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Testing stationarity is important in signal processing and in many areas of environmental sciences. In real world applications, a special attention should be given to the nonparametric methods, and also to the fact that we often do not know whether a change has occurred, nor do we have any idea where the possible change point(s) could be.

The purpose of this thesis is to develop methods to test stationarity and to estimate the change point of real world signals, more specifically, environmental ones. In this work, the stationarity test and the change point detection are treated as two distinct steps.

The stationarity tests are performed by using two different frameworks: a modified version of an existing technique and a novel one. The existing technique makes use of surrogate resampling for testing stationarity. We propose different contributions to the original method for improving its performance, and for evaluating the robustness of the test against changing outcomes. For the novel framework, we propose to use empirical mode decomposition and block bootstrapping for testing stationarity. This new stationarity test detects trends or evolutions of the local energy of the signal. By comparing with other approaches in the literature, the new method allows for a better detection of slowly-varying nonstationarities of first and second-order.

The tests developed in this thesis reject the stationarity of the whole observation interval. Thus, we propose a framework for change point detection in nonstationary signals, which is based on an existing method called Robust Singular Spectrum Transform (RSST). The method that we develop is nonparametric, data-driven, can detect multiple change points and has shown to work for first and second-order nonstationarities.

Finally, we apply all the developed techniques to an environmental dataset, which corresponds to rainfall signals generated by the Canadian Regional Climate Model (CRCM), a very realistic model that allows for the study of climate change. The consistency of the obtained results confirms the potential of the developed methods.

Résumé étendu

Dans l'analyse des signaux d'origine naturelle, nous sommes souvent confrontés à des situations où nous ne savons pas si un changement s'est produit, ni où le possible point de changement peut être localisé. Cependant, diverses méthodes en traitement du signal reposent implicitement sur une hypothèse de stationnarité, car le cas stationnaire est bien défini dans une perspective théorique. D'un autre côté, tous les processus du monde réel sont a priori non-stationnaires et, dans la majorité des cas, cette supposition se révèle vraie. Etant donné qu'il existe de nombreuses façons par lesquelles la propriété de stationnarité peut être enfreinte, différents tests de stationnarité ont été développés pour tester les différentes formes de non-stationnarité. Cette thèse se concentre sur la conception et l'amélioration des techniques qui peuvent être appliquées aux signaux environnementaux, plus spécifiquement, les signaux hydrométéorologiques.

Les techniques qui ont été développées présentent certaines caractéristiques qui sont préférables pour tester les données environnementales (i.e. être non-parametrique, être capable d'extraire automatiquement les informations des données disponibles, être capable d'identifier un changement dans les moments statistiques du premier et du second ordre). Dans cette thèse, le test de stationnarité et la détection de point de changement ont été abordés séparément: les tests de stationnarité rejettent la stationnarité de tout l'intervalle d'observation, tandis que pour détecter les points de changement, nous testons les signaux pour les quels la stationnarité a déjà été rejetée. Dans ce manuscrit, de nombreuses contributions et de nouvelles approches de ces sujets sont proposées.

Dans la première partie de la thèse, plusieurs contributions sont proposées au test de stationnarité par la méthode des substituts. Cette méthode consiste à échantilloner des signaux stationnaires disposant de la même densité d'énergie que l'observation.

Après avoir décrit les principes de la technique considérée, nous effectuons une étude exploratoire pour identifier des métriques appropriéés pour caractériser la distance d'un spectre instantané à la densité spectrale du signal. Puis, nous appliquons la méthode en utilisant les métriques choisies sur différents exemples de séries temporelle nonstationnaires, où nous constatons les limitations de cette aproche. En particulier, la méthode difficilement détecter des non-stationnarités du premier ordre et celles coriii respondant à des évolutions lentes. Ansi, une modification de la méthodologie originale est proposée. Cette modification consiste à accroitre le contraste du test grâce à une forme de métrique dépendant de l'énergie instantanée du signal à analyser. Cette métrique est neutre dans la caractérisation d'un signal stationnaire et met en évidence les effets d'un comportement non-stationnaire que se traduit également sur l'énergie instantanée. La dernière contribution du chapitre consiste à développer une méthode de bootstrap sur les vecteurs de paramètres extraits des substituts, afin d'évaluer l'évolution des résultats qui peuvent apparaître en appliquant le test plusieurs fois.

Indépendamment des améliorations apportées par les modifications proposées, la méthode des substitus présente toujours des limitations que impactant la détection des changements lents des moments du premier et du second ordre. Néanmoins, la détection de ces formes de nonstationnarité est d'une grande importance pour de nombreuses applications du monde réel. Par conséquent, dans la deuxième partie de la thèse, nous proposons un test original de stationnarité pour tester les dérives lentes. Cette nouvelle approche consiste à décomposer en tendances une estimée lissée de l'énergie instantanée du signal analysé (ou la marginale en temps de sa représentation temps-fréquence) en utilisant de la décomposition modale empirique, qui est une méthode de décomposition non-paramétrique dictée par la série temporelle analysée). Après avoir expliqué les principes de la nouvelle approche, nous définissons comme statistique décisionnelle la fraction des variances du signal d'énergie instantanée sur ce qu'il en reste lorsqu'on y a neutralisé les possibles tendances non-stationnaires. Il est démontré que, en cas d'un signal non-stationnaire, la statistique décisionnelle prendra une valeur supérieure à l'unité, sa valeur nominale en présence d'un signal stationnaire. Par ailleurs, il est vérifié que la distribution de la statistique décisionnele sous l'hypothèse de stationarité peut être modélise par une distribution de type generalized extreme value (GEV). Enfin, la nouvelle approche est comparée à deux techniques paramétriques de la littérature, et de très bons résultats sont obtenus.

Aprés avoir présenté les deux tests de stationarité qui sont abordés dans cette thèse, nous proposons une méthode pour la détection de changements dans les signaux qui auraient été qualifiés de non-stationnaires. Cette partie de la thèse est destinée à compléter l'étude développée dans les deux chapitres précédents, où les tests de stationnarité proposés sont faits pour rejeter la stationnarité de tout l'intervalle d'observation.

Par conséquent, un algortihme spécifique pour détecter les points de changement se fait nécessaire. L'approche proposée est une évolution de la méthode non-paramétrique qui s'appelle Robust Singular Spectrum Transform (RSST). Cette dernière consiste à fenêtrer les données en amont et en aval de l'instant de temps consideré, de manière à définir un sous-espace généré par les données en amont et l'autre par les données en aval. Pour designer si l'instant courant est ou non un point de changement, nouns prenons en compte la valeur d'un paramètre d'intrication des deux sous-espaces. Nous proposons d'analyser la valeur du degré d'intrication en fonction des deux fenêtres choisies pour analyser le signal, où le domaine de variation des deux fenêtres est automatiquement défini au moyen d'un critère empirique. Les instants de changement sont sélectionnés en considérant que l'incertitude associée aux degrés d'intrication observés devra augmenter si l'instant courant est un point de changement. Enfin, la méthode proposée est comparée à l'autre approche non-paramétrique de la littérature.

La dernière partie de la thèse consiste à appliquer toutes les approaches développées sur des données environnementales. Les séries temporelles considérées sont les précipitations journalières maximales par année, sur une période de 139 annés et en 1631 points distribués sur la province du Québec. Les données ont été générées par le Canadian Regional Climate Model (CRCM), un modéle très réaliste qui prend en compte de nombreuses interactions physiques complexes. Les donnés générées par ce modèle ont été utilisées pour les prévisions climatiques sur différentes échelles de temps. Les simulations sont effectuées en deux réalisations distinctes du CRCM. La cohérence des résultats obtenus confirme le potentiel des approches proposées au regard des approches concurrentes. Finalement, nous présentons le lieux où des séries non-stationnaires ont été détectées, ainsi que les instants de rupture correspondants.
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• j:

√ -1

• t: time variable

• f : frequency variable

• I: number of surrogates, or number of IMFs (depending on the application)

• T: length of the observed signal

• N: length of the time marginal (or number of points in time where the spectrograms are computed). Also, number of of points in time where the change point scores are computed (depending on the application)

• h k (t), k = 1, ..., K: first K Hermite window functions

• n h : length in time of the Hermite window functions • γ: threshold for the gamma hypothesis test

• n h0 : free parameter of the surrogate-based test

• ⌊x⌋: floor function, i.e., the largest integer not greater than x

• ⌈x⌉: ceil function, i.e., the smallest integer not less than • θ TI : trend importance estimator

• I NS : index of nonstationarity (for the new stationarity test of Chapter 3)

• B 2 : Zémpleni statistic • Θ TI : vector of the estimates of the importance of the trend under null hypothesis

• T : GEV threshold for the hypothesis test (for the new stationarity test of Chapter 3)

• z(t, w, n): change point score at time t and window values w and n

• p i : proportion of change point scores at the i th iteration

• ζ: point at which p i achieves its maximum (stopping point)

• T z : change score threshold for significant event 

Motivation

Over the last few decades much has been done in developing methods to test signals with respect to stationarity. Considering stationarity is important not only in signal processing and in many areas of technical science (e.g. telecommunications, electronics, automatic control, power systems) but also in the domain of environmental science (e.g.

the study of biological and physical processes, the analysis of time series corresponding to rainfalls, global warming indicators or sunspot records. . .), to cite just a few. Many techniques devoted for analyzing the signals encountered in these fields simply assume the process to be stationary [START_REF] Giannakis | Cyclostationarity Signal Analysis, Digital Signal Processing Handbook[END_REF]. However, the assumption of stationarity often fails to be true, and the physical character of the signal requires a nonstationary approach [START_REF] Martin | Wigner-Ville spectral analysis of nonstationary processes[END_REF].

One could expect a large number of stationarity tests to be available in the literature because stationarity is an important property of many signals. Nevertheless, one could suggest that a simple way to check the stationarity of a given signal is to investigate the physical mechanism underlying this signal. If the mechanism is time-invariant, then the resulting signal is stationary [START_REF] Manolakis | Statistical and Adaptive Signal Processing: Spectral estimation[END_REF]. Unfortunately, drawing conclusion based on physical considerations is often impossible due to the following limitations:

• the inaccessibility of such information,

• the limited knowledge due to the unavoidable finite observation interval,

• the lack of precision in evaluating the time-invariance of the generative process.

While the latter point seems to be a technical or engineering problem, the first and second ones are inherent limitations when analyzing real world process. Therefore, we are forced to rely on statistical methods to evaluate the stationarity [START_REF] Manolakis | Statistical and Adaptive Signal Processing: Spectral estimation[END_REF].

This thesis focuses on nonparametric methods for analyzing nonstationary signals that are suitable for real world processes, more specifically, hydro-meteorological ones.

Probing this kind of data with respect to stationarity is important in many regards, as environmental time series can undergo changes in first and second-order statistics that reflect the behavior of natural phenomena in particular ways. Historically, the interest on practical tests for stationarity used to be under the scope of engineering and related disciplines. However, it has been long ago that the nonstationarity analysis has came to the attention of the environmental sciences, mostly due to the increasingly interest in climate change over the past two decades. Thus, developing methods for identifying particular nonstationary behaviors is of a high importance in many areas of both technical and environmental sciences.

Why is it important to test stationarity?

The classical interpretation of stationarity refers to the invariance of the statistical properties relative to an absolute time. Even though the stationarity property could be defined for all orders, the most important properties of a stationary process are those of second order, which means that only the statistical properties of first and second orders should be time-invariant.

In practice, we often consider only the wide-sense stationarity (WSS). The conditions for a random signal x(t) to be WSS are as follows:

1. its expectation is a constant, independent of the time

E{x(t)} = µ x , (1.1) 
2. its autocovariance function depends only on the difference of the two considered instants E{x(t)x * (s)} = γ x (ts).

(1.2)

Assuming the classical definition of stationarity for many processes, specially those corresponding to real world phenomena, is an illusion and so far from the reality that one could think at a first moment that signal analysis techniques relying on the stationary assumption are the exception, rather than the default. In reality, a large amount of work assume stationarity for applying standard algorithms. Moreover, while the stationary case is well-defined from a theoretical perspective, the nonstationarity is not a well-defined concept [START_REF] Flandrin | Time-Frequency/Time-Scale Anaylsis, ser. Wavelet anlysis and its applications[END_REF]. Even without a rigorous definition, a basic truth has to be acknowledged: all real world processes are a priori nonstationary, and in most cases this assumption turns out to be true. We may wonder what does it mean that a signal is nonstationary? This question has no unique answer, because the stationarity property can be violated in many ways [START_REF] Jarušková | Some problems with application of change-point detection methods to environmental data[END_REF]. Hence, instead of trying to define what a nonstationary process is in a general sense, we analyze how its properties differ from those of a stationary one [START_REF] Flandrin | Time-Frequency/Time-Scale Anaylsis, ser. Wavelet anlysis and its applications[END_REF]. Thus, having stationarity tests that are sensitive to different forms of nonstationarites is required in order to approach the analysis of nonstationary phenomena [START_REF] Basseville | Distances measures for signal processing and pattern recognition[END_REF].

Application to environmental data

Motivation

Scientists are concerned that the impact of human activity on nature may cause major changes [START_REF] Jarušková | Some problems with application of change-point detection methods to environmental data[END_REF]. This concern has been growing in popularity, as climate change became a prominent topic in both scientific and public discourses. In different areas of environmental science, researchers are interested in methods for identifying nonstationarity in hydrologic and climatic time series [START_REF] Rao | Nonstationarities in Hydrologic and Environmental Time Series (Water Science and Technology Library)[END_REF]. One climate-related aspect of nonstationarity that has been reported, for example, is that a change in the rain and snow dynamics can be seen [START_REF] Hirsch | A perspective on nonstationarity and water management[END_REF]. Over the last years, the nonstationary analysis has been the subject of much discussion in the hydrological community, specially after the much cited paper in Science entitled "Stationarity is Dead: Whither Water Management?" [START_REF] Milly | Stationarity Is Dead: Whither Water Management?[END_REF], which has cast doubt on the value of historical data, and has defended the importance of recognizing the inherent nonstationary nature of the hydroclimatic processes.

Nonstationarities seen in environmental data

In environmental applications, we are mostly interested in testing for first and secondorder stationarity. Although identifying changes in high-order statistics might be of Thesis is focused on methods for identifying changes specifically in the mean and the variance. When processing real world data, one has to consider not only the existence of many different types of nonstationarities, but also the fact that an important quantity of information can be found in the nonstationarity itself [START_REF] Flandrin | Time-Frequency/Time-Scale Anaylsis, ser. Wavelet anlysis and its applications[END_REF], like modulations, trends, abrupt changes and change points. Recognizing such nonstationary behaviors is of major importance in many areas of environmental science. For example, in climatology, the identification of a change point might indicate the beginning of a possible climate change [START_REF] Quessy | Statistical inference in Lombard's smooth-change model[END_REF]. In meteorology, characterizing periodic seasonal effect in time series of monthly atmospheric temperature can improve already existing forecasting models [START_REF] Shih | A new forecasting model for nonstationary environmental data[END_REF].

In hydrology, a proper identification of trends in hydrological processes is a crucial point for water resources management [START_REF] Lins | Stationarity: Wanted dead or alive?[END_REF]. It is well-known that hydrological behaviors can also undergo abrupt changes [START_REF] Hirsch | A perspective on nonstationarity and water management[END_REF], as the one that occurred in the series of the annual volume discharge from the Nile River, which has been widely analyzed in the literature [START_REF] Carlstein | Nonparametric Change-Point Estimation[END_REF][START_REF] Dumbgen | The asymptotic behavior of some nonparametric change-point estimators[END_REF][START_REF] Müller | Change-points in nonparametric regression analysis[END_REF], and referred to as a consequence of an abrupt change that occurred in the rainfall regime near the turn of the 20th century [START_REF] Quessy | Statistical inference in Lombard's smooth-change model[END_REF][START_REF] Cobb | The problem of the nile: Conditional solution to a changepoint problem[END_REF].

1.3 What we require from a method for analyzing real world signals?

A brief overview of the literature

In the analysis of real world signals, we are often in a situation where we do not know whether a change occurred nor do we have any idea where the possible change point could be. Putting in this form, one could clear envision the problem in two separate phases:

the stationarity test followed by the change point detection. However, it is common practice in the literature to have methods encompassing both stages, which are often presented simply as algorithms for change point detection [START_REF] Pettitt | A Non-Parametric Approach to the Change-Point Problem[END_REF][START_REF] Jarušková | Some problems with application of change-point detection methods to environmental data[END_REF][START_REF] Lombard | Rank test for changepoint problems[END_REF][START_REF] Brodsky | Nonparametric Methods in Change Point Problems[END_REF]. In a slightly different point of view, some methods are concerned in deciding whether a segment of the observed time series is nonstationary [START_REF] Kay | A new nonstationary detector[END_REF][START_REF] Laurent | Stationarity index for abrupt changes detection in the time-frequency plane[END_REF], where the change points are deemed as the start and end points of the nonstationary segment. One could carry this analysis further, by studying separately the two parts of the signal (before and after the nonstationary segment), and trying to decide (automatically) whether these two parts can be considered stationary, or whether another one can be discovered [START_REF] Basseville | Distances measures for signal processing and pattern recognition[END_REF]. This practice is very important in recognition-oriented signal processing, and refers to the automatic segmentation of signals, i.e. the automatic decomposition of a given signal in local stationary pieces, the length of which varies according to the local characteristics of the signal [START_REF] Mallat | Adaptive covariance estimation of locally stationary processes[END_REF][START_REF] Andre-Obrecht | A new statistical approach for the automatic segmentation of continuous speech signals[END_REF][START_REF] Davy | Detection of abrupt spectral changes using support vector machines an application to audio signal segmentation[END_REF].

Despite the alternatives presented, in real world applications, where often none in- 

Applications:

Detection of slowlyvarying nonstationarities [START_REF] Kay | A new nonstationary detector[END_REF], and abrupt changes in the mean and in the variance [START_REF] Basseville | Detection of Abrupt Changes -Theory and Application[END_REF]. Tests for trend stationarity [START_REF] Kwiatkowski | Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root[END_REF][START_REF] Hobijn | Generalizations of the kpss-test for stationarity[END_REF]. Tests for change in the mean [START_REF] Page | Continuous inspection schemes[END_REF][START_REF] Sen | On tests for detecting changes in mean[END_REF].

Applications: Detection of a changing mean [START_REF] Pettitt | A Non-Parametric Approach to the Change-Point Problem[END_REF][START_REF] Juhl | A Nonparametric adjustment for test changing mean[END_REF]. Detection of smooth and abrupt changes in the mean and in the variance [START_REF] Quessy | Statistical inference in Lombard's smooth-change model[END_REF][START_REF] Lombard | Rank test for changepoint problems[END_REF]. Detection of change points with linear trends [START_REF] Sugiura | Testing change-points with linear trend[END_REF].

Problems:

In cases of signals presenting dependence structure. The necessity of strong assumptions about the statistical distribution of the data. Lack of robustness under unstable parameters.

Problems:

In some cases, with signals dependence structure. Lack of sensitivity to outliers in the data.

• Time-frequency domain

• Time-frequency domain Applications: Analysis of narrowband data, such as vibration signals [START_REF] Yang | Characterize highly oscillating frequency modulation using generalized warblet transform[END_REF], short signals with high frequency resolution [START_REF] Leonowicz | Parametric methods for time-frequency analysis of electric signals[END_REF], and slowly time-varying processes [START_REF] Mallat | Adaptive covariance estimation of locally stationary processes[END_REF]. Segmentation in local stationary pieces [START_REF] Hory | Spectrogram segmentation by means of statistical features for non-stationary signal interpretation[END_REF][START_REF] Djuric | Segmentation of nonstationary signals[END_REF], applications in speech processing [START_REF] Andre-Obrecht | A new statistical approach for the automatic segmentation of continuous speech signals[END_REF][START_REF] Tahir | Time-varying autoregressive modeling approach for speech segmentation[END_REF]. Analysis of AM and FM signals [START_REF] Gianfelici | Multicomponent AM-FM Representations: An Asymptotically Exact Approach[END_REF] 

Applications:

Detection of abrupt changes [START_REF] Laurent | Stationarity index for abrupt changes detection in the time-frequency plane[END_REF].

Detection of transients embedded in noise [START_REF] Bracale | Timefrequency analysis of non-stationary phenomena in electrical engineering[END_REF][START_REF] Borgnat | Stationarization via surrogates[END_REF][START_REF] Xiao | Multitaper time-frequency reassignment for nonstationary spectrum estimation and chirp enhancement[END_REF]. Analysis of AM and FM signals [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF][START_REF] Martin | Detection of changes of signal structure by using the Wigner-Ville spectrum[END_REF].

Problems:

The successful application, without accurate a priori information, is very difficult in practice. Analysis of transient signals.

Problems:

The necessity of a larger representational space than used for the original data. The inherent tradeoff related to the TF localization.

Outlining the desired technique

Having taken a look at some of the methods available in the literature, let us now have an idea of the type of time series we are aiming at testing. In Chapter 5, we apply the techniques developed in this Thesis and other ones found in the literature to rainfall time series generated by a climate model. More specifically, time series corresponding to the annual maximum daily precipitations simulated by the Canadian Regional Climate Model (CRCM) [START_REF] Music | Evaluation of the hydrological cycle over the mississippi river basin as simulated by the canadian regional climate model (CRCM)[END_REF], corresponding to 1631 grid points in Canada. The signals we are interested in have a short length, which refers to a time span of 140 years (1961-2100). This dataset is explained in details in Chapter 5, but in Fig. 1.1 we plotted as an example three annual maximum daily precipitation time series together with the corresponding location in Canada. Usually, visual inspection is the first step in the analysis of stationarity, as it can reveal or suggest possible nonstationary behaviors in the data, and make it easier to choose appropriate tests for stationarity [START_REF] Rao | Nonstationarities in Hydrologic and Environmental Time Series (Water Science and Technology Library)[END_REF]. However, only by visual inspection of the rainfall signals in Fig. 1.1, it is extremely difficult to identify any particular temporal structure, such as a sudden (abrupt) change, a modulation, or a trend, for example. In this case, representing the signal in TF domain is a good choice, as TF representations could tell us something about the structure of the signal that cannot be seen at a first glance: the time variation of the frequency content. It could be seen in Table 1.1 that a variety of options are given by TF techniques, which allow for testing more general forms of stationarity. Also, we shall confine ourselves to the class of nonparametric approaches, as we do not have any a priori knowledge about the functional forms of the signals, and all the information has to be determined entirely from the data [START_REF] Manolakis | Statistical and Adaptive Signal Processing: Spectral estimation[END_REF]. Finally, we should have at our disposal methods that are robust against possible serial correlations in the data. Thus, some desired characteristics of a method for testing the signals shown in Fig. 1.1 could be listed as follows:

Locations in

• Nonparametric,

• Possibly be given in TF domain, so as to offer a richer representation of the signal,

• Fully data-driven,

• Work for short samples,

• Allow for the (off-line) detection of possible change points or nonstationary segment,

• Sensitive to different types of nonstationarity,

• Account for potential serial correlations in the data.

Developing a framework that attend all the items shown above is particularly difficult, as there exist some conflicting requirements. For example, different from parametric techniques, nonparametric ones are not well-suited to test datasets of small size. Furthermore, in general, techniques that allow for the characterization of change points or nonstationary segments are either i) time-based and nonrobust under serial dependence [START_REF] Quessy | Statistical inference in Lombard's smooth-change model[END_REF][START_REF] Lombard | Rank test for changepoint problems[END_REF], ii) parametric and suited only to specific types of nonstationarities [START_REF] Kay | A new nonstationary detector[END_REF][START_REF] Laurent | Stationarity index for abrupt changes detection in the time-frequency plane[END_REF], or iii) are not very reliable when testing small data records [START_REF] Basseville | Distances measures for signal processing and pattern recognition[END_REF]. In order to take into account the different criteria listed above, the stationarity test and the change point problem are approached separately in this Thesis. In the following, we give a brief overview of the techniques proposed in this Thesis.

Stationarity tests

In the statistical literature, testing for stationarity usually means testing the null hypothesis of no change, against the alternative that there exists a time instant when the distribution of the time series changes. Stationarity tests in the TF domain usually consist in testing if a given observed characteristic in the time-varying spectrum of the signal is in accordance with what would be expected in a stationary situation. Thus one can usually compute a "distance from the stationary case" [START_REF] Flandrin | Time-Frequency/Time-Scale Anaylsis, ser. Wavelet anlysis and its applications[END_REF], which can be used as a statistic for testing the null hypothesis of stationarity.

First approach: Testing stationarity with surrogates

A brief description

The method of Chapter 2 tests if S(t n , f ) -the time-varying spectrum estimated at N different time positions {t n , n = 1, ..., N} -is statistically similar to the global spectrum obtained by time averaging. The reason is that, under the null hypothesis, the time varying spectrum reduces to a stationary power spectral density (PSD): S(t, f ) ≃ PSD( f ).

Ideally, stationarity should correspond to an equivalence of the local spectra S(t n , f ) evaluated at every instant {t n , n = 1, ..., N}, and the global spectrum S(t n , f ) n obtained by time averaging. Thus, the distance from the stationary case could be measured by making use of the l 2 -distance:

L(c n , c n n ) = 1 N N ∑ n=1 (c n -c n n ) 2 , (1.3)
where c n is a given dissimilarity measure D(., .) between local ( S(t n , f )) and global spectra ( S(t n , f ) n ) computed for each time point: c n = D( S(t n , f ), S(t n , f ) n ), and c n n is computed by averaging c n over all n = 1, ..., N. In practice, even for stationary sitatuations, the equality of (1.3) with zero for all cases will not exist. Fluctuation will always exist, and we should rather expect a statistical similarity between local and global spectra under the null hypothesis of stationarity. The stationarity test is performed by gathering a collection of (1.3) in stationary situations (by making use of surrogates resampling), and deriving its distribution under the null hypothesis. This distribution allows for the characterization of a given threshold γ, above which the null hypothesis is rejected. Hence, the test is based on the statistics Θ 1 = L(c n , c n n ), and could be written as a one-sided test [START_REF] Xiao | Contributions to nonstationary spectrum estimation and stationarity tests in the time-frequency plane[END_REF] as follows:

     1 if Θ 1 > γ, "nonstationary", 0 if Θ 1 ≤ γ, "stationary".
(1.4)

Advantages of the method and contributions

This nonparametric method was originally proposed in [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF], and uses a data-driven resampling technique (surrogates) for testing stationarity relatively to a global horizon of observation. The original surrogate method presents a good performance in detecting second-order nonstationarities, modulations and sudden changes. In Chapter 2, we present a number of contributions to the original framework:

• we perform an empirical study using many distances D(., .) of different classes, so as to have an idea of the appropriateness of each distance in testing different types of nonstationarity,

• we propose a modification of the method that allows for the detection of first-order nonstationarities, and improves the detection of slowly-varying nonstationarities in certain cases,

• we develop a measure of the robustness of the test, which is useful when only a single realization of the process is available.

