test are extended
in Lemma 3.16 and rank conditions on the involved matrices are derived in Corollary 3.17.
Second, an efficient computation of the square root inverse of the covariance matrix using
sampled data is derived in Proposition 3.19, which takes a key role in the computation of the
χ2-test.

Let Σ−1/2 ∈ Re×d be a square root (pseudo-)inverse of the covariance matrix, such that

Σ−1 = (Σ−1/2)TΣ−1/2,

if Σ is full rank, or

Σ† = (Σ−1/2)TΣ−1/2

in the rank deficient case. Note that in the full rank case, the dimensions of Σ−1/2 yield
e ≥ d. In the rank deficient case, only e ≥ rank(Σ) holds and thus e < d is possible.

Lemma 3.16 If

Σ−1/2J is full column rank, (3.32)
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the χ2-tests (3.28) and (3.30) write as

χ2 = ξT ξ with ξ = QTΣ−1/2ζ ∈ Rc, (3.33)

where Q is obtained from the thin QR decomposition of Σ−1/2J = QR.

Proof: From (3.28) or (3.30) follows with the definition of Σ−1/2 the relation

χ2 = ζT (Σ−1/2)TΣ−1/2J (J T (Σ−1/2)TΣ−1/2J )†J T (Σ−1/2)TΣ−1/2ζ

Plugging Σ−1/2J = QR, where R is invertible and QTQ = I, into (3.30) yields

χ2 = ζT (Σ−1/2)TQR(RTQTQR)†RTQTΣ−1/2ζ

= ζT (Σ−1/2)TQQTΣ−1/2ζ

and thus the assertion.

From Lemma 3.16 a rank condition on the parametric χ2-test is derived.

Corollary 3.17 Let J ∈ Rd×c and Σ−1/2 ∈ Re×d. If

c ≥ rank(Σ−1/2J ), (3.34)

condition (3.32) is violated and the χ2-test (3.30) boils down to

χ2 = ζTΣ†ζ = ξT ξ with ξ = Σ−1/2ζ. (3.35)

Proof: Let f
def
= rank(Σ−1/2J ). Under condition (3.34), a rank-revealing QR decompo-

sition with column pivoting [GVL96] of J T (Σ−1/2)T = QRΠT is possible, where R is invert-
ible with dimensions f × f , QTQ = I and Π is a permutation matrix with ΠTΠ = ΠΠT = I.
Plugging this QR decomposition into (3.30) yields analogously to the previous lemma

χ2 = ζT (Σ−1/2)TΠRTQT (QRΠTΠRTQT )†QRΠTΣ−1/2ζ.

As Q has orthonormal columns and R is invertible, it follows (QRRTQT )† = QR−TR−1QT ,
leading to the assertion.

An empirical estimate of Σ is often based on some samples hk, k = 1, . . . , nb, that are
obtained from instances of the subspace matrix Ĥ by cutting the sensor data into nb sta-
tistically independent blocks (see Section 3.5.2 for some explicit formulae). Then, condition
(3.34) is fulfilled, if nb ≤ c. This will become clear in Lemma 3.18. Thus, the number of
samples must satisfy nb > c as a necessary condition for the use of a Jacobian J . Otherwise,
the residual’s sensitivity will disappear in the χ2-test statistics (3.30).

In the χ2-test in (3.33) or (3.35), a computation of Σ̂−1/2 from the estimated covariance
matrix Σ̂ is needed, which can pose a numerical problem when nb is too small for assuring full
rank of Σ̂. In this work, the covariance matrix Σ of any residual function can be factorized
into

Σ = AΣHAT , (3.36)
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where ΣH = limN

√
NĤ is the asymptotic covariance of the subspace matrix and A is a

matrix depending on the residual function ζ. For example, A = I ⊗ ST for residual function
(2.38). Further factorizations of Σ that define A in (3.36) are e.g. (6.11), (6.12) or (6.23). A
factorization property for an estimate of ΣH will now be used for an efficient computation of
Σ−1/2.

Lemma 3.18 Let Σ̂h be an estimate of a covariance Σh with

Σ̂h =
1

nb − 1

nb∑

k=1

(hk − h̄)(hk − h̄)T ,

using samples hk, k = 1, . . . , nb, h̄
def
= 1

nb

∑nb
k=1 hk, and

K def
=

1√
nb − 1

[
h̃1 h̃2 . . . h̃nb

]
with h̃k

def
= hk − h̄.

Then, Σ̂h = KKT .

Proposition 3.19 Let factorization Σ = AΣHAT and an estimate of the covariance of the
subspace matrix Σ̂H = KKT be given, where K is related to the chosen SSI algorithm. Then,

Σ̂−1/2 = (AK)† (3.37)

is a square root (pseudo-)inverse of the covariance estimate Σ̂.

Proposition 3.19 provides an efficient way to compute the square root (pseudo-)inverse
of the covariance matrix in case of few available samples nb. With an empirical estimate
Σ̂H = KKT of the covariance of the subspace matrix using Lemma 3.18, matrix K only has
nb columns. Then, in (3.37) the pseudoinverse of matrix AK ∈ Rd×nb is computed and thus
e = nb. If nb < d = dim ζ, the computation of Σ̂−1/2 in (3.37) is less costly than computing
Σ̂−1/2 directly from Σ̂ ∈ Rd×d.

Moreover, the computation of the (pseudo-)inverse of matrix AK is numerically more
stable than the square root (pseudo-)inverse of the squared matrix Σ̂ = AK(AK)T . Hence,
using (3.37) may be favorable, even if nb ≥ d.

3.5.2 Covariance estimation of subspace matrix

As pointed out in the previous section, the asymptotic covariance Σ depends on the asymp-
totic covariance ΣH of the subspace matrix. It is defined as

ΣH
def
= lim

N→∞
cov(
√
Nvec Ĥ), (3.38)

where Ĥ is computed on N data samples. The computation of ΣH depends on the chosen
SSI algorithm.

The difficulty in the estimation of Σ̂H lies often in the availability of only comparatively
small data sets. A dataset of length N , on which an estimate Ĥ of the subspace matrix
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is computed, might also serve for an estimation of its covariance Σ̂H. Then, the available
data is cut into nb blocks of length Nb that are regarded as statistically independent, where
N = nb ·Nb. The “samples” Ĥk of the subspace matrix can be computed on each data block
k = 1, . . . , nb. However, they cannot be used directly for the covariance computation Σ̂H,
because they are only computed on a data sample of length Nb and thus are not samples of
Ĥ (which is computed on a sample of length N). As the covariance estimate Σ̂H regarding
a data sample of length N is of interest, the empirical covariances of Ĥ and Ĥk have to be
linked.

In this section, the computation of the covariance estimate Σ̂H is stated for covariance-
driven SSI, where the relation between Ĥ and Ĥk is straightforward. Then, this computation
is extended to data-driven SSI with the UPC algorithm.

3.5.2.1 Notation for covariance estimation of subspace matrices of covariance-
and data-driven SSI

Details of the covariance- and data-driven SSI algorithm are found in Section 2.2.3 and their
notation is recalled now. From the output data, the data matrices

Ỹ+ def
=




Yq+1 Yq+2
... YN+q

Yq+2 Yq+3
... YN+q+1

...
...

...
...

Yq+p+1 Yq+p+2
... YN+q+p



, Ỹ− def

=




Y
(ref)
q Y

(ref)
q+1

... Y
(ref)
N+q−1

Y
(ref)
q−1 Y

(ref)
q

... Y
(ref)
N+q−2

...
...

...
...

Y
(ref)
1 Y

(ref)
2

... Y
(ref)
N




(3.39)

are built and normalized by the number of samples to

Y+ def
=

1√
N
Ỹ+, Y− def

=
1√
N
Ỹ−, (3.40)

cf. (2.7). For the covariance-driven SSI, the subspace matrix

Ĥcov = Y+ Y− T (3.41)

with Ĥcov ∈ R(p+1)r×qr0 is built. For the data-driven SSI with the Unweighted Principal
Component (UPC) algorithm, the matrix

ĤUPC = Y+ Y− T (Y− Y− T )−1Y− (3.42)

with ĤUPC ∈ R(p+1)r×N is defined. This matrix can get very large and in practice, the thin
LQ decomposition [

Y−
Y+

]
= RQ =

[
R11 0

R21 R22

][
Q1

Q2

]
, (3.43)

is done at first, where R and Q are partitioned as stated in (3.43). Then, with (3.42) follows
ĤUPC = R21Q1. As Q1 is a matrix with orthogonal rows, the same observability matrix can
also be obtained from R21 in the SSI algorithm. Hence, the subspace matrix estimate

ĤUPC,R = R21 (3.44)
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is used, with ĤUPC,R ∈ R(p+1)r×qr0 and R21 from (3.43).
For the derivation of the covariance Σ̂H, the unnormalized data matrices Ỹ+ and Ỹ− from

(3.39) are split into nb blocks

Ỹ+ =
[
Ỹ+
1 . . . Ỹ+

nb

]
, Ỹ− =

[
Ỹ−1 . . . Ỹ−nb

]
. (3.45)

For simplicity, each block Ỹ+
j and Ỹ−j may have the same length Nb, such that nb ·Nb = N .

Each block may be long enough to assume statistical independence between the blocks. They
are normalized with respect to their length to

Y+
j

def
=

1√
Nb
Ỹ+
j , Y−j

def
=

1√
Nb
Ỹ−j , j = 1, . . . , nb. (3.46)

3.5.2.2 Covariance-driven case

The covariance of the subspace matrix in the covariance-driven case follows easily from the
covariance of the sample mean and was used e.g. in [RPDR08]. On each normalized data
block from (3.46) a subspace matrix estimate Ĥcov

j is built with

Ĥcov
j

def
= Y+

j Y−j
T
. (3.47)

Proposition 3.20 A covariance estimate Σ̂Hcov of the covariance-driven subspace matrix
Ĥcov in (3.41) writes as

Σ̂Hcov =
N

nb(nb − 1)

nb∑

j=1

(
vec Ĥcov

j − vec Ĥcov
)(

vec Ĥcov
j − vec Ĥcov

)T
.

Proof: The matrices Ĥcov
j , j = 1, . . . , nb, are independent and identically distributed

(i.i.d.) random variables as the underlying data are independent. The same holds obviously
for vec Ĥcov

j , j = 1, . . . , nb. From (3.40), (3.41), (3.46) and (3.47) follows

Ĥcov =
1

nb

nb∑

j=1

Ĥcov
j . (3.48)

As the vec Ĥcov
j , j = 1, . . . , nb, are i.i.d., they have the same covariance and it follows together

with (3.48)

Σ̂Hcov = cov
(√

N vec Ĥcov
)

=
N

n2b

nb∑

j=1

cov
(

vec Ĥcov
j

)
=
N

nb
cov

(
vec Ĥcov

1

)
. (3.49)

The estimator of the sample covariance of vec Ĥcov
j , j = 1, . . . , nb, is

1

nb − 1

nb∑

j=1

(
vec Ĥcov

j − vec Ĥcov
)(

vec Ĥcov
j − vec Ĥcov

)T
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with the sample mean vec Ĥcov with

Ĥcov =
1

nb

nb∑

j=1

Ĥcov
j = Ĥcov,

and the assertion follows.

3.5.2.3 Data-driven case

Now, the computation of the covariance of the subspace matrix ĤUPC,R (see (3.43)–(3.44))
is derived. As the LQ decomposition in (3.43) is not unique, the convergence of ĤUPC,R

for N → ∞ has to be assured in some sense, and thus that ΣH in (3.38) is well-defined:
This follows from the convergence of ĤUPC(ĤUPC)T = ĤUPC,R(ĤUPC,R)T for N →∞ in the
stationary case [BM07]. Thus, ĤUPC,R also converges if it is well-defined, e.g. by a unique
LQ decomposition as described in Section 3.2.1.

We proceed as follows for the computation of the covariance. On each normalized data
block from (3.46) a subspace matrix ĤUPC,R

j is constructed by the thin LQ decomposition of

[
Y−j
Y+
j

]
= R(j)Q(j), (3.50)

where R(j) and Q(j) are partitioned into

R(j) =

[
R

(j)
11 0

R
(j)
21 R

(j)
22

]
, Q(j) =

[
Q

(j)
1

Q
(j)
2

]
, (3.51)

and R
(j)
11 ∈ Rqr0×qr0 , R

(j)
21 ∈ R(p+1)r×qr0 . Then, a subspace matrix estimate on each data

block is
ĤUPC,R
j

def
= R

(j)
21 . (3.52)

Proposition 3.21 Let Q̆
(j)
11 , j = 1, . . . , nb, be defined from partitioning the Q matrix of the

thin LQ decomposition
[
R

(1)
11 . . . R

(nb)
11

]
= R̆11

[
Q̆

(1)
11 . . . Q̆

(nb)
11

]
, (3.53)

where the R
(j)
11 , j = 1, . . . , nb, are defined in (3.51). Then, a covariance estimate Σ̂HUPC,R of

the UPC subspace matrix ĤUPC,R in (3.42) writes as

Σ̂HUPC,R =
N

nb − 1

nb∑

j=1

(
vec

(
ĤUPC,R
j Q̆

(j)
11

T
)
−M

)(
vec

(
ĤUPC,R
j Q̆

(j)
11

T
)
−M

)T
,

where

M
def
=

1

nb

nb∑

j=1

vec

(
ĤUPC,R
j Q̆

(j)
11

T
)
.
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Proof: From (3.40), (3.45) and (3.46) follows

[
Y−
Y+

]
=

1√
nb

[
Y−1 . . . Y−nb
Y+
1 . . . Y+

nb

]
.

Plugging in (3.43) on the left side and (3.50) on the right side leads to

RQ =
1√
nb

[
R(1) . . . R(nb)

]


Q(1)

. . .

Q(nb)


 .

By enlarging the thin LQ decomposition (3.53) to

[
R(1) . . . R(nb)

]
= R̆Q̆, (3.54)

it can be assumed that it holds

R =
1√
nb
R̆, Q = Q̆



Q(1)

. . .

Q(nb)


 (3.55)

as the thin LQ decomposition is unique up to a sign change (uniqueness can be enforced
by constraining the diagonal elements of the R part to positive values). Let R̆ and Q̆ be
partitioned into

R̆ =

[
R̆11 0

R̆21 R̆22

]
, Q̆ =

[
Q̆1 . . . Q̆nb

]
, (3.56)

where R̆ is partitioned analogously to R, and the Q̆j are of the same size as the R(j) in (3.54).
As R̆ and the R(j) are lower triangular in (3.54), the matrices Q̆j are also lower triangular
and can be partitioned accordingly into

Q̆j =

[
Q̆

(j)
11 0

Q̆
(j)
21 Q̆

(j)
22

]
, j = 1, . . . , nb. (3.57)

Multiplying (3.54) with Q̆T and replacing Q̆ by its partition from (3.56) leads to

R̆ =

nb∑

j=1

R(j)Q̆Tj .

Now, replacing R̆, R(j) and Qj with their partitions from (3.56), (3.51) and (3.57), respec-
tively, leads to [

R̆11 0

R̆21 R̆22

]
=

nb∑

j=1

[
R

(j)
11 0

R
(j)
21 R

(j)
22

][
Q̆

(j)
11

T
Q̆

(j)
21

T

0 Q̆
(j)
22

T

]
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and hence

R̆21 =

nb∑

j=1

R
(j)
21 Q̆

(j)
11

T
.

Then, together with (3.44), (3.52), (3.55) and (3.56) it follows

ĤUPC,R =
1√
nb

nb∑

j=1

ĤUPC,R
j Q̆

(j)
11

T
. (3.58)

Now, regarding the vec(ĤUPC,R
j Q̆

(j)
11

T
), j = 1, . . . , nb, as i.i.d., the relation

Σ̂HUPC,R = N cov

(
vec

(
ĤUPC,R

1 Q̆
(1)
11

T
))

follows analogously to (3.49) and the assertion follows.

This covariance computation of the data-driven subspace matrix is applied in Section 9.2
for uncertainty quantification.

The difficulty for computing the covariance in the data-driven case lies in the non-
uniqueness of the LQ decomposition and in the absence of a straightforward relation between
ĤUPC,R and ĤUPC,R

j . In this context, also other approaches could be considered, as link-

ing the covariance computation of the vectorizations of ĤUPC,R and ĤUPC,R(ĤUPC,R)T =
ĤUPC(ĤUPC)T or employing the matrix

Y+Y−T (Y−Y−T )−1/2,

which is related to ĤUPC,R by post-multiplying with an orthogonal matrix.

3.6 Conclusions

In this chapter, some basic numerical tools were introduced that are needed throughout this
work. Additional properties of the statistical fault detection test from Section 2.3 were shown
and clarified, deepening the theoretical understanding of this algorithm. Furthermore, some
very practical issues of the χ2-test computation were solved that are related to the handling
of a rank deficient estimate of the covariance matrix. This situation often appears when using
quite short data sets. A numerically robust implementation was suggested. The computation
of the covariance matrix itself was detailed for covariance-driven SSI and extended to data-
driven SSI with the UPC algorithm. These points increase the applicability of the fault
detection test in practice.

3.7 Dissemination

Parts of this chapter have been published in:
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[DM11d] M. Döhler and L. Mevel. Robust subspace based fault detection. In Proc.
18th IFAC World Congress, Milan, Italy, 2011.
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Chapter 4

Modular subspace-based system
identification from multi-setup

measurements

4.1 Introduction

Subspace-based system identification methods have been proven efficient for the identification
of the eigenstructure of linear multivariable systems [BF85, Vib95, VODM96, PDR99, BM07].
An important application of these methods is structural vibration analysis, where the vi-
brating characteristics (modes, mode shapes) are identified of mechanical, civil or aero-
nautical structures subject to uncontrolled, unmeasured and non-stationary excitation
[HVdA99, MBG03].

To obtain vibration measurements at many coordinates of a structure with only few
sensors, it is common practice to use multiple sensor setups for the measurements. For these
multi-setup measurements, some of the sensors, the so-called reference sensors, stay fixed
throughout all the setups, while the other sensors are moved from setup to setup. By fusing
in some way the corresponding data, this allows to perform modal identification as if there
was a very large number of sensors, even in the range of a few hundreds or thousands.

Processing multi-setup measurement data for structural analysis is often achieved by
performing eigenstructure identification for each record separately, and then merging the
results obtained for records corresponding to different sensor pools. However, pole matching
may be not easy in practice, and thus the result of eigenvector gluing may not be consistent
[MK00, VdALMH00, CGDV02]. Therefore the question arises to perform eigenstructure
identification by merging the data of the successive records and processing them globally,
instead of merging the identification results.

Global merging approaches in frequency domain were proposed for maximum likelihood
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identification in [PGC03] and for NExT-ERA in [Bro03, SF09]. In time domain, an empir-
ical global merging approach for covariance-driven subspace identification was proposed in
[RMDRC09].

In [MBBG02a, MBBG02b] a merging scheme was proposed for the covariance-driven
stochastic subspace identification and the non-stationary consistency of the resulting iden-
tification algorithm was proved. We generalize the merging approach from [MBBG02a,
MBBG02b], which is only designed for the covariance-driven stochastic subspace identifi-
cation, to arbitrary subspace-based identification algorithms.1 Moreover, the new approach
is modular, i.e. the data records from different setups are processed one after another instead
of together at the same time, in order to do global system identification. Furthermore, a
scalable modular merging algorithm is proposed in this chapter, which uses only little more
than the memory needed for single-setup system identification of the setup actually being
processed. Like this, there are practically no limitations on the number of setups or sensors
that can be processed. Non-stationary consistency of the proposed algorithms is proved for
the general class of subspace algorithms in [BM07].

In Operational Modal Analysis the true system order is unknown and recommended
techniques from statistics to estimate the best model order (AIC, BIC, MDL, . . . ) may lead to
a model with the best prediction capacity. However, one is rather interested in distinguishing
between true physical modes and noise modes of the investigated system. For doing this,
the identification procedure is repeated while truncating at different over-specified model
orders, as the noise modes tend to vary at different orders [PDR99]. In the classical subspace
algorithm, the model obtained by the selection of some lower order from an overestimated
higher model order coincides with the direct truncation at this given order. We prove the
same property for the proposed merging algorithms.

This chapter is organized as follows. In Section 4.2, the general subspace-based system
identification algorithm is introduced and two examples of stochastic subspace identification
algorithms are given. In Section 4.3, the merging problem for multi-setup measurements is
addressed. The merging algorithm for the covariance-driven stochastic subspace identification
from [MBBG02a, MBBG02b] is generalized in two steps to arbitrary subspace-based system
identification algorithms and the scalable merging algorithm is derived. In Section 4.4, non-
stationary consistency of the proposed merging algorithms is proved, with the condition of
the underlying subspace algorithm being consistent to non-stationary excitation [BM07]. In
Section 4.5, the robustness of these algorithms to misspecified model order is investigated. In
Section 4.6, implementation details are given for the merging algorithms using data-driven
subspace identification. Finally, in Section 4.7, the modal analysis of a bridge from vibra-
tion measurements is considered as an application of the merging algorithms, before some
concluding remarks.

4.2 Subspace-based system identification

In this section, the basic principles of subspace-based system identification are recalled from
Section 2.2.2. We consider linear multivariable systems described by a discrete time state

1A slight mistake in the merging procedure in [MBBG02a, MBBG02b] is also corrected in this chapter.
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space model {
Xk+1 = AXk + Vk

Yk = CXk

(4.1)

where state X and observed output Y have dimensions n and r, respectively, A is the state
transition and C the observation matrix. The state noise process (Vk)k is an unmeasured
Gaussian white noise sequence with zero mean and, in the stationary case, constant covariance

matrix Q: E(VkV
T
k′ )

def
= Qδ(k − k′), where E(·) denotes the expectation operator.

Let the pairs (λ, φλ) be the eigenvalues and eigenvectors of matrix A and define the mode

shape ϕλ
def
= Cφλ. We assume that the system has no multiple eigenvalues and, thus, that

the λ’s and ϕλ’s are pairwise complex conjugate. In particular, 0 is not an eigenvalue of
state transition matrix A. The collection of pairs (λ, ϕλ) form a canonical parameterization
(invariant w.r.t. changes in the state basis) of the pole part of system (4.1), which is referred
to as the system eigenstructure.

There are many SSI algorithms in literature. Some are mentioned in Section 2.2.3 and
they fit all in the following framework to identify the eigenstructure (λ, ϕλ) of system (4.1).

From the output data (Yk), a matrix Ĥp+1,q is built according to the selected subspace
identification algorithm, which is an estimate of the subspace matrix Hp+1,q. For all subspace
identification algorithms, it satisfies the factorization property

Hp+1,q = WOp+1Zq (4.2)

into an invertible weighting matrix W , the matrix of observability

Op+1
def
=




C

CA
...

CAp




def
= Op+1(C,A), (4.3)

and a matrix Zq, where W and Zq depend on the selected subspace identification algorithm.
However, W is the identity matrix for many subspace identification algorithms.

The observation matrix C is then found in the first block-row of the observability matrix
Op+1, whereas exploiting the shift invariance property of Op+1 provides us with the state-
transition matrix A as the least squares solution of

O↑p+1A = O↓p+1, where O↑p+1
def
=




C

CA
...

CAp−1



, O↓p+1

def
=




CA

CA2

...

CAp



, (4.4)

from which the eigenstructure results.

Definition 4.1 In general, let ↑ respectively ↓ be operators, which remove the last respectively
the first block row of an observability matrix as in (4.4). The size of the removed block row
is the size of the observation matrix present in the observability matrix.
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The actual implementation of this generic subspace identification algorithm uses a con-
sistent estimate Ĥp+1,q obtained from the output data according to the selected subspace
identification algorithm. The SVD

Ĥp+1,q =
[
Û1 Û0

] [∆̂1 0

0 ∆̂0

][
V̂ T
1

V̂ T
0

]
(4.5)

and its truncation at the model order n yields an estimate Ôp+1 = Ŵ−1Û1∆̂
1/2
1 for the

observability matrix, from which (Ĉ, Â) and (λ̂, ϕ̂λ) are recovered as sketched above. Also,

the estimate Ẑq = ∆̂
1/2
1 V̂ T

1 can be obtained.

For simplicity, let p and q be given, and the subscripts of Hp+1,q, Op+1 and Zq may be
skipped.

4.3 Multi-setup stochastic subspace identification

In this section, the state-space model for multi-setup measurements is introduced and
the problem of merging data from different setups is stated. The merging scheme from
[MBBG02a, MBBG02b] for the covariance-driven subspace identification algorithm is pre-
sented and generalized to subspace identification algorithms without a left weighting (W = I).
In Algorithm 4.3 a modular version of this algorithm is derived, where the records of the dif-
ferent setups are processed one after another, instead of altogether, for a practical implemen-
tation and less numerical operations. In the next step, Algorithm 4.4 is derived that merges
the observability matrices obtained from the different records to a global observability matrix
and thus can be applied to arbitrary subspace identification algorithms. Finally, a scalable
computation of the system matrices is derived for Algorithm 4.4 in the case of a large number
of sensors and setups.

4.3.1 Modeling multi-setup measurements

Instead of a single record for the output (Yk) of the system (4.1), Ns records

(
Y

(1,ref)
k

Y
(1,mov)
k

)

︸ ︷︷ ︸
Record 1

(
Y

(2,ref)
k

Y
(2,mov)
k

)

︸ ︷︷ ︸
Record 2

. . .

(
Y

(Ns,ref)
k

Y
(Ns,mov)
k

)

︸ ︷︷ ︸
Record Ns

(4.6)

are now available collected successively. Each record j contains data Y
(j,ref)
k of dimension r(ref)

from a fixed reference sensor pool, and data Y
(j,mov)
k of dimension r(j) from a moving sensor

pool. Then, the total number of sensor positions is r(all)
def
= r(ref)+

∑Ns
j=1 r

(j). For each setup j,
this corresponds to observing the state space system (4.1) at different sets of time instants k,
where the observation matrices are different for every setup. The transition matrix A remains
the same, since the same system is observed. As the sensor settings for the moving sensors
change, the respective observation matrices mapping the states to the observations at the
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moving sensors are different for each setup j, while the observation matrix with respect to
the reference sensors stays the same for all setups. Denote the former observation matrices
by C(j,mov) ∈ Rr(j)×n, j = 1, . . . , Ns, and the latter by C(ref) ∈ Rr(ref)×n. Furthermore, denote

the states Xk and state noise Vk from system (2.1) corresponding to record j by X
(j)
k and

V
(j)
k , respectively. Thus, to each record j = 1, . . . , Ns corresponds a state-space realization

in the form [MBBG02a, MBBG02b]





X
(j)
k+1 = A X

(j)
k + V

(j)
k

Y
(j,ref)
k = C(ref) X

(j)
k (reference pool)

Y
(j,mov)
k = C(j,mov) X

(j)
k (sensor pool noj)

(4.7)

Define the global observation matrix containing information of all the sensor positions as

C(all) def
=




C(ref)

C(1,mov)

C(2,mov)

...

C(Ns,mov)



∈ Rr

(all)×n, (4.8)

corresponding to C in (4.1).

Definition 4.2 A subspace matrix H(j) is called local subspace matrix of record j, if its
estimate is built from the output data

Y
(j)
k

def
=

[
Y

(j,ref)
k

Y
(j,mov)
k

]

with a selected subspace identification algorithm, and whose associated observability matrix
in (4.2) is the local observability matrix

O(j) def
= O

([
C(ref)

C(j,mov)

]
, A

)
, (4.9)

cf. the definition of O in (4.3). A subspace matrix H(all) is called global subspace matrix, if its

associated observability matrix in (4.2) is the global observability matrix O(all) def
= O(C(all), A).

4.3.2 The merging problem

In order to identify the eigenstructure of system (4.7) on the basis of the measurements (4.6),
the output-only subspace algorithm of Section 4.2 has to be adapted. It is the aim to merge
the data from the different records prior to the identification step of the algorithm, so that
the identification steps (4.2)–(4.4) only have to be done once. This corresponds to merging
the local subspace matrices H(j), j = 1, . . . , Ns, to a global subspace matrix H(all), or merging
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the local observability matrices O(j) to a global observability matrix O(all), which is the main
problem in this chapter. Then, the eigenstructure of system (4.7) can be obtained from an
identified pair of system matrices (C(all), A) by applying the generic subspace algorithm of
Section 4.2 on H(all) or on O(all).

A cornerstone in Section 4.2 is factorization (4.2), which, of course, holds for each local
subspace matrix H(j) of the Ns records with a different observability matrix O(j) on the left
and in general a different matrix Z(j) on the right side. If the matrices Z(j) were identical2

for all j = 1, . . . , Ns, interleaving block rows of the matrices H(j) would lead to a global
subspace matrix having a factorization property (4.2) with Z = Z(j) on the right side, which
could be used for global system identification.

However, there are several reasons for possible differences between the matrices Z(j):

� In general, the matrices Z(j) are dependent on different sensor sets, as the moving
sensor set is different for each setup j. Hence, the matrices Z(j) are different.

� For most subspace algorithms, e.g. the data-driven algorithms in [VODM96] as UPC,
the matrices Z(j) have no expected value as their size depends on the number of samples

N and the initial state X
(j)
0 , or they are not uniquely defined due to LQ decompositions

as in (2.13), so that in fact only some Ẑ(j)Sj with unknown matrix Sj can be estimated.

� The matrices O(j) and Z(j) might be in a different modal basis for each setup j, so that
in fact Ô(j)Tj and T−1j Ẑ(j) are identified with an invertible unknown change of basis
matrix Tj . This is also the reason why matrix (4.8) cannot be obtained straightforward
from a separate system identification of the measurement setups j = 1, . . . , Ns.

� If the excitation V
(j)
k is uncontrolled, its covarianceQ(j) with E(V

(j)
k V

(j)
k′ ) = Q(j)δ(k−k′)

is record dependent. Hence, Z(j) is also dependent on Q(j), which can be different
for each record. This case appears especially in practice when ambient excitation is
considered. Multi-setup measurements take place over a longer time period than a
single measurement and it is likely that properties of the ambient excitation change
between the measurement campaigns.

By normalizing the data in a certain way, it can be achieved that the corresponding

matrices Z(j)
are identical for all the records. Thus, the corresponding normalized subspace

matrices can be merged into a global subspace matrix, on which system identification of the
whole system can be done. This is the basic idea of the merging algorithms presented in the
following sections.

2By nature, the Z(j)’s are indeed identical for j = 1, . . . , Ns in covariance-driven subspace identification
under stationary excitation throughout all setups using correlations R

(j)
i = E(Y

(j)
k Y

(j,ref)T
k−i ) in (2.8). However,

this is a very special case.
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4.3.3 Merging for covariance-driven SSI from [MBBG02a, MBBG02b]

For each setup j, the two families of cross-correlations

R
(j,ref)
i

def
= E

(
Y

(j,ref)
k Y

(j,ref)T
k−i

)
, (4.10)

R
(j,mov)
i

def
= E

(
Y

(j,mov)
k Y

(j,ref)T
k−i

)
(4.11)

are defined. From their definition, they enjoy the factorization properties

R
(j,ref)
i = C(ref)AiG(j), R

(j,mov)
i = C(j,mov)AiG(j), (4.12)

where G(j) def
= E

(
X

(j)
k Y

(j,ref)T
k−i

)
is the cross-correlation between the state and the reference

outputs of setup j.

In the stationary case, the state-output cross-correlations G(j) are equal for all the setups,
G = G(j), j = 1, . . . , Ns. Consequently, the cross-correlations of the outputs can be stacked
to a block column vector

R
(all)
i =




R
(1,ref)
i

R
(1,mov)
i

...

R
(Ns,mov)
i




for each lag i, which factorizes as R
(all)
i = C(all)AiG. The corresponding block Hankel ma-

trix (see Equation (2.8)) filled with these correlations factorizes as H(all) def
= Hank(R

(all)
i ) =

O(C(all), A)C(A,G). Thus, the global system identification can be performed on this merged
matrix. However, this merging approach fails in the non-stationary case, as stressed in
[MBBG02a, MBBG02b].

In the non-stationary case, some normalization of the data has to be performed prior
to merging. This happens in two steps: First, the factors Z(j) of the subspace matrix
factorization are identified in the same modal basis, and second, the data of all setups is
normalized and merged using the factors Z(j).

Thanks to factorization property (4.12), the block Hankel matrices built from the cross-
correlations of the output data in (4.10) and (4.11) factorize as

H(j,ref) def
= Hank(R

(j,ref)
i ) = O(C(ref), A) C(A,G(j)),

H(j,mov) def
= Hank(R

(j,mov)
i ) = O(C(j,mov), A) C(A,G(j)). (4.13)

Note that a local subspace matrix H(j) as in Definition 4.2 can be obtained from interleaving
the block rows of H(j,ref) and H(j,mov), and factorization property H(j) = O(j)Z(j) holds with
Z(j) = C(A,G(j)). These factors C(A,G(j)) are obtained as follows. Let

R
(all,ref)
i

def
=
[
R

(1,ref)
i . . . R

(Ns,ref)
i

]
(4.14)
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be the block row vector of the reference data correlations of all setups. It factorizes as

R
(all,ref)
i = C(ref)AiG(all), G(all) def

=
[
G(1) . . . G(Ns)

]
.

The corresponding block Hankel matrix, which factorizes as

H(all,ref) def
= Hank(R

(all,ref)
i ) = O(C(ref), A) C(A,G(all)), (4.15)

can be obtained by interleaving block columns of H(j,ref), j = 1, . . . , Ns. Assume that the
pair (C(ref), A) is observable. The factors

C(A,G(j)) =
[
G(j) AG(j) . . . Aq−1G(j)

]

are then obtained by juxtaposing the appropriate block columns of C(A,G(all)), which is
partitioned as

C(A,G(all)) =
[
G(1) . . . G(Ns) AG(1) . . . AG(Ns) . . . Aq−1G(1) . . . Aq−1G(Ns)

]
.

(4.16)
For doing so, note that C(A,G(all)) has to be partitioned differently than stated in [MBBG02a,
MBBG02b].

Assume that for all j the pair (A,G(j)) is controllable and that, up to a permutation
on the record indices, C(A,G(1)) is the best conditioned controllability matrix among the
C(A,G(j))’s. Then, the right factor C(A,G(j)) in (4.13) is removed and replaced by C(A,G(1))
in the normalized matrices

H(j,mov) def
= H(j,mov)C(A,G(j))T (C(A,G(j))C(A,G(j))T )−1C(A,G(1)),

as defined in [MBBG02a, MBBG02b]. This notation can be simplified by using the pseudoin-
verse:

H(j,mov)
= H(j,mov)C(A,G(j))†C(A,G(1)). (4.17)

The normalized matrix H(j,mov)
then corresponds to a block Hankel matrix filled with nor-

malized cross-correlations R
(j,mov)
i = C(j,mov)AiG(1), which can be stacked for the different

setups, together with the cross-correlation of the reference sensors, to

R
(all)
i

def
=




R
(1,ref)
i

R
(1,mov)
i

...

R
(Ns,mov)
i




= C(all)AiG(1), (4.18)

similar to the stationary case. Hence, the corresponding block Hankel matrix H(all)
filled

with these correlations fulfills the desired factorization property

H(all) def
= Hank(R

(all)
i ) = O(C(all), A)C(A,G(1))

and therefore can be used for the global system identification from Section 4.2. This normal-

ized and merged matrix H(all)
can be obtained by interleaving the block rows of H(1,ref) and

H(j,mov)
, j = 1, . . . , Ns.