Second approach: Testing for trend-based nonstationarity

A brief description

The stationarity test developed and described in Chapter 3 is a new technique suited to detect trends and slow nonstationary evolutions. The basic idea of the method is to identify the presence of a trend and/or an evolution of the local energy of the signal.

We thus test for trends in the time marginal y(t) obtained by summing the time-varying spectrum S(t, f ) over all frequencies: y(t) = ∑ f S(t, f ). In the framework we are interested in, we cannot specify any a priori model to y(t). Thus, we propose to use the empirical mode decomposition (EMD) to estimate trends in y(t) (according to the EMD interpretation). We consider that stationarity should correspond to the case of a trendless time marginal. On the other hand, the cases where a significant trend is detected in the time marginal should correspond to nonstationarity. The distance from the stationary case could be evaluated by using the following measure:

θ TI = Var{y(t)} Var{y(t) -c(t)} , (1.5) 
which evaluates the trend importance in y(t). In (1.5), c(t) is the trend component.

We should have θ TI ≥ 1 for the case of a trended time marginal (nonstationarity), and θ TI ≈ 1 for the case of a trendless time marginal (stationarity). The stationarity test is performed by gathering a collection of (1.5) under the null hypothesis (by making use of block bootstrap technique), and obtaining its distribution in order to characterize a given threshold T , above which the null hypothesis of stationarity is rejected. The test itself is based on the statistics θ TI , and could be written as a one-sided test as follows:

     1 if θ TI > T , "nonstationary", 0 if θ TI ≤ T , "stationary".
(1.6)

Advantages of the new stationarity test

The original method developed in Chapter 3 presents a good performance in detecting trends and slowly nonstationary evolutions. In comparison to other approaches described in the literature devoted to detect such type of nonstationarity, the proposed method has the advantage of being nonparametric and data-driven. Moreover, this approach exhibits an overall better performance in detecting nonstationarities of first and second-order. Also, it is faster than other TF approaches (as the one of Chapter 2), as the computation of many TF representation is not required (the time marginal is estimated directly by numerical convolution with the chosen window). Finally, the proposed method works even in the case of short time series.

Change point detection

The common procedures for change point estimation are based on statistical hypothesis testing [START_REF] Jarušková | Some problems with application of change-point detection methods to environmental data[END_REF]. Usually, the same hypothesis described in the first paragraph of Section 1.4 is considered, but it is assumed that a change does take place in the sample of observation.

The problem of estimating the change point could be written as follows: let {x t , t = 1, ..., T} be a time series with conditional density p θ (x t |x t-1 , ..., x 1 ) with parameter θ = θ 0 before the unknown change time t 0 , and parameter θ = θ 1 after t 0 . The problem consists in estimating the change point t 0 from {x t , t = 1, ..., T} with the maximum possible accuracy [START_REF] Basseville | Detection of Abrupt Changes -Theory and Application[END_REF]. Thus, the common statistical approach for change point detection can be seen as a typical estimation problem for a discrete parameter. Hence, the accuracy of the estimation is dictated by the probability that the estimate belongs to a given confidence interval, or by the bias and variance of the change point estimator.

The approach described above assumes the presence of at most one change point [START_REF] Basseville | Detection of Abrupt Changes -Theory and Application[END_REF][START_REF] Reeves | A review and comparison of changepoint detection techniques for climate data[END_REF]. However, if the time series is long, or other change points are plausible, such strategy can lead to erroneous results, as the effects of the first change point are heavily biased when other unaccounted change points occur [START_REF] Reeves | A review and comparison of changepoint detection techniques for climate data[END_REF]. In this thesis, we have not considered the traditional statistical approach for estimating the change points. The 

Advantages of the proposed framework

This framework is nonparametric, data-driven and has shown to be sensitive to both changes in the mean and in the variance. Also, the proposed framework does not require the observations of the data to be independent. Thus, the proposed method is very flexible and suited to real world applications. Another advantage is that the method offers a richer representational space for the signal, allowing us to visualize the change patterns as function of time and window of analysis.

Chapter 2

New perspectives on testing stationarity with surrogates 

Introduction

As pointed out in Section 1.2, real world signals are predominantly nonstationary, which require the introduction of time as explicit parameter for the analysis. Also, in real world applications we have to deal with complex processes with many spectral components, which are often given without any a priori information. In such situations, TF techniques are natural tools, which consider the temporal dependence of the spectral content of the process [START_REF] Flandrin | Time-Frequency/Time-Scale Anaylsis, ser. Wavelet anlysis and its applications[END_REF].

Given its applicability, a variety of options in nonstationary signal analysis are offered by TF methods. Different from the PSD of WSS signals, there are several ways to represent the time-varying spectrum of a nonstationary process. The advantages and disadvantages of different TF representations are discussed in [START_REF] Flandrin | Time-Frequency/Time-Scale Anaylsis, ser. Wavelet anlysis and its applications[END_REF][START_REF] Boashash | Time Frequency Signal Analysis and Processing: A Comprehensive Reference[END_REF]. Among the emerging alternatives in the literature [START_REF] Jung | Compressive nonstationary spectral estimation using parsimonious random sampling of the ambiguity function[END_REF][START_REF] Bracale | Timefrequency analysis of non-stationary phenomena in electrical engineering[END_REF][START_REF] Hindberg | Kernel-based estimators for the Kirkwood-Rihaczek time-frequency spectrum[END_REF], one could easily categorize parametric [START_REF] Leonowicz | Parametric methods for time-frequency analysis of electric signals[END_REF][START_REF] Yang | Characterize highly oscillating frequency modulation using generalized warblet transform[END_REF][START_REF] Kay | A new nonstationary detector[END_REF] and nonparametric approaches [START_REF] Bayram | Multiple Window Time-Varying Spectrum Estimation[END_REF][START_REF] Jung | Compressive spectral estimation for nonstationary random processes[END_REF][START_REF] Alam | Time-frequency representation of a signal through non-stationary multipath fading channel[END_REF] for analyzing nonstationary signals. In the latter category, the estimates of the Wigner-Ville Spectrum (WVS) for representing the time-varying spectrum are often considered [START_REF] Leonowicz | Modern spectral analysis of nonstationary signals in electrical power systems[END_REF][START_REF] Leonowicz | Time-frequency analysis of non-stationary three phase signals[END_REF][START_REF] Iqbal | Wigner-ville distribution of a type of non-stationary mobile rayleigh fading channels[END_REF]. In the past, the Wigner-Ville Spectrum has already been used for the analysis of nonstationary processes [START_REF] Martin | Wigner-Ville spectral analysis of nonstationary processes[END_REF][START_REF] Martin | Detection of changes of signal structure by using the Wigner-Ville spectrum[END_REF]. Recently, a novel stationarity test based on WVS estimates was published [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF].

The test is performed by gathering a collection of surrogates as stationary versions of the signal [START_REF] Schreiber | Surrogate time series[END_REF][START_REF] Theiler | Testing for nonlinearity in time series: the method of surrogate data[END_REF]. Then the surrogates are used to learn the statistics of a null hypothesis of stationarity. The key point of this method is to use the local and global spectral properties of the time-varying spectrum for identifying the stationarity. As these local and global characteristics will not be completely identical, even for stationary situations, a hypothesis test is designed to specify whether or not the observed fluctuations are due to a nonstationarity. The stationarity test is described in details in Section 2.2.

The method presented in [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF] considers that stationarity should not be regarded as an absolute property. Instead, a more empirical interpretation of stationarity is adopted for taking into account some practical considerations often faced in real world applications. For instance, it is assumed that stationarity not only refers to stochastic processes with time-invariant statistics, but also to deterministic signals with spectral properties that are time-invariant. Also, since stationarity is a property being evaluated over a finite time interval, it should be given relatively to a scale of time or observation. Moreover, we should be able to test for stationarity given only one observable realization of the process, as it is generally the case in many applications. This generalized notion of stationarity has been referred to as operational stationarity , which can be more conveniently tested in practice.

Detailing the contributions of this chapter

The original framework leaves room for further improvements in various aspects. As it will be seen in the following Section, the procedure contains many different steps, so there are many points in the original methodology deserving a deeper investigation.

It should be remarked that [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF] proposes two approaches for testing stationarity with surrogates: i) the use of suitably chosen distances between local and global spectra for measuring the spectral fluctuation, ii) the implementation of a one-class classifier that uses the surrogates as a learning set for stationarity. All the contributions presented in this Chapter are made considering only the first case. Although putting the stationarity test in the context of learning theory is an interesting alternative, we have not led this work towards that direction. Instead, we have carried out a deeper analysis on the use of a proper distance for comparing local and global time-frequency features. In this regard, we have proposed three contributions to the original method:

• We study in detail the effects of using different distances. The chosen ones are described in Section 2.3, and the results of using the selected distances are shown in Section 2.4. This study highlights how difficult it is for the original framework to detect first-order nonstationarities, and nonstationarities varying slowly as a trend.

• We propose a modification that improves the performance of the test in certain cases, and increases the detection rate of first-order nonstationarities. In Section 2.5, we start by defining what we expect from the modified method in an ideal case. Then, we establish a condition for the parameters of the modified test to attend. In Section 2.6, we propose a procedure for changing the test that would attend the defined condition. In Appendix A.1, we demonstrate why this proposed procedure works.

• Finally, we develop a measure to evaluate the robustness of the test due to the different results that may appear by applying the method sequentially. This contribution is described in Section 2.7.

Testing stationarity with surrogates

For developing a framework in TF domain, while taking into account the considerations on the operational stationarity presented in Section 2.1, one should design a method that works for one realization of finite duration of a given signal. As far as the representation is concerned, it is common to consider the general class of estimators belonging to the Cohen's class. All distributions in this class can be interpreted as estimators for the WVS [START_REF] Flandrin | Time-Frequency/Time-Scale Anaylsis, ser. Wavelet anlysis and its applications[END_REF]. The WVS of a given signal {x(t), t ∈ R} is expressed as:

W x (t, f ) = ∞ -∞ E x t + τ 2 x * t - τ 2 e -j2πτ f dτ (2.1)
where E{•}, t and f stand for the expectation operator, time and frequency, respectively.

The WVS possesses many good properties that are extensively explained in the literature [START_REF] Flandrin | Time-Frequency/Time-Scale Anaylsis, ser. Wavelet anlysis and its applications[END_REF][START_REF] Boashash | Time Frequency Signal Analysis and Processing: A Comprehensive Reference[END_REF][START_REF] Martin | Wigner-Ville spectral analysis of nonstationary processes[END_REF][START_REF] Matz | Wigner distributions (nearly) everywhere: timefrequency analysis of signals, systems, random processes, signal spaces and frames[END_REF]. Thus, estimates of the WVS are commonly used for representing the timevarying spectrum of nonstationary signals. For estimating the WVS, one can make use of the spectrogram (a member of Cohen's class), or its modified (improved) version, the multitaper spectrogram:

S K (t, f ) = 1 K K-1 ∑ k=0 S h k (t, f ), (2.2) 
which is obtained by averaging K different spectrograms (S h k (t, f )) at the time instants {t n , n = 1, ..., N}. The spectrograms are the squared magnitude of the Short-Time Fourier Transform (STFT) of the signal, computed by using K different window functions h k (t):

S h k (t, f ) = x(s)h k (s -t)e -j2π f s ds 2 .
(2.

3)

The multitaper spectrogram reduces the variance of the estimation by projecting the observation on a family of orthonormal basis functions {h k (t), k ∈ N} [START_REF] Bayram | Multiple Window Time-Varying Spectrum Estimation[END_REF][START_REF] Xiao | Multitaper time-frequency reassignment for nonstationary spectrum estimation and chirp enhancement[END_REF]. In [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF], the Hermite functions were chosen as such basis. These functions are not only orthonormal, but also maximally concentrated in TF domains with elliptic symmetry.

By construction, the length n h of the windows h k (t) should contain an odd number of samples. For computing the time positions t n , the spacing ∆ t = t n+1t n , and the number of points in frequency (N FFT ) used for the multitaper spectrograms, we need to specify the parameter n h0 , which is one degree of freedom of this method. The expression of n h0 associates the length of the signal (T) with an adjustable fraction of the chosen window (n h ) [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF]:

n h = 2nint Tn h0 2 -1, (2.4) 
where the function nint(x) returns the nearest integer to x. Then, for obtaining N FFT and ∆ t , we use, respectively, the following expressions:

N FFT = 2 ⌈log 2 n h ⌉ , (2.5) 
∆ t = n h + 1 8 , (2.6) 
where the functions ⌊•⌋ and ⌈•⌉ are the floor and ceiling functions, respectively.

The rationale behind this technique is the following: for a given signal x(t), testing for stationarity in the operational sense amounts for testing the temporal invariance of S K (t, f ) over the chosen observation interval T. Quantitatively, it means that the local spectra S(t n , f ) at every time instant {t n , n = 1, ..., N} are statistically equal to the global average spectrum

S(t n , f ) n := 1 N N ∑ n=1 S(t n , f ). (2.7)
In practical applications we will always observe fluctuations in the local spectra.

The originality of the method consists in giving significance to these fluctuations by constructing stationarized references of the signal using only the available data. k] , and then by replacing its phase Φ[k] by the random sequence

X[k] = A[k]e -jΦ[
Ψ[k]
which is uniformly distributed over [-π, π]. By applying the inverse Fourier transform we can obtain as many stationary surrogates as phase randomizations are performed:

x[n] = 1 N T ∑ k X[k]e j2πnk/N T → s[n] = 1 N T ∑ k A[k]e jΨ[k] e j2πnk/N T . (2.8)
In [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF], it is shown that by adopting Ψ[k] as phase sequence, the covariance function of the surrogate s[n] reduces to: 

Cov(s[n], s[m]) = 1 N 2 T ∑ k E{A 2 [k]}e j2π(n-m)k/N T , ( 2 
n := D [S K (t n , f ), S K (t n , f ) n ] , n = 1, • • • , N}, (2.11) 
corresponding to the same time instants where the multitaper spectrograms are being computed. Now, the variance of the distance vector in (2.11) is taken as a measure of the spectral fluctuation of the time-varying spectrum of the signal itself:

Θ 1 = Var c (x) n , ( 2.12) 
where in practice, (2.12) is estimated by:

Θ 1 = 1 N -1 N ∑ n=1 c (x) n -µ c x 2 , ( 2.13) 
where µ c x stands for the sample mean of c (x)

n . Putting it in the form of a one-sided test, this variance will be the test statistic.

The hypothesis test is given by:

d(x) =      1 if Θ 1 > γ, "nonstationary", 0 if Θ 1 ≤ γ, "stationary".
(2.14)

The threshold γ above which the null hypothesis of stationarity is rejected is obtained from (2.10), the collection of distances of the surrogate set. To compute γ, the variance of each distance vector {c (s i ) n , i = 1, ..., I} is calculated, leading to a vector of I variances:

Θ 0 (i) = Var{c (s i ) n }, i = 1, ..., I , (2.15) 
In practice, the individual variances Var{c

(s i ) n } in (2.
15) are estimated by

σ 2 s i = 1 N -1 N ∑ n=1 c (s i ) n -µ c s i 2 , i = 1, ..., I,
where µ c s i is the sample mean of the i th distance vector in the collection {c

(s i ) n , i = 1, ..., I}.
We do not use the crude histograms from (2.15) for approximating the distribution under the null hypothesis. Instead, it is proposed to model the distribution of Θ 0 (i) by a gamma pdf, where its two parameters are estimated by maximum likelihood . An empirical study carried out by [START_REF] Xiao | Contributions to nonstationary spectrum estimation and stationarity tests in the time-frequency plane[END_REF] has shown that the distribution of Θ 0 (i) can be fairly well approximated by a gamma pdf. Assuming the gamma model holds, a threshold γ is derived above which the null hypothesis of stationarity is rejected [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF].

Finally, an index of nonstationarity (INS) is proposed. It is a function of the ratio between the test statistic Θ 1 and the mean value of Θ 0 (i), obtained from the surrogate set. If the signal happens to be stationary, INS is expected to take a value close to unity.

On the other hand, the more nonstationary the signal, the larger the index [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF].

INS = Θ 1 Θ 0 (i) i (2.16)
An application of the stationarity test is illustrated in Fig. 2.1, where we have considered a false alarm rate of 5%. The test was applied to two time series with length T = 300. The first one is a zero-mean stationary Gaussian process with σ 2 = 1 (Fig. 2.1(a)). The second one is a nonstationary Gaussian process with µ = 0 and an ever-growing variance increasing linearly in time from t = 1 to t = 300 (Fig. 2.1(c)).

Notice that the value of Θ 1 (the test statistic estimated from the original signal), is in the middle of the distribution in the stationary case (Fig. 2.1(b)). On the other hand, for the nonstationary signal, the value of Θ 1 appears clearly as an outlier (Fig. 2.1(d)).

Notice that the INS value is significantly larger for the nonstationary signal. Also, one can verify the gamma fit applied to the histograms of Θ 0 . As pointed in [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF], we only need a reduced number of surrogates (I ≈ 50) for obtaining a reasonable approximation with the gamma model. Having presented the stationarity test of [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF], it can be seen that the framework contains many different steps (i.e. surrogate resampling, computation of a distance between local and global spectra, gamma modeling), which call for a deeper investigation. In this regard, in the next Section, we investigate the effects of using different distances. This effort is the first contribution of this Thesis, and aims at finding an appropriate distance for a given application.

The influence of choosing an adequate distance

The dissimilarity measure between the local and the global spectra is a significant aspect of the proposed approach. In fact, the fluctuation of the distances is the key point to reject or accept the hypothesis of stationarity. Consequently, for the same signal and test parameters, different results can be obtained by using different distances, be they completely different or similar in nature [START_REF] Basseville | Distances measures for signal processing and pattern recognition[END_REF].

Choosing the most appropriate distance for a given test application is not an easy task. Insofar, one would consider many aspects to support the choice of a given distance.

Without entering into many details, we could roughly list them as: the features from the signal being tested (its length, spectral content, etc.), which kind of nonstationarity we are aiming at detecting (exclusively first or second-order, or up to the second-order).

A robust distance

One may suggest to always use a dissimilarity measure that leads to a good performance. Unfortunately, the notion of "good performance" itself might be dubious at certain occasions. For example, by applying the test to a nonsynthetic signal with no a priori information about it or its generative system, we cannot be sure if the signal is being correctly classified as being stationary/nonstationary. Nevertheless, the result of the test may vary at every application due to the randomness of the surrogate set, even if we are testing the same realization of the signal. Considering all the drawbacks, we could at least search for a distance that leads to less fluctuations in the results, be the test signal synthetic or not. So, in the sense of test consistency, we propose here to call it a robust distance. A deeper analysis on robust distances is carried out in Section 2.7, where different measures for evaluating the robustness are presented. By now, it should be remarked that repeating the test with different distances and comparing the results is highly advisable in any situation.

The different classes of distances

Dissimilarity measures of different types have been commonly used in signal processing for solving problems such as pattern recognition, segmentation, classification, detection, etc. Hence, there is a variety of distances available in the literature [START_REF] Basseville | Distances measures for signal processing and pattern recognition[END_REF]. The various distances could be classified in different ways, the classical manner being based on probability vs. frequency-based or symmetric vs. nonsymmetric classes [START_REF] Basseville | Distances measures for signal processing and pattern recognition[END_REF]. In this section we briefly present the different classes of distances that are considered in this work.

Frequency and probability-based distances

Probability-based distances (often referred to as divergences) quantify the dissimilarity between two statistical objects, as probability distributions, for instance. Although the distances are essentially computed in the frequency domain, dissimilarity measures of probability nature can be conceived due to the probabilistic interpretation of TF distributions [START_REF] Flandrin | Time-Frequency/Time-Scale Anaylsis, ser. Wavelet anlysis and its applications[END_REF]. As the two spectra to be compared are always positive, they only need to be normalized to the unity for characterizing a probability distribution. The remoteness of two probability distributions is commonly measured by using divergence functions [START_REF] Liese | On divergences and informations in statistics and information theory[END_REF].

The divergence in the context of statistics establishes a notion of distance different from the classical one, as the divergence not necessarily satisfy metric requirements. There exist different classes (or families) of divergences, the most common one being the socalled f-divergence class [START_REF] Basseville | Divergence measures for statistical data processing[END_REF]. In this work, all the probability-based distances belong to the family of f-divergences [START_REF] Basseville | Distances measures for signal processing and pattern recognition[END_REF].

Frequency-based distances are computed directly from the spectra, and consequently their understanding is more intuitive. However, even though spectral distances are easily defined in the frequency domain, they are most of the time computed numerically, without reference to this domain [START_REF] Basseville | Distances measures for signal processing and pattern recognition[END_REF]. Spectral distances are aimed at comparing distributions in both shape and level. It is an advantage, since in the application considered here, the spectra from where the distances are being computed share the same band.

Symmetric and nonsymmetric distances

It should be remarked that distance in the context being used in this work, refers to a measure of how far away from each other two spectra are (with the inherent probabilistic interpretation). So, a given distance may not satisfy the necessary conditions to be a metric (i.e. positive-definiteness conditions, symmetry condition and triangle inequality [START_REF] Allen | Signal analysis: time, frequency, scale, and structure[END_REF]). In fact, many statistical distances are not metric, since they do not attend one or more requisites to be classified as so. One of the metric properties that are not presented by all distances is the symmetry. Here, we used symmetric and nonsymmetric distances.

However, it should be noted that a nonsymmetric distance between two spectra H and G could be easily symmetrized as follows [START_REF] Basseville | Distances measures for signal processing and pattern recognition[END_REF]:

d (q) (H, G) = 1 2
{d(H, G) q + d(G, H) q } 1/q , with q ≥ 1.

(2.17)

Mixed domain distances

Finally, a mixture of distances could also be performed, combining symmetric, nonsymmetric, frequency and probability-based ones, so as to take advantages of the different classes. Usually, one sets a trade-off parameter in order to control the significance given to a particular distance. 

D KL ( G, H) = ∑ f G( f ) -H( f ) log G( f ) H( f ) (symmetric) Kolmogorov D KM ( G, H) = ∑ f H( f ) -G( f ) (symmetric) Matusita D MT ( G, H) = ∑ f H( f ) -G( f ) 2 (symmetric) FREQUENCY-BASED DISTANCES Distance Expression Itakura-Saito D IS (G, H) = ∑ f G( f ) H( f ) -log G( f ) H( f ) -1 (nonsymmetric) Log-Spectral D LS (G, H) = ∑ f log G( f ) H( f ) (symmetric) Diffusion D DF (G, H) = L ∑ l=0 ||d l ( f )||, where d l ( f ) =      |G( f ) -H( f )| for l = 0, d l-1 ( f ) * e -f 2 /2σ 2 (2π) 1/2 f for l = 1, ..., L. (symmetric) Itakura-Saito D SIS (G, H) = 1 2 ∑ f G( f ) H( f ) + H( f ) G( f ) -2 (symmetric) MIXED DOMAIN DISTANCES Distance Expression Combined D CB (G, H) = D KL ( G, H) [1 + D LS (G, H)] (symmetric)

Selected distances

There are many distances in the literature belonging to the previous classes. In this work, we have selected a total of eight distances, covering a variety of classes (three probability and four frequency-based distances, one symmetrized and one combined distance). The chosen dissimilarity measures, in comparison with others of the same class, present a better performance. They are presented in Table 2.1. The expressions include two positive spectra H( f ) and G( f ), and their modified versions H( f ) and G( f ), which were normalized to unity in order to be in accordance with those distances of probability nature [START_REF] Basseville | Distances measures for signal processing and pattern recognition[END_REF].

The distances of probability nature in Table 2.1 belong to the f-divergence class; the well-known Kullback-Leibler divergence (D KL ), the Kolmogorov distance (D KM ), which is probably the simplest one, and a generalization of the Kolmogorov case, which is the Matusita distance (D MT ). Usually, the Kullback-Leibler divergence is used as a nonsymmetric measure, whereas here D KL is symmetric, as originally adopted in [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF].

The chosen distances of frequency nature were the Itakura-Saito (D IS ), Log-Spectral (D LS ), Diffusion (D DF ) and the symmetrized version of the Itakura-Saito (D SIS ). The Itakura-Saito distance measures the percentual difference between a spectrum and its approximation. It is a nonsymmetric dissimilarity measure, however we can easily symmetrize it by means of (2.17) (with q = 1), leading to the symmetrized Itakura-Saito distance. The Log-Spectral deviation is defined by the L q norm of the difference between the logarithms of the spectra, and this is probably the oldest one used in speech processing [START_REF] Basseville | Distances measures for signal processing and pattern recognition[END_REF]. The diffusion distance treats the difference between G( f ) and H( f ) as an isolated temperature field and considers the diffusion process on that field. For discretizing the continuous diffusion process, we use a Gaussian pyramid with l = 0, ..., L different layers [d 0 ( f ), ..., d L ( f )], and a constant standard deviation (σ). The diffusion distance is then considered as the sum of norms over all pyramid layers [START_REF] Ling | Diffusion distance for histogram comparison[END_REF].

Finally, the chosen combined distance D CB stands for the dissimilarity measure originally used in [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF]. Performing a mixture of distances is considered as a way to take advantage of the different characteristics of distances belonging to distinct classes. The two distances combined are the Kullback-Leibler and Log-Spectral ones.

Testing with different distances

After presenting the selected distances in Table 2.1, we show the results of the stationarity test described in Section 2.2 by using different measures. Various nonstationary signals were created to assess the performance of the test. We considered nonstationary time series corresponding to various situations: nonstationarity of the mean, of the variance, of both the mean and the variance, following the Abrupt-change and the Onset-of-trend model. These are special cases of the more general smooth-change model proposed by Lombard [START_REF] Lombard | Rank test for changepoint problems[END_REF]. The temporal patterns represented by the Lombard's model is similar to what is observed in many areas of environmental science, such as hydrology and climatology. More specifically, given the time series X = (x 1 , ..., x T ) of length T, with observations taking equal time intervals, where

F i (x) = P(x i ≤ x). If one is interested in changes of a given parameter θ i = Θ(F i ), i ∈ [1, T],
where Θ is a functional of a particular interest, e.g. the mean or the variance, the series is said to follow a smooth-change model if

θ i =              ξ 1 , i ∈ {1, ..., κ 1 }, ξ 1 + (i -κ 1 )(ξ 2 -ξ 1 ) (κ 2 -κ 1 ) , i ∈ {κ 1 + 1, ..., κ 2 -1}, ξ 2 , i ∈ {κ 2 , ..., T}.
(2.18)

where ξ 1 and ξ 2 are the parameter values before and after change, respectively [START_REF] Quessy | Statistical inference in Lombard's smooth-change model[END_REF]. The abrupt-change model is obtained when κ 1 = κ and κ 2 = κ 1 + 1, where the κ represents the change point:

θ i =      ξ 1 , i ∈ {1, ..., κ}, ξ 2 , i ∈ {κ + 1, ..., T}. (2.19)
On the other hand, the onset-of-trend model represents a gradual transition from the initial parameter value ξ 1 to the final value ξ 2 . This refers to the special case when one sets κ 2 = T: 

θ i =              ξ 1 , i ∈ {1, ..., κ}, ξ 1 + (i -κ)(ξ 2 -ξ 1 ) (T -κ) , i ∈ {κ + 1, ..., T -1}. ξ 2 , i = T, ( 2 

Modifying the method

As it can be seen in Table 2.2, the test could not detect some nonstationarities even by using different distances. Not surprisingly, first-order nonstationarities were the most difficult ones to be detected. However, even second-order nonstationarities could not be detected properly by using some distances. Clearly, the performance of the test has to be improved, and it can be achieved by modifying the method according to the procedure proposed in this Section.

An interesting way to start with is by defining what we expect from the stationarity test after modifying it. Consider that the test has been accepting the null hypothesis for a given signal, and we want to increase the sensitivity to nonstationarity. Ideally, we search for a procedure that improves the method in a sense that:

• If the process is nonstationary, it will be more likely for the test to reject the null hypothesis of stationarity, • If the process is stationary, the test will keep accepting the null hypothesis.

This expected profile of the modified method can be put in terms of the gamma model.

More specifically, let us denote k, θ, γ, Θ 1 and k ′ , θ ′ , γ ′ , Θ ′ 1 the gamma parameters (shape and scale), threshold and test statistic obtained before and after modifying the method, respectively. Thus, we will more likely reject the stationarity if, in comparision to Θ 1 and γ, Θ ′ 1 is closer to or greater than γ ′ . Hence, in this case we should have:

F(Θ ′ 1 ; k ′ , θ ′ ) -F(γ ′ ; k ′ , θ ′ ) > F(Θ 1 ; k, θ) -F(γ; k, θ) (2.21)
where F(x; k, θ) is the gamma cdf of a random variable x. Conversely, we will keep accepting the null hypothesis if, after modifying the test we have:

F(Θ ′ 1 ; k ′ , θ ′ ) -F(γ ′ ; k ′ , θ ′ ) ≤ F(Θ 1 ; k, θ) -F(γ; k, θ). (2.22)
Note that for a stationary signal Θ 1 is expected to stand in the middle of the distribution and F(Θ 1 ; k, θ) -F(γ; k, θ) should be negative. Since the gamma cdf evaluated at the chosen threshold (say, 0.95) should be necessarily 

F(γ; k, θ) = F(γ ′ ; k ′ , θ ′ ) = 0.
; k ′ , θ ′ ) > F(Θ 1 ; k, θ) and F(Θ ′ 1 ; k ′ , θ ′ ) ≤ F(Θ 1 ; k, θ)
, respectively. So, now we can rephrase what we expect from the test after modifying it in terms of the gamma distribution:

• If the process is nonstationary, obtain F(Θ ′ 1 ; k ′ , θ ′ ) > F(Θ 1 ; k, θ)
, which means that the test is more susceptible to reject stationarity,

• If the process is stationary, obtain

F(Θ ′ 1 ; k ′ , θ ′ ) ≤ F(Θ 1 ; k, θ)
which means that the test keeps accepting the null hypothesis.

Therefore, a methodology for improving the stationarity test can be envisioned by developing a procedure that gives

F(Θ ′ 1 ; k ′ , θ ′ ) > F(Θ 1 ; k, θ) if the signal is indeed non- stationary, or keeps F(Θ ′ 1 ; k ′ , θ ′ ) ≤ F(Θ 1 ; k, θ)
otherwise. This scheme is illustrated in Fig. 2.3, where the conditions above and the gamma cdf are shown. Now, it is straight- forward to extend these conditions to the gamma parameters. To do so, we represent the gamma cdf evaluated at Θ 1 as:

F(Θ 1 , k, θ) = 1 θ k Γ(k) Θ 1 0 u k-1 e -u θ du = γ(k, Θ 1 θ ) Γ(k) , (2.23) 
where γ(k, Θ 1 θ ) is the lower incomplete gamma function. Then, we can express the condition

F(Θ ′ 1 ; k ′ , θ ′ ) > F(Θ 1 ; k, θ)
for the gamma cfds simply as:

γ k ′ , Θ ′ 1 θ ′ Γ(k ′ ) > γ k, Θ 1 θ Γ(k) . ( 2 

.24)

A key point is that the function γ(k, s)/Γ(s) (if one sets s = Θ 1 /θ), decreases with k and increases with s. It can be seen in Fig. 2.4, where we have plotted γ(k, s)/Γ(s) for k, s > 0. It can be also verified by representing the incomplete gamma functions in (2.24) by their homomorphic expansions, and then by rewriting (2.24) as follows:

∞ ∑ i=0 (Θ ′ 1 /θ ′ ) i+k ′ e -Θ ′ 1 /θ ′ Γ(k ′ + i + 1) > ∞ ∑ i=0 (Θ 1 /θ) i+k e -Θ 1 /θ Γ(k + i + 1) , (2.25) 
where the decaying with k could be verified due to the rapid growth of Γ(k + i + 1) as k grows. Hence, based on the behavior of the incomplete gamma function, a sufficient but not necessary condition for the inequality (2.24) to hold is given if both relations are attended: For improving the nonstationarity detection, one could change the stationarity test in a sense that, after its application, the new parameters of the approximated gamma model (k ′ , θ ′ ) and the new test statistic Θ ′ 1 follow the conditions shown in (2.26) if the underlying signal is nonstationary, but not necessarily otherwise. Note that, while stationarity is a well-defined property, nonstationarity can be seen as a non-property [START_REF] Flandrin | Time-Frequency/Time-Scale Anaylsis, ser. Wavelet anlysis and its applications[END_REF], and there are many ways by which the stationarity can be violated. Thus, in practice, as we do not know a priori about the stationarity/nonstationarity of the signal, we have to search instead for a nonstationary characteristic. More specifically, for enhancing the nonstationarity detection, one could develop a procedure that gives:

k ′ < k and Θ ′ 1 θ ′ > Θ 1 θ . ( 2 
k ′ < k and Θ ′ 1 θ ′ > Θ 1 θ
If the underlying process presents a clear nonstationary characteristic. This condition means that the modified test will more likely reject the stationarity, (2.27) where many different types of nonstationary behaviors can be imagined. In this work, we analyze if the time-varying spectrum undergoes a structured evolution in time. Having extended the conditions for improving the test to the gamma parameters, we define in the following Section the procedure developed to guarantee (2.27).

Weighted distances

When computing Θ 0 , the vector of variances of the distances between local and global spectra (from where the gamma distribution is approximated), no consideration was taken about the spectral content of the signal. Different nonstationary processes can have a spectral content spread in time in a particular way. For example, let us consider the signals and TF representations shown in Fig. In general, a signal with a varying mean is not expected to have a spectral content as significant at high frequencies as a signal with varying variance. However, if the mean varies sufficiently fast at a given time location, as it is shown in Fig. 2.5(a), there will be strong high frequency components around that local in the TF spectrum. Nevertheless, even for signals possessing a slowly varying variance, gradually changing according to the onset-of-trend model, the time-varying spectrum will undergo a structured evolution in time, as it can be seen in Fig.

2.5(b).

Therefore, we propose to use this temporal information of the TF spectrum to modify the distance vectors (and consequently Θ 0 ), according to the following procedure:

1. Given an observed signal x(t) with TF spectrum S(t n , f ) evaluated at N time po- sitions {t n , n = 1, ..., N}, compute the time marginal series y(t n ) = ∑ f S(t n , f ) and normalize it to the unity [ y(t n ) = y(t n )/ max y(t n )] to obtain the weighting vector { y n , n = 1..., N}.
2. Use y n to weight the distance vectors multiplicatively, i.e. { c

(x) n = y n c (x) n , n = 1, ..., N} and { c (s i ) n = y n c (s i ) n , n = 1, ..., N}, where c (x) n and c (s i )
n are, respectively, the weighted distance vectors for the original signal and the i th surrogate.

3.

Collect the vector of weighted distances for i = 1, ..., I surrogates and compute their variances. The result will be a new vector {Θ ′ 0 (i), i = 1, ..., I}. Differently from Θ 0 , the vector Θ ′ 0 carries information about the time location of the spectral content.

If we modify the stationarity test according to the procedure above, we attend the conditions for k, θ and Θ 1 shown in (2.26), and consequently enhance the nonstationarity detection (mainly for first-order nonstationarity). The demonstration of why the weighting procedure improves the stationarity test is given in Appendix A.1. It should be remarked, however, that in most of the cases the improvement in the performance of the test is only achieved by using frequency-based distances. By weighting the probabilitybased distances according to the procedure above, we end up affecting significantly the performance of the method. The explanation of why the weighting procedure is not appropriate for probability-based distances is also given in Appendix A.2. One could have noted that there are other ways to obtain the required information from the TF plane, and consequently, to modify the method. Recall that the distances are computed from local spectra at specific time instants. Hence, while the distances take as input functions of frequency, their output are functions of time. Thus, there are two strategies to create the weighting vector: either to build it in time (as proposed above) or in frequency.

If we sum over time (which gives the marginal in frequency), and use the resulting vector to multiply the spectra at the input of a given distance, we will be giving more importance to the most significant frequencies of the TF representation (globally). However, the spectral content of the surrogates has to be randomly spread over the TF plane, and this randomness is affected by forcing the spectra of the surrogates to be concentrated around a certain frequency. Moreover, the marginal spectrum of the surrogates will not be equal to the one of the original signal. The procedure for choosing the correct marginal is shown in Fig. 

Testing the modified approach

For evaluating the modified method, we reapply the stationarity test to the same signals

shown in Fig. 2.2.
The results are presented in Table 2.3 as percentage of observed "nonstationary" outcomes over all realizations, for both the original and modified stationarity test. Note that, due to the aforementioned problem involving weighting probabilitybased distances (see Appendix A.2), the performance of the modified test was indeed much worse for distances of probability nature than it was before or compared to the distances of frequency nature. Nevertheless, it can be seen that the overall performance of the modified approach was improved for the frequency-based distances (these cases are highlighted in Table 2.3), at the expense of a slight increase in the misclassification rate of the statationary signals. In order to verify if the estimated gamma parameters really attended the conditions set in (2.27) for improving the test, we show in Table 2.4, for the frequency-based distances, the arithmetic average of (k, Θ 1 /θ) and (k ′ , Θ ′ 1 /θ ′ ) computed for the 1000 realizations of the signals with T = 300 and T = 1050 shown in Fig. 2.2. Note that, despite a few exceptions, the proposed procedure gives k ′ < k and

Θ ′ 1 /θ ′ > Θ 1 /θ in the average.
Finally, it can be seen that the detection of trend-based nonstationarities represented by the onset-of-trend models still has to be improved. One could point out that the surrogate approach is not the most appropriate choice for testing slowly-varying nonstationarities that appear as trends, while there exist parametric methods for testing this kind of nonstationarity [START_REF] Hobijn | Generalizations of the kpss-test for stationarity[END_REF][START_REF] Kay | A new nonstationary detector[END_REF] 

k k ′ Θ 1 /θ Θ ′ 1 /θ ′ k k ′ Θ 1 /θ Θ ′ 1 /θ ′ k k ′ Θ 1 /θ Θ ′ 1 /θ ′ k k ′ Θ 1 /θ Θ ′ 1 /θ ′

Varying mean

Abrupt-change T = 300 7. [START_REF] Jung | Compressive nonstationary spectral estimation using parsimonious random sampling of the ambiguity function[END_REF] AR(1) process cn (%) 0 0 0 0 0 0 4.00 5.00 5.00 2.00 6.50 5.50 6.00 7.00 2.00 2.50

Understanding the changing outcomes

The different outcomes are due to the randomness of the surrogate set, and as a consequence, at every application of the test, a different vector Θ 0 of variances is obtained.

Since the gamma fit is performed on Θ 0 , the approximated gamma model changes at every test. The effect of this varying distribution is observed as fluctuations of the threshold γ, which would lead to different results if the test statistics Θ 1 is close enough to the range of fluctuations. Since Θ 1 is fixed for all test applications (Θ 1 is a non-random quantity computed directly from the signal), one could evaluate how likely it is for Θ 1 to be inside the range of fluctuations of γ. This scheme is illustrated in Fig. 

Deriving a robustness measure

The fluctuations of the threshold γ need to be taken into account when evaluating the distances. In this sense, one could suggest, for instance, to compute the histograms of γ, and to analyze how likely it is for Θ 1 to be inside the range of fluctuations of γ. To do so, we could check if the value of Θ 1 has a low probability of being crossed by the threshold, when compared with the histograms. If it does, the dissimilarity measure being used is robust. for the case of a nonstationary mean (first column), that all values of Θ 1 are lying in the left-hand side of the histograms, outside of the range of fluctuation of γ. This is in accordance with the results shown in Table 2.5, where most of the distances could not detect properly the nonstationarity exclusively in the mean. Moreover, as also observed in Table 2.5, by symmetrizing the Itakura-Saito distance we lost the robustness of its original form. However, for the case of a nonstationarity exclusively in the variance, for example, the Symmetrized Itakura-Saito distance is more robust than the Combined one. Unfortunately, evaluating the robustness like in Fig. 2.8, i.e., by using the crude histograms of γ, can be considerably time-consuming. The reason is because the stationarity test has to be applied a number of times, and at every test application, a TF representation is computed for each surrogate signal of the collection. Ideally, we would like to be able to evaluate the robustness after the first realization. Doing so, the timeconsuming part of computing the TF spectrum repeatedly would be avoided. Evaluating the robustness while having only one record of the threshold γ, would require a statistical characterization of this variable, and some extra knowledge regarding the method. We propose in the following Section, an approache where these two points are addressed, providing a useful measure of robustness.

An approach based on bootstrapping

For evaluating the robustness like in Fig. 2.8, we have estimated different thresholds γ from a collection of vectors Θ 0 . We have then used the crude histograms to check whether the fluctuations of γ could or could not change the results. Now, we propose an alternative (and simpler) method, which consists in computing the vector Θ 0 once, and estimating the threshold values by resampling with bootstrap.

The classical bootstrap technique [START_REF] Efron | Bootstrap methods: Another look at the jackknife[END_REF][START_REF]Computers and the theory of statistics: Thinking the unthinkable[END_REF] is well-suited to this end, as the samples of Θ 0 are i.i.d. The method is performed by randomly sampling the data with replacement, and then gathering equally-sized resamples. Such procedure is done thousands of times and treated as repeated experiments [START_REF] Zoubir | The bootstrap and its application in signal processing[END_REF]. By bootstrapping we simulate repeated observations from an unknown population using only the obtained sample as basis. It allows us to estimate different threshold values from the same basis vector Θ 0 , skipping the time-consuming part of computing different TF spectra. Also, bootstrap replicates can be easily computed and the empirical confidence intervals are straightforwardly obtained even for complex estimators. Finally, the method does not require a large number of observations in order to invoke asymptotic results. In fact, theoretical and practical works have shown that bootstrap techniques can outperform large-sample ones [START_REF] Zoubir | The bootstrap and its application in signal processing[END_REF].

With a collection of bootstrap replicates of the threshold γ, we can compute empirical confidence intervals or observe the fluctuation of γ using histograms. Then, we can evaluate the robustness by checking how likely it is for Θ 1 to be crossed by γ. However, a natural question arises: How many bootstrap replicates are necessary? In order to estimate the required number of replicates, it would be reasonable to first derive a proper robustness measure, and then check the effect of using different sample sizes.

The surrogates are random sequences that are stationarity, and due to their "well behaved" randomness we could characterize some properties of interest. For instance, since Θ 0 is computed directly from the surrogate set, it should be a stationary random series as well. Also, it is intuitive to address smooth changes to its mean value. Thus, we propose to measure how far Θ 1 (a fixed quantity) is from the mean value of the γ estimates obtained by bootstrapping, by computing the absolute mean deviation (AMD)

for Θ 1 . The AMD expression is given as follows:

AMD = |Θ 1 -M| M , (2.28) 
where M stands for the sample mean of the γ estimates. Note in (2.28), that the ex- pression was divided by M in order to avoid discrepancies when comparing cases with large differences between M and Θ 1 . Otherwise, a small value of M could lead to a small value of AMD. An illustration of the use of (2.28) for measuring the robustness is given Fig. 2.9, where the histograms of the bootstrap replicates, M, Θ 1 and the AMD value are shown for a robust (Fig. 2.9(a)), and a nonrobust case (Fig. 2.9(b)), respectively.

Notice that Θ 1 is far from M for the robust case, which gives a larger value of AMD. On the other hand, for the nonrobust case, Θ 1 is closer to M.

After defining the robustness measure, we need to check how many bootstrap replicates are necessary. To this end, we have bootstrapped Θ 0 and estimated the values of γ for three samples of different sizes: 1000, 5000 and 10, 000. Although bootstrapping is faster than the procedure shown in Fig. 2.8, we have observed that the computation time increases notably by using more than 10000 replicates. For illustration, in Fig. 2.10, we show the results and the running time (in seconds) for the Itakura-Saito, Log-Spectral and Diffusion distances when testing the signals with a nonstationary mean following the onset-of-trend model (which was the least robust case according to Table 2.5). Notice that, in general, the gain in accuracy obtained by using the largest number of replicates cannot be identified clearly, while, on the other hand, the gain in the running time is well noticed. Thus, we have considered 1000 replicates as a good trade-off between computational time and robustness assessment. Increasing the number of replicates does not increases the amount of information from the data, but reduces the random sampling error from bootstrapping.

Having presented the approach to evaluate the robustness, now we compute the AMD for all the distances, the original and the weighthed ones. Naturally, the largest AMD values are expected to occur for the least changing cases, be they stationary or nonstationary. The results are shown in Table 2.6. Note that, in general, the nonrobust cases for each distance have low AMD values. Furthermore, as expected, the frequency- based distances presented most of the largest AMD values (especially the Itakura-Saito and the Diffusion distances). As previously observed, for this class of distance we had the least changing (nonstationary) outcomes. Finally, note that for some cases, we have large AMD values for the probability-based distances, which reflects how constantly the null hypothesis is accepted for this class of distances.
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Conclusions

We have seen that many signals found in the real world have a rich spectral content, are very often nonstationary, and are frequently given without any a priori information about their structure. Given these circumstances, TF techniques excel at providing a useful representation for nonstationary signals, and different approaches have emerged for testing stationarity in TF domains. In this Chapter, we have proposed various contributions to one of these approaches, more specifically, to the surrogate-based method presented in [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF]. The surrogate method makes use of the so-called surrogates for characterizing the null hypothesis of stationarity, whereas the possible nonstationary behavior is verified by comparing the local and global spectral properties of the TF representation.

The original framework presented in [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF] leaves room for improvements in various points. So in this Chapter, we have proposed several contributions to some aspects of the original method that deserved a deeper investigation. We have carried out the ana- Although this Chapter contributed to the search of a "good" distance, and to modify the method in a way that its performance is improved for the frequency-based distances, one could say that the classification accuracies were not high for some cases. In Chapter 3, a new nonparametric approach for detecting slowly-varying nonstationarities is proposed. Different from the surrogate-based method, the proposed technique does not require the computation of many TF representation for assessing stationarity, which fastens the procedure. Instead, the idea is to quickly estimate the time marginal (Section 3.2) and to identify temporal patterns (Section 3.3). In comparison to other approaches in the literature, the developed framework shows to be more versatile, due to its sensitivity to first and second-order nonstationarities and its nonparametric nature.

Introduction

The basic idea of testing stationarity in TF domain with surrogates was to use this datadriven resampling method for learning the statistics of a null hypothesis of stationarity.

While the original test in [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF] was designed for second-order stationarity and stationarity relatively to a global observation scale, we have proposed some modifications to the original framework for allowing the characterization of nonstationarities that also appear in the mean, and for only portions of the time series (i.e. nonstationarities with particular start and end points, such as κ 1 = T/2 and κ 2 = T in Fig. 2.2, respectively). As it could be seen, the proposed modified approach presented an overall improved performance, but only for frequency-based distances. Regardless of the improvements brought by the modifications proposed in the last Chapter, a drawback faced by nonparametric TF methods using surrogate resampling is their computational load, as one need to compute many TF representations, one for each surrogate. Also, the framework discussed in the previous Chapter could not detect properly a varying mean and slowly-varying nonstationaries simply because it was not designed to this end. The surrogate-based technique works particularly well for modulations, and it has been seen in Section 2.6 that signals following the abrupt-change model could be fairly well detected.

Although many practical problems arising in signal processing are actually concerned in detecting abrupt-changes [START_REF] Basseville | Detection of Abrupt Changes -Theory and Application[END_REF], the detection of slowly-varying nonstationarities, specially those of second-order and for short time series, remains a challenge.

Detecting slowly-varying changes of first and second-order statistics is a critical point when analyzing real world time series, as changes of a given order could reflect very specif behaviors of natural phenomena. This kind of time series has usually a short length, and as consequence, only a few stationarity tests compatible to this application can be found in the literature. A first suggestion would be to apply the classical KPSS test [START_REF] Hobijn | Generalizations of the kpss-test for stationarity[END_REF]. However, the latter is not suited to detect changes of second-order (see Section 3.9). Other alternatives are also given by recent parametric methods, such as the nonstationarity detector of S. Kay [START_REF] Kay | A new nonstationary detector[END_REF], which is conveniently suited to short time series.

Unfortunately, the performance of a parametric method depends on the accuracy of the chosen model, which is hardly assessed for real world processes (as it will be verified in Chapter 5). Therefore, the purpose of this Chapter is to propose a new nonparametric stationarity test, which is particularly designed for testing trend-based and slow nonstationary evolutions. The proposed method is data-driven and more sensitive to first-order nonstationarities than other nonparametric methods.

Detailing the contributions of this chapter

For slowly-varying cases, full TF representations are not needed to assess for nonstationary behaviors. The stationarity test that is developed in this Chapter is more efficient in this regard. We designed the test for a specific nonstationary pattern: presence of a trend and/or an evolution of the local energy of the signal. The proposed approach works for short time series and allows for the detection of first and second-order nonstationarities of slowly-varying signals. The proposed methodology is illustrated in Fig. 3.1. More specifically, in Section 3.2.1, we recall some elements of TF analysis for assessment of stationarity, and we explain the method of [START_REF] Moghtaderi | Trend filtering via empirical mode decompositions[END_REF] for extracting the trend in the time marginal of the TF representation. Further, we propose a measure to quantify the trend contamination. We then compare this quantity with the ones that are likely to be found in stationary references, which are obtained by block bootstrapping the original signal.

In Section 3.7, we show that the distribution of possible trend contaminations can be approximated by a generalized extreme value (GEV) model, allowing us to design a hypothesis test in Section 3.8 to detect these second-order trend nonstationarities. We also derive a typical index of nonstationarity. The experimental study is shown in 3.9. 

On a test suited to trends and slow nonstationary evolutions

Background Elements

Consider that a given random process {x(t), t = 1, ..., T} possesses a slowly varying type of nonstationarity, in a sense that its power spectral density (PSD) varies slowly in time, as opposed to an abrupt change, for instance. For example, let us assume that x(t) is a nonstationary Gaussian process with a slowly-varying variance starting at t = T/2

following the onset-of-trend model, and x a (t) and x w (t) are two strict stationary signals,

an autoregressive AR(1) process and a white Gaussian noise WGN(0,1), respectively.

Realizations of x a (t), x w (t) and x(t) are shown in Fig. 

Chapter).

For this type of nonstationary signals, the TF spectrum should generally read as:

S(t, f ) = α(t) 2 δ( f ) + β(t)( PSD( f ) + ǫ(t, f )) (3.1)
where • is the normalization of the PSD. In (3.1), α(t) can be interpreted as a first-order trend (time-varying mean), β(t) is a second-order trend (time-varying variance), PSD( f )

is possibly the PSD of the stationary component (or, if the signal is nonstationary, it is the frequency marginal of the TF spectrum) and ǫ(t, f ) are the fluctuations in the TF domain that might code for other types of nonstationarities, such as frequency modulations [START_REF] Borgnat | Testing stationarity with surrogates: A time-frequency approach[END_REF].

We are interested here only in second-order trend (non)stationarities, where α and β evolve possibly in time, but changes in frequency as coded in ǫ(t, f ) are not relevant.

The type of nonstationarities we are interested in reduce to test for the presence of time evolving α or β. The time marginal of eq. (3.1) is obtained by summing S(t, f ) over all frequencies and it reduces to: y(t) = α(t) 2 + β(t) as ∑ f ǫ(t, f ) ≃ 0 as there are no changes in frequency. The situation is not that simple as we cannot specify a priori a model for the time marginal in general situations. However, it is possible to use trend estimation to first extract trends, before testing its statistical relevance.

Reducing the study of trend stationarity to the study of the time marginals of the TF spectrum is able to considerably fasten the computations needed in that situation:

instead of computing an estimate of the full TF spectrum by means of the multitaper spectrogram given in (2.2), one needs only an estimate of y(t). Thanks to the wellknown marginal properties of TF distributions [START_REF] Flandrin | Time-Frequency/Time-Scale Anaylsis, ser. Wavelet anlysis and its applications[END_REF], this is easily computed by numerical convolution of the signal x(t) by the window of analysis. The latter was chosen to be the same family of Hermite functions {h k (t), k ∈ N} with a length n h used in Section 2.2.

Then, the time marginal is computed by squaring x(t) * h k (t) averaging over the different K, i.e.:

y(t) = 1 K K ∑ k=1 [x(t) * h k (t)] 2 , (3.2) 
this solves one drawback of the nonparametric stationarity test in TF domain, which is the computational load of having to estimate full TF representations. Nevertheless, for dealing with any type of real world signal, we need a model-free approach for extracting the trend. Among the different nonparametric approaches for trend estimation, the Singular Spectrum Analysis (SSA) [START_REF] Vautard | Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series[END_REF] and the Empirical Mode Decomposition (EMD) [START_REF] Moghtaderi | Trend filtering via empirical mode decompositions[END_REF] are known for decomposing the time series into oscillatory components. Both methods have their qualities, however, the SSA depends on a free parameter, while the EMD is fully data driven [START_REF] Moghtaderi | Trend filtering via empirical mode decompositions[END_REF]. Due to the latter, and to the simplicity of the EMD algorithm, we have chosen the EMD technique for trend estimation.