The merging algorithm described in this section is summarized in Algorithm 4.1.
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Algorithm 4.1 Multi-setup merging for covariance-driven SSI

Input: Subspace matrix estimates for setups j = 1, . . . , Ns :

Ĥ(j,ref) = Hank(R̂
(j,ref)
i ) {Equation (4.10)}

Ĥ(j,mov) = Hank(R̂
(j,mov)
i ) {Equation (4.11)}

1: Build Ĥ(all,ref) by interleaving the block columns of Ĥ(j,ref), j = 1, . . . , Ns, analogously to
(4.14)

2: SVD of Ĥ(all,ref) = Û Σ̂V̂ T and keep Ĉ(all) def
= Ĉ(A,G(all)) = Σ̂1/2V̂ T {Equation (4.15)}

3: Partition Ĉ(all) =
[
C(1,1) . . . C(1,Ns) C(2,1) . . . C(2,Ns) . . . C(q,Ns)

]
, where each

block has r(ref) columns, and set Ĉj =
[
C(1,j) . . . C(q,j)

]
, j = 1, . . . , Ns {Equ. (4.16)}

4: Compute Ĥ(j,mov) = Ĥ(j,mov)Ĉ†j Ĉ1 {Equation (4.17)}
5: Build Ĥ(all) by interleaving the block rows of Ĥ(1,ref) and Ĥ(j,mov), j = 1, . . . , Ns, analo-

gously to (4.18)

Output: Global subspace matrix Ĥ(all) for system identification

4.3.4 Generalization of merging algorithm to SSI algorithms with W = I

Now, the merging approach from the previous section is generalized to subspace identification
algorithms satisfying (4.2) with W = I, i.e. without a left weighting. From the output
data of the Ns measurement setups of system (4.7), the respective local subspace matrices
H(j) = O(j)Z(j) as in Definition 4.2 are built based on the selected algorithm. Again, it is
the aim to obtain a global subspace matrix H(all) from them in order to do a global system
identification.

First, for each setup j, the local subspace matrix H(j) is separated into the reference
sensor part H(j,ref) and the moving sensor part H(j,mov) by selecting the appropriate block
rows, such that the factorization properties

H(j,ref) = O(C(ref), A)Z(j), (4.19)

H(j,mov) = O(C(j,mov), A)Z(j) (4.20)

hold. Assume that (C(ref), A) is observable. Juxtaposing the matrices H(j,ref), j = 1, . . . , Ns,
to

H(all,ref) def
=
[
H(1,ref) . . . H(Ns,ref)

]
(4.21)

– instead of interleaving their block columns as in Algorithm 4.1 –, yields a matrix with
factorization property

H(all,ref) = O(C(ref), A)
[
Z(1) . . . Z(Ns)

]
(4.22)

similar to (4.15), from which the matrices Z(1), . . . ,Z(Ns) can be recovered in the same modal
basis.

Assume that all the Z(j)’s are full row rank, and similarly to Algorithm 4.1, that Z(1)

is the best conditioned matrix among the Z(j)’s. Then, the right factor Z(j) in (4.20) is
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removed and replaced by Z(1) in the normalized matrices

H(j,mov) def
= H(j,mov)Z(j)†Z(1), (4.23)

similar to (4.17), and factorization property H(j,mov)
= O(C(j,mov), A)Z(1) follows. Hence,

interleaving the block rows of H(1,ref) and H(j,mov)
, j = 1, . . . , Ns, yields the desired global

subspace matrix

H(all) def
= P




H(1,ref)

H(1,mov)

...

H(Ns,mov)




= O(C(all), A)Z(1), (4.24)

where P is a suitable permutation matrix.

The merging algorithm described in this section is summarized in Algorithm 4.2.

Algorithm 4.2 Multi-setup merging for SSI algorithms without left weighting

Input: Local subspace matrix estimates Ĥ(j) for setups j = 1, . . . , Ns {Definition 4.2}
1: Separate Ĥ(j) into Ĥ(j,ref) and Ĥ(j,mov), j = 1, . . . , Ns {Equations (4.19), (4.20)}
2: Juxtapose Ĥ(j,ref), j = 1, . . . , Ns, to Ĥ(all,ref) =

[
Ĥ(1,ref) . . . Ĥ(Ns,ref)

]
{Equ. (4.21)}

3: SVD of Ĥ(all,ref) =
[
Û1 Û0

] [∆̂1 0

0 ∆̂0

][
V̂ T
1

V̂ T
0

]
, keep Ẑ(all) def

= ∆̂
1/2
1 V̂ T

1 and recover Ẑ(j),

j = 1, . . . , Ns, from partitioning Ẑ(all) =
[
Ẑ(1) . . . Ẑ(Ns)

]
{Equation (4.22)}

4: Compute Ĥ(j,mov) = Ĥ(j,mov)Ẑ(j)†Ẑ(1) {Equation (4.23)}
5: Build Ĥ(all) by interleaving the block rows of Ĥ(1,ref) and Ĥ(j,mov), j = 1, . . . , Ns

{Equation (4.24)}
Output: Global subspace matrix Ĥ(all) for system identification

4.3.5 Modular merging algorithm for SSI algorithms with W = I

For obtaining the right factors Z(j) in (4.22), the subspace matrices of all the setups j =
1, . . . , Ns need to be in memory at the same time. This can be a problem in the case of a
large number of setups or when it is impractical to access data from different setups at the
same time. With the help of the following lemma, this step can be avoided, thus leading to
a more efficient merging procedure.

Lemma 4.3 For each setup j ∈ {1, . . . , Ns} let H(j,ref) be given, which is obtained from the
local subspace matrix H(j) and fulfills factorization property (4.19). Assume that the pair
(C(ref), A) is observable, i.e. O(C(ref), A) is full column rank, and Z(j) is full row rank. Then,

Z(j)†Z(1) = H(j,ref)†H(1,ref).
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Proof: From factorization property (4.19) follows

H(j,ref)† = Z(j)†O(C(ref), A)†,

as O(C(ref), A) is full column rank and Z(j) is full row rank. Post-multiplying
H(1,ref) = O(C(ref), A)Z(1) leads to the assertion, again because O(C(ref), A) is full
column rank.

Lemma 4.3 makes the explicit computation of the factors Z(j) unnecessary for the nor-
malization in (4.23), which is then equivalent to

H(j,mov)
= H(j,mov)H(j,ref)†H(1,ref). (4.25)

The resulting modular merging algorithm is summarized in Algorithm 4.3, where the data of
the different setups is processed setup after setup, instead of altogether while only keeping
H(1,ref) in memory all the time.

Algorithm 4.3 Modular multi-setup merging for SSI algorithms without left weighting

Input: Local subspace matrix estimates Ĥ(j) for setups j = 1, . . . , Ns {Definition 4.2}
1: for j = 1 to Ns do
2: Separate Ĥ(j) into Ĥ(j,ref) and Ĥ(j,mov) {Equations (4.19), (4.20)}
3: Compute Ĥ(j,mov) = Ĥ(j,mov)Ĥ(j,ref)†Ĥ(1,ref) {Equation (4.25)}
4: end for
5: Build Ĥ(all) by interleaving the block rows of Ĥ(1,ref) and Ĥ(j,mov), j = 1, . . . , Ns

{Equation (4.24)}
Output: Global subspace matrix Ĥ(all) for system identification

4.3.6 Generalized merging algorithm for arbitrary SSI algorithms

Let the local subspace matrices H(j), j = 1, . . . , Ns according to Definition 4.2 for any
subspace identification algorithm be given, which fulfill the factorization property

H(j) = W (j)O(j)Z(j) (4.26)

as in (4.2), with an invertible weighting matrix W (j), for any setup j. The respective local
observability matrices O(j), which can be obtained from H(j) as described in Section 4.2, are

now used for merging in order to obtain a global observability matrix O(all) def
= O(C(all), A), on

which the system identification can be done. This is slightly different from the last sections,
where it was the aim to obtain a global subspace matrix H(all).

As the local observability matrices are obtained from the local subspace matrices for each
setup separately, they might be in different modal bases, so in fact onlyO(j)Tj can be obtained
from H(j), where Tj is an invertible change of basis matrix. The problem for merging regards
now the different factors Tj instead of the different factors Z(j) as previously.
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For any j, the matrix O(j) fulfills property (4.9) and hence can be separated into
O(C(ref), A) and O(C(j,mov), A) by choosing the appropriate block rows of O(j). Hence, sep-
arating O(j)Tj in the same way leads to

O(j,ref) def
= O(C(ref), A)Tj , O(j,mov) def

= O(C(j,mov), A)Tj . (4.27)

Assume that in each setup j the pair (C(ref), A) is observable, i.e. O(j,ref) is full column
rank. A common modal basis for all setups can then be defined by the chosen modal basis of
one of the setups. Without loss of generality, let this be setup 1, for which T1 = I is defined as
the identity matrix, and hence O(1,ref) = O(C(ref), A). Another possibility to define a common
modal basis is to make use of all the reference parts of the local observability matrices O(j,ref),
to juxtapose them and obtain O(C(ref), A) through the factorization

[
O(1,ref) . . . O(Ns,ref)

]
= O(C(ref), A)

[
T1 . . . TNs

]

by an SVD. In both ways, the obtained matrix O(C(ref), A) defines the modal basis, into
which the other observability matrices have to be converted prior to merging.

Lemma 4.4 For each setup j ∈ {1, . . . , Ns} let O(j,ref) and O(j,mov) be defined as in (4.27),
and let (C(ref), A) be observable. Then,

O(C(j,mov), A) = O(j,mov)O(j,ref)†O(C(ref), A). (4.28)

Proof: From the first part of (4.27) follows O(j,ref)T−1j = O(C(ref), A) and hence

T−1j = O(j,ref)†O(C(ref), A),

as (C(ref), A) is observable and thus O(j,ref) is full column rank. Post-multiplying this to the
second part of (4.27) leads to the assertion.

Lemma 4.4 provides a way to obtain the matrices O(C(j,mov), A), j = 1, . . . , Ns, which are
in the same modal basis as O(C(ref), A). Hence, they can be merged together to the global
observability matrix O(all) by interleaving their block rows

O(all) = P1




O(C(ref), A)

O(C(1,mov), A)
...

O(C(Ns,mov), A)




= O(C(all), A), (4.29)

where P1 is a suitable permutation matrix as in (4.24). The resulting merging algorithm,
which is suitable for arbitrary subspace identification algorithms, is summarized in Algorithm
4.4, where the modal basis is defined by O(C(ref), A) = O(1,ref) in setup 1.
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Algorithm 4.4 Multi-setup merging for arbitrary SSI algorithms

Input: Local subspace matrix estimates Ĥ(j) and weightings Ŵ (j) for setups j = 1, . . . , Ns

{Equation (4.26)}
1: for j = 1 to Ns do

2: SVD and truncation at model order Ĥ(j) =
[
Û1 Û0

] [∆̂1 0

0 ∆̂0

][
V̂ T
1

V̂ T
0

]
{Equ. (4.5)}

3: Compute Õ(j) = Ŵ (j)−1Û1∆̂
1/2
1

4: Separate Õ(j) into Ô(j,ref) and Ô(j,mov) {Equation (4.27)}
5: Compute Ô(j,mov) = Ô(j,mov)Ô(j,ref)†Ô(1,ref) {Equation (4.28)}
6: end for
7: Build Ô(all) by interleaving the block rows of Ô(1,ref) and Ô(j,mov), j = 1, . . . , Ns

{Equation (4.29)}
Output: Observability matrix O(Ĉ(all), Â) = Ô(all) for global system identification

4.3.7 Scalable computation of (C(all), A) for arbitrary SSI algorithms

In the previous section, the local subspace matrices H(j), j = 1, . . . , Ns, are used for the
computation of a global observability matrix O(all), from which the system matrices (C(all), A)
are recovered for system identification as described in Section 4.2: C(all) as the first block
row of O(all), and A as the least squares solution of (4.4). However, if the number of sensors
and setups is large, the matrix O(all) may also be large, causing possibly memory problems
when solving the least squares problem for A. In the following, an algorithm is described that
directly computes the system matrices (C(all), A) from the local subspace matrices, without
computing O(all) explicitly.

Proposition 4.5 Let the thin QR decompositions and products

O(C(ref), A)↑ = Q0R0, S0
def
= QT0O(C(ref), A)↓, (4.30)

[
Rj−1

O(C(j,mov), A)↑

]
= QjRj , Sj

def
= QTj

[
Sj−1

O(C(j,mov), A)↓

]
, j = 1, . . . , Ns (4.31)

be given iteratively, where O(C(j,mov), A) is obtained from (4.28) during the iteration. Then,
the least squares solution of O(all)↑A = O(all)↓ is given by

A = R−1NsSNs ,

and the parts of C(all) are recovered as the first block row of O(C(ref), A) and each
O(C(j,mov), A), j = 1, . . . , Ns, during the iteration.
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Proof: From (4.29) follows

O(all)↑ = P2




O(C(ref), A)↑

O(C(1,mov), A)↑

...

O(C(Ns,mov), A)↑



, O(all)↓ = P2




O(C(ref), A)↓

O(C(1,mov), A)↓

...

O(C(Ns,mov), A)↓



,

with the same permutation matrix P2 for both matrices. Thus, the least squares problem for
A is equivalent to 



O(C(ref), A)↑

O(C(1,mov), A)↑

...

O(C(Ns,mov), A)↑



A =




O(C(ref), A)↓

O(C(1,mov), A)↓

...

O(C(Ns,mov), A)↓




and the assertion follows from Lemma 3.8.

Note that after obtaining the local observability matrices of size (p+ 1)(r(ref) + r(j))× n,
in this algorithm at no time matrices larger than (p ·max{r(j)}+ n)× n are processed.

Then, from Proposition 4.5 the iterative computation of the system matrices is derived
in Algorithm 4.5.

Remark 4.6 In Proposition 4.5 and Algorithm 4.5 the estimate of the system matrix A is
obtained iteratively at one specific model order from a least squares solution A = R−1S. If
the model order is unknown (cf. Section 4.5), the techniques from Chapter 5 can be used to
obtain estimates of the system matrix at inferior model orders only by knowing the matrices
R and S (cf. Section 5.3.5).

4.3.8 Some remarks

First, a remark is in order about the condition that the pair (C(ref), A) needs to be observable
in all setups j = 1, . . . , Ns. This is a reasonable assumption, as it means that all the modes of
the system need to be excited in the different data records, while the excitation may change.
For the choice of the parameters in the identification algorithms it means that p has to be
chosen such that Op+1(C

(ref), A)↑ = Op(C(ref), A) is full column rank in all setups, while the
number of columns of Op(C(ref), A) is the model order n. A necessary condition is hence
pr(ref) ≥ n. As parameter q for the subspace matrix (see e.g. (2.7) and (2.8)) is often set as

q
def
= p + 1 [BBG+01], it may be useful to construct the local subspace matrices using the

fixed reference sensors as projection channels as in [PDR99] for an efficient implementation.
An example is the covariance-driven merging algorithm in Section 4.3.3, where for each setup
cross-correlations between all the sensor data and the reference sensor data are used. Another
example will be given in Section 4.6.2, where in the data matrices Y(j)− only data from the
reference sensors is used.

Second, a remark should be made about the choice between the presented merging al-
gorithms. Algorithm 4.1 is only suitable for the covariance-driven subspace identification.
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Algorithm 4.5 Multi-setup merging for arbitrary SSI algorithms with iterative computation
of system matrices

Input: Local subspace matrix estimates Ĥ(j) and weightings Ŵ (j) for setups j = 1, . . . , Ns

{Equation (4.26)}
1: for j = 1 to Ns do

2: SVD and truncation at model order Ĥ(j) =
[
Û1 Û0

] [∆̂1 0

0 ∆̂0

][
V̂ T
1

V̂ T
0

]
{Equ. (4.5)}

3: Compute Õ(j) = Ŵ (j)−1Û1∆̂
1/2
1

4: Separate Õ(j) into Ô(j,ref) and Ô(j,mov) {Equation (4.27)}
5: if j == 1 then
6: QR decomposition of Ô(1,ref)↑ = QR
7: Compute S = QT Ô(1,ref)↓

8: Extract Ĉ(ref) from first block row of Ô(1,ref) and keep it
9: end if

10: Compute Ô(j,mov) = Ô(j,mov)Ô(j,ref)†Ô(1,ref) {Equation (4.28)}

11: QR decomposition of

[
R

Ô(j,mov)↑

]
= Q̃R̃

12: Compute S̃ = Q̃T

[
S

Ô(j,mov)↓

]

13: Set S = S̃, R = R̃

14: Extract Ĉ(j,mov) from first block row of Ô(j,mov) and keep it
15: end for
16: Compute Â = R−1S
17: Stack Ĉ(ref) and Ĉ(j,mov), j = 1, . . . , Ns, to Ĉ(all)

Output: Â, Ĉ(all) {system matrices after merging}

Algorithms 4.2 and 4.3, which apply to any subspace identification algorithm without a left
weighting, differ in the order of data processing from the measurement setups and the num-
ber of numerical operations. As Algorithm 4.3 does not need the SVD of the juxtaposed
subspace matrices related to the reference sensors and has a simpler structure, it is preferable
to Algorithm 4.2. Algorithm 4.4 applies to arbitrary subspace identification algorithms. Be-
sides the more general setting of Algorithm 4.4, it directly computes the global observability
matrix that is needed for the subspace identification. The scalable computation of the system
matrices A and C in Algorithm 4.5 is an extension of Algorithm 4.4 and should be chosen in
the case of a very large number of sensors and setups when memory problems arise.

Third, a remark about the applicability of the presented algorithms is in order. The
only condition of the merging algorithm to work with a subspace identification algorithm is
factorization property (4.2) of the respective subspace matrix, and the retrieval of the system
matrices from the obtained observability matrix. This is a very general condition and applies,
up to our knowledge, to all output-only subspace identification algorithms in literature. It
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also applies to combined deterministic-stochastic subspace identification algorithms, where
some of the inputs of the system are known [VODM96], which is even a more general setting
than the output-only system identification considered in this chapter.

4.4 Non-stationary consistency

Until now, we have assumed stationary excitation within each record, but with a record-
dependent covariance matrix. A more realistic assumption is that the excitation is non-

stationary within each record, i.e. the excitation covariance E(V
(j)
k V

(j)T
k′ )

def
= Q

(j)
k δ(k − k′)

is time-varying. We show that the merging algorithms can still be applied in this case of
non-stationary excitation with only little modification. Then, the identified system matrices
are consistent, once the subspace identification algorithm that is used to obtain the local
subspace matrices for each setup provides consistent estimates for the observation and state
transition matrices. The latter is the case, when the subspace identification algorithm fulfills
the following assumption.

Assumption 4.7 For each record j there exists a triplet (C(j), A, Tj) and a sequence of
matrices Tj(N), with Tj(N) and Tj(N)−1 uniformly bounded w.r.t. N , satisfying

C(j)(N)Tj(N) −→ C(j)Tj

Tj(N)−1Aj(N)Tj(N) −→ T−1j ATj

for N →∞, where

C(j) def
=

[
C(ref)

C(j,mov)

]
.

Matrix Tj denotes the modal basis defined by record j for N → ∞ where T1 = I, similar to

Tj(N) in (4.27). The pair (C(j)(N), Aj(N)) corresponds to (Ĉ, Â), which is computed with

subspace system identification as in Section 4.2 from the local subspace matrix Ĥ(j) using N
data samples.

Assumption 4.7 is satisfied under [BM07, Assumption 1] regarding the (stochastic) inputs
and [BM07, Condition 2] regarding the chosen subspace algorithm. Notice that all subspace
algorithms mentioned in [BM07] satisfy these conditions, in particular the covariance-driven
and data-driven algorithm that are applied in this chapter, when the factor N in (2.10) and
(4.41)–(4.42) is replaced by some value sN satisfying [BM07, Condition 2].

Theorem 4.8 Let the pair (C(all)(N), A(N)) correspond to (Ĉ(all), Â) that can be recovered

from Ĥ(all) defined in Algorithm 4.3 or Ô(all) defined in Algorithm 4.4. Then, under As-
sumption 4.7, there exists a pair (C(all), A) and a sequence of matrices T (N), with T (N) and
T (N)−1 uniformly bounded w.r.t. N , satisfying

C(all)(N)T (N) −→ C(all),

T (N)−1A(N)T (N) −→ A

for N →∞.
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Proof: From Assumption 4.7 follows

C(j,ref)(N)Tj(N) −→ C(ref)Tj

C(j,mov)(N)Tj(N) −→ C(j,mov)Tj

when separating C(j)(N) in its reference and moving sensor part, for any setup j. For the
respective local observability matrices the convergence properties

O(C(ref)(N), Aj(N))Tj(N) −→ O(C(ref), A)Tj ,

O(C(j,mov)(N), Aj(N))Tj(N) −→ O(C(j,mov), A)Tj

follow and hence for the part of the global observability matrix in Step 5 of Algorithm 4.4

O(C(j,mov)(N), Aj(N))
def
= O(C(j,mov)(N), Aj(N))Tj(N)

(
O(C(j,ref)(N), Aj(N))Tj(N)

)†

· O(C(1,ref)(N), A1(N))T1(N)

−→ O(C(j,mov), A)Tj

(
O(C(ref), A)Tj

)†
O(C(ref), A)T1

= O(C(j,mov), A).

Interleaving the block rows of O(C(1,ref)(N), A1(N))T1(N) and O(C(j,mov)(N), Aj(N)), j =
1, . . . , Ns, and using (4.29), the assertion follows for Algorithm 4.4.

It remains the proof for Algorithm 4.3, when the pair (C(all)(N), A(N)) is recovered from

Ĥ(all). Then, under Assumption 4.7 it follows

Ĥ(j,ref) = O(C(ref)(N), Aj(N))Z(j)(N) + o(1),

where Z(j)(N) is the empirical counterpart of Z(j) in (4.19) and (4.20), and o(1) tends to
zero when N →∞. With the same reasoning as above it follows

Ĥ(j,mov) = O(C(j,mov)(N), Aj(N))Z(1)(N) + o(1)

in Step 3 of Algorithm 4.3. Then, together with (4.24) and [BM07, Theorem 1] the assertion
follows for Algorithm 4.3.

The previous theorem proves non-stationary consistency for system identification with
Algorithms 4.3 and 4.4, once the underlying subspace method also provides non-stationary
consistent estimates. The same holds for Algorithm 4.2, which provides equivalent results as
Algorithm 4.3, and Algorithm 4.5 which provides equivalent results as Algorithm 4.4.

4.5 Multi-setup identification under misspecified model order

In practice, the true system order is often unknown when data are recorded under operational
conditions. Recommended techniques from statistics to estimate the best model order are
not useful in this context. In order to retrieve a desired number of modes, a larger model
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order must be assumed. Then, the rank of the respective subspace matrices is hardly the
true model order n, but full rank due to noise and a limited number of data samples. This
section addresses two issues: First, the truncation at a desired model order in the merging
algorithms, and second, the coherence of the merging algorithms during multi-order system
identification, where the identification procedure is repeated while truncating at different
model orders n = nmin, . . . , nmax. The results of the multi-order identification are displayed
in stabilization diagrams (see Section 2.4), where system modes can be distinguished from
noise modes as the latter tend to vary at different orders.

4.5.1 Considering truncation due to noise

When deriving the merging algorithms, the order of the system was assumed to be a fixed
value n, with all involved subspace matrices being of rank n. However, when subspace
matrices are obtained from real data, the rank of the system usually cannot be determined
from them, as there is no drop in the singular values to zero due to noise and model reduction.
Some assumption about the model order needs to be made for the identification, namely by
the selection of an order n in (4.23), on which Algorithm 4.3 is based, or Õ(j) in Algorithm 4.4.
However, Algorithm 4.3 is based on Lemma 4.3, which assumes that factorization property
(4.19) is fulfilled exactly. This is not the case when some system order n is assumed, which is
lower than the dimension of Ĥ(j,ref). In this case, Algorithm 4.3 needs to be slightly modified.

Lemma 4.9 For each setup j ∈ {1, . . . , Ns} let Ĥ(j,ref) be given, which can be obtained from
the local subspace matrix Ĥ(j). It holds

Ĥ(j,ref) = O(Ĉ(ref), Â)Ẑ(j) + U
(j)
0 ∆

(j)
0 V

(j)T
0

similar to factorization property (4.19), where a partitioned SVD of Ĥ(j,ref) at model order n
is given by

Ĥ(j,ref) =
[
U

(j)
1 U

(j)
0

] [∆
(j)
1 0

0 ∆
(j)
0

][
V

(j)T
1

V
(j)T
0

]
.

Assume that the pair (C(ref), A) is observable, i.e. O(Ĉ(ref), Â) is full column rank, and Ẑ(j)

is full row rank. Then, it holds

Ẑ(j)†Ẑ(1) = Ĥ(j,ref)†,nĤ(1,ref),

where Ĥ(j,ref)†,n def
= V

(j)
1 ∆

(j)−1
1 U

(j)T
1 denotes the truncated pseudoinverse of Ĥ(j,ref) at order n.

Proof: From the definition of the truncated pseudoinverse follows that Ĥ(j,ref)†,n is
equal to Ẑ(j)†O(Ĉ(ref), Â)† and hence

Ĥ(j,ref)†,nĤ(1,ref) = Ẑ(j)†Ẑ(1) + Ẑ(j)†O(Ĉ(ref), Â)†U
(1)
0 ∆

(1)
0 V

(1)T
0 . (4.32)

As O(Ĉ(ref), Â)Ẑ(1) = U
(1)
1 ∆

(1)
1 V

(1)T
1 , it follows O(Ĉ(ref), Â)† = Ẑ(1)V

(1)
1 ∆

(1)−1
1 U

(1)T
1 .

Plugging this in (4.32), it is apparent that the second term is zero because of U
(1)T
1 U

(1)
0 = 0,
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proving the assertion.

Hence, in Algorithm 4.3 Step 3 has to be replaced by

Ĥ(j,mov) = Ĥ(j,mov)Ĥ(j,ref)†,nĤ(1,ref)

in the case of assuming an (unknown) model order n.

4.5.2 Multi-order system identification

It is common practice to do multi-order system identification in order to distinguish the
identified true system modes from noise modes, as the latter tend to vary [PDR99]. For an
efficient computation of the modal parameters at multiple model orders n = nmin, . . . , nmax

in a single setup, usage is to truncate in (4.5) at these different orders, which is the same
as computing the observability matrix estimate at the highest desired model order nmax and
selecting the submatrices containing the first ni columns to obtain the observability matrix
estimate at a lower order ni. However, in the merging algorithms a global observability matrix

is only obtained at a specific model order, either from Ĥ(all) by an SVD as in (4.5), when
using Algorithms 4.2 and 4.3, or directly, when using Algorithms 4.4 and 4.5. The question
is whether an observability matrix estimate at a model order ni can be obtained in a similar
way by selecting columns of the global observability matrix obtained by the corresponding
merging algorithm at maximal desired model order nmax. This is indeed the case and proved
first for Algorithm 4.4.

Proposition 4.10 Let Ô(all)
ni and Ô(all)

nmax be the global observability matrices obtained by Al-

gorithm 4.4 at model orders ni and nmax with ni < nmax. Then, Ô(all)
ni consists of the first ni

columns of Ô(all)
nmax, i.e.

Ô(all)
nmax

=
[
Ô(all)
ni Z

]

with some matrix Z.

Proof: We have to prove that

Ô
(j,mov)

ni = Ô(j,mov)
ni Ô(j,ref)†

ni Ô(1,ref)
ni , (4.33)

obtained at model order ni in Step 5 of Algorithm 4.4, consists of the first ni columns of

Ô
(j,mov)

nmax
= Ô(j,mov)

nmax
Ô(j,ref)†
nmax

Ô(1,ref)
nmax

, (4.34)

obtained at order nmax for any j ∈ {1, . . . , Ns}. Note that

Ô(j,mov)
nmax

=
[
Ô(j,mov)
ni Z1

]
, Ô(j,ref)

nmax
=
[
Ô(j,ref)
ni Z2

]
, Ô(1,ref)

nmax
=
[
Ô(1,ref)
ni Z3

]

with some matrices Z1, Z2 and Z3. Let

Ô(j,ref)
nmax

= QR =
[
Q1 Q2

] [R11 R12

0 R22

]
(4.35)
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be the QR decomposition of Ô(j,ref)
nmax , where Q and R are partitioned such that Q1 has ni

columns and R11 is of size ni × ni. Then, from (4.34) follows

Ô
(j,mov)

nmax
=
[
Ô(j,mov)
ni Z1

] [R−111 −R−111 R12R
−1
22

0 R−122

][
QT1
QT2

] [
Ô(1,ref)
ni Z3

]

=
[
Ô(j,mov)
ni R−111 Z̃1

] [QT1 Ô
(1,ref)
ni QT1 Z3

QT2 Ô
(1,ref)
ni QT2 Z3

]
,

where Z̃1 = −Ô(j,mov)
ni R−111 R12R

−1
22 + Z1R

−1
22 . From (4.35) follows

Ô(j,ref)
ni = Q1R11 (4.36)

and hence QT2 Ô
(j,ref)
ni = 0. Then, from (4.27) follows QT2 Ô

(1,ref)
ni = 0 and hence

Ô
(j,mov)

nmax
=
[
Ô(j,mov)
ni R−111 Q

T
1 Ô

(1,ref)
ni Z̃2

]
,

where Z̃2 = Ô(j,mov)
ni R−111 Q

T
1 Z3 + Z̃1Q

T
2 Z3. From (4.36) follows Ô(j,ref)†

ni = R−111 Q
T
1 , leading

with (4.33) to the assertion.

Proposition 4.10 justifies the computation of the global observability matrix with Algo-
rithm 4.4 at a maximal desired model order and the estimation at lower model orders directly
from this matrix, as it is done in subspace identification of a single setup. In a similar way,
it can be shown that Algorithm 4.3 satisfies the same property:

Corollary 4.11 Let Õ(all)
nmax and Õ(all)

ni be recovered from Ĥ
(all)

nmax
and Ĥ

(all)

ni , which are obtained
from Algorithm 4.3 assuming model order nmax and ni, respectively, where in Algorithm 4.3

Lemma 4.9 is applied. Then, Õ(all)
ni consists of the first ni columns of Õ(all)

nmax up to a change
of basis, i.e.

Õ(all)
nmax

=
[
Õ(all)
ni T Z

]

with some invertible matrix T and some matrix Z.

Proof: For each j = 1, . . . , Ns, in Algorithm 4.3 it follows together with Lemma 4.9

Ĥ
(j,mov)

nmax
= Ĥ(j,mov)Ĥ(j,ref)†,nmaxĤ(1,ref), Ĥ

(j,mov)

ni = Ĥ(j,mov)Ĥ(j,ref)†,niĤ(1,ref).

Similarly to Lemma 4.9 it can be shown that

Ĥ
(j,mov)

nmax
= Ô(j,mov)

nmax
Ô(j,ref)†
nmax

Ô(1,ref)
nmax

Ẑ(1)
nmax

,

Ĥ
(j,mov)

ni = Ô(j,mov)
ni Ô(j,ref)†

ni Ô(1,ref)
ni Ẑ(1)

ni

and hence

Ĥ
(all)

nmax
= Ô(all)

nmax
Z(1)
nmax

, Ĥ
(all)

ni = Ô(all)
ni Z(1)

ni ,
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using the notations of Proposition 4.10. From Proposition 4.10 follows Ô(all)
nmax =

[
Ô(all)
ni Z

]

and as Õ(all)
nmax and Õ(all)

ni are recovered directly from Ĥ
(all)

nmax
and Ĥ

(all)

ni by an SVD, the
assertion follows.

Proposition 4.10 and Corollary 4.11 justify the computation of the global subspace or
observability matrix using the Algorithms 4.3 or 4.4 only once at a maximal desired model
order. Then, system identification is done at multiple lower model orders using this matrix.
This is especially useful in vibration analysis of civil, mechanical or aeronautical structures,
where multi-order identification helps to distinguish true structural modes from noise or
spurious mathematical modes.

4.6 Application of merging algorithms to data-driven SSI

4.6.1 Size reduction with LQ decompositions

For so-called data-driven subspace identification algorithms such as the UPC algorithm in
Section 2.2.3, the number of columns of the subspace matrix H is in the order of the available
samples N , which is usually very big compared to the model order n. In this case, a thin LQ
decomposition of the data like in (2.13) is done at first, leading to a factorization of subspace
matrixH = H̃Q into the matrix H̃, whose number of columns is only in the order of the model
order n, and a matrix Q containing orthonormal rows with QQT = I [VODM96, PDR99].
Because of this property, the subspace identification algorithm from Section 4.2 can be called
using H̃ instead H, as the left side of the SVD (4.5), from which the observability matrix
is retrieved, is not influenced by a different orthogonal matrix on the right side [VODM96].
Hence, matrix H̃ is also a subspace matrix fulfilling a factorization property (4.2). In practice,
H̃ instead of H is used for system identification, as it is in general much smaller (less columns)
and its computation numerically more stable than the computation of H itself.

Now it is shown that the same size reduction of the local subspace matrices prior to using
merging algorithms 4.2–4.5 is consistent, i.e. either using H(j), j = 1, . . . , Ns, or the matrices
H̃(j), j = 1, . . . , Ns, with

H(j) = H̃(j)Qj , QjQ
T
j = I, (4.37)

as local subspace matrices in the merging algorithms yields the same global system identifi-

cation results. Denote the respective global subspace matrices H(all) and H̃(all), respectively.

4.6.1.1 Algorithms 4.2 and 4.3

With Lemma 4.3, the normalization step in Algorithm 4.3 is equivalent to

H(j,mov) = H(j,mov)H(j,ref)†H(1,ref), (4.38)

using H(j), j = 1, . . . , Ns, and

H̃(j,mov) = H̃(j,mov)H̃(j,ref)†H̃(1,ref), (4.39)
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using H̃(j), j = 1, . . . , Ns. Separating the subspace matrices into reference and moving sensor
parts leads with (4.37) to the relation

H(j,ref) = H̃(j,ref)Qj , H(j,mov) = H̃(j,mov)Qj .

Plugging this into (4.38) and using (4.39) leads to

H(j,mov) = (H̃(j,mov)Qj)(H̃(j,ref)Qj)
†H̃(1,ref)Q1

= H̃(j,mov)H̃(j,ref)†H̃(1,ref)Q1 = H̃(j,mov)Q1

for j = 1, . . . , Ns. Furthermore, H(1,ref) = H̃(1,ref)Q1. Hence, because of (4.24), the merged

subspace matrices H(all) and H̃(all) enjoy the relation

H(all) = H̃(all)Q1, (4.40)

proving thatH(all) and H̃(all) yield the same global system identification results, as Q1Q
T
1 = I.

4.6.1.2 Algorithms 4.4 and 4.5

Algorithms 4.4 and 4.5 compute the local observability matrix O(j), which is used for further
computations instead H(j) or H̃(j). Because of (4.37), the matrices U1 and ∆1, on which O(j)

is computed, can be assumed to be equal without loss of generality, either coming from H(j)

or H̃(j).3 Hence, global system identification results are the same for both H(j) and H̃(j).