Estimating trends in the time marginal

Trends in the time marginal: Definition

Before explaining the EMD technique, however, we should define the trend component properly. Since "trend" itself is a concept that is context-dependent, we shall adopt a definition that is in consonance with the proposed framework. The definition of trend adopted in this work is that of a smooth additive component that carries information about global changes in the time series [START_REF] Alexandrov | A review of some modern approaches to the problem of trend extraction[END_REF]. Also, it is assumed that the detrended series should have generic stationary features [START_REF] Moghtaderi | Trend filtering via empirical mode decompositions[END_REF]. We represent trend component by c(t), the stationary (detrended) fluctuation by r(t), and the trended time series by y(t). Then, we consider the following additive model to hold:

y(t) = c(t) + r(t). ( 3.3) 
Testing for second-order trend stationarity can be done by first estimating a trend c(t) from the time marginal y(t) (see Section 3.3.2), then by proposing a way to quantify whether c(t) is relevant or not (see Section 3.4). In the rest of this Chapter, we discuss stationarity in regard to trend stationarity only.

Trends in the time marginal: Estimation

The EMD is an algorithm introduced in [START_REF] Huang | The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF] for decomposing time series into a superposition of oscillatory terms known as intrinsic mode functions (IMFs). The IMFs are computed iteratively and must satisfy two conditions regarding the number of zero crossing versus extrema and the mean values of local envelopes [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF]. The algorithm for extracting the IMFs (known as sifting process [START_REF] Huang | The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]) can be described as follows [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF]:

1. Identify all the local extrema in the time series y(t) The sifting process stops when the slowly-varying residual function has no more oscillations. We represent this last residual function by ρ I (t), and the result of the sifting algorithm is a collection of I IMFs {m (i) , i = 1, ..., I} plus ρ I (t). For the time marginal y(t), the EMD gives the following representation:

y(t) = I ∑ i=1 m (i) (t) + ρ I (t), (3.4) 
where the IMFs ranging from m (1) (t) to m (I) (t) represent local oscillations going from the shortest period (m (1) (t)) to the longest one (m (I) (t)) [START_REF] Moghtaderi | Trend filtering via empirical mode decompositions[END_REF]. There are two important points concerning the IMFs that we further recall in this work:

1. each IMF is a zero-mean waveform by construction [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF],

2. for all practical purposes, the consecutive IMFs can be considered to be locally orthogonal to each other [START_REF] Huang | The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF].

As we have defined trend as a slowly-varying component, we shall follow here the same idea of [START_REF] Moghtaderi | Trend filtering via empirical mode decompositions[END_REF], which considers the trend component as being the superposition of the last few IMFs and the residual ρ I (t). Therefore, estimating the trend will be equivalent to estimating the index i = i * in (3.4) that gives the best approximation of the trend component c(t):

c(t) = I ∑ i=i * m (i) (t) + ρ I (t). (3.5) 
The criterion for obtaining i * is to select the smallest common index of two independent approaches, namely the Ratio and the Energy approach. The former verifies deviations of the expected ratio of zero crossing performed by successive IMFs. The latter considers that the energy of a given IMF generally increases for i near to i * [START_REF] Moghtaderi | Trend filtering via empirical mode decompositions[END_REF].

In Fig. 

Testing for trend relevance

Overview

Existence of an additive trend in y(t) conveys a breakdown in the trend stationarity we are interested in. A key point of the method is to estimate the importance of that trend, and further test for stationarity by means of a hypothesis test. More specifically, we build a one-sided test where the null hypothesis of no trend (stationarity) refers to the situation where trends in the time marginal cannot be distinguished statistically from those induced by random fluctuations.

We need to approximate different realizations of the signal to perform the hypothesis test. To do so, we apply the block bootstrap technique to the original signal to obtain a collection of virtual realizations (Section 3. (Section 3.6), we see that its distribution can be approximated by a generalized extreme value (GEV) model (Section 3.7.1).

Estimating the importance of the trend

Here, we propose the following measure to quantify the importance of the trend:

θ TI = Var{y(t)} Var{y dt (t)} = Var{y(t)} Var{y(t) -c(t)} , ( 3.6) 
where y dt (t) = y(t)c(t) stands for the detrended time marginal series. Such expression measures the importance of the trend component in the data in comparison to the total variance, by computing the fraction of the original variance of y(t) accounted for by the approximated trend [START_REF] Guhathakurta | Trends in the rainfall pattern over india[END_REF]. The estimation of (3.6) is carried out by the trend importance estimator:

θ TI = N ∑ t=1 y(t) -µ y 2 N ∑ t=1 [y dt (t) -µ dt ] 2 , ( 3.7) 
where µ y and µ dt are the sample mean of the time marginal series and its detrended counterpart, respectively. In Fig. 3.3 we illustrate the performance of (3.7) in evaluating trended time marginals. Besides of computing the time marginals and trends components for different window lenghts (n h = 3, 5, 7, 9), we have estimated the importance of the trend for P = 1000 realizations of each process, so in Fig. 3.3 we also show the histograms of θ TI and its average value ( θ TI P ) over all the realizations.

It can be noticed in Fig. 3.3 that θ TI is greater for the nonstationary process (x(t))

than it is for the stationary ones (x a (t) and x w (t)). Also, the value θ TI tends to decrease when the window of analysis becomes shorter, or to increase otherwise. One could suggest to always use larger windows, but larger values of θ TI are not desirable for the case of stationarity. Hence, as usual for methods developed in TF domain, there exists a necessary trade-off regarding the choice of the window of analysis.

More precisely, a trend (a global and slowly-varying component) will be more likely accused by using larger windows, whereas a narrow window of analysis h k (t) will capture better the local variability in time of the spectra, which will give in return a nonsmooth time marginal with an abundance of spikes. In this case, the portion of the variance of y(t) accounted for by the slowly varying component c(t) (the approximated trend) will be smaller, which will decrease the value of θ TI . One could also interpret this behavior in terms of the IMFs, as the EMD of a time marginal with many spikes and fluctuations will likely use more energetic IMFs to represent fast oscillation modes, rather than slowly varying ones. The analysis of θ TI from the point of view of the IMFs and their energies will be carried out in Section 3.4.2.

In practice, one needs a window sufficiently large for visualizing any significant trend component c(t) in y(t) (whereas the significance of c(t) is to be assessed), while keeping the best possible time resolution. By now, we have to consider that there is no a priori value for n h , but allowing the window length vary is an extra degree of freedom of the proposed method.

Generating virtual realizations with bootstrapping

Among the various resamples techniques, the classical bootstrap introduced by Efron [START_REF] Efron | Bootstrap methods: Another look at the jackknife[END_REF] remains as one of the most popular methods to derive the distribution of a given estimator. Its attractiveness lies in its simplicity, as the bootstrap can be easily computed [START_REF] Zoubir | The bootstrap and its application in signal processing[END_REF]. Unfortunately, the classical bootstrap is not applicable for dependent time series, since the original resampling technique could destroy the underlying correlation structure. Therefore, for obtaining approximated realizations of the data while preserving any possible correlation, we propose to use the block boostrap method.

The rationale behind the block bootstrap technique is to divide the time series into blocks prior to resampling. Doing so, we preserve the dependence in the original time series within a block, without having to guess the correlation structure.

There are different approaches available for blocking the time series [START_REF] Davison | Bootstrap Methods and their Application[END_REF][START_REF] Lahiri | Theoretical comparisons of block bootstrap methods[END_REF]. They can be broadly categorized into overlapping and nonoverlapping block bootstrap. In this Chapter, we chose the latter method in order to obtain bootstrap replicates containing as many different samples as possible, while approximating (or equaling) the original length of the time series. The latter is an important point for the time marginal computation. Also, both blocking techniques have the same amount of bias asymptotically for a given block length [START_REF] Lahiri | Theoretical comparisons of block bootstrap methods[END_REF].

The block boostrap technique

For generating the stationary counterparts, let us assume that the original time series is given by X = (x 1 , ..., x T ). The nonoverlapping approach consists in dividing the data into b disjoint blocks, where b = ⌊T/ℓ⌋, T and ℓ stands for the length of the time series and the length of the block, respectively. The k th block is then given by

B k = [x (k-1)ℓ+1 , ..., x kℓ ] for 1 ≤ k ≤ b.
To build the bootstrap replicate, we select blocks B * k , k = 1, ..., b by randomly resampling with replacement the blocks {B k , k = 1, ..., b} gathered from the original data.

The symbol " * " is used to make a distinction between the resampled blocks and the original ones. After resampling, the bootstrap replicate is given by [START_REF] Hall | On blocking rules for the bootstrap with dependent data[END_REF]:

X * = (x * 1 1 , ..., x * ℓ 1 , x * 1 2 , ..., x * ℓ 2 , ..., x * 1 b , ..., x * ℓ b ),
where x * 1 1 and x * ℓ 1 are the first and the ℓ th samples of B * 1 (the first resampled block), x * 1 2 and x * ℓ 2 are the first and the ℓ th samples of B * 2 (the second resampled block), and so on.

Clearly, the choice of the block length ℓ is a crucial point. Roughly speaking, we want blocks long enough to account for a significant portion of the correlation, while short enough to reduce the variability [START_REF] Sherman | Analysis of tidal data via the blockwise bootstrap[END_REF]. Thus, the optimal block length depends strongly on the context. In this work, we have adopted the criterion presented in [START_REF] Hall | On blocking rules for the bootstrap with dependent data[END_REF], which states that if one wants to estimate a one-sided distribution (which is the case here), the mean squared error of the block bootstrap estimator is asymptotic to:

T -1 (C 1 ℓ -2 + C 2 T -1 ℓ 2 ), (3.8) 
where C 1 and C 2 are two positive numbers that do not depend on the length of the time series (T), the number of blocks (b) and their length (ℓ). It is shown in [START_REF] Hall | On blocking rules for the bootstrap with dependent data[END_REF] that the optimal block length that minimizes (3.8) is of order of T 1/4 . It can be simply checked in (3.8) by minimizing the expression over ℓ. Thus, in this work, we have chosen ℓ = T 1/4 .

For each bootstrap replicate X * , we estimate the trend importance in the time mar- ginal by means of (3.7), which allows for the determination of the distribution of trend contaminations under the null hypothesis of stationarity. We remark that using the empirical distribution to elaborate the hypothesis test is not judicious, as it would require many computations for deriving a reliable threshold from the crude histograms. Fortunately, we have observed that the empirical distribution of (3.7) can be approximated by a generalized extreme value (GEV) model, which simplifies the selection of a threshold.

To understand the choice of a GEV model, we take a closer look at the behavior of θ TI in the following Section.

Behavior of the trend importance estimator

We analyze the behavior of θ TI in two situations. The first one stands for the case of a trendless time marginal (which indicates stationarity), where a significant trend cannot be detected in y(t). The second situation happens if we have a trended time marginal (which indicates nonstationarity), where a significant trend can be detected in y(t).

Trendless time marginal

For the case of a trendless time marginal we have θ TI ≈ 1, as y(t) ≈ y dt (t). In this case, the EMD returns only the residual ρ I (t) as an approximation of the trend component c(t). Hence, the detrended time marginal y dt (t) series is given only by:

y dt (t) = y(t) -c(t) = I ∑ i=1 m (i) (t) + ρ I (t) -ρ I (t) = I ∑ i=1 m (i) (t) (3.9)
For illustration, we could write the quantity that we want to estimate -the importance of the trend given in (3.6) -according to the EMD notation:

θ TI = Var{y(t)} Var{y dt (t)} = Var I ∑ i=1 m (i) (t) + ρ I (t) Var I ∑ i=1 m (i) (t) , ( 3.10) 
where the slowly-varying residual ρ I (t) shown in the numerator of (3.10) is nearly a constant in comparison to the sum of the IMFs, specially on the absence of trends. Now, if we recall that for a given constant a, we have

Var I ∑ i=1 m (i) (t) + a = Var I ∑ i=1 m (i) (t) ,
and it could be easily verified in (3.10) that θ TI ≈ 1. This is the most common case in the bootstrapped data1 .

Trended time marginal

For the case of a trended time marginal we have θ TI ≥ 1. Now, the EMD might not only use the residual ρ I (t), but also different IMFs to approximate c(t). Thus, the algorithm returns an index i * ≤ I as the one which gives the best approximation of the trend. In this case, the detrended time marginal series y dt (t) = y(t)c(t) is given by:

y dt (t) = I ∑ i=1 m (i) (t) + ρ I (t) - I ∑ i=i * m (i) (t) + ρ I (t) = i * -1 ∑ i=1 m (i) (t). (3.11) 
By using (3.11), we can rewrite (3.7) as:

θ TI = N ∑ t=1 y(t) -µ y 2 N ∑ t=1 [y dt (t) -µ dt ] 2 = N ∑ t=1 I ∑ i=1 m (i) (t) + ρ I (t) -µ y 2 N ∑ t=1 i * -1 ∑ i=1 m (i) (t) -µ dt 2 , (3.12) 
where µ y and µ dt are, respectively, the sample mean of y(t) and y dt (t) as shown in (3.11).

The length of y(t) and y dt (t) is given by N. We can expand (3.12), thus obtaining:

θ TI = N ∑ t=1 I ∑ i=1 m (i) (t) 2 + 2 N ∑ t=1 ρ I (t) -µ y I ∑ i=1 m (i) (t) + N ∑ t=1 ρ I (t) -µ y 2 N ∑ t=1 i * -1 ∑ i=1 m (i) (t) -µ dt 2 (3.13)
Now, let us define µ i as the sample mean of the i th IMF:

µ i = 1 n N ∑ t=1 m (i) (t) for i = 1, ..., i * , ..., I. (3.14)
If we recall that each IMF is a zero-mean waveform by construction, it becomes straightforward to verify that

µ i = 0 for i = 1, ..., i * , ..., I µ dt = µ 1 + • • • + µ i * -1 = 0 µ y = µ 1 + • • • + µ I + µ ρ = µ ρ , (3.15) 
where µ ρ is the sample mean of the residual ρ I (t). We can rewrite (3.13) by considering (3.15), which gives:

θ TI = N ∑ t=1 I ∑ i=1 m (i) (t) 2 + 2 N ∑ t=1 ρ I (t) -µ ρ I ∑ i=1 m (i) (t) + N ∑ t=1 ρ I (t) -µ ρ 2 N ∑ t=1 i * -1 ∑ i=1 m (i) (t) 2 .
(3.16)

If we expand the squared terms in (3.16), we obtain:

θ TI = N ∑ t=1 I ∑ i=1 m (i) (t) 2 + 2 N ∑ t=1 I ∑ i<l m (i) (t)m (l) (t) + 2 N ∑ t=1 I ∑ i=1 ρ I (t) -µ ρ m (i) (t) + N ∑ t=1 ρ I (t) -µ ρ 2 N ∑ t=1 i * -1 ∑ i=1 m (i) (t) 2 + 2 N ∑ t=1 i * -1 ∑ i<l m (i) (t)m (l) (t) (3.17)
By noting that µ i = 0 for the i = 1, ..., I IMFs, one can verify that (3.17) is given as function of the sample variances { σ 2 i , i = 1, ..., I} and covariances { γ i,l , i < l, i, l = 1, ..., I} between the IMFs, and the sample variance σ 2 ρ and covariances { γ ρ,i , i = 1, ..., I} between the residual ρ I (t) and the IMFs:

I ∑ i=1 σ 2 i = 1 N -1 I ∑ i=1 N ∑ t=1 m (i) (t) -µ i 2 = 1 N -1 N ∑ t=1 I ∑ i=1 m (i) (t) 2 I ∑ i<l γ i,l = 1 N -1 I ∑ i<l N ∑ t=1 m (i) (t) -µ i m (l) (t) -µ l = 1 N -1 N ∑ t=1 I ∑ i<l m (i) (t)m (l) (t) I ∑ i=1 γ ρ,i = 1 N -1 I ∑ i=1 N ∑ t=1 ρ I (t) -µ ρ m (i) (t) -µ i = 1 N -1 N ∑ t=1 I ∑ i=1 ρ I (t) -µ ρ m (i) (t) σ 2 ρ = 1 N -1 N ∑ t=1 ρ I (t) -µ ρ 2 , (3.18)
Thus, according to (3.18), we can express (3.17) simply as:

θ TI = I ∑ i=1 σ 2 i + 2 I ∑ i<l γ i,l + 2 I ∑ i=1 γ ρ,i + σ 2 ρ i * -1 ∑ i=1 σ 2 i + 2 i * -1 ∑ i<l γ i,l , (3.19) 
where the terms 1/(N -1) were canceled out in (3.19) due to the division. In (3.19), the covariance estimate γ i,l between consecutive i th and l th IMFs should be close to zero, as for all practical purposes the IMFs can be considered to be locally orthogonal to each other [START_REF] Huang | The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]. Hence, the following could be assumed:

I ∑ i=1 σ 2 i ≫ 2 I ∑ i<l γ i,l and i * -1 ∑ i=1 σ 2 ρ ′ ≫ 2 i * -1 ∑ i<l γ i,l .
Then, one could approximate (3.19) as:

θ TI = i * -1 ∑ i=1 σ 2 i + I ∑ i=i * σ 2 i + σ 2 ρ + 2 I ∑ i=1 γ ρ,i i * -1 ∑ i=1 σ 2 i = 1 + I ∑ i=i * σ 2 i + σ 2 ρ i * -1 ∑ i=1 σ 2 i + 2 I ∑ i=1 γ ρ,i i * -1 ∑ i=1 σ 2 i , (3.20) 
where the terms corresponding to the trended (i = i * , ..., I) and to the detrended (i = 1, ..., i * -1) counterparts were rearranged. It is simple to verify that (3.20) could be expressed as function of the individual energies of the IMFs and the residual. To do so, one could first define the slightly shifted slowly varying residual ρ ′I (t) = ρ(t)µ ρ .

Then, by recalling the zero mean property of the IMFs, one can easily verify that:

σ 2 i = N ∑ t=1 m (i) (t) 2 = E i and σ 2 i = N ∑ t=1 ρ ′I (t) 2 = E ρ ′ , (3.21) 
where E i and E ρ ′ are the energies of the i th IMF and of ρ ′I (t), respectively. Also, one can verify that:

I ∑ i=1 γ ρ,i = I ∑ i=1 N ∑ t=1 ρ ′I (t)m (i) (t) = E i E ρ ′ cos α i , (3.22) 
where α i is the angle of the i th scalar product. The terms 1/(N -1) were omitted in 

θ TI = 1 + E i * + • • • + E I + E ρ ′ E 1 + • • • + E i * -1 + 2 √ E 1 E ρ ′ cos α 1 + • • • + √ E I E ρ ′ cos α I E 1 + • • • + E i * -1 , (3.23) 
where, in general, the angles α i are approximately 90 • , and the terms cos α i are close to zero due to the aforementioned properties of the IMFs, and to the fact that the residual is nearly constant in comparison to the other IMFs, which capture faster oscillation modes.

In this regard, recall that the scalar product terms come from the covariance estimates γ i,ρ , and in a limit case, for a given constant a, we should have Cov{m (i) (t), a} = 0. In Table 3.1, we present, for different window lengths, the angles α i (in degrees) obtained in the estimation of θ TI for the nonstationary Gaussian signal shown in Fig. 

The generalized extreme value distribution

Having analyzed the behavior of the trend importance estimator for the cases of stationarity (trendless time marginal) and nonstationarity (trended time marginal), it is now necessary to derive the statistical distribution of θ TI under the null hypothesis for per-forming the hypothesis test. Drawing conclusions from the crude histogram of θ TI is not practical, so we propose to model this distribution of θ TI by an appropriate model.

Due to their stationarity, the bootstrap resamples are supposed to return trendless time marginals. Therefore, we should have necessarily θ TI ≈ 1 in most of the cases.

Thus, any resample with a significantly trended time marginal could be interpreted as an extreme event, very unlikely to be found in such stationary references. Nevertheless, for cases where trended time marginals occur, it is very likely to have large values of θ TI due to the EMD methodology. A heuristic argument suggests that the distribution of θ TI could be modeled by a heavy tailed pdf with a peak and a lower bound around the unity. These features match those from the Fréchet or GEV type II distribution [START_REF] Coles | An Introduction to Statistical Modeling of Extreme Values[END_REF].

This type of pdf is one of the three belonging to the GEV family, which is governed by its shape, scale and location parameters (ǫ, σ and µ, respectively). The type II, or the Fréchet case occurs for ǫ > 0, and its cdf is given in (3.24). This distribution has no upper bound, however, a lower limit is given by its location parameter µ [START_REF] Kotz | Extreme Value Distributions: Theory and Applications[END_REF], which should be close to the unity in this application.

F(x; ǫ, σ, µ) =      0 if x < µ exp -x-µ σ -ǫ if x ≥ µ.
(

The three parameters of the Fréchet distribution are estimated by maximum likelihood from the collection of the values of θ TI obtained from p = 1, ..., P (stationary) bootstrap resamples. We represent this collection by:

Θ TI (p) = θ (p) TI , p = 1, • • • , P , (3.25) 
where the GEV pdf fitted to Θ TI (p) allows for the selection of a threshold above which the null hypothesis of trendless time marginal is rejected. An example of the GEV modeling is illustrated in Fig. 

Adherence of the GEV fit: Asymptotic regime analysis

The three parameters of the Fréchet pdf are estimated by maximum likelihood. In this section, we illustrate the results of an empirical study on the behavior of the parameter Var θ(n h , P)

θ= ǫ, σ, µ = E θ(n h , P) -E θ(n h , P) 2 E θ(n h , 1000) 2 (3.27)
It can be seen in Fig. 3.5 and Fig. 3.6 that, as the number of bootstrap replicates grows, we have a convergence towards the asymptotic regime for all simulations. This behavior is in favor of the assumption that the distribution of θ TI can be fairly well modeled by a Fréchet pdf. Moreover, it can be seen that the normalized bias and variance are weakly dependent on the length of the window. Finally, notice that by using 100 bootstrap replicates we would have a reasonable precision, and the values taken by (3.26) and

(3.27) become inferior to 5% for more than 100 replicates. This reduced number of bootstrap resamples can be considered for saving the computational time, since it leads to an acceptable approximation of the asymptotic distribution [START_REF] Xiao | Contributions to nonstationary spectrum estimation and stationarity tests in the time-frequency plane[END_REF]. For now on, we shall It is also interesting to confirm if the proposed framework verifies the null hypothesis of stationarity. To do so, we have used Monte Carlo simulations to verify the reproduction of the prescribed false alarm rate. The analysis was conducted on 1000 independent realizations of the stationary AR(1) process used in Fig. 3.6 and Fig. 3.5.

We have chosen a threshold of 95% for the test, corresponding to a false alarm rate fixed a priori to 5%. The results are shown in Fig. 3.7, as function of the number of bootstrap resamples. It can be seen that the real level of confidence remains aproximately as low as 6.8%, if we use 100 or more bootstrap replicates. We have thus obtained an acceptable false alarm rate, but the proposed method is a little pessimistic, as the rejection of the null hypothesis occurs a little more frequently than necessary. 

Adherence of the GEV fit: the Zempléni test

There are just a few goodness-of-fit tests for GEV distributions available in the literature.

A test based on the stability property of the GEV pdf is proposed in [START_REF] Zempléni | Inference for generalized extreme value distributions[END_REF]. One could also apply the Anderson-Darling test, which is not specifically made for testing GEV distributions. However, a reasonable performance can be nevertheless obtained, since the Anderson-Darling test gives more weight to the tails of the distribution [START_REF] Stephens | Edf statistics for goodness of fit and some comparisons[END_REF]. Still, in many cases, only one of the tails of the distribution is important. This is the case of the Fréchet pdf. In this sense, Zempléni proposed a modification of the Anderson-Darling test that accounts for discrepancies at the relevant tail of the distribution [START_REF] Zempléni | Goodness-of-fit test in extreme value applications[END_REF].

The Zempléni statistic B 2 allows for testing the hypothesis that a cdf F ∈ GEV against the null hypothesis of F being an arbitrary continuous cdf. The statistic B 2 is computed Verifying the null hypothesis of stationarity. For a false alarm rate fixed a priori as 5% and 1000 realizations of the AR(1) process of Fig. 3.6 and Fig. 3.5, a Monte Carlo estimation of the number of observed "nonstationary" outcomes is performed as function of the number P bootstrap resamples. The obtained level of confidence remains under 6.8% for P ≥ 100. as:

B 2 = -P/2 - P ∑ i=1 (2i -1) log(1 -z [P+1-i] )/P - P ∑ i=1 z [i] /P (3.28)
where

z [i] = F(x [i]
) is the cdf evaluated at the i th ordered sample of the collection

{Θ TI (p), p = 1, • • • , P}.
The critical values of B 2 for rejecting F / ∈ GEV are given in [START_REF] Zempléni | Goodness-of-fit test in extreme value applications[END_REF] for different values of the shape parameter (ǫ = -0.6, -0.2, 0.2, 0.5). The critical values for a significance level of 5% are reproduced in Table 3.2. Notice in Table 3.2 that, in general, the critical values increase with the sample size, but there is no significant variation for ǫ = 0.2 or ǫ = 0.5. In Fig. 3.8, we show the histograms of the estimates of ǫ, computed for all different types of stationary and nonstationary signals tested in this

Chapter. It can be seen that the values of ǫ are around 0.5 for all signals. In this regard, notice Fig. 3.5 that the average value ǫ tends indeed to 0.5 in asymptotic regime. Most importantly, in all cases the average value of the statistic B 2 was much larger than the ones shown in Table 3.2 (as it will be seen in Section 3.9). This supports the assumption that the distribution of θ TI can be approximated by a GEV model. 

Hypothesis test and index of nonstationarity

It was shown that the Fréchet model approximates fairly well the distribution of the trend contaminations in the stationary references. Now, it is simple to derive a threshold above which the null hypothesis of stationarity is rejected under a given prescribed level. Putting it in the form of a one-sided test, we use as test statistic the estimated importance of the trend in the original signal. The hypothesis test is given in (3.29),

where the threshold T is computed given a false alarm rate of 5%.

d(x) =      1 if θ TI > T , "nonstationary", 0 if θ TI ≤ T , "stationary". (3.29)
If the null hypothesis of stationarity is rejected, it is also interesting to derive an index of nonstationarity. To do so, we could compute the minimum value of θ TI and then compare with the one returned by the method. Due to the fact different IMFs can be used to approximate the trend at each realization of the process, the minimization of θ TI should take into account the particular energy profile of the IMFs. Since θ TI is given in (3.23) as function of the individual energies of the IMFs, we define the energy vector e = [E 1 , ..., E i * , ..., E I , E ρ ′ ] and consider the problem of computing min θ TI (e) given that: .30) where min θ TI (e) could be computed without using the scalar product terms, since in general cos α i ≈ 0. However, the terms {cos α i , i = 1, ..., I} have been used as arguments to parametrize the objective function. We treat the minimization of θ TI (e) as a constrained optimization problem. There are different algorithms for solving the constrained optimization problem [START_REF] Jensen | Operations Research Models and Methods[END_REF]. For the simulations presented in this work we used the Quasi-Newton algorithm. Due to the nature of the EMD, we can define a set equality and inequality constraints that need to be satisfied by the energy terms given in e. We consider that f (e) = θ TI (e), the scalar valued objective function to be minimized. The constrained optimization problem is given as follow:

θ TI (e) = 1 + E i * + • • • + E I + E ρ ′ E 1 + • • • + E i * -1 . ( 3 
minimize f (e)

subject to g l (e) ≤ 0, l = 1, ..., p IN h l (e) = 0, l = 1, ..., p EQ 0 ≤ e ≤ E T , (3.31) 
where E T is the total energy of the decomposition (see (3.33)), {g l , l = 1, ..., p I } and {h l , l = 1, ..., p E } are the set of p I inequality and p E equality constraints that need to be satisfied, respectively. The inequalities are obtained by sorting the vector e = [E 1 , ..., E i * , ..., E I , E ρ ′ ] in the ascending order (which, in general, is already the case for e 1 , ..., e i * ). We then define the inequality considering this energy profile of the representation:

g l (e) = e l+1 -e l , (3.32) 
where g 1 (e) = e 2e 1 ≤ 0, g 2 (e) = e 3e 2 ≤ 0, and so on. Clearly, the number of inequality constraints p IN depends on the number of IMFs. On the other hand, we have only p EQ = 1 equality constraint:

h 1 (e) = e 1 + • • • + e I+1 = E T , (3.33) 
which states that the sum of e should be equal to the total energy of the decomposition.

The index of nonstationarity I NS is given by:

I NS = θ TI (e) min θ TI (e) . ( 3 

.34)

In Fig. 3.9, we illustrate the performance of (3.34) in evaluating different nonstationary processes if different window lengths n h are chosen. In Fig. 3.9(a) and (b), we show, respectively, the stationary Gaussian process (x 1 (t)) and the nonstationary one (x 2 (t))

that were originally shown in Fig. 3.2. The signal (x 2 (t)) has a variance that changes slowly from σ 2 1 = 1 to σ 2 2 = 2. In Fig. 3.9(c) and (d) we increase the values of σ 2 2 to σ 2 2 = 3, and then to σ 2 2 = 4, respectively. It can be observed that I NS follows the increase of the level of nonstationarity. we shall now present the experimental study. In the following section, we test different nonstationary signals, evaluate the performance of our method and compare with the ones of other approaches.

Testing the new stationarity test

Different nonstationary signals were generated to assess the performances of the test.

We have tested stationary signals and nonstationary ones with a varying mean, varying variance, and varying mean and variance, following the onset-of-trend model of (2.20).

Two configurations were chosen for (2. Notice that three cases were considered for the Gaussian processes: i) a fixed variance (σ 2 = 1) and a varying mean (first row), ii) a fixed mean (µ = 0) and a varying variance (second row), and iii) a varying mean and variance (third row). The gamma signals (fourth row) also have a varying mean and variance, since the shape and scale parameters of the gamma pdf jointly determine the first and second-order moments.

The parameter values for the Gaussian and gamma processes vary according to two different ranges (see (2.20)):

Gaussian gamma

Parameters Mean Variance Shape Scale Short range ξ 1 = 0 to ξ 2 = 3 ξ 1 = 1 to ξ 2 = 3 ξ 1 = 0.355 to ξ 2 = 0.532 ξ 1 = 19.94 to ξ 2 = 29.91
Long range where parameter values were chosen to give a good trade-off between test sensitivity and slowly-varying behavior, in a sense that the resulting nonstationary signals could be hardly detected by others stationarity tests. In (3.35), the gamma values of ξ 1 came from real world applications (i.e. gamma models applied to rainfall series [START_REF] Aksoy | Use of gamma distribution in hydrological analysis[END_REF]). Thus, we are aiming at detecting nonstationarity if a gradual increase of 50% (short range) or 100% (long range) occurs in the parameters of gamma models used in practice. Two different lengths (T = 300 and T = 1050) and two different distributions (Gaussian and gamma) were also considered.

ξ 1 = 0 to ξ 2 = 5 ξ 1 = 1 to ξ 2 = 5 ξ 1 = 0.
We have compared proposed approach with the nonstationarity detector proposed by S. Kay [START_REF] Kay | A new nonstationary detector[END_REF] and the classical KPSS test [START_REF] Hobijn | Generalizations of the kpss-test for stationarity[END_REF][START_REF] Kwiatkowski | Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root[END_REF]. These approaches are commonly used for testing trends and slowly-varying nonstationarities. These approaches are briefly explained below.

Kay's nonstationarity detector

The Kay's approach aims at determining the stationary segment of the signal. The idea is to make use of a time-varying autoregressive model (TVAR) for representing the alternative hypothesis. The TVAR process is given as follows [START_REF] Rao | The fitting of nonstationary time-series models with time-dependent parameters[END_REF]:

x[n] = p ∑ i=1 a i [n -i]x[n -i] + b[n]w[n], (3.36)
where w[n] is white Gaussian noise with unity variance and p is the order of the model.

The TVAR parameters in (3.36) are given as:

a i [n] = m ∑ j=0 a i,j f j [n] b[n] = m ∑ j=0 b j f j [n] i = 1, ..., p, (3.37)
for some collection of basis functions [START_REF] Kay | A new nonstationary detector[END_REF]. A nonstationary process will result whenever the parameters in (3.37) are nonzero for j = 1, ..., m, otherwise the TVAR process in (3.36) reduces to a stationary AR process. Then, the Kay's method consists in verifying whether the TVAR parameters in (3.37) are equal to zero.

{ f 0 [n], f 1 [n], ..., f m [n]}

KPSS test

The KPSS test is applied for testing the null hypothesis that a signal is trend stationary against the alternative that it is a nonstationary unit-root process. For the KPSS test, a given time series x(t) is expressed as the sum of deterministic trend c d (t), random walk r w (t), and a stationary error ǫ s (t):

x(t) = c d (t) + r w (t) + ǫ s (t),
where the test itself is the Lagrange multiplier test of the hypothesis that the random walk has zero variance.

Experimental study

We have tested 1000 realizations of a stationary AR(1) process, a white Gaussian noise WGN(0,1), and the nonstationary signals illustrated in Fig. 3.10. The results are shown in Table 3.3, where "New", "KPSS" and "Kay" correspond to the stationarity test proposed in this work, the KPSS test, and the Kay's nonstationarity detector, respectively.

The experimental study has been carried out with a significance level of 5%. For the proposed approach, we have considered four different windows n h = {3, 5, 7, 9}. The results are given as percentage of observed "nonstationarity" outcomes. We also give the average value of I NS computed by means of (3.34). In Table 3. It can be seen in Table 3.3 that the method proposed in this work ("New") allows for a better detection of different slowly-varying nonstationarities, as we have achieved an overall higher classification accuracy of nonstationary signals following the onset-oftrend model (which is a variation of the smooth-change model). In particular, notice that the proposed technique is able to detect first and second-order nonstationarities. This is not the case for the traditional approaches. For example, the nonstationarity detector of Finally, a trade-off concerning the size of the window n h could be observed, specially for the short time series (T = 300). Notice that, in general, the shorter the window, the better the detection of nonstationary signals and vice versa. The overall performance in detecting stationary signals also becomes poorer for shorter windows. As mentioned before, we have to consider that there is no a priori value for n h , but allowing it to vary is an extra degree of freedom of the proposed method.

Conclusions

In this Chapter we have proposed a new stationarity test which has been designed to detect the presence of a trend or an evolution of the local energy of the signal. The assessment of this kind of nonstationarity is an important issue in many areas of environmental science. Although, some contributions that have been made to the surrogate approach could improve the detection of trend-based nonstationarities, the overall per-Table 3.3: Results of applying the proposed stationarity test ("New"), the KPSS test ("KPSS"), and the nonstationarity detector of [START_REF] Kay | A new nonstationary detector[END_REF] ("Kay"). The outcomes are given as percentage "nonstationary" outcomes observed over 1000 realizations of the process shown in Fig. 3.10. The average value of I NS over all realizations is also shown. [START_REF] Kay | A new nonstationary detector[END_REF][START_REF] Shih | A new forecasting model for nonstationary environmental data[END_REF], hence they are not convenient to be applied to real world time series, as the performance of a parame- tric method ultimately depends on the accuracy of the chosen model. The method that has been designed in this Chapter, on the other hand, is nonparametric and has shown to be more versatile than other approaches, while keeping a reasonable detection rate.

For the proposed approach, we have skipped the time consuming part of computing full TF representations, by directly estimating the time marginal and testing for trend contamination in its structure. The idea is that a stationary signal should not exhibit a structured pattern in the time marginal, like a trend. The trend itself has been estimated by means of the EMD, and the importance of the trend has been estimated by using the so-called trend importance estimator ( θ TI ). It has been shown that, due to the properties of the IMFs, θ TI can be expressed solely as fraction of the energies of the IMFs. Moreover, the expression for θ TI should be maximized in case of trend. In order to obtain stationary references of the signal to perform the hypothesis test, we have proposed to use block bootstrapping, which allows for the conservation of the correlation structure (if any) within a block. The distribution of θ TI under the null hypothesis of stationarity has been approximated by a GEV model, for which adherence has been verified by performing a goodness-of-fit test and an analysis in asymptotic regime. Also, an index of nonstationarity (I NS ) has been proposed.

We have applied the new stationarity test to a variety of nonstationary signals and also to stationary ones. Although some parametric methods have presented a higher classification accuracy for first-order nonstationarity, the new technique has presented an overall better performance regarding all types of nonstationarities tested, being globally more sensitive to for first and second-order evolutions. Such generality is exactly what is searched for a test suited to real world applications. One could regard the method that has been designed in this Chapter as a complement to the surrogate-based method of Chapter 2, as the latter performs better in detecting second-order nonstationarities, and the former in detecting first-order nonstationarities. Also, both techniques test for of the change point is carried out by measuring the conditional entropy (conditioned on the past values) of the observed change scores in time. The proposed method is fully data-driven, hence better suited to be applied for real world signals.

Introduction

The change point (CP) detection is considered to be a basic step in the frame of nonstationary signal analysis. Although the stationarity property can be violated in many ways, one is often interested in changes that occur either in the mean or in the variance (second-order nonstationarity) [START_REF] Souza | A modified time-frequency method for testing wide-sense stationarity[END_REF]. These kinds of changes are of particular interest in the analysis of natural phenomena (e.g. climate change [START_REF] Quessy | Multivariate Kendall's tau for change-point detection in copulas[END_REF]), as many real world time series can undergo first and second-order changes over time that reflect the impact of human activity on nature [START_REF] Jarušková | Some problems with application of change-point detection methods to environmental data[END_REF].

Methods for detecting CP in real world signals should ideally satisfy some essential points. More specifically, the technique should allow for the detection of first and second-order changes, should be nonparametric and data adaptive. Moreover, we expect the method to be robust against measurement noise [START_REF] Tokunaga | Detecting precursory events in time series data by an extension of singular spectrum transformation[END_REF]. Unfortunately, as pointed in [START_REF] Mohammad | Robust singular spectrum transform[END_REF], many of the available CP discovery methods either detect only one type of change (e.g. CUSUM for changes in the mean [START_REF] Basseville | Detection of Abrupt Changes -Theory and Application[END_REF]), assume a parametric underlying model (e.g. autoregressive model [START_REF] Gombay | Change detection in autoregressive time series[END_REF]), or need ad-hoc tuning for each time series (e.g. wavelet analysis [START_REF] Kadambe | Application of the wavelet transform for pitch detection of speech signals[END_REF]).

Several years ago, an algorithm for CP detection suited for real world applications was proposed in [START_REF] Idé | Knowledge discovery from heterogeneous dynamic systems using change-point correlations[END_REF]. The method is called singular spectrum transform (SST) and consists in using principal component analysis (PCA) to measure the anomaly between past and future patterns of the signal around a given time instant. If we take the whole observation scale, the result will be a new time series representing the CP score at every instant. Different from other conventional techniques, the SST does not assume a generative model and can detect different kinds of changes while being data adaptative.

Although these features make the SST better suited for real world applications, its actual use remains limited, as the traditional SST is not robust against noise and depends on five different parameters. In order to solve these problems, different modifications to the original SST algorithm have been proposed. In [START_REF] Tokunaga | Detecting precursory events in time series data by an extension of singular spectrum transformation[END_REF], the conventional SST has been extended to the multivariate SST, which main advantage is to improve the robustness against noise. However, the selection of various parameters is still needed [START_REF] Itoh | An extended singular spectrum transformation (SST) for the investigation of kenyan precipitation data[END_REF]. In order to alleviate this problem, the robust singular spectrum transform (RSST) has been proposed by [START_REF] Mohammad | Robust singular spectrum transform[END_REF]. This approach is more robust against noise and depends only on two parameters. In this Chapter we propose an alternative method for CP detection which is based on the RSST. We show that, due to the properties of the RSST, we can derive a framework that is fully data-driven, almost parameter-free, and sensitive to both changes in the mean and the variance.

Detailing the contributions of this chapter

The improvements brought by the RSST allow us to have a richer understanding about the change dynamics of the signal. The contributions of this Chapter to the framework of CP detection can be listed as follows:

• The RSST depends on two parameters, for which slight changes affect significantly the outcomes of the algorithm. In Section 4.3.1, we propose to represent the output of the RSST in the space spanned by its two parameters, as different change patterns can be captured if we let the two parameters vary. Further, in Section 4.3.2, we propose a stopping criterion for sweeping over that two parameters, which is a crucial point for reducing the computational time of the algorithm.

• In Section 4. 

SST and RSST, background elements

The main idea of the SST is to compute, for a given time t, an anomaly metric between the past and the future representative patterns of the time series {x(t), t = 1, ..., T}. The RSST encodes those past and future patterns in the subsequences b and f of length w, respectively:

b(t) = [x(t -w), ..., x(t -1)] T and f(t) = [x(t), ..., x(t + w -1)] T (4.1)
The RSST uses (4.1) for constructing two trajectory matrices corresponding to the past and future of the signal, respectively:

B(t) =      x(t -n -w + 1) x(t -n -w + 2) • • • x(t -w) . . . . . . . . . . . . x(t -n) x(t -n + 1) • • • x(t -1)      , (4.2) 
F(t) =      x(t) x(t + 1) • • • x(t + n -1) . . . . . . . . . . . . x(t + w -1) x(t + w) • • • x(t + n + w -2)      , (4.3) 
where n controls how deep we look into the past and future of the analyzed time series. The matrices B(t) and F(t) represent, respectively, the dynamics of the points before and after the instant t, and can be considered to contain various change patterns within the range of w points [START_REF] Idé | Knowledge discovery from heterogeneous dynamic systems using change-point correlations[END_REF]. Having constructed the trajectory (or Hankel) matrices, we apply singular value decomposition (SVD) to (4.2) and (4. Larger singular values are related to dominant patterns, while smaller ones are related to noise [START_REF] Idé | Knowledge discovery from heterogeneous dynamic systems using change-point correlations[END_REF]. We use the left singular vectors to define the representative patterns. The procedure to extract pattern by applying SVD to a Hankel matrix is known as singular spectrum analysis (SSA). The number of singular values corresponds to the number of representative patterns to be used in the analysis, which is an important point of the method. The traditional SST considers l f = 1 and fixes the parameter l b to a value chosen by the user. The RSST, however, computes both l b and l f automatically according to the procedure described in [START_REF] Mohammad | Robust singular spectrum transform[END_REF]. This automatic computation of l b and l f not only reduces the noise in the final results, but also the number of input parameters of the SST.

The key-point of the methodology is that, if the dynamics of the signal do not change, then the l f representative patterns of the future of the signal should be similar to the l b representative patterns of the past, in a sense that the l th singular vector u )] spanned by the vectors {u

[F(t)] l should lie close to hyperplane U [B(t
[B(t)] l , l = 1, ..., l b }.
To quantify how far a given representative pattern is from the hyperplane, the RSST computes for each {u )] as:

[F(t)] l , l = 1, ..., l f } the normalized projection onto U [B(t
α l (t) = U [B(t)] u [F(t)] l U [B(t)] u [F(t)] l , l ≤ l f . (4.5) 
By using (4.5), the RSST computes the change score at point t as the following weighted sum:

z(t) = l f ∑ l=1 λ l × (1 -α l (t) T u [F(t)] l ) l f ∑ l=1 λ l , (4.6) 
where the weights λ l are the eigen value of the matrix F(t). The output of the algorithm is given by z(t), which varies from zero to one and represents the final CP score [START_REF] Mohammad | On comparing SSA-based change point discovery algorithms[END_REF].

Modifying the RSST algorithm

Representing the CP scores in a different space

Since the development of the traditional SST [START_REF] Idé | Knowledge discovery from heterogeneous dynamic systems using change-point correlations[END_REF], the different SST-based algorithms [START_REF] Mohammad | Robust singular spectrum transform[END_REF][START_REF] Tokunaga | Detecting precursory events in time series data by an extension of singular spectrum transformation[END_REF] have shared a common point in their methodology: the fact that the output of the algorithm needs to be a time series of CP scores. Hence, the SST-based methods simply provide the nonlinear transformation T : x(t) → z(t). In this work, we propose to represent the output of SST-based methods in a different space. We have noted that the improvements brought by the RSST allow for the development of the modified transform

T : x(t) → z(t, w, n),
where the change scores are represented in an augmented space spanned by the variables t (time), w (length of the subsequence of the signal) and n (how deep we look into the past and future of the signal). Notice that w is the number of rows and n is the number of columns of the trajectory matrices given in (4.2) and (4.3).

Since the RSST requires the specification of only two parameters (w and n), it is possible to compute z(t) for a large collection of w and n values at every instant t. The proposed procedure is illustrated in Fig. 

Defining a stopping criterion for the computation of the CP scores

Ideally, one should use as different values of w and n as possible for capturing the largest possible range of z(t, w, n) scores for estimating the CP. The only (and obvious) limitation is that w ≤ T and n ≤ T, where T is the length of the signal. However, regardless of the gain in computational time brought by the RSST, performing this kind of exhaustive search becomes time consuming for larger signals or wider windows of analysis. Thus, to reduce the time required for computing the collection of z(t, w, n) scores, we have developed a stopping criterion for sweeping over t, w and n. More specifically, we have observed that, in general, the total number of scores captured by the windows w × n decreases after a given w and n. In this regard, we propose the following algorithm:

1. For the i th iteration, define h i = [1, ..., w 0 + i; 1, ..., n 0 + i] as the range of possible w

and n values to be used for the analysis, where the default is w 0 = n 0 = 0.

2.

Compute z(t, w, n) for t = 1, ..., N, by using every value of w = 1, ..., w 0 + i and n = 1, ..., n 0 + i given h i , that has not been yet considered for the previous ranges

h i-1 , ..., h 1 .
3. Compute the proportion p i of CP scores for all t, w and n over the area spanned by (w 0 + i) × (n 0 + i), i.e.:

p i = 1 (w 0 + i) × (n 0 + i) N ∑ t=1 w 0 +i ∑ w=1 n 0 +i ∑ n=1 z(t, w, n).

Expand the range h

i to h i+1 = [1, ..., w 0 + i + 1; 1, ..., n 0 + i + 1]
and evaluate steps 2 and 3 again. If p i+1 < p i , set ζ = i and go to the next step.

5.

Set the final collection of scores that shall be used for estimating the CP as:

Z = {z(t, w, n), t = 1, ..., N, w = 1, ..., w 0 + ζ, n = 1, ..., n 0 + ζ} (4.7)
and stop the algorithm.

The procedure starts at the first iteration (i = 1), and goes until i = ζ, when the algorithm stops because p ζ was achieved. We propose this algorithm because we have observed that, in practically all studied cases, p i increases monotonically with the size of the window only until a given i = ζ. For i > ζ, p i starts to decrease monotonically and the influence of the new scores added on the CP estimation starts to be not relevant1 . Hence, It should be remarked that the efficiency of the procedure above has been only verified empirically, and a proper theoretical basis can be developed in the future. One could suggest to increase w and n not evenly at each iteration, but rather verifying if p ζ could be reached through other ways, e.g. by using distinct values of w and n. However, the proposed procedure aims at being as simple as possible to fasten the computation of the CP, while keeping the choice of w and n as general as possible. The algorithm above has shown to be suitable for this end.

In Fig. Having defined an automatic procedure for computing the collection of CP scores, it can be noted that the proposed algorithm is better suited for real world applications, where the common strategy for choosing the SST parameters (visualization and domain knowledge [START_REF] Moskvina | An algorithm based on singular spectrum analysis for change-point detection[END_REF]) are not always possible. In Section 4.3.3, we present the criterion to estimate the CP. 

p i i i = ζ = 16 i = ζ = 14 i = ζ = 7 i = ζ = 13 i = ζ = 25 i = ζ = 17 (c) (a) (b) (d) (f) (e)

Selecting significant patterns

Having defined Z as the collection of scores to be used for CP detection, we can build a matrix Z t containing the scores for different w and n at each t ∈ [1, N]:

Z t =        z (t) 1,1 z (t) 1,2 • • • z (t) 1,n 0 +ζ z (t) 2,1 z (t) 2,2 • • • z (t) 2,n 0 +ζ . . . . . . . . . . . . z (t) w 0 +ζ,1 z (t) w 0 +ζ,2 • • • z (t) w 0 +ζ,n 0 +ζ        , for t = 1, ..., N, (4.8) 
where z

(t) 1,1 = z(t, 1 , 1), z (t) 
1,2 = z(t, 1, 2) and so on until z (t) w 0 +ζ,n 0 +ζ = z(t, w 0 + ζ, n 0 + ζ), according to the values of z(t, w, n) given in (4.7). Small CP scores happen if the representative patterns of the future are sufficiently similar to some frequent patterns of the past. Hence, if there is no significant change in the dynamics of the signal in comparison to the past, it is fair to say that the probability of a given z (t) i,j ∈ Z t taking a large value (i.e. being close to one) is low. Let us represent this "large value" by T z , which is called the score threshold for significant events. The criterion to select T z depends on the significance of the change patterns captured by (4.7) that one is interested in. A simple way to select T z is to set it according to a given percentage of the maximum score value observed in (4. In Fig. 4.4, we have tested a well-known case in hydrology of a time series that has been proven to present an abrupt-change at a specific point. This series correspond to the annual volume discharge from the Nile River at Aswan, Egypt, from 1871 to 1960.

The Nile data has been studied by many authors, and an abrupt-change in the year 1898 has been detected by using different approaches (e.g. by means of a likelihood ratio test [START_REF] Gombay | Asymptotic distributions of maximum likelihood tests for change in the mean[END_REF], by using nonparametric methods [START_REF] Carlstein | Nonparametric Change-Point Estimation[END_REF][START_REF] Dumbgen | The asymptotic behavior of some nonparametric change-point estimators[END_REF][START_REF] Müller | Change-points in nonparametric regression analysis[END_REF], or in a semiparametric setting [START_REF] Koo | Spline estimation of discontinuous regression functions[END_REF][START_REF] Guan | A semiparametric changepoint model[END_REF]). As pointed in [START_REF] Cobb | The problem of the nile: Conditional solution to a changepoint problem[END_REF], this abrupt-change might be associated to a sudden change in the rainfall regime that occurred near to the year 1900, which is also observed in the rainfall reports of most tropical weather stations [START_REF] Quessy | Statistical inference in Lombard's smooth-change model[END_REF]. By using the method for CP detection that will be proposed in the following Section, we could detect a CP at year 1896. In Fig. 4.4, notice that by using different values of T z we can select the most significant change patterns, and obtain a group of CP scores around the year where the change occurs.

A new CP detection framework

To estimate the CP, we first threshold Z t for t = 1, ..., N according to the chosen score threshold T z , i.e.:

Z t = [ z (t) i,j ] (w 0 +ζ)×(n 0 +ζ) = z (t) i,j = 0 if z (t) i,j ≤ T z z (t) i,j = z (t) i,j if z (t) i,j > T z , for t = 1, ..., N, (4.9) 
where Z t is the thresholded matrix, and z

(t)
i,j and z

(t)
i,j are elements of Z t and Z t , respectively. In order to estimate the CP, we have assumed the following:

• the uncertainty related to the observed CP scores in Z t should increase from (t -1) to t, if t is a CP.

We evaluate the uncertainty by computing the entropy of Z t conditioned on the past values Y t = Z t-1 , i.e., by computing the conditional entropy

H[ Z t | Y t ].
To do so, we first create two vectors z t and y t containing, respectively, all possible elements of the matrices Z t and Y t for a given time instant t. Then, by computing the empirical distribution of Z t and Y t , we define the individual probabilities p( z l ) and p( y l ) of a particular score value z l ∈ z t and y l ∈ y t , respectively. The conditional entropy is thus computed by:

H( Z t | Y t ) = - L y ∑ l=1 p( y l ) L z ∑ l=1 p( z l | y l ) log 2 p( z l | y l ), for t = 1, ..., N, (4.10) 
where L z and L y are, respectively, the numbers of possible score values in z t and y t .

We choose the CPs as the points where the local maxima of 

H( Z t | Y t )

Testing the new approach

To illustrate the modified RSST, we present in Fig. 4.1 that the proposed approach can reasonably detect the CPs for all values of SNRs. Also, one can verify that the method cannot detect properly the beginning of the linear trend at CP = 145. In general, the framework is not suited for detecting the CP of slowly-varying nonstationarities such as a linear trend. Furthermore, in many real world applications, we do not have the ground truth available. Thus, we do not know how many CPs are to be detected in a given time series. By sorting (4.10) 

Comparison with other approaches

We have compared the proposed approach with the algorithm for CP detection presented in [START_REF] Quessy | Statistical inference in Lombard's smooth-change model[END_REF], which is based on the Lombard's smooth-change model and makes use of the test statistics proposed in [START_REF] Lombard | Rank test for changepoint problems[END_REF]. The algorithm of [START_REF] Quessy | Statistical inference in Lombard's smooth-change model[END_REF] is also nonparametric and can detect changes both in the mean and in the variance. These characteristics make the Lombard's technique suitable for being applied to real world data and to be compared with the approach proposed in this work. The Lombard's method will be briefly explained below.