4.6.2 Example: Multi-setup reference-based SSI with UPC algorithm

The data-driven Unweighted Principal Component (UPC) algorithm [VODM96], [PDR99] is
a popular algorithm for stochastic system identification and was described in Section 2.2.3 for
a single measurement setup. In this section, implementation details are given for multi-setup
system identification with the reference-based UPC algorithm.

Choose p such that pr(ref) ≥ n and set q = p+ 1. For each setup j, the data matrices

Y(j)+ def
=

1√
N




Y
(j)
q+1 Y

(j)
q+2 . . . Y

(j)
N+q

Y
(j)
q+2 Y

(j)
q+3 . . . Y

(j)
N+q+1

...
...

. . .
...

Y
(j)
q+p+1 Y

(j)
q+p+2 . . . Y

(j)
N+q+p



, (4.41)

Y(j)− def
=

1√
N




Y
(j,ref)
q Y

(j,ref)
q+1 . . . Y

(j,ref)
N+q−1

Y
(j,ref)
q−1 Y

(j,ref)
q . . . Y

(j,ref)
N+q−2

...
...

. . .
...

Y
(j,ref)
1 Y

(j,ref)
2 . . . Y

(j,ref)
N




(4.42)

3By defining a unique SVD, where e.g. the first entries of the left singular vectors are positive values, the
matrices U1 and ∆1 are identical in both SVDs of H(j) and H̃(j).
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are built, where

Y
(j)
k

def
=

[
Y

(j,ref)
k

Y
(j,mov)
k

]
.

Note that in this reference-based version, matrix Y(j)− only contains data from the reference
sensors of the setup, instead of data from all sensors. The local subspace matrix estimate is
then defined as

Ĥ(j) = Y(j)+Y(j)−T (Y(j)−Y(j)−T )†Y(j)−,

but not explicitly computed. Instead, the thin LQ decomposition
[
Y(j)−

Y(j)+

]
=

[
R

(j)
11 0

R
(j)
21 R

(j)
22

][
Q

(j)
1

Q
(j)
2

]
(4.43)

is performed, from which Ĥ(j) = R
(j)
21Q

(j)
1 follows. Hence, (4.37) is satisfied with H̃(j) def

= R
(j)
21

and Qj
def
= Q

(j)
1 . Note that the number of columns of H̃(j) is only qr(ref), which is in general

significantly smaller than N .
Then, the merging algorithms can be called using the matrices H̃(j), j = 1, . . . , Ns. In

the case of a moderate number of sensors and setups, Algorithm 4.3 should be used to obtain
the global subspace matrix, or Algorithm 4.4 should be used to obtain a global observability
matrix, from which the system matrices Â and Ĉ(all) are retrieved. The scalable computation
of the system matrices in Algorithm 4.5 should be used in the case of a large number of
sensors and setups.

It is stressed that using matrices H̃(j) in the merging algorithms is in general much more
efficient than using the matrices Ĥ(j), j = 1, . . . , Ns. It should be also noted that with relation

(4.40), the Kalman filter state matrix can be recovered from the merged matrix H̃(all) and
the orthogonal matrix Q1 from the first setup.

4.7 Structural vibration analysis example

An important instance of eigenstructure identification with subspace-based system identi-
fication algorithms is the structural vibration analysis of mechanical structures [POB+91].
In Operational Modal Analysis, the excitation of the structure cannot be measured and is
uncontrolled, typically turbulent in nature and non-stationary. Typical examples are build-
ings subject to wind, or bridges, dams and offshore structures subject to wind or swell. The
multi-setup system identification is of practical interest for these structures, as they can be
observed at many degrees of freedom, while only using a few sensors.

In Section 2.4, the underlying mechanical model and its respective discrete time state-
space model were recalled. In the following, the structural vibration analysis example of
[MBBG02b] is revisited using covariance-driven and data-driven stochastic subspace identi-
fication, now showing very good eigenstructure identification results.

The proposed merging algorithms have been applied on vibrational data of the Z24 Bridge
[MDR03], a benchmark of the COST F3 European network. The analyzed data is the response
of the bridge to ambient excitation (traffic under the bridge) measured in 154 points, mainly
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in the vertical and at some points also the transverse and lateral directions, and sampled at
100 Hz. Because at most 33 sensors were available (counting one sensor for each measured
direction), Ns = 9 data sets have been recorded, each containing the measurements from
r(ref) = 5 fixed and 28 moving sensors, except dataset j = 5 containing only 22 moving sensors.
Like this, altogether 251 sensors were mimicked. Each signal contains 65,535 samples.

The merging Algorithms 4.2–4.5 were derived for a wide range of subspace identification
algorithms. Here, they are tested with subspace matrices from two popular identification
algorithms, namely the covariance-driven (cf. Equation (4.13)) and the data-driven subspace
identification with UPC (cf. Section 4.6.2). All available data from the nine setups was used,
which includes sensor data from different directions at the same time. For the construction
of the subspace matrices, the parameters p+ 1 = q = 50 have been selected, thus leading to
the maximal possible model order pr(ref) = 245 of the system. The global subspace matrices
obtained from Algorithm 4.3 and the global observability matrix obtained from Algorithm 4.4
are then of size 12,550 × 250 and do not pose a memory problem yet for further processing.
Note that in the scalable computation of the system matrices with Algorithm 4.5, at no time
matrices larger than 1,650 × 250 are processed.

In order to separate the true system modes from the noise modes, system identification
was done selecting model orders from 10 to the maximal possible order 245 at every 5 orders.
Then, modes showing up at successive orders and fulfilling certain stabilization criteria, such
as low variability of natural frequency, damping values and mode shapes between successive
orders, low damping values etc., are considered as true system modes. Their frequencies are
plotted in a stabilization diagram [PDR99] to support the selection of the estimated model.
Thanks to the results of Section 4.5, this multi-order system identification is done by just
selecting columns of the global observability matrix obtained from the merging algorithms at
the maximal desired system order, instead of redoing the merging at all desired orders. The
corresponding stabilization diagram of the natural frequencies is presented in Figure 4.1.
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Figure 4.1 – Stabilization diagram: natural frequencies vs. model order from system identification with data-driven
UPC algorithm.
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Table 4.1 – Frequencies (f̂) and damping coefficients (ρ̂) of obtained modes with covariance- and data-driven
approach.

covariance-driven data-driven

Mode f̂ (Hz) ρ̂ (%) f̂ (Hz) ρ̂ (%)

1 3.856 0.73 3.860 0.84

2 4.884 1.36 4.893 1.28

3 9.784 1.28 9.774 1.32

4 10.31 1.65 10.33 1.89

5 12.29 3.40 12.33 3.08

6 13.02 3.93 13.08 3.32

7 17.25 5.36 17.37 7.29

8 19.23 2.75 19.21 2.99

9 19.74 4.49 19.62 3.99

10 26.69 4.94 26.75 4.21

The system identification results after applying the merging with Algorithms 4.3 and 4.4
are practically equal for each subspace method, while the results differ slightly comparing
different subspace methods. The obtained frequencies and damping coefficients from the
covariance- and the data-driven algorithm are summarized in Table 4.1. The differences in
the obtained frequencies are less than 0.7% for all modes. For the damping coefficients, the
differences are larger, but still not significant considering the large uncertainty on damping
estimates [Ger74].

In Figure 4.2 the corresponding mode shapes obtained from the data-driven UPC al-
gorithm are presented. All the obtained mode shapes are of high quality, except of the
apparently lowly excited mode 7. The mode shapes obtained with the covariance-driven
approach are very similar, but of slightly lesser quality.

Further applications to structural vibration problems are found in Chapter 8.

4.8 Conclusions

In this chapter, we have presented a generalization of a subspace method designed to recover
modal parameters from multi-setup measurements. The new merging approach applies to a
large range of subspace identification methods and is addressing the problem of size explosion
for large systems. Non-stationary consistency and robustness to misspecified model order for
this approach have been proven, which validates the use of the merging algorithms for sys-
tem identification on real structures. They have been applied successfully to a large class of
relevant examples in Chapter 8. Further work will address the computation of asymptotic ef-
ficiency for this class of modular subspace approaches and evaluate the impact of the merging
approach on the uncertainty quantification of the modal parameters.
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mode 1 mode 2 mode 3

mode 4 mode 5 mode 6

mode 7 mode 8 mode 9

mode 10

Figure 4.2 – Mode shapes identified with data-driven UPC algorithm.
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Chapter 5

Fast multi-order subspace-based
system identification

5.1 Introduction

Subspace-based system identification methods have been proven efficient for the identification
of linear time-invariant systems (LTI), fitting a linear model to input/output or output-only
measurements taken from a system. An overview of subspace methods can be found in
[BF85, Vib95, VODM96, PDR99, BM07, Akç10]. There exists a broad range of applications
in the identification of processes in automatic control, see e.g. [BNSR98, JSL01, SPG03,
PL08]. During the last decade, subspace methods found a special interest in mechanical,
civil and aeronautical engineering for the identification of vibration modes (eigenvalues) and
mode shapes (corresponding eigenvectors) of structures. Therefore, identifying an LTI from
measurements is a basic service in vibration monitoring, see e.g. [HVdA99, MBG03, MBB+06,
BMCC10]. Having done this allows in particular Finite Element Models (FEM) updating and
structural health monitoring.

In an Operational Modal Analysis (OMA) context, however, the following unusual char-
acteristics must be taken into account:

� The number of sensors can be very large (up to hundreds, or thousands in the future);
sensors can even be moved from one measurement campaign to another;

� The number of modes of interest can be quite large (up to 100 or beyond), thus calling
for non-standard approaches to model reduction;

� The excitation applied to the structure is usually uncontrolled and natural, thus tur-
bulent and non-stationary.

Because of the features above, usual tools from linear system identification, such as the
System Identification Toolbox by Matlab, cannot be used as such. In order to retrieve the
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desired large number of modes, an even larger model order must be assumed while per-
forming identification. This causes a number of spurious modes to appear in the identified
models. Techniques from statistics to estimate the best model order, such as AIC, BIC or
MDL [Aka74a, Ris78, CMK01], or model order estimation techniques specifically for sub-
space methods as in [Bau01] lead to a model with the best prediction capacity. However,
one is rather interested in a model containing only the physical modes of the investigated
structures, while rejecting the spurious modes. Based on the observation that physical modes
remain quite constant when estimated at different over-specified model orders, while spurious
modes vary, they can be distinguished using so-called stabilization diagrams [PDR99, PDR01].
There, the physical modes are selected from system identification results at multiple model
orders in a GUI-assisted way. Methods for an automation of this selection are e.g. found in
[VdAP04, SL05, RHDR11, Bak11]. As system identification is done at an over-specified model
order and repeated while truncating at multiple model orders, the computational burden for
this procedure is significant especially for large model orders.

A fast identification of the system parameters is of basic interest, e.g. for online structural
health monitoring. Existing literature on fast subspace-based system identification covers
mainly three subjects:

� Convergence rates of the system or transfer matrices for a growing sample size. They
are e.g. analyzed in [DPS95, BDS99, BL02, CP04a, Bau05] and typically concern the
theoretical properties of a subspace method.

� Reduction of the processed data by using only data of a subset of the recorded sensors,
so-called reference sensors or projection channels, instead all the sensors at one point
of the subspace algorithms. See e.g. [PDR99, RDR08].

� Fast processing of the measurement data prior to estimating the observability matrix.
This is considered in [CK95, MKS+01] for subspace methods using a QR decomposition
of a data Hankel matrix during preprocessing, and in [Pee00, Sec. 3.2.2] for covariance-
driven subspace methods.

In this chapter, the efficient computation of the system matrices from the observability
matrix at multiple model orders is investigated. A fast computation scheme is derived,
where the structure of the observability matrix estimates at multiple orders is exploited
when solving the least squares problem to obtain the system matrices.1 Furthermore, a
fast computation of the system matrices at multiple orders is derived for the Eigensystem
Realization Algorithm (ERA) [JP85, JICL95], which is closely related to covariance-driven
subspace-based algorithms.

This chapter is organized as follows. In Section 5.2, the general Stochastic Subspace
Identification (SSI) algorithm from Section 2.2.2 is recalled and the multi-order identification
problem is addressed. In Sections 5.3 and 5.4, efficient algorithms to estimate the system
matrices at multiple model orders with SSI and ERA are derived, which reduce the com-
putational burden significantly. In Section 5.5, the computational cost of the algorithms is
compared for doing the system identification on a real test case, validating their efficiency.

1Note that this is different from the structured total least squares problem considered in [MLVH01,
MWVH+05], which applies e.g. to maximum likelihood system identification.
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5.2 Stochastic Subspace Identification (SSI)

5.2.1 The general SSI algorithm

Consider linear multivariable time invariant systems described by a discrete time state space
model {

Xk+1 = AXk +BUk + Vk

Yk = CXk +DUk +Wk

(5.1)

with the state X ∈ Rn, the observed input U ∈ Rm, the output Y ∈ Rr and the unobserved
input and output disturbances V and W . The matrices A ∈ Rn×n and C ∈ Rr×n are the
state transition and observation matrices, respectively.

In this chapter, the identification of the system matrices A and C is of interest. In
Operational Modal Analysis, typically no observed inputs are available (B = 0, D = 0) and
identification is done using the output-only data (Yk). When some inputs (Uk) are observed,
combined deterministic-stochastic subspace identification algorithms can be used.

There are many SSI algorithms in literature. Some are mentioned in Section 2.2.3 and
they fit in the following general framework for the identification of the system matrices A
and C of system (5.1). Note that no difference is made between the theoretical matrices
A, C, Hp+1,q, Op+1, Zq and their estimates Â, Ĉ, Ĥp+1,q, Ôp+1, Ẑq in the following, as all
derived algorithms in this chapter have a practical background and use and provide estimates
computed on data.

From the output or input/output data a matrix Hp+1,q is built according to a chosen sub-
space algorithm. The matrix Hp+1,q will be called “subspace matrix” in the following. The
subspace algorithm is chosen such that the corresponding subspace matrix enjoys (asymptot-
ically for a large number of samples) the factorization property

Hp+1,q = WOp+1Zq (5.2)

into the matrix of observability

Op+1
def
=




C

CA
...

CAp



,

and a matrix Zq, with an invertible weighting matrix W depending on the selected subspace
algorithm. However, W is the identity matrix for many subspace algorithms.

Note that a subset of the r sensors can be used for reducing the size of the matrices in the
identification process, see e.g. [PDR99, RDR08]. These sensors are called projection channels
or reference sensors. Let r0 be the number of reference sensors (r0 ≤ r). The parameters p
and q are chosen such that pr ≥ qr0 ≥ n. For simplicity, let these parameters be given and
skip the subscripts of Hp+1,q, Op+1 and Zq in the following.

The observability matrixO is obtained from a thin SVD of the matrixH and its truncation
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at the desired model order n:

H = U∆V T

=
[
U1 U0

] [∆1 0

0 ∆0

]
V T , (5.3)

O = W−1U1∆
1/2
1 . (5.4)

Note that the singular values in ∆1 are non-zero and O is of full column rank. The observation
matrix C is then found in the first block-row of the observability matrix O. The state
transition matrix A is obtained from the shift invariance property of O, namely as the least
squares solution of

O↑A = O↓, where O↑ def
=




C

CA
...

CAp−1



, O↓ def

=




CA

CA2

...

CAp



. (5.5)

5.2.2 Multi-order SSI

In many practical applications the true system order n is unknown and it is common to do
the system identification for models (5.1) at different model orders n = nj , j = 1, . . . , t, with

1 ≤ n1 < n2 < . . . < nt ≤ min{pr, qr0}, (5.6)

and where t is the number of models to be estimated [PDR99, PDR01, VdAP04]. The choice
of the model orders nj , j = 1, . . . , t, is up to the user and also depends on the problem. For
example, nj = j + c or nj = 2j + c with some constant c can be chosen. For example, the
latter makes sense for an application as in Section 5.5: There, the eigenvalues of the state
transition matrix are pairwise complex conjugate. Thus, two model orders are needed to
recover one new mode.

The following notation for specifying these different model orders is used throughout
this chapter. Let Oj ∈ R(p+1)r×nj , Aj ∈ Rnj×nj and Cj ∈ Rr×nj be the observability,
state transition and observation matrix at model order nj , j ∈ {1, . . . , t}, respectively. Let

furthermore be O↑j and O↓j the first respective last p block rows of Oj , analogously to the
definition in (5.5).

Note that in Section 5.2.1 model order n was used, while from now on model orders nj will

be used. The matrices Aj , Cj , Oj , O↑j and O↓j fulfill the equations in Section 5.2.1, replacing

A, C, O, O↑ and O↓, as well as nj replaces n.

5.2.3 Computation of system matrices

The system matrix Aj is the solution of the least squares problem (5.5) at a chosen model
order nj :

O↑jAj = O↓j . (5.7)
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A numerically stable solution is

Aj = O↑j
†O↓j , (5.8)

where † denotes the Moore-Penrose pseudoinverse. A more efficient and also numerically
stable way to solve it [GVL96], uses the thin QR decomposition

O↑j = QjRj , (5.9)

where Qj ∈ Rpr×nj is a matrix with orthogonal columns and Rj ∈ Rnj×nj is upper triangular.
Rj is assumed to be of full rank, which is reasonable as Oj is of full column rank. With

Sj
def
= QTj O↓j , (5.10)

Sj ∈ Rnj×nj , the solution of the least squares problem is

Aj = R−1j Sj . (5.11)

The observation matrix Cj is found in the first block row of Oj .
The conventional way to compute the system matrices Aj and Cj at the model orders nj ,

j = 1, . . . , t, is the following [PDR01]: First, the observability matrix Ot is computed at the
maximal desired model order nt from (5.3)–(5.4). The observability matrix Oj at order nj
is obtained from the first nj columns of Ot. Then, the matrices Aj and Cj are the solution
of least squares problem (5.7) and the first block row of Oj , respectively. This approach is
summarized in Algorithm 5.1, where the least squares solution is obtained either by using
the pseudoinverse (5.8) or the QR decomposition with equations (5.9)–(5.11). Note that for
a matrix X the matrix X[a1:a2,b1:b2] denotes the submatrix of matrix X containing the block
from rows a1 to a2 and columns b1 to b2 of matrix X.

Algorithm 5.1 Multi-order SSI

Input: Ot ∈ R(p+1)r×nt {observability matrix}
n1, . . . , nt {desired model orders satisfying (5.6)}

1: for j = 1 to t do
2: O↑j ←− Ot[1:pr,1:nj ], O

↓
j ←− Ot[(pr+1):(p+1)r,1:nj ]

3: if method = pseudoinverse then

4: Aj ←− O↑j
†O↓j

5: else if method = QR then
6: QR decomposition O↑j = QjRj

7: Sj ←− QTj O↓j
8: Aj ←− R−1j Sj
9: end if

10: Cj ←− Ot[1:r,1:nj ]
11: end for
Output: System matrices Aj , Cj at model orders n1, . . . , nt
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5.2.4 Computational complexities

In order to compare the performance of different algorithms for the multi-order computation
of the system matrices Aj and Cj , j = 1, . . . , t, their number of floating point operations
(flops) needs to be evaluated. Consider the observability matrix Ot at a maximal model

order nmax
def
= nt be given. As Cj is always a submatrix of Ot, only the computation of the

state transition matrices Aj is considered. For comparing different algorithms, the model
orders are assumed to be nj = j = 1, . . . , nmax. Note that all algorithms are derived for
arbitrary model orders nj fulfilling (5.6).

The number of flops for an algorithm is determined for the computation of the system
matrices at orders nj = 1, 2, . . . , n∗, where n∗ ≤ nmax. Thus, the complexity of an algorithm
is indicated, where the choice of the parameters is influenced by the maximal model order
nmax and where the computation is stopped at a (possibly smaller) model order n∗. However,
for a first evaluation, n∗ = nmax can be assumed.

The subspace matrix H is often of size (p + 1)r × qr0 and in practice it is set p + 1 = q

and nmax = qr0 [BBG+01]. Define c
def
= pr/nmax and m

def
= pr. Then, c ≈ r/r0 and hence

independent of p, q and nmax. Hence, the total flop count is a function of c, n∗ and nmax.
Furthermore, use the simplifications

∑n∗
j=1 j ≈ 1

2n
2
∗,

∑n∗
j=1 j

2 ≈ 1
3n

3
∗,

∑n∗
j=1 j

3 ≈ 1
4n

4
∗.

For example, the SVD needed for the pseudoinverse in (5.8) takes about 14mj2+8j3 flops
and the thin Householder QR decomposition (5.9) takes about 4mj2 − 4

3j
3 flops [GVL96].

Accounting the necessary multiplications, the computation of Aj takes 16mj2 + 10j3 flops in
(5.8) and 6mj2− 1

3j
3 flops in (5.11). Accumulating the operations for model orders 1, . . . , n∗

and replacing m = cnmax leads to a total flop count of about 16
3 cnmaxn

3
∗ + 5

2n
4
∗ flops using

the pseudoinverse and 2cnmaxn
3
∗ − 1

12n
4
∗ flops using the QR decomposition. Thus, the least

squares solution for the system matrix using the QR decomposition is favorable.

5.3 Fast algorithms for multi-order SSI

The computation of the system matrices at multiple orders is a big computational burden. In
the previous section it was shown that the conventional algorithm for this task (Algorithm 5.1)
has a computational complexity of O(n4max) for the identification of the system matrices at
model orders 1, 2, . . . , nmax. In this section, efficient algorithms are derived for the multi-order
identification of the system matrices, having a computational complexity of only O(n3max).

5.3.1 A first algorithm for fast multi-order computation of system matrices

Conventionally, the least squares problem for the state transition matrix Aj is solved at each
desired model order nj = n1, . . . , nt. Now, an algorithm is derived that solves the least
squares problem only once at the maximal desired model order nt (Equations (5.9) to (5.11)
with j = t), leading to matrices Rt, St and At. Then, instead of solving the least squares
problems at all the orders n1, . . . , nt−1, it is shown that the state transition matrices Aj at
these lower orders can be computed much more efficiently from submatrices of Rt and St,
based on the following main theorem of this chapter.
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Theorem 5.1 Let Ot, Qt, Rt and St be given at the maximal desired model order nt with

O↑t = QtRt, St = QTt O↓t , At = R−1t St, (5.12)

such that At is the least squares solution of

O↑tAt = O↓t .

Let j ∈ {1, . . . , t− 1}, and let Rt and St be partitioned into blocks

Rt =

[
R

(11)
j R

(12)
j

0 R
(22)
j

]
, St =

[
S
(11)
j S

(12)
j

S
(21)
j S

(22)
j

]
, (5.13)

where R
(11)
j , S

(11)
j ∈ Rnj×nj . Then, the state transition matrix Aj at model order nj, which

is the least squares solution of

O↑jAj = O↓j , (5.14)

satisfies

Aj = R
(11)
j
−1S

(11)
j . (5.15)

Proof: From (5.3) and (5.4) it follows that Oj consists of the first nj columns of Ot.
This holds analogously for O↑j and O↓j . Hence, O↑t and O↓t can be partitioned into

O↑t =
[
O↑j Õ

↑
j

]
, O↓t =

[
O↓j Õ

↓
j

]
, (5.16)

where Õ↑j and Õ↓j consist of the remaining columns of O↑t and O↓t . Let Qt be partitioned into
the blocks

Qt =
[
Q

(1)
j Q

(2)
j

]
, (5.17)

where Q
(1)
j ∈ Rpr×nj . From (5.12) and (5.17) follows

O↑t =
[
Q

(1)
j Q

(2)
j

] [R(11)
j R

(12)
j

0 R
(22)
j

]
=
[
Q

(1)
j R

(11)
j B

]
(5.18)

with B = Q
(1)
j R

(12)
j +Q

(2)
j R

(22)
j . Comparing (5.16) and (5.18), it follows

O↑j = Q
(1)
j R

(11)
j , (5.19)

which obviously is a QR decomposition of O↑j . As Aj is the least squares solution of (5.14)
and because of QR decomposition (5.19), Aj satisfies

Aj = R
(11)
j
−1Q

(1)
j

T
O↓j . (5.20)
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Furthermore, from (5.12), (5.16) and (5.17) follows

St =


Q

(1)
j

T

Q
(2)
j

T



[
O↓j Õ

↓
j

]
=


Q

(1)
j

T
O↓j Q

(1)
j

T
Õ↓j

Q
(2)
j

T
O↓j Q

(2)
j

T
Õ↓j


 ,

and comparing to (5.13) yields

S
(11)
j = Q

(1)
j

T
O↓j .

Plugging this into (5.20) leads to the assertion.

Hence, steps (5.9) and (5.10) for the least squares solution of the state transition matrix
Aj are not necessary anymore for j = 1, . . . , t− 1, and (5.11) is replaced by (5.15).

Furthermore, matrix R
(11)
j
−1 is a submatrix of R−1t due to its triangular structure. Thus,

the inverse of Rt can be computed beforehand, avoiding the inversion of the matrices R
(11)
j

at each model order. The resulting algorithm for this fast multi-order computation of the
system matrices is summarized in Algorithm 5.2.

Algorithm 5.2 Fast multi-order SSI – preliminary version

Input: Ot ∈ R(p+1)r×nt {observability matrix}
n1, . . . , nt {desired model orders satisfying (5.6)}

1: O↑t ←− Ot[1:pr,1:nt], O
↓
t ←− Ot[(pr+1):(p+1)r,1:nt]

2: Ct ←− Ot[1:r,1:nt]
3: QR decomposition O↑t = QtRt
4: T ←− R−1t , St ←− QTt O↓t
5: for j = 1 to t do
6: Aj ←− T[1:nj ,1:nj ]St[1:nj ,1:nj ]
7: Cj ←− Ct[1:r,1:nj ]
8: end for

Output: System matrices Aj , Cj at model orders n1, . . . , nt

In Line 6 of Algorithm 5.2, Aj is computed as a matrix product with triangular matrix
T[1:nj ,1:nj ] as one factor. This requires n3j flops, when T and St are known. However, com-

puting Aj = R−1t[1:nj ,1:nj ]St[1:nj ,1:nj ] by backward substitution, without computing R−1t[1:nj ,1:nj ]
explicitly, has the same computational cost, when Rt and St are known. In this case, the
inversion of Rt can be avoided, leading to a slightly more efficient algorithm. It is summarized
in Algorithm 5.3.

5.3.2 Fast iterative multi-order computation of system matrices

The fast multi-order computation of the state transition matrix from the previous section
can be further improved by expressing Aj+1 with the help of Aj , which reduces further the
number of numerical operations.
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Algorithm 5.3 Fast multi-order SSI

Input: Ot ∈ R(p+1)r×nt {observability matrix}
n1, . . . , nt {desired model orders satisfying (5.6)}

1: O↑t ←− Ot[1:pr,1:nt], O
↓
t ←− Ot[(pr+1):(p+1)r,1:nt]

2: Ct ←− Ot[1:r,1:nt]
3: QR decomposition O↑t = QtRt
4: St ←− QTt O↓t
5: for j = 1 to t do
6: Aj ←− R−1t[1:nj ,1:nj ]St[1:nj ,1:nj ]
7: Cj ←− Ct[1:r,1:nj ]
8: end for

Output: System matrices Aj , Cj at model orders n1, . . . , nt

Corollary 5.2 Let Ot, Qt, Rt and St be given at the maximal desired model order nt. Define
the submatrices

R̃
(11)
j = Rt[1:nj ,1:nj ], S̃

(11)
j = St[1:nj ,1:nj ],

R̃
(12)
j = Rt[1:nj ,(nj+1):nj+1], S̃

(12)
j = St[1:nj ,(nj+1):nj+1],

R̃
(22)
j = Rt[(nj+1):nj+1,(nj+1):nj+1], S̃

(21)
j = St[(nj+1):nj+1,1:nj ],

S̃
(22)
j = St[(nj+1):nj+1,(nj+1):nj+1],

(5.21)

and A1 = R̃
(11)
1
−1S̃

(11)
1 . Then it holds

Aj+1 =

[
Aj R̃

(11)
j
−1S̃

(12)
j

0 0

]
+

[
−R̃(11)

j
−1R̃

(12)
j R̃

(22)
j
−1

R̃
(22)
j
−1

] [
S̃
(21)
j S̃

(22)
j

]
(5.22)

for j = 1, . . . , t− 1.

Proof: According to Theorem 5.1, above submatrices are defined such that Rj = R̃
(11)
j ,

Sj = S̃
(11)
j and

Rj+1 =

[
R̃

(11)
j R̃

(12)
j

0 R̃
(22)
j

]
, Sj+1 =

[
S̃
(11)
j S̃

(12)
j

S̃
(21)
j S̃

(22)
j

]
.

Then,

R−1j+1 =

[
R̃

(11)
j
−1 −R̃(11)

j
−1R̃

(12)
j R̃

(22)
j
−1

0 R̃
(22)
j
−1

]
.

Plugging this into Aj+1 = R−1j+1Sj+1, the assertion follows using Theorem 5.1 and replacing

Aj = R̃
(11)
j
−1S̃

(11)
j .

Hence, by using (5.22), the computation of Aj+1 needs about 4(nj+1 − nj)n2j+1 flops, if

Rt, St and Aj are known. Note that, again, no explicit inversion of matrix R̃
(11)
j is necessary.
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The complete algorithm for this fast iterative multi-order computation of the state transi-
tion matrix is obtained from Algorithm 5.3 by replacing Line 6 at j+1 with Equation (5.22).
Denote the resulting algorithm by Algorithm 5.4.

5.3.3 Fast iterative computation of system matrices without preprocessing
at the maximal model order

In the algorithms for the fast multi-order computation of the system matrices in Sections 5.3.1
and 5.3.2, the maximal desired model order must be set beforehand: The QR decomposition
O↑t = QtRt and St = QTt O↓t are computed at the maximal desired model order nt, from which
the system matrices Aj at the model orders nj , j = 1, . . . , t, are derived.

Now, an algorithm is derived that avoids a prior QR decomposition at a maximal model
order nt. Instead, the Householder reflections to obtain the Q and R factor of the QR
decomposition [GVL96] are applied only on actually required parts of the observability matrix
for each j. Then, the computation of the system matrix Aj depends only on Oj at model
order nj in each iteration j, but not on matrices at higher model orders. This could give
the advantage that the computation of Aj , j = 1, 2, . . . can be stopped at some model
order depending on criteria using results that are already achieved, while avoiding additional
computation needed for preprocessing at a preselected maximal model order nt. However,
note that a maximal possible model order is always given by the rank of the subspace matrix
H, thus nj ≤ min{pr, qr0} for all j, cf. (5.6).

Recall the definition and properties of the well-known Householder reflections from
[GVL96]:

Definition 5.3 ([GVL96]) For a vector x ∈ Rm with the first entry x[1] 6= 0, the House-
holder vector v ∈ Rm is defined as

v
def
= x+ sign(x[1])||x||2e1,

where || · ||2 denotes the Euclidean norm and e1 ∈ Rm is the unit vector eT1 =
[
1 0 · · · 0

]
.

The respective Householder reflection H(v) ∈ Rm×m is defined as

H(x)
def
= Im − 2vvT /(vT v).

For l ≥ m, define

H(l)(x)
def
=

[
Il−m 0

0 H(x)

]
.

Lemma 5.4 ([GVL96]) Let x ∈ Rl, l ≥ m and H(l)(x[l−m+1:l]) ∈ Rl×l be the Householder
reflection of Definition 5.3, which is an orthogonal matrix. Then,

H(l)(x[l−m+1:l])x =



x[1:l−m]

x̃[l−m+1]

0m−1,1


 ,
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where x̃[l−m+1] is an entry changed by the Householder reflection and 0a,b is a matrix of size

a× b containing zeros. The multiplication of H(l)(x[l−m+1:l]) with an arbitrary vector can be

done with about 4m flops, without computing H(l)(x[l−m+1:l]) explicitly.

For X ∈ Rl×k, l ≥ m ≥ k, define the matrix H(l)(X[l−m+1:l,1:k]) ∈ Rl×l as a product of
Householder reflections, such that

H(l)(X[l−m+1:l,1:k])X =



X[1:l−m,1:k]

X̃

0m−k,k


 ,

where X̃ ∈ Rk×k is an upper triangular matrix resulting from the Householder reflections.
The multiplication of H(l)(X[l−m+1:l,1:k]) with an arbitrary vector can be done with about

2k(2m− k) flops, without computing H(l)(X[l−m+1:l,1:k]) explicitly.

With these definitions, the Householder reflections that are necessary to get the least
squares solution for the system matrices can be applied stepwise on the appropriate parts of
the observability matrix. Thus, the explicit computation of the factor Q of a QR decompo-
sition is not necessary anymore.

Proposition 5.5 Let the observability matrices O1,O2, . . . at model orders n1 < n2 < . . . be
given. Define H1 = H(pr)(O↑1), R̃1 = H1O↑1 and S̃1 = H1O↓1. For j = 1, 2, . . . define oj+1

such that
Oj+1 =

[
Oj oj+1

]
.

and
õ↑j+1 = Hj · · ·H1o

↑
j+1, õ↓j+1 = Hj · · ·H1o

↓
j+1. (5.23)

Let Hj+1
def
= H(pr)(õ↑j+1[(nj+1):pr,1:(nj+1−nj)]) be a collection of Householder reflections and

define

R̃j+1 =
[
R̃j Hj+1õ

↑
j+1

]
, S̃j+1 = Hj+1

[
S̃j õ↓j+1

]
. (5.24)

Then, the solution of the least squares problem O↑j+1Aj+1 = O↓j+1 is given by

Aj+1 = (R̃j+1[1:nj+1,1:nj+1])
−1S̃j+1[1:nj+1,1:nj+1].

Proof: As R̃j is by construction an upper triangular matrix with R̃j[(nj+1):pr,1:nj ] = 0,

it follows Hj+1R̃j = R̃j from the definition of Hj+1. Then, from (5.24) follows R̃j+1 =

Hj+1

[
R̃j õ↑j+1

]
and together with (5.24), it follows

R̃j+1 = Hj+1

[
R̃j õ↑j+1

]
= Hj+1

[
Hj

[
R̃j−1 õ↑j

]
õ↑j+1

]

= Hj+1Hj

[
R̃j−1 Hj−1 · · ·H1

[
o↑j o↑j+1

]]
= . . .

= Hj+1Hj · · ·H1

[
O↑1 o↑2 . . . o↑j+1

]

= Hj+1Hj · · ·H1O↑j+1.
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Analogously, it holds S̃j+1 = Hj+1Hj · · ·H1O↓j+1. The Householder reflections were

chosen such that R̃j+1 ∈ Rpr×nj+1 is upper triangular. Hence, O↑j+1 = Q̃j+1R̃j+1 with

Q̃Tj+1 = Hj+1Hj · · ·H1 ∈ Rpr×pr is a full QR decomposition of O↑j+1 and S̃j+1 = Q̃Tj+1O↓j+1.
Thus, the assertion follows.