Lombard's technique

Consider a time series X = (x 1 , ..., x n ) containing independent samples. Let us assume 

that F i (x) = p(x i ≤ x), i ∈ [1, n] are continuous. Now, let us define the normalize rank of x i as R i = F n (x i ), where F n (x) = 1 n+1 ∑ n l=1 I(x i ≤ x)
Z i = {φ(R i -φ)}/σ φ ,
where φ and σ 2 φ are the sample mean and the sample variance of the collection {φ(R i ), i = 1, ..., n}. The Lombard's approach is based on the measure: (2.20), respectively. In order to use the test statistics derived from (4.11) for detecting CPs in time series, we can rely either on estimated or on asymptotic critical values obtained from their limiting distributions [START_REF] Quessy | Statistical inference in Lombard's smooth-change model[END_REF].

L κ 1 ,κ 2 = κ 2 ∑ j=κ 1 +1 j ∑ l=1 Z l , ( 4 

Experimental study using the Lombard's technique

In Table 4 Instead, only the most likely CP is detected for the signals with a changing mean. Also, the algorithm could not detect properly the CPs of the signals with both varying mean and variance. In fact, such performance is expected, as the algorithm does not perform well when a change in the mean occurs if one is testing for a change in the variance. This problem is worse when the mean is large, becoming more apparent as the sample size grows [START_REF] Quessy | Statistical inference in Lombard's smooth-change model[END_REF]. Other disadvantage of the Lombard's approach is that the observations contained in time series should be independent. This assumption is often not true for real world data. Moreover, for detecting the CP in the mean or in the variance, we should first set the algorithm according to the nonstationarity we are aiming at detecting. This is a crucial point, since in many cases we do not know a priori which kind of nonstationary are present in the signal. It can be a problem when the visual inspection of the time series is unfeasible. Despite these limitations, it should be noted that the Lombard's technique is much faster than the approach proposed here, and should be considered if one is testing larger time series, or if one is particularly interested in the patterns included in Lombard's model (e.g. abrupt-change, onset-of-trend) [START_REF] Quessy | Statistical inference in Lombard's smooth-change model[END_REF].

Conclusions

In the frame of nonstationary signal analysis, many techniques are devoted to detect the time instants (if any), where a change in a given parameter occurs. Change point assessment is a very important topic in many areas such as climatology, where the first CP might be an indicator of the beginning of a climate change [START_REF] Quessy | Statistical inference in Lombard's smooth-change model[END_REF]. Also, since the stationarity tests presented in this work are made to reject stationarity of the whole observation interval, one would need a separate algorithm to detect CPs. Many algorithms for CP discovery are parametric or require an ad-hoc adjustment for every signal. These characteristics, however, are not in consonance with those that are expected from a CP detector suitable for being applied to real world signals, which was our motivation here.

In this Chapter, we have proposed a modified framework based on an existing technique called RSST, which presents the necessary profile to be applied to real world signals. However, the original RSST suffers from its own generality: the CP detection depends on the choice of two parameters (two "windows" of analysis) that need to be chosen by visualization or domain knowledge, which are often impracticable. The first contribution that we have made in this Chapter avoided the problematic part of having to set a specific pair of windows for the analysis. The procedure consisted in representing the output of the RSST in the space spanned by its two parameters. This has shown to be a good strategy, as different change patterns can be captured if we sweep over the two parameters. Then, we have proposed a stopping criterion for the sweep, which is a crucial point for reducing the computational time of the algorithm. Having a representation of the change dynamics of the signals for different windows and time instants, we then presented a way for selecting significant change patterns. Finally, the CP estimation has been carried out by evaluating the uncertainty related to the change patterns, more precisely, by computing the conditional entropy at each time instant. The CP itself has been obtained by searching for the instants where the local maxima of the conditional entropy vector occur.

Having presented the framework, we compared the proposed approach with another one available in the literature, which is also used for testing real world signals. The proposed approach is more versatile, and allows us to visualize the intervals where major changes in the signal occur as a function of the window of analysis and time. However, the technique presented in this Chapter is considerably time consuming if one is testing larger time series. On the other hand, there are many applications like in biomedicine and in hydrology, where short time series need to be analyzed by nonparametric techniques in a richer feature space. This is the case of the dataset that will be studied in the next Chapter, for which we not only applied the technique proposed in this Chapter, but also the other stationarity tests presented earlier in this manuscript.

Chapter 5

Experimental study on real world data 

Introduction

The Canadian Regional Climate Model (CRCM)

The environmental data tested in this Chapter are rainfall time series corresponding to annual maximum daily precipitation obtained from the Canadian Regional Climate Model (CRCM). The CRCM data have been generated and supplied by Ouranos [START_REF] Music | Evaluation of the hydrological cycle over the mississippi river basin as simulated by the canadian regional climate model (CRCM)[END_REF].

The CRCM is a realistic limited-area nested model that considers many complex multiscale interactions and feedbacks. The multitude of variables that this climate model takes into account ranges from physical parameters such as radiation scheme, cloud formations, and atmospheric boundary layer mixing [START_REF] Côté | Description of the canadian regional climate model[END_REF], to social considerations like possible future scenarios involving population growth, economic development, and technological change [START_REF] Nakicenovic | Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change[END_REF]. The CRCM allows for the study of climate change and variability, and also allows for the understanding of the large number of processing governing the climate system. The data generated by this model have been used for climate predictions on time scales ranging from seasons to decades.

The rainfall data

The region covered by the CRCM consists of 200 × 192 grid points over the North-American domain with a 45 km horizontal grid-size mesh. The rainfall data tested in this Chapter correspond to a smaller area of that region: 1631 locations spread over the province of Quebec (QC), Canada. This area is illustrated in Fig. 5.1 together with each grid point considered in the simulations. 

Locations in Canada

Exploratory analysis

In this Section, we perform a short exploratory analysis of the rainfall dataset. To this end, we have selected the time series illustrated in Fig. 

Applying the stationarity tests

In this Section, we show the results of applying the stationarity tests developed in this Thesis, and also other nonstationarity tests available in the literature. For all the stationarity tests, a confidence level of 95% was used. In Section 5.2.1, we present the results for the surrogate-based approach and its modified version. In Section 5.2.2, we illustrate the performance of the new stationarity test proposed in Chapter 3 for detecting trendbased nonstationarities. The results of applying other methods available in the literature are shown in Section 5.2.3.

Results for the surrogate-based technique

For applying the stationarity test described in Chapter 2 we have to specify the parameter n h0 (see (2.4)). For the datasets we considered the following values: n h0 = [0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.22, 0.24, 0.26, 0.28].

These values lead to Hermite windows with the following length: [START_REF] Rao | Nonstationarities in Hydrologic and Environmental Time Series (Water Science and Technology Library)[END_REF][START_REF] Shih | A new forecasting model for nonstationary environmental data[END_REF][START_REF] Carlstein | Nonparametric Change-Point Estimation[END_REF][START_REF] Müller | Change-points in nonparametric regression analysis[END_REF][START_REF] Brodsky | Nonparametric Methods in Change Point Problems[END_REF][START_REF] Laurent | Stationarity index for abrupt changes detection in the time-frequency plane[END_REF][START_REF] Basseville | Detection of Abrupt Changes -Theory and Application[END_REF][START_REF] Hobijn | Generalizations of the kpss-test for stationarity[END_REF][START_REF] Sen | On tests for detecting changes in mean[END_REF][START_REF] Leonowicz | Parametric methods for time-frequency analysis of electric signals[END_REF][START_REF] Djuric | Segmentation of nonstationary signals[END_REF][START_REF] Gianfelici | Multicomponent AM-FM Representations: An Asymptotically Exact Approach[END_REF].

n h =

Testing with distances of probability nature

We have tested the annual maximum daily rainfall data by applying all distances shown in Table 2.1. However, as expected, the distances of probability nature did not lead to a satisfactory performance. Although the stationarity was rejected for some grid points by applying the original method, after weighting the probability-based distances the test could not reject the null hypothesis for almost all grid points and n h0 values. Moreover, if we consider the outcomes for all the different grid points and values of n h0 , and check if there exist "nonstationary" grid points intersecting all of them, we get a null result for both original and modified method. These results are in accordance with the problems described in Section 2.6 and Section A.2 involving the use of probability-based distances.

That was not the case, on the other hand, for the distances of frequency nature. Thus for the remaining of this Section, we shall analyze the performances of the frequency-based distances only.

Testing with distances of frequency nature

By applying the method using the frequency-based distances, we have observed that the number of "nonstationary" grid points obtained for each simulation (aet and aev) tends to be closer to each other, for all considered values of n h0 and all distances. This situation is shown in Table 5.2, where it can be seen that the number of nonstationary results increases substantially by decreasing the value of n h0 , or by weighting the distances.

However, the number of nonstationarities does not increase or decrease considerably by changing from the aet to the aev simulation. In Fig. 5.5, we show, for aet simulation, the grid points corresponding to the maximum annual daily rainfall time series where the stationarity was rejected for every distances and values of n h (i.e. the intersections). The number of grid points correspond to 36

for the original method, and to 95 for the modified one. The results for aev simulation are shown in Fig. 5.6, where the number of intersections of the original and modified method is 20 and 65, respectively. Notice that most of the intersections are obtained only for the modified method. In general, after applying the weighting procedure the number of nonstationary cases returned by the method increases (note that it was the opposite for the case of the probability-based distances). The final intersection of nonstationary locations for the aet and aev simulations is shown in Fig. 5.7. For this experimental study, we have also verified if the conditions for the gamma parameters shown in (2.27) for improving the stationarity test are reached (in the average). In Table 5.3, it can be seen that, in the majority of the nonstationary cases, the two inequalities are verified, i.e. k ′ < k and Θ ′ 1 /θ ′ > Θ 1 /θ (except for the Log-spectral distance). Relying only on the possible "nonstationarity" / "stationarity" outcome of the method may not be judicious, as we are applying the method to the annual maximum daily rainfall data corresponding to only two simulations of the CRCM. Thus, making use of some extra information for evaluating the nonstationary locations, such as the robustness measure AMD (see (2.28)) is recommended. To this end, we have plotted in the map the nonstationary cases given by using each distance and value of n h0 , whereas the larger the value of AMD evaluated from the data of a given grid point is, the bigger the marker used to represent that grid point on the map. For aet and aev simulations, the results issued from the AMD values are shown in the following figures according to the chosen distance: i) Itakura-Saito Fig. 5.12 (aet) and By applying the proposed method for detecting trend-based nonstationarities, we have observed that the total number of nonstationary outcomes was smaller than the one obtained for the surrogate-based approach. In Table 5.4, we show the number of nonstationary cases obtained per value of n h for the aet and aev simulations.

n h0 Real. k k ′ Θ 1 /θ Θ ′ 1 /θ ′ k k ′ Θ 1 /θ Θ ′ 1 /θ ′ k k ′ Θ 1 /θ Θ ′ 1 /θ ′ k k ′ Θ 1 /θ Θ ′ 1 /θ ′ 0 
In Fig. 5.20, we show the locations in which signals were classified as "nonstationary" by the method. The results are shown according to the chosen window. Also, we have computed the value of the index of nonstationarity I NS , proposed in (3.34). So, in Fig. 5.20, the bigger the marker used to represent the grid point is, the greater is the respective value of I NS .

It should be noticed, that we did not find any intersection between the nonstationary locations given by the surrogate-based method, and the new technique proposed in Chapter 3. It could be explained by the fact that the two stationarity tests are designed for detecting different types of nonstationarities, and the nonstationary behavior detected by one at a given grid point, will be not necessarily detected by the other.

Results for other stationarity tests

We have applied the KPSS test and the Kay's nonstationarity procedure to the annual maximum daily rainfall data. These stationarity tests were compared with the new approach for testing slowly-varying nonstationarities described in Chapter 3. By applying the nonstationarity procedure of S. Kay, we could not find any nonstationary location.

Although this method works for short sample sizes, and performed well in accusing the synthetic nonstationary signals shown in Fig. 3.10, it is still a parametric approach, whose performance depends on the chosen model. Possibly, the model assumed for the nonstationary signals (a time-varying autoregressive model) was not a good choice with the datasets under study. 

Applying the change point detection algorithm

In this Section, we show the results of applying the CP detection framework proposed in Chapter 4. We have tested all grid points where the stationarity was rejected by the tests of Chapter 2 and Chapter 3. In It can be seen that the distributions of possible CPs and most likely CPs are too wide, and it is difficult to draw some conclusions from them. However, if we compute the mean values of the most likely CP for the cases described above, we can see that they are around t = 60 (or the year 2020) for each case. The estimated mean and mode from the histograms of the most likely CP are shown in Table 5.5.

We could narrow the scope of the search even further, and analyze, for instance, the CPs of the grid points that correspond only to the largest values of AMD (see Fig. For observing the behavior of the change scores for different values of w, n and t, we have selected 8 locations belonging to the largest AMD ones for all the distances, and we have computed the CP scores for the selected range of the parameters. The coordinates of the chosen grid points are given in Table 5.6.

In Fig. 5.28 and Fig. 5.29, we illustrate the collection of CP scores over w, n and t, 5.6 for different levels of significance.

after applying the procedure for selecting significant patterns, for the 8 locations shown in Table 5.6. The most likely CPs obtained for these locations are shown in the plots for each case. Notice that after choosing the significance of the change pattern, there is a concentration of CP scores around the respective time point relative to the CP.

Conclusions

In this Chapter, we have applied the techniques developed in this Thesis for testing the annual maximum daily precipitation obtained from two simulations of the Canadian Regional Climate Model (CRCM 4. An interesting result is that the total number of nonstationary grid points found for The CP analysis over the nonstationary locations has indicated that there exists a high variability in the CP detected for each grid point. However, the expected value of the CP has shown to be around t = 60, i.e. the year 2020, for both stationarity tests and simulations. Finally, for the cases with the largest AMD values, the CP scores could be easily isolated by selecting a large significance level for the change pattern.

Chapter 6

Conclusions and perspectives

In the analysis of real world signals, we are often faced with a situation where we do not know whether a change occurred nor do we have any idea where the possible change point could be. However, a large amount of work assumes stationarity for applying standard algorithms, and the stationary case is well-defined from a theoretical perspective.

On the other hand, all real world processes are a priori nonstationary, and in the majority of the cases this assumption turns out to be true. Hence, this has led to the development of techniques designed specifically for nonstationary situations. In this Thesis, we have focused on methods suitable for being applied to environmental processes, more specifically, hydro-meteorological ones. The techniques that have been developed in this Thesis, present some characteristics that are expected from a method to be applied to real world data (i.e. be nonparametric, data-driven, sensitive to first and second-order changes). Furthermore, in real world applications, we not only want to test for stationarity, but also to detect the time points (if any) where the changes take place in the data.

Thus, in this Thesis, we have approached the stationarity test and the change point problem separately, by proposing a number of contributions and new approaches to these topics.

As the first part of the thesis, in Chapter 2, we have studied an existing stationarity test developed in TF domain that is nonparametric and data-driven. This method makes use of surrogates resampling for characterizing the statistics of the null-hypothesis of stationarity. In Chapter 2, we have proposed various contributions to the original approach, which allowed for:

• The identification of a proper class of distances to be used by the method.

• An improved detection of nonstationarities (when using the proper class of distances), specially first-order nonstationarities.

• The development of a measure to evaluate the changing results that may appear by applying the stationarity test sequentially.

Regardless of the improvements brought by the modifications proposed in Chapter 2, computing a TF representation for each surrogate resample still requires a large amount of computational work. Also, it could be pointed out that the surrogate-based technique does not present high classification accuracies when testing short time series with first-order or slowly-varying nonstationarities, simply because the surrogate-based framework has not been designed to this end. However, detecting such forms of nonstationarity is of major importance in many real world applications. Therefore, in Chapter 3 we have proposed a novel stationarity test, which is nonparametric, data-driven, and more sensitive sensitive to first-order evolutions than other nonparametric methods.

Also, the proposed technique works for short signals.

The new stationarity test has been designed for testing a specific nonstationary behavior: the presence of a trend and/or an evolution in the local energy of the signal. To do so, we have proposed to test for trends in the time marginal, which is estimated directly by numerical convolution with a proper window of analysis (in this case, the Hermite functions). The trend itself is estimated by means of the EMD, and the importance of the trend seen in the time marginal is measured by making use of the so-called trend importance estimator ( θ TI ). In order to perform the hypothesis test, we have proposed to use block bootstrapping to obtain the distribution of θ TI under the null hypothesis.

Such distribution has been approximated by a pdf belonging to the GEV family. The adherence of this pdf has been verified by means of an analysis in asymptotic regime and a goodness-of-fit test. An index of nonstationarity (I NS ) has also been proposed.

The method that has been developed in Chapter 3 still leaves room for many possible improvements. As the proposed methodology encompasses a number of aspects, we have categorized some possible points that could be addressed in the future as follows:

• Index of nonstationarity (I NS ): one could identify the theoretical conditions for which the convexity of f (e) (see (3.31) and (3.30)) is guaranteed. In general, further work needs to be done in deriving a robust index of nonstationarity for the stationarity test based on EMD. A possibility would be to improve the characterization of the terms that are used as arguments to parametrize the objective function.

• The distribution of θ TI under the null hypothesis: the adherence of the GEV model has been verified empirically, so the determination of the theoretical distribution of θ TI still remains an open question. A possibility would be to work with the expanded expression for θ TI in (3.23), while taking into consideration some properties of the IMFs reported in [START_REF] Wu | A study of the characteristics of white noise using the empirical mode decomposition method[END_REF].

• Speed up the computational time: although the computational time was reduced by skipping the part of computing a TF representation for each surrogate, the algorithm still takes a while to run. The most time-consuming part is by far the estimation of the trend by means of EMD, so one could think of a way to speed up the EMD algorithm. Other alternative would be to perform the test with an approximated asymptotic distribution of θ TI under the null hypothesis, since we have observed that parameters of the GEV distribution often tend to specific values (0.5, 0.02, and 1 for ǫ, σ and µ, respectively), as the number of bootstrap resamples increases.

After presenting the contributions to the nonparametric tests for stationarity, we have proposed in Chapter 4 an alternative framework for CP detection, which is based on the RSST. This technique is nonparametric and allows for the detection of multiple CPs. However, the full application of the RSST to real world data has been held captive by some limitations. For example, the RSST requires the specification of two parameters, whose values are chosen by means of visualization or domain knowledge.

Unfortunately, these are often impracticable when testing environmental data. Thus, in Chapter 4 we have proposed a modified framework based on the RSST which is better suited to be a applied to real world signals. More precisely, we have proposed the following modifications:

• To represent the output of the RSST in the space spanned by its two parameters, as different change patterns can be captured if we sweep over w and n. Then, we have proposed a stopping criterion for the sweep, which is a crucial point for reducing the computational time of the algorithm.

• Better results are obtained by selecting significant change patterns in the signal.

Hence, we have proposed a simple strategy to filter the most significant CP scores (the ones representing actual changes).

• For estimating the CP, we have proposed to measure the uncertainty related to the CP scores at each temporal "slice" in the space spanned by the two parameters of the RSST. To do so, we have proposed to compute the conditional entropy at each time instant, and to compute the CP by searching for the instants where the local maxima of the conditional entropy vector occur.

The modified approach for CP detection is more versatile than other ones in the literature, since it allows for: i) the detection of multiple CPs, ii) the visualization of the intervals where major changes in the signal occur as function of the windows of analysis and time, and iii) the detection of first and second-order changes. However, the proposed methodology calls for a deeper analysis or further improvements in many points, for example:

• The technique presented in Chapter 4 is considerably time consuming if one is testing larger time series. Solutions to fasten the methodology need to be searched.

A possibility would be to find another stopping criterion for the sweep.

• The efficiency of the procedure to sweep over the two parameters (w and n) has been only verified empirically. Thus, a proper theoretical basis could be developed in the future. For instance, one could demonstrate why p i decays after attaining the maximum at ζ. Also, one could suggest to increase w and n not evenly, but instead verifying if max p i could be reached faster through other ways.

Finally, in Chapter 5, we have applied the various methods presented in this Thesis to an environmental dataset, more specifically, the time series corresponding to annual maximum daily precipitation simulated from the Canadian Regional Climate Model (CRCM 4. The right-hand side of (A.12) stands for the logarithm of the arithmetic mean of Θ 0 (i)

divided by its geometric mean. Since {Θ 0 (i), i = 1, ..., I} is formed by I variances of the distances computed for the surrogates, we can express (A.12) as: 

• 1 •

 1 Z: final collection of scores that is used for estimating the change point • Z t : matrix with change point scores at time t • Y t : matrix with change point scores at time t -H(•|•): conditional entropy • i.i.d.: independent and identically distributed • WGN(0,1): white Gaussian noise with zero mean and unity variance • AR(1): first-order autoregressive process • FFT: fast Fourier transform • PSD: power spectrum density • EMD: empirical mode decomposition • IMF: intrinsic mode function • GEV: generalized extreme value distribution • AMD: absolute mean deviation • CP: change point • SST: singular spectrum transform • RSST: robust singular spectrum transform • SSA: singular spectrum analysis • PCA: principal component analysis overview of the common approaches available in the literature is presented, and based on the application of interest we outline the required profile of the stationarity tests developed in the PhD's research.

  particular interest (e.g. a change in the skewness might indicate a modification in the annual cycles induced by climate change, while a change in the kurtosis might indicate a modification in the behavior of the tails, which is related to the occurrence of floods), this
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 11 Figure 1.1: An illustration of the rainfall data analyzed in this Thesis: three annual maximum daily precipitation time series and the corresponding location in Canada.
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 31511511 allows for the detection of multiple change points, and aims at analyzing those signals in which stationarity have already been rejected by the hypothesis tests of Chapter 2 and Chapter 3. Also, we consider a more general interpretation of change point, which is not restricted to the one defining the time instant where a change in the conditional density occurs. Instead, we consider change points as "time discontinuities in a time series that can be induced from changes in observation locations, equipment, measurement techniques, environmental changes, and so on"[START_REF] Reeves | A review and comparison of changepoint detection techniques for climate data[END_REF]. Detection A brief descriptionThe framework for change point detection of Chapter 4 is based on the robust singular spectrum transform (RSST). The RSST is an improved version of the singular spectrum transform (SST), which consists of using principal component analysis (PCA) to measure the anomaly between past and future patterns of the signal around a given time instant Chapter 1. Introduction t. This anomaly measure is called change point score and is given by z(t). The RSST has two free parameters (w and n), which can be interpreted as two windows of analysis.In Chapter 4, we propose to represent the output of the RSST in the space spanned by its two parameters and the time, as different change patterns can be captured if we let w and n vary. The result will be a modified transform T : x(t) → z(t, w, n), where the anomaly measure between the past and the future is represented in a space spanned by the t (time), w and n (the two windows of analysis). For estimating the change points, we first propose a procedure for filtering significant values z(t, w, n) (significant change patterns). Then, we compute the conditional entropy (conditioned on the past values) of the observed change scores in time. The conditional entropy is chosen because we consider that the uncertainty associated with the change patterns captured by different windows w and n should increase around the change point.
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 21 Figure 2.1: An illustration of the proposed stationarty test. (a) Stationary Gaussian process. (b) Results of the test: the test statistic Θ 1 is in the middle of the distribution. (c) Gaussian process with a nonstationary variance. (d) Results of the test: the test statistic Θ 1 is beyond the threshold γ (which corresponds to 95%).
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 2022 Figure 2.2: Synthetic signals following the Abrupt-change and the Onset-of-trend models. (a) Signals with length T = 300. (b) Signals with length T = 1050.
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 23 Figure 2.3: Enhancing the stationarity test. (a) Example of the situation before modifying the test and the original gamma parameters. (b) After modifying the test, if the signal is stationary, the test will keep accepting the null hypothesis. (c) After modifying the test, if the signal is nonstationary, the test will more likely reject the null hypothesis.
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 24 Figure 2.4: Behavior of γ(k, s)/Γ(s), i.e. decreases with k and increases with s = Θ 1 /θ. (a) γ(k, s)/Γ(s) as function of k and s. (b) γ(k, s)/Γ(s) decreasing with k for different "slices" over s. (c) γ(k, s)/Γ(s) increasing with s for different "slices" over k.
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 25 corresponding to Gaussian processes exhibiting an exclusively varying mean (Fig. 2.5(a)), varying variance (Fig. 2.5(b)) and a jointly varying mean and variance (Fig. 2.5(c)).
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 25 Figure 2.5: Different nonstationary signals and their particular TF representation. (a) Varying mean. (b) Varying variance. (c) Varying mean and variance.
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 2626 Figure 2.6: Two different ways in which the marginals can be used for building a weight vector. (a) Time-frequency representation of a given nonstationary signal. (b) Time marginal obtained by summing over frequency. (c) Frequency marginal obtained by summing over time. (d) By weighting the spectra at input of the distance, the marginal spectrum of the surrogate will be different from the one of the signal. (e) Weighted distance obtained by choosing the appropriate marginal.
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  2.7, where the distance d between Θ 1 and the threshold γ, the range of fluctuation of γ, and the gamma fit are shown. In this case, it is desired to have d stretching outside the fluctuation limits for both stationary (Fig. 2.7(a)) and nonstationary (Fig. 2.7(b)) cases. On the other hand, having Θ 1 embraced by the fluctuation range (Fig. 2.7(c)) might lead to changing outcomes. The latter happens every time the threshold crosses the value of Θ 1 (Fig. 2.7(d)).
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 127 Figure 2.7: Scheme representing how the fluctuations of the threshold may change the results. In (a) and (b), the value of Θ 1 is in a safe distance d from the fluctuations of γ for both stationary and nonstationary cases, respectively. In (c), Θ 1 can be reached by the threshold line, causing changing outcomes. In (d), it is shown that such situation happens whenever γ crosses the fixed value of Θ 1 .

For

  the nonstationary signals following the Onset-of-trend model, we computed the histograms of the values taken by the threshold γ, when using the Itakura-Saito, Symmetrized Itakura-Saito and Combined distances. For the sake of simplicity the analysis was carried out with the original distances, not the weighted ones. The histograms are shown in Fig. 2.8, where the dashed line in black stands for the 95% line of the empirical distributions approximated by the histograms. If Θ 1 (red line) is beyond this threshold (to the right-hand side), it means that the corresponding distance seldom leads to changing results, being consistent with the definiton of robustness. Notice in Fig. 2.8
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 28 Figure 2.8: Analyzing the robustness of three distances: Itakura-Saito, SymmetrizedItakura-Saito and Combined. The nonstationary signals follow the Onset-of-trend model and exhibit three types of nonstationarities: exclusively in the mean (µ), exclusively in the variance (σ), and both in the mean and in the variance (µ,σ). The dashed line in black corresponds to the 95% line of the empirical distribution approximated by the histograms. The solid line in red represents Θ 1 , which is expected to lie beyond the dashed line (to the right-hand side), for a robust distance when analyzing a nonstationary signal.
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 29 Figure 2.9: Robustness evaluation with bootstraps. (a) A robust case and its AMD value. (b) A nonrobust case and its AMD value.

Figure 2 . 10 :

 210 Figure 2.10: For the Itakura-Saito, Log-spectral and Diffusion distances, and signals with varying mean, the gamma threshold fluctuations obtained by bootstrapping, the running time and the AMD values computed by means of (2.28). The mean of the fluctuations is given by M.

  lysis from the point of view of the distances between local and global spectra. The first contribution of the Chapter consisted of an investigation on the effect of using distances of different natures (frequency and probability-based). In this first part, it was observed that the original framework could hardly detect a changing mean and nonstationarities varying slowly as a trend, regardless of the chosen distance. Hence, as a second contribution, we have proposed to modify the methodology and to weight the distances by a vector built from the time marginal of the TF representation. Doing so, we could improve the performance of the test and increase the detection rate of first-order nonstationarities, but only for the frequency-based distance. The last contribution consisted in evaluating the robustness of the test against the changing results that may appear by applying the test sequentially to the same realization of the signal. We have proposed a robustness measure that makes use bootstrapping for estimating a collection gamma thresholds from a single realization of the process. Doing so, we have successfully assessed the least and most robust cases.
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Figure 3 . 1 :

 31 Figure 3.1: Flowchart representing the procedure for testing operational stationarity by evaluation of the trend importance in the time marginal.

3 . 2 Figure 3 . 2 :

 3232 Figure 3.2: (a) Two stationary processes (x a (t) and x w (t)) and a nonstationary one (x(t)). (b) Estimated TF spectra of all signals. (c) Time marginal distribution obtained by integration in the frequency (in gray, thick line), and estimated trend (in black, thin line).

  3.2(c) we have illustrated the EMD approximation of trends components estimated from the three time marginals of the stationary and nonstationary signals. Now, for the same test signals, we present in Fig.3.3 the time marginals y(t) computed with (3.2) by using windows h k (t) of different lengths (n h = 3, 5, 7, 9), and also the corresponding trend components c(t) estimated by the EMD-based method. Notice that the trend estimated by the EMD does not need to be monotonic. Having defined the procedure of estimating the trend component c(t), we now have to quantify its contamination in the time marginal and to decide whether or not it is significant enough to reject stationarity.

Figure 3 . 3 :

 33 Figure 3.3: Time marginal y(t) (in gray), trend component c(t) (dashed line in black), histograms of θ TI and its average value (dashed line in red) for the signals shown in Fig. 3.2. (a) Nonstationary Gaussian process. (b) Stationary AR(1) process. (c) Stationary WGN(0,1) process.

( 3 .

 3 21) and (3.22) since they are anyway canceled out in the expression of θ TI . According to (3.21) and (3.22), we can express (3.20) as:

3 . 2 .

 32 The EMDbased trend filtering algorithm has returned I = 6 IMFs and the residual. In(3.23), the energies of the IMFs of the trend component (E i * , ..., E I ) and residual (E ρ ′ ), are being divided by those of the detrended one (E 1 , ..., E i * -1 ). According to[START_REF] Moghtaderi | Trend filtering via empirical mode decompositions[END_REF], the energies are in general increasing for IMFs with index i ≥ i * . Hence, if the energy criterion for choosing i * holds, the ratio in (3.23) should be maximized, increasing the value of θ TI , which indicates the presence of a trend.
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 34 where the importance of the trend was estimated in the time marginals of P = 1000 and P = 100 bootstrap replicates of a stationary AR[START_REF] Giannakis | Cyclostationarity Signal Analysis, Digital Signal Processing Handbook[END_REF] process with length T = 1050 and pole at a = 0.8. The approximated GEV pdf and the histograms are shown in Fig.3.4(a) for the case of P = 1000, and in Fig.3.4(b) for the case of P = 100.

Figure 3 . 4 :

 34 Figure 3.4: Fitting a GEV pdf of type II. (a) P = 1000 bootstrap resamples. (b) P = 100 bootstrap resamples.

Figure 3 . 5 :

 35 Figure 3.5: Analysis of the parameter estimators as function of the number of bootstrap replicates for windows h k (t) of different lengths (as indicated in the legend). The mean and standard deviation of the three parameter estimators are shown in (a), (c), (d), and (b), (d), (f), respectively.

Figure 3 . 6 :

 36 Figure 3.6: Analysis of the parameter estimators as function of the number of bootstrap replicates for windows h k (t) of different lengths (as indicated in the legend). The normalized bias and normalized variance of the three parameter estimators are shown in (a), (c), (d), and (b), (d), (f), respectively.

Figure 3 . 7 :

 37 Figure3.7: Verifying the null hypothesis of stationarity. For a false alarm rate fixed a priori as 5% and 1000 realizations of the AR(1) process of Fig.3.6 and Fig.3.5, a Monte Carlo estimation of the number of observed "nonstationary" outcomes is performed as function of the number P bootstrap resamples. The obtained level of confidence remains under 6.8% for P ≥ 100.
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 38 Figure 3.8: Histograms of ǫ computed for all the different types of stationary and nonstationary signals tested in this Chapter. The dashed line in red stands for the 0.5 point. (a) Signals with a nonstationary mean. (b) Signals with a nonstationary variance. (c) Signals with a nonstationary mean and variance. (d) Stationary signals.

Figure 3 . 9 :

 39 Figure 3.9: Results of using I NS to evaluate different nonstationary processes with an increasing transition of the parameters.

  20): κ = 1 and κ = T/2, corresponding to a nonstationarity starting at the beginning or at the middle of the signal with length T. The test signals are gamma or Gaussian processes of two lengths (T = 300 or T = 1050). In particular, the gamma processes were chosen because many natural phenomena are modeled by a gamma pdf. Realizations of the synthetic signals with T = 300 and T = 1050 are shown in Fig. 3.10(a), (b) and Fig. 3.10(c), (d), respectively.

ξ 2 = 39 . 1 = 19 .94 to ξ 2 = 21 . 1 = 19 .94 to ξ 2 = 39 .Figure 3 . 10 :

 239119221119239310 Figure 3.10: Realizations of the synthetic signals following the onset-of-trend model for two different ranges shown in (3.35) and two different start points: κ = 1 and κ = T/2. Two different lengths (T = 300 and T = 1050) and two different distributions (Gaussian and gamma) were also considered.

4 ,

 4 we show the average values of the Zempléni statistic B 2 and the GEV shape parameter (ǫ), computed for all realizations and different windows. Note that, in accordance to what was shown in Section 3.7.2, the value of ǫ fluctuates around 0.5, and the averages of the Zempléni statistic are much larger than the critical values shown in Table 3.2, which indicates the adherence of the GEV model.

[ 20 ]

 20 ("Kay") performed poorly in detecting a nonstationary variance for different configurations of the onset-of-trend model, and simply could not reject the stationarity of the nonstationary gamma processes. The classical KPSS test also could not detect properly signals with nonstationary exclusively in the variance, and those signals with nonstationarities that start at the beginning of the observation interval. Therefore, we can see that the global performance of the proposed stationarity test outperforms those of the traditional tests used in the literature for detecting slowly-varying nonstationarities.
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 33 we present a way for selecting significant change patterns in the signal. The proposed strategy works well for filtering the most significant CP scores (the ones representing actual changes) from noise • For estimating the CP, we analyze the intervals in the space spanned by the two parameters of the RSST that might encode major changes. More specifically, in Section 4.4, we propose to use the measure of the uncertainty related to the CP scores in time for estimating the CP. We propose to compute the conditional entropy at each time instant, and to calculate the CP by searching for the instants where the local maxima of the conditional entropy vector occur.

  3) to obtain the left singular vectors and the corresponding squared singular values, which are sorted in a descending order of magnitude. The notations used for the SVD outputs of B(t) and F(t) are, respectively, the following: l b and l f : number of singular values used in the decomposition, {λ [B(t)] l , l = 1, ..., l b } and {λ [F(t)] l , l = 1, ..., l f } : squared singular values, {u [B(t)] l , l = 1, ..., l b } and {u [F(t)] l , l = 1, ..., l f } : left singular vectors.

4 . 1 .

 41 Notice that, for a given signal {x(t), t = 1, ..., T}, the CP scores are computed via RSST at each value of w and n for t = 1, ..., N, where N ≤ T (usually N = T -1). Doing so, we can represent different change patterns in the space spanned by t, w and n.

Figure 4 . 1 :

 41 Figure 4.1: Representation of the output of RSST in an augmented space. Different change patterns are captured by varying w and n.

ζ

  is the point that gives the maximum proportion of CP scores over the area spanned by w and n, and we define the ζ th iteration as a stop point for the computation of the chart shown in Fig.4.1. Note that Z is an array of dimension N × (w 0 + ζ) × (n 0 + ζ). Finally, one could set other values for w 0 and n 0 , as long as 0 ≥ w 0 ≥ N and 0 ≥ n 0 ≥ N are verified.

4 . 2

 42 we illustrate the application of the proposed algorithm for different types of signals. In Fig. 4.2(a),(b),(c) and (d), we test nonstationary signals with a length T = 150 that have a varying mean and variance following the onset-of-trend and abruptchange models (see (2.19) and (2.20)) with a CP at t = T/2. The signals with a varying mean have ξ 1 = 0 and ξ 2 = 3. The signals with a varying variance have ξ 1 = 1 and ξ 2 = 3. In Fig. 4.2(e) and (f), we test two real world time series, more specifically, rainfall time series (see Chapter 5 for data description). For each case, we show the original time series, p i as function of the iteration i and the point ζ that leads to the maximum, and the different ranges h i from [1, ..., 10; 1, ..., 10] to [1, ..., 40; 1, ..., 40]. Notice that for larger windows the proportion of the CP scores over the area spanned by w and n does not tend to increase. It can be seen that p i grows monotonically until i = ζ for all time series.

Figure 4 . 2 :

 42 Figure 4.2: Illustrating the automatic procedure for stopping the algorithm for different types of signal. The original time series is plotted in the upper left. The proportion p i and the point ζ that leads to the maximum are shown in the upper right. In the bottom, we illustrated the CP scores in gray levels over different areas given by h i = [1, ..., w 0 + i; 1, ..., n 0 + i]. These plots are displayed for the following cases: (a) signal with a mean following the abrupt-change model. (b) signal with a variance following the abrupt-change model. (c) signal with a mean following the onset-of-trend model. (d) signal with a variance following the onset-of-trend model. (e) and (f) real world signals.

  7), i.e. T z = (1a) max Z, where a = 0.1 or a = 0.05, for instance. This strategy works well for filtering significant change patterns. We have considered that significant changes are represented by large values of the CP score, which stand for actual changes in the signal. Recall that large values of the CP score occur whenever the singular vectors representing the change patterns of the future of the signal, do not lie close to the hyperplane spanned by the singular vectors representing the change patterns of the past of the signal (see (4.5) and (4.6)). For example, in Fig. 4.3 we use different values of T z for selecting change patterns in the Z collection computed for the nonstationary signal shown in Fig. 4.2(a), which presents an abrupt change in the mean at t = 75. Notice that the intervals before and after the change are separated well, specially for T z = 0.6 max Z.

Figure 4 . 3 :Figure 4 . 4 :

 4344 Figure 4.3: Using T z for selecting significant change patterns. (a) Nonstationary signal presenting an abrupt-change in the mean at t = 75. (b) Collection Z of scores to be used for CP estimation with no threshold. (c) T z = 0.3 max Z. (d) T z = 0.6 max Z. (e) T z = 0.9 max Z. (f) T z = 0.95 max Z.

Figure 4 . 5 :

 45 Figure 4.5: Signals with a changing mean following three different patterns embedded in background noise. Conditional entropy for each signal, computed by considering different values of (1a) for T z = (1a) max Z.

4 . 5

 45 three signals with a time-varying mean that undergoes three consecutive patterns in the same series: i) two abruptchanges with amplitude values (x a ) set to x a = 3 and x a = 6, ii) a piece-wise linear trend with slope m = 0.03 and largest amplitude value set to x a = 4, and iii) an oscillation with four cycles per 36 samples with peak-to-peak value (x pp ) set to x pp = 4. We show the effect of adding uniform white noise with the following signal-to-noise ratio (SNR) values: 0 dB (Fig. 4.5(a)), -0.71 dB (Fig. 4.5(b)) and -1.06 dB (Fig. 4.5(c)). These values of SNR correspond to a background noise with peak-to-peak values of 0%, 60% and 90% in comparison to the original signal. In Fig. 4.5(d), (e) and (f) we show H( Z t | Y t ) computed by means of (4.10) for different values of (1a) in T z = (1a) max Z. Notice that the peaks of H( Z t | Y t ) in time follow the changes in the signal, and the peaks corresponding to those patterns varying abruptly can be seen for a wider range of (1a), reflecting the significance of those change patterns. We have also tested signals with a varying variance and both a varying mean and variance following the abrupt-change model with initial and final parameter values ranging from ξ 1 = 0 to ξ 2 = 4. We have considered three different CPs for the nonstationary signals: CP = 150, 225, 300. The nonstationary signals and their conditional entropy for different levels of significance (1a) are shown in Fig. 4.6 and Fig. 4.7, for the cases of nonstationary variance and nonstationary mean and variance, respectively. The CP estimation has been carried out by computing the local maxima of H( Z t | Y t ) by means of the MATLAB function findpeaks. The routine takes as input the maxima of H( Z t | Y t ) over all (1a) and returns the time instants where the peaks occur. We

Figure 4 . 6 :

 46 Figure 4.6: Signals exhibiting an abrupt-change in the variance at three different points. Conditional entropy for each signal, computed by considering different values of (1a) for T z = (1a) max Z.

Figure 4 . 7 :

 47 Figure 4.7: Signals exhibiting an abrupt-change in the mean and in the variance at three different points. Conditional entropy for each signal, computed by considering different values of (1a) for T z = (1a) max Z.

  stands for the re-scaled empirical distribution function and I(•) is the indicator of a set. Now, for a squareintegrable score function φ : [0, 1] → ℜ and for each i ∈ [1, n], we define the rank score

  .2 we show the results obtained by applying the Lombard's technique to the signals shown in Fig. 4.5 to Fig. 4.7. It can be seen that Lombard's test does not allow for the detection of multiple CPs in one time series, contrary to the developed method.
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Figure 5 . 1 :

 51 Figure 5.1: Map showing the grid points in Canada considered for the simulations.

Figure 5 . 2 :

 52 Figure 5.2: Example of six grid points randomly chosen and their corresponding annual maximum daily rainfall time series for both simulations (aet and aev).
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 52 and we have computed their maxima, the sample mean, standard deviation, skewness, and kurtosis. The results are shown in Table5.1 for both the aet and aev simulations. Note that the data are positively skewed and also have positive kurtoses, which indicate heavy tails on the right side of the distribution. In this regard, we present in Fig.5.3 the histograms of each signal, where we can see that the data have high peaks, and thus a heavy-tailed distribution.Such behavior was expected, since the data are the annual maximum daily precipitation (extreme values), which are not normally distributed. The significant presence of outliers and the heavy tailedness can be verified in the bloxplots of the data shown in Fig.5.4. As it could be seen, such dataset is difficult to analyze by using classical approaches, which usually either rely on the stationarity or in the Gaussianity of the underlying process, or are not robust against the presence of outliers. However, the techniques developed in this Thesis are suited to analyze such dataset.

Figure 5 . 3 :

 53 Figure 5.3: Histograms of the rainfall time series illustrated in Fig. 5.2. (a) (aet simulation. (b) aev simulation.

Figure 5 . 4 :

 54 Figure 5.4: Boxplots of the rainfall time series illustrated in Fig. 5.2. (a) (aet simulation. (b) aev simulation.
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 555657 Figure 5.5: Grid points for aet simulation that were classified as "nonstationary" for every distance and value of n h .

Figure 5 . 8 :

 58 Figure 5.8: Grid points corresponding to the largest 50, 20, and 10 AMD values for the Itakura-Saito distance, by using (a) the original method, (b) the weighted one.

Fig. 5 .

 5 Fig. 5.13 (aev), ii) Log-spectral Fig. 5.14 (aet) and Fig. 5.15 (aev), iii) Diffusion Fig. 5.16 (aet) and Fig. 5.17 (aev), iv) Symmetrized Itakura-Saito Fig. 5.18 (aet) and Fig. 5.19 (aev).Notice that, in general, there are many nonstationary grid points spread over the North and the South of the map, but not in the central area. More specifically, for most of the cases, there exists a concentration of nonstationary grid points with large values of AMD clustered in the Southeast (over the Nova Scotia province), Southwest (over the North of Ottawa) and Northwest (in the South of the Ungava Peninsula).
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 59 Figure 5.9: Grid points corresponding to the largest 50, 20, and 10 AMD values for the Log-spectral distance, by using (a) the original method, (b) the weighted one.

Figure 5 . 10 :

 510 Figure 5.10: Grid points corresponding to the largest 50, 20, and 10 AMD values for the Diffusion distance, by using (a) the original method, (b) the weighted one.

Figure 5 . 11 :

 511 Figure 5.11: Grid points corresponding to the largest 50, 20, and 10 AMD values for the Symmetrized Itakura-Saito distance, by using (a) the original method, (b) the weighted one.
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 512 Figure 5.12: For aet simulation, nonstationary locations given by the Itakura-Saito dis-tance. The marker showing each grid point is scaled according to the respective AMD value computed for the location.

Figure 5 . 13 :

 513 Figure 5.13: For aev simulation, nonstationary locations given by the Itakura-Saito dis-tance. The marker showing each grid point is scaled according to the respective AMD value computed for the location.
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 514 Figure 5.14: For aet simulation, nonstationary locations given by the Log-spectral dis-tance. The marker showing each grid point is scaled according to the respective AMD value computed for the location.

Figure 5 . 15 :

 515 Figure 5.15: For aev simulation, nonstationary locations given by the Log-spectral dis-tance. The marker showing each grid point is scaled according to the respective AMD value computed for the location.
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 516 Figure 5.16: For aet simulation, nonstationary locations given by the Diffusion distance. The marker showing each grid point is scaled according to the respective AMD value computed for the location.

Figure 5 . 17 :

 517 Figure 5.17: For aev simulation, nonstationary locations given by the Diffusion distance. The marker showing each grid point is scaled according to the respective AMD value computed for the location.

Figure 5 . 18 :

 518 Figure 5.18: For aet simulation, nonstationary locations given by the Symmetrized Itakura-Saito distance. The marker showing each grid point is scaled according to the respective AMD value computed for the location.
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 519 Figure 5.19: For aev simulation, nonstationary locations given by the Symmetrized Itakura-Saito distance. The marker showing each grid point is scaled according to the respective AMD value computed for the location.

Figure 5 . 20 :

 520 Figure 5.20: For aet and aev simulation, nonstationary locations given by the new stationarity test proposed in Chapter 3. The marker showing each grid point is scaled according to the respective I NS value computed for the location.
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 523 Figure 5.23: Histograms of the CPs and most likely CPs returned by the method. The nonstationary locations tested are those of aet simulation found by the surrogate-based technique.

Fig. 5 .

 5 23 we present the histograms of the estimated CPs and most likely CPs for the nonstationary grid points found by the surrogate-based technique when testing the aet simulation. The corresponding results for aev simulation are illustrated in Fig. 5.24. The results for the new stationarity test are shown in Fig. 5.25 and Fig. 5.26 for aet and aev simulations, respectively.
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 524525 Figure 5.24: Histograms of the CPs and most likely CPs returned by the method. The nonstationary locations tested are those of aev simulation found by the surrogate-based technique.
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 526527 Figure 5.26: Histograms of the CPs and most likely CPs returned by the method. The nonstationary locations tested are those of aev simulation found by the new stationarity test.
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 59 Fig. 5.9, Fig. 5.10 and Fig. 5.11). Fig. 5.27 illustrates the histogram of the estimated CPs and most likely CPs for the largest AMD cases. Notice in Fig. 5.27(a) that we have indeed a concentration around 60 for the most likely CP. In fact, the estimated mean and mode for Fig. 5.27(a) and (b), were, respectively, 63 and 73, and 64 and 74. Thus, the estimated mean value of the CP is in accordance with the ones of Table 5.5.

52 Figure 5 . 28 :

 52528 Figure 5.28: Change scores over w, n and t for the first 4 locations of Table5.6 for different levels of significance.

  2.3). The rainfall time series tested specifically in this Chapter correspond to 1631 grid points spread over the province of Quebec (QC), Canada, and have a time span of 139 years (from December 1960 to November 2100).

80 Figure 5 . 29 :

 80529 Figure 5.29: Change scores over w, n and t for the last 4 locations of Table5.6 for different levels of significance.
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 3 Figure A.3: Plot of f (k) = ln(k)ψ(k) for k > 0.

14 )Figure A. 5 :

 145 Figure A.5: Histograms of the values taken by the estimated variances forming the vector Θ ′ 0 , for the probability-based distances and for the nonstationary signals shown in Fig. 2.2 with T = 300.
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 11 Comparison between different approaches for analyzing nonstationary signals. We list common applications and problems of parametric and nonparametric methods that analyze the process in the time or in the time-frequency domain.

	Parametric approaches	Nonpararametric approaches

formation is given about the data, one needs to probe signals with respect to more general forms of stationarity, for larger classes of signals. In this regard, the choice of an efficient representation is a crucial point, since a good representation can provide much valuable information about the structure of the underlying signal in the absence of an external specification

[START_REF] Flandrin | Time-Frequency/Time-Scale Anaylsis, ser. Wavelet anlysis and its applications[END_REF]

. To this end, time-frequency (TF) approaches have been considered as powerful tools, as opposed to time-based techniques, which are more commonly found in the statistical literature. Regardless of the domain of analysis, the techniques can be broadly classified as parametric or nonparametric, depending on whether or not the probability distribution of the process can be completely specified by a finite number of parameters. Considering the categories of interest, we present in Table

1

.1 a short list of examples of applications and problems of methods for analyzing nonstationary signals.

  the first part of the Thesis, Chapter 2 presents various contributions to the surrogate approach for testing stationarity. It starts in Section 2.1 with an introduction on the stationarity test, explaining which aspects of the original framework this Thesis has focused on, and briefly describing the interpretation of stationarity associated with the framework. In Section 2.2, the stationarity test itself is present. Then, in Section 2.4, 2.5 and 2.7, the contributions to the original framework are proposed, which not only improve the detection of nonstationarity, but also allow for a better understanding of the surrogate-based approach.
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  D [S s i ,K (t n , f ), S s i ,K (t n , f ) n ] , n = 1, ..., N, i = 1, ..., I}.

			.9)
	and the stationarity of the surrogate s[n] can be verified since its covariance is function of
	n -m only. In order to perform the hypothesis test we create a collection of I surrogates {s i (t), i = 1, ..., I}, and then we compute a distance between local and global spectra for each surrogate. The result will be a collection of distance vectors being function of both
	time indices and randomizations:
	{c	(s i )	(2.10)
	In (2.10), the distance D(., .) is a dissimilarity measure in frequency, being one of the
	principal aspects of the method under consideration in this work. The null hypothesis
	of stationarity will be characterized by the statistical distribution of the estimate of (2.10)
	in time. For the signal itself, the distances between spectra are given in the following
	vector:		
		{c	(x)

n :=

Table 2 . 1 :

 21 Name, expressions and classes of the different distances used in this study

		PROBABILITY-BASED DISTANCES
	Distance	Expression
	Kullback-Leibler	

Table 2 . 2 :

 22 Results of applying the stationarity test to 1000 realizations of each process shown in Fig. A.4. The results are given as percentage (%) of "nonstationary" outcomes and arithmetic averages ( INS ) of INS over all realizations.

								Nonstationary signals							
		Distance		KL		KM	MS	IS		LS		DF		SIS		CB
		Length		300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050
		Abrupt-change %	0	0	0	0	0	0	85.0	88.5	10.0	15.0	97.0	100	10.0	10.0	5.00	0
	mean Varying	Middle Onset-of-trend % INS Middle INS Onset-of-trend %	0.50 0 0.58 0	0.48 0 0.46 0	0.64 0 0.74 0	0.63 0 0.61 0	0.65 0 0.59 0	0.51 0 0.43 0	1.61 1.00 0.85 0	1.65 2.00 0.90 5.00	1.20 1.00 0.85 0	1.10 3.00 0.93 3.00	1.67 0 0.69 0	1.75 0 0.70 0	1.01 1.00 0.66 3.00	1.07 0 0.76 0	0.58 0 0.49 1.00	0.55 0 0.52 0
		Beginning	INS	0.59	0.47	0.77	0.61	0.64	0.46	0.85	0.93	0.87	0.93	0.70	0.66	0.65	0.69	0.52	0.45
		Abrupt-change %	17.0	12.0	10.0	14.0	15.0	15.0	100	100	100	100	100	100	99.0	100	90.0	100
	Varying variance	Middle Onset-of-trend % INS Middle INS Onset-of-trend %	1.05 15.5 1.02 5.00	1.02 14.0 1.05 5.00	1.03 6.00 0.98 10.0	1.01 12.0 1.03 12.0	1.03 8.00 0.99 8.00	1.02 10.0 1.01 10.0	4.39 100 3.44 100	7.85 100 5.41 100	3.82 100 2.22 100	7.11 100 3.48 100	2.04 100 2.63 98.5	2.16 100 3.88 100	12.1 97.5 4.56 99.0	21.9 100 6.54 100	2.40 45.0 1.62 35.0	3.41 97.0 2.10 83.0
		Beginning	INS	0.95	0.97	1.01	1.02	1.03	0.99	2.40	3.71	2.03	3.42	1.74	2.12	3.49	6.00	1.47	1.75
	Varying mean and variance	Abrupt-change % Middle INS Onset-of-trend % Middle INS Onset-of-trend % Beginning INS	100 2.20 15.0 1.06 60.0 1.45	100 3.32 30.0 1.14 100 2.23	99.0 1.74 14.0 1.05 55.0 1.25	100 2.40 40.0 1.13 100 1.62	100 2.37 22.5 1.15 46.0 1.34	100 3.25 30.0 1.16 100 2.00	100 3.70 100 3.24 95.5 2.01	100 7.46 100 5.00 100 3.44	94.0 3.07 100 2.00 97.0 1.60	100 6.62 100 3.33 100 3.07	100 1.71 97.0 2.14 68.0 1.55	100 1.67 100 1.82 87.0 1.62	100 9.21 95.5 3.46 92.0 2.66	100 21.3 100 5.56 100 5.22	100 5.28 63.0 1.86 78.5 2.25	100 11.3 100 2.58 100 4.90
								Stationary signals							
		Distance		KL		KM	MS	IS		LS		DF		SIS		CB
		Length		300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050
		Type:	%	7.00	4.50	7.00	5.00	7.00	3.00	9.50	5.50	7.00	6.00	7.00	5.00	5.00	5.00	6.50	4.00
	AR(1) process	INS	0.95	0.96	0.96	0.91	0.95	0.97	0.98	0.97	0.98	0.98	0.92	0.98	0.93	0.95	0.93	0.94

Table 2 . 4 :

 24 Verifying the condition of (2.27) after applying the weighting procedure. The results are given as arithmetic averages ( k , Θ 1 /θ ) and ( k ′ , Θ ′ 1 /θ ′ ) of the esti- mates of (k, Θ 1 /θ) and (k ′ , Θ ′ 1 /θ ′ ), over 1000 realizations of the signals with length T = 1050 and T = 300 tested in Table2.3.