With this proposition, the matrices R̃j+1 and S̃j+1 are computed iteratively. Then, Corol-
lary 5.2 can be used to compute Aj+1 at each iteration efficiently, using R̃j+1 and S̃j+1 instead
of Rt and St, respectively. For the latter operation, about 4(nj+1−nj)n2j+1 flops are necessary

at the model order nj+1, as stated in the previous section. For the computation of R̃j+1 and
S̃j+1, 2

∑nj
k=1 4(pr−k)(nj+1−nj) ≈ (8prnj−4n2j )(nj+1−nj) flops are necessary for (5.23) and∑nj+1

k=nj+1 4(pr− k)(nj+1 − nj + nj+1) ≈ (4prnj+1 − 4n2j+1)(nj+1 − nj) flops are necessary for

(5.24). Thus, at each model order nj+1 a total number of about (12prnj+1−4n2j+1)(nj+1−nj)
flops is necessary to compute Aj+1.

The complete algorithm for this fast iterative multi-order computation of the state transi-
tion matrix is obtained from Algorithm 5.3 by replacing Line 6 at j+1 with Equation (5.22),
while replacing Rt and St in (5.21) by R̃j+1 and S̃j+1 from (5.24). Denote the resulting
algorithm by Algorithm 5.5.

5.3.4 Comparison of multi-order algorithms

The computational complexities for the computation of the system matrices with the multi-
order SSI algorithms from the last sections are summarized in Table 5.1. All results are
given for the computation at model orders 1, 2, . . . , n∗ from an observability matrix of size
(cnmax + r)× nmax, where n∗ ≤ nmax.

The conventional Algorithm 5.1, either using the pseudoinverse or the QR decomposition
for the solution of the least squares problem, takes O(n4max) operations for n∗ = nmax. The
simplest of the derived fast algorithms, Algorithms 5.2 and 5.3, are still dependent on n4∗,
although its constant is significantly smaller than for Algorithm 5.1, and even (6 c− 4

3)n3max ≥
1
4 n

4
∗ in many cases. Algorithm 5.3 has a slight advantage over Algorithm 5.2.

Table 5.1 – Computational complexities of multi-order system matrix identification from SSI.

Algorithm Flops

SSI with pseudoinverse (Algorithm 5.1) 16
3 cnmaxn

3
∗ + 5

2n
4
∗

SSI with QR (Algorithm 5.1) 2cnmaxn
3
∗ − 1

12n
4
∗

Fast SSI (Algorithm 5.2) (6c− 1)n3max + 1
4n

4
∗

Fast SSI (Algorithm 5.3) (6c− 4
3)n3max + 1

4n
4
∗

Iterative Fast SSI (Algorithm 5.4) (6c− 4
3)n3max + 4

3n
3
∗

Iterative Fast SSI (Algorithm 5.5) 6cnmaxn
2
∗ − 4

3n
3
∗
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Finally, the iterative fast SSI algorithms from Sections 5.3.2 and 5.3.3 (Algorithms 5.4
and 5.5) take only O(n3max) operations for n∗ = nmax. However, even if Algorithm 5.5 needs
the least number of operations, it is rather of theoretical value, as a practical implementation
is cumbersome. Furthermore, Algorithm 5.5 might perform less well in practice due to the
manual handling of matrix operations.

5.3.5 Iterative computation of Rt and St

In the Algorithms 5.2–5.4 the matrices Rt and St are computed from Ot at the maximal
desired model order nt. From these matrices, the state transition matrix Aj is derived at
inferior model orders nj , j = 1, . . . , t.

However, Ot can be a very large matrix with (p + 1)r � nt, for example in the case
of a large number of sensors r or using multiple sensor setups as in Chapter 4. Then, the
computation of Rt and St could pose a memory problem. In this case, the matrices Rt
and St can be computed iteratively by cutting Ot in block rows and using an iterative QR
decomposition. This solves the possible memory problem as Rt and St are only of size nt×nt.
The iterative computation of Rt and St was already detailed in Propositions 3.8 and 4.5. It

can be applied to any separation of Ot into block rows O(0)
t , . . . ,O(J)

t , where each block O(j)
t

relates to a sensor set defined by partial observation matrices C
(j)
t , j = 0, . . . , J , such that

the observation matrix Ct writes

Ct =




C
(0)
t

C
(1)
t
...

C
(J)
t



, and Ot =




O(0)
t

O(1)
t
...

O(J)
t




with O(j)
t =




C
(j)
t

C
(j)
t At

...

C
(j)
t Apt




for j = 0, . . . , J . Thus, Rt and St can be obtained iteratively from the blocks O(0)
t , . . . ,O(J)

t .
Then, the estimates of the state transition matrices Aj at model orders nj , j = 1, . . . , t can
be obtained from Rt and St by one of the Algorithms 5.2–5.4. Estimates of Cj are obtained
from Ct.

5.4 Eigensystem Realization Algorithm (ERA)

5.4.1 System identification with ERA

System identification with NExT-ERA is closely related to covariance-driven stochastic sub-
space identification. The Natural Excitation Technique (NExT) [JICL95, FJI97] states that
the cross-correlation function between two responses made on unknown ambient excitation
has the same form as the system’s impulse response function under convenient assumptions.
Then, the Eigensystem Realization Algorithm (ERA) [JP85], which was developed to analyze
impulse response functions, can be applied for system identification.
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For ERA, the subspace matrix H is built as a block Hankel matrix

Hk def
=




Mk Mk+1 . . . Mk+q−1

Mk+1 Mk+2 . . . Mk+q
...

...
. . .

...

Mk+p Mk+p+1 . . . Mk+p+q−1



,

where parameters p and q are used as in Section 5.2.1, parameter k ∈ N0 indicates a time lag
and the so-called Markov parameters Mi at time lag i can be chosen as one of the following
functions [SF08]:

� Impulse response functions;

� Inverse Fast Fourier Transform (FFT) of frequency response functions;

� Cross-correlation functions of outputs under ambient excitation;

� Inverse FFT of cross-spectral densities under ambient excitation.

Then, Hk possesses the factorization property

Hk = OAkZ

analogous to (5.2). Using the SVD decomposition

Hk =
[
U1 U0

] [∆1 0

0 ∆0

][
V T
1

V T
0

]
, (5.25)

and truncation at some model order n analogous to (5.3), the state transition matrix A is
computed as

A = ∆
−1/2
1 UT1 Hk+1V1∆

−1/2
1 , (5.26)

similar to (5.4) and (5.5). The observation matrix C is obtained as the first block row of

U1∆
1/2
1 as in Section 5.2.1.

5.4.2 Fast multi-order computation of the system matrices

When the model order n in the truncation of the SVD in (5.25) is unknown, it is useful to
do multi-order system identification at model orders 1 ≤ n1 < n2 < . . . < nt as in Section
5.2. This corresponds to the partition of the SVD in (5.25) at model orders nj , j = 1, . . . , t,
such that

Hk = U∆V T =
[
Uj Ŭj

] [∆j 0

0 ∆̆j

][
V T
j

V̆ T
j

]
, (5.27)

where Uj and Vj have nj columns and ∆j ∈ Rnj×nj . Then, the state transition matrix at
model order nj writes as

Aj = ∆
−1/2
j UTj Hk+1Vj∆

−1/2
j . (5.28)
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Proposition 5.6 Let At from (5.27) and (5.28) at a maximal desired model order nt be
given. Then, Aj satisfying (5.28) at model order nj is a submatrix of At and fulfills

Aj = At[1:nj ,1:nj ].

Proof: From (5.27) and (5.28), At is defined as

At = ∆
−1/2
t UTt Hk+1Vt∆

−1/2
t .

For any j = 1, . . . , t, it holds by definition

Ut =
[
Uj Ũj

]
, ∆

−1/2
t =

[
∆
−1/2
j 0

0 ∆̃
−1/2
j

]
, Vt =

[
Vj Ṽj

]

with some matrices Ũj , ∆̃j and Ṽj . Thus, plugging this in the definition of At it follows

At =

[
∆
−1/2
j UTj Hk+1Vj∆

−1/2
j ∆

−1/2
j UTj Hk+1Ṽj∆̃

−1/2
j

∆̃
−1/2
j ŨTj Hk+1Vj∆

−1/2
j ∆̃

−1/2
j ŨTj Hk+1Ṽj∆̃

−1/2
j

]

and comparing with the definition of Aj in (5.28), the assertion follows.

Hence, for multi-order system identification with ERA, only At at the maximal desired
model order nt needs to be computed. Then, the matrices Aj , j = 1, . . . , t − 1, are simply
submatrices of At and do not require further computations.

With the following corollary, the prior computation of At at the maximal desired model
order nt can be avoided and the matrices Aj are defined iteratively, analogous to Section
5.3.3.

Corollary 5.7 Let Hk, Hk+1 and the SVD (5.27) be given. Define T1 = ∆
−1/2
1 UT1 Hk+1 and

A1 = T1V1∆
−1/2
1 . For j = 1, 2, . . . define uj+1, σj+1 and vj+1 such that

Uj+1 =
[
Uj uj+1

]
, ∆j+1 =

[
∆j 0

0 σj+1

]
, Vj+1 =

[
Vj vj+1

]
,

and

tj+1 = σ
−1/2
j+1 u

T
j+1Hk+1, Tj+1 =

[
Tj

tj+1

]
. (5.29)

Then,

Aj+1 =

[
Aj Tjvj+1σ

−1/2
j+1

tj+1Vj∆
−1/2
j tj+1vj+1σ

−1/2
j+1

]
. (5.30)

Proof: Replace At, Ut, ∆t and Vt in the proof of Proposition 5.6 by Aj+1, Uj+1, ∆j+1

and Vj+1.



118 Chapter 5

For a comparison of the computational complexity of this algorithm with the results of
Section 5.3.4, it is assumed that the SVD (5.27) is the starting point of the computation,
which is analogous to assume that the observability matrix used for SSI algorithms is already
known. The notation of Sections 5.2.4 and 5.3.4 is used and Hk is assumed to be of size
cnmax × nmax.

About (2c + 2)n3max flops are necessary to compute At at model order nt = nmax, from
which the state transition matrices at inferior orders are selected in Proposition 5.6. In
Corollary 5.7, the computation of Aj at some order j takes about 2cn2max + 4nmaxj flops,
amounting to 2cn2maxn∗+ 2nmaxn

2
∗ flops when computing at all orders 1, 2, . . . , n∗. Note that

the conventional computation of Aj for all j = 1, . . . , t from (5.28) needs about (12c + 1
2)n4∗

flops.

The computational complexities of the derived multi-order ERA algorithms are summa-
rized in Table 5.2.

Table 5.2 – Computational complexities of multi-order system matrix identification from ERA.

Algorithm Flops

Conventional Computation (12c+ 1
2)n4∗

Fast Computation (Proposition 5.6) (2c+ 2)n3max

Iterative Fast Computation (Corollary 5.7) 2cn2maxn∗ + 2nmaxn
2
∗

5.5 Structural vibration analysis example

In this section, the fast multi-order computation of the system matrices is applied to a prac-
tical test case from vibration analysis. In Section 2.4, the underlying mechanical model and
its respective discrete time state-space model were recalled. For eigenstructure identification,
so-called stabilization diagrams (cf. Section 2.4.3) are used that contain the system identifi-
cation results at multiple model orders. At each of these model orders, the system matrices
have to be computed first in order to get the eigenstructure of the respective systems. For
system identification with SSI algorithms or with ERA, this can be done efficiently and fast
with the new algorithms derived in this chapter.

5.5.1 Numerical results of multi-order system identification

All system identification algorithms of this chapter are applied to the system identification
of the Z24 Bridge [MDR03, Par03] as in Section 4.7. It was a prestressed concrete bridge
with three spans, supported by two intermediate piers and a set of three columns at each
end. Both types of supports are rotated with respect to the longitudinal axis which results
in a skew bridge. The overall length is 58 m.

The ambient vibration data was measured in nine setups of up to 33 sensors each, with
five reference sensors common to all setups. Altogether, the structure was measured at
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r = 251 sensor positions, of which are r0 = 5 reference sensors. In each setup, 65,536 samples
were collected for each sensor with a sampling frequency of 100 Hz. The common subspace
matrix of all setups was obtained with the merging approach described in Chapter 4 using
data-driven SSI with the Unweighted Principal Component Algorithm.

The different algorithms presented in this chapter are tested on an Intel Xeon CPU 3.40
GHz with 16 GByte in Matlab 7.10.0.499 using one processor kernel. With these algorithms,
the system matrices Aj and Cj are computed at model orders nj = 1, 2, . . . , nmax. From
these results, the modal parameters of the system can be identified using the stabilization
diagram. To compare the performance of the algorithms, the system matrices are computed
for stabilization diagrams with different maximal model orders nmax.

� For SSI algorithms, a subspace matrix H of size (p + 1)r × qr0 is built from the data,
where p + 1 = q is chosen, as recommended in [BBG+01]. Ot is obtained from H,
where the maximal model order is nmax = nt = qr0. Then, the time is recorded for the
computation of Aj and Cj from Ot at model orders nj = j = 1, 2, . . . , nmax.

� For ERA, the matrix H from the subspace algorithm is used for simplicity. Set
nmax = qr0, Hk = H[1:pr,1:qr0] and Hk+1 = H[(r+1):(p+1)r,1:qr0]. Then, the SVD of
Hk is performed and the time is recorded for the computation of Aj and Cj from U ,
∆, V and Hk+1 at model orders nj = j = 1, 2, . . . , nmax.

To evaluate the computational time for obtaining the set of Aj ’s and Cj ’s from order 1 until
a maximal model order nmax = qr0, these steps are repeated for q = 2, . . . , 100. As the
computation time is also dependent on the constant c ≈ r/r0 (see Section 5.2.4), first a
computation is done with all r = 251 sensors (c ≈ 50), and second a computation with only
a subset of r = 5 sensors (c ≈ 1).

5.5.1.1 Computation times of multi-order SSI algorithms at different maximal
model orders

The computation times for the computation of the system matrices at model orders
1, 2, . . . , nmax from an observability matrix Onmax with the SSI algorithms are presented
in Figure 5.1 for different maximal model orders nmax. It can be seen that the solution of
the least squares problem with the QR decomposition is more efficient than using the pseu-
doinverse in the conventional Algorithm 5.1, as expected. The Algorithms 5.2–5.4 derived
in this chapter yield a significant reduction in the computation times. Although Algorithm
5.5 theoretically needs the least number of operations, it does not perform well in practice,
which is already explained in Section 5.3.4. Besides the latter algorithm, all other algorithms
seem to be consistent with their theoretical performance.

At each maximal model order, the computation time in Figure 5.1 corresponds to the
total time that is needed to compute all the system matrices for a stabilization diagram
having this maximal model order. It is clearly shown that the new fast iterative multi-order
SSI with Algorithm 5.4 outperforms the other algorithms. For nmax = 500 it takes a total of
13.7 s, while the conventional multi-order Algorithm 5.1 using the pseudoinverse takes 2873 s,
thus being more than 200 times faster.
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Figure 5.1 – Computation times for multi-order SSI system identification of system matrices Aj and Cj , nj = j =
1, . . . , nmax from Onmax at different maximal model orders nmax.

5.5.1.2 Computation times of multi-order SSI algorithms for maximal model
order 500

The accumulated computation times of the system matrices at model orders 1, 2, . . . , n∗ for
the maximal model order nmax = 500 are presented in Figure 5.2 for n∗ = 1, . . . , 500. This
corresponds to the time that is needed to compute the system matrices up to each order n∗
for a stabilization diagram of maximal model order nmax = 500.

Due to a preprocessing step at the maximal model order in Algorithms 5.2–5.4, the
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Figure 5.2 – Accumulated computation times for multi-order SSI system identification up to different model orders
n∗ with maximal model order nmax = 500.
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accumulated computation time for the first model orders n∗ is higher in these fast algorithms
than for the conventional algorithms. However, this changes quickly at higher model orders
and the new algorithms outperform the conventional ones, with Algorithm 5.4 being the
fastest. It is also noted that the preprocessing step takes the main part of the computation,
while after that, the computation of the system matrices at all orders 1, 2, . . . , 500 take only
about 2.4 seconds for Algorithm 5.4 in Figures 5.2(a) and 5.2(b).

5.5.1.3 Computation times of multi-order ERA algorithms

The computation times for the computation of the system matrices at model orders
1, 2, . . . , nmax from an observability matrix Onmax with the ERA algorithms are presented
in Figure 5.3 for different maximal model orders nmax. The accumulated computation times
of the system matrices at model orders 1, 2, . . . , n∗ for the maximal model order nmax = 500
are presented in Figure 5.4 for n∗ = 1, . . . , 500.

From both figures it can be seen that the new multi-order algorithms for ERA developed
in this chapter are significantly faster than the conventional ERA algorithm. Due to its im-
plementation, the fast ERA algorithm from Proposition 5.6 outperforms its iterative variant
from Corollary 5.7, except when stopping the computation at a low model order. For the
computation of the system matrices at orders 1, 2, . . . , 500 with nmax = 500, the fast multi-
order ERA algorithm takes a total of 5 s, while the conventional multi-order ERA algorithm
takes 980 s, thus being about 200 times faster.
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Figure 5.3 – Computation times for multi-order ERA
system identification of system matrices Aj and Cj ,
nj = j = 1, . . . , nmax from Onmax at different maximal
model orders nmax with r = 251, r0 = 5, c ≈ 50.
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Figure 5.4 – Accumulated computation times for multi-
order ERA system identification up to different model
orders n∗ with maximal model order nmax = 500 and
r = 251, r0 = 5, c ≈ 50.

5.5.1.4 Discussion of the results

In Figure 5.1, computation times are obtained for multi-order system identification with SSI
for different maximal model orders, where for each maximal order nmax the system matrices
are computed at orders 1, 2, . . . , nmax. In Figure 5.2, the accumulated computation times at
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each of these orders 1, 2, . . . , nmax are obtained for nmax = 500. With these results, the perfor-
mance of the algorithms proposed in this chapter can be evaluated for the computation of the
system matrices up to a maximal model order nmax as well as up to a lower order n∗ ≤ nmax.
From both figures it can be seen that the conventional algorithm (Algorithm 5.1 using the
pseudoinverse), which is widely used, is the slowest except when stopping the computation at
a very small model order. Using the QR decomposition in Algorithm 5.1 yields already faster
results, while the new Algorithms 5.2–5.4 yield significant improvements in the computation
time. Algorithm 5.2 yields slightly slower results than Algorithm 5.3. Algorithm 5.4 is in
general the fastest of these algorithms, except at very low model orders, where computation
times are lower than 0.01 s. Algorithm 5.5 theoretically needs even less operations (cf. Table
5.1), but is in practice slower due to its implementation. As the theoretical performances of
Algorithms 5.4 and 5.5 are very close, Algorithm 5.4 is favorable.

In Figures 5.3 and 5.4 corresponding results for the ERA algorithms from Section 5.4
are obtained. Although the fast multi-order computation (Proposition 5.6) and its iterative
variant (Corollary 5.7) theoretically need the same number of operations for n∗ = nmax in
Figure 5.3, the former algorithm is faster due to implementation reasons. When stopping
the computation at lower model orders in Figure 5.4, the iterative algorithm is faster only at
very low model orders. In both cases, the conventional multi-order algorithm is the slowest.

5.5.2 Modal parameter estimation and stabilization diagram

In order to obtain the modal parameters of the vibration analysis example (cf. Section 2.4),
the multi-order system identification performed in the previous section is one part of the
task. From these results, the eigenstructure of the investigated structure is obtained from
the system matrices at the multiple orders using (2.55) and (2.56) in the next step. Note that
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Figure 5.5 – Stabilization diagram of Z24 Bridge containing the identified natural frequencies at model orders
1, . . . , 250 using the fast iterative SSI (Algorithm 5.4).
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the eigenstructure computation has a complexity of O(n3j ) at each model order nj and thus

O(n4max) for the entire computation. However, for nmax = 500 this step took a total time of
168 s, thus being a small part compared to the conventional multi-order system identification
algorithms. It is beyond the scope of this chapter to optimize this process.

A stabilization diagram containing the natural frequencies of the Z24 Bridge at model
orders 1, . . . , 250 is presented in Figure 5.5. Note that some of the modes – the ones that might
not be very well excited – stabilize late in the diagram, making it necessary to use high model
orders for system identification. Using even higher model orders than 250 can still improve
the identification results, although there are only 10 modes present in this case [Par03].

5.6 Conclusions

In this chapter, new algorithms were derived to efficiently compute the system matrices
at multiple model orders in stochastic subspace-based system identification (SSI) and the
closely related Eigensystem Realization Algorithm (ERA). The computational complexity
for this task was reduced from O(n4max) to O(n3max), where nmax is the maximal desired
model order. These algorithms are especially applied in the modal analysis of mechanical,
civil or aeronautical structures, where eigenstructure identification results at multiple model
orders are used to distinguish physical from spurious modes using stabilization diagrams.

The efficiency of the new algorithms was shown on a real test case and computation time
was reduced up to a factor of 200 and more. These fast algorithms can e.g. be exploited in
online monitoring, where incoming data has to be processed quickly.

5.7 Dissemination

Parts of this chapter have been published or are submitted to:

[DM11a] M. Döhler and L. Mevel. Fast multi-order stochastic subspace-based system
identification. 2011. Control Engineering Practice, under revision.

[DM11b] M. Döhler and L. Mevel. Fast multi-order stochastic subspace identification.
In Proc. 18th IFAC World Congress, Milan, Italy, 2011.

The fast multi-order identification algorithms have been transferred to the commercial
software product ARTeMIS Extractor Pro [Str11].
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Chapter 6

Robust subspace-based fault
detection under changing excitation

6.1 Introduction

Subspace methods enjoy some popularity, especially in vibration analysis of civil, aeronautical
or mechanical structures, where large model orders have to be considered. The excitation is
ambient and mostly unmeasured. In most cases it is impractical to use artificial excitation
sources, such as shakers, where a part of the excitation is measured. Details of the modeling
of the underlying mechanical system are found in Section 2.4.

In the last twenty years, monitoring the integrity of the civil infrastructure has been an
active research topic, including in connected areas such as automatic control, for mastering
the aging of bridges, or the resistance to seismic events and the protection of the cultural
heritage. It is assumed that changes in the structural properties lead to changes in the
eigenstructure of a system.

In order to detect changes in the modal parameters linked to the structural parameters,
often eigenstructure identification results are used and evaluated for changes, e.g. [Kul03,
MaCC08, MaCC10, RML+10]. The modal parameters are not afflicted by different ambient
excitations, but their automatic estimation and matching from measurements of different
states of the structure might require an extensive preprocessing step.

A subspace-based residual function that is robust to excitation change is considered in
[YG06]. Recently, a modified whiteness test for damage detection, which is is robust to
changes in the excitation, was proposed in [BB11, Ber11b] using Kalman filter innovations.

In this chapter, the subspace-based fault detection approach from [BAB97, BAB00,
BMG04] is considered. It uses a subspace-based residual built on the left null space of a
nominal observability matrix of the system in a reference state, which is the same as the
corresponding subspace matrix built from the output data. In a possibly damaged state it is
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then checked, whether the corresponding subspace matrix is still well described by the null
space of the reference state, using a χ2-test on the residual. The statistical theory behind
the χ2-test and the subspace-based fault detection are explained in detail in Section 2.3.

However, the subspace matrix is influenced by the properties of the unmeasured ambient
excitation. Most works on the subspace-based fault detection test assume that these proper-
ties stay constant between measurements of the investigated structure in the reference and
possibly damaged condition, which is hardly the case for real applications. Robustness to
non-stationary excitation within one measurement has already been addressed in [MB86].
We assume stationary excitation during one measurement, while the excitation covariance
may change between measurements. In this chapter, the problem of robustness to changes
in the excitation of this fault detection method is addressed. Two modifications of the fault
detection test are proposed to make it robust to excitation changes.

After recalling the basic principles of subspace-based system identification and statistical
fault detection in Section 6.2, the impact of a changing ambient excitation between mea-
surements on the fault detection test is discussed in Section 6.3. Using strategies for the
normalization of the subspace matrices with respect to different excitations of Chapter 4, a
first modification of the test is proposed in Section 6.4. A more general approach for ro-
bustness to changing excitation is proposed in Section 6.5, where a robust residual function
and its corresponding χ2-test are derived. In Section 6.6, numerical results of the proposed
algorithms are presented.

6.2 Statistical subspace-based fault detection

In Sections 6.2.1 and 6.2.2 the basic concepts of stochastic subspace-based system identi-
fication and fault detection are recalled from Chapter 2 and generalized to SSI algorithms
without a left weighting matrix.

6.2.1 General SSI algorithm

Consider the discrete time model in state space form:

{
Xk+1 = AXk + Vk

Yk = CXk

(6.1)

with the state X ∈ Rn, the output Y ∈ Rr, the state transition matrix A ∈ Rn×n and the
observation matrix C ∈ Rr×n. The excitation (Vk)k is an unmeasured Gaussian white noise

sequence with zero mean and constant covariance matrix Q: E(VkV
T
k′ )

def
= Qδ(k − k′), where

E(·) denotes the expectation operator.

A subset of the r sensors may be used for reducing the size of the matrices in the identi-
fication process. These sensors are called projection channels or reference sensors. Let r0 be
the number of reference sensors (r0 ≤ r) and p and q chosen parameters with pr ≥ qr0 ≥ n.

Denote a matrix Hp+1,q ∈ R(p+1)r×qr0 as subspace matrix, whose estimate Ĥp+1,q is built
from the output data (Yk)k=1,...,N+p+q according to a chosen SSI algorithm. In this chapter,



6.2 Statistical subspace-based fault detection 129

only SSI algorithms without a left weighting matrix are considered. The subspace matrix
enjoys the factorization property

Hp+1,q = Op+1Zq (6.2)

into the matrix of observability

Op+1 =




C

CA
...

CAp




and a matrix Zq depending on the selected SSI algorithm. The observation matrix C is then
found in the first block-row of the observability matrix Op+1. The state transition matrix A is
obtained from the shift invariance property of Op+1 and the eigenstructure (λ, ϕλ) of system
(6.1) results from

det(A− λI) = 0, Aφλ = λφλ, ϕλ = Cφλ,

where λ ranges over the set of eigenvalues of A. The collection of modes and mode shapes
(λ, ϕλ) is a canonical parameterization of system (6.1) and considered as the system parameter
θ with

θ
def
=

[
Λ

vec Φ

]
, (6.3)

where Λ is the vector whose elements are the eigenvalues λ and Φ is the matrix whose columns
are the mode shapes ϕ.

The actual implementation of this generic subspace identification algorithm uses a con-
sistent estimate Ĥp+1,q obtained from the output data according to the selected subspace
identification algorithm. The SVD

Ĥp+1,q =
[
Û1 Û0

] [∆̂1 0

0 ∆̂0

][
V̂ T
1

V̂ T
0

]
(6.4)

and its truncation at the model order n yields an estimate

Ôp+1 = Û1∆̂
1/2
1

for the observability matrix, from which (Ĉ, Â) and (λ̂, ϕ̂λ) are recovered as sketched above.
Note that the singular values in ∆̂1 are non-zero and Ôp+1 is of full column rank. The
matrices

Û1 =
[
u1 . . . un

]
, V̂1 =

[
v1 . . . vn

]
, ∆̂1 = diag{σ1, . . . , σn} (6.5)

contain the first n left and right singular vectors, and singular values of Ĥp+1,q.
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6.2.2 Subspace-based fault detection algorithm

In [BAB00] the statistical subspace-based fault detection method was described, which is
designed for subspace algorithms satisfying factorization property (6.2). Let θ be the vector
containing a canonical parameterization of the actual state of the system and θ0 the parame-
terization of the reference state, as defined in (6.3). A residual function compares the system
parameter θ0 of a reference state with a subspace matrix Ĥp+1,q computed on a new data
sample (Yk)k=1,...,N+p+q, corresponding to an unknown, possibly damaged state with system

parameter θ. Assume that Ĥp+1,q is a consistent estimate of Hp+1,q.

To compare the states, the left null space matrix S = S(θ0) of the observability matrix
of the reference state is computed, which is also the left null space of the subspace matrix at
the reference state because of factorization property (6.2). The characteristic property of a
system in the reference state then writes ST Ĥp+1,q = 0 and the residual vector ζN = ζN (θ0)
with

ζN =
√
Nvec(ST Ĥp+1,q) (6.6)

describes the difference between the unknown state θ of matrix Ĥp+1,q and the reference state
θ0.

The damage detection problem is to decide whether the subspace matrix Ĥp+1,q from the
(possibly damaged) system (corresponding to θ) is still well described by the characteristics
of the reference state (corresponding to θ0) or not. This is done by testing between the
hypotheses

H0 : θ = θ0 (reference system),

H1 : θ = θ0 + δθ/
√
N (faulty system),

(6.7)

where δ is unknown but fixed. This is called the local approach, and the following proposition
is used to test between both hypotheses.

Proposition 6.1 ([BAB00]) The residual ζN is asymptotically Gaussian for N →∞ with

ζN
N−→
{
N (0,Σζ) under H0

N (Jζδθ,Σζ) under H1,

where Jζ and Σζ are the asymptotic sensitivity and covariance of the residual ζN . The test
between the hypotheses H0 and H1 is achieved through the asymptotic χ2-test statistics

χ2
N = ζTN Σ̂−1ζ Ĵζ(Ĵ Tζ Σ̂−1ζ Ĵζ)−1Ĵ Tζ Σ̂−1ζ ζN (6.8)

and comparing it to a threshold, where Ĵζ and Σ̂ζ are consistent estimates of Jζ and Σζ . Both
can be estimated in the reference state under the assumption that the covariance Q of the
excitation of the system does not change between the reference state and the possibly damaged
state. The test χ2

N is asymptotically χ2 distributed with rank(Jζ) degrees of freedom and non-
centrality parameter δθTFδθ, where F = J Tζ Σ−1ζ Jζ is the asymptotic Fisher information on
θ0 contained in ζN = ζN (θ0).
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Remark 6.2 The notation of the residual function, its sensitivity and covariance is slightly
changed here compared to Chapter 2. For simplicity, the argument θ0 of ζN = ζN (θ0), χ

2
N =

χ2
N (θ0), Jζ = Jζ(θ0) and Σζ = Σζ(θ0) is omitted. The index ζ of Jζ and Σζ emphasizes that

these matrices are the asymptotic sensitivity and covariance of residual ζN , while Ĵζ and Σ̂ζ

are consistent estimates of residual ζN .

The computation of the Jacobian Jζ needs a parameterization of the system, where the
eigenvalues and mode shapes of the reference system must be known. It is explained in detail
in Chapter 2. In [BBB+08] a non-parametric version of the test is proposed, where Jζ is set
as the identity matrix. In this case, the χ2-test boils down to

χ̂2
N = ζ̂TN Σ̂−1ζ ζ̂N , (6.9)

see also Section 2.3.4.

The computation of the residual covariance matrix Σζ depends on the covariance of the
subspace matrix

ΣH
def
= lim

N→∞
cov(
√
Nvec Ĥp+1,q), (6.10)

which is dependent on the chosen subspace algorithm. Then, the covariance matrix Σζ can
be obtained from

Σζ = (I ⊗ ST )ΣH(I ⊗ S) (6.11)

due to (6.6), where ⊗ denotes the Kronecker product and an estimate Σ̂H of ΣH is computed
on data of the reference state of the system. With this notation, the covariance computation
of the covariance-driven subspace-based residual as in Section 2.3.3.4 can be extended to other
SSI algorithms. In Section 3.5.2, its computation was explained in detail for covariance-driven
SSI and extended to SSI with the Unweighted Principal Component algorithm.

6.3 Impact of changing excitation on fault detection test

In the introductory Section 2.3.3 of Chapter 2 and when recalling the fault detection test in
Section 6.2.2, it was assumed that the unmeasured excitation (Vk)k is stationary and does
not change between the reference state θ0 and a possibly damaged state θ of the system. In
practice, however, its covariance Q = E(VkV

T
k ) may change between different measurements

of the system due to different environmental factors (wind, traffic, . . . ), while the excitation is
still assumed to be stationary during one measurement. A change in the state noise covariance
Q leads to a change in the subspace matrix Hp+1,q and its estimate Ĥp+1,q and thus changes

the residual function ζN in (6.6). Thus, the estimates Ĵζ and Σ̂ζ of the residual’s sensitivity
and covariance are influenced by a change in the state noise. To be unambiguous, write
ζN (θ0, θ) for the residual function, where the null space is computed on the reference state
θ0 and the tested data correspond to the unknown state θ as in Section 2.3.

The derivation of the residual’s sensitivity and covariance in Section 2.3 then depends on
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the actual Q, under which the residual ζN (θ0, θ) = ζN (θ0, θ,Q) is obtained and it holds

ζN (θ0, θ,Q)
N−→




N
(

0,ΣQ
ζ

)
under H0

N
(
J Qζ δθ,ΣQ

ζ

)
under H1

,

where

J Qζ = lim
N→∞

J (1)
N (θ0, θ,Q) = lim

N→∞
J (2)
N (θ0, θ,Q), ΣQ

ζ = lim
N→∞

ΣN (θ0, θ,Q),

cf. Equations (2.21), (2.26). The argument Q indicates a dependence on the actual excitation,
under which the residual function is computed. Note that the system parameters θ0 or θ are
independent of Q.

However, the excitation and thus Q is in general unknown. Thus, consistent estimates of
J Qζ and ΣQ

ζ of the asymptotic sensitivity and covariance of the residual ζN (θ0, θ0, Q) might

not correspond to consistent estimates of J Q̃ζ and ΣQ̃
ζ related to ζN (θ0, θ, Q̃) in some unknown

state. In this case, consistent estimates Ĵ Qζ and Σ̂Q
ζ of J Qζ and ΣQ

ζ can only be obtained
using the data corresponding to the excitation covariance Q, i.e. data of the actually tested
state. As this state is also unknown, it corresponds to parameter θ.

With the generalized likelihood ratio test of Section 2.3.2.3, the close hypotheses H0 and
H1 are tested against each other, amounting to the χ2-test statistics. Note that in the case
of a changed excitation covariance Q̃, both hypotheses are related to the actual excitation
Q̃ and the residual function ζN (θ0, θ, Q̃), where θ = θ0 + δθ/

√
N is tested. There is no

relation to the residual function ζN (θ0, θ0, Q) using data from the reference state. If the null
hypothesis H0 relates to distribution N (0,ΣQ

ζ ), while hypothesis H1 relates to a distribution

N (J Q̃ζ δθ,Σ
Q̃
ζ ) with a different covariance, the generalized likelihood ratio test does not boil

down to a χ2-distributed variable anymore.
Assuming close hypotheses, where θ → θ0 for N → ∞, and using the results of Sections

2.3.3.2–2.3.3.4 and Equation (2.21), consistent estimates of J Qζ and ΣQ
ζ write

Ĵ Qζ =
(
Op+1(θ0)

†Ĥp+1,q ⊗ S
)T
O′p+1(θ0)

Σ̂Q
ζ =

1

nb − 1

nb∑

k=1

(
ζ
(k)
Nb
− ζNb

)(
ζ
(k)
Nb
− ζNb

)T
, ζNb =

1

nb

nb∑

k=1

ζ
(k)
Nb
,

where ζ
(k)
Nb

=
√
Nb vec

(
ST Ĥ(k)

p+1,q

)
. All used subspace matrices are computed on new data

corresponding to Q and the unknown state θ. Then, with (6.11) follows

Σ̂Q
ζ = (I ⊗ ST )Σ̂H(I ⊗ S), (6.12)

where Σ̂H is obtained using new data corresponding to the unknown state θ. The correspond-
ing χ2-test statistics as in (6.8) thus writes as

χ2
N = ζTN (Σ̂Q

ζ )−1Ĵ Qζ
(

(Ĵ Qζ )T (Σ̂Q
ζ )−1Ĵ Qζ

)−1
(Ĵ Qζ )T (Σ̂Q

ζ )−1ζN , (6.13)
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where ζN = ζN (θ0, θ,Q). Its non-parametric counterpart as in (6.9) writes

χ̂2
N = ζ̂TN (Σ̂Q

ζ )−1ζ̂N . (6.14)

This computation of the residual’s sensitivity and covariance using new data from the un-
known state was already applied successfully, e.g. in [RMLDR08]. However, the computation
of Σ̂H requires many samples and hence it would be favorable to compute it in the reference
state.