			Nonstationary signals		
	Distance	IS	LS	DF	SIS
	Parameters				

On the robustness of the test

  

			2.50 21.3	44.9	12.6 3.39	13.2	14.1	9.19 2.50	25.5	37.3	3.19 1.64	3.47	5.61
		Middle	T = 1050 11.7 3.85 30.5	43.7	16.1 6.52	17.2	18.3	8.06 2.17	24.7	36.1	5.99 2.64	6.37	8.22
		Onset-of-trend	T = 300 7.31 4.08 5.58	6.39	11.5 5.98	8.69	9.01	5.87 3.54	3.22	6.43	2.39 1.80	1.26	0.79
		Middle	T = 1050 12.2 7.08 10.2	11.1	15.7 10.4	14.1	9.90	5.25 3.48	2.59	5.40	4.05 3.20	2.48	1.92
		Onset-of-trend	T = 300 6.86 4.17 5.16	6.80	10.8 6.33	8.41	8.86	5.04 3.43	2.52	5.85	2.21 1.77	1.18	1.20
		Beginning	T = 1050 11.8 7.07 10.4	11.1	15.7 10.7	14.1	10.3	4.42 3.12	1.97	4.25	3.57 2.90	1.84	1.94
		Abrupt-change	T = 300 5.77 3.28 11.3	59.7	9.93 7.85	85.2	21.3	6.88 5.16	30.2	78.9	2.39 1.54	3.80	5.67
	Varying variance	Middle Onset-of-trend Middle Onset-of-trend	T = 1050 11.6 10.3 7.19 T = 300 5.63 2.17 69.9 T = 1050 11.3 6.32 337 T = 300 5.73 3.03 34.6	13.7 137 451 40.5	16.2 3.68 10.3 4.97 51.92 8.18 15.6 14.1 19.2 10.1 6.16 42.5	68.9 52.41 21.4 13.4	10.1 19.8 6.81 3.53 9.83 9.66 7.09 4.34	47.6 48.6 151 22.6	172 99.8 241 50.5	5.47 5.12 2.41 1.18 5.24 3.32 2.37 1.58	2.64 54.1 23.3 34.2	9.91 64.6 46.8 36.3
		Beginning	T = 1050 11.6 8.29 16.1	18.3	16.3 20.1	19.1	35.1	10.5 11.8	48.8	96.5	5.33 4.11	2.03	9.45
	Varying mean and variance	Abrupt-change Middle Onset-of-trend Middle Onset-of-trend Beginning	T = 300 5.89 3.27 60.7 T = 1050 11.8 11.4 63.8 T = 300 6.00 2.26 65.4 T = 1050 11.7 6.19 299 T = 300 5.71 2.96 24.1 T = 1050 16.6 7.35 14.1	81.4 95.8 121 366 37.8 72.7	10.6 8.00 16.1 14.1 10.3 4.78 15.7 14.1 10.5 6.03 15.7 14.3	96.3 7.03 41.1 17.5 13.2 15.7	98.2 4.41 45.4 6.73 27.6 28.4	7.91 5.74 8.55 7.23 6.77 3.31 4.79 2.93 13.2 7.21 6.43 5.96	24.4 24.2 33.3 16.7 4.28 17.9	59.6 7.89 64.1 28.8 18.5 35.7	2.61 1.70 5.64 5.39 2.49 1.21 5.08 2.99 2.52 1.62 5.11 3.52	78.3 25.7 33.3 16.1 20.8 14.6	79.4 33.1 43.4 36.8 4.63 15.7
	2.7												

One drawback of the surrogate-based approach is that the outcome ("stationary" or "nonstationary") can vary at every application of the test, even if one is testing the same realization of the same process. The fluctuation of the results can be a critical point if we are testing real world signals, where in the absence of a priori information, we would at least require consistent outcomes from one application of the test to another. According to the point view of distances that has been adopted in this work, it has been defined in Section 2.3.1 that a robust distance is the one that leads to less variation of the results.

As illustration, in Table

2

.5, we applied the stationarity test repeatedly (1000 times) to a single realization of each test signal. The results are given as percentage of nonstationary outcomes. Considering the definition of robustness given in Section 2.3.1, it can be noticed that: i) the case of a nonstationary mean is the least robust one, ii) the probability-based distances (KL, KM and GM) are considerably less robust than the frequency-based ones, and iii) for a few cases, we lose the robustness by weighting the distance. In this Section, we propose a method to evaluate the robustness of the distances that uses classical bootstrap analysis. Before deriving the robustness measure, however, we analyze how the changing outcomes occur.

Table 2 . 5 :

 25 Results of applying the original (shown as c n (%) ) and modified (shown as c n (%) ) stationarity test repeatedly (1000 times) to a single realization of each process shown in Fig. A.4. The results are given as percentage of observed "nonstationary" outcomes.

			Nonstationary signals				
	Distance	KL	KM	MS	IS	LS	DF	SIS	CB
	Length	300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050
	Varying mean								

Table 2 . 6 :

 26 AMD values computed for the original (shown as c n ) and modified (shown as c n stationarity test.

							Nonstationary signals							
		Distance	KL		KM	MS	IS		LS		DF		SIS		CB
		Length	300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050
		Abrupt-change cn AMD 0.93	0.86	0.75	0.79	0.81	0.79	1.17	0.81	0.41	0.38	0.96	0.87	0.13	0.56	0.84	0.88
	mean Varying	Middle Onset-of-trend cn AMD 0.74 cn AMD 0.95 Middle cn AMD 0.89 Onset-of-trend cn AMD 0.84	0.69 0.71 0.82 0.92	0.83 0.67 0.79 0.69	0.63 0.69 0.71 0.76	0.87 0.49 0.42 0.23	0.83 0.84 0.82 0.89	9.72 0.51 0.63 0.48	1.20 0.61 0.63 0.49	0.47 0.42 0.40 0.81	4.49 0.23 0.37 0.14	5.12 0.74 0.85 0.91	7.12 0.71 0.61 0.77	3.42 0.70 0.30 0.90	0.76 0.67 0.28 0.68	0.85 0.24 0.29 0.99	0.74 0.93 0.94 0.92
		Beginning	cn AMD 0.76	0.87	0.57	0.63	0.88	0.89	0.94	0.33	0.69	0.32	0.41	0.47	0.72	0.63	0.89	0.88
		Abrupt-change cn AMD 0.32	0.33	0.36	0.22	0.64	0.16	15.3	36.4	6.22	27.7	0.22	3.20	29.7	25.4	0.98	4.52
	Varying variance	Middle Onset-of-trend cn AMD 0.54 cn AMD 0.48 Middle cn AMD 0.94 Onset-of-trend cn AMD 0.27	0.42 0.33 0.12 0.48	0.50 0.05 0.65 0.32	0.18 0.60 0.60 0.20	0.44 0.55 0.23 0.06	0.36 0.09 0.72 0.35	25.5 9.73 42.8 1.70	10.1 26.7 78.6 7.18	1.14 0.94 1.21 2.45	0.41 6.00 1.74 7.02	3.65 3.59 17.2 1.08	5.92 7.77 12.1 3.62	0.54 6.64 1.47 0.11	2.77 14.3 2.14 16.1	0.23 1.20 0.87 0.75	0.41 1.74 4.68 0.84
		Beginning	cn AMD 0.21	0.68	0.62	0.35	0.85	0.56	3.16	4.65	0.12	0.29	4.13	6.19	0.21	0.07	8.46	0.67
	Varying mean and variance	Abrupt-change cn AMD 1.77 Middle cn AMD 0.06 Onset-of-trend cn AMD 0.57 Middle cn AMD 0.70 Onset-of-trend cn AMD 0.58 Beginning cn AMD 0.75	6.92 0.11 0.18 0.86 1.67 0.70	0.19 0.27 0.54 0.32 0.60 0.43	3.96 0.41 0.25 0.50 0.74 0.47	0.63 0.57 0.05 0.46 0.44 0.69	7.18 0.29 0.22 0.75 0.98 0.47	7.02 4.11 3.84 14.0 2.68 7.61	50.5 5.08 10.2 19.4 6.95 4.10	5.54 0.33 3.31 2.34 0.47 2.48	33.0 8.53 6.89 1.86 6.05 0.72	1.08 8.29 1.01 14.1 0.10 1.61	38.7 3.00 8.15 11.7 1.16 2.59	115 1.63 3.93 1.21 2.15 0.42	324 1.96 15.1 4.20 13.2 1.33	22.5 0.37 0.17 0.92 5.51 0.80	75.7 2.76 1.62 0.72 1.16 0.22
							Stationary signals							
		Distance	KL		KM	MS	IS		LS		DF		SIS		CB
		Length	300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050
		Type:	cn AMD 0.93	0.94	0.56	0.54	0.63	0.82	2.03	1.33	0.67	0.58	2.01	2.88	1.39	1.45	0.89	0.23
	AR(1) process	cn AMD 0.98	0.97	0.72	0.74	0.88	0.93	1.44	1.39	0.89	0.37	2.56	1.01	2.78	0.88	0.44	0.34

  The surrogate-based method does not work particularly well for the types of nonstationarity that were the most problematic in this Chapter, i.e., first-order evolutions and slowlyvarying nonstationarities. For detecting such types of nonstationarities, we develop in the next Chapter a new nonparametric, data-driven technique for testing stationarity.

Table 3 . 1 :

 31 Verifying the angles (in degrees) of the scalar product terms in the estimation of θ TI for the nonstationary Gaussian signal shown in Fig.3.2. • 90.0 • 92.0 • 88.0 • 87.0 • 91.1 • n h = 5 93.0 • 95.0 • 87.0 • 87.1 • 89.0 • 91.1 • n h = 7 90.0 • 92.1 • 89.2 • 88.1 • 90.0 • 92.3 • n h = 9 89.9 • 91.3 • 88.5 • 88.5 • 90.5 • 89.5 •

	n h / IMF	α 1	α 2	α 3	α 4	α 5	α 6
	n h = 3	89.9					

Table 3 .

 3 

	2: Critical values of B 2 for different values of ǫ.
	ǫ / sample size	25	50	100	200	400
	0.2	0.307 0.311 0.317 0.323 0.324
	0.5	0.297 0.308 0.312 0.316 0.320
	-0.2 -0.6	0.313 0.320 0.331 0.333 0.340 0.812 0.390 0.383 0.385 0.389

  355 to ξ 2 = 0.710 ξ 1 = 19.94 to ξ 2 = 39.88,

	(3.35)

Table 3 . 4 :

 34 Mean values of the GEV shape parameter ǫ and the Zémpleni statistic B 2 over 1000 realizations of the processes shown in Fig.3.10.

	Length					T = 300										T = 1050					
	Type	Beginning	Middle		Beginning	Middle		Beginning	Middle		Beginning	Middle	
	Range			Short					Long					Short					Long		
	Average values	ǫ	B	2	ǫ	B	2	ǫ	B	2	ǫ	B	2	ǫ	B	2	ǫ	B	2	ǫ	B	2	ǫ	B	2
	Mean (N )	0.40	97.3	0.54	96.9	0.41	97.1	0.51	97.1	0.53	97.2	0.80	96.7	0.55	97.3	0.60	96.1
	Var. (N )	0.56	97.4	0.51	97.5	0.49	97.4	0.47	98.0	0.57	97.3	0.52	97.6	0.50	98.1	0.49	96.8
	Mean and var. (N )	0.59	96.5	0.44	95.2	0.53	97.7	0.55	97.1	0.48	97.2	0.51	97.6	0.51	95.9	0.58	98.8
	Mean and var. (Γ)	0.53	89.3	0.49	92.5	0.48	93.7	0.51	91.1	0.47	93.4	0.53	96.8	0.53	88.9	0.55	91.3

Table 4 . 1 :

 41 in a descending order from max H( Z t | Y t ) to min H( Z t | Y t ), and Results of applying the proposed algorithm to the signals shown in Fig. 4.5 and Fig. 4.6. Z t | Y t )] as the time instant that is most likely the CP. In Table 4.1, the most likely CPs are highlighted.

			Changing mean
		True CP	50 115	145	246 300
		SNR (dB)		Estimated CP
		0	62 118 not detected 243 309
	-0.71 -1.06 Changing variance	62 111 not detected 244 310 63 114 not detected 242 312 Changing mean and variance
	True CP	150 225 300	True CP	150 225 300
	Estimated CP 155 229 299	Estimated CP 162 235 305
	ordering the time points accordingly, one could use t MAX = argmax

t [H(

Table 4 . 2 :

 42 .11) from which different test statistics can be derived for detecting different nonstationary patterns, like the abrupt-change model and the onset-of-trend model defined in (2.19) and Results of applying the Lombard's technique to the signals shown in Fig. 4.5 to Fig. 4.7.

			Changing mean		
	True CP	50	115	145	246	300
	SNR (dB)		Estimated CP		
	0	not detected	not detected	not detected	246 not detected
	not detected not detected Changing variance -0.71 -1.06	not detected not detected	not detected not detected Changing mean and variance 245 not detected 249 not detected
	True CP	150 225 300	True CP		150 225 300
	Estimated CP 149 225 298	Estimated CP 210 149 299
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 51 Statistical characteristics of the rainfall data

	Location	1		2		3		4		5		6	
	Simulation	aet	aev	aet	aev	aet	aev	aet	aev	aet	aev	aet	aev
	maximum	59.16	63.22	56.89	60.75	83.74	100.36	68.46	84.60	75.11	75.96	93.70	66.97
	mean	22.06	23.08	28.26	28.35	53.15	54.94	37.11	37.58	37.03	36.87	26.81	25.91
	std	8.31	9.65	7.17	9.82	12.01	14.24	9.41	11.85	10.14	10.92	10.91	8.67
	skewness	1.61	1.43	0.92	1.39	0.70	0.71	0.72	1.41	1.04	0.92	2.71	1.45
	kurtosis	6.47	5.31	4.27	4.73	2.97	3.58	3.37	5.07	4.57	3.71	14.39	6.63

Table 5 . 2 :

 52 Number of grid points classified as "nonstationary" for each distance, simulation and value of n h0 .

	Distance	Itakura-Saito	Log-spectral	Diffusion	Symmetrized Itakura-Saito
	Simulation	aet	aev	aet	aev	aet	aev	aet	aev
	n h0 = 0.06	Original Weighted	970 1519	924 1482	342 1024	310 976	1092 1071 1615 1608	175 422
	n h0 = 0.08	Original Weighted	892 1352	828 1300	427 970	401 914	999 1573 1545 970	255 484
	n h0 = 0.10	Original Weighted	869 1297	812 1241	465 925	432 869	954 1540 1519 924	288 497
	n h0 = 0.12	Original Weighted	831 1233	779 1170	477 869	458 802	907 1499 1479 862	320 461
	n h0 = 0.14	Original Weighted	796 1106	744 1045	551 758	522 695	846 1442 1396 799	371 428
	n h0 = 0.16	Original Weighted	784 1044	717 983	551 719	548 646	798 1400 1342 763	387 396
	n h0 = 0.18	Original Weighted	707 919	617 860	521 613	520 530	751 1293 1238 687	379 336
	n h0 = 0.20	Original Weighted	695 891	633 796	516 607	533 488	732 1262 1231 674	381 311
	n h0 = 0.22	Original Weighted	682 823	601 743	522 540	513 442	689 1204 1165 631	389 278
	n h0 = 0.24	Original Weighted	647 757	582 644	489 450	501 368	653 1126 1117 600	377 218
	n h0 = 0.26	Original Weighted	628 706	578 573	490 418	508 335	639 1072 1050 574	384 192
	n h0 = 0.28	Original Weighted	632 694	539 550	501 394	495 313	630 1061 1019 553	383 170

Table 5 . 3 :

 53 Verifying the condition of (2.27) after applying the weighting procedure. The results are given as arithmetic averages( k , Θ 1 /θ ) and ( k ′ , Θ ′ 1 /θ ′ ) of the esti- mates of (k, Θ 1 /θ) and (k ′ , Θ ′ 1 /θ ′ ), over all nonstationary and stationary grid points for both aet and aev simulation, for each distance (Itakuro-Saito [IS], Log-spectral [LS], Diffusion [DF], Symmetrized Itakuro-Saito [SIS]) and value of n h0 .

			Nonstationary grid points		
	Distance	IS	LS	DF	SIS

Table 5 . 4 :

 54 Number of grid points classified as "nonstationary" for aet and aev simulations and different values of window size n h .

	Simulation / n h 3	5	7	9	11
	aet	92 95 109 110 125
	aev	99 125 130 178 118
	5.2.				

2 Results for the new stationarity test

  We show in this Section the results of applying the stationarity test developed in Chapter 3 for testing trend-based and slowly-varying nonstationarity. This framework has a free parameter, which is the size of the Hermite window n h chosen for estimating the time marginal. For the datasets, we considered the following values n h =[START_REF] Manolakis | Statistical and Adaptive Signal Processing: Spectral estimation[END_REF][START_REF] Jarušková | Some problems with application of change-point detection methods to environmental data[END_REF][START_REF] Rao | Nonstationarities in Hydrologic and Environmental Time Series (Water Science and Technology Library)[END_REF][START_REF] Milly | Stationarity Is Dead: Whither Water Management?[END_REF][START_REF] Shih | A new forecasting model for nonstationary environmental data[END_REF].

Table 5 . 5 :

 55 Mean and mode of the estimated CPs (most likely CP) of the nonstationary locations found by the two stationarity tests developed in this Thesis.

	Stationarity	Surrogate-based		New test for
	test used		technique	trend-based nonstationarity
	Simulation	aet	aev	aet	aev
	Mean	67	60	61	63
	Mode	41	65	47	55

Table 5 . 6 :

 56 Coordinates of 8 grid points that lead to the largest AMD values for all distances.

	Location	1	2	3	4	5	6	7	8
	Latitude	60.8304	44.1138	48.1606	45.9826	48.5020	59.6040	57.8619	58.3774
	Longitude	-77.8633	-57.3258	-59.2250	-64.4139	-73.3617	-73.5587	-74.4232	-75.5866

Table 5

 5 .6 for different levels of significance. each simulation (aet and aev) tends to be close to each other for the stationarity tests considered. Moreover, the weighting procedure that is proposed for the surrogate-based method, has reasonably fulfilled the required conditions for improving the stationarity test.About the performance of the stationarity test based on surrogates, we have observed that, in general, there exist many nonstationary grid points spread over the North and the South of Quebec, but not in the central area. More precisely, for the majority of the cases, there is a concentration of nonstationary grid points having large AMD values (i.e. which are unlikely to change if we apply the test again), clustered in the following regions of Quebec: Southeast (over the Nova Scotia province), Southwest (over the North of Ottawa) and Northwest (in the South of the Ungava Peninsula). These findings call for a more careful analysis of the climatic time series over that areas.The result of applying the new stationarity test for slowly-varying nonstationarities is a little different from what we have obtained for the surrogate-based techniques. There are many nonstationary grid points over the central area of Quebec. Such difference could be possibly explained by the fact that the two stationarity tests are designed for detecting different types of nonstationarities, and the nonstationary behavior detected by one at a given grid point, will be not necessarily detected by the other. However, even for the new stationarity test, a number of nonstationary locations over the regions mentioned above was detected. Other stationarity tests for detecting slowly-varying nonstationarities did not accuse as much nonstationary locations as the method developed in Chapter 3 (the Kay's test could not detect any grid point, and the KPSS test had only a few grid points intersecting the ones accused by the proposed approach).

These values were chosen empirically. We observed that, in general, the choice of parameter values ranging from ξ 1 = 0 to ξ

= 4 gives a good compromise between keeping the detectability of the test for all the adopted models, while having small variations in the series.

It should be noted that due to approximation errors in the EMD algorithm, we might obtain values of θ TI that are slightly lower than 1. In anyway, the approximation θ TI ≈ 1 is still reasonable.

In practice, however, the algorithm performs a short investigation for some values i > ζ. We can be a little more certain that p ζ is not a local maximum by allowing the procedure to continue for a few more iterations.
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stationarity relative to the whole observation interval T. Thus, the information about the time of change is unattainable if the nonstationarity appears only for a portion of the series, for instance. For estimating the points of change of the nonstationary signals, we propose in the next Chapter a nonparametric and data-driven framework, which not only allows for the estimation of multiple change points, but also offers a visual representation of the change dynamics of the signal.

Chapter 4

Change point detection content is concentrated over a given time interval. For a given TF spectrum {S(t n , f ), n = 1, ..., N}, let us define a vector containing these time instants as τ = t i , ..., t f , where

We consider τ as the vector presenting the time instants where majority of the spectral content of the signal. Then, we assume to have an accumulation or a concentration of the spectral content of S(t, f ) in τ, if the local spectra are significantly greater than the marginal spectrum, in a way that the distance between them are greater for τ = t i , ..., t f than for the rest of the observation interval. More precisely, if we define the total excess of the local spectra over the global marginal spectrum by

where S(t, f ) n is obtained by marginalization over all time instants, we say that

while the values taken by the distance vector should also increase in τ:

It is easy to see that this temporal structure is reflected on the time marginal y(t n ), as (A.1) can be written as:

Note that (A.1) and (A.2) simply say that the largest values of the distance vector occur where the TF spectrum is most concentrated. Notice that this idealized scheme is fairly well followed by the nonstationary signals shown Fig. The key point of using the same vector y n to weight the distances {c

.., N} of the surrogate set, is that one is in fact adding a dependence structure to the collection of i = 1, ..., I distances, which is dictated by the time marginal. Furthermore, and also important, there should exist a positive covariance between consecutive weighted distances { c (s i ) n , i = 1..., I}, whereas, the more nonstationary the signal (or the stronger the observed temporal structure in y n ), the greater the covariance should be. In other words, for any i, l ∈ [1, I], greater of values of c (s i ) n will mainly correspond with the greater values of c (s l ) n (as both random vectors are being weighted by the same vector y n ), which characterizes a positive covariance. The latter can be also easily demonstrated by using the expression for the covariance. Let { c 

where, since c

n and c

which should be positive. 

n }, i = 1, ..., I} by maximum likelihood. It can be shown that, for the gamma distribution, the log-likelihood function is given by:

By taking the derivative with respect to θ and setting it to zero, we can easily find the maximum likelihood estimator of the θ parameter:

By using some basic variance rules, we can see that:

Hence we could rewrite (A.5) as follows:

It is simple to express the condition of (2.26) for Θ 1 /θ and Θ ′ 1 /θ ′ in terms of variances. To do so, note that Θ 1 = Var{c x n } and Θ ′ 1 = Var{ c x n }, where c x n and c x n are, respectively, the original and the modified distance vectors of the signal itself. Thus, (2.26) can be written as:

Since the surrogates are i.i.d.,the original distance vectors {c

.., I} computed for consecutive surrogates, should not present a significance dependence structure, in a way that the terms {Cov{c

n }, i < j} in (A.8) should be close to zero, independently of the stationarity/nonstationarity of the signal. This is not the case for the weighted distances, as the terms Cov{ c

n } should take large positive values for the case of nonstationarity (as seen in (A.2) and (A.3)). By replacing the covariance terms, one could rewrite (A.8) as follows:

Although the right-hand side of (A.9) has to be greater than one, and also should increase for for the case of nonstationarity (where k ′ > k), the left-hand side should take much larger values if the time-varying spectrum undergoes a structured evolution in time.

In this case, not only the variance computed in the numerator will grow, but also the covariance terms Cov{ c

n } will keep the value of the denominator low, guarantying that the inequality holds. According to this, the condition Θ ′ 1 /θ ′ > Θ 1 /θ shown (2.26) should hold if the TF representation exhibits a structured evolution in time.

In order to verify the condition for the shape parameter (k ′ < k), we first substitute

Expanding the product of variances in the denominator of (A.15) is a tedious task, as there will be many cross terms. On the other hand, we can express the product of variances between two consecutive distances c

n as follows:

where, by using (A.6), we could see that:

(A.17)

The product of variances in the denominator of (A.15), can thus be expressed as:

By replacing (A.18) in (A.15) we obtain the following:

where we should have f (k ′ ) ≥ f (k) in order to guarantee the condition in (2.26) (i.e. [START_REF] Brodsky | Nonparametric Methods in Change Point Problems[END_REF]) take large positive values in case of nonstationarity, due to the dependence imposed by weighting with y n . On the other hand, Cov{c

} should be much closer to zero, in a sense that one could verify Cov{ c

) n

} for i = 1, ..., I/2. Note that the greater the covariances, the smaller the denominator of (A. [START_REF] Brodsky | Nonparametric Methods in Change Point Problems[END_REF]). As the terms in the denominator of (A. [START_REF] Brodsky | Nonparametric Methods in Change Point Problems[END_REF]) are multiplied out I/2 times, the influence of the covariance terms will be boosted significantly. Hence, the left-hand side of (A.19) will take much larger values whenever the values of the covariances are large (i.e. in case of nonstationarity), and one will have

Hence, the condition k ′ < k is verified.

A.2 Problems with weighting probability-based distances

As it has been shown in Table 2.3, by weighting the probability-based distances according to the procedure described in Section 2.6, we end up affecting the detection of nonstationarity. It happens due to the normalization of the spectra that is required for this class of distances. By normalizing the spectra G( f ) and H( f ) to the unity, we reduce drastically the range of possible values taken by the corresponding distances, which turns out to be a critical point for the method.

For all practical purposes it can be assumed that the distances of probability nature considered in this work will take values in the range [0, 1]. As illustration, we show in Notice that only a few outliers are greater than one, and as a matter of fact, the percentage of cases where D(•, •) ≥ 1 is less than 0.05% for all cases. Hence, we can

we choose any of these distances for computing the vector {c n , n = 1, ..., N}, we should have 0 ≤ c n ≤ 1 for every n = 1, ..., N. From this, if we define E{c n } = ν, we could easily demonstrate the following: will also be affected, and then we will have the following situation:

n }) ≤ 0.25 for i = 1, ..., I.

In practice, the estimated variance of the weighted distances will take values of the order of 10 -5 (in the average). The latter can be seen in n } are given, the round off errors and approximations in the estimation of the gamma parameters will be a critical problem, as well as the variance of the MLE estimators of θ and k (for which the latter needs to be computed numerically).