In the following sections, two solutions are proposed that take into account a change in
the excitation.

6.4 Residual with excitation normalization

A first attempt to take a different excitation between measurements into account makes use
of the strategies of Chapter 4, where subspace matrices under possibly different excitation
are normalized and merged. Only the non-parametric test variant without the use of the
Jacobian of the residual are derived in this section.

6.4.1 Single setup

The set of r available sensors is divided in two parts, into r0 reference sensors and r(mov) def
=

r − r0 remaining sensors, which are also called moving sensors, in view of using multiple
sensor setups with moving sensors. Analogously, the sensor data and the observation matrix
are separated into reference and moving sensor parts, such that

Yk =

[
Y

(ref)
k

Y
(mov)
k

]
, C =

[
C(ref)

C(mov)

]
.

Then, with an appropriate permutation matrix P , the subspace and observability matrix are
separated into reference and moving sensor part, such that

Hp+1,q = P

[
H(ref)
p+1,q

H(mov)
p+1,q

]
, Op+1 = P

[
O(ref)
p+1

O(mov)
p+1

]
, (6.15)

where the observation matrices in O(ref)
p+1 and O(mov)

p+1 are C(ref) and C(mov), respectively. Then,

[
H(ref)
p+1,q

H(mov)
p+1,q

]
=

[
O(ref)
p+1

O(mov)
p+1

]
Zq,

and the product

H(mov)
p+1,qH

(ref)−1
p+1,q = O(mov)

p+1 O
(ref)−1
p+1

is independent of the excitation. Then, the null space Ŝ is defined such that

ŜT Ĥ0,(mov)
p+1,q = ŜT Ô0,(mov)

p+1 = 0,
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where the additional index 0 indicates matrices from the reference state. Define the residual
function

ζ̂ r
N

def
=
√
N vec

(
ŜT Ĥ(mov)

p+1,q Ĥ
(ref)−1
p+1,q

)
,

where Ĥ(ref)
p+1,q and Ĥ(mov)

p+1,q are obtained from Ĥp+1,q in (6.15), which is computed on N data

samples. The covariance Σ̂r
ζ of residual ζ̂ r

N is obtained in the reference state as follows.
Assume a first order perturbation

∆ζ̂ r
N =

√
N(I ⊗ ŜT ) vec

(
∆
(
Ĥ0,(mov)
p+1,q Ĥ

0,(ref)−1
p+1,q

))

=
√
N(I ⊗ ŜT ) vec

(
∆
(
Ĥ0,(mov)
p+1,q

)
Ĥ0,(ref)−1
p+1,q − Ĥ0,(mov)

p+1,q Ĥ
0,(ref)−1
p+1,q ∆

(
Ĥ0,(ref)
p+1,q

)
Ĥ0,(ref)−1
p+1,q

)

=
√
N(I ⊗ ŜT )

(
Ĥ0,(ref)−1
p+1,q ⊗ I

)
vec

([
−Ĥ0,(mov)

p+1,q Ĥ
0,(ref)−1
p+1,q I

]
∆

[
Ĥ0,(ref)
p+1,q

Ĥ0,(mov)
p+1,q

])

=
√
N(I ⊗ ŜT )

(
Ĥ0,(ref)−T
p+1,q ⊗

[
−Ĥ0,(mov)

p+1,q Ĥ
0,(ref)−1
p+1,q I

]
P T
)

∆(vec Ĥ(0)
p+1,q),

leading to the residual covariance

Σ̂r
ζ = (I ⊗ ŜT )ĴrΣ̂HĴ Tr (I ⊗ Ŝ), where Ĵr def

= Ĥ0,(ref)−T
p+1,q ⊗

[
−Ĥ0,(mov)

p+1,q Ĥ
0,(ref)−1
p+1,q I

]
P T

and Σ̂H is an estimate of the covariance of the subspace matrix, which are computed in the
reference state. The respective χ2-test statistics writes thus

χr 2
N = ζ̂ rT

N (Σ̂r
ζ)
−1ζ̂ r

N . (6.16)

Some comments are in order about the χ2-test statistics (6.16). This test corresponds to
testing the product

ŜT Ĥ(mov)
p+1,q T̂

for a change, where T̂
def
= Ĥ(ref)−1

p+1,q Ĥ
0,(ref)
p+1,q is the matrix that artificially introduces the same

excitation to Ĥ(mov)
p+1,q as it is present in the reference state. However, if Ĥ(ref)

p+1,q is not in the

reference state anymore, matrix T̂ is not just simply a matrix that accounts for excitation
change, but also contains information about the poles and thus the eigenstructure of the
currently tested and the reference state. However, the effects of this influence are not clear.

Note also, that with this kind of test, the information for fault detection is only obtained
from the moving sensors, while the reference only serve to normalize the data with respect
to a different excitation.

6.4.2 Multiple setups

For fault detection of multiple setups, where a structure is measured using fixed reference
sensors and moving sensors as in Chapter 4, the different excitation in the data between the
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setups needs to be taken into account. Instead of a single record for the output (Yk) of the
system (4.1), Ns records

(
Y

(1,ref)
k

Y
(1,mov)
k

)

︸ ︷︷ ︸
Record 1

(
Y

(2,ref)
k

Y
(2,mov)
k

)

︸ ︷︷ ︸
Record 2

. . .

(
Y

(Ns,ref)
k

Y
(Ns,mov)
k

)

︸ ︷︷ ︸
Record Ns

are now available collected successively. Each record j contains data Y
(j,ref)
k of dimension

r(ref) = r0 from a fixed reference sensor pool, and data Y
(j,mov)
k of dimension r(j) from a

moving sensor pool. Details of the modeling are found in Section 4.3.1. With a chosen
subspace algorithm, a local subspace matrix Ĥ(j) can be built for each of the setups, which can
be separated into reference sensor part Ĥ(j,ref) and moving sensor part Ĥ(j,mov) analogously
to (6.15).

A first way to derive a χ2-test for these multiple measurements uses the argument that the
data from different setups is uncorrelated, without taking a different excitation into account.

The local residual functions ζ
(j)
N are defined analogously to Section 6.2.2 as

ζ
(j)
N

def
=
√
N vec

(
Ŝ(j)T Ĥ(j,mov)

p+1,q

)
,

where Ŝ(j) is computed on reference data such that Ŝ(j)T Ĥ0,(j,mov)
p+1,q = 0. Denote the local

residual’s covariance by Σ̂
r(j)
ζ . This leads to the χ2-test statistics

χ2
N =

Ns∑

j=1

ζ̂
(j)T
N (Σ̂

(j)
ζ )−1ζ̂

(j)
N . (6.17)

Another way to build a residual for multiple setups uses the global subspace matrix built
with a merging algorithm from Chapter 4. However, in the case of many setups and many
sensors this can lead to a high dimensional residual function with a very large covariance ma-
trix. Instead, the property is used that data from different setups is statistically uncorrelated.
Then, define the normalized local residual function as

ζ̂
r (j)
N

def
=
√
N vec

(
Ŝ(j)T Ĥ(j,mov)

p+1,q Ĥ
(j,ref)−1
p+1,q

)
,

where the null space Ŝ(j) is obtained in the reference state from the condition

Ŝ(j)T
(
Ĥ0,(j,mov)
p+1,q Ĥ0,(j,ref)−1

p+1,q Ĥ0,(1,ref)
p+1,q

)
= 0.

Note that Ŝ(j) is computed on the normalized local subspace matrix here, where the excitation

from setup 1 is introduced artificially. Denote the covariance of ζ̂
r (j)
N by Σ̂

r(j)
ζ , which can be

computed as in the previous section.
As the data sets from different setups are uncorrelated, a χ2-test of all the setups thus

writes

χr 2
N =

Ns∑

j=1

ζ̂
r (j)T
N (Σ̂

r(j)
ζ )−1ζ̂

r (j)
N , (6.18)

taking a different excitation between the setups into account.
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6.5 Residual robust to excitation change

6.5.1 Definition of residual and χ2-test

A new possibility to compensate a change in the excitation covariance Q = E(VkV
T
k ) is the

use of a residual function that is robust to these changes. In this section, a χ2-test on such
a residual is derived.

The subspace-based fault detection test was derived based on the property that some
system parameter θ0 agrees with a subspace matrix Hp+1,q iff

Op+1(θ0) and Hp+1,q have the same left null space S.

In Section 6.3 it was argued that subspace matrixHp+1,q depends on the excitation covariance
Q. Let U1 be the matrix of the left singular vectors of Hp+1,q. Then the analogous property

Op+1(θ0) and U1 have the same left null space S

holds. However, as U1 is a matrix with orthonormal columns, it is regarded as independent
of the excitation Q. Matrix U1 is defined by a unique SVD to ensure no changing modal
basis, cf. Definition 3.3.

Let Ĥp+1,q be an estimate of the subspace matrix from a data sample of length N cor-
responding to the unknown, possibly faulty state θ and unknown state excitation covariance
Q. From a unique SVD

Ĥp+1,q =
[
Û1 Û0

] [∆̂1 0

0 ∆̂0

][
V̂ T
1

V̂ T
0

]
(6.19)

the matrix Û1 is obtained, whose number of columns is the system order n. Note that the
singular values in ∆̂0 are very small and tend to zero for N → ∞. Then, a residual that is
robust to a change in the excitation covariance can be defined as

ξN
def
=
√
Nvec(ST Û1). (6.20)

Proposition 6.3 The residual ξN is asymptotically Gaussian for N →∞ with

ξN
N−→
{
N (0,Σξ) under H0

N (Jξδθ,Σξ) under H1,

where Jξ and Σξ are the asymptotic sensitivity and covariance of the residual ξN and the
close hypotheses H0 and H1 are defined in (6.7).

The test between the hypotheses H0 and H1 is achieved through the asymptotic χ2-test
statistics

γ2N = ξTN Σ̂−1ξ Ĵξ(Ĵ Tξ Σ̂−1ξ Ĵξ)−1Ĵ Tξ Σ̂−1ξ ξN (6.21)

and comparing it to a threshold, where Ĵξ and Σ̂ξ are consistent estimates of Jξ and Σξ.
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Proof: Let the unique SVDs of Ĥp+1,q in (6.19) and Hp+1,q = U1∆1V
T
1 be given, where

Ĥp+1,q is an estimate of the subspace matrix Hp+1,q. From [MB86] and [BP08, Corollary 1]

follows that Û1 is asymptotically Gaussian with

√
N vec

(
Û1 − U1

)
N−→ N (0,ΣU1) ,

where

ΣU1 = lim
N→∞

cov(
√
Nvec Û1) = (∆−11 V T

1 ⊗ I) ΣH (V1∆
−1
1 ⊗ I).

It follows that the residual ξN is asymptotically Gaussian, with a covariance satisfying
Σξ = (I ⊗ ST ) ΣU1 (I ⊗ S). The proof finishes as in Proposition 6.1.

Note that the asymptotic sensitivity Jξ and covariance Σξ of residual ξN can be com-
puted on data corresponding to the reference state, as they do not depend on the excitation
covariance Q.

The computation of the sensitivity Jξ is analogous to the computation of the sensitivity
Jζ of ζN , where Hp+1,q has to be replaced by U1. From (2.44) and (2.45) follows

Jξ =
(
Op+1(θ0)

† U1 ⊗ S
)T
O′p+1(θ0).

A consistent estimate Ĵξ is obtained by replacing U1 by Û1.

Following the proof of Proposition 6.3, the asymptotic covariance Σξ of ξN can be obtained
from

Σξ = (∆−11 V T
1 ⊗ ST ) ΣH (V1∆

−1
1 ⊗ S),

where Hp+1,q = U1∆1V
T
1 . A consistent estimate thus writes as

Σ̂ξ = (∆̂−11 V̂ T
1 ⊗ ST ) Σ̂H (V̂1∆̂

−1
1 ⊗ S).

Another possibility to compute the estimate Σ̂ξ is to propagate the covariance of the subspace
matrix to the covariance of the singular vectors by a sensitivity analysis [PGS07, RPDR08].
Then it holds

cov(
√
N vec Û1) = J

Û1
cov(
√
N vec Ĥp+1,q)J TÛ1

, (6.22)

where J
Û1

is the sensitivity of the left singular vectors vec Û1 with respect to vec Ĥp+1,q. It
follows

Σ̂ξ = (I ⊗ ST )J
Û1

Σ̂H J TÛ1
(I ⊗ S). (6.23)

The computation of J
Û1

is numerically costly and was proposed in [PGS07, RPDR08] (see
Proposition 3.10 in Section 3.3.2). A more efficient computation of singular vector sensitivities
was proposed in Proposition 3.11. Its results for the computation of J

Û1
are summarized now.
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Proposition 6.4 Let the SVD of Ĥp+1,q in (6.4) with singular vectors and values (6.5) be
given. For j = 1, . . . , n define

K̃j
def
=
Ĥp+1,q

σj

(
Iqr0 +

[
0qr0−1,qr0

2vTj

]
−
ĤTp+1,qĤp+1,q

σ2j

)−1
,

Ẽj
def
=

[
I(p+1)r + K̃j

(
ĤTp+1,q

σj
−
[

0qr0−1,(p+1)r

uTj

])
K̃j

]
,

F̃j
def
=

1

σj

[
vTj ⊗ (I(p+1)r0 − ujuTj )

(Iqr0 − vjvTj )⊗ uTj

]
.

Then the sensitivity of the left singular vectors of Ĥp+1,q writes

J
Û1

=



Ẽ1F̃1

...

ẼnF̃n


 .

Remark 6.5 The computation of J
Û1

in Proposition 6.4 involves n matrix inversions of size
qr0 and is less costly than computing n pseudoinverses of square matrices of size (p+1)r+qr0
that are necessary for the computation in [RPDR08] as stated in Proposition 3.10 in Section
3.3.2.

Remark 6.6 In this section, the matrix Û1 obtained from a unique SVD of the subspace ma-
trix is assumed to be independent of the excitation. A similar problem, where the excitation
between different setups needs to be normalized, is the merging of the subspace or observability
matrices obtained from data of different measurement setups in Chapter 4. However, com-

puting the matrices Û
(j)
1 from a unique SVD for each measurement setup j and merging them

straightforward is not possible, as each of these matrices still can be in a different modal basis
with respect to the reference sensor part, although being independent of the excitation itself.

Thus, the techniques of Section 4.3.6 would still need to be applied on the matrices Û
(j)
1 for

merging.

6.5.2 Non-parametric version of robust fault detection test

6.5.2.1 Non-parametric test

Analogous to Section 2.3.4, a non-parametric version of the fault detection test can be defined
by using an empirical left null space Ŝ with

ŜT Ŝ = Is,

ŜT Ĥ (0)
p+1,q = 0,

where Ĥ (0)
p+1,q is an estimate of the subspace matrix corresponding to reference parameter θ0

that is unknown. The null space Ŝ can be obtained in SVD (6.19) from Ŝ = Û0.
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Based on a new data set of length N from the (possibly faulty) system, the empirical
subspace matrix Ĥp+1,q (corresponding to the unknown state θ) is computed and the residual
then writes

ξ̂N
def
=
√
N vec

(
ŜT Û1

)
,

where Û1 is obtained from unique SVD (6.19) of Ĥp+1,q. As there is no system parameteri-
zation, no sensitivity matrix is to be taken care of. The χ2-test statistics (6.21) boils down
to

γ̂2N
def
= ξ̂TN Σ̂−1ξ ξ̂N (6.24)

where Σ̂ξ is an estimate of the covariance of ξ̂N , which can be computed in the reference state
as in the previous section.

6.5.2.2 Merging different reference states under possibly different excitation

As in 2.3.4, assume that J reference data sets are available with corresponding subspace

matrices Ĥ (0,1)
p+1,q, . . . , Ĥ

(0,J)
p+1,q that relate to (slightly) different system parameters θ0,1, . . . , θ0,J .

Now it is also assumed that they are estimated under possibly different excitation with
excitation covariances Q1, . . . , QJ .

A left null space Ŝ is desired with the property

ŜT Ĥ (0,k)
p+1,q = 0, k = 1, . . . , J.

As the subspace matrices correspond to different excitations, computing Ŝ on their sum is
not meaningful as this sum can be seen as weighted with respect to different excitations.
Instead it is proposed to compute Ŝ on the juxtaposed subspace matrices from the reference
states such that

ŜT Ĥ(jux) = 0, where Ĥ(jux) def
=
[
Ĥ (0,1)
p+1,q Ĥ

(0,2)
p+1,q . . . Ĥ (0,J)

p+1,q

]
.

This can be done by computing the SVD Ĥ(jux) = Û∆̂V̂ T of Ĥ(jux) ∈ R(p+1)r×Jqr0 , where
Û ∈ R(p+1)r×(p+1)r. Then, Ŝ is obtained from the last s columns of Û . Alternatively,
especially in the case of a large number J of reference states, an iterative QR decomposition
of Ĥ(jux)T as in Lemma 3.7 can be made to obtain the factor R, such that Ĥ(jux) = RQ with
an orthogonal matrix Q that is not computed. Then, Ŝ can be obtained from an SVD of R.

Let Σ̂
(0,k)
ξ be a covariance estimate of ξN using the data of Ĥ (0,k)

p+1,q. Then, a better estimate
of the residual covariance on a sample of length N can be obtained from

Σ̂ξ =
1

J

J∑

k=1

Σ̂
(0,k)
ξ ,

using the data from all the reference states. In this covariance computation, the possibly dif-
ferent excitation of each data set is taken into account, as the residual function is independent
of the excitation.
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6.6 Numerical results

In this section, the new fault detection tests of Sections 6.4 and 6.5 are applied to structural
vibration examples (cf. Section 2.4).

6.6.1 Fault detection with excitation normalization

The multi-setup damage detection algorithm from Section 6.4 is applied on three nominally
identical glass reinforced composite panels (specimen I, II and III). They are similar to the
load carrying laminate in a wind turbine blade and described in detail in [LS10]. They were
provided by the Risø laboratory at DTU, Denmark, and vibration tests were made at LMS,
Belgium.

Due to a non-repeatable manufacturing process, the three specimen differ slightly. Vi-
bration data was recorded in the healthy state and after loading specimen I with the force
of 210 kN, specimen II with 220 kN and specimen III with 230 kN. Each time, vibration
measurements were done in Ns = 4 sensor setups, where 3 of them contained 14 moving
sensors and 1 contained 7 moving sensors, with r0 = 1 reference sensor that stayed fixed all
the time.

As there are 3 reference specimen, the null space matrices were computed on the aver-
aged subspace matrices (using the covariance-driven approach) of the three specimen in the
reference state. The χ2-test statistics were computed in the healthy and damaged state on
12 different parts of the recorded data containing each 50 000 samples and averaged to avoid
outliers. All χ2-test values are divided by the values of the reference states to be comparable.

The χ2-test values from test (6.17) are presented in Figure 6.1. The corresponding values
from test (6.18), which normalizes different excitation between the setups, are presented in
Figure 6.2. It can be seen that the latter test is more reactive and its χ2-test values grow
with the extent of the damage, which is to be expected.

Figure 6.1 – Multi-setup χ2-test (6.17). Figure 6.2 – Multi-setup χ2-test (6.18) with excitation
normalization.

6.6.2 Fault detection robust to excitation change

To validate the described robust fault detection algorithm from Section 6.5, a simulation
study was made using a mass-spring model of six degrees of freedom (DOF), see Figure 6.3,
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m1 m2 m3 m4 m5
m6

Figure 6.3 – Simulated mass-spring chain.

which is observed at all six DOFs. Four cases of Gaussian stationary white noise excitation
having a different covariance Q = E(VkV

T
k ) of the system were simulated:

1. Q = I6, represented by © in the figures,

2. Q = 42I6 (�),

3. Q = 0.252I6 (×),

4. Q = diag(1, 2, 3, 4, 5, 6)2 (+).

Using this model, output-only data with 100 000 samples was generated to obtain mea-
surements in the reference state with each of the different excitations. Then, the stiffness of
spring 2 was reduced by 5% and 10% compared to the reference state, and the simulations
were repeated with newly generated excitations.

On this simulated data, the performance of the fault detection algorithms was tested.
The χ2-test statistics is used in its empirical form. Three variants were tested:

� test χ̂2
N = ζ̂TN Σ̂−1ζ ζ̂N in (6.9), where the residual’s covariance Σ̂ζ is computed only once

in the reference state (Section 6.2.2), in Figure 6.4,

� test χ̂2
N = ζ̂TN (Σ̂Q

ζ )−1ζ̂N in (6.14), where the residual’s covariance Σ̂Q
ζ is computed each

time in the tested state, where the excitation covariance is Q (Section 6.3), in Figure 6.5,
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Figure 6.4 – χ2-test (6.9) with the residual’s covariance computed once in the reference state (Section 6.2.2).
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Figure 6.5 – χ2-test (6.14) with the residual’s covariance computed in the tested state (Section 6.3).
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Figure 6.6 – Newly derived χ2-test (6.24) with the residual’s covariance computed once in the reference state
(Section 6.5) in logarithmic scale (top) and linear scale (bottom).
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� newly derived robust test γ̂2N = ξ̂TN Σ̂−1ξ ξ̂N in (6.24), where the residual’s covariance Σ̂ξ

is computed only once in the reference state (Section 6.5), in Figure 6.6.

For each state and excitation covariance, the 100 000 available samples were cut into 4 parts
with sample length N = 25 000. The resulting χ2-test values of the three different tests on
this data are plotted in Figures 6.4, 6.5 and 6.6 in the following order: the first 16 test values
are computed in the reference state, the next 16 values with 5% stiffness reduction and the
last 16 values with 10% stiffness reduction. In each of these states, 4 values correspond to one
of the 4 different excitation covariances mentioned above. An empirical threshold (horizontal
dashed line) to distinguish between reference states and damaged states is computed on the
mean and variance of the χ2-test values of the 16 reference states.

As can be seen in Figure 6.4, the classical χ2-test is strongly influenced by a different
excitation covariance and no separation of the χ2-test values between reference and damaged
states is possible. Recomputing the residual covariance on data of the currently tested state
in Figure 6.5 already leads to a better separation between reference and damaged states,
where less than 1/5 of the values in the damaged states are below the threshold established
by the reference states. With the new robust χ2-test in Figure 6.6, a clear separation be-
tween reference and damaged states is possible. Note also that the magnitude of damage is
apparently linked to the obtained χ2-test values: Increasing the damage by factor 2 leads to
χ2-test values that are approximately increased to factor 4, which is to be expected.

6.7 Conclusions

In this chapter, the influence of changing excitation between the reference state and the
possibly damaged state using the subspace-based fault detection test was clearly pointed
out. Two modifications of the test are presented that take into account a changing ambient
excitation of the investigated system. The resulting fault detection tests thus contribute
to the applicability of the tests under operation conditions, where the unmeasured ambient
excitation naturally varies. Especially the statistical fault detection test based on a noise-
robust residual in Section 6.5 seems to be theoretically and practically promising. A study on
real data under varying excitation has to be made to validate the algorithms under operation
conditions.
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[DM10] M. Döhler and L. Mevel. Modular subspace-based system identification and
damage detection on large structures. In Proc. 34th International Symposium
on Bridge and Structural Engineering, Venice, Italy, 2010.
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Chapter 7

Robust subspace-based damage
localization using mass-normalized

mode shapes

7.1 Introduction

Statistical subspace-based methods using output-only data have been shown to offer a robust
solution to the damage detection task where changes in the modal parameters of a structure
are detected [MHVdA99, BAB00]. These techniques have also been combined with sensitivi-
ties extracted from finite element models to localize damages: the detection of changes in local
structural parameters (e.g. stiffness) indicates the location of a damage [BMG04, BBM+08].
Like this, the damage localization problem is formulated as detection problem.

In the formulation of this detection problem, all available structural parameters are tested
separately for a change using a χ2-test statistics. Comparing their values the damage can be
localized, when structural parameters are linked to a location, as high χ2 values indicate a
high change. In the derivation of these tests in [BMG04, BBM+08], no special care was taken
of the mutual influence of close structural parameters. The main drawback for localization is
then the possible reaction when testing an undamaged element due to the lack of orthogonality
in the parametric space defined by the corresponding χ2-metric. A robust version of this test
is derived in this chapter. It yields more contrasted damage localization results between safe
and damaged elements and thus reduces false alarms.

For damage localization, sensitivities of the modal parameters with respect to the moni-
tored structural parameters are needed, that were computed from an a FEM of the investi-
gated structure in [BMG04, BBM+08]. In some applications, though, the formulation of the
FEM makes implementation impractical and this motivates the search for model-free damage
localization alternatives. Without a FEM, sensitivities with respect to structural parameters
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can still be computed at the measured coordinates of a structure using mass-normalized mode
shapes, which can be obtained by adding a known perturbation to the mass distribution of
the structure and repeating the output-only identification [PVGVO02, BA03, Ber04, Ber11d].
In this chapter, the corresponding model-free statistical damage localization test is derived
and illustrated on simulated data.

This chapter is organized as follows. In Section 7.2, the basic principles of subspace-based
system identification and statistical fault detection on vibrating structures are recalled from
Chapter 2, as well as the damage localization test from [BMG04, BBM+08]. In Section 7.3,
the problem of the mutual influence of structural parameters in the χ2-tests is addressed and
a robust min-max test is considered. In Section 7.4, the FE model-free damage localization
test is derived, using mass perturbations to obtain required sensitivities with respect to
the structural parameters in the reference state. The performance of the robust damage
localization, where all required parameters are obtained without a model, are demonstrated
in a simulation study in Section 7.5.

7.2 Statistical subspace-based damage localization

7.2.1 Models and parameters

The behaviour of a mechanical system is assumed to be described by a stationary linear
dynamical system {

M Ẍ (t) + C1Ẋ (t) +KX (t) = υ(t)

Y (t) = LX (t)
(7.1)

where t denotes continuous time, M,C1,K ∈ Rm×m are the mass, damping and stiffness
matrices, high-dimensional vector X collects the displacements of the m degrees of freedom
of the structure, the non-measured external force ν modeled as non-stationary Gaussian
white noise, the measurements are collected in the vector Y and matrix L indicates the
sensor locations. The eigenstructure of (7.1) with the modes µ and mode shapes ϕµ is a
solution of

det(µ2M + µC1 +K) = 0, (µ2M + µC1 +K)φµ = 0, ϕµ = Lφµ. (7.2)

Sampling model (7.1) at some rate 1/τ yields the discrete model in state-space form

{
Xk+1 = AXk + Vk

Yk = CXk

(7.3)

of model order n = 2m, whose eigenstructure is given by

det(A− λI) = 0, (A− λI)φλ = 0, ϕλ = Cφλ. (7.4)

Then, the eigenstructure of the continuous system (7.1) is related to the eigenstructure of
the discrete system (7.3) by

eτµ = λ, ϕµ = ϕλ. (7.5)
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The modal frequencies f and damping coefficients ρ are recovered directly from the eigenval-
ues λ by

f =
a

2πτ
, ρ =

100|b|√
a2 + b2

, (7.6)

where a = | arctan<(λ)/=(λ)| and b = ln |λ|.
The collection of modes and mode shapes (λ, ϕλ) is a canonical parameterization of system

(7.3) and considered as the system parameter θ with

θ =

[
Λ

vec Φ

]
, (7.7)

where Λ is the vector whose elements are the eigenvalues λ and Φ is the matrix whose columns
are the mode shapes ϕλ.

7.2.2 Stochastic Subspace Identification

To obtain the system parameter θ from output-only measurements (Yk)k=1,...,N , a SSI method

from Section 2.2.3 is used. From the data, a subspace matrix Ĥ is computed, which is an
estimate of a theoretical subspace matrix H according to the selected method. It possesses
the factorization property

H = OZ (7.8)

into observability matrix

O =




C

CA
...

CAp




and another matrix Z according to the selected method. An estimate Ô is obtained from Ĥ
by an SVD and truncation at the desired model order of

Ĥ =
[
Û1 Û0

] [∆̂1 0

0 ∆̂0

]
V T , Ô = Û1∆̂

1/2
1 .

From the observability matrix Ô an estimate of matrix C is obtained from its first block
row. An estimate of A is obtained from a least squares solution using the shift invariance
property of Ô. Estimates of the eigenstructure (λ, ϕλ) of the system (7.3) and hence the
system parameter θ are then obtained in (7.4).

7.2.3 Damage detection

In this section, the statistical subspace-based damage detection from Section 2.3 is recalled,
where a residual function for damage detection is associated with the covariance-driven



148 Chapter 7

output-only subspace identification described in the previous section. This function com-
pares the system parameter θ0 of a reference state with a subspace matrix Ĥ computed on
new data corresponding to an unknown, possibly damaged state.

Assume that the eigenvectors of A are chosen as the basis for the state space of system
(7.3). Then, the observability matrix writes as

O(θ) =




Φ

Φ∆
...

Φ∆p




with Φ and Λ as in (7.7) and ∆ = diag(Λ). Let S(θ0) be the left null space of O(θ0), which
can be obtained by an SVD of O(θ0). Then, because of (7.8), the characteristic property of
the system in the reference state writes

S(θ0)
T Ĥ = 0.

For checking whether new data agree with the reference state corresponding to θ0, the residual
function

ζN (θ0) =
√
N vec(S(θ0)

T Ĥ) (7.9)

is introduced in Section 2.3. Let J (θ0) and Σ(θ0) be the residual sensitivity and covariance
matrices. The residual function is asymptotically Gaussian with

ζN (θ0)
N−→




N (0,Σ(θ0)) no change

N (J (θ0) δθ,Σ(θ0)) change δθ
(7.10)

Hence, a change in the system parameter θ corresponds to a change in the mean value of
the residual function. It manifests itself in the χ2-test statistics

χ2
N = ζN (θ0)

T Σ̂−1Ĵ (Ĵ T Σ̂−1Ĵ )−1Ĵ T Σ̂−1ζN (θ0),

where Ĵ and Σ̂ are consistent estimates of J (θ0) and Σ(θ0) (cf. Section 2.3.3). To assess the
occurrence of damage, the value χ2

N should be compared with a threshold.

7.2.4 Damage localization

In [BMG04, BBM+08], the damage localization problem is stated as a detection problem as
follows: Let a set of structural parameters p1, . . . , pP be given, which are physically linked
to locations at the investigated structure. Assume that a change δpk occurs in one of the
parameters pk. Then, the mean of the residual function ζN (θ0) in (7.10) can be expressed as

J (pk)δpk, k = 1, . . . , P,

where J (pk) is the sensitivity of the residual function with respect to pk and is usually
obtained as

J (pk) = J (θ0)
∂θ0
∂pk

. (7.11)
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Then, testing the parameters pk separately for a change consists in computing the residual
ζN (θ0) once in (7.9) and computing the χ2-test statistics

χ2
N (pk) = ζN (θ0)

T Σ̂−1Ĵk(Ĵ Tk Σ̂−1Ĵk)−1Ĵ Tk Σ̂−1ζN (θ0) (7.12)

for each k = 1, . . . , P , where Ĵk is a consistent estimate of J (pk). Then, the values χ2
N (pk),

k = 1, . . . , P , indicate the changes in the structural parameters pk. As the parameters are
related to locations at the structure, high values of χ2

N (pk) indicate the location of the damage.
The χ2-test statistics (7.12) is also called sensitivity test.

However, the sensitivity test assumes that a change happens in the tested structural
parameter and that every other parameter remains unchanged. This condition is violated
in two occasions, firstly when damage happen simultaneously at two or more locations, and
more important, when testing for a change in an unchanged structural element. In that case,
the test will still react by statistical influence of the damage element. This effect will be
considered in the next section.

7.3 Mutual influence of structural parameters in change de-
tection test

7.3.1 Focused change detection in structural parameters

In the previous section, the sensitivity test (7.12) is computed to test a change in each
parameter pk, k = 1, . . . , P . Formally, δpk = 0 is tested against δpk 6= 0, by assuming no
change in the other parameters. This also means that χ2

N (pk) might be sensitive to a change
in some other parameters pi with i 6= k [Bas97, BBMN09]. In the following, the min-max
approach [Bas97] is described that consists in viewing the parameters pi, i 6= k, as nuisance.
They are rejected by replacing them in the likelihood with their least favorable value. Then,
for each parameter pk, the min-max approach detects a change in its corresponding direction
of the parameter space, orthogonal to every direction corresponding to the set of the remaining
parameters. Thus, changes in the remaining parameters do not affect the min-max test of the
actually tested parameter. It also means that testing an undamaged element will not yield a
false alarm provoked by some other close damaged element. Note that for simplicity of the
notation, the symbol ̂ indicating a consistent estimate of the underlying variable, is omitted
on the Jacobians J and the covariance matrix Σ.

Fix some k and define the Jacobians

Ja def
= J (pk),

Jb def
=
[
J (p1) · · · J (pk−1) J (pk+1) · · · J (pP )

]
. (7.13)

The asymptotic Fisher information on the set of parameters {p1, . . . , pP } contained in ζN (θ0)
is defined as

F
def
=
[
Ja Jb

]T
Σ−1

[
Ja Jb

]
=

[
Faa Fab

Fba Fbb

]
, (7.14)
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where

Faa = J Ta Σ−1Ja, Fab = J Ta Σ−1Jb,
Fba = J Tb Σ−1Ja, Fbb = J Tb Σ−1Jb.

Furthermore, define the matrices

F ∗a
def
= Faa − FabF−1bb Fba,

the partial residuals

ζ̃a
def
= J Ta Σ−1ζN (θ0), ζ̃b

def
= J Tb Σ−1ζN (θ0) (7.15)

and the robust residual
ζ∗a

def
= ζ̃a − FabF−1bb ζ̃b. (7.16)

Then, the corresponding χ2-test statistics detecting a change in parameter pk writes as

χ∗2N = ζ∗Ta F ∗−1a ζ∗a (7.17)

and is not affected by a change in the parameters pi, i 6= k. Test (7.17) is called the min-max
test. Hence, repeating the steps (7.13)–(7.17) for all k = 1, . . . , P leads to values of the
χ2-test statistics (7.17) for each monitored structural parameter. A change in a parameter is
linked with a high value of its corresponding χ2-test statistics and thus can be located.

Some comments are in order. First, it is obvious that the min-max test does not depend
on the magnitude of the Jacobians, but only on the change directions defined by them. This
is proven in the following lemma.

Lemma 7.1 The min-max test (7.17) is invariant to post-multiplication of the Jacobians Ja
and Jb with some invertible matrices.

Proof: Use the notation from Equations (7.14)–(7.17) for the min-max test with the
Jacobians Ja and Jb. Now consider JaA and JbB instead of Ja and Jb for the min-max
test, where A and B are some invertible matrices, and use the notation with a tilde ˜ for the
respective variables in the min-max test. Then,

F̃ =

[
F̃aa F̃ab

F̃ba F̃bb

]
=

[
ATJ Ta Σ−1JaA ATJ Ta Σ−1JbB
BTJ Tb Σ−1JaA BTJ Tb Σ−1JbB

]
=

[
ATFaaA ATFabB

BTFbaA BTFbbB

]

and, furthermore,
F̃ ∗a = F̃aa − F̃abF̃−1bb F̃ba = ATF ∗aA.

Then, from (7.15) and (7.16) follows

ζ̃∗a = AT ζ∗a

and thus

χ̃∗2N = ζ̃∗Ta F̃ ∗−1a ζ̃∗a =
(
AT ζ∗a

)T (
ATF ∗aA

)−1 (
AT ζ∗a

)
= ζ∗Ta F ∗−1a ζ∗a = χ∗2N ,
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proving the assertion.

There are many numerically sensitive operations involved in computing the min-max
test in Equations (7.14)–(7.17). In [ZB03] the following practical and numerically stable
computation was derived.

Lemma 7.2 ([ZB03]) Let Σ−1/2 be a square root inverse of Σ, such that

Σ−1 = (Σ−1/2)TΣ−1/2.

If Σ−1/2Ja and Σ−1/2Jb are full column rank, then the min-max test (7.17) writes as

χ∗2N = ξT ξ where ξ = QTc Σ−1/2ζN (θ0),

where Qc is obtained from the thin QR decompositions

Σ−1/2Ja = QaRa,

Σ−1/2Jb = QbRb,

Qa −QbQTb Qa = QcRc.

Note that for the computation of Σ−1/2 in the previous lemma from an estimate of Σ, the
same techniques as in Section 3.5.1 can be used.

7.3.2 Change directions and separability of structural parameters

With the described χ2-tests, structural parameters are tested for a change. This corresponds
to testing directions in the structural parameter space for a change that are defined by the
sensitivities of the structural parameters. These parameters might show some dependence,
i.e. a change in one parameter might raise the χ2-test value of another parameter and vice
versa. For checking the separability of these parameters, the angles between their respective
change directions can be analyzed.

To be coherent with the χ2-metric, define the k-th change direction as [BMG04]

dk
def
= Σ(θ0)

−1/2J (pk), k = 1, . . . , P, (7.18)

where Σ(θ0)
−1/2 is a matrix square root of the inverse of Σ(θ0). The sensitivity test (7.12),

testing separately for changes in the parameters pk, k = 1, . . . , P , is hence a directional test,
where the residual function ζN (θ0) is tested for a change in the directions dk in the structural
parameter space. Let the cosine of the angle between two change directions be given as

αij
def
=

dTi dj
‖di‖ ‖dj‖

, where ‖d‖ =
√
dTd. (7.19)

Thus, if αij ≈ 0 the change directions di and dj are nearly orthogonal and clearly separable.
However, if |αij | ≈ 1, the change directions di and dj are nearly parallel and not separable
anymore. In the latter case, changes in the parameters pi and pj are not distinguishable.
Then, a change in parameter pi leads to similar values of the corresponding sensitivity test
for parameters pi and pj for |αij | ≈ 1.
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7.3.3 Clustering and rejection

Often, the number of structural parameters P is very high and especially higher than the
number of modal parameters dim θ0 = 2m(r + 1). Then, many of the respective change
directions dk, k = 1, . . . , P , cf. (7.18), are nearly parallel with respect to the χ2-metric.
Testing them separately in the sensitivity test then yields nearly the same results. For
this problem, a clustering step was suggested in [BMG04, BBM+08] prior to testing all
the parameters, where each cluster contains nearly parallel change directions. Then, in the
test only a barycenter of each cluster is tested and the resulting χ2-value is assigned to all
elements of the cluster. As the elements in one cluster are not (or very poorly) separable,
all the elements of a cluster are either recognized as healthy or as damaged. Changing the
sensor positions could lead to a separation of the cluster elements.

This clustering is even more important for the min-max test than the sensitivity test
regarding the rejected parameters. It is not meaningful to test a parameter for a change in
the min-max test while rejecting another parameter whose change direction is nearly parallel
to the tested parameter. This might lead to a low (false negative) result of the test, even if
a change in the parameter happened.

A clustering algorithm usually works in two steps. In the first step, small change direc-
tions dk are removed, as vectors with a low magnitude are likely to blur the results of the
aggregation. Then, the remaining vectors dk are normed to 1, as only their direction is of
interest, and clustered. In [BMG04, BBM+08], a vector quantization method [LBG80, Gra84]
is suggested for clustering, which performs a hierarchical classification while controlling the
variability in each cluster. However, any appropriate clustering algorithm can be used.

Let Nc the number of clusters and ck, k = 1, ..., Nc, be their barycenters. The barycenters
are arbitrarily scaled, but because of Lemma 7.1 they can be directly used for the min-max
test. With the definition of the change directions in (7.18) and with Lemma 7.2, the min-max
test for each cluster k is performed as follows:

1. Define Ca = ck, Cb =
[
c1 . . . ck−1 ck+1 . . . cNc

]
;

2. Do thin QR decompositions

Ca = QaRa,

Cb = QbRb,

Qa −QbQTb Qa = QcRc;

3. Compute ξ = QTc Σ−1/2ζN (θ0) and finally χ∗2N (ck) = ξT ξ. Assign value χ∗2N (ck) to all
elements in cluster k.

In Section 9.3, the damage localization using the min-max approach with clustering is
performed on a simulated bridge deck with almost 10 000 elements.
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7.4 Damage localization using mass-normalized mode shapes
from mass perturbations

For the statistical damage localization approach in [BMG04, BBM+08], the monitored struc-
tural parameters pk are stiffness parameters of a FEM. The sensitivities ∂θ0/∂pk in (7.11)
of the modal parameters with respect to the structural parameters are obtained from the
settings of a FEM. They are needed for the sensitivity test (7.12) or the min-max test (7.17).

In this section, this approach is modified to work without a FEM. The considered struc-
tural parameters pk are masses and stiffnesses with respect to the measured coordinates of
the structure. The required sensitivities for these structural parameters can be computed us-
ing mass-normalized mode shapes, which can be obtained from Operational Modal Analysis
by two measurements of a structure, where a known mass perturbation is introduced on the
structure between the measurements.

7.4.1 Mass-normalization of mode shapes using mass perturbations

Output-only system identification cannot provide mode shapes that are mass-normalized,
such that the collection of eigenvectors φ from (7.2) yields

ΩTMΩ = I, (7.20)

where the columns of Ω are the eigenvectors φ. In order to solve this problem, Parloo et al.
[PVGVO02] proposed a method using system identification results from two measurements
of the structure where a known mass perturbation ∆M is introduced at (some or all of)
the measured coordinates between the two measurements. Since, further mass-normalization
methods using mass perturbations have been developed, see e.g. [BA03, Ber04, Ber11d], and
a review in [Ber11a]. It turns out that the mode shapes ϕ, which are obtained only at the
measured degrees of freedom, can be normalized without knowing the unobserved part. In
the following, we use the receptance based approach from [Ber11d] using the normal mode
model, where the modal parameters are obtained from

det(K − ω2M) = 0, Kφ = ω2Mφ, ϕ = Lφ,

cf. (7.2). For the natural frequencies f holds ω = 2πf .
Denote a mode and corresponding mode shape of the structure in the original state by ωi

and ϕi and after the mass perturbation ∆M on the structure by ω∗i and ϕ∗i , for i = 1, · · · ,m.
The modal scaling factors βi are defined such that

ψi = βiϕi (7.21)

are the mass-normalized mode shapes fulfilling (7.20). With the receptance based approach

from [Ber11d], the squares of the modal scaling factors γi
def
= β2i are obtained from the linear

set of equations described by

m∑

l=1

ϕl(ϕ
T
l ∆Mϕ∗j )ω

2∗
j

ω2
l − ω2∗

j

γl = ϕ∗j , j = 1, . . . ,m, (7.22)
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by a least squares solution. Then, with the mass-normalized mode shapes (7.21), sensitivities
with respect to some structural parameters can be computed.

Remark 7.3 In this section, the normal mode model was used without considering damping,
while in (7.2) the complex mode model was used. While the latter model is probably more
appropriate for vibrating structures under operation conditions, the imaginary parts of the
mode shapes and the estimated damping values are possibly not very reliable for the sen-
sitivity computation in the following. These figures were already skipped in the sensitivity
computations using FEM data in [BBM+08]. This is also the reason why the complex mode
mass normalization as e.g. in [Ber11c] is not used here.

7.4.2 Sensitivities of modal parameters with respect to structural param-
eters

Using the mass-normalized mode shapes ψi, i = 1, . . . ,m, the sensitivities of the modal pa-
rameters with respect to a mass ms at the measured coordinate s or with respect to a stiffness
kst, which is assumed between the measured coordinates s and t, can be computed as de-
scribed in [HLS98]. Let ψji be the j-th entry of mode shape ψi. Then, the desired sensitivities
are

∂ωi
ms

= −1

2
ωiψ

2
si

∂ψji
ms

= −1

2
ψ2
siψji + ψsi

m∑

l=1,l 6=i

ω2
i

ω2
l − ω2

i

ψslψjl

(7.23)

for the sensitivities with respect to mass and

∂ωi
kst

= − 1

2ωi
(ψsi − ψti)2

∂ψji
kst

= (ψsi − ψti)
m∑

l=1,l 6=i

1

ω2
l − ω2

i

(ψsl − ψtl)ψjl
(7.24)

for the sensitivities with respect to stiffness.

7.4.3 Sensitivities for χ2-tests

For localization of changes in the mass at the measured coordinates of the structure and local-
ization of changes in the stiffness of assumed structural elements between pairs of measured
coordinates of the structure, the considered structural parameters are pk = ms or pk = kst.
In (7.23) and (7.24) sensitivities of modal parameters with respect to these structural pa-
rameters are given. It remains the computation of J (pk) = J (θ0)∂θ0/∂pk in (7.11) for the
sensitivity test (7.12) or min-max test (7.17).

In Section 2.3.3 the residual sensitivity J (θ0) with respect to the modal parameter is
derived. The modal parameter θ0 contains the modes λ of the discrete system (7.4). However,
in the previous section sensitivities of the pulsations ω of the continuous system (7.1) are given
w.r.t. structural parameters. To compute the sensitivity J (pk) of the residual ζN (θ0) with
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respect to the structural parameters, the sensitivity Jλω of the eigenvalues λ with respect to
the pulsations ω = 2πf is needed, which results directly from relation (7.6) and is detailed in
[BMG04]. Then, the desired sensitivities of the residual w.r.t. structural parameters write as

J (pk) = J (θ0)JλωJpk , (7.25)

where Jpk is the collection of sensitivities of (7.23) or (7.24) in a column vector, depending
on the kind of structural parameter. Note that in this derivation the system parameter θ0 (on
which J (θ0) is computed) must contain the mass-normalized mode shapes to be coherent.

7.4.4 Summary of model-free damage localization algorithm

Damage localization usually corresponds to finding the element(s) of a structure with the
highest change of stiffness compared to a reference state. With the derivations in the previous
sections we can detect changes in mass (pk = ms) or in stiffness (pk = kst) with a statistical
test. The resulting algorithm for model free damage localization consists of the following
steps:

1. Output-only measurement of the structure in the reference state, retrieval of modal
parameter θ0,1 from Stochastic Subspace Identification (SSI) (Section 7.2.2),

2. Add a mass perturbation ∆M near one or more sensor positions, do output-only mea-
surements and retrieve modal parameter θ0,2 from SSI,

3. Compute mass-normalized mode shapes using θ0,1 and θ0,2 (Equations (7.21), (7.22))
and replace arbitrarily scaled mode shapes from θ0,1 by mass-normalized mode shapes
to obtain system parameter θ0,

4. Computation of Ĵ (pk), k = 1, . . . , P , (Equations (7.23)–(7.25)) and Σ̂(θ0) in the refer-
ence state,

5. Computation of χ∗2N (pk), k = 1, . . . , P , in possibly damaged states (Equations (7.13)–
(7.17)) and comparison of their values. A high value χ∗2N (pk) is linked to a high change
in pk.

7.5 Numerical results

To validate the proposed min-max test for a focused change detection in the structural pa-
rameters and the statistical-based model-free damage localization algorithm, a simulation
study was made using a mass-spring model of six degrees of freedom (Figure 7.1). Using this
model, output-only data was generated at all 6 DOFs to obtain the necessary measurements
in the reference states for the mass-normalization of the mode shapes and in the damaged
states with different introduced damage scenarios.

In the reference state, the modal parameter θ0,1 was obtained from SSI. After an increase
of the mass at DOF 2 of 5%, the modal parameter θ0,2 was obtained from SSI. Both were
used to compute the mass-normalized mode shapes, which are also inserted in the reference
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m1 m2 m3 m4 m5
m6

Figure 7.1 – Simulated mass-spring chain.

modal parameter θ0. Using the mass-normalized mode shapes, the sensitivities of the modal
parameters with respect to the masses at each of the 6 DOFs and with respect to the stiffnesses
between every pair of DOFs were computed.

7.5.1 Detection of changes in stiffness or mass

After obtaining all the test parameters from the reference state, the following scenarios were
simulated:

� Decrease of stiffness of element between DOF 1 and 2 of 5% (Figure 7.2);

� Decrease of stiffness of element between DOF 1 and 2 of 10% (Figure 7.3);

� Increase of mass at DOF 2 of 5% (Figure 7.4);

� Increase of mass at DOF 3 of 10% (Figure 7.5).

For each of these scenarios the χ2-tests (7.12) and (7.17) were performed for the stiffnesses as
structural parameters for the first two scenarios and for the masses as structural parameters
for the last two scenarios. In Figures 7.2–7.5 the corresponding χ2-values are shown.

Note that when testing the stiffness change of the structural elements in Figures 7.2–7.3,
these elements are only defined from the information contained in the mode shape (“model-
free”). Between all pairs of measured DOFs, a structural element is assumed whose stiffness

(a) Sensitivity test (7.12) (b) Min-max test (7.17)

Figure 7.2 – Stiffness decrease of 5% between DOFs 1 and 2.
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(a) Sensitivity test (7.12) (b) Min-max test (7.17)

Figure 7.3 – Stiffness decrease of 10% between DOFs 1 and 2.

(a) Sensitivity test (7.12) (b) Min-max test (7.17)

Figure 7.4 – Mass of 5% added at DOF 2.

(a) Sensitivity test (7.12) (b) Min-max test (7.17)

Figure 7.5 – Mass of 5% added at DOF 3.
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change is tested. Hence, also elements are tested that do not exist in the underlying simulated
model (e.g. elements (1,3), (1,4), . . . ), as no information of this model is used. For testing
the mass change in Figures 7.4–7.5, the mass at each measured DOF is tested.

In each case, the location of the change of the structural parameter could be clearly
identified. The min-max test (7.17) using the rejection approach gives higher contrasted test
results and thus outperforms the sensitivity test (7.12).

7.5.2 Detection of changes in stiffness while rejecting changes in mass

In another simulated scenario, both the mass and stiffness of the model were changed with
a 5% increase of mass at DOF 2 and 5% stiffness reduction between DOFs 1 and 2. For

(a) Sensitivity test (7.12)

(b) Min-max test (7.17) rejecting other stiffness pa-
rameters

(c) Min-max test (7.17) rejecting other stiffness and
mass parameters

Figure 7.6 – Mass of 5% added at DOF 2 and stiffness decrease of 5% between DOFs 1 and 2.
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example, such a situation can happen in practice when monitoring a bridge for damage,
where the traffic is regarded as a nuisance. Not the added weight to the bridge should be
detected, but the damage in the bridge, i.e. the stiffness change of the bridge’s structural
elements. Similarly, the changes due to the mass of water in an aqueduct or at a dam should
be rejected, while monitoring the structural integrity. Of course, the presented example on
the 6 DOF mass-spring chain only reflects this idea, but not an entire structure.

In Figure 7.6(a), the sensitivity test is shown, where many elements besides the damaged
element (1,2) clearly react. In a first step, the non-tested stiffness parameters were rejected
with the min-max test in Figure 7.6(b), similar to the previous section. In the last step, also
the mass parameters were rejected in Figure 7.6(c), leading to the highest contrasted result
of the test and underlining the importance of the rejection approach. Note also, that only in
Figure 7.6(c), the χ2-value of the damaged element of around χ2 ≈ 3 corresponds to Figure
7.2(b), where the stiffness of element (1,2) was also decreased by 5%. Thus, the rejection
approach seems to be indispensable for a quantification of the damages.

7.5.3 Orthogonality of change directions

Although only one parameter was changed in each of the experiments in Figures 7.2–7.5, the
χ2-test statistics also reacted for some of the structural quantities that were not changed. For
the sensitivity tests (7.12) in the figures, the reason for this reaction is obvious: Computing
this test on unaffected structural parameters (mass or stiffness) is performed while still being
sensitive to changes in other parameters (amongst them one modified parameter) and thus
might lead to a false alarm.

Now consider the min-max test (7.17) in Figures 7.2(b)–7.5(b). The χ2 value correspond-
ing to an unmodified structural parameter reacts less. Still, for some elements the min-max
test reacts, e.g. for testing a change in the stiffness of the elements (1,3), (2,4), (3,6), (4,5) or
(5,6), even if only the stiffness of element (1,2) was reduced (see Figures 7.2(b) and 7.3(b)).
Similarly, when testing for a mass change at DOF 5, the test reacts, when the mass at DOF 2
was increased in Figure 7.4(b). Also, the test at DOF 4 reacts, when the mass at DOF 3 was
increased in Figure 7.5(b). This can be explained by looking at the angles between the un-
derlying change directions that are tested: In all these cases, the cosine of the angle between

Table 7.1 – Cosine of angles between change direction corresponding to change of stiffness of element (1,2) and
the elements (a,b)

a \ b 1 2 3 4 5 6

1 – 1.00 0.83 0.16 0.87 0.30

2 1.00 – 0.22 0.82 0.27 0.28

3 0.83 0.22 – 0.18 0.11 0.86

4 0.16 0.82 0.18 – 0.87 0.80

5 0.87 0.27 0.11 0.87 – 0.86

6 0.30 0.28 0.86 0.80 0.86 –
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Table 7.2 – Cosine of angles between change direction corresponding to change of mass of DOF a and DOF b

a \ b 1 2 3 4 5 6

1 1.00 0.34 0.22 0.30 0.36 0.87

2 0.34 1.00 0.77 0.79 0.91 0.30

3 0.22 0.77 1.00 0.90 0.74 0.14

4 0.30 0.79 0.90 1.00 0.79 0.22

5 0.36 0.91 0.74 0.79 1.00 0.32

6 0.87 0.30 0.14 0.22 0.32 1.00

the corresponding change directions computed from (7.19) was quite high (see Tables 7.1
and 7.2), thus indicating a poor separability of the underlying structural parameters. Never-
theless, the test of the changed parameter still reacts stronger than the test of (unchanged)
parameter having a nearly parallel change direction.

7.6 Conclusions

In this chapter, a model-free subspace-based statistical damage localization test was derived
for output-only data using known mass perturbations of the structure in the reference state.
Its performance to detect changes in the stiffness or mass between the measured coordinates of
a structure was demonstrated using simulated data. When testing the structural parameters
for a change, special care was taken of the rejection of the influence of the other structural
parameters that are not actually tested. The effectiveness of this rejection was demonstrated
as well and it seems to be important for future damage quantification. An application of the
damage localization to a simulated bridge deck using the clustering and rejection approach is
demonstrated in Section 9.3. Future work contains the validation of the proposed algorithms
on a real structure.
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damage localization. In Proc. Engineering Mechanics Institute Conference,
Boston, USA, 2011.
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Chapter 8

Modal analysis with multi-setup
system identification

8.1 Introduction

In this chapter, the merging algorithms for multi-setup system identification from Chapter 4
are applied to the eigenstructure identification of a composite plate and four civil structures
using output-only vibration data. The data of all structures was recorded under operational
conditions, except for the composite plate, which was recorded in the lab. The analyses of
the structures were made in the framework of numerous collaborations, which are gratefully
acknowledged.

The underlying mechanical model for vibration analysis and the transformation to a state-
space model was presented in Section 2.4. Using the merging methods from Chapter 4 for
multi-setup subspace system identification, the system matrices are identified at multiple
model orders, where the fast multi-order algorithms from Chapter 5 are used. From their
eigenstructure, the natural frequencies f̂ , damping ratios ρ̂ and mode shapes ϕ̂ of the in-
vestigated structure are determined. With the help of a stabilization diagram (see Section
2.4.3), where the natural frequencies are plotted against model order, the true system modes
are distinguished from spurious modes and the final model is obtained. This final model is
chosen manually from the stabilization diagram. One example of multi-setup and multi-order
system identification is Z24 Bridge, which were detailed in Sections 4.7 and 5.5.

For the application of the merging algorithms, one of the Algorithms 4.1–4.5 is used either
with covariance-driven SSI or the data-driven UPC algorithm. As the merging algorithms
mainly differ in their implementation and no SSI algorithm with left weighting is used, any
one of them can be used, yielding practically identical identification results. In the imple-
mentation of the merging algorithm the results of Section 4.5 are used, as the true model
order is unknown.
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Often, a comparison for multi-setup system identification with further, empirical merging
methods is made by the collaborating partners. Their notation and schematic is introduced
in Section 8.2, before the modal analysis of the mentioned structures is made in Section 8.3.
In Section 8.4, the results of the multi-setup identification are discussed and the relevance of
the new merging algorithms from Chapter 4 is pointed out.

8.2 Notation and comparison to other methods

For eigenstructure identification from multiple sensor setups, mainly three strategies are in
use [Par03, Sec. 3.3], [RMDRC09] that consist of the general steps

� normalization (scaling) due to different ambient excitation or identification results,

� merging of the data or identification results,

� eigenstructure identification.

According to the order of these steps, they are called Pre Global Estimation Re-Scaling
(PreGER), Post Separate Estimation Re-Scaling (PoSER) and Post Global Estimation Re-
Scaling (PoGER) in [Par03, RMDRC09]. For the application with SSI algorithms we will use
these notations.

The Pre Global Estimation Re-Scaling (PreGER) consists in the steps normalization –
merging – identification. It comprises the algorithms from Chapter 4 and its schematics are
illustrated in Figure 8.1.

Ĥ(1)

Ĥ(2)

Ĥ(Ns)

Ô(1,ref), Ô(1)

Ô(2)

Ô(Ns)

...
...

SVD + re-scaling

SVD + re-scaling

SVD + re-scaling

identificationmerging
Ô(all) f̂ , ρ̂, ϕ̂(all)

Figure 8.1 – Scheme of PreGER approach (Algorithm 4.4).

The Post Separate Estimation Re-Scaling (PoSER) [MK00, VdALMH00, CGDV02,
Par03, RMDRC09, Au11] consists in the steps identification – normalization – merging. It
is the common practice approach for multi-setup system identification in Operational Modal
Analysis. The data of each setup is processed separately, yielding a set of model parameters
(f̂j , ρ̂j , ϕ̂

(j)) for each setup j. Then, the identified modes are matched between all setups and
final estimates of frequencies and damping ratios are obtained by averaging. Before merging
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Ĥ(1)

Ĥ(2)

...

Ĥ(Ns)

identification

identification

identification

f̂1, ρ̂1, ϕ̂(1)

f̂2, ρ̂2, ϕ̂(2)

f̂Ns
, ρ̂Ns

, ϕ̂(Ns)

...

f̂ , ρ̂, ϕ̂(all)

re-scaling + merging

re-scaling + merging

re-scaling + merging

Figure 8.2 – Scheme of PoSER approach.

the partial mode shapes from each setup, they are re-scaled in a least-squares sense, for in-
stance to the reference sensor part of the first setup. The whole procedure is summarized in
Figure 8.2. For a large number of setups, this approach is time consuming as many stabiliza-
tion diagrams have to be analyzed. Moreover, not all modes may be well excited in all setups,
and often mode pairing between different setups is difficult due to closely spaced modes.

The Post Global Estimation Re-Scaling (PoGER) [Par03, PGC03, RMDRC09] consists in
the steps merging – identification – normalization. For SSI algorithms, this empirical merging
approach consists in the computation of the subspace matrix for each setup separately and
merging them directly to a global subspace matrix. Then, system identification is performed,
yielding one set of global modal parameters. Due to a possibly different excitation in each
setup, the mode shape estimates are finally rescaled in a least squares sense with respect to
their reference sensor part. The procedure is summarized in Figure 8.3.

replacements

{Ĥ(j) | j = 1, . . . , Ns}
identification

f̂ , ρ̂

ϕ̂(1)

ϕ̂(Ns)

...
f̂ , ρ̂, ϕ̂(all)

re-scaling

Figure 8.3 – Scheme of PoGER approach.

For a comparison of mode shapes obtained from different methods and for evaluating the
orthogonality between a set of mode shapes, the Modal Assurance Criterion (MAC) is used,
which is the angle between two mode shapes and defined as

MAC(ϕ1, ϕ2)
def
=

|ϕ∗1ϕ2|√
ϕ∗1ϕ1

√
ϕ∗2ϕ2

.
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A MAC value near to 1 indicates thus a strong similarity between two mode shapes, and a
value near to 0 rather orthogonal mode shapes.

8.3 Case studies

8.3.1 A composite plate

Within a collaboration with LMS (Belgium), the Risø laboratory (Denmark) and the Polish
Academy of Sciences, glass reinforced composite panels of dimension 20×320×320 mm were
investigated. They are similar to the load carrying laminate in a wind turbine blade [LS10]
and are illustrated in Figure 8.4. They were also used for excitation robust damage detection
in Section 6.6.1.

Vibration measurements of the composite panels were made in the lab at a sampling rate

Figure 8.4 – Glass reinforced composite panel [LS10].

Figure 8.5 – Stabilization diagram containing the natural frequencies composite plate from covariance-driven SSI
with Algorithm 4.4.
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of 1/τ = 4096 Hz in Ns = 4 setups, where 3 of them contained 14 moving sensors and 1
contained 7 moving sensors, with r(ref) = 1 reference sensor that stayed fixed all the time.
Thus, the structure was recorded at altogether 49 measurement points.

With merging Algorithm 4.4 using covariance-driven SSI, a stabilization diagram was
obtained in Figure 8.5, from which the system modes were selected. Nine modes in the range
[0− 2048 Hz] were obtained. Their mode shapes with their natural frequencies and damping
ratios are displayed in Figure 8.6.

mode 1 - 359 Hz - 1.7% mode 2 - 554 Hz - 3.5% mode 3 - 784 Hz - 3.3%

mode 4 - 929 Hz - 2.7% mode 5 - 1097 Hz - 1.9% mode 6 - 1270 Hz - 5.0%

mode 7 - 1506 Hz - 2.4% mode 8 - 1850 Hz - 2.1% mode 9 - 1946 Hz - 1.7%

Figure 8.6 – Obtained natural frequencies, damping ratios and mode shapes of composite plate.

8.3.2 Luiz I Bridge

The multi-setup system identification of Luiz I Bridge was investigated within a collaboration
with KU Leuven (Belgium) and the Faculty of Engineering of University of Porto (Portu-
gal). A prior study comparing different merging approaches on Luiz I Bridge was made in
[RMDRC09], which is extended to the merging approach from Chapter 4.

8.3.2.1 Bridge description and ambient vibration test

The Luiz I Bridge (Figure 8.7) is a 172 m tied metallic arch bridge over the Douro River at
the city of Porto, in the north of Portugal, built in 1885 by Eiffel’s former engineer Theophile
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Seyrig. The bridge is composed by a hinged metallic arch supporting two different decks:
one at the top of the arch and another one at the level of the respective supports. The arch
spans 172 m between abutments and rises 45.1 m. It has a variable thickness, between 16.7 m
near the supports and 7.1 m at midspan, and presents a parabolic geometry both in vertical
and plan views. The upper deck is 391.25 m long and 5 m height, and it is supported by the
arch, at midspan and at two intermediate sections, by 5 piers and the abutments. The lower
deck has a height of 3.25 m, is suspended from the arch by four ties and provides a roadway
connection between the cities of Porto and Vila Nova de Gaia.

The Laboratory of Vibrations and Monitoring (VIBEST) of the Civil Engineering De-
partment of the Faculty of Engineering of the University of Porto (FEUP) was contracted to
perform the ambient vibration tests on the Luiz I Bridge. This dynamic test was conducted
without disturbing the normal use of the bridge, so the measured accelerations were mainly
induced by the wind, by the roadway traffic on the lower deck and by the metro passing over
the upper deck. The dynamic response of the bridge was recorded with four seismographs
equipped with triaxial force-balance accelerometers and duly synchronized by GPS. Because
of the limited number of available sensors and the need to measure a high number of points,
the measurements were carried out in 26 different setups during two days. For the vibration
recordings, two recorders served as references, permanently located at section 15 (Figure 8.7),
at both the upstream and downstream sides, while the other two recorders scanned the bridge
deck in 18 consecutive setups, measuring the acceleration along the 3 orthogonal directions,
at both the upstream and downstream sides. During the ambient vibration test of the lower
deck, the reference sensors of the upper deck kept their positions and an additional reference
was introduced at the downstream side at section 22 (Figure 8.7). For each setup, time series
of 16 minutes were collected with a sampling frequency of 100 Hz. Further details of the

Figure 8.7 – Luiz I Bridge.
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dynamic test can be found in [CMC06].

The data to be processed consists of the lateral and vertical accelerations of the bridge,
is low-pass filtered at 4 Hz and re-sampled with the sampling frequency 20 Hz.

8.3.2.2 Multi-setup system identification

In [RMDRC09], system identification results were obtained using the PoSER and PoGER
approaches with covariance-driven SSI. Altogether, 14 modes were identified. These results
are not repeated here, but used for a comparison in the following section.

For the analysis with the PreGER approach (Algorithm 4.2) we separated the data into
their lateral and vertical components and processed them separately. This led to better results
than processing the data from both directions together as the mode shape of a lateral bending
mode would contain noise in the vertical direction, and vice versa. Apart from this separation,
all setups were processed together. For the analysis the parameters p + 1 = q = 150 were
chosen and the model order ranged from 1 to 150. The modes were manually chosen in a
stable model order band in the resulting stabilization diagrams.
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Figure 8.8 – Stabilization diagrams used to identify the modes in the PreGER approach.
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mode 1 - 0.737 Hz - 2.92% mode 2 - 0.953 Hz - 0.67% mode 3 - 1.433 Hz - 2.10%

mode 4 - 1.628 Hz - 2.42% mode 5 - 1.686 Hz - 6.48% mode 6 - 1.765 Hz - 1.63%

mode 7 - 2.029 Hz - 1.65% mode 8 - 2.137 Hz - 1.25% mode 9 - 2.395 Hz - 3.29%

mode 10 - 2.402 Hz - 0.73% mode 11 - 2.855 Hz - 1.27% mode 11A - 3.088 Hz - 1.68%

mode 12 - 3.140 Hz - 1.63% mode 13 - 3.269 Hz - 1.37% mode 13A - 3.393 Hz - 3.54%

mode 14 - 3.609 Hz - 1.51% mode 15 - 3.963 Hz - 0.59%

Figure 8.9 – Modes identified of Luiz I Bridge with covariance-driven SSI using merging Algorithm 4.2.
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For the lateral components, one reference sensor common to all setups was available on
the upper deck, and for the vertical components, two reference sensors were available on
the upper deck. With these settings all modes from the PoSER approach could be identified
(Figures 8.8(a) and 8.8(b)), except mode 1 and 7 like in the PoGER approach in [RMDRC09].
These are local lateral bending modes of the lower deck, and the lateral reference sensor only
from the upper deck was used. Besides, an additional lateral bending mode compared to the
identification in [RMDRC09] was identified at 3.088 Hz (mode 11A).

In order to identify the local lateral bending modes of the lower deck, we continued the
analysis only with the setups containing data from the lower deck, including the reference
sensor from the lower deck. This led to the identification of modes 1 and 7, and an additional
local lateral bending mode at 3.963 Hz (mode 15) in Figure 8.8(c). Another separate analysis
of the upper deck (with the reference sensor from there) led to the identification of a local
lateral bending mode of the upper deck at 3.393 Hz (mode 13A) in Figure 8.8(d). None of
the modes 1, 7, 13A and 15 were present on both decks.

All in all, the following modes were identified with the new merging algorithms:

� Modes 1, 7 and 15 are lateral bending modes of the lower deck.

� Modes 2, 3, 4, 6, 8, 9, 11A and 13A are lateral bending modes of the upper deck. Only
for mode 2, there is a clear but minor deformation of the lower deck.

� Modes 5 and 10 are vertical bending modes were both decks move in phase.

� Modes 11, 12 and 13 are vertical bending modes of the lower deck.

� Mode 14 is a local bending mode at the side spans of the Porto side of the bridge.

The identified frequencies, damping ratios and mode shapes are displayed in Figure 8.9.

8.3.2.3 Summary of results

Table 8.1 provides a comparative overview of the natural frequencies and damping ra-
tios estimated with the different merging approaches (PoSER, PoGER and PreGER) using
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Figure 8.10 – MAC values between the mode shapes from the PoSER and PoGER approach (left), from the PreGER
and PoGER approach (middle) and from the PreGER and PoSER approach (right).
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Table 8.1 – Frequencies (f̂) and damping coefficients (ρ̂) of Luiz I Bridge with different merging approaches.

PoSER PoGER PreGER

Mode f̂ (Hz) ρ̂ (%) f̂ (Hz) ρ̂ (%) f̂ (Hz) ρ̂ (%)

1 0.741 1.20 – – 0.737 2.92

2 0.954 0.80 0.953 0.85 0.953 0.67

3 1.418 1.25 1.421 0.95 1.433 2.10

4 1.618 0.96 1.619 0.76 1.628 2.42

5 1.640 1.75 1.639 1.48 1.686 6.48

6 1.758 0.86 1.758 0.78 1.765 1.63

7 2.044 1.19 – – 2.029 1.65

8 2.137 1.04 2.134 1.02 2.137 1.25

9 2.395 1.05 2.397 0.56 2.378 3.29

10 2.396 0.67 2.398 1.71 2.402 0.73

11 2.848 0.77 2.849 0.70 2.855 1.27

11A – – – – 3.088 1.68

12 3.126 1.14 3.132 0.91 3.140 1.63

13 3.252 0.78 3.251 0.60 3.269 1.37

13A – – – – 3.393 3.54

14 3.589 0.60 3.590 0.61 3.609 1.51

15 – – – – 3.963 0.59

covariance-driven SSI. For a comparison of the mode shapes we use the Modal Assurance
Criterion (MAC) in Figure 8.10.

The following observations can be made:

� Modes 1, 7 and 15 were not observed in the PoGER and initial PreGER estimates, due
to the lack of a lateral reference sensor at the lower deck that is common to all setups;
however they were observed in the PreGER estimates after analyzing the lower deck
separately.

� Modes 11A, 13A and 15 were not observed in the PoSER and PoGER estimates, but
in the PreGER estimates.

� The differences in natural frequencies for the PoSER approaches and the PoGER ap-
proach are negligibly small. Their differences to the PreGER approach are slightly
larger, but still less than 1 %.

� For the damping ratios, the differences between PoSER and PoGER estimates are
larger but still not significant considering the large standard deviations on the estimates
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[Ger74]. For some modes however, the damping ratios of the PreGER estimates are
considerably higher than the PoSER and PoGER estimates.

� The MAC values between the mode shapes of the different merging approaches are
very high (> 0.9) for most of the modes, meaning that the identified mode shapes are
very similar. Only the mode shapes of modes 6 and 11 show larger differences, and, as
expected, the double modes 9 and 10.

� The double mode 9 and 10 turns out to be the superposition of a lateral and vertical
bending mode and could be clearly separated with the PreGER approach. With the
PoSER and PoGER approaches, no clear separation was possible.

8.3.3 Humber Bridge

The multi-setup system identification of the Humber Bridge was carried out in a collaboration
with the Department of Civil & Structural Engineering of the University of Sheffield within
the IRIS project. A prior study on its system identification was made in [BMCC10]. Now,
system identification is done with the data-driven SSI with the UPC algorithm, either using
the merging with Algorithm 4.4 (PreGER) or with the PoSER approach.

8.3.3.1 Bridge description and ambient vibration test

The Humber Bridge (Figure 8.11), which was opened in July 1981, has a main span of 1410 m
with side spans of 280 m and 530 m. The spans comprise 124 units of 18.1 m long 4.5 m deep
prefabricated sections 28.5 m wide including two 3 m walkways. At the ends of each span
there is a pair of A-frame rocker bearings that provide restraint in three degrees of freedom.
The slip-formed reinforced concrete towers rise 155.5 m above the caisson foundations and
carry the two main cables which have a sag of 115.5 m.

Figure 8.11 – Views of Humber Bridge from north and south.
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The bridge was previously tested in July 1985 [BDST87]. The testing was motivated by
a requirement to validate FE procedures for suspensions bridges. After 23 years, the original
signals and resulting digital mode shapes were no longer available, just the values in published
papers and reports. Because of the quality uncertainties and lack of digital data, a retest of
the bridge was necessary. The current test was conducted during the week 14th-18th in July
2008 as part of EPSRC funded research project. To avoid lengthy post-processing of data
a different strategy was required for the system identification, making use of autonomous
recorders with precise timing of GPS-synchronized clocks. A team from FEUP in Portugal
brought their recorders and assisted in the testing and post-processing. Between FEUP and
University of Sheffield ten GEOSIG recorders were available. These recorders used either
internal force balance accelerometers, external Guralp CMG5 accelerometers of a triaxial
arrangement of QA750 accelerometers.

Figure 8.12 – Sensor locations for setup 24: sidespan measurement.

With up to five days of measurement available with a maximum of 10 hours per day
due to recorder batteries, an optimal plan was formulated that involved separate setups to
cover 76 positions. Sensor locations for one of the setups is shown in Figure 8.12. In each
setup, two pairs of triaxial recorders are maintained at two permanent reference locations,
leaving the remaining three pairs to rove either deck or in East/West tower pylons. Each
measurement generated one hour of 30-channel (10 in each direction) acceleration records,
in four 15-minutes segments. The entire day of measurements was pre-programmed into
each recorder, leaving 10-minute periods between measurements to move the six rovers. The
details of the measurement procedure can be found in [BMCC10].

Here, only vertical direction data from 26 different setups are processed. The analysis
of the experimental data involved initial preprocessing operations of trend removal, low-pass
filtering and resampling, considering that the range of frequencies of interest is rather low, of
the order of 1 Hz, compared to the original sampling rate of 100 Hz.

8.3.3.2 PreGER approach

For the PreGER merging approach, all 26 setups were processed together with Algorithm 4.4.
For the analysis p+1 = q = 50 was selected to build the data-driven subspace matrices. With
4 available reference sensors the maximal model order was 200. The stabilization diagram
obtained from the global merged subspace matrix is presented in Figure 8.13, from where the
18 modes where chosen. All the identified modes can be seen in Figure 8.14. Modes 7, 10,
13 and 16 are torsional modes, and the other modes are vertical bending modes.

Note that the closely spaced modes 6 and 7 are well separated. All mode shape estimates
show high quality.
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Figure 8.13 – Stabilization diagram containing the natural frequencies of Humber Bridge from the PreGER approach.

8.3.3.3 PoSER approach

For system identification with the PoSER approach, 26 stabilization diagrams were analyzed
separately. The extracted modal parameters are in good agreement with other methods that
are reported in [BMCC10] as well as the results of the PreGER approach. However, the
mode shapes of modes 6 and 7 are poorly separated due to difficulty in analyzing the very
closely spaced mode in the stabilization diagrams. Moreover, mode shapes 3 and 7 are of
lower quality than in the PreGER approach.

8.3.3.4 Summary of results and comparison

For a comparison of the mode shapes the Modal Assurance Criterion (MAC) of the real parts
of the mode shapes between PoSER and PreGER approach is shown in Figure 8.16. The
following observations can be made:

� The differences in natural frequencies for the PoSER and the PreGER approach are
less than 1 %.

� For the damping ratios, the differences between PoSER and PreGER estimates are
larger but still not significant considering the large standard deviations on the estimates.

� The MAC values between most of the mode shapes of the different merging approaches
are mostly close to one, meaning that the identified mode shapes are very similar.
However, mode shape 6 that could not be identified clearly in the PoSER approach
shows a bigger difference. Also mode shape 11 shows some difference, due to some
noise in the mode shape estimate of the PoSER approach in the side span of the bridge,
that is not present in the PreGER approach.
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mode 1 - 0.116Hz - 2.8% mode 2 - 0.152Hz - 7.8% mode 3 - 0.174Hz - 5.6%

mode 4 - 0.215Hz - 2.5% mode 5 - 0.239Hz - 1.4% mode 6 - 0.309Hz - 1.6%

mode 7 - 0.312Hz - 1.6% mode 8 - 0.381Hz - 1.4% mode 9 - 0.462Hz - 1.0%

mode 10 - 0.481Hz - 1.0% mode 11 - 0.537Hz - 1.0% mode 12 - 0.625Hz - 0.9%

mode 13 - 0.645Hz - 1.4% mode 14 - 0.712Hz - 1.0% mode 15 - 0.808Hz - 0.9%

mode 16 - 0.845Hz - 1.1% mode 17 - 0.908Hz - 0.8% mode 18 - 0.985Hz - 2.3%

Figure 8.14 – Modes identified with data-driven SSI from the modular PreGER approach (Algorithm 4.4).
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mode 1 - 0.116Hz - 3.1% mode 2 - 0.152Hz - 6.4% mode 3 - 0.172Hz - 3.9%

mode 4 - 0.215Hz - 2.6% mode 5 - 0.239Hz - 1.4% mode 6 - 0.305Hz - 2.1%

mode 7 - 0.312Hz - 1.2% mode 8 - 0.381Hz - 1.2% mode 9 - 0.462Hz - 0.9%

mode 10 - 0.480Hz - 0.7% mode 11 - 0.537Hz - 0.9% mode 12 - 0.625Hz - 0.7%

mode 13 - 0.647Hz - 0.6% mode 14 - 0.716Hz - 0.7% mode 15 - 0.808Hz - 1.0%

mode 16 - 0.850Hz - 0.7% mode 17 - 0.909Hz - 0.6% mode 18 - 0.987Hz - 0.8%

Figure 8.15 – Modes identified with data-driven SSI from the PoSER approach.
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Figure 8.16 – MAC values between the real parts of the mode shapes obtained by PoSER and PreGER approach.

8.3.4 Heritage Court Tower

Within the collaboration with Structural Vibration Solutions A/S (Denmark) the merging
methods from Chapter 4 were implemented in the commercial software ARTeMIS Extractor
Pro [Str11]. A comparative study on a benchmark example in ARTeMIS, the Heritage Court
Tower, was made between the classical PoSER and the new PreGER merging approach.

8.3.4.1 Description of the Heritage Court Tower and vibration measurements

The building considered in this study is the Heritage Court Tower (HCT) in downtown
Vancouver, British Columbia in Canada. It is a relatively regular 15-story reinforced concrete
shear core building. In plan, the building is essentially rectangular in shape with only small
projections and setbacks. Typical floor dimensions of the upper floors are about 25 m by
31 m, while the dimensions of the lower three levels are about 36 m by 30 m. The footprint
of the building below ground level is about 42 m by 36 m. Typical story heights are 2.70 m,
while the first story height is 4.70 m. The elevator and stairs are concentrated at the center
core of the building and form the main lateral resisting elements against potential wind and
seismic lateral and torsional forces. The tower structure sits on top of four levels of reinforced
concrete underground parking. The parking structure extends approximately 14 m beyond
the tower in the south direction forming an L-shaped podium.

As reported in [VBDA01], a series of ambient vibration tests was conducted on April 28,
1998 by researchers from the University of British Columbia [DV98]. The vibration measure-
ments were conducted using an eight-channel system (with force-balanced accelerometers)
and were recorded in four different measurement setups. The accelerometers were typically
located in the northwest and northeast corners of the building on every other floor starting
from the roof down to the ground floor. Details of the field testing of this structure are given



8.3 Case studies 179

in [DV98].
The tower model was simplified to a rectangle with nodes aligned vertically. The motions

of the corners of this rectangle were computed from the measured motions by assuming rigid
body motion of the floor slabs. The number of samples was 6560 and hence relatively low,
amounting to 328 s at a sampling rate of 20 Hz.

Figure 8.17 – HCT Building and setup close up.

8.3.4.2 Modal analysis with the PoSER and PreGER approaches

The modal analysis for both the PoSER and PreGER approach was tuned with the same
parameters. The maximal considered model order was 80. The parameters for the modal
extraction from the stabilization diagrams in ARTeMIS are shown in Figure 8.18.

Figure 8.18 – Parameters of mode extraction from the stabilization diagram.
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Figure 8.19 – PoSER stabilization diagram of first setup (top) and PreGER stabilization diagram (bottom).
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The resulting stabilization diagrams are shown in Figure 8.19. As in previous studies
[VBDA01], 6 modes were identified in the frequency range of interest [0–6 Hz]. Their natural
frequencies and damping ratios are displayed in Table 8.2.

The mode shapes obtained by the PoSER and PreGER approaches are shown in Figure
8.20 and a MAC comparison between them is shown in Figure 8.21. The MAC values are
very close to 1, indicating very similar mode shapes.

Table 8.2 – Frequencies (f̂) and damping coefficients (ρ̂) of obtained modes with both merging approaches.

PoSER PreGER

Mode f̂ (Hz) ρ̂ (%) f̂ (Hz) ρ̂ (%)

1 1.228 2.04 1.229 2.91

2 1.286 1.90 1.295 2.47

3 1.453 1.35 1.449 1.52

4 3.859 1.26 3.855 1.49

5 4.260 1.50 4.258 2.24

6 5.350 1.84 5.369 2.93

mode 1 mode 2 mode 3

mode 4 mode 5 mode 6

Figure 8.20 – First 6 mode shapes obtained with the PoSER (left in each figure) and the PreGER approach (right)
of HCT.
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Figure 8.21 – MAC between mode shapes of HCT estimated by PoSER and PreGER approaches.

8.3.5 S101 Bridge

In a collaboration with the University of Tokyo, the system identification of the S101 Bridge
was investigated within the IRIS project. Data-driven SSI with PoSER and PreGER merging
approaches as well as system identification based on NExT-ERA with a frequency merging
approach from [SF09] was compared.

8.3.5.1 Description of S101 Bridge and ambient vibration test

The tested bridge is the S101 Overpass Bridge located in Reibersdorf, Upper Austria west side
of Vienna, Austria [SNF+10]. The bridge crossed over the national highway A1 Westautobahn
Austria. It is a post-tensioned concrete bridge with the main span of 32 m, side spans of 12 m,
and the width of 6.6 m (Figure 8.22). The deck is continuous over the piers and is built into

Figure 8.22 – S101 Bridge and sensor configuration.
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abutment. The bridge built in 1960 had to be demolished due to some structural problems
and to allow some space for additional lanes of the highway underneath.

The ambient vibration test was conducted to obtain estimates of the bridge modal param-
eters. The main source of vibration was from the highway traffic underneath the bridge. The
sensing system consists of six triaxial accelerometers CV-373 produced by Tokyo Sokhushin.
The sensors measured accelerations at six measurement nodes. Due to a limited number of
sensors, three sensor arrangements were utilized (Figure 8.22). Two sensors (nodes A and B)
were kept at the same places throughout measurement to provide reference for the normaliza-
tion of the different ambient excitation level. Four other sensors were the roving sensors that
moved from one end to the other end of the bridge. The data used in this study is sampled
at a frequency of 100 Hz.

8.3.5.2 Modal analysis results

The PoSER and the PreGER merging approach were used with data-driven SSI and the
re-scaling in frequency domain from [SF09] was used with NExT-ERA. Note that for a fast
computation of the used stabilization diagrams, the algorithms from Section 5.3 can be ap-
plied for SSI and the algorithms from Section 5.4 can be applied for NExT-ERA. The system
identification results of the first 5 modes in the frequency range [0–20 Hz] are presented in
Table 8.3. Modes 1, 3 and 5 are vertical bending modes, while modes 2 and 4 are torsion
modes.

Table 8.3 – Frequencies (f̂) and damping coefficients (ρ̂) of S101 Bridge with different SSI and merging approaches.

PoSER (dat-SSI) PreGER (dat-SSI) NExT-ERA

Mode f̂ (Hz) ρ̂ (%) f̂ (Hz) ρ̂ (%) f̂ (Hz) ρ̂ (%)

1 4.023 0.65 4.029 1.02 4.01 0.56

2 6.262 0.71 6.254 2.15 6.25 0.12

3 9.669 1.13 9.683 1.59 9.65 0.28

4 13.23 1.76 13.31 1.70 13.14 0.35

5 15.68 2.27 15.83 3.56 15.51 0.38

From Table 8.3 it can be noted that the obtained natural frequencies, especially for the
first three modes, are very close. The values of the 4th and 5th frequency show slightly bigger
differences, probably due to a lower excitation and bigger uncertainties of these modes. The
damping value estimates show bigger deviations, with the PreGER SSI approach showing
larger estimates than the PoSER SSI approach, while damping estimates from NExT-ERA
show the lowest values.

The mode shapes obtained by NExT-ERA are displayed in Figure 8.23. Results from
PoSER SSI and PreGER SSI show very similar results. Note that the sensor marked “B”
is the reference sensor from the other side of the bridge deck (as shown in Figure 8.22) and
hence indicating whether the mode is a vertical bending or a torsion mode.
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Figure 8.23 – Identified mode shapes of S101 Bridge from NExT-ERA.

8.4 Discussion

The eigenstructure identification results on structural vibration data with the new merging
methods from Chapter 4 (“PreGER”) have shown good accordance with established empirical
merging methods (“PoSER”, “PoGER”).

One difference concerns the estimated damping ratios. In some of the estimates, the
damping ratios of the PreGER approach are higher than in the other approaches. The
PreGER methods were derived under the premise of the same state transition matrix A and
observation matrix of the reference sensors C(ref) throughout all measurements. In practice
however, this condition might not be entirely satisfied due to environmental changes between
the measurements that affect the structure, e.g. temperature variations. Then, the natural
frequencies in each setup are slightly different and the resulting frequency for each mode
obtained by the PreGER approach is associated to a higher damping ratio, consequence from
the merging of overlapping frequencies. However, the resulting mode shape estimates still
show very good quality. Note that in the case of merging setups of a changing structure, only
the identification of a mode shape estimate can be of interest, as frequency and damping
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values change [PMDR01, BBMN09].
The quality of the obtained mode shapes from the PreGER approach is for all case studies

comparable to other merging approaches. However, for closely spaced modes, identification
results were improved: mode shape estimates identified with PreGER were clearly separated.

The PreGER approach is automated and yields one set of global modal parameters.
Thus, no problems arise in analyzing many setups separately and matching identification
results as in the PoSER approach, which usually also needs user interaction. As only one
stabilization diagram needs to computed and analyzed, it is faster. Moreover, it is modular,
processing setup after setup, and with its iterative computation, possible memory problems
can be avoided. The PreGER approach is theoretically sound and avoids post-processing of
the results.

8.5 Conclusions

In this chapter, the new merging algorithms of Chapter 4 were successfully applied to the
modal analysis of several large-scale vibrating structures, thus validating their theoretical
derivation. Compared to other established merging methods, they have proven very efficient
and gave good results, both with covariance- and data-driven SSI.

Furthermore, first studies on the uncertainty quantification of the obtained eigenstructure
identification results have been made [DLM11, DLAM11].
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Damage detection and localization

9.1 Introduction

The statistical subspace-based fault detection test was introduced in Section 2.3. It has
been proven to be useful for Structural Health Monitoring (SHM) of civil structures, whose
underlying mechanical model was introduced in Section 2.4. For SHM, the parameters of
the test (left null space S, covariance Σ̂, Jacobian Ĵ ) are set up in a reference period, where
the structure is known to be safe. In the monitoring period, values of a χ2-test statistics are
computed and compared with a threshold to trigger an alarm.

The developments in this thesis are as follows for damage detection and localization. In
Section 3.5, numerical improvements of the damage detection test were made regarding its
applicability to real data. In Chapter 6, this damage detection test is extended to be robust
to a changing ambient excitation. In Chapter 7, extensions to damage localization, i.e. to the
change detection in the structural parameters were made, which take into account the mutual
influence of structural parameters in the test and do not require a finite element model.

In the current chapter, the damage detection test is applied to a real large-scale structure
during progressive artificial damage in order to validate its performance using the improve-
ments of Section 3.5. This work was done in collaboration with the German Federal Institute
for Materials Research and Testing (BAM). Also, the rejection of the mutual influence of
structural parameters for damage localization (Chapter 7) is shown on a large-scale simu-
lated bridge deck. Due to the lack of data for the damage detection test under a changing
ambient excitation (Chapter 6), we refer to Section 6.6 for its application to a mass-spring
model.

This chapter is organized as follows. In Section 9.2, the damage detection test is applied
to vibration data from the progressive damage test of S101 Bridge and compared with system
identification results of the monitoring data. The damage localization test is applied to a
simulated bridge deck in Section 9.3.
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9.2 Progressive damage test of S101 Bridge

Within the European research project “Integrated European Industrial Risk Reduction Sys-
tem (IRIS)” the prestressed concrete bridge S01 was artificially damaged [VCE09]. The
damaging processes were accompanied by a permanent measurement of the static and dy-
namic behavior of the structure. Like this, a complete record of monitoring data during a
defined loss of structural integrity on a typical bridge structure could be provided to test and
evaluate SHM methods and applications. Note that the measurements used in this section
are different from the setting in Section 8.3.5.

In order to validate its performance on a real structure, the damage detection test defined
in Section 2.3 is applied to vibration data from the progressive damage test of S101 Bridge.
As the implementation of the test in practice raises some numerical problems, the improved
computation of the χ2-test statistics for practical problems in Section 3.5 was taken into
account.

9.2.1 The S101 Bridge

The S101 was a prestressed concrete bridge from the early 1960th spanning over the 4-lane
highway A1 in Austria (Figure 9.1). The structural system was a three-field frame with a
32 m wide mean field and two 12 m wide side fields. The superstructures cross section was
designed as a 7.2 m wide post-tensioned double T-beam with varying heights (Figure 9.2).

During recurring technical inspections of the bridge several deficiencies as cracks and
spellings have been found. Since the crack pattern correlated with the geometric properties
of the prestressing a significant deficit of structural reliability was assumed. Because of the
subsequent determined limited load bearing capacity it was decided to replace the structure.

Figure 9.1 – S101 Bridge during damage test [VCE09].
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Figure 9.2 – System drawing of S101 Bridge [VCE09].

9.2.2 Damage description

The damage test took place from 10-13 December 2008. During the test the highway beneath
the bridge was open in one direction. The second direction was closed for traffic because of
construction work which in addition took place near the bridge.

Two major damage scenarios were artificially induced. First, a significant damage of one
of the four columns was inserted by cutting through the column on its lower end. With
this action a change in the global structural system was implemented. After a second cut
a 5 cm thick slice of the column was removed and the column was lowered for altogether

Figure 9.3 – Destructive damaging; a) cutting through one of the columns, b) and c) successive intersecting of
prestressing tendons [VCE09].

Table 9.1 – Damage scenarios during progressive damage test of S101 Bridge.

A First cut through column G Uplifting column

B Second cut through column H Exposing cables and cut through first cable

C Lowering column (first step) I Cut through second cable

D Lowering column (second step) J Cut through third cable

E Lowering column (third step) K Cut through fourth cable

F Inserting steel plates
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3 cm. Afterwards the column was uplifted again to its original position and secured there by
steel plates. In a second damage scenario prestressing tendons of one of the beams were cut
successively. All in all three and a quarter of a wire bundle were cut through. Between each
intersection pauses of several hours were kept to let the structural system change into a new
state of equilibrium. In Table 9.1 all damage actions are sorted in chronological order.

9.2.3 Measurement description

The measurement campaign was carried out by the Austrian company VCE and the Uni-
versity of Tokyo [VCE09]. For vibration measurement a BRIMOS measurement system con-
taining a permanent sensor grid was used. The grid consisted out of 15 sensor locations on
the bridge deck, see Figure 9.4, in each location three sensors for measurement in the bridge
decks vertical, longitudinal and transversal direction. All in all, for vibration measurement
45 acceleration sensors were applied. Additionally, for verification of the static response of
the structure to the damaging, the vertical displacement of the bridge deck was measured in
three characteristic locations.

The measurement took place with a sampling frequency of 500 Hz. All values were
recorded permanently and stored in files with 165 000 data points each. During the three
days measurement campaign 714 data files each containing 45 channels were produced.

Figure 9.4 – Bridge deck with sensor grid for vibration measurement, on each location acceleration was measured
in three directions [VCE09].

9.2.4 Damage detection on S101 Bridge

9.2.4.1 Data analysis

The output-only vibration data of the bridge were recorded throughout the whole three
day long damage test, including the nights. To avoid disturbance of the detection, the
files recorded during damaging activities were excluded. So, all in all 660 files, each of 45
acceleration channels were used in the analysis.

For damage detection, the non-parametric approach (cf. Section 2.3.4) was chosen in order
to take into account the entire system response for the computation of the left null space.
The reference state of the undamaged structure was then set by computing and averaging
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the covariance-driven subspace matrices from several datasets in the reference state, from
where the left null space Ŝ and the residual covariance Σ̂ were obtained. With this approach,
a possible disturbance by single excitation events or different environmental conditions is
minimized. For computing the residual covariance matrix 100 datasets of the undamaged
state were used.

In the test stage, the χ2-test statistics is computed for every data set, which in real time
means an indicator of damage for every 5.5 min.

9.2.4.2 Results

Figure 9.5 shows a bar plot of values as damage indicators of all consecutive tests within
the three days campaign. The associated analysis used the covariance-driven SSI with all
r = r0 = 45 sensors. The abscissa of the plot describes the chronological sequence of the
damage activities as noted in Table 9.1 as well as the 6am and 6pm points of time for
orientation. Figure 9.6 shows the damage indicator during the several steps of the first
damage scenario, the cutting and settling of one of the four bridge columns. With exception
of the time periods of the direct mechanical destruction processes, which were excluded for
containing strong noise, the displayed sequence of damage indicators has a consecutive course.

As can be seen in Figure 9.6, the three steps of the column settlement action are very
distinctive in influencing the computed damage indicator. Obviously, the dynamic system has
changed to quite some extend and the altogether 27 mm of elastic settlement can be detected
clearly. Although not that distinctively visible, the cutting of the column (A+B) also caused
an increase of the indicator of approximately 75%. However it has to be mentioned that the
absolute effect is superimposed by noise effects. The inlet in Figure 9.6 shows a detail of that
time period.

The column remained in the settled condition for approximately one day and was then
uplifted again in its former position. The effect of the uplifting is again clearly visible in
Figure 9.5 by a drop of the damage indicator. However, the χ2-test did not drop completely
to its original value, which is certainly due to the fact that the lowering of one column has
led to cracking within the concrete structure to some extend and therefore also to a change
of the dynamic signature of the system.

The use of so-called reference sensors or projection channels when computing the subspace
matrices for the residual reduced the necessary memory and computational cost massively.
The analysis using all 45 channels required an extent of memory space which is usually not
provided on desktop computers.

Several numbers and constellations of projection channels were analyzed. Figure 9.7
shows a χ2-value plot for only r0 = 4 (instead of 45) projection channels, one vertical and
one sensor with all three directions. Note that in the computation of the subspace matrix
still all r = 45 sensors are used, cf. (2.2.3). As one can see, almost equal information about
the damage indication could be achieved compared to Figure 9.5, and at the same calculation
the computing time was cut to a fifth compared to a complete sensor analysis.
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Figure 9.5 – χ2-test results over the 3-day damage test.

Figure 9.6 – χ2-test for cutting and settling of one bridge column, detail of damage indicator for cutting through
one bridge column.

Figure 9.7 – χ2-test results using r0 = 4 projection channels.
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9.2.5 Comparison to system identification results

9.2.5.1 Data analysis

System identification results of the S101 Bridge were obtained with covariance- and data-
driven SSI. In order to compare results at the different damage states, confidence intervals
on the obtained results were computed on the results based on [RPDR08]. The algorithm
in [RPDR08] was derived for covariance-driven SSI and is extended to data-driven SSI using
the covariance derivations in Section 3.5.2.

The system identification is done for the first five modes in the frequency range [0–18 Hz].
The data was downsampled from the original sampling rate 500 Hz by factor 8 and after a first
examination only the sensors in vertical direction were chosen, as in this frequency range only
vertical bending and torsional modes were present. For system identification and confidence
interval computation the parameters p + 1 = q = 11 were chosen for the subspace matrices
and the system orders n = 1, . . . , 70 were considered for stabilization diagrams. Confidence
bounds were obtained by cutting the data into 100 blocks.

9.2.5.2 System identification in reference state

In Figure 9.8, the stabilization diagrams of the natural frequencies from both SSI methods
are presented, where the confidence interval of each frequency is plotted as a horizontal bar.
The obtained confidence bounds on the frequencies were used to clean the diagrams: Modes
with frequencies having big confidence bounds are likely to be spurious and are erased. In this
case, all modes with confidence bounds bigger than 2% of the frequency value were deleted.

From the stabilization diagrams, the modes of the system are chosen. In Table 9.2, an
overview of the obtained modal parameters and their confidence bounds at model order 40
is given. Note that all confidence bounds are relative values in percent, i.e. the standard
deviation of a value divided by the value and multiplied by 100.

Table 9.2 – Overview of the estimated first 5 modes of S101 Bridge with natural frequencies f̂ , their relative
confidence bounds σ̃f = σ̂f/f̂ · 100, the damping ratios ρ̂ and their relative confidence bounds σ̃d = σ̂ρ/ρ̂ · 100.

Covariance-driven SSI Data-driven SSI (UPC)

mode f̂ (in Hz) σ̃f ρ̂ (in %) σ̃ρ f̂ (in Hz) σ̃f ρ̂ (in %) σ̃ρ

1 4.039 0.34 1.1 23 4.031 0.21 1.3 22

2 6.292 0.19 0.6 52 6.282 0.11 0.7 19

3 9.730 3.42 3.0 92 9.872 1.17 2.1 32

4 13.19 0.67 1.3 73 13.31 0.38 1.4 22

5 15.72 0.70 1.8 20 15.73 0.39 1.8 19
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Figure 9.8 – Stabilization diagrams with covariance-driven SSI (left) and data-driven SSI (right) containing confi-
dence intervals on the frequencies (top: full diagrams, bottom: zoom on first mode).

9.2.5.3 Frequency monitoring during damage test

An automated monitoring procedure was applied to each available dataset, which did the
system identification and a confidence interval computation based on [RPDR08] automatically
for each dataset. For each dataset a stabilization diagram was built with the SSI algorithms,
containing model orders from 10 to 70. Then, the modes were chosen automatically using
stabilization criteria such as thresholds for the damping estimates and confidence interval
bounds, small frequency deviation between successive model orders, a minimum number of
appearances of a frequency in the diagram and the MAC value between successive model
orders.

The results of the frequency monitoring of all datasets are displayed in Figure 9.9 and
the respective damage scenarios were explained in Table 9.1. Especially the frequency drop
can be clearly seen when one column of the bridge was lowered before it was lifted up again
(between A and G). This affected mainly the second, third and fourth mode, while the
frequency changes in the first mode were less important. Especially the change in the fourth
mode is remarkable, as it split in two modes during the lowering of the column, with one
lower and one higher frequency than before. The frequency changes in the fifth mode cannot
be evaluated, as its uncertainty is very high compared to the other modes.
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(a) covariance-driven SSI

(b) data-driven SSI (UPC)

Figure 9.9 – Natural frequencies with confidence bounds during progressive damage test of S101 Bridge (damage
incidents from Table 9.1). The color bar indicates the confidence bound in percent of the obtained frequency.
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9.2.6 Discussion

With the statistical damage detection test, the change in the system response of the entire
structure is evaluated. The link between the structural changes due to the artificially in-
troduced damage cutting/lowering of one column and the behavior of the respective χ2-test
values at each test stage was clearly shown. Besides, a significant increase of the efficiency of
the damage detection test was achieved by the use of projection channels.

Both the covariance- and data-driven SSI give practically identical estimates for system
identification in this test case, when taking the obtained confidence bounds into account.
However, the data-driven approach seems to yield frequency and damping estimates that have
lower confidence bounds than the covariance-driven approach. Also, the damage scenarios
“cutting/lowering of one column” could be clearly linked to changes in the natural frequencies.

9.3 Damage localization on a simulated bridge deck

The damage localization approach from Chapter 7 is demonstrated on a simulated bridge
deck used in [BBM+08]. The emphasis here lies on the rejection approach (Section 7.3) in
order to avoid the mutual influence of the clustered structural parameters in the associated
χ2-tests. The FE model-free localization approach is not considered in this section.

The FE model and the data of the bridge deck were provided by É. Balmès, SD Tools
[BL06], which is gratefully acknowledged.

9.3.1 Finite element model of bridge deck

The data of the bridge deck and the sensitivities with respect to the stiffness parameters
of the structural elements are obtained from a finite element model. The FE model of the
bridge deck consists of 28 supports and a deck with height 3 m, width 6.6–10 m and length
100 m. The whole bridge span is modeled using 9600 standard 8-node isoparametric volume
elements and 13 668 nodes [BBM+08]. A simplified model of the deck with 21 sensor position
is illustrated in Figure 9.10.

Figure 9.10 – Simplified model of the simulated bridge deck.
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Figure 9.11 – The damaged area in the bridge.

In both the undamaged and damaged case, data at the 21 sensor positions was generated
with a sampling frequency of 256 Hz, where each signal contains 100 000 data samples. Dam-
age is introduced by the reduction of the material modulus of up to 30% in 44 elements as
illustrated in Figure 9.11.

9.3.2 Damage localization

In the reference state, all the parameters of the χ2-tests for damage localization (see Sec-
tions 7.2.3–7.2.4) need to be set up. From the FEM, the modal signature θFE is available,
containing the first four modes (frequencies and mode shapes at the 21 measured coordi-
nates). Furthermore, the sensitivities ∂θFE/∂pk, k = 1, . . . , P , with respect to the P = 9600
structural elements are available. Then, the following steps are done:

1. System identification from data of reference state with covariance-driven SSI – com-
putation of modal signature θ0 containing the same modes as θFE (but with possibly
slightly different values as θ0 is computed from data);

2. Computation of left null space S(θ0) from parametric observability matrix O(θ0) and
computation of the residual covariance Σ̂;

3. Computation of the residual sensitivity Ĵ (θFE) with respect to the modal parameters,
using the scaled mode shapes from the FEM; and computation of the sensitivities
Ĵk = Ĵ (θFE)∂θFE/∂pk, k = 1, . . . , P , with respect to the structural parameters;

4. Computation of the change directions dk, k = 1, . . . , P , and clustering them with some
cluster algorithm (Sections 7.3.2–7.3.3).

Note that the scaling of the mode shapes for the computation of the residual sensitivity with
respect to the modal parameters J (θ0) (here J (θFE)) must be the same as in the computation
of the sensitivities ∂θ0/∂pk (here ∂θFE/∂pk) with respect to the structural parameters. With
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Section 7.4.2, the latter can be computed from mass-normalized mode shapes, but in this
case they were provided from the Structural Dynamics Toolbox [BL06].

For the sensitivity test (Section 7.2.4), where all the structural parameters are tested
separately for a change, only the steps 1–3 from above are necessary. Its results are presented
in Figure 9.12(a), where for each structural element its χ2-value is plotted. The damaged
area is correctly recognized by the highest χ2-values.

For the clustering of the over 9000 structural parameters, step 4 from above is necessary.
The results of the sensitivity test on the clusters are presented in Figure 9.12(b). It can be
seen that in both Figures 9.12(a) and 9.12(b) also the undamaged elements react. In order
to reject the influence of the damaged elements on the undamaged elements, the min-max
test using the barycenters of the clusters (Section 7.3.3) was computed in Figure 9.12(c). It

(a) Sensitivity test without clustering (b) Sensitivity test with clustering (100 clusters)

(c) Min-max test with clustering (100 clusters)

Figure 9.12 – Damage localization in simulated bridge deck.
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correctly localizes the damage, but the χ2-values on the undamaged elements are much lower.

9.4 Conclusions

In this chapter, the statistical subspace-based damage detection test was successfully applied
to output-only vibration data from a progressive damage test of the S101 Bridge. Its reac-
tivity to artificially introduced damage on a civil structure was shown. An efficient and fast
implementation of the damage detection test was made, which seems to be promising for
online structural health monitoring.

Furthermore, the statistical damage localization was tested on a large-scale simulated
bridge deck, where the rejection of the mutual influence of structural parameters in the
χ2-tests showed more contrasted damage localization results. Future work contains the ap-
plication of the statistical damage localization on a real structure. Furthermore, the influence
of the clustering on the rejection needs to be explored in detail.

9.5 Dissemination

Parts of this chapter have been published in:

[DHL+11] M. Döhler, F. Hille, X.-B. Lam, L. Mevel, and W. Rücker. Confidence in-
tervals of modal parameters during progressive damage test. In Proc. 29th
International Modal Analysis Conference, Jacksonville, FL, USA, 2011.

[DHMR11] M. Döhler, F. Hille, L. Mevel, and W. Rücker. Structural health monitoring
during progressive damage test of S101 Bridge. In Proc. 8th International
Workshop on Structural Health Monitoring, Stanford, CA, USA, 2011.

[HDMR11] F. Hille, M. Döhler, L. Mevel, and W. Rücker. Subspace based damage de-
tection methods on a prestressed concrete bridge. In Proc. 8th International
Conference on Structural Dynamics (EURODYN), Leuven, Belgium, 2011.

Further applications of the damage detection test are published in [LPS+09, LPD+10,
SDBM+10, ZLM+10].
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Conclusions

In this thesis, methods for subspace-based system identification as well as fault detection and
isolation have been developed, which find an important application in Operational Modal
Analysis of vibrating structures. The developed techniques improve the practical usability
of established subspace-based methods on real data. The resulting algorithms are faster, nu-
merically more robust and can deal with large systems. They take the nature of in-operation
data into account by being robust to changing excitation, noisy data and misspecified model
order. Their practical relevance was shown on system identification and damage detection of
several large-scale civil structures.

The developed methods in this work have a different degree of maturity. The methods
on system identification from Part II have been tested extensively on real data from different
large-scale structures. Both the multi-setup and the fast multi-order subspace-based system
identification have been transferred to a commercial software product. The methods for
damage detection and localization from Part III have been successfully tested on simulated
data and still need to be validated on large-scale structures. The validation on structures in
the lab is in progress in collaboration with IFSTTAR and BAM. These methods are also part
of the European projects IRIS and ISMS.

A critical discussion of each developed method was made in the respective chapters.
Advantages and shortcomings of the new methods can be summarized as follows:

(1) Modular subspace-based system identification from multi-setup measure-
ments: A simple, theoretically sound method for global system identification of sys-
tems that are measured in multiple setups under possibly varying excitation has been
proposed and successfully applied to the identification of large civil structures. It can
be used with all subspace methods and shows convenient numerical properties. Be-
cause of a modular and iterative approach, a large number of sensors and setups can be
handled. The merging is done under the assumption that the same system is observed
in all the measurement setups. This can be a shortcoming, if the measurements of a
structure are taken under different environmental conditions that affect the underlying
system itself, such as temperature variations. This might lead to higher estimates of
the damping ratios, but an effect on the mode shapes was not noticed.

The multi-setup methods were presented with subspace methods using time domain
data, but can directly be adapted to data from the frequency domain with Remark 2.1.
Besides, it seems easier to take into account different excitation levels in frequency do-
main in order to merge data from multiple setups, which can be done by normalizing
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cross power spectra [PGC03]. Shifting the approach described in this thesis to the fre-
quency domain and comparing it to other frequency domain methods (e.g. [RMDRC09])
is a natural extension of this work.

(2) Fast multi-order subspace-based system identification: A fast computation
scheme for multi-order subspace-based system identification was proposed, that ac-
celerates the computation of stabilization diagrams for structural vibration analysis
significantly. A weak conceptual point might be the necessity of a preprocessing step
at the maximal desired model order, but it was shown that the new method is already
faster when doing the identification at quite low model orders. Note also that the sta-
bilization diagram is a standard tool for modal analysis of structures. Thus, the new
computation scheme finds a wide application. In particular, it can speed up the modal
analysis of online monitoring data significantly.

(3) Robust subspace-based fault detection under changing excitation: Based on
a residual function that is robust to changes in the excitation, a modified statistical
subspace-based fault detection test was proposed. It was shown that the new test does
not react on a change in the (unmeasured) excitation, but on damage to a simulated
structure. In the reference state, sufficiently long data sets need to be available, each
recorded under the same unmeasured excitation, in order to establish the parameters
for a χ2-test. Then, in the possibly damaged state, it can be decided with a very simple
procedure if the eigenstructure related to the tested data deviates significantly from the
reference state or not. In the new method, an additional step is added, which requires
a SVD and its truncation at a chosen model order.

(4) Robust subspace-based damage localization using mass-normalized mode
shapes: A statistical damage localization approach was modified to work without a
finite element model, but with mass-normalized mode shapes obtained from measure-
ments where a known mass perturbation is introduced on the investigated structure.
Numerical simulations showed promising properties of this approach, which is probably
the most “experimental” of the presented methods. Note that for damage localization,
some extra information needs to be available compared to damage detection – either a
FE model, measured excitation of a structure to obtain mass-normalized mode shapes,
or in this case a known mass perturbation on the structure. With the rejection scheme
of close structural parameters, more contrasted damage localization results were ob-
tained. With this approach, a clustering step is necessary for large systems with many
close structural parameters, which is not necessary without the rejection scheme. The
mutual influence of structural parameters needs to be further studied and tested on
real large scale examples.

The rejection approach can in general be used for any kind of parameter that can be
mathematically modeled. For example, in [BBMN09] it was used to reject the influence
of the temperature on the stiffness matrix for damage detection robust to temperature
change. It can be extended in many ways to reject nuisance parameters in damage
detection or localization tests, if an appropriate model exists.
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With these points, possible areas of further developments of the proposed methods in this
thesis are given.

The subspace-based system identification and fault detection and isolation algorithms
are closely linked: The system matrices and the system’s eigenstructure are identified from
the subspace matrix. With the detection algorithms, changes in the system’s eigenstructure
are detected using the subspace matrix filled with new data. The covariance of the subspace
matrix is used for the computation of the residual’s covariance in the fault detection tests, and
the same covariance matrix also leads to the uncertainty quantification of system identification
results [RPDR08, DLM10a, DHL+11, DLAM11, DLM11]. However, the problem of size
reduction for detection is much more difficult as for identification, as each dimension of
the involved covariance matrices are of the order of the product of both dimensions of the
subspace matrix. The use of projection channels with r0 � r and strategies of Section 3.5.1
already increase the feasible problem sizes, and further development should contribute to this
evolution.

The extensive use of numerical tools as QR and SVD decompositions and other matrix
computations in all parts of this thesis led to improvements of the subspace-based identi-
fication and detection algorithms. For example, improvements are robustness to changing
excitation, faster algorithms and, in general, the feasibility of higher problem sizes. This is
especially important for applications in the future, where larger structures are instrumented
with more and more sensors and problem sizes are continuously increasing. Further employ-
ment of numerical techniques and model reduction techniques will probably be needed to deal
with even bigger problem sizes. New technologies as fiber optic sensors, distributed systems
or wireless sensor networks push for this development.

Indeed, the motivation for this thesis was the treatment of large structures under realistic
excitation assumptions for system identification and fault detection. Before this thesis, it
has been shown that subspace methods effectively exhibit great potential to be used for
both identification and fault detection of structures [MHVdA99, MGB03, MBB05, BBGM07].
They have interesting properties, such as non-stationary consistency [BM07], the possibility
to reject the temperature effect for damage detection [BBB+08, BBMN09] or the feasibility of
uncertainty quantification of the identification results [RPDR08], but suffered in the context
of large sized case studies. As such, subspace methods had some difficulties with large problem
sizes, and several other approaches were once investigated before successfully going back to
the subspace framework.

After over 20 years of the existence of subspace methods, contributions in both theo-
retical improvements and practical usability could still be achieved in this thesis. There is
further room for developments especially for the size explosion regarding subspace-based fault
detection or uncertainty quantification.
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Introduction

Contexte de la thèse

L’identification des systèmes linéaires et la détection des changements dans les systèmes à
partir de signaux mesurés est une branche de recherche multidisciplinaire dans les champs de
la modélisation mathématique, de l’automatique, des statistiques et du traitement du signal.
Au cours des dix à vingt dernières années, les méthodes d’identification des systèmes ont
trouvé un intérêt particulier dans l’ingénierie des structures pour l’identification des modes
vibratoires et de leurs déformées modales, mais également pour la détection des changements
dans les caractéristiques de leurs vibrations, dans les deux cas sous conditions opérationnelles.
Cette analyse modale opérationnelle (Operational Modal Analysis, OMA) est composée de
trois éléments : acquisition de données, analyse des données collectées et évaluation des
résultats. Les avancées dans les systèmes d’acquisition des données (capteurs moins chers,
capteurs à fibre optique, réseaux de capteurs sans fils etc.) conduisent à de plus larges
systèmes qui peuvent être surveillés au cours du temps et qui rendent ainsi nécessaire un
développement plus poussé des techniques statistiques d’analyses de données. L’évaluation
des résultats est effectuée par l’ingénieur mécanicien et a par exemple un impact sur la
conception des structures, sur le recalage des modèles aux éléments finis ou au niveau de la
détection du flottement aéroélastique.

Cette thèse se situe dans le cadre de l’analyse des données, où l’identification des systèmes
linéaire ainsi que les méthodes de détection des pannes sont utilisés. En particulier, dans le
contexte de l’OMA, il est nécessaire de prendre en compte les caractéristiques inhabituelles
suivantes :

(a) Le nombre de capteurs peut être élevé (des centaines voire des milliers dans le futur au
moyen de nouvelles technologies). Les capteurs peuvent également être déplacés d’un
point de mesure à un autre ;

(b) Le nombre de modes peut également être élevé (jusqu’à cent et même au-delà) et ainsi
nécessiter des méthodes qui peuvent prendre en compte des ordres de modèle très grands
en un temps de calcul raisonnable;

(c) L’excitation appliquée à la structure n’est généralement pas mesurée, pas contrôlée et
aussi turbulente et non stationnaire.
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Dans cette thèse, sont développées des méthodes d’identification des systèmes et de détection
des pannes qui prennent en compte les points (a–c) ci-dessus évoqués. Les techniques
développées concernent la théorie de ces méthodes, mais tirent leur importance dans le cadre
de l’OMA, où l’analyse de larges structures équipées de nombreux capteurs opérant sous
conditions bruitées est courante.

Identification des systèmes

La conception et la maintenance des structures mécaniques, civiles et aéronautiques soumises
au bruit et aux vibrations sont des sujets particulièrement intéressants en ingénierie des
structures. Ces éléments contribuent au confort, par exemple pour les véhicules et les im-
meubles, et contribuent significativement aux aspects sécuritaires, entre autre pour les avions,
les navettes spatiales, les structures civiles, les éoliennes, etc. Il est nécessaire de s’assurer que
la force dynamique comme le flux de personnes, le trafic, le vent, les vagues ou les séismes,
ne compromettent pas le bon fonctionnement de ces structures. Par exemple, la résonance
ou le flottement aéroélastique doivent être évités. Afin d’étudier les propriétés dynamiques
d’une structure, ses modes de vibration (fréquences naturelles et taux d’amortissement) et
ses déformées modales sont analysés.

En conséquence, l’identification des modes de vibration et des déformées modales à partir
des données mesurées est une étape de base pour l’ingénierie des structures, afin d’étudier et
de surveiller les propriétés dynamiques d’une structure. Les caractéristiques des vibrations
sont trouvées dans la structure propre d’un système linéaire, qui nécessite elle d’être identifiée
à partir des données.

Les méthodes pour l’identification des systèmes sont souvent issues du domaine de
l’automatique et se sont avérées fonctionner pour des petits ordres des systèmes et sous
une excitation contrôlée. Elles ont été vérifiées en théorie, testées sur des données simulées
et validées sur des structures artificiellement excitées en laboratoire. L’utilisation de ces
méthodes sur des structures de terrain pour l’OMA, où les caractéristiques (a–c) doivent
être prises en compte, représente la dernière étape dans ce développement et la principale
motivation de cette thèse. Dans ce contexte, des techniques sont développées afin de palier à
certains inconvénients de l’identification des systèmes dans le contexte de l’OMA.

Détection et diagnostic des pannes

La détection et le diagnostic des pannes sont établis dans le domaine de l’automatique pour
détecter des conditions anormales de systèmes et pour identifier le sous-système où les pannes
interviennent. Appliqué sur les données vibratoires pour des structures réelles, ce principe
correspond à la détection et la localisation des endommagements structurels et est établi
par détection des changements dans les caractéristiques vibratoires ou dans les paramètres
structuraux d’une structure. La surveillance des structures (Structural Health Monitoring,
SHM) avec de telles méthodes permet de surveiller par exemple les infrastructures civiles et
aide à identifier les endommagements à un stade précoce.

Le SHM est devenu un champ de recherche important, dans lequel des techniques de
détection non-destructive des endommagements sont utilisées pour surveiller ces structures.
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De ce fait, les technologies SHM possèdent un large potentiel commercial et économique.
Elles peuvent aider à identifier les endommagements à un stade précoce, où des actions
correctives relativement mineures peuvent être entreprises au niveau de la structure avant
que des détériorations plus importantes ne surviennent et ne nécessitent donc des actions
plus lourdes. La surveillance des endommagements liés aux tremblements de terre représente
également un exemple d’application SHM. Dans cette situation, le SHM permettrait d’assurer
une remise en fonctionnement rapide des infrastructures civiles et des réseaux de transport,
ce qui atténuerait l’importance de la perte économique associée à ces événements sismiques.
L’utilisation de SHM dans un contexte de surveillance des infrastructures approchant ou ayant
dépassé leur durée de vie initialement prévue, représente également un atout certain pour as-
surer leur fiabilité et maintenir économiquement des conditions de maintenance raisonnable.
D’une manière générale, il est souhaitable de détecter les endommagements de façon automa-
tisée afin de s’affranchir de la nécessité des inspections visuelles qui requièrent une forte main
d’œuvre et qui sont difficiles à réaliser dans des environnements à risque ou inaccessibles. Les
systèmes SHM permettraient aussi d’intégrer les informations apprises lors des constructions
précédentes afin d’améliorer la performance des futures structures.

Des méthodes pour la détection et le diagnostic des pannes sont issues de la théorie
de l’automatique. Elles offrent de prometteuses propriétés et peuvent déjà détecter de légers
changements dans la structure propre des systèmes linéaires. Néanmoins, pour la détection et
la localisation des endommagements pour SHM, les données vibratoires sont enregistrées sous
des conditions opérationnelles où les caractéristiques (a–c) ci-dessus évoquées s’appliquent.
Ils conduisent à adapter dans le cadre de cette thèse les méthodes actuelles de détection
des endommagements à de plus réalistes hypothèses d’excitation. De plus, la robustesse
numérique ainsi que le calcul rapide des indicateurs des endommagements doivent être assurés
pour de larges structures sous conditions opérationnelles.

Méthodes proposées

Il a été démontré que les méthodes d’identification en sous-espace sont efficaces pour
l’identification des systèmes linéaires invariants comprenant des entrées multiples et sor-
ties multiples en utilisant des données mesurées sous des conditions d’excitations réalistes.
Pour l’analyse opérationnelle modale des structures vibratoires, il est nécessaire d’identifier
la structure propre (valeurs propres et vecteurs propres) du système linéaire de base à par-
tir de laquelle les fréquences naturelles, les taux d’amortissement et les déformées modales
sont obtenus. La convergence non-stationnaire de nombreuses méthodes en sous-espace a été
prouvée pour l’identification de la structure propre, et en fait ainsi des méthodes phares pour
OMA.

Les méthodes suivantes sont développées dans cette thèse, où chacune est motivée par un
problème pratique de l’OMA :

1. Identification modulaire en sous-espace à partir de mesures multi-sessions,

2. Identification rapide en sous-espace aux ordres de système multiples et croissants,
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3. Détection des pannes robuste aux changements de l’excitation par méthodes de sous-
espace,

4. Localisation robuste des endommagements par méthodes de sous-espace en utilisant
des déformées modales normalisées par rapport à la masse.

D’importantes propriétés théoriques sont établies pour ces méthodes. Elles sont validées sur
des données vibratoires issues de structures réelles, quand ces données sont disponibles. Dans
le cas contraire, des données simulées sont utilisées afin de valider les méthodes.

Chapitre 1 – L’état de l’art

Dans le domaine de l’identification des systèmes, dès les années 1960, des modèles
mathématiques des systèmes dynamiques sont formulés pour des données mesurées
entrée/sortie. Parmi les contributions importantes se trouvent les travaux de Ho et
Kalman sur le problème de réalisation d’espace d’état [HK66], ceux d’Åström et Bohlin
sur des méthodes de maximum de vraisemblance [AB65], ceux d’Akaike sur la théorie de
la réalisation stochastique [Aka74c, Aka75], ceux de Ljung sur les méthodes d’erreur de
prédiction [Lju78, LC79] et beaucoup d’autres. Un ouvrage de référence sur l’identification
des systèmes est celui de [Lju99]. Dans [Gev06] se trouve une vue d’ensemble de l’histoire du
développement de la recherche en identification des systèmes.

Pour l’identification des systèmes linéaires invariants, le modèle principal utilisé est le
modèle d’espace d’état

{
Xk+1 = AXk +BUk + Vk+1

Yk = CXk +Wk

avec les états Xk ∈ Rn, les entrées observées Uk ∈ Rm, les sorties Yk ∈ Rr et les distorsions
non-observées de l’entrée et de la sortie Vk et Wk. L’identification des matrices de système A
et C à partir des sorties Yk et des entrées Uk (en cas d’entrées observées) est un des problèmes
majeurs en identification des systèmes.

La problématique de détection et de diagnostic des pannes (fault detection and isolation,
FDI) est de détecter les changements dans les paramètres d’un système dynamique (détection)
et de distinguer les paramètres modifiés des paramètres non-modifiés (diagnostic). Il y a de
nombreuses techniques FDI provenant du domaine de l’automatique [Wil76, PFC89, Fra90,
BN93]. En général, ces problèmes FDI sont décomposés en deux étapes : 1/ l’obtention d’un
résidu qui est dans l’idéal proche de zéro en absence de pannes, sensible le moins possible
aux bruits et nuisances, et le plus sensible possible aux pannes ; et 2/ l’évaluation du résidu,
c’est-à-dire le mise au point des règles de décision basées sur ce résidu [Bas98].

Dans ce chapitre, plusieurs contributions de la littérature par rapport à l’identification
des systèmes et la détection des pannes sont présentées.
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Chapitre 2 – Contexte des méthodes sous-espace pour
l’identification des systèmes et détection des pannes

Les méthodes sous-espace pour l’identification des systèmes et détection des pannes ainsi
que leur application à l’analyse des vibrations structurelles constituent le fondement de cette
thèse. Elles sont expliquées en détail à partir de la littérature dans ce chapitre.

Pour l’identification en sous-espace, une matrice sous-espace H est construite à partir des
données mesurées selon un algorithme sous-espace choisi. Avec une décomposition en valeurs
singulières, la matrice d’observabilité O est obtenue, à partir de laquelle les matrices A et
C du système de l’espace d’état sont calculées. La structure propre du système contient des
paramètres canoniques et est obtenues à partir des valeurs et vecteurs propres de la matrice
A et de la matrice C. Le travail est basé sur [BF85, VODM96, PDR99, BM07].

Pour la détection des pannes, des changements dans la structure propre d’un système
linéaire sont détectés en confrontant de nouvelles données à un modèle de référence dans
l’état sain. Avec l’approche asymptotique locale pour la détection de changements, un résidu
asymptotique Gaussien est construit en utilisant un noyau gauche obtenu à partir du modèle
de référence et une matrice sous-espace calculée à partir des données dans un état inconnu et
éventuellement en panne. En utilisant un test χ2 sur le résidu, une décision peut être prise si
le résidu est significativement différent de zéro indiquant ainsi que le système est en panne.
Ce travail est basé sur [BBM87, BAB00].

L’identification des systèmes et la détection des pannes sont souvent appliquées à l’analyse
de vibrations structurelles. Le modèle mécanique de base des structures vibratoires est

{
M Ẍ (t) + C1Ẋ (t) +KX (t) = υ(t)

Y (t) = LX (t),

où t est le temps continu, M , C1 et K sont les matrices de la masse, de l’amortissement et de
la raideur, X (t) est le vecteur d’état qui indique les déplacements aux degrés de liberté de la
structure, υ est la force externe non-mesurée, les mesures sont collectées dans le vecteur Y et la
matrice L indique lesquels des degrés de liberté sont observés (où se trouvent des capteurs). Le
modèle mécanique peut être transformé dans un modèle discret d’espace d’état, qui est utilisé
pour l’identification et la détection. A partir de sa structure propre, les paramètres d’intérêt
du modèle mécanique sont obtenus, soient les fréquences naturelles, les taux d’amortissement
et les déformées modales.

Chapitre 3 – Quelques considérations numériques pour des al-
gorithmes sous-espace

Quelques outils numériques nécessaires pour ce travail sont présentés et dérivés dans ce
chapitre. Des propriétés supplémentaires de l’algorithme de détection des pannes sont
prouvées et éclaircies afin d’augmenter la compréhension théorique de cet algorithme. De
plus, quelques problèmes très pratiques pour le calcul d’un test χ2 associé, concernant le
traitement des matrices estimées et à rang déficients, sont résolus. Cette situation apparait
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quand des ensembles de données mesurés sur des périodes de temps courtes sont utilisés.
Une implémentation numériquement robuste est alors proposée. Ces points augmentent en
pratique l’applicabilité de l’algorithme de détection

Chapitre 4 – Identification modulaire en sous-espace à partir
de mesures multi-sessions

Un des problèmes dans le contexte de l’OMA est l’identification de la structure propre
des larges structures comme des ponts ou des immeubles. Fréquemment, seul un nombre
limité de capteurs est disponible. En conséquence, afin d’obtenir des déformées modales
détaillées malgré une présence limitée de capteurs, des données vibratoires d’une structure
sont mesurées en plusieurs groupes, où quelques capteurs restent fixes et d’autres sont déplacés
entre les sessions de mesures. En fusionnant ces données de différents groupes d’une certaine
manière, l’identification des systèmes est possible comme s’il y avait un très grand nombre de
capteurs, allant même jusqu’à quelques centaines voir milliers. L’excitation entre les sessions
peut varier et l’excitation différente non-mesurée doit être prise en compte pour fusionner
les données. Basé sur [MBBG02a, MBBG02b], une approche globale de fusion est proposée,
où dans une première étape les données de différents groupes sont normalisées et fusionnées,
afin d’identifier dans une seconde étape le système global. Cette approche est entièrement
automatisée et compatible avec toutes les méthodes d’identification en sous-espace. Elle
est modulaire car les données de toutes les sessions sont traitées séquentiellement, et un très
grand nombre de sessions et capteurs peut être traité sans se trouver confronté aux problèmes
de mémoire. Pour ses propriétés théoriques, la consistance non-stationnaire et la robustesse
par rapport à l’ordre de modèle mal spécifié sont prouvées, ce qui valide l’utilisation de cette
approche de fusion sur structure réelle. Elle est appliquée avec succès à plusieurs structures
civiles.

Ĥ(1)

Ĥ(2)

Ĥ(Ns)

Ô(1,ref), Ô(1)

Ô(2)

Ô(Ns)

...
...

SVD + re-scaling

SVD + re-scaling

SVD + re-scaling

identificationmerging
Ô(all) f̂ , ρ̂, ϕ̂(all)

Figure 1 : Schéma de l’approche de fusion développée (Algorithme 4.4). Dans la première étape, les matri-
ces d’observabilité sont obtenues à partir des données et ensuite normalisées. Après, elles sont fusionnées pour
l’identification globale des systèmes.
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Chapitre 5 – Identification rapide en sous-espace aux ordres de
système multiples et croissants

Un problème général pour l’identification de la structure propre d’un système dans le con-
texte de l’OMA est la distinction entre les vrais modes physiques et les modes parasites
qui apparaissent dans les modèles identifiés à cause, entre autre, du bruit coloré, des effets
non-linéaires, de l’excitation non-stationnaire ou d’une spécification trop élevée de l’ordre de
système. D’un autre côté, l’ordre de système doit être présumé plus élevé que le nombre de
modes présents dans les données à cause des effets de bruit. Les modes physiques varient peu
en comparant plusieurs estimations à différents ordres de modèle tandis que les modes para-
sites varient très fortement, il est donc possible de les distinguer grâce à des diagrammes de
stabilisation, où les fréquences obtenues sont tracées contre les ordres de modèle. Pourtant,
cette identification aux ordres multiples est couteuse, surtout pour les larges structures où
les capteurs sont nombreux et les ordres de système élevés. Une procédure de calcul rapide
est proposée dans cette thèse, qui peut être utilisée avec toutes les méthodes d’identification
en sous-espace. Elle réduit le temps de calcul pour l’identification des matrices de système
de O(n4max) à O(n3max), où nmax est l’ordre de modèle maximal. Par exemple, des réductions
du temps de calcul par facteur 200 ont été obtenues.
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Figure 2 : Temps de calcul pour l’identification des matrices de système aux ordres multiples 1, 2, . . . , nmax pour
des différents ordres de modèle maximal nmax. Les algorithmes 5.2–5.5 sont développés dans cette thèse.

Chapitre 6 – Détection des pannes robuste aux changements
de l’excitation par méthodes de sous-espace

Avec un test statistique en sous-espace pour la détection des pannes [BAB00], des données
d’un état possiblement endommagé sont confrontées à un modèle de référence en utilisant
un test χ2 sur le résidu et en comparant le résultat du test à un seuil. En conséquence,
une décision peut être prise si la structure propre d’un système correspondant aux nouvelles
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données est toujours conforme ou non à la référence, sans identifier la structure propre dans
le nouvel état. En utilisant des données de vibrations structurelles, des endommagements
structurels peuvent être détectés avec cet algorithme. Dans le contexte de l’OMA, l’excitation
ambiante n’est pas mesurée et peut varier, par exemple à cause des différences de trafic, de
vent, etc. Toutefois, un changement de l’excitation a une influence sur la valeur χ2 du test et
peut produire des fausses alarmes. Un nouveau test de détection basé sur un résidu robuste
aux changements dans l’excitation est proposé.
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Figure 3 : Test de détection des pannes sous des excitations ambiantes différentes avec des données simulées. A
gauche : test conventionnel, à droite : nouveau test proposé dans cette thèse. Les 16 premières valeurs χ2 sont
calculées dans le système de référence, les 16 valeurs χ2 suivantes sont calculées dans le système en panne où la
raideur d’un élément a été baissée de 5%, et les 16 dernières valeurs χ2 sont calculées avec une baisse de raideur
de 10%. Le nouveau test arrive à distinguer clairement les états de référence des états en panne.

Chapitre 7 – Localisation robuste des endommagements par
méthodes de sous-espace en utilisant des déformées modales
normalisées par rapport à la masse

Une approche de localisation des endommagements est basée sur la détection des changements
dans les paramètres structuraux [BMG04, BBM+08] en utilisant un test χ2. Pour cette
approche, des sensibilités par rapport aux paramètres structuraux, normalement obtenues
d’un modèle aux éléments finis (finite element model, FEM), sont nécessaires. Dans cette
thèse, une approche sans FEM est proposée, où les sensibilités nécessaires sont obtenues
des déformées modales normalisées par rapport à la masse. Celles-ci peuvent être obtenues
par exemple des données OMA en utilisant des mesures où une perturbation connue de la
masse est introduite dans le système étudié. De plus, l’influence réciproque des paramètres
structuraux dans les tests χ2 est étudiée et un algorithme qui rejette cette influence est
proposé. Cela conduit à des résultats plus contrastés dans les tests de localisation entre les
éléments sains et endommagés et contribue à réduire les fausses alarmes.
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Figure 4 : Localisation des endommagements en détectant des changements dans les paramètres structuraux d’un
système simulé à 6 degrés de liberté (DDL). A gauche : réduction de raideur de 5% de l’élément (1,2), à droite :
augmentation de 5% de la masse à DDL 2.

Chapitres 8 and 9 – Applications

Dans ce chapitre, les nouveaux algorithmes de fusion pour l’identification des systèmes en
multiples sessions sont appliqués à l’identification de la structure propre d’une plaque com-
posite et de quatre structures civiles en utilisant des données sortie-seules. Les données de
toutes les structures ont été enregistrées sous conditions opérationnelles, sauf la plaque com-
posite qui a été enregistrée dans le laboratoire. Les analyses de ces structures ont été réalisées
dans le cadre de nombreuses collaborations. Les structures étudiées sont :

� Une plaque composite utilisée dans les hélices d’éolienne, en collaboration avec LMS
(Belgique), le laboratoire Risø (Danemark) et l’Académie Polonaise des Sciences ;

� Le pont Luiz I (Portugal), en collaboration avec KU Leuven (Belgique) et l’Université
de Porto (Portugal) ;

� Le pont Humber (Royaume-Uni), en collaboration avec l’Université de Sheffield ;

� L’immeuble Heritage Court Tower (Canada), en collaboration avec Structural Vibration
Solutions A/S (Danemark) ;

� Le pont S101 (Autriche), en collaboration avec l’Université de Tokyo.

De plus, le test de détection d’endommagement est appliqué à une structure réelle de grande
taille au cours de dommages artificiels progressifs afin de valider sa performance en utilisant
des améliorations de la Section 3.5. Ce travail a été réalisé en collaboration avec l’institut
fédéral allemand de recherche sur les matériaux (BAM). De plus, le rejet de l’influence
réciproque des paramètres structuraux pour la localisation des endommagements (Chapitre 7)
est démontré sur des données fournies par l’Ecole Centrale de Paris, simulée à partir d’un
modèle d’un pont de grande taille.



214 Resume in French

mode 1 - 0.116Hz - 2.8% mode 2 - 0.152Hz - 7.8% mode 3 - 0.174Hz - 5.6%

Figure 5 : Les premiers trois modes du pont Humber. Les données vibratoires du pont Humber ont été enregistrées
en 26 sessions sous des conditions opérationnelles.

Conclusions

Dans cette thèse, des méthodes théoriques ont été développées pour l’identification des
systèmes ainsi que pour la détection et le diagnostic des pannes, qui s’appliquent à l’analyse
modale opérationnelle des données vibratoires structurelles. Les techniques développées
améliorent l’applicabilité des méthodes sous-espace établies sur des données réelles. Les
algorithmes résultants sont plus rapides, numériquement plus robustes et peuvent traiter des
systèmes de plus grande dimension. Ils prennent en compte les propriétés intrinsèques des
données opérationnelles en étant robustes aux changements dans l’excitation, aux éventuelles
nuisances et à une spécification trop élevée de l’ordre de système. L’utilisation des outils
numériques partout dans cette thèse, comme les décompositions QR ou SVD et d’autres cal-
culs matriciels, a rendu possible ces améliorations. L’importance pratique des algorithmes
développés a été démontrée pour l’identification des systèmes et la détection des endommage-
ments de plusieurs structures civiles de grande taille.

Les méthodes développées dans cette thèse sont de différents degrés de maturité. Les
méthodes d’identification des systèmes des Chapitres 4 et 5 ont été testées sur des données
opérationnelles de différentes structures de grande taille. Les algorithmes pour l’identification
modulaire en sous-espace à partir de mesures multi-sessions et pour l’identification rapide en
sous-espace aux ordres de système multiples et croissants ont été transférés à un logiciel
commercial. Les méthodes de détection et de localisation des Chapitres 6 et 7 ont été testées
avec succès sur des données simulées et doivent encore être validées sur des structures de
grande taille. Leur validation sur des structures en laboratoire et en cours en collaborations
avec l’IFSSTAR et BAM. Ces méthodes font aussi partie des projets européens IRIS et ISMS.
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[DM11c] M. Döhler and L. Mevel. Modular subspace-based system identification from
multi-setup measurements. 2011. IEEE Transactions on Automatic Control,
under revision.
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[SDBM+10] D. Siegert, M. Döhler, O. Ben Mekki, L. Mevel, M. Goursat, and F. Toutle-
monde. Vibration monitoring of a small span composite bridge. In Proc. 28th
International Modal Analysis Conference, Jacksonville, FL, USA, 2010.

[SF08] D.M. Siringoringo and Y. Fujino. System identification of suspension bridge
from ambient vibration response. Engineering Structures, 30(2):462–477, 2008.

[SF09] D.M. Siringoringo and Y. Fujino. Noncontact operational modal analysis of
structural members by laser doppler vibrometer. Computer-Aided Civil and
Infrastructure Engineering, 24(4):249–265, 2009.

[SL05] M. Scionti and J.P. Lanslots. Stabilisation diagrams: Pole identification using
fuzzy clustering techniques. Advances in Engineering Software, 36(11-12):768–
779, 2005.

[SMR+09] D. Siegert, L. Mevel, E. Reynders, G. De Roeck, and M. Goursat. Variation
of modal parameter estimates of a prestressed concrete bridge. In Proc. 27th
International Modal Analysis Conference, Orlando, Fl, USA, 2009.

[SNF+10] D. M. Siringoringo, T. Nagayama, Y. Fujino, D. Su, and C. Tandian. Observed
dynamic characteristics of an overpass bridge during destructive testing. In
Proc. 5th International Conference on Bridge Maintenance, Safety and Man-
agement, Philadelphia, PA, USA, 2010.

[SPG03] O.A.Z. Sotomayor, S.W. Park, and C. Garcia. Multivariable identification of
an activated sludge process with subspace-based algorithms. Control Engi-
neering Practice, 11(8):961–969, 2003.

[SPVG97] J. Schoukens, R. Pintelon, G. Vandersteen, and P. Guillaume. Frequency-
domain system identification using non-parametric noise models estimated
from a small number of data sets. Automatica, 33(6):1073–1086, 1997.
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Résumé

L’identification des modes vibratoires est un sujet prioritaire dans le cadre de la surveillance
des structures civiles. Certaines techniques d’identification, les méthodes sous espace, ont
prouvé leur adéquation pour l’identification et la détection de changements dans les car-
actéristiques vibratoires, ceci sous des conditions opérationnelles. Le but de cette thèse est
l’amélioration de l’efficacité et de la robustesse de ces approches pour l’identification vibratoire
et pour la détection des pannes dans les structures de grande taille, équipées d’un grand nom-
bre de capteurs et fonctionnant en conditions environnementales diverses et bruitées. Dans
cette thèse, quatre verrous majeurs ont été levés. D’abord, à partir de mesures collectées à
différents points de mesure et sous différentes conditions environnementales, un algorithme
d’extraction des déformées est proposé, alliant simplicité, modularité et compacité. Ensuite,
une reformulation d’un problème moindre carrés amène à une amélioration conséquente du
temps de calcul, lors du calcul multi ordre utilisé pour séparer les vrais modes de structures
des modes parasites. D’autre part, une approche statistique pour la détection de pannes
est améliorée et modifiée par l’usage d’un résidu robuste aux variations dans l’excitation
ambiante inconnue. Finalement est considéré le problème de localisation de fautes quand
l’absence de modèle aux éléments finis doit être compensée par un calcul direct de sensibilités
à partir des données mesurées. Les différentes méthodes sont validées sur simulations et sont
appliquées avec succès pour l’identification et la détection de fautes sur plusieurs structures
civiles de grande taille.

Abstract

System identification methods are especially attractive to structural engineering for the iden-
tification of vibration modes and mode shapes of structures, as well as for detecting changes
in their vibration characteristics, both under real operation conditions. Focusing on the class
of subspace-based methods, the goal of this thesis is to improve the efficiency and robustness
of system identification and fault detection of large in-operational structures, which are heav-
ily instrumented and work under noisy and varying environmental conditions. In this thesis,
four different hurdles are cleared. Firstly, an algorithm is derived for directly merging sensor
data from multiple measurement sessions at different sensor positions and under different ex-
citation conditions. With a modular and memory efficient approach, global subspace-based
system identification of large structures is possible. Secondly, a reformulation of a least
squares problem leads to a significantly faster computation of system identification results at
multiple model orders, which is used to distinguish true physical modes of a structure from
spurious modes under in-operation conditions. Thirdly, a statistical subspace-based fault
detection method is improved using a residual that is robust to changes in the unmeasured
ambient excitation. Finally, a statistical damage localization test is derived, where required
sensitivities are computed from measured data without the need of finite element model.
The proposed methods are validated on simulations and are successfully applied to system
identification and damage detection of several large-scale civil structures.


